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Sommario

Un problema ricorrente nell'ambito della scienza computazionale è la determinazione di un approssi-
mante, in un intervallo �ssato della retta reale, di una funzione di cui si conoscono solamente le valu-
tazioni in un insieme �nito di punti, detti nodi. Un approccio classico per risolvere questo problema si
basa sull'interpolazione polinomiale. Di particolare interesse applicativo è il caso in cui i punti seguono
una distribuzione equispaziata. In queste ipotesi ha luogo il fenomeno di Runge, che consiste in un au-
mento dell'errore di interpolazione in prossimità degli estremi dell'intervallo. Nel 2009, J. Boyd e F. Xu
dimostrarono che il fenomeno di Runge poteva essere eliminato, interpolando la funzione solo su un sot-
toinsieme proprio dei punti dati, costituito dai nodi più vicini ai nodi di Chebyshev-Lobatto, i cosidetti
nodi mock�Chebyshev. Tuttavia, per sua natura, questa strategia comporta il non utilizzo di quasi tutti
i dati disponibili. Con l'obiettivo di migliorare l'accuratezza del metodo proposto da Boyd e Xu, utiliz-
zando al contempo tutti i dati a disposizione, S. De Marchi, F. Dell'Accio e M. Mazza proposero una
nuova tecnica, chiamata approssimazione dei minimi quadrati mock-Chebyshev vincolata. In questa tenica
il ruolo del polinomio nodale, necessario per garantire l'interpolazione nei nodi mock-Chebyshev, è fonda-
mentale. La sua generalizzazione al caso bivariato necessita, però, di approcci alternativi. La procedura
recentemente introdotta da F. Dell'Accio, F. Di Tommaso e F. Nudo, basata sull'uso dei moltiplicatori
di Lagrange, consente anche di de�nire l'approssimante dei minimi quadrati mock-Chebyshev vincolato
su una griglia uniforme di punti. Questa nuova tecnica, equivalente alla tecnica univariata precedente-
mente introdotta in termini analitici, risulta anche più accurata in termini numerici. La prima parte
della tesi è dedicata allo studio di questa nuova tecnica e alla sua applicazione a problemi di quadratura
e di�erenziazione numerica.

La seconda parte di questa tesi si focalizza sullo sviluppo di un framework uni�cato e generale per
l'arricchimento degli elementi �niti triangolari lineari in due dimensioni e simpliciali lineari in più di-
mensioni. Il metodo degli elementi �niti rappresenta una soluzione ampiamente adottata per risolvere
numericamente equazioni alle derivate parziali presenti nei contesti di ingegneria e modellistica matemat-
ica [55]. La sua popolarità è attribuibile, in parte, alla sua versatilità nel gestire varie forme geometriche.
Tuttavia, le approssimazioni prodotte da questo metodo, spesso non si rivelano e�caci nel risolvere prob-
lemi che presentano delle singolarità. Per superare questo ostacolo, sono stati proposti diversi approcci,
tra cui uno dei più noti è l'arricchimento dello spazio di approssimazione dell'elemento �nito mediante
l'aggiunta di adeguate funzioni di arricchimento. Uno degli elementi �niti più semplici è l'elemento �nito
triangolare lineare standard. Quest'ultimo è largamente utilizzato nelle applicazioni. In questa tesi,
introduciamo un arricchimento polinomiale dell'elemento �nito triangolare lineare standard e utilizzi-
amo questo nuovo elemento �nito per introdurre un miglioramento dell'operatore triangolare di Shepard.
In seguito, introduciamo una nuova classe di elementi �niti arricchendo l'elemento triangolare lineare
standard con funzioni di arricchimento non necessariamente polinomiali, soddisfacenti la condizione di
annullamento nei vertici. Successivamente, generalizziamo i risultati presentati nel caso bidimensionale,
al caso dell'elemento �nito simpliciale lineare standard utilizzando anche funzioni di arricchimento che
non soddisfano la condizione di annullamento nei vertici. In�ne, applichiamo queste nuove strategie di
arricchimento per estendere l'arricchimento dell'elemento �nito simpliciale lineare vettoriale sviluppato
da Bernardi e Raugel.
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Résumé

Un problème très courant en science computationnelle est la détermination d'une approximation, dans un
intervalle �xe, d'une fonction dont les évaluations ne sont connues que sur un ensemble �ni de points. Une
approche courante pour résoudre ce problème repose sur l'interpolation polynomiale. Un cas d'un grand
intérêt pratique est celui où ces points suivent une distribution équidistante dans l'intervalle considéré.
Dans ces hypothèses, un problème lié à l'interpolation polynomiale est le phénomène de Runge, caractérisé
par une augmentation de l'erreur d'interpolation près des extrémités de l'intervalle. En 2009, J. Boyd
et F. Xu ont démontré que le phénomène de Runge pouvait être éliminé en interpolant la fonction que
sur un sous-ensemble approprié formé par les noeuds les plus proches des noeuds de Chebyshev-Lobatto,
communément appelés noeuds de mock�Chebyshev.

Cependant, cette stratégie implique de ne pas utiliser presque toutes les données disponibles. A�n
d'améliorer la précision de la méthode proposée par Boyd et Xu, tout en tirant pleinement parti des
données disponibles, S. De Marchi, F. Dell'Accio et M. Mazza ont introduit une nouvelle technique appelée
constrained mock-Chebyshev least squares approximation. Dans cette méthode, le rôle du polynôme nodal,
est crucial. Son extension au cas bivarié nécessite cependant des approches alternatives. La procédure
développée par F. Dell'Accio, F. Di Tommaso et F. Nudo, utilisant la méthode des multiplicateurs de
Lagrange, permet également de dé�nir l'approximation des moindres carrés de mock-Chebyshev sur une
grille uniforme de points. Cette technique innovante, équivalente à la méthode univariée précédemment
introduite en termes analytiques, se révèle également plus précise en termes numériques. La première
partie de la thèse est consacrée à l'étude de cette nouvelle technique et à son application à des problèmes
de quadrature et de di�érenciation numérique.

Dans la deuxième partie de cette thèse, nous nous concentrons sur le développement d'un cadre uni�é
et général pour l'enrichissement de l'élément �ni linéaire triangulaire standard en deux dimensions et de
l'élément �ni linéaire simplicial standard en dimensions supérieures. La méthode des éléments �nis est
une approche largement adoptée pour résoudre numériquement les équations aux dérivées partielles qui
se posent en ingénierie et en modélisation mathématique [55]. Sa popularité est attribuable en partie
à sa polyvalence pour traiter diverses formes géométriques. Cependant, les approximations produites
par cette méthode s'avèrent souvent ine�caces pour résoudre des problèmes présentant des singularités.
Pour surmonter ce problème, diverses approches ont été proposées, l'une des plus célèbres reposant sur
l'enrichissement de l'espace d'approximation des éléments �nis en ajoutant des fonctions d'enrichissement
appropriées. Un des éléments �nis le plus simple est l'élément �ni triangulaire linéaire standard, large-
ment utilisé dans les applications. Dans cette thèse, nous introduisons un enrichissement polynomial de
l'élément �ni triangulaire linéaire standard et utilisons ce nouvel élément �ni pour introduire une amélio-
ration de l'opérateur triangulaire de Shepard. Ensuite, nous introduisons une nouvelle classe d'éléments
�nis en enrichissant l'élément triangulaire linéaire standard avec des fonctions d'enrichissement qui ne sont
pas nécessairement polynomiales, mais qui satisfont la condition d'annulation aux sommets du triangle.

Nous généralisons les résultats présentés dans le cas bidimensionnel au cas de l'élément �ni simplicial
linéaire standard, en utilisant également des fonctions d'enrichissement qui ne satisfont pas la condition
d'annulation aux sommets du simplexe.

En�n, nous appliquons ces nouvelles stratégies d'enrichissement pour dé�nir une version plus générale
de l'enrichissement de l'élément �ni linéaire vectoriel simplicial développé par Bernardi et Raugel.
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Abstract

A very common problem in computational science is the determination of an approximation, in a �xed
interval, of a function whose evaluations are known only on a �nite set of points. A common approach
to solving this problem relies on polynomial interpolation, which consists of determining a polynomial
that coincides with the function at the given points. A case of great practical interest is the case where
these points follow an equispaced distribution within the considered interval. In these hypotheses, a
problem related to polynomial interpolation is the Runge phenomenon, which consists in increasing the
magnitude of the interpolation error close to the ends of the interval. In 2009, J. Boyd and F. Xu
demonstrated that the Runge phenomenon could be eliminated by interpolating the function only on a
proper subset formed by nodes closest to the Chebyshev-Lobatto nodes, the so called mock�Chebyshev
nodes. However, this strategy involves not using almost all available data. In order to improve the
accuracy of the method proposed by Boyd and Xu, while making full use of the available data, S.
De Marchi, F. Dell'Accio, and M. Mazza introduced a new technique known as the constrained mock-
Chebyshev least squares approximation. In this method, the role of the nodal polynomial, essential for
ensuring interpolation at mock-Chebyshev nodes, is crucial. Its extension to the bivariate case, however,
requires alternative approaches. The recently developed procedure by F. Dell'Accio, F. Di Tommaso,
and F. Nudo, employing the Lagrange multipliers method, also enables the de�nition of the constrained
mock-Chebyshev least squares approximation on a uniform grid of points. This innovative technique,
equivalent to the previously introduced univariate method in analytical terms, also proves to be more
accurate in numerical terms. The �rst part of the thesis is dedicated to the study of this new technique
and its application to numerical quadrature and di�erentiation problems.

In the second part of this thesis, we focus on the development of a uni�ed and general framework for the
enrichment of the standard triangular linear �nite element in two dimensions and the standard simplicial
linear �nite element in higher dimensions. The �nite element method is a widely adopted approach for
numerically solving partial di�erential equations arising in engineering and mathematical modeling [55].
Its popularity is partly attributed to its versatility in handling various geometric shapes. However, the
approximations produced by this method often prove ine�ective in solving problems with singularities.
To overcome this issue, various approaches have been proposed, with one of the most famous relying on
the enrichment of the �nite element approximation space by adding suitable enrichment functions. One
of the simplest �nite elements is the standard linear triangular element, widely used in applications. In
this thesis, we introduce a polynomial enrichment of the standard triangular linear �nite element and use
this new �nite element to introduce an improvement of the triangular Shepard operator. Subsequently,
we introduce a new class of �nite elements by enriching the standard triangular linear �nite element with
enrichment functions that are not necessarily polynomials, which satisfy the vanishing condition at the
vertices of the triangle.

Later on, we generalize the results presented in the two dimensional case to the case of the standard
simplicial linear �nite element, also using enrichment functions that do not satisfy the vanishing condition
at the vertices of the simplex.

Finally, we apply these new enrichment strategies to extend the enrichment of the simplicial vector
linear �nite element developed by Bernardi and Raugel.
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Introduzione

Un problema molto frequente nella scienza computazionale è la determinazione di un approssimante, in
un intervallo �ssato [a, b], di una funzione f di cui si conoscono solamente le valutazioni su un insieme di
n + 1 punti Xn, n ∈ N. A meno di traslazioni e omotetie, possiamo supporre di lavorare nell'intervallo
[−1, 1]. Un approccio standard per risolvere questo problema è utilizzare l'interpolazione polinomiale, cioè
determinare un polinomio Pn[f ], di grado al più n, che coincida con la funzione f nei punti dell'insieme
Xn. Un caso di grande interesse pratico è il caso in cui l'insieme Xn coincida con l'insieme dei punti eq-
uispaziati nell'intervallo [−1, 1]. In queste ipotesi, un problema relativo all'interpolazione polinomiale è il
fenomeno di Runge. Questo consiste nell'aumento di ampiezza dell'errore di interpolazione in prossimità
degli estremi dell'intervallo considerato [−1, 1]. Fu scoperto nei primi anni del 900 da Carl David Tolmé
Runge mentre studiava l'andamento degli errori di interpolazione polinomiale per approssimare alcune
funzioni [89]. Per ovviare a questo problema, negli anni sono state proposte diverse tecniche, vedi per
esempio [10, 5, 24, 26]. In particolare, nel 2009, John P. Boyd e Fei Xu nell'articolo [10], dimostrarono
che il fenomeno di Runge può essere completamente eliminato se si decide di interpolare la funzione
f solamente su un sottoinsieme proprio dell'insieme Xn, costituito da m + 1 = O(

√
n) + 1 nodi che

sono vicini ai nodi di Chebyshev-Lobatto di ordine m+ 1, i cosidetti nodi mock�Chebyshev. Utilizzando
questa strategia, però, molti dati che si hanno a disposizione non vengono utilizzati, e dunque motivati
da questo, Stefano De Marchi, Francesco Dell'Accio e Mariarosa Mazza, in [24], proposero una nuova
tecnica, con l'intento di migliorare l'accuratezza dell'approssimante introdotto in [10]. Questa tecnica
viene detta tecnica dell'approssimazione dei minimi quadrati mock-Chebyshev vincolata. Più precisa-
mente, l'idea proposta in [24] consiste nell'approssimare la funzione f con un polinomio di grado r > m
che si ottiene interpolando f sull'insieme dei nodi mock-Chebyshev e sfruttando i nodi rimanenti per
migliorare l'accuratezza dell'approssimazione attraverso una regressione simultanea. In questa tenica,
come vedremo nel Capitolo 1, il ruolo del polinomio nodale è fondamentale. A causa della mancanza
di generalizzazioni del polinomio nodale nella teoria dell'interpolazione bivariata, c'è quindi la necessità
di trovare approcci alternativi che consentano generalizzazioni al caso bivariato dell'approssimazione dei
minimi quadrati mock-Chebyshev vincolata. Una nuova procedura, introdotta da Francesco Dell'Accio,
Filomena Di Tommaso e Federico Nudo nel 2022 [39], permette di de�nire, sotto le stesse condizioni,
lo stesso approssimante introdotto in [24], utilizzando il metodo dei moltiplicatori di Lagrange. Questa
tecnica, indipendente dal polinomio nodale, è stata sviluppata da Joseph-Louis Lagrange per risolvere
problemi di minimi quadrati vincolati. Una volta �ssata una base dello spazio dei polinomi di grado r,
l'approssimante viene calcolato risolvendo delle equazioni lineari, che generalizzano le equazioni normali e
che costituiscono il sistema lineare KKT (questo nome è dovuto ai tre ricercatori William Karush, Harold
Kuhn, and Albert Tucker, che furono i primi ad introdurlo). Nel Capitolo 2 vengono proposte due diverse
strategie per ottenere questa generalizzazione:

� la prima, basata sull'interpolazione prodotto tensore su una griglia cartesiana di nodi mock-Chebyshev,

� la seconda, basata sull'interpolazione di grado totale su un insieme di nodi che sono vicini ai ben
noti nodi di Padova [9].

Nelle stesse ipotesi di cui sopra, un altro problema di grande interesse pratico è la determinazione di
formule di quadratura accurate su nodi equispaziati. Questo è stato oggetto di studio di diversi autori
negli ultimi anni, vedi per esempio [43, 58, 56, 68, 60, 71, 77]. In particolare, l'approccio proposto
da Hassan Majidian in [77] consiste nell'utilizzare rispettivamente le formule di quadratura di Gauss-
Christo�el in combinazione con interpolanti polinomiali locali della funzione f sui punti considerati.
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Motivati da questo, nel Capitolo 3, introduciamo una formula di quadratura stabile ed accurata su nodi
equispaziati che utilizza la formula di quadratura di Gauss�Christo�el e l'approssimazione dei minimi
quadrati mock-Chebyshev vincolata. Inoltre, poiché l'accuratezza della formula di quadratura dipende
dalla classe di di�erenziabilità della funzione di cui vogliamo approssimare l'integrale, in questo capitolo
sviluppiamo anche un algoritmo adattivo per calcolare il grado di regressione ottimale il quale corrisponde
alla formula di quadratura più accurata. In [40] utilizziamo l'approssimazione dei minimi quadrati mock-
Chebyshev vincolata per introdurre una formula di quadratura di tipo prodotto. Questo tipo di formule di
quadratura vengono utilizzate per approssimare integrali de�niti su intervalli �niti di funzioni integrande
che presentano una "patologia", ad esempio funzioni "quasi" singolari, funzioni altamente oscillanti,
funzioni debolmente singolari. Nel Capitolo 4 studiamo ulteriormente alcune proprietà dell'operatore
dei minimi quadrati mock-Chebyshev vincolato, e forniamo nuovi risultati e applicazioni. In particolare,
introduciamo rappresentazioni puntuali esplicite dell'errore e delle sue derivate, assumendo che la funzione
f sia su�cientemente regolare in [−1, 1]. Nelle stesse ipotesi, come applicazione, introduciamo un nuovo
metodo di derivazione basato su una griglia di punti equispaziati per approssimare le derivate successive
della funzione f con le derivate dell'approssimante dei minimi quadrati mock-Chebyshev vincolato.

La seconda parte di questa tesi è dedicata allo studio degli arricchimenti di alcuni elementi �niti
standard. Un elemento �nito è una terna (Kd,FKd

, ΣKd
), dove

� Kd è un politopo in Rd,

� FKd
è uno spazio vettoriale di dimensione �nita n constituito da funzioni a valori reali de�nite su

Kd, anche dette trial functions,

� ΣKd
= {Lj : j = 1, . . . , n} è un insieme di funzionali lineari, linearmente indipendenti sullo spazio

vettoriale FKd
, detti anche gradi di libertà,

tale che lo spazio di approssimazione FKd
sia ΣKd

-unisolvente, cioè se f ∈ FKd
e

Lj(f) = 0, j = 1, . . . , n,

allora f = 0 [55].
Il metodo degli elementi �niti è un metodo molto utilizzato per risolvere numericamente equazioni

alle derivate parziali su un dominio D ⊂ Rd [13, 19], d ≥ 1, che sorgono in ingegneria e modellistica
matematica. Uno dei motivi di questa innegabile popolarità è la sua versatilità nell'a�rontare diversi tipi
di geometrie. L'idea di questo metodo è quella di partizionare il dominio D̄ in politopi e, per ognuno di
essi determinare un'approssimazione locale della soluzione del problema di�erenziale considerato mediante
una funzione appartenente a FKd

. L'approssimazione globale della soluzione sarà una funzione de�nita
a tratti dalle approssimazioni locali. Nel caso in cui l'approssimazione globale presenti discontinuità sui
bordi dei sottodomini, l'elemento �nito si dirà essere non conforme, altrimenti esso si dirà essere conforme.
Negli elementi �niti standard lo spazio FKd

è generalmente uno spazio di funzioni polinomiali. Tuttavia, le
approssimazioni prodotte da questi elementi �niti non sono e�caci per risolvere problemi che presentano
delle singolarità. In modo da superare questo problema sono stati proposti diversi approcci. Uno degli
approcci più famosi consiste nell'arricchire lo spazio di approssimazione FKd

con funzioni di arricchimento
appropriate [92, 45, 64]. In particolare, supponiamo di avere l'elemento �nito (Kd,FKd

, ΣKd
), un insieme

di funzioni di arricchimento e1, . . . , eN e un insieme di funzionali lineari

Σenr
Kd

= {Lj : j = 1, . . . , n+N}

tale che lo spazio di approssimazione FKd
sia Σenr

Kd
-unisolvente. Consideriamo lo spazio arricchito

Fenr
Kd

= FKd
⊕ {e1, . . . , eN}.

Per arricchire l'elemento �nito (Kd,FKd
, ΣKd

) bisogna rispondere alla seguente domanda:

Come scegliere opportunamente le funzioni di arricchimento e1, . . . , eN , in modo tale che la terna (Kd,Fenr
Kd
, Σenr

Kd
)

sia un elemento �nito?
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Uno degli elementi �niti più semplici è l'elemento �nito triangolare lineare standard, de�nito nello
spazio euclideo bidimensionale [19]. È de�nito come la tripla

P1(S2) = (S2,P1(S2), Σ
lin
S2

),

dove S2 è un triangolo non degenere con vertici v0, v1, v2, P1(S2) è lo spazio dei polinomi lineari bi-
variati e Σlin

S2
è l'insieme delle valutazioni funzionali nei vertici di S2. L'elemento �nito triangolare lineare

standard è largamente utilizzato nelle applicazioni, tuttavia non sempre produce risultati soddisfacenti
a causa del basso ordine di approssimazione delle relative trial functions. Per migliorare l'accuratezza
dell'approssimazione, l'elemento �nito triangolare lineare standard P1(S2) può essere arricchito con fun-
zioni di arricchimento particolari (per una panoramica della letteratura pertinente si veda, ad esem-
pio, [2, 64, 3, 4]). Più precisamente, nella seconda parte della tesi, ci concentriamo sullo sviluppo di un
framework uni�cato e generale per l'arricchimento degli elementi �niti triangolari lineari in R2 e simpliciali
lineari in Rd. Come abbiamo già detto, un punto cruciale in tale approccio è determinare le condizioni sulle
funzioni di arricchimento a�nché esse possano generare un elemento �nito. Motivati dai recenti lavori
sugli arricchimenti degli elementi �niti [2, 4], nel Capitolo 5 introduciamo un arricchimento polinomiale
dell'elemento �nito triangolare lineare standard e utilizziamo questo nuovo elemento �nito per proporre
un miglioramento dell'operatore di approssimazione triangolare di Shepard (vedi [47, 101, 22, 31, 33] per
altri approcci). Nel Capitolo 6 introduciamo una nuova classe di elementi �niti non conformi arricchendo
l'elemento triangolare lineare standard con funzioni di arricchimento continue, linearmente indipendenti,
non necessariamente polinomiali {ei : i = 0, 1, 2}, soddisfacenti la condizione di annullamento nei ver-
tici, cioè ei(vj) = 0, i, j = 0, 1, 2. Inoltre, determiniamo una condizione sulle funzioni di arricchimento,
necessaria e su�ciente, a�nché esse possano generare un elemento �nito. Mostriamo che l'errore di
approssimazione può essere decomposto in due parti: la prima relativa all'elemento triangolare lineare
standard mentre la seconda dipendente dalle funzioni di arricchimento. Questa decomposizione ci per-
mette di ricavare dei bound per l'errore in norma L∞ e in norma L1. Questi bound sono proporzionali
rispettivamente alla seconda e alla quarta potenza del raggio del circocentro del triangolo corrispondente.
Nel Capitolo 7 generalizziamo i risultati presenti nel Capitolo 6 al caso dell'elemento �nito simpliciale
lineare standard. Questo è de�nito come

P1(Sd) = (Sd,P1(Sd), Σ
lin
Sd

)

dove Sd è un simplesso non degenere in Rd con vertici v0, . . . ,vd, P1(Sd) è lo spazio dei polinomi lineari
in Rd e Σlin

Sd
è l'insieme dei funzionali valutazione nei vertici di Sd. In analogia con quanto fatto nel caso

bivariato, arricchiamo l'elemento �nito simpliciale lineare standard P1(Sd) con d + 1 funzioni continue
linearmente indipendenti {ei : i = 0, . . . , d}, soddisfacenti la condizione di annullamento nei vertici di Sd,
cioè ei(vj) = 0, i, j = 0, . . . , d. Nel Capitolo 8 forniamo una strategia generale per arricchire l'elemento
�nito simpliciale lineare standard P1(Sd) con funzioni di arricchimento generiche, cioè senza imporre con-
dizioni restrittive su quest'ultime, come il loro annullamento nei vertici. Un elemento �nito comunemente
utilizzato nelle applicazioni è l'elemento �nito simpliciale lineare vettoriale. Questo è de�nito come

PPP1(Sd) = (Sd,PPP1(Sd),ΣΣΣ
lin
Sd
)

dove PPP1(Sd) è il prodotto diretto, d volte, dello spazio vettoriale P1(Sd) con se stesso e

ΣΣΣlin
Sd

= {Lj : j = 0, . . . , d} ,

con Lj de�nito come

Lj(f) = f(vj) = [f1(vj), . . . , fd(vj)]
T , f = [f1, . . . , fd]

T , j = 0, . . . , d.

Questo elemento �nito è comunemente usato per risolvere numericamente le equazioni di Stokes stazionarie.
Tuttavia, è un fatto noto che l'elemento �nito PPP1(Sd) diventa ine�cente quando viene applicato a prob-
lemi più complicati. Un arricchimento polinomiale, che supera i suddetti inconvenienti, è stato proposto
e sviluppato da Bernardi e Raugel in [7]. Questo elemento, molto utilizzato in contesti pratici, può
essere considerato una versione avanzata e generalizzata dell'elemento �nito simpliciale lineare vettori-
ale. Tuttavia, quando si trattano problemi con singolarità, questo arricchimento risulta essere ine�cace.
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Dunque, in linea con le ricerche precedenti, nel Capitolo 9, presentiamo una strategia generale per arric-
chire l'elemento �nito simpliciale lineare vettoriale mediante funzioni di arricchimento non polinomiali.
Questo elemento �nito arricchito può essere considerato come un'estensione dell'elemento di Bernardi e
Raugel.
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Introduction

Un problème très courant en sciences computationnelles est la détermination d'une approximation, dans
un intervalle �xé [a, b], d'une fonction f dont nous ne connaissons que les évaluations sur un ensemble
de n + 1 points Xn, n ∈ N. Nous pouvons supposer travailler dans l'intervalle de référence [−1, 1], sauf
en cas de transformations linéaires. Une approche standard pour résoudre ce problème est l'interpolation
polynomiale, qui consiste à déterminer un polynôme Pn[f ], de degré n, qui coïncide avec f en Xn. Un cas
d'un grand intérêt pratique est lorsque l'ensemble Xn coïncide avec l'ensemble de points équidistants dans
l'intervalle [−1, 1]. Dans ces conditions, un problème lié à l'interpolation polynomiale est le phénomène
de Runge. Il se manifeste par une augmentation de l'erreur d'interpolation à proximité des extrémités de
l'intervalle considéré, c'est-à-dire dans [−1, 1]. Ce phénomène a été découvert au début du XXe siècle par
Carl David Tolmé Runge lors de ses études sur le comportement des erreurs produites par l'interpolation
polynomiale pour l'approximation de certaines fonctions [89]. Pour résoudre ce problème, ces dernières
années, plusieurs techniques ont été proposées, comme par exemple [10, 5, 24, 26]. En particulier, en
2009, John P. Boyd et Fei Xu dans [10] ont démontré que le phénomène de Runge peut être surmonté
si l'on interpole la fonction f uniquement sur un sous-ensemble propre de l'ensemble Xn, constitué de
m + 1 = O(

√
n) + 1 noeuds appelés les noeuds mock-Chebyshev, qui sont proches des m + 1 noeuds de

Chebyshev-Lobatto. Cependant, en utilisant cette stratégie, de nombreuses données ne sont pas utilisées.
C'est pourquoi Stefano De Marchi, Francesco Dell'Accio et Mariarosa Mazza, dans [24], ont proposé une
nouvelle technique pour améliorer la précision de l'approximation introduite dans [10]. Cette technique
est appelée constrained mock-Chebyshev least squares approximation. Elle consiste à approcher la fonction
f avec un polynôme de degré r > m, obtenu en interpolant f sur l'ensemble des points mock-Chebyshev,
tout en utilisant les noeuds restants pour améliorer la précision de l'approximation grâce à une régression
simultanée. Pour cette technique, comme nous le verrons au Chapitre 1, le rôle du polynôme nodal est
crucial. En raison de l'absence de polynômes nodaux dans le cas bivarié, il est nécessaire de trouver des
approches alternatives pour généraliser l'approximation constrained mock-Chebyshev least squares au cas
bivarié. Une nouvelle technique, introduite par Francesco Dell'Accio, Filomena Di Tommaso et Federico
Nudo en 2022 [39], permet de dé�nir la même approximation introduite dans [24], en utilisant la méthode
des multiplicateurs de Lagrange. Cette méthode, indépendante des polynômes nodaux, a été développée
par Joseph-Louis Lagrange pour résoudre les problèmes des moindres carrés contraints. En �xant une
base de l'espace polynomial de degré r, l'approximation est calculée en résolvant des équations linéaires
qui généralisent les équations normales et qui constituent le système linéaire KKT (nommé ainsi d'après
les trois chercheurs William Karush, Harold Kuhn et Albert Tucker, qui l'ont présenté en premier).

Dans le Chapitre 2, deux stratégies di�érentes sont proposées pour obtenir cette généralisation:

� La première repose sur l'interpolation du produit tensoriel sur une grille cartésienne de noeuds
mock-Chebyshev.

� La seconde repose sur l'interpolation du degré total sur un ensemble de noeuds qui sont proches des
noeuds de Padoue [9].

Un autre problème d'un grand intérêt pratique est la détermination de formules de quadrature précises sur
des noeuds équidistants. Ce sujet a été étudié par plusieurs auteurs ces dernières années, comme on peut
le voir dans [43, 58, 56, 68, 60, 71, 77]. En particulier, l'approche proposée par Hassan Majidian dans [77]
consiste à utiliser les formules de quadrature de Gauss-Christo�el en combinaison avec des interpolants
polynomiaux locaux de la fonction à intégrer f . En suivant cette idée, dans le Chapitre 3, nous intro-
duisons une formule de quadrature stable et précise sur des noeuds équidistants en utilisant la formule
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de quadrature de Gauss-Christo�el et l'approximation des moindres carrés de mock-Chebyshev. Étant
donné que la précision de ces formules de quadrature dépend du degré de régression de l'approximation
des moindres carrés de mock-Chebyshev et du degré de régularité de la fonction f , nous développons un
algorithme adaptatif pour déterminer le degré optimal de régression correspondant à la formule de quadra-
ture la plus précise. En tant qu'application supplémentaire, dans [40], nous utilisons l'approximation des
moindres carrés de mock-Chebyshev pour introduire une nouvelle règle d'intégration de produits. Ce type
de formule est utilisé pour l'approximation des intégrales dé�nies sur des intervalles �nis de fonctions in-
tégrales, qui ne sont pas assez régulières, telles que des fonctions presque singulières, des fonctions très
oscillantes ou des fonctions faiblement singulières.

Dans le Chapitre 4, nous approfondissons l'étude de certaines propriétés de l'opérateur d'approximation
des moindres carrés de mock-Chebyshev et présentons de nouveaux résultats et applications. En partic-
ulier, nous introduisons des représentations explicites de l'erreur et de ses dérivées, en supposant que f
est su�samment régulière sur l'intervalle [−1, 1]. Dans la même hypothèse, en tant qu'application, nous
présentons une méthode pour estimer les dérivées successives de f en n'importe quel point x ∈ [−1, 1],
en se basant sur l'approximation des moindres carrés de mock-Chebyshev et utilisons les représentations
d'erreurs précédemment introduites pour fournir des estimations pour ces approximations.

La deuxième partie de cette thèse est dédiée à l'étude de l'enrichissement de certains éléments �nis
linéaires standard. Un élément �ni est un triplet (Kd,FKd

, ΣKd
), où

� Kd est un polytope dans Rd,

� FKd
est un espace vectoriel de dimension n composé de fonctions à valeurs réelles dé�nies sur Kd,

également appelées fonctions d'essai ou fonctions test,

� ΣKd
= {Lj : j = 1, . . . , n} est un ensemble de fonctionnelles linéaires indépendantes de l'espace

vectoriel FKd
, aussi appelé degrés de liberté,

de manière à ce que FKd
soit ΣKd

-unisolvant, c'est-à-dire que si f ∈ FKd
et

Lj(f) = 0, j = 1, . . . , n,

alors f = 0 [55].
La méthode des éléments �nis est une méthode très populaire pour résoudre numériquement des équa-

tions aux dérivées partielles sur un domaine D ⊂ Rd [13, 19], avec d ≥ 1. Elle est couramment utilisée en
ingénierie et en modélisation mathématique. Une des raisons indiscutables de cette popularité réside dans
sa polyvalence pour traiter di�érents types de géométries. Dans la méthode des éléments �nis, le domaine
D̄ est subdivisé en polytopes, et pour chacun d'entre eux, une approximation locale appartenant à FKd

est calculée pour estimer la solution de l'équation aux dérivées partielles. L'approximation globale sera
une fonction dé�nie par les approximations locales. Si l'approximation globale présente des discontinuités
aux limites des sous-domaines, l'élément �ni est quali�é de non conforme, sinon il est dit conforme. En
général, pour les éléments �nis linéaires standards, l'espace d'approximation FKd

est constitué de fonctions
polynomiales. Cependant, les approximations produites par ces éléments �nis ne sont pas e�caces pour
résoudre des problèmes impliquant des singularités. Pour surmonter ce problème, plusieurs approches ont
été proposées. L'une des approches les plus célèbres consiste à enrichir l'espace d'approximation FKd

avec
des fonctions d'enrichissement appropriées [92, 45, 64]. Plus précisément, nous considérons l'élément �ni
(Kd,FKd

, ΣKd
), un ensemble de fonctions d'enrichissement e1, . . . , eN et un ensemble de fonctionnelles

linéaires
Σenr

Kd
= {Lj : j = 1, . . . , n+N}

de telle manière que l'espace d'approximation FKd
soit Σenr

Kd
-unisolvent. Nous dé�nissons l'espace enrichi

Fenr
Kd

= FKd
⊕ {e1, . . . , eN}.

Pour enrichir l'élément �ni (Kd,FKd
, ΣKd

) il faut répondre à la question suivante:

12



Comment choisir correctement les fonctions d'enrichissement e1, . . . , eN , de telle sorte que le triplet
(Kd,Fenr

Kd
, Σenr

Kd
) soit un élément �ni?

L'un des éléments �nis le plus simple est l'élément �ni linéaire triangulaire standard, dé�ni dans
l'espace euclidien bidimensionnel [19]. Il est dé�ni comme le triple

P1(S2) = (S2,P1(S2), Σ
lin
S2

),

où S2 est un triangle non dégénéré (les trois sommets ne sont pas alignés) et avec des sommets v0, v1,
v2, P1(S2) est l'espace de tous les polynômes linéaires bivariés et Σlin

S2
est l'ensemble des fonctionnelles

linéaires associant à chaque fonction son évaluation aux sommets de S2. L'élément �ni triangulaire linéaire
standard est largement utilisé dans les applications, cependant, il ne produit pas toujours des résultats
satisfaisants en raison du faible ordre d'approximation des fonctions d'essai. Pour améliorer la précision
de l'approximation, l'élément P1(S2) peut être enrichi de fonctions d'enrichissement spéciales (pour un
aperçu de la littérature pertinente, voir, par exemple, [2, 64, 3, 4]). Plus précisément, dans la deuxième
partie de la thèse, nous nous concentrons sur le développement d'un cadre uni�é et général pour enrichir
les éléments �nis linéaires triangulaires standards en R2 et les éléments �nis linéaires simpliciaux standards
en Rd. Comme mentionné précédemment, un aspect crucial de cette approche consiste à déterminer les
conditions requises pour les fonctions d'enrichissement de manière à ce qu'elles génèrent un élément �ni.
Motivés par des travaux récents sur l'enrichissement des éléments �nis [2, 4], dans le Chapitre 5, nous
introduisons un enrichissement polynomial de l'élément �ni linéaire triangulaire standard et utilisons ce
nouvel élément �ni pour améliorer l'opérateur triangulaire Shepard (voir [47, 101, 22, 31, 33] pour d'autres
approches). Dans le Chapitre 6, nous introduisons une nouvelle classe d'éléments �nis non conformes en
enrichissant l'élément �ni linéaire triangulaire standard avec des fonctions d'enrichissement continues,
linéairement indépendantes, qui ne sont pas nécessairement des polynômes {ei : i = 0, 1, 2}, tout en
satisfaisant la condition d'annulation aux sommets du triangle, c'est-à-dire ei(vj) = 0, i, j = 0, 1, 2.
De plus, nous déterminons une condition nécessaire et su�sante pour les fonctions d'enrichissement de
manière à générer un élément �ni. Nous montrons que l'erreur d'approximation peut être décomposée
en deux parties: la première est liée à l'élément �ni triangulaire linéaire standard, tandis que la seconde
dépend des fonctions d'enrichissement. Cette décomposition nous permet d'obtenir des bornes de l'erreur
à la fois pour la norme L∞ et aussi pour la norme L1. Ces limites sont proportionnelles aux deuxième
et quatrième puissances du rayon du cercle circonscrit au triangle correspondant, respectivement. Dans
le Chapitre 7, nous généralisons les résultats présentés dans le Chapitre 6 au cas de l'élément �ni linéaire
simplicial standard. Il est dé�ni comme suit:

P1(Sd) = (Sd,P1(Sd), Σ
lin
Sd

)

où Sd est un simplexe en Rd ayant un volume non nul et des sommets v0, . . . ,vd, P1(Sd) est l'espace de tous
les polynômes linéaires en Rd, et Σlin

Sd
est l'ensemble des fonctionnelles linéaires associant à chaque fonction

son évaluation aux sommets de Sd. Conformément au Chapitre 6, nous enrichissons l'élément �ni linéaire
simplicial standard P1(Sd) avec d+ 1 fonctions continues linéairement indépendantes {ei : i = 0, . . . , d},
satisfaisant la condition d'annulation aux sommets du Sd, c'est-à-dire ei(vj) = 0, i, j = 0, . . . , d. Dans le
Chapitre 8, nous fournissons une stratégie générale pour enrichir l'élément �ni linéaire simplicial standard
P1(Sd) sans imposer de conditions restrictives aux fonctions d'enrichissement, telles que leur annulation
aux sommets de Sd. Un élément �ni couramment utilisé dans les applications est l'élément �ni linéaire
vectoriel simplicial. Il est dé�ni comme suit:

PPP1(Sd) = (Sd,PPP1(Sd),ΣΣΣ
lin
Sd
)

où PPP1(Sd) est le produit direct, d fois, de l'espace vectoriel P1(Sd) avec lui-même et

ΣΣΣlin
Sd

= {Lj : j = 0, . . . , d} ,

avec Lj dé�nies comme

Lj(f) = f(vj) = [f1(vj), . . . , fd(vj)]
T , f = [f1, . . . , fd]

T , j = 0, . . . , d.
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Cet élément �ni est couramment utilisé pour résoudre numériquement les équations de Navier-Stokes
stationnaires. Il est connu, cependant, de sou�rir de graves lacunes dans l'application à des situations
plus compliquées. Un élément �ni enrichi, qui surmonte les inconvénients susmentionnés, a été proposé et
développé par Bernardi et Raugel [7]. Il peut être considéré comme une version avancée et généralisée de
l'élément �ni linéaire vectoriel simplicial classique, et il a été utilisé dans un large éventail de domaines
de calcul d'ingénierie pratique. Il utilise des polynômes comme fonctions d'enrichissement. Toutefois, le
problème de dépendance linéaire insoluble se pose toujours lorsque ce type de fonctions d'enrichissement
est utilisé. Conformément aux recherches précédentes, dans le Chapitre 9, nous présentons une stratégie
générale pour enrichir l'élément �ni linéaire vectoriel simplicial par des fonctions d'enrichissement non
polynomiales. Cet élément �ni enrichi est dé�ni par rapport à tout simplexe, et peut être considéré
comme une extension de l'élément de Bernardi et Raugel.
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Introduction

A very common problem in computational sciences is the determination of an approximation, in a �xed
interval [a, b], of a function f whose evaluations are known only on a set of n+ 1 points Xn, n ∈ N. We
can suppose to work in the interval [−1, 1], up to linear transformations. A standard approach to solve
this problem is through the polynomial interpolation which consists in determining a polynomial Pn[f ],
of degree n, which coincides with f at the points of the set Xn. A case of great practical interest is
when the set Xn coincides with the set of equispaced points in the interval [−1, 1]. In these hypotheses, a
problem related to polynomial interpolation is the Runge phenomenon, which consists in increasing the
magnitude of the interpolation error close to the ends of the interval [−1, 1]. It was discovered in the
early 1900s by Carl David Tolmé Runge while he was studying the behavior of the error produced by
the polynomial interpolation to approximate some functions [89]. To overcome this problem, in recent
years, several techniques have been proposed, see for example [10, 5, 24, 26]. In particular, in 2009,
John P. Boyd and Fei Xu in [10], have proved that the Runge phenomenon can be overcome if we
interpolate the function f only on a proper subset of the set Xn, constituted by m+1 = O(

√
n)+1 nodes

which are close to the Chebyshev-Lobatto nodes of order m + 1, the so called mock�Chebyshev nodes.
However, by using this strategy, many data are not used, and therefore, motivated by this, Stefano De
Marchi, Francesco Dell'Accio and Mariarosa Mazza, in [24], proposed a new technique, with the aim of
improving the accuracy of the approximation introduced in [10]. This technique is called constrained mock-
Chebyshev least squares approximation. It consists in approximating the function f with a polynomial
of degree r > m which is obtained by interpolating f on the set of mock-Chebyshev nodes and using
the remaining nodes to improve the accuracy of the approximation through a simultaneous regression.
For this technique, as we will see in Chapter 1, the role of the nodal polynomial is crucial. Due to
the lack of the nodal polynomial in the bivariate case, there is a need to �nd alternative approaches
that allow to generalize the constrained mock-Chebyshev least squares approximation to the bivariate
case. A new technique, introduced by Francesco Dell'Accio, Filomena Di Tommaso and Federico Nudo in
2022 [39], allows to de�ne, under the same hypotheses, the same approximation introduced in [24], using
the Lagrange multipliers method. This method, independent of the nodal polynomial, was developed by
Joseph-Louis Lagrange to solve constrained least squares problems. By �xing a basis of the polynomial
space of degree r, the approximation is computed by solving linear equations, which generalize the normal
equations and which constitute the linear system KKT (this name is due to the three researchers William
Karush, Harold Kuhn and Albert Tucker, who were the �rst to introduce it). In Chapter 2 two di�erent
strategies are proposed to obtain this generalization:

� the �rst one, based on tensor product interpolation on a Cartesian grid of mock-Chebyshev nodes,

� the second one, based on the interpolation of total degree on a set of nodes that are close to the
well-known Padua nodes [9].

Another problem of great practical interest is the determination of accurate quadrature formulas on
equispaced nodes. This has been studied by several authors in recent years, see for example [43, 58, 56,
68, 60, 71, 77]. In particular, the approach proposed by Hassan Majidian in [77] consists in using the
Gauss-Christo�el quadrature formulas in combination with local polynomial interpolants of the integrand
function f . By following this idea, in Chapter 3, we introduce a stable and accurate quadrature formula on
equispaced nodes using the Gauss�Christo�el quadrature formula and the constrained mock-Chebyshev
least squares approximation. Since the accuracy of these quadrature formulas varies with the degree of
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regression of the constrained mock-Chebyshev least squares approximation, depending on the degree of
smoothness of the function f , we develop an adaptive algorithm for determining the optimal degree of
regression which corresponds to the more accurate quadrature formula. As an additional application,
in [40], we use the constrained mock-Chebyshev least squares approximation to introduce a new product
integration rule. This type of formula is used to approximate integrals de�ned over �nite intervals of
integrand functions which exhibit some kind of "pathology", for example, "almost" singular functions,
highly oscillating functions, weakly singular functions. In Chapter 4 we further study some properties of
the constrained mock-Chebyshev least squares operator, and we present new results and applications. In
particular, we introduce explicit representations of the error and its derivatives, by assuming f su�ciently
smooth in [−1, 1]. In the same hypothesis, as an application, we present a method for approximating
the successive derivatives of f at any point x ∈ [−1, 1], based on the constrained mock-Chebyshev least
squares operator and use the previously introduced error representations to provide estimates for these
approximations.

The second part of this thesis is devoted to the study of the enrichment of some standard linear �nite
elements. A �nite element is a triple (Kd,FKd

, ΣKd
), where

� Kd is a polytope in Rd,

� FKd
is a vector space of dimension n formed by real-valued functions de�ned on Kd, also called trial

functions,

� ΣKd
= {Lj : j = 1, . . . , n} is a set of linearly independent linear functionals, from the vector space

FKd
, also called degrees of freedom,

such that FKd
is ΣKd

-unisolvent, i.e. if f ∈ FKd
and

Lj(f) = 0, j = 1, . . . , n,

then f = 0 [55].
The �nite element method is a very popular method for numerically solving partial di�erential equa-

tions on a domain D ⊂ Rd [13, 19], d ≥ 1, which arises in engineering and mathematical modeling. One
of the reasons for this undeniable popularity is its versatility to deal with di�erent types of geometries.
In the �nite element method the domain D̄ is partitioned into polytopes and, for each of them, a local
approximation belonging to FKd

is computed to approximate the solution of the partial di�erential equa-
tion. The global approximation will be a piecewise function de�ned by the local approximations. If the
global approximation has discontinuities at the boundary of the subdomains, the �nite element is said to
be nonconforming, otherwise is said to be conforming. Generally, for the standard linear �nite elements
the approximation space FKd

is a space of polynomial functions. However, the approximations produced
by these �nite elements are not e�ective for solving problems involving singularities. In order to overcome
this problem, several approaches have been proposed. One of the most famous approaches is to enrich the
approximation space FKd

with appropriate enrichment functions [92, 45, 64]. More precisely, we consider
the �nite element (Kd,FKd

, ΣKd
), a set of enrichment functions e1, . . . , eN and a set of linear functionals

Σenr
Kd

= {Lj : j = 1, . . . , n+N}

such that the approximation space FKd
is Σenr

Kd
-unisolvent. We de�ne the enriched space

Fenr
Kd

= FKd
⊕ {e1, . . . , eN}.

In order to enrich the �nite element (Kd,FKd
, ΣKd

) the following question must be answered:

How to properly choose the enrichment functions e1, . . . , eN , so that the triple (Kd,Fenr
Kd
, Σenr

Kd
) is a �nite

element?
One of the simplest �nite elements is the standard triangular linear �nite element, de�ned in two-

dimensional Euclidean space [19]. It is de�ned as the triple

P1(S2) = (S2,P1(S2), Σ
lin
S2

),
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where S2 is a non-degenerate triangle with vertices v0, v1, v2, P1(S2) is the space of all bivariate linear
polynomials and Σlin

S2
is the set of point evaluation functionals at the vertices of S2. The standard

triangular linear �nite element is widely used in the applications, however, it does not always produce
satisfactory results due to the low order of approximation of the related trial functions. To improve the
accuracy of the approximation, the element P1(S2) can be enriched with special enrichment functions
(for an overview of the relevant literature see, e.g., [2, 64, 3, 4]). More precisely, in the second part
of the thesis, we focus on the development of a uni�ed and general framework for the enrichment of
standard triangular linear �nite elements in R2 and standard simplicial linear �nite elements in Rd. As
we have already said, a crucial point in this approach is to determine the conditions on the enrichment
functions so that they generate a �nite element. Motivated by recent works on the enrichments of the
�nite element [2, 4], in Chapter 5 we introduce a polynomial enrichment of the standard triangular linear
�nite element and use this new �nite element to introduce an improvement of the triangular Shepard
operator (see [47, 101, 22, 31, 33] for other approaches). In Chapter 6 we introduce a new class of
nonconforming �nite elements by enriching the standard triangular linear �nite element with enrichment
continuous functions, linearly independent, not necessarily polynomials {ei : i = 0, 1, 2}, satisfying the
vanishing condition at the vertices of the triangle, i.e. ei(vj) = 0, i, j = 0, 1, 2. Moreover, we determine
a necessary and su�cient condition on the enrichment functions so that they generate a �nite element.
We show that the approximation error can be decomposed into two parts: the �rst one is related to the
standard triangular linear �nite element while the second one depends on the enrichment functions. This
decomposition allows us to obtain bounds for the error in both L∞-norm and L1-norm. These bounds
are proportional to the second and fourth powers of the radius of the circumcircle of the corresponding
triangle, respectively. In Chapter 7 we generalize the results presented in Chapter 6 to the case of the
standard simplicial linear �nite element. It is de�ned as

P1(Sd) = (Sd,P1(Sd), Σ
lin
Sd

),

where Sd is a non-degenerate simplex in Rd with vertices v0, . . . ,vd, P1(Sd) is the space of all linear
polynomials in Rd and Σlin

Sd
is the set of point evaluation functionals at the vertices of Sd. In line with

Chapter 6, we enrich the standard simplicial linear �nite element P1(Sd) with d+1 linearly independent
continuous functions {ei : i = 0, . . . , d}, satisfying the vanishing condition at the vertices of Sd, i.e.
ei(vj) = 0, i, j = 0, . . . , d. In Chapter 8 we provide a general strategy for enriching the standard simplicial
linear �nite element P1(Sd) without imposing restrictive conditions on the enrichment functions, like their
vanishing at the vertices of Sd. A �nite element commonly used in the applications is the simplicial vector
linear �nite element. It is de�ned as

PPP1(Sd) = (Sd,PPP1(Sd),ΣΣΣ
lin
Sd
),

where PPP1(Sd) is the direct product, d times, of the vector space P1(Sd) with itself and

ΣΣΣlin
Sd

= {Lj : j = 0, . . . , d} ,

with Lj de�ned as

Lj(f) = f(vj) = [f1(vj), . . . , fd(vj)]
T , f = [f1, . . . , fd]

T , j = 0, . . . , d.

This �nite element is commonly used for numerically solving the stationary Stokes equations. It is known,
however, to su�er from severe shortcomings in application to more complicated situations. An enriched
�nite element, that overcomes the aforementioned drawbacks, was proposed and developed by Bernardi
and Raugel [7]. It can be regarded as an advanced and generalized version of the conventional simplicial
vector linear �nite element, and it has been employed in a wide range of practical engineering computation
�elds. It uses polynomials as enrichment functions. However, the intractable linear dependence issue is
always encountered when this type of enrichment functions is employed. In line with previous researches,
in Chapter 9, we present a general strategy for enriching the simplicial vector linear �nite element by
nonpolynomial enrichment functions. This enriched �nite element is de�ned with respect to any simplex,
and can be regarded as an extension of Bernardi and Raugel element.
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Chapter 1

Constrained mock-Chebyshev least

squares approximation

The constrained mock-Chebyshev least squares approximation is an approximation method based on an
equispaced grid of points. Like other polynomial or rational approximation methods, it was recently
introduced in order to defeat the Runge phenomenon that occurs when using polynomial interpolation on
large sets of equally spaced points. The idea is to improve the mock-Chebyshev subset interpolation, where
the considered function f is interpolated only on a proper subset of the uniform grid, formed by nodes
that mimic the behavior of Chebyshev�Lobatto nodes. In the mock-Chebyshev subset interpolation all
remaining nodes are discarded, while in the constrained mock-Chebyshev least squares approximation they
are used in a simultaneous regression, with the aim to further improving the accuracy of the approximation
provided by the mock-Chebyshev subset interpolation. In this introductory chapter, we recall the main
important properties of the constrained mock-Chebyshev least squares approximation, introduced in [24],
which will be useful in throughout the thesis.

1.0.1 The constrained mock-Chebyshev least squares approximation: some

computational issues

Let f be a continuous function in [−1, 1] and we suppose that its evaluations are known on the grid of
n+ 1 equispaced nodes in [−1, 1], that is

Xn =

§
xi = −1 +

2

n
i : i = 0, . . . , n

ª
. (1.1)

The idea that underlies the mock-Chebyshev subset interpolation is to interpolate f only on a proper
subset of Xn, formed by nodes which best mimic the behavior of the well-known Chebyshev-Lobatto
nodes of a suitable order m + 1. If we carefully choose m, the convergence of the interpolation process
on such a subset of nodes, for n which tends to in�nity, will be preserved [80]. To understand how to
properly choose m, let us remember that the m+ 1 Chebyshev�Lobatto nodes are de�ned as

xCL
j = − cos

( π
m
j
)
, j = 0, . . . ,m.

By expanding xCL
1 in a Taylor series centered in zero, we get

xCL
1 = −1 + π2

2m2
+O

�
1

m4

�
< −1 + π2

2m2
, (1.2)

and since xCL
0 = −1, we have

xCL
1 − xCL

0 = O
�

1

m2

�
.
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This means that the m + 1 Chebyshev-Lobatto nodes are distributed in [−1, 1] with a density that is
roughly quadratic in m. Then for n proportional to m2, we can select among the given nodes a subset
which mimic a su�ciently large Chebyshev�Lobatto grid. Let c be the constant of proportionality. A way
to calculate it is to impose that the second node of the Chebyshev�Lobatto grid is as close as possible to
the second node of the equispaced set Xn

− cos
( π
m

)
≈ −1 + 2

n
.

By (1.2) we �x the largest integer m such that

−1 + 1

n
< −1 + π2

2m2
,

that is

m =

�
π√
2

√
n

�
.

Therefore, for this value of m, x1 is the point of Xn closest to xCL
1 . This choice of c < π/

√
2 avoids the

fact that the endpoints −1 and 1 can be selected more than once. For analytic functions the polynomial
interpolation on Chebyshev nodes converges geometrically and stably. We denote by

X ′
m =

§
x′j :

∣∣x′j − xCL
j

∣∣ = min
xi∈Xn

∣∣xi − xCL
j

∣∣ , j = 0, . . . ,m

ª
(1.3)

the mock-Chebyshev subset ofXn of orderm+1 [10, 81, 69, 70]. The mock-Chebyshev subset interpolation
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Figure 1.1: Plot of equispaced nodes in [−1, 1] (o), Chebyshev nodes (⋄) and mock-Chebyshev nodes (⋆)
for n+ 1 = 31 with m+ 1 = 12.

is a stable procedure, but its rate of convergence is subgeometric [24]. In [81] it has been shown that
on equispaced nodes no stable method can converge geometrically. In performing the mock-Chebyshev
subset interpolation we know the evaluations of f on the whole set Xn, but actually we only use the
information corresponding to the elements of X ′

m. The idea of the constrained mock-Chebyshev least
squares approximation consists to use the other n−m nodes X ′′

n−m = {x′′k : k = 1, . . . , n−m} to improve
the accuracy of the approximation through a simultaneous regression.

1.0.2 The nodal polynomial method

Given an analytic function f in the interval [−1, 1] and an integer r ∈ N such that m < r ≤ n, the
constrained mock-Chebyshev least squares problem consists in �nding the best approximation P̂r,n[f ],
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with respect to the ℓ2-norm on Xn, to the function f from the closed convex space P̂r(R) formed by the
polynomials of degree less than or equal to r interpolating f on the mock-Chebyshev nodes. We will
write this problem in short form as follows

�nd P̂r,n[f ] ∈ P̂r(R) s.t. ∥f − P̂r,n[f ]∥22,Xn
= min

Pr∈P̂r(R)
∥f − Pr∥22,Xn

. (1.4)

Let Pm[f ] ∈ Pm(R) be the interpolation polynomial on the mock-Chebyshev nodes X ′
m and let ωm be

the corresponding nodal polynomial, that is

ωm(x) =

m∏
i=0

(x− x′i). (1.5)

Theorem 1.0.1. The constrained mock-Chebyshev least squares problem (1.4) has a unique solution.

Proof. It is not di�cult to verify that a generic polynomial Pr ∈ P̂r(R) can be written as

Pr(x) = Pm[f ](x) +Qs(x)ωm(x),

where ωm(x) is de�ned in (1.5) and Qs(x) is an arbitrary polynomial of degree s = r − m − 1. The
problem (1.4) becomes

min
Qs∈Ps(R)

∥f − (Pm[f ] +Qsωm)∥22,Xn
= min

Qs∈Ps(R)

n−m∑
k=1

(f(x′′k)− Pm[f ](x′′k)−Qs(x
′′
k)ωm(x′′k))

2

= min
Qs∈Ps(R)

n−m∑
k=1

�
f(x′′k)− Pm[f ](x′′k)

ωm(x′′k)
−Qs(x

′′
k)

�2

ω2
m(x′′k).

We introduce the following discrete weighted ℓ2-norm

∥u∥2,ω2
m
=

(
n−m∑
k=1

u2(x′′k)ω
2
m(x′′k)

) 1
2

(1.6)

and the following function

f̂(x) =
f(x)− Pm[f ](x)

ωm(x)
, x ∈ [−1, 1]. (1.7)

Then the solution of the problem (1.4) is

P̂r,n[f ](x) = Pm[f ](x) + Q̂s[f̂ ](x)ωm(x), (1.8)

where ∥∥∥f̂ − Q̂s[f̂ ]
∥∥∥2
2,ω2

m

= min
Qs∈Ps(R)

∥∥∥f̂ −Qs

∥∥∥2
2,ω2

m

(1.9)

which has a unique solution.

The name nodal polynomial method is due to the fact that we apply a classical least squares method to
the analytic function f̂ obtained from the function f through the nodal polynomial as in equation (1.7).
The degree of P̂r,n[f ] depends on the degree of the polynomial of simultaneous regression Q̂s[f̂ ]. When
r increases up to n, the approximation provided by P̂r,n[f ] can get worse, since the constrained mock-
Chebyshev least squares approximation approaches the interpolation polynomial on Xn. The problem
of determining a degree r which gives, in the uniform norm, the better accuracy of P̂r,n[f ] with respect
to Pm[f ], has been tackled in [24], basing on a general result by L. Reichel [85] on the polynomial
approximation in the uniform norm by the discrete least squares method. This result implies that, for an
equispaced set of q internal nodes of [−1, 1],

zk = −1 + 2k − 1

q
, k = 1, . . . , q, (1.10)
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the degree p of the least squares polynomial should be selected as the greatest p so that there is a subset
of cardinality p+ 1 of the equispaced set (1.10) which is close to the p+ 1 Chebyshev grid

XC
p =

§
xCk = cos

�
2k − 1

2p+ 2
π

�
: k = 1, . . . , p+ 1

ª
.

In other words, p should be selected in the mock-Chebyshev sense [24]. In the case of simultaneous
regression (1.9) the nodes used in the least squares approximation are those of X ′′

n−m and therefore they
are not equally spaced. Despite X ′′

n−m is not an equispaced grid, in [24] it is proven that, for n su�ciently
large, it is possible to approximate an equispaced grid of q = ⌊n6 ⌋ internal nodes of [−1, 1] with nodes of
X ′′

n−m. We denote this grid by X̃ ′′
n−m, and by

X ′′′
p =

{
x′′′0 , . . . , x

′′′
p

}
(1.11)

the mock-Chebyshev subset of X̃ ′′
n−m. The choice for the degree of simultaneous regression which gives

good approximation in the uniform norm has been also determined in [24]

p =

�
π√
2

√
q

�
=

�
π

É
n

12

�
.

Therefore, the degree r of the polynomial P̂r,n[f ], which gives more accurate approximation to f is

r = m+ p+ 1 =

�
π√
2

√
n

�
+

�
π

É
n

12

�
+ 1. (1.12)

Proposition 1.0.2. The following upper and lower bound for r holds�
1 +

1√
6

�
m− 1 < r <

�
1 +

1√
6

�
(m+ 1) + 1. (1.13)

Proof. Firstly, we note that

r =

�
π√
2

√
n

�
+

�
π

É
n

12

�
+ 1 ≤

��
1 +

1√
6

�
π√
2

√
n

�
+ 1

<

�
1 +

1√
6

�
π√
2

√
n+ 1 <

�
1 +

1√
6

�¡
π√
2

√
n

¤
+ 1

=

�
1 +

1√
6

�
(m+ 1) + 1.

Similarly, the following inequalities prove the left-hand side of (1.13)

r =

�
π√
2

√
n

�
+

�
π

É
n

12

�
+ 1 =

¡
π√
2

√
n

¤
+

¡
π

É
n

12

¤
− 1

≥
¡�

1 +
1√
6

�
π√
2

√
n

¤
− 1 >

�
1 +

1√
6

�
π√
2

√
n− 1

>

�
1 +

1√
6

�
m− 1.
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Chapter 2

Generalizations of the constrained

mock-Chebyshev least squares in two

variables: Tensor product vs total

degree polynomial interpolation

The main goal of this chapter is to extend the univariate constrained mock-Chebyshev least squares
approximation to the bivariate case through the Lagrange multipliers method. This is done in two
di�erent ways, the �rst one based on the tensor product interpolation and the second one based on the
mock-Padua points, that is the set of (m+ 1)(m+ 2)/2 nodes extracted from a uniform grid of points in
the square [−1, 1]2 that mimic the behavior of the well-known Padua points [8]. The result presented in
this chapter can be found in [39].

2.1 Constrained mock-Chebyshev least squares approximation through

the Lagrange multipliers method

The Lagrange multipliers method was developed by the mathematician Joseph-Louis Lagrange and it is
very helpful in solving the constrained least squares problems. The method requires the choice of a basis
Br = {uj(x) : j = 0, . . . , r} of the polynomial space Pr(R). Let f be a continuous function in [−1, 1] and
let Xn and X ′

m be the sets introduced in (1.1) and (1.3), respectively. We denote by V the interpolation
matrix at the nodes of the equispaced grid Xn relative to Br, that is

V = [uj(xi)] i=0,...n
j=0,...,r

and b = [f(x0), . . . , f(xn)]
T . Without loss of generality we assume that the �rst m + 1 points of Xn

are those ones of X ′
m and that Bm = {uj(x) : j = 0, . . . ,m} spans the polynomial space Pm(R). Let

C = [cTi ]i=0,...,m be the matrix formed by the �rst m + 1 rows, cT0 , . . . , c
T
m, of V and d = [d0, . . . , dm]T

the column vector formed by the �rst m + 1 components of b. The solution P̂r,n[f ] of problem (1.4) in
the basis Br is

P̂r,n[f ](x) =

r∑
i=0

âiui(x),

where the vector of coe�cients â = [â0, â1, . . . , âr]
T satis�es

Câ = d and ∥V â− b∥22 = min
a∈Rr+1

∥V a− b∥22 .
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Usually previous constrained least squares problem is written in compact form as follows

�nd â ∈ Rr+1 s.t. ∥V â− b∥22 = min
a∈Rr+1

Ca=d

∥V a− b∥22 . (2.1)

Since the nodes of Xn are pairwise distinct, the interpolation matrix V has maximum rank and therefore
the problem (2.1) has a unique solution [11, Ch. 16]. This solution can be computed by the method of
Lagrange multipliers, with Lagrangian function

L(a, z) = ∥V a− b∥22 + z0(c
T
0 a− d0) + · · ·+ zm(cTma− dm),

where z = [z0, . . . , zm]T is the vector of Lagrange multipliers. As well-known, if â is a solution of
problem (2.1) then there exist a vector ẑ = [ẑ0, . . . , ẑm]T such that

∂L

∂ai
(â, ẑ) = 0 and

∂L

∂zj
(â, ẑ) = 0, i = 0, . . . , r, j = 0, . . . ,m,

or, equivalently, �
2V TV CT

C 0

� �
â
ẑ

�
=

�
2V T b
d

�
. (2.2)

The equations (2.2), which are an extension of the normal equations for a least squares problem with no
constraints, are called KKT linear equations and the (r+m+2)× (r+m+2) coe�cient matrix is called
KKT matrix, in honor of W. Karush, H. Kuhn and A. Tucker (see [11, Ch. 16] for more details).

2.1.1 Numerical experiments

We numerically compare the approximation produced by the nodal polynomial method with that one
produced by the Lagrange multipliers method. In line with the numerical experiments presented in [24]
we use 1001 equispaced nodes in [−1, 1] as sample points and 71 mock-Chebyshev nodes, that is n = 1000
andm = 70. We perform the constrained mock-Chebyshev least squares approximation through the nodal
polynomial method and through the Lagrange multipliers method, by choosing the following polynomial
bases

� BPr = {xi : i = 0, . . . , r},

� BC,1
r = {Ti(x) : i = 0, . . . , r}, where T0(x) = 1, T1(x) = x, Ti+1(x) = 2xTi(x)− Ti−1(x), i ≥ 2,

� BLr,m =
{
ℓi(x), ωm(x)xk : i = 0, . . . ,m, k = 0, . . . , r −m− 1

}
, where ℓi(x) =

m∏
j=0
j ̸=i

x− x′j
x′i − x′j

and ωm(x) =
m∏
j=0

(x− x′j)

and compute the condition number of the relative KKT matrices for various degrees p = r −m − 1 of
simultaneous regression. We notice that BPr is the classical monomial basis while BC,1

r is the Chebyshev
polynomial basis of the �rst kind. We choose the basis BLr,m since it is used in (1.8); for this basis the
interpolation matrix C is the identity matrix of order m+1. We compute the mean approximation error
(MAE) for the test functions

f1(x) =
1

1 + 25x2
, f2(x) =

1

x4 +
(

2
50

)2 ,
at 10001 equispaced points in [−1, 1]. The results are shown in Figure 2.1, where left and center plots are
related to the MAE, while the right plot shows the trends of the condition numbers of the KKT matrices
and of the normal equation matrix of the nodal polynomial method. Notice that the MAE of the nodal
polynomial method and those of the Lagrange multipliers method, with respect to the bases BC,1

r , BLr,m,
are of the same order of magnitude till a degree of simultaneous regression of about 30. For greater degrees
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Figure 2.1: Mean approximation error for f1 (left), for f2 (center) compared with those obtained by the
nodal polynomial method Constr-MCS and condition number of the KKT matrices (right) relative to the
bases BPr , BC,1

r and BLr,m and of the normal equation matrix of the nodal polynomial method.

of simultaneous regression both the nodal polynomial method and the Lagrange multipliers method, with
respect to the basis BLr,m, do not improve nor get worse the MAE, which oscillate around the previous
reached precision. On the other hand, the MAE of the Lagrange multipliers method, with respect to the
basis BC,1

r , decreases till a degree of simultaneous regression of about 80 after which it starts to become
worse, since regression tends to interpolation. Finally, the Lagrange multipliers method, with respect to
the basis BPr , is not comparable with the ones obtained with the other basis in approximation accuracy.
The approximation accuracies of the various methods re�ect the behaviour of the condition numbers of
the related matrices.

2.2 Tensor product vs total degree interpolation

2.2.1 Constrained mock-Chebyshev least squares tensor product interpola-

tion

A natural way to extend the univariate constrained mock-Chebyshev least squares approximation to the
bivariate case is through the tensor product interpolation [18, Ch. 7]. To this aim, let f be an analytic
function in the square [−1, 1]2, we set nx,y = (nx, ny) ∈ N × N and let us consider the uniform grid of
nodes

Xnx
× Yny

=

§�
−1 + 2

nx
i,−1 + 2

ny
j

�
: i = 0, . . . , nx, j = 0, . . . , ny

ª
. (2.3)

In line with the notations of Chapter 1, we denote by

mx =

�
π

É
nx
2

�
, my =

�
π

É
ny
2

�
,

mx,y = (mx,my) and we consider the Cartesian grid of mock-Chebyshev nodes

X ′
mx
× Y ′

my
= {(x′i, y′j) : i = 0, . . . ,mx, j = 0, . . . ,my}. (2.4)

Let Prx(R)⊗Pry (R) be the tensor product of the polynomial spaces Prx(R), Pry (R) in the variables x, y,
respectively, with basis Brx ⊗ Bry = {ui(x)vj(y) : i = 0, . . . , rx, j = 0, . . . , ry}. Let rx,y = (rx, ry) and
P̂rx,y (R2) be the closed convex space of all polynomials in Prx(R)⊗Pry (R) interpolating f on X ′

mx
×Y ′

my
.

The constrained mock-Chebyshev least squares tensor product interpolation problem is the following

�nd P̂rx,y,nx,y
[f ] ∈ P̂rx,y

(R2) s.t.
∥∥∥f − P̂rx,y,nx,y

[f ]
∥∥∥2
2
= min

Prx,y∈P̂rx,y (R2)

∥∥f − Prx,y

∥∥2
2
. (2.5)

Since each polynomial U(x), expressed in the basis BLr,m, interpolates its �rst m + 1 coe�cients at the
mock-Chebyshev nodes, then each polynomial

L(x, y) =

rx∑
i=0

ry∑
j=0

aijui(x)uj(y),
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mock-Chebyshev nodes (⋆) for n+ 1 = 31 with m+ 1 = 12.

expressed in the basis BLrx,mx
⊗ BLry,my

, interpolates its coe�cients aij , i = 0, . . . ,mx, j = 0, . . . ,my [18,

Ch. 7, Lemma 4]. Therefore, the polynomial P̂rx,y,nx,y
[f ], in the basis BLrx,mx

⊗ BLry,my
, has the form

P̂rx,y,nx,y
[f ] = P̂mx,y

[f ] + ωmx
(x)Q1(x, y) + ωmy

(y)Q2(x, y) + ωmx
(x)ωmy

(y)Q3(x, y), (2.6)

where Pmx,y [f ] is the interpolation polynomial at Xmx ×Ymy , Q1 ∈ Prx−mx(R)⊗Pry (R), Q2 ∈ Prx(R)⊗
Pry−my (R), Q3 ∈ Prx−mx(R) ⊗ Pry−my (R). The possibility to approach the problem (2.5) by the nodal
polynomial method, recalled in Chapter 1, is precluded by the expression (2.6) of its solution, which does
not allow the introduction of a discrete norm like (1.6) nor a function like (1.7). On the contrary, the
Lagrange multipliers method, recalled in Section 2.1, can be used in analogy with the univariate case,
with the settings and requirements there speci�ed. In particular, we assume that the (nx + 1)(ny + 1)
nodes of the Cartesian grid (2.3) are reorganized into a sequence and that the �rst (mx+1)(my+1) nodes
of this sequence are those ones of the Cartesian grid (2.4). Similarly, we assume that the (rx +1)(ry +1)
elements of the basis Brx⊗Bry are reorganized into a sequence and that the �rst (mx+1)(my+1) elements
of this sequence spans the polynomial space Pmx

(R)⊗Pmy
(R). The maximum rank of the corresponding

interpolation matrix V ∈ R(nx+1)(ny+1)×(rx+1)(ry+1) is guaranteed by the unisolvence of the tensor product
interpolation problem on the Cartesian grid (2.3) by polynomials of Pnx(R)⊗ Pny (R) [18, Ch. 7].

2.2.2 Constrained mock-Padua least squares approximation

The polynomial interpolation of total degree in two variables o�ers a further possibility to extend the idea
of the constrained mock-Chebyshev least squares approximation to the bivariate case. In this case, in fact,
the Padua points constitute an optimal unisolvent set of points for total degree polynomial interpolation
with minimal growth of their Lebesgue constant [8]. These points are de�ned in the square [−1, 1]2 by
sampling suitable generating curves γs(t), s = 1, . . . , 4, which are slightly di�erent from each other and
allow to get four di�erent families of points [9, 14]. In the following we consider the �rst family of Padua
points of degree m, m ∈ N, and denote this set by Padm by simply calling them Padua points of degree
m. In line with the case of mock-Chebyshev points, it is possible to de�ne the mock-Padua points of
degree m as the set of (m + 1)(m + 2)/2 points extracted from a square uniform grid (2.3) that mimic
the behavior of the Padua points of the same degree. To do this, we set n = nx = ny and m =

⌊
π
√

n
2

⌋
.

We denote by X ′
m = {x′i : i = 0, . . . ,m} the mock-Chebyshev subset of Xn of order m + 1 and with

Y ′
m+1 = {y′j : j = 0, . . . ,m + 1} the mock-Chebyshev subset of Yn of order m + 2. We use the formula

for computing the Padua points from two sets of Chebyshev-Lobatto nodes of order m and m+ 1 given
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in [8] to obtain the set of mock-Padua points [69] of degree m from the mock-Chebyshev subsets X ′
m and

Y ′
m+1 as follows

Pad′m = {(x′i, y′j) : i = 0, . . . ,m, j = 1, . . . , ⌊m/2⌋+ 1 + δk},

where δk = 0 if m is even or m is odd but i is even, δk = 1 if m is odd and i is odd.
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Plot of uniform grid of nodes (o), Padua nodes (⋄) and mock-Padua nodes (⋆) for n + 1 = 31 with
m+ 1 = 11.

Given an analytic function f in the square [−1, 1]2 and an integer r ∈ N such that m < r ≤ n,
the constrained mock-Padua least squares problem consists in �nding the best approximation P̂r,n[f ],
with respect to the ℓ2-norm on Xn × Yn, to the function f from the closed convex space P̂r(R2) of all
polynomials of total degree less than or equal to r interpolating f on the mock-Padua subset of nodes.
A basis B̃r = {ui(x)uj(y) : 0 ≤ i + j ≤ r} for the polynomial space Pr(R2) can be obtained from any
basis Br = {ui(x) : i = 0, . . . , r} of the polynomial space Pr(R) [18, Ch. 4]. Similarly with the case of
tensor product interpolation, we assume that the (n + 1)2 nodes of the square Cartesian grid (2.3) are
reorganized into a sequence and that the �rst (m+ 1)(m+ 2)/2 nodes of this sequence are those ones of
Pad′m; we assume also that the (r+ 1)(r+ 2)/2 elements of the basis B̃r are reorganized into a sequence
and that the �rst (m+ 1)(m+ 2)/2 elements of this sequence, forming the set B̃m, spans the polynomial
space Pm(R2). Let V be the interpolation matrix at the nodes of Xn × Yn relative to the basis B̃r and C
the matrix formed by the �rst (m+ 1)(m+ 2)/2 rows of V . The rank of the matrix C is maximum since
B̃m interpolates on Pad′m [96] while the rank of V is maximum since B̃r can be completed to the basis
Bn ⊗ Bn interpolating on Xn × Yn.

2.2.3 Numerical experiments

We consider the uniform grid of 101 × 101 nodes in [−1, 1]2 and we compute the condition numbers of
the KKT matrices relative to the bases BC,1

r ⊗ BC,1
r ,BLr,m ⊗ BLr,m and B̃Cr for di�erent degrees r −m− 1

of simultaneous regression. We compute the MAE for the test functions

f3(x, y) =
1

1 + 25(x2 + y2)
, f4(x, y) =

1

x2 + y2 − 2.5
,

at the uniform grid of 132 × 132 points in [−1, 1]2. The results are shown in Figure 2.2, where left and
center plots are related to the MAE, while the right plot shows the trends of the condition numbers of
the KKT matrices. We note that the basis BC,1

r ⊗ BC,1
r and BLr,m ⊗ BLr,m interpolate on a set of nodes

whose cardinality is greater than the cardinality of the set Pad′m used by the basis B̃Cr as nodes set for
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Figure 2.2: Mean approximation error for f3 (left), for f4 (center) and condition number of the KKT
matrices (right) relative to the bases BC,1

r ⊗ BC,1
r , BLr,m ⊗ BLr,m, B̃Cr .

the interpolation. This re�ect on the di�erent accuracies of approximation reached by the three bases on
their respective interpolation set. In line with the univariate case, the MAE of the Lagrange multipliers
method, with respect to the bases BC,1

r ⊗ BC,1
r , BLr,m ⊗ BL

r,m, are of the same order of magnitude till a
certain degree of simultaneous regression which varies with the test function (15 and 10 in the case of
function f3 and f4, respectively). From these degrees on, the MAE relative to the basis BC,1

r ⊗ BC,1
r

continues to decrease, while that one relative to the basis BLr,m ⊗ BLr,m starts to become worse. The
Lagrange multipliers method, with respect to the basis B̃Cr , has a similar decreasing behaviour although
it is less accurate for the aforesaid reason. The approximation accuracies of the various methods re�ect
the behaviour of the condition numbers of the related matrices.
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Chapter 3

Constrained mock-Chebyshev least

squares quadrature

Let f be a continuous function in [−1, 1] and let w ∈ L1(−1, 1) be a positive (or nonnegative) weight
function in [−1, 1]. A recurring problem in applied mathematics is to approximate the weighted integral

I(f) =

∫ 1

−1

f(x)w(x)dx (3.1)

by a weighted quadrature formula of the type

I(f) =

m∑
k=1

wkf(ξk) + Em(f) (3.2)

based on the nodes −1 ≤ ξ1 < · · · < ξm ≤ 1 and weights w1, . . . , wm ∈ R. Let Ps(R) be the space of
polynomials of degree less than or equal to s. The largest positive integer s such that

Em (Ps) = 0 for all Ps ∈ Ps(R)

is called degree of exactness of the quadrature formula (3.2). If the function f is known or computable on
the whole interval [−1, 1], to approximate the integral (3.1) it is convenient to choose a suitable Gaussian
quadrature formula, depending on the weight function w. For example, if w(x) = 1, we can use the
Gauss�Legendre formula, while if

w(x) =
1√

1− x2
or w(x) = (1− x)α(1 + x)β , α, β > −1,

we can use the Gauss�Chebyshev formula or Gauss�Jacobi formula, respectively, of maximum degree of
exactness 2m − 1. In many practical applications, however, the function f is not known at each point
of the interval [−1, 1] but only at a �nite number of nodes, often equispaced. In these cases, composite
trapezoidal or composite Simpson rules, of degree of exactness 1, 3, respectively, are widely used, since
all Newton�Cotes rules of higher order (greater than 7 for w(x) = 1) have weights which di�er in sign
and become rapidly unstable [68]. The problem of �nding accurate quadrature rules based on equidistant
points has gained the attention of some authors in more recent years (see, f.e., [68, 71, 77] and references
therein). The approach by Huybrechs [68] is based on the idea of determining the quadrature weights in
a least squares sense, by assuming that the number n of the equispaced nodes is greater than the degree
of exactness d of the quadrature rule. The stability of the quadrature formula is guaranteed by the fact
that, for n ≫ d, the minimization process leads to positive weights. This idea was �rstly proposed in
1970 by Wilson [99, 100] and very recently used by Glaubitz to construct stable high-order cubature
formulas for experimental data [49]. Other approaches to get quadrature formulas from equispaced nodes
have been presented in [71, 77, 25] and are based on the idea that it is possible to obtain quadrature
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rules by using Gauss�Christo�el formulas in combination with local polynomial interpolants or global
rational interpolants, respectively. The key point is to substitute the exact values f(ξk) in (3.2) with the
values, at ξk, of an approximating function. In this case the accuracy, the degree of exactness and the
stability of the quadrature formulas are related to the accuracy, the degree of exactness and the stability
of the approximating functions, respectively. In this chapter we get stable and accurate quadrature
formulas on equispaced nodes, with high degree of exactness, by using Gaussian�Christo�el formulas
and a mixed interpolation regression process, the so-called constrained mock-Chebyshev least squares
approximation [24, 39], in combination. The result presented in this chapter can be found in [38, 29].

3.1 Constrained mock-Chebyshev least squares quadrature

In this Section, we use Gauss�Christo�el quadrature formulas and the constrained mock-Chebyshev least
squares approximation, in combination, in order to get accurate and stable quadrature formulas with
degree of exactness s, such that m < s ≤ 2m− 1, m = ⌊π

√
n/
√
2⌋. In the Gauss�Christo�el quadrature

of order m [48, Ch. 3] ∫ 1

−1

f(x)w(x)dx =

m∑
i=1

wif(ξi) + Em(f), (3.3)

the nodes ξ1, . . . , ξm are the zeros of the m degree orthogonal polynomial πm(·;w) belonging to the weight
function w, thus

πm(ξk;w) = 0, k = 1, 2, . . . ,m,

wk =

∫ 1

−1

πm(t, w)

(t− ξk)π′
n(ξk, w)

w(t)dt.

For s ∈ N s.t. m < s ≤ 2m − 1, we de�ne the constrained mock-Chebyshev least squares quadrature
method as follows ∫ 1

−1

f(x)w(x)dx = Îs,n(f) + Ês,n(f), (3.4)

where

Îs,n(f) =

m∑
i=1

wiP̂s,n[f ](ξi). (3.5)

Despite formula (3.5) does not contain any explicit reference to the nodes of the set Xn, it is clear that
it can be rewritten in terms of the evaluations of the integrand function f at all nodes of Xn. The
crucial observations to get the explicit expression of the quadrature method (3.5) as a weighted sum of
the sampled function values rely in the following results.

Theorem 3.1.1. Let s ∈ N such that m < s ≤ 2m − 1 and let Bs = {ui : i = 0, . . . , s} be a basis of
Ps(R). Then the operator

P̂s,n : f 7→ P̂s,n[f ](x) =

s∑
i=0

âiui(x), x ∈ [−1, 1]

is a linear operator.

Proof. The linearity of the operator P̂s,n follows from the fact that the vector of coe�cients â =
[â0, . . . , âs]

T is the solution of the linear system (2.2).

Theorem 3.1.2. Let s ∈ N such that m < s ≤ 2m− 1 and let f be a continuous function in [−1, 1], then

P̂s,n[f ] = P̂s,n [Pn[f ]] ,

where

Pn[f ](x) =

n∑
j=0

f(xj)ℓj(x), x ∈ [−1, 1]
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and

ℓj(x) =

n∏
i=0
i ̸=j

x− xi
xj − xi

, j = 0, . . . , n, x ∈ [−1, 1].

Proof. It is su�cient to note that f(xi) = Pn[f ](xi) for each xi ∈ Xn, i = 0, . . . , n.

Theorem 3.1.3. The quadrature method (3.5) is a quadrature formula, that is

Îs,n(f) =

n∑
j=0

ŵjf(xj), (3.6)

where

ŵj =

m∑
i=1

wiP̂s,n[ℓj ](ξi), j = 0, . . . , n.

Proof. By using Theorem 3.1.1 and Theorem 3.1.2, we get

P̂s,n[f ] = P̂s,n

 n∑
j=0

f(xj)ℓj

 =

n∑
j=0

f(xj)P̂s,n[ℓj ]. (3.7)

By substituting (3.7) in (3.5), we obtain

Îs,n(f) =

m∑
i=1

wiP̂s,n[f ](ξi) =

m∑
i=1

wi

�
n∑

j=0

f(xj)P̂s,n[ℓj ](ξi)

�
=

n∑
j=0

(
m∑
i=1

wiP̂s,n[ℓj ](ξi)

)
f(xj)

=

n∑
j=0

ŵjf(xj).

As soon as the PA = LU factorization of the KKT matrix is obtained, each weight ŵj , j = 0, . . . , n,
can be computed by solving two triangular systems through forward and back substitutions. These are
stable or backward stable processes, in practice [95, Ch. 17,20,21,22]. The stability of the quadrature
rule (3.6) can be measured by the ℓ1-norm of its weights [68]

κ(n) =

n∑
j=0

|ŵj |. (3.8)

In fact, by assuming that f̃ is a perturbation of the function f such that
∥∥∥f̃ − f∥∥∥

∞
≤ ϵ, we get∣∣∣∣∣∣

n∑
j=0

ŵj f̃(xj)−
n∑

j=0

ŵjf(xj)

∣∣∣∣∣∣ ≤
n∑

j=0

∣∣∣ŵj

�
f̃(xj)− f(xj)

�∣∣∣ ≤ n∑
j=0

|ŵj | ϵ = ϵκ(n). (3.9)

If all weights are positive, then κ(n) = I(1) and the quadrature formula is stable. In all other cases
κ(n) > I(1) and the stability depends on the magnitude of κ(n). In Table 3.1, we explicitly compute
κ(n) for di�erent values of n, ranging from n = 100 to n = 100000, in the case of w(x) = 1. These values
decrease from 2.1961 (n = 100) to 2.0079 (n = 100000). Therefore we can conclude, at least in the cases
there speci�ed, the stability of the constrained mock-Chebyshev least squares quadrature. This result is
not surprising, since the quadrature formula (3.4) is obtained by combining two stable processes, namely
the constrained mock-Chebyshev least squares approximation and the Gaussian�Christo�el quadrature.
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n 100 500 1000 5000 10000 50000 100000
κ(n) 2.1961 2.0948 2.0773 2.0323 2.0252 2.0124 2.0079

Table 3.1: Computation of κ(n) for di�erent values of n, ranging from n = 100 to n = 100000, in the case
of w(x) = 1.

The constrained mock-Chebyshev least squares quadrature has an high degree of exactness, which,
however, can not overcome the degree of exactness of the Gaussian�Christo�el quadrature formula on m
nodes, as shown in the following theorem.

Theorem 3.1.4. Let s ∈ N such that m < s ≤ 2m− 1. Then the quadrature formula (3.4) has degree of
exactness s.

Proof. Let Ps be a polynomial of degree s. By the uniqueness of the constrained mock-Chebyshev least
squares approximation [24, 39]

Ps(x) = P̂s,n [Ps] (x), x ∈ [−1, 1].

Therefore
Ês,n (Ps) = Em (Ps) = 0,

since the quadrature formula (3.3) has degree of exactness 2m− 1.

Note that the quadrature formulas (3.4) provide di�erent approximations of the exact integral I(f)
for di�erent values of s, m < s ≤ 2m − 1. Clearly, as much P̂s,n[f ] well approximate, in the uniform
norm, the integrand function f , as much accurate the quadrature formula (3.4) results. In fact we have

Theorem 3.1.5. Let s ∈ N such that m < s ≤ 2m− 1, then

|Ês,n(f)| ≤
∥∥∥R̂s,n[f ]

∥∥∥
∞

∫ 1

−1

w(x)dx, (3.10)

where
R̂s,n[f ] = f − P̂s,n[f ].

Proof. By Theorem 3.1.4, we have∣∣∣∣∣
∫ 1

−1

f(x)w(x)dx−
m∑
i=1

wiP̂s,n[f ](ξi)

∣∣∣∣∣ =
∣∣∣∣∣
∫ 1

−1

f(x)w(x)dx−
∫ 1

−1

P̂s,n[f ](x)w(x)dx

∣∣∣∣∣
≤

∫ 1

−1

∣∣∣f(x)− P̂s,n[f ](x)
∣∣∣w(x)dx ≤ ∥∥∥f − P̂s,n[f ]

∥∥∥
∞

∫ 1

−1

w(x)dx.

From now on, we consider the value of r given in (1.12). We notice that, for this value of r, the
bound (1.13) implies that m < r ≤ 2m−1, therefore both previous results hold. Moreover, the bound for∥∥∥R̂r,n[f ]

∥∥∥
∞

developed in [24] can be used to estimate the error (3.10), if some information about f and its

derivatives are known. Since we assume that the function f is known only at the nodes of an equispaced
grid, we propose an alternative method to estimate the error Êr,n(f), which avoids the knowledge of the
analytic expression of the integrand function f. To this aim, by assuming Îr,n(f) ̸= 0, we set

Ẽrel,k
r,n (f) = max


∣∣∣Îs+1,n(f)− Îs,n(f)

∣∣∣∣∣∣Îr,n(f)∣∣∣ : s ∈ {r − k, . . . , r + k}

 , 0 < k < p. (3.11)

The setting (3.11) arises from the analysis of the trend of the approximations Îs,n(f). These approxima-
tions, for a small number of subsequent values of s, can be excessively close each other. The numerical
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results, provided in the next section, show that the value k = 3 provides quite good estimate of the exact
relative error

Êrel
r,n(f) =

∣∣∣Êr,n(f)
∣∣∣

|I(f)|
. (3.12)

An algorithm for computing the constrained mock-Chebyshev least squares quadrature can be organized
as follows.

Algorithm 1 Constrained mock-Chebyshev least squares quadrature

Input: Xn = [x0, . . . , xn]
T , f = [f0, . . . , fn]

T , k
Output: Ĩr,n(f), Ẽ

rel,k
r,n (f)

1: Compute m, r
2: Compute the mock-Chebyshev subset X ′

m

3: Compute X ′′
n−m = Xn \X ′

m

4: Set Xn = [X ′
m, X

′′
n−m]

5: Compute the Gauss-Christo�el nodes and weights of order m
6: for s = r − k : r + k do
7: Compute P̂s,n[f ]

8: Compute Îs,n(f)
9: end for

10: Compute Ẽrel,k
r,n (f)

3.1.1 Numerical experiments

In this Section we compute approximations of the integral (3.1) by using the quadrature formula (3.4)
with r given in (1.12), where the polynomial P̂r,n[f ] is expressed in the Chebyshev polynomial basis of
the �rst kind. To this aim, we consider the grid of 1001 equispaced nodes in [−1, 1], that is n = 1000,
from which we get m = 70, p = 28 and then r = 99. In order to demonstrate the e�ectiveness of the
estimate of the exact relative error Êrel

r,n(f) through Ẽ
rel,k
r,n (f) (k = 3), we assume that the vector of the

functional data f = [f0, . . . , fn]
T results from the evaluation of the following functions

f1(x) =
1

1 + 8x2
, f2(x) =

1

1 + 25x2
, f3(x) = cos(20x), f4(x) = 1 + x120,

on the points of the equispaced grid Xn = [x0, . . . , xn]
T . Moreover we use the following weight functions

name weight function w(x)
1 Gauss�Legendre 1

2 Gauss�Chebyshev (1− x2)−1/2

3 Gauss�Jacobi (1− x)α(1 + x)β , α, β > −1

In Tables 3.2 - 3.4, we can appreciate the accuracy of approximations provided by the constrained mock-
Chebyshev least squares quadrature formula (3.5) which, we emphasize, uses the functional data only at
the equispaced nodes. In the second column we list the exact relative errors (3.12), while in the third
column we list their estimate through formula (3.11), which, as before, uses the functional data only at
the equispaced nodes.

Finally, we numerically test the stability of the proposed method by analyzing the sensitivity of the
constrained mock-Chebyshev least squares quadrature formula to random perturbations of the function
values. More precisely, in the case of the classical Runge function f2(x), in Table 3.5 we compare left and
right side of the inequality (3.9) by setting ϵ = 10−8, n = 1000 and by using di�erent weight functions.
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Êrel
r,n(f) Ẽrel,3

r,n (f)

f1(x) 3.8265e-16 6.3775e-16
f2(x) 1.3949e-10 1.4032e-10
f3(x) 1.8241e-15 1.2161e-15
f4(x) 0 2.2022e-16

Table 3.2: Absolute relative errors using the constrained mock-Chebyshev least squares quadrature for-
mula (3.4) with Gauss�Legendre weights and their estimates using formula (3.11) with k = 3.

Êrel
r,n(f) Ẽrel,3

r,n (f)

f1(x) 8.6935e-15 2.5444e-15
f2(x) 1.5671e-09 3.5801e-09
f3(x) 7.0880e-14 8.4633e-16
f4(x) 5.6402e-14 2.6356e-16

Table 3.3: Absolute relative errors using the constrained mock-Chebyshev least squares quadrature for-
mula (3.4) with Gauss�Chebyshev weights and their estimates using formula (3.11) with k = 3.

Êrel
r,n(f) Ẽrel,3

r,n (f)

f1(x) 4.2407e-16 8.4815e-16
f2(x) 9.4603e-11 3.8728e-11
f3(x) 3.6023e-14 9.7492e-15
f4(x) 2.8238e-16 2.8238e-16

Table 3.4: Absolute relative errors using the constrained mock-Chebyshev least squares quadrature for-
mula (3.4) with Gauss�Jacobi weights with α = β = 1/2 and their estimates using formula (3.11) with
k = 3.

w(x)
∣∣∣Îr,n[f̃2]− Îr,n[f2]∣∣∣ ϵκ(n)

1 3.00e-09 9.82e-08
(1− x2)−1/2 2.90e-09 6.97e-08

(1− x) 1
2 (1 + x)

1
2 2.19e-09 1.75e-08

Table 3.5: Sensitivity of the constrained mock-Chebyshev least squares quadrature formula (3.4) to
random perturbations of the function values, in the case of f2(x) = 1/(1 + 25x2), n = 1000 and by using
di�erent weight functions.
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3.2 An adaptive algorithm for determining the optimal degree

of regression in constrained mock-Chebyshev least squares

quadrature

The accuracy of the quadrature formulas (3.5) varies with s depending on the degree of smoothness of
the function f . In this Section, we develop an adaptive algorithm for determining, given a function f ,
the optimal degree of regression which corresponds to the quadrature formula with higher accuracy. In
other words, given the family of quadrature formulas{

Îs,n(f) =

m∑
i=1

wiP̂s,n[f ](ξi), s = m, . . . , 2m− 1

}
, (3.13)

we determine the optimal degree r⋆opt of the constrained mock-Chebyshev least squares approximation
which produces a more accurate quadrature formula Îr⋆opt,n(f).

3.3 Computing accurate quadrature formulas with high degree of

exactness from equispaced nodes

The main goal of this section is the determination of a procedure for the choice of the optimal value of s
which guarantees the best approximation accuracy of the quadrature formula Îs,n(f), measured through
the exact relative error

Êrel
s,n(f) =

∣∣∣Ês,n(f)
∣∣∣

|I(f)|
,

where we assume |I(f)| > 0. We denote this value by r⋆opt = r⋆opt(f). To this aim, we analyze the trend
of approximate relative errors

Ẽrel
s,n(f) =

∣∣∣Îs+1,n(f)− Îs,n(f)
∣∣∣∣∣∣Îs,n(f)∣∣∣ , m ≤ s ≤ 2m− 2, (3.14)

computed by using quadrature formulas of subsequent degrees up to the maximum degree of exactness
2m − 1. At �rst sight, it might be thought to choose r⋆opt as the value of s ∈ {m,m + 1, . . . , 2m − 2}
which minimizes the approximate relative error Ẽrel

s,n(f). Unfortunately, in general this choice could be
misleading since, even for starting values of s, it could occur that two successive approximations Îs,n(f)
and Îs+1,n(f) are so close to each other that the approximate relative error Ẽrel

s,n(f) is very small, for
example less than a tolerance tol, despite the exact relative error Êrel

s,n(f) is not, being much greater than
tol. An example of this situation is well illustrated in Figure 3.1, where the sequence of approximate
relative errors assumes values less than 10−14 despite all exact relative errors are not less than 10−6. The
approximate relative errors Ẽrel

s,n(f) less than tol are then outliers and therefore they have to be discarded
in the process of the determination of r⋆opt. Instead of �xing a tolerance tol a priori, we distinguish outliers
from valid values of relative errors Ẽrel

s,n(f) by analyzing the sequence of consecutive triples

ts =
¦
Ẽrel

s,n(f), Ẽ
rel
s+1,n(f), Ẽ

rel
s+2,n(f)

©
, s = m, . . . , 2m− 3. (3.15)

We call the triple ts monotonic if and only if

Ẽrel
s,n(f) ≥ Ẽrel

s+1,n(f) ≥ Ẽrel
s+2,n(f) or Ẽrel

s,n(f) ≤ Ẽrel
s+1,n(f) ≤ Ẽrel

s+2,n(f),

otherwise we call the triple ts non monotonic. Note that a triple ts is monotonic if and only if

dsds+1 ≥ 0,
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Figure 3.1: Sequence of approximations Îs,n(f) (left) and sequence of approximate relative errors Ẽrel
s,n(f)

(center) versus sequence of exact relative errors Êrel
s,n(f) (right) with f(x) =

1
x2−1.1 , w(x) = 1, n = 100

and m = 22.
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Figure 3.2: Approximate relative errors, with respect to the Gauss�Legendre scheme (w(x) = 1), for the
function f(x) = 1

x2−1.1 (•) with n = 1200, m = 76 (left) and n = 1280, m = 79 (right) with related �rst
non monotonic triples (■) and corresponding outliers (◦).

where we set
ds = log10

�
Ẽrel

s+1,n(f)
�
− log10

�
Ẽrel

s,n(f)
�
, s = m, . . . , 2m− 2.

We �x a suitable constant δ > 0 (for example δ = 0.5) and we search the outliers among the elements of
non monotonic triples by assuming that:

� if ds < −δ and ds+1 > δ, then Ẽrel
s+1,n(f) is outlier (see Figure 3.2 (left));

� if ds > δ and ds+1 < −δ, then Ẽrel
s,n(f) is outlier (see Figure 3.2 (right)).

The process of determining new outliers ends when s = 2m−2. The tolerance tol is determined adaptively
by initializing it with the epsilon machine eps and by updating it by the rule

tol = max{tol, Ẽrel
s,n(f)} (3.16)

as soon as we �nd a new outlier Ẽrel
s,n(f). To avoid under-estimation of the exact relative error we take

into account the possible presence of outliers, by assuming as outliers all approximate relative errors
Ẽrel

s,n(f) less than or equal to the computed tolerance tol. The Algorithm 2 computes the tolerance tol.
The Algorithm 3 detects the outliers and remove them, providing in output the increasing sequence
{s1, . . . , sp} ⊂ {m, . . . , 2m − 2} of degrees s such that Ẽrel

s,n(f) > tol. In Figure 3.3 we display the e�ect
of the Algorithm 3, in detecting outliers (left) and removing them (right).
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Algorithm 2 Tolerance determination

Input: Ẽrel
m,n(f), . . . , Ẽ

rel
2m−2,n(f)

Output: tol
tol← eps
for i = m, . . . , 2m− 3 do

di ← log10(Ẽ
rel
i+1,n(f))− log10(Ẽ

rel
i,n (f))

end for

while j ≤ m− 2 do
if dj ≤ −δ and dj+1 ≥ δ then

tol = max{tol, Ẽrel
j+1,n(f)}

j ← j + 2
else if dj ≥ δ and dj+1 ≤ −δ then

tol = max{tol, Ẽrel
j,n(f)}

j ← j + 1
else

j ← j + 2
end if

end while

Algorithm 3 Outlier detection

Input: Ẽrel
m,n(f), . . . , Ẽ

rel
2m−2,n(f)

Output: s1, . . . , sp
j ← 1
for i = m, . . . , 2m− 2 do

if Ẽrel
i,n (f) > tol then
sj ← i
j ← j + 1

end if

end for
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Figure 3.3: Signi�cant approximate relative errors (•) and outliers (◦) for the function f(x) = 1
x2−1.1

n = 1000, m = 70 relative to the Gauss�Legendre scheme (w(x) = 1).
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From now on we assume that all outliers in the sequence {(s, Ẽrel
s,n)}2m−2

s=m have been removed. We
denote by {(sj , Ẽrel

sj ,n)}
p
j=1, m ≤ s1 < · · · < sp ≤ 2m − 2 the subset of signi�cant data. We consider the

sequence of intervals {Ij}pj=0, de�ned as follows

Ij =


[m, s1), if j = 0,

(sj , sj+1), if j = 1, . . . , p− 1,

(sp, 2m− 2], if j = p.

(3.17)

By de�nition, all outliers belong to

I =

p⋃
j=0

Ij .

Let q ≥ 0 be the number of intervals Ij in (3.17) containing at least one outlier.

Case q > 0. We denote by Ijk , 0 ≤ j1 < j2 < · · · < jq ≤ p the intervals containing at least one outlier
and by Njk the number of outliers in Ijk . We set

µ =
1

q

q∑
k=1

Njk , σ =

Ì
1

q

q∑
k=1

(Njk − µ)2.

As well-known, the standard deviation σ tells us the typical amount by which the values {Njℓ} deviate
from their average value µ. We de�ne

R = {rjℓ : ℓ = 1, . . . , q ∧Njℓ > µ+ σ} ,

and we set

r⋆opt =

¨
minR if R ≠ ∅,
2m− 2 if R = ∅.

By the nature of the constrained mock-Chebyshev least squares approximation [24, 39], the case r⋆opt <
2m − 2 frequently occurs as soon as the exact relative error Êrel

r⋆opt,n
(f) is near to the machine precision

already for values of s ≪ 2m − 2. In such cases, by increasing the degree of the regression s ≥ r⋆opt, it
is also possible that the exact relative error Êrel

r,n(f) became worse. In fact, as s approaches to n, the
polynomial P̂s,n[f ](x) tends to the polynomial interpolant on the set of nodes Xn, P̂n,n[f ](x), which in
its turn, can su�er from the Runge phenomenon. If R ̸= ∅, from the de�nition of r⋆opt, we expect a not
increasing trend of signi�cant data Ẽrel

s1,n(f), . . . , Ẽ
rel
r⋆opt,n

(f) if r⋆opt > s1 or a non decreasing trend of the

signi�cant data Ẽrel
r⋆opt,n

(f), . . . , Ẽrel
sp,n(f) if r

⋆
opt = s1. If R = ∅ nothing can be said on the trend of the

signi�cant data.

Case q = 0. We set r⋆opt = 2m − 2. In this case nothing can be said on the trend of the signi�cant
data.

We are now able to determine a value r⋆opt of the degree of regression which produces more accurate
quadrature formulas. The accuracy of Îr⋆opt,n(f) will depend on the quality of the mock-Chebyshev
constrained least squares approximation to the function f . We distinguish the following cases:

� if r⋆opt = s1, we use a linear regression l(s) to model the trend of the data¦
log10

�
Ẽrel

r⋆opt,n
(f)
�
, . . . , log10

�
Ẽrel

sp,n(f)
�©

and we set
r⋆opt = sk,

where
log10

�
Ẽrel

sk,n

�
= min

α∈{1,...,p}

¦
log10

�
Ẽrel

sα,n

�
: log10

�
Ẽrel

sα,n

�
− l(sα) ≥ 0

©
;
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� if r⋆opt = sj with j = 2, . . . , p−1, then if log10
�
Ẽrel

sj ,n

�
− log10

�
Ẽrel

sj+1,n

�
> δ, we set r⋆opt = sj+1, else

we use a linear regression l(s) to model the trend of the data¦
log10

�
Ẽrel

s1,n(f)
�
, . . . , log10

�
Ẽrel

r⋆opt,n
(f)
�©

and we set
r⋆opt = sk,

where
log10

�
Ẽrel

sk,n

�
= min

α∈{1,...,j}

¦
log10

�
Ẽrel

sα,n

�
: log10

�
Ẽrel

sα,n

�
− l(sα) ≥ 0

©
;

� if r⋆opt = sp, we use a linear regression l(s) to model the trend of the data¦
log10

�
Ẽrel

s1,n(f)
�
, . . . , log10

�
Ẽrel

r⋆opt,n
(f)
�©

and we set
r⋆opt = sk,

where
log10

�
Ẽrel

sk,n

�
= min

α∈{1,...,j}

¦
log10

�
Ẽrel

sα,n

�
: log10

�
Ẽrel

sα,n

�
− l(sα) ≥ 0

©
.

Algorithm 4 Adaptive algorithm for determining a quadrature formulas with high degree of exactness
and accuracy from equispaced nodes

Input: Xn = [x0, . . . , xn]
T , f = [f0, . . . , fn]

T

Output: Îr⋆opt,n(f)
1: Compute m
2: Compute the mock-Chebyshev subset X ′

m

3: Compute X ′′
n−m = Xn \X ′

m

4: Set Xn = [X ′
m, X

′′
n−m]

5: Compute the Gauss�Christo�el nodes and weights of order m
6: for s = m : 2m− 1 do
7: Compute P̂s,n[f ]

8: Compute Îs,n(f)
9: end for

10: Compute the approximate relative errors Ẽrel
m,n(f), . . . , Ẽ

rel
2m−2,n(f)

11: Run Algorithm 2
12: Run Algorithm 3
13: Compute r⋆opt

3.3.1 Computational cost

We determine the computational cost of the Algorithm 4 described above. The computational cost of
m is negligible. By using the procedure proposed in [10], the selection of the mock-Chebyshev subset
from the uniform grid Xn requires about O(nm) �ops. The reordering of the set Xn involves a searching
algorithm for the computation of the set X ′′

n−m, whose computational cost is O(m log(n)) �ops. Gauss-
Christo�el nodes and weights can be computed through the Chebfun package [66]. The function legpts

to compute Legendre nodes and weights, used in the numerical experiments, requires O
(

m(logm)2

log(logm)

)
�ops.

The computation of the coe�cients of the polynomial P̂r,n[f ] through the Lagrange multipliers method [39]
needs the reordering in point 3 and the computation of the Chebyshev polynomial basis, whose total cost
is O(n2) �ops [11]. Since we must compute the polynomial P̂s,n[f ] for each s ∈ {m, . . . , 2m − 1}, the
computational cost isO(mn2) �ops. The tolerance is computed through the Algorithm 2 and the detection
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of the outliers is made by using the Algorithm 3, which both require O(m) �ops. Finally, we determine the
degree of regression r⋆opt which produces accurate quadrature formulas by using the procedure described
in the Section 3.3, which requires O(n) �ops. Since m = O(

√
n), the computational cost of the procedure

is O(n5/2) �ops.

3.4 Computing accurate cubature formulas with high degree of

exactness from regular grids of nodes

Let f be a continuous function in the square [−1, 1]2. In line with the notations of Chapter 2, we set
nx,y = (nx, ny) ∈ N×N and consider the uniform grid of (nx+1)× (ny +1) equispaced points Xnx

×Yny

in the square [−1, 1]2. In analogy with the univariate case, we set

mx =

�
π

É
nx
2

�
, my =

�
π

É
ny
2

�
,

mx,y = (mx,my) and we �x sx,y = (sx, sy) ∈ N × N such that mx ≤ sx ≤ nx and my ≤ sy ≤ ny. We
denote by

P̂sx,y,nx,y
[f ] = P̂(sx,sy),(nx,ny)[f ], (3.18)

the tensor product extension of the polynominal P̂s,n[f ] and we consider the quadrature formulas

I(f) =

∫ 1

−1

∫ 1

−1

w(s, t)f(s, t)dsdt ≈
mx∑
i=1

my∑
j=1

wiκjf(ξi, ηj)

≈
mx∑
i=1

my∑
j=1

wiκjP̂sx,y,nx,y
[f ](ξi, ηj) =: Îsx,y,nx,y

(f),

(3.19)

where ξ1, . . . , ξmx
and η1, . . . , ηmy

are nodes of a Gaussian quadrature formula with weights w1, . . . , wmx

and κ1, . . . , κmy
of order mx and my, respectively. We consider the family of quadrature formulas

Îs,n(f), s = (s, s) ∈ N× N, max{mx,my} ≤ s ≤ min{2mx − 1, 2my − 1} (3.20)

and the approximate relative errors

Ẽrel
s,n(f) =

∣∣∣Îs+1,n(f)− Îs,n(f)
∣∣∣∣∣∣Îs,n(f)∣∣∣ , max{mx,my} ≤ s ≤ min{2mx − 1, 2my − 1}. (3.21)

In analogy to the univariate case, by using the Algorithm 4, it is possible to determine a value r⋆opt of the
degree of regression which produces accurate quadrature formulas.

3.4.1 Numerical experiments

We compute the approximation of the integral (3.1) by using the quadrature formula (3.13) with s = r⋆opt,
where the polynomial P̂r⋆opt,n

[f ] is expressed in the Chebyshev polynomial basis of the �rst kind BCr⋆opt .
To this aim, we consider the grid of 1001 equispaced nodes in [−1, 1], that is n = 1000, m = 70. The
experiments are performed on the following functions

f1(x) =
1

1 + 8x2
, f2(x) =

1

1 + 25x2
, f3(x) =

1

((t+ 1)4 + (2/50)2)
,

f4(x) = e−x2

, f5(x) =
1

x4 + (
√
26
5 − 1)x2 + ( 1350 )

2
, f6(x) =

1

t+ 1.01
,

by using the weight function w(x) = 1.

39



ET (f) ECS(f) EM (f) Êrel
r,n(f) Êrel

r⋆opt,n
(f) Ẽrel

r⋆opt,n
(f)

f1(x) 1.33e-04 8.88e-10 7.84e-13 2.55e-16 0 2.55e-16
f2(x) 8.97e-08 1.51e-14 1.02e-12 1.39e-10 4.13e-12 1.98e-12
f3(x) 3.00e-10 4.09e-16 1.06e-10 3.75e-13 1.59e-14 6.34e-15
f4(x) 3.28e-07 8.77e-15 4.44e-16 5.94e-16 5.94e-16 2.97e-16
f5(x) 1.44e-07 5.41e-14 1.24e-13 2.24e-16 7.86e-16 8.99e-16
f6(x) 6.26e-04 6.14e-07 1.52e-06 1.67e-07 8.81e-09 9.26e-10

Table 3.6: Comparisons among the relative errors in trapezoidal composite rule (ET (f)), Cavalieri�
Simpson rule (ECS(f)), quadrature formula proposed in [77] (EM (f)), quadrature formula through the
constrained mock-Chebyshev interpolant with optimal degree relative to the Gauss�Legendre scheme
(Êrel

r,n(f)) and the approximate relative error obtained through Algorithm 4 (Êrel
r⋆opt,n

).
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Figure 3.4: From left to right. Exact relative errors, approximate relative errors (•) with discarded outliers
(◦) and regression line of the signi�cant data for the function f1(x) relative to the Gauss�Legendre scheme.

In Table 3.6, from left to right, we compare the relative errors obtained by applying the trapezoidal
composite rule (ET (f)), the Cavalieri�Simpson composite rule (ECS(f)), the quadrature formula proposed
in [77] with s = 6 (EM (f)), the constrained mock-Chebyshev least squares quadrature formula proposed
in [38] (Êrel

r,n(f)) and the proposed here quadrature formula (Êrel
r⋆opt,n

(f)). To appreciate the accuracy of
the estimate of the exact relative error, obtained through the Algorithm 4, in the last column we report
also Ẽrel

r⋆opt,n
(f). To show the e�cacy of the Algorithm 4 in computing the optimal regression degree r⋆opt,

in Figures 3.4 - 3.9 we display the sequences of exact relative errors, approximate relative errors (with
discarded outliers, in red) and the regression line of the signi�cant data, for all test functions.

Now, we consider the grid of 151 × 151 equispaced nodes in [−1, 1]2, that is nx = ny = 150, mx =
my = 27. The experiments are perfomed by using the Gauss�Legendre weight on the well-known Franke's
function
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Figure 3.5: From left to right. Exact relative errors, approximate relative errors (•) with discarded outliers
(◦) and regression line of the signi�cant data for the function f2(x) relative to the Gauss�Legendre scheme.
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Figure 3.6: From left to right. Exact relative errors, approximate relative errors (•) with discarded outliers
(◦) and regression line of the signi�cant data for the function f3(x) relative to the Gauss�Legendre scheme.
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Figure 3.7: From left to right. Exact relative errors, approximate relative errors (•) with discarded outliers
(◦) and regression line of the signi�cant data for the function f4(x) relative to the Gauss�Legendre scheme.
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Figure 3.8: From left to right. Exact relative errors, approximate relative errors (•) with discarded outliers
(◦) and regression line of the signi�cant data for the function f5(x) relative to the Gauss�Legendre scheme.
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Figure 3.9: From left to right. Exact relative errors, approximate relative errors (•) with discarded outliers
(◦) and regression line of the signi�cant data for the function f6(x) relative to the Gauss�Legendre scheme.
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ET (f) ECS(f) Êrel
r⋆
opt,n

(f) Ẽrel
r⋆
opt,n

(f)

f(x, y) 2.30e-05 1.71e-10 4.69e-12 2.46e-11

Table 3.7: Comparisons among the relative errors in trapezoidal composite rule (ET (f)), Cavalieri�
Simpson rule (ECS(f)), cubature formulas through the constrained mock-Chebyshev tensor product in-
terpolant with optimal degree (Êrel

r⋆
opt,n

(f)) and approximate relative error obtained through Algorithm 4

(Ẽrel
r⋆
opt,n

(f)) relative to the Gauss�Legendre scheme.

f(x, y) = 0.75 exp

�
− (9(x+ 1)/2− 2)2

4
− (9(y + 1)/2− 2)2

4

�
+0.75 exp

�
− (9(x+ 1)/2 + 1)2

49
− (9(y + 1)/2 + 1)

10

�
+0.5 exp

�
− (9(x+ 1)/2− 7)2

4
− (9(y + 1)/2− 3)2

4

�
−0.2 exp

�
−(9(x+ 1)/2− 4)2 − (9(y + 1)/2− 7)2

�
,

where the polynomial P̂sx,y,nx,y [f ] is expressed in the basis BCsx ⊗B
C
sy . In Table 3.7, from left to right, we

compare the relative errors obtained by applying the tensor product trapezoidal composite rule (ET (f)),
the tensor product Cavalieri�Simpson composite rule (ECS(f)) and the proposed here quadrature formula
(Êrel

r⋆
opt,n

(f)). To appreciate the accuracy of the estimate of the exact relative error, obtained through the

Algorithm 4, in the last column we report also Ẽrel
r⋆
opt,n

(f).
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Chapter 4

Polynomial approximation of

derivatives by the constrained

mock-Chebyshev least squares operator

The goal of this chapter is two-fold. We discuss some theoretical aspects of the constrained mock-
Chebyshev least squares operator and present new results. In particular, we introduce explicit repre-
sentations of the error and its derivatives. Moreover, for a su�ciently smooth function f in [−1, 1], we
present a method for approximating the successive derivatives of f at a point x ∈ [−1, 1], based on the
constrained mock-Chebyshev least squares operator and provide estimates for these approximations.

LetXn = {x0, . . . , xn} be the set of n+1 equispaced nodes in [−1, 1]. The constrained mock-Chebyshev
least squares linear operator is de�ned as follows

P̂r,n : C([−1, 1]) → C([−1, 1])

f(x) 7→ P̂r,n[f ](x) =

r∑
i=0

âiui(x), x ∈ [−1, 1], (4.1)

where, as we have seen in Chapter 2, the vector â = [â0, â1, . . . , âr]
T is the solution of the KKT linear

equations �
2V TV CT

C 0

� �
â
ẑ

�
=

�
2V T b
d

�
. (4.2)

This operator is well de�ned since, in Chapter 2, we have proved that the KKT matrix

M =

�
2V TV CT

C 0

�
(4.3)

is nonsingular. We recall that, the operator P̂r,n satis�es the following properties:

i) P̂r,n is a linear operator, that is

P̂r,n [λf + µg] = λP̂r,n[f ] + µP̂r,n[g], f, g ∈ C([−1, 1]), λ, µ ∈ R; (4.4)

ii) the range of P̂r,n is Pr(R);

iii) P̂r,n reproduces polynomials of degree ≤ r, that is

P̂r,n[Pr] = Pr, for each Pr ∈ Pr(R); (4.5)

iv) P̂r,n is idempotent, that is
P̂ 2
r,n = P̂r,n;

43



v) P̂r,n[f ] is completely determined by the evaluations of f on the grid Xn, in particular

P̂r,n[f ] = P̂r,n [Pn[f ]] , for each f ∈ C([−1, 1]), (4.6)

where

Pn[f ](x) =

n∑
i=0

f(xi)ℓi(x), x ∈ [−1, 1],

and

ℓi(x) =

n∏
j=0
j ̸=i

x− xj
xi − xj

, i = 0, . . . , n, x ∈ [−1, 1];

vi) P̂r,n interpolates the function f at the mock-Chebyshev subset of nodes X ′
m = {x′i : i = 0, . . . ,m},

introduced in (1.3), that is

P̂r,n[f ](x
′
i) = f(x′i), i = 0, . . . ,m.

In this chapter we further study some properties of the constrained mock-Chebyshev least squares
operator, by providing new results and applications. More precisely, in Theorem 4.1.1 we give a new bound
for the in�nity norm of the operator P̂r,n. This result allows us to give, in Theorem 4.1.3, estimation for
the approximation error

R̂r,n[f ](x) = f(x)− P̂r,n[f ](x), x ∈ [−1, 1], (4.7)

in uniform norm, through the error of the best uniform approximation by polynomials of degree less than
or equal to r. Further, by assuming f ∈ C([−1, 1]), in Theorem 4.1.5 we provide new explicit represen-
tations of the pointwise error (4.7) which takes into account the peculiarity of P̂r,n[f ] of being a mixed
interpolation-regression polynomial. As a consequence, by assuming f ∈ Cr+1[−1, 1], in Theorem 4.1.7
we use the Peano Kernel Theorem [23, 67] to obtain explicit representations and pointwise bounds of the
successive derivatives of the error (4.7), that is

R̂(ν)
r,n[f ](x) = f (ν)(x)− P̂ (ν)

r,n [f ](x), x ∈ [−1, 1], ν = 1, . . . , r, (4.8)

and the Markov Theorem [79] to obtain, as a corollary, bounds in uniform norm of the error (4.8).
As an application, we introduce a new di�erentiation method, based on an equispaced grid of points,
for approximating the successive derivatives of a su�ciently smooth function f in [−1, 1] through the
derivatives of the constrained mock-Chebyshev least squares operator. Furthermore, we prove an iterative
relationship between the coe�cients of P̂ (ν)

r,n and those of P̂ (ν−1)
r,n , ν = 1, . . . , r, when they are expressed

in the Chebyshev polynomial basis of the �rst kind.

4.1 Constrained mock-Chebyshev least squares linear operator:

theoretical aspects

Now, we discuss some theoretical aspects of the representation of the error (4.7), its derivatives and
related bounds. To this aim, some preliminary results are needed. First of all, we give a bound for the
norm of the operator P̂r,n, ∥∥∥P̂r,n

∥∥∥ = sup
f∈C([−1,1])
∥f∥∞≤1

∥∥∥P̂r,n[f ]
∥∥∥
∞
. (4.9)

Theorem 4.1.1. The norm of the constrained mock-Chebyshev least squares operator satis�es∥∥∥P̂r,n

∥∥∥ ≤ C (2(r + 1)κ(M) + (m+ 1)
∥∥M−1

∥∥
1

)
, (4.10)

where
C = max

j=0,...,r
∥uj∥∞ , κ(M) = ∥M∥1 ∥M

−1∥1. (4.11)

44



n 100 500 1000 5000 10000 50000 100000
κ(M) 7.8e+03 8.4e+04 2.4e+05 2.9e+06 8.3e+06 1.0e+08 2.9e+08∥∥M−1

∥∥
1

21.80 52.90 78.20 186.75 275.55 661.36 965.75

Table 4.1: Values of the condition number κ(M) and of the norm
∥∥M−1

∥∥
1
in correspondence of some

values of n ranging from n = 100 to n = 100000, by using the Chebyshev polynomial basis of the �rst
kind.

Proof. Let f ∈ C([−1, 1]) satisfy ∥f∥∞ ≤ 1. By using the triangular inequality, we get from (4.1)

∣∣∣P̂r,n[f ](x)
∣∣∣ = ∣∣∣∣∣

r∑
i=0

âiui(x)

∣∣∣∣∣ ≤
r∑

i=0

|âi| |ui(x)| , x ∈ [−1, 1], (4.12)

and then, by passing to the supremum with respect to x ∈ [−1, 1] and by the setting (4.11),∥∥∥P̂r,n[f ]
∥∥∥
∞
≤ C

r∑
i=0

|âi| = C ∥â∥1 . (4.13)

Since the KKT matrix (4.3) is nonsingular, by equation (4.2) we have

∥â∥1 ≤
∥∥∥∥�âẑ�∥∥∥∥

1

≤
∥∥M−1

∥∥
1

∥∥∥∥�2V T b
d

�∥∥∥∥
1

=
∥∥M−1

∥∥
1

�
2

r∑
j=0

∣∣∣∣∣
n∑

i=0

uj(xi)f(xi)

∣∣∣∣∣+
m∑
j=0

|f(xj)|

�
≤

∥∥M−1
∥∥
1

�
2

r∑
j=0

n∑
i=0

|uj(xi)|+m+ 1

�
≤

∥∥M−1
∥∥
1
(2 ∥M∥1 (r + 1) +m+ 1) ,

and therefore
∥â∥1 ≤ 2(r + 1)κ(M) + (m+ 1)

∥∥M−1
∥∥
1
. (4.14)

By using the bound (4.14) in (4.13), we get∥∥∥P̂r,n[f ]
∥∥∥
∞
≤ C

(
2(r + 1)κ(M) + (m+ 1)

∥∥M−1
∥∥
1

)
, (4.15)

and then ∥∥∥P̂r,n

∥∥∥ ≤ C (2(r + 1)κ(M) + (m+ 1)
∥∥M−1

∥∥
1

)
since the right-hand side of (4.15) does not depend on f .

Remark 4.1.2. In the case of the Chebyshev polynomial basis of the �rst kind [88, Ch. 1]

BC,1
r = {T0(x), . . . , Tr(x)}, Tk(x) = cos(k arccos(x)), x ∈ [−1, 1], k = 0, . . . , r, (4.16)

we have ∥Tk∥∞ = 1 for each k = 0, . . . , r. In this case equation (4.10) becomes∥∥∥P̂r,n

∥∥∥ ≤ Bn, (4.17)
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where
Bn = 2(r + 1)κ(M) + (m+ 1)

∥∥M−1
∥∥
1
. (4.18)

In order to appreciate the quality of the bound (4.17), in Figure 4.1 we plot the behavior of Bn in
correspondence of some values of n ranging from 100 to 100000. The plot shows a linear relation between
the logarithm of n and the logarithm of the bound Bn. We computed the coe�cients of this relation
through a linear regression and after standard computations, we found

Bn ≈ e3.66n2.03.

Figure 4.1 contains the approximations of the bound Bn computed through the regression line, as well.
In Table 4.1 we show the values of κ(M),

∥∥M−1
∥∥
1
in correspondence of some values of n ranging from

100 to 100000.
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Figure 4.1: Log-log plot of the values Bn (in black stars, ⋆) of the bound (4.17) of the norm
∥∥∥P̂r,n

∥∥∥ relative
to sets of n+1 equispaced nodes, with n ranging from 102 to 105. The linear relation between the values
on the x-axis and those on the y-axis is evident and con�rmed by the closeness of their approximations
(in red circles, o) computed through a linear regression.

Since the constrained mock-Chebyshev least squares operator is a projection on the polynomial space
Pr(R) [17, Ch. 6], it is possible to give a standard estimation for the uniform norm of the approximation
error ∥∥∥R̂r,n[f ]

∥∥∥
∞

=
∥∥∥f − P̂r,n[f ]

∥∥∥
∞
, f ∈ C([−1, 1]), (4.19)

through the error of best uniform approximation by polynomials of Pr(R)

E⋆
r (f) = ∥f − P ⋆

r [f ]∥∞ , (4.20)

also known as minmax error. With this aim, for computational convenience and to short the notation,
we suppose to work with the Chebyshev polynomial basis of the �rst kind BC,1

r .

Theorem 4.1.3. Let f ∈ C([−1, 1]), then∥∥∥R̂r,n[f ]
∥∥∥
∞
≤ (1 +Bn)E

⋆
r (f). (4.21)
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Proof. Let P ⋆
r [f ] ∈ Pr(R) be the polynomial of best uniform approximation to f . By properties i)-iii)

we easily �nd ∥∥∥f − P̂r,n[f ]
∥∥∥
∞

=
∥∥∥f − P ⋆

r [f ] + P ⋆
r [f ]− P̂r,n[f ]

∥∥∥
∞

=
∥∥∥f − P ⋆

r [f ]− P̂r,n[f − P ⋆
r [f ]]

∥∥∥
∞

≤
(
1 +

∥∥∥P̂r,n

∥∥∥) ∥f − P ⋆
r [f ]∥∞ .

The thesis then follows from Theorem 4.1.1 after setting (4.18).

The following result is a direct consequence of Theorem 4.1.3 and Jackson Theorem [17, Ch. 4].

Corollary 4.1.4. Let f ∈ Ck([−1, 1]), k = 0, . . . , r. Then we have∥∥∥R̂r,n[f ]
∥∥∥
∞
≤ (1 +Bn)ωf

�
π

r + 1

�
, k = 0, (4.22)

∥∥∥R̂r,n[f ]
∥∥∥
∞
≤
(π
2

)k
(1 +Bn)

∥∥f (k)∥∥∞
(r + 1)r · · · (r − k + 2)

, 0 < k ≤ r, (4.23)

where ωf (·) is the modulus of continuity of the function f [17].

Let X ′′′
p = {x′′′i : i = 0, . . . , p} be the set introduced in (1.11). In order to give a pointwise represen-

tation of the error (4.7) for all x ∈ [−1, 1], we denote by Pr[f ] the Lagrange interpolation polynomial of
the function f at the node set X ′

m ∪X ′′′
p , that is

Pr[f ](x) =

m∑
i=0

ℓi,m(x)f(x′i) +

p∑
j=0

ℓj,p(x)f(x
′′′
j ), x ∈ [−1, 1], (4.24)

where

ℓi,m(x) =

m∏
k=0
k ̸=i

x− x′k
x′i − x′k

p∏
s=0

x− x′′′s
x′i − x′′′s

, ℓj,p(x) =

m∏
k=0

x− x′k
x′′′j − x′k

p∏
s=0
s̸=j

x− x′′′s
x′′′j − x′′′s

,

and by
Rr[f ](x) = f(x)− Pr[f ](x), x ∈ [−1, 1], (4.25)

the error of Lagrange interpolation.

Theorem 4.1.5. Let f ∈ C([−1, 1]). Then for the approximation error R̂r,n[f ](x), introduced in (4.7),
we have

R̂r,n[f ](x) = Rr[f ](x) +

p∑
j=0

ℓj,p(x)R̂r,n[f ](x
′′′
j ), x ∈ [−1, 1]. (4.26)

Proof. By Property ii) P̂r,n[f ] ∈ Pr(R) and by Property vi) P̂r,n[f ](x
′
i) = f(x′i), i = 0, . . . ,m. Then by

the uniqueness of the Lagrange interpolation polynomial, we get

P̂r,n[f ](x) = Pr[P̂r,n[f ]](x) =

m∑
i=0

ℓi,m(x)P̂r,n[f ](x
′
i) +

p∑
j=0

ℓj,p(x)P̂r,n[f ](x
′′′
j )

=

m∑
i=0

ℓi,m(x)f(x′i) +

p∑
j=0

ℓj,p(x)P̂r,n[f ](x
′′′
j )

=

m∑
i=0

ℓi,m(x)f(x′i) +

p∑
j=0

ℓj,p(x)f(x
′′′
j ) +

p∑
j=0

ℓj,p(x)
�
P̂r,n[f ](x

′′′
j )− f(x′′′j )

�
= Pr[f ](x) +

p∑
j=0

ℓj,p(x)
�
P̂r,n[f ](x

′′′
j )− f(x′′′j )

�
.
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Therefore

f(x)− P̂r,n[f ](x) = f(x)− Pr[f ](x) +

p∑
j=0

ℓj,p(x)
�
f(x′′′j )− P̂r,n[f ](x

′′′
j )
�

= Rr[f ](x) +

p∑
j=0

ℓj,p(x)R̂r,n[f ](x
′′′
j ).

Corollary 4.1.6. For any x ∈ [−1, 1], we have∣∣∣∣∣∣
∣∣∣R̂r,n[f ](x)

∣∣∣−
∣∣∣∣∣∣

p∑
j=0

ℓj,p(x)R̂r,n[f ](x
′′′
j )

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤ (1 + Λr)E

⋆
r (f), (4.27)

where

Λr = max
x∈[−1,1]

�
m∑
i=0

|ℓi,m(x)|+
p∑

j=0

|ℓj,p(x)|

�
(4.28)

is the Lebesgue constant of the polynomial interpolation operator Pr and E⋆
r (f) is de�ned as in (4.20).

Proof. The result follows by bounding the error of interpolation Rr[f ] in standard way by using the
Lebesgue constant and the minmax error, see [48, Ch. 2] and the reverse triangle inequality of the
absolute value.

Inequality (4.27) of Corollary 4.1.6 suggests that we can estimate
∣∣∣R̂r,n[f ](x)

∣∣∣ with ∣∣∣∣∣ p∑
j=0

ℓj,p(x)R̂r,n[f ](x
′′′
j )

∣∣∣∣∣
with an accuracy that depends on Λr and E⋆

r (f). In Figure 4.2 we represent the behavior of the Lebesgue
constants Λr computed for the values of n = 100 : 2 : 6000 and the graph of the function n→ γ + δ

√
n,

with γ = 5 and δ = 1
2 − 0.025 which seems to follow the growth of Λr on average, in this interval. Since∣∣∣∣∣∣
p∑

j=0

ℓj,p(x)R̂r,n[f ](x
′′′
j )

∣∣∣∣∣∣ ≤ Λr max
j=0,...,p

∣∣∣R̂r,n[f ](x
′′′
j )
∣∣∣ , x ∈ [−1, 1], (4.29)

we can use the right member of inequality (4.29) as an estimator of a bound of
∣∣∣R̂r,n[f ](x)

∣∣∣, x ∈ [−1, 1],
which can be easily computed by the available data. The numerical examples provided in Section 4.3
shows the goodness of the estimator (4.29).

Let f ∈ Cr+1([−1, 1]). In this case, the Peano kernel Theorem [23, 67] allows us to represent the
remainder Rr[f ] of Lagrange interpolation on the node set X ′

m ∪X ′′′
p in integral form

Rr[f ](x) =

∫ 1

−1

K(x, t)
f (r+1)(t)

r!
dt, x ∈ [−1, 1], (4.30)

where
K(x, t) = (x− t)r+ − Pr[(x− t)r+], x, t ∈ [−1, 1],

and

(x− t)r+ =

§
(x− t)r, if x− t ≥ 0,
0, if x− t < 0.

We can di�erentiate both members of (4.30) ν times, ν = 1, . . . , r, with respect to x, in order to obtain
pointwise representations of the successive derivatives of the error of Lagrange interpolation

R(ν)
r [f ](x) =

∫ 1

−1

∂νK(x, t)

∂xν
f (r+1)(t)

r!
dt. (4.31)
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Figure 4.2: Plot of the values of Λr computed in correspondence of the values of n = 100 : 2 : 6000 (in
black stars, ⋆), together with the graph of the functions n→ γ + δ

√
n, with γ = 5 and δ = 1

2 − 0.025.

By using these representations, pointwise and uniform bounds for R(ν)
r [f ](x) are obtained [67]. In partic-

ular, in [67] it is proven that∣∣∣R(ν)
r [f ](x)

∣∣∣ ≤ ∫ 1

−1

∣∣∣∣∂νK(x, t)

∂xν

∣∣∣∣ dt ∥∥∥∥f (r+1)

r!

∥∥∥∥
∞
, x ∈ [−1, 1] (4.32)

and also that ∥∥∥R(ν)
r

∥∥∥
∞
≤
∥∥∥ω(ν)

r

∥∥∥
∞

∥∥f (r+1)
∥∥
∞

ν!(r + 1− ν)!
, ν = 1, . . . , r, (4.33)

where

ωr(x) =

m∏
k=0

(x− x′k)
p∏

s=0

(x− x′′′s ), x ∈ [−1, 1]

is the nodal polynomial associated with the grid X ′
m ∪X ′′′

p . Then, for the derivative of the remainder of
the constrained mock-Chebyshev least squares approximation, the following bounds hold.

Theorem 4.1.7. Let f ∈ Cr+1([−1, 1]) and ν = 0, . . . , r, then∣∣∣R̂(ν)
r,n[f ](x)

∣∣∣ ≤ ∫ 1

−1

∣∣∣∣∂νK(x, t)

∂xν

∣∣∣∣ dt∥∥∥∥f (r+1)

r!

∥∥∥∥
∞

+

p∑
j=0

∣∣∣ℓ(ν)j,p (x)
∣∣∣ ∣∣∣P̂r,n[f ](x

′′′
j )− f(x′′′j )

∣∣∣ , x ∈ [−1, 1]. (4.34)

Proof. The proof follows by di�erentiating both members of (4.26) in Theorem 4.1.5 and using the
bound (4.32).

Theorem 4.1.8. Let f ∈ Cr+1([−1, 1]) and ν = 1, . . . , r, then∥∥∥R̂(ν)
r,n[f ]

∥∥∥
∞

=
∥∥∥f (ν) − P̂ (ν)

r,n [f ]
∥∥∥
∞

≤

ν−1∏
j=0

(
(r + 1)2 − j2

)
ν−1∏
j=0

(2j + 1)

∥ωr∥∞

∥∥f (r+1)
∥∥
∞

ν!(r + 1− ν)!

+

ν−1∏
j=0

(
r2 − j2

)
ν−1∏
j=0

(2j + 1)

p∑
k=0

∥ℓk,p∥∞
∣∣∣P̂r,n[f ](x

′′′
k )− f(x′′′k )

∣∣∣ . (4.35)
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Figure 4.3: The nodal polynomial at the mock-Chebyshev nodes X ′
m (left), the nodal polynomial at the

node set X ′
m ∪X ′′′

p (center) and the Lagrange fundamental polynomials at the node set X ′
m ∪X ′′′

p (right)
for n = 100 (and then m = 22, p = 9, r = 32).

Proof. For each ν = 1, . . . , r, by Theorem 4.1.5, we have

R̂(ν)
r,n[f ](x) = R(ν)

r [f ](x) +

p∑
j=0

ℓ
(ν)
j,p (x)

�
P̂r,n[f ](x

′′′
j )− f(x′′′j )

�
,

then, by using the triangular inequality∥∥∥R̂(ν)
r,n[f ]

∥∥∥
∞
≤
∥∥∥R(ν)

r [f ]
∥∥∥
∞

+

p∑
j=0

∥∥∥ℓ(ν)j,p

∥∥∥
∞

∣∣∣R̂r,n[f ](x
′′′
j )
∣∣∣ . (4.36)

We use inequality (4.33) to bound
∥∥∥R̂(ν)

r,n[f ]
∥∥∥
∞

and the Markov's inequality [79] to bound both
∥∥∥ω(ν)

r

∥∥∥
∞

and
∥∥∥ℓ(ν)j,p

∥∥∥
∞
. The thesis follows.

Remark 4.1.9. As the classical Cauchy's bound for the error of Lagrange interpolation, the bound (4.34)
su�ers from the presence of the in�nity norm of the (r + 1)-th derivative of the function f , which can
increase very rapidly as r increases, even if Pr[f ](x) converges to f(x) for any x ∈ [−1, 1] (see, e.g.,
the case of the Runge function in Figure 4.10, which satis�es

∥∥f (r+1)
∥∥
∞ ≥ 5r+1(r + 1)!). When the

magnitude of the derivatives of f grows moderately, the bound (4.34) is reliable, as shown by the examples
provided in Table 4.3 and Table 4.4 for the functions sin(50x) and e5x, respectively. In that examples the

right-hand side member of inequality (4.34) is denoted by ÜB(ν)
r,n [f ].

Remark 4.1.10. In Figures 4.3, 4.4 and 4.5 the nodal polynomial ωm at the mock-Chebyshev nodes
X ′

m, the nodal polynomial ωr at the node set X ′
m ∪ X ′′′

p and the Lagrange fundamental polynomials at
the node set X ′

m ∪ X ′′′
p are graphically represented for n = 100, 1000, 10000. It is worth noting that

∥ωr∥∞ ≈
1

2r
= ∥

◦
T r+1∥∞, where

◦
T r+1(x) =

1

2r
Tr+1(x) is the monic Chebyshev polynomial of degree

r + 1 [48, Ch. 2].

4.2 Numerical di�erentiation through constrained mock-Chebyshev

least squares operator

We introduce a numerical di�erentiation formula based on the constrained mock-Chebyshev least squares
operator. Let f ∈ C1([−1, 1]) be a di�erentiable function whose �rst derivative is continuous on the
interval (−1, 1). It is worth emphasizing that we suppose to know exclusively f on the set Xn of n + 1
equispaced nodes. We apply the constrained mock-Chebyshev least squares operator to f and compute
the polynomial

P̂r,n[f ](x) =

r∑
i=0

âiui(x), x ∈ [−1, 1]. (4.37)
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Figure 4.4: The nodal polynomial at the mock-Chebyshev nodes X ′
m (left), the nodal polynomial at the

node set X ′
m ∪X ′′′

p (center) and the Lagrange fundamental polynomials at the node set X ′
m ∪X ′′′

p (right)
for n = 1000, (and then m = 70, p = 28, r = 99).
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Figure 4.5: The nodal polynomial at the mock-Chebyshev nodes X ′
m (left), the nodal polynomial at the

node set X ′
m ∪X ′′′

p (center) and the Lagrange fundamental polynomials at the node set X ′
m ∪X ′′′

p (right)
for n = 10000, (and then m = 222, p = 90, r = 313).
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By di�erentiating (4.37), we obtain

P̂ ′
r,n[f ](x) =

r∑
i=0

âiu
′
i(x), x ∈ [−1, 1], (4.38)

and, since P̂ ′
r,n[f ] ∈ Pr−1(R), from (4.5), we get

P̂ ′
r,n[f ] = P̂r,n

�
P̂ ′
r,n[f ]

�
=

r∑
i=0

â′iui(x). (4.39)

Remark 4.2.1. We notice that the coe�cients vector â′ = [â′0, . . . , â
′
r]

T is uniquely determined, since the
KKT matrix (4.3) has nonzero determinant, see [39].

Relations between the vectors of coe�cients â = [â0, . . . , âr]
T and â′ = [â′0, . . . , â

′
r]

T depend on the
chosen polynomial basis {u1(x), . . . , ur(x)}. Since we assume to work with the Chebyshev polynomial
basis of the �rst kind BC,1

r , in the following we make this relation explicit in this particular case. To
this aim we recall some useful identities between the Chebyshev polynomials of the �rst kind Tk(x),
k = 0, . . . , r, and the Chebyshev polynomial of the second kind Uk(x), k = 0, . . . , r. These polynomials
are de�ned by [87]

Uk(x) =
sin ((k + 1) arccos(x))

sin (arccos(x))
, x ∈ [−1, 1], k = 0, . . . , r,

and satisfy the following relations

U0(x) = T0(x) = 1, U1(x) = 2T1(x), Uk(x)− Uk−2(x) = 2Tk(x), k ≥ 2. (4.40)

Moreover

T ′
k(x) = kUk−1(x), U ′

k(x) =
(k + 1)Tk+1(x)− xUk(x)

x2 − 1
. (4.41)

Theorem 4.2.2. Let f ∈ C([−1, 1]), by expressing the polynomial P̂r,n[f ] and its �rst derivative P̂ ′
r,n[f ]

in the basis BC,1
r as in equations (4.37) and (4.39), respectively, we have

â′0 =

⌊ r
2⌋∑

j=0

(2j + 1)â2j+1, â′i = 2

⌊ r−i
2 ⌋∑

j=0

(i+ 2j + 1)âi+2j+1, i = 1, . . . , r. (4.42)

Proof. By (4.37), the polynomial P̂r,n[f ] in the basis BC,1
r has the form

P̂r,n[f ](x) =

r∑
j=0

âjTj(x), x ∈ [−1, 1].

By using the identities (4.38) and (4.41), we get

P̂ ′
r,n[f ](x) =

r∑
j=0

âjT
′
j(x) =

r∑
j=1

jâjUj−1(x), x ∈ [−1, 1]. (4.43)

By setting âr+1 = 0, after a change the dummy index, the polynomial P̂ ′
r,n[f ] can be written as

P̂ ′
r,n[f ](x) =

r∑
j=0

(j + 1)âj+1Uj(x), x ∈ [−1, 1]. (4.44)

The result follows from the identity (4.40).
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From the above results, one can deduce that there are two di�erent strategies in order to compute the
analytic expression (4.39) of the polynomial P̂ ′

r,n[f ] in the Chebyshev polynomial basis of the �rst kind.

S1) Evaluate Uk(x), k = 0, . . . , r, on the set Xn. Compute the values of P̂ ′
r,n[f ] on the equispaced

nodes using (4.38). Solve the KKT linear equations (4.2) in order to compute P̂r,n

�
P̂ ′
r,n[f ]

�
from

the values of P̂ ′
r,n[f ] on the equispaced nodes.

S2) Use the equation (4.42) in order to compute the analytic expression of P̂ ′
r,n[f ].

We notice that, although the strategy S2 is more direct with respect to the strategy S1, it can be applied
only in the case of the Chebyshev polynomial basis of the �rst kind. In the next Section, we will show
that the two strategies are equivalent in terms of accuracy of results.

We emphasize, that formula (4.39) provides a global polynomial approximation of the �rst derivative
of the function f . Clearly, it is possible to repeat both procedures to approximate the derivative of order
k, for k ≥ 1, by supposing that f ∈ Ck([−1, 1]). In this regard, the following Theorem holds.

Theorem 4.2.3. Let f ∈ C([−1, 1]). We express the polynomial P̂r,n[f ] and its successive derivatives in
the basis BC,1

r , that is

P̂ (ν)
r,n [f ](x) =

r∑
i=0

â
(ν)
i Ti(x), x ∈ [−1, 1], ν = 1, . . . , r.

For each ν ≥ 1, we get

â
(ν)
0 =

⌊ r
2⌋∑

j=0

(2j + 1)â
(ν−1)
2j+1 , â

(ν)
i = 2

⌊ r−i
2 ⌋∑

j=0

(i+ 2j + 1)â
(ν−1)
i+2j+1, i = 1, . . . , r. (4.45)

Proof. The proof follows the same argument of Theorem 4.2.2. It is therefore omitted here.

4.3 Numerical experiments

In this Section, we numerically prove the accuracy of the proposed approximation methods by several
examples. The numerical experiments are performed using MatLab software. In particular, the command
diff is used in order to compute the exact successive derivatives of all considered functions and the
Chebfun package is used in order to compute the Chebyshev polynomial basis of the �rst kind [65].

We perform three di�erent types of numerical tests. In the �rst test, we consider the function

f1(x) = xe−2x + sin(3x)

used in [74] in order to test general explicit �nite di�erence formulas with arbitrary order accuracy for
approximating �rst and higher derivatives. These formulas are applicable to unequally or equally spaced
data. In line with the experiments presented in [74], we consider a set of n+1 = 67 equispaced points in
the interval [−1, 1], in order to have a stepsize h = 0.03. We compute the errors

emean =
1

N

N∑
i=1

ei, emax = max
i=1,...,N

ei, (4.46)

obtained in approximating the �rst four order derivatives of the function f1 by the constrained mock-
Chebyshev least squares operator on the uniform grid of 67 points in [−1, 1], computed by following the
strategy S2. In equation (4.46) ei is the absolute value of the approximation error at the i-th point of
this grid. The numerical results are reported in Table 4.2. The approximation accuracies are comparable
or even better with respect to those one reported in [74] for the case of the �nite di�erence formula at
11 equally spaced points with stepsize h = 0.03 in the interval [0, 0.3]. To better appreciate the behavior
of the approximation errors in the whole interval [−1, 1], in Figure 4.6 we plot the absolute values of the
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order 0 1 2 3 4
emean 1.24e-15 7.59-14 9.02-12 9.92e-10 8.57e-08
emax 1.77e-14 4.43e-12 7.46e-10 7.67e-08 5.78e-06

Table 4.2: Mean and max approximation errors obtained in approximating the function f1(x) = xe−2x +
sin(3x) and its �rst four order derivatives on the grid of 67 equispaced points in [−1, 1], by using the
constrained mock-Chebyshev least squares operator with n+ 1 = 67.

R̂
(ν)
r,n[f6] ÜB(ν)

r,n [f6]
ν = 0 1.95e-14 6.99e-13
ν = 1 2.55e-11 6.86e-09
ν = 2 6.72e-08 2.38e-05
ν = 3 1.14e-04 1.35e-01

Table 4.3: Comparison between the maximum approximation error produced by the constrained mock-
Chebyshev least squares operator computed at a uniform grid of N = 10104 equispaced points in the
interval [−1, 1] relative to the function f6(x) = sin(50x) and its �rst four derivatives, and its relative
bounds ÜB(ν)

r,n [f6].

pointwise errors computed on the equispaced grid of N = 201 points for the �rst four order derivatives of
the function f1. The plots are displayed in a lexicographic order, by increasing the order of derivatives.
The red dash-dotted line is the approximation error related to the application of the strategy S1 while
the black dashed line is the approximation error related to the application of the strategy S2. From the
Figure, it is evident that the application of the two strategies S1 and S2 gives practically the same results.

In the second type of test, we consider the following functions [74, 72]

f1(x) = xe−2x + sin(3x), f2(x) = e−50(x−0.4)2 + sinh(x),

f3(x) =
1

1 + 8x2
, f4(x) =

1

1 + 25x2
, f5(x) =

sin(8(x+ 1))

(x+ 1.1)3/2
,

and we analyze the trend of the mean approximation errors and the maximum approximation errors (4.46)
obtained in approximating the �rst four order derivatives of fi, i = 1, . . . , 5, by using the constrained
mock-Chebyshev least squares operator on uniform grids of di�erent stepsize. In particular, we consider
sets of n + 1 equispaced nodes with n = 50k, k = 1, . . . , 80 and compute the errors on the uniform grid
of N = 10104 equispaced points of the interval [−1, 1].

The results of the tests are shown in Figures 4.7 - 4.11. All these examples show, with clear evidence,
that once the maximum precision is reached for P̂r,n[f ], the increase in the number of nodes does not
lead to more accurate approximation for the derivatives, on the contrary, the increase of the condition
number of the matrices involved in the strategies S1 and S2 causes worsening of results.

Finally, we consider the functions

f6(x) = sin(50x), f7(x) = e5x

and in Tables 4.3 and 4.4 we compare the maximum approximation error max
x∈XN

∣∣∣R̂(ν)
r,n[·](x)

∣∣∣ with n = 1000,

ν = 0, 1, 2, 3, 4, computed at the grid XN of N = 10104 equispaced points of the interval [−1, 1], with the
bound ÜB(ν)

r,n [f ] introduced in (4.34). When the magnitude of the derivatives of f grows moderately, the
bound (4.34) is reliable, as shown by the numerical results.

54



-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

10
-15

10
-10

10
-5

10
0

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

10
-15

10
-10

10
-5

10
0

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

10
-15

10
-10

10
-5

10
0

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

10
-15

10
-10

10
-5

10
0

Figure 4.6: Behavior of the approximation errors, in absolute value, of the �rst four order derivatives of the
function f1(x) = xe−2x + sin(3x) in the whole interval [−1, 1], by using the constrained mock-Chebyshev
least squares operator with n + 1 = 67. The absolute values of the pointwise errors are computed on
the equispaced grid of N = 201 points. The plots are displayed in a lexicographic order, by increasing
the order of derivatives. From the plots, it is evident that the application of the two strategies S1 (red
dash-dotted line) and S2 (black dashed line) gives practically the same results.

R̂
(ν)
r,n[f7] ÜB(ν)

r,n [f7]
ν = 0 2.27e-13 3.88e-12
ν = 1 3.94e-10 3.80e-08
ν = 2 9.97e-07 1.24e-04
ν = 3 1.46e-03 2.44e-01

Table 4.4: Comparison between the maximum approximation error produced by the constrained mock-
Chebyshev least squares operator computed at a uniform grid of N = 10104 equispaced points in the
interval [−1, 1] relative to the function f7(x) = e5x and its �rst four derivatives, and its relative boundsÜB(ν)

r,n [f7].

55



0 500 1000 1500 2000 2500 3000 3500 4000

10
-15

10
-10

10
-5

10
0

0 500 1000 1500 2000 2500 3000 3500 4000

10
-15

10
-10

10
-5

10
0

Figure 4.7: Mean approximation error (left) and Maximum approximation error (right) at the uniform grid
of N = 10104 equispaced points in the interval [−1, 1] relative to the function f1(x) = xe−2x + sin(3x)
(in blue) and its �rst four derivatives, with the increasing order from the bottom to the top, when
approximated by using the constrained mock-Chebyshev least squares operator with n = 50k, k =
1, . . . , 80. From the plots, it is evident that the application of the two strategies S1 (red) and S2 (black)
gives practically the same results.
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Figure 4.8: Mean approximation error (left) and Maximum approximation error (right) at the uniform grid
ofN = 10104 equispaced points in the interval [−1, 1] relative to the function f2(x) = e−50(x−0.4)2+sinh(x)
(in blue) and its �rst four derivatives, with the increasing order from the bottom to the top, when
approximated by using the constrained mock-Chebyshev least squares operator with n = 50k, k =
1, . . . , 80. From the plots, it is evident that the application of the two strategies S1 (red) and S2 (black)
gives practically the same results.
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Figure 4.9: Mean approximation error (left) and Maximum approximation error (right) at the uniform
grid of N = 10104 equispaced points in the interval [−1, 1] relative to the function f3(x) = 1

1+8x2 (in blue)
and its �rst four derivatives, with the increasing order from the bottom to the top, when approximated
by using the constrained mock-Chebyshev least squares operator with n = 50k, k = 1, . . . , 80. From the
plots, it is evident that the application of the two strategies S1 (red) and S2 (black) gives practically the
same results.
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Figure 4.10: Mean approximation error (left) and Maximum approximation error (right) at the uniform
grid of N = 10104 equispaced points in the interval [−1, 1] relative to the function f4(x) = 1

1+25x2 (in blue)
and its �rst four derivatives, with the increasing order from the bottom to the top, when approximated
by using the constrained mock-Chebyshev least squares operator with n = 50k, k = 1, . . . , 80. From the
plots, it is evident that the application of the two strategies S1 (red) and S2 (black) gives practically the
same results.
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Figure 4.11: Mean approximation error (left) and Maximum approximation error (right) at the uniform
grid of N = 10104 equispaced points in the interval [−1, 1] relative to the function f5(x) = sin(8(x+1))

(x+1.1)3/2

(in blue) and its �rst four derivatives, with the increasing order from the bottom to the top, when
approximated by using the constrained mock-Chebyshev least squares operator with n = 50k, k =
1, . . . , 80. From the plots, it is evident that the application of the two strategies S1 (red) and S2 (black)
gives practically the same results.
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Chapter 5

On the improvement of the triangular

Shepard method by non conformal

polynomial elements

Most of classical numerical methods for approximating a multivariate function (or integrals of it) use
function values at sample points. However, as shown in [6, 61, 62, 46, 64, 63], in many practical ap-
plications, the available data are not restricted to function or derivative evaluations, but also contain
several integrals over certain hyperplane sections or, more generally, over simple smooth surfaces in Rd.
In such cases, generalizations of the existing theory and algorithms of approximation are required, which
are based on the enriched set of data. The motivations for discussing such a fundamental issue arise in a
variety of cases, since, in several applications, the data obtained in measurements contain the mean values
of a function over some line or surface. This type of data is inherent to computer tomography and is
widely used in geology, radiology, medicine etc. In this chapter, we focus on the problem of reconstruction
of a function from functional data and line integrals, in the setting of two-dimensional scattered data.
Scattered data approximation deals with the problem of reconstructing an unknown function from data
based on points which have no structure or order between their relative locations. The most famous
operator for scattered data interpolation is the Shepard's one, introduced by D. Shepard in 1968 and
based on a weighted average of values at the data points [90]. Several variations of the original Shepard's
operator have been proposed with the aim of increasing its accuracy of approximation, to improve its
e�ciency or even to solve speci�c interpolation problems: the studies carried out in this direction are
well known (see, e.g. [50, 44, 101, 22, 33] or the recent survey [27]). Here, in particular, we introduce a
modi�cation of the Shepard operator based on a new enrichment of the standard triangular linear �nite
element, which uses line integrals and quadratic polynomials. Dealing with triangular elements, a good
strategy to improve the Shepard method is to follow the Little idea [75] of considering a triangulation of
the data location and blending standard triangular linear �nite elements with Shepard's like basis func-
tions based on triangles. The introduction of the notion of compact triangulations in [36] and the use of a
searching technique to detect and select the nearest neighbor points in the interpolation scheme [16], has
allowed the triangular Shepard method [75] to be considered a fast method with quadratic approximation
order and good accuracy of approximation. In this chapter, we improve the triangular Shepard method
by using the proposed enrichment of the standard triangular linear �nite element, in line with previous
papers [31, 37].

5.1 Polynomial enrichment of the standard triangular linear �nite

element

The �nite element method is commonly used to solve partial di�erential equations [19]. This method
provides a discrete solution on the �nite element space, usually formed by piecewise polynomials, to
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approximate the exact solution of the considered di�erential problem. Recall that the �nite element is
said to be conforming if the space of �nite elements is a subspace of the space of solutions of the problem.
More precisely, for an elliptic boundary value problem of order 2r, the conforming �nite element space is a
subspace of Cr−1. It means that the shape function in this conforming �nite element space is continuous
together with its derivatives up to the order r − 1 [93]. Otherwise, the �nite element is said to be
nonconforming. We develop an approximation operator based on triangular elements, which use not only
the values of the function at a certain set of points, but also the values of some line integrals.

5.1.1 Triangular linear element

We assume that the data are related to a reference triangle S2 ⊂ Ω ⊂ R2 contained in a compact domain
Ω, with vertices vi = (xi, yi), i = 0, 1, 2 and nonzero signed area

A(v0,v1,v2) =
1

2

∣∣∣∣∣∣
1 1 1
x0 x1 x2
y0 y1 y2

∣∣∣∣∣∣ .
The barycentric coordinates λ0(x), λ1(x), λ2(x) of the point x = (x, y) ∈ R2 with respect to the reference
triangle S2 are de�ned by the area-ratios

λ0(x) =
A(x,v1,v2)

A(v0,v1,v2)
, λ1(x) =

A(v0,x,v2)

A(v0,v1,v2)
, λ2(x) =

A(v0,v1,x)

A(v0,v1,v2)
. (5.1)

For f ∈ C(S2), we set
Lj(f) = f(vj), j = 0, 1, 2. (5.2)

The standard triangular linear �nite element is the triple

P1(S2) = (S2,P1(S2), Σ
lin
S2

), (5.3)

where
P1(S2) = span{λ0, λ1, λ2}

is the space of bivariate linear polynomials and

Σlin
S2

= {L0(f), L1(f), L2(f)}

is the set of point evaluation functionals at the vertices of the triangle S2, called degrees of freedom.

Theorem 5.1.1. The linear approximation operator based on the standard triangular linear �nite element
P1(S2), de�ned in (5.3)

Π lin : C(S2) → P1(S2)

f 7→
2∑

j=0

Lj(f)λj

reproduces linear polynomials and satis�es the interpolation conditions

Lj

(
Π lin[f ]

)
= Lj(f), j = 0, 1, 2.

Proof. The proof follows from the Lagrange property of the barycentric coordinates, that is λi(vj) = δij ,
where δij is the Kronecker delta operator.

5.1.2 Quadratic polynomial enrichment

For each i = 0, 1, 2, we denote by Γi the edge of S2 opposite to the vertex vi and by |Γi| its euclidean
length, that is

|Γ0| = ∥v1 − v2∥2 , |Γ1| = ∥v0 − v2∥2 , |Γ2| = ∥v0 − v1∥2 ,
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where ∥·∥2 is the L2-norm in R2. Our goal is to develop an approximation operator based on the triangle
S2, which uses not only the evaluation functionals Lj(f), j = 0, 1, 2, but also the values of the line
integrals

1

|Γj |

∫
Γj

f(x)dσ(x), j = 0, 1, 2,

that we assume are given, where the integral is computed with respect to the Lebesgue measure on Γj ,
j = 0, 1, 2. The idea is to enrich the standard triangular linear �nite element P1(S2), by using the above
introduced functionals and quadratic polynomial functions. With this aim, we set

P2(S2) = P1(S2)⊕ span {λ0λ1, λ0λ2, λ1λ2}

and
Σenr

S2
= {Lj , Ij : j = 0, 1, 2} ,

where
Ij(f) =

1

|Γj |

∫
Γj

f(x)dσ(x), j = 0, 1, 2. (5.4)

To show that the triple
(S2,P2(S2), Σ

enr
S2

)

is a �nite element we have to prove that P2(S2) is Σenr
S2

-unisolvent, or, equivalently that the set of linear
functionals Σenr

S2
is linearly independent in the dual space P2(S2)

⋆. To this aim we need the following
technical Lemma, which results from a direct application of the Simpson's rule to the line integrals Ij(p),
j = 0, 1, 2, p ∈ P2(S2). We denote by

v01 =
v0 + v1

2
∈ Γ2, v02 =

v0 + v2
2

∈ Γ1, v12 =
v1 + v2

2
∈ Γ0,

the midpoints of the sides of S2.

Lemma 5.1.2. Let p ∈ P2(S2). Then we have

I0(p) =
1

6
(p(v1) + 4p(v12) + p(v2)) ,

I1(p) =
1

6
(p(v0) + 4p(v02) + p(v2)) ,

I2(p) =
1

6
(p(v0) + 4p(v01) + p(v1)) .

Proof. Let us prove the �rst identity. We parametrize the edge Γ0 by

t→ tv2 + (1− t)v1, t ∈ [0, 1].

Since the restriction of p to the edge Γ0 is a quadratic polynomial in t, the Simpson's rule provides exact
results for the integral, and then

I0(p) =
1

|Γ0|

∫
Γ0

p(x)dσ(x) =

∫ 1

0

p(tv2 + (1− t)v1)dt =
1

6
(p(v1) + 4p(v12) + p(v2)) .

The same argument can be used to prove the other identities.

Remark 5.1.3. Note that, if p ∈ P2(S2) and Lj(p) = Ij(p) = 0, j = 0, 1, 2, then, by Lemma 5.1.2, we
get

p(v12) = p(v02) = p(v01) = 0,

that is, p vanishes at the midpoints of the sides of S2.
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Since p vanishes at the vertices of S2 and at the midpoints of the sides of S2, the unisolvence of
the set Σenr

S2
in the polynomial space P2(S2) follows by a classical result of multivariate polynomial

interpolation [18, Ch. 10]. However, we give an alternative proof of this result, which can also be adapted
in the case of more general polynomial or nonpolynomial enrichments of the triple (S2,P1(S2), Σ

lin
S2

) by
using the same linear functionals and vector spaces

Penr
1 (S2) = P1(S2)⊕ span {l0λ1λ2, l1λ0λ2, l2λ0λ1} ,

Penr
1 (S2) = P1(S2)⊕ span

¦
l0λ

α0−1
1 λβ0−1

2 , l1λ
α1−1
0 λβ1−1

2 , l2λ
α2−1
0 λβ2−1

1

©
, αi, βi > 1, i = 0, 1, 2,

where li, i = 0, 1, 2, are linear polynomials satisfying the nonvanishing conditions at the special points

ṽ12 =
α0

α0 + β0
v1 +

β0
α0 + β0

v2,

ṽ02 =
α1

α1 + β1
v0 +

β1
α1 + β1

v2,

ṽ01 =
α2

α2 + β2
v0 +

β2
α2 + β2

v1,

of the side of S2. These enrichments will be studied in the next chapter.

Theorem 5.1.4. The triple (S2,P2(S2), Σ
enr
S2

) is a �nite element.

Proof. We have to show that P2(S2) is Σenr
S2

-unisolvent, i.e., if p ∈ P2(S2) and

Lj(p) = 0, j = 0, 1, 2, (5.5)

Ij(p) = 0, j = 0, 1, 2, (5.6)

then p = 0 [23, Ch. 2]. Let p ∈ P2(S2) and assume that (5.5) and (5.6) hold. By de�nition p can be
represented as

p = α0λ0 + α1λ1 + α2λ2 + β0λ1λ2 + β1λ0λ2 + β2λ0λ1,

for some constants αi and βi, i = 0, 1, 2. The barycentric coordinates satisfy Lagrange property, that is
Lj(λi) = λi(vj) = δij , where δij is the Kronecker delta operator, and then λiλj vanishes at the vertices
vk for each i, j, k = 0, 1, 2, i ̸= j. Then we get α0 = α1 = α2 = 0 and p reduces to

p = β0λ1λ2 + β1λ0λ2 + β2λ0λ1.

On the other hand, I0(p) = 0 and L1(p) = L2(p) = 0 imply p(v12) = 0. Now, since λ1(v12) = λ2(v12) =
1
2

and λ0(v12) = 0, we get

0 =
4

6
p(v12) =

β0
6
.

Thus β0 = 0. A similar argument can be used to show that β1 = β2 = 0, therefore p = 0 and the proof
of the theorem is completed.

Since we have shown the linear independence of the functionals Lj , Ij , j = 0, 1, 2 in the dual space
P2(S2)

⋆, there exists a related biorthonormal set of polynomials {φj , ψj : j = 0, 1, 2}, which span P2(S2)
and satisfy

Lj(φi) = δij , Ij(φi) = 0, i, j = 0, 1, 2, (5.7)

Lj(ψi) = 0, Ij(ψi) = δij , i, j = 0, 1, 2. (5.8)

Theorem 5.1.5. The basis functions {φj , ψj : j = 0, 1, 2} of P2(S2) associated to the �nite element
(S2,P2(S2), Σ

enr
S2

), which satisfy (5.7) and (5.8) have the following expressions

φ0 = λ0(1− 3λ1 − 3λ2), φ1 = λ1(1− 3λ0 − 3λ2), φ2 = λ2(1− 3λ0 − 3λ1), (5.9)

ψ0 = 6λ1λ2, ψ1 = 6λ0λ2, ψ2 = 6λ0λ1. (5.10)
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Proof. Let us prove the �rst of identities (5.9) for the element φ0 ∈ P2(S2). It can be represented as

φ0 = α0λ0 + α1λ1 + α2λ2 + β0λ1λ2 + β1λ0λ2 + β2λ0λ1 (5.11)

for some constants αi and βi, i = 0, 1, 2. Since L0(φ0) = 1, L1(φ0) = L2(φ0) = 0, the Lagrange property
of the barycentric coordinates implies α0 = 1, α1 = α2 = 0, therefore

φ0 = λ0 + β0λ1λ2 + β1λ0λ2 + β2λ0λ1.

Moreover, since λ0 = 0 on Γ0, from I0(φ0) = 0, by applying the Simpson's rule, we get

0 =
1

|Γ0|

∫
Γ0

β0λ1(x)λ2(x)dσ(x) =
4

6
β0λ1(v12)λ2(v12) =

β0
6
,

which readily gives β0 = 0. Similarly, since λ1 = 0 on Γ1, from I1(φ0) = 0 we get

0 =
1

|Γ1|

∫
Γ1

(λ0(x) + β1λ0(x)λ2(x))dσ(x) =
1

6

�
1 + 4

�
1

2
+ β1λ0(v02)λ2(v02)

��
=

1

6
(3 + β1),

that implies β1 = −3. Similarly, since λ2 = 0 on Γ2, from I2(φ0) = 0 we get β2 = −3.
Let us now prove the �rst of identities (5.10). Since Lj(ψ0) = 0, j = 0, 1, 2, the Lagrange property of

the barycentric coordinates implies that ψ0 ∈ span {λ1λ2, λ0λ2, λ0λ1} and then it can be written as

ψ0 = β0λ1λ2 + β1λ0λ2 + β2λ0λ1,

for some constant βi, i = 0, 1, 2. Moreover, from I0(ψ0) = 1 we get

1 =
1

|Γ0|

∫
Γ0

β0λ1(x)λ2(x)dσ(x) =
4

6
β0λ1(v12)λ2(v12) =

β0
6
.

Hence, β0 = 6. From I1(ψ0) = I2(ψ0) = 0, we also get β1 = β2 = 0.
Using symmetry arguments, we can obtain the expressions for the other functions in equations (5.9)

and (5.10).

Remark 5.1.6. By setting
e0 = λ1λ2, e1 = λ0λ2, e2 = λ0λ1,

the basis functions associated to the enriched element (S2,P2(S2), Σ
enr
S2

) can be rewritten as follows

φj = λj −
1

2

2∑
k=0
k ̸=j

ψk, ψj = 6ej , j = 0, 1, 2. (5.12)

Theorem 5.1.7. The quadratic approximation operator based on the �nite element (S2,P2(S2), Σ
enr
S2

)

Πenr : C(S2) → P2(S2)

f 7→
2∑

j=0

Lj(f)φj +

2∑
j=0

Ij(f)ψj

reproduces quadratic polynomials and satis�es the interpolation conditions

Lj (Π
enr[f ]) = Lj(f), Ij (Π

enr[f ]) = Ij(f), j = 0, 1, 2.

Proof. The proof follows by conditions (5.7) and (5.8).

Remark 5.1.8. We note that the operator Πenr depends on the triangle S2. In order to highlight this
dependence, when necessary we will write Πenr[f, S2] instead of Πenr[f ] (see Section 5.3).
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5.2 Error bound

We are interested in evaluating or estimating the approximation error

Eenr[f ] = f −Πenr[f ] (5.13)

under certain hypotheses on the di�erentiability class of the function f. In the following representation
we make use of a generalization of the classical trapezoidal formula to the case of line integrals. We de�ne
the following linear operators

Lk =
1

2

2∑
j=0
j ̸=k

Lj , Etrak = Lk − Ik, k = 0, 1, 2.

The following Theorem shows that the error (5.13) can be decomposed in two parts: the �rst one is
related to the linear triangular element while the second one depends on the enrichment functions ei,
i = 0, 1, 2.

Theorem 5.2.1. For all f ∈ C(Ω), the approximation error is given by

Eenr[f ] = Elin[f ] + Etra[f ],

where

Elin[f ] = f −
2∑

j=0

Lj(f)λj and Etra[f ] = 6

2∑
k=0

Etrak (f)ek.

Proof. It follows easily from (5.12), by interchanging the order of the double sum, that

2∑
j=0

Lj(f)φj =

2∑
j=0

Lj(f)

(
λj −

2∑
k=0

3ek (1− δjk)

)

=

2∑
j=0

Lj(f)λj −
2∑

k=0

3ek

2∑
j=0

(1− δjk)Lj(f)

=

2∑
j=0

Lj(f)λj −
2∑

k=0

3ek

2∑
j=0
j ̸=k

Lj(f)

=

2∑
j=0

Lj(f)λj −
2∑

k=0

6Lk(f)ek.

Finally, we get

Eenr[f ] = f −Πenr[f ] = f −
2∑

j=0

Lj(f)φj −
2∑

j=0

Ij(f)ψj

= f −
2∑

j=0

Lj(f)λj +

2∑
k=0

6Lk(f)ek −
2∑

j=0

Ij(f)ψj

= Elin[f ] + 6

2∑
k=0

(Lk(f)− Ik(f)) ek

= Elin[f ] + Etra[f ]

as desired.
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Now we derive another expression for the remainder of the quadratic operator, which will be helpful
in the next Section, to determine the approximation order of the enriched triangular Shepard method.
We denote by C2,1(Ω) the space of functions f ∈ C2(Ω) with partial derivatives ∂f

∂x2−j∂yj , j = 0, 1, 2,

Lipschitz-continuous in Ω. For each function f ∈ C2,1(Ω) we de�ne

|f |2,1 = sup


∣∣∣ ∂f
∂x2−j∂yj (x)− ∂f

∂x2−j∂yj (y)
∣∣∣

∥x− y∥2
: x,y ∈ Ω and x ̸= y

 .

We are interested in evaluating or estimating the approximation error Eenr[f ] for f ∈ C2,1(Ω). Let
T2[f,xB ] be the Taylor polynomial of order 2 for f at the barycenter xB = (xB , yB) of S2. Then, we get

f = T2[f,xB ] +RT2
[f ], (5.14)

where

RT2 [f ](x) =
1

3!

∫ 1

0

D
(3)
x−xB

f(xB + s(x− xB))(1− s)2ds, x = (x, y) ∈ Ω, (5.15)

and Dx−xB
is the directional derivative along the vector x − xB . Since the interpolation operator Πenr

based on the �nite element (S2,P2(S2), Σ
enr
S2

), reproduces polynomials of degree ≤ 2, by applying it to
both sides of (5.14), we get

Πenr[f ] = T2[f,xB ] +Πenr[RT2 [f ]],

and then

Eenr[f ] = f −Πenr[f ] = f − T2[f,xB ]−Πenr[RT2
[f ]] = RT2

[f ]−Πenr[RT2
[f ]]. (5.16)

In order to prove the next Theorem, some preliminary Lemmas are needed. We set

h = max
i=0,1,2

|Γi| and S =
1

|A(v0,v1,v2)|
.

Lemma 5.2.2. For any x ∈ Ω, the barycentric coordinates are bounded by

|λj(x)| ≤ Sh (∥x− xB∥2 + h) , j = 0, 1, 2.

Proof. Without loss of generality, let us consider the case j = 0. By equation (5.1) we get

λ0(x) =
1

2A(v0,v1,v2)

∣∣∣∣∣∣
1 1 1
x x1 x2
y y1 y2

∣∣∣∣∣∣ = (y1 − y2)(x− x1)− (y − y1)(x1 − x2)
2A(v0,v1,v2)

,

then
|λ0(x)| ≤

S

2
(|y1 − y2||x− x1|+ |y − y1||x1 − x2|) ≤

Sh

2
(|x− x1|+ |y − y1|) .

Consequently

|λ0(x)| ≤
Sh

2
(|x− x1 + xB − xB |+ |y − y1 + yB − yB |)

≤ Sh

2
(|x− xB |+ |xB − x1|+ |y − yB |+ |yB − y1|)

≤ Sh

2
(∥x− xB∥2 + h+ ∥x− xB∥2 + h) ≤ Sh (∥x− xB∥2 + h) .

The proof is completed by noting that the same argument can be done for j = 1 and j = 2.

Lemma 5.2.3. Let f ∈ C2,1(Ω). Then we have

|Lj(RT2
[f ])| ≤ 4

9
h3|f |2,1, j = 0, 1, 2 (5.17)

and

|Ij(RT2 [f ])| ≤
4

9
h3|f |2,1, j = 0, 1, 2. (5.18)
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Proof. By [32, Lemma 12], for each s ∈ [0, 1], we get∣∣∣D(3)
vj−xB

f(xB + s(vj − xB))
∣∣∣ ≤ 8 ∥vj − xB∥32 |f |2,1 ≤ 8h3|f |2,1, j = 0, 1, 2.

Consequently, from (5.2) and (5.15), by using the triangular inequality, we obtain

|Lj(RT2 [f ])| =
1

3!

∣∣∣∣∣
∫ 1

0

D
(3)
vj−xB

f(xB + s(vj − xB))(1− s)2ds
∣∣∣∣∣ ≤ 4

9
h3|f |2,1, j = 0, 1, 2.

Analogously, from (5.4) and (5.15) we get

|Ij(RT2 [f ])| =
1

|Γj |

∣∣∣∣∣
∫
Γj

1

3!

∫ 1

0

D
(3)
x−xB

f(xB + s(x− xB))(1− s)2dsdσ(x)
∣∣∣∣∣

≤ 1

|Γj |

∫
Γj

8

3!
h3|f |2,1

∫ 1

0

(1− s)2dsdσ(x)

≤ 4

9
h3|f |2,1, j = 0, 1, 2.

Theorem 5.2.4. Let f ∈ C2,1(Ω). Then, for any x ∈ Ω, we get

|Eenr[f ](x)| ≤ 4|f |2,1

(
∥x− xB∥32

9
+

1

3

2∑
k=1

12k−1h3−kCk(∥x− xB∥2 + h)k

)
, (5.19)

where C = Sh2.

Proof. By applying the operator Πenr to the remainder term RT2
[f ] and by rearranging, we get

Πenr[RT2
[f ]] = L0(RT2

[f ])λ0 + L1(RT2
[f ])λ1 + L2(RT2

[f ])λ2 +

+ (6I0(RT2
[f ])− 3L1(RT2

[f ])− 3L2(RT2
[f ]))λ1λ2 +

+ (6I1(RT2
[f ])− 3L0(RT2

[f ])− 3L2(RT2
[f ]))λ0λ2 +

+ (6I2(RT2
[f ])− 3L0(RT2

[f ])− 3L1(RT2
[f ]))λ0λ1.

By Lemma 5.2.2, Lemma 5.2.3 and by the triangular inequality, we have

|Πenr[RT2
[f ]](x)| ≤ 4

3
h2|f |2,1C (∥x− xB∥2 + h) + 16h|f |2,1C2 (∥x− xB∥2 + h)

2
. (5.20)

By (5.20) and by bounding the Taylor remainder in standard way, we �nally get

|Eenr[f ](x)| ≤ |RT2 [f ](x)|+ |Πenr[RT2 [f ]](x)|

≤ 4

9
∥x− xB∥32 |f |2,1 +

4

3
h2|f |2,1C(∥x− xB∥2 + h) + 16h|f |2,1C2(∥x− xB∥2 + h)2

≤ 4|f |2,1

(
∥x− xB∥32

9
+

1

3

2∑
k=1

12k−1h3−kCk(∥x− xB∥2 + h)k

)
.

5.3 Enriched triangular Shepard method

Let Xn = {xi : i = 1 . . . , n} be a set of n scattered data in a compact domain Ω ⊂ R2 and let T =
{tj : j = 1, . . . ,m} be a triangulation of Xn, where tj is the triangle with vertices xjk , k = 1, 2, 3. The
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triangular Shepard basis functions are de�ned as follows [36]

Bµ,j (x) =

3∏
k=1

∥x− xjk∥
−µ
2

m∑
k=1

3∏
l=1

∥x− xkl
∥−µ
2

, j = 1, . . . ,m, µ > 0.

They satisfy the following properties:

Bµ,j(x) ≥ 0, (5.21)
m∑
j=1

Bµ,j (x) = 1, (5.22)

Bµ,j(xi) = 0, (5.23)

for each j = 1, . . . ,m and xi which is not a vertex of tj . For more details, see [36, 27].
Let f : Ω → R be a continuous function. We assume that the values fi = f(xi), i = 1, . . . , n, and the

values of the line integrals of the function f along each segment [xi,xj ], i ̸= j are given. The enriched

triangular Shepard operator is de�ned as follows

Kenr
µ (x) =

m∑
j=1

Bµ,j(x)Π
enr[f, tj ](x), x ∈ Ω, (5.24)

whereΠenr[f, tj ](x) is the quadratic approximation operator based on the triangular element (tj ,P2(tj), Σ
enr
tj ).

In order to determine the approximation order of the enriched triangular Shepard operator, we need
the following notations. We denote by ∥·∥∞ the maximum norm of R2 and by

Rr(y) = {x ∈ R2 : ∥x− y∥∞ ≤ r}

the ball centered in y with radius r ≥ 0. Let V (t) be the set of vertices of the triangle t ∈ T . We de�ne

h′ = inf{r > 0 : ∀x ∈ Ω ∃t ∈ T : Rr(x) ∩ V (t) = ∅}, (5.25)

h′′ = inf{r > 0 : ∀t ∈ T ∃x ∈ Ω : t ⊂ Rr(x)} (5.26)

and
h = max{h′, h′′}.

It is worth noting that a small value of h implies a rather uniform triangle distribution and excludes the
presence of large triangles. Finally, we set

M = sup
x∈Ω

#{t ∈ T : Rh(x) ∩ V (t) ̸= ∅}, (5.27)

where #{·} is the cardinality operator. In line with [31] it is possible to prove the following theorem.

Theorem 5.3.1. Let Ω be a compact, convex domain containing Xn, f ∈ C2,1(Ω) and µ > 5
3 . Then

|f(x)−Kenr
µ (x)| ≤ CM |f |2,1h3, x ∈ Ω,

with C a positive constant which depends only on T and µ.

Proof. For any y = (y1, y2) ∈ R2, we denote by

Qr(y) = {x = (x1, x2) ∈ R2 : yk − r < xk ≤ yk + r, k = 1, 2}

the axis-aligned half open square of center y = (y1, y2) and side length 2r and we consider the covering
of Ω by pairwise disjoint sets {Uj(x)}j∈N0

, where

Uj(x) =
⋃

ν∈Z2

∥ν∥∞=j

Qh(x+ 2hν).
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More precisely, U0(x) is the half open square of center x and side length 2h while, for j > 0, Uj(x) is the
half-open annulus with center x, radius 2hj and thickness 2h. Since the set Ω is compact, there exists
N ∈ N0, independent on x and of order O(1/h), such that

Ω ⊂
N⋃
j=0

Uj(x). (5.28)

Note that, by the de�nition (5.27), we get

#{t ∈ T : V (t) ∩ Uj ̸= ∅} ≤ 8jM, j = 1, . . . , N. (5.29)

For any t ∈ T with at least one vertex in Uj , only one of the following cases is possible:

V (t) ∩ Uj−1 ̸= ∅ =⇒ (2j − 3)h ≤ ∥x− v∥∞ ≤ (2j + 1)h, ∀v ∈ V (t),

V (t) ⊂ Uj =⇒ (2j − 1)h ≤ ∥x− v∥∞ ≤ (2j + 1)h, ∀v ∈ V (t), (5.30)

V (t) ∩ Uj+1 ̸= ∅ =⇒ (2j − 1)h ≤ ∥x− v∥∞ ≤ (2j + 3)h, ∀v ∈ V (t).

Now we denote by T0 the set of all triangles with at least one vertex in U0. It follows from the
de�nition of h′ (5.25) and of M (5.27) that

0 < #(T0) ≤M.

Since one vertex of tj ∈ T0 lies in U0 and the remaining ones lies in U0 ∪ U1, we get

3∏
i=1

∥x− xji∥∞ ≤ 9h3. (5.31)

For k = 1, . . . , N, we denote by Tk the set of the triangles with at least one vertex in Uk and no vertex
in Uk−1. By de�nition (5.29), the cardinality of this set is bounded as follows

#(Tk) ≤ 8kM

and each tj ∈ Tk satis�es

((2k − 1)h)
3 ≤

3∏
i=1

∥x− xji∥∞ ≤ ((2k + 3)h)
3
.

Further we note that
N⋃

k=0

Tk = T and
N⋂

k=0

Tk = ∅.

Finally, we set
e(x) = |f(x)−Kenr

µ (x)|, x ∈ Ω.

By (5.24) and by the properties (5.21) and (5.22) of the triangular Shepard basis function Bµ,j , we get

e(x) =

∣∣∣∣∣∣
m∑
j=1

Bµ,j(x)f(x)−
m∑
j=1

Bµ,j(x)Π
enr[f, tj ](x)

∣∣∣∣∣∣ ≤
m∑
j=1

|f(x)−Πenr[f, tj ](x)|Bµ,j(x).

With reference to Theorem 5.2.4, we denote by xBj the barycenter of the triangle tj and we set

hj = max
{
∥xj1 − xj2∥2 , ∥xj2 − xj3∥2 , ∥xj3 − xj1∥2

}
, Sj =

1

|A(xj1 ,xj2 ,xj3)|
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and Cj = Sjh
2
j , j = 1, . . . ,m. Then we have

e(x) ≤ 4|f |2,1
m∑
j=1

(∥∥x− xBj

∥∥3
2

9
+

1

3

2∑
k=1

12k−1h3−k
j Ck

j

(∥∥x− xBj

∥∥
2
+ hj

)k)×

×

3∏
ℓ=1

∥x− xjℓ∥
−µ
2

m∑
k=1

3∏
ℓ=1

∥x− xkℓ
∥−µ
2

≤ 4|f |2,1C ′
m∑
j=1

(∥∥x− xBj

∥∥3
∞

9
+

1

3

2∑
k=1

12k−1h3−k
j Ck

j (
∥∥x− xBj

∥∥
∞ + hj)

k

)
×

×

3∏
ℓ=1

∥x− xjℓ∥
−µ
∞

m∑
k=1

3∏
ℓ=1

∥x− xkℓ
∥−µ
∞

,

where C ′ =
√
2
3mµ

is the constant that appears by bounding the Euclidean norm with the maximum
norm.

We denote by ti ∈ T the triangle satisfying

3∏
ℓ=1

∥x− xiℓ∥∞ = min
j=1...,m

3∏
ℓ=1

∥x− xjℓ∥∞ .

Since T0 ̸= ∅, from the equation (5.31) we get

3∏
ℓ=1

∥x− xiℓ∥∞ ≤ 9h3.

Consequently, if tj ∈ T0, then
3∏

ℓ=1

∥x− xiℓ∥∞
∥x− xjℓ∥∞

≤ 1

otherwise, if tj ∈ Tk with k ̸= 0, then

3∏
ℓ=1

∥x− xiℓ∥∞
∥x− xjℓ∥∞

≤ 9h3

((2k − 1)h)
3 =

9

(2k − 1)
3 .

From these inequalities we deduce that, if tj ∈ T0∏3
ℓ=1 ∥x− xjℓ∥

−µ
∞∑m

k=1

∏3
ℓ=1 ∥x− xkℓ

∥−µ
∞
≤

3∏
ℓ=1

∥x− xjℓ∥
−µ
∞

∥x− xiℓ∥
−µ
∞
≤ 1,

otherwise, if tj ∈ Tk with k ̸= 0,

3∏
ℓ=1

∥x− xjℓ∥
−µ
∞

m∑
k=1

3∏
ℓ=1

∥x− xkℓ
∥−µ
∞

≤
3∏

ℓ=1

∥x− xjℓ∥
−µ
∞

∥x− xiℓ∥
−µ
∞
≤ 9µ

(2k − 1)3µ
.

By de�nition of Tk, if tj ∈ Tk then V (tj) ⊂ Uk−1∪Uk∪Uk+1 (here we assume that U−1 = ∅). Consequently∥∥x− xBj

∥∥
∞ ≤ max

ℓ=1,2,3
∥x− xjℓ∥∞ ≤ (2k + 3)h, k = 0, . . . , N.
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Finally, by taking into account that hj ≤
√
8h < 3h, we get

e(x) ≤ 4|f |2,1C ′
m∑
j=1

(∥∥x− xBj

∥∥3
∞

9
+

1

3

2∑
k=1

12k−1h3−k
j Ck

j (
∥∥x− xBj

∥∥
∞ + hj)

k

) 3∏
ℓ=1

∥x− xjℓ∥
−µ
∞

m∑
k=1

3∏
ℓ=1

∥x− xkℓ
∥−µ
∞

≤ |f |2,1C ′

∑
tj∈T0

�
12h3 +

4

3
h2jCj(3h+ hj) + 16hjC

2
j (3h+ hj)

2

�
+

+

N∑
k=1

∑
tj∈Tk

�
4

9
(2k + 3)3h3 +

4

3
h2jCj((2k + 3)h+ hj) + 16hjC

2
j ((2k + 3)h+ hj)

2

�
9µ

(2k − 1)3µ


≤ |f |2,1C ′

�∑
tj∈T0

�
12 + 16C ′′

�
1

3
+ 16C ′′

��
+

N∑
k=1

∑
tj∈Tk

4
9 · 9

µ(2k + 3)3 + 4 · 9µC ′′(2k + 4)
(
1
3 + 4C ′′(2k + 4)

)
(2k − 1)3µ

�
h3,

where C ′′ = max
j=1,...,m

Cj . By using (5.29), we get

e(x) ≤ |f |2,1MC ′

(
12 + 16C ′′ ( 1

3 + 16C ′′)
+9µ

N∑
k=1

8k
4
9 (2k + 3)3 + 4C ′′(2k + 4)

(
1
3 + 4C ′′(2k + 4)

)
(2k − 1)3µ

)
h3.

Since the series
∞∑
k=1

k(2k + 4)

(2k − 1)3µ
,

∞∑
k=1

k(2k + 4)2

(2k − 1)3µ
,

∞∑
k=1

k(2k + 3)3

(2k − 1)3µ

converge for µ > 5
3 , then we can conclude that the approximation order of Kenr

µ is O(h3).

Remark 5.3.2. In Theorem 5.3.1 we prove that the approximation order of the enriched triangular Shep-
ard operator (5.24) is at least cubic. This result is in line with the general theorem on the approximation
order of the multinode Shepard operator [28, Thm. 3.1].

5.3.1 Numerical experiments

In this Section, we numerically test the accuracy of the enriched triangular Shepard method introduced
in the previous section. To this aim, we perform several experiments by using the 10 test functions
f1 - f10 de�ned in [86] (see Figure 5.2) and two di�erent Delaunay triangulations (see Figure 5.1).
These triangulations are obtained through the Shewchuk's triangle program [91] by prescribing N = 108
and N = 324 uniformly distributed nodes on the boundary of the square [0, 1]2 and by constructing
a conforming Delaunay triangulation with no angle smaller than 20◦ and no triangle area greater than
4
√
3/N2 by inserting Steiner points.
Numerical results, obtained by taking into account the e�cient algorithm for the computation of

triangular Shepard interpolation method [16], are reported in Tables 5.1 and 5.2. In these Tables we
compare the approximation accuracy produced by the triangular Shepard operator with that produced
by the enriched triangular Shepard operator by reporting the corresponding maximum approximation
error emax, mean approximation error emean and root mean square approximation error eMS de�ned as
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Figure 5.1: Conforming Delaunay triangulation with N = 108 uniformly distributed boundary nodes, no
angle smaller than 20◦ and no triangle area greater than 4

√
3/N2.
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Figure 5.2: Test functions for numerical experiments de�ned in [86]

follows

emax = max
i=1,...,ne

ri, emean =
1

ne

ne∑
i=1

ri, eMS =

Í
ne∑
i=1

r2i

ne
,

where ri is the absolute approximation error at the ne = 100× 100 points of a regular grid of [0, 1]2.
As we can note, the enriched triangular Shepard operator realizes a better approximation if compared

with the classical triangular Shepard operator.
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Triangular Shepard operator Enriched triangular Shepard operator
emax 2.2464e-03 1.0588e-03

f1 emean 2.0062e-04 4.2208e-05
eMS 3.1644e-04 7.6905e-05
emax 1.2415e-03 4.5919e-04

f2 emean 6.6836e-05 2.4912e-05
eMS 1.4454e-04 5.4291e-05
emax 2.6579e-04 3.3678e-05

f3 emean 3.3458e-05 2.7390e-06
eMS 4.5864e-05 3.9321e-06
emax 2.1272e-04 1.8476e-05

f4 emean 1.8259e-05 9.6884e-07
eMS 2.6987e-05 1.5773e-06
emax 8.8847e-04 3.0575e-04

f5 emean 6.6021e-05 9.7233e-06
eMS 1.1416e-04 2.0691e-05
emax 3.6121e-04 7.0155e-05

f6 emean 4.6343e-05 4.1339e-06
eMS 6.6921e-05 6.9302e-06
emax 2.4980e-02 4.8345e-03

f7 emean 2.8090e-03 6.5907e-04
eMS 4.0365e-03 9.0295e-04
emax 1.7054e-02 3.9667e-03

f8 emean 7.4217e-04 2.1144e-04
eMS 1.3314e-03 3.6111e-04
emax 1.2282e+00 3.5011e-01

f9 emean 5.2157e-02 1.1609e-02
eMS 9.6110e-02 2.6151e-02
emax 4.2243e-02 1.3485e-02

f10 emean 6.9346e-04 1.6602e-04
eMS 1.3407e-03 4.1463e-04

Table 5.1: Comparison between the triangular Shepard operator and the enriched triangular Shepard op-
erator applied to the 10 test functions, see Figure 5.2, using a Delaunay triangulation of the interpolation
nodes with N = 108 uniformly distributed nodes on the boundary of [0, 1]2.
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Triangular Shepard operator Enriched triangular Shepard operator
emax 2.5273e-04 4.5717e-05

f1 emean 2.1024e-05 1.2243e-06
eMS 3.3547e-05 2.2525e-06
emax 1.6270e-04 1.5714e-05

f2 emean 6.2165e-06 6.8689e-07
eMS 1.3851e-05 1.5326e-06
emax 2.6081e-05 7.1061e-07

f3 emean 3.6096e-06 8.5854e-08
eMS 5.0213e-06 1.1894e-07
emax 2.8911e-05 1.0709e-06

f4 emean 2.0016e-06 3.3043e-08
eMS 2.9416e-06 6.0762e-08
emax 1.0407e-04 7.3289e-06

f5 emean 6.9815e-06 2.7880e-07
eMS 1.2153e-05 5.3943e-07
emax 5.3319e-05 1.6370e-06

f6 emean 5.0698e-06 1.2403e-07
eMS 7.4439e-06 2.0099e-07
emax 4.0309e-03 2.1767e-04

f7 emean 2.9033e-04 1.9395e-05
eMS 4.3809e-04 2.6318e-05
emax 1.4253e-03 1.0759e-04

f8 emean 7.2410e-05 5.4961e-06
eMS 1.3607e-04 9.3920e-06
emax 1.0972e-01 6.3777e-03

f9 emean 5.6108e-03 3.2246e-04
eMS 1.0418e-02 6.5976e-04
emax 9.7463e-03 4.1772e-03

f10 emean 7.2077e-05 5.1653e-06
eMS 1.5993e-04 4.4371e-05

Table 5.2: Comparison between the triangular Shepard operator and the enriched triangular Shepard op-
erator applied to the 10 test functions, see Figure 5.2, using a Delaunay triangulation of the interpolation
nodes with N = 324 uniformly distributed nodes on the boundary of [0, 1]2.
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Chapter 6

A uni�ed enrichment approach of the

standard triangular linear �nite element

The aim of this chapter is to unify the ideas and to extend to a more general setting the work done in
Chapter 5 for a polynomial enrichment of the standard triangular linear �nite element using line integrals
and quadratic polynomials. More precisely, we introduce a new class of nonconforming �nite elements
by enriching the class of linear polynomial functions with additional functions which are not necessarily
polynomials. We provide a simple condition on the enrichment functions, which is both necessary and
su�cient, that guarantees the existence of a family of such enriched elements. Several sets of admissible
enrichment functions that satisfy the admissibility condition are also provided, together with the explicit
expression of the related approximation error. Our main result shows that the approximation error can be
decomposed into two parts: the �rst one is related to the standard triangular linear �nite element while
the second one depends on the enrichment functions. This representation of the approximation error
allows us to derive error bounds in both L∞-norm and L1-norm, with explicit constants, for continuously
di�erentiable functions with Lipschitz continuous gradients. These bounds are proportional to the second
and the fourth power of the circumcircle radius of the triangle, respectively. We also provide explicit
expressions of these bounds in terms of the circumcircle diameter and the sum of squares of the triangle
edge lengths. The result presented in this chapter can be found in [30].

6.1 The general problem for polynomial enrichment of the stan-

dard triangular linear �nite element

Let S2 ⊂ R2 be a triangle with nonzero signed area with vertices v0, v1, v2 and barycentric coordinates
λ0, λ1 λ2. In the following, we denote by ⟨·, ·⟩ the scalar product of the Euclidean space R2. By using
the same notations of the previous chapter, we start by generalizing the polynomial enrichment of the
standard triangular linear �nite element P1(S2) = (S2,P1(S2), Σ

lin
S2

) described in Chapter 5 and based on
the set of linear functionals

Σenr
S2

= {Lj , Ij : j = 0, 1, 2} , (6.1)

where
Lj(f) = f(vj), j = 0, 1, 2, (6.2)

Ij(f) =
1

|Γj |

∫
Γj

f(x)dσ(x), j = 0, 1, 2, (6.3)

to the case of polynomials of degree greater than 2. To this aim, we consider three linear polynomials
l0, l1, l2, satisfying

l0(v01) = l1(v12) = l2(v02) = 1, (6.4)

where v01,v12 and v02 are the midpoints of the sides of S2, that is

v01 =
v0 + v1

2
∈ Γ2, v12 =

v1 + v2
2

∈ Γ0, v02 =
v0 + v2

2
∈ Γ1.
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By using the same notations of the previous chapter, we introduce the enriched space Penr
1 (S2) as follows

Penr
1 (S2) = P1(S2)⊕ span {l0λ1λ2, l1λ0λ2, l2λ0λ1} (6.5)

and we consider the triple
AF3 = (S2,Penr

1 (S2), Σ
enr
S2

). (6.6)

The following technical lemma will be useful in establishing the proof of Theorem 6.1.3 about the
unisolvence of the element AF3.

Lemma 6.1.1. Let p ∈ Penr
1 (S2). Then we have

I0(p) =
1

6
(p(v1) + 4p(v12) + p(v2)) , (6.7)

I1(p) =
1

6
(p(v0) + 4p(v02) + p(v2)) , (6.8)

I2(p) =
1

6
(p(v0) + 4p(v01) + p(v1)) . (6.9)

Proof. Since, Simpson's rule provides exact results for polynomials up to and including 3rd degree, the
proof follows the same argument of Lemma 5.1.2. It is therefore omitted here.

Remark 6.1.2. Note that, if p ∈ Penr
1 (S2) and Lj(p) = Ij(p) = 0, j = 0, 1, 2, then, by Lemma 6.1.1, we

get
p(v12) = p(v02) = p(v01) = 0, (6.10)

that is, p vanishes at the midpoints of the sides of S2.

Theorem 6.1.3. The triple AF3 = (S2,Penr
1 (S2), Σ

enr
S2

) is a �nite element.

Proof. We have to show that Penr
1 (S2) is Σenr

S2
-unisolvent, i.e., if p ∈ Penr

1 (S2) and

Lj(p) = 0, j = 0, 1, 2, (6.11)

Ij(p) = 0, j = 0, 1, 2, (6.12)

then p = 0 [23, Ch. 2]. Let p ∈ Penr
1 (S2) and assume that (6.11) and (6.12) hold. By de�nition, p can be

represented as
p = α0λ0 + α1λ1 + α2λ2 + β0l0λ1λ2 + β1l1λ0λ2 + β2l2λ0λ1 (6.13)

for some constants αi, βi ∈ R, i = 0, 1, 2. Since the barycentric coordinates satisfy Lagrange property, that
is Lj(λi) = λi(vj) = δij , where δij is the Kronecker delta symbol, then (6.11) implies α0 = α1 = α2 = 0
and p reduces to

p = β0l0λ1λ2 + β1l1λ0λ2 + β2l2λ0λ1.

On the other hand, I0(p) = 0 and L1(p) = L2(p) = 0 imply, by (6.7), p(v12) = 0. Now, since λ1(v12) =
λ2(v12) =

1
2 and λ0(v12) = 0, we get

0 =
4

6
p(v12) =

β0
6
l0(v12) =

β0
6
,

where in the last equality, we used the conditions (6.4). Thus β0 = 0. A similar argument can be used to
show that β1 = β2 = 0, therefore p = 0 and the proof of the theorem is completed.

Remark 6.1.4. We notice that if we take l0 = l1 = l2 = 1, then the enriched space Penr
1 (S2) becomes

the standard space of quadratic polynomials P2(S2) and, in this sense, the element AF3 generalizes the
element (S2,P2(S2), Σ

enr
S2

) introduced in Chapter 5.

Remark 6.1.5. The enriched space Penr
1 (S2) satis�es the following properties:

i) it is a subspace of P3(S2), the space of cubic polynomials, and hence the restriction of any p ∈
Penr
1 (S2) to each side of S2 is a cubic polynomial in one variable;
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ii) it contains the set of linear polynomials;

iii) the nonlinear terms in the expression (6.13) of p ∈ Penr
1 (S2) vanish at the vertices of S2.

Theorem 6.1.3 can be stated equivalently by saying that the functionals of Σenr
S2

are linearly inde-
pendent in the dual space Penr

1 (S2)
⋆. Then, there exists a basis {φj , ψj : j = 0, 1, 2} of Penr

1 (S2) which
satis�es

Lj(φi) = δij , Ij(φi) = 0, i, j = 0, 1, 2, (6.14)

Lj(ψi) = 0, Ij(ψi) = δij , i, j = 0, 1, 2. (6.15)

Theorem 6.1.6. The basis functions {φj , ψj : j = 0, 1, 2} of Penr
1 (S2) associated to the �nite element

(S2,Penr
1 (S2), Σ

enr
S2

), which satisfy (6.14) and (6.15) have the following expressions

φ0 = λ0(1− 3l2λ1 − 3l1λ2), φ1 = λ1(1− 3l2λ0 − 3l0λ2), φ2 = λ2(1− 3l1λ0 − 3l0λ1), (6.16)

ψ0 = 6l0λ1λ2, ψ1 = 6l1λ0λ2, ψ2 = 6l2λ0λ1. (6.17)

Proof. Let us prove the �rst of identities (6.16). The element φ0 ∈ Penr
1 (S2) can be represented as

φ0 = α0λ0 + α1λ1 + α2λ2 + β0l0λ1λ2 + β1l1λ0λ2 + β2l2λ0λ1, (6.18)

for some constants αi, βi ∈ R i = 0, 1, 2. Since L0(φ0) = 1, L1(φ0) = L2(φ0) = 0, the Lagrange property
of the barycentric coordinates implies α0 = 1, α1 = α2 = 0 and therefore

φ0 = λ0 + β0l0λ1λ2 + β1l1λ0λ2 + β2l2λ0λ1.

Moreover, since λ0 = 0 on Γ0, from I0(φ0) = 0, by applying the Simpson's rule, we get

0 =
1

|Γ0|

∫
Γ0

β0l0(x)λ1(x)λ2(x)dσ(x) =
4

6
β0l0(v12)λ1(v12)λ2(v12) =

β0
6
,

which readily gives β0 = 0. Similarly, since λ1 = 0 on Γ1, from I1(φ0) = 0 we get

0 =
1

|Γ1|

∫
Γ1

(λ0(x) + β1l1(x)λ0(x)λ2(x))dσ(x)

=
1

6

�
1 + 4

�
1

2
+ β1l1(v02)λ0(v02)λ2(v02)

��
=

1

6
(3 + β1),

that implies β1 = −3. Finally, since λ2 = 0 on Γ2, from I2(φ0) = 0 we get β2 = −3, and then the �rst
of (6.16) is proved. We now show that the �rst of identities (6.17) holds. Since Li(ψ0) = 0, i = 0, 1, 2,
the Lagrange property of the barycentric coordinates implies that ψ0 ∈ span {l0λ1λ2, l1λ0λ2, l2λ0λ1} and
then it can be written as

ψ0 = β0l0λ1λ2 + β1l1λ0λ2 + β2l2λ0λ1,

for some constants βi, i = 0, 1, 2. Moreover, from I0(ψ0) = 1 we get

1 =
1

|Γ0|

∫
Γ0

β0l0(x)λ1(x)λ2(x)dσ(x) =
4

6
β0l0(v12)λ1(v12)λ2(v12) =

β0
6
,

hence β0 = 6. From I1(ψ0) = I2(ψ0) = 0, we also get β1 = β2 = 0 and then the �rst of (6.17) is proved.
We can obtain the expressions for the other functions by using symmetry arguments.

Remark 6.1.7. It is easily seen that conditions (6.4), which are su�cient for the existence of the en-
richment (6.6) of the element (S2,P1(S2), ΣS2

), can be replaced by the more general ones

l0(v01) ̸= 0, l1(v12) ̸= 0, l2(v02) ̸= 0. (6.19)

As it has become clear during the discussion, general conditions (6.19) are also necessary.
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More generally, let us consider three interior points x0,x1,x2, of the sides Γ0, Γ1, Γ2 of the triangle S2,
respectively, and three linear polynomials l0, l1, l2. We call these points (and polynomials) admissible if
they generate a unisolvent enriched element, possibly with di�erent basis functions. In analogy with (6.19),
we introduce the nonvanishing conditions

l0(x0) ̸= 0, l1(x1) ̸= 0, l2(x2) ̸= 0. (6.20)

The question arises whether conditions (6.20) are su�cient (and necessary) to generate a unisolvent
enriched element. As we will see below, the answer to previous question is positive, but the di�erentiability
class of the enrichment functions will depend on the position of the point x0,x1,x2. To prove this result,
we use appropriate Gauss quadrature rules on one point, instead of Simpson's rule, used in the case of
the midpoints of the sides of S2. The idea is rather simple and dates back to paper [57]. By assumption,
there exist real numbers αi, βi > 1, i = 0, 1, 2, such that

x0 =
α0

α0 + β0
v1 +

β0
α0 + β0

v2,

x1 =
α1

α1 + β1
v0 +

β1
α1 + β1

v2, (6.21)

x2 =
α2

α2 + β2
v0 +

β2
α2 + β2

v1.

For the sake of simplicity, we can assume that

l0(x0) = l1(x1) = l2(x2) = 1. (6.22)

We introduce the following more general enriched space

Penr
1 (S2) = P1(S2)⊕ span

¦
l0λ

α0−1
1 λβ0−1

2 , l1λ
α1−1
0 λβ1−1

2 , l2λ
α2−1
0 λβ2−1

1

©
, (6.23)

which includes the space (6.5) as particular case. In order to test whether or not Penr
1 (S2) isΣenr

S2
-unisolvent

and to compute the basis of the enriched space, we recall the classical Euler beta function

B(α, β) =

∫ 1

0

tα−1(1− t)β−1 dt, α, β > 0, (6.24)

which satis�es the key property

B(α+ 1, β) =
α

α+ β
B(α, β), α, β > 0. (6.25)

The beta function is connected to the gamma function through the equation [1]

B(α, β) =
Γ (α)Γ (β)

Γ (α+ β)
, (6.26)

and hence for positive integers α and β, we have

B(α, β) =
(α− 1)!(β − 1)!

(α+ β − 1)!
. (6.27)

The following Proposition is crucial to prove that the triple (S2,Penr
1 (S2), Σ

enr
S2

) is a �nite element.

Proposition 6.1.8. Under nonvanishing conditions (6.22), the enrichment functions of Penr
1 (S2) satisfy

the following delta properties

1

|Γj |

∫
Γj

l0(x)λ
α0−1
1 (x)λβ0−1

2 (x) dσ(x) = δ0jB(α0, β0),

1

|Γj |

∫
Γj

l1(x)λ
α1−1
0 (x)λβ1−1

2 (x) dσ(x) = δ1jB(α1, β1), (6.28)

1

|Γj |

∫
Γj

l2(x)λ
α2−1
0 (x)λβ2−1

1 (x) dσ(x) = δ2jB(α2, β2),

for each j = 0, 1, 2.
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Proof. Let us prove the �rst of identities (6.28). Since α0 > 1 and β0 > 1 then λα0−1
1 λβ0−1

2 vanishes on
Γ1 and Γ2, therefore the �rst of identities (6.28) holds for j = 1, 2. For j = 0, using the fact that λ1 and
λ2 are a�ne functions, we get

1

|Γ0|

∫
Γ0

l0(x)λ
α0−1
1 (x)λβ0−1

2 (x) dσ(x) =

∫ 1

0

�
l0λ

α0−1
1 λβ0−1

2

�
(tv1 + (1− t)v2) dt

=

∫ 1

0

l0(tv1 + (1− t)v2)tα0−1(1− t)β0−1 dt.

For the 1-point Gauss quadrature in the interval [0, 1] associated with the weight function wα0,β0
(t) =

tα0−1(1 − t)β0−1, the node is located at the point α0

α0+β0
, while the corresponding weight is equal to

B(α0, β0) [84, Sect. 3.1]. Indeed, it su�ces to determine the orthogonal polynomial q(t) of degree 1
relative to the weight function wα0,β0

on the interval [0, 1] and using (6.24) and (6.25), we get

q(t) = t− α0

α0 + β0
. (6.29)

Since we assumed by (6.22) that l0(x0) = 1, the result then follows from the exactness of the 1-point
Gauss�Jacobi quadrature for polynomials of degree 1.

The following theorem extends the Theorem 6.1.3 to the case of the general con�guration of three
points (6.21).

Theorem 6.1.9. Let l0, l1, l2 be linear polynomials satisfying the nonvanishing conditions (6.22) at the
points x0,x1,x2. Then the triple (S2,Penr

1 (S2), Σ
enr
S2

) is a �nite element.

Proof. As the dimension of Penr
1 (S2) is equal to the cardinality of Σenr

S2
, it su�ces to show that f ∈ Penr

1 (S2)
is identically zero if all the degrees of freedom (6.2) and (6.3) vanish when applied to f. The proof follows
the same argument of Theorem 6.1.3 by using the general identities given in Proposition 6.1.8. It is
therefore omitted here.

Remark 6.1.10. The nonvanishing conditions (6.20) are also necessary. Indeed, let us assume that
conditions (6.20) do not hold, and without loss of generality, we can assume that l0(x0) = 0. The function

e0 = l0λ
α0−1
1 λβ0−1

2 ∈ Penr
1 (S2), satis�es e0(vi) = 0, i = 0, 1, 2 and

1

|Γ1|

∫
Γ1

e0(x)dσ(x) =
1

|Γ2|

∫
Γ2

e0(x)dσ(x) = 0,

since e0 vanishes both on Γ1 and Γ2. We also have

1

|Γ0|

∫
Γ0

e0(x)dσ(x) =

∫ 1

0

tα0−1(1− t)β0−1l0(tv1 + (1− t)v2) dt = B(α0, β0)l0(x0) = 0.

Then Lj(e0) = 0 and Ij(e0) = 0, j = 0, 1, 2, and therefore Penr
1 (S2) is not Σ

enr
S2

-unisolvent since e0 ̸= 0.

By assuming that the nonvanishing conditions (6.20) hold, we introduce the following notations

e0 = l0λ
α0−1
1 λβ0−1

2 , e1 = l1λ
α1−1
0 λβ1−1

2 , e2 = l2λ
α2−1
0 λβ2−1

1 , (6.30)

γi = B(αi, βi), i = 0, 1, 2.

Using the delta properties of the enriched terms given in Proposition 6.1.8, we can provide simple but
elegant expressions for the functions {φj , ψj : j = 0, 1, 2} of Penr

1 (S2) associated to the �nite element
AF3, which satisfy (6.14) and (6.15). The proof of the following theorem follows the same argument of
Theorem 6.1.6 and it is omitted.
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Theorem 6.1.11. The basis functions {φj , ψj : j = 0, 1, 2} of Penr
1 (S2) associated to the unisolvent

element (S2,Penr
1 (S2), Σ

enr
S2

), which satisfy (6.14) and (6.15) have the following expressions

φj = λj −
1

2

2∑
k=0
k ̸=j

ψk, j = 0, 1, 2, (6.31)

ψj =
ej
γj
, j = 0, 1, 2. (6.32)

6.2 An explicit error representation

For the enriched space Penr
1 (S2), we introduce the approximation operator based on the �nite element

(S2,Penr
1 (S2), Σ

enr
S2

)

Πenr : C(S2) → Penr
1 (S2)

f 7→
2∑

j=0

Lj(f)φj +

2∑
j=0

Ij(f)ψj ,
(6.33)

where φj , ψj , j = 0, 1, 2, are the basis functions de�ned in Theorem 6.1.11. We are interested in evaluating
or estimating the approximation error

Eenr[f ] = f −Πenr[f ]. (6.34)

The following result shows that the error (6.34) can be decomposed in two parts: the �rst one is related
to the standard triangular linear �nite element P1(S2) while the second one depends on the enrichment
functions ei, i = 0, 1, 2. To short the notation, as we did in the previous chapter, in this representation
we make use of a generalization of the classical trapezoidal formula to the case of line integrals. More
precisely, for each k = 0, 1, 2, we set

Lk =
1

2

2∑
j=0
j ̸=k

Lj (6.35)

and
Etrak = Lk − Ik, (6.36)

where Lj and Ij , j = 0, 1, 2 are de�ned in (6.2) and (6.3), respectively.

Proposition 6.2.1. Let us assume that the nonvanishing conditions (6.22) hold and let ei, i = 0, 1, 2,
be the enrichment functions de�ned in (6.30). Then, for any f ∈ C(S2), the approximation error at any
point x ∈ S2 is given by

Eenr[f ](x) = Elin[f ](x) + Etra[f ](x), (6.37)

where

Elin[f ](x) = f(x)−
2∑

j=0

Lj(f)λj(x), (6.38)

and

Etra[f ](x) =

2∑
k=0

ek(x)

γk
Etrak (f). (6.39)

Proof. By (6.34) and (6.33)

Eenr[f ] = f −
2∑

j=0

Lj(f)φj −
2∑

j=0

Ij(f)ψj .
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By (6.31) and by changing the order of the summation, we get

2∑
j=0

Lj(f)φj =

2∑
j=0

Lj(f)

(
λj −

2∑
k=0

ek
2γk

(1− δjk)

)

=

2∑
j=0

Lj(f)λj −
2∑

k=0

ek
2γk

2∑
j=0

(1− δjk)Lj(f)

=

2∑
j=0

Lj(f)λj −
2∑

k=0

ek
2γk

2∑
j=0
j ̸=k

Lj(f)

=

2∑
j=0

Lj(f)λj −
2∑

k=0

ek
γk
Lk(f).

Therefore, for all x ∈ S2, we get

Eenr[f ](x) = f(x)−
2∑

j=0

Lj(f)φj(x)−
2∑

j=0

Ij(f)ψj(x)

= f(x)−
2∑

j=0

Lj(f)λj(x) +

2∑
k=0

ek(x)

γk
Lk(f)−

2∑
j=0

Ij(f)ψj(x)

= Elin[f ](x) +

2∑
k=0

ek(x)

γk
(Lk(f)− Ik(f)) ,

as desired.

6.3 Nonpolynomial enrichment of the standard triangular linear

�nite element

In this Section, we introduce a more general enrichment of the standard triangular linear �nite element
P1(S2) based on three linearly independent continuous enrichment functions e0, e1, e2. As before, we
assume that these functions satisfy the vanishing conditions at the vertices

e0(vi) = e1(vi) = e2(vi) = 0, i = 0, 1, 2. (6.40)

We consider the triple
GF3 = (S2,Penr

1 (S2), Σ
enr
S2

), (6.41)

where
Penr
1 (S2) = P1(S2)⊕ span {e0, e1, e2} , (6.42)

and Σenr
S2

is de�ned as in (6.1). The motivation for the introduction of this new enrichment lies in the
possibility to capture, through the new enrichment functions, features of the function to be approximated
that cannot be accurately captured by previously considered basis. It is worthwhile to note that, in the
present situation, we cannot apply previously developed approaches, based on the use of Simpson's rule
or Gauss quadrature rule on one point. The following theorem gives necessary and su�cient conditions
on the enrichment functions e0, e1, e2, such that the triple (S2,Penr

1 (S2), Σ
enr
S2

) is a �nite element or,
equivalently, so that Penr

1 (S2) is Σenr
S2

-unisolvent.

Theorem 6.3.1. Let

N =

I0(e0) I0(e1) I0(e2)
I1(e0) I1(e1) I1(e2)
I2(e0) I2(e1) I2(e2)

 , (6.43)
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then the triple (S2,Penr
1 (S2), Σ

enr
S2

) is a �nite element if and only if

det(N) ̸= 0. (6.44)

Proof. Let us assume that det(N) ̸= 0 and we prove that Penr
1 (S2) is Σenr

S2
-unisolvent. Let f ∈ Penr

1 (S2)
be a function satisfying

Lj(f) = f(vj) = 0, j = 0, 1, 2, (6.45)

Ij(f) =
1

|Γj |

∫
Γj

f(x)dσ(x) = 0, j = 0, 1, 2. (6.46)

By (6.42), f can be decomposed into the sum of a linear polynomial p ∈ P1(S2) and an enriched part,
that is

f = p+ β0e0 + β1e1 + β2e2, βi ∈ R, i = 0, 1, 2.

The equations (6.45), by the vanishing conditions (6.40) of the enrichment functions, imply that

p(vi) = 0, i = 0, 1, 2.

Therefore, since p is linear, p = 0 and f coincides with its enriched part

f = β0e0 + β1e1 + β2e2.

By using the linearity of the functionals Ij , j = 0, 1, 2, equations (6.46) can be represented in matrix form
as I0(e0) I0(e1) I0(e2)

I1(e0) I1(e1) I1(e2)
I2(e0) I2(e1) I2(e2)

β0β1
β2

 =

00
0

 . (6.47)

Since the determinant of N is nonzero, this system has the unique solution β0 = β1 = β2 = 0. Hence
f = 0.
In order to prove the reverse implication, let us assume that det(N) = 0 and we prove that Penr

1 (S2) is
not Σenr

S2
-unisolvent. Since det(N) = 0, there exist three real numbers γ0, γ1, γ2, not all zero, for which

the function

e =

2∑
i=0

γiei

satis�es
Ij(e) = 0, j = 0, 1, 2.

Moreover the vanishing conditions (6.40) imply that

Lj(e) = 0, j = 0, 1, 2,

therefore, we can exhibit a linear combination of the basis functions of Penr
1 (S2) with coe�cients not all

zero in which all degrees of freedom vanish. Then Penr
1 (S2) is not Σenr

S2
-unisolvent.

De�nition 6.3.2. Let e0, e1, e2 be linearly independent continuous enrichment functions satisfying the
vanishing conditions (6.40). They are said admissible enrichment functions if we can enrich P1(S2) to
the �nite element (S2,Penr

1 (S2), Σ
enr
S2

).

There exists a large class of admissible enrichment functions, as the following example shows.

Example 6.3.3. Let us consider the three functions

e0 = (1− λ0)α0−1λβ0−1
1 λγ0−1

2 ,

e1 = (1− λ1)α1−1λβ1−1
0 λγ1−1

2 , (6.48)

e2 = (1− λ2)α2−1λβ2−1
0 λγ2−1

1 ,
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with αi, βi, γi > 1, i = 0, 1, 2. It is easy to see that e0, e1, e2 satisfy conditions (6.40). Moreover, by
using (6.28) we get

Ij(ei) =
1

|Γj |

∫
Γj

ei(x) dσ(x) = δijB(βi, γi), i, j = 0, 1, 2 (6.49)

and then the matrix N de�ned in (6.43) is a diagonal matrix with determinant di�erent from zero. This
imply that the functions ei, i = 0, 1, 2, are linearly independent and therefore, by Theorem 6.3.1 we can
enrich P1(S2) to the unisolvent element (S2,Penr

1 (S2), Σ
enr
S2

) by using (6.48) as enrichment functions.

In the following, we assume that the matrix N is nonsingular and we denote its inverse by

N−1 = [c0 c1 c2], (6.50)

where ci ∈ R3, i = 0, 1, 2, are column vectors. A direct consequence of Theorem 6.3.1 is the linear
independence of the functionals of Σenr

S2
in the dual space Penr

1 (S2)
⋆ [23, Ch 2]. Then, there exists a basis

{φj , ψj : j = 0, 1, 2} of Penr
1 (S2) associated to the �nite element GF3, which satisfy (6.14) and (6.15).

Theorem 6.3.4. The basis functions {φj , ψj : j = 0, 1, 2} of Penr
1 (S2) associated to the �nite element

GF3, which satisfy (6.14) and (6.15) have the following expressions

φj = λj −
1

2

2∑
k=0
k ̸=j

ψk, j = 0, 1, 2, (6.51)

ψj = ⟨e, cj⟩ , j = 0, 1, 2, (6.52)

where
e = [e0, e1, e2]

T . (6.53)

Proof. Without loss of generality, we prove (6.51) for the case j = 0. We set

Ij(e) = [Ij(e0), Ij(e1), Ij(e2)]
T , j = 0, 1, 2

hence, since NN−1 = I, we easily get
⟨Ij(e), ci⟩ = δij . (6.54)

Moreover, by Lemma 6.1.1, we get

Ij(λi) =
1

2
(1− δij). (6.55)

As an element of Penr
1 (S2), φ0 can be represented as

φ0 = p+ β0e0 + β1e1 + β2e2 = p+ ⟨e,β⟩ , (6.56)

where p ∈ P1(S2) and β = [β0, β1, β2]
T ∈ R3. By using (6.14) and the vanishing conditions (6.40) we have

λ0(vj) = δ0j = Lj(φ0) = p(vj), j = 0, 1, 2,

so that p = λ0, since they are linear polynomials. Therefore (6.56) becomes

φ0 = λ0 + ⟨e,β⟩ , (6.57)

and by applying Ij , j = 0, 1, 2, to both members of (6.57), by (6.14) and (6.55), we get

0 =
1

2
(1− δ0j) + ⟨Ij(e),β⟩ , j = 0, 1, 2,

or, in matrix form, 00
0

 =
1

2

01
1

+Nβ.
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Consequently

β = −1

2
N−1

01
1

 = −1

2
(c1 + c2) ,

which, substituted in (6.57), gives the following expression for φ0

φ0 = λ0 −
1

2

2∑
k=1

⟨e, ck⟩ . (6.58)

In order to prove (6.51) for j = 0, it remains to prove (6.52). To this aim, without loss of generality, we
show the validity of (6.52) for j = 0. We proceed in analogy to the previous case and then we set

ψ0 = q + ⟨e,γ⟩ ,

where q ∈ P1(S2) and γ = [γ1, γ2, γ3]
T ∈ R3. Since ψ0(vj) = 0 for j = 0, 1, 2, this function can be

expressed as
ψ0 = ⟨e,γ⟩ . (6.59)

By applying Ij , j = 0, 1, 2, to both members of (6.59), by (6.15), we get

δj0 = ⟨Ij(e),γ⟩ , j = 0, 1, 2,

or, in matrix form, 10
0

 = Nγ.

Consequently

γ = N−1

10
0

 = c0,

which, substituted in (6.59), gives the required expression (6.52) for ψ0. Similarly, we can prove (6.52)
for j = 1, 2 and consequently (6.51) for j = 0 is proved. The expression of the other functions can be
obtained using symmetry arguments.

6.4 Error estimates

6.4.1 An explicit error representation

In analogy to the case of polynomial enrichment described in Section 6.1, we are interested in evaluating
or estimating the error

Eenr[f ] = f −Πenr[f ] (6.60)

of the approximation operator based on the �nite element GF3 (6.41)

Πenr[f ] =

2∑
j=0

Lj(f)φj +

2∑
j=0

Ij(f)ψj , (6.61)

where the basis functions φj , ψj , j = 0, 1, 2 are now given as in (6.51) and (6.52). As before, we start
by proving a decomposition of the error Eenr[f ] as a sum of the error of the standard linear triangular
element plus an additional term which depends both on the enrichment functions ei, i = 0, 1, 2 and the
error (6.36) of the generalization of the classical trapezoidal formula to the case of line integrals (6.35).
This representation will play an important role in the derivation of explicit bounds for the error in
L1-norm.
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Proposition 6.4.1. Let ei ∈ C(S2), i = 0, 1, 2 be admissible enrichment functions. Then, for any
f ∈ C(S2), the approximation error Eenr[f ] at any point x ∈ S2 is given by

Eenr[f ](x) = Elin[f ](x) +

2∑
k=0

⟨e(x), ck⟩ Etrak (f), (6.62)

where Elin[f ](x), Etrak (f), e(x) and ck, k = 0, 1, 2 are de�ned as in (6.38), (6.36), (6.53) and (6.50),
respectively.

Proof. By (6.60) and (6.61)

Eenr[f ] = f −
2∑

j=0

Lj(f)φj −
2∑

j=0

Ij(f)ψj .

By (6.51) and by changing the order of the summation, we get

2∑
j=0

Lj(f)φj =

2∑
j=0

Lj(f)

�
λj −

1

2

2∑
k=0
k ̸=j

⟨e, ck⟩

�
=

2∑
j=0

Lj(f)λj −
2∑

j=0

Lj(f)
1

2

2∑
k=0

⟨e, ck⟩ (1− δjk)

=

2∑
j=0

Lj(f)λj −
2∑

k=0

⟨e, ck⟩
1

2

2∑
j=0

Lj(f)(1− δjk)

=

2∑
j=0

Lj(f)λj −
2∑

k=0

⟨e, ck⟩
1

2

2∑
j=0
j ̸=k

Lj(f).

Consequently, for each x ∈ S2, we get

Eenr[f ](x) = f(x)−
2∑

j=0

Lj(f)φi(x)−
2∑

j=0

Ij(f)ψj(x)

= f(x)−
2∑

j=0

Lj(f)λj(x)−
2∑

k=0

⟨e(x), ck⟩
1

2

2∑
j=0
j ̸=k

Lj(f)−
2∑

j=0

Ij(f) ⟨e(x), cj⟩

= Elin[f ](x) +

2∑
k=0

⟨e(x), ck⟩

�
1

2

2∑
j=0
j ̸=k

Lj(f)− Ik(f)

�

= Elin[f ](x) +

2∑
k=0

⟨e(x), ck⟩ (Lk(f)− Ik(f)) , (6.63)

as required.

Remark 6.4.2. It may be interesting to compare the proposed approximation operator Πenr and the
interpolation operator based on the standard triangular linear �nite element P1(S2), de�ned in (5.3)

Π lin[f ](x) =

2∑
j=0

Lj(f)λj(x). (6.64)
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Using the representation of the error (6.63), the operator Πenr can be formulated in an subtractive form
more convenient for practical computation

Πenr[f ](x) = Π lin[f ](x)− Etra[f ](x), (6.65)

where

Etra[f ](x) =

2∑
k=0

⟨e(x), ck⟩ (Lk(f)− Ik(f)) .

Indeed, as shown in equation (6.65), the operator Πenr may be computed by simply subtracting the approx-
imation operator Etra from the operator Π lin, so that the two contributions can be evaluated separately.

6.4.2 Error bounds

The decomposition (6.62) is the key result to get the estimate of the error Eenr[f ] in the case of a particular
class of functions with continuous gradient. As usually, we say that f is continuously di�erentiable on S2

if it is continuously di�erentiable on an open set containing S2. Other useful terminology and notations
are clari�ed in the following.

De�nition 6.4.3. A di�erentiable function f is said to have a Lipschitz continuous gradient on S2, if
there exists a constant ρ > 0 such that

∥∇f(x)−∇f(y)∥2 ≤ ρ ∥x− y∥2 , ∀x,y ∈ S2, (6.66)

where ∥·∥2 is the L2-norm in R2.

By C1,1(S2) we denote the subclass of all functions f which are continuously di�erentiable with Lipschitz
continuous gradient on S2. We call the smallest possible ρ such that (6.66) holds Lipschitz constant for
∇f and we denote it by L(∇f).

The following result (see [53, Thm. 2.3]) will be useful in the following.

Theorem 6.4.4. Let A : C1(S2)→ C(S2) be a linear operator. The following statements are equivalent:

(i) for any convex function g ∈ C1(S2), we have

g(x) ≤ A[g](x), x ∈ S2; (6.67)

(ii) for any f ∈ C1,1(S2), we have

|f(x)−A[f ](x)| ≤ L(∇f)
2

�
A
�
∥·∥22

�
(x)− ∥x∥22

�
, x ∈ S2. (6.68)

Equality is attained for all functions of the form

f(x) = a(x) + c ∥x∥22 ,

where c ∈ R and a(x) is any a�ne function.

Remark 6.4.5. We notice that the results of Theorem 6.4.4 hold true, with the needed changes, in the
case of standard simplex in Rd, d ∈ N (see [53, Thm. 2.3]).

Since each x ∈ S2 can be expressed as x =
2∑

i=0

λi(x)vi, then, for any convex function f on S2, we

have

f(x) ≤
2∑

i=0

λi(x)f(vi) =: Π lin[f ](x), x ∈ S2, (6.69)

that is, the linear interpolation operatorΠ lin based on the standard triangular linear �nite element P1(S2),
de�ned in (5.3) satis�es condition (6.67), i.e. it approximates every convex function from above [52, 54].
Then, the following result holds.
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Theorem 6.4.6. For any f ∈ C1,1(S2), we have

∣∣Elin[f ](x)
∣∣ = ∣∣f −Π lin[f ]

∣∣ ≤ L(∇f)
2

2∑
i=0

λi(x) ∥x− vi∥22 , x ∈ S2.

Equality is attained for all functions of the form

f(x) = a(x) + c ∥x∥22 ,

where c ∈ R and a(x) is any a�ne function.

Proof. From (6.69) we can apply Theorem 6.4.4 to the linear operator Π lin so that (6.68) becomes

∣∣∣f(x)−Π lin[f ](x)
∣∣∣ ≤ L(∇f)

2

(
2∑

i=0

λi(x) ∥vi∥22 − ∥x∥
2
2

)
, x ∈ S2.

It remains to show that
2∑

i=0

λi(x) ∥vi∥22 − ∥x∥
2
2 =

2∑
i=0

λi(x) ∥x− vi∥22 .

Indeed, we have
∥x− vi∥22 = ∥x∥22 − 2 ⟨x,vi⟩+ ∥vi∥22 , i = 0, 1, 2.

By multiplying each of the above equalities by λi(x) and summing over all i = 0, 1, 2, we immediately get

2∑
i=0

λi(x) ∥x− vi∥22 =

2∑
i=0

λi(x) ∥x∥22 − 2

〈
x,

2∑
i=0

λi(x)vi

〉
+

2∑
i=0

λi(x) ∥vi∥22 .

The desired result now follows from the partition of unity and the linear precision properties of the
barycentric coordinates. The last statement of the theorem follows directly by Theorem 6.4.4.

With reference to the formula (6.62), it remains to bound the error Etrak (f) de�ned in (6.36).

Theorem 6.4.7. For any f ∈ C1,1(S2), we have∣∣∣∣Lk(f)−
1

|Γk|

∫
Γk

f(x)dσ(x)

∣∣∣∣ ≤ L(∇f)
12

|Γk|2 , k = 0, 1, 2. (6.70)

Equality in (6.70) is attained for all functions of the form

f(x) = a(x) + c ∥x∥22 , (6.71)

where c ∈ R and a(x) is any a�ne function.

Proof. We prove (6.70) in the particular case k = 0 since the remaining cases can be proved by analogy.
Let us denote by f̃ the map

f̃(t) = f((1− t)v1 + tv2), t ∈ [0, 1] (6.72)

and by ÜΠ lin[f̃ ](t) = (1− t)f̃(0) + tf̃(1) (6.73)

its linear interpolant at the end points of the interval [0, 1]. Therefore, we have

Etra0 (f) =
1

2
(f(v1) + f(v2))−

1

|Γ0|

∫
Γ0

f(x)dσ(x)

=
1

2

�
f̃(0) + f̃(1)

�
−
∫ 1

0

f̃(t) dt

=

∫ 1

0

�ÜΠ lin[f̃ ](t)− f̃(t)
�
dt.
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Consequently ∣∣Etra0 (f)
∣∣ ≤ ∫ 1

0

∣∣∣ÜΠ lin[f̃ ](t)− f̃(t)
∣∣∣ dt. (6.74)

Since ÜΠ lin approximates from above any convex function on [0, 1], from Remark 6.4.5 we have∣∣∣ÜΠ lin[f̃ ](t)− f̃(t)
∣∣∣ ≤ L(f̃ ′)

2

�ÜΠ lin[| · |2](t)− |t|2
�
=
L(f̃ ′)

2

(
t− t2

)
,

and therefore, from (6.74) we get ∣∣Etra0 (f)
∣∣ ≤ L(f̃ ′)

12
. (6.75)

Moreover, for each s, t ∈ [0, 1], we have∣∣∣f̃ ′(s)− f̃ ′(t)∣∣∣ = |⟨∇f(sv1 + (1− s)v2)−∇f(tv1 + (1− t)v2),v1 − v2⟩ |

≤ ∥∇f(sv1 + (1− s)v2)−∇f(tv1 + (1− t)v2)∥2 ∥v1 − v2∥2
≤ L(∇f) ∥v1 − v2∥22 |s− t| , (6.76)

and then, by de�nition of Lipschitz constant, we get

L(f̃ ′) ≤ L(∇f) ∥v1 − v2∥22 = L(∇f)|Γ0|2 (6.77)

which concludes the proof of the inequality (6.70). Let assume that the function f has the form (6.71)
with c = 0. Therefore the function f̃ de�ned in (6.72) is a�ne and then ÜΠ lin[f̃ ] = f̃ and L(f̃ ′) = 0.

Consequently, (6.70) holds with equality in this case. Now let assume that f(x) = ∥x∥22 . In this case the
function in (6.72)

f̃(t) = ∥(1− t)v1 + tv2∥22 , t ∈ [0, 1],

is a univariate quadratic polynomial satisfying

f̃ ′′(t) = 2 ∥v1 − v2∥22 . (6.78)

We expand f̃(0) and f̃(1) in Taylor series centered in t and we get, from (6.78),

f̃(0) = f̃(t)− tf̃ ′(t) + t2 ∥v1 − v2∥22 , (6.79)

f̃(1) = f̃(t) + (1− t)f̃ ′(t) + (1− t)2 ∥v1 − v2∥22 . (6.80)

Multiplying (6.79) by 1− t, (6.80) by t and summing yields

(1− t)f̃(0) + tf̃(1) = f̃(t) +
(
(1− t)t2 + t(1− t)2

)
∥v1 − v2∥22 , (6.81)

or equivalently ÜΠ lin[f̃ ](t)− f̃(t) =
(
(1− t)t2 + t(1− t)2

)
∥v1 − v2∥22 . (6.82)

Hence, by integrating (6.82), we get from (6.74)

Etra0

�
∥·∥22

�
= ∥v1 − v2∥22

∫ 1

0

(
(1− t)t2 + t(1− t)2

)
dt

= ∥v1 − v2∥22 (B(3, 2) +B(2, 3))

=
1

6
∥v1 − v2∥22 ,

which is exactly the term on the right-hand side in (6.70), since L
�
∇
�
∥·∥22

��
= 2. Finally, if f has the

general form (6.71), then the equality (6.70) easily follows.

Combining Proposition 6.4.1, Theorems 6.4.6 and 6.4.7, we arrive at the main error estimate.

Theorem 6.4.8. For any f ∈ C1,1(S2), the following explicit error estimate holds

|f(x)−Πenr[f ](x)| ≤ L(∇f)
2

(
2∑

i=0

λi(x) ∥x− vi∥22 +
1

6

2∑
i=0

|Γi|2 |⟨ci, e(x)⟩|

)
, x ∈ S2. (6.83)
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6.4.3 The L∞ error estimate

The bound of the pointwise error given in Theorem 6.4.8 allows us to get a bound in L∞-norm

∥f∥∞ = max
x∈S2

|f(x)|

of the error Eenr[f ] de�ned in (6.60). As shown in the following result, this bound is proportional to the
square of the radius of the circumcircle of the triangle S2, by a constant factor which depends on f and
on the enrichment functions ei, i = 0, 1, 2.

Corollary 6.4.9. For any f ∈ C1,1(S2), the following explicit error estimate holds

∥f −Πenr[f ]∥∞ ≤
L(∇f)

2

�
1 +

3

2
max

i=0,1,2
∥⟨ci, e⟩∥∞

�
R2, (6.84)

where ci, i = 0, 1, 2 and e are de�ned in (6.50) and (6.53), respectively, and R is the circumradius of S2.

Proof. We bound the two terms inside the bracket appearing on the right-hand side of equation (6.83)
separately. With regard to the �rst term, we show that

sup
x∈S2

2∑
i=0

λi(x) ∥x− vi∥22 ≤ R
2. (6.85)

Indeed, if c is the circumcenter of S2, by using the linear precision and partition of unity properties of
barycentric coordinates, we have

2∑
i=0

λi(x) ∥x− vi∥22 =

2∑
i=0

λi(x) ∥x− c− (vi − c)∥22

=

2∑
i=0

λi(x)
�
∥x− c∥22 − 2 ⟨x− c,vi − c⟩+ ∥vi − c∥22

�
= ∥x− c∥22 − 2

〈
x− c,

2∑
i=0

λi(x)vi − c

〉
+

2∑
i=0

λi(x) ∥vi − c∥22

= ∥x− c∥22 − 2 ⟨x− c,x− c⟩+R2

= R2 − ∥x− c∥22 .

Therefore, for each x ∈ S2

2∑
i=0

λi(x) ∥x− vi∥22 ≤ R
2 − min

x∈S2

∥x− c∥22 ≤ R
2, x ∈ S2,

and so (6.85) is valid. With regard to the second term inside the bracket, we use Leibniz's inequality to
bound the sum of the squares of edge lengths of the triangle in terms of its circumradius [82], i.e.

2∑
i=0

|Γi|2 ≤ 9R2. (6.86)

Combining the last estimate with (6.85) gives us the desired inequality (6.84).

Remark 6.4.10. We notice that, for x = c we get

2∑
i=0

λi(c) ∥c− vi∥22 = R2,

then inequality (6.86) holds with equality if and only if the circumcenter c belongs to S2. This property
characterizes acute triangles, i.e. triangles having all angles less than π/2.
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Remark 6.4.11. Let Xn be a set of discrete points in a general position, e.g. a set of scattered points,
and assume that we need to triangulate Xn. Inequality (6.84) suggests us the use of a triangulation T
which minimizes the maximum of the squares of the circumradii over all triangles of T . The Delaunay
triangulation has this property.

Remark 6.4.12. For any triangle S2, it is possible to obtain a more precise L∞-error bound in terms
of the square of the circumradius minus a nonnegative quantity. Indeed, denoting by c, b and R the
circumcenter, the barycenter and the circumradius of S2, respectively, then the following bound holds,
see [78, Thm. 2.4.4 ]

1

9

2∑
i=0

|Γi|2 = R2 − ∥b− c∥22 ≤ R
2 − min

x∈S2

∥x− c∥22 .

The last step follows because b belongs to S2. Therefore, in Corollary 6.4.9, R2 can be replaced by the
smaller value R2 − min

x∈S2

∥c− x∥22 .

Remark 6.4.13. Let Γ2 be the longest side of S2 and let v01 be its midpoint. The line segment joining
c with v01 is a perpendicular bisector of Γ2. Denoting by

h = sup
v,w∈S2

∥v −w∥2

the diameter of S2, by the Pythagorean Theorem we get�
h

2

�2

+ min
x∈S2

∥x− c∥22 = R2,

and then

R2 − min
x∈S2

∥x− c∥22 =
1

4
h2.

From Remark 6.4.12 and Remark 6.4.13, the Corollary 6.4.9 becomes

Corollary 6.4.14. For any f ∈ C1,1(S2), the following explicit error estimate holds

∥f −Πenr[f ]∥∞ ≤
L(∇f)

8

�
1 +

3

2
max

i=0,1,2
∥⟨ci, e⟩∥∞

�
h2, (6.87)

where h is the diameter of S2.

6.4.4 The L1 error estimate

The bound of the pointwise error given in Theorem 6.4.8 allows us to get a bound in L1-norm

∥f∥1 =

∫
S2

|f(x)| dx

of the error Eenr[f ] de�ned in (6.60).

Theorem 6.4.15. For any f ∈ C1,1(S2), the following explicit error estimate holds

∥f −Πenr[f ]∥1 ≤
L(∇f)
24

(1 + emax) |S2|ω(S2), (6.88)

where |S2| is the area of the triangle S2,

emax = max
i=0,1,2

2

|S2|
∥⟨ci, e⟩∥1 (6.89)

and

ω(S2) =

2∑
i=0

|Γi|2 .
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Proof. We start by proving the identity∫
S2

2∑
i=0

λi(x) ∥x− vi∥22 dx =
|S2|
12

2∑
i=0

|Γi|2 . (6.90)

Since
∑2

i=0 λi(x) ∥x− vi∥
2
2 is a quadratic polynomial which vanishes at all vertices of S2, by [59, Thm.

5.1], we get ∫
S2

2∑
i=0

λi(x) ∥x− vi∥22 dx =
|S2|
4

2∑
i=0

∥b− vi∥22 , (6.91)

where b is the barycenter of S2. Moreover, since

∥vi − vj∥22 = ∥vi∥22 + ∥vj∥
2
2 − 2 ⟨vi,vj⟩ , i, j = 0, 1, 2,

∥b− vj∥22 = ∥b∥22 + ∥vj∥
2
2 − 2 ⟨b,vj⟩ , j = 0, 1, 2,

∥vi − vj∥22 − ∥b− vj∥
2
2 = ∥vi∥22 − ∥b∥

2
2 + 2 ⟨b− vi,vj⟩ , i, j = 0, 1, 2,

and then, by summing over all j = 0, 1, 2, both members of the last equality, we immediately get

2∑
j=0

∥vi − vj∥22 −
2∑

j=0

∥b− vj∥22 = 3
�
∥vi∥22 − ∥b∥

2
2

�
+ 6 ⟨b− vi, b⟩

= 3
�
∥vi∥22 − ∥b∥

2
2 + 2 ⟨b− vi, b⟩

�
= 3 ∥b− vi∥22 , i = 0, 1, 2,

or equivalently,
2∑

j=0

∥vi − vj∥22 =

2∑
j=0

∥b− vj∥22 + 3 ∥b− vi∥22 , i = 0, 1, 2.

Now we sum both members of the above equality over all i = 0, 1, 2 and we get

2∑
i=0

2∑
j=0

∥vi − vj∥22 = 6

2∑
i=0

∥b− vi∥22 ,

or equivalently
2∑

i=0

∥b− vi∥22 =
1

6

2∑
i=0

2∑
j=0

∥vi − vj∥22 =
1

3

2∑
i=0

|Γi|2 . (6.92)

The identity (6.90) follows by substituting (6.92) in (6.91). Finally, by integrating (6.83) and by us-
ing (6.90), we get (6.88) and then the thesis.

In the following, we further analyze the case where the enrichment functions are

e0 = λα0−1
1 λβ0−1

2 , e1 = λα1−1
0 λβ1−1

2 , e2 = λα2−1
0 λβ2−1

1 , (6.93)

with αi, βi > 1. In particular, we determine the best parameters αi, βi, in order to minimize the approx-
imation error (6.88).

Theorem 6.4.16. Let ei, i = 0, 1, 2, be the enrichment functions de�ned in (6.93). Then, for any
f ∈ C1,1(S2), we get

∥f −Πenr[f ]∥1 ≤
L(∇f)
24

�
1 +

4

µ

�
|S2|ω(S2), (6.94)

where µ = min
i=0,1,2

(αi + βi) .
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Proof. Let us compute emax de�ned in (6.89), relative to the enrichment functions (6.93). In this case,
from (6.28), the matrix N de�ned in (6.43) is a diagonal matrix and

N−1 = [c0, c1, c2] =


1

B(α0,β0)
0 0

0 1
B(α1,β1)

0

0 0 1
B(α2,β2)

 .
Consequently we get

2

|S2|

∫
S2

|⟨c0, e(x)⟩| dx =
2

|S2|B(α0, β0)

∫
S2

λα0−1
1 (x)λβ0−1

2 (x) dx,

2

|S2|

∫
S2

|⟨c1, e(x)⟩| dx =
2

|S2|B(α1, β1)

∫
S2

λα1−1
0 (x)λβ1−1

2 (x) dx, (6.95)

2

|S2|

∫
S2

|⟨c2, e(x)⟩| dx =
2

|S2|B(α2, β2)

∫
S2

λα2−1
0 (x)λβ2−1

1 (x) dx.

In order to compute the integrals at the right side of (6.95) we denote by

Ŝ2 =
{
x̂ = (x̂, ŷ) ∈ R2, x̂ ≥ 0, ŷ ≥ 0, x̂+ ŷ ≤ 1

}
, (6.96)

the triangle of vertices v̂0 = (0, 0), v̂1 = (1, 0) and v̂2 = (0, 1) and by F : Ŝ2 → S2 the a�ne map de�ned
as

F (x̂) = λ̂0(x̂)v0 + λ̂1(x̂)v1 + λ̂2(x̂)v2,

where λ̂0(x̂), λ̂1(x̂), λ̂2(x̂) are the barycentric coordinates of the point x̂ with respect to the triangle Ŝ2.
Since F preserves the ratio of areas of two triangles, by de�nition of barycenter coordinates we get

λi ◦ F (x̂) = λ̂i(x̂).

Therefore, by using F as change of variables, we get∫
S2

λα0−1
1 (x)λβ0−1

2 (x) dx = 2|S2|
∫
Ŝ2

λ̂α0−1
1 (x̂)λ̂β0−1

2 (x̂) dx̂,∫
S2

λα1−1
0 (x)λβ1−1

2 (x) dx = 2|S2|
∫
Ŝ2

λ̂α1−1
0 (x̂)λ̂β1−1

2 (x̂) dx̂, (6.97)∫
S2

λα2−1
0 (x)λβ2−1

1 (x) dx = 2|S2|
∫
Ŝ2

λ̂α2−1
0 (x̂)λ̂β2−1

1 (x̂) dx̂,

where 2 |S2| is the Jacobian determinant of F. The integrals at right member of equalities (6.97) can be
computed by using the powerful formula presented in [15]∫

Ŝ2

λ̂α0 (x̂)λ̂
β
1 (x̂)λ̂

γ
2(x̂) dx̂ =

Γ (α+ 1)Γ (β + 1)Γ (γ + 1)

Γ (α+ β + γ + 3)
, (6.98)

valid for each α, β, γ > −1. By combining equalities (6.95), (6.97), (6.98) and (6.26), we get (6.94).

Now we consider the more general enrichment functions, already introduced in Example 7.1.5

ẽi = (1− λi)γiei, i = 0, 1, 2, γi ≥ 0, (6.99)

where ei, i = 0, 1, 2, are de�ned in (6.93). In analogy to the Theorem 6.4.16, in Theorem 6.4.18 we
determine, by using the enrichment functions (6.99), the best parameters αi, βi, γi which minimize the
approximation error (6.88). To this aim we consider the triangle Ŝ2 with vertices v̂0 = (0, 0), v̂1 = (1, 0)

and v̂2 = (0, 1) and barycentric coordinates λ̂0(x̂), λ̂1(x̂), λ̂2(x̂).
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Lemma 6.4.17. For each i = 0, 1, 2, the following equality holds∫
Ŝ2

(1− λ̂i(x̂))γi λ̂α0−1
0 (x̂)λ̂α1−1

1 (x̂)λ̂α2−1
2 (x̂) dx̂ =

Γ (α0)Γ (α1)Γ (α2)

Γ
�∑2

j=0,j ̸=i αj

� µi, (6.100)

where

µi =
Γ
�
γi +

∑2
j=0,j ̸=i αj

�
Γ
�
γi +

∑2
j=0 αi

� , γi ≥ 0, αi > 1, i = 0, 1, 2.

Proof. It is well known that the barycentric coordinates of Ŝ2 in terms of Cartesian coordinates are

λ̂0(x̂) = 1− x̂− ŷ, λ̂1(x̂) = x̂, λ̂2(x̂) = ŷ.

First we prove (6.100) for i ̸= 0. Without loss of generality we can assume i = 1. We note that∫
Ŝ2

(1− x̂)γ1 x̂α1−1ŷα2−1(1− x̂− ŷ)α0−1 dx̂dŷ =

∫ 1

0

(1− x̂)γ1 x̂α1−1I(x̂) dx̂, (6.101)

where

I(x̂) =

∫ 1−x̂

0

ŷα2−1(1− x̂− ŷ)α0−1 dŷ. (6.102)

In order to compute the integral (6.102) we consider the change of variable

ẑ =
ŷ

1− x̂
,

and then

I(x̂) = (1− x̂)α0+α2−1

∫ 1

0

ẑα2−1(1− ẑ)α0−1 dẑ (6.103)

= (1− x̂)α0+α2−1Γ (α0)Γ (α2)

Γ (α0 + α2)
. (6.104)

By de�nition of beta function, we get∫ 1

0

x̂α1−1(1− x̂)γ1+α0+α2−1 dx =
Γ (α1)Γ (γ1 + α0 + α2)

Γ (α0 + α1 + α2 + γ1)
. (6.105)

The result follows by combining (6.101), (6.104) and (6.105). By the same arguments we can prove
formula (6.100) for i = 2. In order to prove (6.100) for i = 0, we consider the coordinate transformations

π : Ŝ2 → Ŝ2, π(x, y) = (y, x),

θ : Ŝ2 → Ŝ2, θ(x, y) = (1− x− y, y) =: (u, v),

and the change of variables π ◦ θ whose Jacobian determinant is equal to 1. Then we get∫
Ŝ2

(x+ y)γ0xα1−1yα2−1(1− x− y)α0−1 dxdy =

∫
Ŝ2

(1− u)γ0G(u, v) dudv,

where G(u, v) = uα0−1vα2−1(1− u− v)α1−1. The result now follows from the case i = 1.

Theorem 6.4.18. Let ẽi, i = 0, 1, 2, be the enrichment functions de�ned in (6.99). Then, for any
f ∈ C1,1(S2), we get

∥f −Πenr[f ]∥1 ≤
L(∇f)
24

�
1 +

4

µ

�
|S2|ω(S2), (6.106)

where µ = min
i=0,1,2

(αi + βi + γi).
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Proof. Let us compute emax de�ned in (6.89), relative to the enrichment functions (6.99). By (6.49), the
matrix N de�ned in (6.43) is a diagonal matrix and

N−1 = [c0, c1, c2] =


1

B(α0,β0)
0 0

0 1
B(α1,β1)

0

0 0 1
B(α2,β2)

 .
Consequently we get

2

|S2|

∫
S2

|⟨c0, e(x)⟩| dx =
2

|S2|B(α0, β0)

∫
S2

(1− λ0(x))γ0λα0−1
1 (x)λβ0−1

2 (x) dx,

2

|S2|

∫
S2

|⟨c1, e(x)⟩| dx =
2

|S2|B(α1, β1)

∫
S2

(1− λ1(x))γ1λα1−1
0 (x)λβ1−1

2 (x) dx,

2

|S2|

∫
S2

|⟨c2, e(x)⟩| dx =
2

|S2|B(α2, β2)

∫
S2

(1− λ2(x))γ2λα2−1
0 (x)λβ2−1

1 (x) dx.

By using the same strategy of the proof of Theorem 6.4.16, we get∫
S2

(1− λ0(x))γ0λα0−1
1 (x)λβ0−1

2 (x) dx = 2|S2|
∫
Ŝ2

(1− λ̂0(x̂))γ0 λ̂α0−1
1 (x̂)λ̂β0−1

2 (x̂) dx̂,∫
S2

(1− λ1(x))γ1λα1−1
0 (x)λβ1−1

2 (x) dx = 2|S2|
∫
Ŝ2

(1− λ̂1(x̂))γ1 λ̂α1−1
0 (x̂)λ̂β1−1

2 (x̂) dx̂,∫
S2

(1− λ2(x))γ2λα2−1
0 (x)λβ2−1

1 (x) dx = 2|S2|
∫
Ŝ2

(1− λ̂2(x̂))γ2 λ̂α2−1
0 (x̂)λ̂β2−1

1 (x̂) dx̂.

The result follows from Lemma 6.4.17.

The following result shows that the bound (6.106) is proportional to the fourth power of the circum-
radius of the triangle S2.

Corollary 6.4.19. Let ẽi, i = 0, 1, 2, be the enrichment functions de�ned in (6.99). Then, for any
f ∈ C1,1(S2), we get

∥f −Πenr[f ]∥1 ≤
9
√
3L(∇f)
32

�
1 +

4

µ

�
R4,

where R is the circumradius of S2 and µ = min
i=0,1,2

(αi + βi + γi).

Proof. By Theorem 6.4.18 and Leibniz's inequality, it su�ces to bound the area of S2 in terms of its
circumradius. To this end, we use Weitzenböck's inequality [82], which states that for any triangle S2 of
sides Γ0,Γ1, Γ2, the following inequality holds

4
√
3 |S2| ≤

2∑
i=0

|Γi|2 .

With the aid of this estimate and Leibniz's inequality, it is easily seen that

|S2| ≤
9

4
√
3
R2. (6.107)

The result follows by (6.86), (6.107) and (6.106).

By Remark 6.4.12, it is possible to obtain a more precise L1-error bound in terms of the diameter of
S2.

Corollary 6.4.20. Let ei, i = 0, 1, 2, be the enrichment functions de�ned in (6.99). Then, for any
f ∈ C1,1(S2), we have

∥f −Πenr[f ]∥1 ≤
9
√
3L(∇f)
512

�
1 +

4

µ

�
h4,

where h is the diameter of S2 and µ = min
i=0,1,2

(αi + βi + γi).
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6.5 Practical consideration

Let Xn = {xi : i = 1 . . . , n} be a set of n scattered data in R2 and let Tm = {tj : j = 1, . . . ,m}
be a triangulation of Xn. We denote by C = conv(Xn) the convex hull of Xn. We de�ne the global
approximation operator Πenr

Tm
by setting, for any f ∈ C1,1(C) and x ∈ C,

Πenr
Tm

[f ](x) = Πenr[f, tj ](x), if x ∈ tj , j = 1, . . . ,m,

whereΠenr[f, tj ] is the approximation operator de�ned in (6.61), based on the triangular element (tj ,Penr
1 (tj), Σ

enr
tj ).

In this case, Theorem 6.4.16 gives the following global L1-error bound

∥∥f −Πenr
Tm

[f ]
∥∥
1

=

∫
C

∣∣f(x)−Πenr
Tm

[f ](x)
∣∣ dx =

m∑
j=1

∫
tj

|f(x)−Πenr[f, tj ](x)| dx

≤ L(∇f)
24

�
1 +

4

µ

� m∑
j=1

|tj |ω(tj). (6.108)

For any triangulation Tm, we denote by

E1(Tm) =

m∑
j=1

|tj |ω(tj).

The global error bound (6.108) is proportional to E1, by a constant factor which is independent on the
triangulation Tm. In analogy, by using the results of Corollaries 6.4.9 and 6.4.19 we denote by

E2(Tm) =

m∑
j=1

R2
j ,

E3(Tm) =

m∑
j=1

R4
j ,

where Rj is the circumradius of the triangle tj ∈ Tm. By using the optimality results of Delaunay
triangulation, which can be found in [41] and [53], it is possible to prove the following result.

Theorem 6.5.1. Let Xn be a set of n scattered data in R2 and let Tm be a triangulation of Xn. Then
Ei(Tm), i = 1, 2, 3 achieve their minimum if and only if Tm is the Delaunay triangulation.

6.6 Numerical experiments

In this Section, we test the accuracy of the approximation produced by the �nite element (S2,Penr
1 (S2), Σ

enr
S2

)
obtained by enriching the standard triangular linear �nite element P1(S2) with the sets of enrichment
functions introduced in Example 6.3.3. For each experiment, we use a regular grid of (n + 1) × (n + 1)
equispaced points, with n = 2k, k = 2, . . . , 6 and the relative Delaunay triangulation, see Figure 6.1.

We consider the following test functions

f1(x, y) =
√
x2 + y2 + 1, f2(x, y) = sin(πxy),

and the following sets of enrichment functions

E1 =

ei = (1− λi)
2∏

j=0
j ̸=i

λj : i = 0, 1, 2

 , E2 =

ei =
È
(1− λi)

2∏
j=0
j ̸=i

λj : i = 0, 1, 2


already introduced in Example 6.3.3. For each of these, we compare the accuracy of approximation, in L1-
norm, produced by the standard triangular linear �nite element with that one produced by the enriched
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Figure 6.1: Delaunay triangulation of a regular grid of (n+ 1)× (n+ 1) equispaced points, with n = 16
(left), n = 32 (center), n = 64 (right).

2 2.5 3 3.5 4 4.5 5 5.5 6
10

-6

10
-5

10
-4

10
-3

10
-2

2 2.5 3 3.5 4 4.5 5 5.5 6
10

-6

10
-5

10
-4

10
-3

10
-2

Figure 6.2: Semilog plot of the trend of the errors, in L1-norm, produced by approximating the function
f1(x, y) working with Delaunay triangulations of the unit square [0, 1]2, the standard triangular linear
�nite element (red dashed line), and the enriched �nite element (S2,Penr

1 (S2), Σ
enr
S2

) (blue line). The
Delaunay triangulations are realized by using regular grids of (n + 1) × (n + 1) equispaced nodes with
n = 2k, k = 2, . . . , 6. The enrichments of the standard triangular linear �nite element are realized by
using the sets of enrichment functions E1 and E2 for the left and the right picture, respectively.

�nite element (S2,Penr
1 (S2), Σ

enr
S2

). We perform the numerical experiments by using MatLab software. To
compute the integral of a bivariate function over a side of the triangle S2 and the integral of a bivariate
function over S2 we use the command integral2. The results are reported in Figure 6.2 and Figure 6.3.
We notice that for a �xed function f , not every set of enrichment functions signi�cantly improves the
accuracy of the approximation realized by the enriched �nite element. The accuracy of the approximation
depends on the chosen set of enrichment functions.
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Figure 6.3: Semilog plot of the trend of the errors, in L1-norm, produced by approximating the function
f2(x, y) working with Delaunay triangulations of the unit square [0, 1]2, the standard triangular linear
�nite element (red dashed line), and the enriched �nite element (S2,Penr

1 (S2), Σ
enr
S2

) (blue line). The
Delaunay triangulations are realized by using regular grids of (n + 1) × (n + 1) equispaced nodes with
n = 2k, k = 2, . . . , 6. The enrichments of the standard triangular linear �nite element are realized by
using the sets of enrichment functions E1 and E2 for the left and the right picture, respectively.
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Chapter 7

Enrichment strategies for the standard

simplicial linear �nite elements

In this chapter, we generalize the results presented in Chapter 6 to the d dimensional case. In particular,
we introduce a new class of �nite elements by enriching the standard simplicial linear �nite element
in Rd, P1(Sd), with additional functions which are not necessarily polynomials. We provide necessary
and su�cient conditions on the enrichment functions, which guarantee the existence of families of such
enriched elements. Furthermore, we derive explicit formulas for their associated basis functions. We also
show that the approximation error, obtained by using the proposed enriched elements, can be written
as the error of the standard simplicial linear �nite element plus a second term which depends on the
enrichment functions. By using this decomposition, we derive explicit bounds in both L∞-norm and
L1-norm. The results presented in this chapter can be found in [34].

7.1 Enrichment of the standard simplicial linear �nite element

Let v0, . . . ,vd be a�nely independent points in Rd and let Sd be the d-simplex in Rd with vertices
v0, . . . ,vd. Every point x ∈ Sd can be uniquely expressed as

x =

d∑
i=0

λi(x)vi, (7.1)

where λi(x), i = 0, . . . , d, are the barycentric coordinates of the point x ∈ Rd with respect to Sd [97]. An
m-dimensional face of Sd is any m-simplex generated by m+1 vertices of Sd. In particular, we denote by
Fi, i = 0, . . . , d, the (d− 1)-dimensional face generated by v0, . . . ,vi−1,vi+1, . . . ,vd and by |Fi| its area.
In the discussion below we will use a well-known result, which holds for any d-simplex Sd, d ∈ N [42, Ch.
2].

Lemma 7.1.1. Let α0, . . . , αd be positive real numbers. Then the following identity holds

1

|Sd|

∫
Sd

d∏
i=0

λαi
i (x) dx =

d!
∏d

i=0 Γ (αi + 1)

Γ (d+ 1 +
∑d

i=0 αi)
, (7.2)

where |Sd| is the volume of Sd and Γ (z) is the gamma function [1].

We notice that, for any x ∈ Fi, we have

λi(x) = 0, (7.3)

and therefore, by equation (7.1), we get

x =

d∑
j=0
j ̸=i

λj(x)vj ,

d∑
j=0
j ̸=i

λj(x) = 1, (7.4)
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that is, λj(x), j = 0, . . . , d, j ̸= i, are the barycentric coordinates of x with respect to the (d − 1)-
dimensional simplex Fi. Consequently, by Lemma 7.1.1, we get

1

|Fi|

∫
Fi

d∏
j=0
j ̸=i

λ
αj

j (x) dσ(x) =
(d− 1)!

∏d
j=0,j ̸=i Γ (αj + 1)

Γ (d+
∑d

j=0,j ̸=i αj)
, i = 0, . . . , d, (7.5)

where the integral is computed with respect to the Lebesgue measure on the (d− 1)-dimensional face Fi.
For f ∈ C(Sd), we set

Lj(f) = f(vj), j = 0, . . . , d. (7.6)

The standard simplicial linear �nite element is the triple

P1(Sd) = (Sd,P1(Sd), Σ
lin
Sd

), (7.7)

where
P1(Sd) = span{λ0, . . . , λd} (7.8)

is the space of linear polynomials in Rd and

Σlin
Sd

= {L0(f), . . . Ld(f)}

is the set of degrees of freedom of P1(Sd). The main goal of this chapter is to generalize the results
presented in [30] to the case of a non-degenerate d-simplex Sd ⊂ Rd. For this purpose, we consider d+ 1
linearly independent continuous functions e0, . . . , ed on Sd, satisfying the vanishing conditions

ei(vj) = 0, i, j = 0, . . . , d, (7.9)

and the enrichment linear functionals

Ij(f) =
1

|Fj |

∫
Fj

f(x)dσ(x), j = 0, . . . , d. (7.10)

In analogy to Chapter 6, we denote by

Σenr
Sd

= {Lj , Ij : j = 0, . . . , d} ,

and by

Penr
1 (Sd) = P1(Sd)⊕ span {e0, . . . , ed} .

In the next Theorem we prove a characterization result for the enrichment functions e0, . . . , ed, so that
the triple

(Sd,Penr
1 (Sd), Σ

enr
Sd

)

is a �nite element, or equivalently so that Penr
1 (Sd) is Σenr

Sd
-unisolvent.

Theorem 7.1.2. Let

N =


I0(e0) . . . I0(ed)
I1(e0) . . . I1(ed)

...
...

...
Id(e0) . . . Id(ed)

 , (7.11)

then the triple (Sd,Penr
1 (Sd), Σ

enr
Sd

) is a �nite element if and only if

det(N) ̸= 0.
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Proof. Let us assume that det(N) ̸= 0 and we prove that Penr
1 (Sd) is Σenr

Sd
-unisolvent. Let f ∈ Penr

1 (Sd)
be a function such that

Lj(f) = 0, j = 0, . . . , d, (7.12)

Ij(f) = 0, j = 0, . . . , d. (7.13)

Since f belongs to Penr
1 (Sd), it can be expressed as

f = p+

d∑
i=0

βiei,

where p ∈ P1(Sd) and β0, . . . , βd are real numbers. The vanishing conditions (7.9) imply that

Lj(f) = Lj(p) = p(vj) = 0, j = 0 . . . , d,

and then p = 0. Consequently f coincides with its enriched part, that is

f =

d∑
i=0

βiei.

By using the linearity of the functionals Ij , j = 0, . . . , d, equations (7.13) can be represented in matrix
form as

Nβ = 0, (7.14)

where β = [β0, β1, . . . , βd]
T and 0 is the zero vector in Rd+1. Since, by hypothesis, the matrix N is

nonsingular, the linear system (7.14) has a unique solution β0 = β1 = · · · = βd = 0 and then f = 0.
In order to prove the reverse implication, let us assume that det(N) = 0 and we prove that Penr

1 (Sd) is
not Σenr

Sd
-unisolvent. Since det(N) = 0, there exists [γ0, . . . , γd]T ̸= 0 such that the function

e =

d∑
i=0

γiei

satis�es
Ij(e) = 0, j = 0, . . . , d.

Since the enrichment functions ei, i = 0, . . . , d, satisfy the vanishing conditions (7.9), we get

Lj(e) = 0, j = 0, . . . , d.

We have found a linear combination of the basis functions of Penr
1 (Sd) with coe�cients not all zero in

which all degrees of freedom vanish. Then Penr
1 (Sd) is not Σenr

Sd
-unisolvent.

De�nition 7.1.3. Let e0, . . . , ed be linearly independent continuous enrichment functions satisfying the
vanishing conditions (7.9). They are said admissible enrichment functions if we can enrich P1(Sd) to the
�nite element (Sd,Penr

1 (Sd), Σ
enr
Sd

).

In the following, we assume that the matrix N is nonsingular and we denote its inverse by

N−1 = [c0 . . . cd],

where ci ∈ Rd, i = 0, . . . , d, are column vectors. A direct consequence of Theorem 7.1.2 is the linear
independence of the functionals of Σenr

Sd
in the dual space Penr

1 (Sd)
⋆ [23, Ch 2]. Then, there exists a basis

{φj , ψj : j = 0, . . . , d} of Penr
1 (Sd) which satisfy

Lj(φi) = δij , Ij(φi) = 0, i, j = 0, . . . , d, (7.15)

Lj(ψi) = 0, Ij(ψi) = δij , i, j = 0, . . . , d. (7.16)
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Theorem 7.1.4. The basis functions {φj , ψj : j = 0, . . . , d} of Penr
1 (Sd) associated to the �nite element

(Sd,Penr
1 (Sd), Σ

enr
Sd

), which satisfy (7.15) and (7.16) have the following expressions

φj = λj −
1

d

d∑
k=0
k ̸=j

ψk, j = 0, . . . , d, (7.17)

ψj = ⟨e, cj⟩ , j = 0, . . . , d, (7.18)

where
e = [e0, . . . , ed]

T .

Proof. Without loss of generality, we prove (7.17) for the case j = 0. We set

Ij(e) = [Ij(e0), . . . , Ij(ed)]
T , j = 0, . . . , d.

Since NN−1 = I, we easily get
⟨Ij(e), ci⟩ = δij . (7.19)

Moreover, by (7.5) we get

Ij(λi) =
1

d
(1− δij), i, j = 0, . . . , d. (7.20)

The basis function φ0 ∈ Penr
1 (Sd) can be represented as

φ0 = p0 +

d∑
i=0

βiei = p0 + ⟨e,β⟩ ,

where p0 ∈ P1(Sd) and β = [β0, . . . , βd]
T ∈ Rd+1. The vanishing conditions (7.9) imply that

δ0j = Lj(φ0) = p0(vj), j = 0, . . . , d,

and then p0 = λ0. Hence
φ0 = λ0 + ⟨e,β⟩ . (7.21)

By applying the linear functionals Ij , j = 0, . . . , d, to both sides of (7.21) we get, by (7.15),

0 = Ij(λ0) + ⟨β, Ij(e)⟩ , j = 0, . . . , d,

or equivalently, in matrix form
I(λ0) +Nβ = 0,

where I(λ0) = [I0(λ0), . . . , Id(λ0)]
T . Then, by taking into account (7.20), we obtain

β = −1

d

d∑
k=0

ck(1− δ0k). (7.22)

Finally, by substituting (7.22) in (7.21) and by using the bilinearity of the scalar product, we get

φ0 = λ0 −
1

d

d∑
k=1

⟨e, ck⟩ .

In order to prove (7.17) for j = 0, it remains to prove (7.18). To this aim, without loss of generality, we
show the validity of (7.18) for j = 0. We proceed in analogy to the previous case and then we set

ψ0 = p0 +

d∑
i=0

γiei = p0 + ⟨e,γ⟩ ,
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where p0 ∈ P1(Sd) and γ = [γ0, . . . , γd]
T ∈ Rd+1. The vanishing conditions (7.9) imply that

Lj(ψ0) = ψ0(vj) = p0(vj) = 0, j = 0, . . . , d,

and then p0 = 0. Hence
ψ0 = ⟨e,γ⟩ . (7.23)

By applying the linear functionals Ij , j = 0, . . . , d, to both sides of (7.23) we get, by (7.16),

δ0j = ⟨Ij(e),γ⟩ , j = 0, . . . , d,

or, equivalently, in matrix form
Nγ = u0,

where u0 = [1, 0, . . . , 0]T ∈ Rd+1. Hence
γ = c0. (7.24)

Finally, by substituting (7.24) in (7.23), we get the required expression for ψ0. Similarly, we can
prove (7.18) for j = 1, . . . , d and consequently (7.17) for j = 0 is proved. The expression of the other
functions can be obtained using symmetry arguments.

Example 7.1.5. Let us consider the enrichment functions

ei = (1− λi)γi

d∏
k=0

λ
αi,k−1
k , i = 0, . . . , d, (7.25)

where γi > 0, αi,i = 1 αi,k > 1, i, k = 0, . . . , d, i ̸= k. It is easy to see that the enrichment functions ei
satisfy the vanishing conditions (7.9). Moreover, we get Ij(ei) = 0 for i ̸= j, and

Ii(ei) =
1

|Fi|

∫
Fi

(1− λi(x))γi

d∏
k=0

λ
αi,k−1
k (x)dσ(x) =

1

|Fi|

∫
Fi

d∏
k=0

λ
αi,k−1
k (x) dσ(x).

Therefore, by (7.5), for each i, j = 0, . . . , d, we have

Ij(ei) =
1

|Fj |

∫
Fj

(1− λi(x))γi

d∏
k=0

λ
αi,k−1
k (x) dσ(x) =

(d− 1)!
∏d

k=0,k ̸=i Γ (αi,k)

Γ (
∑d

k=0,k ̸=i αi,k)
δij . (7.26)

Consequently, the matrix (7.11) is a nonsingular diagonal matrix and hence, by Theorem 7.1.2, we can
enrich (Sd,P1(Sd), ΣSd

) to the element (Sd,Penr
1 (Sd), Σ

enr
Sd

) by using (7.25) as enrichment functions.

Theorem 7.1.6. The linear approximation operator based on the standard simplicial linear �nite element
P1(Sd), de�ned in (7.7)

Π lin : C(Sd) → P1(Sd)

f 7→
d∑

j=0

Lj(f)λj ,
(7.27)

reproduces linear polynomials and satis�es the interpolation conditions

Lj

(
Π lin[f ]

)
= Lj(f), j = 0, . . . , d. (7.28)

Proof. The proof follows from the Lagrange property of the barycentric coordinates, that is λi(vj) = δij ,
where δij is the Kronecker delta operator.

In the following, we denote by Elin the approximation error of the operator Π lin, that is

Elin[f ] = f −Π lin[f ], f ∈ C(Sd). (7.29)
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7.2 Error estimates

7.2.1 An explicit error representation

Let Πenr be the approximation operator de�ned as

Πenr : C(Sd) → Penr
1 (Sd)

f 7→
d∑

j=0

Lj(f)φj +

d∑
j=0

Ij(f)ψj ,
(7.30)

where φj , ψj , j = 0, . . . , d, are the basis functions introduced in Theorem 7.1.4. The goal of this Section
is to provide explicit bounds for the approximation error

Eenr[f ] = f −Πenr[f ], (7.31)

in both L∞-norm and in L1-norm. Sharp explicit error bounds in L1-norm, for some special choices of
admissible enrichment functions, are also derived. We set

Lk =
1

d

d∑
j=0
j ̸=k

Lj , k = 0, . . . , d, (7.32)

Etrak = Lk − Ik, k = 0, . . . , d, (7.33)

and, in line with Chapter 6, we prove that the approximation error (7.31) can be expressed as the error
of the standard simplicial linear �nite element plus a second term, which depends on the enrichment
functions ei, i = 0, . . . , d. In fact, we have

Proposition 7.2.1. Let f ∈ C(Sd). Then, for any x ∈ Sd, we have

Eenr[f ](x) = Elin[f ](x) +

d∑
k=0

⟨e(x), ck⟩ Etrak (f), (7.34)

where Elin[f ] is de�ned in (7.29).

Proof. By the de�nition of Πenr[f ] given in (7.30), the approximation error (7.31) can be written as

Eenr[f ] = f −
d∑

j=0

Lj(f)φj −
d∑

j=0

Ij(f)ψj .

We get, using (7.17), (7.18) and (7.32)

d∑
j=0

Lj(f)φj =

d∑
j=0

Lj(f)

�
λj −

1

d

d∑
k=0
k ̸=j

⟨e, ck⟩

�
=

d∑
j=0

Lj(f)λj −
1

d

d∑
j=0

Lj(f)

d∑
k=0

⟨e, ck⟩ (1− δjk)

=

d∑
j=0

Lj(f)λj −
1

d

d∑
k=0

⟨e, ck⟩
d∑

j=0

Lj(f)(1− δjk)

=

d∑
j=0

Lj(f)λj −
d∑

k=0

Lk(f) ⟨e, ck⟩
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and
d∑

j=0

Ij(f)ψj =

d∑
j=0

Ij(f) ⟨e, cj⟩ .

Therefore, for each x ∈ Sd, we have

Eenr[f ](x) = f(x)−
d∑

j=0

Lj(f)φj(x)−
d∑

j=0

Ij(f)ψj(x)

= f(x)−

�
d∑

j=0

Lj(f)λj(x)−
d∑

k=0

Lk(f) ⟨e(x), ck⟩

�
−

d∑
j=0

Ij(f) ⟨e(x), cj⟩

= Elin[f ](x) +

d∑
k=0

⟨e(x), ck⟩ (Lk(f)− Ik(f)) ,

which is the thesis.

7.2.2 Error bounds

The decomposition (7.34) is the key result to get the estimate of the error Eenr[f ] in the case of a particular
class of functions with continuous gradient. As usually, we say that f is continuously di�erentiable on Sd

if it is continuously di�erentiable on an open set containing Sd. Other useful terminology and notations
are clari�ed in the following.

De�nition 7.2.2. A di�erentiable function f is said to have a Lipschitz continuous gradient on Sd, if
there exists a constant ρ > 0 such that

∥∇f(x)−∇f(y)∥2 ≤ ρ ∥x− y∥2 , x,y ∈ Sd, (7.35)

where ∥·∥2 is the L2-norm in R2.

By C1,1(Sd) we denote the subclass of all functions f which are continuously di�erentiable with
Lipschitz continuous gradient on Sd. We call the smallest possible ρ such that (7.35) holds Lipschitz
constant for ∇f and we denote it by L(∇f).

If x ∈ Sd and f is a continuous convex function on Sd, from

x =

d∑
i=0

λi(x)vi

it follows that

f(x) ≤
d∑

i=0

λi(x)f(vi) = Π lin[f ](x), (7.36)

that is, the linear interpolation operator Π lin based on the standard simplicial linear �nite element P1(Sd)
approximates every continuous convex function from above. As a consequence, the following bound holds
as a particular case of the more general Theorem 6.4.4.

Theorem 7.2.3. For any f ∈ C1,1(Sd), we have

∣∣Elin[f ](x)
∣∣ = ∣∣f(x)−Π lin[f ](x)

∣∣ ≤ L(∇f)
2

(
d∑

i=0

λi(x) ∥vi∥22 − ∥x∥
2
2

)
, x ∈ Sd.

Equality is attained for all functions of the form

f(x) = a(x) + c ∥x∥22 ,

where c ∈ R and a(x) is any a�ne function.
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With reference to the formula (7.34), it remains to bound Etrak de�ned in (7.33). To this aim, we need
two preliminary lemmas. The �st lemma is a well-known multidimensional integration formula [59], which
we recall here for the ease of the reader, without proof. The second lemma follows from the previous one
applied to a particular integrand function f and it is used to bound Etrak .

Lemma 7.2.4. Let b be the barycenter of Sd, then

1

|Sd|

∫
Sd

f(x)dx =
d+ 1

d+ 2
f(b) +

1

(d+ 2)(d+ 1)

d∑
i=0

f(vi) +RSd
(f), (7.37)

with
RSd

(f) = 0,

for any polynomial f in d variables of total degree at most two.

Lemma 7.2.5. The following identity holds

1

|Sd|

∫
Sd

(
d∑

i=0

λi(x) ∥vi∥22 − ∥x∥
2
2

)
dx =

1

(d+ 1)(d+ 2)

∑
0≤i<j≤d

∥vi − vj∥22 . (7.38)

Proof. Since

f(x) =

d∑
i=0

λi(x) ∥vi∥22 − ∥x∥
2
2

is a quadratic polynomial in d variables which vanishes at all vertices of Sd, by Lemma 7.2.4, we get

1

|Sd|

∫
Sd

(
d∑

i=0

λi(x) ∥vi∥22 − ∥x∥
2
2

)
dx =

d+ 1

d+ 2

(
1

d+ 1

d∑
i=0

∥vi∥22 − ∥b∥
2
2

)
,

where in the last equality, we used the identity

λi(b) =
1

d+ 1
, i = 0, . . . , d.

It remains to show that(
1

d+ 1

d∑
i=0

∥vi∥22 − ∥b∥
2
2

)
=

1

(d+ 1)2

∑
0≤i<j≤d

∥vi − vj∥22 . (7.39)

We notice that
∥vi − vj∥22 = ∥vi∥22 + ∥vj∥

2
2 − 2 ⟨vi,vj⟩ , i, j = 0, . . . , d,

therefore, by summing over all i, j both members of previous equality, we get

d∑
i,j=0

∥vi − vj∥22 = (d+ 1)

�
d∑

i=0

∥vi∥22 +
d∑

j=0

∥vj∥22

�
− 2

°
d∑

i=0

vi,

d∑
j=0

vj

º
= 2(d+ 1)

d∑
i=0

∥vi∥22 − 2(d+ 1)2 ∥b∥22 ,

and then

2
∑

0≤i<j≤d

∥vi − vj∥22 = 2(d+ 1)2

(
1

d+ 1

d∑
i=0

∥vi∥22 − ∥b∥
2
2

)
.

Dividing both members of the previous equality by 2(d+1)2 we get equality (7.39) and then the thesis.

104



Now we are able to bound Etrak (f) de�ned in (7.33).

Theorem 7.2.6. For any f ∈ C1,1(Sd), we get

|Lk(f)− Ik(f)| ≤
L(∇f)

2d(d+ 1)

d∑
0≤j<ℓ≤d

j,ℓ ̸=k

∥vj − vℓ∥22 , k = 0, . . . , d. (7.40)

Equality in (7.40) is attained for all functions of the form

f(x) = a(x) + c ∥x∥22 , (7.41)

where c ∈ R and a(x) is any a�ne function.

Proof. Without loss of generality, we prove (7.40) for the particular case k = 0. We set

Π lin
F0

[f ](x) =

d∑
j=1

λj(x)f(vj), x ∈ F0. (7.42)

Then we have

L0(f) =
1

d

d∑
j=1

Lj(f) =
1

d

d∑
j=1

f(vj) =
1

|F0|

∫
F0

Π lin
F0

[f ](x)dσ(x) (7.43)

since the vertex rule for the face F0, see [76, De�nition 4.2]

1

|F0|

∫
F0

f(x)dσ(x) ≈ 1

d

d∑
j=1

f(vj) (7.44)

is exact for linear polynomials, as it can be easily proven by using equation (7.5). Therefore, we get

L0(f)− I0(f) =
1

|F0|

∫
F0

(
Π lin

F0
[f ](x)− f(x)

)
dσ(x). (7.45)

Since Π lin
F0

is the restriction of the interpolation operator Π lin, de�ned in (7.36), to F0, by Theorem 7.2.3,
we have ∣∣∣f(x)−Π lin

F0
[f ](x)

∣∣∣ ≤ L(∇f)
2

(
d∑

i=1

λi(x) ∥vi∥22 − ∥x∥
2
2

)
, x ∈ F0. (7.46)

Then, by (7.46) and (7.45) we get

|L0(f)− I0(f)| =

∣∣∣∣ 1

|F0|

∫
F0

(
Π lin

F0
[f ](x)− f(x)

)
dσ(x)

∣∣∣∣
≤ 1

|F0|

∫
F0

∣∣∣Π lin
F0

[f ](x)− f(x)
∣∣∣ dσ(x)

≤ L(∇f)
2

1

|F0|

∫
F0

(
d∑

i=1

λi(x) ∥vi∥22 − ∥x∥
2
2

)
dσ(x).

The desired result now follows by Lemma 7.2.5. Finally, simple computations show that the equality
in (7.40) is attained for all functions of the form (7.41).

A pointwise error bound for the approximation operator Πenr can be easily obtained by combining
Proposition 7.2.1, Theorem 7.2.3 and Theorem 7.2.6. In fact we have

105



Theorem 7.2.7. For any f ∈ C1,1(Sd), the following explicit error estimate holds for any x ∈ Sd

|Eenr[f ](x)| = |f(x)−Πenr[f ](x)| ≤ L(∇f)
2

(
d∑

i=0

λi(x) ∥vi∥22 − ∥x∥
2
2 + uenr(x)

)
, (7.47)

where

uenr(x) =
1

d(d+ 1)

d∑
k=0

�
|⟨e(x), ck⟩|

d∑
0≤i<j≤d
i,j ̸=k

∥vi − vj∥22

�
. (7.48)

7.2.3 The L∞ error estimate

The pointwise error bound given in Theorem 7.2.7 is the key result to get a bound in L∞-norm

∥f∥∞ = max
x∈Sd

|f(x)|

of the error Eenr[f ] de�ned in (7.31), in terms of the barycenter b, the circumcenter c and the circumradius
R of Sd [20]. As a corollary, we estimate ∥Eenr[f ]∥∞ through the diameter of Sd. With reference to (7.47),
we use the following lemma to bound

∑d
i=0 λi(x) ∥vi∥

2
2 − ∥x∥

2
2 for any x ∈ Sd, d ≥ 1.

Lemma 7.2.8. For any d ≥ 2, the following identity holds

d∑
i=0

λi(x) ∥vi∥22 − ∥x∥
2
2 = R2 − ∥x− c∥22 (7.49)

and then

sup
x∈Sd

(
d∑

i=0

λi(x) ∥vi∥22 − ∥x∥
2
2

)
= R2 − min

x∈Sd

∥x− c∥22 . (7.50)

Proof. By the bilinearity of the inner product and by the identity x =
d∑

i=0

λi(x)vi, we have

d∑
i=0

λi(x) ∥vi∥22 − ∥x∥
2
2 =

d∑
i=0

λi(x) ⟨vi − c+ c,vi − c+ c⟩ − ⟨x− c+ c,x− c+ c⟩

=

d∑
i=0

λi(x)
�
∥vi − c∥22 + 2 ⟨vi, c⟩ − ∥c∥22

�
−
�
∥x− c∥22 + 2 ⟨x, c⟩ − ∥c∥22

�
= R2 + 2

〈
d∑

i=0

λi(x)vi, c

〉
− ∥x− c∥22 − 2 ⟨x, c⟩

= R2 − ∥x− c∥22 .

Equation (7.50) follows directly from (7.49).

In order to bound the L∞-norm of uenr(x), whose expression is given in (7.48), we set

emax = max
i=0,...,d

∥⟨e(x), ci⟩∥∞ (7.51)

and consequently

|uenr(x)| ≤
emax

d(d+ 1)

d∑
k=0

∑
0≤i<j≤d
i,j ̸=k

∥vi − vj∥22 , x ∈ Sd.
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By applying equation (7.38) of Lemma 7.2.5 to the face Fk and by summing over all k from 0 to d, we
get

1

d(d+ 1)

d∑
k=0

∑
0≤i<j≤d
i,j ̸=k

∥vi − vj∥22 =

d∑
k=0

1

|Fk|

∫
Fk

(
d∑

i=0

λi(x) ∥vi∥22 − ∥x∥
2
2

)
dσ(x). (7.52)

The following lemma allows us to express the right-hand side member of (7.52) in terms of the barycenter
b, the circumcenter c and the circumradius R of Sd.

Lemma 7.2.9. For each d ≥ 2, the following identity holds

d∑
k=0

1

|Fk|

∫
Fk

(
d∑

i=0

λi(x) ∥vi∥22 − ∥x∥
2
2

)
dσ(x) =

d2 − 1

d

�
R2 − ∥b− c∥22

�
, (7.53)

where b, c and R are the barycenter, the circumcenter and the circumradius of Sd, respectively.

Proof. We make use of the well-known Green's formula [55, Ch 7]∫
Sd

f(x)∆u(x)dx+

∫
Sd

⟨∇f(x),∇u(x)⟩ dx =

d∑
k=0

∫
Fk

f(x) ⟨nk(x),∇u(x)⟩ dσ(x), (7.54)

where f ∈ C1(Sd), u ∈ C2(Sd) and nk(x) is the unit normal vector to the boundary of Fk at the point
x. We set

u(x) =
∥x− b∥22

2
,

then
∇u(x) = x− b, ∆u(x) = d,

and Green's formula (7.54) becomes

d

∫
Sd

f(x)dx+

∫
Sd

⟨∇f(x),x− b⟩ dx =

d∑
k=0

∫
Fk

f(x) ⟨nk(x),x− b⟩ dσ(x). (7.55)

Dividing by d both members of (7.55) and by using [55, Thm. 7.10.4], we get∫
Sd

f(x)dx+
1

d

∫
Sd

⟨∇f(x),x− b⟩ dx =
|Sd|
d+ 1

d∑
k=0

1

|Fk|

∫
Fk

f(x)dσ(x),

or, equivalently

1

|Sd|

∫
Sd

f(x)dx+
1

d |Sd|

∫
Sd

⟨∇f(x),x− b⟩ dx =
1

d+ 1

d∑
k=0

1

|Fk|

∫
Fk

f(x)dσ(x). (7.56)

Now we set
f(x) = ∥x− c∥22 ,

then
∇f(x) = 2(x− c),

and the equation (7.56) becomes

1

|Sd|

∫
Sd

∥x− c∥22 dx+
2

d |Sd|

∫
Sd

⟨x− c,x− b⟩ dx =
1

d+ 1

d∑
k=0

1

|Fk|

∫
Fk

∥x− c∥22 dσ(x). (7.57)

By Lemma 7.2.4
1

|Sd|

∫
Sd

∥x− c∥22 dx =
d+ 1

d+ 2
∥b− c∥22 +

1

d+ 2
R2, (7.58)
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moreover
1

|Sd|

∫
Sd

⟨x− c,x− b⟩ dx =
1

|Sd|

∫
Sd

⟨x− c,x− c+ c− b⟩ dx

=
1

|Sd|

∫
Sd

∥x− c∥22 dx−
1

|Sd|

∫
Sd

⟨x− c, b− c⟩ dx

=
d+ 1

d+ 2
∥b− c∥22 +

1

d+ 2
R2 − ∥b− c∥22 , (7.59)

since equation (7.58) and the equality

1

|Sd|

∫
Sd

⟨x− c, b− c⟩ dx = ∥b− c∥22

which follows by the midpoint cubature formula [94, Ch 8.8]. By using (7.58) and (7.59), after easy
computations, equation (7.57) becomes

1

d
R2 +

d− 1

d
∥b− c∥22 =

1

d+ 1

d∑
k=0

1

|Fk|

∫
Fk

∥x− c∥22 dσ(x)

or, equivalently,

1

d+ 1

d∑
k=0

1

|Fk|

∫
Fk

�
R2 − ∥x− c∥22

�
dσ(x) =

d− 1

d

�
R2 − ∥b− c∥22

�
. (7.60)

Finally, by multiplying both sides of (7.60) by d + 1, equation (7.53) is a direct consequence of
Lemma 7.2.8.

By combining (7.52) and (7.53) we get the following result.

Lemma 7.2.10. For each d ≥ 2, we have

1

d(d+ 1)

d∑
k=0

∑
0≤i<j≤d
i,j ̸=k

∥vi − vj∥22 =
d2 − 1

d

�
R2 − ∥b− c∥22

�
. (7.61)

Finally, by Lemma 7.2.8 and Lemma 7.2.10, from Theorem 7.2.7, the following result follows.

Theorem 7.2.11. For any f ∈ C1,1(Sd), the following explicit error estimate holds

∥f −Πenr[f ]∥∞ ≤
L(∇f)

2

�
R2 − min

x∈Sd

∥x− c∥22 +
d2 − 1

d

�
R2 − ∥b− c∥22

�
emax

�
. (7.62)

Let
h = sup

v,w∈Sd

∥v −w∥2

be the diameter of Sd. By Pythagorean Theorem, we get

R2 = min
x∈Sd

∥x− c∥22 +
h2

4
,

and then

R2 − ∥b− c∥22 ≤ R
2 − min

x∈Sd

∥x− c∥22 =
h2

4
. (7.63)

Consequently, the right-hand side of equation (7.62) can be bounded by

L(∇f)
8

�
1 +

d2 − 1

d
emax

�
h2

and the following estimate holds.

Corollary 7.2.12. For any f ∈ C1,1(Sd), the following explicit error estimate holds

∥f −Πenr[f ]∥∞ ≤
L(∇f)

8

�
1 +

d2 − 1

d
emax

�
h2. (7.64)
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7.2.4 The L1 error estimate

The pointwise error bound given in Theorem 7.2.7 is the key result to get a bound in L1-norm

∥f∥1 =

∫
Sd

|f(x)| dx

of the error Eenr[f ] de�ned in (7.31) in terms of the diameter h and the volume |Sd| of Sd.

Theorem 7.2.13. For any f ∈ C1,1(Sd), we get

∥f −Πenr[f ]∥1 ≤
L(∇f)

8

�
d+ 1

d+ 2
+
d2 − 1

d
e′max

�
h2 |Sd|, (7.65)

where we set

e′max =
1

|Sd|
max

i=0,...,d
∥⟨e(x), ci⟩∥1 . (7.66)

Proof. With reference to (7.47), we use Lemma 7.2.8 and Lemma 7.2.4 to get∫
Sd

(
d∑

i=0

λi(x) ∥vi∥22 − ∥x∥
2
2

)
dx =

∫
Sd

�
R2 − ∥x− c∥22

�
dx

=
d+ 1

d+ 2

�
R2 − ∥b− c∥22

�
|Sd|. (7.67)

On the other hand, from (7.48), by applying Lemma 7.2.10, we have

∫
Sd

|uenr(x)| dx ≤ max
k=0,...,d

∫
Sd

|⟨e(x), ck⟩| dx

�
1

d(d+ 1)

d∑
k=0

d∑
0≤i<j≤d
i,j ̸=k

∥vi − vj∥22

�
= max

k=0,...,d
∥⟨ck, e⟩∥1

d2 − 1

d

�
R2 − ∥b− c∥22

�
. (7.68)

Consequently∫
Sd

|f(x)−Πenr[f ](x)| dx ≤ L(∇f)
2

�
d+ 1

d+ 2
+
d2 − 1

d
e′max

��
R2 − ∥b− c∥22

�
|Sd| . (7.69)

The required result follows by recalling that R2 − ∥b− c∥22 ≤
h2

4 .

Now we bound |Sd| in (7.65) in order to show that the L1 error bound for Eenr[f ] is proportional to
the (d+ 2)-th power of the diameter of Sd.

Theorem 7.2.14. For any f ∈ C1,1(Sd), we have

∥f −Πenr[f ]∥1 ≤
L(∇f)
2d+3d!

Ê
(d+ 1)d+1

dd

�
d+ 1

d+ 2
+
d2 − 1

d
e′max

�
hd+2. (7.70)

Proof. By using (7.67) and (7.38) we get

(d+ 1)2
�
R2 − ∥b− c∥22

�
=

∑
0≤i<j≤d

∥vi − vj∥22 . (7.71)

By recalling the arithmetic-geometric mean inequality

x1 + x2 + · · ·+ xn
n

≥ n
√
x1x2 · · ·xn, n ∈ N, x1, . . . , xn ≥ 0,
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from equation (7.71), we get

(d+ 1)2
�
R2 − ∥b− c∥22

�
≥ d(d+ 1)

2

� ∏
0≤i<j≤d

∥vi − vj∥22

� 2
d(d+1)

. (7.72)

Moreover, the following inequality holds, see [73]

∏
0≤i<j≤d

∥vi − vj∥
2

d+1

2 ≥ d! |Sd|

Ê
2d

d+ 1
. (7.73)

From (7.72) and (7.73) we get

R2 − ∥b− c∥22 ≥ d

2(d+ 1)

� ∏
0≤i<j≤d

∥vi − vj∥
2

d+1

2

� 2
d

≥ d

2(d+ 1)

�
2d

d+ 1

� 1
d

(d!)
2
d |Sd|

2
d

=
d

(d+ 1)
d+1
d

(d!)
2
d |Sd|

2
d ,

and then

|Sd| ≤
1

d!

Ê
(d+ 1)d+1

dd

�
R2 − ∥b− c∥22

� d
2
.

The thesis follows.

7.2.5 A practical example

In the following, we go back on the enrichment functions

ei = (1− λi)γi
d∏

k=0

λ
αi,k−1
k , i = 0, . . . , d, (7.74)

of Example 7.1.5, where γi > 0, αi,i = 1 αi,k > 1, i, k = 0, . . . , d, i ̸= k. We determine the behavior of the
bound of the error (7.70) in dependence of all parameters γi, αi,k. To this aim we consider the standard
simplex in Rd

Ŝd =

x̂ = (x̂1, . . . , x̂d) ∈ Rd, x̂i ≥ 0 : i = 1, . . . , d,

d∑
j=1

x̂j ≤ 1

 ,

with barycentric coordinates

λ̂0(x̂) = 1−
d∑

j=1

x̂j , λ̂i(x̂) = x̂i, i = 1, . . . , d. (7.75)

Lemma 7.2.15. For each i = 0, . . . , d, the following equality holds∫
Ŝd

(1− λ̂i)γi

d∏
k=0

λ̂
αi,k−1
k dx̂ =

∏d
k=0 Γ (αi,k)

Γ (
∑d

k=0,k ̸=i αi,k)

Γ (γi +
∑d

k=0,k ̸=i αi,k)

Γ (γi +
∑d

k=0 αi,k)
, (7.76)

where γi ≥ 0, and αi,k ≥ 1, i, k = 0, . . . , d.
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Proof. First we prove (7.76) for i ̸= 0. Without loss of generality we can assume i = 1. By using (7.75),
we get

∫
Ŝd

(1− λ̂1)γ1

d∏
k=0

λ̂
α1,k−1
k dx̂

=

∫
Ŝd

(1− x̂1)γ1 x̂
α1,1−1
1 · · · x̂α1,d−1

d (1− x̂1 − · · · − x̂d)α1,0−1dx̂

=

∫ 1

0

(1− x̂1)γ1 x̂
α1,1−1
1 · · ·

∫ 1−x̂1−···−x̂d−1

0

x̂
α1,d−1
d (1− x̂1 − · · · − x̂d)α1,0−1dx̂. (7.77)

We set

w =
x̂d

1− x̂1 − · · · − x̂d−1

and then, we get ∫ 1−x̂1−···−x̂d−1

0

x̂
α1,d−1
d (1− x̂1 − · · · − x̂d)α1,0−1dx̂d

= (1− x̂1 − · · · − x̂d−1)
α1,0+α1,d−1

∫ 1

0

wα1,d−1(1− w)α1,0−1dw

= (1− x̂1 − · · · − x̂d−1)
α1,0+α1,d−1Γ (α1,d)Γ (α1,0)

Γ (α1,d + α1,0)
.

Therefore ∫
Ŝd

(1− λ̂1)γ1

d∏
j=0

λ̂
α1,j−1
j dx̂ =

Γ (α1,d)Γ (α1,0)

Γ (α1,d + α1,0)

∫ 1

0

(1− x̂1)γ1 x̂
α1,1−1
1 · · ·

· · ·
∫ 1−x̂1−···−x̂d−2

0

x̂
α1,d−1−1
d−1 (1− x̂1 − · · · − x̂d−1)

α1,0+α1,d−1dx̂1 . . . dx̂d−1.

Similar substitutions can be applied to the integral∫ 1−x̂1−···−x̂d−2

0

x̂
α1,d−1−1
d−1 (1− x̂1 − · · · − x̂d−1)

α1,0+α1,d−1dx̂d−1

and subsequent ones, in order to get, after some rearrangement, equation (7.76) for i = 1. Now we prove
equation (7.76) for i = 0. To this aim, we introduce the linear transformations

π : Ŝd → Ŝd, π(x̂1, x̂2 . . . , x̂d) = (û1, û2 . . . , ûd),

θ : Ŝd → Ŝd, θ(x̂1, x̂2 . . . , x̂d) = (x̂2, x̂1 . . . , x̂d),

where

û1 = 1−
d∑

j=1

x̂j , ûj = x̂j , j = 2, . . . , d.

The Jacobian determinant of the change of variables θ ◦ π is 1, then we get∫
Ŝd

(x̂1 + · · ·+ x̂d)
γ0 (1− x̂1 − · · · − x̂d)α0,0−1

x̂
α0,1−1
1 . . . x̂

α0,d−1
d dx̂

=

∫
Ŝd

(1− û1)γ0 û
α0,0−1
1 û

α0,2−1
2 . . . (1− û1 − · · · − ûd)α0,1−1dû.

The result now follows from the case i = 1.
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Remark 7.2.16. We notice that, by setting γi = 0, i = 0, . . . , d, equation (7.76) reduces to the integration
formula (7.2).

Theorem 7.2.17. Let ei, i = 0, . . . , d, be the enrichment functions de�ned in (7.74). Then, for any
f ∈ C1,1(Sd), we get

∥f −Πenr[f ]∥1 ≤
L(∇f)
2d+3d!

Ê
(d+ 1)d+1

dd

�
d+ 1

d+ 2
+
d2 − 1

µ

�
hd+2, (7.78)

where

µ = min
i=0,...,d

�
γi +

d∑
k=0,k ̸=i

αi,k

�
. (7.79)

Proof. With reference to the error bound (7.65), we compute e′max de�ned in (7.66) for the particular
case of the enrichment functions de�ned in (7.74). In particular, we prove that

e′max =
d

µ
.

From equation (7.26), the matrix N introduced in (7.11) is

N =


E0 . . . 0
0 . . . 0
...

...
...

0 . . . Ed

 ,
where

Ei = Ii(ei) =
(d− 1)!

∏d
k=0,k ̸=i Γ (αi,k)

Γ (
∑d

k=0,k ̸=i αi,k)
, i = 0, . . . , d. (7.80)

Therefore

N−1 = [c0 . . . cd] =


1
E0

. . . 0

0 . . . 0
...

...
...

0 . . . 1
Ed

 ,
and consequently

e′max =
1

|Sd|
max

i=0,...,d

1

|Ei|

∫
Sd

(1− λi(x))γi

d∏
k=0

λ
αi,k−1
k (x)dx. (7.81)

We use the change of variables x̂ 7→
d∑

i=0

λ̂i(x̂)vi, x̂ ∈ Ŝd to compute the integrals at the right-hand side

of (7.81) and we get

e′max =
1∣∣∣Ŝd

∣∣∣ max
i=0,...,d

1

|Ei|

∫
Ŝd

(1− λ̂i(x))γj

d∏
k=0

λ̂
αi,k−1
k (x)dx̂.

The thesis follows by using equation (7.76) and (7.80).

Remark 7.2.18. We notice that when d = 2, the results introduced here are equivalent to the results
presented in Chapter 6. Then the enrichment strategy introduced here, in this sense, generalizes the
enrichment strategy introduced in Chapter 6.
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7.2.6 Global approximation operator

Let Xn = {xi : i = 1 . . . , n} be a set of n scattered points in Rd and let Sm = {Sj : j = 1, . . . ,m} be a
partition into simplices, with the points of Xn as vertices, of the convex hull of Xn, C = conv(Xn). For
any f ∈ C1,1(C) and x ∈ C, we de�ne

Πenr
Sm

[f ](x) = Πenr[f, Sj ](x), if x ∈ Sj , j = 1, . . . ,m, (7.82)

whereΠenr[f, Sj ] is the approximation operator based on the triple (Sj ,Penr
1 (Sj), Σ

enr
Sj

) introduced in (7.30).
For the enrichment functions (7.74), Theorem 7.2.17 gives us the following global estimate for any
f ∈ C1,1(C)∥∥f −Πenr

Sm
[f ]
∥∥
1

=

∫
C

∣∣f(x)−Πenr
Sm

[f ](x)
∣∣ dx =

∑
Sj∈Sm

∫
Sj

|f(x)−Πenr[f, Sj ](x)| dx

≤ L(∇f)
2d+3d!

Ê
(d+ 1)d+1

dd

�
d+ 1

d+ 2
+
d2 − 1

µ

� ∑
Sj∈Sm

hd+2
Sj

, (7.83)

where hSj is the diameter of the simplex Sj . Denoting by

E1(Sm) =
∑

Sj∈Sm

hd+2
Sj

,

we �nd that the global error bound (7.83) is proportional to E1(Sm), by a constant factor which is
independent on Sm. By using the optimality results of Delaunay triangulation, which can be found
in [41] and [53], it is possible to prove the following result.

Theorem 7.2.19. Let Xn be a set of n distinct and non-collinear points in Rd and let Sm be any
partition of the convex hull of Xn into simplices with the points of Xn as vertices. Then E1(Sm) achieves
its minimum if and only if Sm is the Delaunay triangulation in Rd.

7.3 Numerical experiments

In this Section, we numerically prove the accuracy of the proposed method by several examples. The
numerical experiments are performed by using MatLab software. In particular, the command integral2

is used in order to compute the integrals of all considered functions over all faces of the simplex Sd.
We consider d = 3 and the following enrichments of the standard simplicial linear �nite element

� E1 =

ei = (1− λi)
3∏

j=0
j ̸=i

λj : i = 0, . . . , 3

 ,

� E2 =

ei =
3∏

j=0
j ̸=i

sin(λj) : i = 0, . . . , 3

 ,

� E3 =

ei = e−λi

3∏
j=0
j ̸=i

(1− e−λj ) : i = 0, . . . , 3

.

We compute the approximation error in L1-norm for the test functions

f1(x, y, z) = sin(xyz), f2(x, y, z) = sin(πx) sin(πy) sin(πz).

Furthermore, we perform a direct comparison between the approximation produced by the enriched
simplicial �nite element and that produced by the simplicial �nite element. In each experiments we
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Figure 7.1: Loglog plot of the approximation errors, in L1-norm, of the function f1(x, y, z) = sin(xyz)
obtained by using the enriched �nite elements E1 (left), E2 (center), E3(right) (blue line) compared with
that produced by the simplicial �nite element (red dashed line), where the diameter of the simplex is
h = 10−k, k = 0, 1, 2, 3.
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Figure 7.2: Loglog plot of the approximation errors, in L1-norm, of the function f2(x, y, z) =
sin(πx) sin(πy) sin(πz), obtained by using the enriched �nite elements E1 (left), E2 (center), E3 (right)
(blue line) compared with that produced by the simplicial �nite element (red dashed line), where the
diameter of the simplex is h = 10−k, k = 0, 1, 2, 3.
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consider a simplex of diameter h = 10−k, k = 0, 1, 2, 3. The results of the experiments are represented in
Figure 7.1 and in Figure 7.2.

For all examples, it is possible to notice an improvement in the accuracy of the approximation produced
by the enriched �nite element.
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Chapter 8

A general class of enriched methods for

the simplicial linear �nite elements

Low-order elements are widely used and preferred for �nite element analysis, speci�cally the three-node
triangular and four-node tetrahedral elements, both based on linear polynomials in barycentric coordi-
nates. They are known, however, to under-perform when nearly incompressible materials are involved.
The problem may be circumvented by the use of higher degree polynomial elements, but their application
become both more complex and computationally expensive. For this reason, nonpolynomial enriched �nite
element methods have been proposed for solving engineering problems. In line with previous chapters, the
main goal of this chapter is to provide a general strategy for enriching the standard simplicial linear �nite
element by nonpolynomial functions, without imposing restrictive conditions on the enrichment functions,
like their vanishing at the vertices. In other words, we extend the results presented in Chapter 7 to a
more general case, by using generic enrichment continuous functions and generic linear functionals. We
investigate the conditions on the enrichment functions under which the associated interpolation problem
is solvable. The results presented in this chapter can be found in [35].

8.1 Enrichment of the standard simplicial linear �nite element

Let Sd ⊂ Rd be the d-simplex in Rd with vertices v0, . . . ,vd and barycentric coordinates λ0, . . . , λd. For
i = 0, . . . , d, we denote by Fi the face of Sd which does not contain the vertex vi. For each j = 0, . . . , d,
we consider the enriched set of linear functionals

Σenr
Sd

= {Lj , I
enr
j : j = 0, . . . , d}, (8.1)

where Lj : C(Sd)→ R is the point evaluation functionals at the vertices of the simplex Sd, that is

Lj(f) = f(vj), (8.2)

while Ienrj is an enrichment linear functional on C(Sd). By using the same notations of the previous
chapter, we aim to enrich the space

P1(Sd) = span {1, x1, . . . , xd} , (8.3)

up to a space Penr
1 (Sd) with a set of appropriate continuous enrichment functions e0, . . . , ed such that, by

setting
Fenr = span {e0, . . . , ed} , (8.4)

we get
Penr
1 (Sd) = P1(Sd)⊕ Fenr. (8.5)

De�nition 8.1.1. Let e0, . . . , ed be linearly independent continuous enrichment functions. They are
said admissible enrichment functions if we can enrich P1(Sd), de�ned in (7.7), to the �nite element
(Sd,Penr

1 (Sd), Σ
enr
Sd

).
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In order to �nd conditions under which e0, . . . , ed are admissible enrichment functions, we assume that

dim(Penr
1 (Sd)) = 2d+ 2. (8.6)

A key issue in the selection of the enrichment functions, in both conforming and non-conforming �nite
element methods, is to assure that Penr

1 (Sd) is Σenr
Sd

-unisolvent [23, Ch 2]. Consequently, given a set of
enrichment functionals {Ienrj : j = 0, . . . , d}, the problem arises in determining classes of sets of admissible
enrichment functions Fenr. This problem is commonly referred as to the local enrichment approximation [3]
and occurs widely in practical applications, such as the locally enriched �nite element [98], and the
surface reconstruction with enriched reproducing kernel particle approximation, via the use of additional
enrichment functions.

Remark 8.1.2. We remark that, the operator Π lin, de�ned in (7.27), satis�es

Lj

(
Π lin[f ]

)
= Lj(f), j = 0, . . . , d, (8.7)

and the relative approximation error

Elin[f ] = f −Π lin[f ], f ∈ C(Sd) (8.8)

satis�es
Elin[f ] = 0, f ∈ P1(Sd). (8.9)

For any k = 0, . . . , d, we introduce the functional

Etrak =

d∑
j=0

Ienrk (λj)Lj − Ienrk , (8.10)

which can be seen as the error in approximating the linear functional Ienrk by a linear combination of
functionals Lj , j = 0, . . . , d [48]. Then, we have the following Lemma.

Lemma 8.1.3. Let f ∈ P1(Sd). Then, for any k = 0, . . . , d, we have

Etrak (f) = 0. (8.11)

Proof. Since the set of barycentric coordinates forms a basis of P1(Sd), it su�ces to show that for any
k = 0, . . . , d, we have

Etrak (λi) = 0, i = 0, . . . , d. (8.12)

In fact, by using the Lagrange property of barycentric coordinates

λi(vj) = δij (8.13)

we get

Etrak (λi) =

d∑
j=0

Ienrk (λj)λi(vj)− Ienrk (λi)

=

d∑
j=0

Ienrk (λj) δij − Ienrk (λi)

= Ienrk (λi)− Ienrk (λi) = 0.

Further, for any j = 0, . . . , d, we introduce the vector gj ∈ R2d+2 of components

gji = Ienrj (λi) , gji+d+1 = −δij , i = 0, . . . , d, (8.14)
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and, for any f ∈ C(Sd), the vector L(f) of components

L0(f), . . . , Ld(f), Lj+d+1(f) = Ienrj (f) j = 0, . . . , d. (8.15)

Therefore, the functionals Etrak de�ned in (8.10) can be expressed in terms of gk and L(f) as

Etrak (f) =
〈
gk,L(f)

〉
, (8.16)

where ⟨·, ·⟩ is the usual scalar product on R2d+2.

Lemma 8.1.4. The vectors gj, j = 0, . . . , d, are linearly independent.

Proof. Let α0, . . . , αd ∈ R such that
d∑

j=0

αjg
j = 0. Then, in particular, from (8.14) we get

−
d∑

j=0

αjδij = 0, i = 0, . . . , d,

i.e. αi = 0, i = 0, . . . , d, and then the vectors gj , j = 0, . . . , d are linearly independent.

In the light of the dimension of the enriched space Penr
1 (Sd), stated in condition (8.6), previous lemmas

imply the following characterization result for the enrichment functions e0, . . . , ed, so that the triple

(Sd,Penr
1 (Sd), Σ

enr
Sd

)

is a �nite element, or equivalently so that Penr
1 (Sd) is Σenr

Sd
-unisolvent.

Theorem 8.1.5. Let

N =


−Etra0 (e0) . . . −Etra0 (ed)
−Etra1 (e0) . . . −Etra1 (ed)

...
...

...
−Etrad (e0) . . . −Etrad (ed)

 , (8.17)

then the triple (Sd,Penr
1 (Sd), Σ

enr
Sd

) is a �nite element if and only

det(N) ̸= 0.

Proof. Let us assume that det(N) ̸= 0 and we prove that Penr
1 (Sd) is Σenr

Sd
-unisolvent. Let f ∈ Penr

1 (Sd)
such that

Lj(f) = 0, j = 0, . . . , d, (8.18)

Ienrj (f) = 0, j = 0, . . . , d. (8.19)

Since f ∈ Penr
1 (Sd), it can be expressed as

f = p+

d∑
i=0

βiei,

where p ∈ P1(Sd) and β0, . . . , βd are real numbers. Each functional Etrak , k = 0, . . . , d is a linear combina-
tion of the functionals Lj , j = 0, . . . , d and Ienrk then, as Etrak (p) = 0 if p ∈ P1(Sd) by (8.11), from (8.18)
and (8.19), we obtain

0 = Etrak (f)

= Etrak (p) +

d∑
i=0

βiEtrak (ei)

=

d∑
i=0

βiEtrak (ei), k = 0, . . . , d. (8.20)
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Equation (8.20) can be represented in matrix form as

−Nβ = 0,

where β = [β0, β1, . . . , βd]
T . Since, by hypothesis, the matrix N is nonsingular, we get β0 = β1 = · · · =

βd = 0 and therefore f = p. Taking into account that f vanishes at the vertices of the simplex Sd,
by (8.18), we �nd that f is identically zero.
In order to prove the reverse implication, let us assume to the contrary that

det(N) = 0.

Since the determinant of any square matrix is equal to the determinant of its transpose, then there exist
constants γ0, . . . , γd, not all zero, such that the functional

Etra =

d∑
k=0

γkEtrak ,

vanishes at the enrichment functions e0, . . . , ed. By the linearity of Etra and by equation (8.11) in
Lemma 8.1.3, we deduce that Etra vanishes on the whole space Penr

1 (Sd). Therefore, for any f ∈ Penr
1 (Sd),

from (8.16), we have

0 = Etra(f) =

d∑
k=0

γkEtrak (f)

=

d∑
k=0

γk
〈
gk,L(f)

〉
=

〈
d∑

k=0

γkg
k,L(f)

〉
. (8.21)

Since, by hypothesis, (Sd,Penr
1 (Sd), Σ

enr
Sd

) is a �nite element, there exist 2d + 2 linearly independent
functions fi ∈ Penr

1 (Sd), i = 1, . . . , 2d + 2, such that L(fi) = ui, where ui is the i-th element of the
canonical basis of R2d+2. Therefore, by equation (8.21), we get〈

d∑
k=0

γkg
k,ui

〉
= 0, i = 1, . . . , 2d+ 2,

i.e.
d∑

k=0

γkg
k is orthogonal to the basis vectors ui, i = 1, . . . , 2d+ 2, and therefore

d∑
k=0

γkg
k = 0.

From Lemma 8.1.4, the vectors gk, k = 0, . . . , d are linearly independent in R2d+2 and then γk = 0,
k = 0, . . . , d, which is a contradiction.

In the special case in which the enrichment functions vanish at the vertices of the simplex, by (8.10)
we get

Etrak (ei) = −Ienrk (ei), i, k = 0, . . . , d,

and then we can reformulate the previous theorem as follows.

Theorem 8.1.6. Let ∆enr = {Ienr0 , . . . , Ienrd } ⊂ Σenr
Sd

be a set of enrichment linear functionals and
Fenr = span {e0, . . . , ed}, where e0, . . . , ed are enrichment functions satisfying the vanishing condition at
the vertices of Sd, that is

ei(vj) = 0, i, j = 0, . . . , d. (8.22)

Then (Sd,Penr
1 (Sd), Σ

enr
Sd

) is a �nite element if and only if (Sd,Fenr, ∆enr) is a �nite element.
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Proof. Since the enrichment functions e0, . . . , ed are assumed to be linearly independent, the condition
det(N) ̸= 0 of Theorem 8.1.5 reformulated in terms of the functionals Ienrk , is equivalent to the statement
that (Sd,Fenr, ∆enr) is a �nite element [23, Thm. 2.2.2].

In the following, we assume that the matrix N is nonsingular and we denote its inverse by

N−1 = [c0 . . . cd],

where ci ∈ Rd, i = 0, . . . , d, are column vectors. A direct consequence of Theorem 8.1.5 is the linear
independence of the functionals of Σenr

Sd
in the dual space Penr

1 (Sd)
⋆ [23, Ch 2]. Then, there exists a basis

{φj , ψj : j = 0, . . . , d} of Penr
1 (Sd) which satisfy

Lj(φi) = δij , Ienrj (φi) = 0, i, j = 0, . . . , d, (8.23)

Lj(ψi) = 0, Ienrj (ψi) = δij , i, j = 0, . . . , d. (8.24)

In the following, we derive explicit expressions for such basis functions.

Theorem 8.1.7. The basis functions φj, ψj, j = 0, . . . , d of the �nite element (Sd,Penr
1 , Σenr

Sd
) have the

following expressions

φj = λj −
d∑

k=0

Ienrk (λj)ψk, j = 0, . . . , d, (8.25)

ψj =
〈
Elin[e], cj

〉
, j = 0, . . . , d, (8.26)

where
e = [e0, . . . , ed]

T

and, according to (8.8), Elin[e] = e−Π lin[e].

Proof. Without loss of generality, we prove (8.25) for the case j = 0. Since φ0 belongs to Penr
1 (Sd),

by (8.5) it can be expressed as

φ0 = p+

d∑
i=0

β0iei, (8.27)

or, equivalently,
φ0 = p+ ⟨e,β0⟩ , (8.28)

where β0 = [β00 , . . . , β0d ]
T ∈ Rd+1. Since, by (8.10),

Etrak (φ0) =

d∑
j=0

Ienrk (λj)Lj(φ0)− Ienrk (φ0) k = 0, . . . , d,

from (8.23) we have

Etrak (φ0) =

d∑
j=0

Ienrk (λj)δ0j − 0 = Ienrk (λ0), k = 0, . . . , d. (8.29)

We apply Etrak to both members of (8.27) and by previous equation we get

Ienrk (λ0) = Etrak (p) +

d∑
i=0

β0iEtrak (ei), k = 0, . . . , d.

Equation (8.11) in Lemma 8.1.3 then yields

Ienrk (λ0) =

d∑
i=0

β0iEtrak (ei), k = 0, . . . , d,
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or, in matrix form,
Ienr0 = −Nβ0,

where Ienr0 = [Ienr0 (λ0), . . . , I
enr
d (λ0)]

T . Since N is not singular, we have

β0 = −N−1Ienr0 = −
d∑

k=0

ckI
enr
k (λ0),

which we substitute in (8.28) to obtain

φ0 = p−
d∑

k=0

Ienrk (λ0) ⟨e, ck⟩ . (8.30)

By applying Lj , j = 0, . . . , d to both sides of previous equation, by (8.23) we have

δ0j = p(vj)−
d∑

k=0

Ienrk (λ0) ⟨e(vj), ck⟩ , j = 0, . . . , d,

and then

p(vj) = δ0j +

d∑
k=0

Ienrk (λ0) ⟨e(vj), ck⟩ , j = 0, . . . , d.

By multiplying the above equality by λj and by summing over all j = 0, . . . , d we immediately get

d∑
j=0

λjp(vj) = λ0 +

d∑
k=0

Ienrk (λ0)

°
d∑

j=0

e(vj)λj , ck

º
. (8.31)

Since p is a linear polynomial, by equations (8.7) and (8.9) the identity (8.31) becomes

p = λ0 +

d∑
k=0

Ienrk (λ0)
〈
Π lin[e], ck

〉
(8.32)

and then, by substituting (8.32) in (8.30), we get

φ0 = λ0 +

d∑
k=0

Ienrk (λ0)
〈
Π lin[e]− e, ck

〉
.

In order to prove (8.25) for j = 0, it remains to prove (8.26). To this aim, without loss of generality, we
show the validity of (8.26) for j = 0. We proceed in analogy to the previous case and then we set

ψ0 = p+

d∑
i=0

γ0iei, (8.33)

or, equivalently,
ψ0 = p+ ⟨e,γ0⟩ , (8.34)

where γ0 = [γ00 , . . . , γ0d ]
T ∈ Rd+1. Since, by (8.10),

Etrak (ψ0) =

d∑
j=0

Ienrk (λj)Lj(ψ0)− Ienrk (ψ0) k = 0, . . . , d,

from (8.24) we have
Etrak (ψ0) = −δ0k.
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We apply Etrak to both members of (8.33) and by previous equation we get

−δ0k = Etrak (p) +

d∑
i=0

γ0iEtrak (ei), k = 0, . . . , d.

Equation (8.11) in Lemma 8.1.3 then yields

−δ0k =

d∑
i=0

γ0iEtrak (ei), k = 0, . . . , d,

or, in matrix form,
u0 = Nγ0,

where ui, i = 0, . . . , d is the standard basis of Rd+1. Therefore, we get

γ0 = N−1u0 = c0,

and by substituting into equation (8.34), we �nd

ψ0 = p+ ⟨e, c0⟩ . (8.35)

By applying Lj , j = 0, . . . , d to both sides of previous equation, by (8.24) we have

0 = p(vj) + ⟨e(vj), c0⟩ ,

and then
p(vj) = −⟨e(vj), c0⟩ .

By multiplying the above equality by λj and by summing over all j = 0, . . . , d, we have

d∑
j=0

λjp(vj) = −

°
d∑

j=0

λje(vj), c0

º
, (8.36)

and then
p = −

〈
Π lin[e], c0

〉
.

Finally, equation (8.35) yields
ψ0 =

〈
e−Π lin[e], c0

〉
,

then the equation (8.26) is proved for j = 0. Similarly, we can prove (8.26) for j = 1, . . . , d and
consequently (8.25) for j = 0 is proved. The expression of the other functions can be obtained using
symmetry arguments.

Remark 8.1.8. Let us assume that e0, . . . , ed satisfy the vanishing conditions (8.22). Then the basis
functions of the element (Sd,Fenr, ∆enr) are

ψj = ⟨e, cj⟩ , j = 0, . . . , d.

8.2 Admissible enrichment functions

In this section, we collect sets of admissible enrichment functions, that is functions for which the triple
(Sd,Penr

1 (Sd), Σ
enr
Sd

) is a �nite element. The main issue when using the proposed enriched method is to
ensure that the matrixN given in (8.17) is invertible. These enrichment functions constitute a very general
class, which can be used for many types of applications. In the following, we consider the enrichment
linear functionals

Ienrj (f) =
1

|Fj |

∫
Fj

f(x) dσ(x), j = 0, . . . , d, (8.37)

where Fj is the face of Sd which does not contain the vertex vj and dσ(x) is the Lebesgue measure on
the face Fj .

There are two special classes of enrichment functions which are of particular interest.
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8.2.1 Admissible enrichment functions of the �rst class

The functions of the �rst class can be represented as a product of n convex, increasing (or decreasing),
nonnegative functions. The following lemma from [59] and the subsequent one play a crucial role in our
analysis.

Lemma 8.2.1. Let g be a convex function on Sd, then for any j = 0, . . . , d, we have

1

|Fj |

∫
Fj

g(x) dσ(x) ≤ 1

d

d∑
i=0
i ̸=j

g(vi).

Equality is attained if and only if g is an a�ne function.

Lemma 8.2.2. Let n ∈ N and let f1, . . . , fn ∈ C([0, 1]) be convex, increasing (or decreasing) and non-
negative functions di�erent from zero. Let us assume that f1 is strictly convex. Then

hn =

n∏
ℓ=1

fℓ

is a strictly convex, increasing (or decreasing), nonnegative function.

Proof. The proof is by induction on n. The case n = 1 is trivial. We assume that

hn−1 =

n−1∏
ℓ=1

fℓ

is a strictly convex, increasing (or decreasing), nonnegative function. We prove that hn = hn−1fn is an
increasing (or decreasing) function. Let x, y ∈ [0, 1] such that x < y, then

(hn−1fn)(x)− (hn−1fn)(y) = hn−1(x) (fn(x)− fn(y)) + fn(y) (hn−1(x)− hn−1(y)) .

Therefore hn−1fn is an increasing (or decreasing) function. For each x, y ∈ [0, 1] and t ∈ (0, 1), we set

δ = t(hn−1fn)(x) + (1− t)(hn−1fn)(y)− (hn−1fn)(tx+ (1− t)y).

We want to prove that δ > 0. Since hn−1 is a strictly convex function, we get

(hn−1fn)(tx+ (1− t)y) = hn−1(tx+ (1− t)y)fn(tx+ (1− t)y)
< (thn−1(x) + (1− t)hn−1(y))(tfn(x) + (1− t)fn(y)). (8.38)

After easy computations, from (8.38), we get

δ > t(1− t) (hn−1(x)− hn−1(y)) (fn(x)− fn(y)) > 0.

Then hn−1fn is a strictly convex, increasing (or decreasing), nonnegative function.

Now we can prove the following theorem.

Theorem 8.2.3. Let n ∈ N and let f1, . . . , fn ∈ C([0, 1]) be convex, increasing (or decreasing) and
nonnegative functions di�erent from zero and let us assume that at least one function is strictly convex.
We consider the enrichment functions

ei =

n∏
ℓ=1

fℓ(λi), i = 0, . . . , d, (8.39)

and the enrichment linear functionals de�ned in (8.37). Then we have

Etrai (ei) = 0, i = 0, . . . , d (8.40)

and
Etrak (ei) > 0, i, k = 0, . . . , d, i ̸= k, (8.41)

where the functionals Etrak are de�ned in (8.10).
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Proof. Since λi(x) = 0 for any x ∈ Fi, i = 0, . . . , d, by the integral formula (7.5), we get

Etrai (ei) =

d∑
j=0

Ienri (λj) ei(vj)− Ienri (ei)

=

d∑
j=0
j ̸=i

Ienri (λj) ei(vj)− Ienri (ei)

=

d∑
j=0
j ̸=i

n∏
ℓ=1

fℓ(0)

d
−

n∏
ℓ=1

fℓ(0)

=

n∏
ℓ=1

fℓ(0)−
n∏

ℓ=1

fℓ(0) = 0.

For i ̸= k, similarly, we get

Etrak (ei) =

d∑
j=0

Ienrk (λj) ei(vj)− Ienrk (ei)

=

d∑
j=0
j ̸=k

1

d
ei(vj)− Ienrk (ei).

By Lemma 8.2.2 the functions ei, i = 0, . . . , d are convex functions and then, by Lemma 8.2.1, we get

Etrak (ei) > 0, i, k = 0, . . . , d, i ̸= k.

We denote by λ̂i, i = 0, . . . , d, the barycentric coordinates of the d-dimensional standard simplex

Ŝd =

x̂ = (x̂1, . . . , x̂d) ∈ Rd, x̂i ≥ 0, i = 1, . . . , d,

d∑
j=1

x̂j ≤ 1

 ,

that is

λ̂0(x̂) = 1−
d∑

j=1

x̂j , λ̂i(x̂) = x̂i, i = 1, . . . , d,

and by ÒFi the face of Ŝd which does not contain the vertex v̂i. Then, the following result holds.

Theorem 8.2.4. Let n ∈ N and let f1, . . . , fn ∈ C([0, 1]). Then∫
Ŝd

n∏
ℓ=1

fℓ(λ̂i(x̂))dx̂ =

∫ 1

0

n∏
ℓ=1

fℓ(t)
(1− t)d−1

(d− 1)!
dt, i = 1, . . . , d. (8.42)

Proof. First we prove (8.42) for i ̸= 0. Without loss of generality we assume i = 1, then∫
Ŝd

n∏
ℓ=1

fℓ(λ̂1(x̂)) dx̂ =

∫
Ŝd

n∏
ℓ=1

fℓ(x̂1) dx̂ =

∫ 1

0

n∏
ℓ=1

fℓ(t)

�∫
(1−t)Ŝ1

d−1

dx̂2 · · · dx̂d

�
dt, (8.43)

where we set

(1− t)Ŝ1
d−1 =

(x̂2, . . . , x̂d) ∈ Rd−1, x̂i ≥ 0, i = 2, . . . , d,

d∑
j=2

x̂j ≤ (1− t)

 .
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In order to compute this integral, we consider the map ζ : Ŝd−1 → (1− t)Ŝ1
d−1 de�ned as

ζ(x̂1, . . . , x̂d−1) = (ζ1, . . . , ζd−1),

where ζi = (1− t)x̂i, i = 1, . . . , d− 1. By using ζ as change of variables, we get∫
(1−t)Ŝ1

d−1

dx̂2 · · · dx̂d = (1− t)d−1

∫
Ŝd−1

dx̂1 · · · dx̂d−1 = (1− t)d−1
∣∣∣Ŝd−1

∣∣∣ . (8.44)

By noting that ∣∣∣Ŝd−1

∣∣∣ = 1

(d− 1)!
,

the result follows by substituting (8.44) in (8.43). Now we prove (8.42) for i = 0. To this aim, we consider
the linear transformations

π : Ŝd → Ŝd, π(x̂1, x̂2 . . . , x̂d) = (û1, û2 . . . , ûd),

θ : Ŝd → Ŝd, θ(x̂1, x̂2 . . . , x̂d) = (x̂2, x̂1 . . . , x̂d),

where

û1 = 1−
d∑

j=1

x̂j , ûj = x̂j , j = 2, . . . , d.

The Jacobian determinant of the change of variables θ ◦ π is 1, then we get∫
Ŝd

n∏
ℓ=1

fℓ(λ̂0(x̂))dx̂ =

∫
Ŝd

n∏
ℓ=1

fℓ(λ̂1(x̂))dx̂.

The result follows from the case i = 1.

The previous result can be stated for a generic simplex as follows.

Corollary 8.2.5. Let n ∈ N and let f1, . . . , fn ∈ C([0, 1]). For any i = 0, . . . , d, we have∫
Sd

n∏
ℓ=1

fℓ(λi(x))dx =
|Sd|∣∣∣Ŝd

∣∣∣
∫ 1

0

n∏
ℓ=1

fℓ(t)
(1− t)d−1

(d− 1)!
dt, (8.45)

and then the value of the integral on the right-hand side of (8.45) does not depend on i.

Proof. We denote by

ζ : Ŝd → Sd, ζ(x̂) =

d∑
i=0

λ̂i(x̂)vi.

The proof follows directly by Theorem 8.2.4, by using ζ−1 as a change of variables.

Remark 8.2.6. In the hypotheses of Theorem 8.2.3, for the functionals de�ned in (8.10) and the enrich-
ment functions de�ned in (8.39), by Lemma 7.1.1, we have

Etrak (ei) =
1

d

n∏
ℓ=1

fℓ(1) +
(d− 1)

d

n∏
ℓ=1

fℓ(0)− Ienrk

(
n∏

ℓ=1

fℓ(λi)

)
, i, k = 0, . . . , d, i ̸= k.

Consequently, taking into account the de�nition (8.37) of the enrichment linear functionals Ienrk (·), by
Corollary 8.2.5, we get

Etrak (ei) = Etrak (ej), i, j, k = 0, . . . , d, k ̸= i, j. (8.46)
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Theorem 8.2.7. Let n ∈ N and let f1, . . . , fn ∈ C([0, 1]) be convex, increasing (or decreasing) and
nonnegative functions di�erent from zero and let us assume that at least one function is strictly convex.
Let ei, I

enr
j , i, j = 0, . . . , d, be the enrichment functions and the enrichment linear functionals de�ned

in (8.39) and (8.37), respectively. Then the matrix N de�ned in (8.17) is nonsingular.

Proof. By equation (8.46) of Remark 8.2.6 we can set

µk = −Etrak (ei), i, k = 0, . . . , d, k ̸= i. (8.47)

Consequently, the matrix N de�ned in (8.17) is

N =


0 µ0 · · · µ0

µ1 0 · · · µ1

...
...

. . .
...

µd µd · · · 0

 ,
where the diagonal elements are zero in force of equation (8.40). Consequently

det(N) = det


0 µ0 · · · µ0

µ1 0 · · · µ1

...
...

. . .
...

µd µd · · · 0

 =

d∏
k=0

µk det


0 1 · · · 1
1 0 · · · 1
...

...
. . .

...
1 1 · · · 0

 .
In order to evaluate the last determinant, we replace the �rst column by the sum of all the columns and
then

det(N) = d

d∏
k=0

µk det


1 1 · · · 1
1 0 · · · 1
...

...
. . .

...
1 1 · · · 0

 .
Finally, by subtracting the �rst row from the rest of the rows, we get

det(N) = d

d∏
k=0

µk det


1 1 · · · 1
0 −1 · · · 0
...

...
. . .

...
0 0 · · · −1

 = (−1)dd
d∏

k=0

µk.

Since, by Theorem 8.2.3, µk = −Etrak (ei) < 0, for each i, k = 0, . . . , d, k ̸= i, the thesis follows.

In the following, we give an explicit expression, in closed-form, of the basis functions associated to
the �nite element enriched with the functionals de�ned in (8.37) and the enrichment functions de�ned
in (8.39).

Theorem 8.2.8. Let e0, . . . , ed and Ienr0 , . . . , Ienrd be the enrichment functions and the enrichment func-
tionals de�ned in (8.39) and in (8.37), respectively. Then the basis functions (8.25), (8.26) of the enriched
�nite element have the following expressions

φj = λj −
1

d

d∑
k=0
k ̸=j

ψk, j = 0, . . . , d, (8.48)

ψj =
1

dµj

d∑
k=0

(1− dδjk)Elin[ek], j = 0, . . . , d, (8.49)

where
µk = −Etrak (ei), i, k = 0, . . . , d, k ̸= i. (8.50)
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Proof. With reference to equation (8.26) of Theorem 8.1.7, we compute〈
Elin[e], cj

〉
,

where cj is the j-th column of the inverse of the matrix

N =


0 µ0 · · · µ0

µ1 0 · · · µ1

...
...

. . .
...

µd µd · · · 0

 .
It is easy to verify that N has the inverse matrix

N−1 =


1−d
dµ0

1
dµ1

· · · 1
dµd

1
dµ0

1−d
dµ1

· · · 1
dµd

...
...

. . .
...

1
dµ0

1
dµ1

· · · 1−d
dµd

 . (8.51)

By using the Lagrange property of barycentric coordinates, we get

Elin[e] = [Elin[e0], . . . , E
lin[ed]]

T , (8.52)

where

Elin[ek] =

n∏
ℓ=1

fℓ(λk)−
d∑

j=0

n∏
ℓ=1

fℓ(δjk)λj , k = 0, . . . , d.

By combining (8.51), (8.52), we get

〈
Elin[e], cj

〉
=

1

dµj

d∑
k=0

(1− dδjk)Elin[ek], j = 0, . . . , d. (8.53)

The theorem is proved by noting that, by (7.5)

Ienrj (λi) =
1− δij
d

, i, j = 0, . . . , d.

Example 8.2.9. Theorem 8.2.7 allows us to enrich the standard simplicial linear �nite element to the
�nite element (Sd,Penr

1 (Sd), Σ
enr
Sd

) by using the following sets of enrichment functions:

� E1 =
{
ei = sin

(
π
2 (λi + 2)

)
+ 2 : i = 0, . . . , d

}
,

� E2 =
¦
ei =

1
1+λi

: i = 0, . . . , d
©
,

� E3 =
{
ei = eλi : i = 0, . . . , d

}
,

� E4 = {ei = λαi , α > 1 : i = 0, . . . , d} ,

� E5 =
{
ei = λαi e

λi , α > 1 : i = 0, . . . , d
}
.

It is worth reminding that the columns of the inverse of the matrix N are involved in the expression
of the special basis (8.25), (8.26) of the enriched element (Sd,Penr

1 (Sd), Σ
enr
Sd

). For this reason, in the
following examples 8.2.10 and 8.2.11 we determine an explicit expression of µk = −Etrak (ei), k = 0, . . . , d,
k ̸= i, for the sets of admissible enrichment functions E3 and E4, respectively.
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Example 8.2.10. We set ei = eλi , i = 0, . . . , d. By equation (8.10), for each k = 0, . . . , d, k ̸= i, we get

Etrak (eλi) =

d∑
j=0

Ienrk (λj)Lj(e
λi)− Ienrk (eλi)

=

d∑
j=0

Ienrk (λj)e
λi(vj) − Ienrk (eλi)

=

d∑
j=0
j ̸=i,k

Ienrk (λj)e
λi(vj) + Ienrk (λi)e

λi(vi) − Ienrk (eλi),

since Ienrk (λk) = 0 by equation (7.3). We use Kronecker delta property of the barycentric coordinates (8.13)
and equation (7.5) to get

d∑
j=0
j ̸=i,k

Ienrk (λj)e
λi(vj) + Ienrk (λi)e

λi(vi) =
d− 1

d
+
e

d
.

Moreover, by equation (8.45)

Ienrk (eλi) =
1

|Fk|

∫
Fk

eλi(x)dσ(x) =
1∣∣∣ÒFk

∣∣∣
∫ 1

0

et
(1− t)d−2

(d− 2)!
dt k = 0, . . . , d, k ̸= i.

We use the d− 2 order Taylor series expansion of the function ex, centered at 0, evaluated at x = 1 and
integral remainder to get, from previous equation

Ienrk (eλi) =
1∣∣∣ÒFk

∣∣∣
∫ 1

0

et
(1− t)d−2

(d− 2)!
dt =

1∣∣∣ÒFk

∣∣∣
�
e−

d−2∑
j=0

1

j!

�
, k = 0, . . . , d, k ̸= i. (8.54)

We set

Rd−2 = e−
d−2∑
j=0

1

j!

and
Ak =

∣∣∣ÒFk

∣∣∣ (d− 1 + e)− dRd−2, k = 0, . . . , d,

to get, �nally

µk = Etrak

(
eλi
)
=

Ak

d
∣∣∣ÒFk

∣∣∣ , k = 0, . . . , d, k ̸= i. (8.55)

Example 8.2.11. We set ei = λαi , i = 0, . . . , d, where α is a real number greater than one. By equa-
tion (8.10) and by using the Kronecker delta property of the barycentric coordinates (8.13), for each
k = 0, . . . , d, k ̸= i, we get

Etrak (λαi ) =

d∑
j=0

Ienrk (λj)Lj(λ
α
i )− Ienrk (λαi )

=

d∑
j=0

Ienrk (λj)λ
α
i (vj)− Ienrk (λαi )

= Ienrk (λi)− Ienrk (λαi ).

By equation (7.5), �nally, we get

Etrak (λαi ) =
1

d
− Γ (α+ 1)

(d)α
, k = 0, . . . , d, k ̸= i,

where (d)α = Γ (α+d)
Γ (d) is the Pochhammer symbol.
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8.2.2 Admissible enrichment functions of the second class

The enrichment functions of the second class are the product of positive powers of barycentric coordinates
with properly evaluated continuous functions, as shown in the following Theorem.

Theorem 8.2.12. Let f0, . . . , fd ∈ C([0, 1]) be functions such that fi(0) ̸= 0, i = 0, . . . , d, and let
α0, . . . , αd be real numbers greater than one. Let

ei = fi(λi(x))

d∏
ℓ=0
ℓ ̸=i

λαℓ−1
ℓ (x), i = 0, . . . , d (8.56)

be enrichment functions and let Ienrj , j = 0, . . . , d, be the enrichment linear functionals de�ned in (8.37).
Then the matrix N de�ned in (8.17) is nonsingular.

Proof. Using (7.5) and the Kronecker delta property of barycentric coordinates (8.13), for each i =
0, . . . , d, we get

Etrai (ei) =

d∑
j=0

Ienri (λj) ei(vj)− Ienri (ei)

=
1

d

d∑
j=0
j ̸=i

ei(vj)− Ienri (ei)

=
1

d

d∑
j=0
j ̸=i

fi(λi(vj))

d∏
ℓ=0
ℓ ̸=i

λαℓ−1
ℓ (vj)−

1

|Fi|

∫
Fi

fi(λi(x))

d∏
ℓ=0
ℓ ̸=i

λαℓ−1
ℓ (x)dσ(x)

=
1

d
fi(0)

d∑
j=0
j ̸=i

d∏
ℓ=0
ℓ ̸=i

λαℓ−1
ℓ (vj)− fi(0)

1

|Fi|

∫
Fi

d∏
ℓ=0
ℓ ̸=i

λαℓ−1
ℓ (x)dσ(x)

= −fi(0)
(d− 1)!

∏d
ℓ=0,ℓ̸=i Γ (αℓ)

Γ (
∑d

ℓ=0,ℓ̸=i αℓ)
̸= 0,

while, for each i, k = 0, . . . , d, i ̸= k, we get

Etrak (ei) =

d∑
j=0

Ienrk (λj)ei(vj)− Ienrk (ei)

=
1

d

d∑
j=0
j ̸=k

ei(vj)− Ienrk (ei)

=
1

d

d∑
j=0
j ̸=k

fi(λi(vj))

d∏
ℓ=0
ℓ ̸=i

λαℓ−1
ℓ (vj)−

1

|Fk|

∫
Fk

fi(λi(x))

d∏
ℓ=0
ℓ ̸=i

λαℓ−1
ℓ (x)dσ(x)

=
1

d
fi(0)

d∑
j=0
j ̸=i,k

d∏
ℓ=0
ℓ ̸=i

λαℓ−1
ℓ (vj) +

1

d
fi(1)

d∏
ℓ=0
ℓ ̸=i

λαℓ−1
ℓ (vi) = 0.

Consequently, the matrix N de�ned in (8.17) is a diagonal matrix with elements di�erent from zero and
then nonsingular.

In the following, we give an explicit expression, in closed-form, of the basis functions associated to
the �nite element enriched with the functionals de�ned in (8.37) and the enrichment functions de�ned
in (8.56).
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Theorem 8.2.13. Let e0, . . . , ed and Ienr0 , . . . , Ienrd be the enrichment functions and the enrichment func-
tionals de�ned in (8.56) and in (8.37), respectively. Then the basis functions (8.25), (8.26) of the enriched
�nite element have the following expressions

φj = λj −
1

d

d∑
k=0
k ̸=j

ψk, j = 0, . . . , d, (8.57)

ψj =
Elin[ej ]

µj
, j = 0, . . . , d, (8.58)

where
µj = −Etraj (ej), j = 0, . . . , d. (8.59)

Proof. With reference to equation (8.26) of Theorem 8.1.7, we compute〈
Elin[e], cj

〉
,

where cj is the j-th column of the inverse of the matrix

N =


µ0 0 · · · 0
0 µ1 · · · 0
...

...
. . .

...
0 0 · · · µd

 .
It is easy to verify that N has the inverse matrix

N−1 =


1
µ0

0 · · · 0

0 1
µ1
· · · 0

...
...

. . .
...

0 0 · · · 1
µd

 . (8.60)

By using the Lagrange property of barycentric coordinates, we get

Elin[e] = [Elin[e0], . . . , E
lin[ed]]

T , (8.61)

where
Elin[ej ] = ej , j = 0, . . . , d.

By combining (8.60), (8.61), we get

〈
Elin[e], cj

〉
=
Elin[ej ]

µj
, j = 0, . . . , d. (8.62)

The theorem is proved by noting that, by (7.5)

Ienrj (λi) =
1− δij
d

, i, j = 0, . . . , d.

Example 8.2.14. Theorem 8.2.12 allows us to enrich the standard simplicial linear �nite element to the
�nite element (Sd,Penr

1 (Sd), Σ
enr
Sd

) by using the following sets of enrichment functions:

� E ′1 =

ei = sin
�

π
2i+2 (λi + 1)

� d∏
ℓ=0
ℓ ̸=i

λαℓ−1
ℓ , αℓ > 1 : i, ℓ = 0, . . . , d

 ,
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� E ′2 =

ei = 1+i
1+λi

d∏
ℓ=0
ℓ ̸=i

λαℓ−1
ℓ , αℓ > 1 : i, ℓ = 0, . . . , d

 ,

� E ′3 =

ei = eiλi

d∏
ℓ=0
ℓ̸=i

λαℓ−1
ℓ , αℓ > 1 : i, ℓ = 0, . . . , d

 ,

� E ′4 =

ei = log(iλi + 2)
d∏

ℓ=0
ℓ ̸=i

λαℓ−1
ℓ , αℓ > 1 : i, ℓ = 0, . . . , d

 .

8.3 Error representations

We introduce the approximation operator

Πenr : C(Sd) → Penr
1 (Sd)

f 7→
d∑

j=0

Lj(f)φj +

d∑
j=0

Ienrj (f)ψj ,
(8.63)

where φj , ψj , j = 0, . . . , d, are de�ned in (8.25) and (8.26), and the approximation error

Eenr[f ] = f −Πenr[f ]. (8.64)

We now present an elegant decomposition of the error Eenr in terms of the approximation error associated
to the approximation operator Π lin, de�ned in (7.27), and an additional term which depends on the
enrichment functions. Indeed, we have the following Theorem.

Theorem 8.3.1. For any f ∈ C(Sd), the approximation error (8.64) can be decomposed as follows

Eenr[f ] = Elin[f ]−
d∑

j=0

Ienrj

(
Elin[f ]

)
ψj , (8.65)

where Elin is de�ned in (8.8).

Proof. Since the operator Πenr reproduces linear polynomials, we have

Πenr
[
Π lin[f ]

]
= Π lin[f ].

By taking into account also the linearity of Πenr, we get

Eenr[f ] = f −Πenr[f ]

= f −Πenr
[
f −Π lin[f ] +Π lin[f ]

]
= f −Πenr

[
f −Π lin[f ]

]
−Π lin[f ]

= Elin[f ]−Πenr
[
Elin[f ]

]
. (8.66)

By (8.7) Elin[f ] vanishes at all the vertices of Sd and then, the de�nition (8.63) of Πenr yields

Πenr
[
Elin[f ]

]
=

d∑
j=0

Ienrj

(
Elin[f ]

)
ψj . (8.67)

By substituting (8.67) in (8.66), we obtain (8.65).
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Now we introduce the approximation operator

Π imp : C(Sd) → Penr
1 (Sd)

f 7→ Π imp[f ] =

d∑
j=0

Ienrj (f)ψj ,

and the approximation error
Eimp[f ] = f −Π imp[f ]. (8.68)

Remark 8.3.2. According to the decomposition given in (8.65), the approximation error Eenr de�ned
in (8.64) can be rewritten as follows

Eenr[f ] = Eimp[Elin[f ]], (8.69)

where Eimp is de�ned in (8.68).

Remark 8.3.3. We notice that when the enrichment functions ei, i = 0, . . . , d, satisfy the vanishing
conditions

ei(vj) = 0, i, j = 0, . . . , d

and the enrichment linear functionals are those de�ned in (8.37), the results introduced here are equiva-
lent to the results presented in Chapter 7. Then the enrichment strategy introduced here, in this sense,
generalizes the enrichment strategy introduced Chapter 7.

8.4 Numerical experiments

In this Section, we test the accuracy of the approximation produced by the �nite element (Sd,Penr
1 (Sd), Σ

enr
Sd

)
obtained by enriching the standard simplicial linear �nite element with the enrichment functionals de-
�ned in (8.37) and the sets of enrichment functions E1 and E ′2, introduced in Example 8.2.9 and in
Example 8.2.14, respectively. We perform the numerical experiments for d = 2 and for each experiment,
we use a regular grid of (n + 1) × (n + 1) equispaced points, with n = 2k, k = 2, . . . , 6 and the relative
Delaunay triangulation. We consider the following test functions

f1(x, y) =
1

1 + x2 + y2
, f2(x, y) = exy, f3(x, y, z) = sin(πxy),

and the following sets of enrichment functions

E1 =
{
ei = sin

(π
2
(λi + 2)

)
+ 2 : i = 0, 1, 2

}
, E ′2 =

ei = 1 + i

1 + λi

2∏
k=0
k ̸=i

λk : i = 0, 1, 2

 ,

already introduced in Examples 8.2.9 and 8.2.14, respectively. For each of these, we compare the accuracy
of approximation, in L1-norm, produced by the standard simplicial linear �nite element with that one
produced by the enriched �nite element (Sd,Penr

1 (Sd), Σ
enr
Sd

). We perform the numerical experiments by
using MatLab software. To compute the integral of a bivariate function over a face of the simplex Sd

(for example, the evaluation of the enrichment functionals at the enrichment functions, needed in the
construction of the matrix N) and the integral of a bivariate function over Sd (for example, the L1-norm
of the approximation error) we use the command integral2. The results are reported in Figures 8.1 -
8.3. We notice that for a �xed function f , not every set of enrichment functions signi�cantly improves the
accuracy of the approximation realized by the enriched �nite element. The accuracy of the approximation
depends on the chosen set of enrichment functions.
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Figure 8.1: Semilog plot of the trend of the errors, in L1-norm, produced by approximating the function
f1(x, y) working with Delaunay triangulations of the unit square [0, 1]2, the standard simplicial linear
�nite element (red dashed line), and the enriched �nite element (Sd,Penr

1 (Sd), Σ
enr
Sd

) (blue line). The
Delaunay triangulations are realized by using regular grids of (n + 1) × (n + 1) equispaced nodes with
n = 2k, k = 2, . . . , 6. The enrichments of the standard simplicial linear �nite element are realized by
using the functionals de�ned in (8.37) and the sets of enrichment functions E1 and E ′2 for the left and the
right picture, respectively.
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Figure 8.2: Semilog plot of the trend of the errors, in L1-norm, produced by approximating the function
f2(x, y) working with Delaunay triangulations of the unit square [0, 1]2, the standard simplicial linear
�nite element (red dashed line), and the enriched �nite element (Sd,Penr

1 (Sd), Σ
enr
Sd

) (blue line). The
Delaunay triangulations are realized by using regular grids of (n + 1) × (n + 1) equispaced nodes with
n = 2k, k = 2, . . . , 6. The enrichments of the standard simplicial linear �nite element are realized by
using the functionals de�ned in (8.37) and the sets of enrichment functions E1 and E ′2 for the left and the
right picture, respectively.
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Figure 8.3: Semilog plot of the trend of the errors, in L1-norm, produced by approximating the function
f3(x, y) working with Delaunay triangulations of the unit square [0, 1]2, the standard simplicial linear
�nite element (red dashed line), and the enriched �nite element (Sd,Penr

1 (Sd), Σ
enr
Sd

) (blue line). The
Delaunay triangulations are realized by using regular grids of (n + 1) × (n + 1) equispaced nodes with
n = 2k, k = 2, . . . , 6. The enrichments of the standard simplicial linear �nite element are realized by
using the functionals de�ned in (8.37) and the sets of enrichment functions E1 and E ′2 for the left and the
right picture, respectively.
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Chapter 9

Improved methods for the enrichment

and analysis of the simplicial

vector-valued linear �nite elements

The simplicial vector linear �nite elements are commonly used for numerically solving the stationary
Stokes equations. They are known, however, to su�er from severe shortcomings in application to more
complicated situations. An enriched �nite element, that overcomes the aforementioned drawbacks, was
proposed and developed by Bernardi and Raugel in [7]. It can be regarded as an advanced and generalized
version of the conventional simplicial vector linear �nite element, and it has been employed in a wide range
of practical engineering computational �elds. It uses polynomials as enrichment functions. However, for
some types of problems, these enrichment functions are not very e�cient. In line with previous chapters,
the main goal of this chapter is to present a general strategy for enriching the simplicial vector linear �nite
element with enrichment functions which are not necessarily polynomials. This enriched �nite element can
be seen as an extension of Bernardi and Raugel �nite element. A key role is played by a characterization
result, given in terms of the nonvanishing of a certain determinant, which provides necessary and su�cient
conditions, on the enrichment functions and functionals, that guarantee the existence of families of such
enriched elements. In conclusion, we present numerical tests that show the e�cacy of the suggested
enrichment strategy.

9.1 Bernardi�Raugel �nite element

In the following, we denote by x ∈ Rd the column vector of components x1, . . . , xd ∈ R, that is

x = [x1, . . . , xd]
T .

Let Sd ⊂ Rd be the d-simplex in Rd with vertices v0, . . . ,vd and barycentric coordinates λ0, . . . , λd.
For i = 0, . . . , d, we denote by Fi the face of Sd which does not contain the vertex vi and by ni =
[ni1 , . . . , nid ]

T ∈ Rd the unit outward normal to the face Fi. A �nite element commonly used in the
applications is the simplicial vector linear �nite element. It is de�ned as

PPP1(Sd) = (Sd,PPP1(Sd),ΣΣΣ
lin
Sd
), (9.1)

where PPP1(Sd) is the direct product d times of the vector space P1(Sd), de�ned in (7.8), with itself and

ΣΣΣlin
Sd

= {Lj : j = 0, . . . , d} ,

with Lj de�ned as

Lj(f) = f(vj) = [f1(vj), . . . , fd(vj)]
T , f = [f1, . . . , fd]

T , j = 0, . . . , d.
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We consider the enrichment functions

bi : Sd → Rd, bi(x) =

d∏
j=0
j ̸=i

λj(x)ni, i = 0, . . . , d. (9.2)

The polynomial enrichment of the simplicial vector linear �nite element proposed by Bernardi and Raugel
is the triple

PPPBR
1 (Sd) = (Sd,V

BR
1 ,Σenr

Sd
), (9.3)

where
VBR

1 = PPP1(Sd)⊕ span{b0, . . . , bd} and Σenr
Sd

= {Lj , Ij : j = 0, . . . , d} ,

with the enrichment linear functionals

Ij(f) =
1

|Fj |

∫
Fj

⟨f ,nj⟩ dσ(x), j = 0, . . . , d. (9.4)

Here we use letters in bold font to denote vector-valued functions and their associated spaces. In analogy,
we do the same with vector-valued linear functionals and relative sets.

Observe that the number of information provided by the elements of the set Σenr
Sd

can be computed as
follows: the information related to the vector linear functionals Lj j = 0, . . . , d, are d(d+ 1) while those
related to the enrichment linear functionals Ij , j = 0, . . . , d are d+1. Hence, the number of local degrees
of freedom used for enrichment is

d(d+ 1) + (d+ 1) = (d+ 1)2.

Moreover, as well known [7]
dim(VBR

1 ) = (d+ 1)2.

The �nite element (9.3) is known as Bernardi�Raugel �nite element and it �nds several applications in
engineering, for example, it is used for the approximation of the Stokes problem, see [7].

9.2 Enrichment of the simplicial vector linear �nite element

Now, we are interested in generalizing the Bernardi�Raugel �nite element by extending the class of
enrichment functions to a more general class of functions, which are not necessarily polynomials. To this
aim, we consider d + 1 linearly independent continuous functions e0, . . . , ed on Sd and the enrichment
linear functionals de�ned in (9.4). We denote by

PPPenr
1 (Sd) = PPP1(Sd)⊕ span{ei = eini : i = 0, . . . , d} (9.5)

and we consider the triple
(Sd,PPPenr

1 (Sd),ΣΣΣ
enr
Sd

). (9.6)

In line with previous chapters, we are tacitly assuming that the following technical condition is satis�ed

dim(PPPenr
1 (Sd)) = (d+ 1)2. (9.7)

In analogy to Chapter 8, for k = 0, . . . , d, we introduce the functional

Etrak =

d∑
j=0

Ik (λjLj)− Ik, (9.8)

and for j = 0, . . . , d, we de�ne the vector gj ∈ R2d+2 of components

gji = 1, gji+d+1 = −δij , i = 0, . . . , d. (9.9)
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For k = 0, . . . , d, and f = [f1, . . . , fd]
T , fi ∈ C(Sd), i = 1, . . . , d, we consider the vector M{k}(f) of

components

M
{k}
0 (f) = Ik(λ0L0(f)), . . . ,M

{k}
d (f) = Ik(λdLd(f)), M

{k}
j+d+1(f) = Ij(f) j = 0, . . . , d. (9.10)

Therefore, the functionals Etrak de�ned in (9.8) can be expressed in terms of gk and M{k}(f) as

Etrak (f) =
¬
gk,M{k}(f)

¶
, (9.11)

where ⟨·, ·⟩ is the usual scalar product on R2d+2.

Remark 9.2.1. In the particular case where f ∈ PPPenr
1 (Sd) and f vanishes at all vertices of Sd the

formula (9.11) becomes

Etrak (f) =
¬
gk,M{k}(f)

¶
= −Ik(f).

Lemma 9.2.2. Let f = [f1, . . . , fd]
T ∈ PPP1(Sd). Then, for any k = 0, . . . , d, we have

Etrak (f) = 0. (9.12)

Proof. Since fi ∈ P1(Sd), we have

fi =

d∑
j=0

λjfi(vj), i = 1, . . . , d,

and then

f =

d∑
j=0

λjf(vj).

From this equality and using the linearity of the enrichment linear functionals Ik, k = 0, . . . , d, we
immediately get

Etrak (f) =

d∑
j=0

Ik(λjLj(f))− Ik (f)

=

d∑
j=0

Ik(λjf(vj))−
d∑

j=0

Ik (λjf(vj))

= 0, k = 0, . . . , d.

The previous lemma implies the following characterization result for the enrichment functions e0, . . . , ed,
so that the triple

(Sd,PPPenr
1 (Sd),ΣΣΣ

enr
Sd

)

is a �nite element, or equivalently so that PPPenr
1 (Sd) is ΣΣΣenr

Sd
-unisolvent.

Theorem 9.2.3. Let

N =


−Etra0 (e0) . . . −Etra0 (ed)
−Etra1 (e0) . . . −Etra1 (ed)

...
...

...
−Etrad (e0) . . . −Etrad (ed)

 , (9.13)

then the triple (Sd,PPPenr
1 (Sd),ΣΣΣ

enr
Sd

) is a �nite element if and only

det(N) ̸= 0.
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Proof. Let us assume that det(N) ̸= 0 and we prove that PPPenr
1 (Sd) is ΣΣΣenr

Sd
-unisolvent. Let f ∈ PPPenr

1 (Sd)
such that

Lj(f) = 0, j = 0, . . . , d, (9.14)

Ij(f) = 0, j = 0, . . . , d. (9.15)

Since f ∈ PPPenr
1 (Sd), it can be expressed as

f = p+

d∑
i=0

βiei,

where p ∈ PPP1(Sd) and β0, . . . , βd are real numbers. Since f satis�es (9.14) and (9.15), by de�nition (9.8),
we get

Etrak (f) = 0.

Then by (9.12) of Lemma 9.2.2, we obtain

0 = Etrak (f)

= Etrak (p) +

d∑
i=0

βiEtrak (ei)

=

d∑
i=0

βiEtrak (ei), k = 0, . . . , d. (9.16)

Equation (9.16) can be represented in matrix form as

−Nβ = 0,

where β = [β0, β1, . . . , βd]
T . Since, by hypothesis, the matrix N is nonsingular, we get β0 = β1 = · · · =

βd = 0 and therefore f = p. Taking into account that f vanishes at the vertices of the simplex Sd,
by (9.14), we �nd that f = 0.
In order to prove the reverse implication, let us assume to the contrary that

det(N) = 0.

Since the determinant of N is equal to the determinant of its transpose NT , then there exist γ0, . . . , γd
not all zero such that the functional

Etra =

d∑
k=0

γkEtrak

vanishes at the enrichment functions e0, . . . , ed. By the linearity of Etra and by (9.12) of Lemma 9.2.2,
we deduce that Etra vanishes on the whole space PPPenr

1 (Sd). Therefore, for any f ∈ PPPenr
1 (Sd), from (9.11),

we have

0 = Etra(f) =

d∑
k=0

γkEtrak (f)

=

d∑
k=0

γk
¬
gk,M{k}(f)

¶
. (9.17)

Since, by hypothesis, (Sd,PPPenr
1 (Sd),ΣΣΣ

enr
Sd

) is a �nite element, there exist fi ∈ PPPenr
1 (Sd), i = 0, . . . , d, such

that Lj(fi) = 0 and Ij(fi) = δij , j = 0, . . . , d. Consequently, by Remark 9.2.1, we get¬
gk,M{k}(fi)

¶
= −Ik(fi) = −δik. (9.18)
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Finally, by substituting (9.18) in (9.17), we get

0 =

d∑
k=0

γk
¬
gk,M{k}(fi)

¶
= −

d∑
k=0

γkδik = −γi, i = 0, . . . , d,

and then we have
γ0 = · · · = γd = 0,

which is a contradiction.

The following remarks are an immediate consequence of Theorem 9.2.3 and Remark 9.2.1.

Remark 9.2.4. If the enrichment functions e0, . . . , ed satisfy the vanishing conditions at the vertices of
Sd, that is

ei(vj) = 0, i, j = 0, . . . , d, (9.19)

or, equivalently,
ei(vj) = ei(vj)ni = 0, i, j = 0, . . . , d,

then, the matrix N introduced in (9.13) becomes

N =


I0(e0) . . . I0(ed)
I1(e0) . . . I1(ed)

...
...

...
Id(e0) . . . Id(ed)

 . (9.20)

Remark 9.2.5. Let bi, i = 0, . . . , d, be the enrichment functions de�ned in (9.2). These enrichment
functions satisfy the vanishing conditions (9.19) and the conditions

Ii(bi) ̸= 0, i = 0, . . . , d,

Ii(bj) = 0, i, j = 0, . . . , d, i ̸= j.

Then, the matrix N de�ned in (9.13) is a diagonal matrix with determinant di�erent from zero. Then,
by Theorem 9.2.3, we can simply prove that the triple (9.3) is a �nite element.

In the following, we assume that the matrix N is nonsingular and we denote its inverse by

N−1 = [c0 . . . cd], (9.21)

where ci ∈ Rd, i = 0, . . . , d, are column vectors. A direct consequence of Theorem 9.2.3 is the linear
independence of the functionals of ΣΣΣenr

Sd
in the dual space PPPenr

1 (Sd)
⋆ [23, Ch 2]. Then, there exists a basis

{φjℓ,ψj : j = 0, . . . , d, ℓ = 1, . . . , d} of PPPenr
1 (Sd) which satisfy

Lj(φiℓ) = δijuℓ, Ij(φiℓ) = 0, i, j = 0, . . . , d, ℓ = 1, . . . , d, (9.22)

Lj(ψi) = 0, Ij(ψi) = δij , i, j = 0, . . . , d, (9.23)

where uℓ, ℓ = 1, . . . , d is the canonical basis of Rd. In the following, we derive explicit expressions for
such basis functions.

Theorem 9.2.6. The basis functions {φjℓ,ψj : j = 0, . . . , d, ℓ = 1, . . . , d} of PPPenr
1 (Sd) associated to the

�nite element (Sd,PPPenr
1 (Sd),ΣΣΣ

enr
Sd

) which satisfy (9.22) and (9.23) have the following expressions

φjℓ = λjuℓ −
d∑

k=0

Ik(λjuℓ)ψk, j = 0, . . . , d, ℓ = 1, . . . , d, (9.24)
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ψj =

(
E −

d∑
k=0

λkE(vk)

)
cj , j = 0, . . . , d, (9.25)

where E is the d× (d+ 1) matrix de�ned by

E = [e0 . . . ed]. (9.26)

Proof. Since φjℓ ∈ PPPenr
1 (Sd), it can be expressed as

φjℓ = pjℓ +

d∑
s=0

βses, (9.27)

or, equivalently,
φjℓ = pjℓ +Eβ, (9.28)

where pjℓ ∈ PPP1(Sd), β = [β0, . . . , βd]
T ∈ Rd+1 and E is the matrix de�ned in (9.26). By (9.8), we have

Etrak (φjℓ) =

d∑
i=0

Ik(λiLi(φjℓ))− Ik(φjℓ), k = 0, . . . , d,

and then, by (9.22)

Etrak (φjℓ) =

d∑
i=0

Ik(λiδijuℓ) = Ik(λjuℓ), k = 0, . . . , d. (9.29)

We apply Etrak to both members of (9.27) and by previous equation we get

Ik(λjuℓ) = Etrak (pjℓ) +

d∑
s=0

βsEtrak (es), k = 0, . . . , d.

Then, by (9.12) of Lemma 9.2.2, we obtain

Ik(λjuℓ) =

d∑
s=0

βsEtrak (es), k = 0, . . . , d,

or, equivalently
Ijℓ = −Nβ,

where Ijℓ = [I0(λjuℓ), . . . , Id(λjuℓ)]
T . Since we are assuming that the matrix N is invertible, by (9.21),

we get

β = −N−1Ijℓ = −
d∑

k=0

Ik(λjuℓ)ck,

and by substituting into equation (9.28), we have

φjℓ = pjℓ −
d∑

k=0

Ik(λjuℓ)Eck. (9.30)

Now we apply Li, i = 0, . . . , d to both members of (9.30), by (9.22), we get

pjℓ(vi) = δijuℓ +

d∑
k=0

Ik(λjuℓ)E(vi)ck, i = 0, . . . , d, (9.31)

and then

pjℓ =

d∑
i=0

λipiℓ(vi) = λjuℓ +

d∑
i=0

d∑
k=0

λiIk(λjuℓ)E(vi)ck. (9.32)
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Finally, by substituting (9.32) in (9.30) and by changing the order of the summation, we get

φjℓ = λjuℓ +

d∑
i=0

d∑
k=0

λiIk(λjuℓ)E(vi)ck −
d∑

k=0

Ik(λjuℓ)Eck

= λjuℓ +

d∑
k=0

Ik(λjuℓ)

d∑
i=0

λiE(vi)ck −
d∑

k=0

Ik(λjuℓ)Eck

= λjuℓ −
d∑

k=0

Ik(λjuℓ)

(
E −

d∑
i=0

λiE(vi)

)
ck.

It remains to prove (9.25). We proceed in analogy to the previous case and then we set

ψj = pj +

d∑
i=0

γiei, (9.33)

or, equivalently,
ψj = pj +Eγ, (9.34)

where pj ∈ PPP1(Sd) and γ = [γ0, . . . , γd]
T ∈ Rd+1. By (9.8), we have

Etrak (ψj) =

d∑
i=0

Ik(λiLi(ψj))− Ik(ψj), k = 0, . . . , d, (9.35)

and then, by (9.23)
Etrak (ψj) = −δjk, k = 0, . . . , d. (9.36)

We apply Etrak to both members of (9.33) and by previous equation we get

−δjk = Etrak (pj) +

d∑
i=0

γiEtrak (ei), k = 0, . . . , d.

Then, by (9.12) of Lemma 9.2.2, we obtain

−δjk =

d∑
i=0

γiEtrak (ei), k = 0, . . . , d,

or, equivalently
uj = Nγ.

Therefore we get
γ = N−1uj = cj ,

and by substituting into equation (9.34), we have

ψj = pj +Ecj . (9.37)

Now we apply Li, i = 0, . . . , d, to both members of (9.37), by (9.23) we get

pj(vi) = −E(vi)cj ,

and then

pj =

d∑
i=0

λipj(vi) = −
d∑

i=0

λiE(vi)cj . (9.38)

By substituting (9.38) in (9.37), (9.25) is proved.
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Remark 9.2.7. Let us assume that e0, . . . , ed satisfy the vanishing conditions (9.19). Then, the basis
functions of the �nite element (Sd,PPPenr

1 (Sd),ΣΣΣ
enr
Sd

) are

φjℓ = λjuℓ −
d∑

k=0

Ik(λjuℓ)ψk, j = 0, . . . , d, ℓ = 1, . . . , d, (9.39)

ψj = Ecj , j = 0, . . . , d. (9.40)

We denote by CCC(Sd) the direct product d times of C(Sd) with itself.

Theorem 9.2.8. The linear approximation operator based on the simplicial vector linear �nite element
PPP1(Sd), de�ned in (9.1)

Π lin : CCC(Sd) → PPP1(Sd)

f 7→
d∑

j=0

λjLj(f),
(9.41)

reproduces linear polynomials and satis�es the interpolation conditions

Lj

(
Π lin[f ]

)
= Lj(f), j = 0, . . . , d. (9.42)

Proof. The proof follows from the Lagrange property of the barycentric coordinates, that is λi(vj) = δij ,
where δij is the Kronecker delta operator.

In the following, we denote by Elin the approximation error of the operator Π lin, that is

Elin[f ] = f −Π lin[f ], f ∈ CCC(Sd). (9.43)

9.3 Admissible enrichment functions

In this section, we collect sets of admissible enrichment functions, that is functions for which the triple
(Sd,PPPenr

1 (Sd),ΣΣΣ
enr
Sd

) is a �nite element. The main issue when using the proposed enriched method is to
ensure that the matrix N given in (9.13) is invertible. These enrichment functions constitute a very
general class, which can be used for many types of applications. Before starting, we �rst give some
important de�nitions.

De�nition 9.3.1. For d ≥ 1 the dihedral angle αij between two faces of Sd, Fi and Fj is de�ned by
means of the inner product of their outward unit normals ni and nj [12]

cos (αij) = −⟨ni,nj⟩ .

In the following, we denote by
ρij = ⟨ni,nj⟩ , i, j = 0, . . . , d. (9.44)

De�nition 9.3.2. A simplex is said to be acute if all its dihedral angles satisfy

0 < αij < π/2, (9.45)

and then, by (9.44), we get
−1 < ρij < 0. (9.46)

An acute triangulation is a triangulation into acute simplices. The problem of �nding acute trian-
gulations has many applications in computational geometry, including mesh generation, �nite element
analysis, see e.g. [51, Ch. 33].

De�nition 9.3.3. A �ag of faces of a convex polytope Kd in Rd is a sequence

F {0} ⊂ F {1} ⊂ · · · ⊂ F {d} = Kd,

where F {i} is a face of Kd of dimension i, i = 0, . . . , d [21].
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De�nition 9.3.4. A convex polytope Kd in Rd is called regular if the group G(Kd) of isometries of Rd

which leave Kd invariant acts transitively on the set of �ags of faces of Kd [21]. A regular simplex is a
simplex that is also a regular polytope.

It is well-known that dihedral angles of a regular simplex Sreg
d in Rd satisfy the following relation [12]

αij = arccos

�
1

d

�
, i, j = 0, . . . , d, i ̸= j. (9.47)

9.3.1 Admissible enrichment functions of the �rst class

Let n ∈ N and let f1, . . . , fn ∈ C([0, 1]) be convex, increasing (or decreasing) and nonnegative functions
di�erent from zero and let us assume that at least one function is strictly convex. We consider the
enrichment functions

ei =

n∏
ℓ=1

fℓ(λi), ei = eini, i = 0, . . . , d. (9.48)

Theorem 9.3.5. Let n ∈ N and let f1, . . . , fn ∈ C([0, 1]) be convex, increasing (or decreasing) and
nonnegative functions di�erent from zero and let us assume that at least one function is strictly convex.
We assume that the simplex Sd satis�es

ρij = ρ ̸= 0, i, j = 0, . . . , d− 1, ρid = η ̸= 0, i = 0, . . . , d− 1, (9.49)

where ρij, i, j = 0, . . . , d, i ̸= j is de�ned in (9.44). Let ei, Ij, i, j = 0, . . . , d, be the enrichment functions
and the enrichment linear functionals de�ned in (9.48) and (9.4), respectively. Then, the matrix N
de�ned in (9.13) is nonsingular.

Proof. Using the linearity of Ij , j = 0, . . . , d, by (9.4) and (9.8), we get

Etrak (ei) =

d∑
j=0

Ik(λjLj(ei))− Ik(ei)

= Ik

�
d∑

j=0

λjei(vj)− ei

�
= Ik

��
d∑

j=0

λjei(vj)− ei

�
ni

�
=

1

|Fk|

∫
Fk

�
d∑

j=0

λj(x)ei(vj)− ei(x)

�
⟨ni,nk⟩ dσ(x)

=
1

|Fk|

�
d∑

j=0

�∫
Fk

λj(x)dσ(x)

�
ei(vj)−

∫
Fk

ei(x)dσ(x)

�
⟨ni,nk⟩

= −µik ⟨ni,nk⟩ .

In this case, by Theorem 8.2.3, the matrix N de�ned in (9.13) becomes

N =


0 µ0ρ · · · µ0η
µ1ρ 0 · · · µ1η
...

...
. . .

...
µdη µdη · · · 0

 ,
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where we write µk instead of µik since, by equation (8.46) of Remark 8.2.6, this term does not depend on
i. Then, we have

det(N) = det


0 ρ · · · η
ρ 0 · · · η
...

...
. . .

...
η η · · · 0


d∏

i=0

µi. (9.50)

By substituting the i-th row, Ri with Ri − Ri+1, i = 1, . . . , d − 1, and developing the determinant with
respect the last column, we get

det(G) = det


−ρ ρ · · · 0
0 −ρ · · · 0
...

...
. . .

...
ρ ρ · · · η
η η · · · 0


d∏

i=0

µi = (−1)2d−1η2 det


−ρ ρ · · · 0
0 −ρ · · · 0
...

...
. . .

...
0 0 · · · ρ
1 1 · · · 1


d∏

i=0

µi.

Finally, by multiplying the last row Rd+1 by ρ and by substituting Rd+1 with Rd+1 +
d∑

j=1

jRj , we get

det(N) = (−1)2d−1 η
2

ρ
det


−ρ ρ 0 · · · 0
0 −ρ ρ · · · 0
...

...
. . .

. . .
...

0 0 · · · −ρ ρ
0 0 · · · · · · dρ


d∏

i=0

µi = d(−1)dη2ρd−1
d∏

i=0

µi.

By Theorem 8.2.3, we get
µi ̸= 0, i = 0, . . . , d,

and then, by (9.49), the result follows.

Remark 9.3.6. We notice that if Sreg
d is a regular simplex, by (9.47) and (9.44), we get

ρij = −
1

d
, i, j = 0, . . . , d, i ̸= j.

Then, by using the enrichment functions and the enrichment linear functionals de�ned in (9.48) and (9.4),
respectively, by Theorem 9.3.5, the matrix N de�ned in (9.13) is nonsingular.

In the following, we consider the most common cases used in the applications, that is d = 2 and d = 3.

Theorem 9.3.7. Let n ∈ N and let f1, . . . , fn ∈ C([0, 1]) be convex, increasing (or decreasing) and
nonnegative functions di�erent from zero and let us assume that at least one function is strictly convex.
We assume that the simplex S2 is an acute triangle. Let ei, Ij, i, j = 0, 1, 2, be the enrichment functions
and the enrichment linear functionals de�ned in (9.48) and (9.4), respectively. Then, the matrix N
de�ned in (9.13) is nonsingular.

Proof. By following the same line of the proof of Theorem 9.3.5, we get

N =

 0 µ0ρ10 µ0ρ20
µ1ρ10 0 µ1ρ21
µ2ρ20 µ2ρ21 0

 ,
where ρij , i, j = 0, 1, 2, i ̸= j is de�ned in (9.44). Then, we have

det(N) = µ0µ1µ2 det

 0 ρ10 ρ20
ρ10 0 ρ21
ρ20 ρ21 0

 = 2µ0µ1µ2ρ10ρ20ρ21. (9.51)
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Since S2 is an acute simplex, we get
ρ10ρ20ρ21 ̸= 0.

The theorem is proved by noting that, by Theorem 8.2.3

µi ̸= 0, i = 0, 1, 2.

Now, we want to extend Theorem 9.3.7 to the case d = 3. To this aim, we assume that the simplex
S3 is an acute tetrahedron. Then

ρij < 0, i, j = 0, 1, 2, 3, i ̸= j.

We denote by
ζij = −ρij i, j = 0, 1, 2, 3, i ̸= j (9.52)

and
ξij =

√
ζij i, j = 0, 1, 2, 3, i ̸= j. (9.53)

Theorem 9.3.8. Let n ∈ N and let f1, . . . , fn ∈ C([0, 1]) be convex, increasing (or decreasing) and
nonnegative functions di�erent from zero and let us assume that at least one function is strictly convex.
We assume that the simplex S3 is an acute tetrahedron. Let ei, Ij, i, j = 0, 1, 2, 3, be the enrichment
functions and the enrichment linear functionals de�ned in (9.48) and (9.4), respectively. Then, the matrix
N de�ned in (9.13) is nonsingular.

Proof. By following the same line of the proof of Theorem 9.3.5, we get

N =


0 µ0ρ10 µ0ρ20 µ0ρ30

µ1ρ10 0 µ1ρ21 µ1ρ31
µ2ρ20 µ2ρ21 0 µ2ρ32
µ3ρ30 µ3ρ31 µ3ρ32 0

 ,
where ρij , i, j = 0, 1, 2, 3, i ̸= j is de�ned in (9.44). Then, by (9.52) and (9.53), we have

det(N) = µ0µ1µ2µ3 det


0 −ξ210 −ξ220 −ξ230
−ξ210 0 −ξ221 −ξ231
−ξ220 −ξ221 0 −ξ232
−ξ230 −ξ231 −ξ232 0

 = µ0µ1µ2µ3 det


0 ξ210 ξ220 ξ230
ξ210 0 ξ221 ξ231
ξ220 ξ221 0 ξ232
ξ230 ξ231 ξ232 0

 .
After easy computations, we get

det(N) = µ0µ1µ2µ3(ξ30ξ21 − ξ20ξ31 − ξ10ξ32)(ξ30ξ21 + ξ20ξ31 − ξ10ξ32)×
(ξ30ξ21 − ξ20ξ31 + ξ10ξ32)(ξ30ξ21 + ξ20ξ31 + ξ10ξ32)

= µ0µ1µ2µ3(a− b− c)(a+ b− c)(a− b+ c)(a+ b+ c),

where we set
a = ξ30ξ21, b = ξ20ξ31, c = ξ10ξ32.

By (9.53), we have
a > 0, b > 0, c > 0.

Then, by Heron's formula [83], we get

det(N) = −16µ0µ1µ2µ3 |T |2 ,

where T is the triangle with sides of length a, b, c. The theorem is proved by noting that, by Theorem 8.2.3

µi ̸= 0, i = 0, 1, 2, 3.

145



Example 9.3.9. Previous theorems allow us to enrich the simplicial vector linear �nite element to the
�nite element (Sd,PPPenr

1 (Sd),ΣΣΣ
enr
Sd

) by using the following sets of enrichment functions:

� E1 =
{
ei = eini, ei = sin

(
π
2 (λi + 2)

)
+ 2 : i = 0, . . . , d

}
,

� E2 =
¦
ei = eini ei =

1
1+λi

: i = 0, . . . , d
©
,

� E3 =
{
ei = eini, ei = eλi : i = 0, . . . , d

}
,

� E4 = {ei = eini, ei = λαi , α > 1 : i = 0, . . . , d} ,

� E5 =
{
ei = eini, ei = λαi e

λi , α > 1 : i = 0, . . . , d
}
.

9.3.2 Admissible enrichment functions of the second class

Let f0, . . . , fd ∈ C([0, 1]) be continuous functions such that fi(0) ̸= 0, i = 0, . . . , d, and let α0, . . . , αd be
real numbers greater than one. We consider the enrichment functions

ei = fi(λi(x))

d∏
k=0
k ̸=i

λαk−1
k (x), ei = eini, i = 0, . . . , d. (9.54)

Theorem 9.3.10. Let f0, . . . , fd ∈ C([0, 1]) be continuous functions such that fi(0) ̸= 0, i = 0, . . . , d, and
let α0, . . . , αd be real numbers greater than one. Let ei, Ij, i, j = 0, . . . , d, be the enrichment functions and
the enrichment linear functionals de�ned in (9.54) and (9.4), respectively. Then the matrix N de�ned
in (9.13) is nonsingular.

Proof. We prove that
Etrai (ei) ̸= 0, i = 0, . . . , d,

and
Etrak (ei) = 0, i, k = 0, . . . , d, i ̸= k.

Using the linearity of Ik, k = 0, . . . , d, by (9.4) and (9.8), we get

Etrak (ei) =

d∑
j=0

Ik(λjLj(ei))− Ik(ei)

= Ik

�
d∑

j=0

λjei(vj)− ei

�
= Ik

��
d∑

j=0

λjei(vj)− ei

�
ni

�
=

1

|Fk|

∫
Fk

�
d∑

j=0

λj(x)ei(vj)− ei(x)

�
⟨ni,nk⟩ dσ(x)

=
1

|Fk|

�
d∑

j=0

�∫
Fk

λj(x)dσ(x)

�
ei(vj)−

∫
Fk

ei(x)dσ(x)

�
⟨ni,nk⟩ .

The result follows by Theorem 8.2.12.

In the next theorem, we give an explicit expression, in closed-form, of the basis functions associated
to the �nite element enriched with the functionals de�ned in (9.4) and the enrichment functions de�ned
in (9.54).
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Theorem 9.3.11. Let f0, . . . , fd ∈ C([0, 1]) be continuous functions such that fi(0) ̸= 0, i = 0, . . . , d, and
let α0, . . . , αd be real numbers greater than one. Let ei, Ij, i, j = 0, . . . , d, be the enrichment functions and
the enrichment linear functionals de�ned in (9.54) and (9.4), respectively. Then, the basis functions (9.24)
and (9.25) of the �nite element (Sd,PPPenr

1 (Sd),ΣΣΣ
enr
Sd

) have the following expressions

φjℓ = λjuℓ −
d∑

k=0

Ik(λjuℓ)ψk, j = 0, . . . , d, ℓ = 1, . . . , d, (9.55)

ψj =
ej
µj
, j = 0, . . . , d, (9.56)

where
µj = −Etraj (ej), j = 0, . . . , d. (9.57)

Proof. Since the enrichment functions (9.54) satisfy the vanishing conditions (9.19), they can be written
as (9.39) and (9.40). Then we compute the j-th column cj of the inverse of the matrix N de�ned in (9.13).
By Theorem 9.3.10, we get

N =


µ0 0 · · · 0
0 µ1 · · · 0
...

...
. . .

...
0 0 · · · µd

 .
Therefore

N−1 =


1
µ0

0 · · · 0

0 1
µ1
· · · 0

...
...

. . .
...

0 0 · · · 1
µd

 , (9.58)

and then we get
Ecj =

ej
µj
. (9.59)

The theorem is proved by combining (9.40) and (9.59).

Example 9.3.12. Theorem 9.3.10 allows us to enrich the simplicial vector linear �nite element to the
�nite element (Sd,PPPenr

1 (Sd),ΣΣΣ
enr
Sd

) by using the following sets of enrichment functions:

� E ′1 =

ei = eini, ei = cos (λi)
d∏

ℓ=0
ℓ ̸=i

λαℓ−1
ℓ , αℓ > 1 : i, ℓ = 0, . . . , d

 ,

� E ′2 =

ei = eini, ei =
1+i
1+λi

d∏
ℓ=0
ℓ̸=i

λαℓ−1
ℓ , αℓ > 1 : i, ℓ = 0, . . . , d

 ,

� E ′3 =

ei = eini, ei = sin
�

π
2i+2 (λi + 1)

� d∏
ℓ=0
ℓ̸=i

λαℓ−1
ℓ , αℓ > 1 : i, ℓ = 0, . . . , d

 ,

� E ′4 =

ei = eini, ei = eiλi

d∏
ℓ=0
ℓ ̸=i

λαℓ−1
ℓ , αℓ > 1 : i, ℓ = 0, . . . , d

 ,

� E ′5 =

ei = eini, ei = log(iλi + 2)
d∏

ℓ=0
ℓ̸=i

λαℓ−1
ℓ , αℓ > 1 : i, ℓ = 0, . . . , d

 .
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9.4 Error estimates

9.4.1 An explicit error representation

Let Πenr be the approximation operator de�ned as

Πenr : CCC(Sd) → PPPenr
1 (Sd)

f 7→
d∑

ℓ=1

d∑
j=0

⟨Lj(f),uℓ⟩φjℓ +

d∑
j=0

Ij(f)ψj ,
(9.60)

where φjℓ,ψj , j = 0, . . . , d, ℓ = 1, . . . , d, are the basis functions introduced in Theorem 9.2.6. We provide
explicit representation for the approximation error

Eenr[f ] = f −Πenr[f ]. (9.61)

We now present a decomposition of the error Eenr in terms of the approximation error associated
to the approximation operator Π lin, de�ned in (9.41), and an additional term which depends on the
enrichment functions. We set

Lk =
1

d

d∑
j=0
j ̸=k

Lj , k = 0, . . . , d, (9.62)

we prove that the approximation error (9.61) can be expressed as the error of the simplicial vector linear
�nite element plus a second term, which depends on the enrichment functions ei, i = 0, . . . , d.

Theorem 9.4.1. Let f ∈ CCC(Sd). Then, for any x ∈ Sd, we have

Eenr[f ](x) = Elin[f ](x) +

d∑
k=0

(
d∑

ℓ=1

⟨Lk(f),uℓ⟩nkℓ
− Ik(f)

)(
E(x)−

d∑
i=0

λi(x)E(vi)

)
ck. (9.63)

Proof. By (9.60), the approximation error (9.61) can be written as

Eenr[f ] = f −
d∑

ℓ=1

d∑
j=0

⟨Lj(f),uℓ⟩φjℓ −
d∑

j=0

Ij(f)ψj .

By (9.24), by applying Lemma 7.1.1 and by changing the order of the summation, we get

d∑
ℓ=1

d∑
j=0

⟨Lj(f),uℓ⟩φjℓ =

d∑
ℓ=1

d∑
j=0

⟨Lj(f),uℓ⟩

(
λjuℓ −

d∑
k=0

Ik(λjuℓ)ψk

)

=

d∑
ℓ=1

d∑
j=0

⟨Lj(f),uℓ⟩λjuℓ −
d∑

ℓ=1

d∑
j=0

d∑
k=0

⟨Lj(f),uℓ⟩ Ik(λjuℓ)ψk

=

d∑
ℓ=1

°
d∑

j=0

λjLj(f),uℓ

º
uℓ −

d∑
ℓ=1

d∑
j=0

d∑
k=0

⟨Lj(f),uℓ⟩
1

d
(1− δkj)nkℓ

ψk

=

d∑
ℓ=1

〈
Π lin[f ],uℓ

〉
uℓ −

d∑
ℓ=1

d∑
k=0

d∑
j=0
j ̸=k

­
1

d
Lj(f),uℓ

·
nkℓ
ψk

= Π lin[f ]−
d∑

k=0

d∑
ℓ=1

⟨Lk(f),uℓ⟩nkℓ
ψk.
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Therefore, for each x ∈ Sd, we have

Eenr[f ](x) = f(x)−
d∑

ℓ=1

d∑
j=0

⟨Lj(f),uℓ⟩φjℓ(x)−
d∑

j=0

Ij(f)ψj(x)

= f(x)−

(
Π lin[f ]−

d∑
k=0

d∑
ℓ=1

⟨Lk(f),uℓ⟩nkℓ
ψk

)
−

d∑
j=0

Ij(f)ψj(x)

= Elin[f ](x) +

d∑
k=0

(
d∑

ℓ=1

⟨Lk(f),uℓ⟩nkℓ
− Ik(f)

)
ψk(x).

The thesis follows by (9.25).

De�nition 9.4.2. A continuously di�erentiable function fℓ ∈ C1(Sd) is said to have a Lipschitz contin-
uous gradient on Sd, if there exists a constant ρ > 0 such that

∥∇fℓ(x)−∇fℓ(y)∥2 ≤ ρ ∥x− y∥2 , x,y ∈ Sd. (9.64)

We call the smallest possible ρ such that (9.64) holds Lipschitz constant for ∇fℓ and we denote it
by L(∇fℓ). We denote by C1,1(Sd) the class of all functions fℓ which are continuously di�erentiable
with Lipschitz continuous gradient on Sd and by CCC1,1(Sd) the direct product d times of the vector space
C1,1(Sd) with itself. If x ∈ Sd and fℓ is a continuous convex function on Sd, from

x =

d∑
j=0

λj(x)vj

it follows that

fℓ(x) ≤
d∑

j=0

λj(x)fℓ(vj) = Π lin[f ]ℓ(x), (9.65)

and then, as a consequence of the more general Theorem [53, Theorem 2.3], the following bound holds.

Theorem 9.4.3. For any f ∈ C1,1(Sd), we have

∣∣Elin[f ]ℓ(x)
∣∣ = ∣∣fℓ(x)−Π lin[fℓ](x)

∣∣ ≤ L(∇fℓ)
2

�
d∑

j=0

λj(x) ∥vj∥22 − ∥x∥
2
2

�
, x ∈ Sd, ℓ = 1, . . . , d.

Equality is attained for all functions of the form

fℓ(x) = aℓ(x) + cℓ ∥x∥22 , ℓ = 1, . . . , d,

where cℓ ∈ R and aℓ(x) is any a�ne function.

9.4.2 The L1 error estimate

In the following, we give a bound of the approximation error (9.63) given in Theorem 9.4.1 in L1-norm

∥f∥1 =

∫
Sd

d∑
ℓ=1

|fℓ(x)| dx, f = [f1, . . . , fd] ∈ C1,1(Sd).

Therefore, by using the triangular inequality, we get

∥f∥1 ≤
d∑

ℓ=1

∥fℓ∥1 , (9.66)

and consequently, it is su�cient to determine a bound of each component of the error (9.63) in L1-norm.
By using Theorem 7.2.13, the following result is proved.
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Lemma 9.4.4. For any f ∈ C1,1(Sd), we have

∥∥Elin[f ]ℓ
∥∥
1
≤ L(∇fℓ)

8

d+ 1

d+ 2
|Sd|h2, (9.67)

where
h = sup

v,w∈Sd

∥v −w∥2

is the diameter of the simplex Sd. By (9.66), we get

∥∥Elin[f ]
∥∥
1
≤ max

ℓ=1,...,d

L(∇fℓ)
8

d(d+ 1)

d+ 2
|Sd|h2. (9.68)

Theorem 9.4.5. For any f ∈ C1,1(Sd), we get

∣∣∣∣∣
d∑

ℓ=1

⟨Lk(f),uℓ⟩nkℓ
− Ik(f)

∣∣∣∣∣ ≤ max
ℓ=1,...,d

L(∇fℓ)
2(d+ 1)

�
d∑

0≤j<ℓ≤d
j,ℓ ̸=k

∥vj − vℓ∥22

�
, k = 0, . . . , d. (9.69)

Proof. Since the vertex rule for the face Fk, is exact for linear polynomials, see [76], by setting

Π lin
Fk

[fℓ](x) =

d∑
i=0
i̸=k

λi(x)fℓ(vi), x ∈ Fk, ℓ = 1, . . . , d, (9.70)

we get

Lk(f)ℓ =
1

d

d∑
i=0
i ̸=k

Li(fℓ) =
1

d

d∑
i=0
i ̸=k

fℓ(vi) =
1

|Fk|

∫
Fk

Π lin
Fk

[fℓ](x)dσ(x). (9.71)

Therefore

d∑
ℓ=1

⟨Lk(f),uℓ⟩nkℓ
− Ik(f) =

d∑
ℓ=1

Lk(f)ℓnkℓ
− Ik(f) =

d∑
ℓ=1

1

|Fk|

∫
Fk

(
Π lin

Fk
[fℓ](x)− fℓ(x)

)
nkℓ

dσ(x).

Then ∣∣∣∣∣
d∑

ℓ=1

⟨Lk(f),uℓ⟩nkℓ
− Ik(f)

∣∣∣∣∣ ≤
d∑

ℓ=1

1

|Fk|

∫
Fk

∣∣(Π lin
Fk

[fℓ](x)− fℓ(x)
)
nkℓ

∣∣ dσ(x)
≤

d∑
ℓ=1

1

|Fk|

∫
Fk

∣∣Π lin
Fk

[fℓ](x)− fℓ(x)
∣∣ dσ(x),

since nk is the unit outward normal to the face Fk. By Theorem 7.2.6, the result follows.

Theorem 9.4.6. For any f ∈ C1,1(Sd), we get

∥Eenr[f ]∥1 ≤ max
ℓ=1,...,d

L(∇fℓ)
d+ 1

d!2d+3

Ê
(d+ 1)d+1

dd

�
d

d+ 2
+ (d− 1)ν

�
hd+2,

where we set

ν =
1

|Sd|
max

j=0,...,d
∥ψj∥1 .
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Proof. By combining Lemma 9.4.4, Theorem 9.4.5 and Lemma 7.2.10, we get

∥Eenr[f ]∥1 ≤ max
ℓ=1,...,d

L(∇fℓ)
2

�
1

4

d(d+ 1)

d+ 2
h2 + ν

1

d+ 1

d∑
k=0

d∑
0≤j<ℓ≤d

j,ℓ ̸=k

∥vj − vℓ∥22

�
|Sd|

= max
ℓ=1,...,d

L(∇fℓ)
8

�
d(d+ 1)

d+ 2
+ (d2 − 1)ν

�
|Sd|h2.

Hence, the desired result follows by using the estimate

|Sd| ≤
1

2dd!

Ê
(d+ 1)d+1

dd
hd,

that we have established in Theorem 7.2.14.

9.5 Numerical results

In this Section, we numerically demonstrate the e�ectiveness of the proposed enrichment strategy by
using several examples. We compare the accuracy of the approximation, computed in L1 norm, produced
by the simplicial vector linear �nite element PPP1(Sd) with that produced by (Sd,PPPenr

1 (Sd),ΣΣΣ
enr
Sd

) obtained
by enriching PPP1(Sd) with the linear functionals (9.4) and the admissible enrichment functions of the sets

E ′1 =

ei = eini, ei = cos (λi)
2∏

ℓ=0
ℓ ̸=i

λℓ, i = 0, 1, 2

 ,

E ′2 =

ei = eini, ei =
1+i
1+λi

2∏
ℓ=0
ℓ̸=i

λℓ, i = 0, 1, 2

 ,

of the Example 9.3.12 for d = 2. To this aim, we consider the following functions

f1(x, y) =
[
sin(π(x+ y)2), x2 + y2 + 25

]T ,
f2(x, y) =

�
1

x+ y + 3
, ex

5+y5

�T
,

f3(x, y) =
[
cos(x3 + y3), (x2 + xy) cos(x3 + y3)

]T ,
f4(x, y) =

�
1

x2 + y2 + 3
, x− y

�T
.

For each experiment, we use an acute triangulation with N = 1722 triangles (see Figure 9.1) and a
Delaunay triangulation with N = 2650 triangles (see Figure 9.2).

The numerical tests are realized by using MatLab software. The results are reported in Table 9.1 and
Table 9.2 for the acute triangulation illustrated in Figure 9.1, and in Table 9.3 and Table 9.4 for the De-
launay triangulation illustrated in Figure 9.2. It is worth noting that, when dealing with a given function
f , the enhancement in the accuracy of the approximation achieved by the enriched �nite element is not
universally signi�cant across all sets of enrichment functions. Instead, the precision of the approximation
hinges on the particular set of enrichment functions selected.
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Figure 9.1: Acute triangulation with N = 1722 triangles.
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Figure 9.2: Delaunay triangulation with N = 2650 triangles.

Simplicial vector linear �nite element Enriched vector linear �nite element
f1(x) 1.0007e-02 6.9083e-03
f2(x) 1.2140e-03 8.1065e-04
f3(x) 1.2659e-03 5.6754e-04
f4(x) 1.1148e-04 7.6070e-05

Table 9.1: Comparison between the approximation errors computed in the L1-norm, produced by approx-
imating the test functions f1 - f4 through the simplicial vector linear �nite element PPP1(Sd) and through
(Sd,PPPenr

1 (Sd),ΣΣΣ
enr
Sd

) obtained by enriching PPP1(Sd) with the set of admissible enrichment functions E ′1 using
the triangulation shown in Figure 9.1.
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Simplicial vector linear �nite element Enriched vector linear �nite element
f1(x) 1.0007e-02 7.2206e-03
f2(x) 1.2140e-03 8.5929e-04
f3(x) 1.2659e-03 6.3240e-04
f4(x) 1.1148e-04 8.1520e-05

Table 9.2: Comparison between the approximation errors computed in the L1-norm, produced by approx-
imating the test functions f1 - f4 through the simplicial vector linear �nite element PPP1(Sd) and through
(Sd,PPPenr

1 (Sd),ΣΣΣ
enr
Sd

) obtained by enriching PPP1(Sd) with the set of admissible enrichment functions E ′2 using
the triangulation shown in Figure 9.1.

Simplicial vector linear �nite element Enriched vector linear �nite element
f1(x) 6.7177e-03 4.5864e-03
f2(x) 7.3163e-04 4.9944e-04
f3(x) 8.2252e-04 3.5822e-04
f4(x) 7.8497e-05 5.5181e-05

Table 9.3: Comparison between the approximation errors computed in the L1-norm, produced by approx-
imating the test functions f1 - f4 through the simplicial vector linear �nite element PPP1(Sd) and through
(Sd,PPPenr

1 (Sd),ΣΣΣ
enr
Sd

) obtained by enriching PPP1(Sd) with the set of admissible enrichment functions E ′1 using
the triangulation shown in Figure 9.2.

Simplicial vector linear �nite element Enriched vector linear �nite element
f1(x) 6.7177e-03 4.8035e-03
f2(x) 7.3163e-04 5.2542e-04
f3(x) 8.2252e-04 4.004e-04
f4(x) 7.8497e-05 5.8658e-05

Table 9.4: Comparison between the approximation errors computed in the L1-norm, produced by approx-
imating the test functions f1 - f4 through the simplicial vector linear �nite element PPP1(Sd) and through
(Sd,PPPenr

1 (Sd),ΣΣΣ
enr
Sd

) obtained by enriching PPP1(Sd) with the set of admissible enrichment functions E ′2 using
the triangulation shown in Figure 9.2.
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Conclusions and Future Works

The �rst part of this thesis concerned the study of the constrained mock-Chebyshev least squares approx-
imation. In Chapter 2 we have generalized the univariate constrained mock-Chebyshev approximation to
the bivariate case through the constrained mock-Chebyshev least squares tensor product approximation
and the constrained mock-Padua least squares approximation. We have realized these approximations
by using di�erent basis functions and noticed that better accuracies are reached by the tensor product
Chebyshev basis. Working with data sampled on a �xed regular grid, this basis has a KKT matrix with
well behaved condition number, by increasing the degree of simultaneous regression, and a greater num-
ber of basis elements if compared with the total degree Chebyshev basis. In Chapter 3 we have used the
constrained mock-Chebyshev least squares approximation to obtain stable quadrature formulas with high
degree of exactness and accuracy from equispaced nodes. Since the accuracy of these quadrature formu-
las varies with the degree of the constrained mock-Chebyshev least squares approximation, depending on
the degree of smoothness of the function f , we have developed an adaptive algorithm for determining
the optimal degree which corresponds to the more accurate quadrature formula. In Chapter 4 we have
analyzed new theoretical aspects of the constrained mock-Chebyshev least squares operator. We have
introduced pointwise explicit representations of the error and its derivatives. By using the constrained
mock-Chebyshev least squares operator, we have presented a method for approximating the successive
derivatives of f at any point x ∈ [−1, 1] and we have provided estimates for these approximations. This
formula provides a global polynomial approximation of the successive derivatives of the function f . In
the second part of the thesis, we focused on the development of a uni�ed and general framework for the
enrichment of standard triangular linear �nite elements in R2 and of the standard simplicial linear �nite
elements in Rd. In Chapter 5, we have introduced and studied a new nonconforming �nite element based
on an enrichment of the standard triangular linear �nite element, which uses line integrals and quadratic
polynomials. Starting from this new element, we have proposed an improvement of the triangular Shepard
operator, for the reconstruction of a function from two-dimensional scattered data, when line integrals
are given, in addition to functional values. In Chapter 6 we have extended to a more general setting
the results presented in Chapter 5. More precisely, we have introduced a new class of nonconforming
�nite elements by enriching the class of linear polynomial functions with additional functions which are
not necessarily polynomials. We have provided a simple condition on the enrichment functions, which is
both necessary and su�cient, that guarantees the existence of a family of such enriched elements. Several
sets of admissible enrichment functions that satisfy the admissibility condition have been also provided,
together with the explicit expression of the related approximation error. Our main result has shown
that the approximation error can be decomposed into two parts: the �rst one is related to the linear
triangular element while the second one depends on the enrichment functions. This representation of the
approximation error has allowed us to derive sharp error bounds in both L∞-norm and L1-norm, with
explicit constants, for continuously di�erentiable functions with Lipschitz continuous gradients. These
bounds have been proportional to the second and the fourth power of the circumcircle radius of the trian-
gle, respectively. We have also provided explicit expressions of these bounds in terms of the circumcircle
diameter and the sum of squares of the triangle edge lengths. In Chapter 7 we have generalized the results
presented in Chapter 6 to the case of the standard simplicial linear �nite element in Rd. More precisely,
we have introduced a new class of �nite elements by enriching the standard simplicial linear �nite ele-
ment in Rd with additional functions (not necessarily polynomials) satisfying the vanishing condition at
all vertices. Chapter 8 was supplementary to Chapter 7, and its main goal has been to provide a general
strategy for enriching the standard simplicial linear �nite element without imposing restrictive conditions
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on the enrichment functions, like their vanishing at the vertices. In particular, we have extended the
results presented in Chapter 7 to a more general case, by using generic enrichment functions and generic
linear functionals. In line with previous researches, in Chapter 9, we have present a general strategy for
enriching the simplicial vector linear �nite element by nonpolynomial enrichment functions. This enriched
�nite element can be regarded as an extension of Bernardi and Raugel �nite element.

Future works will develop in two directions. The �rst one will concern the constrained mock-Chebyshev
least squares approximation. This approximation operator can be extended by considering other possible
Jacobi zeros, as for instance Legendre zeros with the additional points ±1, by taking into account that in
this case still optimal Lebesgue constants are achieved. Other exciting research problems are related to
the possibility of the generalization of the constrained mock-Chebyshev least squares approximation to
the case of functions sampled at the nodes of the n-th subdivision of a triangle. The second one will focus
on the study of the enrichment of �nite elements. In particular, we can apply the enrichment strategies
introduced in this thesis to approximate the solution of partial di�erential equations.
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