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Résumé : Dans cette thèse, nous étudions la relation entre le chaos quantique dans la 
théorie conforme des champs (CFT) et la présence de trous de ver dans la gravité quantique.

Dans le chapitre 2, nous explorons les connexions entre la théorie des matrices aléatoires, la 
gravité quantique AdS₃ et les CFTs 2D chaotiques. Nous développons un cadre pour identifier 
le comportement des matrices aléatoires dans les CFTs 2D et la gravité AdS₃. Du côté CFT, 
nous introduisons une formule de trace pour les CFTs 2D, analogue à la formule de trace de 
Gutzwiller pour les systèmes quantiques. Cette formule nous permet d'identifier et de 
quantifier l'universalité des matrices aléatoires dans les CFTs chaotiques, menant à une 
condition nécessaire et suffisante pour qu'un CFT 2D affiche une rampe linéaire dans son 
Facteur de Forme Spectrale. Du côté de la gravité, nous nous concentrons sur le trou de ver 
de Cotler-Jensen (CJ) dans la gravité pure AdS₃. Il est démontré que celui-ci est égal au 
corrélateur de la théorie des matrices aléatoires, complété minimalement pour respecter la 
symétrie de Virasoro et l'invariance SL(2,ℤ). Cela suggère une dualité AdS₃/RMT₂, 
généralisant la dualité JT/RMT à 3D. Nous établissons ensuite le dictionnaire AdS/CFT en 
montrant que les trous de ver AdS₃ peuvent être considérés comme le dual gravitationnel de 
la projection de Hecke de la fonction de partition au carré dans un CFT 2D. Cela illustre 
comment les trous de ver peuvent émerger d'un CFT chaotique individuel sans nécessiter de 
moyenne d'ensemble sur les théories.

Dans le chapitre 3, nous abordons des problèmes non-perturbatifs dans la gravité 3D et le 
bootstrap modulaire à grande charge centrale. Le calcul de la fonction de partition de la 
gravité 3D par Maloney et Witten a révélé une non-unitarité à cause de une densité d'états 
négative près de l'extrémalité. Pour restaurer l'unitarité, nous introduisons des contributions 
non-perturbatives à la fonction de partition de Maloney-Witten, qui donne lieu à une fonction 
de partition unitaire et invariante modulaire avec un gap spectral de Δ=(c-1)/12. Ces 
nouvelles contributions peuvent être interprétées comme des cordes tournantes et des trous 
noirs ¨stringy¨, dont l'entropie, bien que non-perturbativement supprimée, domine près de 
l'extrémalité et produit une densité d'états positive. Cela suggère une possible réalisation UV 
en théorie des cordes de la gravité pure AdS₃. Le gap spectral de notre solution, Δ=(c-1)/12, 
valide même pour c fini, dépasse la précédente borne numérique du bootstrap de Δ=c/9.08.

Dans le chapitre 4, nous explorons si les trous de ver en gravité 2D peuvent émerger de 
l'intrication entre les microétats des trous noirs plutôt que de une moyenne d'ensemble. 
Nous étudions cela en utilisant la Mécanique Quantique des Matrices (MQM), qui peut être 
interprétée comme une quantification de l'intégrale matricielle duale à la gravité JT. Ainsi, 
elle sert de modèle pour l'intrication entre les microétats chaotiques des trous noirs. Nous 
résolvons la MQM pour des courbes spectrales arbitraires en développant une théorie 
effective hydrodynamique. Nous montrons que l'intrication de l'état fondamental dans la 
MQM reproduit le noyau sinus non-perturbatif et par conséquent la transition rampe-plateau 
dans le SFF. Étant donné que ces effets sont capturés par les trous de ver dans la gravité JT, 
cela suggère qu'ils peuvent être interprétés comme émergeant de l'intrication entre les 
microétats des trous noirs. Nous étudions également la structure d'intrication dans la MQM, 
révélant un haut degré d'intrication de l'état fondamental, proportionnel à l'entropie des 
trous noirs.
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Abstract : In this thesis we study the relation between quantum chaos in Conformal Field 
Theory and the presence of wormholes in the gravitational path integral.                             


In Chapter 2, we explore the connections between random matrix theory, AdS₃ quantum 
gravity, and chaotic 2D CFTs. We develop a framework for identifying random matrix 
behavior in 2D CFTs and AdS₃ gravity.  On the CFT side, we introduce a trace formula for 2D 
CFTs, mirroring Gutzwiller's trace formula for quantum chaotic systems. This formula allows 
us to identify and quantify random matrix universality in chaotic CFTs, leading to  a 
necessary and sufficient condition for a 2D CFT to display a linear ramp in its Spectral Form 
Factor. On the gravity side, we focus on the Cotler-Jensen (CJ) wormhole in pure AdS₃ 
gravity. This is shown to be equal to the random matrix theory correlator, minimally 
completed to respect Virasoro symmetry and SL(2,ℤ) invariance. This suggests an AdS₃/RMT₂ 
duality, generalizing the JT/RMT duality to 3D. We then establish the AdS/CFT dictionary by 
showing that AdS₃ wormholes can be viewed as the gravity dual of the Hecke projection of 
the squared partition function in a 2D CFT. This illustrates how wormholes can emerge from 
an individual chaotic CFT without requiring an ensemble average over theories.

In Chapter 3, we address non-perturbative issues in 3D gravity and the modular bootstrap at 
large central charge. Maloney and Witten's computation of the on-shell 3D gravity partition 
function revealed non-unitarity  due to a negative density of states near extremality. To 
restore unitarity, we introduce non-perturbative contributions to the Maloney-Witten partition 
function, resulting in a unitary, modular-invariant partition function with a spectral gap of 
Δ=(c-1)/12. These new contributions can be interpreted as spinning strings and stringy black 
holes, whose entropy, though non-perturbatively suppressed, dominates near extremality 
and produces a positive density of states. This is suggestive of  of a possible UV string theory 
realization of AdS₃ gravity. The spectral gap of our solution Δ=(c-1)/12 even at finite c, 
surpasses the previous state-of-the-art numerical bootstrap bound of Δ=c/9.08.

In Chapter 4, we explore whether wormholes in 2D gravity can arise from entanglement 
between black-hole microstates rather than ensemble averaging. We study this using Matrix 
Quantum Mechanics (MQM), which can be interpreted as a quantization of the matrix integral 
dual to JT gravity. Thus it serves as a toy model for the entanglement between chaotic black 
hole microstates. We solve MQM for arbitrary spectral curves by developing a hydrodynamic 
effective theory. We show that ground state entanglement in MQM reproduces the non-
perturbative sine-kernel and consequently the ramp-plateau transition in the SFF.  Since 
these effects are captured by wormholes in JT gravity, this suggests they may be interpreted 
as emergent from the entanglement between black hole microstates. We further study the 
entanglement structure in MQM revealing a high degree of ground state entanglement, 
proportional to the black hole entropy. 
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Chapter 1

Introduction

Black holes lie at the frontier of our understanding of Nature. More than a hundred years
after Schwarzschild found the first black hole solution to Einstein’s General Relativity, we
still lack a complete quantum mechanical understanding of black holes. The most immediate
puzzling feature of a black hole is the presence of a classical event horizon, a closed region
in spacetime from which nothing can escape, not even light itself, hence the moniker black
hole. Anything we throw past the horizon would seem to be lost forever, apparently. This
feature, when considered together with the fundamental principles of quantum mechanics,
results strikingly incompatible with the laws of physics we have discovered so far.

As our first thought experiment, suppose I were to burn this thesis: all of the information
contained in it would be present in the form of extremely small correlations between the
particles of the resulting smoke and ashes. Information is not destroyed. It might be
impossible, for all intents and purposes, to reconstruct the content of my thesis, but it is
in there. The underlying physical principle behind this thought experiment is determinism,
which states that fully knowing the state of a system at any given instant of time allows us
to predict the state at any other time. If we could collect all of the particles of smoke and
carefully measure their positions and velocities, we could, in principle, run time backward
and restore this manuscript.
Black holes make information unavailable to the rest of the universe, hiding it behind the
horizon. Naively this might seem in contradiction with classical determinism, however
the equations of General Relativity are time-reversal invariant so the theory is not self-
contradictory. However, we will see that when we consider quantum mechanics in the
presence of a black hole, the tension between the two will be stark and lead to the so-called
black hole information problem.

The desire to reconcile black holes with the known laws of Nature has driven many
theoretical physicists for roughly five decades, since the early seventies [4–14]. During this
time, significant progress has been achieved and by now we have collected vast amounts of
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evidence that black holes do indeed behave like quantum mechanical systems, at least for
observers outside the event horizon. Information is believed not to be lost, instead encoded
in the black hole microstates that make up the Bekenstein-Hawking entropy. Thanks to black
hole evaporation, the information may be, in principle, reconstructed from Hawking radiation
quanta [15]. Supporting evidence for this conclusion originates from three complementary
approaches to quantum black holes.

String theory. String theory [16–19] is currently the leading candidate for a consistent,
UV complete theory of quantum gravity. It aims to provide a full microscopic description of
black hole microstates in terms of fundamental degrees of freedom, namely strings and branes,
whose statistical mechanical entropy should account for black hole entropy. This reductionist
approach is extremely non-trivial to achieve in practice, due to the difficulty of carrying out
the necessary computations. Success has been achieved in particular supersymmetric cases,
starting from the famous work of Strominger and Vafa [20].1

AdS/CFT correspondence. The AdS/CFT correspondence [28–31] states that a
quantum gravitational theory in an asymptotically Anti-de-Sitter (AdS) spacetime in d+ 1
dimensions is exactly dual to a non-gravitational conformal field theory (CFT) in d dimensions.
In this approach, gravity is emergent from the complex dynamics of a strongly coupled, large
N quantum system, the CFT. In this sense, we might think of AdS/CFT as a prime example
of the complexity paradigm introduced by Anderson’s More is different [32]. Anderson
highlighted the importance of complexity in physics as opposed to the extremely successful
reductionist paradigm in particle physics: even if we know the fundamental constituents of a
complex system, collective behaviour can arise that would have been extremely unexpected
and difficult to predict using the fundamenl degrees of freedom. Analogously, a CFT a
priori has nothing to do with gravity, black holes or extra dimensions, and yet it precisely
encodes all of these phenomena. Gravity emerges as if it were a hologram produced from the
CFT dynamics. Assuming the AdS/CFT correspondence, black holes are trivially consistent
and evolve unitarily as quantum mechanical systems, since the dual CFT is a perfectly
well-defined, unitary, quantum mechanical system. However, we do not understand the
precise mechanisms necessary to describe a black hole from the CFT point of view. How can
we describe unitary black hole evaporation precisely using the CFT? How does a CFT encode
the experience of an observer falling behind the horizon? What is the role of the black hole
singularity from the CFT point of view? The black hole information problem is solved in
principle, by postulation of the AdS/CFT correspondence, but unsolved in practice, which
has spurred a large amount of work in this direction, including this thesis.

Gravitational path integral. The third approach does not rely on any external
constructions like string theory or CFT and instead strives to understand the Gravitational

1There has been impressive progress in entropy counts for supersymmetric black holes since Strominger
and Vafa, using string theory, AdS/CFT and more recently supergravity localization. We just mention a few
reviews and a recent work where one can find a more up-to-date bibliography [21–27].
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Path Integral (GPI) from a bottom up point of view [33]. The GPI is not well defined in
general, meaning we don’t know the precise rules to correctly compute observables. As a
consequence, one is often focused on simpler toy models of gravity in two (or three) spacetime
dimensions, where there are no UV divergences. In such models one can compute the path
integral (almost) exactly and then (hope to) extend the lessons gained to other contexts.
One of the lessons recently learned is that for the GPI to produce answers consistent with
quantum mechanics we should include wormholes in the path integral. However there is not a
well grounded, a priori reason to include them in the GPI: a posteriori we see that by including
them we obtain deep insights into black hole physics and solutions to many of its conundrums.
Thus wormholes, while extremely insightful, are still rather exotic objects as we don’t fully
grasp why we should include them in the path integral. In particular, they connect different
asymptotic boundaries of spacetime, consequently their contribution does not factorize. This
leads to the so-called factorization problem since, in principle, observables should factorize
in a microscopic theory. It is unclear how to understand wormhole configurations from the
microscopic point of view, either in string theory or in the dual CFT.
One possibility that has emerged in the past few years is that the GPI does not behave as a
full quantum mechanical theory but rather as a statistical ensemble of quantum theories of
some kind. This is striking as it is apparently in tension with the microscopic descriptions
provided by String Theory and the dual CFT, both of which are individual quantum systems.
Understanding whether this is indeed the case, and if so, how we should modify the GPI
to to recover an individual quantum mechanical description is an active topic of research.
Conversely, it is crucial to understand whether it is possible for an individual quantum
mechanical system to exhibit an emergent behavior that is statistically equivalent to an
average over an ensemble of systems. Studies in many-body quantum systems show that
chaos is a possible way to achieve this. Random matrix universality of quantum chaotic
systems is the statement that the Hamiltonian behaves statistically like a random matrix.
Thus we are led to ask whether puzzling features of the GPI, such as wormholes, can be
interpreted as emergent phenomena due to chaos in CFT or string theory. This is one of the
questions we will address in this thesis.

The purpose of this thesis is to continue this scientific endeavor. In particular, we will
explore connections between the three different approaches (String theory, AdS/CFT, GPI)
and propose ways to resolve and understand gravitational puzzles, like wormholes, as emergent
new phenomena in quantum mechanical systems.
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1.1 Summary of thesis

In chapter 1, we introduce various topics relevant to the rest of the thesis. We start by
reviewing some basic facts about black holes and introducing the black hole information
problem. We proceed to discuss chaos and its relevance to black hole physics. We present
two of the main notions of chaos in quantum systems and focus on a specific observable: the
Spectral Form Factor (SFF). We review the phenomenology of this observable in chaotic
systems, informed by random matrix universality. We review JT gravity as a toy model
of quantum gravity and its SFF, which helps set expectations for the case of 3D gravity
discussed in this thesis. We end by recalling some relevant facts about the spectrum of 2D
CFTs and the symmetries that constrain it, which serve as a basis for chapter 2.

In chapter 2 we explore and establish connections between random matrix universality,
AdS3 quantum gravity and chaotic 2D CFTs. We develop a framework for identifying and
quantifying random matrix behavior of general 2d CFTs and theories of AdS3 quantum gravity.
On the gravity side, we consider as a specific example the Cotler-Jensen (CJ) wormhole
of pure AdS3 gravity. The CJ wormhole was recognized to be related to random matrix
theory [34], since in the near-extremal limit it reduces to the JT gravity wormhole, which
is equal to a matrix integral [35]. We understand and make precise the relation between
the CJ wormhole and random matrices, identifying it as extremal in the space of AdS3

wormhole amplitudes. We show that the CJ wormhole is equal to the minimal completion of
random matrix theory compatible with Virasoro symmetry and SL(2,Z)-invariance. This
equality between a wormhole amplitude in AdS3 and a matrix integral (suitably modified to
accommodate the necessary symmetries) is suggestive of an AdS3/RMT2 duality, generalizing
the JT/RMT duality to 3D [35].

On the CFT side, we explore the mechanism by which an individual chaotic CFT
exhibits random matrix universality. In quantum mechanics, the relevant mechanism has
been understood using a semiclassical expansion for the path integral: the Gutzwiller trace
formula [36]. The trace formula expresses the density of states ρ(E) as a sum over highly
oscillatory contributions corresponding to semiclassical periodic orbits. The spectral statistics
are then encoded in the interference between these oscillations. Using this framework, Berry
reproduced the leading random matrix behaviour via the so-called diagonal approximation [37].

We present a 2d CFT trace formula, precisely analogous to the Gutzwiller trace formula
for chaotic quantum systems. The CFT trace formula originates from the SL(2,Z) spectral
decomposition of the density of Virasoro primary states. We make the analogy precise by
giving specific and, within some assumptions, unique identifications between the SL(2,Z) basis
of Eisenstein series and Maass cusp forms and the periodic orbits appearing in Gutzwiller’s
formula.

We establish the analog of Berry’s diagonal approximation in 2d CFT using Hecke
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operators for SL(2,Z), resulting in the Hecke projection. This allows to extract spectral
statistics of individual 2d CFTs by coarse-graining, and consequently to identify and quantify
signatures of chaos and random matrix universality. We find a necessary and sufficient
condition for a 2d CFT to display a linear ramp in its spectral form factor. The condition
can be stated in terms of the microscopic CFT data as a certain asymptotic behavior in the
SL(2,Z) basis. It can be thought of as a sum rule valid in, and only in, chaotic CFTs.

Having explored independently the gravity and CFT manifestations of random matrix
universality, we turn to establishing the AdS/CFT dictionary between the two. AdS3

wormholes are cleanly interpreted as the gravity dual of the Hecke projection of the squared
partition function in a microscopic 2d CFT. Schematically:

ZWH(τ1, τ2) = PHecke[ZCFT(τ1)ZCFT(τ2)] (1.1.1)

This demonstrates that wormholes can emerge from an individual chaotic CFT. Non-
factorization of the wormhole amplitude can be interpreted as coarse-graining, without
the need to invoke an ensemble average over theories. The responsible physical mechanism is
the CFT version of Berry’s diagonal approximation.

From the holographic point of view, the Cotler-Jensen wormhole is the maximal realization
of random matrix universality consistent with the necessary symmetries, a property we name
MaxRMT. The notion of MaxRMT is similar in flavor to the notion of maximal chaos introduced
by Maldacena, Shenker and Stanford [38]. The latter is expressed as saturation of the bound
on the Lyapunov exponent which is an early time, semiclassical diagnostic of chaos. MaxRMT
instead is expressed as the saturation of the regime of validity of random matrix universality,
a late time, fully quantum diagnostic of chaos.

Finally, the completeness of the SL(2,Z) spectral basis as a trace formula indicates
a natural factorization of the Cotler-Jensen wormhole. The factorized partition function
ZRMT(τ) is a microscopic CFT partition function which, upon Hecke projection, produces
the CJ wormhole.

This is a candidate for a single boundary contribution to the gravity path integral which
captures fine details of the spectrum of BTZ black hole microstates. ZRMT(τ) displays very
erratic behaviour given by the Riemann zeta function, which suggests it may be interpreted
as an AdS3 half-wormhole. We end the chapter by discussing its implications for the dual
CFT and modular bootstrap at large central charge.

In chapter 3 we explore some well known non-perturbative problems in 3D gravity and
the large c modular bootstrap and find an explicit solution.

Maloney and Witten computed the partition function of 3D gravity by summing over
all on-shell, smooth geometries (plus loops) and yet found a non-unitary answer due to a
negative density of states near extremality. For 3D gravity to be a consistent quantum theory,
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it is necessary to include new configurations to the path integral which render the density
of states positive, consistently with a unitary theory. A conformal bootstrap avatar of this
problem is to either exclude or construct a positive, modular invariant partition function
with a spectral gap of ∆gap = c

12 as in 3D gravity.

We constructed an explicit solution to these problems by adding non-perturbative contri-
butions to the Maloney-Witten (MW) partition function, resulting in a positive, modular
invariant partition function with a spectral gap of ∆gap = c−1

12 .

The new contributions can be identified in the bulk as coming from spinning strings
and corresponding stringy black holes. Their entropy is non-perturbatively suppressed with
respect to the MW entropy except near extremality. In that regime, they dominate and
produce a positive density of states. The stringy black hole entropy displays a qualitatively
new oscillatory behaviour, as opposed to the exponential Cardy behaviour, indicating its
quantum nature. Due to these oscillations, the stringy density is not positive definite by
itself, however by combining it with the MW density one obtains an overall positive density.

The gap is exactly c−1
12 , even down to finite c. At large c we can interpret the large gap

as a result of the strings being strongly coupled, which lifts them to the Planck scale. This
behaviour serves as a bottom up model to mimic a possible UV string theoretic realization of
AdS3 pure gravity.

From the CFT point of view, this represents the first example of a partition function with
such a large gap. The previous state-of-the-art numerical bootstrap bound was c

9.1 . The twist
gap of the solution is also c−1

12 except for two states with large spin proportional to c.

The features of the solution highlight the importance of non-perturbative effects in the
large N bootstrap, as the N →∞ often does not commute with solving bootstrap constraints.
We comment on some curious number theoretic aspects of this solution.

In chapter 4 we explore whether wormholes in 2D gravity can arise from entanglement
between microstates, as opposed to ensemble averaging over theories. We show that ensemble
averages over random matrices can arise from entanglement in Matrix Quantum Mechanics
(MQM).

We consider a 0+1D theory of quantum mechanics with matrix degrees of freedom,
interpreted as a quantization of the matrix integral dual to JT gravity. The fundamental
difference with the latter is that the density of eigenvalues is promoted to a quantum
mechanical operator ρ̂(E) acting on the Hilbert space of MQM. For example, the spectral
curve is given by the leading large N ground state expectation value of the density operator
ρ0(E) = ⟨ρ̂(E)⟩. The ground state of MQM is highly entangled which provides a toy model
for the entanglement of typical black hole microstates.

We solve MQM for arbitrary spectral curves ρ0(E) by applying recently developed
techniques for large N 1+1D quantum systems. This results in a hydrodynamical theory for
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the density of eigenvalues. We proceed to quantize the fluctuations around the equilibrium
density which results in a 2D free boson BCFT living on a curved background specified by
the spectral curve.

The quantum hydrodynamical EFT is very practical and we compute various observables.
We show that equal-time correlation functions in the ground state of MQM reproduce the
known results of random matrix theory, including non-perturbative effects. In particular, we
show that the two point function ⟨ρ̂(E1, t1)ρ̂(E2, t2)⟩ reproduces the non-perturbative sine-
kernel of random matrix theory. In JT gravity, the sine kernel is reproduced by resumming
wormhole contributions with arbitrary genus [39,40] and produces the ramp-plateau transition
in the spectral form factor. This suggests that wormholes in JT gravity may be interpreted
as emergent from the entanglement between black hole microstates.

We proceed to study the entanglement structure of the ground state of MQM in detail.
We compute the Rényi entropies associated to a general bipartition of the eigenvalues. We
find a large amount of ground state entanglement, proportional to the microcanonical entropy
S = log(ρ0(E)) and localized at the bipartition. This indicates that typical black hole
microstates are highly entangled states, with each eigenstate being entangled with all of
the other eS eigenstates. The entropy follows a Page curve, as required by unitarity, only if
the eigenvalues have compact support. Instead, by double-scaling a matrix model, we lose
information about the high energy part of the spectrum and the Page curve grows forever.
The Renyi entropies are naturally finite due to the mean eigenvalue spacing 1

ρ0
which acts as

a UV cutoff. We also compute the reduced density matrix obtained by tracing out k < N

eigenvalues.

As an application, we examine the c = 1 MQM known to be dual to a non-critical string
theory in two dimensional target space. We reproduce and extend significantly previous
results by Hartnoll and Mazenc. From the string theory side, finiteness of the entropy can be
understood as gs effects regulating the divergence. The hydrodynamic effective theory provides
a natural picture for the emergence of spacetime in 2D string theory due to condensation of
eigenvalues and we derive a previously proposed map between eigenvalue-space and spacetime.

We end by commenting on a possible interpretation of MQM as the boundary dual of
recently discussed Universe Field Theory of JT gravity.
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1.2 Résumé étendu en Français

Le désir de concilier les trous noirs avec les lois connues de la Nature a conduit de nombreux
physiciens théoriciens depuis le début des années soixante-dix [4–14]. Pendant ce temps, des
progrès significatifs ont été réalisés et, à ce jour, nous avons recueilli une grande quantité
de preuves que les trous noirs se comportent effectivement comme des systèmes mécaniques
quantiques, du moins pour les observateurs à l’extérieur de l’horizon des événements. On
pense que l’information n’est pas perdue, mais plutôt encodée dans les micro-états du
trou noir qui composent l’entropie de Bekenstein-Hawking. Grâce à l’évaporation des trous
noirs, l’information peut être, en principe, reconstruite à partir des quanta de radiation
de Hawking [15]. Les preuves à l’appui de cette conclusion proviennent de trois approches
complémentaires des trous noirs quantiques.

Théorie des cordes. La théorie des cordes [16–19] est actuellement le principal candidat
pour une théorie cohérente et complète en UV de la gravité quantique. Elle vise à fournir
une description microscopique complète des micro-états des trous noirs en termes de degrés
de liberté fondamentaux, à savoir les cordes et les branes, dont l’entropie statistique devrait
rendre compte de l’entropie des trous noirs. Cette approche réductionniste est extrêmement
difficile à mettre en pratique, en raison de la complexité des calculs nécessaires. Des succès
ont été obtenus dans des cas supersymétriques particuliers, à commencer par le célèbre travail
de Strominger et Vafa [20].

Correspondance AdS/CFT. La correspondance AdS/CFT [28–31] stipule qu’une
théorie gravitationnelle quantique dans un espace-temps asymptotiquement Anti-de-Sitter
(AdS) en d+ 1 dimensions est exactement duale à une théorie des champs conforme (CFT)
non gravitationnelle en d dimensions. Dans cette approche, la gravité émerge de la dynamique
complexe d’un système quantique fortement couplé et de grand N , la CFT. En ce sens, nous
pourrions considérer AdS/CFT comme un exemple primordial du paradigme de la complexité
introduit par Anderson dans More is different [32]. Anderson a souligné l’importance de
la complexité en physique par opposition au paradigme réductionniste extrêmement réussi
en physique des particules : même si nous connaissons les constituants fondamentaux d’un
système complexe, un comportement collectif peut émerger qui aurait été extrêmement
inattendu et difficile à prédire en utilisant les degrés de liberté fondamentaux. De manière
analogue, une CFT a priori n’a rien à voir avec la gravité, les trous noirs ou les dimensions
supplémentaires, et pourtant il encode précisément tous ces phénomènes. La gravité émerge
comme un hologramme produit par la dynamique de la CFT. En supposant la correspondance
AdS/CFT, les trous noirs sont trivialement cohérents et évoluent unitairement comme des
systèmes mécaniques quantiques, puisque la CFT dual est un système quantique bien défini
et unitaire. Cependant, nous ne comprenons pas les mécanismes précis nécessaires pour
décrire un trou noir du point de vue de la CFT. Comment pouvons-nous décrire précisément
l’évaporation unitaire d’un trou noir en utilisant la CFT ? Comment une CFT encode-t-il
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l’expérience d’un observateur qui tombe derrière l’horizon ? Quel est le rôle de la singularité
du trou noir du point de vue de la CFT ? Le problème de l’information des trous noirs est
résolu en principe, par la postulation de la correspondance AdS/CFT, mais non résolu en
pratique, ce qui a suscité de nombreux travaux dans cette direction, y compris cette thèse.

Intégrale de chemin gravitationnelle. La troisième approche ne repose sur aucune
construction externe comme la théorie des cordes ou la CFT, mais cherche plutôt à comprendre
l’intégrale de chemin gravitationnelle (GPI) d’un point de vue ascendant [33]. La GPI n’est
généralement pas bien définie, ce qui signifie que nous ne connaissons pas les règles précises
pour calculer correctement les observables. En conséquence, on se concentre souvent sur des
modèles jouets plus simples de gravité en deux (ou trois) dimensions spatio-temporelles, où il
n’y a pas de divergences UV. Dans de tels modèles, on peut calculer l’intégrale de chemin
(presque) exactement et ensuite (espérer) étendre les leçons apprises à d’autres contextes.
Une des leçons récemment apprises est que pour que la GPI produise des réponses cohérentes
avec la mécanique quantique, nous devons inclure des trous de ver dans l’intégrale de chemin.
Cependant, il n’y a pas de raison bien fondée a priori de les inclure dans la GPI : a posteriori,
nous voyons qu’en les incluant, nous obtenons des informations profondes sur la physique
des trous noirs et des solutions à bon nombre de leurs énigmes. Ainsi, les trous de ver, bien
que très instructifs, sont encore des objets plutôt exotiques car nous ne comprenons pas
entièrement pourquoi nous devrions les inclure dans l’intégrale de chemin. En particulier,
ils connectent différentes frontières asymptotiques de l’espace-temps, par conséquent, leur
contribution ne se factorise pas. Cela conduit au problème de la factorisation car, en principe,
les observables devraient se factoriser dans une théorie microscopique. Il est difficile de
comprendre les configurations de trous de ver du point de vue microscopique, que ce soit
dans la théorie des cordes ou dans la CFT dual.
Une possibilité qui a émergé au cours des dernières années est que la GPI ne se comporte
pas comme une théorie mécanique quantique complète mais plutôt comme un ensemble
statistique de théories quantiques. Cela semble en contradiction avec les descriptions mi-
croscopiques fournies par la théorie des cordes et la CFT dual, qui sont toutes deux des
systèmes quantiques individuels. Comprendre si c’est effectivement le cas et, dans l’affirmative,
comment nous devrions modifier la GPI pour retrouver une description mécanique quantique
individuelle est un sujet de recherche actif. Inversement, il est crucial de comprendre s’il est
possible qu’un système mécanique quantique individuel présente un comportement émergent
statistiquement équivalent à une moyenne sur un ensemble de systèmes. Des études sur
des systèmes quantiques à plusieurs corps montrent que le chaos est une façon possible d’y
parvenir. L’universalité des systèmes quantiques chaotiques est l’affirmation que l’hamiltonien
se comporte statistiquement comme une matrice aléatoire. Nous sommes donc amenés à nous
demander si les caractéristiques déroutantes de la GPI, telles que les trous de ver, peuvent
être interprétées comme des phénomènes émergents dus au chaos dans la CFT ou la théorie
des cordes. C’est l’une des questions que nous aborderons dans cette thèse.
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Dans le chapitre 1, nous introduisons divers sujets pertinents pour le reste de la thèse.
Nous commençons par examiner certains faits de base sur les trous noirs et par introduire le
problème de l’information des trous noirs. Nous discutons ensuite du chaos et de sa pertinence
pour la physique des trous noirs. Nous présentons deux des principales notions de chaos dans
les systèmes quantiques et nous concentrons sur un observable spécifique : le Facteur de
Forme Spectrale (FFS). Nous passons en revue la phénoménologie de cet observable dans
les systèmes chaotiques, éclairée par l’universalité des matrices aléatoires. Nous examinons
la gravité JT comme un modèle simplifié de la gravité quantique et son FFS, ce qui aide à
fixer les attentes pour le cas de la gravité en 3D discuté dans cette thèse. Nous terminons
en rappelant certains faits pertinents sur le spectre des CFTs 2D et les symétries qui le
contraignent, ce qui sert de base pour le chapitre 2.

Dans le chapitre 2, nous explorons et établissons des connexions entre l’universalité des
matrices aléatoires, la gravité quantique AdS3 et les CFTs 2D chaotiques. Nous développons
un cadre pour identifier et quantifier le comportement des matrices aléatoires des CFTs 2D
générales et des théories de la gravité quantique AdS3. Du côté de la gravité, nous considérons
comme exemple spécifique le trou de ver Cotler-Jensen (CJ) de la gravité pure AdS3. Le
trou de ver CJ a été reconnu comme étant lié à la théorie des matrices aléatoires [34],
puisqu’en limite quasi-extrémal, il se réduit au trou de ver de la gravité JT, qui est égal à
une intégrale de matrice [35]. Nous comprenons et précisons la relation entre le trou de ver
CJ et les matrices aléatoires, l’identifiant comme extrémal dans l’espace des amplitudes de
trous de ver AdS3. Nous montrons que le trou de ver CJ est égal à la complétion minimale
de la théorie des matrices aléatoires compatible avec la symétrie de Virasoro et l’invariance
SL(2,Z). Cette égalité entre une amplitude de trou de ver en AdS3 et une intégrale de matrice
(modifiée de manière appropriée pour accommoder les symétries nécessaires) suggère une
dualité AdS3/RMT2, généralisant la dualité JT/RMT à 3D [35].

Du côté des CFTs, nous explorons le mécanisme par lequel une CFT chaotique individuelle
exhibe l’universalité des matrices aléatoires. En mécanique quantique, le mécanisme pertinent
a été compris en utilisant une expansion semi-classique pour l’intégrale de chemin : la formule
de trace de Gutzwiller [36]. La formule de trace exprime la densité d’états ρ(E) comme une
somme sur des contributions fortement oscillatoires correspondant à des orbites périodiques
semi-classiques. Les statistiques spectrales sont alors encodées dans l’interférence entre ces
oscillations. En utilisant ce cadre, Berry a reproduit le comportement principal des matrices
aléatoires via l’approximation diagonale [37].

Nous présentons une formule de trace pour les CFTs 2D, précisément analogue à la formule
de trace de Gutzwiller pour les systèmes quantiques chaotiques. La formule de trace des
CFTs 2D provient de la décomposition spectrale SL(2,Z) de la densité des états primaires
de Virasoro. Nous rendons l’analogie précise en fournissant des identifications spécifiques
et, sous certaines hypothèses, uniques entre la base SL(2,Z) des séries de Eisenstein et des
formes de Maass et les orbites périodiques apparaissant dans la formule de Gutzwiller.
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Nous établissons l’analogue de l’approximation diagonale de Berry dans les CFTs 2D
en utilisant des opérateurs de Hecke pour SL(2,Z), résultant en la projection de Hecke.
Cela permet d’extraire les statistiques spectrales des CFTs 2D individuelles par agrégation
grossière, et par conséquent d’identifier et de quantifier les signatures de chaos et d’universalité
des matrices aléatoires. Nous trouvons une condition nécessaire et suffisante pour qu’une
CFT 2D affiche une pente linéaire dans son facteur de forme spectrale. La condition peut être
énoncée en termes de données microscopiques de la CFT comme un certain comportement
asymptotique dans la base SL(2,Z). Elle peut être considérée comme une règle de somme
valable dans, et seulement dans, les CFTs chaotiques.

Après avoir exploré indépendamment les manifestations de l’universalité des matrices
aléatoires dans la gravité et les CFTs, nous nous tournons vers l’établissement du dictionnaire
AdS/CFT entre les deux. Les trous de ver AdS3 sont interprétés proprement comme le dual
gravitationnel de la projection de Hecke de la fonction de partition au carré dans une CFT
2D microscopique. Schématiquement :

ZWH(τ1, τ2) = PHecke[ZCFT(τ1)ZCFT(τ2)] (1.2.1)

Cela démontre que des trous de ver peuvent émerger d’une CFT chaotique individuelle. La
non-factorisation de l’amplitude de trou de ver peut être interprétée comme une agrégation
grossière, sans avoir besoin d’invoquer une moyenne d’ensemble sur les théories. Le mécanisme
physique responsable est la version CFT de l’approximation diagonale de Berry.

Du point de vue holographique, le trou de ver Cotler-Jensen est la réalisation maximale de
l’universalité des matrices aléatoires compatible avec les symétries nécessaires, propriété que
nous appelons MaxRMT. La notion de MaxRMT est similaire en saveur à la notion de chaos
maximal introduite par Maldacena, Shenker et Stanford [38]. Cette dernière est exprimée
comme la saturation de la borne sur l’exposant de Lyapunov, qui est un diagnostic semi-
classique précoce du chaos. MaxRMT est plutôt exprimée comme la saturation du régime de
validité de l’universalité des matrices aléatoires, un diagnostic de chaos pleinement quantique
et tardif.

Enfin, la complétude de la base spectrale SL(2,Z) en tant que formule de trace indique
une factorisation naturelle du trou de ver Cotler-Jensen. La fonction de partition factorisée
ZRMT(τ) est une fonction de partition CFT microscopique qui, après projection de Hecke,
produit le trou de ver CJ.

C’est un candidat pour une contribution de frontière unique à l’intégrale de chemin de
gravité qui capture les détails fins du spectre des micro-états de trous noirs BTZ. ZRMT(τ)
affiche un comportement très erratique donné par la fonction zêta de Riemann, ce qui suggère
qu’elle peut être interprétée comme un demi-trou de ver AdS3. Nous terminons le chapitre en
discutant de ses implications pour la CFT duale et le bootstrap modulaire à grande charge
centrale.
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Dans le chapitre 3, nous explorons certains problèmes non perturbatifs bien connus en
gravité 3D et le bootstrap modulaire de grande c et trouvons une solution explicite.

Maloney et Witten ont calculé la fonction de partition de la gravité 3D en sommant sur
toutes les géométries lisses (plus les boucles) en on-shell, et ont trouvé une réponse non
unitaire en raison d’une densité d’états négative près de l’extrémalité. Pour que la gravité
3D soit une théorie quantique cohérente, nous devons inclure de nouvelles configurations
dans l’intégrale de chemin qui restaurent l’unitarité. Un avatar en bootstrap conforme de
ce problème est d’exclure ou de construire une fonction de partition unitaire, invariante
modulaire avec un écart spectral de ∆gap = c

12 comme en gravité 3D.

Nous avons construit une solution explicite à ces problèmes en ajoutant des contributions
non perturbatives à la fonction de partition Maloney-Witten (MW), résultant en une fonction
de partition unitaire, invariante modulaire avec un écart spectral de ∆gap = c−1

12 .

Les nouvelles contributions peuvent être identifiées dans le bulk comme provenant de cordes
en rotation et de trous noirs "stringy" correspondants. Leur entropie est non perturbativement
supprimée par rapport à l’entropie MW sauf près de l’extrémalité. Dans ce régime, ces
contributions dominent et produisent une densité d’états positive. L’entropie des trous
noirs stringy affiche un comportement oscillatoire qualitativement nouveau, contrairement
au comportement exponentiel de Cardy, indiquant sa nature quantique. En raison de ces
oscillations, la densité stringy n’est pas positive définie par elle-même, cependant en la
combinant avec la densité MW, on obtient une densité globale positive.

L’écart est exactement c−1
12 , même pour des valeurs finies de c. À grand c, nous pouvons

interpréter le grand écart comme une conséquence du fort couplage des cordes, ce qui les élève
à l’échelle de Planck. Ce comportement sert de modèle bottom-up pour imiter une possible
réalisation théorique UV des cordes de la gravité pure AdS3.

Du point de vue des CFTs, cela représente le premier exemple d’une fonction de partition
avec un écart aussi grand. La précédente borne numérique à la pointe était de c

9.1 . L’écart de
twist de la solution est également c−1

12 sauf pour deux états avec un grand spin proportionnel
à c.

Les caractéristiques de la solution soulignent l’importance des effets non perturbatifs
dans le bootstrap à grand N , car le N →∞ ne commute souvent pas avec la résolution des
contraintes de bootstrap. Nous commentons certains aspects curieux de théorie des nombres
de cette solution.

Dans le chapitre 4, nous explorons si les trous de ver en gravité 2D peuvent émerger
de l’intrication entre les micro-états, plutôt que d’une moyenne d’ensemble sur les théories.
Nous montrons que les moyennes d’ensemble sur les matrices aléatoires peuvent découler de
l’intrication dans la Mécanique Quantique des Matrices (MQM).

Nous considérons une théorie 0+1D de mécanique quantique avec des degrés de liberté
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matriciels, interprétés comme une quantification de l’intégrale matricielle duale à la gravité
JT. La différence fondamentale avec cette dernière est que la densité des valeurs propres est
promue en un opérateur quantique ρ̂(E) agissant sur l’espace de Hilbert de la MQM. Par
exemple, la courbe spectrale est donnée par la valeur moyenne sur l’état fondamental à grande
N de l’opérateur de densité ρ0(E) = ⟨ρ̂(E)⟩. L’état fondamental de la MQM est fortement
intriqué, ce qui fournit un modèle simplifié pour l’intrication des micro-états typiques des
trous noirs.

Nous résolvons la MQM pour des courbes spectrales arbitraires ρ0(E) en appliquant des
techniques récemment développées pour les systèmes quantiques 1+1D à grand N . Cela
résulte en une théorie hydrodynamique pour la densité des valeurs propres. Nous procédons à
la quantification des fluctuations autour de la densité d’équilibre, ce qui donne une BCFT de
boson libre 2D vivant sur un fond courbé spécifié par la courbe spectrale.

La théorie EFT hydrodynamique quantique est très pratique et nous calculons diverses
observables. Nous montrons que les fonctions de corrélation à temps égal dans l’état fonda-
mental de la MQM reproduisent les résultats connus de la théorie des matrices aléatoires,
y compris les effets non perturbatifs. En particulier, nous montrons que la fonction à deux
points ⟨ρ̂(E1, t1)ρ̂(E2, t2)⟩ reproduit le noyau sinus non perturbatif de la théorie des matrices
aléatoires. En gravité JT, le noyau sinus est reproduit en résumant les contributions des trous
de ver avec un genre arbitraire [39, 40] et produit la transition rampe-plateau dans le facteur
de forme spectrale. Cela suggère que les trous de ver en gravité JT peuvent être interprétés
comme émergeant de l’intrication entre les micro-états des trous noirs.

Nous procédons à l’étude de la structure d’intrication de l’état fondamental de la MQM
en détail. Nous calculons les entropies de Rényi associées à une bipartition générale des
valeurs propres. Nous trouvons une grande quantité d’intrication dans l’état fondamental,
proportionnelle à l’entropie microcanonique S = log(ρ0(E)) et localisée à la bipartition. Cela
indique que les micro-états typiques des trous noirs sont des états fortement intriqués, chaque
état propre étant intriqué avec tous les autres eS états propres. L’entropie suit une courbe
de Page, comme l’exige l’unité, uniquement si les valeurs propres ont un support compact.
En revanche, en doublant un modèl matriciel, nous perdons des informations sur la partie
haute énergie du spectre et la courbe de Page croît indéfiniment. Les entropies de Renyi sont
naturellement finies en raison de l’espacement moyen des valeurs propres 1

ρ0
qui agit comme

une coupure UV. Nous calculons également la matrice de densité réduite obtenue en traçant
k < N valeurs propres.

En application, nous examinons la MQM c = 1 connue pour être duale à une théorie
des cordes non critique dans un espace cible bidimensionnel. Nous reproduisons et étendons
considérablement les résultats précédents de Hartnoll et Mazenc. Du côté de la théorie des
cordes, la finitude de l’entropie peut être comprise comme des effets gs régulant la divergence.
La théorie effective hydrodynamique fournit une image naturelle pour l’émergence de l’espace-
temps dans la théorie des cordes 2D en raison de la condensation des valeurs propres et
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nous dérivons une fonction précédemment proposée entre l’espace des valeurs propres et
l’espace-temps.

Nous terminons en commentant sur une possible interprétation de la MQM comme le
dual de frontière de la récente Universe Field Theory de la gravité JT.
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1.3 Black holes

The first idea of a black hole predates General Relativity by more than a century. In
premonitory strokes of imagination, Michell in 1783 and Laplace in 1796, independently
presented the concept of an object whose gravity is so strong that not even light can escape
it [41]. The mental picture of their ’invisible body’ probably wouldn’t be that far off from
the first picture of a black hole published in 2019 by the Event Horizon Telescope (EHT),
more than 230 years later [42].

The recent development of gravitational wave observatories has ushered black hole physics
into the realm of experimental science. In 2015 the LIGO-VIRGO scientific collaboration
achieved the first detection of a binary black hole merger [43]. This discovery has transformed
black hole physics: today we are routinely able to observe black hole mergers and precisely
match them with theoretical predictions made possible by the theory of General Relativity.
The theory has been extensively tested experimentally over the past century starting from
Eddington all the way to LIGO/VIRGO and EHT [44]. Promising future experiments such
as LISA [45] will continue to test General Relativity to ever increasing accuracy in a variety
of regimes and possibly shed light on new physics.

Black holes are a robust theoretical prediction of General Relativity. Oppenheimer and
Snyder first showed that the collapse of matter leads to black hole formation [46]. Penrose
and Hawking’s singularity theorems showed that forming a singularity was an unavoidable
mathematical consequence [4, 5, 14]. We should then take seriously the many puzzles one
encounters when trying to make sense of black holes.

The problems that one faces when studying black holes and interpreting them as quantum
mechanical systems arise from a fundamental incompatibility between describing a black
hole as a smooth geometry and the characteristic discreteness of quantum mechanics. The
many avatars of this fundamental tension go under the broad name of Black hole information
problem. We will now introduce and describe a few selected aspects of this multifaceted
problem. There are many wonderful reviews on the topic where further details and references
can be found [15,47–51].

Black hole entropy

Bekenstein and Hawking argued that black holes have an entropy which is proportional to
their area [7–13,52]:

SBH = A

4L2
P

, (1.3.1)
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where LP =
√

GNℏ
c3 is the Planck length. The entropy diverges as ℏ → 0 , which suggests

that its origin is quantum mechanical. The area of the black hole depends on macroscopic
properties such as charge Q, spin J and mass M . For example, for Kerr-Newmann black
holes in four spacetime dimensions it is given by:

SBH = 4π
4L2

P

(
r2

+ +
(
J

Mc

)2)
, (1.3.2)

where r+ = GM/c2 +
√

(GM/c2)2 − (G1/2Q/c2)2 − J2/(Mc)2 is the outer horizon.
The entropy of any quantum mechanical system is given by Boltzmann’s formula:

S = kB logW (1.3.3)

where W is an integer equal to the number of microstates corresponding to a given macrostate.
In classical statistical mechanics these could be, for example, all the positions and velocities
of N indistinguishable particles such that given macroscopic quantities like energy or pressure
are fixed. In quantum mechanics microstates are identified with states in the Hilbert space of
the quantum system; entropy is a measure of the dimension of Hilbert space.

We are then immediately led to ask what are the black hole microstates that the Bekenstein-
Hawking entropy is counting. The metric gµν of a black hole and its entropy SBH depend
only on the macrostate, namely the total mass M , charge Q and angular momentum J , as
exemplified above by the Kerr-Newmann solution. This property has come to be known by
the statement "black holes have no hair". Since, in General Relativity, all the information
that specifies a black hole is a few numbers, the theory is unable to discern the discreteness
of black hole microstates and count them. The first indication of the thermodynamical origin
of black hole entropy was obtained by Hawking when he discovered that black holes are not
entirely black. Instead, when coupled to quantum fields, they emit thermal radiation with a
temperature given by:

TBH = ℏc
2π

r+ −GM/c2

r2
+ + J2/(Mc)2 (1.3.4)

The way Hawking arrived at this result (for J = Q = 0) was by quantizing a quantum field
in the presence of a background black hole, see [47] for a modern derivation. The black hole
then evaporates by emitting purely thermal blackbody radiation at temperature TBH . In
doing so, the black hole loses mass due to evaporation.

Understanding that black holes are thermodynamical objects sheds some light on possibly
the simplest (classical) version of the black hole information problem: do black holes violate
the laws of thermodynamics? It is possible to show that black holes satisfy the first law of
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thermodynamics:

dM = ΩdJ + ΦdQ+ TBHdSBH (1.3.5)

where

Ω = J/(Mc)
r2

+ + J2/(Mc)2 (1.3.6)

is the angular frequency of a test particle dropped into the horizon and

Φ = r+G
1/2Q/c2

r2
+ + J2/(Mc)2 (1.3.7)

is the potential energy of a test charge at the horizon.
The second law of thermodynamics states that the total change in entropy of a system must
be positive, namely entropy must always increase. Black holes can satisfy this law by virtue
of their entropy, so if we throw an object of mass δM and entropy S into a black hole of mass
M we must have:

SBH(M + δM) ≥ S + SBH(M). (1.3.8)

The second law of thermodynamics in the presence of black holes is non-trivial and can be
used to derive a constraint on the maximum amount of entropy that any system can have,
the Bekenstein bound [6]:

S ≲
2πkBRE

ℏc
(1.3.9)

where E and R are the rest energy and the radius of the system. The bound follows from
recognising that if one could have a system with entropy larger than the bound, it would be
possible to lower the total entropy by forming a black hole, see [53] for a review. These simple
arguments are not enough to claim that black holes do satisfy the laws of thermodynamics
and much work has been since devoted to this topic, see [54, 55]. As an example, there
has been recent progress in understanding the third law of thermodynamics for black holes.
The third law states that as one goes to zero temperature, the entropy of a system should
become a constant independent of the macrostate. The entropy and temperature of a black
hole coupled to quantum fields do not satisfy the third law, as the validity of Hawking’s
calculation breaks down. This requires a more careful study of near-extremal black holes
with a very small temperature, where one must correctly account for quantum gravitational
effects [56,57].

When we consider black holes as quantum mechanical systems, beyond classical statistical
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mechanics, the black hole information problem takes its true form. In quantum mechanics
time evolution is unitary, meaning that if we have a system initially described by a density
matrix ρ(0), time evolution is given by:

ρ(t) = Uρ(0)U †, U = e− iHt
ℏ (1.3.10)

where U is a unitary matrix generated by the Hamiltonian H and a generic density matrix
ρ(0) is defined as a statistical ensemble of states in the Hilbert space:

ρ ≡
dim(H)∑
k=1

pk |k⟩ ⟨k| . (1.3.11)

Suppose now we form a black hole by collapsing matter in a pure state. Quantum mechanical
evolution is unitary and cannot evolve a pure state into a mixed state. Hawking computed
the density matrix of the radiation emitted by a black hole and found it to be thermal. Thus
Hawking radiation is in a mixed state, regardless of the state of the black hole interior and
the matter that formed it by collapse.2 The violation of unitarity is at the core of the black
hole information problem and it appears time and again in observables other than the density
matrix.

Computing a density matrix in gravity is difficult, one should compute a number of entries
of order dim(H)2 ≈ e2SBH ∼ eG

−1
N which is exponentially large, with enough accuracy to

distinguish it from the thermal density matrix. It turns out that the measurements of an
observable in a pure state versus a mixed state are exponentially close to each other, as
we will now review. As a consequence, measuring a density matrix involves an exponential
number of measurements down to exponentially small accuracy, which is clearly beyond
the scope of any calculation in QFT on curved spacetimes a la Hawking. It is a genuine,
non-perturbative quantum gravity calculation.

Pure and mixed states are very close

We sketch a simple derivation in quantum mechanics which is very relevant to black hole
physics and semiclassical attempts to understand Hawking radiation [47]. Suppose we are in
a subspace of Hilbert space HE of dimension eS obtained by acting with a projector P . The
maximally mixed density matrix in that subspace is

ρE = 1
eS

eS∑
i=1
|i⟩ ⟨i| . (1.3.12)

2See [47] for a modern review of Hawking’s calculation
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Consider now a random pure state which is a superposition of eigenstates in the same
subspace:

|Ψ⟩ =
eS∑
i

ai |i⟩ (1.3.13)

where the complex coefficients ai are uniformly distributed such that the state has unit norm:

dµ = 1
V
δ

(∑
i

|ai|2 − 1
)∏

i

d2ai (1.3.14)

and V is a normalization factor. Suppose now we measure an operator A in both the state
|Ψ⟩ and the mixed ensemble ρE. We see that the average expectation value of A in the state
|Ψ⟩ is equal to the expectation value in the mixed state:

∫
dµ ⟨Ψ|A |Ψ⟩ =

∫
dµ

eS∑
i,j

aia
∗
jAi,j = 1

eS
∑
i

Aii = Tr(ρEA) (1.3.15)

where we used that
∫
dµaia

∗
j = 1

eS
δij. (1.3.16)

Now consider the variance between measuring A in a random pure state and measuring it in
the maximally mixed state:∫

dµ[⟨Ψ|A |Ψ⟩ − Tr(ρEA)]2 =
∫ ∑

i ̸=j,ℓ̸=m
AijAℓ,maia

∗
Jaℓa

∗
m

=
∫
dµ
∑
i ̸=j
|Ai,j|2|ai|2|aj|2 = 1

eS(eS + 1)
∑
i ̸=j
|Aij|2

≤
σ2
A,ρ

eS + 1

(1.3.17)

where we used that
∫
dµ|ai|2|a2

j | = 1
eS(eS+1) and zero for other index contractions. Moreover

the inequality comes from the following fact:

1
eS
∑
i ̸=j
|Aij|2 = Tr[ρ(PAP )2]− Tr(ρA)2 ≤ Tr(ρA2)− Tr(ρA)2 ≡ σ2

A,ρ. (1.3.18)

We conclude then that a measurement of an operatorA on a typical pure state |Ψ⟩ in a subspace
differs only by an exponentially small amount from measurement in the maximally mixed
state ρE. Thus the two expectation values may differ significantly only for an exponentially
small number of pure states in the subspace.
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This elementary result sheds light on Hawking radiation, showing that Hawking’s calcula-
tion is not precise enough to establish any kind of paradox. To render Hawking radiation pure
instead of thermal we expect we need to add exponentially small corrections e−S ∼ e

− 1
GN ,

which are non-perturbative in Newton’s constant. At this order of magnitude the notion of
a smooth geometry might break down and it’s not clear what gravity even is. There has
been much work on precisely formulating a paradox involving black holes and solving it, in
particular studying a simpler quantity than the density matrix, the Von Neumann entropy:

SV N(ρ) = −Tr(ρ log ρ). (1.3.19)

We will not review the many developments in this direction since they are not necessary
to understand the rest of this thesis and we direct the reader to the reviews [15, 47–51].
We will instead focus on a different version of the information problem first introduced by
Maldacena [58].

Before doing so let us comment on a naive puzzle regarding pure state black holes. The
entropy of a pure state is zero. However, a black hole has an entropy. How is it possible to
have a black hole which is in a pure state? The answer lies in the fact that one should not
confuse Von Neumann entropy and thermodynamic entropy. The Von Neumann entropy of a
pure state is vanishing. However, it is possible to assign a thermodynamic entropy to a system
in a pure state due to ignorance of the precise state. In gravity, it is not possible to identify a
specific pure state since doing so would require exponentially complex measurements. Instead,
we can only measure low-point correlators of the metric and fields to few orders in GN . The
situation is analogous to the statistical mechanics of a gas with N particles. A gas is perfectly
deterministic, its particles at any given time have specific positions and velocities, thus the
state of the gas is pure. However, we do assign an entropy to gas, given by how many
configurations (microstates) of the gas are available at a given energy, pressure, and volume.
When we say that a gas has entropy, we are not saying that the gas is in a statistically mixed
state, we are assigning an entropy due to the inability of precisely measuring the state. Thus,
the existence of a horizon and its relative entropy for a pure state black hole is a direct
consequence of there being many pure states consistent with the macroscopic description of
the black hole.
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1.4 Chaos

A calculation of a complex quantity like the density matrix of Hawking radiation or the precise
microstates of a black hole is almost certainly out of reach, however we can study simpler
quantities which still display the fundamental tension between black holes and quantum
mechanics. Maldacena first stated a version of the black hole information problem in terms
of the two point function of a simple operator as a function of time [58]. In a quantum
mechanical system we can write the two point function as follows:

G(t) = 1
Z

tr(e−βHO(t)O(0)) = 1
Z

eS∑
n,m=1

e−it(En−Em)e−βEn| ⟨En|O |Em⟩ |2 (1.4.1)

In AdS/CFT this would be a thermal two-point function of a local operator in the dual CFT.
In gravity this object corresponds to the amplitude for a particle in the presence of a black
hole to be detected outside the horizon at a later time t. Since things tend to fall into the
black hole and they cannot escape back out, one can easily guess that this two point function
decays to zero forever. This is confirmed by explicit computations of quantum fields in a
black hole background [58]. In a quantum mechanical theory, however, this observable cannot
decay forever. It will decay until it is of order e−S with respect to its initial value at t = 0.
We can see this by taking the long time average of the above:

lim
T→∞

1
T

∫ T

0
dtG(t) = 1

Z

∑
n

e−βEn|Onn|2 (1.4.2)

where we implicitly assumed that the energy levels are non-degenerate. This is the case for
generic quantum systems unless they enjoy particular symmetries. Since, as we will see, black
holes are chaotic systems, it is a well justified assumption. We can also compute the long
time average of the square which tells us about fluctuations around the mean value:

1
T

∫ T

0
dt|G(t)|2 = 1

Z2

∑
i,j,i′,j′

e−β(Ei+Ei′ )|Oij|2|Oi′j′ |2(δijδi′j′ + δii′δjj′) (1.4.3)

We see that there is a nonzero variance and so G(t) cannot decrease monotonically to zero
at late times as the black hole calculation would imply. The fact that correlation functions
computed in a black hole background decay to zero is Maldacena’s version of the black hole
information problem. This problem can also be studied in a simpler observable which does
not involve the matrix elements of O, the so-called Spectral Form Factor:

Kβ(t) = Z(β + it)Z(β − it) =
eS∑
i,j=1

e−β(Ei+Ej)e−it(Ei−Ej) (1.4.4)
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Figure 1.1: The typical behavior of the SFF for a chaotic quantum system, in agreement
with random matrix universality. The plot shows the SFF for the SYK model for N = 34,
β = 5. The red erratic curve is an individual sample of the model’s random couplings while
the blue line is the average over 90 realizations. The figure is taken from [64].

where Z(β) = Tr(e−βH). The long time average is equal to:

1
T

∫ T

0
dtKβ(t) = Z(2β) (1.4.5)

which is exponentially suppressed with respect to the initial value Kβ(0) = Z(β)2. Without
more information about the matrix elements Oij or the energy levels Ei, we cannot say
much about these quantities. We can make more precise predictions for the behavior of this
observable by observing that black holes are chaotic objects. In chaotic systems, there is a
large degree of universality in the statistical behavior of microscopic quantities Ei and Oij.
These go by the name of Random Matrix Universality [59,60] for the energy levels Ei and
Eigenstate Thermalization Hypothesis (ETH) [61–63] for the matrix elements Oij. In this
thesis, whenever we refer to quantum chaos we will be referring implicitly to random matrix
universality and not to ETH, simply because ETH was not an object of study of this thesis
even though it is a very rich, interesting and popular subject of study. In chaotic quantum
systems, there is a common universal behavior expected for G(t) and Kβ(t) shown in Fig.
1.1 for Kβ(t).

Notice that initially Kβ(t) decays smoothly until an exponentially small value, consistently
with the black hole calculation. However, after the so-called dip time, it starts growing again
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on average and large erratic fluctuations appear. At exponentially late times, it reaches a
plateau where it is constant and exponentially small on average, with a large noise of the
same order as the average. The outstanding challenge is then to understand how gravity
reproduces this behavior, as expected of a quantum mechanical system. Before focusing on
the SFF any further, we should review what chaos is and why it is relevant for black holes.

1.4.1 Semiclassical chaos and scrambling

The notion of chaos in classical mechanics is the fact that a small change in the initial
conditions of a system produces a large change at later times. Classical chaos is then the
sensitivity of the system to small changes or more poetically, the ’butterfly effect’ [65]. This
is diagnosed by the following quantity:

∂q(t)
∂q(0) = eλt (1.4.6)

where λ is the Lyapunov exponent and controls the exponential growth of perturbations.
The study of classical chaotic systems is an old and rich subject; see, for example, [66]. The
above observable can be written as a Poisson bracket:

{q(t), p(0)} ≡ ∂q(t)
∂q(0) (1.4.7)

A natural generalization to quantum mechanics of this quantity follows by canonical quanti-
zation where the Poisson bracket is promoted to a commutator

iℏ{q(t), p(0)} → [q(t), p]. (1.4.8)

It will be convenient to study the commutator squared instead of the commutator itself:

C(t) ≡ −⟨[W (t), V (0)]2⟩β (1.4.9)

where we evaluate the expectation value in the thermal ensemble ⟨·⟩ = Z−1tr[e−βH·]. In the
classical limit where we recover the Poisson bracket, if we choose W = q and V = p we have
schematically that:

C(t) ∼ ℏ2e2λLt. (1.4.10)

We assume that V (0),W (0) are simple operators, meaning that they involve at most a finite
product of O(1) degrees of freedom. For example, in a spin chain of size N they would involve
only products of spin operators involving O(1) spins.
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The physical picture of this observable is that it measures how a perturbation due to an
operator V affects later measurements of W . In a many-body quantum system, if the initial
operators V (0) and W (0) are localized on different degrees of freedom, separated by a distance
r, they will commute, so at early times, the commutator will be very small. As the operator
W (t) = e−iHtW (0)eiHT spreads throughout the system due to time evolution, it will start
interacting with the degrees of freedom on which V is supported and the commutator will
grow. In a chaotic system, we expect that time evolution will be very efficient at spreading
the operator W (t) throughout the system, and the commutator will grow exponentially fast.
This early growth is often of ballistic type in chaotic systems and takes the form:

C(r, t) = 1
N
eλ(t−r/vB) (1.4.11)

where N in general counts the number of degrees of freedom in the system, such as the
number of spins or the central charge cT in CFT. The parameter vB is called the butterfly
velocity and it describes the speed of propagation of the operator W in the system. At late
times we expect this observable to saturate at a value of order:

C(t)→ 2⟨V V ⟩⟨WW ⟩, t ≳ t∗ (1.4.12)

where ⟨V V ⟩ and ⟨WW ⟩ are normalized to O(1) values. The time t∗ is called the scrambling
time and it is the time at which C(t) becomes of order O(1). In the classical limit we have:

t∗ ∼
1
λL

log
(1
ℏ

)
. (1.4.13)

It can be convenient to work with a closely related observable, considered by Maldacena,
Shenker and Stanford in [38]:

F (t) = Tr(yV yW (t)yV yW (t)), y4 = ρβ = e−βH

Z
, (1.4.14)

where we have split the thermal density matrix into four inequivalent insertions, one after each
operator insertion. This observable can be related to a regulated version of the commutator
squared. The characteristic behavior of this correlator can be similarly understood in terms
of operator spreading. At early times F (t) is of order O(1) and decreases exponentially. In a
large N CFT it can be computed holographically by studying high energy scattering near
the black hole horizon [67] which produces:

F (t) = f0 −
f1

N2 e
2π
β
t +O(N−4), (1.4.15)

where f0, f1 are order O(1) constants which depend on the choice of V,W . We see that the
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scrambling time is given by:

t∗ = β

2π log
(
N2
)
, (1.4.16)

similarly to the one we obtain in the semiclassical limit of single particle systems with ℏ→ 1
N2

and a Lyapunov exponent given by

λgrav = 2π
β
. (1.4.17)

We arrive at the conclusion that black holes are chaotic systems, in the sense defined as
scrambling operators under time evolution. They actually behave not just like any arbitrary
chaotic system, but there is a sense in which they are ’maximally’ chaotic. The conjecture
made by MSS [38] states that the Lyapunov exponent, as defined by F (t) at large N for any
many-body quantum system, is bounded by the black hole Lyapunov exponent:

λL ≤
2π
β
. (1.4.18)

Black holes saturate this bound and have the largest possible Lyapunov exponent.

1.4.2 Quantum chaos and random matrices

The Lyapunov exponent we just discussed is a semiclassical diagnostic of chaos. It is defined
at large N and can be computed perturbatively in 1

N
. It is conceptually related to the classical

Lyapunov exponent of a chaotic dynamical system. Quantum systems, however, are much
richer and have a much more complex structure than what is captured by the Lyapunov
exponent. In particular, we would like to understand the notion of ergodicity in quantum
mechanics.

One way to do so is through the idea of random matrix universality of chaotic quantum
systems. If one writes down a generic interacting Hamiltonian, it won’t be exactly solvable,
nor will it have any particular symmetries. Wigner and later Dyson introduced the idea that
one can effectively model the Hamiltonian of a complex system as a random matrix. Wigner
was trying to understand the energy levels of heavy nuclei observed experimentally. Making
a theoretical prediction was extremely difficult since already the simplest case of the Helium
atom is a quantum version of the 3-body problem, which is notoriously chaotic. Wigner
proposed instead to look at the statistics of the energy levels and compare them to those
obtained by an ansatz where the Hamiltonian is a random Hermitian N ×N matrix with
Gaussian-distributed entries:

⟨·⟩ = 1
Z

∫
dH · e− N

2 TrH2
. (1.4.19)
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Instead of trying to precisely model the specific Hamiltonian, one examines the statistical
properties of the spectrum. This involves coarse-graining the microscopic (experimental or
numerical) data, for example by binning energy levels into histograms or by smoothing noisy
behavior in observables with some weak form of averaging such as averaging over a small
time window δt.

In chaotic systems, the Hamiltonian is so complex that studying individual energy levels
is not just difficult but also not particularly rewarding since the spectrum is practically
featureless, except for some macroscopic coarse-grained properties such as the smooth
approximation to the density of states ρ̄(E). A random matrix with independently distributed
entries is the most featureless ansatz that one can use as a benchmark to diagnose whether
the system is chaotic. In particular, in quantum mechanics, we do not expect degeneracies
in interacting systems unless there is a symmetry responsible for the degeneracy due to the
phenomenon of avoided crossing of energy levels.

Until this point the statement of random matrix universality has been presented only
qualitatively, let us make it more precise. To understand the spectral statistics of a quantum
system we look at the density of states:

ρ(E) ≡
∑
i

δ(E − Ei) (1.4.20)

and its Laplace transform, the partition function:

Z(β) =
∑
i

e−βEi =
∫
ρ(E)e−βE. (1.4.21)

We will be interested in quantum systems with many degrees of freedom, namely a large
microcanonical density of states ρ̄(E)≫ 1 in an energy interval E ± δE. One can obtain the
microcanonical density by coarse graining the exact density of states over a large enough
window δE:

ρ̄(E) =
∫ E+δE

E−δE
ρ(E)dE. (1.4.22)

We can define the microcanonical entropy as S(E) = log ρ̄(E). The Cardy density in 2D
CFT is an example of a coarse-grained density of states:

ρCardy(h, h) = exp
(

4π
√
ξ(h− ξ)

)
exp

(
4π
√
ξ(h− ξ)

)
, ξ ≡ c− 1

24 . (1.4.23)

The spectrum of the 2D CFT is discrete while the Cardy density captures the leading
continuous approximation to this dense, yet discrete, spectrum. The density of states in
chaotic systems is usually system dependent and there is no random matrix universality
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involved. In fact, the density is an input that one should specify to compare the system
to a random matrix. The ensemble of random matrices should be chosen with a measure
such that the average density of matrix eigenvalues is equal at leading order in N to the
microcanonical density of states ρ̄. This corresponds to considering random matrices with
arbitrary potentials:

⟨·⟩ = 1
Z

∫
dH · e−NTrV (H). (1.4.24)

The leading large N average density of eigenvalues is often called the spectral curve of the
matrix model:

ρ0(E) = ⟨ρ(E)⟩N→∞ (1.4.25)

To compare a chaotic quantum system to a random matrix, we choose the spectral curve
such that:

Nρ0(E) = ρ̄(E). (1.4.26)

We will use N = eS0 from now on, to denote the fact that the dimension N of the matrix is
the size of the Hilbert space, which is exponential in the entropy of the system. We are now
interested in understanding the spectral statistics, namely the correlations between different
energy levels. In random matrix theory, these are described by the connected two-point
correlation function of the density of eigenvalues:

⟨ρ(E1)ρ(E2)⟩conn = ⟨ρ(E1)ρ(E2)⟩ − ⟨ρ(E1)⟩⟨ρ(E2)⟩ (1.4.27)

This quantity has a universal form in the limit where two eigenvalues are close |E1−E2| ≪ 1,
given by the famous sine-kernel:

⟨ρ(E1)ρ(E2)⟩conn = −sin2(πeS0ρ0(E)(E1 − E2))
π2(E1 − E2)2 + eS0ρ0(E)δ(E1 − E2). (1.4.28)

This is possibly the deepest result of random matrix theory. We see that it depends only on
the spectral curve ρ0(E) of the matrix model.
It captures the phenomenon of eigenvalue repulsion, namely that eigenvalues of a random
matrix effectively behave as particles with a repulsive interaction. For eigenvalue separation
of order of the level spacing E1 − E2 ≪ e−S0 , the eigenvalues are strongly anti-correlated,
while the correlation becomes weaker as the separation between eigenvalues increases.
In a large eS0 expansion, the sine in the numerator is doubly-non-perturbative in the entropy
S0 since it behaves as eieS0 . Thus, it is invisible to all orders in the e−S0 expansion, and all

28



that one sees is a double pole at E1 = E2. We can see this by writing the sine kernel as:

⟨ρ(E1)ρ(E2)⟩conn = − 1
2π2(E1 − E2)2 + 1

2π2(E1 − E2)2 cos
(
2πeS0ρ0(E)(E1 − E2)

)
(1.4.29)

The first term is perturbative in e−S0 , while the second one is non-perturbative and oscillates
very strongly around zero. Thus, perturbatively one sees only the first term. The contact
term δ(E1 − E2) is universal since any eigenvalue is correlated with itself.
The statement of random matrix universality is that the correlations between energy levels
of a chaotic system follow the sine-kernel at small energy differences of order of the level
spacing:

ρ(E1)ρ(E2) ≈ −
sin2 (πρ̄(E)(E1 − E2))

π2(E1 − E2)2 , E1 − E2 ∼ O
(

1
ρ̄(E)

)
(1.4.30)

A different way to state random matrix universality is in terms of the Spectral Form Factor,
introduced in the previous section. We can use the sine-kernel to derive an expression for the
spectral form factor. First consider the microcanonical spectral form factor [39,40]:

KE(T ) =
∫
dϵeiϵT ⟨ρ(E + ϵ/2)ρ(E − ϵ/2)⟩conn (1.4.31)

where ϵ = E1 − E2. Using the sine-kernel, we obtain an expression valid for time-scales
t ∼ eS0 :

KE(T ) = min
(
T

2π , e
S0ρ0(E)

)
(1.4.32)

This is the ramp-plateau structure of the SFF for chaotic systems, see fig. 1.1. The SFF
presents a linearly growing in time behavior until the transition to the plateau, which happens
at T = 2πeS0ρ0(E), after which it becomes constant. The linear ramp corresponds to the
first perturbative term 1/ϵ2 in the sine-kernel, as can be seen by the Fourier transform. The
purpose of the second oscillatory term is to precisely cancel the linear growth after a time
t = eS0ρ0(E). Finally, the contact term sets the height of the plateau to be eS0ρ0(E). We
show the relative time behaviors of the Fourier transforms here:

− 1
2π2(E1 − E2)2 −→

t

2π , (1.4.33)

cos
(
2πeS0ρ0(E)(E1 − E2)

)
2π2(E1 − E2)2 −→

−e
S0ρ0(E) if t < 2πeS0ρ0(E)

− t
2π , t ≥ 2πeS0ρ0(E),

(1.4.34)
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eS0ρ0(E)δ(E1 − E2) −→ eS0ρ0(E). (1.4.35)

Adding all the terms together we obtain the expression for KE(T ). We stress the importance
of each term because each of them encodes different physics, and together, they give a
universal understanding of quantum chaotic systems. The linear ramp with a precise slope of
1

2π is a signature of chaos in a quantum mechanical system.
The oscillations on the scale of the level spacing are instead a probe of the discreteness of the
spectrum, they would not be present if the spectrum was smooth like ρ̄(E). Thus the plateau
in the SFF is an indirect probe of the underlying discreteness of the spectrum of the system,
however it is non-perturbative and difficult to access. Even in random matrix theory, the
calculation of the plateau is non-trivial. You can see from the above expression for KE(T )
that it is not possible to reach the plateau starting from the ramp and doing perturbation
theory, as the expression is not even analytic at the transition.

In two very interesting recent papers [39, 40], it was shown how to obtain the plateau
by resumming a convergent expansion around the ramp. Start by considering the SFF in
the canonical ensemble Kβ(T ). It was shown that Kβ(T ) in random matrix theory admits a
τ-scaling limit where eS0 →∞ with τ = e−S0T is fixed, given by:

lim
S0→∞

e−S0Kβ(τeS0) =
∫ ∞

0
dEe−2βE min

(
τ

2π , ρ0(E)
)

(1.4.36)

A notable feature of this expression is that it admits a convergent expansion in τ≪ 1, which
is given by: ∫ ∞

0
dEe−2βE min

(
τ

2π , ρ0(E)
)

= τ

4πβ +
∑
g=1

P (ρ)
g (β)τ2g+1 (1.4.37)

where the coefficients are given by

P (ρ)
g (β) = − 1

g(2g + 1)(2π)2g+1

∮
0

dE

2πi
e−2βE

ρ0(E)2g . (1.4.38)

It is possible to resum this series inside the radius of convergence and then analytically
continue it to arbitrary τ. This will give an expression for the SFF which includes the ramp
and the plateau. There are deep mathematical structures hidden behind this expression,
explored in [40]. It relies on very specific cancellations at every order in the e−S0 expansion
of the matrix integral whenever one takes the τ-scaling limit.

30



Chaos and symmetry

One important aspect to consider when comparing a chaotic system to random matrix theory
is symmetry. A system may be chaotic and yet enjoy a particular symmetry, which is not
strong enough to make the system completely integrable. The distinction between chaotic
and integrable systems is a complicated subject and it’s not clear a priori if a symmetry
is enough to make a system integrable. There is no absolute criterion to distinguish and
classify physical systems into integrable and chaotic, since there are systems which may
exhibit features of both classes.

However, in many interesting cases, a system (or a subsystem of a larger system) lies at
one end of the spectrum, meaning it either exhibits most of the defining features of chaos
(such as non-zero Lyapunov exponents, random matrix statistics, ETH, etc...) or it is exactly
solvable. These systems which are ’maximally’ chaotic or ’fully’ integrable are an easier
playground to understand various phenomena. Often one can think of a mixed system,
one with characteristics which are intermediate between chaos and integrability, as having
different approximate subsectors which are chaotic or integrable and coexist in one theory.
We will discuss N = 4 super Yang-Mills theory as an example of a mixed system, but first,
let’s understand better the interplay between symmetry and chaos.

We are used to the fact that physical systems can have a wealth of symmetries: spacetime
symmetries such as rotational invariance or Lorentz symmetry, gauge symmetries such as
electric charge conservation or global symmetries such as Z2 symmetry of magnets described
by the Ising model, just to give a few elementary examples. None of these symmetries, by
itself, is enough to completely solve the system. A system with any of these symmetries may
still be chaotic, however the Hamiltonian cannot possibly behave like a random matrix due
to the symmetry constraints.

Consider as an example, SU(2) symmetry in quantum mechanics. The Hamiltonian
commutes with the three generators [H, Ji] = 0 so we organize states |E, ℓ,m⟩ by their
eigenvalues with respect to H, the Casimir J2 with eigenvalue ℓ(ℓ + 1) and one of the
generators Jz with eigenvalue m = −ℓ . . . ℓ. Since J2 and Jz commute with the Hamiltonian
we have a selection rule: the Hamiltonian will not connect states with different values of ℓ or
m.
This means that the Hamiltonian is of block diagonal form where each block has fixed ℓ,m

but possibly different energies. Moreover, we can have degeneracies, namely states with the
same energy but different quantum numbers. For each value of E, ℓ we have 2ℓ+ 1 states with
m = −ℓ, . . . , ℓ. Due to these two features, it is clear that the Hamiltonian cannot be purely
a random matrix, since random matrices, as we defined them, are neither block diagonal nor
they have degeneracies. However, the SU(2) symmetry does not constrain the actual values
of the energies of the highest weight states m = ℓ inside a block. This is where we should
look for random matrix universality. We should first consider a single fixed spin block of the

31



Hamiltonian and inside that block look only at the energies of highest-weight states |E, ℓ, ℓ⟩.

The previous example teaches us the general procedure to establish whether a quantum
mechanical system exhibits random matrix universality. We should first understand the
symmetries of the system and then study a sector where the matrix elements of the Hamiltonian
are unconstrained by the symmetries. Once we have correctly accounted for the symmetries,
we can then see whether the system is chaotic or not. Often this is simple to do, such as
in the case of SU(2) symmetry where one just needs to work in an individual Hamiltonian
block, but more complicated symmetries can be present for which it is not possible to do so.

In this thesis, we will consider 2D Conformal Field Theories. These theories enjoy an
infinite dimensional symmetry algebra, the Virasoro algebra, and thus there are infinitely
many conserved charges. However, we don’t expect all 2D CFTs to be exactly solvable (though
many of them are). They also enjoy a special symmetry called modular invariance. This
symmetry relates the partition function of the theory at different values of the temperature
and angular potential, similarly to a high/low-temperature duality. We will see that this
symmetry relates different spin sectors so that the CFT Hamiltonian is no longer block
diagonal in spin. This symmetry also relates the low energy and high energy parts of the
spectrum so energies across the spectrum are correlated in a nontrivial way. To understand
random matrix universality in 2D CFT we must disentangle the energy levels from the
constraints of modular invariance.

There are many physically interesting quantum field theories with a rich symmetry
structure that we expect to display signatures of chaos. Let’s consider the example of N = 4
supersymmetric Yang-Mills theory in 4D. This is a maximally supersymmetric field theory
and it is also conformally invariant. The spectrum organizes itself into representations of
the superconformal algebra PSU(2, 2|4) which has an SO(6) global R-symmetry. As a
consequence of this symmetry, for example, 1

2 BPS states have integer conformal dimensions
which are clearly not random matrix distributed. The theory also enjoys S-duality in the
complexified coupling τ = θ

2π + 4πi
g2

Y M
, meaning that theories with values of the coupling related

by SL(2,Z) are dual to each other.

Even though the theory enjoys such a large amount of symmetry, we still expect it to be
chaotic and exhibit random matrix universality, at least in certain sectors of the spectrum.
One piece of evidence for this chaotic behavior is given by the AdS/CFT duality. N = 4
super Yang Mills theory is conjectured to be exactly dual to type IIB string theory on an
asymptotically AdS5×S5 spacetime. The latter theory contains black holes which, as we
reviewed, are chaotic. We then expect to see the chaos of black holes in the CFT.

A different, broader perspective, is that an interacting system with a large number of
degrees of freedom, which has a sector unconstrained by symmetry, should obey RMT
statistics in that sector. If, instead, the system is still integrable, there should be a good
explanation for this atypical behaviour, such as a symmetry that we didn’t take into account
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previously. From this point of view, we expect that the non-BPS, superconformal primary
states at fixed spin and R-charge in N = 4 super Yang Mills at large but finite N and finite
coupling τ should have RMT statistics. We expect a similar behavior for the t’Hooft limit at
strong coupling λ = g2

YMN .3 Studying this explicitly by computing anomalous dimensions is
of course very difficult, see [68] for recent progress.

On the other hand, we know well other sectors of the theory, and we see that they are
integrable, not chaotic. There has been extensive work at leading order in large N where the
theory displays a rich integrable structure and it’s been possible to compute the spectrum
of non-BPS operators with ∆ ∼ O(N0) exactly in λ. This does not invalidate the previous
discussion, since integrability appears strictly at N =∞ and, so far, it has been shown to
apply only to light operators that involve a small number of degrees of freedom compared to
the central charge cT = N2−1

4 which is formally infinite in this limit.

1.4.3 The SFF in gravity

There has been a lot of interest in the SFF for the spectrum of black hole microstates. It’s
a quantity that allows to probe characteristics of the black hole microstates such as chaos,
given by the linear ramp, and discreteness, given by the plateau, without having to explicitly
compute the microstates Ei which is, in general, beyond our reach.

We will now very briefly review aspects of the SFF from the 2D gravity point of view.
In higher dimensions d ≥ 4, the geometry that has been proposed to capture the ramp is
the double-cone, an analytical continuation of the eternal two sided black hole. We will not
review it here but the interested reader can consult [69]. As for d = 3, the geometry that
captures the ramp is the Cotler-Jensen wormhole [34] which will be one of the main topics of
this thesis.

We review the theory of 2D quantum gravity named Jackiw-Teitelboim gravity, following
[35]. For more details, see the review [70]. The Euclidean action is given in terms of the
metric gµν and a dilaton field ϕ by:

I = −S0

2π

[1
2

∫
M

√
gR +

∫
∂M

√
hK

]
− 1

2

∫
M

√
gϕ(R + 2) +

∫
∂M

√
hϕ(K − 1) (1.4.39)

The first square bracket is a topological term and it’s equal to −S0χ(M), the Euler character-
istic of the surface M. The second term is a bulk dilaton term which can be integrated out
exactly which imposes R = −2 off-shell. The theory describes hyperbolic two-dimensional
surfaces. These are Riemann surfaces Σg,n and they are fully classified by their genus g and
the number of boundaries n, with a continuous moduli space for fixed g, n. The final term
gives a non-trivial dynamics on the boundary of spacetime and can be shown to be equal to

3See section 9 of [64] for a discussion on this topic.
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Schwarzian quantum mechanics on the S1 boundaries of M. The observables we want to
study are the partition functions on Σg,n with asymptotic boundaries. To arrive at a finite
result one needs to perform holographic renormalization by introducing regularized lengths
βi/ϵ and regularized boundary dilaton ϕ = 1/2ϵ. The partition function on a surface with a
single boundary and genus 0, the disk, is equal to the Schwarzian partition function:

ZSch(β) = e
π2
β

4
√
πβ3/2

(1.4.40)

which produces a microcanonical density of states:

ρSch(E) = 1
4π2 sinh

(
2π
√
E
)
. (1.4.41)

The partition functions admit a topological expansion:

Zn(β1, . . . , βn) =
∑
g=0

Zg,n(β1, . . . , βn)
eS0(2g+n−2) . (1.4.42)

The way to compute the partition functions Zg,n is to decompose the Riemann surface Σg,n

as follows. For each asymptotic boundary, we choose a geodesic homologous to the boundary
and cut the surface along the geodesic. We are left with n trumpet geometries which connect
the asymptotic boundary of length βi to the geodesic boundary of length bi. The interior
of the spacetime is now a Riemann surface with n geodesics boundaries. Having performed
this decomposition, we weigh the trumpets according to the path integral of the Schwarzian
theory on the trumpet, which gives:

ZTr(β, b) = e− b2
4β

2
√
πβ

. (1.4.43)

The interior Riemann surface with n geodesic boundaries is weighted by the volume of its
moduli space Vg,n(b1, . . . , bn). The measure on moduli space space, which follows from the
JT path integral, is the Weil-Petersson measure. The geometry of moduli spaces of bordered
Riemann surfaces is a deep topic of current research in pure mathematics and there are
beautiful reviews on the topic [71, 72]. We will now see that crucial mathematical results in
this are at the core of the solution of JT gravity. The last step to compute Zg,n is to glue
back together the trumpets to the bordered Riemann surface along the geodesics boundaries.
The measure for gluing them can be derived to be dµ(b) = bdb. We arrive at the following
expression:

Zg,n(β1, . . . , βn) =
∫ ∞

0
b1db1· · ·

∫ ∞

0
bndbnVg,n(b1, . . . , bn)ZTr(β1, b1) . . . ZTr(βn, bn). (1.4.44)
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Note that the geometries we are considering, whose partition function Zg,n can be exactly
computed, are not solutions to the equation of motion of the theory, they are not saddle-points.
They are off-shell configurations which normally we wouldn’t know how to include in the
gravitational path integral. However, in the case of JT gravity, the theory is so simple that
one can compute the path integral exactly on a fixed topology. The computation of Zg,n boils
down to the knowledge of Vg,n. Mirzakhani proved that the Weil-Petersson volumes satisfy a
recursion relation which allows to compute them explicitly [73]. This is known as topological
recursion, see [72] for a review.

It is possible to compute the SFF by analytically continuing the n = 2 boundary partition
function:

KJT
β (T ) = Z2(β + iT, β − iT ). (1.4.45)

At leading order in eS0 this is equal to gluing two trumpets together, hence the name double
trumpet and gives:

Z0,2(β1, β2) =
∫
bdbZTr(b, β1)ZTr(b, β2) =

√
β1β2

2π(β1 + β2)
(1.4.46)

This result is recognized to be exactly equal to the two-point function of a matrix integral, at
leading order at large N = eS0 :

Z0,2(β1, β2) = ⟨Tre−β1HTre−β2H⟩g=0. (1.4.47)

Under analytic continuation and by taking T ≫ β this produces the ramp in the SFF a
signature of quantum chaos in 2D gravity.

KJT
β (T ) ≈ T

4πβ +O(e−2S0), T ≫ β. (1.4.48)

Random matrix universality, as we reviewed in the previous section, is the statement that
a chaotic quantum system exhibits random matrix behavior on time scales T ∼ eS0 . We
emphasize that JT gravity goes beyond this by being exactly equal to a matrix integral at
finite β1, β2. In [35] it was shown that all the Zg,n partition functions of JT gravity are equal
to correlation functions of a certain random matrix model and so the full theory is dual to a
matrix integral, to all orders in eS0 :

ZJT
n (β1, . . . , βn) = ⟨Tre−β1H . . .Tre−βnH⟩. (1.4.49)

This follows by showing that the topological recursion of Mirzakhani for Vg,n can be exactly
mapped to the topological recursion for matrix integrals by Eynard and Orantin, [74]. In
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particular, the matrix model is specified by

N = eS0 , ρ0(E) = ρSch(E). (1.4.50)

One can interpret the matrix model as an ensemble of quantum systems with Hamiltonian H
that we average over. From this point of view, JT gravity is then dual, not to an individual
quantum system like in AdS/CFT, but to an ensemble average over many quantum mechanical
systems.
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1.5 Conformal Field Theory

Conformal field theory is a large and well-developed subject, which has been a major focus of
theoretical physicists for decades due to its applications in disparate fields, from statistical
mechanics and phase transitions to quantum gravity via the AdS/CFT correspondence. Major
progress has been achieved since the revival of the conformal bootstrap approach, which aims
to solve or constrain either a specific theory or the space of possible theories by exploiting
the stringent consistency conditions a CFT must satisfy. I will not attempt to review this
progress, there are many excellent reviews for CFT in d > 2 such as [75–79]. The work in this
thesis focuses mostly on CFTs in d = 2. These have been studied in depth, especially ones
that can be solved exactly, see [80–84] for excellent reviews. I will now briefly recall some
aspects that will be relevant for the rest of the thesis. In particular, we will focus on the
partition function of 2D CFTs, which depends only on the spectrum of local operators (h, h
and not on OPE coefficients Cijk. Since we will be interested in understanding signatures of
chaos in 2D CFT, such as random matrix universality, we need to understand what are the
symmetries that act on the spectrum, as emphasized in previous sections.

CFTs in d = 2 enjoy a larger symmetry than the global conformal algebra so(d+ 1, 1),
the infinite-dimensional Virasoro algebra:

[Ln, Lm] = (n−m)Ln+m + c

12n(n2 − 1)δn+m,0. (1.5.1)

A generic 2D CFT is symmetric under two commuting copies of the Virasoro algebra V ir×V ir
for the left and right movers with generators:

Ln ≡
1

2πi

∮
dzzn+1T (z), L̄n ≡

1
2πi

∮
dz̄z̄n+1T̄ (z̄), (1.5.2)

where T (z) = Tzz(z) and T̄ (z̄) = T̄ z̄z̄(z̄) are the two non-vanishing components of the
stress energy tensor. They are respectively holomorphic and antiholomorphic due to the
conservation of the stress tensor. The stress tensor is traceless due to scale invariance Tzz̄ = 0.
The central charge c appearing as a central extension in the Virasoro algebra is defined in
terms of the stress energy tensor two-point function:

⟨T (z)T (0)⟩ = c/2
z4 , ⟨T̄ (z̄)T (0)⟩ = c/2

z4 .
(1.5.3)

We can classify states in the 2D CFT by their eigenvalues with respect to L0 and L̄0 which
we denote by (h, h):

L0 |h⟩ = h |h⟩ . (1.5.4)
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The scaling dimension, meaning the eigenvalue with respect to the dilation operator D =
L0 + L̄0 and the spin J = L0 − L̄0 are:

∆ = h+ h, j = h− h (1.5.5)

The rest of the generators of the Virasoro algebra act like raising and lowering operators:

[L0, L−n] = nL−n. (1.5.6)

We define a primary state as a state whose dimension cannot be lowered further:

Ln |h⟩P = 0, ∀n > 0 (1.5.7)

Thus the states in the theory are split into primaries and descendants. We will drop the
subscript and denote primaries as

∣∣∣h, h〉. Descendants are obtained by:

L−n1 . . . L−nk
L̄−n̄1 . . . L̄−n̄k̄

∣∣∣h, h〉 . (1.5.8)

We can already see that if we wish to find any signatures of random matrix behavior in a 2D
CFT, we should not include descendants since their dimensions are hD = hP +∑k

i ni, exactly
correlated with the primary dimensions and integer spaced. Consider now the partition
function of a 2D CFT at finite temperature β−1 and on a finite interval with periodic boundary
conditions. This is equal to putting the CFT on a torus with modular parameter τ :

τ = x+ iy = θ

2π + i
β

2π ,
(1.5.9)

where θ is the angular potential. The partition function is then equal to:

Z(τ, τ) =
∑
h,h∈S

e2πiτ(h− c
24 )e−2πiτ(h− c

24 ), (1.5.10)

where the sum runs over all the operators in the spectrum S, both primaries and descendants.
There is a shift in energy at finite volume:

EL = L0 −
c

24 . (1.5.11)

We have introduced a complex variable τ which allows us to analytically continue beyond the
Euclidean signature where τ = τ ∗, the complex conjugate of τ . The partition function, in
general, is a non-holomorphic function of τ , thus depending on 2 real variables x, y. Upon
analytic continuation, we have that Z(τ, τ) is a function of 2 independent complex variables.
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In Euclidean signature we have:

Z(τ, τ ∗) =
∑
h,h∈S

e−2πy∆e2πijx, (1.5.12)

which is the usual grand canonical partition function in quantum mechanics. It’s possible
to sum all the contributions to the partition function coming from descendant of a given
primary. This is achieved by the Virasoro characters:

χh(τ) ≡ Trh(qh− c
24 ), q = e2πiτ , (1.5.13)

where the trace sums only over states in a given representation of highest weight h of the
Virasoro algebra. It is possible to compute these characters explicitly since the descendants
at level N correspond to partitions of N . For the Virasoro algebra we obtain:

χh(τ) = qh−ξ

η(τ)
(1.5.14)

where ξ = c−1
24 and η(τ) is the Dedekind eta function. We can then write the partition

function as:

Z(τ, τ) =
∑
h,h∈P

χh(τ)χ̄h(τ), (1.5.15)

where the sum now runs only over primaries. We are now ready to discuss the second crucial
symmetry which acts on the CFT spectrum: modular invariance. When considering a CFT
on the torus, scale invariance implies that observables are independent of the volume of the
torus. Thus, observables in the CFT can only depend on the shape of the torus, not its
volume.4 The torus can be defined by taking the complex plane and identifying points w ∈ C
by a lattice action with fundamental vectors α1, α2:

w ∼ w + nα1 +mα2, m, n ∈ Z, α1, α2 ∈ C (1.5.16)

The shape of the lattice, meaning the angle and the ratio of the sides of a lattice cell, is
encoded in the parameter τ :

τ = α2

α1
(1.5.17)

It is clear that there are different choices of vectors α1, α2 and β1, β2 which define the same
4More mathematically, it depends only on the complex structure moduli of T 2 and not the Kahler moduli.
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lattice and thus the same torus. These are related by SL(2,Z) transformations:
(
β1

β2

)
=
(
a b

c d

)(
α1

α2

)
, (1.5.18)

Since tori whose moduli τ are related by SL(2,Z) transformations are identical, the CFT
cannot possibly distinguish them, and thus observables must be invariant (or covariant) under
SL(2,Z) transformations. In particular, the partition functions must be modular invariant:

Z(τ, τ) = Z(γτ, γτ). (1.5.19)

This is an extremely powerful symmetry that leads to a wealth of results in 2D CFT. It is
possible to work in a fundamental domain for the SL(2,Z) action on τ , given by:

F =
{
− 1

2 ≤ x ≤ 1
2 , y ≥ 0, |τ | ≥ 1

}
. (1.5.20)

From the physical point of view, it is more of a high-temperature/low-temperature duality
than a symmetry, since for the value τ = i β2π it implies:

Z(β) = Z

(
4π2

β

)
. (1.5.21)

If low and high temperatures are related, it means that the high energy and low energy parts
of the spectrum must be related as well. Moreover, different spin sectors are related as well.
It is not a symmetry in the conventional sense of having a generator that commutes with
the Hamiltonian, and thus, we cannot diagonalize both simultaneously. This means that to
understand random matrix statistics in 2D CFT, we will first have to understand how to
correctly process modular invariance.

The most famous result about 2D CFTs that can be derived via modular invariance is the
Cardy density of states. This is a formula for the asymptotic density of high energy states in
a 2D CFT with c > 1:

ρCardy(h, h) = exp
(

4π
√
ξ(h− ξ)

)
exp

(
4π
√
ξ(h− ξ)

)
, ξ ≡ c− 1

24 . (1.5.22)

which is valid asymptotically for h, h→∞ and fixed central charge c, the so-called Cardy
regime.
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Chapter 2

AdS3/RMT2 duality

This chapter consists of a paper [1] written in collaboration with Eric Perlmutter. The
original abstract is as follows:

We introduce a framework for quantifying random matrix behavior of 2d CFTs and AdS3

quantum gravity. We present a 2d CFT trace formula, precisely analogous to the Gutzwiller
trace formula for chaotic quantum systems, which originates from the SL(2,Z) spectral
decomposition of the Virasoro primary density of states. An analogy to Berry’s diagonal
approximation allows us to extract spectral statistics of individual 2d CFTs by coarse-graining,
and to identify signatures of chaos and random matrix universality. This leads to a necessary
and sufficient condition for a 2d CFT to display a linear ramp in its coarse-grained spectral
form factor.
Turning to gravity, AdS3 torus wormholes are cleanly interpreted as diagonal projections
of squared partition functions of microscopic 2d CFTs. The projection makes use of Hecke
operators. The Cotler-Jensen wormhole of AdS3 pure gravity is shown to be extremal among
wormhole amplitudes: it is the minimal completion of the random matrix theory correlator
compatible with Virasoro symmetry and SL(2,Z)-invariance. We call this MaxRMT: the
maximal realization of random matrix universality consistent with the necessary symmetries.
Completeness of the SL(2,Z) spectral decomposition as a trace formula allows us to factorize
the Cotler-Jensen wormhole, extracting the microscopic object ZRMT(τ) from the coarse-
grained product. This captures details of the spectrum of BTZ black hole microstates.
ZRMT(τ) may be interpreted as an AdS3 half-wormhole. We discuss its implications for the
dual CFT and modular bootstrap at large central charge.

2.1 Introduction

To establish whether AdS3 pure gravity exists, one must understand the random matrix
behavior of its black hole microstates.
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Such is the view suggested by recent work on holographic duality in low dimensions, both
for the AdS3 quantum theory and its semiclassical limit. Perhaps the main justification
comes from the celebrated JT/RMT duality in two bulk dimensions [35], in which the
boundary theory is an ensemble of (double-scaled) random matrices. This work (and its
dilaton gravity generalizations, e.g. [85–89]) was a combined evolution of earlier works
drawing direct connections between black hole dynamics and random matrix statistics in
AdS/CFT [64,69] and the emergence of the SYK model as a tractable yet strongly-coupled
quantum system [90–94]. In higher-dimensional holography, the boundary theory is a
continuum conformal field theory (CFT), endowed with extra structure. For 2d CFTs, this
structure includes locality, Virasoro symmetry and modular invariance of the torus partition
function, but more generally is comprised of some set of fundamental bootstrap axioms.
How is random matrix theory (RMT) “allowed” to manifest itself in the observables of an
individual 2d CFT while respecting the necessary constraints?

We focus our attention on AdS3/CFT2 henceforth, and the ongoing quest for AdS3

pure gravity.1 As is well-known, the natural idea [97] for computing the semiclassical bulk
path integral with a single torus boundary (sum over all smooth bulk saddles M with
∂M = T 2) fails to produce a unitary result, instead carrying exponentially large negative
degeneracies [98]: if a consistent partition function exists, something more must contribute.
But what? Reckoning with path integral contours is not a simple endeavor in quantum field
theory, much less in gravity. In the proposal of [88] – still fairly implicit, but currently the
only one which preserves a spectral gap to the black hole threshold – what ostensibly fixes
the problem is a specific infinite family of off-shell geometries (Seifert manifolds), whose circle
reductions are identified with JT gravity backgrounds in the presence of defects. This gives
an elegant hint of random matrices in AdS3 pure gravity in the near-extremal regime.

Stronger hints come from wormholes. Two-boundary path integrals have been computed
in JT/RMT duality: the double-trumpet wormhole, together with the all-orders genus sum
over higher topologies, exhibits the famous RMT level repulsion in the ensemble-averaged
density-density correlator [35]. After analytic continuation to complex temperature, the
double-trumpet leads to a linear ramp in the spectral form factor (SFF); the wormholes
with higher topology, exponentially suppressed in entropy, collectively initiate the transition
from ramp to plateau [39, 40, 99, 100]. In seeking an AdS3/CFT2 lesson from (or version
of) the JT/RMT ensemble duality, it is an AdS3 analog of the double-trumpet geometry
that one should understand. This was the motivation of Cotler and Jensen (CJ) [34], who
computed the contribution of such a geometry – an off-shell, connected, two-boundary torus
wormhole – to the AdS3 gravity path integral. Let us call this ZCJ(τ1, τ2). Being off-shell,
the computation is non-standard, requiring the technique of constrained instantons instead
of familiar-but-unavailable saddle point techniques.

1We will not spell out the full history of this subject, whose modern incarnation started in [95]; a recent
account was given in [96].
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The CJ result is at once highly mysterious, remarkably simple, and deceptively rich. It
contains unmistakable signs of random matrices or 2d CFT avatars thereof: at leading order
in the low-temperature limit, ZCJ(τ1, τ2) reproduces the universal result of double-scaled
matrix integrals. It also contains infinite series of corrections that are apparently tied to
modular invariance, and generalizes the RMT result to include spacetime spin. This indicates
the presence of some underlying Virasoro generalization of RMT. Less clear is the sense in
which an ensemble interpretation of the result is necessary, and if so, how this squares with
reasonable expectations of the space of irrational 2d CFTs as a sporadic, generically discrete
set of points. This constellation of ideas was playfully labeled “random CFT” in [34]. Despite
the absence of a proper definition, this much seems certain: whatever “random CFT” means,
it ought to be relevant for holography.

In a chaotic 2d CFT in general, how do we extract random matrix behavior hiding within?

In a chaotic 2d CFT dual to AdS3 pure gravity in particular, what does ZCJ(τ1, τ2) mean?

Perhaps in spite of appearances, the CJ wormhole does not imply that the boundary
dual of semiclassical AdS3 pure gravity is an ensemble of large central charge CFTs. Given a
microscopic large c CFT, by which we mean a c → ∞ limit of an unbounded sequence of
irrational Virasoro CFTs {Tc} with a suitable spectral gap, there may be a coarse-graining
procedure or kinematic averaging (e.g. with respect to energy or time), as in quantum systems,
which is compatible with the bulk wormhole computation. In general, bulk calculations that
imply non-factorizing correlations between disconnected boundaries are agnostic about what
kind of boundary averaging gives rise to this correlation [34,101,102]; we are not aware of
an effective field theory calculation in AdSD≥3 gravity that singles out a boundary ensemble
interpretation. The more robust concept, as emphasized in [103], is not ensemble averaging
per se, but apparent averaging, which arises essentially because of the chaotic nature of the
high-energy spectrum in the large c limit. A nice discussion of this set of ideas is given in the
Introduction of [104]. Also relevant for our work are the comments on the role of wormholes
in non-averaged theories in [35,105].

Condensing the above into a challenge for semiclassical AdS3 holography, the goal is to
show how the bulk theory can be dual to a microscopic large c CFT in a manner consistent
with nonvanishing bulk wormhole amplitudes (or, perhaps, to show that it cannot). We
emphasize that this is a challenge particularly posed by off-shell wormholes, as on-shell
wormholes are instead fixed by suitable gluing of universal asymptotic CFT data (spectrum
and OPE coefficents), which are themselves fixed by crossing symmetry in terms of low-energy
inputs – insensitive to level statistics of black hole microstates.2

2Recent work establishes an impressive match between partition functions of individual saddle points of
AdS3 gravity (possibly coupled to point particles) of some fixed topology, and certain boundary computations.
The latter recast the partition function either as a moment problem of a (near-)Gaussian “large c ensemble”
of CFT data [106] or using a novel topological quantum field theory [107]. (See e.g. [108–110] for further
developments.) This extends earlier ideas about AdS3 gravity as an effective field theory, by incorporating a
version of ETH for 2d CFTs [101,106] and allowing multiple disconnected boundaries. Because these works
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Independent of applications to AdS3 wormholes, we would like to develop a quantitative
toolkit to derive emergent RMT physics from microscopic 2d CFT data. It may be useful to
phrase this yet another way, using the vocabulary of the bootstrap approach to CFTs [111].
The modular and conformal bootstrap have focused so far on constraining single-copy
observables. This seems to obscure chaotic microstructure of the spectrum which is revealed
in “two-copy observables” like the SFF. One would like to know whether the dip-ramp-plateau
structure of the coarse-grained SFF of a chaotic CFT can be bootstrapped from a minimal set
of CFT data. Lowering our sights by focusing on the linear ramp region, the CJ wormhole
suggests a more specific program toward addressing this question vis-à-vis gravity: first,
use the constraints of Virasoro symmetry and modular invariance to carve out the space of
possible wormhole amplitudes; then, upon imposing the features of a 2d CFT dual to pure
gravity in particular, determine where the CJ wormhole sits in this space. An emergence of
RMT-like physics from this analysis would give one answer to what “random CFT” could
mean in two dimensions, compatible with the necessary symmetry constraints.

2.1.1 Summary of results

This work makes some headway on these questions for generic c > 1 Virasoro CFTs and
their AdS3 gravity duals, guided in part by the theory of trace formulas for chaotic quantum
systems, and by new perspectives on modular invariance.

We begin in Section 2.2 by recalling the SL(2,Z) spectral decomposition of torus
partition functions of parity-invariant Virasoro CFTs (with no extra conserved currents) [112].
A key player in our framework is Zspec(τ), a certain subtracted partition function, defined by
removing “light” primary operators from the partition function in a modular-invariant way.
Zspec(τ) admits a decomposition into a complete SL(2,Z)-invariant eigenbasis.3 We review
some suggestive hints from AdS3 gravity and Narain CFT about the physical meaning of
Zspec(τ); these lead us to view Zspec(τ) as the “chaotic part” of the partition function that
suitably incorporates the symmetries.

In Section 2.3 we substantiate this point of view by presenting a 2d CFT trace formula.
It mimics the Gutzwiller trace formula for chaotic quantum systems, which we first review.
To make the connection, we proceed to transform Zspec(τ) to a microcanonical density of
states. The total density of spin-j Virasoro primaries splits into two terms:

ρj(t) = ρ̂L,j(t) + ρspec, j(t) , t := min(h, h)− c− 1
24 (2.1.1)

establish a match at the level of individual saddles, irrespective of the full sum over topologies and of level
statistics, the questions of whether pure gravity exists and what its boundary dual is (e.g. ensemble or not)
are of course not addressed.

3Leaving details to the main text, the eigenbasis is comprised of real-analytic Eisenstein series Es(τ) with
s = 1

2 + iω and ω ∈ R, and Maass cusp forms ϕn(τ) with n ∈ Z≥0.
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Figure 2.1: The density of heavy states ρ(t) of a compact CFT, here approximated by the
smooth black curve (as in a large c limit) for illustrative purposes, is highly oscillatory on
wavelengths of order e−SCardy(t), the mean level spacing, while the modular completion of
light states, ρ̂L(t), contains the smooth, universal Cardy-like growth (dashed line). Their
difference, ρspec(t), captures the oscillations, encoding chaotic statistics. We have suppressed
the spin index j.

One should think of the spectral density ρspec, j(t) as having removed all self-averaging
contributions ρ̂L,j(t) from the total density ρj(t): it is supported only on the chaotic,
“heavy” spectrum t ≥ 0, computing the difference between the exact density and the smooth
asymptotic approximation to it. See Figure 2.1.

In seeking a possible analogy to quantum systems, the first term ρ̂L,j(t) would map to a
mean density ρ(E), while the second term ρspec, j(t) would map to ρosc(E), an oscillatory part
that can be expanded over periodic orbits. Indeed, such a relation can be made sharp: the
SL(2,Z) spectral decomposition of ρspec, j(t) is shown to take exactly the form of a Gutzwiller
trace formula, for every fixed spin j (see (2.3.20)). Periodic orbits correspond to elements of
the SL(2,Z) eigenbasis, labeled by SL(2,Z) spectral frequencies ω, with a clean identification
of the orbit actions, periods and one-loop determinants for each element. An important
aspect of this trace formula is that the SL(2,Z) eigenbasis, and hence the set of orbits, is
complete.

With this in hand, we analyze correlations and define a coarse-graining procedure in
analogy to Berry’s diagonal approximation. Mimicking the local energy averaging of quantum
systems, coarse-graining a product of spectral densities over mean twist correlates the two
copies by pairing the SL(2,Z) eigenvalues – a 2d CFT analog of restricting the double sum
over orbits to those of equal action. Inspired by this we define a diagonal partition function
in the canonical ensemble. First we define Zdiag(τ1, τ2), by projecting the factorized product
Zspec(τ1)Zspec(τ2) onto the kernel of a difference of Laplacians, thus correlating the eigenvalues
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of basis elements. We then introduce an enhanced diagonal projection of Zspec(τ1)Zspec(τ2)
which pairs SL(2,Z) eigenfunctions, not just eigenvalues: there are degeneracies between
Eisenstein series and Maass cusp forms. This is defined by projecting onto the kernel of a
difference of SL(2,Z) Hecke operators, T (τ1)

j −T (τ2)
j , for every spin j ∈ Z+: we call this Hecke

projection, and the corresponding partition function ZHecke(τ1, τ2). These are given in (2.3.41)
and (2.3.43). From the point of view of the trace formula and periodic orbit theory, Hecke
projection does the job of properly pairing identical orbits. One may view ZHecke(τ1, τ2) as an
enhanced form of coarse-graining in 2d CFTs, carrying extra symmetry and arithmeticity,
annihilated as it is by an infinite set of commuting Hecke operators.

In Section 2.4, we analyze ZHecke(τ1, τ2) for general chaotic 2d CFTs, culminating in a
necessary and sufficient condition for the coarse-grained spectral form factor (SFF) to exhibit
a linear ramp. In chaotic quantum systems, the SFF, call it Kβ(T ), famously exhibits a
linear ramp at times T ≫ β, with coefficient controlled by the particular RMT ensemble
governing the late-time dynamics. The diagonal approximation to the SFF is designed to
capture this ramp behavior. Having constructed a diagonal partition function for 2d CFTs,
with self-averaging terms judiciously subtracted, we are in position to show the same.

Focusing on the scalar Fourier mode of ZHecke(τ1, τ2), it is fully determined by a function
we call R(z), defined as the inverse Mellin transform of |(Zspec, Es)|2, the squared spectral
overlap of Zspec(τ) with the Eisenstein series Es(τ). The variable z := y1/y2 is the ratio of
inverse temperatures yi := Im(τi). Passing to SFF kinematics via y1 = β+iT and y2 = β−iT ,
we show that the coarse-grained SFF exhibits a linear ramp at times T ≫ β if and only if
R(z) has a simple pole at z = −1, with the correct RMT residue:

R(z → −1) ∼ CRMT

2π
1

1 + z
(2.1.2)

The constant CRMT sets the RMT ensemble (for example, CGOE = 2). This simple pole may
be recast as a straightforward falloff condition on the partition function in SL(2,Z) spectral
space:

|(Zspec, E 1
2 +iω)|2 ∼ e−πωf(ω) (ω →∞) (2.1.3)

where f(ω) approaches CRMT asymptotically. Moreover, Virasoro symmetry and SL(2,Z)-
invariance imply a specific set of terms (2.4.25) in ZHecke(τ1, τ2) that necessarily accompany
(2.1.2); in SFF kinematics, these are power-law corrections at late times.

In Section 2.5 we prepare for our descent into the wormhole.

There is a satisfying synergy of the diagonal partition function ZHecke(τ1, τ2) with AdS3

torus wormholes. In particular, starting from a geometric definition, we demonstrate that torus
wormhole amplitudes ZWH(τ1, τ2) are Hecke symmetric: that is, they exhibit precisely the
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Figure 2.2: Off-shell wormhole amplitudes ZWH(τ1, τ2) in semiclassical AdS3 gravity are fixed
by a single function R(z), where yi = Im(τi) are inverse temperatures. The colored contours
show Euclidean and Lorentzian kinematics in the low-temperature limit. The spectral form
factor (SFF), for which z lies on the unit circle, has a linear ramp at times T ≫ β if and
only if R(z) has a simple pole at z = −1: see (2.1.2).

functional form of ZHecke(τ1, τ2). This signals that wormholes may be viewed microscopically,
understood as coarse-grained two-copy partition functions of underlying chaotic CFTs. This
forms the basis of our “wormhole Farey tail”: that is, the interpretation of bulk wormhole
amplitudes ZWH(τ1, τ2), constructed as SL(2,Z) image sums over large diffeomorphisms, as
gravitational duals of ZHecke(τ1, τ2) in large c CFTs. This is an AdS3 realization of the idea
of [35, 105] that bulk spacetime wormholes geometrize the diagonal approximation.

Let us expand on this slightly. In a diffeomorphism-invariant theory of semiclassical
gravity, a wormhole amplitude ZWH(τ1, τ2) that is independently modular-invariant with
respect to both τ1 and τ2 can be constructed as an SL(2,Z) Poincaré sum of a suitable seed
function: the SL(2,Z) transformations at the boundary implement the action of large bulk
diffeomorphisms. This is a multi-boundary generalization of the familiar black hole Farey
tail for thermal partition functions [97,113,114]. Taking this as one definition (given more
precisely in Subsection 2.5.1) of an off-shell torus wormhole, we prove that Poincaré sums
of this form enjoy a few remarkable properties. Among others, ZWH(τ1, τ2) is even more
constrained than a generic Hecke projection: its Eisenstein and cusp form spectral overlaps
are functionally equal, leading to a highly-constrained functional form in spectral space,

ZWH(τ1, τ2) =
∫

Ccrit
fWH(s)E1−s(τ1)Es(τ2) +

∞∑
n=1

fWH(sn)ϕn(τ1)ϕn(τ2) (2.1.4)

where Ccrit defined in (2.2.6) denotes the straight contour s = 1
2 + iR. Given a Zspec(τ) of an
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Figure 2.3: The Cotler-Jensen wormhole ZCJ(τ1, τ2) is generated by gluing two single boundary
partition functions ZRMT(τ1) and ZRMT(τ2). Each factor may be interpreted as a half-wormhole
in AdS3 pure gravity. The gluing is performed by coarse-graining over the spectrum of the
dual CFT: the (Hecke) projection P projects the factorized product onto the diagonal terms
with respect to the SL(2,Z) spectral basis, analogously to trace formulas for non-disordered
chaotic systems.

underlying CFT, the identification with the wormhole is simply

fWH(s) = |(Zspec, Es)|2 . (2.1.5)

The form of (2.1.4) makes manifest that wormhole correlations are diagonalized by the
SL(2,Z) spectral basis. Since diagonality is basis-dependent, this affirms the SL(2,Z)
spectral decomposition as a proper trace formula for 2d CFT.

In Section 2.6 we turn to AdS3 pure gravity and the CJ wormhole; see Figure 2.3. This
wormhole amplitude was derived in [34] as a Poincaré sum of the above type. Its spectral
overlap is very simple:

fCJ(s) = 1
π

Γ(s)Γ(1− s) . (2.1.6)

In terms of the function R(z) defined earlier, RCJ(z) not only contains the pole (2.1.2) that
generates the linear ramp – it is exactly equal to it. Moreover, the corrections prescribed by
Virasoro and SL(2,Z) are exactly those found in [34].

This analysis tells us that the CJ wormhole is extremal within the space of admissible
wormhole amplitudes, in the following quantitative sense. Having incorporated the requisite
Virasoro symmetry and modular invariance – that is, upon “quotienting” by the symmetries
of 2d CFTs and wormholes – the amplitude is determined solely by the function R(z). The
CJ wormhole of AdS3 pure gravity then sets R(z) exactly equal to the double-scaled RMT
result. This signature of pure gravity is what we call MaxRMT: the maximal realization of
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Factorize

Figure 2.4: Completeness of the SL(2,Z) spectral basis permits factorization of the Cotler-
Jensen wormhole. ZRMT(τ) encodes quantum substructure of the pure gravity black hole
spectrum.

random matrix universality consistent with Virasoro symmetry and modular invariance. The
fact that pure gravity exhibits MaxRMT statistics may be viewed as extending the hallmark
maximal chaos of pure gravity in the semiclassical, early-time regime of Lyapunov chaos [38]
to the quantum, late-time regime as defined by RMT. We expand on this and make related
comments in Subsection 2.6.2.

That our formalism fits the CJ wormhole like a glove strongly indicates that the wormhole
may be interpreted in terms of a microscopic 2d CFT dual, compatible with a traditional
holographic interpretation for semiclassical AdS3 pure gravity. The CJ wormhole is generated
dynamically from an underlying CFT upon coarse-graining the chaotic spectral correlations as
prescribed above. This gives a concrete actualization of the apparent averaging phenomenon
of [103], which was argued on general grounds to emerge from chaos of the semiclassical black
hole spectrum.

With this understanding, in Subsection 2.6.3 we take a step further by leveraging the
completeness of the SL(2,Z) spectral eigenbasis to factorize the CJ wormhole into its
constituent components: see Figure 2.4. We call the resulting microscopic partition function
ZRMT(τ). The result is unique up to signs, and is given explicitly in (2.6.14) and (2.6.15).
ZRMT(τ) captures exponentially suppressed fine structure of the black hole spectrum of
AdS3 pure gravity. As is perhaps clear from these results, ZRMT(τ) may be meaningfully
viewed as a half-wormhole of pure gravity. We substantiate this with comparison to 2D
gravity half-wormholes, broken cylinders and branes. One intriguing aspect is that ZRMT(τ)
carries a conspicuous erratic phase: its spectral overlap is dressed by a Riemann zeta phase
ϕ(ω) = arg(ζ(1 + 2iω)). This is a property of Zspec(τ) in general. The Riemann zeta function
is a famously quantum chaotic object [115–119], and ϕ(ω) varies wildly along the line ω ∈ R
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(see Figure 2.6); upon gluing to form a wormhole, the phases cancel. This nicely exhibits the
erratic nature expected of a higher-dimensional generalization of half-wormholes.

Summarizing the above, the identification of ZRMT(τ) gives a new, quantum piece of the
torus partition function Zgrav(τ) of the putative 2d CFT dual to semiclassical AdS3 pure
gravity, which augments the sum over smooth bulk saddles:

Zgrav(τ) ≈ ZMWK(τ) + ZRMT(τ) . (2.1.7)

ZMWK(τ) is the sum over saddles with ∂M = T 2 Maloney:2007ud,Keller:2014xba¸ . There are
small, as-yet-undetermined corrections to ZRMT(τ), call them δZRMT(τ), expected to come
from other off-shell configurations in the bulk; on the CFT side, these would give corrections
to the spectral statistics encoded in ZRMT(τ). We explain why δZRMT(τ) must be nonzero
due to CFT unitarity, and sketch its origins from the point of view of wormholes and string
theory. This further implies that the BTZ black hole threshold lies strictly below the naive
semiclassical threshold t = 0. The structure of the resulting partition function also jibes
nicely with the proposal of Maxfield and Turiaci [88]. The inclusion of level statistics of heavy
operators poses an interesting challenge for the large c modular bootstrap of 2d CFTs.

We end the paper with a discussion of some future directions, a glossary of partition
functions defined in this work, and appendices with details complementing the main text.

2.2 Groundwork

We begin by briefly recalling some notions in the spectral theory of the Laplacian on the
fundamental domain F = H/SL(2,Z) and their application to 2d CFTs. For more detailed
treatments and background, see [112,120,121]; for follow-up work, see [122,123]. We mostly
use conventions of [121].

2.2.1 Lightning review of SL(2,Z) spectral theory in 2d CFT

A square-integrable, SL(2,Z)-invariant function admits a spectral decomposition in a complete
SL(2,Z)-invariant eigenbasis with three branches:


∆τE

∗
s (τ) = s(1− s)E∗

s (τ) s = 1
2 + iω, ω ∈ R

∆τϕn(τ) = sn(1− sn)ϕn(τ) sn = 1
2 + iωn, ωn ∈ R

∆τϕ0 = 0
(2.2.1)

E∗
s (τ) = E∗

1−s(τ) is the completed Eisenstein series evaluated on the critical line, ϕn(τ) is an
infinite discrete set of Maass cusp forms labeled by n ∈ Z+, and ϕ0 is the constant function.
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We define square integrability with respect to the Petersson inner product with hyperbolic
measure dx dy/y2 where τ := x + iy. The cusp forms are unit-normalized. The respective
Fourier decompositions are4

E∗
s (τ) =

∞∑
j=0

(2− δj,0)a(s)
j cos(2πjx)√yKs− 1

2
(2πjy),

ϕn(τ) =
∞∑
j=1

2b(n)
j cos(2πjx)√yKsn− 1

2
(2πjy),

(2.2.2)

There are also Maass cusp forms odd under x → −x, but they are not relevant for the
applications ahead. The Eisenstein series has Fourier coefficients

a(s)
j = 2σ2s−1(j)

js−
1
2

(2.2.3)

Its scalar mode can be formally obtained as a smooth j → 0 limit of the spinning modes (see
Appendix 2.10),

E∗
s,0(y) = Λ(s)ys + Λ(1− s)y1−s ,

= lim
j→0

a(s)
j

√
yKs− 1

2
(2πjy)

(2.2.4)

where Λ(s) = π−sΓ(s)ζ(2s) = Λ
(

1
2 − s

)
is the completed Riemann zeta function. The

cuspidal spectral parameters ωn and Fourier coefficients b(n)
j are sporadic real numbers with

no known analytic expression. The multiplicity of Maass cusp forms at a given eigenvalue is
conjecturally bounded above by one, i.e. the spectrum is “simple” (e.g. [124]).

Given an f(τ) ∈ L2(F), the spectral decomposition is

f(τ) = ⟨f⟩+
∫

Ccrit
{f, Es}E∗

s (τ) +
∞∑
n=1

(f, ϕn)ϕn(τ), (2.2.5)

where we integrate over the critical line,∫
Ccrit

:= 1
4πi

∫
Re(s)= 1

2

ds = 1
4π

∫ ∞

−∞
dω (2.2.6)

The (completed) Eisenstein overlaps are

{f, Es} := (f, Es)
Λ(s) (2.2.7)

4With respect to notation in [112,121], 2b(n)
j |here = a

(n)
j |there.
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where (f, Es) is the Petersson inner product. The constant term, ⟨f⟩, is the “modular average”
of f(τ) over F . In the remainder of this work, we focus on parity-invariant CFT observables,
so the sum over cusp forms is taken over even cusp forms only, with n ∈ Z+. We will
occasionally find it useful to write the spectral decomposition in a unified notation as

f(τ) =
∑∫
ω

f̃ω ψω(τ) , where ψω(τ) := {E 1
2 +iω(τ), ϕn(τ), ϕ0} (2.2.8)

are the eigenfunctions and f̃ω := (f(τ), ψω(τ)) is a shorthand for the spectral overlap.

Consider now the torus partition function Z(τ) of a general (non-holomorphic) parity-
invariant 2d CFT, which we assume to have only Virasoro symmetry with c > 1. The primary
partition function, which strips off Virasoro descendants5 while preserving modular invariance,
is defined by

Zp(τ) = √y|η(τ)|2Z(τ). (2.2.9)

In [112], it was shown that Zp(τ) can be written in a manifestly modular-invariant way:

Zp(τ) = ẐL(τ) + Zspec(τ), (2.2.10)

ẐL(τ) is the “modular completion” of light states, defined as follows. First, one constructs
the partition function of light primaries

ZL(τ) := √y
∑

min(h,h)≤ξ

qh−ξqh−ξ, (2.2.11)

where in terms of conformal weight ∆ and spin j,

∆ = h+ h , j = |h− h| , ξ = c− 1
24 (2.2.12)

and q = e2πiτ . One subsequently “completes” this into a modular-invariant function ẐL(τ) by
suitably adding heavy states. A convenient, and physically distinguished, mode of modular
completion is to perform a Poincaré sum over SL(2,Z) images [97, 113,114,125]:

ẐL(τ) =
∑

γ∈SL(2,Z)/Γ∞

ZL(γτ). (2.2.13)

We have modded out by Γ∞, the set of T -transformations, under which the summand is
invariant (thanks to spin-quantization). Poincaré summation is physically distinguished
because it is the minimal modular completion: it adds only the modular images of the
light states, and nothing more. For this reason we define ẐL(τ) using Poincaré summation
throughout the paper. Having explicitly constructed ẐL(τ), we can define Zspec(τ) by

5The level-one null descendants of the Virasoro vacuum module are included, but all other descendants
are removed.
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subtraction, which is square-integrable and thus admits an SL(2,Z) spectral decomposition:

Zspec(τ) = ⟨Zspec⟩+
∫

Ccrit
{Zspec, Es}E∗

s (τ) +
∞∑
n=1

(Zspec, ϕn)ϕn(τ). (2.2.14)

Whereas ẐL(τ) contains the leading-order Cardy asymptotics of Zp(τ) – namely (but not only)
the identity block and its modular images – Zspec(τ) instead probes the chaotic, high-energy
spectrum. We will make this sharper below. Note that Zspec(τ) has support only on heavy
states, but it indirectly “knows about” the light states of the CFT because of the modular
completion used to define it.

We point out that the analog of Zspec(τ) would be trivial in a holomorphic (or holomor-
phically factorized) CFT, where the spectrum of states with h > c/24 is determined by its
complement; this inherent non-holomorphicity is useful for focusing on generic irrational 2d
CFTs and their gravity duals (as opposed to toy models such as chiral gravity).

Two technical remarks

In our expressions for Zspec(τ), we henceforth set the modular averages ⟨Zspec⟩ to zero. For
Virasoro CFT partition functions (2.2.10), this is just a choice of convention to “put” the
constant in ẐL(τ) rather than Zspec(τ): a c-number constant may be freely shuffled between
the two terms while keeping Zp(τ) fixed.6 This choice is motivated by the fact that a constant’s
contribution to a microcanonical density of states is self-averaging under coarse-graining in
energy – a concept that will show up later. Moreover, we note that in many cases of interest,
such as the Narain case to be reviewed in Subsection 2.2.2, ⟨Zspec⟩ = 0.

Note that in (2.2.11) we have defined “light” operators with respect to the twist threshold,
min(h, h) ≤ ξ, rather than the dimension threshold, ∆ ≤ 2ξ. The latter is more commonplace,
and was used in the original definition of [112]; moreover, from the mathematical point of
view, one need only subtract the operators with ∆ ≤ 2ξ from Zp(τ) in order for Zspec(τ) to
be square-integrable. On the other hand, operators with min(h, h) ≤ ξ – dubbed “censored”
operators in [114] – are not part of the black hole spectrum of AdS3 pure gravity, and
more generally, the chaotic spectrum of a 2d CFT (as it is currently understood). Though
mathematically unnecessary, it is physically well-motivated to define ẐL(τ) and hence Zspec(τ)
with respect to the twist threshold in the manner above, and we will do so in view of the
applications of present interest.7 See [123] for similar comments.

6This may be viewed as a kind of physical implementation of Zagier’s regularization [126], who showed
that a constant term in a square-integrable function on F may be formally renormalized away by introducing
a renormalized Rankin-Selberg transform, in which one cuts off the integral near the cusp at y = L and takes
the L→∞ limit. This amounts to defining a new Z ′

spec(τ) = Zspec(τ)− ⟨Zspec⟩, which leaves Zp(τ) invariant
if we shift ẐL(τ) oppositely.

7Due to cosmic censorship, states with h < ξ but h > ξ are dual to neither black holes nor conical defects
in gravity. The most familiar such states are multi-twist composites of light primaries with min(h, h) < 3

4ξ:
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2.2.2 Hints

To better understand the physical significance of the two pieces ẐL(τ) and Zspec(τ), the
authors of [112] studied the partition function of Narain CFT in this formalism. Let us review
a few of the lessons gained. A Narain CFT of c free bosons has a local U(1)c×U(1)c symmetry,
and moduli which we collectively denote as m. The U(1)c ×U(1)c primary partition function
Z(c)
p (τ |m) can be decomposed as

Z(c)
p (τ |m) = ⟨Z(c)

p (τ |m)⟩m + Z(c)
spec(τ |m) (2.2.15)

The first term is the partition function averaged over moduli, and the second term is the
spectral partition function. This expression displays two interesting features:

• The modular completion of light states is equal to the average over Narain moduli
space:

Ẑ
(c)
L (τ) = ⟨Z(c)

p (τ |m)⟩m = E c
2
(τ). (2.2.16)

The only primary in Narain CFT that is light with respect to the U(1)c primary
threshold, with min(h, h) ≤ (c− ccurrents)/24 = 0, is the vacuum itself: the Eisenstein
series is simply the Poincaré modular completion of the vacuum state [128,129].

• The spectral decomposition averages to zero under both modular and ensemble averages:

⟨Z(c)
spec(τ |m)⟩τ = ⟨Z(c)

spec(τ |m)⟩m = 0. (2.2.17)

Thus Z(c)
spec(τ |m) captures deviations from the average over moduli space. These

deviations encode the higher statistical moments of the Narain ensemble, e.g. the
variance

⟨Z(c)
p (τ1|m)Z(c)

p (τ2|m)⟩(conn)
m = ⟨Z(c)

spec(τ1|m)Z(c)
spec(τ2|m)⟩m. (2.2.18)

A study of these correlations was undertaken in [130,131].

Extrapolating these properties to arbitrary 2d CFTs suggests [112] that ẐL(τ) is an
average partition function of some kind, capturing universal contributions of light states
to the heavy spectrum implied by crossing. The same picture is suggested by the MWK
partition function, the sum over smooth semiclassical saddles of AdS3 gravity and fluctuations

these composites live on Regge trajectories which asymptote, at large spin, to the Virasoro Mean Field
Theory spectrum [127]. This demonstrates that a 2d CFT may have an infinite number of operators with
min(h, h) ≤ ξ, whereas the number of operators with ∆ ≤ 2ξ is strictly finite (at finite ξ). The sum (2.2.11)
may thus require regularization. The same is in fact true for the Poincaré modular completion of even a
single state [97,114].
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around them, which is a (regularized) modular completion of the vacuum and its SL(2,R)
null descendants: in particular, this sum generates the smooth, Cardy asymptotics (and
non-perturbative corrections thereto) present in any large c CFT density of states. Somewhat
similar ideas were subsequently suggested in [103], motivated by chaos. In such a picture,
these universal contributions would encode leading-order coarse-grained data of the original
CFT. The remainder, Zspec(τ), would capture fine-grained fluctuations. For example, one
might average the product Zspec(τ1)Zspec(τ2), à la (2.2.18), to extract statistical correlations
among microstates.

The challenge in making this precise is to extend it to the generic Virasoro setting, sans
moduli. In the next section we will realize a version of this idea for generic 2d CFTs. This
will show that Zspec(τ) can indeed be viewed as the chaotic part of the partition function in
a manner consistent with the symmetries.

2.3 Coarse-graining and Trace Formulas

We start by briefly introducing the Gutzwiller trace formula [36] for chaotic quantum systems
which provides useful physical intuition about the density of states of individual non-disordered
chaotic systems. We show that the SL(2,Z) spectral decomposition of the density of states
is directly analogous to a trace formula. This leads us, via a coarse-graining procedure, to an
analog of Berry’s diagonal approximation for 2d CFT [37].

2.3.1 Trace formulas for chaotic systems

A well-understood example of quantum chaos is the semiclassical dynamics of few-body
quantum systems which are classically chaotic; for a review of trace formulas, see [59,132–134].8
The Gutzwiller trace formula expresses the density of states in the semiclassical limit as

ρ(E) = ρ(E) + ρosc(E) (2.3.1)

ρ(E) is a mean density. ρosc(E), the oscillatory part, is given by a sum over semiclassical
periodic orbits γ,

ρosc(E) = 1
π

Re
∑
γ

AγeiSγ(E) (2.3.2)

Sγ(E) is the orbit action and Aγ is called the stability amplitude. The statistical correlations
among energy levels are encoded in the highly oscillatory behavior of ρosc(E), and can be
extracted by microcanonical coarse-graining over an energy window δE.

8Since ℏ = 1, the semiclassical limit corresponds to E ≫ 1.
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One notable application of the trace formula is the computation of the coarse-grained
microcanonical spectral form factor,

KE(T ) =
∫ ∞

−∞
dϵ eiϵTρosc

(
E + ϵ

2

)
ρosc

(
E − ϵ

2

)
(2.3.3)

where T is real Lorentzian time. Inserting the trace formula,

KE(T ) = 1
4π2

∫ ∞

−∞
dϵ eiϵT

∑
γ1,γ2

Aγ1A∗
γ2e

i(Sγ1 (E+ ϵ
2 )−Sγ2 (E− ϵ

2 )) + c.c. (2.3.4)

In the theory of chaotic quantum systems, the difference between periodic orbit actions
∆S = Sγ1 − Sγ2 is the central quantity which allows one to systematically organize the sum
over orbits. Periodic orbits with ∆S = 0 give the leading diagonal contribution to level
statistics.9 Berry [37,135] showed that the diagonal approximation, which restricts the sum
to γ1 = γ2, reproduces the linear ramp as T →∞:

KE(T )
∣∣∣∣
diag

= 1
4π2

∫ ∞

−∞
dϵ eiϵT

∑
γ

|Aγ|2ei(Sγ(E+ ϵ
2 )−Sγ(E− ϵ

2 )) + c.c.

≈ T

2πCRMT .

(2.3.5)

The factor CRMT controls the universality class of random matrix behavior (e.g. CGUE = 1
and CGOE = 2).

Berry’s analysis extracts the random matrix behavior of an individual chaotic quantum
system, with no ensemble averaging, from the oscillatory behavior of the density of states.
While the original double sum over orbits is manifestly factorized, the diagonal approximation
exhibits an emergent non-factorization, by discarding microscopic details of the spectrum.10

2.3.2 A trace formula for 2d CFT

Is there a decomposition of a 2d CFT density of states of the form (2.3.1), with the structure
(2.3.2)? As it happens, the SL(2,Z) spectral decomposition does the trick.

9In a chaotic system we expect that Sγ = Sγ′ only if the orbits are identical γ = γ′ or related by a
symmetry, such as time-reversal in the GOE class.

10It is possible to go beyond the diagonal approximation by systematically including subleading contributions
from pairs of orbits with ∆S ≪ 1. This is the role of encounter theory [133,136–138].
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Density of states

The density of primary spin-j states ρj(∆) in a parity-invariant CFT is defined as

Zp(τ) = √y
∞∑
j=0

(2− δj,0) cos(2πjx)
∫ ∞

j
d∆ e−2πy(∆−2ξ)ρj(∆) . (2.3.6)

The lower bound is set by unitarity. It will be convenient to introduce the “reduced twist” t,
defined as [96]

t := ∆− j
2 − ξ = min(h, h)− ξ . (2.3.7)

As a first step toward a trace formula, let us transform the spectral decomposition (2.2.5)
into the microcanonical ensemble, decomposing the density as

ρj(t) = ρ̂L,j(t) + ρspec, j(t) . (2.3.8)

By inverse Laplace transform, we obtain a manifestly modular-invariant decomposition

ρspec,j(t) =
∫

Ccrit
{Zspec, E 1

2 +iω}ρ∗
1
2 +iω,j(t) +

∞∑
n=1

(Zspec, ϕn)ρn,j(t) (2.3.9)

The basis elements are given for j ̸= 0 by

ρ∗
1
2 +iω,j(t) = a(s)

j θ(t)
cos
(
ω cosh−1

(
2t
j

+ 1
))

√
t(t+ j)

ρn,j(t) = b(n)
j θ(t)

cos
(
ωn cosh−1

(
2t
j

+ 1
))

√
t(t+ j)

(2.3.10)

and for j = 0 by
ρ∗

1
2 +iω,0(t) = ζ(2iω)

t
(4t)iω + (ω → −ω) (2.3.11)

Note that ρ∗
1
2 +iω,0(t) may be obtained as the j → 0 limit of (2.3.10) (see Appendix 2.10).11

Let us make a few comments about the physical features of these formulas. While ρj(t)
is a sum of delta functions in a compact CFT, both ρ̂L,j(t) and ρspec, j(t) are continuous
functions of t. The latter is highly oscillatory, with the spectral parameters {ω, ωn} appearing
as frequencies in the basis elements (2.3.10) (hence the notation). We can understand this

11In a more symmetric notation, if we define t̄ = max(h, h)− ξ then

ρ∗
1
2 +iω,j(t) = a(s)

j θ(t)
cos
(
ω cosh−1

(
t+t̄

j

))
√
tt̄

. (2.3.12)

and likewise for ρn,j(t).
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oscillatory behavior as follows. In the asymptotic spectrum (or for t ≳ ξ in sparse large c
CFTs [139]), the mean level spacing of ρj(t) is approximately e−SCardy,j(t), the inverse of the
spin-j Cardy degeneracy, where

SCardy, j(t) = 4π
√
ξt+ 4π

√
ξ(t+ j) (2.3.13)

Because ρ̂L,j(t) is continuous and has exponential Cardy growth at t→∞, ρspec, j(t) must
oscillate over extremely small wavelengths, of the order of the mean level spacing, to encode
the microscopic information about the discrete spectrum.12 See Figure 2.1 (note that the
exact spectrum ρj(t) is drawn there as a smooth curve, both for illustrative purposes and to
evoke the large c limit).

Trace formula

As explained above, ρ̂L,j(t) has smooth exponential growth in t, whereas ρspec, j(t) is a
sum/integral over infinitely many oscillatory terms. This dichotomy suggests a direct analogy
with trace formulas, with an identification along the following lines:

ρ(E) ←→ ρ̂L,j(t)

ρosc(E) ←→ ρspec, j(t)
(2.3.14)

This is to be understood as holding at every fixed spin j.

In fact, this can be made quite precise. Let us return to the Gutzwiller trace formula in
(2.3.2). The stability amplitude is canonically decomposed into two pieces:

Aγ = AγTγ(E) (2.3.15)

Tγ(E) is the period of the orbit,

Tγ(E) = ∂Sγ(E)
∂E

, (2.3.16)

while Aγ is a one-loop determinant. We notice that the basis densities (2.3.10) can be written
precisely as contributions of individual periodic orbits. Using ρ 1

2 +iω,j(t) to denote either
ρ∗

1
2 +iω,j(t) or ρn,j(t), we have

ρ 1
2 +iω,j(t) = 1

π
Re
(
Aω,jTω,j(t)eiSω,j(t)

)
, (2.3.17)

12A nonzero constant term ⟨Zspec⟩ in the spectral decomposition would contribute microcanonically as
δ0,j⟨Zspec⟩

√
2/t. This is not oscillatory, so we associate it with ρ̂L,0(t), cf. Subsection 2.2.1.
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with the following identifications:

Sω,j(t) = ω cosh−1
(

2t
j

+ 1
)

+ ω log j

Tω,j(t) = ω√
t(t+ j)

= ∂Sω,j
∂t

Aω,j = π

ω
c(s)
j j−iω ,

(2.3.18)

where c(s)
j stands for either the Eisenstein (a(s)

j ) or cusp form (b(n)
j ) Fourier coefficient. The

above identifications of the different terms in (2.3.17) follow simply from demanding that
Sω,j(t) ∈ R for ω ∈ R, and that the j → 0 limit is smooth for each individual piece. In
particular, this instructs us to include ω log j in the action: doing so generates j = 0 orbit
data that correctly reproduces (2.3.11), namely,

Sω,0(t) = ω log(4t)

Tω,0(t) = ω

t

A∗
ω,0 = π

ω
ζ(2iω) .

(2.3.19)

Denoting A∗
ω,j and An,j as the specialization of Aω,j to Eisensteins and cusp forms, respectively,

we land on the rewriting of the SL(2,Z) spectral decomposition as a trace formula for 2d
CFTs:

ρspec, j(t) = 1
π

Re
(∫

Ccrit
{Zspec, E 1

2 +iω}A∗
ω,jTω,je

iSω,j(t) +
∞∑
n=1

(Zspec, ϕn)An,jTωn,je
iSωn,j(t)

)

(2.3.20)

This holds for any fixed j.

A key fact about this formula, to be used later, is that the set of orbits forms a complete
and explicit (SL(2,Z)-invariant) eigenbasis: given a determinant factor Aω,j , one can uniquely
reconstruct the corresponding orbit action.

A small but notable point is that Aω,j is complex by a pure phase. This is reminiscent
of something in periodic orbit theory: there exists a phase, the so-called “Maslov phase”
ei

π
2 µγ , that one can choose to absorb into Aγ rather than Sγ(E) such that Sγ(E) ∈ R.13 This

suggests that we identify a CFT analog of the Maslov index, call it µω,j, defined so that
13The Maslov index for periodic orbits is a generalized topological invariant which counts windings around

a certain submanifold of phase space [59].
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Aω,je
iπ

2 µω,j ∈ R:
π

2µω,j := ω log j . (2.3.21)

While (2.3.21) is so far intended to be a purely functional observation, it raises the obvious
question of the physical meaning of this CFT Maslov index. In any case, we see that the
identification (2.3.18) admits a non-trivial compatibility with the analytic structure of periodic
orbits of quantum systems, revealed by imposing smoothness of the j → 0 limit.

Before making use of this 2d CFT trace formula, we pause to comment on the relation to
trace formulas more broadly. The Gutzwiller trace formula can be applied only for systems
which admit a semiclassical limit. On the other hand, the SL(2,Z) spectral decomposition is
valid for any 2d CFT. Moreover, the Gutzwiller trace formula, when applicable, describes only
the high energy (E ≫ 1) part of the spectrum, while the spectral decomposition is valid for
all energies above threshold, thanks to the inherent distinction between light and heavy states
due to modular invariance. In these respects, the spectral decomposition is more similar
to the Selberg trace formula, an exact relation between the spectrum of the automorphic
Laplacian on hyperbolic quotient manifolds and their classical periodic orbits. Nevertheless,
we frame the analogy with respect to Gutzwiller, which is more generally applicable, in order
to emphasize the universal structure of the SL(2,Z) spectral decomposition.

2.3.3 Berry’s diagonal approximation for 2d CFT

Inspired by the treatment of coarse-grained spectral correlations in chaotic systems, we now
proceed analogously, in order to motivate a precise and mathematically well-defined version
of Berry’s diagonal approximation for 2d CFT.

A standard assumption in the theory of periodic orbits is that coarse-graining over an
energy window δE smooths out the oscillatory part of the density of states,

ρosc(E) = 0 . (2.3.22)

The energy window is taken to be a mesoscopic scale, much larger than the mean level spacing
ρ̄(E)−1 but much smaller than the scale over which the mean density varies noticeably.14

This assumption of phase incoherence means that any nonzero phase factor appearing in a
density correlator is taken to approximately vanish upon coarse-graining.

Naturally, we employ the same approach to the CFT density ρj(t). By analogy to (2.3.22),
the density of states ρspec, j(t) is taken to average to zero upon microcanonical coarse-graining
over a mesoscopic window δt,

ρspec, j(t) = 0 . (2.3.23)

We expect that this holds for δt larger than the mean level spacing, yet smaller than the
14See for example Chapter 10.6 of [59] and Section 2 of [132].
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characteristic variation of the mean density, both controlled by ρ̂L,j(t). One can, for instance,
perform microcanonical coarse-graining by convolution against a window function W (t− t′)
with characteristic width δt:15

f(t) :=
∫ ∞

0
W (t− t′)f(t′)dt′, with

∫ ∞

0
W (t)dt = 1. (2.3.25)

The density of light states ρ̂L,j(t) is instead approximately self-averaging, as its behavior in
its argument is exponential rather than oscillatory. Hence we have that

ρj(t) ≈ ρ̂L,j(t) . (2.3.26)

We now turn to two-point correlations. Again following a standard approach in quantum
chaos, we define the microcanonical coarse-graining for the product of two densities by
integrating over the mean twist t := t1+t2

2 while keeping the difference ϵ := t1−t2
2 fixed:

f(t1)f(t2) :=
∫ ∞

0
dt′f(t′ + ϵ)f(t′ − ϵ)W (t− t′) (2.3.27)

Coarse-graining the product of densities ρspec, j1(t+ ϵ)ρspec, j2(t− ϵ) produces a sum/integral
of terms of the following form:

ρ 1
2 +iω1,j1(t+ ϵ)ρ 1

2 +iω2,j2(t− ϵ) = Aω1,j1Aω2,j2

4π2 Tω1,j1Tω2,j2e
i(Sω1,j1 (t+ϵ)−Sω2,j2 (t−ϵ)) + c.c. (2.3.28)

By way of the earlier assumption, terms involving the sum of actions are smoothed out by
the averaging,

ei(Sω1,j1 (t+ϵ)+Sω2,j2 (t−ϵ)) = 0 . (2.3.29)

Instead, terms involving the difference in actions ∆S = Sω1,j1(t) − Sω2,j2(t) can give large
contributions if the actions cancel. Concentrating on the leading terms, with ∆S = 0, is the
analog of Berry’s diagonal approximation.

To see what this approximation means in the case of 2d CFT, we choose to consider the
Fourier mode of equal spins, j1 = j2 = j. The above microcanonical coarse-graining then

15Coarse-graining the individual basis elements of the SL(2,Z) decomposition gives

ρ 1
2 +iω,j(t) = 1

πδt
Re
[
Aω,j

∫ t+δt

t−δt

Tω,j(t′)eiSω,j(t′)dt′

]
= 1
πδt

Re
[
Aω,j

∫ Sω,j(t+δt)

Sω,j(t−δt)
eiSω,j(t)dSω,j

]
. (2.3.24)

This is a simple oscillatory integral which vanishes for a suitably chosen scale δt, derivable from the action
(2.3.18). This scale depends on the frequency ω and spin j. The assumption from periodic orbit theory is
that there exists a finite scale δt with respect to which the average of the entire sum vanishes.
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selects the terms with equal actions Sω1,j(t) = Sω2,j(t), which sets ω1 = ω2:

ρ 1
2 +iω1,j(t+ ϵ)ρ 1

2 +iω2,j(t− ϵ) ∝ ei(Sω1,j1 (t+ϵ)−Sω2,j2 (t−ϵ)) + c.c.

∝ δω1, ω2

(2.3.30)

where we used (2.3.29) and took ϵ → 0 to focus on nearby energy levels. We call the
resulting diagonal density ρdiag(t1, t2), the projection of the product of SL(2,Z) spectral
decompositions onto terms with equal eigenvalues. Subsequently, all spin sectors (j1, j2) are
fixed by SL(2,Z)-invariance of the full density, in terms of the respective basis densities of
the Eisensteins and cusp forms:

ρ
(j1,j2)
diag (t1, t2) =

∫
Ccrit
{Zspec, E 1

2 +iω}2ρ∗
1
2 +iω,j1(t1)ρ∗

1
2 +iω,j2(t2) +

∞∑
n=1

(Zspec, ϕn)2ρn,j1(t1)ρn,j2(t2)

+
∞∑
n=1
{Zspec, E 1

2 +iωn
}(Zspec, ϕn)

(
ρ∗

1
2 +iωn,j1

(t1)ρn,j2(t2) + ρn,j1(t1)ρ∗
1
2 +iωn,j2

(t2)
)

(2.3.31)

We point out that the density is not diagonal in spin: ρ(j1,j2)
diag (t) ̸= 0 for |j1| ̸= |j2|. This is a

manifestation of the general fact that modular invariance correlates different spin sectors of
2d CFT data. In Appendix 2.11 we give a quick proof that diagonality in spin is incompatible
with modular invariance. In contrast, one expects different spin sectors to be statistically
independent in generic chaotic systems.

Note that there are cross-terms on the second line of (2.3.31) because of the spectral
degeneracy between cusp forms and Eisenstein series at ω = ωn. These cross-terms pair
distinct orbits, with the same action Sω,j(t) but different one-loop determinants Aω,j. This
suggests that one should really seek a diagonal projection which pairs eigenfunctions rather
than eigenvalues.

This concludes our motivation from microcanonical coarse-graining and the diagonal
approximation in the periodic orbit approach to quantum systems. We now proceed to
rigorously define the 2d CFT diagonal approximation in the canonical ensemble, by construct-
ing diagonal products of partition functions. We first define what we call Zdiag(τ1, τ2), the
canonical counterpart of ρdiag(t1, t2). We then pass to an object that we call ZHecke(τ1, τ2), a
diagonal partition function that properly pairs identical orbits.
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Diagonal projection I

The density ρdiag(t1, t2) corresponds, in the canonical ensemble, to the following diagonal
partition function:

Zdiag(τ1, τ2) =
∫

Ccrit
{Zspec, Es}2E∗

s (τ1)E∗
s (τ2) +

∞∑
n=1

(Zspec, ϕn)2ϕn(τ1)ϕn(τ2)

+
∞∑
n=1
{Zspec, Esn}(Zspec, ϕn)

(
ϕn(τ1)E∗

sn
(τ2) + ϕn(τ2)E∗

sn
(τ1)

)
,

(2.3.32)

The Laplace eigenvalues of the SL(2,Z) eigenbasis elements are paired. This is the diagonal
projection, Zdiag(τ1, τ2), of the factorized product Zspec(τ1)Zspec(τ2). To formalize this, consider
the operator

∆12 := ∆τ1 −∆τ2 (2.3.33)

acting on functions f(τ1, τ2) ∈ L2(F × F), the space of square-integrable functions of two
moduli τ1, τ2 valued in F . Such functions admit a double spectral decomposition in a joint
basis of eigenfunctions.16 Since f(τ1, τ2) has paired eigenvalues if and only if ∆12f(τ1, τ2) = 0
for all τ1, τ2, we can define Zdiag(τ1, τ2) as the diagonal projection of Zspec(τ1)Zspec(τ2) onto
ker(∆12), the kernel of ∆12:

Zdiag(τ1, τ2) := Pdiag [Zspec(τ1)Zspec(τ2)] , where Pdiag := Pker(∆12) (2.3.34)

Zdiag(τ1, τ2) is a manifestly modular-invariant analog of Berry’s diagonal approximation for 2d
CFT. Zdiag(τ1, τ2) does not factorize, unlike Zspec(τ1)Zspec(τ2). Factorization can be explicitly
restored by including the off-diagonal terms. In Section 2.6.3 we will develop an analogy to
the approach to factorization in 2D gravity and random matrix theory.

Diagonal projection II: Hecke projection

In order to eliminate the cross terms in Zdiag(τ1, τ2) which do not pair identical orbits, we
introduce a slightly souped-up diagonal partition function which we call ZHecke(τ1, τ2). Stated
succinctly, whereas Zdiag(τ1, τ2) pairs eigenvalues, ZHecke(τ1, τ2) pairs eigenfunctions.

The new projection may be defined using SL(2,Z) Hecke operators. Let us recall their
definition. Hecke operators Tj exist for every spin j ∈ Z+. Their action on SL(2,Z)-invariant

16A few remarks on the L2(F × F) spectral decomposition, and some technical remarks on scheme-
dependence of the projection Pdiag, are given in Appendix 2.9.
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functions f(τ) is17

Tjf(τ) = 1√
j

∑
ad=j, d>0

d−1∑
b=0

f

(
aτ + b

d

)
(2.3.35)

In this normalization, the Hecke action on the SL(2,Z) eigenbasis elements is

TjE
∗
s (τ) =

a(s)
j

2 E∗
s (τ)

Tjϕn(τ) = b̃(n)
j ϕn(τ)

(2.3.36)

where b̃(n)
j := b(n)

j /b(n)
1 . An equivalent definition, which will be useful momentarily, is

Tjf(τ) = 1√
j

∑
A∈SL(2,Z)\Mj

f(Aτ) (2.3.37)

where Mj denotes the following set of matrices,

Mj =
{(

a b

c d

) ∣∣∣∣∣ a, b, c, d ∈ Z; ad− bc = j

}
(2.3.38)

and Aτ denotes the fractional linear transformation,

Aτ = aτ + b

cτ + d
, Aτ̄ = aτ̄ + b

cτ̄ + d
. (2.3.39)

The quotient SL(2,Z)\Mj is taken by identifying elements under the equivalence relation
A ∼ B if there exists a γ ∈ SL(2,Z) such that B = γA. We emphasize that j ∈ Z+.

We now introduce ZHecke(τ1, τ2), the projection of Zspec(τ1)Zspec(τ2) onto the kernel of the
difference of Hecke operators at every spin. Defining

T
(12)
j := T

(τ1)
j − T (τ2)

j , (2.3.40)

we define the Hecke projection onto ker
(
T

(12)
j

)
,

ZHecke(τ1, τ2) := PHecke
[
Zspec(τ1)Zspec(τ2)

]
, where PHecke := P

ker
(
T

(12)
j

) ∀ j ∈ Z+

(2.3.41)
The essential feature of ZHecke(τ1, τ2) is seen upon considering the action of T (12)

j on “mixed”
17Hecke operators for non-prime spins j are fixed in terms of the prime spins via the Hecke multiplication

rule. For a recent review of Hecke operators in a physics context see [140].
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Eisenstein-cusp form terms in Zdiag(τ1, τ2):

T
(12)
j

(
E∗
sn

(τ1)ϕn(τ2)
)

=
a(s)

j

2 − b̃(n)
j

E∗
sn

(τ1)ϕn(τ2) (2.3.42)

This is nonzero on account of the inequality of Eisenstein and cusp form Fourier coefficients.
While such terms are present in Zdiag(τ1, τ2), they are eliminated by the Hecke projection
(2.3.41) by design. Note that the object ZHecke(τ1, τ2) is defined via projection for all spins
j.18 The spectral decomposition of ZHecke(τ1, τ2) is thus

ZHecke(τ1, τ2) =
∫

Ccrit
|(Zspec, Es)|2Es(τ1)E1−s(τ2) +

∞∑
n=1

(Zspec, ϕn)2ϕn(τ1)ϕn(τ2) (2.3.43)

We may rephrase the special property of ZHecke(τ1, τ2) as a statement of enhanced symmetry:
employing the terminology of [142], we say that a modular-invariant function f(τ1, τ2) enjoys
Hecke symmetry if

T
(12)
j f(τ1, τ2) = 0 ∀ j ∈ Z+ (Hecke symmetry) (2.3.44)

In this sense, ZHecke(τ1, τ2) carries an enhanced symmetry with respect to both Zdiag(τ1, τ2)
and Zspec(τ1)Zspec(τ2): it is annihilated by an infinite set of commuting operators, one for
each positive integer.

Let us recapitulate the idea behind ZHecke(τ1, τ2). It is a fact of life on the SL(2,Z)
fundamental domain that there is spectral degeneracy for the infinite discretuum of Laplace
eigenvalues ω = ωn where Maass cusp forms exist. From the point of view of the trace
formula and analogy to periodic orbit theory, the Eisensteins and Maass cusp forms with equal
eigenvalues appear as different orbits: their actions are equal, but their one-loop determinants
differ. The Hecke projection PHecke is designed to account for this innate quirk of 2d CFT.
We are proposing Hecke projection as an enhanced form of coarse-graining. It would be nice
to understand this more fundamentally, say, from a microcanonical perspective.

For these reasons, we view ZHecke(τ1, τ2) as the “right” two-copy partition function which
diagonalizes the chaotic spectral correlations. This view will find further support in Section
2.5, as the Hecke projection really comes to life when we consider its dual gravitational
interpretation. In particular, we will show that Hecke symmetry is an emergent feature of
Euclidean torus wormholes in semiclassical AdS3 gravity.

18We are being rather conservative in defining Hecke projection for all spins j, in order to guard against the
possibility that a(s)

j = 2b̃(n)
j for very special choices of n and j – though even this seems extremely unlikely

(and perhaps is provably false). On the other hand, it is highly inconceivable that the Fourier coefficients
could be equal for all j, given the numerical and statistical properties of cusp forms – for example, the
available numerical data at finite n [141], and the Sato-Tate conjectures on the statistical distribution of b̃(n)

j

at j →∞ or n→∞.
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2.4 Random Matrix Universality in Chaotic 2d CFTs

Having identified a 2d CFT trace formula using the SL(2,Z) spectral decomposition of parti-
tion functions, we presented a framework for studying coarse-grained CFT correlations with
modular invariance and Virasoro symmetry baked in, focusing on the diagonal approximation
in particular. We now analyze general properties of the diagonal partition function and the
implications of chaos for the CFT. This will lead to a necessary and sufficient condition for
the presence of a linear ramp in the spectral form factor (SFF).

The partition functions Zdiag(τ1, τ2) and ZHecke(τ1, τ2) admit double Fourier decompositions,
e.g.

Zdiag(τ1, τ2) =
∞∑
j1=0

(2− δj1,0) cos(2πj1x1)
∞∑
j2=0

(2− δj2,0) cos(2πj2x2)Z(j1,j2)
diag (y1, y2) (2.4.1)

and likewise for ZHecke(τ1, τ2). In this section we specialize to the scalar sector, (j1, j2) =
(0, 0); note that Z(0,0)

Hecke(y1, y2) = Z
(0,0)
diag (y1, y2) because the cusp forms have vanishing scalar

component.19 Besides reasons of clarity and simplicity, we do so because we will later consider
a special class of amplitudes – namely, wormhole amplitudes – which are fully determined by
the scalar sector.

In the spectral basis,

Z
(0,0)
diag (y1, y2) = 1

4πi

∫
Re s= 1

2

ds {Zspec, Es}{Zspec, E1−s}E∗
1−s,0(y1)E∗

s,0(y2) (2.4.2)

where we have written the integral over the critical line explicitly. Inserting the zero mode

E∗
s,0(y) = Λ(s)

(
ys + φ(s)y1−s

)
, φ(s) := Λ(1− s)

Λ(s) (2.4.3)

and using symmetry under reflections s→ 1− s yields

Z
(0,0)
diag (r, z) = 1

2πi

∫
Re s= 1

2

ds |(Zspec, Es)|2
(
r z

1
2 −s + r2sφ(1− s)

)
(2.4.4)

where we have defined
r := √y1y2 , z := y1

y2
(2.4.5)

Recall that |f(s)|2 := f(s)f(1− s). We can write this as

Z
(0,0)
diag (r, z) = r

√
zR(z) + S(r) (2.4.6)

19We use the “diag” subscript in this section to emphasize the physical setting.
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where

R(z) :=M−1
[
|(Zspec, Es)|2; z

]
S(r) :=M−1

[
|(Zspec, Es)|2φ(1− s); r−2

] (2.4.7)

are inverse Mellin transforms of the squared overlap, defined in general as

M−1[f(s);x] = 1
2πi

∫
C
ds f(s)x−s (2.4.8)

The contour C is a vertical contour within the critical strip of the inverse Mellin transform [143],
which for our purposes may be taken to be Re s = 1

2 .20

Lest it appear that there are two independent functions in (2.4.6), we emphasize that S(r)
is completely determined by R(z), since the latter may be used to reconstruct |(Zspec, Es)|2.
This determinism can be formalized using techniques of Mellin convolution (see Appendix
2.12), giving

S(r) =
∞∑
n=1

ϕ(n)
n2

∫ 1

0

du√
u(1− u)

R
(

u

n2r2

)
(2.4.9)

where ϕ(n) is the Euler totient function. An equivalent representation in terms of residues of
R(z), given in (2.12.11), may be obtained by blowing up the contour. So in total,

Z
(0,0)
diag (r, z) = r

√
zR(z) +

∞∑
n=1

ϕ(n)
n2

∫ 1

0

du√
u(1− u)

R
(

u

n2r2

)
(2.4.10)

Note the z → 1/z inversion symmetry of
√
zR(z), inherited from the inverse Mellin transform.

The above expressions are valid for all temperatures. We now take the low-temperature
limit:

r ≫ 1 , z fixed . (2.4.11)

This limit includes two physically distinct regimes of interest (see Figure 2.2), depending on
how we take yi to infinity in the complex plane:

• In “Euclidean” signature where yi ∈ R, this is a low-temperature limit, and z ∈ R+.

• In Lorentzian signature, analytically continuing as one does to construct the SFF,

y1 → β + iT , y2 → β − iT . (2.4.12)

The limit (2.4.11) is a simultaneous late-time/low-temperature limit of T ≫ 1 and fixed
20If there are poles on the contour, they must be regulated for the spectral decomposition to formally exist.

This can be done, e.g. by shifting the poles to Re s = 1
2 ± ϵ. We neglect this possibility in what follows.
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T/β, with z ∈ H on the unit circle:

z := eiθ , θ = 2 tan−1
(
T

β

)
∈ [0, π] (2.4.13)

In either case, applying the limit (2.4.11) to (2.4.4), we must deform the contour of the
second term to the left. Consequently the S(r) term is subleading:21

Z
(0,0)
diag (r, z) ≈ r

√
zR(z) (r ≫ 1 , z fixed) (2.4.14)

This result is interesting. First, the behavior is universally linear in r. More importantly, since
R(z) fixes the entire function Z

(0,0)
diag (r, z) via (2.4.10), the leading result at low temperatures

fixes the result at all temperatures. Indeed, it fixes the entire Eisenstein part of Zdiag(τ1, τ2).
As we will see later, for two-copy partition functions with enhanced symmetries, R(z) fixes
the function completely.

2.4.1 A condition for a linear ramp

The spectral form factor, Kβ(T ), is defined for quantum systems as

Kβ(T ) := Z(β + iT )Z(β − iT ) (2.4.15)

where Z(β + iT ) = Tr
(
e−(β+iT )H

)
is the analytically-continued sum over states. In 2d CFT,

it is cleaner to account for Virasoro descendants by defining the SFF with respect to the
Virasoro primary partition function,

Kβ(T ) := 1√
β2 + T 2 ⟨Zp(β + iT )Zp(β − iT )⟩ (2.4.16)

where the brackets denote a coarse-graining of some kind. The prefactor, which amounts to
stripping off the √y1y2 coming from using the primary partition function (before analytic
continuation), is a useful convention for the late-time limit and contact with previous literature
(e.g. [34, 64,69]).

We can also define a SFF using Zspec(τ) instead,

Kspec(β;T ) := 1√
β2 + T 2 ⟨Zspec(β + iT )Zspec(β − iT )⟩ (2.4.17)

Now, since Zspec(τ) and Zp(τ) differ only by terms which contribute to the slope/dip of the
21This is the same mechanism that operates in the spectral decomposition of N = 4 super Yang-Mills

observables in the large N ‘t Hooft limit [121]. There, the spectral integrand contains a sum of terms with
powers N1−2s and N0. The former is suppressed, so the latter gives the full planar result.
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Figure 2.5: Zdiag captures the ramp in the spectral form factor Kβ(T ) of a 2d CFT.

SFF [144,145],22 the difference between Kspec(β;T ) and Kβ(T ) vanishes at late times:

Kβ(T ) ≈ Kspec(β;T ) (T ≫ β) (2.4.18)

Our spectral formalism is tailor-made to study the SFF in the late-time regime: the quantity
Zdiag(τ1, τ2), constructed from Zspec(τ), is designed precisely as a coarse-grained product of
partition functions in the diagonal approximation, whose point is to produce the ramp. So
our claim is that

Kβ(T ) ≈ 1
T
Zdiag(β;T ) (T ≫ β) (2.4.19)

where Zdiag(β;T ) is the analytic continuation of Zdiag(τ1, τ2) to SFF kinematics. (Implicitly,
here and below, T is bounded above by the plateau time.)

Starting from Zdiag(τ1, τ2), we construct the SFF by analytically continuing as in (2.4.12).
Denote the spin-graded SFF as K

(j1,j2)
β (T ). We specialize to the case (j1, j2) = (0, 0),

whereupon (2.4.14) and (2.4.19) imply that

K
(0,0)
β (T ) =

√
β + iT

β − iT
R
(
β + iT

β − iT

)
+ (subleading at T ≫ β) (2.4.20)

We now impose the ramp. From (2.4.13) and (2.4.20), the presence of a linear ramp is
22This is because the difference, ẐL(τ), is a sum over self-averaging quantities. (If ZL(τ) sums over an

infinite set of light operators, we are assuming that this sum can be regulated.) Supporting arguments
from other perspectives can be found in the literature. In 2D gravity, the ramp is generated by a new bulk
saddle [69], with similar arguments for one-point wormholes [146] and in higher dimensions [64,69]. It was
argued in [144,145] in the AdS3 context that Poincaré completions of individual operators (i.e. sums over
smooth saddles) contribute only to the dip. In the Poincaré completion of individual light states, the modular
images are self-averaging, with a density that is a sum of smooth functions growing exponentially in energy
(see e.g. eq. (2.3) of [96]). Similar arguments can be made for enigmatic AdS3 black holes, which are also
smooth saddles (when they exist).
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equivalent to the presence of a simple pole in the analytic continuation of R(z) to z = −1:

K
(0,0)
β (T →∞) ∼ T

4πβCRMT ⇔ R(z → −1) ∼ CRMT

2π
1

1 + z
(2.4.21)

CRMT is a constant that fixes the choice of RMT ensemble governing the ramp.23 Since R(z)
is simply the inverse Mellin transform (2.4.7) of the spectral overlap, the pole condition
(2.4.21) is equivalent to an asymptotic property of the spectral overlap (Zspec, Es) on the
critical line s = 1

2 + iω. In the parameterization (2.4.13),

2π(z + 1)R(z)
∣∣∣∣
z=eiθ

= 2 cos θ2

∫ ∞

−∞
dω |(Zspec, E 1

2 +iω)|2 coshωθ (2.4.22)

This only satisfies (2.4.21) if the integral diverges linearly. This implies the following condition:

(Linear ramp) ⇔ |(Zspec, E 1
2 +iω)|2 ∼ e−πωf(ω) (ω →∞) (2.4.23)

where f(ω) is allowed to fluctuate around CRMT, but is flat at infinity “on average”,

lim
W→∞

1
W

∫ ω0+W

ω0
dω f(ω) = CRMT (2.4.24)

for any finite ω0.

Equations (2.4.23) and (2.4.24), equivalently (2.4.21), comprise a necessary and sufficient
condition for the presence of a linear ramp in the (scalar) SFF of a 2d CFT, with the constant
in (2.4.24) set by the chosen RMT ensemble governing the ramp. The linear ramp, a property
of the coarse-grained theory, is transmuted into a quantitative property of the microscopic
spectrum. The algorithm to detect it from a torus partition function is straightforward: form
Zspec(τ), then look for the asymptotic (2.4.23) in the spectral basis.

Note for context that the convergence of the spectral decomposition only requires the
much weaker falloff |(Zspec, E 1

2 +iω)| ≲ O(1) as ω → ∞, up to power-law and logarithmic
corrections (e.g. [121]). Systems for which this upper bound is saturated would have an
exponential rather than linear ramp.24 So we see that in the SL(2,Z) spectral basis, random
matrix universality becomes a condition of rapid decay at infinity.

23The GOE ensemble is the relevant one for parity-invariant 2d CFTs [147].
24This was seen in e.g. the quadratic SYK model [148]. Exponential ramps are also characteristic of

arithmetic systems [149,150]
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2.4.2 Universal corrections

The symmetries of 2d CFT prescribe corrections to this result. Having extracted the condition
(2.4.23) on the overlap, modular invariance implies an infinite set of other terms in Z(0,0)

diag (r, z),
coming from the second term in (2.4.10) (the S(r) term in (2.4.6)). In SFF kinematics these
terms give subleading corrections to the RMT ramp at T ≫ β, but are otherwise present
and unsuppressed for generic temperatures.

Specifically, the falloff (2.4.23) implies an infinite set of square-root singularities at z ∈ R−.
The simplest way to see this is to insert the polar behavior (2.4.21) into the second term in
(2.4.10). This yields

S(r) ⊃ CRMT

2

∞∑
n=1

ϕ(n)
n

r√
1 + n2r2

(2.4.25)

The branch point singularities (2.4.25) are universal in any chaotic 2d CFT. Their existence
is required by modular invariance (and Virasoro symmetry) upon imposing the linear ramp
in the SFF.

Note that in detecting these singularities, we are probing analytic structure of the partition
function in the complex-temperature plane: the r2 = −1/n2 locus is not a “physical” locus,
neither in real time T in SFF kinematics (where r2 = β2 + T 2) nor in Euclidean kinematics
(where r2 = y1y2). In the limit of r → ∞ with fixed z, these singularities indicate an
accumulation of branch points at z → −n2y2

1 and their images under inversion. At leading
order in r →∞, the sum is constant in r but linearly divergent (see [34] and Appendix 2.12).

We note in passing the generalization to non-linear ramps. At leading order,

(T 1−α ramp) ⇔ |(Zspec, E 1
2 +iω)|2 ∼ ω−αe−πωf(ω) (ω →∞) (2.4.26)

where f(ω) can again fluctuate around a constant at infinity. The constraints on S(r) may
be likewise derived from (2.4.9), yielding

S(r) ∼
∞∑
n=1

ϕ(n)
n

r

(1 + n2r2) 1
2 −α

,
(
r2 → − 1

n2 ∀ n ∈ Z+

)
(2.4.27)

We note that if α > 1
2 , the corrections are term-wise finite in r. This singles out

√
T behavior

of the late-time SFF as a somewhat notable threshold from the analyticity point of view.

2.5 Wormholes and Hecke Symmetry

In Section 2.3.3 we introduced a coarse-grained two-copy partition function, ZHecke(τ1, τ2),
which projects the factorized product Zspec(τ1)Zspec(τ2) onto its diagonal subspace. The

71



centrality of ZHecke(τ1, τ2) for analyzing chaotic spectral correlations in 2d CFT really comes
to life upon considering its dual gravitational interpretation, as we now address a driving
question of this work: where are the wormholes? As we show in this section, Hecke symmetry
is an emergent feature of Euclidean torus wormholes in semiclassical AdS3 gravity.

2.5.1 Interlude: A Wormhole Farey Tail

The next subsection establishes some technical results about SL(2,Z) Poincaré sums over
appropriate “seed” functions f0(τ1, τ2) of two complex moduli τ1 and τ2. Sums of this form
may be taken as one definition of “wormhole amplitudes” in semiclassical theories of gravity.

To motivate this, and to explain the title of this subsection, let us recall the (non-
supersymmetric) black hole Farey tail [97, 113, 114]. The partition sum over all smooth
saddles M of semiclassical Einstein gravity with ∂M = T 2 can be written as a (regularized)
SL(2,Z) Poincaré sum over the partition function of thermal AdS3: writing the primary
partition function,

ZMWK(τ) =
∑

γ∈SL(2,Z)/Γ∞

√
Im(γτ)

∣∣∣q−ξ
γ (1− qγ)

∣∣∣2 (2.5.1)

The sum runs over the full “SL(2,Z) family” of BTZ black holes, one for each independent
SL(2,Z) element. The essential point is that the one-to-one correspondence between smooth
saddles and SL(2,Z) images of thermal AdS3 is not merely a technical observation: these
saddles are generated by large bulk diffeomorphisms acting on the vacuum contribution to
the path integral, inducing a boundary SL(2,Z) action.

The idea that Poincaré sums are how semiclassical gravity implements boundary modular
invariance in AdS3/CFT2 is independent of the number of asymptotic boundaries. As long as
the bulk theory respects diffeomorphism invariance, large diffeomorphisms will again relate
different contributions to the path integral, implementing SL(2,Z) transformations (or the
appropriate higher-genus generalization) of boundary moduli. The obvious question is what
the analog of the vacuum solution is. Consider now bulk topologies M with two asymptotic
torus boundaries, ∂M = T 2 ∪ T 2. In the example of semiclassical Einstein gravity, as we will
recall in Section 2.6, there is no smooth on-shell solution with this topology. Nevertheless,
diffeomorphism invariance implies that if there exists such an amplitude – perhaps off-shell,
justifiable one way or another – it should take the form of a Poincaré sum over a suitable seed
function f0(τ1, τ2), with the image sum geometrizing the boundary modular invariance.25

25This view receives indirect formal support from [107], where it is argued that the canonical quantization
of AdS3 gravity on hyperbolic manifolds M produces sums of the form Z(M) =

∑
γ Z0(Mγ), where Z0 is

the bulk gravity partition function on a fixed manifold and γ ∈ Map(∂M)/Map(M,∂M), where Map(∂M)
and Map(M,∂M) are the boundary and bulk relative mapping class groups, respectively. Torus wormholes
are not hyperbolic. Nevertheless, the sum prescribed above would, if naively applied, lead to the picture in
the text. Namely, for M = T 2 × I, the resulting sum would be over the coset SL(2,Z)× SL(2,Z)/SL(2,Z),
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This slight generalization of the familiar single-boundary ideology to the case ∂M = T 2∪T 2

guides what we will define as a “torus wormhole” in semiclassical gravity, and accordingly
begets the wormhole Farey tail: that is, the identification of torus wormholes, i.e. SL(2,Z)
Poincaré sums over suitable seed functions, as gravitational duals of ZHecke(τ1, τ2) in large c
CFTs.

2.5.2 Properties of wormholes

We will study SL(2,Z) × SL(2,Z)-invariant functions f(τ1, τ2) ∈ L2(F × F) which admit
representations as Poincaré sums over relative modular transformations26

f(τ1, τ2) =
∑

γ∈SL(2,Z)
f0(τ1, γτ2). (2.5.2)

As a consequence, the seed function f0(τ1, τ2) is invariant under simultaneous modular
transformations,

f0(τ1, τ2) = f0(γτ1, γτ2) , γ ∈ SL(2,Z). (2.5.3)

The results to follow may be tweaked to accommodate seeds that instead obey

f0(τ1, τ2) = f0(γτ1,MγMτ2) , γ ∈ SL(2,Z) , M =
(
−1 0
0 1

)
(2.5.4)

where Mτ = −τ implements an orientation reversal.

In Subsection 2.5.2 we will assume slightly more of the seed, namely, an invariance under
simultaneous SL(2,R) transformations.27 One may justify why this is sensible from different
points of view. As we will see, it will play nicely with the result of Subsection 2.5.2, where
we will prove that Hecke symmetry of f(τ1, τ2) implies that the seed f0(τ1, τ2) is not only
fully SL(2,R)-invariant, but is solely a function of the H-invariant distance between τ1 and
τ2. This being a very natural criterion from a physical standpoint, one may reasonably
demand that the seed amplitudes depend only on this distance in the first place, justifying
the assumption of simultaneous SL(2,R)-invariance. At any rate, we expect that the logical
connections among these ideas will be clear in the proofs to follow.

We take f(τ1, τ2) as an operational definition of torus wormhole amplitudes. What
properties do these possess?

which can be parametrized as a sum over relative modular transformations of a seed which is invariant under
simultaneous modular transformations.

26Depending on context, the sum may instead be taken over PSL(2,Z). This distinction is not relevant for
what follows, and indeed, in Section 2.6 we will study an SL(2,Z) sum.

27Actually, we will not use the full SL(2,R), but only the subset of matrices whose entries are given by
√
j

times integers, where j ∈ Z+.
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Hecke symmetry

Result I. If f(τ1, τ2) is a Poincaré sum (2.5.2) with a seed invariant under simultaneous
SL(2,R) transformations,

f0(τ1, τ2) = f0(γτ1, γτ2) , γ ∈ SL(2,R) (2.5.5)

then f(τ1, τ2) is Hecke symmetric.

A modular-invariant function f(τ1, τ2) ∈ L2(F × F) is entirely specified by its spectral
overlaps with the basis elements: if two such functions have the same overlaps, they are equal.
Using this logic, we prove Hecke symmetry by showing that

(T (τ1)
j f(τ1, τ2), ψω(τ2)) = (T (τ2)

j f(τ1, τ2), ψω(τ2)) (2.5.6)

where ψω(τ2) := {E 1
2 +iω(τ2), ϕn(τ2)} is an SL(2,Z) eigenfunction. We start from the expres-

sion

(T (τ1)
j f(τ1, τ2), ψω(τ2)) = 1√

j

∑
A∈SL(2,Z)\Mj

∫
H

dx2dy2

y2
2

f0(Aτ1, τ2)ψω(τ2) (2.5.7)

where we have used the unfolding trick for f(τ1, τ2), since it is given by a Poincaré sum. We
now use the invariance of the seed,28

f0(Aτ1, τ2) = f0(τ1, A
−1τ2) , A ∈ SL(2,Z)\Mj (2.5.8)

Next, we perform a change variables τ ′
2 = A−1τ2 in the integral, which leaves the Poincaré

measure on H invariant.29 This results in

(T (τ1)
j f(τ1, τ2), ψω(τ2)) = 1√

j

∑
A∈SL(2,Z)\Mj

∫
H

dx′
2dy

′
2

y′2
2

f0(τ1, τ
′
2)ψω(Aτ ′

2)

=
∫
H

dx′
2dy

′
2

y′2
2

f0(τ1, τ
′
2)T

(τ ′
2)

j ψω(τ ′
2)

= (f(τ1, τ
′
2), T

(τ ′
2)

j ψω(τ ′
2))

(2.5.9)

In the second line we brought the sum inside the integral. Using self-adjointness of the Hecke
operators,

(T (τ2)
j f(τ1, τ2), ψω(τ2)) = (f(τ1, τ2), T (τ2)

j ψω(τ2)) (2.5.10)
28Elements of Mj may be mapped to elements of SL(2,R) by rescaling: given a matrix B ∈ Mj with

detB = j, there exists a matrix B′ := B/
√
j with detB′ = 1. Since j ∈ Z+, and B is integer-valued,

B′ ∈ SL(2,R). Note that both B and B′ act on τ via the same fractional linear transformation.
29Similar manipulations can be found in Theorem 3.6.4, Point 4 of [120].
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Noting equality of (2.5.9) and (2.5.10), we have

T
(12)
j f(τ1, τ2) = 0 (2.5.11)

which is the desired result. The proof for a seed invariant under (2.5.4) is essentially identical.
Following the same steps, the final result follows from the invariance of the right-hand side of
(2.3.35) upon taking b→ −b in the summand.

Strong Spectral Determinacy

Result II. If f(τ1, τ2) is a Hecke-symmetric Poincaré sum (2.5.2) with seed obeying (2.5.3),
then the Eisenstein and cusp form overlaps are equal.

A Hecke-symmetric function has spectral overlaps proportional to the respective basis
elements, as seen in (2.3.43). We parameterize these as

(f(τ1, τ2), Es(τ2)) = fE(s)E1−s(τ1)

(f(τ1, τ2), ϕn(τ2)) = fϕ(sn)ϕn(τ1)
(2.5.12)

In general, fE(s) and fϕ(sn) are different functions of their arguments. Using the unfolding
trick for f(τ1, τ2), we write these overlaps explicitly as

fE(s)E1−s(τ1) =
∫
H

dx2dy2

y2
2

f0(τ1, τ2)E1−s(τ2)

fϕ(sn)ϕn(τ1) =
∫
H

dx2dy2

y2
2

f0(τ1, τ2)ϕn(τ2)
(2.5.13)

We now expand the functions on the right-hand side in a Fourier series, and then project
onto a spin k ̸= 0 with respect to τ1. In doing so we employ the Fourier decomposition of a
seed f0(τ1, τ2) invariant under simultaneous SL(2,Z) transformations (2.5.3),

f0(τ1, τ2) =
∑
ℓ∈Z

e4πiℓx+f
(ℓ)
0 (x−, y1, y2) where x± := x1 ± x2

2 (2.5.14)

Changing variables to x±, we can perform the integral over x+ which sets j = |k − 2ℓ| and
yields (recall that a(s)

j = a(s)
−j and likewise for b(n)

j )

a(1−s)
k fE(s)

(√
y1Ks− 1

2
(2πky1)

)
=
∑
ℓ∈Z

(2− δk−2ℓ,0)a(1−s)
k−2ℓ I

(s)
k,ℓ (y1)

b(n)
k fϕ(sn)

(√
y1Ksn− 1

2
(2πky1)

)
= 2

∑
ℓ∈Z

b(n)
k−2ℓ I

(sn)
k,ℓ (y1)

(2.5.15)

75



where

I(s)
k,ℓ (y1) :=

∫ dy2

y2
2

∫
dx−e

2πix−(−k+|k−2ℓ|)f
(ℓ)
0 (x−, y1, y2)

√
y2Ks− 1

2
(2π|k − 2ℓ|y2) (2.5.16)

The factor in parentheses in (2.5.15) is the spin-k Fourier mode with the coefficient stripped
off. Evaluating the first line of (2.5.15) at s = sn and taking the ratio of the two equations,
the left-hand side is independent of y1. This is incompatible with the right-hand side unless

f
(ℓ)
0 (x−, y1, y2) ∝ δℓ,ℓ∗ (2.5.17)

for some fixed ℓ∗. In fact, the only possible choice is ℓ∗ = 0, such that the Fourier coefficients
cancel completely, because the equation must be satisfied for any k ∈ Z+. Therefore,

fϕ(sn) = fE(sn) (2.5.18)

That is, the cusp form overlap is equal to the Eisenstein overlap evaluated at s = sn.

As a statement about Fourier decomposition, this means that the (j1, j2) = (0, 0) mode
of f(τ1, τ2), which determines the Eisenstein part of the spectral decomposition, actually
determines the entire function. Building on the language of [112, 151], we call this strong
spectral determinacy. This is compatible with the general result of [123] because we are
imposing extra structure on f(τ1, τ2).

Dependence on hyperbolic distance

Result III. A function f0(τ1, τ2) that obeys (2.5.3) and has spin ℓ = 0 under the Fourier
decomposition in x1 + x2 is solely a function of the invariant hyperbolic distance,

f0(τ1, τ2) = f0(σ(τ1, τ2)) , where σ(τ1, τ2) := |τ1 − τ2|2

y1y2
. (2.5.19)

This result applies to wormhole amplitudes because the seed for (2.5.2) is such a function (cf.
below (2.5.17)).

The spin ℓ = 0 property implies that f0(τ1, τ2) = f0(x−, y1, y2). Without loss of generality
we can write this as f0(τ−, y1, y2), where τ− := (τ1−τ2)/2. This is invariant under simultaneous
T -transformations. Under simultaneous S-transformation,

f0(τ−, y1, y2) 7→ f0

(
τ−

τ1τ2
,
y1

|τ1|2
,
y2

|τ2|2

)
(2.5.20)

Demanding simultaneous S-invariance then fixes the functional form to be as in (2.5.19),30

30This is a two-variable generalization of the fact that a modular-invariant function f(y) must be a constant.
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where σ(τ1, τ2) is the H-invariant distance between τ1 and τ2, related to the geodesic distance
d(τ1, τ2) as

σ(τ1, τ2) = 4 sinh2
(
d(τ1, τ2)

2

)
. (2.5.21)

This concludes the proof. Essentially the same result holds for a seed obeying the condition
(2.5.4). In this case, f0(τ1, τ2) has a Fourier decomposition (2.5.14) with the swap x+ ↔ x−.
The same argument then leads to

f0(σ−(τ1, τ2)) , where σ−(τ1, τ2) := σ(τ1,−τ2) = |τ1 + τ2|2

y1y2
(2.5.22)

That is, the seed depends on geodesic distance with the orientation-reversal τ2 → −τ2.

That a Hecke-symmetric Poincaré sum of the form (2.5.2) has a seed which depends only
on the H-invariant distance ties nicely into the earlier proof of Hecke symmetry: σ(τ1, τ2) is
fully SL(2,R)-invariant.

2.5.3 Summary and comments

The results of the previous subsection suggest the following general nomenclature: we define
“wormhole amplitudes” ZWH(τ1, τ2) as those functions which have the following spectral
decomposition:

ZWH(τ1, τ2) =
∫

Ccrit
fWH(s)Es(τ1)E1−s(τ2) +

∞∑
n=1

fWH(sn)ϕn(τ1)ϕn(τ2) (2.5.23)

In our spectral framework, ZWH(τ1, τ2) are to be regarded as instances of ZHecke(τ1, τ2) with
enhanced structure. Given a Zspec(τ) of a CFT,

fWH(s) = |(Zspec, Es)|2 . (2.5.24)

The property ZHecke(τ1, τ2) = ZWH(τ1, τ2) thus holds if and only if

(Zspec, ϕn)2 = |(Zspec, Esn)|2 (2.5.25)

Poincaré sums of the form (2.5.2) are but one example of such amplitudes. We may also view
this as a prediction for large c CFTs: if we take the Farey tail sum (2.5.2) as a wormhole
ansatz in semiclassical gravity, (2.5.25) should hold in the dual large c CFT.

The functions ZWH(τ1, τ2) furnish a highly-symmetric class of square-integrable SL(2,Z)×
SL(2,Z)-invariant functions: not only are they Hecke-symmetric, but they are fixed by a

The proof in that case is similar: an S-transformation introduces x-dependence.
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single overlap function, fWH(s). Let us put this last point in sharper focus. In the language
of Section 2.4, recall that the leading low-temperature term of the (j1, j2) = (0, 0) Fourier
mode was controlled by the function R(z). This term fixes other Fourier modes of our various
amplitudes, away from the low-temperature limit, according to their degree of symmetry:

Amplitude Modes (j1, j2) fixed by R(z)
Zdiag(τ1, τ2) (0, 0)
ZHecke(τ1, τ2) (0, j)
ZWH(τ1, τ2) All

For ZWH(τ1, τ2) in particular, RWH(z) =M−1[fWH(s); z] fixes all Fourier modes, and hence
the entire function (“strong spectral determinacy”).

While the notation ZWH(τ1, τ2) invokes bulk language to reflect the properties of Poincaré
sums derived in the previous subsection, other functions could in principle assume the
functional form (2.5.23). However, there is clearly a gravitational nature to ZWH(τ1, τ2),
and to ZHecke(τ1, τ2) more generally. The projection PHecke is in some sense capturing the
“wormhole part” of the factorized product Zspec(τ1)Zspec(τ2): it isolates the correlations
between the two copies which, when there is an AdS3 bulk dual, are geometrized by a smooth,
two-boundary, connected Euclidean spacetime. This interpretation is on firmest footing at
large c, where it becomes a semiclassical geometric statement that is supported by our proofs
above for wormholes-qua-SL(2,Z) Poincaré sums.

These results suggest the following conceptual interpretation. In gravitational language,
the Hecke operators T

(τ)
j , which act on a single boundary component, are AdS3 “half-

wormhole detectors.” That T (τ)
j Zspec(τ) ̸= 0 reflects the fact that Zspec(τ) by definition

receives no contribution from smooth geometric saddles in gravity: it only counts off-shell,
or non-geometric (e.g. matter), degrees of freedom. Then forming the difference operator
T

(12)
j = T

(τ1)
j − T (τ2)

j , the projection onto its kernel via PHecke implements the pairing of these
degrees of freedom to form a smooth two-boundary spacetime. To say this slightly differently,
T

(12)
j has the flavor of a non-local bulk operator, which can be freely moved to the “left” or

“right” boundary tori: Hecke symmetry is then the statement that these operators are, in a
sense, topological. Conversely, a nonzero action of T (12)

j detects non-geometric contributions
to the wormhole amplitude. It would of course be nice to find an explicit bulk construction of
Hecke operators, or of PHecke as a topology-changing operator.

We will next make these ideas explicit in semiclassical AdS3 pure gravity.
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2.6 Pure Gravity as MaxRMT

We now apply our framework to semiclassical AdS3 pure gravity. We begin our treatment
with the two-boundary torus wormhole of Cotler and Jensen [34].

2.6.1 Torus wormhole

The Cotler-Jensen (CJ) wormhole was originally presented in [34] as a Poincaré sum of the
form considered in Section 2.5,31

ZCJ(τ1, τ2) =
∑

γ∈SL(2,Z)
f0,CJ(τ1, γτ2) (2.6.1)

with seed given by the inverse of the (orientation-reversed) hyperbolic distance:

f0,CJ(τ1, τ2) = 1
2π2 σ

−1
− (τ1, τ2) = 1

2π2
y1y2

|τ1 + τ2|2
(2.6.2)

The CJ wormhole is an off-shell contribution to the path integral of AdS3 pure gravity with
the topology of a torus times an interval, T 2 × I. It is a constrained instanton, namely it
becomes on-shell after adding a constraint [152]. The CJ computation uses a dynamical
theory of only boundary gravitons [153]. This differs from the corresponding quantity in the
Chern-Simons formulation of AdS3 gravity [34,107,154].

The point is now to understand ZCJ(τ1, τ2) as an instance of ZHecke(τ1, τ2): that is, as a
coarse-grained two-copy partition function of an underlying chaotic CFT.

Since ZCJ(τ1, τ2) is a Hecke-symmetric wormhole amplitude, the entire amplitude is fixed
by the (0, 0) Fourier mode. From [34] eq. (4.12) (and doubling the result), we read off the
functions in (2.4.6) as

RCJ(z) = 1
π

1
1 + z

SCJ(r) =
∞∑
n=1

ϕ(n)
n

r√
1 + n2r2

(2.6.3)

with r = √y1y2 and z = y1/y2. Recall that RCJ(z) is the leading low-temperature term,
which fixes the entire zero mode by (2.4.10).

By the general proofs of Section 2.5.2 for Poincaré sums of the form (2.6.1), ZCJ(τ1, τ2)
31 [34] wrote this as a PSL(2,Z) image sum, but considerations of discrete symmetries suggest that the

result should be doubled [147]. For this reason, and to streamline some of the expressions to follow, we work
with the GOE version of the CJ wormhole, which amounts to overall multiplication of the expressions in [34]
by CGOE = 2.
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admits a spectral decomposition32 of wormhole form (2.5.23): we need only determine the
spectral overlap, call it fCJ(s), by Mellin transform of RCJ(z). A simple integral yields

fCJ(s) =M [RCJ(z); s]

= 1
π

Γ(s)Γ(1− s)
(2.6.4)

This determines the full ZCJ(τ1, τ2). Let us write it explicitly for the sake of clarity:

πZCJ(τ1, τ2) =
∫

Ccrit
Γ(s)Γ(1− s)Es(τ1)E1−s(τ2) +

∞∑
n=1

Γ(sn)Γ(1− sn)ϕn(τ1)ϕn(τ2) (2.6.5)

It will prove useful to rewrite (2.6.5) in terms of the completed Eisenstein series:

πZCJ(τ1, τ2) =
∫

Ccrit

π

ζ(2s)ζ(2− 2s)E
∗
s (τ1)E∗

s (τ2) +
∞∑
n=1

Γ(sn)Γ(1− sn)ϕn(τ1)ϕn(τ2) (2.6.6)

The Eisenstein overlap takes an intriguing form in terms of the Riemann zeta function.

The spectral decomposition (2.6.5) is a very clean way to package the Fourier modes for
arbitrary spins, determined as they are by the low-temperature scalar term RCJ(z). (For
comparison, the modes Z(j1,j2)

CJ (y1, y2) are given in eq. (4.20) of [34].) Note that there is no
constant term in the decomposition. This follows our general discussion earlier in the paper,
but is additionally bound up with the fact that the (0,0) mode is actually divergent [34]
(cf. the r → ∞ limit of SCJ(r)).33 Given this, the constant term is subject to the choice
of regularization scheme, and the finite constant may be set to zero; this is the meaning of
(2.6.5).

2.6.2 MaxRMT

The CJ wormhole has some very special features. Notice that (2.6.4) realizes the RMT ramp
falloff condition (2.4.23), with f(ω) = CGOE = 2 exactly – in particular, with no fluctuations.
Likewise, not only does (2.6.3) manifestly realize the universal singularities (2.4.21) and
(2.4.25) required by the presence of a linear ramp in the scalar SFF, but the CJ wormhole is
given exactly as the sum over those singularities!

This last property is remarkable. Having shown that general wormhole amplitudes are
fully determined by the single function R(z) after accounting for Virasoro and modular

32We thank Scott Collier for sharing a note on the spectral decomposition of the CJ wormhole, which
helped inform our general perspective.

33The divergence, and subsequent regularization, of [34] may be recovered in the spectral formalism for
functions f(τ1, τ2) ∈ L2(F × F) by taking the appropriate residues of the Eisenstein overlap; see Appendix
2.9. Note also that this divergence is not special to the CJ wormhole, as shown in (2.12.10).
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symmetries, RCJ(z) is exactly equal to the double-scaled RMT result. Stating this from the
Lorentzian point of view, the scalar SFF of the CJ wormhole is, for all fixed T/β, given by
“just the ramp,” plus corrections fully fixed by the symmetries; in turn, the entire amplitude
for all moduli τ1 and τ2, including Euclidean and Lorentzian temperatures, is its minimal
completion.

These properties of the torus wormhole reveal that the spectrum of semiclassical AdS3

pure gravity and its dual 2d CFT exhibit random matrix statistics to the maximal extent
possible. As stated in the Introduction, this is a signature of what we call

MaxRMT: the maximal realization of random matrix universality consistent with
Virasoro symmetry and modular invariance.

This extends the sense in which AdS3 pure gravity may be understood as an extremal theory:
within the space of consistent theories of AdS3 gravity, the statistical correlations among
black hole microstates of pure gravity are as random as possible (in the sense of RMT).

At early times, well before random matrix behavior sets in, theories of semiclassical
Einstein gravity (in any spacetime dimension) saturate the chaos bound on the Lyapunov
exponent of out-of-time-order correlators [38]. What our analysis shows is that pure gravity
is also maximally chaotic at late times: viewing ZCJ(τ1, τ2) as computing coarse-grained
spectral correlations of a dual microscopic CFT at large c, its level statistics are “maximally
random” for a 2d CFT.34 In other words, random matrix universality enjoys a maximally
extended regime of validity. This is a refinement, incorporating chaos, of the statement [139]
that the Cardy density of states enjoys an extended regime of validity beyond the asymptotic
regime ∆→∞, all the way down to ∆ ∼ c/6 (or possibly to c/12, for certain exceptional
theories), in a sparse CFT at leading order in large c.

Rephrasing this slightly, we have recovered the CJ wormhole amplitude as an extremal
two-copy partition function. In particular, the CJ wormhole amplitude is the unique solution
to the following large c CFT bootstrap problem: find a ZHecke(τ1, τ2) that i) admits a Poincaré
sum representation of wormhole form (2.5.2), and ii) reproduces the double-scaled RMT
SFF at late times T for any fixed T/β. The first criterion specializes to large c, though not
to pure gravity specifically, by imposing the geometric structure of semiclassical wormholes
(see Subsection 2.5.1). Upon imposing the SFF of RMT, Virasoro symmetry and modular
invariance take care of the rest, leading to ZCJ(τ1, τ2).35 This is similar in spirit to the
bootstrap approach to four-point functions in AdS5 × S5 supergravity in [155].

34To give some indicative timescales, the early-time Lyapunov chaos happens well before the scrambling
time, logarithmic in entropy, whereas the RMT ramp occurs after the dip time, exponential in entropy.

35The CJ wormhole was also “bootstrapped” in [131] from a different set of conditions, the main one being
a specific prescription for the zero mode volume in the two-boundary gravity path integral. The origin of
that important factor is rather subtle [107,147,154].
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Comments

Ensembles, RMT wormholes and ETH wormholes

Is semiclassical pure gravity dual to an ensemble of CFTs? A more grounded statement,
supported by explicit computations in the literature, is that saddle point partition functions of
semiclassical pure gravity are dual to ensembles of CFT data. This appears to hold for saddles
of arbitrary boundary topology. On the other hand, we are able to interpret ZCJ(τ1, τ2), a bulk
off-shell wormhole amplitude encoding spectral data alone, in terms of a microscopic CFT.
This provides a realization of the large c notions articulated in [103]: indeed, our formalism
amounts to a dynamical mechanism of the “apparent averaging” of [103] in AdS3/CFT2,
by showing how wormholes can emerge from the high-energy spectral statistics of a large c
limit of a family of chaotic CFTs. It is satisfying that the torus wormhole admits a clean
microscopic interpretation in bona fide CFT2, without requiring an ensemble interpretation
(though it does not prohibit one, if desired).

Note that, in contrast, saddle point wormholes in AdS3 gravity capture different physics.
Unlike what one might call “RMT wormholes” that encode spectral statistics, such as the
CJ wormhole, on-shell wormholes [106, 107,109, 156] are “ETH wormholes”: they are instead
computing averaged matrix elements that are in turn fixed by leading-order spectral (Cardy)
and OPE (DOZZ) asymptotics of Virasoro primaries [101, 157, 158], independent of level
statistics. All on-shell wormholes in AdS3 gravity are of this type Maldacena:2004rf¸ .36 The
partition function of any such wormhole saddle can be reduced to a moment problem for a
probability distribution of CFT data that encodes universal asymptotics [106],37 insensitive to
chaos and the structure of black hole microstates. For this reason, on-shell AdS3 wormholes
and their possible ensemble interpretations are of a rather different nature than wormholes in
JT gravity.

Quantum chaos from arithmetic chaos

The CJ amplitude exhibits a linear ramp in all spin sectors [34]. Given the amplitude (2.6.5),
we can compute the Eisenstein contribution to any Fourier mode Z(j1,j2)

CJ (y1, y2). The necessary
36As an illustrative example, for a two-boundary torus wormhole to be on-shell in gravity, one must instead

consider a one-point wormhole with boundary operators O inserted, where ∆O < 2ξ is dual to a bulk matter
field Maldacena:2004rf¸ . The trace over Hilbert space is an OPE sum, and the result is fixed by Virasoro ETH
asymptotics. Consistent with this, if one studies the late-time behavior of the “one-point SFF”, the on-shell
one-point wormhole does not produce a ramp [147].

37This is not fully crossing symmetric on average, but is (almost) S-invariant on average. Small violations
of average S-invariance may be fixed using a matrix-tensor model with a potential controlled by the variance
under S [110]. For other proposals on AdS3 gravity with a similar treatment of partial crossing symmetry,
see [153,159].
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integral was performed in [123] for j1 > 0, yielding

Z
(j1,j2)
CJ (y1, y2)

∣∣∣
Eis
≈ λj1δj1,j2e

−2π(j1y1+j2y2)
√

y1y2

y1 + y2
+ . . . , (y1, y2 →∞) (2.6.7)

where λj1 are O(1) numerical factors. After analytic continuation and stripping off a factor
√
y1y2 (see (2.4.19)), this gives an O(1) contribution to the SFF. Therefore, the late-time

linear ramp at nonzero spin comes from the cusp form contribution alone. This observation
establishes a relation between the arithmetic chaos of Maass cusp forms and quantum chaos
of AdS3 pure gravity as defined by RMT. 38

On c-independence of wormhole amplitudes

The CJ wormhole amplitude is independent of Newton’s constant GN = 3LAdS/2c. This is
consistent with the fact that it is not a semiclassical saddle in the bulk, but otherwise calls
for a fundamental explanation (in contrast to the JT double-trumpet, whose O(1) scaling
follows from the topological expansion of 2D gravity).

Our formalism gives an indirect explanation of this fact: it is a consequence of the linear
ramp in the SFF and the “wormhole” form of the amplitude. In short, if there were a
c-dependent factor in the wormhole amplitude, it would violate random matrix universality.
Demanding a linear ramp in the scalar SFF with RMT coefficient implies (2.4.21), a c-
independent condition. In general, given a family of chaotic CFTs {Tc} which admits a
c → ∞ limit, any dependence on c, or other parameters (e.g. exactly marginal couplings)
which we collectively denote as λ, must sit in an additive correction term,

R(c)(z|λ) = CRMT

2π
1

1 + z
+ δR(c)(z|λ) (2.6.8)

At large c, this is finite. Since any wormhole amplitude ZWH(τ1, τ2) of the form (2.5.23) is
fixed completely by this quantity, as shown in Section 2.5, the entire amplitude is independent
of c. What sets the CJ wormhole apart is that the correction exactly vanishes – a property
of MaxRMT.

Wormholes in AdS3 ×M gravity

In a theory of AdS3 pure gravity, corrections to MaxRMT behavior should be non-perturbative
in GN . We will discuss these in Subsection 2.6.3. On the other hand, in theories of gravity
coupled to matter, such as AdS3 ×M string or M-theory compactifications with large extra
dimensions M, the corrections will generically be O(1). These theories should not have
MaxRMT statistics. The RMT wormholes with T 2 × I topology will receive large matter

38This connection has been developed further in [160,161].
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contributions to the quantity δR(c)(z|λ) written above, thus modifying the geometry on
macroscopic scales. By virtue of diffeomorphism invariance their partition functions should
take the form (2.5.23) and, being chaotic, preserve the linear ramp of the SFF, but we expect
their overlaps fWH(s) to differ substantially from fCJ(s).

We may parameterize these overlaps as

fWH(s) = fCJ(s)g(s) (2.6.9)

with RWH(z) and G(z) = δ(z − 1) + δG(z) the corresponding inverse Mellin transforms,
respectively. Mellin convolution implies

RWH(z) = 1
π

1
1 + z

+ δRWH(z) (2.6.10)

where
δRWH(z) :=

∫ ∞

0
dy
δG(y)
1 + zy

(2.6.11)

This correction must be finite at z = −1. Singularities of δRWH(z) for z ∈ C\{−1} can
arise either from delta functions (and possibly their derivatives) in δG(y) on the contour,
or poles off the contour. These singularities must not violate the physical requirement that
RWH(z) be regular at |z| = 1 (no spurious poles in the SFF) and z ∈ R≥0 (finite Euclidean
low-temperature limit).39

In Appendix 2.13, we provide a toy family of RMT wormholes in AdS3 ×M gravity, for
which both fWH(s) and RWH(z) can be computed explicitly. The spectral overlaps are of the
form (2.6.9) with

g(s) = CRMT

4
(
ζ(s+ p) + ζ(p+ 1− s)

)
, where p ∈ Z+ , (2.6.12)

while their dual functions RWH(z) in (2.13.6) are harmonic sums over an infinite set of simple
poles, with the correctly normalized RMT ramp (2.4.21) at z → −1. We note here that
g(s) non-trivially satisfies the falloff condition (2.4.23), which follows from the asymptotic
|ζ(σ + iω)| → 1 as ω →∞ for any σ > 1.

2.6.3 Black hole microstates of AdS3 pure gravity

The above framework actually lets us extract non-coarse-grained microstructure of the black
hole spectrum of AdS3 pure gravity by factorizing the CJ wormhole; see Figure 2.4. In
particular, we can deduce what Zspec(τ) gives rise to the correlations encoded in ZCJ(τ1, τ2)

39In SFF kinematics, a pole 1/(z + z∗) ⊃ δRWH(z) gives a decaying contribution ∼ 1/T as T →∞. Note
that these are not the same as the non-ergodic modes/massive modes of [162, 163], which decay as Te−#T in
the SFF. Those are exponential corrections to the dip, whereas ours are power-law corrections to the ramp.
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upon coarse-graining by using the powerful fact, highlighted earlier, that the 2d CFT trace
formula expands Zspec(τ) over a complete eigenbasis. Combined with the high degree of
symmetry of wormhole amplitudes, the result is nearly unique.

We wish to solve
ZCJ(τ1, τ2) = PHecke [ZRMT(τ1)ZRMT(τ2)] (2.6.13)

That is, ZRMT(τ) is the Zspec(τ) that generates the CJ wormhole upon coarse-graining. We
deduce the spectral overlaps (ZRMT, Es) and (ZRMT, ϕn), and hence ZRMT(τ), from (2.6.5).
The cusp form overlaps are fixed by (2.5.25) in terms of the Eisenstein overlap, because of
the wormhole form (2.5.23) of the CJ amplitude. The Eisenstein overlap, in turn, is easily
determined using (2.6.6) in which the reflection symmetry is manifest:

{ZRMT, Es}2 = 1
ζ(2s)ζ(2− 2s) (2.6.14)

On the critical line, {ZRMT, E 1
2 +iω}2 = |ζ(1 + 2iω)|−2. So a putative CFT dual to AdS3 pure

gravity has a spectral partition function Zspec(τ) ≈ ZRMT(τ) where

ZRMT(τ) =
∫

Ccrit
(ZRMT, Es)Es(τ) +

∞∑
n=1
|(ZRMT, Esn)|ϕn(τ) , (2.6.15)

with overlaps given above. In other words, by factorizing the wormhole we have extracted a
contribution to the torus partition function of a CFT dual to pure gravity,

Zgrav(τ) ≈ ZMWK(τ) + ZRMT(τ) . (2.6.16)

This holds up to exponentially small corrections in c, discussed further in Subsection 2.6.3.

ZRMT(τ) is almost, but not quite, uniquely determined: its overlaps are fixed up to overall
signs. This is inherent in our derivation-by-factorization of the two-boundary wormhole,
which is quadratic in ZRMT(τ). One would thus like to identify a computation, or a physical
criterion, which selects one branch of the square root. While we so far lack a proof, the
trace formula (2.3.20) suggests that the positive branch may be the correct one, both for
the Eisenstein and cusp form overlaps, because the spectral overlaps play the role of orbit
densities: just as semiclassical periodic orbit densities must be positive for physical systems,
one may reasonably expect the same to hold for their 2d CFT analog. A full determination
of these signs is important. Either way, it is quite intriguing that {ZRMT, Es} is sign-definite
on the critical line, a feature which is surprising from the point of view of the individual
functions themselves: neither ZRMT(τ) nor Es(τ) obeys any manifest sign constraint for
τ ∈ F (for example, the integral of Es(τ) over F vanishes). This appears to be a special
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Figure 2.6: A plot of the Riemann zeta phase ϕ(ω) = arg
(
ζ(1 + 2iω)

)
for ω ∈ [0, 100].

feature of wormhole amplitudes under the CFT identification (2.5.24).40 It suggests that the
chaotic spectrum Zspec(τ) of any large c CFT must obey such a sign constraint.

We view ZRMT(τ) as a half-wormhole of AdS3 pure gravity: it is a single-boundary, non-
self-averaging quantity which, when squared and glued appropriately, generates the smooth
spacetime wormhole. See Figure 2.3. As is by now hopefully clear, the right procedure is
prescribed by the 2d CFT trace formula, gluing the half-wormholes in SL(2,Z) spectral space.
The detailed form of ZRMT(τ) is “jiggly,” with spectral overlaps characterized by erratic
fluctuations. We can make this manifest by writing the Eisenstein overlap on the critical line
as (choosing the positive branch for definiteness)

(ZRMT, E 1
2 +iω) = 1√

cosh(πω)
ei(χ(ω)+ϕ(ω)) (2.6.17)

where
χ(ω) = arg

(
π−iωΓ

(1
2 + iω

))
, ϕ(ω) = arg

(
ζ(1 + 2iω)

)
(2.6.18)

In addition to the regular “background” phase χ(ω), the overlap is dressed by the “Riemann
zeta phase” ϕ(ω), a quantum-chaotic object: ϕ(ω) oscillates erratically along the critical line
(see Figure 2.6), producing the non-self-averaging behavior characteristic of half-wormholes.41

Upon squaring and projecting ZRMT(τ) to form the CJ wormhole, the phase cancels, leaving
the smooth integrand of (2.6.5).

This dovetails nicely with expectations of how the wormholes and half-wormholes of 2D
40One easily verifies that the positivity holds for Narain wormholes Ç as well. Conversely, one may ask

whether imposing the positivity of fWH( 1
2 + iω), as in the identification (2.5.24), may be used to constrain

the allowed seeds of Poincaré sums (2.5.2) representing wormhole amplitudes in gravity (or, possibly, whether
not all reasonable wormholes actually possess such positivity). We thank David Berenstein for this question,
and Scott Collier for a subsequent discussion.

41The Riemann zeta phase also appears in the Gutzwiller model of chaotic scattering on the “leaky torus”
as a phase in the S-matrix, producing poles at the locations of non-trivial Riemann zeros [164].
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gravity should generalize to higher dimensions. The factorized product ZRMT(τ1)ZRMT(τ2)
explicitly contains the wormhole ZCJ(τ1, τ2), isolated by the Hecke projection PHecke; the
terms that are projected out, presumably to be thought of as “linked half-wormholes" of some
kind, combine with the wormhole to restore factorization. We can say this in the closely
related but some what more general “broken cylinders” picture of [165] (see Sections 3.6 and
5.2). A broken cylinder in the “b basis” is geometrically a trumpet with a geodesic boundary
carrying a random boundary condition, Ψ(b). Two broken cylinders are glued into a smooth
wormhole by averaging over these boundary conditions, integrating over b with measure

⟨Ψ(b)Ψ(b′)⟩Ψ = 1
b
δ(b− b′) (2.6.19)

The random function Ψ(b) is a bulk effective description of coarse-graining the dual theory.
There is an intuitive analogy between AdS2 broken cylinders and AdS3 half-wormholes:

b ←→ ω

Ψ(b) ←→ eiϕ(ω)

(2.6.19) ←→ PHecke

We recall that PHecke projects onto the diagonal the factorized double sum over eigenfunctions,

PHecke

∑∫
ω

f̃ω ψω(τ1)
∑∫
ω′

f̃ ∗
ω′ ψ∗

ω′(τ2)
 =

∑∫
ω

|f̃ω|2ψω(τ1)ψ∗
ω(τ2) (2.6.20)

where we used the unified notation (2.2.8). An interesting aspect here is that ω is not
manifestly a geometric quantity in AdS3, unlike the geodesic length b in AdS2.

This picture emphasizes that, while the CJ wormhole is topologically an annulus ×S1,
it should be viewed as a gluing of two constituent topologies, namely, of two “deformed
solid tori” (i.e. deformed annuli times a circle). See Figures 2.3 and 2.7. This is somewhat
schematic because we do not yet have a bulk geometric derivation of ZRMT(τ). What we do
know is that ZRMT(τ) probes the part of the black hole Hilbert space that is precisely not
captured by semiclassical saddles: whatever off-shell configurations should be included in the
path integral with a single torus boundary, they must generate this term.

We note that the Riemann zeta phase ϕ(ω) is the phase for any (Zspec, E 1
2 +iω), as

one can show from its functional equation in ω. This supports our earlier half-wormhole
characterization of Zspec(τ) in the discussion of Hecke projection (Subsection 2.5.3), even
absent a large c limit. For this reason, Zspec(τ) is closely analogous to the “brane one-point
function” Zbrane(β) in the 2D gravity model of [166], an additive correction to the JT disk
partition function that is non-perturbatively exact in the entropy S0. What we are finding is
that this same mechanism operates in the bona fide AdS3/CFT2 setting in broad generality,
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Figure 2.7: An alternate depiction of Figure 2.3 emphasizing the analogy to 2D gravity, with
the extra S1 direction suppressed. Each half-wormhole is viewed as a deformed annulus times
a circle, in which one of the annular boundaries is replaced by an erratic/random boundary.
In the spectral representation this boundary is precisely the Riemann zeta phase eiϕ(ω). The
CJ wormhole is formed by gluing along the deformed boundaries. We have drawn the second
deformed annulus “inside out” for visual aid.

with Zspec(τ) playing the role of the brane.

Pure gravity path integral

The identification of ZRMT(τ) augments our knowledge of Zgrav(τ), the primary partition
function of semiclassical AdS3 pure gravity with a single torus boundary, as shown in (2.6.16).
Any primary partition function Zp(τ) for which the vacuum is the only Virasoro primary
with42 t < 0 can, in general, be written

Zp(τ) = ZMWK(τ) + Zspec(τ) (2.6.21)

By leveraging ZCJ(τ1, τ2), we have shown that Zspec(τ) is not a free function in semiclassical
pure gravity, leading to (2.6.16). Including further corrections,

Zgrav(τ) = ZMWK(τ) + ZRMT(τ) + δZRMT(τ) (2.6.22)

There are three contributions:

• ZMWK(τ) sums over smooth bulk saddles M with ∂M = T 2.

• ZRMT(τ) encodes the leading RMT fluctuations of the black hole spectrum.

• δZRMT(τ) gives possible corrections to ZRMT(τ).
42Recall our definitions t = min(h, h)− ξ and ξ = (c− 1)/24.
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This refines the usual point of view taken in the modular bootstrap approach to Zgrav(τ), by
adding the (off-shell) fine-grained spectral fluctuations of the black hole/heavy spectrum to
the sum over (on-shell) BTZ black hole geometries. The “brane” terms ZRMT(τ) + δZRMT(τ)
are exponentially suppressed relative to the sum over saddles.

The corrections δZRMT(τ) are important, even though they are expected to be exponen-
tially small in c ∼ 1/GN . Were they perturbative instead, they would lead, upon squaring and
projecting, to 1/c corrections to the CJ wormhole: this would violate reasonable expectations
inferred from the genus expansion of 2D gravity for the structure of AdS3 wormholes, as
well as the method of computation of [34].43 Instead, δZRMT(τ) should represent “higher
genus” terms that encode UV data of a (say) strongly-coupled string theory, or M-theory,
compactification. Indeed, it could well be the case that the string landscape hosts many
compactifications to AdS3 pure gravity which share a parametrically identical spectral gap,
differing only in the detailed correlations among black hole microstates: the quantity δZRMT(τ)
encodes exactly these contributions. When glued to form a wormhole, these would give
O(e−αcβ ) corrections to ZCJ(τ1, τ2) for some α, β > 0, perhaps corresponding to wormholes
with torus boundary but higher topology in the interior.

Actually, not only should such corrections be present on general grounds, they must
be present in a consistent CFT: if δZRMT(τ) = 0, then the partition function (2.6.22)
is non-unitary. To see this, recall that the MWK partition function ZMWK(τ) contains
an exponentially large negative density of states in a near-extremal limit of t → 0+ and
j →∞ [98] for odd j: suppressing power-law prefactors,

∫ e− 1
2 S0(j)

0
dt ρMWK,j(t) ≈ (−1)j e 1

4S0(j) , where S0(j) := 4π
√
ξ|j| (2.6.23)

is the extremal spin-j Cardy entropy. But this cannot be cured by ZRMT(τ), which is
independent of the central charge.

The above results altogether lead us to a rather interesting conclusion. If a unitary Zgrav(τ)
exists, the non-perturbative corrections δZRMT(τ) must not only be present, but must resum
in some manner to give a contribution to the density of states below the semiclassical black
hole threshold. Were this not the case, then for all values of the modulus τ we could safely
drop δZRMT(τ) in the large c limit; but as reviewed above, the resulting partition function
would be non-unitary. To avoid this order-of-limits issue between large c and near-extremality,
the corrections δZRMT(τ) should resum to shift the black hole threshold slightly below t = 0,
giving non-square-integrable contributions to Zgrav(τ).44 In other words, the BTZ black hole

43It should again be emphasized, given the unusual nature of the computation [34], that it is not known
how (or whether) higher topologies beyond T 2 × I organize themselves in a small GN expansion, and what
their moduli dependence is. However, they should be present, and we are giving some expectations for their
scaling.

44We thank Daniel Jafferis for a discussion.
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threshold is strictly below t = 0.

On the CFT side, the large c modular bootstrap quest is thus transformed to the following:
find δZRMT(τ) such that (2.6.22) is unitary. In the bulk, δZRMT(τ) is an off-shell contribution
to the AdS3 path integral that presumably captures non-perturbative degrees of freedom.

On the Maxfield-Turiaci proposal

There is one proposal in the literature for at least some such off-shell contributions, due to
Maxfield and Turiaci [88], which realizes precisely the resummation mechanism described
above. They proposed that Zgrav(τ) should include a sum over a class of Seifert manifolds.
These smooth 3-manifolds are S1 fibrations over a disc D2 with orbifold points.45 Their
inclusion in Zgrav(τ) was motivated by studying the near-extremal limit, where the AdS3

theory admits an effective dimensionally-reduced description as JT gravity coupled to conical
defects. Maxfield and Turiaci pointed out that, from the dimensionally-reduced point of view,
the MWK negativity (2.6.23) is cured upon summing over multiple-defect configurations, not
just the saddle points. This shifts the density near extremality to46

ρMT, j(t) ≈ eS0(j)
√

2(t− t0(j)) , where t0(j) ≈ −
1

2(2π)2 (−1)je− 1
2S0(j) (2.6.24)

plus exponentially small corrections to the shift. The corrections, which are required for
modular invariance of the AdS3 result, would come from including the full set of defects.
More explicitly, each species of JT defect of [88] is labeled by an integer q (corresponding to
a Zq orbifold point on the base D2), and an associated coupling

λ1/q ∼ e−S0(j)(1− 1
q ) (2.6.25)

In [88], the approximation t0(j) ≈ λ1/2 is made: that is, the sum is only over the gas of q = 2
defects. The full sum over arbitrary numbers of arbitrary species of defects was proposed to
have an S1 uplift to a sum over Seifert manifolds,

ZMT(τ) = ZMWK(τ) + ZSeifert(τ) + . . . (2.6.26)

The . . . represents other, non-Seifert contributions which near-extremal physics does not
constrain. ZSeifert(τ) has not been computed.

There has been ample reason to believe that the Maxfield-Turiaci proposal is correct. Our
argument above supports this further. If it is correct, the Seifert manifolds of [88] should
contribute to ZRMT(τ) + δZRMT(τ). Understanding how this works is a very worthwhile

45An excellent review of Seifert manifolds may be found in [167].
46The result of [88] formally holds for j →∞, but the functions appearing in the calculation depend on

the combination ξj, which partially justifies an extrapolation to all nonzero spins at large ξ.
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direction for future work. Let us take some initial steps toward understanding this connection.
First, recall that ZRMT(τ) is independent of c, and hence of the entropy. A generic defect
configuration term has coefficient

eS0(j)
∞∏
q=2

(λ1/q)nq ∼ e
S0(j)

(
1−
∑

q
nq(1− 1

q )
)
, nq ∈ Z≥0 (2.6.27)

It is rather tidy that the only term which is independent of entropy is the q = n2 = 2 term. So
we see that ZRMT(τ) should include only the Seifert manifold with n2 = 2 exceptional fibers,
each over a Z2 orbifold point on the base. On the other hand, ZRMT(τ) is SL(2,Z)-invariant,
whereas the q = n2 = 2 Seifert partition function is not. This confirms that Zgrav(τ) should
include other, non-Seifert, off-shell topologies which give an O(1) contribution, as anticipated
in [88]. (More explicitly, in the Maxfield-Turiaci realization of (2.6.22), δZRMT(τ) would
include the other Seifert manifolds that are further entropically suppressed, while ZRMT(τ)
would include non-Seifert manifolds.)

2.7 Future Directions

We have presented a framework for quantifying random matrix statistics of microscopic 2d
CFT spectra, manifestly compatible with the requisite symmetries. The identification of
a 2d CFT trace formula suggests deep and robust connections with random matrix theory
and chaotic quantum systems. While we focused mostly on the diagonal approximation
to the product of partition functions, a clear path forward is to understand how the full
non-perturbative structure of RMT embeds itself in the dynamics of high-energy states in 2d
CFTs and their dual black holes of AdS3 gravity, and how to excavate it within our spectral
framework.

Let us highlight a few specific directions of interest.

One target therein is to understand how encounter theory [59,133,136,138], which initiates
the transition from ramp to plateau in the SFF of quantum chaotic systems, should be phrased
in the language of the SL(2,Z) spectral decomposition. This subject was nicely reviewed and
ported over to the JT gravity setting in [39]. The goal vis-à-vis 2d CFT is to go beyond the
diagonal approximation to Zspec(τ1)Zspec(τ2), organizing the off-diagonal terms in a way that
mimics encounter theory. Our framework gives a clear meaning to “off-diagonal terms”: they
are correlations among SL(2,Z) eigenfunctions with unequal spectral parameters, ω1 ̸= ω2.
The question is how to develop a systematic approach to these correlations. and whether
they give rise to different types of corrections to (say) the SFF.

A related, more specific starting point is the following. The SFF of double-scaled random
matrix ensembles admits a “τ-scaling limit” in which T →∞ with τ := Te−S0 held fixed. The

91



expansion in τ≪ 1 has been reproduced to all orders by encounter theory [133,138]. Is there
a τ-scaling limit in 2d CFT? If so, how do we compute it in our formalism? Understanding
this could help to extend the meaning of MaxRMT to the non-perturbative level [168–175].

It is interesting to notice that there are two distinct classes of corrections to the SFF
in the SL(2,Z) spectral framework: corrections to the spectral overlaps themselves, and
the inclusion of terms beyond the diagonal approximation. The former give corrections
to the SFF beyond the strict ramp term, even without incorporating off-diagonal terms
in Zspec(τ1)Zspec(τ2). The latter are obviously crucial to reproduce the constant late-time
plateau; but in the interpolation from ramp to plateau, the two types of corrections should
in principle combine to give the full SFF. It is important to disentangle and stratify these
various effects, and to connect them to non-perturbative corrections to the CJ wormhole of
AdS3 pure gravity.

The condition (2.4.23) for the SFF to have an RMT linear ramp at T ≫ β is an asymptotic
condition on Zspec(τ) in SL(2,Z) spectral space. Given the torus partition function of a CFT,
this condition can be checked unambiguously. If we accept that generic irrational CFTs are
chaotic, then to the extent that one believes (a CFT version of) the Bohigas-Giannoni-Schmit
conjecture [176] that ties chaos to random matrix statistics, the condition (2.4.23) should be
obeyed by generic irrational CFTs [177]. It is worth asking whether this condition can be
tied to other, ideally low-energy, properties of irrational CFT data. For example, it is not
known whether a nonzero primary twist gap above the vacuum state is sufficient to imply
that the CFT is chaotic in an appropriate sense.47 Perhaps one can determine whether the
twist gap is related to (2.4.23).

On the bootstrap front, it is of clear interest to further pursue the large c modular bootstrap
program [179–183] for the partition function (2.6.22). This raises the larger question of how
to incorporate RMT spectral statistics into modular and conformal bootstrap algorithms.

Our formalism is not restricted to studying partition functions. One immediate gener-
alization is to study coarse-grained products of torus one-point functions of local primary
operators, ⟨O⟩τ . One-point functions are modular-covariant and, like partition functions,
can be dressed and massaged to be modular-invariant and square-integrable on F , hence
admitting a SL(2,Z) spectral decomposition and thus a trace formula. The spectral overlaps
encode the OPE statistics. In the AdS3 bulk, the projections PHecke[⟨O⟩τ1⟨O⟩τ2 ] would be
holographically dual to “one-point RMT wormholes”: that is, off-shell connected configu-
rations with a profile for the field dual to O threading the wormhole, with local sources
at each torus boundary. Essentially this quantity was studied in the 2D gravity context

47It is not clear to us that the twist gap is a relevant criterion. A twist gap can vanish due either to extra
conserved currents, or an accumulation to zero twist at asymptotically large spin. One should always use the
maximally extended chiral algebra to formulate the notion of twist gap [178], so we ignore the first possibility.
But we are not aware of any solid argument that a zero-twist accumulation point implies an absence of
chaos/RMT statistics or vice-versa (even though it does invalidate standard Cardy-type arguments about
spectral asymptotics).
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in [146, 184, 185]. These generalizations of the CJ wormhole are not the Maldacena-Maoz
one-point ETH wormholes [186], instead incorporating the level statistics of the states in
the OPE. One can formulate a straightforward one-point generalization of the CJ wormhole
(2.6.5) that combines the RMT level statistics with Virasoro ETH asymptotics; this will be
presented elsewhere.

We have introduced a notion of MaxRMT in 2d CFTs. How does it generalize to higher
dimensions? A natural conjecture that we would like to make is that the black hole spectrum
of semiclassical Einstein gravity in AdSD≥3 exhibits MaxRMT statistics. The meaning of
this in D > 3 is somewhat vague. In the AdS3/CFT2 context, the MaxRMT nature of
pure gravity is a quantitative statement, built on the infrastructure of the SL(2,Z) spectral
decomposition as a trace formula. That allowed us to fully process the symmetries of the
spectrum, leaving only those spectral correlations that are unrelated by symmetry; MaxRMT
then states that these correlations are exactly those of RMT. This latter characterization in
principle generalizes MaxRMT to higher dimensions. What, then, is the CFTd trace formula
for the density of states? Given such a formula, one could construct a diagonal approximation
to the two-point correlator and proceed as we did here. It would be very interesting to
make this idea concrete, and to ask how MaxRMT relates to the familiar holographic CFT
conditions of large N and large higher-spin gap.

Our work may also have something to say about lower dimensions. In JT gravity an
analogous description of wormholes as emergent from non-disordered systems via a trace
formula has been anticipated since [35]. Given the existence of an emergent Schwarzian
sector in the near-extremal limit of 2d CFTs [88, 187, 188], it seems reasonable to seek a
dimensional reduction of the CJ wormhole that yields the JT double-trumpet. One could then
hope to translate the diagonality of the CJ wormhole (2.6.5) to a diagonal approximation
interpretation of the JT double-trumpet. In that case, identifying the reduction of ZRMT(τ)
would yield new microscopic information about the microstates of JT gravity in the form of a
trace formula for ρ(E). It would be interesting to compare it to other proposals for restoring
factorization in JT gravity [99,165,166,189–192].
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2.8 Appendix A: Glossary

The following is the short exact sequence of partition functions appearing in this work. All
objects below are modular-invariant with respect to each independent argument.

Zp(τ): Virasoro primary-counting torus partition function.

Zspec(τ): Spectral partition function, obtained by subtracting light states and their
modular completions from Zp(τ). Admits an SL(2,Z) spectral decomposition.

Zdiag(τ1, τ2): Diagonal projection of the factorized product Zspec(τ1)Zspec(τ2), defined by
projection onto the kernel of ∆12 := ∆τ1 −∆τ2 , where ∆τ is the hyperbolic
Laplacian. Pairs eigenvalues of the Laplacian.

ZHecke(τ1, τ2): Hecke projection of the factorized product Zspec(τ1)Zspec(τ2), defined by pro-
jection onto the kernel of T (12)

j := T
(τ1)
j − T (τ2)

j , where T (τ)
j is a spin-j Hecke

operator for SL(2,Z), for all spins j ∈ Z+. Pairs eigenfunctions of the Lapla-
cian.

ZWH(τ1, τ2): A name for ZHecke(τ1, τ2) when Eisenstein and cusp form overlaps are equal.
Includes off-shell torus wormhole amplitudes in semiclassical AdS3 gravity.

ZCJ(τ1, τ2): Cotler-Jensen torus wormhole amplitude of AdS3 pure gravity. An instance of
ZWH(τ1, τ2).

ZRMT(τ): The Zspec(τ) whose coarse-grained product generates ZCJ(τ1, τ2). That is, a
solution of ZCJ(τ1, τ2) = PHecke[ZRMT(τ1)ZRMT(τ2)].

2.9 Appendix B: Spectral decomposition on L2(F × F)

We present a few details regarding the functional spaces appearing in the discussion and
their different spectral decompositions. Consider the manifold F = H/SL(2,Z) and the
associated space of square-integrable functions f(τ) ∈ L2(F) with respect to the Petersson
inner product defined by the measure dxdy/y2. A complete basis of functions for L2(F) is
given by the eigenfunctions of the Laplacian:

∆τψω(τ) = λωψω(τ), f(τ) =
∑∫
ω

f̃ω ψω(τ) (2.9.1)

where
ψω(τ) = {ϕ0, E 1

2 +iω(τ), ϕn(τ)} (2.9.2)
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with ϕ0 = vol(F)− 1
2 =

√
3/π and n ∈ Z+. The overlaps are denoted here by f̃ω =

(f(τ), ψω(τ)), with implicit degeneracy for every ω = ωn for which a Maass cusp form
exists. The tensor product space L2(F)⊗ L2(F) of factorized functions f(τ1)g(τ2) admits a
simple decomposition which is just given by the product of the individual decompositions of
f(τ1) and g(τ2).

Consider now the space of square integrable functions of two moduli τ1, τ2, i.e. L2(F1×F2).
A function f(τ1, τ2) ∈ L2(F1 ×F2) is in general not factorizable. The functions appearing in
the body of the text (Zdiag, ZHecke, ZWH, ZCJ) are elements of this space. The Stone-Weierstrass
theorem [193] states that the subspace of factorized functions f(τ1)g(τ2) ∈ L2(F)⊗ L2(F) is
dense in L2(F1 ×F2). We then have a complete basis of functions for L2(F1 ×F2) given by:

f(τ1, τ2) =
∑∫
ω1,ω2

f̃ω1,ω2 ψω1(τ1)ψω2(τ2) (2.9.3)

The overlaps f̃ω1,ω2 are computed by taking the inner product with the basis elements, with
the “double inner product” defined by the product metric

(f, g) :=
∫

F1

dx1dy1

y2
1

∫
F2

dx2dy2

y2
2

f(τ1, τ2)ḡ(τ1, τ2), (2.9.4)

As an example, the constant term in the spectral decomposition can be computed by
taking residues of a double Rankin-Selberg transform:

⟨f(τ1, τ2)⟩ = 1
vol(F)2

∫
F1

dx1dy1

y2
1

∫
F2

dx2dy2

y2
2

f(τ1, τ2) = Res
s1=1

Res
s2=1

Rs1,s2 [f ], (2.9.5)

where the double Rankin-Selberg transform is defined as:

Rs1,s2 [f ] :=
∫

F1

dx1dy1

y2
1

∫
F2

dx2dy2

y2
2

f(τ1, τ2)Es1(τ1)Es2(τ2). (2.9.6)

The overlaps with a single Eisenstein can also be computed in terms of the Rankin-Selberg
transform on the critical line Res = 1

2 :

(f, ϕ0Es(τ1)) = 1√
vol(F)

∫
F1

dx1dy1

y2
1

∫
F2

dx2dy2

y2
2

f(τ1, τ2)Es(τ1)

=
√

vol(F) Res
r=1

R1−s,r[f ],
(2.9.7)

and similarly for (f, ϕ0Es(τ2)).
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2.9.1 Regularization of the Cotler-Jensen wormhole

As an application, we show how the divergence of the Cotler-Jensen wormhole can be obtained
and regularized from the constant term in the spectral decomposition. The constant term is
given by taking residues of the double Rankin-Selberg transform:

⟨ZCJ⟩ = Res
s1=1

Res
s2=1

∫
F1

dx1dy1

y2
1

∫
F2

dx2dy2

y2
2

ZCJ(τ1, τ2)Es1(τ1)Es2(τ2)

= 1
vol(F) Res

s2=1

∫
F1

dx1dy1

y2
1

Γ(s2)Γ(1− s2)
π

Es2(τ1).
(2.9.8)

The Rankin-Selberg transform has a double pole at s2 = 1, indicating the need for regulariza-
tion. Simply taking the residue one obtains

⟨ZCJ⟩ = − 1
πvol(F)

∫
F1

dx1dy1

y2
1

Ê1(τ1). (2.9.9)

where
Ê1(τ) := lim

s→1

(
Es(τ)− 3

π

1
s− 1

)
(2.9.10)

is the “finite part” of Es(τ) as s → 1. The integral (2.9.9) is divergent, as Ê1(τ1) diverges
linearly as y1 →∞. We can regularize the overlaps by splitting the pole with a new parameter
r in the following way, preserving the s→ 1− s reflection symmetry:

⟨Z(reg)
CJ ⟩ = 1

πvol(F) Res
s=1

∫
F1

dx1dy1

y2
1

Γ(s+ r − 1)Γ(r − s)Es(τ1)

= 1
πvol(F)2

∫
F1

dx1dy1

y2
1

Γ(r)Γ(r − 1)

= 1
πvol(F)Γ(r)Γ(r − 1)

(2.9.11)

As r → 1, this has a divergence that is constant in τ1, τ2, so we can regularize by subtracting
this term:

Z
(reg)
CJ = lim

r→1

(
ZCJ(τ1, τ2)−

3
π2

1
r − 1

)
(2.9.12)

This is the same regularization originally proposed by [34], now obtained from regularizing
the constant term in L2(F × F). The remaining finite constant is a free parameter of the
regularization scheme.
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2.9.2 Diagonal projection

Let us make a comment on the diagonal projection of Section 2.4, defined as projection
of Zspec(τ1)Zspec(τ2) onto ker(∆12). Note that functions for which ∆τf(τ) is constant are
annihilated by ∆12. When ∆τf(τ) = 0, f(τ) is a constant. When ∆τf(τ) ̸= 0, the unique
solution up to rescaling is given by Ê1(τ), which obeys

∆τ Ê1(τ) = − 3
π

(2.9.13)

Thus, given a Zdiag(τ1, τ2), we may define

Z ′
diag(τ1, τ2) = Zdiag(τ1, τ2) + c1(Ê1(τ1) + Ê1(τ2)) + c2 (2.9.14)

which also obeys Z ′
diag(τ1, τ2) ∈ ker(∆12), where c1 and c2 are constants. The choice of these

constants is thus a choice of scheme for the diagonal projection. In the main text, we choose
c1 = c2 = 0. One way to motivate this choice is to note that Z ′

diag(τ1, τ2) /∈ L2(F × F) when
c1 ̸= 0: in particular, Ê1(τ) is not part of the basis (2.9.2). So the choice c1 = c2 = 0 may
be rephrased as the condition that the diagonal projection preserve the square integrability,
present in the original product Zspec(τ1)Zspec(τ2), and moreover sets the constant term to
zero.

2.10 Appendix C: Continuity of the j → 0 limit

In this appendix we show that the scalar Fourier mode of the Eisenstein series Es,0(y) can
be obtained from a smooth j → 0 limit of the spin j mode Es,j(y), and similarly for the
Eisenstein density ρs,j(t).

We want to evaluate the following limit

lim
j→0

E∗
s,j(y) = lim

j→0

2σ2s−1(j)
js−

1
2

√
yKs− 1

2
(2πjy) (2.10.1)

and show its equality with

E∗
s,0(y) = Λ(s)ys + Λ(1− s)y1−s (2.10.2)

The limit j → 0 for fixed y corresponds to the small argument expansion for the Bessel
function which is, at leading order

Ks− 1
2
(2πjy) ≈ (2πjy)s− 1

2

2s+ 1
2

Γ
(1

2 − s
)

+ (s→ 1− s) (2.10.3)
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Using Λ(s) = Λ
(

1
2 − s

)
= πs−

1
2 Γ
(

1
2 − s

)
ζ(1− 2s) we can simplify various factors to obtain

lim
j→0

2σ2s−1(j)
js−

1
2

√
yKs− 1

2
(2πjy) = lim

j→0

(
Λ(s)ys σ2s−1(j)

ζ(1− 2s) + (s→ 1− s)
)

(2.10.4)

Remembering that the divisors of zero are all the natural numbers we have

lim
j→0

σ2s−1(j) = ζ(1− 2s) (2.10.5)

which correctly gives the scalar result.

The same manipulations may be applied to the corresponding density. The spin-j
Eisenstein density is

ρ∗
1
2 +iω,j(t) = 2σ2iω(j)

jiω
θ(t)

cos
(
ω cosh−1

(
2t
j

+ 1
))

√
t(t+ j)

(2.10.6)

To arrive at the scalar density we need to compute the following limit:

lim
j→0

σ2iω(j)
jiω

eiω cosh−1 ( 2t
j

+1) = (4t)iω lim
j→0

σ2iω(j)
j2iω . (2.10.7)

We use the identity
σ2iω(j)
j2iω = σ−2iω(j) (2.10.8)

which, together with the previous limit (2.10.5), recovers the j = 0 density from the j → 0
limit,

lim
j→0

ρ∗
1
2 +iω,j(t) = ρ∗

1
2 +iω,0(t)

= ζ(2iω)
t

(4t)iω + (ω → −ω).
(2.10.9)

2.11 Correlations among spins

In this appendix we prove that modular invariance correlates unequal spins in the diagonal
approximation:

Z
(j1,j2)
diag (y1, y2) ∝ δj1,j2 ⇐⇒ Zdiag(τ1, τ2) = 0 (2.11.1)

We proceed by contradiction, assuming that Z(j1,j2)
diag (y1, y2) ∝ δj1,j2 .

First suppose the scalar sector is non-vanishing, Z(0,0)
diag (y1, y2) ̸= 0. Then the Eisenstein
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overlaps are non-vanishing:

Z
(0,0)
diag (y1, y2) ̸= 0 ⇒ (Zspec, Es) ̸= 0. (2.11.2)

The spin-(0, j) mode, which by assumption is equal to zero, is given by

0 = Z
(0,j)
diag (y1, y2) =

∫
Ccrit
{Zspec, Es}2E∗

s,0(y1)a(s)
j

√
y2Ks− 1

2
(2πjy2)

+
∞∑
n=1
{Zspec, Esn}(Zspec, ϕn)

(
E∗
sn,0(y1)b(n)

j

√
y2Ksn− 1

2
(2πjy2) + (y1 ↔ y2)

)
(2.11.3)

We can single out the first line by using the Bessel orthogonality relation
∫ ∞

0
dx
Kit(x)Kiω(x)

x
= π2

2t sinh(πt)δ(t− ω), (2.11.4)

which allows us to project onto a chosen, non-degenerate eigenvalue ω ̸= ωn on the critical
line. This implies {Zspec, Es} = 0, in contradiction with the starting assumption that
Z

(0,0)
diag (y1, y2) ̸= 0.

If instead Z
(0,0)
diag (y1, y2) = 0, then the Eisenstein overlaps vanish. But nonzero cusp form

overlaps imply Z(j1,j2)
diag (y1, y2) ̸= 0 for j1 ̸= j2, which is in contradiction with the δj1,j2 behavior.

Thus the only modular-invariant Zdiag(τ1, τ2) proportional to δj1,j2 is zero.

2.12 Appendix D: Derivation of (2.4.9)

Here we derive (2.4.9), the “corrections” to the RMT ramp that are mandated by SL(2,Z)
invariance, starting from the definition of S(r) in (2.4.7).

To prove (2.4.9) we first write

S(r) = r2M−1[M[R(z); 1− s]φ(s); r2] (2.12.1)

We now use the Mellin convolution theorem: given two functions f(s) and g(s) with inverse
Mellin transforms48 F (z) and G(z), respectively,

M−1[f(s)g(s);x] =
∫ ∞

0

dy

y
F

(
x

y

)
G(y) (2.12.2)

48Defined within the relevant strips.

99



If g(s) = g(1− s), then G(x) = x−1G(x−1), and we can instead write

M−1[f(s)g(s);x] =
∫ ∞

0
dy F (xy)G(y) (2.12.3)

Since M[R(z); s] =M[R(z); 1− s] we can apply (2.12.3) to write

S(r) = r2
∫ ∞

0
dyM−1[φ(s); r2y]R(y) (2.12.4)

The function φ(s), defined in (2.4.3), may be written as

φ(s) =
√
πΓ

(
s− 1

2

)
Γ(s)

ζ(2s− 1)
ζ(2s) (2.12.5)

We next use
ζ(2s− 1)
ζ(2s) =

∞∑
n=1

ϕ(n)
n2s (2.12.6)

where ϕ(n) is the Euler totient function. Using (2.12.5) and (2.12.6),

M−1[φ(s); r2y] =
∞∑
n=1

ϕ(n)M−1

n−2s

√
πΓ

(
s− 1

2

)
Γ(s) ; r2y


=

∞∑
n=1

ϕ(n)
n

Θ (1− n2r2y)√
r2y (1− n2r2y)

(2.12.7)

Plugging into (2.12.4) and moving the sum over n outside the integral, this can be massaged
into the form

S(r) =
∞∑
n=1

ϕ(n)
n2

∫ 1

0

du√
u(1− u)

R
(

u

n2r2

)
(2.12.8)

This is (2.4.9).

As a check, we plug in the CJ/MaxRMT result, RCJ(z) = π−1/(1 + z), which gives

SCJ(r) =
∞∑
n=1

ϕ(n)
n

r√
1 + n2r2

(2.12.9)

This reproduces the correct result (2.6.3).

Note that if R(0) is finite and nonzero, then S(r) has a linear, r-independent, divergence
as r →∞:

S(r) ≈ πR(0)
∞∑
n=1

ϕ(n)
n2 (r →∞) (2.12.10)

This is the case for the CJ/MaxRMT wormhole, where RCJ(0) = π−1.
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We can also rewrite (2.12.8) as a sum over residues by contour deformation. Since
the integral is along the branch cut from zero to one,49 we can replace it with a contour
surrounding the branch cut, which we then blow up to pick up residues elsewhere in C. For
example, simple poles of R(z) contribute as

S(r) ⊃ π
∞∑
n=1

ϕ(n)
n

∑
z∗

√√√√ r2

z∗(n2r2z∗ − 1) Res
z=z∗
R(z) (2.12.11)

This may of course be generalized to include higher-order poles or non-meromorphic behavior.

2.13 Appendix F: Toy wormholes in AdS3 ×M gravity

In this appendix we construct an explicit family of torus wormhole amplitudes which are toy
models (or perhaps candidates) for off-shell wormholes of AdS3 gravity with light matter,
such as AdS3×M compactifications with largeM. These theories are not MaxRMT theories,
and their wormholes should reflect this. Specifically, the function RWH(z), which determines
the entire amplitude (see (2.4.7) and (2.5.23)), should have poles in the complex z plane
away from the ramp pole at z = −1 with coefficients of O(c0), thus augmenting the CJ pure
gravity wormhole with large corrections. The examples given below have the added property
that both the spectral overlap fWH(s) and their Mellin transforms RWH(z) are computable,
with a linear ramp.

We first register a useful Mellin transform,

M
[ 1
1 + nz

; s
]

= n−sΓ(s)Γ(1− s) (2.13.1)

Note that reflection symmetry fWH(s) = fWH(1− s) requires the poles to appear in pairs, at
z = z∗ and z = z−1

∗ . The reflection-symmetric combination is

M
[ 1
1 + nz

+ 1
n+ z

; s
]

= (n−s + ns−1)Γ(s)Γ(1− s) (2.13.2)

A well-known [143] set of Mellin dual pairs involves harmonic sums in z, i.e. taking FWH(z)
to be an infinite sum over simple poles with no regular term. So long as we include the pole
at z = −1 with the correct normalization, the wormhole reproduces the linear ramp. In
accordance with the comments in Section 2.6.2, the remaining poles should avoid z ∈ R+ and
|z| = 1. For this reason, harmonic sums over poles along z ∈ R− is not only mathematically,
but also physically, well-motivated here.

49R(z) is analytic for all z > 0 because it is the low-temperature limit y1, y2 → ∞ for fixed z = y1/y2,
which is non-singular on physical grounds.
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Figure 2.8: A plot of the integral in (2.13.8) for p = 1, ω0 = 100 and W ∈ [10, 150], exhibiting
oscillations around the asymptotic value of two. Black points are numerical data points, and
the blue line is an interpolation.

Summing over n in (2.13.2) with an insertion of n−p, we of course have

∞∑
n=1

n−p−s = ζ(s+ p) (2.13.3)

and its reflection. For integer p ∈ Z+, the inverse Mellin transform of (2.13.3) defines a
convergent harmonic sum, plus a simple p-dependent shift:

∞∑
n=1

n−p

1 + nz
= (−z)p−1H(z−1) +

p∑
q=2

ζ(q)(−z)p−q (2.13.4)

So the previous two equations are Mellin partners. Upon adding the reflected term, we have
an explicit pair for every p ∈ Z+. That is, written in terms of fCJ(s) = π−1Γ(s)Γ(1− s),

fWH(s) = fCJ(s)× CRMT

4
(
ζ(s+ p) + ζ(p+ 1− s)

)
(2.13.5)

and its inverse Mellin transform

RWH(z) = CRMT

4π

(−z)p−1H(z−1) +
p∑
q=2

ζ(q)(−z)p−q + (−z)−pH(z)−
p∑
q=2

ζ(q)(−z−1)p+1−q


(2.13.6)

Inserting this overlap into the wormhole ansatz (2.5.23) defines a family of toy model RMT
wormholes for a theory of gravity with light matter, one for every p ∈ Z+.50

50It would be nice to ask whether one can construct an amplitude of this form from a Poincaré sum over
relative modular transformations. The structure of such Poincaré sums might also constrain the allowed
singularity structures in the complex z plane.
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By construction, this has the RMT ramp:

RWH(z → −1) ∼ CRMT

2π
1

1 + z
(2.13.7)

On the Mellin side, one readily verifies that

1
W

∫ ω0+W

ω0
dω
(
ζ
(
p+ 1

2 + iω
)

+ ζ
(
p+ 1

2 − iω
))
≈ 2 (W →∞) (2.13.8)

for all p ≥ 1 and any finite ω0, because |ζ(σ + iω)| → 1 asymptotically as ω → ∞ for any
σ > 1. This can be seen numerically in Figure 2.8. Together with the exactly constant falloff
of fCJ(s), the total fWH(s) satisfies the linear ramp condition (2.4.23).
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Chapter 3

AdS3 Pure Gravity and Stringy
Unitarity

This chapter consists of a paper [2] written in collaboration with Eric Perlmutter. The
original abstract is as follows:

We construct a unitary, modular-invariant torus partition function of a two-dimensional
conformal field theory with a Virasoro primary spectral gap of ∆∗ = c−1

12 above the vacuum.
The twist gap is identical, apart from two states O∗ with spin scaling linearly in the central
charge c. These states admit an AdS3 interpretation as strongly coupled strings. All other
states are black hole microstates.

3.1 The quest for AdS3 pure gravity

The quest for AdS3 pure gravity still beckons.

It is not fully known whether, or in what precise sense, a consistent such theory exists,
either quantum mechanically or in the semiclassical limit. The latter is of particular physical
interest, due to the existence of black holes and the emergence of spacetime.

Holographically speaking, the outstanding spectral problem is to find a torus partition
function of a two-dimensional conformal field theory (CFT) that is mutually compatible
with unitarity (a non-negative Virasoro primary spectral density) and modularity (exact
SL(2,Z)-invariance of the partition function), while preserving the spectral gaps of a dual
bulk theory with only black holes above a normalizable AdS3 ground state. No known
partition function satisfies these basic requirements.

There exists a diverse set of approaches to this problem which, famous as it is, we describe
in condensed fashion. Summing over all smooth on-shell 3-manifolds M with ∂M = T 2 [97],
namely the SL(2,Z) family of BTZ black holes, generates a negative density of states in two
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regimes [97,98,114]: at large spin j →∞ near extremality,
∫ t0

0
dt ρMWK, j(t) ∼ (−1)jeπ

√
ξj, t0 ∼ e−2π

√
ξj (3.1.1)

where
t := min(h, h)− ξ , j = h− h , ξ := c− 1

24 , (3.1.2)

and at the scalar black hole threshold,

ρMWK,0(t) = −6δ(t) + (t > 0 continuum) . (3.1.3)

The property (3.1.1) is especially severe: an exponentially large negative density despite
an exponentially small window. From the bulk perspective, seeking a consistent pure
gravity path integral requires reckoning with the sum over topologies; for related work,
see [34, 113,154,194–198]. (We note here some recent work in AdS3/CFT2 that studies fixed
bulk topologies [101,106–108,147,199].)

Some valuable progress has been made. Explicit restoration of unitarity may be achieved
by retreating from pure gravity [96,200], adding heavy point-particle matter which admits
a geometric bulk interpretation. The construction of [88], which preserves the pure gravity
spectrum, uses dimensional reduction to JT gravity to fix (3.1.1) with an infinite sum over
off-shell Seifert manifolds, though it remains a mostly [1] implicit construction away from
extremality and leaves (3.1.3) intact. Other approaches that forego a subset of the above
conditions include [153,159,201].

3.2 Partition function

The Virasoro primary partition function is defined as

Zp(τ) = √y|η(τ)|2Z(τ) (3.2.1)

where Z(τ) = TrH(qL0− c
24 qL̄0− c

24 ) is the torus partition function (non-holomorphic) and
τ := x+ iy. The following modular-invariant Zp(τ) is unitary at sufficiently large ξ:

Z(τ) = ZMWK(τ) + Zstring(τ) (3.2.2)

where

ZMWK(τ) :=
∑

γ∈SL(2,Z)/Γ∞

√
Im(γτ) |q−ξ

γ (1− qγ)|2

Zstring(τ) :=
∑

γ∈SL(2,Z)/Γ∞

√
Im(γτ)

(
2qξ/4
γ q−ξ/4

γ + c.c.
) (3.2.3)

105



with qγ := e2πiγτ . These are Poincaré sums over SL(2,Z) modulo Γ∞, the set of modular
T -transformations 1. As we substantiate below, the unitary range of ξ includes ξ ≫ 1, and
provisionally appears to hold for all ξ ∈ 2Z+. The reason for the “string” moniker will be
explained momentarily.

From a CFT point of view, Zstring(τ) is a Poincaré sum over two copies of a Virasoro
primary seed state O∗ with quantum numbers

(∆∗, j∗) =
(

2ξ, ξ2

)
⇔ (t∗, t∗) =

(
−ξ4 ,

ξ

4

)
(3.2.4)

and its parity image with h∗ ↔ h∗. We have employed the “reduced twist” variable t along
with its partner t := max(h, h) − ξ. We have chosen the state in (3.2.3) to be doubly-
degenerate, a natural choice that preserves integrality, but Z(τ) is unitary for a finite range
of degeneracies d∗ > 1 (see Appendix B).

Let us state the spectral properties of the partition function Z(τ), deferring its unitarity
to the next subsection. The spectrum is shown in Fig. 3.1. The gap in conformal dimension
above the vacuum is exactly

∆∗ = c− 1
12 (3.2.5)

with no corrections. This is the value anticipated by the Virasoro modular bootstrap program
(e.g. [179–183]) as the optimal gap at large c, on the basis of black hole universality: the
conformal dimension (3.2.5) corresponds to the massless limit of the semiclassical BTZ black
hole. The state-of-the-art bootstrap upper bound on the spectral gap at large c is the
numerical result [182]

∆∗ ≲
c

9.08 (c≫ 1) (3.2.6)

with a slightly weaker analytical bound [183]. (See [127, 139, 145, 151, 202–218] for further
bootstrap work on Virasoro spectra at large c.) The explicit realization by Z(τ) of the
gap (3.2.5) while preserving unitarity at ξ ≫ 1 (the first such example, to our knowledge)
is also noteworthy because of the paucity of pure CFT arguments that a gap this large is
possible. Conversely, Z(τ) shows constructively that without incorporating discreteness into
the modular bootstrap [151], the optimal bound on the gap cannot be lower than ∆∗ = 2ξ.
This statement applies for all values of ξ for which Z(τ) is unitary.

As for the twist spectrum, all Virasoro primaries besides the identity and O∗ have t ≥ 0.
There is a positive integer number of scalar states at t = 0 (see (3.2.10)). The spectrum of
t > 0 states is continuous. This can be understood rather generally in terms of coarse-graining.
At large ξ, this can be thought of as a consequence of ignorance of exponentially small effects

1We thus formally demand that ξ ∈ 2Z+, though we note that Z(τ) remains unitary if we shift the seed
quantum numbers while preserving T -invariance. In particular, Z(τ) remains unitary if we slightly shift
∆∗ > 2ξ while keeping t∗ = − ξ

4 fixed; for simplicity, we focus on the case ∆∗ = 2ξ in the main text.
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Figure 3.1: The Virasoro primary spectrum of Z(τ). Green dots denote the vacuum state
and two (parity-invariant) states with (h∗, h∗) = (5

4ξ,
3
4ξ), interpretable in AdS3 as strongly

coupled strings. All other states exceed the semiclassical black hole threshold: min(h, h) ≥ ξ.
The density of states is positive.

in c – for example, smearing over the mean level spacing ∼ e−SCardy,j(t). We explain these
points of interpretation in Sec. 3.5.

3.2.1 Density of states

The corresponding Virasoro primary density of states, related to our partition function as

Z(τ)
√
y

=
∞∑
j=0

(2− δj,0) cos(2πjx)
∫
R
d∆ e−2πy(∆−2ξ)ρj(∆) (3.2.7)

can be derived straightforwardly using existing methods for Poincaré sums. We have, in
terms of reduced twist t,

ρj(t) = ρMWK, j(t) + ρstring, j(t) (3.2.8)

for every spin j. The MWK density ρMWK, j(t) is recalled in Appendix A. The new term is,
for j ̸= 0,

ρstring, j(t) = 4√
t t

∞∑
s=1

fj,j∗;s cos
(2π
s

√
ξt
)

cosh
(2π
s

√
ξt
)

+ (j∗ → −j∗, t↔ t)
(3.2.9)

107



where fj,j∗;s := S(j, j∗; s)/s with S(j, j∗; s) a Kloosterman sum. For j = 0, such sums must
be regularized; using standard methods nicely summarized in [96], the result is the j = 0
specialization of the j ̸= 0 densities, augmented by a constant subtraction; see Appendix A.

There are two hurdles to establishing positivity: one must cancel the negativity of the
MWK partition function in the j → ∞ regime, and at the scalar threshold t = 0, both
without introducing new negativity.

At j →∞, the negativity (3.1.1) is resolved by construction: we have added states with
reduced twist t∗ = −ξ/4, designed precisely to avoid the large-spin negativity in accordance
with the arguments of [98] and the subsequent approach of [96, 200]. (We added two such
states, but any number d∗ > 1 would do; we review this in Appendix B.) The states O∗ have
asymptotically large spin as ξ →∞. It is exactly this property which admits the novelty of a
spectral gap ∆∗ = 2ξ without introducing further negativity elsewhere in the spectrum – and
indeed, as we now show, curing the scalar negativity (3.1.3) in the process.

The scalar density of states is

ρ0(t) = δ(t+ ξ) + (−6 + 8σ0(j∗))δ(t) + ρ̃0(t) . (3.2.10)

The first term is the vacuum state. The second, formerly problematic, term has been rendered
strictly positive, for any j∗ = ξ/2. Happily, it is also an integer, a welcome surprise. Unlike
previous approaches to this negativity, its resolution does not require the addition of an
“extra” ad hoc +6δ(t) [114], instead coming for free in ρstring,0(t). We note a number-theoretic
feature of this degeneracy: if j∗ is prime, then σ0(j∗) = 2.

The last term, ρ̃0(t), is the continuum with support on t > 0, given explicitly in Appendix
A. Its positivity requires a more careful analysis because various large-ξ suppression factors
are absent when j = 0, i.e. t = t, as can be seen in (3.2.9); however, ρ̃0(t) is indeed positive
for all t ≥ 0. We provide details in Appendix B, but can sketch the essential point here. In
the regime ξt≫ 1, the scalar MWK density is positive and exponentially larger in magnitude
than the string density. As ξt ∼ O(1), positivity is non-trivial as both densities are of
the same order and the string density is term-wise oscillatory in t. With an eye toward
semiclassical gravity, we focus on ξ ≫ 1, taking the regime of x := 2π

√
ξt fixed. The proof of

positivity proceeds in two steps: first, we show that the sum of the s = 1 and s = 2 terms in
the regularized density is positive; and second, we show that the s ≥ 2 terms are individually
positive (see the Appendix B)

Numerical evaluation of the scalar density at large but finite ξ confirms these analytic
results, as shown in Fig. 3.2. Indeed, we see that positivity appears to hold all the way down
to j∗ = 1, i.e. ξ = 2, formally the smallest central charge in our construction 2.

2One can generalize our construction to the case of j∗ ∈ Z+ − 1
2 , whereupon the stabilizer group Γ∞ in

(3.2.3) would instead be the set of T 2 transformations. Analogous extensions to supersymmetric partition
functions would also be straightforward. It would be interesting to ask whether the requisite positivity is
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Figure 3.2: Plot of the regularized scalar primary density of states ρ̃0(x) of the partition
function Z(τ), as a function of x = 2π

√
ξt, with ξ ranging from ξ = 2 (red) to ξ = 102 (blue)

in steps of 10. The curves are positive for all x ≥ 0. (Obtained by summing over s ≤ 200 in
the regularized density, see Appendix A.)

3.3 A bulk string interpretation

The above construction is purely on the CFT side. Is there an AdS3 gravity interpretation of
the highly-spinning operator O∗ and its modular images?

One appealing answer is that O∗ is a strongly coupled string, and its modular images,
stringy contributions to the black hole spectrum. While an operator like O∗ with t < 0 and
t > 0 cannot be dual to a smooth BTZ black hole nor to a conical defect (such solutions with
real mass and angular momenta do not exist in semiclassical AdS3 gravity coupled to point
particles), spinning strings in AdS3 can, and indeed do, satisfy this condition.

The spectrum of folded, spinning Nambu-Goto strings coupled to gravity in AdS3 was
studied in [220] in the classical limit. The Virasoro primary string spectrum is parameterized
by a string tension λ and an angular velocity ω. The string tension is given in terms of AdS,
string and Planck scales as

λ = 1
2π

LAdS

ℓs

ℓp
ℓs

(3.3.1)

where ℓp = 8πGN .

For a given λ, the string spectrum starts at the origin t = t = −ξ and ends at the
extremality bound t = 0 or t = 0. Matching the string spectrum to the quantum numbers
(3.2.4) of the operator O∗ yields the unique result

λ∗ = 1 , ω∗ = 2 . (3.3.2)

satisfied in each of these cases. See [97,203,208,215,219] for related material.
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This string is strongly coupled: from (3.3.1), an AdS-sized string with λ∗ = 1 requires
ℓp/ℓs ∼ O(1), which is the ratio that defines an effective string coupling gs = (ℓp/ℓs)>0 (where
the exponent depends on the details of the putative string background 3).

The specific value λ∗ = 1 happens to enjoy a certain synergy with the equations of [220].
For generic λ and ω, the solutions of [220] are given in terms of elliptic integrals. However,
at λ = 1 – and only at λ = 1 – the solution simplifies dramatically, as the string embedding
equation becomes algebraic. It is simple enough to recall explicitly in a few lines. The
Lorentzian spacetime metric outside the string is locally AdS3 with the corresponding mass
and angular momentum,

ds2 = 1
16(−du2 + dv2)−

(
z − 1

256z

)
dudv + dz2

4z2 (3.3.3)

where, in the conventions of [220], the conformal boundary is at z →∞. The string embedding
is determined by functions u(σ, τ), v(σ, τ) and z(σ), where (σ, τ) are worldsheet coordinates
with induced metric

h = Ω2(σ)(−dτ 2 + dσ2)

Ω2(σ) = 3(zL − z(σ))(z(σ)− zR)
z(σ)

(3.3.4)

where (3.3.2) implies zL = 3
16 , zR = − 1

48 , and

z(σ) =

(
32− 25 cos2 σ + 5

√
25 cos4 σ − 64 cos2 σ + 64

)
384 (3.3.5)

Opposite points on the string are identified, “sewing up” the spacetime 4. The outermost
radius of the string (where it folds) is at z = zL, while the center of the string is at
z = z(0) = 1/12. The spacetime ends at the string, avoiding a naked singularity.

So we see that the state O∗ admits an interpretation as a highly-spinning string coupled
to gravity in AdS3. That it is strongly coupled dovetails nicely with how AdS3 pure gravity
could possibly arise in string theory: strong coupling is necessary to gap the light string
modes to the Planck scale.

3For example, in the D1-D5 system λ ∼ g6/
√
c where g6 is the six-dimensional effective string coupling, so

λ = 1 is highly quantum. In general, λ ∼ O(1) captures a “very strongly coupled” limit of fixed coupling
gs, rather than a ’t Hooft-type double-scaling limit. One can see this by rewriting λ = 6(L/ℓs)2/c using the
Brown-Henneaux relation [31].

4This identification does not happen at fixed t, so the spacetime does not “pinch off” on a constant time
slice.
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3.3.1 Black hole microstates

Our construction adds not only the states O∗, but their SL(2,Z) images too. These states are
heavy, but are not BTZ black holes (fully captured by the MWK sum over smooth Euclidean
saddles) nor their orbifolds (which are modular images of conical defect geometries).

Instead, these are new black hole microstates made of strongly coupled strings. The
Euclideanized, modular-transformed solutions of [220] are small black strings, in the following
specific sense: whereas a BTZ/conical defect solution with the same quantum numbers would
be nakedly singular, the strings shroud this region by terminating the spacetime. These
geometries may be thought of as quantum AdS3 versions of the stringy cloak of [221] and other
small black strings (e.g. [222,223]). That they are “small” – the modular transforms of a single
string, rather than a parametrically large number of them – is also visible thermodynamically
in the different functional forms of the stringy and BTZ microcanonical entropies: ρstring,j(t)
is oscillatory as a function of t, unlike the BTZ density ρMWK,j(t), and is exponentially
subleading to ρMWK,j(t), term-by-term in the modular sum, away from the near-extremal
regime ξt ≲ O(1) where the BTZ black hole becomes highly quantum 5. This fluctuating
behavior signals that the stringy degrees of freedom give genuinely new contributions to the
black hole Hilbert space, distinct from the semiclassical BTZ geometries or quotients thereof.

3.4 SL(2,Z) spectral representation

As a slight detour, it is enlightening to give an alternative representation of Zstring(τ). The
spectral gap condition ∆∗ = 2ξ implies that Zstring(τ) ∈ L2(F), and hence admits a harmonic
decomposition in the SL(2,Z) spectral eigenbasis, comprised of the completed Eisenstein
series E∗

1
2 +iω(τ) with ω ∈ R and Maass cusp forms ϕn(τ) (e.g. [112, 120, 121]). Denoting their

spin-j Fourier coefficients as a(s)
j and b(n)

j , respectively, and using the conventions of [1], we
have

Zstring(τ) =
∫

Ccrit
a(s)
j∗

Γ
(

1
2 −s

2

)
Γ
(
s− 1

2
2

)
Λ(s)Λ(1− s) E∗

s (τ)

+
∞∑
n=1

b(n)
j∗ Γ

(
− iωn

2

)
Γ
(
iωn
2

)
ϕn(τ)

(3.4.1)

where Ccrit denotes ((4πi)−1 times) contour integration along s = 1
2 + iω, and Λ(s) :=

π−sΓ(s)ζ(2s) is the completed Riemann zeta function. For details see Appendix C.

Presenting Zstring(τ) in spectral form reveals some interesting features and curiosities.
5This is within the “enigmatic” regime [139] where such corrections may be large, consistent with modularity

and sparseness.
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First, the modular average of Zstring(τ) vanishes:

⟨Zstring⟩ :=
∫

F

dxdy

y2 Zstring(τ) = 0 . (3.4.2)

This follows from the vanishing of the Eisenstein spectral overlap in (3.4.1) at s = 0, which
defines the modular average in general. We note that this property is shared by Narain
CFTs [112].

Next, Zstring(τ) may be written as the action of an SL(2,Z) Hecke operator Tξ/2
6 on a

“primitive” partition function, Zstring(τ), defined as Zstring(τ) but with the Fourier coefficients
evaluated at j∗ = 1:

Z(τ) = ZMWK(τ) + Tξ/2Zstring(τ) . (3.4.3)

In this way, the entire family of unitary partition functions indexed by ξ may be generated by
a Hecke action, implementing shifts in central charge. This shares a superficial likeness with
Witten’s construction of holomorphic extremal CFT partition functions [95], with obvious
differences.

Finally, there is a profound conjecture in number theory, the “horizontal” Sato-Tate
conjecture for Maass cusp forms of SL(2,Z), which has interesting consequences for the
spectral decomposition [224–227]. The conjecture states that for prime j →∞ and any fixed
n, the normalized Fourier coefficients b(n)

j /b(n)
1 are equidistributed with respect to Wigner’s

semicircle distribution. This (and b(n)
1 ̸= 0, which follows from Hecke relations applied to

Hecke-Maass cusp forms) implies that

lim
j→∞
⟨⟨b(n)

j ⟩⟩ = 0 (fixed n) (3.4.4)

where ⟨⟨·⟩⟩ indicates a statistical average. Therefore, even though (Zstring, ϕn) ∝ b(n)
j∗ ̸= 0, they

vanish on average in the large central charge limit j∗ →∞ (for prime j∗) 7. In this sense, the
Eisenstein term seems to more directly underlie the unitarity of Z(τ). It would be nice to
understand this from a physical, quantum chaos point of view.

3.5 Summary and Random (matrix) comments

Our main result is the construction of the unitary partition function Z(τ) given in (3.2.2),
with the spectral gaps depicted in Fig. 3.1.

6Acting on non-holomorphic SL(2,Z)-invariant functions, Tjf(τ) = 1√
j

∑
a,b,d f

(
aτ+b

d

)
where ad = j, d > 0

and 0 ≤ b ≤ d− 1.
7The conjecture is widely held to be true on the basis of stringent numerical checks, limited proofs,

and relation to Sato-Tate conjectures in other contexts. Note that at finite j∗, the “vertical” Sato-Tate
conjecture [228], would only imply vanishing coefficients as n→∞.
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From the AdS3 gravity point of view, despite the dimension gap above the vacuum state
to the black hole threshold ∆∗ = c−1

12 , this is not a semiclassical pure gravity path integral in
the strict sense, due to the spinning states O∗ with sub-threshold twist. At any finite spin,
these states are not visible, and the theory contains only black hole states. The degeneracies
of all discrete states are integers.

We have advanced a bulk interpretation of O∗ as a strongly coupled spinning string,
though other interpretations may well be possible (or preferred). We view this as an indicative
toy model for a genuine string theory compactification to AdS3 pure gravity. A complete
approach would include higher Regge trajectories; corrections to the spectrum from excitations
around the spin-j ground states of [220]; and the other ingredients, such as fluxes and their
brane sources, required to solve the strongly coupled string field equations (whatever they
may be). Nevertheless, the problem of finding a direct, physically sensible quantization of
AdS3 gravity which would lead to our partition function (or another one with the desired
properties) remains outstanding.

3.5.1 Randomness

Our construction cures the negativity from the sum over smooth bulk saddles semiclassically,
rather than quantum mechanically. Quantum effects are not just present in a consistent
theory, but are expected to be crucial in the engineering of a bona fide theory of AdS3

pure gravity: there are strong indications that if such a theory exists, off-shell geometries
encoding random matrix behavior of the chaotic spectrum play a central role in unitarizing
the spectrum [34, 35, 88]. An explicit determination of the leading-order random matrix
contribution to the semiclassical path integral of pure gravity with torus boundary, denoted
as ZRMT(τ), was made in [1].

In any theory of semiclassical AdS3 gravity (pure or otherwise), the black hole spectrum
is chaotic, and its path integral should encode random fluctuations for quantum consistency.
Such random matrix contributions are absent in Z(τ). We may explain this fact, as well as
the continuous spectrum in the chaotic regime t > 0, by interpreting Z(τ) as the partition
function of a microscopic compact CFT that has been subject to coarse-graining.

As shown in [1] using a formalism built on a CFT trace formula, the random matrix
contribution to the density of states, properly understood, vanishes upon coarse-graining
the spectrum over a suitable microcanonical window in twist, δt 8. Because this window is
necessarily larger than the exponentially small mean level spacing of the chaotic spectrum,
the coarse-graining simultaneously explains both the absence of random matrix contributions
to (3.2.2) and its continuous spectrum while remaining compatible with a microscopic CFT

8This coarse-graining may be performed using convolution as f(t) :=
∫∞

0 dt′ W (t− t′)f(t′) where W (t)
has characteristic width δt and obeys

∫∞
0 dtW (t) = 1.
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interpretation. Given our explicit construction, we can determine δt: it is the characteristic
wavelength of the oscillations of ρstring,j(t) in (3.2.9), namely, δt ∼ 1/ξ. We emphasize
that this coarse-graining interpretation does not rely on a ξ ≫ 1 limit, and is compatible
with compactness of a putative underlying CFT; there could, of course, be as-yet-unknown
bootstrap constraints that rule this possibility out.

Note that in a ξ ≫ 1 limit, Z(τ) is also compatible with other interpretations, in
particular with a hypothetical ensemble average over (possibly near-)CFTs, or with other,
perhaps independent, constructions of “approximate CFT” [103]. While we have presented a
microscopic CFT interpretation in part to emphasize that a departure from standard AdS/CFT
physics is not required at this level, semiclassical gravity seems unable to distinguish among
these [102–104], at least perturbatively in GN .

A complementary view on this coarse-grained interpretation comes from the formalism
of [1]. Since Zstring(τ) is the modular completion of a non-black hole state, we do not expect
it to encode random matrix behavior per se [1, 64, 103, 123]. Applying the results of [1]
to Zstring(τ) helps to ratify this perspective. In (3.4.1) we provided the SL(2,Z) spectral
decomposition of Zstring(τ). A canonical diagnostic of random matrix universality is the
presence of a linear ramp in the coarse-grained spectral form factor, with a specific coefficient
prescribed by the random matrix ensemble. We can ask whether Zstring(τ) generates this
ramp after squaring and taking the diagonal approximation. A necessary and sufficient
condition for the ramp was derived in [1], as an exponential decay condition on the spectral
overlaps at ω →∞. One readily checks that Zstring(τ) does not satisfy this criterion, instead
decaying as a power law 9.

3.5.2 Stringiness

On the other hand, Zstring(τ) exhibits some behavior that lies somewhere “in between” chaotic
and non-chaotic. Define a microcanonical coarse-graining over mean twist,

f(t1)f(t2) :=
∫ ∞

0
dt′ f(t′ + ϵ)f(t′ − ϵ)W (t− t′) (3.5.1)

where t = t1+t2
2 and ϵ = t1−t2

2 . Applying this to f(t) = ρstring,j(t) at fixed j using (3.2.9)
produces a non-zero variance upon coarse-graining over windows δt ≳ 1

ξ
. However, its

oscillatory behavior leads to suppression relative to the disconnected average. In particular,
at ξ ≫ 1,

Var(ρj(t))
ρ̄j(t)2 ≈ e−4π

√
ξ(t+j) (ξ ≫ 1) (3.5.2)

where ρ̄j(t) = ρMWK,j(t). In the extremal limit t→ 0, the suppression factor is e−S0,j , where
S0,j = 4π

√
ξj is the extremal spin-j BTZ black hole entropy. In contrast, wormholes encoding

9Similarly, the Hecke projection [1] of Zstring(τ1)Zstring(τ2) is not a wormhole amplitude.
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chaotic behavior are suppressed as e−2S0,j in the extremal limit [1,34,35,69,187]. It would be
worthwhile to understand this intermediate behavior as a non-perturbative effect, possibly
associated to strongly coupled strings, in a UV complete AdS3 gravity path integral.

3.6 Appendix A: Density of states

We write the total spin-j density of states as

ρj(t) = ρMWK, j(t) + ρstring, j(t) (3.6.1)

The MWK density of states may be written as [96,98]

ρMWK,j(t) =

2√
tt

∞∑
s=1

[
fj,0;s cosh

(4π
s

√
ξt
)

cosh
(4π
s

√
ξt
)

− fj,−1;s cosh
(4π
s

√
ξt
)

cosh
(4π
s

√
(ξ − 1)t

)

− fj,1;s cosh
(4π
s

√
(ξ − 1)t

)
cosh

(4π
s

√
ξt
)

+ fj,0;s cosh
(4π
s

√
(ξ − 1)t

)
cosh

(4π
s

√
(ξ − 1)t

)]

(3.6.2)

where fj,k;s := S(j, k; s)/s and S(j, k; s) is a Kloosterman sum,

S(j, k; s) =
∑

0≤d≤s−1, (d,s)=1
e

2πi
(

d
s
j+ d−1

s
k

)
(3.6.3)

where d−1 ∈ Z is the multiplicative inverse of d mod s. The scalar density requires regular-
ization [97,114]. It is comprised of a delta function piece given by (3.1.3), and a continuous
piece which we denote by ρ̃MWK,0(t):

ρ̃MWK,0(t) =

2
t

∞∑
s=1

{
ϕ(s)
s

[
sinh2

(4π
s

√
ξt
)

+ sinh2
(4π
s

√
(ξ − 1)t

) ]

− 2 µ(s)
s

[
cosh

(4π
s

√
ξt
)

cosh
(4π
s

√
(ξ − 1)t

)
− 1

]} (3.6.4)

where ϕ(s) = S(0, 0; s) is the Euler totient function and µ(s) = S(0, 1; s) is the Mobius
function.
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The string density for j ̸= 0 was given in (3.2.9), which we repeat here for convenience:

ρstring, j(t) = 4√
t t

∞∑
s=1

fj,j∗;s cos
(2π
s

√
ξt
)

cosh
(2π
s

√
ξt
)

+ (j∗ → −j∗, t↔ t)
(3.6.5)

Similarly to the MWK case, the scalar density requires regularization. The regularized density
contains a delta function piece given in (3.2.10), and a continuous piece which we denote by
ρ̃string,0(t):

ρ̃string,0(t) =8
t

∞∑
s=1

cs(j∗)
s
×

[
cos
(2π
s

√
ξt
)

cosh
(2π
s

√
ξt
)
− 1

] (3.6.6)

where cs(j∗) is a Ramanujan sum,

cs(j∗) =
∑

1≤d≤s, (d,s)=1
e2πi d

s
j∗ (3.6.7)

The total regularized scalar density is given by the sum of these two contributions, together
with the delta functions in (3.2.10):

ρ0(t) = δ(t+ ξ) + (−6 + 8σ0(j∗))δ(t) + ρ̃0(t) (3.6.8)

where

ρ̃0(t) = ρ̃MWK,0(t) + ρ̃string,0(t). (3.6.9)

3.7 Appendix B: Positivity

We treat in turn the positivity of the large spin j →∞, finite spin j ≥ 1, and scalar j = 0
sectors of the density (3.6.1), focusing mostly on the regime ξ ≫ 1. Actually, we consider a
more general case in which we have d∗ string states: namely, Zp(τ) = ZMWK(τ) + d∗

2 Zstring(τ),
and correspondingly for the densities. For the partition function Z(τ) defined in the main
text, d∗ = 2.
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3.7.1 Positivity at large spin

The MWK density (3.6.2) is known to be negative in the extremal limit t→ 0 of large spin
|j| → ∞ (more precisely, for t ≲ t0 ∼ e−2π

√
ξj, dropping a numerical prefactor). We cure

this negativity with the states O∗ by design, having chosen their twist to be t∗ = − ξ
4 . The

mechanism is the same as described in Sec. 2.1 of [96], building on [98,200]. In the regime
t < t0 with j →∞, the MWK density is approximately equal to [96]

ρMWK, j(t) ≈
(−1)j√
jt

(
e2π
√
ξj + e2π

√
(ξ−1)j

)
(3.7.1)

In the same regime, the string density (3.6.5) has the same exponential behavior but with a
positive coefficient, coming from the state of spin −j∗:

ρstring, j(t) ≈
d∗√
jt
e2π
√
ξj. (3.7.2)

The string density cancels the odd-spin negativity for d∗ > 1. Whereas at d∗ = 1 there
are subleading negativities to take care of, requiring the addition of higher-twist states [96],
choosing d∗ = 1 + δ for any finite δ gives a positive extremal density. In the construction of
Z(τ) in (3.2.2), we chose d∗ = 2, the smallest integer degeneracy which guarantees positivity,
as a matter of naturalness. The above discussion applies equally to the regime of large
negative spin j → −∞, whereupon the negativity is cured by the state O∗ with spin +j∗.

3.7.2 Positivity at j ≥ 1

We now consider finite spin j ≥ 1. We also take ξ ≫ 1. There are two regimes of twist t to
consider: the extremal limit t→ 0, and fixed t.

In the extremal limit, the arguments given just above are again sufficient to guarantee
positivity. In particular, we have ξj ≫ 1 in the present regime of interest; one may confirm
upon inspection that the ξ- and j-dependence of ρMWK, j(t) and ρstring, j(t) are such that at
ξj ≫ 1, even for finite j, the result of the previous subsection carries through.

Now we consider the regime of fixed t. Since ξj ≫ 1, terms of the form cosh
(

4π
s

√
ξ(t+ j)

)
for s ≥ 2 are exponentially suppressed with respect to the s = 1 term. At fixed t, the MWK
density is therefore well-approximated by the s = 1 term:

√
tt

2 ρMWK, j(t) ≈
[
cosh

(
4π
√
ξt
)
− cosh

(
4π
√

(ξ − 1)t
)]

×
[
cosh

(
4π
√
ξ(t+ j)

)
− cosh

(
4π
√

(ξ − 1)(t+ j)
)] (3.7.3)
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This is manifestly positive, and scales as ∼ e4π
√
ξj times an O(1) coefficient. The string

density at leading order in ξj ≫ 1 is
√
tt

2d∗
ρstring, j(t) = cos

(
2π
√
ξt
)

cosh
(

2π
√
ξ(t+ j)

)

+
∞∑
s=1

fj,j∗;s cos
(2π
s

√
ξ(t+ j)

)
cosh

(2π
s

√
ξt
) (3.7.4)

In the first line we dropped the exponentially-suppressed s > 1 terms (this is allowed because
the sum over s cannot lead to exponential enhancement), whereas no such suppression is
present in the second line. Noting that (3.7.4) scales as ∼ e2π

√
ξj, we see that the sum of

(3.7.3) and (3.7.4) is positive, as the latter is exponentially suppressed in ξj ≫ 1. As an
aside, note that this hierarchy can be overcome if d∗ is exponentially large in ξ, a possibility
that we discard (in the next subsection we bound d∗ by an O(1) number).

Summarizing so far, we have shown that ρj(t) > 0 for j ≥ 1 and all t at ξ ≫ 1.

3.7.3 Positivity at j = 0

The scalar sector requires slightly more attention since there is no longer a parametrically
large scale that suppresses s > 1 terms in the density. Since the MWK density is exponentially
large and positive as ξt≫ 1, any possible negativity will arise only for ξt ≲ O(1). We can
then study the density at fixed x := 2π

√
ξt, where we also take ξ ≫ 1.

We divide the proof into two parts: showing that the sum of (s = 1) and (s = 2) terms is
positive for d∗ below a critical value; and showing that s > 2 terms are individually positive.

(s = 1) + (s = 2)

The sum of the s = 1, 2 terms of (3.6.4) and (3.6.6) (times d∗
2 ) is, at leading order in large ξ,

t

2 ρ̃0(t)
∣∣∣
s≤2

= 2 sinh2 x+ 2d∗(cosx cosh x− 1)

+ d∗(−1)j∗
(

cos
(
x

2

)
cosh

(
x

2

)
− 1

)
.

(3.7.5)

One can easily see numerically that upon increasing d∗, this function develops a minimum
xmin which eventually becomes negative, approximately given by

d∗ ≲ 4.910, xmin ≈ 1.851 (j∗ even)

d∗ ≲ 5.236, xmin ≈ 1.847 (j∗ odd)
(3.7.6)
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Figure 3.3: Plot of the regularized scalar density of states ρ̃0(x) with ξ = 1000, as a function
of x = 2π

√
ξt, with degeneracy ranging from d∗ = 3.3 (red) to d∗ = 7.3 (blue) in half-integer

steps. For d∗ ≳ 7.3, the density develops a negative region. (Obtained by summing over
s ≤ 200 in (3.6.9).)

If d∗ obeys these bounds, then (3.7.5) is positive. We can check how these bounds compare to
the full sum over s at finite but large central charge: see Fig. 3.3. Summing up to s = 200 for
ξ = 1000, which easily ensures convergence, we observe numerically that the density becomes
negative for d∗ ≳ 7.3, not far from the limited analytic bound obtained above. The growth of
the upper bound as we include more terms in the sum is due to the positivity of the s > 2
terms, as we will show next. Note that at smaller ξ, the upper bound actually grows, as
seen in Fig. 3.4: for the smallest value ξ = 2 allowed within our construction, we observe
positivity for d∗ ≲ 19.2.

s ≥ 3 terms

At leading order in ξ ≫ 1, the density of states for s ≥ 3 is:

ts

2 ρ̃0(t)
∣∣∣
s≥3

= 2(ϕ(s)− µ(s)) sinh2(2xs)

+ 2d∗cs(j∗)(cosxs cosh xs − 1),
(3.7.7)

where
xs := x

s
. (3.7.8)

Denoting the right-hand side of (3.7.7) as f(xs), we observe that there is a minimum at
xs = 0 for which f(0) = f ′(0) = 0. As a consequence, one way to ensure positivity is to
demand convexity, f ′′(xs) > 0, for all xs > 0; this is of course not a necessary condition, but
it is sufficient to achieve our goal of demonstrating existence of a range of d∗ in which these
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Figure 3.4: Plot of the regularized scalar density of states ρ̃0(x) with ξ = 2, as a function
of x = 2π

√
ξt, with degeneracy ranging from d∗ = 3.2 (red) to d∗ = 19.2 (blue) in steps of

two. For d∗ ≳ 19.2, the density develops a negative region – a larger critical value than for
ξ = 1000. (Obtained by summing over s ≤ 200 in (3.6.9).)

terms are positive. Imposing convexity gives the inequality

16(ϕ(s)− µ(s)) cosh(4xs)− 4d∗cs(j∗) sin xs sinh xs > 0 . (3.7.9)

Using the bounds
|cs(j∗)| < ϕ(s) , |µ(s)| ≤ 1 , ϕ(s ≥ 3) ≥ 2 (3.7.10)

gives rise to the strongest inequality,

d∗ < 2cosh(4xs)
sinh(xs)

. (3.7.11)

If this is satisfied for all xs, then so is (3.7.9). Minimizing the right-hand side gives

d∗ ≲ 11.888 . (3.7.12)

This ensures positivity of each individual s ≥ 3 term in the density. This is compatible with
the previously derived bounds for the s = 1, 2 terms.

Altogether, we conclude that for a finite range of d∗ > 1, the density of states is positive,
ρj(t) > 0, for all spins j and twists t at ξ ≫ 1.

3.8 Appendix C: Spectral decomposition of Zstring(τ )

In this appendix we derive (3.4.1). We directly present the relevant calculations, directing
the reader to [112,120,121] for details on the SL(2,Z) spectral formalism, and [1,122,123]
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for its further use in the 2d CFT context.

We wish to compute the Petersson inner product

(Zstring, ψω) :=
∫

F

dxdy

y2 Zstring(τ)ψω(τ) (3.8.1)

where ψω(τ) = {E 1
2 +iω(τ), ϕn(τ)} are the SL(2,Z) eigenbasis elements. Since Zstring(τ) is a

Poincaré sum, the overlaps with the Eisenstein series and Maass cusp forms can be easily
computed using the “unfolding trick.” This results in the following integral for the Eisenstein
series:

(Zstring, E 1
2 +iω) =

4a( 1
2 +iω)
j∗

Λ
(

1
2 − iω

) ∫ ∞

0

dy

y
Kiω(2πj∗y) (3.8.2)

where a( 1
2 +iω)
j are the Eisenstein Fourier coefficients

a( 1
2 +iω)
j = 2σ2iω(j)

jiω
, (3.8.3)

which obey reflection symmetry, a( 1
2 +iω)
j = a( 1

2 −iω)
j . The cusp form overlap is obtained similarly:

(Zstring, ϕn) = 4b(n)
j

∫ ∞

0

dy

y
Kiω(2πj∗y), (3.8.4)

where b(n)
j are the cusp form Fourier coefficients, known only approximately via numerics [141].

The integral is divergent at the origin. Regularizing the divergence is straightforward:
introducing

(Zstring, E 1
2 +iω)ϵ :=

4a( 1
2 +iω)

j∗

Λ
(

1
2 − iω

) ∫ ∞

0

dy

y1−ϵKiω(2πj∗y)

=
(πj∗)−ϵa( 1

2 +iω)
j∗

Λ
(

1
2 − iω

) Γ
(
ϵ− iω

2

)
Γ
(
ϵ+ iω

2

) (3.8.5)

the overlaps may be defined by removing the regulator,

(ZstringE 1
2 +iω) = lim

ϵ→0
(Zstring, E 1

2 +iω)ϵ

=
a( 1

2 +iω)
j∗

Λ
(

1
2 − iω

)Γ
(
−iω2

)
Γ
(
iω

2

)
.

(3.8.6)
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and likewise for the cusp form overlap (3.8.4). This yields the spectral decomposition (3.4.1).
We note that the regularization used here is equivalent to the following standard regularization
of Poincaré sums over seed primaries of fixed dimensions,

Zϵ
h,h

(τ) :=
∑

γ∈SL(2,Z)/Γ∞

Im(γτ) 1
2 +ϵqh−ξ

γ qh−ξ
γ , (3.8.7)

where (h, h) = (5
4ξ,

3
4ξ) for our state O∗.

3.8.1 Re-deriving the scalar density

As a consistency check, we can re-derive the scalar density ρstring,0(t) from the spectral
decomposition. The scalar piece of the regularized partition function is

Zϵ
string,0(y)

2√y(πj∗)−ϵ =
∫

Ccrit

yiωa( 1
2 +iω)
j∗

Λ
(

1
2 − iω

)Γ
(
ϵ+ iω

2

)
Γ
(
ϵ− iω

2

)
(3.8.8)

where
∫

Ccrit
= 1

4π
∫∞

−∞ dω is the integration along the critical line. In writing (3.8.8) we
have used the scalar Fourier modes E∗

s,0(y) = Λ(s)ys + Λ(1 − s)y1−s and ϕn,0(y) = 0. We
now perform contour integration for complex z := iω by deforming to a new contour, C, a
semicircle in the left half plane Re(z) < 0 such that yz decays at infinity. The integrand
vanishes factorially on the arc at infinity due to the Λ

(
1
2 − iω

)
in the denominator. The poles

inside the contour come from Γ
(
ϵ+z

2

)
at z = −2k − ϵ with k = 0, 1, . . . . The integral (3.8.8)

is then given as a sum over residues,

Zϵ
string,0(y)
√
π(πj∗)−ϵ = (k = 0 term) +

√
y

∞∑
k=1

(−1)k
k!

4σ4k+2ϵ(j∗)Γ(k + ϵ)
Γ(1

2 + ϵ+ 2k)ζ(1 + 2ϵ+ 4k)

(
π

j∗y

)2k+ϵ (3.8.9)

where we used Λ(s) = π−sΓ(s)ζ(2s) and the explicit Fourier coefficients (3.8.3). We have
separated the k = 0 term because as we remove the regulator ϵ → 0, two simple poles at
z = ±ϵ coalesce into a double pole at z = 0, on the contour. We will thus treat separately
the k > 0 terms, for which the regulator can be trivially removed, and the z = ±ϵ poles.

Let us now Laplace transform to the density of states,

Zstring,0(y) = √y
∫ ∞

0
dt e−4πytρstring,0(t). (3.8.10)

We have written the density in terms of the reduced twist, t = ∆/2− ξ for scalars, which is
related to the density as a function of dimension ∆ through ρ(∆)d∆ = ρ(t)dt. The regularized
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partition function (3.8.9) gives a regularized density

ρstring,0(t) = (k = 0 term) +

8
√
π

t

∞∑
k=1

(−1)kσ4k(j∗)
Γ(1 + 2k)Γ(1

2 + 2k)ζ(1 + 4k)

(
4π2t

j∗

)2k (3.8.11)

where we have removed the regulator in the second line. Using the identity

σz(j) = ζ(z + 1)jz
∞∑
s=1

cs(j)
sz+1 , (3.8.12)

swapping the order of the sums and performing some simplifications,

ρstring,0(t) = (k = 0 term) +

8
t

∞∑
s=1

cs(j∗)
s

∞∑
k=1

(−1)k
(4k)!

(
2π
√

2ξt
s

)4k

.
(3.8.13)

The second line can be resummed to reproduce (3.6.6), the continuous part of the scalar
density.

Finally, we return to the k = 0 term, still with the regulator, which is explicitly given by

ρstring,0(t)
∣∣∣
k=0

= 4
√
π

t(πj∗)ϵ
σ2ϵ(j∗)

Γ(1
2 + ϵ)ζ(1 + 2ϵ)

(
4π2t

j∗

)ϵ
(3.8.14)

To regulate the divergence as ϵ→ 0 and t→ 0, similarly to [96] we integrate from t = 0 up
to some t∗ > 0 and use ϵζ(1 + 2ϵ)→ 1

2 as ϵ→ 0 to arrive at

lim
ϵ→0

[∫ t∗

0
dtρstring,0(t)

∣∣∣
k=0

]
= 8σ0(j∗). (3.8.15)

Together with the continuous part of the density derived above, this reproduces the full result
(3.6.8).
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Chapter 4

Ensemble Averaging in JT gravity
from Entanglement in Matrix
Quantum Mechanics

This chapter consists of a paper [3] written in collaboration with Giuseppe Policastro. The
original abstract is as follows:

We consider the generalization of a matrix integral with arbitrary spectral curve ρ0(E) to a
0+1D theory of matrix quantum mechanics (MQM). Using recent techniques for 1D quantum
systems at large-N , we formulate a hydrodynamical effective theory for the eigenvalues. The
result is a simple 2D free boson BCFT on a curved background, describing the quantum
fluctuations of the eigenvalues around ρ0(E), which is now the large-N limit of the quantum
expectation value of the eigenvalue density operator ρ̂(E).
The average over the ensemble of random matrices becomes a quantum expectation value.
Equal-time density correlations reproduce the results (including non-perturbative corrections)
of random matrix theory. This suggests an interpretation of JT gravity as dual to a one-
time-point reduction of MQM.
As an application, we compute the Rényi entropy associated to a bipartition of the eigenvalues.
We match a previous result by Hartnoll and Mazenc for the c = 1 matrix model dual to
two-dimensional string theory and extend it to arbitrary ρ0(E). The hydrodynamical theory
provides a clear picture of the emergence of spacetime in two dimensional string theory.
The entropy is naturally finite and displays a large amount of short range entanglement,
proportional to the microcanonical entropy. We also compute the reduced density matrix for
a subset of n < N eigenvalues.
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4.1 Introduction and Motivation

Random Matrix Models have been studied for a long time, as they provide a powerful
computational tool and a great source of insight with many applications in different fields,
from nuclear physics to condensed matter to high-energy physics.1

One of the most intriguing applications arises from the connection to quantum gravity.
It was first observed by ’t Hooft [244] that a theory with matrix degrees of freedom can be
interpreted as a theory of random surfaces in the large-N limit and thus, in many cases, it
can be connected to some 2d quantum gravity/string theory. The perturbative expansion
in Feynman diagrams can be reorganized as a topological expansion in the genus of the
surface, with 1/N playing the role of the expansion parameter (string coupling). This idea
has found its most concrete realization so far in the AdS/CFT correspondence [28–30]. In
its most basic and well-understood instance, this correspondence relates a gravity theory
on 5D Anti-de Sitter space to a SU(N) gauge theory on the 4D boundary. Despite the
fact that the correspondence has a very precise formulation and has been tested to great
accuracy, its perhaps most striking conceptual aspect, namely the emergence of spacetime
from the matrix degrees of freedom, is still poorly understood. The correspondence gives in
principle a complete definition of quantum gravity in AdS, since the boundary theory is well
defined non-perturbatively (e.g. by the CFT axioms); however, because it is a weak/strong
coupling duality, it is still difficult to use it in order to find detailed answers to fundamental
questions, such as the information loss paradox, and the statistical interpretation of the
Bekenstein-Hawking entropy in terms of black hole microstates.

JT gravity

Driven by the desire to understand these questions in a simplified setting, there have been
many recent developments in low dimensional holography. The SYK model [91, 245] is
composed of a large number of fermions interacting with disordered couplings. In the large-
N limit the low-energy sector of the model is described holographically by 2-dimensional
Jackiw-Teitelboim (JT) gravity, or equivalently by a 1D Schwarzian theory [92,246,247]. The
SYK model and JT gravity were shown to exhibit quantum chaos as universally described
by random matrix theory [64, 69]. The paper [35] showed a much stronger connection to
random matrices: the partition function of JT gravity on a surface of arbitrary genus and
number of boundaries agrees with the perturbative expansion of a certain matrix integral,
thus solving the theory to all orders in the genus expansion. The matrix integral is interpreted
as an average over an ensemble of Hamiltonians and the matrix eigenvalues as the energy

1There are many reviews on the subject. For general aspects see, in rough order of complexity [229–234].
For applications to low dimensional gravity and string theory see [235–242]. For applications to chaotic
systems see [59,243].
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levels dual to gravitational microstates. It was also noted that JT gravity can be seen as
the p → ∞ limit of (2, p) minimal strings which were long known to be dual to matrix
models [238,241,248–250]. The study of non-perturbative effects in these models can then
help us understand the detailed structure of gravitational microstates. As a consequence much
effort has been devoted to this pursuit (see [70] for a review). However many interconnected
questions still remain. The matrix integral does not provide a unique non-perturbative
completion of JT gravity [251]. The bulk theory does not seem to have, at first sight, a well
defined dual quantum mechanical system, but rather an ensemble of them. The presence
of connected geometries and the consequent lack of factorization pose a deep puzzle about
the nature of the gravitational path integral [189]. A more explicit understanding of the
emergence of spacetime from the dual degrees of freedom remains to be attained [252].
In this work we discuss some of these issues by considering a generalization of the kind of
matrix integral dual to JT-gravity, given by a 0 + 1D theory of matrix quantum mechanics
(MQM) [253]:

S =
∫
dt tr

(1
2Ḣ

2 + V (H)
)
. (4.1.1)

with an arbitrary potential V (H). The classical average over the matrix ensemble becomes a
quantum path integral:

⟨·⟩H =
∫
dHe−NtrV (H) →

∫
DH(t)e−S. (4.1.2)

We can think of the original matrix integral as a matrix quantum mechanics with one-
time-point (as discussed in [190] for SYK) meaning that we look at a single instant of time
where the dynamics are frozen. We will make this statement precise and show that we
can reproduce matrix integrals from equal time correlations in the ground state of matrix
quantum mechanics. In particular, the ground state expectation value of the eigenvalue
density operator ρ̂(E) in MQM is equal to the ensemble-averaged density of eigenvalues:

⟨ρ(E)⟩H = ⟨Ω| ρ̂(E) |Ω⟩ (4.1.3)

and similarly for higher correlations at equal times. The average over the ensemble of random
matrices is equal to a quantum expectation value in Hilbert space. The statistical fluctuations
due to ensemble averaging might be interpreted as quantum fluctuations of a single quantum
mechanical system. We show that this holds for arbitrary spectral curves ρ0(E), defined as
the large N limit of the eigenvalue density, by treating MQM with arbitrary potentials V (H).
If we specialize to the case of JT gravity’s spectral curve ρJT0 (E), this equality suggests a
different perspective on JT gravity as dual to a one-time-point matrix quantum mechanics.

Matrix quantum mechanics is, however, richer than a a matrix integral, simply since
it is a quantum mechanical theory, endowed with a Hilbert space. The eigenvalues are
described by a wavefunction ψN(E1, . . . , EN) instead of a classical probability distribution
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ρN (E1, . . . , EN ) as in random matrix theory. In the duality between JT gravity and a matrix
integral, the eigenvalues are identified as microstates of a quantum mechanical theory {Ei}.
MQM describes the wavefunction ψN(E1, . . . , EN) in the basis of energy eigenstates |Ei⟩ .
It is then natural to consider the entanglement between eigenvalues. Such entanglement is
responsible for the correlations between eigenvalues, as they would factorize in its absence. It
is in this sense that ensemble averaging arises from entanglement.

c = 1 String theory

In two spacetime dimensions there is another instance of holographic duality: the duality
between two-dimensional string theory and the c = 1 matrix model [254], a theory of matrix
quantum mechanics with a specific potential tuned to a critical point. This duality precedes
AdS/CFT and has been extensively checked both perturbatively and non-perturbatively.2
Two-dimensional string theory and JT gravity form part of the same family of theories. A
minimal string consists of a Liouville CFT with cL > 25 and a minimal model with cM < 1
coupled by anomaly cancellation. In the limit p → ∞ of the (2, p) minimal string, which
corresponds to JT gravity, we have that cM → −∞. Instead, two dimensional string theory
consists of a cL = 25 Liouville theory and a cM = 1 free boson. The two theories then lie at
opposite ends of the same spectrum of worldsheet CFTs given by Liouville theory coupled
respectively to cM = −∞ and cM = 1.3 This limit indicates that we should think of spacetime
in JT as analogous to the worldsheet in minimal string theory. As a consequence, wormholes
in JT correspond to connected worldsheets with multiple boundaries. Achieving a better
understanding of the relation between the two dualities could produce new insights.4

Two-dimensional string theory is a very rich arena to understand string theory and
dualities. The worldsheet description allows for a detailed study of non-perturbative ef-
fects [257,258,260,269–276] and their matching to the matrix model. The duality between
the c = 1 matrix model and two-dimensional string theory is a perfect playground to study
the emergence of spacetime from matrix degrees of freedom in gauge theories since, at large
N , the eigenvalues form a continuum that is directly related to the dual spacetime. Locality
and the relation between spacetime and eigenvalue-space can be tested in various ways, e.g.
using local observables, scattering of excitations, or using entanglement entropy, as in [277].
The motivation of this last paper was to apply to the c = 1 matrix model the insight, gained
in AdS/CFT with the Ryu-Takayanagi formula, of the essential role that entanglement plays
in the emergence of spacetime [278,279]. In this chapter we will give a different and more
comprehensive perspective on the eigenvalue/spacetime relation by explicitly constructing
the geometry of eigenvalue-space that corresponds to the spacetime geometry in a natural

2See [236–239] for reviews. See [255–260] for extensive recent work on matching scattering amplitudes.
See [261–265] for recent related work on black holes

3For a review of the Liouville approach, see [242]
4See [89,266–268] for related work
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way and characterizing its entanglement properties.
The entanglement between eigenvalues is an example of entanglement in target space for
which recently there has been a growing interest, see [280–287] .

4.1.1 Overview and results

We start sec. 4.2 by recalling some basic facts about Matrix Quantum Mechanics with arbitrary
potential. Eigenvalue repulsion enforces fermionic statistics for the eigenvalues which can be
mapped to a system of fermions in an external potential. We introduce a second-quantized
fermionic field Ψ(E) which gives the eigenvalue density operator ρ̂(E) = Ψ†(E)Ψ(E). The
density of eigenvalues is the expectation value ρ(E) = ⟨ρ̂(E)⟩ which is, at leading order
in the large N limit, equal to the spectral curve ρ(E) ≈ ρ0(E). We then proceed in sec.
4.2.2 to illustrate the construction of an effective hydrodynamical theory for the eigenvalues
valid for arbitrary ρ0(E) . The construction follows from recent developments in the study
of 1D many body quantum systems in external potentials [288–290]. It can be seen as a
generalization of the collective field theory approach [240, 291] to arbitrary potentials. In sec.
4.2.3 we discuss quantum fluctuations of the eigenvalues in the effective theory. One can
show that the quantum hydrodynamical fluctuations of the eigenvalues are described by a
2D free boson CFT on a curved background determined by ρ0(E) with boundaries at the
edge of the spectrum where ρ0(E∗) = 0.

In section 4.3 we proceed to use the 2D CFT to study the different properties of the
eigenvalues. We start by computing spectral correlations in sec. 4.3.1 which are now given
by correlation functions of the density operator: ⟨ρ̂(E)⟩ and ⟨ρ̂(E1) ˆρ(E2)⟩. These are given
by correlation functions of vertex operators in the CFT. We reproduce the leading non-
perturbative corrections to the density of states ρ(E) and to the level-correlation ρ(E1, E2)
as described in sec. 5 of [35] by considering equal-time correlations. In other words, we
reproduce the oscillations of ρ(E) around the semiclassical density ρ0(E) and the terms in
ρ(E1, E2) corresponding to the ramp and plateau in the spectral form factor (i.e. the sine
kernel). In matrix quantum mechanics these spectral correlations arise due to quantum
fluctuations of a single quantum mechanical system, as opposed to statistical fluctuations
due to ensemble averaging. This matching provides evidence to support the idea that a
matrix integral and consequently JT gravity might be interpreted as a one-time-point matrix
quantum mechanics with the same spectral curve ρ0(E).

In sec. 4.3.2 we consider the entanglement between the eigenvalues. We compute the
Rényi entropies for a bipartition (0, E)∪ (E,ER), where ER is the right edge of the eigenvalue
density, finding some interesting features. For non double-scaled matrix models, where the
density has a right edge ER, we see that the entanglement entropy follows a “Page curve” (as
a function of the lenght of the interval) as required by unitarity and comes down instead of
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growing indefinitely. This feature is lost in double-scaled models where ER →∞ indicating
that indeed we are missing states from the spectrum. The entanglement entropy is naturally
finite due to the mean spacing between the eigenvalues 1

ρ0(E) ∼ e−S0 acting as a UV cutoff.5 In
two-dimensional string theory we can interpret the finiteness of the entropy as due to gs stringy
effects regulating the divergence as first noted in [277]. We notice that the entanglement
entropy Sent(E) present a leading contribution proportional to the microcanical entropy in
the window E ± dE such that Sent(E) ∝ S0(E) = log(ρ0(E)), indicating a large amount
of short range entanglement between eigenvalues close to the boundary. We also compute
the entanglement entropy for an interval bipartition (E1, E2), extending the results of [277]
for the c = 1 matrix model to arbitrary spectral curves ρ0(E). We provide constructive
evidence for the proposed map between the eigenvalue-space and the emergent spacetime
in two-dimensional string theory [277,293] and the identification of the spacetime geometry
with the geometry of the Fermi surface.

In sec. 4.3.3 we compute the one eigenvalue reduced density matrix obtained by tracing
out N − 1 eigenvalues, corresponding to the fermion one-body density matrix g(E,E ′) =
⟨Ψ†(E)Ψ(E ′)⟩. We also write the general expression for the n eigenvalue density matrix.

We conclude in sec. 4.4 with a discussion of open questions and possible future work.

4.2 Quantum hydrodynamics of random matrix eigen-
values

We study the quantum mechanics of a random N ×N hermitian matrix H(t) in a generic
potential V (H) with the following action:

S = N
∫
dt tr

[
1
2Ḣ

2 + V (H)
]
. (4.2.1)

The eigenvalues (E1 . . . EN) of H no longer obey a classical probability distribution as
in Random Matrix Theory. Instead they are now described by a quantum mechanical
wavefunction ψN(E). We will now briefly summarize some well known facts about matrix
quantum mechanics (MQM) and derive the Schrodinger equation for the N -eigenvalue
wavefunction ψN (E). More details can be found in the above mentioned reviews [230,235–239].

5While finishing the paper that this chapter is based on, the work [292] appeared which discusses the
finiteness of the entanglement entropy in matrix quantum mechanics. Their methods are different and the
discussion is complementary. In particular, they discuss a vanishing potential V = 0 while we treat arbitrary
potentials.
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4.2.1 Eigenvalues as fermions

To study the eigenvalues we diagonalize the matrix H:

H = Ω†E Ω (4.2.2)

where Ω ∈ SU(N) and E = diag(E1, . . . , EN). This change of variables has a non-trivial
jacobian which modifies the path integral measure DH(t):∫

DH =
∫
DΩ

∏
i

DEi∆2(E), (4.2.3)

where ∆(E) = ∏
i<j(Ei − Ej) is the well known Vandermonde determinant which causes

eigenvalue repulsion in random matrix theory. We will now see that in MQM, eigenvalue
repulsion becomes the Pauli exclusion principle resulting in fermionic eigenvalues [253]. Due
to the non-trivial Jacobian, the kinetic term for the eigenvalues becomes:

−1
2

N∑
i=1

1
∆2(E)

d
dEi

∆2(E) d
dEi

. (4.2.4)

Thanks to the fact that ∑i
d2∆
dE2

i
= 0, this is equal to:

− 1
2∆

∑
i

d2

dE2
i

∆. (4.2.5)

The HamiltonianH of matrix quantum mechanics, after diagonalization of H, is then [236,253]:

H = − 1
2∆

∑
i

d2

dE2
i

∆ +
∑
i

V (Ei) +
∑
i<j

L2
ij + L̃2

ij

(Ei − Ej)2 . (4.2.6)

The first term is the kinetic term for the eigenvalues we just discussed. The matrix potential
V (H) becomes a single particle potential for the eigenvalues V (Ei) due to invariance of the
trace. The last term is the kinetic term for the angular degrees of freedom Ω, where Lij, L̃ij
are the angular momenta and (Ei −Ej)2 plays the role of a radius in the direction ij. Let us
denote a generic wavefunction for the Hamiltonian H as χN (E,Ω), which will depend on both
the eigenvalues E and the angular variables Ω. We use the subscript N as a reminder that the
wavefunctions depend on all the eigenvalues E1, . . . , EN . We will restrict ourselves to scalar
configurations which are invariant under SU(N) rotations, namely the singlet sector. Thus
we consider wavefunctions χN (E) which are independent of the angular variables. The singlet
wavefunctions χN(E) are the relevant ones and correctly describe MQM in the following
regimes:
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• Ground state. Since the angular term is positive definite, the ground state of the
system is given by the singlet sector ground state . Thus the singlet wavefunction describes
the collective ground state of the N eigenvalues.

• Low temperature phase. Considering MQM at finite temperature, we have a
Berezinski-Kosterlitz-Thouless transition at βBKT . The singlet sector describes the low
temperature phase β > βBKT [294–297].

Consider now the Schrodinger equation for the singlet sector HχN(E) = ϵχN(E). The
wavefunctions χN(E) are clearly symmetric functions of the eigenvalues. By defining a
completely anti-symmetric wavefunction ψN(E) = ∆(E)χN(E), the Schrodinger equation
now reads:

N∑
i=1
HiψN(E) =

N∑
i

ϵiψN(E), Hi = −1
2

d2

dE2
i

+ V (Ei). (4.2.7)

The Hamiltonian acting on ψN(E) is now a sum of single-particle Hamiltonians. The
wavefunction ψN(E) is completely antisymmetric by construction due to the antisymmetry
of the Vandermonde and vanishes whenever Ei = Ej. We see that the eigenvalue repulsion
of random matrices enforces the Pauli exclusion principle. The eigenvalues Ei are then
equivalent to a system of N fermions each in an external potential V (E), interacting only
through the exclusion principle/eigenvalue repulsion.
The many-body ground state wavefunction ψN (E) can be obtained by first solving for the single
particle wavefunctions ψϵ(E) and building the Slater determinant ψN (E) = 1√

N !detij(ψϵi(Ej))
which involves a single fermion in each energy level up to the Fermi energy ϵF , the energy of
the last (N -th) fermion. We will not do this as it involves solving the Schrodinger equation
for a specific choice of potential with the resulting Slater wavefunctions ψN being complicated
expressions for large N . We will instead describe the system in second quantization by
introducing a fermionic field Ψ(E) [277,298] with the following Hamiltonian H :

H = N
∫
dEΨ†(E)

(
− 1

2N2
d2

dE2 + V (E)
)

Ψ(E). (4.2.8)

The fermionic field Ψ(E) can be expressed as a mode expansion with creation/annihilation
operators aϵ, a†

ϵ weighted by the single particle wavefunctions ψϵ(E):

Ψ(t, E) =
∫
dϵe−iϵtaϵψϵ(E). (4.2.9)

The fermions fill the potential V (E) up to the Fermi energy ϵF . We can control how the
potential is filled by introducing a chemical potential µ = NϵF in the Hamiltonian H−µΨ†Ψ.
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The system forms a Fermi surface |µ⟩ on which the operators aϵ, a†
ϵ act as follows:

aϵ |µ⟩ = 0 ϵ > µ,

a†
ϵ |µ⟩ = 0 ϵ < µ.

(4.2.10)

The presence of a Fermi sea corresponds to having a finite density of eigenvalues ρ0(E)
in RMT. In what follows we will employ recent techniques from condensed matter [299]
describing the quantum fluctuations of the Fermi surface by a 2D effective hydrodynamical
theory .
Correspondingly, one can develop a quantum hydrodynamical theory for the eigenvalue
density ρ(E), describing the fluctuations around a semiclassical background ρ0(E) given
by the RMT spectral curve. Quantum fluctuations on top of the Fermi surface involving
the creation/annihilation of a single eigenvalue will produce non-perturbative effects in

1
ρ0(E) ∼ e−S0 (similarly as described in sec. 5 of [35]). The effective theory will be a simple
free boson CFT on a curved background with a boundary. This simple description allows
us to study many interesting features of Matrix Quantum Mechanics. We can access non-
perturbative physics like the oscillations in the density of states ρ(E) and the plateau in
the two level correlation ρ(E1, E2) which are a consequence of the underlying discreteness
of the spectrum of H. We can also compute observables that do not have a clear classical
counterpart such as the reduced density matrix obtained by tracing out k-out-of-N eigenvalues
and the spectrum of Renyi entropies for arbitrary bipartition (E1, E2).
Incorporating the chemical potential, we arrive at the following Hamiltonian, which is the
starting point for the rest of discussion:

H =
∫
dEΨ†(t, E)

(
−1

2
d2

dE2 + (V (E)− µ)
)

Ψ(t, E). (4.2.11)

4.2.2 Effective hydrodynamics of the eigenvalue density ρ(E)

We now give a self-contained review of some recent developments in the study of 1D many-body
quantum systems in external potentials via hydrodynamics [288,300–302]. The hydrodynamics
approach to 1D quantum systems was introduced a few years ago in [289,290] and has been
rapidly developing ever since, see the recent lectures [303] for a review. We will only introduce
the necessary tools for our purposes.
Conformal Field Theory in 2D is a well-proven technique in addressing 1D critical quantum
systems [304]. It is commonly used to describe low energy excitations around a fixed
energy scale (such as the Fermi energy ϵF ) and so it is not a priori possible to apply it to
inhomogeneous systems, where there is a varying energy scale due to an external potential
or out-of-equilibrium dynamics. On the other hand, hydrodynamics is useful to describe
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inhomogeneous systems at mesoscopic scales, large enough to contain a macroscopic number
of degrees of freedom but smaller than the characteristic scale of the inhomogeneities. In [288],
they obtained a 2D CFT describing inhomogeneous 1D quantum systems using hydrodynamics.
The CFT lives on a non-trivial background metric encoding the inhomogeneities of the original
system.
Let us start by considering a many-body quantum system composed of N particles with
a finite density ρ(x) in the large N limit in an interval x ∈ (xL, xR). This means that the
quantum density operator ρ̂(x) = Ψ†(x)Ψ(x) acquires a VEV ρ(x) ≡ ⟨Ψ†(x)Ψ(x)⟩. The VEV
introduces a length scale in the system corresponding to the local average spacing between
particles d(x) = 1

ρ(x) . In Random Matrix Theory there is a finite density of eigenvalues ρ(E)
due to eigenvalue repulsion, which is analogous to the non-zero VEV of the quantum density
operator ρ̂. We will make this correspondence precise in MQM: since the eigenvalues are
fermions we have x = E and we have that ρ(E) = ⟨ρ̂(E)⟩. The mean level spacing is then
equal to d = 1

ρ(E) ∼ e−S0 .6 The key assumption to develop hydrodynamics for inhomogeneous
systems is the separation of scales, meaning there exists an intermediate mesoscopic scale ℓ
such that:

d≪ ℓ≪ ρ(x)
∂xρ(x) , (4.2.12)

where ρ
∂ρ

is the characteristic length scale of the inhomogeneities. The scale ℓ is then
small enough such that the system is quasi-homogeneous and large enough to contain a
thermodynamically large number of particles. These scales provide both UV and IR cutoffs
in the effective theory defined at energy scales Λ such that:

∂xρ(x)
ρ(x) = ΛIR ≪ Λ≪ ΛUV = 1

d
= ρ(x), (4.2.13)

Having understood the characteristic scales and the regime of validity of the effective theory,
we will now focus on a specific system: the Lieb-Liniger gas of interacting bosons in an
external potential. It is defined by the following Hamiltonian:

H =
∫
dx

(
Φ†
(
ℏ2∂2

x

2m + V (x)
)

Φ + g

2Φ†2Φ2
)
, (4.2.14)

where Φ(x) is a bosonic field [Φ(x),Φ(x′)] = δ(x − x′). This system can be solved exactly
via Bethe-Ansatz in the homogeneous V = 0 case [305]. In the limit of hard-core bosons
g →∞ it is equivalent to a system of free fermions in the potential V (x) and thus describes
the eigenvalues of MQM. This limit is often referred to as the Tonks-Girardeau gas in
the literature. The mapping between hard-core bosons and free fermions is made via a

6This is not the first instance where the spectral density ρ(E) is identified with a VEV, in [163]
ρ(E) is identified as the order parameter responsible for Causal Symmetry Breaking in the universal late
time behaviour of chaotic systems.
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Jordan-Wigner string:
Ψ†(x) = e

iπ
∫

y<x
Φ†(y)Φ(y)dyΦ†(x). (4.2.15)

Ψ(x) is now a fermionic field {Ψ†(x),Ψ(x′)} = δ(x− x′). We then obtain the free fermion
hamiltonian:

H =
∫
dxΨ†

(
−ℏ2∂2

x

2m + V (x)
)

Ψ. (4.2.16)

The hydrodynamic description of the homogeneous case (V = 0) was first presented
in [306] where the authors developed the hydrodynamics of out-of-equilibrium systems with
an infinite number of conserved charges. Let us now proceed with the case of a general
external potential V (x). We start by writing down the Euler equations for a Galilean invariant
fluid in the presence of an external potential:

∂tρ+ ∂xj = 0,

∂tu+ u∂xu+ 1
ρ
∂xP = −∂xV,

(4.2.17)

where ρ is the particle density, u is the mean velocity given by u = j
ρ

with j the momentum
density and P is the pressure. To close the system of equations we need the equation of state at
zero temperature which expresses the pressure as a function of the density P (ρ). This can be
obtained from the energy density ρE by the thermodynamic relation P (ρ) = −ρE+ρ

(
∂ρE

∂ρ

)
T=0

.
In the Lieb-Liniger model, these equations follow from the conservation of the following
charges:

ρ̂(x) = Φ†(x)Φ(x)

ρ̂P (x) = −iℏΦ†(x)∂xΦ(x)

ρ̂E(x) = ℏ2

2
(
∂xΦ†(x)∂xΦ(x)

)
+ g

2Φ†2(x)Φ2(x)

(4.2.18)

with associated currents ĵ, ĵP , ĵE. The Euler equations describe the expectation values of the
charges and currents ⟨ρ⟩ = ρ, ⟨j⟩ = j.7

In particular, consider the quantum expectation value of the density operator for the
fermionic field Ψ:

ρ(x) ≡ ⟨Ψ†(x)Ψ(x)⟩. (4.2.19)

In the hydrodynamic description where the system is quasi-homogeneous at the scales we
are probing, we will have a semiclassical background density ρ0(x) at leading order in the
large N limit such that ρ(x) ≈ ρ0(x). We can then describe fluctuations of this semiclassical

7Since we will be considering zero temperature and thus zero entropy hydrodynamics, the continuity
equation for the energy density is trivially satisfied and we have not displayed it in the text.
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density which will give both subleading corrections to ρ(x) and correlations ⟨ρ̂(x)ρ̂(x′)⟩. The
semiclassical density sets the scales for which the effective theory is valid and self-consistent:

∂xρ0(x)
ρ0(x) ≪ Λ≪ ρ0(x). (4.2.20)

In Random Matrix Theory the density ρ0(x) is given by the leading density of eigenvalues
ρ0(E) in the large N limit, meaning the spectral curve/the disk density of states.
We can obtain an approximate expression for ρ0(x) as a function of the potential V (x) in
the hydrodynamical effective theory. Since ρ0(x) is the density at equilibrium, meaning
∂tρ = 0, u = 0, the Euler equation reduces to 1

ρ
∂xP = − 1

m
∂xV . Using the thermodynamic

relation dP = ρSdT + ρ
m
dµ at T = 0 we have that ∂x(µ(x) + V (x)) = 0. The local chemical

potential is then µ(x) = µ− V (x) where µ is the fixed chemical potential appearing in the
Hamiltonian. For a homogeneous system, the equilibrium density is just a function of the
chemical potential ρhom = ρhom(µ) so for scales where the system is quasi-homogeneous we
can simply substitute the local chemical potential µ(x) in the homogeneous density. We have
then that the semiclassical density ρ0(x) in the hydrodynamic description is given by:

ρ0(x)
hydro
≈ ρhom(µ(x)), µ(x) = µ− V (x). (4.2.21)

The theory will be entirely defined in terms of the density ρ0(x), without making reference to
the potential so it is not necessary to use the relation above although it can be useful if we
wish to define our MQM by the potential V (x) instead of the spectral curve.
In particular, the density for free fermions with V (x) = 0 is:

ρhom(µ) =
√

2µ
πℏ

, (4.2.22)

we then have that the semiclassical density is:

ρ0(x) ≈ 1
πℏ

√
2(µ− V (x)). (4.2.23)

This expression is usually called the Local Density Approximation (LDA) and it is well-known
that it correctly describes the bulk density (sufficently away from edges where ρ ≈ 0) of
a Fermi gas in the large N limit [307, 308]. We can see immediately that for a Gaussian
potential V (x) = x2

2 it correctly reproduces Wigner’s semicircle law. We can also see that
this is exactly the expression for the momentum p(x) of a particle with energy µ appearing
in the WKB approximation:

ψWKB ≈
A√
p(x)

exp
(
± i
ℏ

∫ x

p(x′)
)
, p(x) = πℏρ0(x). (4.2.24)
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As a final consistency check note that the density of free fermions scales as ρ ∼ O(ℏ−1) so
that the mean spacing d = 1

ρ
∼ O(ℏ) while the scale of inhomogeneities is ρ

∂xρ
O(1). Thus for

ℏ→ 0 there is indeed separation of scales and we can always find a regime ℓ ∼ O(ℏν) with
0 < ν < 1 where the hydrodynamic description is valid. If we send ℏ→ 0, the total number
of particles N =

∫
ρ(x)dx diverges so we should take the large N limit with Nℏ = O(1). This

is the well known property that large N limits are semiclassical.

4.2.3 2D CFT for the quantum fluctuations of ρ(E)

We are now ready to build the field theory for the hydrodynamical fluctuations of the density
ρ(x). Let us now consider a microscopic correlation function of local operators O(x) in the
ground state:

⟨O(x1) . . . O(xn)⟩ ≡ lim
β→∞

tr
[
O(x1) . . . O(xn)e−βH

]
tre−βH , (4.2.25)

where H is the fermion Hamiltonian in eq. 4.2.11.

In the hydrodynamic limit where 1
N
∼ ℏ→ 0 we can compute the correlation function

by doing a path integral over the hydrodynamic fields ρ(x, τ) and j(x, τ) with an Euclidean
action SE[ρ, j]:

⟨O(x1) . . . O(xn)⟩
ℏ, 1

N
→0

= 1
Z

∫
DρDjδ(∂τρ+ ∂xj)O(x1) . . . O(xn)e−SE [ρ,j], (4.2.26)

where the continuity equation is a constraint in the space of configurations (ρ, j) of the path
integral8. The task now is to determine the action SE[ρ, j] that computes these correlation
functions in the hydrodynamic limit. To do so we will proceed by first finding an action
which gives the Euler equations as its equations of motion. We consider the following action:

S[ρ, j] =
∫
dxdt

(
j2

2ρ + ρE(ρ) + (V (x)− µ)ρ
)
. (4.2.27)

We now perform a variation of the action (ρ̄+ δρ, j̄ + δj) starting from a configuration
(ρ̄, j̄) which satisfies the Euler and continuity equations. To perform a variation consistent
with the constraint ∂tρ+ ∂xj = 0 we write the fluctuations as:

δρ(x, t) = 1
2π∂xh(x, t), δj(x, t) = − 1

2π∂th(x, t). (4.2.28)

We have introduced a new field h(x, t) such that the constraint is now trivially satisfied due
8The same type of path integral has also appeared recently in [309] as the action for ballistic MFT,

although in that case it is supposed to apply at finite temperature and describe statistical fluctuations (thanks
to T. Yoshimura for pointing it out).
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to the fact that partial derivatives commute. The second order variation δ2SE[ρ̄+ δρ, j̄ + δj]
gives a quadratic action for the quantum fluctuations described by the field h(x, t). The
action is the following:

S[h] = 1
8π

∫ √gd2x

K(x) g
ab∂ah∂bh, (4.2.29)

where K, known as the Luttinger parameter, is a function of the density ρ̄(x)

K(x) = πℏρ̄(x)
v(x) with v(x) =

√
ρ̄(x)∂2

ρρE, (4.2.30)

and the metric is given by

ds2 = (dx− (u+ v)dt)(dx− (u− v)dt). (4.2.31)

where u(x) = j̄
ρ̄

is the background local fluid velocity. We see from the metric that v(x) is the
local speed of sound in the fluid since excitations which propagate along light-rays correspond
to sound waves propagating at velocity u ± v. The system exhibits curved lightcones due
to the dependence on the local value of the density ρ̄(x) [310]. This metric is the effective
geometry of the Fermi surface seen by the excitations.
The above action thus describes quantum fluctuations around non-trivial hydrodynamical
backgrounds ρ̄(x, t), j̄(x, t) for 1D inhomogenous quantum systems specified by their micro-
scopic equation of state ρE(ρ), from which we obtain the Luttinger parameter K and the
sound velocity v.
There can be corrections to the effective action for the fluctuations 4.2.29 by expanding to
higher order the hydrodynamic action 4.2.27. There can also be hydrodynamic gradient
corrections, recently discussed in [311].
We will now restrict ourselves to the case of free fermions since we wish to describe fluctuations
of the eigenvalues of random matrices. We also restrict ourselves to equilibrium configurations
given by the saddle point (ρ̄, j̄) = (ρ0(x), 0) where ρ0(x) is the semiclassical density. We leave
the study of out-of-equilibrium dynamics of the eigenvalues for future work. The equation of
state for free fermions at zero temperature is:

ρE = π2ℏ2ρ3

6 . (4.2.32)

We have that the sound velocity is simply proportional to the density

v(x) = πℏρ0(x), (4.2.33)

and the Luttinger parameter is simply K = 1. Notice that v(x) is equal to the classical
momentum p(x) appearing in the WKB approximation. We arrive then at the following
Euclidean action, describing the quantum hydrodynamical fluctuations of free fermions in an
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external potential:
S[h] = 1

8π

∫ √
gd2xgab∂ah∂bh, (4.2.34)

with metric given by (now in units where ℏ = 1):

ds2 = π2ρ2
0(x)dτ 2 + dx2, (4.2.35)

The action S[h] provides a description of the eigenvalue fluctuations around the semi-
classical spectral density ρ0(E) in terms of quantum hydrodynamics of the Fermi surface.
Analogously to the 1

N
genus expansion of matrix models, which is completely fixed by Topo-

logical Recursion in terms of the spectral curve ρ0(E) (see [231] for an extensive explanation),
the theory of hydrodynamic fluctuations of the eigenvalues is completely determined by the
matrix model spectral curve ρ0(E). The theory is defined on the domain (x, τ) ∈ (xL, xR)×R,
where (xL, xR) are the points where the semiclassical density vanishes ρ0(xL,R) = 09. As long
as we work at scales Λ inside the range of validity of the hydrodynamic effective theory given
in eq. 4.2.20, we can apply the theory to a matrix model specified by its semiclassical density
of eigenvalues ρ0(E). In particular, to apply this description to JT gravity, (2, p) minimal
strings and related models it is enough to use the spectral density of the desired model, i.e.
ρ(E) = ρJT (E). On the other hand, if one wishes to specify the matrix model potential
V (E), we can obtain the spectral density in the hydrodynamic approximation as:

ρ0(E) =
√

2(µ− V (E)). (4.2.36)

We will use this expression for the density to study the c = 1 matrix model which corrresponds
to an inverted oscillator potential V (E) = −E2

2 .

The hydrodynamic theory is valid in the domain of non-vanishing particle density so the
theory has a boundary at points xL, xR such that ρ(xL,R) = 0. To summarise, we have an
effective theory for the quantum hydrodynamical fluctuations of the Fermi surface of free
fermions corresponding to the fluctuations of the eigenvalues of a random matrix H. They
are described by a 2D free boson BCFT on a curved geometry determined by the spectral
density ρ0(E). In this formalism it is straightforward to consider double scaled matrix models,
it is enough to use the double scaled spectral density which has only one zero at xL = 0 and
xR =∞ so we have a BCFT on the half-line.

To complete the correspondence we are in need of a prescription to relate local operators
OF in the microscopic fermionic theory (4.2.11), such as Ψ,Ψ†, to local operators OEff in the
effective theory (4.2.34). A single operator in the microscopic theory OF (x) can be expanded

9We are treating the case of a single interval with non-zero density, corresponding to single cut matrix
models
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as a sum of local operators OEff(x):

OF (x) =
∑
i

ÃO,Oi
Oi(x), (4.2.37)

where ÃO,Oi
are dimensionful coefficients [ÃO,Oi

] = ∆Oi
−∆O and we dropped the subscript

from the operators OEff(x) in the right hand side. We define dimensionless coefficients AO,Oi

using the characteristic length scale of the microscopic system d = (ρ0(x))−1 , we have then

ÃO,Oi
= AO,Oi

ρ0(x)∆Oi
−∆O

. (4.2.38)

Using this prescription we can in principle write any correlation function in the microscopic
model as a sum of CFT correlators which we know explicitly given the simplicity of the CFT:

⟨OF (x1) . . .OF (xn)⟩ =
∑

i1,...,in

AO,Oi1

ρ0(x1)∆Oi1
−∆O

. . .
AO,Oin

ρ0(xn)∆Oin
−∆O
⟨Oi1(x1) . . . Oin(xn)⟩CFT .

(4.2.39)
The sum can be organized according to the relevance of the operators in the effective theory as
each term in the sum is suppressed by the UV scale d(x) as d

∑
k

∆Ok
−n∆O . The dimensionless

coefficients AO,Oi
are determined by matching to the microscopic theory, as usual in effective

theories.
Consider the fermionic fields Ψ†,Ψ in the microscopic theory, they are charged under a global
U(1) symmetry with charge q = 1 so the the corresponding CFT operators should also be.
The bosonic U(1) charge is the winding or magnetic number q of vertex operators Vp,q. Thus
the corresponding operators are the CFT vertex operators Vp,q=1 and their descendants, where
we define a (p, q) vertex operator by

Vp,q(z, z̄) =: ei(p− q
2)ϕ(z)+i(p+ q

2)ϕ̄(z̄) : . (4.2.40)

We have used chiral factorization of the CFT to write the boson field h(x, t) as a sum of
holomorphic and antiholomorphic fields h(x, τ) = ϕ(z) + ϕ̄(z̄).

Considering only the most relevant most relevant operator we have then:

Ψ†(x) ≈ ÃΨ†,V0,1(x)V0,1(x). (4.2.41)

Since the fermion fields have dimension 1
2 and the vertex operator has dimension 1

4 the
coefficient ÃΨ†,V0,1 has dimensions −1

4 such that:

ÃΨ†,V0,1(x) = AΨ†,V0,1ρ0(x)1/4. (4.2.42)

The dimensionless coefficient AΨ†,V0,1 is the same as in the homogeneous V (x) = 0 case, and
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so it can be calculated analytically by Bethe-Ansatz to obtain:

|AΨ†,V0,1|
2 = G4(3/2)√

2π
, (4.2.43)

where G indicates Barnes’ G-function. This completes the prescription for how to com-
pute observables in the fermion theory using the hydrodynamical effective theory. We can
now proceed to apply this framework to study the quantum mechanics of random matrix
eigenvalues.

4.3 Spectral correlations and entanglement

We now apply the effective theory describing the quantum hydrodynamical fluctuations of
the eigenvalue density (eq. 4.2.34) . The theory is a free boson 2D CFT on a non trivial
background with boundaries. Thanks to its simplicity, we can easily compute many quantities
of interest straightforwardly and reproduce previous results obtained via less trivial methods.
Let us first summarize the results we derive.
We compute corrections to the semiclassical spectral density ρ0(E) reproducing the leading
non-perturbative correction to ρ(E) as described, for example, in sec. 5 and appendix A
of [35].
We compute the two-level correlation between eigenvalues ρ(E1, E2) and reproduce the ramp
and plateau contributions to the Spectral Form Factor in the limit |E1 − E2| ≪ 1.
We compute the spectrum of Renyi entropies for an arbitrary interval bipartition of the
eigenvalues Sn(E1, E2) which generalises the results of [277] to an arbitrary spectral curve
ρ0(E) and reproduces their results in the appropriate limit.
Finally we compute the n < N eigenvalue reduced density matrix obtained by integrating
out (N − n) eigenvalues.
Let us start by defining a new coordinate X:

X(x) =
∫ x

xL

dx′

πρ0(x′) , dX = dx

πρ0(x) (4.3.1)

such that the metric gab(x) becomes conformally flat:

ds2 = π2ρ0(x)2(dX2 + dt2). (4.3.2)

The domain of the coordinate X is X ∈ (0, L), where L ≡ X(xR) is given by the mapping
the right boundary point. Since πρ0(x) is the Fermi velocity, we can think of the coordinate
X(x) as the time it takes for an eigenvalue to go from the boundary xL to the point x.
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4.3.1 Spectral correlations

We start by considering correlations of spectral densities ⟨ρ(E)⟩ and ⟨ρ(E1)ρ(E2)⟩. The
spectral correlations in RMT are computed by averaging the discrete density ρ(E) over the
ensemble of random matrices H:

ρ(E) ≡
N∑
i=1

δ(E − Ei)→ ⟨ρ(E)⟩H =
∫
dHetrV (H)ρ(E). (4.3.3)

In Matrix Quantum Mechanics the average over random matrices becomes a quantum
expectation value of the density operator ρ̂(E):

ρ̂(E) ≡ Ψ†(E)Ψ(E)→ ⟨ρ̂(E)⟩. (4.3.4)

The n-eigenvalue correlation is then given by the n-point correlation function of the
density operator. The quantum hydrodynamics effective theory allows us to easily compute
these density correlations [302] in terms of free CFT correlation functions. We are able to
reproduce the leading non-perturbative corrections to ⟨ρ(E)⟩ and ⟨ρ(E1)ρ(E2)⟩ discussed
in sec. 5 of [35]. These matrix integrals are equal to ground state correlations in matrix
quantum mechanics at equal times.
10 We start by expanding the density operator ρ̂(x) into CFT operators:

ρ̂(x, t) ≈ ρ0(x)Id + ∂xh(x, t)
2π +

∞∑
p=1

(
Aρ,Vp,0Vp,0(x, t) + Aρ,V−p,0V−p,0(x, t)

)
. (4.3.5)

The first two operators follow directly from the construction of the effective theory since
ρ0(x) is the saddle point value of the density and the linear variation around the saddle is
δρ ≡ ∂xh(x,t)

2π . The expansion of ρ̂ only includes vertex operators Vp,q with q = 0 since ρ̂ does
not change the total number of eigenvalues. Keeping only the most relevant operators in the
expansion we have:

ρ̂(x, t) ≈ ρ0(x)Id + ∂xh(x, t)
2π + Aρ,V1,0V1,0(x, t) + Aρ,V−1,0V−1,0(x, t). (4.3.6)

The coefficients Aρ,V±1,0 are naturally dimensionless since both ρ̂ and V±1,0 have scaling
dimension ∆ = 1.

They are given by the following expression

Aρ,V±1,0 = 1
2πe

±2πiθ(x), θ(x) =
∫ x

0
ρ0(x′)dx′ − 1

2 . (4.3.7)

10For the reader interested in the c = 1 matrix model, the exact density correlations can be written in
terms of hypergeometric functions and evaluated numerically [267,298].
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The absolute value |Aρ,V±1,0| = 1
2π can be obtained exactly from Bethe-Ansatz form factors

(see appendix B of [302]). The phase θ(x) is a WKB phase.

Non perturbative corrections to density of eigenvalues ⟨ρ(E)⟩

The quantum hydrodynamical fluctuations will give the leading non-perturbative corrections
to the semiclassical spectral density ρ0(x). These corrections produce oscillations on top
of the semiclassical density which, from the fermionic point of view, can be identified as
Friedel oscillations. Let us now compute ⟨ρ̂(x)⟩ by taking the expectation value of the
previous expression for ρ̂. We have that ⟨∂xh⟩ = 0 due to Z2 symmetry. The vertex operator
VEV is obtained again by first changing coordinates X(x) so the metric is conformally flat,
performing a Weyl transformation to go to flat space and using a conformal transformation
w(z) = ei

π
L
z to map the strip to the upper half plane H:

⟨V±1,0(z)⟩g = (πρ0(x))−1⟨V±1,0(z)⟩strip = (πρ0(x))−1
∣∣∣∣∣dwdz

∣∣∣∣∣⟨V±1,0(w(z))⟩H. (4.3.8)

The expectation value on the upper half plane can be computed by the method of images
and is given by

⟨V±1,0(w(z))⟩H = e
1
2GD(w) GD(w) = − log |w − w̄|2, (4.3.9)

where GD(w) is the regularised Green’s function at coincident points with Dirichlet
boundary conditions. Setting t = 0 in z = X + it and using the mapping w(z) = ei

π
L
z we

have:
GD(X) = − log

∣∣∣∣2 sin
(
π

L
X
)∣∣∣∣2. (4.3.10)

We arrive at the following expression for ⟨ρ̂⟩:

⟨ρ̂(x)⟩ = ρ0(x)− cos(2π
∫ x ρ0(x′)dx′)

2πLρ0(x) sin
(
πX
L

) . (4.3.11)

As a consistency check, this expression precisely matches with the large N limit of the exact
solution of the Gaussian matrix model, given by Hermite polynomials. 11 As a function of
the eigenvalues E the density is:

⟨ρ̂(E)⟩ = ρ0(E)−
cos
(
2π
∫ E ρ0(E ′)dE ′

)
2πLρ0(E) sin

(
1
L

∫ E dE′

ρ0(E′)

) , (4.3.12)

11For the GUE the map to free fermions in a harmonic potential is actually exact [312], since the probability
density |ψN (x1, . . . , xN )|2 is equal to the GUE joint eigenvalue probability density |ψN (x1, . . . , xN )|2 =
ρGUE(x1, . . . , xN ).
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This gives the first quantum correction to the spectral density ρ(E). In a double scaled
matrix model, where L =∞, we have:

⟨ρ̂(E)⟩ = ρ0(E)−
cos
(
2π
∫ E ρ0(E ′)dE ′

)
2πρ0(E)

(∫ E dE′

ρ0(E′)

) , (4.3.13)

This is a non-perturbative correction to the density of states since it is of the form cos
(
eS0
)

=
eie

S0 . It reproduces the leading non-perturbative correction to the density of states.
As an example, take the Airy spectral curve ρ0(E) =

√
E for which we obtain:

⟨ρ̂(E)⟩ = ρ0(E)−
cos
(
2π
∫ E ρ0(E ′)dE ′

)
4πE , (4.3.14)

this is exactly the expression in eq. (155) of [35].

The ramp and plateau in ⟨ρ(E1)ρ(E2)⟩

We can now compute the two-point function of the density of eigenvalues ⟨ρ̂(E1)ρ̂(E2)⟩. One
has to multiply the expansions for the density operators and take the expectation value. Two
point functions of vertex operators and the height field are entirely determined in terms of
the Green function with Dirichlet boundary conditions GD(w1, w2) on H which is given by:

GD(w1, w2) = log
∣∣∣∣w1 − w2

w1 − w̄2

∣∣∣∣2. (4.3.15)

Evaluating it at equal times t1 = t2 = 0 and using the mapping w(z) = ei
π
L
z we have:

GD(X̄1, X̄2) = log
∣∣∣∣∣∣
sin
(
X̄1−X̄2

2

)
sin
(
X̄1+X̄2

2

)
∣∣∣∣∣∣
2

, X̄ = π

L
X. (4.3.16)

The two-point correlation of the spectral density is given by:

⟨ρ̂(x1)ρ̂(x2)⟩c = 1
π2ρ0(x1)ρ0(x2)

− ∂X̄1∂X̄2GD(X̄1, X̄2)
4π2 +

[
∂X̄1GD(X̄1, X̄2) sin(2πθ(x2))e

1
2GD(X2) + (X̄1 ↔ X̄2)

]
+

e
1
2 (GD(X1)+GD(X2))

(
eGD(X̄1,X̄2) − 1

)
cos [2π(θ(x1) + θ(x2))] +

e
1
2 (GD(X1)+GD(X2))

(
e−GD(X̄1,X̄2) − 1

)
cos [2π(θ(x1)− θ(x2))]

.

(4.3.17)
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The derivatives appearing in the expression are the following:

∂X̄1GD(X̄1, X̄2) =
[
cot
(
π(X1 −X2)

2L

)
− cot

(
π(X1 +X2)

2L

)]
(4.3.18)

∂X̄2GD(X̄1, X̄2) = −
[
cot
(
π(X1 −X2)

2L

)
+ cot

(
π(X1 +X2)

2L

)]
(4.3.19)

∂X̄1∂X̄2G
D(X̄1, X̄2) = 1

2

[
sin−2

(
π(X1 −X2)

2L

)
+ sin−2

(
π(X1 +X2)

2L

)]
. (4.3.20)

For finite L it is enough to substitute the expressions for the Green functions and their
derivatives, which we won’t do explicitly. For a double scaled matrix model where L→∞
we have:

⟨ρ̂(x1)ρ̂(x2)⟩ = 1
2π2

(
1

π2ρ0(x1)ρ0(x2)

)−
(

1
(X1 −X2)2 + 1

(X1 +X2)2

)
+

[
sin(2πθ(x2))

X2

(
1

(X1 −X2)
− 1

(X1 +X2)

)
+ (X1 ↔ X2)

]
+

(
−cos(2π(θ(x1) + θ(x2)))

(X1 +X2)2 + cos(2π(θ(x1)− θ(x2)))
(X1 −X2)2

).
(4.3.21)

Approximating the integral
∫ E

0
1

ρ0(E′) ≈
E

ρ0(E) we have that X ≈ E
πρ0(E) . Moreover, in the limit

where |E2 − E1| ≪ 1 we can write ρ0(E1) = ρ0(E2) = ρ0(E) where E = E1+E2
2 . We have

then:

⟨ρ̂(E1)ρ̂(E2)⟩ = 1
2π2

−
(

1
(E1 − E2)2 + 1

(E1 + E2)2

)
+

1
(E1 − E2)

cos
(
2π
∫ E2 ρ0(E ′)dE ′

)
E2

−
cos
(
2π
∫ E1 ρ0(E ′)dE ′

)
E1

+

−cos
(
2π
(∫ E2 ρ0(E ′)dE ′ +

∫ E1 ρ0(E ′)dE ′
))

(E1 + E2)2 +
cos
(
2π
∫ E2
E1
ρ0(E ′)dE ′

)
(E1 − E2)2

.
(4.3.22)

For |E2 − E2| ≪ 1 we recover the well known Sine kernel expression for the two-point
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correlation of eigenvalues in Random Matrix Theory:

⟨ρ̂(E1)ρ̂(E2)⟩ = − 1
2π2

1
(E1 − E2)2 + 1

2π2

cos
(
2π
∫ E2
E1
ρ0(E ′)dE ′

)
(E1 − E2)2 + reg

= − 1
π2

sin2(π
∫ E2
E1
ρ0(E ′)dE ′)

(E1 − E2)2 .

(4.3.23)

We have reproduced the known matrix integral expressions for ⟨ρ(E)⟩ and ⟨ρ(E1)ρ(E2)⟩ by
considering equal time quantum expectation values of the eigenvalue density operator ρ̂(E)
in Matrix Quantum Mechanics. This shows that, in this sense, we can think of a matrix
integral as a fixed time instance of a corresponding quantum mechanical theory of matrices.
The statistical fluctuations given by integrating over an ensemble of matrices can now be
understood as quantum fluctuations of a single matrix in the large N limit.

4.3.2 Entanglement entropy

An observable present in MQM that has no analogue in RMT is the entanglement between
eigenvalues. Since the eigenvalues are quantum mechanical with a collective wavefunction
ΨN(E1, . . . , EN) we can consider the entanglement entropy for a bipartition of eigenvalue
space. Thanks to the CFT description of the hydrodynamical fluctuations we can compute the
entanglement entropy using the universal Cardy-Calabrese formula [313]. Thus we don’t need
to map any microscopic operators to the effective theory in this case. The Renyi entropies
for a subsystem A are defined as:

Sn ≡
1

1− n log(Tr(ρnA)), (4.3.24)

where ρA is the reduced density matrix.

Half-space bipartition (0, E) ∪ (E,∞)

We consider the Renyi entropies for a bipartition (xL, x) ∪ (x, xR) which in X coordinates
is (0, X(x)) ∪ (X(x), L). In a 2D CFT the Renyi entropies for such a bipartition can be
computed by the expectation value of a single twist field [313]:

Sn(x) = 1
1− n log

(
ϵ∆n⟨Tn(x, t = 0)⟩

)
, (4.3.25)

where ∆n is the dimension of the twist operator:

∆n = c

12(n− 1
n

), (4.3.26)
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and ϵ is a UV cut-off for the formally divergent entanglement entropy. The cut-off is known
to encode the divergent amount of short-range entanglement in continuum Quantum Field
Theories. This divergence is an issue when attempting to give a rigorous definition of
entanglement entropy in QFT (see [314, 315]). However, as illustrated in section 2, in the
effective hydrodynamical description we have a microscopic length scale, the mean particle
spacing d(x) = ρ−1

0 (x) which gives a natural UV cut-off ΛUV = ρ0(x). Since the system is
inhomogeneous, the UV cutoff scale is position dependent and we have:

ϵ(x) = ϵ0

ρ0(x) , (4.3.27)

where ϵ0 is a dimensionless constant and the cutoff is evaluated at the boundary point x of
the bipartition. We have then a UV-finite expression for the entanglement entropy. This can
be interpreted as a consequence of having a finite density of eigenvalues ρ0(E) in RMT due
to eigenvalue repulsion. Equivalently, it is a consequence of having a non-zero VEV for the
density ρ(x) = ⟨Ψ†Ψ⟩. In the next section we will see that in the duality between the c = 1
matrix model and two-dimensional string theory the finiteness of the entanglement entropy
can be interpreted as due to stringy effects [277]. String theory, as expected, regulates the
UV-divergence to give a finite answer for the entropy.

We work in complex coordinates z = X + it defined on the infinite strip (0, L)× R. The
metric in complex coordinates is ds2 = π2ρ0(x)2dzdz̄. We can perform a Weyl transformation
gab → (πρ0(x))−2gab to go to flat space. Under the Weyl transformation the twist operator
scales as Tn → (πρ0(x))−∆nTn. Next we map the z-strip to the upper half-plane H via
a conformal transormation g(z) = eiπ

z
L . Under this map the twist field transforms as

Tn(z)Strip →
∣∣∣dg(z)

dz

∣∣∣∆nTn(g(z))H. The last ingredient is the expectation value of the twist
field on the upper-half plane which is ⟨Tn(g(z))⟩H = (Img(z))−∆n . We combine everything
together to arrive at:

Sn(x) = n+ 1
12n log

Ω(x)
ϵ(x)

∣∣∣∣∣dg(z)dz

∣∣∣∣∣
−1

Img(z)
, (4.3.28)

where ∣∣∣∣∣dg(z)dz

∣∣∣∣∣ = π

L
, (4.3.29)

Img(z) = sin
(
πX

L

)
. (4.3.30)

We then obtain the entanglement entropy for a bipartition (xL, x) ∪ (x, xR) of eigenvalues in
a model with spectral density ρ0(x):

Sn = n+ 1
12n log

(
L

π
ρ2

0(x) sin
(
πX(x)
L

))
+ const. (4.3.31)
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Writing this explicitly in the eigenvalue coordinate x = E for a bipartition (EL, E) ∪ (E,ER)
we have:

Sn(E) = n+ 1
12n log

(
L

π
ρ2

0(E) sin
(

1
L

∫ E

EL

dE ′

ρ0(E ′)

))
+ const. (4.3.32)

We see that, due to the term sin
(
π
L
X
)

with X ∈ (0, L), the entropy has the expected
Page-curve behaviour as a function of the bipartition point E, increasing until a turning
point and decreasing afterwards. This is a consequence of unitarity in a system with a finite
number of states N =

∫
ρ0(E)dE and does not survive the double scaling limit. As N →∞

in the double scaling limit we lose unitarity of the entanglement entropy Sn(E) and we have
information loss. There are many examples of the tension between unitarity and the large N
limit [58, 103,314,316–318] .

For a double scaled matrix model we have that xR =∞ and thus L =∞. Expanding the
sine we have that the L dependence drops out and we obtain:

Sn(E) = n+ 1
12n log

(
1
π
ρ2

0(E)
∫ E

EL

dE ′

ρ0(E ′)

)
+ const. (4.3.33)

Approximating the integral by assuming an almost constant density
∫ E
EL

dE′

ρ0(E′) ≈
E−EL

ρ0(E) we
obtain:

Sn(E) ≈ n+ 1
12n log

( 1
π
ρ0(E)(E − EL)

)
+ const. (4.3.34)

We see that the entanglement entropy presents a leading term proportional to the micro-
canonical entropy:

Sn(E) ∝ log(ρ0(E)) = S0(E). (4.3.35)

This shows that the entanglement entropy contains a large amount of short-range entan-
glement coming from neighbouring eigenvalues separated by the bipartition, since the entropy
S0(E) counts the number of states in a window (E − dE,E + dE).
The second term Sn(E) ∝ log(E − EL) is the usual Cardy-Calabrese behaviour in two di-
mensions. Note that we should not extrapolate this result to the edge of the spectral density
E ∼ EL. In RMT, there are distinct ’bulk’ and ’edge’ limits for the spectral density with
different universal kernels describing them [234] and we should not extrapolate a bulk result
to the edge region. Hydrodynamics requires the derivative of the density to be small, thus it
describes the ’bulk’ region.

Interval bipartition (E1, E2)

We now calculate the Renyi entropies for a subregion A = (X1, X2) ∈ (0, L) equal to
A = (x1, x2) ∈ (xL, xR), where X1,2 ≡ X(x1,2). The Renyi entropies are given by the two
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point function of the twist field at the extrema of the interval:

Sn ∝ log
(
ϵ∆n⟨Tn(z1)T̃n(z2)⟩

)
. (4.3.36)

T̃n is the conjugate twist field [313]. The cutoff now is ϵ = ϵ0
ρ(x1)ρ(x2) . Repeating the same

manipulations as before we can reduce the computation to a correlation on the flat upper
half plane H:

⟨Tn(z1)T̃n(z2)⟩strip =
(

Ω(x1)
∣∣∣∣∣dg(z1)

dz1

∣∣∣∣∣
)∆n

(
Ω(x2)

∣∣∣∣∣dg(z2)
dz2

∣∣∣∣∣
)∆n

× ⟨Tn(g(z1))T̃n(g(z2))⟩H.
(4.3.37)

The two point function on the upper half plane H is a priori a non trivial calculation
corresponding to a four-point function on the plane. In the case of a free boson theory it is
known [313,319,320] and we have:

⟨Tn(z1)T̃n(z2)⟩ =
[
Ω(x1)

∣∣∣∣∣dg(z1)
dz1

∣∣∣∣∣Ω(x2)
∣∣∣∣∣dg(z2)

dz2

∣∣∣∣∣ |g∗(z1)− g(z2)|2
Img(z1)Img(z2)|g(z1)− g(z2)|2

]∆n

. (4.3.38)

The Renyi entropies are:

Sn ∝ log
[(
L

π

)2
ρ2

0(x1)ρ2
0(x2) sin

(
π
X1

L

)
sin
(
π
X2

L

) |g(z1)− g(z2)|2
|g∗(z1)− g(z2)|2

]
, (4.3.39)

where the last term is equal to:

|g(z1)− g(z2)|2
|g∗(z1)− g(z2)|2

=
1− cos

(
π
L

(X2 −X1)
)

1− cos
(
π
L

(X1 +X2)
) =

sin2( π
2L(X2 −X1))

sin2( π
2L(X1 +X2))

. (4.3.40)

The final result is then:

Sn(x1, x2) = n+ 1
12n log

((
L

π

)2
ρ2

0(x1)ρ2
0(x2) sin

(
π
X1

L

)
sin
(
π
X2

L

)sin2( π
2L(X2 −X1))

sin2( π
2L(X1 +X2))

)
+const.

(4.3.41)
Writing this in terms of the eigenvalues (E1, E2) we have:

Sn(x1, x2) = n+ 1
12n log

(L
π

)2
ρ2

0(E1)ρ2
0(E2) sin

(
1
L

∫ E1

EL

dE ′

ρ0(E ′)

)
sin
(

1
L

∫ E2

EL

dE ′

ρ0(E ′)

)

×
sin2

(
1

2L
∫ E2
E1

dE′

ρ0(E′)

)
sin2

(
1

2L

(
2
∫ E1
EL

dE′

ρ0(E′) +
∫ E2
E1

dE′

ρ0(E′)

))
+ const.

(4.3.42)
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For a double scaled matrix model L =∞ we have:

Sn(x1, x2) = n+ 1
12n log

(
ρ2

0(x1)ρ2
0(x2)X1X2

(X2 −X1)2

(X1 +X2)2

)
+ const, (4.3.43)

which in terms of the eigenvalues is:

Sn(E1, E2) = n+ 1
12n log

( 1
π

)2
ρ2

0(E1)ρ2
0(E2)

(∫ E1

EL

dE ′

ρ0(E ′)

)(∫ E2

EL

dE ′

ρ0(E ′)

)

×

(∫ E2
E1

dE′

ρ0(E′)

)2

(
2
∫ E1
EL

dE′

ρ0(E′) +
∫ E2
E1

dE′

ρ0(E′)

)2

+ const.

(4.3.44)

Approximating the integrals by assuming an almost constant density
∫ E
EL

dE′

ρ0(E′) ≈
E−EL

ρ0(E) we
obtain:

Sn(E1, E2) ≈
n+ 1
12n log

( 1
π

)2
ρ0(E1)ρ0(E2)(E1 − EL)(E2 − EL) (E2 − E1)2

((E2 + E1)− 2EL)2


(4.3.45)

In the limit of RMT unviersality where (E1 − E2)≪ 1 we obtain the simple expression:

Sn(E1, E2) ≈
n+ 1
12n log

(
ρ2

0(E)(E1 − E2)2

4π2

)
(4.3.46)

where E = E1+E2
2 is the average energy. We see again that there is a leading contribution

proportional to the average microcanonical entropy Sn ∝ S0(E) = log(ρ0(E)) of the interval
(E1, E2). The entanglement entropy derived via the hydrodynamic CFT has been checked
against numerical simulations in [288] for a double well potential finding excellent agreement.

Emergence of spacetime in 2D string theory

Two-dimensional string theory is a non-critical bosonic string theory in D = 2 flat spacetime
with a linear dilaton background and a massless tachyon. The worldsheet is a Liouville CFT
with cL = 25 and a free boson cM = 1 which cancel the ghost central charge cg = −26 [236,237].
The low energy effective action is [321,322]:

S = 1
2

∫
dtdx
√
−ge−2Φ

(
R

2 + 2(∂Φ)2 + 8− (∂T )2 + 4T 2 − 2V (T )
)
, (4.3.47)

where V (T ) is a potential for the tachyon. The background has a tachyon condensate with
a free parameter µ̄ which determines the effective string coupling geff ∼ µ̄−1, thus we have
a perturbative string theory for µ≫ 1. Equivalently, µ̄ is the cosmological constant of the
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worldsheet Liouville theory. Two-dimensional string theory is dual to a theory of matrix
quantum mechanics with an inverted oscillator potential V (x) = −x2

2 and chemical potential
µ = −µ̄ < 0. The potential arises from a double scaling limit of a potential U(x) = −x2

2 + gx3

by taking N →∞ and g → 0 while keeping µ = −NϵF fixed, where ϵF is the Fermi energy of
the fermions filling up the well in the potential. This zooms into the vicinity of the maximum
of the potential which gives the universal critical behaviour. The supersymmetric string
is described instead by a double well potential [323]. In the hydrodynamic approach it is
perfectly possible to treat both the general case with potential U(X) but we will focus on
the inverted oscillator. The leading density of eigenvalues is given by 4.2.36:

ρ0(x) = 1
π

√
2(−V (x)− µ̄) = 1

π

√
x2 − 2µ̄. (4.3.48)

It has a left edge xL =
√

2µ̄ and extends to infinity as it is a double scaled model. The density
of states gives the geometry of the Fermi surface on which the 2D CFT (4.2.34) describing
the quantum hydrodynamical fluctuations lives:

ds2 = (x2 − 2µ̄)dτ 2 + dx2. (4.3.49)

The coordinate transformation which renders the metric conformally flat is explicitly:

X(x) =
∫ x

√
2µ̄

dλ√
−2µ̄+ λ2 = cosh−1

(
x√
2µ̄

)
= log

(
x+
√
x2 − 2µ̄√
2µ̄

)
, (4.3.50)

It was argued first in [293] that the transformation X(x) gives, at the semiclassical level,
the map from the eigenvalue-space x to the string theory spacetime X since physically it is
the "time-of-flight", meaning the WKB time it takes for an eigenvalue to go from xL to a
point x. Then in [277] a consistency argument identifying X(x) with the map between the
eigenvalues and the emergent spacetime was given based on entanglement. They computed
the entanglement entropy of the eigenvalues using the techniques of [324] and the WKB
wavefunctions. Then they argued that the entanglement entropy in spacetime should be
given by the Cardy-Calabrese formula and found that the relation X(x) produced the right
matching. The hydrodynamic approach instead provides a natural and more constructive
point of view: the geometry of the Fermi surface is dual to the spacetime geometry and the
mapping X(x) is simply the map between the two metrics. The Cardy-Calabrese formula
follows immediately from the fact that the quantum hydrodynamical theory of the eigenvalues
is a 2D CFT. We will now show explicitly the match with the entanglement entropy derived
in [277]. We can invert eq. 4.3.50 to write the density ρ0(X) in spacetime coordinates:

π2ρ2
0(x) = −2µ+ x2 = 2µ(−1 + cosh2(X)) = 2µ sinh2(X). (4.3.51)
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One can define a string coupling given by:

1
g̃s(X) ≡ 2µ̄ sinh2(X) ≡ π2ρ2

0(X), (4.3.52)

which at weak coupling µ̄≫ 1 is equal to the string coupling in the linear dilaton background
g̃s(X) = gs(X)

2µ . The entanglement entropy for a spacetime bipartition (0, X)U(X,L) in
two-dimensional string theory is then:

Sn(X)
∣∣∣∣
2D String

= n+ 1
12n log

[
L

π

1
g̃s(X) sin

(
πX

L

)]
+ const, (4.3.53)

while for a spacetime interval (X1, X2) it is given by:

Sn = n+ 1
12n log

(L
π

)2 sin
(
πX1
L

)
sin
(
πX2
L

)
g̃s(X1)g̃s(X2)

sin2( π
2L(X2 −X1))

sin2( π
2L(X1 +X2))

+ const. (4.3.54)

This reproduces the results of [277] when considering the Von Neumann entropy n = 1 and
L→∞:

S1 = 1
6 log

[
X1X2

g̃s(X1)g̃s(X2)
(X2 −X1)2

(X1 +X2)2

]
+const = 1

3 log
 X2 −X1√

g̃s(X1)g̃s(X2)

+1
6 log

(
X1X2

X1 +X2)2

)
+const.

(4.3.55)
Since they were working in the microscopic fermion field theory (4.2.11), they were able to
determine the additive constant for L→∞. However the constant can depend on the system
size L so we cannot use their results to fix the constant in the general L case. Often in in
two-dimensional string theory a cut-off is introduced for the inverted oscillator potential
which comes from the potential U(x) before the double-scaling limit. The cut-off is at a
distance xR ∼ 1

g
∼ N so at large N it is effectively not there. Since our results are valid for

finite L we can also probe the region close to the cut-off or directly do the computation for
the potential U(x).

4.3.3 Reduced density matrix for n < N eigenvalues

The one-particle density matrix in the fermionic field theory 4.2.11 is computed by the
two-point function of the fermion field [301,325,326]:

g1(x, x′) ≡ ⟨Ψ†(x)Ψ(x′)⟩. (4.3.56)

We have seen that the fermionic operators Ψ,Ψ† can be expanded as an infinite sum of
CFT primary operators and their descendants consistent with the symmetries. In particular,
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Ψ,Ψ† corresponds to vertex operators Vp,±1 and their derivatives. Considering only the most
relevant most relevant operator we have:

Ψ†(x) ≈ AΨ†,V0,1ρ0(x)1/4V0,1(x), (4.3.57)

where the dimensionless coefficient is given by

|AΨ†,V0,1|
2 = G4(3/2)√

2π
. (4.3.58)

The one-eigenvalue reduced density matrix is then given, at leading order in the hydrody-
namic effective theory simply by a two-point function of vertex operators:

g1(x, x′) = |Aψ,V0,−1|2ρ0(x)1/4ρ0(x′)1/4⟨V0,1(x),V0,−1(x′)⟩CFT. (4.3.59)

We make use of coordinates X(x) such that the geometry is conformally flat. We map the
correlator to the flat space infinite strip:

⟨V0,1(x),V0,1(x′)⟩g =
(
dX

dx

)1/4(dX
dx

)1/4

⟨V0,1(X),V0,1(X ′)⟩flat. (4.3.60)

The two-point function of vertex operators on an infinite strip (0, L)× R is known to be:

⟨V0,1(X),V0,1(X ′)⟩CFT,flat =

∣∣∣sin(πX
L

)
sin
(
πX′

L

)∣∣∣1/4

∣∣∣2L
π

sin
(
π(X−X′)

2L

)
sin
(
π(X+X′)

2L

)∣∣∣1/2 . (4.3.61)

We arrive at the following result for the one-eigenvalue density matrix:

g1(x, x′) =
|Aψ,V0,−1|2√

π

(
sin
(
πX
L

)
sin
(
πX′

L

))1/4

∣∣∣2L
π

sin
(
π(X−X′)

2L

)
sin
(
π(X+X′)

2L

)∣∣∣1/2 . (4.3.62)

We can easily generalize this result to obtain the n-eigenvalue density matrix:

gn({x}, {x′}) =
|Aψ,V0,−1|2n

πn/2

n∏
i=1

∣∣∣∣∣sin
(
π
Xi

L

)
sin
(
π
X ′
i

L

)∣∣∣∣∣
1
4

×

∏
k<l

∣∣∣∣(2L
π

)2
sin
(
π (Xk−Xl)

2L

)
sin
(
π (Xk+Xl)

2L

)
sin
(
π

(X′
k−X′

l)
2L

)
sin
(
π

(X′
k+X′

l)
2L

)∣∣∣∣1/2

∏
i,j

∣∣∣∣2Lπ sin
(
π

(Xi−X′
j)

2L

)
sin
(
π

(Xi+X′
j)

2L

)∣∣∣∣1/2 .

(4.3.63)
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For a double scaled matrix model L =∞, the one-eigenvalue density matrix is given by:

g1(x, x′) =
√

2|Aψ,V0,−1|2√
π

|XX ′|1/4

|(X −X ′)(X +X ′)|1/2 , (4.3.64)

writing it explicitly in terms of the eigenvalues we have:

g1(E,E ′) =
√

2|Aψ,V0,−1 |2√
π

∣∣∣(∫ EEL

dE′′

ρ0(E′′)

)(∫ E′

EL

dE′′

ρ0(E′′)

)∣∣∣1/4

∣∣∣(∫ E′

E
dE′′

ρ0(E′′)

)(∫ E
EL

dE′′

ρ0(E′′) +
∫ E′

EL

dE′′

ρ0(E′′)

)∣∣∣1/2 , (4.3.65)

Approximating the integrals by assuming an almost constant density
∫ E
EL

dE′

ρ0(E′) ≈
E−EL

ρ0(E) we
obtain:

g1(E,E ′) ≈
√

2|Aψ,V0,−1|2
|ρ0(E)ρ0(E ′)(E − EL)(E ′ − EL)|1/4

|E ′ − E|1/2|E + E ′ − 2EL|1/2 . (4.3.66)

In the limit of RMT universality |E − E ′| ≪ 1 we have the simple expression:

g1(E,E ′) ≈ |Aψ,V0,−1|2
|ρ0(E)ρ0(E ′)|1/4

|E − E ′|1/2 . (4.3.67)

In the double scaling limit L =∞ the n-eigenvalue density matrix is:

gn({x}, {x′}) = |Aψ,V0,−1|2n
( 2
π

)n/2 n∏
i=1
|XiX

′
i|1/4 ×

∏
k<l |(X2

k −X2
l )(X ′

k
2 −X ′

l
2)|1/2∏

i,j |(X2
i −X ′2

j)|1/2 . (4.3.68)

The factors of L cancel exactly.

We recognize the Vandermonde determinant ∆(X2) = ∏
i<j(X2

i − X2
j ) of the matrix

X
2(j−1)
i :

gn({x}, {x′}) = |Aψ,V0,−1|2n
( 2
π

)n/2 n∏
i=1
|XiX

′
i|1/4 × |∆(X2)∆(X ′2)|1/2∏

i,j |(Xi −X ′
j)(Xi +X ′

j)|1/2 . (4.3.69)

To obtain the expression in terms of the eigenvalues it is again enough to substitute xi = Ei
and Xi =

∫ Ei
EL

dE
πρ0(E) . Approximating the integrals by assuming an almost constant density
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∫ E
EL

dE′

ρ0(E′) ≈
E−EL

ρ0(E) we obtain:

gn({E}, {E ′}) ≈ |Aψ,V0,−1|2n2n/2
n∏
i=1

∣∣∣∣∣(Ei − EL)(E ′
i − EL)

ρ0(Ei)ρ0(E ′
i)

∣∣∣∣∣
1/4∏

i,j

∣∣∣∣∣(Ei − EL)2

ρ0(Ei)2 −
(E ′

j − EL)2

ρ0(E ′
j)2

∣∣∣∣∣
−1/2

∏
k<l

∣∣∣∣∣(Ek − EL)2

ρ0(Ek)2 − (El − EL)2

ρ0(El)2

∣∣∣∣∣
1/2∣∣∣∣∣(E ′

k − EL)2

ρ0(E ′
k)2 − (E ′

l − EL)2

ρ0(E ′
l)2

∣∣∣∣∣
1/2

.

(4.3.70)

These expressions have been checked against numerical simulations performed via Density
Matrix Renormalization Group (DMRG) methods for harmonic and double-well potentials
in [301]. The hydrodynamic CFT accurately matches the numerical results already for N = 15
and improves as N ≫ 1.

4.4 Open questions and future work

We conclude with several questions and possibilities for future work.

Universe field theory

It seems possible to think of Matrix Quantum Mechanics as a universe field theory for JT
gravity. We can define an operator Ẑ(β) given by:

Ẑ(β) =
∫
dEe−βE ρ̂(E). (4.4.1)

This operator creates a spacetime with a boundary of length β and gives a realization of the
operators acting on the Hilbert space of baby universes discussed in [99,191,327].
In particular, understanding the connection between the universe field theory defined by
MQM and the one proposed in [99,327] is an interesting prospect which we plan to investigate
further. From this point of view, the time t in MQM corresponds to the time evolution eiHBU t

generated by the third quantised Hamiltonian HBU on the baby universe Hilbert space. This
Hamiltonian should then be identified with the Hamiltonian of the MQM in eq. 4.2.6.
Similarly to Ẑ(β), the eigenvalue wavefunction ψN (E1 . . . EN ) and the reduced density matrix
gn(E,E ′) describe the Wheeler–DeWitt wavefunction of universes with specified boundaries.
It would be interesting to understand better the implications of the reduced density matrix in
this context. In two-dimensional string theory the operators Ẑ(β) are known as loop operators
and their third quantised interpretation in the c = 1 matrix model has been discussed in [267].
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Out-of-equilibrium spectral density ρ0(E, t)

We have only considered fluctuations of the eigenvalues around an equilibrium spectral density
ρ0(E) which is time independent. In MQM, the matrix H(t) will evolve in time, thus it
is natural to consider a time-dependent density ρ0(E, t). In the hydrodynamic description
this corresponds to out-of-equilibrium physics. In two-dimensional string theory the time t
corresponds to the time direction in target space [236]. It would be interesting to understand
if there is a physical interpretation of time t in connection with JT gravity. This time variable
is different from the time τ coming from analytical continuation of the Euclidean boundary
circle β → β + iτ .
It would be interesting to understand out-of-equilibrium evolution of the density of eigen-
values in terms of bulk physics, as a toy model of black hole dynamics and evaporation.
One could consider coupling the system to a bath or performing a quench and computing
the entanglement entropy as a function of time to see if one obtains the desired Page curve
behaviour.
The hydrodynamic approach could also be useful for studying time-dependent backgrounds
in two-dimensional string theory as in [328]. More recently quantum quenches in the c = 1
matrix model and their string theory interpretation were considered in [329,330].

Topological recursion in MQM

The duality between JT gravity and a matrix integral was established at all orders in 1
N

thanks to topological recursion [35,231,331]. It would then be good to understand topological
recursion from the point of view of MQM. In particular, the 1

N
∼ ℏ corrections in MQM are

given by higher orders in the WKB expansion of the eigenvalue wavefunction ψ(E). It has
been shown, for certain classes of spectral curves, that the WKB expansion of an associated
quantum mechanical system satisfies topological recursion [332].12 This connection between
WKB and topological recursion might shed light on MQM and its one-time-point reduction
to the matrix integral dual to JT gravity.

Finite temperature and non-singlet sector

We can consider matrix quantum mechanics at finite temperature by compactifying the
time direction t with period 2πR (see secs. 8, 9 and 10 of [236]). It is well known that a
Berezinskii–Kosterlitz–Thouless (BKT) phase transition takes place: for R < RBKT vortices

12The class of spectral curves for which this has been shown does not include JT gravity’s spectral curve
but it does include the Airy case ρ(E) =

√
E.
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condense and the non-singlet degrees of freedom dominate the free energy [294–297]. The
physics of the non-singlet sector is very rich, involving 2D black holes and long strings
[261,333,334]. Thus it would be interesting to understand the transition by incorporating
vortices into the hydrodynamic effective theory. Moreover, at high temperatures R → 0,
fluctuations along the thermal circle are suppressed and we recover a 0-dimensional matrix
integral with potential V (H). If we consider the case of JT gravity, this proposes a different
interpretation of the matrix integral dual to JT gravity as a high temperature limit of Matrix
Quantum Mechanics.
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