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Chapter 1

INTRODUCTION: WAVE TRANSPORT IN

COMPLEX MEDIA

Interferences are crucial in wave transport through complex media, significantly influ-
encing the scattering characteristics and leading to numerous wave control applications.
One example is the band structure of the transmission spectrum in periodic media [1].
Other examples are conductance fluctuations or Anderson localization in disordered me-
dia [2–4]. In this manuscript, we show that we can observe phenomena such as freezing of
the speckle pattern or transmission enhancement due to symmetry in both random and
periodic media, even if they host different natures of wave propagation.

Disordered media can be constructed experimentally (Fig. 1.1 (a)). They can be found
in nature, such as in certain biological media (Fig. 1.1 (b)), but also in our atmosphere
on a foggy winter morning (Fig. 1.1 (c)).

(a) (b) (c)

L<l
L≫l

Figure 1.1 – Disordered media. (a) Random distribution of aluminum cylinders in rect-
angular waveguides. Source: E. Chéron [5]. (b) TEM image of an arrangement of collagen
fibrils in the human cornea by G. Latour. Source: O. Leseur [6]. (c) Imaging through fog.
It is composed of small water droplets that scatter light. Red square: Imaging through
a fog layer thinner than the transport mean free path l. The image is slightly degraded.
This parameter represents the typical distance after which the wave loses memory of its
initial direction. Blue square: Image through a layer of fog much larger than l. The image
is so degraded that the sharp features of any object are no longer discernible. Source:
Wikimedia Commons.
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Chapter 1 – Introduction: Wave transport in complex media

When light interacts with such disordered media, it is scattered by the particles that
constitute the media. The cumulative effect of these diffusion events results in the gen-
eration of constructive or destructive interferences at every point in space. Consequently,
when we examine the transmitted light intensity on a screen, we encounter the intricate
complex patterns of these interferences, often referred to as "speckle patterns". Fig. 1.2
serves as an illustrative example. These speckle patterns are highly sensitive to the nature
and position of the scatterers and the excitation source.

(a) (b)

Figure 1.2 – Transmitted speckle pattern. (a) Through a 70 um sample composed of silica
beads with a diameter of 400 nm, illuminated by a He-Ne laser. Measurement carried out
by E. Perros. Source: O. Leseur [6]. (b) Through a 40 cm sample composed of alumina
spheres with a diameter of 0.95 cm, illuminated by a source at a frequency in the range
of 14.70–14.94 GHz. Source: Z. shi [7].

Taking an illustrative example of a disordered media, such as the fog (Fig. 1.1 (c)),
we can effectively distinguish two distinct regions of interest. The first region exhibits
minimal degradation in imaging quality, allowing us to see the tree clearly. In contrast,
the second region demonstrates significant degradation, to the point where sharp object
features become imperceptible. The degradation of image quality depends on how and
how much light is scattered. This degradation is intricately linked to the properties of the
medium through which light propagates and can be quantified by a fundamental param-
eter known as the transport mean free path, denoted as l [8]. This parameter represents
the typical distance after which the wave loses the memory of its initial direction. Thus,
at a distance L smaller than l, only a small fraction of light has been scattered, resulting
in a minimal reduction in imaging quality. This corresponds to the ballistic regime. For
L ≫ l, essentially all of the light has been scattered, corresponding to the diffusive regime,
also known as the metallic regime. A third regime can be defined; the localized regime.
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In this regime, after a characteristic distance ξ, L ≫ ξ, the wave is trapped inside the
disorder due to interferences; diffusion no longer occurs, and there is a transition between
the diffusive and the localized regime. Localization was originally discovered by P. W. An-
derson when he observed the absence of diffusion when electron propagation takes place
in a highly disordered potential [9]. Anderson localization has become a central concept
in wave physics. Localization has been clearly established in electronics [10], acoustics
[11, 12], electromagnetic waves [13], and optics [14, 15]. Fig. 1.3 summarizes the transport
regimes in disordered media.

L

l ξ
Ballistic
regime regime

Diffusive Localized
regime

Figure 1.3 – Schematic representation of different transport regimes as a function of the
disordered medium length L.

In this introductory chapter, we first present the solution of the wave equation in a 2D
waveguide in a multimodal formulation. We introduce some quantities and useful tools
that allow us to characterize the different transport regimes in disordered waveguides. We
then highlight the sensitivity of the transmitted pattern to the incidence conditions in the
diffusive regime, which is due to the transmission properties in this regime. In contrast,
in the localized regime, the transmitted pattern is insensitive to the incidence conditions
[7, 16]. Finally, we introduce the next chapters.
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Chapter 1 – Introduction: Wave transport in complex media

1.1 2D waveguide

1.1.1 Solution of the wave equation and scattering matrix

Consider an infinite 2D waveguide with unitary width and rigid boundaries, where
scatterers are randomly distributed in the region x ∈ [0, L], see Fig. 1.4. In this disor-

0

1
a+

a-
a+

a-

Figure 1.4 – Schematic representation of an inhomogeneous medium of length L placed
in an infinite waveguide. The black points represent scatterers modeled as local index
changes.

dered waveguide, we consider that the propagation of a wave ψ(x, y) is governed by the
Helmholtz equation

∆ψ(x, y) + k2[1 + δn(x, y)]ψ(x, y) = 0, (1.1)

where k is the wave number in the homogeneous medium and −1 < δn(x, y) < 1 models
the change in the local index of the scatterers. We impose Neumann boundary conditions
on the waveguide walls

∂ψ

∂y

∣∣∣∣∣
y=0,1

= 0. (1.2)

In the two homogeneous regions of the waveguide (x ≤ 0 and x ≥ L), we use the
modal decomposition of the wave field ψ(x, y)

ψ(x, y) =
∑

n

an(x)gn(y), (1.3)

with gn(y) the solution of the the transverse eigenproblem

g′′
n = −γ2

ngn. (1.4)
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1.1. 2D waveguide

These transverse modes are

gn(y) =
√

2 − δn0 cos(γny), (1.5)

with the eigenvalues γn = nπ and n ∈ N. They form a basis of orthogonal functions
satisfying the relations,

(gn, gm) = δnm and (g′
n, g

′
m) = γ2

nδnm, (1.6)

with
(f1, f2) =

∫ 1

0
f1f

∗
2 dy (1.7)

the scalar product.
By projecting the Helmholtz equation onto the basis of the gn functions, we obtain

the second-order equation
a′′

n(x) + α2
nan(x) = 0, (1.8)

where
αn =

√
k2 − γ2

n (1.9)

is the longitudinal wave number associated with mode n. Eq. (1.9) separates the N prop-
agating transverse modes for which αn ∈ R+ and the evanescent transverse modes for
which αn ∈ iR+. The solution of the second-order equation (Eq. (1.8)) reads as a sum
of right-going (c+

n eiαnx) and left-going (c−
n e−iαnx) wave with amplitude c±

n . Thus, at both
ends of the scattering regions, the solution to the problem is as follows

ψ(x = 0, y) =
N−1∑
n=0

(
a+

n (0) + a−
n (0)

)
gn(y) + ψ

(e)
l ,

ψ(x = L, y) =
N−1∑
n=0

(
a+

n (L) + a−
n (L)

)
gn(y) + ψ(e)

r ,

(1.10)

where a+
n (resp. a−

n ) are the modal amplitudes of the right (resp. left) going wave, and
ψ

(e)
l,r denotes the evanescent field.

11



Chapter 1 – Introduction: Wave transport in complex media

To define the scattering matrix S, we restrict the above series to the N propagating
modes and rewrite the wavefield as follows

ψ(x = 0, y) = gT(y)
(
a+(0) + a−(0)

)
,

ψ(x = L, y) = gT(y)
(
a+(L) + a−(L)

)
,

(1.11)

with g ≡ (gn), a+ ≡ (a+
n ) and a− ≡ (a−

n ) are vectors with N components. The incom-
ing waves on the inhomogeneous medium a+(0) and a−(L) are related to the outgoing
waves a−(0) and a+(L) by the scattering matrix S, which is of size 2N × 2N and com-
posed of reflection matrices R and R′, as well as transmission matrices T and T′ of the
inhomogeneous medium, a−(0)

a+(L)

 =
R T′

T R′

a+(0)
a−(L)

 .
Since the scattering matrix is restricted to propagative components, with proper normal-
ization the reciprocity property implies that S is symmetric, i.e., S = ST , with ST the
transpose of S, and the energy conservation implies that S is unitary, i.e., SS† = I, with †
represents the adjoint operator of a complex matrix. For general relations verified by the
S matrix with evanescent waves, see [17, 18].

1.1.2 Conductance and transmission eigenvalues

The different transport regimes in 2D disordered waveguides can be characterized by
the conductance [19, 20] and by the transmission eigenvalues (TEVs) [21].

The dimensionless conductance g of the medium measures the total transmission due
to the contribution of all incoming modes

g = Tr
(
TT†

)
=

N∑
n,m=1

|Tnm|2 . (1.12)

To calculate the TEVs, we consider the singular value decomposition of the transmis-
sion matrix T; this decomposition gives the product of 3 matrices,

T = U
√
τV†, (1.13)
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1.1. 2D waveguide

with τ = diag(τ1, . . . , τn, . . . , τN) is a diagonal matrix containing the transmission eigen-
values, they are real numbers between 0 and 1, and the two complex unitary matrices
U ≡ (Un) and V ≡ (V n) contain their corresponding eigenvectors. Un (resp. V n) map
the output (resp. input) field of transmission eigenchannels (TECs) to the lead propagat-
ing modes. The conductance can be expressed directly as a function of the TEVs,

g =
N∑

n=1
τn. (1.14)

Note that the transmission matrix T, which relates the modal amplitudes of the trans-
mitted wave a+(L) to the modal amplitudes of the incident wave a+(0), can be written
as a sum of rank-1 matrices

T =
N∑

n=1

√
τnUnV †

n, (1.15)

thus, a+(L) can be written as linear combination of the TEC (Un),

a+(L) =
N∑

n=1
bnτnUn, (1.16)

with
bn = V †

na+(0) (1.17)

a scalar coefficient.

1.1.3 Random matrix theory (RMT)

The use of random matrices to analyze transmission in disordered systems [22–29]
has proven to be an effective approach for determining the scaling and fluctuations of
conductance and for determining the distribution of the TEVs.

The simulations presented in this document are based on the fact that the scattering
matrix Qs for a portion of disordered media is generated through the Circular Orthogonal
Ensemble (COE), characterized by unitary and symmetric matrices [30]. The correspond-
ing Matlab function is:

13



Chapter 1 – Introduction: Wave transport in complex media

function Qs=RMT_COE(N)
Z = (randn(2∗N)+ i ∗randn(2∗N))/ sqrt ( 2 ) ;
[Q,R] = qr (Z ) ;
D = diag (R) ;
ph = D./ abs (D) ;
Q = Q∗diag (ph ) ; %%% CUE: un i ta ry matrix
Qs = Q∗Q. ’ ; %%% COE: un i ta ry and symmetric matrix
end

The total scattering matrix S of a complete disordered medium of length L is then
reconstructed by using iteratively the composition product, often referred to as the Red-
heffer star-product [31]:

S = Qs(1) ⋆ . . . ⋆Qs(m) ⋆ . . . ⋆Qs(M), (1.18)

with Qs(m) the scattering matrix of the mth portion, and m = 1, . . . ,M . An example is
given in App. 1.A, which provides the procedures to obtain the total scattering matrix of
two portions.

1.2 Diffusive regime

1.2.1 Statistical properties of the conductance and transmission
eigenvalues

The diffusive regime is characterized by intermediate waveguide length, 1 ≪ s ≪ N ,
with s = L/l the scaling parameter. In this regime, by averaging over multiple configura-
tions, the mean value of the conductance ⟨g⟩ obeys the law of Ohm

⟨g⟩ = N

s+ 1 , (1.19)

that is, ⟨g⟩ decreases with the length of the disordered waveguide according to an ohmic
law. For a waveguide without disorder, the conductance can be normalized to the number
of propagating modes N .

In this regime, the distribution of the conductance P(g) follows a Gaussian distribution
[4, 28]. The central peak is centered at the mean value of the conductance, and the variance

14



1.2. Diffusive regime

δg remains constant, independent of the scaling parameter s:

P(g) = 1√
2πδg

exp
(

−(g − ⟨g⟩)2

2δg

)
, (1.20)

with δg = ⟨g2⟩ − ⟨g⟩2 represents the variance of conductance. A numerical example is
shown in Fig. 1.5 (a).

Furthermore, the distribution of the TEVs P(τ) is bimodal [4, 28]:

P(τ) = N

s+ 1
1

τ
√

1 − τ
. (1.21)

A numerical example is shown in Fig. 1.5 (b). This distribution indicates that transmission
is realized either by TEVs close to zero, indicating that the TECs are closed, i.e., the
medium is opaque, or by TEVs close to unity, indicating that the TECs are open, i.e.,
the medium is transparent. This bimodal distribution is not symmetric, with more closed
channels than open channels.

(a) (b)

Open channels

Closed channels

Figure 1.5 – (a) Conductance distribution. The solid line represents the Gaussian dis-
tribution given by Eq. (1.20). (b) Transmission eigenvalues distribution. The solid line
represents the bimodal distribution given by Eq. (1.21). These distributions are generated
from an RMT simulation based on 2.104 realizations for N = 50 and s = 8.
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Chapter 1 – Introduction: Wave transport in complex media

1.2.2 Sensitivity of the transmitted pattern

Let us consider a single configuration of a disordered medium ( 1 > s ≃ 8 > N = 50)
placed in an infinite waveguide. Fig. 1.6 shows the spectrum of the conductance and
the TEVs. It shows that the conductance is carried by several TEVs. Consequently, the
transmitted wave is a linear combination of several TECs (Eq. (1.24)). The pattern of the
transmitted field is sensitive to the incidence conditions.

Figure 1.6 – Spectrum of the transmission eigenvalues (solid lines in colors) and conduc-
tance (dashed black line) of a disordered sample s ≃ 8 placed in an infinite waveguide
supporting N = 50 propagating modes. The red triangle represents the frequency of ex-
citation k/π = 49.35 used to simulate the wavefield in Fig. 1.7.

An example of such sensitivity is shown in Fig. 1.7 (a) and (b). A disordered waveguide
is excited by two different incident conditions. An incident plane wave (n = 0) in Fig. 1.7
(a). An incident wave that corresponds to a higher-order mode (n = 20). Comparing
both configurations allows us to observe the strong sensitivity of the wave pattern to the
incidence conditions in the entire system.

By applying wavefront shaping to the incident wave, we can control the transmitted
wave within a complex medium [33–35]. In practice, when the incident wave a+(0) aligns
with V 1, the disordered medium can effectively become transparent. An example is shown
in Fig. 1.7 (c). The wave entering the medium is almost entirely transmitted, with nearly
zero reflection.
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1.3. Localized regime

(a)

(b)

(c)

0 L
x

|ψ(x,y)|

Figure 1.7 – Wavefield modulus in a disordered sample s ≃ 8 placed in an infinite
waveguide for three different incident waves, at a frequency k/π = 49.35. (a) and (b)
a+(0) ≡ (δn,0) and a+′(0) ≡ (δn,20). Here, δ represents the Dirac function. (c) For an
incident wave shaped to match V 1 associated with the largest eigenvalue τ1. In this case,
the transmission is almost perfect. Numerics are performed using a code developed by
E. Chéron [32]

.

1.3 Localized regime

1.3.1 Statistical properties of the conductance and transmission
eigenvalues

The localized regime is characterized by a waveguide length such as s ≫ N . In this
regime, transmission along the system decreases exponentially [36, 37]. The fluctuation
associated with the conductance is so significant that the average conductance inade-
quately represents the transport properties. Therefore, in order to represent the typical
conductance, the most suitable quantity for characterizing transport properties is the log-
arithm of the conductance, log(g). Then, after averaging over many configurations, log(g)
decreases linearly as a function of the length of the system,

⟨log(g)⟩ = −2L/ξ, (1.22)
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Chapter 1 – Introduction: Wave transport in complex media

with ξ = Nl.
In this regime, the conductance distribution P(g) transitions from a Gaussian distri-

bution typical of the diffusive regime to a log-normal distribution [21, 28]. A numerical
example is shown in Fig. 1.8 (a).

(b)(a)

12

Figure 1.8 – (a) Conductance distribution. (b) TEVs distribution. The distributions are
generated from an RMT simulation based on 2.104 realizations for N = 16 and s = 76.

Furthermore, the distribution of the TEVs corresponds to a log-normal distribution
[21, 28]. This distribution is spread over a regular grid, where log(τn+1/τn) = 12 in the
numerical example presented in Fig. 1.8 (b). This regime is also known as a single channel
regime since the transmission is dominated by the first TEV τ1 [7, 16].

1.3.2 Invariance of the transmitted pattern : “freezing”

Let us consider a single configuration of a disordered medium (s ≃ 34 > N = 16)
placed in an infinite waveguide.

Fig. 1.9 shows the spectrum of the conductance and the five largest TEVs. It shows
that the conductance is dominated by the first TEV with a low amplitude, g ≈ τ1 ≪ 1.
Therefore, the transmission matrix can be approximated by a rank-one matrix

T ≈
√
τ1U 1V

†
1, (1.23)

and the transmitted wave is dominated by a single channel, the first TEC, U 1, regardless
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1.3. Localized regime

Figure 1.9 – Spectrum of the transmission eigenvalues (solid lines in colors) and conduc-
tance (dashed black line) of a disordered sample s ≃ 34 placed in an infinite waveguide
(N = 16). The red triangle represents the frequency of excitation k/π = 15.357 used to
simulate the wavefield in Fig. 1.10.

of changing incident conditions a+(0)

a+(L) ≈ b1τ1U 1, with b1 = V †
1a

+(0) a scalar coefficient. (1.24)

That is, the vector a+(L) is parallel to U 1, and only the amplitude remains dependent
on changing a+(0). “the speckle pattern of the transmitted intensity is literally frozen”
[16].

An example of such freezing is shown in Fig. 1.10. The disordered waveguide is excited
by 3 different incident waves. The first two are arbitrary (Fig. 1.10 (a) and (b)), and the
third one is shaped to match V 1 (Fig. 1.10 (c)), associated with the first TEV (τ1 ≃ 0.01).
Comparing the wavefields, we can already observe the strong decrease in amplitude, but
above all, the progressive freezing of the wave pattern as we move away from x = 0 and
a complete freezing of the transmitted pattern. The transmitted pattern corresponds to
the pattern of the first transmission eigenchannel. Only the amplitude of the transmitted
pattern remains dependent on the incidence conditions.
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(a)

(b)

(c)

0 L
x

y

y

y

|ψ(x,y)|/max(|ψ(L,y)|) |ψ(L,y)|

Figure 1.10 – Wavefield modulus in a disordered sample s ≃ 34 placed in an infinite
waveguide for three different incident waves, at a frequency k/π = 15.357. (a) and (b)
a+(0) ≡ (δn,3) and a+′(0) ≡ (δn,15). Here, δ represents the Dirac function. (c) For an
incident wave shaped to match V 1 associated with the largest eigenvalue τ1. Numerics
are performed by using a code developed by Chéron [32].

Another example of such freezing in 2D waveguide geometries has been observed in
microwave experiments by Z. Shi [7]. One of their results is shown in Fig. 1.11. It shows
the transmitted speckle pattern through a disordered waveguide illuminated by a source
at two different positions. They highlight the difference between a diffusive regime, where
the transmitted speckle pattern depends strongly on the source position, and a localized
regime, where the transmitted speckle pattern is independent of the source position.

Figure 1.11 – Transmitted speckle patterns through a disordered medium illuminated suc-
cessively by sources a and a’. The frequency is fixed. Diffusive regime (left row). Localized
regime (right row). Source: Z. Shi [7].

The Freezing phenomenon has also been observed numerically for 2D geometries in
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1.3. Localized regime

a single configuration of an open disordered medium [38]. One of their results is shown
in Fig. 1.12. It shows the spatial evolution of the transmitted Intensity through a 2D
disordered medium illuminated by a Gaussian beam at two different incident angles,
θ = 0◦ and θ = 30◦. They highlight the difference between a diffusive regime, in which the
spatial evolution of the transmitted intensity shows a strong dependence on the incident
angle, and a localized regime, which is independent of the incident angle.

Figure 1.12 – Normalized transmitted intensity versus the normalized transverse direction
in the localized regime (a) and in the diffusive regime (b) at normal incidence (solid blue
line) and for an incidence angle θ = 30◦ (dashed red line). Source: O. Leseur [38].

A large part of this manuscript focuses on the invariance of the transmitted pattern to
incidence conditions. We show that this feature is not intrinsically related to the localized
regime in disordered media and can be observed in other contexts, in particular in periodic
media. In chapters 2 and 3, we show numerically and experimentally that the transmitted
pattern through a periodic waveguide can be frozen under proper conditions. In chapter
4, we characterize this phenomenon in the case of transmission through a grating. In
Chapter 5, we present numerical observations on the transmission enhancement induced
by symmetry when an opaque barrier is placed in a periodic waveguide. Finally, we will
conclude this manuscript by presenting preliminary results as perspectives to this work.
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APPENDIX

1.A Total scattering matrix of two portions

This section provides the procedures to obtain the total scattering matrix S of two
portions of disordered media (Fig. 1.A.1).

+

a

a
-

a+

a-

+

a

a
-

a+

a-

+

a

a

Sa

S=Sa  Sb

Sb

-

a+

a-

Figure 1.A.1 – Schematic representation of a combination of two portions of disordered
media.

Let Sa and Sb be the scattering matrices of the two portions,

Sa =
 Ra T′

a

Ta R′
a

 ,
Sb =

 Rb T′
b

Tb R′
b

 ,
with Ra,b, R′

a,b, Ta,b, T′
a,b the corresponding reflection and transmission matrices. The re-

flection (R, R′) and the transmission (T, T′) matrices corresponding to the total scattering
matrix S are given by: 

R = Ra + T′
a (I − RbR′

a) RbTa,

T = Tb (I − R′
aRb) Ta,

T′ = T′
a (I − R′

aRb) T′
b,

R′ = R′
b + Tb (I − RbR′

a) R′
aT′

b.

(1.25)
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Chapter 2

INVARIANCE OF THE TRANSMITTED

SPECKLE PATTERN IN PERIODIC

WAVEGUIDES

In this chapter, we report on conditions of invariance of the transmitted speckle pat-
tern with the incidence condition in the propagation through a periodic waveguide. This
phenomenon is reminiscent to that observed when illuminating a disordered medium in
the regime of Anderson localization, as a consequence of the contribution of a single trans-
mission eigenchannel to the transmitted wave. The freezing of the transmitted wave is not
intrinsically related to disorder, and it can also be observed in a regular, periodic system,
provided that at most one Bloch mode is propagating. Moreover, while all localized modes
in a disordered medium are exponentially decaying, a periodic waveguide makes it possible
to observe the freezing of a propagating wave, hence without the counterpart of having a
very low energy transmission.
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Chapter 2 – Invariance of the transmitted speckle pattern in periodic waveguides

2.1 Introduction

Among the many striking wave phenomena that arise in disordered media and explain
undiminished interest in the field of wave physics over decades [2, 4, 8, 28], the single
channel regime, although not the most famous, is nevertheless quite remarkable. Since
the ratio between two successive transmission eigenvalues (TEVs) is large in the local-
ized regime, the first (largest) one dominates all others, and so does the corresponding
eigenchannel in the transmission problem. A consequence is that “the speckle pattern of
the transmitted intensity is literally frozen” [16], that is, at a given frequency, the speckle
pattern is independent of the incidence conditions. The single channel regime was ex-
perimentally evidenced with microwaves [7, 39, 40] and later numerically investigated in
optics in a two-dimensional medium, and used to probe Anderson localization in a single
configuration of the medium [38]. Among the situations where TEVs are insightful, this
insensitivity to incidence conditions in the localized regime is very particular: indeed, in
most cases, TEVs are used for wavefront shaping, which reflects the capability of using
the sensitivity to incident wave in the diffusive regime to control the transmitted field
[33–35, 41–43].

Let us consider the typical scattering problem of a L-length disordered waveguide
that connects two semi-infinite leads, see Fig. 2.1(a). The wave incident on the disordered
medium, as well as the resulting scattered waves in the leads, are decomposed over the set
of 2N , right- and left-going, propagating modes, and the transmission matrix T couples the
transmitted wave components to those of the incident wave. Using the singular value de-
composition, this matrix is written as the sum of rank one matrices: T = ∑N

n=1
√
τn UnV †

n,
where τn are the TEVs and where the unit vectors Un (resp. V n) map the output (resp.
input) field of the transmission eigenchannels to the leads propagating modes. In the lo-
calized regime, 1 ≫ τ1 ≫ τ2 ≫ τ3 ≫ . . . [27, 44, 45], thus T ≈ √

τ1 U 1V
†
1 following a

single-channel behavior and, whatever the incident field, the pattern at the output will
be that of the mode combination U 1.

Although the single-channel phenomenon is understood as being characteristic of the
localized transport, the medium-induced reduction of the transmission problem to a rank-
1 matrix is not intrinsically related to disorder and can be observed in other contexts, in
particular in regular media. A simple example of a single channel regime would be the
low-frequency propagation (i.e., at most one mode is propagating) in a uniform waveguide
segment connecting two leads: inside the waveguide, in the far-field from inlet and outlet,
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2.1. Introduction
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Figure 2.1 – Invariance of the transmitted speckle pattern. (a-b) In a disordered waveguide,
which length L is larger than the localization length ξ, only one eigenchannel contributes
to transmission, giving then the transmitted field its spatial pattern, regardless of the
incident wave (here generated by a source ⊙ at two different positions in the waveguide)
[7, 38]. (c-d) A similar phenomenon can be observed with waves traveling through a
periodic waveguide, in which at most one pair of right- and left-going Bloch modes is
propagating, while all others are evanescent.

it reduces to a single mode. This mode then gives the field its transverse shape and the
transmitted field pattern is consequently invariant with the incident wave. However, in this
simple example, when saying “single mode” one actually speaks of the linear combination
of two modes, a right-going and a left-going: aϕ(y)eiκx + bϕ(y)e−iκx, and it is only because
both have the same transverse structure ϕ(y) that the total field is separable in the
variables x and y and that one can directly link this pattern to that of the transmitted
field. Would the structure of the left-going mode be different from that of the right-going
mode, then different linear combinations of them will not produce an invariant pattern.
Indeed, in a periodic waveguide as illustrated in Fig. 2.1(c-d), the linear combination of
a pair of right- and left-going Bloch modes reads aϕ+(x, y)eiqx + bϕ−(x, y)e−iqx. Then,
due to the form of the Bloch eigenvalue problem, ϕ+ and ϕ− are complex-conjugated one
to the other under proper normalization; ϕ− = ϕ̄+ being not proportional to ϕ+, there
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Chapter 2 – Invariance of the transmitted speckle pattern in periodic waveguides

is no separation in the variables x and y in the total field. Consequently, as shown in
Fig. 2.2, different linear combinations of these right- and left-going Bloch modes will give
rise to different patterns, both at the input and output of the unit cell. Thus, making
the single-mode propagation (actually a single pair) a direct analog to the single-channel
regime can be misleading, or at least insufficient to conclude that the transmitted pattern
will be frozen.

(a)

0

1

(b)
y

|ψ(0, y)|

y

|ψ(d, y)|

(c)

d = 2

1

y

|ψ(0, y)|

y

|ψ(d, y)|

Figure 2.2 – (a) Unit cell of a periodic waveguide as studied in this paper and, at fre-
quency k = 6.23π, amplitude of the only propagating right-going Bloch mode, ϕ+ [see the
dispersion relation in Fig. 2.3(b)]. The corresponding left-going mode, ϕ−, is the complex
conjugate of ϕ+. (b-c) Two different linear combinations of the Bloch modes ϕ± with, at
the input and output ends of the unit cell, the corresponding transverse profile

In this paper, we show that periodic waveguides can actually produce a freezing of
the transmitted pattern under proper frequency conditions and we prove algebraically the
reduction of the transmission matrix to a rank-1 matrix taking into account right- and
left-going waves through a scalar form factor D.

2.2 Periodic waveguides and freezing conditions

To do this, we consider a finite, d-periodic, waveguide [Fig. 2.1(c-d)] and numerically
solve the propagation problem when a source (⊙) is placed in the left lead at various
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2.2. Periodic waveguides and freezing conditions

positions to change the incident field. As in the above-mentioned disordered case, we
assume that the semi-infinite leads at the left (x ≤ 0) and right (x ≥ Md) of the M -cell
scattering region supports 2N right- and left-going propagating modes. Denoting gn(y),
n = 1, . . . , N , the associated transverse eigenfunctions, the solution of the wave equation
(∆ + k2)ψ(x, y) = 0 at both ends of the scattering region is

ψ(0, y) = gT(y)
(
a+(0) + a−(0)

)
+ ψ

(e)
l (y), (2.1)

ψ(Md, y) = gT(y)
(
a+(Md) + a−(Md)

)
+ ψ(e)

r (y), (2.2)

where g ≡ (gn), a+ (resp. a−) is the vector of the modal coefficient of the right- (resp.
left-) going propagating wave, and ψ

(e)
l,r (y) denotes the evanescent fields at x = 0 and

Md. With a source located in the left lead (x < 0), a−(Md) = 0 and a+(Md) = Ta+(0).
Fig. 2.3(a) shows the variations of the three largest TEVs, τ1 > τ2 > τ3 with the frequency
k, in a range where N = 7. Following the reasoning stated in the case of disordered media,
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(a)

Figure 2.3 – (a) Spectrum of the first three TEVs τ1 > τ2 > τ3 of a 10-cell finite periodic
waveguide (M = 10, d = 2), in the frequency range k/π ∈ [6.20, 6.38]. (b) Dispersion
relation of the equivalent infinite periodic waveguide in the same range of frequency. The
numbers in the right plot are the number of pair of right- and left-going propagating Bloch
modes in the corresponding colored frequency interval. Numerics are performed using a
mode-matching method (see App. 2.A for more details on the calculations).
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Figure 2.4 – (a) Wavefield (modulus) in a finite periodic waveguide (M = 6, d = 2),
as generated by a point source located at two different positions (⊙), at a frequency,
k = 6.23π, in a band with only one pair of right- and left-going propagating Bloch
modes (see. Fig. 2.3). (b) Pattern of the transmitted field |ψ(x = Md, y)|, y ∈ [0, 1]. (c)
Similarity function F (x), as defined by Eq. (2.3). Numerics are performed using a finite
element method (Comsol Multiphysics).

we can expect a freezing of the transmitted pattern if τ1 ≫ τ2.
This condition is notably fulfilled in a frequency range around k = 6.23π, and the

transmission through a 6-cell finite periodic waveguide at this frequency is illustrated
in Fig. 2.4(a) with two examples, corresponding to two different positions of the point
source generating the wavefield. While the excitation, hence the incident wave, is modified
from one case to the other, no significant change in the transmitted field pattern can be
detected, see Fig. 2.4(b). Only the overall amplitude of the transmitted wave remains
dependent on the incidence conditions. Computing the wavefield in the whole waveguide
allows us to go further than the only analysis of the transmitted pattern. We can indeed
observe the progressive freezing of the wave pattern as we move away from the source.
This can be quantified with the similarity function

F (x) =
∫ 1

0 ψ(x, y)ψ̄′(x, y) dy√∫ 1
0 |ψ(x, y)|2 dy

∫ 1
0 |ψ′(x, y)|2 dy

, (2.3)

which is a normalized scalar product (0 ≤ F ≤ 1) measuring the proportionality between
the fields ψ and ψ′ obtained with two different positions of the source. First low-valued
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Figure 2.5 – (a) Wavefield (modulus) in a finite periodic waveguide (M = 6, d = 2), as
generated by a point source located at two different positions (⊙), at a frequency, k =
6.353π, in a bandgap (see. Fig. 2.3). (b) Pattern of the transmitted field |ψ(x = Md, y)|,
y ∈ [0, 1]. (c) Similarity function F (x), as defined by Eq. (2.3). Numerics are performed
using a finite element method (Comsol Multiphysics).

close to the source [Fig. 2.4(c)], F (x) progressively increases towards 1, characterizing two
similar patterns.

Another frequency range in which the condition τ1 ≫ τ2 is satisfied is around k =
6.35π, see Fig. 2.3(a). As shown in Fig. 2.5, choosing different positions of the point
source, we also observe, in this case, the freezing of the transmitted pattern [Fig. 2.5(b)].
Also, as in the preceding case, the evolution of the similarity function F (x) reveals how
the freezing of the wavefield is completed after 3 or 4 periods.

Figs. 2.4-2.5, though both show the invariance of the transmitted field pattern with
the incidence conditions, display nevertheless visible differences that can be interpreted
by analysis of the dispersion relation, see Fig. 2.3(b). Indeed, while the first frequency
chosen, k = 6.23π, lies in a band where one pair of Bloch modes are propagating, the
second frequency, k = 6.353π, lies in a bandgap. It follows that the wavefield amplitude
is exponentially decreasing in this last case, whereas the wave is well transmitted through
the waveguide in the first case. In this respect, this physical system differs significantly
from an Anderson-localized medium in that it allows the field to be frozen while preserving
a high transmission. Note that in the bandgap case, it would be possible to optimize the
transmission by spatially shaping the incident wave [46].
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Chapter 2 – Invariance of the transmitted speckle pattern in periodic waveguides

The occurrence of bands with one or zero pair of propagating Bloch modes that are
wide enough to observe the freezing on a reasonable - not too long - distance is, of course,
highly dependent on the cell geometry. Targeting frequencies, or frequency intervals, at
which the freezing occurs, would be possible by, e.g., optimization processes, but even
without this, configurations allowing for a broadband freezing can easily be found, as
illustrated in the App. 2.B.

2.3 Algebric analysis

The two examples in Figs. 2.4-2.5 show how the freezing phenomenon appears as a
consequence of the number of propagating Bloch modes, which itself correlates with the
hierarchy of the first TEVs, as illustrated by Fig. 2.3. This can be further elucidated by a
simple algebraic analysis of the scattering problem. The transmission matrix of the M -cell
system reads

T = T(r)
(
1 − ΛMR(l)′ΛMR(r)

)−1
ΛMT(l), (2.4)

where Λ is the diagonal matrix of the eigenvalues of Bloch eigenvalues associated to the
right-going modes and T(l), R(r), R(l)′ and T(r) are elements of the scattering matrices of
the left and right interfaces, mapping the Bloch modes to the lead propagating modes
(see App. 2.C). The inverted matrix term in Eq. (2.24) accounts for the multiple internal
reflections that the wave experiences before it is transmitted to the right lead. If, after
possibly being reordered, the Bloch eigenvalues are such that the first one, Λ1, is large
compared with all others, then T can be approximated by the rank one matrix

T ≈ T̃ = ΛM
1

1 − Λ2M
1 R(l)

11
′
R(r)

11

T
(r)
1 T

(l)T
1 , (2.5)

with T
(r)
1 (resp. T

(l)T
1 ) the first column (resp. row) of the transmission matrix of the

right (resp. left) interface at x = 0 (resp. L, see App. 2.D). R(l)
11

′
and R(r)

11 are reflection
coefficients of the first mode at these interfaces. Thus, as soon as one pair of Bloch
modes, whether propagating or evanescent, predominantly contributes to the solution in
the periodic waveguide, with all others being rapidly damped (|ΛM

1 | ≫ |ΛM
n≥2|), then the

pattern of the transmitted field a+(Md) ≈ T̃a+(0) no longer depends on the incident
wave a+(0). Indeed, from Eq. (2.5), T̃a+(0) = D(T (l)T

1 a+(0))T (r)
1 is collinear with T

(r)
1 ,

whatever a+(0), where D = ΛM
1 /(1 − Λ2M

1 R(l)
11

′
R(r)

11 ) is the form factor due to multiple
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2.4. Wavefront shaping

internal reflections in the periodic slab. Only the amplitude in front of the transmitted
vector T

(r)
1 , through the product T

(l)T
1 a+(0), can still vary with the incident wave.

2.4 Wavefront shaping

Suppose, now, that two right-going Bloch modes are propagating in the periodic waveg-
uide (an example of such a band is given in Fig. 2.3 near k = 6.28π). Then,

a+(Md) ≈ (T (l)T
1 a+(0))u1 + (T (l)T

2 a+(0))u2 (2.6)

where u1,2 are linear combinations of the first two columns of T(r) (see App. 2.D) and
T

(l)T
1 and T

(l)T
2 are the first two rows of T(l). The transmitted field then reads as a linear

combinations of u1 and u2 and its pattern will thus depend on the incident wave a+(0).
However, the transmission problem being now reduced to a rank-2 matrix, a freezing
phenomenon can still be observed. Note that the coefficient of u1 (resp. u2) in Eq. (2.6)
is the first (resp. second) component of T(l)a+(0), that is, the amplitude with which the
incident wave, when transmitted through the left interface, couples to the first (resp.
second) propagating right-going Bloch mode. Therefore, any incident wave that does not
couple to the first (resp. second) propagating right-going Bloch mode will give rise to
a transmitted wave, the pattern of which is that of u2 (resp. u1). Fig. 2.6 illustrates
this partial invariance of the transmitted field. Cases (a) and (b) show the wavefield for
two different incident waves (left subplots), none of which couple to the first incident
Bloch mode. The transmitted fields (right subplots), therefore, have an identical pattern.
Now (c-d), if one choose two other incident waves, none of which couple to the second
propagating Bloch mode, then the transmitted field also displays an invariant pattern,
but which differs from that of the first two cases.
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Figure 2.6 – Wavefield (modulus) in a finite periodic waveguide (M = 6, d = 2) at a
frequency, k = 6.284π, in a band with two right-going propagating Bloch modes, see
Fig. 2.3. (a-b) Fields resulting from two different incident waves in the left lead, none
of which couples to the first right-going propagating Bloch mode in the periodic region.
(c-d) Fields resulting from two different incident waves in the left lead, none of which
couples to the second right-going propagating Bloch mode in the periodic region. Numerics
are performed using a mode-matching method (see App. 2.A for more details on the
calculations).

2.5 Conclusion

In conclusion, we have shown that the propagation through a periodic waveguide
may result in the invariance of the transmitted speckle pattern with the incident wave.
This property, that is usually observed in Anderson-localized disordered media, is here
in contrast appearing due to the periodicity of the medium, as a consequence of the
single-channel regime with a dominating transmission eigenvalue. The insensitivity to
incidence condition is observed if at most one pair of right- and left-going Bloch modes
is propagating in the finite periodic waveguide. This condition for freezing makes the
periodic case significantly different from the disordered case in that it allows a non-weak
transmission when the dominating mode is propagating. This should make it easier to
experimentally evidence and characterize the transmission invariance.
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APPENDIX

2.A Mode matching method

In addition to finite elements computations (performed with Comsol Multiphysics), a
mode matching method is used in the paper to compute the dispersion relation of the
periodic waveguide (Fig. 2 of the paper), as well as the scattering matrix and wavefield
in the case of a M -cell finite periodic configuration (Fig. 5).

2.A.1 Dispersion relation

In order to get the dispersion relation, the first step is the calculation of the scattering
matrix of a unit cell (Fig. 2.A.1). The cell is a piecewise constant waveguide element,

d

h

À Á Â Ã Ä

y

x

1

Figure 2.A.1 – Unit cell.

composed of five discontinuously connected segments with length l(j) and width h(j),
1 ≤ j ≤ 5 (note that l(5) = l(1), h(5) = h(1) = 1, h(4) = h(2) and h(3) = h(2) − th). In each
segment, a multimodal formulation of the wavefield is given as

ψ(j)(x, y) = g(j)T(y)(b(j)+(x) + b(j)−(x)), (2.7)

with b(j)+ (resp. b(j)−) the vector of the modal coefficient of the right- (resp. left-) going
wave and g(j) the vector of the transverse eigenfunctions. Assuming Neumann conditions
at the waveguide boundaries, as it is done in the numerics shown in Figs. 1-5 of the paper,
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Chapter 2 – Invariance of the transmitted speckle pattern in periodic waveguides

these eigenfunctions are

g(1)
n (y) = g(5)

n (y) = √
ϵn cos (γ(1)

n y), (2.8a)

g(2)
n (y) = g(4)

n (y) =
√
ϵn/h(2) cos (γ(2)

n y), (2.8b)

g(3)
n (y) =

√
ϵn/h(3) cos (γ(3)

n (y − th)), (2.8c)

with ϵ0 = 1 and ϵn>0 = 2 and γ(j)
n = nπ/h(j). The transmission matrix of each segment

simply reads T(j) = exp (Y(j)
c l(j)), with Y(j)

c the diagonal characteristic admittance matrix
of the segment, given by Y(j)

cn = i(k2 − γ(j)
n )1/2. The scattering matrix is then

S(j) =
 0 T(j)

T(j) 0

 , (2.9)

since no reflection occurs in the uniform segments. The scattering actually occurs at the
discontinuous junctions and one accounts for it by rigorously writing the mode matching
that results from the continuity conditions. Consider for example the junction between
the segments ➀ and ➁. Writing the continuity of the wavefield and of its x-derivative, as
well as the Neumann condition on the upper vertical boundary, leads to (the values of
b(1,2)± below are taken at the junction abscissa)

b(1)+ + b(1)− = F(b(2)+ + b(2)−), (2.10a)
FTY(1)

c (b(1)+ − b(1)−) = Y(2)
c (b(2)+ − b(2)−), (2.10b)

with F the mode-matching matrix:

Fmn =
1∫

0

g(1)
m (y)g(2)

n (y) dy. (2.11)

One deduces that the S-matrix of the junction (1-2) is

S(1−2) =
 1 −F

FTY(1)
c Y(2)

c

−1 −1 F
FTY(1)

c Y(2)
c

 . (2.12)

Once the other junction-S-matrices obtained similarly, the scattering matrix of the whole
unit cell can be computed by using iteratively the composition product, often referred to
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2.A. Mode matching method

as the Redheffer star-product [31]:

S = S(1) ⋆ S(1−2) ⋆ S(2) ⋆ . . . ⋆ S(4−5) ⋆ S(5). (2.13)

Thus, taking x = 0 as the position of the left end of the cell,b(1)−(0)
b(5)+(d)

 = S
b(1)+(0)

b(5)−(d)

 (2.14)

Assuming now a periodic waveguide, the modal components above also fulfill the
pseudo-periodic condition b(5)+(d) = eiqdb(1)+(0),

b(5)−(d) = eiqdb(1)−(0).
(2.15)

Then, writing S as

S =
R T′

T R′

 , (2.16)

the dispersion relation of the periodic waveguide can be obtained as the solutions (q, k)
of

det
T R′

0 1

− eiqd

1 0

R T′

 = 0. (2.17)

2.A.2 Wavefield

Consider, now, that the waveguide is composed of M cells, that is, of 5M waveguide
segments as defined above. Labeling these segments from 1 to 5M and denoting x(j) the
abscissa of their left end and l(j) their length, then the modal solutions in Eq. (4.14) are

b(j)+(x) = eY(j)
c (x−x(j))A(j), (2.18a)

b(j)−(x) = eY(j)
c (x(j+1)−x)R(j)eY(j)

c l(j)A(j), (2.18b)

where A(j) is the value of the right-going wave at the input end of the jth segment, and
R(j) is the reflection matrix at the output end: b(j)−(x(j+1)) = R(j)b(j)−(x(j+1)). Its value
at the right-end of the M -cell waveguide is known: R(5M) = 0, since the waveguide ends
in a semi-infinite lead, and it can be calculated iteratively in the other segments, using the
continuity relations (4.18) [47]. Then, in a second step, the values A(j) can be obtained
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Chapter 2 – Invariance of the transmitted speckle pattern in periodic waveguides

iteratively from the known value A(1) - the incident field coming from the left lead.

2.A.3 Dimensions of the unit cell in the numerics

For both FEM and mode-matching computations shown in Figs. 2-5 of the paper, the
dimensions of the unit cell are d = 2, (l(1), l(2), l(3)) = (0.1d, 0.365d, 0.25d), h = 0.6, and
h(2) = 1.53.

2.B Broadband "freezing"

In this section, we aim at finding a waveguide geometry that induces a freezing of the
transmitted wave pattern over a broad frequency range by adjusting the height th, see
Fig. 2.A.1. For the sake of simplicity, we restrict to geometries such that h(2) = 1 + th,

(a)

0 0.25 0.5 0.75 1

h

1

2

3

k

π

0
1

2

3

(b) (h = 0.97)

0 1

number of propa-
gating Bloch modes

Figure 2.B.1 – (a) Number of propagating Bloch modes as a function of th (see
Fig. 2.A.1) and of the frequency. The dimensions of cell are d = 1.5, (l(1), l(2), l(3)) =
(0.1d, 0.365d, 0.25d), h(2) = 1 + th. (b) Number of propagating Bloch modes as a function
of the frequency, for th = 0.97 (the corresponding value of th is shown with a white dotted
line in the left plot).

and we choose d = 1.5.
Fig. 2.B.1(a) shows the number of propagating Bloch modes in an infinite periodic

waveguide, when varying th, in the frequency range k/π ∈ [1, 3].
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2.C. Transmission matrix of the finite M -cell periodic waveguide

The occurence of frequency intervals with more that one propagating Bloch modes
reduces when increasing th and, for, e.g., th = 0.97, at most one Bloch mode can propagate
over the considered range, see also Fig. 2.B.1(b). Therefore, we expect that, after being
transmitted through a sufficient number of periods of this specific waveguide geometry,
the field displays a “frozen” pattern, independent of the incident wave, over the whole
frequency range. Fig. 2.B.2 shows that it is indeed the case.

0 0.5 1
y

1

2

3

k

π

0 0.5 1
y

0

1

Figure 2.B.2 – Pattern of the transmitted field |ψ(Md), y| over the frequency range k ∈
[π, 3π], for two different incident waves. The waveguide is made of M = 10 cells with
dimensions given Fig. 2.B.1’s caption and th = 0.97. At each frequency, the amplitude is
normalized so that its maximum value is 1 to facilitate pattern comparison.

2.C Transmission matrix of the finite M-cell periodic
waveguide

Let Hc be the transfer matrix of a single cell (Fig. 2.A.1):
a+(d)

a−(d)

 = Hc

a+(0)
a−(0)

 ; (2.19)

its eigendecomposition

Hc = Q
Λ 0

0 Λ−1

Q−1 (2.20)
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Chapter 2 – Invariance of the transmitted speckle pattern in periodic waveguides

gives, in the basis (gn), the Bloch modes of the periodic waveguide. With Λ the eigenvalues
associated to the right-going Bloch modes, the transmission of waves through the M cells
is characterized by the scattering matrix

S =
 0 ΛM

ΛM 0

 , (2.21)

and the overall matrix of the M -cell system then reads as the composition

S = S(l) ⋆ S ⋆ S(r), (2.22)

where

Sl,r =
R(l,r) T(l,r)′

T(l,r) R(l,r)′

 (2.23)

are the scattering matrices of the left and right interfaces, mapping the Bloch modes to the
leads propagating modes (N). Thus, from Eqs. (2.22-2.25), we can write the transmission
matrix as

T = T(r)
(
1 − ΛMR(l)′ΛMR(r)

)−1
ΛMT(l). (2.24)

Note that the interface scattering matrices Sl,r are completely known from the blocks Q1−4

of the eigenvector matrix Q of Eq. (2.20):

Sl =
Q3Q−1

1 Q4 − Q3Q−1
1 Q2

Q−1
1 −Q−1

1 Q2

 , (2.25a)

Sr =
 −Q−1

4 Q3 Q−1
4

Q1 − Q2Q−1
4 Q3 Q2Q−1

4

 . (2.25b)

2.D Simplified expressions of T

If, after possibly being reordered, the Bloch eigenvalues are such that the first one,
Λ1, is large compared with all others, then the term ΛMR(l)′ΛMR(r) in Eq. (2.24) can be
approximated as

ΛMR(l)′ΛMR(r) ≈ Λ2M
1 R(l)

11
′
A (2.26)
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2.D. Simplified expressions of T

with A is a matrix whose first row is that of R(r) and all the others are zero. A being a rank
one matrix, we can use the Sherman-Morrison identity to calculate the inverse matrix

(1 − Λ2M
1 R(l)

11
′
A)−1 = 1 + Λ2M

1 R(l)
11

′
A

1 − Λ2M
1 R(l)

11
′
R(r)

11

. (2.27)

It follows that the transmission matrix (2.24) can be approximated by the rank one matrix

T ≈ T̃ = ΛM
1

1 − Λ2M
1 R(l)

11
′
R(r)

11

T
(r)
1 T

(l)T
1 , (2.28)

with T
(r)
1 the first column of T(r) and T

(l)T
1 the first row of T(l).

If the Bloch eigenvalues are such that the first two, Λ1 and Λ2, are large compared
with all others, then a similar analysis, with notably the use of the Woodbury matrix
identity that generalizes the Sherman-Morrison identity, allows us to approximate the
term

(
1 − ΛMR(l)′ΛMR(r)

)−1
ΛM in Eq. (2.24) by

(
1 − ΛMR(l)′ΛMR(r)

)−1
ΛM ≈

P 0

0 0

 (2.29)

where P is a 2 × 2 matrix dependent on the eigenvalues ΛM
1,2 and on the first 2 × 2 blocks

of the reflection matrices R(l)′ and R(r):

P = λρ(l)λ(12 + ρ(r)λρ(l)λ)−1ρ(r)λ, (2.30)

with

λ =
ΛM

1 0
0 ΛM

2

 , (2.31a)

ρ(l) =
R(l)

11
′

R(l)
12

′

R(l)
21

′
R(l)

22
′

 , (2.31b)

ρ(r) =
R(r)

11 R(r)
12

R(r)
21 R(r)

22

 . (2.31c)
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Chapter 2 – Invariance of the transmitted speckle pattern in periodic waveguides

Then, the transmission matrix can be approximated by

T ≈ T̃ = u1T
(l)T
1 + u2T

(l)T
2 , (2.32)

with

u1 = P11T
(r)
1 + P21T

(r)
2 , (2.33a)

u2 = P12T
(r)
1 + P22T

(r)
2 , (2.33b)

and where T
(r)
1 and T

(r)
2 are the first two columns of T(r) and T

(l)T
1 and T

(l)T
2 the first two

rows of T(l).
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Chapter 3

EXPERIMENTAL OBSERVATION OF THE

SPECKLE PATTERN INVARIANCE IN

PERIODIC WAVEGUIDES

3.1 Introduction

The invariance of the transmitted speckle pattern to incidence conditions is known in
disordered media in the localized regime [7, 38–40]. This phenomenon, which we refer to
as the "freezing of the transmitted pattern", is a consequence of the single-channel regime
in disordered media [2, 4, 8, 28].

In Chap. 2, we demonstrated that the invariance of the transmitted speckle pattern
is not exclusively associated with the disorder; it can also be observed in regular-periodic
media. Through numerical simulations, we showed that insensitivity to incidence con-
ditions is observed when at most one right-going Bloch mode propagates in the finite
periodic waveguide. The periodic case is notably distinct from the disordered case, as it
enables freezing with a non-weak transmission.

In this chapter, we aim to provide experimental observations of the invariance of
the transmitted pattern in a finite periodic acoustic waveguide. First, we introduce our
experimental setup. We then recall the similarity function already defined in Chap. 2,
which, once derived from the experimental results, allows us to identify the frequency
region where the freezing phenomenon occurs. Finally, we present the pattern of the
acoustic field for several incidence conditions corresponding to frequencies located in bands
with zero, one, or two propagating Bloch modes.
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Chapter 3 – Experimental observation of the speckle pattern invariance in periodic waveguides

3.2 Experimental setup

Our experimental setup consists in aM -cell d-periodic acoustic waveguide, withM = 5
and d = 255 mm (Fig. 3.1). It is constructed by using a periodic arrangement of PVC

Top view

Foam

s0
s1
s2
s3

Motorized linear 
stage

Sktech of the experimental setup

x1 x2
s0
s1
s2

s3 d

Md

∆y
h1

h2

y
x

Figure 3.1 – Sketch and top view of the experimental setup. The top plate in the sketch is
removed to see the interior of the waveguide. The scattering region, defined as x ∈ [0,Md],
is composed of a finite periodic waveguide (M = 5, d = 255 mm). Four acoustic sources,
denoted as s0, s1, s2, and s3, are positioned at the left end of the waveguide with a width
of h1 = 170 mm. The positions of the microphones used to measure the pressure field
along the y direction are labeled as x1 and x2. The right end of the waveguide, with a
width of h2 = 400 mm, is made of a foam block of triangular shape.

blocks. We assume that all the block boundaries are rigid and perfectly reflecting. The
cell is a piecewise constant waveguide element composed of five discontinuously connected
segments. The dimensions of the segments from the left end of the unit cell are 0.1d×h1,
0.32d× 1.53h1, 0.23d× 0.93h1, 0.25d× 1.53h1 and 0.1d× h1. The left waveguide having a
width of h1 = 170 mm is assumed to support N1 propagating modes, with a first cut-off
frequency fc ≈1 kHz. Four identical high speakers are mounted at the left end of the
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3.3. Freezing characterization

waveguide. They are equally spaced along the y-direction, with a diameter of 40 mm,
and operate within the frequency range f ∈ [3, 20] kHz. N2 are propagating modes in the
output section. The right end of the waveguide with height h2 = 400 mm, is anechoic
thanks to a foam block of triangular shape [5]. Two microphones with sensitivities of 1.16
mV/Pa and 1.65 mV/Pa and diameters of 1

4
′′ are positioned at x = x1 and x = x2 on a

rod connected to a motorized linear stage. This setup allows for the measurement of the
pressure field at multiple points along the y-direction, evaluated at ∆y = 5 mm intervals.
The waveguide height along the z-direction is hz = 15 mm, resulting in a cutoff frequency
of approximately 11.50 kHz. Our study focuses on a frequency range from 3.50 kHz to 4
kHz, allowing us to treat the waveguide as effectively 2D, the field being uniform in the
z-direction.

3.3 Freezing characterization

The freezing of the transmitted pattern can be characterized by determining the trans-
mission eigenvalues (τ1 > τ2 > ... > τN1) of the M -cell periodic waveguide; freezing occurs
when τ1 ≫ τ2. This method requires finding the transmission matrix T [5, 48] with di-
mensions N2 ×N1. To determine T N1 different source conditions would be necessary with
the measurement of the pressure field in four different cross sections to separate the left
and right going waves on both sides of the scattering regions. Instead, we used a sim-
pler approach to characterize the freezing. It consists in measuring the similarity between
the transmitted pattern ψj(x2, y) generated by the source sj, with j = 0, 1, 2, 3, and the
reference transmitted pattern ψ0(x2, y) generated by the source s0. This method requires
only one microphone to measure the profile of the transmitted acoustic field at x2 > Md,
and it is independent of the number of propagating modes N1. We define the similarity
function as follows:

Fj =
|
∫ h2

0 ψ0(x2, y)ψ∗
j (x2, y) dy|√∫ h2

0 |ψ0(x2, y)|2 dy
∫ h2

0 |ψj(x2, y)|2 dy
. (3.1)

The similarity function Fj is a normalized scalar product. Fj = 1 if the profiles of the
acoustic field are identical, Fj < 1 otherwise, as a consequence of the Cauchy-Schwarz
inequality [50].

Following the reasoning made in the theoretical case, we can expect freezing of the
transmitted pattern if at most one Bloch mode is propagating. Fig. 3.2(a) shows the
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Chapter 3 – Experimental observation of the speckle pattern invariance in periodic waveguides

Figure 3.2 – (a) Theoretical dispersion relation of an infinite periodic waveguide in the
frequency range f/fc ∈ [3.5, 4]. The numbers in the left plot are the number of right-
going propagating Bloch modes in the corresponding colored frequency interval. The red-
filled triangle (f0), diamond (f1), and star (f2) represent the frequencies of excitation
used to show the experimental pattern of the pressure field in Figs. 3.3, 3.4 and 3.5
respectively. Numerics are performed using a mode matching method; for more details on
the calculations, refer to Chap. 2 and [47, 49]. (b) Experimental results: spectrum of the
similarity functions F1, F2, and F3 as defined in Eq. (3.1), in the same frequency range.

theoretical dispersion relation of the periodic medium, calculated through a numerical
simulation, in a frequency range such that N1 = 4 and N2 ∈ [8, 9]. Comparing the
theoretical dispersion relation (Fig. 3.2(a)), to the spectrum of the similarity functions
F1, F2 and F3, derived from experimental results (Fig. 3.2(b)), we observed that the
similarity functions tend to unity for two different regions: the first region corresponds to
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3.4. Experimental observation: pattern of pressure field

a bandgap, the second region corresponds to a band with one propagating Bloch mode.
The similarity functions are different than unity for the regions that correspond to a band
with two propagating Bloch modes.

3.4 Experimental observation: pattern of pressure field

3.4.1 Insensitivity of the transmitted pattern to source position

Consider first an excitation frequency, f0 = 3.93, corresponding to a bandgap in the
periodic medium: no Bloch mode is propagating. At this frequency, all similarity func-
tions, F1, F2, and F3, are close to unity (Fig. 3.2(b)). An experimental observation of the
insensitivity to source position with a low transmitted amplitude is shown in Fig. 3.3. We
sequentially excite the acoustic sources sj, and each time, we measure the pressure field
at x = x1 and x = x2 along the y-axis with ∆y = 5mm interval. While the excitation and,
consequently, the pattern of the near field (|ψj(x1, y)|) differ, no significant change in the
pattern of the transmitted field (|ψj(x2, y)|) can be detected, confirming our numerical
studies. A significant decrease in amplitude is observed, with the average amplitude of the
transmitted field being two orders of magnitude lower than the average field at x = x1.

Let us consider the same experiment as the bandgap case, but with an excitation
frequency, f1 = 3.76, corresponding to a band with one propagating Bloch mode in
the periodic medium. At this frequency, all the similarity functions are also near to 1
(Fig. 3.2(b)). Results are shown in Fig. 3.4. As in the bandgap case, while the profile of
the pressure field, before the scattering region x = x1 < 0, is quite different, the profile of
the transmitted pressure field (x = x2 > Md) is frozen. A smaller decrease in amplitude
is observed compared to the bandgap case, with the average amplitude of the transmitted
field being one order of magnitude lower than the average field at x = x1.
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s1
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y

x

=f0f/fc

Figure 3.3 – Freezing. Experimental patterns of the pressure fields |ψj(x, y)| at x = x1
and x = x2, with j = 0, 1, 2, 3, as generated by the sources sj at 4 different positions, at
a frequency, f0 = 3.93, in a bandgap (see. Fig 3.2).
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Figure 3.4 – Freezing. Experimental patterns of the pressure fields |ψj(x, y)| at x = x1 and
x = x2, with j = 0, 1, 2, 3, as generated by the sources sj located at 4 different positions,
at a frequency f1 = 3.76 in a band with one propagating Bloch mode (see. Fig 3.2).
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Chapter 3 – Experimental observation of the speckle pattern invariance in periodic waveguides

3.4.2 Sensitivity of the transmitted pattern to source position

Let us consider the same experiment as discussed in the preceding subsection; we
sequentially excite the acoustic sources sj, and each time we measure the pressure field at
x = x1 and x = x2 along the y-axis with ∆y = 5mm interval. We consider an excitation

s1

s2

s0

s3

jj

x1 x2

5mm
y

x

=f2f/fc

Figure 3.5 – Non-freezing. Experimental patterns of the pressure fields |ψj(x, y)| at x = x1
and x = x2, with j = 0, 1, 2, 3, as generated by the sources s0, s1, s2 and, s3 at 4 different
positions, at a frequency f2 = 3.67 in a band with two propagating Bloch modes (see.
Fig 3.2).
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3.4. Experimental observation: pattern of pressure field

frequency, f2 = 3.67, in a band with two propagating Bloch modes in the periodic medium.
At this frequency, all the similarity functions are different than 1 (Fig. 3.2(b)). Fig. 3.5
shows that for different types of excitation, the pattern of the pressure field before the
scattering region and after the scattering region are quite different. The pattern of the
transmitted field is sensitive to the source position.

3.4.3 Rigid boundary condition at the right end of the periodic
waveguide

We have seen in Chap. 2 and in the preceding subsections that the pattern of the
transmitted field remains insensitive to the incidence conditions if the frequency of exci-
tation is within a bandgap or a band with one propagating Bloch mode. We can expect

Top view
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Figure 3.6 – Sketch and top view of the modified experimental setup. The top plate in
the sketch is removed to see the interior of the periodic waveguide (M = 5, d = 255 mm).
Four acoustic sources, denoted as s0, s1, s2, and s3, are positioned at the left end of the
waveguide with a width of h1 = 170 mm. The position of the microphone used to measure
the pressure field along the y direction is labeled as x2. The right end of the waveguide,
with a width of h2 = 400 mm is closed.
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Chapter 3 – Experimental observation of the speckle pattern invariance in periodic waveguides

that by changing the right-end boundary conditions, from absorbing (Fig. 3.1) to a rigid
boundary (Fig. 3.6), the pattern of the total field at x = x2 remains insensitive to the
incidence conditions as shown in (Fig. 3.7).

s3

s0

=f2f/fc=f0f/fc =f1f/fc

j j j

Figure 3.7 – Experimental patterns of the pressure fields |ψ0(x2, y)| and |ψ3(x2, y)|, as
generated by 2 sources s0 and s3 at two different positions. At a frequency f0 = 3.93 in a
bandgap, at a frequency f1 = 3.76 in a band with one propagating Bloch mode, and at a
frequency f2 = 3.67 in a band with two propagating Bloch modes.

3.5 Conclusion

In conclusion, our experimental observations reveal that a periodic waveguide can ex-
hibit a transmission property similar to the single-channel regime observed in Anderson-
localized disordered media. It results in the invariance of the transmitted speckle pattern
with the incident wave. Consistent with the theoretical studies, the insensitivity to inci-
dence condition is observed if at most one Bloch mode propagates in the finite periodic
waveguide.

50



Chapter 4

INVARIANCE OF THE TRANSMITTED

PATTERN IN GRATINGS

4.1 Introduction

In Chapters 2 and 3 we showed numerically and experimentally that the invariance of
the transmitted wave pattern to incidence conditions (freezing of the transmitted pattern)
can be observed in quasi-1D finite periodic waveguides if at most one Bloch mode is prop-
agating; the first transmission eigenvalue dominates all the others, thus a single channel
dominates the transmission. We can therefore wonder about the fate of this property in
the case of scattering by a grating having a finite periodic structure in the direction of
propagating (Fig. 4.1). This is the purpose of this chapter.

To do so, we need to illuminate the grating with different incidence conditions. The
simplest way would be to send a plane wave and vary its angle of incidence θ0. However,
the band structure of the system a priori depends on θ0, hence the conditions of invariance
of the transmitted pattern. Changing θ0 may thus prevent us from observing the freezing.
An alternative way, while keeping a plane wave as the source, is to insert a grating with
the same periodicity before the grating of interest (Fig. 4.1 (a)). Then by modifying this
first grating (by, e.g., rotating the scatterers as in Fig. 4.1 (b)), we can control and change
the incident wave on the grating of interest, while keeping θ0 constant.

In this chapter, we start with a general overview of the scattering by a grating and
present the solution of the wave equation in a multimodal formulation. We invite the
readers to refer to [51–55] for more details on the theoretical aspect of gratings. We
illustrate the field with the simple case of grating made of rigid rectangular scatterers.
Then, we analyze the Figure shown in Fig. 4.1 and show that, indeed, such grating can
freeze the transmitted wave. Moreover, this particular configuration is made of horizontal
structured waveguides that are not connected along the transverse direction, it appears
that the frequency bands in which freezing is observed do not depend on θ0. The frozen
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Transmitted
field

y

θ0ψ(i)

(b)

Figure 4.1 – Invariance of the transmitted speckle pattern with the incidence conditions
on a grating (here displayed in yellow). To obtain different conditions of incidence, the
incident plane wave ψ(i), shown in red with a fixed angle θ0, is first scattered by a grating
(in gray) in various configurations. Both gratings have the same dy periodicity along the
transverse direction y.

pattern will, however, not be the same when changing θ0. As opposed to this “closed”
configuration (unconnected horizontal waveguides), we study in the next section an “open”
configuration, where the waveguides are connected in the transverse direction. in this new
configuration, the dependence of the freezing condition on the angle of incidence clearly
appears, making this grating a more versatile device to control the freezing.
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4.2 Scattering by a grating: generalities

We aim to solve the scattering problem of an incident plane wave by a grating, here
made of scatterers located within a region 0 ≤ x ≤ Ls (Fig. 4.2 (a)). The grating is dy-
periodic along the transverse direction y. The solution of the problem, namely the wave

xx

ψ(x,dy)=ψ(x,0)eiγ0dy

θ0 θ0
ψ(i)

0

y
y

(a) (b)

Ls 0 Ls

dy dy

ψ(i)

Figure 4.2 – (a) Grating made of rectangular scatterers with dy periodicity along the
vertical direction y. The grating is illuminated by an incident plane wave ψ(i) with an
incident angle θ0. (b) A single period of height dy is considered with pseudo-periodic
boundary conditions.

field ψ, satisfies the Helmholtz equation,

(∆ + k2)ψ(x, y) = 0, (4.1)

with k the wavenumber. The wave field corresponds to the sum of an incident wave ψ(i)

and a scattered wave. The incident wave ψ(i) is a plane wave:

ψ(i)(x < 0, y) = ei(α0x+γ0y)√
dy

, (4.2)

with α0 = k cos θ0 and γ0 = k sin θ0 the horizontal and vertical component of the wavevec-
tor k (|k|2 = α2

0 + γ2
0 = k2) and θ0 ∈]−π

2 ,
π
2 [ the incident angle.

Due to the dy-periodicity of the grating in the transverse direction y, the problem
can be solved in a single period of height dy (Fig. 4.2 (b)). Therefore, in the two semi-
infinite regions (x, y) ∈] − ∞, 0] × [0, dy] and (x, y) ∈ [Ls,+∞[×[0, dy], the field satisfies
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Chapter 4 – Invariance of the transmitted pattern in gratings

the Helmholtz equation (Eq. 4.1), and the pseudo-periodic boundary conditions,
ψ(x, y = dy) = eiγ0dyψ(x, y = 0),

∂yψ(x, y = dy) = eiγ0dy∂yψ(x, y = 0).
(4.3)

For the following, a multimodal method is presented to solve Eqs. (4.1) and (4.3).
The field is now decomposed as a pseudo-Fourier series,

ψ(x, y) =
∑

n

an(x)gn(y), (4.4)

where an are the modal amplitudes and gn the transverse functions

gn = eiγny√
dy

, (4.5)

with γn = γ0 + n2π/dy, n ∈ Z. These functions form an orthogonal basis satisfying the
relations,

(gn, gm) = δnm and (g′
n, g

′
m) = γ2

nδnm, (4.6)

with (f1, f2) =
∫ dy

0 f1f
∗
2 dy the scalar product.

By projecting the Helmholtz equation onto the basis of the gn functions, we obtain the
second-order equation,

a′′
n(x) + α2

nan(x) = 0, (4.7)

where
αn =

√
k2 − γ2

n (4.8)

is the longitudinal wave number associated with mode n. Eq. (4.8) separates the N prop-
agating modes for which αn ∈ R+ and the evanescent modes for which αn ∈ iR+. The
solution of the second-order equation (Eq. (4.7)) reads as a sum of right-going (eiαnx) and
left-going (e−iαnx) waves. Thus, with an incident wave ψ(i) coming from the left, the field
in the two semi-infinite regions (x, y) ∈] − ∞, 0] × [0, dy] and (x, y) ∈ [Ls,+∞[×[0, dy]
reads as,
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4.2. Scattering by a grating: generalities

ψ(x, y) =



1√
dy

(
ei(α0x+γ0y) +

∑
n

c−
n ei(αnx+γny)

)
, for x ≤ 0

1√
dy

∑
n

d+
n ei(αn(x−Ls)+γny), for x ≥ Ls,

(4.9)

with c−
n (resp. d+

n ) the modal amplitude of the reflected (resp. transmitted) wave. If we
restrict the above series to the N propagating modes and define the N×1 vectors g ≡ (gn),
a+(0) ≡ (δn0), a−(0) ≡ (c−

n ) and a+(Ls) ≡ (d+
n ), at both ends of the scattering region,

Eq. (4.9) can be rewritten as,

(a) (b)

θ0

ψ(i)

θ0

ψ(i)

0

1.5

x
0 Ls

y

0

1.5

|ψ(x,y)|/max(|ψ(Ls,y)|)|ψ(x,y)|/max(|ψ(Ls,y)|)

x
0 Ls

y

Figure 4.3 – Sensitivity of the transmitted field pattern to the orientation of the scatterers.
Wavefield modulus in a grating made of rigid rectangular scatterers with a periodicity of
dy = 1.65. An incident plane wave illuminates the grating at a frequency kdy/2π = 4 and
an angle of incidence θ0 = 1 rad, where the number of propagating modes N = 8. (a)
The dimensions of the rectangular scatterers are 0.8×0.32. (b) The rectangular scatterers
in (a) are rotated by 90 degrees. Numerics are performed using a finite element method
(Comsol Multiphysics).
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Chapter 4 – Invariance of the transmitted pattern in gratings

ψ(0, y) = gT(y) (1 + R) a+(0),

ψ(Ls, y) = gT(y)Ta+(0),
(4.10)

where R (resp. T) is the reflection (resp. transmission) matrix with dimensions N × N .
It relates the modal amplitudes of the reflected (resp. transmitted) wave to modal ampli-
tudes of the incident wave, namely a−(0) = Ra+(0) (resp. a+(Ls) = Ta+(0)).

Fig. 4.3 shows the total field in a grating with both horizontal and vertical orientations
of the rigid scatterers. It highlights the sensitivity of the transmitted field pattern to the
change in the orientation of the scatterers. Therefore, modifying the orientation of the
scatterers leads to different modal amplitudes of the transmitted field, such that if T,
T′ are their corresponding transmission matrices, the vector Ta+(0) is not parallel to
T′a+(0). Note that, for simplicity, we have only modified the orientation of rectangular
scatterers, but modifying their shapes would produce the same effect. Now, we are able
to send various incident waves on the grating of interest (the yellow one in Fig. 4.1).

4.3 Freezing with a “closed” grating

Consider first the above defined “closed” grating as shown in Fig. 4.4. The closed
grating is made of structured horizontal waveguides with Neumann boundary conditions
at their boundaries, which are not connected along the vertical direction y. The structured
waveguides are dx-periodic along the x-direction and consist of a finite number M of unit
cells. The system is illuminated by an incident plane wave ψ(i) given by Eq. (4.1). The
wave field satisfies the Helmholtz equation. The problem can be solved by considering
a single period of height dy with pseudo-periodic boundary conditions (Eq. (4.3)). Upon
considering only the N propagating modes, the solution at both ends of the yellow grating
is

ψ(0, y) = gT(y)
(
a+(0) + a−(0)

)
,

ψ(Mdx, y) = gT(y)a+(Mdx).
(4.11)

Let T be the transmission matrix of the closed grating; it relates the modal amplitude
of the transmitted wave a+(Mdx) to the modal amplitude of the incoming wave a+(0),

a+(Mdx) = Ta+(0). (4.12)
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dx

Mdx

dy

0
θ0ψ(i) x

y

ψ(x,dy)=ψ(x,0)eiγ0dy

Figure 4.4 – “Closed” grating made of structured horizontal waveguides, which are not
connected along the transverse direction y.

As we did in Chapter 2 to get the relation dispersion, we consider the infinite dx-
periodic equivalent of the grating shown in Fig. 4.4. Because horizontal waveguides are not
connected, finding the relation of dispersion of this periodic system is equivalent to solving
that of one infinite rigid periodic waveguide. As a consequence, the dispersion relation
k = f(q), q the Bloch wave vector, is actually independent on the vertical component qy

(App. 4.B), hence on the incidence angle θ0. The dispersion relation k = f(qx) is shown
in Fig. 4.5(a) in a frequency range where we can observe bands with zero, one, or two
propagating Bloch modes.

Fig. 4.5(b) and (c) show the variations of the three largest transmission eigenvalues
(TEVs), τ1 > τ2 > τ3, of the transmission matrix T, for two different values of θ0, with the
frequency k. In this frequency range N = 8. These plots show that the TEVs are weakly
dependent on θ0, and their ratii follow the band structure regardless of the incident angle
θ0. Typically, for any given θ0, we have τ1 ≫ τ2 for a frequency that corresponds to
bandgap or a band with one propagating Bloch mode.

Following the reason stated in the periodic waveguides (Chapters 2 and 3), we can
expect a freezing of the transmitted pattern in closed grating for any given angle of
incidence θ0 if the frequency of the incident wave ψ(i) corresponds to a bandgap or to a
band with one propagating Bloch mode.
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2

1

0

(c)

k1

k0

θ0=0 θ0=1

Figure 4.5 – (a) Dispersion relation of the infinite dx-periodic waveguides with Neumann
boundary conditions in the frequency range kdy/2π ∈ [3.9, 4.1]. The numbers denote the
number of right-going propagating Bloch modes in the corresponding colored frequency
intervals. The red-filled triangle and diamond represent the frequencies k0 = 4.067 and
k1 = 4 of the incident wave used to simulate the wavefield in Figs. (4.6) and (4.7),
respectively. (b) and (c) Spectrum of the first three TEVs (τ1 > τ2 > τ3), for θ0 = 0 and
θ0 = 1 rad, respectively, of the closed gratings (M = 5, dx = 2, dy = 1.65), in the same
range of frequency. Numerics are performed using a mode-matching method (see App. 4.A
for more details on the calculations).

The freezing of the transmitted pattern corresponds to the insensitivity to the modal
amplitudes of the incoming wave on the closed grating (a+(0)), and hence to the change
in the orientation of the gray rectangular scatterers. The frozen pattern is not the same
for two different θ0 (Fig. 4.C.1).

A numerical experiment of such freezing is shown in Fig. 4.6. A plane wave illumi-
nates the closed grating at an angle of incidence θ0 = 1 rad and at a frequency k0 = 4.067
that corresponds to a bandgap (Fig. 4.6 (a)). We then introduce a grating of rectangular
scatterers with three different orientations (Figs. 4.6 (b)-(d)). Comparing all the configu-
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4.3. Freezing with a “closed” grating

rations allows us to observe the strong sensitivity of the wave pattern to the orientation of
the scatterers for x ≤ 0. Moreover, we observe a progressive freezing of the wave pattern
as we move away from x = 0 and a complete freezing of the transmitted speckle pattern
for x ≥ 0Mdx. Only the evanescent amplitude of the transmitted wave remains dependent
on the orientation of the scatterers. Numerics are performed using a finite element method
(Comsol Multiphysics), although the admittance matrix method could also be employed
[56–59]. It is important to note that the pattern of the transmitted field remains insensi-
tive to any modifications made to the scatterers placed before the aforementioned closed
grating, such as changing their shapes and or their dimensions.

Let us now consider the same numerical experiment as in the bandgap case, with the
same angle θ0 = 1 rad, but at a frequency k1 = 4 of the incident wave, which corresponds
to a band with one propagating Bloch mode, see Fig. 4.7. We observe the same qualitative
behavior as in the bandgap case: a strong sensitivity to the orientation of the rectangular
scatterers for x ≤ 0 and a progressive evolution of the spatial field towards an identical
pattern. Only the amplitude that is no longer evanescent becomes finite and remains
dependent on the orientation of the scatterers.
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|Ѱ(x,y)|/max|Ѱ(Mdx,y)| |Ѱ(Mdx,y)|

(a)
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dyѰ(i) θ0

(c)

Ѱ(i) θ0
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(b)
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Figure 4.6 – Freezing. (a) Wavefield modulus in closed grating (M = 3, dx = 2, dy = 1.65).
This grating is illuminated by a plane wave under an incident angle θ0 = 1 rad and at a
frequency k0 = 4.067 corresponding to a bandgap (see Fig. 4.5). (b)-(d) Adding a grating
of rectangular scatterers with three different orientations. The right figures correspond to
the pattern of the transmitted field ψ(x = Mdx, y). Numerics are performed using a finite
element method (Comsol Multiphysics).

60



4.3. Freezing with a “closed” grating

|Ѱ(x,y)|/max|Ѱ(Mdx,y)| |Ѱ(Mdx,y)|
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y
dy

y
dy
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Ѱ(i) θ0

0
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Figure 4.7 – Freezing. (a) Wavefield modulus in closed grating (M = 2, dx = 2, dy = 1.65).
This grating is illuminated by a plane wave under an incident angle θ0 = 1 rad and at a
frequency k1 = 4 corresponding to a band with one propagating Bloch mode (see Fig. 4.5).
(b)-(d) Adding a grating of rectangular scatterers with three different orientations. The
right figures correspond to the pattern of the transmitted field ψ(x = Mdx, y). Numerics
are performed using a finite element method (Comsol Multiphysics).
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4.4 Freezing with an “open” grating

Consider now the “open” grating as shown in Fig. 4.8. The open grating is made of

dx

Mdx

dy

0
θ0ψ(i) x

y

ψ(x,dy)=ψ(x,0)eiγ0dy

Figure 4.8 – “Open” grating made of structured horizontal waveguides, which are con-
nected along the vertical direction y.

structured horizontal waveguides with Neumann boundary conditions at their boundaries,
which are connected along the vertical direction y. The structured waveguides are dx-
periodic along the x-direction and consist of a finite number M of unit cells.

Analog to what we treated in the past sections, at both ends of the open gratings, the
solution of the wave equation can be written as a multimodal formulation, see (Eq. 4.11).
Let T be the transmission matrix of the open gratings.

As we did in the past section, to get the dispersion relation we consider the infinite dx-
periodic equivalent of the grating shown in Fig. 4.8. Since horizontal waveguides are now
connected, the dispersion relation k = f(q) is now dependent on the vertical component
qy (App. 4.B), hence on the incidence angle θ0. Figs. 4.9 show the dispersion relation
k = f(qx) and the spectrum of TEVs for two different θ0 in a frequency range where
N = 7. These figures show that the number of propagating Bloch modes and the TEVs
depend on the choice of the frequency and θ0. Therefore, the freezing of the transmitted
field depends on the choice of k and θ0 (App. 4.C). For a given θ0, the frequency k should
correspond to a bandgap or to a band with one propagating Bloch mode. Thus, if we
illuminate the system with an incident plane wave at an angle of incidence θ0, with a
frequency in a bandgap or in a band with one propagating Bloch mode, we can expect
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0

qxdx/
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1

(a)

qxdx/

0

1

2

(b) (d)(c)
θ0=1θ0=0θ0=0 θ0=1

k'

Figure 4.9 – (a) Dispersion relation of the equivalent structured waveguides in Fig. 4.8
which are infinite along the horizontal direction (dx = 2, dy = 1.65), in the frequency
range kdy/2π ∈ [3.9, 4.1] for θ0 = 0. (b) Spectrum of the first three TEVs (τ1 > τ2 >
τ3) of the open grating with M = 5, in the same frequency range, and for the same
value of θ0. (c) and (d) Dispersion relation and spectrum of the three TEVs for θ0 = 1
rad, respectively. The numbers indicate the number of propagating Bloch modes in the
corresponding colored frequency intervals. The red-filled triangle represents the frequency
k′ = 3.914 of the incident wave used to simulate the wavefield in Figs. 4.10 and 4.11.
Numerics are performed using a mode-matching method (see App. 4.A for more details
on the calculations).

the transmitted speckle pattern to be insensitive to the orientation of the rectangular
scatterers.

A numerical experiment of such insensitivity to the orientation of the scatterers is
shown in Fig. 4.10. A plane wave illuminates the open grating with an incidence angle
θ0 = 0 and at a frequency k′ = 3.914 that corresponds to a band with one propagating
Bloch mode (Fig. 4.10 (a)). We then introduce a grating of rectangular scatterers with
three different orientations (Figs. 4.10 (b)-(d)). Comparing all the configurations allows
us to observe the strong sensitivity of the wave pattern to the orientation of the scatterers
for x ≤ 0. We observe a progressive freezing of the wave pattern as we move away from
x = 0 and a complete freezing of the transmitted speckle pattern for x ≥ Mdx.

63



Chapter 4 – Invariance of the transmitted pattern in gratings
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Figure 4.10 – Freezing. (a) Wavefield modulus in open grating (M = 3, dx = 2, dy = 1.65).
The system is illuminated by an incident plane wave with an angle of incidence θ0 = 0
and at a frequency k′ = 3.914 that corresponds to a band with one propagating Bloch
mode (see Figs. 4.9). (b)-(d) Adding a grating of rectangular scatterers with three different
orientations. The right figures correspond to the pattern of the transmitted field ψ(x =
Mdx, y). Numerics are performed using a finite element method (Comsol Multiphysics).
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Figure 4.11 – Non-freezing. (a) Wavefield modulus in open grating (M = 3, dx = 2,
dy = 1.65). The system is illuminated by an incident plane wave with an angle of incidence
θ0 = 1 rad and at a frequency k′ = 3.914 that corresponds to a band with two propagating
Bloch modes (see Figs. 4.9). (b)-(d) Adding a grating of rectangular scatterers with three
different orientations. The right figures correspond to the pattern of the transmitted
field ψ(x = Mdx, y). Numerics are performed using a finite element method (Comsol
Multiphysics).
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Let us now consider the same numerical experiment as the previous one and the same
previous frequency of excitation k′ = 3.914 but with an incident angle θ0 = 1 rad. At
this given incident angle, the excitation frequency k′ corresponds to a band with two
propagating Bloch modes. Comparing all the configurations in Fig. 4.11 allows us to
observe the strong sensitivity of the wave pattern to the orientation of the scatterers in
the entire system.

4.5 Conclusion

In conclusion, we have shown that “closed” grating, which is made of structured hor-
izontal waveguides that are not connected in the vertical direction, share transmission
properties reminiscent of the single-channel regime observed in disordered and periodic
waveguides. This results in the invariance of the transmitted speckle pattern to the ori-
entation of the rectangular scatterers, hence to the incident wave on the closed gratings.
This freezing of the transmitted pattern is observed if the frequency of the incident wave
corresponds to a bandgap or a band with one propagating Bloch mode at any given inci-
dent angle. We have also shown that the freezing of the transmitted pattern can also be
obtained in “open” grating, which is made of structured horizontal waveguides that are
connected in the vertical direction if the frequency of the incident wave also corresponds
to a bandgap or a band with one propagating Bloch mode but for a specific range of
incident angle.
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APPENDIX

4.A Mode matching method

A mode matching method is used in this chapter to compute the dispersion relation
(k = f(qx)) and the TEVs given in Figs. 4.5 and 4.9. In order to get the dispersion relation
in Fig. 4.5 (a), the first step is to calculate the scattering matrix S of a unit cell (Fig. 4.A.1

653 42

(a)

e=0 e=0

dx

e e

dy

x

y
7653 421

(b)

Figure 4.A.1 – (a) Infinite periodic waveguides that are not connected along the vertical
direction, e = 0. (b) Infinite periodic waveguides that are connected along the vertical
direction, e ̸= 0. In a unit cell, the continuous lines represent Neumann boundary condi-
tions, and the dashed lines represent pseudo-periodic boundary conditions.
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(a)), which corresponds to the unit cell of a periodic waveguide with Neumann boundary
conditions. The calculation is detailed the App. 2.A.

For a given θ0, the TEVs in Fig. 4.5 (b) and (c) can be obtained by calculating the
scattering matrix St of the closed grating made of M -finite dx-periodic waveguides,

St = S(1−2) ⋆ SM ⋆ S(6−7), (4.13)

where S(1−2) is given by Eq. (4.20), SM is the scattering matrix of the M -finite dx-periodic
waveguide which can be computed by using M times the composition product [31] of the
scattering matrix S and S(6−7) can be can be calcuted similarly to S(1−2) as we will see in
the following. From this, we can deduce the transmission matrix given by Eq. (4.12) and
consequently the TEVs.

To obtain the dispersion relation in Fig. 4.9 (a) and (c). The first step is to calculate
the scattering matrix S of a unit cell (Fig. 4.A.1 (b)). The cell is a piecewise constant
waveguide element with different boundary conditions (Neumann for the continuous lines
and periodic for the dashed lines), composed of seven discontinuously connected segments
with length l(j) and width h(j), 1 ≤ j ≤ 7 (note that l(7) = l(1) = e, h(7) = h(1) = dy,
l(6) = l(2) = 0.1dx − e, h(6) = h(2) = 1, h(5) = h(3) and th = h(3) − h(4)).
For this structure the dimensions of the unit cell are dx = 2, dy = 1.65, e = 0.0625dx,
(h(3), h(4)) = (1.53, 0.58) and (l(3), l(4), l(5)) = (0.325, 0.25, 0.225)dx. The main difference
with the structure given in Fig. 4.A.1 (a) lies in the value of e = 0.

In each segment, a multimodal formulation of the wavefield is given as,

ψ(j)(x, y) = g(j)T(y)(a(j)+(x) + a(j)−(x)), (4.14)

with a(j)+(x) (resp. a(j)−(x)) the vector of the modal coefficient of the right- (resp. left-)
going wave and g(j) the vector of the transverse eigenfunctions. These eigenfunctions are,
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g(1)
n (y) = g(7)

n (y) = eiγ(1)
n y√
dy

, (4.15a)

g(2)
n (y) = g(6)

n (y) = √
ϵn cos (γ(2)

n y), (4.15b)

g(3)
n (y) = g(5)

n (y) =
√
ϵn/h(2) cos (γ(3)

n y), (4.15c)

g(4)
n (y) =

√
ϵn/h(4) cos (γ(4)

n (y − th)), (4.15d)

with ϵ0 = 1, ϵn>0 = 2 and

γ(1)
n = γ0 + n2π/dy, (4.16a)

γ(2)
n = nπ, (4.16b)

γ(3)
n = nπ/h(3), (4.16c)

γ(4)
n = nπ/h(4), (4.16d)

(4.16e)

with γ0 = k sin(θ0). The transmission matrix of each segment simply reads T(j) =
exp (Y(j)

c l(j)), with Y(j)
c the diagonal characteristic admittance matrix of the segment,

given by Y(j)
cn = i(k2 − γ(j)

n )1/2. The scattering matrix is then

S(j) =
 0 T(j)

T(j) 0

 , (4.17)

since no reflection occurs in the uniform segments. The scattering actually occurs at the
discontinuous junctions, and one accounts for it by rigorously writing the mode matching
that results from the continuity conditions. Consider, for example, the junction between
the segments ➀ and ➁. Writing the continuity of the wavefield and of its x-derivative,
leads to (the values of b(1,2)± below are taken at the junction abscissa)

F(a(1)+ + a(1)−) = (a(2)+ + a(2)−), (4.18a)
Y(1)

c (a(1)+ − a(1)−) = FTY(2)
c (a(2)+ − a(2)−), (4.18b)
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with F the mode-matching matrix:

Fmn =
1∫

0

g(1)
m (y)g(2)

n (y) dy. (4.19)

One deduces that the S-matrix of the junction (1-2) is

S(1−2) =
 F −1

Y(2)
c FTY(1)

c

−1−F 1

Y(2)
c FTY(1)

c

 . (4.20)

Once the other junction-S-matrices obtained similarly, the scattering matrix of the whole
unit cell can be computed by using iteratively the composition product, often referred to
as the Redheffer star-product [31]:

S = S(1) ⋆ S(1−2) ⋆ S(2) ⋆ . . . ⋆ S(6−7) ⋆ S(7). (4.21)

Thus, taking x = 0 as the position of the left end of the cell, a(1)−(0)
a(7)+(dx)

 = S
 a(1)+(0)

a(7)−(dx)

 (4.22)

Assuming now a periodicity along the x-direction, the modal components above also
fulfill the pseudo-periodic condition

a(7)+(dx) = eiqxdxa(1)+(0),

a(7)−(dx) = eiqxdxa(1)−(0).
(4.23)

Then, writing S as

S =
R T′

T R′

 , (4.24)

for a given θ0, the dispersion relation can be obtained as the solutions (qx, k) of

det
T R′

0 1

− eiqxdx

1 0

R T′

 = 0. (4.25)

For a given θ0, the scattering matrix of the M -finite open gratings can be computed
by using M times the composition product [31] of the scattering matrix S. From this, we
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can deduce the transmission matrix, and thus the TEVs.

4.B Dispersion relation

Fig. 4.B.1(a) shows the dispersion relation k = f(qy) of the infinite periodic waveguides
which are not connected in the vertical direction. It shows that the dispersion relation
corresponds to flat bands. While the dispersion relation of the infinite periodic waveguides
connected in the vertical direction (Fig. 4.B.1(b)) corresponds to bands with zero, one,
and two propagating Bloch modes.

Figure 4.B.1 – (a) Dispersion relation of the infinite periodic waveguides which are not
connected in the vertical direction (Fig. 4.B.1(a)) for qxdx/π = 1/6. (b) Dispersion re-
lation of the infinite periodic waveguides which are connected in the vertical direction
(Fig. 4.B.1(b)) for the same value of qx. The periodicities along both directions are dx = 2
and dy = 1.65. Numerics are performed using a finite element method (Comsol Multi-
physics).

71



Chapter 4 – Invariance of the transmitted pattern in gratings

4.C Closed grating

Fig. 4.C.1 (a) and (b) show the freezing of the transmitted pattern with an incident
plane wave at a frequency k1 = 4 corresponding to a band with one propagating Bloch
mode and with an angle of incidence θ0 = π/12. Fig. 4.C.1 (c) and (d) also show the
freezing of the transmitted pattern at the same frequency k1 = 4 but with a different
angle of incidence θ0 = π/4. The patterns of Fig. 4.C.1 (a) and (c) are different.

|Ѱ(x,y)|/max|Ѱ(Mdx,y)|
0 2.5

|Ѱ(x,y)|/max|Ѱ(Mdx,y)|
0 3

(a)

(b)

0

x
dx

1 2

Ѱ(i) θ0=π12

Ѱ(i) θ0=π12

(c)

(d)

Ѱ(i) θ0=π4

Ѱ(i) θ0=π4

0

x
dx

1 2

Figure 4.C.1 – Wavefield modulus in closed grating (M = 2, dx = 2, dy = 1.65) for
two different orientations of the rectangular scatterers. The gratings are illuminated by a
plane wave at a frequency k1 = 4 corresponding to a band with one propagating Bloch
mode (see Fig. 4.5). (a) and (b) Freezing with an angle of incidence θ0 = π/12. (c) and
(d) Freezing with an angle of incidence θ0 = π/4. Numerics are performed using a finite
element method (Comsol Multiphysics).
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Chapter 5

ENHANCED TRANSMISSION THROUGH AN

OPAQUE BARRIER IN A PERIODIC

WAVEGUIDE

5.1 Introduction

In the previous chapters, we have shown that the freezing phenomenon is not intrin-
sically related to the localized regime in disordered media and can also be observed in
periodic media. In this chapter, we show that another intriguing phenomenon observed

Figure 5.1 – Sketches of the studied scattering systems. (a) Opaque barrier in 2D waveg-
uide with unitary width. (b) Same as (a), with randomly distributed scatterers on both
sides of the barrier. (c) Same as (b), but with a left-right symmetry of the scatterers po-
sition. (d) Typical open eigenchannel in the symmetrical case, as sketched in (c). Source:
E. Chéron et al. [60].
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Chapter 5 – Enhanced transmission through an opaque barrier in a periodic waveguide

by E. Chéron et al. [60] in the diffusive regime in disordered media can also be observed
in periodic media. We begin with a short reminder of this latter result. This intriguing
phenomenon corresponds to a significant and broadband enhancement of the transmission
through an opaque barrier when placed between symmetric diffusive disordered slabs as
shown in Fig. 5.1. It is induced by multiple scattering interferences, which are inherent
to the diffusive transport of waves. One of their results is shown in Fig. 5.2. They com-

Figure 5.2 – Enhanced transmission through an opaque barrier when it is placed in the
middle of a left-right symmetric disordered waveguide. Spectrum of the conductance in
the frequency range k/π ∈]299, 300[ with k the wavenumber. The waveguide supports
N = 300 propagating modes. Three configurations are considered. Black: the barrier
alone. Red: the barrier, in the middle of a disordered slab with length L = 5 and l = 0.14
the mean free path, l ≪ L ≪ Nl. Blue: the barrier, in the middle of a left-right symmetric
disorder slab for the same L and l. In the last two cases, the conductance is not averaged
and comes from a single realization of the disorder. Source: E. Chéron et al.[60].

pared the spectrum of the conductance g for three different configurations. Recall that the
conductance characterizes the total transmission (Eq. (5.5)). They plotted the spectrum
of the conductance of the barrier alone. Then, as expected, when the barrier is placed
in the middle of an ordinary disorder, the conductance decreases in amplitude. Finally,
when the barrier is placed in the middle of left-right symmetric disorder, the conductance
increases, and there is a broadband enhancement in transmission compared to the barrier
alone, here for all the frequencies in a range k/π ∈]299, 300[ with k the wavenumber.
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5.1. Introduction

The authors [60] have constructed a scaling model that can predict the behavior of the
averaged conductance ⟨g⟩ (the average is over multiple configurations of the disorder) as a
function of the length L of the disordered slab and the transmittance of barrier alone. It is
based on the semi-classical description of the conductance through a double quantum-dot
by Whitney et al. [61], and it uses the statistical properties of the conductance in the
diffusive regime, which obeys Ohm’s law,

⟨g⟩ = Nl

L+ 1 . (5.1)

This surprising phenomenon was experimentally evidenced in a microwave experiment
when an aluminum bar was placed in the middle of a left-right symmetric disordered
system [48]. The phenomenon of the enhanced transmission induced by the mirror sym-
metry has also been studied when a barrier is placed in the middle of left-right symmetric
chaotic cavities [61], where the authors showed that a huge conductance peak is caused
by the symmetry in double quantum dots of chaotic shape.

In this chapter, we show that this phenomenon can also be observed in symmetric
periodic waveguides, as shown in Fig. 5.3.

x

y
1

0

Barrier alone(a)

(b) Asymmetric periodic waveguide

Md

d

(c) Symmetric periodic waveguide

Md

d

Figure 5.3 – Sketches of studied scattering systems. a) Opaque barrier in a 2D waveguide.
(b) Opaque barrier in the middle of an asymmetric finite d-periodic waveguide composed
of M unit cells. (c) Same as (b), with a symmetric finite periodic waveguide.
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Chapter 5 – Enhanced transmission through an opaque barrier in a periodic waveguide

To do this, we will first give a brief explanation of the barrier model, which allows us
to define barrier transmittance. We will also recall the definition of conductance, which
characterizes the transmission through a complex medium. After that, we will compare the
transmission for three different cases: barrier alone, barrier in the center of an asymmetric
periodic waveguide, and finally, barrier in the center of a symmetric periodic waveguide.
Then, we will continue our studies to optimize the transmission enhancement by observing
the evolution of the conductance as a function of the barrier transmittance and as a
function of the length of the symmetric periodic waveguide. For these studies, the barrier is
placed in the center of the system. Finally, we will study the sensitivity of the transmission
enhancement to symmetry defects.

5.2 Conductance enhancement

Let us consider the barrier alone placed at x = 0 in an infinite waveguide with rigid
boundary conditions at y = 0 et y = 1 as shown in Fig. 5.3 (a). We are solving the
Helmholtz equation

(∆ + k2)ψ(x, y) = 0, (5.2)

with k the wavenumber. We assume that the waveguide supports N propagating modes,
N = E(k/π) + 1, with E the greatest integer function. Let Wtr be the conductance of the
barrier. It depends on the frequency and a parameter α representing the “ strength” of
the barrier since the barrier is defined by the following interface condition, [∂xψ(x)]0 = 0,

[ψ(x)]0 = α∂xψ(0),
(5.3)

where the jump of the function f at x = 0 is defined by [f(x)]0 = limh→0 f(h) − f(−h).
As the positive real parameter α increases from zero to infinity the barrier changes from
fully transparent to fully opaque. We invite the reader to refer to [60] for more details on
the barrier model. In reduced form, the transmittance is given by:

τ(α) = Wtr/N, (5.4)

and it is upper bounded by τ(α = 0) = 1 (the barrier is transparent), and it drops rapidly
as α increases.

Let us consider the case when the barrier is placed in the middle of a finite d-periodic
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5.2. Conductance enhancement

waveguide composed of M unit cells as shown in Fig. 5.3 (b) and (c). Let T be the trans-
mission matrix and g be the dimensionless conductance of the medium; it measures the
total transmission due to the contribution of the transmission of all incoming transverse
modes

g = Tr
(
TT†

)
=

N∑
n,m=1

|Tnm|2 . (5.5)

Fig. 5.4 shows the spectrum of the conductance g of the three cases in Fig. 5.3. It

Asymmetric 
periodic waveguide

Symmetric 
periodic waveguide

Barrier alone

Figure 5.4 – Enhanced transmission through an opaque barrier when it is placed in the
middle of a symmetric periodic waveguide. The conductance g is plotted in the frequency
range k/π ∈ [199, 200] where N = 200. Three configurations are considered. Black: the
barrier alone, with a “strength” parameter α = 0.08. Red: the barrier in the middle of
an asymmetric periodic waveguide (M = 12, d = 2). Blue: the barrier in the middle of a
symmetric periodic waveguide (same M and d).

shows that when the barrier is in the middle of an asymmetric periodic waveguide, the
conductance is of the same order of magnitude as the barrier alone. But when the barrier
is in the middle of a symmetric periodic waveguide, there is indeed an enhancement of the
transmission compared to the transmission of the barrier alone, similar to the phenomenon
observed in the disordered waveguide (Fig. 5.2). The averaged conductance ⟨g⟩ ≃ 5 is 4
times the averaged conductance of the barrier ⟨Wtr⟩ = 1.25. Here, we averaged over the
corresponding frequency range k/π ∈]199, 200[ where N = 200.
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Chapter 5 – Enhanced transmission through an opaque barrier in a periodic waveguide

Let us now take a closer look at the symmetry-induced conductance enhancement and
how it can be modified by varying the average barrier transmittance ⟨τ⟩ (varying α) and
the length of the two symmetric periodic waveguides Md. Fig. 5.5 shows the variation of
the average conductance with M for different values of the average transmittance of the
barrier. The averaging is done over the frequency ranges k/π ∈]N − 1, N [ with N = 200.

Without barrier

Figure 5.5 – Average conductance ⟨g⟩ of the symmetric periodic waveguide as a function
of the number of unit cells M , for different values of the barrier mean transmittance
⟨τ⟩ (different values of α). The barrier is always located in the center of the symmetric
periodic waveguide. The black filled circle corresponds to the configuration without barrier
(⟨τ⟩ = τ = 1). The black horizontal line corresponds to the average number of propagating
Bloch modes ⟨NB⟩ ≃ 18 of the equivalent infinite periodic waveguide (without barrier).
The conductance, the barrier transmittance, and the number of propagating Bloch modes
are averaged over a frequency range k/π ∈]199, 200[ where N = 200. The configuration
used to obtain Fig. 5.4 is indicated by the black rectangle.

Generally, starting from the value of the barrier average conductance,

⟨g (M = 0, ⟨τ⟩)⟩ = N⟨τ⟩, (5.6)

the average conductance increases, reaches a maximum value gopt corresponding to an opti-
mal number of unit cells surrounding the barrier, then decreases, and finally ⟨g (M = 100, ⟨τ⟩)⟩
tends to a finite value g100 for M = 100. Here, we have stopped the numerical calculations
at M = 100, but even for M > 100, the mean value of the conductance tends to a finite
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5.2. Conductance enhancement

value.
Fig. 5.5 also shows that by increasing the transmittance of the barrier, the overall

level of conductance will increase, where the upper black-colored data is the case without
a barrier. The average conductance (without barrier) decreases from the initial value

g (M = 0, τ = 1) = N, (5.7)

and eventually tending to a finite value

⟨g (M = 100, τ = 1)⟩ ≃ NB = 18, (5.8)

where NB is the number of propagating Bloch modes of the equivalent infinite d-periodic
waveguide (without barrier).

Comparing the periodic case with the disordered case [60], where the conductance is
averaged over several realizations of the disorder, the same qualitative behavior is ob-
served, but while in the periodic case, in the limit of long length M ≫ 1, the conductance
tends to a finite value g100 for different values of the barrier transmittance, in the dis-
ordered case, in the case of long length L ≫ l, the conductance is expected to vanish
g(L → ∞) = 0. Thus, in the periodic case, we can expect an enhancement of the trans-
mission even in the long length limit, as shown in Fig. 5.6 (a). It shows the average
conductance g100 over different frequency ranges k/π ∈]N − 1, N [ as a function of the
barrier transmittance ⟨τ⟩, where a noticeable threshold, ⟨τ⟩ < τ100, is required to achieve
a transmission enhancement in the limit of long length periodic waveguides.

We also observed the evolution of the maximum value of the average conductance
⟨g (M, ⟨τ⟩)⟩ = gopt over different frequency ranges k/π ∈]N − 1, N [ as a function of the
barrier transmittance ⟨τ⟩ (Fig. 5.6 (b)). We also noticed a threshold, ⟨τ⟩ < τopt, required
to obtain a transmission enhancement, as it has been observed in the disordered case.
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<
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100

100
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Figure 5.6 – (a) Average conductance g100 of a 100-cell symmetric periodic waveguide over
different frequency range k/π ∈]N−1, N [ as function of the average barrier transmittance
⟨τ⟩. τ100 indicates the threshold in order to get an enhancement in transmission in the limit
of long-length periodic waveguides. The barrier is in the center. (b) Maximum value of
the averaged conductance gopt over different frequency range k/π ∈]N − 1, N [ as function
of the average barrier transmittance ⟨τ⟩. τopt indicates the threshold in order to get an
enhancement in transmission. The black rectangle indicates the configuration used to get
Fig. 5.4.
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5.3 Symmetry breaking

5.3.1 Shifted scatterer

The sensitivity of the enhanced transmission due to symmetry breaking has been
studied in disordered waveguides [62, 63] and in double quantum dots [64, 65]. Here, we
study this sensitivity in a finite d-periodic waveguide, where the symmetry is broken by
shifting a scatterer from its original position for two configurations, as shown in Fig. 5.7.
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Figure 5.7 – Barrier in the middle of two symmetric finite d-periodic waveguides. (a)
The unit cell is asymmetric. (b) The unit cell is symmetric. For both cases, the symmetry
breaking is done by shifting the scatterer by a distance δ. The shifted scatterer is displayed
in yellow.

Fig. 5.8 shows that, for both configurations, the average conductance decreases rapidly
when the defect is close to the barrier and increases as the defect moves away from the
barrier.

81



Chapter 5 – Enhanced transmission through an opaque barrier in a periodic waveguide

Barrier alone 

Perfectly symmetric  

Figure 5.8 – Average conductance as a function of the cell index of the shifted scatterer for
N = 200. No scatterer is shifted for the zero index: perfect symmetry. The black dashed
line corresponds to the average conductance of the barrier alone ⟨Wtr⟩ with α = 0.08. The
red-filled dots correspond to the configuration in Fig. 5.7(a), where M = 12 and d = 2.
The blue-filled dots correspond to the configuration in Fig. 5.7(b) for the same values of
M and d.

5.3.2 Shifted Barrier

To get insight into the effect of the defect of symmetry, we have also studied the case
where the symmetry is broken by shifting the barrier from its original position in the
symmetric periodic waveguide as shown in Fig. 5.9.

x

y

0

1

Md

d δx

Figure 5.9 – Shifting the barrier by a distance δx from its original position at x = 0. The
shifted barrier is displayed in yellow. The barrier is located in a finite d-periodic waveguide
made of M symmetric unit cells.
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5.3. Symmetry breaking

Fig. 5.10 shows that there is an enhancement in transmission every δx = md/2
with m an integer due to the dy periodicity of the waveguide and due to the symme-
try of the unit cell. These functions decrease in amplitude as the barrier approaches

(a)

(b)

(c)

δx

δx

x

δx

Figure 5.10 – Enhanced transmission through an opaque barrier when it is shifted by
δx = md/2, with m an integer, from the center of symmetry x = 0 of the finite periodic
waveguide with M = 12, d = 2.(a) The barrier is shifted by δx = d/2. (b) The barrier is
shifted by δx = d. (c) Average conductance ⟨g⟩ as a function of δx for N = 200. Insets:
Zoom on a region where δx/d ∈ [0, λ/10] where λ is the wavelength, and zoom on a region
where δx/d ∈ [0, 1]. The black dashed horizontal line represents the average conductance
of the barrier alone (⟨Wtr⟩ = 1.25) with strength parameter α = 0.08 and for N = 200.
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from the left (resp. right) end of the finite periodic waveguide, namely from δx = −M/2
(resp. δx = M/2). Otherwise, there is no enhancement in transmission due to the sub-
wavelength sensitivity to the barrier position, as has been shown in the disordered waveg-
uide (Fig. 5.11). Note that the periodic jump in the average conductance (red circle in

Figure 5.11 – Subwavelength sensitivity to symmetry defects in disordered waveguide.
Decrease in conductance when shifting the barrier by a distance δx from the symmetry
axis at N = 300. Ordinary disorder (red). Symmetric disorder (blue). Source: E. Chéron
et al. [63].

Fig. 5.10) occurs when the width of the waveguide varies, which is due to the decrease in
transmittance of the barrier alone for the same strength parameter α.

An example of transmission enhancement for δx = 3d is shown in Fig. 5.12. It shows
that there is a small decrease in amplitude compared to the case where δx = 0.
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Barrier alone

Barrier at  x =0 δ

Barrier at  x =3d δ

Figure 5.12 – Spectrum of the conductance at N = 200 with α = 0.08. Small decrease in
conductance when shifting the barrier a distance δx = 3d from the symmetry axis in a
finite periodic waveguide composed of M = 12 symmetric unit cells.

5.4 Conclusion

We have shown that the phenomenon of enhanced transmission when an opaque barrier
is placed in the center of spatially symmetric scatterers can also be observed in a periodic
waveguide. The periodic waveguide differs from the disordered waveguide as it allows
transmission enhancement even in the long length limit M ≫ 1. We have also shown
that the enhancement in the transmission is sensitive to symmetry defects, but due to
the periodicity, for some symmetry defects (for example, shifting the barrier in a periodic
waveguide with a symmetric unit cell), there is an enhancement in transmission for δx =
md/2. Otherwise, there is no enhancement in transmission due to the subwavelength
sensitivity to the barrier position as in the disordered case.
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GENERAL CONCLUSIONS AND

PERSPECTIVES

In this manuscript, we have first studied the invariance of transmitted speckle patterns
to incident conditions. This phenomenon, which we often refer to as “freezing” of the
transmitted pattern, was first shown in disordered media. Therefore, in the introductory
chapter, we give a general overview of the different transport regimes in these media,
highlighting the difference between the diffusive and the localized regime. In the diffusive
regime, the transmission is carried by multiple transmission eigenchannels (eigenvectors of
TT†), changing the incidence conditions will lead to different linear combinations of these
channels, the complex transmitted pattern is thus sensitive to these changes. In contrast,
in the localized regime, also known as the single-channel regime, since the transmission
is dominated by a single transmission eigenchannel, the transmitted speckle pattern is
insensitive to incidence conditions, only the amplitude which decays exponentially as a
function of the length of the disordered media, remains dependent.

In the second chapter, we showed that the single-channel regime is not only associated
with disordered media but can also be observed in other complex media, typically peri-
odic waveguides. We showed that the single-channel regime corresponds to a frequency
within a bandgap or a band with a propagating Bloch mode of the periodic medium. By
numerical computation of the wavefield in a finite periodic waveguide, we have shown that
the transmitted pattern is insensitive to the source position, and hence to the incidence
conditions, when the excitation frequency corresponds to at most one propagating Bloch
mode. The periodic case differs from the disordered case in that it allows freezing of the
transmitted pattern with one propagating Bloch mode and hence non-exponentially weak
transmission.

Moreover, in the third chapter, we presented an experimental observation of the frozen
pattern of the transmitted pressure field in a finite periodic waveguide. This observation
is made under the conditions discussed in the second chapter; the excitation frequency is
within a bandgap or a band with a propagating Bloch mode. We have also observed that
the pattern of the output pressure remains insensitive to the source positions when the
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output boundary condition is changed from absorbing to rigid.
Furthermore, in the fourth chapter, we showed that the freezing of the transmitted

pattern is not intrinsically related to periodic waveguides and can also be observed in
gratings with finite periodic structures in the propagation direction. While the grating
is illuminated by a plane wave with incident angle θ0, we added another grating made
of rectangular scatterers with different orientations to change the incident conditions on
the grating of interest. Both gratings have the same periodicity dy along the transverse
direction. We showed that in the case of a so-called “closed” grating, a grating of finite
periodic waveguides that cannot communicate along the transverse direction, the pattern
of the transmitted field is insensitive to the orientations of the rectangular scatterers if
for any given θ0 the frequency of the incident plane wave satisfies the freezing conditions,
namely at most one propagating Bloch mode in the direction of propagation of the equiv-
alent infinite periodic waveguides. The pattern of the frozen field depends on θ0. While in
the case of the so-called “open” grating, a grating of finite periodic waveguides that can
communicate along the transverse direction, the freezing conditions depend on the choice
of frequency and the angle of incidence θ0.

Finally, in the fifth chapter, we have shown that another surprising phenomenon—a
significant and broadband enhancement of transmission through an opaque barrier when
placed between symmetric diffusive disordered waveguides—can also be observed in pe-
riodic media. We showed that when the barrier is in the middle of a finite symmetric
periodic waveguide, the transmission is four times that of the barrier alone. We also ob-
served that for a long length limit (a large number of M unit cells), there is also an
enhancement in transmission. We also studied the case of symmetry breaking, typically
when the barrier is shifted by δx from its original position, the center of the finite sym-
metric periodic waveguide, where we showed that due to the d-periodicity and due to the
symmetry of the unit cell, there is recurrent enhancement in transmission when δx = md

2

with integer m.

Perspectives

In this thesis, we have initiated several aspects of wave propagation in periodic media.
We present some preliminary ideas and results that provide perspectives and avenues of
research for future studies.
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Rare events: non-freezing in bandgap

The freezing phenomenon is a characteristic of the single-channel regime, namely, when
the first transmission eigenvalue is much larger than the second one( τ1 ≫ τ2). We have
shown in Chap. 2 that this condition corresponds to a frequency within the bandgap or to
a band with one propagating Bloch mode of the periodic medium. However, for some rare
events that occur only in the bandgap, we have observed that τ1 ≃ τ2 (Fig. 5.13 (a) and
(b)), thus the transmitted pattern is sensitive to the incidence conditions. We propose for
future studies to characterize these rare events, which also occur in the localized regime
in the disordered waveguide as shown in Fig. 5.13 (c).

(b) (c)(a)

d Md L

11

Figure 5.13 – (a) Dispersion relation of the infinite d-periodic waveguide (d = 1.5) in
the frequency range k/π ∈ [15.3, 15.36]. (b) Spectrum of the conductance g (black dashed
line) and the transmission eigenvalues (colored solid lines) of the equivalent finite periodic
waveguide (M = 10) in the same frequency range. Inset: Zoom on a region where τ1 ≃ τ2.
(c) Spectrum of the conductance g (black dashed line) and the transmission eigenvalues
(colored solid lines) of the disordered waveguide in the localized regime, s = L/l ≃ 34 >
N = 16, where l is the mean free path and N is the number of propagating modes outside
the scattering region, and in the same frequency range as in (a) and (b). Inset: Zoom on
a region where τ1 ≃ τ2.
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Effects of losses

In certain experimental contexts, losses are unavoidable and can complicate the visu-
alization of phenomena. In acoustic waveguides, such losses can arise from various mecha-
nisms, such as the background medium, and viscous and thermal losses at the hard walls
which are particularly pronounced in narrow waveguides. Thus, it is crucial to account for
these losses not only to accurately describe and interpret experiments but also because
they can significantly affect the transmission characteristics of the medium. Therefore, as
a second perspective, we propose to study the robustness of both phenomena discussed
in this thesis in a periodic medium, namely the insensitivity of the transmitted field to
incident conditions and the transmission enhancement induced by the symmetry, when
absorption is introduced.

Unidirectional freezing

In this thesis, we showed that for a given excitation frequency, if there is only one right-
going propagating Bloch mode in a finite periodic waveguide, the transmitted pattern at
the right end of the waveguide is insensitive to the incidence conditions. Since our system
is reciprocal, for the same excitation frequency, if we send two different incident waves
from the right end of the waveguide, the transmitted wave pattern at the left end will also
remain unchanged. Freezing is bidirectional. But what if the reciprocity of the system is
broken? Thus, we can imagine a new periodic configuration where only one Bloch mode
propagates to the right while two Bloch modes propagate to the left. In this case, the
freezing of the transmitted field will depend on the direction of the incident wave. A pos-
sible way to break reciprocity within the periodic waveguide is to use the thermoacoustic
effect through this new configuration shown in Fig. 5.14. It corresponds to a finite periodic
thermoacoustic waveguide [66–70], where the interaction of an acoustic wave in narrow
channels submitted to a temperature gradient leads to a break in reciprocity. Finally, we
proposed a third perspective to study unidirectional freezing in thermo-acoustic periodic
waveguides.
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Figure 5.14 – Unidirectional freezing. Typical schematic of a finite d-periodic thermoa-
coustic waveguide composed of M unit cells. The unit cell consists of a regenerator (REG),
also called a stack, which consists of narrow channels. A temperature gradient is imposed
on the REG, ∆T0 = Th − Tc, where Tc is the ambient temperature. (a) and (b) Two
different incident conditions are imposed at the left end of the waveguide. The pattern of
the transmitted field is insensitive to the incident conditions. (c) and (d) Two different
incident conditions are imposed at the right end of the waveguide. The transmitted field
pattern is sensitive to the incident conditions.
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RÉSUMÉ

Les interférences jouent un rôle important dans le transport des ondes à travers des
milieux complexes, influençant significativement les caractéristiques du scattering et con-
duisant à de nombreuses applications en contrôle des ondes. Un exemple notable est la
structure de bande du spectre de transmission dans les milieux périodiques. D’autres
exemples incluent les fluctuations de conductance et la localisation d’Anderson dans les
milieux désordonnés. Dans ce manuscrit, nous montrons que des phénomènes tels que
l’insensibilité du motif du champ transmis à l’onde incidente ("gel" du champ transmis)
ou l’amélioration de la transmission due à la symétrie spatiale des diffuseurs, observés
dans les milieux désordonnés, peuvent également se produire dans les milieux périodiques,
même s’ils présentent des natures différentes de propagation des ondes.

Dans cette optique, dans le chapitre introductif, nous commençons par présenter les
différents régimes de transport dans un guide d’onde désordonné, en soulignant la dif-
férence entre les régimes où le gel du champ transmis est observé et ceux où il ne se
manifeste pas. En optique, l’image sur un écran du champ transmis à travers un milieu
désordonné opaque - le speckle - est la même quelles que soient les conditions d’éclairage.
Le guide d’onde désordonné supportant N de modes propagatifs, dans lequel est placé
un milieu inhomogène constitué des diffuseurs positionnés aléatoirement dans une région
finie de longueur L. Dans ce guide, il existe trois différents régimes de transport. Tout
d’abord, un régime balistique lorsque la longueur L est inférieure au libre parcours moyen
de transport l qui représente la distance typique après laquelle l’onde perd la mémoire
de sa direction initiale. Dans ce régime, l’onde traversant le milieu désordonné subit peu
de scattering. Le deuxième régime est le régime diffusif lorsque le milieu est caractérisé
par une longueur intermédiaire, l ≪ L ≪ ξ où ξ est la longueur de localisation. Dans ce
régime, l’onde subit des multiples scattering en traversant le milieu. Dans ce régime la
transmission est assurée par plusieurs canaux propres de transmission, ainsi changer les
conditions d’incidence conduit à différentes combinaisons linéaires de ces canaux, rendant
ainsi le speckle du champ transmis sensible à ces changements. Le dernier régime est le
régime localisé, L ≫ ξ, où l’onde est piégée dans le désordre et la transmission décroît
de façon exponentielle. Le milieu désordonné est opaque. Ce régime est également connu
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sous le nom de régime à canal unique, puisque la transmission est dominée par un seul
canal propre de transmission, rendant ainsi le motif du champ transmis insensible aux
conditions d’incidence, seule l’amplitude, qui décroît exponentiellement en fonction de la
longueur du milieu désordonné, reste dépendante.

Nous montrons, dans le deuxième chapitre, que le régime à canal unique n’est pas seule-
ment associé aux milieux désordonnés, mais peut également être observé dans d’autres
milieux complexes, notamment dans les guides d’ondes périodiques. Avec des analyses
numériques et algébriques, nous montrons que le régime à canal unique correspond à une
fréquence située dans une bande interdite ou une bande avec un mode de Bloch propa-
gatif du milieu périodique. Ainsi, pour une fréquence d’excitation qui correspond à une
bande interdite, nous visualisons le champ dans le guide d’ondes périodique fini. Nous
observons que le champ est progressivement gelé, présentant un même motif quel que soit
la position de la source (quel que soit l’onde incidente) qui l’a généré et un gel complet
en transmission avec une amplitude exponentiellement faible. Nous visualisons également
le champ dans le guide d’ondes périodique fini avec une fréquence d’excitation qui cor-
respond à une bande avec un mode de Bloch propagatif. Nous constatons également que
le champ est progressivement gelé indépendamment de la position de la source et un gel
complet en transmission avec une amplitude finie. Nous caractérisons l’évolution spatiale
du gel avec une fonction de similarité F qui est égale à l’unité lorsque les profils du champ
sont les mêmes. Cette fonction est différente de l’unité lorsque les profils du champ sont
différents. Nous mettons en évidence que certaines configurations permettent d’obtenir
le gel du champ en transmission pour une large bande. Le cas périodique diffère du cas
désordonné comme il permet d’obtenir le gel du profil du champ transmis avec un mode
de Bloch propagatif, et donc une transmission qui n’est pas exponentiellement faible. Ceci
devrait faciliter la mise en évidence expérimentale et la caractérisation de l’invariance du
profil du champ transmis à l’onde incidente et donc à la position de la source.

Dans le troisième chapitre, nous présentons une observation expérimentale du gel dans
un guide d’ondes acoustique périodique constitué de cinq cellules. Nous caractérisons
expérimentalement l’invariance du profil du champ transmis à la position d’une source
acoustique en visualisant le spectre de la fonction de similarité F . Cette fonction de
similarité est égale à l’unité si la fréquence d’excitation correspond une bande interdite ou
une bande avec un mode de Bloch propagatif du milieu périodique. Dans ces conditions,
nous constatons que le profil du champ transmis est insensible à la position de la source.
Sous ces mêmes conditions, nous observons également le gel du champ lorsque le guide

102



Résumé

n’est plus anéchoique à son éxtremité mais fermé.

Dans le quatrième chapitre, nous montrons que le gel du profil du champ transmis
n’est pas intrinsèquement lié aux guides d’ondes périodiques et peut également être ob-
servé dans des réseaux de diffraction (gratings) à structures périodiques finies suivant la
direction de propagation. Lorsque le grating est illuminé par une onde plane avec un angle
d’incidence θ0, nous ajoutons un autre grating composé de diffuseurs rectangulaires avec
des orientations différentes pour changer les conditions d’incidence sur le grating d’intérêt.
Les deux gratings ont la même périodicité dy le long de la direction transversale. Nous
montrons que, dans le cas d’un grating dit “ fermé”, un grating de guides d’ondes péri-
odiques finis qui ne peuvent pas communiquer dans la direction transversale, le profil du
champ transmis est insensible aux orientations des diffuseurs rectangulaires si, pour un
θ0 donné, la fréquence de l’onde plane incidente satisfait les conditions de gel, à savoir au
plus un mode de Bloch propagatif dans la direction de propagation des guides d’ondes
périodiques infinis équivalents. Le profil du champ gelé dépend de θ0. En revanche, dans le
cas d’un grating dit “ ouvert ”, un grating de guides d’ondes périodiques finis qui peuvent
communiquer dans la direction transversale, les conditions de gel dépendent du choix de
la fréquence et de l’angle d’incidence θ0.

Un autre phénomène intrigant observé dans les milieux désordonnés peut également
être observé en milieux périodiques : un gain significatif et large bande de la transmission à
travers une barrière opaque lorsqu’elle est placée entre deux milieux diffusant symétriques.
Dans le cinquième chapitre, nous donnons d’abord un rappel sur les résultats obtenus en
milieux désordonnés. Ce gain est induit par des interférences multiples, qui sont inhérentes
au transport diffusif des ondes. Il est sensible au décalage sublongueur de la barrière de
sa position d’origine. Ensuite, nous étudions ce phénomène dans le cas d’un guide d’onde
périodique fini et symétrique avec une barrière placée au centre. Nous constatons que la
transmission à travers ce système est quatre fois supérieure à celle de la barrière seule.
Nous observons que même pour un grand nombre de cellules unitaires M ≫ 1, il y a une
amélioration de la transmission. Tandis que dans les milieux désordonnés, pour L ≫ l, la
transmission tend vers zéro. Nous étudions le cas où la symétrie est brisée, typiquement
lorsque la barrière est décalée de δx de sa position d’origine, au centre du guide d’ondes
périodique symétrique fini. Nous observons que le gain en transmission est sensible au
décalage sublongueur de la barrière, mais en raison de la périodicité d et de la symétrie
de la cellule unitaire, il y a une répetition du gain de la transmission lorsque δx = md

2

avec m un entier.
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Finalement, nous présentons quelques idées préliminaires qui ouvrent des perspectives
et des pistes pour les recherches à venir. Pour certains événements rares qui se produisent
uniquement dans la bande interdite du milieu périodique, nous avons observé que la trans-
mission est dominée par deux canaux propres de transmission, donc le profil du champ
transmis est sensible aux conditions d’incidence. Nous proposons pour les études futures
de caractériser ces événements rares, qui se produisent également dans le régime local-
isé dans les milieux désordonnés. D’autre part, dans certains contextes expérimentaux,
les pertes sont inévitables et peuvent compliquer la visualisation des phénomènes. Il est
donc crucial de tenir compte de ces pertes non seulement pour décrire et interpréter pré-
cisément les expériences, mais aussi parce qu’elles peuvent affecter de manière significa-
tive les caractéristiques de transmission du milieu. Par conséquent, comme une deuxième
perspective, nous proposons d’étudier la robustesse des deux phénomènes discutés dans
cette thèse dans un milieu périodique, à savoir l’insensibilité du profil du champ transmis
aux conditions d’incidence et l’amélioration de la transmission induite par la symétrie,
lorsque l’absorption est introduite. Finalement, nous suggérons une troisième perspective
pour étudier le phénomène du gel dans le cas où la réciprocité est brisée dans le milieu
périodique, dans le but d’obtenir le gel du champ dans une seule direction.
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Titre : Structures périodiques : invariance de la transmission et effets de symétrie 

Mots clés : Localisation d’Anderson, modes de Bloch, symétrie spatiale. 
Résumé : Une caractéristique du régime 
localisé dans un milieu désordonné est 
l’insensibilité du speckle transmis à l’onde 
incidente. En optique, l’image sur un écran 
du champ transmis à travers un milieu 
désordonné opaque - le speckle - est la 
même quelles que soient les conditions 
d’éclairage. Ce phénomène remarquable 
peut être expliqué par l’analyse des modes 
propres de transmission du matériau étudié. 
Le régime localisé se caractérise par la 
prédominance d’un unique mode, la 
transmission de tous les autres étant 
significativement plus faible. Le motif du 
champ transmis est alors déterminé par ce 
seul mode, indépendamment de la source. 
Un phénomène analogue est possible dans 
un milieu ordonné, périodique, lorsque 

l’onde propagée dans le milieu est 
principalement portée par un unique mode 
de Bloch. L’onde propagée dans le milieu 
périodique est alors progressivement « 
gelée », présentant un même motif, quelque 
soit la source qui l’a générée. Le travail 
présenté vise à caractériser et observer 
expérimentalement ce phénomène dans le 
cas de la propagation dans un guide d’onde 
périodique. Il vise aussi à caractériser ce 
phénomène dans le cas de la transmission à 
travers un réseau de diffraction. Finalement 
nous nous intéressons aux effets de la 
symétrie lorsqu’une barrière opaque est 
placée dans un guide d’ondes périodique, en 
particulier au gain de la transmission induit 
par la symétrie.

 
 
 
Title: Periodic structures: transmission invariance and symmetry effects 

Keywords: Anderson localization, Bloch modes, spatial symmetry. 
Abstract: A characteristic of the localized 
regime in a disordered medium is the 
insensitivity of the transmitted speckle to the 
incident wave. In optics, the image on a 
screen of the transmitted field through an 
opaque disordered medium - the speckle – 
remains the same regardless of the lighting 
conditions. This remarkable phenomenon 
can be explained by analysing the 
eigenmodes of transmission of the studied 
material. The localized regime is 
characterized by the predominance of a 
single mode, with the transmission of all 
other modes being significantly weaker. The 
pattern of the transmitted field is then 
determined by this single mode, regardless 
of the source. A similar phenomenon is 

possible in an ordered, periodic medium, 
when the wave propagated in the medium is 
mainly carried by a single Bloch mode. The 
wave propagated in the periodic medium is 
then gradually « frozen », presenting the 
same pattern, regardless of the source that 
generated it. The presented work aims to 
characterize and to observe experimentally 
this phenomenon in the case of propagation 
in a periodic waveguide. It also aims to 
characterize this phenomenon in the case of 
transmission through a diffraction grating. 
Finally, we are interested in the effects of 
symmetry when an opaque barrier is placed 
in a periodic waveguide, specifically focusing 
on the transmission enhancement induced 
by symmetry.
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