
HAL Id: tel-04685771
https://theses.hal.science/tel-04685771

Submitted on 3 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Enhancing IaaS Consolidation with Resource
Oversubscription

Pierre Jacquet

To cite this version:
Pierre Jacquet. Enhancing IaaS Consolidation with Resource Oversubscription. Systems and Control
[cs.SY]. Université de Lille, 2024. English. �NNT : �. �tel-04685771�

https://theses.hal.science/tel-04685771
https://hal.archives-ouvertes.fr

Enhancing IaaS Consolidation with
Resource Oversubscription

Améliorer la sur-allocation des ressources pour

une meilleure consolidation des IaaS

Pierre JACQUET

École Doctorale MADIS

Centre Inria de l’Université de Lille

CRIStAL — Spirals & Stack research teams

Thèse présentée et soutenue le 19/07/2024

pour obtenir le grade de docteur en informatique

Directeurs

Thomas LEDOUX Professeur IMT Atlantique
Romain ROUVOY Professeur Université de Lille

Rapporteurs

Pascal FELBER Professeur Université de Neuchâtel
Gaël THOMAS Directeur de recherche Inria

Examinateurs

Laurent LEFEVRE Chargé de recherche Inria, ENS Lyon
Anne-Cécile ORGERIE Directrice de recherche CNRS (présidente du jury)

Résumé

En migrant sa charge de travail vers des centres de données plus grands, le numérique a pu améliorer
son efficacité énergétique. La consommation liée à l’augmentation des usages a ainsi été atténuée par
de nettes améliorations de l’infrastructure mutualisée (appelée communément Cloud Computing), ce
qui est visible via des indicateurs tels que le Power Usage Efficiency (PUE).

L’infrastructure n’est cependant pas le seul point à optimiser. Le serveur en lui-même, et les tâches
qu’il exécute, reste un axe important de la recherche. Le taux d’usage est notamment particulièrement
étudié, car sa valeur relativement faible représente un gain potentiel non-négligeable. Ainsi, d’un
point de vue énergétique (consommation) et matériel (coût environnemental et financier), l’utilisation
d’un serveur chargé à 100% est préférable à celle de 3 serveurs chargés à 30%. Je propose donc
d’étudier ces taux d’usages au travers de quatre contributions complémentaires :

1. La création d’expériences contrôlées réalistes dans un contexte Infrastructure-as-a-Service
(IAAS). Alors que les plateformes supportant les infrastructures Cloud sont particulièrement
étudiées, la génération de charges de travail réalistes est primordiale. Chaque Cloud provider
ayant ses propres caractéristiques (distribution de tailles de Virtual Machines (VMs), taux
d’usage individuels), nous proposons un outil permettant de générer ces charges réalistes.

2. L’amélioration du calcul du taux de surréservation individuel des serveurs. En tenant en
compte de la stabilité individuelle des serveurs, il est possible d’affiner le calcul de ce taux sans
causer de violations supplémentaires.

3. L’introduction d’un nouveau paradigme de surréservation. En démontrant tout d’abord que
les vCPUs des VMs ne sont pas uniformément utilisés en conditions réelles, nous exposons aux
VMs des cœurs de différentes puissances (car surréservés à différents niveaux) et démontrons
que ce paradigme peut améliorer les performances globales.

4. La complémentarité des taux de surréservation pour réduire les ressources non-allouées.
La comparaison des VMs dites premiums et des VMs surréservées permet d’identifier qu’elles
tendent à saturer différemment les ressources de leurs hôtes. En les hébergeant sur les mêmes
serveurs, il est ainsi possible de bénéficier de synergies, et de réduire jusqu’à 9.6% la taille du
parc.

Abstract

By migrating its workload to larger Data Centers (DCs), the digital realm has been able to improve its
energy efficiency. The consumption due to the increase in usage has thus been mitigated by significant
improvements in shared infrastructure (commonly referred to as Cloud Computing), which is evident
through indicators such as Power Usage Efficiency (PUE).

However, infrastructure is not the sole point of optimization. The server itself, and the tasks it
executes, remain an important focus of research. Usage rate, in particular, is closely studied because
its relatively low value also represents a considerable potential gain. Thus, from both an energy
(consumption) and material (environmental and financial cost) standpoint, the use of a server loaded
at 100% is preferable to that of 3 servers loaded at 30%. I propose to examine these usage rates along
four complementary contributions:

1. The creation of realistic controlled experiments in an Infrastructure-as-a-Service (IAAS)
context. While platforms supporting Cloud infrastructures are extensively studied, generating
realistic workloads is crucial. As each Cloud provider has its characteristics (distribution of
Virtual Machine (VM) sizes and individual usage rates), we propose a tool to generate these
workloads.

2. The calculation of individual server oversubscription ratio. By considering the individual
stability of servers, it is possible to fine-tune the calculation of this ratio without causing
additional violations.

3. The introduction of a new oversubscription paradigm. By first demonstrating that VM
vCPUs are not uniformly used in a real-world context, we expose to VMs cores of different
powers (by oversubscribing them to different amounts) and demonstrate that this paradigm can
improve overall performance.

4. The complementarity of oversubscription techniques to reduce unallocated resources.
Comparing so-called premium VMs and oversubscribed VMs identifies that they tend to saturate
their hosts’ resources differently. By hosting them on the same servers, it is thus possible to
benefit from synergies and reduce the number of servers by up to 9.6%.

Acknowledgements

Although a thesis is written in the first person, many people have contributed directly or indirectly to
its completion. First, I must thank the jury members, Pascal Felber, Gaël Thomas, Laurent Lefevre,
and Anne-Cécile Orgerie, for their time spent evaluating my work and for the quality of our exchanges
during the defense. I warmly thank my two thesis supervisors, Thomas Ledoux and Romain Rouvoy,
for all our discussions, for their trust, and their encouragement over these three years.

I also thank the members of the FrugalCloud1 challenge, an alliance between Inria and OVHcloud
forming the framework of this thesis, with whom I have also regularly exchanged ideas. Among them,
I would like to personally thank Germain Masse and Charles Vaillancourt, without their help, the
exploitation of production data would not have been possible.

My daily life was also punctuated by numerous discussions (both technical and informal) with the
two research teams to which I was affiliated. I thank the members of the Inria Spirals and Stack teams
for these good moments.

Moreover, I benefited from the unconditional support of my family, my friends, and my partner
throughout this demanding adventure. Thank you all.

Finally, I must personally thank the team’s coffee machine for its admittedly bad but free coffee,
and therefore unlimited during certain long evenings.

1https://graal.ens-lyon.fr/frugalcloud/

Table of contents

List of figures x

List of tables xii

1 Introduction 1
1.1 Motivation . 1

1.1.1 Context . 1
1.1.2 Problem statement . 2

1.2 Contributions . 4
1.2.1 Improving IaaS experiments using realistic users’ behavior 4
1.2.2 Computing oversubscription ratios under stability consideration 4
1.2.3 Introducing per-vCPU oversubscription . 5
1.2.4 Balancing complementary oversubscription levels 5
1.2.5 Overview of contributions related to oversubscription 6

1.3 List of Scientific Publications . 6
1.4 Other contributions . 7
1.5 Outline . 7

2 Background 9
2.1 IaaS context . 9
2.2 IaaS experiments . 10

2.2.1 Platforms used for experiments . 10
2.2.2 Input used for experiments . 12

2.3 IaaS scheduling . 13
2.3.1 Orchestrators . 13
2.3.2 Host internal scheduling . 17

2.4 Improve packing beyond orchestration . 19
2.4.1 Evictable VMs . 20
2.4.2 Harvesting VMs . 20
2.4.3 Disaggregated resources . 21

Table of contents vii

2.4.4 Oversubscription techniques . 21
2.4.5 Summary of usage improvement techniques 26

3 Improving IaaS experiments using realistic users’ behavior 28
3.1 CLOUDFACTORY overview . 29
3.2 Compute high-level statistics . 30

3.2.1 Statistics identification . 30
3.2.2 Computing usage . 31
3.2.3 Periodicity ratio . 32
3.2.4 Computing VM distribution . 32
3.2.5 Departure & arrival ratios . 33
3.2.6 Profiles examples on Azure dataset . 33
3.2.7 Generated statistics. 34

3.3 Generate production-scale workloads . 34
3.3.1 On VM configuration generation . 35
3.3.2 On VM behavior generation . 35
3.3.3 A few words on reproducibility . 35

3.4 Exporters . 36
3.4.1 CLOUDSIMPLUS . 36
3.4.2 Bash . 36
3.4.3 CBTOOL . 37
3.4.4 Others exporters . 37

3.5 Case study . 38
3.5.1 Generate distributions . 38
3.5.2 Generate usage profiles . 38
3.5.3 Experiment . 39
3.5.4 Results . 39
3.5.5 Adoption by the Cloud industry . 41

3.6 Limitations . 42
3.7 Conclusion . 43

4 Computing oversubscription ratios under stability consideration 44
4.1 Greedy oversubscription with SCROOGEVM . 46

4.1.1 Principles of greedy oversubscription . 46
4.1.2 Implementation of SCROOGEVM . 53

4.2 Empirical analysis . 54
4.2.1 Experimental settings & evaluation protocol 55
4.2.2 Impact of the sampling period . 56
4.2.3 Impact on the VM performances . 57

viii Table of contents

4.3 Validation . 59
4.4 Conclusion . 62

5 Introducing per-vCPU oversubscription 64
5.1 Motivation . 65

5.1.1 Not all vCPUS are equally used . 65
5.1.2 Introducing vertical oversubscription . 68

5.2 Implementation details . 69
5.2.1 Local scheduler . 69
5.2.2 Segregate physical cores . 70
5.2.3 Pool heterogeneity requirements . 72
5.2.4 Oversubscription templates . 73

5.3 Empirical evaluation . 73
5.3.1 On core priority . 73
5.3.2 On workload generation . 74
5.3.3 Experimental IaaS platform . 75
5.3.4 Experimental results . 75
5.3.5 On the provisioning of small VMs . 78

5.4 Conclusion . 78

6 Balancing complementary oversubscription levels 80
6.1 Cloud resource balance . 81

6.1.1 Cloud allocations . 81
6.1.2 Cloud resources collapse differently . 83

6.2 SLACKVM overview . 84
6.3 Local scheduler . 85

6.3.1 Topology-driven resizing of vNodes . 86
6.3.2 Leveraging workloads diversity in vNodes 87

6.4 Global scheduler incentive . 88
6.5 Empirical evaluation . 90

6.5.1 Evaluation in the wild . 91
6.5.2 Evaluation at scale . 93

6.6 Conclusion . 97

7 Conclusion 99
7.1 Contributions . 99

7.1.1 Improving IaaS experiments using realistic users’ behavior 99
7.1.2 Computing oversubscription ratios under stability consideration 100
7.1.3 Introducing per-vCPU oversubscription . 100
7.1.4 Balancing complementary oversubscription levels 100

Table of contents ix

7.2 Perspectives . 101
7.2.1 Short-term perspectives . 101
7.2.2 Long-term perspectives . 102

References 104

List of figures

1.1 Power consumption of Intel & AMD servers according to core’s consolidation strategies 3

3.1 Overview of CLOUDFACTORY . 30
3.2 4 Virtual Machine (VM) usage profiles captured from Azure 2017 using k-means

clustering (k = 4) . 31
3.3 Infrastructure-as-a-Service (IAAS) hosting capacities required by VM distribution

and deployment conditions . 40
3.4 CPU oversubscription ratio based on VM distribution and deployment condition . . . 41
3.5 Comparison of vCPU distributions across Cloud providers 42
3.6 Comparison of vRAM distributions across Cloud providers 42

4.1 Cumulative Distribution Function (CDF) of memory availability in an IAAS infras-
tructure. 46

4.2 CDF of memory allocation variations in an IAAS infrastructure 47
4.3 Resource usage traces. Reference data is in grey, data seen as new in red 50
4.4 Overview of the integration of SCROOGEVM in an IAAS platform to guide the

deployment of new VMs . 54
4.5 Scheduler latency impact on VM performance (log-scale axes) 56
4.6 Overview of our collected metrics . 57
4.7 CPU performance comparison for 2 workloads (log-scale Y axis, lower is better) . . 58
4.8 Memory performance comparison for 2 workloads (log-scale Y axis, lower is better) 59
4.9 Cumulated mispredictions (cores) under decreasing CPU workload (lower is better) . 60
4.10 Cumulated mispredictions (cores) under increasing CPU workload (lower is better) . 61

5.1 Mapping the distributions of VM sizes to the physical CPUs provisioned by the
OVHcloud infrastructure . 66

5.2 CDF of individual virtual CPU (vCPU) utilization ratios of various VMs profiles
hosted by OVHcloud . 67

5.3 Transitioning from horizontal CPU oversubscription to vertical oversubscription as
implemented by SWEETSPOTVM . 69

List of figures xi

5.4 DEATHSTARBENCH social network response time on different oversubscription
scenarios . 74

5.5 Performance degradation in response time of the social network app of DEATHSTAR-
BENCH (as multiple of the baseline, lower is better) 77

5.6 Evolution of resources allocation and usage per oversubscription level for a SWEETSPOTVM
template targeting 2:1 . 78

6.1 Overview of SLACKVM components . 85
6.2 Comparison of 90th percentile response times for the DEATHSTARBENCH Social

network app (log-scale Y axis) . 92
6.3 Comparison of unallocated resource ratios between dedicated clusters (baseline) and

SLACKVM when considering the OVHcloud setups 93
6.4 SLACKVM gains in terms of Physical Machine (PM) (%) for various oversubscription

distributions (the 3:1 VM distribution corresponds to the 100 complement of the other
two distributions) . 96

List of tables

1.1 Contributions related to oversubscription . 6

2.1 Considered orchestrators . 17
2.2 Review of oversubscription ratio computations . 23
2.3 Classification of usage improvement techniques . 26

3.1 Detailed metrics of the 4 usage profiles computed by the workload analyzer on Azure
dataset . 34

3.2 CPU Distribution used for experiment . 38
3.3 Memory Distribution used for experiment . 38
3.4 Experiment results summary . 40

4.1 Comparison of quiescent labels returned by classifiers 51
4.2 Quantitative evaluation of quiescent state classifiers 52
4.3 Hardware configuration of IAAS PM . 56
4.4 Comparison of oversubscription strategies (decreasing CPU) 60
4.5 Comparison of oversubscription strategies (increasing CPU) 61

5.1 Hardware settings of the IAAS worker node . 75
5.2 Oversubscription templates considered in the experiments 76

6.1 Average vCPU & vRAM requests per VM (vCPU & vRAM) 82
6.2 Memory per Core (M/C) ratio of oversubscribed VMs (in provisioned GB/core) . . . 82
6.3 Hardware settings of the IAAS worker . 91
6.4 Performance comparison by the median of the 90th response times measured 92

Chapter 1

Introduction

1.1 Motivation

1.1.1 Context

Human activities have significantly harmed the environment, causing a sharp decline in biodiversity
over a relatively short geological time frame. This decline is evident through various indicators: the
global tree population has halved since the advent of human civilization [1], terrestrial vertebrate
populations have decreased by 70% since 1970 [2], and Germany has witnessed a 67% reduction in
insect biomass since 2008 [3]. The reasons behind this widespread decline are complex and include
factors like agricultural expansion, pesticide use, habitat loss, pollution, and indirect causes such as
climate change.

As part of this biodiversity, humans themselves are also affected. Environmental degradation
impacts our health, as seen in reduced life expectancies due to air pollution [4], the contamination of
rainwater rendering it undrinkable [5], and approximately 30% of the global population being exposed
to lethal heat for more than 20 days annually [6].

When examining the rapid pace of these developments, a notable connection can be drawn to
global energy production. As asserted by [7], the availability of greater energy resources correlates
with increased harvesting capabilities and production (GDP) output. Additionally, Information and
Communication technologies (ICT) play a significant role in this acceleration by facilitating world-
scale communication, enabling complex supply and production chains, providing access to data,
etc. [8].

While major changes—i.e., related to the usage—must come from society, research still has a
role to play by both describing the problem to actors, as well as reducing the impact of existing
infrastructures [9]. In this thesis, I focus on the environmental impact of Data Centers (DCs), which
is estimated to account for 18% to 41% of the carbon footprint of ICT [10].

2 Introduction

1.1.2 Problem statement

Over the past decade, improvements in ICT energy efficiency have been achieved by gradually
shifting workloads to larger DCs, where virtualization is extensively used to manage resources rented
to clients. I refer to this environment as the Cloud Computing. The workload consolidation allowed
by virtualization, along with infrastructure improvements, helps alleviate some of the significant
increases in ICT usage [11]. However, there is a natural limit to infrastructure optimization, indicated
by a theoretical Power Usage Efficiency (PUE) value of 1, which some DCs are approaching [12].

When considering unsustainable resources, a natural objective is to limit as much as possible their
use. Products derived from mining are inherently unsustainable because they depend on resources
available in finite, non-renewable, quantities. Mitigating the social and environmental impacts of
mining can also be challenging. As DCs heavily rely on mined resources, an ongoing objective is
to contain their size, specifically the number of Physical Machines (PMs) they use. Additionally,
DCs consume a significant amount of power, constituting approximately 1.7% of global energy
consumption [11]. In certain countries, such as Ireland, the proportion of energy consumed can be
substantially higher, reaching up to 18% of the national consumption.

Going beyond general advice regarding software optimization to more Cloud-oriented recommen-
dations on how to limit the power consumption of Cloud users is challenging due to the virtualized
infrastructure. While software impacts hardware component power consumption, its direct consump-
tion is highly variable in a Cloud context, notably due to heterogeneity in the hardware, the kernel,
and the collocated workloads.

To illustrate this effect, let us focus on the first aspect: hardware components. I propose to
study whether Cloud providers should advise their clients to order small Virtual Machines (VMs)
(consolidating the workload on a few cores) or larger ones (spreading the workload on multiple cores).
Let us consider two hardware platforms, one based on an Intel processor and the other one based
on AMD, both having the same order of magnitude in their maximum power consumption and the
default scaling governor options (in charge of managing core frequencies).

Under the first hypothesis (consolidating), we generate CPU load by launching processes that
use 100% of a core’s time. Under the second hypothesis (spreading), we achieve the same CPU load
target by launching five times more processes, each using only 20% of a core’s time. On the Intel
architecture, one can observe that both hypotheses lead to similar power consumption as depicted
in Figure 1.1. Paradoxically, in the AMD architecture, consolidating the workload increases energy
consumption, as observed in the figure. The delta can be substantial, with a maximum of 200W under
a 40% CPU overall usage, which is the order of magnitude of current Cloud PM usage [13]. This may
be linked to limited support for C-states from AMD (therefore not benefiting from the sleeping phases
of unused cores) and more aggressive power consumption under P-states.

In this thesis, I choose to shift from the client perspective to the Cloud provider perspective to be
closer to hardware resources. Cloud providers operate clusters of PM that must be distributed between
clients. To this end, virtualization may be seen as a way to distribute server resources into smaller,

1.1 Motivation 3

0 20 40 60 80 100
Processors usage (%)

100

150

200

250

300

350

400

450

500
Pr

oc
es

so
rs

 c
on

su
m

pt
io

n
(W

)

processor = Intel

0 20 40 60 80 100
Processors usage (%)

processor = AMD

Per-process CPU usage (%)
20
100

Fig. 1.1 Power consumption of Intel & AMD servers according to core’s consolidation strategies

and more practical, units. However, server components are not all distributed in the same manner.
Some components have to be de facto shared, like the motherboard. Others, like CPUs and memory,
can be divided (e.g. core for the first ones, pages for the second one), allowing to split them among
clients instead of sharing them.

This thesis aims to minimize the number of servers required to operate Infrastructure-as-a-
Service (IAAS) workloads. To achieve this, effective resource sharing is essential, even for resources
that can be partitioned.

Clients typically size their deployments to handle peak loads, which are ephemeral by nature,
resulting in over-provisioned scenarios most of the time. For example, in the context of Microsoft
Azure, most VMs have an average CPU utilization below 20% [14], leading to a significant proportion
of unused resources. To estimate overall idle resources, these unused resources must be added to
non-allocated resources. 40% of physical machines (PMs) have at least 20% of unallocated CPU [15].
This results in DCs operating under low utilization. Idle resources can be seen as wasted resources, as
failing to exploit them necessitates the provisioning of more servers than theoretically required.

One common way to share resources is to place multiple clients into the same computing units,
accounting for the fact that not all the clients need all their resources all of the time. This leads to
the practice of offering more virtual resources than are physically available, a technique known as
oversubscription (or overcommitment) [16]. This technique must answer a simple yet challenging
question: how many additional virtual resources should be offered? This question is implicitly linked
to underlying ones:

1. How can IAAS systems be effectively assessed under realistic operational conditions?

2. Is there room for enhancement in existing oversubscription computation methodologies?

3. Could the oversubscription paradigm in IAAS environments be reimagined?

4 Introduction

While reducing the ICT impact requires ongoing efforts from our community, we hope that the
following chapters will present interesting leads on how IAAS workloads can be studied and their
hosting needs reduced using oversubscription.

1.2 Contributions

This thesis is articulated around four distinct contributions. The first contribution addresses the need
for realistic experiments, providing a foundation for the empirical approach used in the subsequent
contributions. The second contribution enhances the current oversubscription paradigm by fine-tuning
its ratio. The third and fourth contributions explore innovative applications of the oversubscription
paradigm.

1.2.1 Improving IaaS experiments using realistic users’ behavior

Cloud infrastructures are large-scale and complex platforms designed to host a wide diversity of
applications and workloads. Given these complexity and scale factors, simulators and benchmarks are
broadly adopted in vitro to study their behaviors, prototype new software components and heuristics,
and evaluate their effective performances.

However, both state-of-the-art simulations and benchmarks may suffer from a representativeness
problem, as the reported results can vary depending on their input workloads. For example, an
IAAS platform aims to host VMs, whose characteristics (resource configurations, workload intensity,
arrival/departure rate, etc.) can greatly differ depending on Cloud providers and public/private deploy-
ments. Addressing this IAAS representativeness thus requires Cloud providers to share production-
scale datasets, which might be considered sensitive. Moreover, simulations and benchmarks require a
specific experiment scenario that cannot be easily generated from Cloud providers’ characteristics.

To address these issues, I introduce CLOUDFACTORY, an IAAS workload generator. This
contribution is first composed of a library that can be used by Cloud providers to share IAAS statistics,
instead of raw datasets. Then, a generator is introduced to produce realistic VM workloads that match
these statistics. CLOUDFACTORY is made available as open-source software that can be adopted by
Cloud providers and researchers to foster the evaluation of new contributions.

As an example, I perform an analysis on scheduling choices for different IAAS workload intensities
of two different Cloud providers: Microsoft Azure and Chameleon. I also report on OVHcloud
statistics computed from CLOUDFACTORY and compare them to other Cloud providers.

1.2.2 Computing oversubscription ratios under stability consideration

Despite continuous improvements, Cloud physical resources remain underused, hence severely
impacting the efficiency of these infrastructures at large. To overcome this inefficiency, IAAS
providers can compensate for oversized VMs by offering more virtual resources than are physically

1.2 Contributions 5

available on a host. However, this technique may hinder performances when a statically-defined
oversubscription ratio results in resource contention of hosted VMs.

Therefore, instead of setting a static and cluster-wide ratio, this contribution studies how a
greedy increase in the oversubscription ratio per PM and resources type can preserve performance
goals. Keeping performance unchanged allows this contribution to be more realistically adopted
by production-scale IAAS infrastructures. This contribution, named SCROOGEVM, leverages the
detection of PM stability to carefully increase the associated oversubscription ratios. Based on metrics
shared by public Cloud providers, I investigate the impact of resource oversubscription on performance
degradation. Subsequently, I conduct a comparative analysis of SCROOGEVM with state-of-the-art
oversubscription computations. The results demonstrate that this approach outperforms existing
methods by leveraging the presence of long-lasting VMs while avoiding live migration penalties and
performance impacts for stakeholders.

1.2.3 Introducing per-vCPU oversubscription

The adoption of computing resources oversubscription in Cloud environments is conventionally
limited to a restricted subset of VMs within the providers’ offerings, primarily driven by performance
considerations. So far, VMs schedulers mostly implement all-or-nothing oversubscription strategies,
wherein all VM resources are either oversubscribed or remain unaltered. While the former strategy
offers higher consolidation rates, the latter delivers better performance guarantees.

In this contribution, I conducted an empirical study of the individual usage of virtual CPUs
(vCPUs) in the OVHcloud production environment and demonstrated that, as they are not uniformly
utilized, the current global approach (where a VM resources are either entirely oversubscribed or
not oversubscribed at all) may not be appropriate. Based on these observations, I introduce a novel
approach, named SWEETSPOTVM, where oversubscription ratios are applied at the granularity
of individual vCPU, instead of the whole VMs. This novel paradigm unlocks a more flexible
oversubscription management strategy, pinning oversubscription ratios per vCPU within VMs.

I assess the viability of this approach on a physical platform, demonstrating the possibility of
dividing the cost of hosting VMs by 3 while maintaining the VMs performance at the level of
non-oversubscribed platforms.

1.2.4 Balancing complementary oversubscription levels

Cloud providers generally expose a catalog of various VMs offers, some being categorized as
premium—guaranteeing dedicated resources—and others being hosted in oversubscribed environ-
ments, where virtual resources can exceed the physical capabilities of PMs. The latter strategy is
often employed to increase platform utilization, as hosted VMs are unlikely to fully utilize all their
allocated resources simultaneously [17]. However, managing multiple oversubscribed VM levels
introduces complexity for Cloud providers, often leading them to provision dedicated clusters of PMs
for each category of offers.

6 Introduction

In this contribution, I introduce SLACKVM, a novel Cloud architecture wherein VMs from
various oversubscription levels coexist on the same cluster of PMs. In particular, I demonstrate
that oversubscription levels can be complementary, meaning they do not saturate the same resource
components. By leveraging this complementarity, Cloud providers can couple these levels to better
consolidate VMs offers onto PMs, and reduce the size of their clusters by up to 9.6%. This results in
cost savings and a reduced ecological footprint for Cloud infrastructures, with a limited impact on the
Quality of Service (QoS).

1.2.5 Overview of contributions related to oversubscription

A summary of contributions related to oversubscription is presented in Table 1.1. While oversubscrip-
tion inherently reduces the number of unused resources, SCROOGEVM and SWEETSPOTVM address
performance degradation using different approaches. Additionally, SLACKVM demonstrates that
oversubscription can also effectively reduce unallocated resources.

Table 1.1 Contributions related to oversubscription

Contribution Address unused resources Address unallocated resources Address performance degradation
SCROOGEVM Yes No Ratio fine-tuning

SWEETSPOTVM Yes No Multiple ratio
SLACKVM Yes Yes No

1.3 List of Scientific Publications

Parts of this thesis are adapted from the following publications:

1. P. Jacquet, T. Ledoux, and R. Rouvoy, “Cloudfactory: An open toolkit to generate production-
like workloads for cloud infrastructures,” in 2023 IEEE International Conference on Cloud
Engineering (IC2E), (Boston, United States), pp. 81–91, IEEE, 2023.
Available at: https://hal.science/hal-04168667

2. P. Jacquet, T. Ledoux, and R. Rouvoy, “ScroogeVM: Boosting Cloud Resource Utilization with
Dynamic Oversubscription,” IEEE Transactions on Sustainable Computing (TSUSC), 2024.
Available at: https://hal.science/hal-04466538

3. P. Jacquet, T. Ledoux, and R. Rouvoy, “SweetspotVM: Oversubscribing CPU without Sacri-
ficing VM Performance,” in 24th IEEE/ACM international Symposium on Cluster, Cloud and
Internet Computing (CCGrid), (Philadelphia, United States), IEEE, 2024.
Available at: https://hal.science/hal-04454043

4. P. Jacquet, T. Ledoux, and R. Rouvoy, “SlackVM: Packing Virtual Machines in Oversubscribed
Cloud Infrastructures,” in 26th IEEE International Conference on Cluster Computing (CLUS-
TER), (Kobe, Japan), IEEE, 2024.
Available at: https://hal.science/hal-04636648

https://hal.science/hal-04168667
https://hal.science/hal-04466538
https://hal.science/hal-04454043
https://hal.science/hal-04636648

1.4 Other contributions 7

1.4 Other contributions

This thesis has resulted in the creation of a tool and multiple prototypes. The complete source code
for all artifacts has been made available. The list of artifacts is as follows:

• CLOUDFACTORY: This tool is designed to generate realistic IAAS workloads for experiments..
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/jacquetpi/
cloudfactory

• SCROOGEVM: A scheduler that regulates per-server oversubscription ratios by evaluating the
quiescent state of resources
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/jacquetpi/
scroogevm

• SWEETSPOTVM: A local scheduler that exposes cores with varying performance levels to VMs
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/jacquetpi/
sweetspotvm

• SLACKVM: A local scheduler that accommodates VMs with different oversubscription ratios
on a single server
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/jacquetpi/
slackvm

In complement, a press article has been written and published online:

• P. Jacquet, T. Ledoux, and R. Rouvoy, “La chasse au gaspillage dans le cloud et les data centers,”
The Conversation, France, 2023.
Available at: https://theconversation.com/la-chasse-au-gaspillage-dans-le-Cloud-et-les-data-centers-196669

1.5 Outline

This thesis is structured as follows. I first discuss the background and related work to this thesis in
Chapter 2. Chapter 3 elaborates on the generation of realistic IAAS experiments. This involves consid-
ering client behaviors, including selecting VM sizes and resource consumption patterns, to evaluate
IAAS architecture choices from the perspective of Cloud providers in a controlled environment. In
Chapter 4, I advocate for oversubscription ratios being computed closer to the individual usage of
resources by evaluating the quiescent state of servers. In Chapter 5, I report on the individual vCPUs
usage being made in real-world scenarios. Given the heterogeneity in vCPU usage, the proposal
involves exposing cores of varying performance levels to VMs. Chapter 6 evaluates the limiting
resources for additional deployments in IAAS environments. It identifies that the limiting resource
depends on the level of oversubscription and suggests hosting differently oversubscribed VMs in the

https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/jacquetpi/cloudfactory
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/jacquetpi/cloudfactory
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/jacquetpi/scroogevm
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/jacquetpi/scroogevm
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/jacquetpi/sweetspotvm
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/jacquetpi/sweetspotvm
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/jacquetpi/slackvm
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/jacquetpi/slackvm
https://theconversation.com/la-chasse-au-gaspillage-dans-le-Cloud-et-les-data-centers-196669

8 Introduction

same cluster of PMs to improve packing. Lastly, Chapter 7 concludes this thesis by summarizing the
contributions and proposing research perspectives.

Chapter 2

Background

In this chapter, I focus on IAAS resource usage-related work. I begin by discussing relevant IAAS
datasets in Section 2.1. In Section 2.2, I delve into the generation of IAAS workloads for controlled
experiments, as this thesis heavily relies on empirical approaches. In Section 2.3, I examine the
behavior of generic schedulers. Finally, in Section 2.4, I explore methods to improve packing
efficiency beyond scheduling.

2.1 IaaS context

IAAS services are widely adopted hosting solutions where the Cloud provider oversees the hardware
infrastructure and provides clients with VM, leaving them responsible for managing the software
stack, including the operating system, middleware, and applications. In 2017, Azure released a
dataset containing cluster traces to facilitate the study and understanding of these environments’
characteristics [23]. It includes, amongst others, VM memory and vCPU configuration options
distribution, arrival rate patterns, VM lifespan, and CPU usage daily pattern. This dataset stands as a
valuable contribution, given its status as one of the only available public IAAS datasets from a large
Cloud provider.

These traces underline that resource usage is not optimal. The average CPU usage of VM is notably
low, with 60% of VMs exhibiting an average CPU utilization below 20%. This is also confirmed by
data from privately operated Cloud environments, with Twitter scheduler Mesos reporting a similar
order of magnitude on the CPU and an average memory usage below 50% [24]. It’s worth noting
that a significant proportion of these usage patterns are stable and not periodic, which contradicts the
assumption that most Cloud-hosted applications are interactive [25].

In addition to considering the usage of allocated resources within VMs, it is also important to
recognize that a notable portion of resources also remains unallocated within a cluster. Azure’s findings
indicate that at least 20% of CPU resources are unallocated on more than half of the servers [15].
Furthermore, the percentage of unallocated memory increases to 40%. It’s worth noting that this

10 Background

unallocated CPU and memory may not necessarily occur on the same servers, resulting in scattered
resources that are unusable by traditional deployments.

In this thesis, the term "Cloud workload" refers to the usage patterns of clients on the platform,
encompassing actions such as VM deployment (with client-specified sizes), VM resource utilization,
and VM deletion. Cloud workloads are dependent on clients’ behaviors and may significantly differ
from one provider to another due to their specific contexts. For instance, research-oriented Cloud
operator CHAMELEON [26] published 6-month traces in 2020 where half of their deployments imply
VMs having at least 4 vCPUs, while Azure reports that less than 2 vCPUs VMs are required in 80% of
their deployments. This discrepancy notably impacts server packing strategies and may consequently
result in increased levels of unallocated resources within the context of Chameleon.

Besides IAAS services, other services offer a broader management scope. Platform-as-a-Service
(PAAS) and Container-as-a-Service (CAAS) computing, for instance, extend their management to
include the guest operating system. In this thesis, these services are seen as a specialization of the IAAS
paradigm, often internally built upon it. Taking the more specific context of co-located ephemeral
jobs, traces from Alibaba [27] and Google Borg [28] can be studied. Despite also reporting under-
optimal allocations (e.g., Alibaba’s PMs utilize on average 40% of CPU and 60% of memory [29]),
generalizing their characteristics to a broader context is challenging due to the typically short lifetimes
of tasks in their workloads compared to VMs.

2.2 IaaS experiments

In the pursuit of enhancing the usage of Cloud platforms, experimentation plays a vital role in assessing
hypotheses, evaluating system performance, and simulating potential gains. In the context of Cloud
computing, state-of-the-art benchmarks typically rely on the combination of two key components.
First is the System under Test (SUT), which is derived from production environments, and can either
be a copy of an existing system, considered representative of real ones, or a simulator. Second is
the input workload, generally described as the usage pattern submitted to the SUT. I now discuss
common SUT studied in a Cloud context, while input workload is later discussed.

2.2.1 Platforms used for experiments

When evaluating Cloud-based systems, researchers may adopt two complementary approaches. The
first involves simulations to synthesize various system configurations and workloads, thereby avoiding
the cost of resource-intensive and time-consuming real-world experiments. The second approach
involves benchmarks, in which real-world workloads are applied to a system under test, which may
be either a generic system or a copy of an existing one. Unfortunately, both of these approaches
often face a representativeness challenge, where injected workloads must be as faithful as possible
to real-world conditions. Cloud metrics reported by practitioners are a key insight in this regard.

2.2 IaaS experiments 11

This section outlines the state-of-the-art for Cloud simulators, System under Test (SUT) benchmarks,
workload representativeness, as well as relevant Cloud datasets.

Cloud simulators

CLOUDSIM [30] is an extensible software framework to simulate a Cloud-based infrastructure. Its
flexible nature enables users to create customizable platforms under various workload scenarios,
such as VM (Virtual Machine) distribution, arrival rate, CPU usage, etc. CLOUDSIMPLUS [31] was
introduced as a fork, enhancing its capabilities. Crossref1 records indicate that the original framework
is widely adopted by the research community, with over 2,700 citations.

While other Cloud DC simulators exist, like closed-source MDCSIM [32], simulators expect
developers to encode synthetic deployment scenarios rather than providing guidelines on realistic
Cloud workloads. For instance, the MDCSIM validation protocol relied on a custom scenario to
compare its resource utilization to a physical infrastructure hosting a web-oriented application under
a specific workload. Similarly, GREENCLOUD and CLOUDSIM used specific evaluation prototypes as
examples.

SIMGRID [33] is a more generic solution that can be applied to the Cloud via its S4U interface. It
can run a VM-based scenario and evaluate scheduling decisions on physical resources. VMPLACES
framework [34] leverages it to inject realistic VM usage. However, the framework does not consider
VM lifespan and arrival rate.

Prototype under test

Application under Test Hosted applications are the smallest SUT unit in a Cloud experimenta-
tion [35]. Metrics of interest include response time, request rates, errors, etc. [36].

Due to the wide adoption of Cloud infrastructures, many types of applications can be hosted.
A non-exhaustive list of legacy applications includes relational database structures proposed by
TPC [37], CPU-intensive tasks, such as those provided by SPEC CPU [38], mail server [39], and
others.

Additionally, web-oriented architectures are also frequently considered and tested using various
projects, such as the OLIO monolithic application [40] and other microservice architectures imple-
mented in the DEATHSTARBENCH [41]. Key-value stores are also widely deployed and can be
evaluated using the YCSB benchmark [42].

VM under Test Assessing VM performance for a given application is beneficial to Cloud clients.
In this configuration, the application and the workload generator may not be co-located, to evaluate
the platform-induced latency.

The choice between hosting options can be made by evaluating the balance between perfor-
mance and cost for various VM sizes and providers. Work targeting providers benchmark includes

1https://www.crossref.org/

https://www.crossref.org/

12 Background

MOSAIC [43, 44], CLOUDCRAWLER [45] framework, and C-METER [46] where the monitored
application can be configured. Other approaches compare application metrics on provided bench-
marks [40, 47, 48].

Platform under Test Cloud platform consists of physical servers, known as nodes. These nodes
can be organized as clusters, which are groups of servers used for a specific Cloud workload, such
as hosting VM with the same premium policy. Conducting experiments at the scale of a node can
provide significant benefits for both providers and researchers, as it can evaluate various platform
configurations and architecture choices. In the context of multiple VMs, the node represents the
smallest SUT where deployments can be studied. In this context, a deployment is defined as the
provisioning of a VM on a node according to its requested resources.

SPECVIRT benchmark [49] offers a means of measuring end-to-end performances, including
hardware, virtualization platform, and guest operating system on various application types. While
being behind a paywall, they also do not target workload representativeness. They use an increasing
workload until Quality of Services (QoS) is violated.

Another available option is the VMMARK benchmark, provided by VMWare [50]. This benchmark
deploys simultaneously 6 VMs hosting different workloads: mail server, java server, idle workload,
web server, database server, and a file server before evaluating their performance under stress. They
do not seem to take into account larger deployments, VM lifespan, departure, and arrival rates.

The management complexity associated with studying multiple Cloud nodes has led to the
development of dedicated frameworks. A prominent example is CBTOOL [35], which has become
the de facto standard for describing an IAAS scenario through a given number of nodes, VM, and
usage parameters. Interpreted scenarios can be applied to both private clusters and public providers.
Single-node experiments are also an option.

2.2.2 Input used for experiments

Cloud-like workloads applied to SUT aim to be as representative as possible. Two strategies are
typically used: replaying recorded traces or using models.

Replaying traces [51, 52] involves resubmitting production requests, which provides a compre-
hensive representation of the workload, but may not be available in all cases.

Alternatively, workload models can be used to represent an input workload behavior. Basic usage
may rely on a targeted rate (requests per second), while other generators include patterns and burst
mechanisms [53].

Workload representativeness is typically focused on the application or VM level. To the best
of our knowledge, few previous works provide workloads at the node or cluster scale, even if they
introduce additional metrics, such as VM arrival rate, VM lifespan, used resources, etc. One exception
is [54], which implements a specific workload scenario on CBTOOL, although the adopted parameters
are not publicly communicated due to a paywall.

2.3 IaaS scheduling 13

2.3 IaaS scheduling

Reducing the cluster size involves adapting how resources are allocated and shared between deploy-
ment units. In an IaaS-like environment, resource management occurs at two levels. First, I discuss
PM selection during VM deployment. Then, I detail how resources are scheduled within a PM after
deployment.

2.3.1 Orchestrators

Cloud clusters are commonly composed of thousands of servers, with non-uniform configurations.
Selecting an appropriate host for a given VM task is the responsibility of a component, called an
orchestrator, in most distributed system architecture. By extension, this is also the component refusing
to deploy more workload on a given host when its allocation is considered full.

The selection of an appropriate PM for a given VM deployment is often framed as a Vector Bin
Packing Problem [55]. In this problem, a set of VMs with known resource requirements must be
allocated to PMs with known resource capacity. The objective is to fulfill the VMs demands while
minimizing the number of required PMs. Bin packing problems are NP-hard [56] and, over the
years, numerous heuristics have been proposed to tackle VM scheduling cases [57]. While First Fit
Decreasing and Best Fit Decreasing algorithms may be used to address them, Cloud providers must
however account for more parameters than just the resources request.

State-of-the-art Cloud orchestrators typically use a score-based mechanism to select the most
appropriate PM. I focus on schedulers used at large scale (>1000 nodes) hosting generic workloads
(not tailored to a single framework).

Google Borg

Google’s internal workloads are managed by a monolithic orchestrator called Borg [58]. Both
production and non-production workloads are co-located in the same cluster of machines. The
scheduler is a centralized application that manages both long-running workloads and more ephemeral
jobs. Borg utilizes a very fine-grained resource reservation system, using units such as milli-cores and
bytes.

Jobs are hosted without virtualization, while tasks are isolated from one another using cgroups
functionalities, making them akin to containers.

The scheduler asynchronously fetches a queue containing submitted jobs and scans it from high
to low priority, with a round-robin scheme within each priority level to ensure fairness across users
and prevent head-of-line blocking. A job deployment first involves the finding of a list of suitable
PMs, matching those with sufficient available resources and meeting potentially specified constraints.
The selection of suitable PM is determined by applying a list of filters. Each filter tests a specific
property, resulting in a boolean value that determines whether a host is accepted or rejected based on
hard criteria.

14 Background

A score is then computed for each suitable PM, taking into account various factors such as the
preemption of existing services, prioritizing jobs of different priority on PMs, and the pre-existing
installation of software dependencies for the given job (soft criteria). While details on the score
computation are not provided, it is described as a spreading-oriented strategy aimed at avoiding
scattered resources caused by one computing resource being fully allocated before others.

To speed up the PM selection, only a random sample of PM is chosen for the scoring step.
Additionally, Borg caches computed scores until the state of the PM changes (e.g., a job ends). Finally,
when submitting identical jobs, only one score is computed.

Due to its traces being published since 2009, Borg’s scheduler is widely studied by the community.

Azure Protean

Azure employs a scheduler named Protean [59] to orchestrate services in its Cloud offering. It also
features a filtering and scoring mechanism. However, since Azure DCs consist of clusters composed
of homogeneous PMs, the filtering and scoring mechanism is divided into two steps, initially focusing
on selecting suitable clusters. The cluster filtering process considers factors such as hardware features
(e.g., GPUs), while the scoring process for the suitable clusters takes load considerations into account.

The top n clusters are then retained, and the list of PMs within these clusters undergoes a second
round of filtering and scoring at the PM scale under distinct rules. This already deduced subset is the
random sample of Borg.

Cached results of rule computations are stored for each computed machine/VM-type tuple to
expedite subsequent scheduling tasks. When multiple similar VM types are deployed within a single
client deployment (a tenant), a single score is computed.

In 2020, there were approximately one hundred filtering and scoring rules. On average, the overall
scheduling decision takes around 20 milliseconds.

OpenStack Nova

OpenStack Nova is an open-source orchestrator capable of managing bare-metal servers, VMs, and
containers. When selecting a physical machine (PM), Nova employs a filtered and weighted scheduler,
as described in [60].

Given a VM deployment, the default PM filtering criteria encompass factors such as adequate
RAM, disk, CPU resources, desired hardware specifications, geographical location, and the types
of instances already hosted. This filtering list can be customized to meet specific requirements.
Additionally, the scheduler maintains a cached list of available hosts, which is periodically updated,
to expedite the selection process.

The selection of a PM is based on an associated weight assigned to each suitable PM. Default
weights include the quantity of available RAM (leading to spreading the workload) and light I/O
workload. To reduce the likelihood of returning the same PM for multiple simultaneous deployments,
a small random factor is introduced. Among the top n best PMs, one is selected randomly.

2.3 IaaS scheduling 15

Each time the scheduler selects a host, it virtually consumes resources on it, and the weights for
subsequent selections are adjusted accordingly.

Alibaba Fuxi

Alibaba uses another monolithic scheduler known as Fuxi [61] to manage its distributed workloads.
Distributed frameworks (such as Hadoop and MPI) request resources using ScheduleUnit, which
represents CPU and memory quantities. These requests may be partially accepted by the scheduler
based on cluster resource availability. If not all requested ScheduleUnits are allocated, pending
resources are placed in a queue.

When resources are deallocated from other jobs, the orchestrator checks the waiting queue and
selects a pending workload based on its priority and waiting duration. Server preferences can be
specified in the ScheduleUnits and are internally managed by having a per-server queue and a per-rack
queue, organized through a tree structure under the cluster queue.

Apache Mesos

The Mesos scheduling mechanism [62] also has the objective of hosting multiple distributed frame-
works. It allows concurrent usage of multiple schedulers (one per framework). A centralized resource
allocator monitors the available resources in the infrastructure and offers them to the framework
scheduler, which then selects a subset in the offer based on its needs and constraints.

This architecture, referred to as a two-level scheduler, aims to keep Mesos’ complexity low, as it
does not need to know any characteristics of the frameworks’ needs. Once a framework scheduler
accepts a resource offer from the Mesos master, a framework executor is instantiated on the appropriate
slave with the requested resources (CPU and memory). Isolation between executors on slaves is
primarily based on Linux containers.

YARN

Similarly to Mesos, YARN is also a two-level scheduler that allows multiple distributed frameworks
to use a single cluster [63]. However, instead of using its offer-based mechanism, YARN enables
more direct communication between the cluster manager and its framework managers.

Using a tick-based approach, applications are expected to periodically send a request for their
resource needs to the centralized cluster manager. If the cluster manager can fulfill this request based
on availability and scheduling policies, resources are allocated through a lease mechanism. These
resources are then parsed by the application on a later call and used for its job deployment through
a container. The application is then expected to update its request for resources on the next tick.
Scheduling policies in YARN can be adapted but may include fairness (ensuring every application
gets a fairly equal share of resources), capacity (managing multiple queues, each having a specific
fraction of cluster resources), or a First-In First-Out (FIFO) queue.

16 Background

Omega

Omega [64] also aims to host multiple distributed frameworks. However, unlike Mesos and YARN, it
does not rely on a two-level architecture. Instead, Omega exposes resources to framework schedulers
as a view of the cluster state. This view is frequently updated, and any framework scheduler can claim
part of the available resources in the cluster. Conflicts are managed using a transaction mechanism on
claims.

Shared-state schedulers like Omega can improve utilization compared to two-level schedulers
such as Mesos, which only expose a partial view of resources, but may encounter "shadow" resources
problems (resources free between updates on the view) that are not negligible [65].

Swarm

Docker Swarm serves as an orchestrator for managing Docker containers. Its scheduler module
operates in two steps [66].

Initially, a filtering step identifies a list of suitable servers for deployment. Subsequently, the
scheduler selects the least loaded server using the default strategy (known as the spreading strategy).
Additionally, two alternative strategies are available: binpack (which prioritizes nodes with fewer
available resources) and random selection. Its behavior is kept simple, without caching mechanisms,
as it is not intended for use in production environments.

Kubernetes

Kubernetes (K8s) is often viewed as the evolution of Google Borg [58]. Resources are managed
through scheduling units called pods, which can contain one or more containers.

Its architecture can be considered centralized, with a master node receiving pod requests and
transferring them to the scheduler (a pod running on the master), which is responsible for selecting an
appropriate host.

The scheduling process in Kubernetes involves several steps. Firstly, a filtering step selects nodes
that meet the pod’s resource requirements and precise labels (e.g., port availability, disk types) using
predicates. Next, candidates are assigned a score based on various criteria. Examples of criteria
include balancing resource usage between nodes, distributing pods belonging to the same service
among different hosts, and favoring nodes that match a pod affinity list. By default, Kubernetes uses a
"least used node" criterion to assign scores. Finally, the node with the highest score is selected to host
the pod.

Summary

As described in Table 2.1, heterogeneity in scheduling mechanisms is primarily observed in distributed
frameworks, such as Fuxi, Mesos, YARN, and Omega. However, the lack of guarantees on resource
allocation makes these frameworks less suitable for Cloud computing, where clients expect their

2.3 IaaS scheduling 17

Table 2.1 Considered orchestrators

Orchestrator Scope Selection mechanism
Google Borg Containers Score-based scheduler

Azure Protean VMs Score-based scheduler
OpenStack Nova baremetal and VMs Score-based scheduler
Apache Mesos Containers Two-level offer-based scheduler
Alibaba Fuxi Containers Two-level request-based scheduler

YARN Containers Two-level request-based scheduler
Omega Containers Shared-state scheduling
Swarm Containers Score-based scheduler

Kubernetes Containers Score-based scheduler

requests to be fully met, with lower needs for dynamic scaling. In the Cloud context, score-based
mechanisms are the de facto standard due to their simplicity and customization capabilities.

On dynamic approaches

While scheduling has been primarily discussed in this section from the static initial PM selection,
it’s worth noting that VMs can also be migrated during their lifetime. However, large-scale VM
migrations are not commonly performed. For example, Google primarily considers them only to
mitigate both hardware and software downtime [67]. According to [68], VM migrations lead to
slowdowns and require additional computing resources to perform the copy, leading to an interest in
avoiding them as much as possible.

2.3.2 Host internal scheduling

Beyond cluster orchestration, computation is also managed locally, inside a PM, involving a local
scheduler. A PM is composed of resources that need to be shared among software applications.

Modern x86 server architectures typically feature pairs of cores that share the same functional
units, such as Arithmetic Logic unit (ALU) and Floating-point unit (FPU) thanks to hyper-threading
capabilities, also known as Simultaneous Multithreading (SMT) [69]. Data access is organized
through different levels of cache: the lower the cache level, the faster it is, and the higher the cache
level, the larger it is. Last Level Cache (LLC) is therefore the largest. Cores within the same pair share
all their cache levels. In the common (Non-Uniform Memory Access (NUMA)) architecture, a pair of
cores belong to a given NUMA node. While cores belonging to a given NUMA typically share the
LLC with other cores, it may not be shared between all cores, especially on large EPYC architectures.
A server may have multiple NUMA nodes, each having access to its specific main memory resources.

Modern CPUs are sophisticated pieces of hardware, with flexible performance capabilities. Each
core may adapt its operating frequency using Dynamic Voltage and Frequency Scaling (DVFS) to
either decrease its energy consumption (using C-state mechanism) or enhance performance (using
P-state mechanism).

18 Background

Non-x86 architectures, such as ARM and RISC-V, also exist in DCs, although they remain
relatively marginal and were not explored in this thesis.

I now briefly discuss how modern OS schedulers operate to handle this hardware complexity. The
software operates using multiple instances, known as processes. Each process utilizes at least one
thread, which is responsible for executing instructions. The scheduler acts as a bridge between the
computing resources—i.e., the cores—and the threads, determining which thread should be allocated
CPU time. In this thesis, I concentrate on the Linux scheduler because of its widespread usage in DC
management.

EEVDF-based scheduler The Earliest Eligible Virtual Deadline First (EEVDF) scheduler [70],
introduced in Linux with kernel version 6.6, is the default scheduler since 2023. EEVDF belongs to a
scheduling class referred to as fair scheduling. Its primary objective is to allocate a proportional share
of CPU time among processes.

It adopts a distributed architecture where each core is assigned an individual queue. Each thread
in the queue is assigned an individual time slice reference accounting for the number of threads in the
queue and the thread priority. When a thread’s running time slice expires, the scheduler compares the
thread’s initial time allocation to the duration it received. The difference between these values, known
as lag, is stored in a tree structure for efficient access and manipulation.

With a positive lag, the evicted thread did not receive completely its timeshare. When a new thread
needs to be selected to run, either due to an expired time slice or the current thread relinquishing its
core, only threads with a positive lag (0 or higher) are considered eligible for execution. Threads
affected by negative lag become eligible again after a specified time, referred to as the eligible time.
Among the eligible threads, the thread having the earliest virtual deadline (calculated as the reference
time slice plus the eligible time) is chosen to run.

This behavior differs from the previous default Linux scheduler, Completely Fair Scheduler
(CFS), which elected thread was based on the shortest vruntime (last usage being made by the thread
weighted by its priority). The priority, expressed by the nice value, indicates how long time slices
should be attributed compared to other threads. However, a piece of missing information was how
frequent time slices should be affected (reflecting latency requirements), expressed by the newer
latency-nice metric. latency-nice is easier to take into account with EEVDF, by reducing the next
allocated time slice and therefore its virtual deadline. It’s important to note that while this adjustment
affects the fragmentation of CPU time, the overall duration of CPU time allocated remains unchanged.

Both CFS and EEVDF per-core queue architectures imply balancing mechanisms to handle
asymmetric loads. Firstly, at thread creation, the scheduler typically places the thread on the least
busy core. Secondly, when a core becomes idle (i.e., its queue is empty), it will "steal" threads from
other cores’ queues, starting with the closest ones. Lastly, the load of each queue is periodically
assessed, and if a certain threshold is exceeded between domains (with a lower threshold for SMT
cores compared to cores in different NUMA nodes), load balancing is triggered.

2.4 Improve packing beyond orchestration 19

Other schedulers While EEVDF serves as the default scheduler in Linux, prioritizing fairness
for general-purpose software, Linux also offers other scheduling policies, particularly for real-time
applications where fairness is not the primary concern. Threads can change their scheduling policy
through a system call, typically requiring root permissions in most systems.

In practice, Linux determines a priority order for scheduling policies. When a thread needs to be
scheduled, it interrogates policies in the following order:

1. Deadline Under this scheduling class, Linux uses the Earliest Deadline First (EDF) pol-
icy [71] to manage periodic processes with real-time requirements. Each process must specify an
estimation of its duration, a deadline, and a window period. For each window, the process must be
executed once before the deadline relative to the start of the window. When a task is submitted, the
scheduler performs an admittance test to verify the feasibility of the requirements with other threads.

2. Real-time Under this scheduling class, Linux checks if a thread asks for a FIFO scheduling
(SCHED_FIFO) or a Round-Robin (RR) scheduling (SCHED_RR). With the FIFO, the thread having
the highest priority is executed until it releases the CPU or until a higher-priority thread arrives in
the queue. This means that CPU blocking is possible. With RR scheduling, the FIFO principle is
extended with time slices consideration. When a time slice is expired, the process is moved to the end
of the queue.

3. Fair Under this class, referred to as SCHED_OT HER in the manual, EEVDF is used. In
practice, most workloads rely on this category.

4. Idle The tasks in this policy will only be run if no other thread is runnable.

2.4 Improve packing beyond orchestration

While a cluster orchestrator’s role may be to minimize the number of unallocated resources on a
cluster, the packing problem does not by itself fully leverage all server resources. Real-world scenarios
demonstrate that resources assigned to clients remain underutilized, rendering packing mechanisms
reliant solely on VM size inadequate.

While under-utilization of Cloud platforms has a significant operational cost for Cloud providers,
low resource utilization also corresponds to the least-energy efficient range of operation for a PM [72].
Therefore, even if energy proportionality kept improving over the last decade [73, 74], resource
under-utilization inevitably imposes higher power consumption and hardware costs [14].

In the literature, several elements contribute to achieving greater usage of IAAS platforms. Let’s
delve into these contributing factors.

20 Background

2.4.1 Evictable VMs

The use of ephemeral workloads may be adopted to leverage resources seen as available for a short
period of time. Spot VMs (also referred to as preemptible VMs) are VMs that may be terminated
due to providers’ requirements [75–77]. These VMs are typically of small size to be deployed on
servers with spare resources. They are considered lower priority compared to regular VMs and may
be interrupted and relocated elsewhere if their resources are needed for a conventional deployment.
Users are typically given advance notice of impending interruptions, albeit with varying delay times
(from seconds to minutes) depending on the provider’s policies. Spot VMs are offered at a reduced
price compared to other VMs due to their transient nature and are only suitable for fault-tolerant
workloads.

2.4.2 Harvesting VMs

Spot VMs having a dynamic size were also proposed and used in Azure’s context [78]. This type of
instance—referred to as Harvesting VMs—can retrieve resources deemed unused from conventional
deployments. Again, no guarantees are given on their allocation as its size may be adjusted at any
time to avoid perturbing other VMs. Resources considered include CPU [78], memory [15], and
storage [79]. These instances are particularly suitable for FaaS computing, where most computing
tasks are lower than 30 seconds, due to the advance notice given by providers before an eviction,
allowing to finish the function execution in most cases [80].

SmartHarvest [81] is based on the evaluation of available CPU time from the premium VMs in
the very near future. It does so by retrieving a small set of statistics related to CPU usage from the
premium VM used as a feature to train a supervised classification algorithm. The classification, used
to attribute the number of cores required (unit-based) is cost-sensitive, meaning that under-predictions
are penalized by construction to avoid them. The online learner is composed of linear models to be
lightweight, allowing evaluation in the order of 10ms windows. Once the core needed for premium
VMs in the next time window is predicted, the predicted unused resources are attributed to a so-called
ElasticVM.

Memory harvesting mechanism from [15] focused on unallocated memory resources. The hot-
plug and hot-unplog mechanisms are used at run-time to modify the guest’s physical address space.
While adding memory to a VM is straightforward, shrinking is performed by talking to a guest
agent performing the hot-remove actions. Part of the unallocated is also unleveraged to reduce the
deployment time of new VMs and NUMA spreading.

Disk harvesting was introduced as an extension to HarvestVM in [79] using programmable SSDs.
By managing the internal SSD block attributions, BlockFlex predicts the SSD channel bandwidth and
cell quantities associated with traditional VMs, monitors the unallocated resources, and tries to satisfy
the projected needs of SpotVMs. Predictors are based on LSTM models and consider time windows
of 3 minutes. Per channel blocks, allocation is performed through so-called vSSD (for premium VMs)

2.4 Improve packing beyond orchestration 21

and gSSD (for harvesting-based VMs) managing the underlying hardware mapping complexity. On
the host, the VM’s virtual disk size is adjusted accordingly.

GPU harvesting was also explored in Cloud Gaming [82], a paradigm where players access GPU
resources remotely to run games. By first reporting on low GPU usage being made by recent games,
Azure proposes to harvest resources between frames computation. A game running at 60 frames per
second results in a computation each 16.67ms during which not all resources may be fully utilized.
The paper suggests using a notification of rendering completion, obtained by instrumenting graphic
libraries, to determine the available time before the next frame computation. This time can then be
used to schedule deep-learning tasks. Deep learning workloads typically consist of small training
kernel times, usually less than 1 millisecond, which can be easily predicted, making them good
candidates for collocation.

2.4.3 Disaggregated resources

Another prominent area of research focuses on the capability of a VM to utilize resources from
multiple PMs. This method allows for the creation of larger VMs [83], and also addresses resource
fragmentation by harnessing scattered resources within the cluster [68]. Disaggregated resources can
occur at either the rack scale [84] where hardware is physically close to each other, or at a DC scale [85].
Access to disaggregated resources, relying on network connectivity, favors certain resources like
storage for disaggregation due to their higher tolerance for latency in accessing data [84, 85]. Memory
can also be a candidate [86, 87], with potential adaptation from the software stack running inside the
VM [88, 89]. Memory also presents itself as a potential candidate for disaggregation [86, 87], with
potential adaptations required in the software stack running within the VM [88, 89].

However, due to the overhead involved, disaggregated resources may not be suitable for all types
of workloads [68]. A proposal was also made to "disaggregate" software by decoupling its code
according to resource types [90], to facilitate resource scheduling within the cluster.

2.4.4 Oversubscription techniques

The oversubscription (or overcommitment) term refers to the possibility of deploying more virtual
resources on a server than physically available. As previously described, Cloud clients tend to
oversize their VM [23] to be able to handle load spikes, failover scenarios, and growth in demand.
One consequence is that not all clients need all their resources all the time, leading to consolidation
opportunities. Unlike other approaches described in this section, oversubscription allows consolidating
the existing workload (composed of VMs in our context), instead of introducing new ones to "fill the
gaps".

22 Background

Software support for oversubscription

Exceeding the quantity of physical resources is achieved through various techniques, depending on
the type of resources being considered.

CPU When considering the oversubscription of CPU resources, the number of vCPUs allocated
to VMs can exceed the number of physical CPUs as each individual vCPU has its associated thread
on a QEMU/KVM environment. The host scheduler (typically EEVDF) manages the sharing of
CPU between vCPUs just like any traditional process. Increasing the CPU usage may lead to VM
performance degradation due to competition on cache or time slice resources, but cannot kill a process
by itself.

Memory Memory oversubscription leverages the virtual memory feature from the Linux memory
management subsystem. Each process (including ones associated to hosted VMs) has a personal
virtual address space. Virtual pages are only allocated in memory when accessed, a technique referred
to as "demand paging". For a given VM, its host memory usage is defined by Resident Set Size
(RSS), the amount of physical memory allocated can therefore be substantially inferior to its request.
Additionally, the RSS can be reduced closer to the Working Set Size (WSS) (the amount of physical
memory being actively used) using different techniques.

First, WSS estimation may rely on different techniques, such as [91], which periodically invalidates
a set of pages to trap their access at the hypervisor level. Others rely on a ballooning mechanism,
which inflates a driver in the VM to fill the memory until the VM starts using its swap partition [92].
Different techniques also attempt to estimate the optimal WSS when the VM is under-provisioned,
using a dedicated cache [93, 94].

Once WSS is estimated, the ballooning driver can return to the hypervisor-occupied virtual page
addresses on the VM for further usage within the host scope. In the context of virtualization, hotplug
can also be used to adjust the memory capacity at runtime [95].

While dynamic memory management reduces (ballooning, hotplug) or increases (hotplug) the
RSS of VM and other mechanisms can also impact its host memory consumption. For example,
Kernel Samepage Merging (KSM) allows VMs to share common pages [96] with a daemon that
periodically scans the allocated pages and merges the identical ones into a single read-only page. If a
process updates this page, KSM duplicates it into its original form. ZRAM [97] can also be used to
reduce a process RSS by creating a set of virtual disks. Pages written to these disks are compressed
using a run-length encoding algorithm, trading CPU cycles for memory.

Others Other resources may be oversubscribed in a Cloud context, such as network and power.
The network was not investigated in this thesis as I do not see it as a common bottleneck in Cloud
infrastructure. Power was also not investigated as it is not a resource directly ordered by clients.

2.4 Improve packing beyond orchestration 23

Oversubscription ratio

Most hypervisors enable oversubscription by allowing the sum of all allocated virtual resources to
exceed the PM capabilities [98–100]. To avoid performance degradations, oversubscription is usually
limited using a maximum ratio between the number of exposed virtual resources and the available
physical resources. For example, a CPU oversubscription of 2:1 refers to the possibility of deploying
a maximum of 2 vCPUs per physical core.

Table 2.2 Review of oversubscription ratio computations

Name Scope Type References
Default Cluster static [58, 101]
i-porter PM static [59]

Resource Central PM dynamic [14]
N-sigma PM dynamic [17]

Maximum PM dynamic [17]
DOA PM dynamic [102]

CloudVamp PM dynamic [103]

Defining this limiting ratio is a complex task, as it can be determined at different scales and based
on various approaches. Table 2.2 provides a brief overview of oversubscription ratio computation
techniques. The following paragraphs review these techniques based on the two scopes currently used
to define an oversubscription ratio: the cluster level and the PM level (where dynamic computations
are possible).

Oversubscription ratio at the cluster level Most IAAS cluster managers, like BORG [58] and
OPENSTACK [101], propose to define the oversubscription ratio at the cluster level, using a value
applied to all PMs. This approach has the advantage of simplicity, due to both, a single parameter to
set, and to avoid the dependency on a monitoring infrastructure as the resource usage is not taken into
account.

In practice, industrials may search for exhaustively a cluster oversubscription ratio that maximizes
the used resources while trying not to violate the constraints [104], something that can be searched
using a grid search approach [105].

In [106], the authors propose to consider the oversubscription ratio computation based on a
chance-constraints problem. Chance constraints are a modeling tool used to take into account risks (in
our context, a PM load reaches its full capacity) and constraints (this risk should be below a specified
probability). While this risk is influenced by the PM size (the larger a PM is, the more pooled the
risk is due to the variety of jobs), defining risk is seen as a convenient proxy to manipulate for Cloud
providers.

Oversubscription ratio at the server level The oversubscription level can also be defined per PM
either statically or dynamically.

24 Background

Static sever ratio As a Cloud DC typically has different hardware generations [59], therefore
having heterogeneous PM configuration, per-PM oversubscription ratio allows to account for their
performances. In [107], authors adapted OpenStack Nova to be able to set a static ratio per PM,
accounting for their virtualization capabilities (the more powerful a server is, the more oversubscribed
it can be). The exact oversubscription computation is not discussed but is likely to have been manually
tuned.

Dynamic server ratio: peak driven computation Per-PM oversubscription ratio also allows to
account for a specific PM workload. In that case, oversubscription is assessed by studying internal
metrics and is dynamically adjusted.

The most common way to implement dynamic oversubscription is to first predict what resources
will be used in the future, and consider the delta between this prediction and the PM configuration as
available for new deployments. This prediction is usually pessimistic as VM tends to be long-running
workloads (in the sense that their lifetime is not conditional to a specific process termination), re-
sources must therefore be available in the long run to avoid violations.

Azure proposes to use VMs percentile to compute used resources [14]. Specifically, the 95th
percentile is seen as appropriate to capture the peak usage of existing VMs. The PM future used
resources are then viewed as the sum of the peak usage of all VMs. The per-VM predicted 95th
percentile is determined using a machine learning-based approach that incorporates various metrics,
including VM size, type, guest OS, lifetime, average CPU usage, and maximum 95th observed.
Additionally, the candidate VM 95th percentile is estimated based on knowledge from similar de-
ployments. If the confidence in this estimation is sufficiently high, it is used to assess the VM’s fit;
otherwise, full resource utilization is assumed. To prevent the host from reaching maximum usage
(with only the 100% threshold studied), two different versions of the scheduler were implemented:
one at the score computation stage, trying to avoid it as part of soft constraints, and the other at the PM
selection stage, avoiding it as part of hard constraints. The evaluation primarily focused on scheduling
failure, defined as the inability to find a suitable host, rather than workload consolidation. Simulations
revealed that both strategies were effective in maintaining a low scheduling failure rate. The maximum
oversubscription observed was 1.25:1 under relatively small servers (16 cores). However, it’s worth
noting that since the peak usage of all hosted VMs is unlikely to occur simultaneously, this method
has been criticized in other papers as sub-optimal [17].

Bashir et al. justify that a Gaussian distribution usually captures well the variety of CPU usage
observed on a Cloud PM and proposes to compute the peak derived from it [17]. In this approach,
the peak is estimated from PM usage metrics instead of VM metrics. Specifically, they propose to
compute it as CPU +N×σ , where CPU and σ capture the average and standard deviation of CPU
usage, respectively. They refer to this technique as N-sigma. Their study, drawing upon Google Borg
traces, recommends a configuration with N = 5, which can handle most worst-case scenarios. In their

2.4 Improve packing beyond orchestration 25

evaluation, they introduced two complementary techniques. One is a max predictor, which selects the
maximum value among the Azure approach, a static oversubscription, and N-sigma. Another is an
oracle-based predictor, assuming perfect knowledge of future resource usage, used in their simulation
as a baseline. The evaluation primarily focused on scheduling failure, due to their parameter selection.
Both N-sigma and the maximum predictor were found to reduce failures.

Both approaches share a similar limitation. The adjustment of optimistic/pessimistic oversub-
scription computation using parameters (such as percentile for Azure or N for Bashir et al.) is
challenging. Firstly, these parameters are difficult to define accurately. Secondly, they fail to capture
the specificities of individual PMs, as they are applied at the cluster scale.

Dynamic server ratio: others computation The Dynamic Oversubscription ratio Adjustment
(DOA) introduced in [102] takes a different approach as it is not driven by a peak prediction. DOA
increases available resources by a fixed percentage (e.g., 10%) of PM configuration until a maximum
resource usage is reached (e.g., 95%). If this threshold is reached, the available resources are reduced
to a percentage of the PM configuration (e.g., 50%). The ratio is periodically recomputed. Compared
to a static ratio or a random PM selection, the technique was found to limit failures more effectively.
However, one main limitation of this approach is that it does not try to prevent host overload, focusing
only on the mitigation aspect.

On dynamic memory oversubscription Per-server oversubscription ratio mostly targets CPU
oversubscription. In previously cited works, only DOA claimed to also be suitable for memory. Two
reasons may be found. First, heterogeneous hardware does not affect memory dimension as much as
the CPU. Indeed, the number of pages requested from VMs is not affected by DRAM generation, in
opposition to requested CPU time slices that depend on PM performance. Second, dynamic memory
oversubscription (i.e., accounting for existing VM usage) implies cooperation between PM and VM
as a page reserved by a VM cannot be released as long as it is in use [103].

CLOUDVAMP [108] monitors VM internal memory usage using an inside agent. Available
resources are proposed to be computed as the quantity of unallocated memory plus the unused
memory inside the VM. If a new deployment exceeds the number of unallocated resources, memory
is retrieved from VMs using a balloon principle. [109] proposes to exceed this computation by adding
the amount of memory retrieved across the network (weighted by a coefficient to penalize it). Both
are coupled with a mitigation mechanism based on live migration as memory violations are more
severe than CPU ones [103]. However, since unused resources are observed and not predicted, this
may lead to more migrations than required, resulting in increased unavailability and resource usage.

26 Background

On oversubscription adoption

Oversubscription has existed for as long as VMs have existed. In 1966, IBM introduced CP-67, one
of the first commercial hypervisors, and described how VMs could share the single CPU of their
mainframe system [110, 111]. CP-67 was said to be able to support 40 VMs on the System/360
model leading, with a bit of anachronism, to what today would be considered an impressive 40:1
oversubscription ratio. Memory oversubscription was also possible, thanks to a virtual memory
address space.

Later on, the introduction of multiple cores in architectures (thanks to Symmetric Multiprocessing
(SMP) and SMT) and the decline in hardware price [112] allowed systems to use virtualization without
requiring oversubscription of computing resources. Despite being the very origin of virtualization,
VMs orchestration is nowadays mostly performed without sharing cores.

While oversubscription is documented in DC production environments [113, 114], it remains
limited in public Cloud infrastructures. In practice, Cloud platforms do not oversubscribe general
usage VMs in their production environments [115, 59]. This may be attributed to performance [17]
and security (side-channel attacks) [115] reasons.

Oversubscription is typically reserved for low-pricing VMs [116] and burst VMs [117, 118]. Burst
VMs are small VMs adhering to a credit-based mechanism to track their CPU usage. On low usage
phases, they accumulate credits that they can spend to handle peaks using either more performances
or computing resources provided by the platform. This mechanism is used to ensure a peak-driven
behavior on CPU usage, allowing Cloud providers to oversubscribe their resources [115]. Note that
this behavior does not guarantee by itself that peaks will be asynchronous between VMs.

On oversubscribed platforms, a static ratio at the cluster scale remains a common technique [101,
119]. The broader adoption of dynamic oversubscription may be limited by the more complex
infrastructure it requires, as it creates a dependency of the orchestrator on the monitoring infrastructure.
Additionally, parameters from different approaches that are hard to define make it challenging to
adjust the pessimistic degree of the computation when facing real conditions.

2.4.5 Summary of usage improvement techniques

Table 2.3 Classification of usage improvement techniques

Technique Unallocated resources Unused resources Generic workload
Evictable VMs Yes No No

Harvesting VMs Yes Some No
Disaggregated resources No Yes No

Oversubscription No Yes Yes

A classification of the listed techniques can be found in Table 2.3. Since they do not target the same
workloads or scope, these techniques are complementary to a Cloud provider’s strategy to improve
its resource usage. However, when the focus is on reducing the clusters of the existing workloads,

2.4 Improve packing beyond orchestration 27

only oversubscription-based techniques are suitable, as they can maintain the same availability and
performance guarantees for the workload if configured correctly.

As oversubscription is currently not widely applied beyond specialized VMs, improvements in
current techniques are necessary. Oversubscription leverages opportunities inherent in the existing
IAAS context: VMs are often underused, small in size, and hosted on increasingly larger PMs. Pooling
their unused time, which is facilitated by a significant workload heterogeneity at the PM scale, offers
an opportunity for better physical resource sharing. In a context where reducing the number of PMs
is crucial, sharing physical resources through oversubscription is an effective way to minimize the
impact of ICT.

Given that oversubscription may impact performance, its broader adoption requires careful
consideration. One objective is to replicate the conditions observed in real platforms, where VMs
typically utilize their resources partially and dynamically.

Chapter 3

Improving IaaS experiments using realistic users’
behavior

Abstract: In this contribution, I present a method for testing Cloud systems under realistic client
behaviors. This method generates actions such as VM deployment, VM resource usage, and VM
deletion that can mirror the usage patterns observed in actual Cloud environments. Unlike other
approaches, the introduced method allows for the down-scaling of workloads by design. This enables
the evaluation of platforms on real hardware rather than simulated environments, which is particu-
larly beneficial for research focusing on reducing the environmental impact of Cloud usage. As an
illustration, I employ this tool, entitled CLOUDFACTORY, to quantify the cost associated with the
"instantaneous provisioning" of Cloud resources, which can result in up to a 46% increase in the
number of required servers. Subsequently, the remainder of this thesis leverages this tool to assess
oversubscription strategies.

For more than a decade, Cloud computing has been an active field of academic and industrial
research, encompassing multiple challenges and contributions that are continuously delivered to
improve the state-of-the-art. Nevertheless, assessing effective contributions in the domain of Cloud
computing is notoriously hard [120], in particular, because of the difficulty of reproducing production-
scale IAAS deployments.

To overcome this limitation, Cloud simulation platforms are commonly considered in the literature
to evaluate new contributions for Cloud infrastructures [121]. Alternative contributions to this field
include datasets and benchmarks that can be released and published by both academic and industrial
practitioners. Unfortunately, Cloud providers may be reluctant to share production-scale datasets,
due to the possibility of user identity exposure through trace information [122]. Furthermore, both
Cloud-based simulations and experimental deployments tend to suffer from the same limitations
in terms of representativeness. In particular, the replay of benchmarks and raw datasets may be
difficult to apply when lacking production-scale infrastructures, while raw traces may be truncated to

3.1 CLOUDFACTORY overview 29

deal with the limitation of a testbed infrastructure, hence questioning the representativeness of the
resulting experiments. Furthermore, the applicability of developed contributions in a production-scale
environment may be challenged by this limitation.

The main objective of this contribution, referred to as CLOUDFACTORY, is to enhance the evalua-
tion and validation of Cloud contributions by allowing to use of production-like Cloud workloads.
More specifically, CLOUDFACTORY addresses the challenge of reproducing IAAS workloads by
leveraging representative infrastructure-scale models extracted from datasets of production-scale
execution traces. To achieve this, CLOUDFACTORY combines two key components that can be used
independently by Cloud practitioners and researchers to share insightful statistics that can be exploited
to generate IAAS workloads at any scale—from single worker nodes to clusters—and apply them in
simulations or experimental deployments. In particular, thanks to the workload analyzer that I made
available, Cloud providers can share production-scale metrics without disclosing their raw datasets.
Then, computer scientists can import these statistics into the workload generator that I packaged as a
separate tool to produce various IAAS workloads that they can easily use and further share to evaluate
their contribution, thanks to the bindings I deliver for several state-of-the-art evaluation platforms.
Throughout the contribution, I illustrate the value of CLOUDFACTORY by reporting on the analysis
of the Microsoft Azure dataset [23] and the generation of IAAS workloads for the CLOUDSIMPLUS

simulation environment [31] and the CBTOOL benchmarking tool [48].
I first present an overview of CLOUDFACTORY architecture (see 3.1) before diving into its

design (see Section 3.2, Section 3.3, and Section 3.4). Then, I explore a case study enabled by this
contribution and share CLOUDFACTORY generated statistics from OVHcloud context (see Section 3.5).
Finally, I discuss limits (see Section 3.6) and conclude this work (see Section 3.7).

3.1 CLOUDFACTORY overview

Figure 3.1 depicts an overview of the CLOUDFACTORY key components. In particular, I focus
on generating IAAS workloads that are representative of production-scale deployments but can be
provisioned at any scale—from single compute nodes to cluster-wide platforms or simulators.

To do so, I propose to convert raw datasets collected by Cloud providers into a compact set of
IAAS statistics that are sufficient to deploy a production-like workload. Interestingly, this approach
does not impose the disclosure of sensitive information from the perspective of Cloud providers, who
can simply publish such cluster-wide statistics. It is the goal of the workload analyzer component
detailed in section 3.2.

The workload generator leverages these statistics to generate a usable experiment workload, with
the appropriate VM set and usage models. Implementation is detailed in section 3.3.

Finally, different binding options are available to exploit the results on several state-of-the-art
evaluation platforms. Generated experiments workload may be executed on a simulator or on a
physical system. Exporting capabilities are detailed in section 3.4.

30 Improving IaaS experiments using realistic users’ behavior

Workload
generator

Workload
analyzer

CloudFactory

IaaS
dataset

IaaS statistics

Workload

Experiment
context

Platform
configuration

IaaS

Simulator
configuration

IaaS

Cloud provider

Researcher

Fig. 3.1 Overview of CLOUDFACTORY

3.2 Compute high-level statistics

After deployment of a client-selected configuration, a VM enters its usage phase, during which
resource utilization can vary substantially. This variability can be observed in different ways, ranging
from complete idleness to periodic activity, bursty behavior, short lifespan, etc. To account for VM
behaviors, I introduce a workload analyzer. This library builds a set of VM usage profiles from a
Cloud dataset.

The realism of workloads is contingent upon their ability to replicate the behavior of actual systems.
While replay-based IAAS workloads meet this requirement, they are often impractical to implement—
due to privacy restrictions that limit sharing options, which in turn impacts the reproducibility of
experiments. Furthermore, production-scale Cloud clusters cannot be easily reproduced for SUT
experimental purposes, thus posing a material constraint.

3.2.1 Statistics identification

Metrics describing the SUT must be carefully selected to represent as faithfully as possible Cloud
context specificities. The identification of relevant statistics was also motivated by metrics availability
from currently published datasets. Furthermore, this set of statistics is voluntarily kept as small as
possible to facilitate computation and sharing from undisclosed Cloud datasets.

CLOUDFACTORY statistics can be classified into two categories. At the micro level, VM resource
usages are considered. At the macro level, the management of a dynamic set of VMs is studied.

VM resource usage is considered from the CPU perspective. In addition to CPU utilization bounds
(see Section 3.2.2), I also take into account usage periodicity (see Section 3.2.3).

To account for VM management, CLOUDFACTORY considers VM configuration options distribu-
tion (see Section 3.2.4) and departure/arrival ratios (see Section 3.2.5).

3.2 Compute high-level statistics 31

Fig. 3.2 4 VM usage profiles captured from Azure 2017 using k-means clustering (k = 4)

Except for VM configuration options distribution, statistics are computed according to profiles.
The first step applies clustering to VMs, based on their usage similarities, to describe more accurately
observed behaviors, as per-profile statistics. Options distribution is treated separately as offered
configuration options may significantly change from one Cloud provider to another, which limits
comparisons and export options.

3.2.2 Computing usage

The workload analyzer first classifies VMs based on their average and percentile CPU usage metrics
to identify resource utilization profiles. I have selected the k-means clustering algorithm, due to its
capability to capture a given number of clusters. This capability allows Cloud providers to fine-tune
the granularity of information exposed to researchers by customizing the number of profiles through
the parameter k. Figure 3.2 illustrates this classification on the Azure dataset VMs on four profiles
(k = 4). Different VM clusters are deduced, from those with a low average and percentile usage to
those with high average and percentile usage. Each cluster is subsequently translated into a profile,
consisting of specific bounds on the observed average and percentile values. For instance, the blue
cluster in Figure 3.2 is composed of VMs having an average CPU usage below 26% (X-axis), and
peaks below 32% (captured by their 95th percentile, on Y-axis). VMs that match this profile are
typically considered oversized. It is noteworthy that approximately 29% of the VMs observed in the
Azure dataset belong to this particular category.

32 Improving IaaS experiments using realistic users’ behavior

3.2.3 Periodicity ratio

VM periodicity is an important factor for scheduling strategies. A recurrent usage pattern can be
leveraged by Cloud providers to identify interactive workloads [23]. In each cluster, I compute
the ratio of VMs reporting a recurrent pattern considering a specified scope (set by default to one
day). As in [23], I used a Fast Fourier Transform (FFT) algorithm to evaluate each VM behavior.
Differences may remain, however, as the authors did not communicate the implementation details.
The implementation is described in Algorithm 1. Specifically, I used a periodogram to estimate
Power Spectral Density (PSD) frequencies. A VM is classified as periodic over a given window
if the associated window frequency PSD exceeds a user-specified percentile in distribution. In the
remainder of this chapter, the 99th percentile has been considered. On each profile, the periodicity is
evaluated on a subset of VMs matching a lifespan duration condition, before being extrapolated to the
overall quantities.

Algorithm 1 Perodicity detection algorithm
Input time series, period, threshold
Output Perodicity state

1: Mperiodogram← Generate periodogram from time series
2: value←Mperiodogram(period)
3: max← percentile(Mperiodogram, threshold)
4: if value > max then
5: return PERIODIC
6: end if
7: return NOT PERIODIC

3.2.4 Computing VM distribution

VM configuration options distribution is an important statistic due to its impact on server consolidation.
CHAMELEON and Azure datasets underline the disparity between the observed VM distributions.
Therefore, I calculate the ratio of VM configuration, in terms of vCPU and vRAM, observed in Cloud
datasets.

Avoiding bias Counting the VM configuration occurrences at the dataset scale biases the results,
due to the short lifespan of some deployments. Instead of considering the number of configurations
based on deployments, I compute the average VM distribution presence in nodes (see Equation 3.1).

configurationfreq(c) =
∑s∈S Frequency(c,s)

|S|
(3.1)

This later facilitates experiments’ representativeness in down-scaled clusters, where server con-
figuration and arrival rates may be significantly lower than the ones observed in production, hence
impacting the hosted distribution accuracy. The provided dataset is therefore considered through time
windows of a chosen duration. Distribution presence is computed as the average value observed from

3.2 Compute high-level statistics 33

all considered time slices (S). With a sufficiently short time slice duration, this approach allows us
to compute the average distribution of each VM configuration option at any given time, mitigating
the impact of heterogeneous lifespan. The rest of this contribution considered a one-hour time slice
duration.

Azure example Interestingly, applying this method to the Azure dataset reveals significant dif-
ferences with their values, as they adopted the "deployment approach". For instance, the 14 GB
configuration option, which is claimed to account for 11% of the VMs, is found to be half as
present, accounting for only 6% of VMs over a typical hour. The configuration has indeed the lowest
90th percentile lifespan in the dataset. VM-creation test workloads are reported to be common on VMs
belonging to Azure [23] may be based on this configuration, leading to a reduced average lifespan.

3.2.5 Departure & arrival ratios

The rate at which new VMs are deployed is a crucial metric for IAAS environments, as it bears a
significant influence on the provisioning capabilities of the platform. Conversely, the lifespan of VM
deployments may be viewed as a complementary micro-level indicator. In light of my concentration
on IAAS workloads, I opt for the macro-level equivalent, namely the departure ratio. Consequently,
both arrival and departure ratios are computed for each identified VM profile.

To analyze these metrics, I compute the number of newly arrived VMs relative to those who left
within a default one-day window through all the analyzed datasets. With Equations 3.2 and 3.3, I
transform these quantities into the average ratio observed in the specific context. If the arrival ratio is
greater than the departure ratio, the profile is considered as increasing, while the opposite reflects a
decreasing profile. In the Azure dataset, I observe that low utilization workloads have a lower degree
of dynamism, with reduced departure and arrival ratios compared to more intensive workloads.

˙̇arrivalIAAS =
∑s∈S

|departureVM(s)|
|VM(s)|

|S|
(3.2)

˙̇departureIAAS =
∑s∈S

|arrivalVM(s)|
|VM(s)|

|S|
(3.3)

3.2.6 Profiles examples on Azure dataset

The profiles built by the workload analyzer include the following statistics:

• Profile weight in Cloud dataset,

• Average CPU usage bounds,

• 95th percentile CPU usage bounds,

• Arrival & departure ratio,

34 Improving IaaS experiments using realistic users’ behavior

• Periodicity ratio.

The IAAS statistics computed for the 4 profiles illustrated in Figure 3.2 are summarized in
Table 3.1.

Table 3.1 Detailed metrics of the 4 usage profiles computed by the workload analyzer on Azure dataset

Usage Profile Percentage Avg. CPU bounds 95th percentile CPU bounds Arrival rate Departure rate Periodicity rate
Low 29% [0.0;25.9] [0.0;31.2] 15% 15% 0.4%

Low/Medium 21% [0.1;51.9] [26.0;70.2] 32% 32% 0.8%
Low with peak 36% [0.2;33.3] [66.6;100.0] 60% 60% 1.1%

Intensive 14% [29.3;100.0] [52.1;100.0] 57% 57% 0.8%

3.2.7 Generated statistics.

The workload analyzer data related to VM distribution and usage are converted to YAML files. The
YAML format was chosen due to its user-friendly nature that facilitates comprehension. These files
are not expected to disclose any sensitive information and to enable sharing with the wider community.
Furthermore, they can also be modified by developers seeking to explore specific conditions. Finally,
they can be packaged with any Cloud experiment to offer a reproducible Cloud environment for
researchers who would like to compare their contributions with previous works published with this
toolkit.

3.3 Generate production-scale workloads

I now detail how to generate workload matching high-level specifications. Beyond importing statistics,
generating a production-scale workload requires describing the infrastructure considered for the SUT.
This also involves specifying experiment duration and temporality patterns.

Long-run experiments are simplified by CLOUDFACTORY through the temporality concepts of
slices and scope. A slice represents the minimum duration considered in the experiment, while scope
refers to a multiple of slices. This can be used in two ways. The first is to accelerate real experiments
by changing the virtual day’s duration (i.e., scope) and a virtual hour (i.e., slice). The second is to
study the effects of predictability on various windows (e.g., diurnal pattern, and hourly patterns).

The workload generator combines the IAAS statistics shared by Cloud providers (or computed
from the workload analyzer) with user input on desired workload size and on temporality to build a
consistent set of VMs. The set is composed of VM behavior attached to a VM configuration. A VM
configuration is defined by characteristics related to provisioning:

• number of vCPUs,

• size of allocated vRAM,

• time of provisioning (as ticks),

3.3 Generate production-scale workloads 35

• lifespan (as ticks/slices/slots).

While, the VM behavior is characterized by:

• hosted application binary,

• VM workload.

3.3.1 On VM configuration generation

CLOUDFACTORY first generates a set of VM configurations according to requested ratios for the SUT.
The user can request a specific number of VMs to be generated. A more practical option—especially
when studying the effects of load—is to request workloads in terms of the amount of vCPU and
memory. In the latter case, CLOUDFACTORY applies an operational search approach where vCPU
allocation is maximized while respecting constraints on the specified amount but also on the VM
configurations distribution considered.

Each VM is randomly assigned a usage profile that conforms to the proportions reported by the
workload analyzer.

If the arrival rate for a given profile is not zero, additional VMs is generated after the initial set is
deployed, following a heavy-tail Gaussian to match the real pattern observed [23].

During this process, a lifespan is attributed to each VM so that the number of VM departures on
each scope meets the targeted departure ratio of each profile.

3.3.2 On VM behavior generation

From the profile assigned to each VM, an activity workload must be generated. Computed profiles
include bounds on average and percentiles values. A random selection is made within the specified
limits for both the targeted average value and percentile value of the CPU. Therefore, a Gaussian
distribution that aligns with these two specific characteristics is generated. Gaussian distributions
were chosen for their similarities with VM CPU usage [34].

For a given VM, the obtained distribution is considered as a list of potential CPU usage. Based
on experiment temporality, values from the distribution are selected and assigned to each slice as its
targeted CPU usage. For VMs that exhibit periodic behavior, the values attributed to the first scope
are repeated on the subsequent scopes until the VM reaches the end of its lifecycle.

3.3.3 A few words on reproducibility

CLOUDFACTORY provides the ability to dump and load an experiment in JSON format, allowing
researchers to reproduce the same workload on different systems or temporality settings.

This feature is particularly useful in peer review processes, as the JSON dump can be shared along
with the generated scenario scripts to facilitate communication on the evaluation process.

36 Improving IaaS experiments using realistic users’ behavior

3.4 Exporters

CLOUDFACTORY can currently generate 3 export types, leading to 3 possible bindings.

3.4.1 CLOUDSIMPLUS

Overview

In a simulation-based experiment, a CLOUDSIMPLUS scenario can be generated as a Java program that
incorporates the VM workloads. While this generated Java template file is readily usable, researchers
may wish to customize it to evaluate specific clusters (e.g., number of DCs, number of nodes, size of
nodes) or algorithms (e.g., orchestrators).

Implementation details

CLOUDSIMPLUS uses various object representations to simulate the execution of a Cloud environment.
VM objects are instantiated according to the generated configuration. Internal applications are modeled
using Cloudlet objects. I created a per-VM Cloudlet implementing a custom utilization model loaded
from a Java properties file. To account for VM lifespan, a maximum Cloudlet duration is specified,
and a broker destroys VM without any Cloudlet being assigned to it. The submission delay feature is
used to manage arrival rates.

3.4.2 Bash

Overview

In the case of a physical testbed, the tool can generate VM workloads in the form of libvirt-based bash
scripts.

CLOUDFACTORY outputs VM deployment script jointly with a VM workload script to deliver a
reproducible behavior.

To mimic the heterogeneity of the Cloud workload, different images with different applications
can be considered. The generated scripts transform targeted CPU levels into benchmarking tool
parameters using editable configuration files. Additionally, constraints on VM distribution can be
expressed at the generation level to prevent, for instance, memory-intensive benchmarks from being
deployed on lightweight VM configurations.

Although this bash exporting option requires an initial setup involving the use of pre-generated
qcow2 images with SSH keys already injected, it remains a simple way to deploy a large number of
VMs on a worker node.

The resulting workload scripts can be used both locally and remotely, with Network Address
Translation (NAT) management offered with the latter option.

3.4 Exporters 37

Implementation details

Various applications are used to represent the heterogeneity of the workload in the Cloud.
Idle VMs are characterized as workloads with no specific CPU activity, except for the guest

operating system. Batch-oriented VMs simulate CPU-intensive workloads using the StressNG load
test with variable CPU usage. Database workloads are represented with VMs hosting a POSTGRESQL
instance serving a TPC-C workload where request rates are adapted. Static websites are represented
with a WordPress instance serving various request rates using wrk2 benchmarking tool. Microservices
architectures are also considered using DEATHSTARBENCH [41], a social network serving various
request rates using wrk2 benchmarking tool.

The reports obtained from the various benchmarking tools are stored as text files. To facilitate the
exploration of application performance, I provide bash scripts that can generate a CSV format from
these reports.

3.4.3 CBTOOL

Overview

To facilitate more complex deployments, the IBM CBTOOL framework can be used. From the
generated CBTOOL script, VM workloads can be deployed on various Cloud environments, including
GCP, AWS, and OpenStack clusters, with proper framework configuration.

Implementation details

The notion of a CBTOOL virtual application is used to model VMs and their associated load levels.
Prior to deploying any new VM, a baseline virtual application is customized to match the desired
load level, load duration, and VM size. CLOUDFACTORY slices are represented using "waitfor"
instructions, with VM deployments and destructions at each occurrence to simulate the departure and
arrival rate obtained from the modeling phase. The generated script is configured for the CBTOOL
simulation mode, making it ready to use. It can be adapted by developers to their deployment context.

3.4.4 Others exporters

CLOUDFACTORY has been designed with compatibility considerations in mind. Other formats can be
implemented through custom exporters, typically written in about 200 lines of code.

To ensure maximum compatibility with other formats, exporters should utilize the CPU usage list
generated by CLOUDFACTORY instead of custom solution models. This approach helps to maintain
homogeneity across different scenarios.

38 Improving IaaS experiments using realistic users’ behavior

3.5 Case study

While CLOUDFACTORY can be used for multiple purposes, I demonstrate its added value to study
cluster sizing issues, given multiple workload characteristics. Cloud physical resources remain
underused, hence severely impacting the cost and efficiency of these infrastructures at large [23, 17].
To overcome this inefficiency, IAAS providers usually compensate for oversized VMs by offering
more virtual resources than are physically available on a host. However, studying oversubscription
strategies implies considering realistic VM usage. In this section, I highlight the distribution impact
on the sizing of an IAAS cluster, based on the study of Chameleon and Microsoft Azure datasets.

3.5.1 Generate distributions

Chameleon-like and Azure-like distributions were computed using the workload analyzer from each
dataset. The Azure 56 GB memory configuration, which represents 2% of VMs, has no equivalent in
the Chameleon dataset. It was disregarded to facilitate comparisons. The computed distribution is
detailed in Tables 3.2 and 3.3.

Table 3.2 CPU Distribution used for experiment

vCPU Azure Chameleon
1 51% 26%
2 25% 20%
4 17% 12%
8 7% 42%

Table 3.3 Memory Distribution used for experiment

vRAM (GB) Azure
0.75 4%
1.75 47%
3.50 25%
7.00 16%
14.00 8%

vRAM (GB) Chameleon
0.5 2%
2.0 24%
4.0 20%
8.0 12%
16.0 42%

3.5.2 Generate usage profiles

As the Chameleon dataset does not contain usage metrics, Azure ones—computed from four usage
profiles inferred from the workload analyzer—were applied to both contexts. Furthermore, two
deployment strategies were tested: a static and a dynamic deployment. In the static deployment case,
all profiles were assigned arrival and departure ratios equal to 0. The initial set of VMs is therefore
deployed immediately, and run on all experiment duration, with no new VMs arriving. In the case of

3.5 Case study 39

dynamic deployment, the computed departure and arrival ratios are left unchanged for each profile.
Once the initial set of VMs is deployed, some of them are leaving and others arrive continuously,
while maintaining a similar overall quantity. In this scenario, the provisioning capabilities were
evaluated over a one-week window.

3.5.3 Experiment

Considering a hosting target of VMs, and given a VM distribution and deployment type, I compute
the minimal amount of servers required to host the targeted number of VMs. To do so, the workload
generator is used to obtain a CLOUDSIMPLUS workload for each combination, using a server
baseline of 64 CPUs and 256 GB. The configuration baseline was chosen due to the prevalence of
64-core servers in at least one Cloud dataset [27] and an assumption that an allocation of 4 GB
memory per core would be representative. Given a distribution and deployment type combination,
CLOUDSIMPLUS simulations are run sequentially, with an increasing number of hosts, until the
minimum amount of servers required is found. This is done by verifying that the default VM scheduler
was able to schedule all the provisioned VMs. CPU oversubscription was supported in this experiment
through CLOUDSIMPLUS MIPS notion, by implementing a per-VM MIPS baseline weighted by their
maximum usage, allowing the VM orchestrator to allocate resources based on VM usage instead of
VM provisioned resources. This mechanism can be described as an oracle-based oversubscription
mechanism, as maximum usage is known before deployment. However, it remains pessimistic, as
maximum usage of VMs is unlikely to happen at the same time, leading to potential gains, non-
exploited here. A more realistic approach requires the deployment of a custom VM scheduler, which
is out of the scope of this contribution. I did not consider live migration in this experiment.

3.5.4 Results

Results are shown in Figure 3.3. Compared to the static deployment, the flexibility required by a
fluctuating number of provisioned VMs implies a significant overhead for both datasets, on average
1.31 more servers for Azure and 1.46 for Chameleon. While being relatively stable on an increasing
hosting objective, this factor underlines that heavy-tail arrival rates, reflecting grouped VM deploy-
ments, impose an infrastructure cost. Conversely, in a system where the arrival rate can be managed
based on, for example, a queuing mechanism, the cost associated with the same VM hosting objective
is lower. Cloud providers can leverage this by offering their customers an incentive to choose a queued
deployment instead of the state-of-the-art "as fast as possible" strategy.

The Chameleon distribution requires VMs with larger amounts of resources, on average. Therefore,
the same VM hosting objective results in provisioning more resources, compared to the Azure
distribution. Concretely, an average deployment requires about 2.25 vCPU and 4 GB of memory in
the Azure context versus 4.5 vCPU and 9 GB for Chameleon. Chameleon needs on average 1.89
additional hosts for static deployments and 2.1 additional hosts for dynamic deployments, due to the
amplified impact of VMs arrival bursts on newly provisioned resources.

40 Improving IaaS experiments using realistic users’ behavior

0 200 400 600 800 1000
Number of VM

0

10

20

30

40

50

60

Nu
m

be
r o

f h
os

t n
ee

de
d

distribution
azure
chameleon

deployment
dynamic
static

Fig. 3.3 IAAS hosting capacities required by VM distribution and deployment conditions

The achieved CPU oversubscription ratio, defined as the ratio between the vCPUs offered and
those physically available, can also be estimated. Provisioned CPUs are extrapolated from the average
deployment size applied to the number of VMs. Physical resources are computed from the number of
hosts and their respective configurations. In Figure 3.4, one can observe that, while being higher than
1.0, oversubscription ratios remain significantly lower for dynamic deployments, compared to static
ones. While dynamic deployments have the same VM hosting objective, the number of hosted VMs
may be significantly higher at a given point, due to fluctuation in departure and arrival rate, reducing
oversubscription to almost no gain on average (1.11 ratio for Chameleon, 1.18 for Azure). Due to the
same usage being applied during CLOUDFACTORY workload generation, oversubscription ratios are
similar on static deployments (1.63 and 1.57 for Chameleon and Azure respectively).

The key results of the experiment can be seen in Table 3.4.

Table 3.4 Experiment results summary

Infrastructure Servers to host CPU oversubscription
Configuration 1,000 VMs ratio
Static Azure 22 1.57
Dynamic Azure 29 1.18
Static Chameleon 42 1.63
Dynamic Chameleon 64 1.11

3.5 Case study 41

200 400 600 800 1000
Number of VM

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

CP
U

ov
er

su
bs

cr
ip

tio
n

ra
tio

distribution
azure
chameleon

deployment
static
dynamic

Fig. 3.4 CPU oversubscription ratio based on VM distribution and deployment condition

3.5.5 Adoption by the Cloud industry

Besides generating realistic IAAS workloads for Cloud experiments, CLOUDFACTORY aims to foster
the sharing of high-level IAAS statistics to and from the Cloud ecosystem. In particular, OVHcloud1

is a public Cloud provider recognized as the largest Cloud operator in Europe [123].
Thanks to the availability of the workload analyzer of CLOUDFACTORY, OVHcloud agreed to

share the statistics of their public Cloud offer. Interestingly, I can compare these statistics with the
ones of alternative providers, like Azure and Chameleon. Figures 3.5 and 3.6 are, thus, reporting on
the distributions of vCPU and vRAM, respectively. Due to the diversity of configurations, I grouped
some close vRAM configurations.

The findings from the VM distribution analysis suggest statistically significant differences among
the three Cloud service providers.

Specifically, Azure exhibits a light CPU context in comparison to both Chameleon and OVHcloud.
The configuration options that account for less than 1% have been excluded from the analysis. It is
worth noting that the OVHcloud distribution includes the largest configuration option, with 16 vCPU
(3% of VMs). Conversely, the Chameleon Cloud service provider records the highest average CPU
option, reflecting its research-oriented objective. This outcome is attributed to the 8 vCPU option,
which is the most prevalent among the Chameleon cluster VMs.

On the memory aspect, Azure is also predominantly characterized by small configurations. While
Chameleon is a memory-intensive Cloud workload compared to Azure, it is exceeded by OVHcloud,
primarily due to its percentage of options equal to or greater than 30 GB (8% of VMs). In contrast,

1https://www.ovhcloud.com/

https://www.ovhcloud.com/

42 Improving IaaS experiments using realistic users’ behavior

0.0 0.2 0.4 0.6 0.8 1.0
Configuration options distribution

azure

ovhcloud

chameleon

Di
st

rib
ut

io
n

1 vCPU
2 vCPU
4 vCPU
8 vCPU
16 vCPU

Fig. 3.5 Comparison of vCPU distributions across Cloud providers

0.0 0.2 0.4 0.6 0.8 1.0
Configuration options distribution

azure

ovhcloud

chameleon

Di
st

rib
ut

io
n

<1GB
1-2GB
3-4GB
7-8GB
14-16GB
=>30GB

Fig. 3.6 Comparison of vRAM distributions across Cloud providers

Azure’s most significant memory option is the 56 GB configuration, which accounts for only 2% of
the total VMs. Notably, OVHcloud does not offer any memory options less than 2 GB.

The three distributions are available in the repository and can directly be used by the workload
generator.

3.6 Limitations

CLOUDFACTORY aims to capture and reproduce global behaviors observed in IAAS environments.
However, the use of statistical techniques introduces an inherent information loss, potentially leading
to the omission of specific behaviors. In particular, the modeling of CPU usage patterns is based on
Gaussian distributions, which may not accurately represent the behavior of all VMs under real-world
conditions.

3.7 Conclusion 43

While grouped deployments are taken into account by utilizing a heavy-tail distribution to capture
arrival rates, the tool subsequently treats individual VMs as independent entities. However, in reality,
sets of VMs can be provisioned to host distributed applications, resulting in network traffic between
them.

Furthermore, CLOUDFACTORY’s usage profiling focuses on CPU usage and neglects other types
of resources. This decision was made for two main reasons: the widespread availability of CPU usage
in datasets and the presumed correlation between CPU usage and the utilization of other resources,
based on the specific application being used. However, I acknowledge that certain benchmarks could
benefit from incorporating information about the usage of other computing resources.

The tool offers the capability to scale an IAAS workload down to a single node. However, this
functionality relies on the assumption that the workload is evenly distributed among nodes, which
may not always hold in practice. For example, Cloud providers may manage dedicated clusters for
different premium levels or service tiers.

3.7 Conclusion

In this contribution, I introduced CLOUDFACTORY, a realistic IAAS workload generator. I first
provide a Cloud dataset analyzer, able to compute context-based metrics on VM configuration options
distribution and usage. These statistics can be shared with the wider community, enabling researchers
to consider multiple Cloud-based contexts. The statistics can also be used by the generator to compute
a workload scenario in a simulated context, leveraging CLOUDSIMPLUS capabilities, or using a
physical testbed, using bash or CBTOOL deployments. A case study example was presented with the
cluster sizing example, underlying the importance of considering representative workload to produce
coherent results.

By enabling the generation of realistic Cloud clients’ behavior and, consequently, the replication
of their incomplete usage of requested resources, this tool allows us to test oversubscription strategies
in the remainder of this thesis. In these strategies, the incomplete utilization of resources is mitigated
by sharing host cores among clients, while trying to preserve performances, an aspect that necessitates
investigation on real platforms.

Chapter 4

Computing oversubscription ratios under stability
consideration

Abstract: In this contribution, I propose to compute oversubscription ratios at the server scope by
assessing their quiescent state. This approach allows for adjusting the optimistic oversubscription
degree on a per-PM basis, rather than defining it globally as seen in other dynamic approaches.
I evaluate the stability of the workload on a per-server basis and use this information to tune the
pessimistic/optimistic degree of oversubscription when considering the host for new deployments. The
prototype, called SCROOGEVM, demonstrated superior performance compared to other dynamic
approaches.

Initially, virtualization technologies paved the way for building more energy-efficient Cloud
infrastructures by increasing physical resource usage [124].

Unfortunately, most Cloud operators keep observing that the VMs they host in their data centers
are underused [14]. These observations can be explained by several reasons: (i) their customers order
cheap servers, without necessarily using them over time (as a consequence of a rebound effect); (ii)
their customers over-provision their VMs to anticipate potential workload peaks; (iii) the fixed-size
VM configuration might be inappropriate—e.g., imposing a provision of 32 GB of memory to host a
hypothetical workload of 18 GB.

Various Cloud providers report relatively low usage of their infrastructure, even over the past
decade [14, 24, 125]. Optimizing this usage is one of the most promising leads to reducing the energy
consumption and carbon footprint of DCs. While CPU resources are often effectively allocated,
as reported by [15] indicating that 80% of Azure servers have less than 15% unprovisioned cores,
there is still substantial underutilization of CPU on PMs [24]. This underutilization highlights the
significance of provisioned, yet unused, resources. I chose to address it through the prism of resource
oversubscription, also known as overcommitment, which can be defined as the amount of virtual
resources made available for each unit of physical resource. Resource oversubscription allows Cloud

45

providers to boost physical resource utilization and is widely adopted in production, as reported in the
literature [14, 17].

However, setting an appropriate oversubscription ratio for a given Cloud infrastructure remains an
open challenge. While an under-loaded platform is inefficient, an over-loaded platform may impact
its performance and stability. Therefore, state-of-the-art hypervisors adopt a configurable threshold of
oversubscription ratio per resource type, and at the scale of a cluster. For example, the OPENSTACK

platform sets by default the oversubscription ratios to 16:1 and 1.5:1 the oversubscription ratios for
vCPU and vRAM, respectively. This implies that all the computing cores and memory of PMs are
multiplied by 16 and 1.5 when exposed as virtual resources. Nonetheless, the effective value for each
of these ratios has to be carefully estimated by Cloud providers by taking into account resource and
workload characteristics, as well as an acceptable risk [106].

Even current dynamic approaches, such as [23, 17], do not provide inherent guidelines on how to
adjust the optimistic/pessimistic degree of their respective approach. In this contribution, parameters
are dynamically deduced from the PM state.

Instead of statistically determining optimal global parameters, I argue that clusters can better
benefit from a dynamic oversubscription ratio per PM. In particular, I believe that higher gains
at lower risk can be achieved by learning from the deployed workloads and resource utilization
of individual PM. In this contribution, I propose SCROOGEVM, a new approach to dynamically
increase the oversubscription ratio per PM, while maintaining performance goals. SCROOGEVM
monitors effective PM resource usage by combining resource utilization metrics and overload signals.
This approach, decoupled from the resource optimization of a given IAAS platform, allows the
solution to be generic and leveraged by most Cloud schedulers in any IAAS context. SCROOGEVM
leverages state-of-the-art machine learning techniques to capture periods of stability for a PM—
i.e., periods of foreseeable resource usage. During these periods, SCROOGEVM can analyze the
utilization statistics to better understand resource usage and increase the oversubscription ratio of each
resource accordingly. SCROOGEVM, therefore, adopts a greedy approach to increase little-by-little
oversubscription ratios, to never trigger VM consolidation phases, which could penalize the Cloud
infrastructure and its customers. Step by step, and as long as a PM is labeled as stable, SCROOGEVM
adjusts the amount of available resources by reasoning on the long term. This more natural solution to
resource consolidation learns from VM requirements and can be used to balance the IAAS allocations
and performances across all PM in a cluster.

I first introduce the principles of greedy oversubscription and an implementation, named SCROOGEVM
(cf. Section 4.1). I also perform an empirical analysis of the impact of different parameters of this
approach in an environment that mimics the characteristics of Microsoft Azure (cf. Section 4.2).
Additionally, I evaluate SCROOGEVM oversubscription computation and compare it to other dynamic
approaches (cf. Section 4.3). Finally, I conclude this work in Section 4.4.

46 Computing oversubscription ratios under stability consideration

0 35 100 150 200 250 300
Memory (GB)

0

25

40

60

80

100

Co
m

pu
te

 n
od

es
 (%

)

unused
unallocated
unused+unallocated

Fig. 4.1 Cumulative Distribution Function (CDF) of memory availability in an IAAS infrastructure.

4.1 Greedy oversubscription with SCROOGEVM

I introduce greedy oversubscription as a novel approach to implement a dynamic resource oversub-
scription strategy at the scale of individual PMs. More concretely, this approach gradually increases
the oversubscription ratios intending to never trigger live migration, as long as a PM is assumed to be
stable, thus reasoning over the long term. While migration consolidation techniques may penalize the
stakeholders by imposing temporary service unavailability and complex migration strategies, I believe
that greedy oversubscription can offer an alternative approach that incrementally increases resource
utilization by hosting more and more VMs, while minimizing costly VMs consolidations.

4.1.1 Principles of greedy oversubscription

Preliminary analysis of Cloud resource availability In 2017, Microsoft Azure released traces
from a 3-month IAAS workload [14]. Interestingly, this dataset—reflecting a production-scale Cloud
infrastructure—reveals several insights that I leverage as part of this contribution:

• Not all VM resource requirements are the same: VM configuration distribution—coined size
in the contribution—reports that typical VMs are quite small, with around 80 % of VMs having
less than 2 vCPUs and 70 % of them less than 4 GB of memory;

• Not all VM lifespans are equal: Long-running VMs account for more than 95 % of the total
core hours;

• Not all VM provisioned resources are used: While resource usage figures are only provided
for the CPU, a collaboration with OVHcloud reveals that a production-scale IAAS infrastructure
with guaranteed resources—i.e., no oversubscription—succeeds in allocating most of the

4.1 Greedy oversubscription with SCROOGEVM 47

60 20 40 60 80 100 120
Memory delta (GB)

0

20

40

60

95

80

100

Do
m

ai
ns

 (%
)

Fig. 4.2 CDF of memory allocation variations in an IAAS infrastructure

memory of PMs, with 80 % of their PMs reporting less than 35 GB of unallocated memory (cf.
Figure 4.1). However, when including the amount of allocated memory that remains unused by
their customers, one can observe that 75 % of their PMs have a potential of at least 35 GB of
available memory.

Furthermore, when considering the evolution of memory allocation over time, one can observe
that the memory effectively used by VMs remains stable. In particular, Figure 4.2 reports that 95 % of
the PMs of OVHcloud infrastructure report on a variation of at most 6 GB over a 24-hour window.

Definition of the resource oversubscription ratio An oversubscription ratio is used to ”map” a
quantity of physical resources into virtual ones that can be exposed to third parties. For example,

˙̇CPU and ˙̇RAM are the oversubscription ratios commonly used by IAAS platforms to boost CPU and
memory utilization, defined respectively as:

˙̇CPUIAAS =
targeted(vCPUs)
∑p∈PM cores(p)

(4.1)

˙̇RAMIAAS =
targeted(vRAM)

∑p∈PM RAM(p)
(4.2)

where targeted(vCPU) and targeted(vRAM) are the number of virtual resources that a Cloud infras-
tructure aims to offer for each PM, with regards to the number of cores and the quantity of memory
exposed by the associated hardware configuration.

When statically defined at the scale of an IAAS, these oversubscription ratios rely on a high-level
analysis of workload patterns and an accepted risk in terms of performance degradation. However,
an IAAS is a general-purpose computing platform that can host a wide diversity of VMs, hence

48 Computing oversubscription ratios under stability consideration

inducing a different profile on resource utilization from one PM to another. Therefore, I believe that
the oversubscription ratios should rather be estimated in real-time and at the scale of individual PMs
to minimize resource over-utilization while maximizing VM performance.

Insights from Azure-like IAAS platforms IAAS bottlenecks may differ, depending on VM flavors,
distribution and PM configuration. Based on Azure VM size distributions and IAAS configurations, I
studied potential oversubscription limitations.

I applied Operations Research (OR) techniques to maximize the number of VMs for a given
PM, while respecting VM size distribution reported by Azure. I considered a share of 4 GB memory
per thread as a PM configuration baseline. Considering this PM configuration, and no resource
oversubscription, the CPU is the bottleneck. For example, a 256-cores PM with 1 TB of memory
can host a maximum of 101 VMs for a total of 251 vCPUs and 481 GB of VRAM. When increasing
the CPU oversubscription to 2:1, more memory is consumed, with a total of 949 GB of VRAM
provisioned across 204 VMs. A higher CPU oversubscription would, however, induce memory
overload.

In the current Azure configuration, dynamic CPU oversubscription based on the sum of VM
percentile is unlikely to improve resource usage compared to a static 2:1 ratio, as they do not
oversubscribe memory [126]. Moreover, the sum of VM percentiles is known to overestimate actual
requirements [17].

Capturing the effective resource utilization of hosted VMs VMs hosted by an IAAS are consid-
ered black boxes provisioned with a given amount of resources ordered by the customers. Nevertheless,
from the perspective of a PM, system-level metrics can be monitored to better understand the resource
utilization of hosted VMs. In particular, actual CPU and memory utilization can be observed using
CPU usage and RSS, respectively.

In addition to these raw usage metrics, each PM can also monitor resource overload signals. A
good indicator is the scheduling latency extracted from Linux scheduler statistics exposed by the
Process File System (ProcFS) [127]. When overloaded, CPU time slices granted to each hosted
process decrease, because the number of requested time slices is higher than the number physically
available on the system. As a consequence, the scheduling latency—defined as the sum of task wait
times—increases. Regarding memory, I used page faults count as memory signals. Major page
faults are used by the Linux Kernel to increase the virtual address space of a given process. When
overloaded, a new memory page requires the writing of an existing page, which can be accessed
shortly after, resulting in a new page fault, thus increasing the overall amount.

The combination of resource utilization metrics and resource overload signals are the key features
to better understand the effective exploitation of PMs by VMs. To achieve optimal usage of computing
resources, every PM is expected to maximize its resource utilization metrics, while minimizing
resource overload signals. To do this, PMs require a better understanding of their resource utilization
profile by aggregating metrics, commonly adopted by the state of practice. Nevertheless, these

4.1 Greedy oversubscription with SCROOGEVM 49

resource profiles are particularly relevant when the PM reaches a quiescent state—i.e., their resource
utilization is stable enough to be anticipated. I believe that the quiescent state of a PM can better
reflect the actual resource availability and be exploited to increase the number of hosted VMs by
gradually increasing the oversubscription ratio without triggering resource overload signals.

Dynamic resource utilization profiling of hosted VMs Service-Level Agreement (SLA) violation
prevention constrains Cloud providers from sizing their infrastructure according to usage peaks.
Quantiles and percentiles are commonly used to compute them at the cluster scale [128, 14]. A cluster
resource usage distribution may be considered stable, making percentiles computation practical, but
inappropriate at the scale of a PM due to potential instability. I consider it as an opportunity and
leverage PM specificities, caused by their inner unique workloads evolution, to compute available
resources using metrics closer to the real PM usage.

Given that PM reactivity is also a challenge, metrics computed at a PM scale must address two
questions: how to ensure confidence in usage metrics computed from a smaller sample composed of a
single PM? How to account for workload evolution that can be observed at the PM level? I propose to
mitigate this issue with a quiescent indicator. This indicator answers the two previous questions by
ensuring confidence in metrics computed on a quiescent PM and by properly reacting to a PM with an
evolving workload.

Identifying quiescent states The quiescent state must be independently estimated for each resource
of interest: a PM may have a stable memory usage, but an unstable CPU one. A resource is considered
as quiescent whenever its current usage can be estimated from past observations. Thus, whenever the
workload changes significantly, I consider that the PM resource left its quiescent state.

To the best of our knowledge, the detection of a quiescent state in IAAS PMs has never been
extensively explored. It could be aligned with more general approaches in time series data min-
ing [129], where similarity measures are utilized to identify specific sequences in a series [130, 131].
However, there are some major distinctions in our notion of quiescence. Particularly, the observation
of a pattern not previously encountered is common, as VM-based workloads often exhibit a chaotic
behavior [132] due to the variety of conditions affecting the load of each VM. These new patterns
may still be associated with a quiescent state depending on their amplitude, as small changes may not
significantly impact the overall trend.

Therefore, I evaluated different detection heuristics under multiple generated IAAS workloads.
Under each workload, samples of resource usage are continuously monitored and attached to a time
window of a fixed duration. Whenever a time window ends, I evaluate the PM quiescent state by
comparing the current window samples to previous ones. To better understand the evaluation, I
illustrated four resource usage traces in Figure 4.3. I want to compare if the latest received window
(shown in red) may be considered as quiescent with regards to the historical data (in grey). The
illustrated traces cover behaviors observed in production, where cases n°1 and n°4 should be labeled
as quiescent, while cases n°2 and n°3 highlight a difference in scale in the new window.

50 Computing oversubscription ratios under stability consideration

Case n°1 Case n°2

Case n°3 Case n°4

Fig. 4.3 Resource usage traces. Reference data is in grey, data seen as new in red

I now describe the stability detection heuristics I considered for this component of SCROOGEVM.
As PM usage is usually compromised in a Gaussian distribution [133], the average classifier computes
the new average value and compares it to bounds defined by average and standard deviation on
historical data. It checks that the new average is included in [old−σ ;old +σ].

Percentiles are also commonly used to evaluate both VMs [14] and PM workloads [24] to account
for exceptional situations—i.e., the ones likely to provoke SLA violations. The percentile classifier
computes a given percentile on the new data and checks the following bounds: [percentile(old)×
0.8; percentile(old)×1.2].

The p-value classifier uses a common statistical test. I use a null-hypothesis significance test to
compute the probability of obtaining the test result and reject it if it is below 5%.

Finally, the introduced quiescent classifier leverages a machine learning approach, using an Long
Short-Term Memory (LSTM) model, known for its performance in predicting computing resource
usage [134, 128]. As described in Algorithm 2, this classifier trains a model MLST M on [i−n; i−1]
historical windows (with n ∈ N,n ≥ 1) and then forecast the behavior observed during the last
completed window i. To do so, the trained model MLST M is used to predict values on two series.
The first one is on metrics set from the historical data, to evaluate the baseline model accuracy. The
second one is on metrics extracted from window i. Then, the average error of both predictions is
computed using Root-Mean-Square Error (RMSE). If the difference between the two predictions
is significant, the PM is considered as UNSTABLE. As RMSE is expressed on the same scale as the
unit being predicted, I consider the difference to be significant if it exceeds a percentage of the PM
configuration. For example, a 256-cores PM with 1% threshold would tolerate a maximum difference

4.1 Greedy oversubscription with SCROOGEVM 51

Table 4.1 Comparison of quiescent labels returned by classifiers

Case 1 2 3 4
Ground truth QUIESCENT UNSTABLE UNSTABLE QUIESCENT
Average UNSTABLE UNSTABLE UNSTABLE QUIESCENT
Percentile QUIESCENT QUIESCENT QUIESCENT UNSTABLE
p-value UNSTABLE UNSTABLE UNSTABLE UNSTABLE
LSTM QUIESCENT UNSTABLE UNSTABLE QUIESCENT

of 2.56 cores between both projection average errors. In my experiments, the 1% threshold was
sufficient on large PMs.

Algorithm 2 Quiescent state detection algorithm
Input Historical dataset, last window
Output Quiescent state

1: MLST M ← Generate model from historical dataset
2: f orecasted← predict(MLST M,historical_set)
3: predicted← predict(MLST M, last_window)
4: δ ← |RMSE(f orecasted)−RMSE(predicted)|
5: if δ > threshold then
6: return UNSTABLE
7: end if
8: return QUIESCENT

LSTM training phase can be tuned by so-called hyper-parameters. I intentionally considered
"low" values to reduce the ability of the resulting model to anticipate previously unseen behaviors. It
also reduces the training phase to a few seconds, making it practical for live usage. One should be
reminded that I do not use LSTM to predict future behaviors but to detect the occurrence of unforeseen
behaviors. More specifically, I reduce the ability of LSTM to predict new behaviors by setting a few
hidden layers (less than 10) and a low number of considered time steps.

I assess the LSTM classifier by comparing it to the other classification techniques: average,
percentile, and p-value based. Table 4.1 summarizes the labels returned by each classifier when
evaluating the red window of Figure 4.3. One can observe that the average classifier often proves
inadequate in labeling a state of quiescence when the history exhibits an ascending or descending
trend, as evidenced in the first case, due to its previous average value being biased. Similarly, the
percentile classifier tends to exhibit bias based on the number of values that significantly deviate
from the history within the latest window. The conventional bounds commonly employed for p-value
hypothesis testing appear unsuitable in our specific context. However, employing an LSTM based
approach appears to succeed in accurately detecting both unstable states.

To further assess these quiescent state classifiers, I consider the state-of-the-art metrics adopted
for the evaluation of classifiers [135]. I labeled a sequence of windows covering the CPU traces of an
IAAS platform, from which are issued the previous four examples and compared this ground truth to
the labels returned by the four classifiers mentioned earlier. By counting the number of true positives

52 Computing oversubscription ratios under stability consideration

Table 4.2 Quantitative evaluation of quiescent state classifiers

Classifier Accuracy Precision Recall F-score
Average 0.68 0.8 0.52 0.63
Percentile 0.57 0.55 0.87 0.67
P-value 0.52 1.0 0.06 0.12
LSTM 0.88 0.93 0.84 0.88

(T P), false positives (FP), true negatives (T N), and false negatives (FN), I assessed the following
indicators:

• Precision: T P/(T P+FP)

• Recall: T P/(T P+FN)

• Accuracy: (T P+T N)/(T P+FP+FN +T N)

In addition, the F-score, defined as the harmonic mean of the precision and the recall, can be used to
get a performance score. As reported in Table 4.2, LSTM outperforms other classifiers with an F-score
of 0.88. In the following sections, I therefore adopt it as the quiescent state detector of SCROOGEVM.

Estimating the available vCPU & vRAM resources Two VMs requiring the same amount of
resources may have different workload patterns, due to the diversity of services hosted by Cloud
infrastructures. When adopting a cluster-wide static oversubscription, a pessimistic approach tends to
be adopted, leading to lower gains by potentially lowering the resource utilization of PMs. Therefore,
instead of assuming the number of vCPUs and the available vRAMs are statically defined, based
on the number of physical resources and the associated oversubscription ratio, this approach aims
to continuously adjust the number of virtual resources to be offered by estimating their actual value
depending on the PM quiescent state.

N-SIGMA method introduced in [17] may be seen as partially dynamic. In N-SIGMA, a fixed value
of N is employed in the computation of peak resource usage using the formula cpu+N×σ , where
cpu is the average value and σ the standard deviation. However, it should be noted that the standard
deviation, which is utilized in this computation, is influenced to some extent by the quiescent state
of the PM. Nevertheless, relying solely on the standard deviation as a proxy for resource stability is
inadequate, as high amplitude values should be regarded as stable if the observed pattern is consistently
reproduced over time. On a quiescent PM, the amplitude previously seen is likely to be reproduced,
making a more optimistic peak prediction possible. We, therefore, introduce a quiescent-aware
computation of N. At its maximum, it should handle worst-case scenarios observed in the Borg
context, where there is a relatively high VM churn (N = 5). Conversely, the minimum value of N is
chosen to detect quiescent states while minimizing mispredictions. Through empirical deduction, a
value of N = 2 is determined. At each time slice, the PM’s quiescent state is assessed, and the streak
of the PM is adjusted accordingly, being either increased or decreased, based on predetermined values.

4.1 Greedy oversubscription with SCROOGEVM 53

This dynamic adjustment of N allows SCROOGEVM for adaptive peak prediction based on the current
state of the PM.

On a quiescent PM, the ratio is deliberately decreased using a low value, taking advantage of
long-running VMs to improve resource utilization. The rest of this contribution used a 0.1 step.

On an unstable PM, the ratio is increased asymmetrically. However, it is important to consider
that the associated standard deviation is likely to have increased in such cases. Additionally, the set
of VMs on a given PM is unlikely to have been entirely refreshed since the previous observations.
In practical terms, a decreasing value of 0.2 was found sufficient to mitigate the occurrence of most
mispredictions.

Resources availability estimated by SCROOGEVM is, then, mapped to PM-scale oversubscription
ratios, ˙̇CPUPM and ˙̇RAMPM, with the following formula:

˙̇CPUPM =
provisioned(vCPUs)+ ⌊available(cores)⌋

∑cores(PM)
(4.3)

˙̇RAMPM =
provisioned(vRAM)+ ⌊available(RAM)⌋

∑RAM(PM)
(4.4)

where provisioned(vRES) captures the amount of currently provisioned virtual resources and ⌊available(RES)⌋
the identified unused resources.1

Dynamic oversubscription can leverage existing Cloud platforms and monitoring infrastructure to
be easily implemented. I assume that proposing a new VM orchestrator is out of the scope of this
contribution, and I rather focus on the evaluation of PM-scale oversubscription ratios, which can
eventually be leveraged by any legacy or new scheduler. Beyond state-of-the-art scheduling policies, I
believe that the greedy oversubscription approach paves the way for the design of new policies that
privileges the PM with the highest oversubscription ratio and/or the ones with the longest quiescent
state, hence offering a more natural consolidation of Cloud resources.

4.1.2 Implementation of SCROOGEVM

This contribution, SCROOGEVM, involves a lightweight resource probe deployed on each PM.
Metrics of interest are retrieved from three main sources: the virtualization platform (using libvirt

in my case), ProcFS, and performance counters. Files of interest include /proc/schedstat and
/proc/[pid]/stat, which expose scheduler latency and page fault metrics, respectively. Page faults
are not extracted from the associated performance counter, as the combination of both major and
minor faults does not permit to identify an overload situation. Monitoring of ProcFS metrics requires
retrieving the VM PIDs, which is done via cgroupfs. For a given VM, reported values are the sum of
its PIDs values.

Probe data is then exposed and processed by a PROMETHEUS monitoring solution [136] and
updated periodically. Aggregation, storage, and analysis steps can be performed on a dedicated node to

1RES and vRES refers indifferently to CPU/RAM and vCPU/vRAM, respectively.

54 Computing oversubscription ratios under stability consideration

Worker nodes

PM

Control plane

ScroogeVM

PM
Check PMx quiescence

Adjust vCPU & vRAM
oversubscriptions

of PMx

vCPU & vRAM
oversubscription

per PM

List all PMs fitting
(vCPU, vRAM)d request

>

PM1

VMa VMb

VMc

Incoming VMd
request(vCPU, vRAM)

IaaS scheduler

Order PMx per lowest
oversubscriptionDeploy VMd

Train quiescence predictor

LSTM

Fig. 4.4 Overview of the integration of SCROOGEVM in an IAAS platform to guide the deployment
of new VMs

address scalability issues in production environments. The current implementation of SCROOGEVM
reports on the estimated PM resources as a file, periodically updated, which can be parsed by any
third-party orchestration solution.

Figure 4.4 illustrates the integration of SCROOGEVM in an IAAS platform, like OPENSTACK, to
guide the deployment of new VMs toward the least oversubscribed PMs and preserve the performance
of hosted services. This integration leverages SCROOGEVM to maintain an up-to-date oversubscrip-
tion ratio per PM, hence offering a more dynamic indicator to select the most suitable PM that can
satisfy a given VM deployment request. In this configuration, the resource oversubscription ratios
(incl. vCPU and vRAM) are independently adjusted if a PM is in a quiescent state, which leads to a
more careful and realistic estimation of resource availability that can be reported to the control plane.
The quiescent state of each PM is periodically assessed at the end of time windows (of a configurable
duration). That is, SCROOGEVM uses the trained LSTM model to predict the vCPU and vRAM
usages and compare them against recent history as described in Algorithm 2.

4.2 Empirical analysis

Cloud simulators, such as [17] and [30], lack valuable metrics for implementing greedy oversubscrip-
tion. We, therefore, consider a more empirical protocol to study the impact of a set of parameters on
dynamic oversubscription computation. This protocol is built upon the IAAS workload characteristics
of Microsoft Azure [14] to consider a realistic Cloud infrastructure.

4.2 Empirical analysis 55

4.2.1 Experimental settings & evaluation protocol

I evaluated various ratios of oversubscription with different workload intensities by gradually in-
creasing the number of VMs while monitoring different metrics. During the experiments, memory
allocation was optimized using a ballooning mechanism that periodically reduces VM configurations
to their observed max peak memory usage for a few seconds before restoring it. This principle was
sufficient to reduce VM RSS without any noticeable impact on their performance.

Input workload Using the generator introduced in Chapter 3, we generated workloads matching
statistics from the Microsoft Azure dataset [14]. The scripts obtained configure a representative
workload of a PM hosting a set of production-scale VMs. With this method, VMs are deployed on
a dedicated PM, allowing us to monitor the metrics of interest for SCROOGEVM. For each VM, a
benchmark is selected to emulate its activity. The workload intensity of each VM is generated from
the CPU utilization characteristics of the dataset. While I cannot ensure that a selected benchmark
parameter value will exactly reach the targeted CPU intensity, I roughly ensure that the order of
magnitude is reached based on empirical analysis.

Applications under study The platform workload relies on heterogeneous applications to emulate
the diversity of situations covered in a Cloud infrastructure. Concretely, I deploy applications from the
DeathStarBench as a representative microservices architecture [137], TPC-C for database workloads,
a WordPress application, batch using CPU-intensive workloads, and idle VMs. When applicable,
workload generation uses related benchmarking tools, which can be executed remotely or locally.

Metrics of interest In addition to the system metrics, I also monitored the performances obtained
from applications hosted by the different VMs for validation purposes. Figure 4.5 depicts the
evolution of hosted application performance through their 90th percentile response times. A first set
of VMs hosted a PostgreSQL database stressed under a TPC-C benchmark. A second set considers
a DeathStarBench application SocialNetwork deployed with the "read home timeline" benchmark.
Response times of all the VMs hosted on are aggregated in the graph. From the PM point of view,
scheduling metrics were retrieved and a ratio was computed based on the scheduler latency and
processes runtime. Due to the benchmark heterogeneity, performance degradations do not follow the
same pattern, but one may observe that the lower the scheduler latency, the better the application
performance. I also considered metrics, such as tail latency, requests throughput, and errors with
similar observations. We, therefore, consider the scheduler latency as a relevant metric to assess VM
applications from the host perspective in a black-box environment, like an IAAS platform. The impact
on batch performance was not particularly investigated as I expected it to be similarly affected by an
overall platform performance degradation.

Hardware settings In the experiments, I used the PM described in Table 4.3.

56 Computing oversubscription ratios under stability consideration

10−2 10−1 100 101 102

Scheduler latency ratio

10−2

10−1

100

90
th

 re
sp

on
se

 ti
m

e PostgreSQL

10−1 100 101

Scheduler latency ratio

10−2

100

90
th

 re
sp

on
se

 ti
m

e DeathStarBench socialNetwork

Fig. 4.5 Scheduler latency impact on VM performance (log-scale axes)

Table 4.3 Hardware configuration of IAAS PM

Processor AMD EPYC 7662 64-cores ×2
Total threads 2×64 cores×2 hyperthreads = 256
Memory 1 TB
Operating System Linux Redhat 8.6
Virtualization Platform QEMU & KVM 7.1

Figure 4.6 summarizes the profile of an experiment executed from the workload generator. An
Azure-like workload was incrementally injected while maintaining the VM distribution and activity
percentages. As a consequence, the number of VMs increases, while resource usage (such as CPU
and memory) reaches their PM configuration limits. The ballooning mechanism previously described
allowed SCROOGEVM to oversubscribe memory up to 3:1 and CPU up to 7:1. The workload was
intentionally generated with unrealistic oversubscription ratios to investigate precursor indicators of
an overloaded system.

4.2.2 Impact of the sampling period

The sampling period impacts the metrics volume and its associated processing capacity. As memory is
exposed as a quantity, it is not subject to the smoothing effect. The main risk may be to miss potential
peaks by only considering the last reported amount of memory, which is unlikely due to the RSS
being generally linear. A more sudden change may be caused by a ballooning reduction window, with
different effects depending on its conservative strategy level: if the reduction is exaggerated, a given
VM on a PM may report an underestimated RSS. In the experiments, the sampling period did not
have any significant impact on its oversubscription ratio.

4.2 Empirical analysis 57

100
200
300

VM
101

103

co
re

s provisioned
used
config

102

103

m
em

or
y provisioned

used
config

10−2

10−1

la
te

nc
y

ra
tio

0 50 100 150 200 250
iteration

100

102

pa
ge

fa
ul

ts

Fig. 4.6 Overview of our collected metrics

CPU utilization is typically reported as a percentage of the PM CPU time to the corresponding
elapsed time. Therefore, a higher window length tends to smooth out extreme values and avoid
overreaction. A longer window duration, therefore, leads to an increase in the estimated available
quantities, as well as the associated oversubscription ratio. In the rest of this contribution, I used a 5s
aggregation window.

4.2.3 Impact on the VM performances

In the context of an IAAS, performances from the perspective of the Cloud provider can only be
evaluated as a black box, as no access to VM workload performance indicators is granted. To
do so, I used the resource overload signals introduced in Section 4.1.1. Technically, system-wide
scheduler latency is exposed by the Linux kernel. When the operating system is under-loaded, tasks
assigned to the cores do not significantly affect the latency. I also consider runtime statistics to
compute the average scheduling latency overhead. This is a more comprehensive metric to quantify an
overload. One may potentially assess an overload severity considering latency evolution. Figure 4.7
compares the latency on two different workload intensities. Both workloads start from a ˙̇CPU = 1:1
oversubscription baseline composed of VMs distributed in terms of size and workload intensity,
according to the Microsoft Azure dataset. The heavy one was progressively increased every two
virtual days using 8-cores VMs with CPU-intensive tasks simulating aperiodic batch activities using
up to all provisioned resources. The light workload was increased at the same frequency, with
the same VM size. However, two-thirds were idle, and one-third were implemented with various
workloads (including databases, micro-services, static websites, and batches) consuming less than the
provisioned resources. Despite having the same VMs distribution, the latency distribution from the

˙̇CPU = 2:1 oversubscription is degraded on the heavy workload, compared to the light one. This can

58 Computing oversubscription ratios under stability consideration

1.0 1.5 2.0 2.5
Oversubscription ratio

10−2

10−1

Sc
he

du
le

r l
at

en
cy

 ra
tio

Low CPU workload

1.0 1.5 2.0 2.5
Oversubscription ratio

Sc
he

du
le

r l
at

en
cy

 ra
tio

Heavy CPU workload

Fig. 4.7 CPU performance comparison for 2 workloads (log-scale Y axis, lower is better)

be deducted from a higher average value (in nanoseconds), but also from a larger dispersion. The light
workload had no performance degradation, due to CPU-slicing competition at this oversubscription
ratio. It did not exceed a 10% scheduler latency degradation until reaching ˙̇CPU = 3.5:1 (not visible
in the graph). During the experiments, this threshold was unnoticeable from the VM’s perspectives.

When it comes to memory, page faults evolve differently in an oversubscribed scenario. VMs RSS
was periodically reduced, based on their usage profiling. Retrieved pages were not allocated to specific
workloads, allowing any other VM process to use them, or allowing the probe to increase the amount
of unused resources. As previously, I considered light and heavy memory workloads in Figure 4.8.
Starting from ˙̇RAM = 1:1 (according to Microsoft Azure distribution), I incremented the heavy
workload with 2 VMs of 16 GB every two virtual days, which simulated aperiodic memory-intensive
activities consuming all their allocated memory. Moreover, no ballooning was enabled, leading to a
never-decreasing linear behavior in RSS. The lighter workload used an Azure-like VM distribution
that did not overload CPU resources and ballooning was enabled. Major page faults are retrieved from
all active VMs using their PIDs file systems. The sum of major page faults of all VMs is reported
for different oversubscription ratios. For the heavy workload, this ratio could not be increased more
than ˙̇RAM = 1.6:1, due to an Out Of Memory (OOM) situation. On average, less than one major
page fault occurs during the aggregation window (5 s) in an under-loaded situation. This average
increases slightly in an overloaded PM, as outliers increase by an order of magnitude, with some
reaching thousands of major page faults. Since there was no significant resource overload signal
on the last oversubscription ratio, the extreme values must be considered when studying memory
oversubscription. ˙̇RAM = 1.4:1 was the last healthy memory oversubscription ratio for the heavy
workload, while the most representative workload was able to reach a ratio of ˙̇RAM = 2.4:1.

The performance feedback at the scale of a PM can be integrated by the cluster when the
oversubscription ratio is periodically incremented. For example, the IAAS infrastructure can decide

4.3 Validation 59

1.0 1.2 1.4 1.6
Oversubscription ratio

10−1

100

101

102

103

M
aj

or
 p

ag
e

fa
ul

ts

Low memory workload

1.0 1.2 1.4 1.6
Oversubscription ratio

M
aj

or
 p

ag
e

fa
ul

ts

Heavy memory workload

Fig. 4.8 Memory performance comparison for 2 workloads (log-scale Y axis, lower is better)

to balance performances across PM and, therefore, uses this feedback to prioritize the increase of
oversubscription ratios for PM that are the least impacted by performance variations. Alternatively,
when combined with application-level performance metrics, the performance feedback can also be
used to tune Service-Level Objective (SLO) to make sure that SLA are not violated by the increase of
oversubscription ratios.

4.3 Validation

I evaluated the greedy oversubscription strategy implemented by SCROOGEVM with other dynamic
oversubscription estimation mechanisms.

The first method called doa, implements the Dynamic Oversubscription ratio Adjustment (DOA)
mechanism described in [102]. DOA increases available resources by a fixed ratio of 5% of PM
configuration until a 95% max resource usage is reached. Once this threshold is reached, the available
resources are reduced to 50% of the PM configuration. The second method nsigma refers to N-SIGMA,
configured with N = 5 as recommended in [17]. The third method is Borg-default alike (borg), which
mimics a static oversubscription mechanism where deployed VMs are estimated to leave 10% of
their resources unused. This percentage, corresponding to a 1.1:1 oversubscription, is based on the
empirical study from [17]. The fourth method, RC-like (rclike), calculates the used resources by
summing up the percentiles of hosted VMs. Specifically, the 99th percentile is employed based on the
analysis presented in [17].

Given that the aforementioned oversubscription strategies primarily focus on the CPU resource,
I conduct a comparative evaluation of SCROOGEVM against these strategies by considering CPU
traces derived from different IAAS workload traces.

60 Computing oversubscription ratios under stability consideration

0 5 10 15 20 25 30
Iteration

0

500

1000

1500

2000

M
isp

re
di

ct
io

n
cu

m
ul

at
ed

 (c
or

es
)

strategy
borg
doa
scroogevm
nsigma
rclike

Fig. 4.9 Cumulated mispredictions (cores) under decreasing CPU workload (lower is better)

Table 4.4 Comparison of oversubscription strategies (decreasing CPU)

Strategy mispredictions violations reductions
borg 6.8 0.0 0.2
doa 18.4 4.1 0.0
nsigma 5.0 0.0 0.3
rclike 5.0 0.1 0.2
scroogevm 4.2 0.0 0.3

For any given CPU usage trace, strategies are compared based on their predictions. At the end of
each iteration, the discrepancy (denoted as δ) between the predicted resource usage at the beginning
of the iteration and the actual usage observed during the period is computed. A positive δ reflects a
conservative approach lowering the available resources. I label such a situation as a misprediction
and I aim at minimizing mispredictions to improve the accuracy of the strategy. On the other hand, a
negative δ reflects the overestimation of available resources, thus imposing performance penalties on
the hosted VMs. This situation is referred to as a violation. In addition to the two prediction accuracy
metrics, I also consider a third metric that focuses on the evolution of predictions. Specifically, I focus
on the "reductions" in resources estimated as free over time. The objective is to keep these reductions
to a minimum to ensure stability when deploying new VMs.

Figure 4.9 depicts the performances of each strategy on an IAAS workload reflecting a decreasing
trend in the number of allocated resources (by reducing the number of provisioned VMs). The
accumulated misprediction is used to emphasize underused CPU resources (expressed as cores) over
a specific duration. Although oversubscription strategies may exhibit similar estimations at a specific
iteration, the cumulative impact of even small variations can have significant consequences over time.
Unsurprisingly, borg static oversubscription of 1.1 is one of the most pessimistic mechanisms. On

4.3 Validation 61

0 5 10 15 20 25 30
Iteration

0

1000

2000

3000

4000

5000

6000

M
isp

re
di

ct
io

n
cu

m
ul

at
ed

 (c
or

es
)

strategy
borg
doa
scroogevm
nsigma
rclike

Fig. 4.10 Cumulated mispredictions (cores) under increasing CPU workload (lower is better)

Table 4.5 Comparison of oversubscription strategies (increasing CPU)

Strategy mispredictions violations reductions
borg 15.7 0.0 0.0
doa 23.2 22.4 0.3
nsigma 5.7 0.0 0.2
rclike 13.3 0.0 0.0
scroogevm 3.7 0.0 0.2

the other hand, nsigma and rclike methods demonstrate similar predictions. It is noteworthy that the
SCROOGEVM approach consistently exhibits the lowest misprediction.

Table 4.4 reports on the detailed cumulated metrics for each strategy. Mispredictions, violations,
and reductions are expressed as ratios of PM configuration (cf. Table 4.3).

The high violation rate of DOA results from the heuristics that increase available resources as long
as the usage threshold is not met. Resulting numbers are therefore unrealistic if the scheduler did not
fully allocate the resources previously seen as available, which is highly dependent on VM arrival rate.
Therefore, the resources seen as available may be underestimated, leading to high violations. It can be
observed that SCROOGEVM achieves the lowest misprediction ratio without any violations, while also
maintaining similar reduction phases compared to the other strategies. The oversubscription ratios
calculated from the SCROOGEVM approach result in a misprediction gain of 0.8 compared to the
nsigma strategy. This translates to a gain of 204 cores, concerning the PM settings, while maintaining
realistic ratio values.

The behavior of oversubscription mechanisms can vary when applied to an IAAS workload that
exhibits an increasing trend. This is primarily due to the lack of historical data available for newly
deployed VMs. Consequently, strategies based on VM metrics tend to be more conservative, as

62 Computing oversubscription ratios under stability consideration

evidenced by borg and rclike in Figure 4.10. In contrast, strategies based on PM metrics—nsigma and
scroogevm—demonstrate lower mispredictions.

Under an increasing trend, the performance of different strategies is compared in Table 4.5. The
presence of long-running VMs contributes to higher oversubscription ratios. This is primarily due to
the asymmetry between the calculation of used resources and available resources. Used resources are
typically estimated from actual usage, while available resources are proposed based on the requested
amount (e.g., at a 1:1 ratio) for newly provisioned resources. Consequently, the higher number of
long-running deployed resources leads to increased oversubscription ratios because their impact is
relatively lower compared to non-deployed resources. When comparing the mispredictions ratios,
results highlight the effectiveness of the SCROOGEVM approach, which achieves a gain of 512 cores
(twice the PM settings) compared to the nsigma strategy, without any violations.

Overall, one can observe that the solution implemented by SCROOGEVM outperforms the
state-of-the-art of oversubscription strategies by delivering a greedy mechanism that accurately
estimates the amount of available CPU resources that can be recycled and further provisioned, by
a Cloud infrastructure. By leveraging quiescent state detection, SCROOGEVM only increases PM
oversubscription ratio when available resources are expected to not be required in the future for its set
of VMs.

I believe that the long-term gains can be significant. When considering N-SIGMA as the baseline
maximizing the number of allocated VMs and minimizing the number of unused cores, one can
observe that SCROOGEVM succeeds in deploying an average of 3 additional VMs per server, and
in reducing the number of unused cores by 16%. Under favorable conditions (increasing trend),
SCROOGEVM even improves the state-of-the-art by up to 7 additional VMs per server, with a
reduction of 35% of unused cores, without SLA violation. In contrast to N-Sigma, the overhead
primarily arises from the LSTM model training, taking approximately 1 second on a server without a
discrete GPU unit. This level of overhead suggests practical viability for production contexts.

4.4 Conclusion

In this contribution, I propose a novel approach, named SCROOGEVM,2 to implement a greedy
resource oversubscription strategy at the scale of individual PMs. Instead of configuring static and
cluster-wide parameters, I propose to dynamically estimate the optimal oversubscription ratio per PM,
while maintaining performance goals. The degree of optimism in the oversubscription computation is
adjusted per PM, instead of defining it globally as seen in other dynamic approaches.

This method, decoupled from the resource optimization of a given IAAS platform, allows
SCROOGEVM to be generic and deployed with most Cloud schedulers operating an IAAS. I evalu-
ated SCROOGEVM with an IAAS workload from Microsoft Azure and reported on potential gains
exceeding state-of-the-art strategies.

2https://github.com/jacquetpi/scroogevm

https://github.com/jacquetpi/scroogevm

4.4 Conclusion 63

While this work aimed to enhance the computation of current oversubscription ratios, it does not
fundamentally challenge the current oversubscription paradigm, wherein a server is associated with a
single ratio. Exploring the adaptation of VM hosting to better align with an oversubscribed context
holds promise for improving resource packing efficiency. In the subsequent chapters of this thesis, we
delve into the exploration of multi-oversubscribed PMs, based on either vCPUs or VM offerings.

Chapter 5

Introducing per-vCPU oversubscription

Abstract: In this contribution, I first evaluate the degree of parallelism in the workloads of OVH-
cloud’s client VMs by monitoring their per-vCPU usage. After identifying that vCPUs are not equally
utilized, I propose a new oversubscription paradigm where some vCPUs offered to VMs are more
powerful than others based on their underlying applied oversubscription ratio. The prototype, en-
titled SweetSpotVM, demonstrates that this paradigm can mitigate the performance degradation of
oversubscription.

Addressing the challenge of underutilized resources in Cloud DCs remains a significant con-
cern [138, 139, 29], aiming to reduce both costs and ecological footprints of these virtual platforms.
The consolidation of workloads onto a smaller set of PMs improves efficiency, considering the non-
linear relationship between PM power consumption and workload [138, 140]. This consolidation also
contributes to erasing the manufacturing footprint due to unnecessary components.

Various strategies are currently employed to increase resource utilization, ranging from aggressive
harvesting mechanisms [81, 15] to more passive approaches based on sharing [141]. Oversubscription
is frequently implemented by Cloud providers. However, the universal adoption of oversubscription
is not privileged, as many Cloud clients prioritize the performance and reliability of their allocated
resources.

Within virtualization and Cloud computing, workers play a pivotal role in managing virtual
resources, including vCPUs exposed to VMs and containers. These resources are scheduled on
the underlying infrastructure in a manner that accommodates the inherent heterogeneity of hosting
PMs. Consequently, VMs are designed to interact with resources that appear to be uniform, with
all the intricacies of hardware heterogeneity handled and managed by the host machine. In the
context of oversubscription, this uniformity implies that a VM is either entirely oversubscribed or not
oversubscribed at all. This dichotomous choice often leads to unused resources, as oversubscription is
typically applied only to low-pricing-tier VMs.

5.1 Motivation 65

Paradoxically, beyond the VM scope, heterogeneity in resources has become the de facto industry
standard. Performance heterogeneity within processor cores is now commonplace in contemporary
computer systems. SMT, initially introduced in 1995 [69], has gained extensive adoption within x86
architectures, introducing performance variability among CPU cores, based on concurrent thread
utilization. Furthermore, architectural designs incorporating CPU cores with distinct frequency
ranges have become increasingly prevalent. This trend is exemplified by the big.LITTLE architecture
developed by ARM and, more recently, by Intel’s 12th generation processors, which integrate a
combination of Performance and Energy cores to achieve diverse performance objectives.

Consequently, processes are commonly scheduled in conjunction with manufacturer-specific
drivers to facilitate the allocation of time slices based on variations in hardware performance. There-
fore, I propose exposing vCPUs with various performance levels to VMs.

This contribution introduces per-vCPU performance variations using a novel oversubscription
paradigm. Instead of managing oversubscription at the granularity of a VM, I demonstrate that the
vCPUs of a VM can be oversubscribed individually to different levels, enabling a more flexible
management of resources at large. This innovative approach provides the capability to offer a share of
resource guarantees to a VM—i.e., oversubscribing to a 1:1 ratio—while concurrently sharing other
resources (oversubscribing to an n:1 ratio with n > 1) across various oversubscription levels.

In the remainder of this contribution, I first motivate the need for an oversubscription paradigm
closer to the actual usage (cf. Section 5.1) based on an empirical analysis of OVHcloud production
environment, one of the largest European Cloud operators [123]. We, then, detail how oversubscription
can be implemented at the vCPU granularity (cf. Section 5.2). The prototype is evaluated in Section 5.3
using realistic IAAS workloads and reports on its ability to selectively guarantee computing resources.
Finally, I conclude this work in Section 5.4.

5.1 Motivation

In this section, I motivate the need for another oversubscription paradigm that better fits to individual
vCPU usage.

5.1.1 Not all vCPUS are equally used

The Cloud is characterized by its heterogeneous workload, covering VMs hosting storage-oriented
services, batch processes, or interactive applications. IAAS customers have the flexibility to configure
the level of computing power, typically indicated by several vCPUs to provision, based on their
workload type and anticipated demand (e.g., peak requests per second on a website).

Cloud providers commonly analyze the utilization of initial resource allocations through VM CPU
usage, a metric often included in the Cloud datasets shared with the research community [14, 27, 28].
However, global VM usage does not allow for the differentiation of various workload situations. For
instance, a VM configured with 4 vCPUs and utilizing 25% of its CPU time may concentrate its

66 Introducing per-vCPU oversubscription

VM(1) - 19%

VM(2) - 43%

VM(4) - 27%

VM(8) - 5%

VM(16) - 3%
VM(32) - 1%
VM(56) - 2%

CPU(1) - 4%

CPU(2) - 20%

CPU(4) - 24%

CPU(8) - 9%

CPU(16) - 11%

CPU(32) - 7%

CPU(56) - 25%

V
M

 s
iz

e
d
is

tr
ib

u
ti
o
n

C
PU

 d
is

tr
ib

u
ti
o
n

Physical machines

Fig. 5.1 Mapping the distributions of VM sizes to the physical CPUs provisioned by the OVHcloud
infrastructure

workload on a unique vCPU in a CPU-intensive single-threaded context, or evenly distribute it across
all vCPUs in a fully multi-threaded workload.

To the best of our knowledge, the individual usage of VM vCPUs has not been previously
studied. We, therefore, conducted such an analysis using exploitation traces from a production-scale
IAAS environment operated by OVHcloud, a major Cloud provider. This analysis results from the
monitoring of an OPENSTACK computing platform over a 1-week window, where the CPU time
for each vCPU associated with each VM was recorded at 5-minute intervals. I consider a premium
offering that delivers dedicated resources—i.e., no oversubscription is implemented (1:1)—thereby
precluding the examination of contention situations.

Figure 5.1 first reports on the distribution of provisioned VM configurations on the left-hand side.
The right-hand side of the Sankey diagram highlights how these VM configurations map to the CPU
that is effectively provisioned by the PMs upon deployment. While the smallest VM configurations
seem to be prevalent in IAAS platforms (62 % of the VM configurations include at most 2 vCPUs),
as previously acknowledged by [14], the share of provisioned CPU highlights that the largest VM
configurations are the ones that consume most of the computing resources exposed by the PMs, with
76 % of the CPUs being provisioned by VMs requesting at least 4 vCPUs.

Beyond this first observation, I further dive into the effective usage of individual vCPUs by the
different VM configurations. To do so, I derive a utilization metric, and I order the vCPUs from the
most utilized (designated as vCPU0) to the least utilized (designated as vCPU(n−1), where n is the
VM size). It is essential to note that during the 5-minute aggregation period, the guest scheduler
of each VM has the freedom to relocate processes from one vCPU to another. This allocation may
be based, for instance, on the CFS queue calibration mechanism [142]. The substantial differences
observed in vCPU time after a 5-minute interval underscore the significance of these variations,

5.1 Motivation 67

0

20

40

60

80

100

VM
 sh

ar
e

threshold = 1% | size = 1vCPU threshold = 1% | size = 2vCPU threshold = 1% | size = 4vCPU threshold = 1% | size = 8vCPU threshold = 1% | size = 16vCPU

0

20

40

60

80

100

VM
 sh

ar
e

threshold = 10% | size = 1vCPU threshold = 10% | size = 2vCPU threshold = 10% | size = 4vCPU threshold = 10% | size = 8vCPU threshold = 10% | size = 16vCPU

0 25 50 75 100
active period

0

20

40

60

80

100

VM
 sh

ar
e

threshold = 30% | size = 1vCPU

0 25 50 75 100
active period

threshold = 30% | size = 2vCPU

0 25 50 75 100
active period

threshold = 30% | size = 4vCPU

0 25 50 75 100
active period

threshold = 30% | size = 8vCPU

0 25 50 75 100
active period

A

B

threshold = 30% | size = 16vCPU

vCPU0
vCPU1
vCPU2
vCPU3
vCPU4
vCPU5
vCPU6
vCPU7
vCPU8
vCPU9
vCPU10
vCPU11
vCPU12
vCPU13
vCPU14
vCPU15

Fig. 5.2 CDF of individual vCPU utilization ratios of various VMs profiles hosted by OVHcloud

indicating that the workload could not be uniformly distributed across all VM resources during this
time frame.

However, optimal performances on a given platform are typically obtained for a CPU charge
below 100% due, among others, to SMT and cache contention. To account for it, a vCPU is labeled as
active even if it does not consume 100% of the associated window CPU time. To perform a sensibility
analysis of this threshold, I examined 3 values to label a vCPU as active: 1%, 10%, and 30%.

The results are plotted as CDFs in Figure 5.2. For each graph, the Y-axis represents the share
of VMs, while the X-axis denotes the proportion of time during which the vCPU can be deemed
active, based on the considered threshold (indicated in the caption). For instance, when focusing on
the last CDF (lower right) for VMs with 16 vCPUs and an activity threshold of 30%, the comparison
is as follows: for 80% of the VMs (Y-axis), vCPU0 (indicated by the red line) is considered as active
100% of the time (X-axis) with the intersection at point A. In contrast, the least used vCPU, namely
vCPU15, is considered as active less than 50% of the time (intersection at point B).

I first observe that the vCPU0 line can be distinguished in most of the graphs, having an activity
threshold higher than 1%, indicating that during a significant proportion of the time, the workload is
mono-threaded. This highlights that not all the IAAS workloads are multi-threaded, and not every
multi-threaded workload leverages all the vCPUs provisioned by a VM.

68 Introducing per-vCPU oversubscription

Then, one can observe that larger VMs tend to exhibit a non-uniform usage of their vCPUs.
Except for vCPU0, 2 vCPUs with close indices (such as vCPU1 and vCPU2) typically report a low
usage shift. As this shift is cumulative, it becomes all the more pronounced between the least used
and the most used vCPUs, especially in larger VM sizes.

Single-core VMs tend to be less used, indicating that they may be preferred by clients for non-
CPU-oriented workloads. However, less-used cores in larger VMs are close to the usage observed
in single-core VMs. The count of unused resources is amplified in the case of bigger VMs as they
individually have more cores matching this low-usage pattern. This leads us to conclude that the
larger the VM, the more resources are wasted by the Cloud infrastructure.

I can, therefore, conclude that i) the largest VMs are provisioning most of the computing resources,
and ii) these provisioned resources fail to be fairly consumed, hence leading to wasted resources.

While one could expect the Cloud customers to size their VM appropriately, many reasons can
explain the provisioning of large VMs with a non-uniform resource usage pattern, among which the
lack of predictability of resource usage or the over-provisioning of resources to address potential
usage peaks. Cloud providers, therefore, have to cope with this issue and find an alternative to reduce
the non-negligible wastes of computing resources imposed by the number of provisioned vCPU that
are not effectively used.

In the following sections, SWEETSPOTVM introduces the principle of vertical oversubscription
as a solution to mitigate performance requirements and resource utilization, aiming to reconcile both
dimensions.

5.1.2 Introducing vertical oversubscription

The oversubscription of Cloud resources remains a non-trivial exercise as a compromise has to be
made between leveraging under-utilized capacity and performance, by avoiding SLA violations. This
is challenging as the specific Cloud context implies hosting heterogeneous types of workloads, with
almost no direct information on individual workloads, given that Cloud providers are operating VMs
as black boxes.

Each PM of a given Cloud context is singular. Tuning an oversubscription ratio at the cluster level
(e.g., the factor applied to all the PMs), while trying to avoid SLA violations in edge situations, leads
to configure pessimistic ratios, hence missing resource optimization opportunities.

The mapping of the virtual resources of a VM to the physical resources of a PM can be imple-
mented in different ways. Specifically, the oversubscription scope plays a critical role when accounting
for exceptional situations—i.e., those likely to provoke SLA violations. Transitioning from a cluster
scope to a server scope, which involves defining a ratio of exposed virtual resources per server, enables
the consideration of both hardware heterogeneity [107] and workload heterogeneity [14, 17]. I believe
that this shift in scope has the potential to further yield more optimistic ratios. In particular, to better
reflect individual usages, the oversubscription computation scope needs to be extended beyond the
per-server limit. In opposition to the current oversubscription paradigm, which treats all resources

5.2 Implementation details 69

Vertical oversubscription
1:1 3:1

VM 1

VM 2

VM 3

VM 4

Horizontal oversubscription

1:1

3:1

VM 1

vCPU0 vCPU1

VM 2

vCPU0 vCPU1

VM 3

vCPU0 vCPU1

VM 4

vCPU0 vCPU1

vCPU0 vCPU1

vCPU0 vCPU1

vCPU0 vCPU1

vCPU0 vCPU1

Fig. 5.3 Transitioning from horizontal CPU oversubscription to vertical oversubscription as imple-
mented by SWEETSPOTVM

equally in a horizontal manner, as depicted in Figure 5.3, I advocate for an orthogonal approach,
hence qualified as vertical oversubscription. In this paradigm, the consumers of the PM resources are
considered to be the vCPUs, in contrast to the VMs, thereby lowering the scope granularity.

In a similar way to hardware architectures with cores operating at different maximum clock
frequencies (e.g., big.LITTLE processor architectures), this leverages oversubscription ratios to
introduce different levels of performance within a VM. The vertical oversubscription paradigm allows,
for example, a Cloud provider to guarantee performances on a restricted set of cores (associated with
low or even no oversubscription), while also mutualizing resources on others (associated with higher
oversubscription ratios).

5.2 Implementation details

Conventional horizontal oversubscription paradigm exhibits resource allocation at a host-based
granularity, wherein the pool of resources associated with a particular PM is uniformly distributed
among all vCPUs relying on the Linux scheduler for sharing time slices.

In contrast, the vertical oversubscription paradigm assumes a non-uniform distribution of physical
resources among provisioned vCPUs. Specifically, some premium vCPUs may be allocated to
dedicated physical resources, while others may be subject to oversubscription. In this section, I
explore the coexistence of various oversubscription ratios on a single PM.

5.2.1 Local scheduler

A Cloud scheduling architecture can be summarized as two main software components [143, 57].
The first one is a global scheduler, also known as the control plane, which handles incoming

VM deployment requests and selects the most suitable PM for deployment. It typically achieves this
by communicating with an agent located on each PM, referred to as the local scheduler, to gather
information about the PMs’s current state.

70 Introducing per-vCPU oversubscription

Once a PM is selected as the target, the VM deployment request is forwarded to the local scheduler.
The local scheduler generally assumes responsibility for provisioning tasks, such as creating a disk
image, invoking the hypervisor to initiate the VM, and, in some cases, determining how resources are
allocated among the VMs, possibly utilizing features like cgroups for resource management.

In SWEETSPOTVM, the capabilities of the local scheduler are expanded to include the manage-
ment of multiple oversubscription ratios. The PM resources are logically separated through distinct
pools of vCPUs. Each pool is associated with a given oversubscription ratio and its size can be
adjusted dynamically, depending on hosted VMs.

A pool comprising n cores can support a maximum of n vCPUs in the absence of oversubscrip-
tion. At a 2:1 oversubscription ratio, 2n vCPUs can be accommodated, and this applies to any
oversubscription ratio. The logical segregation mechanism is further discussed in Section 5.2.2.

The local scheduler interfaces with the hypervisor using the libvirt library and has been tested
with QEMU/KVM as the hypervisor of choice due to its support for dynamic CPU pinning changes.

5.2.2 Segregate physical cores

The non-uniform distribution of resources between vCPUs necessitates the utilization of distinct
resource pools, each characterized by a specific oversubscription ratio. This allocation is achieved by
implementing a shared CPU affinity policy, wherein vCPUs are affixed to a common set of cores on
the PM.

I identified and addressed two main challenges. Firstly, the performance and isolation of PM
core selection is intricately linked with the PM topology, as established in existing literature [69].
However, the applicability of proposed heuristics across diverse architectures is imperative, given the
heterogeneous configurations prevalent in Cloud data centers [107] Secondly, the size of the vCPU
pools needs to be dynamically adjusted to cope with unforeseen IAAS workloads (covering VMs of
various sizes).

Generic core selection

Contemporary PMs exhibit intricate processor topologies, potentially featuring heterogeneous distri-
bution of cache levels or multiple sockets, making the segregation process not trivial.

The process of selecting an appropriate core for a given task usually relies on both the Linux
scheduler and manufacturers’ drivers responsible for managing features, such as C-States and P-States.
For example, manufacturers’ drivers can impact the scheduling by loading a specific core to harness
Turbo-boost capabilities or distributing a workload to optimize cache resource utilization. These
decisions are contingent upon the hardware configuration and the chosen scaling governor.

Directly pinning processes to specific cores would circumvent the involvement of these com-
ponents, posing a significant threat to the universality of this strategy. In practical implementation,
instead of selecting individual cores, I opt for the selection of a range of cores, even in the case of
premium vCPUs.

5.2 Implementation details 71

The selection of cores is undertaken to closely align with the characteristics of the processor
topology, hence leveraging the optimizations of manufacturer driver capabilities. When expanding
a pool of physical resources to accommodate a newly provisioned vCPU, the selection of cores is
predicated by a distance metric.

The computation of the distance between two cores depends on their degree of shared cache,
where cores with a lower level of shared cache, such as in a SMT topology, are deemed closer than
cores with no shared cache. Note that configurations where the last level of cache is not universally
shared are common, such as in multi-socket architectures or with AMD EPYC processors.

Algorithm 3 Distance (∆) computation between 2 cores

Require: core0, core1
Ensure: ∆

1: ∆←0
2: for <cachelevels> do
3: if LEVEL(core0) == LEVEL(core1) then
4: return ∆

5: end if
6: ∆← ∆+10
7: end for
8: return ∆+NUMA-DISTANCE(core0,core1)

To account for it, I introduce a core distance metric extending the NUMA distance [144]. This
extended metric incorporates an assessment of the shared cache levels to provide a more complete
evaluation of core proximity. Linux system exposes for each core and cache level an ID to identify the
cache zone. I retrieve this data and compute distances between each core, as described in Algorithm 3.
While the incremental value is arbitrary, I chose it to be in the same order of magnitude as the current
NUMA distance notion.

The selection of a core closer to the existing pool ensures that the newly added physical resources
share cache levels, resembling the characteristics associated with a socket of the same architecture but
with a reduced core count. Consequently, in an SMT topology, cores within the same physical unit
are assigned to a common pool.

From a process scheduling perspective, Linux engages sibling cores only when all physical
cores are in use, to mitigate performance degradation. In comparison to a scenario where each
non-oversubscribed vCPU is assigned to a single personal physical core, I rather considered them
as a group and pin them to a range of physical CPUs. If the number of vCPUs matches the number
of physical CPUs associated, the non-oversubscribed status is sustained, and the approach lets the
CFS scheduler manage the distribution of work. This approach maintains the drivers and scheduler
behavior, thereby averting performance deterioration due to SMT (as vCPUs do not consistently
exceed 50%) while judiciously employing it during peak demands.

72 Introducing per-vCPU oversubscription

Pool resizing

A VM with n vCPUs may have a maximum of n different oversubscription levels (one for each vCPU).
The allocation of a VM to each pool of resources is, therefore, dependent on its size. Some VM
may have a vCPU allocated to a given pool while others do not or, some VM may have more vCPUs
associated with a given pool than others.

The dynamic nature of VMs encourages a dynamic pool size. Rather than defining the size of each
pool statically, the allocation is changed upon each deployment. This flexibility accommodates the
uncertainty associated with the number of VM creation requests, enabling this system to efficiently
allocate resources in response to varying workloads.

A VM deployment is implemented as the assignment of its vCPUs to the associated vCPU pools.
If a pool is not sufficient to provision a new vCPU, this pool can automatically grow by selecting
the closest unallocated core from its current configuration. In practice, this implies changing the
pinning of VMs having at least one vCPU in the considered pool to accommodate the new range.
While frequent changes in core pinning can potentially introduce performance overhead due to
increased context switches, it is important to note that, in our specific context, such changes are
infrequent occurrences. They only occur when a VM is being deployed or decommissioned. These
VM deployment and decommissioning events do not happen at a high frequency within the time scale
of CPU operations.

If a pool size extension fails due to a lack of available resources, the VM deployment is rejected
by the local scheduler. Furthermore, VM departures from the system do change the allocation to
accommodate future deployments.

5.2.3 Pool heterogeneity requirements

In a n:1 oversubscription scenario, a Cloud provider guarantees that no more than n vCPUs can
contend for a single physical core. However, oversubscription relies on workload heterogeneity and
the assumption that unused resources by some VMs can be utilized by others.

Consequently, a VM should not be oversubscribed with itself, as this misleads the guest into
expecting a certain level of CPU availability that is impossible to receive in practice. The introduction
of oversubscription with 2 VMs can also pose a significant risk of performance degradation. This
risk diminishes when more VMs are being provisioned, as the probability of all VMs simultaneously
reaching their peak usage diminishes.

In a horizontal setting, while each PM may have an oversubscription objective, its resources
are only effectively oversubscribed when the number of virtual resources provisioned exceeds its
configuration. This guarantees a certain heterogeneity in the workload. In the vertical context,
oversubscription may occur earlier, as I limit the resources available for use by vCPUs. For example,
a subset of physical resources may be oversubscribed before all cores are allocated.

To mitigate the risks of contention associated with oversubscribed contexts, I increase workload
heterogeneity when possible. In practice, it is possible to allocate different oversubscription levels of

5.3 Empirical evaluation 73

VMs to the same set of resources provided that they adhere to the conditions imposed by the lowest
oversubscription level within the VM set. In simpler terms, a vCPU with a 2:1 oversubscription level
may coexist with a vCPU having a 3:1 oversubscription level, but only if the set of physical resources
still complies with the 2:1 ratio (as the "no more than 2 vCPUs per physical core" condition satisfies
the "no more than 3 vCPUs per physical core" condition).

While this approach increases the allocated resources, as the 3:1 overcommitted vCPU is "up-
graded", it may be strategically employed to enhance workload heterogeneity temporarily, if there are
some unallocated resources to leverage. Alternatively, remediation mechanisms, like those involving
cgroups are feasible, but they may be considered at odds with the oversubscription principle, which
aims to distribute the pool of resources equally among all consumers.

Hence, my strategy relies on the pooling of oversubscribed vCPUs when feasible, effectively
leveraging all resources that remain unallocated by the current hosted VMs. Upon deployments, I
also prevent VMs from being oversubscribed against themselves by verifying that the pool size is
greater than the requested virtual resources.

5.2.4 Oversubscription templates

In a vertical oversubscription scenario, the vCPUs of a given VM may be oversubscribed to different
ratios. This is achieved using what I term an oversubscription template.

A template is a configuration specifying an oversubscription ratio for each vCPU index (or range
of vCPUs). While any vCPU can be oversubscribed to any positive amount, I believe that using
progressive oversubscription ratios is a good practice. The VM should be aware of the performance
of its cores to leverage the most of the approach. A general rule stating "the lower the vCPU index is,
the better the performance" emphasizes that.

Oversubscription templates are configurable and may be changed by Cloud providers to match
the specificities of their workloads.

5.3 Empirical evaluation

In this section, I discuss how the vertical oversubscription paradigm was evaluated.

5.3.1 On core priority

While a VM workload may not use more than the equivalent of one core at a given time, its workload
may be spread through all its vCPUs due to the CFS behavior. However, in a vertically oversubscribed
scenario, the performance obtained by a VM is improved if its workloads foster its least-oversubscribed
cores.

This can be done in different manners, such as pinning inside the VM the workload of interest.
More generic approaches imply the development of a specific Linux scheduler and/or a driver.

74 Introducing per-vCPU oversubscription

Baseline
1:1 average oversubscription ratio

100

101

95
th

 re
sp

on
se

 ti
m

e
(m

s)

Vertical Horizontal
2:1 average oversubscription ratio

100

101

Vertical Horizontal
3:1 average oversubscription ratio

100

101

Vertical Horizontal
4:1 average oversubscription ratio

100

101

102

Fig. 5.4 DEATHSTARBENCH social network response time on different oversubscription scenarios

For the evaluation, I used a third approach based on a root daemon running on each VM. The
daemon, composed of around 150 Python lines of code, computes the CPU usage each 200 ms.
The minimal number of cores required to run this load is deducted and applied by deactivating
unnecessary VM cores. Deactivation is executed in decreasing core index order, deactivating the
farthest index cores as they are the least powerful ones in the template. This consolidation strategy
aims to concentrate the workload on the most powerful cores, with vCPU0 exhibiting the highest
performance. If more than 80% of the activated cores are used, a new one is permitted, allowing it to
handle an increasing intensity in the workload.

This approach implies a certain latency before activating all cores, however, I found it to be
acceptable for the size of VMs considered. Activating all cores in a VM composed of 8 vCPUs is
performed in a maximum of 7×0.2 = 1.4 seconds (assuming I start in the worst case from having
only vCPU0 activated).

5.3.2 On workload generation

The proposed solution was tested on a physical platform to assess VM performances.
The input is generated from customer traces, encompassing actions, such as VM creation, VM

usage, and VM deletion. This compilation of customer activities is collectively referred to as the
"workload".

Ensuring the inclusion of realistic workloads was paramount in our context, given that oversub-
scription relies on a heterogeneous usage of resources by customers. To achieve this, CLOUDFACTORY

(Chapter 3) was used for the workload generation. The workload was composed of an increasing
number of VMs, each having 8 vCPU, overall matching the CPU usage observed in the Azure
context [14].

The considered VMs hosted two distinct types of applications. Firstly, there was a micro-services
architecture, known as Social Network, derived from the DEATHSTARBENCH [41]. The response
times of these micro-services were continuously monitored and utilized as a proxy for the individual
performance of the respective VMs. While being dynamic through time, the applied input ranged

5.3 Empirical evaluation 75

between 10 to 1,000 requests per second. Secondly, the StressNG load test was applied to a second
set of VMs. This load test facilitated the precise load on CPU resources for each VM, contributing
to an overall realistic context on the given host. The load of each VM was also dynamic and could
change between 0% and 100% of resources used every 90 seconds.

5.3.3 Experimental IaaS platform

I used the PM described in Table 5.1 as a worker node. Of the 256 cores, 20 were kept for the
monitoring and components parts, leading to 232 usable cores. Memory was not a limiting factor in
all the experiments reported afterward.

Table 5.1 Hardware settings of the IAAS worker node

Processor AMD EPYC 7662 64-cores ×2
Total threads 2×64 cores×2 hyperthreads = 256
Memory 1 TB
OS Linux Redhat 8.6
Hypervisor QEMU & KVM 7.1

5.3.4 Experimental results

I applied the same workload in different contexts. Initially, as a baseline, I executed the workload
without considering oversubscription, thereby limiting the virtual resources to the amount proposed
by the platform. This configuration is used to set the ground truth as being the optimal performance
that can be obtained from the experimental testbed.

The evaluation and comparison of the considered oversubscription techniques was conducted
in both horizontal (single ratio) and vertical (multiple ratios) approaches. Specifically, I measured
performances under platforms with average oversubscription ratios of 2:1, 3:1, and 4:1. In the
horizontal approach, the targeted ratio was uniformly applied to all the provisioned vCPUs. In the
vertical approach, the oversubscription template was chosen to have, on average, the same ratio as
the one targeted by the horizontal configuration. For example, with a 3.0 oversubscription ratio,
1 vCPU was dedicated for each VM (referred to as vCPU0), one was oversubscribed to a 1.5:1
ratio (vCPU1), and all others were oversubscribed to a 6:1 ratio (vCPUn, for n within 2 to 7).
For a workload composed of VMs with 8 vCPUs, this led to an average oversubscription ratio of
r = vCPU

CPU = 8
(1/1)+(1/1.5)+(6/6) = 3.0.

Other templates used by SWEETSPOTVM are described in Table 5.2. While these choices are
arbitrary and can be customized by the Cloud provider, I selected templates that dedicate part of the
resources—i.e., no oversubscription on vCPU0—while oversubscribing others more aggressively to
match the ratio. This type of template allows us to illustrate the heterogeneous usage being made of
vCPUs.

76 Introducing per-vCPU oversubscription

Table 5.2 Oversubscription templates considered in the experiments

Oversubscription vCPU0 vCPU1 vCPU2–7
target ratio ratio ratio
2:1 1:1 1.5:1 2.6:1
3:1 1:1 1.5:1 6.0:1
4:1 1:1 1.5:1 16.0:1

The performance of each context, evaluated through the 95th response time of each exposed
service, is visualized in Figure 5.4. Unsurprisingly, the baseline without any oversubscription exposes
a good response time, as no vCPU is competing for resources nor SMT is required (as the overall
CPU usage remains below 50%).

Under a 2:1 oversubscription template, where the number of hosted VMs is doubled, both vertical
and horizontal approaches perform similarly. There is no significant performance degradation (please
note the logarithmic scale) with the traditional (horizontal) approach, indicating that pinning vCPUs
differently does not notably improve performance.

Under a 3:1 oversubscription template, host resources are still not fully utilized. However,
performance decreases significantly with the traditional approach, while the vertical oversubscription
template keeps maintaining VM performances closer to their optimal values, succeeding in hosting
more VMs—i.e., 3× more than the baseline.

The performance gain is even more significant with the 4:1 oversubscription template. In this
situation, the horizontal approach leads to an overloaded CPU, and fewer time slices being attributed
to each vCPU (note that the Y-axis scale had to be adjusted accordingly). Using a vertical approach,
the contention is limited to only a subset of the vCPUs of the VM, and the vCPU0 keeps exhibiting
good performances, compared to the horizontal oversubscription. This demonstrates that vertical
oversubscription can be adopted to mitigate the effects of an overloaded situation.

As such, oversubscription can be used to introduce different levels of performance on different
cores. When VMs use their most powerful cores (the less shared ones) in priority, performances can
be close to the optimal.

The VM count is emphasized in Figure 5.5. The vertical strategy does host the same number of
vCPUs and, therefore, the same number of VMs. When the average oversubscription achieved is not
an integer, small differences may appear, which may be mitigated by changing the oversubscription
templates. In this example, the average oversubscription was slightly above the 2:1 target (leading to
one additional deployment), while being slightly below the 4:1 target (leading to 3 fewer deployments).
Notably, one should note that the quantity of memory (VRAM)—and its potential oversubscription—
is not affected, compared to a horizontal oversubscription mechanism, as the number of VMs hosted
is similar for the same targeted oversubscription ratio. The performance degradation is expressed
here in the form of the multiple of the 95th response time of the baseline. In the 2:1 oversubscription
scenario, the degradation is reduced by 10% (from 1.8 times the baseline to 1.6), by half in the 3:1
oversubscription scenario (from 2.9 times the baseline to 1.3), and by a factor of 50 in the 4:1 situation

5.3 Empirical evaluation 77

40 60 80 100 120
Number of VMs hosted (higher is better)

100

101

102

Re
sp

on
se

 ti
m

e
de

gr
ad

at
io

n
(lo

we
r i

s b
et

te
r)

label
baseline
targeted 2:1
targeted 3:1
targeted 4:1

strategy
baseline
horizontal
vertical

Fig. 5.5 Performance degradation in response time of the social network app of DEATHSTARBENCH

(as multiple of the baseline, lower is better)

(from 107 times the baseline to 2.1 times). While variability may be observed due to other resources
(such as the network), the performance degradation is mitigated by SWEETSPOTVM compared to
state-of-the-art strategies enforcing horizontal oversubscription.

By dedicating CPUs to the VMs and oversubscribing others more aggressively, the scheduler
succeeds in preserving performances by considering the heterogeneous usage made by VMs of their
vCPUs. Specifically, with the last oversubscription ratio having no contention, r = 3.0, the approach
closely aligns with the performance of the non-oversubscribed scenario while allowing the deployment
of 3× more VMs in that case.

The allocation size of the different oversubscription levels targeting an average oversubscription of
2:1 is depicted in Figure 5.6. The premium subset, dedicated to all vCPU0, provisions 59 physical cores
under the considered workload. Its usage remains low compared to its allocation size, avoiding any
concurrency issues (at most 40 cores, 68% of the provisioned resources). The second subset, dedicated
to vCPU1, reports on the same number of vCPUs attributed. However, as vCPU0 concentrates most
of the workload, the vCPU1 subset exhibits a lower core usage, with only 31 physical cores being
effectively used (21% less than the 40 cores). The last subset has a much larger number of hosted
vCPUs, as each VM allocates 6 vCPUs to this oversubscription ratio. Its 136 attributed cores were
used, with a peak of up to 51% of the provisioned resources.

The performance obtained from the VM perspective depends on the contention observed in the
pool of host resources considered. In this example, while the 2:1 is the most oversubscribed one, no
contention is observed (as the size of the allocation is far greater than its usage), leading to good
performance even on the least powerful VM vCPUs.

78 Introducing per-vCPU oversubscription

time
0

20

40

60

80

100

120

140

co
re

s

Oversubscription
1:1
1.5:1
2.6:1
type
allocation
usage

Fig. 5.6 Evolution of resources allocation and usage per oversubscription level for a SWEETSPOTVM
template targeting 2:1

5.3.5 On the provisioning of small VMs

This contribution focused on the use case of relatively large VMs, due to both their proportion in the
count of provisioned vCPUs and their tendencies to have non-uniform usage patterns between their
individual vCPUs, as exemplified in Section 5.1. Nonetheless, nothing prevents SWEETSPOTVM
from hosting smaller VM configurations in conjunction with larger VMs as used to be the case in
production-scale IAAS platforms. In particular, SWEETSPOTVM can accommodate smaller VMs by
allocating their VMs to non-oversubscribed pools, hence preserving their quality of service, based on
the observations drawn from Figure 5.2.

5.4 Conclusion

In conclusion, this contribution has introduced SWEETSPOTVM, a novel oversubscription paradigm
that addresses per-vCPU performance variations, departing from the conventional approach of over-
subscribing resources at the VM granularity. By demonstrating the feasibility of individually oversub-
scribing vCPU to different extents, I have introduced a more flexible resource management strategy
for IAAS platforms supporting the Cloud industry. In particular, this innovative approach allows Cloud
providers to propose resource guarantees to a VM on a 1:1 ratio, while concurrently reallocating other
resources across potentially multiple oversubscription levels (n:1 ratio with n > 1).

This contribution is implemented as a functional software prototype, leveraging cache level
distance between cores to efficiently segregate multiple oversubscription levels. The evaluation
demonstrates that the performances achieved by a non-oversubscribed environment can be replicated in
an oversubscribed context, allowing Cloud providers to consider the generalization of oversubscription

5.4 Conclusion 79

and therefore, drastically reducing the number of servers required to host their customer services and
the associated workloads.

Different perspectives can be identified for this work, notably on the applied oversubscription
templates. While these templates are defined statically in this contribution, I believe that they could
also benefit from more dynamic tuning approaches, including techniques where the targeted template
configuration is driven by performance objectives rather than a fixed ratio.

Furthermore, this contribution does not consider the existence of distinct premium tiers, as all
VMs adhere to the same oversubscription template. In practice, certain VMs require all their resources
to be guaranteed. Exploring the complementarity, in terms of hosting needs, between oversubscribed
and non-oversubscribed VMs is addressed in the next chapter.

Software artefacts

For the sake of the reproducibility of the empirical results I shared in this contribution, the software
prototype is made publicly available.1 In particular, I documented an offline mode to reproduce
reported experiments. Furthermore, the daemon used in the experiments to prioritize the cores with
lower indexes inside the VMs is also available.2

1https://github.com/jacquetpi/sweetspotvm
2https://github.com/jacquetpi/cpu-staker/

https://github.com/jacquetpi/sweetspotvm
https://github.com/jacquetpi/cpu-staker/

Chapter 6

Balancing complementary oversubscription levels

Abstract: In this contribution, I address the problem of scattered resources. After identifying that
different oversubscription ratios may primarily fill different kinds of resources in their distinct clusters,
I propose to colocate VMs of different ratios. I facilitate the integration into existing Cloud schedulers
by exposing virtual clusters to the control plane and by enhancing their PM score-based selection
mechanisms with a new metric. This introduced cluster architecture, referred to as SlackVM, reduced
the number of servers by up to 9.6% compared to current packing strategies.

Over the past decade, there have been notable improvements in the power efficiency of DCs.
However, following the Jevons paradox [145], the increasing demand for data processing and storage
has risen at an even greater rate, resulting in a continued upward trajectory in power consumption [11].

As some DCs are close to their maximum efficiency in terms of PUE [12], research has been
shifting from infrastructure-level optimizations to software-level optimizations. A key area of concern
for Cloud providers remains the low resource usage per PM [138, 139, 29]. In particular, consolidating
VM workloads onto fewer PMs can significantly reduce the carbon footprint of DCs, lower their
power consumption, and decrease their operational costs.

While improving resource usage is an active topic in the system community, the latest proposals
only rely on the introduction of new kinds of workloads to "fill the gaps" of resources left by VMs,
instead of reducing the existing cluster size, which may be associated to a rebound effect. As such,
unallocated PM resources may be leveraged by spot VM [75–77], while resources unused by tenants
may be used by harvest VM [146]. Disaggregated VMs were also recently proposed to leverage
resource fragmentation [83, 68]. While these proposals improve the resource usage of a server,
they also share the particularity to be only suitable for a given type of workload [147], as they lack
guarantees on availability or performance. This contribution does not aim to "fill the gaps" with
alternative workloads. Instead, it advocates for a method to prevent the occurrence of gaps in the first
instance.

6.1 Cloud resource balance 81

I consider this objective more convenient for a Cloud provider, as it maintains the use of long-
living generic VMs instead of introducing highly specific ones. In other words, I aim to enhance
PM packing with a focus on long-term services rather than small, ephemeral tasks (e.g., FaaS
Computing [148]). It avoids reliance on a complex equilibrium notion between infrastructure gaps
and client demands [149]. Furthermore, this approach effectively reduces the IAAS PM cluster size,
contributing to an improvement in the carbon footprint of ICT, which is known to grow at a fast
rate [11].

Oversubscription is commonly adopted to increase resource usage. This contribution demonstrates
that oversubscription can also be harnessed to reduce unallocated resources, further contributing to
the efficiency of DC operations.

Although Cloud providers are used to managing VMs oversubscribed at different levels, these
are currently hosted by distinct clusters, with each PM adhering to at most a single oversubscription
ratio. Since CPU and memory oversubscription levels do not occur in the same order of magnitude, I
demonstrate that different oversubscription levels may saturate different types of physical resources.
By combining different oversubscription levels, I, therefore, illustrate the potential to leverage their
complementary nature, thereby reducing the number of PMs required to handle an IAAS workload.

This contribution, named SLACKVM, comprises a local agent, demonstrating how resources
can be segregated among distinct groups of VMs, and a novel metric to improve Cloud score-based
schedulers with complementary packing considerations. I assess this approach on both a physical
platform and a simulator, evaluating performance and noticing significant gains at scale. Specifically,
the results demonstrate that, by appropriately combining oversubscription levels, Cloud providers can
save up to 9.6% in terms of the number of required PMs, which is a noticeable gain at the scale of a
Cloud provider.

In the remainder of this contribution, I explain why oversubscription co-hosting is important
(Section 6.1), present an overview of SLACKVM architecture (Section 6.2), before diving into its
design (Section 6.3 & Section 6.4). I evaluate this approach (Section 6.5) before concluding this
work (Section 6.6).

6.1 Cloud resource balance

In this section, I discuss how oversubscription levels impact the packing of underlying PMs. I start by
describing the VM resources allocation (Section 6.1.1) and then, I compare it to PM configurations to
identify bottlenecks (Section 6.1.2).

6.1.1 Cloud allocations

VM configurations commonly adhere to the convention of proposing power-of-2 values. Among the
prevalent CPU configurations for VMs are those with 1 vCPU, 2 vCPUs, and 4 vCPUs [18]. While
hypervisor constraints do not inherently preclude the proposition of intermediate sizes, this practice is

82 Balancing complementary oversubscription levels

commonly adopted to facilitate VM packing [150]. Essentially, when focusing solely on the CPU
dimension, this approach facilitates the efficient packing of PM, enabling the use of strategies, such as
First-Fit scheduling.

In practice, achieving perfect allocation on a PM—i.e., having all its resources utilized to 100%—
is unlikely. VMs allocation hosted on a given PM is often either CPU-bound, resulting in underutilized
memory, or memory-bound, leading to underutilized CPU [151, 152]. Other types of resources, such
as networks, are less likely to limit deployments [153] and are not considered in this paper.

To further dive into this issue, I analyzed the VM size distribution reported in [18] to compute the
average VM size for both Azure and OVHcloud infrastructures (cf. Table 6.1). This first illustrates
that allocations can significantly differ between Cloud providers.

Table 6.1 Average vCPU & vRAM requests per VM (vCPU & vRAM)

Dataset vCPU vRAM
Microsoft Azure 2.25 vCPUs per VM 4.8 GB per VM
OVHcloud 3.24 vCPUs per VM 10.05 GB per VM

However, in an oversubscribed environment, resource allocation may deviate from the deployment
request. It is now interesting to identify which server resource is depleted first under different
oversubscription policies. To achieve this, I can compare the Memory per Core (M/C) ratio of hosted
VMs to the PM configurations [154]. When these ratios do not align, one resource will typically be
exhausted before the other, resulting in stranded resources. I begin by reporting on the M/C ratio of
allocated resources.

Without oversubscription (1:1), I directly compute the M/C ratio from Table 6.1, by dividing the
average VM memory quantity by the average VM CPU request as, in this context, only one vCPU is
proposed per physical core.

The 2:1 oversubscription level refers to the allocation of 2 vCPUs per CPU core. This allocation
scheme reduces physical CPUs being allocated while maintaining a similar amount of DRAM.
Consequently, the M/C ratio is increased.

Table 6.2 reports on the M/C ratio per Cloud provider, across three different levels of CPU
oversubscription.

Table 6.2 M/C ratio of oversubscribed VMs (in provisioned GB/core)

Oversubscription levels 1:1 2:1 3:1
Microsoft Azure 2.1 3.0 4.5
OVHcloud 3.1 3.9 5.8

For oversubscribed environments, computations were conducted under two hypotheses. First, the
catalog size was assumed to be more limited. For example, OVHcloud does not offer oversubscribed
VMs with a capacity exceeding 8 GB. In my estimations of the M/C ratio for oversubscribed VMs,
the average vCPU and vRAM deployments sizes were re-computed from the VM size distributions

6.1 Cloud resource balance 83

where VMs having more than 8 GB were excluded. While this approximation may not be perfectly
accurate, I contend that it is sufficient for identifying overarching trends.

Second, memory was not oversubscribed. In practice, some providers may opt to oversubscribe
DRAM to a limited extent compared to what can be achieved with CPU oversubscription [155, 103],
resulting in similar variations in the M/C ratio.1.

6.1.2 Cloud resources collapse differently

While IAAS workload M/C ratio may evolve [154], each server of the cluster reports on a fixed M/C
ratio obtained from its hardware configuration. For example, a PM with 64 cores and 256 GB of RAM
will expose a static M/C ratio of 4 GB per core. I refer to this hardware ratio as its target ratio, since
aligning hosted VMs allocation to this ratio would lead to an optimal allocation of hardware resources.

Identifying the limiting factor Comparing both VMs and PMs ratios, therefore, serves as a method
to identify Cloud bottlenecks. When the M/C ratio of hosted VMs is higher than the PM, a host will
face memory limitations, resulting in wasted CPU capacity. Conversely, if the M/C ratio of VMs is
lower than the PM, a host will primarily saturate its CPU resources, leading to underutilized memory
capacity.

With PMs operating at an M/C ratio of 2 GB per core, all the workloads outlined in Table 6.2
experience memory saturation, as the minimal VMs ratio is higher (2.1 GB on Azure 1:1 level).

Nonetheless, I contend that a 4 GB per core ratio is a more accurate representation of the PMs
provisioned by Cloud providers. In this scenario, typical bounds for the Azure dataset are estimated
as follows:

• 1:1 is highly CPU-bounded (2.1 < 4),

• 2:1 is CPU-bounded (3.0 < 4),

• 3:1 is slightly memory-bounded (4.5 > 4).

However, in the context of OVHcloud, which typically involves larger deployments, biases are
different:

• 1:1 is slightly CPU-bounded (3.1 < 4),

• 2:1 is balanced (3.9≈ 4),

• 3:1 is highly memory-bounded (5.8 > 4).
1For instance, OPENSTACK’s default oversubscription ratios are 16:1 for CPU and 1.5:1 for DRAM [101]

84 Balancing complementary oversubscription levels

Resolving the limiting factor In this context, improving VM packing can be achieved in different
manners.

Only proposing VMs respecting a given M/C ratio cannot be optimal, as customers may prefer
CPU- or memory-intensive workloads based on their requirements.

Determining the optimal oversubscription level to tune the hosted M/C ratio can be an objective,
but it is worth noting that estimating this optimal level may also be unrealistic. This is because
non-oversubscribed VMs continue to be offered by Cloud providers, as a significant share of their
customers favor performance over resource efficiency in their Cloud deployments.

Another objective to consider is the adjustment of hardware configurations to closely match
the workload ratio demands. However, achieving such an alignment is also unrealistic, due to the
associated costs for Cloud providers. In practice, Cloud providers typically employ heterogeneous
hardware, occasionally prioritizing the extension of a PM lifespan rather than consistently refreshing
all the configurations at a fixed pace.

Therefore, this contribution is focused on fine-tuning the hosted VMs M/C ratio, by co-locating
multiple oversubscription levels, to approximate the PM’s specific resource ratio. It leverages the
synergy between workloads that exhibit diverse resource requirements, such as the combination
of a CPU-bound workload, which is typically encountered in a low oversubscribed environment,
with a memory-bound workload, commonly observed in highly oversubscribed environments. By
packing VMs from multiple oversubscription levels, it becomes possible to effectively "avoid the
gaps"—hence maximizing the utilization of PMs while reducing the number of PM required to host a
given workload.

6.2 SLACKVM overview

A Cloud scheduler architecture consists of two key components [143, 57]. The first one is a global
scheduler, hosted by the Cloud control plane, which handles incoming VM deployment requests
and selects the most suitable PM for deployment (cf. Figure 6.1). It typically achieves this by
communicating with an agent located on each worker node—the PM—referred to as the local
scheduler, to gather information about the PMs’s current state.

Once a PM is selected as the target, the VM deployment request is forwarded to the local scheduler.
The local scheduler generally assumes responsibility for tasks, such as creating a disk image, invoking
the hypervisor to initiate the VM, and, in some cases, determining how resources are allocated among
the VMs, possibly utilizing features like cgroups for resource management.

I propose to extend the capabilities of state-of-the-art Cloud schedulers by enhancing their local
scheduler functionality to manage different oversubscription levels. Under SLACKVM architecture,
the local scheduler segregates a PM’s resources into vNodes, where each vNode represents a group of
exclusive physical resources. As depicted in Figure 6.1, each oversubscription level on a single PM
utilizes a separate vNode. The collection of vNodes referring to the same oversubscription level is
referred to as a vCluster.

6.3 Local scheduler 85

Global scheduler

vNode A

vNode B

vNode C

Local scheduler

https://docs.google.com/drawings/d/1QLC7qYwYOBSijkDuY

HeX35z8h-28ht4MZWM924GV_yk/edit?usp=sharing

vNode D

vNode E

vNode F

vCluster (1:1)

vCluster (3:1)

vCluster (2:1)

Local scheduler

worker node Nworker node 1

control plane

…

VM workloads

vm

vm

vm

vm

vm vm

vm
vm vm

vm

Fig. 6.1 Overview of SLACKVM components

In this context, a VM is deployed on a vNode rather than an entire PM. This vNode represents a
smaller share of a PM’s resources. Interestingly, in SLACKVM, the size of a vNode is dynamically
adjusted upon a VM deployment, depending on the resource request and its oversubscription level. I
delve into how the local scheduler manages vNodes in Section 6.3.

The selection of the most appropriate vNode inside a vCluster is performed by the global scheduler,
which may leverage this context to improve PM packing. I explore the adaptation of Cloud scheduling
for vClusters in Section 6.4.

6.3 Local scheduler

A traditional local scheduler is tasked with overseeing the management of an individual PM within
the system. Its responsibilities encompass responding to requests from the global scheduler regarding
the PM state, which includes resource utilization, the number of hosted VMs, and other relevant
parameters. Additionally, the local scheduler is responsible for coordinating the deployment and
removal of VMs on the PM by translating these actions into hypervisor-related operations. Finally, it
plays a critical role during VMs lifetime by determining how resources are shared.

In contrast to other implementations, the local scheduler employs a resource partitioning approach,
where resources are segregated into distinct resource partitions referred to as vNode. Each vNode
can host a set of VMs at a given oversubscription level. Consequently, in this context, hosting a VM
within a vNode entails allocating and pinning it to the resources managed by that vNode.

Determining the optimal distribution of vNodes, along with their respective sizes can pose a
complex challenge, as the variability in VM offerings over time and across different Cloud providers

86 Balancing complementary oversubscription levels

can be substantial. Instead of computing a static distribution, I prefer to harness the dynamic
capabilities inherent to the vNodes. The size of a specific vNode is dynamically adjusted, based on
the arrival and departure of hosted VMs.

Deploying a VM on a vNode is achieved by adjusting the vNode’s size allocation to meet the
new requirements. This involves first selecting the appropriate cores to add to the existing resource
collection (as discussed in Section 6.3.1), before extending the pinning of all hosted VMs in that
vNode to the new range. Conversely, when a VM departs, it may free up resources from the existing
allocation.

I also discuss requirements in workload variability in Section 6.3.2

6.3.1 Topology-driven resizing of vNodes

Modern PM processor topologies can be intricate. Cores within a processor may lack common cache
levels with other cores due to segmented last-level cache (as observed in EPYC architectures) or the
presence of multiple sockets on the PM. SLACKVM aims to allocate vNodes to achieve a configuration
that resembles a CPU model with fewer cores. This is done both to improve isolation and to leverage
existing Linux OS scheduling mechanisms effectively.

Favoring resource isolation

Since each vNode is associated with a distinct oversubscription level, they must be isolated. At the
CPU level, this is achieved by avoiding the sharing of low-cache levels between vNodes.

Ideally, I allocate each vNode to a separate physical socket, as this provides the best isolation on
the same PM [156]. However, when the number of vNodes exceeds the number of sockets, or when
the size of a vNode exceeds a single socket, multiple vNodes must be hosted on the same socket. In
such cases, I carefully examine the cache level being shared between cores. In a setting with n cache
levels, I first attempt to guarantee isolation between cores at the nth level. If not feasible, I proceed to
the (n−1)th level and so on until reaching n = 1.

Leveraging Linux scheduler

Scheduling of processes to physical cores relies on CFS, the Linux scheduler. This task is intricate
and benefits from ongoing development by the Linux community and processor vendors through
dedicated drivers. Although SLACKVM restricts the usage of some processes to a limited range of
cores, it does not go beyond this constraint. I only consider resources through collections of physical
cores. The responsibility of selecting the most suitable core from the specified vNode is kept by the
standard Linux scheduler, hence benefiting from state-of-the-art scheduling optimizations.

Cores that belong to the same vNode have typically a low level of cache in common, which mirrors
a traditional CPU topology. Therefore, if the PM implements an asymmetric load mechanism, such as
Intel Turbo Boost Max Technology (ITMT), specifically designed to handle this type of topology, it
will interact in synergy with the core pinning strategy.

6.3 Local scheduler 87

Exposing a virtual topology

To accommodate various CPU topologies, I leverage the core distance metric introduced in Chapter 5
(Algorithm 3). This metric considers the shared cache levels between two cores to provide a
more complete evaluation of core proximity compared to the traditional NUMA distance NUMA
distance [144].

When extending a vNode, I choose additional cores that are closest in terms of cache level to the
current allocation of the vNode, enabling a gradual integration of sibling cores. Conversely, when
creating a vNode, initial cores are selected from the farthest ones compared to existing vNodes.

The computed distance between cores is what allows the local scheduler to be generic when
pinning cores on physical machines. While frequent changes in the pinning strategy may lead to
decreased performance due to more context switches, it is important to note that these changes occur
only in this context when a VM is being deployed or destroyed. Such events do not happen at a
significant frequency in the realm of CPU operations.

6.3.2 Leveraging workloads diversity in vNodes

In a conventional cluster, a PM only becomes oversubscribed when the quantity of allocated virtual
resources exceeds the PM’s configuration. This occurs independently of the oversubscription level,
which serves as an upper limit that may not always be reached. Given that this approach introduces
diversity among VMs, leading to variations in CPU utilization before they directly compete for time
slices, it becomes essential to provide mitigation strategies when oversubscribing a smaller set of
VMs within a vNode. In this context, two remediation strategies can be identified.

Critical-size strategy

The principle behind oversubscription relies on the assumption that resources unused by some VMs
can be utilized by others. Consequently, a VM should not be oversubscribed with itself, as this
mislead the guest into expecting a certain level of CPU availability that is impossible to receive
in practice. The introduction of oversubscription with 2 VMs can also pose a significant risk of
performance degradation. This risk diminishes as more VMs are deployed—as the probability of all
VMs simultaneously reaching their peak usage diminishes, thus establishing a theoretical minimal
deployment size threshold. A critical size may, therefore, be defined. In practice, a worker node starts
being oversubscribed when the sum of its allocation exceeds its configuration. I argue that usage
heterogeneity comes from VM usage and, therefore, should be taken into account using a VM count
instead of a sum of allocation while defining the critical size.

Oversubscribed vNodes may adopt a strategy of waiting until they have reached a critical size
before initiating any reduction in physical resources relative to virtual ones. This approach provides a
robust guarantee of heterogeneity for each vNode. While this approach may seem intuitive, it has a
significant side effect that can counteract the gains achieved in a baseline oversubscription scenario.

88 Balancing complementary oversubscription levels

Since there is a critical size requirement for each oversubscription level (i.e., per vNode), it can
result in an unrealistic number of VMs to host to satisfy the conditions of all oversubscription levels.
This becomes especially challenging for PM with 32 cores or less, even with optimistic critical VM
numbers defined (e.g., less than 5 VMs).

In practice, reaching this condition is difficult and, paradoxically, this strategy can increase the
overall number of PMs required to host the VM workload, as oversubscription may not be applied in
most vNodes.

In the rest of this contribution, this strategy was dismissed in favor of a second one, which
capitalizes on pooling capabilities among vNodes based on their physical proximity.

Best-effort strategy

In a n:1 oversubscription scenario, a Cloud provider guarantees that no more than n vCPUs can
contend for a single physical core. Given that the CFS mechanism equitably shares CPU time slices
among processes, a straightforward approach is to allocate only VMs with the same premium level
policy to the same set of resources.

However, it is possible to allocate different oversubscription levels of VMs to the same set
of resources—i.e., vNode—provided that they adhere to the conditions imposed by the lowest
oversubscription level within the VM set. In simpler terms, a VM with a 2:1 oversubscription level
may coexist with VM belonging to a 3:1 oversubscription level, if and only if the set of physical
resources still complies with the 2:1 ratio (as the "no more than 2 vCPUs per physical core" condition
satisfies the "no more than 3 vCPUs per physical core" condition).

While this approach increases the allocated resources, as the 3:1 overcommitted VM is "upgraded",
it may be strategically employed to enhance workload heterogeneity, temporarily. Alternatively,
remediation mechanisms, like those involving cgroups are feasible, but they may be considered at
odds with the oversubscription principle, which aims to distribute the pool of resources equally among
all consumers.

Hence, the best-effort strategy relies on the pooling of oversubscribed vNodes when feasible,
effectively leveraging all resources that remain unallocated by the non-oversubscribed vNode on the
same PM to enhance workload heterogeneity. While the best-effort approach does not provide the same
level of guarantees as the critical-size approach, I assert that I still adhere to the n:1 oversubscription
condition and prevent VMs from being oversubscribed with themselves. Oversubscribed VMs are
typically chosen by customers when performance is not their primary concern, and thus, I believe that
this represents a reasonable compromise that balances resource efficiency and fairness in allocation.

6.4 Global scheduler incentive

Instead of proposing a new IAAS scheduler, I focus in this section on how packing can be improved by
extending current scheduler mechanisms. The PM selection process is contingent upon the predefined

6.4 Global scheduler incentive 89

objectives set forth by Cloud providers. Objectives are treated by control planes using a scoring
system to pick the most appropriate PM for a given VM deployment [58, 157]. I introduce a new
metric in existing scoring mechanisms to enhance VMs’ complementarity. This new metric leverages
the unique context, where a PM can be oversubscribed simultaneously to multiple levels, to improve
server packing.

A vCluster is an abstraction of a set of vNodes of a given oversubscription objective. It behaves
similarly to a traditional cluster of PMs: receiving a VM deployment request, interrogating its pool
of candidate hosts, and selecting the most appropriate one. The difference comes from the dynamic
capabilities of its hosts—i.e., the vNodes. I deploy VMs on vNodes while trying to maintain the M/C
ratio of the set of hosted VMs close to the M/C ratio of the hosting server.

Algorithm 4 Progress towards target ratio computation
Require: con f igPM, allocPM, vm
Ensure: progress

1: targetRatio← CONFIGPM(mem)
CONFIGPM(cpu)

2: if allocPM(cpu)> 0 then
3: currentRatio← ALLOCPM(mem)

ALLOCPM(cpu)

4: nextRatio← ALLOCPM(mem)+VM(mem)
ALLOCPM(cpu)+VM(cpu)

5: else
6: currentRatio← targetRatio
7: nextRatio← VM(mem)

VM(cpu)
8: end if
9: current∆← |currentRatio− targetRatio|

10: next∆← |nextRatio− targetRatio|
11: progress← current∆−next∆
12: if progress < 0 then
13: f actor← 1+ ALLOCPM(cpu)

CONFIGPM(cpu)
14: progress← progress× f actor
15: end if
16: return progress

A PM has an inherent constant M/C ratio due to its configuration, but the M/C ratio associated
with its workload is subject to dynamic variations. From an intuitive standpoint, when allocated VMs
emphasize CPU allocation compared to their PM configuration, it becomes desirable to prioritize
memory-intensive deployments on that PM. This approach aims at preventing resource saturation
before fully allocating all the available dimensions. The methodology is rooted in this consideration.

Algorithm 4 is, therefore, designed to compute a progress indicator aimed at assessing whether
a PM would move closer to its target M/C ratio if a candidate VM were to be deployed on it. To
achieve this, the algorithm first calculates the target ratio, based on the PM configuration (line 1) and,
then, compares it with two distinct workload ratios. The first one is derived from the PM current set
of VMs (line 3), while the second one considers the potential addition of the candidate VM (line 4).
Subsequently, both of these workload ratios are compared to the optimal resource ratio (lines 9–10).

90 Balancing complementary oversubscription levels

The algorithm, then, determines if the deployment of the new VM would bring the PM closer to its
target resource ratio or not (line 11).

In the subsequent selection process, the PM having the highest progress score in the cluster can
be prioritized. If a candidate deployment would shift the workload ratio away from the target ratio
resulting in a negative progress score, the PM under consideration is therefore typically not selected.
However, there are scenarios where the progress score may be negative for all PMs, such as when
dealing with a large, unbalanced VM deployment. In such cases, my preference is to deploy the
considered VM on a PM with a lighter workload, as this improves the chances of counterbalancing
the bias later on. This is why lines 12 to 15 factor in the negative score of the PM by considering its
current resource allocation.

A PM that does not host any VM is regarded as having an ideal ratio, as indicated in line 6 of the
algorithm. This implies a preference for consolidating existing hosting PMs before considering idle
ones for new deployments. The rationale behind this approach is that a PM with an ongoing workload
will typically exhibit an allocation ratio diverging from its target ratio, thereby making deployments
more appealing to it.

Allocations considered in this algorithm are based on PM resource usage. Oversubscribed vNodes
are considered through the PM allocation, and not, for example, the sum of exposed vCPUs. This
approach enables the algorithm to accommodate all possible oversubscription levels.

Furthermore, the algorithm computes the target ratio on an individual PM basis, thereby accom-
modating variations in hardware settings within a given cluster. This consideration allows for the
optimization of resource allocation tailored to the specific characteristics of each PM.

6.5 Empirical evaluation

The proposed solution was tested on both a physical platform, as detailed in Section 6.5.1, and a
simulator, as described in Section 6.5.2.

The input for both platforms is generated by customer traces, encompassing actions, such as VM
creation, VM usage, and VM deletion. This collection of client activities is collectively referred to
as the "workload". Ensuring the inclusion of realistic workloads was important in this context, as I
highlighted in Section 6.1, where the distribution of typical VM sizes from Cloud providers has a
noticeable impact on the M/C ratio.

For both of the platforms, I employed CLOUDFACTORY (Chapter 3 as the workload generator. I
extended the initial version of the generator to incorporate oversubscription considerations. These
modifications enabled this version of the generator to create VM oversubscribed across multiple
levels, with proportions specified during the generation process. The impact of the shares among
oversubscription levels is subsequently discussed in the evaluation.

6.5 Empirical evaluation 91

6.5.1 Evaluation in the wild

I now turn my attention to presenting an example of the operational behavior of the local scheduler
in the context of a physical platform. Prior research has extensively examined the performance
implications of pinned resources [156, 158, 159]. My focus is on comparing the performance of this
strategy with the baseline scenario, where a PM hosts VMs at a single oversubscription level without
pinning considerations. Additionally, I aim to evaluate the local scheduler ability to isolate VMs from
distinct vNodes.

Physical experimentation settings

In the experiments, I used the PM described in Table 6.3. The hardware settings of this worker include
256 threads and 1 TB of memory, resulting in an M/C ratio of 4 GB per thread.

Table 6.3 Hardware settings of the IAAS worker

Processor AMD EPYC 7662 64-cores ×2
Total threads 2×64 cores×2 hyperthreads = 256
Memory 1 TB
Memory per Core (M/C) 1,000/256 = 4
Operating System Linux Redhat 8.9
Virtualization Platform QEMU & KVM 7.1

I adopted the Azure VM size distribution as a reference and created a progressively escalating
workload until the PM capacity was reached. Regarding the workload of each VM, the CPU usage
patterns obtained from CLOUDFACTORY were translated into application loads. Among the VMs,
10% was set to idle, 60% underwent a CPU benchmark using stress-ng [160], and the remaining
VMs were composed of interactive applications. Specifically, I selected the social network application,
a micro-service architecture from the DEATHSTARBENCH [41], and continuously monitored their
response time under varying requests per second objectives generated with wrk2. These response
times served as a proxy of VMs performance.

I considered three distinct oversubscription levels: 1:1, 2:1, and 3:1. In the baseline scenario, the
three oversubscription levels are hosted separately. The PM can host 131 VMs without oversubscrip-
tion, 271 VMs at 2:1, or 356 VMs oversubscribed at 3:1.

Under the SLACKVM scenario, the three oversubscription levels are hosted concurrently, each
accounting for about one-third. Out of the total of 220 VMs, 70 were premium (1:1), 76 were 2:1, and
74 were 3:1. The social network applications were deployed on all 3 vNodes to assess performance
isolation.

Please note that both the number of oversubscription levels and the maximum level of 3:1 in both
scenarios were arbitrary choices used as a proof of concept, but their value can be adjusted according
to hardware configurations and workloads of Cloud providers. The local scheduler does not impose a
limit on the considered oversubscription levels and can host more vNodes with more oversubscribed

92 Balancing complementary oversubscription levels

1:1 2:1 3:1
Oversubscription ratio

100

101

90
th

 re
sp

on
se

 ti
m

e
(m

s)

Baseline
SlackVM

Fig. 6.2 Comparison of 90th percentile response times for the DEATHSTARBENCH Social network
app (log-scale Y axis)

VMs, especially for non-interactive workloads, like storage and batch processing. As such, it can
be configured by Cloud providers to align with their specific context. In these scenarios, the 3:1
oversubscription level was selected as it is the last whole level being suitable for interactive workloads
within the Azure CPU usage distribution (higher levels introduce a pronounced time slice contention).

The local scheduler is implemented in Python and interfaces with the hypervisor using the
libvirt library. It has been tested with QEMU/KVM as the hypervisor of choice due to its native
support for dynamic CPU pinning changes.

Performance results

Performances between SLACKVM and the dedicated clusters were compared through the 90th response
times that I measured during the empirical experiments. Observed median values are reported in
Table 6.4, while the performance distribution per oversubscription ratio can be visualized in Figure 6.2.

Table 6.4 Performance comparison by the median of the 90th response times measured

Oversubscription levels Baseline (ms) SLACKVM (ms)
1:1 1.16 1.27 (×1.09)
2:1 1.46 1.65 (×1.13)
3:1 3.47 7.67 (×2.21)

As expected, the response time depends on the applied oversubscription level. In the baseline
scenario, isolation between VMs with different oversubscription levels is achieved using different
PMs. However, I demonstrate with SLACKVM that performance can still be isolated within a single
PM. In my experiment, all three oversubscription levels were hosted concurrently on a single PM.

6.5 Empirical evaluation 93

51015202530

Unallocated CPU (%)

A [100, 0, 0]

B [75, 25, 0]

C [75, 0, 25]

D [50, 50, 0]

E [50, 25, 25]
F [50, 0, 50]
G [25, 75, 0]

H [25, 50, 25]

I [25, 25, 50]
J [25, 0, 75]

K [0, 100, 0]

L [0, 75, 25]
M [0, 50, 50]

N [0, 25, 75]

O [0, 0, 100]

0 5 10 15 20 25

Unallocated Memory (%)

[1 : 1%, 2 : 1%, 3 : 1%]

Baseline

SlackVM

Fig. 6.3 Comparison of unallocated resource ratios between dedicated clusters (baseline) and
SLACKVM when considering the OVHcloud setups

The core pinning mechanism based on cache-level distinction was efficient in maintaining distinct
levels of performance while keeping the performance overhead low on the most critical workloads
(the ones associated with low levels of oversubscription).

While thread oversubscription may decrease performance, as reported by [161], the vNodes
performance overhead is primarily due to the heterogeneity between cores. In a classic setting,
CPU scheduler mechanisms do not exploit SMT capabilities until cache-level groups are fully
loaded. However, in scenarios where the allocation of available cores is constrained, such as highly
oversubscribed environments, the operating system may trigger SMT capabilities "earlier", due to
limited workload spreading possibilities. Interestingly, this performance penalty remains limited in
non-oversubscribed environments.

On the one hand, one can observe that the heuristics used by SLACKVM affect the oversubscribed
VMs in priority, which are—by design—less prone to enforcing performance guarantees with strict
SLOs. On the other hand, the least oversubscribed VMs are preserved from performance degradation
(less than 10% for 90th percentile), hence maintaining their relevance as part of a premium offer.
Given these observations, it is now interesting to investigate the influence of the distribution of
oversubscription levels on the savings that can be achieved in terms of cluster size, which is a key
indicator for Cloud providers interested in optimizing their Return on Investment (RoI).

6.5.2 Evaluation at scale

Evaluating IAAS schedulers is known to be challenging, due to the lack of detailed information on
current solutions used in production [162]. Cloud schedulers compute a fitting score for suitable PMs

94 Balancing complementary oversubscription levels

based on hundreds of undisclosed rules [58, 14, 60, 59]. I choose to focus on improving packing
efficiency. I evaluate the newly introduced metric, which indicates progress toward the perfect M/C
ratio and its impact on reducing cluster size. First-fist scheduling serves as the baseline to evaluate it.
This scheduling strategy is commonly employed to assess packing efficiency [162, 163], as it fills
existing servers before considering new ones for deployments [55, 163]. In practice, Cloud providers
may guide workload packing by adjusting the weight of this metric in their scoring mechanism,
alongside their other criteria.

SPOTVMS, HARVESTVMS, and disaggregated VMs serve as complementary strategies when
focusing on DC usage metrics, by filling infrastructure gaps, but my evaluation objective is to assess
the capability to prevent these gaps from occurring initially.

Simulated experimentation settings

I also implemented SLACKVM in the CLOUDSIMPLUS simulator [31], which is a derivative of
CLOUDSIM [30]. Specifically, I created a particular worker type, utilizing the local scheduler
heuristics to accommodate VMs from various oversubscription levels. Additionally, I implemented a
global scheduler responsible for selecting the most suitable host based on the highest progress score,
therefore improving the M/C ratio.

Regarding the distribution of VM configurations, I adopted the provided specifications from
OVHcloud and Azure Cloud providers. As Cloud providers do not disclose the share of VMs
oversubscribed at each level, I conducted tests with different distributions.

The established protocol generated a workload involving a target of 500 VMs for each Cloud
provider, exploring various oversubscription level distributions. I simulated DC workloads over a
week, adhering to the arrival and departure rates of VMs. For each workload, a CLOUDSIMPLUS

simulation was initiated, starting from an empty cluster and progressively increasing until the minimal
number of PMs was determined. Each PM within the cluster offered 32 cores and 128 GB of memory,
resulting in an M/C ratio of 4 GB per core. To account for the typical largeness of Cloud workloads, I
express gains in percentage values, as the approach scales with the cluster size.

Results at scale

The gains can be quantified in two ways: in terms of stranded resources avoided and in terms of
avoided PMs (due to better packing).

On the reduction of stranded resources Figure 6.3 compares the share of unallocated resources
for various distributions of oversubscription levels. These distributions are ordered from the least
oversubscribed (distribution A, including only VMs without oversubscription—i.e., at 1:1) to the most
oversubscribed (distribution O, fully composed of VMs oversubscribed at 3:1). In low-oversubscribed
environments, characterized by a CPU bottleneck, one can assess that there is a high proportion
of unallocated memory. Nevertheless, as the ratio of oversubscribed resources increases in the

6.5 Empirical evaluation 95

distributions, a notable shift takes place, leading to an excess of unallocated CPU resources in the
most oversubscribed environments. This is attributed to memory bottlenecks.

Figure 6.3 highlights the resource allocation biases in the DC using the baseline First-Fit schedul-
ing. These biases are a combination of the individual limiting factors within each cluster, weighted
by their significance in the overall worker distribution. By adopting SLACKVM, the amount of
unallocated CPU and memory resources in the DC is reduced for a large majority of the explored
distributions. Thanks to the pooling principle of SLACKVM, significant gains are observed when
there is a substantial share of both CPU and memory unused in a given distribution. In the baseline
approach, these unused resource types are typically on distinct clusters, but when combined with
SLACKVM, they have the potential to facilitate additional deployments.

This simulation can also be used by Cloud providers to study the effects of the oversubscription
level parameters on the potential gains they can expect, depending on the characteristics of their IAAS
workloads.

Given the dependence on the sequence of arriving VMs, it is important to acknowledge that the
unallocated resource shares are not reduced to the theoretical minimum of 0%. The progress towards
a balanced M/C ratio aimed at enhancing PM packing (even in the context of heterogeneous hardware
configurations), but it does not guarantee that a PM allocates all of its resources (CPU and memory)
when deploying the last VM. Considering live migration to further balance the packing of the vNodes
is let as a future work.

On the reduction of the cluster size Beyond resource allocation, I also study the PM gains achieved
from the distributions involving the above 3 oversubscription levels, as depicted in Figure 6.4. The
x-axis represents the share of 1:1 VMs, the y-axis reflects the ratio of 2:1 VMs, while the ratio of
3:1 VMs results from the intersection of both axes (as the complementary value to reach 100%). In
each cell, the figure reports on the percentage of PM saved using SLACKVM. Reported savings are
contingent upon the interplay of resource limits at each oversubscription level within the infrastructure.

In scenarios where all oversubscription levels tend to saturate the same resource—i.e., CPU or
memory—the gains are generally modest. Considering an M/C ratio of 4, only the workload associated
with 3:1 VMs is memory-bound, while others are either CPU-bound or exhibit a balanced resource
utilization. Consequently, the gains remain limited in scenarios where no 3:1 VMs are deployed, as
observed in distributions A, B, D, G, and K in Figure 6.3, as well as in the values reported along the
diagonal in Figure 6.4.

However, gains may still be observable due to a "threshold effect", inherent in mechanisms similar
to First-Fit scheduling. A First-Fit scheduling strategy typically consolidates workloads on the first
i−1 PMs before considering deployment on PMi, resulting in lower utilization of PMi. In the case of
isolated clusters for each oversubscription level, this results in one additional PMi per cluster, which
is subsequently consolidated when considering the vClusters in SLACKVM. This consolidation leads
to a maximum gain of n−1 PMs, where n represents the number of oversubscription levels. This
type of gain is considered marginal, as it does not scale with the number of VMs under consideration.

96 Balancing complementary oversubscription levels

0% 25% 50% 75% 100%
1:1 VM proportion

0%
25

%
50

%
75

%
10

0%
2:

1
VM

 p
ro

po
rti

on

0.0 8.6 9.6 5.3 0.0

3.6 7.0 6.9 0.0

5.3 6.7 1.2

3.4 2.7

0.0

 100% 3:1 75% 3:1 50% 3:1 25% 3:1 0% 3:1

 75% 3:1 50% 3:1 25% 3:1 0% 3:1

 50% 3:1 25% 3:1 0% 3:1

 25% 3:1 0% 3:1

 0% 3:1

OVHcloud

0% 25% 50% 75% 100%
1:1 VM proportion

0%
25

%
50

%
75

%
10

0%
2:

1
VM

 p
ro

po
rti

on

0.0 7.3 3.8 3.0 0.0

8.8 6.5 3.6 1.5

8.6 4.4 1.7

5.6 2.1

0.0

 100% 3:1 75% 3:1 50% 3:1 25% 3:1 0% 3:1

 75% 3:1 50% 3:1 25% 3:1 0% 3:1

 50% 3:1 25% 3:1 0% 3:1

 25% 3:1 0% 3:1

 0% 3:1

Azure

0

2

4

6

8

W
or

ke
rs

 sa
ve

d
(%

)

Fig. 6.4 SLACKVM gains in terms of PM (%) for various oversubscription distributions (the 3:1 VM
distribution corresponds to the 100 complement of the other two distributions)

6.6 Conclusion 97

Nonetheless, when considering complementary oversubscription levels, the gains in terms of
PMs being used can become substantial. For instance, in distribution F, where 50% of VMs operate
without oversubscription—i.e., a 1:1 ratio—and the remaining 50% are oversubscribed at 3:1, there
is a potential reduction of 9.6% in the number of PMs required when employing the vClusters in
the context of OVHcloud distribution. In this specific scenario, dedicated clusters would require
the provisioning of 83 PMs (55 for the 1:1 cluster and 28 for the 3:1 cluster), whereas the approach
required only 75 PMs overall. This highlights the significant PM utilization optimization achieved by
SLACKVM through the use of the vClusters.

The observed gains are contingent on the distribution, as they can be perceived as the quantity
of resources that would have been unallocated on the critical path but are effectively collected by
SLACKVM. If a cluster has the equivalent of n unallocated CPU configuration and another cluster
has the equivalent of m unallocated memory configurations, the hypothetical pooling gain will be the
lesser of the two—i.e., the critical path is reduced to a minimum.

The OVHcloud environment achieves higher gains, primarily due to more balanced biases (com-
pared to the considered M/C ratio) between its oversubscription levels. However, Azure can also
realize significant gains (up to 8.8% of workers saved), especially in distributions with a limited
ratio of 1:1 VMs. The Azure 1:1 distribution is heavily biased towards CPU, which requires lim-
iting its usage on the distribution to attain the highest gains, as the Azure situation lacks a heavily
memory-biased oversubscription level to counterbalance it.

Although Cloud providers do not have full control over the share of customers selecting over-
subscribed or non-oversubscribed VM offers, they can still tune their appropriate oversubscription
levels, based on their catalog and workload profiles. This customization can minimize the unallocated
resources, allowing Cloud providers to derive maximum benefits from this approach.

The gains in terms of PM scheduling infrastructure, such as the elimination of the need for
multiple OPENSTACK instances (so-called control planes), are not explicitly reported in the analysis
but can be considered as an additional benefit of this approach.

Production-ready schedulers may therefore benefit from incorporating the M/C ratio progress
score in the context of multi-oversubscribed PMs, complementing it with their existing scheduling
rules. The exploration of potential compromises between these rules is left as a topic for future work.

6.6 Conclusion

In this contribution, I have demonstrated that different oversubscription levels can saturate different
physical resources. Building upon this insight, I explored the complementarity of oversubscription
levels. I introduced SLACKVM, an IAAS architecture that can orchestrate heterogeneous oversub-
scription levels on the same PM and, consequently, within the same cluster of PMs.

On the global scheduling front, SLACKVM takes advantage of the complementarity between
oversubscription levels by considering the individual hardware settings of each PM involved in
a cluster—using a Memory per Core (M/C) indicator. In terms of local scheduling, SLACKVM

98 Balancing complementary oversubscription levels

effectively segregates physical resources by carefully analyzing the PM’s hardware topology to isolate
performance implications.

Physical experiments have shown that SLACKVM can effectively preserve both the performance
of premium offers and isolation when compared to physical clusters. The simulations have further
illustrated the potential of SLACKVM at scale, with the ability to save up to 9.6% in terms of PM
hosts within the Cloud. While this reduction in the number of PMs has a positive impact on the energy
consumption and carbon footprint of the Cloud ecosystem, it also improves the return on hardware
investments of Cloud providers.

Software artefacts

The local and global schedulers implementations are publicly available.2 To encourage the reproduc-
tion of the results, the extended version of CLOUDSIMPLUS3 and CLOUDFACTORY4 are also publicly
available online. The latest repository contains instructions on how to re-generate simulations. An
offline mode is notably documented to reproduce reported experiments.

2https://github.com/jacquetpi/slackvm
3https://github.com/jacquetpi/cloudsimplus-slackvm
4https://github.com/jacquetpi/cloudfactory-slackvm

https://github.com/jacquetpi/slackvm
https://github.com/jacquetpi/cloudsimplus-slackvm
https://github.com/jacquetpi/cloudfactory-slackvm

Chapter 7

Conclusion

While Cloud Computing has made significant strides in improving energy efficiency within the ICT
sector, its potential remains constrained by the underutilization of provisioned servers. Considering
the environmental footprint of server manufacturing and the superior energy efficiency achieved at
higher usage levels, a crucial objective is to maximize the utilization of existing hardware before
investing in new infrastructure. In this context, oversubscription is a potential solution, recognizing
that not all clients require all their resources all the time. However, Cloud providers have been hesitant
to adopt oversubscription in production widely, preferring instead to utilize alternative workloads to
fill resource gaps. Through this thesis, I have demonstrated that oversubscription can indeed play
a complementary role. The potential gains are substantial, and exploring new methods of utilizing
oversubscription can lead to improvements in performance, server packing efficiency, and overall
resource utilization.

7.1 Contributions

In my contributions, oversubscription was proven to be an efficient way to counterbalance unused
resources. While its performance degradation can be mitigated by carefully studying the oversubscrip-
tion ratio (SCROOGEVM) or by adapting the paradigm (SWEETSPOTVM), we also discovered that
oversubscription is an effective method to reduce unallocated resources (SLACKVM). By combining
the gains from both unused and unallocated resources, the utilization of PMs can be significantly
increased, leading to more efficient overall resource usage.

7.1.1 Improving IaaS experiments using realistic users’ behavior

To facilitate the study of IAAS platforms, I developed a workload generator capable of producing
experiments that mirror typical client behaviors. As behaviors may vary between different Cloud
providers, influenced by factors such as the VM catalog offered by the provider, I initially introduce

100 Conclusion

a library aimed at promoting the sharing of high-level statistics. This library parses typical Cloud
datasets and enables a given Cloud provider to share its characteristics without necessitating the
publication of the entire dataset. I illustrate the potential differences between providers by introducing
the context of OVHcloud and comparing it to two other providers. Subsequently, I present a generator
capable of parsing these statistics and generating a workload in the form of a script. The generator
supports scripts for both simulator-based and platform-based experiments.

7.1.2 Computing oversubscription ratios under stability consideration

The process of oversubscription relies on calculating a ratio that determines how much more virtual re-
sources are offered compared to physical resources. While this ratio has traditionally been determined
manually, recent approaches have demonstrated that dynamic computation at the server level allows
for a more optimistic oversubscription, leading to greater gains. This is achieved by considering the
specific workload characteristics of individual servers. I propose customizing the computation of
the per-server ratio by taking into account their quiescent state. I define a method for assessing this
quiescent state using an LSTM model and propose an algorithm to adapt the optimistic degree of an
oversubscription computation. Through the evaluation, I demonstrate that this model offers a means
to enhance current oversubscription computation without necessitating any live migrations.

7.1.3 Introducing per-vCPU oversubscription

Through the analysis of traces from OVHcloud IAAS platform, I initially highlight that while large
VMs constitute a minority in the total VM count, they are responsible for the majority of vCPUs
provisioned in the cluster. Upon further examination of the individual usage of vCPUs on large VMs,
I establish that they exhibit heterogeneity, implying that their internal workloads cannot be uniformly
distributed. Building upon this insight, I propose a novel oversubscription paradigm. This approach
involves exposing vCPUs of varying performance levels, with some being more powerful than others,
through underlying oversubscription segregation on the host. I propose and evaluate a prototype,
proving that this approach enables the deployment of the same number of VMs associated with highly
oversubscribed environments while mitigating performance degradation.

7.1.4 Balancing complementary oversubscription levels

While oversubscription traditionally aims to utilize resources left unused by clients, I demonstrate its
potential to also reduce the number of unallocated resources. A VM deployment involves requesting
various types of resources, with CPU and memory being key components. When either of these
resources is fully allocated, the server cannot accommodate new VM deployments. Through an
analysis of the ratio between CPU and memory in both VM creation requests and server hardware, I
observe that premium VMs tend to primarily utilize the CPU of their host, whereas oversubscribed
VMs tend to utilize memory. Consequently, I propose co-hosting premium and non-premium VMs on

7.2 Perspectives 101

the same PMs to leverage their complementary resource usage patterns. Utilizing a newly introduced
progress indicator aimed at achieving the optimal memory per core ratio, I demonstrate potential
savings of up to 9.6% of servers.

7.2 Perspectives

Finally, I propose perspectives on this work by outlining short-term extensions, related to the oversub-
scription principle, and describing long-term objectives, related to the broader scope of reducing the
impact of Cloud computing.

7.2.1 Short-term perspectives

Implementation of multiple and dynamic ratios per server

While this thesis delved into the potential of utilizing oversubscription with finer granularities, it
explored two distinct visions. Firstly, I enhanced oversubscription at the server level by considering
its quiescent state, as discussed in Chapter 4. Secondly, I introduced multiple oversubscription levels
within a single server by segregating its resources, as detailed in Chapters 5 and 6. However, these
visions are not mutually exclusive, and there may be value in exploring the capabilities enabled by
multiple concurrent and dynamic oversubscription levels. Specifically, dynamic oversubscription
levels provide the flexibility to choose a more appropriate proxy for defining resource allocation, such
as preserving performance to a desired level rather than adhering strictly to a predefined virtual-to-
physical resource ratio. I believe that dynamic oversubscription is essential for the broader application
of the principles outlined in Chapter 5, where defining a per-vCPU oversubscription level may present
practical challenges.

On others resources dynamic oversubscription

This thesis predominantly focused on exploring CPU oversubscription within an IAAS context.
However, it’s noteworthy that other common processing units, such as GPUs, are gaining prominence,
especially with the widespread adoption of Large Language Models (LLMs). While GPUs serve
different use cases compared to CPUs, they tend to consume more power and are also more expensive
per unit. Consequently, there exists both a financial and environmental incentive to use the minimal
quantity. Recent research conducted on an Alibaba GPU cluster sheds light on the fragmentation of
workloads in DCs [164]. This fragmentation underscores what I perceive as potential opportunities
for oversubscription in GPU usage.

As GPU may be shared between clients transparently [165], diving into oversubscription capabili-
ties is interesting.

102 Conclusion

Linux schedulers cooperation with oversubscription

Recent kernel changes have simplified the evaluation of alternative Linux schedulers. Leveraging
eBPF capabilities, process scheduling mechanisms can now be dynamically adjusted at runtime,
eliminating the need for kernel recompilation or restart. This opens up possibilities for exploring
diverse schedulers tailored to specific needs, such as those of IAAS workloads. Investigating synergies
between oversubscription mechanisms and scheduling policies could enhance resource utilization
or preserve performance. Additionally, addressing side-channel attack concerns by considering
scheduling strategies, such as round-robin placement to mitigate cache-level conflicts, presents a
promising avenue for further research.

7.2.2 Long-term perspectives

Sharing is caring

By putting multiple clients on computing units, oversubscription is a way to share the physical
resources. While oversubscription leads to time slice share based on the number of processes running,
other kinds of proxy can be used to manage it. As an example, [166] proposed to share resources
based on a requested frequency while [139] proposed to share resources based on SLOs. Exploring
the impact of the chosen proxy, especially in a black-box context, can be a way to improve packing.

Reducing is caring

The specific optimization required for Cloud applications remains unclear. Particularly, while reducing
platform usage is essential to meet the Paris Agreement targets, there is a lack of studies on the
feedback mechanisms provided by Cloud providers to their clients. It is important to investigate
whether the resource usage feedback provided to clients is accurate, including whether it accounts for
any "margin" and, if so, the magnitude of this margin. Additionally, understanding whether clients
typically follow this feedback and identifying what types of feedback would be most effective for
encouraging sustainable practices is crucial. This research could help develop more precise and
actionable feedback systems, ultimately promoting more efficient resource use and aiding in the
alignment with global sustainability goals.

Renouncing is caring

The work presented in this thesis is only relevant in the context of stable or decreasing demand for
Cloud services. Evaluating the environmental impact of a service relative to its social or environmental
utility is therefore crucial. Conducting a Life Cycle Assessment (LCA) of a virtualized service remains
an open question, especially given the dynamic nature of resource allocation, whether through scaling
(vertical/horizontal) or oversubscription. The usage of resources is dynamic, and power consumption
is influenced by the workloads that are co-located on the same servers. Developing a model that

7.2 Perspectives 103

accurately captures both the utility of a service, likely using a social sciences-based approach, and its
environmental impact should be an integral part of a comprehensive decision-making framework.

References

[1] T. W. Crowther, H. B. Glick, K. R. Covey, C. Bettigole, D. S. Maynard, S. M. Thomas, J. R.
Smith, G. Hintler, M. C. Duguid, G. Amatulli, et al., “Mapping tree density at a global scale,”
Nature, vol. 525, no. 7568, pp. 201–205, 2015.

[2] WWF, “Living planet report 2022,” 2022. Available at https://www.worldwildlife.org/pages/
living-planet-report-2022.

[3] S. Seibold, M. M. Gossner, N. K. Simons, N. Blüthgen, J. Müller, D. Ambarlı, C. Ammer,
J. Bauhus, M. Fischer, J. C. Habel, et al., “Arthropod decline in grasslands and forests is
associated with landscape-level drivers,” Nature, vol. 574, no. 7780, pp. 671–674, 2019.

[4] K. Lee and M. Greenstone, “Air quality life index annual update,” Energy Policy Institute,
University of Chicago, 2021.

[5] I. T. Cousins, J. H. Johansson, M. E. Salter, B. Sha, and M. Scheringer, “Outside the safe
operating space of a new planetary boundary for per-and polyfluoroalkyl substances (pfas),”
Environmental Science & Technology, vol. 56, no. 16, pp. 11172–11179, 2022.

[6] C. Mora, B. Dousset, I. R. Caldwell, F. E. Powell, R. C. Geronimo, C. R. Bielecki, C. W.
Counsell, B. S. Dietrich, E. T. Johnston, L. V. Louis, et al., “Global risk of deadly heat,” Nature
climate change, vol. 7, no. 7, pp. 501–506, 2017.

[7] The Shift Project, “Energy-climate scenarios: Evaluation and guidance,” 2019. Available at
https://theshiftproject.org/en/article/energy-climate-scenarios-evaluation-guidance-report/.

[8] L. Grimal, I. Di Loreto, N. Burger, and N. Troussier, “Design of an interdisciplinary evaluation
method for multi-scaled sustainability of computer-based projects. A workbased on the Sus-
tainable Computing Evaluation Framework (SCEF),” LIMITS Workshop on Computing within
Limits, 2021.

[9] A. Barrau, L’hypothèse K.: la science face à la catastrophe écologique. Edition Grasset, 2023.

[10] C. Freitag, M. Berners-Lee, K. Widdicks, B. Knowles, G. S. Blair, and A. Friday, “The real
climate and transformative impact of ict: A critique of estimates, trends, and regulations,”
Patterns, vol. 2, no. 9, p. 100340, 2021.

[11] International Energy Agency, “Data centres and data transmission networks,” 2021. Available
at https://www.iea.org/energy-system/buildings/data-centres-and-data-transmission-networks.

[12] European Commission Joint Research Centre, “The eu code of conduct for data
centres – towards more innovative, sustainable and secure data centre facilitie),”
2023. Available at https://joint-research-centre.ec.europa.eu/jrc-news-and-updates/
eu-code-conduct-data-centres-towards-more-innovative-sustainable-and-secure-data-centre-facilities-2023-09-05_
en.

https://www.worldwildlife.org/pages/living-planet-report-2022
https://www.worldwildlife.org/pages/living-planet-report-2022
https://theshiftproject.org/en/article/energy-climate-scenarios-evaluation-guidance-report/
https://www.iea.org/energy-system/buildings/data-centres-and-data-transmission-networks
https://joint-research-centre.ec.europa.eu/jrc-news-and-updates/eu-code-conduct-data-centres-towards-more-innovative-sustainable-and-secure-data-centre-facilities-2023-09-05_en
https://joint-research-centre.ec.europa.eu/jrc-news-and-updates/eu-code-conduct-data-centres-towards-more-innovative-sustainable-and-secure-data-centre-facilities-2023-09-05_en
https://joint-research-centre.ec.europa.eu/jrc-news-and-updates/eu-code-conduct-data-centres-towards-more-innovative-sustainable-and-secure-data-centre-facilities-2023-09-05_en

References 105

[13] J. Guo, Z. Chang, S. Wang, H. Ding, Y. Feng, L. Mao, and Y. Bao, “Who limits the resource
efficiency of my datacenter: An analysis of alibaba datacenter traces,” in Proceedings of the
International Symposium on Quality of Service, pp. 1–10, 2019.

[14] E. Cortez, A. Bonde, A. Muzio, M. Russinovich, M. Fontoura, and R. Bianchini, “Resource
central: Understanding and predicting workloads for improved resource management in large
cloud platforms,” in Proceedings of the 26th Symposium on Operating Systems Principles,
SOSP ’17, p. 153–167, Association for Computing Machinery, 2017.

[15] A. Fuerst, S. Novaković, Í. Goiri, G. I. Chaudhry, P. Sharma, K. Arya, K. Broas, E. Bak,
M. Iyigun, and R. Bianchini, “Memory-harvesting vms in cloud platforms,” in Proceedings of
the 27th ACM International Conference on Architectural Support for Programming Languages
and Operating Systems, pp. 583–594, 2022.

[16] S. A. Baset, L. Wang, and C. Tang, “Towards an understanding of oversubscription in cloud,”
in 2nd USENIX Workshop on Hot Topics in Management of Internet, Cloud, and Enterprise
Networks and Services (Hot-ICE 12), 2012.

[17] N. Bashir, N. Deng, K. Rzadca, D. Irwin, S. Kodak, and R. Jnagal, “Take it to the limit:
Peak prediction-driven resource over-committment in datacenters,” in Proceedings of the
Sixteenth European Conference on Computer Systems, EuroSys ’21, p. 556–573, Association
for Computing Machinery, 2021.

[18] P. Jacquet, T. Ledoux, and R. Rouvoy, “Cloudfactory: An open toolkit to generate production-
like workloads for cloud infrastructures,” in 2023 IEEE International Conference on Cloud
Engineering (IC2E), (Boston, United States), pp. 81–91, IEEE, 2023.

[19] P. Jacquet, T. Ledoux, and R. Rouvoy, “ScroogeVM: Boosting Cloud Resource Utilization with
Dynamic Oversubscription,” IEEE Transactions on Sustainable Computing (TSUSC), 2024.

[20] P. Jacquet, T. Ledoux, and R. Rouvoy, “SweetspotVM: Oversubscribing CPU without Sacri-
ficing VM Performance,” in 24th IEEE/ACM international Symposium on Cluster, Cloud and
Internet Computing (CCGrid), (Philadelphia, United States), IEEE, 2024.

[21] P. Jacquet, T. Ledoux, and R. Rouvoy, “SlackVM: Packing Virtual Machines in Oversub-
scribed Cloud Infrastructures,” in 26th IEEE International Conference on Cluster Computing
(CLUSTER), (Kobe, Japan), IEEE, 2024.

[22] P. Jacquet, T. Ledoux, and R. Rouvoy, “La chasse au gaspillage dans le cloud et les data centers,”
The Conversation, France, 2023.

[23] E. Cortez, A. Bonde, A. Muzio, M. Russinovich, M. Fontoura, and R. Bianchini, “Resource
central: Understanding and predicting workloads for improved resource management in large
cloud platforms,” in SOSP, pp. 153–167, ACM, 2017.

[24] C. Delimitrou and C. Kozyrakis, “Quasar: Resource-efficient and qos-aware cluster manage-
ment,” SIGPLAN Not., vol. 49, p. 127–144, feb 2014.

[25] Y. Zhang, G. Prekas, G. M. Fumarola, M. Fontoura, I. Goiri, and R. Bianchini, “History-Based
harvesting of spare cycles and storage in Large-Scale datacenters,” in 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 16), (Savannah, GA), pp. 755–770,
USENIX Association, Nov. 2016.

[26] J. Mambretti, J. Chen, and F. Yeh, “Next generation clouds, the chameleon cloud testbed, and
software defined networking (sdn),” in 2015 International Conference on Cloud Computing
Research and Innovation (ICCCRI), pp. 73–79, 2015.

106 References

[27] Alibaba, “The alibaba clusterdata201708 trace data,” 2018. Available at https://github.com/
alibaba/clusterdata.

[28] Google, “Borg cluster traces,” 2019. Available at https://github.com/google/cluster-data.

[29] C. Lu, K. Ye, G. Xu, C.-Z. Xu, and T. Bai, “Imbalance in the cloud: An analysis on alibaba
cluster trace,” in IEEE International Conference on Big Data, Big Data’17, pp. 2884–2892,
2017.

[30] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and R. Buyya, “Cloudsim:
A toolkit for modeling and simulation of cloud computing environments and evaluation of
resource provisioning algorithms,” Softw. Pract. Exper., vol. 41, p. 23–50, jan 2011.

[31] M. C. Silva Filho, R. L. Oliveira, C. C. Monteiro, P. R. M. Inácio, and M. M. Freire, “Cloudsim
plus: A cloud computing simulation framework pursuing software engineering principles
for improved modularity, extensibility and correctness,” in 2017 IFIP/IEEE Symposium on
Integrated Network and Service Management (IM), pp. 400–406, 2017.

[32] S.-H. Lim, B. Sharma, G. Nam, E. K. Kim, and C. R. Das, “Mdcsim: A multi-tier data center
simulation, platform,” in 2009 IEEE International Conference on Cluster Computing and
Workshops, pp. 1–9, 2009.

[33] H. Casanova, A. Legrand, and M. Quinson, “Simgrid: A generic framework for large-scale
distributed experiments,” in Tenth International Conference on Computer Modeling and Simu-
lation (uksim 2008), pp. 126–131, IEEE, 2008.

[34] A. Lebre, J. Pastor, and M. Südholt, “Vmplaces: A generic tool to investigate and compare vm
placement algorithms,” in Euro-Par 2015: Parallel Processing: 21st International Conference
on Parallel and Distributed Computing, Vienna, Austria, August 24-28, 2015, Proceedings 21,
pp. 317–329, Springer, 2015.

[35] M. Silva, M. R. Hines, D. Gallo, Q. Liu, K. D. Ryu, and D. d. Silva, “Cloudbench: Experiment
automation for cloud environments,” in Proceedings of the 2013 IEEE International Conference
on Cloud Engineering, IC2E ’13, (USA), p. 302–311, IEEE Computer Society, 2013.

[36] B. Sun, B. Hall, H. Wang, D. W. Zhang, and K. Ding, “Benchmarking private cloud performance
with user-centric metrics,” in 2014 IEEE International Conference on Cloud Engineering,
pp. 311–318, 2014.

[37] Council, Transaction Processing Performance, “Tpc benchmark c standard specification,” 1990.

[38] SPEC, “Spec cpu® 2017,” 2017. Available at https://www.spec.org/cpu2017/.

[39] SPEC, “Specmail2009,” 2009. Available at https://www.spec.org/mail2009/.

[40] W. Sobel, S. Subramanyam, A. Sucharitakul, J. Nguyen, H. Wong, A. Klepchukov, S. Patil,
A. Fox, and D. Patterson, “Cloudstone: Multi-platform, multi-language benchmark and mea-
surement tools for web 2.0,” in Proc. of CCA, vol. 8, p. 228, Citeseer, 2008.

[41] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, A. Bruno, J. Hu, B. Ritchken,
B. Jackson, K. Hu, M. Pancholi, Y. He, B. Clancy, C. Colen, F. Wen, C. Leung, S. Wang,
L. Zaruvinsky, M. Espinosa, R. Lin, Z. Liu, J. Padilla, and C. Delimitrou, “An Open-Source
Benchmark Suite for Microservices and Their Hardware-Software Implications for Cloud &
Edge Systems,” in ASPLOS, pp. 3–18, ACM, 2019.

https://github.com/alibaba/clusterdata
https://github.com/alibaba/clusterdata
https://github.com/google/cluster-data
https://www.spec.org/cpu2017/
https://www.spec.org/mail2009/

References 107

[42] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears, “Benchmarking cloud
serving systems with ycsb,” in Proceedings of the 1st ACM Symposium on Cloud Computing,
SoCC ’10, (New York, NY, USA), p. 143–154, Association for Computing Machinery, 2010.

[43] M. Rak and G. Aversano, “Benchmarks in the cloud: The mosaic benchmarking framework,”
in 2012 14th International Symposium on Symbolic and Numeric Algorithms for Scientific
Computing, pp. 415–422, IEEE, 2012.

[44] G. Aversano, M. Rak, and U. Villano, “The mosaic benchmarking framework: Development
and execution of custom cloud benchmarks,” Scalable Computing: Practice and Experience,
vol. 14, no. 1, pp. 33–46, 2013.

[45] M. Cunha, N. Mendonca, and A. Sampaio, “A declarative environment for automatic per-
formance evaluation in iaas clouds,” in 2013 IEEE Sixth International Conference on Cloud
Computing, pp. 285–292, IEEE, 2013.

[46] N. Yigitbasi, A. Iosup, D. Epema, and S. Ostermann, “C-meter: A framework for performance
analysis of computing clouds,” in 2009 9th IEEE/ACM International Symposium on Cluster
Computing and the Grid, pp. 472–477, 2009.

[47] B. Varghese, L. T. Subba, L. Thai, and A. Barker, “Container-based cloud virtual machine
benchmarking,” in 2016 IEEE International Conference on Cloud Engineering (IC2E), pp. 192–
201, 2016.

[48] M. B. Chhetri, S. Chichin, Q. B. Vo, and R. Kowalczyk, “Smart cloudbench – automated
performance benchmarking of the cloud,” in 2013 IEEE Sixth International Conference on
Cloud Computing, pp. 414–421, 2013.

[49] SPEC, “Specvirt datacenter 2021,” 2021. Available at http://spec.org/cloud_iaas2018/.

[50] V. Makhija, B. Herndon, P. Smith, L. Roderick, E. Zamost, and J. Anderson, “Vmmark:
A scalable benchmark for virtualized systems,” tech. rep., Technical Report TR 2006-002,
VMware, 2006.

[51] Y. Chen, A. S. Ganapathi, R. Griffith, and R. H. Katz, “Towards understanding cloud perfor-
mance tradeoffs using statistical workload analysis and replay,” University of California at
Berkeley, Technical Report No. UCB/EECS-2010-81, 2010.

[52] E. F. Boza, C. San-Lucas, C. L. Abad, and J. A. Viteri, “Benchmarking key-value stores via trace
replay,” in 2017 IEEE International Conference on Cloud Engineering (IC2E), pp. 183–189,
2017.

[53] J. Yin, X. Lu, X. Zhao, H. Chen, and X. Liu, “BURSE: A bursty and self-similar workload
generator for cloud computing,” IEEE Trans. Parallel Distributed Syst., vol. 26, no. 3, pp. 668–
680, 2015.

[54] SPEC, “Spec cloud iaas 2018,” 2018. Available at http://spec.org/cloud_iaas2018/.

[55] R. Panigrahy, K. Talwar, L. Uyeda, and U. Wieder, “Heuristics for vector bin packing,” research.
microsoft. com, 2011.

[56] D. S. Hochba, “Approximation algorithms for np-hard problems,” ACM Sigact News, vol. 28,
no. 2, pp. 40–52, 1997.

[57] B. Jennings and R. Stadler, “Resource management in clouds: Survey and research challenges,”
Journal of Network and Systems Management, vol. 23, pp. 567–619, 2015.

http://spec.org/cloud_iaas2018/
http://spec.org/cloud_iaas2018/

108 References

[58] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and J. Wilkes, “Large-scale
cluster management at google with borg,” in 10th European Conference on Computer Systems,
EuroSys’15, pp. 1–17, 2015.

[59] O. Hadary, L. Marshall, I. Menache, A. Pan, E. E. Greeff, D. Dion, S. Dorminey, S. Joshi,
Y. Chen, M. Russinovich, and T. Moscibroda, “Protean: VM allocation service at scale,” in 14th
USENIX Symposium on Operating Systems Design and Implementation, OSDI’20, pp. 845–861,
USENIX Association, Nov. 2020.

[60] OpenStack, “Scheduling,” 2019. Available at https://docs.openstack.org/mitaka/
config-reference/compute/scheduler.html.

[61] Z. Zhang, C. Li, Y. Tao, R. Yang, H. Tang, and J. Xu, “Fuxi: a fault-tolerant resource manage-
ment and job scheduling system at internet scale,” in Proceedings of the VLDB Endowment,
vol. 7, pp. 1393–1404, VLDB Endowment Inc., 2014.

[62] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. Katz, S. Shenker, and
I. Stoica, “Mesos: A platform for {Fine-Grained} resource sharing in the data center,” in 8th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 11), 2011.

[63] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans, T. Graves,
J. Lowe, H. Shah, S. Seth, et al., “Apache hadoop yarn: Yet another resource negotiator,” in
Proceedings of the 4th annual Symposium on Cloud Computing, pp. 1–16, 2013.

[64] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes, “Omega: flexible, scalable
schedulers for large compute clusters,” in SIGOPS European Conference on Computer Systems
(EuroSys), (Prague, Czech Republic), pp. 351–364, 2013.

[65] X. Wang, H. He, Y. Li, C. Li, X. Hou, J. Wang, Q. Chen, J. Leng, M. Guo, and L. Wang, “Not
all resources are visible: Exploiting fragmented shadow resources in shared-state scheduler
architecture,” in Proceedings of the 2023 ACM Symposium on Cloud Computing, SoCC ’23,
(New York, NY, USA), p. 109–124, Association for Computing Machinery, 2023.

[66] C. Cérin, T. Menouer, W. Saad, and W. B. Abdallah, “A new docker swarm scheduling
strategy,” in 2017 IEEE 7th International Symposium on Cloud and Service Computing (SC2),
pp. 112–117, 2017.

[67] A. Ruprecht, D. Jones, D. Shiraev, G. Harmon, M. Spivak, M. Krebs, M. Baker-Harvey, and
T. Sanderson, “Vm live migration at scale,” SIGPLAN Not., vol. 53, p. 45–56, mar 2018.

[68] H.-R. Chuang, K. Manaouil, T. Xing, A. Barbalace, P. Olivier, B. Heerekar, and B. Ravindran,
“Aggregate vm: Why reduce or evict vm’s resources when you can borrow them from other
nodes?,” in 18th European Conference on Computer Systems, EuroSys’23, p. 469–487, ACM,
2023.

[69] D. M. Tullsen, S. J. Eggers, and H. M. Levy, “Simultaneous multithreading: Maximizing
on-chip parallelism,” SIGARCH Comput. Archit. News, vol. 23, p. 392–403, may 1995.

[70] I. Stoica and H. Abdel-Wahab, “Earliest eligible virtual deadline first: A flexible and accurate
mechanism for proportional share resource allocation,” Old Dominion Univ., Norfolk, VA, Tech.
Rep. TR-95-22, 1995.

[71] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming in a hard-real-time
environment,” J. ACM, vol. 20, p. 46–61, jan 1973.

https://docs.openstack.org/mitaka/config-reference/compute/scheduler.html
https://docs.openstack.org/mitaka/config-reference/compute/scheduler.html

References 109

[72] L. A. Barroso and U. Hölzle, “The case for energy-proportional computing,” IEEE Computer,
vol. 40, 2007.

[73] D. Wong and M. Annavaram, “Knightshift: Scaling the energy proportionality wall through
server-level heterogeneity,” in 2012 45th Annual IEEE/ACM International Symposium on
Microarchitecture, pp. 119–130, 2012.

[74] G. Prekas, M. Primorac, A. Belay, C. Kozyrakis, and E. Bugnion, “Energy proportionality
and workload consolidation for latency-critical applications,” in Proceedings of the Sixth
ACM Symposium on Cloud Computing, SoCC ’15, p. 342–355, Association for Computing
Machinery, 2015.

[75] Amazon Elastic Compute Cloud, “Amazon ec2 spot instances,” 2022. Available at https:
//aws.amazon.com/ec2/spot/.

[76] Microsoft Azure, “Azure spot virtual machines,” 2020. Available at https://azure.microsoft.
com/en-us/pricing/spot.

[77] Google Cloud Platform, “Preemptible vm instances,” 2020. Available at https://cloud.google.
com/compute/docs/instances/preemptible.

[78] P. Ambati, I. Goiri, F. Frujeri, A. Gun, K. Wang, B. Dolan, B. Corell, S. Pasupuleti, T. Mosci-
broda, S. Elnikety, M. Fontoura, and R. Bianchini, “Providing SLOs for Resource-Harvesting
VMs in cloud platforms,” in 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20), pp. 735–751, USENIX Association, Nov. 2020.

[79] B. Reidys, J. Sun, A. Badam, S. Noghabi, and J. Huang, “BlockFlex: Enabling storage har-
vesting with Software-Defined flash in modern cloud platforms,” in 16th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 22), (Carlsbad, CA), pp. 17–33,
USENIX Association, July 2022.

[80] Y. Zhang, I. n. Goiri, G. I. Chaudhry, R. Fonseca, S. Elnikety, C. Delimitrou, and R. Bianchini,
“Faster and cheaper serverless computing on harvested resources,” in Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems Principles, SOSP ’21, (New York, NY, USA),
p. 724–739, Association for Computing Machinery, 2021.

[81] Y. Wang, K. Arya, M. Kogias, M. Vanga, A. Bhandari, N. J. Yadwadkar, S. Sen, S. Elnikety,
C. Kozyrakis, and R. Bianchini, “Smartharvest: Harvesting idle cpus safely and efficiently
in the cloud,” in Proceedings of the Sixteenth European Conference on Computer Systems,
pp. 1–16, 2021.

[82] W. Zhang, B. Chen, Z. Han, Q. Chen, P. Cheng, F. Yang, R. Shu, Y. Yang, and M. Guo,
“{PilotFish}: Harvesting free cycles of cloud gaming with deep learning training,” in 2022
USENIX Annual Technical Conference (USENIX ATC 22), pp. 217–232, 2022.

[83] X. Jia, J. Zhang, B. Yu, X. Qian, Z. Qi, and H. Guan, “Giantvm: A novel distributed hypervisor
for resource aggregation with dsm-aware optimizations,” ACM Trans. Archit. Code Optim.,
vol. 19, mar 2022.

[84] S. Legtchenko, H. Williams, K. Razavi, A. Donnelly, R. Black, A. Douglas, N. Cheriere,
D. Fryer, K. Mast, A. D. Brown, A. Klimovic, A. Slowey, and A. Rowstron, “Understanding
Rack-Scale disaggregated storage,” in 9th USENIX Workshop on Hot Topics in Storage and
File Systems (HotStorage 17), (Santa Clara, CA), USENIX Association, July 2017.

https://aws.amazon.com/ec2/spot/
https://aws.amazon.com/ec2/spot/
https://azure.microsoft.com/en-us/pricing/spot
https://azure.microsoft.com/en-us/pricing/spot
https://cloud.google.com/compute/docs/instances/preemptible
https://cloud.google.com/compute/docs/instances/preemptible

110 References

[85] A. Klimovic, C. Kozyrakis, E. Thereska, B. John, and S. Kumar, “Flash storage disaggregation,”
in Proceedings of the Eleventh European Conference on Computer Systems, EuroSys ’16, (New
York, NY, USA), Association for Computing Machinery, 2016.

[86] J. Gu, Y. Lee, Y. Zhang, M. Chowdhury, and K. G. Shin, “Efficient memory disaggregation with
infiniswap,” in 14th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 17), pp. 649–667, 2017.

[87] Y. Qiao, C. Wang, Z. Ruan, A. Belay, Q. Lu, Y. Zhang, M. Kim, and G. H. Xu, “Hermit: Low-
Latency, High-Throughput, and transparent remote memory via Feedback-Directed asynchrony,”
in 20th USENIX Symposium on Networked Systems Design and Implementation (NSDI 23),
(Boston, MA), pp. 181–198, USENIX Association, Apr. 2023.

[88] Z. Ruan, M. Schwarzkopf, M. K. Aguilera, and A. Belay, “AIFM: High-Performance,
Application-Integrated far memory,” in 14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20), pp. 315–332, USENIX Association, Nov. 2020.

[89] C. Wang, H. Ma, S. Liu, Y. Li, Z. Ruan, K. Nguyen, M. D. Bond, R. Netravali, M. Kim, and G. H.
Xu, “Semeru: A Memory-Disaggregated managed runtime,” in 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 20), pp. 261–280, USENIX Association,
Nov. 2020.

[90] Z. Ruan, S. Li, K. Fan, M. K. Aguilera, A. Belay, S. J. Park, and M. Schwarzkopf, “Unleashing
true utility computing with quicksand,” in Proceedings of the 19th Workshop on Hot Topics in
Operating Systems, pp. 196–205, 2023.

[91] C. A. Waldspurger, “Memory resource management in vmware esx server,” SIGOPS Oper. Syst.
Rev., vol. 36, p. 181–194, dec 2003.

[92] J.-H. Chiang, H.-L. Li, and T. cker Chiueh, “Working set-based physical memory ballooning,”
in 10th International Conference on Autonomic Computing (ICAC 13), pp. 95–99, USENIX
Association, June 2013.

[93] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Geiger: monitoring the buffer
cache in a virtual machine environment,” ACM Sigplan Notices, vol. 41, no. 11, pp. 14–24,
2006.

[94] P. Lu and K. Shen, “Virtual machine memory access tracing with hypervisor exclusive cache.,”
in Usenix Annual Technical Conference, pp. 29–43, 2007.

[95] Linux Documentation, “Memory hot(un)plug,” 2022. Available at https://www.kernel.org/doc/
html/latest/admin-guide/mm/memory-hotplug.html.

[96] Linux Documentation, “Kernel samepage merging,” 2022. Available at https://www.kernel.
org/doc/html/latest/admin-guide/mm/ksm.html.

[97] Linux Documentation, “zram,” 2022. Available at https://docs.kernel.org/admin-guide/
blockdev/zram.html.

[98] Citrix, “overcommiting pcpus on individual xenserver vms,” 2018. Available at https://support.
citrix.com/article/CTX236977/overcommiting-pcpus-on-individual-xenserver-vms.

[99] vmware, “Cpu virtualization basics,” 2019. Available at https://docs.
vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.resmgmt.doc/
GUID-DFFA3A31-9EDD-4FD6-B65C-86E18644373E.html.

https://www.kernel.org/doc/html/latest/admin-guide/mm/memory-hotplug.html
https://www.kernel.org/doc/html/latest/admin-guide/mm/memory-hotplug.html
https://www.kernel.org/doc/html/latest/admin-guide/mm/ksm.html
https://www.kernel.org/doc/html/latest/admin-guide/mm/ksm.html
https://docs.kernel.org/admin-guide/blockdev/zram.html
https://docs.kernel.org/admin-guide/blockdev/zram.html
https://support.citrix.com/article/CTX236977/overcommiting-pcpus-on-individual-xenserver-vms
https://support.citrix.com/article/CTX236977/overcommiting-pcpus-on-individual-xenserver-vms
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.resmgmt.doc/GUID-DFFA3A31-9EDD-4FD6-B65C-86E18644373E.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.resmgmt.doc/GUID-DFFA3A31-9EDD-4FD6-B65C-86E18644373E.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.resmgmt.doc/GUID-DFFA3A31-9EDD-4FD6-B65C-86E18644373E.html

References 111

[100] Proxmox, “Proxmox ve administration guide,” 2022. Available at https://pve.proxmox.com/
pve-docs/pve-admin-guide.pdf.

[101] OpenStack, “overcommiting cpu and ram,” 2022. Available at https://docs.openstack.org/
arch-design/design-compute/design-compute-overcommit.html.

[102] H. Wang, H. Shen, and Z. Li, “Approaches for resilience against cascading failures in cloud
datacenters,” in 2018 IEEE 38th International Conference on Distributed Computing Systems
(ICDCS), pp. 706–717, 2018.

[103] D. Williams, H. Jamjoom, Y.-H. Liu, and H. Weatherspoon, “Overdriver: handling memory
overload in an oversubscribed cloud,” SIGPLAN Not., vol. 46, p. 205–216, mar 2011.

[104] J. Sheng, L. Wang, F. Yang, B. Qiao, H. Dong, X. Wang, B. Jin, J. Wang, S. Qin, S. Rajmohan,
Q. Lin, and D. Zhang, “Learning cooperative oversubscription for cloud by chance-constrained
multi-agent reinforcement learning,” in Proceedings of the ACM Web Conference 2023, WWW
’23, (New York, NY, USA), p. 2927–2936, Association for Computing Machinery, 2023.

[105] V. Govindaraju, V. Raghavan, and C. R. Rao, Big data analytics. Elsevier, 2015.

[106] M. C. Cohen, P. W. Keller, V. Mirrokni, and M. Zadimoghaddam, “Overcommitment in
cloud services: Bin packing with chance constraints,” Management Science, vol. 65, no. 7,
pp. 3255–3271, 2019.

[107] J. Wang, H. Zhang, Z. Xu, W. He, and Y. Guo, “A scheduling algorithm based on resource
overcommitment in virtualization environments,” in 2016 First IEEE International Conference
on Computer Communication and the Internet (ICCCI), pp. 439–443, 2016.

[108] D. Williams, H. Jamjoom, Y.-H. Liu, and H. Weatherspoon, “Overdriver: Handling memory
overload in an oversubscribed cloud,” in Proceedings of the 7th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments, VEE ’11, p. 205–216, Association
for Computing Machinery, 2011.

[109] B. Riad, Z. Abdelhafid, and M. Ramdane, “An autonomous architecture for managing vertical
elasticity in the iaas cloud using memory over-subscription,” in Applied Computational Intelli-
gence and Mathematical Methods: Computational Methods in Systems and Software 2017, vol.
2, pp. 50–61, Springer, 2018.

[110] IBM, “z/vm – a brief review of its 40 year history,” 2012. Available at http://www.vm.ibm.
com/vm40hist.pdf.

[111] R. A. Meyer and L. H. Seawright, “A virtual machine time-sharing system,” IBM Systems
Journal, vol. 9, no. 3, pp. 199–218, 1970.

[112] U.S. Bureau of Economic Analysis, “Private fixed investment, chained price index: Nonresi-
dential: Equipment: Information processing equipment: Computers and peripheral equipment,”
2024. Available at https://fred.stlouisfed.org/series/B935RG3Q086SBEA.

[113] G. Amvrosiadis, J. W. Park, G. R. Ganger, G. A. Gibson, E. Baseman, and N. DeBardeleben,
“On the diversity of cluster workloads and its impact on research results,” in 2018 USENIX
Annual Technical Conference (USENIX ATC 18), pp. 533–546, USENIX Association, July
2018.

[114] M. Tirmazi, A. Barker, N. Deng, M. E. Haque, Z. G. Qin, S. Hand, M. Harchol-Balter, and
J. Wilkes, “Borg: the next generation,” in Proceedings of the fifteenth European conference on
computer systems, pp. 1–14, 2020.

https://pve.proxmox.com/pve-docs/pve-admin-guide.pdf
https://pve.proxmox.com/pve-docs/pve-admin-guide.pdf
https://docs.openstack.org/arch-design/design-compute/design-compute-overcommit.html
https://docs.openstack.org/arch-design/design-compute/design-compute-overcommit.html
http://www.vm.ibm.com/vm40hist.pdf
http://www.vm.ibm.com/vm40hist.pdf
https://fred.stlouisfed.org/series/B935RG3Q086SBEA

112 References

[115] AWS, “The ec2 approach to preventing side-channels,” 2024. Available at
https://docs.aws.amazon.com/whitepapers/latest/security-design-of-aws-nitro-system/
the-ec2-approach-to-preventing-side-channels.html.

[116] OVHcloud, “Discovery,” 2024. Available at https://us.ovhcloud.com/public-cloud/discovery/.

[117] Azure, “B-series burstable virtual machine sizes,” 2024. Available at https://learn.microsoft.
com/en-us/azure/virtual-machines/sizes-b-series-burstable.

[118] AWS, “Burstable performance instances,” 2024. Available at https://docs.aws.amazon.com/
AWSEC2/latest/UserGuide/burstable-performance-instances.html.

[119] Redhat OpenShift, “Overcommitting,” 2024. Available at https://docs.openshift.com/
container-platform/3.11/admin_guide/overcommit.html.

[120] J. Byrne, S. Svorobej, K. M. Giannoutakis, D. Tzovaras, P. J. Byrne, P.-O. Östberg, A. Gouri-
novitch, T. Lynn, et al., “A review of cloud computing simulation platforms and related
environments.,” CLOSER, pp. 651–663, 2017.

[121] N. Mansouri, R. Ghafari, and B. M. H. Zade, “Cloud computing simulators: A comprehensive
review,” Simulation Modelling Practice and Theory, vol. 104, p. 102144, 2020.

[122] S. M. Ali and G. Kecskemeti, “Sequal: an unsupervised feature selection method for cloud
workload traces,” The Journal of Supercomputing, pp. 1–19, 2023.

[123] OVHcloud, “Who are we?,” 2023. Available at https://www.ovhcloud.com/en/about-us/.

[124] A. Beloglazov, R. Buyya, Y. C. Lee, and A. Zomaya, Chapter 3 - A Taxonomy and Survey
of Energy-Efficient Data Centers and Cloud Computing Systems, vol. 82 of Advances in
Computers. Elsevier, 2011.

[125] L. A. Barroso and U. Hölzle, “The case for energy-proportional computing,” Computer, vol. 40,
no. 12, pp. 33–37, 2007.

[126] K. Venkatraman, “Virtual machine memory allocation and placement on
azure stack,” 2019. Available at https://azure.microsoft.com/en-us/blog/
virtual-machine-memory-allocation-and-placement-on-azure-stack/.

[127] Linux Documentation, “Scheduler statistics,” 2022. Available at https://docs.kernel.org/
scheduler/sched-stats.html.

[128] J.-E. Dartois, A. Knefati, J. Boukhobza, and O. Barais, “Using Quantile Regression for
Reclaiming Unused Cloud Resources while achieving SLA,” in CloudCom 2018 - 10th IEEE
International Conference on Cloud Computing Technology and Science, pp. 89–98, IEEE, Dec.
2018.

[129] T. chung Fu, “A review on time series data mining,” Engineering Applications of Artificial
Intelligence, vol. 24, no. 1, pp. 164–181, 2011.

[130] R. Agrawal, C. Faloutsos, and A. Swami, “Efficient similarity search in sequence databases,”
in Foundations of Data Organization and Algorithms: 4th International Conference, FODO’93
Chicago, Illinois, USA, October 13–15, 1993 Proceedings 4, pp. 69–84, Springer, 1993.

[131] C. L. Fancoua and J. C. Principe, “A neighborhood map of competing one step predictors
for piecewise segmentation and identification of time series,” in Proceedings of International
Conference on Neural Networks (ICNN’96), vol. 4, pp. 1906–1911, IEEE, 1996.

https://docs.aws.amazon.com/whitepapers/latest/security-design-of-aws-nitro-system/the-ec2-approach-to-preventing-side-channels.html
https://docs.aws.amazon.com/whitepapers/latest/security-design-of-aws-nitro-system/the-ec2-approach-to-preventing-side-channels.html
https://us.ovhcloud.com/public-cloud/discovery/
https://learn.microsoft.com/en-us/azure/virtual-machines/sizes-b-series-burstable
https://learn.microsoft.com/en-us/azure/virtual-machines/sizes-b-series-burstable
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-performance-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-performance-instances.html
https://docs.openshift.com/container-platform/3.11/admin_guide/overcommit.html
https://docs.openshift.com/container-platform/3.11/admin_guide/overcommit.html
https://www.ovhcloud.com/en/about-us/
https://azure.microsoft.com/en-us/blog/virtual-machine-memory-allocation-and-placement-on-azure-stack/
https://azure.microsoft.com/en-us/blog/virtual-machine-memory-allocation-and-placement-on-azure-stack/
https://docs.kernel.org/scheduler/sched-stats.html
https://docs.kernel.org/scheduler/sched-stats.html

References 113

[132] K. Qazi, Y. Li, and A. Sohn, “Workload prediction of virtual machines for harnessing data center
resources,” in 2014 IEEE 7th International Conference on Cloud Computing, pp. 522–529,
2014.

[133] P. Janus and K. Rzadca, “Slo-aware colocation of data center tasks based on instantaneous
processor requirements,” in Proceedings of the 2017 Symposium on Cloud Computing, SoCC
’17, (New York, NY, USA), p. 256–268, Association for Computing Machinery, 2017.

[134] L. Nashold and R. Krishnan, “Using lstm and sarima models to forecast cluster cpu usage,”
2020.

[135] J. Paparrizos, Y. Kang, P. Boniol, R. S. Tsay, T. Palpanas, and M. J. Franklin, “TSB-UAD: an
end-to-end benchmark suite for univariate time-series anomaly detection,” Proc. VLDB Endow.,
vol. 15, no. 8, pp. 1697–1711, 2022.

[136] Prometheus, “Prometheus,” 2022. Available at https://prometheus.io/.

[137] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, A. Bruno, J. Hu, B. Ritchken,
B. Jackson, K. Hu, M. Pancholi, Y. He, B. Clancy, C. Colen, F. Wen, C. Leung, S. Wang,
L. Zaruvinsky, M. Espinosa, R. Lin, Z. Liu, J. Padilla, and C. Delimitrou, “An open-source
benchmark suite for cloud and iot microservices,” 2019.

[138] L. A. Barroso, U. Hölzle, and P. Ranganathan, The datacenter as a computer: Designing
warehouse-scale machines. Springer Nature, 2019.

[139] C. Delimitrou and C. Kozyrakis, “Quasar: Resource-efficient and qos-aware cluster manage-
ment,” in 19th International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS’14, p. 127–144, ACM, 2014.

[140] J. Krzywda, A. Ali-Eldin, T. E. Carlson, P.-O. Östberg, and E. Elmroth, “Power-performance
tradeoffs in data center servers: Dvfs, cpu pinning, horizontal, and vertical scaling,” Future
Generation Computer Systems, vol. 81, pp. 114–128, 2018.

[141] J. Chen, C. Cao, Y. Zhang, X. Ma, H. Zhou, and C. Yang, “Improving cluster resource efficiency
with oversubscription,” in 2018 IEEE 42nd Annual Computer Software and Applications
Conference (COMPSAC), vol. 01, pp. 144–153, 2018.

[142] C. S. Wong, I. Tan, R. D. Kumari, and F. Wey, “Towards achieving fairness in the linux
scheduler,” SIGOPS Oper. Syst. Rev., vol. 42, p. 34–43, jul 2008.

[143] F. Wuhib, R. Stadler, and H. Lindgren, “Dynamic resource allocation with management
objectives—implementation for an openstack cloud,” in 8th International Conference on
Network and Service Management (CNSM) – Workshop on Systems Virtualiztion Management
(SVM), pp. 309–315, IEEE, 2012.

[144] Linux Documentation, “Numa binding description,” 2021. Available at https://www.kernel.org/
doc/Documentation/devicetree/bindings/numa.txt.

[145] R. York and J. A. McGee, “Understanding the jevons paradox,” Environmental Sociology,
vol. 2, no. 1, pp. 77–87, 2016.

[146] Y. Wang, K. Arya, M. Kogias, M. Vanga, A. Bhandari, N. J. Yadwadkar, S. Sen, S. Elnikety,
C. Kozyrakis, and R. Bianchini, “Smartharvest: Harvesting idle cpus safely and efficiently
in the cloud,” in Proceedings of the Sixteenth European Conference on Computer Systems,
EuroSys ’21, p. 1–16, Association for Computing Machinery, 2021.

https://prometheus.io/
https://www.kernel.org/doc/Documentation/devicetree/bindings/numa.txt
https://www.kernel.org/doc/Documentation/devicetree/bindings/numa.txt

114 References

[147] A. Fuerst, A. Ali-Eldin, P. Shenoy, and P. Sharma, “Cloud-scale vm-deflation for running inter-
active applications on transient servers,” in Proceedings of the 29th International Symposium
on High-Performance Parallel and Distributed Computing, HPDC ’20, p. 53–64, ACM, 2020.

[148] Y. Zhang, Í. Goiri, G. I. Chaudhry, R. Fonseca, S. Elnikety, C. Delimitrou, and R. Bianchini,
“Faster and cheaper serverless computing on harvested resources,” in 28th ACM SIGOPS
Symposium on Operating Systems Principles, SOSP’21, pp. 724–739, 2021.

[149] D. Movsowitz Davidow, O. Agmon Ben-Yehuda, and O. Dunkelman, “Deconstructing alibaba
cloud’s preemptible instance pricing,” in Proceedings of the 32nd International Symposium on
High-Performance Parallel and Distributed Computing, HPDC ’23, p. 253–265, ACM, 2023.

[150] AWS, “Aws re:invent 2017 deep dive on amazon ec2 instances, featuring performance optimiza-
tion (cmp301),” 2017. Available at https://www.youtube.com/watch?v=mZy6E2I5Rek&t=815s.

[151] Q. Zhang, P. Bernstein, D. S. Berger, B. Chandramouli, B. T. Loo, and V. Liu, “Compucache:
Remote computable caching using spot vms,” in Conference on Innovative Data Systems
Research, CIDR’22, January 2022.

[152] A. Fuerst, S. Novaković, I. n. Goiri, G. I. Chaudhry, P. Sharma, K. Arya, K. Broas, E. Bak,
M. Iyigun, and R. Bianchini, “Memory-harvesting vms in cloud platforms,” in Proceedings of
the 27th ACM International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’22, p. 583–594, Association for Computing Machinery,
2022.

[153] P. Ambati, Í. Goiri, F. Frujeri, A. Gun, K. Wang, B. Dolan, B. Corell, S. Pasupuleti, T. Mosci-
broda, S. Elnikety, et al., “Providing SLOs for Resource-Harvesting VMs in Cloud Platforms,”
in 14th USENIX Symposium on Operating Systems Design and Implementation (OSDI 20),
pp. 735–751, 2020.

[154] H. Li, D. S. Berger, L. Hsu, D. Ernst, P. Zardoshti, S. Novakovic, M. Shah, S. Rajadnya, S. Lee,
I. Agarwal, et al., “Pond: Cxl-based memory pooling systems for cloud platforms,” in Proceed-
ings of the 28th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2, pp. 574–587, 2023.

[155] P. Sharma and P. Kulkarni, “Singleton: system-wide page deduplication in virtual environments,”
in 21st International Symposium on High-Performance Parallel and Distributed Computing,
HPDC’12, p. 15–26, ACM, 2012.

[156] D. Ghatrehsamani, C. Denninnart, J. Bacik, and M. Amini Salehi, “The art of cpu-pinning:
Evaluating and improving the performance of virtualization and containerization platforms,” in
49th International Conference on Parallel Processing, ICPP’20, ACM, 2020.

[157] OpenStack, “Scheduling,” 2019. Available at https://docs.openstack.org/mitaka/
config-reference/compute/scheduler.html.

[158] M. Badaroux, S. Miroddi, and F. Pétrot, “To pin or not to pin: Asserting the scalability of qemu
parallel implementation,” in 24th Euromicro Conference on Digital System Design, DSD’21,
pp. 238–245, IEEE, 2021.

[159] A. Podzimek, L. Bulej, L. Y. Chen, W. Binder, and P. Tuma, “Analyzing the impact of cpu
pinning and partial cpu loads on performance and energy efficiency,” in 15th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing, CCGrid’15, pp. 1–10, 2015.

[160] C. King, “stress-ng,” 2024. Available at https://github.com/ColinIanKing/stress-ng/.

https://www.youtube.com/watch?v=mZy6E2I5Rek&t=815s
https://docs.openstack.org/mitaka/config-reference/compute/scheduler.html
https://docs.openstack.org/mitaka/config-reference/compute/scheduler.html
https://github.com/ColinIanKing/stress-ng/

References 115

[161] H. Huang, J. Rao, S. Wu, H. Jin, H. Jiang, H. Che, and X. Wu, “Towards exploiting cpu elasticity
via efficient thread oversubscription,” in 30th International Symposium on High-Performance
Parallel and Distributed Computing, HPDC’21, p. 215–226, ACM, 2021.

[162] A. Pucher, E. Gul, R. Wolski, and C. Krintz, “Using trustworthy simulation to engineer cloud
schedulers,” in IEEE International Conference on Cloud Engineering, IC2E’15, pp. 256–265,
2015.

[163] T. Knauth and C. Fetzer, “Energy-aware scheduling for infrastructure clouds,” in 4th IEEE
International Conference on Cloud Computing Technology and Science, pp. 58–65, 2012.

[164] Q. Weng, L. Yang, Y. Yu, W. Wang, X. Tang, G. Yang, and L. Zhang, “Beware of fragmentation:
Scheduling GPU-Sharing workloads with fragmentation gradient descent,” in 2023 USENIX
Annual Technical Conference (USENIX ATC 23), (Boston, MA), pp. 995–1008, USENIX
Association, 2023.

[165] B. Wu, Z. Zhang, Z. Bai, X. Liu, and X. Jin, “Transparent GPU sharing in container clouds
for deep learning workloads,” in 20th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 23), (Boston, MA), pp. 69–85, USENIX Association, Apr. 2023.

[166] E. Cadorel and R. Rouvoy, “Enabling dynamic virtual frequency scaling for virtual machines
in the cloud,” in 2022 IEEE International Conference on Cluster Computing (CLUSTER),
pp. 336–346, 2022.

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Motivation
	1.1.1 Context
	1.1.2 Problem statement

	1.2 Contributions
	1.2.1 Improving IaaS experiments using realistic users’ behavior
	1.2.2 Computing oversubscription ratios under stability consideration
	1.2.3 Introducing per-vCPU oversubscription
	1.2.4 Balancing complementary oversubscription levels
	1.2.5 Overview of contributions related to oversubscription

	1.3 List of Scientific Publications
	1.4 Other contributions
	1.5 Outline

	2 Background
	2.1 IaaS context
	2.2 IaaS experiments
	2.2.1 Platforms used for experiments
	2.2.2 Input used for experiments

	2.3 IaaS scheduling
	2.3.1 Orchestrators
	2.3.2 Host internal scheduling

	2.4 Improve packing beyond orchestration
	2.4.1 Evictable VMs
	2.4.2 Harvesting VMs
	2.4.3 Disaggregated resources
	2.4.4 Oversubscription techniques
	2.4.5 Summary of usage improvement techniques

	3 Improving IaaS experiments using realistic users' behavior
	3.1 CloudFactory overview
	3.2 Compute high-level statistics
	3.2.1 Statistics identification
	3.2.2 Computing usage
	3.2.3 Periodicity ratio
	3.2.4 Computing VM distribution
	3.2.5 Departure & arrival ratios
	3.2.6 Profiles examples on Azure dataset
	3.2.7 Generated statistics.

	3.3 Generate production-scale workloads
	3.3.1 On VM configuration generation
	3.3.2 On VM behavior generation
	3.3.3 A few words on reproducibility

	3.4 Exporters
	3.4.1 CloudSimPlus
	3.4.2 Bash
	3.4.3 CBTOOL
	3.4.4 Others exporters

	3.5 Case study
	3.5.1 Generate distributions
	3.5.2 Generate usage profiles
	3.5.3 Experiment
	3.5.4 Results
	3.5.5 Adoption by the Cloud industry

	3.6 Limitations
	3.7 Conclusion

	4 Computing oversubscription ratios under stability consideration
	4.1 Greedy oversubscription with ScroogeVM
	4.1.1 Principles of greedy oversubscription
	4.1.2 Implementation of ScroogeVM

	4.2 Empirical analysis
	4.2.1 Experimental settings & evaluation protocol
	4.2.2 Impact of the sampling period
	4.2.3 Impact on the VM performances

	4.3 Validation
	4.4 Conclusion

	5 Introducing per-vCPU oversubscription
	5.1 Motivation
	5.1.1 Not all vCPUS are equally used
	5.1.2 Introducing vertical oversubscription

	5.2 Implementation details
	5.2.1 Local scheduler
	5.2.2 Segregate physical cores
	5.2.3 Pool heterogeneity requirements
	5.2.4 Oversubscription templates

	5.3 Empirical evaluation
	5.3.1 On core priority
	5.3.2 On workload generation
	5.3.3 Experimental IaaS platform
	5.3.4 Experimental results
	5.3.5 On the provisioning of small VMs

	5.4 Conclusion

	6 Balancing complementary oversubscription levels
	6.1 Cloud resource balance
	6.1.1 Cloud allocations
	6.1.2 Cloud resources collapse differently

	6.2 SlackVM overview
	6.3 Local scheduler
	6.3.1 Topology-driven resizing of vNodes
	6.3.2 Leveraging workloads diversity in vNodes

	6.4 Global scheduler incentive
	6.5 Empirical evaluation
	6.5.1 Evaluation in the wild
	6.5.2 Evaluation at scale

	6.6 Conclusion

	7 Conclusion
	7.1 Contributions
	7.1.1 Improving IaaS experiments using realistic users' behavior
	7.1.2 Computing oversubscription ratios under stability consideration
	7.1.3 Introducing per-vCPU oversubscription
	7.1.4 Balancing complementary oversubscription levels

	7.2 Perspectives
	7.2.1 Short-term perspectives
	7.2.2 Long-term perspectives

	References

