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Abstract
The lamina cribrosa (LC) is a 3D collagenous mesh in the optic nerve head that

plays a crucial role in the mechanisms and diagnosis of glaucoma, the second leading
cause of blindness in the world. The LC is composed of so-called “pores”, namely axonal
paths within the collagenous mesh, through which the axons pass to reach the brain.
In vivo 3D observation of the LC pores is now possible thanks to advances in Optical
Coherence Tomography (OCT) technology. In this study, we aim to automatically
perform the 3D reconstruction of pore paths from OCT volumes, in order to study the
remodeling of the lamina cribrosa during glaucoma and better understand this disease.

The limited axial resolution of conventional OCT as well as the low signal to noise ra-
tio (SNR) poses challenges for the robust characterization of axonal paths with enough
reliability, knowing that it is difficult even for experts to identify the pores in a single
en-face image. To this end, our first contribution introduces an innovative method to
register and fuse 2 orthogonal 3D OCT volumes in order to enhance the pores. This
is, to our knowledge, the first time that orthogonal OCT volumes are jointly exploited
to achieve better image quality. Experimental results demonstrate that our algorithm
is robust and leads to accurate alignment.

Our second contribution presents a context-aware attention U-Net method, a deep
learning approach using partial points annotation for the accurate pore segmentation
in every 2D en-face image. This work is also, to the best of our knowledge, the first
attempt to look into the LC pore reconstruction problem using deep learning methods.
Through a comparative analysis with other state-of-the-art methods, we demonstrate
the superior performance of the proposed approach.

Our robust and accurate pore registration and segmentation methods provide a
solid foundation for 3D reconstruction of axonal pathways, our third contribution. We
propose a pore tracking method based on a locally applied parametric active contour
algorithm. Our model integrates the characteristics of low intensity and regularity of
pores. Combined with the 2D segmentation maps, it enables us to reconstruct the
axonal paths in 3D plane by plane. These results pave the way for the calculation of
biomarkers characterizing the LC and facilitate medical interpretation.

Key words: lamina cribrosa, OCT, 3D reconstruction, pore segmentation, 3D
image registration, U-Net.



Résumé
La lame criblée (LC), située dans la tête du nerf optique, joue un rôle crucial dans le

diagnostic et l’étude du glaucome, la deuxième cause de cécité. Il s’agit d’un maillage
collagénique 3D formé de pores, par lesquels les fibres nerveuses passent pour atteindre
le cerveau. L’observation 3D in vivo des pores de la LC est désormais possible grâce
aux progrès de l’imagerie de tomographie de cohérence optique (OCT). Dans cette
étude, nous visons à réaliser automatiquement la reconstruction 3D des pores à partir
de volumes OCT, afin d’étudier le remodelage de la LC au cours du glaucome.

La résolution limitée de l’OCT conventionnel ainsi que le faible rapport signal à bruit
(SNR) posent des problèmes pour caractériser les chemins axonaux avec suffisamment
de fiabilité et de précision, sachant qu’il est difficile, même pour des experts, d’identifier
les pores dans une seule image en-face. Ainsi, notre première contribution est une
méthode innovante de recalage et de fusion de deux volumes OCT 3D orthogonaux
pour l’amélioration de la qualité d’image et le rehaussement des pores, ce qui, à notre
connaissance, n’avait jamais été réalisé. Les résultats expérimentaux démontrent que
notre algorithme est robuste et conduit à un alignement précis.

Notre deuxième contribution est la conception d’un réseau de neurones profond, de
type attention U-net, pour segmenter les pores de la LC dans les images 2D en-face. Il
s’agit de la première tentative de résolution de ce problème par apprentissage profond,
les défis posés relevant de l’incomplétude des annotations pour l’apprentissage, du faible
contraste et de la mauvaise résolution des pores. L’analyse comparative avec d’autres
méthodes montre que notre approche conduit aux meilleurs résultats.

La fusion des volumes OCT et la segmentation des pores dans les images en-face
constituent les deux étapes préliminaires à la reconstruction 3D des trajets axonaux,
notre troisième contribution. Nous proposons une méthode de suivi des pores fondée
sur un algorithme de contour actif paramétrique appliqué localement. Notre modèle
intègre les caractérisques de faible intensité et de régularité des pores. Combiné aux
cartes de segmentation 2D, il nous permet de reconstituer plan par plan les chemins
axonaux en 3D. Ces résultats ouvrent la voie au calcul de biomarqueurs et facilitent
l’interprétation médicale.

Mots clés: lame cribée, OCT, reconstruction 3D, recalage d’images 3D, segmen-
tation des pores, U-Net, modules d’attention, annotations partielles.
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The eye is an organ that captures and processes light waves allowing us to interact
with the surroundings. In order to better understand the principle of vision, we need
to know how different structures of the eye cooperate to produce a sharp image. One
of the main motivations of the ophthalmology research is to figure out the mechanisms
responsible for the degeneration in some pathology, in order to limit their progression.

In this chapter, we first describe the medical context of this research in section
1.1. Then, we present the basic principles of the optical coherence tomography (OCT)
in sections 1.2, an imaging technique useful to observe the detailed structure of the
lamina cribrosa, which is the research topic of this thesis. Section 1.3 describes the
research objectives, and section 1.4 presents the challenges and contributions of this
thesis. Finally, we list the thesis outline in section 1.5 and conclude this chapter.

1



Introduction

(a) Eye anatomy (b) ONH section (c) lamina cribrosa

Figure 1.1: Illustration of a human eye. (a) Anatomy of the human eye. (b) Histologic section through
the optic nerve head region illustrating the laminar cribrosa (LC). (c) 3D reconstruction of the beams
and pores of the LC. The LC is presumed to be the principal site of damage in glaucoma.(Adapted
from (Grytz et al., 2016)).

1.1 Medical Context

1.1.1 Anatomy of the Eye

Human eyeball is a cystic structure located within a protective bony cavity whose
transverse diameter is up to 27 mm. Although small in size, the eye provides us with
the most important of the five senses - vision.

Different structures work together step-forwardly to make a sharp vision, as shown
in Figure 1.1 for the eye anatomy. Specifically, vision comes when light enters the eye
via the pupil, and then the light is directed towards the lens with the help of other
eye structures. Then acting as the lens in a camera, human lens refracts the light
onto the retina. The retina, which is a light-sensitive structure, transforms the light
into electrical energy that is sent to the optic disk, where the electrical energy will be
conveyed into electrical impulses along the optic nerve to be processed by the brain.

The optic nerve may be divided into four topographic areas: optic nerve head
(∼ 1 mm), intraorbital (∼ 30 mm), intracanalicular (∼ 7 mm), and intracranial (∼
10 mm). The anatomy in Figure 1.1a only illustrates the optic nerve head and the
intraorbital regions. In this thesis, we will focus on the optic nerve head which is the
beginning of the optic nerve and the principal site of damage of many eye diseases.
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1.1. Medical Context

1.1.2 Lamina Cribrosa

The lamina cribrosa (LC, as illustrated in Figure 1.1) is a mesh-like structure
at the optic nerve head (ONH) that surrounds and supports the retinal ganglion cell
(RGC) axons. In detail, the collagen structures of corneal scleral shell (Figure 1.1a)
provide the structural integrity necessary to resist the intraocular pressure (IOP) load.
At the posterior side of the scleral shell, the collagen structure is interrupted to form
the scleral canal through which the RGC axons pass on their way from the retina to the
brain. The tissues within in the scleral canal can be histologically divided into three
regions (Figure 1.1b): in the prelaminar region, the RGC axons converge to form the
optic nerve. Posterior to the prelaminar region is the LC. The LC is characterized by
a porous collagenous structure (Figure 1.1c), where the RGC axons pass through the
pores of the lamina cribrosa. The collagen architecture of the LC provides mechanical
support to the RGC axons as they pass from the high pressure environment in the eye
to the lower pressure environment in cerebrospinal fluid space. Posterior to the lamina
cribrosa is the retrolaminar region, where the RGC axons become myelinated.

Glaucoma is an optic neuropathy that is the leading cause of irreversible, pre-
ventable blindness, affecting around 50 million people worldwide in 2010, going up to
80 millions in 2020 based on prevalence studies (Tham et al., 2014) The typical glauco-
matous visual losses, shown in Figure 1.2, is called tunnel vision, where a person only
sees what is directly in front of him. IOP is the most important treatable risk factor
for glaucoma, but many other non-IOP risk factors have also been reported in con-
tributing to glaucoma pathogenesis, including age (Leske et al., 2007), myopia (Suzuki
et al., 2006), vascular risk factors (Grzybowski et al., 2020), and abnormalities in the
LC (Faridi et al., 2014). Therefore, many researches suggest that glaucoma should
be considered as a multifactorial disease. However, affected individuals are typically
asymptomatic until later stages of the disease, so that a large proportion of them re-
main undiagnosed. Meanwhile, the glaucoma can be prevented with early diagnosis
and treatment. As a consequence, the efforts to improve early diagnosis of glaucoma
are essential to reduce the consequences of visual impairment and blindness.

Although the causes of glaucoma is still unclear, histological studies have identi-
fied the LC as the first site of the RGC axonal lesions in glaucoma (Quigley et al.,
1981): The glaucomatous LC is subjected to compression/shear forces in response to
increased IOP. This distorts the RGC axons within the LC pores. Since then, many
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Figure 1.2: An example of normal vision (left) compared to what a person suffering from glaucoma
(right) may be able to see (Wylee, 2023).

experimental studies have been conducted and demonstrated, on the one hand, the
global deformations of the LC morphology such as the LC thickness (Omodaka et al.,
2015), the LC curvature (Kim et al., 2016), and the anterior boundary of the LC (Tan
et al., 2015). On the other hand, detailed LC pore changes like increase of area and
elongation (Vilupuru et al., 2007), have also been observed. However, most of those
researches are limited to analyze the LC only in 2D images of different modalities, with-
out looking at the 3D pore paths through which the axons pass. In recent years, thanks
to the progress in ophthalmic imaging technologies, especially the optical coherence
tomography (OCT), it is now possible to image the LC pores in vivo in 3D, allowing
the researchers to look into the deeper part of the optic nerve, and in particular the
LC pores. Other recent researches also suggested that the LC pore damages may occur
early, or even precede the first axonal lesions (Downs and Girkin, 2017). Therefore, it
is of great interest to characterize the LC pores in 3D and assess changes over times, in
order to further understand the pathogenesis of glaucoma, improve diagnosis and and
develop new means of preventing or treating glaucoma.

To this end, our research work aims at segmenting the LC pores in 3D, in order
to provide a 3D reconstruction of the main axonal pathways. Biomarkers will then be
derived to model the LC and characterize deformations occurring over time.

1.2 Optical Coherence Tomography

1.2.1 Imaging Modalities in Ophthalmology

Ophthalmic imaging is important in clinical diagnosis and individualized treatment
of eye diseases, and it has experienced progress in the past century (Kenry et al.,
2018) to provide images of different eye structures with better quality, especially better
resolution. Today, such imaging systems make it possible to monitor eye diseases such
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(a) Fundus photography (b) SLO (c) AO fundus photography

Figure 1.3: Optic nerve imaged by (a) fundus camera,(b) scanning laser ophthalmoscope (SLO) and
(c) Adaptive optics (AO). Adaptive optics offers the highest resolution to reveal details of the LC.
(Bennett, 2020; Zwillinger et al., 2016)

as glaucoma and to assess the evolution of the pathology over time. They are of high
interest for patient follow-up and clinical studies.

In practice, a number of different modalities, such as conventional fundus imaging,
scanning laser ophthalmoscopy and optical coherent tomography, are used to image
the human eyes. These modalities are complementary, each one has its advantages.

In this section, we present different ocular imaging techniques that have been de-
signed to improve the visualization of ocular pathophysiology, and more specifically,
the OCT imaging technique that allows us to visualize the LC pores in 3D, offering
the opportunity of investigating into its morphological changes in glaucoma patients.

Fundus photography. Fundus camera is a specialized low power microscope with
an attached camera introduced in the mid 19th century. It works by capturing a photog-
raphy of the posterior chamber of the eye that could show the structures of the central
and peripheral retina, retinal vessels, optic disc and macula (Figure 1.3a). Through
the fundus photography, the appearances of retinal diseases could be visualized such as
the damage to the optic nerve by glaucoma. With the technology development, fundus
photography can also be performed with colored filters, or with specialized dyes.

Fundus photography provides a bird’s view of the top most layer, the inner limiting
membrane, as well as the vascular network. While optic nerve have different compo-
nents (the LC, the prelaminar, etc.) that have specific functions in visual perception,
different abnormalities often begin in a particular one before spreading into the others.
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(a) TD-OCT (b) SS-OCT (c) SD-OCT

Figure 1.4: Schematic of different OCT techniques. Main differences are highlighted in red.

The fact that fundus camera could not offer specific depth examination of the optic
nerve prevent it from offering early and accurate diagnosis of glaucoma.

Scanning Laser Ophthalmoscope (SLO). Scanning laser ophthalmoscope
(SLO) is an eye examination method based on confocal laser scanning microscope
for eye imaging. By scanning a point source rapidly across the retina with horizontal
and vertical scanning mirrors, images of specific retina areas could be created, so that
SLO could resolve optic nerve structure at microscopic level.

However, due to optical aberrations caused by the propagation of waves in the
eye, using standard fundus photography or SLO to monitor individual cells is still
problematic as the pixel resolution is too low. Therefore, to resolve cellular structure
of the eye, adaptive optics (AO) techniques have been added to them to achieve better
lateral resolution (Webb et al., 1987; Roorda and Williams, 1999). Theses systems
are called AO-fundus photography and the AO-SLO, respectively (see Figure 1.3c).
Further invention has also pushed the AO technique to achieve much higher lateral
resolution (Roorda et al., 2002), larger field view (Ferguson et al., 2010), and the
ability to visualize the distribution of cone photoreceptors around the fovea (Dubra
et al., 2011).

Although AO techniques provide high lateral resolution with good axial resolution,
the nature that the axial resolution is dependent on the numerical aperture of the eye
still limits the axial sectioning ability, where only superficial layers of the LC could
be assessed from a 3D reconstruction of a series of SLO images (Fitzke and Masters,
1993).
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1.2.2 Optical Coherence Tomography

To overcome the mentioned disadvantages of fundus camera and SLO modalities
for the imaging of the LC, another well-established imaging modality, called optical
coherence tomography (OCT), is used in our research to obtain real-time 3D in vivo
volumetric images. By measuring the magnitude and echo time delay of backscattered
light, OCT devices provide micron-level resolution and millimeters of imaging depth.
Compared with other imaging methods, its non-invasiveness, high resolution, high
sensitivity, low cost and easy to use advantages make OCT a powerful imaging modality
with applications across many clinical fields. In this section, we explained more details
on OCT imaging technologies.

OCT techniques. Since the invention of OCT technique in the early 1990s (Huang
et al., 1991), 2 main OCT principles have been developed to create images for the
desired tissue depth range, namely the time-domain OCT (TD-OCT) and the Fourier-
domain OCT (FD-OCT), as shown in Figure 1.4.

In a TD-OCT system, a reference mirror is moved mechanically to different posi-
tions, resulting in different flight time delays for the reference arm light. With the
need for the scanning of reference mirror, the acquisition speed and signal-to-noise
(SNR) with TD-OCT techniques is limited, that is why the FD-OCT techniques were
developed with increased imaging speed and system sensitivity leading to higher SNR
score.

In a FD-OCT system, axial line scans are acquired by the Fourier transform of the
frequency encoded profiles principally using one of the two methods: the swept-source
OCT (SS-OCT) and the spectral-domain OCT (SD-OCT). In both approaches, the
backscattering signals are detected in frequency domain, which means the backscat-
tered depth information at a given location could be collected without the movement
of a reference mirror. The frequency information could be acquired with a broad-
bandwidth light source in SD-OCT, or by sweeping a narrow-bandwidth light source
through a broad range of frequencies in SS-OCT. A-scans (Figure 1.5) in both cases are
obtained using a Fourier-transform of the detected frequencies, which facilitates rapid
A-scan collection. In addition to improved speed, FD-OCT also offers the advantage
of higher detection sensitivity, which means, higher SNR score.

3D OCT. The commercially available TD-OCT allows collecting of up to 400 A-
scans (Figure 1.5) per second, which is quite slow and not suitable for 3D imaging,
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Figure 1.5: 3D OCT scanning system schematic centering on the optic nerve head.

because of motion artifacts, safety requirements limiting the amount of light that can
be projected onto the retina, and patient comfort, 1–3 seconds per image or volume is
essentially the limit of acceptance. However, with the improved speed of SD-OCT up to
tens of thousands of A-scans per second, it is now possible to provide 2D cross-sectional
(B-scan) and thus 3D volumetric internal sample structures (C-scan) by laterally scan-
ning the optical beam and performing axial measurements of echo time delay (A-scan),
as we can observe from Figure 1.5. Consequently, 3D OCT is now in wide clinical use
and has become the standard of care.

EDI SD-OCT. Enhanced depth imaging SD-OCT (EDI SD-OCT) system places
the objective lens of the SD-OCT closer to the eye, so that a stable inverted image is
produced. The result of this practice is that the sensitivity is increased for imaging
deeper layer structures. Compared with traditional OCT, this image can display the
LC structure more clearly and helps to accurately reconstruct the LC in 3D (Girard
et al., 2015).

Figure 1.6 shows an example of OCT slices forming the 3D OCT data. The pore
pathways appear dark curves. These pathways are normally oriented vertically towards
the depth of the ONH (larger X), allowing axons to pass to the brain. But one path
might be less visible or seems interrupted in some slices due to the pore tortuosity, as
pointed by blue arrows.

In summary, compared to other modalities, OCT allows to image the eye structures
in 3D, which is indispensable for the analysis of LC pore morphological properties.
Since LC is located deep in the eye and LC pores are small in size, high axial resolution
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Figure 1.6: Three successive OCT slices (top row) using the Heidelberg Spectralis SD-OCT device
under EDI mode. Each 3D volume consists of 131 such slices. The LC region is highlighted in
a red box on the top row, and on the zoom view (bottom row). In the zoom view, dark curves
correspond to parts of pore pathways. Blue arrows indicate the same pathway that might be less
visible or interrupted in some slices. The axial resolution (X axis) and the lateral resolution (Y axis)
are 4µm/pixel and 7µm/pixel, respectively. The sampling step between two successive B-scan slice is
around 15µm. The X axis corresponds to the depth in the ONH.

is required for the OCT devices. To this end, the EDI SD-OCT techniques have been
proposed to provide faster and more accurate scans.

1.3 Research Objectives

This research project is supported by ISEP and Institut de la Vision, an international
research centre dedicated to eye diseases. At their clinical centre, several advanced
SD-OCT devices have been provided to better image different eye structures, including
the LC. Being able to conduct this study with the medical experts has granted us
opportunities to gather insights from medical experts and finally validate our method
for clinical usages.

The Heidelberg Spectralis SD-OCT device offers good LC visibility, and it is possible
to scan the LC in two orthogonal directions: horizontal and vertical. The resulting
(orthogonal) OCT volumes give us the idea to model the LC pores in detail, despite of
the challenges such as the low signal to noise ratio (SNR) and the visibility of pores.
The modeling of LC pores might allow us to calculate some biomarkers such as the
tortuosity and the verticality, to eventually investigate into the pore morphological
changes of glaucomatous patients.
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In this thesis, we fully explore the pore information in SD-OCT C-scan volumes to
reconstruct their pathways in 3D and to help the medical experts better understand
the glaucoma. The goal is to design and implement an innovative 3D pore reconstruc-
tion method, capable of enhancing the pore features in a low SNR image, segmenting
pores in en-face images despite partially annotated data and, finally, tracking the pore
pathways based on the segmentation results.

1.4 Challenges and Contributions
The main challenge of 3D pore reconstruction is the low signal-to-noise ratio of OCT

images and image defects, such as blood vessel shadowing or scanning artifacts. Also,
considering the fact that the LC region is deeper than any retina layers, the attenuation
in the LC region is more important than other structures. In additions, pores in the LC
are small in size (compared to the voxel size) and weakly contrast to the surrounding
tissue, which complicate the reconstruction problem.

In response to this, we proposed a registration algorithm to jointly exploit pore
features in orthogonal OCT volumes acquired from the same examination with the same
OCT device. Our experiment have shown good matches between counterpart pores
in registered volumes, with high cross-correlation score. The registered orthogonal
volumes are fused to get enhanced pores with better resolution.

Those contributions to the OCT volume registration method led to the following
two publications:

• Nan Ding, Florence Rossant, Hélène Urien, Jérémie Sublime, Michel Paques. 3D
orthogonal SD-OCT volumes registration for the enhancement of pores in Lamina
Cribrosa. 20th International Symposium on Biomedical Imaging (ISBI). IEEE,
2023. (Ding et al., 2023)

• Florence Rossant, Nan Ding, Hélène Urien, Jérémie Sublime, Paul Bastelica,
Christophe Baudouin, Michel Paques. Recalage des volumes OCT 3D orthogo-
naux pour le rehaussement des pores de la lame criblée. GRETSI, 2023. (Rossant
et al., 2023)

The second challenge is to build a dataset with reliable manual annotations (gold
standard) in OCT volumes. The boundary between the pores and the tissue is normally
not clear, making the manual delineation difficult, especially in the borders of the optic
disc, and the upper and lower limits of the LC. Moreover, pores are numerous in the en-

10



1.5. Thesis Outline

face images, approximating 227± 36 according to a ex vivo study (Jonas et al., 1991).
As a result, due to the relatively low resolution of the OCT images, their noisy nature,
and the small size and large amount of pores in the image, the manual annotation
process is very challenging as even medical experts tend to disagree on what is a pore
or not.

As a result, we proposed a context-aware attention U-Net to segment the pores using
partial point annotation. By identifying the largest pores that allow most axons to
pass, the medical experts are liberated from the heavy annotation task. Our proposed
method is efficient in predicting pore candidates, thanks to the context-aware design
and the attention gates integrated into the network.

Those contributions to the pore segmentation method in en-face images led to the
following two publications:

• Nan Ding, Hélène Urien, Florence Rossant, Jérémie Sublime, Michel Paques.
Context-aware Attention U-Net for the segmentation of pores in Lamina Cribrosa
using partial points annotation. 21st International Conference on Machine Learn-
ing and Applications (ICMLA). IEEE, 2022. (Ding et al., 2022b)

• Nan Ding, Hélène Urien, Florence Rossant, Jérémie Sublime, Paul Bastelica,
Michel Paques. Attention U-Net pour la Segmentation des Pores de la Lame
Criblée. GRETSI, 2022. (Ding et al., 2022a)

Finally, with the robust segmentation result, we proposed a simple yet efficient
active contour based tracking method to reconstruct pore paths. Our method explic-
itly models the main features of axonal pathways, namely the low intensity and the
regularity.

Those contributions to the 3D pore reconstruction method led to the following
publication:

• Nan Ding, Florence Rossant, Hélène Urien, Jérémie Sublime, Paul Bastelica,
Christophe Baudouin, Michel Paques. A complete method for the 3D recon-
struction of axonal pathways from 2 orthogonal 3D OCT images of the Lamina
Cribrosa. International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2024. (Ding et al., 2024)

1.5 Thesis Outline
We organize the thesis as follows:
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• Chapter 2 presents existing two works on the LC pore reconstruction. As they are
not sufficient to provide an overview of the state of the art related to our work,
we also review methods dedicated to OCT image analysis in general, and in 3D
in particular.

• Chapter 3 first introduces the dataset used in our research project. Then it
presents the proposed pre-processing method to enhance pore features and to
select the optimal volume-of-interest (VOI) for further processing.

• Chapter 4 presents the proposed method to register two orthogonal VOI to further
enhance pore features in a fused image.

• Chapter 5 presents the proposed context-aware attention U-Net to segment pores
in every 2D en-face images, with partially annotated pores as ground truth.

• Chapter 6 presents the reconstruction of the pore pathways in 3D, with a tracking
approach based on a dedicated active contour model.

• Chapter 7 concludes the thesis and offers perspectives for future work.

1.6 Conclusion
OCT is an non-invasive imaging technique that has developed rapidly over the

last few decades, and now offers high resolution scans and high speed scanning rate.
Thanks to recent advances in OCT imaging, such as the 3D-OCT based on the Fourier
transform, it is now possible to scan the ONH and more specifically the LC in detail
and in 3D.

However, the automatic reconstruction of the axonal pathways in 3D is very chal-
lenging for three main reasons: low image resolution given the pore size, poor signal
to noise ratio and presence of artifacts, and the difficulty of relying on reliable and
exhaustive annotated data. The proposed thesis work aims to solve these issues and
propose a robust and accurate algorithm for reconstructing the main axonal pathways
of the LC from two 3D OCT images acquired in two orthogonal scan directions.
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Chapter 2

Related work on OCT image analysis
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Since the use of OCT is relatively new in ophthalmic care compared to other modal-
ities, processing OCT images using image analysis techniques has a shorter history.
Nevertheless, it is rapidly growing especially as 3D volumetric scans of the ONH have
been enabled with SD-OCT technology. As a result, it is important to develop ad-
vanced image analysis techniques for the in vivo reconstruction of the lamina cribrosa
(LC) to better understand the glaucoma disease. However, few studies have addressed
this reconstruction problem, mainly due to the limited visibility of the LC, not only
because of the low SNR, but also the pore size of the LC being too small to be observed
in some populations.

In this chapter, we first review the few existing works on the 3D reconstruction of
LC pores. Then we present the state of the art methods for related but broader tasks
in OCT image analysis especially for the ONH related tasks. We majorly review the
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approaches related to enhancement, registration and segmentation, which can inspire
us to better solve problems. Finally, we conclude this chapter by explaining the position
of our work in relation to the existing literature.

2.1 3D Reconstruction of the Lamina Cribrosa

(a) (Rossant et al., 2017)

(b) (Wang et al., 2018). A particle tracking algorithm is applied after the segmentation step (5).

Figure 2.1: State-of-the-art methods for the 3D LC pore reconstruction.

The visualization of the structure of the LC with OCT has enabled researches on
the global morphological modifications of the LC, such as the modified anterior surface
features in 2D OCT slices (Tan et al., 2015; Kiumehr et al., 2012) and in 3D OCT
volumes (Ren et al., 2014), or the decreased LC thickness in glaucomatous patients
using 2D OCT images (Park et al., 2012; Devalla et al., 2018b) or 3D volumes (Omodaka
et al., 2015), where the LC thickness is defined as the distance between the anterior and
posterior borders of the highly reflective region. A number of groups have proposed
methods for quantifying the LC pore structure alterations, such as larger and more
elongated pores in glaucoma, with other image modalities, namely Adaptive Optics
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(AO) (Vilupuru et al., 2007; Zwillinger et al., 2016) or standard fundus photography
(Tezel et al., 2004). LC pore paths cannot be characterized with these methods that
rely only on one 2D image per eye. Therefore, two groups, including ourselves, have
proposed methods to model the pores of the LC in 3D and in vivo (Rossant et al.,
2017; Wang et al., 2018) (see Figure 2.1), thanks to the progress in 3D OCT imaging
techniques.

In detail, both methods could be divided into three steps: the pre-processing of 2D
en-face images for pore enhancement and noise reduction, the pore segmentation step
to extract pores in 2D en-face images, and finally the tracking step to link the pores
in adjacent en-face images. For the pre-processing step, authors in (Wang et al., 2018)
used the 3D Gaussian filter to reduce high frequency noise, and the contrast limited
adaptive histogram equalization (CLAHE) (Niblack, 1985) algorithm to equalize local
intensity differences. In (Rossant et al., 2017), authors proposed to use the alternating
sequential filters (Gonzalez, 2009) to denoise and to enhance pore features.

As for the segmentation step, authors in (Wang et al., 2018) used the adaptive local
thresholding (Niblack, 1985), as well as a 3D median filter with a kernel size of 1×1×3 to
take into account the continuity of pores in adjacent en-face images, while in (Rossant
et al., 2017) the pores are selected as distant local minima of intensity. Finally, to
individually track the segmented pores in 3D along different en-face images, authors in
(Wang et al., 2018) used the particle tracking algorithm provided by MTrack2 software
(Stuurman, 2003), while authors in (Rossant et al., 2017) used a Kalman filter (Welch
et al., 1995) and a parametric snake model (Kass et al., 1988) to reconstruct pore
pathways.

Besides these two methods, we want to explore more possibilities for the LC pore re-
construction task, especially deep learning based methods which have largely improved
the performance of medical image analysis. To this end, we also review the state-of-
the-art methods that might inspire us to better address the problem: pre-processing
methods for OCT image enhancement and denoising, 3D-OCT volume registration and
segmentation methods. The review is limited to OCT images, emphasizing the ONH
analysis methods in which the LC is involved.

2.2 OCT Image Enhancement

Image enhancement is a typical pre-processing step in medical image analysis.
Generic approaches for image enhancement have been employed for all eye imaging
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modalities. Nonetheless, in order to address the problem pertinent only to OCT, many
approaches have been proposed. Specifically, two main classes of methods for OCT
image enhancement have been proposed, namely noise reduction and feature enhance-
ment.

2.2.1 Noise Reduction

In OCT imaging, one of the broadly addressed noise is the speckle noise due to
the retina reflectivity. OCT noise reduction techniques can be divided into two ma-
jor groups: hardware approaches through fusion of multiple acquisitions and software
techniques applied to post-acquisition data.

Hardware approaches require multiple scans of the same target which are com-
bined to generate a fused image with improved image quality. Therefore, the com-
pounding techniques have been widely investigated, including spatial compounding
(Avanaki et al., 2013), angular compounding (Schmitt, 1997), polarization compound-
ing (Kobayashi et al., 1991) and frequency compounding (Pircher et al., 2003) methods,
mainly for speckle noise reduction in 2D OCT slices. The more images used for the
compounding, the better the noise minimization and the tissue structure enhance-
ment. Unfortunately, these methods require multiple scanning of the same targets,
significantly prolonging the acquisition time, so they are not preferred for volumetric
data.

Many methods of the second class have been proposed in the image processing
community. The basic and commonly used methods are the convolution-based filters,
and an example is the Gaussian filter that blurs and removes details. Authors in (Tan
et al., 2008; Chiu et al., 2010) used the 2D Gaussian filter to denoise a single frame
B-scan OCT image, while authors in (Nadler et al., 2013) chose the 3D Gaussian filter
to reduce high frequency noise for C-scan OCT volumes. Due to the fact that the
frequency response of most convolution-based filter are lowpass frequency filters, high
frequencies in an image are attenuated after the filtering, thus the edges.

To better preserve the edges and the main structures, the well-known methods in the
literature are based on the anisotropic diffusion technique (Perona and Malik, 1990).
By applying Laplacian pyramid image decomposition, the frequency sub-bands of the
images are obtained. In each decomposition layer, diffusion coefficients controlling the
smoothness are computed separately, preserving the lines and structures. Since the
invention, anisotropic diffusion technique has been widely applied for speckle noise
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reduction in OCT images. For example, authors in (Wang, 2005) used the 2D image
gradient to calculate the diffusion coefficient without considering the presented noise.
On the contrary, authors in (Puvanathasan and Bizheva, 2009) proposed to use Type
II fuzzy sets to estimate the uncertainty in the diffusion process and thus to adjust the
diffusion coefficient. The main problem with regular anisotropic diffusion algorithms
is the large number of iterations before reaching a steady state, which implies bigger
time consumption. Also the algorithm is not well performing in a low SNR image (Aja
et al., 2001).

Another widely used method for denoising OCT images is wavelet thresholding
(Adler et al., 2004; Hongwei et al., 2011). Spatial domain images are decomposed into
wavelet coefficients by choosing an appropriate wavelet family such as the dual-tree
complex wavelet transform (DT-CWT). As the noise is evenly distributed between
different wavelet coefficients, while the informative content are mainly centered on
several coefficients with high magnitude, the wavelet coefficients could be selected by
defining an optimal threshold to reduce the noise. The resulting thresholded coefficients
are finally used to reconstruct the spatial domain image.

For our dataset, the noise reduction algorithm, especially the speckle noise reduction,
is not necessary because, firstly, the Heidelberg Spectralis SD-OCT device already
integrated a speckle noise reduction algorithm in the latest software, secondly, if there
is still too much noise in the images, we can already exclude it since in this case, the
LC pores are too poorly contrasted to be identified. Moreover, if the above denoising
algorithms were applied to our source dataset, it is very likely that we would damage
the pore paths because of their small size and discontinuity in one single 2D B-scan
image.

2.2.2 Feature Enhancement

Another image enhancement class focus on feature enhancement to get the targeted
structure more contrasted to their surroundings. Authors in (Nadler et al., 2013; Xie
et al., 2020) used the adaptive histogram equalization (AHE) technique to enhance
the contrast in noisy OCT images, while the morphological filters have been used in
(Rossant et al., 2017; Shehryar et al., 2020) to extract main features. We will go in
details of the morphological filters that can denoise and enhance the features at the
same time.
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Gray-scale morphological filters

Mathematical morphology aims at quantitatively describing the geometrical struc-
ture of image objects (Maragos and Pessoa, 1999). They are suitable for shape analysis
and play an important role in geometry-based enhancement.

We denote the gray-scale image f(x, y) and the flat structuring element b(x, y). The
most fundamental morphological filters, namely the erosion (⊖) and dilation (⊕) at
location (x, y) of the image f , are given as

[f ⊖ b](x, y) = min
(s,t)∈b

f(x+ s, y + t) (2.1)

[f ⊕ b](x, y) = max
(s,t)∈b̂

f(x− s, y − t) (2.2)

The erosion is determined by selecting the minimum value of f in the region coincident
with b. Similarly, the dilation of f by b is defined as the maximum value of the image
in the window spanned by b̂, given that b̂(c, d) = b(−c,−d).

Based on the erosion and dilation operations, we can define two other important
morphological filters: opening(◦) and closing(•).

[f ◦ b] = (f ⊖ b)⊕ b (2.3)

[f • b] = (f ⊕ b)⊖ b (2.4)

Cascading the opening and closing operations is called alternating sequential filters,
where the opening–closing sequence starts with the original image, which smooth pro-
gressively from the smallest scale possible up to a maximum scale. Alternate sequential
filters have a broad range of applications (Serra, 1982).

Another powerful morphological transformation is the morphological reconstruction,
in which two gray-scale images and the structuring element b are involved. One image,
the marker f , contains the starting points for reconstruction. The other image, the
mask g, constrains the conditions for the reconstruction. Morphological reconstruction
might be thought as the repeated dilations of the marker image until its contour fits
under the mask image. Morphological reconstruction by dilation of a mask image g
by a marker image f , denoted by RD

g (f), is defined as the geodesic dilation of f with
respect to g, iterated until stability is reached.

RD
g (f) = D(k)

g (f), with k such that D(k)
g (f) = D(k+1)

g (f) (2.5)
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where the geodesic dilation of size k of f with respect to g is defined as

D(k)
g (f) = D(1)

g (D(k−1)
g (f)), with D(0)

g (f) = f (2.6)

and the geodesic dilation of size 1 is defined as

D(1)
g (f) = (f ⊕ b) ∧ g (2.7)

where ∧ denotes the point-wise minimum operator, and the geodesic dilation of size 1
is obtained by computing the dilation of f by b, then selecting the minimum between
the result and g at every point (x, y). Similarly, the morphological reconstruction by
erosion is defined as:

RE
g (f) = E(k)

g (f), with k such that E(k)
g (f) = E(k+1)

g (f) (2.8)

E(k)
g (f) = E(1)

g (E(k−1)
g (f)), with E(0)

g (f) = f (2.9)

E(1)
g (f) = (f ⊖ b) ∨ g (2.10)

Based on those morphological, authors in (Rossant et al., 2017) used the bottom-hat
filter (IBH) to enhance the dark spots (pores) larger than the structuring element.

IBH = 1− ((I •D3)− I) (2.11)

where D3 is the structuring element with a disk of radius 3. They also defined a series
of alternating sequential filters (i = 1, 2, 3) based on the reconstruction result at each
step.

Iopen = RD

I
(i−1)
fas

(I
(i−1)
fas ◦Di)

I ifas = RE
Iopen(Iopen •Di)

(2.12)

This filter allows denoising and retaining main structures in the image larger than the
structuring element (D3), thus enhancing the pore features.

2.3 OCT Image Registration and Fusion
With the development of OCT imaging techniques, OCT image registration has

become an important task. On the one hand, registration can be used for longitudinal
studies by detecting the tiny but critical changes of the same structure, facilitating the
disease monitoring and treatment evaluation. On the other hand, registration can be
applied on images from the same examination, where images with significant overlap
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could be fused into an image of better quality in term of resolution or SNR, enabling
more accurate processing.

In this section, we present existing work on OCT image registration methods. These
are few in number compared with other modalities such as CT or MRI, due to the fact
that OCT images are more disturbed by noise, and fewer stable and precise landmarks
can be identified, particularly in the case of lesions. We divide the OCT registration
methods into two classes, namely the transformation based registration and the feature
based registration. Both classes will be detailed in the following sections.

2.3.1 Transformation Based Registration

Transformation-based registration methods aim at maximizing the similarity be-
tween the fixed volume and the moving volume, both of which are normally obtained
with the same imaging protocol, without the requirement for a specific anatomical
model. Moreover, the similarity measures are generally the intensity-based metrics
such as the cross correlation or the mutual information that are calculated and opti-
mized over the volume.

Some transformation based registration methods have been implemented with uni-
directional scan patterns. Authors in (Khansari et al., 2019) proposed a cross-subject
3D OCT volumes registration method to detect local retinal structural alterations due
to Diabetic Retinopathy. They first used the rigid affine transformation for a global
and coarse registration, refined by a B-spline non-rigid transformation to align the
anatomical details. Both registration steps used the normalized mutual information as
cost function, and the adaptive stochastic gradient descent for optimization. Authors
in (Cheng et al., 2021) proposed a method to register successive 3D OCT volumes
from the same examination for speckle noise reduction. They used a similar principle
involving an affine transformation for coarse registration, followed by B-spline trans-
formations. The registration is performed on lower resolution images by applying the
Gaussian filter to speed up the registration process, and a penalty term is added on
the cost function to avoid overfitting. Finally the registered volumes are fused by av-
eraging. Both registration methods focus on the retina in OCT volumes, ignoring the
details of the ONH, neither the LC.

In addition, orthogonal scan patterns have also been exploited by a team (Kraus
et al., 2014; Ploner et al., 2021) for eye motion correction in 3D OCT volumes. For those
methods, the registration is aiming at estimating the motion between the OCT device
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and the object eye structure. To this end, the cost function is based on the residual
intensity difference of neighbouring pixels, and the optimization is applied to find the
displacement. To reduce the computational cost and avoid the local optimization, the
source image is down-sampled by a Gaussian reduction.This process compensates for
scanning artefacts and leads to a better image of the main structures. However, details
in the ONH are ignored.

2.3.2 Feature Based Registration

Feature based registration methods use several important anatomical features to
decide the transformation. Specifically, features could be landmark points, curves,
surfaces or their combinations that are manually selected or automatically detected.
For the automatic detection, accurate feature extraction algorithms have to be well de-
signed. Feature based OCT volumes registration can be divided into 2 classes according
to the nature of the features: control point based and layer based methods.

Multi-modal registration methods have been proposed to register 3D OCT images
and 2D fundus images (Miri et al., 2016; Mokhtari et al., 2017; Kolar and Tasevsky,
2010), based on multiple control points, in order to achieve better vessel segmenta-
tion performance and more precise cup size estimation. In this case, OCT volumes
are projected to get an en-face view. Features (control points) are derived from the
retina vasculature, such as the vessel maps (Golabbakhsh et al., 2012; Kolar and Ta-
sevsky, 2010), the branching points (Miri et al., 2016), or the center of fovea and ONH
(Mokhtari et al., 2017).

In 3D OCT, alignment and flattening procedures of retinal layers have also been
involved in layer segmentation methods to compensate for scanning artefacts and im-
prove the segmentation result (Shi et al., 2014; Xiang et al., 2018). This is all the
more important in pathological cases where the retinal layers may be severely struc-
turally altered, necessitating to restore the surface smoothness to better highlight what
is pathological disorganization.

Moreover, methods combining the feature based and transformation based registra-
tion have also been proposed (Pan et al., 2020, 2019) for a more robust registration.

However, according to the literature, few registration methods have investigated
into the characteristics of the ONH, and to the best of our knowledge, no work has
been carried out to register the orthogonal OCT volumes to enhance the LC in ONH.
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(a) (b)

Figure 2.2: Two main techniques for the ONH segmentation in OCT slices/volumes (Marques et al.,
2022). (a) Boundary-based method, where the LC anterior border is shown with a green line. (b)
Region-based method, where the LC is shown in yellow.

2.4 ONH Segmentation in OCT Images
In the literature, LC segmentation is limited to the anterior or posterior borders (see

Figure 2.2), thus to study the curvature or the thickness of the LC. In this chapter,
we review those ONH segmentation methods to automatically segment the LC from
other tissues, without investigating into the pores. Some methods require the manual
delineation on B-scans (Ivers et al., 2015; Girkin et al., 2017), while the automatic
methods are largely divided into two groups: the traditional methods and the deep
learning algorithms.

2.4.1 ONH Segmentation with Traditional Methods

Traditional methods of the ONH segmentation techniques are divided into two
groups: edge detection and active contour models.

Edge detection

Edge detection methods identify points in the image with discontinuities (edges)
where the image brightness varies sharply. Authors in (Mao et al., 2019) proposed to
use the customised 2D and 3D Canny edge detector to segment the anterior LC surface
in 3D OCT volumes. They used 2D Canny edge detector to detect edges and, then, an
additional 3D Canny edge detector helps to detect unnecessary edges from neighboring
B-scan slices. To form the LC border, they select the point candidates by using the
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minimum cost path approach. The cost map was accumulated by combining the edge
map with the weighted intensity gradients, of which large values yield the detection of
the LC border.

Another method for the LC anterior surface detection proposed by (Tan et al., 2015)
operates on a single 2D OCT slice. They first isolate the vertical region of interest of
the ONH, followed by a edge detector based on the local gradients of points on a seed
curve. Point candidates are updated by iteration to find the best-fit curve that models
the LC surface.

Active contours

In active contours methods, the targets are segmented by minimizing an energy
function with contours guided by the surrounding pixels. The internal energy defines
the continuity and smoothness of the contour, while the external energy is derived from
the edge map. Different active contour based methods have been proposed to estimate
the anterior border of the LC. Authors in (Sredar et al., 2013) modeled the 3D LC
border by a plate smoothing spline using the kernel f(r) = r2log(r2). The energy
function to minimize is the sum of a regularization term and a bending energy term, and
both terms depend on the kernel. In (Syga et al., 2018) the vertical regions of interest
are extracted with Otsu thresholding (Otsu, 1979) and morphological operators. Then,
the active contour is applied along three orthogonal directions of the B-scan data
cuboid to perform the 3D LC surface estimation. Moreover, authors in (Belghith
et al., 2015) proposed a shape-constrained surface evolution method to segment the
LC anterior surface, by integrating the random Markov Field (MRF) and the non-local
pixel similarity into the energy function.

2.4.2 ONH Segmentation with Deep Learning

Recently, deep learning methods, especially the U-Net network (Ronneberger et al.,
2015) and its variants, have shown success in analyzing OCT images, from the segmen-
tation of retina layers (Pekala et al., 2019) to the detection of the Bruch’s membrane
opening (BMO) (Chen et al., 2019).

However, only several deep learning based segmentation methods have been pro-
posed to investigate into the ONH, thus the LC. Authors in (Rahman et al., 2021)
used 3840 2D B-scan slices acquired with Heidelberg Spectralis SD-OCT device. They
proposed a 2-stage deep learning segmentation method to first detect the LC area
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which is then refined by a segmentation module to segment the LC anterior surface.
For the LC area detection step, YOLOv3-based Darknet-53 model was used. The fine
segmentation step used the Attention U-Net model.

A major contribution of LC segmentation with deep learning is from the same
author (Devalla et al., 2018a,b, 2020) by presenting different methods to segment the
LC in 2D and 3D OCT images. In their initial work (Devalla et al., 2018a), the adaptive
compensation algorithm is first applied on the images (Mari et al., 2013) to enhance the
LC visibility, followed by an eight-layer CNN network (three convolution layers, three
max-pooling layers and two fully connected layers) for the classification of different
layers, where the LC is classified into the same class as the sclera. The model was
trained on a small dataset (100 2D OCT images). Unsurprisingly, false predictions for
the LC have been observed especially at the posterior border, which offered unreliable
information on measuring the LC parameters.

This shortcoming was addressed in (Devalla et al., 2018b) with an architecture
combining a 2D U-net and residual blocks. This time, the LC is separated from the
other tissues of the ONH by the network. With this U-Net like network, both the
contextual and local information were captured, and the residual connections help to
improve the flow of the gradient information. Results showed that this new architecture
performed better for the LC segmentation compared to the previous method in (Devalla
et al., 2018a).

Finally, the latest work (Devalla et al., 2020) further improves the segmentation
performance by introducing a deep learning network to enhance 3D OCT volumes
and to harmonize image characteristics across OCT devices. A 3D U-Net based deep
learning network to segment the ONH is proposed as well. The dataset for segmentation
has also been enlarged with 60 volumes from 3 OCT devices. To address the LC
segmentation problem, they used an ensembler to combine the predictions of three
different networks for a more robust segmentation result.

It is also worth mentioning that deep learning has also shown its capacity to accu-
rately segment small retinal fluid regions (Chen et al., 2020; Tennakoon et al., 2018)
in OCT images with U-Net-based methods, making it promising that U-Net variants
could perform well for the LC pore segmentation.
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2.5 Conclusion
With the rapid development of OCT technologies, it is now possible to analyze

the LC in vivo, but this remains a challenging task mainly due to the low SNR, as
the LC is located deeper than any retina structure, and the small size of the LC
substructures. Therefore, the existing state-of-the-art methods are mainly limited to
identify LC borders, without investigating into the detailed structure of the LC.

However, analyzing the LC pore paths in detail is necessary to characterize the pore
changes and to help the medical experts to better understand the glaucoma disease. To
this end, more innovative and advanced algorithms should be designed to fully explore
the information of pores in OCT volumes. From this literature review, we can presume
that pre-processing will be necessary to improve the quality of OCT images while deep
learning is promising in the segmentation task.
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Chapter 3

Dataset and Preprocessing
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In this chapter, we first describe the dataset used in this research project, where
there is no similar publicly available dataset. Then, we focus on the pre-processing
steps to improve the image quality and to generate the incomplete ground truth seg-
mentation map. Finally, we present the volume-of-interest selection algorithm, which
aims at extracting the sub-volume of the lamina cribrosa (LC) containing exploitable
information, to facilitate further processing steps.

3.1 3D SD-OCT Dataset

3.1.1 Patient Recruitment

This single-centre study was conducted at the Quinze-Vingts National Vision Hos-
pital in Paris. Written consent for the re-use of each dataset was obtained from all
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participants in the study. The protocol used in this project conformed to the princi-
ples of the Declaration of Helsinki. Only cooperative patients over 18 years of age with
a sufficiently large optic cup to allow proper visualisation of the LC were recruited.
Patients were excluded if the examination could not be performed under optimal con-
ditions or if the quality of the OCT images was insufficient for visual localisation of
the LC pores.

(a) Heidelberg SD-OCT device. (b) Orthogonal B-scan directions.

Figure 3.1: Image acquisition protocol. Two volumetric OCT images are acquired for one eye during
an examination with the Heidelberg SD-OCT device (a): the horizontal (blue) and the orthogonal
vertical B-scan slices (green) centred on the ONH (red cube) in (b).

3.1.2 Image Acquisition

In this study, C-scan volumetric OCT data are acquired in both horizontal and
vertical directions using the Heidelberg Spectralis SD-OCT device and the same scan-
ning protocol in Enhanced Depth Imaging (EDI) mode (see Figure 3.1). This SD-OCT
instrument has an A-scan rate of 85 kHz and a light source centred at 880 nm, allow-
ing greater tissue penetration than conventional OCT instruments, ideal for imaging
deeper ONH structures such as the LC. The axial (X axis) and lateral (Y axis) res-
olutions are 4µm/pixel and 7µm/pixel respectively (Figure 3.2). Thus, an acquired
horizontal/vertical OCT B-scan slice of 496 (axial) ×768 (lateral) pixels indicates that
the scan has a depth of 2.0 mm and a lateral distance of 5.4 mm. Each examination
centred on the ONH contains 131 such 2D B-scan slices, with a sampling step between
two consecutive slices of approximately 15 µm (Figure 3.3), giving the volume size at
around 2.0×5.4×2.0 mm3.
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(a) Horizontal image. (b) Vertical image.

Figure 3.2: An example of the horizontal and vertical images of the same eye. The X, Y, Z coordinates
are the depth, the lateral scan direction and the number of OCT slices, respectively.

Acquired volume sizes in both scan directions are shown in Table. 3.1. Resolutions
in each direction are different, so that the appearance of a pore within horizontal and
vertical volumes is different. In the following sections, we will refer to the horizontal
and vertical B-scan slices as the horizontal and vertical volumes/images for the sake of
simplicity.

Table 3.1: OCT volume sizes in horizontal and vertical directions.

Horizontal volume Vertical volume

Axis Resolution Pixels Size Axis Resolution Pixels Size

X (axial) 4µm/pixel 496 2.0mm X (axial) 4µm/pixel 496 2.0mm

Y (lateral) 7µm/pixel 768 5.4mm Z (number) 15µm/scan 131 2.0mm

Z (number) 15µm/scan 131 2.0mm Y (lateral) 7µm/pixel 768 5.4mm

A graphical interface has been developed by (Rossant et al., 2017) to navigate and
visualise the volume at any given point (X,Y,Z) by displaying three orthogonal 2D
planes with a given coordinate. The X, Y, Z abscissa represent the depth into the
ONH, the lateral scan direction and the number of B-scans, respectively (see Figure
3.2). We are interested in the en-face images (also called X-plane images) extracted
from the stacked B-scan slices (see Figure 3.3) because the dark spots in the en-face
images correspond to pores of the LC through which the axons pass to deeper structures
within the optic nerve (higher X) to join the brain.

Here the volume is resized by a factor of 2 along the z-axis to restore nearly square
pixels (768×262 pixels) in the en-face images (Figure 3.3c). The axonal pathways
appear as black curves in the other two planes, namely the Y and Z planes, and are
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(a) Scan directions (b) OCT slices (cropped) (c) En-face images (cropped)

Figure 3.3: 3D OCT data and en-face image extraction. The OCT slices in (b) and the en-face image
in (c) have been cropped for better visualisation of the pores. The volume size in (x,y,z) coordinates
is about 1.9×4.4×2.0 mm3.

usually interrupted in one Y or Z plane because of the tortuosity in 3D. Pores may also
split or merge, but always with a tendency to higher X values.

3.1.3 Artifacts

Different types of OCT artifacts were observed in the en-face images, which could
be due to errors in image acquisition and would affect the subsequent analysis. In our
dataset, three main types of artifacts were identified, namely shadowing (Greig et al.,
2020), poor signal (Anvari et al., 2021) and out-of-register (Chhablani et al., 2014).

The most common artifact is shadowing, which occurs when the OCT beam is
blocked (mainly by the large vessels, Figure 3.4a) and cannot reach the outer LC com-
ponents. This results in reduced contrast in the shadowed area as the signal reflectivity
is reduced. Poor signal (Figure 3.4b) is another common type of artifact seen in OCT
scans, where the images appear grainy or blurred, and the contrast between the pores
and their surroundings is less clear. The poor signal can be due to patient-related
factors such as dry eye, cataract and poor fixation (Anvari et al., 2021), but also to
acquisition errors such as speckle noise (see section 2.2) produced by the OCT devices.
Finally, the out-of-register artefact (Figure 3.4c) is also not negligible, where successive
scans are shifted superiorly or inferiorly so that they cannot be fully aligned during
stacking to extract the en-face images, resulting in the areas of displacement in the
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rendered en-face images.

(a) Shadowing (b) Poor signal (c) Out of register

Figure 3.4: Main artifact and appearance variability of en-face images of the LC. Pores vary in shape,
size and location, making them difficult to identify, especially together with various local artifacts
shown as red arrows in (a) and (c), or the global artifact in (b).

3.1.4 Dataset

After exclusion of unusable volumes, our dataset consists of 158 OCT volumes1

in total, acquired in both horizontal and vertical directions, from 68 eyes of 42 sub-
jects examined between 2021 and 2023 with the amount of 20,698 2D OCT slices.
Multiple volumes may correspond to the same eye, either for longitudinal studies of
healthy/glaucoma patients or for post-operative follow-ups.

In the following chapters we denote the grey levels of intensity (coded in the
range [0, 1]) in horizontal and vertical images by IH(x, y, z) and IV (x, y, z), with
x ∈ [1, 496], y ∈ [1, 768], z ∈ [1, 262] , and the corresponding en-face image extracted
at coordinate X from IH or IV by I(X)

H (y, z) and I(X)
V (y, z) respectively. Both are also

written as I(X) or I(X)(y, z) for simplicity.

3.2 Pre-processing

The pipeline of the pre-processing step is shown in Figure 3.5, where two main
objectives are addressed: first, the ground truth segmentation map of each 2D en-face
image is generated based on the partial annotation provided by the ophthalmologist;
second, the main pore structures in the en-face images are enhanced to facilitate the

1That’s to say, 79 orthogonal horizontal and vertical volumes.
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subsequent processing steps, and only the sub-volume containing the LC is retained.
In the following sections of this chapter, each module of the pre-processing step will be
described in detail.

Figure 3.5: Pipeline of the pre-processing step.

3.2.1 Pore Feature Enhancement

Since pores in en-face images have an overall circular or ovoid shape and are weakly
contrasted with the surrounding tissue, we applied the alternating sequential filter
inspired by our team’s previous work in (Rossant et al., 2017) to enhance pore features.
Similar to the definitions in section 2.2, the symbols ◦ and • denote the opening and
closing operations, and both are constructed using a binary structuring element with
a disc of radius r, denoted as Dr. RD

M(I), RE
M(I) are respectively the morphological

reconstruction by dilation (⊕) and by erosion (⊖) of the image I in the mask M . Such
a reconstruction repeats the dilation or erosion operation on the image I until the
contour of I fits under the mask M .

The alternating sequential filter is denoted as I(x)ASF (see Figure 3.6d) , defined by
a sequence of closings and openings with increasing size of the structuring element Di

(up to i = 9), with morphological reconstruction by dilation or erosion at each step
i. This filter aims at denoising, while preserving the main dark structures (i.e., the
pores).

I(i)(x)open = RD

I
(i−1)
asf

(I
(i−1)(x)
asf ◦Di), with initialization I(0)(x)asf = I(x) (3.1)

I
(i)(x)
asf = RE

I
(i)(x)
open

(I(i)(x)open •Di) (3.2)

I
(x)
ASF = max(I

(9)(x)
asf − I(x), 0) (3.3)

The pre-processed image is denoted as Ienh(x) (Equation 3.4, see Figure 3.6e), where
the transformation C allows to keep the mean and the standard deviation of the inten-
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(a) I(x) (b) I(9)(x)open (c) I(9)(x)asf

(d) I(x)ASF (e) I(x)enh (f) CLAHE

Figure 3.6: Evaluation of the proposed method to enhance pores in the en-face image (cropped
for better visualisation). (a) The source OCT en-face image. (b-d) The intermediate results of the
alternating sequential filter in equations (3.1), (3.2) and (3.3). (e) Enhancement result of our proposed
method. (f) Enhancement result of the histogram equalisation based method (CLAHE).

sity levels in I(x), and the parameter α = 0.75 allows to compromise between the two
images to enhance the main pores and preserve the source image.

I
(x)
enh = C((1− α)I(x) − αI

(x)
ASF ) (3.4)

Evaluation. We subjectively compare the proposed pore enhancement algorithm
with the Contrast Limited Adaptive Histogram Equalization (CLAHE) that was used
in (Wang et al., 2018). Our method shows better performance compared to CLAHE,
as shown in Figure 3.6. We also observe that our method preserves better the main
pores without introducing additional noise compared to CLAHE, especially for the less
contrasted areas.
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Figure 3.7: Manual annotation of a pore pathway by an expert, starting in the most contrasted plane
(I(x

′
0), in orange rectangle), and ending when the pore is no longer visible (x′

start,x′
end). The magenta

rectangles (5 × 5 pixels) show a zoom of the annotated pores forming an axonal pathway.

3.2.2 Ground Truth Generation

As mentioned above, pores appear as dark spots in the X-plane images and also
show the following regularity properties in successive X-plane images.

• Grey level intensity varies little from one X-plane image (x) to the previous/next
(x± 1).

• The pore pathways are regular vertical curves, i.e. the Y and Z coordinates of a
pore keep close values from one X-plane to the next.

• The axons will never stay in the same X-plane, they are globally oriented down-
wards into the brain (increasing X-values).

Thus, an ophthalmologist is asked to identify the main pores in the source OCT X-
plane images using a semi-automated method proposed in (Rossant et al., 2017). The
ophthalmologist retained only those pores that showed continuity in volume and high
contrast (Figure 3.7), so the annotation is incomplete. Most pathways are initialised
on a manually selected reference X-plane image (orange border image in Figure 3.7),
denoted as I(x′0), where the pores are most visible. The pathways continue in the
upper and lower adjacent planes (x ± 1), checking for continuity either with the pore
centre positions suggested by a snake model, or with the subjective correction of the
ophthalmologist. The pathways end when the pores can no longer be identified (xstart
and xend in Figure 3.7). Pathways could also be initialized in other X-planes if they do
not pass through the reference plane.
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The objective of such annotations is to identify the largest pores that allow most
axons to pass through (Figure 3.8 left). Indeed, the exhaustive identification of all
pores is unrealistic: they are far too numerous and most of them are poorly contrasted
with the surrounding tissue, especially in regions with vascular shadows or scanning
artefacts.

Finally, our dataset of 158 volumes consists of 8559 2D en-face images containing
at least one manually annotated pore, with an average of 6.73 ± 6.03 pores identified
in each en-face image, which is only a small fraction of the total number of existing
pores, approximately 227± 36 according to a ex vivo study (Jonas et al., 1991). Table
3.2 shows the statistics on the annotation: we averaged the number of pore pathways
for a given volume, and for all annotated pathways, we calculated the mean pathway
length, and the mean number of pores in an en-face image if there is at least one. The
annotation variability is mainly due to two reasons. On the one hand, the LC length
and LC pore visibility are different from one subject to another, for example authors
in (Dandona et al., 1990) found that blacks had a larger total lamina cribrosa area,
and also a greater number of laminar pores than whites. On the other hand, the image
quality may also be very different because of the artifacts, acquisition conditions, etc.

Table 3.2: Manual annotation overview∗.

Mean number of paths in a volume 8.48 ± 4.92
Max 26
Min 4

Mean path length 34.70 ± 12.03
Max 82
Min 8

Mean number of pores in an en-face image 6.73 ± 6.03
Max 40
Min 1

Number of annotated en-face images 8,559

*Unity: number of en-face planes.

The points marking the pore centroids could not be directly used for training since
they represent only several pixels and there are too many false negatives in the image.
To this end, a region growing algorithm was then applied in the enhanced en-face image
I
(x)
enh to obtain the binary masks by using the partial points annotated by the expert as

seeds. The similarity criterion is the absolute value of the L1 distance (dst) between
an unallocated pixel’s intensity value and the mean intensity of the current region.
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(a) (b)

Figure 3.8: Region growing for the incomplete ground truth generation for two different images (a)
and (b). (left) Manual annotated points on the source images, illustrated on the pre-processed en-face
image. (right) Ground truth segmentation map used in this project by applying region growing on
the pre-processed image.

Among the 8-connectivity neighbors, the pixel with the smallest dst is allocated to
the region if dst is less than a given threshold dstth = 0.04; the growing process stops
when dst becomes larger than dstth for all neighbors. A small threshold is applied to
avoid over-segmentation since pore boundaries are barely identifiable in some cases.
Examples of the region growing results are shown in Figure 3.8. The resulting binary
segmentation map would serve as the ground truth for the following process.

3.2.3 Automatic Region-of-Interest Selection

The LC is observed in the central area of the ONH called the optic cup, the dark
circle bounded by the green rectangle in Figure 3.2 and 3.3. On the top en-face images
(small X coordinate), the cup appears as a dark connected component that can be
automatically detected by thresholding. The Region-of-Interest (ROI) is defined as
262×262 pixels square bounding the cup area, and the detectable part of the LC is
directly below this component, knowing that the size of an en-face image is 768×262
pixels. We denote by ROI(I) the automatically detected ROI of the en-face images I(x)

in the volume, and the detection method is described below.

First, we average the intensities of the half top sub-volume (n = 248) en-face images
to get the dark cup area, and we denote the averaged image as Iavg(y, z), y ∈ [1, 768],
and z ∈ [1, 262] (Figure 3.9a). Then, the central point P0(y0, 131) of the cup is defined
where we get the minimum intensity among the points Iavg(y, 131). Similarly, we can
find the point P (y0, z0) whose intensity is minimum along the Z-axis between the points
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(a) (b)

Figure 3.9: Automatic region of interest detection. (a) Averaged image of the top half sub-volume to
identify the cup and the central point. (b) The automatically detected bounding box that extracts
the LC area.

(y0, z).

Iavg(y, z) =
1

n

n∑
x=1

I(x)(y, z), n =
496

2
= 248

y0 = arg min
y∈[1,768]

Iavg(y, 131)

z0 = arg min
z∈[1,262]

Iavg(y0, z)

(3.5)

We denote the intensity of the point P (y0, z0) by s0, and a set of thresholds (si) is
then defined as:

si = s0 + δi, δi = 0.05 + 0.01(i− 1), i ∈ {1, 2, ..., 16} (3.6)

where si is used to threshold the image Iavg, and we denote the resulting binary
image Isi .

Isi(y, z) =

{
1 if Iavg(y, z) < si

0 otherwise
(3.7)

Morphological reconstruction by dilation is then applied to a seed S0 under the binary
mask Isi , where the intensity of S0 is zero everywhere except for the central point P0.

Mi = RD
Isi
(S0) (3.8)

We calculate the area (Ai) of the segmented component in Mi as well as the height
(hi) and the width (wi) of its bounding box. A bounding box i is valid if both of the
following conditions are satisfied:

0.75D < hi, wi < 1.25D, with D = min{ymax, zmax} = 262
D2

2
< Ai < D2
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We retain the index i that leads to the largest area while satisfying these conditions.
The corresponding bounding box serves as the initialization of ROI(I).

An example is shown in Figure 3.9. Our algorithm is robust in identifying the
region of interest, as the central point has been well selected on the average X-plane
images to perform the morphological reconstruction, and this yields a single connected
component. It is worth noticing that this step is an initialisation of the ROI(I), which
will be further adjusted during the horizontal and vertical volume registration (Section
4).

3.2.4 Volume-of-Interest Selection

One volumetric OCT data consists of 496 en-face images, but the LC is only ob-
servable in an average of 54.17 en-face images (Table 3.3), according to the manual
annotation in section 3.2.2. Therefore, an algorithm to extract the volume-of-interest
(VOI) containing the LC is necessary for the optimisation of the volume size. This
VOI selection method is divided into two steps: automatic reference plane selection
and energy thresholding.

For the manual annotation in section 3.2.2, the reference plane was manually selected
by the ophthalmologist as the en-face plane where the pores are the most contrasted.
This reference plane is then used to initialize the pore pathways. Similarly, for the
automatic detection, we also rely on the a priori knowledge of the size and shape of
pores to extract the reference plane. To this end, we first apply a sliding window along
the X axis and average the images I(x)ASF on 5 consecutive en-face planes (x± 2) to get
the I(x)ASF images with better SNR. Then, the OTSU algorithm (Otsu, 1979) is applied
to get the binary image of potential pores.

I
(x)
bin(y, z) = OTSU(I

(x)

ASF (y, z)) (3.9)

Then morphological filters Fmorp are applied to remove the connected components
that may not be pores, those with an area smaller than a disk of radius 3 or larger
than a disk of radius 9. The resulting image is multiplied by I(x)ASF , and finally all pixel
intensity values in the current en-face image are summed up in E(x) to calculate the
global energy:

E(x) =
∑
y,z

{I(x)ASF (y, z) · Fmorp(I
(x)
bin(y, z))} (3.10)
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(a) I(x) (b) I(x)ASF (c) I(x)bin

(d) Fmorp(I
(x)
bin) (e) Energy function E(x)

Figure 3.10: Example of the proposed VOI selection method. (a) Source en-face OCT image. (b)
Averaged image I

(x)

ASF that reveals potential pores. (c) Binary image by thresholding image (b). (d)
Morphological filters applied on (c) to denoise and retain main pores. (e) Energy function curve that
allows to extract the VOI. The reference plane is in red, and the start/end planes in green, respectively.

The reference plane x0, namely xH0 or xV0 for the horizontal volume and vertical
volume, is the one optimizing this cost function (red dotted line in Figure 3.10e).
Thresholding E(X) at 0.25E(x0) enables us to define the X planes [xstart, xend] outside
of which the pores are no longer visible (green dotted lines in Figure 3.10e).

To objectively evaluate the proposed method, the absolute difference (Diff) of the
reference planes (x0), the start (xstart) and the end (xend) planes between the manual
annotation (Manual) and the proposed method (Auto) are calculated. LC thickness
(xend-xstart+1) is also calculated for both methods. The result is shown in Table 3.3.
Our method is accurate in predicting the reference plane (x0), with low absolute differ-
ence and standard deviation (6.73 ± 5.94): our energy function (Figure 3.10e) correctly
assesses where pores are contrasted and numerous. Our algorithm tends to select a
deeper VOI than the ophthalmologist (23.98 ± 19.28). In any case, the upper and
lower limits are highly ambiguous, as the pores are there hardly visible, and, at this
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Table 3.3: Evaluation of the proposed sub-volume selection method ∗.

Manual Auto Diff

x0 316.91 ± 38.44 310.18 ± 49.80 6.93 ± 5.94

xstart 296.29 ± 41.82 263.15 ± 55.10 16.36 ± 15.11

xend 349.47 ± 37.46 359.25 ± 61.33 17.27 ± 16.41

LC thickness 54.17 ± 13.39 76.62 ± 31.55 23.98 ± 19.28

*Unity: number of en-face planes.

stage, it is better to keep a VOI a little too deep than the opposite.

3.3 Conclusion
In this chapter, we present our dataset and the pre-processing applied to the 3D

OCT images, in order to enhance the pores in the en-face images and define a volume of
interest as well as a reference plane containing high-contrast pores. Image enhancement
based on alternate sequential filters with morphological reconstructions proved highly
effective compared with other approaches. This processing is essential for generating
annotated data from pores manually pointed by the ophthalmologist, and will facilitate
the following tasks. In addition, the ROI and subsequent VOI selection allow to focus
on the most important area of the volume, thus speeding up the next processing.

Acquisitions of image comprise two orthogonal scan directions: horizontal or ver-
tical. The two 3D volumes could be jointly exploited to further enhance the pore
features, which is the objective of the next chapter.
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Chapter 4

3D Orthogonal SD-OCT Volumes

Registration for the Enhancement of

Pores
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In the previous chapter, we showed the pre-processing method to extract the ref-
erence planes (IX0

H , IX0
V ) and to select the Volume-of-Interest (VOI) containing the

LC from horizontal and orthogonal vertical volumes of the same examination. The
proposed method is efficient in extracting the reference planes, close to the expert
annotation.

Figure 4.1: Top-level block diagram showing the stages of the registration.
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In this chapter, we are interested in aligning the two orthogonal VOIs to enhance
pore features in a fused image. The advantages of such fusion are twofold: on the
one hand, to improve the SNR and, on the other, to achieve better pore resolution.
Remember that the lateral resolution is 7µm/pixel, while the sampling step between
two slices is 15µm (Table 3.1). As a result, merging orthogonal slices will also improve
the resolution of en-face images. However, registering the orthogonal volumes is very
challenging: the SNR is very low, local shifts may occur because of scanning artefacts,
the structures of interest are very small and the inter-correlation between neighbouring
X-planes is high. Moreover, heterogeneous qualities of the orthogonal volumes and
intensity variations increase the difficulty.

The pipeline for the registration process of the orthogonal OCT volumes is shown
in Fig. 4.1. Since VOIs to be registered are acquired simultaneously with the same
OCT device, linear geometric transforms, namely 2D and 3D affine transforms, have
been fully exploited in this work as they are simple and commonly used with mono-
modal intensity-based registration problems (Zagorchev and Goshtasby, 2006). In the
initial stage, the reliable information in the reference images is used to initialize the
coarse registration process. Then the VOIs are further aligned by affine transformation
for detailed registration of the pores. Finally the registered sub-volumes are fused to
obtain an image of higher resolution and better SNR.

Given IH , IV the orthogonal volumes, the reference planes XH
0 and XV

0 , the ROIs
in en-face images, and the vertical intervals [XH

start, X
H
end], [XV

start, X
V
end] (Section 3.2.4),

we define the two sub-volumes containing the LC and we denote them by V OI(IH) and
V OI(IV )

1, respectively. Taking V OI(IH) as the fixed volume, we look for transforms
that align V OI(IV ) to V OI(IH).

4.1 Coarse Registration by Translation

For the initialization of the registration process, we use the translation trans-
formation to get a coarse but robust alignment for the sub-volumes (VOI). Such
coarse registration is divided into two steps, as shown in Figure 4.2. Horizontal and
vertical reference en-face images (IX0

H , IX0
V ) are first aligned in 2D, based on which

the sub-volumes are then corrected and registered by translation in 3D for relocat-
ing the vertical reference X-plane image (IX0

V ), thus V OI(IV ), for better registration

1V OI(IH) and V OI(IV ) can also be written as V OI(ROI(IH)) and V OI(ROI(IV )). Only the ROI of the en-face
images is processed.
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4.1. Coarse Registration by Translation

Figure 4.2: Modules of the coarse registration of the orthogonal horizontal and vertical volumes. (a)
2D translation transform to align the reference en-face images. (b) 3D translation transform to further
register the sub-volumes. Main vectors to be optimized in both module are shown in blue.

performance. In the following sections, we will discuss the method in detail.

4.1.1 2D Reference En-face Images Registration by Translation

Since rich pore information could be found in reference images, both horizontal
and vertical, the first step of our registration process is to align the orthogonal en-
face images. As defined in chapter 3, ROI(IX

H
0

H ) and ROI(IX
V
0

V ) are the ROIs of the
orthogonal reference images to be aligned.

To this end, we first average the ROI of the 3 consecutive en-face images (X0 ± 1)
to get a less noisy image.

ROI(I
X0
) =

i=1∑
i=−1

ROI(IX0+i) (4.1)

Then the translation vector (Ty, Tz) in axes Y and Z is to be optimized by minimising
the mean square error (MSE) between the two averaged images (ROI(IX

H
0

H ), ROI(IX
V
0

V )),
and regular step gradient descent is used for the optimization.

Finally, XV
0 is updated by seeking the X-plane in XV

0 ± 50 that maximizes the
cross-correlation with ROI(IX

H
0

H,enh), leading to a translation vector Tx. This two-step
process, searching for the translation vector (Ty, Tz) and then for Tx, is iterated until
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(a) IX
H
0

H

(b) IX
V
0

V (XV
0 =292) and updated ROI. Correlation score of ROIs in

(a) and (b) is 0.743.

(c) Updated XV
0 (XV

0 =287) with proposed 2D en-face image registra-
tion by translation. Correlation score of ROIs in (a) and (c) is 0.786.

Figure 4.3: Reference en-face image registration.

the cross-correlation score cannot be improved anymore. At the end, we get a new
reference plane XV

0 for IV , and updated ROIs for IH and IV .

Our implementation does not only move the en-face vertical image ROI(IX
V
0

V ) in the
search for the best (Ty, Tz) vector. Indeed, given the size of the horizontal and vertical
en-face images, namely 768×262 and 262×768 pixels, it makes more sense to move the
ROI of IH along its own Y coordinate (Z coordinate for IV ) and the ROI of IV along
its Y coordinate. In Figure 4.3, just imagine that the green square is moved vertically
in (a) and horizontally in (b). This way, the area for computing the cross-correlation
is always a square of 262× 262 pixels and there is no cropping.

The cross-correlation score between the ROIs of the reference planes is improved
after this coarse 3D registration by translation of the reference en-face images (Figure
4.3). Based on this result, we want to further register the VOIs by translation, but this
time, optimizing the cross-correlation on the VOIs, to get better global registration
performance.
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(a) X0 − 20 (b) X0 (c) X0 + 20

Figure 4.4: Coarse translation registration results on the enhanced en-face images. From top to
bottom: ROI of the fixed horizontal planes, moving vertical planes, and the registration results.

4.1.2 3D Registration by Translation

After updating XV
0 , we can adjust the VOIs of the two volumes.

δup = min(XH
0 −XH

start, X
V
0 −XV

start) (4.2)

δdw = min(XH
end −XH

0 , X
V
end −XV

0 ) (4.3)

In this way, the VOIs of the two volumes are rectangular cuboids defined vertically on
[X0−δup, X0+δdw]. Such VOIs of enhanced en-face images are aligned by 3D translation
to search for optimal solution on the entire VOI. We denote the three translation
parameters by (T ′

x, T
′
y, T

′
z). We keep using the cross-correlation of pixel intensity as

the similarity measure and the regular step gradient descent for the optimization for
all of the following transforms, because of the statistical efficiency and computational
efficiency for monomodal image registration problems (Kim and Fessler, 2004).

An example in Figure 4.4 gives the subjective evaluation of our method, where 3
planes (X0, X0 ± 20) of the VOI before and after the coarse registration are shown.
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(a) X0 − 20 (b) X0 (c) X0 + 20

Figure 4.5: 3D affine registration results of different X-planes. From top to bottom: fixed horizontal
planes, moving vertical planes, and the registration results. Cross-correlation scores after registration
are shown for each plane.

We can observe that pores in high contrast images (X0, X0 + 20) are better aligned,
thanks to the pore enhancement algorithm. As X gets further away from X0, or the
pixel reaching the border of the ROI, the registration performance is getting worse,
mainly due to the fact that more noise is presented in both VOIs.

In summary, the proposed coarse registration method has proven to be robust: we
first use the most reliable information, found in 2D reference images where the pores
are numerous and contrasted, to approach the solution, and we refine the translation by
considering a volume of interest. In this way, the problem of falling in a local minima
of the cross-correlation function is overcome. Moreover, the pre-processing steps are
crucial to enhance the useful pore information.

4.2 3D Affine Transform for the Refined Registration

The translation transform alone presented in former section is not enough since the
optical axis may vary from one acquisition to another. In addition, pixel resolutions
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(a) Ienh,H (b) IV,enh, translation (c) Translation registra-
tion

(d) IV,enh, 3D affine (e) 3D affine registration

Figure 4.6: Registration results of the X-plane images at each stage. (a) Enhanced horizontal image.
(b) Aligned vertical reference image by coarse registration. (c) Registration result of (b). (d) Aligned
vertical reference image refined by 3D affine transform. (e) Registration result of (d). Registration
performance is significantly improved after 3D affine transform, as can be observed in particular inside
the red rectangle. Cross-correlation scores of X-plane images are shown as well.

are slightly different even we have applied the factor of 2 on the Z axis, and a rescaling
factor has also to be applied. To address the possible rotation, scaling or other motion
during the examination, a 3D affine transform, namely the translation, scaling,
rotation and shearing, is applied on the V OI to refine the registration. Regular step
gradient descent is used for the optimization. An example in Figure 4.5 shows that
in the high contrasted regions, pores are perfectly registered without any ambiguity,
while in the noisy regions, there exist more doubt on whether pores exist.

This additional registration step is useful, confirmed by Figure 4.6. In this example,
images are slightly deformed so that regions with ambiguity (red box) remain when
limiting the transformation to a 3D translation. Such ambiguity is eliminated by the
3D affine transform. The improvement in performance can also be seen in the increase
in the 2D cross-correlation score from 0.73 to 0.80.
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(a) IH,enh (b) AVG (c) NAND (d) AND

(e) IH,ASF (f) AVG (g) NAND (h) AND

Figure 4.7: Evaluation of the proposed image fusion method. (a) Enhanced horizontal image. (b-d)
Image fusion by average (AVG), not and (NAND), and and (AND), respectively. (e) Pore features
extracted from (a). (f-h) Pore features with AVG, NAND, and AND, respectively. With the AND
fusion method, we are able to better denoise (blue box) and retain main pores (red box) simultaneously.

4.3 Image Fusion
After 3D affine transform, pores are better aligned in the registered volumes. Now

we look for an appropriate method to fuse the VOIs for better image quality. We
propose to test three fundamental pixel-level fusion methods, namely the AVG, AND
and NAND for the registered ROIs in two en-face images.

AVG(x, y) =
1

2
IH(x, y) +

1

2
IV (x, y) (4.4)

AND(x, y) =
√
IH(x, y)IV (x, y) (4.5)

NAND(x, y) = 1−
√

(1− IH(x, y))(1− IV (x, y)) (4.6)

A subjective evaluation is shown in Figure 4.7. We can observe that all the three
methods are efficient in isolating pores, as they are better contrasted, meanwhile less
noise points are presented inside pores, with pore shapes more oval. In particular, with
the AND fusion method, pores are better maintained without introducing additional
noise (Figure 4.7h), so that we favor the AND fusion method for next processing steps.

48



4.4. Experiments and Results

Indeed, we prefer such subjective evaluation because on the one hand, the user
perception is important but hard to model for the fusion performance, on the other
hand, it is difficult to find a proper quantitative pore registration evaluation without
ideal fused images, especially given the fact that our images are mostly of low SNR.

4.4 Experiments and Results

Experiments are carried out on Matlab, based on the image registration methods
provided by the Image Processing Toolbox2. In this section we detail the results ob-
tained experimentally, and the protocol for validating our proposed method. The
evaluation consists of the construction of the ground truth registration transform by
aligning the manual annotation by the ophthalmologist, and the quantitative evaluation
of our proposed registration and fusion method.

4.4.1 Ground Truth Construction

To be able to quantitatively assess the pore registration performance, we first con-
struct the ground truth registration (“GT ”) by aligning the paths that have been
manually annotated by an ophthalmologist presented in section 3.2.2. In this case,
the optimized criterion is the distance between the annotated paths in both volumes,
rather than the cross-correlation (Corr) of the data. We selected 21 volumes with the
most common annotated paths in both horizontal and vertical volumes to construct
a robust ground truth. Finally we applied the found ground truth transform to the
vertical enhanced volume, serving as registered ground truth image.

4.4.2 Evaluation of the Registration Performance

We applied the found geometric transform (“Ours”) to the annotated pores in ver-
tical volumes and then, for each en-face image, we calculated the Euclidean distance
(MinDist) between each pore in the horizontal volume and its counterpart in the verti-
cal registered volume. The counterpart is defined as the nearest pore with the distance
smaller than 10 if there exists. The smaller this distance, the better the alignment.

Table 4.1 displays the scores obtained on 21 volumes at each stage of the registration
process (translation only, translation + affine transform). High cross-correlation scores
between aligned sub-volumes are observed, with low standard-deviation (0.71±0.09).

2https://fr.mathworks.com/products/image-processing.html
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The distances between the aligned annotated pores are low (3.73±0.49) compared to
the typical pore sizes (from 5 to 20 pixels, average around 10), which validates the
proposed method in terms of robustness and accuracy.

Table 4.1: Evaluation of our method with respect to the GT on the VOI with X ∈ [Xstart, Xend].
“Trans.” and “Affine” refer to the performances after the translation and affine transform stages.

GT Ours
Trans. Affine Trans. Affine

VOI
Corr 0.59±0.09 0.70±0.06 0.69±0.11 0.71±0.09

MinDist∗ 3.59±0.65 3.05±0.73 4.82±0.67 3.73±0.49

*MinDist is expressed in pixels.

Then the same metrics are calculated on three planes (X0, X0 ± 20), as shown in
Table. 4.2. As expected, cross-correlation scores are the highest around the automat-
ically selected reference images (X0), where there is the most information with many
contrasted pores. But we also obtain good matches in distant planes close to the Xstart

and Xend abscissas, in spite of the worse SNR. The distance between annotated pores
in distant planes is higher and with higher standard-deviation, which is normal because
the images are too noisy to identify the pores. However the metrics remain acceptable
given the pore size, allowing for overlap in the fusion.

All results of the two tables confirm that the 3D affine transform leads to better
alignment compared to the translation (lower MinDist and higher Corr), confirmed
by Figure 4.8. Visually, Figure 4.9 illustrates these observations: the pores are well
aligned in the fused image (see especially the areas in rectangles), better with the affine
transform than only with the translation, and the green crosses are well inside the dark
spots in the fused image.

Considering now the registration based on the annotated pores (“GT ”), we also
observe that the affine transform improves the registration on both criteria, cross-
correlation and pore distance. The distance between the registered paths is higher with
the proposed method (“Ours”) since the optimization relates to the cross-correlation of
the image data. However, the averaged distances are not far from those of the ground
truth (3.73 ± 0.49 against 3.05 ± 0.73) and remain below the typical pore diameter
(Figure 4.10).
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Table 4.2: Evaluation of our method on different X-planes.

GT Ours
Trans. Affine Trans. Affine

X0-20
Corr 0.56±0.09 0.68±0.10 0.69±0.07 0.71±0.06

MinDist 3.99±1.03 3.20±1.18 5.08±1.43 4.22±0.77

X0

Corr 0.63±0.06 0.71±0.07 0.72±0.08 0.78±0.06

MinDist 3.41±0.18 2.53±0.54 3.95±1.09 3.16±0.70

X0+20
Corr 0.54±0.13 0.68±0.10 0.69±0.08 0.70±0.08

MinDist 4.13±0.82 3.63±0.99 6.42±1.51 5.12±1.23

(a) (b)

Figure 4.8: Cross-correlation scores of 2 subjects with respect to the number of X-plane images.
Coarse translation registration results are shown in magenta, while in green is the final registration
result.

4.4.3 Evaluation of the Fusion Performance

There are some metrics that can be used without ground-truth to evaluate the
quality of the fused image. Cross-entropy (CE) is defined as the average of the relative
entropies between each of the horizontal/vertical images (IH , IV ) and the fused image
(If ).

CE(IH , IV ; If ) =
D(hIH∥hIf ) +D(hIV ∥hIf )

2

D(p∥q) =
L−1∑
i=0

p(i) log2
p(i)

q(i)

(4.7)
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(a) Ienh,H (b) Ienh,V , registered (c) Translation

(d) 3D affine (e) Fused (translation) (f) Fused (3D affine)

Figure 4.9: Registration results of the reference image (X0) at each stage. (a) Enhanced horizontal
reference image and with annotated pores (in red). (b) Enhanced vertical reference image with the
annotated pores (in green). (c-d) Registration after the translation/the 3D affine transform. The
registration performance is significantly improved after 3D affine transform, as can be observed in
particular inside the yellow rectangle. (e-f) Fused image after the translation/the 3D affine transform,
and the pore counterparts. Cross-correlation scores of en-face images and pore distances, are shown
as well.

(a) (b) (c)

Figure 4.10: Comparison between our method and the GT . (a) Fused image using our method. (b)
Aligned pores with our method. (c) Aligned pores with the transform found from the GT .

where hIH and hIV are the normalized histograms of the images IH and IV , respectively.
The spatial frequency (SF) only operates on the fused image to get the frequency
component by calculating the row frequency (RF) and column frequency (CF).
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SF =
√
RF 2 + CF 2

RF =

√√√√ 1

MN

M∑
i=2

N∑
j=2

(If (i, j)− If (i, j − 1))2

CF =

√√√√ 1

MN

M∑
i=2

N∑
j=2

(If (i, j)− If (i− 1, j))2

(4.8)

Where If is the fused image; M, N are the width and height of the image. Low value
of cross entropy means that the horizontal/vertical images contains similar information
with the fused image, while high value of SF indicates the input images and fused image
are similar.

We calculated the two metrics for the AND fusion method in section 4.3, on the
reference planes (X0). The averaged CE score is 0.07 ± 0.04, and the averaged SF
score is 0.28 ± 0.14. The low CE score demonstrates that the fused image contains
very similar information with the horizontal/vertical images.

4.5 Conclusion and Discussion
In this chapter, we proposed an innovative and efficient method to register the

orthogonal OCT volumes, despite the difficulties of low SNR, resolution difference
in three axes, and intensity inconsistencies between the orthogonal volumes. This
method proved robust for pore enhancement, with high cross-correlation scores and
short distance between matching pores, below the pore diameter. Better pore visibility
and less point noise in the fused image offer the opportunities to segment pores with
accuracy.

(a) IH (b) IV ,registered (c) Fused image

Figure 4.11: Blank region (red arrow) produced by the 3D affine transform.
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One limitation of this registration method is that blank regions can appear in some
cases, as illustrated in Figure 4.11. This phenomenon is caused by a significant variation
in the optical axis between the two acquisitions, leading to large rotation and/or scaling
factors in the final 3D affine transform. However, at current stage it is inevitable with
our method, since the size of ROI square is already as large as possible (262 × 262

pixels). Clinically, it is possible to acquire more than 131 source OCT slices to capture
a larger area around the LC, but at the cost of longer acquisition time, which might
be unacceptable for some patients.
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In this chapter, we aim to design a neural network architecture capable of accurately
segmenting LC pores in OCT volumes, namely the horizontal/vertical and fused images.
The network should address the problems of low image resolution, small pore size, and
partial annotations in the ground truth. To the best of our knowledge, this task has
never been investigated in a weekly supervised manner.

We will first give a brief literature review on U-Net and its variants (U-Nets), which
have been widely adopted within the medical imaging community. We then present
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the proposed weakly supervised method for pore segmentation. We describe the imple-
mentation details and finally evaluate the segmentation performance of the proposed
method.

5.1 Baseline U-Net
Baseline U-Net (Ronneberger et al., 2015) is a convolutional neural network (CNN)

that was designed for biomedical image segmentation using a small training dataset.
Since its inception in 2015, U-Net has become the most popular network in medical
imaging. Basically, U-Net (Figure 5.1) is a symmetric encoder-decoder architecture,
where the encoder part (left path in Figure 5.1) is a typical fully convolutional network
that aims to extract more context and complex information as the network goes deeper.
The symmetric decoder part (right path in Figure 5.1), consists of up-convolutions and
skip connections from high-resolution features in the encoder path, allowing a more
precise localization of the target objects. The key components of U-Nets are presented
in the following section.

5.1.1 Key Components in U-Nets

U-Nets share some common components with traditional CNN, such as convolution
layers and pooling layers, especially at the encoder path. However, what makes them
successful is the decoder part, where the skip connection is added for more precise
segmentation. In this section, we will briefly present key component layers in U-Nets,
which are also widely used with other neural networks.

Convolution

The convolution layers, both in the encoder and decoder paths, are the main building
blocks of U-Nets. The input to this layer is a filter (kernel) and an array (2D array in
U-Nets, input image or or feature map from the previous layer). By applying successive
convolutions between the kernel and the input array, the output is a collection of the
convolution results, forming a feature map (also called an activation map) of W×H.

Kernel weights are shared by all pixels in the array to reduce model complexity.
They are learned during training iterations by minimizing a loss function. In general,
the kernel size is smaller than the input array size, and 3 hyperparameters should be
defined for the convolution operation: kernel size, stride and padding. Stride is defined
as the number of rows and columns traversed per slide during the convolution, i.e.
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5.1. Baseline U-Net

Figure 5.1: Baseline U-Net architecture (Ronneberger et al., 2015). Blue boxes represent the feature
map at each layer, and white boxes correspond to the feature maps copied from the contracting path.
Arrows represent different operations.

the convolution window could be moved for more than one element, skipping some
intermediate locations. Padding is to add extra pixels around the boundary of the
input array, thus increasing the effective size of the image. Typically, the extra pixel
values are to set to zero.

One feature map of size W×H is not enough to describe the desired features, so
a large number of feature maps (channel, denoted as C) are used to detect different
features such as edges, textures, or higher-level features like shapes. The number of
channels is also a hyperparameter: a larger number is used for the deeper layers to
represent different abstract features.

Activation function

Convolutions are linear operations which are not enough to represent complex fea-
tures. Therefore, activation functions are introduced to detect the nonlinear features
and thus improve the CNN performance. Here, we present 3 commonly used activation
functions, in the hidden layer and in the output layer.

First, the sigmoid function (Figure 5.2a) converts the input x ∈ R to an output on
the interval (0,1).

57



Segmentation of Pores in OCT Volumes Using Partial Points Annotation

(a) Sigmoid (b) ReLU

Figure 5.2: Common activation functions.

Sigmoid(x) =
1

1 + e−x
(5.1)

where x is the input of the activation function. Sigmoid is a smooth, differentiable
approximation to a thresholding unit. However, sigmoid poses challenges for optimiza-
tion: the gradient vanishes for large positive and negative input.

Then, the most popular choice is the rectified linear unit (ReLU, see Figure 5.2b),
due to its simplicity of implementation.

ReLU(x) = max(x, 0) (5.2)

The reason for using ReLU is that its derivatives are particularly well behaved:
they either vanish or just let the argument through, which makes optimization better
behaved and mitigates the problem of vanishing gradients.

Finally, softmax is often used for the output layer, with the advantage that the
values of the output layers sum to 1.

Softmax(xi) =
exi∑
j e

xj
(5.3)

Downsampling and upsampling

Let us take the baseline U-Net architecture as an example: after the convolutional
and the activation function (ReLU) layers at the encoder path, the output feature map
size is almost the same as the input. Therefore, in order to represent abstract features,
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the spatial dimensions of the feature maps should be reduced for a larger reception
field. Such an operation is called downsampling, and pooling is one of the most widely
used downsampling methods.

Pooling layers divide the input array into small regions (reception fields) and perform
a non-linear aggregation operation, such as the maximum (max pooling) or mean (mean
pooling) value of the region within the reception field. The aggregation operations are
predefined (no weights to train) and reduce the amount of data to learn for deeper
layers. At the same time the reception field is enlarged because information from local
regions is aggregated.

Symmetrically, in the decoder path, the operation to increase the spatial dimensions
of intermediate feature maps is called upsampling. One of the most commonly used
upsampling operations is the transposed convolution (up-conv in U-Net). Padding
and stride parameters can also be defined for the transposed convolution, but unlike
convolution, the numbers are applied to the output array.

Skip connection

One of the most successful innovations of U-Nets are the well-known skip connec-
tions (copy and crop in Figure 5.1). Although upsampling has increased the image
dimensions, it is still difficult to recover the spatial information lost during downsam-
pling, which is important in U-Nets for pixel-wise segmentation. Furthermore, skip
connections provide an alternative way to ensure the reusability of features with the
same dimensions from previous layers in the encoder path.

Loss function

Loss function compares the target and predicted output values. It is one of the
most important elements of a CNN, as it directly measures how well the model fits
the training data. We will go over the most commonly used loss functions under a
binary classification formulation (background vs. foreground), as this represents image
segmentation at the pixel level.

Consider now two segmentation maps: background and foreground. Let R be the
target foreground segmentation (ground truth) of an image of N pixels, and the target
value of pixel n in R be rn. rn = 1 (or 0) indicates that the pixel n is classified
as foreground (or background). In the target background segmentation, the target
background value of pixel n is 1 − rn. P is the predicted probability map for the
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foreground label. pn = [0, 1] is the predicted probability for the foreground label of
pixel n in P. The background class probability is 1− pn.

The first family of loss functions is based on cross-entropy (CE), a measure of the
difference between two probability distributions for random variables. CE-based loss
functions are widely used for classification and segmentation tasks. The two most
popular are the binary Cross-Entropy (BCE) and the weighted Cross-Entropy (WCE).

BCE = − 1

N

N∑
n=1

rn log(pn) + (1− rn) log(1− pn) (5.4)

WCE = − 1

N

N∑
n=1

ωrn log(pn) + (1− rn) log(1− pn) (5.5)

with rn =

{
1 if n ∈ foreground pixels
0 otherwise

(5.6)

where the weight (ω) applied to the foreground class may be defined as in (Sudre
et al., 2017):

w =
N −

∑N
n=1 pn∑N

n=1 pn
(5.7)

The only difference is the weight (ω) which allows us to penalise false positives
or false negatives more severely. If ω >1 then the number of false negatives will be
reduced, similarly ω < 1 means false positives being decreased.

Another family of widely used loss functions is based on the dice coefficient, which
measures the overlap between two images. The Dice coefficient has been adapted as a
loss function known as Dice loss (DL).

DL = 1−
∑N

n=1 pnrn + ϵ∑N
n=1(pn + rn) + ϵ

−
∑N

n=1(1− pn)(1− rn) + ϵ∑N
n=1(2− pn − rn) + ϵ

(5.8)

where ϵ is used to ensure the stability by avoiding the problem of dividing by 0.
The Generalized Dice Loss (GDL) (Sudre et al., 2017) by introducing the weight ω:

GDL = 1− 2

∑1
l=0 ωl

∑N
n=1 plnrln∑1

l=0 ωl
∑N

n=1(pln + rln)
(5.9)

r0n =

{
1 n: background pixel
0 n: foreground pixel

, r1n =

{
1 n: foreground pixel
0 n: background pixel

(5.10)
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where l ∈ {0, 1} is the background segmentation map (l = 0) or the foreground
segmentation map (l = 1). As a result, rln = 1 indicates that the pixel n is classified
as background (l=0) or foreground pixel (l=1) in the corresponding segmentation map
(equation 5.10). Similarly, pln = [0, 1] is the probability that the pixel n is a background
pixel (l=0) or a foreground (l = 1) in the prediction. Invariance to different class set
properties is obtained thanks to the weights ωl.:

wl =
1

(
∑N

n=1 rln)
2

(5.11)

Training a model with a given loss function is an optimization problem, which can
be solved by gradient descent (Equation 5.12):

θt+1 = θt − ηgt, with gt = ∇θL(θt) (5.12)

Where θ is the network parameter to be optimized, η is the learning rate, gt is the
gradient at time step t of the selected samples, and L is the loss function for model
training.

Usually, the training data is split into subsets, which are called mini-batches. One
epoch corresponds to the gradient descent of all mini-batches. So, for each training
epoch, the model weights are updated by backpropagation based on the loss score
obtained in the previous epoch. One of the most commonly used optimization methods
is the stochastic gradient descent (SGD). The SGD replaces the actual gradient with an
estimate of thereof that is calculated from randomly selected samples from the dataset,
allowing for more efficient and computationally feasible optimization of deep models.

In order to ensure the convergence and accelerate the learning process, a well-known
algorithm has been proposed: SGD with Momentum (SGD-M). The momentum con-
tributes to faster convergence by adding a fraction of the previous update to the current
update.

mt = γmt−1 + ηgt

θt+1 = θt −mt

(5.13)

where mt is the first-moment vector at time step t, and γ is the exponential decay
rate (a hyperparameter, usually set to around 0.9) for the first moment estimates. mt−1

stores the moving average of the gradients. This smoothes the gradient and reduces
oscillations around the minimum, thus speeding up convergence.
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Both SGD and SGD-M update elements in θ with fixed learning rate (η). In prac-
tice, different learning rates are desired for different parameters: the gradient step
size tend to decrease proportionally to the curvature of the stochastic objective func-
tion. Therefore, the Adam (Adaptive Moment Optimization) algorithm is proposed by
introducing the second-moment vector:

mt = β1mt−1 + (1− β1)gt

νt = β2νt−1 + (1− β2)g
2
t

(5.14)

where νt is the second-moment vector at time step t, and β2 is the exponential decay
rate for the second-moment estimation (hyperparameter, typically around 0.999). As
m0 and ν0 are set to 0 for initialization, the bias is shown in equation 5.14. Therefore,
the bias correction is necessary to ensure that the moving averages are representative,
especially in the early stages.

m̂t =
mt

1− βt1
, ν̂t =

νt
1− βt2

(5.15)

where βt denotes β to the power t. Finally the parameter vector θ can be updated:

θt+1 = θt −
α√
ν̂t + ϵ

m̂t (5.16)

Where α is the learning rate, which is a crucial hyperparameter that determines
the step size towards the minimum of the loss function, and ϵ prevents the division by
zero. The amount by which each parameter is adjusted is influenced by both the first
moment and the second moment. This adaptive fitting leads to efficient optimization,
especially in deep models with a lot of parameters.

U-Net in Practice

U-Nets have proven successful in image segmentation for many medical imaging
modalities. Naturally, many network architectures combining U-Nets with other tech-
niques have been implemented by researchers, and a brief introduction to these well-
known variants is described below.

• 3D U-Net (Çiçek et al., 2016). It is proposed for the 3D volumetric segmentation,
by replacing all 2D operations with corresponding 3D operations.

• Attention U-Net (Oktay et al., 2018). It is proposed to focus on specific target ob-
jects while ignoring unnecessary areas by using the attention gate. The attention
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gate allows estimation of potential areas of interest by removing feature activation
in irrelevant regions, without the need to use explicit external ROI as supervision.

• Residual U-Net (He et al., 2016). This variant combines ResNet with U-Net to
address the problems of training very deep neural networks. The skip connection
in ResNet takes the feature map from one layer and adds it to another deeper
layer, allowing better preservation of feature maps in deeper neural networks.

• nnU-Net (Isensee et al., 2021). It is proposed to address the problem of dataset
diversity in medical images by automating the entire segmentation process, in-
cluding dataset configuration, pre-processing, network training (2D/3D) and post-
processing, without human intervention.

Each of these variants continues to be explored for different tasks, which means that
U-nets still have a lot of potential to incorporate new ideas.

5.2 Proposed Method

For our dataset of 79 orthogonal OCT volumes (158 in total), the ophthalmologist
only marked the main pores through which most axons pass. Therefore, pores are par-
tially annotated in all volumes. In the previous chapter, the orthogonal OCT volumes
are registered and fused to obtain en-face images with enhanced pores. Based on this,
we explore further possibilities with the fused images and the partial point annotation
to segment pores in each 2D en-face image.

5.2.1 Network Architecture

We use the U-Net architecture proposed in (Ronneberger et al., 2015) as a baseline
method for the pore segmentation task. In our dataset, pore sizes are small, with a
typical diameter of less than 10 pixels, given that the ROI size of an en-face image is
262 × 262 pixels. In order to improve the detection of such small areas, pore features
generated by U-Net can be strengthened by integrating attention mechanisms (Vaswani
et al., 2017) to help capture the regions of interest (ROIs).

A popular approach proposed in (Oktay et al., 2018) incorporates an Attention Gate
(AG) module (Fig. 5.4) into the U-Net. The AG allows the estimation of potential
areas where the pores are most likely to appear by removing feature activation in ir-
relevant regions, without the necessity of using explicit external ROIs as supervision.
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Figure 5.3: Proposed context-aware attention U-Net architecture. Input images from either horizon-
tal/vertical volumes, or the registered and fused volumes in chapter 4. ‘f64,k3,s1’ indicates number of
feature maps (64), kernel size (3) and stride (1).

Furthermore, axons passing through the ONH follow a fairly regular path: pore inten-
sities are similar between successive en-face images, while their centroids and shapes
show little spatial variation. Thus, a naive application of U-Net runs the risk of not
fully exploiting these regularity properties. To this end, we design a context-aware
network by inputting 3 successive en-face images, and outputting only a segmentation
map for the middle image (Input and Output in Figure 5.3).

The proposed context-aware attention U-Net is shown in Figure 5.3. Three input
images are progressively filtered by (2×) convolution blocks and down-sampled in the
encoder path. The convolution block, used in both the encoder and the decoder,
is composed of a convolution layer (Conv), batch normalization (BN), and rectified
linear unit (ReLU). In the decoder path, each layer has an attention gate through
which features from the layer l in the encoder path must pass through before being
concatenated to the up-sampled features in the coarser layer (l + 1) of the decoder
path. Finally a pixel-wise softmax is applied to generate probability maps to assign
each pixel the corresponding class (pore or background).

The AG module is shown in Fig 5.4, where the architecture is adapted from (Oktay
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Figure 5.4: Attention gate. Hx, Wx refer to the height and width of the feature map x.

et al., 2018) for 2D pore segmentation. We define the feature map x at pixel i ∈
{1, ..., N} in layer l ∈ {1, ..., L} as xli ∈ RFl , where Fl refers to the number of feature
maps in layer l. An attention coefficient αli ∈ [ 0, 1] is calculated by the AG to identify
the ROIs. The output of AG is an element-wise multiplication x̂l = αlix

l
i .

Feature maps are gradually down-sampled in the encoder to capture a large receptive
field. Features on the coarse spatial grid level of layer (l + 1) identify the location of
target objects, and such coarse features may serve as gating signal gl ∈ RFg to provide
global information for xli to disambiguate task-irrelevant feature content. Thus the
additive attention coefficients αli is calculated as:

αli = σ2(q
l
att(x

l
i, g

l
i; Θatt)) (5.17)

qlatt = ψT (σ1(W
T
x x

l
i+W

T
g g

l
i+b

l
i)) + bψi (5.18)

Where linear transforms Wx ∈ RFl×Fl , Wg ∈ RFg×Fl , ψ ∈ RFl×1, and the bias
bli ∈ RFl , bψi ∈ R together form the learnable parameter set Θatt = {Wx,Wg, ψ, b

l, bψ}
which characterize the AG. Wg and Wx ensure that the pixel-wise addition of xl and gl

could be done to learn the salient regions. σ1(x) is the ReLU function for nonlinearity
and σ2(x) is the sigmoid activation function for normalisation. Moreover, the linear
function ψ allows to generate only one attention map αl for all feature maps in layer l.
In practice, linear transforms {Wx,Wg, ψ} are implemented as 1× 1 convolution layer.

The Generalized Dice Loss (GDL) presented in 5.1.1 is used to solve the unbalanced
background/foreground problem, as only few pixels in our image are labeled.

GDL = 1− 2

∑1
l=0wl

∑N
n=1 plngln∑1

l=0wl
∑N

n=1 pln + gln
, wl =

1∑N
n=1 gln

Where GT = {gl1, ..., glN |gln ∈ {0, 1}} is the GT background (l = 0) or foreground
(l = 1) segmentation map of an image of N pixels, and P = {pl1, ..., plN |pln ∈ [ 0, 1] }
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is the output segmentation map. Here, the weight ω is modified compared to the
equation 5.11: as only a small portion of pores are segmented in the GT, many false
negative pixels are presented in the GT. To this end, we want to penalize less the
background pixels by choosing a lower ratio of ω1/ω0. Finally, the probabilistic maps
were thresholded at 0.5 to generate binary classification for each pixel (pore or not).

5.2.2 Training Dataset

Our dataset consists of 79 horizontal volumes and 79 vertical volumes, all annotated
by the medical expert in section 3.2.2. In addition, the 79 fused volumes obtained in
4.3 can enrich our dataset. For these fused volumes, their ground truth segmentation
maps are generated by applying the transform found in section 4.2 to fuse the ground
truth of horizontal and vertical volumes.

Therefore, the input of our proposed context-aware network is three consecutive 2D
images from different volumes: either the horizontal/vertical volumes (I(x±1)

H ,I(x±1)
V ),

or the fused volumes (I(x±1)
fus ). To evaluate the effectiveness of the fusion algorithm, we

perform two experiments:

• In the first experiment (H+V), three 2D en-face images from horizontal (I(x±1)
H ),

or three 2D en-face images from vertical volumes (I(x±1)
V ) are fed into the network.

• In the second experiment (H+V+Fusion), besides images from the horizontal and
vertical volumes, three images from the fused volume (I(x±1)

fus ) are also input to
the network.

5.3 Experiment Setup

Experiments were carried out on the dataset described in section 3.1.4. In total, we
have 158 OCT volumes (79 orthogonal scans) from 68 eyes of 42 subjects examined
between 2021 and 2023. For the source horizontal or vertical volumes, after manual
annotation by the medical expert, our dataset of 158 volumes consists of 8559 2D
en-face images containing at least one manually annotated pore. On average, 6.73 ±
6.03 pores are identified in each en-face image. For the fused volumes, the manual
annotation of orthogonal volumes is also fused to create a fused segmentation map.
In this case, 79 fused volumes contain 3559 2D en-face images, with an average of
8.65±7.80 pores identified in each 2D image.
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5.3.1 Implementation Details

Hyperparameters. The same hyperparameters are set for all training processes.
The learning rate is initialized as 3 × 10−4, and would be reduced by a factor of 5 if
the exponential moving average of training loss did not improve by at least 5 × 10−3

within the last 30 epochs. Adam optimizer is used with a weight decay of 3 × 10−5,
and a batch size of 32 for 1000 epochs on a TITAN RTX GPU.

Data augmentation. Data augmentation is performed by randomly combining
horizontal/vertical flipping, rotating, brightness and contrast changing, Gaussian noise,
and elastic deformation (Simard et al., 2003).

Cross-validation. Different volumes (longitudinal studies) from the same subject
are in some cases very similar to each other, so subject-wise cross validation is used
for our study. The dataset of 42 subjects is divided into 5 folds to perform the cross-
validation: 3 folds (26 subjects) for training, 1 fold (8 subjects) for validation and 1
fold (8 subjects) for the test set. Given a test set (8 subjects), we perform the leave-
one-out cross validation on the training (26 subjects) and validation sets (8 subjects).
Therefore, for the test set, we have an ensemble of 4 trained models. The final pre-
diction was obtained by averaging the 2 models that achieve the highest object-level
recall and precision scores to increase the robustness of the model.

5.3.2 Evaluation Metrics

Different metrics have been used to evaluate the performance of the proposed pore
segmentation method:

• The Pixel-level Dice similarity Coefficient (Dice) and Jaccard index (Jaccard)
measure the pixel-wise segmentation accuracy between the GT and the output
segmentation mask.

Dice =
2TP

2TP + FP + FN
, Jaccard =

TP

TP + FP + FN
(5.19)

where TP is the number of true positive pixels in an image that were correctly
classified as pores; FP is the number of false positives that were incorrectly classi-
fied as pores; FN is the number of false negatives that were incorrectly classified
as background. However, the ground truth is generated by the region growing
algorithm using the expert annotations as seed points. As a result, the GT seg-
mentation map is not accurate at the pixel level. For a more reliable evaluation,
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(a) Enhanced image (b) GT (c) H + V (d) H + V + Fusion

Figure 5.5: Evaluation using the fusion method proposed in chapter 4.

object-level pore detection metrics are also used.

• The object-level Recall (Recall) and Precision (Precision) metrics that measure
the object-level accuracy of detection. Recall is used to assess the true positive rate
of the proposed method and Precision is used to measure the positive predictive
value.

Recall =
TPo

TPo + FNo

, Precision =
TPo

TPo + FPo
(5.20)

where TPo is the number of pores in the ground truth segmentation that overlap
with a pore candidate in the output segmentation (at least one pixel overlap in the
8-connectivity sense). FNo is the number of missed pores in the output segmen-
tation map compared with GT segmentation. FPo is the number of misclassified
pore candidates in the output segmentation map.

5.4 Experiment Results
In this section, we first compare the performance of different inputs, followed by a

comparison of the proposed network with other state-of-the-art methods.

5.4.1 Comparison of Different Dataset

In order to evaluate the fusion algorithm proposed in the previous chapter, we
apply our context-aware attention U-Net on two dataset: H+V (8559 2D images) and
H+V+fusion (12118 2D images), as presented in section 5.2.2. Figure 5.5 and Table
5.1 show the performance of the proposed network on these two datasets:

• With additional fusion images as input, the network tends to predict more pore
candidates, confirmed by the high recall score (0.746). Such result could be ex-
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plained by the facts that on the one hand, pores are more contrasted in the fused
images. Meanwhile, more pores are identified on the GT of the fused images thanks
to the fusion process. On the other hand, the fused images could be considered
as a data augmentation technique, which is powerful in small dataset regime like
ours.

• The Dice, Jaccard and Precision are low for both models, which could be explained
by the fact that only partial pores are annotated in the GT, so that false positive
regions in the output segmentation map may correspond to pores that are not
labeled in the ground truth.

Table 5.1: Segmentation results on the test dataset. The mean value of each metric is calculated over
all pixels in the test dataset. We favor the Recall metric since the ground truth is incomplete.

Pixel-level Object-level
Input images Dice Jaccard Precision Recall

H + V 0.261 0.169 0.282 0.715

H + V + Fusion 0.293 0.178 0.275 0.746

5.4.2 Comparison of Existing Networks

In this section, we used the dataset with fused images (H+V+Fusion) for all of
the following methods. We compare the proposed method with region-based active
contour approach proposed by Chan and Vese (Chan and Vese, 2001), the unsupervised
method W-Net (Royer et al., 2021), as well as the supervised methods of baseline U-
Net (Ronneberger et al., 2015) and Attention U-Net (Oktay et al., 2018). For the
supervised methods, we used the same cross-validation principles.

Figure 5.6 shows the visual comparison of segmentation performances. We can ob-
serve that active contour and unsupervised W-Net approaches are sensitive to noise
and artifacts, especially in low SNR regions like the LC borders. On contrary, U-Net
based methods are more efficient in predicting the pore candidates. Our proposed
method is able to predict more pore candidates in low contrast regions and in bor-
der regions, thanks to the context-aware design that is able to refer local consecutive
potential pore areas. We also observe that pore sizes predicted by our method and
the Attention U-Net are closer to their real sizes, meaning that the attention gate is
efficient in highlighting the potential small regions in the image.
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(a) Enhanced image (b) GT (c) Chan_Vese (d) W-Net

(e) U-Net (f) Attention U-Net (g) Ours

Figure 5.6: Comparison of the segmentation results with other state-of-the-art methods.

Our proposed method is robust in identifying true positive pores with the highest
Recall value, as shown in Table 5.2. The Dice, Jaccard and Precision scores are not
reliable to measure the performance with incomplete ground truth. To this end, we
asked the expert to validate or not the pores suggested by the supervised methods and
also to point out the missing pores. Using this method, we bypass the partial ground
truth problem. Obviously this method is time-consuming, hence why we did it only on
10 random images of the test set.

Table 5.3 illustrates the a posteriori evaluation, instead of relying on the partial
ground truth for score evaluation. We observe that our model predicts more TP pores
thanks to the context-aware design, and meanwhile the attention gate helps to eliminate
FP pores by gradually attenuating the activation of their surrounding background as
the network goes to shallower layers in the decoder path, resulting in a more accurate
prediction of pore location and pore sizes. Finally, the missing pores (FN) are mainly
located at: (1) the start or the end of the pathway, where the image is of low SNR; (2)
the artifact areas especially vessel shadows. In both cases it is hard even for experts
to identify without referring to the continuity.
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Table 5.2: Comparison with other state-of-the-art methods on the test dataset.

Pixel-level Object-level
Model Dice Jaccard Precision Recall

Chan_Vese 0.084 0.056 0.126 0.677

W-Net 0.101 0.056 0.127 0.694

U-Net 0.265 0.169 0.262 0.656
Attention U-Net 0.269 0.173 0.283 0.697
Ours 0.293 0.178 0.275 0.746

Table 5.3: A posteriori evaluation by the expert (10 images).

Object-level
Model TP FP FN Recall Precision

U-Net 30.4 2.3 7.1 0.81 0.93
Attention U-Net 36.7 2.4 4.4 0.89 0.94
Ours 38.2 3.5 2.8 0.93 0.92

5.5 Conclusion and Discussion
In this chapter, we proposed a simple but efficient context-aware Attention U-Net

for pore segmentation using partial points annotation. The input of the proposed
network could be the enhanced horizontal/vertical en-face images, or the fused images
produced in the previous chapter. This is, to our knowledge, the first time a deep
learning method is used for the in vivo LC pore segmentation task. Experimental
results show that our method is robust in identifying true positive pores, despite the
network being trained with an incomplete ground truth. Another advantage of the
proposed network is that the manual delineation of peripheral masks is not required,
thanks to the automatic ROI detection in section 4.1.1 and the supervised approach.

In our recent paper (Ding et al., 2024), the network architecture was slightly dif-
ferent: after the registration process, in addition to the three horizontal images, three
registered vertical images are also fed into the network, resulting in 6 images as input
to the network, while only 1 prediction map is output for the middle horizontal image.
In this case, the manual annotation of the vertical volumes was ignored, which is not
reasonable given the the small size of our dataset. Certainly, more training strategies
are possible with the fused images, and we are also working on this for more robust
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predictions.
We also tried object detection methods such as YOLO (Redmon et al., 2016) and

Mask R-CNN (He et al., 2017), bot none of them were successful. This is mainly
due to the fact that pores are small (less than 10 pixels in a 262×262 pixel image) and
have no particular appearance or characteristics, making it difficult for object detection
networks to work perfectly.
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3D Reconstruction of Pore Pathways
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In the previous chapter, pores have been segmented in every 2D en-face image with
the proposed algorithm, allowing for the 3D reconstruction of the axonal pathways in
3D. We take the same inspirations from our former work in (Rossant et al., 2017), where
a parametric active contour algorithm was proposed to reconstruct pore pathways.

In this chapter, we propose an adapted active contour method for the tracking of
pore pathways. Specifically, we first review the principles of active contours, followed
by the details of the proposed tracking algorithm. Finally we evaluate the proposed
reconstruction algorithm with other state-of-the-art methods.

6.1 Parametric Active Contours
Active contour models (also called deformable models or snakes), originally intro-

duced by (Kass et al., 1988), have been used in a variety of different medical image
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processing tasks, ranging from image segmentation to object tracking. The basic idea
is that given an initial guess of the contour, the contour will be moved by forces to
the boundaries of the desired object. This is solved by minimizing the energy function
that is defined as the sum of different kind of energies along the length of the snake.

6.1.1 Energy Terms

Active contour is defined in the form of a closed or open parametric curve. It
(dynamically) evolves the contour iteratively, from its initial position towards the edges
of the object to be extracted. Active contours are essentially subject to two types of
force: an internal force that regularises the curve and an image force that expresses
the interaction of the contour with the image.

Let I be the image and C a contour of the image I that can be deformed spatially
and temporally. The curve is parameterized by the curvilinear abscissa s and the time
t. We denote V (s, t) the position of a point on curve C at time t.

V (s, t) = (x(s, t), y(s, t)), s ∈ [0, 1] (6.1)

The energy function associated with the contour (E(V )) consists of three terms:

E(V ) = Eint(V ) + Eimg(V ) + Eext(V ) (6.2)

The internal energy (Eint) characterises the physical properties of the contour and
imposes regularity properties on the curve, without looking into the image information.

Eint(V ) =

∫ 1

0

(α(s)|V ′(s, t)|2 + β(s)|V ′′(s, t)|2) ds (6.3)

where the first-order term represents the elasticity of the contour and is controlled
by the parameter α(s). A large value of α will limit the stretching of the contour,
while the discontinuity may be present if α is set to zero. The second-order term is
the stiffness of the contour and is controlled by β(s). A large value of β prevents the
strong curvature, while the curve may be discontinuous at second order and contain
corners if it is set to zero.

The image energy (Eimg), also known as the context energy, depends on the image
properties. This energy can be expressed as follows, so that the curve is attracted to
areas with a strong gradient

Eimg(V ) = −
∫ 1

0

|∇I(V (s, t)|2 ds (6.4)
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where ∇I(V (s, t)) is the gradient of the image I at V (s, t).
In most cases, the gradient of the smoothed image is calculated:

Eimg(V ) = −
∫ 1

0

|∇(gσ ∗ I)(V (s, t)|2 ds (6.5)

where gσ is a Gaussian with mean zero and standard deviation σ.
Another way of defining image energy is simply modeling the pixel intensities in

order to detect dark or light peaks, which is exactly what we are looking for the pore
reconstruction task.

Eimg(V ) = ±
∫ 1

0

I(V (s, t)) ds (6.6)

The external energy (Eext) are the constraints responsible for putting the snake
near the desired local minimum, which may come from higher level interpretation, user
interaction, etc.

6.1.2 Energy Minimization

The evolution of the active contour is obtained by minimising the total energy
(equation 6.2). The weights α and β are considered constant to simplify the problem.
Minimising Equation 6.2 is equivalent to solving the Euler-Lagrange equation

min
V

∫ 1

0

E(s, V, V ′, V ′′) ds ⇔ ∂E

∂V
− ∂

∂s

∂E

∂V ′ +
∂2

∂s2
∂2E

∂V ′′ = 0 (6.7)

And we have the following equalities

∂E

∂V
= ∇(P (V (s)),

∂

∂s

∂E

∂V ′ = αV ′′(s), and
∂2

∂s2
∂2E

∂V ′′ = βV ′′′′(s) (6.8)

The optimal condition is obtained by solving

αV ′′(s)− βV ′′′′(s)−∇(P (V (s))) = 0 (6.9)

where P (V (s)) represents the image potential corresponding to the sum of the image
and external energies. For the numerical computation of the active contours, the
discretization of the curve V is considered in the next section.

6.1.3 Discrete Approximation

TheN points that form path V are represented by the coordinates [V0, V1, ..., VN−1]
T ∈

(R2)N . The derivatives involved in the Euler-Lagrange equation are conventionally es-
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timated using the finite difference method.

V ′′(s) ≃ Vk+1 − 2Vk + Vk+1

V ′′′′(s) ≃ Vk+2 − 4Vk+1 + 6Vk − 4Vk−1 + Vk+2

(6.10)

Equation 6.9 can be written as

AV +∇(P (V )) = 0 (6.11)

where A is a symmetric matrix of size N×N . Then we have the following numerical
scheme by introducing the time variable t.

AVt +∇(P (Vt−1)) + γ(Vt − Vt−1) = 0 (6.12)

where γ is the step size of Euler’s temporal discretization. Finally we can obtain Vt
depending on Vt−1

Vt = (A+ γId)
−1(γVt−1 −∇(P (Vt−1)) (6.13)

At each iteration, the potential ∇(P (Vt)) is calculated and the new position of each
point on the curve is thus updated.

6.2 Proposed Method
The axonal pathways are reconstructed from the segmented pores on the fused X-

plane image, based on a tracking process initialized at the reference X-plane image
(X0) that was selected in section 3.2.3. Every segmented pore in this plane initializes
a pathway and the goal is to track it along the X axis, upwards and then downwards,
at most to the start (xstart) and the end (xend) of the LC.

6.2.1 Energy Function Selection

Let us consider one axon pathway lx on the enhanced fused X-plane image I(x)fus.
Given the gravity center location of the segmented pore (x, y

(l)
x , z

(l)
x ), we want to de-

termine the next position (x + 1, y
(l)
x+1, z

(l)
x+1) in the downward case. To this end, we

rely on a parametric active contour model described in section 6.1, which exploits the
continuity of the dark intensities along any axonal pathway. Let us denote by V (l)

x this
path indexed by l, initialized as a small vertical segment at the position (y

(l)
x , z

(l)
x ). The

energy functional to minimize is given by :
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E(V (l)
x ) =

∫ x+δ

x−δ
α|V (l)′

x (s)|2 + β|V (l)′′

x (s)|2 + Ifus(V
(l)
x (s)) ds (6.14)

where Ifus is the fused image and δ determines the length of the curve. The first
two terms are the the internal energy, which regularizes and ensures that the path is
smooth. The higher α and β the straighter the curve V (l)

x . The last term is the image
potential, which deforms the snake to reach the locations of lowest intensity, so to the
pores. The minima of the energy function E(V

(l)
x ) are found by solving the following

Euler-Lagrange equations according to equation 6.9:

αY (l)′′

x (s)− βY (l)′′′′

x (s)− ∂Ifus(Y
(l)
x (s), Z

(l)
x (s))

∂Y
= 0

αZ(l)′′

x (s)− βZ(l)′′′′

x (s)− ∂Ifus(Y
(l)
x (s), Z

(l)
x (s))

∂Z
= 0

(6.15)

where Y (l)
x (s) and Z(l)

x (s) are the coordinates of the curve V (l)
x in the plane s. In our

case, the parameter s takes the discrete values i = {x− δ, x− δ+1, ..., x+ δ}, ensuring
that each point of the discrete curve can only move along the Y and Z coordinates in
its initial X-plane. The minimization is obtained through an iterative gradient descent
algorithm and the solution in equation 6.13 become

Yt = (A+ γId)
−1(γYt−1 −

∂Ifus
∂Y

(Yt−1, Zt−1))

Zt = (A+ γId)
−1(γZt−1 −

∂Ifus
∂Z

(Yt−1, Zt−1))

(6.16)

The parameters are set as α = 1, β = 0, γ = 4 and δ = 3, to ensure appropriate
convergence speed without any oscillations around the local minimum reached by the
algorithm.

6.2.2 Proposed Algorithm

The segmentation map of the 2D en-face images are thresholded using OTSU algo-
rithm (Otsu, 1979), where the centroid of each connected component is extracted. The
axonal pathways are initialized on the reference plane X0 with the centroid of the path
l being (x0, y

(l)
0 , z

(l)
0 ). Given a path at plane x, after the calculation of the minimization

of the energy function, we get the predicted position V (l)
x+1 in the plane x+1 for the next

position of the axonal pathway (circles in Figure 6.1). If this position (x+1, y
(l)
x+1, z

(l)
x+1)

falls inside a predicted pore candidate, then the pathway continues with the existing
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Figure 6.1: Schema showing how our snake model works. In circles are the pore candidates on the
en-face planes, while in rectangles are the reconstructed pathways.

label, otherwise it ends. For pore candidates not linked to any existing pathway, they
are initialized in the plane to a new path label, as they are first detected.

Finally, we only retain the paths that last for more than 5 planes since we are
interested in identifying the main axonal pathways, which are clinically the most rep-
resentative as well. Every axonal pathway is then refined and regularized by applying
the same snake model along its entire length.

Figure 6.2: Overview of the all reconstructed pathways on the enhanced fused image.
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Figure 6.3: Reconstruction result using our method in a high contrast case (enhanced images, vertical
slices reconstructed by interpolation)

.

This method is simple yet efficient for our task, since it explicitly models the main
features of axonal pathways, that is their low intensity and their regularity. Two ex-
amples of the reconstructed pathways in Figure 6.2 shows that the proposed method is
capable of reconstructing the main pathways through which most axons pass. This is
due to the fact that the initialization of pore pathways in the reference X-plane X0 is
reliable because pores in this plane have good contrast. In addition, the initialization
of the curve as a small vertical segment is accurate, since the axonal pathways are
very regular at this scale, which prevents falling into a local maximum of the energy
functional. Thus, our method makes it possible to track successive positions taking
into account a small but significant local image context, unlike approaches that only
consider the intensities in the adjacent plane. This property and the use of the binary
segmentation map to validate the next position make our tracking approach both re-
liable and accurate in reconstructing the main axonal pathways. Finally, it is worth
noting that our implementation allows to process all paths of a given x plane simulta-
neously, every path being small (2δ + 1 = 7 points) and only a few iterations needed
to converge the snakes. So the algorithm is not heavy. A 3D reconstructed path in
Figure 6.3 shows that the path is determined without ambiguity in high contrast case.

6.3 Experiments and Results
Experiments were conducted on the test dataset in chapter 5 with 12 orthogonal

OCT volumes (24 volumes in total) where pore candidates have been predicted with the
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Table 6.1: Evaluation of the path length using our proposed method∗.

Mean path length (GT) 32.66 ± 9.57
Max 56
Min 11

Mean path length (Ours) 16.60 ± 13.25
Max 41
Min 5

*Unity: number of crossed X-plane images.

Table 6.2: Evaluation of the proposed 3D reconstruction method.

TPpth FNpth FPpth

Ours 83(86.5%) 13(13.5%) 135(140.6%)

TPpnt FNpnt FPpnt

Ours 20.54±8.17 15.20±8.92 5.38±5.04

proposed context-aware attention U-Net. For the manually annotated paths, we define
the fused manual annotation as ground truth (GT), which means that the manual
annotation on vertical volumes has been aligned and fused to the horizontal volumes
by the found transform in chapter 4.

6.3.1 Evaluation Metrics

We used path detection metrics and path accuracy metrics defined in (Rossant et al.,
2017) to evaluate the proposed method. At the path detection level, we calculated the
number of True Positive pathways (TPpth, number of paths present in both GT and
our model), number of False Positives (FPpth, extra paths of ours without equivalent
in GT ) and the number of False Negatives (FNpth, paths of GT without equivalent in
our model). Two paths are considered to be matched (TPpth) if the distance between
them is less than 2 pixels on at least 20% of the path of GT.

Then, the accuracy of the matching pathways (TPpth) are also evaluated. Given
two matching paths of our method (Alours) and the ground truth (AlGT ), we denote the
X interval of overlapping by IX,l. All points of Alours inside IX,l are considered as true
positive points (TPpnt), whatever their distance to the GT. Similarly, the points of
Alours outside of IX,l are counted as false positives (FPpnt), and those of AlGT outside of
IX,l are the false negatives (FNpnt). The root mean squared error (RMSE) between the
matched points on the interval IX,l are also calculated to evaluate the accuracy of the
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tracking performance. Finally, all metrics are averaged over the volumes and paths to
have a statistical evaluation on the dataset. Mean path length (i.e. number of points)
are also calculated to help interpretation.

(a) X=318 (b) X=319 (c) X=320 (d) X=321 (e) X=322

(f) (g)

Figure 6.4: Example of pathway interruption. The first row shows the two reconstructed pathway
with an interruption at X=320. The second row shows the the other two orthogonal views of the two
pathways. The first pathway is shown in red, and the second in green, respectively.

6.3.2 Quantitative Evaluation

The mean path depth with our method (16.60±13.25) is shorter than in the GT
(32.66±9.57) and with a higher standard-deviation, as shown in Table 6.1, which could
be explained by the fact that the path could be interrupted for some X interval where
the pore is less contrast. An example of such interruption is illustrated in Figure
6.4, where the first path stopped at X= 319, while another started at X=321, without
correspondence at X = 320. By visual check the correspond pore at X = 320 is observed,
however, it is too small to be segmented by our algorithm, leading to the interruption
of the path.

The reconstruction results are reported in Table. 6.2. Our method segmented more
axonal pathways than the expert (218 vs. 96 paths), which is in agreement with the
previous analysis and shows that the extra pores detected in en-face images correspond
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to significant axonal pathways (but not labeled in the GT) that can be traced. We
also observe that missing paths (FNpth) are mainly due to the low SNR in some en-face
images.

As for the accuracy of matching pathways, the FNpnt and the FPpnt are mainly ob-
served at the start and the end of the pathways, where the en-face images are normally
much less contrasted, leading to the disagreement even between the ophthalmologists.

Finally, the RMSE between the axonal pathways reconstructed with our method
and the ground truth, on the area of overlap, is equal to 2.13±1.20 pixels. This
demonstrates that the 3D reconstruction is very accurate considering the typical pore
diameter (∼10 pixels).

6.4 Conclusion
In this chapter, we present a simple but efficient segmentation-based tracking al-

gorithm to reconstruct the axonal pathways in 3D, given the enhanced fused volume
and the binary segmentation maps of the pores in the en-face images. Our method
relies on a parametric active contour model, which is initialized on the reference en-face
image where pore information is the most reliable. It takes into account a local but
significant context neighboring planes, which makes the tracking reliable and accurate.
The predicted position is validated only if it falls into a segmented pore, so that only
unambiguous segments are extracted. By qualitative and quantitative evaluation, the
proposed method is robust in tracking the pore paths in adjacent en-face planes. At
the same time the algorithm is light since the energy functional is minimized only on
7 en-face images and all pores simultaneously processed.

The efficiency of the algorithm is also owing to the proposed pre-processing and
registration steps for pore enhancement, as well as the segmentation method for accu-
rately isolating pores in each 2D en-face image. Improvements should essentially focus
on managing pathway interruptions.

We hope that in the near future, the proposed method can be applied clinically to
help ophthalmologists better model the LC, in particular pore morphology, in order to
better understand glaucoma and therefore prevent it at an earlier stage.
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7.1 Conclusions
The objective of this thesis was to develop a complete and innovate method for

the 3D reconstruction of pores in the lamina cribrosa (LC), which had been rarely
investigated. In the course of this thesis, we have gradually collected and annotated
our dataset containing horizontal and vertical 3D OCT volumes for each examination.
Such dataset has allowed us to carry out the related tasks, which was challenging
because of low signal-to-ratio (SNR) images and partially annotated pores on en-face
images.

7.1.1 Contributions

In Chapter 3, we presented our dataset, from acquisition to expert annotation. We
then introduced the pre-processing steps, which aims at enhancing pores in en-face
images and extract the Volume-of-Interest. The enhancement results outperform the
state-of-the-art method in denoising and enhancing main pores.

In Chapter 4, we proposed, for the first time, to register two orthogonal volumes to
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enhance pore features. The registration consists of two steps: coarse registration by
translation and 3D affine transform for refined registration. The proposed method is
proven to be effective: (1) reliable a priori information in reference en-face images is
fully exploited in the coarse registration process, (2) the issue of varying optical axis
is better addressed with 3D affine transform. The experimental results show that the
performance of the proposed network is comparable with the ground truth, with the
distance between matching pores below the pore diameter.

In Chapter 5, we proposed a context-aware Attention U-Net network to segment
pores in each 2D en-face image with partial points annotation. This method is shown
to be robust due to the context-aware design to take into account for pore continuity
in successive images, and the attention gate to highlight small regions-of-interest. Per-
formance of the network is improved by inputting the fused images, proving conversely
that our registration/fusion method is useful and efficient. The promising segmentation
results allow us to track pores in successive en-face images with high reliability.

In Chapter 6, we proposed a segmentation-based tracking algorithm to reconstruct
the axonal pathways in 3D, given the enhanced fused volume and the binary segmenta-
tion maps of pores in the 2D en-face images. Our method relies on a parametric active
contour model that is initialized on the reference en-face image where pore informa-
tion is most reliable. Local context of successive en-face images is considered, making
the tracking algorithm accurate. The robust results are owing to the proposed pre-
processing and registration steps for pore enhancement, and the accurate segmentation.
All different processing components together make the proposed method promising for
clinical applications.

7.2 Perspectives

7.2.1 Perspectives on the Methodology

Data. Currently, deep learning algorithms are widely applied to reconstruction
tasks, meaning that a large training set and exhaustive annotation are required. Our
segmentation result in section 5.3 used the a posteriori validation by pointing out
all visible pores in ten 2D images. Similar pointing will also be possible on entire
volumes to validate the tracking algorithm, but maybe limited to 5 volumes, cause
such annotation is very time-consuming.

Advanced fusion method. For the registered H and V volumes, the pixel-based
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Figure 7.1: High pore visibility in adaptive optics (Zwillinger et al., 2016).

AND fusion method has been adopted. However, we can work on more advanced fusion
schemes, in order to exploit the best of both images locally. These fusion schemes can
be implemented using neural networks (Zhang et al., 2020; Liu et al., 2017) with more
sophisticated methods than a simple AND operator. We can also test fusion schemes
at the input or in the intermediate layers of a deep neural network.

Graph-based tracking algorithm. Our active contour based tracking method
has one limitation: path interruption caused by a segmentation error is not considered.
Future improvement may involve a graph-based tracking algorithm (Löffler et al., 2021)
that could address the path interruption problem. Going further, a graph neural net-
work (Weng et al., 2020) can also be an option in a tracking context.

7.2.2 Combination with Other Modalities

Multimodal analysis could also be a promising direction for this task, as pores are
contrasted in high-resolution 2D images acquired using adaptive optics (AO, Figure
7.1). Such an AO image would allow us to select the most significant pores and extract
additional information about their size and shape. In addition, multimodal image
analysis using deep learning is also a trend in eye disease diagnosis (Jin et al., 2022).

7.2.3 Towards Clinical Applications

Ophthalmologists at the Quinze-Vingt Hospital have used the application developed
by (Rossant et al., 2017) to carry out their studies (Bastelica, 2022). Their current
method uses the semi-automatic method introduced in section 3.2.2 to track the pores.
Our method is promising in helping them automate the reconstruction process.
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The clinical applications of our research project could be: (1) axonal paths difference
between healthy/glaucoma subjects; (2) axonal path modifications after surgery; (3)
axonal path modifications for glaucoma suspect follow-ups. By analyzing pore paths,
biomarkers characterising axonal paths can also be calculated for clinical studies, such
as path tortuosity and verticality.
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8.1 Introduction

8.1.1 Contexte

Le glaucome est une neuropathie optique qui est la deuxième cause de cécité ir-
réversible, touchant environ 80 millions de personnes dans le monde en 2020 sur la
base d’études de prévalence (Quigley and Broman, 2006). Bien que les causes du glau-
come ne soient pas encore claires, la lame criblée (LC) a été identifiée comme site
principal des lésions dans le glaucome (Quigley et al., 1983). La LC est un maillage
collagénique 3D dans la tête du nerf optique (ONH), composé de “pores” (i.e. trajets
axonaux, Fig. 8.1) à travers lesquels les fibres nerveuses passent pour atteindre le
cerveau.

L’observation in vivo en 3D des pores de la LC est désormais possible grâce aux
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progrès de la tomographie de cohérence optique (OCT, Fig. 8.1). La modélisation
des pores et de leur déformation au cours du glaucome à partir d’images OCT 3D
permettrait de mieux comprendre cette pathologie cécitante.

Figure 8.1: Données OCT 3D pour un balayage H ou V.

Dans le cadre de cette thèse, notre projet de recherche vise a caractériser les pores
de la LC en cas de glaucome, ainsi que les modifications morphologiques survenant
au cours de cette pathologie, par l’analyse automatique des images OCT 3D de la
LC. Plus précisément, nous cherchons à concevoir une méthode de segmentation des
trajets axonaux à partir des images OCT 3D. De cette segmentation, nous pourrons
ensuite calculer des biomarqueurs caractérisant la LC et ses déformations au cours du
glaucome. Pour cela, nous proposons des prétraitements permettant de rehausser les
pores dans les images de faible rapport signal sur bruit, d’une part par le recalage
de deux volumes OCT acquis dans les directions de balayage horizontale et verticale,
et d’autre part par l’application de traitements de morphologie mathématique. Pour
la segmentation, nous proposons une méthode en deux temps. Tout d’abord, nous
avons conçu un réseau de neurones profond pour la segmentation des pores de la LC
dans des images en-face, entrainé à partir de données partiellement annotées. Enfin
nous reconstruisons les chemins axonaux en 3D par une procédures de suivi des pores
segmentés.
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8.1.2 Défis et contributions

Le principal défi est la qualité insuffisante des données (faible SNR, faible résolu-
tion transverse (∼15µm)), sachant qu’il est difficile, même pour des experts médicaux,
d’identifier les pores dans une image (i.e. plan) en-face. En outre, les pores de la LC
sont très petits et très peu contrastés, ce qui rend la segmentation automatique très
difficile.

En réponse à cela, nous proposons d’exploiter le fait que les volumes OCT peuvent
être acquis selon deux directions de balayage différentes, horizontale ou verticale, pour
obtenir un volume fusionné de meilleure résolution et moins bruité. Pour ce faire,
nous devons d’abord recaler géométriquement les deux volumes orthogonaux. Notre
méthode est basée sur l’intensité des pixels et est divisée en plusieurs étapes, afin de
résoudre le problème d’optimisation de manière robuste et d’obtenir un recalage précis.

Le deuxième défi consiste à construire un jeu de données avec des annotations
manuelles fiables dans les volumes OCT. En raison de la faible résolution des images
OCT, de la petite taille et de la grande quantité de pores dans l’image, l’annotation
manuelle est très difficile, car même les experts médicaux ont tendance à ne pas être
d’accord sur ce qu’est un pore ou non.

Par conséquent, pour pouvoir détecter les pores les plus larges, ceux qui permettent
à la plupart des axones de passer, nous avons proposé un réseau de neurones profond,
un U-Net intégrant des modules d’attention (Oktay et al., 2018) et prenant en compte le
contexte local par le traitement de plans adjacents. Cette architecture est bien adaptée
à la segmentation précise des pores dans toutes les images en-face, malgré l’annotation
imcomplète des points. Elle nous permet de prédire avec robustesse et précision les
pores candidats à la reconstruction 3D.

Enfin, nous avons proposé une méthode de reconstruction 3D des chemins axonaux
à partir des pores segmentés dans les images en-face. Notre approche est fondée sur
un modèle de contours actifs paramétriques dérivé du modèle de (Kass et al., 1988).
Partant d’un plan de référence, nous appliquons ce modèle localement pour recon-
struire pas à pas les trajectoires des pores. Notre méthode modélise explicitement les
principales caractéristiques des chemins axonaux, à savoir leur faible intensité et leur
régularité, ce qui conduit à un résultat robuste et précis.
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8.2 État de l’Art sur les méthodes de Reconstruction
des Pores de la LC en 3D

Les études récentes sur la LC se limitent principalement à l’analyse de l’épaisseur
de la lame criblée (Devalla et al., 2018b) et de sa surface (Tan et al., 2015). Des
changements morphologiques des pores, tels que leur allongement (Zwillinger et al.,
2016), ont été observés dans des images en-face 2D d’optique adaptative (OA), donc
en haute résolution, chez des patients glaucomateux.

A notre connaissance, seulement deux travaux, dont les nôtres, ont porté sur la
reconstruction des pores de la LC en 3D et in-vivo (Rossant et al., 2017; Wang et al.,
2018) grâce à l’OCT. Plus précisément, les deux méthodes peuvent être divisées en trois
étapes principales : le pré-traitement pour la rehaussement des pores et la réduction
du bruit, la segmentation des pores pour extraire les pores dans les images en-face
en 2D, et enfin l’étape de reconstruction pour relier les pores dans les images en-face
adjacentes.

Pour le pré-traitement, les auteurs de (Wang et al., 2018) ont appliqué un filtre
Gaussien 3D pour réduire le bruit dans les hautes fréquences, ainsi que la méthode
d’égalisation d’histogramme adaptatif limité par contraste (CLAHE) pour égaliser les
différences d’intensité locales. Dans (Rossant et al., 2017), les auteurs ont proposé
d’utiliser des filtres morphologiques, notamment les filtres alternés séquentiels et le
filtre Bottom-Hat, pour débruiter et rehausser les caractéristiques des pores.

En ce qui concerne la segmentation des pores dans les images en-face, les auteurs de
(Wang et al., 2018) ont utilisé le seuillage local adaptatif (Niblack, 1985), ainsi qu’un
filtre médian 3D avec une taille de noyau de 1×1×3 afin de tenir compte de la continuité
des pores dans les images en-face adjacentes. Dans (Rossant et al., 2017), les pores ont
été sélectionnés comme des minima locaux d’intensité les plus contrastés dans les images
en-face. Enfin, pour reconstituer individuellement les trajets des pores segmentés, les
auteurs de (Wang et al., 2018) ont utilisé l’algorithme de filtre particulaire fourni par le
logiciel MTrack2 (Stuurman, 2003), tandis que le filtre de Kalman (Welch et al., 1995)
et le modèle de contour actif (Kass et al., 1988) ont été implémentés dans (Rossant
et al., 2017).
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8.3 Recalage des Volumes OCT 3D Orthogonaux
pour le Rehaussement des Pores de la LC

La limite principale que nous avons identifiée dans notre état de l’art des méthodes
de reconstruction des pores est que les trajets axonaux n’ont pas pu être caractérisés
avec suffisamment de fiabilité, à cause de la qualité insuffisante des données. D’autre
part, les deux méthodes citées précédemment nécessitent une délimitation manuelle des
masques périphériques dans les images en-face, afin de ne traiter que les régions avec
des pores identifiables. Nous proposons donc une méthode entièrement automatique
pour déterminer le volume d’intérêt et pour aligner géométriquement les volumes OCT
acquis dans les deux directions orthogonales de balayage (Figure 8.2). Cette étape
permet d’obtenir une meilleure résolution des pores de la LC, sachant que, pour chaque
volume, la distance entre deux coupes B-scan est de 15 µm tandis que la résolution
latérale est de 5.7 µm/pixel. Le rapport signal à bruit est aussi amélioré par la fusion
des volumes recalés. A notre connaissance, c’est la première fois que l’étude est menée
conjointement sur les volumes orthogonaux pour rehausser les pores.

Figure 8.2: Principales étapes du recalage 3D, avec le pré-traitement pour rehausser des pores et
sélectionner le volume d’intérêt.

Notre méthode prend en entrée les images en-face extraites des volumes H et V (Fig-
ure 8.2). Dans un premier temps, on rehausse les pores par morphologie mathématique
pour pallier le faible SNR. On détermine pour chaque volume la région d’intérêt (ROI)
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Table 8.1: Evaluation du recalage proposé sur le volume d’intérêt et sur 3 images en-face.

GT Notre méthode
Trans. Affine Trans. Affine

VOI
Corr 0.59±0.09 0.70±0.06 0.69±0.11 0.71±0.09

MinDist 3.59±0.65 3.05±0.73 4.82±0.67 3.73±0.49

X0-20
Corr 0.56±0.09 0.68±0.10 0.69±0.07 0.71±0.06

MinDist 3.99±1.03 3.20±1.18 5.08±1.43 4.22±0.77

X0

Corr 0.63±0.06 0.71±0.07 0.72±0.08 0.78±0.06

MinDist 3.41±0.18 2.53±0.54 3.95±1.09 3.16±0.70

X0+20
Corr 0.54±0.13 0.68±0.10 0.69±0.08 0.70±0.08

MinDist 4.13±0.82 3.63±0.99 6.42±1.51 5.12±1.23

dans les images en-face, puis un plan de référence, c’est-à-dire l’abscisse qui correspond
à l’image en-face où les pores sont les plus nombreux et les mieux contrastés, grâce à
l’optimisation d’une fonction de coût. Nous en déduisons également la zone d’intérêt
dans la direction axiale, ce qui nous donne des volumes d’intérêt (VOI). Le recalage
se fait par maximisation de l’intercorrélation et est divisé en plusieurs étapes, afin de
résoudre le problème d’optimisation de manière robuste. Tout d’abord, nous utilisons
les plans de référence dans lesquels l’information est la plus riche pour recaler grossière-
ment le volume V sur le volume H par une translation 2D. Puis nous recherchons une
translation verticale qui améliore le recalage, ce qui met à jour le plan de référence
du volume V recalé. Ce processus est itéré tant que l’intercorrélation est améliorée.
Ensuite, nous affinons ce résultat par une translation 3D sur les volumes d’intérêt puis
par une transformation affine 3D. Finalement, les volumes alignés sont fusionnés pour
produire un volume de meilleure résolution spatiale et de meilleur SNR.

Le tableau 1 présente les statistiques obtenues sur les 21 paires de volumes orthog-
onaux de notre base de données. Notre méthode de recalage conduit à un score de
corrélation élevé sur le volume d’intérêt avec un faible écart-type (0.71±0.09). Les
scores de corrélation sont les plus élevés autour des images de référence sélectionnées
automatiquement, là où il y a le plus d’information avec de nombreux pores contrastés.
Les distances moyennes entre les pores annotés alignés sont faibles (3.73±0.49 pixels)
par rapport aux tailles typiques des pores (de 5 à 20 pixels, moyenne autour de 10);
elles sont très proches de celles de la vérité terrain, alors que, dans ce cas, c’est le critère
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(a) (b) (c)

Figure 8.3: Exemple de recalage et de fusion sur les images rehaussées. (a) Image horizontale ; (b)
Image verticale recalée ; (c) Image de fusion.

de distance qui est optimisé pour le recalage.
La transformée affine 3D apporte un gain significatif par rapport à la translation

seule, que l’on recale sur les données (notre méthode) ou sur les pores annotés (GT),
et ce en termes de distances et de corrélation. Tout ceci valide la méthode proposée,
en ce qui concerne la robustesse et la précision des résultats.

Afin d’obtenir une meilleure reconstruction des trajets axonaux en 3D pour le suivi
longitudinal des patients atteints de glaucome, nous proposons ensuite d’entraîner
un réseau de neurones convolutionnel sur les images en-face H, V et fusionnées, afin
d’obtenir de meilleurs résultats de segmentation.

8.4 Attention U-Net pour la Segmentation des Pores
de la LC

Les pores dans les volumes recalés et fusionnés dans la section précédente sont mieux
contrastés et mieux résolus par rapport aux volumes sources, ce qui permet de concevoir
une méthode robuste pour les segmenter dans les images en-face.

Nous proposons donc une méthode de segmentation automatique des pores de la LC
dans les images OCT en-face par apprentissage profond. C’est, à notre connaissance,
la première fois que ce problème est abordé avec ce type d’approche, de plus sur les
images H et V recalées. Les méthodes de segmentation faiblement supervisées ne
permettent pas d’atteindre la fiabilité requise pour les études cliniques, car les difficultés
sont trop importantes : très mauvais rapport SNR, faible résolution des images par
rapport à la taille des pores, grande variabilité de forme et d’intensité de ces derniers.
En revanche, les réseaux de neurones de type U-Net (Ronneberger et al., 2015) ont
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Figure 8.4: L’architecture d’attention U-Net adaptée de (Oktay et al. (2018)).

démontré leur capacité à modéliser des problèmes complexes de segmentation par les
données, y compris pour le traitement de structures ONH (Devalla et al., 2018b), même
de petite taille (Chen et al., 2020). Notre objectif est d’obtenir, grâce à un réseau U-
net adapté et optimisé, une segmentation précise des pores dans toutes les images
en-face, suffisamment fiable pour permettre une future reconstruction 3D automatique
des trajets axonaux, et ceci malgré les difficultés d’annotation manuelles des images
pour l’apprentissage.

La méthode proposée avec l’attention U-Net est illustrée sur la Figure 8.4. Les
skip connexions du U-Net aident a récupérer les informations spatiales perdues dans
l’encodeur, permettant ainsi une localisation précise des objets d’intérêt. Pour notre
application, les pores ont généralement une taille inférieure à 5×5 pixels pour des im-
ages d’entrée (zone d’intérêt) de 262×262 pixels. Afin d’améliorer la détection des
petits objets, les features produites peuvent êtres améliorées en intégrant des mécan-
ismes d’attention (Attention Gate, AG (Oktay et al., 2018)) dans l’U-Net, pour aider à
capturer les régions d’intérêt. L’AG permet d’estimer les zones potentielles où les pores
sont les plus susceptibles d’apparaître en supprimant l’activation des features dans les
régions non pertinentes, le tout sans avoir besoin de supervision externe.

D’autre part, les trajets axonaux étant assez réguliers, les intensités des pores sont
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similaires dans les images en-face adjacentes, tandis que leur centroïde et leur forme
varient également peu. Par conséquent, une application naïve de U-Net prend le risque
de passer à côté de ces propriétés de régularité. De ce fait, nous proposons un réseau
prenant en entrée 3 images adjacentes de volumes H/V/fusionnées, et nous produisons
une seule carte de segmentation pour l’image du milieu.

Table 8.2: Résultats de la segmentation sur les données de test. Nous privilégions la métrique Recall

car la vérité de terrain est incomplète.

Pixel-level Object-level
Modèle Dice Jaccard Precision Recall

Chan_Vese 0.084 0.056 0.126 0.677

W-Net 0.101 0.056 0.127 0.694

U-Net 0.265 0.169 0.262 0.656
Attention U-Net 0.269 0.173 0.283 0.697
Notre méthode 0.293 0.178 0.275 0.746

Les résultats expérimentaux, affichés dans le tableau 8.2, montrent que l’approche
proposée est robuste pour identifier les vrais pores avec une valeur de rappel (Recall)
élevée. Les pores manquants dans la segmentation automatique sont principalement
situés en périphérie de la LC, là où le SNR est le plus dégradé, et où il est difficile,
même pour des experts, d’identifier des pores sans se référer à la continuité. Avec
les images fusionnées supplémentaires pour l’entraînement, nous obtenons un score de
rappel plus élevé qu’avec les images horizontales ou verticales.

8.5 Suivi en 3D des Trajets Axonaux dans la LC

Avec les cartes de segmentation précises fournies par la section précédente, nous
somme capable de relier des pores dans les images fusionnées adjacentes. Pour
cela, nous proposons une méthode de suivi fondée sur un modèle de contour actif
paramétrique dérivé du modèle initial de (Kass et al., 1988). Partant du plan de
référence où les pores segmentés sont les plus nombreux et les plus contrastés, nous
progressons selon l’axe vertical (abscisse x vers x + 1 ou x − 1) pour relier les pores
segmentés et former les chemins axonaux. Pour cela, nous proposons d’initaliser au
centre de gravité de chaque pore l du plan x un petit segment vertical V (l)

x et de le
déformer par minimisation d’une fonctionnelle d’énergie E(V (l)

x ) similaire à celle de
(Kass et al., 1988):
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E(V (l)
x ) =

∫ x+δ

x−δ
α|V (l)′

x (s)|2 + β|V (l)′′

x (s)|2 + Ifus(V
(l)
x (s)) ds (8.1)

Où Ifus est l’image fusionnée avec la méthode proposée précédemment. Le modèle
classique de contour actif a été défini pour des images 2D et n’est pas directement
extensible aux images 3D. Cependant, ici nous considérons une courbe discrète, avec un
unique point par plan en-face et chaque point évolue horizontalement dans son propre
plan. δ détermine la longueur des chemins. Les deux premiers termes de (8.1) imposent
à la courbe d’être régulière, et le dernier la pousse vers les minima d’intensité, donc les
pores. Notre implémentation permet de traiter simultanément tous les chemins d’un
plan en-face. Comme les chemins sont petits (δ = 3) et les segments par construction
proches des minima recherchés, seulement quelques itérations sont nécessaires pour
faire converger la courbe, de sorte que l’algorithme n’est pas lourd. On progresse
verticalement en réinitialisant le modèle dans le plan suivant (x+ 1 ou x− 1) à partir
des positions trouvées, pour toutes celles qui tombent dans un pore segmenté par le
U-Net.

Figure 8.5: Reconstruction 3D des trajets axonaux. Rendu final (gauche) et focus sur un pore (droite).
Les deux images de droite sont calculées par interpolation.

Cette méthode est simple mais efficace, puisqu’elle modélise explicitement les car-
actéristiques principales des trajets axonaux, à savoir leur faible intensité et leur régu-
larité. Elle opère moins localement que d’autres approches comme le filtre de Kalman
(Rossant et al., 2017), ce qui la rend plus robuste et plus précise. L’exemple dans la
Figure 8.5 (gauche) montre que la méthode proposée est capable de reconstruire les
trajets principaux par lesquels passent la plupart des axones. Dans la Figure 8.5 à
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droite, le trajet est très contrasté et la trajectoire est déterminée sans ambiguïté.

8.6 Conclusion et perspectives
Dans ce manuscrit, nous présentons nos travaux de recherches visant à proposer

une méthode automatique de reconstruction en 3D des pores de la LC en utilisant des
images OCT en 3D. Les résultats sont très encourageants étant donnée la difficulté du
problème (images peu résolues et très bruités, annotations partielles en apprentissage).
Pour la première fois, deux volumes orthogonaux peuvent être exploités conjointement
pour analyser les trajets des pores de la LC, ce qui facilite beaucoup la lecture des
images et l’interprétation médicale.

Tout au long du manuscrit, nous fournissons des résultats expérimentaux permettant
d’évaluer quantitativement chaque étape de notre méthode et son apport. Nous avons
montré que notre algorithme permet de traiter les données OCT 3D de patients atteints
de glaucome, et qu’elle aboutit à une reconstruction 3D fiable et précise des principaux
trajets axonaux. Considérant l’état de l’art, nous pensons que notre travail a permis
des progrès significatifs dans l’analyse automatisées des données OCT 3D de la lame
criblée, et que l’application de notre algorithme dans un contexte clinique va pouvoir
fournir des informations précieuses aux médecins pour l’étude du glaucome.

Les perspectives de ce travail sont nombreuses. Dans une premier temps, nous
pouvons travailler sur des schémas de fusion des données H et V plus avancés, afin
d’exploiter localement le meilleur des deux images. Ces schémas de fusion peuvent
se faire en amont du réseau de neurones, avec des méthodes plus sophistiquées qu’un
simple opérateur ET. On peut aussi tester des schémas de fusion en entrée ou dans
les couches intermédiaires d’un réseau de neurones profond. D’autres perspectives
concernent l’exploitation des segmentations obtenues, par le calcul de biomarqueurs
caractérisant les trajets axonaux, puis l’analyse des déformations de ces trajets pour
le suivi longitudinal. Enfin, nous pouvons enrichir notre travail d’une analyse multi-
modale, en intégrant une image 2D de haute résolution acquise en optique adaptative.
Cette image permettrait de sélectionner les pores les plus significatifs et d’extraire des
informations complémentaires sur leur taille et leur forme.
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