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Université de Pau et des Pays de l’Adour
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Fast inference for high-dimensional one-factor

copula models and methods for multivariate

change-point detection with applications to stock

market data

Alex Verhoijsen

Abstract

Copula models are often used to model dependence between random variables in a
multivariate, low-dimensional, setting. However, practical problems arise when the
dimension becomes very large. A different problem, when working with multivariate
time series, is the assumption of stationarity, which is often violated, and adequate
methods are required to detect departures from stationary.
We begin the thesis by introducing the technical tools related to copula models and
change-point detection that are used in the remainder of this work.
The first original contribution of the thesis is a fast inference methods for high-
dimensional one-factor copula models. We propose a model with Gaussian factors
and residual dependence modelled using a one-factor copula model. The corre-
sponding estimation procedure allows the statistician to identify the factor model
parameters, the Gaussian factors, the factor in the one-factor copula model, and
the one-factor copula parameter. Asymptotic properties for a model with up to
three Gaussian factors are established, and finite sample properties are illustrated
using Monte Carlo simulations. A practical application using SP500 stock market
data demonstrates how the proposed model can be used to capture dependence in
real-world data.
The second original contribution is a nonparametric sequential open-end change-
point detection scheme using the empirical distribution function of possibly multi-
variate observations. We establish the asymptotic properties of the detector, and
perform large-scale Monte Carlo simulations in a univariate and multivariate, low-
dimensional, setting. To illustrate the procedure, we conclude with a real-world
application by monitoring for changes in the log-returns of the NASDAQ composite
index. The code used to implement the monitoring procedure is included in the R
package npcp.
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Inférence rapide pour des modèles de copules à

un facteur en grande dimension et méthodes de

détection de rupture multivariées avec

applications aux données de marchés financiers

Alex Verhoijsen

Résumé

Les modèles à base de copules sont souvent utilisés pour modéliser la dépendance
entre variables lorsque la dimension des données est faible. Lorsque la dimension
augmente, de nombreux problèmes pratiques apparaissent malheureusement. Dans
le cas où les données sont des séries temporelles, il est en plus nécessaire de tester
leur stationnarité préalablement à toute modélisation, ce qui nécessite des méthodes
adéquates capables de détecter des écarts à la stationnarité.
Nous commeno̧ns ce document par une introduction aux outils mathématiques
nécessaires à la compréhension des modèles à base de copules et des méthodes de
détection de rupture.
La première contribution de ce travail est la proposition d’une méthode d’inférence
rapide pour des modèles de copules à un facteur en grande dimension. Nous pro-
posons un modèle à un facteur dont la dépendance résiduelle est modélisée par un
modèle de copules à un facteur. La méthode d’estimation associée permet d’identifier
les facteurs Gaussiens sous-jacents, le facteur du modèle de copules ainsi que le
paramètre de la copule paramétrique correspondante. Les propriétés asymptotiques
pour un modèle avec un, deux ou trois facteurs Gaussiens sont établies et sont
complétées par des simulations de Monte Carlo dans le cas d’échantillons de tailles
finies. Une application à des données boursières liées aux SP500 montre comment
le modèle proposé peut être utilisé pour modéliser la dépendance entre un grand
nombre de variables dans des situations réalistes.
La deuxième contribution de ce travail est la proposition d’une méthode de surveil-
lance non paramétrique n’ayant pas un horizon de surveillance fini et permettant de
détecter des changements dans la distribution de données multivariées à l’aide de
la fonction de répartition empirique. Nous établissons les propriétés asymptotiques
du détecteur sous-jacent et nous présentons de nombreuses simulations de Monte
Carlo en faible dimension. Nous illustrons l’intérêt de la procédure par une appli-
cation à la surveillance de retours logarithmiques du NASDAQ composite. Le code
implémentant la procédure est inclus dans le package R npcp.
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Chapter 1

Introduction

To evaluate the relationship between the components of a pair of random variables
(X, Y ), students in statistics are often first introduced to the Pearson correlation co-
efficient ρ(X, Y ) = Cov(X, Y )/

√
Var(X)Var(Y ), which is widely used in statistical

applications. Nevertheless, Pearson’s correlation coefficient suffers from some defi-
ciencies (Embrechts et al., 2002). One disadvantage is that it does not always capture
the entire dependence structure between random variables. An example of this is
when one has at hand a bivariate random vector (X, Y ), where X ∼ N(0, 1), and
Y = X2. Even though Y is clearly dependent on X, one can show that ρ (X, Y ) = 0.

A different approach to model dependence between random variables is by the
use of copulas. Recall that the distribution function (d.f.) F of a vector of random
variables X = (X1, . . . , Xd) is

F (x) = P (X1 ≤ x1, . . . , Xd ≤ xd) , (1.1)

where x = (x1, . . . , xd) ∈ [−∞,∞]d. Let Uj = Fj(Xj), where Fj is a d.f., for j ∈
{1, . . . , d}. A copula C is the d.f. of a vector of random variables U = (U1, . . . , Ud),
with Uj ∼ U(0, 1), for j ∈ {1, . . . , d}.

The seminal work of Sklar (1959) shows that for a d-variate d.f. F and univariate
margins F1, . . . , Fd, a copula C binds together the margins into their joint distribu-
tion and thus captures the entire dependence structure between random variables.
If the margins are continuous, the copula will be unique, and in what follows in
the rest of the thesis we assume that this is the case. Vice-versa, Sklar’s theorem
states that a d-variate joint d.f. F can be decomposed into a copula C and its d
univariate margins F1, . . . , Fd. Copulas can be used in practical applications to ob-
tain an estimate of the joint d.f. F by first separately estimating the univariate d.f.s
F1, . . . , Fd, before estimating the copula C. This approach is useful in statistical
applications such as in economics (Patton, 2012), in finance (Cherubini et al., 2004;
McNeil et al., 2005), and in hydrology (Subbarao et al., 1996). For an overview of
the rise in popularity of copulas in the finance literature, see Genest et al. (2009).

Even though classical copula models provide a straightforward method to model
dependence between random variables, problems with estimation of the parameters
arise when the dimension becomes too large. To address this, Krupskii and Joe
(2013) propose a factor copula model in which dependence between random variables
is caused by common, unobserved, factors. For example, in finance, one can assume
that a change in the underlying economic situation affects stock prices. This factor

13



copula approach was extended in Krupskii and Joe (2015) to allow for a hierarchical
structure, and Krupskii and Joe (2022) proposed an estimation procedure for factor
copula models with non-overlapping groups.

The first contribution of the thesis in Chapter 3 extends existing inference meth-
ods for one-factor copula models. We design a new inference method that allows
for fast computation of the model parameters in a very high-dimensional one-factor
copula model, and use this approach to model the dependence between stock prices
in different industry sectors. Chapter 3 and the corresponding Appendix A are
based on Verhoijsen and Krupskiy (2022), which has been published in Dependence
Modeling.

Assume one has at hand a sample of a stationary time series X1, . . . ,Xm of size
m, called the learning sample, and a monitoring sample Xm+1,Xm+2, . . . , where
Xi = (Xi1, . . . , Xid) is a random vector and i = 1, 2, . . . . The idea of sequential
change-point detection is to monitor a time series for departures from stationarity
by comparing a detector to a threshold. In sequential change-point detection, ob-
servations Xk, where k > m, arrive one at a time, and at each step the detector is
calculated and compared to the threshold, with the goal of identifying departures
from stationarity “as quickly as possible”. If the null hypothesis of stationarity is not
rejected, a new observation is collected and the monitoring procedure starts again
from the beginning. In open-end sequential change-point detection monitoring can
in theory continue indefinitely as long as the hypothesis of stationarity is not re-
jected, while in closed-end change-point detection, monitoring eventually stops after
the arrival of observation Xn, with n > m.

To monitor for changes in the d.f. at any point k⋆ > m, one can verify if

P (X1 ≤ x) = · · · = P (Xk⋆ ≤ x) ̸= P (Xk⋆+1 ≤ x) = P (Xk⋆+2 ≤ x) = . . . ,

where x = (x1, . . . , xd) ∈ Rd. The second contribution of the thesis can be found
in Chapter 4 and the corresponding Appendix B, and proposes an open-end non-
parametric sequential change-point detection scheme to monitor for changes in the
empirical d.f. of a possibly multivariate dataset. Changes in the joint d.f. of a
multivariate dataset can be the result of changes in the margins, or of changes in
the dependence structure between the random variables. The monitoring scheme
is illustrated with an application to stock market data. The results in this chapter
have been published in the Journal of Time Series Analysis (Holmes et al., 2023),
and the corresponding R code has been included in the package npcp (Kojadinovic
and Verhoijsen, 2022) available on CRAN.

The rest of the thesis is organised as follows. In Chapter 2 multivariate mod-
els in the form of Gaussian factor models and (factor) copula models, along with
their estimation methods are introduced. Furthermore, we explain the different ap-
proaches to change-point detection. These techniques are necessary for the rest of
the thesis. The first original work of this thesis is in Chapter 3, which proposes
a fast inference method for high-dimensional one-factor copula models. Chapter 4
proposes an open-end nonparametric sequential change-point detection method for
changes in the empirical d.f. of possibly multivariate observations. Chapter 5 dis-
cusses ongoing investigations, summarises the work in the main body of the thesis,
and concludes with directions for future research. To improve the flow of the main
text, proofs and additional materials for Chapters 3 and 4 have been moved to
Appendix A and B, respectively.
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Multivariate models and
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2.4 Nonparametric inference for copula models . . . . . . . . . . . . . . . 32

2.5 Statistical process control and change-point detection . . . . . . . . . 35
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2.5.2 Change point detection . . . . . . . . . . . . . . . . . . . . . . 36

2.6 Overview of the remaining chapters . . . . . . . . . . . . . . . . . . . 38

In this chapter, the main tools used in the thesis are presented. To begin with,
techniques to model dependence in multivariate data by means of Gaussian factor
models are introduced. While factor models are easy to understand from a concep-
tual perspective, their practical use is limited due to the assumption of Gaussianity.
Copula models provide an elegant way of capturing a more general dependence struc-
ture in multivariate data, and allow the statistician to separately model the margins
and the dependence structure. Basic copula concepts are introduced, as well as
measures of association and one-factor copulas. One-factor copula models assume
the existence of a common, unobserved, factor as the source of dependence between
observable variables, allowing for more parsimonious models than standard copula
models. Parametric inference methods for copula models are discussed both when
using parametric and nonparametric models for the margins. Next, nonparametric
inference methods by means of the empirical copula process are outlined.
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The distribution function of a vector of random variables is not necessarily stable
over time. Change-point detection techniques can be used to monitor for changes
in the distribution function, and the goal is to identify departures from stationary
in the underlying time series. We discuss the different approaches to change-point
detection and its practical relevance.

In what follows, for x = (x1, . . . , xd) and y = (y1, . . . , yd), two vectors in Rd, the
notation for the vector inequality x ≤ y implies that each of the componentwise
inequalities xj ≤ yj holds, for j ∈ {1, . . . , d}. That is,

x ≤ y ⇐⇒ xj ≤ yj, j ∈ {1, . . . , d} .

Furthermore, let x(j) = (1, . . . , 1, xj, 1, . . . , 1) be the vector x = (x1, . . . , xd) where
xi = 1, for i ∈ {1, . . . , d} \ j. Lastly, let R = [−∞,∞], and let the componentwise
minima between two vectors x and y be given by x∧y = (min (x1, y1) , . . . , (xd, yd)).

2.1 Gaussian factor models

Assume one has at hand a vector of d observable random variables Y = (Y1, . . . , Yd)
⊤

with mean µ = (µ1, . . . , µd)
⊤ and variance-covariance matrix Σ. Let

X = V −
1
2 (Y − µ)

be the standardised version of Y , where V −
1
2 = diag (1/σ1, . . . , 1/σd) is a diagonal

matrix, with σ2
j = Var (Yj), for j ∈ {1, . . . , d}. The goal of factor analysis is to

model the dependence between the elements of the vector X = (X1, . . . , Xd)
⊤ as a

linear combination of an unobservable standard Gaussian vector of p factors Z =
(Z1, . . . , Zp)

⊤, and an unobservable standard Gaussian vector of d error terms ε =
(ε1, . . . , εd), where in practical applications, p is smaller then d, and Cov (Z, ε) = 0.
For j ∈ {1, . . . , d}, the Gaussian p-factor model is

Xj =

p∑
k=1

λjkZk + γjεj. (2.1)

The observed variables Xj load heterogeneously on the unobserved common factors

Zk via the factor loadings λjk, where Zk, εj
iid∼ N(0, 1), and γj =

√
1−

∑p
k=1 λ

2
jk

such that Var (Xj) = 1, for j ∈ {1, . . . , d} and k ∈ {1, . . . , p}. Casting (2.1) into
matrix notation yields

X = ΛZ + Γ
1
2ε, (2.2)

where Λ = (λ1, . . . ,λp) is the d × p matrix of factor loadings of p column vectors

λk = (λ1k, . . . , λdk)
⊤, and Γ

1
2 = diag (γ1, . . . , γd). An illustration of a one-factor

model is given in Figure 2.1.

Recall that the common factors Z and the error terms ε are uncorrelated stan-
dard Gaussian vectors, that is Cov (Z) = Ip, Cov (ε) = Id, and Cov (Z, ε) = 0.
Then the variance-covariance matrix ΣX of X in (2.2) is

ΣX = ΛΛ⊤ + Γ. (2.3)

16 Chapter 2



Z1

X1

λ1

X2

λ2

. . . Xd

λd

ε1

γ1

ε2

γ2

. . . εd

γd

Figure 2.1: Gaussian one-factor model with observable variables X1, . . . , Xd, com-
mon factor Z1, specific errors ε1, . . . , εd, factor loadings λ1, . . . , λd, and γj =√

1− λ2j , for j ∈ {1, . . . , d}.

For each j ∈ {1, . . . , d}, the proportion of variance of Xj explained by the p common
factors is also known as the jth communality

∑p
k=1 λ

2
jk, while the proportion of the

variance of Xj resulting from the error term is called the uniqueness or specific
variance γ2j (Johnson and Wichern, 2002; Tsay, 2005; Härdle et al., 2007). Here,
one can clearly see that factor models are particularly useful when p is (much)
smaller than d, since the d(d + 1)/2 elements of ΣX can be described by the pd
model parameters in Λ, as the remaining parameters in Γ are defined by γj =√
1−

∑p
k=1 λ

2
jk, for j ∈ {1, . . . , d}.

A drawback of the Gaussian factor model is that the factor loadings cannot be
uniquely identified using (2.3) without imposing p(p − 1)/2 additional restrictions
on Λ. To see this, let A be a p× p orthogonal matrix such that AA⊤ = A⊤A = Ip,
and let Z ′ = A⊤Z, and Λ′ = ΛA. Then (2.2) can be rewritten as

X = Λ′Z ′ + ε,

and (2.3) becomes

ΣX = ΛΛ⊤ + Γ = Λ′ (Λ′)
⊤
+ Γ.

This phenomenon is called factor rotation, as factor loadings can only be identified
up to an orthogonal matrix. Since ΛΛ⊤ = Λ′ (Λ′)⊤, the communalities are not
affected by a rotation.

When the common factors Z and the idiosyncratic errors ε are multivariate
Gaussian, estimates of the model parameters Λ and Γ can be obtained by maximis-
ing the log-likelihood

Ln (Λ,Γ) = −n
2

{
ln |2π

(
ΛΛ⊤ + Γ

)
|+ tr

(
(ΛΛ⊤ + Γ)−1ΣXn

)}
, (2.4)

with respect to the unknown model parameters Λ, and Γ, where tr(·) is the trace
of a matrix, and ΣXn is the sample correlation matrix. The log-likelihood in (2.4)
requires a numerical solution, for which a practical computation scheme can be
found in Supplement 9A of Johnson and Wichern (2002).

After obtaining estimates for the factor loadings and the uniqueness, it can be
of interest to the statistician to obtain estimates of the common factors Z, called
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factor scores. In (2.2), one can treat ε as error terms with heteroskedastic variance
Var(εj) = γ2j , for j ∈ {1, . . . , d}. Using a weighted least squares approach, the sum
of squared error terms weighted by their respective variances

ε⊤Γ−1ε,

can be minimised to obtain the factor scores

Ẑ =
(
Λ⊤Γ−1Λ

)−1
Λ⊤Γ−1X. (2.5)

Gaussian factor models provide a straightforward approach to model dependence
in multivariate data due to the limited set of assumptions, which is why they are
often used in applied statistics, such as in econometrics, (Bai and Ng, 2002, 2008;
Stock and Watson, 2002; Pesaran, 2006), in the finance literature, (McNeil et al.,
2005; Tsay, 2005), and in hydrology (Subbarao et al., 1996).

Nevertheless, the assumption of multivariate Gaussianity is a major limitation
of factor models. In the next section, copula models are introduced as a means of
capturing a more general dependence structure in a multivariate dataset.

2.2 Copula models

Gaussian factor models as introduced in Section 2.1 provide a straightforward method
to model dependence between random variables. Nevertheless, the assumption of
Gaussianity is often violated in practice, thus limiting the usefulness of factor mod-
els in practical applications. In this section, a more flexible model of multivariate
dependence is presented by means of copulas. Copulas and their main properties are
introduced, before delving deeper into measures of association, one-factor copulas,
and parametric and nonparametric inference methods for (one-factor) copula models.
Modelling multivariate data with copulas allows one to separate the margins from
the dependence structure, which is established by Sklar’s seminal theorem (Sklar,
1959), and explains the popularity of copulas in a wide range of research fields, such
as in finance, see Cherubini et al. (2004), Chapter 5 in McNeil et al. (2005), in eco-
nomics (Patton, 2012), and in hydrology (Subbarao et al., 1996). Since Gaussianity
usually is a strong assumption in the finance literature, copulas provide a natural
extension to allow for heavy tails and skewness in the data. A more exhaustive
overview of copulas and detailed proofs of theorems, lemmas, and propositions in
this sections can be found in Chapter 5 in McNeil et al. (2005), Nelsen (2006), Joe
(2015), Embrechts and Hofert (2013), and Hofert et al. (2018). Lastly, we refer the
interested reader to additional work by Schreyer et al. (2017), and Genest (2021).

2.2.1 Distribution functions

To understand copulas as presented in forthcoming Section 2.2.2, properties of distri-
bution functions, generalised inverse functions, quantile transforms, and probability
integral transforms are introduced.

Copulas rely on the distribution function (df) of a d-dimensional random vector
X = (X1, . . . , Xd).
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Definition 2.2.1 (Distribution function). The distribution function of a d-dimensional
random vector X = (X1, . . . , Xd) is the function

F (x) = P (X ≤ x) , x = (x1, . . . , xd) ∈ Rd
.

The marginal dfs or margins of F are the univariate dfs F1, . . . , Fd given by

Fj(xj) = F (∞, . . . , xj, . . . ,∞) = P (Xj ≤ xj) , xj ∈ R,

for j ∈ {1, . . . , d}.

The generalised inverse function (gif) carefully formulates how to obtain the
inverse of a df.

Definition 2.2.2 (Generalised inverse function). The generalised inverse function
of a right-continuous univariate df, F , is defined as

F← (u) = inf {x ∈ R : F (x) ≥ u} , u ∈ (0, 1),

with the convention that inf ∅ = ∞.

This implies that the generalised inverse function is always left-continuous. If F
is continuous and strictly increasing, the gif F← will coincide with F−1, the quantile
function of F . For a detailed discussion of the properties of gifs, see Embrechts and
Hofert (2013). Using the quantile transform, a standard uniform random variable
can be transformed into a random variable with arbitrary df F .

Proposition 2.2.3 (Quantile transform). Let F be a univariate df and let U be a
standard uniform random variable. Then P (F← (U) ≤ x) = F (x).

On the other hand, starting from a random variable X with arbitrary continuous
df F , the probability integral transform (pit) can be used to obtain a standard
uniformly distributed random variable.

Proposition 2.2.4 (Probability integral transform). Let X be a random variable
with continuous df F . Then F (F← (u)) = u for all u ∈ [0, 1], and as a consequence,
the distribution of F (X) is uniform on [0, 1], that is

P (F (X) ≤ u) = u, u ∈ [0, 1] .

Proofs of Proposition 2.2.3 and Proposition 2.2.4 can be found in the proof of
Proposition 5.2 in McNeil et al. (2005).

2.2.2 Copula definition and properties

The following definition of copulas, which relies on Definition 2.2.1 of the distribution
function, will be key in the rest of this work.

Definition 2.2.5 (Copula). A d-dimensional copula C : [0, 1]d → [0, 1] is a multi-
variate df of U = (U1, ..., Ud) whose margins are standard uniform dfs:

C (u) = P (U ≤ u) , u ∈ [0, 1]d, (2.6)

and

P (Uj ≤ uj) = uj, uj ∈ [0, 1],

for j ∈ {1, . . . , d}.
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In other words, the copula C is a mapping from the unit hypercube into the unit
interval. The following properties must hold for a copula C.

Proposition 2.2.6 (Copula properties). Let C be a copula, u = (u1, . . . , ud) ∈
[0, 1]d and j ∈ {1, . . . , d}. Then,

(i) if some component uj of u is 0, then C(u) = 0,

(ii) C
(
u(j)

)
= uj, if uj ∈ [0, 1],

(iii) for all (a1, . . . , ad) ∈ [0, 1]d, and (b1, . . . , bd) ∈ [0, 1]d, with aj ≤ bj,

0 ≤
2∑

i1=1

· · ·
2∑

id=1

(−1)i1+···+id C (u1i1 , . . . , udid) , (2.7)

where uj1 = aj and uj2 = bj for all j ∈ {1, . . . , d},

(iv) C is Lipschitz and hence continuous: for u,v ∈ [0, 1]d,

|C(u)− C(v)| ≤
d∑

j=1

|uj − vj| .

Proposition 2.2.6(i) is required for any df, while Proposition 2.2.6(ii) follows
from the fact that the margins are standard uniformly distributed. A proof of
Proposition 2.2.6(iv) can be found in the proof of Lemma 2.1.5 of Nelsen (2006).
For d = 2, (2.7) becomes C (u12, u22)−C (u12, u21)−C (u11, u22) +C (u11, u21) ≥ 0,
which is akin to stating that P (a1 ≤ U1 ≤ b1, a2 ≤ U2 ≤ b2) ≥ 0, or in the general
case that P (a1 ≤ U1 ≤ b1, . . . , ad ≤ Ud ≤ bd) ≥ 0.

In Definition 2.2.5, the copula is formally introduced. The seminal theorem
of Sklar (1959) shows the usefulness of copulas in practical applications.

Theorem 2.2.7 (Sklar, 1959). Let C be a d-dimensional copula and let F1, ..., Fd

be univariate dfs. Then the function

F (x) = F (x1, ..., xd) = C (F1 (x1) , ..., Fd (xd)) (2.8)

is a d-dimensional df with margins F1, . . . , Fd.

The previous theorem shows one can generate a joint distribution F by coupling
together univariate margins F1, . . . , Fd using a copula C.

Theorem 2.2.8 (Sklar, 1959). If F is a d-dimensional df with univariate dfs
F1, . . . , Fd, then there exists a copula C such that (2.8) holds. If the margins
F1, . . . , Fd are continuous, C is unique and equal to

C (u1, ..., ud) = F (F←1 (u1) , ..., F
←
d (ud)) , uj ∈ [0, 1] .

In what follows in this thesis, we exclusively work with continuous margins and
the copulas used hereafter will be unique. When the margins are not continuous, C
is uniquely defined on RanF1, . . . ,RanFd, where RanFj = Fj(R) is the range of Fj,
for j ∈ {1, . . . , d}. A proof of Sklar’s theorem can be found in the proof of Theorem
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5.3 in McNeil et al. (2005), in the proof of Theorem 2.3.3 in Nelsen (2006), or in the
proof of Theorem 1.1 in Joe (2015).

The following examples introduce a selection of copula families. The properties
of each copula family are illustrated with a bivariate sample in Figure 2.2 for which
the R package copula was used (R Core Team, 2022). As will be outlined in the
forthcoming Section 2.2.3, all copula parameters are chosen such that their Kendall’s
τ = 0.7.

Example 2.2.9 (Independence copula). A pair of random variables, (X1, X2) is inde-
pendent if and only if its copula is the independence copula CΠ, where

CΠ (u1, u2) = u1u2.

A sample of size n = 1000 from the bivariate independence copula is depicted in the
upper left panel of Figure 2.2. As expected, the sampled cloud of points from the
independence copula is uniformly spread out over the unit square.

Example 2.2.10 (Gaussian copula). Recall the Gaussian factor model in (2.1). As-
sume p = 1 such that

Xj = λjZ + γjεj,

then the d-variate copula of X = (X1, . . . , Xd) implicitly generated by this Gaussian
one-factor model is the Gaussian copula CGau with d × d correlation matrix Σ. In
other words, it is the copula of the d-variate Gaussian distribution Nd (0,Σ), for
which no closed-form expression exists:

CGau(u) = ΦΣ

(
Φ−1 (u1) , . . . ,Φ

−1 (ud)
)
,

where ΦΣ is the d-variate Normal df with correlation matrix Σ, and Φ−1 is the
quantile function of the univariate Normal df. The correlation matrix Σ has off-
diagonal elements ρjk = λjλk and diagonal elements ρjj = 1, for j, k ∈ {1, . . . , d},
and j ̸= k.

A sample of size n = 1000 from the bivariate Gaussian copula with dependence
parameter ρ = 0.89 is depicted in the upper right panel of Figure 2.2. The cloud of
points from the bivariate Gaussian copula is symmetric, and there is strong depen-
dence between the variables.

Example 2.2.11 (Clayton copula). For n independent and identically distributed
(iid) random variables X1, . . . , Xn with continuous df F , the copula of the random
pair (max (X1, . . . , Xn) ,−min (X1, . . . , Xn)) is the bivariate Clayton copula with
parameter θ = −1/n:

CCl (u1, u2) =


(
u−θ1 + u−θ2 − 1

)−1/θ
, θ > 0

u1u2, θ = 0,

max
(
u−θ1 + u−θ2 − 1, 0

)−1/θ
, −1 ≤ θ < 0.

The parameter θ captures the strength of dependence between the random vari-
ables. A sample of size n = 1000 from a bivariate Clayton copula with dependence
parameter θ = 4.67 is represented in the lower left panel of Figure 2.2. Compared to
the symmetric shape of the sample from the bivariate Gaussian copula, the cloud of
points sampled from the Clayton copula exhibits dependence in the lower tail and
no dependence in the upper tail.
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Figure 2.2: Samples of size n = 1000 from bivariate copula models. Top left:
independence copula (Kendall’s τ = 0). Top right: Normal copula (Kendall’s τ =
0.7). Bottom left: Clayton copula (Kendall’s τ = 0.7). Bottom right: Gumbel
copula (Kendall’s τ = 0.7).

Example 2.2.12 (Gumbel copula). The bivariate Gumbel copula is given by

CGu (u1, u2) = exp
[
−
{
(− log u1)

θ + (− log u2)
θ
}1/θ]

, θ ≥ 1.

A sample of size n = 1000 from a bivariate Gumbel copula with θ = 3.33 is de-
picted in the lower right panel of Figure 2.2. In contrast to the sample from the
Clayton copula, the cloud of points sampled from the bivariate Gumbel copula is
characterised by dependence in the upper tail and lack of dependence in the lower
tail.

The copula density is key in parametric estimation of the copula by means of
the maximum likelihood, as discussed in the forthcoming Section 2.3.1.

Proposition 2.2.13 (Copula density I). If C is d times continuously differentiable
on (0, 1)d, then C has density c given by

c(u) =
∂d

∂u1 · · · ∂ud
C(u), u ∈ (0, 1)d.

If C and F1, . . . , Fd are absolutely continuous, the copula density can also be recov-
ered from (2.8). Let F be a d-variate df with margins F1, . . . , Fd and copula C. If
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the margins have densities f1, . . . , fd and if the copula C has a density c, then F
admits a joint density

f(x) = c (F1(x1), . . . , Fd(xd)) f1(x1) · · · fd(xd),

where x ∈ R. Furthermore, the copula density can be found by

c (u) =
f (F←1 (u1) , . . . , F

←
d (ud))

f1(F←1 (u1)) · · · fd(F←d (ud))
,

where u ∈ (0, 1)d.

The conditional copula is of paramount importance for the definition of one-
factor copulas in Section 2.2.4. First, the density of a standard uniform vari-
able is constant and equal to 1. As a result, the conditional density of U−j =
(Ui : i ∈ {1, . . . , j − 1, j + 1, . . . , d}) given Uj = uj is c itself:

cU−j |Uj
(u−j|uj) = c(u), u ∈ (0, 1)d.

Then, the df of the conditional distribution of U−j given Uj = uj is

P (U−j ≤ u−j|Uj = uj) =
∂

∂uj
C(u) = Ċj(u).

While copulas are a general way to describe dependence in multivariate data, it
can be useful to capture association between random variables using a real number,
by means of measures of association.

2.2.3 Measures of association

In this section several measures of association are presented as a means to summarise
dependence between random variables, where different measures of association cap-
ture different characteristics of the data. For some copulas there is a one-on-one
relation between the parameter of the copula model and measures of association.
The first two measures of association are rank-based, and provide an alternative to
the popular Pearson correlation, which has some well-known drawbacks as discussed
in Embrechts et al. (2002).

Consider two points (x1, y1) and (x2, y2) in R2. The points are said to be con-
cordant if (x2 − x1)(y2 − y1) > 0 and discordant if (x2 − x1)(y2 − y1) < 0.

Definition 2.2.14 (Kendall’s tau). Let F be a continuous bivariate df. Its Kendall’s
tau is defined as

τ(F ) = P ((X2 −X1)(Y2 − Y1) > 0)− P ((X2 −X1)(Y2 − Y1) < 0) ,

where (X1, Y1) and (X2, Y2) are iid F .

Kendall’s tau is the probability of concordant random pairs minus the probability
of discordant random pairs. Since the ordering of X1 and X2 is the same as the one
of U1 = F (X1) and U2 = F (X2), it follows that τ(F ) = τ(C).
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Definition 2.2.15 (Spearman’s rho). Let (X, Y ) be a bivariate random vector with
continuous margins F1 and F2, then

ρS(X, Y ) = Cor (F1(X), F2(Y ))

In other words, Spearman’s rho is Pearson’s linear correlation applied to the
margins transformed to standard uniform variables. Since the df of F1(X) and
F2(Y ) only depends on the copula C, it follows that ρS only depends on C and not
on the margins. Both Kendall’s tau and Spearman’s rho take values in the closed
interval [−1, 1].

Tail dependence coefficients summarise the degree to which variables are associ-
ated in the tails of the distribution.

Definition 2.2.16 (Tail dependence coefficients). Let (X1, X2) be a random vector
with margins F1 and F2, respectively. Provided the limits exist, the coefficients of
lower and upper tail dependence of X1 and X2 are defined by

λℓ = lim
q↓0

P (X2 ≤ F←2 (q)|X1 ≤ F←1 (q)) ,

λu = lim
q↑1

P (X2 > F←2 (q)|X1 > F←1 (q)) .

If the margins F1 and F2 are continuous, the coefficients of tail dependence are
measures of association that only depend on the underlying copula.

Proposition 2.2.17 (Copula representation of tail dependence coefficients). Let
(X1, X2) be a bivariate random vector with continuous margins and copula C. Then,

λℓ = lim
w↓0

C(w,w)

w
,

λu = lim
w↓0

2w − 1 + C(1− w, 1− w)

w
.

For many copula families, there is a one-to-one mapping between a measure
of association and the copula dependence parameter, as shown in the following
examples.

Example 2.2.18 (Measures of association for the bivariate Gaussian copula). It can
be shown that Kendall’s tau and Spearman’s rho of the bivariate Gaussian copula
with correlation parameter ρ are given by

τ(C) =
arcsin(ρ)

π/2
, ρS(C) =

arcsin(ρ/2)

π/6
,

where ρ ∈ [−1, 1]. Furthermore, the Gaussian copula does not exhibit any depen-
dence in the tails unless there is perfect dependence between the variables:

λℓ(C) = λu(C) =

{
0, if |ρ| < 1,
1, if ρ = 1.

Example 2.2.19 (Measures of association for the bivariate Clayton copula). One can
show that Kendall’s tau for the Clayton copula is

τ(C) =
θ

2 + θ
.
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Figure 2.3: One-factor copula model of Krupskii and Joe (2013). The unobservable
factor V affects the observable variables Uj via bivariate linking copulas Cj(uj, v) =
CUj ,V (uj, v), for j ∈ {1, . . . , d}.

where θ ∈ (0,∞). In addition, the Clayton copula exhibits lower tail dependence,
but no upper tail dependence:

λℓ(C) = 2−1/θ, λu(C) = 0.

Example 2.2.20 (Measures of association for the bivariate Gumbel copula). Kendall’s
tau for the bivariate Gumbel copula is

τ(C) =
θ − 1

θ
.

where θ ∈ [1,∞). In addition, the Gumbel copula exhibits upper tail dependence,
but cannot capture dependence in the lower tail:

λℓ(C) = 0, λu(C) = 2− 21/θ.

In Figure 2.2, the samples of the bivariate Normal, Clayton and Gaussian copu-
las all have a Kendall’s tau of τ = 0.7. Furthermore, the samples from the bivariate
Clayton and Gumbel copula clearly exhibit lower and upper tail dependence, re-
spectively, while the sample from the bivariate Normal copula is characterised by a
lack of tail dependence in both the lower and the upper tail.

2.2.4 One-factor copula models

As the dimension d of a dataset increases, it becomes more challenging to model
the dependence between random variables using copula models that have a limited
number of parameters, such as the Clayton and Gumbel copula in Example 2.2.11,
and Example 2.2.12, respectively. On the other hand, if the number of copula pa-
rameters increases with the dimension, estimation becomes quickly computationally
cumbersome, as for the Normal copula in Example 2.2.10 with d(d−2)/2 parameters.

To deal with these challenges, Krupskii and Joe (2013) propose a different class
of copula models. Assume a common (unobservable) standard uniform variable
V ∼ Unif(0, 1) is the source of dependence between d observable standard uniform
variables U = (U1, . . . , Ud), where Uj ∼ Unif(0, 1) for j ∈ {1, . . . , d}. This is the
so-called one-factor copula model with O(d) number of dependence parameters and
is illustrated in Figure 2.3.
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Dependence between the latent factor V and the observable variable Uj is cap-
tured by bivariate linking copulas Cj(u, v), for j ∈ {1, . . . , d}. Conditional on the
latent variable V , the observable variables are independent:

C (u1, . . . , ud) =

� 1

0

d∏
j=1

P (Uj ≤ uj|V = v) dv =

� 1

0

d∏
j=1

Cj|V (uj|v)dv, (2.9)

where Cj|V = ∂CUj ,V (uj, v)/∂v.

The one-factor copula density can be obtained by differentiating the copula with
respect to the observable variables:

c (u) =
∂C(u)

∂u1 · · · ∂ud
=

� 1

0

d∏
j=1

cj,V (uj, v)dv, (2.10)

where cj,V = cUj ,V .

Krupskii and Joe (2013) show that the one-factor copula model inherits tail
dependence properties from their respective bivariate linking copulas. Thus, by
appropriately choosing the bivariate linking copulas Cj, with j ∈ {1, . . . , d}, tail
dependence structures can be captured by the one-factor copula model.

To sample from the one-factor copula model, the conditional distribution method
in the following algorithm can be used.

Procedure 2.2.21 (Sampling algorithm for one-factor copula models). Denote the
inverse of the conditional copula Cj|V (uj|V ) by C−1j|V (uj|V ).

1. Generate d + 1 random variables V,W1, . . . ,Wd
iid∼ Unif (0, 1), where V is the

unobserved common factor.

2. For each j = 1, . . . , d, let Uj = C−1j|V (Wj|V ).

3. The vector U = (U1, . . . , Ud)
⊤ has the one-factor copula C as df.

If the closed-form formula is known for C−1j|V , it can be used. If not, numerical

methods are required to determine Uj for which Cj|V (Uj|V )−Wj = 0.

Example 2.2.22 (Gaussian one-factor copula model). Let the bivariate linking cop-
ulas Cj be Gaussian, with correlation coefficient λj, for j ∈ {1, . . . , d}. Then the
one-factor copula model is

C (Φ(x1), . . . ,Φ(xd)) = P(X1 ≤ x1, . . . , Xd ≤ xd)

=

� 1

0

d∏
j=1

Φ

xj − λjΦ
−1(v)√

1− λ2j

 dv

=

� ∞
−∞

d∏
j=1

Φ

xj − λjz√
1− λ2j

ϕ(z)dz,

where ϕ is the standard Gaussian probability density function. The one-factor cop-
ula model with Gaussian bivariate linking copulas coincides with the multivariate
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Figure 2.4: Sample of size n = 1000 from a one-factor copula model with Clayton
bivariate linking copulas and Kendall’s tau of τ = 0.4 and τ = 0.7, respectively,
where U1 and U2 are observable variables, and V is a latent factor.

Gaussian model generated by the Gaussian factor model in Section 2.1 with one
Gaussian common factor, as the multivariate d.f. comes from

Xj = λjZ + γjεj,

with γj =
√
1− λ2j , Z ∼ N(0, 1), εj

iid∼ N(0, 1) and j ∈ {1, . . . , d}.

Example 2.2.23 (One-factor copula models). A sample of size 1000 is generated
for three different factor copula models with d = 2. The first model is constructed
using two Clayton linking copulas with dependence parameter of the first and second
Clayton copula chosen such that τ = 0.4 and τ = 0.7, respectively. The scatterplots
of (U1, U2), (U1, V ), and (U2, V ) are given in Figure 2.4, and illustrate how lower tail
dependence is inherited from the tail dependence in the bivariate Clayton linking
copulas, while dependence between the pair (U2, V ) is stronger than that between
the pair (U1, V ).

Similarly, the second factor copula model uses two Gumbel linking copulas with
dependence parameter of the first and second Gumbel copula chosen such that τ =
0.4 and τ = 0.7, respectively. The scatterplots of (U1, U2), (U1, V ), and (U2, V ) are
given in Figure 2.5. Again, the upper tail dependence properties of the factor model
are inherited from the upper tail dependence in the bivariate Gumbel copulas, which
depends on their Kendall’s τ .

The sample from the third factor-copula model is generated using a Gumbel
linking copula and a Clayton linking copula with dependence parameters of both
linking copulas chosen such that Kendall’s τ = 0.7. The scatterplots of (U1, U2),
(U1, V ), and (U2, V ) are given in Figure 2.6. While the samples from the bivariate
linking copulas clearly exhibit upper and lower tail dependence, respectively, there
is no apparent tail dependence in the sample from the one-factor copula model.

The one-factor copula model can further be extended to allow for a more general
p-factor copula model (Krupskii and Joe, 2013). Furthermore, it is also possible to
impose a hierarchichal structure on the factors (Krupskii and Joe, 2015). As these
factor copula models will not be used in the rest of thesis, we refer the interested
reader to Krupskii and Joe (2013), and Krupskii and Joe (2015).
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Figure 2.5: Sample of size n = 1000 from a one-factor copula model with Gumbel
bivariate linking copulas and Kendall’s tau of τ = 0.4 and τ = 0.7, respectively,
where U1 and U2 are observable variables, and V is a latent factor.
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Figure 2.6: Sample of size n = 1000 from a one-factor copula model with Gumbel
bivariate linking copula for (U1, V ) and Clayton bivariate linking copula for (U2, V ),
and Kendall’s tau of τ = 0.7 for both bivariate linking copulas, where U1 and U2 are
observable variables, and V is a latent factor.

A different type of factor copula model was proposed by Oh and Patton (2017).
As this factor copula model will not be used in the rest of this thesis, we refer the
interested reader to Oh and Patton (2013, 2017).

2.3 Parametric inference for copula models

When the parametric form of both the margins and the copula model is known, the
model parameters can be estimated using a full maximum likelihood approach. A
different approach is the two-step estimation procedure known as inference functions
for margins (Joe and Xu, 1996; Joe, 1997, 2005), where in a first step, the margins
are parametrically estimated, and the resulting sample of pseudo-observations is
plugged into the parametric copula likelihood. When the margins are unknown, a
sample of pseudo-observations can be formed using the ranks of the observations,
which is subsequently used in the parametric copula likelihood, thus yielding a
semiparametric pseudo-maximum likelihood estimator. However, when both the
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margins and the copula model are unknown, a fully nonparametric approach for
both the margins and the copula is warranted, which will be discussed in Section 2.4.
An exhaustive overview of estimation methods for copula models can be found in
Chapter 4 of Hofert et al. (2018).

2.3.1 Parametric inference for the margins

Let the copula Cθ and the margins Fj = Fj(·; ξj) be absolutely continuous, where
θ and ξj are unknown parameter vectors, j ∈ {1, . . . , d}. Using Proposition ??, the
joint density function is

f (x; ξ1, . . . , ξd) = cθ (F1 (x1; ξ1) , . . . , Fd (xd; ξd)) f1 (x1; ξ1) · · · fd (xd; ξd) ,

where the parametric model can be different for each margin Fj, j ∈ {1, . . . , d}. The
log-likelihood associated with a dataset X 1:n = (X1, . . . ,Xn) is

Ln (θ, ξ1, . . . , ξd) =
n∑

i=1

ln f (Xi; ξ1, . . . , ξd)

=
n∑

i=1

ln cθ (F1 (Xi1; ξ1) , . . . , Fd (Xid; ξd)) +
d∑

j=1

n∑
i=1

ln fj (Xij; ξj) .

(2.11)

Thus, estimates of the parameters (θ, ξ1, . . . , ξd) can be obtained by maximising the
log-likelihood in (2.11) with respect to the parametes θ, ξ1, . . . , ξd. However, there
are two major drawbacks to this approach. First, if at least one of the margins is
misspecified, the estimated copula parameter will no longer be unbiased. Second, if
the dimension d of the dataset is very large, the log-likelihood is maximised over a
large-dimensional space, which may lead to numerical problems (Hofert et al., 2018).

To solve the issue associated with maximisation over a large-dimensional space,
one can use a two-step estimator also known as the inference functions for margins
(ifm) estimator, see Joe and Xu (1996), Joe (1997), and Joe (2005) for more infor-
mation. In a first step, for j ∈ {1, . . . , d}, the Fj(·; ξj) are modelled separately and
the corresponding log-likelihood

n∑
i=1

ln fj (Xij; ξj) ,

is maximised with respect to the parameter vector ξj to obtain estimates ξ̂j. In
a second step, for each j ∈ {1, . . . , d}, the estimated marginal parameter vectors

ξ̂j are used to form a sample of pseudo-observation Fj

(
Xij; ξ̂j

)
, j ∈ {1, . . . , d},

which is subsequently plugged into the copula density. The corresponding copula
log-likelihood

n∑
i=1

ln cθ

(
F1

(
Xi1; ξ̂1

)
, . . . , Fd

(
Xid; ξ̂d

))
can be maximised to obtain an estimate of the copula parameter vector θ. While
this approach solves the problem of numerically maximising over a high-dimensional
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space, the ifm estimator for θ will still be biased if the margins are misspecified (Fer-
manian and Scaillet, 2005). The latter problem can be addressed by nonparametric
estimation of the margins.

2.3.2 Nonparametric inference for the margins

Having at hand a sample X 1:n = (X1, . . . ,Xn) and the margins F1, . . . , Fd, one
can use the Probability Integral Transform in Proposition 2.2.4 to obtain a true
sample Ui = (F1(Xi1), . . . , Fd(Xid)) of the copula C, for i ∈ {1, . . . , n}. However, in
practice the margins F1, . . . , Fd are often unknown, and need to be estimated from
the sample X 1:n using the empirical df.

Definition 2.3.1 (Empirical distribution function). For a d-variate random vector
Xi = (Xi1, . . . , Xid) with df F , the empirical distribution function of a sample
X 1:n = (X1, . . . ,Xn) of size n is

F1:n(x) =
1

n

n∑
i=1

1(Xi ≤ x),

where x ∈ Rd. The marginal empirical distribution function is, for each j ∈
{1, . . . , d},

F1:n,j(x) =
1

n

n∑
i=1

1(Xij ≤ x),

where x ∈ R.

Example 2.3.2 (Empirical distribution function). Let F be the univariate standard
Normal distribution, from which we draw 10 iid samples, each of size n = 50. For
each sample, we calculate the empirical df, which is illustrated in the left-hand panel
of Figure 2.7.

Let R1:n
ij = nF1:n,j(Xij) be the (maximal) rank of Xij among X1j, . . . , Xnj. Then

for i ∈ {1, . . . , n},

R1:n
i =

(
R1:n

i1 , . . . , R
1:n
id

)
, (2.12)

Û 1:n
i =

R1:n
i

n+ 1
. (2.13)

These are the multivariate ranks and the pseudo-observations (as multivariate rescaled
ranks), respectively, obtained from X 1:n. While asymptotically negligible, division
of the ranks by n + 1 instead of by n ensures that the pseudo-observations fall
into the unit hypercube (0, 1)d. This is important in pseudo-maximum likelihood
estimation, as some copula densities may explode to infinity at the boundaries.

Thus, if the margins are unknown, a semiparametric pseudo-maximum likelihood
approach is used, where the pseudo-observations in (2.13) are plugged into the para-
metric copula model, for which an estimate of the copula parameter θ is obtained
by maximising the copula likelihood

n∑
i=1

ln cθ

(
Û1:n
i1 , . . . , Û1:n

id

)
.
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Figure 2.7: Left: 10 empirical dfs for iid samples of size n = 50 drawn from
a standard Normal distribution depicted in blue. Right: histogram of values of√
n (F1:n(0)− 0.5) for 10000 independent draws of sample size n = 10000 from a

standard Normal distribution, with the density of N (0, 0.25) depicted in blue.

A last method to parametrically estimate the copula parameter using nonpara-
metrically estimated margins is a method-of-moments estimator based on measures
of association such as Kendall’s tau and Spearman’s rho. Since this will not be used
in the rest of the thesis, we refer the interested reader to Chapter 4 in Hofert et al.
(2018).

2.3.3 Inference for one-factor copula models

Let Ui, . . . ,Un be a sample of a one-factor copula. Then the one-factor copula
likelihood is

Ln (θ) =
n∑

i=1

ln

(� 1

0

d∏
j=1

cj,V (Uij, v;θj)dv

)
. (2.14)

As the latent factor V is unobservable, one has to resort to numerical integration
techniques to compute the integral in (2.14). Krupskii and Joe (2013) propose to
use Gauss-Legendre quadrature to numerically approximate the integral in (2.14).
See Ziegel (1987) for more details on Gauss-Legendre quadrature.

As the dimension d increases, numerical integration becomes more computation-
ally cumbersome and numerical issues can arise. Krupskii and Joe (2022) propose
to create a proxy Ūd =

∑d
j=1 Uj/d for the unobservable factor V by using the cross-

dimensional average of the observable variables U1, . . . .Ud. The likelihood for the
one-factor copula density can be approximated by plugging V̂id = rank(Ūid)/(n+1),
with Ūid =

∑d
j=1 Uij/d, into the expression for the likelihood in (2.14):

Ln (θ) =
n∑

i=1

d∑
j=1

ln
(
cj,V (Uij, V̂id;θj)

)
,
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which can be maximised to obtain estimates of θj, for j ∈ {1, . . . , d}. However,
for Ūd to be a good enough proxy for V , it is required that d is set sufficiently
large (Krupskii and Joe, 2022).

2.4 Nonparametric inference for copula models

In the previous section, parametric inference methods were introduced for copula
models, with the margins being modelled either parametrically or nonparametrically.
In this section, nonparametric inference methods for the copula itself are introduced
using concepts from empirical process theory, for which a more exhaustive overview
can be found in Shorack and Wellner (1986), van der Vaart (1998), and Kosorok
(2008).

Recall the empirical df introduced in Definition 2.3.1. For fixed x, nF1:n(x) is
a binomial random variable with E {F1:n(x)} = F (x). It follows from the Central
Limit Theorem (CLT) that for every x,

√
n (F1:n(x)− F (x))⇝ N (0, F (x) (1− F (x))) ,

where ‘⇝’ denotes weak convergence.

Example 2.4.1 (Weak convergence of the empirical df). Let F be the standard normal
distribution. A sample of size n = 10000 is drawn independently 10000 times and the
empirical df F1:n(x) is computed at x = 0. Weak convergence of

√
n (F1:n(x)− F (x))

at x = 0 is illustrated in the right-hand panel of Figure 2.7 which depicts the
histogram of

√
n (F1:n(0)− F (0)), as well as the density of N (0, F (0) (1− F (0))).

Let T be a set, then ℓ∞ (T ) = {z : T → R
∣∣ supt∈T |z(t)| < ∞} is the space

of bounded functions equipped with the uniform norm ∥z∥∞ = supt∈T |z(t)|. A
different perspective for weak convergence is to consider x 7→ F1:n(x) as a random
function, and the sequence of empirical processes

√
n (F1:n − F ) as random func-

tions. In the space of bounded functions ℓ∞
(
Rd
)
equipped with the uniform metric,

√
n (F1:n − F )⇝ GF ,

whereGF is an F -Brownian bridge in Rd, that is, a continuous Gaussian process with
mean zero and covariance function F (x ∧ y) − F (x)F (y), with x = (x1, . . . , xd),
and y = (y1, . . . , yd).

Example 2.4.2 (Weak convergence of the empirical process). Let F be the standard
uniform distribution. Convergence for increasing sample size towards a Brownian
bridge tied down at zero and one is depicted in the upper, middle, and lower panel
of Figure 2.8, which depicts the processes

√
n (F1:n(x)− F (x)) for n = 50, n = 500,

and n = 5000, respectively.

Let Ui = (Ui1, . . . , Uid), with Uij = Fj(Xij). The sample U1, . . . ,Un forms a true
sample from the unknown copula C, which can be estimated using the empirical df:

C̃n (u) =
1

n

n∑
i=1

1 (Ui ≤ u) =
1

n

n∑
i=1

1 (F1(Xi1) ≤ u1, . . . , Fd(Xi1) ≤ ud) .
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Figure 2.8: The empirical process
√
n (F1:n(x)− F (x)), where F1:n is the empirical

df and F is a standard uniform df.

By the CLT, for each u = (u1, . . . , ud),

Gn(u) =
√
n
{
C̃n (u)− C (u)

}
⇝ N (0, C (u) (1− C (u))) . (2.15)

Furthermore, it follows that in the space of bounded functions ℓ∞
(
[0, 1]d

)
equipped

with the uniform metric, the empirical process Gn ⇝ GC , where GC is a C-Brownian
bridge with covariance function C(u ∧ v) − C(u)C(v), where u = (u1, . . . , ud),
and v = (v1, . . . , vd), which coincides with the covariance C (u) (1− C (u)) when
considering pointwise convergence in (2.15).

In practice, the true margins are often unknown, and need to be estimated using
the rescaled ranks in (2.13). The empirical copula was first defined in Rüschendorf
(1976) and Deheuvels (1979, 1981) as the empirical df of the rescaled ranks. Thus,
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a nonparametric estimator of C in (2.6) is

Cn(u) =
1

n

n∑
i=1

1(Û 1:n
i ≤ u) =

1

n

n∑
i=1

d∏
j=1

1(Û1:n
ij ≤ uj), (2.16)

where u = (u1, . . . , ud) ∈ [0, 1]d, and Û 1:n
i is defined in (2.13). Furthermore, the

empirical copula process Cn is

Cn (u) =
√
n {Cn (u)− C (u)} , (2.17)

where Cn and C are given in 2.16 and in Definition 2.2.5, respectively.

To establish convergence of the empirical copula process, we use the following
non-restrictive condition from Segers (2012).

Condition 2.4.3 (Smooth partial derivative of the copula). For each j ∈ {1, . . . , d},
the jth first-order partial derivative Ċj = ∂C/∂uj exists and is continuous on the
set Vd,j = {u ∈ [0, 1]d : uj ∈ (0, 1)}.

Furthermore, we arbitrarily define Ċj to be zero on the set {u ∈ [0, 1]d : uj ∈
{0, 1}}, which implies that Ċj is defined on the entire interval [0, 1]d.

Let

C̃n(u) = Gn(u)−
d∑

j=1

Ċj(u)Gn

(
u(j)

)
, (2.18)

where Gn(u) is defined in (2.15), and Gn ⇝ GC , with GC is a C-Brownian bridge.
Let g(u) = f(u) −

∑d
j=1 Ċj(u)f

(
u(j)

)
. Because the map f 7→ g from ℓ∞

(
[0, 1]d

)
onto ℓ∞

(
[0, 1]d

)
is linear and bounded, it follows from the continuous mapping

theorem (CMT) that C̃n ⇝ CC , where

CC(u) = GC(u)−
d∑

j=1

Ċj(u)GC

(
u(j)

)
, (2.19)

with GC a C-Brownian bridge.

Weak convergence of the empirical copula process was established by Segers
(2012).

Proposition 2.4.4 (Convergence of the empirical copula process). If Condition 2.4.3
holds, then

sup
u∈[0,1]d

|Cn(u)− C̃n(u)|
P→ 0,

where Cn and C̃n are defined in (2.17) and (2.18), respectively. As a consequence,
in ℓ∞

(
[0, 1]d

)
,

Cn ⇝ CC .
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The proof of Proposition 2.4.4 can be found in the proof of Proposition 3.1
in Segers (2012).

A different approach to nonparametric estimation of the copula is the empirical
beta copula. The empirical beta copula of X1, . . . ,Xn is

Cβ
n (u) =

1

n

n∑
i=1

d∏
j=1

Fn,R1:n
ij
(uj),

where u ∈ [0, 1]d, Fn,r is the beta distribution with parameters r and n+1− r, and
R1:n

ij is the maximal rank of Xij among X1j, . . . , Xnj. The empirical beta copula
of Segers et al. (2017) imposes smoothness on C by replacing the indicator function
in the definition of the empirical copula by a product of beta dfs, and has standard
uniform univariate margins if there are no ties in the component samples of the
observations. Therefore, it is a genuine copula (Hofert et al., 2018). The advantage
of the empirical beta copula is that, in small samples, it outperforms the empirical
copula in terms of bias and variance, while its asymptotic distribution is the same
as that of the empirical copula (Segers et al., 2017).

2.5 Statistical process control and change-point

detection

In the previous sections we introduced models to capture dependence in multivariate
distributions. However, when one has at hand a multivariate time series, it is highly
likely that the assumption of stationarity in the underlying time series is violated.
If the parameters of a multivariate model are estimated, the statistician might want
to know whether the model can be used for forecasting. Change-point detection
methods can be used to detect deviations from stationarity in a possibly multivariate
time series, and has a long history with applications in a wide range of research fields
such as quality control (Page, 1955; Hawkins and Olwell, 2012), economics (Perron
et al., 2006), and finance (Andreou and Ghysels, 2009; Aue et al., 2012). We refer the
interested reader to Hawkins et al. (2003), Montgomery (2007), Aue and Horváth
(2013), and Gösmann et al. (2022) for a more exhaustive overview of the literature.

2.5.1 Statistical process control

Change-point detection originates from quality control in manufacturing. The tra-
ditional Statistical Process Control (SPC) approach uses Shewhart charts (She-
whart, 1931), also known as SPC charts, and exponentially weighted moving aver-
age (EMWA) control charts (Roberts, 2000), and tries to control the average run
length (ARL) of the control charts, where the ARL is the average number of ob-
servations from the start of the monitoring until a false alarm is raised (that is,
until the process is declared to be out-of-control), under the null hypothesis of no
change (Montgomery, 2007). The first phase of the SPC approach assumes that
the true statistical parameters are exactly known from a long-lasting stable period
of observations, and the following monitoring procedure is implemented using these
parameters. Such an approach might be realistic in a quality control setting within
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the manufacturing industry, but seems highly unrealistic when analysing financial
or economic time series, where initial parameters are more often than not unknown,
and have to be estimated using an initial stretch of time series observations. In
addition to the aforementioned limitation, the original Shewhart charts only use the
last available observation to make a decision on whether or not to reject the null
hypothesis, while Page (1954) proposed an SPC approach using cumulative sums
(CUSUM), see Page (1954, 1955), and Montgomery (2007) for more details. When
the cost associated with a false alarm is too high, it can be more important to con-
trol the type I error, the probability of raising a false alarm. In general the SPC
approach leads to the rejection of the null hypothesis of stationarity with probabil-
ity one. Chu et al. (1996) propose a change point detection model such that the
probability of a false alarm can be controlled asymptotically. The approach by Chu
et al. (1996) guarantees that the type I error can be controlled as the size of the
initial stable learning sample, m, tends to infinity, and allows for the estimation of
parameters such as the long run variance.

2.5.2 Change point detection

The main idea of change point detection is that one has at hand an initial stable,
possibly multivariate, sample X1, . . . ,Xm of size m, called the learning sample, and
starts monitoring new data observations. There are two approaches to detect change
points when monitoring new data: closed-end and open-end change-point detection.
The first, closed-end approach, monitors the data until the arrival of an observation
Xn, with n > m a fixed endpoint, and if there is no evidence of nonstationarity in
the underlying data, the monitoring stops after the arrival of this observation Xn.
Thus, at most n−m observations will be considered before monitoring stops. The
corresponding null hypothesis will be

H0 : X1, . . . ,Xm,Xm+1, . . . ,Xn is a stretch from a stationary time series,

against the alternative that there is a change point at position k⋆, wherem ≤ k⋆ ≤ n.
One approach to test the null hypothesis of stationarity in a closed-end framework is
to use a likelihood ratio approach. In this setting, it is assumed that a change point
is located at position k⋆, and the data is split into two subsamples with different
parameters. Then, a likelihood function is constructed that takes into account that
these subsamples have different parameters, and the null hypothesis of stationarity
will be rejected when the likelihood ratio statistic is very large (Aue and Horváth,
2013).

The second change point detection framework is an open-end approach, in which
observations Xm+1,Xm+2, . . . arrive sequentially, and monitoring can in theory con-
tinue indefinitely. The corresponding null hypothesis will be

H0 : X1, . . . ,Xm,Xm+1,Xm+2, . . . is a stretch from a stationary time series,

against the alternative that there is a change point at position k⋆, where m ≤ k⋆.
While conceptually the closed-end and open-end framework are closely related, from
a mathematical point of view there are substantial differences, as the asymptotic
theory of closed-end procedures can be derived using functional limit theorems, while
the asymptotic theory in the open-end change point detection framework requires
additional assumptions, as will become clear in Chapter 4.
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Furthermore, one can distinguish between two types of data collection for mon-
itoring data. On the one hand, in retrospective or offline change point detection,
the entire sample Xm+1, . . . ,Xn is already available before monitoring starts. On
the other hand, in sequential or online analysis, monitoring is considered as the
data Xm+1, Xm+2, . . . arrives sequentially. For both closed-end and open-end ap-
proaches, the goal is to detect changes as quickly as possible while controlling the
probability of a type I error. In this thesis, we focus on nonparametric sequential
open-end change-point detection procedures to monitor for changes in the empirical
df of possibly multivariate time series data.

The open-end nonparametric monitoring procedure consists of a detector and
a threshold function and compares, after the arrival of the kth observation Xk, a
positive statistic, the detector Tm, to a threshold. If after the arrival of observation
Xk, with k > m, the detector exceeds the threshold, the hypothesis of stationarity is
rejected. If not, a new observation Xk+1 is collected and the monitoring procedure
is repeated from the start. For a given significance level α ∈ (0, 1/2) the goal is to
find a threshold w(k/m) such that, under the null hypothesis of stationarity, the
following holds:

P {Tm(k) ≤ w(k/m) for all k > m} = P
{
sup
k>m

Tm(k)

w(k/m)
≤ 1

}
= 1− α. (2.20)

One can consider a threshold function

w(t) = q(1−α)y v(t), t ∈ [1,∞),

where v(t) is a weighting function such that (2.20) holds, y is a (possibly empty)

vector of parameters, and q
(1−α)
y is the (1 − α)-quantile of the limiting random

variable Iy, the weak limit of supk>m Tm(k)/v(k/m). By the Portmanteau lemma,

lim
m→∞

P
{
sup
k>m

Tm(k)

w(k/m)
≤ 1

}
= lim

m→∞
P
{
sup
k>m

Tm(k)

v(k/m)
≤ q(1−α)y

}
= P

{
Iy ≤ q(1−α)y

}
= 1− α.

When having at hand a learning sampleX1, . . . ,Xm and a sampleXm+1, . . . ,Xk,
k ≥ m + 1, a first approach used by Horváth et al. (2004) and Aue et al. (2006)
for linear models, is to build a detector that evaluates the differences between θ1:m
computed from the observations X1, . . . ,Xm, and θm+1:k computed from the obser-
vations Xm+1, . . . ,Xk:

θ1:m − θm+1:k.

Another approach by Fremdt (2015) and Kirch and Weber (2018) uses a so-called
Page-CUSUM approach. For this approach, a detector is constructed that considers
the differences

θ1:m − θj+1:k,

where j ∈ {m + 1, . . . , k − 1}. Dette and Gösmann (2020) and Gösmann et al.
(2021) propose to use a detector that is motivated by the likelihood ratio test, in
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the closed-end and open-end case, respectively. This detector takes into account all
the differences

θ1:j − θj+1:k,

where j ∈ {m+ 1, . . . , k− 1}. The advantage of the last approach is that it screens
for all potential change points at each j ∈ {m+ 1, . . . , k − 1}.

Change point detection procedures have been widely studied, and the corre-
sponding monitoring procedures have been used in a wide range of data applica-
tions. Horváth et al. (1999) in a closed-end setting and Horváth et al. (2004) in an
open-end setting setting screen for changes in the parameters of linear models with
a statistic based on the the residuals, and illustrate their approach by monitoring for
changes in monthly temperature data. Similarly, Aue et al. (2006) develop a statis-
tic based on the residuals of linear models to monitor for changes in the parameters
of linear models, but their approach allows for the presence of heteroscedasticity in
the error terms, and is used to monitor for changes in financial data.

Fremdt (2015) studies changes in linear models in time series regression and
uses the procedure to monitor a set of capital asset pricing data in the context of
the Fama–French extension of the Capital Asset Pricing Model (CAPM). Another
application of change point detection in the CAPM framework is proposed by Aue
et al. (2012), who monitor parameters in univariate GARCH models and screen for
change points in high frequency portfolio betas in the CAPM.

A monitoring procedure for structural change in multivariate time series is pro-
posed by Groen et al. (2013), and focuses on parameters in linear regression models,
while Pape et al. (2016) monitor for structural changes in variances in a series of
random vectors of small dimension, which is illustrated using log-returns of stocks
listed on the DAX. Kojadinovic and Verdier (2021) propose a procedure to monitor
for changes in the empirical distribution function in a closed-end setting and illus-
trate using the NASDAQ composite index. Dette and Gösmann (2020) work in the
closed-end setting and propose a detector to monitor for changes in the mean, vari-
ance, correlation and quantiles of time series, and use their approach to screen for
change points in stock prices during the dot-com bubble. Gösmann et al. (2021) and
Holmes and Kojadinovic (2021) design a procedure to monitor for changes in the
mean of a univariate time series. Gösmann et al. (2021) use their monitoring pro-
cedure to screen for changes exchange rates, while Holmes and Kojadinovic (2021)
apply their change point detection scheme to monitor for changes in global temper-
ature anomalies. Gösmann et al. (2022) develop a sequential procedure to detect for
changes in a high-dimensional time series and illustrate using a data example from
hydrology.

2.6 Overview of the remaining chapters

The remainder of the thesis is organised as follows. As presented in Section 2.2.4,
one-factor copula models can be used to model high-dimensional multivariate data.
In Chapter 3, we expand upon existing methods by proposing tractable fast inference
methods for very high-dimensional one-factor copula models that combine the results
from the proxy approach for one-factor copula models in Section 2.3.3 with the
characteristics of Gaussian factor models introduced in Section 2.1.
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Multivariate models presented in Section 2.1 and Section 2.2 are a straightfor-
ward method to capture dependence in the data. Nevertheless, it is highly unlikely
that the underlying time series remains stable over time. Chapter 4 proposes a new
sequential change-point detection scheme to monitor for changes in the empirical df
of possibly multivariate data.

Chapter 5 concludes by summarising the results obtained in this thesis, and pro-
vides suggestions for future research. All proofs have been deferred to Appendices A
and B to improve the flow of the main text.
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This chapter and the corresponding Appendix A.1 and Appendix A.2 have been
published in Dependence Modeling (Verhoijsen and Krupskiy, 2022). Additional
material related to the computation of the gradient for the Generalised Method of
Moments approach and a fast matrix inversion scheme for the variance-covariance
matrix of the model are presented in Appendix A.3 and Appendix A.4, respectively.

Abstract

Gaussian factor models allow the statistician to capture multivariate dependence be-
tween variables. However, they are computationally cumbersome in high-dimensions
and are not able to capture multivariate skewness in the data. We propose a copula
model that allows for arbitrary margins, and multivariate skewness in the data by
including a non-Gaussian factor whose dependence structure is the result of a one-
factor copula model. Estimation is carried out using a two-step procedure: margins
are modelled separately and transformed to the normal scale, after which the de-
pendence structure is estimated. We develop an estimation procedure that allows
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for fast estimation of the model parameters in a high-dimensional setting. We first
prove the theoretical results of the model with up to three Gaussian factors. Then,
simulation results confirm that the model works as the sample size and dimension-
ality grow larger. Finally, we apply the model to a selection of stocks of the SP500
which demonstrates that our model is able to capture cross-sectional skewness in
the stock market data.

3.1 Introduction

In the literature, Gaussian factor models are used as a dimensionality reduction tech-
nique to describe a vector of d variables X = (X1, . . . , Xd)

⊤ as a linear combination
of a vector of p Gaussian latent factors Z = (Z1, . . . , Zp), where for meaningful cases
p < d. Thus, variables form groups based on their correlation, such that correlation
within one particular group of variables can be high, while the correlation between
variables assigned to different groups can be low (Kent et al., 1979; Johnson and
Wichern, 2002). Because of the minimal assumptions underlying factor models, this
technique is amply used in a wide range of applications. This includes econometrics,
where factor models are either used to identify the factor structure itself (Bai and
Ng, 2002, 2008; Stock and Watson, 2002), or to control for endogenous common fac-
tors in factor-augmented panel data regressions (Pesaran, 2006). Other applications
include the finance literature, see Chapter 5 in McNeil et al. (2005) or Chapter 9 in
Tsay (2005), and hydrology (Subbarao et al., 1996).

Nevertheless, the assumption of multivariate Gaussianity implies that these fac-
tor models cannot capture cross-sectional skewness or kurtosis in the underlying
multivariate distribution. Copula models, on the other hand, provide a straightfor-
ward technique to capture the entire dependence structure between random vari-
ables, and allow for non-Gaussian skewness and kurtosis. A d-dimensional cop-
ula C : [0, 1]d → [0, 1] is the cumulative distribution function (cdf) of a ran-
dom vector U = (U1, . . . , Ud), where Uj ∼ U (0, 1). Let F1, . . . , Fd be univari-
ate cdf’s, and let x = (x1, . . . , xd). Then by Sklar (1959), the function F (x) =
C (F1 (x1) , . . . , Fd (xd)) is a d-dimensional cdf with margins F1, . . . , Fd. Vice-versa,
if F is a d-dimensional cdf with univariate cdf’s F1, . . . , Fd, then there exists a
copula such that F (x) = C (F1 (x1) , . . . , Fd (xd)) holds (Sklar, 1959). If the mar-
gins are continuous, then one speaks of the copula, which is unique and equal to
C (u) = F (F←1 (u1) , . . . , F

←
d (ud)), where F

←
j is the generalised inverse function of

Fj. Note, however, that the copula model will only be unique in the case of contin-
uous random variables. If the random variables are discrete, this is not necessarily
the case, as illustrated by Example 5.5 in McNeil et al. (2005).

While copula models provide an elegant technique to model dependence between
random variables, they come with certain restrictions. On the one hand, they can be
computationally demanding in a high-dimensional setting, while on the other hand
they might not be flexible enough to model dependence between a large number
of random variables. A solution was provided by Krupskii and Joe (2013), who
propose a class of factor copula models that are both parsimonious and flexible.
The idea is to assume p latent factors V1, . . . , Vp that cause dependence between d
observable variables U1, . . . , Ud via bivariate linking copulas. These types of factor
copula models can be extended to allow for a more structured approach (Krupskii
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and Joe, 2015). A different type of factor copula model was proposed by Oh and
Patton (2017). The latter model uses a simulated method of moments (SMM)
estimation method described in Oh and Patton (2013), and is extended to allow
for time-varying parameters in Oh and Patton (2018). However, estimation for
this type of factor copula model is particularly slow in higher dimensions, as SMM
is based on a resampling scheme. Bayesian estimation methods for factor copula
models are explored by Creal and Tsay (2015), Schamberger et al. (2017), Tan et al.
(2019), Nguyen et al. (2020), and Kreuzer and Czado (2021), but are generally also
computationally demanding. A novel method to decrease the computational time to
estimate factor copula models is proposed by Krupskii and Joe (2021), who provide
a procedure that allows for fast estimation of the factor copula parameters in non-
overlapping factor copula models. The latter include the one-factor copula model
in Krupskii and Joe (2013) or the nested factor copula model in Krupskii and Joe
(2015).

The main contribution of this article is to provide a fast and computationally
tractable procedure to model very high-dimensional data characterised by non-
Gaussian skewness in the multivariate distribution. This is done in a two-step ap-
proach. First, marginals are modelled separately and transformed to normal scores.
Second, dependence between the marginals is modelled by means of p+ 1 common
factors: one factor resulting from a one-factor copula model as described in Krupskii
and Joe (2013), and p Gaussian factors.

Factor loadings and the residual correlation parameter are estimated using a
Generalised Method of Moments (GMM) approach, which provides consistent and
asymptotically normal estimates as the sample size n tends to infinity. In a subse-
quent step, the unobserved Gaussian factors are estimated using a weighted combi-
nation of the observed variables. Weights are obtained by maximising the correlation
between the estimated and the true Gaussian factors, while convergence is shown
by letting the sample size n tend to infinity, and setting the dimension d sufficiently
large. To allow for fast inference of the one-factor copula parameter, we use the
proxy factor idea proposed by Krupskii and Joe (2021). We show that as n and d
tend to infinity, the proxy converges towards the true factor.

In sum, the proposed model exploits both the versatility of Gaussian factor
models and the fast inference scheme of non-overlapping factor copula models. The
remainder of the article is organised as follows. The new model is proposed in Section
3.2, its main properties are discussed, and the statistical procedure is outlined.
The theoretical results are outlined in Section 3.3, and the estimation strategy is
illustrated with a simulation experiment in Section 3.4, where we propose a closed-
form expression to quickly invert the variance-covariance matrix of the observed
data. We illustrate the model by applying it to a real-world data example in Section
3.5. Section 3.6 wraps up the article with a discussion and ideas for future research.

3.2 Model outline and inference

In Section 3.2.1, a new factor model is presented that combines the characteristics
of Gaussian factor models and of factor copulas, while still being computationally
tractable in high dimensions. The estimation procedure is subsequently discussed
in Section 3.2.2.
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3.2.1 Model outline

Assume one has at hand data from arbitrary margins which in a first step are
transformed to N(0, 1) marginals. Then X = (X1, . . . , Xd)

⊤ is a d-dimensional
vector of observable variables so that Xj ∼ N (0, 1), for j = 1, . . . , d. In a p-factor
model, the observable variables Xj are a linear combination of p independent latent
Gaussian factors and an error term:

Xj =

p∑
k=1

λjkZk + γjεj, Z1, . . . , Zk, εj ∼i.i.d. N(0, 1), (3.1)

where λjk = Corr(Xj, Zk) and γj =
√

1−
∑p

k=1 λ
2
jk, j = 1, . . . , d. If the errors

ε1, . . . , εp are independent, then the model (3.1) is a classical Gaussian p-factor
model. In this work, we assume that E(εj1εj2) = η for j1 ̸= j2, and the errors are
independent conditional on some unobserved factor V ∼ U(0, 1) and the respective
copula

C (u1, . . . , ud) =

� 1

0

d∏
j=1

CU |V (uj | v) dv, (3.2)

where CU |V (uj | v) = ∂CU,V (uj, v) /∂v, and CU,V is the copula linking (εj, V ). In
other words, C is a one-factor copula; see Krupskii and Joe (2013) for more details.
Casting the model in (3.1) into matrix notation gives:

X = ΛZ + Γ1/2ε, (3.3)

where X = (X1, . . . , Xd)
⊤ is a column vector of d observable variables, and Λ =

(λ1, . . . ,λp) is a d× p matrix of p column vectors λk = (λ1k, . . . , λdk)
⊤ consisting of

d factor loadings, where λjk captures the impact of factor Zk on the j-th variable Xj.

The p Gaussian factors are elements of the column vector Z = (Z1, . . . , Zp)
⊤, while

the loadings on the d residuals ε = (ε1, . . . , εd)
⊤ are given in the d×d diagonal matrix

Γ1/2 = diag (γ1, . . . , γd). Lastly, dependence between the residuals is modelled by
the homogeneous one-factor copula model in (3.2).

Denote

H =


1 η · · · η
η 1 · · · η
...

...
. . .

...
η η · · · 1

 ,

H is a d × d matrix, with η = E (εj1εj2), where j1 ̸= j2 and j1, j2 = 1, . . . , d. Then
the correlation matrix of X is

ΣX = ΛΛ⊤ + Γ1/2HΓ1/2. (3.4)

The difference with a standard Gaussian factor model lies in the assumption that
E
(
εε⊤

)
= H ̸= Id, which implies the presence of correlation between the residual

terms.

The following example shows that the model 3.1 can capture asymmetric depen-
dence.
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Example 3.2.1. Let p = 2, d = 4 and assume that the copula linking (εj, V ) is
the Clayton copula with parameter 2 which corresponds to moderate lower tail
dependence. In this case, η ≈ 0.52. Consider the model:

Xj = 0.6Z1 + 0.8εj, j = 1, 2,

Xj = 0.6Z2 + 0.8εj, j = 3, 4.

Figure 3.1 shows scatterplots of different pairs of the observed variables. It is seen
that pairs (X1, X2) and (X3, X4) have stronger dependence in the lower tail, while
(X1, X3) has much weaker dependence and it does not exhibit strong asymmetry.
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Figure 3.1: Scatterplots of different pairs of observed variables in Example 3.2.1

3.2.2 Inference

In this section, we present the statistical procedure that ensures we can estimate
the model parameters, the Gaussian factors, and the latent factor of the one-factor
copula model. The corresponding theoretical results are outlined in Section 3.3.

We begin by estimating the parameters in the model, for which we implement
a GMM approach. Let Xn = (X1, . . . ,Xn) be a sample of size n, where X i =
(Xi1, . . . , Xid), for i = 1, . . . , n. Moreover, let Σ̂n = Σ̂Xn and define

Qn (Λ, η) =
d∑

j=1

d∑
k=1

{(
ΣX − Σ̂n

)2}d

j,k=1

,

then the model parameters can be obtained by

(Λ̂, η̂) = argmin(Λ,η)Qn (Λ, η) .

After obtaining the parameters, we want to estimate the Gaussian factors. This
can be done by creating a proxy Ẑ⋆

knd = ŵ⋆⊤
kndXn of the true Gaussian factors Zk (for

k = 1, . . . , p) by taking a weighted combination of the observable variables. More-

over, it is possible to obtain unique optimal weights ŵ⋆
knd = (λ̂

⊤
k Σ̂
−1
X λ̂k)

−1Σ̂
−1
X λ̂k by

minimising the L2 norm between the proxy factor and the true factor. In Section
3.4.1, we propose a closed-form expression to quickly invert the d × d variance-
covariance matrix ΣX .

44 Chapter 3



The next step is to recover the latent factor in the one-factor copula model. To
this end, the estimated residuals can be recovered as:

ε̂jnd =
1

γ̂j

(
Xj −

p∑
k=1

λ̂jkẐ
⋆
knd

)
,

using the estimated values of the factor loadings. We can then use a proxy Ūnd =∑d
j=1 ε̂jnd/d to approximate the unknown factor V in the one-factor copula model.

The density of the one-factor copula model is obtained by differentiating (3.2), that
is

c(u1, . . . , ud) =
C(u1, . . . , ud)

∂u1 . . . ∂ud
=

� 1

0

d∏
j=1

cU,V (uj, v) dv.

Thus, by plugging in Ūnd as a proxy for V , and using V̂ind = rank(Ūind)/(n+ 1), we
can obtain the copula parameter θ by maximising the log-likelihood

d∑
j=1

n∑
i=1

ln cU,V

(
Uij, V̂ind; θ

)
.

3.3 Theoretical results

We prove these results for the model with p ≤ 3 Gaussian factors. All proofs are
deferred to Appendix A.2.

We assume the following conditions hold.

Condition 3.3.1. Let δjk = λjk/γj, the vector ∆k = {(δlk − δmk)/d}dl,m=1 and ϕk1,k2

is the angle between ∆k1 and ∆k2. There exist ξ0, ξL, ξU ∈ (0,∞), and a constant
integer d0 ∈ N such that the following hold for any d > d0 and all j = 1, . . . , d, and
for all k, k1, k2, k3 = 1, . . . , p:

(i) ξL <
1
d

∑d
l=1 δ

2
lk < ξU <∞

(ii) ΣX is invertible and ξ0 < |(ΣX)j,k| < 1− ξ0 for j ̸= k;

(iii) ||∆k|| > ξ0, ϕk1,k2 + ϕk1,k3 − ϕk2,k3 > ξ0 for k1 ̸= k2 ̸= k3 and ϕk1,k2 + ϕk1,k3 +

ϕk2,k3 < 2π − ξ0, where ∥∆k∥ = 1
d

√∑d
l=1

∑d
m=1(δlk − δmk)2 is the Eucledian

norm.

These conditions imply that vectors ∆1,∆2,∆3 are linearly independent. In
Appendix A.1, we show that these are not restrictive conditions if factor loadings
are not linearly dependent.

The next theorem states that GMM estimation yields parameter estimates that
converge in probability to their true values, given some regularity conditions. More-
over, the resulting estimators are asymptotically normal, as stated in the subsequent
theorem.
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Theorem 3.3.2 (Consistency of the GMM estimators). Let f (Xn,Λ, η) = ΣX −
Σ̂n. The GMM estimators converge in probability to their true values as n→ ∞:(

Λ̂, η̂
)

P→ (Λ, η) , (3.5)

if the following conditions are satisfied:

(i) E [f (X,Λ, η)] = 0 only for (Λ, η) = (Λ0, η0);

(ii) The parameter space Θ ⊂ Rpd+1 is compact;

(iii) With probability one, f (X,Λ, η) is continuous at each (Λ, η);

(iv) E
[
sup(Λ,η)∈Θ ∥f (X,Λ, η)∥

]
<∞.

Theorem 3.3.3 (Asymptotic normality of GMM estimators). Let f (Xn,Λ, η) =
ΣX−Σ̂n. The GMM estimators are asymptotically normal if the following conditions
are satisfied:

(i)
(
Λ̂, η̂

)
is consistent;

(ii) The parameter space Θ ⊂ Rpd+1 is compact;

(iii) f (X,Λ, η) is continuously differentiable in some neighborhood of (Λ0, η0) with
probability one;

(iv) E
[
∥f (Xi,Λ, η)∥2

]
<∞;

(v) sup(Λ,η)∈Θ
∥∥∇(Λ,η)ΣX

∥∥ <∞;

(vi) The matrix
(
∇(Λ,η)ΣX

)⊤∇(Λ,η)ΣX is non-singular.

The following lemma states that we can obtain a proxy of the true Gaussian
factors Zk (for k = 1, . . . , p) by taking a weighted combination of the observable
variables X = (X1, . . . , Xd)

⊤.

Lemma 3.3.4 (Optimal weights). Let wkd = (wk1, . . . , wkd)
⊤ be a weights vector

of length d (for k = 1, . . . , p), such that the weighted sum of the observed variables
Ẑkd = w⊤kdX is a proxy of the Gaussian factor Zk. Then one can obtain the unique
optimal weight vector w⋆

kd = (λ⊤k Σ
−1
X λk)

−1/2Σ−1X λk by minimising E{(Ẑkd − Zk)
2}

with respect to wkd such that Var(Ẑkd) = 1.

Theorem 3.3.5 states that Ẑ⋆
kd = w⋆⊤

kdX will converge to its true value if the
dimension is sufficiently large.

Theorem 3.3.5 (Convergence in L2 of Gaussian factor proxies). Assume Condition
3.3.1 is satisfied. For k = 1, . . . , p, let Ẑ⋆

kd = w⋆⊤
kdX, with w⋆

kd = (λ⊤k Σ
−1
X λk)

−1/2Σ−1X λk.
Then the following holds as d→ ∞,

lim
d→∞

E{(Ẑ⋆
kd − Zk)

2} = 0.

Theorem 3.3.6 states that Ẑ⋆
knd will also converge to its true value.
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Theorem 3.3.6 (Convergence in L2 of estimated Gaussian factor proxies). Let

Ẑ⋆
knd = ŵ⋆⊤

kndXn, with ŵ⋆
knd = (λ̂

⊤
k Σ̂
−1
X λ̂k)

−1/2Σ̂
−1
X λ̂k. Let Σ̂

−1
X and λ̂k be the esti-

mated counterparts of Σ−1X and λk, respectively. Then, for k = 1, . . . , p

lim
d→∞

lim
n→∞

E{(Ẑ⋆
knd − Zk)

2} = 0.

Notice that in Theorem 3.3.6, the order of the limits is crucial to ensure conver-
gence takes place.

Denote

ε̂jd =
1

γj

(
Xj −

p∑
k=1

λjkẐ
⋆
kd

)
.

A first step is to show in Lemma 3.3.7 that the estimated proxy for the latent
factor Ūnd =

∑d
j=1 ε̂jnd/d converges towards the proxy for the latent factor Ūd =∑d

j=1 ε̂jd/d. Subsequently, in Theorem 3.3.8 we show that Ūd converges in probabil-
ity to a monotone function of the true latent factor, if the dimension is sufficiently
large.

Lemma 3.3.7. Let Ūnd =
∑d

j=1 ε̂jnd/d, and let Ūd =
∑d

j=1 εjd/d. Then

Ūnd
P→ Ūd, as n→ ∞.

Theorem 3.3.8 (Convergence in probability to a monotonic function of the fac-
tor V as d → ∞). Let Ūnd =

∑d
j=1 ε̂jnd/d, and let Ūd =

∑d
j=1 εjd/d. Under the

assumptions of Theorem 5 in Krupskii and Joe (2021) and Theorem 3.3.5,

Ūnd
P→ m (V ) ,

as n→ ∞ and d→ ∞, where m (·) is a monotone function.

The next result shows that the observed variables in (3.1) are asymptotically
independent so this model is not suitable for modeling data with strong tail depen-
dence.

Theorem 3.3.9 (Asymptotic independence of X). If 0 < γl < 1, 0 < γm < 1, and
γl(1− γ2m)

1/2 ̸= γm(1− γ2l )
1/2 for 1 ≤ l < m ≤ d, then

lim
z→−∞

P (Xl < z,Xm < z)

Φ(z)
= 0,

where Φ(·) is the cdf of a standard normal distribution. This result implies that the
copula linking (Xl, Xm) has no lower tail dependence. Similar result holds for the
upper tail.

3.4 Simulation study

In this section, we perform a simulation study with the goal to evaluate the perfor-
mance of the estimation methods for the model (3.1). The numerical implementation
techniques that can be used to efficiently compute the presented estimators of the
model are discussed in Section 3.4.1, Section 3.4.2 sets up the simulation experiment
for which the results are presented in Section 3.4.3.
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3.4.1 Numerical implementation

The main hurdle in applying the calculations in the previous section is in obtaining
the inverse of the correlation matrix, Σ−1X . Such an inversion becomes computation-
ally infeasible whenever the dimension d is too large. As mentioned in the proof of
Theorem 3.3.5, the following expression can be obtained using Woodbury’s formula
(Chapter 2 in Van Loan and Golub, 1996):

Σ−1X =
(
Γ1/2HΓ1/2

)−1
−
(
Γ1/2HΓ1/2

)−1
Λ

(
Λ⊤
(
Γ1/2HΓ1/2

)−1
Λ+ Ip

)−1
Λ⊤
(
Γ1/2HΓ1/2

)−1
.

As one can see, the bottleneck lies in the inversion of the symmetric d × d matrix

Γ1/2HΓ1/2. However, we can find that (Γ
1
2HΓ

1
2 )−1 = {(yj,k)}dj,k=1, where

yjj =
1 + (d− 2) η

γ2j (1 + (d− 2) η − (d− 1) η2)

yjk =
−η

γjγk (1 + (d− 2) η − (d− 1) η2)
,

where j ̸= k for j, k = 1, . . . , d. Using this closed-form expression for the inverse
greatly improves computational efficiency, as we no longer have to deal with the
inversion of a d × d matrix. Indeed, the remaining computations only require the
inversion of the p× p matrix Λ⊤(Γ1/2HΓ1/2)−1Λ+ Ip, for which in practical appli-
cations p≪ d.

3.4.2 Simulation setup

We assume that we have at hand a sample of size n and dimension d which admits
the factor model in (3.1) with two Gaussian factors and residual one-factor copula
dependence:

Xij = λj1Zi1 + λj2Zi2 + γjεij, (3.6)

for i = 1, . . . , n, and j = 1, . . . , d. In addition, let λj1 ∼ U (0.4, 0.8), and λj2 ∼
U (0.2, 0.6). The following simulation procedure is used to generate the Gaussian
factors and the residuals εij:

1. Draw a sample of size n for Zi1 ∼ N (0, 1), Zi2 ∼ N (0, 1), andWi1, . . . ,Wid, Vi ∼
U (0, 1) with i = 1, . . . , n.

2. For each j = 1, . . . , d, let Uij = C−1U |V (Wij |Vi ).

3. Set εij = Φ−1 (Uij), where Φ
−1 (·) is the quantile function of the Gaussian cdf.

In a subsequent step, the factor model parameters are estimated using GMM, with
parameter λ11 fixed at its true value to make the model parameters identifiable.
Then, the factors are estimated using the weighted variables approach, where the
weights are computed as in Theorem 3.3.6. Lastly, the factor copula parameter is
estimated using standard maximum likelihood.
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This experiment is repeated for 1000 independent simulations. For every exper-
iment, one of the following settings is used for the sample size n, the dimension d,
the copula parameter θ, and the copula family C:

� The sample size is set to n ∈ {250, 500, 750, 1000, 2500, 5000}.

� The dimension is set to d ∈ {10, 50, 100, 250, 500}.

� The copula parameter is calculated using Kendall’s tau, τK = 0.50.

� The family of bivariate copulas are Clayton (CCl), and t4 (Ct4).

Next, over all simulation results, we calculate the mean and variance of the cor-
relation between the true and the estimated Gaussian factors, and the Pearson
correlation coefficient between the estimated copula factor V̂ , and the true copula
factor V . It is easy to see that minimising the L2 norm between the true and the
estimated factor is equivalent to maximising the correlation between the true and
the estimated factor. Lastly, we calculate the average bias of the copula parameter
and its variance over all simulations. In the next section, we report these estimation
results.

3.4.3 Simulation results

The results of the simulation experiments are presented in Tables 3.1 and 3.2. As
one can see in both tables, for fixed n, the correlation between the estimated and
the true factors increases as d becomes larger. However, for n = 250 and n = 500,
there is a small drop in the correlation as d increases from 500 to 1000. Nevertheless,
when n increases to 750, this is no longer the case. Similarly, for the bias of the
estimated copula parameter reported in the last column of the tables, we can see
that, for each n, there is a decrease in the bias as the dimension d becomes larger.
However, as d increases from 500 to 1000, the bias starts to increase again. On the
other hand, as the sample size n increases, this decrease becomes less important.

3.5 Data application

In this section, we apply the model outlined in the paper to a real-world dataset.
We consider three different sectors in the S&P500 between January 3rd (2017) and
December 30th (2020), which accounts for 1006 observations. The sectors considered
are Industrials (71 stocks), Information Technology (74 stocks), and Financials (64
stocks) as classified by the Global Industry Classification Standard. Three stocks
(CARR, IR, and OTIS) are excluded from the Industrials sector, as they were only
included in the S&P500 in 2020.

To model the univariate time series, we use an AR(1)-GARCH(1,1) process for
the log-returns sj,t = log(Sj,t/Sj,t−1) of stock price Sj,t, for each individual stock
j = 1, . . . , d and each time period t = 1, . . . , T . The univariate time series model
can be written as

sj,t = µj + ϕjsj,t−1 + κj,tξj,t
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Table 3.1: Simulation results for 1000 independent runs from a two-factor model
with residual one-factor copula dependence with Clayton linking copulas. Loadings
on the first factors are uniformly chosen between 0.4 and 0.8, while loadings on the
second factor are uniformly chosen between 0.2 and 0.6.

Clayton copula with τK = 0.5

n d ρ(Z1, Ẑ1nd) (s.d) ρ(Z2, Ẑ2nd) (s.d) ρ(V, V̂nd) (s.d) Bias(θ̂) (s.d.)

250 10 0.84 (0.05) 0.68 (0.10) 0.82 (0.09) 0.13 (0.38)
50 0.95 (0.01) 0.92 (0.01) 0.92 (0.01) -0.07 (0.20)
100 0.97 (0.01) 0.95 (0.01) 0.95 (0.01) -0.10 (0.19)
250 0.98 (0.01) 0.98 (0.01) 0.97 (0.01) -0.07 (0.19)
500 0.98 (0.03) 0.97 (0.03) 0.98 (0.01) -0.07 (0.19)

500 10 0.86 (0.04) 0.74 (0.06) 0.85 (0.04) 0.25 (0.22)
50 0.96 (0.01) 0.93 (0.01) 0.92 (0.01) -0.07 (0.15)
100 0.97 (< 0.01) 0.95 (0.01) 0.95 (0.01) -0.05 (0.14)
250 0.99 (< 0.01) 0.98 (0.01) 0.98 (< 0.01) -0.04 (0.14)
500 0.99 (0.02) 0.98 (0.02) 0.98 (< 0.01) -0.05 (0.14)

750 10 0.86 (0.03) 0.75 (0.04) 0.86 (0.01) 0.29 (0.16)
50 0.96 (< 0.01) 0.93 (0.02) 0.93 (< 0.01) -0.06 (0.12)
100 0.97 (< 0.01) 0.95 (< 0.01) 0.95 (< 0.01) -0.04 (0.12)
250 0.99 (< 0.01) 0.98 (< 0.01) 0.98 (< 0.01) -0.03 (0.12)
500 0.99 (0.02) 0.98 (0.02) 0.99 (< 0.01) -0.05 (0.12)

1000 10 0.87 (0.03) 0.76 (0.03) 0.86 (0.01) 0.29 (0.14)
50 0.96 (< 0.01) 0.93 (< 0.01) 0.93 (< 0.01) -0.06 (0.10)
100 0.97 (< 0.01) 0.95 (< 0.01) 0.96 (< 0.01) -0.04 (0.10)
250 0.99 (< 0.01) 0.98 (< 0.01) 0.98 (< 0.01) -0.02 (0.10)
500 0.99 (0.01) 0.98 (0.01) 0.99 (< 0.01) -0.05 (0.10)

2500 10 0.88 (0.02) 0.78 (0.02) 0.87 (0.01) 0.31 (0.09)
50 0.96 (< 0.01) 0.93 (< 0.01) 0.93 (< 0.01) -0.04 (0.07)
100 0.98 (< 0.01) 0.96 (< 0.01) 0.96 (< 0.01) -0.03 (0.06)
250 0.99 (< 0.01) 0.98 (< 0.01) 0.98 (< 0.01) -0.02 (0.06)
500 0.99 (0.01) 0.98 (0.01) 0.99 (< 0.01) -0.04 (0.07)

5000 10 0.88 (0.01) 0.78 (0.01) 0.87 (< 0.01) 0.31 (0.06)
50 0.96 (< 0.01) 0.93 (< 0.01) 0.93 (< 0.01) -0.04 (0.05)
100 0.98 (< 0.01) 0.96 (< 0.01) 0.96 (< 0.01) -0.03 (0.05)
250 0.99 (< 0.01) 0.98 (< 0.01) 0.98 (< 0.01) -0.01 (0.05)
500 0.99 (0.01) 0.98 (0.01) 0.99 (< 0.01) -0.04 (0.05)

κ2j,t = ωj + αjs
2
j,t−1 + βjκ

2
j,t−1,

where µj is the unconditional mean, and ϕj gives, for stock j, the dynamic impact
of a change in the log-returns in period t−1. Furthermore, κj,t introduces, for stock
j, non-constant volatility to the process. The latter is a function of the average
volatility ωj, the dynamic impact αj of a change in the previous period of the
squared series, and βj captures the impact of a change in the volatility at time t−1.
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Table 3.2: Simulation results for 1000 independent runs from a two-factor model
with residual one-factor copula dependence with t4 linking copulas. Loadings on the
first factors are uniformly chosen between 0.4 and 0.8, while loadings on the second
factor are uniformly chosen between 0.2 and 0.6.

t4 copula with τK = 0.5

n d ρ(Z1, Ẑ1nd) (s.d) ρ(Z2, Ẑ2nd) (s.d) ρ(V, V̂nd) (s.d) Bias(θ̂) (s.d.)

250 10 0.83 (0.05) 0.63 (0.11) 0.79 (0.13) -0.05 (0.02)
50 0.94 (0.02) 0.90 (0.03) 0.93 (0.02) -0.02 (0.03)
100 0.96 (0.02) 0.93 (0.03) 0.96 (0.02) -0.02 (0.03)
250 0.98 (0.02) 0.97 (0.02) 0.98 (0.01) -0.02 (0.02)
500 0.96 (0.05) 0.95 (0.06) 0.98 (0.02) -0.02 (0.03)

500 10 0.84 (0.04) 0.70 (0.08) 0.86 (0.07) 0.02 (0.12)
50 0.95 (0.01) 0.92 (0.01) 0.94 (0.01) -0.01 (0.02)
100 0.97 (0.01) 0.95 (0.01) 0.97 (< 0.01) -0.01 (0.02)
250 0.99 (0.01) 0.98 (0.01) 0.99 (< 0.01) -0.01 (0.02)
500 0.98 (0.03) 0.97 (0.03) 0.99 (< 0.01) -0.01 (0.02)

750 10 0.85 (0.04) 0.73 (0.06) 0.88 (0.04) 0.04 (0.06)
50 0.95 (< 0.01) 0.92 (< 0.01) 0.95 (0.01) -0.01 (0.02)
100 0.97 (< 0.01) 0.95 (< 0.01) 0.97 (< 0.01) -0.01 (0.01)
250 0.99 (< 0.01) 0.98 (< 0.01) 0.99 (< 0.01) -0.01 (0.01)
500 0.99 (0.02) 0.98 (0.02) 0.99 (< 0.01) -0.01 (0.01)

1000 10 0.86 (0.04) 0.74 (0.04) 0.88 (0.02) 0.05 (0.02)
50 0.95 (< 0.01) 0.92 (< 0.01) 0.95 (< 0.01) -0.01 (0.01)
100 0.97 (< 0.01) 0.95 (< 0.01) 0.97 (< 0.01) -0.01 (0.01)
250 0.99 (< 0.01) 0.98 (< 0.01) 0.99 (< 0.01) -0.01 (0.01)
500 0.99 (0.01) 0.98 (0.01) 0.99 (< 0.01) -0.01 (0.01)

2500 10 0.87 (0.02) 0.77 (0.02) 0.89 (0.02) 0.05 (0.01)
50 0.96 (< 0.01) 0.93 (< 0.01) 0.95 (< 0.01) -0.01 (0.01)
100 0.97 (< 0.01) 0.95 (< 0.01) 0.97 (< 0.01) 0.00 (0.01)
250 0.99 (< 0.01) 0.98 (< 0.01) 0.99 (< 0.01) 0.00 (0.01)
500 0.99 (0.01) 0.98 (0.01) 0.99 (< 0.01) -0.01 (0.01)

5000 10 0.88 (< 0.01) 0.77 (< 0.01) 0.89 (< 0.01) 0.05 (< 0.01)
50 0.96 (< 0.01) 0.93 (< 0.01) 0.95 (< 0.01) 0.00 (< 0.01)
100 0.97 (< 0.01) 0.95 (< 0.01) 0.97 (< 0.01) 0.00 (< 0.01)
250 0.99 (< 0.01) 0.98 (< 0.01) 0.99 (< 0.01) -0.01 (< 0.01)
500 0.99 (< 0.01) 0.98 (< 0.01) 0.99 (< 0.01) -0.01 (< 0.01)

Lastly, error terms ξj,t are i.i.d. Skew-t distributed with ν degrees of freedom and
skewness parameter γ. After estimating the univariate parameters, we transform
the estimated residuals to a uniform scale.

Next, we want to identify the number of underlying factors. In Section 2.4 of
Oh and Patton (2017) it is shown that, under regularity conditions, one can use a
scree plot based on the eigenvalues of the rank correlation matrix to determine the
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appropriate number of factors. The scree plot for the AR(1)-GARCH(1,1) filtered
data transformed to uniform ranks is given in Figure 3.2. One can see that for the
Industrials sector, the majority of the variance in the data is explained by one factor,
while for the Information Technology and Financials sectors, two common factors
appear to be more appropriate to capture the variance in the data. Thus, when
we look at the number of factors required to simultaneously model the Industrials,
Information Technology and Financials sectors, it is no surprise that the number of
factors appears to be between 2 and 4.

Figure 3.2: Scree plot of the 10 largest eigenvalues of the rank correlation matrix for
the AR(1)-GARCH(1,1) filtered observations in the Industrials, Information Tech-
nology, and Financials stocks of the S&P500.
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Next, we model the multivariate dependence between the different log-returns of
stock prices. First, we transform the data to normal scores and look at the empirical
semi-correlation of the data. Semi-correlation can be defined as the correlation in
the lower tail (ρ<0) or upper tail (ρ>0) of the data. We can see in Table 3.3 that the
average absolute semi-correlation indicates that the data in each of the three sectors
is skewed to the left. The absolute semi-correlation is calculated to account for
the seven negative values of upper semi-correlation in the Information Technology
sector. However, these are small enough such that they do not affect the average up
to two decimals. This is consistent with stylized facts in the financial literature that
show stronger correlation during downturns. We therefore expect that a copula with
stronger dependence in the lower tail is more appropriate to model these data. For
comparison, we use different copula models to see which one fits these characteristics
best.

First, we model dependence within each sector separately using only one Gaus-
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Table 3.3: Sector-wise average absolute lower semi-correlation (ρ<0) and upper semi-
correlation (ρ>0) using three different sectors in the S&P500.

Sector |ρ<0| |ρ>0|
Industrials 0.38 0.25
Information Technology 0.39 0.21
Financials 0.44 0.34

sian factor, and a Clayton, Frank, and normal one-factor copula model to capture
the residual dependence. Because the lower tail dependence does not appear to be
very strong, we also use a reflected Gumbel copula model to capture the residual
dependence. Then, we subsequently use two and three Gaussian factors while using
the same one-factor copula models. These estimation results for each sector are pre-
sented in Table 3.4. As one can see in the model with one Gaussian factor, all three
sectors establish a moderate degree of dependence between its constituent stocks.
This is not surprising, as linear dependence is already captured by the Gaussian fac-
tor. Adding a second Gaussian factor to the model does not drastically change the
parameter estimates. Similarly, when pairing industry sectors together in a model
with two Gaussian factors, we can see that there is a moderate degree of dependence
between the stocks in each of the pairs of industry sectors. Lastly, when using three
Gaussian factors, we can see that the estimated parameter for each of the three
copula models is somewhat higher than the estimated dependence parameters in
the model with two Gaussian factors.

To evaluate the performance of our model, we use the estimated parameters
to simulate a sample of size 1,000,000. We then calculate the semi-correlations of
this simulated sample, and calculate the average (absolute) bias with respect to the
empirical semi-correlations in Table 3.3. These results are reported in Table 3.5 and
3.6. As we can see, the average absolute bias of the lower semi-correlation, b(|ρ<0|),
is smallest for the model using reflected Gumbel linking copulas in the model with
one Gaussian factor. This shows that our model is capable of capturing multivariate
skewness in high-dimensional data. The average absolute bias of the upper semi-
correlation is somewhat lower for the Frank and Normal copula, but the difference
with that of the reflected Gumbel copula is relatively small, except for the model
with one Gaussian factor with the Financials sector. Lastly, we also modelled the
data using a multivariate Student tν copula with a three-factor covariance structure.
However, the estimated degrees of freedom parameter is close to 20, which makes it
indistinguishable from a normal copula model.

3.6 Discussion

Applying Gaussian factor models to high-dimensional data requires extensive com-
putational power. Moreover, Gaussian factor models do not capture multivariate
skewness in the data. In this paper, we provided a method that exploits the high-
dimensionality of the data to accurately estimate the unobserved factors and si-
multaneously allows us to model multivariate skewness in the data. The proposed
model is flexible, as it allows to separately model the margins from the dependence
structure. We proved that our model works for a factor model with up to three
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Table 3.4: Estimated copula parameters for three different sectors in the S&P500.
Top: one-factor model, middle: two-factor model, bottom: three-factor model.

Sectors r-Gumbel Clayton Frank Normal d

Industrials 1.46 0.73 3.51 0.50 71
Information Technology 1.50 0.79 3.75 0.52 74
Financials 1.74 1.12 4.98 0.63 64
Industrials-IT 1.35 0.56 2.86 0.43 145
Industrials-Financials 1.49 0.77 3.61 0.51 135
IT-Financials 1.46 0.73 3.48 0.50 138
Industrials-IT-Financials 1.61 0.91 4.32 0.57 209

Gaussian factors. Simulation studies showed that the accuracy of our estimations
improves as the sample size and dimension increase. To illustrate the model, we ap-
plied it to a dataset of three constituent sectors of the S&P500 stock data and found
evidence that the stocks in the three sectors are skewed, consistent with findings in
the finance literature.

There are different avenues for future research. One direction is to include fast
inference models that allow for tail dependence in factor models, or for a nested
structure in the factor copula dependence. Another option is to include multiple
variables that capture dependence between the data using different one-factor copula
models.
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Table 3.6: Average bias for simulated semi-correlations, with n = 1000000, and
dimension matching that of each sector. Parameters used in the simulation are the
estimated parameters for each sector.

r-Gumbel Clayton Frank Normal
Sectors b(ρ<0) b(ρ>0) b(ρ<0) b(ρ>0) b(ρ<0) b(ρ>0) b(ρ<0) b(ρ>0)

Ind -0.04 -0.09 -0.04 -0.09 -0.16 -0.02 -0.14 -0.01
IT -0.04 -0.07 -0.04 -0.07 -0.18 0.01 -0.16 0.02
Fin -0.01 -0.12 -0.01 -0.12 -0.14 -0.03 -0.11 -0.01
Ind-IT -0.07 -0.03 -0.08 -0.05 -0.16 0.00 -0.15 0.01
Ind-Fin -0.11 -0.08 -0.11 -0.10 -0.18 -0.06 -0.17 -0.05
IT-Fin -0.09 -0.04 -0.09 -0.07 -0.17 -0.02 -0.17 -0.01
Ind-IT-Fin -0.01 -0.04 -0.01 -0.08 -0.15 -0.00 -0.13 0.02
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We propose nonparametric open-end sequential testing procedures that can detect
all types of changes in the contemporary distribution function of possibly multivari-
ate observations. Their asymptotic properties are theoretically investigated under
stationarity and under alternatives to stationarity. Monte Carlo experiments reveal
their good finite-sample behavior in the case of continuous univariate, bivariate and
trivariate observations. A short data example concludes the work.

4.1 Introduction

From an historical perspective, monitoring is often associated with control charts
also known as Shewart charts. Such graphical tools central to statistical process con-
trol (see, e.g., Lai, 2001; Montgomery, 2007, for an overview) are usually calibrated
in terms of the so-called average run length (ARL) controlling how many monitoring
steps are necessary on average before the data generating process is declared out of
control. The fact that this conclusion (that is, that the probabilistic properties of
the monitored observations have changed) is reached with probability one could be
regarded as a drawback of this type of procedure, in particular if false alarms are
very costly. To remedy this situation, Chu et al. (1996) have proposed to treat the
issue of monitoring from the point of view of statistical testing. The main advantage
is that, when observations arise from a stationary time series, monitoring procedures
à la Chu et al. (1996) will lead to the conclusion that a change has occurred in the
data generating process only with a small probability α controlled by the user. For
a recent nicely written literature review comparing monitoring as carried out in
statistical process control to approaches based on statistical tests à la Chu et al.
(1996), we refer the reader to the introduction of Gösmann et al. (2022).

In addition to being statistical tests, the monitoring procedures investigated
in this work are nonparametric and deal with d-dimensional observations, d ≥ 1.
In that respect, as we continue, we use the superscript

[ℓ]
to denote the ℓth co-

ordinate of a vector (for instance, x = (x[1], . . . , x[d]) ∈ Rd). As is customary
in the sequential testing literature, we assume that we have at hand m ≥ 1 ob-
servations from the initial data generating process. Monitoring starts immedi-
ately thereafter. To be more precise, we assume that we have at our disposal
a stretch Xi = (X [1]

i , . . . , X
[d]

i ), i ∈ {1, . . . ,m}, from a d-dimensional stationary
time series with unknown contemporary distribution function (d.f.) F given by
F (x) = P(X [1]

1 ≤ x[1], . . . , X [d]

1 ≤ x[d]) = P(X1 ≤ x), x ∈ Rd. These available
observations will be referred to as the learning sample as we continue. Once the
monitoring starts, new observations Xm+1,Xm+2, . . . arrive sequentially and the
aim is to issue an alarm as soon as possible if there is evidence that the contempo-
rary distribution of the most recent observations is no longer equal to F .

Most approaches in the literature are of a closed-end nature: the monitoring
eventually stops if stationarity is not rejected after the arrival of a final observation
Xn, n > m. Our focus in this work is on the more difficult scenario in which the
monitoring can in principle continue indefinitely: this is called the open-end setting.
From a practical perspective, it can be argued that the fact that the monitoring
horizon n does not need to be specified is a great advantage of open-end procedures.
The price to pay for open-endness is however a significantly more complicated the-
oretical setting. Indeed, as discussed for instance in Remark 2.2 of Gösmann et al.
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(2021), while the asymptotics of closed-end procedures can usually be derived using
functional central limit theorems, such results are insufficient in the open-end case
and need to be either combined with Háyék-Réyni type inequalities (see, e.g., Kirch
and Weber, 2018, and the references therein) or replaced by approximations of the
form of forthcoming Condition 4.2.5 (see Aue and Horváth, 2004; Aue et al., 2006).

The null hypothesis of the sequential testing procedures studied in this work is

H0 : X1, . . . ,Xm,Xm+1,Xm+2, . . . , is a stretch from a stationary time series.
(4.1)

When d = 1, starting from the work of Gösmann et al. (2021), Holmes and
Kojadinovic (2021) have recently introduced a detection procedure that is particu-
larly sensitive to changes in the mean. Because it uses the retrospective cumulative
sum (CUSUM) statistic as detector, it turns out to be more powerful then existing
procedures as long as changes do not occur at the very beginning of the monitor-
ing. As noted in Section 6 of the latter reference, this approach can be adapted to
obtain alternative procedures that are particularly sensitive for instance to changes
in the variance or some other moments. The goal of this work is to generalize the
method of Holmes and Kojadinovic (2021) in order to obtain open-end monitoring
procedures that can be sensitive simultaneously to all types of changes in the d.f.
F . Although such procedures already exist in a closed-end setting (see, e.g., Ko-
jadinovic and Verdier, 2021), to the best of our knowledge, they are unavailable in
the open-end setting.

This paper is organized as follows. In the second section, starting from the
work of Gösmann et al. (2021) and Holmes and Kojadinovic (2021), we propose a
detector that can be sensitive to all types of changes in the contemporary d.f. of
multivariate observations. We additionally introduce a suitable threshold function
and study the asymptotics of the resulting monitoring procedure under H0 in (4.1)
and under sequences of alternatives to H0. In the third section, we focus on the case
of continuous observations and provide additional asymptotic results under the null.
In the fourth section, using asymptotic regression models, we address the estimation
of high quantiles of the distributions appearing in the asymptotic results under H0

which are necessary in practice to carry out the sequential tests. The fifth section
summarizes the results of numerous Monte Carlo experiments for d ∈ {1, 2, 3} whose
aim is to study the finite-sample behavior of the monitoring procedures under H0

and under alternatives to H0. A data example and concluding remarks are gathered
in the last section.

Unless mentioned otherwise, all convergences are as m→ ∞. Also, as there are
many discrete intervals appearing in this work, we will conveniently use the notation
Jj, kK, Jj, kJ, Kj, kK, and Kj, kJ for the sets of integers {j, . . . , k}, {j, . . . , k − 1},
{j − 1, . . . , k}, and {j − 1, . . . , k − 1}, respectively. Note that all mathematical
proofs are gathered in a series of appendices and a non-optimized implementation
of the monitoring procedures studied in this work is available in the package npcp

(Kojadinovic and Verhoijsen, 2022) for the R statistical environment (R Core Team,
2022).
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4.2 A first detector, the threshold function and

related asymptotics

4.2.1 A first detector and the threshold function

One of the two main ingredients of a monitoring procedure à la Chu et al. (1996) is a
statistic, also called a detector, that is potentially computed after the arrival of every
new observation Xk, k > m. This statistic is typically positive and quantifies some
type of departure from stationarity. Once computed, it is compared to a positive
threshold, possibly also depending on k. If greater, evidence against H0 in (4.1)
is deemed significant and the monitoring stops. Otherwise, a new observation is
collected.

For sensitivity to changes in the mean of univariate (d = 1) observations, Holmes
and Kojadinovic (2021) used among others the detector

Rm(k) = max
j∈Jm,kJ

j(k − j)

m
3
2

|X̄ [1]

1:j − X̄ [1]

j+1:k|, k ≥ m+ 1, (4.2)

where X̄ [1]

j:k = 1
k−j+1

∑k
i=j X

[1]

i , 1 ≤ j ≤ k. Some thought reveals that, for any fixed

k ≥ m+ 1, Rm(k) is akin to the so-called retrospective CUSUM statistic frequently
used in offline change-point detection tests (see, e.g., Csörgő and Horváth, 1997;
Aue and Horváth, 2013).

When d ≥ 1, to be sensitive to changes in the d.f. at a fixed point x =
(x[1], . . . , x[d]) ∈ Rd, a straightforward adaptation of the previous approach would be
to compute (4.2) from the stretch of univariate observations 1(X1 ≤ x), . . . ,1(Xm ≤
x),1(Xm+1 ≤ x), . . . ,1(Xk ≤ x), where inequalities between vectors are to be un-
derstood componentwise. The detector Rm can then be equivalently expressed as

Ex
m(k) = max

j∈Jm,kJ

j(k − j)

m
3
2

|F1:j(x)− Fj+1:k(x)|, k ≥ m+ 1, (4.3)

where, for any integers j, k ≥ 1,

Fj:k(x) =


1

k − j + 1

k∑
i=j

1(Xi ≤ x), if j ≤ k,

0, otherwise,

(4.4)

is the empirical d.f. of Xj, . . . ,Xk evaluated at x. Our aim is to extend the previous
approach using p ≥ 1 points x1, . . . ,xp in Rd, where the integer p and the points
x1, . . . ,xp are chosen by the user. Let P = (x1, . . . ,xp) and, for any i ∈ N, let
Y P

i =
(
1(Xi ≤ x1), . . . ,1(Xi ≤ xp)

)
, which is a p-dimensional random vector.

Combining the approach of Gösmann et al. (2021) with the one of Holmes and
Kojadinovic (2021), the first detector considered in this work is defined by

DP
m(k) = max

j∈Jm,kJ

j(k − j)

m
3
2

∥F P
1:j − F P

j+1:k∥(ΣP
m)−1 , k ≥ m+ 1, (4.5)

where, for any integers j, k ≥ 1, F P
j:k =

(
Fj:k(x1), . . . , Fj:k(xp)

)
∈ Rp, ΣP

m is an
estimator (based on Y P

1 , . . . ,Y
P
m ) of the long-run p× p covariance matrix

ΣP = Cov(Y P
1 ,Y

P
1 ) +

∞∑
i=2

{Cov(Y P
1 ,Y

P
i ) + Cov(Y P

i ,Y
P
1 )} (4.6)
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of the p-dimensional time series
(
Y P

i

)
i∈N and, for any y ∈ Rp, ∥y∥M =

√
(y⊤My)/p

denotes a weighted norm of y induced by a p×p positive-definite matrixM and the
integer p.

Note that (4.5) can be equivalently rewritten as

DP
m(k) = max

j∈Jm,kJ

j(k − j)

m
3
2

∥Ȳ P
1:j − Ȳ P

j+1:k∥(ΣP
m)−1 , k ≥ m+ 1, (4.7)

where, for any integers 1 ≤ j ≤ k, Ȳ P
j:k =

1
k−j+1

∑k
i=j Y

P
i .

Remark 4.2.1. The role of the matrix (ΣP
m)
−1 when using the Mahalanobis-like norm

∥·∥(ΣP
m)−1 in (4.5) is, roughly speaking, to standardize and decorrelate under the null

vectors of the form F P
1:j −F P

j+1:k before computing their L2 norm (scaled by 1/
√
p).

As shall become clearer from Theorem 4.2.6 below, a consequence of that step is
that a key limiting null distribution playing a central role in the testing procedure
will not depend on the characteristics of the underlying time series (Xi)i∈N but only
on the number of points p chosen by the user. The latter desirable property from
a practical perspective is also the reason why we did not consider, instead of DP

m

in (4.5), alternative detectors that evaluate differences of empirical d.f.s at all the
points in Rd. One natural such alternative detector is

Dsup
m (k) = max

j∈Jm,kJ

j(k − j)

m
3
2

sup
x∈Rd

|F1:j(x)− Fj+1:k(x)|, k ≥ m+ 1. (4.8)

Such a detector was actually considered in a closed-end setting by Kojadinovic and
Verdier (2021) and required in practice the use of bootstrapping when monitoring
serially dependent observations. The major practical obstacle related to its use in
an open-end setting will be discussed in Remark 4.2.13.

The second key ingredient of a monitoring procedure is a threshold function. In
the considered open-end setting, given a significance level α ∈ (0, 1

2
), the aim is to

define a deterministic function w : [1,∞) → (0,∞) such that (ideally) under H0

in (4.1),

P
(
DP

m(k) ≤ w(k/m) for all k > m
)
= P

(
sup
k>m

DP
m(k)

w(k/m)
≤ 1

)
= 1− α, (4.9)

where the supremum is over integers k > m. Because the detector DP
m in (4.5) or

in (4.7) can be regarded as a multivariate generalization of the detector Rm in (4.2),
one can use the same reasoning as in Section 2 of Holmes and Kojadinovic (2021)
to suggest that a meaningful threshold function in the considered case is

w(t) = q(1−α)

p,η t
3
2
+η, t ∈ [1,∞), (4.10)

where η is a positive real parameter and q(1−α)
p,η > 0 is the (1−α)-quantile of Lp,η, the

weak limit of supk>m(m/k)
3
2
+ηDP

m(k) under H0, assuming that Lp,η is continuous.
In that case, under H0, by the Portmanteau theorem,

lim
m→∞

P

(
sup
k>m

DP
m(k)

w(k/m)
≤ 1

)
= lim

m→∞
P

(
sup
k>m

(m/k)
3
2
+ηDP

m(k) ≤ q(1−α)

p,η

)
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= P(Lp,η ≤ q(1−α)

p,η ) = 1− α, (4.11)

which can be regarded as an “asymptotic version” of (4.9). As far as η is concerned,
as a consequence of Proposition 4.2.10 below, it needs to be chosen strictly positive
so that Lp,η is almost surely finite. In practice, we follow the recommendation made
in Holmes and Kojadinovic (2021) and set η to 0.001.

Remark 4.2.2. Proceeding for instance along the lines of Horváth et al. (2004),
Fremdt (2015), Kirch and Weber (2018), Gösmann et al. (2021) or Holmes and
Kojadinovic (2021), instead of w in (4.10), one could alternatively consider as a
threshold function w̃ defined by w̃(t) = w̄γ(t)w(t), t ∈ [1,∞), where

w̄γ(t) = max

{(
t− 1

t

)γ

, ϵ

}
, t ∈ [1,∞),

with γ ≥ 0 a real parameter and ϵ > 0 a technical constant that can be taken very
small in practice. The multiplication of a candidate threshold function by w̄γ was
initially considered in Horváth et al. (2004) and Aue and Horváth (2004) for the so-
called ordinary CUSUM detector in order to study, under suitable alternatives, the
limiting distribution of the detection delay (the time delay after which the detector
exceeds the threshold function). From a practical perspective, as discussed in Holmes
and Kojadinovic (2021), an appropriate choice of γ ≥ 0 may improve the finite-
sample performance of the sequential test at the beginning of the monitoring. The
multiplication of a candidate threshold function by w̄γ does not however affect the
asymptotics of the underlying monitoring procedure.

4.2.2 Asymptotics under the null

One of the first assumptions required to be able to study the asymptotics (as
m → ∞, of the monitoring procedure based on DP

m in (4.5) and w in (4.10)) con-
cerns the long-run covariance matrix ΣP in (4.6) of the p-dimensional time series(
Y P

i

)
i∈N, under the null. As we shall see later in this section, it will be neces-

sary to consider both its inverse (ΣP)−1 and its square root (ΣP)
1
2 . The following

assumption guarantees that these two matrices exist (and are unique).

Condition 4.2.3 (On the long-run covariance matrix ΣP). Under H0 in (4.1), the
long-run covariance matrix ΣP in (4.6) of the p-dimensional (stationary) time series(
Y P

i

)
i∈N exists and is positive-definite.

Remark 4.2.4. Under H0 and when the time series (Xi)i∈N consists of independent
observations, the p× p elements of ΣP in (4.6) are simply

Cov{1(X1 ≤ xi),1(X1 ≤ xj)} = F
(
min(xi,xj)

)
− F (xi)F (xj), i, j ∈ J1, pK,

where min denotes the element-wise minimum operator. Hence, in the case of seri-
ally independent observations, by definition of positive-definiteness, Condition 4.2.3
will hold if the points x1, . . . ,xp appearing in P are chosen such that any linear
combination of the 1(X1 ≤ xi), i ∈ J1, pK, has a strictly positive variance. A nec-
essary condition for this is that x1, . . . ,xp all belong to the support of X1 and are
all distinct. Since the law of X1 is unknown, the user could in practice rely on the
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learning sample X1, . . . ,Xm to choose x1, . . . ,xp. If the learning sample seems to
be a stretch from a discrete time series, a natural possibility consists of choosing
x1, . . . ,xp from a subset of frequently occurring observations. The choice of P when
the observations in the learning sample seem to arise from a continuous time series
will be discussed in Section 4.3.

As shall become clearer in the forthcoming paragraphs, studying the asymptotics
under the null (of the monitoring procedure as m→ ∞) actually amounts to estab-

lishing the weak limit of supk>m(m/k)
3
2
+ηDP

m(k) under H0 in (4.1). The following
assumption on the time series

(
Y P

i

)
i∈N (a type of “strong approximation” condi-

tion) is typical of the kinds of assumptions in the sequential change-point literature;
see, e.g., Assumption 2.3 in Gösmann et al. (2021), Condition 3.1 in Holmes and
Kojadinovic (2021) and the corresponding discussions in these references. Let ∥ · ∥2
denote the Euclidean norm.

Condition 4.2.5 (Approximation). There exists a probability space (Ω,F ,P) on
which:

� (Y P
i )i∈N is a p-dimensional stationary time series satisfying Condition 4.2.3,

� for each m ∈ N, W1,m and W2,m are two independent p-dimensional standard
Brownian motions,

such that, for some 0 < ξ < 1
2
,

sup
k>m

1

(k −m)ξ

∥∥∥∥∥
k∑

i=m+1

{Y P
i − E(Y P

1 )} − (ΣP)
1
2W1,m(k −m)

∥∥∥∥∥
2

= OP(1) (4.12)

and

1

mξ

∥∥∥∥∥
m∑
i=1

{Y P
i − E(Y P

1 )} − (ΣP)
1
2W2,m(m)

∥∥∥∥∥
2

= OP(1). (4.13)

We use the notation ‘⇝’ to denote convergence in distribution (weak conver-
gence) and Ip to denote the p × p identity matrix. The following result, proven
in Appendix B.1, can be regarded as a multivariate extension of Theorem 3.3 of
Holmes and Kojadinovic (2021).

Theorem 4.2.6. Fix η > 0. Under Condition 4.2.5, if ΣP
m

P→ ΣP then

sup
k>m

(m/k)
3
2
+ηDP

m(k)⇝ Lp,η = sup
1≤s≤t<∞

t−
3
2
−η∥tW (s)− sW (t)∥Ip ,

where DP
m is defined in (4.5) and W is a p-dimensional standard Brownian motion.

In addition, the limiting random variable Lp,η is almost surely finite.

Note that in Theorem 4.2.6 the supremum on the left is over integers k while the
supremum on the right is over real numbers s, t.
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Remark 4.2.7. It is important to note that the limiting random variable Lp,η depends
neither on the characteristics of the underlying time series (Xi)i∈N (such as its
dimension d, its serial dependence properties or the unknown d.f. F ), nor on the
user-chosen points P = (x1, . . . ,xp) involved in the definition ofDP

m. It only depends
on the integer p and on the real η. The latter is due to the use of the Mahalanobis-
like norm ∥ · ∥(ΣP

m)−1 in (4.5) as hinted at in Remark 4.2.1. As shall become clearer
below, an important practical consequence of this is that the monitoring procedure
can be used as soon as it is possible to compute or estimate quantiles of Lp,η for the
chosen parameters p and η. This important aspect will be investigated in Section 4.4
in more detail.

For a given serial dependence scenario under H0 in (4.1), it is hoped that Con-
dition 4.2.5 will hold for many different vectors of points P = (x1, . . . ,xp). The
following proposition shows that this is for instance the case when the time se-
ries (Xi)i∈N is strongly mixing under H0. Given a time series (Zi)i∈N and for any
j, k ∈ N ∪ {+∞}, denote by Mk

j the σ-field generated by (Zi)j≤i≤k and recall that
the strong mixing coefficients corresponding to (Zi)i∈N are defined by

αZ
r = sup

k∈N
sup

A∈Mk
1 ,B∈M

+∞
k+r

∣∣P(A ∩B)− P(A)P(B)
∣∣, r ∈ N.

The sequence (Zi)i∈N is then said to be strongly mixing if αZ
r → 0 as r → ∞.

The following result, proven in Appendix B.2, is a consequence of Theorem 4 of
Kuelbs and Philipp (1980).

Proposition 4.2.8. Assume that the time series (Xi)i∈N is stationary and strongly
mixing, and that its strong mixing coefficients satisfy αX

r = O(r−a) as r → ∞
with a > 3. Then, Condition 4.2.5 holds for all vectors of points P such that
Condition 4.2.3 holds.

The previous proposition leads to the following immediate corollary of Theo-
rem 4.2.6.

Corollary 4.2.9. Assume that the time series (Xi)i∈N is stationary and strongly
mixing, and that its strong mixing coefficients satisfy αX

r = O(r−a) as r → ∞
with a > 3. Then, for any fixed η > 0 and any vector of points P such that
Condition 4.2.3 holds,

sup
k>m

(m/k)
3
2
+ηDP

m(k)⇝ Lp,η = sup
1≤s≤t<∞

t−
3
2
−η∥tW (s)− sW (t)∥Ip .

The strong mixing conditions in the previous corollary are for instance satis-
fied (with much to spare) when (Xi)i∈N is a stationary vector ARMA process with
absolutely continuous innovations (see Mokkadem, 1988).

The following result, proven in Appendix B.2, can be regarded as a multivariate
extension of Proposition 3.4 of Holmes and Kojadinovic (2021). It shows that im-
posing that η is strictly positive in Theorem 4.2.6 and Corollary 4.2.9 is necessary
and sufficient for ensuring that the limiting random variable Lp,η is almost surely
finite.

Proposition 4.2.10. For any fixed M > 0,

P
(

sup
1≤s≤t<∞

t−
3
2∥tW (s)− sW (t)∥Ip ≥M

)
= 1.
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Remark 4.2.11. In relation to the previous result, note that tη in (4.10) could actually
be replaced by h(t), where h(t) =

√
log log t when t > ee and h(t) = 1 when

t ≤ ee. Indeed, as explained in Remark 3.5 of Holmes and Kojadinovic (2021), by
the law of the iterated logarithm for Brownian motion, all the results stated before
Proposition 4.2.10 should continue to hold with such a modification which could be
considered optimal in the sense that, as t → ∞, h diverges slower to infinity than
t 7→ tη for any η > 0. We did not however consider such a change as it is unwieldy
from a practical perspective as shall become clearer from Section 4.4.

The next proposition, also proven in Appendix B.2, shows that the weak limit
appearing in Theorem 4.2.6 and Corollary 4.2.9 is absolutely continuous. The proof
is an application of Theorem 7.1 of Davydov and Lifshits (1984) together with an
argument allowing us to reduce the problem to compact sets.

Proposition 4.2.12. For any η > 0 and p ∈ N, Lp,η is an absolutely continuous
random variable.

Let us finally explain how Theorem 4.2.6 can be used to carry out the monitoring
in practice for a chosen vector of points P for which Condition 4.2.3 is assumed to
hold. Given a significance level α ∈ (0, 1

2
), suppose that we are able to compute

q(1−α)
p,η , the (1 − α)-quantile of Lp,η. Then, under H0 in (4.1) and Condition 4.2.5,
from the Portmanteau theorem, (4.11) holds. Hence, for large m, we can expect
that, under H0 and Condition 4.2.5,

P
(
DP

m(k) > q(1−α)

p,η (k/m)
3
2
+η for some k ≥ m+ 1

)
≃ α.

In practice, after the arrival of observation Xk, k > m, DP
m(k) is computed from

X1, . . . ,Xk and compared to the threshold q(1−α)
p,η (k/m)

3
2
+η (or, equivalently, (m/k)

3
2
+ηDP

m(k)
is computed and compared to q(1−α)

p,η ). If greater, the null hypothesis is rejected and
the monitoring stops. Otherwise, Xk+1 is collected and the previous iteration is
repeated using the k + 1 available observations.

Remark 4.2.13. Under a suitable transformation of Condition 4.2.5, we suspect that
it is possible to obtain an analogue of Theorem 4.2.6 for the detector Dsup

m in (4.8).
From the closed-end results obtained in Proposition 2.5 of Kojadinovic and Verdier
(2021), we can actually guess the form of the corresponding weak limit. This leads
us to believe that, under H0 in (4.1) and a suitable version of Condition 4.2.5,

sup
k>m

(m/k)
3
2
+ηDsup

m (k)⇝ sup
1≤s≤t<∞

t−
3
2
−η sup

x∈Rd

|tK(s,x)− sK(t,x)|, (4.14)

where the limit is almost surely finite and K is a Kiefer process, that is, a two-
parameter centered Gaussian process whose covariance function is given, for any
s, t ∈ [0,∞) and x,y ∈ Rd, by

Γ(s, t,x,y) = min(s, t)
(
Cov{1(X1 ≤ x), 1(X1 ≤ y)}

+
∞∑
i=2

[
Cov{1(X1 ≤ x), 1(Xi ≤ y)}+ Cov{1(Xi ≤ x), 1(X1 ≤ y)}

])
. (4.15)

Thus, it appears that in general, the weak limit in (4.14) depends on the character-
istics of the underlying time series (Xi)i∈N. This implies that in general, to carry
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out monitoring based on the detector Dsup
m , one would need to be able to estimate

high quantiles of the weak limit in (4.14) prior to every execution of the procedure.
Given the unwieldy form of the weak limit, this seems to be a major obstacle to the
use of the detector Dsup

m . One exception may be when the monitored observations
are univariate (d = 1), continuous and serially independent. In that case, using
a change of variable F (x) 7→ u (as is classically done for instance when dealing
with a Brownian bridge), it can be verified that the weak limit in (4.14) no longer
depends on the characteristics of the underlying time series (X [1]

i )i∈N. To estimate
high quantiles of the resulting weak limit, one could then proceed as in forthcoming
Section 4.4 where the estimation of high quantiles of the weak limit Lp,η appearing
in Theorem 4.2.6 is addressed. Due to the apparently rather limited scope of appli-
cation of an open-end monitoring procedure based on Dsup

m , we do not pursue the
investigation of such a sequential test in this work and leave this for future research.

4.2.3 Asymptotics under alternatives

To complement the previously stated asymptotic results, it is necessary to study
the asymptotics of the monitoring procedure under sequences of alternatives to H0

in (4.1). Because it is based on the detector DP
m in (4.5), the studied monitoring

procedure is expected to be particularly sensitive to alternative hypotheses of the
form

H1 : ∃ k⋆ ≥ m and ℓ ∈ J1, pK such that P(X1 ≤ xℓ) = · · · = P(Xk⋆ ≤ xℓ)

̸= P(Xk⋆+1 ≤ xℓ) = P(Xk⋆+2 ≤ xℓ) = . . .

corresponding to a change in the d.f. at one or more of the chosen evaluation points.
Note that this can be interpreted as a change in mean since by rewriting in terms
of the univariate time series

(
Y P,[ℓ]
i

)
i∈N =

(
1(Xi ≤ xℓ)

)
i∈N, we get the following

equivalent statement

H1 : ∃ k⋆ ≥ m and ℓ ∈ J1, pK such that E(Y P,[ℓ]
1 ) = · · · = E(Y P,[ℓ]

k⋆ )

̸= E(Y P,[ℓ]
k⋆+1) = E(Y P,[ℓ]

k⋆+2) = . . . . (4.16)

As already mentioned at the beginning of Section 4.2, monitoring procedures de-
signed to be particularly sensitive to changes in the mean were studied in Holmes and
Kojadinovic (2021). Theorem 3.7 and Condition 3.7 in the latter reference specif-
ically provide conditions under which, for a sequence of alternatives to H0 related
to H1 in (4.16), supk>m(m/k)

3
2
+ηExℓ

m (k)
P→ ∞, where Exℓ

m is defined as in (4.3) with
x = xℓ. For the sake of brevity, we do not restate these conditions with the notation
used in this work as they are lengthy to write. Very roughly speaking, they imply
that for “early” or “late” changes in the d.f. of the observations at xℓ, the scaled
detector k 7→ (m/k)

3
2
+ηExℓ

m (k) will end up exceeding any fixed threshold provided
m is sufficiently large. The following result, proven in Appendix B.3, shows that, as
xℓ ∈ P , the same will hold for the scaled detector k 7→ (m/k)

3
2
+ηDP

m(k), where D
P
m

is defined in (4.5).

Proposition 4.2.14. Let η > 0 and assume that for some xℓ ∈ P,
supk>m(m/k)

3
2
+ηExℓ

m (k)
P→ ∞. Then, if ΣP

m
P→ ΣP, where ΣP is positive-definite and
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ΣP
m is positive-definite almost surely for all m ∈ N,

sup
k>m

(m/k)
3
2
+ηDP

m(k)
P→ ∞.

4.3 The case of continuous observations: practi-

cal implementation and additional asymptotic

results under the null

Prior to using the monitoring procedure based on the detector DP
m in (4.5), the user

needs to choose the points P = (x1, . . . ,xp). Following the discussion initiated in
Remark 4.2.4, using the learning sample X1, . . . ,Xm to do so seems meaningful.
As mentioned in the latter remark, when the observations are discrete, a natural
possibility consists of choosing x1, . . . ,xp from a subset of frequently occurring ob-
servations. We focus in this section on the more complicated situation when the
learning sample seems to be a stretch from a continuous time series.

Fix η > 0 and assume that m is large. Having Theorem 4.2.6 as well as Re-
mark 4.2.7 and Corollary 4.2.9 in mind, one can hope that, under H0 in (4.1),

supk>m(m/k)
3
2
+ηDP

m(k) has roughly the same distribution as the random variable
Lp,η for all vectors of points P such that Condition 4.2.3 holds. A user who is inter-
ested in very specific changes in the d.f. may choose P accordingly. Otherwise, one
natural possibility is to select the vector of points P such that the coordinates of each
of the p points are empirical quantiles computed from the coordinate samples of the
learning sample X1, . . . ,Xm. As we continue, for any 1 ≤ j ≤ k, let F [1]

j:k, . . . , F
[d]

j:k

be the d univariate margins of Fj:k defined in (4.4). Also, for any univariate d.f.
H, let H−1 denote its associated quantile function (generalized inverse) defined by
H−1(y) = inf{x ∈ R : H(x) ≥ y}, y ∈ [0, 1], with the convention that inf ∅ = ∞.
Finally, let X 1,m, . . . ,X p,m denote the points x1, . . . ,xp when chosen automatically
from the learning sample and let Pm = (X 1,m, . . . ,X p,m).

4.3.1 The univariate case

When d = 1, a natural instantiation of the previous generic strategy for choosing Pm

consists of setting X [1]

j,m = F [1],−1

1:m

(
j/(p+1)

)
, j ∈ J1, pK, that is, the X [1]

j,m’s are merely

taken as the j/(p + 1)-empirical quantiles of the learning sample X [1]

1 , . . . , X
[1]
m . As

we will see in Section 4.5, this strategy seems to lead to powerful multi-purpose
open-end monitoring procedures in the case of univariate observations.

4.3.2 The multivariate case

A natural first idea when d > 1 is simply to apply the univariate strategy above
to each component sample of the learning sample X1, . . . ,Xm, yielding sets P [i]

m =
{X [i]

j,m : j ∈ J1, pK} of size p for all i ∈ J1, dK. For each dimension i ∈ J1, dK, each
selected coordinate X [i]

j,m, j ∈ J1, pK, typically corresponds to a unique d-dimensional
vector of the learning sample. One could then define Pm to be the union of the
corresponding d sets of d-dimensional points, which implies that p ≤ |Pm| ≤ dp.
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A preliminary implementation of this strategy showed however that (among other
things) this approach can sometimes lead to the selection of points in the learning
sample that are too close to the “border” of the point cloud X1, . . . ,Xm, resulting
in numerical difficulties when computing the inverse or the square root of ΣPm

m (see
also Remark 4.2.4).

Another natural adaption of the strategy considered in the univariate case would
be to choose an integer r ≥ 1, consider the uniformly-spaced grid (containing rd

points)

Π = {(j1/(r + 1), . . . , jd/(r + 1)) : j1, . . . , jd ∈ J1, rK} ⊆ (0, 1)d (4.17)

and define Pm as consisting of the rd points{(
F [1],−1

1:m (π[1]), . . . , F [d],−1

1:m (π[d])
)
: π ∈ Π

}
. (4.18)

This strategy needs however to be refined because some of the above points might
not belong to the support of F which, as hinted at in Remark 4.2.4, is a necessary
condition for Condition 4.2.3 to hold. Let U1, . . . ,Um be the unobservable sample
obtained from the learning sample X1, . . . ,Xm by probability integral transforma-
tions, that is, let

Ui = (U [1]

i , . . . , U
[d]

i ) =
(
F [1](X [1]

i ), . . . , F [d](X [d]

i )
)
, (4.19)

where F [1], . . . , F [d] are the d unknown univariate margins of F . Note in passing
that U1, . . . ,Um can be regarded as a stretch from a d-dimensional time series of
continuous random vectors with contemporary d.f. C, where C is the (unique) copula
of F (see, e.g., Sklar, 1959) satisfying

C(u) = F
(
F [1],−1(u[1]), . . . , F [d],−1(u[d])

)
, u ∈ [0, 1]d,

and
F (x) = C

(
F [1](x[1]), . . . , F [d](x[d])

)
, x ∈ Rd.

Adapting the approach briefly described in Section 4.2 of Li and Genton (2013),
we propose to keep in Pm only those points in (4.18) constructed from grid points
in (4.17) whose “neighborhood” contains a sufficiently large proportion of the Ui’s.
As F [1], . . . , F [d] are unknown, we follow one of the classical approaches used in the
copula literature (see, e.g., Hofert et al., 2018, and the references therein) and use
Û1, . . . , Ûm as a proxy for U1, . . . ,Um, where

Ûi =
m

m+ 1

(
F [1]

1:m(X
[1]

i ), . . . , F [d]

1:m(X
[d]

i )
)
. (4.20)

For any a, b ∈ [0, 1]d such that a < b, let (a, b] = {u ∈ [0, 1]d : a < u ≤ b}.
Furthermore, let νm be the empirical measure of Û1, . . . , Ûm and let s =

(
1/(r +

1), . . . , 1/(r+1)
)
∈ Rd. Given π ∈ Π and if the d components of U1 are independent,

it is expected that the proportion of Ui’s in (π − s,π] be approximately equal to
1/(r + 1)d. This motivates the following strategy: we choose to retain in Pm only
the points in (4.18) constructed from grid points π ∈ Πm, where

Πm =

{
π ∈ Π : νm

(
(π − s,π]

)
>

1

κ(r + 1)d

}
, (4.21)
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Figure 4.1: Automatic choice of Pm in the bivariate case for m = 300, r = 4 and
κ = 1.5. Left: scatterplot of the “pseudo-observations” Û1, . . . , Ûm obtained from
the learning sample, initial uniformly-spaced grid Π in (4.17) in blue and selected
points Πm ⊆ Π in red. Right: scatterplot of the learning sample in black and points
in Pm in red.

Π is defined in (4.17) and κ > 1 is a user-chosen parameter. The number of auto-
matically chosen points p = |Πm| depends onm. Figure 4.1 illustrates the automatic
choice of Pm in the bivariate case for r = 4 and κ = 1.5. Values for κ and r ap-
pearing to lead to powerful multi-purpose open-end monitoring procedures will be
recommended in the case d ∈ {2, 3} in Section 4.5.

We end this section by stating an asymptotic property of the proposed selection
procedure. Let νC be the measure on [0, 1]d associated with the copula C of F and
let

ΠC =

{
π ∈ Π : νC

(
(π − s,π]

)
>

1

κ(r + 1)d

}
. (4.22)

Also, recall the definition of Πm in (4.21) and, as classically done in the litera-
ture (see, e.g., Hofert et al., 2018, Chapter 4 and the references therein), let the
empirical copula Cm of X1, . . . ,Xm be defined as the empirical d.f. of the “pseudo-
observations” Û1, . . . , Ûm defined in (4.20). Of course, one hopes that Πm is close
to the deterministic (but unknown) set ΠC when m is large. Proposition 4.3.2 below
(proven in Appendix B.4) makes this statement rigorous under the following mild
condition.

Condition 4.3.1.

(i) For each π ∈ Π, νC
(
(π − s,π]

)
̸= 1/(κ(r + 1)d), and

(ii) supu∈[0,1]d |Cm(u)− C(u)| a.s.→ 0.

Proposition 4.3.2. Assume that Condition 4.3.1 holds. Then, almost surely, for
all m sufficiently large, Πm = ΠC.

In other words, under Condition 4.3.1 and provided m is sufficiently large, we
can regard Pm = (X 1,m, . . . ,X p,m) as being formed of the p = |ΠC | points{ (

F [1],−1

1:m (π[1]), . . . , F [d],−d

1:m (π[d])
)
: π ∈ ΠC

}
,

where ΠC is defined in (4.22).
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4.3.3 Additional asymptotic results under the null

The asymptotic results stated in Sections 4.2.2 and 4.2.3 concern the monitoring
procedure based on the detector DP

m in (4.5) where the chosen evaluation points
P = (x1, . . . ,xp) are fixed (they are not allowed to change in the asymptotics with
m). To fully asymptotically justify the use of the detector DPm

m resulting from the
automatic choices of points Pm = (X 1,m, . . . ,X p,m) considered in Sections 4.3.1
or 4.3.2, one needs an analogue of Theorem 4.2.6 in which the points at which the
empirical d.f.s are evaluated are allowed to change with m.

In the rest of this section, we assume that the automatically chosen points in Pm

are of the form
X i,m =

(
F [1],−1

1:m (π[1]

i ), . . . , F [d],−1

1:m (π[d]

i )
)
, (4.23)

for some p vectors of probabilities π1, . . . ,πp ∈ (0, 1)d not depending on m. This
is clearly the case for the univariate selection strategy proposed in Section 4.3.1.
From Proposition 4.3.2, it is also the case for the multivariate strategy proposed in
Section 4.3.2 upon additionally assuming that Condition 4.3.1 holds and that m is
sufficiently large.

Next, set xi =
(
F [1],−1(π[1]

i ), . . . , F [d],−1(π[d]

i )
)
, write P = (x1, . . . ,xp) and no-

tice that the points in P are unobservable since F [1], . . . , F [d] are unknown. The
p-dimensional random vectors Y P

i =
(
1(Xi ≤ x1), . . . ,1(Xi ≤ xp)

)
are also unob-

servable. Since Pm = (X 1,m, . . . ,X p,m) with X i,m given by (4.23) is an estimator
of P , the long-run covariance matrix ΣP in (4.6) of the unobservable p-dimensional
time series

(
Y P

i

)
i∈N may still be estimated from the sample Y Pm

1 , . . . ,Y Pm
m which is

a proxy for the sample Y P
1 , . . . ,Y

P
m .

We first state a condition under which the monitoring procedure based on DPm
m

and the unobservable monitoring procedure based on DP
m in (4.5) are asymptotically

equivalent.

Condition 4.3.3 (For the asymptotic equivalence of DPm
m and DP

m). For any i ∈
J1, pK,

sup
k>m

k−
1
2 max
j∈J1,kK

j|F1:j(X i,m)− F (X i,m)− F1:j(xi) + F (xi)| = oP(1). (4.24)

The following result, proven in Appendix B.4, shows that the previous condition
can be satisfied under the null and absolute regularity. Given a time series (Zi)i∈N,
recall that, for j, k ∈ N ∪ {+∞}, Mk

j denotes the σ-field generated by (Zi)j≤i≤k,
that the absolute regularity coefficients corresponding to (Zi)i∈N are defined by

βZ
r = E

{
sup
k∈N

sup
B∈M+∞

k+r

∣∣P(B | Mk
1)− P(B)

∣∣} , r ∈ N, (4.25)

and that the sequence (Zi)i∈N is said to be absolutely regular if βZ
r → 0 as r →

∞. Also, note that absolute regularity is known to imply strong mixing (see, e.g.,
Dehling and Philipp, 2002) and that an independent sequence is clearly absolutely
regular since in this case for every k and B as in (4.25), P(B|Mk

1) = P(B) almost
surely.

Proposition 4.3.4 (Condition 4.3.3 can hold under the null). Assume that the
underlying time series (Xi)i∈N is stationary and absolutely regular, and that its
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absolute regularity coefficients satisfy βX
r = O(r−a) as r → ∞ with a > 1. Then, if

the d univariate margins F [1], . . . , F [d] of F are continuous and if, for each i ∈ J1, pK,
X i,m

P→ xi, Condition 4.3.3 holds.

Remark 4.3.5. Assumptions related to Condition 4.3.3 appear in Dette and Gösmann
(2020) in the context of the study of the asymptotics of closed-end sequential tests
designed to be sensitive to changes in the mean, the variance or certain quantiles.
In an open-end setting, related conditions are stated in Assumption 2.5 of Gösmann
et al. (2021) and in Condition 6.1 of Holmes and Kojadinovic (2021) under an
“almost sure” form. As an inspection of the proof of Proposition 4.3.4 reveals,
Condition 4.3.3 is essentially a consequence of the continuity of the margins of
F and Theorem 3.1 of Dedecker et al. (2014) which provides an adequate strong
approximation result for the empirical process under absolute regularity (but not
under strong mixing).

Remark 4.3.6. In the statement of Proposition 4.3.4, it is assumed that, for each
i ∈ J1, pK, X i,m

P→ xi. This condition can actually be dispensed with provided
additional conditions of the true unobservable quantile functions F [1],−1, . . . , F [d],−1

are assumed instead. Indeed, from Rio (1998), we know that the condition on the
absolute regularity coefficients in Proposition 4.3.4 implies that, for any ℓ ∈ J1, dK,
F [ℓ]

1:m
P→ F [ℓ] in ℓ∞(R), where ℓ∞(R) denotes the space of bounded functions on R

equipped with the uniform metric. From Lemma 21.2 in van der Vaart (1998), this

is then equivalent to the fact that F [ℓ],−1

1:m (π)
P→ F [ℓ],−1(π) at every π ∈ (0, 1) at which

F [ℓ],−1 is continuous. Consequently, the condition that, for any i ∈ J1, pK, X i,m
P→ xi

could be replaced by the condition that, for any ℓ ∈ J1, dK, F [ℓ],−1 is continuous at
π[ℓ]

i , for all i ∈ J1, pK.

The next proposition, also proven in Appendix B.4, states that, under Condi-
tions 4.2.5 and 4.3.3, the monitoring procedures based on DPm

m and DP
m are asymp-

totically equivalent.

Proposition 4.3.7. Under Conditions 4.2.5 and 4.3.3, and if ΣP
m

P→ ΣP and ΣPm
m

P→
ΣP, for any η > 0,

sup
k>m

(m/k)
3
2
+η|DPm

m (k)−DP
m(k)| = oP(1),

and, consequently,

sup
k>m

(m/k)
3
2
+ηDPm

m (k)⇝ Lp,η = sup
1≤s≤t<∞

t−
3
2
−η∥tW (s)− sW (t)∥Ip .

The last claim of the previous proposition suggests to carry out the monitoring
procedure based on the detector DPm

m exactly as the procedure based on the detector
DP

m when the points P are hand-picked by the user (see the last paragraph of
Section 4.2.2).

4.3.4 The monitoring procedure based on DPm
m is margin-free

under the null

We end this section by verifying that, under the considered assumption that the
true unknown marginal d.f.s F [1], . . . , F [d] are continuous, the procedure based on
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the detector DPm
m is margin-free under H0 in (4.1), that is, it does not depend on

F [1], . . . , F [d] under the null. To see this, let U1, . . . ,Uk be the unobservable sample
obtained from the available observations X1, . . . ,Xk using (4.19) and let G1:m be
the empirical d.f. of U1, . . . ,Um. Notice that we can recover the Xi from the Ui by
marginal quantile transformations, that is, Xi = (F [1],−1

1 (U [1]

i ), . . . , F [d],−1

d (U [d]

i )). Fur-
thermore, for any j ∈ J1, dK, by (right) continuity of F [j], we have that 1{F [j],−1(u) ≤
x} = 1{u ≤ F [j](x)} for all u ∈ [0, 1] and x ∈ R; see, e.g., Proposition 1 (5) in Em-
brechts and Hofert (2013). Then, it can be verified that, for every π ∈ (0, 1)d,
i ∈ J1, kK and j ∈ J1, dK,

1{X [j]
i ≤ F [j],−1

1:m (π[j])} = 1{U [j]
i ≤ F [j](F [j],−1

1:m (π[j]))} = 1{U [j]
i ≤ G[j],−1

1:m (π[j])},

which implies that, under the null and the current setting, the detector at k can be
rewritten to depend only on U1, . . . ,Uk.

4.4 Estimation of high quantiles of the limiting

distribution

From the two previous sections, we know that, to carry out the studied monitor-
ing procedures, it is necessary to be able to accurately estimate high quantiles of
the random variable Lp,η, p ≥ 1, η > 0, appearing first in the statement of The-
orem 4.2.6. The underlying estimation problem was empirically solved in Holmes
and Kojadinovic (2021) for p = 1 using asymptotic regression modeling. We choose
to use the same approach when p > 1 and refer the reader to Section 4 of the afore-
mentioned reference where the motivation for this way of proceeding is explained in
detail.

Fix η > 0, p ≥ 1, α ∈ (0, 1
2
) and let q(1−α)

p,η be the (1 − α)-quantile of Lp,η.

Furthermore, let d = 1, let
(
X [1]

i

)
i∈N be an infinite sequence of independent standard

normals and let P = (x[1]

1 , . . . , x
[1]
p ) where x

[1]

i = Φ−1
(
i/(p+1)

)
, i ∈ J1, pK and Φ is the

d.f. of the standard normal. According to Theorem 4.2.6, for largem the distribution
of supk>m(m/k)

3
2
+ηDP

m(k) should be close to that of Lp,η. If for a given realization of(
X [1]

i

)
i∈N we could compute the corresponding realization of supk>m(m/k)

3
2
+ηDP

m(k),
then q(1−α)

p,η could be estimated by q̂(1−α)
p,η , the (1 − α)-empirical quantile of a large

sample of realizations of supk>m(m/k)
3
2
+ηDP

m(k). As this is not possible because of
the supremum over k > m, the idea taken from Holmes and Kojadinovic (2021) is to
model the relationship between r ∈ J9, 16K and q̂(1−α)

p,η,r , the (1−α)-empirical quantile

of supk∈Km,m+2rK(m/k)
3
2
+ηDP

m(k), using an asymptotic regression model.

To begin with, using a computer grid, we computed the empirical quantiles
q̂(1−α)
p,η,r , r ∈ J9, 16K, from 10,000 simulated trajectories of the scaled detector k 7→
(m/k)

3
2
+ηDP

m(k) for k ∈Km,m + 216K and m = 500. In a next step, an asymptotic
regression model was fitted to the points (r, q̂(1−α)

p,η,r ), r ∈ J9, 16K. The considered
model is a three-parameter model with mean function

f(x) = β1 + (β2 − β1){1− exp(−x/β3)},

where y = β2 is the equation of the upper horizontal asymptote of f . Its fitting was
carried out using the R package drc (Ritz et al., 2015). A candidate estimate q̂(1−α)

p,η of
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Figure 4.2: First four panels: for α = 0.05, η = 0.001 and p ∈ {2, 5, 10, 20}, scat-
ter plots of {(r, q̂(1−α)

p,η,r )}r∈J9,16K, corresponding fitted asymptotic regression models
(dotted blue curves) and estimates of the upper horizontal asymptotes (solid red
lines) which are candidate estimates of q(1−α)

p,η , the (1 − α)-quantile of Lp,η. Fifth
panel: scatter plot of {(log(p), q̂(1−α)

p,η )}p∈{2,5,10,20} and corresponding transformed fit-
ted asymptotic regression model (dotted blue curve) that could be used to interpo-
late (resp. extrapolate) the value of q̂(1−α)

p,η for p ∈ [2, 20] (resp. for p slightly larger
than 20).

Table 4.1: Columns 2 to 5: for η = 0.001, p ∈ {2, 5, 10, 20} and α ∈ {0.01, 0.05, 0.1},
estimates q̂(1−α)

p,η of the (1 − α)-quantiles q(1−α)
p,η of the distribution of Lp,η. Columns

6 to 8: corresponding estimates of the parameters of the transformed asymptotic
regression models that can be used to interpolate (resp. extrapolate) the value of
q̂(1−α)
p,η for p ∈ [2, 20] (resp. for p slightly larger than 20).

p p ̸∈ {2, 5, 10, 20}
1− α 2 5 10 20 β̂1 β̂2 β̂3
0.99 1.654 1.234 1.010 0.860 -0.126 1.535 2.080
0.95 1.511 1.141 0.946 0.825 0.060 1.475 1.921
0.90 1.450 1.099 0.921 0.806 0.140 1.462 1.870

q(1−α)
p,η , the (1−α)-quantile of Lp,η, is then the resulting estimate of the parameter β2.
The previous steps were carried out for p ∈ {2, 5, 10, 20}, α ∈ {0.01, 0.05, 0.1} and
η = 0.001 (following the practical recommendation made in Holmes and Kojadinovic
(2021)), and can be visualized in the first four panels of Figure 4.2 for α = 0.05.
The corresponding estimates of the quantiles q(1−α)

p,η are given in columns two to five
of Table 4.1.

In a last step, to be able to carry out the monitoring procedures for some values
of p different than those in {2, 5, 10, 20}, we fitted asymptotic regression models
to the points (log(p), 2 − q̂(1−α)

p,η ), p ∈ {2, 5, 10, 20}, for α ∈ {0.01, 0.05, 0.1} and
η = 0.001. The estimates of the parameters β1, β2 and β3 are reported in the last
three columns of Table 4.1. We make no claim regarding the theoretical adequacy
of this type of model. The aim is only to be able to interpolate (resp. extrapolate)
the value of q̂(1−α)

p,η for p ∈ [2, 20] (resp. for p slightly larger than 20). Note that, since

Lp,η
a.s.→ 0 as p→ ∞ (as a consequence of the definition of the norm ∥ · ∥Ip), a fitted

two-parameter submodel with β2 fixed to 2 is expected to behave better for large p.
We have nonetheless decided to keep the fitted three parameter model because its
accuracy for values of p slightly larger than 20 was found to be better in our Monte
Carlo experiments summarized in the forthcoming section.
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4.5 Monte Carlo experiments

We carried out rather extensive numerical experiments in the case of low-dimensional
(d ∈ {1, 2, 3}) continuous observations to investigate the finite-sample behavior of
the monitoring procedure based on the detector DPm

m introduced in Section 4.3.
Specifically, for d = 1, recall from Section 4.3.1 that the p real points at which the
(univariate) empirical d.f.s are evaluated are chosen as empirical quantiles of order
i/(p+1), i ∈ J1, pK, computed from the learning sample X [1]

1 , . . . , X
[1]
m . For d ∈ {2, 3},

the approach is slightly more involved: as explained in Section 4.3.2, the evaluation
points are chosen using a point selection procedure which relies on two parameters:
an integer r ≥ 1 specifying the maximal value rd of p and the constant κ controlling
how many of the initial rd grid points will actually be retained.

From the definition of the detector DPm
m , we see that an underlying unknown

long-run covariance matrix needs to be estimated from the sample Y Pm
1 , . . . ,Y Pm

m .
In practice, for ΣPm

m , we used the estimator of Andrews (1991) based on the quadratic
spectral kernel with automatic bandwidth selection as implemented in the function
lrvar() of the R package sandwich (Zeileis, 2004; Zeileis et al., 2020). Note that
we did not however use prewhitening as suggested in Andrews and Monahan (1992).
The fact that the monitoring procedure studied in this work is available in the R
package npcp (Kojadinovic and Verhoijsen, 2022) not only makes all our experiments
fully reproducible but also allows a user to change the long run covariance estimator
(for instance to that of Newey and West, 1987) by passing parameters to the main
function which will be passed to the function lrvar().

Before we present our empirical findings, it is important to keep in mind that,
in the case of open-end approaches, numerical experiments only provide a biased
view of their behavior as finite computing resources impose that monitoring has
to be stopped eventually. From the point of view of statistical testing, the main
consequence of this is that all rejection percentages are underestimated.

The full details of our simulations are available in Appendix B.5. We provide
hereafter a summary of our findings:

� For monitoring univariate data, taking p ∈ {5, . . . , 10} evaluation points and
choosing them as suggested in Section 4.3.1 seems a good choice in general.
Unless serial dependence is very strong, a learning sample of size m ≥ 800
seems to lead to a procedure that holds its level well and displays good power
against several alternatives involving a change in the mean or the variance, or
such that the d.f. changes with the mean and variance remaining constant. In
the case of very strong serial dependence (such as for an AR(1) model with
autoregressive parameter 0.7), a larger learning sample (for instancem = 1600)
seems necessary for the monitoring procedure to hold its level reasonably well.

� For monitoring low-dimensional data (d ∈ {2, 3}), using r = 4 if d = 2,
r = 3 if d = 3 and κ = 1.5 in the point selection procedure of Section 4.3.2
seems to be a reasonable choice in general. As for d = 1, in the case of mild
serial dependence, taking m = 800 seems sufficient to obtain a sequential test
that holds its level reasonably well. With such settings, the procedure seems
powerful against various alternatives involving changes in one margin or in the
copula of the contemporary d.f.
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Figure 4.3: Daily log-returns computed from closing quotes of the NASDAQ com-
posite index from 2012 to 2021. The learning sample in our fictitious data example
corresponds to the period 2012 – 2016. Monitoring starts on the first trading day
of 2017, which is represented by a dashed vertical line.

4.6 Data example and concluding remarks

Let us briefly illustrate how the procedure based on the detector DPm
m considered in

Section 4.3 could be used for monitoring changes in the contemporary distribution of
daily log-returns of a financial index. In our fictitious example, the learning sample
(whose stationarity would need to be tested) corresponds to 1257 trading days of
the NASDAQ for the period January 3rd 2012 – December 30th 2016. Monitoring
starts on the first trading day of 2017. The corresponding daily log-returns are
represented in Figure 4.3, where the dashed vertical line represents the start of the
monitoring.

The sample paths of k 7→ (m/k)
3
2
+ηDPm

m (k) are represented in Figure 4.4 for
p ∈ {5, 10}. The horizontal dashed line in each panel represent one of the 95%-
quantiles given in the second row of Table 4.1. The dashed vertical lines mark the
first time that the threshold is exceeded (corresponding to May 2020). A change in
the data generating process slightly prior to this date seems likely as an inspection
of Figure 4.3 reveals: the first months of 2020 are indeed characterized by a period
of very high volatility.

We end this section by stating a few remarks:

� One important practical advantage of the monitoring procedure proposed in
this work comes from its open-end nature and is that the monitoring horizon
does not need to be specified. As a consequence, monitoring could theoret-
ically run forever. This is however not possible from a practical perspective
because of the form of the detector in (4.5): it is indeed clear that the cost
of computing the detector at time k increases with k. The latter implies that
its computation will become impossible for k large enough. Some other de-
tectors, such as the ordinary CUSUM, will not be affected by such a practical
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Figure 4.4: Sample paths of k 7→ (m/k)
3
2
+ηDPm

m (k) for p = 5 and 10. The horizontal
dashed lines represent the 95%-quantiles given in the second row of Table 4.1. The
vertical dashed lines mark the first time the scaled versions of the detectors exceed
the corresponding quantiles.

issue. Yet, as empirically observed in Gösmann et al. (2021) and in Holmes
and Kojadinovic (2021), the ordinary CUSUM is substantially less powerful
than more computationally costly detectors similar to the ones considered in
this work. In a related way, let us mention that the implementation of the
studied monitoring procedure available in the R package npcp is merely a proof
of concept and is not optimized for very long-term monitoring.

� The price to pay for open-end monitoring is that the detection power decreases
as time elapses. For the studied class of procedures, this is due to the parame-
ter η as discussed in Section 4 of Holmes and Kojadinovic (2021). On one hand,
the smaller the value of η, the weaker the power decrease. On the other hand,
the smaller η, the more conceptually difficult and computationally costly it is
to estimate high quantiles of the distribution Lp,η appearing in Theorem 4.2.6.
The latter suggests to devote more research to the estimation of high quantiles
of Lp,η.

� The type of monitoring procedure used in this work could also be used to detect
changes in the serial dependence. For instance, to detect such changes “at lag
1” from an initial sequence of univariate observations Z1, . . . , Zm, Zm+1, . . . ,
the Xi could be formed as Xi = (Zi, Zi+1).
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Chapter 5

Ongoing investigations,
conclusions, and directions for
future research

5.1 Ongoing investigations: a nonparametric se-

quential test for change point detection in the

copula

The work in Chapter 4 is concerned with monitoring possibly multivariate obser-
vations to detect changes in the d.f., the latter being estimated using the empirical
d.f. The nonparametric monitoring procedure was shown to be sensitive to changes
in the margins and in the multivariate d.f. We investigate a new nonparametric
monitoring procedure for multivariate continuous observations that is adapted to
specifically detect changes in the cross-sectional dependence by monitoring the con-
temporary copula, which can be estimated using the empirical (beta) copula.

Recall from Chapter 4 that we have at hand a learning sampleXi = (Xi1, . . . , Xid)
with contemporary d.f. F , i ∈ {1, . . . ,m}, from a d-dimensional stationary time se-
ries. In what follows, it is assumed that the d unknown univariate margins F1, . . . , Fd

of F are continuous. As a consequence of Sklar’s theorem (see Theorem 2.2.7), the
multivariate d.f. F can be expressed as

F (x) = C{F1(x1), . . . , Fd(xd)}, x ∈ Rd,

in terms of a unique copula C, that is, a unique d-dimensional d.f. with continuous
standard uniform margins.

The nonparametric open-ended monitoring procedure under investigation is sim-
ilar to the one introduced in Section 4.1. Assume that after monitoring starts, the
collected d-dimensional observations Xm+1,Xm+2, . . . all have contemporary d.f.s
with continuous univariate margins, which implies that their copulas are uniquely
defined. We want to detect as quickly as possible when these copulas change.

Let U1,U2, . . . be a stretch from the unobservable time series (Ui)i∈N, where
Ui = (Fi1 (Xi1) , . . . , Fid (Xid)). Fix p ≥ 1 points u1, . . . ,up in [0, 1]d, where the
integer p is chosen by the user such that, for each j ∈ J1, dK, the points uj1, . . . , ujp
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are uniformly spread out over the unit interval [0, 1]. The goal is to derive open-end
nonparametric monitoring procedures that are particularly sensitive to alternatives
of the form

H1 : ∃k⋆ ≥ m and ℓ ∈ J1, pK such that

P (U1 ≤ uℓ) = · · · = P (Uk⋆ ≤ uℓ) ̸= P (Uk⋆+1 ≤ uℓ) = P (Uk⋆+2 ≤ uℓ) = · · · ,
(5.1)

where inequalities between vectors are to be understood componentwise. For d ≥ 2,
we concern ourselves with testing for changes in the contemporary copula C. The
null hypothesis of the procedure is still

H0 : X1, . . . ,Xm,Xm+1,Xm+2, . . . , is a stretch from a stationary time series,
(5.2)

which is exactly the same null hypothesis as the one in (4.1). In other words, we
wish to develop a test that is specifically sensitive to H1 in (5.1).

We briefly summarise the monitoring procedure which is similar to the one out-
lined in Chapter 4. The nonparametric monitoring procedure consists of a detector
and a threshold function and compares, after the arrival of the kth observation Xk,
a positive statistic, the detector Tm, to a threshold. If after the arrival of observation
Xk, with k > m, the detector exceeds the threshold, the hypothesis of stationarity is
rejected. If not, a new observation Xk+1 is collected and the monitoring procedure
is repeated from the start. Recall that for a significance level α ∈ (0, 1/2) we want
to find a threshold w(k/m) such that, under H0 in (5.2),

P {Tm(k) ≤ w(k/m) for all k > m} = P
{
sup
k>m

Tm(k)

w(k/m)
≤ 1

}
= 1− α. (5.3)

Concerning the above, there is no difference between what was done in Chapter 4
and what is proposed here. Following the results in Chapter 4, we consider the
threshold function

w(t) = q(1−α)y v(t), t ∈ [1,∞), (5.4)

where v(t) is a weighting function such that (5.3) holds, y is a (possibly empty)

vector of parameters, and q
(1−α)
y is the (1 − α)-quantile of the limiting random

variable Iy, the weak limit of supk>m Tm(k)/v(k/m). By the Portmanteau lemma,

lim
m→∞

P
{
sup
k>m

Tm(k)

w(k/m)
≤ 1

}
= lim

m→∞
P
{
sup
k>m

Tm(k)

v(k/m)
≤ q(1−α)y

}
= P

{
Iy ≤ q(1−α)y

}
= 1− α.

In what follows we propose three different detectors. We first introduce the
ordinary CUSUM detector of Horváth et al. (2004) to monitor for changes in the
d.f. Then, we adapt the same approach to monitor for changes in the contemporary
copula, estimated using the empirical beta copula. Lastly, the monitoring procedure
in Chapter 4 is adapted to monitor for changes in the contemporary copula estimated
by the empirical beta copula.

Let k, ℓ ∈ N with k ≤ ℓ and consider the stretch X k:ℓ = (Xk, . . . ,Xℓ) of d-
dimensional observations. For j ∈ J1, dK, let Fk:ℓ,j be the empirical d.f. computed
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from the jth component subsample Xkj, . . . , Xℓj as in (4.4). Recall from Chapter 4
that we fixed p ≥ 1 points x1, . . . ,xp in Rd, where the integer p and the points
x1, . . . ,xp are chosen by the user. Let Px = (x1, . . . ,xp) and, for any i ∈ N, let
Y Px

i =
(
1(Xi ≤ x1), . . . ,1(Xi ≤ xp)

)
, which is a p-dimensional random vector.

Recall the long-run covariance matrix ΣPx in (4.6) and the estimator ΣPx
m based on

Y Px
1 , . . . ,Y Px

m . The ordinary CUSUM statistic for the empirical d.f. is

QF,Px
m (k) =

k −m

m
1
2

∥F Px
1:m − F Px

m+1:k∥(ΣPx
m )−1 , k ≥ m+ 1. (5.5)

Recall from (2.16), that the empirical copula is the empirical d.f. of the pseudo-
observations. Hence, it is straightforward to adapt the detector in (5.5) to monitor
for changes in the contemporary copula C using the empirical copula.

Let Rk:ℓ
ij = (ℓ−k+1)Fk:ℓ,j(Xij) be the (maximal) rank of Xij among Xkj, . . . , Xℓj.

Furthermore, let

Rk:ℓ
i =

(
Rk:ℓ

i1 , . . . , R
k:ℓ
id

)
, i ∈ Jk, ℓK and Û k:ℓ

i =
Rk:ℓ

i

ℓ− k + 1
, i ∈ Jk, ℓK,

be the multivariate ranks and the multivariate scaled ranks (or pseudo-observations)
respectively, obtained fromX k:ℓ. The empirical copula Ck:ℓ ofX k:ℓ at u = (u1, . . . , ud) ∈
[0, 1]d as defined in Rüschendorf (1976) is

Ck:ℓ(u) =
1

ℓ− k + 1

ℓ∑
i=k

d∏
j=1

1

(
Rk:ℓ

ij

ℓ− k + 1
≤ uj

)
=

1

ℓ− k + 1

ℓ∑
i=k

1(Û k:ℓ
i ≤ u),

(5.6)
where the last inequality between vectors is to be understood componentwise. In
other words, the empirical copula in (5.6) is the empirical d.f. applied to the pseudo-
observations, and a detector for the contemporary copula will thus be similar to the
detector for the d.f. in (5.5). However, the empirical copula is rough and, when
the sample size is small, characterised by large jumps resulting in a large bias. The
empirical beta copula of X k:ℓ is a smooth copula given by

Cβ
k:ℓ (u) =

1

ℓ− k + 1

ℓ∑
i=k

d∏
j=1

Fk:ℓ,Rk:ℓ
ij
(uj), (5.7)

where for any r ∈ {1, . . . , n}, Fk:ℓ,r is the beta d.f. with parameters r and ℓ−k+2−r.
By replacing the indicator functions in the empirical copula in (5.6) by beta d.f.s,
the beta copula Cβ

k:ℓ in (5.7) becomes a smooth copula. In addition, the empirical
beta copula has standard uniform univariate margins as long as there are not ties in
the component samples of X k:ℓ, and is thus a genuine copula in that case, unlike the
empirical copula (Hofert et al., 2018). The empirical beta copula can be generalised
to a smooth copula model as proposed in Kojadinovic and Yi (2022).

First, let us define the long-run covariance matrix that will be used in the detector
for the contemporary copula C. Let P = (u1, . . . ,up). For any i ∈ N, let

ZP
i =

(
Zu1

i , . . . , Z
up

i

)
(5.8)

where, for any u ∈ [0, 1]d,

Zu
i = 1(Ui ≤ u)−

d∑
j=1

Ċj(u)1(Uij ≤ uj), (5.9)
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and ΣP is the long-run covariance matrix of the unobservable p-dimensional time
series (ZP

i )i∈N, that is,

ΣP = Cov(ZP
1 ,Z

P
1 ) +

∞∑
i=2

{Cov(ZP
1 ,Z

P
i ) + Cov(ZP

i ,Z
P
1 )}. (5.10)

Then, the ordinary CUSUM that is sensitive to changes in the contemporary
copula is

Qβ,P
m (k) =

k −m

m
1
2

∥Cβ,P
1:m −Cβ,P

m+1:k∥(Σβ,P
m )−1 , k ≥ m+ 1, (5.11)

where

� for any integers 1 ≤ k ≤ ℓ, Cβ,P
k:ℓ = (Cβ

k:ℓ(u1), . . . , C
β
k:ℓ(up)) ∈ [0, 1]p, with the

convention that Cβ
k:ℓ = 0 whenever k > ℓ,

� for any y ∈ Rp, ∥y∥M =
√
(y⊤My)/p denotes a weighted norm of y induced

by a p× p positive-definite matrix M and the integer p,

� Σβ,P
m is an estimator of ΣP based on ZP

1 , . . . ,Z
P
m, and we assume that Σβ,P

m is
almost surely positive-definite for all m ∈ N.

The following condition is required as we continue.

Condition 5.1.1 (Smooth partial derivatives). For any j ∈ J1, dK, the partial
derivative Ċj = ∂C/∂uj exists and is continuous on the set Vd,j = {u ∈ [0, 1]d :
uj ∈ (0, 1)}.

For any j ∈ J1, dK, we assume that Ċj = 0 on the set {u ∈ [0, 1]d : uj ∈ {0, 1}}.
Let ‘⇝’ denote convergence in distribution (weak convergence), and let ∥ · ∥2 be

the Euclidean norm. We expect that the following holds.

Conjecture 5.1.2 (Weak convergence of QP
m). Under H0 in (5.2) and conditions

similar to 4.2.5 and 5.1.1, and if ΣP
m

P→ ΣP,

sup
k>m

m

k
Qβ,P

m (k)⇝ K = sup
t∈[0,1]

∥W (t)∥2,

where Qβ,P
m is defined in (5.11), and W is a p-dimensional standard Brownian mo-

tion.

The supremum on the left is over integers k, and the limiting variable K depends
only on the choice of the number of points p, not on the dimension d, nor on the
choice of the set of points P .

We also propose to use the approach in Chapter 4 for the empirical beta copula.

Dβ,P
m (k) = max

j∈Jm,kJ

j(k − j)

m
3
2

∥Cβ,P
1:j −Cβ,P

j+1:k∥(Σβ,P
m )−1 , k ≥ m+ 1, (5.12)

and expect weak convergence of the detector in (5.12) to hold under regularity
conditions.
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Conjecture 5.1.3 (Weak convergence ofDβ,P
m ). Under H0 in (5.2), Condition 5.1.1,

Condition 4.2.5 and conditions similar to Dette and Gösmann (2020, Assumption

3.2) and Gösmann et al. (2021, Assumption 2.5), and if Σβ,P
m

P→ ΣP , for any η > 0,

sup
k>m

(m/k)
3
2
+ηDβ,P

m (k)⇝ Lp,η = sup
1≤s≤t<∞

t−
3
2
−η∥tW (s)− sW (t)∥Ip .

From Proposition 4.2.10 in Chapter 4, we know imposing η > 0 is sufficient
to ensure that the limiting variable is almost surely finite. The limiting random
variables do not depend on the dimension d of the initial distribution nor on the
choice of the evaluation points P = (u1, . . . ,up).

It remains to be proven that Conjectures 5.1.2 and 5.1.3 hold. Furthermore,
simulation studies should confirm that the proposed tests hold their level in finite
samples, and are able to detect departures from stationarity resulting from changes
in the contemporary copula.

5.2 Conclusions and directions for future research

The aim of this thesis was to develop new methods for sequential change-point
detection and fast-inference methods to estimate dependence structures in high-
dimensional data. In Chapter 2 we introduced the necessary tools that were used
in the rest of this thesis. We presented Gaussian factor models and (factor) copula
models, and their respective estimation procedures. We also provided an overview
of the different approaches to sequential change point detection.

In Chapter 3 we presented the first original work of this thesis. We outlined a
fast inference method for very high-dimensional one-factor copula models. In a first
step, margins are modelled separately, and transformed to the normal scale. Then,
the factor loadings and the correlation between the error terms were estimated using
a GMM approach, and for which we had to impose constraints on the factor loading
to ensure their unique identifiability. Next, we estimated the Gaussian factors by
minimising the L2 norm between the weighted observations and the true Gaussian
factors, where it is of paramount importance that the sample size tends to infinity
before setting the dimension sufficiently large. In the last step, we estimated the
one-factor copula parameter using a maximum likelihood approach in combination
with a proxy for the common factor as in Krupskii and Joe (2022). We established
the asymptotic properties of our approach and showed that the estimation procedure
works for a model with up to three Gaussian factors. Lastly, a practical application
looked at the ability of the model to capture dependence between a selection of
stocks in different industry sectors. The results have been published in Verhoijsen
and Krupskiy (2022). A current limitation of the contribution is the the model’s
robustness and performance under misspecification. We see several possible avenues
for future research contributions. First, future research could investigate the the-
oretical and practical implications of the model when it is not correctly specified.
Furthermore, another direction of future research could try to generalise the estima-
tion procedure to allow for an arbitrary number of Gaussian factors. In addition,
one could explore the validity of the model for datasets whose margins are discrete,
by using one-factor copula models for discrete data as in Nikoloulopoulos and Joe
(2015). A last extension could focus on generalising the approach to allow for a
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residual dependence structure that includes non-overlapping groups in the factor
copula model.

In Chapter 4 we presented a sequential open-end change point detection mech-
anism to monitor for changes in the d.f. of possibly multivariate data. We started
by establishing a detector and showed its asymptotic properties under the null hy-
pothesis and alternatives to the null. We showed that, by using a Mahalanobis-like
norm in the definition of our detector, its limiting distribution does not depend on
the characteristics of the initial sample, nor on the choice of the evaluation points,
but only on the number of evaluation points. We discussed how evaluation points
can be chosen in the univariate case, and proposed a procedure for the selection of
evaluation points in the multivariate case. Extensive Monte Carlo simulations illus-
trated the finite-sample behaviour of our approach, and its usefulness in detecting
changes in the mean, variance and distribution of low-dimensional datasets. Lastly,
the monitoring scheme was applied to the stock returns of the NASDAQ composite
index. Note that for this data example, we make no claim regarding the stationarity
of the learning sample, which would need to be tested in practice. Lastly, a future
research project could compare the change-point detection procedure developed in
this thesis to a monitoring procedure based on the likelihood ratio principle.

The results of this work have been published in Holmes et al. (2023), and corre-
sponding code has been included in the R package npcp (Kojadinovic and Verhoijsen,
2022). The current implementation in the R package npcp is not optimised for longer
term monitoring, and future research could focus on improving this. Furthermore,
while our method is capable of testing for possible change-points, we did not focus
on the estimation of the actual instant that the change occurs. Lastly, estimation of
the high quantiles of the limiting random variable is currently done using a practical
but heuristic approach, and further investigation into the validity of this approach
is warranted.
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Stock, J. H. and Watson, M. W. (2002). Forecasting using principal components
from a large number of predictors. Journal of the American Statistical Association,
97(460):1167–1179.

Subbarao, C., Subbarao, N., and Chandu, S. (1996). Characterization of groundwa-
ter contamination using factor analysis. Environmental Geology, 28(4):175–180.

Tan, B. K., Panagiotelis, A., and Athanasopoulos, G. (2019). Bayesian inference for
the one-factor copula model. Journal of Computational and Graphical Statistics,
28(1):155–173.

Tsay, R. S. (2005). Analysis of financial time series, volume 543. John Wiley &
Sons.

van der Vaart, A. (1998). Asymptotic statistics. Cambridge University Press.

Van Loan, C. F. and Golub, G. (1996). Matrix computations (Johns Hopkins studies
in mathematical sciences). Matrix Computations.

Verhoijsen, A. and Krupskiy, P. (2022). Fast inference methods for high-dimensional
factor copulas. Dependence Modeling, 10(1):270–289.

Zeileis, A. (2004). Econometric computing with HC and HAC covariance matrix
estimators. Journal of Statistical Software, 11(10):1–17.
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Appendix A

Appendix for Chapter 3

A.1 Validity of Condition 3.3.1(iii)

We can illustrate Condition 3.3.1(iii) in the case where the factor loadings are uni-
formly spread out in the interval [ak, bk], with −1 < ak < bk < 1,

λlk = ak +
σk(l)

d
(bk − ak) ,

where σk(·) is a permutation of indexes {1, 2, . . . , d}. Recall that δlk = λlk/γl.

We first consider the case p = 1 and we can assume without loss of generality
σ1(j) = j so that

δl1 =
a1 + (l/d)(b1 − a1)[

1− {a1 + (l/d)(b1 − a1)}2
]1/2 .

Let gk(x) = ak + x(bk − ak). We find that

lim
d→∞

||∆1||2 = lim
d→∞

1

d2

d∑
l=1

d∑
m=1

(δl1 − δm1)
2 = 2 lim

d→∞

1

d

d∑
l=1

δ2l1 − 2

(
lim
d→∞

1

d

d∑
l=1

δl1

)2

= 2

� 1

0

g1(x)
2

1− g1(x)2
dx− 2

(� 1

0

g1(x)

{1− g1(x)2}1/2
dx

)2

. (A.1)

We illustrate the validity of Condition 3.3.1(iii) in Table A.1 and A.2 by plugging a
range of values for a1 and b1 into (A.1).

Table A.1: Values for the integral in (A.1) for different values of (a1, b1).

a1 −0.99 −0.80 −0.50 0.00 0.50 0.80
b1 0.99 0.99 0.99 0.99 0.99 0.99

limd→∞ ||∆1||2 3.347 2.053 1.816 1.841 2.183 2.627

Table A.2: Values for the integral in (A.1) for different values of (a1, b1).

a1 −0.20 −0.15 −0.10 0.00 0.10 0.15
b1 0.20 0.20 0.20 0.20 0.20 0.20

limd→∞ ||∆1||2 0.0273 0.0208 0.0153 0.0069 0.0018 0.0005
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The limiting norm of the vector ∆1 is smaller if a1 and b1 are close. In practical
applications, it indicates that more accurate parameter estimates can be obtained
if the values of the loadings λl1 are more spread.

Now we consider the case p = 2 with

δlk =
ak + (σk(l)/d)(bk − ak)[

1− {a1 + (σ1(l)/d)(b1 − a1)}2 − {a2 + (σ2(l)/d)(b2 − a2)}2
]1/2 , k = 1, 2.

Further, we consider the case when the loadings Λ1 and Λ2 are monotonically
dependent with σ1(l) = σ2(l) (case 1), and when they are independent (case 2).

In the first case, for k = 1, 2,

lim
d→∞

||∆k||2 = 2

� 1

0

gk(x)
2

1− g1(x)2 − g2(x)2
dx− 2

(� 1

0

gk(x)

{1− g1(x)2 − g2(x)2}1/2
dx

)2

,

and in the second case, for k = 1, 2,

lim
d→∞

||∆k||2 = 2

� 1

0

� 1

0

gk(xk)
2

1− g1(x1)2 − g2(x2)2
dx1dx2

− 2

(� 1

0

� 1

0

gk(xk)

{1− g1(x1)2 − g2(x2)2}1/2
dx1dx2

)2

.

Furthermore, we need to check if cos2(ϕ1,2) = ⟨∆1,∆2⟩2/(||∆1||2||∆2||2) is bounded
away from one as d→ ∞ where ⟨∆1,∆2⟩ is the inner product. We find:

⟨∆1,∆2⟩ =
1

d2

{
d∑

l=1

d∑
m=1

(δl1 − δm1)(δl2 − δm2)

}

=
2

d

d∑
l=1

δl1δl2 − 2

(
1

d

d∑
l=1

δl1

)(
1

d

d∑
l=1

δl2

)
.

It implies that, in case 1,

lim
d→∞

⟨∆1,∆2⟩ = 2

� 1

0

g1(x)g2(x)

1− g1(x)2 − g2(x)2
dx

− 2
2∏

k=1

(� 1

0

gk(x)

{1− g1(x)2 − g2(x)2}1/2
dx

)
.

and in case 2,

lim
d→∞

⟨∆1,∆2⟩ = 2

� 1

0

� 1

0

g1(x1)g2(x2)

1− g1(x1)2 − g2(x2)2
dx1dx2

− 2
2∏

k=1

(� 1

0

� 1

0

gk(xk)

{1− g1(x1)2 − g2(x2)2}1/2
dx1dx2

)
.

Tables A.3 and A.4 show the limiting values for some pairs (a1, b1) and (a2, b2)
for case 1 and 2, respectively.
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Table A.3: Limiting values of ||∆k||2, k = 1, 2 and cos2(ϕ1,2) for different values of
(a1, b1) and (a2, b2); case 1.

(a1, b1) (−0.5, 0.6) (0.2, 0.6) (0.2, 0.6) (0.2, 0.4) (0.2, 0.4)
(a2, b2) (−0.3, 0.7) (0.2, 0.6) (0.0, 0.4) (0.1, 0.9) (0.4, 0.8)

limd→∞ ||∆1||2 0.427 0.119 0.067 0.219 0.061
limd→∞ ||∆2||2 0.419 0.119 0.051 1.359 0.243

limd→∞ cos2(ϕ1,2) 0.997 1.000 0.999 0.997 1.000

Table A.4: Limiting values of ||∆k||2, k = 1, 2 and cos2(ϕ1,2) for different values of
(a1, b1) and (a2, b2); case 2.

(a1, b1) (−0.5, 0.6) (0.2, 0.6) (0.2, 0.6) (0.2, 0.4) (0.2, 0.4)
(a2, b2) (−0.3, 0.7) (0.2, 0.6) (0.0, 0.4) (0.1, 0.9) (0.4, 0.8)

limd→∞ ||∆1||2 0.319 0.075 0.054 0.071 0.028
limd→∞ ||∆2||2 0.296 0.075 0.040 0.796 0.180

limd→∞ cos2(ϕ1,2) 0.004 0.189 0.041 0.703 0.416

Note that in case 1, cos2(ϕ1,2) is very close to one, so the convergence of the
parameter estimates to their true values may be very slow. In fact, Λ1 and Λ2

are linearly dependent with Λ1 = Λ2 when (a1, b1) = (a2, b2) = (0.2, 0.6) and
Λ1 = 0.5Λ2 with (a1, b1) = (0.2, 0.4) and (a2, b2) = (0.4, 0.8). Condition 3.3.1(iii)
fails in this case.

In case 2, cos2(ϕ1,2) is far from one in all cases, and accurate parameter estimates
can be obtained in this case.

Similar results can be obtained when p = 3, so they are not reported here.

A.2 Proofs

In this section, proofs are provided for theoretical results presented in Section 3.3.

Proof of Theorem 3.3.2. (i) In order for the the parameter vector (Λ0, η0) to be
unique, one has to impose p(p − 1)/2 restrictions on the factor loadings Λ0.
Otherwise, one can always find a rotationΛrot = ΛA, withA a p×p orthogonal
matrix, such that the variance-covariance matrix remains the same.

(ii) This is trivially satisfied, as the values of the correlation matrix by definition
are restricted to the interval [−1, 1].

(iii) This is trivially satisfied, as the correlation matrix is continuous at each (Λ, η)
in the parameter space.

(iv) Since the correlation parameter σij = Corr (Xi, Xj) is bounded by the interval
[−1, 1], one can show that

E

[
sup

(Λ,η)∈Θ
∥f (X,Λ, η)∥

]
≤ d.
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■

Proof of Theorem 3.3.3. (i) The GMM estimator is consistent if the conditions
from Theorem 3.3.2 are satisfied.

(ii) This condition is satisfied, as the parameter space for the candidate loadings
λjk and correlation between the residuals, η, is restricted to the interval [−1, 1].

(iii) We know that ∇(Λ,η)f (Xi,Λ, η) = ∇(Λ,η)ΣX . So for every element σjl =∑p
k=1 λjkλlk + ηγjγl, we have

∂

∂λjk
σjl = γl(δlk − ηδjk),

∂

∂η
σjl = γjγl,

The derivatives exist and are finite under Condition 3.3.1(i).

(iv) It is easy to see that E
[
∥f (Xi,Λ, η)∥2

]
≤ d2.

(v) Note that(
∂

∂λjk
σjl

)2

≤ 2δ2lk + 2δ2jk,

(
∂

∂λlk
σjl

)2

≤ 2δ2lk + 2δ2jk,

(
∂

∂η
σjl

)2

≤ 1.

Under Condition 3.3.1(i),

sup
(Λ,η)∈Θ

∥∥∇(Λ,η)f (Xi,Λ, η)
∥∥2 ≤ 8

p∑
k=1

d∑
l=1

δ2lk + pd = pd(8ξU + 1).

(vi) To check this condition, we have to show that the matrix

G⊤G =
(
∇(Λ,η)ΣX

)⊤∇(Λ,η)ΣX .

is invertible. The condition is illustrated for a model with one Gaussian factor,
and the proof is similar in the general case. The model with one factor has the
following derivatives:

∂σij
∂λi

= λj − η
γj
γi
λi,

∂σij
∂λj

= λi − η
γi
γj
λj,

∂σij
∂η

= γiγj,

for i, j = 1, . . . , d and i ̸= j. Then it it suffices to show that the following does
not hold

ai

(
λj − η

γj
γi
λi

)
+ aj

(
λi − η

γi
γj
λj

)
= γiγj

ãi(δj − ηδi) + ãj(δi − ηδj) = 1

where ãi = ai/γi, and δj = λj/γj. Then for i ̸= j, and i ̸= k we have the
following system of equations:{

ãi(δj − ηδi) + ãj(δi − ηδj) = 1

ãi(δk − ηδi) + ãk(δi − ηδk) = 1
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subtracting the two equations gives another set of equations, where j ̸= l and
k ̸= l {

ãi(δj − δk) + δi(ãj − ãk) + η(ãkδk − ãjδj) = 0

ãl(δj − δk) + δl(ãj − ãk) + η(ãkδk − ãjδj) = 0

again subtracting the above equations gives

(ãi − ãl)(δj − δk) = −(ãj − ãk)(δi − δl). (A.2)

Hence, there are two cases. In the first case, ãi − ãl = 0, which implies that
δi−δl = 0. Otherwise, all differences ãi−ãl and ãj−ãk would be zero, for every
possible combination of the pairs (i, l) and (j, k). In the second case, δi − δl
and δj − δk are different from zero, and we can rewrite the display in (A.2) as

ãi − ãl
δi − δl

= − ãj − ãk
δj − δk

.

The numerator and denominator on both sides of the above display are nonzero,
even though the ratios are the same. However, looping through every possi-
ble combination of the pairs (i, l) and (j, k), the only valid result is that all
differences ãi − ãl are zero, which implies that all δ’s are equal. However,
this contradicts Condition 3.3.1(iii), which states that there can only be up to
O(d2) terms that are zero, which concludes the proof.

■

Proof of Lemma 3.3.4. The optimal weight vector w⋆
kd, can be derived by differen-

tiating

E{(Ẑkd − Zk)
2} = w⊤kdΣXwkd − 2w⊤kdλk + 1 (A.3)

with respect to wkd for each k = 1, . . . , p. Recall that E(Ẑkd) = E(Zk) = 0. Then
assuming that ΣX is invertible, one can obtain the optimal weight vector w⋆

kd by
optimising (A.3) with respect towkd subject to constraint Var(Ẑkd) = w⊤kdΣXwkd =
1. ■

Proof of Theorem 3.3.5. After substituting w⋆
kd = (λ⊤k Σ

−1
X λ)−1/2Σ−1X λk back into

(A.3), one gets

lim
d→∞

E{(Ẑkd − Zk)
2} = 2− 2 lim

d→∞

(
λ⊤k Σ

−1
X λk

)1/2
.

Therefore we need to show that limd→∞ λ⊤k Σ
−1
X λk = 1. Using Woodbury’s formula,

one can show that

λ⊤k Σ
−1
X λk = λ⊤k

(
Γ1/2HΓ1/2

)−1
λk

− λ⊤k

(
Γ

1
2HΓ1/2

)−1
Λ

(
Λ⊤
(
Γ1/2HΓ1/2

)−1
Λ+ Ip

)−1
×Λ⊤

(
Γ1/2HΓ1/2

)−1
λk.
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Without loss of generality, convergence of the factor estimates is illustrated for
k = 1. However, the results hold for any k = 1, . . . , p. Furthermore define bqr =

λ⊤q

(
Γ1/2HΓ1/2

)−1
λr and ak = bkk for k, r, q = 1, . . . , p. We find:

ak =
1 + (d− 2) η

1 + (d− 2) η − (d− 1) η2

d∑
l=1

δ2lk −
η

(1 + (d− 2) η − (d− 1) η2)

d∑
l=1
l ̸=m

δlkδmk

bqr =
1 + (d− 2) η

1 + (d− 2) η − (d− 1) η2

d∑
l=1

δlqδlr −
η

(1 + (d− 2) η − (d− 1) η2)

d∑
l=1
l ̸=m

δlqδmr

where δlk = λlk/γl. Then a1 = λ⊤1

(
Γ1/2HΓ1/2

)−1
λ1 is a scalar.

Proof for a one-factor model (p = 1, and k = 1). In the case where p = 1, it
follows that Λ = λ1. Hence

λ⊤1 Σ
−1
X λ1 =

a1
1 + a1

.

It remains to be shown that a1 → ∞ as d→ ∞. If Condition 3.3.1(i) and Condition
3.3.1(ii) are satisfied, then

a1/d =
1

1− η

{
1

d

d∑
l=1

δ2l1 −
1

d2

(
d∑

l=1

d∑
m=1

δl1δm1 −
d∑

l=1

δ2l1

)}
+O(1/d)

=
1

1− η

1

d

d∑
l=1

δ2l1 −
1

d2

(
d∑

l=1

δl1

)2
+O(1/d)

=
1

1− η

1

2d2

d∑
l=1

d∑
m=1

(δl1 − δm1)
2 +O(1/d) =

0.5||∆1||2

1− η
+O(1/d)

>
0.5ξ20
1− η

+O(1/d),

where Condition 3.3.1(iii) is used in the last step. It follows that limd→∞ λ⊤1 Σ
−1
X λ1 =

1.

Proof for a two-factor model (p = 2, and k = 1). In the case of a two-factor
model,

Λ⊤
(
Γ1/2HΓ1/2

)−1
Λ+ I2 =

(
1 + a1 b12
b12 1 + a2

)
,

Computing the inverse, we get(
Λ⊤
(
Γ1/2HΓ1/2

)−1
Λ+ I2

)−1
=

1

(1 + a1) (1 + a2)− b212

(
1 + a2 −b12
−b12 1 + a1

)
.
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Lastly,

λ⊤1

(
Γ1/2HΓ1/2

)−1
Λ =

(
a1 b12

)
.

Putting everything together, we get

λ⊤1 Σ
−1
X λ1 =

a1 (1 + a2)− b212
(1 + a1) (1 + a2)− b212

= 1− 1

1 + a1

{
1− b212

(1 + a1) (1 + a2)

}−1
.

It is required to show that α12 = 1 − b212/[(1 + a1) (1 + a2)] is bounded from below
from zero. To start with,

b12/d =
1

1− η

1

d

d∑
l=1

δl1δl2 −
1

d2

d∑
l=1
m ̸=l

δl1δm2

+O(1/d)

=
1

1− η

{
1

d

d∑
l=1

δl1δl2 −

(
1

d

d∑
l=1

δl1

)(
1

d

d∑
m=1

δm2

)}
+O(1/d)

=
0.5⟨∆1,∆2⟩

1− η
+O(1/d) =

0.5||∆1||||∆2|| cos(ϕ1,2)

1− η
+O(1/d).

Then Condition 3.3.1(iii) implies that α1,2 = 1− cos2(ϕ1,2) + O(1/d) = sin2(ϕ1,2) +
O(1/d) > sin2(ξ0/2) +O(1/d).

Proof for a three-factor model (p = 3, and k = 1). For a three-factor model,
we get the following expression:

Λ⊤
(
Γ

1
2HΓ

1
2

)−1
Λ+ Ip =

1 + a1 b12 b13
b12 1 + a2 b23
b13 b23 1 + a3

 ,

After some calculations, we find:

λ⊤1 Σ
−1
X λ1 = 1− b−1123

a1 + 1

{
1− b223

(1 + a2)(1 + a3)

}
, (A.4)

where

b123 = 1 + 2
b12b13b23

(1 + a1) (1 + a2) (1 + a3)

− b223
(1 + a2) (1 + a3)

− b213
(1 + a1) (1 + a3)

− b212
(1 + a1) (1 + a2)

= 1 + 2 cos(ϕ1,2) cos(ϕ1,3) cos(ϕ2,3)− cos2(ϕ1,2)− cos2(ϕ1,3)− cos2(ϕ2,3)

+O(1/d)

= 4 sin(0.5(ϕ1,2 + ϕ1,3 − ϕ2,3)) sin(0.5(ϕ1,2 + ϕ2,3 − ϕ1,3))

× sin(0.5(ϕ1,3 + ϕ2,3 − ϕ1,2)) sin(0.5(ϕ1,2 + ϕ1,3 + ϕ2,3)) +O(1/d)

≥ 4 sin4(ξ0/2) +O(1/d)

by Condition 3.3.1(iii). It implies that λ⊤1 Σ
−1
X λ1 ≥ 1 − sin−4(ξ0/2)/(a1 + 1) +

O(1/d) → 1 as d→ ∞. ■
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Proof of Theorem 3.3.6. Using the properties of the GMM estimator, we know that
λ̂k

P→ λk and Σ̂X
P→ ΣX . Under Condition 3.3.1(ii) ΣX is invertible. Thus by

the Continuous Mapping Theorem (CMT) it follows that Σ̂
−1
X

P→ Σ−1X . As a result

ŵ⋆⊤
knd = (λ̂

⊤
k Σ̂
−1
X λ̂k)

−1/2λ̂
⊤
k Σ̂
−1
X

P→ w⋆⊤
kd = (λ⊤k Σ

−1
X λk)

−1/2λ⊤k Σ
−1
X . By expanding, we

get

lim
d→∞

lim
n→∞

E{(Ẑ⋆
knd − Zk)

2} = lim
d→∞

lim
n→∞

E
{
(X⊤ŵ⋆

knd)
2
}

− 2 lim
d→∞

lim
n→∞

E
(
ŵ⋆⊤

kndXZk

)
+ 1. (A.5)

The first and second term in (A.5) can be rewritten as

E
{
(X⊤ŵ⋆

knd)
2
}
= E{X⊤(ŵ⋆

knd + ŵ⋆
kd)X

⊤(ŵ⋆
knd − ŵ⋆

kd)}+ E
{
(X⊤ŵ⋆

kd)
2
}
,
(A.6)

E
(
ŵ⋆⊤

kndXZk

)
= E

{
(ŵ⋆⊤

knd − ŵ⋆⊤
kd )XZk

}
+ E

(
w⋆⊤

kdXZk

)
, (A.7)

respectively. From Theorem 3.3.5, we know that

lim
d→∞

E
{
(X⊤w⋆

kd)
2
}
− 2 lim

d→∞
E
(
w⋆⊤

kdXZk

)
+ 1 = 0.

Thus, it remains to be shown that the first term in (A.6) and in (A.7) converge to
zero as n→ ∞. Using Cauchy’s inequality, the first term in (A.6) is bounded by(

E
[{

X⊤(ŵ⋆
knd + ŵ⋆

kd)
}2] · E [{X⊤(ŵ⋆

knd − ŵ⋆
kd)
}2])1/2

Again using Cauchy’s inequality, one gets

E
[{

X⊤(ŵ⋆
knd + ŵ⋆

kd)
}2] ≤ [E(X2⊤X2) · E{(ŵ⋆

knd + ŵ⋆
kd)

2⊤(ŵ⋆
knd + ŵ⋆

kd)
2}
]1/2

,

E
[{

X⊤(ŵ⋆
knd − ŵ⋆

kd)
}2] ≤ [E(X2⊤X2) · E{(ŵ⋆

knd − ŵ⋆
kd)

2⊤(ŵ⋆
knd − ŵ⋆

kd)
2}
]1/2

.

Note that E(X2⊤X2) = 3d, and ŵ⋆⊤
kd Σ̂Xŵ⋆

kd = 1. From Condition 3.3.1(ii) we can
conclude that ŵ⋆

kd and ŵ⋆
knd are bounded.

Since we know that ŵ⋆⊤
knd

P→ w⋆⊤
kd and (ŵ⋆⊤

knd − ŵ⋆⊤
kd )

4 is uniformly integrable,

we conclude that E{(ŵ⋆
knd − ŵ⋆

kd)
2⊤(ŵ⋆

knd − ŵ⋆
kd)

2} → 0 as n → ∞ by Vitali’s
convergence theorem. It implies that E{X⊤(ŵ⋆

knd + ŵ⋆
kd)X

⊤(ŵ⋆
knd − ŵ⋆

kd)} → 0
as n → ∞. Similarly, E

{
(ŵ⋆⊤

knd − ŵ⋆⊤
kd )XZk

}
→ 0 as n → ∞ which concludes the

proof.

■

Proof of Lemma 3.3.7. This follows immediately from the fact that the GMM es-
timators converge in probability combined with the continuous mapping theorem,
and from Theorem 3.3.6. ■

Proof of Theorem 3.3.8. From Lemma 3.3.7, we know that Ūnd
P→ Ūd as n → ∞.

Moreover, from Theorem 3.3.5, it follows that Ẑ⋆
kd

L2−→ Zk, for each k = 1, . . . , p.
Rewriting, we get

ε̂jd =
1

γj

(
Xj −

p∑
k=1

λjkẐ
⋆
kd

)
= εj −

1

γj

p∑
k=1

λjk

(
Ẑ⋆

kd − Zk

)
,
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and

Ūd = ε̄d −
1

d

d∑
j=1

p∑
k=1

δjk

(
Ẑ⋆

kd − Zk

)
where ε̄d = (1/d)

∑d
i=1 εjd

P→ m(V ) by Theorem 5 in Krupskii and Joe (2021)

and E{(Ẑ∗kd − Zk)
2} < ξ∗/d for some constant ξ∗ > 0 as follows from the proof of

Theorem 3.3.5 so that

E

{1

d

d∑
j=1

p∑
k=1

δjk

(
Ẑ⋆

kd − Zk

)}2
 ≤ p

d

d∑
j=1

p∑
k=1

δ2jkE{(Ẑ⋆
kd − Zk)

2}

≤ ξ∗p

d

p∑
k=1

(
1

d

d∑
j=1

δ2jk

)
→ 0 as d→ ∞.

It implies that Ūd
P→ m(V ), as n→ ∞ and d→ ∞.

■

Proof of Theorem 3.3.9. Let γ̃l = (1 − γ2l )
1/2 and γ̃m = (1 − γ2m)

1/2. Denote Wl =
γ̃−1l

∑p
k=1 λlkZk and Wm = γ̃−1m

∑p
k=1 λmkZk. Note that (Wm,Wl) have the bivariate

standard normal distribution. Let ϕl,m be the joint density of (Wl,Wm) and Fl,m be
the joint cdf of (ϵl, ϵm). We find:

P (Xl < z,Xm < z) =

�
R2

Fl,m

(
z − γ̃lwl

γl
,
z − γ̃mwm

γm

)
ϕl,m(wl, wm)dwldwm

≤
�
R2

min

{
Φ

(
z − γ̃lwl

γl

)
,Φ

(
z − γ̃mwm

γm

)}
ϕl,m(wl, wm)dwldwm

= P (γ̃lWl + γlV < z, γ̃mWm + γmV < z) = Φρl,m(z, z),

where Φρl,m is the cdf of a standard bivariate normal distribution with the correlation
ρl,m = γ̃lγ̃mCor(Wl,Wm) + γlγm < 1, so that

lim
z→−∞

P (Xl < z,Xm < z)

Φ(z)
≤ lim

z→−∞

Φρl,m(z, z)

Φ(z)
= 0.

■

A.3 Gradients of the GMM objective function

The gradient of the expression

Qn (Λ, η) =
d∑

i=1

d∑
j=1

{(
ΣX − Σ̂n

)2}d

i,j=1

,

is the vector ∇Qn (Λ, η) of length pd+ 1, where the first pd elements are

4 (σj − σ̂j) ·
∂σj

∂λjk
,
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for j = 1, . . . , d, k = 1, . . . , p, and where σj (resp. σ̂j) is the j-th column of ΣX

(resp. Σ̂n). Let ⊙ denote element-wise multiplication for matrices. The last element
in the vector ∇Qn (Λ, η) is

2
d∑

i=1

d∑
j=1

{(
ΣX − Σ̂n

)
⊙ ∂ηΣX

}d

i,j=1
,

where ∂ηΣX is a matrix with off-diagonal elements γiγj and zeroes on the diagonal,

for i, j = 1, . . . , d. To fix notation, let a[j]k =
(
a1k, . . . , a(j−1)k, 0, a(j+1)k, . . . , adk

)⊤
be the vector ak with the jth element equal to zero.

One-factor model. Let k = 1, then

ΣX = λ1λ
⊤
1 + ηγγ⊤ =

{
(λi1λj1 + ηγiγj)

d
i,j=1 if i ̸= j,

1 if i = j,

and

∂σj

∂λj1
= λ[j]1 − η

λj
γj

γ[j],

for i, j = 1, . . . , d.

Two-factor model. Let k = 2, then

ΣX = λ1λ
⊤
1 + λ⋆

2λ
⋆⊤
2 + ηγγ⊤ =

{(
λi1λj1 + λ⋆i2λ

⋆
j2 + ηγiγj

)d
i,j=1

if i ̸= j,

1 if i = j,

where λ⋆j2 = λj2
√

1− λ2j1, and γj =
√
1− λ2j1 − λ⋆2j2. Then

∂σj

∂λj1
= λ[j]1 − λj1

{
λ⋆j2

1− λ2j1
λ⋆

[j]2 + η

(
1− λ2j2

)
γj

γ[j]

}
.

Similarly,

∂σj

∂λj2
=
√

1− λ2j1

(
λ⋆

[j]2 − η
λ⋆j2
γj

γ[j]

)
.

Three-factor model. Let k = 3, then

ΣX = λ1λ
⊤
1 + λ⋆

2λ
⋆⊤
2 + λ⋆

3λ
⋆⊤
3 + ηγγ⊤

=

{(
λi1λj1 + λ⋆i2λ

⋆
j2 + λ⋆i3λ

⋆
j3 + ηγiγj

)d
i,j=1

if i ̸= j

1 if i = j,

where λ⋆j2 = λj2
√

1− λ2j1, λ
⋆
j3 = λj3

√
1− λ2j1 − λ⋆2j2, and γj =

√
1− λ2j1 − λ⋆2j2 − λ⋆2j3.

Then

∂σj

∂λj1
= λ[1]1 − λj1

{
λ⋆j2

1− λ2j1
λ⋆

[j]2 +
λ⋆j3
(
1− λ2j2

)
1− λ2j1 − λ⋆2j2

λ⋆
[j]3 + η

(
1− λ2j3

) (
1− λ2j2

) γ[j]

γj

}
.
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Similarly, we find

∂σj

∂λj2
=
√

1− λ2j1

{
λ⋆

[j]2 −
λ⋆j3λ

⋆
j2

1− λ2j1 − λ⋆2j2
λ⋆

[j]3 − ηλ⋆j2
1− λ2j3
γj

γ[j]

}
.

Lastly,

∂σj

∂λj3
=
√
1− λ2j1 − λ⋆2j2

(
λ⋆

[j]3 − η
λ⋆j3
γj

γ[j]

)
.

A.4 Matrix inversion

Let

Γ1/2HΓ1/2 =


γ21 ηγ1γ2 · · · ηγ1γd

ηγ1γ2 γ22 · · · ηγ2γd
...

...
. . .

...
ηγ1γd ηγ2γd · · · γ2d


The proof follows by induction. For d = 2,

(
Γ1/2HΓ1/2

)−1
=

(
1

γ2
1(1−η2)

−η
γ1γ2(1−η2)

−η
γ1γ2(1−η2)

1
γ2
2(1−η2)

)
.

For d = 3,

(
Γ1/2HΓ1/2

)−1
=


1+η

γ2
1(1+η−2η2)

−η
γ1γ2(1+η−2η2)

−η
γ1γ3(1+η−2η2)

−η
γ1γ2(1+η−2η2)

1+η
γ2
2(1+η−2η2)

−η
γ2γ3(1+η−2η2)

−η
γ1γ3(1+η−2η2)

−η
γ2γ3(1+η−2η2)

1+η
γ2
3(1+η−2η2)

 .

For d = 4,

(
Γ1/2HΓ1/2

)−1
=


1+2η

γ2
1(1+2η−3η2)

−η
γ1γ2(1+2η−3η2)

−η
γ1γ3(1+2η−3η2)

−η
γ1γ4(1+2η−3η2)

−η
γ1γ2(1+2η−3η2)

1+2η
γ2
2(1+2η−3η2)

−η
γ2γ3(1+2η−3η2)

−η
γ2γ4(1+2η−3η2)

−η
γ1γ3(1+2η−3η2)

−η
γ2γ3(1+2η−3η2)

1+2η
γ2
3(1+2η−3η2)

−η
γ3γ4(1+2η−3η2)

−η
γ1γ4(1+2η−3η2)

−η
γ2γ4(1+2η−3η2)

−η
γ3γ4(1+2η−3η2)

1+2η
γ2
3(1+2η−3η2)

 .

Thus for arbitrary d we can show that,

(
Γ1/2HΓ1/2

)−1
=


1+(d−2)η

γ2
1(1+(d−2)η−(d−1)η2) · · · −η

γ1γd(1+(d−2)η−(d−1)η2)
...

. . .
...

−η
γ1γd(1+(d−2)η−(d−1)η2) · · · 1+(d−2)η

γ2
d(1+(d−2)η−(d−1)η2)

 .

It is easy to verify that Γ1/2HΓ1/2
(
Γ1/2HΓ1/2

)−1
= Id, where Id is the d×d identity

matrix.
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Appendix B

Appendix for Chapter 4

B.1 Proof of Theorem 4.2.6

The proof of Theorem 4.2.6 is based on four lemmas which we prove first. Through-
out the remainder of the proof, we let

D̃P
m(k) = max

j∈Jm,kJ

j(k − j)

m
3
2

∥Ȳ P
1:j − Ȳ P

j+1:k∥(ΣP )−1 , k ≥ m+ 1, (B.1)

which is the version of the detector in (4.7), in which the estimated long-run variance
ΣP

m is replaced by the true long-run variance ΣP .

On the probability space of Condition 4.2.5 (assuming that this condition holds),
we may define

D̄P
m (k) =

1√
m

max
j∈Jm,kJ

∥∥∥∥ km(ΣP)
1
2{W2,m(m) +W1,m(j −m)}

− j

m
(ΣP)

1
2{W2,m(m) +W1,m(k −m)}

∥∥∥∥
(ΣP )−1

, (B.2)

where we recall that for each m ∈ N, W1,m and W2,m are independent p-dimensional
standard Brownian motions.

Lemma B.1.1. Assume that Condition 4.2.5 holds. Then, for any η > 0,

sup
k>m

(m
k

) 3
2
+η ∣∣∣D̃P

m(k)− D̄P
m(k)

∣∣∣ = oP(1).

Proof. Fix η > 0. Applying the reverse triangle inequality for suprema

| sup
x∈A

f(x)− sup
x∈A

g(x)| ≤ sup
x∈A

|f(x)− g(x)| (B.3)

to the maximum over j ∈ Jm, kJ below gives∣∣∣D̃P
m(k)− D̄P

m(k)
∣∣∣

≤ 1√
m

max
j∈Jm,kJ

∣∣∣∣j(k − j)

m
∥Ȳ P

1:j − Ȳ P
j+1:k∥(ΣP )−1 −

∥∥∥ k
m
(ΣP)

1
2{W2,m(m) +W1,m(j −m)}
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− j

m
(ΣP)

1
2{W2,m(m) +W1,m(k −m)}

∥∥∥
(ΣP )−1

∣∣∣∣
≤ 1√

m
max

j∈Jm,kJ

∥∥∥∥j(k − j)

m
{Ȳ P

1:j − Ȳ P
j+1:k} −

k

m
(ΣP)

1
2{W2,m(m) +W1,m(j −m)}

+
j

m
(ΣP)

1
2{W2,m(m) +W1,m(k −m)}

∥∥∥∥
(ΣP )−1

= UP
m(k).

Next, we rewrite j(k − j){Ȳ P
1:j − Ȳ P

j+1:k} as

j(k − j)

{
1

j

j∑
i=1

Y P
i − 1

k − j

k∑
i=j+1

Y P
i

}

= (k − j)

j∑
i=1

{Y P
i − E(Y P

1 )} − j

k∑
i=j+1

{Y P
i − E(Y P

1 )}

= k

j∑
i=1

{Y P
i − E(Y P

1 )} − j

k∑
i=1

{Y P
i − E(Y P

1 )}

= k
m∑
i=1

{Y P
i − E(Y P

1 )}+ k

j∑
i=m+1

{Y P
i − E(Y P

1 )}

− j
m∑
i=1

{Y P
i − E(Y P

1 )} − j
k∑

i=m+1

{Y P
i − E(Y P

1 )} .

Hence, using the triangle inequality, we have that

sup
k>m

(m
k

) 3
2
+η ∣∣∣D̃P

m(k)− D̄P
m(k)

∣∣∣ ≤ sup
k>m

(m
k

) 3
2
+η

UP
m(k)

≤ IP
m + (IP

m)
′ + JP

m + (JP
m)
′,

where (using the convention that empty sums are equal to 0)

IP
m =

1√
m

sup
k>m

(m
k

) 1
2
+η

max
j∈Jm,kJ

∥∥∥∥∥
m∑
i=1

{Y P
i − E(Y P

1 )} − (ΣP)
1
2W2,m(m)

∥∥∥∥∥
(ΣP )−1

,

(IP
m)
′ =

1√
m

sup
k>m

(m
k

) 1
2
+η

× max
j∈Jm,kJ

∥∥∥∥∥
j∑

i=m+1

{Y P
i − E(Y P

1 )} − (ΣP)
1
2W1,m(j −m)

∥∥∥∥∥
(ΣP )−1

,

JP
m =

1√
m

sup
k>m

(m
k

) 3
2
+η

max
j∈Jm,kJ

j

m

∥∥∥∥∥
m∑
i=1

{Y P
i − E(Y P

1 )} − (ΣP)
1
2W2,m(m)

∥∥∥∥∥
(ΣP )−1

,

(JP
m)
′ =

1√
m

sup
k>m

(m
k

) 3
2
+η

× max
j∈Jm,kJ

j

m

∥∥∥∥∥
k∑

i=m+1

{Y P
i − E(Y P

1 )} − (ΣP)
1
2W1,m(k −m)

∥∥∥∥∥
(ΣP )−1

.
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It suffices to show that IP
m, (I

P
m)
′, JP

m, and (JP
m)
′ are oP(1). Since (m/k)× (j/m) =

j/k ≤ 1 when m ≤ j < k, we have that JP
m ≤ IP

m and (JP
m)
′ ≤ (IP

m)
′. So it suffices

to consider IP
m and (IP

m)
′. Let 0 < ξ < 1

2
be as in Condition 4.2.5. Then,

IP
m =

1

mξ

∥∥∥∥∥
m∑
i=1

{Y P
i − E(Y P

1 )} − (ΣP)
1
2W2,m(m)

∥∥∥∥∥
(ΣP )−1

mξ− 1
2 sup
k>m

(m
k

) 1
2
+η

≤ 1

mξ

∥∥∥∥∥
m∑
i=1

{
Y P

i,m − E(Y P
1 )
}
− (ΣP)

1
2W2,m(m)

∥∥∥∥∥
(ΣP )−1

mξ− 1
2 .

Hence, by equivalence of norms on Rp, (4.13) and the fact that ξ < 1
2
, IP

m converges
in probability to zero as m→ ∞. Next, since the norm in (IP

m)
′ is zero when j = m

and using the fact that j −m < k −m < k, we see that (IP
m)
′ is equal to

1√
m

sup
k>m

(m
k

) 1
2
+η

max
j∈Km,kJ

∥∥∥∥∥
j∑

i=m+1

{Y P
i − E(Y P

1 )} − (ΣP)
1
2W1,m(j −m)

∥∥∥∥∥
(ΣP )−1

≤ 1

m
1
2
−ξ

sup
k>m

(m
k

) 1
2
−ξ+η

× max
j∈Km,kJ

1

(j −m)ξ

∥∥∥∥∥
j∑

i=m+1

{Y P
i − E(Y P

1 )} − (ΣP)
1
2W1,m(j −m)

∥∥∥∥∥
(ΣP )−1

≤ 1

m
1
2
−ξ

sup
j>m

1

(j −m)ξ

∥∥∥∥∥
j∑

i=m+1

{Y P
i − E(Y P

1 )} − (ΣP)
1
2W1,m(j −m)

∥∥∥∥∥
(ΣP )−1

× sup
k>m

(m
k

) 1
2
−ξ+η

.

The supremum over k above is less than 1 since ξ < 1
2
. The supremum over j is

bounded in probability by (4.12) and equivalence of norms. Since m−
1
2
+ξ → 0, this

proves that (IP
m)
′ converges to 0 in probability. ■

Given p-dimensional independent standard Brownian motions W1 and W2 and
η > 0, define the random function Dη by

Dη (s, t) = t−
3
2
−η ∥(t− s)W2(1) + tW1(s− 1)− sW1(t− 1)∥Ip , 1 ≤ s ≤ t <∞.

(B.4)

Lemma B.1.2. For any η > 0, the function Dη is almost surely bounded and
uniformly continuous.

Proof. Fix η > 0. For i ∈ J1, pK and 1 ≤ s ≤ t < ∞, define A[i] (s, t) to be the i-th
coordinate of

A (s, t) = t−
3
2
−η {(t− s)W2(1) + tW1(s− 1)− sW1(t− 1)} , 1 ≤ s ≤ t <∞,

and note that Dη(s, t) = ∥A (s, t) ∥Ip . From Lemma A.2 in Holmes and Kojadinovic
(2021), we know that |A[i]| is almost surely bounded and uniformly continuous for
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each i. It follows that each A[i] is also bounded and uniformly continuous, almost
surely. Now note that

|Dη(s, t)−Dη(s
′, t′)| =

∣∣∣∥A (s, t) ∥Ip − ∥A (s′, t′) ∥Ip
∣∣∣

≤ ∥A (s, t)−A (s′, t′) ∥Ip

=

√√√√1

p

p∑
i=1

{A[i](s, t)− A[i](s′, t′)}2.

So Dη is almost surely bounded and uniformly continuous since each A[i] is. ■

Lemma B.1.3. For any η > 0,

sup
k>m

(m
k

) 3
2
+η

D̄P
m(k)⇝ sup

1≤s≤t<∞
Dη(s, t),

where D̄P
m is defined in (B.2) and Dη is defined in (B.4).

Proof. Fix η > 0. The random variable supk>m(m/k)
3
2
+ηD̄P

m(k) is equal in distribu-
tion to

1√
m

sup
k≥m

(m
k

) 3
2
+η

max
j∈Jm,kK

∥∥∥∥ km{W2(m) +W1(j −m)} − j

m
{W2(m) +W1(k −m)}

∥∥∥∥
Ip

,

where we note that the norm is equal to zero when j = k, which has allowed us to
include the cases j = k and k = m in the maximum and supremum, respectively.
Using Brownian scaling, this is equal in distribution to

sup
k≥m

(m
k

) 3
2
+η

max
j∈Jm,kK

∥∥∥∥ km{W2(1) +W1

( j
m

− 1
)}

− j

m

{
W2(1) +W1

( k
m

− 1
)}∥∥∥∥

Ip

.

In the above, j and k are integers. Letting k = ⌊mt⌋ and j = ⌊ms⌋ (where s, t ∈ R
and 1 ≤ s ≤ t <∞), the above display becomes

sup
t≥1

( m

⌊mt⌋

) 3
2
+η

× sup
s∈[1,t]

∥∥∥∥⌊mt⌋m

{
W2(1) +W1

(⌊ms⌋
m

− 1
)}

− ⌊ms⌋
m

{
W2(1) +W1

(⌊mt⌋
m

− 1
)}∥∥∥∥

Ip

= sup
1≤s≤t<∞

Dη

(
⌊ms⌋
m

,
⌊mt⌋
m

)
.

Using (B.3) with the supremum over (s, t), we have∣∣∣∣ sup
1≤s≤t<∞

Dη

(
⌊ms⌋
m

,
⌊mt⌋
m

)
− sup

1≤s≤t<∞
Dη(s, t)

∣∣∣∣
≤ sup

1≤s≤t<∞

∣∣∣∣Dη

(
⌊ms⌋
m

,
⌊mt⌋
m

)
−Dη (s, t)

∣∣∣∣ ,
which converges to zero almost surely asm→ ∞ since Dη is almost surely uniformly

continuous and t− 1/m < ⌊mt⌋
m

≤ t. ■
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For a p× p matrix A, denote the operator norm of A by

∥A∥op = inf{c ≥ 0 : ∥Av∥2 ≤ c∥v∥2, for all v ∈ Rp}. (B.5)

Lemma B.1.4. Assume that Condition 4.2.5 holds and that ΣP
m

P→ ΣP. Then, for
any η > 0,

sup
k>m

(m
k

) 3
2
+η

|D̃P
m(k)−DP

m(k)| = oP(1),

where D̃P
m is defined in (B.1) and DP

m is defined in (4.5).

Proof. Fix η > 0. Applying (B.3) to the maximum over j ∈ Jm, kJ and using the

inequality |a 1
2 − b

1
2 | ≤ |a− b| 12 for a, b ≥ 0, we obtain that

sup
k>m

(m
k

) 3
2
+η

|D̃P
m(k)−DP

m(k)|

≤ sup
k>m

(m
k

) 3
2
+η

max
j∈Jm,kJ

j(k − j)

m
3
2

∣∣∥Ȳ P
1:j − Ȳ P

j+1:k∥(ΣP )−1 − ∥Ȳ P
1:j − Ȳ P

j+1:k∥(ΣP
m)−1

∣∣
≤ sup

k>m

(m
k

) 3
2
+η

(B.6)

× max
j∈Jm,kJ

j(k − j)

p
1
2m

3
2

∣∣∣(Ȳ P
1:j − Ȳ P

j+1:k

)⊤ (
(ΣP)−1 − (ΣP

m)
−1) (Ȳ P

1:j − Ȳ P
j+1:k

)∣∣∣ 12 .
(B.7)

For A ∈ Rp×p and v ∈ Rp, we have that |v⊤Av| ≤ ∥Av∥2∥v∥2 by the Cauchy-

Schwarz inequality. By (B.5), ∥Av∥2 ≤ ∥A∥op∥v∥2, so that |v⊤Av| 12 ≤ ∥A∥
1
2
op∥v∥2.

From (B.7), we therefore obtain

sup
k>m

(m
k

) 3
2
+η

|D̃P
m(k)−DP

m(k)|

≤ 1

p
1
2

∥∥(ΣP)−1 − (ΣP
m)
−1∥∥ 1

2

op
sup
k>m

(m
k

) 3
2
+η

max
j∈Jm,kJ

j(k − j)

m
3
2

∥∥Ȳ P
1:j − Ȳ P

j+1:k

∥∥
2
.

It is well-known that the mapping that maps an invertible square matrix to its
inverse is continuous. Since ΣP

m
P→ ΣP and Condition 4.2.3 holds, the continuous

mapping theorem immediately implies that (ΣP
m)
−1 P→ (ΣP)−1, which in turn implies

that ∥(ΣP)−1 − (ΣP
m)
−1∥op = oP(1) by equivalence of norms. Furthermore, from

Lemmas B.1.1 and B.1.3, we have that supk>m(m/k)
3
2
+ηD̃P

m(k) converges weakly,
which implies that it is bounded in probability. By equivalence of norms on Rp, we
immediately obtain that

sup
k>m

(m
k

) 3
2
+η

max
j∈Jm,kJ

j(k − j)

m
3
2

∥∥Ȳ P
1:j − Ȳ P

j+1:k

∥∥
2
= OP(1)

and therefore the desired result. ■

Proof of Theorem 4.2.6. From Lemmas B.1.1–B.1.4, we have that

sup
k>m

(m
k

) 3
2
+η

DP
m(k)⇝ sup

1≤s≤t<∞
Dη (s, t) ,
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where Dη is defined in (B.4). It remains to be shown that

sup
1≤s≤t<∞

Dη (s, t)
d
= sup

1≤s≤t<∞
t−

3
2
−η∥tW (s)− sW (t)∥Ip . (B.8)

Let Up and Vp be two p-dimensional Gaussian processes defined, for any 1 ≤ s ≤ t,
by

Up (s, t) = (t− s)W2 (1) + tW1 (s− 1)− sW1 (t− 1) ,

Vp (s, t) = tW (s)− sW (t).

Since W1, W2, and W are p-dimensional standard Brownian motions, it follows
that the coordinates of the Gaussian processes Up and Vp are centered. Thus,
to show that the random functions Up and Vp are equal in distribution (which
will immediately imply (B.8)), it suffices to establish equality of their covariance
functions at any (s, t, s′, t′) with 1 ≤ s ≤ t and 1 ≤ s′ ≤ t′. On one hand, the
covariance function of the Gaussian process Up at (s, t, s′, t′) is

E{Up(s, t)Up(s
′, t′)⊤}

= E
[(

(t− s)W2 (1) + tW1(s− 1)− sW1(t− 1)
)

×
(
(t′ − s′)W2(1) + t′W1(s

′ − 1)− s′W1(t
′ − 1)

)⊤]
=
[
(t− s)(t′ − s′) + t′t{min(s, s′)− 1} − s′t{min(s, t′)− 1}

− t′s{min(t, s′)− 1}+ s′s{min(t, t′)− 1}
]
Ip

= {t′tmin(s, s′)− s′tmin(s, t′)− t′smin(t, s′) + s′smin(t, t′)} Ip,

while, on the other hand, the covariance function of the Gaussian process Vp at
(s, t, s′, t′) is

E{V (s, t)V (s′, t′)⊤}

= E
[(
tW (s)− sW (t)

)(
t′W (s′)− s′W (t′)

)⊤]
= {tt′min(s, s′)− s′tmin(s, t′)− st′min(t, s′) + ss′min(t, t′)}Ip,

which concludes the proof. ■

B.2 Proofs of Propositions 4.2.8, 4.2.10 and 4.2.12

Proof of Proposition 4.2.8. Let P ∈ (Rd)p be such that Condition 4.2.3 holds.
Since Y P

i =
(
1(Xi ≤ x1), . . . ,1(Xi ≤ xp)

)
, it is immediate that αY

r ≤ αX
r = O(r−a)

as r → ∞. Furthermore, as all the components of the Y P
i are bounded in absolute

value by 1, from Theorem 4 of Kuelbs and Philipp (1980), we can redefine the
sequence (Y P

i )i∈N on a new probability space together with a p-dimensional standard
Brownian motion W such that, almost surely,∥∥∥∥∥

m∑
i=1

{Y P
i − E(Y P

1 )} − (ΣP)
1
2W (m)

∥∥∥∥∥
2

= O(m
1
2
−λ),

for some λ ∈ (0, 1
2
) that depends on a, p and P . Let ξ ∈ (1

2
− λ, 1

2
). Then, almost

surely,

lim
m→∞

1

mξ

∥∥∥∥∥
m∑
i=1

{Y P
i − E(Y P

1 )} − (ΣP)
1
2W (m)

∥∥∥∥∥
2

= 0. (B.9)
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Let W ′ be another p-dimensional standard Brownian motion independent of W and
define W

(m)
2 as

W
(m)
2 (s) =

{
W (s) if s ∈ [0,m],

W ′(s−m) +W (m) otherwise,

and W
(m)
1 as W

(m)
1 (s) = W (m+ s)−W (m), s ≥ 0. Then, for each m ∈ N, W (m)

1

and W
(m)
2 are independent p-dimensional standard Brownian motions.

For each m ≥ 0, let

Vm = sup
k>m

1

(k −m)ξ

∥∥∥∥∥
k∑

i=m+1

{Y P
i − E(Y P

1 )} − (ΣP)
1
2W

(m)
1 (k −m)

∥∥∥∥∥
2

and note that the sequence (Vm)m≥0 consists of identically distributed random vari-
ables. Therefore, to show that (4.12) holds, it is sufficient to show that V0 = OP(1).
From the previous definition, V0 can be rewritten as

V0 = sup
k>0

1

kξ

∥∥∥∥∥
k∑

i=1

{Y P
i − E(Y P

1 )} − (ΣP)
1
2W (k)

∥∥∥∥∥
2

,

and, from (B.9), it is the supremum of an almost surely convergent sequence. It
follows that V0 is an almost surely finite random variable, so V0 = OP(1) and

therefore (4.12) holds. Finally, (B.9) and the definition of W
(m)
2 immediately im-

ply (4.13). ■

Proof of Proposition 4.2.10. It is immediate that

√
p sup
1≤s≤t<∞

t−
3
2∥tW (s)− sW (t)∥Ip ≥ sup

1≤s≤t<∞
t−

3
2 |tW [1](s)− sW [1](t)|,

whereW [1] is the first component of the p-dimensional Brownian motion W . Hence,
for any fixed M > 0,

P
(

sup
1≤s≤t<∞

t−
3
2∥tW (s)− sW (t)∥Ip ≥M

)
≥ P

(
p−1/2 sup

1≤s≤t<∞
t−

3
2 |tW [1](s)− sW [1](t)| ≥M

)
= 1,

where the last equality is a consequence of Proposition 3.4 of Holmes and Kojadi-
novic (2021). ■

Proof of Proposition 4.2.12. Fix η > 0 and p ∈ N. Note first that W is a p-
variate continuous Gaussian process, which implies that W ∈ C([0,∞),Rp) almost
surely. For v ≥ 2, let fv : C([0, v],Rp) → [0,∞) be defined by

fv(w) = sup
1≤s≤t≤v

t−
3
2
−η∥tw(s)− sw(t)∥Ip , w ∈ C([0, v],Rp),

and, similarly, let f : C([0,∞),Rp) → [0,∞) be defined by

f(w) = sup
1≤s≤t<∞

t−
3
2
−η∥tw(s)− sw(t)∥Ip , w ∈ C([0,∞),Rp).
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Notice that Lp,η = f(W ) and that fv(w) ≤ f(w) for every v ≥ 2.

Next, for any v ≥ 2, we equip C([0, v],Rp) with the uniform distance, which is
then a separable (and locally convex) metric space. Furthermore, as we shall verify
below, fv is continuous and convex for any v ≥ 2. We can then apply Theorem 7.1
of Davydov and Lifshits (1984) to obtain that, for any v ≥ 2, the distribution of
fv(W ) is concentrated on [0,∞) and absolutely continuous on (0,∞). In addition,
some thought reveals that, for any v ≥ 2,

P(fv(W ) = 0) ≤ P
(
f2(W ) = 0) ≤ P(∥2W (1)− 1W (2)∥Ip = 0

)
= 0

since 2W (1)− 1W (2) is a centered multivariate normal random vector with covari-
ance matrix 2Ip. Hence, for any v ≥ 2, the distribution of fv(W ) has no atom at 0
and is therefore absolutely continuous.

Proof of the continuity of fv: To show (uniform) continuity on C([0, v],Rp)
(equipped with the uniform distance), let ε > 0 be given and let δ = ε/3. Let
w,w′ ∈ C([0, v],Rp) be such that sup0≤t≤v ∥w(t)−w′(t)∥Ip < δ. Then,

fv(w
′) = sup

1≤s≤t≤v
t−

3
2
−η∥tw′(s)− sw′(t)∥Ip

= sup
1≤s≤t≤v

t−
3
2
−η∥{tw(s)− sw(t)}+ t{w′(s)−w(s)} − s{w′(t)−w(t)}∥Ip

≤ sup
1≤s≤t≤v

t−
3
2
−η
{
∥tw(s)− sw(t)∥Ip + t∥w′(s)−w(s)∥Ip + s∥w′(t)−w(t)∥Ip

}
≤ sup

1≤s≤t≤v
t−

3
2
−η∥tw(s)− sw(t)∥Ip + 2δ.

This shows that fv(w
′) − fv(w) ≤ 2δ < ε. Similarly (or just by symmetry of the

above argument), fv(w)− fv(w
′) < ε. Thus, |fv(w)− fv(w

′)| < ε as required.

Proof of the convexity of fv: To show convexity, let λ ∈ (0, 1) and w,w′ ∈
C([0, v],Rp). Then λw + (1− λ)w′ ∈ C([0, v],Rp) and

fv(λw + (1− λ)w′)

= sup
1≤s≤t≤v

t−
3
2
−η
∥∥∥t{λw(s) + (1− λ)w′(s)} − s{λw(t) + (1− λ)w′(t)}

∥∥∥
Ip

= sup
1≤s≤t≤v

t−
3
2
−η
∥∥∥λ{tw(s)− sw(t)}+ (1− λ){tw′(s)− sw′(t)}

∥∥∥
Ip

≤ λfv(w) + (1− λ)fv(w
′),

as required.

To complete the proof of the proposition, it suffices to fix r, ε > 0 and show that
P(f(W ) = r) < ε. Notice first that, for any u ≥ 1, almost surely,

sup
(s,t):1≤s≤t,u≤t<∞

t−
3
2
−η∥tW (s)− sW (t)∥Ip ≤ u−

η
2 sup
1≤s≤t<∞

t−
3
2
− η

2 ∥tW (s)− sW (t)∥Ip .

Since according to Theorem 4.2.6, Lp, η
2
is almost surely finite, we see that

sup
(s,t):1≤s≤t,u≤t<∞

t−
3
2
−η∥tW (s)− sW (t)∥Ip

a.s.→ 0, as u→ ∞.
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Hence, there exists u0 <∞ (depending on r, ε) such that

P

(
sup

(s,t):1≤s≤t,u0≤t<∞
t−

3
2
−η∥tW (s)− sW (t)∥Ip ≥ r/2

)
< ε. (B.10)

Now, if f(W ) = r, then either fu0(W ) = r or the supremum (r) in the definition of
f is attained for some s, t with t > u0. Absolute continuity of fu0(W ) shows that
the former has probability 0, while (B.10) shows that the latter has probability at
most ε. ■

B.3 Proof of Proposition 4.2.14

Proof of Proposition 4.2.14. Let A be a p×p symmetric positive-definite matrix.
Then, there exits a diagonal matrix ∆ with λ1 > 0,. . . ,λp > 0 on its diagonal
and a p × p orthogonal matrix P such that the columns of P are the eigenvectors
e1, . . . , ep ∈ Rp of A with corresponding eigenvalues λ1, . . . , λp and A = P∆P⊤.
Starting from the definition of ∥ · ∥A−1 given below (4.6), for any v ∈ Rp,

√
p∥v∥A−1 = |v⊤A−1v|

1
2 = |v⊤(P∆P⊤)−1v|

1
2 = |v⊤P∆−1P⊤v|

1
2

≥ min
i∈J1,pK

λ
− 1

2
i × ∥P⊤v∥2 = min

i∈J1,pK
λ
− 1

2
i ×

√
(P⊤v) · (P⊤v)

= min
i∈J1,pK

λ
− 1

2
i ×

√
v · v = min

i∈J1,pK
λ
− 1

2
i × ∥v∥2

≥ min
i∈J1,pK

λ
− 1

2
i × ∥v∥∞,

where we have used the fact that orthogonal matrices preserve the dot product.

Let ψ be the map from the set Sp of p× p symmetric positive-definite matrices

to (0,∞) such that, for any A ∈ Sp, ψ(A) = mini∈J1,pK λ
− 1

2
i . Since eigenvalue decom-

position is a continuous operation and since the minimum is a continuous function,
the map ψ is continuous. Hence, ΣP

m
P→ ΣP and the continuous mapping theorem

imply that ψ(ΣP
m)

P→ ψ(ΣP) > 0.

From the previous derivations and the assumptions of the proposition, we thus
have that, for all m ∈ N, ∥ · ∥(ΣP

m)−1 ≥ p−
1
2ψ(ΣP

m)∥ · ∥∞ almost surely. Therefore, for
any m ∈ N and k ≥ m+ 1, almost surely,

DP
m(k) = max

j∈Jm,kJ

j(k − j)

m
3
2

∥Ȳ P
1:j − Ȳ P

j+1:k∥(ΣP
m)−1

≥ p−
1
2ψ(ΣP

m) max
j∈Jm,kJ

j(k − j)

m
3
2

∥Ȳ P
1:j − Ȳ P

j+1:k∥∞ ≥ p−
1
2ψ(ΣP

m)E
xℓ
m (k),

which immediately implies that supk>m(m/k)
3
2
+ηDP

m(k)
P→ ∞ since ψ(ΣP

m)
P→ ψ(ΣP) >

0 and supk>m(m/k)
3
2
+ηExℓ

m (k)
P→ ∞. ■
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B.4 Proofs of Propositions 4.3.2, 4.3.4, and 4.3.7

Proof of Proposition 4.3.2. Let a, b ∈ [0, 1]d such that a < b. Note that

νC
(
(a, b]

)
=

∑
i∈{0,1}d

(−1)
∑d

j=1 ijC
(
ai11 b

1−i1
1 , . . . , aidd b

1−id
d

)
,

and

νm
(
(a, b]

)
=

∑
i∈{0,1}d

(−1)
∑d

j=1 ijCm

(
ai11 b

1−i1
1 , . . . , aidd b

1−id
d

)
.

By Condition 4.3.1 (ii), we immediately see that, for each π ∈ Π (where Π is defined
in (4.17)), νm

(
(π − s,π]

) a.s.→ νC
(
(π − s,π]

)
as m→ ∞. By Condition 4.3.1 (i), for

each π ∈ Π, νC
(
(π − s,π]

)
̸= 1/(κ(r + 1)d). We conclude that, almost surely, for

each π ∈ Π,

νm
(
(π − s,π]

)
> 1/(κ(r + 1)d) for all m sufficiently large

⇐⇒ νC
(
(π − s,π]

)
> 1/(κ(r + 1)d).

This completes the proof. ■

Proof of Proposition 4.3.4. Let

R(n,x) =
n∑

i=1

{1(Xi ≤ x)− F (x)}, n ∈ N,x ∈ Rd.

From Theorem 3.1 part 2(b) in Dedecker et al. (2014), without changing its distribu-
tion, the empirical process R can be redefined on a richer probability space on which
there exists a Kiefer process, that is, a two-parameter centered continuous Gaussian
process K with covariance function given by (4.15), and a random variable C > 0
such that, almost surely (a.s.),

sup
t∈[0,1]

sup
x∈Rd

|R(⌊nt⌋,x)−K(⌊nt⌋,x)| ≤ Cn
1
2
−λ, for all n ∈ N (B.11)

for some λ ∈ (0, 1/2) only depending on d and a. Let i ∈ J1, pK. Then,

sup
k>m

k−
1
2 max
j∈J1,kK

j|F1:j(X i,m)− F (X i,m)− F1:j(xi) + F (xi)|

= sup
k>m

k−
1
2 max
j∈J1,kK

|R(j,X i,m)−R(j,xi)|

≤ sup
k>m

k−
1
2 max
j∈J1,kK

|R(j,X i,m)−K(j,X i,m)|+ sup
k>m

k−
1
2 max
j∈J1,kK

|R(j,xi)−K(j,xi)|

+ sup
k>m

k−
1
2 max
j∈J1,kK

|K(j,X i,m)−K(j,xi)|.

From (B.11), with probability one, the first two terms on the right-hand side of the
last display are smaller than

2 sup
k>m

k−
1
2 sup
t∈[0,1]

sup
x∈Rd

|R(⌊kt⌋,x)−K(⌊kt⌋,x)| ≤ 2 sup
k>m

k−
1
2Ck

1
2
−λ ≤ 2Cm−λ

a.s.→ 0.

Appendix B 109



The third term is smaller than

Im = sup
k>m

k−
1
2 max
j∈J1,kK

sup
x,y∈Rd

∥x−y∥∞≤∆m

|K(j,x)−K(j,y)|, (B.12)

where ∆m = ∥X i,m − xi∥∞. To complete the proof, it thus suffices to show that

Im
P→ 0.

From Theorem 3.1 part 2(a) in Dedecker et al. (2014), we know that the sample
paths of the Gaussian processK are almost surely uniformly continuous with respect
to the pseudo-metric ρ on [0,∞)× Rd defined by

ρ
(
(s,x), (t,y)

)
= |s− t|+

d∑
ℓ=1

|F [ℓ](x[ℓ])− F [ℓ](y[ℓ])|, s, t ∈ [0,∞),x,y ∈ Rd.

We will use this fact to show that Im
P→ 0. To this end, define ∆∗m = ψ(∆m), where

ψ(δ) = sup
x,y∈Rd

∥x−y∥∞≤δ

d∑
ℓ=1

|F [ℓ](x[ℓ])− F [ℓ](y[ℓ])|, δ ≥ 0.

Since ∥x− y∥∞ ≤ ∆m implies that ρ
(
(t,x), (t,y)

)
≤ ∆∗m, we have that

Im ≤ sup
k>m

k−
1
2 sup
s,t∈[0,k]

s=t

sup
x,y∈Rd

∥x−y∥∞≤∆m

|K(s,x)−K(t,y)| ≤ sup
k>m

k−
1
2Jm ≤ m−

1
2Jm,

where Jm = ϕ(∆∗m) with

ϕ(δ) = sup
s,t∈[0,∞),x,y∈Rd

ρ((s,x),(t,y))≤δ

|K(s,x)−K(t,y)|, δ ≥ 0.

Let ε > 0. By almost sure uniform continuity of the sample paths of the process
K, there exists δ1 = δ1(ε) > 0 such that, for all 0 ≤ δ ≤ δ1, ϕ(δ) < ε almost surely.
Since the d univariate margins F [1], . . . , F [d] of F are (uniformly) continuous, there
exists δ0 = δ0(δ1) > 0 such that, for all 0 ≤ δ ≤ δ0, ψ(δ) < δ1. Therefore

P(Jm > ε) = P
(
ϕ(∆∗m) > ε

)
≤ P

(
ϕ(∆∗m) > ε,∆∗m ≤ δ1

)
+ P(∆∗m > δ1)

= P(∆∗m > δ1)

= P
(
ψ(∆m) > δ1

)
≤ P

(
ψ(∆m) > δ1,∆m ≤ δ0

)
+ P(∆m > δ0)

= P(∆m > δ0).

Since ∆m = ∥X i,m − xi∥∞
P→ 0 by assumption, this shows that Jm

P→ 0 which

completes the proof since Im ≤ m−
1
2Jm. ■

Proof of Proposition 4.3.7. The second claim is immediate from the first claim
and Theorem 4.2.6, so we need only prove the first claim.

First, we assert that, for any ℓ ∈ J1, pK,

sup
k>m

k−
1
2 max
1≤i<j≤k

(j− i+1)|Fi:j(X ℓ,m)−F (X ℓ,m)−Fi:j(xℓ)+F (xℓ)| = oP(1). (B.13)
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Indeed, the left-hand side of (B.13) is equal to

sup
k>m

k−
1
2 max
1≤i<j≤k

∣∣∣ j∑
r=i

{1(Xr ≤ X ℓ,m)− F (X ℓ,m)− 1(Xr ≤ xℓ) + F (xℓ)}
∣∣∣

= sup
k>m

k−
1
2 max
1≤i<j≤k

∣∣∣ j∑
r=1

{1(Xr ≤ X ℓ,m)− F (X ℓ,m)− 1(Xr ≤ xℓ) + F (xℓ)}

−
i−1∑
r=1

{1(Xr ≤ X ℓ,m)− F (X ℓ,m)− 1(Xr ≤ xℓ) + F (xℓ)}
∣∣∣

≤2 sup
k>m

k−
1
2 max
j∈J1,kK

j|F1:j(X ℓ,m)− F (X ℓ,m)− F1:j(xℓ) + F (xℓ)|,

so the assertion holds by (4.24). Using the fact that all norms on Rp are equivalent,
(B.13) implies that

sup
k>m

k−
1
2 max
1≤i<j≤k

(j − i+ 1)∥F Pm
i:j − F Pm − F P

i:j − F P∥(ΣP )−1 = oP(1), (B.14)

where F Pm =
(
F (X 1,m), . . . , F (X p,m)

)
and F P =

(
F (x1), . . . , F (xp)

)
(similarly for

F ·i:j).

Recall the definition of D̃P
m in (B.1) which can be rewritten as

D̃P
m(k) = max

j∈Jm,kJ

j(k − j)

m
3
2

∥F P
1:j − F P

j+1:k∥(ΣP )−1 , k ≥ m+ 1,

and define the unobservable detector D̃Pm
m by changing the norm in the definition

of DPm
m as

D̃Pm
m (k) = max

j∈Jm,kJ

j(k − j)

m
3
2

∥F Pm
1:j − F Pm

j+1:k∥(ΣP )−1 , k ≥ m+ 1.

Using the reverse triangle inequality for the maximum norm and the norm ∥·∥(ΣP )−1 ,
we then obtain that, for any k ≥ m+ 1,

|D̃Pm
m (k)− D̃P

m(k)|

≤ max
j∈Jm,kJ

j(k − j)

m
3
2

×
∣∣∥F Pm

1:j − F Pm − F Pm
j+1:k + F Pm∥(ΣP )−1 − ∥F P

1:j − F P − F P
j+1:k + F P∥(ΣP )−1

∣∣
≤ max

j∈Jm,kJ

j(k − j)

m
3
2

∥F Pm
1:j − F Pm − F P

1:j + F P − F Pm
j+1:k + F Pm + F P

j+1:k − F P∥(ΣP )−1

≤ max
j∈Jm,kJ

j(k − j)

m
3
2

×
{
∥F Pm

1:j − F Pm − F P
1:j + F P∥(ΣP )−1 + ∥F Pm

j+1:k − F Pm − F P
j+1:k + F P∥(ΣP )−1

}
.

Therefore,

sup
k>m

(m
k

) 3
2
+η

|D̃Pm
m (k)− D̃P

m(k)|
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≤ sup
k>m

(m
k

)η
k−

3
2 max
j∈Jm,kJ

j(k − j)∥F Pm
1:j − F Pm − F P

1:j + F P∥(ΣP )−1

+ sup
k>m

(m
k

)η
k−

3
2 max
j∈Jm,kJ

j(k − j)∥F Pm
j+1:k − F Pm − F P

j+1:k + F P∥(ΣP )−1 .

We claim that both terms on the right hand side converge to 0 in probability. For
example, since j ≤ k and k > m, the second term is at most

sup
k>m

k−
1
2 max
j∈Jm,kJ

(k − j)∥F Pm
j+1:k − F Pm − F P

j+1:k + F P∥(ΣP )−1

≤ sup
k>m

k−
1
2 max
1≤i<j≤k

(j − i+ 1)∥F Pm
i:j − F Pm − F P

i:j + F P∥(ΣP )−1 ,

which converges to 0 in probability by (B.14). The first term is similar. Hence,

sup
k>m

(m
k

) 3
2
+η

|D̃Pm
m (k)− D̃P

m(k)| = oP(1). (B.15)

From Lemma B.1.4, we have that supk>m(m/k)
3
2
+η|D̃P

m(k)−DP
m(k)| = oP(1). There-

fore, it remains to prove that

sup
k>m

(m
k

) 3
2
+η

|DPm
m (k)− D̃Pm

m (k)| = oP(1).

Proceeding as in the proof of Lemma B.1.4, we have that

sup
k>m

(m
k

) 3
2
+η

|D̃Pm
m (k)−DPm

m (k)|

≤ sup
k>m

(m
k

) 3
2
+η

max
j∈Jm,kJ

j(k − j)

m
3
2

∣∣∣∥F Pm
1:j − F Pm

j+1:k∥(ΣP )−1 − ∥F Pm
1:j − F Pm

j+1:k∥(ΣPm
m )−1

∣∣∣
≤ sup

k>m

(m
k

) 3
2
+η

× max
j∈Jm,kJ

j(k − j)

p
1
2m

3
2

∣∣∣(F Pm
1:j − F Pm

j+1:k

)⊤ (
(ΣP)−1 − (ΣPm

m )−1
) (

F Pm
1:j − F Pm

j+1:k

)∣∣∣ 12
≤ 1

p
1
2

∥∥(ΣP)−1 − (ΣPm
m )−1

∥∥ 1
2

op
sup
k>m

(m
k

) 3
2
+η

max
j∈Jm,kJ

j(k − j)

m
3
2

∥∥F Pm
1:j − F Pm

j+1:k

∥∥
2
.

We claim that this converges to zero in probability (which completes the proof). By

Condition 4.2.3 and the fact that ΣPm
m

P→ ΣP , we have that ∥(ΣP)−1 − (ΣP
m)
−1∥op =

oP(1). To prove this final claim, it therefore suffices to show that

sup
k>m

(m
k

) 3
2
+η

max
j∈Jm,kJ

j(k − j)

m
3
2

∥∥F Pm
1:j − F Pm

j+1:k

∥∥
2
= OP(1).

Indeed, by equivalence of norms on Rp, this follows from the fact that
supk>m(m/k)

3
2
+ηD̃Pm

m (k) = OP(1), itself a consequence of (B.15), Lemma B.1.4, and
Theorem 4.2.6. ■

B.5 Details of Monte Carlo experiments

In this section, we provide the implementation details of the Monte Carlo experi-
ments that we carried out in the case of low-dimensional (d ∈ {1, 2, 3}) continuous
observations and whose main findings are summarized in Section 4.5. In all experi-
ments, the sequential tests were carried out at the α = 5% nominal level.
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B.5.1 Univariate experiments for the procedure based on
DPm

m under the null

To investigate the empirical levels of the sequential test based on DPm
m when d =

1, we considered 9 data generating models, denoted M1, . . . , M9. Models M1,
. . . , M6 are AR(1) models with independent standard normal innovations whose
autoregressive parameter is equal to 0, 0.1, 0.3, 0.5, 0.7 and −0.7, respectively.
Model M7 is a GARCH(1,1) model with independent standard normal innovations
and parameters ω = 0.012, β = 0.919 and α = 0.072 to mimic SP500 daily log-
returns following Jondeau et al. (2007). Models M8 and M9 are the nonlinear
autoregressive model used in Paparoditis and Politis (2001, Section 3.3) and the
exponential autoregressive model considered in Auestad and Tjøstheim (1990) and
Paparoditis and Politis (2001, Section 3.3), respectively. The underlying generating
equations are

Xi = 0.6 sin(Xi−1) + ϵi

and
Xi = {0.8− 1.1 exp(−50X2

i−1)}Xi−1 + 0.1ϵi,

respectively, where the ϵi are independent standard normal innovations. Note that,
for all time series models, a burn-out sample of 100 observations was used.

For each of the nine models, the probability of rejection of H0 in (4.1) was
estimated from 1000 samples of size n = m + 5000 with m ∈ {200, 400, 800, 1600}
and for p ∈ {2, 5, 10, 20}. The empirical levels are reported in Table B.1. As one
can see, for any fixed p, reassuringly, they decrease as m increases. For m ≥ 800,
it is mostly for the models with strong serial dependence such as M5, M8 and M9
that the empirical levels are not below the 5% nominal level. The latter is not so
surprising and highlights the difficulty of the estimation of the long-run covariance
matrix ΣP using the estimator ΣPm

m in the case of strong serial dependence. It may
be slightly more surprising for the GARCH(1,1) model M7 for which m = 1600
seems necessary to obtain a reasonably good estimate of ΣP . The fact that for most
other models, the empirical levels are all below the 5% nominal level when m ≥ 800
is a consequence of the fact that they are underestimated in all settings. Indeed, the
monitoring was stopped after 5000 steps whereas it would theoretically be necessary
to monitor “indefinitely” to compute empirical levels accurately. For any fixed m,
we see that increasing p tends in general to increase the empirical level. This is again
a consequence of the difficulty of the estimation of the long-run covariance matrix
ΣP which is a p × p matrix. Note that, since the monitoring procedure based on
DPm

m is margin-free (as verified in Section 4.3.4), it is not necessary to empirically
study the influence of the contemporary distribution F on the empirical levels.

In a second experiment, we briefly investigated the effect of the estimation of ΣP

on the empirical levels in the case of independent observations. Instead of estimating
ΣP from the learning sample, we used its true value whose elements, in the considered
setting (see Remark 4.2.4), are given by

Cov{1(X [1]

1 ≤ F−1(i/(p+1)),1(X [1]

1 ≤ F−1(j/(p+1))} = min(i, j)/(p+1)−ij/(p+1)2,

for i, j ∈ J1, pK. The empirical levels were then estimated from 1000 random samples
of size n = m+5000 from the standard normal distribution. The results are reported
in Table B.2. By comparing the results with the first horizontal block of Table B.1,
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Table B.1: Percentages of rejection of H0 in (4.1) for the procedure based on DPm
m

considered in Section 4.3.1. The rejection percentages are computed from 1000
samples of size n = m+ 5000 generated from the time series models M1, . . . , M9.

Model m p = 2 p = 5 p = 10 p = 20

M1 200 3.4 3 3.3 5.4
400 1.9 2.1 3.2 2.8
800 1.5 1.3 2 1.3
1600 1 0.9 0.9 1

M2 200 4.4 4.3 8.1 13.8
400 3.2 2.7 3.6 5.6
800 1.8 2.8 2.1 3.2
1600 1.3 1 1.7 1

M3 200 6.9 10.6 21.5 53.9
400 3.4 4.1 7.2 16.7
800 3 2.5 3 5.6
1600 1.5 1.3 1.5 1.4

M4 200 9.5 18.1 44.6 93.2
400 5.3 7.1 16.5 42.9
800 3 3.6 5.3 12.3
1600 2.2 2.3 2.8 2.2

M5 200 18.9 39.4 82.1 100
400 9.6 17.5 40.3 87
800 5.7 6.7 14.4 34.5
1600 2.4 2.7 4.4 7.5

M6 200 7.3 8.6 14.1 26.7
400 3.7 4.6 6.4 11
800 2.6 2.8 3 3.6
1600 1.2 1.5 1.3 1.2

M7 200 9.1 14.8 17.2 16.8
400 8 12 12.6 9.9
800 7.5 9.8 9.2 5.2
1600 4.6 6.1 4.8 2.9

M8 200 7.8 13 30.6 74.3
400 4.7 5.5 10.8 30.8
800 2.8 3.4 4.7 7.9
1600 1.8 1.8 1.9 2.1

M9 200 15 29 61.1 95.6
400 8.6 12.9 25.5 57.9
800 5.5 6.7 10.1 17.3
1600 2.1 2.4 3.4 5.3

we see, as could have been expected, that for the same value ofm, the use of the true
long-run covariance matrix leads to lower empirical levels than when it is estimated.

As a last experiment under the null, we investigated the quality of the model
fitted at the end of Section 4.4 to extrapolate the values of the quantiles of the
distribution of Lp,η for p > 20 and η = 0.001. Using m = 1600 and 1000 random
samples of size n = m+ 5000 from the standard normal distribution, we estimated
rejection percentages for p ∈ {30, 40, 50}. These are given in Table B.3 and suggest
that the quality of the model for extrapolating the values of the quantiles may
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Table B.2: Percentages of rejection of H0 in (4.1) for the procedure based on DPm
m

considered in Section 4.3.1 when the true underlying long-run covariance matrix is
used instead of its estimate. The rejection percentages are computed from 1000
random samples of size n = m+ 5000 generated from the normal distribution.

m p = 2 p = 5 p = 10 p = 20

200 2.4 2.4 2.3 3.1
400 1.7 1.9 3.1 2.3
800 1.3 1.3 1.6 0.7

1600 0.8 0.9 0.9 0.6

Table B.3: Percentages of rejection of H0 in (4.1) for the procedure based on DPm
m

considered in Section 4.3.1 when, for p > 20 and η = 0.001, estimates of the 0.95-
quantiles of the distribution Lp,η are extrapolated using the model fitted at the end
of Section 4.4. The rejection percentages are computed from 1000 samples of size
n = m+ 5000 generated from the standard normal distribution with m = 1600.

p = 2 p = 5 p = 10 p = 20 p = 30 p = 40 p = 50

1.0 0.9 0.9 1.0 0.4 0.3 0.5

be acceptable when 20 < p ≤ 50 (although it may lead to some slightly more
conservative tests).

B.5.2 Univariate experiments for the procedure based on
DPm

m under alternatives

In order to understand the behavior of the monitoring procedure based on the detec-
tor DPm

m considered in Section 4.3.1 under alternatives to H0 in (4.1), we considered
successively changes in the expectation of the X [1]

i ’s, in their variance and in their
d.f. (while keeping their expectation and variance constant). As a first experiment,
we studied the finite-sample behavior of the sequential test under a change in the
expectation of an AR(1) model with autoregressive parameter equal to 0.3 (Model
M3). Specifically, to estimate rejection percentages, we generated 1000 samples of
size n = m+5000 from Model M3 with m = 800 and, for each sample, added a pos-
itive offset of δ to all observations after position m+k with k ∈ {0, 500, 1000, 2000}.
The results are reported in Figure B.1. Notice that only the exceedences (of the de-
tectors with respect to their thresholds) after position m+ k are taken into account
when calculating the rejection percentages.

As one can see from the top row of graphs in Figure B.1, as expected, the power
of all procedures increases as δ increases. Furthermore, for the procedure based on
DPm

m and a fixed value of the offset δ, increasing the number p of evaluation points
slightly lowers the power of the test. We also see that the procedure based on Rm

in (4.2) is always the most powerful. This was to be expected as the latter was
specifically designed to be sensitive to changes in the mean. Similarly, from the
second row of plots in Figure B.1, we see that mean detection delays are smallest
for the procedure based on Rm and increase for the procedure based on DPm

m as p
increases. Note finally that the power of every procedure becomes larger as the time
k at which the offset δ is added becomes closer to half of n = m + 5000. This is a
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Figure B.1: Rejection percentages of H0 in (4.1) (first row) and corresponding mean
detection delays (second row) for the procedure based on Rm in (4.2) (solid line)
and for the procedure DPm

m considered in Section 4.3.1 with p ∈ {2, 5, 10} (dash,
dotted and dash-dotted lines) estimated from 1000 samples of size n = m + 5000
from Model M3 with m = 800 such that, for each sample, a positive offset of δ was
added to all observations after position m+ k.

consequence of using of CUSUM statistics to define the detectors.

As a second experiment, we considered a change in the variance of independent
centered observations. To estimate the power of the sequential test, we generated
1000 samples of size n = m + 5000 with m = 800 such that, observations up to
position m + k with k ∈ {0, 500, 1000, 2000} are from the standard normal distri-
bution while observations after position m + k are from the N(0, σ2) distribution.
The results are reported in Figure B.2. As expected, the power of the procedure
based on DPm

m increases as σ deviates further away from one. In contrast to the
first experiment however, the rejection percentages (resp. mean detection delays)
increase (resp. decrease) as the number of evaluation points p increases. Notice that
the improvement as p increases from 5 to 10 appears to be rather small.

As a final experiment, we considered a change in the contemporary distribu-
tion of independent observations that keeps the expectation and the variance con-
stant. To estimate the rejection percentages, we generated 1000 samples of size
n = m + 5000 with m = 800 such that observations up to position m + k with
k ∈ {0, 500, 1000, 2000} are from the scaled Student t distribution with 3 degrees of
freedom (where the scaling is performed so that the variance is equal to one) while
observations after position m + k are from the scaled Student t distribution with
ν ∈ J3, 10K degrees of freedom. The results are reported in Figure B.3. As expected,
the power of the procedure based on DPm

m increases as ν increases. Furthermore, as
in the previous experiment, the rejection percentages (resp. mean detection delays)
are larger (resp. smaller) when p ∈ {5, 10}. Somehow surprisingly however, the
results seem slightly better when p = 5.
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Figure B.2: Rejection percentages of H0 in (4.1) and corresponding mean detection
delays for the procedure based on DPm

m with p ∈ {2, 5, 10} estimated from 1000
random samples of size n = m + 5000 with m = 800 such that observations up to
position m+ k with k ∈ {0, 500, 1000, 2000} are from the standard normal distribu-
tion while observations after position m+ k are for the N(0, σ2) distribution.
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Figure B.3: Rejection percentages of H0 in (4.1) and corresponding mean detection
delays for the procedure based on DPm

m with p ∈ {2, 5, 10} estimated from 1000
random samples of size n = m + 5000 with m = 800 such that observations up to
positionm+k with k ∈ {0, 500, 1000, 2000} are from the scaled Student t distribution
with ν = 3 degrees of freedom while observations after position m+ k are from the
scaled Student t distribution with ν ∈ J3, 10K degrees of freedom.
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Table B.4: Percentages of rejection of H0 in (4.1) for the procedure based on DPm
m

considered in Section 4.3.2 with r ∈ {3, 4} and κ ∈ {1.5, 2, 3}. The rejection percent-
ages are computed from 1000 bivariate samples of size n = m+5000 generated from
the time series model (B.16) with β = 0.3 and C the bivariate Gumbel–Hougaard
copula with a Kendall’s tau of τ ∈ {0, 0.3, 0.6, 0.9}. The column p̄ reports the aver-
age number of grid points retained by the point selection procedure.

κ = 1.5 κ = 2 κ = 3

r = 3 r = 4 r = 3 r = 4 r = 3 r = 4

m τ p̄ DPm
m p̄ DPm

m p̄ DPm
m p̄ DPm

m p̄ DPm
m p̄ DPm

m

400 0.00 8.9 9.1 15.4 14.8 9.0 10.4 15.9 18.4 9.0 10.4 16.0 21.6
0.30 8.6 7.4 14.3 13.2 8.9 8.4 15.3 16.6 9.0 9.4 15.9 20.5
0.60 7.0 7.7 10.7 10.0 7.1 8.0 11.7 11.3 7.7 8.1 13.4 13.6
0.90 3.0 4.0 5.8 3.7 3.4 3.6 7.8 4.6 5.9 4.5 9.8 12.9

800 0.00 9.0 4.5 15.9 6.6 9.0 4.7 16.0 7.6 9.0 4.7 16.0 7.6
0.30 8.7 4.6 14.5 3.7 9.0 4.9 15.6 4.9 9.0 5.0 16.0 5.6
0.60 7.0 3.6 10.3 4.4 7.0 3.7 11.9 3.5 7.8 3.5 13.8 5.9
0.90 3.0 2.1 5.2 1.8 3.2 2.2 8.4 3.1 6.3 3.0 10.0 7.5

1600 0.00 9.0 2.2 16.0 2.7 9.0 2.2 16.0 2.7 9.0 2.2 16.0 2.7
0.30 8.9 1.8 14.7 2.8 9.0 2.2 15.8 2.6 9.0 2.2 16.0 2.7
0.60 7.0 1.2 10.1 1.1 7.0 1.2 12.0 1.1 7.6 1.3 14.0 1.8
0.90 3.0 1.2 4.9 1.3 3.0 1.3 8.8 2.0 6.5 0.9 10.0 3.3

B.5.3 Multivariate experiments for the procedure based on
DPm

m under the null

Given d ∈ {2, 3} and a d-dimensional copula C, we used a multivariate AR(1) model
to generate potentially serially dependent observations under H0 in (4.1). Let Ui,
i ∈ J−100, nK, be a d-dimensional i.i.d. sample from a copula C. Then, set ϵi =
(Φ−1(U [1]

i ), . . . ,Φ−1(U [d]

i )), where Φ is the d.f. of the standard normal distribution,
and X−100 = ϵ−100. Finally, for any j ∈ J1, dK and i ∈ J−99, nK, compute recursively

X [j]

i = βX [j]

i−1 + ϵ[j]i . (B.16)

Recall that, when d > 1, the evaluation points of the monitoring procedure based
on DPm

m are chosen from the learning sample using the point selection procedure
described in Section 4.3.2. To evaluate the behavior of the procedure when d = 2
with r ∈ {3, 4} and κ ∈ {1.5, 2, 3} under the null, in a first experiment, we computed
its rejection percentages from 1000 bivariate samples of size n = m+5000 generated
from the time series model (B.16) with β = 0.3 and C the bivariate Gumbel–
Hougaard copula with a Kendall’s tau of τ ∈ {0, 0.33, 0.66}. The empirical levels
are reported in the columns DPm

m of Table B.4. The columns p̄ report the average
number of grid points retained by the point selection procedure of Section 4.3.2. As
one can see, reassuringly, the empirical levels improve in all settings as m increases.
Unsurprisingly, they are higher for r = 4 than for r = 3 since a larger value of r
tends to result in a larger number of selected points p and thus in a more difficult
estimation of the underlying long run covariance matrix. Also unsurprisingly, the
number of selected points p tends to increase as κ increases and to decrease as τ
increases, that is, as the cross-sectional dependence in the underlying time series
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Table B.5: Percentages of rejection of H0 in (4.1) for the procedure based on DPm
m

considered in Section 4.3.2 with r ∈ {2, 3} and κ ∈ {1.5, 2, 3}. The rejection per-
centages are computed from 1000 trivariate samples of size n = m+5000 generated
from the time series model (B.16) with β = 0.3 and C the trivariate Clayton copula
whose bivariate margins have a Kendall’s tau of τ ∈ {0, 0.3, 0.6, 0.9}. The column p̄
reports the average number of grid points retained by the point selection procedure.

κ = 1.5 κ = 2 κ = 3

r = 2 r = 3 r = 2 r = 3 r = 2 r = 3

m τ p̄ DPm
m p̄ DPm

m p̄ DPm
m p̄ DPm

m p̄ DPm
m p̄ DPm

m

400 0.00 7.6 12.5 20.8 32.0 7.9 14.6 24.1 43.6 8.0 16.0 26.0 55.6
0.30 7.4 10.4 18.3 22.4 7.8 12.2 21.4 33.7 8.0 15.4 24.0 49.2
0.60 6.5 6.5 14.6 18.4 7.5 10.9 15.4 22.3 8.0 16.5 16.5 25.4
0.90 2.0 3.9 6.4 4.4 2.0 3.8 8.5 6.7 3.2 3.4 11.2 14.9

800 0.00 7.9 5.6 24.1 11.7 8.0 6.6 26.3 18.1 8.0 6.8 26.9 22.6
0.30 7.6 4.1 19.9 9.8 8.0 5.7 23.1 14.3 8.0 6.1 25.6 19.8
0.60 6.7 2.8 15.0 7.8 7.9 5.2 15.3 9.1 8.0 6.7 16.5 8.8
0.90 2.0 2.7 6.6 3.0 2.0 2.7 9.2 4.7 2.5 1.9 12.2 6.7

1600 0.00 8.0 2.4 26.2 3.8 8.0 2.4 27.0 5.7 8.0 2.4 27.0 6.0
0.30 7.8 1.9 20.7 2.5 8.0 2.6 24.3 4.2 8.0 2.6 26.4 6.3
0.60 6.9 1.0 15.0 2.2 8.0 1.8 15.1 2.3 8.0 2.2 16.2 2.4
0.90 2.0 1.6 6.8 1.4 2.0 1.6 9.5 2.3 2.1 1.4 13.0 4.3

changes from independence to stronger positive association.

We additionally considered a trivariate version of the previous experiment under
the null based on the Clayton copula. The results, reported in Table B.5, are
qualitatively the same.

B.5.4 Multivariate experiments for the procedure based on
DPm

m under alternatives

In a last series of bivariate and trivariate experiments, we investigated the power of
the procedure based on DPm

m .

We first estimated its rejection percentages and corresponding mean detection
delays for r ∈ {3, 4} and κ = 1.5 from 1000 samples of size n = m + 5000 with
m = 800 generated from the time series model (B.16) with β = 0.3 and C the
bivariate Frank copula with a Kendall’s tau of τ = 0.5 such that, for each sample,
a positive offset of δ was added to the first component of all bivariate observations
after position m+ k. The results are represented in Figure B.4. As one can see, the
value of r ∈ {3, 4} has hardly any influence on the power or on the mean detection
delay.

We next considered a similar experiment where the change affects only the first
margin which changes from the scaled Student t with 3 degrees of freedom to the
scaled Student t distribution with ν ∈ J3, 10K degrees of freedom. The copula (the
bivariate Frank with a Kendall’s tau of 0.5) and the second margin (the Student
t with ν = 3 degrees of freedom) remain constant. The results are displayed in
Figure B.5. As one can see, using r = 4 rather than r = 3 leads to a slightly more
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Figure B.4: Rejection percentages of H0 in (4.1) and corresponding mean detection
delays for the procedure based on DPm

m with r ∈ {3, 4} and κ = 1.5 estimated from
1000 bivariate samples of size n = m+ 5000 with m = 800 generated from the time
series model (B.16) with β = 0.3 and C the bivariate Frank copula with a Kendall’s
tau of 0.5 such that, for each sample, a positive offset of δ was added to the first
component of all bivariate observations after position m + k. The average number
of selected points is approximately 7 for r = 3 and 10.9 for r = 4.

powerful procedure which detects the change faster on average.

In a third experiment, we focused on the effect of a change of the dependence
parameter of the copula in the case of serially independent data. Before the change,
observations are generated from the bivariate Normal copula with a Kendall’s tau
of 0.5, while after the change they come from the bivariate Normal copula with a
Kendall’s tau of τ ∈ {0.1, . . . , 0.9}. The rejection percentages and corresponding
mean detection delays are represented in Figure B.6. As in the previous experiment,
the results for r = 4 are slightly better than for r = 3.

In a fourth bivariate experiment, we considered the situation where the copula
changes while the strength of association measured in terms of Kendall’s tau re-
mains constant. Specifically, before the change, observations are generated from the
bivariate Clayton copula with a Kendall’s tau of 0.5 (which is lower tail dependent),
while after the change they arise from the bivariate Gumbel–Hougaard copula with
a Kendall’s tau of 0.5 (which is upper tail dependent). The results are reported
Table B.6. The procedure with r = 4 is again slightly more powerful and detects
the change faster than the procedure with r = 3.

We concluded our multivariate simulations under alternatives by considering
trivariate versions of the previous bivariate experiments. We used r = 3 and κ = 1.5.
The results are reported in Figure B.7 and Table B.7 and are qualitatively the
same as in the bivariate case. Notice however the rather low estimated rejection
percentages for the trivariate version of the second bivariate experiment reported in
the second row of graphs of Figure B.7.
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Figure B.5: Rejection percentages of H0 in (4.1) and corresponding mean detection
delays for the procedure based on DPm

m with r ∈ {3, 4} and κ = 1.5 estimated
from 1000 bivariate random samples of size n = m + 5000 with m = 800 such that
observations up to position m+k are from a d.f. whose copula is the bivariate Frank
with a Kendall’s tau of 0.5 and whose margins are scaled Student t with ν = 3
degrees of freedom, while observations after position m+ k are still from a d.f. with
the same copula and same second margin but with first margin the scaled Student
t with ν ∈ J3, 10K degrees of freedom. The average number of selected points is
approximately 7 for r = 3 and 10.6 for r = 4.

Table B.6: Percentages of rejection of H0 in (4.1) for the procedure based on DPm
m

considered in Section 4.3.2 with r ∈ {3, 4} and κ = 1.5. The rejection percentages
are computed from 1000 bivariate samples of size n = m+ 5000 with m = 800 such
that, up to time m + k, observations come from a bivariate Clayton copula with
a Kendall’s tau of 0.5, while observations after time m + k are generated from a
Gumbel–Hougaard with a Kendall’s tau of 0.5. The abreviation “m.d.d.” stands for
“mean detection delay”.

r = 3 r = 4

k p̄ DPm
m m.d.d. p̄ DPm

m m.d.d.

0 6.8 72.3 1063.9 10.7 74.4 1007.7
500 6.8 92.9 967.9 10.8 94.8 936.4

1000 6.8 99.0 990.1 10.7 98.9 905.6
2000 6.9 99.8 1002.3 10.7 99.8 965.1
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Figure B.6: Rejection percentages of H0 in (4.1) and corresponding mean detection
delays for the procedure based on DPm

m with r ∈ {3, 4} and κ = 1.5 estimated
from 1000 bivariate random samples of size n = m + 5000 with m = 800 such
that observations up to position m+ k are from the bivariate normal copula with a
Kendall’s tau of 0.5 while observations after position m + k are from the bivariate
normal copula with a Kendall’s tau of τ ∈ {0.1, . . . , 0.9}. The average number of
selected points is approximately 7 for r = 3 and 11.8 for r = 4.

Table B.7: Percentages of rejection of H0 in (4.1) for the procedure based on DPm
m

considered in Section 4.3.2 with r = 3 and κ = 1.5. The rejection percentages
are computed from 1000 trivariate samples of size n = m + 5000 with m = 800
such that, up to time m + k, observations come from a trivariate Clayton copula
whose bivariate margins have a Kendall’s tau of 0.5, while observations after time
m+k are generated from a Gumbel–Hougaard copula whose bivariate margins have
a Kendall’s tau of 0.5.

k p̄ DPm
m

0 15.3 95.2
500 15.2 99.8

1000 15.2 100.0
2000 15.2 100.0
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Figure B.7: Rejection percentages of H0 in (4.1) for the procedure based on DPm
m in

the trivariate case with r = 3 and κ = 1.5. The graphs in the first, second and third
row correspond to experiments which are the trivariate analogs of those reported
in Figures B.4, B.5 and B.6, respectively. The corresponding average numbers of
selected points are 17.7, 17.3, and 18.3, respectively.
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