
HAL Id: tel-04686781
https://theses.hal.science/tel-04686781v1
Submitted on 11 Jun 2024 (v1), last revised 4 Sep 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling the Latent Space of Variational Autoencoders
Clément Chadebec

To cite this version:
Clément Chadebec. Modeling the Latent Space of Variational Autoencoders. Machine Learning
[stat.ML]. Université Paris Cite, 2023. English. �NNT : �. �tel-04686781v1�

https://theses.hal.science/tel-04686781v1
https://hal.archives-ouvertes.fr

Université Paris Cité
École doctorale de Sciences Mathématiques de Paris Centre (ED 386)

Equipe INRIA - Health data- and model- driven Knowledge Acquisition

Modeling the Latent Space of Variational Autoencoders

Thèse de Doctorat enMathématiqes Appliqées

Présentée parClément Chadebec

Dirigée par Stéphanie Allassonnière

Soutenue publiquement le 29 Juin 2023

Arnaud Doucet Professeur, Oxford University Rapporteur
Alexandre Gramfort Research Scientist, Meta Rapporteur
Jean-Philippe Vert Professeur, Mines ParisTech Examinateur
Antoine Chambaz Professeur, Université Paris Cité Examinateur
Ninon Burgos Chargée de recherche, INRIA (ARAMIS) Examinateur
Stéphanie Allassonnière Professeure, Université Paris Cité Directrice de thèse

2

Contents

Table of Contents iv

List of Figures x

List of Tables xiii

Résumé 1

Abstract 3

Remerciements 5

Résumé Substantiel en Français 7

Introduction 13

0.1 Context . 13
0.2 Deep Latent Variable Models . 13
0.3 Variational Inference . 14
0.4 Amortized Variational Inference . 15
0.5 The Variational Autoencoder . 16
0.6 Towards a Tighter Bound . 17

0.6.1 Using Better Estimators . 18
0.6.2 Enriching the Variational Distribution . 18
0.6.3 Rethinking our Priors . 22

0.7 Improving the Learned Latent Representations . 23
0.7.1 Learning Disentangled Representations . 23
0.7.2 Exploring Latent Space Modeling . 24
0.7.3 Improving the Generative Capability of the Model 28

0.8 VAE in Practice . 29
0.9 Contributions . 31

0.9.1 List of Publications . 31
0.9.2 Summary of the Main Contributions . 31

1 Toward a Geometry-Aware VAE 37

1.1 Introduction . 39
1.2 Variational Autoencoder . 40

1.2.1 Model Setting . 41
1.2.2 Improving the Model: Literature Review . 41

1.3 The Proposed Method . 43
1.3.1 Some Elements on Riemannian Geometry 43
1.3.2 A Geometry-Aware VAE . 44
1.3.3 Generation Comparison . 51

1.4 Data Augmentation: Evaluation and Robustness . 54
1.4.1 Setting . 54
1.4.2 Toy Data Sets . 54

1.5 Validation on Medical Imaging . 59

i

1.5.1 Data Augmentation Literature for AD vs CN Task 59
1.5.2 Materials . 60
1.5.3 Preprocessing of T1-Weighted MRI . 61
1.5.4 Evaluation Procedure . 62
1.5.5 CNN Classifiers . 62
1.5.6 Experimental Protocol . 63
1.5.7 Results . 64

1.6 Discussion . 65
1.7 Conclusion . 68
1.8 Appendices . 70

1.8.1 Riemannian Geometry . 70
1.8.2 On the Generation Process . 70
1.8.3 Detailed Experimental Setting . 72
1.8.4 A Few More Sampling Comparisons (Sec. 1.3.3) 74
1.8.5 Additional Results (Sec. 1.4.2) . 75
1.8.6 A few More Sample Generation on ADNI 75
1.8.7 The Intruders: Answers to Fig. 1.8 . 75

2 Sampling from Riemannian Manifolds - Application to the RHVAE 79

2.1 The Wrapped Normal Distribution . 81
2.2 Computing the Exponential Map . 81
2.3 Riemannian Random Walk . 82
2.4 Experiments . 83

2.4.1 Qualitative Comparison with Prior-Based Methods 83
2.4.2 Discussion . 85

2.5 Data Augmentation Experiments For Classification 88
2.5.1 Augmentation Setting . 88
2.5.2 Results . 89

2.6 Conclusion . 91
2.7 Appendices . 92

2.7.1 VAEs Parameters Setting . 92
2.7.2 Classifier Parameter Setting . 93

3 A Geometric Perspective on Variational Autoencoders 95

3.1 Introduction . 97
3.2 Variational Autoencoders . 97
3.3 Related Work . 98
3.4 Proposed Method . 99

3.4.1 A Word on Riemannian Geometry . 100
3.4.2 The Riemannian Gaussian Distribution . 100
3.4.3 Geometrical Interpretation of the VAE Framework 101
3.4.4 Link with the pull-back Metric . 102
3.4.5 Geometry-Aware Sampling . 103
3.4.6 Illustration on a Toy Dataset . 104

3.5 Experiments . 105
3.5.1 Generation with Benchmark Datasets . 105
3.5.2 Investigating Robustness in Low Data Regime 106

ii

3.6 Conclusion . 108
3.7 Appendices . 109

3.7.1 Further Elements on Riemannian Geometry 109
3.7.2 The Generation Process Algorithm - Implementation Details 111
3.7.3 Other Generation Results . 114
3.7.4 Experimental Set-Up . 120
3.7.5 Dataset Size Sensibility on SVHN . 123
3.7.6 Ablation Study . 124
3.7.7 Can the Method Benefit More Recent Models ? 126

4 Pythae: Unifying Generative Autoencoders in Python 129

4.1 Introduction . 131
4.2 Variational Autoencoders . 131

4.2.1 Background . 132
4.2.2 Improvements Upon the Classical VAE Method 132

4.3 The Pythae Library . 134
4.4 Case Study Benchmark . 136

4.4.1 Benchmark Setting . 136
4.4.2 Experiments . 137

4.5 Conclusion . 142
4.6 Appendices . 144

4.6.1 Usage of Pythae . 144
4.6.2 Interpolations . 148
4.6.3 Detailed Experiments Set-Up . 155
4.6.4 Additional Results . 157

5 An Image Feature Mapping Model for Continuous Longitudinal Data Completion

and Generation of Synthetic Patient Trajectories 189

5.1 Introduction . 191
5.2 Proposed Method . 191

5.2.1 Feature Extraction . 192
5.2.2 Trajectory Modeling . 192

5.3 Data . 194
5.4 Experiments . 194
5.5 Discussion and Conclusion . 197
5.6 Appendices . 198

5.6.1 Dataset details . 198
5.6.2 Implementation details . 200

6 Variational Inference for Longitudinal Data Using Normalizing Flows 203

6.1 Introduction . 205
6.2 Background . 206

6.2.1 Variational Inference . 206
6.2.2 Normalizing Flows . 206

6.3 The Proposed Model . 207
6.3.1 Problem Setting . 207
6.3.2 The Probabilistic Model . 207

iii

6.3.3 Dealing with Missing Data in the Sequence 209
6.3.4 Enhancing the Model . 210

6.4 Related Works . 211
6.5 Experiments . 212

6.5.1 Data . 212
6.5.2 Likelihood Estimation . 213
6.5.3 Missing Data Imputation . 215
6.5.4 Unconditional Sequence Generation . 217

6.6 Conclusion . 218
6.7 Appendices . 219

6.7.1 Some More Generations . 219
6.7.2 Exploring Overfitting . 224
6.7.3 Experimental Details . 225
6.7.4 Ablation Study . 227
6.7.5 Influence of Eq. (6.8) on Missing Data Imputation 228

Conclusion and Perspectives 231

References 252

iv

List of Figures

1 Left: Sampling using Masked Autoregressive Flows (MAF) (Papamakarios et al.,
2017) using a standard prior (N (0, Id)) on the two moons dataset (Pedregosa et al.,
2011). Right: Mapping of the data to the prior using the flows. Plots are made using
(Chadebec et al., 2022c). 20

2 2-dimensional latent spaces learned by a vanilla VAE (N -VAE), Poincaré VAE (P-
VAE) and hyper-spherical VAE (S-VAE) on MNIST. The colors represent the digits.
Plots are made using (Chadebec et al., 2022c). 26

3 Geodesic and exponential map on the Hypershere and Poincaré disk. 27
4 From left to right: 2-dimensional latent spaces learned by a vanilla VAE (N -VAE),

a latent space sampling using the prior N (0, Id), using a 10-component mixture of
Gaussian distributions or using Masked Autoregressive Flows (MAF) (Papamakarios
et al., 2017). The colors represent the digits. Plots are made using (Chadebec et al.,
2022c) . 29

5 4 steps of the proposed Riemannian RandomWalk to discover a 2-dimensional latent
space learned by a RHVAE. 33

6 Proposed inference and generative models. 35

1.1 Geometry-aware VAE framework. Neural networks are highlighted with the colored
arrows and HRiemannian are the normalizing flows using Riemannian Hamiltonian
equations. 48

1.2 Geodesic interpolations under the learned metric in two different latent spaces. Top:
Latent spaces with the log metric volume element presented in gray scale and the re-
sulting interpolations under the Euclideanmetric or the Riemannianmetric. Bottom:
Decoded samples all along the interpolation curves. 49

1.3 VAE sampling comparison. Top: The learned latent space along with the means
µϕ(xi) of the latent code distributions (colored dots and crosses) and 100 latent space
samples (blue dots) using either the prior distribution or the proposed scheme. For
the geometry-aware VAEs, the log metric volume element is presented in gray scale
in the background. Bottom: The 100 corresponding decoded samples in the data space. 50

1.4 Overview of the data augmentation procedure. The input data set is divided into a
train set (the baseline), a validation set and a test set. The train set is augmented
using the VAE framework and generated data are then added to the baseline to train
a benchmark classifier. 54

1.5 Evolution of the accuracy of four benchmark classifiers on reduced balanced MNIST
(left) and reduced unbalanced MNIST data sets (right). Stochastic classifiers are
trained with five independent runs and we report the mean accuracy and standard
deviation on the test set. 57

1.6 Evolution of the accuracy of a benchmark DenseNet classifier according to the num-
ber of samples in the train set (i.e. the baseline) (left), the number of parameters of
the Densenet (middle) and the latent space dimension of the VAE (right) on MNIST.
Curves show the mean accuracy and standard deviation across 5 runs on the original
test set for the baseline (blue), the augmented data (orange) and the synthetic ones
(green). 59

v

1.7 Diagrams of the network architectures used for classification. The first baseline
architecture (A1) is the one used in (Wen et al., 2020), the second one (A2) is a very
similar one adapted to process smaller inputs. The optimized architectures (B1)
and (B2) are obtained independently with two different random searches. For con-
volution layers we specify the number of channels @ the kernel size and for the
fully-connected layers we specify the number of input nodes→ the number of out-
put nodes. Each fully-connected layer is followed by a LeakyReLU activation except
for the last one. For the dropout layer, the dropout rate is specified. 63

1.8 Example of two true patients compared to two generated by our method. Can you
find the intruders ? Answers in Appendix 1.8.7. 64

1.9 Evolution of the accuracy of four benchmark classifiers on the reduced EMNIST data
set (top) and the reduced Fashion data set (bottom). Stochastic classifiers are trained
with five independent runs and we report the mean accuracy and standard deviation
on the test set. 75

1.10 Comparison of four sampling methods on reduced EMNIST (120 letters M), reduced
MNIST, reduced FashionMNIST and the synthetic data sets in higher dimensional
latent spaces (dimension 10). From top to bottom: 1) samples extracted from the
training set; 2) samples generated with a Vanilla VAE and using the prior (N (0, Id));
3) from the VAMP prior VAE ; 4) from a RHVAE and the prior-based generation
scheme and 5) from a RHVAE and using the proposed method. All the models are
trained with the same encoder and decoder networks and identical latent space di-
mension. An early stopping strategy is adopted and consists in stopping training if
the ELBO does not improve for 20 epochs. The number of training samples is noted
between parenthesis. 76

1.11 Several slices of a generated image. The model is trained on the AD class of train-50
(i.e. 50 images of AD patients). 77

1.12 Images generated by our method when trained on train-50. Left: CN generated pa-
tients. Right: AD generated patients. 78

2.1 Left: Geodesic shooting in a latent space learned by a RHVAE with different starting
points (red dots) and initial velocities (orange arrows). Middle and right: Samples
from thewrapped normalNW (p, Id). The logmetric volume element log

√
detG(z)

is presented in gray scale. 81
2.2 Comparison between prior-based generationmethods and the proposed Riemannian

random walk (ours). Top: the learned latent space with the encoded training data
(crosses) and 100 samples for eachmethod (blue dots). Bottom: the resulting decoded
images. The models are trained on 180 binary circles and rings with the same neural
network architectures. 84

2.3 Comparison of 4 sampling methods on the reduced MNIST, reduced Fashion and the
synthetic data sets. From top to bottom: 1) samples extracted from the training set;
2) samples generated with a Vanilla VAE and using the prior; 3) from the VAMP prior
VAE; 4) from a RHVAE and the prior-based generation scheme; 5) from a RHVAE and
using the proposed Riemannian random walk. All the models are trained with the
same encoder and decoder networks and identical latent space dimension. An early
stopping strategy is adopted and consists in stopping training if the ELBO does not
improve for 50 epochs. 86

vi

2.4 Generation of CN or AD patients from the OASIS database. Training samples (top),
generation with a VAE and normal prior (2nd row) and with the Riemannian random
walk (bottom). Generating using the prior leads to either unrealistic images or sim-
ilar samples (red frames) while the proposed method generates sharper and more
diverse samples. For instance, it is able to generate CN older patients (blue frames)
or younger AD (orange frames) even though they are under-represented within the
training set. 87

3.1 Top left: Visualization and interpolation in a 2D latent space learned by a VAE trained
with binary images of rings and disks. The log of themetric volume element

√
detG(z)

(proportional to the log of the density we propose to sample from) is shown in gray
scale. Top middle and right: Riemannian distance from a starting point (color maps).
The dashed lines are affine interpolations between two points in the latent space and
the solid ones are obtained by solving Eq. (3.8). Bottom: Decoded samples along the
interpolation curves. 104

3.2 Generated samples with different models and generationmethods. Results with RAE
variants are provided in Appendix 3.7.3. 106

3.3 Left: Nearest train image (near. train) and nearest image in all reconstructions of
train images (near. rec.) to the generated one (Gen.) with the proposed method.
Note: the nearest reconstruction may be different from the reconstruction of the
nearest train image. Right: The FID score between 10k generated images and 10k
reconstructed train samples. 107

3.4 Evolution of the FID score according to the number of training samples. 108
3.5 100 samples with the proposed method on MNIST dataset. 114
3.6 100 samples with the proposed method on CELEBA dataset. 114
3.7 Generated samples with different models and generation processes. 115
3.8 Generated samples with different models and generation processes. 116
3.9 Closest element in the training set (Near.) to the generated one (Gen.) with the

proposed method. 117
3.10 Generated samples with different models and generation processes. 119
3.11 FID score evolution according to the number of training samples. 123
3.12 Left: FID score evolution according to the number of centroids in themetric (Eq. (3.6)).

Right: The FID variation with respect to the choice in centroids. We generate 10000
samples by selecting each time different centroids (k = 1000). 124

3.13 Variability of the generated samples when only two centroids are considered in the
metric. Left: The image obtained by decoding the centroids. Middle: The nearest
image in the train set to the decoded centroids. Right: Some generated samples.
Each generated sample is assigned to the closest decoded centroid (top row for the
first centroid and bottom row for the second one). 125

3.14 FID score evolution according to the value of λ in the metric (Eq. (3.6)). 125

4.1 Pythae library diagram . 135
4.2 From top to bottom: Evolution of the reconstruction MSE, generation FID, classifica-

tion accuracy and clustering accuracy with respect to the latent space dimension on
the MNIST dataset. 140

vii

4.3 Interpolations on MNIST with the same starting and ending images for latent spaces
of dimension 16 and 256. For each model we select the configuration achieving the
lowest FID on the generation task on the validation set with a GMM sampler. . . . 149

4.4 Interpolations on MNIST with the same starting and ending images for latent spaces
of dimension 16 and 256. For each model we select the configuration achieving the
lowest FID on the generation task on the validation set with a GMM sampler. . . . 150

4.5 Interpolations on CIFAR10 with the same starting and ending images for latent
spaces of dimension 32 and 256. For each model we select the configuration achiev-
ing the lowest FID on the generation task on the validation set with a GMM sampler. 151

4.6 Interpolations on CIFAR10 with the same starting and ending images for latent
spaces of dimension 32 and 256. For each model we select the configuration achiev-
ing the lowest FID on the generation task on the validation set with a GMM sampler. 152

4.7 Interpolations on CELEBA with the same starting and ending images for a latent
space of dimension 64. For each model we select the configuration achieving the
lowest FID on the generation task on the validation set with a GMM sampler. . . . 153

4.8 Interpolations on CELEBA with the same starting and ending images for a latent
space of dimension 64. For each model we select the configuration achieving the
lowest FID on the generation task on the validation set with a GMM sampler. . . . 154

4.9 From top to bottom: Evolution of the reconstruction MSE, generation FID, classifica-
tion accuracy and clustering accuracy with respect to the latent space dimension on
the CIFAR dataset. 157

4.10 Generated samples on MNIST for a latent space of dimension 16 and ConvNet ar-
chitecture. For each model, we select the configuration achieving the lowest FID on
the validation set. 160

4.11 Generated samples on CELEBA for a latent space of dimension 64 and ConvNet
architecture. For each model, we select the configuration achieving the lowest FID
on the validation set. 161

4.12 Evolution of the FID for the generation task depending on the sampler, for a Con-
vNet, the MNIST dataset and a latent dimension of 16. For each sampler and model,
we select the configuration achieving the lowest FID on the validation set. 162

4.13 Evolution of themetrics for the 4 tasks depending on the network type on theMNIST
dataset and a latent dimension of 16. 163

4.14 Total training time for the models trained on the MNIST dataset with latent dimen-
sion 16 with the best performance on the generation task. 163

4.15 Results on VAMP . 166
4.16 Results on IWAE . 168
4.17 Results on VAE-lin-NF . 170
4.18 Results on VAE-IAF . 171
4.19 Results on β-VAE . 172
4.20 Results on β-TC-VAE . 174
4.21 Results on FactorVAE . 176
4.22 Results on InfoVAE-RBF . 178
4.23 Results on InfoVAE-IMQ . 178
4.24 Results on Adversarial AE . 179
4.25 Results on MSSSIM-VAE . 180
4.26 Results on VAEGAN . 182

viii

4.27 Results on WAE-RBF . 184
4.28 Results on WAE-IMQ . 184
4.29 Results on VQVAE . 185
4.30 Results on RAE-L2 . 187
4.31 Results on RAE-GP . 187

5.1 Model sketch. First, features are extracted from images using the VAE (step 1), then,
the proposed generative model maps these features to a straight line in Euclidean
space (step 2). Network details are provided in Appendix 5.6.2. 192

5.2 PCA projections for ‘Starmen’ (left), ‘CelebA’ (middle) and ADNI (right). 194
5.3 Mean and standard deviation of MSE/SSIM (a,b/c,d) for various evaluations. (a/c)

Metric between consecutive images in the test sequences (ref.) and reconstruction
metrics using only the VAE (base) or the generative model (ours). (b/d) Metrics for
the next and last image extrapolated based on a varying input sequence length. . . 195

5.4 Extrapolation of different test input sequences for Starmen (left) and CelebA (right).
The first two rows represent the ground truth and reconstructions (ours), respec-
tively. Red squares highlight images that were not provided to the model. Deviation
from the true test Starmen image is presented in color. 195

5.5 Data imputation in test sequences with 50% missing data after t0. Top rows show
ground truth trajectories, red squares represent imputed images. 196

5.6 Synthetic trajectories derived from real images (indicated by blue frames): (a-c, e) or
synthetic images (d, f). 197

5.7 Example trajectories for a training subject of Starmen (left), CelebA (middle), and
ADNI (right). ADNI patients have a variable number of observations. 198

6.1 Proposed inference and generative models. 208
6.2 5 training sequences for each dataset considered in the chapter. 214
6.3 Mean Square Error (MSE) on the test data for different proportions of missing obser-

vations (0.2 to 0.7) andmissing pixels (0.2 to 0.6) in the input train, validation and test
sequences for the starmen (top) and sprites (bottom) datasets. The proposed model
appears very robust to incomplete sequences thanks to the flows-based structure. . 215

6.4 Conditionally generated trajectories (greyed are unseen data). Top: 5 generated se-
quences using the same input image. For each trajectory, 5 latent variables are drawn
from the posterior distribution qϕ(z|x), passed trough the flows and decoded using
pθ(x|x). In a), the model is able to produce possible evolutions (changes of color or
scale) for the dataset considered. Bottom: Generated sequences using each seen data
in the input sequence. The generated sequences are ranked as they maximize the
likelihood on the seen data according to Eq. (6.8) (best at the top). 216

6.5 Generated sequences using the proposed model. Latent variables are sampled from
the prior distribution (taken as a standard Gaussian in this example) and propagated
through the flows according to Eq. (6.3). The obtained latent sequences are then
decoded using the conditional distribution pθ(x|z) to create the image sequences. . 217

6.6 Closest train sequences (train) to the generated ones (gen.). See more examples in
Appendix 6.7.2. 218

6.7 20 sequences generated by our model trained on the starmen dataset. 219
6.8 20 sequences generated by our model trained on the colorMNIST dataset. 220
6.9 20 sequences generated by our model trained on the sprites dataset. 221

ix

6.10 20 sequences generated by our model trained on the faces dataset. 222
6.11 20 sequences generated by our model trained on the chairs dataset. 223
6.12 Closest train sequences (train) to the generated ones (gen.) using our model trained

on (a) the sprites, (b) starmen, (c) 3d chairs and (d) faces datasets. 224
6.13 Mean Square Error (MSE) on missing pixels only of the test data for different pro-

portions of missing observations (0.2 to 0.7) and missing pixels (0.2 to 0.6) in the
input train, validation and test sequences for the starmen (top) and sprites (bottom)
datasets. Slightly transparent bars represent the naive method (consisting in using
only one randomly chosen data point in the sequence to reconstruct the full sequence
as done during training) while solid bars show the results obtained using the method
proposed in Section 6.3.3. 229

x

List of Tables

1.1 Effect of geometrical considerations on the estimated log-likelihood and ELBO on
MNIST test set. 48

1.2 GAN-train (the higher the better) and GAN-test (the closer to the baseline the better)
scores. A benchmark DenseNet model is trained with five independent runs on the
generated data Sg (resp. the real train set Strain) and tested on the real test set Stest
(resp. Sg) to compute the GAN-train (resp. GAN-test) score. 1000 synthetic samples
per class are considered for Sg so that it matches the size of Stest. 52

1.3 Data augmentation with a DenseNet model as benchmark. Mean accuracy and stan-
dard deviation across five independent runs are reported. The first three rows (Aug.)
correspond to basic transformations (noise, crop, etc.). In gray are the cells where
the accuracy is higher on synthetic data than on the baseline (i.e. the raw data). The
test set is the one proposed in the entire original data set (e.g. ≈1000 samples per
class for MNIST) so that it provides statistically meaningful results and allows for a
good assessment of the model’s generalization power. 56

1.4 Accuracy obtained by studies performingADvs CN classificationwith CNNs applied
on T1w MRI and using data augmentation . 60

1.5 Summary of participant demographics, mini-mental state examination (MMSE) and
global clinical dementia rating (CDR) scores at baseline. 61

1.6 Mean test performance of the 20 runs trained on train-50 with the baseline hyper-
parameters . 66

1.7 Mean test performance of the 20 runs trained on train-full with the baseline hyper-
parameters . 66

1.8 Mean test performance of the 20 runs trained on train-50 with the optimized hyper-
parameters . 67

1.9 Mean test performance of the 20 runs trained on train-full with the optimized hy-
perparameters . 67

1.10 Neural Net Architectures for MNIST, EMNIST and fashion. The same architectures
are used for the VAEs, VAMP, RAE and geometry-aware VAEs. 72

1.11 Geometry-aware VAE parameters. 72
1.12 Neural Net Architectures for CIFAR. The same architectures are used for the VAEs,

VAMP, RAE and geometry-aware VAEs. 73
1.13 Neural Net Architecture . 74
1.14 Geometry-aware parameters settings for ADNI database 74
1.15 Geometry-aware VAE parameters. 75

2.1 Summary of OASIS database demographics, mini-mental state examination (MMSE)
and global clinical dementia rating (CDR) scores. 89

2.2 DA on toy data sets. Mean accuracy and standard deviation across 5 independent
runs are reported. In gray are the cells where the accuracy is higher on synthetic
data than on the raw data. 90

2.3 DA onOASIS data base. Mean balanced accuracy on independent 5 runs with several
classifiers. 91

2.4 RHVAE parameters for each data set. 92
2.5 Neural networks architectures of the VAE, VAMP-VAE and RHVAE for each data set.

The encoder and decoder are the same for all models. 92

xi

2.6 CNN classifier architecture used. Each convolutional block has a padding of 1. . . . 93

3.1 FID (lower is better) and PRD score (higher is better) for differentmodels and datasets.
For the mixture of Gaussian (GMM), we fit a 10-component mixture of Gaussian in
the latent space. 107

3.2 Classification results averaged on 20 independent runs. For the VAEs, the classifier
is trained on 2K generated samples per class. 117

3.3 FID (lower is better) for different models and datasets. For the mixture of Gaussian
(GMM), we fit a 10-component mixture of Gaussian in the latent space. 118

3.4 Neural networks used for the encoder and decoders of VAEs in the benchmarks . . 121
3.5 Neural Network used for the classifier in Sec. 3.7.3 122
3.6 FID (lower is better) vs. the test set using either the prior (classic approach) or by

plugging our generation method. 126
3.7 FID (lower is better) vs. the test set using the 2-stage VAE implementation (Dai and

Wipf, 2018) for either the reconstructed samples (recon.), using the prior (1st stage),
using the 2-stage approach (2nd stage) or by plugging our generation method. . . . 127

4.1 Mean Squared Error (10−3) and FID (lower is better) computed with 10k samples on
the test set. For each model, the best configuration is the one achieving the lowest
MSE on the validation set. 141

4.2 Left: Mean test accuracy of a single layer classifier on the embedding obtained in
the latent spaces of each model average on 20 runs. Right: Mean accuracy of 100
k-means fitted on the training embeddings coming from the autoencoders. 141

4.3 Inception Score (higher is better) and FID (lower is better) computed with 10k sam-
ples on the test set. For each model and sampler we report the results obtained by
the model achieving the lowest FID score on the validation set. 142

4.4 List of implemented VAEs . 146
4.5 Neural network architecture used for the convolutional networks. 156
4.6 Neural network architecture used for the residual networks. 156
4.7 Inception Score (higher is better) and FID (lower is better) computed with 10k sam-

ples on the test set. For each model and sampler we report the results obtained by
the model achieving the lowest FID score on the validation set. 159

4.8 VAMP configurations . 166
4.9 IWAE configurations . 167
4.10 VAE-lin-NF configurations . 169
4.11 VAE-IAF configurations . 171
4.12 β-VAE configurations . 172
4.13 β-TC-VAE configurations . 173
4.14 FactorVAE configurations . 175
4.15 InfoVAE configurations . 177
4.16 AAE configurations . 179
4.17 MSSSIM-VAE configurations . 180
4.18 VAEGAN configurations . 181
4.19 WAE configurations . 183
4.20 VQVAE configurations . 185
4.21 RAE configurations . 186

xii

5.1 Division of sets for ‘Starmen’ data. 198
5.2 ADNI information per image (not per patient). 199
5.3 VAE neural networks for ‘Starmen’ (left), ‘CelebA’ (middle) and ADNI (right). Con-

volutional layers are followed by batch normalization and relu except the final layer
of decoder where sigmoid is used. 200

5.4 Generative model neural networks. Elman networks comprise 3 layers with tanh
activation. 200

5.5 Training parameters. For each experiment the model that is selected in the one
achieving the best loss on the validation set. In practice, a parameter β = 0.1weight-
ing the reconstruction and regularization in Eq. (5.2.2) applied for the generativemodel. 201

6.1 Negative log joint likelihood divided by the sequence length computed on an inde-
pendent test set with 5 independent runs and 100 importance samples. 213

6.2 FID (lower is better) computed on an independent test set with the same number of
generated samples as available in the test set. 218

6.3 Number of sequences considered in the Train/Val/Test splits used in the experiments. 225
6.4 Neural networks architectures used in the experiments and keep the same for all the

models in the benchmarks. The ResBlocks use 2 convolution layers with kernel of
size 3 and 1, 32 channels and stride 1. 226

6.5 Influence of the flow complexity . 227
6.6 Influence of the warmup steps . 227
6.7 Influence of the latent dimension . 227
6.8 Influence to the prior complexity . 227

xiii

xiv

Résumé

Cette thèse de doctorat s’intéresse à la modélisation et à la structuration de l’espace latent des mod-
èles de type auto-encodeur variationnel. Ces derniers sont des modèles probabilistes dits générat-
ifs car ils ont pour objectif d’être capables de générer de nouvelles données synthétiques à partir
d’un ensemble d’entraînement. Une des particularités de ces modèles est l’existence d’un espace
de plus faible dimension que celui dans lequel les données d’entrée sont considérées et que l’on
appelle espace latent. La compréhension et l’étude de cet espace restent lacunaires et cette thèse
a pour objective d’essayer d’apporter une meilleur compréhension de sa structure et de la façon
de l’exploiter pour des tâches annexes. À travers l’utilisation d’outils de géométrie Riemannienne,
nous proposerons différentes modélisations de l’espace latent des auto-encodeurs variationnels qui
nous conduirons premièrement à construire un nouvel estimateur de la log-vraisemblance du mod-
èle. L’étude de cette géométrie nous mènera également à considérer et à proposer de nouvelles
méthodes d’échantillonnage de nouvelles données qui s’avéreront très adaptées à des contextes à
faible nombre de données, connus pour être très limitant pour ces types de modèles. Une tâche
connue sous le nom d’augmentation de données et consistant en la création de données synthétiques
pour enrichir les bases de données existantes nous occupera tout particulièrement et sera l’une
des applications majeures des modèles que nous développerons. Par exemple, nous appliquerons
notre méthode pour améliorer la performance de modèles de classification sur des données réelles
et complexes telles que des IRMs tri-dimensionnelles de cerveaux. Au cours de cette thèse, nous
développerons également plusieurs outils informatiques permettant un usage facilité et ouvert au
plus grand nombre de tels modèles. Enfin, nous nous intéresserons également aux données dites
longitudinales, c’est à dire des données qui partagent une dépendance temporelle forte tel que le
suivi de patients, mais dont le nombre d’observations par entité reste faible (typiquement moins de
10 observations par entité). En particulier, nous introduirons des modèles capables de générer des
trajectoires synthétiques complètes.

Mots clés: Inférence Variationnelle, Modèles Génératifs, Géometrie Riemannanienne, Autoen-
codeurs Variationnels

1

Chapter 0

2

Abstract

This PhD thesis focuses on the modeling and structuring of the latent space of Variational Autoen-
coder models. The latter are probabilistic models called generative models since their objective is to
be able to generate new synthetic data from a set of training data. One of the particularities of these
models is the existence of a space of lower dimension than the one in which the input data are con-
sidered called a latent space. The understanding and the study of this space remain incomplete, and
this thesis aims at bringing a better understanding of its structure and how to exploit it for down-
stream tasks. Through the use of Riemannian geometry tools, I will propose different modelings of
the latent space of the variational autoencoder, which will first lead us to build a new estimator of
the log-likelihood of the model. The study of this geometry will also lead us to consider and pro-
pose new sampling methods to generate new data that will prove to be well suited to contexts with
a small number of data which are known to be very challenging for these models. A task known as
data augmentation and consisting in the creation of synthetic data to enrich existing databases will,
in particular, be one of the major applications of the models I will develop. For example, I will apply
our methods to improve the performance of classification models on real and complex data such
as three-dimensional brain MRIs. During this thesis, I will also develop several software allowing
easy and open use of such models. Finally, I will also be interested in the modeling of longitudinal
data, i.e. data that share a temporal dependency, such as patient follow-up but whose number of
observations per entity remains low (typically less than 10 observations per entity). In particular, I
will introduce models capable of generating complete synthetic trajectories.

Key words: Variational Inference, Generative Models, Riemannian Geometry, Variational Au-
toencoders

3

Chapter 0

4

Remerciements

J’aimerais remercier en premier lieu Stéphanie, ma directrice de thèse, sans qui ces travaux de
thèse n’auraient jamais pu aboutir. Je te remercie sincèrement d’avoir accepté de me prendre comme
doctorant. Ta bienveillance, ton enthousiasme et ton optimisme à chaque nouveau projet ont rendu
ces trois années très stimulantes et agréables. Je te remercie également de m’avoir permis de décou-
vrir l’univers de la recherche académique et d’avoir toujours été motrice lorsque j’étais à la recherche
de personnes avec qui collaborer. Cela a vraiment été un grand plaisir de travailler à tes côtés sur
des sujets toujours aussi passionants et ambitieux.

Je souhaiterais également remercier l’équipe HeKA de m’avoir accueilli ces trois ans durant au
sein d’une équipe pluridisciplinaire aux profils aussi variés qu’enrichissants. Je remercie l’Université
Paris Cité et le Centre de Recherche des Cordeliers pour m’avoir permis de débuter ma thèse dans les
meilleures conditions. En particulier, je remercie Jean-Marc et Nassim pour leur disponibilité et la
mise en place du serveur de calcul qui m’a été d’une aide plus que précieuse. Je remercie également
GENCI pour la mise à disposition des chercheurs d’un environnement de travail aussi agréable.

Merci à la team Stéphanie: Vianney, Clément, Solange, Fleur, Pierre, Louis, Agathe, pour ces
discussions sympathiques et ces bons moments que nous avons pu partager. Je vous souhaite à
tous de vous épanouir pleinement pour la suite que ce soit en entreprise, en post-doc ou pour votre
thèse! J’aimerais en particulier remercier Louis et Agathe avec qui j’ai eu la chance de collaborer
directement au cours de ma thèse. Je vous souhaite à tous les deux le meilleur pour vos thèses qui
s’annoncent, j’en suis sûr, excellentes.

Un grand merci à Elina et Ninon avec qui j’ai eu la chance et le grand plaisir de collaborer pour
mon premier projet de thèse. J’ai vraiment adoré travailler en votre compagnie et vous souhaite
également le meilleur pour la suite. J’aimerais également remercier Evi, Maureen et Josien de
l’université de Tübingen pour ce projet que nous avons pu conduire ensemble sur les données lon-
gitudinales. Cela a été une expérience très enrichissante pour moi et j’espère sincèrement, Evi, que
tu te plairas toujours autant dans ton projet de thèse.

Je souhaite également remercier sincèrement Arnaud Doucet et Alexandre Gramfort qui ont
accepté de rapporter ma thèse ainsi que pour leurs précieux retours. Merci énormément à Ninon
Burgos, Antoine Chambaz et Jean-Philippe Vert. Je suis ravi et honoré de pouvoir vous compter
parmi les membres de mon jury de thèse.

À titre plus personnel, je souhaite remercier ma famille et mes amis qui m’ont toujours soutenu
tout au long de ces trois ans de thèse et ont toujours été curieux de comprendre ce sur quoi je
travaillais. Un grand merci en particulier à Galeje & Co avec qui j’ai pu partager mes doutes et
réflexions et qui ont toujours eu une oreille attentive et objective. Enfin, j’aimerais te remercier,
Lucile, pour ton soutien sans faille, ta patience à toute épreuve et de m’avoir toujours épaulé dans
les bons comme dans les moments plus difficiles. Je n’en serais pas là sans toi.

5

Chapter 0

6

Résumé Substantiel en Français

Cette thèse de doctorat s’intéresse à la modélisation et à la structuration de l’espace latent des
modèles de type Autoencodeur Variationels (VAE). Ces derniers sont des modèles probabilistes dits
génératifs car ils ont pour objectif d’être capables de générer de nouvelles données synthétiques à
partir d’un ensemble d’entraînement. Introduit par (Kingma andWelling, 2014; Rezende et al., 2014),
un VAE suppose que les données d’observation sont générées selon le schéma suivant :{

z ∼ p(z) ,

x ∼ pθ(x|z) .
(1)

p est une distribution a-priori sur les variables latentes souvent prise comme une distribution simple
(e.g. gaussienne standard) et pθ(x|z) est une distribution conditionnelle des données étant donné
les variables latentes. L’idée principale de ces modèles repose sur l’inférence variationelle amortie
et consiste en l’introduction d’une distribution paramétrique qϕ visant à approximer la distribution
a-posteriori pθ(z|x) inconnue. Un VAE vise à maximiser l’ELBO introduite en Eq. (5) qui constitue
une borne inférieure de la log-vraissemblance. Une fois le modèle entraîné, il est possible de générer
de nouveaux échantillons en utilisant la distribution a-priori p et en fournissant les échantillons au
décodeur pθ(x|z) selon le modèle génératif donné en Eq. (1).

Le VAE tel que proposé dans (Kingma and Welling, 2014) suppose que les données x vivent
dans un espace euclidien X = Rd et la distribution variationnelle a-posteriori qϕ(z|x) est mod-
élisée par une distribution gaussienne multivariée avec une covariance diagonale (i.e. qϕ(z|x) =
N (µϕ(x),Σϕ(x))) dont les paramètres sont donnés par des réseaux de neurones. Par conséquent,
l’espace latent est vu comme un espace euclidien i.e. Z = Rd. La distribution a-priori est choisie
comme une simple distribution gaussienne standard p(z) = N (0, Id). Pendant l’apprentissage,
l’ELBO est estimée à l’aide d’un seul échantillon provenant de la distribution variationnelle z ∼
qϕ(z|x) pour chaque donnée x ∈ X .

Partant de la définition du VAE telle que présentée ci-dessus, nous avons proposé au cours de
cette thèse différents axes d’amélioration du modèle en considérant entre-autre une modélisation de
l’espace latent incluant des considérations géométriques.

Premièrement, nous avons introduit un modèle qui étend le cadre de l’autoencodeur variationnel
hamiltonien proposé par (Salimans et al., 2015; Caterini et al., 2018) à des espaces latents vus comme
des variétés riemanniennes. L’une des principales idées du modèle proposé est d’effectuer des étapes
d’échantillonnage de type Monte Carlo Markov Chain supplémentaires à partir de variables échan-
tillonnées de l’approximation variationnelle qϕ en utilisant des opérateurs de transition inspirés de
la dynamique hamiltonienne mais bénéficiant également de la structure Riemannienne supposée de
l’espace latent. En introduisant les variables de moment v ∈ Rd et en considérant une distribution
variationnelle augmentée sur l’espace étendu (z, v) ∈ Z × Rd, nous dérivons un estimateur de la
vraisemblance marginale pθ(x) comme suit :

p̂θ(x) =
pθ(x, zK , vK)

qϕ(zK , vK |x)
=

pθ(x|zK)p(vK |zK)p(zK)
qϕ(z0|x)p(v0|z0)

∏K
k=1 | detJgk |−1

,

où Jgk est la jacobienne de la k-ième étape de l’intégrateur leapfrog généralisé (Leimkuhler and Re-
ich, 2004; Girolami et al., 2009; Girolami and Calderhead, 2011) et p(v|z) = N (0,G(z)) est une dis-

7

Chapter 0

tribution de proposition pour les moments oùG(z) est la valeur de la métrique Riemannienne en z.
Puisque la métrique Riemannienne est inconnue, nous proposons de la paramétrer et de l’apprendre
directement à partir des données à l’aide de réseaux de neurones. Ensuite, nous proposons un
schéma d’échantillonnage exploitant la géométrie de l’espace latent appris par le modèle proposé
et consistant à échantillonner près des chemins géodésiques. Ce mécanisme d’échantillonnage a
effectivement démontré des performances de génération prometteuses, notamment dans un con-
texte de faible taille d’échantillon, où il surpasse la génération à partir de la distribution a-priori et
d’autres méthodes d’estimation post-entraînement. Enfin, la méthode est utilisée pour effectuer de
l’augmentation de données pour des tâches de classification et est validée par une vaste étude ex-
périmentale où la robustesse aux données et aux classifieurs est testée. En particulier, la méthode a
permis d’augmenter les performances obtenues par un classifieur état-de-l’art entraîné à détecter la
maladie d’Alzheimer sur des IRM 3D. Cette première étude nous a conduit à nous interroger sur les
façons les plus pertinentes d’échantillonner depuis l’espace latent d’un VAE entrainé. Par exemple,
elle nous a conduit à présenter une nouvelle méthode d’échantillonnage à partir de variétés Rie-
manniennes inconnues géodésiquement-complètes. L’idée principale est de créer un algorithme de
type marche aléatoire qui découvre la variété le long des chemins géodésiques. Partant d’un point z
appartenant à la variété RiemannienneM, un échantillon est obtenu en échantillonnant d’abord un
vecteur v ∼ N (0,Σ) dans l’espace tangent Tz à z et en appliquant la carte exponentielle Riemanni-
enne pour ramener le vecteur sur la variété. Cela revient à échantillonner à partir de la distribution
wrapped normale définie sur la variété RiemannienneM. L’échantillon proposé est ensuite accepté
selon un certain rapport de probabilité. Cette méthode est ensuite appliquée au VAE Riemannien
introduit dans l’étude précédente.

L’introduction de considérations géometriques dans l’espace latent des VAEs nous a ensuite con-
duit à nous interroger sur la capacité du VAE pris dans sa forme la plus simple à rendre compte
naturellement d’une certaine géométrie dans son espace latent. Ainsi, nous avons proposé une nou-
velle perspective sur le cadre de l’autoencodeur variationnel en adoptant un point de vue entière-
ment géométrique. En bref, nous partons du constat qu’une distribution gaussienne multivariée
N (µ,Σ) n’est qu’un cas spécifique de la distribution gaussienne Riemannienne N riem(z|µ, σ) =
1
C
exp

(
−distG(z,µ)2

2σ

)
définie sur la variété RiemannienneM = (Rd,G) où σ = 1 et la métrique Rie-

mannienneG est la métrique constanteG(z) = Σ−1. Par conséquent, nous proposons d’interpréter
la distribution variationnelle qϕ(z|x) = N (µϕ(x),Σϕ(x)) non plus comme une gaussienne multi-
variée, mais comme une distribution gaussienne Riemannienne. Pour toute donnée d’apprentissage
xi, Σϕ(xi)

−1 est vu comme une approximation de la métrique Riemannienne inconnue G évaluée
au point µϕ(xi) et définissant un espace latent Riemannien considéré comme étant la variété Rie-
mannienneM = (Rd,G). Pendant l’apprentissage, cette métrique est supposée localement con-
stante à proximité du point µϕ(xi) (i.e. G(z) ≈ Σ(xi)

−1 pour z proche de µϕ(xi)). Par conséquent,
dans un tel cas, l’échantillonnage de la distribution Riemannienne qϕ(z|x) peut être approximée
par l’échantillonnage de la distribution gaussienne multivariée N (µϕ(x),Σϕ(x)) comme lors de
l’apprentissage du VAE classique. Enfin, à la fin de l’apprentissage, ces approximations (Σi)

−1
i de la

métrique Riemannienne G sont assemblées pour construire une métrique Riemannienne continue

8

LIST OF TABLES

sur l’ensemble de l’espace latent.

G(z) =
N∑
i=1

Σ−1(xi) · ωi(z) + λ · e−τ∥z∥22 · Id ,

ωi(z) = exp

(
− distΣ−1(xi)(z, µ(xi))

2

ρ2

)
,

où distΣ−1(xi)(z, µ(xi))
2 = (z − µ(xi))⊤Σ−1(xi)(z − µ(xi))) est la distance Riemannienne entre z

et µ(xi) par rapport à la métrique localement constante G(µ(xi)) = Σ−1(xi). Nous avons égale-
ment proposé un nouveau mécanisme d’échantillonnage qui consiste à échantillonner à partir de la
distribution uniforme Riemannienne intrinsèquement définie surM = (Rd,G) comme suit :

URiem(z) =
√
detG(z)∫

Rd
√

detG(z)dz
.

Nous montrons empiriquement qu’un tel schéma d’échantillonnage permet d’améliorer la capacité
générative du VAE classique (dont le processus d’apprentissage reste inchangé) qui peut désormais
surpasser des méthodes plus avancées et potentiellement plus coûteuses proposées par la suite.

Au cours de cette thèse nous avons également développé plusieurs outils informatiques perme-
ttant un usage facilité et ouvert au plus grand nombre de tels modèles. L’un d’eux est la librairie
Pythae qui est une librairie open-source Python offrant à la fois une implémentation unifiée et un
cadre dédié à l’utilisation des modèles génératifs de type autoencodeur. Au moment où j’écris cette
thèse, cette bibliothèque implémente et unifie 25 implémentations demodèles de type autoencodeurs
(variationnels) et a suscité un certain intérêt dans la communauté avec 1.2k+ étoiles sur github, plus
de 10,000 téléchargements, 8 contributeurs externes et a également été présentée à la conférence
PyTorch 2022 à la Nouvelle-Orléans. L’objectif principal de cette bibliothèque Python est d’abaisser
la barrière d’entrée pour l’utilisation de ces modèles tout en assurant qu’ils sont suffisamment flex-
ibles pour s’adapter à divers cas d’utilisation et types de données. La plupart des implémentations
fournies ont été capables de reproduire les principaux résultats des articles originaux rendant les im-
plémentations fiables. De plus, cette bibliothèque est unit-testée et répond aux critères des logiciels
libres. Elle est disponible sous la licence Apache2.0 et peut être installée à partir de pypi ou conda.
D’autre part, nous avons proposé un cas d’usage de Pythae sous la forme d’un benchmak de 19 mod-
èles comparés dans les mêmes conditions et pour 5 tâches différentes telles que la reconstruction, la
génération, la classification, le clustering et l’interpolation d’images.

Une partie substantielle de la thèse a également été consacrée à l’appplication et le développe-
ment de modèles adaptés à des données structurées telles que les données longitudinales. Ces
dernières ne sont plus indépendantes et identiquement distribuées comme le suppose le cadre initial
du VAE et nécessitent donc une nouvelle modélisation.

Nous avons premièrement proposé un modèle génératif pour les données d’images longitudi-
nales agissant directement dans l’espace latent d’un VAE entraîné. Cette proposition est motivée
par l’observation que, de part la structure intrinsèque de leur espace latent, les autoencodeurs vari-
ationnels rendent naturellement compte d’une trajectoire (qui n’est pas obligatoirement une ligne
droite) dans l’espace latent lorsqu’ils sont entraînés avec de telles données. Nous proposons donc
d’apprendre une fonction qui transforme ces trajectoires en une trajectoire linéaire définie par des

9

Chapter 0

paramètres de vitesse, de retard et d’espace qui sont appris directement à partir des données dans
un esprit similaire à celui de (Louis et al., 2019).

li(t) = exp(ηi)(t− τi) · e1 +
d∑

k=2

λki · ek ,

où ηi est un paramètre de vitesse, τi est un retard, et λi = (λki)2≤k≤d sont des paramètres spati-
aux. Contrairement à (Louis et al., 2019), nous adoptons une approche entièrement variationnelle
pour rendre le modèle génératif de manière similaire à (Kingma and Welling, 2014). Étant donné P
séquences d’entrée (xi)i∈[1,P] ayant chacune ti observations telles que xi = (x0i , . . . , x

ti
i), un premier

autoencodeur variationnel est entraîné sur toutes les données sans tenir compte de leur structure
temporelle. Cette étape permet d’apprendre une représentation en dimension réduite des données
d’entrée. Ensuite, un second modèle est entraîné pour mettre en correspondance les trajectoires des
données d’entrée (xi)i∈[1,P] dans l’espace latent du VAE avec une trajectoire linéaire.

Adoptant un point de vue différent, nous avons également proposé un nouveau modèle génératif
à variables latentes capable de gérer des données longitudinales de grande dimension. Étant donné
une entité i ∈ {1, . . . , P} et une séquence d’observations (xi0, . . . , xiti), nous supposons que pour
chaque xij où j ∈ {0, . . . , ti}, il existe une variable latente associée zij ∈ Z = Rd impliquée dans
le processus génératif de l’observation xij telle que xij ∼ pθ(x

i
j|zij). Puisque les observations au sein

d’une séquence ne sont plus indépendantes (cadre longitudinal), le cadre du VAE classique ne peut
pas être appliqué car la vraisemblance ne se factorise plus entre les observations. Par conséquent,
nous proposons de modéliser la dépendance temporelle entre les observations d’une séquence en
utilisant des flux normalisant fj sur les variables latentes.

zi0 ∼ p(zi0), z
i
1 = f1(z

i
0), . . . , z

i
ti
= fti(z

i
ti−1

) , (2)

où p est une distribution a-priori simple sur zi0 (e.g. gaussienne standard) et fj sont des flux nor-
malisant pour tout j ∈ {1, . . . , ti}. Puisque les fj sont inversibles, on peut voir que nous avons
également accès à une distribution a-priori connue pour zij en utilisant le théorème de changement
de variable. En supposant que les observations dans une séquence sont indépendantes lorsqu’elles
sont conditionnées par rapport aux variables latentes associées et en notant qu’à zij donné nous
pouvons retrouver la séquence complète des variables latentes (zi0, . . . , ziti) en utilisant Eq. (2), nous
pouvons écrire la vraisemblance jointe comme suit :

pθ(x
i
0, · · · , xiti) =

∫
Z
pθ(x

i
0, · · · , xiti |zij)p(zij)dzij =

∫
Z

ti∏
l=0

pθ(x
i
l|zil)p(zij)dzij .

Comme cette intégrale est la plupart du temps difficile à calculer, nous proposons de recourir à
l’inférence variationnelle amortie et introduisons une distribution paramétrique qϕ(zij|xij) qui per-
met d’obtenir une estimation non biaisée de la vraisemblance jointe et ainsi d’obtenir une ELBO.

log pθ(x
i
0, · · · , xiti) ≥ Eqϕ

[
log

ti∏
l=0

pθ(x
i
l|zil)

]
−KL(qϕ(z

i
j|xij)|p(zij)) .

L’apprentissage est effectué en choisissant aléatoirement un j dans [0, ti], en échantillonnant zij ∼
qϕ(z

i
j|xij), en récupérant une séquence reconstruite (x̂i0, . . . , x̂iti) en utilisant Eq. (2) et en optimisant

10

LIST OF TABLES

l’ELBO. Une fois que le modèle est entraîné, il est possible de générer des séquences entièrement syn-
thétiques en commençant par échantillonner z0 ∼ p(z0) et en appliquant les flux selon Eq. (2). Nous
discutons également la manière de traiter les données manquantes au moment de l’entraînement et
de l’inférence et comment générer des séquences conditionnées par une ou plusieurs observation(s)
dans une séquence d’entrée.

11

Chapter 0

12

Introduction

0.1 Context

The dimension of an input data is defined as the number of features that can vary independently.
For instance, the dimension of an image is assumed to be given by the total number of pixels since,
theoretically, each of the pixels can take a value comprised in [0, 255] regardless of its neighbors. We
refer to high dimensional data when the dimension of this input data is of the same order of magni-
tude or larger than that number of observations. High dimensional data are more than common in
many application fields where one of the most representative is medicine. This type of data is pretty
hard to apprehend and requires recourse to dimensionality reduction tools to extract meaningful
and useful structural information needed to analyze them (Gillies et al., 2016; Lambin et al., 2017). In
medical imaging, such dimensionality reduction may be needed to extract relevant features to better
characterize and understand a given population or the evolution of a given disease from complex
data (e.g. 3-dimensional Magnetic Resonance Imaging (MRI) images) having potentially thousands
or millions of voxels. This task, known as radiomics, provides a lower dimensional representation
of the data that can then be used for downstream tasks such as disease progression monitoring,
treatment response prediction or diagnosis prediction. Another challenging aspect of high dimen-
sional data relies in the number of available observations. It is indeed not rare to only have access
to a (very) limited number of observations making the analysis even more challenging (e.g. rare
disease) (Button et al., 2013; Turner et al., 2018). The recent rise in performance of Deep Latent
Variable Generative Models (DLGM) such as generative adversarial networks (GAN) (Goodfellow
et al., 2014) or variational autoencoders (VAE) (Kingma and Welling, 2014; Rezende et al., 2014) has
made them very attractive models to tackle both challenges at the same time. They indeed provide
a flexible framework allowing for a lower dimensional representation of the input data through the
latent variables while being able to generate new synthetic samples. VAEs are a specific type of
DLGM model relying on an autoencoding structure that gives rise to the consideration of a lower
dimensional structured space called the latent space. This PhD thesis aims at providing a better
understanding of the underlying structure of such a space through different modeling.

0.2 Deep Latent Variable Models

Let x ∈ X be a set of data. A Latent Generative Model is a generative model that assumes that there
exist latent variables z ∈ Z (i.e. that are not directly observed from our dataset) involved in the
generation process of the observations. Z , the space in which the latent variables live is referred to
as the latent space. These models typically assume that the observation data are generated according
to the following scheme: {

z ∼ p(z) ,

x ∼ pθ(x|z) .
(3)

p is a prior distribution over the latent variables often taken as a simple distribution (e.g. standard
Gaussian), and pθ(x|z) is a conditional distribution of the data given the latent variables. A Deep La-
tent Generative Model (DLGM) further assumes that pθ(x|z) is taken as a parametric distribution, the

13

Chapter 0

parameters of which are estimated using deep neural networks. In practice, the distribution pθ(x|z)
is chosen depending on the modeling of the input data but is often taken as a simple distribution
(e.g fixed variance Gaussian for RGB images, factorized Bernoulli for binary data...). Let us consider
the following example extracted from (Kingma and Welling, 2014; Kingma et al., 2019)

Example 1 Let assume that X = RD is a set of binary images such as the MNIST (LeCun, 1998)
dataset representing binary images of handwritten digits. A DLGM can be defined for these data as
follows

p(z) = N (0, Id) ,

pθ(x|z) =
D∏
i=1

pθ(xi|z) =
D∏
i=1

B(xi; pi) ,

where pi = Dθ(z) withDθ a parametric function parameterized with neural networks that outputs the
parameters pi of the distribution pθ(x|z) modeled by a factorized Bernoulli distribution.

The modeling proposed in Eq. (3) then allows to derive the marginal distribution of the data as
follows

pθ(x) =

∫
Z

pθ(x|z)p(z)dz , (4)

A DLGM typically learns the set of parameters θ ∈ Θ by maximizing the likelihood of the data (i.e.
the above equation). However, since the integral in Eq. (4) is taken over the entire latent space, it is
most of the time intractable. As a consequence, the posterior distribution pθ(z|x) neither admits a
closed-form expression:

pθ(z|x) =
pθ(x|z)p(z)∫

Z
pθ(x|z)p(z)dz

.

In particular, this makes the application of Bayesian inference impossible. In such a case, one can
rely on samples from the posterior distribution using Markov Chain Monte Carlo methods that aim
at sampling from it but can reveal quite costly or Variational Inference that aims at approximating
the posterior distribution using a family of parametrized distributions qϕ(z|x).

0.3 Variational Inference

Given observations x ∈ X and associated latent variables z ∈ Z with joint distribution p(x, z),
variational inference is a method that aims at approximating an untractable conditional distribution
p(z|x) of the latent variables given the observations using a family of parametrized distributions
Q = {q(z)} (Blei et al., 2017). The distributions q are referred to as variational distributions. The
idea is to find the optimal distribution q∗ ∈ Q that minimizes the Kullback-Leibler (KL) divergence
between the approximate posterior and the true one i.e.

min
q∈Q

KL(q(z)||p(z|x)) = min
q∈Q

∫
log

(
q(z)

p(x|z)

)
q(z)dz .

14

LIST OF TABLES

However, this objective is most of the time untractable since p(z|x) is unknown and so a surrogate
objective obtained using Jensen’s inequality is introduced and optimized instead (Jordan et al., 1999):

log p(x) = log

∫
Z
p(x, z)dz

= log

∫
Z

[
p(x, z)

q(z)

]
q(z)dz

= logEq

[
p(x, z)

q(z)

]
,

≥ Eq log

[
p(x, z)

q(z)

]
,

≥ log p(x)−KL(q(z)||p(z|x)) := L(θ, ϕ, x) .

(5)

The right-hand side of the equation L(θ, ϕ, x) is called the Evidence Lower BOund (ELBO) and
one may notice that the difference between the left-hand side of the equation and the ELBO gives
KL(q(z)||p(z|x)). Hence, maximizing the ELBO amounts to minimizing the KL, and so the ELBO is
used as the objective for the variational approximation.

0.4 Amortized Variational Inference

A drawback of Variational Inference in its current shape is that given a set of data (x1, . . . , xn) an
optimal variational posterior q∗ needs to be computed for each posterior p(z|xi). This requires a
per-datapoint optimization loop that can quickly become prohibitively expensive for large datasets.
Such limitation can be addressed using the idea of Amortization. The main idea behind Amortized
Variational Inference (AVI) is to consider variational distributions q that are parametrized with a
common set of parameters ϕ that are shared across the data. The optimization is now no longer
performed on the distributions but on the parameters ϕ using the same objective

min
ϕ

KL(qϕ(z)||p(z|x)) .

Example 2 Let us assume that we are given a set of data (x1, . . . , xn) and associated latent vari-
ables (z1, . . . , zn). We place ourselves in the context where the posterior distributions p(zi|xi) with
i ∈ {1, . . . , n} are also unknown. A simple idea would consist in approximating these posterior dis-
tributions using Variational Inference. Hence, one can for instance consider Gaussian distributions
q(zi|xi) = N (zi;µi,Σi) as variational distributions. In such a case, VI would consist in finding the
optimal µ1, . . . , µn,Σ1, . . . ,Σn for each xi and i ∈ {1, . . . , n} whereas Amortized VI would model
both the means and covariances as parametric functions of xi with parameters ϕ. In such a case, for
any i ∈ {1, . . . , n} we have a common definition for the variational distributions given by qϕ(zi|xi) =
N (zi;µϕ(xi),Σϕ(xi)).

15

Chapter 0

0.5 The Variational Autoencoder

A Variational Autoencoder (VAE) introduced in (Kingma and Welling, 2014; Rezende et al., 2014) is
a specific type of DLGM that rely on Amortized Variation Inference. The main idea is to introduce
a parametric distribution qϕ that aims at approximating the true posterior distribution pθ(z|x). In
the context of VAE models, we typically assume that the latent variable z ∈ Z lives in a lower
dimensional space than the input data x ∈ X such that qϕ(z|x) is often referred to as the encoder (or
recognitionmodel). Similarly, the conditional distribution pθ(x|z) of the data given the latent variable
is called the decoder. The encoder acts as variational distribution, and a VAE aims at maximizing the
ELBO introduced in Eq. (5) with respect to both the variational parameters ϕ and the parameters of
the decoder, θ.

L(θ, ϕ, x) = log pθ(x)−KL(qϕ(z|x)||pθ(z|x)) , (6)
When looking as Eq. (6), one may see that by maximizing the ELBOwith respect to both ϕ and θ, the
VAE will at the same time 1) maximize the marginal likelihood pθ(x) which is the main objective of
a DLGM and 2) minimize KL(qϕ(z|x)||pθ(z|x)) which drives qϕ(z|x) to approximate the unknown
posterior pθ(z|x) as targeted in the Amortized Variational Inference framework. The ELBO can also
be written as follows, allowing to perform Stochastic Gradient Descent (SGD).

L(θ, ϕ, x) = log pθ(x)−KL(qϕ(z|x)||pθ(z|x)) ,
= Eqϕ(z|x) [log pθ(x|z)]−KL(qϕ(z|x)||p(z)) ,
= Eqϕ(z|x) [log pθ(x, z)− log qϕ(z|x)] .

(7)

We see now in Eq. (7) that the ELBO can be written as an expectation of tractable terms since both
qϕ(z|x) and pθ(x, z) = pθ(x|z)p(z) are known and efficient to compute.

Remark 1 The ELBO as written line 2 of Eq. (7) can also be seen as a two terms objective (Ghosh et al.,
2020). The first one is a reconstruction term given by pθ(x|z) while the second one is a regularizer
given by the KL between the variational posterior qϕ and the prior p. For instance, in the case of a fixed
variance Gaussian for pθ(x|z) = N (x;µθ(z), σ · Id) we have

LREC = ∥x− µθ(z)∥22, LREG = KL(qϕ(z|x)∥p(z)) . (8)

Since the VAE aims at optimizing the ELBO with respect to both the variational parameters ϕ and
the parameters θ, using an SGD-based procedure requires being able to compute the gradients of
the ELBO with respect to ϕ and θ i.e. ∇θ,ϕL(θ, ϕ, x). The gradient with respect to the parameters θ
can be derived as follows

∇θL(θ, ϕ, x) = ∇θEqϕ(z|x) [log pθ(x, z)− log qϕ(z|x)] ,
= Eqϕ(z|x) [∇θ log pθ(x, z)] ,

=

∫
Z
∇θ log pθ(x, z)qϕ(z|x)dz .

(9)

Hence, we can easily obtain an unbiased estimate of ∇θL(θ, ϕ, x) using Monte Carlo and samples
coming from the variational distribution z ∼ qϕ(z|x). While optimizing with respect to θ is pretty
straightforward, as explained above, computing the gradient of the ELBO with respect to ϕ is a bit

16

LIST OF TABLES

trickier since the expectation depends on the parameters ϕ. Therefore, the gradient of the expecta-
tion no longer equals the expectation of the gradient. To alleviate this issue, one may recourse to
what is called the reparametrization trick. The main idea behind this trick is to express the random
variable z ∼ qϕ(z|x), for any x ∈ X , as a diffeomorphic transformation gϕ,x of another random
variable ε ∼ w(ε) following a distribution easy to sample from and where w is independent of x
and ϕ.

Example 3 For instance, let us assume that Z = Rd and the variational posterior is chosen as a
multivariate Gaussian distribution qϕ(z|x) = N (z;µϕ(x),Σϕ(x)) with diagonal covariance matrix
Σϕ(x). In such a case, one may introduce an auxiliary random variable ε following the non-parametric
distribution w(ε) = N (0, Id) and write:

z = gϕ,x(ε) with ε ∼ N (0, Id) and gϕ,x : ε→ µϕ(x) + Σϕ(x)
1
2 · ε .

The above transformation is actually strictly equivalent to sampling z from the parametric variational
distribution qϕ(z|x).

Assuming now that for any x ∈ X there exists such random variable ε ∼ w(ε) and diffeomorphism
gϕ,x we can now rewrite the ELBO using the reparametrization trick:

L(θ, ϕ, x) = Eqϕ(z|x) [log pθ(x, z)− log qϕ(z|x)] ,
= Eε∼w(ε) [log pθ(x, gϕ,x(ε))− log qϕ(gϕ,x(ε)|x)] .

Now, since the expectation is taken with respect to ε ∼ w(ε), we can swap gradient with respect
to ϕ and the expectation in a similar fashion as Eq. (9) making optimization with respect to the
parameters ϕ possible. Finally, once the model is trained, one can generate new samples using the
prior distribution and feeding the samples to the decoder pθ(x|z) according to the generative model
given in Eq. (3).

The vanilla VAE as proposed in (Kingma and Welling, 2014) (namely the Gaussian mean-field
VAE) assumes that the data x live in X = Rd as presented in Example 3 and the variational poste-
rior qϕ(z|x) is modeled by a multivariate Gaussian distribution with diagonal covariance qϕ(z|x) =
N (µϕ(x),Σϕ(x)) the parameters of which are given by neural networks. Hence, the latent space is
seen as a Euclidean space i.e. Z = Rd. The prior distribution is chosen as a simple standard Gaus-
sian distribution p(z) = N (0, Id). During training, the ELBO is estimated using only one sample
coming from the variational distribution z ∼ qϕ(z|x) for each data point x ∈ X . Starting from the
definition of the vanilla VAE, a wide literature has emerged trying to improve the model. In the
following sections, we will elaborate on some of the major lines of development in this area that are
relevant to this thesis.

0.6 Towards a Tighter Bound

Despite its apparent simplicity, the VAE framework nonetheless demonstrates a major weakness
which is that we are always only optimizing a lower bound (the ELBO) on the actual objective (i.e.
the marginal log-likelihood log pθ(x)). Therefore, many works have been proposed in the literature
to achieve tighter bounds that would hopefully lead to a better estimate of pθ(x) and so a better
model.

17

Chapter 0

0.6.1 Using Better Estimators

First, it can be noted that Evidence Lower BOund (ELBO) objectives can also be obtained starting
from an unbiased estimate of the marginal likelihood pθ using Jensen’s inequality. For instance, in
the VAE framework, one may consider the variational distribution qϕ(z|x) as proposal density and
apply importance sampling to derive an unbiased estimate of pθ(x)

p̂θ(x) =
pθ(x, z)

qϕ(z|x)
and Ez∼qϕ

[
p̂θ
]
= pθ(x) . (10)

Using Jensen’s inequality allows finding a lower bound on the objective function of Eq. (4)

log pθ(x) = logEz∼qϕ [p̂θ] ,
≥ Ez∼qϕ [log p̂θ] ,

≥ Ez∼qϕ

[
log

(
pθ(x, z)

qϕ(z|x)

)]
,

≥ Ez∼qϕ [log pθ(x|z)]−KL(qϕ(z|x)∥p(z)) .

(11)

We see now that we obtain an equivalent expression of the ELBO as shown in Eq. (7). Hence, several
works have been developing new estimators of the marginal likelihood pθ and proposed to derive
new ELBO objectives (Burda et al., 2016; Maddison et al., 2017; Domke and Sheldon, 2018; Thin et al.,
2021).

Example 4 In particular, since the vanilla VAE only uses one sample for the importance estimate,
(Burda et al., 2016) introduced the Importance Weighted Autoencoder that optimizes an ELBO derived
from the K-sample importance weighted estimator of the marginal log-likelihood.

p̂θ(x) =
1

K

K∑
i=1

pθ(x, zi)

qϕ(zi|x)
and Ez1,...,zK∼qϕ(z|x)

[
p̂θ
]
= pθ(x) .

Using the same reasoning as before allows obtaining an ELBO derived from the aforementioned estima-
tor

LIWAE(θ, ϕ, x) = Ez1,...,zK∼qϕ(z|x)

[
log

1

K

K∑
i=1

pθ(x, zi)

qϕ(zi|x)

]
.

Note that in the case K = 1, we indeed find back the VAE ELBO. Using the reparametrization trick
allows for optimization for both θ and ϕ parameters using stochastic gradient-based algorithms.

0.6.2 Enriching the Variational Distribution

When looking at the expression of the ELBO in Eq. (6), one can see that it is composed of two
terms. The first one is the marginal log-likelihood of the data log pθ(x), which is the objective
we actually want to maximize, while the second term is the Kullback–Leibler (KL) divergence be-
tween the variational posterior distribution qϕ(z|x) and the true posterior pθ(z|x). The latter is
always non-negative and vanishes if and only if qϕ = pθ almost everywhere. In other words, the

18

LIST OF TABLES

term KL(qϕ(z|x)||pθ(z|x)) quantifies the gap that exists between the ELBO and the marginal log-
likelihood. Hence, a natural way to improve the tightness of the ELBO would consist in considering
a richer family of variational distributions qϕ(z|x) that would hopefully better approximate the true
posterior pθ(z|x). Recall that in the initial version of the VAE, the variational distribution is set as
a multivariate Gaussian with diagonal covariance, which is a very restrictive class of distributions,
while the actual posterior pθ(z|x) may be a complex distribution.

Normalizing Flows

Normalizing flows are flexible models that can be used to transform simple probability densities
into much more complex ones by recoursing to sequences of invertible smooth mappings. These
models rely on the rule of change of variables such that if z ∈ Rd is a random variable that follows
the distribution q(z) and f : Rd → Rd is an invertible smooth function, then the random variable
z′ = f(z) has a distribution given by

q(z′) = q(z)

∣∣∣∣det ∂f−1

∂z′

∣∣∣∣ = q(z)

∣∣∣∣det ∂f∂z
∣∣∣∣−1

. (12)

In this setting, f is called a normalizing flow, and so several flows can be composed to form a new
flow g = fK ◦ fK−1 ◦ · · · ◦ f1 allowing to model richer distributions. The ability of these flows
to transform simple distributions into much more complex ones was, in particular, proposed in the
context of amortized variational inference in (Rezende andMohamed, 2015). They were indeed com-
bined with the VAE framework to enhance the expressiveness of the variational posterior qϕ(z|x).
In such a context, the flows are parametrized and learned during training at the same time as the
encoder and decoder networks. The complexity of the transformations in the flows considered is
nonetheless constrained since the flows need to be invertible and smooth, and the computation of
the det-Jacobian of the flow must remain tractable and should not constitute a strong additional
computation burden.

Example 5 The family of invertible linear transformations is, for instance, one of the simplest sets of
transformations one may think of to build normalizing flows. In (Rezende and Mohamed, 2015), the
authors proposed to consider the following transformation

f(z) = z + u · h(ω⊤z + b) ,

where z ∈ Rd and {ω ∈ Rd, u ∈ Rd, b ∈ R} are parameters learned during training and h is a smooth
non-linear function (e.g. tanh). These types of flows are called Planar flows.

We show in Fig. 1, another example on the two moons dataset (Pedregosa et al., 2011) using Masked
Autoregressive Flows (MAF) (Papamakarios et al., 2017) and a standard Gaussian prior. On the
left, we show the resulting sampling using 2048 samples from the prior and transforming them
using the learned flows. On the right, we show the learned inverse transformation applied to the
input data. In addition to the flows presented in the above examples, amongst the most widely
known flows, we can also mention NICE (Dinh et al., 2014), radial flows (Rezende and Mohamed,
2015), RealNVP (Dinh et al., 2016), Masked Autoregressive Flows (MAF) (Papamakarios et al., 2017)

19

Chapter 0

1.0 0.5 0.0 0.5 1.0 1.5 2.0
0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

true distribution transformed prior ((0, Id))

Prior to data

4 2 0 2 4

3

2

1

0

1

2

3

4

prior distribution ((0, Id)) transformed moons

Data to prior

Figure 1: Left: Sampling usingMasked Autoregressive Flows (MAF) (Papamakarios et al., 2017) using
a standard prior (N (0, Id)) on the two moons dataset (Pedregosa et al., 2011). Right: Mapping of the
data to the prior using the flows. Plots are made using (Chadebec et al., 2022c).

or Inverse Autoregressive Flows (IAF) (Kingma et al., 2016). The latter flows were in particular
proposed in (Kingma et al., 2016) to improve upon the works of (Rezende and Mohamed, 2015) with
a new type of normalizing flow that better scales to high-dimensional latent spaces. The main idea
is again to apply several transformations to a sample drawn from a simple distribution in order to
model richer distributions. Starting from z0 ∼ qϕ(z|x), the proposed IAF flow consists in applying
consecutively the following transformation

zk = µk + σk ⊙ zk−1 ,

where µk and σk are the outputs of an autoregressive neural network taking zk−1 (and potentially
a context vector h) as input. The choice of autoregressive neural networks imposes by construction
that the Jacobian of µk and σk with respect to zk−1 are triangular with zeros on their diagonal. This
makes the computation of the det-Jacobian of each flows easy and fast.

Auxiliary Variables

Another way to increase the expressiveness of the variational distribution consists in adding auxil-
iary random variables (Salimans et al., 2015; Maaløe et al., 2016; Ranganath et al., 2016). The main
idea is to work with an extended space by adding an auxiliary continuous random variable u ∈ U
and consider an augmented inference model that writes

qϕ(u, z|x) = qϕ(u|x)qϕ(z|u, x) .

This additional random variable u allows accessing to a potentially richer class of marginal distri-
bution qϕ(z|x) since we have

qϕ(z|x) =
∫
U
qϕ(u, z|x)du .

20

LIST OF TABLES

The extended generative model using the auxiliary random variable follows

pθ(x, z, u) = pθ(u|x, z)pθ(x, z) .

In a similar fashion as Eq. (10), one can build an unbiased estimator of the marginal likelihood pθ(x)

p̂θ(x) =
pθ(x, z, u)

qϕ(u, z|x)
and E(u,z)∼qϕ

[
p̂θ
]
= pθ(x) .

This allows to derive an ELBO

log pθ(x) = E(u,z)∼qϕ [p̂θ(x)] ,

≥ E(u,z)∼qϕ

[
log

(
pθ(x, z, u)

qϕ(u, z|x)

)]
= Laux(θ, ϕ, x) .

Moreover, one may note that we have

Laux(θ, ϕ, x) = E(u,z)∼qϕ

[
log

(
pθ(x, z)pθ(u|x, z)
qϕ(u|z, x)qϕ(z|x)

)]
,

=

∫
Z

∫
U
log

(
pθ(x, z)

qϕ(z|x)

)
qϕ(u|z, x)qϕ(z|x)dudz

+

∫
Z

[∫
U
log

(
pθ(u|x, z)
qϕ(u|z, x)

)
qϕ(u|z, x)du

]
qϕ(z|x)dz ,

=

∫
Z
log

(
pθ(x, z)

qϕ(z|x)

)
qϕ(z|x)dz − Ez∼qϕ [KL(qϕ(u|z, x)||pθ(u|x, z))] ,

= Ez∼qϕ

[
pθ(x, z)

qϕ(z|x)

]
− Ez∼qϕ [KL(qϕ(u|z, x)||pθ(u|x, z))] ,

= L(θ, ϕ, x)− Ez∼qϕ [KL(qϕ(u|z, x)||pθ(u|x, z))] ,
≤ L(θ, ϕ, x) (= vanilla VAE ELBO) .

This equation means that using an auxiliary random variable can be detrimental to the tightness
of the ELBO since it becomes looser than the original VAE objective. Nonetheless, this approach
allows to access to a wider class of variational distributions that will hopefully outweigh the term
Ez∼qϕ [KL(qϕ(u|z, x)||pθ(u|x, z))]. Several works actually show that considering auxiliary random
variables to increase the expressiveness of the variational distribution can indeed lead to enhanced
models (Salimans et al., 2015; Ranganath et al., 2016; Maaløe et al., 2016; Caterini et al., 2018; Thin
et al., 2021; Chadebec et al., 2022b).

Example 6 An approach proposed by Salimans et al. (2015) consists in benefitting from the ability
of MCMC methods to sample from the exact unknown posterior distribution pθ(z|x) and the authors
applied it to the VAE framework. They indeed proposed to add a fixed number T of MCMC steps on the
top of the variational approximation and targeting the true posterior distribution as follows

z0 ∼ qϕ(z0|x) and zt ∼ q(zt|zt−1, x), ∀t ∈ {1, . . . , T} ,

where qϕ(z0|x) is a simple initial distribution (typically qϕ(z0|x) = N (µϕ(x),Σϕ(x)) in the context
of VAEs) and q(zt|zt−1, x) is the transition operator used in the Markov Chain. The main idea of the

21

Chapter 0

authors is to interpret the created Markov Chain qϕ(z|x) = qϕ(z0)
T∏
t=1

q(zt|zt−1, x) as a variational

approximation in an extended space by seeing the u = z0, . . . , zt−1 as auxiliary random variables. As
explained in this section, this allows obtaining an unbiased estimate of the marginal likelihood (and so
derive an ELBO) as follows:

p̂θ(x) =
pθ(x, zT)

∏T
t=1 r(zt−1|zt, x)

qϕ(z0|x)
∏T

t=1 q(zt|zt−1, x)
,

where r(zt−1|zt, x) are artificial reverse transition kernels being chosen in this case with a Markov
structure aiming at approximating q(u|x, zT). As an example, the authors introduced what they called
Hamiltonian Variational Inference where they chose to rely on transition operators inspired by the
Hamiltonian Monte Carlo (HMC) sampler (Neal and others, 2011). This approach was further extended
in several works (Wolf et al., 2016; Hoffman, 2017; Caterini et al., 2018; Chadebec et al., 2022b). One
may also link this approach to Normalizing Flows described in Sec. 0.6.2 since Hamiltonian Monte
Carlo can be interpreted as a normalizing flow on the extended space (z, v) ∈ Z × Rd where v are
auxiliary variables called the momentum (Rezende and Mohamed, 2015). A very nice property of those
flows relies in the fact that they are guided by the gradient of the true posterior, which is a well-known
property of the Hamiltonian dynamics, but they are however quite computationally demanding.

0.6.3 Rethinking our Priors

While much effort has been focused on improving the ELBO using more flexible variational distri-
butions, (Hoffman and Johnson, 2016) argued that particular attention should be paid to the choice
of the prior distribution as well. First, we recall that one of the expressions of the ELBO in the vanilla
VAE setting writes as follows:

L(θ, ϕ, x) = Eqϕ(z|x) [log pθ(x|z)]−KL(qϕ(z|x)||p(z)) .

Assuming that we are given N i.i.d observations x with empirical distribution pdata, (Hoffman and
Johnson, 2016) showed that the ELBO averaged across the observations can be written as follows

L(θ, ϕ) = Epdata [L(θ, ϕ, x)]

=
1

N

N∑
i=1

[
Eqϕ(z|xi) [log pθ(xi|z)]−KL(qϕ(z|xi)||p(z))

]
,

=
1

N

N∑
i=1

Eqϕ(z|xi) [log pθ(xi|z)]− Iq(x,z)[x, z]−KL(qavg(z)||p(z)) ,

(13)

where Iq(x,z)[x, z] = Eq(x,z)
[
log
(

q(xi,z)
p(xi)qavg(z)

)]
is themutual information of the observation x and the

latent code z under q(x, z) = pdata(x)qϕ(z|x), qavg(z) = 1
N

∑N
i=1 qϕ(z|xi) is the aggregated posterior

and p(z) is the prior distribution (standard Gaussian in the vanilla VAE setting). In Eq. (13), the first
term corresponds to the classic reconstruction term of the ELBO, while the second one drives the
latent codes to overlap for different observations xi. Interestingly, with such writing of the ELBO

22

LIST OF TABLES

the prior p(z) only appears in the last term, indicating that our choice in the prior distribution will
only impact this term without being detrimental to terms 1 and 2. This expression nicely highlights
how the over-regularization coming from the prior arises when one chooses too simplistic priors. It
is easy to see that the prior maximizing the ELBO is given by the aggregated posterior. Nonetheless,
such a choice may lead to overfitting and would add a substantial computation burden to the model
due to the sum over all the observations N (Hoffman and Johnson, 2016; Makhzani et al., 2015;
Tomczak and Welling, 2018). To conclude, this discussion justifies the need for more expressive
prior distributions but also shows that a trade-off between expressiveness and tractability of the
prior in the ELBO needs to be taken into account.

As the standard VAE model uses a standard Gaussian distribution as prior, a natural improve-
ment that was proposed in (Nalisnick et al., 2016; Dilokthanakul et al., 2017) consists in considering
a mixture of Gaussian distributions instead. Keeping in mind that the optimal prior is the aggregated
posterior, (Tomczak and Welling, 2018) introduced a VAriational Mixture of Posterior (VAMP) prior
that aims at approximating the aggregated posterior while trying to address the undesirable effects
such as overfitting and computational burden. The main idea is to introduce K pseudo-inputs vari-
ables uk ∈ X (i.e. living in the observations space) and learn them at the same time as the model
parameters θ and ϕ. The VAMP prior then writes:

pVAMP
λ (z) =

1

K

K∑
i=1

qϕ(z|uk) ,

where λ corresponds to the prior’s parameters λ = {ϕ, u1, . . . , uK}.

0.7 Improving the Learned Latent Representations

Even though the VAE framework aims at maximizing the likelihood of the data by nature, its autoen-
coding structure constrains the observations to be encoded into a lower dimensional space called
the latent space, the structure of which may reveal very interesting properties. Therefore, better
understanding the inherent structure of this latent space or improving the quality of latent repre-
sentations learned by the model are two questions that have also greatly intrigued the community
over the past few years.

0.7.1 Learning Disentangled Representations

Although there is no clear consensus on the definition of disentanglement, it is commonly referred
to as the independence between features in a representation (Bengio et al., 2013; Eastwood and
Williams, 2018; Mathieu et al., 2019b).

In particular, it has been argued that learning disentangled representations of the input data can
be beneficial to a model and for downstream tasks (Bengio et al., 2013; Lake et al., 2017; Higgins et al.,
2017). Learning disentangled representations in the context of Variational Autoencoders consists in
obtaining a latent space in which each direction corresponds to an independent generative factor of
the data. In other words, trying to achieve disentanglement amounts to constraining the empirical
distribution of the latent codes i.e. the aggregated posterior to be factorial i.e. qavg(z) =

∏d
j q(zj)

23

Chapter 0

where j is the j-th component of the latent code z. It was first shown in (Higgins et al., 2017) that
the VAE can offer a simple yet efficient unsupervised way to learn disentangled factors in its latent
space. The authors indeed proposed to amend the training objective of the vanilla VAE framework
by adding a weight factor balancing the reconstruction term of the ELBO and the regularization.
According to the authors, the rationale behind this is to put stronger constraints over the latent
representations to follow a simple factorial prior (N (0, Id)) while still being able to reconstruct the
input data.

Lβ-VAE(θ, ϕ, x) = Eqϕ [log pθ(x|z)− β ·KL(qϕ(z|x)||p(z))] ,
where β > 1. Nonetheless, this extra pressure put on the latent variables can lead to over-regularization
and, as a consequence, become detrimental to the reconstruction capability of the model. To address
this limitation (Burgess, 2018) proposed to gradually increase a target value for KL(qϕ(z|x)||p(z))
during training up to a limit value. However, both approaches penalize the whole KL term, while
this may not be needed as far as disentanglement is targeted. In particular, one may indeed note
that from Eq. (13) we have

KL(qϕ(z|x)||p(z)) = Iq(x,z)[x, z]−KL(qavg(z)||p(z)) ,

Hence, penalizing the term KL(qϕ(z|x)||p(z)) in the ELBO with β > 1 indeed pushes the model
to learn a factorial aggregated posterior qavg(z) that is driven to resemble the prior but also adds a
higher weight on the mutual information term Iq(x,z)[x, z] as well. The latter induces a reduction
of the amount of information about the observations contained in the corresponding latent codes
(Kim and Mnih, 2018), which leads to poorer reconstructions (Makhzani and Frey, 2017). Instead,
more recent approaches proposed to explicitly penalize a term that forces independence over the
aggregated posterior distribution (Kim and Mnih, 2018; Chen et al., 2018b). This term is known as
the Total Correlation and measures the dependence between random variables (Watanabe, 1960).
Other approaches also considered a semi-supervised setting where the generative factor are known
(Kingma et al., 2014; Paige et al., 2017; Bouchacourt et al., 2018).

0.7.2 Exploring Latent Space Modeling

A particularly powerful aspect of the VAE framework relies in the flexibility the latent space Z
offers. Modeled as a simple Euclidean space in its original version, several works have explored and
proposed diverse modeling of the latent space.

Beyond Euclidean Latent Spaces

In particular, the geometry of the latent space learned by the model is something that has driven
some interest in the community in recent years. For instance, (Arvanitidis et al., 2018) argued that
the latent space learned by a VAE is naturally endowed with a Riemannian geometry where the
Riemannian metric is a function of the Jacobian of the decoder. Indeed, assuming thatDθ : Z → X
is a parametric function that outputs the parameters of the decoding distribution pθ(x|z), one may
consider a latent code z ∈ Z and an infinitesimal δz and write the following first order Taylor
expansion:

Dθ(z + δz)−Dθ(z) ≈ JDθ(z)δz i.e. ∥Dθ(z + δz)−Dθ(z)∥2 ≈ (δz)⊤JDθ(z)
⊤JDθ(z)δz ,

24

LIST OF TABLES

where JDθ(z) is the Jacobian matrix of Dθ evaluated at z. Using this equation, the authors argued
that if we assume that the observations live in a Euclidean space, typically X = RD endowed with
the Euclidean distance, the decoder mapping induces a natural local distance in the latent space that
is scaled by its Jacobian. In other words, the latent space is no longer seen as a Euclidean space
but as the Riemannian manifoldM = (Rd,G) where G(z) = JDθ(z)

⊤JDθ(z) is the Riemannian
metric. This approach paved the way for considering a more flexible geometry of the latent space
modeled as a Riemannian manifold where the Riemannian metric is given by the Jacobian of the
generator function (Arvanitidis et al., 2018; Chen et al., 2018a; Shao et al., 2018). This metric was,
for instance, used directly within the prior modeled as a Riemannian Brownian motion (Kalatzis
et al., 2020). Other approaches also proposed to learn the metric directly from the data during train-
ing using geometry-aware normalizing flows (Chadebec et al., 2020) or learn the latent structure of
the data using transport operators (Connor et al., 2021). With another viewpoint, some works also
proposed to impose a specific structure on the latent space defined a-priori. For instance, model-
ing of the latent space as a torus (Falorsi et al., 2018), a hypersphere (Davidson et al., 2018) or a
Poincaré disk (Mathieu et al., 2019a) were proposed. These very nice ideas allow learning a latent
representation of the input data that is quite different from the one learned by the classic VAE. As an
illustration, we show in Fig. 2, three different 2-dimensional latent spaces leaned either by a vanilla
VAE (N -VAE), a hyper-spherical VAE (S-VAE) or a Poincaré Disk VAE (P-VAE). In Example 7 is
described more precisely the framework of the hyper-spherical VAE as an example. Another very
interesting approach that proved very well suited for images consists in considering a discretized
latent space (Van Den Oord et al., 2017). Therefore, in such a case, the latent space is defined as a
RK×D vector space of K different D dimensional embedding vectors E = {e1, . . . , eK}, referred to
as the codebook, which is learned and updated at each iteration. Given an embedding size d and an
input x, the output of the encoder ze(x) is of size Rd×D. Each of its d elements is then assigned to
the closest embedding vector resulting in an embedded encoding zq(x) ∈ Ed such that

(
zq(x)

)
j
= el

where l = argmin1≤l≤d||(ze(x))j − el||2 for j ∈ [1, d]. Since the argmin operation is not differen-
tiable, the learning of the embeddings and regularization of the latent space is done by introducing
the stop-gradient operator sg in the training objective:

LVQ-VAE(x) := log p(x|zq(x)) + α||sg[ze(x)]− e||22 + β||ze(x)− sg[e]||22 ,

where α and β are hyper-parameters scaling each term.

Example 7 A nice example of a different modeling of the latent space with a geometry different from
the Euclidean one is the hyper-spherical VAE proposed in (Davidson et al., 2018). The authors indeed
noted that the conventional Gaussian prior pulls latent representation of the data towards the origin,
which in some cases is not desirable. They propose to replace the conventional Euclidean latent space
with a hyper-spherical latent space to allow data or clusters of data in the latent space to spread evenly.

The uniform distribution over the hypersphere is used as a prior p whereas the Von-Mises-Fisher
distribution is used as an approximate prior qϕ(z|x) leading to the modified ELBO

LS-VAE(x) := Ez∼qϕ(z|x)
[
log pθ(x|z)

]
−KL [vMF(z|x)||U(S)] ,

where vMF(z|x) is the parametrized posterior Von-Mises-Fisher distribution generated by the encoder
and U(S) the prior uniform distribution on the latent hyper-sphere.

25

Chapter 0

4 2 0 2
4

3

2

1

0

1

2

3

4

0
1
2
3
4
5
6
7
8
9

N -VAE

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

0
1
2
3
4
5
6
7
8
9

P-VAE

1.0
0.5

0.0
0.5

1.0 1.0
0.5

0.0
0.5

1.0
1.0
0.5

0.0
0.5
1.0

0

1

2

3

4

5

6

7

8

9

S-VAE

Figure 2: 2-dimensional latent spaces learned by a vanilla VAE (N -VAE), Poincaré VAE (P-VAE)
and hyper-spherical VAE (S-VAE) on MNIST. The colors represent the digits. Plots are made using
(Chadebec et al., 2022c).

Some Elements of Riemannian Geometry

A d-dimensional manifoldM is a manifold which is locally homeomorphic to a d-dimensional Eu-
clidean space. If the manifoldM is further differentiable, it possesses a tangent space Tz at any
z ∈M composed of the tangent vectors of the curves passing by z. IfM is equipped with a smooth
inner product g : z → ⟨·|·⟩z defined on its tangent space Tz for any z ∈ M thenM is called a Rie-
mannian manifold and g is the associated Riemannian metric. A chart (or coordinate system) (U, ϕ)
is a homeomorphic mapping from an open set U of the manifold to an open set V of a Euclidean
space. Given z ∈ U , a chart ϕ : (z1, . . . , zd) induces a basis

(
∂
∂z1
, . . . , ∂

∂zd

)
z
on the tangent space Tz .

Hence, the metric of a Riemannian manifold can be locally represented in the chart ϕ as a positive
definite matrix.

G(z) = (gi,j)z,0≤i,j≤d =
(〈 ∂

∂zi
| ∂
∂zj

〉
z

)
0≤i,j≤d

,

for each point z of the manifold. That is for v, w ∈ TzM and z ∈ M, the inner product writes
⟨u|w⟩z = u⊤G(z)w. Assuming that the manifold is also connected, for any z1, z2 ∈ M, two points
of the manifold, we can consider a curve γ traveling inM and parametrized by t ∈ [a, b] such that
γ(a) = z1 and γ(b) = z2. Then, the length of γ is given by

L(γ) =

b∫
a

∥γ̇(t)∥γ(t)dt =
b∫

a

√
⟨γ̇(t)|γ̇(t)⟩γ(t)dt

Curves γ that minimize L and are parameterized proportionally to the arc length are called geodesic
curves. A distance distG on the manifoldM can then be derived and writes

distG(z1, z2) = inf
γ
L(γ) s.t. γ(a) = z1, γ(b) = z2

The manifoldM is said to be geodesically complete if all geodesic curves can be extended to R. For
any p ∈ M, the exponential map at p, Expp, maps a vector v of the tangent space TpM to a point
of the manifold p̃ ∈ M such that the geodesic starting at p with initial velocity v reaches p̃ at time
1. In particular, if the manifold is geodesically complete, then Expp is defined on the entire tangent
space TpM.

26

LIST OF TABLES

Hypershere Poincaré disk

Figure 3: Geodesic and exponential map on the Hypershere and Poincaré disk.

Remark 2 A d-dimensional Euclidean space is a specific d-dimensional Riemannian manifold. In such
a case, the Riemannian metric G indeed reduces to Id, and the distance becomes the classic Euclidean
one. Geodesic curves are straight lines, and we have for any z ∈ Rd, Tz = Rd

Example 8 A simple extension of the Euclidean framework consists in assuming that the metric is
given by a constant positive definite matrixΣ different from Id. In such a case, the induced Riemannian
distance is the well-known Mahalanobis distance distΣ(z1, z2) =

√
(z2 − z1)⊤Σ(z2 − z1) .

Example 9 The Poincaré disk is a Riemannian manifold endowed with the Riemannian metric given
by G(z) = 2

1−∥z∥2 Id. Fig. 3 shows the geodesic curves and Exponential mapping resulting from such a
geometry.

Given the Riemannian manifoldM endowed with the Riemannian metric G and a chart z, an
infinitesimal volume element may also be defined on each tangent space Tz of the manifoldM as
follows

dMz =
√

detG(z)dz ,

where dz is the Lebesgue measure. This defines a canonical measure on the manifold and allows
extending the notion of probability distributions to Riemannian manifolds. In particular, such a
property allows referring to random variables with a density defined with respect to the measure
on the manifold. We recall such definition from (Pennec, 2006) below

Definition 1 Let B(M) be the Borel σ-algebra ofM. The random point z has a probability density
function ρz if:

∀Z ∈ B(M), P(z ∈ Z) =
∫
Z

ρ(z)dM(z) and
∫
M

ρ(z)dM(z) = 1

27

Chapter 0

Finally, given a chart ϕ defined on the whole manifoldM and a random point z onM, the point
p = ϕ(z) is a random point whose density ρ′p may be written with respect to the Lebesgue measure
as such (Pennec, 2006):

ρ′p(p) = ρz(ϕ
−1(p))

√
det g(ϕ−1(p))

0.7.3 Improving the Generative Capability of the Model

Although the aforementioned enhancements proposed in the literature sometimes resulted in a
model able to generate more realistic samples, this was not the main targeted goal. Instead, another
branch of the literature on Variational Autoencoders specifically focused on improving the genera-
tive capabilities of the model. It was indeed often noted that VAE models tend to produce blurry and
fuzzy samples when compared to other generative models such as Generative Adversarial Networks
(Goodfellow et al., 2014). A natural way to tackle this issue consists in amending the distribution
used for sampling i.e. the prior p(z). We recall that assuming that a VAE model is trained properly,
one may easily generate new samples by simply sampling latent codes using the prior distribution
and feeding those samples directly to the decoder. Nonetheless, as explained in Sec. 0.6.3, there may
exist a mismatch between the prior distribution set a-priori and the actual distribution of the latent
codes given by the aggregated posterior inducing distribution mismatch (Connor et al., 2021). More-
over, the chosen prior may be too simplistic and cause over-regularization of the latent space leading
to a degraded data generation (Dai and Wipf, 2018). Hence, some works seeking to find more ex-
pressive priors proposed to rely on hierarchical latent variables models (Sønderby et al., 2016; Burda
et al., 2016; Klushyn et al., 2019; Maaløe et al., 2019; Vahdat and Kautz, 2020; Child, 2021). Another
idea that has recently been proposed and also resulted in major improvements in image generation
consists in learning the prior using for instance flows (Chen et al., 2016b), autoregressive models
(Razavi et al., 2020), energy-based models (Pang et al., 2020; Aneja et al., 2020) or diffusion models
(Vahdat et al., 2021). Depending on the approach, the prior distribution can be learned either during
training or post-training.

Example 10 For instance, (Ghosh et al., 2020) proposed to use ex-post density estimation consisting in
fitting more expressive distributions such as mixtures of Gaussians or Normalizing flows in the latent
space post-training. The density estimator is directly fitted on the latent codes of the training dataset
and then used to produce samples in the latent space. Fig. 4 shows the resulting latent space sampling
when using the prior distribution, fitting a 10-component mixture of Gaussians or using flows for a 2-
dimensional latent space learned by a VAE trained onMNIST (LeCun, 1998). This example, in particular,
shows that using a more expressive distribution after training can allow for a better prospecting of the
latent space and potentially avoid un-informative locations. This paves the way for considering other
generation schemes.

From another perspective, papers proposed to amend the first term of the ELBO in Eq. (7) (i.e. the
reconstruction term). On the ground that the L2 distance deriving from the decoding distribution
(see Eq. (8)) often set as a Gaussian to model continuous input data (e.g. images) may be unadapted
for structured data, some papers proposed to amend the distance between the input and the re-
constructed samples coming from the decoder. For instance, (Snell et al., 2017) proposed to use a

28

LIST OF TABLES

4 2 0 2

4

2

0

2

4

0

1

2

3

4

5

6

7

8

9

N -VAE latent space

4 2 0 2

4

2

0

2

4 (0, Id)

N (0, Id)

4 2 0 2

4

2

0

2

4 GMM(10)

10-component GMM

4 2 0 2 4

4

2

0

2

4 Flows

MAF

Figure 4: From left to right: 2-dimensional latent spaces learned by a vanilla VAE (N -VAE), a latent
space sampling using the prior N (0, Id), using a 10-component mixture of Gaussian distributions
or using Masked Autoregressive Flows (MAF) (Papamakarios et al., 2017). The colors represent the
digits. Plots are made using (Chadebec et al., 2022c)

.

data-dependent deterministic reconstruction cost ∆(x,Dθ(z)) where Dθ : maps the latent codes
back to the data space. The modified training objective is thus defined as

LEL-VAE(x) = ∆(x, x̂)− β ·KL (qϕ(z|x)||p(z)) ,

with β ≤ 1. In their paper, they proposed to use a multi-scale variant of the single-scale SSIM (Wang
et al., 2004): the Multi-Scale Structural Similarity Metric (MS-SSIM) (Wang et al., 2003) for images.
With the same objective, (Larsen et al., 2016) introduced the VAE-GAN model that combines the
VAE framework while trying to benefit from the ability of GAN models to generate sharper images.
They indeed used a GAN-based approach by training a discriminator at the same time as the VAE.
The role of the discriminator is three-fold. Similarly to the GAN framework (Goodfellow et al.,
2014), it first aims at distinguishing real data from the data generated using the prior distribution in
the latent space and the decoder of the VAE. Second, it is also used to distinguish the real samples
from the reconstructed ones. Finally, noting that intermediate layers of a discriminative network
can act as data-specific features, the authors proposed to replace the reconstruction loss in the ELBO
with a Gaussian log-likelihood between outputs of intermediate layers of the discriminator network.
With another approach, (Tolstikhin et al., 2018) introduced a variant of the VAE framework where
the problem is formulated using an Optimal Transport (OT) perspective. They indeed introduced
the Wasserstein Autoencoder (WAE) models aiming at minimizing any optimal transport cost c
between the distribution of the true data and the data generated using the prior distribution. Other
approaches also proposed to enrich the decoder network with autoregressive models (Chen et al.,
2016b; Gulrajani et al.) such as PixelCNN (Van den Oord et al., 2016; Van Den Oord et al., 2016).

0.8 VAE in Practice

Variational Autoencoders belong to a very versatile class of models and have been used in many
different application fields and for various tasks. In this section, we detail some of these applications
of the VAE framework (or variants). This section does not aim to be an exhaustive list of all the
possible application cases of the VAE but rather aims to provide a flavour of the versatility of the

29

Chapter 0

model.

Due to the availability of large and clean databases, image synthesis has been one of the most
widely popular application fields of generative modeling. In particular, VAEs have demonstrated
to be particularly well suited for image generation (Huang et al., 2018; Van Den Oord et al., 2017;
Razavi et al., 2020; Vahdat and Kautz, 2020; Child, 2021). Moreover, the intrinsic structure of their
latent space has proved very powerful to perform image edition. This can, for instance, be done by
encoding an image and, starting from the resulting latent code, moving along a specific dimension of
the latent space and finally decoding the resulting latent embedding (White, 2016; Berthelot* et al.,
2019). Super resolution of images is also a downstream task that has been explored with Variational
Autoencoders (Snell et al., 2017). As an example, (Liu et al., 2021b) proposed a VAE framework where
themodel can be conditioned on any given image that serves as reference to perform super-resolution
on another image. The autoencoding structure of the VAEs also makes them a very good candidate
to perform information compression or feature extraction. They revealed particularly useful and
powerful when combined with diffusion models in recent works (Vahdat et al., 2021; Rombach et al.,
2022). For instance, the Stable Diffusion model (Rombach et al., 2022) that demonstrated very im-
pressive results for text-to-image data generation relies on a Vector-Quantized VAE (VQ-VAE) model
to learn a lower dimensional representation of the images.

Beyond images, VAE models have been applied to different data structures such as Graphs (Kipf
and Welling, 2016; Zhang et al., 2019), where they can be used to model chemical structures. For
example, one application is to be able to generate molecules with given properties (Liu et al., 2018a;
Lim et al., 2018a; Griffiths and Hernández-Lobato, 2020). The generative capabilities of the VAE
model also revealed useful to perform data augmentation (Shorten and Khoshgoftaar, 2019). The
main idea is to train a generative model on the training data available and use it to increase the size
of the training set by generating new labelled synthetic data. In particular, (Hsu et al., 2017) proposed
to rely on a Variational Autoencoder to augment the number of labeled training data in the context
of speech recognition while (Chadebec et al., 2022b) proposed a VAE that allowed increasing the
performances of a state-of-the-art classifier trained for the detection of Alzheimer’s disease on 3D
MRIs. A huge branch of the literature has also focused on applying VAEs to sequential data (Johnson
et al., 2016; Fraccaro et al., 2016; Karl et al., 2017). Several approaches were indeed proposed in the
context of Natural Language Processing (NLP) (Bowman et al., 2016; Miao et al., 2016; Yang et al.,
2017; Serban et al., 2017; Zhao et al., 2017), video generation (Gur et al., 2020; Zhu et al., 2020) or
longitudinal data (Sauty and Durrleman, 2022) and demonstrated promising results. Some models
were also specifically designed for time-series (Casale et al., 2018; Fortuin et al., 2019) to perform
either missing data imputation (Fortuin et al., 2020), anomaly detection (Niu et al., 2020; Lin et al.,
2020) or prediction (Jin et al., 2022).

VAE models can also be used for tasks that are different from generation. For instance, (Dilok-
thanakul et al., 2017) and (Jiang et al., 2017) proposed to replace the standard Gaussian prior with a
Gaussian mixture to perform unsupervised clustering directly in the latent space of the VAE. Semi
supervised learning is also a task for which the VAE framework seemed well designed. First pro-
posed in (Kingma et al., 2014), VAEs were then used for semi-supervised classification tasks and
showed remarkable performances (Rezende et al., 2016; Pu et al., 2016; Xu et al., 2017; Ehsan Ab-
basnejad et al., 2017). Some works have also proposed and designed models inspired by the VAE to
perform collaborative filtering (Liang et al., 2018; Sachdeva et al., 2019; Yu et al., 2019).

Some extensions of the framework presented in this introduction were also proposed in the liter-

30

LIST OF TABLES

ature to include, for instance, conditioning variables (Sohn et al., 2015). This proposal also conducted
to the development of models able to handle more than one modality called multi-modal VAEs (Shi
et al., 2019; Wu and Goodman, 2018; Sutter et al., 2021; Suzuki et al., 2016; Vedantam et al., 2018)

0.9 Contributions

0.9.1 List of Publications

Below are listed the contributions of the PhD

• Variational Inference for Longitudinal Data Using Normalizing Flows

Chadebec, C. and Allassonnière, S., Under review

• Improving Multimodal Joint Variational Autoencoders through Normalizing Flows

and Correlation Analysis

Senellart, A., Chadebec, C., Allassonnière, S., Under review

• A Geometric Perspective on Variational Autoencoders

Chadebec, C. and Allassonnière, S., Proceedings of the Neural Information Processing Systems,
2022

• Pythae: Unifying Generative Autoencoders in Python, A Benchmarking Use Case

Chadebec, C., Vincent, L. J. and Allassonnière, S., Proceedings of the Neural Information Pro-
cessing Systems Track on Datasets and Benchmark. 2022.

• DataAugmentation inHighDimensional Low Sample Size SettingUsing aGeometry-

Based Variational Autoencoder

Chadebec, C., Thibeau-Sutre, E., Burgos, N. and Allassonnière, S., IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2022

• An Image Feature Mapping Model for Continuous Longitudinal Data Completion

and Generation of Synthetic Patient Trajectories

Chadebec, C., Huijben, E. M., Pluim, J. P., Allassonnière, S. and J.M van Eijnatten, M. A., Deep
Generative Models: MICCAI 2022 Workshop

• Data Augmentation with Variational Autoencoders and Manifold Sampling

Chadebec, C. andAllassonnière, S., DeepGenerativeModels, andDataAugmentation, Labelling,
and Imperfections: MICCAI 2021 Workshop

0.9.2 Summary of the Main Contributions

In this section, we summarize the main contributions of the PhD thesis.

31

Chapter 0

DataAugmentation inHighDimensional LowSample Size SettingUsing aGeometry-Based

Variational Autoencoder This paper extends the Hamiltonian Variational AutoEncoder frame-
work proposed in (Salimans et al., 2015; Caterini et al., 2018) to latent spaces seen as Riemannian
manifolds. It also proposes a new way to generate synthetic data from the trained model using
the geometry of the latent space. Finally, the model is validated and used for data augmentation
in the challenging context of High Dimensional Low Sample Size data. One of the main ideas of
the proposed model is to perform MCMC sampling steps on top of the variational approximation
as described in Example 6 using transition operators inspired by Hamiltonian dynamics but also
benefiting from the assumed Riemannian structure of the latent space. Introducing the momen-
tum variables v ∈ Rd and considering an augmented variational distribution on the extended space
(z, v) ∈ Z × Rd, we derive an estimator of the marginal likelihood pθ(x) as follows:

p̂θ(x) =
pθ(x, zK , vK)

qϕ(zK , vK |x)
=

pθ(x|zK)p(vK |zK)p(zK)
qϕ(z0|x)p(v0|z0)

∏K
k=1 | detJgk |−1

,

where Jgk is the Jacobian of the k-th step gk of the generalized leapfrog integrator (Leimkuhler and
Reich, 2004; Girolami et al., 2009; Girolami and Calderhead, 2011), p(v|z) = N (0,G(z)) is a position-
specific proposal distribution for the momentums whereG(z) is the value of the Riemannian metric
at z. Since the Riemannian metric is unknown, we propose to parametrize it and learn it directly
from the data using neural networks. Then, we propose a geometry-aware sampling scheme exploit-
ing the geometry of the latent space learned by the proposed model and consisting in sampling close
to the geodesic paths. This sampling mechanism demonstrated promising generative performances,
in particular in the context of small sample size where it outperforms the prior-based generation and
other post-training density estimationmethods. Finally, the method is used to perform data augmen-
tation for classification tasks and is validated across a wide experimental study where robustness
to data and classifiers is tested. In particular, the method was able to increase the performances
achieved by a state-of-the-art classifier trained to detect Alzheimer’s disease on 3D MRIs.

Data Augmentation with Variational Autoencoders andManifold Sampling This paper in-
troduces a new way to sample from unknown geodesically-complete Riemannian manifolds. The
main idea is to create a random walk like algorithm that discovers the manifold along geodesic
paths. Starting from a point z belonging to the Riemannian manifoldM, a proposal is obtained by
first sampling a vector v ∼ N (0,Σ) in the tangent space Tz at z and then applying the Riemannian
exponential map to shoot the vector back onto the manifold. This amounts to sampling from the
wrapped normal distribution defined on the Riemannian manifoldM. The proposal is finally ac-
cepted using some probability ratio. The method is then applied to the Riemannian VAE introduced
in the previous paper to perform data augmentation. Fig. 5 illustrates how the sampling algorithm
works.

AGeometric Perspective on Variational Autoencoders This paper introduces a new perspec-
tive on the Variational Autoencoder framework by taking a fully geometric viewpoint. In a nut-
shell, we start from the observation that a multivariate Gaussian distribution N (µ,Σ) is only a
specific case of the Riemannian Gaussian distribution N riem(z|µ, σ) = 1

C
exp

(
−distG(z,µ)2

2σ

)
de-

fined on the Riemannian manifold M = (Rd,G) where σ = 1 and the Riemannian metric G
is the constant metric G(z) = Σ−1. Hence, we propose to interpret the variational distribution

32

LIST OF TABLES

Step 1 Step 2 Step 3 Step 4

Figure 5: 4 steps of the proposed Riemannian RandomWalk to discover a 2-dimensional latent space
learned by a RHVAE.

qϕ(z|x) = N (µϕ(x),Σϕ(x)) no longer as a multivariate Gaussian but as a Riemannian Gaussian dis-
tribution. For any training data point xi, Σϕ(xi) is understood as an approximation of the unknown
Riemannian metric G evaluated at the embedding point µϕ(xi) and defining a Riemannian latent
space seen as the Riemannian manifoldM = (Rd,G). During training, this metric is assumed
locally constant close to the embedding point µϕ(xi) (i.e. G(z) ≈ Σ(xi)

−1 for z close to µϕ(xi)).
Hence, in such a case, sampling from the Riemannian distribution qϕ(z|x) can be approximated by
sampling from the multivariate Gaussian distribution N (µϕ(x),Σϕ(x)) as done for the training of
the vanilla VAE. Finally, at the end of the training, these approximations (Σ−1

i)i of the Riemannian
metric G are put together to build a smooth continuous Riemannian metric on the whole latent
space of the trained VAE.

G(z) =
N∑
i=1

Σ−1(xi) · ωi(z) + λ · e−τ∥z∥22 · Id ,

ωi(z) = exp

(
− distΣ−1(xi)(z, µ(xi))

2

ρ2

)
,

where distΣ−1(xi)(z, µ(xi))
2 = (z−µ(xi))⊤Σ−1(xi)(z−µ(xi)) is the Riemannian distance between

z and µ(xi)with respect to the locally constant metricG(µ(xi)) = Σ−1(xi). We also propose a new
sampling mechanism that consists in sampling from the intrinsic uniform distribution defined on
the learned latent spaceM = (Rd,G) as follows:

URiem(z) =
√
detG(z)∫

Rd
√

detG(z)dz
.

We empirically show that such a sampling scheme allows to enhance the generative capability of the
vanilla VAE (the training process of which remains unchanged) that can outperform more advanced
and potentially more costly methods proposed afterwards.

Pythae: Unifying Generative Autoencoders in Python, A Benchmarking Use Case This
paper introduces Pythae, a versatile open-source Python library providing both a unified implemen-
tation and a dedicated framework allowing straightforward, reproducible and reliable use of genera-
tive autoencoder models. At the time I am writing this thesis, this library implements and unifies 25

33

Chapter 0

implementations of (variational) autoencoder models corresponding to variants of the vanilla VAE
framework. The main purpose of this Python library is to lower the entry barrier to using these
models while ensuring they are flexible enough to adapt to various use cases and data types (i.e.
not only images). Most of the provided implementations were able to reproduce the main results
in the original papers making the library reliable. Moreover, this library is unit-tested and com-
plies to open-source standards. It is available under the Apache2.0 license and can be installed from
pypi or conda. At the time this thesis is made available, the library has raised some interest in the
community with 1.3k+ stars on Github, 10k+ downloads, 8 external contributors and was also pre-
sented at the PyTorch 2022 conference in New Orleans. In addition to introducing Pythae, this paper
also proposes a benchmark use-case where 19 implementations available in Pythae at the time are
compared in the same settings and for 5 different tasks such as image reconstruction, generation,
classification, clustering and interpolation. This benchmark aimed at providing potentially inter-
esting insights on the model that are part of the comparison while showing the usefulness of the
library for benchmarking applications. The code can be found at the following link.

An Image FeatureMappingModel for Continuous Longitudinal DataCompletion andGen-

eration of Synthetic Patient Trajectories This paper proposes a generative model for longitu-
dinal image data acting directly in the latent space of a trained VAE. It indeed starts with the obser-
vation that thanks to the intrinsic structure of their latent space, Variational Autoencoder models
naturally account for a trajectory (which is not a straight line) in the latent space when trained with
such data. Hence, we propose to learn a function mapping these trajectories into a linear trajectory
in a Euclidean space defined with velocity, delay, and spatial parameters that are learned directly
from the data in a similar spirit as (Louis et al., 2019).

li(t) = exp(ηi)(t− τi) · e1 +
d∑

k=2

λki · ek ,

where ηi is a velocity parameter, τi is a delay, and λi = (λki)2≤k≤d are spatial parameters. Contrary
to (Louis et al., 2019), we adopt a fully variational approach to make the model generative in a
similar fashion as (Kingma and Welling, 2014). Given P input sequences (xi)i∈[1,P] having each ti
observations such that xi = (x0i , . . . , x

ti
i), a first Variational Autoencoder is trained on all the data

without taking into account their temporal structure. This step allows learning a lower dimensional
representation of the input data. Then, a secondmodel is trained to map the embeddings of the input
trajectories (xi)i∈[1,P] onto a linear trajectory amounting to estimate the parameters (ηi, τi, λi).

Variational Inference for Longitudinal Data Using Normalizing Flows This paper proposes
a new latent variable generative model and framework able to handle high-dimensional longitudinal
data. Given an entity i ∈ {1, . . . , P} and a sequence of observations (xi0, . . . , xiti), we assume that
for each xij where j ∈ {0, . . . , ti}, there exists an associated latent variable zij ∈ Z = Rd involved
in the generative process of the observation xij such that xij ∼ pθ(x

i
j|zij). Since the observations

within a sequence are no longer independent (longitudinal setting), the VAE framework cannot be
applied in such a case since the likelihood of Eq. (4) does not factorize across observations anymore.
Hence, in this paper, we propose to model the time dependency between the observations within a
sequence using normalizing flows fj over the latent variables.

zi0 ∼ p(zi0), z
i
1 = f1(z

i
0), . . . , z

i
ti
= fti(z

i
ti−1

) , (14)

34

https://github.com/clementchadebec/benchmark_VAE

LIST OF TABLES

Inference model Generative model

Figure 6: Proposed inference and generative models.

where p is a simple prior distribution over zi0 (e.g. standard Gaussian), and fj are normalizing flows
for any j ∈ {1, . . . , ti}. Since the fj are chosen as invertible mappings, one may see that we also
have a tractable prior for zij using Eq. (12). Assuming that the observations within a sequence are
independent when conditioned with respect to the associated latent variables and noting that, given
zij , we can retrieve the complete sequence of latent variables (zi0, . . . , ziti) using Eq. (14), one may
write the joint likelihood as follows:

pθ(x
i
0, · · · , xiti) =

∫
Z
pθ(x

i
0, · · · , xiti |zij)p(zij)dzij =

∫
Z

ti∏
l=0

pθ(x
i
l|zil)p(zij)dzij .

Since this integral is most of the time intractable, we propose to rely on amortized variational infer-
ence as in (Kingma and Welling, 2014) and introduce a parametric distribution qϕ(zij|xij) that allows
obtaining an unbiased estimate of the joint likelihood and so derive an ELBO as shown in Eq. (11).

log pθ(x
i
0, · · · , xiti) ≥ Eqϕ

[
log

ti∏
l=0

pθ(x
i
l|zil)

]
−KL(qϕ(z

i
j|xij)|p(zij)) .

The training is performed by randomly picking a j in [0, ti], sampling zij ∼ qϕ(z
i
j|xij), recovering

a reconstructed sequence (x̂i0, . . . , x̂iti) using Eq. (14) and optimizing the ELBO. Once the model is
trained, onemay generate fully synthetic sequences by first z0 ∼ p(z0) and apply the flows according
to Eq. (14). Fig. 6 shows the graphical inference and generative models for the proposed approach.
We also discuss in the paper how to handle missing data at training and inference time and how to
generate sequences conditioned on 1 or several observation(s) in an input sequence.

35

Chapter 0

36

Chapter 1

Toward a Geometry-Aware VAE

In this chapter, we propose a new method to perform data augmentation in a reliable way in the High
Dimensional Low Sample Size (HDLSS) setting using a geometry-based variational autoencoder (VAE).
Our approach combines the proposal of 1) a new VAE model, the latent space of which is modeled as
a Riemannian manifold and which combines both Riemannian metric learning and normalizing flows
and 2) a new generation scheme which produces more meaningful samples especially in the context of
small data sets. Themethod is tested through a wide experimental study where its robustness to data sets,
classifiers and training samples size is stressed. It is also validated on a medical imaging classification
task on the challenging ADNI database where a small number of 3D brain magnetic resonance images
(MRIs) are considered and augmented using the proposed VAE framework. In each case, the proposed
method allows for a significant and reliable gain in the classification metrics. For instance, balanced
accuracy jumps from 66.3% to 74.3% for a state-of-the-art convolutional neural network classifier trained
with 50MRIs of cognitively normal (CN) and 50 Alzheimer disease (AD) patients and from 77.7% to 86.3%
when trained with 243 CN and 210 AD while improving greatly sensitivity and specificity metrics.

This chapter was published in IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI). See (Chadebec et al., 2022b).

37

Chapter 1

1.1 Introduction . 39
1.2 Variational Autoencoder . 40

1.2.1 Model Setting . 41
1.2.2 Improving the Model: Literature Review 41

1.3 The Proposed Method . 43
1.3.1 Some Elements on Riemannian Geometry 43
1.3.2 A Geometry-Aware VAE . 44
1.3.3 Generation Comparison . 51

1.4 Data Augmentation: Evaluation and Robustness 54
1.4.1 Setting . 54
1.4.2 Toy Data Sets . 54

1.5 Validation on Medical Imaging . 59
1.5.1 Data Augmentation Literature for AD vs CN Task 59
1.5.2 Materials . 60
1.5.3 Preprocessing of T1-Weighted MRI 61
1.5.4 Evaluation Procedure . 62
1.5.5 CNN Classifiers . 62
1.5.6 Experimental Protocol . 63
1.5.7 Results . 64

1.6 Discussion . 65
1.7 Conclusion . 68
1.8 Appendices . 70

1.8.1 Riemannian Geometry . 70
1.8.2 On the Generation Process . 70
1.8.3 Detailed Experimental Setting . 72
1.8.4 A Few More Sampling Comparisons (Sec. 1.3.3) 74
1.8.5 Additional Results (Sec. 1.4.2) . 75
1.8.6 A few More Sample Generation on ADNI 75
1.8.7 The Intruders: Answers to Fig. 1.8 75

38

Toward a Geometry-Aware VAE

1.1 Introduction

Even though always larger data sets are now available, the lack of labelled data remains a tremen-
dous issue in many fields of application. Among others, a good example is healthcare where prac-
titioners have to deal most of the time with (very) low sample sizes (think of small patient cohorts)
along with very high dimensional data (think of neuroimaging data that are 3D volumes with mil-
lions of voxels). Unfortunately, this leads to a very poor representation of a given population and
makes classical statistical analyses unreliable (Button et al., 2013; Turner et al., 2018). Meanwhile,
the remarkable performance of algorithms heavily relying on the deep learning framework (Good-
fellow et al., 2016) has made them extremely attractive and very popular. However, such results
are strongly conditioned by the number of training samples since such models usually need to be
trained on huge data sets to prevent over-fitting or to give statistically meaningful results (Shorten
and Khoshgoftaar, 2019).

A way to address such issues is to perform data augmentation (DA) (Tanner and Wong, 1987).
In a nutshell, DA is the art of increasing the size of a given data set by creating synthetic labeled
data. For instance, the easiest way to do this on images is to apply simple transformations such as
the addition of Gaussian noise, cropping or padding, and assign the label of the initial image to the
created ones. While such augmentation techniques have revealed very useful, they remain strongly
data dependent and limited. Some transformations may indeed be uninformative or even induce
bias. For instance, think of a digit representing a 6 which gives a 9 when rotated. While assessing
the relevance of augmented data may be quite straightforward for simple data sets, it reveals very
challenging for complex data and may require the intervention of an expert assessing the degree of
relevance of the proposed transformations. In addition to the lack of data, imbalanced data sets also
severely limit generalizability since they tend to bias the algorithm toward the most represented
classes. Oversampling is a method that aims at balancing the number of samples per class by up-
sampling theminority classes. The Synthetic Minority Over-sampling TEchnique (SMOTE) was first
introduced in (Chawla et al., 2002) and consists in interpolating data points belonging to theminority
classes in their feature space. This approach was further extended in other works where the authors
proposed to over-sample close to the decision boundary using either the k-Nearest Neighbor (k-NN)
algorithm (Han et al., 2005) or a support vector machine (SVM) (Nguyen et al., 2011) and so insist on
samples that are potentially misclassified. Other over-sampling methods aiming at increasing the
number of samples from the minority classes and taking into account their difficulty to be learned
were also proposed (Haibo He et al., 2008; Barua et al., 2012). However, these methods hardly scale
to high-dimensional data (Blagus and Lusa, 2013; Fernández et al., 2018).

The recent rise in performance of generative models such as generative adversarial networks
(GAN) (Goodfellow et al., 2014) or variational autoencoders (VAE) (Kingma and Welling, 2014) has
made them very attractive models to perform DA. GANs have already seen a wide use in many fields
of application (Zhu et al., 2018a; Mariani et al., 2018; Antoniou et al., 2018-03-21; Lim et al., 2018b;
Zhu et al., 2018b), including medicine (Yi et al., 2019). For instance, GANs were used on magnetic
resonance images (MRIs) (Shin et al., 2018; Calimeri et al., 2017), computed tomography (CT) (Frid-
Adar et al., 2018; Sandfort et al., 2019), X-ray (Madani et al., 2018; Salehinejad et al., 2018; Waheed
et al., 2020), positron emission tomography (PET) (Bi et al., 2017), mass spectroscopy data (Liu et al.,
2019), dermoscopy (Baur et al., 2018) or mammography (Korkinof et al., 2018; Wu et al., 2018) and
demonstrated promising results. Nonetheless, most of these studies involved either a quite large

39

Chapter 1

training set (above 1000 training samples) or quite small dimensional data, whereas in everyday
medical applications it remains very challenging to gather such large cohorts of labeled patients.
As a consequence, as of today, the case of high dimensional data combined with a very low sample
size remains poorly explored. When compared to GANs, VAEs have only seen a very marginal
interest to perform DA and were mostly used for speech applications (Hsu et al., 2017; Nishizaki,
2017; Wu et al., 2019). Some attempts to use such generative models on medical data either for
classification (Zhuang et al., 2019; Liu et al., 2018b) or segmentation tasks (Painchaud et al., 2019;
Selvan et al., 2020; Myronenko, 2018) can nonetheless be noted. The main limitation to a wider use
of these models is that they most of the time produce blurry and fuzzy samples. This undesirable
effect is even more emphasized when they are trained with a small number of samples which makes
them very hard to use in practice to perform DA in the high dimensional (very) low sample size
(HDLSS) setting.

In this chapter, we argue that VAEs can actually be used for data augmentation in a reliable way
even in the context of HDLSS data, provided that we bring some modeling of the latent space and
amend the way we generate the data. Hence, in this chapter we propose the following contributions:

• We propose a new geometry-aware VAE model, the latent space of which is seen as a Rieman-
nian manifold and combining Riemannian metric learning and normalizing flows.

• We introduce a new non-prior based generation procedure consisting in sampling from the
inverse of the Riemannian metric volume element learned by the model. The choice of this
framework is discussed, motivated and compared to other VAE models.1

• We propose to use such a framework to perform data augmentation in the challenging context
of HDLSS data. The robustness of the augmentationmethod to data sets and classifiers changes
along with its reliance to the number of training samples and the complexity of the classifier
is then tested through a series of experiments.2

• We validate the proposed method on several real-life classification tasks on complex 3D MRI
from ADNI and AIBL databases where the augmentation method allows for a significant gain
in classification metrics even when only 50 samples per class are considered.

1.2 Variational Autoencoder

In this section, we quickly recall the idea behind VAEs along with some proposed improvements
relevant to this chapter.

1An implementation of the models may be found at https://github.com/clementchadebec/
benchmark_VAE

2A software implementing the method was developed and is available at https://github.com/
clementchadebec/pyraug

40

https://github.com/clementchadebec/benchmark_VAE
https://github.com/clementchadebec/benchmark_VAE
https://github.com/clementchadebec/pyraug
https://github.com/clementchadebec/pyraug

Toward a Geometry-Aware VAE

1.2.1 Model Setting

Let x ∈ X be a set of data. A VAE aims at maximizing the likelihood of a given parametric model
{Pθ, θ ∈ Θ}. It is assumed that there exist latent variables z living in a lower dimensional space Z ,
referred to as the latent space, such that the marginal distribution of the data can be written as:

pθ(x) =

∫
Z

pθ(x|z)p(z)dz , (1.1)

where p is a prior distribution over the latent variables acting as a regulation factor and pθ(x|z) is
most of the time taken as a simple parametrized distribution (e.g. Gaussian, Bernoulli, etc.). Such
a distribution is referred to as the decoder, the parameters of which are usually given by neural
networks. Since the integral of Eq. (1.1) is most of the time intractable, so is the posterior distribution:

pθ(z|x) =
pθ(x|z)p(z)∫

Z
pθ(x|z)p(z)dz

.

This makes direct application of Bayesian inference impossible and so recourse to approximation
techniques such as variational inference (Jordan et al., 1999) is needed. Hence, a variational distribu-
tion qϕ(z|x) is introduced and aims at approximating the true posterior distribution pθ(z|x) (Kingma
and Welling, 2014). This variational distribution is often referred to as the encoder. In the initial ver-
sion of the VAE, qϕ is taken as a multivariate Gaussian whose parameters µϕ and Σϕ are again given
by neural networks. Importance sampling is then applied to get an unbiased estimate of pθ(x) we
want to maximize in Eq. (1.1)

p̂θ(x) =
pθ(x|z)p(z)
qϕ(z|x)

and Ez∼qϕ
[
p̂θ
]
= pθ(x) . (1.2)

Using Jensen’s inequality allows finding a lower bound on the objective function of Eq. (1.1)

log pθ(x) = logEz∼qϕ
[
p̂θ
]

≥ Ez∼qϕ
[
log p̂θ

]
≥ Ez∼qϕ

[
log pθ(x|z)

]
−KL(qϕ(z|x)∥p(z)) .

(1.3)

The Evidence Lower BOund (ELBO) is now tractable since all distributions are known and so can be
optimized with respect to the encoder and decoder parameters.

1.2.2 Improving the Model: Literature Review

In recent years, many attempts to improve the VAE model have been made and we briefly discuss
three main areas of improvement that are relevant to this chapter in this section.

Enhancing the Variational Approximate Distribution

When looking at Eq. (1.3), it can be noticed that we are nonetheless trying to optimize only a lower
bound on the true objective function. Therefore, much efforts have been focused on making this

41

Chapter 1

lower bound tighter and tighter (Burda et al., 2016; Alemi et al., 2016; Higgins et al., 2017; Cremer
et al., 2018; Zhang et al., 2018a; Ruiz and Titsias, 2019). One way to do this is to enhance the expres-
siveness of the approximate posterior distribution qϕ. This is indeed due to the ELBO expression
which can be also written as follows:

ELBO = log pθ(x)−KL(qϕ(z|x)||pθ(z|x)) .

This expressionmakes two terms appear. The first one is the functionwewant tomaximizewhile the
second one is the Kullback–Leibler (KL) divergence between the approximate posterior distribution
qϕ(z|x) and the true posterior pθ(z|x). This very term is always non-negative and equals 0 if and
only if qϕ = pθ almost everywhere. Hence, trying to tweak the approximate posterior distribution
so that it becomes closer to the true posterior should make the ELBO tighter and enhance the model.
To do so, a method proposed in (Salimans et al., 2015) consisted in adding K Markov chain Monte
Carlo (MCMC) sampling steps on the top of the approximate posterior distribution and targeting
the true posterior. More precisely, the idea was to start from z0 ∼ qϕ(z|x) and use parametrized
forward (resp. reverse) kernels r(zk+1|zk, x) (resp. r(zk|zk+1, x)) to create a new estimate of the true
marginal distribution pθ(x). With the same objective, parametrized invertible mappings fx called
normalizing flows were instead proposed in (Rezende and Mohamed, 2015) to sample z. A starting
random variable z0 is drawn from an initial distribution qϕ(z|x) and then K normalizing flows are
applied to z0 resulting in a random variable zK = fKx ◦ · · · ◦ f 1

x(z0) whose density writes:

qϕ(zK |x) = qϕ(z0|x)
K∏
k=1

| detJfkx |−1 ,

where Jfkx is the Jacobian of the kth normalizing flow. Ideally, we would like to have access to nor-
malizing flows targeting the true posterior and allowing enriching the above distribution and so
improve the lower bound. In that particular respect, a model inspired by the Hamiltonian Monte
Carlo sampler (Neal and others, 2011) and relying on Hamiltonian dynamics was proposed in (Sali-
mans et al., 2015) and (Caterini et al., 2018). The strength of such a model relies in the choice of the
normalizing flows which are guided by the gradient of the true posterior distribution.

Improving the Prior Distribution

While enhancing the approximate posterior distribution resulted in major improvements of the
model, it was also argued that the prior distribution over the latent variables plays a crucial role
as well (Hoffman and Johnson, 2016). Since the vanilla VAE uses a standard Gaussian distribution as
prior, a natural improvement consisted in using a mixture of Gaussian instead (Nalisnick et al., 2016;
Dilokthanakul et al., 2017) which was further enhanced with the proposal of the variational mixture
of posterior (VAMP) (Tomczak and Welling, 2018). In addition, other models trying to amend the
prior and relying on hierarchical latent variables have been proposed (Sønderby et al., 2016; Burda
et al., 2016; Klushyn et al., 2019). Prior learning is also a promising idea that has emerged (e.g. (Chen
et al., 2016b)) or more recently (Razavi et al., 2020; Pang et al., 2020; Aneja et al., 2020) and allows
accessing complex prior distributions. In the same vein, ex-post density estimation was also pro-
posed and consists in fitting a simple distribution such as a mixture of Gaussian in the latent space
post training (Ghosh et al., 2020). This approach aimed at alleviating the poor expressiveness of the
prior. Another approach relying on accept/reject sampling to improve the prior distribution (Bauer

42

Toward a Geometry-Aware VAE

and Mnih, 2019a) can also be cited. While these proposals improved the model, the choice of the
prior distribution remains tricky and strongly conditioned by the training data and the tractability
of the ELBO.

Adding Geometrical Consideration to the Model

In the mean time, several papers have been arguing that geometrical aspects should also be taken
into account. For instance, on the ground that the vanilla VAE fails to apprehend data having a
latent space with a specific geometry, several latent space modelings were proposed as a hyper-
shere (Davidson et al., 2018) where Von-Mises distributions are considered instead of Gaussian or as
a Poincare disk (Mathieu et al., 2019a; Ovinnikov, 2020). Other works trying to introduce Rieman-
nian geometry within the VAE framework proposed to model either the input data space (Falorsi
et al., 2018; Miolane and Holmes, 2020) or the latent space (or both) (Arvanitidis et al., 2016; Chen
et al., 2018a; Shao et al., 2018; Kalatzis et al., 2020) as Riemannian manifolds.

1.3 The Proposed Method

In this section, we first present a new geometry-aware VAEmodel bridging the gap between Sec. 1.2.2
and Sec. 1.2.2. It combines MCMC sampling and Riemannian metric learning to improve the ex-
pressiveness of the posterior distribution and learn meaningful latent representations of the data.
Secondly, we propose a new non-prior based generation scheme taking into account the learned
geometry of the data. We indeed argue that while the vast majority of works dealing with VAE gen-
erate new data using the prior distribution, which is standard procedure, this is often sub-optimal,
in particular in the context of small data sets. We believe that the choice of the prior distribution
is strongly data set dependent and is also constrained to be simple so that the ELBO in Eq. (1.3)
remains tractable. Hence, the view adopted here is to consider the VAE only as a dimensionality
reduction tool which is able to extract the latent structure of the data, i.e. the latent space modeled
as the Riemannian manifold (Rd, g)where d is the dimension of the manifold and g is the associated
Riemannian metric. Before going further we first recall some elements on Riemannian geometry.

1.3.1 Some Elements on Riemannian Geometry

In the framework of differential geometry, one may define a (connected) Riemannian manifoldM
as a smooth manifold endowed with a Riemannian metric g that is a smooth inner product g : p→
⟨·|·⟩p on the tangent space TpM defined at each point of the manifold p ∈ M. We call a chart (or
coordinate chart) (U,φ) a homeomorphism mapping an open set U of the manifold to an open set V
of an Euclidean space. The manifold is called a d−dimensionmanifold if for each chart of an atlas we
further have V ⊂ Rd. That is there exists a neighborhoodU of each point p of the manifold such that
U is homeomorphic toRd. Given p ∈ U , the chartφ : (x1, . . . , xd) induces a basis

(
∂
∂x1
, . . . , ∂

∂xd

)
p
on

the tangent space TpM. Hence, a local representation of the metric of a Riemannian manifold in the
chart (U,φ) can be written as a positive definite matrix G(p) = (gi,j)p,0≤i,j≤d = (⟨ ∂

∂xi
| ∂
∂xj
⟩p)0≤i,j≤d

at each point p ∈ U . That is for v, w ∈ TpM and p ∈ U , we have ⟨u|w⟩p = u⊤G(p)w. Since we

43

Chapter 1

propose to work in the ambient-like manifold (Rd, g), there exists a global chart given by φ = id.
Hence, for the following, we assume that we work in this coordinate system and so G will refer to
the metric’s matrix representation in this chart. The length of a curve γ : [0, 1]→M traveling from
z1 ∈M to z2 ∈M such that γ(0) = z1 and γ(1) = z2 is then given by

L(γ) =
1∫

0

∥γ̇(t)∥γ(t)dt =
1∫

0

√
⟨γ̇(t)|γ̇(t)⟩γ(t)dt .

Curves minimizing L are called geodesics and a distance dist between any z1, z2 ∈M can be intro-
duced as follows:

dist(z1, z2) = inf
γ
L(γ) s.t. γ(0) = z1, γ(1) = z2

The manifoldM is said to be geodesically complete if all geodesic curves can be extended to R.

1.3.2 A Geometry-Aware VAE

We now assume that the latent space is the Riemannian manifoldM = (Rd, G) with G being the
Riemannian metric. Building upon the Hamiltonian VAE (HVAE) (Caterini et al., 2018), we propose
to exploit the assumed Riemannian structure of the latent space by using Riemannian Hamiltonian
dynamics (Girolami and Calderhead, 2011) instead. The main goal remains the same and consists in
using the Riemannian HamiltonianMonte Carlo (RHMC) sampler to be able to enrich the variational
posterior qϕ(z|x) such that it targets the true (unknown) posterior pθ(z|x) while exploiting the
properties of Riemannian manifolds.

Riemannian Hamiltonian Monte Carlo Sampler

The Riemannian Hamiltonian Monte Carlo (RHMC) sampler aims at sampling from complex target
probability distributions ptarget(z) where z is assumed to live in a Riemannian manifoldM. The
main idea is to introduce a random variable v ∼ N (0,G(z)) where G is the Riemannian metric
associated toM and rely on Riemannian Hamiltonian dynamics. Analogous to physical systems,
z ∈ M is seen as the position and v as the velocity of a particle traveling inM whose potential
energy U(z) and kinetic energy K(z, v) are given by

U(z) = − log ptarget(z) ,

K(v, z) =
1

2

[
log
(
(2π)d|G(z)|

)
+ v⊤G−1(z)v

]
.

The sum of these energies give together the Hamiltonian H(z, v) (Duane et al., 1987; Leimkuhler
and Reich, 2004).

H(z, v) = U(z) +
1

2
log((2π)D detG(z)) +

1

2
v⊤G(z)−1v .

44

Toward a Geometry-Aware VAE

The evolution in time of such a particle is governed by Hamilton’s equations which write:
∂H

∂vi
=
(
G−1(z)v

)
i
,

−∂H
∂zi

=
∂ log ptarget(z)

∂zi
−1

2
tr

(
G−1∂G(z)

∂zi

)
+

1

2
v⊤G−1(z)

∂G(z)

∂zi
G−1(z)v .

(1.4)

This system of equations can be integrated using a discretization scheme known as the generalized
leapfrog integrator.

v(t+ ε/2) = v(t)− ε

2
∇zH

(
z(t), v(t+ ε/2)

)
,

z(t+ ε) = z(t) +
ε

2

[
∇vH

(
z(t), v(t+ ε/2)

)
+∇vH

(
z(t+ ε), v(t+ ε/2)

)]
,

v(t+ ε) = v(t+ ε/2)− ε

2
∇zH

(
z(t+ ε), v(t+ ε/2)

)
,

(1.5)

where ε is the integrator step size. RunningK times this integrator allows to simulate the behavior
of the particle. This integrator ensures that the target distribution is preserved by Hamiltonian
dynamics and it was shown that it is also volume preserving and time reversible (Hairer et al., 2006;
Leimkuhler and Reich, 2004). Inspired by this idea, the RHMC sampler aims at creating a Markov
Chain (zn) using this integrator and converging to the target distribution ptarget. More precisely,
given zn0 , the current state of the chain, an initial velocity is sampled v0 ∼ N (0,G(zn0)) and Eq. (1.5)
are runK times to move from (zn0 , v0) to (znK , vK). The proposal znK is then accepted with probability
α = min

(
1,

exp(−H(znK ,vK))

exp(−H(zn0 ,v0))

)
and we iterate. It was shown that the chain (zn) converges to its

stationary distribution ptarget (Duane et al., 1987; Liu, 2008; Neal and others, 2011).

RHMC within the VAE

Likewise the HVAE, we set ptarget to the joint distribution pθ(x, z) = pθ(x|z)p(z) since given an
input data point x ∈ X we have pθ(x, z) ∝ pθ(z|x) the true posterior and so the RHMC sampler is
guided by the gradient of the true posterior distribution through the leapfrog steps in Eq. (1.5). Note
that the target distribution is now tractable since both the prior and the conditional distribution
pθ(x|z) are known thanks to the assumed generation process:{

z ∼ p(z) = N (0, Id),

x ∼ pθ(x|z) = N (µθ(z), σ · Id) .

Hence, we can compute every terms of Eq. (1.4) and so use the generalized leapfrog integrator as
proposed in the manuscript. A typical choice for ε and K is ε ∈ [0.0001, 0.01] and K ∈ [1, 15].
As in (Caterini et al., 2018), we also use a tempering scheme consisting in starting from an initial
temperature β0 (which can be learned) and decreasing the velocity v by a factor αk =

√
βk−1/βk

after each leapfrog step k (βK = 1). The temperature is then updated:

√
βk =

((
1− 1√

β0

)
k2

K2
+

1√
β0

)−1

.

45

Chapter 1

As discussed in (Salimans et al., 2015), the acceptation/rejection step is omitted throughout training
so that the flow is differentiable with respect to the encoder’s parameters allowing optimization.
Hence, the RHMC steps can be seen as a specific kind of normalizing flow informed both by the target
distribution through Eq. (1.5) and by the latent space geometry thanks to the metricG. Our intuition
is that using the underlying geometry of the manifold in which the latent variables live would better
guide the approximate posterior distribution leading to better variational posterior estimates. It must
be nonetheless noted that the generalized leapfrog integrator in Eq. (1.5) is no longer explicit and so
requires the use of fixed point iterations to be solved. Fortunately, only few iterations are needed
to stabilize the scheme (we use 3 iterations). To compute the gradient involved in the integrator we
rely on automatic differentiation (Paszke et al., 2017). Finally, the volume preservation property of
the flow leads to a closed form derivation of the extended approximate posterior:

qϕ(zK , vK |x) = qϕ(z0|x)p(v0|z0)
K∏
k=1

| detJgk |−1 = qϕ(z0|x)p(v0|z0)
K∏
k=1

(βk−1

βk

)−d/2
,

where Jgk is the Jacobian of kth leapfrog step. Now, an unbiased estimate of the marginal pθ(x) is
given by:

p̂θ(x) =
pθ(x, zK , vK)

qϕ(zK , vK |x)
=
pθ(x|zK)p(vK |zK)q(zK)
qϕ(z0|x)p(v0|z0)β−d/2

0

.

Note that the expression of the variational posterior remains computable so that the ELBO remains
tractable.

ELBORiemannian = E(z0,v0)∼qϕ(·,·)[log p̂θ(x)] (1.6)

The Metric

Since the latent space is now seen as the Riemannian manifold (Rd,G), it is in particular character-
ized by the Riemannian metric G whose choice is crucial. While several attempts have been made
to try to put a Riemannian structure over the latent space of VAEs (Arvanitidis et al., 2018; Chen
et al., 2018a; Shao et al., 2018; Frenzel et al., 2019; Kalatzis et al., 2020; Arvanitidis et al., 2020-08-
02), the proposed metrics involved the Jacobian of the generator function which is hard to use in
practice and is constrained by the generator network architecture. As a consequence, we instead
decide to rely on the idea of Riemannian metric learning (Lebanon, 2006). Hence, we propose to use
a parametric metric inspired from (Louis, 2019) as follows:

G−1(z) =
N∑
i=1

LψiL
⊤
ψi
exp

(
− ∥z − ci∥

2
2

T 2

)
+ λId , (1.7)

where N is the number of observations, Lψi are lower triangular matrices with positive diagonal
coefficients learned from the data and parametrized with neural networks, ci are referred to as the
centroids and correspond to the mean µϕ(xi) of the encoded distributions of the latent variables zi
(zi ∼ qϕ(zi|xi) = N (µϕ(xi),Σϕ(xi)), T is a temperature scaling the metric close to the centroids and
λ is a regularization factor that also scales the metric tensor far from the latent codes. The shape of
this metric is very powerful since we have access to a closed-form expression of the inverse metric
tensor which is usually useful to compute shortest paths (through the exponential map). Moreover,
this metric is very smooth, differentiable everywhere and allows scaling the Riemannian volume
element

√
detG(z) far from the data very easily through the regularization factor λ.

46

Toward a Geometry-Aware VAE

Training Process

The model’s architecture is displayed in Fig. 1.1. The idea is to encode the input data points xi and
so get the means µϕ(xi) of the posterior distributions associated with the encoded latent variables
zi,0 ∼ N (µϕ(xi),Σϕ(xi)). These means are then used to update the metric centroids ci. In the mean
time, the input data points xi are fed to another neural network which outputs the matrices Lψi
used to update the metric. The updated metric is then used to sample zi,K from zi,0 using Eq. (1.5) as
explained in Sec. 1.3.2. The zi,K are then fed to the decoder network which outputs the parameters
πθ of the conditional distribution pθ(x|z). The reparametrization trick is used to sample zi,0 as is
common and since the Riemannian Hamiltonian equations are deterministic with respect to z, back-
propagation can be performed. A scheme of the geometry-aware VAEmodel framework can be found
in Fig. 1.1. In the following, we will refer to the proposed model either as geometry-aware VAE or
RHVAE for short. Finally, we also provide the full pseudo-code training algorithm of the method in
Alg. 1.

Algorithm 1 RHVAE with metric learning
InitializeG ▷We put ci = 0 and Lψi = Id
while not converged do

L ← 0

for n = 1→ NB do

Collect a batch of data Xn = (x1, · · · , xbs)
ci ← encode(xi)
Lψi ← mψ(xi) ▷ Use the metric network to get Lψi
Update the metricG according to Eq. (1.7)
z0 ∼ N (µ(x),Σ(x)), v0 ∼ N (0,G(z0))

v0 ← v0/
√
β0

for k = 1→ K do

v̄ ← vk−1 − ε
2
∇zH(zk−1, v̄) ▷ fixed point it.

zk ← zk−1 +
ε
2

(
∇vH(zk−1, v̄) +∇vH(zk, v̄)

)
▷ fixed point it.

v′ ← v̄ − ε
2
∇zH(zk, v̄)

√
βk ←

((
1− 1√

β0

)
k2

K2 +
1√
β0

)−1

vk ←
√
βk−1√
βk

v′

end for

p← pθ(x, zK , vK)

q ← qϕ(z0, v0|x)β−d/2
0

Lbatch ← log p− log q

L = L+ Lbatch/NB

end for

Update θ, ϕ and ψ using gradient descent
end while

47

Chapter 1

encoder
metric network
decoder

Figure 1.1: Geometry-aware VAE framework. Neural networks are highlighted with the colored
arrows andHRiemannian are the normalizing flows using Riemannian Hamiltonian equations.

Discussion on the Posterior Expressiveness

Theoretically, using geometry-aware Hamiltonian normalizing flows should conduct to a better es-
timate of the true posterior pθ(z|x) and so a better ELBO leading to a potentially higher likelihood
pθ(x). To validate this empirically, we report the estimated log-likelihood computed using Impor-
tance Sampling with the approximate posterior and Eq. (1.2) and Eq. (1.6). We use 100 importance
samples and compute it three times on MNIST test set. Hamiltonian based models use 3 leapfrog
steps. We also report the value of the ELBO and compute KL(qϕ(z|x)∥pθ(z|x)). As shown in Ta-
ble 1.1, using geometry-aware normalizing flows leads to a higher estimated pθ and a smaller gap
between the estimated true posterior pθ(z|x) and the variational approximation qϕ(z|x) measured
by the KL divergence between both distributions. Note that all models are trained with the same
architectures and training settings.

Table 1.1: Effect of geometrical considerations on the estimated log-likelihood and ELBO on MNIST
test set.

Model log pθ(x) ↑ ELBO KL(qϕ(z|x)∥pθ(z|x)) ↓
VAE −92.94(0.01) −100.06(0.09) 7.12(0.09)

HVAE −85.33(0.01) −88.93(0.02) 3.61(0.02)

RHVAE −82.64(0.01) −86.21(0.04) 3.57(0.03)

Sampling from the Latent Space

In this chapter, we propose to amend the standard sampling procedure of classic VAEs after training
to better exploit the Riemannian structure of the latent space. The geometry-aware VAE is indeed
here seen as a tool able to capture the intrinsic latent structure of the data and so we propose to
exploit this property directly within the generation procedure. This differs greatly from the stan-
dard fully probabilistic view where the prior distribution is used to generate new data. We believe
that such an approach remains far from being optimal when one considers small data sets since,
depending on its choice, the prior may either poorly prospect the latent space or sample in locations
without any usable information. In that respect, our approach can be seen as part of the recently
proposed prior learning based methods or methods relying on ex-post density estimation discussed

48

Toward a Geometry-Aware VAE

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0
circles
rings

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0
affine
geodesic

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

6 4 2 0 2 4 6
6

4

2

0

2

4

6
shoes

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

6 4 2 0 2 4 6
6

4

2

0

2

4

6
affine
geodesic

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Affine

Geodesic

Affine

Geodesic

Figure 1.2: Geodesic interpolations under the learned metric in two different latent spaces. Top:
Latent spaces with the log metric volume element presented in gray scale and the resulting interpo-
lations under the Euclidean metric or the Riemannian metric. Bottom: Decoded samples all along
the interpolation curves.

earlier. Some of these methods were indeed proposed on the ground that there may exist a mismatch
between the chosen prior distribution p(z) and the optimal one given by the the aggregated poste-
rior distribution q(z) = Ex∼pdata(x)[qϕ(z|x)] (Hoffman and Johnson, 2016; Dai and Wipf, 2018; Bauer
and Mnih, 2019a; Ghosh et al., 2020), where pdata(x) is the empirical distribution of the data (Tom-
czak and Welling, 2018). Moreover, since our method is mainly about increasing the expressiveness
of the variational posterior qϕ there exists no apparent reason that the latent codes are distributed
according to the prior either. However, instead of learning a prior, we propose to directly use the
metric that provides information on the geometry of the latent space as discussed and illustrated in
Sec. 1.3.2 and Sec. 1.3.3. We indeed propose to sample from the following distribution:

p(z) =
1S(z)

√
detG−1(z)∫

Rd 1S(z)
√
detG−1(z)dz

, (1.8)

whereS is a compact set3 so that the integral is well defined. Fortunately, sincewe use a parametrized
metric given by Eq. (1.7) and whose inverse has a closed form, it is pretty straightforward to evaluate
the numerator of Eq. (1.8). Then, classic MCMC sampling methods can be employed to sample from
p on Rd. In this chapter, we propose to use the Hamiltonian Monte Carlo (HMC) sampler (Neal,
2005) since the gradient of the log-density is computable. We provide some additional details in
Appendix 1.8.2.

Discussion on the Sampling Distribution

One may wonder what is the rationale behind the use of the distribution p formerly defined in
Eq. (1.8). By design, the metric is such that the metric volume element

√
detG(z) is scaled by the

factor λ far from the encoded data points. Hence, choosing a relatively small λ imposes that shortest
paths travel through themost populated area of the latent space, i.e. next to the latent codes. As such,
the metric volume element can be seen as a way to quantify the amount of information contained at
a specific location of the latent space. The smaller the volume element themore information we have
access to. Fig. 1.2 illustrates well these aspects. On the first row are presented two learned latent

3Take for instance {z ∈ Z, ∥z∥ ≤ 2 ·maxi∥ci∥}

49

Chapter 1

Vanilla VAE

−7 −5 −3 −1 1 3 5 7
−7

−5

−3

−1

1

3

5

7

circles

rings

samples

VAE - VAMP prior

−60 −40 −20 0 20
−100

−80

−60

−40

−20

0

20

40

60

circles

rings

samples

Geometry-aware VAE - N (0, Id)

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

circles

rings

samples

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Geometry-aware VAE - Ours

−10 −5 0 5 10
−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

circles

rings

samples

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 1.3: VAE sampling comparison. Top: The learned latent space along with the means µϕ(xi)
of the latent code distributions (colored dots and crosses) and 100 latent space samples (blue dots)
using either the prior distribution or the proposed scheme. For the geometry-aware VAEs, the log
metric volume element is presented in gray scale in the background. Bottom: The 100 corresponding
decoded samples in the data space.

spaces along with the log of the metric volume element displayed in gray scale for two different data
sets. The first one is composed of 180 binary disks and rings of different diameters and thicknesses
while the second one is composed of 160 samples extracted from the FashionMNIST data set (Xiao
et al., 2017). The means µϕ(xi) of the distributions associated with the latent variables are presented
with the crosses and dots for each class. As expected, the metric volume element is smaller close
to the latent variables since small λ’s were considered (10−3 resp. 10−1). A common way to study
the learned Riemannian manifold consists in finding geodesic curves, i.e. the shortest paths with
respect to the learned Riemannian metric. Hence, in Fig. 1.2, we compare two types of interpolation
in each latent space. For each experiment, we pick two points in the latent space and perform either
a linear or a geodesic interpolation (i.e. using the Riemannianmetric). The bottom row illustrates the
decoded samples all along each interpolation curve. The first outcome of such an experiment is that,
as expected, geodesic curves travel next to the codes and so do not explore areas of the latent space
with no information whereas linear interpolations do. Therefore, decoding along geodesic curves
produces far better andmoremeaningful interpolations in the input data space since in both caseswe
clearly see the starting sample being progressively distorted until the path reaches the ending point.
This allows for instance interpolating between two shoes and keep the intrinsic topology of the
data all along the path since each decoded sample on the interpolation curve looks like a shoe. This
is made impossible under the Euclidean metric where shortest paths are straight lines and so may
travel through areas of least interest. For instance, the affine interpolation travels through areas with
no latent data and so produces decoded samples that are mainly a superposition of samples (see the
red lines and corresponding decoded samples framed in red) or crosses areas with codes belonging
to the other class (see the blue line and the corresponding blue frames). This study demonstrates
that most of the information in the latent space is contained next to the codes and so, if we want

50

Toward a Geometry-Aware VAE

to generate new samples that look-like the input data, we need to sample around them and that is
why we elected the distribution in Eq. (1.8). Noteworthy is the fact that likewise (Ghosh et al., 2020),
the prior N (0, Id) is now only reduced to a latent code regularizer during training ensuring that
the covariances do not collapse to 0d and the codes remains close to the origin and is never used to
generate samples.

1.3.3 Generation Comparison

In this section, we propose to compare the new generation procedure with other generationmethods
in the context of low sample size data sets.

Qualitative Comparison

First, we validate the proposed generation method on a hand-made synthetic data set composed of
180 binary disks and rings of different diameters and thicknesses (see Appendix 1.8.4). We then train
1) a vanilla VAE, 2) a VAE with VAMP prior (Tomczak and Welling, 2018), 3) a geometry-aware VAE
but using the prior to generate and 4) a geometry-aware VAE with the proposed generation scheme,
and compare the generated samples. Each model is trained until the ELBO does not improve for
20 epochs and any relevant parameter setting is made available in Appendix 1.8.3. In Fig. 1.3, we
compare the sampling obtainedwith eachmodel. The first row shows the learned latent spaces along
with the means of the encoded training data points for each class (crosses and dots) and 100 samples
issued by the generationmethods (blue dots). For the RHVAEmodels, the logmetric volume element√
detG is also displayed in gray scale in the background. The bottom row shows the resulting 100

decoded samples in the data space.

The first outcome of this experiment is that sampling from the prior distribution leads to a quite
poor latent space prospecting. This drawback is very well illustrated when a standard Gaussian
distribution is used to sample from the latent space (see 1st and 3rd column of the 1st row). The
prior distribution having a higher mass close to zero will insist on latent samples close to the origin.
Unfortunately, in such a case, latent codes close to the origin only belong to a single class (rings).
Therefore, even though the number of training samples was roughly the same for disks and rings,
we end up with a model over-generating samples belonging to a certain class (rings) and even to
a specific type of data within this very class. This undesirable effect seems even ten-folded when
considering the geometry-based VAE model since adding MCMC steps in the training process, as
explained in Fig. 1.1, tends to stretch the latent space. It can be nonetheless noted that using a
multi-modal prior such as the VAMP prior mitigates this and allows for a better prospecting. How-
ever, such a model remains hard to fit when trained with small data sets as it may overfit (resp.
underfit) the training samples if the number of pseudo-inputs is too high (resp. low). Another limi-
tation of prior-based generation methods lies in their inability to assess a given sample quality. They
may indeed sample in areas of the latent space containing very few information and so conduct to
generated samples that are meaningless. This appears even more striking when small data sets are
considered. An interesting observation that was noted among others in (Arvanitidis et al., 2018) is
that neural networks tend to interpolate very poorly in unseen locations (i.e. far from the training
data points). When looking at the decoded latent samples (bottom row of Fig. 1.3) we eventually end
up with the same conclusion. Actually, it appears that the networks interpolate quite linearly be-

51

Chapter 1

tween the training data points in our case. This may be illustrated for instance by the red dots in the
latent spaces in Fig. 1.3 whose corresponding decoded sample is framed in red. The sample is located
between two classes and when decoded it produces an image mainly corresponding to a superpo-
sition of samples belonging to different classes. This aspect is also supported by the observations
made when discussing the relevance of geodesic interpolations on Fig. 1.2 of Sec. 1.3.2. Therefore,
these drawbacks may conduct to a (very) poor representation of the actual data set diversity while
presenting quite a few irrelevant samples. Obviously the notion of irrelevance is here disputable but
if the objective is to represent a given set of data we expect the generated samples to be close to the
training data while having some specificities to enrich it. Impressively, sampling against the inverse
of the metric volume element as proposed in Sec. 1.3.2 allows for a far more meaningful sample
generation. Furthermore, the new sampling scheme avoids regions with no latent code, which thus
contain poor information, and focuses on areas of interest so that almost every decoded sample is
visually satisfying. Similar effects are observed on reduced versions of EMNIST (Cohen et al., 2017),
MNIST (LeCun, 1998) and FashionMNIST data sets and higher dimensional latent spaces (dimension
10) where samples are most of the time degraded when the classic generation is employed while the
new one allows the generation of more diverse and sharper samples (see Appendix 1.8.4). Finally, the
proposed method does not overfit the train data since the samples are not located on the centroids.
The quantitative metrics of the next section also support this point.

Table 1.2: GAN-train (the higher the better) and GAN-test (the closer to the baseline the better)
scores. A benchmark DenseNet model is trained with five independent runs on the generated data
Sg (resp. the real train set Strain) and tested on the real test set Stest (resp. Sg) to compute the GAN-
train (resp. GAN-test) score. 1000 synthetic samples per class are considered for Sg so that it matches
the size of Stest.

reduced MNIST reduced MNIST
reduced EMNIST(balanced) (unbalanced)

Metric GAN-train GAN-test GAN-train GAN-test GAN-train GAN-test

Baseline 90.6± 1.2 - 82.8± 0.7 - 84.5± 1.3 -

VAE - N (0, Id) 83.4± 2.4 67.1± 4.9 74.7± 3.2 52.8± 10.6 75.3± 1.4 54.5± 6.5

VAMP 72.8± 6.7 77.6± 4.8 68.2± 6.6 76.7± 11.0 70.7± 8.0 69.0± 6.4

VAE - GMM 82.9± 2.4 76.5± 8.9 74.4± 3.8 68.4± 12.3 74.0± 2.6 57.6± 4.6

RAE - GMM(2) 90.8± 3.0 91.7± 1.9 85.5± 1.3 83.8± 6.2 80.3± 1.5 69.8± 7.2

RAE - GMM(10) 90.3± 2.3 95.3± 1.6 81.0± 4.4 93.3± 3.2 80.6± 1.6 83.4± 4.8

RAE - GMM(20) 91.1 ± 1.6 96.6± 1.5 84.3± 1.7 95.4± 3.1 79.5± 1.1 85.0 ± 4.8

2-stage VAE 84.8± 2.3 71.4± 8.3 80.8± 2.7 60.2± 9.2 79.6± 2.3 55.9± 3.9

RHVAE - N (0, Id) 82.0± 2.9 63.1± 4.1 69.3± 1.8 46.9± 8.4 73.6± 4.1 55.6± 5.0

Ours 90.1± 1.4 88.1 ± 2.7 86.2 ± 1.8 83.8 ± 4.0 82.6 ± 1.3 76.0± 4.0

52

Toward a Geometry-Aware VAE

Quantitative Comparison

In order to compare quantitatively the diversity and relevance of the samples generated by a gener-
ative model, several metrics were proposed (Salimans et al., 2016; Heusel et al., 2017; Karras et al.,
2017; Lucic et al., 2018). Since they suffer from some drawbacks (Shmelkov et al., 2018; Borji, 2019),
we decide to use the GAN-train / GAN-test measure discussed in (Shmelkov et al., 2018) as it appears
to us well suited to measure the ability of a generative model to perform data augmentation. These
two metrics consist in comparing the accuracy of a benchmark classifier trained on a set of gener-
ated data Sg and tested on a set of real images Stest (GAN-train) or trained on the original train set
Strain (real images used to train the generative model) and tested on Sg (GAN-test). Those accuracies
are then compared to the baseline accuracy given by the same classifier trained on Strain and tested
on Stest. These two metrics are quite interesting for our application since the first one (GAN-train)
measures the quality and diversity of the generated samples (the higher the better) while the sec-
ond one (GAN-test) accounts for the generative model’s tendency to overfit (a score significantly
higher than the baseline accuracy means overfitting). Ideally, the closer to the baseline the GAN-test
score the better. To stick to our low sample size setting, we compute these scores on three data
sets created by down-sampling well-known databases. The first data set is created by extracting 500
samples from MNIST ensuring balanced classes (reduced MNIST). For the second one, 500 samples
of the MNIST database are again considered but a random split is applied such that some classes are
under-represented (reduced unbalanced MNIST). The last one consists in selecting 500 samples from
10 classes of the EMNIST data set having both lowercase and uppercase letters (reduced EMNIST) so
that we end up with a small database with strong variability within classes. The balance matches the
one in the initial data set (by merge). These three data sets are then divided into a baseline train set
Strain (80%) and a validation set Sval (20%) used for the classifier training. Since the initial databases
are huge, we use the original test set for Stest so that it provides statistically meaningful results. For
this comparison, we add a regularized autoencoder (RAE) (Ghosh et al., 2020), a 2-stage VAE (Dai
and Wipf, 2018) and a VAE where we use a 10-components mixture of Gaussian (GMM) instead of
the prior to generate (Ghosh et al., 2020), to the models presented in Sec. 1.3.3. Each model is then
trained on each class of Strain to generate 1000 samples per class and Sg is created for each VAE by
gathering all generated samples. A benchmark classifier chosen as a DenseNet4 (Huang et al., 2017)
is then 1) trained on Strain and tested on Stest (baseline); 2) trained on Sg and tested on Stest (GAN-
train) and 3) trained on Strain and tested on Sg (GAN-test) until the loss does not improve for 50
epochs on Sval. For each experiment, the model is trained five times and we report the mean score
and the associated standard deviation in Table 1.2. For the RAE we use a GMM and indicate the
number of components between parentheses. As expected, the proposed method allows producing
samples that are far more meaningful and relevant, in particular to perform DA. This is first illus-
trated by the GAN-train scores that are either very close to the accuracy obtained with the baseline
or higher (see MNIST (unbalanced) in Table 1.2). The fact that we are able to enhance the classifier’s
accuracy even when trained only with synthetic data is very encouraging. Firstly, it proves that the
created samples are close to the real ones and so we were able to capture the true distribution of
the data. Secondly, it shows that we do not overfit the initial training data since we are able to add
some relevant information through the synthetic samples. This last observation is also supported
by the GAN-test scores for the proposed method which are quite close to the accuracies achieved
on the baseline. In case of overfitting, the GAN-test score would be significantly higher than the
baseline since the classifier is tested on the generated samples while trained on the real data that

4We used the PyTorch implementation provided in (Amos, 2020).

53

Chapter 1

were also used to train the generative model. This is for instance the case for the RAE (underlined
scores) where the number of components in the GMM impacts greatly the GAN-test metric. Having
a score close to the baseline illustrates that the generative model is able to capture the distribution
of the data and does not onlymemorize it (Shmelkov et al., 2018). Finally, this study again shows the
relevance of considering newways to generate data from VAEs, such as fitting a mixture of Gaussian
in the latent space, using a 2-stage VAE or using the proposed method, as they all improve in almost
all cases the metrics when compared to prior-based methods (lines 2 and 9 of Table 1.2).

1.4 Data Augmentation: Evaluation and Robustness

In this section we show the relevance of the proposed improvements to perform data augmentation
in a HDLSS setting through a series of experiments.

1.4.1 Setting

The setting we employ for DA consists in selecting a data set and splitting it into a train set (the
baseline), a validation set and a test set. The baseline is then augmented using the proposed VAE
framework and generation procedure. The generated samples are finally added to the original train
set (i.e. the baseline) and fed to a classifier. The whole data augmentation procedure is illustrated in
Fig. 1.4.

In
pu

t
da

ta

VAE
modelTrain

Test

CNN model
(training)

Synthetic
data

Validation

CNN model
(trained)

Figure 1.4: Overview of the data augmentation procedure. The input data set is divided into a train
set (the baseline), a validation set and a test set. The train set is augmented using the VAE framework
and generated data are then added to the baseline to train a benchmark classifier.

1.4.2 Toy Data Sets

The proposed VAE framework is here used to perform DA on several down-sampled well-known
databases such that only tens of real training samples per class are considered so that we stick to
the low sample size setting. First, the robustness of the method across these data sets is tested with
a standard benchmark classifier. Then, its reliability across other common classifiers is stressed.
Finally, its scalability to larger data sets and more complex models is discussed.

54

Toward a Geometry-Aware VAE

Materials

In this section, we use the same three data sets described in Sec. 1.3.3 and add one using the Fashion-
MNIST data set and three classes we find hard to distinguish (i.e. T-shirt, dress and shirt). The data
set is composed of 300 samples ensuring balanced classes (reduced Fashion). Finally, we also select
150 samples from three balanced classes of CIFAR10 (Krizhevsky et al., 2009) hard to classify (cat,
dog and horse). In summary, we built five data sets having different class numbers, class splits and
sample sizes. These data sets are again pre-processed such that 80% is allocated for training (referred
to as the Baseline) and 20% for validation. Since the original data sets are huge, we use the test set
provided in the original databases (e.g. ≈1000 samples per class for MNIST) so that it provides sta-
tistically meaningful results while allowing for a reliable assessment of the model’s generalization
power on unseen data.

Robustness Across Data Sets

The first experiment we conduct consists in assessing the method’s robustness across the five afore-
mentioned data sets. For this study, we propose to consider a DenseNet model as benchmark clas-
sifier. On the one hand, the training data (the baseline) is augmented by a factor 5, 10 and 15 using
classic data augmentation methods (random noise, random crop, rotation, etc.) so that the proposed
method can be compared with classic and simple augmentation techniques. On the other hand, the
protocol described in Fig. 1.4 is employed with the same VAEs as before. The generative models are
trained individually on each class of the baseline until the ELBO does not improve for 20 epochs.
The VAEs are then used to produce 200 or 1000 new synthetic samples per class using the same
generation protocols as described in Sec. 1.3.3. Finally, the benchmark DenseNet model is trained
with five independent runs on either 1) the baseline, 2) the augmented data using classic augmen-
tation methods, 3) the augmented data using the VAEs or 4) only the synthetic data created by the
generative models. For each experiment, the mean accuracy and the associated standard deviation
across those five runs are reported in Table 1.3. An early stopping strategy is employed and CNN
training is stopped if the loss does not improve on the validation set for 50 epochs.

The first outcome of such a study is that, as expected, generating synthetic samples with the
proposed method seems to enhance their relevance in particular for data augmentation tasks. This
is for instance illustrated by the first section of Table 1.3 where synthetic samples are added to the
baseline. While adding samples generated either by a VAE or RHVAE and using the prior distribu-
tion seems to improve the classifier accuracy when compared with the baseline, the gain remains
limited since it struggles to exceed the gain reached with classic augmentation methods. On the con-
trary, methods using either more complex priors (VAMP), a second VAE or a GMM allow improving
classification results on MNIST and Fashion but still under-perform on EMNIST and CIFAR. Finally,
the proposed generation method is able to produce very useful samples for the CNN model since in
all cases it allows the classifier to either achieve the best result (highlighted in bold) or comparable
performance than peers while keeping a relatively low standard deviation. Secondly, the relevance
of the samples produced by the proposed scheme is even more supported by the second section
of Table 1.3 where the classifier is trained only using the synthetic samples generated by the VAEs.
First, even with a quite small number of samples generated with our method (200 per class), the clas-
sifier is almost able to reach the accuracy achieved with the baseline. For instance, when the CNN
is trained on reduced MNIST with 200 synthetic samples per class generated with our method, it is

55

Chapter 1

Table 1.3: Data augmentation with a DenseNet model as benchmark. Mean accuracy and standard
deviation across five independent runs are reported. The first three rows (Aug.) correspond to basic
transformations (noise, crop, etc.). In gray are the cells where the accuracy is higher on synthetic
data than on the baseline (i.e. the raw data). The test set is the one proposed in the entire original
data set (e.g. ≈1000 samples per class for MNIST) so that it provides statistically meaningful results
and allows for a good assessment of the model’s generalization power.

MNIST MNIST EMNIST FASHION CIFAR(unbal.) (unbal.)

Baseline + Synthetic

Baseline 89.9/0.6 81.5/0.7 82.6/1.4 76.0/1.5 42.6/7.6

Aug. (×5) 92.8/0.4 86.5/0.9 85.6/1.3 77.5/2.0 47.7/2.3

Aug. (×10) 88.2/2.2 82.0/2.4 85.7/0.3 79.2/0.6 48.2/1.7

Aug. (×15) 92.8/0.7 85.8/3.4 86.6/0.8 80.0/0.5 48.0/2.2

VAE - 200 88.5/0.9 84.0/2.0 81.7/3.0 78.6/0.4 46.9/1.3

VAE - 1k 91.2/1.0 86.0/2.5 84.3/1.6 77.6/2.1 47.7/1.4

VAMP -200 91.4/1.9 81.1/2.7 84.2/0.8 79.8/0.8 45.6/6.9

VAMP - 1k 93.6/0.9 88.0/1.1 86.2/1.1 79.6/0.4 45.2/6.1

RHVAE - 200∗ 89.9/0.5 82.3/0.9 83.0/1.3 77.6/1.3 45.2/1.9

RHVAE - 1k∗ 91.7/0.8 84.7/1.8 84.7/2.4 79.3/1.6 42.1/2.9

VAE GMM - 200 90.5/1.1 82.9/2.2 84.8/1.0 79.6/0.7 44.9/1.9

VAE GMM - 1k 92.0/1.8 86.7/1.0 86.1/1.1 79.5/0.7 38.9/2.4

2-stage VAE - 200 91.2/1.2 83.5/1.5 85.3/1.9 80.5/0.6 44.4/2.3

2-stage VAE - 1k 93.3/0.7 87.7/2.4 86.7/1.1 79.5/0.9 38.8/3.0

RAE - 200 91.6/1.1 81.3/1.3 85.2/0.9 80.1/0.8 46.2/2.9

RAE - 1k 93.3/0.8 88.3/1.1 85.8/0.9 79.8/1.3 44.1/2.6

Ours - 200 91.0/1.0 84.1/2.0 85.1/1.1 77.0/0.8 46.8/2.2

Ours - 1k 93.2/0.8 89.7/0.8 87.0/1.0 80.2/0.8 49.2/2.3

Synthetic Only

VAE - 200 69.9/1.5 64.6/1.8 65.7/2.6 73.9/3.0 40.5/4.1

VAE - 1k 83.4/2.4 74.7/3.2 75.3/1.4 71.4/6.1 41.3/2.4

VAMP - 200 61.3/3.2 52.4/3.0 67.4/1.4 70.4/3.2 40.6/6.6

VAMP - 1k 72.8/6.7 68.2/6.6 70.7/8.0 69.2/5.4 39.7/7.7

RHVAE - 200∗ 76.0/1.8 61.5/2.9 59.8/2.6 72.8/3.6 42.4/1.2

RHVAE - 1k∗ 82.0/2.9 69.3/1.8 73.6/4.1 76.0/4.1 40.7/3.2

VAE GMM - 200 76.5/1.5 64.0/2.6 70.5/1.5 71.9/2.2 38.7/4.2

VAE GMM - 1k 82.9/2.4 74.4/3.8 74.0/2.6 73.9/2.5 41.6/2.7

2-stage VAE - 200 82.3/1.1 74.9/2.3 76.7/1.3 76.2/2.0 38.1/2.6

2-stage VAE - 1k 84.8/2.3 80.8/2.7 79.6/2.3 75.8/1.8 37.9/3.6

RAE - 200 83.6/2.8 74.5/1.6 76.9/1.6 66.5/4.4 33.7/1.7

RAE - 1k 90.3/2.3 81.0/4.4 80.6/1.6 62.0/5.1 33.6/0.4

Ours - 200 87.2/1.1 79.5/1.6 77.0/1.6 77.0/0.8 47.3/1.7

Ours - 1k 90.1/1.4 86.2/1.8 82.6/1.3 79.3/0.6 46.7/3.1

able to achieve an accuracy of 87.2% vs. 89.9% with the baseline. In comparison, any other method
fails to produce meaningful samples since a quite significant loss in accuracy is observed. The fact
that the classifier almost performs as well on the synthetic data as on the baseline is good news since
it shows that the proposed framework is able to produce samples accounting for the original data
set diversity even with a small number of generated samples. Even more interesting, as the number
of synthetic data increases, the classifier is able to perform much better on the synthetic data than
on the baseline since a gain of 3 to 6 points in accuracy is observed. Again, this strengthens the

56

Toward a Geometry-Aware VAE

MLP SVM kNN Random Forest
70

75

80

85

90

95

100

Ac
cu

ra
cy

baseline
augmented (200)
augmented (500)

augmented (1000)
augmented (2000)
synthetic (200)

synthetic (500)
synthetic (1000)
synthetic (2000)

(a) reduced MNIST balanced

MLP SVM kNN Random Forest
50

60

70

80

90

100

Ac
cu

ra
cy

baseline
augmented (200)
augmented (500)

augmented (1000)
augmented (2000)
synthetic (200)

synthetic (500)
synthetic (1000)
synthetic (2000)

(b) reduced MNIST unbalanced

Figure 1.5: Evolution of the accuracy of four benchmark classifiers on reduced balanced MNIST
(left) and reduced unbalanced MNIST data sets (right). Stochastic classifiers are trained with five
independent runs and we report the mean accuracy and standard deviation on the test set.

observations made in Sec. 1.3.3 and 1.3.3 where we noted that the proposed method is able to

enrich the initial data set with relevant and realistic samples.

Finally, it can be seen in this experiment why geometric data augmentation methods are still
questionable and remain data set dependent. For example, augmenting the baseline by a factor 10
(where we add flips and rotations on the original data) seems to have no significant effect on the
reduced MNIST data sets while it still improves results on reduced EMNIST, Fashion and CIFAR. We
see here how the expert knowledge comes into play to assess the relevance of the transformations
applied to the data. Fortunately, the method we propose does not require such knowledge and
appears to be quite robust to data set changes.

Robustness Across Classifiers

In addition to assessing the robustness of the method to data sets changes, we also propose to eval-
uate its reliability across classifiers. To do so, we consider very different common supervised clas-
sifiers: a multi layer perceptron (MLP) (Goodfellow et al., 2016), a random forest (Breiman, 2001),
the k-NN algorithm and a SVM (Kotsiantis et al., 2007). Each of the aforementioned classifiers is
again trained either on 1) the original training data set (the baseline); 2) the augmented data using
the proposed method and 3) only the synthetic data generated by our method with five independent
runs and using the same data sets as presented in Sec. 1.4.2. Finally, we report the mean accuracy
and standard deviation across these runs for each classifier and data set. The results for the balanced

57

Chapter 1

(resp. unbalanced) reducedMNIST data set can be found in Fig. 1.5a (resp. Fig. 1.5b). Metrics obtained
on reduced EMNIST and Fashion are available in Appendix 1.8.5 but reflect the same tendency.

As illustrated in Fig. 1.5, the method appears quite robust to classifier changes as well since it
allows improving the model’s accuracy significantly for almost all classifiers (the accuracy achieved
on the baseline is represented by the leftmost bar in Fig. 1.5 for each classifier). Themethod’s strength
is even more striking when unbalanced data sets are considered since the method is able to produce
meaningful samples even with a very small number of training data and so it is able to over-sample
the minority classes in a reliable way. Moreover, as observed earlier, synthetic samples are again
helpful to enhance classifiers’ generalization power since they perform better when trained only on
synthetic data than on the baseline in almost all cases.

A Note on the Method Scalability

Finally, we also discuss the method scalability to larger data sets, bigger models and higher dimen-
sional latent spaces. To do so, we consider the MNIST data set and a benchmark classifier taken as
a DenseNet which performs well on such data. First, we down-sample the original MNIST database
in order to progressively decrease the number of samples per class. We start by creating a data set
having 1000 samples per class to finally reach 20 samples per class. For each created data set, we
allocate 80% for training (the baseline) and reserve 20% for the validation set. A geometry-aware VAE
is then trained on each class of the baseline until the ELBO does not improve for 50 epochs and is
used to generate synthetic samples (12.5× the baseline). The benchmark CNN is trained with five
independent runs on either 1) the baseline, 2) the augmented data or 3) only the synthetic data gen-
erated with our model. The evolution of the mean accuracy on the original test set (≈1000 samples
per class) according to the number of samples per class is presented in Fig. 1.6 (left). Second, we
only consider 50 samples per class and train the VAE on each class to generate 1000 samples per
class. The number of the classifier’s parameters is also progressively changed and we report the
mean accuracy of the CNN according to the number of parameters in Fig. 1.6 (middle). Finally, we
consider several latent space dimensions for the VAE ranging from 2 to 50 and plot the evolution of
the CNN accuracy according the latent space dimension (right).

First, this experiment shows that the fewer samples in the training set, the more useful the
method appears. Using the proposed augmentation framework indeed allows for a gain of more than
9.0 points in the CNN accuracy when only 20 samples per class are considered. In other words, as
the number of samples increases, the marginal gain seems to decrease. Nevertheless, this reduction
must be put into perspective since it is commonly acknowledged that, as the results on the baseline
increase (and thus get closer to the perfect score), it is even more challenging to improve the score
with the augmented data. In this experiment, we are nonetheless still able to improve the model
accuracy even when it already achieves a very high score. For instance, with 500 samples per class,
the augmentation method still allows increasing the model accuracy from 97.7% to 98.8%. Finally, for
data sets with fewer than 500 samples per class, the classifier is able to outperform the baseline even
when trained only with the synthetic data. This shows again the strong generalization power of
the proposed method which allows creating new relevant data for the classifier. Another interesting
take from these experiments is that the augmentationmethod seems to benefit both simple andmore
complex models since the gain in the model accuracy remains quite steady (≈ 3 pts) regardless of
the number of parameters in the classifier (Fig. 1.6 (middle)). Finally, the impact of the dimension of

58

Toward a Geometry-Aware VAE

20 50 100 200 500 1000
Number of samples per class

75

80

85

90

95

100

Ac
cu

ra
cy 87.5

78.4

87.6

93.1

89.2

92.8

95.8

93.1

94.9
97.5

95.6

96.7
98.8

97.7

98.4
98.9

98.5

98.2

baseline
augmented (x12.5)
synthetic only

6 17 32 54 100 200 400 1000 2000
Number of Densenet's parameters (thousands)

80

85

90

95

100

Ac
cu

ra
cy

88.6

84.4

91.7

88.6

93.7

90.5

94.6

90.8

95.0

91.8

95.7

92.4

96.2

92.8

95.4

93.4

96.6

93.7

baseline
augmented

2 5 10 20 50
Latent space dimension

80

85

90

95

100

Ac
cu

ra
cy

94.0

91.2

94.3

91.2

95.0

91.2

94.7

91.2

93.8

91.2

baseline
augmented

Figure 1.6: Evolution of the accuracy of a benchmark DenseNet classifier according to the number
of samples in the train set (i.e. the baseline) (left), the number of parameters of the Densenet (middle)
and the latent space dimension of the VAE (right) on MNIST. Curves show the mean accuracy and
standard deviation across 5 runs on the original test set for the baseline (blue), the augmented data
(orange) and the synthetic ones (green).

the latent space remains limited for such a framework as the classification accuracy remains stable.
Nonetheless, this may be due to the simplicity of the database and more complex data might need
higher dimensional latent spaces.

1.5 Validation on Medical Imaging

With this last series of experiments, we assess the validity of our data augmentation framework
on a binary classification task consisting in differentiating Alzheimer’s disease (AD) patients from
cognitively normal (CN) subjects based on T1-weighted (T1w) MR images of human brains. Such a
task is performed using a CNN trained, as before, either on 1) real images, 2) synthetic samples or 3)
both. In this section, label definition, preprocessing, quality check, data split and CNN training and
evaluation is done using Clinica5 (Routier et al., 2021) and ClinicaDL6 (Thibeau-Sutre et al., 2022),
two open-source software packages for neuroimaging processing.

1.5.1 Data Augmentation Literature for AD vs CN Task

Even though many studies use CNNs to detect AD from CN subjects with anatomical MRI (Wen
et al., 2020), we did not find any meta-analysis on the use of data augmentation for this task. Some
results involving DA can nonetheless be cited and are presented in Table 1.4. However, assessing
the real impact of data augmentation on the performance of the models remains challenging. For
instance, this is illustrated by the works of (Aderghal et al., 2017) and (Aderghal et al., 2018), which
are two examples in which DA was used and led to two significantly different results, although a
similar framework was used in both studies. Interestingly, as shown in Table 1.4, studies using DA
for this task only relied on simple affine and pixel-level transformations, which may reveal data
dependent. Note that complex DA was actually performed for AD vs CN classification tasks on PET
images, but PET is less frequent than MRI in neuroimaging data sets (Islam and Zhang, 2020). As
noted in the previous sections, our method would apply pretty straightforwardly to this modality as

5https://github.com/aramis-lab/clinica
6https://github.com/aramis-lab/clinicadl

59

https://github.com/aramis-lab/clinica
https://github.com/aramis-lab/clinicadl
https://github.com/aramis-lab/clinica
https://github.com/aramis-lab/clinicadl

Chapter 1

Table 1.4: Accuracy obtained by studies performing AD vs CN classification with CNNs applied on
T1w MRI and using data augmentation

Study Methods Subj. Images Accuracy
Baseline Augmented

(Valliani and Soni, 2017) rotate, flip, shift 417 417 78.8 81.3

(Backstrom et al., 2018) flip 340 1198 – 90.1

(Cheng and Liu, 2017) shift, sample, rotate 193 193 – 85.5

(Aderghal et al., 2017) shift, blur, flip 720 720 82.8 83.7

(Aderghal et al., 2018) shift, blur 720 720 – 90.0

well. For MRI, other techniques such as transfer learning (Oh et al., 2019) and weak supervision (Liu
et al., 2020) were preferred to handle the small amount of samples in data sets and may be coupled
with DA to further improve the classifier performance.

1.5.2 Materials

Data used in this section were obtained from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (adni.loni.usc.edu) and the Australian Imaging, Biomarkers and Lifestyle (AIBL)
study (aibl.csiro.au).

The ADNI was launched in 2003 as a public-private partnership, led by Principal Investigator
Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial MRI, PET, other
biological markers, and clinical and neuropsychological assessment can be combined to measure the
progression of mild cognitive impairment and early AD. For up-to-date information, see www.adni-
info.org. The ADNI data set is composed of four cohorts: ADNI-1, ADNI-GO, ADNI-2 and ADNI-
3. The data collection of ADNI-3 has not ended yet, hence our data set contains all images and
metadata that were already available on May 6, 2019. Similarly to ADNI, the AIBL data set seeks to
discover which biomarkers, cognitive characteristics, and health and lifestyle factors determine the
development of AD. This cohort is also longitudinal and the diagnosis is given according to a series
of clinical tests (Ellis et al., 2009). Data collection for this cohort is over.

Two diagnoses are considered for the classification task:

• CN: baseline session of participants who were diagnosed as cognitively normal at baseline and
stayed stable during the follow-up;

• AD: baseline session of participants who were diagnosed as demented at baseline and stayed
stable during the follow-up.

Table 1.5 summarizes the demographics, the mini-mental state examination (MMSE) and global clin-
ical dementia rating (CDR) scores at baseline of the participants included in our data set. The MMSE

60

http://adni.loni.usc.edu/
https://aibl.csiro.au/
www.adni-info.org
www.adni-info.org

Toward a Geometry-Aware VAE

Table 1.5: Summary of participant demographics, mini-mental state examination (MMSE) and global
clinical dementia rating (CDR) scores at baseline.

Data set Label Subj. Age Sex M/F MMSE CDR

ADNI CN 403 73.3± 6.0 185/218 29.1± 1.1 0: 403
AD 362 74.9± 7.9 202/160 23.1± 2.1 0.5: 169, 1: 192, 2: 1

AIBL CN 429 73.0± 6.2 183/246 28.8± 1.2 0: 406, 0.5: 22, 1: 1
AD 76 74.4± 8.0 33/43 20.6± 5.5 0.5: 31, 1: 36, 2: 7, 3: 2

and the CDR scores are classical clinical scores used to assess dementia. The MMSE score has a
maximal value of 30 for cognitively normal persons and decreases if symptoms are detected. The
CDR score has a minimal value of 0 for cognitively normal persons and increases if symptoms are
detected.

1.5.3 Preprocessing of T1-Weighted MRI

The steps performed in this section correspond to the procedure followed in (Wen et al., 2020) and
are listed below:

1. Raw data are converted to the BIDS standard (Gorgolewski et al., 2016),

2. Bias field correction is applied using N4ITK (Tustison et al., 2010a),

3. T1w images are linearly registered to the MNI standard space (Fonov et al., 2009; 2011) with
ANTS (Avants et al., 2014) and cropped. This produced images of size 169×208×179 with
1 mm3 isotropic voxels.

4. An automatic quality check is performed using an open-source pretrained network (Fonov
et al., 2018). All images passed the quality check.

5. NIfTI files are converted to tensor format.

6. (Optional) Images are down-sampled with a trilinear interpolation to a size of 84×104×89.

7. Intensity rescaling between the minimum and maximum values of each image is performed.

These steps lead to either 1) down-sampled images (84×104×89) or 2) high resolution images of size
169×208×179.

61

Chapter 1

1.5.4 Evaluation Procedure

The ADNI data set is split into three sets: training, validation and test. First, the test set is created
using 100 randomly chosen participants for each diagnostic label (i.e. 100 CN, 100 AD). The rest of
the data set is split between the training (80%) and the validation (20%) sets. We ensure that age, sex
and site distributions between the three sets are not significantly different.

A smaller training set (denoted as train-50) is extracted from the obtained training set (denoted
as train-full). This set comprises only 50 images per diagnostic label, instead of 243 CN and 210
AD for train-full. We ensure that age and sex distributions between train-50 and train-full are not
significantly different. This is not done for the site distribution as there are more than 50 sites in the
ADNI data set (so they could not all be represented in this smaller training set). AIBL data are never
used for training or hyperparameter tuning and are only used as an independent test set.

1.5.5 CNN Classifiers

A CNN takes as input an image and outputs a vector of sizeC corresponding to the number of labels
existing in the data set. Then, a CNN predicts the label of a given image by selecting the highest
probability in the output vector.

Hyperparameter Choices

As for the VAE, the architecture of the CNN depends on the size of the input. Then, there is one ar-
chitecture per input size: down-sampled images and high-resolution images (see Fig 1.7). Moreover,
two different paradigms are used to choose the architecture. First, we reuse the same architecture
as in (Wen et al., 2020). This architecture was obtained by optimizing manually the networks on the
ADNI data set for the same task (AD vs CN). A slight adaption is done for the down-sampled images,
which consists in resizing the number of nodes in the fully-connected layers to keep the same ratio
between the input and output feature maps in all layers. We denote these architectures as baseline.
Secondly, we launch a random search (Bergstra and Bengio, 2012) that allows exploring different
hyperperameter values. The hyperparameters explored for the architecture are the number of con-
volutional blocks, of filters in the first layer and of convolutional layers in a block, the number of
fully-connected layers and the dropout rate. Other hyperparameters such as the learning rate and
the weight decay are also part of the search. 100 different random architectures are trained on the
5-fold cross-validation done on train-full. For each input, we choose the architecture that obtained
the best mean balanced accuracy across the validation sets of the cross-validation. We denote these
architectures as optimized.

Network Training

The weights of the convolutional and fully-connected layers are initialized as described in (He et al.,
2015), which corresponds to the default initialization method in PyTorch. Networks are trained
for 100 epochs for baseline and 50 epochs for optimized. The training and validation losses are

62

Toward a Geometry-Aware VAE

Figure 1.7: Diagrams of the network architectures used for classification. The first baseline archi-
tecture (A1) is the one used in (Wen et al., 2020), the second one (A2) is a very similar one adapted to
process smaller inputs. The optimized architectures (B1) and (B2) are obtained independently with
two different random searches. For convolution layers we specify the number of channels @ the
kernel size and for the fully-connected layers we specify the number of input nodes→ the number
of output nodes. Each fully-connected layer is followed by a LeakyReLU activation except for the
last one. For the dropout layer, the dropout rate is specified.

computed with the cross-entropy loss. For each experiment, the final model is the one that obtained
the highest validation balanced accuracy during training. The balanced accuracy of the model is
evaluated at the end of each epoch.

1.5.6 Experimental Protocol

As done in the previous sections, we perform three types of experiments and train the model on
1) only the real images, 2) only on synthetic data and 3) on synthetic and real images. Due to the
current implementation, augmentation on high-resolution images is not possible due to computa-
tional time and so these images are only used to assess the baseline performance of the CNN with
the maximum information available. Each series of experiments is done once for each training set
(train-50 and train-full). The CNN and the VAE share the same training set, and the VAE does not
use the validation set during its training. For each training set, two VAEs are trained, one on the AD
label only and the other on the CN label only. Examples of real and generated AD images are shown
in Fig. 1.8. For each experiment 20 runs of the CNN training are launched. The use of a smaller
training set train-50 allows mimicking the behavior of the framework on smaller data sets, which
are frequent in the medical domain.

63

Chapter 1

Figure 1.8: Example of two true patients compared to two generated by our method. Can you find
the intruders ? Answers in Appendix 1.8.7.

1.5.7 Results

Results presented in Tables 1.6 and 1.7 (resp. Tables 1.8 and 1.9) are obtained with baseline (resp.
optimized) hyperparameters and using either the train-full or train-50 data set and augmented
data (real + synthetic) or only synthetic data. In each table, the first two rows display the baseline
performance obtained on real images only. Experiments are done on down-sampled images unless
high-resolution is specified.

As observed on the toy examples, the proposed model is again able to produce meaningful syn-
thetic samples since each CNN outperforms greatly the baseline (i.e. the real training data) either
on train-50 or train-full. The fact that classification performances on AIBL (which is never used for
training) are better for a classifier trained on synthetic data than on the baseline shows again that
the generative model does not overfit the training data (coming from ADNI) but rather produces
samples that are also relevant for another database. Moreover, we again see that the classifier is
able to outperform the baseline with only synthetic samples proof of good generalization power.
Nonetheless, it can be noted that the performance increase thanks to DA is higher when using the
baseline hyperparameters than the optimized ones. A possible explanation could be that the op-
timized network is already close to the maximum performance that can be reached with this setup
and cannot be much improved with DA. Moreover, the VAE has not been subject to a similar search,
which places it at a disadvantage. For both hyperparameters, the performance gain is higher on
train-50 than on train-full, which supports the results obtained in the previous section (see Fig. 1.6).
The baseline balanced accuracy with the baseline hyperparameters on train-full, 80.6% on ADNI
and 80.4% on AIBL, are similar to the results of (Wen et al., 2020). With DA, we improve our bal-
anced accuracy to 86.3% on ADNI and 85.1% on AIBL: this performance is similar to their result
using autoencoder pretraining (which can be very long to compute) and longitudinal data (1830 CN
and 1106 AD images) instead of baseline data (243 CN and 210 AD images) as we did. Finally, the

64

Toward a Geometry-Aware VAE

main results from these experiments can be summarized as follows:

• train-50 and baseline model: balanced accuracy increases by 6.2 pts on ADNI and 8.9 pts on
AIBL,

• train-full and baselinemodel: balanced accuracy increases by 5.7 pts on ADNI and 4.7 pts on
AIBL,

• train-50 and optimized model: balanced accuracy increases by 2.5 pts on ADNI and 6.3 pts
on AIBL,

• train-full and optimized model balanced accuracy increases by 1.5 pts on ADNI and -0.1 pts
on AIBL.

1.6 Discussion

Contrary to techniques that are specific to a field of application, our method produced relevant data
for diverse data sets including 2D natural images (MNIST, EMNIST, Fashion and CIFAR) or 3D med-
ical images (ADNI and AIBL). Moreover, we noted that the networks trained on ADNI gave similar
balanced accuracies on the ADNI test subset and AIBL showing that our synthetic data learned
on ADNI benefit in the same way AIBL, and that it did not overfit the characteristics of ADNI. In
addition to the robustness across data sets, the relevance of synthetic data for diverse classifiers
was assessed. For toy data, these classifiers were a MLP, a random forest, a k-NN algorithm and
a SVM. On medical image data, two different CNNs were studied: a baseline one that has been
only slightly optimized in a previous study and an optimized one found with a more extensive
search (random search). All these classifiers performed best on augmented data than real data only.
However, for medical image data, we noted that the data augmentation was more beneficial to the
baseline network, than to the optimized one but both networks obtained a similar performance
with data augmentation on the largest training set. This means that data augmentation could avoid
spending time and/or resources optimizing a classifier. The ability of the model to generate relevant
data and enrich the original training data was also supported by the fact that almost all classifiers
could achieve a better classification performance when trained only on synthetic data than on the
real train. The method scalability to larger data sets and more complex models was also discussed.

Our generation framework appears also very well suited to perform data augmentation in a
HDLSS setting (the binary classification of AD and CN subjects using T1w MRI). In all cases, the
classification performance was at least as good as the maximum performance obtained with real
data and could even be much better. For instance, the method allowed the balanced accuracy of the
baseline CNN to jump from 66.3% to 74.3% when trained with only 50 images per class and from
77.7% to 86.3% when trained with 243 CN and 210 AD while still improving greatly sensitivity and
specificity metrics. We witnessed a greater performance improvement than the other studies using a
CNNon T1wMRI to differentiate AD andCN subjects (Valliani and Soni, 2017; Backstrom et al., 2018;
Cheng and Liu, 2017; Aderghal et al., 2017; 2018). Indeed, these studies used simple transforms (affine
and pixel-wise) that may not bring enough variability to improve the CNN performance. Though
many complex methods now exist to perform data augmentation, they are still not widely adopted
in the field of medical imaging. We suspect that this is mainly due to the lack of reproducibility

65

Chapter 1

Table 1.6: Mean test performance of the 20 runs trained on train-50 with the baseline hyperparam-
eters

ADNI AIBL

image type synthetic sensitivity specificity balanced sensitivity specificity balanced
images accuracy accuracy

real - 70.3± 12.2 62.4± 11.5 66.3± 2.4 60.7± 13.7 73.8± 7.2 67.2± 4.1

real (high-res.) - 78.5± 9.4 57.4± 8.8 67.9± 2.3 57.2± 11.2 75.8± 7.0 66.5± 3.0

synthetic 500 72.4± 6.4 65.6± 8.1 69.0± 1.9 56.6± 9.9 80.0± 5.3 68.3± 3.0

synthetic 1000 75.0± 6.2 65.6± 7.4 70.3± 2.0 62.7± 9.7 78.8± 5.3 70.8± 3.5

synthetic 2000 71.4± 6.6 70.4± 6.6 70.9± 3.0 62.1± 8.8 80.5± 4.7 71.3± 3.6

synthetic 3000 70.6± 5.2 73.8 ± 4.2 72.2± 1.4 65.7± 6.9 80.5± 4.6 73.1± 1.8

synthetic 5000 78.1 ± 6.1 69.0± 6.9 73.5± 2.0 74.5 ± 7.8 77.3± 5.4 76.5 ± 2.9

synthetic 10000 75.2± 6.8 73.4± 4.8 74.3 ± 1.9 73.6± 10.8 79.4 ± 6.0 75.9± 2.5

synthetic + real 500 71.9± 5.3 67.0± 4.5 69.4± 1.6 55.9± 6.8 81.1± 3.1 68.5± 2.5

synthetic + real 1000 69.8± 6.6 71.2± 3.7 70.5± 2.1 59.1± 9.0 82.1± 3.7 70.6± 3.1

synthetic + real 2000 72.2± 4.4 70.3± 4.3 71.2± 1.6 66.6± 7.1 79.0± 4.1 72.8± 2.2

synthetic + real 3000 71.8± 4.9 73.4± 5.5 72.6± 1.6 66.1± 9.3 81.1± 5.0 73.6± 3.0

synthetic + real 5000 74.7 ± 5.3 73.5 ± 4.8 74.1 ± 2.2 71.7 ± 10.0 80.5± 4.4 76.1 ± 3.6

synthetic + real 10000 74.7± 7.0 73.4± 6.1 74.0± 2.7 69.1± 9.9 80.7 ± 5.1 74.9± 3.2

Table 1.7: Mean test performance of the 20 runs trained on train-full with the baseline hyperparam-
eters

ADNI AIBL

image type synthetic sensitivity specificity balanced sensitivity specificity balanced
images accuracy accuracy

real - 79.1± 6.2 76.3± 4.2 77.7± 2.5 70.6± 6.7 86.3± 3.6 78.4± 2.4

real (high-res.) - 84.5± 3.8 76.7± 4.0 80.6± 1.1 71.6± 6.4 89.2± 2.7 80.4± 2.6

synthetic 500 81.6± 6.8 79.5± 5.8 80.5± 2.4 74.7± 9.3 87.3± 4.8 81.0± 3.2

synthetic 1000 82.9± 4.5 82.0± 5.8 82.4± 1.9 77.2± 7.4 88.8± 5.2 83.0± 2.0

synthetic 2000 81.9± 4.5 87.7± 3.4 84.8± 2.0 74.7± 6.3 92.1± 1.9 83.4± 2.7

synthetic 3000 84.9 ± 3.5 87.4± 3.5 86.1± 1.5 77.4± 5.8 90.9± 3.0 84.2± 1.8

synthetic 5000 84.0± 3.5 88.4± 3.3 86.2± 1.7 76.8± 4.2 92.2 ± 1.8 84.5 ± 1.8

synthetic 10000 84.2± 5.4 88.6 ± 3.9 86.4 ± 1.8 77.5 ± 7.4 91.0± 3.2 84.2± 2.4

synthetic + real 500 82.5± 3.4 81.9± 5.4 82.2± 2.4 76.0± 6.3 89.7± 3.3 82.9± 2.5

synthetic + real 1000 84.6± 4.4 84.3± 5.1 84.4± 1.8 77.0± 7.0 90.4± 3.4 83.7± 2.3

synthetic + real 2000 85.4 ± 4.0 86.4± 5.9 85.9± 1.6 77.2± 6.9 90.4± 3.8 83.8± 2.2

synthetic + real 3000 84.7± 3.6 86.8± 4.5 85.8± 1.7 77.2± 4.8 91.7 ± 2.9 84.4± 1.8

synthetic + real 5000 84.6± 4.2 86.9± 3.6 85.7± 2.1 76.9± 5.2 91.4± 3.0 84.2± 2.2

synthetic + real 10000 84.2± 2.8 88.5 ± 2.9 86.3 ± 1.8 79.1 ± 4.7 91.0± 2.6 85.1 ± 1.9

66

Toward a Geometry-Aware VAE

Table 1.8: Mean test performance of the 20 runs trained on train-50 with the optimized hyperpa-
rameters

ADNI AIBL

image type synthetic sensitivity specificity balanced sensitivity specificity balanced
images accuracy accuracy

real - 75.4± 5.0 75.5± 5.3 75.5± 2.7 68.6± 8.5 82.6± 4.2 75.6± 4.1

real (high-res.) - 73.6± 6.2 70.6± 5.9 72.1± 3.1 57.8± 12.3 84.6± 4.2 71.2± 5.1

synthetic 500 75.8± 3.0 77.6± 5.3 76.7± 2.8 73.2± 9.0 83.6 ± 4.0 78.4± 4.0

synthetic 1000 76.7± 4.6 78.5± 4.9 77.6 ± 3.7 78.7± 7.5 83.2± 4.8 80.9± 4.3

synthetic 2000 73.9± 3.6 79.8 ± 4.0 76.8± 3.0 78.2± 6.9 82.4± 3.7 80.3± 3.5

synthetic 3000 74.4± 6.1 79.8± 4.9 77.1± 4.0 76.4± 10.1 82.4± 4.3 79.4± 4.7

synthetic 5000 77.1± 4.5 77.4± 5.2 77.2± 2.1 81.1± 5.9 82.0± 3.9 81.5 ± 2.6

synthetic 10000 77.5 ± 5.3 77.3± 4.7 77.4± 3.1 81.7 ± 5.4 79.7± 4.1 80.7± 2.9

synthetic + real 500 73.2± 4.2 78.0± 3.3 75.6± 2.5 69.2± 9.4 82.7 ± 4.1 76.0± 4.2

synthetic + real 1000 76.1± 5.3 79.5 ± 2.9 77.8± 2.3 79.3± 5.8 82.5± 4.2 80.9± 3.2

synthetic + real 2000 75.2± 3.8 78.6± 4.4 76.9± 2.4 77.8± 8.8 82.2± 4.5 80.0± 3.6

synthetic + real 3000 76.5± 3.8 79.2± 4.2 77.8± 1.9 80.9± 7.9 81.4± 4.2 81.2± 3.7

synthetic + real 5000 77.1± 3.7 76.7± 4.1 76.9± 2.5 80.7± 6.1 81.2± 3.7 80.9± 2.7

synthetic + real 10000 77.8 ± 4.6 78.2± 4.9 78.0 ± 2.1 81.7 ± 4.9 81.9± 4.6 81.9 ± 2.2

Table 1.9: Mean test performance of the 20 runs trained on train-full with the optimized hyperpa-
rameters

ADNI AIBL

image type synthetic sensitivity specificity balanced sensitivity specificity balanced
images accuracy accuracy

real - 82.5± 4.2 88.5± 6.6 85.5± 2.4 75.1± 8.4 88.7± 9.0 81.9± 3.2

real (high-res.) - 82.6± 4.5 88.9± 6.3 85.7± 2.5 78.9± 5.4 89.9± 4.0 84.4± 1.7

synthetic 500 81.7± 3.6 90.5± 3.9 86.1± 1.4 75.5± 7.1 89.8± 4.3 82.6± 2.9

synthetic 1000 82.8± 3.4 90.0± 4.0 86.4± 2.1 76.8± 4.5 91.5± 2.5 84.2± 1.7

synthetic 2000 81.3± 2.8 91.2± 2.8 86.2± 1.7 76.2± 6.7 92.2 ± 3.6 84.2± 2.6

synthetic 3000 82.2± 4.9 90.6± 4.5 86.4± 2.0 77.7± 6.3 90.8± 4.4 84.3± 2.0

synthetic 5000 80.6± 3.4 91.6 ± 2.5 86.1± 1.9 75.3± 5.4 92.4± 2.5 83.8± 2.0

synthetic 10000 84.0 ± 3.8 89.1± 3.1 86.5 ± 1.7 79.2 ± 5.2 90.1± 3.7 84.7 ± 2.3

synthetic + real 500 82.3± 2.3 89.8± 2.7 86.0± 1.8 74.9± 5.0 91.4± 2.6 83.2± 2.4

synthetic + real 1000 82.5± 3.3 90.5± 4.1 86.5± 1.9 76.4± 5.6 91.0± 3.4 83.7± 2.0

synthetic + real 2000 83.1 ± 4.2 91.3 ± 3.2 87.2 ± 1.7 76.0± 4.7 92.0± 2.4 84.0± 2.0

synthetic + real 3000 81.3± 3.7 90.4± 3.4 85.8± 2.6 74.9± 7.3 92.3± 2.6 83.6± 3.2

synthetic + real 5000 81.9± 3.5 90.9± 2.5 86.4± 1.3 74.1± 4.9 92.9 ± 1.9 83.5± 2.2

synthetic + real 10000 82.2± 3.4 91.2± 3.6 86.7± 1.8 76.4 ± 4.2 92.1± 2.1 84.3 ± 1.8

67

Chapter 1

of such frameworks. Hence we provide the source code, as well as scripts to easily reproduce the
experiments of this chapter from the ADNI and AIBL data set download to the final evaluation of the
CNN performance. We also developed a software 7 implementing the method and making it easily
accessible to the community.

However, our classification performance on synthetic data could be improved in many ways.
First, we chose in this study not to spend much time optimizing the VAE’s hyperparameters and so
in Sec. 1.5 we chose to work with down-sampled images to deal with memory issues. We could look
for another architecture to train the VAE directly on high-resolution images leading potentially to
a better performance as witnessed in experiments on real images only. Moreover, we could couple
the advantages of other techniques such as autoencoder pretraining or weak supervision to our
data augmentation framework. However, the advantages may not stack as observed when using DA
on optimized hyperparameters. Finally, we chose to train our networks with only one image per
participant, but our framework could also benefit from the use of the whole follow-up of all patients
to further improve performance. However, a long follow-up is rather an exception in the context
of medical imaging. This is why we assessed the relevance of our DA framework in the context of
small data sets which is a main issue in this field. Nonetheless, a training set of 50 images per class
can still be seen as large in the case of rare diseases and so it may be interesting to evaluate the
reliability of our method on even smaller training sets.

1.7 Conclusion

In this chapter, we proposed a new VAE-based data augmentation framework whose performance
and robustness were validated on classification tasks on toy and real-life data sets. This method re-
lies on a model combining a proper latent space modeling of the VAE seen as a Riemannian manifold
and a new generation procedure exploiting such geometrical aspects. In particular, the generation
method does not use the prior as is standard since we showed that, depending on its choice and
the data set considered, it may lead to a very poor latent space prospecting and a degraded sam-
pling while the proposed method does not suffer from such drawbacks. The proposed amendments
were motivated, discussed and compared to other VAE models and demonstrated promising results.
The model indeed appeared to be able to generate new data faithfully and demonstrated a strong
generalization power which makes it very well suited to perform data augmentation even in the
challenging context of HDLSS data. For each augmentation experiment, it was able to enrich the
initial data set so that a classifier performs better on augmented data than only on the real ones.
Future work would consist in building a framework able to handle longitudinal data and so able to
generate not only one image but a whole patient trajectory.

Acknowledgment

The research leading to these results has received funding from the French government under man-
agement of Agence Nationale de la Recherche as part of the “Investissements d’avenir” program,
reference ANR-19-P3IA-0001 (PRAIRIE 3IA Institute) and reference ANR-10-IAIHU-06 (Agence Na-

7https://github.com/clementchadebec/pyraug

68

https://github.com/clementchadebec/pyraug

Toward a Geometry-Aware VAE

tionale de la Recherche-10-IA Institut Hospitalo-Universitaire-6). This work was granted access to
the HPC resources of IDRIS under the allocation 101637 made by GENCI (Grand Équipement Na-
tional de Calcul Intensif).

Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Depart-
ment of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on
Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous con-
tributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foun-
dation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.;
Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-
La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.;
Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharma-
ceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diag-
nostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation;
Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeu-
tics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites
in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes
of Health (www.fnih.org). The grantee organization is the Northern California Institute for
Research and Education, and the study is coordinated by the Alzheimer’s Therapeutic Research In-
stitute at the University of Southern California. ADNI data are disseminated by the Laboratory for
Neuro Imaging at the University of Southern California.

69

www.fnih.org

Chapter 1

1.8 Appendices

1.8.1 Riemannian Geometry

In the framework of differential geometry, one may define a Riemannian manifoldM as a smooth
manifold endowed with a Riemannian metric g that is a smooth inner product g : p→ ⟨·|·⟩p on the
tangent space TpM defined at each point of the manifold p ∈ M. We call a chart (or coordinate
chart) (U,φ) a homeomorphism mapping an open set U of the manifold to an open set V of an
Euclidean space. The manifold is called a d−dimension manifold if for each chart of an atlas we
further have V ⊂ Rd. That is there exists a neighborhoodU of each point p of the manifold such that
U is homeomorphic toRd. Given p ∈ U , the chartφ : (x1, . . . , xd) induces a basis

(
∂
∂x1
, . . . , ∂

∂xd

)
p
on

the tangent space TpM. Hence, a local representation of the metric of a Riemannian manifold in the
chart (U,φ) can be written as a positive definite matrix G(p) = (gi,j)p,0≤i,j≤d = (⟨ ∂

∂xi
| ∂
∂xj
⟩p)0≤i,j≤d

at each point p ∈ U . That is for v, w ∈ TpM and p ∈ U , we have ⟨u|w⟩p = u⊤G(p)w. Since we
propose to work in the ambient-like manifold (Rd, g), there exists a global chart given by φ = id.
Hence, for the following, we assume that we work in this coordinate system and so G will refer to
the metric’s matrix representation in this chart.

There are two ways to apprehend manifolds. The extrinsic view assumes that the manifold
is embedded within a higher dimensional Euclidean space (think of the 2-dimensional sphere S2

embedded within R3). The intrinsic view, which is adopted in this chapter, does not make such
an assumption since the manifold is studied using its underlying structure. For example, a curve’s
length cannot be interpreted using the distance defined on an Euclidean space but requires the use
of the metric defined onto the manifold itself. The length of a curve γ between two points of the
manifold z1, z2 ∈M and parametrized by t ∈ [0, 1] such that γ(0) = z1 and γ(1) = z2 is then given
by

L(γ) =
1∫

0

∥γ̇(t)∥γ(t)dt =
1∫

0

√
⟨γ̇(t)|γ̇(t)⟩γ(t)dt .

Curves minimizing such a length are called geodesics and a distance dist between elements of a
(connected) manifold can be introduced as follows:

dist(z1, z2) = inf
γ
L(γ) s.t. γ(0) = z1, γ(1) = z2

The manifoldM is said to be geodesically complete if all geodesic curves can be extended to R.
In other words, at each point p of the manifold one may draw a straight line (with respect to the
formerly defined distance) indefinitely and in any direction.

1.8.2 On the Generation Process

We recall that to sample from the defined target distribution given by the inverse of the volume
element of the Riemannian manifold we recourse to the Hamiltonian Monte Carlo (HMC) sampler
since the normalizing constant is hard to compute. Hence, we recall in this section some elements
on the HMC sampler and how it applies in our specific framework.

70

Toward a Geometry-Aware VAE

Likewise the RHMC presented in the previous section, given a target density ptarget we want
to sample from, the idea behind the HMC sampler is to introduce a random variable v ∼ N (0, Id)
independent from z and rely on Hamiltonian dynamics. Analogous to physical systems, z can again
be seen as the position and v as the velocity of a particle whose potential energy U(z) and kinetic
energy K(v) are given by

U(z) = − log ptarget(z), K(v) =
1

2
v⊤v .

These two energies give together the Hamiltonian (Duane et al., 1987; Leimkuhler and Reich, 2004)

H(z, v) = U(z) +K(v) .

The evolution in time of such a particle is governed by Hamilton’s equations as follows
∂zi
∂t

=
∂H

∂vi
,

∂vi
∂t

= −∂H
∂zi

.

Such equations can be integrated using a discretization scheme known as the Stormer-Verlet or
leapfrog integrator which is run l times

v(t+ γ/2) = v(t)− γ

2
· ∇zU(z(t)) ,

z(t+ γ) = z(t) + γ · v(t+ γ/2) ,

v(t+ γ) = v(t+ γ/2)− γ

2
∇zU(z(t+ γ)) ,

(1.9)

where γ is the integrator step size. The HMC sampler produces a Markov chain (zn) with the
aforementioned integrator. More precisely, given zn0 , the current state of the chain, an initial velocity
is sampled v0 ∼ N (0, Id) and then Eq. (1.9) are run l times to move from (zn0 , v0) to (znl , vl). The
proposal znl is then accepted with probability α = min

(
1,

exp(−H(znl ,vl))

exp(−H(zn0 ,v0))

)
. It was shown that the

chain (zn) is time-reversible and converges to its stationary distribution ptarget (Duane et al., 1987;
Liu, 2008; Neal and others, 2011).

In our method ptarget is given by Eq. (1.7) and

p(z) =
1S(z)

√
detG−1(z)∫

Rd
1S(z)

√
detG−1(z)dz

,

where S is a compact set8 so that the integral is well defined. Fortunately, since the HMC sampler
allows sampling from densities known up to a normalizing constant (thanks to the acceptance ratio),
the computation of the denominator of ptarget is not needed and the Hamiltonian follows

H(z, v) = U(z) +K(v) ∝ −1

2
log detG−1(z) +

1

2
v⊤v

and is easy to compute. Hence, the only difficulty left is the computation of the gradient ∇zU(z)
needed in the leapfrog integrator which is actually pretty straightforward using the chain rule. In
this chapter, a typical choice for γ and l, the sampler’s parameters, is γ ∈ [0.01, 0.05] and l ∈ [10, 15].
We would also like to mention the recent work of (Arvanitidis et al., 2020-08-02) where the authors
used the distribution q(z) ∝ (1+

√
detG(z))−1 to sample from aWasserstein GAN (Arjovsky et al.,

2017-12-06). Nonetheless, both the framework and the metric remain quite different.
8Take for instance {z ∈ Z, ∥z∥ ≤ 2 ·maxi∥ci∥}

71

Chapter 1

1.8.3 Detailed Experimental Setting

Parameters of Sec. 1.3.3

For this experiment and for a fair comparison, each model is trained with the same neural network
architecture for the encoder and decoder presented in Table 1.10 along with the same latent space
dimension set to 2. The main parameters for the geometry-aware VAE are presented in Table 1.11.
Each model is trained until the ELBO does not improve for 20 epochs with an Adam optimizer
(Kingma and Ba, 2014) and a learning rate of 10−3. Since the data sets sizes are small, the training
is performed in a single batch.

Table 1.10: Neural Net Architectures for MNIST, EMNIST and fashion. The same architectures are
used for the VAEs, VAMP, RAE and geometry-aware VAEs.

µϕ (D, 400, ReLU) (400, d, linear)
Σϕ (400, d, linear)

πθ (d,400, ReLU) (400,D, sigmoid)

Ldiag.
ψ (D, 400, ReLU) (400, d, linear)
Llow.
ψ (400, d(d−1)

2
, linear)

D: Input space dimension, d: Latent space dimension

Table 1.11: Geometry-aware VAE parameters.

Data sets Parameters
d∗ K ε T λ

√
β0

Synthetic shapes 2 3 10−2 0.8 10−3 0.3

reduced MNIST (bal.) 2 3 10−2 0.8 10−3 0.3

reduced MNIST (unbal.) 2 3 10−2 0.8 10−3 0.3

reduced EMNIST 2 3 10−2 0.8 10−3 0.3

* Latent space dimension (same for the other models)

Parameters of Sec. 1.4

For this experiment, we consider a vanilla VAE, a VAEwith VAMP prior, a geometry-aware VAE using
the prior to generate, a geometry-aware VAE using the proposed method, a regularized autoencoder
with a penalty on the gradient of the decoder as proposed in (Ghosh et al., 2020) and consider two
other approaches proposed in the literature to improve the generation from a VAE. The first one is a
two stage VAE as proposed in (Dai and Wipf, 2018) and the second one consists in fitting a mixture
of Gaussian in the latent space of the VAE post-training (Ghosh et al., 2020).

MNIST, EMNIST and Fashion For these data sets, we use the same parameters and neural net-
work architectures as presented in the former section and Table 1.10 except for reduced Fashion
where the dimension of the latent space is set to 5. As to training parameters for the VAEs, for each
model we use an Adam optimizer with a learning rate set to 10−3. Since the data sets sizes are small
the training is performed in a single batch. An implementation of all the models can be found at
https://github.com/clementchadebec/benchmark_VAE.

72

https://github.com/clementchadebec/benchmark_VAE

Toward a Geometry-Aware VAE

CIFAR For CIFAR, each model is trained for 500 epochs and we keep the model achieving the
best ELBO. The latent space dimension is set to 5 for all models. The training is performed with
an Adam optimizer (Kingma and Ba, 2014) and a learning rate of 10−4. Since the data sets sizes
are small the training is performed in a single batch. All the models share again the same neural
network architectures for both the encoder and decoder which is described in Table 1.12.

Table 1.12: Neural Net Architectures for CIFAR. The same architectures are used for the VAEs,
VAMP, RAE and geometry-aware VAEs.

CIFAR10

Encoder (3, 32, 32)

Layer 1
Conv(128, (4, 4), stride=2)

Batch normalization
ReLU

Layer 2
Conv(256, (4, 4), stride=2)

Batch normalization
ReLU

Layer 3
Conv(512, (4, 4), stride=2)

Batch normalization
ReLU

Layer 4
Conv(1024, (4, 4), stride=2)

Batch normalization
ReLU

Layer 5 Linear(4096, 10)

Decoder (10)

Layer 1 Linear(65536)
Reshape(1024, 8, 8)

Layer 2
ConvT(512, (4, 4), stride=2)

Batch normalization
ReLU

Layer 3
ConvT(256, (4, 4), stride=2)

Batch normalization
ReLU

Layer 4
ConvT(3, (4, 4), stride=1)
Batch normalization

Sigmoid

Classifiers Settings As to the classifiers, for Sec. 1.4.2, we use a DenseNet (Huang et al., 2017) as
benchmark for data augmentation. The implementation we use is the one proposed in (Amos, 2020)
with a growth rate equals to 10, depth of 20 and 0.5 reduction and the model is trained with a learning
rate of 10−3, weight decay of 10−4 and a batch size of 200. The classifier is trained until the loss does
not improve on the validation set for 50 epochs and tested on the original test sets (e.g. ≈ 1000
samples per class for MNIST). For Sec. 1.4.2, the MLP has 400 hidden units with ReLU activation
function. It is trained with Adam optimizer and a learning rate of 10−3. Training is stopped if the
loss does not improve on the validation set for 20 epochs. In Sec. 1.4.2, we consider a DenseNet
again and increase (resp. decrease) its depth to increase (resp. decrease) the number of parameters
of the classifier. Any other parameter is set to the value mentioned earlier.

73

Chapter 1

Parameters of Sec. 1.5

To generate new data on the ADNI database we amend the neural network architectures and use
the one described in Table 1.13. The parameters used in the geometry-aware VAE are provided in
Table 1.14. An Adam optimizer with a learning rate of 10−5 and batch size of 25 are used. The VAE
model is trained until the ELBO does not improve for 50 epochs. Generating 50 ADNI images takes
approx. 30 s.9 with the proposed method on Intel Core i7 CPU (6x1.1GHz) and 16 GB RAM.

Table 1.13: Neural Net Architecture

µϕ (D, h1, ReLU) (h1, h2, ReLU) (h2, h3, ReLU) (h3, d, lin)
Σϕ (h1, h2, ReLU) (h2, h3, ReLU) (h3, d, lin)

πθ (d, h3, ReLU) (h3, h2, ReLU) (h2, h1, ReLU) (h1,D, sig)

Ldiag.
ψ (D, h3, ReLU) (h3, d, lin) - -
Llow.
ψ (h3, d(d−1)

2
, lin) - -

D h1 h2 h3 d
777504 500 500 400 10

Table 1.14: Geometry-aware parameters settings for ADNI database

Data set Parameters
d K ε T λ

√
β0

ADNI 10 3 10−3 1.5 10−2 0.3

1.8.4 A Few More Sampling Comparisons (Sec. 1.3.3)

In addition to the comparison performed in Sec. 1.3.3, we also compare qualitatively a Vanilla VAE,
a VAE with VAMP prior and a geometry-aware VAE on four reduced data sets and in higher dimen-
sional latent spaces of dimension 10. The first one is created with 180 binary rings and disks with
different diameters and thicknesses ensuring balanced classes. The second one is composed of 120
samples of EMNIST (letter M) and referred to as reduced EMNIST. Another one is created with 120
samples from the classes 0, 1 and 2 ofMNIST database ensuring balanced classes and is called reduced
MNIST. The last one, reduced Fashion, is again composed of 120 samples from three classes (shoes,
trouser and bag) from FashionMNIST and ensuring balanced classes. The models have the same ar-
chitectures as described in Table 1.10 and are trained with the parameters stated in Table 1.15. Each
model is trained until the ELBO does not improve for 20 epochs with Adam optimizer, a learning
rate of 10−3 and in a single batch. In Fig. 1.10 are presented from top to bottom: 1) an extract of the
training samples for each data set; 2) samples obtained with a vanilla VAE with a Gaussian prior;
2) data generated from a VAE with VAMP prior; 3) samples created by a geometry-aware VAE and
using the prior or 4) samples from our method. As discussed in the paper, the proposed method is
again able to visually outperform peers since for all data sets it is able to create sharper and more
meaningful samples even if the number of training samples is quite small.

9Depends on the length of the MCMC chain and HMC hyper-parameter, l. We used 300 steps with l = 15.

74

Toward a Geometry-Aware VAE

Table 1.15: Geometry-aware VAE parameters.

Data sets Parameters
d∗ K ε T λ

√
β0

Synthetic shapes 10 3 10−2 1.5 10−3 0.3

reduced MNIST 10 3 10−2 1.5 10−3 0.3

reduced EMNIST 10 3 10−2 1.5 10−3 0.3

reduced Fashion 10 3 10−2 1.5 10−3 0.3

* Latent space dimension (same for VAE and VAMP-VAE)

1.8.5 Additional Results (Sec. 1.4.2)

Further to the experiments presented in Sec. 1.4.2, we also provide the results of the four classifiers
on reduced EMNIST and reduced Fashion in Fig. 1.9. Again, for most classifiers the proposed method
either equals or greatly outperform the baseline.

MLP SVM kNN Random Forest
60
65
70
75
80
85
90
95

100

Ac
cu

ra
cy

baseline
augmented (200)
augmented (500)

augmented (1000)
augmented (2000)
synthetic (200)

synthetic (500)
synthetic (1000)
synthetic (2000)

(a) reduced EMNIST

MLP SVM kNN Random Forest
60
65
70
75
80
85
90
95

100

Ac
cu

ra
cy

baseline
augmented (200)
augmented (500)

augmented (1000)
augmented (2000)
synthetic (200)

synthetic (500)
synthetic (1000)
synthetic (2000)

(b) reduced FashionMNIST

Figure 1.9: Evolution of the accuracy of four benchmark classifiers on the reduced EMNIST data set
(top) and the reduced Fashion data set (bottom). Stochastic classifiers are trained with five indepen-
dent runs and we report the mean accuracy and standard deviation on the test set.

1.8.6 A few More Sample Generation on ADNI

In this section, we first provide several slices of a 3D image generated by our model. The model is
trained on the class AD of train-50 (i.e. on 50MRI of patient having been diagnosed with Alzheimer’s
disease). The generated image is presented in Fig. 1.11. We also present in Fig. 1.12, four generated
patients for a model trained on train-50. The two left images show cognitively normal generated
patients while the rightmost images represent AD generated patients.

1.8.7 The Intruders: Answers to Fig. 1.8

In Fig. 1.8 of the chapter, the synthetic samples are the leftmost and rightmost images while the real
patients are in the middle. The model is trained on the class AD of train-full i.e. 210 images.

é

75

Chapter 1

Training
samples

reduced EMNIST (120) reduced MNIST (120) reduced Fashion (120) Synthetic (180)

VAE +
N (0, Id)

VAE +
VAMP prior

RHVAE +
N (0, Id)

RHVAE +
Ours

Figure 1.10: Comparison of four sampling methods on reduced EMNIST (120 letters M), reduced
MNIST, reduced FashionMNIST and the synthetic data sets in higher dimensional latent spaces (di-
mension 10). From top to bottom: 1) samples extracted from the training set; 2) samples generated
with a Vanilla VAE and using the prior (N (0, Id)); 3) from the VAMP prior VAE ; 4) from a RHVAE
and the prior-based generation scheme and 5) from a RHVAE and using the proposed method. All
the models are trained with the same encoder and decoder networks and identical latent space di-
mension. An early stopping strategy is adopted and consists in stopping training if the ELBO does
not improve for 20 epochs. The number of training samples is noted between parenthesis.

76

Toward a Geometry-Aware VAE

Figure 1.11: Several slices of a generated image. The model is trained on the AD class of train-50
(i.e. 50 images of AD patients).

77

Chapter 1

Figure 1.12: Images generated by our method when trained on train-50. Left: CN generated patients.
Right: AD generated patients.

78

Chapter 2

Sampling from Riemannian Manifolds - Ap-
plication to the RHVAE

In this chapter, we propose a new way to sample from Riemannian manifolds. The method consists in
sampling from a Riemannian random walk that follows geodesic paths which is a natural way of ex-
ploring Riemannian manifolds. We apply this method to the geometry-based Variational Autoencoder
proposed in the previous chapter and evaluate its usefulness for data augmentation in the low data
regime. The proposed method is validated across various standard and real-life data sets. In particular,
this scheme allows to greatly improve classification results on the OASIS database where balanced ac-
curacy jumps from 80.7% for a classifier trained with the raw data to 88.6% when trained only with the
synthetic data generated by our method. Such results were also observed on 3 standard data sets and
with other classifiers.1.

This chapter led to a publication in a MICCAI 2021 workshop (DALI). See (Chadebec and Allas-
sonnière, 2021).

1A code is available at https://github.com/clementchadebec/Data_Augmentation_with_
VAE-DALI

79

https://github.com/clementchadebec/Data_Augmentation_with_VAE-DALI
https://github.com/clementchadebec/Data_Augmentation_with_VAE-DALI

Chapter 2

2.1 The Wrapped Normal Distribution . 81
2.2 Computing the Exponential Map . 81
2.3 Riemannian Random Walk . 82
2.4 Experiments . 83

2.4.1 Qualitative Comparison with Prior-Based Methods 83
2.4.2 Discussion . 85

2.5 Data Augmentation Experiments For Classification 88
2.5.1 Augmentation Setting . 88
2.5.2 Results . 89

2.6 Conclusion . 91
2.7 Appendices . 92

2.7.1 VAEs Parameters Setting . 92
2.7.2 Classifier Parameter Setting . 93

80

Sampling from Riemannian Manifolds - Application to the RHVAE

−10 −5 0 5 10

−10

−5

0

5

10
geodesic

velocity

starting point

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

−10 −5 0 5 10
−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

rings

circles

samples

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

−10 −5 0 5 10
−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

rings

circles

samples

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 2.1: Left: Geodesic shooting in a latent space learned by a RHVAE with different starting
points (red dots) and initial velocities (orange arrows). Middle and right: Samples from the wrapped
normal NW (p, Id). The log metric volume element log

√
detG(z) is presented in gray scale.

2.1 The Wrapped Normal Distribution

We assume thatM is a geodesically-complete Riemannian manifold endowed with a known Rie-
mannian metric G. We recall that for any p ∈ M, the exponential map at p, Expp, maps a vector
v of the tangent space TpM to a point of the manifold p̃ ∈ M such that the geodesic starting at p
with initial velocity v reaches p̃ at time 1. In particular, since the manifold is geodesically complete,
then Expp is defined on the entire tangent space TpM. The notion of normal distribution may be
extended to Riemannian manifolds in several ways. One of them is thewrapped normal distribution.
The main idea is to define a classic normal distribution N (0,Σ) on the tangent space TpM for any
p ∈M and pushing it forward to the manifold using the exponential map. This defines a probability
distribution on the manifoldNW (p,Σ) called the wrapped normal distribution. Sampling from this
distribution is straightforward and consists in drawing a velocity in the tangent space fromN (0,Σ)
and mapping it onto the manifold using the exponential map (Mallasto and Feragen, 2018). Hence,
the wrapped normal allows for a manifold prospecting along geodesic paths. Nonetheless, this re-
quires to compute Expp which can be performed with a numerical scheme (see. Sec. 2.2). On the
left of Fig. 2.1 are displayed some geodesic paths in the latent space and with respect to the met-
ric learned by a RHVAE presented in Chapter 1 with different starting points (red dots) and initial
velocities (orange arrows). Samples from NW (p, Id) are also presented in the middle and the right
along with the encoded input data. As expected this distribution takes into account the local geom-
etry of the manifold thanks to the geodesic shooting steps. This is a very interesting property since
it encourages the samples to remain close to the data as geodesics tend to travel through locations
with the lowest volume element

√
detG(z) and so avoid areas with very poor information.

2.2 Computing the Exponential Map

Sampling from the wrapped normal distribution nonetheless requires to compute the exponential
map at any given point p ∈ M and for any tangent vector v ∈ TpM. To do so, we can rely on the

81

Chapter 2

Hamiltonian definition of geodesic curves. First, for any given v ∈ TpM, the linear form:

qv :

{
TpM → R
u → gp(u, v)

,

is called a moment and is a representation of v in the dual space. In short, we may write qv(u) =
u⊤Gv. Then, the definition of the Hamiltonian follows

H(p, q) =
1

2
g∗p(q, q) ,

where g∗p is the dual metric whose local representation is given byG−1(p), the inverse of the metric
tensor. Finally, all along geodesic curves the following equations hold

∂p

∂t
=
∂H

∂q
,

∂q

∂t
= −∂H

∂p
. (2.1)

Such a system of differential equations may be integrated pretty straightforwardly using simple
numerical schemes such as the second order Runge Kutta integration method and Alg. 2 as in (Louis,
2019).

Algorithm 2 Computing the Exponential map
Input: z0 ∈M, v ∈ Tz0M and T
q ← G · v
dt← 1

T

for t = 1→ T do

pt+ 1
2
← pt +

1
2
· dt · ∇qH(pt, qt);

qt+ 1
2
← qt − 1

2
· dt · ∇pH(pt, qt);

pt+1 ← pt + dt · ∇qH(pt+ 1
2
, qt+ 1

2
);

qt+1 ← qt − dt · ∇pH(pt+ 1
2
, qt+ 1

2
);

end for

Return pT

2.3 Riemannian RandomWalk

A natural way to explore geodesically-complete Riemannian manifolds consists in using a random
walk like algorithm which moves from one location to another with a certain probability. The idea
here is to create a geometry-aware Markov Chain (zt)t∈N where zt+1 is sampled using the wrapped
normal zt+1 ∼ NW (zt,Σ). However, a drawback of such a method is that every sample of the chain
is accepted regardless of its relevance. Hence, we propose to adopt the same setting as (Lebanon,
2006) where the author proposed to see the inverse metric volume element as a maximum likelihood
objective to perform metric learning. For instance, if we consider the metric learned by a RHVAE,
the likelihood definition writes

L(z) = ρS(z)
√
detG−1(z)∫

Rd
ρS(z)

√
detG−1(z)dz

, (2.2)

82

Sampling from Riemannian Manifolds - Application to the RHVAE

where ρS(z) = 1 if z ∈ S, 0 otherwise, and S is taken as a compact set so that the integral is well
defined. Noteworthy is the fact that in this case, by design, the learned metric is such that it has a
high volume element far from the data (Chadebec et al., 2020). This implies that it encodes in a way
the amount of information contained at a specific location of the latent space. The higher the volume
element, the less information we have. Hence, we propose to use this measure to assess the samples

quality as an acceptance-rejection rate α in the chain where α(z̃, z) = min

(
1,

√
detG−1(z̃)√
detG−1(z)

)
, z is the

current state of the chain and z̃ is the proposal obtained by sampling from the wrapped Gaussian
NW (z,Σ). The idea is to compare the relevance of the proposed sample to the current one. The
ratio is such that any new sample improving the likelihood metricL is automatically accepted while
a sample degrading the measure is more likely to be rejected in the spirit of Hasting-Metropolis
sampler. A pseudo-code is provided in Alg. 3.

Algorithm 3 Riemannian random walk
Input: z0, Σ
for t = 1→ T do

Draw vt ∼ N (0,Σ)

z̃t ← Expzt−1
(vt)

Accept the proposal z̃t with probability α
end for

2.4 Experiments

We have propose a new sampling method to discover geodesically-complete Riemannian manifolds.
We nowpropose to apply suchmethod to themodel proposed in Chapter 1 i.e. the RHVAE.Hence, we
will adopt the same setting as (Chadebec et al., 2022b) and so use a RHVAE since the metric is easily
computable, constraints geodesic paths to travel through most populated areas of the latent space
and the learned Riemannian manifold is geodesically complete. The view we adopt is to consider
the VAE as a tool to perform dimensionality reduction by extracting the latent structure of the data
within a lower dimensional space. Having learned such a structure, we propose to exploit it to
enhance the data generation process. This differs from the fully probabilistic view which uses the
prior to generate. We believe that this is far from being optimal since the prior appears quite strongly
data dependent. We now assume that we are given a latent space with a Riemannian structure where
the metric has been estimated from the input data. Noteworthy is the fact that in such a case, Alg. 2
involves closed form operations since the inverse metric tensorG−1 is known and so the gradients
in Eq. (2.1) can be easily computed.

2.4.1 Qualitative Comparison with Prior-Based Methods

In this section, we compare the samples quality between prior-based methods and ours on various
standard and real-life data sets.

83

Chapter 2

Latent
space

VAE - N (0, Id)

−5 0 5

−6

−4

−2

0

2

4

6 circles

rings

samples

VAMP - VAE

−40 −20 0 20 40

−75

−50

−25

0

25

50

75 circles

rings

samples

RHVAE

−10 −5 0 5 10
−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

circles

rings

samples

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ours

−10 −5 0 5 10
−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

circles

rings

samples

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Decoded
samples

Figure 2.2: Comparison between prior-based generation methods and the proposed Riemannian
random walk (ours). Top: the learned latent space with the encoded training data (crosses) and 100
samples for each method (blue dots). Bottom: the resulting decoded images. The models are trained
on 180 binary circles and rings with the same neural network architectures.

Standard Data Sets

The method is first validated on a hand-made synthetic data set composed of 180 binary images
of circles and rings of different diameters and thicknesses (see training samples in Fig. 2.3). We
then train a VAE with a normal prior, a VAE with a VAMP prior (Tomczak and Welling, 2018) and a
RHVAE until the ELBO does not improve for 50 epochs. Any relevant parameters setting is stated
in Appendix 2.7.1.

Fig. 2.2 highlights the obtained samplings with each model using either the prior-based genera-
tion procedure or the one proposed in this chapter. The first row presents the learned latent space
along with the means of the posteriors associated to the training data (crosses) and 100 latent space
samples for each generationmethod (blue dots). The second row displays the corresponding decoded
images. The first outcome of such a study is that sampling from the prior distributionN (0, Id) leads
to a poor latent space prospecting. Therefore, even with balanced training classes, we end up with
a model over-representing certain elements of a given class (rings). This is even more striking with
the RHVAE since it tends to stretch the resulting latent space. This effect seems nonetheless miti-
gated by the use of a multimodal prior such as the VAMP. However, another limitation of prior-based
methods is that they may sample in locations of the latent space potentially containing very few in-
formation (i.e. where no data is available). Since the decoder appears to interpolate quite linearly, the
classic scheme will generate images which mainly correspond to a superposition of samples (see an
example with the red dots in Fig. 2.2 and the corresponding samples framed in red). Moreover, there
is no way to assess a sample quality before decoding it and assessing visually its relevance. These
limitations may lead to a (very) poor representation of the actual data set diversity while presenting
quite a few irrelevant samples. Impressively, sampling along geodesic paths leads to far more diverse
and sharper samples. The new sampling scheme avoids regions that have been poorly prospected

84

Sampling from Riemannian Manifolds - Application to the RHVAE

so that almost every decoded sample is visually satisfying and accounts for the data set diversity.
In Fig. 2.3, we also compare the models on a reduced MNIST (LeCun, 1998) data set composed of
120 samples of 3 different classes and a reduced FashionMNIST (Xiao et al., 2017) data set composed
again of 120 samples from 3 distinct classes. The models are trained with the same neural network
architectures, batch size and learning rate. An early stopping strategy is adopted and consists in
stopping training if the ELBO does not improve for 50 epochs. As discussed earlier, changing the
prior may indeed improve the model generation capacity. For instance samples from the VAE with
the VAMP prior (3rd row of Fig. 2.3) are closer to the training data (1st row of Fig. 2.3) than with the
Gaussian prior (2nd and 4th row). The model is for instance able to generate circles when trained
with the synthetic data while models using a standard normal prior are not. Nonetheless, a non
negligible part of the generated samples are degraded (see saturated images for the reduced MNIST
data for instance). This aspect is mitigated with the proposed generation method which generates
more diverse and sharper samples.

OASIS Database

The new generation scheme is then assessed on the publicly available OASIS database composed of
416 patients aged 18 to 96, 100 of whom have been diagnosed with very mild to moderate Alzheimer
disease (AD). A VAE and a RHVAE are then trained to generate either cognitively normal (CN) or
AD patients with the same early stopping criteria as before. Fig. 2.4 shows samples extracted from
the training set (top), MRI generated by a vanilla VAE (2nd row) and images from the Riemannian
random walk we propose (3rd row). For each method, the upper row shows images of patients
diagnosed CN while the bottom row presents an AD diagnosis. Again the proposed sampling seems
able to generate a wider range of sharp samples while the VAE appears to produce non-realistic
degraded images which are very similar (see red frames). For example, the proposed scheme allows
us to generate realistic old2 patients with no AD (blue frames) or younger patients with AD (orange
frames) even though they are under-represented in the training set. Generating 100 images of OASIS
database takes 1 min. with the proposed method and 40 sec.3 with Intel Core i7 CPU (6x1.1GHz)
and 16 GB RAM.

2.4.2 Discussion

It may be easily understood that the choice of the covariance matrix Σ in Alg. 3 has quite an influ-
ence on the resulting sampling. On the one hand, a Σ with strong eigenvalues will imply drawing
velocities of potentially high magnitude allowing for a better prospecting but proposals are more
likely to be rejected. On the other hand, small eigenvalues involve a high acceptance rate but it will
take longer to prospect themanifold. An adaptivemethodwhereΣ depends onGmay be considered
and will be part of future work.

2An older person is characterized by larger ventricles.
3Depends on the chains’ length (here 200 steps per image).

85

Chapter 2

Training samples

MNIST FashionMNIST Synthetic data

VAE +N (0, Id)

VAE + VAMP prior

RHVAE + N (0, Id)

RHVAE +

Riemannian random walk (Ours)

Figure 2.3: Comparison of 4 sampling methods on the reduced MNIST, reduced Fashion and the
synthetic data sets. From top to bottom: 1) samples extracted from the training set; 2) samples
generatedwith a Vanilla VAE and using the prior; 3) from the VAMP prior VAE; 4) from a RHVAE and
the prior-based generation scheme; 5) from a RHVAE and using the proposed Riemannian random
walk. All the models are trained with the same encoder and decoder networks and identical latent
space dimension. An early stopping strategy is adopted and consists in stopping training if the ELBO
does not improve for 50 epochs.

86

Sampling from Riemannian Manifolds - Application to the RHVAE

Train
(CN)

Train
(AD)

VAE
(CN)

VAE
(AD)

Ours
(CN)

Ours
(AD)

Figure 2.4: Generation of CN or AD patients from the OASIS database. Training samples (top),
generation with a VAE and normal prior (2nd row) and with the Riemannian random walk (bottom).
Generating using the prior leads to either unrealistic images or similar samples (red frames) while the
proposedmethod generates sharper andmore diverse samples. For instance, it is able to generate CN
older patients (blue frames) or younger AD (orange frames) even though they are under-represented
within the training set.

Remark 3 If Σ has small enough eigenvalues then Alg. 3 samples from

L(z) = ρS(z)
√

detG−1(z)∫
Rd
ρS(z)

√
detG−1(z)dz

, (2.3)

where ρS(z) = 1 if z ∈ S, 0 otherwise, and S is taken as a compact set so that the integral is well
defined.

If Σ has small enough eigenvalues, it means that the initial velocity v ∼ N (0,Σ)will have a low
magnitude with high probability. In such a case, we can show with some approximation that the
ratio α in the Riemannian random walk is a Hasting-Metropolis ratio with target density given by
Eq. (2.3). We recall that the classic Hasting-Metropolis ratio writes

α(x, y) =
π(y)

π(x)
· q(x, y)
q(y, x)

,

where π is the target distribution and q a proposal distribution. In the case of small magnitude

87

Chapter 2

velocities, one may show that q is symmetric that is

q(x, y) = q(y, x) .

In our setting, a proposal z̃ is made by computing the geodesic γ starting at γ(0) = z with initial
velocity γ̇(0) = v where v ∼ N (0,Σ) and evaluating it at time 1. First, we remark that γ is
well defined since the Riemannian manifoldM = (R, g) is geodesically complete and γ is unique.
Moreover, we have that←−γ is the unique geodesic with initial position←−γ (0) = z̃ = γ(1) and initial
velocity ←̇−γ (0) = −γ̇(1) and we have

←−γ (t) = γ(1− t), ∀ t ∈ [0, 1] .

In the case of small enough initial velocity, a taylor expansion of the exponential may be performed
next to 0 ∈ TzM and consists in approximating geodesic curves with straight lines. That is, for
t ∈ [0, 1]

Expz(vt) ≈ z + vt ,

where v = z̃ − z. In such a case we have

γ̇(t) = v = γ̇(0) = γ̇(1) = −←̇−γ (0) .

Moreover, we have on the one hand

q(z̃, z) = p(z̃|z) = p(Expz(v)|z) ≃ N (z,Σ) .

On the other hand
q(z, z̃) = p(z|z̃) = p(Expz̃(−v)|z̃) ≃ N (z̃,Σ)

Therefore,
q(z̃, z) = q(z, z̃) .

Finally, the ratio α in the Riemannian randomwalk may be seen as a Hasting-Metropolis ratio where
the target density is given by Eq. (2.2) and so the algorithm samples from such a distribution.

For the following DA experiments we will assume that Σ has small eigenvalues and so will
sample directly using this distribution. See Sec. 2.4.1 for sampling results using the aforementioned
method.

2.5 Data Augmentation Experiments For Classification

In this section, we explore the ability of the method to enrich data sets to improve classification
results.

2.5.1 Augmentation Setting

Wefirst test the augmentationmethod on three reduced data sets extracted fromwell-known databases
MNIST and EMNIST. For MNIST, we select 500 samples applying either a balanced split or a ran-
dom split ensuring that some classes are far more represented. For EMNIST, we select 500 samples

88

Sampling from Riemannian Manifolds - Application to the RHVAE

Table 2.1: Summary of OASIS database demographics, mini-mental state examination (MMSE) and
global clinical dementia rating (CDR) scores.

Data set Label Obs. Age Sex M/F MMSE CDR

OASIS CN 316 45.1± 23.9 119/197 29.1± 1.1 0 : 316

AD 100 76.8± 7.1 41/59 24.3± 4.1 0.5 : 70 , 1 : 28, 2 : 2

Train CN 220 45.6± 23.6 86/134 29.1± 1.2 0 : 220

AD 70 77.4± 6.8 29/41 23.7± 4.3 0.5 : 47 , 1 : 21, 2 : 2

Val CN 30 48.9± 24.1 11/19 29.2± 0.8 0 : 30

AD 12 75.4± 7.2 4/8 25.8± 4.2 0.5 : 7, 1 : 5, 2 : 0

Test CN 66 41.7± 24.3 22/44 29.0± 1.0 0 : 66

AD 18 75.1± 7.5 8/10 25.8± 2.7 0.5 : 16 , 1 : 2, 2 : 0

from 10 classes such that they are composed of both lowercase and uppercase characters so that we
end up with a small database with strong variability within classes. These data sets are then split
such that 80% is allocated for training (referred to as the raw data) and 20% for validation. For a
fair comparison, we use the original test set (e.g. ∼1000 samples per class for MNIST) to test the
classifiers. This ensures statistically meaningful results while assessing the generalization power on
unseen data. We also validate the proposed DA method on the OASIS database which represents a
nice example of day-to-day challenges practitioners have to face and is a benchmark database. We
use 2D gray scale MR Images (208x176) with a mask notifying brain tissues and are referred to as
the masked T88 images in (Marcus et al., 2007). We refer the reader to their paper for further image
preprocessing details. We consider the binary classification problem consisting in trying to detect
MRI of patients having been diagnosed with Alzheimer Disease (AD). We split the 416 images into a
training set (70%) (raw data), a validation set (10%) and a test set (20%). A summary of demographics,
mini-mental state examination (MMSE) and global clinical dementia rating (CDR) is made available
in Table 2.1. On the one hand, for each data set, the train set (raw data) is augmented by a factor 5, 10
and 15 using classic DA methods (random noise, cropping etc.). On the other hand, VAE models are
trained individually on each class of the raw data. The generative models are then used to produce
200, 500, 1k or 2k synthetic samples per class with either the classic generation scheme (i.e. the
prior) or the proposed method. We then train classifiers with 5 independent runs on 1) the raw data;
2) the augmented data using basic transformations; 3) the augmented data using the VAE models; 4)
only the synthetic data generated by the VAEs. A DenseNet model4 (Huang et al., 2017) is used for
the toy data while we also train hand made MLP and CNN models on OASIS (See Appendix 2.7.2).
The main metrics obtained on the test set are reported in Tables 2.2 and 2.3.

2.5.2 Results

Toy Data

As expected generating new samples using the proposed method improves their relevance. The
method indeed allows for a quite impressive gain in the model accuracy when synthetic samples

4We use the code in (Amos, 2020) (See Appendix 2.7.2).

89

Chapter 2

Table 2.2: DA on toy data sets. Mean accuracy and standard deviation across 5 independent runs are
reported. In gray are the cells where the accuracy is higher on synthetic data than on the raw data.

Data sets MNIST MNIST** EMNIST** MNIST MNIST** EMNIST**

Raw data 89.9(0.6) 81.6(0.7) 82.6(1.4) - - -

Raw + Synthetic Synthetic only

Aug. (X5) 92.8(0.4) 86.5(0.9) 85.6(1.3) - - -
Aug. (X10) 88.3(2.2) 82.0(2.4) 85.8(0.3) - - -
Aug. (X15) 92.8(0.7) 85.9(3.4) 86.6(0.8) - - -

VAE-200* 88.5(0.9) 84.1(2.0) 81.7(3.0) 69.9(1.5) 64.6(1.8) 65.7(2.6)

VAE-500* 90.4(1.4) 87.3(1.2) 83.4(1.6) 72.3(4.2) 69.4(4.1) 67.3(2.4)

VAE-1k* 91.2(1.0) 86.0(2.5) 84.4(1.6) 83.4(2.4) 74.7(3.2) 75.3(1.4)

VAE-2k* 92.2(1.6) 88.0(2.2) 86.0(0.2) 86.6(2.2) 79.6(3.8) 78.9(3.0)

RHVAE-200* 89.9(0.5) 82.3(0.9) 83.0(1.3) 76.0(1.8) 61.5(2.9) 59.8(2.6)

RHVAE-500* 90.9(1.1) 84.0(3.2) 84.4(1.2) 80.0(2.2) 66.8(3.3) 67.0(4.0)

RHVAE-1k* 91.7(0.8) 84.7(1.8) 84.7(2.4) 82.0(2.9) 69.3(1.8) 73.7(4.1)

RHVAE-2k* 92.7(1.4) 86.8(1.0) 84.9(2.1) 85.2(3.9) 77.3(3.2) 68.6(2.3)

Ours-200* 91.0(1.1) 84.1(2.0) 85.1(1.1) 87.2(1.1) 79.5(1.6) 77.1(1.6)

Ours-500* 92.3(1.1) 87.7(0.9) 85.1(1.1) 89.1(1.3) 80.4(2.1) 80.2(2.0)

Ours-1k* 93.3(0.8) 89.7(0.8) 87.0(1.0) 90.2(1.4) 86.2(1.8) 82.6(1.3)

Ours-2k* 94.3(0.8) 89.1(1.9) 87.6(0.8) 92.6(1.1) 87.6(1.3) 86.0(1.0)

* Number of generated samples ** Unbalanced data sets

are added to the real ones (leftmost column of Table 2.2). This is even more striking when looking
at the rightmost column where only synthetic samples are used to train the classifier. For instance,
when only 200 synthetic samples per class for MNIST are generated with a VAE and used to train the
classifier, the classic method fails to produce meaningful samples since a loss of 20 pts in accuracy
is observed when compared to the raw data. Interestingly, our method seems to avoid such an
effect. Even more impressive is the fact that we are able to produce synthetic data sets on which
the classifier outperforms greatly the results observed on the raw data (3 to 6 pts gain in accuracy)
while keeping a relatively low standard deviation (see gray cells). Secondly, this example also shows
why geometric DA is still questionable and remains data dependent. For instance, augmenting the
raw data by a factor 10 (including flips and rotations) does not seem to have a notable effect on the
MNIST data sets but still improves results on EMNIST. On the contrary, our method seems quite
robust to data set changes.

OASIS

Balanced accuracy obtained on OASIS with 3 classifiers is made available in Table 2.3. In this ex-
periment, using the new generation scheme again improves overall the metric for each classifier
when compared to the raw data and other augmentation methods. Moreover, the strong relevance
of the created samples is again supported by the fact that the classifiers are again able to strongly
outperform the results on the raw data even when trained only with synthetic ones. Finally, the
method appears robust to classifiers and can be used with high-dimensional complex data such as
MRI.

90

Sampling from Riemannian Manifolds - Application to the RHVAE

Table 2.3: DA on OASIS data base. Mean balanced accuracy on independent 5 runs with several
classifiers.

Networks MLP CNN Densenet

Raw data 80.7(4.1) - 72.5(3.5) - 77.4(3.3) -

Raw + Synthetic Raw + Synthetic Raw + Synthetic
Synthetic Only Synthetic Only Synthetic Only

Aug. (X5) 84.3(1.3) - 80.0(3.5) - 73.9(5.1) -
Aug. (X10) 76.0(2.8) - 82.8(3.7) - 78.3(4.1) -
Aug. (X15) 78.7(5.3) - 80.3(3.7) - 76.6(1.1) -

VAE-200∗ 80.7(1.5) 77.8(1.3) 79.4(3.6) 65.0(12.3) 76.5(3.2) 74.0(3.0)

VAE-500∗ 79.7(1.4) 77.4(1.5) 72.6(7.0) 70.2(5.0) 74.9(4.3) 72.8(1.8)

VAE-1000∗ 81.3(0.0) 76.5(0.6) 74.4(9.4) 73.0(3.3) 73.5(1.3) 74.9(2.6)

VAE-2000∗ 80.7(0.3) 78.1(1.6) 71.1(4.9) 76.9(2.6) 74.0(4.9) 73.3(3.4)

Ours-200∗ 84.3(0.0) 86.7(0.4) 76.4(5.0) 75.4(6.6) 78.2(3.0) 74.3(4.8)

Ours-500∗ 87.2(1.2) 88.6(1.1) 81.8(4.6) 81.8(3.7) 80.2(2.8) 84.2(2.8)

Ours-1000∗ 84.2(0.3) 84.4(1.8) 83.5(3.2) 79.8(2.8) 82.2(4.7) 76.7(3.8)

Ours-2000∗ 85.3(1.9) 84.2(3.3) 84.5(1.9) 83.9(1.9) 82.9(1.8) 73.6(5.8)

* Number of generated samples

2.6 Conclusion

In this chapter, we proposed a newway to explore geodesically-complete Riemannianmanifolds using
a random walk like algorithm. We then applied the method to a Variational Autoencoder which has
learned the latent geometry of the input data. This method was then used to perform DA to improve
classification tasks in the low sample size setting on both toy and real data and with different kind
of classifiers. In each case, the method allows for an impressive gain in the classification metrics
(e.g. balanced accuracy jumps from 80.7 to 88.6 on OASIS). Moreover, the relevance of the generated
data was supported by the fact that classifiers were able to perform better when trained with only
synthetic data than on the raw data in all cases. Future work would consist in using the method on
even more challenging data such as 3D volumes and using smaller data sets.

Acknowledgment

The research leading to these results has received funding from the French government under man-
agement of Agence Nationale de la Recherche as part of the “Investissements d’avenir” program,
reference ANR-19-P3IA-0001 (PRAIRIE 3IA Institute) and reference ANR-10-IAIHU-06 (Agence Na-
tionale de la Recherche-10-IA Institut Hospitalo-Universitaire-6). Data were provided in part by
OASIS: Cross-Sectional: Principal Investigators: D. Marcus, R, Buckner, J, Csernansky J. Morris; P50
AG05681, P01 AG03991, P01 AG026276, R01 AG021910, P20 MH071616, U24 RR021382

91

Chapter 2

2.7 Appendices

2.7.1 VAEs Parameters Setting

Table 2.4 summarizes the main hyper-parameters we use to perform the experiments presented
in the chapter while Table 2.5 shows the neural networks architectures employed. As to training
parameters, we use a Adam optimizer (Kingma and Ba, 2014) with a learning of 10−3. For the aug-
mentation experiments, we stop training if the ELBO does not improve for 20 epochs for all data sets
except for OASIS where the learning rate is decreased to 10−4 and training is stopped if the ELBO
does not improve for 50 epochs.

Table 2.4: RHVAE parameters for each data set.

Data sets Parameters
d∗ nlf εlf T λ

√
β0

Synthetic 2 3 10−2 0.8 10−3 0.3

reduced Fashion 2 3 10−2 0.8 10−3 0.3

MNIST (bal.) 2 3 10−2 0.8 10−3 0.3

MNIST (unbal.) 2 3 10−2 0.8 10−3 0.3

EMNIST 2 3 10−2 0.8 10−3 0.3

OASIS 2 3 10−3 0.8 10−2 0.3

* Latent space dimension (same for VAE and VAMP-VAE)

Table 2.5: Neural networks architectures of the VAE, VAMP-VAE and RHVAE for each data set. The
encoder and decoder are the same for all models.

Synthetic, MNIST & Fashion

Net Layer 1 Layer 2 Layer 3

µ∗ϕ (D, 400, ReLU) (400, d, lin.) -
Σ∗
ϕ (400, d, lin.) -

π∗
θ (d, 400, ReLU) (400,D, sig.) -

Lψ (diag.) (D, 400, ReLU) (400, d, lin.) -
Lψ (low.) (400, d(d−1)

2
, lin.) -

OASIS

µ∗ϕ (D, 1k, ReLU) (1k, 400, relu) (400, d, lin.)
Σ∗
ϕ (400, d, lin.)

π∗
θ (d, 400, ReLU) (400, 1k, ReLU) (1k,D, sig.)

Lψ (diag.) (D, 400, ReLU) (400, d, lin.) -
Lψ (low.) (400, d(d−1)

2
, lin.) -

* Same for all VAE models

92

Sampling from Riemannian Manifolds - Application to the RHVAE

2.7.2 Classifier Parameter Setting

As to the models used as benchmark for data augmentation, the DenseNet implementation we use
is the one in (Amos, 2020) with a growth rate equals to 10, depth of 20 and 0.5 reduction and is trained
with a learning rate of 10−3. For OASIS, the MLP has 400 hidden units and ReLU activation function
and the CNN is as follows

Table 2.6: CNN classifier architecture used. Each convolutional block has a padding of 1.

Layer Architectures

input (1, 208, 176)

Layer 1

Conv2D(1, 8, kernel=(3, 3), stride=1)
Batch normalization

LeakyReLU
MaxPool (2, 2, stride=2)

Layer 2

Conv2D(8, 16, kernel=(3, 3), stride=1)
Batch normalization

LeakyReLU
MaxPool (2, 2, stride=2)

Layer 3

Conv2D(16, 32, kernel=(3, 3), stride=2)
Batch normalization

LeakyReLU
MaxPool (2, 2, stride=2)

Layer 4

Conv2D(32, 64, kernel=(3, 3), stride=2)
Batch normalization

LeakyReLU
MaxPool (2, 2, stride=2)

Layer 5 MLP(256, 100)
ReLU

Layer 6 MLP(100, 2)
Log Softmax

For the toy data, the DenseNet is trained until the loss does not improve on the validation set
for 50 epochs. On OASIS, we make a random search on the learning rate for each model chosen in
the range [10−1, 10−2, 10−3, 10−4, 10−5, 10−6]. The model is trained on 5 independent runs with the
same learning rate and keep the model achieving the best mean balanced accuracy on the validation
set. For the CNN and MLP, we stop training if the validation loss does not improve for 20 epochs
and for the densenet training is stopped if no improvement is observed on the validation loss for 10
epochs. Each model is trained with an Adam optimizer.

93

Chapter 2

94

Chapter 3

AGeometric Perspective onVariationalAu-
toencoders

This chapter introduces a new interpretation of the Variational Autoencoder framework by taking a fully
geometric point of view. We argue that vanilla VAE models unveil naturally a Riemannian structure
in their latent space and that taking into consideration those geometrical aspects can lead to better
interpolations and an improved generation procedure. This new proposed sampling method consists in
sampling from the uniform distribution deriving intrinsically from the learned Riemannian latent space,
and we show that using this scheme can make a vanilla VAE competitive and even better than more
advanced versions on several benchmark datasets. Since generative models are known to be sensitive to
the number of training samples we also stress the method’s robustness in the low data regime.

This chapter was published at the NeurIPS Conference 2022. See (Chadebec and Allassonnière,
2022).

95

Chapter 3

3.1 Introduction . 97
3.2 Variational Autoencoders . 97
3.3 Related Work . 98
3.4 Proposed Method . 99

3.4.1 A Word on Riemannian Geometry 100
3.4.2 The Riemannian Gaussian Distribution 100
3.4.3 Geometrical Interpretation of the VAE Framework 101
3.4.4 Link with the pull-back Metric . 102
3.4.5 Geometry-Aware Sampling . 103
3.4.6 Illustration on a Toy Dataset . 104

3.5 Experiments . 105
3.5.1 Generation with Benchmark Datasets 105
3.5.2 Investigating Robustness in Low Data Regime 106

3.6 Conclusion . 108
3.7 Appendices . 109

3.7.1 Further Elements on Riemannian Geometry 109
3.7.2 The Generation Process Algorithm - Implementation Details 111
3.7.3 Other Generation Results . 114
3.7.4 Experimental Set-Up . 120
3.7.5 Dataset Size Sensibility on SVHN 123
3.7.6 Ablation Study . 124
3.7.7 Can the Method Benefit More Recent Models ? 126

96

A Geometric Perspective on Variational Autoencoders

3.1 Introduction

Variational Autoencoders (VAE) (Kingma and Welling, 2014; Rezende et al., 2014) are powerful gen-
erative models that map complex input data in a much lower dimensional space referred to as the
latent space while driving the latent variables to follow a given prior distribution. Their simplicity to
use in practice has made them very attractive models to perform various tasks such as high-fidelity
image generation (Razavi et al., 2020), speech modeling (Blaauw and Bonada, 2016), clustering (Yang
et al., 2019) or data augmentation (Chadebec et al., 2022b).

Nonetheless, when taken in their simplest version, it was noted that these models produce blurry
samples on image generation tasks most of the time. This undesired behavior may be due to several
limitations of the VAE framework. First, the training of a VAE aims at maximizing the Evidence
Lower BOund (ELBO) which is only a lower bound on the true likelihood and so does not ensure
that we are always actually improving the true objective (Burda et al., 2016; Alemi et al., 2016; Hig-
gins et al., 2017; Cremer et al., 2018; Zhang et al., 2018a). Second, the prior distribution may be too
simplistic (Dai and Wipf, 2018) leading to poor data generation and there exists no guarantee that
the actual distribution of the latent code will match a given prior distribution inducing distribution
mismatch (Connor et al., 2021). Hence, trying to tackle those limitations through richer posterior
distributions (Salimans et al., 2015; Rezende and Mohamed, 2015) or better priors (Tomczak and
Welling, 2018) represents a major part of the proposed improvements over the past few years. How-
ever, the tractability of the ELBO constrains the choice in distributions and so finding a trade-off
between model expressiveness and tractability remains crucial. In this chapter, we take a rather
different approach and focus on the geometrical aspects a vanilla VAE is able to capture in its latent
space. In particular, we propose the following contributions:

• We show that VAEs unveil naturally a latent space with a structure that can be modeled as
a Riemannian manifold through the learned covariance matrices in the variational posterior
distributions and that such modeling can lead to better interpolations.

• We propose a natural sampling scheme consisting in sampling from a uniform distribution de-
fined on the learned manifold and given by the Riemannian metric. We show that this proce-
dure improves the generation process from a vanilla VAE significantly without complexifying
the model nor the training. The proposed sampling method outperforms more advanced VAE
models in terms of Frechet Inception Distance (Heusel et al., 2017) and Precision and Recall
(Sajjadi et al., 2019) scores on four benchmark datasets. We also discuss and show that it can
benefit more recent VAEs as well. An implementation is available on github.

• We show that the method appears robust to dataset size changes and outperforms even more
strongly peers when only smaller sample sizes are considered.

• We discuss the link of the proposed metric to the pull-back metric.

3.2 Variational Autoencoders

Considering that we are given x ∈ RD a set of data points deriving from an unknown distribution
p(x), a VAE aims at inferring p with a parametric model {pθ, θ ∈ Θ} using a maximum likelihood

97

https://github.com/clementchadebec/geometric_perspective_on_vaes

Chapter 3

estimator. A key assumption behind the VAE is to assume that the generation process involves latent
variables z living in a lower dimensional space such that the generative model writes

z ∼ p(z) ; x ∼ pθ(x|z) ,

where p is a prior distribution over the latent variables often taken as a standard Gaussian and
pθ(x|z) is referred to as the decoder and is most of the time taken as a parametric distribution the
parameters of which are estimated using neural networks. Hence, the likelihood pθ writes:

pθ(x) =

∫
Z

pθ(x|z)p(z)dz .

As this integral is most of the time intractable so is pθ(z|x), the posterior distribution. Hence, Vari-
ational Inference (Jordan et al., 1999) is used and a simple parametrized variational distribution
qϕ(z|x) is introduced to approximate the posterior pθ(z|x). qϕ(z|x) is referred to as the encoder and,
in the vanilla VAE, qϕ is chosen as a multivariate Gaussian whose parameters µϕ and Σϕ are again
given by neural networks. An unbiased estimate p̂θ of the likelihood pθ(x) can then be derived using
importance sampling with qϕ(z|x) and the ELBO objective follows using Jensen’s inequality:

log pθ(x) = logEz∼qϕ
[
p̂θ
]
≥ Ez∼qϕ

[
log p̂θ

]
≥ Ez∼qϕ log pθ(x|z)−KL(qϕ(z|x)∥p(z)) = L

(3.1)

The ELBO is now tractable since both qϕ(z|x) and pθ(x|z) are known and so can be optimized with
respect to the encoder and decoder parameters.

Remark 4 In practice, pθ(x|z) is chosen depending on the modeling of the input data but is often taken
as a simple distribution (e.g fixed variance Gaussian, Bernoulli ...) and a weight β can be applied to
balance the weight of the KL term (Higgins et al., 2017). Hence, the ELBO can also be seen as a two
terms objective (Ghosh et al., 2020). The first one is a reconstruction term given by pθ(x|z) while the
second one is a regularizer given by the KL between the variational posterior qϕ and the prior p. For
instance, in the case of a fixed variance Gaussian for pθ(x|z) we have

LREC = ∥x− µθ(z)∥22, LREG = β ·KL(qϕ(z|x)∥p(z)) . (3.2)

3.3 Related Work

A natural way to improve the generation from VAEs consists in trying to use more complex priors
(Hoffman and Johnson, 2016) than the standard Gaussian distribution used in the initial version
such that they better match the true distribution of the latent codes. For instance, using a Mixture
of Gaussian (Nalisnick et al., 2016; Dilokthanakul et al., 2017) or a Variational Mixture of Posterior
(VAMP) (Tomczak and Welling, 2018) as priors was proposed. In the same vein, hierarchical latent
variable models (Sønderby et al., 2016; Klushyn et al., 2019) or prior learning (Chen et al., 2016b;
Aneja et al., 2020) have recently emerged and aimed at finding the best suited prior distribution
for a given dataset. Acceptance/rejection sampling method was also proposed to try to improve
the expressiveness of the prior distribution (Bauer and Mnih, 2019a). Some recent works linking

98

A Geometric Perspective on Variational Autoencoders

energy-based models (EBM) and VAEs (Xiao et al., 2020) or modeling the prior as an EBM (Pang
et al., 2020) have demonstrated promising results and are also worth citing.

On the ground that the latent space must adapt to the data as well, geometry-aware latent space
modelings as hypersphere (Davidson et al., 2018), torus (Falorsi et al., 2018) or Poincaré disk (Mathieu
et al., 2019a) or discrete latent representations (Razavi et al., 2020) were proposed. Other recent
contributions proposed to see the latent space as a Riemannian manifold where the Riemannian
metric is given by the Jacobian of the generator function (Arvanitidis et al., 2018; Chen et al., 2018a;
Shao et al., 2018). This metric was then used directly within the prior modeled by Brownian motions
(Kalatzis et al., 2020). Others proposed to learn the metric directly from the data throughout training
thanks to geometry-aware normalizing flows (Chadebec et al., 2020) or learn the latent structure
of the data using transport operators (Connor et al., 2021). While these geometry-based methods
show interesting properties of the learned latent space they either require the computation of a time
consuming model-dependent function, the Jacobian, or add further parameters to the model to learn
the metric or transport operators adding some computational burden.

Arguing that VAEs are essentially Autoencoders regularized with a Gaussian noise, Ghosh et al.
(2020) proposed another interesting interpretation of the VAE framework and showed that other
types of regularization may be of interest as well. Since the generation process from these Autoen-
coders is no longer relying on the prior distribution, the authors proposed to use ex-post density
estimation by fitting simple distributions such as a Gaussian mixture in the latent space. While this
paves the way for consideration of other ways to generate data, it mainly reduces the VAE frame-
work to an Autoencoder while we believe that it can also unveil interesting geometrical aspects.

Another widely discussed improvement of themodel consists in trying to tweak the approximate
posterior in the ELBO so that it better matches the true posterior using MCMC methods (Salimans
et al., 2015) or normalizing flows (Rezende andMohamed, 2015). For instance, methods using Hamil-
tonian equations in the flows to target the true posterior (Caterini et al., 2018) were proposed.

Finally, while discussing the potential link between PCA andAutoencoders some intuitions arose
on the impact of both the intrinsic structure of the variance of the data (Rakowski and Lippert,
2021) and the shape of the covariance matrices in the posterior distributions (Rolinek et al., 2019)
on disentanglement in the latent space. We also believe that these covariance matrices indeed play
a crucial role in the modeling of the latent space but in this chapter, we instead propose to see their
inverse as the value of a Riemannian metric.

3.4 Proposed Method

In this section, we show that a vanilla VAE unveils naturally a Riemannian structure in its latent
space through the learned covariance matrices in the variational posterior distribution. We then
propose a new natural generation scheme guided by this estimated geometry and consisting in
sampling from a uniform distribution deriving intrinsically from the learned Riemannian manifold.

99

Chapter 3

3.4.1 A Word on Riemannian Geometry

First, we briefly recall some basic elements of Riemannian geometry needed in the rest of the chap-
ter. A more detailed discussion on Riemannian manifolds may be found in Appendix 3.7.1. A d-
dimensional manifoldM is a manifold which is locally homeomorphic to a d-dimensional Euclidean
space. If the manifoldM is further differentiable it possesses a tangent space Tz at any z ∈M com-
posed of the tangent vectors of the curves passing by z. IfM is equipped with a smooth inner
product g : z → ⟨·|·⟩z defined on its tangent space Tz for any z ∈ M thenM is called a Rieman-
nian manifold and g is the associated Riemannian metric. Then, a local representation of g at any
z ∈ M is given by the positive definite matrix G(z) (See Appendix 3.7.1). IfM is connected, a
Riemannian distance between two points z1, z2 ofM can be defined

distG(z1, z2) = inf
γ

b∫
a

√
γ̇(t)⊤G(γ(t))γ̇(t)dt = inf

γ
L(γ) s.t. z1 = γ(a), z2 = γ(b) , (3.3)

where L is the length of curves γ : R → M traveling from z1 to z2. Curves minimizing L and
parametrized proportionally to the arc length are geodesic. The manifoldM is said to be geodesically
complete if all geodesic curves can be extended to R. In an Euclidean space,G reduces to Id and the
distance becomes the classic Euclidean one. A simple extension of this Euclidean framework consists
in assuming that themetric is given by a constant positive definitematrixΣ different from Id. In such
a case the induced Riemannian distance is the well-known Mahalanobis distance distΣ(z1, z2) =√
(z2 − z1)⊤Σ(z2 − z1) .

3.4.2 The Riemannian Gaussian Distribution

Given the Riemannian manifoldM endowed with the Riemannian metric G and a chart z, an in-
finitesimal volume element may be defined on each tangent space Tz of the manifoldM as follows

dMz =
√

detG(z)dz , (3.4)

with dz being the Lebesgue measure. This defines a canonical measure on the manifold and allows
to extend the notion of random variables to Riemannian manifolds whose density can be defined
with respect to that Riemannian measure (see Appendix 3.7.1). Hence, a Riemannian Gaussian dis-
tribution onM can be defined using the Riemannian distance of Eq. (3.3) instead of the Euclidean
one.

Nriem(z|σ, µ) =
1

C
exp

(
− distG(z, µ)

2

2σ

)
, C =

∫
M

exp
(
− distG(z, µ)

2

2σ

)
dMz , (3.5)

where dMz is the volume element defined in Eq. (3.4). Thus, a multivariate normal distribution with
covariance matrix Σ is only a specific case of the Riemannian distribution with σ = 1 and defined
on the manifoldM = (Rd,G) whereG is the constant Riemannian metricG(z) = Σ−1, ∀z ∈M.

100

A Geometric Perspective on Variational Autoencoders

3.4.3 Geometrical Interpretation of the VAE Framework

Within the VAE framework, the variational distribution qϕ(z|x) is often chosen as a simplemultivari-
ate Gaussian distribution defined onRdwith d being the latent space dimension. Hence, as explained
in the previous section, given an input data point xi, the posterior qϕ(z|xi) = N (µ(xi),Σ(xi)) can
also be seen as a Riemannian Gaussian distribution where the Riemannian distance is simply the dis-
tance with respect to the metric tensor Σ−1(xi). Hence, the VAE framework can be seen as follow:
As with an Autoencoder, the VAE provides a code µ(xi)which is a lower dimensional representation
of an input data point xi. However, it also gives a tensor Σ−1(xi) depending on xi which can be
seen as the value of a Riemannian metricG at µ(xi) i.e.

G(µ(xi)) = Σ−1(xi) .

This metric is crucial since it impacts the notion of distance in the latent space now seen as the
Riemannian manifoldM = (Rd,G) and so changes the directions that are favored in the sampling
from the posterior distribution qϕ(z|xi). Then, a sample z is drawn from a standard (i.e. σ = 1 in
Eq. (3.5)) Riemannian Gaussian distribution and fed to the decoder. Since we only have access to a
finite number of metric tensors Σ−1(xi), as a first approximation the VAE model assumes that the
metric is locally constant close to µ(xi) and so the Riemannian distance reduces to the Mahalanobis
distance in the posterior distribution. This drastically simplifies the training process since now Rie-
mannian distances have closed form and so are easily computable. Interestingly, the VAE framework
will impose through the ELBO expression given in Eq. (3.2), that z gives a sample x ∼ pθ(x|z) close
to xi when decoded. Since z has a probability density function imposing higher probability for sam-
ples having the smallest Riemannian distance to µ, the VAE imposes in a way that latent variables
that are close in the latent space with respect to the metricGwill also provide samples that are close
in the data space X in terms of L2 distance as noticed in Remark. 4. Noteworthy is that the latter
distance can be amended through the choice of the decoder pθ(x|z). This is an interesting property
since it allows the VAE to directly link the learned Riemannian distance in the latent space to the
distance in the data space. The regularization term in Eq. (3.2) ensures that the covariance matrices
do not collapse to 0d and constraints the latent codes to remain close to the origin easing optimiza-
tion. Finally, at the end of training, we have a lower dimensional representation of the training data
given by the means of the posteriors µ(xi) and a family of metric tensors (Gi = Σ−1(xi)) corre-
sponding to the value of a Riemannian metric defined locally on the latent space. Inspired from
(Hauberg et al., 2012), we propose to build a smooth continuous Riemannian metric defined on the
entire latent space as follows:

G(z) =
N∑
i=1

Σ−1(xi) · ωi(z) + λ · e−τ∥z∥22 · Id ,

ωi(z) = exp

(
− distΣ−1(xi)(z, µ(xi))

2

ρ2

)
,

(3.6)

where distΣ−1(xi)(z, µ(xi))
2 = (z−µ(xi))⊤Σ−1(xi)(z−µ(xi)) is the Riemannian distance between

z and µ(xi) with respect to the locally constant metric G(µ(xi)) = Σ−1(xi). Since the sum in
Eq. (3.6) is made on the total number of training samples N , the number of centroids (µ(xi)) and so
of reference metric tensors can be decreased for huge datasets by selecting only k < N elements1

1This may be performed with k-medoids algorithm.

101

Chapter 3

and increasing ρ to reduce memory usage. We provide an ablation study on the impact of λ, the
number of centroids and their choice along with a discussion on the choice for ρ in Appendix 3.7.6.
The parameter τ is only there to ensure that the volume of (Rd,G) is finite, a property that is
needed in Sec. 3.4.5, and its value can be set as close as desired to zero so the norm of z does not
influence the metric close to the centroids. In practice, it is set below computer precision (i.e. τ ≈
0). Rigorously, the metric defined in Eq. (3.6) should have been used during the training process.
Nonetheless, this would have made the training longer and trickier since it would involve i) the
computation of Riemannian distances that have no longer closed form and so make the resolution
of the optimization problem in Eq. (3.3) needed, ii) the sampling from Eq. (3.5) which is not trivial
and iii) the computation of the regularization term. Moreover, for small values of β in Eq. (3.2),
the samples generated from the variational distribution z ∼ N (µ(xi),Σ(xi)) can be assumed to be
concentrated around µ(xi) and so we have the following first-order Taylor expansion around µ(xi)

G(z) ≈ Σ−1(xi) +
N∑

j=1,j ̸=i

Σ−1(xj) · ωj(µ(xi))︸ ︷︷ ︸
≈0

+Σ−1(xi) · Jωi(µ(xi))︸ ︷︷ ︸
=0

(z − µ(xi)) ,

where Jωi(µ(xi)) is the Jacobian of the interpolant ωi evaluated at µ(xi). Note that we have further
assumed small enough ρ and λ to neglect the influence of the other Σ(xj) in Eq. (3.6). Hence by
approximating the value of the metric during training by its value at µ(xi) (i.e. Σ−1(xi)), the VAE
training remains unchanged, stable and computationally reasonable since Riemannian Gaussians
become multivariate Gaussians in qϕ(z|x) as explained before. Noteworthy is the fact that following
the discussion on the role of the KL loss in the VAE framework and the experiments conducted in
(Ghosh et al., 2020), in our vision of the VAE, the prior distribution is only seen as a regularizer
though the KL term and other latent space regularization schemes may have been also envisioned.
In the following, we keep the proposed vision and do not amend the training.

3.4.4 Link with the pull-back Metric

It has been shown that a natural Riemannian metric on the latent space of generative models can
be the pull-back metric given by G(z) = Jg(z)

⊤Jg(z) (Arvanitidis et al., 2018) and induced by the
decoder mapping g : Rd → RD outputting the parameters of the conditional distribution pθ(x|z).
Actually, there exists a strong relation linking the metric proposed in this chapter to the pull-back
metric. Indeed, assuming that samples from the variational posterior z ∼ qϕ(z|x) = N (µ(x),Σ(x))
remain close to µ(x) (e.g. by setting a small β in Eq. (3.2)) allows to consider an approximation of
the log density h(z) := log pθ(x|z) next to µ(x) for a given x (Kumar and Poole, 2020).

h(z) ≈ h(µ(x)) + Jh(µ(x))(z − µ(x)) +
1

2
(z − µ(x))⊤Hh(µ(x))(z − µ(x)) ,

where Jh(µ(x)) is the Jacobian andHh(µ(x)) is the Hessian of h. Using this and remarking that

Ez∼qϕ
[
Jh(µ)(z − µ)

]
= 0 and Ez∼qϕ

[
(z − µ)⊤Hh(µ)(z − µ)

]
= Tr(Hh(µ)Σ) ,

makes the ELBO in Eq. (3.2) write:

L ≈ h(µ(x)) +
1

2
Tr(Hh(µ(x))Σ(x))− β KL(qϕ(z|x)∥p(z)) .

102

A Geometric Perspective on Variational Autoencoders

Assuming a standard Gaussian prior, Kumar and Poole (2020) showed that Σ̃maximizing the ELBO
is

Σ̃(x) =
(
Id −

1

β
Hh(µ(x))

)−1

,

and if we further assume some regularity on the neural networks used for the decoder mapping g
(e.g. piece-wise linear activation functions) we have

Σ̃(x) =
(
Id −

1

β
Jg(µ(x))

⊤Hp(g(µ(x)))Jg(µ(x))
)−1

, (3.7)

where Hp(g(µ(x))) is the Hessian of log pθ(x; g(z)). A standard case for the VAE is to assume that
pθ(x|z) = N (µθ(z), σ · ID) and so gives Hp(g(µ(x))) = − 1

σ
· ID . If we further set σ = 1

β
, Eq. (3.7)

gives a relation between the pull-back and the metric we propose

Σ̃−1(x) = Jg(µ(x))
⊤Jg(µ(x)) + Id .

Hence, the proposed metric is closely linked to the pull-back metric and may be useful to approxi-
mate it (at least close to the µ(x)) and so avoid the computation of a potentially costly function.

3.4.5 Geometry-Aware Sampling

Assuming that the VAE has learned a latent representation of the data in a space seen as a Rieman-
nian manifold, we propose to exploit this strong property to enhance the generation procedure. A
natural way to sample from such a latent space would consist in sampling from the uniform distri-
bution intrinsically defined on the learned manifold. Similar to the Gaussian distribution presented
in Sec. 3.4.2, the notion of uniform distribution can indeed be extended to Riemannian manifolds.
Given a setA ⊂M having a finite volume, a Riemannian uniform distribution onAwrites (Pennec,
2006)

pA(z) =
1A(z)

Vol(A) =
1A(z)∫

M 1A(z)dMz

.

This density is taken with respect to dMz , the Riemannian measure but using Eq. (3.4) and a coor-
dinate system z allows to obtain a pdf defined with respect to the Lebesgue one. Moreover, since
the volume of the whole manifoldM = (Rd,G) is finite, we can now define a uniform distribution
onM

URiem(z) =
√
detG(z)∫

Rd
√

detG(z)dz
.

Since the Riemannian metric has a closed form expression given by Eq. (3.6) sampling from this
distribution is quite easy and may be performed using the HMC sampler (Neal, 2005) for instance.
Now we are able to sample from the intrinsic uniform distribution which is a natural way of ex-
ploring the estimated manifold and the sampling is guided by the geometry of the latent space. A
discussion on practical outcomes can be found in Appendix 3.7.2. Noteworthy is the fact that this
approach can also be easily applied to more recent VAE models having a Gaussian posterior (e.g.
(Burda et al., 2016; Larsen et al., 2016; Tomczak and Welling, 2018; Makhzani et al., 2015)). We detail
this and show that the proposed method can also benefit these models in Appendix 3.7.7.

103

Chapter 3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
Circles
Rings

−2

0

2

4

6

(a)

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Ours Affine Circles Rings
0

2

4

6

8

10

(b)

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Ours Affine Circles Rings
0

2

4

6

8

10

(a)
Affine

Ours

(b)
Affine

Ours

Figure 3.1: Top left: Visualization and interpolation in a 2D latent space learned by a VAE trainedwith
binary images of rings and disks. The log of the metric volume element

√
detG(z) (proportional

to the log of the density we propose to sample from) is shown in gray scale. Top middle and right:
Riemannian distance from a starting point (color maps). The dashed lines are affine interpolations
between two points in the latent space and the solid ones are obtained by solving Eq. (3.8). Bottom:
Decoded samples along the interpolation curves.

3.4.6 Illustration on a Toy Dataset

The usefulness of such sampling procedure can be observed in Figure 3.1 where a vanilla VAE was
trained with a toy dataset composed of binary images of disks and rings of different size and thick-
ness (example inspired by (Chadebec et al., 2022b)). On the left is presented the learned latent space
along with the embedded training points given by the colored dots. The log of the metric volume el-
ement is given in gray scale. In this example, we clearly see a geometrical structure appearing since
the disks and rings seem to wrap around each other. Obviously, sampling using the prior (taken as a
N (0, Id)) in such a case is far from being optimal since the sampling will be performed regardless of
the underlying distribution of the latent variables and so will create irrelevant samples. To further
illustrate this, we propose to interpolate between points in the latent space using different cost func-
tions. Dashed lines represent affine interpolations while the solid ones show interpolations aiming
at minimizing the potential V (z) = (

√
detG(z))−1 all along the curve i.e. solving the minimization

problem

inf
γ

1∫
0

V (γ(t))∥γ̇(t)∥dt s.t. γ(0) = z1, γ(1) = z2 . (3.8)

In Figure 3.1 are presented the decoded samples all along the interpolation curves. Thanks to those
interpolations we can see that i) the latent space seems to really have a specific geometrical structure
since decoding all along the interpolation curves obtained by solving Eq. (3.8) leads to qualitatively
satisfying results, ii) certain locations of the latent space must be avoided since sampling there will
produce irrelevant samples (see red frames and corresponding red dashes). Using the proposed
sampling scheme will allow to sample in the light-colored areas and so ensure that the sampling

104

A Geometric Perspective on Variational Autoencoders

remains close to the data i.e. where information is available and so does not produce irrelevant
images when decoded while still proposing relevant variations from the input data.

3.5 Experiments

In this section, we conduct a comparison with other VAEmodels using other regularization schemes,
more complex priors, richer posteriors, ex-post density estimation or trying to take into account
geometrical aspects. In the following, all the models share the same auto-encoding neural network
architectures and we used the code and hyper-parameters provided by the authors if available2. See
Appendix 3.7.4 for models descriptions and the comprehensive experimental set-up.

3.5.1 Generation with Benchmark Datasets

First, we compare the proposed sampling method to several VAE variants such as a Wasserstein
Autoencoder (WAE) (Tolstikhin et al., 2018), Regularized Autoencoders (RAEs) (Ghosh et al., 2020),
a vamp-prior VAE (VAMP) (Tomczak andWelling, 2018), a Hamiltonian VAE (HVAE) (Caterini et al.,
2018), a geometry-aware VAE (RHVAE) (Chadebec et al., 2020) and an Autoencoder (AE). We elect
these models since they use different ways to generate the data using either the prior or ex-post
density estimation. For the latter, we fit a 10-component mixture of Gaussian in the latent space
after training like (Ghosh et al., 2020) .

Figure 3.2 shows a qualitative comparison between the resulting generated samples for MNIST
(LeCun, 1998) and CELEBA (Liu et al., 2015), see Appendix 3.7.3 for SVHN (Netzer et al., 2011)
and CIFAR 10 (Krizhevsky et al., 2009). Interestingly, using the non-prior based methods seems to
produce qualitatively better samples (rows 7 to end). Nonetheless, the resulting samples seem even
sharper when the sampling takes into account geometrical aspects of the latent space as we propose
(last row). Additionally, even though the exact same model is used, we clearly see that using the
proposed method represents a strong improvement of the generation process from a vanilla VAE
when compared to the samples coming from a normal prior (second row). This confirms that even
the simplest VAE model actually contains a lot of information in its latent space but the limited
expressiveness of the prior impedes to access to it. Hence, using more complex priors such as the
VAMPmay be a tempting idea. However, one must keep in mind that the ELBO objective in Eq. (3.1)
must remain tractable and so using more expressive priors may be impossible.

These observations are even more supported by Table 3.1 where we report the Frechet Inception
Distance (FID) and the precision and recall (PRD) score against the test set to assess the sampling
quality and diversity. Again, fitting a mixture of Gaussian (GMM) in the latent space appears to
be an interesting idea since it allows for a better expressiveness and latent space prospecting. For
instance, on MNIST the FID falls from 40.7 with the prior to 13.1 when using a GMM. Nonetheless,
with the proposed method we are able to make it even smaller (8.5) and PRD scores higher without
changing the model and performing post processing. This can also be observed on the 3 other
datasets. Impressively, in almost all cases, the proposed generation method can either compete or
outperform peers both in terms of FID and PRD scores.

2We also perform a wider hyper-parameter search on MNIST and CELEBA for each model in Appendix 3.7.3

105

Chapter 3

AE - N

MNIST CELEBA

VAE - N

WAE

VAMP

HVAE

RHVAE

AE - GMM

VAE - GMM

RAE

VAE - Ours

Figure 3.2: Generated samples with different models and generation methods. Results with RAE
variants are provided in Appendix 3.7.3.

Finally, we check if the proposed method does not overfit the training data and is able to pro-
duce diverse samples by showing the nearest neighbor in the train set and the nearest image in all
the reconstructions of the train images to a generated image in Figure 3.3 (left). We also provide
the FID score between 10k generated samples and 10k train reconstructions in Figure 3.3 (right).
These experiments show that the generated samples are not only resampled train images and that
the sampling prospects quite well the manifold. To support even more this claim we provide in
Appendix 3.7.6 an analysis in a case where only two centroids are selected in the metric. This also
shows that the generated samples are not only an interpolation between the k selected centroids
since some generated images contain attributes that are not present in the images of the decoded
centroids.

The outcome of such an experiment is that using post training latent space processing such as ex-
post density estimation or adding some geometrical consideration to the model allows to strongly
improve the sampling without adding more complexity to the model. Generating 1k samples on
CELEBA takes approx. 5.5 min for our method vs. 4 min for a 10-component GMM on a GPU V100-
16GB.

3.5.2 Investigating Robustness in Low Data Regime

We perform a comparison using the same models and datasets as before but we progressively de-
crease the size of the training set to see the robustness of the methods according to the number of
samples. Despite rarely performed in most generative models related papers, this setup appeared to
us relevant since 1) it is well known that it may be challenging for these models, 2) in day-to-day
applications collecting large databases may reveal costly if not impossible (e.g. medicine). Hence,

106

A Geometric Perspective on Variational Autoencoders

Gen.
Near.
train

Near.
rec. Gen.

Near.
train

Near.
rec. Gen.

Near.
train

Near.
rec. Gen.

Near.
train

Near.
rec.

reconstruction vs. generation

MNIST CELEBA
FID 11.27 30.12

Figure 3.3: Left: Nearest train image (near. train) and nearest image in all reconstructions of train
images (near. rec.) to the generated one (Gen.) with the proposed method. Note: the nearest
reconstruction may be different from the reconstruction of the nearest train image. Right: The FID
score between 10k generated images and 10k reconstructed train samples.

Table 3.1: FID (lower is better) and PRD score (higher is better) for different models and datasets.
For the mixture of Gaussian (GMM), we fit a 10-component mixture of Gaussian in the latent space.

Model MNIST (16) SVHN (16) CIFAR 10 (32) CELEBA (64)
FID ↓ PRD ↑ FID ↓ PRD ↑ FID ↓ PRD ↑ FID ↓ PRD ↑

AE - N (0, 1) 46.41 0.86/0.77 119.65 0.54/0.37 196.50 0.05/0.17 64.64 0.29/0.42

WAE 20.71 0.93/0.88 49.07 0.80/0.85 132.99 0.24/0.52 54.56 0.57/0.55

VAE -N (0, 1) 40.70 0.83/0.75 83.55 0.69/0.55 162.58 0.10/0.32 64.13 0.27/0.39

VAMP 34.02 0.83/0.88 91.98 0.55/0.63 198.14 0.05/0.11 73.87 0.09/0.10

HVAE 15.54 0.97/0.95 98.05 0.64/0.68 201.70 0.13/0.21 52.00 0.38/0.58

RHVAE 36.51 0.73/0.28 121.69 0.55/0.41 167.41 0.12/0.22 55.12 0.45/0.56

AE - GMM 9.60 0.95/0.90 54.21 0.82/0.83 130.28 0.35/0.58 56.07 0.32/0.48

RAE (GP) 9.44 0.97/0.98 61.43 0.79/0.78 120.32 0.34/0.58 59.41 0.28/0.49

RAE (L2) 9.89 0.97/0.98 58.32 0.82/0.79 123.25 0.33/0.54 54.45 0.35/0.55

RAE (SN) 11.22 0.97/0.98 95.64 0.53/0.63 114.59 0.32/0.53 55.04 0.36/0.56

RAE 11.23 0.98/0.98 66.20 0.76/0.80 118.25 0.35/0.57 53.29 0.36/0.58

VAE - GMM 13.13 0.95/0.92 52.32 0.82/0.85 138.25 0.29/0.53 55.50 0.37/0.49

VAE - Ours 8.53 0.98/0.97 46.99 0.84/0.85 93.53 0.71/0.68 48.71 0.44/0.62

we consider MNIST, CIFAR10 and SVHN and use either the full dataset size, 10k, 5k or 1k training
samples. For each experiment, the best retained model is again the one achieving the best ELBO
on the validation set the size of which is set as 20% of the train size. See Appendix 3.7.4 for further
details about experiments set-up. Then, we report the evolution of the FID against the test set in
Figure 3.4. Results obtained on SVHN are presented in Appendix 3.7.5. Again, the proposed sam-
pling method appears quite robust to the dataset size since it outperforms the other models’ FID
even when the number of training samples is smaller. This is made possible thanks to the proposed
metric that allows to avoid regions of the latent space having poor information. Finally, our study
shows that although using more complex generation procedures such as ex-post density estimation
seems to still enhance the generation capability of the model when the number of training samples
remains quite high (≥5k), this gain seems to worsen when the dataset size reduces as illustrated on
CIFAR. In addition, we also evaluate the model on a data augmentation task with neuroimaging data
from OASIS (Marcus et al., 2007) mimicking a day-to-day scenario where the limited data regime is
very common in Appendix 3.7.3.

107

Chapter 3

MNIST

0.1 0.5 1.0 5.0
×104

10

20

50

100

200
300

CIFAR 10

0.1 0.5 1.0 5.0
×104

100

150

200

WAE - N (0, 1)
RAE-GP - N (0, 1)
RAE-L2 - N (0, 1)
RAE-SN - N (0, 1)
VAE - N (0, 1)
WAE - GMM
RAE-GP - GMM
RAE-L2 - GMM
RAE-SN - GMM
VAE - GMM
VAE - Ours

Figure 3.4: Evolution of the FID score according to the number of training samples.

3.6 Conclusion

In this chapter, we provided a geometric understanding of the latent space learned by a VAE and
showed that it can actually be seen as a Riemannian manifold. We proposed a new natural genera-
tion process consisting in sampling from the intrinsic uniform distribution defined on this learned
manifold. The proposed method was empirically shown to be competitive with more advanced ver-
sions of the VAEs using either more complex priors, ex-post density estimation, normalizing flows
or other regularization schemes. Interestingly, the proposed method revealed good robustness prop-
erties in complex settings such as high dimensional data or low sample sizes and appeared to benefit
more recent VAE models as well. Future work would consist in trying to use this method to perform
data augmentation in those challenging contexts and compare its reliability for such a task with
state of the art methods or trying to use this metric to perform clustering in the latent space.

108

A Geometric Perspective on Variational Autoencoders

Acknowledgment

The research leading to these results has received funding from the French government under man-
agement of Agence Nationale de la Recherche as part of the “Investissements d’avenir” program,
reference ANR-19-P3IA-0001 (PRAIRIE 3IA Institute) and reference ANR-10-IAIHU-06 (Agence Na-
tionale de la Recherche-10-IA Institut Hospitalo-Universitaire-6). This work was granted access to
the HPC resources of IDRIS under the allocation AD011013517 made by GENCI (Grand Equipement
National de Calcul Intensif).

3.7 Appendices

3.7.1 Further Elements on Riemannian Geometry

A d-dimensional Riemannian manifoldM can be defined as a d-dimensional differentiable manifold
equipped with is a smooth inner product g : z → ⟨·|·⟩z defined on each tangent space TzM of the
manifold with z ∈M. A chart (or coordinate system) (U, ϕ) is a homeomorphism mapping an open
set U of the manifold to an open set V of an Euclidean space. Given z ∈ U , a chart ϕ : (z1, . . . , zd)

induces a basis
(

∂
∂z1
, . . . , ∂

∂zd

)
z
on the tangent space TzM. Hence, the metric of a Riemannian

manifold can be locally represented in the chart ϕ as a positive definite matrix as mentioned in
Sec. 3.4.1.

G(z) = (gi,j)z,0≤i,j≤d =
(〈 ∂

∂zi
| ∂
∂zj

〉
z

)
0≤i,j≤d

,

for each point z of the manifold. That is for v, w ∈ TzM and z ∈ M, the inner product writes
⟨u|w⟩z = u⊤G(z)w. Assuming that the manifold is also connected, for any z1, z2 ∈ M, two points
of the manifold, we can consider a curve γ traveling inM and parametrized by t ∈ [a, b] such that
γ(a) = z1 and γ(b) = z2. Then, the length of γ is given by

L(γ) =

b∫
a

∥γ̇(t)∥γ(t)dt =
b∫

a

√
⟨γ̇(t)|γ̇(t)⟩γ(t)dt

Curves γ that minimize L and are parameterized proportionally to the arc length are called geodesic
curves. A distance distG on the manifoldM can then be derived and writes

distG(z1, z2) = inf
γ
L(γ) s.t. γ(a) = z1, γ(b) = z2

ThemanifoldM is said to be geodesically complete if all geodesic curves can be extended toR. Given
the Riemannian manifoldM endowed with the Riemannian metricG and a chart z, an infinitesimal
volume element may also be defined on each tangent space Tz of the manifoldM as follows

dMz =
√

detG(z)dz ,

with dz being the Lebesgue measure. This defines a canonical measure on the manifold and allows
to extend the notion of probability distributions to Riemannian manifolds. In particular, such a
property allows to refer to random variables with a density defined with respect to the measure on
the manifold. We recall such definition from (Pennec, 2006) below

109

Chapter 3

Definition 2 Let B(M) be the Borel σ-algebra ofM. The random point z has a probability density
function ρz if:

∀Z ∈ B(M), P(z ∈ Z) =
∫
Z

ρ(z)dM(z) and
∫
M

ρ(z)dM(z) = 1

Finally, given a chart ϕ defined on the whole manifoldM and a random point z onM, the point
p = ϕ(z) is a random point whose density ρ′p may be written with respect to the Lebesgue measure
as such (Pennec, 2006):

ρ′p(p) = ρz(ϕ
−1(p))

√
det g(ϕ−1(p))

110

A Geometric Perspective on Variational Autoencoders

3.7.2 The Generation Process Algorithm - Implementation Details

In this appendix, we provide pseudo-code algorithms explaining how to build the metric from a
trained VAE and how to use the proposed sampling process. Noteworthy is the fact that we do not
amend the training process of the vanilla VAE which remains pretty simple and stable.

Building the metric

In this section, we explain how to build the proposed Riemannian metric. For the sake of clarity, we
recall the expression of the metric below

G(z) =
N∑
i=1

Σ−1(xi) · ωi(z) + λ · e−τ∥z∥22 · Id , (3.9)

where

ωi(z) = exp

(
− distΣ−1(xi)(z, µ(xi))

2

ρ2

)
= exp

(
− (z − µ(xi))⊤Σ−1(xi)(z − µ(xi))

ρ2

)
.

Algorithm 4 Building the metric from a trained model
Input: A trained VAE modelm, the training dataset X , λ, τ ▷ In practice τ ≈ 0

for xi ∈ X do

µi,Σi = m(xi) ▷ Retrieve training embeddings and covariance matrices
end for

Select k centroids ci in the µi ▷ e.g. with k-medoids
Get corresponding covariance matrices Σi

ρ← max
i

min
j ̸=i
∥ci − cj∥2 ▷ Set ρ to the max distance between two closest neighbors

Build the metric using Eq. (3.9)

G(z) =
N∑
i=1

Σ−1
i · ωi(z) + λ · e−τ∥z∥22 · Id

ReturnG ▷ Return G as a function

As is standard in VAE implementations, we assume that the covariance matricesΣi given by the
VAE are diagonal and that the encoder outputs a mean vector and the log of the diagonal coefficients.
In the implementation, the exponential is then applied to recover the Σi so that no singular matrix
arises.

The HMC sampler

In the sampling process we propose to rely on the Hamiltonian Monte Carlo sampler to sample
from the Riemannian uniform distribution. In a nutshell, the HMC sampler aims at sampling from a

111

Chapter 3

target distribution ptarget(z) with z ∈ Rd using Hamiltonian dynamics. The main idea behind such
a sampler is to introduce an auxiliary random variable v ∼ N (0, Id) independent from z and mimic
the behavior of a particle having z (resp. v) as location (resp. velocity). The Hamiltonian of the
particle then writes

H(z, v) = U(z) +K(v) ,

where U(z) is the potential energy and K(v) is its kinetic energy both given by

U(z) = − log ptarget(z), K(v) =
1

2
v⊤v .

The following Hamilton’s equations govern the evolution in time of the particle.{
∂H(z,v)
∂v

= v ,
∂H(z,v)
∂z

= −∇z log ptarget(z) .

In order to integrate these equations, recourse to the leapfrog integrator is needed and consists in
applying nlf times the following equations.

v(t+ εlf

2
) = v(t) + εlf

2
· ∇z log ptarget(z(t)) ,

z(t+ εlf) = z(t) + εlf · v(t+ εlf
2
) ,

v(t+ εlf) = v(t+ εlf
2
) + εlf

2
· ∇z log ptarget(z(t+ εlf)) ,

(3.10)

where εlf is called the leapfrog step size. This algorithm produces a proposal (z̃, ṽ) that is accepted
with probability α where

α = min
(
1, exp

(
H(z, v)−H(z̃, ṽ)

))
.

This procedure is then repeated to create an ergodic Markov chain (zn) converging to the distribu-
tion ptarget (Duane et al., 1987; Liu, 2008; Neal and others, 2011; Girolami and Calderhead, 2011).

The proposed algorithm

In our setting the target density is given by the density of the Riemannian uniform distribution
which writes with respect to Lebesgue measure as follows

p(z) = URiem(z) =
1

C

√
detG(z) C =

∫
Rd

√
detG(z)dz .

Note that thanks to the shape of the metric, this distribution is well defined since C < +∞. The log
density follows

log p(z) =
1

2
log detG(z)− logC ,

Hence, the Hamiltonian writes

H(z, v) = − log p(z) +
1

2
v⊤v ,

112

A Geometric Perspective on Variational Autoencoders

and Hamilton’s equations become{
∂H(z,v)
∂v

= v ,
∂H(z,v)
∂zi

= −∂ log p(z)
∂zi

= −1
2
tr
(
G−1(z)∂G(z)

∂zi

)
Since the covariancematrices are supposed to be diagonal as is standard in VAE implementations,

the computation of the inverse metric is straightforward. Moreover, since G(z) is smooth and has
a closed form, it can be differentiated with respect to z pretty easily. Now, the leapfrog integrator
given in Eq. (3.10) can be used and the acceptance ratio α is easy to compute. Noteworthy is the fact
that the normalizing constant C is never needed since it vanishes in the gradient computation and
simplifies in the acceptance ratio α. We provide a pseudo-code of the proposed sampling procedure
in Alg. 5. A typical choice in the sampler’s hyper-parameters used in the chapter is N = 100,
nlf = 10 and εlf = 0.01. The initialization of the chain can be done either randomly or on points
that belong to the manifold (i.e. the centroids ci or µ(xi)).

Algorithm 5 Proposed sampling process
Input: The metric function G, hyper-parameters of the HMC sampler (chain length N , number
of leapfrog steps nlf , leapfrog step size εlf)
Initialization: z ▷ Initialize the chain
for i = 1→ N do

v ∼ N (0, Id) ▷ Draw a velocity
H0 ← H(z, v) ▷ Compute the starting Hamiltonian
z0 ← z

for k = 1← nlf do

v̄ ← v − εlf
2
· ∇zH(z, v)

z̃ ← z + εlf · v̄ ▷ Leapfrog step Eq. (3.10)
ṽ ← v̄ − εlf

2
· ∇zH(z̃, v̄)

v ← ṽ

z ← z̃

end for

H ← H(z̃, ṽ) ▷ Compute the ending Hamiltonian
Accept z̃ with probability α = min

(
1, exp(H0 −H)

)
if Accepted then

z ← z̃

else

z ← z0
end if

end for

Return z

113

Chapter 3

3.7.3 Other Generation Results

Some further samples on CELEBA and MNIST

In this section, we provide some further generated samples using the proposed method. Figure 3.5
and Figure 3.6 again support the fact that the method is able to generate sharp and diverse samples.
We also add the other variants of the RAE model in Figure 3.7.

Figure 3.5: 100 samples with the proposed method on MNIST dataset.

Figure 3.6: 100 samples with the proposed method on CELEBA dataset.

114

A Geometric Perspective on Variational Autoencoders

AE - N

MNIST CELEBA

VAE - N

WAE

VAMP

HVAE

RHVAE

AE - GMM

VAE - GMM

RAE (GP)

RAE (L2)

RAE (SN)

RAE

VAE - Ours

Figure 3.7: Generated samples with different models and generation processes.

115

Chapter 3

CIFAR and SVHN

In this appendix, we gather the resulting samplings from the different models considered for SVHN
and CIFAR 10.

AE - N

SVHN CIFAR 10

VAE - N

WAE

VAMP

HVAE

RHVAE

AE - GMM

VAE - GMM

RAE (GP)

RAE (L2)

RAE (SN)

RAE

VAE - Ours

Figure 3.8: Generated samples with different models and generation processes.

Generation with complex data

Finally, we also propose to stress the proposed generation procedure in a day-to-day scenario where
the limited data regime is more than common. To stress the model in such condition, we consider
the publicly available OASIS database (Marcus et al., 2007) composed of 416 MRI of patients, 100 of
whom were diagnosed with Alzheimer disease (AD). Since both FID and PRD scores are not reliable
when no large test set is available, we propose to assess quantitatively the generation quality with a
data augmentation task. Hence, we split the dataset into a train (70%), a validation (10%) and a test
set (20%). Each model is trained on each label of the train set and used to generate 2k samples per
class. Then a CNN classifier is trained on i) the original train set and ii) the 4k generated samples
from the generative models and tested on the test set. Table 3.2 shows classification results averaged
across 20 runs for each considered model. The line raw (resampled) corresponds to a case where the
train set is obtained by balancing the classes with simple repetitions of the samples from the under-
represented class. These metrics provide a way to assess i) if the model can generate data adding

116

A Geometric Perspective on Variational Autoencoders

Gen. Near. Gen. Near. Gen. Near. Gen. Near. Gen. Near.

Figure 3.9: Closest element in the training set (Near.) to the generated one (Gen.) with the proposed
method.

relevant information for classification and ii) allows to quantify the amount of overfitting. The
proposedmethod is the only one allowing to achieve higher balanced accuracy and F1 scores for both
labels than on the original (unbalanced) data meaning that the samples are relevant to the classifier
and this is also sign of a good generalization. Moreover, we provide generated samples using each
generation procedure in Figure 3.10. Again, the proposed method appears to produce visually the
sharpest samples. However, such augmentation method for medical data requires caution and needs
further assessment on the possibly induced biases before being used on a real-life application case.

Table 3.2: Classification results averaged on 20 independent runs. For the VAEs, the classifier is
trained on 2K generated samples per class.

Generation method Balanced F1 Precision Recall
Accuracy AD CN AD CN AD CN

Original* 66.2± 7.6 47.6± 15.8 87.3± 2.0 74.7± 8.4 80.3± 4.0 35.7± 16.3 95.7± 1.5

Original (resampled) 81.8± 2.6 72.1± 3.6 88.0 ± 2.3 67.0± 5.3 91.4± 1.8 78.5± 5.2 85.1± 4.2

AE -N 50.0± 0.0 0.0± 0.0 84.1± 0.0 0.0± 0.0 72.6± 0.0 0.0± 0.0 100.0± 0.0

WAE 57.4± 9.7 21.0± 24.5 84.4± 2.3 48.5± 42.8 76.7± 6.1 19.3± 27.5 95.4± 9.3

VAE -N 51.8± 3.8 6.1± 11.8 84.6± 1.1 38.0± 47.3 73.4± 1.7 3.7± 7.8 99.8± 0.7

VAMP 83.1± 2.6 70.4± 3.6 82.2± 4.7 56.3± 5.2 97.5± 2.1 94.8± 4.7 71.5± 7.4

HVAE 56.3± 7.9 19.6± 21.7 85.4± 1.7 48.7± 41.7 75.5± 3.8 13.9± 17.6 98.6± 2.2

RHVAE 68.0± 10.9 47.0± 24.2 85.1± 3.3 56.1± 25.3 83.0± 7.5 46.7± 30.2 89.2± 10.6

AE - GMM 82.4± 2.3 69.5± 3.1 82.0± 3.6 55.8± 4.9 96.8± 2.4 93.3± 5.6 71.5± 6.2

RAE (GP) 63.9± 9.8 46.5± 15.9 70.6± 19.6 45.3± 18.5 84.2± 8.6 60.9± 28.6 67.0± 24.9

RAE (L2) 74.1± 6.0 60.6± 9.5 82.1± 5.9 57.8± 10.1 88.3± 5.2 70.0± 18.7 78.3± 11.7

RAE (SN) 62.3± 8.9 37.8± 22.6 80.1± 7.9 43.1± 24.9 80.6± 6.6 41.7± 30.1 82.9± 16.4

RAE 69.3± 8.1 53.8± 12.9 80.0± 10.7 56.2± 13.5 85.2± 6.2 60.0± 24.0 78.5± 17.5

VAE - GMM 83.0± 3.6 71.4± 4.3 85.3± 3.0 60.7± 5.4 94.9± 3.7 88.0± 9.5 77.9± 5.9

VAE - Ours 85.4 ± 2.5 74.7 ± 3.5 87.3± 2.7 64.0± 5.3 95.8± 2.2 90.4± 5.6 80.3± 5.1

*unbalanced

Wider hyper-parameter search

As stated in the main paper, for the experiments, we used the official implementation and hyper-
parameters provided by the authors when available. However, we also propose to perform a hyper-
parameter search for the models considered in the benchmark i.e. WAE, VAMP-VAE, RAE-GP and
RAE-L2 [3] on MNIST and CELEBA. Since both HVAE and RHVAE models have a very time con-
suming training, we propose to replace these approaches with models having the same objective

117

Chapter 3

(i.e. enriching the posterior distribution). Do to so we consider a VAE with inverse autoregressive
flows (Kingma et al., 2016) (VAE-IAF) and a VAEwith normalizing flowswith radial/planar invertible
transformations (Rezende and Mohamed, 2015) (VAE-NF).

We train thesemodels with 10 different hyper-parameter configurations onMNIST and CELEBA.
For the WAE, we vary the kernel bandwidth in {0.01, 0.1, 0.5, 1, 2, 5} and change the regularization
factor weighting the reconstruction and regularization in {0.01, 0.1, 1, 10, 100}. For the RAEs, we
vary the L2 latent code regularization factor and the factor before the explicit regularization in
{1e−6, 1e−4, 1e−3, 0.01, 0.1, 1}. For the VAMP we vary the number of pseudo-inputs in {10, 20, 30,
50, 100, 150, 200, 250, 300,189 500}. Finally, for the flow-based VAEs we vary the complexity of
the flows with different number of IAF blocks (VAE-IAF) or different flow lengths (VAE-NF). To
assess the influence of the neural architecture, the experiment is performed twice each time with a
different neural network architecture (CNN in Table 3.4 or a simpler ResNet). In Table 3.3, we show
the generation vs. test FID of the model achieving the lowest FID on the validation set.

Table 3.3: FID (lower is better) for different models and datasets. For themixture of Gaussian (GMM),
we fit a 10-component mixture of Gaussian in the latent space.

Models MNIST CELEBA

Nets CNN ResNet CNN ResNet

AE - N(0,1) 46.4 221.8 64.6 275.0

WAE 18.9 20.3 54.6 67.1

VAE - N(0,1) 40.7 47.8 64.1 69.5

VAMP 34.0 34.5 56.0 67.2

VAE-NF 29.3 32.5 55.4 67.1

VAE-IAF 27.5 30.6 56.5 66.2

AE - GMM 9.6 11.0 56.1 57.4

RAE-GP 9.4 11.4 52.5 59.0

RAE-L2 9.1 11.5 54.5 58.3

VAE - GMM 13.1 12.4 55.5 59.9

Ours 8.5 10.7 48.7 53.2

118

A Geometric Perspective on Variational Autoencoders

Train

OASIS

VAE - N

WAE

VAMP

HVAE

RHVAE

VAE - GMM

RAE (GP)

RAE (L2)

RAE (SN)

RAE

VAE - Ours

Figure 3.10: Generated samples with different models and generation processes.

119

Chapter 3

3.7.4 Experimental Set-Up

We compare the proposed sampling method to several VAE variants such as a Wasserstein Autoen-
coder (WAE) (Tolstikhin et al., 2018), Regularized Autoencoders (Ghosh et al., 2020) with either L2
decoder’s parameters regularization (RAE-L2), gradient penalty (RAE-GP), spectral normalization
(RAE-SN) or simple L2 latent code regularization (RAE), a vamp-prior VAE (VAMP) (Tomczak and
Welling, 2018), a Hamiltonian VAE (HVAE) (Caterini et al., 2018), a geometry-aware VAE (RHVAE)
(Chadebec et al., 2020) and an Autoencoder (AE). The RAEs, VAEs and AEs are trained for 100 epochs
for SVHN, MNIST3 and CELEBA and 200 on CIFAR10. Each time we use the official train and test
split of the data. For MNIST and SVHN, 10k samples out of the train set are reserved for validation
and 40k for CIFAR10. As to CELEBA, we use the official validation set for validation. The model that
is kept at the end of training is the one achieving the best validation loss. All the models are trained
with a batch size of 100 and starting learning rate of 1e−3 (but CIFAR where the learning rate is
set to 5e−4) with an Adam optimizer (Kingma and Ba, 2014). We also use a scheduler decreasing
the learning rate by half if the validation loss stops increasing for 5 epochs. For the experiments on
the sensitivity to the training set size, we keep the same set-up. For each dataset we ensure that the
validation set is 1/5th the size of the train set but for CIFAR where we select the best model on the
train set. The neural networks architectures can be found in Table 3.4 and are inspired by (Ghosh
et al., 2020). The metrics (FID and PRD scores) are computed with 10000 samples against the test set
(for CELEBA we selected only the 10000 first samples of the official test set). The factor ρ is set to
ρ = max

i
min
j ̸=i
∥ci− cj∥2 to ensure some smoothness of the manifold. For models coming from peers,

we use the parameters and code provided by the authors when available and allowed by licenses.

For the data augmentation task, the generative models are trained on each class for 1000 epochs
with a batch size of 100 and a starting learning rate of 1e−4. Again a scheduler is used and the
learning rate is cut by half if the loss does not improve for 20 epochs. All the models have the
autoencoding architecture described in Table 3.4. As to the classifier, it is trained with a batch size
of 200 for 50 epochs with a starting learning rate of 1e−4 and Adam optimizer. A scheduler reducing
the learning rate by half every 5 epochs if the validation loss does not improve is again used. The best
kept model is the one achieving the best balanced accuracy on the validation set. Its neural network
architecture may be found in Table 3.5. MRIs are only pre-processed such that the maximum value
of a voxel is 1 and the minimum 0 for each data point.

3MNIST images are re-scaled to 32x32 images with a 0 padding.

120

A Geometric Perspective on Variational Autoencoders

Table 3.4: Neural networks used for the encoder and decoders of VAEs in the benchmarks

MNIST [CIFAR10] SVHN CELEBA OASIS

Encoder (1[3], 32, 32) (3, 32, 32) (3, 64, 64) (1, 208, 176)

Layer 1
Conv(128, (4, 4), stride=2) Linear(1000) Conv(128, (5, 5), stride=2) Conv(64, (5, 5), stride=2)

Batch normalization ReLU Batch normalization ReLU
ReLU ReLU

Layer 2
Conv(256, (4, 4), stride=2) Linear(500) Conv(256, (5, 5), stride=2) Conv(128, (5, 5), stride=2)

Batch normalization ReLU Batch normalization ReLU
ReLU ReLU

Layer 3
Conv(512, (4, 4), stride=2)

Linear(500, 16)
Conv(512, (5, 5), stride=2) Conv(256, (5, 5), stride=2)

Batch normalization Batch normalization ReLU
ReLU ReLU

Layer 4
Conv(1024, (4, 4), stride=2)

-
Conv(1024, (5, 5), stride=2) Conv(512, (5, 5), stride=2)

Batch normalization Batch normalization ReLU
ReLU ReLU

Layer 5 Linear(4096, 16) - Linear(16384, 64) Conv(1024, (5, 5), stride=2)
ReLU

Layer 6 - - - Linear(4096, 16)

Decoder (16 [32]) (16) (64) (16)

Layer 1 Linear(65536) Linear(500) Linear(65536) Linear(65536)
Reshape(1024, 8, 8) ReLU Reshape(1024, 8, 8) Reshape(1024, 8, 8)

Layer 2
ConvT(512, (4, 4), stride=2) Linear (1000) ConvT(512, (5, 5), stride=2) ConvT(512, (5, 5), stride=(3, 2))

Batch normalization ReLU Batch normalization ReLU
ReLU ReLU

Layer 3
ConvT(256, (4, 4), stride=2) Linear(3072) ConvT(256, (5, 5), stride=2) ConvT(256, (5, 5), stride=2)

Batch normalization Reshape(3, 32, 32) Batch normalization ReLU
ReLU Sigmoid ReLU

Layer 4
ConvT(3, (4, 4), stride=1)

-
ConvT(128, (5, 5), stride=2) ConvT(128, (5, 5), stride=2)

Batch normalization Batch normalization ReLU
Sigmoid ReLU

Layer 5 - -
ConvT(3, (5, 5), stride=1) ConvT(64, (5, 5), stride=2)

Batch normalization ReLU
Sigmoid

Layer 6 - - - ConvT(1, (5, 5), stride=1)
ReLU

121

Chapter 3

Table 3.5: Neural Network used for the classifier in Sec. 3.7.3

OASIS Classifier

Input Shape (1, 208, 176)

Layer 1

Conv(8, (3, 3), stride=1)
Batch normalization

LeakyReLU
MaxPool(2, stride=2)

Layer 2

Conv(16, (3, 3), stride=1)
Batch normalization

LeakyReLU
MaxPool(2, stride=2)

Layer 3

Conv(32, (3, 3), stride=2)
Batch normalization

LeakyReLU
MaxPool(2, stride=2)

Layer 4

Conv(64, (3, 3), stride=2)
Batch normalization

LeakyReLU
MaxPool(2, stride=2)

Layer 5 Linear(256, 100)
ReLU

Layer 6 Linear(100, 2)
Softmax

122

A Geometric Perspective on Variational Autoencoders

3.7.5 Dataset Size Sensibility on SVHN

In Figure 3.11, we show the same plot for SVHN as in Sec. 3.5.2. Again the proposed method appears
to be part of the most robust generation procedures to dataset size changes.

SVHN

0.1 0.5 1.0 5.0
×104

100

150

200

300
WAE - N (0, 1)
RAE-GP - N (0, 1)
RAE-L2 - N (0, 1)
RAE-SN - N (0, 1)
VAE - N (0, 1)
WAE - GMM
RAE-GP - GMM
RAE-L2 - GMM
RAE-SN - GMM
VAE - GMM
VAE - Ours

Figure 3.11: FID score evolution according to the number of training samples.

123

Chapter 3

3.7.6 Ablation Study

Influence of the number of centroids in the metric

In order to assess the influence of the number of centroids and their choice in the metric in Eq. (3.6),
we show in Figure 3.12 the evolution of the FID according to the number of centroids in the metric
(left) and the variation of FID according to the choice in the centroids (right). As expected, choosing
a small number of centroids will increase the value of the FID since it reduces the variability of the
generated samples that will remain close to the centroids. Nonetheless, as soon as the number of
centroids is higher than 1000 the FID score is either competitive or better than peers and continues
decreasing as the number of centroids increases.

2 10 100 1000 10000
Number of centroids in the metric

10
20
30
40
50
60
70
80
90

100
110

FI
D

mnist
celeba

1 2 3 4 5
Centroids choice

10

20

30

40

50

60

70

80
FI

D
mnist
celeba

Figure 3.12: Left: FID score evolution according to the number of centroids in the metric (Eq. (3.6)).
Right: The FID variation with respect to the choice in centroids. We generate 10000 samples by
selecting each time different centroids (k = 1000).

To assess the variability of the generated samples, we propose to analyze some generated samples
when only 2 centroids are considered. In Figure 3.13, we display on the left the decoded centroids
along with the closest image to these decoded centroids in the train set. On the right are presented
some generated samples. We place these samples in the top row if they are closer to the first decoded
centroid and in the bottom row otherwise. Interestingly, even with a small number of centroids the
proposed sampling scheme is able to access to a relatively good diversity of samples. These samples
are not simply resampled train images or a simple interpolation between selected centroids as some
of the generated samples have attributes such as glasses that are not present in the images of the
decoded centroids.

Influence of λ in the metric

In this section, we also assess the influence of the regularization factor λ in Eq. (3.6) on the result-
ing sampling. To do so, we generate 10k samples using the proposed method on both MNIST and
CELEBA datasets for values of λ ∈ [1e−6, 1e−4, 1e−2, 1e−1, 1]. Then, we compute the FID against
the test set. Each time, we consider k = 1000 centroids in the metric. As shown in Figure 3.14, the
influence of λ remains limited. In the implementation, a typical choice for λ is 1e−2.

124

A Geometric Perspective on Variational Autoencoders

Decoded
centroid

Nearest train
image Generated samples

Figure 3.13: Variability of the generated samples when only two centroids are considered in the
metric. Left: The image obtained by decoding the centroids. Middle: The nearest image in the train
set to the decoded centroids. Right: Some generated samples. Each generated sample is assigned to
the closest decoded centroid (top row for the first centroid and bottom row for the second one).

10−6 10−5 10−4 10−3 10−2 10−1 100

Value of λ

10

20

30

40

50

60

70

80

FI
D

mnist
celeba

Figure 3.14: FID score evolution according to the value of λ in the metric (Eq. (3.6)).

The choice of ρ

In the experiments presented, the smoothing factor ρ in Eq. (3.6) is set to the value of the maximum
distance between two closest centroids ρ = max

i
min
j ̸=i
∥cj − ci∥2. This choice is motivated by the

fact that we wanted to build a smooth metric and so ensure some smoothness of the manifold while
trying to interpolate faithfully between the metric tensors Gi = Σ(xi)

−1. In particular, a too small
value of ρ would have allowed disconnected regions and the sampling may have not prospected
well the learned manifold and would have only become a resampling of the centroids. On the other
hand, setting a high value for ρ would have biased the interpolation and the value of the metric at
a µ(xi). As a result, G(µ(xi)) might have been very different from the one observed Σ(xi)

−1 since
the other µ(xj) would have had a strong influence on its value. The proposed value for ρ appeared
to work well in practice.

125

Chapter 3

3.7.7 Can the Method Benefit More Recent Models ?

Our method proposes to build a Riemannian metric using the covariances in the posterior distri-
butions. Thus, it can be easily plugged into more recent models provided that they have a Gaus-
sian posterior distribution. In order to assess how it would benefit to more recent VAE models, we
train a VAMP-VAE (Tomczak and Welling, 2018), a VAEGAN (Larsen et al., 2016), an Adversarial AE
(Makhzani et al., 2015) and an IWAE (Burda et al., 2016) and compare the generation FID obtained 1)
with the prior or 2) when plugging our method. For this experiment, we conduct a hyper-parameter
search consisting in training each model with 10 different configurations. For the VAMP we vary
the number of pseudo-inputs in {10, 20, 30, 50, 100, 150, 200, 250, 300, 500}. For the VAEGAN, we
use a discriminator similar to the encoder described in Table 3.4 and vary the layer depth consid-
ered for the reconstruction loss in {2, 3, 4} and the factor balancing reconstruction/generation for
the decoder’s loss in {0.3, 0.5, 0.7, 0.8, 0.9, 0.99, 0.999}. For the AAE, we change the factor balancing
the reconstruction loss and the regularization in {0.001, 0.01, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99, 0.999}.
Finally, for the IWAE, we vary the number of importance samples in {2, 3, 4, 5, 6, 7, 8, 9, 10, 12}. For
each model and generation scheme, we report the results of the model achieving the lowest FID on
the validation set. According to Table 3.6, the proposed generation method seems to benefit these
models in almost all cases since the FID decreases when compared to the prior-based generation.

Table 3.6: FID (lower is better) vs. the test set using either the prior (classic approach) or by plugging
our generation method.

Model Generation MNIST CELEBA

VAMP prior 34.5 67.2

ours 32.7 60.9

IWAE prior 32.4 67.6

ours 33.8 60.3

AAE prior 19.1 64.8

ours 11.7 51.4

VAEGAN prior 8.7 39.7

ours 6.1 31.4

Another approach that is interesting to compare to is the 2-stage VAE model proposed in (Dai
and Wipf, 2018). Our method can indeed be seen as part of the methods trying to counterbalance
the poor expressiveness of the prior distribution. In (Dai and Wipf, 2018), the authors argue that the
actual distribution of the latent codes (i.e. the aggregated posterior) is "likely not close to a standard
Gaussian distribution" (Dai and Wipf, 2018) leading to a distribution mismatch degrading the gen-
eration capability of the model. To address this issue, they propose to use a second VAE to estimate
the learned distribution of the latent variables. Our approach starts with the same observation that
the latent codes have no reason to follow the prior. However, it differs since we propose to adopt
a fully geometric perspective and propose instead a sampling scheme using the intrinsic uniform
distribution defined on the learned Riemannian manifold.

We nonetheless compare our method with models obtained with the official implementation
provided by the authors of (Dai andWipf, 2018) on MNIST and CELEBA. To allow a fair comparison,
we simply plug our method to the obtained trained models and build the metric using the posteriors
coming from the 1st stage VAE. In Table 3.7, we compare the FID obtained 1) with the first stage

126

A Geometric Perspective on Variational Autoencoders

VAE (i.e. prior), 2) with the second stage VAE (Dai and Wipf, 2018) and 3) with our method. Again,
our proposed generation method allows to achieve lower FID results.

Table 3.7: FID (lower is better) vs. the test set using the 2-stage VAE implementation (Dai and Wipf,
2018) for either the reconstructed samples (recon.), using the prior (1st stage), using the 2-stage
approach (2nd stage) or by plugging our generation method.

Dataset Nets Recon. 1st stage 2nd stage Ours

MNIST similar to (Chen et al., 2016a) 14.8 20.0 12.9 9.9

CELEBA similar to (Chen et al., 2016a) 44.9 67.8 53.3 49.6

CELEBA similar to (Tolstikhin et al., 2018) 34.3 70.8 40.7 37.9

127

Chapter 3

128

Chapter 4

Pythae: UnifyingGenerativeAutoencoders
in Python

In recent years, deep generative models have attracted increasing interest due to their capacity to
model complex distributions. Among those models, variational autoencoders have gained popular-
ity as they have proven both to be computationally efficient and yield impressive results in multiple
fields. Following this breakthrough, extensive research has been done in order to improve the origi-
nal publication, resulting in a variety of different VAE models in response to different tasks. In this
chapter we present Pythae, a versatile open-source Python library providing both a unified implemen-
tation and a dedicated framework allowing straightforward, reproducible and reliable use of gener-
ative autoencoder models. As an example of application, we propose to use this library to perform a
case study benchmark where we present and compare 19 generative autoencoder models representa-
tive of some of the main improvements on downstream tasks such as image reconstruction, genera-
tion, classification, clustering and interpolation. The open-source library can be found at https:
//github.com/clementchadebec/benchmark_VAE

This chapter was published at the NeurIPS Conference 2022 (track on Benchmark and Datasets).
See (Chadebec et al., 2022c).

129

https://github.com/clementchadebec/benchmark_VAE
https://github.com/clementchadebec/benchmark_VAE

Chapter 4

4.1 Introduction . 131
4.2 Variational Autoencoders . 131

4.2.1 Background . 132
4.2.2 Improvements Upon the Classical VAE Method 132

4.3 The Pythae Library . 134
4.4 Case Study Benchmark . 136

4.4.1 Benchmark Setting . 136
4.4.2 Experiments . 137

4.5 Conclusion . 142
4.6 Appendices . 144

4.6.1 Usage of Pythae . 144
4.6.2 Interpolations . 148
4.6.3 Detailed Experiments Set-Up . 155
4.6.4 Additional Results . 157

130

Pythae: Unifying Generative Autoencoders in Python

4.1 Introduction

Over the past few years, generative models have proven to be a promising approach for modeling
datasets with complex inherent distributions such a natural images. Among those, Variational Au-
toEncoders (VAE) (Kingma and Welling, 2014; Rezende et al., 2014) have gained popularity due to
their computational efficiency and scalability, leading to many applications such as speech modeling
(Blaauw and Bonada, 2016), clustering (Dilokthanakul et al., 2017; Yang et al., 2019), data augmen-
tation (Chadebec et al., 2022b) or image generation (Razavi et al., 2020). Similarly to autoencoders,
these models encourage good reconstruction of an observed input data from a latent representation,
but they further assume latent vectors to be random variables involved in the generation process
of the observed data. This imposes a latent structure wherein latent variables are driven to follow
a prior distribution that can then be used to generate new data. Since this breakthrough, various
contributions have been made to enrich the original VAE scheme through new generating strate-
gies (Dilokthanakul et al., 2017; Tomczak and Welling, 2018; Ghosh et al., 2020; Bauer and Mnih,
2019a; Pang et al., 2020), reconstruction objectives (Larsen et al., 2016; Snell et al., 2017) and more
adapted latent representations (Higgins et al., 2017; Kim and Mnih, 2018; Van Den Oord et al., 2017;
Arvanitidis et al., 2018; Chadebec et al., 2022b) to cite a few. A drawback of VAEs is that due to
the intractability of the log-likelihood objective function, VAEs have to resort to optimizing a lower
bound on the true objective as a proxy, which has been mentioned as a major limitation of the model
(Burda et al., 2016; Alemi et al., 2016; Higgins et al., 2017; Cremer et al., 2018; Zhang et al., 2018a).
Hence, extensive research has been proposed to improve this bound through richer distributions
(Salimans et al., 2015; Rezende and Mohamed, 2015; Kingma et al., 2016; Caterini et al., 2018). More
recently, it has been shown that autoencoders can be turned into generative approaches through la-
tent density estimation (Ghosh et al., 2020), extending the concept ofGenerative AutoEncoders (GAE)
to a more general class of autoencoder models.

Nonetheless, most of this research has been done in parallel across disjoint sub-fields of research
and to the best of our knowledge little to no work has been done on homogenizing and integrating
these distinct methods in a common framework. Moreover, for many of the aforementioned publi-
cations, implementations may not be available or maintained, therefore requiring time-consuming
re-implementation. This induces a strong bottleneck for research to move forward in this field and
makes reproducibility challenging, which calls for the need of a unified generative autoencoder
framework. To address this issue we introduce Pythae (Python AutoEncoder), a versatile open
source Python library for generative autoencoders providing unified implementations of common
methods, along with a reproducible framework allowing for easy model training, data generation
and experiment tracking. We then propose to illustrate the usefulness of the proposed library on
a benchmark case study of 19 generative autoencoder methods on classical image datasets. We
consider five different downstream tasks: image reconstruction and generation, latent vector clas-
sification and clustering, and image interpolation on three well known imaging datasets.

4.2 Variational Autoencoders

In this section, we recall the original VAE setting and present some of the main improvements that
were proposed to enhance the model.

131

Chapter 4

4.2.1 Background

Given x ∈ RD, a set of observed variables deriving from an unknown distribution p(x), a VAE
assumes that there exists z ∈ Rd such that z is a latent representation of x. The generation process
of x thus decomposes as

pθ(x) =

∫
Z
pθ(x|z)pz(z)dz , (4.1)

where pz is the prior distribution on the latent space Rd. The distribution pθ(x|z) is referred to
as the decoder and is modeled with a simple parametric distribution whose parameters are given
by a neural network. Since the true posterior pθ(z|x) is most of the time intractable due to the
integral in Eq. (4.1) recourse to Variational Inference (Jordan et al., 1999) is needed and a variational
distribution qϕ(z|x) which we refer to as the encoder is introduced. The approximate posterior qϕ
is again taken as a simple parametric distribution whose parameters are also modeled by a neural
network. This allows to define an unbiased estimate p̂θ of the marginal distribution pθ(x) using
importance sampling with qϕ(z|x) i.e. p̂θ(x) = pθ(x|z)pz(z)

qϕ(z|x)
and Ez∼qϕ

[
p̂θ
]
= pθ. Applying Jensen’s

inequality leads to a lower bound on the likelihood given in Eq. (4.1):

logEz∼qϕ
[
p̂θ(x)

]︸ ︷︷ ︸
pθ(x)

≥ Ez∼qϕ
[
log p̂θ(x)

]
= Ez∼qϕ [log pθ(x|z)]︸ ︷︷ ︸

reconstruction

−DKL
[
qϕ(z|x)||pz(z)

]︸ ︷︷ ︸
regularization

,
(4.2)

where DKL(p||q) is the Kullback-Leibler divergence between distributions p and q. This bound is
referred to as the Evidence Lower Bound (ELBO) (Kingma and Welling, 2014) and is used as the
training objective to maximize in the traditional VAE scheme. It can be interpreted as a two terms
objective (Ghosh et al., 2020) where the reconstruction loss forces the output of the decoder to be
close to the original input x, while the regularization loss forces the posterior distribution qϕ(z|x)
outputted by the encoder to be close to the prior distribution pz(z). Under standard VAE assumption,
the prior distribution is a multivariate standard Gaussian pz = N (0, Id), the approximate posterior
is set to qϕ(z|x) = N

(
z
∣∣µ(x),Σ(x)) where (µ(x),Σ(x)) are outputs of the encoder network.

4.2.2 Improvements Upon the Classical VAE Method

Building on the breakthrough of VAEs, several papers have proposed improvements to the model.
In this section we present 4 axes which we consider to be representative of the major advancements
made on VAEs, as well as classical models characterizing the main improvements within each of
these axes.

Improving the prior It has been shown that the role of the prior distribution pz is crucial in the
good performance of the VAE (Hoffman and Johnson, 2016) and choosing a family of overly simplis-
tic priors can lead to over-regularization (Connor et al., 2021) and poor reconstruction performance
(Dai and Wipf, 2018). In particular, it was shown that the prior maximizing the ELBO objective is
the aggregated posterior q(z) = 1

N

∑N
i=1 qϕ(z|xi) (Tomczak and Welling, 2018). However, it should

be noted that a perfect fit between the prior and the aggregated posterior is not necessarily desired
since it has been shown in (Bauer and Mnih, 2019b; Tomczak and Welling, 2018) that it may lead to
over-fitting as it essentially amounts to the model memorizing the training set. Hence, multi-modal

132

Pythae: Unifying Generative Autoencoders in Python

priors (Nalisnick et al., 2016; Dilokthanakul et al., 2017; Tomczak and Welling, 2018) were proposed,
followed by hierarchical latent variable models (Sønderby et al., 2016; Klushyn et al., 2019) and prior
learning based approaches (Chen et al., 2016b; Aneja et al., 2020) to address the poor expressiveness
of the prior distribution and model richer generative distributions. Considering a specific geome-
try of the latent space also led to alternative priors taking into account geometrical aspects of the
latent space (Davidson et al., 2018; Falorsi et al., 2018; Mathieu et al., 2019a; Arvanitidis et al., 2018;
Chen et al., 2018a; Shao et al., 2018; Kalatzis et al., 2020; Chadebec et al., 2022b). Another interest-
ing approach proposed for instance in (Van Den Oord et al., 2017; Ghosh et al., 2020) consists in
using density estimation post training with another distribution or normalizing flows (Rezende and
Mohamed, 2015) on the learned latent codes.

Towards a better lower bound Another major axis of improvement of the VAE model has been
to tighten the gap between the ELBO objective and the true log probability (Burda et al., 2016; Alemi
et al., 2016; Higgins et al., 2017; Cremer et al., 2018; Zhang et al., 2018a). The ELBO objective can
indeed be written as the difference between the true log probability and a KL divergence between
the approximate posterior and the true posterior

LELBO(x) = log pθ(x)−DKL
[
qϕ(z|x)||p(z|x)

]
.

Hence, if one wants to make the ELBO gap tighter, particular attention should be paid to the choice
in the approximate posterior qϕ(z|x). In the original model, qϕ(z|x) is chosen as a simple distri-
bution for tractability of the ELBO in Eq. (4.2). However, several approaches have been proposed
to extend the choice of qϕ to a wider class of distributions using MCMC sampling (Salimans et al.,
2015) or normalizing flows (Rezende and Mohamed, 2015). For instance, (Kingma et al., 2016) im-
prove upon the works of (Rezende andMohamed, 2015) with an inverse auto-regressive normalizing
flow (IAF), a new type of normalizing flow that better scales to high-dimensional latent spaces. With
this objective in mind a Hamiltonian VAE aimed at targeting the true posterior during training with
a Hamiltonian Monte Carlo (Neal, 2005) inspired scheme was proposed (Caterini et al., 2018) and
extended to Riemannian latent spaces in (Chadebec et al., 2022b).

Encouraging disentanglement Although there is no clear consensus upon the definition of dis-
entanglement, it is commonly referred to as the independence between features in a representation
(Mathieu et al., 2019b). This is a desirable behavior for VAEs, as it is argued that disentangled fea-
tures may be more representative and interpretable (Higgins et al., 2017). In that regard, several
approaches have been proposed encouraging a better disentanglement of the features in the latent
space. (Higgins et al., 2017) first argue that increasing the weight of the KL divergence term in the
ELBO loss enforces a higher disentanglement of the latent features as the posterior probability is
forced to match a multivariate normal standard Gaussian. Following this idea, (Burgess, 2018) pro-
pose to achieve disentanglement by gradually increasing the proximity between the posterior and
the prior (Burgess, 2018). Other methods challenge the view that disentanglement can be achieved
by simply forcing the posterior to match the prior, or raise the point that in this case disentangle-
ment is achieved at the cost of a bad reconstruction. From these observations, new approaches arise
such as (Kim and Mnih, 2018) who augment the VAE objective with a penalty that encourages fac-
torial representation of the marginal distributions, or (Chen et al., 2018b) that enforce a penalty on
the total correlation favouring disentanglement.

133

Chapter 4

Amending the distance between distributions It can be stressed that the reconstruction term
Ez∼qϕ(z|x)[log pθ(x|z)] in eq. (4.2) has a crucial role in the reconstruction and that its choice should
be dependent of the application. For instance, methods using a discriminator (Larsen et al., 2016) or
using a deterministic differentiable loss function (Snell et al., 2017) acting as a distance between the
input data and its reconstruction were also proposed. The second term in the ELBO measures the
distance between the approximate posterior and the prior distribution through the KL divergence
and it has however been argued that other distances between probability distributions could be used
instead. Hence, approaches using a GAN to distinguish samples from the posterior from samples
from the prior distribution (Makhzani et al., 2015) or methods based on optimal transport have also
been proposed (Tolstikhin et al., 2018; Zhao et al., 2019).

4.3 The Pythae Library

Why Pythae ? To the best of our knowledge, although some well referenced libraries grouping
different Variational Auto-Encoder methods exist (e.g. (Subramanian, 2020)), there exists no frame-
work providing both adaptable and easy-to-use unified implementations of state-of-the-art Gener-
ative AutoEncoder (GAE) methods. This induces both a strong brake for reproducible research and
democratization of the models since implementations might be difficult to adapt to other use-cases,
no longer maintained, or completely unavailable.

Project vision Starting from this observation, we created Pythae, an open-source python library
inspired from (Pedregosa et al., 2011; Wolf et al., 2020) providing unified implementations of gener-
ative autoencoding methods, allowing for easy use and training of GAE models. Pythae is designed
with the following points in mind:

• Usable by all Pythae makes GAE models accessible to all - beginners to experts. This means
beginners can run ready-to-use models with a few lines of code, while more advanced users
can easily access and adapt different methods to their specific use-cases, with custom en-
coder/decoder definition. Indeed, the library was designed to be flexible enough to allow users
to use existing implementations on their own data, with custom model hyper-parameters,
training configurations and network architectures.
The library has an online documentation1 and is also explained and illustrated through tuto-
rials available either on a local machine or on the Google Colab platform (Bisong, 2019).

• Unified implementation The brick-like structure of Pythae allows for seamless but effi-
cient interchange between models, sampling techniques, network architectures, model hyper-
parameters and training schemes. Pythae is unit-tested ensuring code quality and continuous
development with a code coverage of 98% as of release 0.6. The library is made available on
pip and conda allowing an easy integration. Its development is performed through releases
that ensure stable and robust implementations.

• A reproducible research environment Pythae is open to all and as such encourages trans-
parent and reproducible research, as illustrated in the next section. With a variety of different

1The full documentation can be found at https://pythae.readthedocs.io/en/latest/.

134

https://pythae.readthedocs.io/en/latest/

Pythae: Unifying Generative Autoencoders in Python

interchangeable models gathered in a common library, it can be used as a sandbox for research
and applications. Moreover, the library also integrates an easy-to-use experiment tracking tool
(wandb) (Biewald, 2020) allowing to monitor runs launched with Pythae and compare them
through a graphic interface, and an online model sharing tool, the HuggingFace Hub, allowing
to share models with peers.

• Evolving and driven by the community Pythae’s design is intended to evolve with the
addition of new models to enrich the existing model base. Furthermore, peers can contribute
by reviewing and submitting models to enrich the library, a few of which have already been
added at the time of this publication.

Code structure Pythae was thought for easy model training and data generation, while striv-
ing for simplicity with a quick and user-friendly model selection and configuration. The backbone
of the library is the module pythae.models in which all the autoencoder models are implemented.
Each model implementation is accompanied with a configuration dataclass containing any hyper-
parameters relative to the model and allowing easing configuration loading and saving from json
files.

All the models are implemented using a common API allowing for a seamless integration with
pythae.trainers (for training) and pythae.samplers (for generation) along with a simplified usage as
illustrated in Fig. 4.1. In particular, Pythae provides pipelines allowing to train an autoencodermodel
or to generate new data with only a few lines of code, as shown in Appendix 4.6.1.

It mainly relies on the Pytorch (Paszke et al., 2017) framework and in its basic usage only essential
hyper-parameter configurations and data (arrays or tensors) are needed to launch amodel training or
generation. More advanced options allowing further flexibility such as defining custom encoder and
decoder neural-networks are also available and can be found in the documentation and tutorials. It
can adapt to various types of data through the use of different already-implemented or user provided
encoder and decoder neural-network architectures. In addition, Pythae also provides several ways
to generate new data through different popular sampling methods in the pythae.samplers module.
We detail some aspects of the library in Appendix 4.6.1.

pythae.models

encoder architecture

decoder architecture

model config

model trained model

pythae training pipeline pythae generation pipeline

training config
model config
trained model

sampler config
generated samples

pythae
AutoModel

training config train/eval data sampler config

required

optional

pythae modules

🧪
wandb

dataset

pythae.trainers

callbacks

schedulers

optimizers

pythae.samplers

saves

logs

saves

autoencoder

🤗
HF Hub

Figure 4.1: Pythae library diagram

135

Chapter 4

4.4 Case Study Benchmark

By nature of its structured framework, Pythae allows for easy comparison between models on any
chosen task. As an illustrative purpose, we propose a case study where we use Pythae to perform
a straightforward benchmark comparison of models implemented in Pythae on a selection of well-
known elementary tasks. The aim of these tasks is to underline general trends within groups of
GAEs, based on common behaviors, as well as judge the versatility of the models. However, this
benchmark should not be considered as a means to rank models on these tasks, as performances
depend on sometimes complex hyper-parameter tuning and training, which we consider to be out-
side of the scope of this benchmarking use case. The scripts used for the benchmark are provided
in supplementary materials.

4.4.1 Benchmark Setting

In this section, we present the setting of the benchmark. Comprehensive results for all the experi-
ments are available through the monitoring tool (Biewald, 2020) used in Pythae to allow complete
transparency.

The Data To perform the different tasks presented in this chapter, 3 classical and widely used
image datasets are considered: MNIST (LeCun, 1998), CIFAR10 (Krizhevsky et al., 2009) and CELEBA
(Liu et al., 2015). These datasets are publicly available, widely used for generative model related
papers and have well known associated metrics in the literature. Each dataset is split into a train
set, a validation set and a test set. For MNIST and CIFAR10 the validation set is composed of the last
10k images extracted from the official train set and the test set corresponds to the official one. For
CELEBA, we use the official train/val/test split.

The Models We propose to compare 19 generative autoencoder models representative of the im-
provements proposed in the literature and presented in Sec. 4.2.2. Descriptions and explanations
of each implemented model can be found in Appendix 4.6.4. We use as baseline an Autoencoder
(AE) and a Variational Autoencoder (VAE). To assess the influence of a more expressive prior, we
propose using a VAE with VAMP prior (VAMP) (Tomczak and Welling, 2018) and regularized au-
toencoders with either a gradient penalty (RAE-GP) or a L2 penalty on the weights of the decoder
(RAE-L2) that use ex-post density estimation (Ghosh et al., 2020). To represent models trying to
reach a better lower bound, we choose a Importance Weighted Autoencoder (IWAE) (Burda et al.,
2016) and VAEs adding either simple linear normalizing flows (VAE-lin-NF) (Rezende and Mo-
hamed, 2015) or using IAF (VAE-IAF) (Kingma et al., 2016). For disentanglement-based models, we
select a β-VAE (Higgins et al., 2017), a FactorVAE (Kim and Mnih, 2018) and a β-TC VAE (Chen
et al., 2018b). To stress the influence of the distance used between distributions we add a Wasserstein
Autoencoder (WAE)(Tolstikhin et al., 2018) and an InfoVAE (Zhao et al., 2019) with either Inverse
Multi-Quadratic (IMQ) or a Radial Basis Function kernel (RBF) together with an Adversarial Au-
toencoder (AAE)(Makhzani et al., 2015), a VAEGAN(Larsen et al., 2016) and a VAE using structural
similarity metric for reconstruction (MSSSIM-VAE) (Snell et al., 2017). Finally, we add a VQVAE

(Van Den Oord et al., 2017) since having a discrete latent space has shown to yield promising results.

136

Pythae: Unifying Generative Autoencoders in Python

Models implemented in Pythae requiring too much training time or more intricate hyper-parameter
tuning were excluded from the benchmarks.

In the following, we will distinguishAE-based (autoencoder-based) methods (AE, RAE,WAE and
VQVAE) from the other variational-based methods.

Training paradigm Each of the aforementioned models is equipped with the same neural net-
work architecture for both the encoder and decoder leading to a comparable number of parameters
2. For each task, 10 different configurations are considered for each model, allowing a simple ex-
ploration of the models’ hyper-parameters, leading to 10 trained models for each dataset and each
neural network type (ConvNet or ResNet) leading to a total of 1140 models3. It is important to note
that the hyper-parameter exploration is not exhaustive and models sensitive to hyper-parameter
tuning may have better performances with a more extensive parameter search. The sets of hyper-
parameters explored are detailed in Appendix 4.6.4 for each model.

4.4.2 Experiments

In this section, we present the main results observed on 5 downstream tasks.

Fixed Latent Dimension

In this first part, latent dimensions are set to 16, 256 and 64 for the MNIST, CIFAR10 and CELEBA
datasets respectively, as we observed those latent dimensions to lead to good performances. See
results per model and across the 10 configurations specified in Appendix 4.6.3 to assess the influence
of the parameters on the tasks.

Task 1: Image reconstruction For each model, reconstruction error is evaluated by selecting
the configuration minimizing the Mean Square Error (MSE) between the input and the output of the
model on the validation set, while results are shown on the test set4. We show in Table 4.1 the MSE
and Frechet Inception Distance5 (FID) (Heusel et al., 2017) of the reconstructions from this model
on the test set. It is important to note that using the MSE as a metric places models using different
reconstruction losses (VAEGAN and MSSSIM-VAE) at a disadvantage.

As expected, the autoencoder-based models seem to perform best for the reconstruction task.
Nonetheless, this experiment also shows the interest of adding regularization to the autoencoder
since improvements over the AE (RAE-GP, RAE-L2) achieve better performance than the regular

2Some models may actually have additional parameters in their intrinsic structure e.g. a VQVAE learns a dictionary
of embeddings, a VAMP learns the pseudo-inputs, a VAE-IAF learns auto-regressive flows. Nonetheless, since we work
on images, the number of parameters remains in the same order of magnitude.

3The training setting (curves, configs ...) can be found at https://wandb.ai/benchmark_team/
trainings while detailed experimental set-up is available in Appendix 4.6.3.

4See the whole results at https://wandb.ai/benchmark_team/reconstructions
5We used the implementation of https://github.com/bioinf-jku/TTUR

137

https://wandb.ai/benchmark_team/trainings
https://wandb.ai/benchmark_team/trainings
https://wandb.ai/benchmark_team/reconstructions
https://github.com/bioinf-jku/TTUR

Chapter 4

AE. Moreover, β-VAE type models demonstrate their versatility as small enough β values can lead
to less regularization, therefore favouring a better reconstruction.

Task 2: Image generation We consider an image generation task with the trained models. In
this experiment, we also explore different ways of sampling new data, either 1) using a simple dis-
tribution chosen as N (0, Id) and corresponding to the standard prior for variational approaches
(N); 2) fitting a 10 components mixture of Gaussian in the latent space post training as proposed
in (Ghosh et al., 2020) (GMM), 3) fitting a normalizing flow taken as a Masked Autoregressive Flow
(MAF) (Papamakarios et al., 2017) or 4) fitting a VAE in a similar fashion as (Dai and Wipf, 2018).
For the MAF, two-layer MADE (Germain et al., 2015) are used. For each sampler, we select the mod-
els achieving the lowest FID on the validation set and compute the Inception Score6 (IS) (Salimans
et al., 2016) and the FID on the test set7. It should be noted that although the use of IS and FID has
been criticized (Barratt and Sharma, 2018; Shmelkov et al., 2018; Chong and Forsyth, 2020; Morozov
et al., 2020; Jung and Keuper, 2021), we still choose to use those metrics for clarity’s sake as they
are within the most commonly used metrics for image generation on generative models. The main
results are shown in Table 4.3 for the normal and GMM sampler (see Appendix 4.6.4 for the other
sampling schemes).

One of the key findings of this experiment is that performing ex-post density (therefore not
using the standard Gaussian prior) for the variational approach tends to almost always lead to better
generation metrics even when a simple 10-components mixture of Gaussian is used. Interestingly,
we note that when a more advanced density estimation model such as a MAF is used, results appear
equivalent to those of the GMM (see Appendix 4.6.4). This may be due to the simplicity of the
database we used and in consequence of the distribution of the latent codes that can be approximated
well enough with a GMM. It should nonetheless be noted that the number of components in the
GMM remains a key parameter which was set to the number of classes for MNIST and CIFAR10
since it is known, however too high a value may lead to overfitting while a low one may lead to
worse results. VAEGAN clearly surpasses peers on MNIST and CELEBA with impressive results
when compared to other models. Nonetheless, fitting such a model may be challenging due to the
adversarial approach and results can be considerably affected if parameters are not chosen correctly
(see Appendix 4.6.4).

Task 3: Classification To measure the meaningfulness of the learned latent representations we
perform a simple classification task with a single layer classifier as proposed in (Coates et al., 2011).
The rationale behind this is that if a GAE succeeds in learning a disentangled latent representation
a simple linear classifier should perform well (Berthelot* et al., 2019). A single layer classifier is
trained in a supervised manner on the latent embeddings of MNIST and CIFAR10. The train/val/test
split used is the same as for the autoencoder training. For each model configuration, we perform 20
runs of the classifier on the latent embeddings and define the best hyper-parameter configuration as
the one achieving the highest mean accuracy on these 20 runs on the validation set. We report the
mean accuracy on the test set across the 20 runs for the selected configuration in Table 4.2 (left)8.

6We used the implementation of https://github.com/openai/improved-gan
7See the whole results at https://wandb.ai/benchmark_team/generations
8See the whole results at https://wandb.ai/benchmark_team/classifications

138

https://github.com/openai/improved-gan
https://wandb.ai/benchmark_team/generations
https://wandb.ai/benchmark_team/classifications

Pythae: Unifying Generative Autoencoders in Python

As expected, models explicitly encouraging disentanglement in the latent space such as the β-
VAE and β-TC VAE achieve better classification when compared to a standard VAE. Nonetheless,
AE-based models seem again the best suited for such a task since variational approaches tend to
enforce a continuous space, consequently bringing latent representations of different classes closer
to each other. As a general observation, we can state that models with a more flexible prior achieve
better results on this task.

Task 4: Clustering As a complement to the previous task, performing clustering directly in the
latent space of the trained autoencoders can give insights on the quality of the latent representation.
Indeed, a well defined latent spacewill maintain the separation of the classes inherent to the datasets,
leading to easy and stable k-means performances. To do so, we propose to fit 100 separate runs of the
k-means algorithm and we show the mean accuracy obtained on the train embeddings in Table 4.2
(right)9. This experiment allows us to explore and measure the clusterability of the generated latent
spaces (Berthelot* et al., 2019). To measure accuracy we assign the label of the most prevalent class
to each cluster.

The conclusions of this experiment are slightly different from the previous one since models
targeting disentanglement seem to be equalled by the original VAE. Interestingly, adversarial ap-
proaches and other alternatives to the standard VAE KL regularization method seem to achieve the
best results.

Task 5: Interpolation Finally, we propose to assess the ability of the model to perform meaning-
ful interpolations. For this task, we consider a starting and ending image in the test set of MNIST and
CIFAR10 and perform a linear interpolation in the generated latent spaces between the two encoded
images. We show in Appendix 4.6.2 the decoding along the interpolation curves. For this task, no
metric was found relevant since the notion of "good" interpolation can be disputable. Nonetheless,
the obtained interpolated images can be reconstructed and qualitatively evaluated.

For this task, variational approaches were found to obtain better results as the inherent struc-
ture the posterior distribution imposes in the latent space results in a "smoother" transition from
one image to another when compared to autoencoders that mainly superpose images, especially in
higher dimensional latent spaces.

Varying Latent Dimension

An important parameter of autoencoder models which is too often neglected in the literature is
the dimension of the latent space. We now propose to keep the same configurations as previously
but re-evaluate Tasks 1 to 5 with the latent space varying in the range [16, 32, 64, 128, 256, 512].
Results are shown in Fig. 4.2 for MNIST and a ConvNet10 (see Appendix 4.6.4 for CIFAR, ResNet and
interpolations). For the generation task, we select the sampler with lowest FID on the validation set.

9See the whole results at https://wandb.ai/benchmark_team/clustering
10MSSSIM-VAE was removed from this plot for visualization purposes.

139

https://wandb.ai/benchmark_team/clustering

Chapter 4

Assessing the influence of the latent dimension A clear difference in behavior is exhibited
between variational-based and AE-based methods. For each given task, AEs share a common trend
with respect to the evolution of the latent dimension: a common optimal latent dimensionwithin the
range [16, 32, 64, 128, 256, 512] is found for each task, but differs drastically among different tasks
(e.g. 512 for reconstruction, 16 for generation, either 16 or 512 for classification and 512 for clustering
with the MNIST dataset). This suggests the existence of a common intra-group optimal latent space
dimension for a given task. In addition, we observe that β-VAE type methods (with the right hyper-
parameter choice) can exhibit similar behaviors to AE models. The same observation can be made
for variational-based methods, where it is interesting to note that although lower performances are
achieved, the apparent optimal latent dimension varies less with respect to the choice of the task.
Therefore, a latent dimension of 16 to 32 appears to be the optimal choice for all 4 Tasks on the
MNIST dataset, and 32 to 128 on the CIFAR10 dataset. For AE based methods, the choice of the
latent dimension seems to have a measurable impact on its performance, and the optimal choice
varies drastically from one dataset to another. It should be noted that unsupervised tasks such as
clustering of the latent representation of the CIFAR10 dataset are hard and models are expected to
perform poorly, leading to less interpretable results.

0.00

0.01

0.02

m
se

Reconstruction

25

50

fid

Generation

0.85

0.90

0.95

ac
cu

ra
cy

Classification

VAE
VAMP

IWAE

VAE_Li
nNF

VAE_IA
F

Beta
VAE

Beta
TCVAE

Fac
tor

VAE

INFO
VAE-im

q

INFO
VAE-rb

f

Adver
sar

ial_
AE

VAEGAN AE

WAE-im
q

WAE-rb
f

VQVAE
RAE_L2

RAE_GP
0.25

0.50

0.75

ac
cu

ra
cy

Clustering

latent_dim

latent_dim
16
32
64
128
256
512

latent_dim
16
32
64
128
256
512

latent_dim
16
32
64
128
256
512

Figure 4.2: From top to bottom: Evolution of the reconstruction MSE, generation FID, classification
accuracy and clustering accuracy with respect to the latent space dimension on the MNIST dataset.

140

Pythae: Unifying Generative Autoencoders in Python

Table 4.1: Mean Squared Error (10−3) and FID (lower is better) computed with 10k samples on the
test set. For each model, the best configuration is the one achieving the lowest MSE on the validation
set.

Model
ConvNet ResNet

MNIST (16) CIFAR10 (256) CELEBA (64) MNIST (16) CIFAR10 (256) CELEBA (64)
MSE ↓ FID ↓ MSE ↓ FID ↓ MSE ↓ FID ↓ MSE ↓ FID ↓ MSE ↓ FID ↓ MSE ↓ FID ↓

VAE 16.85 30.71 16.24 218.66 9.83 49.22 17.24 36.06 16.33 176.63 10.59 58.75

VAMP 24.17 44.95 17.45 221.40 10.81 51.64 17.11 37.58 16.87 177.03 11.50 60.89

IWAE 14.14 34.28 16.19 237.14 9.47 50.00 15.79 38.74 16.02 183.37 10.14 60.18

VAE-lin-NF 16.75 31.14 16.57 221.39 9.90 49.84 17.23 36.74 16.59 177.08 10.68 58.73

VAE-IAF 16.71 30.64 16.33 223.65 9.87 50.05 17.05 35.98 16.39 177.05 10.63 58.41

β-VAE 5.61 10.55 3.60 50.55 7.28 46.96 5.87 15.81 2.40 55.67 7.78 51.59

β-TC VAE 6.78 14.11 5.06 53.49 7.65 50.82 7.12 18.44 4.05 66.89 8.08 52.70

Factor VAE 17.27 30.39 16.41 224.3 10.16 53.61 18.13 37.97 16.55 176.8 10.93 59.46

InfoVAE-IMQ 16.65 30.62 16.19 216.44 9.81 50.51 17.17 37.33 16.32 173.79 10.63 58.04

InfoVAE-RBF 16.59 30.63 16.23 217.52 9.85 50.14 17.01 37.04 16.32 175.37 10.64 58.68

AAE 5.59 10.87 2.60 40.66 7.25 50.22 5.98 17.01 2.33 55.93 7.76 50.97

MSSSIM-VAE 32.60 37.91 39.42 276.70 35.60 124.52 33.67 40.25 39.61 254.34 35.43 119.92

VAEGAN 15.49 5.54 31.40 289.35 8.91 86.58 23.25 11.35 30.22 300.07 9.32 86.32

AE 5.47 11.61 2.82 41.98 7.03 51.08 6.13 13.74 2.34 55.43 7.74 50.54

WAE-IMQ 5.55 11.29 2.81 41.79 7.04 52.11 5.78 16.21 2.34 56.55 7.74 50.50

WAE-RBF 5.53 11.34 2.82 42.21 7.03 51.43 5.80 16.14 2.34 56.00 7.74 51.38

VQVAE 5.59 11.02 2.84 44.60 7.06 52.27 6.00 15.27 2.34 55.84 7.73 50.29

RAE-L2 5.24 15.37 2.25 49.28 6.90 53.98 5.76 17.27 2.35 57.85 7.74 51.07

RAE-GP 5.31 12.08 2.81 41.15 7.06 51.85 5.83 15.69 2.34 56.71 7.76 51.36

Table 4.2: Left: Mean test accuracy of a single layer classifier on the embedding obtained in the
latent spaces of each model average on 20 runs. Right: Mean accuracy of 100 k-means fitted on the
training embeddings coming from the autoencoders.

Model

Classification Clustering

ConvNet ResNet ConvNet ResNet
MNIST CIFAR10 MNIST CIFAR10 MNIST CIFAR10 MNIST CIFAR10

VAE 86.75(0.05) 32.61(0.03) 86.80(0.03) 32.37(0.03) 69.71(2.01) 17.18(0.68) 74.21(0.97) 18.12(0.74)

VAMP 92.17(0.02) 33.46(0.17) 92.58(0.04) 33.03(0.22) 67.26(1.25) 24.03(0.24) 72.48(0.96) 23.35(0.11)

IWAE 87.96(0.04) 31.86(0.04) 88.18(0.03) 32.26(0.04) 63.93(1.73) 19.55(0.67) 73.66(2.30) 18.44(0.86)

VAE-lin-NF 86.04(0.04) 31.57(0.02) 85.85(0.05) 31.74(0.03) 65.48(2.76) 17.09(0.64) 68.80(3.65) 18.74(0.68)

VAE-IAF 88.32(0.02) 33.52(0.02) 87.91(0.02) 32.41(0.02) 75.31(1.69) 17.81(0.73) 76.11(2.15) 18.42(0.66)

β-TC VAE 90.96(0.02) 45.40(0.05) 91.91(0.02) 42.17(0.07) 65.68(0.91) 24.14(0.65) 68.98(2.67) 25.57(0.61)

Factor VAE 86.08(0.06) 31.38(0.04) 83.44(0.05) 31.76(0.04) 51.02(1.73) 15.77(0.60) 60.79(2.06) 17.56(0.68)

InfoVAE-IMQ 86.33(0.04) 32.48(0.02) 86.31(0.06) 32.10(0.05) 68.17(2.34) 16.65(0.80) 71.31(2.62) 18.10(0.79)

InfoVAE-RBF 85.94(0.03) 32.50(0.03) 86.12(0.04) 31.67(0.03) 66.02(1.14) 16.22(0.69) 71.93(1.91) 18.61(0.67)

AAE 93.28(0.03) 43.93(0.07) 94.31(0.03) 40.62(0.11) 74.19(3.22) 24.72(0.75) 80.41(2.09) 24.76(0.53)

MSSSIM-VAE 78.30(0.03) 20.26(0.06) 76.54(0.03) 20.24(0.04) 49.33(1.32) 11.70(0.19) 48.58(1.37) 11.70(0.17)

VAEGAN 92.34(0.02) 26.56(0.04) 90.31(0.03) 29.90(0.03) 77.29(1.19) 17.20(0.45) 79.67(0.90) 22.23(0.44)

AE 93.81(0.02) 42.15(0.07) 94.26(0.03) 40.47(0.13) 73.55(0.60) 23.19(0.52) 77.30(0.84) 23.18(0.37)

WAE-IMQ 93.60(0.02) 45.89(0.07) 94.62(0.03) 41.35(0.03) 72.33(2.92) 23.81(0.61) 78.46(3.48) 25.09(0.82)

WAE-RBF 93.72(0.02) 43.38(0.08) 94.51(0.02) 40.63(0.08) 74.20(1.94) 23.70(0.71) 77.33(1.92) 24.66(0.63)

VQVAE 93.45(0.02) 42.89(0.07) 94.63(0.04) 40.40(0.09) 72.61(0.40) 23.85(0.48) 76.68(2.36) 23.68(0.37)

RAE-L2 94.75(0.01) 42.76(0.08) 94.43(0.03) 40.22(0.05) 74.07(0.36) 23.77(0.54) 78.66(0.29) 24.84(0.73)

RAE-GP 94.10(0.02) 43.66(0.07) 94.45(0.02) 40.93(0.14) 72.88(0.52) 24.84(0.53) 77.66(1.29) 23.86(0.32)

141

Chapter 4

Table 4.3: Inception Score (higher is better) and FID (lower is better) computed with 10k samples on
the test set. For each model and sampler we report the results obtained by the model achieving the
lowest FID score on the validation set.

Model Sampler
ConvNet ResNet

MNIST CIFAR10 CELEBA MNIST CIFAR10 CELEBA
FID ↓ IS ↑ FID IS FID IS ↑ FID ↓ IS ↑ FID IS FID IS

VAE N 28.5 2.1 241.0 2.2 54.8 1.9 31.3 2.0 181.7 2.5 66.6 1.6

GMM 26.9 2.1 235.9 2.3 52.4 1.9 32.3 2.1 179.7 2.5 63.0 1.7

VAMP VAMP 64.2 2.0 329.0 1.5 56.0 1.9 34.5 2.1 181.9 2.5 67.2 1.6

IWAE N 29.0 2.1 245.3 2.1 55.7 1.9 32.4 2.0 191.2 2.4 67.6 1.6

GMM 28.4 2.1 241.2 2.1 52.7 1.9 34.4 2.1 188.8 2.4 64.1 1.7

VAE-lin NF N 29.3 2.1 240.3 2.1 56.5 1.9 32.5 2.0 185.5 2.4 67.1 1.6

GMM 28.4 2.1 237.0 2.2 53.3 1.9 33.1 2.1 183.1 2.5 62.8 1.7

VAE-IAF N 27.5 2.1 236.0 2.2 55.4 1.9 30.6 2.0 183.6 2.5 66.2 1.6

GMM 27.0 2.1 235.4 2.2 53.6 1.9 32.2 2.1 180.8 2.5 62.7 1.7

β-VAE N 21.4 2.1 115.4 3.6 56.1 1.9 19.1 2.0 124.9 3.4 65.9 1.6

GMM 9.2 2.2 92.2 3.9 51.7 1.9 11.4 2.1 112.6 3.6 59.3 1.7

β-TC VAE N 21.3 2.1 116.6 2.8 55.7 1.8 20.7 2.0 125.8 3.4 65.9 1.6

GMM 11.6 2.2 89.3 4.1 51.8 1.9 13.3 2.1 106.5 3.7 59.3 1.7

FactorVAE N 27.0 2.1 236.5 2.2 53.8 1.9 31.0 2.0 185.4 2.5 66.4 1.7

GMM 26.9 2.1 234.0 2.2 52.4 2.0 32.7 2.1 184.4 2.5 63.3 1.7

InfoVAE - RBF N 27.5 2.1 235.2 2.1 55.5 1.9 31.1 2.0 182.8 2.5 66.5 1.6

GMM 26.7 2.1 230.4 2.2 52.7 1.9 32.3 2.1 179.5 2.5 62.8 1.7

InfoVAE - IMQ N 28.3 2.1 233.8 2.2 56.7 1.9 31.0 2.0 182.4 2.5 66.4 1.6

GMM 27.7 2.1 231.9 2.2 53.7 1.9 32.8 2.1 180.7 2.6 62.3 1.7

AAE N 16.8 2.2 139.9 2.6 59.9 1.8 19.1 2.1 164.9 2.4 64.8 1.7

GMM 9.3 2.2 92.1 3.8 53.9 2.0 11.1 2.1 118.5 3.5 58.7 1.8

MSSSIM-VAE N 26.7 2.2 279.9 1.7 124.3 1.3 28.0 2.1 254.2 1.7 119.0 1.3

GMM 27.2 2.2 279.7 1.7 124.3 1.3 28.8 2.1 253.1 1.7 119.2 1.3

VAEGAN N 8.7 2.2 199.5 2.2 39.7 1.9 12.8 2.2 198.7 2.2 122.8 2.0

GMM 6.3 2.2 197.5 2.1 35.6 1.8 6.5 2.2 188.2 2.6 84.3 1.7

AE N 26.7 2.1 201.3 2.1 327.7 1.0 221.8 1.3 210.1 2.1 275.0 2.9

GMM 9.3 2.2 97.3 3.6 55.4 2.0 11.0 2.1 120.7 3.4 57.4 1.8

WAE - RBF N 21.2 2.2 175.1 2.0 332.6 1.0 21.2 2.1 170.2 2.3 69.4 1.6

GMM 9.2 2.2 97.1 3.6 55.0 2.0 11.2 2.1 120.3 3.4 58.3 1.7

WAE - IMQ N 18.9 2.2 164.4 2.2 64.6 1.7 20.3 2.1 150.7 2.5 67.1 1.6

GMM 8.6 2.2 96.5 3.6 51.7 2.0 11.2 2.1 119.0 3.5 57.7 1.8

VQVAE N 28.2 2.0 152.2 2.0 306.9 1.0 170.7 1.6 195.7 1.9 140.3 2.2

GMM 9.1 2.2 95.2 3.7 51.6 2.0 10.7 2.1 120.1 3.4 57.9 1.8

RAE-L2 N 25.0 2.0 156.1 2.6 86.1 2.8 63.3 2.2 170.9 2.2 168.7 3.1

GMM 9.1 2.2 85.3 3.9 55.2 1.9 11.5 2.1 122.5 3.4 58.3 1.8

RAE - GP N 27.1 2.1 196.8 2.1 86.1 2.4 61.5 2.2 229.1 2.0 201.9 3.1

GMM 9.7 2.2 96.3 3.7 52.5 1.9 11.4 2.1 123.3 3.4 59.0 1.8

4.5 Conclusion

In this chapter, we introduce Pythae, a new open-source Python library unifying common and
state-of-the-art Generative AutoEncoder (GAE) implementations, allowing reliable and reproducible
model training, data generation and experiment tracking. This library was designed as an open
model testing environment driven by the community, wherein peers are encouraged to contribute
by adding their ownmodels, and by doing so favour reproducible research and accessibility to ready-
to-use GAEmodels. As an illustration of the capabilities of Pythae, we perform a benchmarking of 19
generative autoencoder models on 5 downstream tasks (image reconstruction, generation, classifi-
cation, clustering and interpolation) leading to some interesting findings on the general behaviours
of generative autoencoder models. We hope that the library will continue to be adopted by the
community and expand thanks to the increasing number of contributions.

142

Pythae: Unifying Generative Autoencoders in Python

Acknowledgment

The research leading to these results has received funding from the French government under man-
agement of Agence Nationale de la Recherche as part of the “Investissements d’avenir” program,
reference ANR-19-P3IA-0001 (PRAIRIE 3IA Institute) and reference ANR-10-IAIHU-06 (Agence Na-
tionale de la Recherche-10-IA Institut Hospitalo-Universitaire-6). This work was granted access to
the HPC resources of IDRIS under the allocation AD011013517 made by GENCI (Grand Equipement
National de Calcul Intensif).

143

Chapter 4

4.6 Appendices

4.6.1 Usage of Pythae

In this section we illustrate through simple examples how to use Pythae pipelines. The library
is documented11 and also available on pypi12 allowing a wider use and easier integration in other
codes. All of the implementations proposed in the library are adaptations of the official code when
available and allowed by the licence. If not, the method is re-implemented. Table 4.4 lists all the
implemented models as of June 2022.

1. Training configuration Before launching a model training, one must specify the training
configuration that should be used. This can be done easily by instantiating a BaseTrainer-

Config instance taking as input all the hyper-parameters related to the training (number of
training epochs, learning rate to apply...). See the full documentation for additional arguments
that can be passed to the BaseTrainerConfig.

1 from pythae.trainers import BaseTrainerConfig
2 # Set up training configuration
3 my_training_config = BaseTrainerConfig(
4 output_dir='my_model',
5 num_epochs=50,
6 learning_rate=1e-3,
7 per_device_train_batch_size=200,
8 per_device_eval_batch_size=200,
9 train_dataloader_num_workers=2,
10 eval_dataloader_num_workers=2,
11 steps_saving=20,
12 optimizer_cls="AdamW",
13 optimizer_params={"weight_decay": 0.05, "betas": (0.91, 0.995)},
14 scheduler_cls="ReduceLROnPlateau",
15 scheduler_params={"patience": 5, "factor": 0.5})

11https://pythae.readthedocs.io/en/latest/?badge=latest
12https://pypi.org/project/pythae/

144

https://pythae.readthedocs.io/en/latest/?badge=latest
https://pypi.org/project/pythae/

Pythae: Unifying Generative Autoencoders in Python

2. Model configuration Similarly to the TrainerConfig, the model can then be instantiated
with the model configuration specifying any hyper-parameters relevant to the model. Note
that each model has its own configuration with specific hyper-parameters. See the online
documentation for more details.

1 from pythae.models import VAE, VAEConfig
2 my_vae_config = model_config = VAEConfig(
3 input_dim=(1, 28, 28),
4 latent_dim=10
5)
6 # Build the model
7 my_vae_model = VAE(
8 model_config=my_vae_config
9)

3. TrainingAmodel training can then be launched by simply using the built-in training pipeline
in which only the training/evaluation data (torch.Tensor, np.array or torch datasets) need to
be specified.

1 from pythae.pipelines import TrainingPipeline
2 # Build the Pipeline
3 pipeline = TrainingPipeline(
4 training_config=my_training_config,
5 model=my_vae_model
6)
7 # Launch the Pipeline
8 pipeline(
9 train_data=your_train_data,
10 eval_data=your_eval_data
11)

4. Model reloading The weights and configuration of the trained model can be reloaded using
the AutoModel instance proposed in Pythae.

1 from pythae.models import AutoModel
2 my_trained_vae = AutoModel.load_from_folder(
3 'path/to/trained_model'
4)

5. Data generationA data generation pipeline can be instantiated similarly to a model training.
The pipeline can then be called with any relevant arguments such as the number of samples
to generate or the training and evaluation data that may be needed to fit the sampler.

145

Chapter 4

1 from pythae.samplers import GaussianMixtureSamplerConfig
2 from pythae.pipelines import GenerationPipeline
3 # Define your sampler configuration
4 gmm_sampler_config = GaussianMixtureSamplerConfig(
5 n_components=10
6)
7 # Build the pipeline
8 pipeline = GenerationPipeline(
9 model=my_trained_vae,
10 sampler_config=gmm_sampler_config
11)
12 # Launch generation
13 generated_samples = pipeline(
14 num_samples=100,
15 return_gen=True,
16 train_data=train_data,
17 eval_data=None
18)

Table 4.4: List of implemented VAEs

Name Reference

Variational Autoencoder (VAE) (Kingma and Welling, 2014)
Beta Variational Autoencoder (BetaVAE) (Higgins et al., 2017)
VAE with Linear Normalizing Flows (VAE_LinNF) (Rezende and Mohamed, 2015)
VAE with Inverse Autoregressive Flows (VAE_IAF) (Kingma et al., 2016)
Disentangled β-VAE (DisentangledBetaVAE) (Higgins et al., 2017)
Disentangling by Factorising (FactorVAE) (Kim and Mnih, 2018)
Beta-TC-VAE (BetaTCVAE) (Chen et al., 2018b)
Importance Weighted Autoencoder (IWAE) (Burda et al., 2016)
VAE with perceptual metric similarity (MSSSIM_VAE) (Snell et al., 2017)
Wasserstein Autoencoder (WAE) (Tolstikhin et al., 2018)
Info Variational Autoencoder (INFOVAE_MMD) (Zhao et al., 2019)
VAMP Autoencoder (VAMP) (Tomczak and Welling, 2018)
Hyperspherical VAE (SVAE) (Davidson et al., 2018)
Adversarial Autoencoder (Adversarial_AE) (Makhzani et al., 2015)
Variational Autoencoder GAN (VAEGAN) (Larsen et al., 2016)
VectorQuantized VAE (VQVAE) (Van Den Oord et al., 2017)
Hamiltonian VAE (HVAE) (Caterini et al., 2018)
Regularized AE with L2 decoder param (RAE_L2) (Ghosh et al., 2020)
Regularized AE with gradient penalty (RAE_GP) (Ghosh et al., 2020)
Riemannian Hamiltonian VAE (RHVAE) (Chadebec et al., 2022b)

146

Pythae: Unifying Generative Autoencoders in Python

Maintenance plan: We intend for this library to be maintained in the long term. In that view, the
main author’s contact details will remain available and up-to-date on the github repository, which
will remain the main discussion channel. Additionally, we are currently considering adding back-up
contributors that will also support this effort in the long-term. Since this library has already started
to be a community effort with external contributors, we further hope that the community will also
continue to help reviewing and updating the current implementations.

Original papers reproducibility We validate the implementations by reproducing some results
presented in the original publications when the official code has been released or when enough
details about the experimental section of the papers were available (we indeed noted that in many
papers key elements for reproducibility weremissing such as the data split considered, which criteria
is used to select the model on which the metrics are computed, the hyper-parameters are not fully
disclosed or the network architectures is unclear making reproduction very hard if not impossible in
certain cases). This insists on the fact that the framework is flexible enough to reproduce results from
publications. Finally, we have open-sourced the scripts, configurations and results on the repository
at this link and made the trained models available on the HuggingFace Hub (e.g. trained iwae).

147

https://github.com/clementchadebec/benchmark_VAE/tree/main/examples/scripts/reproducibility
https://huggingface.co/clementchadebec/reproduced_iwae

Chapter 4

4.6.2 Interpolations

In this section, we show the interpolations obtained on the three considered datasets. For each
model, we select both a starting image and an ending image from the test set and perform a linear
interpolation between the corresponding embeddings in the learned latent space. We then show the
decoded trajectory all along the interpolation line. For this task, we use the model configuration
that obtained the lowest FID on the validation set with a GMM sampler from the generation task.
We show the resulting interpolations for latent spaces of dimension 16 and 256 for MNIST, 32 and
256 for CIFAR10 and 64 for CELEBA. As mentioned in the chapter, for this complex task, variational
approaches tend to outperform the AE-based methods. This is well illustrated on MNIST with a
latent space of dimension 256 since all the AE-based approaches eventually superpose the starting
and ending image, making the interpolation visually irrelevant. Impressively, the regularization
imposed by the variational approaches prevents such undesirable behaviours from occurring. This
adds to the observationmade in Sec. 4.4.2 of the chapter where we note some robustness to the latent
dimension for the variational methods. Nonetheless, as stated in the chapter this regularization can
also degrade image reconstruction, leading to very blurry interpolations, as illustrated on Fig. 4.5.

148

Pythae: Unifying Generative Autoencoders in Python

VAE

MNIST (16) MNIST (256)

VAMP

IWAE

VAE-lin-NF

VAE-IAF

β-VAE

β-TC-VAE

Factor-VAE

InfoVAE - IMQ

InfoVAE - RBF

Figure 4.3: Interpolations on MNIST with the same starting and ending images for latent spaces of
dimension 16 and 256. For each model we select the configuration achieving the lowest FID on the
generation task on the validation set with a GMM sampler.

149

Chapter 4

AAE

MNIST (16) MNIST (256)

MSSSIM-VAE

VAEGAN

AE

WAE-IMQ

WAE-RBF

VQVAE

RAE-l2

RAE-GP

Figure 4.4: Interpolations on MNIST with the same starting and ending images for latent spaces of
dimension 16 and 256. For each model we select the configuration achieving the lowest FID on the
generation task on the validation set with a GMM sampler.

150

Pythae: Unifying Generative Autoencoders in Python

VAE

CIFAR10 (32) CIFAR10 (256)

VAMP

IWAE

VAE-lin-NF

VAE-IAF

β-VAE

β-TC-VAE

Factor-VAE

InfoVAE - IMQ

InfoVAE - RBF

Figure 4.5: Interpolations on CIFAR10 with the same starting and ending images for latent spaces of
dimension 32 and 256. For each model we select the configuration achieving the lowest FID on the
generation task on the validation set with a GMM sampler.

151

Chapter 4

AAE

CIFAR10 (32) CIFAR10 (256)

MSSSIM-VAE

VAEGAN

AE

WAE-IMQ

WAE-RBF

VQVAE

RAE-l2

RAE-GP

Figure 4.6: Interpolations on CIFAR10 with the same starting and ending images for latent spaces of
dimension 32 and 256. For each model we select the configuration achieving the lowest FID on the
generation task on the validation set with a GMM sampler.

152

Pythae: Unifying Generative Autoencoders in Python

VAE

CELEBA (64) CELEBA (64)

VAMP

IWAE

VAE-lin-NF

VAE-IAF

β-VAE

β-TC-VAE

Factor-VAE

InfoVAE - IMQ

InfoVAE - RBF

Figure 4.7: Interpolations on CELEBAwith the same starting and ending images for a latent space of
dimension 64. For eachmodel we select the configuration achieving the lowest FID on the generation
task on the validation set with a GMM sampler.

153

Chapter 4

AAE

CELEBA (64) CELEBA (64)

MSSSIM-VAE

VAEGAN

AE

WAE-IMQ

WAE-RBF

VQVAE

RAE-l2

RAE-GP

Figure 4.8: Interpolations on CELEBAwith the same starting and ending images for a latent space of
dimension 64. For eachmodel we select the configuration achieving the lowest FID on the generation
task on the validation set with a GMM sampler.

154

Pythae: Unifying Generative Autoencoders in Python

4.6.3 Detailed Experiments Set-Up

We detail here the main experimental set-up and implementation choices made in the benchmark.
We let the reader refer to the code available online for specific implementation aspects

The data To perform the benchmaks presented in the chapter, we select 3 classical free-to-use
image datasets: MNIST (LeCun, 1998), CIFAR10 (Krizhevsky et al., 2009) and CELEBA (Liu et al.,
2015). These datasets are publicly available, widely used for generative model related papers and
have well known associated metrics in the literature. Each dataset is split into a train set, a validation
set and a test set. For MNIST and CIFAR10 the validation set is composed of the last 10k images
extracted from the official train set and the test set corresponds to the official one. For CELEBA, we
use the official train/val/test split.

Training paradigm We equip each model used in the benchmark with the same neural network
architecture for both the encoder and decoder, taken as a ConvNet and ResNet (architectures given
in Tables 4.5 and 4.6) leading to a comparable number of parameters 13. For the 19 considered mod-
els, due to computational limitations, 10 different configurations are considered, allowing a simple
exploration of the models’ hyper-parameters. The sets of hyper-parameters explored are detailed
in Appendix 4.6.4 for each model. The models are then trained on MNIST and CIFAR10 for 100
epochs, a starting learning rate of 1e−4 and batch size of 100 with Adam optimizer (Kingma and
Ba, 2014). A scheduler reducing the learning rate by half if the validation loss does not improve
for 10 epochs is also used. For CELEBA, we use the same setting but we train the models for 50
epochs with a starting learning rate of 1e−3. Models with unstable training (NaN, huge training
spikes...) are iteratively retrained with a starting learning rate divided by 10 until training sta-
bilises. All 19 models are trained on a single 32GB V100 GPU. This leads to 10 trained models for
each method, each dataset (MNIST, CIFAR10 or CELEBA) and each neural network (ConvNet or
ResNet) leading to a total of 1140 models. The training setting (curves, configs ...) can be found at
https://wandb.ai/benchmark_team/trainings.

Sampling paradigm for the MAF and VAE samplers For the Masked Autoregressive Flow
sampler used for sampling we use a 3-layer MADE (Germain et al., 2015) with 128 hidden units
and ReLU activation for each layer and stack 2 blocks of MAF to create the flow. For the masked
layers, the mask is made sequentially and the ordering is reversed between each MADE. For this
normalizing flow we consider a starting distribution given by a standard Gaussian. For the auxiliary
VAE sampling method proposed in (Dai and Wipf, 2018), we consider a simple VAE with a Multi
Layer Perceptron (MLP) encoder and decoder, with 2 hidden layers composed of 1024 units and
ReLU activation. Both samplers are fittedwith 200 epochs using the train and evaluation embeddings
coming from the trained autoencoder models. A learning rate of 1e−4, a scheduler decreasing the
learning rate by half if the validation loss does not improve for 10 epochs and a batch size of 100 are
used for these samplers.

13Some models may actually have additional parameters in their intrinsic structure e.g. a VQVAE learns a dictionary
of embeddings, a VAMP learns the pseudo-inputs, a VAE-IAF learns the auto-regressive flows. Nonetheless, since we
work on images, the number of parameters remains in the same order of magnitude.

155

https://wandb.ai/benchmark_team/trainings

Chapter 4

Table 4.5: Neural network architecture used for the convolutional networks.

MNIST CIFAR10 CELEBA

Encoder (1, 28, 28) (3, 32, 32) (3, 64, 64)

Layer 1 Conv(128, 4, 2), BN, ReLU Conv(128, 4, 2), BN, ReLU Conv(128, 4, 2), BN, ReLU
Layer 2 Conv(256, 4, 2), BN, ReLU Conv(256, 4, 2), BN, ReLU Conv(256, 4, 2), BN, ReLU
Layer 3 Conv(512, 4, 2), BN, ReLU Conv(512, 4, 2), BN, ReLU Conv(512, 4, 2), BN, ReLU
Layer 4 Conv(1024, 4, 2), BN, ReLU Conv(1024, 4, 2), BN, ReLU Conv(1024, 4, 2), BN, ReLU
Layer 5 Linear(1024, latent_dim)* Linear(4096, latent_dim)* Linear(16384, latent_dim)*

Decoder

Layer 1 Linear(latent_dim, 16384) Linear(latent_dim, 65536) Linear(latent_dim, 65536)
Layer 2 ConvT(512, 3, 2), BN, ReLU ConvT(512, 4, 2), BN, ReLU ConvT(512, 5, 2), BN, ReLU
Layer 3 ConvT(256, 3, 2), BN, ReLU ConvT(256, 4, 2), BN, ReLU ConvT(256, 5, 2), BN, ReLU
Layer 4 Conv(1, 3, 2), Sigmoid Conv(3, 4, 1), Sigmoid ConvT(128, 5, 2), BN, ReLU
Layer 5 - - ConvT(3, 5, 1), Sigmoid
*Doubled for VAE-based models

Table 4.6: Neural network architecture used for the residual networks.

MNIST CIFAR10 CELEBA

Encoder (1, 28, 28) (3, 32, 32) (3, 64, 64)

Layer 1 Conv(64, 4, 2) Conv(64, 4, 2) Conv(64, 4, 2)
Layer 2 Conv(128, 4, 2) Conv(128, 4, 2) Conv(128, 4, 2)
Layer 3 Conv(128, 3, 2) Conv(128, 3, 1) Conv(128, 3, 2)
Layer 4 ResBlock** ResBlock** Conv(128, 3, 2)
Layer 5 ResBlock** ResBlock** ResBlock**
Layer 6 Linear(2048, latent_dim)* Linear(8192, latent_dim)* ResBlock**
Layer 7 - - Linear(2048, latent_dim)*

Decoder

Layer 1 Linear(latent_dim, 2048) Linear(latent_dim, 8192) Linear(latent_dim, 2048)
Layer 2 ConvT(128, 3, 2) ResBlock** ConvT(128, 3, 2)
Layer 3 ResBlock** ResBlock** ResBlock**
Layer 4 ResBlock**, ReLU ConvT(64, 4, 2) ResBlock**
Layer 5 ConvT(64, 3, 2), ReLU ConvT(3, 4, 2), Sigmoid ConvT(128, 5, 2), Sigmoid
Layer 6 ConvT(1, 3, 2), Sigmoid - ConvT(64, 5, 2), Sigmoid
Layer 6 - - ConvT(3, 4, 2), Sigmoid
*Doubled for VAE-based models
**The ResBlocks are composed of one Conv(32, 3, 1) followed by Conv(128, 1, 1) with ReLU.

156

Pythae: Unifying Generative Autoencoders in Python

4.6.4 Additional Results

Effect of the Latent Dimension on the 4 Tasks with the CIFAR10 Database

Analogously to the results shown in the chapter on the MNIST dataset for the 4 chosen tasks (re-
construction, generation, classification and clustering), Fig. 4.9 shows the impact the choice of the
latent space dimension has on the performances of the models on the CIFAR10 dataset, whose image
arguably have a greater intrinsic latent dimension than images of the MNIST dataset. Similarly to
MNIST, two distinct groups appear: the AE-based methods and variational methods. Again, for all
tasks but clustering, variational basedmethods demonstrate good robustness properties with respect
to the dimension of the latent space when compared to AE approaches.

0.00

0.02

0.04

m
se

Reconstruction

100

200

300

fid

Generation

0.2

0.3

0.4

0.5

ac
cu

ra
cy

Classification

VAE
VAMP

IWAE

VAE_Li
nNF

VAE_IA
F

Beta
VAE

Beta
TCVAE

Fac
tor

VAE

INFO
VAE-im

q

INFO
VAE-rb

f

Adver
sar

ial_
AE

VAEGAN AE

WAE-im
q

WAE-rb
f

VQVAE
RAE_L2

RAE_GP
0.15

0.20

0.25

ac
cu

ra
cy

Clustering

latent_dim

latent_dim
16
32
64
128
256
512

latent_dim
16
32
64
128
256
512

latent_dim
16
32
64
128
256
512

Figure 4.9: From top to bottom: Evolution of the reconstruction MSE, generation FID, classification
accuracy and clustering accuracy with respect to the latent space dimension on the CIFAR dataset.

Complete Generation Table

In Table 4.7 are presented the full results obtained for generation i.e. including the MAF and 2-
stage VAE sampler (Dai and Wipf, 2018). As mentioned in the chapter, it is interesting to note that
fitting a GMM instead of using the prior for the variational-based approaches seems to often allow
a better image generation since it allows a better prospecting of the learned latent space of each
model. Interestingly, it seems that fitting more complex density estimators such as a normalizing

157

Chapter 4

flow (MAF sampler) or another VAE (2-stage sampler) does not improve the generation results when
compared to the GMM for those datasets.

158

Pythae: Unifying Generative Autoencoders in Python

Table 4.7: Inception Score (higher is better) and FID (lower is better) computed with 10k samples on
the test set. For each model and sampler we report the results obtained by the model achieving the
lowest FID score on the validation set.

Model Sampler
ConvNet ResNet

MNIST CIFAR10 CELEBA MNIST CIFAR10 CELEBA
FID ↓ IS ↑ FID IS FID IS ↑ FID ↓ IS ↑ FID IS FID IS

N 28.5 2.1 241.0 2.2 54.8 1.9 31.3 2.0 181.7 2.5 66.6 1.6

GMM 26.9 2.1 235.9 2.3 52.4 1.9 32.3 2.1 179.7 2.5 63.0 1.7

VAE 40.3 2.0 337.5 1.7 70.9 1.6 48.7 1.8 358.0 1.3 76.4 1.4
VAE

MAF 26.8 2.1 239.5 2.2 52.5 2.0 31.0 2.1 181.5 2.5 62.9 1.7

VAMP VAMP 64.2 2.0 329.0 1.5 56.0 1.9 34.5 2.1 181.9 2.5 67.2 1.6

N 29.0 2.1 245.3 2.1 55.7 1.9 32.4 2.0 191.2 2.4 67.6 1.6

GMM 28.4 2.1 241.2 2.1 52.7 1.9 34.4 2.1 188.8 2.4 64.1 1.7

VAE 42.4 2.0 346.6 1.5 74.3 1.5 50.1 1.9 364.8 1.2 76.4 1.4
IWAE

MAF 28.1 2.1 243.4 2.1 52.7 1.9 32.5 2.1 190.4 2.4 64.3 1.7

VAE-lin NF

N 29.3 2.1 240.3 2.1 56.5 1.9 32.5 2.0 185.5 2.4 67.1 1.6

GMM 28.4 2.1 237.0 2.2 53.3 1.9 33.1 2.1 183.1 2.5 62.8 1.7

VAE 40.1 2.0 311.0 1.6 71.1 1.6 49.7 1.9 296.2 1.7 75.6 1.4

MAF 27.7 2.1 239.1 2.1 53.4 2.0 32.4 2.0 184.2 2.5 62.7 1.7

N 27.5 2.1 236.0 2.2 55.4 1.9 30.6 2.0 183.6 2.5 66.2 1.6

GMM 27.0 2.1 235.4 2.2 53.6 1.9 32.2 2.1 180.8 2.5 62.7 1.7

VAE 39.4 2.0 330.5 1.1 73.0 1.5 44.8 1.9 322.7 1.5 76.7 1.4
VAE-IAF

MAF 26.9 2.1 236.8 2.2 53.6 1.9 30.6 2.1 182.5 2.5 63.0 1.7

β-VAE

N 21.4 2.1 115.4 3.6 56.1 1.9 19.1 2.0 124.9 3.4 65.9 1.6

GMM 9.2 2.2 92.2 3.9 51.7 1.9 11.4 2.1 112.6 3.6 59.3 1.7

VAE 14.0 2.2 139.6 3.6 55.0 1.9 20.3 2.1 152.5 3.5 61.5 1.7

MAF 9.5 2.2 100.9 3.5 51.5 2.0 12.0 2.1 120.0 3.6 59.7 1.8

N 21.3 2.1 116.6 2.8 55.7 1.8 20.7 2.0 125.8 3.4 65.9 1.6

GMM 11.6 2.2 89.3 4.1 51.8 1.9 13.3 2.1 106.5 3.7 59.3 1.7

VAE 18.4 2.2 127.9 4.2 59.7 1.8 28.3 2.0 164.0 3.3 66.4 1.5
β-TC VAE

MAF 12.0 2.2 95.6 3.6 52.2 1.9 13.7 2.1 116.6 3.4 60.1 1.7

FactorVAE

N 27.0 2.1 236.5 2.2 53.8 1.9 31.0 2.0 185.4 2.5 66.4 1.7

GMM 26.9 2.1 234.0 2.2 52.4 2.0 32.7 2.1 184.4 2.5 63.3 1.7

VAE 41.2 1.9 338.3 1.5 75.0 1.5 54.7 1.8 316.2 1.3 77.7 1.4

MAF 26.7 2.2 236.7 2.2 52.7 1.9 32.8 2.1 185.8 2.5 63.4 1.7

N 27.5 2.1 235.2 2.1 55.5 1.9 31.1 2.0 182.8 2.5 66.5 1.6

GMM 26.7 2.1 230.4 2.2 52.7 1.9 32.3 2.1 179.5 2.5 62.8 1.7

VAE 39.7 2.0 327.2 1.5 73.7 1.5 50.6 1.9 363.4 1.2 75.8 1.4
InfoVAE - RBF

MAF 25.9 2.1 233.5 2.2 52.2 2.0 30.5 2.1 181.3 2.5 62.7 1.7

InfoVAE - IMQ

N 28.3 2.1 233.8 2.2 56.7 1.9 31.0 2.0 182.4 2.5 66.4 1.6

GMM 27.7 2.1 231.9 2.2 53.7 1.9 32.8 2.1 180.7 2.6 62.3 1.7

VAE 40.4 1.9 323.8 1.6 73.7 1.5 49.9 1.9 341.8 1.8 75.7 1.4

MAF 27.2 2.1 232.3 2.1 53.8 2.0 30.6 2.1 182.5 2.5 62.6 1.7

N 16.8 2.2 139.9 2.6 59.9 1.8 19.1 2.1 164.9 2.4 64.8 1.7

GMM 9.3 2.2 92.1 3.8 53.9 2.0 11.1 2.1 118.5 3.5 58.7 1.8

VAE 13.4 2.2 144.0 3.4 58.2 1.8 15.1 2.1 145.2 3.6 59.0 1.7
AAE

MAF 9.3 2.2 101.1 3.2 53.8 2.0 11.9 2.1 133.6 3.1 59.2 1.8

MSSSIM-VAE

N 26.7 2.2 279.9 1.7 124.3 1.3 28.0 2.1 254.2 1.7 119.0 1.3

GMM 27.2 2.2 279.7 1.7 124.3 1.3 28.8 2.1 253.1 1.7 119.2 1.3

VAE 51.2 1.9 355.5 1.1 137.9 1.2 51.6 1.9 372.1 1.1 136.5 1.2

MAF 26.9 2.2 279.8 1.7 124.0 1.3 27.5 2.1 254.1 1.7 119.5 1.3

N 8.7 2.2 199.5 2.2 39.7 1.9 12.8 2.2 198.7 2.2 122.8 2.0

GMM 6.3 2.2 197.5 2.1 35.6 1.8 6.5 2.2 188.2 2.6 84.3 1.7

VAE 11.2 2.1 310.9 2.0 54.5 1.6 9.2 2.1 272.7 2.0 88.8 1.6
VAEGAN

MAF 6.9 2.3 199.0 2.1 36.7 1.8 6.6 2.2 191.9 2.5 84.8 1.7

AE
N 26.7 2.1 201.3 2.1 327.7 1.0 221.8 1.3 210.1 2.1 275.0 2.9

GMM 9.3 2.2 97.3 3.6 55.4 2.0 11.0 2.1 120.7 3.4 57.4 1.8

MAF 9.9 2.2 108.3 3.1 55.7 2.0 12.0 2.1 136.5 3.0 58.3 1.8

N 21.2 2.2 175.1 2.0 332.6 1.0 21.2 2.1 170.2 2.3 69.4 1.6

GMM 9.2 2.2 97.1 3.6 55.0 2.0 11.2 2.1 120.3 3.4 58.3 1.7WAE - RBF
MAF 9.8 2.2 108.2 3.1 56.0 2.0 11.8 2.2 135.3 3.0 58.3 1.8

WAE - IMQ
N 18.9 2.2 164.4 2.2 64.6 1.7 20.3 2.1 150.7 2.5 67.1 1.6

GMM 8.6 2.2 96.5 3.6 51.7 2.0 11.2 2.1 119.0 3.5 57.7 1.8

MAF 9.5 2.2 107.8 3.1 51.6 2.0 11.8 2.1 130.2 3.0 58.7 1.7

N (0, 1) 28.2 2.0 152.2 2.0 306.9 1.0 170.7 1.6 195.7 1.9 140.3 2.2

GMM 9.1 2.2 95.2 3.7 51.6 2.0 10.7 2.1 120.1 3.4 57.9 1.8VQVAE
MAF 9.6 2.2 104.7 3.2 52.3 1.9 11.7 2.2 136.8 3.0 57.9 1.8

RAE-L2
N 25.0 2.0 156.1 2.6 86.1 2.8 63.3 2.2 170.9 2.2 168.7 3.1

GMM 9.1 2.2 85.3 3.9 55.2 1.9 11.5 2.1 122.5 3.4 58.3 1.8

MAF 9.5 2.2 93.4 3.5 55.2 2.0 12.3 2.2 136.6 3.0 59.1 1.7

N 27.1 2.1 196.8 2.1 86.1 2.4 61.5 2.2 229.1 2.0 201.9 3.1

GMM 9.7 2.2 96.3 3.7 52.5 1.9 11.4 2.1 123.3 3.4 59.0 1.8RAE - GP
MAF 9.7 2.2 106.3 3.2 52.5 1.9 12.2 2.2 139.4 3.0 59.5 1.8

159

Chapter 4

Further Interesting Results

Generated samples In addition to quantitative metrics, we also provide in Fig. 4.10 and Fig. 4.11
some samples coming from the different models using either a N (0, Id) or fitting a GMM with 10
components on MNIST and CELEBA. This allows to visually differentiate the quality of the different
sampling methods.

VAE

MNIST - N MNIST - GMM

IWAE
VAE-lin-NF

VAE-IAF
β-VAE
β-TC-VAE
Factor-VAE
InfoVAE - IMQ
InfoVAE - RBF
AAE
MSSSIM-VAE
VAEGAN
AE
WAE-IMQ
WAE-RBF
VQVAE
RAE-L2
RAE-GP

Figure 4.10: Generated samples on MNIST for a latent space of dimension 16 and ConvNet architec-
ture. For each model, we select the configuration achieving the lowest FID on the validation set.

160

Pythae: Unifying Generative Autoencoders in Python

VAE

CELEBA - N CELEBA - GMM

IWAE
VAE-lin-NF
VAE-IAF
β-VAE
β-TC-VAE
Factor-VAE
InfoVAE - IMQ
InfoVAE - RBF
AAE
MSSSIM-VAE
VAEGAN
AE
WAE-IMQ
WAE-RBF
VQVAE
RAE-L2
RAE-GP

Figure 4.11: Generated samples on CELEBA for a latent space of dimension 64 and ConvNet archi-
tecture. For each model, we select the configuration achieving the lowest FID on the validation set.

161

Chapter 4

Sampler ablation study Fig. 4.12 shows the same results as Table 4.7 but under a different prism.
In this plot, we show the influence each sampler has on the generation quality for all the models
considered in this study. Note that sampling using a N (0, Id) for an AE, RAE or VQVAE is far
from being optimal since those models do not enforce explicitly the latent variables to follow this
distribution. As mentioned in the chapter, this experiment shows that using more complex density
estimators such as a GMM or a normalizing flow almost always improves the generation metric.

VAE
VAMP

IWAE

VAE_Li
nNF

VAE_IA
F

Beta
VAE

Beta
TCVAE

Fac
tor

VAE

INFO
VAE-im

q

INFO
VAE-rb

f

Adver
sar

ial_
AE

VAEGAN AE

WAE-im
q

WAE-rb
f

VQVAE
RAE_L2

RAE_GP

101

fid

Generation

name
GaussianMixtureSampler
MAFSampler
NormalSampler
TwoStageVAESampler
VAMPSampler

Figure 4.12: Evolution of the FID for the generation task depending on the sampler, for a ConvNet,
the MNIST dataset and a latent dimension of 16. For each sampler and model, we select the config-
uration achieving the lowest FID on the validation set.

Neural network architecture ablation study As explained in the chapter and in Appendix 4.6.3,
we consider two different neural architectures for the encoder and decoder of each model: a Con-
vNet (convolutional neural network) and a ResNet (residual neural network). Fig. 4.13 shows the
influence the choice of the neural architecture has on the ability of the model to perform the 4 tasks
presented in the chapter. The results are computed for each model onMNIST and a latent dimension
of 16. The ConvNet architecture has approximately 20 times more parameters than the ResNet in
such conditions. We select the best configuration for each model and each task on the validation
set and report the results on the test set. Unsuprisingly, we see in Fig. 4.13 that the ConvNet ar-
chitecture, more adapted to capture features intrinsic to images, leads to the best performances for
reconstruction and generation. Interestingly, the ResNet outperforms the ConvNet for the classifi-
cation and clustering tasks, meaning that in addition to the network complexity, its structure can
play a major role in the representation learned by the models.

Training time Fig. 4.14 shows the training times required for each model for both network archi-
tectures on the MNIST dataset. For each model, we show the results obtained with the configuration
giving the best performances on the generation task with fixed latent dimension 16. It is interesting
to note that although VAEGAN outperforms other models on the generation task, it is at the price of
a higher computational time. This is due to the discriminator network (a convolutional neural net)
that is called several times during training and takes images as inputs. It should be noted that meth-
ods applying normalizing flows to the posterior (VAE-lin-NF and VAE-IAF) maintain a reasonable
training time, as the flows were chosen for their scalability.

162

Pythae: Unifying Generative Autoencoders in Python

0.01

0.02

m
se

Reconstruction

20

40

60

fid

Generation

0.85

0.90

0.95

ac
cu

ra
cy

Classification

VAE
VAMP

IWAE

VAE_Li
nNF

VAE_IA
F

Beta
VAE

Beta
TCVAE

Fac
tor

VAE

INFO
VAE-im

q

INFO
VAE-rb

f

Adver
sar

ial_
AE

VAEGAN AE

WAE-im
q

WAE-rb
f

VQVAE
RAE_L2

RAE_GP
0.5

0.6

0.7

0.8

ac
cu

ra
cy

Clustering

Net_type
Net_type

convnet
resnet

Net_type
convnet
resnet

Net_type
convnet
resnet

Figure 4.13: Evolution of the metrics for the 4 tasks depending on the network type on the MNIST
dataset and a latent dimension of 16.

VAE
VAMP

IWAE

VAE_Li
nNF

VAE_IA
F

Beta
VAE

Beta
TCVAE

Fac
tor

VAE

INFO
VAE-im

q

INFO
VAE-rb

f

Adver
sar

ial_
AE

VAEGAN AE

WAE-im
q

WAE-rb
f

VQVAE
RAE_L2

RAE_GP

101

102

Tr
ai

ni
ng

 ti
m

e
(m

in
ut

es
)

Training times on best configuration on the MNIST dataset with latent space 16

Net_type
convnet
resnet

Figure 4.14: Total training time for the models trained on the MNIST dataset with latent dimension
16 with the best performance on the generation task.

163

Chapter 4

Configurations and Results by Models

In this section we briefly explain each model considered in the benchmark, and show the evolution
of performances on the 4 tasks and the training speed with respect to the choice of the hyper-
parameters. For all 4 tasks we consider the MNIST dataset and a fixed latent space of dimension 16,
as well as the Normal Gaussian sampler (if applicable) and the convolutional network architecture.
For each model, 10 configuration runs with different hyper-parameters were tested. It should be
noted that this configuration search was done empirically and is not exhaustive, therefore models
with multiple hyper-parameters or that are sensitive to the choice of hyper-parameters will tend
to have sub-optimal configuration choices. Although hyper-parameter choices are dependant on
both the auto-encoder architecture and the dataset, it is interesting to note the relative evolution of
the performances on the different tasks and the training time induced by different hyper-parameter
choices.

Notations In order to better underline the differences between different models and for clarity
purposes, we set the following unified notations:

• X = {x1, . . . , xN} ∈ XN the input dataset

• x ∈ X an observation from the dataset, and z ∈ Z = Rd its corresponding latent vector

• x̂ the reconstruction of x by the auto-encoder model

• pz(z) the prior distribution, with pz ≡ N (0, Id) under standard VAE assumption

• qϕ(z|x) the approximate posterior distribution, modeled by the encoder. (Kingma andWelling,
2014) set

qϕ(z|x) ≡ N
(
µϕ(x),Σϕ(x))

)
where Σϕ(x) = diag[σϕ(x)] and

(
µϕ(x), σϕ(x)

)
∈ R2×d are outputs of the encoder network.

The sampling process z ∼ qϕ(z|x) is therefore performed by sampling ε ∼ N (0, Id) and
setting z = µϕ(x) + Σϕ(x)

1/2 · ε (re-parametrization trick).

• pθ(x|z) the distribution of x given z

• pθ(x) =
∫
Z pθ(x|z)pz(z)dz the marginal distribution of x

• qϕ(z) =
1

N

∑N
i=1 qϕ(z|xi) the aggregated posterior integrated over the training set.

• DKL the Kullback-Leibler divergence

We further recall that (Kingma and Welling, 2014) use the unbiased estimate p̂θ(x) of pθ(x) de-
fined as

p̂θ(x) =
pθ(x|z)pz(z)
qϕ(z|x)

to derive the standard Evidence Lower Bound (ELBO) of the log probability log pθ(x)which we wish
to maximize:

LELBO = Ex∼pθ(x)
[
LELBO(x)

]
164

Pythae: Unifying Generative Autoencoders in Python

with
LELBO(x) = Ez∼qϕ [log pθ(x|z)]︸ ︷︷ ︸

reconstruction

−DKL
[
qϕ(z|x)||pz(z)

]︸ ︷︷ ︸
regularization

The reconstruction loss ismaximizedwhen x̂ is close to x, thus encouraging a good reconstruction
of the input x, while the regularization term ismaximizedwhen qϕ(z|x) is close to pz(z), encouraging
the posterior distribution to follow the chosen prior distribution.

The integration over pθ(x) is approximated by the empirical distribution of the training dataset,
and the negative ELBO function acts as a loss function to minimize for the encoder and decoder
networks.

165

Chapter 4

VAE with a VampPrior (VAMP) Starting from the observation that a standard Gaussian prior
may be too simplistic, (Tomczak and Welling, 2018) proposes a less restrictive prior: the Variational
Mixture of Posteriors (VAMP). A VAE with a VAMP prior aims at relaxing the posterior constraint
by replacing the conventional normal prior with a multimodal aggregated posterior given by:

pz(z) =
1

K

K∑
k=1

qϕ(z|uk) ,

where uk are pseudo-inputs living in the data spaceX learned through back-propagation and acting
as anchor points for the prior distribution. For the VAMP VAE implementation, we use the same
architecture as the authors’ implementation for the network generating the pseudo-inputs: a MLP
with a single layer and Tanh activation.

Results by configuration

Table 4.8: VAMP configurations

Config 1 2 3 4 5 6 7 8 9 10

Number of pseudo-inputs (K) 10 20 30 500 100 150 200 250 300 500

0.84

0.86

0.88

0.90

0.92

Cl
as

sif
ica

tio
n_

ac
cu

ra
cy

VAMP_MNIST_convnet_16

0.02425

0.02450

0.02475

0.02500

0.02525

0.02550

Re
co

ns
tru

ct
io

n_
m

se

1 2 3 4 5 6 7 8 9 10
run configuration number

100

200

300

Tr
ai

n
tim

e
(m

in
ut

es
)

0.60

0.62

0.64

0.66

Cl
us

te
rin

g_
ac

cu
ra

cy

102

7 × 101

8 × 101

9 × 101

Ge
ne

ra
tio

n_
fid

Figure 4.15: Results on VAMP

166

Pythae: Unifying Generative Autoencoders in Python

ImportanceWeighted Autoencoder (IWAE) (Burda et al., 2016) introduce an alternative lower
bound to maximize, derived from importance weighting where the new unbiased estimate p̂θ(x) of
the marginal distribution pθ(x) is computed with L samples z1, . . . , zL ∼ qϕ(z|x) :

p̂θ(x) =
1

L

L∑
i=1

pθ(x|zi)pz(zi)
qϕ(zi|x)

.

This estimate induces a new lower bound of the true marginal distribution pθ(x) using Jensen’s
inequality:

LIWAE(x) := Ez1,...,zL∼q(z|x)
[
log

1

L

L∑
i=1

pθ(x|zi)pz(zi)
qϕ(zi|x)

]
≤ logEz1,...,zL∼q(z|x)

[
p̂θ(x)

]︸ ︷︷ ︸
pθ(x)

.

As the number of samples L increases, LIWAE(x) becomes closer to log pθ(x), therefore providing a
tighter bound on the true objective. Note that when L = 1 we recover the original VAE framework.

As expected the reconstruction quality increases with the number of samples. Nonetheless, we
note that increasing the number of samples has a significant impact on the computation of a single
training step, therefore leading to a much slower training process.

Results by configuration

Table 4.9: IWAE configurations

Config 1 2 3 4 5 6 7 8 9 10

Number of samples (L) 2 3 4 5 6 7 8 9 10 12

167

Chapter 4

0.860

0.865

0.870

0.875

0.880

Cl
as

sif
ica

tio
n_

ac
cu

ra
cy

IWAE_MNIST_convnet_16

0.0145

0.0150

0.0155

Re
co

ns
tru

ct
io

n_
m

se

1 2 3 4 5 6 7 8 9 10
run configuration number

100

200

Tr
ai

n
tim

e
(m

in
ut

es
)

0.54

0.56

0.58

0.60

0.62

0.64

Cl
us

te
rin

g_
ac

cu
ra

cy

2.9 × 101

3 × 101

3.1 × 101

3.2 × 101

3.3 × 101

Ge
ne

ra
tio

n_
fid

Figure 4.16: Results on IWAE

168

Pythae: Unifying Generative Autoencoders in Python

Variational Inference with Normalizing Flows (VAE-lin-NF) In order to model a more com-
plex family of approximate posterior distributions, (Rezende and Mohamed, 2015) propose to use a
succession of normalizing flows to transform the simple distribution qϕ(z|x), allowing it to model
more complex behaviours. In practice, after having sampled z0 ∼ qϕ(z|x), z0 is passed through a
chain of K invertible smooth mappings from the latent space Rd to itself:

zK = fK ◦ · · · ◦ f2 ◦ f1(z0) .

The modified latent vector zK is then used as input z for the decoder network. In their paper, the
authors propose to use two types of transformations: planar and radial flows.

fplanar(z) = z + uh(w⊤z + b) ; fradial(z) = z + βg(α, r)(z − z0) ,

where h is a smooth non-linearity with tractable derivatives and g(α, r) = 1
α+r

. The parameters are
such that r = ∥z − z0∥, u,w, z0 ∈ Rd, α ∈ R+ and b, β ∈ R. We can easily compute the resulting
density q given by

log q(zK) = log qϕ(z0|x)−
K∑
k=1

log

∣∣∣∣ det ∂fk∂z
∣∣∣∣ .

This makes the ELBO tractable and optimisation possible.

Results by configuration

Table 4.10: VAE-lin-NF configurations

Config 1 2 3 4 5 6 7 8 9 10

Flow seqence PPPPP RRRRR PRPRP 10P 15P 20P 30P PRPRPRPRPR PPP PRPPRPPPPR
‘P’ stands for planar flow - ‘R’ stands for radial flow

169

Chapter 4

0.5

0.6

0.7

0.8

Cl
as

sif
ica

tio
n_

ac
cu

ra
cy

VAE_LinNF_MNIST_convnet_16

0.020

0.025

0.030

0.035

0.040

0.045

Re
co

ns
tru

ct
io

n_
m

se

1 2 3 4 5 6 7 8 9 10
run configuration number

85

90

Tr
ai

n
tim

e
(m

in
ut

es
)

0.3

0.4

0.5

0.6

Cl
us

te
rin

g_
ac

cu
ra

cy

102

3 × 101

4 × 101

6 × 101

Ge
ne

ra
tio

n_
fid

Figure 4.17: Results on VAE-lin-NF

170

Pythae: Unifying Generative Autoencoders in Python

Variational Inference with Inverse Autoregressive Flow (VAE-IAF) (Kingma et al., 2016) im-
prove upon the works of (Rezende and Mohamed, 2015) with a new type of normalizing flow that
better scales to high-dimensional latent spaces. The main idea is again to apply several transfor-
mations to a sample from a simple distribution in order to model richer distributions. Starting from
z0 ∼ qϕ(z|x), the proposed IAF flow consists in applying consecutively the following transformation

zk = µk + σk ⊙ zk−1 ,

where µk and σk are the outputs of an autoregressive neural network taking zk−1 as input. Inspired
from the original paper, to implement one Inverse Autoregressive Flow we use MADE (Germain
et al., 2015) and stack multiple IAF together to create a richer flow. The MADE mask is made se-
quentially for the masked autoencoders and the ordering is reversed after each MADE.

Results by configuration

Table 4.11: VAE-IAF configurations

Config 1 2 3 4 5 6 7 8 9 10

hidden size in MADE 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 64.0 128.0

number hidden units in MADE 2.0 2.0 2.0 2.0 2.0 2.0 4.0 6.0 2.0 2.0

number of IAF blocks 1.0 2.0 5.0 10.0 20.0 4.0 4.0 4.0 4.0 4.0

0.85

0.86

0.87

0.88

Cl
as

sif
ica

tio
n_

ac
cu

ra
cy

VAE_IAF_MNIST_convnet_16

0.0167

0.0168

0.0169

0.0170

0.0171

Re
co

ns
tru

ct
io

n_
m

se

1 2 3 4 5 6 7 8 9 10
run configuration number

85

90

Tr
ai

n
tim

e
(m

in
ut

es
)

0.64

0.66

0.68

0.70

0.72

0.74

Cl
us

te
rin

g_
ac

cu
ra

cy

2.75 × 101

2.8 × 101

2.85 × 101

2.9 × 101

2.95 × 101
Ge

ne
ra

tio
n_

fid

Figure 4.18: Results on VAE-IAF

171

Chapter 4

β-VAE (Higgins et al., 2017) argue that increasing the weight of the KL divergence term in the
ELBO loss enforces a stronger disentanglement of the latent features as the posterior probability is
forced to match a multivariate standard Gaussian. They propose to add a hyper-parameter β in the
ELBO leading to the following objective to maximise:

Lβ-VAE(x) = Ez∼qϕ [log pθ(x|z)]− βDKL
[
qϕ(z|x)||pz(z)

]
.

Although the original publication specifies β > 1 to encourage a better disentanglement, a smaller
value of β can be used to relax the regularization constraint of the VAE. Therefore, for this model
we consider a range of values for β from 1e−3 to 1e3.

As expected, we see in Fig. 4.19 a trade-off appearing between reconstruction and generation.
Indeed, a very small β will tend to less regularize the model since the latent variables will no longer
be driven to follow the prior, favouring a better reconstruction. On the other hand, a higher value
for β will constrain the model, leading to a better generation quality. Moreover, as can be seen in
Fig. 4.19, too high a value of β will lead to over-regularization, resulting in poor performances on
all evaluated tasks.

Results by configuration

Table 4.12: β-VAE configurations

Config 1 2 3 4 5 6 7 8 9 10

β 1e−3 1e−2 1e−1 0.5 2 5 10 20 1e2 1e3

0.2

0.4

0.6

0.8

Cl
as

sif
ica

tio
n_

ac
cu

ra
cy

BetaVAE_MNIST_convnet_16

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Re
co

ns
tru

ct
io

n_
m

se

1 2 3 4 5 6 7 8 9 10
run configuration number

80

85

Tr
ai

n
tim

e
(m

in
ut

es
)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Cl
us

te
rin

g_
ac

cu
ra

cy

102

Ge
ne

ra
tio

n_
fid

Figure 4.19: Results on β-VAE

172

Pythae: Unifying Generative Autoencoders in Python

β-TC-VAE (Chen et al., 2018b) extend on the ideas of (Higgins et al., 2017) by rewriting and re-
weighting specific terms in the ELBO loss with multiple hyperparameters. The authors note that
the KL-divergence term of the ELBO loss can be rewritten as

Ex∼pθ

[
DKL

[
qϕ(z|x)||pz(z)

]]
= I(x, z)︸ ︷︷ ︸

Mutual information

+DKL
[
qϕ(z)||

d∏
j=1

qϕ(zj)
]

︸ ︷︷ ︸
TC-loss

+
d∑
j=1

DKL
[
qϕ(zj)||pz(zj)

]
︸ ︷︷ ︸

Dimension-wise KL

• The mutual information term corresponds to the amount of information shared by x and its
latent representation z. It is claimed that maximising the mutual information encourages
better disentanglement and a more compact representation of the data.

• The TC-loss corresponds to the total correlation between the latent distribution and its fully
disentangled version, maximising it enforces the dimensions of the latent vector to be uncor-
related.

• Maximising the dimension-wise KL prevents the marginal distribution of each latent dimen-
sion from diverging too far from the prior Gaussian distribution

The authors therefore propose to replace the classical regularization term with the more general
term

Lreg := αI(x, n) + βDKL
[
qϕ(z)||

∏
j

qϕ(zj)
]
+ γ

∑
j

DKL
[
qϕ(zj)||pz(zj)

]
.

Similarly to the authors, we set α = γ = 1 and only perform a search on the parameter β. Fig. 4.20
shows a reconstruction-generation trade-off similar to the β-VAE model

Results by configuration

Table 4.13: β-TC-VAE configurations

Config 1 2 3 4 5 6 7 8 9 10

β 1e−3 1e−2 1e−1 0.5 1 2 5 10 50 1e2

173

Chapter 4

0.5

0.6

0.7

0.8

0.9

Cl
as

sif
ica

tio
n_

ac
cu

ra
cy

BetaTCVAE_MNIST_convnet_16

0.01

0.02

0.03

0.04

0.05

Re
co

ns
tru

ct
io

n_
m

se

1 2 3 4 5 6 7 8 9 10
run configuration number

82

83

84

Tr
ai

n
tim

e
(m

in
ut

es
)

0.3

0.4

0.5

0.6

Cl
us

te
rin

g_
ac

cu
ra

cy

102

Ge
ne

ra
tio

n_
fid

Figure 4.20: Results on β-TC-VAE

174

Pythae: Unifying Generative Autoencoders in Python

Factor VAE (Kim and Mnih, 2018) augment the VAE objective with a penalty that encourages
factorial representation of themarginal distributions, enforcing a stronger disentangling of the latent
space. Noting that a high β value in β-VAE ELBO loss encourages disentanglement at the expense of
reconstruction quality, FactorVAE proposes a new lower bound of the log likelihood with an added
disentanglement term:

LFactorVAE(x) := LELBO(x)− γDKL
(
qϕ(z)||q̄ϕ(z)

)
, with q̄ϕ(z) :=

d∏
j=1

qϕ(zj)

The distribution of representations qϕ(z) = 1
N

∑N
i=1 qϕ(z|xi) of the entire dataset is therefore forced

to be close to its fully-disentangled equivalent q̄ϕ(z) while leaving the ELBO loss as it is. They
further propose to approximate the KL divergence with a discriminator network D that is trained
jointly to the VAE:

DKL
(
q(z)||q̄(z)

)
≈ Eqz(z)

[
log

D(z)

1−D(z)

]
As suggested in the authors’s paper, the discriminator is set as a MLP composed of 6 layers each
with 1000 hidden units and LeakyReLU activation.

Results by configuration

Table 4.14: FactorVAE configurations

Config 1 2 3 4 5 6 7 8 9 10

γ 1 2 5 10 15 20 30 40 50 100

175

Chapter 4

0.725

0.750

0.775

0.800

0.825

0.850

Cl
as

sif
ica

tio
n_

ac
cu

ra
cy

FactorVAE_MNIST_convnet_16

0.018

0.020

0.022

0.024

Re
co

ns
tru

ct
io

n_
m

se

1 2 3 4 5 6 7 8 9 10
run configuration number

252

254

256

Tr
ai

n
tim

e
(m

in
ut

es
)

0.2

0.3

0.4

0.5

Cl
us

te
rin

g_
ac

cu
ra

cy

2.7 × 101

2.8 × 101

2.9 × 101

3 × 101

3.1 × 101

Ge
ne

ra
tio

n_
fid

Figure 4.21: Results on FactorVAE

176

Pythae: Unifying Generative Autoencoders in Python

InfoVAE (Zhao et al., 2019) note that the traditional VAE ELBO objective can lead to both inaccu-
rate amortized inference and VAE models that tend to ignore most of the latent variables, therefore
not fully taking advantage of the modeling capacities of the VAE scheme and learning less mean-
ingful latent representations. In order to counteract these two issues, they propose to rewrite and
re-weight the ELBO objective in order to counterbalance the imbalance between the distribution
in the data space and the latent space, and add a mutual information term between x and z to en-
courage a stronger dependency between the two variables, preventing the model from ignoring the
latent encoding. One can re-write the ELBO loss in order to explicit the KL divergence between the
marginalised posterior and the prior

LELBO(x) := −DKL[qϕ(z)||pz(z)]− Ez∼pz
[
DKL[qϕ(x|z)||pθ(x|z)]

]
.

Introducing an additional mutual information term Iq(x; z) and extending the objective function to
use any given divergence D between probability measures instead of the KL objective, the authors
propose a new objective defined as

LInfoVAE(x) := −λD[qϕ(z)||pz(z)]− Ez∼pz
[
DKL[qϕ(x|z)||pθ(x|z)]

]
+ αIq(x; z)

where λ and α are hyperparameters. In our experiments, α is set to 0 as recommended in the paper
in the case where pθ(x|z) is a simple distribution. D is chosen as the Maximum Mean Discrepancy
(MMD) (Gretton et al., 2012), defined as

MMDk(pλ(z), qϕ(z)) = ||
∫
Z
k(z, .)dpλ(z)−

∫
Z
k(z, .)dqϕ(z)||Hk

with k : Z × Z → R a positive-definite kernel and its associated RKHS Hk. We choose to dif-
ferentiate 2 cases in the benchmark: one with a Radial Basis Function (RBF) kernel, the other with
the Inverse MultiQuadratic (IMQ) kernel as proposed in (Tolstikhin et al., 2018) where the kernel is
given by k(x, y) =

∑
s∈S

s·C
s·C+∥x−y∥22

with s ∈ [0.1, 0.2, 0.5, 1, 2, 5, 10] and C = 2 · d · σ2, d being the

dimension of the latent space and σ a parameter part of the hyper-parameter search.

The authors underline that choosing λ > 0, α = 1 − λ and D = DKL, we recover the β-
VAE model (Higgins et al., 2017), while choosing α = λ = 1 and setting D as the Jensen Shannon
divergence we recover the Adversarial AE model (Makhzani et al., 2015).

Results by configuration

Table 4.15: InfoVAE configurations

Config 1 2 3 4 5 6 7 8 9 10

kernel bandwidth - σ 1e−2 1e−1 0.5 1 1 1 1 1 2 5

λ 10 10 10 1e−2 1e−1 10 100 100 10 10

177

Chapter 4

0.845

0.850

0.855

0.860

Cl
as

sif
ica

tio
n_

ac
cu

ra
cy

INFOVAE_MMD-rbf_MNIST_convnet_16

0.0166

0.0167

0.0168

0.0169

0.0170

0.0171

Re
co

ns
tru

ct
io

n_
m

se

1 2 3 4 5 6 7 8 9 10
run configuration number

80

82

Tr
ai

n
tim

e
(m

in
ut

es
)

0.50

0.55

0.60

0.65

Cl
us

te
rin

g_
ac

cu
ra

cy

2.75 × 101

2.8 × 101

2.85 × 101

2.9 × 101

2.95 × 101

3 × 101

3.05 × 101

3.1 × 101

Ge
ne

ra
tio

n_
fid

Figure 4.22: Results on InfoVAE-RBF

0.845

0.850

0.855

0.860

Cl
as

sif
ica

tio
n_

ac
cu

ra
cy

INFOVAE_MMD-imq_MNIST_convnet_16

0.0167

0.0168

0.0169

0.0170

0.0171

0.0172

Re
co

ns
tru

ct
io

n_
m

se

1 2 3 4 5 6 7 8 9 10
run configuration number

82

84

Tr
ai

n
tim

e
(m

in
ut

es
)

0.55

0.60

0.65

Cl
us

te
rin

g_
ac

cu
ra

cy

2.85 × 101

2.9 × 101

2.95 × 101

3 × 101

3.05 × 101

Ge
ne

ra
tio

n_
fid

Figure 4.23: Results on InfoVAE-IMQ

178

Pythae: Unifying Generative Autoencoders in Python

Adversarial AE (AAE) (Makhzani et al., 2015) propose to use a GAN-like approach by replacing
the regularization induced by the KL divergence with a discriminator network D trained to differ-
entiate between samples from the prior and samples from the posterior distribution. The encoder
network therefore acts as a generator network, leading to the following objective

LAAE(x) = Ez∼qϕ(z|x)[log pθ(x|z)] + αLGAN ,

with LGAN the standard GAN loss defined by

LGAN = Ez̃∼pz(z)
[
log(1−D(z̃)))

]
+ Ex∼pθ

[
Ez∼qϕ(z|x)[logD(z)]

]
.

For the Adversarial Autoencoder implementation, we use a MLP neural network for the discrimina-
tor composed of a single hidden layer with 256 units and ReLU activation.

We observe a similar trade-off between reconstruction and generation quality as observed with
β-VAE type models, as the α term acts like the β term, balancing between regularization and recon-
struction.

Results by configuration

Table 4.16: AAE configurations

Config 1 2 3 4 5 6 7 8 9 10

α 1e−3 1e−2 1e−1 0.25 0.5 0.75 0.9 0.95 0.99 0.999

0.905

0.910

0.915

0.920

0.925

0.930

0.935

Cl
as

sif
ica

tio
n_

ac
cu

ra
cy

Adversarial_AE_MNIST_convnet_16

0.006

0.008

0.010

0.012

Re
co

ns
tru

ct
io

n_
m

se

1 2 3 4 5 6 7 8 9 10
run configuration number

82.5

85.0

87.5

Tr
ai

n
tim

e
(m

in
ut

es
)

0.60

0.65

0.70

0.75

Cl
us

te
rin

g_
ac

cu
ra

cy

2 × 101

3 × 101

4 × 101

Ge
ne

ra
tio

n_
fid

Figure 4.24: Results on Adversarial AE

179

Chapter 4

EL-VAE (MSSSIM-VAE) (Snell et al., 2017) propose an extension of the ELBO loss to a more gen-
eral case where any deterministic reconstruction loss ∆(x, x̂) can be used by replacing the prob-
abilistic decoder pθ with a deterministic equivalent fθ such that the reconstruction x̂ of x given
z ∼ qϕ(z|x) is defined as x̂ = fθ(z). The modified ELBO objective is thus defined as

LEL−VAE(x) = ∆(x, x̂)− βDKL
(
qϕ(z|x)||p(z)

)
,

with β ≤ 1. As suggested in the original paper we use a multi scale variant of the single scale SSIM
(Wang et al., 2004): the Multi Scale Structural Similarity Metric (MS-SSIM) (Wang et al., 2003).

Results by configuration

Table 4.17: MSSSIM-VAE configurations

Config 1 2 3 4 5 6 7 8 9 10

β 1e−2 1e−2 1e−2 1e−1 1e−1 1e−1 1 1 1 1

window size in MSSSIM 3 5 11 5 3 11 11 5 3 15

0.2

0.4

0.6

0.8

Cl
as

sif
ica

tio
n_

ac
cu

ra
cy

MSSSIM_VAE_MNIST_convnet_16

0.04

0.06

0.08

0.10

Re
co

ns
tru

ct
io

n_
m

se

1 2 3 4 5 6 7 8 9 10
run configuration number

85

90

95

Tr
ai

n
tim

e
(m

in
ut

es
)

0.1

0.2

0.3

0.4

0.5

Cl
us

te
rin

g_
ac

cu
ra

cy

102

Ge
ne

ra
tio

n_
fid

Figure 4.25: Results on MSSSIM-VAE

180

Pythae: Unifying Generative Autoencoders in Python

VAE-GAN (Larsen et al., 2016) use a GAN like approach by training a discriminator to distinguish
real data from reconstructed data. In addition, the discriminator learns to distinguish between real
data and data generated by sampling from the prior distribution in the latent space.

Noting that intermediate layers of a discriminative network trained to differentiate real from
generated data can act as data-specific features, the authors propose to replace the reconstruction
loss of the ELBO with a Gaussian log-likelihood between outputs of intermediate layers of a dis-
criminative network D:

LVAE-GAN = Ez∼qθ(z|x)
[
logN (Dl(x)|Dl(x̂), I)

]
︸ ︷︷ ︸

reconstruction

−DKL
[
qϕ(z|x)||pz(z)

]︸ ︷︷ ︸
regularization

−LGAN ,

whereDl is the output of the lth layer of the discriminatorD, chosen to be representative of abstract
intermediate features learned by the discriminator, and LGAN is the standard GAN objective defined
as

LGAN = log

(
D(x)

1−D(xgen)

)
,

where xgen is generated using z ∼ pz(z). As encouraged by the authors, we add a hyper-parameter
α to the reconstruction loss for the decoder only, such that a higher value of αwill encourage better
reconstruction abilities with respect to the features extracted at the lth layer of the discriminator
network, whereas a smaller value will encourage fooling the discriminator, therefore favouring reg-
ularization toward the prior distribution. For the VAEGAN implementation, we use a discriminator
whose architecture is similar to the model’s encoder given in Table 4.5. For MNIST and CIFAR we
remove the BatchNorm layer and change the activation of layer 2 to Tanh instead of ReLU. For
CELEBA, the BatchNorm layer is kept and the activation of layer 2 is also changed to Tanh. For all
datasets, the output size of the last linear layer is set to 1 instead of d and followed by a Sigmoid
activation.

Results by configuration

Table 4.18: VAEGAN configurations

Config 1 2 3 4 5 6 7 8 9 10

α 0.3 0.5 0.7 0.8 0.8 0.8 0.9 0.9 0.99 0.999

reconstruction layer (l) 3 3 3 3 2 4 3 3 3 3

181

Chapter 4

0.70

0.75

0.80

0.85

0.90

Cl
as

sif
ica

tio
n_

ac
cu

ra
cy

VAEGAN_MNIST_convnet_16

0.02

0.03

0.04

0.05

0.06

Re
co

ns
tru

ct
io

n_
m

se

1 2 3 4 5 6 7 8 9 10
run configuration number

300

400

Tr
ai

n
tim

e
(m

in
ut

es
)

0.55

0.60

0.65

0.70

0.75

Cl
us

te
rin

g_
ac

cu
ra

cy

101

2 × 101

3 × 101

4 × 101

Ge
ne

ra
tio

n_
fid

Figure 4.26: Results on VAEGAN

182

Pythae: Unifying Generative Autoencoders in Python

Wasserstein Autoencoder (WAE) (Tolstikhin et al., 2018) generalise the VAE objective by re-
placing both terms in the ELBO: similarly to (Snell et al., 2017) (EL-VAE), the reconstruction loss is
replaced by any measurable cost function∆, and the standard KL divergence is substituted with any
arbitrary divergence D between two distributions, leading to the following objective function

Eqϕ(z|x)[∆(x, x̂)] + λDz(pz(z), qϕ(z)) ,

with λ a hyper-parameter. The authors propose two different penalties for Dz:

1. GAN-based: WAE-GAN

An adversarial discriminatory networkD(z, z′) is trained jointly to separate the "true" points
sampled from the prior pz(z) from the "fake" ones sampled from qϕ(z|x), similarly to (Makhzani
et al., 2015) (Adversarial AE).

2. MMD-based

The Maximum Mean Discrepancy is used as a distance between the prior and the posterior
distribution. This is the case considered in the benchmark. We choose to differentiate 2 cases
in the benchmark: one with a Radial Basis Function (RBF) kernel, the other with the Inverse
MultiQuadratic (IMQ) kernel as proposed in (Tolstikhin et al., 2018) where the kernel is given
by k(x, y) =

∑
s∈S

s·C
s·C+∥x−y∥22

with s ∈ [0.1, 0.2, 0.5, 1, 2, 5, 10] and C = 2 · d · σ2, d being

the dimension of the latent space and σ a parameter part of the hyper-parameter search. As
proposed by the authors, for this model we choose to use a deterministic encoder meaning
that qϕ(z|x) = δµϕ(x).

Results by configuration

Table 4.19: WAE configurations

Config 1 2 3 4 5 6 7 8 9 10

kernel bandwidth - σ 1e−2 1e−1 0.5 1 1 1 1 1 2 5

λ 1 1 1 1e−2 1e−1 1 10 100 1 1

183

Chapter 4

0.9250

0.9275

0.9300

0.9325

0.9350

0.9375

Cl
as

sif
ica

tio
n_

ac
cu

ra
cy

WAE_MMD-rbf_MNIST_convnet_16

0.005525

0.005550

0.005575

0.005600

0.005625

0.005650

0.005675

Re
co

ns
tru

ct
io

n_
m

se

1 2 3 4 5 6 7 8 9 10
run configuration number

85

90

Tr
ai

n
tim

e
(m

in
ut

es
)

0.71

0.72

0.73

0.74

Cl
us

te
rin

g_
ac

cu
ra

cy

2.1 × 101

2.2 × 101

2.3 × 101

2.4 × 101
2.5 × 101
2.6 × 101
2.7 × 101
2.8 × 101
2.9 × 101

Ge
ne

ra
tio

n_
fid

Figure 4.27: Results on WAE-RBF

0.910

0.915

0.920

0.925

0.930

0.935

Cl
as

sif
ica

tio
n_

ac
cu

ra
cy

WAE_MMD-imq_MNIST_convnet_16

0.0056

0.0057

0.0058

0.0059

Re
co

ns
tru

ct
io

n_
m

se

1 2 3 4 5 6 7 8 9 10
run configuration number

83

84

85

Tr
ai

n
tim

e
(m

in
ut

es
)

0.67

0.68

0.69

0.70

0.71

0.72

Cl
us

te
rin

g_
ac

cu
ra

cy

2 × 101

2.2 × 101

2.4 × 101

2.6 × 101

2.8 × 101

Ge
ne

ra
tio

n_
fid

Figure 4.28: Results on WAE-IMQ

184

Pythae: Unifying Generative Autoencoders in Python

Vector Quantized VAE (VQ-VAE) (Van Den Oord et al., 2017) propose to use a discrete space.
Therefore, the latent embedding space is defined as a RK×D vector space of K different D dimen-
sional embedding vectors E = {e1, . . . , eK} which are learned and updated at each iteration.

Given an embedding size d and an input x, the output of the encoder ze(x) is of size Rd×D. Each
of its d elements is then assigned to the closest embedding vector resulting in an embedded encoding
zq(x) ∈ Ed such that

(
zq(x)

)
j
= el where l = argmin1≤l≤d||(ze(x))j − el||2 for j ∈ [1, d]. Since the

argmin operation is not differentiable, learning of the embeddings and regularization of the latent
space is done by introducing the stopgradient operator sg in the training objective:

LVQ-VAE(x) := log p(x|zq(x)) + α||sg[ze(x)]− e||22 + β||ze(x)− sg[e]||22 .

For the VQVAE implementation we use the Exponential Moving Average update as proposed in (Van
Den Oord et al., 2017) to replace the term ||sg[ze(x)]− e||22 in the loss. Thus, we consider only two
hyper-parameters in the search: the size of the dictionary of embeddings K and the regularization
factor β.

Results by configuration

Table 4.20: VQVAE configurations

Config 1 2 3 4 5 6 7 8 9 10

K 128 256 512 512 512 512 512 512 1024 2948

β 0.25 0.25 0.9 0.1 0.5 0.25 0.75 0.25 0.25 0.25

0.9275

0.9300

0.9325

0.9350

0.9375

0.9400

Cl
as

sif
ica

tio
n_

ac
cu

ra
cy

VQVAE_MNIST_convnet_16

0.005575

0.005600

0.005625

0.005650

0.005675

0.005700

0.005725

Re
co

ns
tru

ct
io

n_
m

se

1 2 3 4 5 6 7 8 9 10
run configuration number

80

85

90

Tr
ai

n
tim

e
(m

in
ut

es
)

0.695

0.700

0.705

0.710

0.715

0.720

0.725

Cl
us

te
rin

g_
ac

cu
ra

cy

102

3 × 101

4 × 101

6 × 101

Ge
ne

ra
tio

n_
fid

Figure 4.29: Results on VQVAE

185

Chapter 4

RAE L2 and RAE GP (Ghosh et al., 2020) propose to replace the stochastic VAE with a determin-
istic autoencoder by adapting the ELBO objective to a deterministic case. Under standard VAE as-
sumption with Gaussian decoder, both the reconstruction and the regularization terms in the ELBO
loss can be written in closed form as

Lreconstruction(x) = ||x− x̂||22 ,

Lregularization(x) =
1

2

[
||z||22 − d+

d∑
i=1

(σϕ(x)i − log σϕ(x)i)
]
.

Arguing that the regularization of the VAE model is done through a noise injection mechanism by
sampling from the approximate posterior distribution z ∼ N (µϕ, diag(σϕ)), the authors propose to
replace this stochastic regularization with an explicit regularization term, leading to the following
deterministic objective:

LRAE = ||x− x̂||22 +
β

2
||z||22 + λLREG ,

where LREG is an explicit regularization. They propose to use either

• a L2 loss on the weights of the decoder (RAE-L2), which amounts to applying weight decay
on the parameters of the decoder.

• a gradient penalty on the output of the decoder (RAE-GP), which amounts to applying a L2
norm on the gradient of the output of the decoder.

Results by configuration

Table 4.21: RAE configurations

Config 1 2 3 4 5 6 7 8 9 10

β 1e−6 1e−4 1e−3 1e−3 1e−3 1e−3 1e−3 1e−2 1e−1 1
λ 1e−3 1e−3 1e−6 1e−4 1e−2 1e−1 1 1e−3 1e−3 1e−3

186

Pythae: Unifying Generative Autoencoders in Python

0.90

0.91

0.92

0.93

0.94

0.95

Cl
as

sif
ica

tio
n_

ac
cu

ra
cy

RAE_L2_MNIST_convnet_16

0.006

0.007

0.008

Re
co

ns
tru

ct
io

n_
m

se

1 2 3 4 5 6 7 8 9 10
run configuration number

80

85

Tr
ai

n
tim

e
(m

in
ut

es
)

0.66

0.68

0.70

0.72

0.74

Cl
us

te
rin

g_
ac

cu
ra

cy

102

3 × 101

4 × 101

6 × 101

Ge
ne

ra
tio

n_
fid

Figure 4.30: Results on RAE-L2

0.91

0.92

0.93

0.94

Cl
as

sif
ica

tio
n_

ac
cu

ra
cy

RAE_GP_MNIST_convnet_16

0.006

0.007

0.008

Re
co

ns
tru

ct
io

n_
m

se

1 2 3 4 5 6 7 8 9 10
run configuration number

200

220

Tr
ai

n
tim

e
(m

in
ut

es
)

0.69

0.70

0.71

0.72

0.73

Cl
us

te
rin

g_
ac

cu
ra

cy

102

3 × 101

4 × 101

6 × 101

Ge
ne

ra
tio

n_
fid

Figure 4.31: Results on RAE-GP

187

Chapter 4

188

Chapter 5

An Image Feature Mapping Model for Con-
tinuous LongitudinalDataCompletion and
Generation of Synthetic Patient Trajecto-
ries

Longitudinal medical image data are becoming increasingly important for monitoring patient progres-
sion. However, such datasets are often small, incomplete, or have inconsistencies between observations.
Thus, we propose a generative model that not only produces continuous trajectories of fully synthetic
patient images, but also imputes missing data in existing trajectories, by estimating realistic progres-
sion over time. Our generative model is trained directly on features extracted from images and maps
these into a linear trajectory in a Euclidean space defined with velocity, delay, and spatial parameters
that are learned directly from the data. We evaluated our method on toy data and face images, both
showing simulated trajectories mimicking progression in longitudinal data. Furthermore, we applied
the proposed model on a complex neuroimaging database extracted from ADNI. All datasets show that
the model is able to learn overall (disease) progression over time.

This chapter was published in a MICCAI 2022 workshop (DGM4MICCAI). See (Chadebec et al.,
2022a).

189

Chapter 5

5.1 Introduction . 191
5.2 Proposed Method . 191

5.2.1 Feature Extraction . 192
5.2.2 Trajectory Modeling . 192

5.3 Data . 194
5.4 Experiments . 194
5.5 Discussion and Conclusion . 197
5.6 Appendices . 198

5.6.1 Dataset details . 198
5.6.2 Implementation details . 200

190

An Image Feature Mapping Model for Continuous Longitudinal Data Completion and
Generation of Synthetic Patient Trajectories

5.1 Introduction

Longitudinal medical image data are important for e.g. modeling disease progression (Aghili et al.,
2018; Zhao et al., 2021) or monitoring treatment response (Blackledge et al., 2014). However, such
datasets often suffer from incomplete or inconsistent observations, and are often limited in terms of
size, diversity, and balance. Generally, using inadequate data can lead to poor performances when
being used to train machine learning (ML) models (Shin et al., 2016) for medical image analysis tasks
such as classification (Wen et al., 2020) or segmentation (Liu et al., 2021a).

To increase the size and variability of (non-longitudinal) medical imaging datasets, conventional
data augmentation techniques such as rotation, cropping, or more resourceful augmentations (Hus-
sain et al., 2017) have been widely used (Shorten and Khoshgoftaar, 2019). However, the improved
performances of deep generative models have given them the potential to perform image synthesis.
Examples of such models are Generative Adversarial Networks (GANs) (Goodfellow et al., 2014),
which generate realistic images using a discriminator that distinguishes between real and synthetic
images, and Variational Autoencoders (VAEs) (Kingma and Welling, 2014), which constrain image
features to follow a given prior distribution in order to generate synthetic images. Thesemodels have
shown potential for synthesizing medical images of various modalities such as magnetic resonance
imaging (MRI) (Calimeri et al., 2017; Shin et al., 2018; Chadebec et al., 2022b), computed tomogra-
phy (CT) (Frid-Adar et al., 2018; Sandfort et al., 2019), X-ray (Madani et al., 2018; Salehinejad et al.,
2018), or positron emission tomography (PET) (Bi et al., 2017). In addition, several methods have
been proposed to address data imputation or progression modeling in longitudinal imaging data of
e.g. MRI (Louis et al., 2019; Kim et al., 2021) or simulated discrete progressions (Ramchandran et al.,
2021).

Although the topics of inter- and extrapolating longitudinal (medical) imaging data are well
studied, to the best of our knowledge there is no model that addresses both of these aspects at
once and is able to continuously generate realistic trajectories. In this chapter, we propose a new
deep generative model that is capable of: (1) generating realistic progression in images, (2) imputing
missing data in existing patient trajectories, and (3) producing synthetic images with corresponding
trajectories of non-existent patients1.

5.2 Proposed Method

We propose a new generative model for longitudinal imaging data that consists of two steps. In
the first step, relevant features are extracted from the input images using a VAE, and the second
step maps these features into a linear trajectory to account for the progression over time. In the
following, we refer to an observation, e.g. an image, as yi,j ∈ Y , with i ∈ [1, N] the individual’s
identifier, tj ∈ R∗

+, where j ∈ [0, Pi] the time of the observation. N is the number of individuals
and Pi is the number of observations of i after the first time visit t0.

1Code and dataset details are available at https://github.com/evihuijben/longVAE

191

https://github.com/evihuijben/longVAE

Chapter 5

R
N
N

M
LP

M
LP

Decoder
VAE

Encoder
VAE

Step 1: Feature extraction Step 2: Feature mapping

Figure 5.1: Model sketch. First, features are extracted from images using the VAE (step 1), then,
the proposed generative model maps these features to a straight line in Euclidean space (step 2).
Network details are provided in Appendix 5.6.2.

5.2.1 Feature Extraction

Medical images are often complex and high-dimensional data. Therefore, instead of proposing a
model directly acting on images, we propose to first extract meaningful features using a VAE (re-
ferred to as the VAE in the following). We use an autoencoder because it constrains comparable
images to be encoded into similar locations such that minor variations in the latent space lead to
smooth transformations in the image space. Since we expect smooth progressions, the VAE is likely
to directly unveil trajectories in the latent space, thereby facilitating the second step of our method
(referred to as the generative model in the following). In the following xi,j ∈M refers to the features
of observation yi,j .

5.2.2 Trajectory Modeling

We propose to learn parametric functions that map the features onto a linear trajectory in a d-
dimensional Euclidean space Rd with standard basis {e1, . . . , ed}, accounting for an individual’s
progression. We use the framework proposed in (Louis et al., 2019), in which an individual’s pro-
gression trajectory at time t is modeled in Rd as

li(t) = exp(ηi)(t− τi) · e1 +
d∑

k=2

λki · ek , (5.1)

where ηi is a velocity parameter, τi is a delay, and λi = (λki)2≤k≤d are spatial parameters. Contrary
to (Louis et al., 2019), we adopt a fully variational approach to make the model generative in a similar
fashion as (Kingma and Welling, 2014). Assuming a set of embeddings x = {(xi,j)1≤i≤N,0≤j≤Pi} ∈
M, we first assume that given two individuals i and i′, the features xi,j and xi′,j are independent.
Therefore, we propose to maximize the following likelihood objective p(x) =

∏N
i=1 p(xi), where

xi = (xi,0, · · · , xi,Pi). We further assume that the latent variables zi = (ηi, τi, λ
2
i , · · · , λdi) ∈ Rd+1

in Eq. (5.1) are such that the features of individual i at time tj are generated by:

pθ(xi,j|zi) = N
(
µθ(li(tj)), σ · Id

)
,

192

An Image Feature Mapping Model for Continuous Longitudinal Data Completion and
Generation of Synthetic Patient Trajectories

where li(tj) is the linear trajectory evaluated at tj , and µθ : Rd → M is parameterized using a
multilayer perceptron (MLP) and maps Rd to the feature space. We further assume that ηi, τi, and
λi are independent and that for a given individual i, the features xi,j taken conditionally to zi are
independent. Furthermore, we set the prior distributions over the latent variables to: ηi ∼ N (0, ση),
τi ∼ N (0, στ), λi ∼ N (0, Id−1), with ση > 0 and στ > 0. Finally, the likelihood for an individual i
writes:

p(xi) =

∫
zi∈Rd+1

pθ(xi|zi)p(zi)dzi =
∫

zi∈Rd+1

Pi∏
j=0

pθ(xi,j|zi)
∏

κi∈{ηi,τi,λi}

p(κi)dκi .

Since p(zi|xi), the true posterior distribution, is unknown, we rely on variational inference (Jordan
et al., 1999). Hence, we introduce a variational distribution qφ(zi|xi) = qφ(ηi|xi)qφ(τi|xi)qφ(λi|xi)
and derive a new estimate of the likelihood p(xi) = Ezi∼qφ(zi|xi)

[
p(xi,zi)
qφ(zi|xi)

]
. We then compute a lower

bound on the true objective using Jensen inequality and importance sampling using the variational
distribution.

log p(xi) = log Ezi∼qφ(zi|xi)
[
p(xi, zi)

qφ(zi|xi)

]
≥ Ezi∼qφ(zi|xi)

[
log p(xi|zi)

]
−

∑
κi∈{ηi,τi,λi}

KL(qφ(κi|xi)|p(κi)) ,

≥ Ezi∼qφ(zi|xi)
[
log p(xi|zi)

]
−KL(qφ(ηi|xi)|p(ηi))

−KL(qφ(τi|xi)|p(τi))−KL(qφ(λi|xi)|p(λi))

with KL the Kullback–Leibler divergence. In practice, we use multivariate Gaussians as variational
distributions: ηi ∼ N (µηiφ ,Σ

ηi
φ), τi ∼ N (µτiφ ,Σ

τi
φ) and λi ∼ N (µλiφ ,Σ

λi
φ). The parameters for pro-

gression, ηi and τi, are estimated from an input sequence using a recurrent neural network (RNN),
while the spatial parameters, (λ2i , . . . , λdi), are computed from the features of the image acquired at
time t0 using a MLP. The implementation details of the RNN and MLP can be found in Appendix
5.6.2, and a sketch of the model is presented in Fig. 5.1. Taking only the first image’s features for the
spatial parameters allows to estimate their value even if only one observation is available and to gen-
erate possible future progressions. Finally, we obtain the following loss function for one individual
(removing constant terms):

Li =
Pi∑
j=0

∥xi,j − µθ(li(tj))∥2 +
∑

κi∈{ηi,τi,λi}

KL(qφ(κi|xi)|p(κi)) .

After training, we can either 1) generate fully synthetic trajectories using the aforementioned
prior distributions, 2) produce possible progressions for a given individual i by estimating its λi
and varying ηi and τi, or 3) interpolate and extrapolate existing trajectories by estimating the latent
variables. Image sequences are then generated by recovering the features corresponding to a linear
trajectory evaluated at a given time using a secondMLP and passing them to the decoder of the VAE.
In practice, we sample λi with a mixture of Gaussians since (Ghosh et al., 2020) recently showed that
this approach alleviates the low expressiveness of the prior and allows to generate more convincing
samples.

193

Chapter 5

2 1 0 1 2 3

2

1

0

1

2

6 4 2 0 2 4 6

4

2

0

2

4

1 0 1 2

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Figure 5.2: PCA projections for ‘Starmen’ (left), ‘CelebA’ (middle) and ADNI (right).

5.3 Data

We evaluate the proposed model using three longitudinal datasets. The first dataset is a toy dataset
referred to as Starmen2 (Couronné et al., 2021) consisting of 64× 64 binary images of 1,000 individ-
uals that portray synthetic transformations based on the longitudinal model of (Bône et al., 2018),
captured in 10 observations per individual. The second dataset, CelebA (aligned and cropped ver-
sion downloaded in 2021) (Liu et al., 2015), consists of 64 × 64 RGB images of celebrities’ faces.
To resemble longitudinal medical images, we converted these images to gray scale and applied a
simulated progression model by applying a non-linear intensity transform, a growth factor, a rota-
tion, and adding Gaussian noise. This dataset can be considered very challenging since the images
undergo global and local geometric transformations and photometric variations. The last dataset
was obtained from the Alzheimer’s Disease Neuroimaging Initiative3. We used a total of 8,318 MRI
scans, obtained from 1,799 subjects, with an average of 4.6 ± 2.3 scans per person. The average
time between the first and the last scan was 2.9 ± 2.4 years. We selected the 100th axial slice of
every preprocessed scan and cropped it to 182 × 182. The subject’s ages were used to define the
observation times for the generative model, which were normalized between the overall oldest and
youngest age. Details of the datasets (e.g. preprocessing steps, progression model, data splits, and
example image trajectories) can be found in Appendix 5.6.1.

5.4 Experiments

Most experiments in this section are performed using Starmen and CelebA because these datasets
are fully controlled and allow visual evaluation by non-medical experts. ADNI is used to show that
results can be extended to medical data. In what follows, the models are selected on the validation
set and tested on an hold-out test set. Experimental and implementation details are provided in
Appendix 5.6.2.

2Downloaded from https://doi.org/10.5281/zenodo.5081988
3Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)

database (http://adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the de-
sign and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report.
A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/
uploads/how_to_apply/ADNI_Acknowledgement_List.pdf

194

https://doi.org/10.5281/zenodo.5081988
http://adni.loni.usc.edu
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf

An Image Feature Mapping Model for Continuous Longitudinal Data Completion and
Generation of Synthetic Patient Trajectories

Figure 5.3: Mean and standard deviation of MSE/SSIM (a,b/c,d) for various evaluations. (a/c) Metric
between consecutive images in the test sequences (ref.) and reconstruction metrics using only the
VAE (base) or the generative model (ours). (b/d) Metrics for the next and last image extrapolated
based on a varying input sequence length.

Feature Extraction and Reconstruction First, we train the VAE on each training set, disre-
garding the longitudinal component, and confirm the hypothesis that the features directly unveil
clear trajectories over time, as can be seen in Fig. 5.2. To justify that mapping those trajectories to
linear ones (step 2 in Fig. 5.1) is not too constraining, we analyze the reconstruction results obtained
by 1) only encoding and decoding test images using the VAE (base), and 2) training the generative
model to map the extracted feature trajectories to straight lines (Eq. (5.1)), evaluate l(t) at observa-
tion times and pass the corresponding features to the decoder of the VAE (ours). Fig. 5.3a and 5.3c
show the mean squared error (MSE) and structural similarity (SSIM), respectively, of the test set re-
constructions. Note that the results obtained using the proposed model is not expected to be better
than the one obtained using the VAE (base) because the generative model only acts on the features
and we do not use any image-based reconstruction cost during its training. The metric values can be
put into perspective by considering the mean value between two consecutive images in the test set
(ref.). The visual reconstructions in the second row of Fig. 5.4 show that linear trajectory modeling
does not considerably affect the image reconstruction ability of the model.

Figure 5.4: Extrapolation of different test input sequences for Starmen (left) and CelebA (right).
The first two rows represent the ground truth and reconstructions (ours), respectively. Red squares
highlight images that were not provided to the model. Deviation from the true test Starmen image
is presented in color.

Trajectory Extrapolation In this section, we investigate whether the proposed model is able
to extrapolate realistic trajectories from existing input data. To do so, we use the same model as
before, but only provide the model with an image sequence of varying length and assess its ability
to reconstruct either the next or the last image in the sequence. Fig. 5.3b and Fig. 5.3d show the
MSE and SSIM, respectively, of the ground truth and the extrapolated images based on a varying
input sequence length. It can be seen that extrapolations become more reliable when a longer input

195

Chapter 5

Figure 5.5: Data imputation in test sequences with 50% missing data after t0. Top rows show ground
truth trajectories, red squares represent imputed images.

sequence is given. This can also be observed from the visuals in Fig. 5.4, which show larger devia-
tions from the ground truth when fewer images are presented. This experiment shows that in each
case the model is able to estimate the progression: the left arm of the Starmen is raising and the
CelebA head rotates, becomes bigger and contrast changes as expected. However, the model seems
to underestimate the trajectory velocity as the input sequence becomes shorter. This aspect could
potentially be mitigated by training using sequences of different lengths.

Data Imputation We validate the ability of the model to impute missing data using input se-
quences simulating partial patient follow-ups. We simulate this by removing 50% of the training,
validation, and test data acquired after t0 using the Starmen and CelebA datasets. The VAE is trained
using the 50% available images, after which the generative model learns to map the features onto a
linear trajectory. In Fig. 5.5 we show the reconstructed samples at observation times.

Trajectory Generation We also demonstrate that the proposed model can generate synthetic
trajectories. We consider two cases: generating possible trajectories for a single image acquired at t0
and generating a fully synthetic trajectory based on a synthetic image at t0. In the first case, we first
recover λi by encoding the real image using the VAE, estimate its value using the generative model
and then sample η and τ from their priors as described in Section 5.2.2 and Appendix 5.6.2. In the
second case, we first generate a synthetic λ and sample η and τ as aforementioned. To demonstrate
the differences in these parameters, Fig. 5.6 shows trajectories obtained with varying delay τ (a) and
velocity η (b), possible trajectories from an input image (c) and fully synthetic trajectories (d). Real
images are extracted from the test set and highlighted with blue frames. The results show that the
proposed model allows to decorrelate spatial (λ) and time parameters (η and τ) since all images in a
trajectory represent the same individual that undergoes smooth progressive change.

Neuroimaging Data Finally, we validate the ability of the model to generate Alzheimer’s dis-
ease progression trajectories. Fig. 5.6e and 5.6f show trajectories generated from an existing input
image and a synthetic image, respectively. The generated trajectories appear realistic because the
ventricles grow over time, which is a marker of ageing and Alzheimer’s disease progression (Nestor
et al., 2008). Moreover, the proposed model seems to preserve the morphology represented at the
first time point for both real and fake subjects. However, the generated disease progression trajec-
tories still need to be assessed in more detail, for example by means of visual analysis by a medical
expert or by training a deep learning-based classifier.

196

An Image Feature Mapping Model for Continuous Longitudinal Data Completion and
Generation of Synthetic Patient Trajectories

(a) Varying delay (τ) (b) Varying velocity (η) (c) Possible trajectories

(d) Generated trajectories (e) Possible trajectories (f) Generated trajectories

Figure 5.6: Synthetic trajectories derived from real images (indicated by blue frames): (a-c, e) or
synthetic images (d, f).

5.5 Discussion and Conclusion

In this study we proposed a new continuous generative model capable of synthesizing longitudi-
nal imaging data to perform trajectory extrapolation, data imputation and smooth and probable
synthetic trajectory generation. A notable strength of our model lies in its two-step architecture,
which allows substituting the VAE to make the model suitable for any data type, e.g. using clinical
scores directly as features. We believe that this work is a step towards synthesis and augmentation
of longitudinal medical datasets. Future work should focus on validating the ability of the model
to perform reliable data augmentation for ML-based classification tasks or assess its relevance to
perform treatment response analysis. Furthermore, the hypothesis of smooth trajectories should be
put into perspective for diseases or patients showing abrupt changes in dynamics.

197

Chapter 5

5.6 Appendices

5.6.1 Dataset details

Figure 5.7: Example trajectories for a training subject of Starmen (left), CelebA (middle), and ADNI
(right). ADNI patients have a variable number of observations.

Table 5.1: Division of sets for ‘Starmen’ data.

Set Number of subjects Number of observations

Training set 700 7, 000

Validation set 200 2, 000

Test set 100 1, 000

Further details on the datasets are provided here.

Starmen It was only divided into a train (70%), a validation (20%) and a test set (10%) with no
pre-processing.

CELEBA We explain below the proposed progression model applied to ‘CelebA’ dataset. First,
we normalize the images between zero and one and apply a non-linear intensity transform, mim-
icking intensity differences in medical images for the same tissue between observations:

yi(t10) =

{
yi(t0)

|α|, if α ≥ 1

yi(t0)
| 1
α
|, if α < 1,

where yi(t0) represents the original image, yi(t10) represents the last image in the longitudinal
series and α = αdir · αmax, with αdir ∼ U({−1, 1}) and αmax ∼ U([1, 2]). Secondly, we apply a
linear growth factor mimicking e.g. weight gain, where the image size is multiplied with factor β,
with β ∼ U([1, 1.5]). Thirdly, we apply a rotation of maximum γ◦, with γ ∼ U([−90, 90]). Lastly,
we crop the images to the original size, add Gaussian noise (σ = 0.001), and normalize the images
between zero and one. The images from time points t1 to t10 construct the full progression. We used
a subset of 5,000 for training and 1,000 people for validation and an independent test set.

ADNI dataset The last dataset was obtained from the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as a public-
private partnership, led by Principal Investigator MichaelW.Weiner, MD. The primary goal of ADNI
has been to test whether serial MRI, PET, other biological markers, and clinical and neuropsycholog-
ical assessment can be combined to measure the progression of mild cognitive impairment and early
Alzheimer’s disease. All scans were preprocessed by first applying N4 bias field correction (Tustison
et al., 2010b) and registering the images to the MNI152 (1-mm isotropic resolution) standard space
using FSL (Jenkinson and Smith, 2001; Jenkinson et al., 2002). Furthermore, we applied brain extrac-
tion using HD-BET (Isensee et al., 2019) and normalized the images between zero and one, where

198

adni.loni.usc.edu

An Image Feature Mapping Model for Continuous Longitudinal Data Completion and
Generation of Synthetic Patient Trajectories

Table 5.2: ADNI information per image (not per patient).

Set Diagnosis Gender (F/M/X) Age

NC 1052/1037/0 76.2± 6.4

Training set MCI 1184/1839/0 75.1± 7.6

AD 634/826/0 76.3± 7.4

NC 128/150/0 76.9± 6.1

Validation set MCI 152/251/1 73.3± 8.0

AD 88/128/0 76.0± 8.3

NC 136/144/0 74.8± 6.2

Test set MCI 168/204/0 72.6± 7.9

AD 84/112/0 76.2± 7.5

the 99.99th percentile of voxel intensities within the brain mask were clipped to one. We used a
total of 8318 MRI scans, obtained from 1799 patients, with an average of 4.6± 2.3 scans per patient.
The average time between the first and the last scan was 2.9 ± 2.4 years. Lastly, we selected slice
number 100 and cropped the slice to 182× 182. The dataset was split into a training, validation and
test set consisting of 1432 (6572), 184 (898), and 183 (848) subjects (images), respectively. All sets
were balanced based on gender and Alzheimer’s disease classification, information regarding the
demographics can be found in Table 5.2.

199

Chapter 5

5.6.2 Implementation details

Encoder (1, 64, 64)

Layer 1 Linear(4096, 512)
ReLU

Layer 2* Linear(512, 8)

Decoder (8)

Layer 1 Linear(8, 512)
ReLU

Layer 2* Linear(512, 4096)
Sigmoid

*Same for mean and variance

Encoder (1, 64, 64)

Layer 1 Conv(128, 4, 2)
Layer 2 Conv(256, 4, 2)
Layer 3 Conv(512, 4, 2)
Layer 3 Conv(1024, 4, 2)
Layer 4* Linear(16384, 64)

Decoder (64)

Layer 1 Linear(64, 16384)
Layer 2 ConvT(512, 5, 2)
Layer 3 ConvT(256, 5, 2)
Layer 4 Conv(128, 5, 2)
Layer 5 ConvT(1, 5, 1)

*Same for mean and variance

Encoder (1, 182, 182)

Layer 1 Conv(64, 4, 2)
Layer 2 Conv(128, 4, 2)
Layer 3 Conv(256, 4, 2)
Layer 4 Conv(512, 4, 2)
Layer 5 Conv(1024, 4, 2)
Layer 6* Linear(36864, 8)

Decoder (8)

Layer 1 Linear(8, 36864)
Layer 2 ConvT(512, 4, 2)
Layer 3 ConvT(256, 4, 2)
Layer 4 ConvT(128, 4, 2)
Layer 5 ConvT(64, 4, 2)
Layer 6 ConvT(1, 4, 2)

*Same for mean and variance

Table 5.3: VAE neural networks for ‘Starmen’ (left), ‘CelebA’ (middle) and ADNI (right). Convolu-
tional layers are followed by batch normalization and relu except the final layer of decoder where
sigmoid is used.

MLP 1 (8)

Layer 1 Linear(8, 512)
ReLU

Layer 2 Linear(512, 128)
ReLU

Layer 3* Linear(128, 7)

RNN (seqence length, 8)

Layer 1 Elman Net
Layer 2 Linear(512, 128)
Layer 3* Linear(128, 1)

MLP 2 (8)

Layer 1 Linear(8, 512)
ReLU

Layer 2 Linear(512, 8)
*Same for mean and variance

MLP 1 (64)

Layer 1 Linear(64, 512)
ReLU

Layer 2 Linear(512, 128)
ReLU

Layer 3* Linear(128, 63)

RNN (seqence length, 64)

Layer 1 Elman Net
Layer 2 Linear(256, 128)
Layer 3* Linear(128, 1)

MLP 2 (8)

Layer 1 Linear(64, 512)
ReLU

Layer 2 Linear(512, 64)
*Same for mean and variance

MLP 1 (8 + 1)

Layer 1 Linear(8, 512)
ReLU

Layer 2 Linear(512, 128)
ReLU

Layer 3* Linear(128, 7)

RNN (seqence length, 8)

Layer 1 Elman Net
Layer 2 Linear(512, 128)
Layer 3* Linear(128, 1)

MLP 2 (8)

Layer 1 Linear(8, 512)
ReLU

Layer 2 Linear(512, 8)
*Same for mean and variance

Table 5.4: Generative model neural networks. Elman networks comprise 3 layers with tanh activa-
tion.

200

An Image Feature Mapping Model for Continuous Longitudinal Data Completion and
Generation of Synthetic Patient Trajectories

VAE Generative model

Dataset ‘Starmen’ ‘CelebA’ ADNI ‘Starmen’ ‘CelebA’ ADNI
Epochs 50 100 200 1k 10k 50

Learning rate 10−3 10−5 10−5 10−4 10−4 10−3

Batch size 100 100 100 100 100 1

Optimizer Adam Adam Adam Adam Adam Adam

Table 5.5: Training parameters. For each experiment the model that is selected in the one achieving
the best loss on the validation set. In practice, a parameter β = 0.1 weighting the reconstruction
and regularization in Eq. (5.2.2) applied for the generative model.

201

Chapter 5

202

Chapter 6

Variational Inference for LongitudinalData
Using Normalizing Flows

This chapter introduces a new latent variable generative model able to handle high dimensional longi-
tudinal data and relying on variational inference. The time dependency between the observations of an
input sequence is modeled using normalizing flows over the associated latent variables. The proposed
method can be used to generate either fully synthetic longitudinal sequences or trajectories that are
conditioned on several data in a sequence and demonstrates good robustness properties to missing data.
We test the model on 6 datasets of different complexity and show that it can achieve better likelihood
estimates than some competitors as well as more reliable missing data imputation.

This chapter was submitted to the NeurIPS Conference 2023.

203

Chapter 6

6.1 Introduction . 205
6.2 Background . 206

6.2.1 Variational Inference . 206
6.2.2 Normalizing Flows . 206

6.3 The Proposed Model . 207
6.3.1 Problem Setting . 207
6.3.2 The Probabilistic Model . 207
6.3.3 Dealing with Missing Data in the Sequence 209
6.3.4 Enhancing the Model . 210

6.4 Related Works . 211
6.5 Experiments . 212

6.5.1 Data . 212
6.5.2 Likelihood Estimation . 213
6.5.3 Missing Data Imputation . 215
6.5.4 Unconditional Sequence Generation 217

6.6 Conclusion . 218
6.7 Appendices . 219

6.7.1 Some More Generations . 219
6.7.2 Exploring Overfitting . 224
6.7.3 Experimental Details . 225
6.7.4 Ablation Study . 227
6.7.5 Influence of Eq. (6.8) on Missing Data Imputation 228

204

Variational Inference for Longitudinal Data Using Normalizing Flows

6.1 Introduction

Longitudinal data are more than common in many application fields such a medicine e.g. for disease
progressionmodeling (Aghili et al., 2018; Zhao et al., 2021) ormonitoring treatment response (Black-
ledge et al., 2014). They consist in the observation of a given entity’s or individual’s evolution though
time but contrary to time-series, the number of observations of a single entity may be pretty small.
Moreover, such data can be of high dimension (e.g. images) and we may only have access to a reduce
number of different entities (e.g. rare diseases follow-ups) leading to small databases and missing
values (e.g. a missing observation at a given time or loss in follow-up of a given entity). All of these
aspects make these data challenging to model.

Generative models such as Variational Autoencoders (VAEs) introduced in (Kingma andWelling,
2014; Rezende et al., 2014) appeared to be powerful models to model distributions and would be an
interesting choice to consider for longitudinal data. Unfortunately, while they appear to be able to
perform some disentanglement of the input data in their latent space (Higgins et al., 2017; Burgess,
2018; Kim and Mnih, 2018; Chen et al., 2018b), they struggle to capture more complex correlations
such as time evolution for longitudinal data (Ramchandran et al., 2021). To address this limitation and
improve the latent representations of the input data, methods trying to account for the correlations
of the data in the latent space of VAEs (Sohn et al., 2015), proposing newprior distributions (Nalisnick
et al., 2016; Sønderby et al., 2016; Dilokthanakul et al., 2017; Tomczak and Welling, 2018; Razavi
et al., 2020; Pang et al., 2020) or seeking to enhance the expressiveness of the approximate posterior
distribution (Salimans et al., 2015; Rezende andMohamed, 2015)were proposed. With a specific focus
on temporal coherence, works introducing priors using Gaussian Processes were also introduced
(Casale et al., 2018; Fortuin et al., 2020; Ramchandran et al., 2021). Nonetheless, those models were
mainly designed to perform missing data imputation or for conditional settings and so are not well
suited for unconditional sequence generation.

Focusing more specifically on medical applications, several works have analyzed longitudinal
data through the prism of progression models using in particular mixed-effects models (Schiratti
et al., 2015; Bône et al., 2018). In these approaches, patients are assumed to follow a given trajectory
that deviates from a reference curve that may, for example, represent the average progression of a
given disease. These approaches were then combined with dimensionality reduction using autoen-
coders (Louis et al., 2019) or VAEs (Sauty and Durrleman, 2022). However, these methods remain
limited to the context of disease progression because they assume the existence of an intrinsic av-
erage trajectory from which each subject deviates, which may no longer be a valid assumption for
heterogeneous datasets.

In this chapter, we take quite a different approach and propose the following contributions:

• We propose a new generative latent variable model imposing time dependency of the obser-
vations in an input sequence using normalizing flows on the associated latent variables. A
training procedure relying on variational inference is also derived.

• We show that the model is capable of handling high dimensional longitudinal data and able
to generate fully synthetic sequences or trajectories conditioned on several input data.

• We discuss the modularity of the proposed model and show that it can benefit pretty easily
from improvements available in the variational inference literature.

205

Chapter 6

• We show that the method achieves better likelihood estimates that competitors on benchmark
datasets and can outperform them for missing data imputation.

6.2 Background

In this section, we first recall some elements on variational inference and normalizing flows needed
in the proposed method.

6.2.1 Variational Inference

Given observations x ∈ RD and associated latent variables z ∈ Rd with joint distribution p(x, z),
variational inference (Jordan et al., 1999) is a method that aims at approximating an untractable con-
ditional distribution p(z|x) of the latent variables given the observations using a family of parametrized
distributions qϕ(z|x) (Blei et al., 2017). The idea is to find the set of parameters ϕ that minimizes the
Kullback-Leibler (KL) divergence between the approximate posterior and the true one i.e.

min
ϕ

KL(qϕ(z|x)||p(z|x)) .

However, this objective is most of the time untractable since p(z|x) is unknown and so a surrogate
objective is optimized instead and obtained using Jensen’s inequality (Jordan et al., 1999):

log p(x) = log

∫
Rd
p(x, z)dz = logEqϕ

[
p(x, z)

qϕ(z|x)

]
,

≥ Eqϕ log

[
p(x, z)

qϕ(z|x)

]
.

The right hand side of the equation is called the Evidence Lower BOund (ELBO) and one may notice
that the difference between the left hand side of the equation and the ELBOgivesKL(qϕ(z|x)||p(z|x)).
Hence, maximizing the ELBO amounts to minimizing the KL and so the ELBO is used as objective
for the variational approximation.

6.2.2 Normalizing Flows

Normalizing flows are flexible models that can be used to transform simple probability densities
into much complex ones by re-coursing to sequences of invertible smooth mappings. They have,
for instance, been proposed to enhance the expressiveness of the approximate posterior distribution
used in the context of variational inference in (Rezende and Mohamed, 2015). These models rely on
the rule of change of variables such that if z ∈ Rd is a random variable that follows the distribution
q(z) and f : Rd → Rd is an invertible smooth function, then the random variable z′ = f(z) has a
distribution given by

q(z′) = q(z)

∣∣∣∣ det ∂f−1

∂z′

∣∣∣∣ = q(z)

∣∣∣∣ det ∂f∂z
∣∣∣∣−1

. (6.1)

206

Variational Inference for Longitudinal Data Using Normalizing Flows

In this setting, f is called a normalizing flow and so several flows can be composed to form a new
flow g = fK ◦ fK−1 ◦ · · · ◦ f1 allowing to model richer distributions. In the context of variational
inference, these flows can be parameterized as well and so can be used to have access to enhanced
approximate posterior distributions qϕ(z|x) provided that the computation of the det-Jacobian of the
flows is tractable. Amongst the most widely known flows we can cite NICE (Dinh et al., 2014), linear
and planar flows (Rezende andMohamed, 2015), RealNVP (Dinh et al., 2016), Masked Autoregressive
Flows (MAF) (Papamakarios et al., 2017) or Inverse Autoregressive Flows (IAF) (Kingma et al., 2016).

6.3 The Proposed Model

In this section, we propose a new generative latent variable model suited for longitudinal data.

6.3.1 Problem Setting

Let us define P as the number of entities observed through time. For each entity i ∈ {1, . . . , P},
we are given a sequence of ti + 1 observations xi = (xi0, . . . , x

i
ti
) such that xij ∈ X = RD, ∀j ∈

{0, . . . , ti}. Assuming that the sequence xi is generated from an unknown distribution p, our goal
is to infer p with a parametric model {pθ, θ ∈ Θ}.

6.3.2 The Probabilistic Model

Given an entity i ∈ {1, . . . , P} and a sequence of observation (xi0, . . . , x
i
ti
), we assume that for each

xij where j ∈ {0, . . . , ti}, there exists an associated latent variable zij ∈ Z = Rd involved in the
generative process of the observation xij such that xij ∼ pθ(x

i
j|zij). One may further write the joint

distribution pθ as follows:

pθ(x
i
0, · · · , xiti) =

∫
Z
pθ(x

i
0, · · · , xiti |zij)p(zij)dzij , (6.2)

where p(zij) is a prior distribution over zij . An important point in this setting is that the observations
xij are no longer independent and so the joint likelihood is no longer factorisable. In this chapter,
we propose to model the time dependency of the observations in an input sequence using the latent
variables and normalizing flows as follows

zi0 ∼ p(zi0), z
i
1 = f1(z

i
0), . . . , z

i
ti
= fti(z

i
ti−1

) , (6.3)

where p is a simple prior distribution over zi0 (e.g. standard Gaussian) and fj are normalizing flows
for any j ∈ {1, . . . , ti}. The main idea is to assume that it is the distribution of the latent variables
that evolves through time and we propose to model this evolution using the flows. As such, the time
dependency is imposed on the latent variables and not directly on the observations. Note that the
initial distribution can be chosen as complex as desired and that for any j ∈ {1, . . . , ti} we have
access to a tractable density for p(zij) using Eq. (6.1):

p(zij) = p(zi0)

j∏
l=1

∣∣∣∣det ∂fl
∂zil−1

∣∣∣∣−1

. (6.4)

207

Chapter 6

Inference model Generative model

Figure 6.1: Proposed inference and generative models.

In addition, the relation between two latent variables zij and zik with j, k ∈ {0, . . . , ti} such that
j < k is explicit and completely deterministic since we have:

zik =⃝k
l=j+1fl(z

i
j) and zij =⃝j+1

l=k (fl)
−1(zik) . (6.5)

Hence, we can see that given a latent vector zij we can now retrieve the complete sequence (zi0, . . . , ziti)
using Eq. (6.5). Assuming (xij)j∈{1,...,ti} are independent knowing (zi0, . . . , z

i
ti
), the conditional dis-

tribution in Eq. (6.2) writes

pθ(x
i
0, · · · , xiti |zij) =

ti∏
l=0

pθ(x
i
l|zij) =

ti∏
l=0

pθ(x
i
l|zil) . (6.6)

Using Eq. (6.4) and Eq. (6.6) allows to derive another expression of the joint distribution of the
observations:

pθ(x
i
0, · · · , xiti) =

∫
Z

ti∏
l=0

pθ(x
i
l|zil)p(zij)dzij .

Since this integral is most of the time intractable, we propose to rely on variational inference (Jordan
et al., 1999). We indeed introduce a parametrized variational distribution qϕ(zij|xij) such that we can
obtain an unbiased estimate of the joint likelihood:

Eqϕ

ti∏
l=0

pθ(x
i
l|zil)p(zij)

qϕ(zij|xij)

 = pθ(x
i
0, · · · , xiti) .

Using Jensen’s inequality allows to derive a lower bound (ELBO) on the true objective i.e. the log
joint likelihood :

log pθ(x
i
0, · · · , xiti) = logEqϕ

ti∏
l=0

pθ(x
i
l|zil)p(zij)

qϕ(zij|xij)

 ,

≥ Eqϕ log

ti∏
l=0

pθ(x
i
l|zil)p(zij)

qϕ(zij|xij)

 ,

≥ Eqϕ log
ti∏
l=0

pθ(x
i
l|zil)−KL(qϕ(z

i
j|xij)|p(zij)) .

(6.7)

208

Variational Inference for Longitudinal Data Using Normalizing Flows

Algorithm 6 Training Procedure
Input: Observations (xi0, · · · , xiti)
while not converged do

Pick j ∈ {0, . . . , ti} randomly
zij ∼ qϕ(·|xij)
for l = j + 1 to ti do

zil = fl(zl−1) ▷ propagate in future
end for

for l = j − 1 to 0 do

zil = (fl+1)
−1(zl+1) ▷ propagate in past

end for

L = − 1
ti+1

ti∑
l=0

log pθ(x
i
l|zil) + log qϕ(z

i
j|xij)− log p(zi0)−

j∑
l=1

log
∣∣∣ det ∂(fl)−1

∂zil

∣∣∣
end while

The graphical models for the proposed method can be found in Fig. 6.1. In practice and inspired
from the VAE framework, the variational distribution is chosen as a multivariate Gaussian distribu-
tion qϕ(zij|xij) = N (zij;µϕ(x

i
j),Σϕ(x

i
j)) for j ∈ {0, . . . , ti} and where µϕ and Σϕ are given by neural

networks and Σϕ is chosen as a diagonal matrix. The conditional distributions pθ(xij|zij) are chosen
depending on the input data (e.g. multivariate Gaussians for RGB images) and p(zij) is given by
Eq. (6.4). To mitigate the impact of the sequence length on the ELBO in Eq. (6.7), we average the left
hand side term over the sequence length. This impedes the reconstruction term to over-weight the
KL for long sequences. As for the normalizing flows, in this chapter, we use Inverse Autoregressive
Flows (IAF) (Kingma et al., 2016) with MADE (Germain et al., 2015) for the autoregressive networks
since we need a tractable inverse. It should be noted that for such flows the computation of the
inverse is however sequential and its time proportional to the dimensionality of the latent variables
due to the autoregressive property of the flows. Nonetheless, in practice the dimension of the latent
variables is often much smaller than the dimensionality of the input data making this choice rea-
sonable. We choose IAF over MAF (Papamakarios et al., 2017) so that the generation of a synthetic
sequence from the prior z0 ∼ p(z0) is fast since it does not require inverting the flows. Finally, a
pseudo code of the training algorithm is provided in Alg. 6 and an implementation using PyTorch
(Paszke et al., 2017) and based on (Chadebec et al., 2022c) is made available in the supplementary
materials.

6.3.3 Dealing with Missing Data in the Sequence

In real-life applications, it is not rare to find sequences with missing observations (e.g. in medicine
a loss of patient follow-up or a patient not coming to a specific visit induces missing observations
for the patient’s evolution). As explained above and shown in Alg. 6, during training we perform
variational inference using only one element in the sequence. Thus, the training can be modified
pretty easily to handle such missing data in the input sequences and consists in only using the
observed data.

Nonetheless, this can be seen as a weakness of the method at inference time. Let us indeed

209

Chapter 6

Algorithm 7 Inference Procedure for Missing Observations
Input: A sequence (xij)j∈Oi with missing observations
for j ∈ Oi do

zij,j ∼ qϕ(·|xij)
x̂ij,j ∼ pθ(·|zij,j)
for l = j + 1 to ti do

zil,j = fl(zl−1,j)

x̂il,j ∼ pθ(·|zil,j)
end for

for l = j − 1 to 0 do

zil,j = (fl+1)
−1(zl+1,j)

x̂il,j ∼ pθ(·|zil,j)
end for

end for

jopt = argmax
j∈Oi

∑
l∈Oi

log pθ(x
i
l,j|zil,j)

return (x̂i0,jopt , · · · , x̂iti,jopt) ▷ obtained with jopt

imagine that we are given a sequence of 5 measure times (xi0, xi1, xi2, xi3, xi4) where only 3 are actu-
ally observed, say xi1, xi2 and xi4. In its current shape, during inference, the method will choose an
observation time j ∈ {1, 2, 4}, say j = 2, sample a latent variable associated to observation xi2 us-
ing the approximate posterior qϕ(·|xi2) and then generate a sequence (zil)l∈{0,...,4} using the learned
flows. This sequence is then used to sample a reconstructed sequence in the observations space
using pθ(x|z). This is actually sub-optimal since this would be equivalent to only have access to
observation xi2 without benefiting from the information provided by xi1 and xi4. In order to address
this potential limitation of the model, we propose to generate a sequence (actually we can generate
an arbitrary number of sequences) for each index corresponding to an observed input data in the
sequence (i.e. {1, 2, 4} in the example) and keep the generated sequence achieving the highest like-
lihood on the observed data. In other words, if we denoteOi the set of observed indices in the input
sequence, we define the optimal index that should be used to complete the sequence as follows:

jopt = argmax
j∈Oi

∑
l∈Oi

log pθ(x
i
l,j|zil,j) , (6.8)

where zil,j is the latent variable and xil,j the data generated at time l using index j. Alg. 7 shows the
inference procedure.

6.3.4 Enhancing the Model

One interesting aspect of the model is that one may use improvements that have been proposed and
proved useful in the literature related to variational inference and VAEs to enhance several part of
the model independently.

210

Variational Inference for Longitudinal Data Using Normalizing Flows

Improving the prior Even-though, a simple distribution such as a standard Gaussian appeared
to work well in practice, a smarter choice in the prior distribution may result in an enhanced data
generation or better likelihood estimates (Hoffman and Johnson, 2016). As such, richer priors (Nal-
isnick et al., 2016; Dilokthanakul et al., 2017) or priors that are learned (Chen et al., 2016b; Razavi
et al., 2020; Pang et al., 2020; Aneja et al., 2020) can be easily plugged into our model. We show in the
experiments section how changing the prior from a standard Gaussian to a VAMP prior (Tomczak
and Welling, 2018) can influence the results.

Improving the variational bound Following (Rezende and Mohamed, 2015) insights, another
way to improve the expressiveness of the model and ideally achieve a tighter ELBO consists in
enriching the potentially too simplistic parameterized variational distribution qϕ(z|x) using flows.
This improvement can be easily integratedwithin our framework aswell. In the experiments section,
we also propose a variant model where the posterior distributions are enriched using IAF flows as
proposed in (Kingma et al., 2016). Methods proposing to use MCMC sampling steps with learned
Markov kernels (Salimans et al., 2015) or relying on Hamiltonian dynamics (Caterini et al., 2018;
Chadebec et al., 2022b) could also be envisioned but are not tested in combination with our model
due to the strong computation burden they imply.

6.4 Related Works

Variational Autoencoders (VAEs) (Kingma and Welling, 2014; Rezende et al., 2014) share some as-
pects with our method. First, they try to maximize the likelihood of a set of data using a variational
approach. Second, they try to take advantage of the flexibility a latent space provides by mapping
potentially high dimensional input data into a lower dimensional space. However, they assume that
the input data are independent and so are the latent variables. This impedes the model to capture
the potentially complex time dependency that exists with longitudinal data.

There exist however some works on VAEs that are worth citing since they stress the flexibility
offered by considering a latent space. In particular, they motivated our idea to impose the time
dependency over the latent variables and not directly on the observations. First, several papers
argued that the latent space of the VAE can reveal representative and interpretable features through
its ability to perform disentanglement (Higgins et al., 2017; Burgess, 2018; Korkinof et al., 2018; Chen
et al., 2018b). Studying the latent space with a geometric point of view, other works showed that
this latent space can actually be modeled with a specific geometry (e.g. hyper-sphere, Poincaré Disk,
Riemannian manifold) (Davidson et al., 2018; Falorsi et al., 2018; Mathieu et al., 2019a; Kalatzis et al.,
2020; Chadebec et al., 2022b) or that a Riemannian geometry can naturally arise in the latent space
(Arvanitidis et al., 2018; Chen et al., 2018a; Shao et al., 2018; Chadebec and Allassonnière, 2022).
Finally, another way to enhance the representation capability of the model that was proposed in the
literature consists in increasing the expressiveness of the variational posterior distribution using
MCMC sampling (Salimans et al., 2015) or normalizing flows (Rezende and Mohamed, 2015).

Arguing that VAEs still fail to capture complex correlations, there were some proposals in the
literature trying to constraint the model to account for these correlations in the latent space. For
instance, the conditional VAE (Sohn et al., 2015) feeds auxiliary variables directly to the encoder
and decoder networks but fails to model the evolution of a given subject through time. Gaussian

211

Chapter 6

processes that are a powerful tool for time series (Seeger, 2004; Roberts et al., 2013) were also pro-
posed as prior for the VAE (Casale et al., 2018; Fortuin et al., 2020) to account for the temporal
structure across the samples. (Ramchandran et al., 2021) enriched these models with the inclusion
of covariates different from time using a multi-output additive Gaussian process prior.

Modeling longitudinal data and trying to understand the underlying evolution dynamic is some-
thing that has also been quite studied under the prism of disease progression modeling (Jedynak
et al., 2012; Fonteijn et al., 2012). In such literature, mixed-effect models (Laird and Ware, 1982) that
parameterize a patient’s evolution as a deviation from a reference trajectory have become more and
more popular (Diggle et al., 2002; Singer et al., 2003). First applied on Euclidean data (Bernal-Rusiel
et al., 2013), they were then extended with a Riemannian geometry viewpoint (Schiratti et al., 2015;
Singh et al., 2016; Koval et al., 2017; Bône et al., 2018) or combined with dimensionality reduction
(Louis et al., 2019; Sauty and Durrleman, 2022). Despite being adapted to model disease progression,
it is unclear how these models would apply to datasets where there is no clear average evolution.

Finally, deep learning based methods relying on recurrent neural networks are also worth citing
as they revealed useful for time varying data (Pearlmutter, 1989). To cite a few, GRUI-GAN (Luo
et al., 2018) and BRITS (Cao et al., 2018) were proposed with the aim of handling missing data but
with the drawback of relying on adversarial training for the first one and not being generative for
the second. (Chung et al., 2015) proposed a combination of VAE and RNN for structured sequential
data but there exists no clear way how the model would handle missing data.

6.5 Experiments

In this section, we validate the proposed method through series of experiments. We place ourselves
in the context of high-dimensional data (images) and so set d ≪ D (i.e. the latent variables live
in a much lower-dimensional latent space when compared to the input images size). In line with
the VAE framework, the inference network providing the parameters of the variational distribution
qϕ(z|x) can then be interpreted as an encoder and the generative model pθ(x|z) as a decoder. Note
that neither the encoder nor the decoder depend on time. First, we show that the proposed model
is able to achieve better joint likelihood estimates than several models proposed in the literature on
5 datasets. Then, we show that the method is also able to impute missing data (and features) and
compare its performances in term of reconstruction with benchmark models. Finally, we evaluate
the ability of the proposed model to generate relevant conditioned and fully synthetic sequences.
We also conduct in Appendix 6.7.4 an ablation study stressing the influence of the flows, latent space
dimension and prior complexity and discuss the relevance of Eq. (6.8) for missing data imputation
in Appendix 6.7.5.

6.5.1 Data

For these experiments, we consider 5 different databases that mimic longitudinal datasets. The first
one shown in Fig. 6.2a is a synthetic longitudinal dataset composed of 1,000, 64x64 images of starmen
raising their left arm and generated according to the diffeomorphic model of (Bône et al., 2018).
The second one shown in Fig. 6.2b consists of 8 evenly separated rotations applied to the MNIST
database (LeCun, 1998) from 0 to 360 degrees, we call it rotMNIST. In addition to these two toy

212

Variational Inference for Longitudinal Data Using Normalizing Flows

Table 6.1: Negative log joint likelihood divided by the sequence length computed on an independent
test set with 5 independent runs and 100 importance samples.

Model Starmen RotMNIST ColorMNIST 3d chairs Sprites

VAE 3781.82± 0.01 741.03± 0.00 2179.88± 0.00 11359.39 ± 0.02 11313.38± 0.00

VAMP 3780.99± 0.01 740.82± 0.00 2179.60± 0.00 11361.01± 0.02 11313.43± 0.00

TVAE (0) 3806.26± 0.07 748.18± 0.00 2185.40± 0.00 11419.32± 0.11 11332.09± 0.01

TVAE (short) 3782.39± 0.05 744.07± 0.00 2175.54± 0.00 11373.76± 0.07 11318.96± 0.01

TVAE (part) 3780.75± 0.05 739.53± 0.00 2174.19± 0.00 11364.21± 0.18 11308.40± 0.01

TVAE (half) 3777.57± 0.07 745.55± 0.00 2173.58± 0.00 11363.27± 0.12 11305.62± 0.01

BubbleVAE 3780.46± 0.07 742.66± 0.00 2174.74± 0.00 11369.59± 0.19 11310.69± 0.01

GPVAE (Cauchy) 3780.36± 0.03 740.05± 0.00 2177.21± 0.00 11367.43± 0.02 11309.11± 0.01

GPVAE (rbf) 3787.80± 0.03 745.58± 0.00 2187.15± 0.00 11390.33± 0.04 11315.68± 0.01

GPVAE (diffusion) 3780.96± 0.01 740.26± 0.00 2178.63± 0.00 11359.21 ± 0.00 11312.50± 0.00

GPVAE (matern) 3779.29± 0.02 739.68± 0.00 2176.63± 0.00 11360.36± 0.03 11309.90± 0.00

Ours (N) 3773.23± 0.17 735.71± 0.00 2173.16± 0.05 11362.00± 0.62 11301.51± 0.04

Ours (VAMP) 3772.91 ± 0.16 736.15± 0.00 2173.00± 0.05 11364.73± 0.51 11301.30 ± 0.02

Ours (IAF) 3773.01 ± 0.17 735.27 ± 0.01 2172.85 ± 0.05 11359.48 ± 0.67 11301.97± 0.02

datasets, we also consider more challenging ones. The third one called colorMNIST is created using
the approach of (Keller and Welling, 2021). It consists of sequences of colored MNIST digits that
can undergo three distinct types of transformations: color change (from turquoise to yellow), scale
change or rotations and is presented in Fig. 6.2c. It is important to note that for this database, the
time dynamic cannot be fully recovered from a single image since it can correspond to different
transformations. For instance, a starting turquoise 6 can either change of color or undergo a change
in scale as shown on line 2 and 3 of Fig. 6.2c. The fourth database is created using the 3d chairs
dataset (Aubry et al., 2014) consisting of 3D CAD chair models and considering as input sequences,
11 evenly separated rotations of a chair (from 0 to 360◦). Some samples are displayed in Fig. 6.2e. We
also use the sprites dataset (Li and Mandt, 2018) shown in Fig. 6.2f consisting of 64x64 RGB images
of characters performing actions such as dancing or walking. Finally, we also consider the Radboud
Faces Database consisting of 67 individuals expressing different emotions (Langner et al., 2010). For
this dataset, we create sequences of 4 time steps corresponding to the emotions: anger, happiness,
sadness and surprise; and down-sample the images so they are of size 64x64 as shown in Fig. 6.2d.

6.5.2 Likelihood Estimation

First, we compare the proposed model and two of its variants (using either a VAMP prior or IAF
flows to enrich the posterior approximation) to a vanilla VAE (Kingma and Ba, 2014), a VAE with
a VAMP prior (Tomczak and Welling, 2018) and models incorporating temporal coherence such as
the BubbleVAE (Hyvärinen et al., 2004) or the Topographic VAE (TVAE) (Keller and Welling, 2021).
For the latter, we consider several models with different temporal coherence length L: TVAE (0) i.e.
no temporal coherence, TVAE (short) i.e. L ≈ 1

8
of the input sequence length S, TVAE (part) where

L ≈ 1
4
S and TVAE (half) with L = 1

2
S, i.e. the model takes into account the full sequence. We also

compare our model to a VAE using a Gaussian Process as prior (GPVAE) proposed in (Fortuin et al.,
2020). For this model, we consider several GP kernels (RBF, Cauchy, diffusion and matern). We use
the 5 first datasets presented in the previous section and train all the models on a train set, keep the

213

Chapter 6

(a) Starmen (b) rotMNIST

(c) colorMNIST (d) Faces

(e) 3d chairs (f) Sprites

Figure 6.2: 5 training sequences for each dataset considered in the chapter.

best model on a validation set and compute the negative log joint-likelihood on an independent test
set using 100 importance samples in a similar fashion as (Burda et al., 2016). We train the models
for 200 epochs for sprites and rotMNIST, 250 for colorMNIST and 400 for starmen and chairs with a
latent dimension set to 16 for all datasets but for the 3d chairs dataset where it is set to 32. Any
other relevant piece of information about training configurations is provided in Appendix 6.7.3. We
show in Table 6.1, the mean and standard deviation of the negative log joint likelihood obtained
with 5 independent runs. For all datasets, the model is able to either compete or outperform the
competitors. Moreover, as expected, using a richer prior (VAMP) or enriching the expressiveness of
the variational posterior with flows (IAF) leads most of the time to a better likelihood estimation.
This is an encouraging aspect since it shows that the model can be improved pretty easily using
independent bricks available in the variational inference literature.

214

Variational Inference for Longitudinal Data Using Normalizing Flows

0.2
0.0

0.4
0.0

0.6
0.0

0.7
0.0

0.5
0.2

0.5
0.4

0.5
0.6

5e-3

1e-2

2e-2

5e-2

M
SE

(% miss. data)
(% miss. pixels)

OURS ()
OURS (VAMP)
OURS (IAF)
Bubbles

TVAE (0)
TVAE (short)
TVAE (part)
TVAE (half)

GPVAE (rbf)
GPVAE (mattern)
GPVAE (cauchy)
GPVAE (diffusion)

0.2
0.0

0.4
0.0

0.6
0.0

0.7
0.0

0.5
0.2

0.5
0.4

0.5
0.6

2e-3

5e-3

1e-2

2e-2

M
SE

(% miss. data)
(% miss. pixels)

Figure 6.3: Mean Square Error (MSE) on the test data for different proportions of missing observa-
tions (0.2 to 0.7) and missing pixels (0.2 to 0.6) in the input train, validation and test sequences for the
starmen (top) and sprites (bottom) datasets. The proposed model appears very robust to incomplete
sequences thanks to the flows-based structure.

6.5.3 Missing Data Imputation

The second experiment that we conduct consists in assessing the robustness of the model when it
faces missing data and test its ability to impute missing values. To do so we consider 2 databases:
starmen and sprites; and randomly remove observations in input sequences with probability 0.2, 0.4,
0.6 and 0.7. To challenge the model in the context of missing features, we also create sequences with
missing observations (randomly removed with probability 0.5) and missing pixels in the observed
images (randomly removed with probability 0.2, 0.4 and 0.6). All the models are trained with the
same masks and are optimized using an objective computed only on the seen pixels. The charts in
Fig. 6.3 show the Mean Square Error (MSE) obtained on an independent test set. In all scenarios, the
proposed model outperforms the TVAEs, BubbleVAEs and GPVAEs and appears as expected quite
robust to missing observations in the input sequences. This is made possible thanks to the training
structure that uses only one seen observation to perform variational inference.

In Fig. 6.4, we also show some conditional generations obtained with the proposed model on the
colorMNIST dataset. At the top, we show 5 generated trajectories using 2 different images. In each
case, we draw 5 random latent variables from the corresponding variational posterior qϕ(z|x). They
are then passed through the flows according to Eq. (6.3) leading to 5 sequences and finally decoded
using pθ(x|z). In a), the model is able to produce a range of possible evolutions (changes of color

215

Chapter 6

(a) (b)

(a) (b)

Figure 6.4: Conditionally generated trajectories (greyed are unseen data). Top: 5 generated sequences
using the same input image. For each trajectory, 5 latent variables are drawn from the posterior
distribution qϕ(z|x), passed trough the flows and decoded using pθ(x|x). In a), the model is able to
produce possible evolutions (changes of color or scale) for the dataset considered. Bottom: Generated
sequences using each seen data in the input sequence. The generated sequences are ranked as they
maximize the likelihood on the seen data according to Eq. (6.8) (best at the top).

or scale) that are plausible given the dataset considered. This is a very important property of the
model since thanks to the variational posterior distribution it can generate an infinite number of
possible trajectories from a single observation. Moreover, we see that the model is clearly able to
keep the shape coherence all along the trajectory. At the bottom, we show the sequences obtained
by using each image available in the sequence (not greyed). We rank the generated trajectories as
they maximize the likelihood on the seen data (i.e. according to Eq. (6.8)). This experiment shows
how the model can benefit from the information available in the sequence despite only using one
image to generate. In practice, one may generate as many trajectories as desired for each image
available in the sequence (and not just one as in this example) and choose the one that maximizes
Eq. (6.8). As a conclusion, these experiments show that even-though the relation between the latent
variables of a sequence is deterministic, the stochasticity in the conditionally generated sequences
arises from the sampling from the variational posterior that is able to capture the modularity of the
data.

216

Variational Inference for Longitudinal Data Using Normalizing Flows

Figure 6.5: Generated sequences using the proposed model. Latent variables are sampled from the
prior distribution (taken as a standard Gaussian in this example) and propagated through the flows
according to Eq. (6.3). The obtained latent sequences are then decoded using the conditional distri-
bution pθ(x|z) to create the image sequences.

6.5.4 Unconditional Sequence Generation

In this section, we evaluate the ability of the proposed model to generate relevant fully synthetic
trajectories. For this experiment, we first compute the Frechet Inception Distance (FID) (Heusel
et al., 2017) on the colorMNIST and sprites datasets. The FID is computed by generating the same
number of images as available in an independent test set: 21,312 for sprites (2,664 sequences of 8 time
steps) and 120,000 for colorMNIST. Note that in this setting the FID does not account for the temporal
coherence between the generated samples within a sequence. As shown in Table 6.2, the proposed
model achieves the lowest FID (lower is better). The fact that it is able to outperform a VAE or a
VAMP-VAE shows that the temporal coherence constraint imposed by the flows does not affect the
quality of the generated images. Moreover, we see the influence of using a more complex prior or
enriching the variational approximation on the generative capability of the model that can achieve
better FIDs. Finally, we show generated samples for the 3d chairs, starmen, sprites, colorMNIST and
the Radboud Faces Database. We show 4 generated sequences for each dataset in Fig. 6.5. Thanks
to the flow-based structure, the model is able to generate relevant sequences that clearly keep a
temporal consistency. Additional samples can be found in Appendix 6.7.1. We also show that the
proposed model does not simply memorize the training samples by showing the closest training
sequence to the generated ones in Fig. 6.6 and Appendix 6.7.2.

217

Chapter 6

Table 6.2: FID (lower is better) computed on an independent test set with the same number of gen-
erated samples as available in the test set.

Model ColorMNIST Sprites

VAE 29.79 53.37

VAMP 33.92 59.85

GPVAE 31.93 56.74

Ours (N) 28.62 44.82

Ours (VAMP) 25.07 40.23

Ours (IAF) 28.14 41.81

Gen.

Train

Gen.

Train

Figure 6.6: Closest train sequences (train) to the generated ones (gen.). See more examples in Ap-
pendix 6.7.2.

6.6 Conclusion

In this chapter, we introduced a new generative model for longitudinal data that relies on variational
inference and normalizing flows. It proved able to generate relevant fully synthetic sequences and
to propose plausible trajectories when conditioned on one or several seen samples in an input se-
quence. We also discussed and showed that our model can benefit from improvements proposed
in the variational inference literature. In particular, we proposed two variants of our model using
either a more complex prior or a more flexible variational posterior using flows. These independent
enhancements revealed particularly useful for likelihood estimation and unconditional generations.
Moreover, the proposed model demonstrated quite a good robustness to missing data and showed
to be useful for missing data imputation. Nonetheless, a potential weakness of the model is that the
flow-based structure makes it discrete. Future work would consist in adapting the model to make it
continuous.

218

Variational Inference for Longitudinal Data Using Normalizing Flows

6.7 Appendices

6.7.1 Some More Generations

In this section, we show 20 additional generated sequences for the starmen dataset in Fig. 6.7, the
colorMNIST dataset in Fig. 6.8, the sprites data in Fig. 6.9, the faces dataset in Fig. 6.10 and the chairs
dataset in Fig. 6.11. This experiment shows the diversity of the generated trajectories as well as their
relevance.

Figure 6.7: 20 sequences generated by our model trained on the starmen dataset.

219

Chapter 6

Figure 6.8: 20 sequences generated by our model trained on the colorMNIST dataset.

220

Variational Inference for Longitudinal Data Using Normalizing Flows

Figure 6.9: 20 sequences generated by our model trained on the sprites dataset.

221

Chapter 6

Figure 6.10: 20 sequences generated by our model trained on the faces dataset.

222

Variational Inference for Longitudinal Data Using Normalizing Flows

Figure 6.11: 20 sequences generated by our model trained on the chairs dataset.

223

Chapter 6

6.7.2 Exploring Overfitting

In this section, we show that the proposedmodel generates unseen sequences by comparing 4 gener-
ated trajectories to the closest one in the train set (using L2 norm). For each dataset, we see that the
generated sequence is different from the training data. For instance, for the starmen, the individual
has a different shape while for the sprites, the individual has different pants, hair or top’s color.

Gen

Train

Gen.

Train

(a)
Gen.

Train
Gen.

Train

(b)
Gen.

Train
Gen.

Train

(c)

Gen.

Train

(d)

Figure 6.12: Closest train sequences (train) to the generated ones (gen.) using our model trained on
(a) the sprites, (b) starmen, (c) 3d chairs and (d) faces datasets.

224

Variational Inference for Longitudinal Data Using Normalizing Flows

6.7.3 Experimental Details

In this section, we detail all the relevant parameters we used for the experiments. The datasets
presented in Sec. 6.5.1 are first split into a train set, a validation set and a test set as shown in
Table 6.3. We train the models for 200 epochs for sprites and rotMNIST, 250 for colorMNIST and 400
for starmen and chairs with a latent dimension set to 16 for all datasets but for the chairs dataset
where it is set to 32. We select the model achieving the lowest validation loss in each case. We
use the Adam optimizer (Kingma and Ba, 2014) with a starting learning rate of 10−3 together with
schedulers reducing the learning rate by a factor 0.5 at epoch 50, 100, 125 and 150 for starmen, by
a factor 10−4 at epoch 50, 75, 100, 125 and 150 for rotMNIST, by a factor 10−4 at epoch 50, 100, 150
and 200 for colorMNIST, by a factor 0.5 at epoch 150, 200, 250, 300 and 350 for 3d chairs and a factor
0.5 at epoch 50, 100, 125 and 150 for sprites. For the faces dataset we use a scheduler multiplying
the learning rate by 10−6 every 2,000 epochs and train the model for 10,000 epochs. We use a batch
of size 128 for rotMNIST, colorMNIST and faces and 64 otherwise. For the proposed model, we also
use 10 warm-up epochs where we train it like a VAE to stabilize the encoder and decoder networks
and ease the learning of the flows. This hyper-parameter does not influence much the performances
as shown in Appendix 6.7.4. The flows are implemented using (Chadebec et al., 2022c) and are
composed of 2 IAF blocks using 3-layer MADE (Germain et al., 2015) with 128 hidden units. For
the variants of our model, we use 500 components in the VAMP prior and IAF flows are composed
of 3 IAF transformations using 2-layer MADE with 128 hidden units. All models are trained on a
single 32-GB V100 GPU and the FID metrics are computed using the implementation of https:
//github.com/mseitzer/pytorch-fid. Finally, we provide the neural networks we
use in Table 6.4. For faces we use the same networks as for sprites dataset.

Datasets Train Validation Test

Starmen 700 200 100

rotMNIST 9, 000 1, 000 10, 000

colorMNIST 48, 000 12, 000 10, 000

sprites 8, 000 1, 000 2, 664

3d chairs 1, 000 200 193

Table 6.3: Number of sequences considered in the Train/Val/Test splits used in the experiments.

225

https://github.com/mseitzer/pytorch-fid
https://github.com/mseitzer/pytorch-fid

Chapter 6

Dataset Starmen rotMNIST colorMNIST 3d chairs Sprites

Input dimension (1, 64, 64) (1, 28, 28), (3, 28, 28) (3, 64, 64) (3, 64, 64)

Conv2D(1, 16, 4, 2) Linear(1024) Linear(1024) Conv2D(3, 16, 4, 2) Conv2D(3, 16, 4, 2)
Conv2D(16, 32, 4, 2) ReLU ReLU Conv2D(16, 32, 4, 2) Conv2D(16, 32, 4, 2)

LeakyReLU Linear(256) Linear(256) LeakyReLU LeakyReLU
Inference Conv2D(32, 64, 3, 2) ReLU ReLU Conv2D(32, 64, 3, 2) Conv2D(32, 64, 3, 2)
Network LeakyReLU Linear(2× 16)∗ Linear(2× 16)∗ LeakyReLU LeakyReLU

Conv2D(64, 128, 3, 2) - - Conv2D(64, 128, 3, 2) Conv2D(64, 128, 3, 2)
LeakyReLU - - LeakyReLU LeakyReLU
6 ResBlocks - - 6 ResBlocks 6 ResBlocks

Linear (2048, 2x16)∗ - - Linear (2048, 2x32)∗ Linear (2048, 2x16)∗

Input dimension 16 16 16 32 16

Linear(2048) Linear(256) Linear(256) Linear(2048) Linear(2048)
ConvT(128, 3, 2) ReLU ReLU ConvT(128, 3, 2) ConvT(128, 3, 2)
6 ResBlocks Linear(1024) Linear(1024) 6 ResBlocks 6 ResBlocks

ConvT(64, 5, 2) ReLU ReLU ConvT(64, 5, 2) ConvT(64, 5, 2)
Generative LeakyReLU Linear(784) Linear(2352) LeakyReLU LeakyReLU
Network ConvT(32, 5, 2) Sigmoid Sigmoid ConvT(32, 5, 2) ConvT(32, 5, 2)

LeakyReLU - - LeakyReLU LeakyReLU
ConvT(16, 4, 2) - - ConvT(16, 4, 2) ConvT(16, 4, 2)
LeakyReLU - - LeakyReLU LeakyReLU

ConvT(1, 4, 2) - - ConvT(3, 4, 2) ConvT(3, 4, 2)
*Layer outputting the mean and covariance of the variational posterior qϕ

Table 6.4: Neural networks architectures used in the experiments and keep the same for all the
models in the benchmarks. The ResBlocks use 2 convolution layers with kernel of size 3 and 1, 32
channels and stride 1.

226

Variational Inference for Longitudinal Data Using Normalizing Flows

6.7.4 Ablation Study

In this section, we present an ablation study of the proposed model where we study the influence of
the flow complexity, the latent space dimension, the number of warm-up steps (when the model is
trained as a VAE) and the prior complexity. We see in Table 6.5 and Table 6.6 that neither the choice
in the flows nor the number of warm-up steps influence much the resulting likelihoods. Table 6.7
shows that as expected choosing a too small latent space dimension is detrimental to the model
performance. Finally, Table 6.8 shows the influence of the prior complexity (number of components
used in the VAMP prior). As expected, increasing the complexity of the prior allows achieving better
likelihood estimates.

IAF MADE Starmen SpritesBlocks layers

1 3 3774.79± 0.19 11302.90± 0.02

2 1 3773.31± 0.15 11302.25± 0.03

2 2 3774.35± 0.17 11301.49± 0.04

2 3 3773.23± 0.18 11301.51± 0.04

2 4 3773.45± 0.12 11302.23± 0.03

2 5 3773.88± 0.17 11301.47± 0.02

3 3 3773.13± 0.10 11302.92± 0.03

4 3 3774.12± 0.15 11301.05± 0.05

Table 6.5: Influence of the flow complexity

Warmup Starmen Sprites

2 3773.73± 0.10 11301.59± 0.02

5 3773.49± 0.10 11301.15± 0.03

10 3773.23± 0.18 11301.51± 0.04

20 3774.03± 0.10 11302.28± 0.03

50 3773.42± 0.11 11301.32± 0.08

100 3772.44± 0.12 11302.40± 0.06

Table 6.6: Influence of the warmup steps

Warmup Starmen Sprites

2 3817.92± 0.20 11346.92± 0.09

8 3774.20± 0.19 11303.18± 0.02

16 3773.23± 0.18 11301.51± 0.04

32 3773.16± 0.16 11302.23± 0.02

64 3773.22± 0.13 11301.79± 0.02

Table 6.7: Influence of the latent dimension

VAMP Starmen SpritesComponents

10 3773.55± 0.07 11302.82± 0.04

50 3772.71± 0.15 11301.26± 0.02

100 3772.89± 0.16 11302.07± 0.03

200 3772.66± 0.22 11302.03± 0.03

500 3772.91± 0.02 11301.30± 0.02

Table 6.8: Influence to the prior complexity

227

Chapter 6

6.7.5 Influence of Eq. (6.8) on Missing Data Imputation

In this appendix, we demonstrate empirically the relevance of the method proposed in Section 6.3.3
to handlemissing observations at inference time. We recall that it consists in drawing one (or several)
latent variables from the posterior associated to each data point observed in an input sequence (See
Alg. 7). The latent variables are then propagated though the flows and sequences are generated in
the observation space using the conditional distribution pθ(x|z). Using Eq. (6.8), we propose to keep
the trajectory achieving the highest likelihood on the observed data. This allows to benefit from all
the information observed in the sequence. In Fig. 6.13, we show the Mean Square Error (MSE) on
the missing pixels only for the starmen dataset (top) and sprites dataset (bottom). We keep the same
setting as presented in the chapter and remove some data in the input sequences with probability 0.2,
0.4, 0.6 and 0.7 or create sequences with missing observations (randomly removed with probability
0.5) and missing pixels in the observed images (randomly removed with probability 0.2, 0.4 and 0.6).
Results obtained with the naive method that consists in using only one randomly chosen data point
in the sequence to reconstruct the full sequence as done during training (see Alg. 6) are presented
by the slightly transparent bars while results obtained using the method proposed in Section 6.3.3
are shown by the solid bars. In this example, we generate one trajectory per observed data point
and keep the one achieving the highest likelihood according to Eq. (6.8). These graphs show the
relevance of this method that allows achieving lower MSE in each scenario. Moreover, it allows to
decrease significantly the standard deviation (represented by the black bar) leading to amore reliable
missing data imputation.

228

Variational Inference for Longitudinal Data Using Normalizing Flows

0.2
0.0

0.4
0.0

0.6
0.0

0.7
0.0

0.5
0.2

0.5
0.4

0.5
0.6

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

M
SE

(% miss. data)
(% miss. pixels)

OURS ()
OURS (VAMP)
OURS (IAF)

OURS () - Eq. (11)
OURS (VAMP) - Eq. (11)
OURS (IAF) - Eq. (11)

0.2
0.0

0.4
0.0

0.6
0.0

0.7
0.0

0.5
0.2

0.5
0.4

0.5
0.6

0.000

0.001

0.002

0.003

0.004

0.005

M
SE

(% miss. data)
(% miss. pixels)

OURS ()
OURS (VAMP)
OURS (IAF)

OURS () - Eq. (11)
OURS (VAMP) - Eq. (11)
OURS (IAF) - Eq. (11)

Figure 6.13: Mean Square Error (MSE) onmissing pixels only of the test data for different proportions
of missing observations (0.2 to 0.7) and missing pixels (0.2 to 0.6) in the input train, validation and
test sequences for the starmen (top) and sprites (bottom) datasets. Slightly transparent bars represent
the naive method (consisting in using only one randomly chosen data point in the sequence to
reconstruct the full sequence as done during training) while solid bars show the results obtained
using the method proposed in Section 6.3.3.

229

Chapter 6

230

Conclusion and Perspectives

Throughout this PhD thesis, I have proposed several contributions to enhance the VAE framework.
This section concludes the thesis and provides interesting research directions that may build upon
these works.

In Chapters 1 and 2, I proposed a new model inspired by the VAE framework but including some
geometric considerations in the latent space seen as a Riemannian manifold. I also introduced new
ways to sample from the latent space of the newly proposed geometry-aware VAE considering the
learned geometry. These sampling schemes proved useful to generate new data from the trained VAE
and were particularly well suited in the context of low sample sizes. Nonetheless, this model and the
proposed sampling methods were only applied to perform data generation and data augmentation
on images while it can reveal useful for other tasks and structured data as well. It would indeed be
interesting to extend the empirical studies performed in the context of data augmentation to other
modalities different from the image data. In addition, one model was trained per label in each of the
considered cases. Hence, an interesting extension of this work would consist in making it applicable
to a conditional setting. This would potentially allow the training of the model to benefit from more
data while reducing the number of models to use. Moreover, since the geometry of the latent space
revealed able to achieve quite smooth interpolations, it would be interesting to derive clustering
algorithms using the learned metric such as a Riemannian k-means and see how it performs when
compared to the classic Euclidean VAE.Moreover, these Riemannian interpolations may also be used
to perform data augmentation similarly to mix-up (Zhang et al., 2018b).

In Chapter 3, I proposed a novel interpretation of the vanilla VAE framework under a fully geo-
metric viewpoint. This study showed that even taken in its simplest shape, the Variational Autoen-
coder allows for quite an informative and structured latent space. A deeper study of this learned
latent space could also show how and if the proposed modeling could reveal useful and be adapted
to the context of representation learning. In particular, one may wonder if it can help to learn disen-
tangled representations of the data. The role that the imposed structure on the covariance matrices
in the posterior distributions has on representation learning is besides something that has raised
some interest in particular for disentanglement (Rolinek et al., 2019). I also believe that these covari-
ance matrices indeed play a crucial role in modeling the latent space, and a deeper understanding
of their impact on the latent space structure is an exciting research direction. It would also be inter-
esting to plug the proposed metric (i.e. involving the inverse of the covariances in the approximate
posterior distribution) in the model proposed in Chapter 1 since this would reduce the number of
learned parameters (since the metric is no longer learned with an independent network). Moreover,
this method was only applied to image data, while it would be interesting to see how the latent
structures when trained with structured data such as molecular configurations.

Chapter 4 was mainly dedicated to the development of an open-source Python library providing
both a unified implementation and a dedicated framework allowing reproducible and reliable use of
generative autoencoder models. I aim to maintain this library in the future and hope it will remain
active and useful for a long time. With another PhD student, I am currently considering extending
this framework to the multi-modal VAE setting. I still deeply think that such tools are necessary
for our research community to allow researchers to reproduce existing results, compare their new
models to the ones already proposed in the literature or use them in any way in their research.

231

Chapter 6

Beyond researchers, these libraries are also important since they make recent research advances
accessible and applicable in other use cases.

Finally, Chapter 6 mainly focused on developing a new latent variable generative model capable
of handling longitudinal data. I decided to model the time dependency between the observations
within an input sequence using normalizing flows which constrained the model to remain discrete,
meaning that we cannot interpolate continuously between two observations at two consecutive
times. Hence, a possible extension of this framework would consist in trying to make it continu-
ous. An aspect that I thought to be interesting in this modeling is the fact that this is the latent
code distribution that evolves through time. Hence, an exciting research perspective may consist
in using these flows to perform trajectory clustering (Debavelaere et al., 2020). Moreover, using the
conditional setting explained in Chapter 6 may be useful in the medical context. Indeed, one may
think of applications such as treatment response prediction where one observation before the treat-
ment could be given to the model that should be able to generate plausible future trajectories (i.e.
responses to a given treatment).

232

Bibliography

K. Aderghal, M. Boissenin, J. Benois-Pineau, G. Catheline, and K. Afdel. Classification of sMRI
for AD diagnosis with convolutional neuronal networks: A pilot 2-D+ϵ study on ADNI. In
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), volume 10132 LNCS, pages 690–701, Jan. 2017. doi: 10.1007/
978-3-319-51811-4_56. ZSCC: NoCitationData[s0].

K. Aderghal, A. Khvostikov, A. Krylov, J. Benois-Pineau, K. Afdel, and G. Catheline. Classification of
Alzheimer Disease on ImagingModalities with Deep CNNs Using Cross-Modal Transfer Learn-
ing. In 2018 IEEE 31st International Symposium on Computer-Based Medical Systems (CBMS),
pages 345–350, 2018. doi: 10.1109/CBMS.2018.00067. ISSN: 2372-9198.

M. Aghili, S. Tabarestani, M. Adjouadi, and E. Adeli. Predictive modeling of longitudinal data for
alzheimer’s disease diagnosis using rnns. In PRedictive Intelligence in MEdicine, pages 112–119,
Cham, 2018. Springer International Publishing.

A. A. Alemi, I. Fischer, J. V. Dillon, and K. Murphy. Deep variational information bottleneck. arXiv
preprint arXiv:1612.00410, 2016.

B. Amos. bamos/densenet.pytorch, 2020. URLhttps://github.com/bamos/densenet.
pytorch. original-date: 2017-02-09T15:33:23Z.

J. Aneja, A. Schwing, J. Kautz, and A. Vahdat. NCP-VAE: Variational autoencoders with noise con-
trastive priors. arXiv:2010.02917 [cs, stat], 2020.

A. Antoniou, A. Storkey, and H. Edwards. Data augmentation generative adversarial networks.
arXiv:1711.04340 [cs, stat], 2018-03-21.

M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein GAN. arXiv:1701.07875 [cs, stat], 2017-12-06.

G. Arvanitidis, L. K. Hansen, and S. Hauberg. A locally adaptive normal distribution. Advances in
Neural Information Processing Systems, pages 4258–4266, 2016.

G. Arvanitidis, L. K. Hansen, and S. Hauberg. Latent space oddity: On the curvature of deep gener-
ative models. In 6th International Conference on Learning Representations, ICLR 2018, 2018.

G. Arvanitidis, S. Hauberg, and B. Schölkopf. Geometrically enriched latent spaces. arXiv:2008.00565
[cs, stat], 2020-08-02.

M. Aubry, D. Maturana, A. A. Efros, B. C. Russell, and J. Sivic. Seeing 3d chairs: exemplar part-based
2d-3d alignment using a large dataset of cad models. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 3762–3769, 2014.

B. B. Avants, N. J. Tustison, M. Stauffer, G. Song, B. Wu, and J. C. Gee. The Insight ToolKit image
registration framework. Frontiers in Neuroinformatics, 8, 2014. ISSN 1662-5196. doi: 10.3389/
fninf.2014.00044.

233

https://github.com/bamos/densenet.pytorch
https://github.com/bamos/densenet.pytorch

Chapter 6

K. Backstrom, M. Nazari, I.-H. Gu, and A. Jakola. An efficient 3D deep convolutional network for
Alzheimer’s disease diagnosis using MR images. In 2018 IEEE 15th International Symposium on
Biomedical Imaging (ISBI 2018), volume 2018-April, pages 149–153, 2018. doi: 10.1109/ISBI.2018.
8363543.

S. Barratt and R. Sharma. A note on the inception score. arXiv preprint arXiv:1801.01973, 2018.

S. Barua, M. M. Islam, X. Yao, and K. Murase. MWMOTE–majority weighted minority oversam-
pling technique for imbalanced data set learning. IEEE Transactions on Knowledge and Data
Engineering, 26(2):405–425, 2012. ISSN 1041-4347.

M. Bauer and A. Mnih. Resampled priors for variational autoencoders. In The 22nd International
Conference on Artificial Intelligence and Statistics, pages 66–75. PMLR, 2019a.

M. Bauer and A. Mnih. Resampled priors for variational autoencoders. In The 22nd International
Conference on Artificial Intelligence and Statistics, pages 66–75. PMLR, 2019b. ISBN 2640-3498.

C. Baur, S. Albarqouni, and N. Navab. Generating highly realistic images of skin lesions with
GANs. In OR 2.0 Context-Aware Operating Theaters, Computer Assisted Robotic Endoscopy, Clin-
ical Image-Based Procedures, and Skin Image Analysis, pages 260–267. Springer, 2018.

Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new perspectives.
IEEE transactions on pattern analysis and machine intelligence, 35(8):1798–1828, 2013.

J. Bergstra and Y. Bengio. Random Search for Hyper-Parameter Optimization. Journal of Machine
Learning Research, 13(Feb):281–305, 2012. ISSN ISSN 1533-7928.

J. L. Bernal-Rusiel, D. N. Greve, M. Reuter, B. Fischl, M. R. Sabuncu, A. D. N. Initiative, et al. Statistical
analysis of longitudinal neuroimage data with linear mixed effects models. Neuroimage, 66:249–
260, 2013.

D. Berthelot*, C. Raffel*, A. Roy, and I. Goodfellow. Understanding and improving interpolation in
autoencoders via an adversarial regularizer. In International Conference on Learning Represen-
tations, 2019. URL https://openreview.net/forum?id=S1fQSiCcYm.

L. Bi, J. Kim, A. Kumar, D. Feng, and M. Fulham. Synthesis of Positron Emission Tomography (PET)
Images via Multi-channel Generative Adversarial Networks (GANs). In Molecular Imaging,
Reconstruction and Analysis of Moving Body Organs, and Stroke Imaging and Treatment, LNCS,
pages 43–51. Springer, 2017. doi: 10.1007/978-3-319-67564-0_5.

L. Biewald. Experiment tracking with weights and biases, 2020. URL https://www.wandb.
com/. Software available from wandb.com.

E. Bisong. Google Colaboratory, pages 59–64. Apress, Berkeley, CA, 2019. ISBN 978-1-
4842-4470-8. doi: 10.1007/978-1-4842-4470-8_7. URL https://doi.org/10.1007/
978-1-4842-4470-8_7.

M. Blaauw and J. Bonada. Modeling and transforming speech using variational autoencoders. Mor-
gan N, editor. Interspeech 2016; 2016 Sep 8-12; San Francisco, CA.[place unknown]: ISCA; 2016. p.
1770-4., 2016. Publisher: International Speech Communication Association (ISCA).

234

https://openreview.net/forum?id=S1fQSiCcYm
https://www.wandb.com/
https://www.wandb.com/
https://doi.org/10.1007/978-1-4842-4470-8_7
https://doi.org/10.1007/978-1-4842-4470-8_7

BIBLIOGRAPHY

M. D. Blackledge, D. J. Collins, N. Tunariu, M. R. Orton, A. R. Padhani, M. O. Leach, and D.-M.
Koh. Assessment of treatment response by total tumor volume and global apparent diffusion
coefficient using diffusion-weighted mri in patients with metastatic bone disease: A feasibility
study. PLOS ONE, 9(4):e91779, 2014.

R. Blagus and L. Lusa. SMOTE for high-dimensional class-imbalanced data. BMC Bioinformatics, 14
(1):106, 2013. ISSN 1471-2105. doi: 10.1186/1471-2105-14-106.

D. M. Blei, A. Kucukelbir, and J. D. McAuliffe. Variational inference: A review for statisticians.
Journal of the American statistical Association, 112(518):859–877, 2017.

A. Bône, O. Colliot, and S. Durrleman. Learning distributions of shape trajectories from longitudinal
datasets: a hierarchical model on a manifold of diffeomorphisms. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 9271–9280, 2018.

A. Borji. Pros and cons of GAN evaluation measures. Computer Vision and Image Understanding,
179:41–65, 2019. ISSN 1077-3142.

D. Bouchacourt, R. Tomioka, and S. Nowozin. Multi-level variational autoencoder: Learning disen-
tangled representations from grouped observations. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 32, 2018.

S. Bowman, L. Vilnis, O. Vinyals, A. Dai, R. Jozefowicz, and S. Bengio. Generating sentences from
a continuous space. In Proceedings of The 20th SIGNLL Conference on Computational Natural
Language Learning, pages 10–21, 2016.

L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001. ISSN 0885-6125.

Y. Burda, R. Grosse, and R. Salakhutdinov. Importance weighted autoencoders. arXiv:1509.00519 [cs,
stat], 2016.

C. P. e. a. Burgess. Understanding disentangling in β-vae. arXiv preprint arXiv:1804.03599, 2018.

K. S. Button, J. P. Ioannidis, C. Mokrysz, B. A. Nosek, J. Flint, E. S. Robinson, and M. R. Munafò.
Power failure: why small sample size undermines the reliability of neuroscience. Nature Reviews
Neuroscience, 14(5):365–376, 2013.

F. Calimeri, A. Marzullo, C. Stamile, and G. Terracina. Biomedical data augmentation using genera-
tive adversarial neural networks. In International conference on artificial neural networks, pages
626–634. Springer, 2017.

W. Cao, D. Wang, J. Li, H. Zhou, L. Li, and Y. Li. Brits: Bidirectional recurrent imputation for time
series. Advances in neural information processing systems, 31, 2018.

F. P. Casale, A. Dalca, L. Saglietti, J. Listgarten, and N. Fusi. Gaussian process prior variational
autoencoders. Advances in neural information processing systems, 31, 2018.

A. L. Caterini, A. Doucet, and D. Sejdinovic. Hamiltonian variational auto-encoder. In Advances in
Neural Information Processing Systems, pages 8167–8177, 2018.

235

Chapter 6

C. Chadebec and S. Allassonnière. Data augmentation with variational autoencoders and manifold
sampling. InDeep Generative Models, and Data Augmentation, Labelling, and Imperfections: First
Workshop, DGM4MICCAI 2021, and First Workshop, DALI 2021, Held in Conjunction with MICCAI
2021, Strasbourg, France, October 1, 2021, Proceedings 1, pages 184–192. Springer, 2021.

C. Chadebec and S. Allassonnière. A geometric perspective on variational autoencoders. Advances
in Neural Information Processing Systems, 2022.

C. Chadebec, C. Mantoux, and S. Allassonnière. Geometry-aware hamiltonian variational auto-
encoder. arXiv:2010.11518, 2020.

C. Chadebec, E. M. Huijben, J. P. Pluim, S. Allassonnière, and M. A. van Eijnatten. An image fea-
ture mapping model for continuous longitudinal data completion and generation of synthetic
patient trajectories. In Deep Generative Models: Second MICCAI Workshop, DGM4MICCAI 2022,
Held in Conjunction with MICCAI 2022, Singapore, September 22, 2022, Proceedings, pages 55–64.
Springer, 2022a.

C. Chadebec, E. Thibeau-Sutre, N. Burgos, and S. Allassonnière. Data augmentation in high dimen-
sional low sample size setting using a geometry-based variational autoencoder. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 2022b.

C. Chadebec, L. J. Vincent, and S. Allassonnière. Pythae: Unifying generative autoencoders in
python–a benchmarking use case. Proceedings of the Neural Information Processing Systems
Track on Datasets and Benchmarks, 2022c.

N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. SMOTE: synthetic minority over-
sampling technique. Journal of artificial intelligence research, 16:321–357, 2002. ISSN 1076-9757.

N. Chen, A. Klushyn, R. Kurle, X. Jiang, J. Bayer, and P. Smagt. Metrics for deep generative models. In
International Conference on Artificial Intelligence and Statistics, pages 1540–1550. PMLR, 2018a.

R. T. Chen, X. Li, R. B. Grosse, and D. K. Duvenaud. Isolating sources of disentanglement in varia-
tional autoencoders. Advances in neural information processing systems, 31, 2018b.

X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel. Infogan: Interpretable
representation learning by information maximizing generative adversarial nets. Advances in
neural information processing systems, 29, 2016a.

X. Chen, D. P. Kingma, T. Salimans, Y. Duan, P. Dhariwal, J. Schulman, I. Sutskever, and P. Abbeel.
Variational lossy autoencoder. arXiv preprint arXiv:1611.02731, 2016b.

D. Cheng and M. Liu. CNNs based multi-modality classification for AD diagnosis. In 2017 10th
International Congress on Image and Signal Processing, BioMedical Engineering and Informatics
(CISP-BMEI), pages 1–5, 2017. doi: 10.1109/CISP-BMEI.2017.8302281.

R. Child. Very deep vaes generalize autoregressive models and can outperform them on images. In
International Conference on Learning Representations, 2021.

M. J. Chong and D. Forsyth. Effectively unbiased fid and inception score and where to find them. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 6070–
6079, 2020.

236

BIBLIOGRAPHY

J. Chung, K. Kastner, L. Dinh, K. Goel, A. C. Courville, and Y. Bengio. A recurrent latent variable
model for sequential data. Advances in neural information processing systems, 28, 2015.

A. Coates, A. Ng, and H. Lee. An analysis of single-layer networks in unsupervised feature learning.
In Proceedings of the fourteenth international conference on artificial intelligence and statistics,
pages 215–223. JMLR Workshop and Conference Proceedings, 2011.

G. Cohen, S. Afshar, J. Tapson, and A. Van Schaik. Emnist: Extending mnist to handwritten letters.
In 2017 International Joint Conference on Neural Networks (IJCNN), pages 2921–2926. IEEE, 2017.

M. Connor, G. Canal, and C. Rozell. Variational autoencoder with learned latent structure. In Inter-
national Conference on Artificial Intelligence and Statistics, pages 2359–2367. PMLR, 2021.

R. Couronné, P. Vernhet, and S. Durrleman. Longitudinal self-supervision to disentangle inter-
patient variability from disease progression. InMedical Image Computing and Computer Assisted
Intervention (MICCAI), pages 231–241, Cham, 2021. Springer International Publishing.

C. Cremer, X. Li, and D. Duvenaud. Inference suboptimality in variational autoencoders. In Inter-
national Conference on Machine Learning, pages 1078–1086. PMLR, 2018.

B. Dai and D. Wipf. Diagnosing and Enhancing VAEModels. In International Conference on Learning
Representations, 2018.

T. R. Davidson, L. Falorsi, N. De Cao, T. Kipf, and J. M. Tomczak. Hyperspherical variational auto-
encoders. In 34th Conference on Uncertainty in Artificial Intelligence 2018, UAI 2018, pages 856–
865. Association For Uncertainty in Artificial Intelligence (AUAI), 2018.

V. Debavelaere, S. Durrleman, S. Allassonnière, and A. D. N. Initiative. Learning the clustering of lon-
gitudinal shape data sets into a mixture of independent or branching trajectories. International
Journal of Computer Vision, 128:2794–2809, 2020.

P. Diggle, P. J. Diggle, P. Heagerty, K.-Y. Liang, S. Zeger, et al. Analysis of longitudinal data. Oxford
university press, 2002.

N. Dilokthanakul, P. A. M. Mediano, M. Garnelo, M. C. H. Lee, H. Salimbeni, K. Arulkumaran, and
M. Shanahan. Deep unsupervised clustering with gaussian mixture variational autoencoders.
arXiv:1611.02648 [cs, stat], 2017.

L. Dinh, D. Krueger, and Y. Bengio. Nice: Non-linear independent components estimation. arXiv
preprint arXiv:1410.8516, 2014.

L. Dinh, J. Sohl-Dickstein, and S. Bengio. Density estimation using real nvp. arXiv preprint
arXiv:1605.08803, 2016.

J. Domke and D. R. Sheldon. Importance weighting and variational inference. Advances in neural
information processing systems, 31, 2018.

S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth. Hybrid monte carlo. Physics Letters B, 195
(2):216–222, 1987.

C. Eastwood and C. K. Williams. A framework for the quantitative evaluation of disentangled rep-
resentations. In International Conference on Learning Representations, 2018.

237

Chapter 6

M. Ehsan Abbasnejad, A. Dick, and A. van den Hengel. Infinite variational autoencoder for semi-
supervised learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 5888–5897, 2017.

K. A. Ellis, A. I. Bush, D. Darby, D. De Fazio, J. Foster, P. Hudson, N. T. Lautenschlager, N. Lenzo,
R. N. Martins, P. Maruff, C. Masters, A. Milner, K. Pike, C. Rowe, G. Savage, C. Szoeke, K. Taddei,
V. Villemagne, M. Woodward, D. Ames, and AIBL Research Group. The Australian Imaging,
Biomarkers and Lifestyle (AIBL) study of aging: methodology and baseline characteristics of
1112 individuals recruited for a longitudinal study of Alzheimer’s disease. International Psy-
chogeriatrics, 21(4):672–687, 2009. ISSN 1041-6102. doi: 10.1017/S1041610209009405.

L. Falorsi, P. de Haan, T. R. Davidson, N. De Cao, M. Weiler, P. Forré, and T. S. Cohen. Explorations
in homeomorphic variational auto-encoding. arXiv:1807.04689 [cs, stat], 2018.

A. Fernández, S. Garcia, F. Herrera, and N. V. Chawla. SMOTE for learning from imbalanced data:
progress and challenges, marking the 15-year anniversary. Journal of artificial intelligence re-
search, 61:863–905, 2018. ISSN 1076-9757.

V. Fonov, A. Evans, R. McKinstry, C. Almli, and D. Collins. Unbiased nonlinear average age-
appropriate brain templates from birth to adulthood. NeuroImage, 47:S102, 2009. ISSN 1053-
8119. doi: 10.1016/S1053-8119(09)70884-5.

V. Fonov, A. C. Evans, K. Botteron, C. R. Almli, R. C. McKinstry, and D. L. Collins. Unbiased average
age-appropriate atlases for pediatric studies. NeuroImage, 54(1):313–327, 2011. ISSN 1053-8119.
doi: 10.1016/j.neuroimage.2010.07.033.

V. S. Fonov, M. Dadar, T. P.-A. R. Group, and D. L. Collins. Deep learning of quality control for
stereotaxic registration of human brain MRI. bioRxiv, page 303487, 2018. doi: 10.1101/303487.

H.M. Fonteijn, M.Modat, M. J. Clarkson, J. Barnes, M. Lehmann, N. Z. Hobbs, R. I. Scahill, S. J. Tabrizi,
S. Ourselin, N. C. Fox, et al. An event-based model for disease progression and its application
in familial alzheimer’s disease and huntington’s disease. NeuroImage, 60(3):1880–1889, 2012.

V. Fortuin, M. Hüser, F. Locatello, H. Strathmann, and G. Rätsch. Som-vae: Interpretable discrete
representation learning on time series. In International Conference on Learning Representations,
2019.

V. Fortuin, D. Baranchuk, G. Rätsch, and S.Mandt. Gp-vae: Deep probabilistic time series imputation.
In International conference on artificial intelligence and statistics, pages 1651–1661. PMLR, 2020.

M. Fraccaro, S. K. Sønderby, U. Paquet, and O. Winther. Sequential neural models with stochastic
layers. Advances in neural information processing systems, 29, 2016.

M. F. Frenzel, B. Teleaga, and A. Ushio. Latent space cartography: Generalised metric-
inspired measures and measure-based transformations for generative models. arXiv preprint
arXiv:1902.02113, 2019.

M. Frid-Adar, I. Diamant, E. Klang, M. Amitai, J. Goldberger, and H. Greenspan. GAN-based syn-
theticmedical image augmentation for increased CNNperformance in liver lesion classification.
Neurocomputing, 321:321–331, 2018. ISSN 0925-2312.

238

BIBLIOGRAPHY

M. Germain, K. Gregor, I. Murray, and H. Larochelle. Made: Masked autoencoder for distribution
estimation. In International Conference on Machine Learning, pages 881–889. PMLR, 2015.

P. Ghosh, M. S. Sajjadi, A. Vergari, M. Black, and B. Schölkopf. From variational to deterministic
autoencoders. In 8th International Conference on Learning Representations, ICLR 2020, 2020.

R. J. Gillies, P. E. Kinahan, and H. Hricak. Radiomics: images are more than pictures, they are data.
Radiology, 278(2):563–577, 2016.

M. Girolami and B. Calderhead. Riemann manifold langevin and hamiltonian monte carlo methods.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73(2):123–214, 2011.

M. Girolami, B. Calderhead, and S. A. Chin. Riemannian manifold hamiltonian monte carlo. arXiv
preprint arXiv:0907.1100, 2009.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Ben-
gio. Generative adversarial nets. In Advances in Neural Information Processing Systems, pages
2672–2680, 2014.

I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio. Deep learning, volume 1. MIT press Cambridge,
2016. Issue: 2.

K. J. Gorgolewski, T. Auer, V. D. Calhoun, R. C. Craddock, S. Das, E. P. Duff, G. Flandin, S. S.
Ghosh, T. Glatard, Y. O. Halchenko, D. A. Handwerker, M. Hanke, D. Keator, X. Li, Z. Michael,
C. Maumet, B. N. Nichols, T. E. Nichols, J. Pellman, J.-B. Poline, A. Rokem, G. Schaefer, V. Sochat,
W. Triplett, J. A. Turner, G. Varoquaux, and R. A. Poldrack. The brain imaging data structure,
a format for organizing and describing outputs of neuroimaging experiments. Scientific Data,
3(1):160044, 2016. ISSN 2052-4463. doi: 10.1038/sdata.2016.44.

A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola. A kernel two-sample test. The
Journal of Machine Learning Research, 13(1):723–773, 2012.

R.-R. Griffiths and J. M. Hernández-Lobato. Constrained bayesian optimization for automatic chem-
ical design using variational autoencoders. Chemical science, 11(2):577–586, 2020.

I. Gulrajani, K. Kumar, F. Ahmed, A. A. Taiga, F. Visin, D. Vazquez, and A. Courville. Pixelvae: A la-
tent variable model for natural images. In International Conference on Learning Representations.

S. Gur, S. Benaim, and L. Wolf. Hierarchical patch vae-gan: Generating diverse videos from a single
sample. Advances in Neural Information Processing Systems, 33:16761–16772, 2020.

Haibo He, Yang Bai, E. A. Garcia, and Shutao Li. ADASYN: Adaptive synthetic sampling approach
for imbalanced learning. In 2008 IEEE International Joint Conference on Neural Networks (IEEE
World Congress on Computational Intelligence), pages 1322–1328. IEEE, 2008. ISBN 978-1-4244-
1820-6. doi: 10.1109/IJCNN.2008.4633969.

E. Hairer, C. Lubich, and G.Wanner. Geometric numerical integration: structure-preserving algorithms
for ordinary differential equations, volume 31. Springer Science & Business Media, 2006.

239

Chapter 6

H. Han, W.-Y. Wang, and B.-H. Mao. Borderline-SMOTE: A new over-sampling method in imbal-
anced data sets learning. In D.-S. Huang, X.-P. Zhang, and G.-B. Huang, editors, Advances in
Intelligent Computing, volume 3644, pages 878–887. Springer Berlin Heidelberg, 2005. ISBN
978-3-540-28226-6 978-3-540-31902-3. doi: 10.1007/11538059_91. Series Title: LNCS.

S. Hauberg, O. Freifeld, and M. Black. A Geometric take on Metric Learning. In
F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Advances
in Neural Information Processing Systems, volume 25. Curran Associates, Inc.,
2012. URL https://proceedings.neurips.cc/paper/2012/file/
ec5aa0b7846082a2415f0902f0da88f2-Paper.pdf.

K. He, X. Zhang, S. Ren, and J. Sun. Delving Deep into Rectifiers: Surpassing Human-Level Per-
formance on ImageNet Classification. In 2015 IEEE International Conference on Computer Vi-
sion (ICCV), pages 1026–1034, Santiago, Chile, 2015. IEEE. ISBN 978-1-4673-8391-2. doi:
10.1109/ICCV.2015.123.

M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. Gans trained by a two time-
scale update rule converge to a local nash equilibrium. In Advances in Neural Information
Processing Systems, 2017.

I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed, and A. Lerchner.
beta-VAE: Learning basic visual concepts with a constrained variational framework. ICLR, 2(5):
6, 2017.

M. D. Hoffman. Learning deep latent gaussian models with markov chain monte carlo. In Interna-
tional conference on machine learning, pages 1510–1519. PMLR, 2017.

M. D. Hoffman andM. J. Johnson. Elbo surgery: yet another way to carve up the variational evidence
lower bound. In Workshop in Advances in Approximate Bayesian Inference, NIPS, volume 1,
page 2, 2016.

W.-N. Hsu, Y. Zhang, and J. Glass. Unsupervised domain adaptation for robust speech recognition via
variational autoencoder-based data augmentation. In 2017 IEEE Automatic Speech Recognition
and Understanding Workshop (ASRU), pages 16–23. IEEE, 2017.

G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. Densely connected convolutional
networks. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
2261–2269. IEEE, 2017. ISBN 978-1-5386-0457-1.

H. Huang, R. He, Z. Sun, T. Tan, et al. Introvae: Introspective variational autoencoders for photo-
graphic image synthesis. Advances in neural information processing systems, 31, 2018.

Z. Hussain, F. Gimenez, D. Yi, and D. Rubin. Differential data augmentation techniques for medical
imaging classification tasks. In AMIA annual symposium proceedings, volume 2017, page 979.
American Medical Informatics Association, 2017.

A. Hyvärinen, J. Hurri, and J. Väyrynen. A unifying framework for natural image statistics: spa-
tiotemporal activity bubbles. Neurocomputing, 58:801–806, 2004.

240

https://proceedings.neurips.cc/paper/2012/file/ec5aa0b7846082a2415f0902f0da88f2-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/ec5aa0b7846082a2415f0902f0da88f2-Paper.pdf

BIBLIOGRAPHY

F. Isensee, M. Schell, I. Pflueger, G. Brugnara, D. Bonekamp, U. Neuberger, A.Wick, H.-P. Schlemmer,
S. Heiland, W. Wick, et al. Automated brain extraction of multisequence mri using artificial
neural networks. Human brain mapping, 40(17):4952–4964, 2019.

J. Islam and Y. Zhang. GAN-based synthetic brain PET image generation. Brain Informatics, 7(1),
2020. doi: 10.1186/s40708-020-00104-2.

B. M. Jedynak, A. Lang, B. Liu, E. Katz, Y. Zhang, B. T. Wyman, D. Raunig, C. P. Jedynak, B. Caffo,
J. L. Prince, et al. A computational neurodegenerative disease progression score: method and
results with the alzheimer’s disease neuroimaging initiative cohort. Neuroimage, 63(3):1478–
1486, 2012.

M. Jenkinson and S. Smith. A global optimisation method for robust affine registration of brain
images. Medical Image Analysis, 5(2):143–156, 2001.

M. Jenkinson, P. Bannister, M. Brady, and S. Smith. Improved optimization for the robust and ac-
curate linear registration and motion correction of brain images. Neuroimage, 17(2):825–841,
2002.

Z. Jiang, Y. Zheng, H. Tan, B. Tang, and H. Zhou. Variational deep embedding: an unsupervised and
generative approach to clustering. In Proceedings of the 26th International Joint Conference on
Artificial Intelligence, pages 1965–1972, 2017.

X.-B. Jin, W.-T. Gong, J.-L. Kong, Y.-T. Bai, and T.-L. Su. Pfvae: a planar flow-based variational
auto-encoder prediction model for time series data. Mathematics, 10(4):610, 2022.

M. J. Johnson, D. K. Duvenaud, A. Wiltschko, R. P. Adams, and S. R. Datta. Composing graphical
models with neural networks for structured representations and fast inference. Advances in
neural information processing systems, 29, 2016.

M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul. An introduction to variational methods
for graphical models. Machine Learning, 37(2):183–233, 1999.

S. Jung and M. Keuper. Internalized biases in fréchet inception distance. In NeurIPS 2021 Workshop
on Distribution Shifts: Connecting Methods and Applications, 2021.

D. Kalatzis, D. Eklund, G. Arvanitidis, and S. Hauberg. Variational autoencoders with riemannian
brownian motion priors. In International Conference on Machine Learning, pages 5053–5066.
PMLR, 2020.

M. Karl, M. Soelch, J. Bayer, and P. van der Smagt. Deep variational bayes filters: Unsupervised
learning of state space models from raw data. In International Conference on Learning Represen-
tations, 2017.

T. Karras, T. Aila, S. Laine, and J. Lehtinen. Progressive growing of gans for improved quality,
stability, and variation. In International Conference on Learning Representations (ICLR), 2017.

T. A. Keller and M. Welling. Topographic vaes learn equivariant capsules. Advances in Neural
Information Processing Systems, 34:28585–28597, 2021.

241

Chapter 6

H. Kim and A. Mnih. Disentangling by factorising. In International Conference on Machine Learning,
pages 2649–2658. PMLR, 2018.

S. T. Kim, U. Küçükaslan, and N. Navab. Longitudinal brain mr image modeling using personalized
memory for alzheimer’s disease. IEEE Access, 9:143212–143221, 2021.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv:1312.6114 [cs, stat], 2014.

D. P. Kingma, S. Mohamed, D. Jimenez Rezende, and M. Welling. Semi-supervised learning with
deep generative models. Advances in neural information processing systems, 27, 2014.

D. P. Kingma, T. Salimans, R. Jozefowicz, X. Chen, I. Sutskever, andM.Welling. Improved variational
inference with inverse autoregressive flow. Advances in neural information processing systems,
29, 2016.

D. P. Kingma, M. Welling, et al. An introduction to variational autoencoders. Foundations and
Trends® in Machine Learning, 12(4):307–392, 2019.

T. N. Kipf and M. Welling. Variational graph auto-encoders. arXiv preprint arXiv:1611.07308, 2016.

A. Klushyn, N. Chen, R. Kurle, and B. Cseke. Learning Hierarchical Priors in VAEs. Advances in
neural information processing systems, page 10, 2019.

D. Korkinof, T. Rijken, M. O’Neill, J. Yearsley, H. Harvey, and B. Glocker. High-resolution
mammogram synthesis using progressive generative adversarial networks. arXiv preprint
arXiv:1807.03401, 2018.

S. B. Kotsiantis, I. Zaharakis, and P. Pintelas. Supervised machine learning: A review of classification
techniques. Emerging artificial intelligence applications in computer engineering, 160(1):3–24,
2007.

I. Koval, J.-B. Schiratti, A. Routier, M. Bacci, O. Colliot, S. Allassonnière, S. Durrleman, A. D. N.
Initiative, et al. Statistical learning of spatiotemporal patterns from longitudinal manifold-
valued networks. In International conference on medical image computing and computer-assisted
intervention, pages 451–459. Springer, 2017.

A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images. 2009.

A. Kumar and B. Poole. On implicit regularization in β-vaes. In International Conference on Machine
Learning, pages 5480–5490. PMLR, 2020.

N. M. Laird and J. H. Ware. Random-effects models for longitudinal data. Biometrics, pages 963–974,
1982.

B. M. Lake, T. D. Ullman, J. B. Tenenbaum, and S. J. Gershman. Building machines that learn and
think like people. Behavioral and brain sciences, 40:e253, 2017.

242

BIBLIOGRAPHY

P. Lambin, R. T. Leijenaar, T. M. Deist, J. Peerlings, E. E. De Jong, J. Van Timmeren, S. Sanduleanu,
R. T. Larue, A. J. Even, A. Jochems, et al. Radiomics: the bridge between medical imaging and
personalized medicine. Nature reviews Clinical oncology, 14(12):749–762, 2017.

O. Langner, R. Dotsch, G. Bijlstra, D. H. Wigboldus, S. T. Hawk, and A. Van Knippenberg. Presen-
tation and validation of the radboud faces database. Cognition and emotion, 24(8):1377–1388,
2010.

A. B. L. Larsen, S. K. Sønderby, H. Larochelle, and O. Winther. Autoencoding beyond pixels using
a learned similarity metric. In International conference on machine learning, pages 1558–1566.
PMLR, 2016.

G. Lebanon. Metric learning for text documents. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 28(4):497–508, 2006. ISSN 0162-8828.

Y. LeCun. The MNIST database of handwritten digits. 1998.

B. Leimkuhler and S. Reich. Simulating hamiltonian dynamics, volume 14. Cambridge university
press, 2004.

Y. Li and S. Mandt. Disentangled sequential autoencoder. In International Conference on Machine
Learning, 2018.

D. Liang, R. G. Krishnan, M. D. Hoffman, and T. Jebara. Variational autoencoders for collaborative
filtering. In Proceedings of the 2018 world wide web conference, pages 689–698, 2018.

J. Lim, S. Ryu, J. W. Kim, andW. Y. Kim. Molecular generative model based on conditional variational
autoencoder for de novo molecular design. Journal of cheminformatics, 10(1):1–9, 2018a.

S. K. Lim, Y. Loo, N.-T. Tran, N.-M. Cheung, G. Roig, and Y. Elovici. Doping: Generative data aug-
mentation for unsupervised anomaly detection with gan. In 2018 IEEE International Conference
on Data Mining (ICDM), pages 1122–1127. IEEE, 2018b.

S. Lin, R. Clark, R. Birke, S. Schönborn, N. Trigoni, and S. Roberts. Anomaly detection for time series
using vae-lstm hybrid model. In ICASSP 2020-2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 4322–4326. Ieee, 2020.

J. S. Liu. Monte Carlo strategies in scientific computing. Springer Science & Business Media, 2008.

M. Liu, J. Zhang, C. Lian, andD. Shen. Weakly Supervised Deep Learning for Brain Disease Prognosis
Using MRI and Incomplete Clinical Scores. IEEE Transactions on Cybernetics, 50(7):3381–3392,
2020. doi: 10.1109/TCYB.2019.2904186.

Q. Liu, M. Allamanis, M. Brockschmidt, and A. Gaunt. Constrained graph variational autoencoders
for molecule design. Advances in neural information processing systems, 31, 2018a.

X. Liu, Y. Zou, L. Kong, Z. Diao, J. Yan, J. Wang, S. Li, P. Jia, and J. You. Data augmentation via latent
space interpolation for image classification. In 2018 24th International Conference on Pattern
Recognition (ICPR), pages 728–733. IEEE, 2018b.

X. Liu, L. Song, S. Liu, and Y. Zhang. A review of deep-learning-based medical image segmentation
methods. Sustainability, 13(3):1224, 2021a.

243

Chapter 6

Y. Liu, Y. Zhou, X. Liu, F. Dong, C.Wang, and Z.Wang. Wasserstein gan-based small-sample augmen-
tation for new-generation artificial intelligence: a case study of cancer-staging data in biology.
Engineering, 5(1):156–163, 2019. ISSN 2095-8099.

Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face attributes in the wild. In Proceedings of
International Conference on Computer Vision (ICCV), December 2015.

Z.-S. Liu, W.-C. Siu, and L.-W. Wang. Variational autoencoder for reference based image super-
resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pages 516–525, 2021b.

M. Louis. Computational and statistical methods for trajectory analysis in a Riemannian geometry
setting. PhD Thesis, Sorbonnes universités, 2019.

M. Louis, R. Couronné, I. Koval, B. Charlier, and S. Durrleman. Riemannian geometry learning for
disease progression modelling. In International Conference on Information Processing in Medical
Imaging, pages 542–553. Springer, 2019.

M. Lucic, K. Kurach, M. Michalski, S. Gelly, and O. Bousquet. Are GANs created equal? a large-scale
study. In Advances in Neural Information Processing Systems, page 10, 2018.

Y. Luo, X. Cai, Y. Zhang, J. Xu, et al. Multivariate time series imputation with generative adversarial
networks. Advances in neural information processing systems, 31, 2018.

L. Maaløe, C. K. Sønderby, S. K. Sønderby, and O. Winther. Auxiliary deep generative models. In
International conference on machine learning, pages 1445–1453. PMLR, 2016.

L. Maaløe, M. Fraccaro, V. Liévin, and O. Winther. Biva: A very deep hierarchy of latent variables
for generative modeling. Advances in neural information processing systems, 32, 2019.

A. Madani, M. Moradi, A. Karargyris, and T. Syeda-Mahmood. Chest x-ray generation and data
augmentation for cardiovascular abnormality classification. In Medical Imaging 2018: Image
Processing, volume 10574, page 105741M. International Society for Optics and Photonics, 2018.

C. J. Maddison, J. Lawson, G. Tucker, N. Heess, M. Norouzi, A. Mnih, A. Doucet, and Y. Teh. Filtering
variational objectives. Advances in Neural Information Processing Systems, 30, 2017.

A. Makhzani and B. J. Frey. Pixelgan autoencoders. Advances in Neural Information Processing
Systems, 30, 2017.

A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, and B. Frey. Adversarial autoencoders. arXiv preprint
arXiv:1511.05644, 2015.

A. Mallasto and A. Feragen. Wrapped gaussian process regression on riemannian manifolds. In 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 5580–5588. IEEE, 2018.
ISBN 978-1-5386-6420-9.

D. S. Marcus, T. H. Wang, J. Parker, J. G. Csernansky, J. C. Morris, and R. L. Buckner. Open access se-
ries of imaging studies (OASIS): Cross-sectional MRI data in young, middle aged, nondemented,
and demented older adults. Journal of Cognitive Neuroscience, 19(9):1498–1507, 2007.

244

BIBLIOGRAPHY

G. Mariani, F. Scheidegger, R. Istrate, C. Bekas, and C. Malossi. BAGAN: Data Augmentation with
Balancing GAN. arXiv:1803.09655, 2018.

E. Mathieu, C. Le Lan, C. J. Maddison, R. Tomioka, and Y. W. Teh. Continuous hierarchical represen-
tations with poincaré variational auto-encoders. In Advances in neural information processing
systems, pages 12565–12576, 2019a.

E. Mathieu, T. Rainforth, N. Siddharth, and Y. W. Teh. Disentangling disentanglement in variational
autoencoders. In International Conference on Machine Learning, pages 4402–4412. PMLR, 2019b.

Y. Miao, L. Yu, and P. Blunsom. Neural variational inference for text processing. In International
conference on machine learning, pages 1727–1736. PMLR, 2016.

N. Miolane and S. Holmes. Learning weighted submanifolds with variational autoencoders and
riemannian variational autoencoders. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 14503–14511, 2020.

S. Morozov, A. Voynov, and A. Babenko. On self-supervised image representations for gan evalua-
tion. In International Conference on Learning Representations, 2020.

A. Myronenko. 3DMRI brain tumor segmentation using autoencoder regularization. In International
MICCAI Brainlesion Workshop, pages 311–320. Springer, 2018.

E. Nalisnick, L. Hertel, and P. Smyth. Approximate inference for deep latent gaussian mixtures. In
NIPS Workshop on Bayesian Deep Learning, volume 2, page 131, 2016.

R. M. Neal. Hamiltonian importance sampling. In talk presented at the Banff International Research
Station (BIRS) workshop on Mathematical Issues in Molecular Dynamics, 2005.

R. M. Neal and others. MCMC using hamiltonian dynamics. Handbook of Markov Chain Monte Carlo,
2(11):2, 2011.

S. M. Nestor, R. Rupsingh, M. Borrie, M. Smith, V. Accomazzi, J. L. Wells, J. Fogarty, R. Bartha, and
the Alzheimer’s Disease Neuroimaging Initiative. Ventricular enlargement as a possible mea-
sure of Alzheimer’s disease progression validated using the Alzheimer’s disease neuroimaging
initiative database. Brain, 131(9):2443–2454, 2008.

Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng. Reading digits in natural images
with unsupervised feature learning. 2011.

H. M. Nguyen, E. W. Cooper, and K. Kamei. Borderline over-sampling for imbalanced data classifica-
tion. International Journal of Knowledge Engineering and Soft Data Paradigms, 3(1):4–21, 2011.
ISSN 1755-3210.

H. Nishizaki. Data augmentation and feature extraction using variational autoencoder for acoustic
modeling. In 2017 Asia-Pacific Signal and Information Processing Association Annual Summit
and Conference (APSIPA ASC), pages 1222–1227. IEEE, 2017. ISBN 978-1-5386-1542-3. doi: 10.
1109/APSIPA.2017.8282225.

Z. Niu, K. Yu, and X. Wu. Lstm-based vae-gan for time-series anomaly detection. Sensors, 20(13):
3738, 2020.

245

Chapter 6

K. Oh, Y.-C. Chung, K. W. Kim, W.-S. Kim, and I.-S. Oh. Classification and Visualization of
Alzheimer’s Disease using Volumetric Convolutional Neural Network and Transfer Learning.
Scientific Reports, 9(1):18150, 2019. ISSN 2045-2322. doi: 10.1038/s41598-019-54548-6.

I. Ovinnikov. Poincaré wasserstein autoencoder. arXiv:1901.01427 [cs, stat], 2020.

B. Paige, J.-W. van de Meent, A. Desmaison, N. Goodman, P. Kohli, F. Wood, P. Torr, et al. Learning
disentangled representations with semi-supervised deep generative models. Advances in neural
information processing systems, 30, 2017.

N. Painchaud, Y. Skandarani, T. Judge, O. Bernard, A. Lalande, and P.-M. Jodoin. Cardiac MRI seg-
mentation with strong anatomical guarantees. In International Conference on Medical Image
Computing and Computer-Assisted Intervention, pages 632–640. Springer, 2019.

B. Pang, T. Han, E. Nijkamp, S.-C. Zhu, and Y. N. Wu. Learning latent space energy-based prior
model. Advances in Neural Information Processing Systems, 33, 2020.

G. Papamakarios, T. Pavlakou, and I. Murray. Masked autoregressive flow for density estimation.
Advances in neural information processing systems, 30, 2017.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and
A. Lerer. Automatic differentiation in pytorch. 2017.

B. A. Pearlmutter. Learning state space trajectories in recurrent neural networks. Neural Computa-
tion, 1(2):263–269, 1989.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in python. Journal of Machine Learning Research,
12:2825–2830, 2011.

X. Pennec. Intrinsic statistics on riemannian manifolds: Basic tools for geometric measurements.
Journal of Mathematical Imaging and Vision, 25(1):127–154, 2006. ISSN 0924-9907, 1573-7683.
doi: 10.1007/s10851-006-6228-4.

Y. Pu, Z. Gan, R. Henao, X. Yuan, C. Li, A. Stevens, and L. Carin. Variational autoencoder for deep
learning of images, labels and captions. Advances in neural information processing systems, 29,
2016.

A. Rakowski and C. Lippert. Disentanglement and local directions of variance. In Joint European
Conference on Machine Learning and Knowledge Discovery in Databases, pages 19–34. Springer,
2021.

S. Ramchandran, G. Tikhonov, K. Kujanpää, M. Koskinen, and H. Lähdesmäki. Longitudinal vari-
ational autoencoder. In International Conference on Artificial Intelligence and Statistics, pages
3898–3906. PMLR, 2021.

R. Ranganath, D. Tran, and D. Blei. Hierarchical variational models. In International conference on
machine learning, pages 324–333. PMLR, 2016.

246

BIBLIOGRAPHY

A. Razavi, A. v. d. Oord, and O. Vinyals. Generating diverse high-fidelity images with vq-vae-2.
Advances in Neural Information Processing Systems, 2020.

D. Rezende and S. Mohamed. Variational inference with normalizing flows. In International Confer-
ence on Machine Learning, pages 1530–1538. PMLR, 2015.

D. Rezende, I. Danihelka, K. Gregor, D. Wierstra, et al. One-shot generalization in deep generative
models. In International conference on machine learning, pages 1521–1529. PMLR, 2016.

D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate inference
in deep generative models. In International conference on machine learning, pages 1278–1286.
PMLR, 2014.

S. Roberts, M. Osborne, M. Ebden, S. Reece, N. Gibson, and S. Aigrain. Gaussian processes for time-
series modelling. Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 371(1984):20110550, 2013.

M. Rolinek, D. Zietlow, and G.Martius. Variational autoencoders pursue pca directions (by accident).
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
12406–12415, 2019.

R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution image synthesis
with latent diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 10684–10695, 2022.

A. Routier, N. Burgos, M. Díaz, M. Bacci, S. Bottani, O. El-Rifai, S. Fontanella, P. Gori, J. Guillon,
A. Guyot, et al. Clinica: An open-source software platform for reproducible clinical neuro-
science studies. Frontiers in Neuroinformatics, 15:689675, 2021.

F. Ruiz and M. Titsias. A contrastive divergence for combining variational inference and mcmc. In
International Conference on Machine Learning, pages 5537–5545. PMLR, 2019.

N. Sachdeva, G. Manco, E. Ritacco, and V. Pudi. Sequential variational autoencoders for collaborative
filtering. In Proceedings of the twelfth ACM international conference on web search and data
mining, pages 600–608, 2019.

M. Sajjadi, O. Bachem, M. Lucic, O. Bousquet, and S. Gelly. Assessing generative models via precision
and recall. In 32nd Conference on Neural Information Processing Systems (NeurIPS 2018), pages
5228–5237, 2019.

H. Salehinejad, S. Valaee, T. Dowdell, E. Colak, and J. Barfett. Generalization of deep neural networks
for chest pathology classification in x-rays using generative adversarial networks. In 2018 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 990–994.
IEEE, 2018.

T. Salimans, D. Kingma, andM.Welling. Markov chain monte carlo and variational inference: Bridg-
ing the gap. In International Conference on Machine Learning, pages 1218–1226, 2015.

T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen. Improved techniques
for training gans. In Advances in Neural Information Processing Systems, 2016.

247

Chapter 6

V. Sandfort, K. Yan, P. J. Pickhardt, and R. M. Summers. Data augmentation using generative adver-
sarial networks (CycleGAN) to improve generalizability in CT segmentation tasks. Scientific
reports, 9(1):16884, 2019. ISSN 2045-2322.

B. Sauty and S. Durrleman. Progression models for imaging data with longitudinal variational auto
encoders. In International Conference on Medical Image Computing and Computer-Assisted In-
tervention, pages 3–13. Springer, 2022.

J.-B. Schiratti, S. Allassonniere, O. Colliot, and S. Durrleman. Learning spatiotemporal trajectories
from manifold-valued longitudinal data. Advances in neural information processing systems, 28,
2015.

M. Seeger. Gaussian processes for machine learning. International journal of neural systems, 14(02):
69–106, 2004.

R. Selvan, E. B. Dam, N. S. Detlefsen, S. Rischel, K. Sheng, M. Nielsen, and A. Pai. Lung segmentation
from chest x-rays using variational data imputation. arXiv:2005.10052 [cs, eess, stat], 2020.

I. Serban, A. Sordoni, R. Lowe, L. Charlin, J. Pineau, A. Courville, and Y. Bengio. A hierarchical
latent variable encoder-decoder model for generating dialogues. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 31, 2017.

H. Shao, A. Kumar, and P. T. Fletcher. The riemannian geometry of deep generative models. In 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pages
428–4288. IEEE, 2018. ISBN 978-1-5386-6100-0. doi: 10.1109/CVPRW.2018.00071.

Y. Shi, B. Paige, P. Torr, et al. Variational mixture-of-experts autoencoders for multi-modal deep
generative models. Advances in Neural Information Processing Systems, 32, 2019.

H.-C. Shin, H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, J. Yao, D. Mollura, and R. M. Summers.
Deep convolutional neural networks for computer-aided detection: Cnn architectures, dataset
characteristics and transfer learning. IEEE transactions on medical imaging, 35(5):1285–1298,
2016.

H.-C. Shin, N. A. Tenenholtz, J. K. Rogers, C. G. Schwarz, M. L. Senjem, J. L. Gunter, K. P. Andriole,
and M. Michalski. Medical image synthesis for data augmentation and anonymization using
generative adversarial networks. In International Workshop on Simulation and Synthesis in Med-
ical Imaging, LNCS, pages 1–11. Springer, 2018.

K. Shmelkov, C. Schmid, and K. Alahari. How good is my gan? In Proceedings of the European
Conference on Computer Vision (ECCV), pages 213–229, 2018.

C. Shorten and T. M. Khoshgoftaar. A survey on Image Data Augmentation for Deep Learning.
Journal of Big Data, 6(1):60, 2019. ISSN 2196-1115.

J. D. Singer, J. B. Willett, J. B. Willett, et al. Applied longitudinal data analysis: Modeling change and
event occurrence. Oxford university press, 2003.

N. Singh, J. Hinkle, S. Joshi, and P. T. Fletcher. Hierarchical geodesic models in diffeomorphisms.
International Journal of Computer Vision, 117(1):70–92, 2016.

248

BIBLIOGRAPHY

J. Snell, K. Ridgeway, R. Liao, B. D. Roads, M. C. Mozer, and R. S. Zemel. Learning to generate images
with perceptual similarity metrics. In 2017 IEEE International Conference on Image Processing
(ICIP), pages 4277–4281. IEEE, 2017.

K. Sohn, H. Lee, and X. Yan. Learning structured output representation using deep conditional
generative models. Advances in neural information processing systems, 28, 2015.

C. K. Sønderby, T. Raiko, L. Maaløe, S. K. Sønderby, and O. Winther. Ladder variational autoencoder.
In 29th Annual Conference on Neural Information Processing Systems (NIPS 2016), 2016.

A. Subramanian. Pytorch-vae. https://github.com/AntixK/PyTorch-VAE, 2020.

T. M. Sutter, I. Daunhawer, and J. E. Vogt. Generalized multimodal elbo. In International Conference
on Learning Representations, 2021.

M. Suzuki, K. Nakayama, and Y. Matsuo. Joint multimodal learning with deep generative models.
arXiv preprint arXiv:1611.01891, 2016.

M. A. Tanner and W. H. Wong. The calculation of posterior distributions by data augmentation.
Journal of the American statistical Association, 82(398):528–540, 1987. ISSN 0162-1459.

E. Thibeau-Sutre, M. Diaz, R. Hassanaly, A. Routier, D. Dormont, O. Colliot, and N. Burgos. Clinicadl:
An open-source deep learning software for reproducible neuroimaging processing. Computer
Methods and Programs in Biomedicine, 220:106818, 2022.

A. Thin, N. Kotelevskii, A. Doucet, A. Durmus, E. Moulines, and M. Panov. Monte carlo variational
auto-encoders. In International Conference on Machine Learning, pages 10247–10257. PMLR,
2021.

I. Tolstikhin, O. Bousquet, S. Gelly, and B. Schölkopf. Wasserstein auto-encoders. In 6th International
Conference on Learning Representations (ICLR 2018), 2018.

J. Tomczak andM.Welling. Vaewith a vampprior. In International Conference on Artificial Intelligence
and Statistics, pages 1214–1223. PMLR, 2018.

B. O. Turner, E. J. Paul, M. B. Miller, and A. K. Barbey. Small sample sizes reduce the replicability of
task-based fMRI studies. Communications Biology, 1(1):1–10, 2018.

N. J. Tustison, B. B. Avants, P. A. Cook, Yuanjie Zheng, A. Egan, P. A. Yushkevich, and J. C. Gee.
N4ITK: Improved N3 Bias Correction. IEEE Transactions on Medical Imaging, 29(6):1310–1320,
2010a. ISSN 0278-0062, 1558-254X. doi: 10.1109/TMI.2010.2046908.

N. J. Tustison, B. B. Avants, P. A. Cook, Y. Zheng, A. Egan, P. A. Yushkevich, and J. C. Gee. N4itk:
improved n3 bias correction. IEEE transactions on medical imaging, 29(6):1310–1320, 2010b.

A. Vahdat and J. Kautz. Nvae: A deep hierarchical variational autoencoder. Advances in neural
information processing systems, 33:19667–19679, 2020.

A. Vahdat, K. Kreis, and J. Kautz. Score-based generative modeling in latent space. Advances in
Neural Information Processing Systems, 34:11287–11302, 2021.

249

https://github.com/AntixK/PyTorch-VAE

Chapter 6

A. Valliani and A. Soni. Deep Residual Nets for Improved Alzheimer’s Diagnosis. In 8th ACM Interna-
tional Conference on Bioinformatics, Computational Biology,and Health Informatics - ACM-BCB
’17, pages 615–615, Boston, Massachusetts, USA, 2017. ACM Press. ISBN 978-1-4503-4722-8.
doi: 10.1145/3107411.3108224.

A. Van den Oord, N. Kalchbrenner, L. Espeholt, O. Vinyals, A. Graves, et al. Conditional image
generation with pixelcnn decoders. Advances in neural information processing systems, 29, 2016.

A. Van Den Oord, N. Kalchbrenner, and K. Kavukcuoglu. Pixel recurrent neural networks. In Inter-
national conference on machine learning, pages 1747–1756. PMLR, 2016.

A. Van Den Oord, O. Vinyals, et al. Neural discrete representation learning. Advances in neural
information processing systems, 30, 2017.

R. Vedantam, I. Fischer, J. Huang, and K. Murphy. Generative models of visually grounded imagina-
tion. In International Conference on Learning Representations, 2018.

A. Waheed, M. Goyal, D. Gupta, A. Khanna, F. Al-Turjman, and P. R. Pinheiro. Covidgan: data
augmentation using auxiliary classifier gan for improved covid-19 detection. Ieee Access, 8:
91916–91923, 2020. ISSN 2169-3536.

Z. Wang, E. P. Simoncelli, and A. C. Bovik. Multiscale structural similarity for image quality as-
sessment. In The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003,
volume 2, pages 1398–1402. Ieee, 2003.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality assessment: from error
visibility to structural similarity. IEEE transactions on image processing, 13(4):600–612, 2004.

S. Watanabe. Information theoretical analysis of multivariate correlation. IBM Journal of research
and development, 4(1):66–82, 1960.

J. Wen, E. Thibeau-Sutre, M. Diaz-Melo, J. Samper-González, A. Routier, S. Bottani, D. Dormont,
S. Durrleman, N. Burgos, and O. Colliot. Convolutional neural networks for classification of
Alzheimer’s disease: Overview and reproducible evaluation. Medical Image Analysis, 63:101694,
2020. ISSN 1361-8415. doi: 10.1016/j.media.2020.101694.

T. White. Sampling generative networks. arXiv preprint arXiv:1609.04468, 2016.

C. Wolf, M. Karl, and P. van der Smagt. Variational inference with hamiltonian monte carlo. arXiv
preprint arXiv:1609.08203, 2016.

T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf, M. Fun-
towicz, J. Davison, S. Shleifer, P. von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu, T. L. Scao, S. Gugger,
M. Drame, Q. Lhoest, and A. M. Rush. Transformers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online, Oct. 2020. Association for Computational Linguis-
tics. URL https://www.aclweb.org/anthology/2020.emnlp-demos.6.

E. Wu, K. Wu, D. Cox, and W. Lotter. Conditional infilling gans for data augmentation in mam-
mogram classification. In Image analysis for moving organ, breast, and thoracic images, pages
98–106. Springer, 2018.

250

https://www.aclweb.org/anthology/2020.emnlp-demos.6

BIBLIOGRAPHY

M. Wu and N. Goodman. Multimodal generative models for scalable weakly-supervised learning.
Advances in neural information processing systems, 31, 2018.

Z.Wu, S.Wang, Y. Qian, and K. Yu. Data augmentation using variational autoencoder for embedding
based speaker verification. In Interspeech 2019, pages 1163–1167. ISCA, 2019. doi: 10.21437/
Interspeech.2019-2248.

H. Xiao, K. Rasul, and R. Vollgraf. Fashion-mnist: a novel image dataset for benchmarking machine
learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Z. Xiao, K. Kreis, J. Kautz, and A. Vahdat. Vaebm: A symbiosis between variational autoencoders
and energy-based models. In International Conference on Learning Representations, 2020.

W. Xu, H. Sun, C. Deng, and Y. Tan. Variational autoencoder for semi-supervised text classification.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 31, 2017.

L. Yang, N.-M. Cheung, J. Li, and J. Fang. Deep clustering by gaussian mixture variational au-
toencoders with graph embedding. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 6440–6449, 2019.

Z. Yang, Z. Hu, R. Salakhutdinov, and T. Berg-Kirkpatrick. Improved variational autoencoders for
text modeling using dilated convolutions. In International conference onmachine learning, pages
3881–3890. PMLR, 2017.

X. Yi, E. Walia, and P. Babyn. Generative adversarial network in medical imaging: A review. Medical
image analysis, 58:101552, 2019. ISSN 1361-8415.

X. Yu, X. Zhang, Y. Cao, andM. Xia. Vaegan: A collaborative filtering framework based on adversarial
variational autoencoders. In IJCAI, pages 4206–4212, 2019.

C. Zhang, J. Bütepage, H. Kjellström, and S. Mandt. Advances in variational inference. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 41(8):2008–2026, 2018a.

H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz. mixup: Beyond empirical risk minimization.
In International Conference on Learning Representations, 2018b.

M. Zhang, S. Jiang, Z. Cui, R. Garnett, and Y. Chen. D-vae: A variational autoencoder for directed
acyclic graphs. Advances in Neural Information Processing Systems, 32, 2019.

Q. Zhao, Z. Liu, E. Adeli, and K. M. Pohl. Longitudinal self-supervised learning. Medical Image
Analysis, 71:102051, 2021.

S. Zhao, J. Song, and S. Ermon. Infovae: Balancing learning and inference in variational autoen-
coders. In Proceedings of the aaai conference on artificial intelligence, volume 33, pages 5885–
5892, 2019.

T. Zhao, R. Zhao, and M. Eskenazi. Learning discourse-level diversity for neural dialog models
using conditional variational autoencoders. In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 654–664, 2017.

251

Chapter 6

X. Zhu, Y. Liu, J. Li, T. Wan, and Z. Qin. Emotion classification with data augmentation using
generative adversarial networks. In Pacific-Asia conference on knowledge discovery and data
mining, pages 349–360. Springer, 2018a.

Y. Zhu, M. Aoun, M. Krijn, J. Vanschoren, and H. T. Campus. Data Augmentation using Conditional
Generative Adversarial Networks for Leaf Counting in Arabidopsis Plants. In BMVC, page 324,
2018b.

Y. Zhu, M. R. Min, A. Kadav, and H. P. Graf. S3vae: Self-supervised sequential vae for representation
disentanglement and data generation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 6538–6547, 2020.

P. Zhuang, A. G. Schwing, and O. Koyejo. fMRI data augmentation via synthesis. In 2019 IEEE 16th
International Symposium on Biomedical Imaging (ISBI 2019), pages 1783–1787. IEEE, 2019.

252

	Table of Contents
	List of Figures
	List of Tables
	Résumé
	Abstract
	Remerciements
	Résumé Substantiel en Français
	Introduction
	Context
	Deep Latent Variable Models
	Variational Inference
	Amortized Variational Inference
	The Variational Autoencoder
	Towards a Tighter Bound
	Using Better Estimators
	Enriching the Variational Distribution
	Rethinking our Priors

	Improving the Learned Latent Representations
	Learning Disentangled Representations
	Exploring Latent Space Modeling
	Improving the Generative Capability of the Model

	VAE in Practice
	Contributions
	List of Publications
	Summary of the Main Contributions

	Toward a Geometry-Aware VAE
	Introduction
	Variational Autoencoder
	Model Setting
	Improving the Model: Literature Review

	The Proposed Method
	Some Elements on Riemannian Geometry
	A Geometry-Aware VAE
	Generation Comparison

	Data Augmentation: Evaluation and Robustness
	Setting
	Toy Data Sets

	Validation on Medical Imaging
	Data Augmentation Literature for AD vs CN Task
	Materials
	Preprocessing of T1-Weighted MRI
	Evaluation Procedure
	CNN Classifiers
	Experimental Protocol
	Results

	Discussion
	Conclusion
	Appendices
	Riemannian Geometry
	On the Generation Process
	Detailed Experimental Setting
	A Few More Sampling Comparisons (Sec. 1.3.3)
	Additional Results (Sec. 1.4.2)
	A few More Sample Generation on ADNI
	The Intruders: Answers to Fig. 1.8

	Sampling from Riemannian Manifolds - Application to the RHVAE
	The Wrapped Normal Distribution
	Computing the Exponential Map
	Riemannian Random Walk
	Experiments
	Qualitative Comparison with Prior-Based Methods
	Discussion

	Data Augmentation Experiments For Classification
	Augmentation Setting
	Results

	Conclusion
	Appendices
	VAEs Parameters Setting
	Classifier Parameter Setting

	A Geometric Perspective on Variational Autoencoders
	Introduction
	Variational Autoencoders
	Related Work
	Proposed Method
	A Word on Riemannian Geometry
	The Riemannian Gaussian Distribution
	Geometrical Interpretation of the VAE Framework
	Link with the pull-back Metric
	Geometry-Aware Sampling
	Illustration on a Toy Dataset

	Experiments
	Generation with Benchmark Datasets
	Investigating Robustness in Low Data Regime

	Conclusion
	Appendices
	Further Elements on Riemannian Geometry
	The Generation Process Algorithm - Implementation Details
	Other Generation Results
	Experimental Set-Up
	Dataset Size Sensibility on SVHN
	Ablation Study
	Can the Method Benefit More Recent Models ?

	Pythae: Unifying Generative Autoencoders in Python
	Introduction
	Variational Autoencoders
	Background
	Improvements Upon the Classical VAE Method

	The Pythae Library
	Case Study Benchmark
	Benchmark Setting
	Experiments

	Conclusion
	Appendices
	Usage of Pythae
	Interpolations
	Detailed Experiments Set-Up
	Additional Results

	An Image Feature Mapping Model for Continuous Longitudinal Data Completion and Generation of Synthetic Patient Trajectories
	Introduction
	Proposed Method
	Feature Extraction
	Trajectory Modeling

	Data
	Experiments
	Discussion and Conclusion
	Appendices
	Dataset details
	Implementation details

	Variational Inference for Longitudinal Data Using Normalizing Flows
	Introduction
	Background
	Variational Inference
	Normalizing Flows

	The Proposed Model
	Problem Setting
	The Probabilistic Model
	Dealing with Missing Data in the Sequence
	Enhancing the Model

	Related Works
	Experiments
	Data
	Likelihood Estimation
	Missing Data Imputation
	Unconditional Sequence Generation

	Conclusion
	Appendices
	Some More Generations
	Exploring Overfitting
	Experimental Details
	Ablation Study
	Influence of Eq. (6.8) on Missing Data Imputation

	Conclusion and Perspectives
	References

