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In the world, one-third of newborns admitted to intensive care suffer from a rare disease (RD). RDs 

are a heterogeneous group of conditions classically characterized by a very low prevalence (less than 

1 in 2,000 individuals in Europe). RDs encompass 5,000 to more than 9,000 diseases depending on the 

source (Ferreira 2019; Haendel et al. 2020; Sequeira et al. 2021), and this number continues to grow 

with new conditions being described every year. Although they may not touch every family like a 

common condition would – heart disease, cancer, diabetes and dementia, just to name a few – RDs 

often have extremely severe consequences and impose a dramatic health burden on societies around 

the world. While RDs are by definition rare when looked at separately, they are frequent as a whole 

and affect around 350 million people worldwide including 3 million people in France, which is nearly 

one in twenty French citizens. Many RDs affect children, 30% of whom do not survive past their 5th 

birthday (Wright, FitzPatrick and Firth 2018), but they can also develop later in life during adulthood. 

RDs are often chronic, severe and alter significantly the quality of life of patients. 

Added to this public health issue is the fact that nearly 50% of RDs go undiagnosed, and when they 

are diagnosed, it is most often after months, or even years, of diagnostic “wandering”. Diagnosis is a 

crucial step for patients, as it allows a better understanding of their disease and improve the medical 

care or therapeutics they can receive (Uhlenbusch, Löwe and Depping 2019). This elusive diagnosis is 

often a genetic or molecular one, as around 80% of RDs are believed to be of genetic origin (Wright, 

FitzPatrick and Firth 2018), with immunological, oncological and toxicological causes explaining the 

remainder. This commonly cited percentage of genetic etiology in RDs is sometimes challenged, with 

a recent review article (Ferreira 2019) describing that only 39% of RDs have a confirmed genetic origin, 

but the genetic basis of many RDs is undeniable.  

Overall, the main challenge that I have address during my PhD project is: how can we improve the 

methods of analysis of a RD patient’s genetic information to ultimately offer them a genetic diagnosis? 

My objective was to provide statistical and bioinformatic methods that could easily be applied in a 

clinical or research context and that would offer valuable information for RDs diagnosis.  

Nowadays, we have a growing amount of genetic data at our disposal due to the progress of DNA 

sequencing technologies. The issue now becomes, how to analyze this data for currently undiagnosed 

RDs? To understand why this question is so challenging, there are a few key facts that I need to mention 

about RDs. The genetic architecture of RDs is very complex and can be different from one RD to 

another. My work has thus been focused on addressing three important factors that can explain RDs 

genetic diagnosis shortcomings: genetic heterogeneity, non-coding variants and complex modes of 

inheritance.  
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Indeed, many conventional paradigms of genetics, notably the one-gene-one-disease model, 

inadequately capture the genetic diversity observed in RDs. Most RDs are characterized by a strong 

genetic heterogeneity, wherein genetic variants in different genes lead to phenotypically 

indistinguishable diseases. The existence of multiple causative genes contributing to a singular clinical 

phenotype makes the grouping of patients even more challenging, often resulting in only one 

individual harboring a specific causal genetic variant. Moreover, the increasing availability of whole-

genome sequencing data has unveiled the prominence of non-coding variants in RDs etiology, 

challenging traditional coding-centric approaches to genetic diagnosis. Non-coding variants can have 

profound effects on gene expression regulation and protein function, unraveling novel mechanisms 

underlying RDs. Compounding the already challenging nature of RDs genetics are complex patterns of 

inheritance. The main example of complex genetic inheritance explored in this work is digenism, 

according to which the combined effects of variants within two distinct genes are necessary to develop 

a disease.  

In the Part II of this thesis, I present some key concepts of human genetics that are necessary to 

understand my work. Afterwards, in Part III, I discuss the strategies I have implemented to address 

genetic heterogeneity in RDs and analyze variants in the non-coding genome. I introduce the method 

that I have developed to prioritize variants in the coding and non-coding genome in RD patient 

genomes, which is named PSAP-genomic-regions. I also present Easy-PSAP, the bioinformatic workflow 

that I have developed and that allows the application PSAP-genomic-regions to patient data. The 

performance of PSAP-genomic-regions is highlighted in this part by an application to real-life cases of 

RDs, in consanguineous families affected by male infertility. Part IV is focused on elucidating a complex 

mode of inheritance of RDs, the digenic model. I review the different methods developed to detect 

digenic inheritance in sequencing data and benchmark some of the methods in realistic scenarios of 

RD diagnosis. I finish in Part V by discussing all of my results, and put them back in the context of 

understanding the genetic basis of RDs and using new technologies to bridge the diagnostic gap for 

patients affected by a RD.  

 

 

 

 

 

 



 

 

20 

  



 

 
 

21 

Part II 
 

Main concepts in human genetics
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This part will provide the necessary background and information to discuss my results. I start 

by giving an overview of the genome’s organization and its variations. Then, I delve deeper into the 

interpretation of DNA variations and their link to disease. I highlight different strategies that can be 

used to associate genes to diseases, and contrast them with strategies to prioritize potentially causal 

variant in a diagnostic setting. Finally, I focus on the specific genetic characteristics of RDs genetics and 

their diagnosis and mention some key facts on the two RDs that I will use as case studies in this 

manuscript, which are Cerebral Small Vessel Disease and male infertility. 

Chapter 1  ORGANIZATION OF THE GENOME  

Genetics, derived from the Greek work genesis meaning “origin”, is the study of genes, DNA variation, 

and heredity in organisms. This section of the introduction aims at describing the main concepts in 

human genetics.  

1.1 DNA STRUCTURE AND FUNCTION 

1.1.1 Discovery of genetic inheritance and DNA  

Modern genetics can be traced back to the discovery of trait inheritance by Gregor Mendel. In 

his study entitled “Experiments on Plant Hybridization”, published in 1865, Mendel describes trait 

transmission patterns in pea plants. Some traits followed what he called a “dominant” transmission, 

unchanged by the hybridization. Other traits were characterized as “recessive”, becoming latent in the 

hybridization process. Mendel also described an heritable substance, the “elements”, which 

determined the expression of each trait he studied (Mendel, 1865). Although the importance of 

Mendel’s work did not gain recognition until after his death, the mathematical equations he used to 

describe dominant and recessive trait transmission still hold true to this day. 

Only a few years later, in 1869, chemist Friedrich Miescher made a major leap in the 

understanding of human genetics by describing the “nuclein”, that we know as DNA (DeoxyriboNucleic 

Acid) today, inside the nuclei of human white blood cells. Miescher, much like Mendel, was not 

recognized by the scientific community of his time for his ground-breaking findings. In the decades 

that followed, biochemists Phoebus Levene and Erwin Chargaff expanded upon Miescher’s discovery 

by describing the primary chemical components of the DNA molecule and the bonds that linked these 

components. Building upon Levene and Chargaff’s work, as well as pivotal X-ray crystallography work 

by often-forgotten English researchers Rosalind Franklin and Maurice Wilkins, James Watson and 

Francis Crick described in 1953 the double-helical structure of DNA. This discovery would earn 

Watson, Crick and Wilkins the 1962 Nobel Prize in Medicine.  
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The genetic information is now known to be carried by the DNA molecule. A DNA molecule is 

a polymer shaped in a double-stranded helix (Figure 1.1). Each of the two strands of DNA is a 

polynucleotide, as they are composed of monomeric units call nucleotides. A single nucleotide is made 

up of three components: a nitrogenous base, a sugar (deoxyribose in the case of DNA) and a phosphate 

group. The nitrogen-containing base, or nucleobase, can either be a purine (Adenine [A] and Guanine 

[G]) or a pyrimidine (Cytosine [C] and Thymine [T]). Bases are paired by hydrogen bonds, thus 

connecting the two strands of DNA, in the following way: [T] with [A], and [C] with [G]. Nucleotides 

themselves are linked by covalent phosphodiester bonds between the sugar of one nucleotide and the 

phosphate group of the next nucleotide. The ends of DNA strands are said asymmetric, and have a 

directionality of five prime (5′) end and three (3′) prime end, with the 5′ end having a terminal 

phosphate group and the 3′ end a terminal hydroxyl group.  

In the nuclei of the human cell, DNA is structured in 23 pairs of chromosomes (22 autosomal 

pairs and 1 pair of sexual chromosomes, also known as gonosomes). The complementary nature of 

base pairing ensures a redundancy of the genetic information encoded by each strand of DNA. The 

term base pair (bp) is used when referring to the nucleotides present on each chromosome at a certain 

position in the DNA molecule. A specific position on a chromosome is also known as a locus. The total 

length of the human genome is of 6.37 billion bp for females and 6.27 billion bp for males.  The 

genotype of an individual in a particular genetic location refers to the nucleotides found on each 

chromosome of the pair. This genotype can be homozygote if the two nucleotides are the same, or 

heterozygote if not. The two possible nucleotides at a position are called alleles. A sequence of 

consecutive alleles on a particular chromosome is known as a haplotype. 

 

Figure 1.1 : Chemical structure of DNA 

Adapted from BioRender 
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1.1.2 Physical structure of DNA 

Knowing the sequence of DNA is key to understanding its function, but DNA must be looked at 

in the context of its physical organization in the cell. To fit in the nuclei, DNA needs to be highly 

compacted. The compact complex formed by DNA and proteins is called chromatin. The euchromatin 

is active and organized in nucleosomes, while the heterochromatin is extremely condensed and not 

very accessible. The localization and level of compaction of DNA thus determines its activity. 

Nucleosomes are octamers of proteins called histones, around which 150 to 200 bp of DNA is wrapped 

(Figure 1.2). Nucleosomes form 10 nm “beads” on a string: this is the form of euchromatin. The H1 

histone allows a supplementary compaction of nucleosomes in 30 nm fibers: this is the structure of 

heterochromatin. The fibers themselves coil to create chromosomes during the metaphase step of 

meiosis and mitosis. 

 

Figure 1.2 : DNA organization  

Adapted from BioRender 

 

The state of chromatin is dynamic: it depends on the stage of the cell cycle and the action of 

enzymes responsible for the remodeling of chromatin. These enzymes can methylate or acetylate 

different structures, including histones, that will alter the condensation of chromatin. This process of 

chromatin structure alteration is called epigenetic, as it alters cell function without changing the DNA 

sequence. When chromatin is highly compact, it is “inactive” or “turned off”. In contrary, a less 

compact and open chromatin is “active” or “turned on”. The local structure of chromatin depends on 

the specific genes that are found in the region.  
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It is also important to consider the genome in terms of 3D organization and interactions. DNA 

is now known to be organized in Topologically Associated Domains (TADs, Figure 1.3). These domains 

are characterized by more chromatin contacts, and can encompass multiple genes and their regulatory 

elements that will be described in the next paragraphs. Within a TAD, these elements can interact 

much more easily despite being physically distant, whereas interactions are much more limited 

between different TADs (Dixon et al. 2012). TADs are separated by regions of 300 to 2000 bp, known 

as insulators, which limit contacts between TADs (Ong and Corces 2014). This 3D organization of the 

genome heavily influences the impact of any variation in the DNA sequence on the function of the cell. 

 

Figure 1.3 : Topologically Associated Domains  

Adapted from BioRender 

 

1.1.3 Coding genome: from the DNA sequence to proteins 

A gene is the basic unit of heredity, and usually encodes information that allows the synthesis 

of a functional product in the cell. A gene is composed of several elements, including exons and introns 

(Figure 1.4). Exons are the coding parts of genes, meaning they encode the information that will 

ultimately create proteins, unlike introns that will not be translated into a protein. The genetic 

information contained in coding parts of genes or exons constitutes the exome of an individual, while 
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the entire genetic information of an individual constitutes their genome. Around 26,000 genes can be 

found in nucleic DNA, within the previously described euchromatin. 

In the process of creating proteins necessary for the life of the cell, DNA is first transcribed into 

pre-messenger ribonucleic acid (pre-mRNA) by an enzyme called a RNA polymerase. RNA is also a kind 

of nucleic acid. Unlike DNA, RNA is a single-stranded molecule, contains ribose in place of deoxyribose 

and Uracile in place of the Thymine base. The pre-mRNA is then spliced and processed to make a 

mature mRNA. During the splicing process, introns are removed and exons are joined together. From 

the same gene, multiple mRNA with a varying composition of exons can be created by a process called 

alternative splicing. The mRNA is characterized by a 5’ cap and a 3’ poly-A tail. Finally, mRNAs are 

exported from the nucleus to the cytoplasm to be translated into protein by ribosomes. The genetic 

sequence of mRNAs consists of ribonucleotides, which are arranged by three to form a codon. In this 

translation step, each codon is associated with an amino acid, except stop codons which terminate 

protein synthesis. The genetic code is redundant but not ambiguous: one codon codes for only one 

amino acid, the building blocks of proteins, but multiple codons can code for the same amino acid. 

During translation, the 5’ UTR and 3’ UTR (UnTranslated Regions) parts of the mRNA are not translated, 

as their name indicates. 

 

 

Figure 1.4 : From DNA to protein  

Adapted from BioRender 
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1.1.4 Non-coding genome and gene regulation 

The coding genome only makes up about 2% of the total genome, meaning the rest and biggest 

part of the genome is referred to as “non-coding”. The totality of the heterochromatin is non-coding, 

as well as the majority of euchromatin. In each cell, only around 20% of genes are expressed. This 

expression depends on multiple factors, like the type of cell, metabolic signals or the state of 

differentiation of the cell. The regulation of gene expression can intervene at different steps: 

transcription, post-transcription or post-translation. Here, we will focus on the genomic elements 

modulating gene transcription (Figure 1.5). This regulation involves a combination of proteins present 

at a specific moment in the cell (trans factors) and binding sites on the DNA sequence (cis factors). 

These regulatory elements have been described and annotated by several big projects like FANTOM5 

(Forrest et al. 2014) or ENCODE (Dunham et al. 2012). This knowledge has informed our understanding 

of the impact of genetic variations in such regulatory regions and their link with human disease, a key 

problematic that will be explored in the rest of this manuscript.  

 Cis regulatory elements can be separated in two main categories: proximal and distal control 

elements. The main proximal regulatory element is the promoter of the gene and is typically located 

in the 5’ UTR part of the gene. The promoter controls the initiation a gene’s transcription. The proximal 

regulation of gene expression also involves introns, as variations in key regions of introns can lead to 

modulations of the splicing process (Chong et al. 2019). More distal regulatory elements include 

enhancers and silencers. These elements are mostly located in 5’ of the transcription initiation site, 

but can also be found in 3’ of the gene or within introns. Enhancers are activators of the transcription 

when linked to a trans factor, while silencers have an inhibitory effect with the action of trans factors 

(Kolovos et al. 2012). The previously described TADs can encompass multiple genes, their promoters 

and enhancers, and help to explain the interactions between different and sometimes distant regions 

of the DNA. The transcriptional activity of a gene can also depend on epigenetic factors, mentioned 

earlier, that will make cis elements more or less accessible to trans elements.  

 

Figure 1.5 : Regulatory and genic elements  

Adapted from BioRender 
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1.2 DNA VARIATIONS  

1.2.1 Variant types 

Despite having a mostly consensus human reference genome, it is evident that every individual 

is unique. This polymorphism in the human population is caused by stable modifications of the DNA 

sequence, called mutations or variants. A variant can be passed down to cell descendants (somatic 

variant) or human descendants (germline variant). Variations in the human genome can be separated 

in two categories: sequence variants and structural variants. Structural variants involve big 

chromosomal rearrangements, while sequence variants alter the DNA sequence at a smaller scale. In 

this work, we will focus on germline sequence variants when the term “variant” is used.  

Sequence variants are modification of one or a few bases of the DNA compared to the 

reference sequence. When the reference nucleotide is substituted with another nucleotide, the term 

Single Nucleotide Variant (SNV) is used, or point mutation. For instance, a [T] nucleotide can be 

replaced by a [G] in some individuals, the reference allele being [T] in that case and the alternative 

allele being [G]. There can be multiple alternative alleles or variants at a single position. InDels are 

insertions or deletions of a few nucleotides in the DNA sequence. InDels can be distinguished from 

structural insertions and deletions by their smaller length, usually inferior to 50 bases or 1 kilobase 

depending on the definition.  

Variants are characterized by their frequency in the general population. The MAF (Minor Allele 

Frequency) of a variant refers to the frequency at which the less common allele occurs in a given 

population. If a SNV is sufficiently frequent, present in more than 5% of individuals in a population, it 

can be referred to as a Single-Nucleotide Polymorphism (SNP). SNVs with a frequency of 1-5% are 

usually known as low-frequency variants. Variants that are found in less than 1% of the general 

population are called rare variants.  

1.2.2 Variant consequence 

The potential consequences of variants depending on their location is represented in Figure 

1.6. When looking at SNVs in the coding sequence of a gene, a variant can be synonymous if the change 

in nucleotide results in a codon that leads to the same amino acid as in the reference, due to the 

redundancy of the genetic code. A variant is called non-synonymous if it leads to an alteration of the 

amino acid sequence of the protein. Missense variants change the amino acid in the protein sequence. 

This change in amino acid can be conservative if the new amino acid has the same chemical properties 

as the initial amino acid or non-conservative if not. Non-sense variants have a more important impact 

on the protein structure. Non-sense variants either create a premature stop codon (stop-gain) leading 
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to a truncated protein, or remove a transcription start codon (start-loss). There can also be start-gain 

and stop-loss variants, leading to the gain of a transcription start codon or loss of a stop codon, 

respectively. 

The consequence of InDel variants will depend on several factors. If the length of the InDel is 

not divisible by 3, it is called a frameshift variant as it changes the reading frame (grouping of codons). 

The earlier (i.e. close to the beginning) in the coding sequence the frameshift variant happens, the 

more it affects the protein by changing all subsequent amino acids in the protein sequence. Frameshift 

variants can also modify the stop codon, creating an altered and shortened or lengthened protein. 

InDels with a length divisible by three are called “in-frame” and lead to the insertion or deletion of one 

or more amino acids but not the change of the entire protein sequence afterwards. 

A protein also has to be understood in terms of domains, that allow the protein to fulfill its 

biological functions. This domain structure of proteins is crucial to keep in mind while evaluating the 

functional consequences of a variant, as it depends on the domain it affects. A protein domain is a 

distinct functional or structural unit within a protein molecule. Proteins can contain one or multiple 

domains, each of which may have a specific function. For example, a protein involved in cell signaling 

might contain a domain responsible for binding to a specific molecule, another domain for catalyzing 

a chemical reaction, and yet another domain for interacting with other proteins. Protein domains are 

documented in several databases, like Pfam (Mistry et al. 2021).  

Variants outside of the coding sequence of a gene are more difficult to interpret in terms of 

consequence, as they do not as directly impact the structure of a protein as variants in the coding 

sequence. A variant in the promoter of a gene may affect its expression. Variants affecting the splicing 

process, also known as splicing variants, can occur in both introns and exons. They can modify existing 

splice sites or create new ones, leading to a disruption of the splicing process (Anna and Monika 2018). 

Splicing variants can lead to improper intron removal or retention, thus altering the open reading 

frame and ultimately the amino acid sequence. Other types of non-coding variants with a more 

difficult interpretation include intronic, 5’ and 3’ UTR, upstream gene, downstream gene, regulatory 

and intergenic variants. 

Several tools, like VEP (McLaren et al. 2016) or Annovar (Wang, Li and Hakonarson 2010), have 

been developed to assign functional information to DNA variants, as well as other information about 

variants like their frequency in general population databases. This step is called variant annotation 

and is usually performed using as input a VCF file, which will be described in section 1.3.2. We can also 

note that a gene can have several transcripts, due to alternative splicing and other mechanisms. A 

variant can thus be annotated to more than one transcript and have different consequences depending 



 

 

30 Chapter 1 – Organization of the genome 

on the transcript. The full scope of a variant’s consequence can be underestimated if it is not associated 

to the correct transcript, which heavily depends on the set of transcripts and annotation tool chosen 

(McCarthy et al. 2014). 

 

 

Figure 1.6 : Variant consequences  

Adapted from ensembl.org 

1.3 DNA SEQUENCING 

1.3.1 Sequencing technologies 

Being able to decipher the genetic information of an individual has been a challenge since the 

discovery of DNA. The development of new technologies in the field of DNA sequencing has allowed, 

in less than 50 years, to go from the sequencing of a few thousand bp of DNA to sequencing thousands 

of whole genomes a year with the latest sequencing machines. In 1977, English biochemist Frederick 

Sanger was the first to sequence a full DNA genome (Giani et al. 2020) of bacteriophage φX174. The 

“Sanger method” of sequencing relies on four separate polymerization reactions using normal 

deoxynucleotide triphosphates and a small quantity of modified dideoxynucleotide triphosphates, 

which terminate the DNA strand elongation process. To each reaction, only one of the four 

dideoxynucleotides is added while the other three are normal deoxynucleotides. The final DNA 

sequence is deduced by comparing the length of the DNA fragments produced by each reaction. The 

Sanger method can produce DNA sequence reads of less than 500 nucleotides with a very low error 

rate, and is still used today for the validation of sequencing results. However, it is not suitable for large-

scale sequencing projects.  

Over the next 40 years, the Sanger method stayed the gold standard for DNA sequencing. 

Improvements like the idea of “shotgun sequencing” allowed the sequencing of longer genomes in 
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shorter amounts of time. The Human Genome project (HGP), officially launched in 1990, aimed at 

producing the complete sequence of the human genome. The completion of the HGP took 14 years 

and the joined efforts of thousands of researchers, with a final cost of $2.7 billion. The HGP lead to the 

publication of the first human reference genome (International Human Genome Sequencing 

Consortium 2004), which has been continuously improved upon since then by the Genome Reference 

Consortium. One of the latest version or “build” of the human reference genome, is the GRCh38 

(Schneider et al. 2017) (for Genome Research Consortium human build 38) or hg38 (for Human 

genome build 38). Compared to the previous GRCh37 (Church et al. 2011) build (also known as hg19), 

the hg38 build is characterized by 178 regions containing 261 alternative locus sequences, in highly 

variable regions of the genome, collectively representing 3.6 million bp of novel sequence and over 

150 genes not represented in the primary assembly (Jäger et al. 2016). 

With the drive initiated by the HGP, came the advent of Next-Generation Sequencing (NGS). 

NGS allowed the next breakthroughs in DNA sequencing and has shaped the field of genetics as we 

know it now. Unlike Sanger sequencing, NGS, also known as massively parallel sequencing, sequences 

multiple fragments of DNA simultaneously. Among the major developments that allowed the NGS 

revolution, there is the introduction in 1996 of pyrosequencing by Mostafa Ronaghi, a “sequencing-

by-synthesis” method that was latter on refined by the use of fluorescent dyes.  

NGS includes the following steps (Figure 1.7): 

• Library preparation: the individual’s DNA is fragmented and associated with adapters, 

which are known DNA fragments. These adapters vary among library preparation kits.  

• Library amplification: the library is hybridized on the sequencing support, called “flow 

cell”, using complementary fragments to the adapters. These adapters also contain 

binding sites for the sequencing primers, allowing DNA amplification. Multiple bridge 

amplifications through polymerase chain reaction create numerous copies of each 

fragment in the same area of the flow cell. These groups of the same fragment are 

called clusters. 

• Sequencing: each fragment on the flow cell is “read” base by base by a polymerase 

that adds fluorescent nucleotides ([A], [T], [G] or [C]). Each addition of a nucleotide 

sends a fluorescent signal that is detected by the sequencer. This step is known as 

“calling”, or base identification.  
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Figure 1.7 : NGS workflow  

Adapted from BioRender 

 

1.3.2 Processing sequencing data 

A bioinformatic analysis is necessary to process the data coming from sequencing and allow 

the reconstitution of the genome. A fastq file is created with all of the sequenced fragments, also 

called “reads”, from the base calling step. In most cases, reads are then “aligned” to the human 

reference genome using different algorithms that match each read to the most similar sequence of the 

reference genome. This step is also known as “mapping” and gives from which precise location in the 

genome each base pair in each read comes from. Another alternative to mapping is to use a de novo 

assembly, which is not covered here. The number of reads matching each position gives the “depth” 

at which the position is covered, due to the amplification step performed during the sequencing 

process. This depth of coverage depends on a number of factors including how complex or repeated 

the region is. The alignment phase produces bam files. 
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Once the sequences are aligned to the reference genome, the variant calling step uses those 

mapped reads to identify genetic variations and the genotypes of individuals at different locations in 

the genome. This step involves identifying positions where the sample mapped genome differs from 

the reference genome. Variant calling algorithms use statistical models to distinguish true genetic 

variations from sequencing errors and alignment artifacts, considering factors such as read depth, base 

quality scores, mapping quality, and strand bias. The variant calling algorithm calculates the likelihoods 

of different genotypes for the individual at each position, depending on the number of reads for each 

allele, and then assigns the genotype with the highest likelihood. Once variants are identified, they are 

typically assigned quality scores and filtered based on preset criteria to remove low-confidence calls 

and potential false positives.  

At the individual or cohort scale, variants can be reported using the Variant Call Format (VCF) 

to facilitate their annotation and further analysis. The VCF is a standardized file format used in genetics 

to represent genetic variations identified through sequencing technologies. This format is widely used 

in the field of genomics for storing and sharing information about genetic variants, including SNVs, 

InDels, and structural variants. A VCF file is comprised of two main components. The header provides 

metadata about the VCF file, including information about the reference genome used, sample IDs, file 

format version, and other relevant details.  The Variant Call Records constitute the main body of the 

VCF file. The first eight columns of the VCF records (CHROM, POS, ID, REF, ALT, QUAL, FILTER and INFO)         

represent the properties observed at the level of the variant site, whilst the remainder of the columns 

contain sample-specific information. Among the information in the VCF file, the QUAL field 

corresponds to the quality score representing the confidence in the variant call, the FILTER field 

indicates whether the variant passed certain quality control filters and the genotype fields give the 

genotype of each sample at the variant locus, and can also include information about allele depth and 

genotype quality. 

The VCF format offers a certain flexibility by allowing the user to add annotation data within 

the "INFO" column of the file, which is itself composed of several fields separated by “;” and described 

in the header. The VCF file also contains key information used for Quality Control (QC), which is an 

essential step to mitigate potential artifacts or errors introduced during sequencing, alignment, and 

variant calling processes before any downstream analysis. In this manuscript, we have used the R 

package RAVAQ (Marenne et al. 2022), developed by Dr Gaëlle Marenne from our team at UMR1078 

in Brest, to perform the QC of all of the VCF files used in subsequent analyses. All of the QC parameters 

are extensively described in the corresponding article.  
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The main function of the RAVAQ package allows a QC with 3 main steps, with the following default 

parameters: 

• Variant QC: genotypes with allele depth < 10 or genotype quality < 20 are set to 

missing. Standard Genome Analysis Toolkit (GATK) (McKenna et al. 2010) hard filtering 

criteria are used for filtering. GATK is an industry standard genomic analysis toolkit 

used for variant discovery from NGS DNA sequencers. In addition, there is filtering on 

the mean allele balance computed across heterozygous genotypes (ABhet range 0.25–

0.75) and call rates (CR > 90% in each group). Call rates homogeneity across groups is 

also tested by a Fisher's exact test (p-value > 0.001). 

• Sample QC: four criteria are looked at during the sample QC to account for potential 

sample contamination.  A sample can be excluded if it has a missing rate > 10%, an 

inbreeding coefficient > 4%, outlier for the heterozygous rate and outlier for the 

median relatedness measure.  

• Allele QC: in this step, multiallelic variants are split so that each allele makes one line 

of a new VCF file. The allele QC process is then similar to the variant QC. 
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Chapter 2  INTERPRETING GENETIC VARIATIONS 

As described in the previous section, DNA variations can arise through different processes and be 

passed on from parent to offspring. These variations in our genetic code are essential for our evolution 

and long-term survival. However, a very small percentage of genetic variants can also lead to disease. 

This section will outline several ways to interpret DNA variations, especially in relation to disease.  

2.1 GENETIC FACTORS IN HUMAN DISEASE 

2.1.1  Key principles in genetic epidemiology 

The role of genetic factors in determining health and disease within populations, in conjunction 

with environmental factors, is studied by the field of genetic epidemiology (Panoutsopoulou and 

Wheeler 2018). Different types of diseases can be defined depending on the role of the genetic factors 

in the manifestation of the disease. Association refers to the statistical relationship between a 

genotype and a particular disease of interest. Penetrance of a genotype corresponds to the probability 

of expressing a certain disease given the genotype. Additionally, a phenocopy refers to instances 

where individuals exhibit a phenotype without harboring the corresponding risk-inducing genotype. 

Finally, heritability measures how much of the phenotypic variance is attributable to genotypic 

variance (Robette, Génin and Clerget-Darpoux 2022). Finding the genetic factors contributing to this 

genetic component aids in understanding the extent to which genetics influence trait variation or 

disease susceptibility within a population.  

2.1.2 Genetic basis of monogenic versus multifactorial diseases 

As mentioned previously, a significant proportion of RDs have a genetic origin. To date, most 

of RDs for which the genetic cause is known are described as having a monogenic mode of inheritance, 

according to which the alteration of a single gene is responsible for the disease (Ziegler 1999). 

Monogenic diseases exhibit high or complete penetrance, meaning that a large proportion of 

individuals with the disease-causing variant, or even all of them, develop the associated clinical 

phenotype.  

In contrast to monogenic diseases, more common diseases like type 2 diabetes or asthma are 

associated with multiple small-effect and low penetrance common genetic variants. These common 

diseases, also known as multifactorial diseases, involve the interplay of multiple genetic factors 

(polygenic inheritance) as well as environmental factors in determining the phenotype. In the case of 

this polygenic inheritance (Crouch and Bodmer 2020), the combination of multiple variants 

determines a trait or susceptibility to a disease. The inheritance pattern is complex, and the phenotype 
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is often influenced by the combined effects of multiple genetic variants. Multifactorial diseases often 

involve variable penetrance influenced by complex genetic and environmental factors.  

While in the context of monogenic diseases, the search aims to identify a gene presenting 

variants with high penetrance, in the case of multifactorial diseases, the goal is to identify variants 

conferring susceptibility to the disease, without being necessary or sufficient. The study of monogenic 

diseases has thus revealed highly penetrant pathogenic variants, in contrast to the low to medium 

penetrance variants that can be uncovered by the investigation into multifactorial diseases 

(Antonarakis et al. 2010). 

2.1.3 Monogenic patterns of inheritance 

In this work, we will focus more on monogenic rather than multifactorial diseases. Mendel’s 

laws are crucial to understand possible monogenic inheritance patterns and Mendel himself described 

two of these modes of inheritance during his experiments: the autosomal dominant and recessive 

transmissions.  

The monogenic modes of transmission can be categorized as followed (Figure 2.1):  

• Autosomal dominant: a single copy of the variant inherited from one parent is enough to 

cause the disease. Affected individuals almost always have an affected parent. Each child of 

an affected individual has a 50% chance of inheriting the variant and therefore the disease. 

Autosomal dominance can be recognized in a pedigree because affected individuals are male 

or female, and they occur in each generation of a disease family. This is the mode of 

inheritance of conditions like Huntington’s disease.  

• Autosomal recessive: a single copy of a variant is insufficient to cause the disease, but the 

presence of two alterations, one on each copy of the gene leads to the disease phenotype. 

Both parents of an affected individual are usually carriers of a heterozygote variant, meaning 

they are not affected by the disease themselves. Each child of two carrier parents has a 25% 

chance of inheriting two altered copies of the gene and therefore having the disease, a 50% 

chance of being a carrier like the parents, and a 25% chance of inheriting two functional copies 

of the gene. Cystic fibrosis and sickle-cell anemia are well-known for having an autosomal 

recessive mode of inheritance. 

o Homozygote recessive: the affected individual inherits a copy of the same variant 

from each of his parents, and this homozygote variant leads to the disease. 
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o Compound heterozygote: each parent is a carrier of a different heterozygote variant 

in the same gene. The individual inherits one variant from each parent, resulting in 

disease expression. Neither parent exhibits the disease phenotype because they only 

carry one altered copy of the gene each. 

• X-linked: the disease-associated gene is located on the X chromosome, in contrary to the 

previously cited modes of inheritance which involve autosomes only. This type of transmission 

is known as hemizygote for men who only have on copy of the X chromosome. Hemophilia A 

is an example of X-linked disease. It can be noted that X and Y chromosomes have short regions 

of homology named pseudoautosomal regions (PAR1 and PAR2) and that genes in this region 

are inherited in an autosomal rather than a sex-linked pattern. 

o X-linked dominant: in females, who have two X chromosomes, inheriting one copy of 

the variant is enough to cause the disease. In males, who only have one X 

chromosome, inheriting one copy of the variant on their single X chromosome cause 

the disease. Affected males pass the altered copy of the gene to all of their daughters 

but not their sons. Affected females can pass the altered copy of the gene to both sons 

and daughters. 

o X-linked recessive: males, having only one X chromosome, are more commonly 

affected. They inherit the variant from their carrier mother. Females need to inherit 

two copies of the variant (one from each parent) to manifest the disease, making them 

less commonly affected than males. Carrier females can pass the altered copy of the 

gene to both sons and daughters. 

• Y-linked: Y-linked inheritance involves genes located on the Y chromosome and will not be 

further explored in this manuscript. These diseases are passed from fathers to all their sons. 

 

Figure 2.1 : Main monogenic modes of inheritance  

From Eilbeck et al. 2017 
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2.2 VARIANT PATHOGENICITY 

2.2.1  Damaging is not equal to pathogenic 

Each healthy individual’s genome contains thousands of variants, meaning that most variants 

have no detectable biological consequence for the cell or the organism. The real impact of a variant is 

complex to predict (Zschocke, Byers and Wilkie 2023), and a distinction has to be made between the 

deleteriousness and pathogenicity of a variant. Deleteriousness refers to the potential harmful or 

damaging effect of a variant. A variant is considered deleterious if it disrupts the normal functioning 

of a gene or protein. Pathogenicity specifically refers to the ability of a variant to cause or contribute 

to a disease phenotype, as discussed in the previous sections. So while deleteriousness assesses the 

potential functional impact of a variant, pathogenicity evaluates its role in causing or predisposing 

individuals to a disease. Variants can be deleterious without being pathogenic. For instance, for a 

recessive disease like cystic fibrosis, an individual will have to harbor two copies of the deleterious 

variant to develop the disease and heterozygote carriers are unaffected. However, in many cases, 

deleterious variants are also pathogenic as they disrupt critical biological processes or pathways. 

As early as 2003, the SIFT (Ng and Henikoff 2003) method was proposed to evaluate the impact 

of amino acid substitutions on protein function. A plethora of bioinformatic prediction tools and 

scores have been developed since then to evaluate the deleteriousness and potential pathogenicity of 

genetic variations. Currently, one tool widely used both in research and clinics is the CADD (Kircher et 

al. 2014) score, that will be described thereafter. As we will discuss in the following sections of this 

manuscript, these scores are based on several annotations of the genome like the phylogenic 

conservation compared to homologous protein sequences from other organisms, or the allele 

frequency of a variant in a general population database. A caveat to these prediction of pathogenicity 

tools can be found in a study from 2010 (Dorfman et al. 2010) which assessed common variants 

implicated in cystic fibrosis using three popular variant pathogenicity prediction tools. They found that 

although the CFTR variant p.Arg75Gln is predicted damaging as it alters a very conserved position in 

the protein, it has a mild phenotypic effect. In contrast, the p.Val520Phe variant is known to be 

pathogenic but affects a non-conserved position in the CFTR protein. Pathogenicity prediction scores 

thus cannot be taken at face value, and have to be combined and confronted with other lines of 

evidence to determine the actual impact of a variant. 

2.2.2 CADD pathogenicity score 

Among variant pathogenicity scores, the CADD (Combined Annotation–Dependent Depletion) 

score (Kircher et al. 2014) stands out as a particularly useful score to predict the deleteriousness of 

variants. In contrary to most other scores, defined only for a specific type of variants like missense 
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variants, the CADD score provides a single pre-computed score for all possible SNVs and a large set of 

InDels. A recent version also allows the scoring of structural variants (Kleinert and Kircher 2022a). 

CADD also has the advantage of evaluating the deleteriousness of variants, which strongly correlates 

with both molecular functionality and pathogenicity, but is less likely to suffer from a major 

ascertainment bias by relying on a small set of genetically or experimentally well-characterized 

pathogenic variants.  

The CADD score is a machine learning (ML) method that combines multiple annotations of the 

genome into a single score to assess the deleteriousness and thus potential pathogenicity of a variant. 

Initially, CADD used linear SVMs (Support Vector Machines) as ML model, but switched to logistic 

regression in later versions. To train the model, CADD relies on a unique framework that does not rely 

on a specific set of known pathogenic or benign variants, but on the contrast between “proxy-

deleterious” and “proxy-neutral” sets of millions of variants and the resulting differences in their 

annotation features. The “proxy-neutral” variants are variants that have persisted in the human 

genome since the last human-ape ancestor, whilst the “proxy-deleterious” variants are simulated de 

novo variants that are free of selective pressure.  

The initial output of the CADD machine-learning model are “raw scores”, which summarize the 

extent to which the variant is likely to be from the proxy-neutral (negative values) or proxy-

deleterious (positive values) class. To make the CADD score comparable between versions and 

assemblies of the human genome, this raw score is then converted into a “PHRED score” ranging from 

1 to 99, based on the rank of each variant relative to all possible 8.6 billion SNVs in the human reference 

genome on a PHRED-scale. In the rest of this manuscript, we will be referring to the PHRED-scaled 

score when talking about the CADD score. A main limitation of the CADD score is the training set label 

given to a variant, which provides an imperfect although useful approximation of whether the variant 

is really benign or pathogenic. An unknown proportion of the proxy-deleterious variants are certainly 

neutral and could lead to a flawed prediction of deleteriousness for some variants.  

Initially, CADD v1.0 included 63 distinct annotations that spanned a variety of properties of the 

genome (see Table 2.1 for a full comparison of all the main version of CADD). Interestingly, the best-

performing individual annotations were protein-level scores, but these evaluated only missense 

variants (0.63% of all training variants). In contrast, conservation metrics were the strongest individual 

genome-wide annotations. The next publication on the CADD score described CADD v1.4 (Rentzsch et 

al. 2019), which is the first to start supporting the genome build GRCh38 and includes a splice score as 

well as measures of genome-wide variant density. CADD v1.6 (Rentzsch et al. 2021), also called “CADD-

splice”, is the following main update of CADD and integrates two deep learning splicing models which 
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improve significantly the scoring of splicing variants, while not compromising performance on other 

types of variants. The most recent version of CADD, CADD v1.7 (Schubach et al. 2024), includes new 

annotations like state-of-the-art protein language model scores, regulatory variant effect predictions 

and sequence conservation scores, that continue to further improve the performance of CADD 

especially in the non-coding genome. 

When analyzing an individual’s variants, clinicians and researchers alike often seek a single 

universal cut-off value above which a variant is considered “pathogenic”. However, in all of CADD 

publications, the authors strongly advise against such binarization of the CADD score and recommend 

ranking all variants by CADD score, further investigating top-ranked variants. The CADD score should 

be understood as a piece of information among other lines of evidence to determine the impact of a 

variant. Also, it is not currently possible to precisely calibrate the relationship between the 

deleteriousness estimated by CADD and the likelihood that a variant is truly pathogenic. 

Version 
Machine Learning 

model 

Features description 

(or additional features compared to v1.0) 
Reference 

CADD v1.0 Linear SVM 

63 annotations 

• Conservation metrics: GERP, phastCons, 

phyloP 

• Regulatory information: genomic regions of 

DNase I hypersensitivity, transcription 

factor binding 

• Transcript information: distance to exon-

intron boundaries, expression levels in 

commonly studied cell lines  

• Protein-level scores: Grantham, SIFT, 

PolyPhen 

Kircher et al. 

(2014) 

CADD v1.4 Logistic regression 

>60 annotations 

• ChromHMM (from v1.1) 

• DNA shape factor (from v1.1) 

• mirSVR and targetScan (from v1.1): miRNA 

binding site prediction 

• Mutation Index (from v1.1) 

• VEP domain annotation (from v1.1) 

• Mutation density (from v1.4) 

• dbscSNV (from v1.1): splice prediction 

Rentzsch et 

al. (2019) 
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CADD v1.6 Logistic regression 

102 annotations 

• SpliceAI: splice junction prediction 

• MMSplice: exon skipping, splice site choice, 

splicing efficiency predictions 

Rentzsch et 

al. (2021) 

CADD v1.7 Logistic regression 

>100 annotations 

• ESM-1v: Meta AI Evolutionary Scale Model 

for variant effects in protein coding 

sequences 

• RegSeq: CNN trained on open chromatin 

sequences of multiple tissues 

• APARENT2: Human polyadenylation  

• Zoonomia: Conservation score 

• Roulette:  Mutability score 

Schubach et 

al. (2024) 

Table 2.1 : Published versions of the CADD score and their characteristics 

SVM, Support vector machine ; CNN, convolutional neural network ; AI, Artificial Intelligence 

2.2.3 Other main variant pathogenicity scores 

While the CADD score was the main variant pathogenicity prediction score used in my work, a 

number of other pathogenicity scores have been developed over the years. They are sometimes called 

“in silico” pathogenicity prediction tools, in contrast to “in vivo” or “in vitro” experiments, as they 

derive knowledge from computer simulations and model analysis. The main pathogenicity prediction 

scores were described and compared in recent reviews (Eilbeck, Quinlan and Yandell 2017; Garcia, 

Andrade and Palmero 2022). Broadly, these in silico pathogenicity prediction tools can be separated in 

5 main categories depending on the way they infer pathogenicity, although these categories are not 

mutually exclusive. These categories include: analyzing sequence conservation in both evolutionary 

and interspecific contexts (Ng and Henikoff 2003; Siepel et al. 2005; Stone and Sidow 2005; Tavtigian 

et al. 2008; Davydov et al. 2010; Pollard et al. 2010; Reva, Antipin and Sander 2011; Choi et al. 2012; 

Shihab et al. 2013, 2015; Gulko et al. 2015; Mi et al. 2019), evaluating structural or physicochemical 

parameters (Li et al. 2009; De Baets et al. 2012; Adzhubei, Jordan and Sunyaev 2013), employing 

supervised ML (Schwarz et al. 2010; Carter et al. 2013; Kircher et al. 2014; Ioannidis et al. 2016; 

Jagadeesh et al. 2016; Feng 2017; Steinhaus et al. 2021), employing unsupervised ML (Lu et al. 2015; 

Ionita-Laza et al. 2016), and analyzing modifications of splicing (Reese et al. 1997; Yeo and Burge 2004; 

Desmet et al. 2009; Jian, Boerwinkle and Liu 2014; Jaganathan et al. 2019). A non-exhaustive list of 

methods from each category, as well as methods targeted towards non-coding variants pathogenicity 

prediction addressed in the next section, can be found in Table 2.2. 
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There is not one universal best pathogenicity score for all types of variants and diseases, as 

evidenced by the multiple benchmarks on the subject and their conflicting conclusions depending on 

the variant testing set (Li et al. 2018; Anderson and Lassmann 2022). By the number of citations, 

PolyPhen, CADD and SIFT have been the most used tools in the literature (as they are also among the 

oldest tools), whereas the benchmarks often cite VEST, REVEL, FATHMM and BayesDel as 

outperforming tools (Garcia, Andrade and Palmero 2022). Another limitation of these tools is their 

restriction of analysis, on missense variants only for instance (including SIFT, PolyPhen, VEST and 

REVEL). The advantage of a tool like CADD is that it is a meta-predictor integrating other scores like 

SIFT, PolyPhen-2, phyloP and GERP and that it enables the user to score any SNV or InDel of the 

genome. CADD is also trained on a much larger number of variants compared to other machine-

learning methods, while having a relatively modest number of features, which is why the method is 

not too affected by the curse of dimensionality according to which a large amount of training data is 

necessary to train a machine-learning model on large feature spaces (Ruscheinski et al. 2021). 

Category Software Pros Cons Reference 

Interspecific 

and 

evolutionary 

sequential 

conservation 

SIFT 
Largely used and included 

in several meta-predictors 

Not maintained anymore, 

analyses missense only 

Ng et al. 

(2003) 

Align-GVGD 
Tool developed for some 

genes 

Species limitation, 

analyses missense only 

Tavtigian 

et al. 

(2006) 

MAPP 

Compares the conservation 

of several physicochemical 

parameters 

No website for analysis, 

for missense only, 

complex input format 

Stone et al. 

(2005) 

PhastCons 
Largely used and included 

in several meta-predictors 

No website for analysis, 

for missense only 

Siepel et 

al. (2005) 

PhyloP 
Included in several meta-

predictors 

No website for analysis, 

for missense only 

Pollard et 

al. (2010) 

GERP 
Included in several meta-

predictors 

No website for analysis, 

for SNVs only 

Davydov et 

al. (2010) 

Mutation 

Assessor 

Included in several meta-

predictors, uses entropy 
For missense only 

Reva et al. 

(2011) 

FATHMM 

FATHMM-MKL 

Outperforming tool, 

included in several meta-

predictors 

 -  

Shihab et 

al. (2012, 

2015) 

PROVEAN 

From the same institute of 

SIFT, showed good 

performance when tested 

No website for analysis 
Choi et al. 

(2012) 
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for somatic and 

experimentally validated 

variants(Li et al. 2018) 

FitCons Multi-data integration No website for analysis 
Gulko et al. 

(2015) 

Panther Recently updated 
Requires FASTA input, for 

missense only 

Mi et al. 

(2019) 

Sequence/ 

Structure tools 

MutPred 

Display possible altered 

molecular mechanisms, 

recently updated 

Requires FASTA input, 

different algorithms for 

each type of variant 

Li et al. 

(2009) 

SNPeffect 
Four algorithms for specific 

biochemical features 

Requires FASTA (or similar 

data) input, for missense 

only, complex output 

format 

DeBeats et 

al. (2012) 

PolyPhen-2 Most cited tool For missense only 

Adzhubei 

et al. 

(2013) 

Supervised 

Machine 

Learning 

Analysis 

VEST Outperforming tool For missense only 
Carter et 

al. (2013) 

Mutation 

Taster 

Display several of the 

variant altering 

mechanisms 

Upgraded version 

available 

Schwarz et 

al. (2014) 

Mutation 

Taster 2021 
Upgraded version - 

Steinhaus 

et al. 

(2021) 

CADD Largely used meta-predictor - 
Kircher et 

al. (2014) 

M-CAP Meta-predictor For missense only 

Jagadeesh 

et al. 

(2016) 

REVEL 
Outperforming tool, meta-

predictor 

No website for analysis, 

for missense only 

Ioannidis 

et al. 

(2016) 

BayesDel 
Outperforming tool, meta-

predictor 

Requires software 

download to work with 

Feng et al. 

(2017) 

Unsupervised 

Machine 
GenoCanyon 

One of the few 

unsupervised models 
- 

Lu et al. 

(2015) 
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Learning 

Analysis 
Eigen 

Eigen-PC 

One of the few 

unsupervised models, good 

performance(Li et al. 2018) 

- 

Ionita-Laza 

et al. 

(2016) 

Splicing 

analysis 

Nnsplice 
One of the first tools 

available 

Not maintained anymore, 

require FASTA input 

Reese et 

al. (1997) 

MaxEntScan Uses entropy Requires FASTA input 
Yeo et al. 

(2004) 

HSF 
Group several splicing 

algorithm 

Paid tool (free credits for 

academic purposes) 

Desmet et 

al. (2009) 

dbscSNV Ensemble splicing tool 
No website for analysis, 

SNVs only 

Jian et al. 

(2014) 

SpliceAI 
Newest tool described here 

based on deep learning 

Doesn't support all types 

of InDels 

Jaganathan 

et al. 

(2019) 

Non-coding 

specific 

analysis 

GWAVA Meta-predictor 

No website for analysis, 

requires software 

download to work with 

Ritchie et 

al. (2014) 

FunSeq2 

Weighted scoring scheme 

according to several 

annotations 

Targeted towards somatic 

variants 

Fu et al. 

(2014) 

DeepSea  
Deep-learning based meta-

predictor 

Upgraded version 

available 

Zhou et al. 

(2015) 

ReMM Meta-predictor - 
Smedley et 

al. (2016) 

Linsight 

Based on the FitCons 

framework, semi-

supervised model 

No website for analysis 
Huang et 

al. (2017) 

ncER Meta-predictor No website for analysis 
Wells et al. 

(2019) 

NCBoost Meta-predictor No website for analysis 
Caron et 

al. (2019) 

FINSURF Meta-predictor - 
Moyon et 

al. (2022) 

Table 2.2 : Description of the main in silico predictors of variant pathogenicity 

Adapted from Garcia et al. 2022 ; FASTA is a text-based format representing nucleotide sequences 
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2.2.4 Pathogenicity scores in the non-coding genome 

The pathogenicity prediction for non-coding variants remains more challenging than in 

protein-coding regions, as evidenced by the limitation of most of the common pathogenicity prediction 

scores to missense variants. However, the potential role of non-coding parts of the genome in the 

etiology of disease is undeniable and currently underrated (Hindorff et al. 2009; Makrythanasis and 

Antonarakis 2013). Some of the previously cited tools are able to also evaluate the potential 

pathogenicity of non-coding variants, including conservation scores like PhastCons, phyloP, GERP, 

FitCons and FATHMM and machine-learning-based methods like CADD, Eigen or Eigen-PC. However, 

they often have a poorer evaluation of the pathogenicity of non-coding variants compared to coding 

variants due to the lack of knowledge around regulatory machinery encrypted in non-coding DNA 

(Eilbeck, Quinlan and Yandell 2017). 

Other more recently developed methods are targeted specifically towards non-coding variants 

pathogenicity prediction through ML methods (GWAVA (Ritchie et al. 2014), DeepSea (Zhou and 

Troyanskaya 2015), ReMM (Smedley et al. 2016), ncER (Wells et al. 2019), NCBoos t(Caron, Luo and 

Rausell 2019), FINSURF (Moyon et al. 2022)), a weighted scoring scheme (FunSeq2 (Fu et al. 2014)) or 

conservation approaches (LINSIGHT (Huang, Gulko and Siepel 2017)). A recent review (Wang et al. 

2023), although not encompassing all of the aforementioned methods, found that ncER and LINSIGH 

performed the best to predict the pathogenicity of non-coding variants in four benchmark datasets. 

Other frameworks quantify the intolerance to variation of regions of the genome, also known as 

constraint, like JARVIS (Vitsios et al. 2021) or ORION (Gussow et al. 2017). These methods follow a 

similar approach to other methods that looked at constraint at the gene level for coding variants, 

including the pLI (Lek et al. 2016) (probability of being loss-of-function intolerant, relative to all other 

genes in the human genome) or the Gene Damage Index (Itan et al. 2015) (mutational damage 

accumulated by each protein-coding human gene in the general population). However, most of these 

prediction methods either do not provide a variant-specific score, or are not defined in both coding 

and non-coding parts of the genome.  

2.3 VARIANT FREQUENCY 

2.3.1 The HapMap project 

Allele frequency can vary widely depending on the population, due to mechanisms likes natural 

selection, genetic drift and gene flow. Population databases thus play a crucial role by providing 

reference data on allele frequencies in diverse populations, which allows the evaluation of how 
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common a variant is in this population. By identifying and cataloging these variations, researchers 

aimed to facilitate the characterization of human genetic diversity and its role in health and disease.  

The HapMap project (Gibbs et al. 2003), short for Haplotype Map, was an international 

research effort aimed at creating a comprehensive catalog of common genetic variations in humans. 

The project was a collaboration between researchers from various institutions worldwide, including 

the United States, Japan, Canada, China, Nigeria, and the United Kingdom. The HapMap project aimed 

to identify haplotype blocks and infer patterns of linkage disequilibrium (LD) within several 

populations to avoid having to sequence all patient genomes. LD refers to the nonrandom association 

of alleles at different loci (Slatkin 2008). The identification of haplotype blocks revealed that LD often 

spans extensive chromosomal regions, implying that testing a single SNP within each block for 

significant association with a disease could potentially indicate association with all SNPs in that block 

thus decreasing the number of SNPs requiring testing in case-control studies of disease association. 

The project bolstered the development of genotyping platforms and methodologies for efficient SNP 

genotyping. HapMap was initiated in 2002 and completed in 2009. The release of HapMap datasets 

(Altshuler, Donnelly, and The International HapMap Consortium 2005; Frazer et al. 2007; Altshuler et 

al. 2010) with millions of genotyped SNPs provided a foundational resource for subsequent genetic 

studies. 

2.3.2 Other general population variant panels 

Following the HapMap project, the NGS revolution and the diminishing cost of sequencing 

individuals has made possible the implementation of large sequencing projects, for both individuals 

affected by specific pathologies and individuals from the general population. Among these projects, 

the 1000 Genomes Project (1kGP) was launched in 2007 and aimed at providing a comprehensive 

resource on human genetic variation. The idea was to catalogue variants and their frequencies 

genome-wide in the studied populations, and make it accessible for the scientific community. The 

phase 3 analysis of the 1kGP, published in 2015 (Auton et al. 2015), contained low-coverage whole 

genome and exome sequencing data for 2,504 individuals from 26 populations in Africa, East Asia, 

Europe, South Asia, and the Americas. These individuals were self-reported as healthy, and were 

unrelated. Recently, an expansion of the 1kGP (Byrska-Bishop et al. 2022) made available high-

coverage whole-genome sequencing data for 3,202 individuals including 602 trios parents-child (Figure 

2.2). This new instalment of the 1kGP allowed the identification of more rare SNVs, as well as new 

InDels and structural variants. More than a resource on variant frequency, the 1kGP dataset is of 

particular interest for our work as it provides the whole individual genome data for all of its general 

population samples, which we have used to simulate disease genomes. 
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Figure 2.2 : Description of the phase 3 and high coverage 1kGP datasets  

From Byrska-Bishop et al. 2022 

Another of the main genomic data repositories initiatives was the Exome Aggregation 

Consortium (ExAC) (Lek et al. 2016), which published in 2016 a deep catalogue of protein-coding 

variation from high-quality exome sequence data of 60,706 individuals from 6 broad populations. In 

contrast to the 1kGP, ExAC included data from unrelated adults without severe pediatric disease, but 

that could be affected by other types of diseases. The successor to ExAC is the Genome Aggregation 

Database (gnomAD). gnomAD v2 made available in 2018 the aggregated data of 125,748 exomes and 

15,708 genomes from human sequencing studies (Karczewski et al. 2020), for a total of 141,456 

individuals (Table 2.3). In 2020, gnomAD v3 provided a dataset comprising of 76,156 genome samples 

mapped to the GRCh38 reference sequence (Chen et al. 2024). Finally, in late 2023, gnomAD released 

its v4 which encompasses 734,947 exomes and all of the genomes from gnomAD v3 for a total of 

807,162 individuals. The gnomAD v4 exome dataset includes 416,555 individuals from the UK Biobank 

cohort (Bycroft et al. 2018), mostly from European ancestry, as well as 138,000 individuals of non-

European genetic ancestry (Table 2.3 ). In contrast to the 1kGP project, gnomAD does not give access 

to individual data but aggregated variant frequencies, over the whole cohort or by population.   
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This information on allele frequencies over a large sample size can be key for interpreting the 

potential pathogenicity of a variant, and is also used in more complex variant prioritization methods 

discussed in section 3.2.3. 

 

Table 2.3 : Genetic ancestry group breakdown of ExAC and gnomAD’s three main versions 

From gnomAD’s website https://gnomad.broadinstitute.org/news/2023-11-gnomad-v4-0/ 

Finally, another resource that has been used in this work is the FRench EXome project (Génin et 

al. 2017) (FREX). FREX is the first French sequencing project and aimed to create a database of genetic 

variations observed in the French population. This project was funded by the France Génomique 

infrastructure, and included the exomes of 574 individuals sampled in 6 regions of France (around the 

cities of Brest, Rouen, Bordeaux, Dijon, Lille and Nantes). Individuals were recruited from the general 

population and not on the basis of any pathology. They were selected to be representative of their 

geographical region: only individuals with their four grandparents born within a 30 km radius were 

included in the study for the Brest and Nantes centers. For the other centers, individuals had to be 

born in the region to be selected for sequencing. The FREX project led to the identification of almost a 

million variants, over 30% of which were absent from the 1kGP and ExAC databases. In line with the 

use of 1kGP genomes, the FREX exomes were used in this work to simulate disease exomes.  
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Chapter 3  METHODS TO FIND GENETIC FACTORS IMPLICATED IN 

HUMAN DISEASES 

As presented in the two previous sections, the understanding of human diseases is closely linked to 

genetic variations of the human genome. In this section of the introduction, we will focus on the 

methods that have been developed to decipher the genetic causes of diseases, either by association 

or in a diagnostic setting. 

3.1 POPULATION-BASED APPROACHES FOR GENE-DISEASE ASSOCIATION DETECTION  

3.1.1 Linkage methods 

Associating a portion of DNA or gene with a disease had begun way before the advent of DNA 

sequencing, using methods of genetic mapping to map the chromosomal location of a disease gene 

by studying patterns of inheritance within families. Linkage analysis (Pulst 1999) is a method that is 

used for genetic mapping. The idea of genetic linkage is that DNA sequences that are in close proximity 

on a chromosome tend to be inherited together during the meiosis phase of sexual reproduction. This 

can be explained by the phenomenon of recombination which happens during the meiosis, and during 

which genetic material is exchanged between homologous chromosomes. Thus, the frequency of 

recombination events between two loci is proportional to the physical distance between them on the 

chromosome. Centimorgans (cM) are commonly used in genetic mapping studies to estimate the 

distance between genetic markers or genes on a chromosome. A cM is defined as the distance between 

genetic loci for which one genetic crossover event (or recombination event) occurs in 1% of the 

gametes produced by meiosis.  

By measuring the recombination frequency between markers in experimental crosses, 

researchers can construct genetic maps that provide insights into the relative positions of genes along 

the chromosome. The genetic markers used as reference points along the chromosomes were 

restriction fragment length polymorphisms, microsatellites (short tandem repeats) or even in later 

years SNPs. Linkage analysis calculates a LOD (logarithm of the odds) score for each genetic marker, 

which measures the likelihood of observing genetic linkage between markers and traits. LOD scores 

are compared to predefined threshold values to determine the statistical significance of linkage. 

Despite the power of linkage analysis to detect disease gene associations, it had several limitation 

including a heavy reliance on the availability of large families with multiple affected individuals which 

can be a challenge in the case of RDs. Linkage analysis is also sensitive to locus heterogeneity and to 

the predicted genetic model.   
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3.1.2 Genome-Wide Association Studies 

With the growing availability of genotyping technologies, Genome-Wide Association Studies 

(GWAS) became increasingly popular, as they combined the genomic coverage of linkage analysis with 

the power of association in thousands of cases and controls (Uffelmann et al. 2021). They were based 

on SNP array data, which genotype 500,000 to 1 million of common SNPs covering the whole genome. 

GWAS allowed the discovery of genetic variants with small effects, mostly associated with common 

multifactorial diseases. For each SNP, a statistical test is applied to evaluate if the allele or genotype 

frequencies are different between cases and controls. If a genetic association is found between a 

phenotype and a SNP, it may mean that the SNP in question is causal for the disease (direct 

association), or that the SNP is in LD with the causal variant (indirect association). This process allows 

GWAS to capture genetic associations even without genotyping all variants of the genome. Association 

can also be detected and wrongly interpreted as effect of the studied SNP on the phenotype of interest 

if the SNP has an effect on another phenotype correlated with the phenotype of interest (for example, 

a SNP involved in BMI variability may be associated with diabetes) or if there is population 

stratification within the sampled data. Population stratification refers to the presence of systematic 

differences in allele frequencies between subpopulations within a larger population and is one of the 

confounding factors in GWAS, that can be corrected by statistical methods like principal component 

analysis. 

The association between the phenotype and SNPs is tested by single-variant analysis, which 

means every SNP is analyzed separately. Usually, the method tests for association between the 

phenotype and the genotype using an additive model, according to which the risk associated with 

carrying two copies of the minor allele at a SNP is two times the risk associated with carrying one copy 

of the minor allele. The phenotype in question can be discrete (e.g. disease status), continuous (e.g. 

blood glucose, Body Mass Index) or even time to disease onset. The nature of the phenotype will 

determine the type of model or statistical test used. Standards methods of association testing include 

regression models (linear for continuous phenotypes, logistic for binary phenotypes), which have the 

advantage of including more than one predictor in the regression equation if necessary. For instance, 

a continuous trait can be modelled by the following type of linear regression: 

𝑌 =  𝛼 +  𝛽𝑊 + 𝛽𝑠𝑋𝑠 

where Y is a vector of phenotype values, α is the intercept, W is a matrix of covariates (e.g. sex, age, 

genetic principal components), 𝛽 is a corresponding vector of effect sizes, 𝑋𝑠 is a vector of genotype 

values for all individuals at SNP s and 𝛽𝑠 is the corresponding SNP effect size. Conducting millions of 

association tests between SNPs and a phenotype can lead to a multiple testing issue. Some ways to 

address this issue are detailed at the end of this section (Johnson et al. 2010). 
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Some main limitations of GWAS are a hindrance to their use especially for discovering variants 

associated with RDs. In GWAS, the less frequent the risk allele, the larger the sample size must be to 

keep the statistical power to detect an association. The same goes for the effect of the variant: the 

smaller the effect, the larger the sample size must be. Thus, GWAS are usually underpowered to detect 

associations due to the small number of individuals carrying the rare variant involved in a RD. 

Despite the substantial number of GWAS carried out in the last fifteen years and their success 

in identifying thousands of genetic variants associated with various diseases and traits, GWAS 

significant hits were unable to explain the heritability predicted from traditional genetic epidemiology 

studies. Many causes for this “missing heritability” problem have been put forward (Manolio et al. 

2009; Génin 2020), including the involvement of rare variants with larger effects and high penetrance 

in multifactorial diseases which is sometimes referred to as the “rare variant hypothesis” (Bodmer and 

Bonilla 2008). Under this paradigm of identifying rare variants involved in disease development, the 

study of monogenic diseases through other methods than GWAS is even more crucial, as they exhibit 

a strong link between these rare pathogenic variants and the expressed phenotype and can serve to 

elucidate disease mechanisms at the genetic and biological level (Chong et al. 2015). Rare variants 

identified in individuals with monogenic diseases may disrupt specific biological pathways or processes 

that can also be relevant to the pathogenesis of common multifactorial traits.  

 

Multiple testing corrections in GWAS 

The multitude of comparisons made in a GWAS results in Type 1 errors (false positives) as the probability 

of observing a significant association by chance alone increases with the number of independent tests. 

The Family-Wise Error Rate (FWER) corresponds to the proportion of times we falsely reject any null 

hypotheses and find a significant association.  

To address the multiple testing issue, researchers typically employ methods to adjust for the number of 

comparisons being made and control this FWER. One common approach is the Bonferroni correction, 

which divides the desired significance threshold for the Type 1 error rate (e.g., 0.05) by the number of 

independent tests being conducted. Projects like HapMap114 have estimated that there were on average 

1 million of independent common SNPs (or blocks of LD) across the genome in European ancestry 

populations, which gave the classical Bonferroni testing threshold of PSNP < 5 × 10–8 used in GWAS.  

Controlling the FWER makes it unlikely to report a false positive, but also to report a true positive. 

Another way to address the multiple testing issue in GWAS whilst being more tolerant to a fraction of 

false positives is to control the False Discovery Rate (FDR), which corresponds to the proportion of 

significant tests among true null hypotheses. The most well-known method of controlling the FDR is the 

Benjamini-Hochberg procedure. 
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3.1.3 Rare variant association tests 

As mentioned previously, GWAS have allowed the identification of thousands of novel loci 

associated with hundreds of complex traits, but mostly with small genetic effect sizes. However, GWAS 

are not suited for the analysis of rare variants, which are in addition in small LD with neighboring SNPs.  

Rare Variant Association Tests (RVAT) were proposed to tackle the issue of rare variant analysis by 

aggregating rare variants in genetic units (like genes) and testing for association between each genetic 

unit and the phenotype (Lee et al. 2014). The variants are also pre-filtered using different criteria like 

their predicted impact to retain only the most likely causal ones, which are called qualifying variants. 

The power of aggregated tests depends on the cumulated frequency of genetic variants in the genetic 

unit. There is also a smaller number of tests carried out compared to GWAS if the genetic unit 

considered is the gene, which makes the multiple testing correction much smaller (20,000 independent 

tests carried out instead of 1 million). The power of rare variant association tests will depend on the 

sample size, the cumulated frequency and size of cumulated effects of variants, the proportion of 

causal variants among qualifying variants and the underlying biological model. 

There are four main categories of RVATs: burden tests, adaptive burden tests, variance-

component tests and combined tests. In the case of burden tests, candidate rare variants are collapsed 

into genetic scores and the association between the score and the phenotype is tested. Burden tests 

make the assumption that the effect of all variants are in the same direction (protective or pathogenic), 

so the presence of neutral or opposite effect variants decreases their power. This limit of burden tests 

is taken into account by adaptive burden tests, which use data-adaptive weights or thresholds.  

Adaptive burden tests are more robust but they are often very computationally intensive. In contrast 

to burden tests, variance-component tests evaluate the collective effect of all qualifying variants by 

testing the distribution of effects. They are powerful in the presence of opposite effect variants or a 

small fraction of causal variants, but are less powerful in the optimal conditions of the burden test. 

Finally, combined tests combine burden and variance-component tests and are more robust than each 

method separately. They can be slightly less powerful than burden or variance-component tests if their 

assumptions are largely held and some methods can be very computationally intensive.  

Classically, RVATs use genes as a testing unit, which restricts the analysis to coding parts of the 

genome only. Assessing the consequence of variants to select qualifying variants is also much more 

straightforward in the coding genome, as mentioned previously.  In 2022, our team answered these 

two challenges by designing the strategy RAVA-FIRST (RAre Variant Association using Functionally-

InfoRmed STeps) (Bocher et al. 2022), allowing the use of RVATs at the scale of the genome. We 

defined new testing units over the whole genome called CADD regions, using functionally-adjusted 

CADD scores (ACS; “Adjusted” PHRED scaled CADD Scores by “coding”, “regulatory” and “intergenic” 
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regions) of variants observed in the gnomAD database. Then, a region-dependent filtering step is 

applied for each CADD region based on the median ACS from the gnomAD database. Finally, a 

functionally-informed burden test is performed. RAVA-FIRST was found to outperform other whole 

genome RVATs that mostly use sliding windows strategies. This work was conducted by a PhD student 

from the team Ozvan Bocher and I contributed to the work by implementing the analysis of InDels into 

RAVA-FIRST. 

Initially, burden tests were proposed to identify rare variant involved in common rather than 

rare diseases but burden tests have also been applied successfully for RD gene discovery (Madsen and 

Browning 2009). The most commonly used tools to apply burden tests include KBAC (Liu and Leal 

2010), SKAT-O (Lee et al. 2012), VT (Price et al. 2010) and VAAST (Kennedy et al. 2014). However, in 

the case of very rare diseases or in the presence of extreme genetic heterogeneity, these methods can 

still be underpowered to find the causal variant, which is why an individual-based approach is often 

sought out for diagnosis.  

3.2 INDIVIDUAL-BASED APPROACHES FOR DISEASE DIAGNOSIS 

3.2.1 Variant filtering 

The process of identifying disease-related variants among the background of thousands or 

millions of non-pathogenic polymorphisms and sequencing errors yielded by whole exome sequencing 

(WES) and whole genome sequencing (WGS) is a real challenge. This issue can be compared to the 

“needle in the haystack” metaphor. Indeed, the average individual carries around 20 rare loss-of-

function variants (Lek et al. 2016), among which four are splice disrupting. Although the various 

databases and resources cited previously  provide critical resources for the clinical interpretation of 

variants observed in patients suffering from RDs (Lek et al. 2016), a process of variant filtering often 

needs to be undertaken to find said “needle”. Studies usually follow first a discrete filtering approach, 

according to which a set of careful filtering steps are applied to keep only variants that could be causal 

to the pathology, also known as candidate variants. This discrete filtering step is used to eliminate 

candidate genes by assuming that any variant found in the filter set cannot be causative, depending 

on the presence in controls for instance. 

In 2015, the American College of Medical Genetics and Genomics (ACMG) provided guidelines 

(Richards et al. 2015) to interpret the pathogenicity of germline variants in a diagnostic context (Figure 

3.1). The guidelines can allow a further filtering or classification of the candidate variants that passed 

the discrete filtering steps. Among the parameters taken into account by the ACMG guidelines, the 

predicted impact of the variants and in silico pathogenicity prediction tools play an important role. 



 

 

54 Chapter 3 – Methods to find genetic factors implicated in human diseases 

Other crucial lines of evidence are the population frequency of the variant (available in databases like 

gnomAD) which can be tuned depending on the expected gene or disease at hand, segregation data, 

biological and clinical data. However, these guidelines have evolved a lot since their initial publication 

in 2015, with the development of less categorical and more nuanced Bayesian (Qian et al. 2018) and 

machine-learning (Nicora et al. 2022) frameworks.  

In clinical practice, the exact filtering steps followed change drastically from case to case, and 

also depending on the phenotype of the individual. For RDs, if all other known monogenic causes are 

ruled out, a typical filtering approach involves keeping variants with a MAF in gnomAD < 10-4, a high 

IMPACT on protein function according to the VEP software and predicted as pathogenic (according to 

SIFT, POLYPHEN-2 or CADD score > 20). For other diseases that are overall less rare, like intellectual 

disability deficiency, the MAF threshold can be higher. If familial data is available (most frequently 

parents/child trios), variants present in unaffected family members can be filtered out as well which 

facilitates the prioritization process. Once the pool of candidate variants is reduced, they are reviewed 

by biologists. To help further prioritize variants, the clinician can exclude variants inconsistent with the 

expected inheritance pattern, apply ACMG guidelines and look more closely at genes known to be 

associated with the phenotype or related pathways. This process is complex and can result in 

substantial loss of information if too stringent filters are applied.  
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Figure 3.1 : ACMG guidelines  

From Richard et al. 2015 ; BS: benign strong ; BP: benign supporting ; FH: family history ;  
LOF: loss-of-function ; MAF: minor allele frequency ; path.: pathogenic ; PM: pathogenic moderate ;  

PP: pathogenic supporting ; PS: pathogenic strong ; PVS: pathogenic very strong 

 

3.2.2 Phenotype-informed variant prioritization integrated methods 

Another approach that can be combined with variant filtering or used separately for RD variant 

discovery is variant prioritization, through methods integrating different lines of evidence. The output 

of such prioritization methods is a ranking of variants by order or predicted pathogenicity, rather than 

a score with a threshold of pathogenicity. Among these methods, some are based on phenotype 

information (Sifrim et al. 2013; Javed, Agrawal and Ng 2014; Robinson et al. 2014, 2020; Singleton et 

al. 2014; Zemojtel et al. 2014; Smedley et al. 2015, 2016; Yang, Robinson and Wang 2015; James et al. 

2016; Boudellioua et al. 2019; Li et al. 2019). Phenotypic characteristics of a patient are usually 

provided in a standardized way though Human Phenotype Ontology (Robinson et al. 2008; Köhler et 

al. 2017) (HPO) terms. The HPO provides a standardized vocabulary and hierarchy of clinical features 

and disease names, as well as association between these symptoms and known disease genes. For 

instance, Exomiser (Smedley et al. 2015) uses a combination of variant frequency, in silico 

pathogenicity scoring, segregation, protein interaction networks, clinical relevance and cross-species 
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phenotype comparison to prioritize coding variants. The extension to the whole genome of Exomiser, 

called Genomiser (Smedley et al. 2016), uses in addition information about regulatory sequences and 

chromosomal topological domains to prioritize coding as well as non-coding pathogenic variants. A 

recent review found that among phenotype-base prioritization pipelines, Xrare (Li et al. 2019), 

Exomiser (Smedley et al. 2015), LIRICAL(Robinson et al. 2020) and PhenIX (Zemojtel et al. 2014) gave 

the best results for variant prioritization in real WES patient data (Tosco-Herrera et al. 2022). 

3.2.3 The PSAP method 

The Population Sampling Probability (PSAP) (Wilfert et al. 2016) method, which was the main 

focus of my work, takes another approach by integrating both allele frequency data and a 

pathogenicity score to prioritize variants whilst being agnostic to the phenotypic characteristics of the 

patient. PSAP operates under the assumption that each gene is more or less tolerant to variants with 

a high predicted pathogenicity, and that observing variants with the same pathogenicity scores in 

different genes will not have the same significance. In other words, PSAP puts variants and their 

pathogenicity scores back in the context of the gene they affect. The method is devoted to the analysis 

of case-level data and does not take into account information brought by multiple patients and altered 

gene recurrence as RVATs do.  

The PSAP method provides for each individual a p-value per gene (Figure 3.2), taken from a 

null distribution of pathogenicity scores in this gene. This p-value per gene is the probability of 

observing in a healthy population a variant in the studied gene with a predicted pathogenicity score at 

least as high as the maximum one observed in this gene for the individual. The pathogenicity score 

initially used in PSAP was the CADD score v1.0, and the allele frequencies used to calibrate PSAP null 

distributions came from the population database ExAc. The simple yet powerful approach under which 

PSAP operates aims at bridging the gap between association methods and pathogenicity meta-

predictors, by providing p-values that can also serve to rank and prioritize variants. In this thesis, we 

have taken PSAP as a conceptual idea that could be adapted and extended upon, notably by integrating 

new units of analysis, pathogenicity scores and allele frequencies to construct PSAP null distributions.  

PSAP presented several characteristics that made it particularly useful in the context of RDs 

diagnosis compared to the other methods described previously: it can be applied on individual data 

and does not imply filtering steps or necessitate HPO terms that are not always available or easy to 

determine for patients as input. However, PSAP had not been updated since its initial version in 2016 

and was restricted to the analysis of coding variants. There is also no commonly admitted threshold 

for PSAP p-value which can make them difficult to interpret and limit the usefulness of the method in 

practice for RD causal variant discovery. 
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Figure 3.2 : Principle of the PSAP method 

For the AD (left) and AR (right) model, PSAP scores the variant with the highest CADD pathogenicity score  

in the gene by looking at where it falls in the null distributions of CADD scores for this particular gene,  

which gives the PSAP p-value for this gene for the corresponding model of inheritance. 

Created with BioRender 
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Chapter 4  HUMAN RARE DISEASES AND THEIR DIAGNOSIS 

While most genetic variants only create polymorphisms in the human population, some germline 

variants in the DNA sequence can lead to the development of inherited genetic diseases. A significant 

proportion of RDs are of genetic origin. This section outlines the main characteristics of RDs and the 

challenge of diagnosing them. 

4.1 CLINICAL AND MOLECULAR DIAGNOSIS 

4.1.1 Impact of a genetic diagnosis for patients 

Genetic diagnosis is crucial for RD patients in several regards. First of all, the patient can know 

the risk of transmission of the disease to any potential offspring and other genetically related 

individuals. Then, especially for children affected by RDs, an accurate genetic diagnosis can allow a 

better understanding of their disease and prognosis (Wright, FitzPatrick and Firth 2018). Knowing 

genetic causes of the disease can also make a personalized treatment and care possible for the patient. 

Finally, this diagnostic can have a profound impact on the patient’s well-being by allowing a 

recognition of their disease by people close to them and society in general, as well as giving them the 

opportunity of getting in contact with patient associations.  

The complex nature of RDs makes their genetic diagnosis even more difficult, with patients 

experiencing diagnostic delays and waiting on average 4 years before getting a proper diagnostic. 

About a quarter of patients with a RD can even have a diagnostic delay between 5 and 30 years 

(Uhlenbusch, Löwe and Depping 2019), that can be referred to as a “diagnostic odyssey”. More 

alarmingly, it is believed that 40% of RD patients are given an inaccurate diagnosis (Chong et al. 2015). 

When a diagnostic is not currently possible for technical or knowledge reasons, RD patients are faced 

with a “diagnostic deadlock”. The current diagnostic rate of RDs is still approximately of 50% (Boycott 

et al. 2017). The many reasons for the lack of diagnosis for these RD patients will be explored in  

section 4.2.  

Although diagnosis is a crucial step that is the focus of this manuscript, 95% of RDs currently 

do not have a curative treatment. The field of gene therapy is giving promising results in that regard, 

with 50% of new genic therapies targeted towards RDs. Even when a treatment exists, drugs aiming at 

treating RDs, also known as orphan drugs, are among the most expensive drugs on the market despite 

some regulations by legislation. The annual worldwide expenditure on orphan drugs amounts to a 

staggering $125 billion (Ferreira 2019).  
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4.1.2 Use of Next Generation Sequencing technologies  

The diagnostic process for a RD usually starts with conventional clinical practices, such as 

physical examination, personal and familial history, laboratory tests and image studies. Phenotypic 

features can be evocative of a specific syndrome or disease for the clinician and yield a first clinical 

diagnosis, or not. However, finding the true genetic causes or molecular diagnosis of a RD is a much 

more complex process, which was improved tremendously by advances discoveries around DNA.  

Historically, diagnosis for RDs had been sought out by gene mapping strategies and linkage 

analysis. However, the advent of NGS has also allowed a shift in the techniques used to find genes 

involved in these RDs. A few years ago, the cost of a genome sequencing fell under $1,000 and is now 

dropping at $200 per genome. Thus, WES and more recently WGS have become more prevalent even 

in a clinical setting, as they often provide patients with a faster genetic diagnosis even where more 

conventional approaches are eventually expected to succeed, and avoid lengthy, expensive and 

invasive investigations. More importantly, they are agnostic to both known biology and mapping data, 

which makes them even more powerful for discovering genes underlying RDs. The contribution of NGS 

technologies to the diagnostic yield of RDs has been increasing since 2010 and has allowed the 

continuous discovery of new genes associated with RDs (Bamshad et al. 2011; Boycott et al. 2017; 

Ehrhart et al. 2021) (Figure 4.1). For instance, in the case of intellectual disability, the introduction of 

WES in 2010 and onwards added a diagnostic yield of 24–33% and a first pilot study using WGS added 

a further 26% in 2014 (Vissers, Gilissen and Veltman 2016). Depending on the pathology at hand, some 

less extensive options can be explored before attempting WES or WGS. Among them, comparative 

genomic hybridization (CGH) array analysis, which is part of the chromosomal microarray analysis 

methods, can be used to detect clinically significant major chromosomal abnormalities and sub 

microscopic copy number variations throughout the genome. A gene panel testing can also be carried 

out and involves analyzing a set of genes known to be associated with specific genetic conditions 

related to the patient's symptoms.  

However, exome sequencing has been estimated to lead to a diagnosis for only around 25% of 

RDs (Frésard and Montgomery 2018). Thus, whole genome sequencing is becoming even more 

prevalent, as it allows the potential discovery of non-coding pathogenic variants and a more reliable 

detection of structural variants even in protein-coding regions (Posey 2019; Marwaha, Knowles and 

Ashley 2022; Wojcik et al. 2023). However, there is growing evidence that WGS could be used as first-

line testing in some specific cases, without attempting CGH array of gene panel analyses. A recent 

review regrouping 71 studies noted that diagnostic yield was notably higher in cases where WGS was 

used as the initial diagnostic tool (45%), and similar in cohorts that had undergone previous genetic 

testing (33%) or were found to be negative on exome sequencing (33%) (Wigby et al. 2024). This trend 
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will probably be confirmed in the coming years as WGS becomes more integrated in the clinical routine 

and exploited through novel analysis methods.  

 

Figure 4.1 : Approximate Number of Gene Discoveries Made by WES and WGS versus Conventional Approaches  
since 2010 according to OMIM Data  

From Boycott at al. 2017 

 

4.1.3 Gene-disease and variant-disease association databases 

As more and more genes were described and linked to RDs, it became apparent that resources 

aggregating this information would play a crucial role for both researchers and clinicians. Among them, 

Orphanet is the European reference portal for information on RDs and orphan drugs, created by the 

INSERM in 1997. Orphanet provides data on RDs including their prevalence (Nguengang Wakap et al. 

2020), symptoms, treatments, and genetic associations. Orphanet’s database is available through its 

platform Orphadata, which provides comprehensive and high-quality datasets. OMIM  (Online 

Mendelian Inheritance in Man) (Amberger et al. 2015) is also a comprehensive collection of human 

genes and genetic phenotypes, based on published peer-reviewed literature. It catalogues information 

on monogenic diseases including RDs and their associated genes, including detailed descriptions, 

inheritance patterns, and molecular mechanisms. OMIM genes that are linked to a genetic disease are 

called OMIM morbid. As of February 6th 2024, there were a total of 17,207 genes described in OMIM, 

6,789 phenotype descriptions with a known molecular basis, 1,504 phenotype descriptions or loci with 

an unknown molecular basis and 1,742 other entries, mainly phenotypes with a suspected monogenic 

basis.  
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When information from the major databases on RDs including Orphanet and OMIM is 

combined and compared, a total of 10,393 RDs can be identified (Haendel et al. 2020). The majority 

(6,370 RDs) are present in three or more resources, whereas 4,023 are unique to one source, which 

highlights the heterogeneity of definition and collection of RDs. This number continues to grow, as 

approximately 300 new monogenic diseases or associated phenotypes are added to OMIM each year, 

the vast majority of which being novel gene-disease associations (Chong et al. 2015; Ferreira 2019). 

 Other databases are more focused on gathering information at the level of the genetic variant, 

albeit linked to phenotypes and diseases as well. Among them, ClinVa r(Landrum et al. 2018) is a freely 

accessible archive of reports on genetic variants, including those associated with RDs, from various 

sources like clinical testing laboratories and research studies. A major strength of ClinVar is the readily-

available information on the clinical significance (benign, likely benign, uncertain significance, likely 

pathogenic, pathogenic) and the review status (no assertion criteria provided, criteria provided single 

submitter, criteria provided conflicting interpretations, criteria provided, multiple submitters no 

conflicts, reviewed by expert panel, practice guideline) of the variant, which allows an evaluation of 

the supporting evidence regarding the status of this variant. ClinVar was an especially useful resource 

in this thesis for simulating disease genomes and exomes by inserting some known pathogenic ClinVar 

variants in sequence data from general population individuals, for instance from the 1kGP individuals 

described in section 2.3.2. Another resource called HGMD  (Human Gene Mutation Database) (Stenson 

et al. 2020) provides expert-curated information on disease-causing mutations and their associated 

phenotypes, including RDs, but is not freely available like ClinVar which is why it was not used in this 

work. ClinVar encompasses around 2,800,000 unique variation records as of March 2024, a majority 

of which being provided with both their clinical significance and review status. In comparison, HGMD 

recapitulates more than 450,000 detailed mutation reports after curation. 

4.2 SPECIFICITIES OF RARE DISEASES GENETICS 

4.2.1 Complex modes of inheritance: digenism and modifier genes 

For a long time, genetic diseases were believed to be caused only by alterations in a single 

gene, which is what we called previously a monogenic mode of inheritance. In the pre-genomic era, 

there was a strict divide between strictly monogenic RDs and common polygenic diseases (Messaoud 

et al. 2021). However, numerous exceptions to this rule have been described in the literature, leading 

to the understanding that more genetically complex modes of inheritance exist even for RDs (Lupski 

2012). Exploring the genetically complex modes of inheritance of RDs appeared as a way to inform the 

etiology of both rare and common diseases (Antonarakis et al. 2010). In this section, we will mostly 

focus on digenism, the simplest form of genetically complex inheritance. 
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 A disease is defined as having a digenic mode of inheritance if variants in two distinct genes 

are necessary to develop the disease, according to Schäffer’s definition (Schäffer 2013) (Figure 1.10). 

These genes may act together in a pathway or have related functions that, when disrupted, lead to the 

observed phenotype. Individuals harboring only one of the variants are not affected. If alterations in 

more than two distinct genes are necessary to express the disease, it is called oligogenism. The first 

case of digenism was described in the literature in 1994 for retinis pigmentosa (Kajiwara, Berson and 

Dryja 1994), a degenerative disorder causing progressive loss of vision, for which heterozygote variants 

in both ROM1 and PRPH2 are needed to develop the disease. Bardet-Biedl syndrome is another disease 

very well-known for being linked to multiple cases of digenic and oligogenic inheritance, involving 

several different genes (Katsanis et al. 2001). 

A distinction has to be made between “true” digenism and a monogenic mode of inheritance 

with modifier gene (Génin, Feingold and Clerget-Darpoux 2008; Kousi and Katsanis 2015; Rahit and 

Tarailo-Graovac 2020) (Figure 1.10). In the latter case, having the first monogenic variant is sufficient 

to exhibit the disease, but the modifier gene controls the intensity or severity of the phenotype. 

Whereas looking for digenic inheritance means differentiating between affected and unaffected 

individuals, searching for a modifier gene requires a measure of the clinical variability within affected 

individuals, which can be difficult to get. A last situation that has to be distinguished from digenism is 

the possibility of having a dual molecular diagnosis, which means two distinct monogenic diseases 

coexist in the same individual (Figure 4.2) and can lead to a blended phenotype.  

To make information on digenic diseases more accessible, the database DIDA (DIgenic diseases 

DAtabase) (Gazzo et al. 2016) was created in 2015. DIDA provided a manually curated collection of 

genes and associated variants involved in digenic diseases, including SNVs and InDels. More recently, 

DIDA was updated and extended to become OLIDA  (OLIgogenic diseases Database) (Nachtegael et al. 

2022). OLIDA incorporates all oligogenic variant combinations published in the scientific literature, 

even those implicating structural variants. A more in-depth description and benchmark of the methods 

used to detect digenism, especially in sequencing data, will be the focus of Part IV - Chapter 8.  
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Figure 4.2 : Examples of bi-locus genetically complex modes of inheritance  

From Papadimitriou et al. 2019 

 

Other types of genetically complex modes of inheritance that are less relevant to our study of 

RDs and that will not be addressed in this manuscript also exist. For instance, mitochondrial DNA and 

thus mitochondrial diseases (Wei and Chinnery 2020) are inherited from the mother only. Both 

daughters and sons of an affected mother are affected, whereas an affected father never transmits a 

mitochondrial disease to his children; imprinting disorders (Bajrami and Spiroski 2016; Butler 2020) 

are caused by disturbances of the imprinting process, according to which certain genes are expressed 

or silenced based on their parental origin due to epigenetic modifications such as DNA methylation.  

4.2.2 Genetic heterogeneity and the challenge of molecular diagnosis for rare diseases 

Despite the great advances allowed by the advent of sequencing technologies and 

understanding of RD inheritance patterns, RD diagnosis in clinical genetics remains a challenge, as 

evidenced by the current molecular diagnosis rates of only around 50% of RD patients. Solving the 

molecular determinant of RD cases is made difficult by the very genetic architecture of RDs, the 

detection and interpretation of variants and the availability of samples. 

Strong genetic heterogeneity (Chong et al. 2015) of RDs plays a huge part in this low diagnosis 

rate, meaning that variants in different genes (locus heterogeneity) or different variants in the same 

gene (allelic heterogeneity) may lead to the same disorder (McClellan and King 2010). This locus 

heterogeneity challenges in itself the monogenic nature of RDs, as it is one gene but not always the 
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same gene that leads to the disease. In addition, the monogenic model of inheritance hypothesized by 

several statistical methods has proven incorrect to understand the molecular causes of several RDs, as 

evidenced by the digenic or even oligogenic nature of RDs. There is a lack of approaches to interpret 

these increasingly complex scenarios in multiple variants interact together to cause or modify a RD 

(Frésard and Montgomery 2018).  

Genetic testing relies on the accurate detection of genetic variants, including SNVs, InDels and 

structural variants. However, the detection of rare and novel variants can be challenging, especially in 

regions of the genome that are difficult to sequence or analyze. Even when genetic variants are 

identified, interpreting their clinical significance can be challenging especially for non-coding variants. 

Variants of Uncertain Significance are common, and determining whether a variant is causative or 

benign requires careful consideration of multiple factors, including population frequency, evolutionary 

conservation, and functional impact. In addition, high incidence of novel and ultra-rare benign variants, 

false assignment of variant pathogenicity, even false association of genes with disease in literature can 

confound results. 

Finally, obtaining samples from individuals with RDs, as well as their family members for 

segregation analysis, can be challenging due to the rarity of the condition and the limited availability 

of affected individuals. Combined with genetic heterogeneity, it means that in some extreme cases, 

only one patient harbors a specific causal variant. This is known as the “n-of-one” problem, in the 

context of which classical association tests are powerless to detect the causal variant (Frésard and 

Montgomery 2018). This thesis was thus heavily focused on a method aimed at addressing this “n-of-

one” problem, the PSAP method, which is the subject of section 3.2.3 of this PART II. 

4.3 TWO CASE STUDIES OF RARE DISEASES 

4.3.1 Cerebral Small Vessel Disease 

The first pathology used as a case study in this manuscript is non-amyloid Cerebral Small 

Vessel Disease (CSVD). CSVD is a heterogeneous group of disorders that affect the structure and 

function of small blood vessels in the brain (Joutel et al. 2016), including small arteries and arterioles 

but also capillaries and small veins. The main phenotypic manifestations associated with CSVD are 

lacunar infarcts (small, localized strokes) and white matter lesions in the brain, although it is also 

associated with impairments of other organs (Thompson and Hakim 2009; Rannikmäe et al. 2020). 

CSVD accounts for around 20% of ischemic strokes and the majority of hemorrhagic strokes (Pantoni 

2010; Marini, Anderson and Rosand 2020) and is a leading cause of vascular cognitive impairment and 

disability in adults. CSVD is commonly associated with aging and conditions such as hypertension, 
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diabetes, and smoking. While most cases of CSVD are sporadic and related to environmental factors 

and aging, rare monogenic forms of CSVD exist and their genetic basis has been explored over the 

years. Monogenic forms of CSVD are characterized by their early onset (before 50) and familial history. 

A list of genes currently known to be involved in monogenic CSVD with strong evidence and their 

associated phenotypes can be found in Table 4.1.  

The first gene described in 1996 as causal for monogenic forms of CSVD is NOTCH3 (Joutel et 

al. 1996), which is involved in the most common familial stroke disorder called CADASIL (Cerebral 

Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy). Since then, a 

few additional genes have been identified including, by order of publication, COL4A1, TREX1, HTRA1, 

COL4A2 (Rannikmäe et al. 2020). For other diseases, like the Deficiency of Adenosine Deaminase 2 

(associated with alterations of ADA2) and Fabry disease (associated with alterations of GLA), CSVD can 

be observed but is not the primary associated phenotype. Finally, other genes described in the 

literature have a weaker causal association with CSVD, like FOXC1 (Marini, Anderson and Rosand 

2020). More recently, CTSA has been  found as a causal gene of a monogenic form of CSVD (Whittaker 

et al. 2022) and rare truncating variants in LAMB1 have also been associated with CSVD (Aloui et al. 

2021), continuing to expand the genetic etiology of the disease. 

Investigations in the monogenic forms of CSVD has shed light on several pathogenic processes 

involved in the disease, like the impaired function of the extracellular matrix (Joutel et al. 2016; 

Mustapha et al. 2019) and its proteins, the core matrisome. Hereditary CSVD is genetically 

heterogeneous and represents different disease entities (Mustapha et al. 2019), which makes finding 

the molecular causes of CSVD very difficult. A substantial portion of CSVD cases believed to be of 

genetic origin remain unresolved, and elucidating these heritable forms of CSVD can inform the 

understanding and ultimately the treatment of sporadic forms as well.  
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Name (OMIM listing) Inheritance Gene CSVD phenotypes 

CADASIL (OMIM: 600276) AD NOTCH3 
Lacunar infarcts, WMH, 

dCMB 

CARASIL (OMIM: 602194) AR HTRA1 Lacunar infarcts, WMH 

COL4A1-related disorders  

(OMIM: 120103 and 120090) 
AD 

COL4A1 and 

COL4A2 

Lacunar strokes, WMH, 

deep ICH 

Retinal vasculopathy with cerebral 

leukodystrophy (OMIM: 606609) 
AD TREX1 WMH 

Fabry disease 

(OMIM: 300644) 
X-linked GLA 

Lacunar strokes, 

WMH 

Deficiency of ADA2 

(OMIM: 182410) 
AR ADA2 

Lacunar strokes, WMH, 

dCMBs, deep ICH 

Table 4.1 : Monogenic disorders exhibiting CSVD  

Adapted from Marini et al. 2015 
CADASIL, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy;  
CARASIL, cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy;  

WMH = White matter hyperintensities, ICH = Intracerebral hemorrhage, dCMB = Deep cerebral microbleed 

 

4.3.2 Male infertility 

Male infertility is the second pathology explored in this manuscript. Male infertility is a 

complex multifactorial condition that affects around 7% of the male population (Krausz and Riera-

Escamilla 2018), which is not in itself rare. However, while environmental factors, lifestyle choices, and 

other medical conditions can play significant roles in male infertility, there is a genetic cause for 

approximately 4% of diagnosed cases of infertility. The biological etiologies of male infertility are very 

broad. It can be caused by anomalies of the sperm, including azoospermia (absence of sperm in the 

semen), oligozoospermia (lower-than-normal concentration of sperm in the semen), 

athenozoospermia (poor sperm motility) and teratospermia (abnormal sperm morphology). Other 

causes of male infertility include hormonal imbalances, obstructions of the reproductive tract, erectile 

dysfunction and other medical conditions or treatments. The great heterogeneity characterizing male 

infertility makes some of its causes very rare and difficult to diagnose from an etiological standpoint. 

In 60 to 70% of cases of male infertility, the causes are still unknown (idiopathic infertility) and genetic 

factors are believed to play an important role in these unexplained cases.  

Azoospermia is the condition with the most known genetic factors associated (25% of men 

with azoospermia carry known genetic anomalies), but new genetic factors involved in other types of 

male infertility are discovered regularly. In a recent review article (Houston et al. 2022) on the 

validated monogenic causes of human male infertility, 120 genes were described as moderately, 
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strongly or definitively linked to 104 infertility phenotypes at different levels (Figure 4.3). This number 

marks a 33% increase compared to the number of genes described in 2019, highlighting great advances 

in the field of male infertility gene discovery mainly due to NGS studies. Large-scale worldwide 

initiatives like the GEnetics of Male INfertility Initiative (GEMINI) consortium aim at improving even 

more the understanding of male infertility genetics. This initiative has proven fruitful, with a study 

using the GEMINI data describing a plausible recessive mongenic cause in 20% of 1,011 cases of non-

obstructive azoospermia (Nagirnaja et al. 2022). 

 

 

Figure 4.3 : Genes associated with male infertility  

From Houston et al. 2021 
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Part III 
 

Tackling genetic heterogeneity  
in the coding and non-coding genome
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Chapter 5  PSAP-GENOMIC-REGIONS: PRIORITIZING VARIANTS 

IN WHOLE GENOME SEQUENCING DATA 

The starting point of my PhD project was the PSAP method, which presented key advantages in 

the case of RDs as it was suited for individual-by-individual analysis. To benefit from the most recent 

developments in the analysis of sequence data, I updated the PSAP pipeline to account for larger 

population reference panels and the latest version of the CADD score. In addition, I took advantage of 

methodological developments from our team to extend the PSAP method to analyze non-coding 

regions of the genome. In our extension of PSAP, called PSAP-genomic-regions, I used predefined 

functional regions (CADD regions defined in RAVA-FIRST (Bocher et al. 2022)) as testing units for the 

construction of PSAP null distributions. The goal of PSAP-genomic-regions was to broaden the 

spectrum of variants detectable by PSAP, especially in introns, regulatory and splicing regions, but also 

to improve the performance of PSAP for patients for which the causal variant is localized in a more 

constrained sub-regions of a gene’s coding region. PSAP-genomic-regions is described in the following 

preprint (Ogloblinsky et al. 2024), which is in review in Plos Genetics. The supplementary materials for 

the article can be found in Appendix I.  

5.1 BACKGROUND AND SUMMARY 

High genetic heterogeneity in RDs poses the challenge of identifying an n-of-one patient’s causal 

variant using sequencing data and standard analysis methods. Initially, the PSAP method (Wilfert et al. 

2016) used gene-specific null distributions of CADD pathogenicity scores to assess the probability of 

observing a given genotype in a healthy population. We propose PSAP-genomic-regions, an extension 

of the PSAP method to the non-coding genome using as testing units predefined regions reflecting 

functional constraint at the scale of the whole genome, the CADD regions. We propose two alternative 

PSAP-genomic-regions strategies by constructing PSAP null distributions on CADD regions with two 

pathogenicity scores: the initial CADD score (PSAP-genomic-regions-CADD strategy) or the ACS (PSAP-

genomic-regions-ACS strategy) built to mitigate the higher CADD scores of coding variants (see  section 

3.1.3).   

We evaluated the proposed prioritization strategies using artificially-generated disease exomes 

and genome. We generated these disease exomes and genomes by inserting coding and non-coding 

pathogenic ClinVar SNVs in 574 healthy exomes from the FrEnch Exome (FREX) Project and in 533 

whole genomes from the 1kGP respectively, under both the autosomal dominant and autosomal 

recessive (AD and AR) models. Inserted variants were ranked based on their PSAP p-values on one 

hand, and on their pathogenicity score alone on the other hand. This evaluation protocol allowed us 
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to compare our two PSAP-genomic-regions-CADD and PSAP-genomic-regions-ACS strategies against 

the initial PSAP-genes (also called PSAP-genes-CADD) strategy, and against a prioritization using only 

the maximal CADD or ACS score by CADD region.  

On the artificially-generated disease data, the two PSAP-genomic-regions strategies perform 

systematically better at prioritizing all types of pathogenic variants in a genome background, compared 

to the strategies of using maximal pathogenicity score only (CADD or ACS depending on the strategy). 

For coding pathogenic variant prioritization, PSAP-genomic-regions-CADD gives the best performance, 

and manages to rank 45.5% and 96% of variants in the top 10 of the genome for the AD and AR models, 

respectively. PSAP-genomic-regions-ACS prioritizes better non-coding pathogenic variants, especially 

splicing variants, with 56.5% and 83.3% reaching the top 10 of the genome for the AD and AR models, 

respectively.  

We also tested our method on exome data from 6 patients with known variants causing a 

monogenic form of Cerebral Small Vessel Disease and genome data from 9 patients with familial forms 

of male infertility. Overall, the PSAP strategies always performed better than the CADD only strategies. 

PSAP-genomic-regions prioritized the causal variants within the top 100 variants for every individual. 

PSAP-genomic-regions improved notably the ranking of the causal variants in 4 out of the 6 CSVD 

individuals compared to PSAP-genes, and maintained a similar ranking for the 2 remaining individuals. 

On genome data, PSAP-genomic-regions ranks candidate genes at higher ranks than PSAP-genes. This 

can be explained by the fact that PSAP-gene only ranks around 4,000 variants by individual, as it 

analyzes only variants falling in genes, against around 70,000 variants for PSAP-genomic-regions, which 

analyzes the whole genome.  

 PSAP-genomic-regions is an efficient agnostic prioritization tool, which offers promising results 

for the diagnosis of unresolved n-of-one cases of RDs. To prioritize non-coding variants, the PSAP-

genomic-regions-ACS gives the best results both in WES and WGS data. In the specific case of WGS 

coding variant prioritization, using coding parts of CADD regions as units of analysis (PSAP-coding-

genomic-regions) still yields better results than PSAP-genes. Thus if the expected causal variant is 

coding, we advise the use of PSAP-genomic-regions-CADD in WES, and PSAP-coding-genomic-regions-

CADD in WGS. 

5.2 RESULTS 
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Abstract 

The introduction of next generation sequencing technologies in the clinics has improved rare 

disease diagnosis. Nonetheless, for very heterogeneous or very rare diseases, more than half of cases 

still lack molecular diagnosis. Novel strategies are needed to prioritize variants within a single 

individual. The PSAP (Population Sampling Probability) method was developed to meet this aim but 

only for coding variants in exome data. To address the challenge of the analysis of non-coding variants 

in whole genome sequencing data, we propose an extension of the PSAP method to the non-coding 

genome called PSAP-genomic-regions. In this extension, instead of considering genes as testing units 

(PSAP-genes strategy), we use genomic regions defined over the whole genome that pinpoint potential 

functional constraints. 

We conceived an evaluation protocol for our method using artificially-generated disease 

exomes and genomes, by inserting coding and non-coding pathogenic ClinVar variants in large datasets 

of exomes and genomes from the general population. 

We found that PSAP-genomic-regions significantly improves the ranking of these variants 

compared to using a pathogenicity score alone. Using PSAP-genomic-regions, more than fifty percent 

of non-coding ClinVar variants, especially those involved in splicing, were among the top 10 variants 

of the genome. In addition, our approach gave similar results compared to PSAP-genes regarding the 

scoring of coding variants. On real sequencing data from 6 patients with Cerebral Small Vessel Disease 

and 9 patients with male infertility, all causal variants were ranked in the top 100 variants with PSAP-

genomic-regions.  

By revisiting the testing units used in the PSAP method to include non-coding variants, we have 

developed PSAP-genomic-regions, an efficient whole-genome prioritization tool which offers 

promising results for the diagnosis of unresolved rare diseases. PSAP-genomic-regions is implemented 

as a user-friendly Snakemake workflow, accessible to both researchers and clinicians which can easily 

integrate up-to-date annotation from large databases. 
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Author summary 

In recent years, improvement in DNA sequencing technologies has allowed the identification 

of many genes involved in rare diseases. Nonetheless, the molecular diagnosis is still unknown for 

more than half of rare diseases cases. This is in part due to the large heterogeneity of molecular causes 

in rare diseases. This also highlights the need for the development of new methods to prioritize 

pathogenic variants from DNA sequencing data at the scale of the whole genome and not only coding 

regions. With PSAP-genomic-regions, we offer a strategy to prioritize coding and non-coding variants 

in whole-genome data from a single individual in need of a diagnosis. The PSAP-genomic-regions 

combines information on the predicted pathogenicity and frequency of variants in the context of 

functional regions of the genome. In this work, we compare the PSAP-genomic-regions strategy to 

other variant prioritization strategies on simulated and real data. We show the better performance of 

PSAP-genomic-regions over a classical approach based on variant pathogenicity scores alone. PSAP-

genomic-regions provides a straightforward approach to prioritize causal pathogenic variants, 

especially non-coding ones, that are often missed with other strategies and could explain the cause of 

undiagnosed rare diseases.
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Introduction 

Each rare disease affects, by definition, a small number of individuals. However, as a whole, 

rare diseases affect about 350 million people world-wide (1). Approximately 80% of rare diseases have 

a genetic origin that mostly follows a Mendelian mode of inheritance (2–4). The advent of Next 

Generation Sequencing (NGS) and the development of variant pathogenicity prediction tools have 

allowed, in recent years, the identification of many genes involved in rare Mendelian diseases. 

Nonetheless, despite extensive efforts, the molecular diagnosis is still unknown for more than 50% of 

rare diseases cases (5–7). This can mainly be explained by the fact that many rare diseases are 

characterized by an extreme genetic heterogeneity, which results in only one individual carrying a 

specific pathogenic causal variant. This issue is referred to as the “n-of-one” problem (8).  

With the advent of high throughput sequencing technologies in clinics, molecular diagnosis is 

now often sought through whole exome or whole genome sequencing (WES and WGS respectively). 

However, due to the large number of rare variants in each individual genome, causal variants are 

sought among very rare and highly pathogenic variants in genes relevant to the current known disease 

mechanism. The limited knowledge about gene functions and disease mechanisms can make this 

strategy unfruitful. To address the issue of variant prioritization at the level of an individual, the 

Population Sampling Method (PSAP) (8)  was developed. PSAP computes, for each gene, a null 

distribution, which is the probability to observe in the general population a genotype with a CADD 

pathogenicity score (9) greater than or equal to the highest one to the highest one observed in the 

patient for this gene. This initial version of the PSAP method, which we will refer to as PSAP-genes, has 

been successfully applied to identify variants of interest in  diverse phenotypes, including male 

infertility (10–12), recurrent pregnancy loss (13) and ciliary diskynesia (14).  
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A current hindrance to the application and generalization of PSAP-genes as a tool for diagnosis 

is its restriction to the coding parts of the genome. Indeed, the majority of variants reside in non-coding 

parts of the genome (15). Non-coding variants may contribute to explain part of the etiology of rare 

diseases (16), as suggested by the large number of GWAS hits located in non-coding regions of the 

genome (17). The involvement of non-coding pathogenic variants in rare diseases is further 

corroborated by the fact that non-coding regions are heavily involved in the regulation of gene 

expression. Several prediction tools have been developed to this end (18–20), but most of them lack a 

variant-based score for both coding and non-coding regions. In addition, to be performant, they often 

require multiple annotations like Human Phenotype Ontology (HPO) terms (21) to characterize the 

symptoms or disease of a patient . Thus, they rely on previous knowledge and rarely go beyond 

candidate genes. 

To move beyond the gene as a natural unit of testing for the PSAP method, we need to use 

predetermined regions across the whole genome. These regions also need to be defined using 

functional information to be used as a cohesive unit for the construction of PSAP null distributions. 

This challenge of defining regions along the whole genome has been tackled by Bocher et al. in the 

context of rare-variant association testing (22): they describe CADD regions, which are characterized 

by a lack of observed variants with high functionally-Adjusted CADD Scores (ACS) in the gnomAD 

database (23). CADD regions are expected to reflect functional constraints. CADD regions present the 

key advantage of providing pre-defined and functionally-informed regions which can be used to 

construct PSAP null distributions.  

We have made available a new implementation of the PSAP method using Snakemake (24) 

workflows, called Easy-PSAP (https://github.com/msogloblinsky/Easy-PSAP), which features null 

distributions constructed with up-to-date allele frequency data and pathogenicity scores. Here, we 

introduce PSAP-genomic-regions, an extension of the PSAP method to the non-coding genome by using 

the pre-defined CADD regions as testing unit instead of genes.   

https://github.com/msogloblinsky/Easy-PSAP
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This is an innovative strategy to prioritize variants at the scale of an individual genome. PSAP-

genomic-regions is now available in Easy-PSAP. We devised an evaluation protocol using artificially-

generated disease exomes and genomes, obtained by inserting coding and non-coding ClinVar (25) 

variants in general population whole genomes from the 1000 Genomes Project (26) and exomes from 

the FrEnch EXome (FREX) project (27). We show the consistent improvement in prioritization by using 

PSAP-genomic-regions over pathogenicity scores alone for non-coding and then coding variants. For 

coding variants, we also demonstrate the good performance of PSAP-genomic-regions compared to 

PSAP-genes. On real-life data, we illustrate the power of PSAP-genomic-regions on WES data from six 

resolved cases of Cerebral Small Vessel Disease (CSVD) and WGS data from three families affected by 

male infertility. These two diseases are particularly relevant to test our method, monogenic forms of 

CSVD (28) and male infertility (29) being extremely heterogeneous. 
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Results  

Construction of PSAP null distribution in coding and non-coding 

regions 

The idea behind the original PSAP method, referred to as PSAP-genes, relies on the calculation of 

gene-specific null distributions of CADD pathogenicity scores. More precisely, for an individual exome 

or genome and in a given gene, PSAP-genes considers the genotype with the highest CADD score and 

evaluates the probability to observe such a high CADD score in this gene in the general population (see 

S1 File for a detailed explanation of the calculation of PSAP null distributions). PSAP-genes deals 

separately with heterozygote and homozygote variants in the autosomal dominant (AD) and the 

autosomal recessive (AR) models respectively. As a result, PSAP-genes gives a p-value to the genotype 

with the highest CADD score in the gene for each gene, model, and individual. This p-value allows the 

ranking of the genes for an individual exome or genome. The PSAP principle can be generalized to any 

genomic unit.  

Here, with PSAP-genomic-regions, we extended the PSAP method to analyze whole-genome data 

using predefined CADD regions as testing units instead of genes (Figure 5.1). The same principle as 

before is employed, with the difference being that the genotype with the highest CADD score in the 

region can be coding or non-coding. We thus constructed PSAP-genomic-regions null distributions with 

two pathogenicity scores : the initial CADD score (PHRED scaled across the whole genome), or the ACS 

(22) (PHRED scaled CADD scores by “coding”, “regulatory” and “intergenic” regions) to mitigate the 

higher CADD scores of coding variants. Our two novel strategies will be referred to as PSAP-genomic-

regions-CADD and PSAP-genomic-regions-ACS. They were compared to the initial PSAP-genes strategy, 

also referred to as PSAP-genes-CADD. 
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Figure 5.1. Description of the PSAP-genomic-regions strategy 

 

We calculated PSAP null distributions for SNVs in genes and CADD regions, in the hg19 and hg38 

assemblies of the human genome. In hg19, PSAP null distributions were obtained for 19,283 genes and 

119,695 CADD regions. In hg38 PSAP null distributions were obtained for 18,395 genes and 123,991 

CADD regions. PSAP null distributions and their parameters (unit of testing, allele frequencies and 

pathogenicity score) can be found in S1 Table. 

 

Evaluating the performance of PSAP-genomic-regions on artificially-

generated disease exomes and genomes using ClinVar variants 

Prioritization of non-coding pathogenic variants 

First, to evaluate how PSAP-genomic-regions performed to prioritize non-coding pathogenic 

variants, we used artificially-generated disease genomes created by inserting non-coding ClinVar 

variants in the NFE genomes from 1000G project (see Material & Methods and S2 File for the list of 

variants). Because the 1000 Genomes project is population-based, we expect that some individuals 

might carry one or a few pathogenic variants in their genome.   
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These pathogenic variants are characterized by a high CADD score and a low PSAP p-value. Indeed, 

there is large variation in the maximal CADD score or lowest PSAP p-value, whereas the rest of the 

distribution is extremely similar between individuals (S1 Fig). Thus, in order to summarize the rank of 

a ClinVar variant in an evaluation setting, we considered the best rank reached by the variant in at 

least 90% of the individuals.  

Most of the NFE genomes carried a variant with a higher pathogenicity score or a lower PSAP p-

value than most of the ClinVar variants (S2 Fig). We thus compared the percentage of the non-coding 

pathogenic variants ranked among the top N (N = 1, 10, 50 and 100) in at least 90% of the NFE genomes. 

The ranking at the individual level was done among all heterozygous variants for the ClinVar variants 

under the AD model, and across homozygous variants for the ClinVar variants under the AR model. 

(Figure 5.2A). With both CADD and ACS pathogenicity scores, PSAP-genomic-regions performed 

systematically better than using the pathogenicity scores alone. The improvement was especially large 

for the top 10 ranking: 24.6% and 79.2% of ClinVar variants reached the top 10 with PSAP-genomic-

regions-CADD for the AD and AR models, respectively, while no ClinVar variant reached the top 10 with 

CADD scores alone.  
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Figure 5.2. Comparison of the PSAP-genomic-regions strategy versus a pathogenicity score alone for in artificially-simulated 
disease genomes.  

Percentage of non-coding and coding pathogenic ClinVar variants reaching the top N of variants in at least 90% of NFE 
genomes, with PSAP-genomic-regions (darker shade of blue or green) or the pathogenicity score alone (lighter shade of 

blue or green), CADD or ACS (A) N = 175 non-coding AD variants and N = 96 non-coding AR variants (B) N = 4,965 coding AD 
variants and N = 2,680 coding AR variants. 

 

Using the ACS scores further improved the performance to detect non-coding-variants: 56.6% and 

83.3% of variants reached the top 10 with PSAP-genomic-regions-ACS for the AD and AR models, 

respectively. Nonetheless, we can note the pattern is different for the top 1 for the AR model: 51% 

with PSAP-genomic-regions-CADD to 5.5% with PSAP-genomic-regions-ACS. Indeed, switching from 

CADD score to ACS score has lowered the PSAP p-value of non-coding variants shared by more than 

10% of NFE genomes.   
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This led to a defect of the top rank reached by the ClinVar variants, as we considered the lowest 

rank reached in at least 90% of individuals. For instance, a variant in the CADD region R109138 shared 

by 70 of the NFE genomes went from a CADD score of 18.1 and a PSAP-genomic-regions-CADD p-value 

of 0.1 to an ACS of 22.2 and a PSAP-genomic-regions-ACS p-value of 5.18x10-10. Thus, the ClinVar 

variants inserted in these individuals having a higher p-value than 5.18x10-10 do not rank first. 

We further explored PSAP results for splicing ClinVar variants versus other type of non-coding 

ClinVar variants. Indeed, we observed that splicing variants are the major type of non-coding ClinVar 

variants. These splicing variants often had a very good ranking, especially with PSAP-genomic-regions-

ACS (n=115 splicing variants among 175 non-coding AD variants and n=72 splicing variants among 96 

non-coding AR variants; S3 Table; Panel A in S3 Fig). Splicing ClinVar variants have a much higher ACS 

than CADD scores (Panel B in S3 Fig) which results in better ranking than for other types of non-coding 

ClinVar variants using PSAP-genomic-regions-ACS p-values (Panel C in S3 Fig). As a consequence, the 

percentage of splicing ClinVar variants ranked in the top 10 was largely improved when using PSAP-

genomic-regions-ACS, for the AD model especially which was less powerful with PSAP-genomic-

regions-CADD to begin with (Panel D in S3 Fig). 

The full results of ranking by PSAP-genomic-regions-ACS for the non-coding non-splicing 

pathogenic ClinVar variants can be found in S3 File. With PSAP-genomic-regions-ACS, around half of 

the non-coding non-splicing variants are ranked in the top 100 of variants for more than 90% of NFE 

genomes (46 out of 73 variants for the AD model and 19 out of 31 variants for the AR model). The 

other half of variants present a less significant PSAP-genomic-regions-ACS p-value and a poorer 

ranking. To confirm this pattern of ranking for non-coding non-splicing pathogenic variants on another 

set of variants, we evaluated with our artificially generated disease genomes protocol 320 non-coding 

SNVs used to train Genomiser (30). These variants were not associated with a mode of inheritance.   



 

 
 

83 5.2 Results 

Hence, we inserted them in the NFE genomes and scored them with both AD and AR PSAP-

genomic-regions-ACS null distributions. Among the 320 non-coding variants, 169 reached the top 100 

in at least 90% of NFE genomes, with either the AD or AR model (S4 File). This can be explained by the 

distributions of CADD scores compared to ACS scores for the ClinVar variants: the non-coding variants 

that do not reach the top 100 have a significantly lower CADD and ACS scores compared to all the other 

types of variants (S4 Fig). Overall, PSAP-genomic-regions-ACS prioritizes around half of non-coding 

ClinVar and Genomiser training variants in the top 100 of NFE genomes. The ones who have a higher 

ranking present much lower CADD and ACS scores and would never be well-ranked by any PSAP 

strategy.  

PSAP-genomic-region is also relevant for the analysis of exome data. Indeed, exome 

sequencing captures variants outside of the bounds of coding regions (31), such as intronic variants. 

We explored the prioritization of non-coding ClinVar variants located within the WES-targeted regions 

of the FREX individuals using our artificially-generated disease exomes protocol (N=48 variants for the 

AD model and N=64 variants for the AR model, Panel A in S5 Fig). For both PSAP-genomic-regions-

CADD and PSAP-genomic-regions-ACS, there was a large increase in prioritization performance 

compared to using only the pathogenicity scores. Because there are fewer variants in an exome 

background than in a genome background, the rankings of these non-coding ClinVar variants were 

better in FREX than in NFE genomes. The best ranking was achieved using PSAP-genomic-regions-ACS, 

with 82% and 90.3% of variants reaching the top 10 for the AD and AR models, respectively. Most of 

these non-coding pathogenic variants were splicing variants (40 out of 73 variants for the AD model 

and 56 out of 64 variants for the AR model), and half of them were considered as having a functional 

“HIGH IMPACT” (26 variants for the AD model and 22 variants for the AR model). Hence, prioritizing 

variants with PSAP on CADD regions allows identifying more variants even in exome data, that are in 

addition functionally-relevant. 
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Prioritization of coding pathogenic variants 

Similar evaluations were performed for ClinVar coding variants inserted in either WGS from 

1000G NFE individuals or WES from FREX. As observed for non-coding pathogenic variants, PSAP-

genomic-regions outperformed the pathogenicity scores alone (Figure 5.2B, Panel B in S5 Fig). 

However, in the context of coding pathogenic ClinVar variants, we observed that the strategy of PSAP-

genomic-regions-CADD provided better prioritization compared with the PSAP-genomic-regions-ACS 

strategy. We observed that 18.2% and 74.6% of the coding variants reached the top 1 in at least 90% 

of genomes backgrounds with the PSAP-genomic-regions-CADD for the AD and AR model respectively, 

against no variants with the CADD score alone, and against 5.3% and 2.5% reaching the top 1 with 

PSAP-genomic-regions-ACS. In the exome background and with PSAP-genomic-regions-CADD, 38.7% 

and 89.8% of AD variants reached the top 1 and top 50, respectively; 80.3% and 97.9% of AR variants 

reached the top 1 and the top 50, respectively. 

 

Figure 5.3. Comparison of PSAP-genomic-regions-CADD and PSAP-genes-CADD strategies in artificially-simulated disease 
genomes  

Number of coding pathogenic ClinVar variants reaching rank [x-y] of variants in at least 90% of 1000 Genomes Project NFE 
individuals for each strategy. 

 

  



 

 
 

85 5.2 Results 

We also compared the number of coding ClinVar variants reaching the tops in NFE genomes 

between PSAP-genomic-regions-CADD strategy and the initial PSAP-genes-CADD strategy (Figure 5.3). 

More differences were observed across the two PSAP strategies for the AD than for the AR model 

(Figure 5.3A). There were 362 variants ranked first and 1,017 variants ranked [2-10] in common 

between the two strategies. However, 908 variants that were ranked [2-10] with PSAP-genes-CADD 

were [11-50] with PSAP-genomic-regions-CADD, and 395 variants that were ranked [2-10] with PSAP-

genes-CADD were ranked first with PSAP-genomic-regions-CADD. Regarding variants that are ranked 

more than a 100 with PSAP-genomic-regions-CADD, 278 of them are ranked [11-50] and are ranked 

[51-100] by PSAP-genes-CADD. Regarding the AR model (Figure 5.3B), PSAP-genomic-regions-CADD 

performed similarly to PSAP-genes-CADD, and the majority of variants were ranked first with both 

strategies (1,550 variants). Even more promising results can be found when looking at the same 

comparison of ranks within the FREX exomes (S6 Fig). For instance, in the AD model, 592 variants that 

were ranked [2-10] with PSAP-genes-CADD are ranked first with PSAP-genomic-regions-CADD, against 

115 variants ranked [2-10] with PSAP-genomic-regions-CADD that become first with PSAP-genes-

CADD. 

 

Application of PSAP-genomic-regions to real data with different 

modes of inheritance 

To illustrate our method in real-life settings, we analyzed two datasets (S4 Table), one with an AD 

mode of inheritance and the other with an AR mode of inheritance. The first dataset consisted of WES 

data for six individuals affected by monogenic forms of CSVD (32). Using PSAP-genomic-regions-CADD, 

all of the causal variants were ranked at least in the top 100 in each patient (Figure 5.4). The 

contribution of CADD regions as a unit of testing was especially visible for the variant in COL4A2 and 
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one variant in HTRA1 which were not well-ranked using genes as testing unit (rank 110 and 193 

respectively with genes, and rank 3 and 69 with CADD regions).  

Using their maximal CADD score by gene or CADD region alone, these variants would not have 

been prioritized in the top 100 for five out of six individuals.  

 

Figure 5.4. Prioritization of 6 known CSVD mutations and 3 male infertility candidate variants with PSAP-genomic-regions-
CADD, PSAP-genes-CADD and the maximal CADD score on genes or CADD regions. 

 

The second dataset consisted of WGS data for 9 individuals from three families with clinically 

diagnosed male infertility (33). All causal variants fell within the top 20 of variants with prioritization 

by PSAP-genes-CADD, and within the top 50 for at least one case per family with PSAP-genomic-

regions-CADD (within top 100 for all cases, Figure 5.4). PSAP-genomic-regions-CADD did not improve 

the ranking of these coding variants, which was expected considering the large number of variants in 

a WGS analysis (see S4 Table for the total number of variants in each analysis).  
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The prioritization from PSAP-genomic-regions-CADD was still interesting to narrow the set of 

candidates for causal variants. In clinics when the CADD score alone is used, these variants would not 

have been prioritized (CADD score < 25, and rank > 100 with the maximal CADD score strategy). PSAP-

genomic-regions-CADD thus allow a relevant prioritization of coding pathogenic variants in WGS 

sequencing and an unbiased exploratory analysis at the scale of the whole genome.  

Using PSAP-genomic-regions-ACS or the ACS score alone, almost all of the CSVD and male infertility 

coding pathogenic variants had a rank greatly exceeding the top 100 (S4 Table). The only exception is 

one variant in HTRA1 (10:124266885 G/A) that was ranked 3 by PSAP-genomic-regions-ACS and 10 by 

the maximal ACS score alone. This HTRA1 variant was a splicing variant, which confirms the good 

performance of the PSAP-genomic-regions-ACS strategy on this type of variant.  
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Discussion 

Variant prioritization, especially in the case of very heterogeneous rare diseases, is a clinically-

relevant methodological challenge for both clinicians and researchers. Mounting evidence suggests 

that current methods of analysis and their restriction to the coding genome are a hindrance to the 

discovery of new genetic variants implicated in rare diseases (16). We have developed PSAP-genomic-

regions, an extension of the PSAP method to the whole genome using functionally-relevant genomic 

regions. PSAP-genomic-regions broadens the scope of variants evaluated by PSAP and addresses the 

issue of variant prioritization at an individual whole-genome scale.  

PSAP-genomic-regions has been thoroughly tested and validated by using simulations emulating 

real-life scenarios of causal variant prioritization. PSAP-genomic-regions achieves a prioritization of 

coding pathogenic SNVs in the top 100 variants of an exome or genome which is a relevant number of 

variants to analyze for clinicians. Without use of prior knowledge on the disease, PSAP-genomic-

regions achieves relevant variant prioritization within millions of variants to analyze, which is 

illustrated by the ranking of 6 variants involved in CSVD and 3 variants involved in familial cases of male 

infertility in the top 100 of WES and WGS data respectively. PSAP-genomic-regions thus helps with the 

diagnosis of such heterogeneous diseases in conjunction with other relevant information like the mode 

of transmission, prevalence or type of variant involved. 

PSAP-genomic-regions also allows the scoring of variants otherwise discarded from the analysis, 

like splicing variants with a high predicted functional impact, and other non-coding variants of proven 

clinical significance. The only scenario for which PSAP-genomic-regions is not advantageous compared 

to the PSAP-genes strategy is for prioritizing coding variants in WGS data. In that case, using coding 

CADD regions, i.e. the coding parts of CADD regions for the analysis still yields better results compared 

to PSAP-genes (S7 Fig). Our simulations using known pathogenic variants have shown which PSAP 

strategy performs the best depending on the type of data and variant expected to be involved in the 

disease mechanism (S8 Fig).  
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To effectively prioritize non-coding variants in WES and WGS, we advise the use of PSAP-genomic-

regions-ACS. For coding variants, PSAP-genomic-regions-CADD gives the best results in WES, and PSAP-

coding-genomic-regions-CADD performs best in WGS data. A two-step approach can also be carried 

out if there is no expected type of variant: first, the PSAP-genomic-regions-CADD or PSAP-coding-

genomic-regions-CADD strategy is applied depending on the type of data, and if no coding variant of 

interest for the disease is found within the top results, PSAP-genomic-regions-ACS can be applied to 

look for non-coding variants of interest. 

To the best of our knowledge, there is no other score of predicted pathogenicity for all possible 

SNVs comparable to CADD. Other methods have been developed to distinguish between coding 

pathogenic and neutral variants (34–39), but often restrict to non-synonymous variants. These 

methods were shown to perform better or have advantages compared to CADD for the limited set of 

variants they explore (34–39). Similar types of methods aim at prioritizing more constrained regions in 

the non-coding genome (18,20) or distinguishing deleterious non-coding variants from neutral ones 

(18,40). Other well-known methods for identification of pathogenic variants in exome and genome 

data rely on the use of HPO terms to make a prediction, like Exomiser (41) or Genomiser (30), making 

in comparison PSAP an unmatched prioritization tool. As any other bioinformatics variant prioritization 

method, it has to be used in conjunction with other lines of evidence to ultimately lead to any genetic 

diagnosis of a patient. PSAP-genomic-regions does not make assumption on the type of variants and 

does explore the whole genome. The ranking by p-values coming from the application of PSAP-

genomic-regions to an individual’s variants is a useful way to narrow-down the list of variants to further 

investigate for both researchers and clinicians in different scenarios.  

  



 

 

90 Chapter 5 – PSAP-genomic-regions: prioritizing variants in whole genome sequencing data 

The method most comparable to the strategy followed by PSAP-genomic-regions is the recently-

developed machine-learning algorithm FINSURF (42). FINSURF aims to predict the functional impact of 

non-coding variants in regulatory regions and has been applied to known pathogenic variants inserted 

in WGS data like we did. Nonetheless it has been difficult to compare properly the two methods 

considering FINSURF only scores non-coding variants in predefined regulatory regions, and the set of 

variants used to train the method is not available.  

The main limitation of PSAP-genomic-regions comes from the score used to calibrate null 

distributions, namely the CADD score. We have observed that known pathogenic non-coding ClinVar 

variants that were not well-ranked by PSAP-genomic-regions had significantly lower CADD and ACS 

scores compared to splicing and better-ranked non-coding variants. Because such CADD score is likely 

to be seen in the general population, PSAP-genomic-regions will not be able to prioritize such a variant 

with at a low rank. We also observed that some CADD regions were badly-calibrated and resulted in 

the assignment of very low PSAP-genomic-regions p-values to putatively neutral variants in the 1000 

Genomes Project. As allele frequencies from larger databases and more accurate pathogenicity scores 

become available, this will lead to an improvement of the PSAP method as well. The most recent 

release of the CADD score v1.7 (43) notably integrates regulatory annotations and may further improve 

the prioritization of non-coding pathogenic variants when integrated in PSAP-genomic-regions. 

Many avenues of further development and improvement are open for PSAP-genomic-regions, 

including the inclusion and scoring of InDel variations and structural variants. Exploring the 

combination of the PSAP-genomic-regions p-values with other metrics or information coming from 

omics analysis could also improve prediction. Finally, the flexibility of the PSAP method makes it 

potentially adaptable to other more complex models like digenic and oligogenic models of inheritance, 

considering the increasing availability of information coming from gene networks and biological 

pathways.  
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Materials and Methods 

Construction of PSAP null distributions 

The first parameter is the units in which to construct the PSAP null distribution. Here we considered 

two unit strategies: the genes and the CADD regions (S1 Table). For the genes, the coding regions of 

genes were defined based on the biomaRt R package: the gene coding sequences were retrieved from 

Ensembl (44) by requesting the “genomic_coding_start” and “genomic_coding_end”, on both the hg19 

and hg38 builds. To account for splicing regions, the coding regions were extended by two bases on 

both sides of the gene coding regions. In total, 19,780 genes were retrieved in hg19 and 23,163 in the 

hg38 build. For the CADD regions, their coordinates were downloaded from https://lysine.univ-

brest.fr/RAVA-FIRST/ for the hg19 build and were lifted over to hg38 using the Ensembl Assembly 

Converter. CADD regions coordinates in hg38 are available on Easy-PSAP GitHub 

(https://github.com/msogloblinsky/Easy-PSAP). There were 135,224 CADD regions in hg19 and 

131,970 in hg38. For the coding CADD regions, i.e. the coding parts of CADD regions, we considered 

the intersection of the CADD regions and the gene coding regions for each build, which yielded 37,978 

coding CADD regions in hg19 and 52,340 in hg38. 

The second parameter is the allele frequencies database. Here we considered the global allele 

frequencies from the gnomAD database to calibrate the PSAP null distributions: gnomAD genome 

r2.0.1 for hg19 and gnomAD V3 (45) for hg38. For our purpose, we considered only single nucleotide 

variants (SNVs) annotated as PASS by the Variant Quality Score Recalibration (VQSR) of GATK (46) and 

located in well-covered regions. Well-covered regions in gnomAD genome were defined as regions for 

which 90% of individuals have coverage at depth 10. Variants not seen in gnomAD genome, not 

annotated as PASS or not located in well-covered regions (gnomAD genome version according to the 

build) have a frequency of 0 and thus did not contribute to the construction of the null distributions.  

https://lysine.univ-brest.fr/RAVA-FIRST/
https://lysine.univ-brest.fr/RAVA-FIRST/
https://github.com/msogloblinsky/Easy-PSAP
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To ensure reliability of PSAP null distribution, it is crucial that the units are well covered in the 

database from which the allele frequencies are taken. Thus, we only considered units for which at least 

half of the unit was well-covered (as defined previously) in gnomAD genome (version according to the 

build). Coding regions of genes and well-covered regions in gnomAD genome were intersected to get 

the percentage of each gene’s coding regions that were well-covered in the database. The same steps 

were carried out with CADD regions as genomic units for PSAP, for hg19 and hg38 builds. PSAP null 

distributions were thus constructed for 19,283 and 18,395 genes in hg19 and hg38 respectively, 

119,695 and 123,991 CADD regions, and 34,397 and 35,226 coding CADD regions in hg19 and hg38 

respectively. 

The third parameter is the pathogenicity score. Here, for the evaluation of PSAP on coding variants, 

we used the version 1.6 of CADD (47) for each build, accessible on the CADD website 

(https://cadd.gs.washington.edu/). For the evaluation on non-coding variants, which tend to have 

lower CADD scores than coding variants (48), we followed the strategy described in Bocher et al.(22) 

to adjust the RAW CADD score v1.6 of all possible SNVs on a PHRED scale stratifying by type of genomic 

regions: “coding”, “regulatory” and “intergenic”, resulting in “adjusted CADD scores”, referred to as 

“ACS”.  

Easy-PSAP (https://github.com/msogloblinsky/Easy-PSAP) was used to generate null distributions 

according to the previously described input files and parameters. This resulted in 4 sets of null 

distributions for the AD and AR models for both hg19 and hg38 assemblies (S1 Table).  

  

https://cadd.gs.washington.edu/
https://github.com/msogloblinsky/Easy-PSAP
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Evaluating the performance of PSAP-genomic-regions using 

artificially-generated disease exomes and genomes 

To evaluate the ability of PSAP-genomic-regions to prioritize known pathogenic variants in an 

individual, we leveraged artificially-generated disease exomes and genomes using available general 

population cohorts. These different PSAP strategies (see Table S1) were compared in terms of their 

performances to prioritize the known pathogenic variants.  

The pathogenic ClinVar (25) SNVs with coordinates in hg19 and hg38 were downloaded from the 

NCBI website (https://www.ncbi.nlm.nih.gov/clinvar/, accessed on the 3rd of June 2022). Some of 

these ClinVar variants had an annotated mode of inheritance ("moi autosomal recessive" and "moi 

autosomal dominant"). From ClinVar, there were 12,776 variants annotated as AD and 12,776 variants 

annotated as AR. Variants were filtered out to keep only autosomal pathogenic SNVs having as review 

status either “reviewed by expert panel” or “criteria provided, multiple submitters, no conflicts”, which 

are the two best review status in ClinVar. There were 1,518 AD and 1,118 AR variants meeting these 

criteria.  

For variants which did not have an annotated mode of inheritance, we used a curated version of 

the database OMIM, hOMIM (49) to retrieve a mode of inheritance, and kept variants that were always 

associated with an AD or AR mode of inheritance in hOMIM. The same filtering was applied, which left 

3,641 additional variants for the AD and 1,706 for the AR model. In total, we had a set of 5,159 variants 

for the AD model and 2,824 variants for the AR model. Among these ClinVar variants, 4,965 and 2,680 

variants were coding SNVs respectively for the AD and AR models. Similarly, 175 and 96 variants were 

non-coding variants for the AD model and AR models, among which 48 variants for the AD model and 

64 for AR model fell within the boundaries covered by FREX exomes. The list of pathogenic ClinVar 

variants and their mode of inheritance can be found in S2 File.  

https://www.ncbi.nlm.nih.gov/clinvar/
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We inserted each variant from our curated list of pathogenic ClinVar variants successively in each 

of the 533 high coverage genomes of Non-Finnish Europeans (NFE) from the 1000 Genomes Project 

phase 4 (NFE genomes) and each of the 574 exomes from the FREX project. An individual-focused QC 

was applied on both datasets using the RAVAQ R package (50): we performed a genotype and variant 

QC with default parameters corresponding to standard GATK hard filtering criteria, mean allele balance 

computed across heterozygous genotypes and call rates, except for MAX_AB_GENO_DEV = 0.25, 

MAX_ABHET_DEV, MIN_CALLRATE and MIN_FISHER_CALLRATE "disabled".  

We conducted the artificially-generated disease genome and exome evaluation with PSAP null 

distributions in hg19 and hg38 respectively, to match with the build of the data. We then applied the 

3 PSAP strategies mentioned previously (PSAP-genes-CADD, PSAP-genomic-regions-CADD and PSAP-

genomic-regions-ACS). For each strategy, we kept the maximal pathogenicity score (CADD or ACS) for 

each unit (gene or CADD regions) and then ranked the units according to their PSAP p-value or to their 

pathogenicity score alone within each genome or exome. We compared the PSAP-genes-CADD and 

PSAP-genomic-regions-CADD strategies to using the maximal CADD score alone by gene or CADD 

regions, respectively; and the PSAP-genomic-regions-ACS strategy to using the maximal ACS score by 

CADD region. For each ClinVar variant, we retrieved its rank within each genome or exome. Coding 

ClinVar variants were evaluated with the 3 PSAP strategies whereas non-coding ClinVar variants were 

evaluated with the novel PSAP-genomic-regions-CADD and PSAP-genomic-regions-ACS strategies (see 

S2 Table  for more details).  
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Patient data analysis  

The PSAP strategies were applied to real WES data from six unrelated patients affected by a CSVD 

for which the causal variant is known, which allowed a comparison of performance between the 

different strategies. The full description of the dataset can be found in [Aloui et al. 2021] (32), with the 

exception of the QC process. For this analysis, the same QC as for the FREX and 1000 Genomes Project 

datasets was performed. We applied PSAP-genes-CADD and PSAP-genomic-regions-CADD in hg19 to 

the six resolved CSVD patients’ exome data. The other PSAP parameters were the ones by default as 

described previously. Two of the individuals had a causal pathogenic variant in the gene NOTCH3 

(19:15303053 G/A and 19:15303260 G/A), one individual in the gene COL4A2 (13:111132702 G/T) and 

three individuals in the gene HTRA1 (10:124266285 T/G, 10:124266281 C/A and 10:124266885 G/A). 

The rank of the known CSVD variants among other heterozygote variants in the patient’s exome 

according to its PSAP p-value for the 2 strategies was then retrieved.  

The PSAP strategies were also applied to WGS data of three families with clinically diagnosed forms 

of male infertility (33) and for which a pathogenic recessive variant was prioritized using a 

computational pipeline featuring the initial PSAP-genes implementation. Three affected individuals 

were analyzed for each family. The description of the whole dataset and candidate variant filtering 

process can be found in [Khan and Akbari et al. 2023] (33), except for the QC that was performed in 

the same way as for the CSVD data. Two other families were resolved from the same dataset, but 

considering that the causal variants were deletions we did not include them in the current analysis. 

The prioritized pathogenic variants were in the genes: SPAG6 (chr10:22389235 C/T) for family 3, 

TUBA3C (chr13:19177247 C/T) for family 7 and CCDC9 (chr19:47260609 C/T) for family 4. We applied 

PSAP–genes-CADD and PSAP-genomic-regions-CADD in hg38 to the 9 cases and retrieved the rank of 

the known male infertility variants among other homozygote variants in the patient’s genomes 

according to its PSAP p-value for the 2 strategies.  
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5.3 DISCUSSION - CALIBRATION OF PSAP NULL DISTRIBUTIONS 

In this section, I discuss specific parameters and resources that I used to construct the updated 

PSAP null distributions, and ways to continue to improve upon what has already been done. PSAP is a 

powerful concept and methodological idea which was initially developed by the Pr Conrad and his 

team. All of the work I have done around PSAP highlights that by integrating more accurate 

pathogenicity scores, larger allele frequency databases and functionally-relevant testing units, PSAP 

gains in precision as a tool for variant prioritization. 

5.3.1  Testing units 

5.3.1.1 Choice of testing units 

The issue of choosing testing units to construct PSAP null distributions is analogous to the issue 

of choosing specific units in RVATs (Chen, Coombes and Larson 2022) to aggregate rare variants. 

According to the PSAP principle, a variant’s pathogenicity score has to be looked at in the context of a 

biologically-relevant genomic region. The natural unit for such region-based testing is the gene, as it 

also encompasses most of the potentially pathogenic variants affecting protein function. For RVATs, 

different strategies have been proposed as alternative to the standard gene-based testing, like using 

sliding genomic windows (Ionita-Laza et al. 2012; Schaid et al. 2013) as testing units or combining gene-

level results are the scale of the pathway or the gene-set (Wu and Zhi 2013).  

Although our primary goal was to extend PSAP to analyze the non-coding genome, hence the 

choice of CADD regions, we also considered other strategies with PSAP null distributions constructed 

on units of testing other than genes that we discuss hereafter. The sliding window strategy was not 

applicable for the PSAP method as PSAP null distributions need to be pre-computed on a defined set 

of genomic regions. Such strategy would be highly computationally and storage intensive, so we 

discarded it.  

In the idea of looking at biologically-relevant genomic regions with a finer granularity than with 

genes, individual exons or protein functional domains could have been used as units of testing. We 

have mentioned that a number of functional units had been described in the non-coding genome (e.g. 

enhancers or promoters). These regulatory elements can have an impact on gene expression (Kolovos 

et al. 2012; Elkon and Agami 2017) due to the 3D organization of the genome, by their individual effect 

or in conjunction with the action of other regulatory elements. Thus, regulatory elements could also 

be used as units of testing for PSAP, by themselves or grouped together in a relevant region like a TAD. 

In the same idea as CADD regions, other type of functionally-informed regions had already been 

defined like Constrained Coding Regions (CCRs) (Havrilla et al. 2019) and could serve as units of testing. 

These approaches could allow a better evaluation of variant pathogenicity in specific sub-regions of a 
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gene or in a set of regulatory elements or constrained regions. However, they present the major 

drawback of not being defined over the whole genome. The use of these units of testing would have 

restricted the analysis by PSAP to a smaller number of variants and discarded systematically some 

types of variants like intergenic ones. In addition, regions like CCRs could be too small to construct 

PSAP null distributions from a sufficient number of variants in the allele frequency database (the 

maximum length of a CCR being 224 bp). Nonetheless, these strategies could be considered in other 

research projects for which they would be relevant. To that end, we have provided the pipeline to 

calculate PSAP null distributions for any unit of testing, which we will expand on further in Chapter 6. 

5.3.1.2 CADD regions 

Considering the limitations of the aforementioned units of testing, we chose to adapt the 

CADD regions developed for the RAVA-FIRST strategy (Bocher et al. 2022) in the context of PSAP to 

propose the PSAP-genomic-regions strategy and extend PSAP to the non-coding genome. These 

regions span the entire genome and their boundaries are based on variants with high CADD scores 

observed in the general population. By construction, these regions are depleted in observed highly 

pathogenic variants and thus reflect functionally constrained regions of the genome. CADD regions 

had initially been defined by our team in (Bocher et al. 2022) for the hg19 assembly, with their primary 

boundaries being variants with an Adjusted CADD Score v1.4 (ACS 1.4) ≥ 20 and that were seen at least 

two times in the database gnomAD v2 (AC > 2). To construct PSAP null distributions for the hg38 

assembly, we thus lifted over the coordinates of CADD regions from hg19 to hg38 and used allele 

frequencies from gnomAD v3 and the CADD or ACS pathogenicity scores 1.6 in hg38 as well. Although 

some CADD regions were lost in the liftover process, using the hg38 liftover CADD regions ensured we 

used CADD regions that were already well documented and tested to construct our PSAP null 

distributions.  

An observation that sheds light on the parameters that can affect CADD regions boundaries 

and that ties with the previous remark is the definition of new CADD regions directly in the hg38 

assembly. With two interns, we worked on defining CADD regions in hg38 using gnomAD v3 and the 

newly-calculated ACS 1.6. A first result that we were able to point out is the repartition of the three 

types of genomic regions (“coding”, “regulatory” and “intergenic”) used to define the ACS in hg38, by 

using the latest versions available for the same resources as in (Bocher et al. 2022). In hg19, the 

regulatory regions accounted for 44% of the genome, whereas they covered 60% of the genome in 

hg38. This was mainly due to intergenic regions becoming regulatory in the ENCODE v3 (Moore et al. 

2020) in hg38.  
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We also observed the impact of using a larger database to define the boundaries of CADD 

regions. Indeed, gnomAD v3 (Chen et al. 2022) includes more than 70,000 genomes against around 

15,000 for gnomAD v2 (Karczewski et al. 2020). As expected, a lot more variants met the criteria for 

CADD regions boundaries with gnomAD v3 (242,220 variants with ACS ≥ 20 and AC > 2 in gnomAD v3 

against 78,181 in gnomAD v2), which resulted in more CADD regions (195,447 in hg38 against 135,224 

in hg19). These new CADD regions in hg38 were overall smaller, with a mean length of 14.10 Mb against 

19.85 Mb for the hg19 CADD regions. Our next step will be to see if the boundaries of some of the 

longer and thus more conserved CADD regions were maintained with this new version, which would 

be a good way to test if CADD regions indeed reflect regions of the genome intolerant to deleterious 

variations. These new CADD regions in hg38 have not yet been tested in simulations or real data, or 

compared to the liftover version of CADD regions that we had been using until then. There is still 

ongoing work to include them in PSAP-genomic-regions as well as in the RAVA-FIRST strategy. Our aim 

has also not been to rethink the definition itself of CADD regions (criteria for boundaries, clustering of 

small regions), which could be discussed down the line depending on how the new hg38 CADD regions 

perform and to what aim they could be adapted. 

5.3.2  Pathogenicity score 

The PSAP method ranks variants within a gene according to a pathogenicity score. The initial 

version of PSAP used the CADD score as pathogenicity score. In the same vein, we have kept the same 

albeit updated CADD score to calibrate our PSAP null distributions. Indeed, the CADD score presents 

several advantages that are discussed in Part II - Chapter 2, including being defined over the whole 

genome which was crucial for our PSAP-genomic regions extension. In addition, it was also the score 

used to construct the ACS and define the CADD regions. We thus felt we had a good understanding 

and hindsight of this particular pathogenicity score as the basis for evaluating variant deleteriousness 

in the PSAP method. 

The issue of choosing a variant pathogenicity score is complex and depends on number of 

factors. An extensive review on the subject of variant prioritization scores is the one from (Eilbeck, 

Quinlan and Yandell 2017). They argue that there is no one-size-fits-all approach when it comes to 

choosing a pathogenicity score to evaluate a variant’s impact and that the different software and 

approaches have to be carefully compared and interpreted. No pathogenicity score reflects perfectly 

the true impact of a variant, which has to be put back into the context of a patient’s genotype, family 

history and phenotype. Even benchmarks of pathogenicity scores report conflicting results 

(Ruscheinski et al. 2021; Liu et al. 2022) and no score gives the best results for all types of variants and 

scenarios. In practice, any pathogenicity score could have been used in place of CADD for our work, 

from the main ones described in Part II - Chapter 2 or new ones that will be developed in the coming 
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years as our knowledge on the genome continues to improve. Another option, in line with the idea of 

the ACS, could be to combine different scores depending on regions of the genome. 

Comparing the performance of PSAP null distributions calibrated with different pathogenicity 

scores would have been an extensive work that was beyond the scope of this thesis. However, by 

making available the workflow to construct PSAP null distributions, we leave room for new PSAP 

strategies to be created and tested, perhaps with a new score or a blend of scores depending on the 

genomic region. We also proposed an evaluation protocol using simulated disease genomes and 

exomes that can be used to test the performance of PSAP null distributions constructed according to 

different parameters. To open up the discussion on the impact of using a new variant pathogenicity 

score to calibrate PSAP null distributions, I have used the recently published CADD 1.7 (Schubach et al. 

2024) which is presented as improving the prediction of pathogenicity in the non-coding genome 

especially. In Table 5.1, we can see the comparison of prioritization performance between PSAP 

constructed on CADD 1.7 or the ACS 1.7 and the same strategies with the CADD 1.6 on artificially 

simulated disease genomes in build 38 (with inserted pathogenic coding and non-coding variants, for 

the AD and AR models). Surprisingly, the CADD or ACS 1.7 strategies give worse results compared to 

CADD or ACS 1.6 in almost all scenario. This could be due to overfitting in the CADD 1.7 model, due to 

the high number of features included for the prediction. This behavior has not been replicated by 

(Schubach et al. 2024), who found that CADD 1.7 slightly improved the classification compared to 

CADD 1.6 in a set of ClinVar benign and pathogenic variants, mostly in the coding genome. More in 

depth testing would have to be carried out to see if CADD 1.7 performs better for a specific type of 

variants compared to CADD 1.6, and why the performance drops for other types of variants. 
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(A) Pathogenic coding variants, AD model 

Pathogenicity 

score 

Top in 

controls 

Pathogenicity 

score alone 1.7 
PSAP 1.7 

Pathogenicity 

score alone 1.6 
PSAP 1.6 

CADD top1 0.282% 18.857% 0.071% 18.246% 

CADD top10 25.888% 44.980% 19.751% 45.544% 

CADD top50 61.274% 75.852% 72.349% 78.345% 

CADD top100 78.744% 83.024% 80.696% 86.269% 

ACS top1 0% 4.914% 0% 5.314% 

ACS top10 0.494% 11.498% 1.293% 10.816% 

ACS top50 4.867% 23.113% 6.654% 23.301% 

ACS top100 9.499% 27.933% 11.169% 30.919% 

 

 

(B) Pathogenic coding variants, AR model 

Pathogenicity 

score 

Top in 

controls 

Pathogenicity 

score alone 1.7 
PSAP 1.7 

Pathogenicity 

score alone 1.6 
PSAP 1.6 

CADD top1 0.089% 72.695% 0.045% 74.566% 

CADD top10 43.296% 95.011% 42.628% 95.991% 

CADD top50 84.677% 97.105% 83.029% 97.996% 

CADD top100 92.472% 97.906% 92.027% 98.753% 

ACS top1 0% 2.004% 0% 2.494% 

ACS top10 2.450% 28.909% 2.628% 40.312% 

ACS top50 14.120% 51.982% 13.808% 54.254% 

ACS top100 14.610% 56.704% 14.521% 59.198% 
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(C) Pathogenic non-coding variants, AD model 

Pathogenicity 

score 

Top in 

controls 

Pathogenicity 

score alone 1.7 
PSAP 1.7 

Pathogenicity 

score alone 1.6 
PSAP 1.6 

CADD top1 0% 2.286% 0% 3.429% 

CADD top10 0% 14.286% 0% 24.571% 

CADD top50 17.714% 34.286% 46.286% 46.286% 

CADD top100 31.429% 41.143% 52.571% 60.000% 

ACS top1 0% 20.000% 0% 26.286% 

ACS top10 0% 46.857% 5.714% 56.571% 

ACS top50 17.714% 72.571% 27.429% 81.714% 

ACS top100 30.286% 76.000% 52.000% 82.857% 

 

(D) Pathogenic non-coding variants, AR model 

Pathogenicity 

score 

Top in 

controls 

Pathogenicity 

score alone 1.7 
PSAP 1.7 

Pathogenicity 

score alone 1.6 
PSAP 1.6 

CADD top1 0% 38.542% 0% 51.042% 

CADD top10 1.042% 80.208% 0% 79.167% 

CADD top50 41.667% 82.292% 51.042% 83.333% 

CADD top100 50.000% 84.375% 56.250% 85.417% 

ACS top1 0% 0% 0% 5.208% 

ACS top10 6.250% 65.625% 6.250% 83.333% 

ACS top50 48.958% 80.208% 57.292% 85.417% 

ACS top100 60.417% 82.292% 73.958% 86.458% 

Table 5.1 : Percentage of pathogenic variants in top of  artificially simulated disease genome 

(A) Pathogenic coding variants, AD model ; (B) Pathogenic coding variants, AR model ;  

(C) Pathogenic non-coding variants, AD model ; (D) Pathogenic non-coding variants, AR model 
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5.3.3 Allele frequencies 

Another important parameter for the calibration of PSAP null distributions is allele frequencies. 

All of our PSAP null distributions were constructed using the global allele frequencies from the gnomAD 

database. However, we know that allele frequencies differ between populations, which has been 

shown extensively by the multiple population genetic data panels including 1kGP and gnomAD. The 

version of the PSAP pipeline featured on the Conrad Lab GitHub (https://github.com/conradlab/PSAP) 

integrates an argument for the individual’s ethnicity and the corresponding null distribution. 

Using allele frequencies derived from the European Non Finnish gnomAD samples instead of 

global allele frequencies to construct PSAP null distributions gave very similar results in our 

simulations. This is not surprising given that the FREX individuals and 1kGP individuals chosen to create 

our disease exomes and genomes were of European descent. Nonetheless, population-specific PSAP 

null distributions could have been valuable for the Malakand analyses as strong founder effects are 

described in the South Asian(Wall et al. 2023) populations. Another useful metric could be to use the 

POPMAX allele frequency from gnomAD to calibrate PSAP null distributions, which is the allele 

frequency information for the non-bottlenecked population with the highest frequency, under the 

assumption that disease-causing variants would be uncommon in any population. The only caveat to 

using population-specific allele frequencies is that it reduces the number of individuals which are taken 

into account, resulting in the lack of observation of more rare variants.  

More extensive simulations and comparisons would be needed to assess the impact of each 

parameter on the performance of PSAP null distributions. With the Easy-PSAP workflow to calculate 

PSAP null distributions, which we discuss in the next section, we have made it possible for other 

researchers to tune PSAP to their own specific needs or question. Understanding which known 

pathogenic variants are not well-prioritized by the framework could also open up new possibilities of 

improvement and exciting new avenues of development for PSAP.  

  

https://github.com/conradlab/PSAP
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Chapter 6  EASY-PSAP: AN INTEGRATED WORKFLOW TO 

PRIORITIZE PATHOGENIC VARIANTS IN SEQUENCE DATA FROM A SINGLE 

INDIVIDUAL 

During the development of PSAP-genomic-regions, I proposed several updates and extensions 

of the PSAP pipeline and implemented efficient scripts to perform a fast calculation of PSAP null 

distributions with a flexible choice of input parameters. To make available an updated and easier to 

use version of the PSAP pipeline I created Easy-PSAP, a user-friendly, flexible and computationally 

efficient Snakemake (Köster and Rahmann 2012) workflow to create and apply all of our currently 

developed PSAP null distributions. Easy-PSAP is presented in the following manuscript, currently in 

review in BMC Bioinformatics. The supplementary materials for the Easy-PSAP manuscript can be 

found in Appendix II and the Easy-PSAP user guide in Appendix III. 

6.1 BACKGROUND AND SUMMARY 

As mentioned previously, the PSAP method was developed to tackle the issue of variant 

prioritization for a single patient, by leveraging allele frequencies from population databases and a 

variant pathogenicity score. However, the initial implementation of PSAP featured bash and R scripts 

to apply PSAP null distributions that were not easily adaptable for all users. The initial PSAP null 

distributions also used ExAC as a reference panel and CADD v1.0, and had not been updated since. The 

scripts to generate PSAP null distributions themselves had not been made available either. 

Here, we describe Easy-PSAP, a new and update implementation comprising of two user-friendly 

and highly adaptable pipelines based on the PSAP principle, which can evaluate genetic variants at the 

scale of a whole genome using information from the latest population and annotation databases. In 

contrary to the initial PSAP that was restricted to the exome, Easy-PSAP allows the analysis of variants 

in the coding and non-coding genome by integrating both PSAP-genes and PSAP-genomic-regions in 

the parameters and available null distributions of the pipeline. Easy-PSAP features both a workflow to 

calculate PSAP null distributions and a workflow to apply them to patient data.  

In the following application note, we tested the performance of Easy-PSAP on genes compared 

to the initial PSAP pipeline on simulated synthetic disease exomes. We inserted known pathogenic 

variants from the ClinVar database in healthy sequence data and evaluated their rank based on their 

PSAP p-value. Easy-PSAP showed a clear gain in performance compared to the initial PSAP. Overall, 

Easy-PSAP was able to capture more than 50% of causal coding pathogenic variants in the top 10 

variants for an AD model of transmission and in the top 1 for an AR model of transmission. 
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These findings, along with the accessibility of the pipeline to both researchers and clinicians, 

make Easy-PSAP a state-of-the-art tool for NGS data analysis that is implemented to evolve as new 

frameworks and databases become available. In particular, the workflow to calculate new PSAP null 

distributions allows researcher to tailor PSAP to their research question and requirements. 

6.2 RESULT 
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Abstract 

Background: Next-Generation Sequencing data analysis has become an integral part of clinical 

genetic diagnosis, raising the question of variant prioritization. The Population Sampling 

Probability (PSAP) method has been developed to tackle the issue of variant prioritization in 

the exome of a single patient, by leveraging allele frequencies from population databases and 

a variant pathogenicity score.  

Results: Here, we present Easy-PSAP, a completely new implementation of the PSAP method 

comprising two user-friendly and highly adaptable pipelines. Easy-PSAP can evaluate genetic 

variants at the scale of a whole exome or genome using information from the latest population 

and annotation databases. Through simulations on synthetic disease exomes, we show that 

this new implementation is able to capture more than 50% of causal pathogenic variants in 

the top 10 variants for an autosomal dominant model of transmission and in the top 1 for an 

autosomal recessive model of transmission.  

Conclusion: These findings, along with the accessibility of the pipeline to both researchers and 

clinicians, make Easy-PSAP a state-of-the-art tool for variant prioritization in Next Generation 

Sequencing (NGS) data that can continue to evolve as new frameworks and databases become 

available. Easy-PSAP is implemented in R and bash within an open-source Snakemake 

framework. It is available on GitHub alongside conda environments containing the required 

dependencies (https://github.com/msogloblinsky/Easy-PSAP). 

Keywords: variant prioritization, Next Generation Sequencing, rare diseases 
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Background 

With the advent of Next Generation Sequencing (NGS), genomic data has become more 

widely available and has opened up a new era for rare disease diagnosis. These rare diseases 

are characterized by an important genetic heterogeneity, that can result in only one individual 

carrying a specific pathogenic variant in a specific gene, also known as the “n-of-one problem”. 

Prioritization tools for causal pathogenic variants like the Population Sampling Method (PSAP) 

(1), which are applicable to sequence data from a single individual, have been developed to 

tackle this issue. PSAP uses allele frequencies from large population databases to construct 

gene-based null distributions of CADD pathogenicity scores (2), to allow the evaluation of a 

variant of unknown significance in the context of each gene, without the need for control 

individuals. PSAP gives a p-value by gene for each individual, which summarizes how unlikely 

it is to observe a variant in this gene with such CADD score in the general population.  

The initial implementation of PSAP used allele frequencies from the ExAc  database (3), 

comprising around 60,000 individuals at the time, and the version of CADD v1.0 to construct 

null distributions, and featured the use of a bash pipeline to apply PSAP to patient data. The 

annotation of the input Variant Call Format (VCF) file was conducted by Annovar (4). Since 

then, major updates in genomic sequence databases (gnomAD V2 (5), comprising 125,748 

exomes and 15,708 genomes) and variant annotations (CADD v1.6 (6)) have proven to better 

capture the complexities of genetic variations in humans. 
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Here, we introduce Easy-PSAP a new implementation of the PSAP pipeline through 

computationally efficient and user-friendly Snakemake workflows (7). A first workflow allows 

the custom calculation of PSAP null distributions from allele frequencies data and a 

pathogenicity score, which had not been previously available (Figure 6.1A). A second workflow 

applies these null distributions to patient data, with the most up-to-date null distributions 

already available without calculations (Figure 6.1B). This highly flexible ecosystem is adaptable 

to the specific needs of researchers and the growing information arising from new databases, 

whilst already providing a strong framework for the scoring of genetic variants of an individual 

patient scalable to whole-genome data. 

 

Figure 6.1. Description of Easy-PSAP 

(A) Snakemake workflow to construct PSAP null distributions. (B) Snakemake workflow to apply PSAP to patient data.   
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Implementation 

The new implementation of PSAP relies on the use of Snakemake workflows, which are a 

series of “rules” connecting input to output files. When executed, Snakemake infers the 

combination of rules allowing the creation of the desired output files. Snakemake can be 

tuned to the specific computational resources provided by the user, making the pipeline 

scalable. The pipeline is also efficient: it does not rerun steps for which the output file is 

already present, which allows the user to easily iterate the analysis over a set of different 

parameters. Input parameters and files are specified in a dedicated configuration file for each 

workflow. A contained software environment with all necessary dependencies can easily be 

created by command line using the conda package manager (https://conda.io).  

Calculation of PSAP null distributions  

To calculate PSAP null distributions, the user supplies a VCF file with allele frequencies for 

calibration and a file with the desired pathogenicity score. A bed file with the start and end of 

genes is supplied with the workflow, but any other specified genomic units can be used. It is 

recommended to provide an optional bed file containing a list of well-covered regions in the 

allele frequencies database. This file will be used to exclude variants that fall in regions that 

were not well-covered in the reference panel and for which the method cannot make an 

inference. Adding this information improves the reliability of PSAP’s results. 

Parallelization allows the calculations to be run by chromosome, making the 

generation of null distributions efficient. First, tables containing all the necessary information 

to calculate the null distributions from the input files are created. Then, the main rule of the 

workflow “calculate_null_distributions_PSAP” is applied.   

https://conda.io/
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Temporary output files by chromosome are ultimately merged, which generates the 

two main output files of the workflow: PSAP null distribution tables for the autosomal 

dominant and autosomal recessive models. To improve the speed of PSAP, we also replaced 

the simulations of genotypes with exact probability computations.  

Application of PSAP to patient data 

Custom input parameters for this workflow include the desired version of CADD, the 

assembly, and the corresponding PSAP null distribution file, which can be an output from the 

previous workflow or the default provided null distributions with allele frequencies from 

gnomAD genome r2.0.1 and CADD v1.6. 

Input files for the PSAP pipeline are: a VCF file and the corresponding pedigree (PED) file. 

It is preferable that the VCF provided as input for the PSAP pipeline has undergone Quality 

Control (QC). We recommend for this the R library RAVAQ (8), with its default parameters. 

RAVAQ also allows the split of multi-allelic variants on different lines of the VCF, which is 

necessary for the application of the PSAP pipeline. An optional input is a file containing the 

CADD annotation for the InDels from the VCF file, which can be obtained through a request 

on the CADD website (https://cadd.gs.washington.edu/). 

Preprocessing steps include filtering the input VCF to keep only regions well-covered in 

the database used to construct the null distribution and annotation of the VCF using the VEP 

software (9). A bed file for the location of genes and the regions well-covered in the version 

of gnomAD genome used to construct our version of PSAP null distributions are supplied with 

the PSAP pipeline, but other custom bed file can be supplied. Variants that were not classified 

as PASS by GATK in gnomAD are also filtered out of the VCF.   

https://cadd.gs.washington.edu/
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The main rule of the workflow “apply_PSAP_calculations” calculates, for each individual, 

PSAP p-values for the dominant and recessive models. The pipeline parallelizes calculation by 

individual if the user supplies multiple cores for execution. One output file by individual 

recapitulates the variant with the maximal CADD score in the unit of testing chosen, its PSAP 

p-value, and other relevant information from the VEP annotation.  

The last step of the pipeline is to create a report file merging individual results. If there are 

both cases and controls in the input VCF (status specified through the PED file), only case 

results are in the report file and variants are flagged as “validated” if they are absent from the 

controls. 

Results 

To illustrate the contribution of this new implementation of PSAP for the prioritization of 

pathogenic variants in the context of real NGS data, we inserted pathogenic well-reviewed 

coding SNVs from the ClinVar database (10) (n=4,593 variants for the autosomal dominant 

model and n=2,430 variants for the autosomal recessive model) into each of the 574 exomes 

of the FrEnch Exome Project (11) (Figure 6.2, see Additional files 1 and 2 for more details on 

the simulations and the complete list of variants respectively). We applied both the original 

and new implementations of PSAP to these simulated disease exomes, and ranked variants 

according to their PSAP p-value. The new implementation of PSAP shows a clear gain in 

performance, with 25% of variants reaching the top 1 compared to 0.4% previously for the 

autosomal dominant model, and 83% of variants reaching the top 1 compared to 24% 

previously for the autosomal recessive model (Figure 6.3). This gain in performance can mainly 

be explained by the update of null distributions using the latest versions of gnomAD and 

CADD, which makes them more accurate at evaluating pathogenic variants.   
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Table 6.1 also shows the efficiency and speed of Easy-PSAP when applied to the 574 FREX 

exomes, with parallelization on 20 cores. 

 

Figure 6.2. Flowchart of the evaluation of PSAP null distributions using simulated disease exomes 

 

Figure 6.3. Gain in performance using the new implementation of PSAP (light purple) compared to the initial implementation 
(dark purple) 

Percentage of pathogenic variants reaching the top N of variants according to the PSAP p-value in at least 90% of controls 
individuals, for the autosomal dominant and recessive models  
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Table 6.1. Time taken, memory consumption (RSS "Resident Set Size”), and CPU usage of Snakemake rules for the Easy-PSAP 
workflow to apply PSAP null distributions to 574 control exomes with parallelization on 20 cores 

Rule name Description 
Time 

(h:m:s) 

Memory 

(GB) 
CPU usage 

filter_regions 

Filter out regions not well-

covered in the database 

used to construct PSAP null 

distribution and sort VCF 

file 

1:06:17 0.889 
100%  

(1 core) 

write_column_names 
Write column names from 

VCF file  
0:00:03 0.024 

4%  

(1 core) 

vep_annotation 
Annotate VCF file with VEP 

software 
0:25:08 67.980 

2000%  

(20 cores) 

filter_variants 

Filter out low-quality 

variants in the database 

used to construct PSAP null 

distribution 

0:03:29 9.485 
100%  

(1 core) 

apply_PSAP_calculations 

Calculate PSAP p-values for 

each individual of the VCF 

file 

0:03:02 

by 

individual 

1:26:00 

for whole 

cohort 

3.000 by 

individual 

2000%  

(20 cores, 

1 core for 

each 

individual) 

make_report_file 
Merges individual PSAP 

output files 
0:21:07 3.111 

100%  

(1 core) 

compress_output_files 
Compress PSAP output 

files 

0:00:02 

by file 

0:01:00 

for all 

files 

0 

1%  

(20 cores, 

1 core for 

each file) 
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Conclusion 

Easy-PSAP offers versatile pipelines to create custom null distributions of CADD scores and 

to score genetic variants of unknown significance in NGS data. These pipelines have been 

developed using the Snakemake workflow management system, which makes them user-

friendly, computationally efficient, and reproducible. They come with pre-computed null 

distributions using up-to-date information from population databases and genetic 

annotations. PSAP null distributions in the GRCh38 assembly of the human genome, calibrated 

with allele frequencies from gnomAD V3(12) (comprising 76,156 genomes) and CADD v1.6 in 

GRCh38 are also made available with Easy-PSAP. These tools are adaptable to various 

scenarios, both in research and clinics and provide a strong framework for the prioritization 

of pathogenic variants at the scale of the genome. 

 

Availability and requirements 

Project name: Easy-PSAP  

Project home page: https://github.com/msogloblinsky/Easy-PSAP  

Operating system(s): Linux/MacOS 

Programming language: R, Python, Shell  

Other requirements: None. 

License: None. 

Any restrictions to use by non-academics: None.  

https://github.com/msogloblinsky/Easy-PSAP
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6.3 FUTURE DEVELOPMENTS 

I plan to continue developing new features for Easy-PSAP in the future, with the help of people 

from my team at UMR1078 who will hopefully continue to use the pipeline for their own projects. For 

now, PSAP null distributions had been calculated using only SNVs. As the CADD scores of gnomAD 

InDels are now available, we would like to offer the possibility to include InDels in addition to SNVs for 

the calculation of PSAP null distributions which could improve the prediction of InDels pathogenicity 

by PSAP. A CADD pathogenicity score has also been recently developed for structural variants (Kleinert 

and Kircher 2022), so integrating them both to the construction and application of PSAP null 

distributions could be another step in the future as well. 

Beyond the type of variants integrated in Easy-PSAP, another main limitation of the current state 

of the pipeline is the restriction to AD and AR models of inheritance. The initial PSAP article by (Wilfert 

et al. 2016) integrated the calculation of PSAP p-values for the compound heterozygote model. Other 

models, like the X-linked hemizygote model for males could be of interest for specific pathologies like 

male infertility. The scripts to calculate PSAP null distributions p-values for these additional models are 

already written and will soon be implemented within the Easy-PSAP workflows. An option to choose a 

specific allele frequency from a VCF file like gnomAD’s to calculate population-specific PSAP null 

distributions, as it was mentioned above, would be another valuable addition to the pipeline. 

Finally, most of the scripts featured in Easy-PSAP are written in R, which makes them quite 

computationally-intensive and long to run, especially for the calculation of PSAP null distributions on 

CADD regions. I will continue working on making them more efficient, mostly by switching to C++ for 

the most intensive calculations when possible.  
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Chapter 7  ANALYSIS OF CONSANGUINEOUS MALE INFERTILITY 

FAMILIES  

To further explore the potential of PSAP in real-life cases of RDs, I applied the method to 

currently undiagnosed families affected by male infertility from Pakistan. Through this work, I was able 

to show how PSAP was able to perform and prioritize candidate variants, which led to identification of 

several candidate genes relevant to the disease.  

7.1 BACKGROUND 

As described in the section 4.3.2, male infertility is a prevalent issue affecting couples 

worldwide and  research in the domain has shed light on the genetic origin of some cases of male 

infertility. While numerous genes have been linked to monogenic forms of male infertility, much 

remains unknown, including the identification of new genes and understanding of genotype-

phenotype relationships. One obstacle lies in identifying patients with monogenic forms of male 

infertility. These conditions are typically caused by rare recessive gene variants, making them 

uncommon in randomly mating populations. However, populations practicing consanguineous 

marriages, especially among close relatives like in Pakistan, offer valuable insights for genetic studies. 

Indeed, in these populations, the increased frequency of homozygous genotypes in the population 

results in a higher incidence of recessive diseases. Consanguinity also influences fertility rates in 

Pakistan, correlating with longer times to first birth and smaller family sizes. In addition, increasingly 

available WGS data allows a thorough exploration of potential causative genetic variants, both coding 

and non-coding. Given these factors, our study sought to investigate Pakistani families with hereditary 

male infertility through WGS to uncover new genetic variants and genes implicated in this pathology. 

In the article by (Khan et al. 2023), they describe the analysis of the 1st phase of the project, 

comprising of seven male infertility families from the Malakand of Pakistan. In five out of the seven 

families in question, they discovered potential genetic factors contributing to male infertility. These 

findings included a homozygous 10 kb deletion affecting exon 2 of the established male infertility gene 

M1AP. They also found biallelic missense substitutions in genes SPAG6, CCDC9 and TUBA3C, as well as 

an in-frame hemizygous deletion in TKTL1, all genes with an emerging significance in the context of 

male infertility. Our aim was to replicate the findings in genes SPAG6, CCDC9 and TUBA3C from this 

publication through our PSAP prioritization strategies, and analyze additional families from the 2nd 

phase of the project to contribute new candidate variants to explain the cases of male infertility. We 

also sought to corroborate our results by looking if our candidate variants were carried by homozygous 
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regions inherited from the same common ancestor present in cases but not controls, if the information 

was available. 

7.2 MATERIAL & METHODS 

7.2.1 Datasets and quality control 

Our data comprised of the two separate datasets for each phase of the project: the first phase 

will be referred to as Malakand phase 1 and the second phase as Malakand phase 2. WGS was carried 

out for all individuals. Overall, the Malakand phase 1 dataset included seven families with clinically 

diagnosed male infertility, among which five had a recent history of consanguinity. There was WGS 

data generated for 26 individuals (3-5 individuals per family, including cases and controls). For the 

Malakand phase 2, seven additional families with clinically diagnosed male infertility went through 

WGS, among which three families had a recent history of consanguinity. As for the phase 1, there were 

26 WGS samples available (3-5 per family, including cases and controls). The pedigrees from the 

Malakand phase 1 families are included in (Khan et al. 2023), whilst the Malakand phase 2 pedigrees 

are featured in Figure 7.1.  

 The full description of the Malakand phase 1 WGS dataset can be found in (Khan et al. 2023). 

The same method has been applied to the Malakand phase 2, with an additional QC that was 

performed using R package RAVAQ (Marenne et al. 2022). To apply PSAP in optimal conditions, we 

performed a genotype and variant QC corresponding to standard GATK hard filtering criteria, 

genotypes with a depth < 10 or a genotype quality < 20 has been set to missing, as well as heterozygous 

genotypes with an allele balance outside [0.25-0.75]. No QC on variant call rates was applied. This 

corresponds to the default RAVAQ parameters for genotype and variant QC except that: 

MAX_AB_GENO_DEV = 0.25, MAX_ABHET_DEV, MIN_CALLRATE and MIN_FISHER_CALLRATE 

"disabled". 
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Figure 7.1 : Pedigrees of Malakand phase 2 families 

Individuals that were sequenced are annotated with a number, affected individuals are marked with a cross 
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7.2.2 Prioritization strategy 

To prioritize potentially candidate variants in the Malakand phase 1 and phase 2 datasets, we 

applied different PSAP strategies for hg38 data with our pipeline Easy-PSAP. InDels were not included 

in the analysis, considering the PSAP prioritization was less well calibrated than for SNVs (see section 

5.2). Considering the initial version of PSAP on genes had been applied to the Malakand phase 1 data 

by the Conrad Lab team, we first applied PSAP-genes-CADD to both datasets in order to replicate the 

results. Then, as advised in our article describing the PSAP-genomic-regions strategy regarding WGS 

analysis (cf. section 5.2), we applied PSAP-coding-genomic-regions-CADD to prioritize potential coding 

pathogenic variants, and PSAP-genomic-regions-ACS to prioritize non-coding pathogenic variants. For 

each strategy, we focused on the top 100 variants according to PSAP p-values, which according to our 

simulations analyses would yield most of the causal pathogenic variants if they were included in the 

analyses. 

Additional post-filtering was applied to provide only relevant candidates for male infertility for 

each phase separately. Only homozygous SNVs were kept (i.e. we only kept results from the AR model), 

which is in line with most causes of monogenic male infertility and the analysis of consanguineous 

individuals. Synonymous variants and variants seen in control individuals from any of the families were 

filtered out. To narrow down the pool of candidate variants even more and in accordance with the 

typical filtering process undergone at the Conrad Lab, variants were kept if they were not common or 

absent in gnomAD exomes v2.1.1 (maximum population-specific allele frequency - POPMAX < 0.01). 

Finally, we highlighted only variants in genes expressed in testis according to the GTEx tissue panel 

(GTEx Consortium 2020), and that were shared by cases from the same family if expected according to 

the pedigree.  

7.2.3 Exploration of candidate genes 

7.2.3.1 RNA sequencing data 

Interpreting variants and the potentially affected genes in the context of their relevance to the 

specific disease at hand is a crucial part following the variant prioritization process. In order to give 

more weight or discard some of the prioritized variants from our analyses of the Malakand datasets, 

we exploited bulk and single-cell RNA-sequencing data. Traditional bulk transcriptomics measures the 

average gene expression levels across many cells, providing insights into the overall behavior of a tissue 

or population of cells. However, it lacks the ability to capture the variability and nuances present 

among individual cells. Single-cell transcriptomics, on the other hand, enables researchers to analyze 

the gene expression profiles of thousands of individual cells simultaneously within a heterogeneous 
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population. This technology allows for the identification of rare cell types, characterization of cellular 

heterogeneity within tissues, and elucidation of gene regulatory networks at a single-cell resolution. 

For prioritized genes, we looked at the global expression of the gene in the body from bulk 

tissue expression as seen on GTEx (GTEx Consortium 2020) portal (https://www.gtexportal.org/). In 

line with the male infertility phenotype, we expected a plausible candidate gene to be expressed 

predominantly in testis. To explore even further candidate genes, we also used the Human Infertility 

Single-cell Testis Atlas  (HISTA) (Mahyari et al. 2023) web-portal (https://conradlab.shinyapps.io/ 

HISTA/). HISTA encompasses 26,093 high quality cells derived from testis biopsies (Mahyari et al. 2021) 

(2 juveniles, 6 normal adults, 1 adult with azoospermia, 1 adult with ejaculatory dysfunction, and 2 

adults with Klinefelter Syndrome; Figure 7.2). This browser allows the exploration of gene expression 

signatures across different cellular populations that characterize normal testicular function and 

distinguish clinically distinct forms of male infertility. Both of these approaches allowed us to gain 

insight into the gene expression dynamics and the functional consequences of genetic alterations at 

different resolutions.  

 

 

Figure 7.2 : Construction of the Human Infertility Single-cell Testis Atlas 

From Mahyari et al. 2021 ; DGE: Digital Gene Expression matrix is produced; SDA: Sparse Decomposition of Arrays 

 

 

https://www.gtexportal.org/
https://conradlab.shinyapps.io/HISTA/
https://conradlab.shinyapps.io/HISTA/
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7.2.3.2 Detection of HBD segments 

To further confirm our variant prioritization results, we leveraged the background 

consanguinity from the Pakistani population through the detection of Homozygosity by Descent 

segments on the genome of the Malakand individuals. Indeed, in genetics, an inbred individual can 

inherit at a locus two copies of the same allele from a common ancestor of their parents. These alleles 

are said to be Identical by Descent (IBD), which results in Homozygosity by Descent (HBD) at that locus 

in the inbred individual.  In case of a recessive disorder and known consanguinity, the initial 

assumptions are that the disease-causing variant is likely to reside within a HBD region. 

However, information about IBD in the genome is not directly observable; it must be inferred 

from genotypes at markers. To do this, one must distinguish between IBD SNPs and homozygous but 

non-IBD SNPs. According to simulations with known pedigrees conducted using different estimation 

methods, it is recommended to use Hidden Markov Models (HMMs) on multiple subsets of markers to 

estimate and detect consanguinity in large samples (Gazal et al. 2014). A HMM is a statistical model 

where you have a sequence of observations, and each observation results from an unobserved state, 

referred to as the hidden state. The goal is to infer the sequence of hidden states based on the 

observations and a set of parameters. HMMs assume that, conditional on the IBD status, there is 

independence of the observed genotypes, which is not the case in the presence of LD between alleles 

of different markers. Taking subsets of markers (submaps) is a method to circumvent this problem 

(100 submaps recommended). There are two strategies for determining subsets: selecting subsets of 

markers separated by a certain genetic distance or subsets of markers between recombination 

hotspots (1 SNP per LD block). 

For the analysis of the Malakand samples, we used the R package Fantasio 

(https://github.com/genostats/Fantasio). Fantasio leverages a statistical model to estimate the 

inbreeding coefficient f of an individual, and a parameter a, where af is the instantaneous rate of 

change per cM from no HBD to HBD. An individual was considered inbred by Fantasio if the median p-

value of Likelihood Ratio Tests on good quality submaps is inferior to 0.05. Several factors had to be 

taken into account when applying Fantasio to the two Malakand datasets. First of all, our data was in 

the hg38 build. We thus needed to use a specific file with hotspots in the hg38 build, which we then 

used to calculate 100 submaps. Another specificity of our dataset was that we were working with WGS 

data instead of the SNP genotyping data usually used to carry HBD analysis. This meant we had a lot 

more variants than expected from the method. To mitigate that issue, we restricted our VCF files to 

variants with an allele frequency of at least 5% in the South Asian population of gnomAD genome 

v3.1.2.  

https://github.com/genostats/Fantasio
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7.3 RESULTS 

7.3.1 Malakand phase 1 variant prioritization analysis 

After QC, there were 13,449,466 out of 13,944,569 variants kept for analysis. Our prioritization 

and post-filtering strategy yielded 5 variants in 3 families, with their ranking from the PSAP-gene-CADD 

and PSAP-coding-genomic-regions-CADD strategies showed in 

Table 7.1. Among these variants, 3 were the ones already identified in SPAG6 (in family 3), 

TUBA3C (in family 7) and CCDC9 (in family 4) in this dataset. In addition, we can put forward here 

additional variants that could have been considered for two of the families: family 4 and 3. Regarding 

the HBD regions analysis, according to the inbreeding coefficient calculated by Fantasio, the control 

individuals from family 3 and 4 were not inbred (individuals 3-5 and 4-4), as well as two cases from 

family 6 (individuals 6-1 and 6-2). This was surprising due to the history of consanguinity in both 

families. All other individuals for which WGS data were available were considered inbred. 

NT 
Genomic  
Change  

(GRCh38) 

Consequence 
Amino 
acids 

Protein 
position 

Gene 
CADD 
region 

Family ID 

Rank 
PSAP-
genes 

Rank 
PSAP-

genomic-
regions 

Rank PSAP-
coding-

genomic-
regions 

chr10: 
22389235 

C>T 

missense 
variant 

R/W 310 SPAG6 R083368 3 

Mal3-1, 
Mal3-2, 
Mal3-3 

12,12,7 47,44,43 11,9,6 

chr22: 
32864976 

G>T 

missense 
variant 

S/Y 217 SYN3 R134775 3 

Mal3-1, 
Mal3-2, 
Mal3-3 

26,19,14 1,2,2 122,115,107 

chr19: 
45805018 

T>C 

splice 
acceptor 
variant 

- - RSPH6A R128508 4 

Mal4-1, 
Mal4-2, 
Mal4-3 

2,1,4 2,3,4 1,1,1 

chr19: 
47260609 

C>T 

missense 
variant 

R/W 78 CCDC9 R128563 4 

Mal4-1, 
Mal4-2, 
Mal4-3 

12,10,15 51,45,88 9,8,17 

chr13: 
19177247 

C>T 

missense 
variant 

G/R 246 TUBA3C R100895 7 

Mal7-1, 
Mal7-2, 
Mal7-3 

8,7,13 21,17,37 8,4,16 

 

Table 7.1 : Candidate diagnostic variants identified in Malakand phase 1 families 
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The TUBA3C variant in family 7 was the only prioritized variant in this family, and the low 

ranking for all cases with the three PSAP strategies (top 20 with PSAP-genes-CADD and PSAP-coding-

genomic-regions-CADD, top 50 with PSAP-genomic-regions-CADD) confirmed the plausible association 

of this variant with the disease in this family. The TUBA3C gene encodes a protein called Alpha-tubulin 

3C, which is a member of the alpha-tubulin family. Tubulins are structural components of 

microtubules, which are essential components of the cytoskeleton in eukaryotic cells. Microtubules 

play critical roles in various cellular processes, including cell division, intracellular transport, and 

maintaining cell shape. There is no prior mention in the literature of an association between TUBA3C 

and male infertility, and no ortholog of this gene exists in mice. The TUBA3C overlapped with HBD 

segments detected in cases but not in controls in family 7. 

Regarding family 4, our analysis highlighted two potentially disease-associated variants. The 

first one was a missense variant in gene CCDC9 that was in the top 20 with PSAP-gene-CADD and PSAP-

coding-genomic-regions-CADD and which was the one already found in (Khan et al. 2023). CCDC9 had 

already been identified as a candidate gene for severe asthenozoospermia (Sha et al. 2019) in an inbred 

case. In addition to the CCDC9 variant, we prioritized a splice acceptor variant in gene RSPH6A with a 

high predicted VEP impact and a rank within the top 5 across the whole genome by all PSAP strategies. 

Rsph6a is a testis-specific protein essential for sperm flagellar assembly and flagellar motility. RSPH6A 

has not been associated with male infertility in humans, but its depletion has been reported as 

associated with male infertility in mice (Abbasi et al. 2018). Both CCDC9 and RSPH6A are expressed in 

testis (Figure 7.3), although CCDC9 is broadly expressed in other tissues too. While RSPH6A expression 

is enriched in spermatocytes, CCDC9 expression in testis seems to be specific to very early 

spermatogonia and spermatids. Both variants are rare or absent from gnomAD. Interestingly, the two 

candidate variants are situated at 2 Mb of distance on chromosome 19. In family 4, genes CCDC9 and 

RSPH6A, located 2 Mb apart on chromosome 19, fell within the same HBD region shared by all cases, 

which did not help prioritize one gene over the other. This confirmed the potential implication of 

SPAG6 and CCDC9 in the disease in family 4. However, we were not able to check if the segments were 

present in control individuals in this family as they were not inbred.  
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Figure 7.3 : Expression profiles of CCDC9 and RSPH6A candidate genes in family 4 from Malakand phase 1 

The expression level of the gene (left column) across 54 tissues of the body, as defined by bulk RNA-sequencing by the GTEx 
project, and (right column) at a single-cell level across cells of the adult testis according to the HISTA browser are featured 

In family 3, there were two candidate variants prioritized as well. One of the variants, a rare 

missense variant in SPAG6, had already been reported in (Khan et al. 2023) and was prioritized in the 

top 20 with PSAP-genes-CADD and PSAP-coding-genomic-regions-CADD, and in the top 50 with PSAP-

genomic-regions-CADD. As mentioned in the article, SPAG6 has been associated with male infertility 

in mice (Sapiro et al. 2002) as well as in humans (Wu et al. 2020; Xu et al. 2022), particularly in three 

separate cases of severe asthenoteratospermia. The second candidate variant was a missense variant 

in gene SYN3, absent from the gnomAD database. The variant in SYN3 was highly prioritized by PSAP-

genomic-regions-CADD at first or second rank, but was not ranked in the top 100 in any of the cases 

by PSAP-coding-genomic-regions-CADD due to the higher ranking of other coding CADD regions. SYN3 

encodes the Synapsin-3 protein, which belongs to the synapsin family. The function of Synapsin-3 is 

primarily associated with regulating the release of neurotransmitters from synaptic vesicles. Synapsins 

are involved in tethering synaptic vesicles to the cytoskeleton. They also play roles in the formation 

and maintenance of synapses during development, as well as in synaptic plasticity. SYN3 had no 

reported involvement in male infertility related phenotypes, in human or mice. SPAG6 and SYN3 

expression was high in testis (Figure 7.4), with SYN3 also largely expressed in the brain. SPAG6 showed 
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a specific testis expression in spermatocytes and early spermatids, whilst SYN3 expression seemed 

more restricted to spermatids. In addition, the SPAG6 gene overlapped an HBD region shared by all 

cases on chromosome 10, while the SYN3 was situated after but not within an HBD segment shared by 

all cases as well on chromosome 22, which confirmed the potential implication of SPAG6 in the disease. 

 

Figure 7.4 : Expression profiles of SPAG6 and SYN3 candidate genes in family 3 from Malakand phase 1 

 

From the Malakand phase 1 dataset, family 6 and 9 had candidate variants as well that could 

not be analyzed with our pipeline as they were not autosomal SNVs: an in-frame mutation in the TKTL1 

gene and a deletion of M1AP exon two, respectively. This left families 5 and 8 without any candidate 

variants in the coding genome. For these two families specifically, we considered the prioritization by 

PSAP-genomic-regions-ACS without filtering on testis expression to not restrict to coding regions, i.e. 

to explore non-coding regions. No variant segregated with the disease phenotype in family 5 among 

the top 100 of PSAP results; two variants segregated with the disease phenotype in family 8. The 

interpretation of both variants was difficult, as one them was intergenic and the other an intronic 

variant. There were 3 homozygote carriers of the intergenic 12-38957630-A-G variant in the South 

Asian population of gnomAD (AF = 0.03), and 4 carriers for the intronic 3-15965671-A-C variant (AF = 

0.04). They did not colocalize with regulatory elements described by ENCODE. Neither variants had 

significantly high scores with other in sillico prediction tools (philoP, GERP, SpliceAI).  
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7.3.2 Malakand phase 2 variant prioritization analysis 

For the Malakand phase 2 dataset analysis, the QC process left 14,200,927 out of 14,702,449 

variants for analysis. We found a total of 5 candidate variants that segregated with the phenotype and 

were plausible candidates to explain male infertility in cases (Table 7.2). One variant was observed in 

both cases from family 12, two variants in one case from family 14 (the two cases from this family were 

a nephew and an uncle) and one variant in two cases from family 15 (we only had WGS data from these 

two cases and were unable to confirm our findings in the last case from this family). Regarding the HBD 

regions analysis, the inbreeding coefficient from Fantasio indicated that all individuals from family 12 

(control individual 12-1 and cases 12-2 and 12-3) and three individuals from family 11 (case 11-1 and 

controls 11-2 and 11-3) were not inbred. This result was more unexpected for family 11 for which, in 

contrary to family 12, there was recent consanguinity in the pedigree. 

 

The most striking finding from this analysis is a second distinct variant in TUBA3C found in 

family 12, in the same CADD region R100895 as for the variant found in family 7 from the Malakand 

phase 1. This TUBA3C variant was ranked in the top 10 with PSAP-genes-CADD, PSAP-genomic-regions-

CADD and PSAP-coding-genomic-regions-CADD.   

NT 
Genomic  
Change  

(GRCh38) 

Conseque
nce 

Amino 
acids 

Protein 
position 

Gene 
CADD 
region 

Family ID 

Rank 
PSAP-
genes 

Rank 
PSAP-

genomic-
regions 

Rank 
PSAP-

coding-
genomic-
regions 

chr13: 
19174098 

C>T 

missense 
variant 

R/Q 373 TUBA3C R100895 12 
Mal12-1, 
Mal12-2 

6,6 3,2 3,3 

chr10: 
96016313 

A>C 

missense 
variant 

E/A 1210 CC2D2B R087600 14 Mal14-1 NA 6 6 

chr10: 
97002188 

G>A 

missense 
variant 

P/S 1446 SLIT1 R087640 14 Mal14-1 11 7 8 

chr16: 
80549652 

G>A 

splice 
donor 
variant 

- - DYNLRB2 R118954 15 
Mal15-1, 
Mal15-2 

1,1 1,1 1,1 

Table 7.2 : Candidate diagnostic variants identified for in Malakand phase 2 families 
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As Khan et al. pointed out, TUBA3C expression is restricted to testis, with a broad expression 

throughout spermatogenesis, from spermatogonia to round spermatids (Figure 7.5). They also 

mention a case from the GEMINI cohort which carried a homozygous missense change of the 

conserved residue of TUBA3C that was absent from gnomAD. Family 12 did not have a recent history 

of consanguinity in the pedigree which could explain this result, but it meant we could not explore HBD 

segments around the TUBA3C gene.  

Another strong candidate variant was highlighted for family 15 in gene DYNLRB2. This splice 

donor variant in DYNLRB2 with a predicted high impact was absent from gnomAD and prioritized at 

first rank with all PSAP strategies and in both cases of the family, whilst being absent in controls. The 

DYNLRB2 gene encodes a protein called Dynein light chain roadblock-type 2. This protein is a 

component of the dynein complex, which is a motor protein involved in intracellular transport along 

microtubules.  Mutations in the dynein genes have already been associated with asthenozoospermia 

of variable severity (Zuccarello et al. 2008). A recent article has shown that DYNLRB2 was indispensable 

for spindle formation in meiosis I, and that its KO in mouse testes results in an arrest of meiosis 

progression (He et al. 2023). As for TUBA3C, DYNLRB2 expression is specific to testis, from 

spermatocytes to spermatids (Figure 7.5). We were able to see through our analysis that both cases 

15-1 and 15-2 from family 15 shared an HBD segment on chromosome 16 that encompassed gene 

DYNLRB2 and that was not shared with control individual 15-3 from the same family.  

 

Figure 7.5 : Expression profiles of TUBA3C and DYNLRB2 candidate genes from Malakand phase 2 
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Finally, we were also able to prioritize two candidate variants in individual 1 from family 14 

(individual 14-1), which were not present in controls but neither in the other affected individual from 

the family (individual 14-3, uncle of individual 14-1). The two variants were missense variants, ranked 

in the top 10 will all PSAP strategies, in genes CC2D2B and SLIT1, which are located 2 Mb apart on 

chromosome 10. The CC2D2B gene encodes a protein known as coiled-coil and C2 domain-containing 

protein 2B. This protein is involved in various cellular processes, particularly in ciliary function and 

regulation. Mutations in the CC2D2B gene have been implicated in a spectrum of ciliopathies, which 

are a group of disorders characterized by defects in cilia structure or function. Although CC2D2B has 

not been associated with male infertility in human or mice, studies have shown the link between 

ciliopathies and male infertility. Indeed, sperm flagella and motile cilia share similarities in structure 

and function including the axonemes, which are internal structure necessary for motility. Defects in 

the axonemal structure can thus disrupt the motility of both cilia and flagella (Sironen et al. 2020). The 

SLIT1 gene encodes a protein called Slit homolog 1. SLIT1 plays a crucial role in various developmental 

processes, particularly in axon guidance and neuronal migration during embryonic development. SLIT1 

functions by binding to its receptors, particularly roundabout (ROBO) receptors, which are present on 

the surfaces of neurons and other cell types. The binding of SLIT1 to ROBO receptors triggers 

intracellular signaling pathways that regulate cytoskeletal rearrangements and cellular responses. 

Mutations or dysregulation of the SLIT1 gene have been implicated in various developmental 

disorders, including certain congenital malformations of the brain and spinal cord. Although we have 

not found direct reported links between SLIT1 and male infertility phenotypes, Slit/Robo has recently 

been identified in mice as a novel signaling mechanism that regulates Leydig cell steroidogenesis which 

can have impacts on fertility (Martinot and Boerboom 2021). Although these two variants could be 

suitable candidates to explain the disease in individual 14-1, we will not expand on them further 

considering the evidence for their pathogenicity was less strong than for the prioritized variants in the 

coding genome.  
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7.4 DISCUSSION – INTERPRETING EASY-PSAP OUTPUTS IN A DIAGNOSTIC SETTING 

An important aspect of any variant prioritization strategy is the interpretability and accuracy of its 

results. Below, I discuss some limitations and strength of Easy-PSAP when applied in a real-life setting. 

7.4.1 Post-Easy-PSAP filtering strategies 

As evidenced by our evaluation of Easy-PSAP on artificially-generated disease exomes and 

genomes in Part III - Chapter 5, there is no universal cutoff or evident significance threshold for PSAP 

p-values. 1kGP Non-Finnish Europeans individuals from the general population carried variants with 

low PSAP p-values in their genome. The lowest PSAP p-value for Non-Finnish Europeans individuals 

ranged from 10-4 to 10-5 for the AD model, and from 10-3 to 10-10 for the AR model.  

Thus, we decided to use PSAP as a prioritization tool, which allowed us to rank variants based 

on their PSAP p-value and not to use a threshold on PSAP p-values. This strategy proved less restrictive 

than filtering on PSAP p-values which distributions can differ drastically from one individual to another, 

but did not reduce the number of variants to analyze. In our simulations, we looked sequentially to the 

top reached by the ClinVar variants, going from the top 1 (most prioritized variant, with the lowest 

PSAP p-value), to the top 10, top 50 and finally top 100. Not going beyond the top 100 was an arbitrary 

choice which was also based on the number of variants one could feasibly explore and interpret in a 

clinical setting. For our analysis of the Malakand datasets, we combined the top 100 variants prioritized 

by PSAP with a range of filters that fit with the expected disease-causing variant and leveraged familial 

data, which helped narrow down significantly the number of candidate variants. We advise a similar 

approach when applying PSAP to other pathologies.  

Finally, we have to point out that PSAP performs better to prioritize pathogenic variants for the 

AR than for the AD model. Indeed, our simulations also show that if the pathogenic variant is a SNV 

with an AR model of inheritance, it will almost always be prioritized in the top 10 of the genome by 

PSAP-genomic-regions. However, if the model is an AD model of inheritance, looking at the top 100 

will not encompass all of the pathogenic SNVs. There is not clear explanation for that pattern, which 

has already been observed in (Wilfert et al. 2016) for the initial PSAP. However, it has been shown that 

AR disorders are overwhelmingly linked with Loss-Of-Function (LOF) mechanisms, whereas AD 

disorders can cause disease through different mechanisms (Gerasimavicius, Livesey and Marsh 2022). 

These molecular mechanisms can include LOF, but can also be dominant-negative (expression of a 

mutant protein interfering with the activity of a wild-type protein) or gain-of-function effects (e.g. 

constitutive activation of the protein, shift of substrate or binding target specificity, protein 

aggregation). The latter two mechanisms have limited effects on the protein structure and may not be 

captured as accurately by the CADD score. In addition, although PSAP is able to score InDels if their 
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CADD score is provided, we have not constructed PSAP null distributions with InDels and thus preferred 

to not include them in the analysis. Indeed, InDels often have a higher predicted deleteriousness than 

SNVs and were thus overly prioritized with PSAP compared to SNVs when we included them. 

7.4.2 Male infertility candidate variants 

In our analysis of the Malakand phase 1 and phase 2 datasets, we were able to both confirm 

candidate variants and put forward new candidate variants. Regarding the Malakand phase 1 families, 

the TUBA3C variant was the only one we identified in family 7, in line with previous reporting by (Khan 

et al. 2023). In families 3 and 4, we prioritized the already candidate variants in SPAG6 and CCDC9, 

respectively. For family 3, we identified another variant in SYN3 that passed our filtering criteria. 

However, the SPAG6 variants seems like a stronger candidate due to the large evidence in the literature 

of the repeated associations of this gene with male infertility and the more favorable PSAP rankings. 

Another candidate variant was identified in family 4, in gene RSPH6A. Both RSPH6A and CCDC9 seem 

good candidates to explain the male infertility phenotype, although the RSPH6A variant has a more 

severe predicted impact. The exploration of HBD segments in these individuals showed that both 

RSPH6A and CCDC9 variants, which were 2 Mb apart on chromosome 19, were carried by the same 

HBD segment shared by all cases and not controls. It was also the case for the RSPH6A variant but not 

for the SYN3 variant in family 3. This confirmed the potential implication of SPAG6 and CCDC9 or 

RSPH6A in the disease in family 3 and family 4, respectively. Two other families (family 6 and family 9) 

from the Malakand phase 1 had candidate variants that were not included in our analyses, and none 

of our PSAP strategies prioritized a candidate variant in these families. This supports the idea that a 

careful processing of PSAP results can remove false positive results, especially when familial data is 

available. Due to the challenge of detecting HBD segments in WGS data and the fact that some cases 

and controls were not identified as inbred, we did not try to pursue further homozygosity mapping 

strategies. However, the HBD segments we were able to detect in the data for some families confirmed 

the interest of some of our candidate variants from our variant prioritization strategy. 

Our analysis of the Malakand phase 2 dataset allowed us to prioritize another variant in 

TUBA3C, in the same CADD region than the previous variant from the Malakand phase 1 analysis. This 

CADD regions overlaps with the Tubulin/FtsZ family, GTPase domain of the protein, which is an 

evolutionary conserved protein domain (Nogales et al. 1998). Overall, this second highly prioritized 

variant confirms the potential implication of alterations of TUBA3C in male infertility in these two 

families. In addition, we highlighted a strong candidate variant for family 15 in gene DYNLRB2. 

Although we were not able to detect HBD segments in family 12, we were able to show that all 
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sequenced affected individuals from family 15 shared an HBD segment that encompassed DYNLRB2 

and that was not shared with the control individual from the same family.  

A striking observation that could tie together multiple of our previous results comes from 

(Jumeau et al. 2017). They curated the human sperm microtubulome, which encompasses genes 

encoding proteins present in the sperm and that are associated with cytoskeleton of the microtubule. 

When looking at protein–protein interactions, they produced a disease-interaction network composed 

of 50 genes, which also integrated various transcriptomics, proteomics, and interactomics data (Figure 

7.6). Three of the genes previously described in our analysis of the Malakand datasets could be found 

in this network: DYNLRB2, TUBA3C and SPAG6. Interestingly, SPAG6 and DYNLRB2 were highlighted 

for their association with the HPO term “Abnormal sperm motility” (HP:0012206), and were described 

as having improved the disease-interaction network by highlighting other critical nodes. Then, when 

trying to extract cluster of densely connected nodes in the network, the authors found a cluster 

comprising of 10 genes centered around CUL3, including DYNLRB2 and TUBA3C. This cluster 

significantly associated with several Gene Ontology (Ashburner et al. 2000) terms pertaining 

corresponding processes, like “signal transduction”, “cell communication”, “transport”, “spindle”, 

“vesicle”, and “extracellular region”. This gives even more weight to some of our candidate variants, 

which could lead to perturbation of the microtubule cytoskeleton that impact sperm motility and thus 

lead to asthenozoospermia or other male infertility phenotypes. 
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Figure 7.6 : Disease-interaction network for the human sperm microtubulome 

From Jumeau et al. 2017 ; Genes associated with the HPO terms “Abnormal sperm motility” or “Abnormal ciliary motility” 
were color-coded in red and orange, respectively. An asterisk (*) after a gene symbol indicates an association with the HPO 
term “Male infertility”. Human genes having mouse orthologs associated with abnormal sperm motility, abnormal motile 

cilium morphology and physiology and male infertility are indicated with a hash sign (#) 

 

Functional analyses of these variants would be needed to conclude with certainty about their 

implication in the male infertility phenotype in these individuals. Sequencing of other family members, 

like affected individual 4 from family 15, could also confirm the segregation of variants and give more 

weight to candidate variants in some families. Exploration of the impact of the variants in genes 

currently not associated with male infertility in the literature (e.g. TUBA3C) could help unravel new 

pathways and etiologies for this disease, about which there is still a lot to uncover through innovative 

strategies (Ding and Schimenti 2021). 
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Chapter 8  METHODS TO DETECT DIGENISM IN SEQUENCING 

DATA 

We have described in Part II - Chapter 4 the complex genetic architecture of RDs, including the 

possibility that some RDs could be characterized by digenic inheritance (DI) at a molecular level. 

Although detecting digenic inheritance could help diagnose a number of RDs, it is no easy task and no 

gold standard method exists. In order to ultimately provide our own answer to the question, I put 

together in the last part of this thesis a review of the literature and benchmark of the currently 

published methods to detect digenic inheritance in sequencing data. The supplementary materials for 

this manuscript can be found in Appendix IV. This allowed an overview of the strength and limitations 

of the methods developed to date, and led to the proposition of new methodological developments 

that will be mentioned in the discussion. 

8.1 BACKGROUND AND SUMMARY 

Most of the currently described cases of DI were detected through familial analyses, and often 

involved genes already associated with the disease in a monogenic way. The databases DIDA (DIgenic 

diseases DAtabase) and its updated version OLIDA (OLIgenic diseases Database) report all of the known 

digenic and oligogenic combinations from the literature. Since 2018, a number of computational 

methods have thus been developed to approach the issue of detecting DI without relying as much on 

pedigrees and prior knowledge on the disease. In the articles describing each method, little to no 

comparison is made to the other methods developed to date achieving the same objective. Here, we 

offer an overview of all of the published and available methods to detect DI in sequencing data, and 

offer insight on the strength and limitations of the methods in a benchmark setting. 

First, through a review of the literature, we categorized the methods to detect DI in three 

distinct categories: network-based, statistical and machine-learning (ML). The only method in the 

network-based category is OligoPVP (Boudellioua et al. 2018) which uses PVP (Boudellioua et al. 2019), 

a monogenic predictor of pathogenicity based on HPO terms, to score variants only in pairs of genes 

connected in a protein-protein interaction network. Two methods fall under the statistical method 

category: the Digenic Method (DM) (Kerner et al. 2020) and RareComb (Pounraja and Girirajan 2022). 

On one hand, the DM uses an adapted burden tests to detect DI or a common modifier variant for a 

monogenic disease. On the other hand, RareComb uses the Apriori algorithm (Agrawal et al. 1996) to 

enumerate simultaneous combinations of variants in cases and controls. Both methods involve 

prefiltering variants to limit the number of combinations to test, and keep only rare variants predicted 

as pathogenic. All of the other methods to detect DI can be classified as ML methods and are trained 
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on pathogenic pairs from DIDA or OLIDA and negative neutral pairs from the general population with 

different features. Among these methods, VarCoPP (Papadimitriou et al. 2019) and its successor 

VarCoPP2.0 (Versbraegen et al. 2023) which are run through the platform ORVAL (Renaux et al. 2019) 

take as input pairs of variants, whilst DiGePred (Mukherjee et al. 2021), DIEP (Yuan et al. 2022) and 

ARBOCK (Renaux et al. 2023) are applied on pairs of genes.  

As these ML methods were the most easily applicable, especially in the case of RDs, and had 

similar input and output types, we sought to compare them through a benchmark. We selected known 

pathogenic gene pairs from the OLIDA database that were not used to train the ML methods, and 

different scenarios of neutral gene pairs by using variants from the FREX database. ARBOCK and DIEP 

categorized more of the OLIDA pairs as digenic (more than 80%), but ARBOCK especially also classified 

around 30% of pairs observed in the general population as pathogenic. In contrary, DiGePred and 

VarCoPP2.0 classified slightly less OLIDA pairs as pathogenic (64% and 49%, respectively), whilst 

keeping the false positives number much lower (less than 1% and 3% respectively).  

Overall, we were able to show that network-based and statistical methods make strong 

assumptions on the interaction between the genes or the type of variants to detect DI. The statistical 

methods also expect cohort types of datasets as input to have sufficient statistical power. In contrast, 

ML methods presented key advantages as they could be applied at an individual scale to detect DI, 

which is relevant in the case of very heterogeneous RDs, although no method could exhaustively 

analyze all potential pairs of genes from an individual. Our benchmark of the ML methods to detect DI 

allowed us to emphasize the DiGePred method, which stood out as having by far the smaller number 

of false positives in any scenario, whilst keeping a substantial amount of true positive predictions. 

8.2 RESULTS 
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Abstract 

Digenic inheritance is characterized by the combined alteration of two different genes leading 

to a disease. It could explain the etiology of many currently undiagnosed rare diseases. With the advent 

of next-generation sequencing technologies, the identification of digenic inheritance patterns has 

become more easily feasible, yet still poses significant challenges without any gold standard method.  

Here, we present a comprehensive review of the existing methods developed to detect digenic 

inheritance in sequencing data. We systematically categorize methods by their type, and discuss their 

availability, output and scalability to inform potential users. Specifically, focusing on machine learning 

approaches to detect digenic inheritance, we propose a benchmark using different real-life scenarios 

involving known digenic and putative neutral pairs of genes. 

 We provide a classification of the methods to detect digenic inheritance in sequencing data in 

the following categories: network-based, statistical, and machine learning methods. The latter two 

types of methods appeared the most applicable to rare diseases. When assessing the performance of 

the machine learning methods, DiGePred stood out as the method with the highest predictive 

performance, followed by VarCoPP2.0.  

By synthesizing the state-of-the-art techniques and providing insights into their practical 

utility, this review and benchmark serve as a valuable resource for researchers and clinicians in 

selecting suitable methodologies for detecting digenic inheritance in a wide range of disorders using 

sequencing data. 

 

Keywords: digenism, machine learning, benchmark, rare diseases 
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Introduction 

A classical paradigm in the study of human diseases has been that rare diseases were caused 

by a single variant; either in the heterozygous or homozygous state, altering a single gene, also known 

as monogenic inheritance. The wide-spread use of high throughput-sequencing has allowed the 

diagnosis rate of rare diseases to reach 30 to 50% of cases, corresponding almost entirely to monogenic 

cases (Boycott et al. 2017, 2019). However, in the last 30 years, the monogenic inheritance hypothesis 

has been proven wrong by several cases of rare diseases following more complex genetic inheritance 

patterns (Lupski 2012). The simplest case of complex genetic inheritance is the digenic model, under 

which the presence of damaging variants in two different genes is necessary for the disease to develop 

(Schäffer 2013). Each variant taken separately is not sufficient for the disease manifestation. Epistasis 

refers to the interaction between genes or loci where the effect of one gene or allele modifies the 

phenotypic outcome of another gene or locus (Cordell 2002). Initially, the term “epistatis” was used to 

describe some forms of digenic inheritance although it came to include a broader range of locus-locus 

interactions in polygenic diseases, including those identified through genome-wide association studies. 

In this review, we will only look at the specific case of digenism and not epistasis in general. DI has to 

be distinguished from the monogenic inheritance with a modifier gene scenario, according to which a 

variant in one gene is sufficient to cause the disease and the severity is modulated by a variant in a 

second gene (Génin, Feingold and Clerget-Darpoux 2008; Rahit and Tarailo-Graovac 2020). 

The first description of digenic inheritance (DI) in the literature was for retinitis pigmentosa 

(Kajiwara, Berson and Dryja 1994). The first instance of DI described in the literature was for retinitis 

pigmentosa (Kajiwara, Berson and Dryja 1994) in 1994 and involved two photoreceptor-specific genes: 

ROM1 and peripherin/RDS. Data from three pedigrees and the known interaction between the proteins 

produced by the two genes in an intermolecular complex supported this conclusion.  
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There were not many other examples of DI described until 2001, when an afflux of reports on DI 

were published, notably in Barbet-Biedl (BBS) syndrome (Katsanis et al. 2001, 2002; Beales et al. 2003; 

Fauser, Munz and Besch 2003). Once again, the authors based their conclusion on pedigree data from 

eight families, and proposed that three variants in two known BBS genes (BBS2 and BBS6) could explain 

the phenotype in some of the families. Digenism thus has been involved in the etiology of several rare 

diseases (Cerrone et al. 2019; Kim et al. 2019; Jiang et al. 2020; Teles e Silva et al. 2022), and has been 

proposed as an hypothesis to some of the currently unsolved rare disease cases (Rahit and Tarailo-

Graovac 2020). Recently, DIDA (Gazzo et al. 2016) (DIgenic diseases DAtabase) and its successor OLIDA 

(Nachtegael et al. 2022) (OLIgenic diseases Database), for oligogenic models involving more than two 

genes, were created as comprehensive curated resources dedicated to cataloging and documenting 

digenic and oligogenic diseases reported in the scientific literature. These databases play a crucial role 

in cataloging and organizing relevant information, thereby facilitating further investigation into the 

molecular mechanisms of digenic and oligogenic diseases. A common feature of the great majority of 

reports on DI to this day is the reliance on familial data from multiple pedigrees and also the detection 

DI involving at least one gene already known as implicated in the disease.  

Despite great advances in next-generation sequencing (NGS) technologies as well as the 

availability of databases like DIDA and OLIDA, the detection of DI remains a challenging issue. 

Traditional  approaches for rare disease variant discovery like variant filtering and classification 

through ACMG guidelines (Richards et al. 2015) are not suited for digenic pairs discovery as they were 

developed for highly-penetrant monogenic disorders. The relatively small number of digenic or 

oligogenic pairs described in the literature to this day can be owned partly to the limited disease 

population sizes, genetic heterogeneity, low frequency at which any particular pair of alleles is present 

in the population, and incomplete clinical descriptions. Moreover, assessing the interaction, which is 

the extent and manner in which two causes of a disease modify the strength of one another, between 

variants within different genes requires sophisticated bioinformatic and functional validation methods 

(Kousi and Katsanis 2015).   
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These variants may act through diverse molecular mechanisms, including protein-protein 

interactions, shared signaling pathways, or complementary functional roles within cellular processes. 

This challenge of detecting DI has been tackled by several computational approaches over the years 

(Boudellioua et al. 2018; Papadimitriou et al. 2019; Renaux et al. 2019, 2023; Kerner et al. 2020; 

Mukherjee et al. 2021; Yuan et al. 2022; Versbraegen et al. 2023; Gravel et al. 2024) with various and 

sometimes analogous strategies. 

Here, we present a comprehensive review of the modalities, strengths and limitations of 

computational methods published to date to detect DI in NGS data. We separated the methods in 

three categories depending on the way they infer DI: network-based, statistical and machine learning 

(ML) methods. We also performed a benchmark of the methods falling into the machine-learning 

category which have become the most prominent in recent years (Okazaki and Ott 2022). These 

methods have never all been compared to each other. We devised an evaluation protocol to test the 

sensibility and specificity of each method, as well as their ability to distinguish between a digenic and 

a monogenic model. Our evaluation protocol leverages known digenic pairs from OLIDA, neutral 

variants from the French general population FrEnch EXome (FREX) project and pathogenic variants 

from the ClinVar (Landrum et al. 2018) database. The results from this review and benchmark will help 

users to make informed decisions about their choice of methods to detect DI. Appreciating the 

limitations of current methods to detect DI is a crucial step towards uncovering the molecular 

mechanisms behind digenic inheritance. A growing understanding of DI will likely provide researchers 

with new insights into the genetic basis of human rare diseases. 

 

 

  



 

 
 

147 8.2 Results 

Currently available computational methods to detect digenic 

inheritance in sequencing data 

This review is focused on computational methods applicable to sequencing data that do not need 

large pedigrees to make inferences on DI. We categorized existing methods to detect DI in three 

categories, depending on the way they assess DI: network-based, statistical and ML methods (Table 

8.1). The only network-based method is OligoPVP. It assesses digenism depending on the connection 

between genes in a network. Statistical methods leverage different statistical modelling to find a 

burden of rare variants or enrichment in pairs of genes, with or without comparison to control data. 

ML methods learn features from known digenic pairs described in the literature (catalogued in DIDA 

or OLIDA) and observed pairs from the general population to predict if a new pair or variant or genes 

is likely to be pathogenic. The reliability of theses known digenic pairs used to train the methods will 

be discussed below. The ML method ARBOCK differs slightly from the other ML methods as it uses a 

decision set model to predict potential pathogenic gene interactions based on a heterogeneous 

knowledge graph. 

Table 8.1. Main characteristics of the computational methods developed to detect DI 

Category Name Availability Output type Scalable Reference 

Network‐
based method 

OligoPVP 
Command 
line tool 

score {0‐2} √ 
Boudellioua 
et al. (2018) 

Statistical 
method 

Digenic 
Method 

R scripts 
p‐values for each 
variant‐gene or 
gene‐gene pair 

√ 
Kerner et al. 

(2020) 

RareComb R package 

list of statistically 
significant 

combinations that 
meet the user‐
specified input 

criteria 

√ 
Pounraja et al. 

(2022) 
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Machine 
Learning 

VarCoPP 
 

Online 
platform 
(ORVAL) 

final class: 
“neutral” or 

“disease‐causing” 
 

SS: percentage of 
the classifiers 

agreeing about the 
pathogenic class, 

score {0‐100} 
 

CS: median 
probability among 

individual 
predictors that pair 
is pathogenic, score 

{0‐1} 

× 

Gazzo et al. 
(2017) 

Renaux et al. 
(2019) 

DiGePred 
Precomputed 

list 
score {0‐1} √ 

Mukherjee et 
al. (2021) 

DIEP 
Precomputed 

list 
score {0‐1} √ 

Yuan et al. 
(2022) 

VarCoPP2.0 
Online 

platform 
(ORVAL) 

score {0‐1} × 
Versbraegen 
et al. (2023) 

ARBOCK 
Command 
line tool 

score {0‐1} √ 
Renaux et al. 

(2023) 

 

Network-based method to detect digenic inheritance 

One of the very first computational method aimed at detecting DI in sequencing data is OligoPVP 

(Boudellioua et al. 2018), which we categorized as a network-based method. This method combines a 

monogenic predictor of pathogenicity, the PhenomeNET Variant Predictor (PVP) version 2.0 

(“DeepPVP”) (An et al. 2022) with the information from a gene network database, STRING (Szklarczyk 

et al. 2017). Briefly, if the genes are connected in the STRING network, the PVP scores of their variants 

will be added to make a score by pair of genes. It is also possible to explore triplets of variants. The 

input file is a VCF file, along with an OMIM (Amberger et al. 2015) ID of the disease or a list of 

phenotypes (HPO (Robinson et al. 2008) or MPO (Smith, Goldsmith and Eppig 2005) terms).   
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The method was tested on a set of 189 synthetic whole genome sequences created by inserting 

known digenic pairs from DIDA v1 (Gazzo et al. 2016) in the background of genomes from the 1000 

Genomes Project (Auton et al. 2015) and compared to monogenic predictors of variant pathogenicity, 

including PVP alone, CADD v1.3 (Kircher et al. 2014), DANN v1.0 (Quang, Chen and Xie 2015), GWAVA 

v1.0 (Ritchie et al. 2014) and Genomiser v7.7.2.1 (Smedley et al. 2016). In the article describing the 

method, OligoPVP performs less well than PVP to rank all biallelic pairs in the top 1, and less well or 

equally to PVP, CADD and DANN to rank them in the top 10. OligoPVP only outperforms all other 

methods when considering the 71 pairs for which there is a known biological interaction between 

genes. Biological interaction can be defined in this case as a situation in which the qualitative nature 

of the mechanism of action of a factor is affected by the presence or absence of the other. The 

performance of OligoPVP also drops when predicting 45 new DIDA pairs with their HPO terms that 

were added after OligoPVP was trained. The strength of this method is its applicability to all variants 

from a patient’s exome, through a user-friendly command line tool. A main limit is its reliance on HPO 

terms and background interaction knowledge. Indeed, if the pair of genes is not connected through 

the 989,998 interactions present in the network, it will not be prioritized. In addition, the method relies 

on the phenotypic characterization of the patient and not only the genetic data, and thus is biased 

towards known phenotype-gene or phenotype-disease associations.  

Statistical methods to detect digenic inheritance 

Two methods can be classified as statistical methods developed to detect DI. The first one is the 

Digenic Method (Kerner et al. 2020) (DM), which adapts the idea of a burden test to the case of 

detecting true digenism or finding a modifier variant for known monogenic conditions. Rare candidate 

variants selected based on different parameters like their predicted impact or Minor Allele Frequency 

(MAF) are collapsed within the unit of a gene. Individuals are “carriers” for a specific gene if they carry 

at least one candidate variant in the gene under the studied mode of inheritance.  
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Then, a case-only logistic regression model is applied to test for interaction between the two genes 

carrying rare variants, or a gene carrying rare variants and a common variant. The method was 

evaluated through simulations using the 1000 Genomes Project and Human Genetics of Infectious 

Diseases (HGID) databases and on real data from a craniosynostosis WES dataset, in which the only 

significant result of the DM was the known digenic pair between gene SMAD6 harboring rare variants 

and common variant rs1884302. R and bash scripts are available to run the method, but not in the 

form of a R package. Input files include two VCF files with the two sets of variants, e.g. one set of rare 

and one set of common variants, which makes it a flexible and scalable method. 

The second statistical method is called RareComb (Pittman et al. 2022). It combines the Apriori 

algorithm (Agrawal et al. 1996) and statistical modelling to detect combinations of genes associated 

with a phenotype. The Apriori algorithm enumerates, in cases and controls independently, 

combinations of variants that meet a frequency threshold and that are seen simultaneously in one 

individual. Then, a binomial test is used to compare the observed frequency of each combination 

against the frequency expected under the hypothesis of independence, in cases and controls 

independently. Finally, RareComb identifies combinations that are enriched in cases and not in 

controls. The method was tested on patients and controls from the Simons Foundation Powering 

Autism Research (SPARK) cohort. RareComb identifies 148 pairs of genes with a significant enrichment 

in cases and not in controls, with adequate statistical power and moderate to high effect sizes. Unlike 

the two previous methods, RareComb is available as a R package and takes as input a sparse Boolean 

matrix with rare variant information for all individuals. 

Overall, these network-based and statistical methods can be applied in very specific scenarios to 

detect digenism and make a number of assumptions on the type of variants kept for the analysis 

(prefiltering steps in the DM and RareComb) or the link between the two impacted genes (direct 

connection in STRING for OligoPVP).  
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Machine Learning methods to detect digenic inheritance 

To approach the challenge of detecting DI in sequencing data from another angle, a number 

of ML algorithms have been developed. The characteristics of these ML methods are summarized in 

Table 8.2. Most of them use a Random Forest (RF) algorithm, with slight differences in the exact model 

used. VarCoPP and DIEP are both RF ensemble predictors, the first comprising of 500 RF classifiers of 

100 trees each and the second of 26 top RF classifiers with the highest 10-fold cross-validation scores. 

DiGePred consists of a unique RF classifier of 500 trees. One of the latest ML method VarCoPP2.0 

involves a Balanced RF comprising of 400 trees. The ML method ARBOCK differs from the other 

methods by the model used to predict digenic pairs and will be discussed separately at the end of this 

section, as it is less comparable to the other ML methods. 

Table 8.2. Parameters of the ML methods to detect DI 

Method Model Positive training set Negative training set Features 

VarCoPP 
RF ensemble 

predictor 
DIDAv1 

1000 Genomes 
Project 

11 features 

DiGePred RF classifier DIDAv1 
Unaffected relatives 

Undiagnosed 
Diseases Network 

12 features 

DIEP 
RF ensemble 

predictor 
DIDAv1 

Random pairs 
filtered using 1000 
Genomes Project 

17 features 

VarCoPP2.0 Balanced RF OLIDA 
1000 Genomes 

Project 
20 features 

ARBOCK Decision set OLIDA 
1000 Genomes 

Project 

BOCK 
knowledge 

graph 
 

A main characteristic of ML methods is their positive and negative training sets. VarCoPP, DiGePred 

and DIEP were all trained on the pairs from DIDAv1. DIDAv1 contains 200 digenic variant pairs, which 

in turns fall into 140 unique gene pairs, Because VarCoPP considers pairs of variants, it used the 200 

DIDAv1 digenic variant pairs as a positive training set, while DiGePred and DIEP consider pairs of genes 

and thus used the 140 DIDAv1 digenic gene pairs as a positive training set. VarCoPP2.0 was the only 

RF method trained on OLIDA.   
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In OLIDA, each variant pair is given a score to indicate the strength of evidence of oligogenicity, 

which summarizes the genetic and functional evidence found in the literature to support the disease-

causing character of the combination (FINALmeta score). VarCoPP2.0 was trained only on the 301 

digenic pairs from OLIDA with significant enough evidence of oligogenicity (FINALmeta score ≥ 1) 

(Papadimitriou et al. 2023). Regarding the negative training set, VarCoPP and VarCoPP2.0 selected 

respectively 100,000 and 150,500 random variant pairs from the 1000 genomes project (Auton et al. 

2015). DIEP also used the 1000 Genomes Project data for negative gene pairs. First, DIEP’s developers 

selected 50,000 randomly constructed gene pairs from all possible genes (Random set) as well as 

13,390 gene pairs obtained by randomly combining DIDA unique genes, excluding true DIDA pairs 

(DIDA_NI set). Then, these two negative gene sets were filtered by only keeping gene pairs which 

involved pairs of variants with the following criteria: rare (frequency ≤ 1%) and non-synonymous 

variant observed in 2 or more individuals of the 1000 Genomes Project. In total, DIEP had 8,400 pairs 

of genes in its negative training set, including 7,000 pairs from the Random set and 1,400 pairs from 

the DIDA_NI set. Following a different approach, DiGePred used as its final negative training set around 

8,400 pairs from genes with variants in sequencing data from unaffected relatives of the Undiagnosed 

Diseases Network (UDN) individuals (Ramoni et al. 2017).  

Finally, regarding the features used to train the ML algorithms, VarCoPP was trained on 11 features 

and VarcoPP 2.0 on 15 features at the variant, gene and gene-pair level. DIEP and DiGePred were both 

trained only on gene and gene-pair level features, with 12 and 17 total features respectively. A 

summary of all the features shared and specific to each method can be found in Supplementary Table 

S1. Interestingly, two features were included in all of the methods: the haploinsufficiency of each gene 

and the distance between the two genes in a protein-protein interaction (PPI) network. Another 

feature was present in all methods except VarCoPP: the coexpression of genes. VarCoPP and 

VarCoPP2.0 also shared a variant level features: the CADD scores of the 4 alleles of the pair. At the 

variant level, VarCoPP included in addition to CADD the flexibility and hydrophobicity of each variant.  
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The last feature included in VarCoPP was the recessiveness of each gene, which was also taken 

into account by DIEP. DIEP and DiGePred shared some features: the intolerance to loss-of-function 

variants of each gene, and the phenotype similarity between the genes. DiGePred shared one more 

feature with VarCoPP2.0: the selection pressure of each gene. The rest of all the other ML methods 

training features were method-specific.  

In the description of each ML method, the Gini importance of each feature, which represents its 

contribution to the prediction (positive or negative) was computed. For VarCoPP, the feature 

importance was by far the greatest for the CADD score of the first variant allele of each gene, followed 

by the recessiveness of each of the genes. A similar pattern was observed in VarCoPP2.0 for CADD, but 

the second most important feature group was gene pair features (PPI distance, coexpression and 

knowledge graph distance). Gene pair level features also played an important role in prediction for 

DiGePred and DIEP. In DiGePred, the phenotype similarity had by far highest importance, followed by 

pathway similarity, number of phenotypes and PPI distance. For DIEP, the feature with the most 

importance was by far the PPI distance, followed by protein functional interaction effects, biological 

distance, semantic similarity of disease ontology (phenotype similarity) and gene GO annotations.  

The last method to detect DI that falls into the machine learning category takes a different 

approach from the RF-based methods. The method uses an association rule based on a knowledge 

graph, which makes inferences by leveraging the structured information stored within a knowledge 

graph. This method is called ARBOCK for Association Rule learning Based on Overlapping Connections 

in Knowledge graphs. ARBOCK is based on the BOCK heterogeneous knowledge graph, which 

comprises 158,964 nodes of 10 different types and 2,659,064 edges of 17 different types. ARBOCK uses 

a two-step approach to predict pathogenic gene interactions. First, it generates a rule set from local 

patterns of the known pathogenic gene pairs in the knowledge graph. Then, these rules are combined 

into a decision set classifier to allow the detection of new pathogenic gene pairs. For training, ARBOCK 

used 441 gene pairs from the latest version of OLIDA with sufficient evidence of pathogenicity, and 

44,100 putatively neutral gene pairs from the 1000 Genomes cohort.   
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ARBOCK cannot be compared as directly to the other ML methods based on RF algorithms but it 

can still be noted that in ARBOCK, high-confidence rules are characterized by metapaths (sequence of 

node and edge types) related to similar phenotypes (50%), biological processes (31.2%), and molecular 

functions (12.5%) which indicates key information taken into account by the classifier. 

Overall, the machine learning methods to detect DI have a minority of strictly common features, 

although some of them are shared by many of the methods. They all take into account information at 

the gene and gene pair level. The gene pair level features seem to matter greatly in most methods for 

the prediction, in addition to variant level features when they are present.  

 

Benchmark of existing machine learning algorithms to detect digenic 

inheritance 

Overview of the benchmark 

ML methods do not need as input a cohort of patients or pedigrees to make predictions, and are 

thus suited for the detection of DI in the context of very rare and heterogeneous diseases. All of these 

methods output a score between 0 and 1, and provide a threshold above which the pair is classified as 

pathogenic. The recommended score threshold for each method was used to categorize pairs as 

digenic: ≥0.496 for DiGePred, ≥0.5 for DIEP, ≥0.891 for VarCoPP2.0’s 99.9%-confidence zone, ≥0.788 

for ARBOCK.excl.pheno and ≥0.929 for ARBOCK.incl.pheno. 

For a comprehensive benchmark of existing methods to find DI in sequencing data, we focused on 

the ML methods currently published and for which a program or implementation is available. The initial 

VarCoPP method was not included in this benchmark as it is no longer available on the ORVAL platform 

and was replaced by VarCoPP2.0. The specific threshold and software parameters used for each 

method can be found in the following sections.   
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Specifically for ARBOCK, we make a distinction between two possible predictive models: a model 

excluding phenotypic information (ARBOCK.excl.pheno strategy) and a model including phenotypic 

information (ARBOCK.incl.pheno strategy). All of the methods except VarCoPP2.0 take as input pairs 

of genes. VarCoPP2.0 is run through the web platform ORVAL and takes as input a list of variants, 

creating all possible pairs from the provided list.  

The aim of this benchmark is to test the classifying performance of the aforementioned methods 

under different scenarios, leveraging pairs for which the classification as pathogenic or neutral is 

known or very likely. We were not able to screen a full individual exome in order to test all possible 

gene pairs which would be the most agnostic approach, considering the ORVAL platform especially 

limits the number of input variants. We thus devised three scenarios that address a range of potential 

combination occurrences from true datasets. The full breakdown of all scenarios and the pairs for 

evaluation can be found in Supplementary Table S2. 

Collection of digenic gene pairs for benchmarking 

The gene pairs used in the benchmark as known digenic pairs were taken from the OLIDA 

database V3, which contains data published up to February 2023. We retrieved a total of 1,610 

oligogenic variant combinations in 1,075 unique genes from the OLIDA website 

(https://olida.ibsquare.be/). Among these oligogenic variant combinations, 1,076 were digenic pairs 

and kept for benchmarking. VarCoPP2.0 was the only ML method trained with OLIDA. We thus 

excluded from the set of digenic pairs the 301 pairs of genes used to train VarCoPP2.0, which were 

downloaded from their GitHub page (https://github.com/oligogenic/VarCoPP2.0). Among the digenic 

pairs not used to train VarCoPP2.0, 652 had a FINALmeta confidence score of 0 and were discarded. 

This left 157 digenic pairs after quality filtering. Finally, we also removed the digenic pairs involving 

CNVs as they could not be analyzed by the ORVAL platform. This left a total of 106 digenic pairs that 

were included in the benchmark (OLIDA_total pairs), among which 69 could be scored by all ML 

methods.  

https://olida.ibsquare.be/
https://github.com/oligogenic/VarCoPP2.0
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Another set of gene pairs was used specifically to evaluate the performance of the ARBOCK 

method. Indeed, in the article describing the ARBOCK method (Renaux et al. 2023), a set of 15 

pathogenic gene pairs that were held-out as independent test set was provided (ARBOCK_held_out 

pairs), among which 14 would be scored by all ML methods. Whereas some of the 106 previously 

described digenic pairs could have been selected in the method, this set was explicitly not used to train 

ARBOCK and could thus be used as a test set for the method.  

Collection of non-digenic gene pairs for benchmarking 

To collect plausible non-digenic gene pairs for benchmarking, we selected ten random 

individuals from the French general population among the 574 exomes of the FREX (Génin et al. 2017) 

project. An individual-focused QC was applied on the exome data using the RAVAQ R package 

(Marenne et al. 2022) : we performed a genotype and variant QC with default parameters 

corresponding to standard GATK (McKenna et al. 2010) hard filtering criteria: genotypes with a depth 

< 10 or a genotype quality < 20 were set to missing, as well as the heterozygous genotypes with an 

allele balance outside [0.25-0.75]. No QC on variant call rates was applied. This corresponds to the 

default RAVAQ parameters for genotype and variant QC except that: MAX_AB_GENO_DEV = 0.25, 

MAX_ABHET_DEV, MIN_CALLRATE and MIN_FISHER_CALLRATE "disabled". 

The ORVAL platform specifies that a full exome cannot be analyzed with the VarCoPP2.0 

method. In order to reduce the number of variants and thus gene pairs to be analyzed, we first kept 

the heterozygote and/or homozygote variant (SNVs or Indels) with the maximal CADD v1.6 (Rentzsch 

et al. 2021) score for each gene, which left around 11,000 variants for each FREX individual. Then we 

applied our in-house variant prioritization method Easy-PSAP 

(https://github.com/msogloblinsky/Easy-PSAP) to score variants with their PSAP p-values (null 

distribution “latest_gnomadgen_string_ensembl_cadd1.6_af_nosing_lookup_*” in hg19 on genes).  

  

https://github.com/msogloblinsky/Easy-PSAP
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We applied two strategies to select the neutral variants: for each individual, either selecting 

100 random variants from the 11,029 variants (random100_FREX pairs) or selecting the top 100 

variants with the lowest PSAP p-value, corresponding to the variants with the highest predicted 

pathogenicity (top100PSAP_FREX pairs). For each of the ten individuals, all possible unique gene pairs 

involving two different genes associated with these variants were then used for benchmarking. We 

also shuffled the genes implicated in the 14 gene pairs held out from ARBOCK to test as negative 

control all possible pairs of these genes except the initial true digenic pairs (ARBOCK_shuffled pairs). 

Finally, we retrieved a curated list of well-reviewed pathogenic variants (Ogloblinsky et al. 

2024) from the ClinVar (Landrum et al. 2018) database with an associated autosomal dominant (AD) 

or recessive (AR) mode of inheritance. We randomly selected 100 variants in distinct genes for each 

mode of inheritance and paired them with a variant either from the random100_FREX or the 

top100PSAP_FREX variant lists. This allowed us to evaluate the performance of methods aimed at 

detecting DI on pairs involving a known monogenic variant and a neutral variant with four different 

scenarios to construct the pairs (random100_FREX_clinvar100_AD, top100PSAP_FREX_clinvar100_AD, 

random100_FREX_clinvar100_AR, top100PSAP_FREX_clinvar100_AR). 

 

Software parameters and evaluation 

DiGePred (Mukherjee et al. 2021) and DIEP (Yuan et al. 2022) scores were downloaded for all 

possible pairs of human genes. DiGePred scores were split in four files for which the download links 

were provided on their GitHub (https://github.com/CapraLab/DiGePred). We concatenated the four 

files in one file, and used the score “unaffected_no_gene_overlap_score” as advised in the DiGePred 

article. For DIEP scores, the full table for all gene pairs was downloaded from 

https://github.com/pmglab/DIEP.  

  

https://github.com/CapraLab/DiGePred
https://github.com/pmglab/DIEP
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The ORVAL (Renaux et al. 2019) platform was used to run VarCoPP2.0 (Versbraegen et al. 

2023). All filtering options were removed: no minimum threshold on the MAF was applied, and no 

intergenic, intronic and synonymous variants were removed. No gene filtering was applied. The 

VarCoPP2.0 model in hg19 was used to match the build of the variants’ coordinates. If multiple 

heterozygote variants were present in the same gene for different variant pairs, they were split in 

different ORVAL submissions as they would be considered compound heterozygote variants by ORVAL 

otherwise. ORVAL constructs all possible gene pairs and outputs their VarCoPP2.0 score, which we 

filtered to keep only the pairs were truly featured in our digenic and non-digenic gene pair set.  

To run the ARBOCK method (Renaux et al. 2023), the BOCK knowledge graph was first 

downloaded from https://doi.org/10.5281/zenodo.7185679. Then, ARBOCK was installed following 

the specifications on the GitHub of the method (https://github.com/oligogenic/ARBOCK). The 

parameters by default were used and two “predict” models were tested: “ds_model_with_pheno” 

(ARBOCK.excl.pheno strategy) and “ds_model_no_pheno” (ARBOCK.incl.pheno strategy). 

Despite the previously cited methods described as being able to analyze any gene pair, it was 

not actually the case in practice. Thus, the methods were compared only on pairs which could be 

scored by all methods, as for instance the pre-computed files with DiGePred or DIEP scores did not 

feature all possible gene pairs The performances of the methods were evaluated through different 

scenarios using different gene pair sets that are detailed in Supplementary Table S2. 

Classification of digenic gene pairs held-out from ARBOCK method 

The latest published method to detect DI being ARBOCK, we first tested the 14 

ARBOCK_held_out pairs as well as the 364 ARBOCK_shuffled pairs. In the article describing ARBOCK, 

the performance of DiGePred had also been tested on these ARBOCK_held_out pairs. Overall, 

DiGePred and VarCoPP2.0 had the worst performance in terms of classifying the ARBOCK_held_out 

pairs as pathogenic (4 for DiGePred and 2 for VarCoPP2.0, Figure 8.1, Supplementary Table S3). DIEP 

accurately classifies more than half of the true digenic pairs.   

https://doi.org/10.5281/zenodo.7185679
https://github.com/oligogenic/ARBOCK
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The best results on ARBOCK_held_out pairs were achieved by ARBOCK: ARBOCK.excl.pheno 

and ARBOCK.incl.pheno classify 11 and 9 pairs as pathogenic, respectively. However, when looking at 

the negative testing set comprising of 364 ARBOCK_shuffled pairs, ARBOCK exhibits an extremely 

strong misclassification rate. ARBOCK.excl.pheno and ARBOCK.incl.pheno classify 236 (65%) and 206 

(57%) of the ARBOCK_shuffled pairs as pathogenic, respectively. In contrast, DiGePred has the lowest 

rate of misclassification of the negative pairs (2%), followed by DIEP (12%) and VarCoPP2.0 (16%). 

 

Figure 8.1. Distribution of ML methods scores for the pathogenic and shuffled pairs held out from ARBOCK training 

Classification of digenic gene pairs from OLIDA compared to neutral pairs from 

FREX 

We then extended our benchmark to a larger number of pairs and calculated evaluation 

metrics for the classification performance of each method. For the positive pair test set, we focused 

on the 69 digenic pairs from OLIDA that were not used to train VarCoPP2.0 with a confidence score 

above 0 and not involving CNVs that cannot be scored with VarCoPP2.0. For our neutral pairs test sets, 

we had 32,953 pairs in the random100_FREX and 18,348 pair in the top100PSAP_FREX set (see 
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Supplementary Table S2). The latter scenario corresponds to a possible clinical practice workflow that 

would involve shortlisting the variants with the highest predicted pathogenicity in an individual and 

searching for DI within that shortlist, which can challenge methods like VarCoPP2.0 that use variant 

level data. All possible unique combinations from these variants or their associated genes were tested 

for DI classification.  

All methods classified around half or more of the OLIDA_total pairs as pathogenic (Figure 8.2, 

Supplementary Table S4), the best performance being achieved by ARBOCK.incl.pheno and then 

ARBOCK.excl.pheno with 64 and 60 well-classified pairs, respectively. The results were more 

contrasted between methods for the FREX neutral pairs, as observed for the ARBOCK_shuffled pairs. 

For the random100_FREX pairs, DiGePred and VarCoPP2.0 badly classified as pathogenic only 16 and 

10 pairs, respectively. The number of random100_FREX pairs classified as pathogenic was higher for 

DIEP (828 out of 32,953 pairs) and ARBOCK.incl.pheno (2,525 out of 32,953 pairs) but still represented 

a fairly low percentage (2.5% and 7.6%, respectively). In contrast, ARBOCK.excl.pheno classified 10,056 

random100_FREX pairs (30%) as pathogenic. This trend of classification is found again for the 

top100PSAP_FREX pairs, with DiGePred keeping the lowest number of badly classified pair. The only 

main difference was found for VarCoPP2.0 percentage of badly classified top100PSAP_FREX pairs 

which increased from 0.03% to 2.4%. 
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Figure 8.2. Distribution of ML methods scores for the OLIDA pairs and the two scenarios with FREX variant pairs 

We calculated evaluation metrics for each ML method (Table 8.3), by using OLIDA_total pairs 

as true positives and either all of FREX pairs (all), only random100_FREX pairs (random) or only 

top100PSAP_FREX pairs (topPSAP) as true negatives. There was not a lot of differences in the 

evaluation metrics between the “all”, “random” and “topPSAP” metrics so we focused on the “all” 

metrics for evaluation. All methods have a high predictive negative value but only DiGePred has a high 

predictive positive value (0.657). When also looked at the F1 score that measures the predictive 

performance of a classifier. The F1 score is the harmonic mean of precision, the ratio of true positive 

predictions to the total number of positive predictions made by the model, and recall, the ratio of true 

positive predictions to the total number of actual positive instances. The highest F1 score was achieved 

by far for DiGePred (0.647). All methods achieved a high specificity, except ARBOCK.excl.pheno which 

had a lower specificity of 0.695. Finally, sensibility of ARBOCK.excl.pheno, ARBOCK.incl.pheno and DIEP 

was high as well, and lower for DiGePred and VarCoPP2.0.  
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Table 8.3. Evaluation metrics for all benchmarked methods to detect DI…………….….…………….…..162 

Method Sensibility Specificity 
Positive 

predictive 
value 

Negative 
predictive 

value 

F1 

ARBOCK.excl.pheno 0.87 0.695 0.004 1 0.008 

ARBOCK.incl.pheno 0.928 0.929 0.017 1 0.034 

DIEP 0.855 0.978 0.049 1 0.092 

DiGePred 0.638 1 0.657 1 0.647 

VarCoPP2.0 0.493 0.991 0.07 0.999 0.123 

 

Classification of pathogenic ClinVar variant and neutral FREX variant pairs 

A final aspect that we included in this benchmark is the ability of these methods to distinguish 

between DI and monogenic inheritance. To construct a test set for this scenario, we combined a 

curated list of well-review pathogenic ClinVar variants with a known autosomal dominant (AD) or 

autosomal recessive (AR) mode of inheritance (100 variants from different genes for the AD and AR 

models, respectively) with the previously described two sets of variants from FREX. This led to four 

scenarios involving a monogenic variant and neutral variant in pairs:  

- random100_FREX_clinvar100_AD 

- random100_FREX_clinvar100_AR 

- top100PSAP_FREX_clinvar100_AD 

- top100PSAP_FREX_clinvar100_AR. 
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In every scenario, DiGePred did not classify any of the pairs as pathogenic (Figure 8.3, 

Supplementary Tables S5 and S6). DIEP and VarCoPP2.0 gave almost similar results, with less than 10 

pairs wrongly classified for any scenario. 

VarCoPP2.0 performed slightly worse for the two sets using top100PSAP_FREX compared to 

random100_FREX, going from 2 to 6 and from 1 to 7 wrongly classified pairs for the AD and AR models, 

respectively. The worst classification performances were observed for ARBOCK.excl.pheno for the 

scenarios involving ClinVar AD variants, with 32 pairs (random100_FREX_clinvar100_AD) or 36 pairs 

(top100PSAP_FREX_clinvar100_AD) classified as pathogenic. ARBOCK.incl.pheno performed slightly 

better than ARBOCK.exl.pheno but worse than all of the other methods. The results of the two ARBOCK 

methods were better for the scenarios involving ClinVar AR variants, but underperformed compared 

to the other aforementioned methods.  

 

Figure 8.3 : Distribution of ML methods scores for the four scenarios involving ClinVar and FREX variant pairs 
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Discussion 

Overall, several methods have been developed recently to tackle the complex issue of detecting 

DI in sequencing data, with different strategies. Our review highlights that network-based and 

statistical methods to detect DI are largely applicable to sequencing data but have several limitations. 

Regarding network-based methods, OligoPVP relies heavily on known biological interactions and 

phenotypic data and fails to predict most digenic pairs at high ranks as described in the article 

describing the method. Statistical methods need a substantial number of individuals and are not suited 

for individual-based analysis like in the case of many rare diseases. They also require a strong 

prefiltering step of variants to ensure adequate power. In contrary, ML methods can be applied at the 

individual scale. Although exhaustively evaluating all of the possible variant or gene pairs is still not 

feasible with that type of methods, they can in theory be applied to any pair or genes or variants. 

Although it is difficult to pinpoint which level of information contributes the most to accurate 

predictions of digenism, the performance of the benchmark ML and knowledge-graph based methods 

seems to indicate that gene-level and gene-pair level features play a key role in predicting DI.  

A significant issue in the application of the ML methods to detect DI is their false positive rate. The 

method the most appropriate in that regard is DiGePred, which manages to control the number of 

false positives. A downside of DiGePred is that phenotype-related features play the most important 

role in DiGePred predictions (44% of feature importance), which can hinder the generalization of the 

model when these features are missing or incomplete for a gene. That is evident from the ARBOCK 

article and confirmed by our benchmark: DiGePred was only able to predict correctly 4 out of 14 

ARBOCK_held_out pairs, against 11 pairs for ARBOCK.excl.pheno which was not trained using 

phenotype-based features. Therefore, DiGePred is a more conservative method that tend to fail to 

predict gene pairs as pathogenic if they lack complete phenotype annotation or have limited common 

phenotype terms. DIEP was described as a better predictor of DI than DiGePred, as it included a larger 

and more finely filtered negative training set and broader range of features.   
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Indeed, DIEP predicts more of the OLIDA_total (59 for DIEP against 44 for DiGePred) and 

ARBOCK_held_out pairs (8 for DIEP against 4 for DiGePred) as digenic. However, DIEP also produces a 

lot more false positive predictions across all the negative testing sets. In contrast to DiGePred, the 

most important features in DIEP are protein–protein association, functional interaction, and semantic 

similarity of gene DO and GO annotations. The two ARBOCK predictive models have both the highest 

sensitivity and lowest specificity. This behavior of the method had already been described in the article 

by [Renaux et al., 2023], which states that the ARBOCK pathogenicity predictor excluding phenotypic 

information, exhibits a relatively high false positive rate. In our benchmark, even when ARBOCK 

included phenotypic information, the number of false positives was still very high compared to the 

other methods, which can partly be explained by the uncertainty surrounding the selection of neutral 

gene pairs to train the method. It can also be noted than only DiGePred did not misclassify any of the 

pathogenic ClinVar variant and neutral FREX variant pairs 

One observation already highlighted in the DiGePred article when comparing DiGePred to the 

initial VarCoPP model is that VarCoPP’s prediction were strongly-affected by variant-level features, 

especially if one of the gene carries a variant predicted as highly pathogenic, which may hide or 

confound purely digenic effects. This behavior could also be seen in our benchmark, as VarCoPP2.0 

wrongly classified as pathogenic only 10 pairs of the randomly selected neutral random100_FREX pairs 

and 440 pairs of the neutral top100PSAP_FREX pairs that include for each individual the variants 

predicted as the most pathogenic. The most important feature of VarCoPP2.0 being the CADD scores 

of the variants, this observation was expected. Still, the VarCoPP2.0 model was enriched in gene-pair 

level features compared to VarCoPP, which improved the capture of the gene-gene synergistic 

relationship inside a variant pair that is crucial for DI prediction. In the article describing VarCoPP2.0, 

the authors highlight that the method has a high sensitivity, which is important in a clinical setting, as 

well as a 5% false positive rate, and should be used in conjunction with variant filtering and/or 

restriction to a panel of genes. The currently advised variant filtering for VarCoPP2.0 in ORVAL is to 

remove variants with a MAF ≥ 0.035, intergenic, intron and synonymous variants.   
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We did not select variants according to these criteria as it would have drastically reduced our 

negative and positive testing sets (160 pairs in the random100_FREX set and 2,012 pairs in the 

top100PSAP_FREX set), but following this approach could have improved VarCoPP predictions.   

A main limitation of our benchmark, and of all of the aforementioned benchmarked methods, is 

the small number of known digenic pairs both used as positive training and testing sets. The OLIDA 

database is updated regularly, and the performance of the methods to detect DI will have to be tested 

on the new pairs that are described in the literature. Our positive testing set can also be biased against 

specific disease and genes that are overly represented in OLIDA due to their known digenic or 

oligogenic nature. Regarding the applicability of the benchmarked methods, both DiGePred and DIEP 

provide pre-calculated tables of prediction for all human gene pairs. DIEP even presents the advantage 

of providing a high-efficiency java package to search for specific digenic pairs or genes. These two 

methods, as well as ARBOCK, present the advantage of separating the selection and effect of variants 

from the identification of potentially digenic gene pairs. Indeed, the question of variant impact has 

been extensively explored by different methods, whereas reflecting the potential impact of a 

simultaneous alteration of two genes is very specific to digenism. VarCoPP2.0 is not suitable for whole 

exome analysis, especially due to the challenge of running the web server on a large scale. 

Methods continue to be published on the subject of DI detection regularly, and leverage either 

machine-learning (Paoli et al. 2023) or statistical approaches (Pittman et al. 2022; Zhang et al. 2023). 

The most recent method to detect DI that was published during the curation of this review is called 

the High-throughput oligogenic prioritizer (Hop) (Gravel et al. 2024) and leverages both the 

VarCoPP2.0 predictor and the BOCK knowledge graph. The input of the method is a VCF file, along with 

either a combination of HPO terms describing the patient’s phenotype or a panel of genes known to 

be involved in the disease or both. The VCF file is filtered to remove variants with a MAF ≥ 0.035, 

synonymous variants that are further than 195 bp from exon edges and intronic variants. Then, Hop 

calculates two scores. The first score is calculated using VarCoPP2.0, which evaluates the pathogenicity 

of all possible variant combinations from the filtered VCF file.   
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The second score is a disease-relevance score for all gene pairs that is calculated using a random-

walk with restart algorithm with the provided disease-related terms as seeds on the BOCK 

heterogeneous knowledge graph. These two scores are then averaged to provide a final score for 

ranking all of the variant pairs of the individual. The performance of Hop was tested on synthetic 

disease exomes created by inserting known pathogenic pairs from OLIDA, either used to train 

VarCoPP2.0 or not, in exomes from the 1000 Genomes Project and the UK10K project (UK10K 

Consortium et al. 2015). Hop was confronted to popular monogenic variant prioritization tools CADD 

(Rentzsch et al. 2021) and Exomiser (Smedley et al. 2015) as well as oligogenic predictor OligoPVP 

which uses the same type of input. Hop outperformed all of the other methods on the synthetic disease 

exomes and managed to rank around 70% of pathogenic gene pairs in the top 50 of pairs, against 

around 20% for Exomiser and OligoPVP and less than 10% for CADD. Despite promising results on the 

synthetic disease exomes, Hop is still limited by its reliance on prior knowledge, especially regarding 

the link between HPO terms and disease genes in the knowledge graph. The Hop method also works 

better if a relevant gene panel for the disease is provided, which limits the use of the method towards 

well-studied disease.  

These methods are not yet at a stage allowing an agnostic exploration of real-world cases of 

undiagnosed diseases, but can serve as valuable information combined with other lines of evidence 

like familial data. They also lack interpretability in their predictions. ORVAL and ARBOCK tried to 

mitigate the issue of interpretability by offering more context at the gene and gene pair level such as 

visual mappings of the cellular location and pathway information and explanation in the form of 

subgraphs, respectively. Overall, the appropriate integration of variant selection and gene pair 

prediction will in the future lead to more accurate prediction of DI, and facilitate the detection of this 

complex mode of inheritance. 
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8.3 DISCUSSION – PERSPECTIVES FOR THE DETECTION OF DIGENISM IN RARE DISEASE CASES 

As evidenced by our review of the methods to detect DI in sequencing data, there is no current 

gold standard method to achieve this aim and digenism remains a difficult mechanism to detect, 

especially in a clinical setting. However, ML methods and in particular DiGePred have emerged as 

promising methods to evaluate the potential pathogenicity of a combined alteration of a pair of genes.  

In this section, we will briefly mention some future development that have stemmed from our 

aforementioned work. 

First, we have seen that evaluating all pairs of genes of an individual is not yet feasible due to 

the computational explosion that would ensue. A straightforward way to circumvent this issue would 

be to first filter variants for an individual. We do not recommend filtering on the frequency of the 

variant, as the frequency cutoff for observing the variant in the general population might not be as low 

as for a monogenic variant. However, the variant still needs to be deleterious for the gene to lead to 

digenism. We thus advise shortlisting variant depending on their PSAP p-value (top 100 of variants for 

instance), which is still tied to the frequency of predicted pathogenic variant in the general population 

in this gene, or keep variants with a high predicted impact (VEP classification). The latter criteria, when 

applied to the cohort of 235 CSVD patient from (Aloui et al. 2021) leads to 71 to 133 variants by 

individual and partially overlaps with the PSAP top 100. The number of combinations of genes with 

these variants is drastically lowered compared to all possible combinations of genes for an individual, 

although it is still extensive work to score them with the ML methods. 

Another avenue we have explored is the integration of PSAP p-values in place of CADD scores 

for the training of the VarCoPP2.0 method, considering PSAP consistently outperformed CADD in our 

simulations. However, we were not able to compute PSAP p-values for all variant combinations used 

to train VarCoPP2.0 as some of the variants were in non-coding parts of genes that were not included 

in PSAP-genes null distributions or were located in a gene not well-covered in the gnomAD v3 database. 

When tested by the Lenaerts’ team which developed VarCoPP2.0, this resulted in a slightly decreased 

performance of VarCoPP2.0 with PSAP p-values instead of CADD. Variants for which there was a 

missing value were imputed using the median of the value for that feature in the two sets and thus did 

not provide any information to the model. 

Finally, another way to adapt the ML scores to detect DI would be to implement the idea of 

PSAP but for pairs of genes: instead of looking at variants with the CADD score within a gene, look at 

pairs of genes with the same ML score. This idea was prompted by the observation that, in the FREX 

database, pairs of genes that had a high ML score (here DIEP and DiGePred) were less likely to both 

carry a deleterious variant with a high CADD score in many of the FREX individuals (Figure 8.4), when 
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looking at a random sample of 10,000 pairs of genes. It appears that pairs of genes with a high ML 

score are less tolerant to a combined alteration of both genes in the general population. The next step 

would be to find a way to collapse PSAP null distributions for genes with the same ML score and 

evaluate the probability of seeing such deleterious variants in such a connected pair of genes, in the 

general population.  

 

Figure 8.4 : Number of FREX individuals carrying a pair of genes both with variants meeting a  
CADD threshold depending on their DIEP or DiGePred score 

(CADD threshold = 10, 20 or 30 from left to right)  
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In this discussion, I outline the main results from my work and their impact in the field of RD 

diagnosis. Then, I touch on some additional subjects that have not been mentioned in previous 

sections. I show how our implementation of Easy-PSAP integrated within the broad issue of 

reproducibility of research results. Finally, I highlight some perspectives of this work which revolve 

around the challenge of variant interpretation in the non-coding genome and the extension of PSAP 

to integrate more complex models of inheritance and multi-omics data. I also discuss the application 

of emerging technologies like AI in the field of genomics, the access and use of genomic data and most 

importantly, the impact of methodological developments in RD diagnosis for patient’s lives. 

Chapter 9  CONTRIBUTION AND PERSPECTIVES FOR THE EASY-

PSAP STRATEGIES 

9.1 MAIN RESULTS  

In summary, the main developments and results from my PhD thesis are the following:  

i. The PSAP-genomic-regions method was developed, extending the PSAP method to 

prioritize coding and non-coding variants in whole-genome data from a single individual 

affected by a RD.  

ii. On artificially-simulated disease genomes and exomes, the method was able to 

prioritize known pathogenic variants better than using a pathogenicity score alone. 

Coding pathogenic variants and non-coding splicing variants were the types of variants 

best prioritized by the method. 

iii. On real exome or genome data from patients with known CSVD and male infertility 

variants respectively, PSAP-genomic-regions systematically prioritized the known 

variant within the top 100 variants of the exome or genome.  

iv. The application of PSAP-genomic-regions combined to a disease-relevant post-filtering 

strategy to families affected by male infertility resulted in the proposition of candidate 

gene variants in some of the families, in known and novel genes.  

v. PSAP-genomic-regions and the initial PSAP-gene strategy were implemented within the 

Easy-PSAP pipeline, which comprised of two user-friendly and flexible workflows: one 

to calculate custom PSAP null distributions and one to apply the PSAP strategies to 

patient data. 

vi. A review of the current methods to detect digenic inheritance showed the promises and 

limitations of ML methods especially, which could be integrated with PSAP to detect 

digenism in RD cases. 
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9.2 CONTRIBUTION TO SUSTAINABLE DATA ANALYSIS 

With Easy-PSAP, we made available the exact scripts, parameters and datasets we used to create 

all of the PSAP null distributions used in the article presenting PSAP-genomic-regions. This is a step 

into the field of Open Science (OS), especially regarding Open Data and Open Software. As researchers, 

we have the responsibility to make our research accessible and reproducible, which is one of the main 

goals of OS. There have been recent warnings by researchers themselves about a “reproducibility 

crisis” in science. A recent review on the subject pointed out that almost 80% of researchers in biology 

had failed to reproduce someone else’s experiments and 60% failed to reproduce their own 

experiments (Baker 2016).  Several propositions were made by (Munafò et al. 2017) to combat the 

issue of reproducibility in science and improve the scientific process, around the themes of 

methodologies, reporting, reproducibility of results, evaluation and incentives for OS.  

In the field of computer sciences, analyses imply the processing of large datasets, often many 

times, with modifications to the methods, parameters and sometimes even the data itself, which can 

make the description of methods complex and difficult to follow (Mesirov 2010). We first addressed 

the issue of reproducibility by integrating Easy-PSAP within conda environments (https://conda.io). 

Conda is a reproducible environment that contains a specific collection of packages necessary to run 

the pipeline. In addition, Easy-PSAP is written as Snakemake workflows (Mölder et al. 2021), which 

allow the adaptability and transparency of our results and thus their sustainability as illustrated by 

Figure 9.1. Sharing our codes with the scientific community also becomes an opportunity for the code 

to be improved upon and adapted for other research projects.  

 

 

Figure 9.1 : Hierarchy of aspects to consider for sustainable data analysis  

From Mölder et al. 2021: by supporting the top layer, a workflow management system  
can promote the center layer, and thereby help to obtain true sustainability 

 

 



 

 

178 Chapter 9 - Contribution and perspectives for the Easy-PSAP strategiesP strategies 

9.3 CHALLENGES OF VARIANT PRIORITIZATION IN THE NON-CODING GENOME 

We have extensively motivated in this thesis the importance of analyzing the non-coding genome, 

especially in the case of RDs, and made available our PSAP-genomic-regions strategy to do so through 

the Easy-PSAP pipeline. The exploration of the Malakand phase 1 and phase 2 datasets underscored 

limitations in the applicability of PSAP-genomic-regions to detect candidate variants in the non-coding 

genome, especially around the interpretation of potentially pathogenic variants in the non-coding 

genome. First, the non-coding pathogenic variants from ClinVar were less well prioritized with PSAP-

genomic-regions-ACS than the coding ones in our simulations. We still chose to look at the top 100 of 

variants prioritized by PSAP-genomic-regions-ACS to have a manageable number of variants to explore, 

but some of them could have been missed due to the restriction to the top 100. PSAP still performs 

better at prioritizing pathogenic non-coding variants compared to the CADD or ACS score alone which 

confirms the results of a previous studies that found the CADD score had limited clinical applicability 

to prioritize non-coding pathogenic variants, in the case of a hereditary cancer panel(Mather et al. 

2016). 

Some of the filters we used to prioritize the coding candidate variants in Malakand phase 1 and 

phase 2 families were not applicable for non-coding variants, like the expression of a gene in testis for 

variants that were not directly linked to the regulatory regions of a gene. Thus, we had a lot more 

variants to look through and less straightforward arguments to imply them or not with the pathology. 

Families 5 and 8 from the Malakand phase 1 dataset were good candidates for the involvement of a 

non-coding variant in the pathology, considering a deep exploration of the coding genome yielded no 

candidate variants for either families. However, there were no variants that stood out from our analysis 

as potentially disease-causing, either because it was not included in the analysis itself or we were not 

able to prioritize it over other variants.  

Now that WGS data is becoming more available, the importance and difficulty of predicting the 

impact of these non-coding variants is starting to be more and more described in the literature (Rojano 

et al. 2019; Barbosa et al. 2023). For regulatory variants, a number of integrated annotation and 

sometimes prioritization tools exist, including RegulomeDB (Dong et al. 2023), HaploReg (Ward and 

Kellis 2016), FunciSNP (Coetzee et al. 2012) or the recently developed GREEN-DB (Giacopuzzi, Popitsch 

and Taylor 2022) (with associated annotation tool GREEN-VARAN) which all use the ENCODE project 

as their main data source. As we have mentioned in Part II - Chapter 2, several pathogenicity scores 

span the whole genome, like CADD, and some have been developed specifically for non-coding variant 

prioritization. They serve a purpose similar to our prioritization by PSAP-genomic-regions, but they are 

limited by the current understanding of the regulatory machinery encoded in the non-coding genome. 

A comprehensive review (Barbosa et al. 2023) of all computational tools to predict the impact of 
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variants affecting introns showed that the performance of such tools depends heavily on the type of 

variant: deep intronic variants outside of splice sites were poorly predicted whilst splicing-altering 

variants were better prioritized, and even the prioritization of splicing variants depended on the 

molecular mechanism altered by the variant. Other types of non-coding variants, like intergenic 

variants not associated with any molecular function, are even more difficult to interpret in a clinical 

context. 

9.4 MULTI-OMICS INTEGRATION 

No matter the approach used to analyze sequencing data and the potential contribution made 

by detecting non-coding variants or more complex modes of inheritance, the increased diagnosis rate 

in unsolved RD cases using WES or WGS seems to plateau between 35% and 50% (Frésard and 

Montgomery 2018). It is thus necessary to develop other approaches that can highlight in a more 

holistic way the signature of a disease to prioritize disease-causing variants and evaluate the impact of 

variants on various cellular products, like gene transcripts, proteins, or metabolites. These approaches 

are referred to as multi‐omics approaches, as they integrate multiple high‐throughput screening 

technologies like genomics, transcriptomics, proteomics or metabolomics (Figure 9.2). 

 A number of recent studies highlight the increase in molecular diagnostic for RDs when 

combining DNA and RNA sequencing (RNA-seq) analyses (Frésard et al. 2019; Prokisch 2019). RNA-seq 

delivers quantitative data on RNA expression levels which allows a better understanding and 

interpretation of a variant’s effect, and is complementary to the variant information provided by DNA 

sequencing. Whilst complementing genetic data with transcriptomic data is starting to become more 

widespread, the increased utility of introducing additional omics approaches like proteomics into 

diagnostic workflows is getting traction (Stenton et al. 2020).  

Methods like PSAP can evolve along this trend by integrating new layers of information. This 

extension to integrative omics analysis had already been mentioned in the initial (Wilfert et al. 2016) 

article. They calculated the likelihood that each gene in the genome would play an important role in a 

particular individual’s disease based on GTEx expression. Combined with the gene-based PSAP-value, 

the expression information improved the ranks and thus the identification of disease-causing genes. 

This idea shows that PSAP could be adapted by integrating RNA-seq or even protein-protein interaction 

data to boost prediction and narrow down the list of candidate variants.  
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Figure 9.2 : Multi-omics approaches  

Adapted from BioRender 
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9.5 CLINICAL APPLICABILITY IN THE FIELD OF RARE DISEASES 

9.5.1 New technologies and artificial intelligence 

The cost of sequencing has never been as low, with a single genome costing as little as 100$. 

In addition, new technologies like long-read sequencing continue to allow a better detection of 

variants, especially structural variants. As a consequence, the volume of sequencing data is 

exponentially increasing and so does the challenge of interpreting such data. This new wealth of data 

and increasing knowledge about the genome has allowed the training of Artificial Intelligence (AI) 

models, which is the development of computer systems able to perform tasks normally requiring 

human intelligence.  

In the context of genome annotation and variant classification, the CADD score as well as other 

ML scores are already used to predict the impact of a genetic variation on functional elements of the 

genome. Deep-learning based approaches are starting to emerge in the field and seem to outperform 

other ML approaches for variant pathogenicity prediction and the detection of regulatory elements 

among other tasks (Alharbi and Rashid 2022). For instance, the DANN score (Quang, Chen and Xie 

2015) is trained on the same set of features than CADD but uses a deep neural network (type of deep 

learning model) and appears to perform better than CADD. In addition, other deep learning-based 

models can achieve state-of-the-art predictions of pathogenicity by leveraging protein domains and 

conserved amino acid positions. These models include PrimateAI (Sundaram et al. 2018), which uses 

cross-species information, or the recently developed AlphaMissens e(Cheng et al. 2023), which is 

based on the protein 3D structure prediction tool AlphaFold2(Jumper et al. 2021). A better in-silico 

evaluation of variant pathogenicity by AI-based models would boost the predictions of a method like 

PSAP, which relies on a pathogenicity score for its calibration. AI-models and deep learning in particular 

also allow the integration of multi-omics data in unprecedented ways to generate predictive models 

(Sharma et al. 2024). 

Although the promises of AI in the field of genomics are remarkable, key problematics have to 

be kept in mind when using AI tools. Some problematics are general in the field of AI but especially in 

a clinical setting, interpretability of AI models and accounting for machine bias due to substructure in 

the input data is crucial (Dias and Torkamani 2019). Indeed, the current focus on generating massive 

data to train AI models needs to be nuanced by the necessity of interpreting their results and using 

them to improve patient outcome. 
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9.5.2 Genetic data availability and data sharing 

As generating data becomes easier, new challenges are arising regarding data storage and data 

access. Indeed, the specificity of genomic data, especially in a healthcare setting, makes it the subject 

of very strict national regulatory rules. In a clinical setting, genetic data are generated to provide a 

diagnosis for a RD patient and meet their immediate heath needs. Outside of this aim, the reanalysis 

of already-generated data tests the boundaries of the duty of care, especially if incidental findings are 

discovered for a patient. Structuring data access and consent processed is fundamental to allow global 

data sharing and analysis without breaching the public’s trust (Stark et al. 2019). This globalized access 

to WGS data is crucial in a field like RDs research, to allow for federated analysis of patients, 

comparison and scalability of analyses (Umlai et al. 2022). In addition, the increasing availability of 

genomic data is bound to improve the ML algorithms for variant prioritization, as we have mentioned 

in the previous section. If carried out in a proper way that protects the privacy of patient data, this will 

benefit RDs patients both at the stage of molecular diagnosis and eventually, personalized treatment. 

For instance, initiatives like the virtual platform of the European Joint Programme on Rare Diseases 

currently gather resources (e.g. relevant knowledge databases or registries) for RD research and will 

eventually give access to patient data to create a federated environment for discovery whilst 

preserving patient privacy.  

9.5.3 Impact for patient care 

The impact for patients is at a forefront of any methodological developments in the field of RD 

diagnosis. PSAP is still a tool under development, which has proven to add valuable information in real-

life scenarios of genetic diagnosis. Nonetheless, it had not been tested in a clinical setting and would 

benefit from further evaluation to really assess how it could be used in the context of patient clinical 

diagnosis. With proper information on the significance of PSAP p-values, the method could be 

integrated to clinical VCF annotation pipelines and be used along other pathogenicity scores to 

prioritize potentially disease-causing variants. A study has described that it takes on average 17 years 

for research evidence to be implemented in the clinics (Morris, Wooding and Grant 2011). It thus 

depends on researchers as well as other actors in the system to ensure that our tools are really 

translational and that patients benefit from developments in genomic medicine. By taking a step 

towards improving whole-genome analysis, PSAP-genomic-regions participates to the global effort to 

use of the information from whole sequencing to improve RD diagnosis (Umlai et al. 2022).  

To move beyond the issue of diagnosis in RDs, the next frontier is patient care and 

therapeutics. Indeed, elucidating RDs remains a crucial issue both for patients and for the mechanistic 

insights they can provide on disease etiology (Antonarakis et al. 2010) but the diagnosis is only a first 
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albeit crucial step for patients. A genetic diagnosis can help stratify therapies for RDs (Wright, 

FitzPatrick and Firth 2018) and often results in tangible clinical actions that can have a significant 

impact of patient’s lives (Pagnamenta et al. 2023) although RDs therapeutics remain scarce. However, 

a new kind of “odyssey” can emerge once the “diagnostic odyssey” will become less prevalent: the 

patient care odyssey. This patient care odyssey is defined by the inability to coordinate patient care as 

a whole and taking into account the familial element, despite the presence of a genetic diagnosis. The 

new challenge will be to refer as adequately as possible a patient from a specialized center for 

diagnosis to a specialized center for patient care. In France, the problematics of RDs diagnosis and 

therapeutics are the focus of National Plans for Rare Diseases (Plan National Maladies Rares, PNMR). 

While the first plans helped to reduce diagnostic wandering and deadlock, the 4th PNMR plan to 

reinforce the development of therapies and innovation, so that access to treatments becomes 

increasingly effective for people affected by RDs. 

9.6 GENERAL CONCLUSION 

This thesis has approached the issue of improving the genetic diagnostic yield for RDs by tackling 

three main reasons for RD lack of diagnosis: genetic heterogeneity, non-coding variants and complex 

modes of inheritance. With PSAP-genomic-regions, we both addressed the issue of heterogeneity and 

variant prioritization in the non-coding genome that complicate RD diagnosis. By integrating both 

PSAP-genomic-regions and PSAP-genes into the Easy-PSAP pipeline, we gave other researchers and 

clinicians access to our latest developments around the method as well as the possibility of calculating 

their own PSAP null distributions. The issue of tackling complex modes of inheritance is still an open 

subject for reflection, although our review on the subject offers a strong understanding of what has 

currently been proposed in the domain. Further developments for PSAP also include the development 

of new features for Easy-PSAP, the integration of multi-omics data and the translation to clinical 

practice. 

During the course of my PhD project, I was confronted with the challenge of developing and 

implementing a statistical tool that offers an innovative solution to the problem of RD diagnosis, but 

that would also be applicable in real-life setting. Confronting myself with the application of Easy-PSAP 

to different datasets, both in France and the US, made me realize the importance of portability and 

user-friendliness of a bioinformatic tool, as well as the importance of constantly maintaining and 

updating it. In the future, we endeavor to make Easy-PSAP truly accessible for clinicians even without 

an expertise in bioinformatics.  
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I benefited immensely during my PhD project of several collaborations, which are all highlighted 

in this manuscript. First, I learnt a lot from the knowledge on CSVD of Elisabeth Tournier-Lasserve and 

her team (U1141 Neurodiderot, Paris), around the disease processes and implicated causal variants 

especially, as well as the expertise in networks and computational methods of Anaïs Baudot and her 

team (UMR 1251 Marseille Medical Genetics). This collaboration was initiated in the context of the 

GENETWORK4DIAG project, which aimed at developing novel strategies based on gene networks and 

computational approaches to identify causal genes in undiagnosed cases of CSVD. I also had the 

privilege of visiting Pr Conrad’s team (Oregon National Primate Research Center, US) who developed 

the initial PSAP method and are experts on genetic forms of male infertility. Their experience was 

invaluable for the interpretation of the Malakand families’ results and fostered valuable reflections 

about the potential developments for PSAP in the context of digenism. These sustained and 

constructive collaborations emphasize the importance and added value of interdisciplinarity in 

research, which is in line with my background as a MD-PhD student. 

Our answers to this complex topic of RD diagnosis are small contributions to the fast-evolving 

field of RD research. Ultimately, this thesis endeavors to give pertinent tools and insights to clinicians 

and researchers in their efforts to elucidate the genetic causes of RDs, in order to provide better 

molecular diagnostics, management and therapeutic options to patients living with these elusive 

genetic disorders. 
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Résumé en français 
 

Stratégies statistiques exploitant les données de la population générale  

pour aider au diagnostic des maladies rares 

 

Par Marie-Sophie OGLOBLINSKY 

INSERM UMR1078 – Génétique, Génomique fonctionnelle et Biotechnologies  

Université de Bretagne Occidentale 

INTRODUCTION 

Les maladies rares (MR) constituent un groupe hétérogène de pathologies classiquement 

caractérisées par une très faible prévalence (moins d'un individu sur 2,000 en Europe). Les MR 

englobent de 5 000 à plus de 9 000 pathologies et ce nombre ne cesse de croître, de nouvelles 

pathologies étant décrites chaque année (Ferreira 2019; Haendel et al. 2020; Sequeira et al. 2021). 

Alors que les maladies rares sont par définition rares lorsqu'elles sont considérées séparément, elles 

sont fréquentes dans leur ensemble et touchent environ 350 millions de personnes dans le monde, 

dont 3 millions en France, soit près d'un citoyen français sur vingt. Les MR sont souvent chroniques, 

sévères et altèrent significativement la qualité de vie des patients. À ce problème de santé publique 

s'ajoute le fait que près de 50 % des MR ne sont pas diagnostiquées et que, lorsqu'elles le sont, c'est 

le plus souvent après des mois, voire des années (Boycott et al. 2017). On parle dans ce cas d’une 

« errance diagnostique ». Le diagnostic est une étape cruciale pour les patients, car il permet de mieux 

comprendre leur maladie et d'améliorer leur prise en charge (Uhlenbusch, Löwe and Depping 2019). 

Ce diagnostic si difficile à obtenir est souvent d'ordre génétique ou moléculaire puisque l'on estime 

qu'environ 80 % des maladies rares sont d'origine génétique (Wright, FitzPatrick and Firth 2018).  

À ce jour, la plupart des RD dont la cause génétique est connue sont décrites comme ayant un 

mode d'hérédité monogénique, selon lequel l'altération d'un seul gène est responsable de la maladie. 

Les RDs ainsi que les polymorphismes dans la population humaine sont dus à des modifications stables 

de la séquence d'ADN, appelées mutations ou variants. Lorsque le nucléotide de référence est 

remplacé par un autre nucléotide, on parle de variant nucléotidique simple (SNV). Les InDel sont des 

insertions ou des suppressions de quelques nucléotides dans la séquence d'ADN. Les variants que l'on 

trouve chez moins de 1 % de la population générale sont appelées variants rares. Les variants de l’ADN 

peuvent être dit codants ou non-codants. En effet, l'information génétique contenue dans les parties 

codantes des gènes ou exons constitue l'exome d'un individu, tandis que l'ensemble de l'information 
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génétique d'un individu constitue son génome. Le génome codant ne représente qu'environ 2 % du 

génome total, le reste du génome est donc appelé « non codant » et contient, entre autres, des 

éléments impliqués dans la régulation de l'expression des gènes qui peuvent avoir un lien avec les 

maladies humaines (Dunham et al. 2012).  

Ces variations de notre code génétique sont essentielles à notre évolution et à notre survie à 

long terme. Toutefois, un très faible pourcentage de variants génétiques peut également entraîner des 

maladies comme les MR. Le génome de chaque individu sain contient des milliers de variants, ce qui 

signifie que la plupart des variants n'ont aucune conséquence biologique détectable pour la cellule ou 

l'organisme. L'impact réel d'un variant est complexe à prévoir (Zschocke, Byers and Wilkie 2023), bien 

qu’un grand nombre d'outils de prédiction bio-informatiques et de scores ont été développés depuis 

lors pour évaluer l’impact délétère et la pathogénicité potentielle des variations génétiques (Eilbeck, 

Quinlan and Yandell 2017; Garcia, Andrade and Palmero 2022). 

Aujourd'hui, nous disposons d'une quantité croissante de données génétiques grâce aux 

progrès des technologies de séquençage de l'ADN. Le processus d'identification des variants liés à la 

maladie parmi les milliers ou millions de polymorphismes non pathogènes et d'erreurs de séquençage 

produits par le séquençage de l'exome entier (WES) et le séquençage du génome entier (WGS) est un 

véritable défi. La question qui se pose donc maintenant est la suivante : comment analyser ces données 

pour détecter les maladies rares non diagnostiquées ?  

Pour comprendre pourquoi cette question est si difficile, il convient de mentionner quelques 

faits essentiels concernant les MR. L'architecture génétique des MR est très complexe et peut être 

différente d'une MR à l'autre. Mes travaux se sont donc concentrés sur trois facteurs importants qui 

peuvent expliquer les lacunes du diagnostic génétique des maladies rares : l'hétérogénéité génétique, 

les variants non codants et les modes complexes d'hérédité. En effet, de nombreux paradigmes 

conventionnels de la génétique, notamment le modèle "un gène, une maladie", ne rendent pas compte 

de DIversité génétique observée dans les MR. La plupart des MR sont caractérisées par une forte 

hétérogénéité génétique, où des variants dans différents gènes conduisent à des maladies 

phénotypiquement indiscernables. L'existence de plusieurs gènes causaux contribuant à un phénotype 

clinique unique rend le regroupement des patients encore plus difficile, car il n'y a souvent qu'un seul 

individu porteur d'un variant causal spécifique. En outre, la disponibilité croissante des données de 

séquençage du génome entier a révélé l'importance des variants non codants dans l'étiologie des MR, 

ce qui remet en question les approches traditionnelles du diagnostic génétique centrées sur le codage. 

Les variants non codants peuvent avoir des effets profonds sur la régulation de l'expression des gènes 

et la fonction des protéines, dévoilant ainsi de nouveaux mécanismes sous-jacents aux maladies rares. 
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Les modèles complexes d'hérédité viennent s'ajouter à la nature déjà difficile de la génétique des 

maladies rares. Le principal exemple de transmission génétique complexe exploré dans ce travail est 

le digénisme, selon lequel l’effet concomitant de variants dans deux gènes distincts sont nécessaires 

pour développer une maladie (Schäffer 2013).  

OBJECTIFS 

Le principal défi que j'ai relevé dans le cadre de mon projet de thèse est le suivant : comment 

améliorer les méthodes d'analyse des informations génétiques d'un patient atteint d'une MR afin de 

lui proposer un diagnostic génétique ? Mon objectif était de fournir des méthodes statistiques et bio-

informatiques qui pourraient facilement être appliquées dans un contexte clinique ou de recherche et 

qui offriraient des informations précieuses pour le diagnostic des RDs.  

ABORDER L'HETEROGENEITE GENETIQUE DANS LE GENOME CODANT  

ET NON CODANT 

Dans cette partie, je discute les stratégies que j'ai mises en œuvre pour aborder le problème 

de l'hétérogénéité génétique dans les MR et analyser les variants dans le génome non-codant. Comme 

mentionné précédemment, la forte hétérogénéité génétique dans les MR pose le problème de 

l'identification du variant causal d'un patient à l'aide de données de séquençage et de méthodes 

d'analyse standard. Initialement, la méthode PSAP (Population Sampling Probability) (Wilfert et al. 

2016)  avait été développée pour apporter une résolution au problème de l’hétérogénéité génétique 

dans le génome codant. PSAP utilisait des distributions nulles de scores de pathogénicité CADD (Kircher 

et al. 2014) par gène pour évaluer la probabilité d'observer un génotype donné dans une population 

saine. Nous proposons PSAP-genomic-regions (Ogloblinsky et al. 2024), une extension de la méthode 

PSAP au génome non codant utilisant comme unités de test des régions prédéfinies reflétant la 

contrainte fonctionnelle à l'échelle du génome entier, les régions CADD (Bocher et al. 2022). Notre 

méthode est composée de deux stratégies alternatives basées sur la construction des distributions 

nulles PSAP sur les régions CADD avec deux scores de pathogénicité : le score CADD initial (stratégie 

PSAP-genomic-regions-CADD) ou l'ACS (stratégie PSAP-genomic-regions-ACS), un score CADD réajusté 

par régions fonctionnelles construit pour atténuer les scores CADD plus élevés des variants codants.   

Nous avons évalué les stratégies de priorisation proposées en utilisant des exomes et des 

génomes de patients générés artificiellement. Nous avons généré ces exomes et génomes de patients 

en insérant des SNVs pathogènes codants et non codants de la base de données ClinVar dans 574 

exomes de la population générale issus du projet FrEnch Exome (FREX) (Génin et al. 2017) et dans 533 
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génomes entiers issus du projet 1000 Génomes (Byrska-Bishop et al. 2022), respectivement, selon les 

modèles autosomal dominant et récessif (AD et AR). Les variants insérés ont été classés en fonction de 

leurs p-valeurs de PSAP d'une part, et de leur score de pathogénicité seul d'autre part. Ce protocole 

d'évaluation nous a permis de comparer nos deux stratégies PSAP-régions génomiques-CADD et PSAP-

régions génomiques-ACS à la stratégie initiale PSAP-genes (également appelée PSAP-genes-CADD) et 

à une priorisation utilisant uniquement le score CADD ou ACS maximal par région CADD.  

Sur les génomes de patients générés artificiellement, les deux stratégies PSAP-genomic-

regions sont systématiquement plus performantes pour prioriser tous les types de variants pathogènes 

par rapport aux stratégies utilisant uniquement le score maximal de pathogénicité (CADD ou ACS en 

fonction de la stratégie). Pour la priorisation des variants pathogènes codants, PSAP-genomic-regions-

CADD donne les meilleures performances et parvient à classer 45,5 % et 96 % des variants dans les 10 

premiers du génome pour les modèles AD et AR, respectivement. PSAP-genomic-regions-ACS permet 

la meilleure priorisation des variants pathogènes non codants, en particulier aux variants d'épissage, 

avec 56,5% et 83,3 % des variants atteignant le top 10 du génome pour les modèles AD et AR, 

respectivement.  

Nous avons également testé notre méthode sur des données d'exome de 6 patients avec des 

variants connus causant une forme monogénique de maladie des petits vaisseaux cérébraux (Cerebral 

Small Vessel Disease, CSVD) (Aloui et al. 2021) et des données de génome de 9 patients avec des 

formes familiales d'infertilité masculine (Khan et al. 2023). Dans l'ensemble, les stratégies PSAP 

donnent toujours de meilleurs résultats que le score CADD seul. PSAP-genomic-regions priorise les 

variants causaux parmi les 100 premiers variants pour chaque individu. PSAP-genomic-regions 

améliore considérablement le classement des variants causaux chez 4 des 6 individus atteints de CSVD 

par rapport à PSAP-genes, et conserve un classement similaire pour les 2 individus restants. Sur les 

données de génome, PSAP-genomic-regions classe les variants candidats à des rangs plus élevés que 

PSAP-genes. Cela peut s'expliquer par le fait que PSAP-gene ne classe qu'environ 4,000 variants par 

individu, car il n'analyse que les variants tombant dans les gènes, contre environ 70,000 variants pour 

PSAP-genomic-regions, qui analyse l'ensemble du génome.  

 PSAP-genomic-regions est donc un outil de priorisation efficace, qui offre des résultats 

prometteurs pour le diagnostic de cas non résolus de MR. Pour hiérarchiser les variants non codants, 

le PSAP-genomic-regions-ACS donne les meilleurs résultats à la fois pour les données WES et WGS. 

Dans le cas spécifique de la priorisation des variants codants en WGS, l'utilisation des parties codantes 

des régions CADD comme unités d'analyse (PSAP-coding-genomic-regions) donne de meilleurs 
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résultats que PSAP-genes. Ainsi, si le variant causal attendu est codant, nous conseillons l'utilisation 

de PSAP-genomic-regions-CADD pour le WES et de PSAP-coding-genomic-regions-CADD pour le WGS. 

Pendant le développement de PSAP-genomic-regions, j'ai proposé plusieurs mises à jour et 

extensions du pipeline PSAP et j'ai implémenté des scripts efficaces pour effectuer un calcul rapide des 

distributions nulles PSAP avec un choix flexible de paramètres d'entrée. Afin de mettre à disposition 

une version actualisée et plus facile à utiliser du pipeline PSAP, j'ai créé Easy-PSAP, un workflow 

Snakemake facile d’utilisation, flexible et efficace en termes de calcul pour créer et appliquer toutes 

les distributions nulles PSAP actuellement développées. Comme indiqué précédemment, la méthode 

PSAP a été mise au point pour résoudre le problème de la priorisation des variants pour un seul patient, 

en s'appuyant sur les fréquences alléliques des bases de données de population et sur un score de 

pathogénicité de le variant. Cependant, la mise en œuvre initiale de PSAP comportait des scripts bash 

et R pour appliquer les distributions nulles de PSAP qui n'étaient pas facilement adaptables à tous les 

utilisateurs. Les premières distributions nulles de PSAP utilisaient également ExAC comme panel de 

référence pour les fréquences alléliques et CADD v1.0, et n'ont pas été mises à jour depuis. Les scripts 

permettant de générer les distributions nulles PSAP n'avaient pas non plus été mis à disposition. 

Nous décrivons ici Easy-PSAP, une nouvelle implémentation mise à jour comprenant deux 

pipelines faciles d’utilisation et adaptables basés sur le principe de PSAP, qui peut évaluer les variants 

génétiques à l'échelle d'un génome entier en utilisant des informations provenant des dernières bases 

de données de population et d'annotation. Contrairement au PSAP initial qui était limité à l'exome, 

Easy-PSAP permet l'analyse des variants dans le génome codant et non codant en intégrant à la fois 

PSAP-genes et PSAP-genomic-regions dans les paramètres et les distributions nulles disponibles du 

pipeline. Easy-PSAP comprend à la fois un workflow pour calculer les distributions nulles PSAP et un 

workflow pour les appliquer aux données des patients. Ces caractéristiques, ainsi que l'accessibilité du 

pipeline pour les chercheurs et les cliniciens, font d'Easy-PSAP un outil de pointe pour l'analyse des 

données NGS qui est mis en œuvre pour évoluer au fur et à mesure que de nouveaux cadres et bases 

de données deviennent disponibles. En particulier, le workflow pour calculer de nouvelles distributions 

nulles PSAP permet aux chercheurs d'adapter PSAP à leur question de recherche et à leurs exigences. 

Enfin, la performance des PSAP-genomic-regions est mise en évidence dans cette partie par 

une application à des cas réels de RD, dans des familles consanguines touchées par l'infertilité 

masculine venant de la région Malakand du Pakistan. Nos données comprennent deux jeux de données 

de WGS distincts pour chaque phase du projet : la première phase sera appelée Malakand phase 1 

(pour laquelle des variants candidats avaient déjà été trouvés par [Khan et al. 2021]) et la seconde 

phase Malakand phase 2. En ce qui concerne les familles de la Malakand phase 1, le variant dans le 
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gène TUBA3C est le seul que nous ayons identifié dans la famille 7, conformément aux découvertes 

précédentes. Dans les familles 3 et 4, nous avons priorisé les variants déjà candidats dans SPAG6 et 

CCDC9, respectivement. Pour la famille 3, nous avons identifié un autre variant dans SYN3. Cependant, 

le variant dans le gène SPAG6 semble être un candidat plus fort en raison des nombreuses associations 

dans la littérature de ce gène avec l'infertilité masculine et d’un rang de PSAP plus favorable. Un autre 

variant candidat a été identifié dans la famille 4, dans le gène RSPH6A. Les deux gènes RSPH6A et 

CCDC9 semblent être de bons candidats pour expliquer le phénotype d’infertilité masculine, bien que 

le variant dans RSPH6A ait un impact prédit plus sévère.  

Notre analyse de l'ensemble des données Malakand phase 2 nous a aussi permis de prioriser 

un autre variant de TUBA3C, dans la même région CADD que le variant de l'analyse des Malakand 

phase 1.  Dans l'ensemble, ce deuxième variant fortement priorisé confirme l'implication potentielle 

d’altérations de TUBA3C dans l'infertilité masculine dans ces deux familles. En outre, nous avons mis 

en évidence un variant candidat fort pour la famille 15 dans le gène DYNLRB2.  

ÉVALUATION D'UN MODE D'HEREDITE COMPLEXE : LE MODELE DIGENIQUE 

Nous avons décrit l'architecture génétique complexe des MR, y compris la possibilité que 

certaines MR puissent être caractérisées par une hérédité digénique (Digenic Inheritance, DI) au niveau 

moléculaire. Bien que la détection de DI puisse aider à diagnostiquer un certain nombre de MR, ce 

n'est pas une tâche facile et il n'existe à ce jour pas de méthode de référence. La plupart des cas de DI 

actuellement décrits ont été détectés par des analyses familiales et impliquent souvent des gènes déjà 

associés à la maladie de manière monogénique. Les bases de données DIDA (DIgenic diseases 

DAtabase) (Gazzo et al. 2016) et sa version mise à jour OLIDA (OLIgenic diseases Database) (Nachtegael 

et al. 2022) répertorient toutes les combinaisons digéniques et oligogéniques connues de la littérature. 

Depuis 2018, un certain nombre de méthodes bio-informatiques ont donc été développées pour 

aborder la question de la détection de DI sans s'appuyer autant sur les pédigrées et les connaissances 

préalables sur la maladie. J'ai réalisé une revue de la littérature et un benchmark des méthodes 

actuellement publiées pour détecter la DI dans les données de séquençage. Cela a permis d'avoir une 

vue d'ensemble de la force et des limites des méthodes développées à ce jour. 

Tout d'abord, une revue de la littérature nous a permis de classer les méthodes de détection 

de DI en trois catégories distinctes : les méthodes basées sur les réseaux, les méthodes statistiques et 

les méthodes d'apprentissage automatique (Machine Learning, ML). La seule méthode dans la 

catégorie basée sur les réseaux est OligoPVP (Boudellioua et al. 2018) qui utilise PVP (Boudellioua et 

al. 2019), un prédicteur monogénique de pathogénicité basé sur la caractérisation phénotypique du 



 

 

192  

patient, pour évaluer les variants uniquement dans les paires de gènes connectés dans un réseau 

d'interaction protéine-protéine. Deux méthodes entrent dans la catégorie des méthodes statistiques : 

la méthode digénique (DM) (Kerner et al. 2020) et RareComb (Pounraja and Girirajan 2022). La DM 

utilise des tests de fardeaux adaptés pour détecter la DI ou un variant modificateur commun d’une 

maladie monogénique. RareComb utilise l'algorithme Apriori (Agrawal et al. 1996) pour dénombrer les 

combinaisons de variants vus simultanément chez les cas et les témoins. Les deux méthodes 

impliquent un pré-filtrage des variants afin de limiter le nombre de combinaisons à tester et de ne 

conserver que les variants rares prédits comme pathogènes. Toutes les autres méthodes de détection 

de DI peuvent être classées comme des méthodes ML et sont entraînées sur des paires pathogènes de 

DIDA ou OLIDA et des paires neutres de la population générale. Parmi ces méthodes, VarCoPP 

(Papadimitriou et al. 2019) et son successeur VarCoPP2.0 (Versbraegen et al. 2023), qui sont exécutés 

par la plateforme ORVAL (Renaux et al. 2019), prennent en données d’entrée des paires de variants, 

tandis que DiGePred (Mukherjee et al. 2021), DIEP (Yuan et al. 2022) et ARBOCK (Renaux et al. 2023) 

sont appliqués à des paires de gènes.  

Ces méthodes de ML étant les plus facilement applicables, en particulier dans le cas des MR, 

et ayant des types d'entrée et de sortie similaires, nous les avons comparées à l'aide d'un benchmark. 

Nous avons sélectionné des paires de gènes pathogènes connues dans la base de données OLIDA, qui 

n'ont pas été utilisées pour entraîner les méthodes de ML, et différents scénarios de paires de gènes 

neutres en utilisant des variants de la base de données FREX. ARBOCK et DIEP ont catégorisé un plus 

grand nombre de paires OLIDA comme digéniques (plus de 80 %), mais ARBOCK a également classé 

environ 30 % des paires observées dans la population générale comme pathogènes. En revanche, 

DiGePred et VarCoPP2.0 ont classé un peu moins de paires OLIDA comme pathogènes (64 % et 49 %, 

respectivement), tout en maintenant le nombre de faux positifs à un niveau beaucoup plus bas (moins 

de 1 % et 3 %, respectivement).  

Dans l'ensemble, nous avons pu montrer que les méthodes basées sur les réseaux et les 

méthodes statistiques font de fortes hypothèses sur l'interaction entre les gènes ou le type de variants 

pour détecter la DI. Les méthodes statistiques nécessitent également des données de cohortes en 

entrée pour avoir une puissance statistique suffisante. En revanche, les méthodes de ML présentent 

l’avantages de pouvoir être appliquées à l'échelle individuelle pour détecter l'ID, ce qui est pertinent 

dans le cas de maladies rares très hétérogènes, bien qu'aucune méthode ne puisse analyser de 

manière exhaustive toutes les paires potentielles de gènes d'un individu. Notre benchmark des 

méthodes de ML pour la détection de DI nous a permis de mettre l'accent sur la méthode DiGePred, 

qui s'est distinguée par un nombre de faux positifs le plus faible, quel que soit le scénario, tout en 

conservant un nombre conséquent de prédictions réellement positives. 
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CONCLUSION 

Au cours de ma thèse, j’ai abordé la question de l'amélioration du diagnostic génétique des 

MR en m'attaquant à trois raisons principales de l'absence de diagnostic de certaines MR : 

l'hétérogénéité génétique, les variants non codants et les modes complexes d'hérédité. Avec PSAP-

genomic-regions, nous avons abordé la question de l'hétérogénéité et de la priorisation des variants 

dans le génome non codant. En intégrant à la fois PSAP-genomic-regions et PSAP-genes dans le pipeline 

Easy-PSAP, nous avons donné à d'autres chercheurs et cliniciens l'accès à nos derniers développements 

autour de la méthode ainsi que la possibilité de calculer leurs propres distributions nulles de PSAP. La 

question du traitement des modes complexes d'hérédité, particulièrement le digénisme ici, reste un 

sujet de réflexion ouvert, bien que notre revue sur le sujet offre une solide compréhension de ce qui a 

été actuellement proposé dans le domaine. Les développements futurs autour de la méthode PSAP 

comprennent également le développement de nouvelles fonctionnalités pour Easy-PSAP, l'intégration 

de données multi-omiques et l'application en pratique clinique.
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Appendix I 
 

Supplementary Materials 
  

PSAP-genomic-regions: a method 
leveraging population data  

to prioritize coding and non-coding 
variants in whole genome sequencing 

for rare disease diagnosis 
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Supplementary Materials 

PSAP-genomic-regions: a method leveraging population data  
to prioritize coding and non-coding variants  

in whole genome sequencing for rare disease diagnosis 

Method to generate PSAP null distributions   

The PSAP null distribution for a genomic region was calculated through an analytical method in 5 steps 
based on allele frequencies from a reference panel and pathogenicity scores of all variants in the 
region: 

Step 1: Annotate each variant x with its allele frequency p in the reference panel (n variants in total 
have an allele frequency for the region). A “variant” is defined here as a possible alternative allele at a 
given genomic position, thus several variants can have the same position. Variants can be excluded 
from the calculation based on the coverage in the reference panel. Variants that are not present in the 
panel are assigned a frequency of 0 and do not contribute to the calculation of null distribution. 

Step 2: Calculate the probabilities of an heterozygote genotype and of an homozygote genotype 
respectively at a variant x in the reference database  

𝑃(𝑥ℎ𝑒𝑡) =  2𝑝(1 − 𝑝) 

𝑃(𝑥ℎ𝑜𝑚) =  𝑝2 

Step 3: Group variants with the same pathogenicity score (y is a unique pathogenicity score observed 
in a region, with z variants having this particular pathogenicity score) and compute the probability of 
at least one heterozygote genotype, and respectively one homozygote genotype, across all the z 
variants with this y pathogenicity score in the reference database 

𝑃(𝑦𝑎𝑡_𝑙𝑒𝑎𝑠𝑡_𝑜𝑛𝑒_ℎ𝑒𝑡) =  1 −  ∏  

𝑧

𝑥=1

(1 − 𝑃( 𝑥ℎ𝑒𝑡))  

𝑃(𝑦𝑎𝑡_𝑙𝑒𝑎𝑠𝑡_𝑜𝑛𝑒_ℎ𝑜𝑚) =  1 − ∏  

𝑧

𝑥=1

(1 − 𝑃( 𝑥ℎ𝑜𝑚)) 

Step 4: Order pathogenicity scores (y) by descending order (note i the rank of the pathogenicity score 
in the region, i=1 being the higher possible pathogenicity score in the region, y1) and calculate the 
probability for pathogenicity score yi to be the maximum pathogenicity for the AD and the AR model 
respectively, i.e. across the heterozygous and across the homozygous genotypes respectively 

𝑃(𝑦𝑖;𝑛𝑜_ℎ𝑒𝑡 
) =  1 −  𝑃(𝑦𝑖;𝑎𝑡𝑙𝑒𝑎𝑠𝑡_𝑜𝑛𝑒_ℎ𝑒𝑡 

) 

𝑃(𝑦𝑖;𝑛𝑜_ℎ𝑜𝑚 
) =  1 −  𝑃(𝑦𝑖;𝑎𝑡𝑙𝑒𝑎𝑠𝑡_𝑜𝑛𝑒_ℎ𝑜𝑚 

) 
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𝑃(𝑦𝑖;𝐶𝐴𝐷𝐷𝑚𝑎𝑥_ℎ𝑒𝑡 
) = 𝑃(𝑦1;𝑎𝑡_𝑙𝑒𝑎𝑠𝑡_𝑜𝑛𝑒_ℎ𝑒𝑡) , 𝑖𝑓 𝑖𝑓 𝑖 = 1   

=  𝑃(𝑦1;𝑎𝑡_𝑙𝑒𝑎𝑠𝑡_𝑜𝑛𝑒_ℎ𝑒𝑡 
) ×  ∏  

𝑖−1

𝑘=1

(𝑃(𝑦𝑘;𝑛𝑜_ℎ𝑒𝑡 
)) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   

 

𝑃(𝑦𝑖;𝐶𝐴𝐷𝐷𝑚𝑎𝑥_ℎ𝑜𝑚 
) =  𝑃(𝑦1;𝑎𝑡_𝑙𝑒𝑎𝑠𝑡_𝑜𝑛𝑒_ℎ𝑜𝑚) , 𝑖𝑓 𝑖 = 1  

= 𝑃(𝑦𝑖;𝑎𝑡_𝑙𝑒𝑎𝑠𝑡_𝑜𝑛𝑒_ℎ𝑜𝑚 
)  ×  ∏  

𝑖−1

𝑘=1

(𝑃(𝑦𝑘;𝑛𝑜_ℎ𝑜𝑚 
)) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

Step 5: 1,400 bins of pathogenicity scores were considered ranging from 0 to 70 by steps of 0.5, 
considering the range of the CADD score currently used to calibrate PSAP null distributions. The 
cumulative probability of observing a pathogenicity score as high or higher than this bin is computed 
for each bin, which creates the PSAP null distributions for the AD and AR models respectively. 
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Supp. Table S1. Currently available PSAP null distributions  
(at https://lysine.univ-brest.fr/~msogloblinsky/share/data/ ) 
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Supp. Table S2. Strategies applied to construct and test PSAP null distributions 
 

Type of variants 
Sequence for 

insertion 
PSAP strategy Number of ClinVar variants 

Coding variants 
• Exomes FREX 

• NFE genomes 

• PSAP-genes-CADD 

• PSAP-genomic-
regions-CADD 

• PSAP-genomic-
regions-ACS 

• AD model: 4,965 
variants 

• AR model: 2,680 variants 

Non-
coding 

variants 
 

Covered  
in FREX 

• Exomes FREX 

•  • PSAP-genomic-
regions-CADD 

• PSAP-genomic-
regions-ACS 

• AD model: 48 variants 

• AR model: 64 variants 

All • NFE genomes 
• AD model: 175 variants 

• AR model: 102 variants 

 
 
 
Supp. Table S3. Number and percentage of non-coding ClinVar variants in the top 10 of NFE genomes 
with PSAP-genomic-regions-CADD and PSAP-genomic-regions-ACS, by category of VEP consequence 
 
(A) Autosomal Dominant model 
 

Type VEP consequence 
N 

variants 

% top 10 - PSAP-
genomic-regions-

ACS 

% top 10 - PSAP-
genomic-regions-

CADD 

Splicing 

splice acceptor variant 61 91.8 52.5 

splice donor 5th base variant 10 90 0 

splice donor region variant 10 50 0 

splice region variant 9 44.4 0 

splice donor variant 16 43.8 25 

splice polypyrimidine tract variant 9 33.3 11.1 

Other 

5 prime UTR variant 2 100 100 

downstream gene variant 14 42.9 14.3 

intron variant 10 30 10 

upstream gene variant 31 12.9 3.2 

start lost 3 0 0 
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(B) Autosomal Recessive Model 
 

Type VEP consequence 
N 

variants 

% top 10 - PSAP-
genomic-regions-

ACS 

% top 10 - PSAP-
genomic-regions-

CADD 

Splicing 

splice acceptor variant 27 100 100 

splice donor 5th base variant 15 100 100 

splice donor region variant 10 100 90 

splice region variant 7 100 85.7 

splice donor variant 12 83.3 66.7 

splice polypyrimidine tract variant 1 0 100 

Other 

5 prime UTR variant 1 100 100 

downstream gene variant 8 62.5 50 

intron variant 12 41.7 33.3 

upstream gene variant 2 0 50 

start lost 1 0 0 

 
 
 
 
Supp. Table S4: tops_noncoding_var_noncoding_Clinvar_allmodels_hg38_TGP_RAVAQ (.xlsx file) 
 
 
 
Supp. Table S5: tops_new_genomiser_1kg_QC_RAVAQ_hg38_TGP_allmodels (.xlsx file) 
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Supp. Table S6: Ranks of 6 known CSVD variants and 3 male infertility candidate variants with PSAP-
genes-CADD and PSAP-genomic-regions-CADD (1 row per individual). Each CSVD variant was observed 
in a different individual. Each male infertility variant was observed in a different family consisting of 
three members each. 
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Supp. Fig.S1. Summary statistics of pathogenicity scores and PSAP p-values (scale –log 10) for NFE 
individuals (one line by individual) 
 
 

 
 
Supp. Fig.S2. Pathogenicity scores and PSAP p-values (scale –log 10) distributions for NFE individuals 
(maximal value for each genome), coding and non-coding ClinVar variants 
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Supp. Fig.S3. Prioritization of splice variants versus other non-coding variants with PSAP on CADD 
regions with CADD or ACS. P-values at 0 were replaced by a p-value of 10-12, which is lower than all 
the other non-zero p-values, for visualization purposes. 
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Supp. Fig.S4. (A) Distribution of CADD scores for ClinVar variants, by type of variant and mode of 
inheritance  
(B) Distribution of ACS scores for ClinVar variants, by type of variant and mode of inheritance 
Coding: N=4,253 variants AD model and 2,245 variants AR model, Splicing: 102 variants AD model and 
65 variants AR model, Non-coding top 100: 49 variants AD model and 19 variants AR model, Other non-
coding: 24 variants AD model and 12 variants AR model 
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Supp. Fig.S5. Comparison of the PSAP-genomic-regions strategy versus a pathogenicity score alone 
in artificially-simulated disease exomes:  percentage of pathogenic non-coding  
and coding ClinVar variants reaching the top N of variants in at least 90% of FREX individuals, with 
PSAP-genomic-regions (darker shade of blue or green) or the pathogenicity score alone (lighter shade 
of blue or green), CADD or ACS N = 48 non-coding AD variants and N = 64 non-coding AR variants (B) N 
= 4,965 coding AD variants and N = 2,680 coding AR variants 
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Supp. Fig.S6. Comparison of PSAP-genomic-regions-CADD and PSAP-genes-CADD for in artificially-
simulated disease exomes: number of coding pathogenic ClinVar variants reaching  
the top N of variants in at least 90% of FREX individuals for each strategy 

 
 
 
 

 
 
Supp. Fig.S7. Comparison of PSAP-coding-genomic-regions-CADD and PSAP-genes-CADD strategies  
for in artificially-simulated disease genomes: number of coding pathogenic ClinVar variants reaching  
the top N of variants in at least 90% of NFE individuals for each strategy 
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Supp. Fig.S8. Flowchart to choose the PSAP method of analysis depending on type of data and variants 
analyzed 
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Appendix II 
 

Supplementary Materials 
 

Easy-PSAP: an integrated workflow to 
prioritize pathogenic variants in 
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Supplementary Materials 

Easy-PSAP: an integrated workflow to prioritize pathogenic variants 
in sequence data from a single individual 

Curation of a high-confidence list of ClinVar pathogenic variants with a known mode of inheritance 

The pathogenic ClinVar (1) variants were downloaded from the NCBI website 

(https://www.ncbi.nlm.nih.gov/clinvar/, accessed on the 3rd of June 2022). Some of these ClinVar 

variants had an annotated mode of inheritance (moi) : "moi autosomal recessive" or "moi autosomal 

dominant". 

From ClinVar, there were 12,776 variants annotated as autosomal dominant (AD) and 12,776 

variants annotated as autosomal recessive (AR). Variants were filtered to keep only autosomal 

pathogenic SNVs having as review status either “reviewed by expert panel” or “criteria provided, 

multiple submitters, no conflicts”, which are the two best review status in ClinVar. There were 1,518 

AD and 1,118 AR variants meeting these criteria.  

For variants which did not have an annotated mode of inheritance, we used a curated version of 

the database OMIM, hOMIM (2) to retrieve a mode of inheritance, and kept variants that were always 

associated with an AD or AR mode of inheritance in hOMIM. The same filtering was applied, which left 

3,641 additional variants for the AD and 1,706 for the AR model. In total, we had a set of 5,159 variants 

for the AD model and 2,824 variants for the AR model.  

Among these ClinVar variants, 4,593 and 2,430 variants were coding SNVs respectively for the AD 

and AR models.  

 

Evaluating the performance of PSAP: simulation of disease exomes using ClinVar variants 

Easy-PSAP was evaluated through simulations by checking the prioritization of known pathogenic 

variants in the mutational background of a healthy individual. The initial and updated PSAP null 

distributions were compared in term of their performances to prioritize known pathogenic variants.  

Disease exomes were simulated by introducing pathogenic ClinVar (1) variants within 574 exomes 

from healthy individuals of the French Exome Project (3). The ClinVar variants were annotated using 

the VEP software (4) and their PSAP p-values were computed for the set of null distributions under 

evaluation.  

The same null distributions were applied to the exomes of FREX individuals using Easy-PSAP. The 

ClinVar variants were inserted one by one in each exome as followed: if the individual carries a variant 

in the region of the ClinVar variant, then the individual variant and its p-value were replaced by the 

ClinVar variant’s; else the ClinVar variant was added for the region. Each individual’s genes were then 

ranked by ascending PSAP p-value and the rank of the ClinVar variant were retrieved. The process was 

repeated for each ClinVar variant.  

  

https://www.ncbi.nlm.nih.gov/clinvar/
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Supplementary Materials 

Easy-PSAP: an integrated workflow to prioritize pathogenic variants 
in sequence data from a single individual 

Introduction 

Easy-PSAP is a Snakemake workflow [Köster et al, 2012] which allows the evaluation of 
genetic variants at the scale of a whole exome or genome. It is composed of two pipelines 
based on the Population Sampling Method (PSAP) method [Wilfert et al, 2016]. PSAP uses 
allele frequencies from large population databases to construct gene-based null 
distributions of pathogenicity scores [Kircher et al, 2014] and ultimately gives a p-value 
by gene for each individual, which summarizes how unlikely it is to observe a variant with 
such pathogenicity score in the general population in this gene. 

The first workflow snakemake_makedistrib_PSAP allows the custom calculation of 
PSAP null distributions from allele frequencies data and a pathogenicity score (CADD 
score or other score). The second workflow snakemake_apply_PSAP is a new 
implementation of the initial PSAP pipeline which applies these null distributions to a vcf 
file of a patient or multiple patients and/or controls. 

Easy-PSAP aims at making the PSAP method accessible and user-friendly for both 
clinicians and researchers. A set of PSAP null distributions with the latest database 
information in hg19 are readily available in the /snakemake_apply_PSAP directory, with 
global allele frequencies from the gnomAD V2 genome database [Karczewski et al 2020] 
and CADD v1.6 [Rentzsch et al 2021] as the pathogenicity score of variants. PSAP null 
distributions in hg38 are now available as well, calibrated using allele frequencies from 
the gnomAD V3 genome database [Chen et al. 2024] and CADD v1.6 in hg38. The option 
of using the hg19 or hg38 assembly of the human genome is offered to users of the 
pipeline, both for creating PSAP null distributions and applying them to their data. 

Easy-PSAP is currently implemented with genes as units of testing, and the option of using 
CADD regions is also available which allows the analysis of the whole genome and not just 
its coding parts as described in [Ogloblinsky et al. 2024]. 

Requirements 

Set up the conda environment 

Easy-PSAP requires the conda package manager to function. If it is not installed already, 
please see bioconda installation instructions to set it up. Snakemake can then be installed 
through conda, as described in the Snakemake installation instructions. 

Download Easy-PSAP repository from GitHub 

Git clone command can be used to create a local copy of Easy-PSAP: 

git clone https://github.com/msogloblinsky/Easy-PSAP.git 

Download large files for to run snakemake_apply_PSAP 

https://snakemake.readthedocs.io/en/stable/
https://github.com/awilfert/PSAP-pipeline
https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.html
https://snakemake.readthedocs.io/en/stable/getting_started/installation.html
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Files too large to be hosted on GitHub can be dowloaded via this link. They are separated 
in two folders example and data that can directly be added to the 
/snakemake_apply_PSAP/ folder to obtain the following configuration: 

├── snakemake_apply_PSAP 
│   ├── example 
│   ├── data 
│   ├── config 
│   ├── slurm 
│   ├── optional 
│   ├── src 
│   ├── envs 
│   ├── README.md 
└── └── Snakefile 

Specific instructions to run each of the two workflows can be found in their 
dedicated README.md file, in each of their folders. 
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Snakemake workflow to make PSAP null distributions 

Introduction 

This first workflow snakemake_makedistrib_PSAP allows the easy calculation of PSAP null 
distributions according to allele frequencies from a vcf file and a pathogenicity score (here the 
CADD score). The input data is highly customizable and the use of Snakemake makes it possible 
to run the pipeline multiple times with different input parameters without running again the 
steps creating files that have already been created. 

Usage 

Once the conda environment with Snakemake installed is setup and activated, the user can 
modify the configuration file according to the desired input files and parameters, and run the 
pipeline. 

1. Configure the pipeline 

config.yaml file 

snakemake_makedistrib_PSAP/config/config.yaml contains all pipeline parameters which 
are tuned by the user with example parameters for the GRCh37 assembly. 
snakemake_makedistrib_PSAP/config/config.hg38.yaml contains example parameters to 
run the pipeline for data in hg38. Available parameters are as follows: 

Parameter Description 

snakemake_directory Path to /snakemake_makedistrib_PSAP directory 
on the user’s machine 

genes bed file for the coordinates of genes’ coding regions. 
The file for GRCh37 is provided with the pipeline and a 
new one for GRCh38 can be created using BioMart 

cadd_regions bed file for the coordinates of CADD regions. The file 
for GRCh37 is provided with the pipeline or can be 
downloaded here 

coding_cadd_regions bed file for the coordinates of coding CADD regions. 
Created from the intersection of genes and CADD 
regions bed files 

score_file Score file used to calibrated PSAP null distributions. 
Format of a CADD file currently supported. File needs 
to be indexed 

score_prefix Prefix describing the score file used 

score_max Maximal possible value of the pathogenicity score (70 
for CADD) used to calibrate null distributions 

allele_frequencies Allele frequencies file used to calibrated PSAP null 
distributions, in the format vcf.gz 

https://www.ensembl.org/info/data/biomart/index.html
https://lysine.univ-brest.fr/RAVA-FIRST/
https://cadd.gs.washington.edu/download
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Parameter Description 

coverage bed file of regions well-covered regions in allele 
frequency database 

af_prefix Prefix describing the allele frequencies file used 

outdir Output directory 

outfile Prefix for output files, will be the name of the PSAP 
null distributions file 

units Unit of testing to construct PSAP null distributions, can 
take the values “gene”, “cadd_region” or 
“coding_cadd_region” 

assembly Both “GRCh37” and “GRCh38” options are currently 
supported 

compound_heterozygote_model TRUE or FALSE, if TRUE will calculate PSAP null 
distributions for the compound heterozygote (CHET) 
model 

hemizygote_model TRUE or FALSE, if TRUE will calculate PSAP null 
distributions for the hemizygote model (HEM PSAP 
null distributions precalculated for genes only) 

WARNING: Users need to check the format of their input files. For the GRCh37 
assembly, no “chr” prefix is expected before the name of the chromosome in the 
allele frequency file and in the score file. For the GRCh38 assembly, a “chr” prefix is 
expected before the name of the chromosome in the allele frequency file but not in 
the score file. These specifications come from the format of gnomAD files and CADD 
files. If not the case, the user needs to format their vcf file accordingly, as the 
pipeline expects this format from input files. 

For the hemizygote model: units of testing need to be defined on chrX. This option 
will also calculate AD/AR/CHET models for females. The names of female/male allele 
frequencies columns in the allele frequencies file can be changed on line 97 of the 
Snakefile (currently “AF_Female” and “AF_Male”) 

It can also be noted that the allele frequency input file can be split by chromosome, which 
needs to be specified accordingly in the config.yaml file (see 
snakemake_makedistrib_PSAP/config/config.hg38.yaml for an example). 

For the coverage file, the command line used to get the bed file provided for gnomAD genome 
V2 (good coverage = 90% of individuals at dp10) was the following. A similar process was used 
for gnomAD V3 coverage file. 

zcat gnomad.genomes.r2.0.1.coverage.txt.gz | tail -n+2 | awk '{print $1"\t
"($2-1)"\t"$2"\t"$7}' > gnomad.genome.r2.0.1.dp10.bed 

The workflow can also be run for all three units at the same time by replacing units = 
config["units"] in the Snakefile by: units = 
["gene","coding_caddregion","caddregion"] 
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TIP: different analyses can be run using just one cloned repository. This is achieved 
by changing the outdir and outfile in the configuration file. Also different 
parameters values can be used in the different analyses. 

2. Create the Conda environments 

The Snakemake relies on conda environements which contain all the necessary 
dependencies to run the pipeline. The conda environements need to be installed first, which 
can take some time. This step is easily done using the following command line: 

snakemake --use-conda --conda-create-envs-only --conda-frontend conda -j 1 

3. Run the pipeline. 

Once the pipeline is configured and conda environments are created, the user just needs to 
run Snakemake pipeline to make PSAP null distributions: 

snakemake --use-conda --conda-frontend conda -j 22  

The mandatory arguments are: * –use-conda: to use the conda environments created at the 
previous step. The –conda-frontend conda specifies the use of conda to run the 
environments, instead of mamba. * -j: number of threads/jobs provided to snakemake. The 
pipeline splits each step by chromosome so running it on at least 22 threads is 
recommended. 

An optional argument –dry-run can be used to make a dry run of the pipeline, check if there 
are no warnings and see all the files that will be created. With the additionnal argument –
configfile=/path_to_configfile/name_config.yaml, the user can use a configuration file in a 
different location instead of modifying the default config.yaml file in the snakemake 
directory. 

TIP: If the execution of a step of the pipeline fails or if you want to see how it 
progresses, you can check the {outdir}/log directory where a log file is created 
for each rule of the Snakemake by chromosome if applicable. A 
{outdir}/benchmark directory is also created automatically to monitor how 
much memory and cpu is used by each step of the pipeline. 

Pipeline steps 

The steps of the pipeline are not meant to be used separately and will be run by Snakemake 
in the most efficient way depending on input and output files. 

1. split_multiallelic_panel 

The vcf file with allele frequencies from the reference database is split by chromosome and 
multi-allelic variants are split. Output located in {outdir}/reference_panel. 
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2. make_allele_frequencies_file 

The allele frequency files created at the previous step are processed by default to keep only 
PASS SNVs, in well-covered regions of the database for the calculation of PSAP null 
distributions. If other filtering needs to be applied, or all filtering removed (no column 
FILTER in the input vcf), the following line can be modified in the Snakefile: 

bcftools view -i 'FILTER=="PASS"' --regions-file {params.coverage} --types
 snps {input.file_allele_frequencies_split} 

The vcf input file needs to have the columns CHROM, POS, REF, ALT, CHROM, AF, AC which will 
be kept in the output files. If any column has a different name or if another column needs to 
be used for allele frequencies, the following line in the Snakefile can be modified: 

bcftools query -f'%CHROM\t%POS\t%REF\t%ALT\t%AF\t%AC\n' 

Output located in {outdir}/reference_panel. 

3. make_notpassvariants_file 

Variants that do not pass the filtering descrbed in the previous step will have to be removed 
from the calculation of PSAP null distributions downstream of the pipeline. Changes can be 
made to the default filtering as needed. In this step, a file by chromosome is created with the 
coordinates of these variants. Output located in {outdir}/reference_panel. 

4. list_units_wellcovered_panel 

The bed files for genes, CADD regions and coding CADD regions are intersected with the bed 
file of good coverage in the allele frequencies database using bedmap. A list of genes, CADD 
regions and coding CADD regions well-covered in at least 50% of their length in the database 
is computed. Final PSAP null distributions will only include this list of units. Output located in 
{outdir}/reference_panel. 

5. make_input_table_forPSAP 

In this step, information used to calculate PSAP null distributions is gathered in tables by 
chromosome using bedtools. These tables include the chromosome, start, end, reference 
allele, alternative allele, raw CADD score, PHRED CADD score, corresponding CADD region 
and gene if there is one of all possible SNVs of the genome in the well-covered regions by 
database. Output located in {outdir}/score_tables. 

6. calculate_null_distributions_PSAP 

This step carries out the main function of the pipeline, which is to calculate PSAP null 
distributions. Overall, it evaluates the probability of seeing a heterozygote or homozygote 
variant with such a maximal CADD score as high or higher in the chosen unit of testing (gene, 
CADD regions or coding CADD region) in the reference database. Variants from the step 
make_notpassvariants_file are removed from the analysis. The PHRED CADD score is 
used (column 7). One file by chromosome and by model is created, each line corresponds to 
a unit of testing and columns to PSAP probabilities. Output located in 
{outdir}/temp_lookup_bychr. 

https://bedops.readthedocs.io/en/latest/content/reference/statistics/bedmap.html
https://bedtools.readthedocs.io/en/latest/index.html
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7. make_final_null_distributions_PSAP 

The null distributions by chromosome are gathered in a unique table for the autosomal 
dominant (het) model and autosomal recessive (hom model), for the units of testing well-
covered in at least 50% of their length in the database. The final two output files created are 
{outfile}_het.txt.gz and {outfile}_hom.txt.gz. Output located in 
{outdir}/final_lookuptables_PSAP. 

Configuration of computation resources 

This Snakemake pipeline is portable to cluster engines, see the Snakemake cluster 
documentation for more detailed information. Taking the SLURM scheduler as an example, 
the pipeline can be run without any changes using the following command line: 

snakemake --use-conda --slurm --default-resources slurm_account=<your SLUR
M account> slurm_partition=<your SLURM partition> 

For a custom use of ressources and input parameters, a profile can be used. When the 
argument --profile is added, snakemake looks for a directory with the name of the given 
profile (here slurm) containing a config.yaml file. This file contains the parameter cluster 
which tells snakemake how to submit jobs to the cluster. In the case of slurm, the sbatch 
command is used with its arguments. Other arguments include jobs which specifies the 
maximum number of jobs submitted at the same time, default-resources requested for 
each job and resources, which define the resource limits. Where to save SLURM logs and 
what to call them is also specified. Note that this folder must already exist. All of these 
arguments can be modified in the file slurm/config.yaml by the user depending on the 
desired ressources to allocate to the pipeline. To run the pipeline according to a specific 
profile, the following command line is used: 

snakemake --use-conda --profile slurm 

Snakemake can also use generic cluster support like qsub, by giving an other argument to -
-cluster combined with ressources. The profile file can also be altered accordingly 
depending on user needs. The most simple command line in that setting is: 

snakemake --use-conda --cluster qsub --jobs 22 

Test data 

This pipeline has been tested using allele frequencies from the genomes of the gnomAD 
database v2 and CADD v1.6 both in GRCh37, with the default parameters of the pipeline. 
Bed files for genes and CADD regions are available with the pipeline as well. Both of these 
files are in open access, and can be used to test the pipeline and its functionalities. 

 

  

https://snakemake.readthedocs.io/en/stable/executing/cluster.html
https://snakemake.readthedocs.io/en/stable/executing/cluster.html
https://gnomad.broadinstitute.org/downloads/
https://gnomad.broadinstitute.org/downloads/
https://cadd.gs.washington.edu/download
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Snakemake workflow to apply PSAP null distributions 

Introduction 

This second workflow snakemake_apply_PSAP applies these null distributions to a vcf file of 
a patient or multiple patients or controls. The input data is highly customizable and the use 
of Snakemake makes it possible to run the pipeline multiple times with different input 
parameters without running again the steps creating files that have already been created. 

Usage 

Once the conda environmenet with Snakemake installed is setup and activated, the user can 
modify the configuration file according to the desired input files and parameters, and run 
the pipeline. The VEP software is used for the vcf file annotation, without the need to install 
VEP on the machine thanks to the conda package manager. The necessary files for 
annotation are (cf next paragraph): * VEP cache and FASTA (for the version 107 of VEP, 
which is the one currently used in the pipeline) * CADD score files for SNVs and InDels 

1. Configure the pipeline 

config.yaml file 

snakemake_apply_PSAP/config/config.yaml contains all pipeline parameters which are 
tuned by the user with example parameters for the GRCh37 assembly. 
snakemake_apply_PSAP/config/config.hg38.yaml contains example parameters to run the 
pipeline for data in GRCh38. Available parameters are as follows: 

Parameter Description 

snakemake_directory Path to /snakemake_apply_PSAP 
directory on the user’s machine 

vcf vcf file with individual data to score with 
PSAP, needs to be in format GRCh37 (no 
“chr” prefix for chromosomes) and 
bgzipped 

ped Corresponding PED file for the vcf file, tab-
delimited, important columns are 2nd 
column = individual IDs, 5th column = sex 
(1=male, 2=female, other=unknown) and 
6th column = status (1=unaffected, 
2=affected) 

coverage bed file of regions well-covered regions in 
allele frequency database 

lookup_namefile Path and prefix of the lookup table for 
PSAP null distributions (lead to two files 
ending by “_het.txt.gz” and “_hom.txt.gz”) 

variants_exclude List of variants to exclude from the vcf file, 
that were excluded from the calculation of 
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Parameter Description 

null distributions. The file for gnomAD V2 is 
provided with the pipeline 

cadd_path Directory where the CADD files for 
annotation are located 

score_max Maximal possible value of the 
pathogenicity score (70 for CADD) used to 
calibrate null distributions 

genes bed file for the coordinates of genes coding 
regions. The file for GRCh37 is provided 
with the pipeline and a new one can be 
created using BioMart 

cadd_regions bed file for the coordinates of CADD 
regions. The file for GRCh37 is provided 
with the pipeline or can be downloaded 
here 

vep_cache Directory of the VEP cache. Instructions on 
how to download the cache can be found 
on the Ensembl website with the necessary 
files located here for VEP 107 

vep_cache_merged “TRUE” if VEP cache is merged, otherwise 
“FALSE” 

vep_fasta VEP FASTA file with its path which can be 
downloaded here for VEP 107 

outdir Output directory 

outfile Prefix for output files, will be the name of 
the PSAP null distributions file 

unit Unit of testing to construct PSAP null 
distributions, can take the values “gene”, 
“cadd_region” or “coding_cadd_region” 

cadd_version Version of CADD to be used for annotation 

assembly Both “GRCh37” and “GRCh38” options are 
currently supported 

compound_heterozygote_model TRUE or FALSE, if TRUE will calculate PSAP 
p-values for the compound heterozygote 
(CHET) model 

hemizygote_model TRUE or FALSE, if TRUE will calculate PSAP 
p-values for the hemizygote model for 
males depending on the sex indicated in 
the ped file (HEM PSAP null distributions 
pre-calculated for genes only) 

indel_file File with InDels annotated by 
CADD website or “NA”. Column names of 

 

https://www.ensembl.org/info/data/biomart/index.html
https://lysine.univ-brest.fr/RAVA-FIRST/
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#cache
https://ftp.ensembl.org/pub/release-107/variation/indexed_vep_cache/
https://ftp.ensembl.org/pub/release-107/fasta/
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Parameter Description 

InDel file must be “#Chrom Pos Ref Alt 
RawScore PHRED” (format of CADD 1.6 InDel 
file) 

For the hemizygote model: this option will calculate hemizygote model for males 
and AD/AR/CHET models for females on chrX. 

TIP: the user running the pipeline needs to have permission to write in the folder 
where the input vcf file is located. If not, the vcf file needs to already be indexed as 
the first step of the pipeline involves indexing the input vcf file. Suggested 
command for indexing a vcf file, using bcftools : 

bcftools index {vcf} 

WARNING: The input vcf file for the PSAP pipeline must only contain biallelic 
variants (multiallelic variants need to be split in different lines). This process can be 
done using a tool like VCFprocessor or during a Quality Control of the vcf file using 
a tool like the R package RAVAQ. We provide a script optional/qc_vcf.R to perform 
the recommended QC anf formatting for the vcf file. The script can be run using 
the command: 

Rscript qc_vcf.R {vcf} {ped} {outfile} {outdir} 

Users also need to check the format of the vcf file. For the GRCh37 assembly, no “chr” prefix 
is expected before the name of the chromosome. For the GRCh38 assembly, a “chr” prefix is 
expected before the name of the chromosome. If not the case, the user needs to format 
their vcf file accordingly, as the pipeline expects this format for annotation purposes. 

For the coverage file, the command line used to get the bed file provided for gnomAD 
genome V2 (good coverage = 90% of individuals at dp10) was: 

zcat gnomad.genomes.r2.0.1.coverage.txt.gz | tail -n+2 | awk '{print $1"\t
"($2-1)"\t"$2"\t"$7}' > gnomad.genome.r2.0.1.dp10.bed 

The chosen lookup table for PSAP null distributions has to match the “unit” and 
“cadd_version” specified in the configuration file. Already calculated lookup tables include : 
latest_gnomadgen_string_ensembl_cadd1.6_af_nosing_lookup : genes 
latest_gnomadgen_string_coding_caddregions_cadd1.6_af_nosing_lookup : coding CADD 
regions *latest_gnomadgen_string_caddregions_cadd1.6_af_nosing_lookup : CADD regions 
Available PSAP null distributions have used gnomAD V2 genome for allele frequencies 
calibration (AF specifically) and CADD v1.6 for the pathogenicity score, all in GRCh37. 

For the CADD files, the path and version need to lead to the following files: 

{cadd_path}/CADD_v{cadd_version}/whole_genome_SNVs.tsv.gz 
{cadd_path}/CADD_v{cadd_version}/InDels.tsv.gz 

The formats of the CADD files are currently supported. Files need to be indexed. 

The file with InDels anotated by CADD is optional. If no file is provided, InDels will not be 
scored with PSAP and only SNVs will be kept for the analysis. The script 
optional/make_indel_file_forcadd.sh can be used to generate input file with InDels to 

https://lysine.univ-brest.fr/vcfprocessor/functions.html#splitmultiallelic
https://gitlab.com/gmarenne/ravaq
https://cadd.gs.washington.edu/download
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upload to the CADD website in the correct format. The script can be run using the following 
command (bcftools and tabix need to be installed in the environement for this command to 
work): 

make_indel_file_forcadd.sh {vcf} {outfile} {outdir} 

TIP: different analyses can be run using the same repository. This is achieved by 
changing the outdir and outfile in the configuration file. Also different parameters 
values can be used in the different analyses. 

2. Create the Conda environments 

The Snakemake relies on conda environements which contain all the necessary 
dependencies to run the pipeline. The conda environements need to be installed first, which 
can take some time. This step is easily done using the following command line: 

snakemake --use-conda --conda-create-envs-only --conda-frontend conda 

3. Run the pipeline. 

Once the pipeline is configured and conda environments are created, the user just needs to 
run the Snakemake pipeline to score the vcf file with PSAP: 

snakemake --use-conda --conda-frontend conda -j 20  

The mandatory arguments are: * –use-conda: to use the conda environments created at the 
previous step. The –conda-frontend conda specifies the use of conda to run the 
environments, instead of mamba. * -j: number of threads/jobs provided to snakemake. The 
VEP annotation uses 20 threads if provided (not more), and the number of threads will 
condition the number of individuals analyzed at the same time. 

An optional argument –dry-run can be used to make a dry run of the pipeline, check if there 
are no warnings and see all the files that will be created. With the additionnal argument –
configfile=/path_to_configfile/name_config.yaml, the user can use a configuration file in a 
different location instead of modifying the default config.yaml file in the snakemake 
directory. 

TIP: If the execution of a step of the pipeline fails or if you want to see how it 
progresses, you can check the {outdir}/log directory where a log file is created 
for each rule of the Snakemake by individual if applicable. A 
{outdir}/benchmark directory is also created automatically to monitor how 
much memory and cpu is used by each step of the pipeline. 
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Pipeline steps 

The steps of the pipeline are not meant to be used separately and will be run by Snakemake 
in the most efficient way depending on input and output files. 

1. filter_regions 

The vcf file is filtered to exclude regions not well-covered in the database used to construct 
PSAP null distribution. This step ensures the reliability of PSAP results, so that variants 
analyzed in the vcf were also present in the construction of PSAP null distributions. Output 
located in {outdir}. 

2. write_column_names 

Column names from the vcf file are written in a separate file. This file will then be used 
during PSAP annotation to check fields present in input files. Output located in {outdir}. 

3. vep_annotation 

During this step, the vcf file is annotated by the VEP software. Multiple annotations critical 
for downstream PSAP analysis are added, among which: the corresponding gene and CADD 
region, if applicable, and the CADD score of variants. VEP cache and FASTA file need to be 
downloaded prior to the analysis, but the software itself is run through the conda 
environment. Annotation is slightly different depending on the unit of testing. Output 
located in {outdir/annotated}. 

4. filter_variants 

Variants that were filtered out in the database used to calculate PSAP null distributions are 
filtered out from the VEP output file in this step. Again, this ensures the reliability of PSAP 
results. Output located in {outdir/annotated}. 

5. apply_PSAP_calculations 

This step carries out the main function of the pipepline, which is the calculation of PSAP p-
values for variants in the vcf input file. These calculations are run by individual. 
Preprocessing steps harmonize the data between the vcf file and the VEP annotated file 
using the gaston R package. If an InDel CADD score file is provided, InDels are included in the 
analysis. Otherwise only autosomal SNVs are kept. Then, the variant with the maximal CADD 
score by unit of testing (gene, CADD region or coding CADD region) is scored with the PSAP 
null distribtion for the autosomal dominant (heterozygote variants) or recessive model 
(homozygote variants). Additional models will be run if indicated in the configuration file, 
and can include the compound heterozygote and/or hemizygote models. Output located in 
{outdir/annotated}. 

  

https://cran.r-project.org/package=gaston
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6. make_report_file 

If affected individuals are present in the ped file (value 2 in the 6th column), this step makes 
a report file that merges the individual PSAP records. If a variant is present in multiple 
individuals, it will be a single record in the report file. If there are control individuals in the 
vcf (value 1 in the 6th column of the ped file), a validation step is carried out. If the variant of 
the affected individual(s) is not seen in controls, the validation column has an “no_controls” 
value, otherwise it has the value “violation”. Output located in {outdir}/annotated}. 

7. compress_output_files 

Output files from PSAP are bgzipped to minimize the space taken by PSAP results, especially 
if a large number of individuals was analyzed. Report file is not compressed. Output located 
in {outdir/annotated}. 

Configuration of computation resources 

This Snakemake pipeline is portable to cluster engines, see the Snakemake cluster 
documentation for more detailed information. Taking the SLURM scheduler as an example, 
the pipeline can be run without any changes using the following command line: 

snakemake --use-conda --slurm --default-resources slurm_account=<your SLUR
M account> slurm_partition=<your SLURM partition> 

For a custom use of ressources and input parameters, a profile can be used. When the 
argument --profile is added, snakemake looks for a directory with the name of the given 
profile (here slurm) containing a config.yaml file. This file contains the parameter 
cluster which tells snakemake how to submit jobs to the cluster. In the case of slurm, the 
sbatch command is used with its arguments. Other arguments include jobs which 
specifies the maximum number of jobs submitted at the same time, default-resources 
requested for each job and resources, which define the resource limits. Where to save 
SLURM logs and what to call them is also specified. Note that this folder must already exist. 
All of these arguments can be modified in the file slurm/config.yaml by the user 
depending on the desired ressources to allocate to the pipeline. To run the pipeline 
according to a specific profile, the following command line is used: 

snakemake --use-conda --profile slurm 

Snakemake can also use generic cluster support like qsub, by giving an other argument to -
-cluster combined with ressources. The profile file can also be altered accordingly 
depending on user needs. The most simple command line in that setting is: 

snakemake --use-conda --cluster qsub --jobs 20 

  

https://snakemake.readthedocs.io/en/stable/executing/cluster.html
https://snakemake.readthedocs.io/en/stable/executing/cluster.html
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Test data 

A test vcf file, ped file and InDel file are available in the /example folder. They correspond 
to the names of the files in the configuration file (path need to be altered). They can be used 
as an example to format the user’s files or to test run the pipeline. The vcf file has been 
generated by sampling 10 individuals of European descent from the 1000 Genomes Project, 
restricting to regions covered by the exome, and inserting known best-reviewed coding 
pathogenic variants (one in each individual exome) from the ClinVar database. The list of 
inserted variants and their genotypes can be found in the file 
added_pathogenic_mutations_AD_AR_1kG.txt. Running PSAP on these synthetic 
exomes shows how the method performs in a real-life setting. 

 

 

 

https://www.internationalgenome.org/data
https://www.ncbi.nlm.nih.gov/clinvar/
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Supplementary Table S1: Feature of the RF methods to detect DI 
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Supplementary Table S2: Benchmarking scenarios for ML methods to detect DI 

 

 

 

 

 
random100_FREX 
– negative pairs 

top100PSAP_FREX  
– negative pairs 

OLIDA_total  
– positive pairs 

 
True 

negative 
False 

positive 
True 

negative 
False 

positive 
True 

positive 
False 

negative 

DiGePred 32,937 16 18,341 7 44 25 

DIEP 32,125 828 18,026 322 59 10 

VarCoPP2.0 32,943 10 17,908 440 34 35 

ARBOCK.excl.pheno 22,897 10,056 12,776 5,572 60 9 

ARBOCK.incl.pheno 30,428 2,525 17,248 1,100 64 5 

Supplementary Table S4: Categorization of random100_FREX and top100PSAP_FREX and pairs OLIDA_total in the 
benchmark 

Scenario Positive pairs Negative pairs 

True digenic pairs held 
out from ARBOCK vs 
combination of genes 
from these true 
digenic pairs 

• ARBOCK_held_out  
(N = 14) 

• ARBOCK_shuffled (N=364) 

All true OLIDA digenic 
pairs vs neutral pairs 
from FREX 

• OLIDA_total  
(N = 69) 

• random100_FREX (N = 32,953) 

• top100PSAP_FREX (N = 18,348) 

ClinVar and FREX  
variants pairs 

‐ 

• random100_FREX_clinvar100_AD (N = 70) 

• top100PSAP_FREX_clinvar100_AD (N = 69) 

• random100_FREX_clinvar100_AR (N = 74) 

• top100PSAP_FREX_clinvar100_AR (N = 71) 

 ARBOCK_shuffled – negative pairs ARBOCK_held_out – positive pairs 

 True negative False positive True positive False negative 

DiGePred 356 8 4 10 

DIEP 319 45 8 6 

VarCoPP2.0 306 58 2 12 

ARBOCK.excl.pheno 128 236 11 3 

ARBOCK.incl.pheno 155 209 9 5 

Supplementary Table S3: Categorization of ARBOCK_held_out and ARBOCK_shuffled pairs in the benchmark 
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random100_FREX_clinvar100_AD – 

negative pairs 
random100_FREX_clinvar100_AR – 

negative pairs 

 True negative False positive True negative False positive 

DiGePred 70 0 74 0 

DIEP 66 4 70 4 

VarCoPP2.0 68 2 73 1 

ARBOCK.excl.pheno 38 32 52 22 

ARBOCK.incl.pheno 56 14 65 9 

Supplementary Table S5: Categorization of random100_FREX_clinvar100_AD  
and random100_FREX_clinvar100_AR in the benchmark 

 
top100PSAP_FREX_clinvar100_AD 

– negative pairs 
top100PSAP_FREX_clinvar100_AR 

– negative pairs 

 True negative False positive True negative False positive 

DiGePred 69 0 71 0 

DIEP 63 6 70 1 

VarCoPP2.0 63 6 64 7 

ARBOCK.excl.pheno 33 36 51 20 

ARBOCK.incl.pheno 50 19 61 10 

Supplementary Table S6: Categorization of top100PSAP _FREX_clinvar100_AD  
and top100PSAP _FREX_clinvar100_AR in the benchmark 
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