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Résumé: Les mécanismes biologiques qui sous-
tendent les symptômes des maladies psychia-
triques sont encore mal compris à de nom-
breux égards. Une hypothèse qui justifierait
la difficulté des chercheurs à identifier des
marqueurs biologiques associés spécifiquement
avec les troubles schizophrènes, bipolaires ou
autistique serait qu’il existe une hétérogénéité
neurobiologique importante au sein de cha-
cune de ses maladies, qui rend plus diffi-
cile l’analyse de ces affections. Dans cette
thèse, notre objectif est de développer des
techniques d’apprentissage statistique automa-
tique pour stratifier les maladies psychiatriques
en sous-groupes ou en spectre de dimensions
indépendantes sur la base de marqueurs bi-
ologiques objectifs acquis à l’aide de technique
d’imagerie IRM neuroanatomique. Dans un
premier temps, nous nous sommes concentrés
sur le développement de méthodes de regroupe-
ment («clustering») visant à stratifier une mal-
adie en sous-groupes homogènes. Un obstacle
majeur fût d’observer que la prédominance de
marqueurs neuroanatomiques sous-tendus par
des facteurs de variabilité «généraux» (age,
sexe, site d’acquisition, ethnicité) rendait diffi-
cile l’identification de marqueurs pathologiques
distincts (associé à des échelles cliniques telles
que la paranoïa, l’anxiété, ou la dépression par
exemple). Notre première contribution fût donc
de développer un algorithme linéaire de dé-
couverte de sous-groupes: UCSL qui se base
uniquement sur des facteurs de variabilité ex-
istant spécifiquement et uniquement dans la
population malade et non dans la population
saine. Afin d’étendre ce travail à des algo-
rithmes d’analyse profond non-linéaire, poten-
tiellement plus puissant, susceptibles de recon-
naître des signatures pathologiques plus com-
plexes, nous avons étendu l’algorithme UCSL à
un algorithme de Deep Learning intitulé Deep
UCSL. Deep UCSL est capable d’extraire di-

rectement des caractéristiques directement dans
l’image IRM anatomique et démontre des ca-
pacités de généralisation à d’autres domaines
d’imagerie médicale (pathologies de l’œil et des
poumons). Puis, afin d’illustrer l’utilité de ces
méthodes de découverte de sous-groupes, nous
avons utilisé la méthode linéaire UCSL dans une
cohorte de personnes atteintes de schizophrénie
pour identifier plusieurs sous-types et analyser
leur pertinence clinique. Une autre ligne de
recherche intéressante consiste à estimer les
facteurs génératifs latents distincts et inter-
prétables qui sous-tendent l’hétérogénéité neu-
robiologique propre à la maladie psychiatrique.
Ainsi, nous nous sommes donc intéressés à une
classe de méthodes d’apprentissage de représen-
tations pathologiques (qui capture des motifs
de variabilité qui n’existent que dans la mal-
adie) intitulée «l’analyse contrastante». Ce
champ de l’apprentissage statistique vise à sé-
parer les facteurs de variabilité «communs» et
«cibles», étant donné un ensemble de données
«source» et un ensemble de données «cible».
Dans notre cas, l’objectif serait d’identifier d’un
côté la projection permettant d’identifier les mo-
tifs de variabilité sains et de l’autre côté la pro-
jection permettant d’identifier les «signatures
pathologiques» qui n’existe que dans la classe
des malades et non dans la classe des gens sains.
Nous avons développé une méthode d’auto-
encodeur variationnelle: SepVAE, qui contribue
à des méthodes concurrentes via l’ajout de deux
fonctions de coût à minimiser.. Enfin, nous
avons développé une nouvelle méthode d’analyse
contrastante: SepCLR, qui étend le cadre des
méthodes d’Analyse Contrastive à une autre
classe de méthodes prometteuse d’apprentissage
de représentations: l’apprentissage par max-
imisation d’information mutuelle. Nous avons
validé ces deux contributions méthodologiques
sur des ensembles de données de vision, médi-
caux et de neuroimagerie.
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Abstract: The biological mechanisms that un-
derlie the symptoms of psychiatric diseases, such
as schizophrenia, bipolar, or autistic disorders,
are still poorly understood in many regards.
One of the main reasons is the neurobiolog-
ical heterogeneity associated with these dis-
eases. Furthermore, healthy subjects usually
share common but irrelevant factors of varia-
tion with the patients, such as age, sex, ac-
quisition site, and ethnicity. This hampers the
identification of clear and interpretable biolog-
ical markers associated with these diseases. In
this thesis, our goal is to develop machine learn-
ing techniques to automatically stratify psychi-
atric diseases into homogeneous subgroups or
to automatically identify the pathological la-
tent distinct and interpretable generative fac-
tors, based on objective biological markers ac-
quired through neuroanatomical MRI imaging
techniques. At first, this thesis focused on de-
veloping clustering methods to stratify a disor-
der into homogeneous subgroups. Our first con-
tribution was a linear subgroup discovery algo-
rithm, called UCSL (Unsupervised Clustering
driven by Supervised Learning), which identi-
fies subgroups that stem only from the patho-
logical variability specific to the disorder while
disregarding the common variability shared with
the healthy population. As a second contribu-
tion, this was then extended with a non-linear
deep features extractor, potentially more pow-
erful in recognizing complex pathological signa-
tures. This new deep learning method entitled
Deep UCSL, can directly extract features from
anatomical MRI images, showed state-of-the-art
results in neuro-psychiatric subgroup identifica-
tion, and demonstrated generalization capabili-
ties to other medical imaging domains (eye and
lung pathologies). Ultimately, to illustrate the
usefulness of such Subgroup Discovery methods,
the linear method UCSL was leveraged to iden-

tify subtypes in a cohort of individuals with
schizophrenia and to analyze their clinical rel-
evance.
Another line of research investigated in this
thesis consisted of estimating the latent distinct
and interpretable generative factors that under-
pin the neurobiological heterogeneity proper to
the psychiatric disorder. To address this objec-
tive, this thesis investigated a class of represen-
tation learning methods that enable separating
pathological patterns from healthy patterns of
variability: contrastive analysis methods. These
methods do not require assuming the existence
of homogeneous subgroups. This field of sta-
tistical learning aims at separating ”common”
and ”target” variability factors given a ”source”
dataset and a ”target” dataset. In our case, the
goal is to identify, on the one hand, the projec-
tion that allows identifying healthy variability
patterns and, on the other hand, the projection
that allows identifying ”pathological signatures”
that exist only in the class of patients and not in
the class of healthy people. A contrastive vari-
ational autoencoder method entitled SepVAE
was developed and contributed to competing
methods in two ways: by adding a classification
task in the pathological space and by adding
a cost function based on mutual information
to minimize information redundancy between
the common space and the pathological space.
Eventually, to provide a rich methodological
perspective, a novel contrastive analysis strat-
egy was developed. This method extends the
framework of contrastive analysis methods to
another promising class of representation learn-
ing methods: mutual information maximization
learning. These methodological contributions
were then validated on vision, medical, and
neuroimaging datasets.
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1.1 Contexte et objectifs

Lors des dernières décennies, la recherche en psychiatrie a été sujette à des investissements et des
efforts de la part de la communauté scientifique. Cet intérêt est justifié par le besoin de mieux
diagnostiquer et comprendre les maladies psychiatriques. Selon l’organisation mondiale de la
santé (OMS), en 2019, environ 970 millions d’individus dans le monde souffraient d’une maladie
mentale, la dépression et l’anxiéte étant parmis les affections les plus courantes. Ces affections
sont d’une part catastrophiques pour les individus concernés mais également pour la société
dans laquelle ils vivent puisqu’elles représentent un coût non-négligeables pour la communauté
comme le prouve une étude de l’URC-Eco pour la fondation FondaMental 1 (2018).

1.1.1 Diagnostic et classification des maladies psychiatriques

Dans la routine psychiatrique actuelle, diagnostiquer une maladie psychiatrique s’effectue sur
la base de méthodes d’évaluations psychométriques, cognitives, ou encore comportementaux,
via des questionnaires, entretiens ou observations menés par le cliniciens ou reportés par le
patient, ou ses proches. Généralement, ses évaluations sont mises en parrallèle avec un système
de classification comme le DSM-5, la dernière version du Manuel du Diagnostic des Maladies
Psychiatriques [69]. Cependant, de récents travaux ont démontré que cette manière de diag-
nostiquer produisait des résultats variables, qui dépendent du clinicien, de son choix de de
méthodes d’observations (comportementale, cognitive, ou encore émotionelle), ou de selon si la
méthode choisie est menée par le clinicien, le patient, ou ses proches [302, 187]. Par ailleurs, la
classification des maladies mentales et plus généralement leur étiologie est encore aujourd’hui
régulièrement remise en question régulièrement.

1.1.2 Comprendre les maladies psychiatriques en observant le cerveau

Afin de mieux comprendre les maladies psychiatriques et de redéfinir de manière plus objec-
tive et concrète leur étiologie, plusieurs initiatives comme celle de Thomas R. Insel, and Remi
Quirion en 2005 [133] ont appelé à considérer la psychiatrie comme une discipline de neuro-
sciences, dont la compréhension doit être alimentée par des observations du cerveau. Cette
idée permettrait potentiellement d’identifier des lésions ou des marqueurs biologiques dans le
cerveau associés avec une ou plusieurs maladies psychiatriques et de guider le développement
de nouveaux traitements pharmaceutiques [1, 2, 96, 135, 304]. Par exemple, plusieurs travaux

1https://www.fondation-fondamental.org/

14

https://www.fondation-fondamental.org/


ont motivé la recherche de sous-groupes de malades sous-tendus par des lésions objectives et
associés à des symptômes distincts mais potentiellement intersectables [89, 57]. Ces contribu-
tions sont de grands pas en avant afin de simplifier et raffiner l’étiologie psychiatrique à l’aide
d’observations biologiques.
Pour observer des lésions potentielles, plusieurs modalités d’acquisitions se distinguent. Parmis
celles-ci, nous pouvons lister le génotypage, des techniques d’identifications de molécules, l’EEG
(éléctro-encéphalographie), l’imagerie PET (Positron Emission Tomographie), l’imagerie IRM
neuro-anatomique (sMRI) ou encore l’imerie IRM fonctionelle (fMRI). Parmis toutes ces modal-
ités, nous déciderons d’étudier l’imagerie neuro-anatomique car c’est une technique d’acquisition
non-invasive, moins bruité que d’autres techniques comme l’IRM fonctionelle ou l’EEG. Par
ailleurs, l’IRM neuro-anatomique permet d’observer directement le résultat des interactions
entre les facteurs génétiques et les facteurs de stress environnementaux, ce qui n’est pas le cas
des techniques de génotypage.

1.2 Dépasser le paradigme de la classification cas / contrôle

1.2.1 Prédire le diagnostic individuellement avec l’apprentissage ma-

chine

L’espoir de trouver des marqueurs neuro-anatomiques reproductibles et robustes est motivé
par de nombreux travaux de recherche qui ont pu identifier des motifs de déviations mor-
phologiques dans plusieurs maladies psychiatriques tel que la schizophrénie, la bipolarité, ou
encore l’autisme, en comparant à des groupes de contrôles sains, [138, 177, 141, 255, 244, 163,
126, 282, 114, 198, 120, 121, 172, 54, 204, 235, 290, 80, 81]. Bien que ces études suggèrent des
marqueurs neuro-anatomiques pour les maladies psychiatriques, elles échouent à respecter les
critères qui permettent d’en faire des bio-marqueurs de pronostic ou de diagnostic. Cette limita-
tion vient du fait que ces bio-marqueurs sont prédictifs à l’échelle de la comparaison statistique
groupe-à-groupe, mais qu’ils ne sont pas satisfaisant pour la prédiction de diagnostic à l’échelle
individuelle comme l’explique Bzdok et al. [37] en 2017.
Afin de développer des méthodes statistiques performantes à l’échelle individuelle, de nom-
breuses recherches se sont tournés vers les techniques de Machine Learning qui, après s’être
entraîné à prédire correctement un statut clinique à partir de données (d’imagerie par exem-
ple), peuvent extrapoler et généraliser à de nouvelles entrées individuelles. Néanmoins, bien
que ces méthodes soient performantes, elles échouent tout de même à obtenir des scores de
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précision satisfaisants sur des données indépendantes d’évaluation. Cela est justifié par le fait
que, généralement, ces méthodes restent entraînées dans un paradigme de classification binaire
cas/contrôle.

1.2.2 Stratifier l’hétérogénité au sein des maladies psychiatriques

En effet, comme pour les symptômes, les marqueurs biologiques associés spécifiquement avec les
troubles schizophrènes, bipolaires et autistiques pourraient être potentiellement très hétérogènes,
ce qui rendrait plus difficile l’analyse statistique de ces affections dans un paradigme de com-
paraison cas/contrôle. Pour cette raison, de nombreux travaux visent à développer des tech-
niques d’apprentissage statistique automatique pour stratifier les maladies psychiatriques en
sous-groupes ou en spectre de dimensions indépendantes sur la base de marqueurs biologiques
objectifs acquis à l’aide de l’imagerie IRM anatomique.
Pour analyser la variabilité au sein des maladies psychiatriques, de nombreux travaux ont noté
un obstacle majeur: la prédominance de marqueurs sous-tendus par des facteurs de variabilité
«normaux» (age, sexe, site d’acquisition, ethnicité) rend difficile l’identification de marqueurs
pathologiques distincts (associé à des échelles cliniques telles que la paranoïa, l’anxiété, ou la
dépression par exemple). Ainsi, pour surmonter ce problème, des techniques pour ignorer ces
facteurs, ou ajuster l’estimation de sous-groupes ou d’un espace de dimensions pathologiques
par rapport à ces facteurs ont émergé. Parmis, ces techniques, se trouvent des techniques de
résidualisation, de modèles normatifs, qui sont des méthodes de pré-traitement pour ajuster
les données d’entrées par rapport à des facteurs de variabilité connus. Il existe aussi des
techniques de découverte de sous-groupes ou encore de dimensions pathologiques latentes (des
motifs de variabilité dans les données d’entrée qui n’existent que dans la population malade).
Ces techniques visent à estimer les facteurs latents statistiques (sous formes de sous-groupes
ou de dimensions) qui sous-tendraient l’hétérogénéité neuroanatomiques propre à la population
malade, en contrastant avec les facteurs de variabilité qui existent dans la population saine. Ces
techniques sont complémentaires à celles de résidualisation et de modèles normatifs et seront
celles qui nous intéresserons tout au long du manuscript. Les objectifs de cette thèse peuvent
se diviser en deux contributions distinctes:

1. la recherche et le développement d’une méthode linéaire et d’une méthode de réseau
de neurones profonds capables d’identifier des sous-groupes de malades à partir d’une
variabilité qui serait propre à la cohorte pathologique. En effet, de précédents travaux
ont montré que des méthodes de regroupements simples estimés sur une cohorte malade
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ou saine avaient tendance à discriminer selon une variabilité "générale", ou "commune",
c-à-d qui existe dans la population saine et dans la population malade. De récents travaux
ont proposé des méthodes linéaires pour la découverte de sous-groupes [279, 280, 127] mais
requiert plusieurs hypothèses majeures à propos de la topologie des données pathologiques
et de la linéarité des lésions pathologiques. En développant un cadre statistique général,
permettant de développer un méthode linéaire et profonde pour la découverte de sous-
groupe, cette thèse donne de nouvelles méthodologies pour stratifer des maladies mentales
(et pas que) tout en ignorant les facteurs de variabilité généraux comme le vieillisement
dans les applications neuropsychiatrique par exemple. Nous avons ensuite investigué
notre méthode de découverte de sous-groupe sur une problématique concrète: "Quels
sont les sous-types biologiques que nous pouvons identifier dans une cohorte de patients
atteints de troubles schizophrènes ?". "Quelles observations pouvons-nous faire et quelles
corrélations pouvons-nous identifier entre les bio-marqueurs et les échelles cliniques et
cognitives ?". "Les sous-groupes sont-ils homogènes et bien cloisonnés ?" Cette analyse
approfondie des troubles schizophrènes nous donne un aperçu de la variabilité biologique
qui existe au sein de ce trouble mental et des hypothèses à faire lors du développement
de méthodes d’analyse de l’hétérogénéité neuro-anatomique de la schizophrénie.

2. la recherche, le développement et l’évaluation d’une méthodolgie robuste et reproductible
d’Analyse Contrastive en neuroimagerie pour la recherche en psychiatrie. Ces techniques
visent à estimer les facteurs latents statistiques (sous formes de sous-groupes ou de di-
mensions) qui sous-tendraient l’hétérogénéité neuroanatomiques propre à la population
malade, en contrastant avec les facteurs de variabilité qui existent dans la population
saine. Ainsi, elles ont le potentiel de séparer les motifs de variabilités neuroanatomiques
que les patients malades partagent avec les contrôles sains des motifs de variabilité neu-
roanatomque qui sont uniquement spécifiques à la pathologie. Elles permettent également
de trouver des dimensions pathologiques qui organisent la population malade en un spec-
tre continu, plutôt qu’en sous-groupes homogènes. Dans cette thèse, nous développons des
méthodologies pour ce genre d’applications avec diverses techniques d’apprentissage de la
représentation, telles que les autoencodeur variationnels et les méthodes d’apprentissage
de représentation contrastive. A l’aide de la technique de l’encodeur variationnel, nous
avons mis en évidence deux fonctions de coûts importante pour ce genre de méthode: 1)
une fonction de classification non-linéaire dans l’espace salient, 2) une fonction de minimi-
sation de l’information mutuelle entre l’espace de représentation commun et pathologique.
Puis, nous avons validé notre méthode sur plusieurs jeux de données, dont deux de neu-
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ropsychiatrie acquis à l’aide d’IRM neuro-anatomique. En ce qui concerne la technique
d’apprentissage de représentation contrastives, nous avons formulé un nouvel objectif à
maximiser à l’aide de l’information mutuelle. Puis, nous avons estimé les quantités statis-
tiques d’intérêt à l’aide de fonctions de coût inspitré de l’apprentissage de représentation
contrastif. Nous avons ensuite validé notre méthode sur plusieurs jeux de données, dont
un jeu de neuroimagerie en psychiatrie.

1.3 Développement de méthodes de découvertes de sous-

groupes

Dans un premier temps, nous nous sommes concentrés sur le développement de méthodes de
regroupement («clustering») visant à stratifier une maladie en sous-groupes homogènes. Un
obstacle majeur à cette tâche fût d’observer que la prédominance de marqueurs sous-tendus par
des facteurs de variabilité «normaux» (age, sexe, site d’acquisition, ethnicité) rendait difficile
l’identification de marqueurs pathologiques distincts (associé à des échelles cliniques telles que
la paranoïa, l’anxiété, ou la dépression par exemple). Notre première contribution fût donc de
développer un algorithme linéaire de découverte de sous-groupes: UCSL qui se base uniquement
sur des facteurs de variabilité existant spécifiquement et uniquement dans la population malade
et non dans la population saine.
Dans le paradigme de la découverte de sous-types [20, 279, 280], les cliniciens (par exemple :
les dermatologues) s’intéressent à découvrir des sous-groupes interprétables (par exemple : les
mélanomes) au sein d’un groupe de patients partageant des motifs spécifiques à la maladie
(par exemple : texture, couleur, asymétrie). Ce sous-domaine de l’analyse des données doit
être différencié du regroupement (clustering), qui vise à découvrir des groupes d’échantillons
sémantiquement similaires de manière non supervisée. Dans un contexte médical, les regroupe-
ments peuvent être guidés par des motifs sains (par exemple : couleur de la peau, présence de
cheveux, modèles de vieillissement) communs aux sujets sains et aux patients. Ces facteurs
sont donc sans pertinence à des fins de stratification.

1.3.1 UCSL: regroupement non-supervisé piloté par un signal super-

visé pour la découverte de sous-groupe.

Pour exposer spécifiquement les sources pathologiques de variabilité, nous avons développé une
méthode linéaire intitulée UCSL : Regroupement non supervisé guidé par l’apprentissage su-
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pervisé (https://github.com/neurospin-projects/2021_rlouiset_ucsl/). UCSL effectue
un regroupement dans un espace qui capture uniquement la variabilité utile pour la tâche de
classification. Ainsi, les sous-types identifiés ne dépendent pas de la variabilité générale, telle
que l’âge, le sexe ou le site d’acquisition. Mais plutôt de la variabilité spécifique, c’est-à-dire
propre à la population pathologique. D’un point de vue mathématique, cette méthode peut être
définie comme une tâche de regroupement guidée par l’apprentissage supervisé pour découvrir
des sous-groupes en ligne avec la prédiction supervisée. Concernant le schéma d’optimisation,
nous proposons un cadre d’ensemble général d’attente-maximisation. Nous proposons de con-
struire un modèle non linéaire en fusionnant plusieurs estimateurs linéaires, un par cluster.
Chaque hyperplan est estimé de manière à discriminer - ou prédire - correctement un seul clus-
ter. De plus, pour effectuer une analyse de cluster dans un espace plus adapté, nous avons
également proposé un algorithme de réduction de dimension qui projette les données sur un es-
pace orthonormal pertinent pour la tâche supervisée. Plus de détails méthodologiques peuvent
être trouvés dans la publication originale [179], acceptée à la conférence ECML-PKDD 2021.

1.3.2 Deep UCSL: extension de l’algorithme UCSL à l’aide un en-

codeur non-linéaire.

Afin d’étendre ce travail à des algorithmes d’analyse profond non-linéaire, potentiellement
plus puissant, susceptibles de reconnaître des signatures pathologiques plus complexes, nous
avons étendu l’algorithme UCSL à un algorithme de Deep Learning intitulé Deep UCSL. Deep
UCSL est capable d’extraire directement des caractéristiques directement dans l’image IRM
anatomique et démontre des capacités de généralisation à d’autres domaines d’imagerie médi-
cale (pathologies de l’œil et des poumons).

Comme dans UCSL, nous sommes partis du constat que les méthodes de regroupement pro-
fond [40, 41, 169] donnent généralement des regroupements basés sur les facteurs de variation
généraux (communs avec les sujets sains). Nous avons proposé de réutiliser le cadre math-
ématique et le processus d’optimisation d’UCSL (Expectation-Maximisation). Cependant,
l’utilisation d’un extracteur de caractéristiques profondes plutôt que de modèles linéaires a
complexifié le nombre de solutions possibles auxquelles nous pourrions converger (minima lo-
caux). Nous avons donc jugé nécessaire d’ajouter plusieurs régularisations pour négliger la
variabilité saine dans le processus d’entraînement. Ce travail méthodologique a été soumie au
journal IEEE TMI au début de l’année 2024.

19

https://github.com/neurospin-projects/2021_rlouiset_ucsl/


1.3.3 Identification de deux sous-groupes neuroanatomiques de trou-

bles schizophrènes

Étant donné ces algorithmes, nous avons utilisé la méthode linéaire UCSL pour tenter d’identifier
plusieurs sous-groupes dans une cohorte de personnes atteintes de trouble de la schizophrénie
[292]. Les caractéristiques anatomiques ont été obtenues puis utilisées grâce au pipeline de
traitement des IRM neuro-anatomiques CAT12 [98, 99]. De manière similaire à [45], deux
sous-types de schizophrénie ont été identifiés, représentant respectivement 87 % et 13 % de la
population schizophrène. Ces sous-types étaient répartis de manière égale en termes de distri-
bution d’âge et de répartition des sexes. Le sous-groupe A fût determiné comme étant plus
atrophié que le sous-groupe B en terme de quantité de matière grise. Des analyses statistiques
ont été réalisées par rapport aux composantes, chaque composante étant associée à un sous-
groupe. La composante A montre un déclin cognitif global similaire, et la composante B a révélé
un déclin dans selon deux scores parmis neuf. Concernant les échelles cliniques psychiatriques,
nous n’avons pas noté de différences entre les deux sous-groupes, si ce n’est que le cluster B
était moins affecté sur l’échelle des symptômes généraux.

Il fût noté que les sous-groupes identifiés n’étaient pas nécessairement associés à des échelles
cliniques psychatriques indépendantes. Cette limite est intéressante à noter car elle permet de
réfléchir à des perspectives de travail qui permettraient d’intégrer ces propriétés, notamment
l’identification de facteurs neurobiologiques sous-jacents distincts et interprétables, corrélant
avec des échelles cliniques psychatriques indépendantes.

1.4 Développement et validation de méthodes d’analyse

contrastante

Dans un second temps, nous nous sommes intéressés à des méthodes d’apprentissage de représen-
tations ne nécessitant pas nécessairement de supposer l’existence de sous-groupes homogènes:
l’analyse contrastante. Ce champ de l’apprentissage statistique vise à séparer les facteurs de
variabilité «communs» et «cibles», étant donné un ensemble de données «source» et un ensem-
ble de données «cibles». Dans notre cas, l’objectif serait d’identifier d’un côté la projection
permettant d’identifier les motifs de variabilité sains et de l’autre côté la projection permettant
d’identifier les «signatures pathologiques» qui n’existe que dans la classe des malades et non
dans la classe des gens sains.
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1.4.1 SepVAE: un auto-encodeur variationelle contrastant pour sé-

parer les motifs de variabilité pathologiques et sains.

Les autoencodeurs variationnels (VAE) [150] ont le potentiel d’identifier des motifs de vari-
abilité au sein d’un ensemble d’images unique. Cependant, séparer les facteurs de variabilité
communs des facteurs pathologiques reste difficile. Pour cette raison, des VAE d’analyse con-
trastive ont été développés pour identifier les motifs uniques à un ensemble de données cible
(TG) (c’est-à-dire : pathologique) par rapport à un ensemble de données de fond (BG) (c’est-
à-dire : population en bonne santé). Inspirés par des idées précédentes, nous avons conçu un
modèle qui est un cas particulier d’Auto-Encodeur Variationnel. Il comporte deux encodeurs
(commun et saillant) et un seul décodeur. Des expériences sur des maladies mentales telles que
la schizophrénie et le trouble autistique montrent que les vecteurs saillants de SepVAE prédis-
ent mieux les variables spécifiques à la maladie (c’est-à-dire : SAPS (échelle des symptômes
positifs), SANS (échelle des symptômes négatifs), ADOS (calendrier du diagnostic de l’autisme
d’observation), ADI (calendrier du diagnostic de l’autisme par interview) et diagnostic). En
revanche, les vecteurs saillants ne prédisent pas bien les variables démographiques : l’âge, le
sexe et le site d’acquisition. Notre travail a été accepté à l’atelier ICML 2023 - Interpretable
Machine Learning in Healthcare (IMLH 2023), à Hawaï, Honolulu. Ce travail a également été
accepté à OHBM (Organization of Human Brain Mapping) 2023, à Montréal, Canada.

1.4.2 SepCLR: une méthode d’apprentissage contrastif de représen-

tations pour séparer les motifs de variabilité pathologiques et

sains.

L’Analyse Contrastive (CA) est un domaine de l’Apprentissage de Représentations qui vise à
séparer les facteurs de variation communs entre un ensemble de données de fond (BG) (c’est-
à-dire, des sujets sains) et un ensemble de données cible (TG) (c’est-à-dire, des patients) des
facteurs propres à l’ensemble de données cible. Malgré sa pertinence, peu de modèles ont
démontré des performances compétitives dans l’apprentissage de représentations sémantique-
ment expressives et dans la qualité de génération. En effet, actuellement, les méthodes de CA
sont ou des modèles linéaires [327, 100], ou des Auto-Encodeurs Variationnels [3, 299, 328].
D’autres classes de méthodes génératives ou d’apprentissage de représentations existent et ont
surpassé les méthodes linéaires et variationnelles en terme de performance dont de nombreux
cas d’applications de traitemetnt d’images naturelles ou médicales. Notamment, les méthodes
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génératives (GANs, modèles de diffusion) et les méthodes d’apprentissage de représentations
(modèles d’apprentissage contrastif) ont produit des performances prometteuses récemment.
Pour cette raison, nous avons proposé de tirer parti de la capacité de l’Apprentissage Contrastif
(CL) à apprendre des représentations sémantiquement expressives pour effectuer une Analyse
Contrastive (CA). Tout d’abord, nous avons détaillé un nouveau cadre théorique d’Information
Mutuelle inspiré de [293] qui permet de récupérer et d’étendre des pertes contrastives récentes
(InfoNCE [50], SupCon [153]). Ensuite, nous avons utilisé ce cadre pour développer une méth-
ode d’Analyse Contrastive en distillant des hypothèses pertinentes. Enfin, nous avons intro-
duit une nouvelle stratégie de minimisation de l’Information Mutuelle pour éviter les fuites
d’informations entre les distributions communes et saillantes. Nous avons estimé les quantités
statistiques d’intérêt à l’aide de fonctions de coût inspitré de l’apprentissage de représentation
contrastif, en utilisant notamment des techniques d’Estimation de Densité par Noyaux. Nous
avons ensuite validé notre méthode sur plusieurs jeux de données, dont un jeu de neuroimagerie
en psychiatrie. Ce travail a été accepté à ICLR (International Conference on Learning Rep-
resentations) 2024 - Viennes, Autriche, et au colloque IABM (Colloque Français d’Intelligence
Artificielle en Imagerie Biomédicale) 2024 à Grenoble.
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Chapter 2

Introduction & background

Summary of the chapter. This chapter describes the clinical heterogeneity of psychiatric
diseases and emphasizes the need for biological insights to better understand these conditions.
Despite efforts in recent years to unveil the biological underpinnings of psychiatric symptoms,
significant inter-individual variability sources have been observed in the neuroanatomical read-
outs of both healthy and pathological cohorts, and have complicated the identification of con-
sistent and interpretable biological markers.
This chapter describes several machine learning techniques aiming at parsing psychiatric dis-
order heterogeneity based on neuroimaging observations. Foremost, it details methods that
mitigate the impact of known inter-individual sources of variability by adjusting observations
per confounding factors (such as age, sex, or scanner type for ex.). Then, it motivates and
describes methods that model the pathological variability with subgroups, or latent factors by
contrasting with the general population.
Eventually, several arguments are given to motivate the development of Deep Learning methods
for parsing the neuroanatomical heterogeneity in mental disorders.
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Over the past century, research in psychiatric care has gained significant efforts from the
scientific community. At the core of this interest lies the need for better recognition and
characterization of mental disorders. Mental disorders encompass various conditions that are
manifested by anomalous deviations in terms of behavior and cognitive patterns often associ-
ated with substantial distress or impairment for the concerned individual. Importantly, being
diagnosed with a mental disorder induces an increased risk of developing further mental disor-
ders as well as other comorbidity [205]. As a non-exhaustive list, comorbidity associated with a
mental disorder encompasses premature death, suicide, substance abuse, and chronic physical
illness.
According to a recent survey [306] led by the World Health Organization (WHO), in 2019,
approximately 970 million people worldwide (1 in every 8 individuals) were experiencing a
mental disorder, with depressive and anxiety disorders being prevalent compared to the other
disorders. Besides affecting people’s well-being, these conditions represent a non-neglectable
cost for the community. In 2018, a URC-Eco study for the FondaMental Foundation 1 revealed
that mental illnesses cost France approximately 160 billion euros. As a reason, about 12 million
people were diagnosed with affection, such as severe depression, bipolar and schizophrenia
disorders, obsessive-compulsive disorders, and anxiety disorders, among other mental health
conditions.

2.1 Mental disorders organized as clinical categories

In the modern psychiatric routine, the diagnosis of mental disorders is conducted through inter-
views, questionnaires, and observations. In this setup, psychiatrists play a key role in perform-
ing assessments, utilizing various methods, such as cognitive and psychometric examinations
[187]. These assessments aim to determine the presence, severity, frequency, and duration of
diverse psychiatric symptoms. The assessment questionnaires are generally based on classifica-
tion systems such as the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) [69],
or International Classification of Diseases (ICD-11) [131] where a spectrum of symptoms are
described and associated with typical mental health disorders. This approach has led to the or-
ganization of disorders into different clinical categories, citing: Attention-Deficit/Hyperactivity
Disorder (ADHD), Autism Spectrum Disorder (ASD), schizophrenia (SZ), Bipolar Disorder
(BD), and Major Depressive Disorders (MDD). These screening questionnaires and interviews
permit clinicians to evaluate the psycho-pathological state of the patients and permit deter-

1https://www.fondation-fondamental.org/
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mining a diagnosis and then a therapy or a treatment regime. However, multiple assessment
tools exist, and using different assessment tools by different clinicians can potentially introduce
variability and inconsistency in determining the diagnosis [302]. Besides, depending on the
clinician’s favored choice of assessment tool(s), or depending on whether the questionnaires or
interviews are self-rated, parents-rated, or clinician-led, biases toward behavioral, emotional,
cognitive, or physical manifestation can pollute the diagnosis assessment [187]. Therefore, the
diagnosis is likely to be influenced by individual standpoints, potentially leading to variations
in the categorization of the disorder.

2.2 The clinical heterogeneity of mental disorders

While the assessment of a psychiatric disorder diagnosis appears like a non-completely trivial
task, the development of a precise nosology of psychiatric diseases is also a challenging task.
From Kraepelin in 1883, the pioneer in this domain, until recently, psychiatric nosology has
undergone successive modifications and has been marked by multiple refinements of the dis-
order’s etiology. The latest version of the DSM (Diagnostic and Statistical Manual of Mental
Disorders), the DSM 5-TR [70], released in 2022, provides a classification system that sepa-
rates mental illnesses into diagnostic categories based on descriptions of symptoms and the
course of the illness. Likewise, the latest International Classification of Disease-11 (ICD-11)
[131], released in 2019, describes diagnostic categories similar to the DSM-5-TR. These succes-
sive modifications demonstrate how difficult, yet central, it is for psychiatrist experts to define
mental disorder distinct classes.
Despite these successive refinements of their etiology, mental disorders such as Major Depres-
sive Disorder, Bipolar Disorder, Post-Traumatic Stress Disorder (PTSD), and Schizophrenia
still exhibit significant heterogeneity in their symptom presentations. For instance, depres-
sion is clinically diagnosed when a patient reports a minimum of five out of nine symptoms.
This criterion potentially results in 256 distinct symptom combinations of alterations in mood,
appetite, sleep, energy, and cognition, that meet the criteria for MDD, highlighting the mul-
tifaceted nature of depression [34], as also demonstrated in [216]. Similarly, Bipolar Disorder,
which already generally admits two or three subtypes according to common knowledge, ex-
hibits a potential diversity of symptom combinations in DSM-IV-TR, revealing a humongous
number of possibilities, such as over 5 billion combinations [170]. PTSD, as outlined in DSM-
5, presents over 600,000 ways in which symptoms can be combined, emphasizing the intricate
variations within this disorder [137, 314]. In the case of schizophrenia, recognized for its clinical

26



heterogeneity [277], attempts have been made to stratify different behavioral phenotypes into
subgroups [86], but this task remains challenging and unanswered.

2.3 Redefinition of disorders based on neurobiological roots

of dimensional constructs

These observations raise concerns about the reliability of a nosology based on the assessment
and the observation of exterior cognitive, behavioral, emotional, and physical symptoms. In
2005, Thomas R. Insel and Remi Quirion encouraged researchers to consider psychiatry as a
clinical neuroscience discipline driven by brain-based observations [133]. Overall, several lines
of research have provided considerable efforts to identify physiological biomarkers to better
understand the underlying etiologies, aid the diagnosis assessment of mental health disorders,
and guide the discovery of pharmacological intervention [1, 2, 96, 135, 304]. For example, several
works motivated the seek for consistent disorder subtypes underpinned by objective and tangible
biomarkers and associated with distinct sets of co-occurring symptoms [89, 57]. Another line
of works, such as initiatives like the National Institute of Mental Health’s Research Domain
Criteria (RDoC) [134] and the European ROAdmap for MEntal Health Research (ROAMER)
[250] encourage researchers to link symptom dimensions with biological systems to find “new
ways of classifying psychiatric diseases based on multiple dimensions of biology and behavior”.
These contributions aim to simplify and refine the psychiatric etiology based on brain-based
biological readouts.
Searching for diagnostic biomarkers. Overall, the pursuit of biomarkers in psychiatry is
driven by the critical need for objective measures to confirm the diagnosis and prognosis and
improve treatment decisions in mental disorders [1, 2, 96, 135, 304]. In 2016, the FDA-NIH
Biomarker Working Group [88] converged to a general definition of a ”biomarker” as “a defined
characteristic that is measured as an indicator of normal biological processes, pathogenic pro-
cesses or responses to an exposure or intervention”, a definition also introduced in [92], and
[232]. Moreover, to guarantee the use of a biomarker in a clinical case, a relevant biomarker
measure should be reproducible, consistent, coherently, and reliably evolve as the clinical con-
dition progresses. This definition delineates the frame of what a biomarker is and paves the
way toward the seeking of a characteristic that helps improve outcomes with a medical ap-
proach tailored to each individual [185, 188]. The US Food and Drug Administration (FDA)
categorizes biomarkers based on their applications and how they could impact the clinical care
of mental disorders. In practice, biomarkers can be classified into several categories [38, 96],
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among which stand prognostic biomarkers, which anticipates the potential development of an
illness for preventive interventions; predictive biomarkers, used to identify individuals that are
likely to respond positively to a given therapeutic strategy, diagnostic biomarkers, which aims
to detect or confirm the presence of a disease or medical condition. From a research stance,
the latter category of biomarkers is particularly interesting as it could help identify subtypes
of diseases as explained in [96]. Thus, the development of precision medicine could benefit
from discovering diagnostic biomarkers to detect patients with a disease and refine its etiology.
Identifying a precise etiology in psychiatry is critical since numerous diseases exhibit subtypes
with distinct prognoses or responses to treatment. Therefore, diagnostic biomarkers could po-
tentially be used in mental health clinical care as prognostic markers for early detection or as
predictive markers to anticipate the individual response when exposed to a particular thera-
peutic strategy, as in depression, for example, [262].
The choice of a suitable modality. Numerous acquisition modalities emerge as good can-
didates to identify biomarkers, including various neuroimaging techniques [193, 165, 212], ge-
nomics technologies [83], molecule identification techniques [2], etc. However, to date, no
measures have proven sufficiently reliable, valid, and useful to be adopted clinically. Never-
theless, neuroimaging emerges as a robust and promising modality for identifying biomark-
ers [1, 135, 304] to delineate psychiatric biotypes. These techniques, such as magnetic reso-
nance imaging (MRI), electroencephalography (EEG), positron emission tomography (PET),
and functional MRI (fMRI), provide a non-invasive means of investigating the results of the
complex interactions between genetic predispositions and environmental factors [231, 111] via
the brain’s structural and functional changes. The information captured by these acquisition
strategies allows researchers to discern subtle yet significant patterns, providing a basis for iden-
tifying distinct biotypes (”biologically distinctive phenotypes”) within psychiatric populations
to help understand the heterogeneous nature of psychiatric disorders. This thesis focuses on
structural MRIs when parsing the biological heterogeneity of psychiatric disorder with statisti-
cal methods.

2.4 Individual-level prediction with Machine Learning (ML)

Group-level statistical methods are limited. Across recent years, numerous group-level
statistical studies have been conducted to identify deviating neuroimaging patterns in brain
disorders, including schizophrenia (SZ) [141, 255, 244, 163, 126, 282], Bipolar Disorder (BD)
[114, 198, 120, 121, 172, 54], Autism Spectrum Disorder [204, 235, 290, 80, 81], Attention-
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Deficit/Hyperactivity Disorder (ADHD) [143, 85, 283, 58], Major Depressive Disorders [177],
and mild cognitive impairment (MCI), Alzheimer’s disease (AD) [138]. These works have
pointed out structural discriminative features (i.e., grey matter atrophy) within patient groups
compared to healthy cohorts. While these studies produce insights into identifying disease
biomarkers, they generally fail to respect the clinical diagnosis or prognosis criteria in practice.
This limitation arises because many findings, though statistically significant at the group level,
generally fail at the individual level.

Individual-level inference with Machine Learning. Machine learning emerges as a com-
pelling solution to produce individual-level predictions from brain imaging data [14, 195].
Whereas traditional statistical approaches focus on identifying statistically significant effects
at the group level, machine learning models are statistical methods trained to predict specific
clinical statuses (such as diagnosis, prognosis, or other phenotype variables) from individual
entries. Once trained, these models can extrapolate and generalize predictions for novel entries,
providing a personalized prediction based on the brain imaging features. This distinction is im-
portant, as explained in Bzdok et al. [37], which emphasizes that statistical significance at the
group level does not necessarily enable a high prediction accuracy in independent data:“machine
learning and classical statistics do not judge data on the same aspects of evidence: an observed
effect assessed to be statistically significant by a p-value does not in all cases yield a high pre-
diction accuracy in new, independent data, and vice versa”.

Training Machine Learning methods beyond the case-control paradigm. However,
even though Machine Learning classification methods can produce individual-level predictions,
they can still fail when they are trained in a case/control paradigm [14]. As a reason, Marquand
et al [195] explain "the case-control paradigm induces an artificial symmetry such that both
cases and controls are assumed to be well-defined entities", even though psychiatric disorders
are diagnosed based on overlapping and heterogeneous symptoms that overlap between disor-
ders. Several strategies can be employed to reduce the neurobiological heterogeneity of clinical
cohorts.
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2.5 Parsing disorder heterogeneity with Machine Learning

(ML)

To date, several families of Machine Learning methods to parse heterogeneity in mental dis-
orders have emerged. Among these methods, neural basis component analysis and clustering
methods emerged in the early 2010s.

Clustering methods. Data-driven clustering methods have emerged from 2010 to 2015 to
stratify clinical groups based on neuroanatomical or neuro-functional measures in attention-
deficit/hyperactivity disorder [143, 85, 283, 58], mood disorders [162, 284], and schizophrenia
[32, 36]. These approaches are useful to stratify the disorder population. However, experiments
have shown that mere clustering or components-identification algorithms applied to patients
or healthy controls usually discriminate between young and older subjects or male and female
subjects. This result suggests that the neuroanatomical variability is dominated by general,
non-pathological factors such as aging [?]. Varol et al. [280] also identify this concern: ”Such
an approach aims to cluster brain anatomies instead of pathological patterns. Thus, it has
the potential risk of estimating clusters that reflect normal inter-individual variability, some of
which is due to sex, age, and other confounds, instead of highlighting disorder heterogeneity”.
To investigate the heterogeneity of mental disorders, the researcher’s efforts focused on parsing
pathological variability of the neuro-anatomical features, i.e. patterns of variability that only
exist in the pathological population. To this end, several methods have been proposed to
disregard general variability factors.

Component discovery methods. Another line of research, entitled "component discovery
methods" in this thesis, assumes that mental disorders are underpinned by a mixture of neural
bases (i.e. dimensions) associated with clinical dimensions. Several methods have attempted to
discover pathological components via latent factor analysis [143, 242, 218]. These approaches
are aligned with the dimensional approach (i.e., assuming a continuous spectrum across brain
disorders, potentially sharing common dimensions) as promoted by the RDoC initiative [134].
In practice, these works may still seek to discover disorder subtypes from the estimated low-
dimensional factors [143, 242, 218].
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2.6 Identification of the disorder’s specific variability by

adjusting for confounding factors or covariates

Residualization adjusted methods: Residualization of phenotypes aims to remove (or ad-
just for) confounding factors or covariates [289, 94, 95, 103]. These approaches are particularly
relevant to produce neuro-anatomical features that are not driven by aging, sex, or acquisition
site for example. However, they generally require the practitioner to assume that the con-
founding factors are either linearly related to the input features or additive offsets. Besides,
residualization-adjusted features may remain rooted in non-specific factors which may under-
mine their relevancy. This issue was observed in 2021 by Iftimovici et al. [?], where pathologi-
cal subtypes discovered based on covariate-adjusted neuroanatomical features (residualization-
adjusted on age, sex, acquisition site, medication, and substance use) remained driven by a
physiological variability that also exists in the healthy cohort. This result suggests that irrel-
evant confounding factors may not be strictly limited to known covariates such as age, sex,
or acquisition sites as other unknown irrelevant general variability factors may come into play
to undermine the relevancy of the heterogeneity analysis. Aside from unknown confounding
factors, other known covariates can be considered (e.g., education, ethnicity, urbanicity, etc.),
but unavailable for training or inference.

Normative modeling: Normative modeling [195, 194, 196] provides a statistical framework
to establish connections between demographic or clinical characteristics and quantitative bio-
logical measures, offering estimates of variation centiles within the population as demonstrated
in Fig 2.1. A conceptual overview of normative modeling is provided in Fig 2.1.

Normative modeling closely relates to the use of growth charts in pediatric medicine. In the
computational psychiatry application, the chosen measure (e.g. height or weight) is generally
a quantitative brain-based biological readout (e.g. local volume of gray matter volume of mul-
tiple Regions of Interest). The adjustment covariable is generally chosen among demographic
variables (e.g. age, or sex for ex.). Once estimated on a healthy cohort, a normative model
estimates the normative distribution of a biological readout given demographic attributes. Ul-
timately, the estimated model can be applied to a target cohort (e.g.. pathological clinical
cohort) to observe biological deviations given known covariates (i.e. given age and sex) at the
individual level (red figure). Mathematically, normative models can be described by a set of
functions (y = f(x)) that predicts the neurobiological response variables y from the clinical
covariates x.
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This approach enables examining and quantifying individual differences and emerges as a rele-
vant candidate to parse individual-level heterogeneity across cohorts. By delivering statistical
inferences at the individual level, normative modeling quantifies the extent to which each partic-
ipant deviates from the normative pattern. A common use for normative modeling in psychiatry

Figure 2.1: Scheme of the concepts behind Normative Modeling from the foundation article of
Marquand et al. [194]. A. Normative modeling provides statistical inference at the level of each
subject with respect to the normative model. B. 4 steps training and evaluation process of a
normative model. C. Mathematically, normative models can be described by a set of functions
(y = f(x)) that predicts the neurobiological response variables y (e.g.: cortical thickness
measures, local gray matter volumes, gyrification indices...) from the clinical covariates x
(e.g.: age, gender, cognition...). D. Alternatively, the neurobiological response variables can
be considered as the covariate and vice-versa, which establish a link with brain age estimation
methods.

32



[303, 317] utilizes age, sex, and/or acquisition site as covariates to predict a quantitative biolog-
ical readout (e.g., local gray matter volume per region-of-interest). This setup enables learning
a healthy normative pattern with respect to age and sex covariates. Then, applied to a clini-
cal cohort, it enables determining where patients lie on the healthy continuum given their age
and sex. In this application, normative modeling is particularly relevant to compute deviation
indices for each input feature (e.g., local gray matter volume of each region-of-interest). These
deviation indices (or z-scores) can be further used as features to analyze the inter-individual
heterogeneity that is not driven by the covariates, i.e., age and sex. Such deviation indices
can further serve as features for the identification of clusters (subtypes) or components (dimen-
sions), which makes normative modeling a complementary approach to these techniques.
As for residualisation methods, normative models require the practitioner to have the covari-
ate information both during training and inference. Interestingly, normative models do not
require a particular assumption on the form of the dependency (linear dependency for ex.)
between the covariates and the biological readouts (i.e. the input features). However, while
normative modeling successfully reduces the general variability variance, it does not reduce the
dimensionality of input features. Eventually, normative models are complementary to other
analysis tools. Given covariate-adjusted deviation scores, various analysis tools can be used
(such as component identification or subgroup discovery methods) to parse the heterogeneity
of a population (by estimating components, physiological biotypes, or disorder subtypes, for
example).

2.7 Identification of the disorder’s specific variability by

contrasting with the general population

2.7.1 Discovering disorder subgroups by contrasting with the general

population

As an alternative to disregarding confounding covariates that are not necessarily known or
available, methods to produce dimensions or clusters by contrasting with the general population
have emerged. As an example, Subgroup Discovery methods [127, 279, 280, 300, 79, 91], extend
clustering methods as they consist of finding consistent subgroups (and directions) within a
population or a class of objects that are also relevant to a certain supervised upstream task.
This means that the discovery of subtypes should not be fully unsupervised, as in standard
clustering, but it should also be driven by a supervised task. For example, in clinical research,
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it is essential to identify subtypes of patients with a given disorder (red icons in Fig. 2.2).
The problem is that the general variability (that stems from age or sex) is observed in both
healthy controls (grey icons in Fig. 2.2) and disorder patients. Therefore it will probably drive
the clustering of patients toward a non-specific solution (second plot in Fig. 2.2). Adding
a supervised task (healthy controls vs patients) can be used to find direction(s) (horizontal
arrows) that discards non-specific variability to emphasize more disorder-related differences
(right plot in Fig. 2.2).

Figure 2.2: Subtype discovery in clinical research. Given a healthy population (black) and a
pathological population (red) (left plot), several homogeneous subgroups are assumed to exist
within the disorder. However, the general variability (which stems from age or sex, for ex.)
is observed in both healthy controls and patients. Therefore, a naive clustering of patients
often yields a non-specific solution (middle plot). Nevertheless, the use of a classification task
(healthy controls vs patients) helps to find direction(s) (horizontal arrow) that discards non-
specific variability to emphasize more disorder-related differences (right plot).

In 2016, Dong et al. [62, 127] proposed CHIMERA, a subtype (and dimension) discovery algo-
rithm driven by supervised classification between healthy and pathological samples. It assumes
that the pathological clusters can be modeled as a convex combination of linear transformations
from the reference set of healthy subjects to the patient distribution, where each transforma-
tion corresponds to one pathological subtype. disorder subgroups are assumed to have the same
variance. And the use of linear transformation enables providing pathological direction (or di-
mension) along with the disorder subgroups. However, this design choice is a strong assumption
and limits the discoverable patterns to linear transformations only.
In 2017, Varol et al [279, 280] proposed a general Machine Learning algorithm that alternates
between supervised learning and unsupervised cluster analysis where each step influences the
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other until it reaches a stable configuration. The algorithm simultaneously solves binary classi-
fication and intra-class clustering in a hybrid fashion thanks to a maximum margin framework.
The method discriminates healthy controls from pathological patients by optimizing the best
convex polytope that is formed by combining several linear hyperplanes. The clustering ability
is drawn by assigning patients to their best-discriminating hyperplane. Each cluster corre-
sponds to one face of the piece-wise linear polytope and heterogeneity is implicitly captured by
harnessing the classification boundary non-linearity. The efficiency of this method heavily relies
on the prior hypothesis that healthy samples lie inside the convex discrimination polyhedron.
This strong assumption may not hold for a given data set. Another hypothesis is that rele-
vant psychiatric subtypes are equally severely affected. This prior implies that clusters should
be along the classification boundary. Even though it may help circumvent general variability
issues, this strongly limits the method’s applicability to a specific variety of subgroups.

Figure 2.3: Scheme of HYDRA from the original contribution [280]. HYDRA parses the het-
erogeneity of the disorder dataset while classifying it from the healthy cohort. The healthy
class is represented by the gray squares, it is separated from the heterogeneous disorder class
denoted by red icons. (left) A Linear hyperplane separates the healthy class from a hetero-
geneous disorder population (two subtypes) by a small margin. (middle) HYDRA classifies
each cluster independently, which enables a more confident inference associated with a larger
margin. (right) The three subtypes model distinct deviations from the healthy population. A
different face of the piece-wise linear convex polytope captures each deviation. Solid green lines
correspond to the estimated discriminative polytope.

In 2020, Wen et al. [300] further used this algorithm to develop MAGIC: “Multi-scAle hetero-
Geneity analysis and Clustering” that builds onto HYDRA. MAGIC addresses a limitation of
both clustering and subgroup discovery linear machine learning methods. The authors argue
that these methods generally model, learn, or infer from data using user-defined features from
a standardized anatomical atlas, which limits the complexity and possibility of the discovered
patterns. To be able to capture multi-scale patterns when parsing the disorder heterogeneity,
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MAGIC [300] builds on HYDRA to derive clinically interpretable feature representations. To
do so, the authors exploit a double-cyclic optimization procedure to enable the identification of
inter-scale-consistent disorder subtypes. This work is interesting as it demonstrates the need
for models that can potentially identify complex multi-scale, potentially non-linear patterns.
However, such a method requires a complex optimization procedure with no convergence guar-
antees. Given its satisfactory results on case/control classification tasks, Deep Learning emerges
as a more general and consistent candidate than such methods to identify non-linear complex
biological patterns when parsing psychiatric disorder heterogeneity. Even though deep neural
networks still suffer from their lack of interpretability.

2.7.2 Identifying the latent pathological factors using supervised strat-

egy

In 2017, Drysdale et al. [71], used functional magnetic resonance imaging (fMRI) in a large
multisite dataset of 1,188 samples to discover two dimensions associated with depression and
anxiety in depression. The authors used Canonical Correlation Analysis (CCA) in a supervised
manner to define a low-dimensional representation of connectivity features that only relate to
the clinical traits. Interestingly, this approach is a hybrid approach between clinical supervi-
sion and latent structure discovery as encouraged in [89]. Differently from HYDRA [280], it
requires the supervision signal from distinct clinical traits of interest, i.e. anhedonia and anxi-
ety clinical scale measures to identify two distinct and interpretable dimensions, one per clinical
scale. Then, based on these two clinically supervised dimensions, the authors further estimated
depression biotypes defined by distinct patterns of dysfunctional connectivity. However, these
subtypes could not be further reproduced [66], suggesting that the connectivity heterogene-
ity in depression may be underpinned by a continuous spectrum rather than by homogeneous
subgroups.

2.7.3 Identifying the latent pathological factors using contrastive anal-

ysis with the general population

Similarly, in 2022, Aglinskas et al. [6] applied a deep learning dimension discovery method
to parse the heterogeneity of a cohort with autism disorder. The method they propose uses
Contrastive Analysis Variational Auto-Encoders (CA-VAE). This class of methods requires two
datasets, a healthy (or “background”) set of images, and a pathological (or “target”) set of images.
It aims at separating the latent generation factors of the images into two parts, the healthy (or
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“common”) latent space, which captures the patterns of variability that exist in both datasets,
and the pathological (or “salient”) latent space which captures the patterns of variability that
exist in the pathological dataset only. The Fig. 2.4 depicts a scheme of the method employed
in Aglinskas et al. [6]. In the original contribution, the authors show that their common
vectors correlate with shared demographic variables such as age, sex, and scanner type but not
with clinical scale measures. They also show that their salient vectors correlate with clinical
scale measures such as ADOS, DSM IV, and Vineland. This class of methods is particularly
relevant as it enables investigating the pathological factors of variability that drive the disorder
heterogeneity without being flooded with “general” patterns of variability that may also exist in
a healthy cohort. Indeed, the “general” patterns of variability appear irrelevant for parsing the
disorder’s heterogeneity. This kind of method does not require assuming that the heterogeneity
of the disorder stems from homogeneous subgroups. This thesis studies the potential of
these methods, their performances on several neuroimaging applications, and their
potential pitfalls and drawbacks.
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Figure 2.4: Scheme of CVAE, an instance of a Variational Autor-Encoder used for Contrastive
Analysis. Scheme taken from the original contribution ([6]). The Contrastive Variational Au-
toencoder separates autism-specific variations from variations shared with healthy participants.
The architecture employs a two-stream convolutional neural network built to disentangle shared
and disorder-specific features. Healthy images are reconstructed using shared features, while
disorder images are reconstructed using both shared and disorder-specific features.
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2.8 Toward non-linear deep learning methods

In the previous sections, various methods were detailed, linear, and deep, for parsing the het-
erogeneity within a pathological cohort. This section motivates the need for developing deep
learning methods for parsing the pathological heterogeneity.

2.8.1 Comparing deep learning and standard machine learning

Machine Learning methods appear promising in neuroimaging, as they can produce performant
individual-level predictions. Let us provide an overview of the capacity of various Machine
Learning methods trained to predict demographic variables and psychiatric disorders diagnosis
(in a simple case/control group classification paradigm). In Fig. 2.5, Benoit Dufumier (2022)
[76] compared the performances of supervised Deep Learning and linear and kernel Machine
Learning methods in the prediction of demographic variables and psychiatric disorder diagnosis
on multi-site datasets. For Machine Learning methods, linear models with l1 (Lasso) and
l1+l2 (ElasticNet) regularizations are evaluated, as well as kernel SVM with a Radial Basis
Function (RBF) kernel. Concerning Deep Learning methods, the convolutional architecture [5]
is compared with residual and dense architectures ResNet-18 and DenseNet-121 [73]. Both Deep
Learning (DL) and Standard Machine Learning (SML) algorithms are trained on whole-brain
Voxel-Base Morphometry [17] (VBM) preprocessed 3D neuro-anatomical MRIs and evaluated
on two different test sets: an internal test set (with the same acquisition sites as in the training
set) and an external test set (with different acquisition sites than the training set).
In Fig. 2.5, the authors observed that Machine Learning (Deep, Linear, and Kernel) models
perform similarly in the sex prediction tasks with training samples up to 9253 and a binary
AUC up to 95%. Also, the performances on the diagnosis prediction tasks are significantly dif-
ferent from the average random chance, with an AUC of 85% on SCZ vs. HC, 76% AUC on BD
vs. HC, and 65% AUC on ASD vs. HC on the internal test set. These results are particularly
relevant to developing this thesis’s motivations and objectives as they show to which extent
Machine Learning models can predict demographic variables and psychiatric diagnosis.

Deep Learning case/control classification fails to perform better than linear models.
Nevertheless, in Fig. 2.5’s results, the authors observed on heterogeneous classification setups
(psychiatric diseases classification setups) that Deep Learning models generally perform as well
as Linear or Kernel models, which suggests that they do not succeed in capturing additional
highly non-linear patterns. This can be explained by the presence of noise in the input data
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Figure 2.5: Overview of the performances of several Deep Convolutional Learning methods and
Linear Machine Learning methods on the prediction of demographic variables: Age and Sex,
and the prediction of common psychiatric disorders: HC/ASD (Healthy Controls vs Autism
Spectrum Disorders), HC/BD (HC vs Bipolar Disorder), and HC/SZ (HC vs Schizophrenia Dis-
order) given Voxel-Base Morphometry [17] (VBM) preprocessed 3D neuro-anatomical MRIs.
The internal validation and test sets for demographic variables comprise 662, and 655 sam-
ples, while the external test set comprises 640 samples. For psychiatric disorders, the internal
validation and test sets of the SZ cohort respectively comprise 118, and 116 samples, while
the external test set comprises 133 samples. The BD cohort’s internal validation and test sets
respectively comprise 107, and 103 samples, while the external test set comprises 131 samples.
The internal validation and test sets of the ASD cohort respectively comprise 188, and 184 sam-
ples, while the external test set comprises 207 samples. For demographic variables (age, and
sex), the author performed a 5-fold (resp. 3-fold) Monte Carlo Cross-Validation sub-sampling
procedure for Ntrain ∈ {100, 500} (resp. Ntrain ∈ {1000, 3000, 5000, 9253}. As for diagnosis clas-
sification tasks, each model is trained 3 times with different random initializations, and average
and standard deviations are reported. Mean Absolute Error (MAE) is the reference measure
for age prediction and Area Under the Curve (AUC) is for binary classification tasks. Credits
to Dufumier et al. [76].

[247] and by the existence of high inter-individual heterogeneity in neuroanatomical images
[189, 303, 317]. This assumption was notably formulated in 2020 by Schulz et al. [247, 248] who
wrote: “High levels of noise in neuroimaging data may effectively linearize decision boundaries,
potentially leaving little nonlinear structure for machine learning models to exploit”. This
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observation further motivates the need for more individual-level machine learning to parse the
heterogeneity of the disorder while disregarding high inter-individual general variability.

Deep Learning performances increase as training samples increase. In Fig. 2.5, on
the age regression task, the authors observed that Deep Learning models outperform Linear and
Kernel Machine Learning models as the number of training samples increases. This behavior
is promising, as it provides an encouraging result about the capacity of deep learning models
to be better predictive models than traditional linear and kernel methods as the number of
samples increases.

2.8.2 Leveraging large cohorts with transfer learning and deep neural

networks

The crucial result pinpointed above motivates the use and development of deep learning meth-
ods as increasingly large neuroimaging datasets become progressively available. Several inter-
national initiatives (SchizConnect [292], ABIDE [67, 68], ENIGMA) furnished endeavors to
retrospectively aggregate cohorts for each specific disorder. However, the considerable hetero-
geneity of these datasets still limits the potential of such initiatives.

Transfer Learning. A promising methodological perspective is to leverage large heteroge-
neous cohorts to enhance the performances of models tuned on more relevant but smaller
pathological cohorts. This goal can be addressed using transfer learning strategies. In princi-
ple, Transfer Learning [44, 33, 313] consists of pre-training of a deep model on a source domain
DS with a source task TS to produce a suitable representation to solve a target task TT on a tar-
get domain DT . As a source task, transfer learning strategies generally employ self-supervised
learning, as well as multi-task learning (e.g. age regression and sex classification). In the
context of transfer learning in neuroimaging, Dufumier et al. [77] proposed to learn a deep
encoder from the healthy brain dataset and re-use this encoder as a weight initialization to
better discriminate patients with brain disorders from healthy controls.
Recently, Edouard Duchesnay [72] has suggested two practical strategies for transferring deep
learning models from a big cohort to a small pathological cohort. These ideas are illustrated
in Fig. 2.6. In the upper part of the figure, step (1), a pre-training encoder Eu is trained in
either i) a self-supervised paradigm (e.g., by reconstructing the input with an auto-encoder or
by producing a perturbation-invariant latent space that classifies instances with a contrastive
learning method), or ii) performs multiple pretext tasks at the same time (e.g., sex classification
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Figure 2.6: Scheme depicting two strategies of Transfer Learning from large general variability
healthy cohorts to small pathological cohorts. In step (1), a model learns from a large het-
erogeneous cohort on a self-supervised task, such as a reconstruction task or a demographic
attributes supervised task. In step (2), the learned representation is transferred to a disorder-
specific cohort on either a classification task (left) or a contrastive analysis task (for ex.) (right).
It is generally assumed that features learned during pre-training will be re-used during fine-
tuning on the target task, either by enhancing the classification performance or by providing
a representation that captures the general variability, which is useful for a contrastive analysis
task (for ex.). Credits to [72].

and age regression). In the lower part of the figure, step (2), the pre-trained encoder is either
i) (left) fine-tuned to predict a pathological diagnosis (in general, the encoder is expected to
re-use already learned low-level features to generalize better on a low-data regime task), or ii)
(right) frozen while a second and independent disorder-specific encoder Es learns a latent space
zs that focuses on the patterns of variability that dominate the pathological cohort (e.g. with
Contrastive Analysis methods).

In Fig. 2.6, the lower left transfer learning strategy has been investigated in depth by Dufumier
Benoit [76]. The strategies he has developed rely on self-supervised learning techniques, from
the Contrastive Learning paradigm, and also relate to multi-task learning, since attributes, such
as age and sex, have been used as supervision signals in the training process [73]. After fine-
tuning, performance gains on the classification of several brain disorders (Schizophrenia, Bipolar
Disorder, Autism, and Alzheimer’s disease) have been observed when using these transfer learn-
ing strategies. These results justify and motivate the use of Deep Learning in neuroimaging
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data analysis, as deep representation encoders are particularly suited for Transfer Learning.
Nevertheless, the fine-tuning strategy employed by Dufumier merely remains a case/control
discrimination setup, which appears limited in the case of heterogeneous psychiatric disorders,
[14, 37, 195]. Still, these observations motivate the need for developing a deep learning
method for parsing the pathological heterogeneity, which could serve as an efficient
fine-tuning strategy.
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2.9 Thesis objectives and contributions

Identifying precise and subtle diagnostic signatures for psychiatric diseases relies on establishing
robust correlations between objective biomarkers and observable symptoms. This thesis focuses
on identifying neuroanatomical patterns extracted from structural T1w-MRI data. However,
understanding the complex latent mechanisms contributing to neuroanatomical variability in
psychiatric disorders is challenging due to inter-individual differences and intra-disorder het-
erogeneity. The primary objective of this Ph.D. project is to implement a neuroanatomical
biomarker-based method to parse the heterogeneity of mental disorders, aiming to uncover cor-
relations between disorder subtypes and symptoms or treatment responses. Related lines of
research have revealed that commonly used data-driven stratification algorithms often distin-
guish between young and older subjects, indicating a significant influence of inter-individual
non-specific factors such as age, sex, acquisition site, or other confounding factors in neu-
roanatomical variability. By developing novel machine learning methodologies, this thesis aims
to discern neuroanatomical patterns characterizing pathological biotypes or driving indepen-
dent variability factors within each psychiatric disorder. This approach aims at enhancing
our understanding of disorder mechanisms and provides novel insights into understanding the
neuroanatomical heterogeneity of each mental disorder.
In a nutshell, the research objectives in this thesis are:

1. Exploring deep and linear Subtype Discovery methods producing interpretable subgroups
within a group of patients that share disorder-specific patterns. Indeed, previous works
have shown that mere clustering algorithms applied to patients or healthy controls usually
discriminate between young and older subjects. Some other works [279, 280, 62, 127]
proposed subgroup discovery methods but required constraining assumptions about the
topology of the pathological population, the size of the subgroups, their pathological
severity, or the linearity of the pathological patterns. This thesis proposed novel linear
[179] and deep models (Deep UCSL, submitted at IEEE TMI) for subtype discovery.
These models aim to stratify each mental disorder while disregarding confounding factors
such as aging. The linear model was then applied to experimental datasets of patients
with schizophrenia to investigate potential neuro-anatomical biotypes of patients (paper
in preparation for a computational psychiatry research journal).

2. Exploring robust and reproducible Contrastive Analysis methodologies in neuroimaging
for psychiatric research. Indeed, Contrastive Analysis techniques can potentially separate
the neuro-anatomical patterns that patients share with healthy controls from those that
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are proper to the pathology. And allows for the finding of pathological dimensions that
organize the disorder population in a continuous spectrum, rather than in homogeneous
subgroups. In this thesis, methodologies have been developed for such methods, empow-
ered with various representation learning techniques, such as Variational Auto-Encoder
[180], and Contrastive Representation Learning methods [181]. Using the variational en-
coder technique, two important cost functions for this type of method were highlighted:
1) a non-linear classification cost function in the pathological representation space and 2)
a function to minimize mutual information between the common and pathological repre-
sentation spaces. Then, this method was validated on several datasets, including two from
neuropsychiatry acquired using neuro-anatomical MRI. Regarding the contrastive repre-
sentation learning technique, a novel objective to maximize using mutual information was
formulated. Then, statistical quantities of interest were estimated using cost functions in-
spired by contrastive representation learning. This method was then evaluated on several
datasets, including one in neuroimaging in psychiatry.

2.10 Thesis organization

Chapter 2. This chapter provides the context, motivation, methodological background, and
the thesis objectives. Additionaly, Chapter A of the Appendix, pinpoints several key points
required to understand this thesis, such as the data acquisition process, the pre-processing, the
features extraction methods, and the description of some relevant Machine Learning algorithms
used in this thesis.

Chapter 3. This chapter provides the thesis contributions in Subgroup Discovery:

1. Sec. 3.1 corresponds to the paper "UCSL: A Machine Learning Expectation-Maximization
Framework for Unsupervised Clustering Driven by Supervised Learning" [179], published
in the proceedings of ECML-PKDD 2021.

2. Sec. 3.2 corresponds to the paper "Deep UCSL: Unsupervised Discovery of Disease Sub-
types by Contrasting with Healthy Controls" submitted to the journal IEEE TMI in
February 2024.

3. Sec. 3.3 corresponds to an article entitled "The discovery of two schizophrenia biotypes
suggested by Machine Learning." in preparation for a computational psychiatry research
journal.
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Chapter 4. This chapter provides the thesis contributions in Contrastive Analysis:

1. Sec. 4.1 corresponds to the paper "SepVAE: A contrastive VAE to separate pathologi-
cal patterns from healthy ones." [180], accepted to ICML 2023 IMLH Workshop and in
rebuttal for MIDL 2024.

2. Sec. 4.2 corresponds to the paper "SepCLR: Separating common from salient patterns
with Contrastive Representation Learning." [181] published in the proceedings of ICLR
2024.

Chapter 5. This chapter concludes on how this thesis contributes to the actual state of
knowledge described in the literature and offers perspectives and openings about future works
and ideas to fulfill the objectives laid out and described by the scientific community.
In this manuscript, I propose the reader to browse each of my articles in chronological order.
Luckily, how my supervisors and I organized my Ph.D. project is suitable for stacking articles
because each paper naturally flows from the previous contribution by extending it, either with
applied or methodological works. Of note, Section 3.3 corresponds to an unpublished article
yet, but will eventually be submitted to a journal in computational psychiatry research.
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2.11 Publications

This PhD has led to several publications in peer-reviewed journals and international conferences.
Published papers:

1. Auriau, Pierre and Grigis, Antoine and Dufumier, Benoit and Louiset, Robin and Gori,
Pietro and Mangin, Jean-François and Duchesnay, Edouard, Supervised diagnosis
prediction from cortical sulci: toward the discovery of neurodevelopmental
biomarkers in mental disorders. under review. for IEEE International Symposium
on Biomedical Imaging 2024 (IEEE ISBI 2024).

2. Louiset, Robin and Gori, Pietro and Grigis, Antoine and Duchesnay, Edouard, SepCLR
- Separating common from salient patterns with Contrastive Representation
Learning. In International Conference on Learning Representations (ICLR 2024),
https://arxiv.org/abs/2402.11928.

3. Carton, Florence and Louiset, Robin and Gori, Pietro, Double InfoGAN for Con-
trastive Analysis. In Artificial Intelligence and Statistics (AISTATS 2024),
https://arxiv.org/abs/2401.17776.

4. Louiset, Robin and Gori, Pietro and Dufumier, Benoit and Grigis, Antoine and Duches-
nay, Edouard, A contrastive VAE to separate pathological patterns from healthy
ones., in Workshop on Interpretable ML in Healthcare at International Conference on Ma-
chine Learning (ICML 2023).
https: // arxiv. org/ abs/ 2307. 06206

5. Dufumier, Benoit and Carlo Alberto Barbano and Louiset, Robin and Grigis, Antoine
and Duchesnay, Edouard and Gori, Pietro, Integrating Prior Knowledge in Con-
trastive Learning with Kernel. in International Conference on Machine Learning
(ICML 2023),
https://arxiv.org/abs/2206.01646

6. Louiset, Robin and Gori, Pietro and Dufumier, Benoit and Houenou, Josselin and Grigis,
Antoine and Duchesnay, Edouard, UCSL: A Machine Learning Expectation-Maximization
Framework for Unsupervised Clustering Driven by Supervised Learning. in
European Conference on Machine Learning and Principles and Practices of Knowledge
Discovery in Data (ECML-PKDD 2021),
https://arxiv.org/abs/2107.01988
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Under review:

1. Louiset, Robin and Gori, Pietro and Dufumier, Benoit and Grigis, Antoine and Duch-
esnay, Edouard, Deep UCSL: Unsupervised Discovery of Disease Subtypes by
Contrasting with Healthy Controls., submitted to IEEE Transactions on Medical
Imaging (IEEE TMI).

2. Dufumier, Benoit and Gori, Pietro, and Victor, Julie and Louiset, Robin, and Mangin,
Jean-François, and Grigis, Antoine, and Duchesnay Edouard, “Deep Learning Improve-
ment over Standard Machine Learning in Anatomical Neuroimaging comes from Transfer
Learning”, submitted to Nature Machine Intelligence.

In preparation:

1. Louiset, Robin, and Iftimovici, Anton and Gori, Pietro and Grigis, Antoine and Duch-
esnay, Edouard, The discovery of two schizophrenia biotypes suggested by Ma-
chine Learning., in prep. for a journal in computational psychiatry research.
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Chapter 3

Subgroup identification in medical
imaging and neuroimaging

Chapter summary. This chapter focuses on subtype discovery methods that stratify diseases
into homogeneous subgroups while discriminating with healthy controls.
The first section described in this chapter is a linear subgroup discovery algorithm, called
UCSL (Unsupervised Clustering driven by Supervised Learning). This algorithm is based on a
general subgroup discovery statistical framework and enables identifying subgroups that stem
only from the pathological variability specific to the disorder while disregarding the common
variability shared with the healthy population. This algorithm is then validated on a synthetic
experiment, a controlled digit subgroups discovery task on MNIST, and a neuropsychiatric
subgroup discovery task.
The second section of the chapter introduces Deep UCSL, which extends UCSL with a non-
linear deep features extractor, potentially more powerful in recognizing complex pathological
signatures. This novel deep learning method can directly extract features from anatomical MRI
images, showed state-of-the-art results in neuro-psychiatric subgroup identification, and demon-
strated generalization capabilities to other medical imaging domains (eye and lung pathologies).
Eventually, to illustrate the usefulness of such Subgroup Discovery methods, the linear method
UCSL was leveraged to identify biological subtypes (”biotypes”) in a cohort of individuals
with schizophrenia, and correlations are computed to analyze the clinical relevance of the two
discovered subtypes.
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3.1 UCSL: an Unsupervised Clustering driven by Super-

vised Learning framework

3.1.1 Abstract

Subtype Discovery consists in finding interpretable and consistent sub-parts of a dataset, which
are also relevant to a certain supervised task. From a mathematical point of view, this can be
defined as a clustering task driven by supervised learning in order to uncover subgroups in line
with the supervised prediction. In this paper, we propose a general Expectation-Maximization
ensemble framework entitled UCSL (Unsupervised Clustering driven by Supervised Learning).
Our method is generic, it can integrate any clustering method and can be driven by both
binary classification and regression. We propose constructing a non-linear model by merging
multiple linear estimators, one per cluster. Each hyperplane is estimated so that it correctly
discriminates - or predicts - only one cluster. We use SVC or Logistic Regression for clas-
sification and SVR for regression. Furthermore, to perform cluster analysis within a more
suitable space, we also propose a dimension-reduction algorithm that projects the data onto
an orthonormal space relevant to the supervised task. We analyze our algorithm’s robust-
ness and generalization capability using synthetic and experimental datasets. In particular,
we validate its ability to identify suitable consistent sub-types by conducting a psychiatric
disorder cluster analysis with known ground-truth labels. The proposed method’s gain over
previous state-of-the-art techniques is about +1.9 points in terms of balanced accuracy. Fi-
nally, we make codes and examples available in a scikit-learn-compatible Python package:
https://github.com/neurospin-projects/2021_rlouiset_ucsl/

3.1.2 Introduction

Subtype discovery is the task of finding consistent subgroups within a population or a class
of objects that are also relevant to a certain supervised upstream task. This means that
the definition of homogeneity of subtypes should not be fully unsupervised, as in standard
clustering, but it should also be driven by a supervised task. For instance, when identifying
flowers, one may want to find different varieties or subtypes within each species. Standard
clustering algorithms are driven by features that explain most of the general variability, such as
the height or the thickness. Subtype identification aims at discovering subgroups describing the
specific heterogeneity within each flower species and not the general variability of flowers. To
disentangle these sources of variability, a supervised task can identify a more relevant feature
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Figure 3.1: Subtype discovery in clinical research.

space to drive the intra-species clustering problem. Depending on the domain, finding relevant
subgroups may turn out to be a relatively hard task. Indeed, most of the time, boundaries
between different patterns are fuzzy and may covariate with other factors. Hence, ensuring that
resulting predictions are not collapsed clusters or biased by an irrelevant confound factor is a
key step in the development of such analysis. For example, in clinical research, it is essential to
identify subtypes of patients with a given disorder (red dots in Fig. 3.1). The problem is that the
general variability (that stems from age or sex) is observed in both healthy controls (grey dots in
Fig. 3.1) and disorder patients. Therefore it will probably drive the clustering of patients toward
a non-specific solution (second plot in Fig. 3.1). Adding a supervised task (healthy controls vs
patients) can be used to find direction(s) (horizontal arrow Fig. 3.1) that discards non-specific
variability to emphasize more disorder-related differences (subtype discovery in Fig. 3.1). This
is a fundamental difference between unsupervised clustering analysis and subtype identification.

Subgroup identification is highly relevant in various fields such as in clinical research where
disorder subtype discovery can lead to better-personalized drug treatment and prognosis [307]
or to better anticipate at-risk profiles [296]. Particularly, given the extreme variability of cancer,
identifying subtypes enables the development of precision medicine [43, 307, 207, 197, 225]. In
psychiatry and neurology, different behavior, anatomical and physiological patterns point out
variants of mental disorders [194] such as for bipolar disorder [310], schizophrenia [127, 45],
autism, [316, 268], attention-deficit hyperactivity disorder [291], Alzheimer’s disease [90, 309,
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280, 300] or Parkinson’s disease [84]. In bioinformatics, DNA subfolds analysis is a key field
for the understanding of gene functions and regulations, cellular processes, and cell subtyping
[261]. In the field of data mining, crawling different consistent subgroups of written data enables
enhanced applications [229].

3.1.3 Related works

Early works [43, 84] proposed traditional clustering methods to find relevant subgroups for clin-
ical research in cancer and neurology. However, they were very sensitive to high-dimensional
data and noise, making them hardly reproducible [215, 225]. To overcome these limits, [261]
and [225] evaluated custom consensus methods to fuse multiple clustering estimates to obtain
more robust and reproducible results. Additionally, [261] also proposed to select the most im-
portant features to overcome the curse of dimensionality. Even if all these methods provide
relevant strategies to identify stable clusters in high-dimensional space, they do not allow the
identification of disease-specific subtypes when the dominant variability in patients corresponds
to the variability in the general population. To select disease-specific variability, recent contri-
butions propose hybrid approaches integrating a supervised task (patient vs. controls) to the
clustering problem. In [249], authors propose a hybrid method for disorder subtyping in preci-
sion medicine. Their implementation consists of training a Random Forest supervised classifier
(healthy vs. diseased) and then applying SHAP algorithm [183, 182] to get explanation values
from Random Forest classifiers. This yields promising results even though it is computationally
expensive, especially when the dataset size increases.
Differently, a wide range of Deep Learning methods propose to learn better representations via
deep encoders and adapt the clustering method on compressed latent space or directly within
the minimizing loss. In this case, encoders must be trained with at least one non-clustering loss,
to enhance the representations [243] and avoid collapsing clusters [308]. [40] proposes a Deep
Clustering framework that alternates between latent cluster estimation and likelihood maxi-
mization through pseudo-label classification. Yet, its training remains unstable and is designed
for large-scale datasets only. Prototypical Contrastive Learning [169], SeLA [16], SwAV [41]
propose contrastive learning frameworks that alternatively maximize 1- the mutual information
between the input samples and their latent representations and 2- the clustering estimation.
These works have proven to be very efficient and stable on large-scale datasets. They compress
inputs into denser and richer representations and successfully eliminate unnecessary noisy di-
mensions. Nevertheless, they still do not propose a representation aligned with the supervised
task at-hand. To ensure that resulting clusters identify relevant subgroups for the supervised
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task, one could first train for the supervised task and then run clustering on the latent space.
This would emphasize important features for the supervised task but it may also regress out
intra-class specific heterogeneity, hence the need of an iterative process where clustering and
classification tasks influence each other.
CHIMERA [127], proposes an Alzheimer’s subtype discovery algorithm driven by supervised
classification between healthy and pathological samples. It assumes that the pathological het-
erogeneity can be modeled as a set of linear transformations from the reference set of healthy
subjects to the patient distribution, where each transformation corresponds to one pathological
subtype. This is a strong a priori that limits its application to (healthy reference)/(pathological
case) only. [280, 300] propose an alternate algorithm between supervised learning and unsuper-
vised cluster analysis where each step influences the other until it reaches a stable configuration.
The algorithm simultaneously solves binary classification and intra-class clustering in a hybrid
fashion thanks to a maximum margin framework. The method discriminates healthy controls
from pathological patients by optimizing the best convex polytope that is formed by combin-
ing several linear hyperplanes. The clustering ability is drawn by assigning patients to their
best discriminating hyperplane. Each cluster corresponds to one face of the piece-wise linear
polytope and heterogeneity is implicitly captured by harnessing the classification boundary
non-linearity. The efficiency of this method heavily relies on the prior hypothesis that negative
samples (not being clustered) lie inside the convex discrimination polyhedron. This may be
a limitation when it does not hold for a given data-set (left examples of Fig. 3.2). Another
hypothesis is that relevant psychiatric subtypes should not be based on the disorder severity.
This a priori implies that clusters should be along the classification boundary (upper examples
of Fig. 3.2). Even though it may help circumvent general variability issues, this strongly limits
the method’s applicability to a specific variety of subgroups.

Contributions:

Here, we propose a general framework for Unsupervised Clustering driven by Supervised Learn-
ing (UCSL) for relevant subtypes discovery. The estimate of the latent subtypes is tied to the
supervision task (regression or classification). Furthermore, we also propose to use an ensem-
bling method in order to avoid trivial local minima or collapsed clusters.
We demonstrate the relevance of the UCSL framework on several data-sets. The quality of
the obtained results, the high versatility, and the computational efficiency of the proposed
framework make it a good choice for many subtype discovery applications in various domains.
Additionally, the proposed method needs very few parameters compared to other state-of-the-
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Figure 3.2: Toy Datasets - Different configurations we want to address. Grey points represent
negative samples. The upstream task is to classify negative (grey) samples from all positive
(colored) samples, while the final goal is to cluster positive samples. The upper plots show 3 and
2 clusters respectively along the classification boundary. The lower plot shows 4 and 2 clusters
parallel (and along on the left) to the classification boundary. Furthermore, plots on the left
and right show clusters outside and inside the convex classification polytope respectively.

art (SOTA) techniques, making it more relevant for a large number of medical applications
where the number of training samples is usually limited. Our three main contributions are :

1. A generic mathematical formulation for subtype discovery that is robust to samples inside
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and outside the classification polytope (see Fig.3.2).

2. An Expectation-Maximization (EM) algorithm with an efficient dimensionality reduction
technique during the E step for estimating latent subtypes more relevant to the supervised
task.

3. A thoughtful evaluation of our subtype discovery method and a fair comparison with
several other SOTA techniques on both synthetic and real data-sets. In particular, a
neuroimaging data-set for psychiatric subtype discovery.

3.1.4 Unsupervised Clustering driven by Supervised Learning

A statistical formulation for Subtype Discovery

Let (X, Y ) = {(xi, yi)}ni=1 be a labeled data-set composed of n samples. Here, we will restrict
to regression, yi ∈ R, or binary classification, yi ∈ {−1,+1}. We assume that all samples, or
only positive samples (yi = +1), can be subdivided into latent subgroups for regression and
binary classification, respectively.
The membership of each sample i to latent clusters is modeled via a latent variable ci ∈ C =

{C1, ..., CK}, where K is the number of assumed subgroups. We look for a discriminative model
that maximizes the joint conditional likelihood:

n∑
i=1

log
∑
c∈C

p(yi, ci|xi) (3.1)

Directly maximizing this equation is hard, and it would not explicitly make the supervised task
and the clustering depend on each other, namely we would like to optimize both p(ci|xi, yi)
(the clustering task) and p(yi|xi, ci) (the upstream supervised task) and not only one of them.
To this end, we introduce Q, a probability distribution over C, so that

∑
ci∈C Q(ci) = 1.

n∑
i=1

log
∑
c∈C

p(yi, ci|xi) =
n∑
i=1

log

(∑
c∈C

Q(ci)
p(yi, ci|xi)
Q(ci)

)
. (3.2)

By applying the Jensen inequality, we then obtain the following lower-bound:

n∑
i=1

log

(∑
c∈C

Q(ci)
p(yi, ci|xi)
Q(ci)

)
≥

n∑
i=1

∑
c∈C

Q(ci) log

(
p(yi, ci|xi)
Q(ci)

)
, (3.3)
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It can be shown that equality holds when:

Q(ci) =
p(yi, ci|xi)∑
c∈C p(yi, ci|xi)

=
p(yi, ci|xi)
p(yi|xi)

= p(ci|yi, xi). (3.4)

The right term of Eq. 3.3 can be re-written as:

n∑
i=1

∑
c∈C

(
Q(ci) log

(
p(yi|ci, xi)p(ci|xi)

)
−Q(ci) logQ(ci)

)
. (3.5)

We address the maximization of Eq. 3.5 with an EM optimization scheme (algo. 2) that ex-
ploits linear models to drive the clustering until we obtain a stable solution. First, during the
Expectation step, we tighten the lower bound in Eq. 3.3 by estimating Q as the latent clusters
conditional probability distribution p(ci|yi, xi) as in Eq. 3.4. Then, we fix Q, and maximize the
supervised conditional probability distribution p(yi|ci, xi) weighted by the conditional cluster
distribution p(ci|xi) as in Eq. 3.5.

Expectation step

In this step, we want to estimate Q as p(ci|yi, xi), ∀i ∈ J1, nK, ∀c ∈ C in order to tighten the
lower bound in Eq. 3.3. We remind here that latent clusters c are defined only for the positive
samples (y = +1), when dealing with a binary classification, and for all samples in case of
regression. Let us focus here on the binary classification task. Depending on the problem one
wants to solve, different solutions are possible. On the one hand, if ground truth labels for
classification are not available at inference time, Q should be computed using the classification
prediction. For example, one could use a clustering algorithm only on the samples predicted
as positive. However, this would bring a new source of uncertainty and error in the subgroups
discovery due to possible classification errors. On the other hand, if ground truth labels for
classification are available at inference time, one would compute the clustering using only
the samples associated with ground-truth positive labels ỹi = +1, and use the classification
directions to guide the clustering. Here, we will focus on the latter situation since it interests
many medical applications.

Now, different choices are again possible. To influence the resulting clustering with the label
prediction estimation, HYDRA [280] proposes to assign each positive sample to the hyperplane
that best separates it from negative samples (i.e. the furthest one). This is a simple way to
align resulting clustering with estimated classification while implicitly leveraging classification
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boundary non-linearity. Yet, we argue that this formulation does not work in the case where
clusters are disposed parallel to the piece-wise boundary as described in Fig. 3.3. We propose
to project input samples onto a supervision-relevant subspace to overcome this limit before
applying a general clustering algorithm.

Figure 3.3: Limit of maximum-margin-based clustering starting from an optimal cluster initial-
ization. When the separation of clusters to discover is co-linear to the supervised classification
boundary, the maximum margin cluster assignment (as in [280]) converges towards a degenerate
solution (upper figures). Instead, with our direction method (lower figures), the Graam-Schmidt
algorithm returns one direction where input points are projected to and perfectly clustered.

Dimension reduction method based on discriminative directions: Our goal is a
clustering that best aligns with the upstream task. In other words, in a classification example,
the discovery of subtypes should focus on the same features that best discriminate classes,
and not on the ones characterizing the general variability. In regression, subgroups should be
found by exploiting features that are relevant to the prediction task. In order to do that, we
rely on the linear models estimated from the maximization step. More specifically, we propose
first creating a relevant orthonormal sub-space by applying the Graam-Schmidt algorithm to
all discriminant directions, namely the normal directions of estimated hyperplanes. Then, we
project input features onto this new linear subspace to reduce the dimension and perform cluster
analysis on a more suitable space. Clustering can be conducted with any algorithm such as
Gaussian Mixture Models (GMM), K-Means (KM) or DBSCAN for example.
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Algorithm 1 Dimension reduction method based on discriminative directions
Input : X ∈ Rnxd, training data with n samples and d features.
Output : X ′ ∈ RnxK , training data projected onto relevant orthonormal subspace.

1: Given K estimated hyperplanes, concatenate normal vectors in D ∈ RKxd.
2: Ortho-normalize the direction basis D with Graam-Schmidt obtaining D⊥ ∈ RKxd.
3: Project training data onto the orthonormal subspace, X ′ = X(D⊥)T .

Maximization step

After the expectation step, we fix Q and then maximize the conditional likelihood. The lower
bound in Eq. 3.5 thus becomes:

n∑
i=1

∑
c∈C

Q(ci) log p(yi|ci, xi) +
n∑
i=1

∑
c∈C

Q(ci) log p(ci|xi) (3.6)

Here, we need to estimate p(ci|xi). A possible solution, inspired by HYDRA [280], would be to
use the previously estimated distribution p(ci|yi, xi) for the positive samples and a fixed weight
for the negative samples, namely:

p(ci|xi) =

{
p(ci|xi, yi) if ỹi = +1
1
K

if ỹi = −1
(3.7)

However, as illustrated in Fig. 3.4, this approach does not work well when negative samples
lie outside of the convex classification polytope since discriminative directions (or hyperplanes)
may become collinear. This collinearity hinders the retrieving of informative directions and
consequently degrades the resulting clustering.

To overcome such a shortcoming, we propose to approximate p(ci|xi) using p(ci|xi, yi) for both
negative and positive samples or, in other words, to extend the estimated clustering distribution
to all samples, regardless their label y. In this way, samples from the negative class (yi = −1),
that are closer to a certain positive cluster, will have a higher weight during classification.
As shown in Fig. 3.4, this results in classification hyperplanes that correctly separate each
cluster from the closer samples of the negative class, entailing better clustering results. From
a practical point of view, since we estimate Q(ci) as p(ci|yi, xi), it means that p(ci|xi) can be
approximated by Q(ci). Q(ci) being fixed during the M step, only the left term in Eq. 3.6 is
maximized.
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Figure 3.4: Starting with an optimal initialization of clusters to discover, constant negative
samples weighting (top row) may lead to co-linear discriminative hyperplanes and thus errors
in clustering. Conversely, our negative samples weighting enforces non-colinearity between
discriminative hyperplanes resulting in higher quality clustering.

Supervised predictions

Once trained the proposed model, we compute the label yj for each test sample xj using the
estimated conditional distributions p(yj|cj, xj) and p(cj|xj) as:

p(yj|xj) =
∑
cj∈C

p(yj, cj|xj) =
∑
cj∈C

p(yj|xj, cj)p(cj|xj) (3.8)

We thus obtain a non-linear estimator based on linear hyperplanes, one for each cluster.

Application

Multiclass case: In the case of classification, we handle the binary case in the same way
as [280] does. We consider one label as positive ỹi = 1 and cluster it with respect to the other
one ỹi = −1. Using the one-vs-rest strategy, we can cast it as several binary problems in the
multi-class case.
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Ensembling with Spectral clustering: The consensus step enables the merging of sev-
eral different clustering propositions to obtain an aggregate clustering. After running the EM
iterations N times, the consensus clustering is computed by grouping samples assigned to the
same cluster across different runs. In practice, we compute a co-occurrence matrix between
all samples. And then we use co-occurrence values as a similarity measure to perform spectral
clustering. Hence, for example, given two samples i and j and 10 different runs, if samples i
and j ended up 4 times in the same cluster, the similarity measure between those 2 samples will
be 4

10
. Given an affinity matrix between all samples, we can then use the spectral clustering

algorithm to obtain a consensus clustering.

UCSL’s Pseudo-code

The pseudo-code of the proposed method UCSL (Alg. 2) can be subdivided into distinct steps:

1. Initialization: First, we have to initialize the clustering. There are several possibili-
ties here, we can use traditional ML methods such as KM or GMM. For most of our
experiments, we used GMM.

2. Maximization: The Maximization step consists in training several linear models to solve
the supervised upstream problem. It can be either a classification or a regression. We
opted for well-known ML linear methods such as logistic regression or max-margin linear
classification method as in [280].

3. Expectation: The Expectation step uses the supervised learning estimates to produce
a relevant clustering. In our case, we exploit the directions exhibited by the linear super-
vised models. We project samples onto a subspace spanned by those directions to perform
the unsupervised clustering with positive samples.

4. Convergence: To check the convergence, we compute successive clustering Adjusted
Rand Score (ARI). The closer this metric is to 1, the more similar both clustering assign-
ments are.

5. Ensembling: Initialization and EM iterations are performed until convergence N times,
and an average clustering is computed with a Spectral Clustering algorithm [280], [225]
that proposes the best consensus. This part enables us to have more robust and stable
solutions avoiding trivial or degenerate clusters.
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Algorithm 2 UCSL general framework pseudo-code
Input : X ∈ Rnxd, y ∈ {−1, 1}n, K number of clusters.
Output : p(c|x, y) = Q(c), p(y|x, c) (linear sub-classifiers).

1: for ensemble in n_ensembles do
2: Initialization: Estimate Q(0) for all samples (y = ±1) with a clustering algorithm (e.g.

GMM) trained with positive samples only (y = +1).
3: while not converged do
4: M step (supervised step) :
5: Freeze Q(t)

6: for k in [1, K] :
7: Fit linear sub-classifier k weighted by Q(t)[:, k] (Eq. 3.6).
8: end for
9: E step (unsupervised step) :

10: Use Alg.1 to obtain X ′ ∈ RnxK from sub-classifiers normal vectors D ∈ RKxd.
11: Estimate Q(t+1) = p(c|x, y) (Eq. 3.4) for all samples with a clustering algorithm

trained on X ′ with positive samples only.
12: end while
13: end for
14: Ensembling: Compute average clustering with the ensembling method (Sec. 3.1.4).
15: Last EM: Perform EM iterations from ensembled latent clusters until convergence.

3.1.5 Results

We validated our framework on four synthetic data-sets and two experimental ones both qual-
itatively and quantitatively.

Implementation details: The stopping criteria in Alg. 2 is defined using the ARI index
between two successive clusterings (at iteration t and iteration t+1). The algorithm stops when
it reaches the value of 0.85. In the MNIST experiment, convolutional generator and encoder
networks have a similar structure to the generator and discriminator in DCGAN [227]. We
trained it during 20 epochs, with a batch size of 128, a learning rate of 0.001 and with no data
augmentation and a SmoothL1 loss. More information can be found in the Supplementary
material. Standard deviations are obtained by running 5 times the experiments with different
initializations (synthetic and MNIST examples) or using a 5-fold cross-validation (psychiatric
dataset experiment). MNIST and synthetic examples were run on Google Colaboratory Pro,
whose hardware equipments are PNY Tesla P100 with 28Gb of RAM.
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Synthetic dataset: First, we generated a set of synthetic examples that sum up the differ-
ent configurations on which we wish our method to be robust: subtypes along the supervised
boundary or parallel to it. We designed configurations with various number of clusters, outside
or inside the convex classification polytope. UCSL was run with Logistic Regression and GMM.
To make our problem more difficult we decided to add noisy unnecessary features to the origi-
nal 2-D toy examples. For each example and algorithm, we performed 10 runs with a different
initialization each time (GMM with only one initialization) and we did not perform the ensem-
bling step for fair comparison with the other methods. We compared with other traditional ML
methods such as KM GMM, DBSCAN, and Agglomerative Clustering. Results are displayed in
Fig. 3.5. For readability, we divided the standard deviation hull by 2. Compared with the other
methods, UCSL appears to be robust to unnecessary noisy features. Furthermore, it performs
well in all configurations we addressed.

MNIST dataset: To further demonstrate what intra-class clustering could be used for, let
us make an example from MNIST. We decided to analyze the digit 7 looking for subtypes. To
perform this experiment, we trained on 20,000 MNIST digits and considered the digit 7 as the
positive class. We use a one-vs-rest strategy for classification with flattened images as inputs.

Visually, digit 7 examples have two different subtypes: with or without the middle-cross bar.
In order to quantitatively evaluate our method, we labeled 400 test images in two classes,
7 with a middle-cross bar, and those with none. We ran UCSL with GMM as a clustering
method, logistic regression as classification method and compared with clustering methods
coupled with deep learning models or dimension reduction algorithms. We use the metrics
V-Measure, Adjusted Rand Index (ARI) and balanced accuracy (B-ACC), since we know the
expected clustering result.

As noticeable on Table 3.1, UCSL outperforms other clustering and subtypes ML methods.
We also compared our algorithm with DL methods, a pre-trained convolutional network and
a simple convolutional encoder-decoder. Only the convolutional autoencoder network along
with a GMM on its latent space of dimension 32 slightly outperforms UCSL. However, it uses
a definitely higher number of parameters (7500 times more!) and takes twice the time for
training. Our model is thus more relevant to smaller data sets, which are common in medical
applications. Please note that UCSL could also be adapted in order to use convolutional auto-
encoders or contrastive methods such as in [169] and [40], when dealing with large data sets.
This is left as future work.
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Figure 3.5: Comparison of performances of different algorithms on the four configurations
presented in Fig.3.2. Noisy features are added to the original 2D data. For each example, all
algorithms are run 10 times with different initialization.

Psychiatric dataset: The ultimate goal of the development of subtype discovery methods
is to identify homogeneous subgroups of patients that are associated with different disorder
mechanisms and lead to patient-specific treatments. With brain imaging data, the variability
specific to the disorder is mixed up or hidden to non-specific variability. Classical cluster-
ing algorithms produce clusters that correspond to subgroups of the general population: old
participants with brain atrophy versus young participants without atrophy, for instance.
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Methods Latent Size Nb params Avg Exec Time V-measure ARI B-ACC
AE + GMM 32 3M 21m40s 0.323±0.013 0.217±0.025 0.823±0.009
UCSL (our) 2 406 12m31s 0.239±0.001 0.330±0.001 0.808±0.001

PT VGG11 + KM 1000 143M 32m44s 0.036±0.001 0.087±0.001 0.616±0.001
AE + GMM 2 3M 13m34s 0.031±0.015 0.033±0.021 0.607±0.025

t-sne* [190] + KM 2 4 2m04s 0.029±0.020 0.049±0.056 0.568±0.033
t-sne* [190] + GMM 2 14 2m04s 0.023±0.021 0.020±0.048 0.566±0.033
umap* [206] + KM 2 4* 24s 0.050±0.015 0.078±0.015 0.555±0.022

umap* [206] + GMM 2 14* 24s 0.025±0.006 0.080±0.010 0.547±0.005
SHAP [182]* + KM 196 392* 1h02 0.012±0.007 -0.014±0.035 0.540±0.016

KM 196 392 0.32ms 0.006±0.000 0.010±0.000 0.552±0.000
HYDRA 196 394 9m45s 0.005+/-0.006 0.024±0.031 0.520±0.018
GMM 196 77K 0.32ms 0.0002±0.000 -0.001±0.000 0.510±0.000

Table 3.1: MNIST dataset, comparison of performances of different algorithms for the discovery
of digit 7 subgroups. AE : convolutional AutoEncoder; PT VGG11: VGG11 model pre-trained
on imagenet; GMM: Gaussian Mixture Model; KM: K-Means. Latent size: dimension of space
where clustering is computed. * : to limit confusion, we assign no parameters for t-sne, umap
and SHAP. We use default values (15,30,100) for perplexity, neighbours and n estimators in
t-sne, umap and SHAP respectively.

(a) UCSL (Ours)

(b) t-SNE [190] + KMeans

Figure 3.6: Comparison of latent space visualization in the context of MNIST digit “7" subtype
discovery. Differently from t-SNE, our method does not focus on the general digits variability
but only on the variability of the “7". For this reason, subtypes of “7" are better highlighted
with our method.
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To validate the proposed method we pooled neuroimaging data from patients with two psy-
chiatric disorders, (Bipolar Disorder (BD) and Schizophrenia (SZ)), with data from healthy
controls (HC). The supervised upstream task aims at classifying HC from patients (of both dis-
orders) using neuroimaging features related to the local volumes of brain grey matter measured
in 142 regions of interest (identified using CAT12 software [98, 99] from the SPM toolbox).
Here, we used a linear SVM for classification. The clustering task is expected to retrieve the
known clinical disorder (BD or SZ). Training set was composed of 686 HC and 275 SZ, 307 BP
patients.
We measured the correspondence (Tab. 3.2) between the clusters found by the unsupervised
methods with the true clinical labels on an independant TEST set (199 HC, 190 SZ, 116
BP) coming from a different acquisition site. As before, we used the metrics V-Measure,
Adjusted Rand Index (ARI) and balanced accuracy (B-ACC). Please note that the classification
of SZ vs BD is a very difficult problem due to the continuum between BP and SZ. Therefore,
performances should be compared with the best expected result provided by a purely supervised
model (here a SVM) that produces only 61% of accuracy (last row of Tab. 3.2).

Algorithm V-measure ARI B-ACC
GMM 0.002±0.001 0.003±0.008 0.491±0.024

KMeans 0.008±0.001 -0.01±0.001 0.499±0.029
umap* [206] + GMM 0.001±0.002 0.000±0.007 0.497±0.013
umap* [206] + KM 0.000±0.002 0.001±0.005 0.502±0.006
t-sne* [190] + GMM 0.002±0.0024 -0.00±0.005 0.498±0.028
t-sne* [190] + KM 0.004±0.004 0.003±0.005 0.505±0.041

HYDRA [280] 0.018±0.009 -0.01±0.004 0.556±0.019
SHAP [249] + GMM 0.004±0.005 0.000±0.006 0.527±0.027

SHAP [249] + KMeans 0.016±0.005 0.017±0.012 0.575±0.011
UCSL + GMM 0.024±0.006 0.042±0.016 0.587±0.009

UCSL + KMeans 0.030±0.012 0.004±0.006 0.594±0.015
Supervised SVM 0.041±0.007 0.030±0.008 0.617±0.010

Table 3.2: Results of the different algorithms on the subtype discovery task BP / SZ. The last
row provides the best-expected result obtained with a supervised SVM.

As expected, mere clustering methods (KMeans, GMM) provide clustering at the chance level.
Detailed inspection showed that they retrieved old patients with brain atrophy vs younger
patients without atrophy. Only clustering driven by supervised upstream tasks (HYDRA,
SHAP+KMeans, and all UCSL) can disentangle the variability related to the disorders to
provide results that are significantly better than chance (59% of B-ACC). Models based on
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USCL significantly outperformed all other models approaching the best expected result that
would provide a purely supervised model.

3.1.6 Conclusion

We proposed in this article a Machine Learning (ML) Subtype Discovery (SD) method that
aims at finding relevant homogeneous subgroups with significant statistical differences in a
given class or cohort. To address this problem, we introduce a general Subtype Discovery
(SD) Expectation-Maximization (EM) ensembled framework. We call it UCSL: Unsupervised
Clustering driven by Supervised Learning. Within the proposed framework, we also propose
a dimension reduction method based on discriminative directions to project the input data
onto an upstream-task relevant linear subspace. UCSL is adaptable to both classification and
regression tasks and can be used with any clustering method. Finally, we validated our method
on synthetic toy examples, MNIST, and a neuro-psychiatric data set on which we outperformed
previous state-of-the-art methods by about +1.9 points in terms of balanced accuracy.

67



3.2 Deep UCSL: Automatic Discovery of Disease Subgroups

by Contrasting with Healthy Controls

Context: In several medical domains, researchers are interested in discovering interpretable
and homogeneous subgroups within a pathology. Identifying pathology subtypes would enable
refining its nosology and push forward the understanding of its underlying biological process
and the research for more personalized treatments. However, conventional clustering algorithms
fail in this task when the pathological variability (i.e., the set of diseased biomarkers) is dom-
inated by the variability in the general population (i.e., in healthy samples). In this case, the
clusters identified generally reflect the general variability (e.g., old vs. young people, or along
any other general physiological variability) and are thus irrelevant when characterizing more
precise phenotypes of pathologies. To address this problem, we have previously proposed a
statistical framework (UCSL) [179], implemented with linear machine learning algorithms, that
clusters patients while contrasting with a dataset of control subjects to ensure that the resulting
clustering is specific to the pathology of interest.

Motivation: However, in practice, UCSL is a limited Subgroup Discovery method because it
generally requires a user-defined feature extraction step and is constrained to linear predictors
only. To overcome this shortcoming, we propose Deep UCSL: a general Subgroup Discovery
method that does not depend on user-defined features generalizes to several medical imaging
domains, and leverages the representation quality of non-linear deep learning methods.
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3.2.1 Abstract

In Subgroup Discovery, practitioners are interested in discovering interpretable and homoge-
neous subgroups within a group of patients. In this paper, assuming that healthy subjects
(i.e., controls) share common but irrelevant factors of variation with the patients, we motivate
and develop a Contrastive Subgroup Discovery method, entitled Deep UCSL. By contrasting
controls with patients, we identify subgroups that stem only from the pathological variability
specific to the disorder, while disregarding the common variability shared with the controls.
To this end, we propose a Deep Learning framework that learns a discriminative and expres-
sive representation space through a deep features extractor. From a mathematical standpoint,
we derive a novel loss from the conditional joint likelihood between latent clusters (disorder
subgroups) and patient/control labels. The optimization procedure is based on an Expectation-
Maximization strategy alternating between a) subgroups inference and b) features encoder pa-
rameters update. Furthermore, we introduce a novel regularization term that promotes the
representation space to emphasize disorder-specific variability while disregarding the common
variability shared with the controls. Compared to previous related works, our approach quanti-
tatively improves the quality of the estimated subgroups, as demonstrated on an MNIST-based
toy example and four distinct real medical imaging datasets. Code and datasets are available
at https://github.com/neurospin-projects/2023_rlouiset_deep_ucsl.

3.2.2 Introduction

In the past decades, unsupervised and self-supervised learning techniques have proven to be
particularly effective at identifying relevant patterns and factors of variation within a dataset.
Combined with powerful Neural Networks (NNs), these methods can produce semantically
rich representations [50, 52, 118, 326]. Notably, unsupervised Deep Clustering (DC) methods
[16, 40, 41, 169, 278] seek to produce a suitable representation space for identifying homogeneous
latent clusters based on the general variability of the entire dataset (i.e., imaging patterns
common to all samples).

With a different perspective, Subgroup Discovery (SD) in medical applications [20, 154, 311]
aims at identifying relevant latent subtypes/subgroups that arise from the pathological vari-
ability of the diseased population and not from the irrelevant common variability that may
exist in both healthy subjects (i.e., controls) and diseased patients. For instance, in derma-
tology, practitioners are interested in identifying a stratification within a dataset of malignant
melanomas. In this case, the objective would be to retrieve relevant dermatological subgroups,
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from a medical standpoint (e.g., nodular/lentigo melanoma), for a more targeted drug or treat-
ment delivery. In this paper, we argue that the discovery of these subgroups should be based
on disorder-specific patterns (e.g.: texture, color, asymmetry) rather than irrelevant patterns
shared with healthy skin samples (e.g.: skin color, hair, moles, or nevi).

Figure 3.7: Comparison between a Deep Clustering method (Deep Cluster [40]) and the pro-
posed Subgroup Discovery method (Deep UCSL) on a subtype discovery task within the digit
7. The relevant subtypes stem from the digit-7’s specific variability, i.e., 7 with a middle-cross
bar (red) and without (blue). We show two 2D PCA plots of the representation spaces learned
by the two methods. Deep Cluster is driven by the general variability of the digits, particularly
the boldness. Differently, Deep UCSL uses a supervised classification task to contrast with the
”healthy” class (i.e., the rest of the digits). In this way, it encourages the ”disorder” subtype
identification to discard the shared factors of variability, focusing only on the relevant variabil-
ity of the 7 (i.e., the middle crossbar).

In Fig. 3.7, we use an intuitive toy example based on the MNIST dataset to better clarify
the differences between Deep Clustering and Subtype Discovery. We consider the digit ”7” as
the pathological group and all the other digits as the healthy group. Results show how Deep
Cluster’s subgroups [40] of the digit ”7” are only defined by the most predominant characteristics
(i.e.: boldness of the digit) common to all digits. Instead, the proposed Subtype Discovery
method, called Deep UCSL, disregards these common characteristics and uses only the specific
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patterns of the digit ”7” (i.e., the presence of the crossing middle bar) to define the subgroups.
In many medical domains, the discovery of new subgroups is left to human experts. However,
this task may be difficult and observer-dependent, with potentially high-dimensional images
and subtle imaging patterns. Furthermore, there are often no precise guidelines to define the
subgroups, and there is also considerable disagreement among pathologists, with high intra-
and inter-rater variability [311]. This motivates the need for new machine-learning methods to
help human experts discover or validate subgroups, while relying on reproducible, data-driven,
and objective imaging patterns.

3.2.3 Related works

Subgroup Discovery applications. In the last decade, Subgroup Discovery works have been
proposed across various topics. In medicine, many works have been conducted to refine the
characterization of cancer variants [43, 197, 225, 307]. In psychiatry, mental diseases are known
as being extremely heterogeneous [194], and multiple works have tried to refine the disorder
categorization into homogeneous subgroups [45, 90, 127, 312, 300]. However, most of these
subgroup discovery methods either rely on priors dependent on the domain (e.g., the aspect
of pathological patterns of neurodegenerative disorders), or are based on user-defined features
and linear predictors. Notably, emerging machine learning methods, such as HYDRA [280] and
our preliminary work UCSL [179], have proposed a framework for Subgroup Discovery, where
the supervised classification (healthy vs. patients) and the subgroup identification (clustering
of patients only) depends on each other. This framework respects two properties: 1) subgroups
should be identified from diseased samples only, and 2) pathological subgroups should be cor-
rectly discriminated from the healthy class in the estimated representation space. However,
these works are limited because they require a user-defined feature extraction step and are
constrained to linear predictors only. Indeed, each inferred pathological subgroup is being dis-
criminated from the healthy class with a linear classifier. To sum up, actual subgroup discovery
works are either not generalizable to other domains or depend on user-defined feature choices
and generally do not leverage the representation quality of non-linear deep learning methods.
In Deep Representation Learning, two main lines of works have been used to identify clusters or
group structure: unsupervised Deep Clustering and Self-Supervised learning, and in particular,
Contrastive Learning.
Unsupervised Deep Clustering Recent works [16, 40, 41, 184, 319], proposed to uncover se-
mantically relevant groups of samples in a dataset without using other auxiliary tasks. Notably,
Deep Cluster [40] alternates between the pseudo-label estimation phase (i.e.: the clustering es-
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timation step) and the update of encoder parameters. At each epoch, previous clustering
assignments produced by a K-Means method are used as pseudo-labels for minimizing a Cross-
Entropy loss with the network output logits. This strategy is simple, but it requires a few tricks
in order to converge. The first problem is the so-called "clustering degeneracy". It happens
when the estimated clusters are slightly imbalanced, and therefore the network training will
naturally orientate samples towards the most represented clusters. After several iterations, this
phenomenon may lead toward empty clusters or, in the worst case, to a trivial solution with only
one not-empty cluster. Several solutions have been proposed in the literature. Deep Cluster
[40] and ODC [319] proposed to weigh samples’ importance with the inverse of the associated
cluster size. Another work, SwAV [41], regularizes the prototype centroids so that they respect
the equipartition constraint (i.e.: samples get equally distributed across the clusters). Another
common issue in Deep Clustering methods is the cluster shuffle across epochs. It occurs when
the optimization strategy alternates between a) the estimation of pseudo-labels by fitting a clus-
tering method (e.g. K-Means), and b) a gradient descent step of a classification head trained to
predict the clustering pseudo-labels. In this setting, step a) is re-computed at each epoch and
therefore the cluster’s indices might not be consistent across epochs (i.e., sample x has pseudo-
label a at epoch t and pseudo-label b at epoch t+ 1). Due to this inconsistency across epochs,
step b)’s classifier weights are outdated at each new epoch. As a solution, [40] has proposed
to re-initialize the classification head’s parameters right after step a). However, several works,
such as [319], and [16], argue that this re-initialization disrupts the network training and that
cluster centroids should be updated steadily along with the classifier’s parameters, which is not
trivial.

Self-Supervised Learning. Another relevant line of work comprises self-supervised, and
particularly contrastive, learning methods [50, 52, 109, 118, 326], that learn representations po-
tentially suitable for downstream tasks, such as clustering or classification. A pivotal method
of this literature is SimCLR [50], which encourages the encoder to be invariant to user-defined
image augmentation (i.e., it discards data-augmentation variability). Specifically, it encour-
ages two views of an image to be aligned in the representation space while constraining the
dataset representations to follow a uniform hyperspherical distribution, as explained in [293].
Contrastive learning methods only align representations of the same image, which implies that
several images with the same semantic content can be pulled apart. This flaw is known as
the Class Collision problem [326] and may be harmful to both clustering and classification
downstream tasks. To solve this problem, two lines of works have emerged. In the first one,
annotated labels are leveraged to explicitly capture healthy/pathological discriminative pat-
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terns. For instance, in SupCon [153], authors use a loss where positive and negative samples
are defined based on their class (healthy or patient).
The second direction comprises methods that include a contrastive loss within a Deep Clus-
tering or a Deep Nearest Neighbour framework [169, 41, 275, 278]. For example, PCL [169]
proposes to use cluster assignments to align positive views from the same cluster rather than
from the same image. Other works, such as [60, 278], propose to align nearest neighbors instead.
These works either leverage the disorder/healthy label information (first group) or encourage
clustering structures (second group). However, a Subgroup Discovery method should combine
both properties to effectively define homogeneous groups only among patients and only based
on the pathological patterns/variability of the disorder.

3.2.4 Contributions

To overcome these shortcomings, this paper proposes a Deep Unsupervised Clustering driven
by Supervised Learning (Deep UCSL), where we use a Deep Neural Network as an automatic
feature extractor to produce representations suitable for identifying relevant disorder subgroups
that are contrasted from the healthy class. As in UCSL [179], we derive our objective by seek-
ing the parameters that maximize the conditional joint likelihood between latent subgroups
and supervised labels. However, as a difference, the feature space is estimated with a train-
able deep encoder that allows an automatic non-linear feature extraction. Then, as in UCSL
[179], we propose the use of an Expectation-Maximization optimization process to alternate
between the conditional joint likelihood parameters update and the subgroups pseudo-labels
estimation. However, here we propose a new regularization loss that improves the separation
between healthy and diseased patterns and, differently from UCSL, it guarantees the monotoni-
cal convergence of the model parameters. In our approach, the optimization procedure consists
of alternatively 1) estimating the subgroups pseudo-labels (i.e.: pathological subgroups within
the disorder classes) and 2) updating the features encoder. Our objective is to: a) correctly dis-
cover the pathological subgroups, b) encourage healthy samples not to belong to a pathological
subgroup, and c) accurately discriminate each subgroup from the healthy class (Mixture-of-
Classifying Experts).
To demonstrate the superiority of our method, we compare it with other state-of-the-art repre-
sentation learning methods (i.e., Deep Clustering and Contrastive learning methods) on three
different tasks: 1) 7-digit subgroup identification, 2) psychiatric application, 3) pneumonia sub-
groups identification, and 4) eye pathological subgroups identification. Deep UCSL outperforms
all other methods in these tasks. In a nutshell, our contribution is three-fold:
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1. To the best of our knowledge, we propose the first Deep Learning method for Subgroup
Discovery that performs disorder/healthy classification while identifying subgroups in the
diseased class.

2. We motivate and design a clustering regularization loss that forces the learned representa-
tion to disregard the healthy population variability focusing only on the disorder-specific
variability.

3. A fair and careful evaluation of our method, as well as a comparison with recent state-
of-the-art methods.

3.2.5 Methodology

Mathematical formulation

Figure 3.8: A schematic diagram of Deep UCSL with K = 2 subgroups (red and blue). At each
epoch, K-Means produces subgroup pseudo-labels during the Expectation step (in brown).
These pseudo-labels are then used to weight a classification Mixture-of-Experts (in purple)
between the ”healthy” class (digits 0-6, 8-9) and the “disorder” class (digit 7). Additionally, the
pseudo-labels are also used for the clustering regularization (in green), where uniform pseudo-
labels (i.e.: 1

K
) are used to regularize the healthy class distribution, so that healthy samples are

equidistant from all the diseased subgroups. This forces the learned representation to disregard
the general variability, common to both healthy and patients.
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Let (X, Y ) = {(xi, yi)}Ni=1 be a labeled dataset composed of N samples. We will restrict to the
binary (e.g., patient/control) classification paradigm, yi ∈ {−1,+1}, which is very common in
medical imaging. We will denote with N+ and N− (N = N+ + N−) the number of positive
and negative samples, respectively. Our objective is to estimate the latent pseudo-labels1 of
subgroups within disorder samples (yi = +1). The membership of each sample i to latent
subgroups is modeled via a latent categorical variable ci ∈ C = {1, ..., K}, where K is the
number of subgroups. We look for a discriminating model that maximizes the joint conditional
likelihood:

n∑
i=1

log p(yi|xi) =
n∑
i=1

log
K∑
k=1

p(yi, ci = k|xi) (3.9)

To attain the three objectives (a), b), c)) described in Sec. 3.2.4, we need to optimize Eq.
3.9 with respect to both p(ci|xi, yi) and p(yi|xi, ci). Indeed, we need to identify the subgroups
only within the patients (thus knowing y) and to accurately discriminate the healthy class
from each subgroups (thus knowing c). However, developing the joint conditional likelihood
in Eq. 3.9 would result in either p(ci|xi, yi) or p(yi|xi, ci), but not in both. To solve that,
as in UCSL [179], we introduce a probability distribution Q over the subgroups C, so that∑K

k=1Q(ci = k) = 1 ∀i, and use the Jensen inequality to obtain a tractable, lower bound of
Eq.3.9:

n∑
i=1

log
K∑
k=1

Q(ci = k)
p(yi, ci = k|xi)
Q(ci = k)

≥
n∑
i=1

K∑
k=1

Q(ci = k) log

(
p(yi, ci = k|xi)
Q(ci = k)

)
(3.10)

where equality holds when:

Q(ci = k) =
p(yi, ci = k|xi)∑K
k=1 p(yi, ci = k|xi)

= p(ci = k|xi,yi) (3.11)

Then, Eq. 3.10 can be rewritten with respect to both p(yi|xi, ci) and Q(ci) (estimated to ap-
proximate p(ci|xi, yi)):

n∑
i=1

K∑
k=1

Q(ci = k) logp(yi|xi, ci = k)︸ ︷︷ ︸
Mixture-of-Classifying Experts term

−DKL(Q(c)||p(c|x))︸ ︷︷ ︸
Clustering

Regularization term

(3.12)

Our goal is to learn a single representation space where both the classifying experts p(yi|xi, ci =

1we call them pseudo-labels, since we assume that subgroups labels are not known at training
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k) and the disorder subgroup p(ci = k|xi, yi = +1) can be accurately estimated. To this
end, we propose using a deep encoder fθ with parameters θ for feature extraction and two
neural networks with parameters ϕ and ψ for the classifying experts pθ,ϕ(yi|ci = k, xi) and
the unsupervised clustering head pθ,ψ(ci = k|xi), respectively. An overview of the proposed
method can be seen in Fig.3.8. To optimize the proposed cost function (Eq. 3.12), we use an
EM algorithm that alternatively:

1. estimates Q as p(ci = k|xi, yi) (E-step, Eq. 3.11) at the end of each epoch, freezing the
encoder fθ

2. estimates p(yi|xi, ci = k) and p(ci = k|xi) batch-wise by maximizing Eq. 3.12 (M-step) at
the beginning of each epoch, freezing Q

Comparison with UCSL

This mathematical framework is similar to the one of our preliminary work UCSL [179], but
with significant differences.
First, Deep UCSL uses a deep feature encoder, instead of user-defined features, and two neural-
networks for classification and subgroup estimate, instead of linear models.
Second, we do not assume that pθ(c|x) = Q(c), as in UCSL, but we force it by explicitly
introducing and minimizing the clustering regularization term KL(Q(c)||pθ,ψ(c|xi)). This guar-
antees the monotonic convergence of the optimization procedure, which was not the case in
UCSL.
Third, since we want to estimate subgroups only within positive/patients, all negative/healthy
samples are assigned a uniform probability for all subgroups. This strategy, also not proposed
in UCSL, encourages the features encoder fθ to produce a representation space where negative
samples do not belong to (positive) subgroups. These new contributions imply that pθ(ci|xi),
the estimated clustering distribution, is not simply extended to all samples regardless their label
y, as in UCSL, but the representation space is estimated so that the unsupervised clustering
pθ(ci|xi) gives the same result as the “supervised” subgroups estimation p(ci = k|yi, xi), namely
knowing the label y. As explained in Sec.3.2.5, this entails an encoder f and a representation
space where the general variability, common to both positive and negative samples, is discarded
and the subtype estimation only depends on the specific variability of the positive class.
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Expectation step

During the Expectation step, we freeze the current estimate of the encoder parameters θ(t), at
epoch t, and estimate Q(t) as pθ(t)(ci = k|yi, xi),∀i ∈ |[1, n]|, ∀k ∈ |[1, K]|, see Eq. 3.11. In
order to do that, since we assume that only the positive class (yi = +1) contains subgroups,
we first compute pθ(ci = k|xi, yi = +1) using a regularized K-mean. Please note that any
clustering algorithm could be used here to compute pθ(ci = k|xi, yi = +1) depending on prior
knowledge about the subgroups’ number, size, distribution, or density. Here, we assume that
the number of subgroups K is known, and thus K-means seems to be a reasonable and simple
choice. Concerning samples from the healthy class (yi = −1), as we aim to estimate sub-groups
within patients only, we propose to use a uniform clustering probability distribution:

pθ(ci = k|yi = −1, xi) =
1

K
∀i ∈ |[1, n]|,∀k ∈ |[1, K]| (3.13)

This means that healthy samples have an equal probability of belonging to the subgroups and,
as detailed in Sec. 3.2.5, this will be used to regularize the representation so that samples from
the healthy class are equidistant, in the representation space, from the subgroups centroids. By
applying this strategy, the general variability, common to both healthy and diseased classes,
should be disregarded in the representation space, which should be structured only by the
pathological variability of the diseased class. As in Deep Cluster [40], during the subgroup
re-estimation, the subgroup membership ci is re-estimated at each epoch for each sample. This
entails two potential issues that have to be dealt with: subgroup degeneracy and subgroup
re-identification.

Subgroup degeneracy: In DeepCluster [40], authors have observed that K-Means may
yield imbalanced or empty clusters. In order to avoid that, we use a Sinkhorn-Knopp (SK)
[59] regularization embedded into soft K-Means. Our method combines thus the clustering
expressivity of soft K-Means with the equipartition regularization of the SK algorithm, as in
[41]. Furthermore, one can keep these soft pseudo-labels (0 ≤ Q(c) ∈ R ≤ 1) or make them hard
(Q(c) ∈ {0, 1}) using the OneHot encoding function. Similarly to [266], we propose to linearly
interpolateQ(c) from soft to hard probabilities along the epochs. In this way, if the initialization
is not good, the use of soft pseudo-labels at the beginning of the training avoids fitting unreliable
hard pseudo-labels. Instead, toward the end of the training, hard pseudo-labels are preferred
to avoid under-fitting. To justify this choice, we conducted an ablation study on MNIST in
Tab 3.3. In our algorithm, we first initialize the subgroups centroids µ = {µk}k∈|[1,K]| with the K-
Means ++ algorithm. Then, we compute the soft probabilities Q(ci = k) =

1/||fθ(xi)−µk||22∑K
a=1(1/||fθ(xi)−µa||22)
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only for positive samples and encourage their equipartition across the subgroups via the SK
regularization: Q′ = SK(Q, ϵ), as in [41], where Q′ ∈ (0,1)N

+xK . We then interpolate between
soft and hard pseudo-labels using: Q̂ = T−t

T
OneHot(Q′) + t

T
Q′, where t is the current epoch

and T is the total number of epochs, and finally update the centroids. The hyper-parameter
ϵ controls the strength of the SK regularization. Typically, ϵ = 0 means no regularization
and ϵ ≫ 0 brings to subgroups of similar size (i.e.: of a similar number of samples). This is
desirable in the medical subgroup discovery context where one often has a priori knowledge of
the relative size of the subgroups. At inference time, we compute the subgroup probabilities
with the same formula as above.
Subgroup re-identification : At epoch t + 1, since we re-estimate the centroids of each
subgroup, we need to identify which was the corresponding centroid at epoch t in order not
to disrupt the training process. To guarantee that, we introduce a new permutation operation
σ(.) from the labels (i.e., 1, .., K) of the centroids at epoch t to the ones at epoch t + 1. For
instance, σ(1) = 2 means that the second centroid at epoch t + 1 corresponds to the first
centroid at epoch t. Being a permutation, we would like it to be a bijective mapping in order
not to merge two subgroups into one and thus create empty subgroups (e.g., σ(k) = ∅). This
issue could occur by naively assigning to each updated centroid (epoch t + 1) the label of its
most similar previous centroid (epoch t). To avoid that, we first compute the similarity matrix
(i.e., normalized dot product) of size K ×K between the K previous centroids (epoch t) and
the K updated centroids (epoch t+ 1). Then, we apply the optimal transport algorithm using
the similarity matrix and the Sinkhorn-Knopp regularization, so that we assign to each cluster
at epoch t+ 1 the label of its most similar cluster at epoch t, respecting at the same time the
equipartition constraint and thus the bijective mapping. Indeed, since we have K centroids for
K labels, the equipartition property is respected if and only if each centroid at epoch t + 1 is
mapped to a single label, which is equivalent to having a bijective mapping between centroids at
epoch t and t+1. The implementation is straightforward and requires no extra hyperparameter
tuning, see code and pseudo-code on GitHub.

Maximization step

Here, we fix the current estimate of Q(t) = pθ(t)(ci|xi, yi) and maximize Eq. 3.12 to estimate the
classifying experts pθ,ϕ(yi|xi, ci = k) and the clustering head pθ,ψ(ci = k|xi).
Mixture-of-Classifying Experts loss: The classifying experts pθ,ϕ(yi|xi, ci = k) are mod-
eled as a single neural network with K outputs, one per subgroup. Let pθ,ϕk(yi = +1|xi, ci =
k) = S(hϕk(fθ(xi))) be the output prediction associated to the subgroup k, where S is a sigmoid
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Figure 3.9: 3D UMAP plots of the representation space of Deep UCSL along the epochs on the
subgroup identification of the MNIST digit 7. Red and blue points represent the actual (man-
ually labeled) subgroups of the positive class, i.e.: the digit “7” with and without the crossing
middle bar. Gray points are samples from the negative class, i.e., other digits than “7”. At
epoch 1, both classes are fused, there is no clear distinction between subgroups (B-ACC=56%).
During training, classes are progressively separated. At the end of the training (B-ACC=97%),
the two subgroups (red and blue) are well separated and the negative representations (gray)
are equidistant from both subgroups. The ratio of distances between healthy and subgroups
centroids (d(healthy centroid,subgroup 1 centroid)

d(healthy centroid,subgroup 0 centroid)) gets close to 1 (equidistant case) during the training
(epoch 1: 3.68; epoch 75: 1.35).

activation function. Equivalently, we have p(yi = −1|xi, ci = k) = 1− S(hϕk(fθ(xi))). For each
subgroup k, we can thus interpret the label yi as a Bernoulli random variable with Pr(yi =
+1) = pk = S(hϕk(fθ(xi))) and rewrite the first term of Eq. 3.12 as: Q(ci = k) log

( p
yi
k

(1−pk)yi
)
=

Q(ci = k)
(
yi log pk − yi log(1− pk)

)
, which is a weighted binary cross entropy between ground

truth labels yi and output predictions pk. The maximization of this term is equivalent to the es-
timate of K sub-classifiers, one per subgroup. This approach is known as a Mixture-of-Experts
(MoE) [275], [332] where an expert k is specialized in discriminating the subgroup k samples
from the negative class. Even if all the expert’s classifiers are trained with the same objec-
tive function (i.e., a weighted binary cross-entropy), they are expected to converge towards
different solutions since they are differently weighted by Q(ci = k). Please note that the pro-
posed method is different from the standard MoE routing mechanism where the gating function
seeks clusters across all classes (Q(c) = p(c|x)) [332], whereas our gating function seeks sub-
groups only within the positive class (Q(c) = p(c|x, y)). This brings a different mathematical
formulation and optimization procedure.

Clustering head loss: The clustering head pθ,ψ(ci|xi) = σ(hψ(fθ(xi))) is modeled as a neural
network with a softmax function σ as output activation function since it predicts cluster prob-
abilities. The parameters θ of the encoder and the parameters ψ of the clustering network are
updated through the maximization of the second term of Eq. 3.12 (i.e., clustering regulariza-
tion term). It represents the Kullback-Leiber divergence between the subgroup pseudo-labels
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Q(ci) (estimated to approximate pθ(ci|yi, xi)) and the clustering head predictions pθ,ψ(ci|xi).
This loss aims at minimizing the discrepancy between the two distributions pθ(C|Y,X) and
pθ,ψ(C|X), producing a representation space more suited for subgroup discovery. Indeed, neg-
ative samples should be encoded in the representation space as points equidistant from the
subgroup centroids since their membership probability should be the same for all subgroups
(i.e., 1/K). Furthermore, positive samples should be clustered as in Q(ci), namely as if the
”unsupervised” clustering algorithm was only considering the pathological/positive variations.
This regularization promotes a representation space where the general variability (common to
both negative and positive classes) is discarded for the identification of subgroups. Using the
MNIST example, we plot a 3D visualization of the representation space in Fig. 3.9. We observe
that both bold and thin digits of the negative class (i.e., all digits but the “7”) are encouraged to
be equidistant from the subgroups of the digit “7” in the representation space across the epochs.
Boldness is thus considered as an irrelevant source of variability for subgroup discovery.
Mixture-of-experts: At inference, one can compute the classification label yj for a new test
sample xj using the Mixture-of-Experts prediction, defined as:
p(yj|xj) =

∑K
k=1 pθ,ϕk(yj|xj, cj = k)pθ,ψ(cj = k|xj).

3.2.6 Experiments

This section evaluates Deep UCSL and compares it with several SOTA (State-Of-The-Art)
methods on a synthetic dataset (Digit 7 MNIST) (with an Nvidia K80), three medical image
applications (with an NVIDIA V100) and a neuro-psychiatric application (with an NVIDIA
RTX3800). Results uncertainty (i.e., ±) are obtained with 3 different initialization evaluated
on the same independent test set. Only for the neuro-psychiatric case, the variability is instead
obtained from 5 different TRAIN/VAL splits (0.9, 0.1) whose models are evaluated on the same
external TEST set.

Implementation choices.

For each dataset, we use different and appropriate architectures, with relative hyper-parameters,
like the batch size, that performed well in previous works (more details in each section). The
only hyper-parameter proper to Deep UCSL is the Sinkhorn-Knopp strength ϵ ∈ R+. We use
the same GPU implementation as in [41], where ϵ = 0.05 by default.
Evaluation criteria. We train all methods using only the class label y (healthy vs disor-
der), but not the subgroup labels c. Then, to quantitatively evaluate performance, we use test
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Algorithm 3 Deep UCSL pseudo-code
1: Input: X ∈ RNx(C∗W∗H), y ∈ {−1, 1}N , K: # subgroups, ϵ: SK temperature, T: # epochs
2: Output:
3: Features encoder: fθ
4: Clustering head: pθ,ψ(ci|xi)
5: Classifying Experts: pθ,ϕ(yi|xi, ci = k),∀k
6: Fitted K-Means: pθ(ci|xi, yi)
7: Initialization step: Estimate Q(0):
8: Compute probability matrix Q(0)

+ ∈ (0,1)N
+xK with

9: soft K-Means only on positive samples (i.e., y = +1)
10: Regularize Q(0)

+ with Sinkhorn-Knopp (SK).
11: Apply a Soft→Hard linear interpolation:
12: Q

(0)
+ = T−t

T
OneHot(Q(0)

+ ) + t
T
Q

(0)
+

13: Set Q(0)
− = 1

K
for background samples (y = −1).

14: Concatenate Q(0)
− and Q(0)

+ to get Q(0) ∈ (0,1)NxK .
15: for t in T epochs:
16: M step (supervised step):
17: Freeze Q(t)

18: for expert k in K, estimate:
19: pθ,ϕk(yi = +1|xi, ci = k) = S(hϕk(fθ(xi)))
20: Estimate pθ,ψ(ci|xi) = σ(hψ(fθ(xi))).
21: Compute Lexperts and Lclustering (Eq. 3.12).
22: E step (unsupervised step):
23: Freeze θ(t).
24: Estimate Q(t+1) as in initialization step.
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sets where we know both the class label y and the subgroup label c. About the representa-
tion/contrastive learning methods that do not have a classification head (e.g., Deep Cluster,
SimCLR), we test their performance only in subgroups identification with a K-means algorithm
fitted only on target samples (as if they had a perfect classification head). We use three different
metrics: 1) Class Balanced Accuracy (Class B-ACC): which is the binary Balanced Accuracy
between true labels yj and class predictions p(yj|xj). 2) Subgroup Balanced Accuracy (Subgroup
B-ACC): Balanced Accuracy between true subgroups cj and inferred ones p(cj|xj).
3) Overall B-ACC : takes into account both class and subgroup prediction errors: 1

2
TP

TP+FN
+

1
2

TN
TN+FP

, where TN and FN are the class true and false negatives, namely the number of
healthy and disorder samples classified as healthy, respectively. TP is the number of disorder
samples correctly classified AND assigned to the right subgroup. FP is the number of healthy
samples classified as disorder OR disorder samples correctly classified but assigned to the wrong
subgroup.

Figure 3.10: MNIST qualitative results. 2D PCA plots of the representation spaces learned by
Deep UCSL when seeking two subgroups for digits 1 (left) and 7 (right). PCA is trained on
the TRAIN set and then used on the TEST set for visualization purposes.
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Digit MNIST dataset

We create two datasets based on MNIST, specifically conceived for subgroup identification. We
consider either the digit 7 or 1 as the positive class and all other MNIST digits as the negative
class. See Fig.3.10 for visual examples. Digit 7 can be divided into two subgroups: with (red)
or without (blue) the middle crossbar. Digit 1 can also be divided into two subgroups: without
(red) or with (blue), an additional top diagonal segment. For each dataset, we first train on
12,530 MNIST digits (half positive digit (e.g.: 7 or 1) and half the other digits, equivalently
distributed, contrarily to [179]). Importantly, note that even if the subgroups are strongly im-
balanced within the positive class (digit 7: 20-80 %, digit 1: 5-95 %), Deep UCSL still manages
to correctly identify them. Concerning the 7-digit, we created a test set containing 400 digit-7
samples hand-labeled with the corresponding subgroup (with or without cross middle bar). We
present qualitative results in Fig.3.10 and quantitative results in Table 3.3, where Deep UCSL
outperforms unsupervised clustering, representation learning, and supervised methods in iden-
tifying the two subgroups. Contrastive Learning methods (e.g.: SimCLR, SupCon) produce
representations invariant to user-defined image augmentations. The choice of these augmen-
tations is crucial and limited. In practice, given a pathological dataset, a practitioner seeking
to discover subgroups may not know all sources of irrelevant variations. Furthermore, even if
all irrelevant sources of variations are known, they might not always be easily implemented
in practice. Deep UCSL does not need user-defined augmentations to produce representations
that are invariant to irrelevant sources of variability. It can automatically disregard the general
variability, common to both healthy and pathological datasets, and focus only on the specific
variability of the pathological samples.
In the MNIST experiment, we can notice that boldness is an important general source of varia-
tion (see Fig.3.10), common among all MNIST digits and thus irrelevant for subgroup discovery.
In order to encourage boldness invariance, we propose to simulate morphological augmentations
(erosion and dilation) during the training of contrastive learning methods (Morpho SimCLR and
Morpho SupCon). This design choice improves the representation quality for subgroup iden-
tification, demonstrating that a representation space invariant to general, irrelevant sources of
variations provides better features for subgroup discovery. However, this design choice is proba-
bly not enough, and we can observe that Morpho SimCLR and Morpho SupCon’s performances
are inferior to Deep UCSL’s. Please note that we also use geometric transformations for every
method (Deep UCSL included): a RandomRotation with ±25 degrees, a RandomAffine with
translate parameters of (0.1, 0.1), and a shear parameter set to 0.1.
By contrasting with healthy (negative) samples, the representation space of Deep UCSL cap-

83



tures more discriminative and fine-grained patterns related to the pathological (positive) vari-
ability than its Unsupervised Deep Clustering counterparts. Similarly, SupCon performs better
than SimCLR and BCE+K-Means (Classification with clustering on the representations).
We also compare with the best linear method on this experiment: UCSL [179], which directly
processes the pixels of the input image, which, by design, makes it sensitive to translation vari-
ability. On the contrary, due to its deep convolutional features extractor, (i.e: 4 convolutional
layers with 7 × 7 kernel, padding of 3, batch norms between each layer, numbers of channels:
16, 32, 64, 128, average poling layer onto a representation of size 128), Deep UCSL (and the
other deep neural network methods) is translation-invariant and can non-linearly process the
input pixels. Deep learning methods were trained with an Adam optimizer, a learning rate of
1e-5, trained during 75 epochs, and a batch size of 256.

Table 3.3: MNIST experiment about subgroup discovery of digit 7. Top (unsupervised) methods
are trained on 7 digits only. ”Morpho” methods have morphological data augmentations that
simulate digit boldness. For Representation Learning methods, clusters were fitted and inferred
using K-Means on the representations of positive samples only. We do not report the Class
Accuracy (7 vs rest), as it is always 100%.

Algorithm Subgroup B-ACC
Deep Cluster-v2 [40], [41] 0.540±0.032

PCL [169] 0.555±0.018
Morpho PCL 0.732±0.027
BYOL [109] 0.552±0.013
SCAN [278] 0.597±0.039
SwAV [41] 0.601±0.009

SimCLR [50] 0.634±0.007
Morpho SimCLR 0.721±0.021
AE + K-Means 0.776±0.007

MoE [332] 0.5±0.0
BCE + K-Means 0.633±0.020

SupCon [153] 0.669±0.066
Morpho SupCon 0.808±0.018

UCSL [179] 0.815±0.009
Deep UCSL with soft pseudo-labels 0.816±0.017
Deep UCSL with hard pseudo-labels 0.895±0.014

Deep UCSL without SK 0.908±0.008
Deep UCSL 0.920±0.015
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Neuro-psychiatry application.

We create another dataset for subgroup identification comprising 3D MRI T1 weighted images
of the brain. The healthy class contains Healthy Controls (HC=686), and the disorder class,
Mental Disorders (MD), comprises two subgroups: 1) patients with Schizophrenia (SZ=275),
from SCHIZCONNECT [292], and 2) patients with Bipolar Disorder (BD=307), from BIOBD
dataset [245]. Voxel-based morphometry (VBM) is performed with CAT12 [98, 99] to prepro-
cess the images. The analysis pipeline includes non-linear spatial registration on a standard
template (MNI), Gray Matter (GM), White Matter (WM), and Cerebrospinal Fluid (CSF)
tissue segmentation, bias correction and segmentations modulation. VBM images are made
isotropic with 1.5mm3 spatial resolution, and the output dimension is 121× 145× 121. From
there, images are cropped to 121×121×121 and padded to reach a dimension of 128×128×128.
Voxel values are centered on a unit-gaussian distribution per image (i.e: mean of voxels of 0, the
standard deviation of voxels of 1). With CAT12, we further compute GM volumes averaged on
the Neuromorphometrics atlas that includes 142 brain cortical regions of interest (ROIs). For
Deep Learning methods, we use the pre-processed GM-only images as inputs of a 3D-DenseNet
deep encoder, as in [73]. For the linear method UCSL, we consider the GM ROIs features.
In Table 3.4, we show the subgroup identification capability of Deep UCSL compared with
related works. All evaluation criteria are computed on an independent TEST set (199 HC, 190
SZ, 116 BP), coming from the BSNIP cohort [271], with different acquisition sites. Controls
and patients share common (thus irrelevant) sources of variations (e.g.: age, sex, acquisition
site). Please note that this is a challenging subgroup discovery problem given the: high di-
mensionality of 3D brain images, the subtle differences between healthy controls and patients,
the few training data, the continuum between both diseases, and the different acquisition ma-
chines/protocols. To compare with an upper bound, we train a Deep Neural Network to classify
between SZ and BD in a fully supervised manner with a Binary Cross-Entropy (BCE). For all
neuro-psychiatric deep methods, including Deep UCSL, we chose a batch size of 8, and the
data augmentation strategy is similar to [73, 77]. Deep learning methods were trained with an
Adam optimizer, learning rate 1e-5 during 100 epochs.

Interestingly, it seems that the UCSL method’s performance highly depends on the feature
extraction step. In particular, when using as features the latent vectors of a Variational Au-
toEncoder (VAE)[150] (with an architecture similar to [180]), the performances decrease. On
the other hand, when using highly specific features obtained from more than 20 years of research
(GM ROI features with age confound effect correction), performances are among the best. We
argue that Deep UCSL provides an end-to-end subgroup discovery method that needs no prior

85



Table 3.4: Results on Neuro-psychiatry task (BP/SZ) on an independent TEST set.
Upper methods are trained on [SZ+BP] only.

Algorithm Subgroup B-ACC Class B-ACC Overall B-ACC
Deep Cluster - v2 [40], [41] 0.517±0.010 × ×

PCL [169] 0.542±0.030 × ×
SwAV [41] 0.522±0.008 × ×
SCAN [278] 0.509±0.008 × ×
SimCLR [50] 0.571±0.017 × ×
BYOL [109] 0.508±0.006 × ×

VAE [150] + UCSL [179] 0.5348±0.016 0.588±0.013 0.459±0.018
BCE + K-Means 0.507±0.005 0.653±0.025 0.428±0.038

SupCon [153] 0.550±0.014 0.656±0.017 0.458±0.017
GM ROI features [99] + UCSL 0.590±0.016 0.653±0.012 0.525±0.011

Deep UCSL 0.589±0.011 0.671±0.018 0.543±0.014
CE (upper bound) 0.615±0.007 × ×

knowledge about the feature extraction step and leads to better or similar performances. In
particular, in the following two applications, the manual feature extraction step is highly com-
plex and less performing since, compared to neuro-imaging, less research has been conducted.
In that case, it is thus highly beneficial to have an end-to-end method with a trainable feature
extractor, as Deep UCSL.

Pneumonia subgroup identification.

Here, we propose to address the identification of two subgroups in pediatric medicine: viral
pneumonia and bacterial pneumonia. We use the same training and testing datasets as in [146].
For the training set, we choose a balanced subset of 1341 viral samples, 1341 bacterial samples,
and 1341 healthy samples. The testing set contains 234 healthy samples, 242 bacterial samples,
and 148 viral samples, see Sec.B.5.3 in the Appendix for more details about the dataset. For
this application, we use the same architecture and image sizes for every method (except for
VAE, where we chose an experimental setup similar to [142]), namely, a ResNet-18 (pre-trained
on ImageNet) and 2242 pixels images. We trained the methods for 50 epochs, a batch size
of 256, and an Adam optimizer with a learning rate 1e-5. We present quantitative results in
Table 3.5 where Deep UCSL is the best performing method in the subgroup identification task.
In Fig. 3.11, we display the nearest images from each subgroup centroid. We observe distinct
pathological patterns that are specific to bacterial and viral pneumonia. These results illustrate
how practitioners can leverage a Subgroup Discovery method to stratify a pathology.
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Table 3.5: Comparison of different methods for the viral/bacterial subgroup identification along
with diagnosis classification. Upper methods are trained on disorder samples only.

Algorithm Class B-ACC Subgroup B-ACC Overall B-ACC
DeepCluster-v2 [40], [41] × 0.814±0.008 ×

PCL [169] × 0.773±0.055 ×
SwAV [41] × 0.815±0.006 ×
SCAN [278] × 0.576±0.059 ×
SimCLR [50] × 0.741±0.027 ×
BYOL [109] × 0.748±0.034 ×

VAE [150] + UCSL [179] 0.734±0.020 0.731±0.004 0.646±0.007
BCE + K-Means 0.917±0.012 0.560±0.014 0.752±0.007

SupCon [153] 0.895±0.004 0.576±0.036 0.744±0.008
Deep UCSL without SK 0.880±0.019 0.847±0.037 0.812±0.017

Deep UCSL 0.886±0.010 0.835±0.007 0.820±0.012
CE (upper bound) × 0.891±0.005 ×

Figure 3.11: A qualitative figure of 4 pneumonia images associated with the most certain
subgroup prediction inferred by the clustering head pθ,ϕ(c|x). We can observe pathological
patterns used by experts in practice: bacterial pneumonia typically shows a lobar consolidation
in one of the lungs (red arrows), whereas viral pneumonia exhibits diffuse interstitial patterns
in both lungs [146] (blue arrows).

Retinal pathology applications

We ultimately validate our method on the discovery of disorder subgroups in retinal pathologies.
We evaluate our performance on two different data sets. For both experiments, we use the
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same setup for every method (except for VAE, where we chose an experimental setup similar
to [142]), namely, a ResNet-18 (pre-trained on ImageNet) and 2242 pixels images. First, we use
the Retinal Pathology OCT (Optical Coherence Tomography) dataset introduced in [146]. The
train set comprises 3,000 healthy and 3,000 diseased eye images divided homogeneously into
3 disease subgroups: Choroidal Neo-Vascularization (CNV), Diabetic Macular Edema (DME)
and Drusens in age-related macular degeneration. The test set comprises 242 healthy samples
and 242 samples for each pathological subgroup. For this experiment, quantitative results
are shown in Table 3.6. As in the previous section, qualitative results in Fig 3.12 show that
the closest TEST images to subgroup centroids show distinct pathological patterns that are
specific to each retinal pathology. Again, this satisfactory result illustrates how practitioners
can leverage a Subtype Discovery method to stratify and better interpret pathological images.
We also use the Ocular Disease Intelligent Recognition (ODIR) dataset2, which contains 1,890
healthy and 1,391 diseased patients, divided heterogeneously into 5 disease subgroups: Diabetes,
Glaucoma, Cataracts, Age-related macular degeneration, and pathological Myopia. The test
set contains 210 healthy and 155 pathological samples,divided heterogeneously across disease
subgroups. Table 3.7 displays quantitative results. Deep UCSL performs better than all other
SOTA methods on the subgroup (and Overall) identification task. For both experiments, all
methods were trained with an Adam optimizer, learning rate 1e-5, 50 epochs, batch size of 256.

Table 3.6: Experiments on retinal OCT dataset [146] (3 subgroups).
Upper methods are trained on patients only.

Algorithm Class B-ACC Subgroup B-ACC Overall B-ACC
DeepCluster-v2 [40], [41] × 0.593±0.052 ×

PCL [169] × 0.428±0.022 ×
SwAV [41] × 0.563±0.073 ×
SCAN [278] × 0.449±0.045 ×
SimCLR [50] × 0.578±0.009 ×
BYOL [109] × 0.337±0.002 ×

VAE [150] + UCSL [179] 0.350±0.0017 0.585±0.026 0.369±0.016
BCE + K-Means 0.996±0.003 0.371±0.009 0.672±0.001

SupCon [153] + K-Means 0.999±0.001 0.618±0.002 0.732±0.001
Deep UCSL without SK 0.999±0.001 0.345±0.003 0.668±0.001

Deep UCSL 1.0±0.0 0.626±0.010 0.735±0.003
CE (upper bound) × 0.971±0.004 ×

2https://odir2019.grand-challenge.org/
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Figure 3.12: A qualitative figure of the retinal pathology four images associated with the most
certain predictions inferred by the clustering head pθ,ϕ(c|x). The most certain predictions of
cluster A (left) show choroidal neovascularization (CNV) (discontinued red arrows show neo-
vascularization evidence, discontinued blue arrows show subretinal fluid pouches). (middle)
Cluster B’s most certain predictions show drusens present in early age-related macular dementia
(AMD) (red arrows show extracellular deposits). (right) Cluster C’s most certain predictions
show diabetic macular edemas (DME) (blue arrows show intraretinal fluid).

Table 3.7: Experiments on ODIR dataset 1 (5 subgroups).
Upper methods are trained on patients only.

Algorithm Class B-ACC Subgroup B-ACC Overall B-ACC
DeepCluster-v2 [40], [41] × 0.533±0.023 ×

PCL [169] × 0.308±0.009 ×
SwAV [50] × 0.415±0.026 ×
SCAN [278] × 0.467±0.043 ×
SimCLR [50] × 0.452±0.033 ×
BYOL [109] × 0.287±0.026 ×

VAE [150] + UCSL [179] 0.532±0.030 0.309±0.047 0.469±0.023
BCE + K-Means 0.728±0.006 0.424±0.038 0.548±0.027

SupCon [153] + K-Means 0.716±0.002 0.524±0.021 0.575±0.012
Deep UCSL without SK 0.736±0.001 0.371±0.061 0.522±0.024

Deep UCSL 0.732±0.003 0.560±0.020 0.619±0.006
CE (upper bound) × 0.737±0.003 ×

3.2.7 Discussion and Conclusion

In this work, we proposed, to the best of our knowledge, the first deep-learning method for
Disease Subgroup Discovery that contrasts with healthy controls. Our work is motivated by
the failure of linear methods, such as UCSL and HYDRA, when latent subgroups stem from
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non-linear patterns in input images, which are difficult to capture with manual feature engi-
neering. To do so, we took inspiration from UCSL to derive our objective and motivate the
use of a deep encoder network as a feature extractor. As in UCSL, we use an Expectation-
Maximization optimization process to alternate between the subgroup pseudo-labels estimation
and the classification of each subgroup from the healthy class. Differently from UCSL, we mo-
tivate the need for a clustering regularization to update the encoder’s representation so that
we can correctly discriminate the pathological subgroups and encourages healthy samples not
to belong to a pathological subgroup. Furthermore, this regularization guarantees the mono-
tonical convergence of the optimization procedure.
Importantly, the addition of deep neural networks, compared to UCSL, was not trivial. Notably,
the pseudo-label supervision raises two problems already described in the Deep Clustering liter-
ature: clustering degeneration and clustering re-identification (across epochs). Inspired by the
Optimal Transport algorithm Sinkhorn-Knopp, we successfully designed two distinct strategies
to tackle these issues. Concerning clustering re-identification, we develop a manner to ensure
a bijective mapping between K former centroids and K updated centroids. As for clustering
degeneracy, we took inspiration from existing methods to develop a Soft K-Means algorithm
regularized to respect (up to a certain threshold ϵ) the equipartition of training samples across
the subgroups. Intriguingly, we show in the experiments that our method remains robust to
highly imbalanced Subgroup Discovery cases.
In medical imaging research, subgroups are usually not known in advance, and practitioners
lack unsupervised proxy measures to assess the relevance of the inferred subgroups. In order
to evaluate our method, we conceived datasets where the subgroup evaluation can be quanti-
tatively measured. We thus demonstrated, through quantitative and qualitative evaluations,
that our method could help practitioners identify subgroups within pathological samples in
real-world scenarios. Still, in our method, the number of subgroups K needs to be chosen by
the practitioners before the model training, even though it could be unknown a priori. The
choice of this hyper-parameter might thus be difficult and it points out the need for an un-
supervised proxy measure to evaluate the quality of inferred subgroups. Another interesting
perspective would be the extension of the proposed model to regression and multi-classification
applications, which may be also relevant to medical imaging.
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3.3 The discovery of two schizophrenia biotypes with UCSL

3.3.1 Abstract

Background: Psychiatric diseases are still poorly understood and researchers have had trou-
ble finding consistent biomarkers that may explain such pathologies. One key to overcoming
this situation would be to successfully parse the neurobiological heterogeneity in the population
suffering from psychiatric disorders.
Study design: In this article, a cohort with schizophrenia disorder is analyzed with the help of
a novel subtype discovery Machine Learning method. The cohort encompasses samples coming
from multiple sites of acquisition, either healthy or suffering from schizophrenia. The Subtype
discovery method is called UCSL and was specifically designed to find subtypes that stem from
disorder-specific factors of variability rather than factors in common with the healthy popu-
lation. Anatomical variations captured thanks to structural T1w MRIs were studied. These
variations were summed up in local volumetric measures thanks to the CAT12 MRIs process-
ing pipeline. Two schizophrenia subtypes were found, each representing 87% and 13% of the
schizophrenia population, and were equally distributed in terms of age distribution and sex
repartition.
Study results: Statistical analyses with cognitive and clinical scales were performed concern-
ing subgroups’ associated components. Component A shows an overall cognitive decline on 8
out of 9 cognitive scales, and component B revealed a cognitive decline on 2 out of 9 cognitive
scales. In terms of clinical psychiatric scales that were also analyzed, component A correlated
with 5 different clinical scales, indicating a global disorder severity along that dimension. Com-
ponent B correlated with 4 clinical scales and suggested a mildly less severe global disorder
severity. Regarding gray matter atrophies, more global overall atrophy in around 90 regions of
interest along component A was found and a set of 5 local gray matter atrophies along compo-
nent B was identified.
Conclusions: Our analysis shows the importance of analyzing dimensions with respect to sub-
groups as psychiatric traits likely stem from continuous alterations from healthy populations
toward disorder biotypes. Yielding statistical correlations that consider the heterogeneity of
the disorder and its subtypes with respect to the healthy population seems to be a promising
idea to enhance key findings in schizophrenia mechanism understanding. Interestingly, both
components, though neuroanatomically independent, led to the same clinical affections, but
slightly different cognitive issues. These findings enrich the field of possibilities to develop
clinical trials and precision-medicine drugs that are tailored on biological insights rather than
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clinical and cognitive observations.

3.3.2 Introduction

The identification of consistent biomarkers in schizophrenia is crucial to understanding the
mechanisms that underpin schizophrenia disorder and to develop personalized treatments [2,
96, 135, 304]. However, this disorder appears extremely heterogeneous in terms of clinical
[64, 86, 277], genetic [231, 260, 15] and neuroanatomic [57, 186, 89] patterns. Therefore, recent
research has attempted to stratify the disorder into homogeneous biotypes [127, 78, 57] which
may enhance diagnosis detection and drive the search for relevant biomarkers by maximizing
the signal-to-noise ratio [78].
Currently, the nosology and the diagnosis assessment in the psychiatric clinical routine are
based on clinical observations and questionnaires. Notably, some works have attempted to
refine the schizophrenia disorders’ nosology based on cognitive [301, 298, 124], or clinical obser-
vations [186, 287, 156]. However, several initiatives motivated the need for identifying biological
biomarkers rather than behavioral markers, to build a nosology that bridges the heterogeneous
behavioral observations with the underlying biological processes. Notably, recent efforts have
focused on studying the correlations between neuro-anatomical variations and behavioral bio-
types [301, 320, 305, 186, 156]. Therefore, neuroanatomical patterns can be observed in a
non-invasive manner and tangibly result from the interaction between polygenic risk factors
and environmental stress factors [231, 111].
Prior research attempts have used an unsupervised clustering algorithm to group patients with
similar anatomical patterns. For instance, one method [301] using the k-means algorithm
identified two clusters, a cognitively impaired and a preserved subtype, which correlated with
atrophies in basal ganglia and cerebellum areas. Another unsupervised clustering algorithm to
find two subgroups with differences in cognitive performance and illness duration. However,
these differences may take root from differences in terms of age, sex, and other factors of vari-
ability that also exist in the healthy population.
Prior research attempts have been undermined by confounding variables such as age, sex, and
acquisition site. Although methods [289, 94, 95, 103] have been developed to evict these con-
founding factors, neuroanatomical variability remains dominated by non-specific factors that
may underpin the neuro-anatomical-based subtype discovery. All the more so as these con-
founding factors are not strictly limited to known covariates such as age, sex, or acquisition
sites as other factors may come into play such as IQ, education, ethnicity, urbanicity, etc...
Another range of methods, entitled normative models [195, 194, 196, 149, 148] proposed to
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chart the natural variability of a brain modality with respect to covariates of interest. These
methods enable overcoming the confounding issues raised by variables such as age, sex, or ac-
quisition site. However, given age, sex, and site, for instance, it requires estimating the healthy
variability among individuals of the same age, and sex and coming from the same acquisition
site.
Another line of research investigated hybrid methods [127, 179, 280, 270, 62, 45] designed to
spot the bio-markers that are useful to discriminate healthy controls from patients. Then, by
focusing on contrasting biomarkers, these methods are designed to identify differences among
the disorder effects. Therefore, it enables the production of clusters based on variability that is
not driven by common characteristics (age, sex, or education for example). Instead, it focuses
on neuro-anatomical deviations that correlate with disorder-related traits (positive symptoms,
negative symptoms, cognitive decline, speech disorganization, psychosis, etc. . . ).
For a clear understanding, we propose to entitle the common factors between healthy and
diseased populations: general variability. Concerning the traits that characterize the hetero-
geneity within the disorder, we call it: specific variability. The general and specific variability
differences are illustrated in Fig. 3.13.

Figure 3.13: Subtype discovery in clinical research. Given a healthy population (black) and
a pathological population (red) (left plot), we assume the existence of homogeneous subtypes
within the disorder. However, the general variability (which stems from age or sex, for ex.)
is observed in both healthy controls and patients. Therefore, a naive clustering of patients
often yields a non-specific solution (middle plot). Nevertheless, the use of a classification task
(healthy controls vs patients) helps to find direction(s) (horizontal arrow) that discards non-
specific variability to emphasize more disorder-related differences (right plot).
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3.3.3 Materials and methods

Study sample and image acquisition Neuroimaging data from several studies were pooled
together to produce this analysis. The different studies contain Healthy Control (HC) and pa-
tients with Schizophrenia (SZ). In detail, we used SCHIZCONNECT [292] (368 HC and 275 SZ)
and BSNIP [271] (199 HC, 190 SZ). SCHIZCONNECT-VIP encompasses 4 publicly available
cohorts of controls and patients with schizophrenia. These cohorts encompass heterogeneous
acquisition scanners and geographical sites. Regarding the cohort Bipolar and Schizophrenia
Network for Phenotype Analysis (BSNIP), images were acquired at 5 different centers with
3T scanners across the United States of America. We chose neuro-imaging features related to
the local volumes of brain gray matter measured in 142 regions of interest (identified using to
CAT12 software [98, 99] from the SPM toolbox).

Figure 3.14: Demographic and acquisition statistics of the dataset.

Subtype Discovery within a pathology with UCSL In this work, we propose to use a
recent machine learning algorithm for subtype discovery, called UCSL [179], to identify sub-
types in schizophrenia. We identify subtypes based on structural neuro-biomarkers rather than
symptoms. This Subtype discovery method aims at identifying subtypes describing the specific
variability that is proper to a given pathology.
More specifically, UCSL proposes to identify the specific variability by jointly optimizing a set of
linear supervised classifiers and a clustering method. Iteratively, the linear models are trained
to classify each inferred disorder subtype from the healthy samples. Then, the clustering
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method refines its subtypes inference by leveraging the linear model coefficient to put more
emphasis on the features likely to be important in the discrimination task. Therefore, to
identify the sources of variability within the disorder, UCSL performs a clustering that only
captures the components useful for the classification task. Thus, the identified subtypes do
not rely on general variability, such as age, sex, or education for example, but rather on the
specific variability that is proper to the pathological population. Moreover, as it consistently
ignores the features that do not help the classification task, UCSL does not need the use of any
additional strategy to disentangle confounding variables. UCSL also points out components of
interest, i.e.: independent groups of features that separate the healthy population from each
subgroup. These components enable us to perform statistical analyses that take into account
a potential continuum between the general healthy population and each of the subgroups. We
depict the training scheme in Fig. 3.15.

Reproducibility analysis and hyper-parameters The optimal hyper-parameters were
determined using a reproducibility analysis. Several hyper-parameters are of particular interest,
some others were chosen by default, as proposed in the original method UCSL. Of interest, the
number of subtypes is crucial and its choice will determine the tone of the following analysis.
Additionally, the choice of the linear classification method and the choice of the clustering
method embedded within UCSL have a severe impact on the subtype inference. In our study,
we assume that the subtypes discovered are the most relevant when their inference is the most
stable and reproducible. A measure of reproducibility and stability was performed as proposed
in similar methods [280].

In detail, an average measure with a standard error was produced by successively splitting (10
times) the dataset into train and validation sets (respectively 66.66% and 33.33%). Given a set
of parameters, for each split, we fit an instance of UCSL on the training set. Then, we produce
a clustering inference on SZ samples of the validation set. Finally, we compute the similarities
between each clustering inference of a given set of parameters. The similarity measure we chose
was the Adjusted Rand Index Score (ARI).

We found that a solution with 2 clusters was the most reproducible and stable (Adjusted Rand
Index Score: 0.661±0.324). Other hyperparameters were chosen thanks to this reproducibility
analysis. Notably, the type of covariance matrix used in the Gaussian mixture method embed-
ded in UCSL was chosen between a full covariance matrix and a spherical covariance matrix.
The latter was shown to be the most reproducible. The linear model embedded in UCSL was
picked between a Support Vector Classifier and a Logistic Regression. The latter, with a tol-
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Figure 3.15: A scheme of the method UCSL. The Machine Learning method UCSL iterates
between a clustering step and a classification step until the discovered subtypes are stable.
Given gross clusters, a classification boundary is estimated for each subtype (vs Healthy con-
trols). This classification step is illustrated in the left plot. Given a set of linear classifiers,
we extract a set of components (arrows) that discriminate healthy controls from pathological
subtypes. Then, these components are leveraged to guide the clustering step. The clustering
step refines the subtype inference by weighting the features according to their importance in
the classification task. Hence, it ensures that the subtypes stem from variability that is specific
to the disorder.
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erance parameter C=1, seemed to be the most reproducible. Also, the best stability threshold
in order to decide when to stop UCSL Expectation-Maximization iterative optimization was
found to be ARI= 0.85 (among [0.85, 0.9, 0.95]).

Furthermore, in order to guarantee reproducibility with respect to the initialization we propose
a model selection process. First, the UCSL algorithm was trained 100 times, with a different
initialization each time. For a given run i, we calculated the average Rand Index Score metric
between the clustering i and all of the other runs clustering (so that j ̸= i). Then, the method
that produces the clustering that is the most similar to the others was chosen. Therefore, this
easy process enables us to obtain the fitted method which is the most similar to the others.
Notably, it guarantees that we do not tune the random seed to obtain our results and it ensures
the exact reproducibility of the method. We wish to encourage subtype discovery relative works
to employ this process or to discuss this point.

A measure of the disorder-specific of identified subgroups In its description, we guar-
anteed that UCSL embeds the disorder-specific variability exhibition in its core (with respect
to the common variability with the healthy population). Nevertheless, we still propose a simple
and reproducible process to measure how disorder-specific the inferred clustering is.

As assumed earlier, an ill-posed clustering method is likely to yield clusters based on common
variability (e.g.: young vs old patients). Hence, the clustering inference of patient samples
should be similar whether the method was fitted on healthy controls or pathological patients.
On the contrary, it is unlikely for a method like UCSL because it stems its clustering rule from
the disorder-specific variability only. Therefore, a quantitative measure of how a clustering
method exhibits disorder-specific variability can be made. For that, it simply needs to estimate
the correlation between the clustering yielded by the method fitted on the healthy population
and the method fitted on the diseased population.

The Adjusted Rand Score metric was chosen as a similarity measure between two clustering
inferences. This similarity score is standard. Anyway, we observed the same results when
choosing the Adjusted Mutual Information Score or the Chi-squared test. An average measure
with a standard error was produced by successively splitting (10 times) the dataset into train
and validation sets (respectively 66.66% and 33.33%). Given a split, we fit an instance of
UCSL to discover subtypes within the SZ population while contrasting with the healthy control
population. Then, we fit another instance to cluster the healthy samples while contrasting
them with the population of patients. Finally, we infer two clusterings (one per instance) on
the validation set SZ samples and estimate the similarity between both inferences. To compare
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with, we propose to fit a K-Means instance to discover clusters within the SZ population. Then,
we fit another instance to cluster the healthy population. Hence, we infer two clusterings (one
per instance) on the validation SZ samples and estimate the similarity between both clusterings.
The disorder-specificity score found with the fully unsupervised methods K-Means was ARI=
0.367±0.061. The results show that a naive clustering method yields a similar clustering if fitted
on a healthy or diseased population. This demonstrates the need to use methods that explicitly
search patterns that are proper to the pathological samples. On the other hand, UCSL yields
a dissimilar clustering (ARI= 0.0 ± 0.0) when looking for subtypes in the pathological (resp.
healthy) population while contrasting with the healthy (resp. pathological) population.

3.3.4 Results

Two subtypes, entitled subtypes A and B, were identified along corresponding components
thanks to the previously described process. These subtypes respectively represent 427 samples
(87.68%) and 60 samples (12.32%) among the SZ patients. Subtypes are equally distributed
in terms of age (average values of respectively 34.1 ± 0.61 and 32.2 ± 1.48) and sex (average
percentage of females of respectively 0.28± 0.02.

Figure 3.16: Distribution of metadata across the subtypes. (upper left plot) average population
age for a healthy population and per subtype. (upper right plot) average population gender for
a healthy population and per subtype. No significant differences were found when comparing
the distributions of age and sex between the subtypes.

Fig. 3.16 illustrates the differences in terms of age and sex distributions between the subtypes
and the healthy population. In terms of global atrophy, the patients within subgroup A show
a reduced volume of white matter (WM) and gray matter (GM) compared to healthy samples
and to subtype B, this is illustrated in Fig. 3.17. Concerning the volumes of cerebrospinal fluid
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Figure 3.17: Differences in terms of average grey and white matter volumes. (upper left plot)
average population age for a healthy population and per subtype. (upper right plot) average
population gender for a healthy population and per subtype. No significant differences were
found when comparing the distributions of age and sex between the subtypes.

(CSF), no significant differences were observed between the subtypes A and B.

3.3.5 Compute cognitive and clinical measures associations

In order to produce an analysis that is more suited to this assumption, we searched for correla-
tions between phenotype scores and directions (ie: dimensions) rather than with homogeneous
subtypes. In practice, for each inferred subtype, UCSL provides an associated component for
each subgroup in the original features space. These dimensions can be decomposed into an or-
thonormal basis in order to project inputs onto a plot which illustrates the discovery of subtypes
and their associated components, Fig. 3.18.

Linear correlations adjusted for age and sex were run in order to assess the correlation be-
tween our components and the clinical and cognitive scores. Given a clinical or cognitive scale,
we assess how component A (resp. B) correlates with the clinical or cognitive measures of
healthy and subgroup A’s (resp. subgroup B’s) patients with a regression model implemented
with the library statsmodel in Python. The psychiatric scores we considered were the follow-
ing: SIPSD (Structured Interview of Disorganization Symptoms), SIPSG (General Symptoms),
SANS (Scale for Assessment of Negative Symptoms), SAPS (Scale for Assessment of Positive
Symptoms), and MADRS (Montgomery Asberg Depression Rating Scale). Component A shows
a correlation between multiple of the whole spectrum of psychiatric scales and a severe global
cognitive decline (except for TMT B - A). Component B exhibits correlations with all clinical
scales except for the general symptoms scale, and with two cognitive scales: the WMS logical
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Figure 3.18: Projections of the brain gray matter volumes onto UCSL’s 2D orthonormalized
latent space and atlases of gray matter deviations along pathological components, red zones:
atrophies, blue zones: hypertrophies. Red and blue axes show the discriminative dimensions
between healthy controls and schizophrenia subtypes. Discriminative dimensions were found
with the UCSL algorithm. (left plot) To take into account the continuum between the subtypes,
statistical correlations between the discriminative components and the cognitive and clinical
scores were estimated. The component A was found to be associated with a global cognitive
decline and more severe overall symptoms manifestation. Component B also revealed an overall
association with clinical scales but less severely, however, it only correlates with two cognitive
scales that measure verbal episodic memory, and goal maintenance in working memory. (right
plot) In terms of atrophy patterns, component A revealed a global gray matter atrophy over
around 90 regions of interest and bilateral hypertrophies in the putamen, palladium, caudate,
and brain stem, while component B revealed a set of local gray matter atrophies in the precuneus
(bilaterally), in the peripheral area of the lateral right ventricle, left supramarginal gyrus, and
right fusiform.

memory measure and the AX-CPT scale that measures goal maintenance in working memory.
A summary of these associations with the clinical variables of interest is displayed in Fig .3.19.

We also compared the distributions of the cognitive and clinical measures between the subgroups
with a statistical correlation computed at the group level. We found no significant differences
in terms of clinical scales, and only two significant differences in terms of cognitive scales as
subgroup A’s patients appeared more affected on language skills tests (WAIS vocabulary),
and the verbal, short-term, and working, memory test (WMS digit span) than subgroup B’s
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patients.

Figure 3.19: Correlations between the clinical, and cognitive scales and the components inferred
by UCSL. In detail, a linear regression adjusted for age and sex covariable was fitted to regress
the cognitive scores from two components (associated with Subgroup A or with Subgroup B).
This table reports the t-test and the p-value associated with the components variable. Besides,
we also provide the statistical tests between the subgroups distributions of cognitive and clinical
scales.

3.3.6 Identifying and analyzing neuro-anatomical deviations

To identify an underlying set of bio-markers that code for each subtype, we computed corre-
lations for each region of interest between gray matter volumetric measures and each of the
subgroup’s components. Precisely, we assess how component A (resp. B) correlates with each
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region of interest gray matter volumetric measures of healthy and subgroup A’s (resp. subgroup
B’s) patients with a regression model adjusted for age and sex implemented with the library
statsmodel in Python. We thus compute a set of correlations between biological readouts and
the subgroup attribution score (projection of each individual’s data point on the subgroup’s
component). Component A revealed a global gray matter atrophy over around 90 regions of
interest and bilateral hypertrophies in the putamen, palladium, caudate, and brain stem, while
component B revealed a set of local gray matter atrophies in the precuneus (bilaterally), in the
peripheral area of the lateral right ventricle, left supramarginal gyrus, and right fusiform.

Figure 3.20: Atrophies map when comparing Subgroup A and Subgroup B (adjusted on age
and sex covariates). Red zones show atrophies of subgroup B compared to Subgroup A. Blue
zones show atrophies of subgroup B compared to Subgroup A. We observe a general atrophy
of the Subgroup A compared to the Subgroup A.

3.3.7 Conclusion and Discussion

In this article, we proposed to identify consistent subtypes within a population suffering from
schizophrenia disorder. Two subtypes were obtained by using UCSL, a subtype discovery
method that also extracts a set of independent components of interest. This method ensures
that the discovered subtypes and components stem from disorder-specific features by contrasting
them with a healthy population. A disease-specificity measure was proposed, and coherent
results were found when comparing UCSL with a naive k-means algorithm. The stability and
reproducibility of the results were ensured for reproducibility.
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Our results indicate the discovery of two subtypes, evenly distributed in terms of age and sex
repartition. Subgroup B represents 13%, while subgroup A represents 87% of the schizophrenia
cohort. Differently from subgroup B, subgroup A exhibits a clear gray and white matter overall
loss compared to the healthy population. Our analysis revealed that both subgroups do not
differ clinically, even though different biological abnormalities underpin them. Subgroups are
yet different in terms of cognitive abilities, with subgroup B being more preserved than subgroup
A. A set of only five gray matter local atrophies was identified in subgroup B, while subgroup
A demonstrates clear generalized gray matter atrophies on around 90 regions of interest.
Although we assumed the existence of homogeneous sub-groups among schizophrenia (e.g:
paranoic, psychotic, etc. . . ) patients, we performed statistical correlations with respect to
components (i.e.: directions) rather than per subgroups. This allows us to analyze how each
subgroup differs from the healthy general distribution while considering a potential severity
gradient along the subgroup’s associated component. To justify this choice, we refer to the
DSM 5: it argues that each individual suffering from a psychiatric disorder may lie on a
continuum rather than in dichotomous categories [69].
Interestingly, the subgroups we identified were not significantly different in terms of clinical
phenotype, yet they stem from drastically different neuro-anatomical atrophy patterns. In-
terestingly, this result suggests that different biological processes can underpin the same clin-
ical phenotype, which would explain why clinical-based stratifications have failed to produce
relevant biotypes. Nevertheless, the subgroups we discovered still differ regarding cognitive
abilities, suggesting that distinct neuro-anatomical abnormalities lead to distinct cognitive and
behavioral phenotypes.
We believe that his work has discovered a clear, biologically deviating subgroup in schizophre-
nia on behalf of subgroup B. This subgroup represents only 13% of the cohort and clearly
differs from the rest of the patients while remaining statistically distinguishable from healthy
patients. In future works, our research team will attempt to reproduce these findings in inde-
pendent cohorts and search for associations with fine-grained clinical symptoms (e.g.: loss of
self, anhedonia, visual or auditory delusions, etc. . . ), genetic patterns, and medication response.
Nevertheless, the subgroups remain highly heterogeneous in terms of clinical symptoms and
our method has not successfully disentangled each biomarkers-clinical scale’s associations. A
step forward would be to identify interpretable pathological distinct latent generative factors
in each of the subgroups we found to further parse the biological causes that underpin each of
the distinct clinical and cognitive scores measured in the clinical routine.
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Chapter 4

Contrastive Analysis in medical imaging
and neuroimaging

Chapter summary. This chapter investigates Contrastive Analysis methods, that aim at
estimating the latent distinct and interpretable generative factors that underpin the neurobio-
logical heterogeneity proper to the psychiatric disorder.
This field of statistical learning aims at separating ”common” and ”target” variability factors
given a ”source” dataset and a ”target” dataset. In this thesis, the goal is to estimate, on the
one hand, the projection that identifies healthy variability patterns and, on the other hand,
the projection that identifies the ”pathological signatures” that are exclusive to patients with
psychiatric disorders.
Initially, the chapter introduces a novel contrastive variational autoencoder method called Sep-
VAE. This method enhances existing approaches by incorporating a classification task within
the pathological space and integrating a cost function based on mutual information to minimize
redundancy between the common space and the pathological space. SepVAE’s effectiveness is
demonstrated through validation across various datasets, including vision, medical, and neu-
roimaging data.
Eventually, to provide a novel methodological perspective, a novel contrastive analysis strategy
entitled SepCLR was developed. This method extends the framework of contrastive anal-
ysis methods to another promising family of methods: contrastive representation learning.
These methodological contributions were then validated on vision, medical, and neuroimaging
datasets.
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4.1 SepVAE: a contrastive VAE to separate pathological

from healthy patterns

Context: The previous chapter produced insights about the modeling of the pathological het-
erogeneity within schizophrenia. Notably, two homogeneous subgroups were identified driven by
distinct neuroanatomical deviations, with comparable clinical profiles, but different cognitive
affections. These results suggested that distinct neuroanatomical deviations lead to distinct
cognitive and behavioral phenotypes, which justified the research and use of subgroup dis-
covery methods in psychiatric research. Nevertheless, the dominant subgroup we discovered
(comprising around 87% of the diseased cohort) remains largely heterogeneous in terms of neu-
roanatomical deviations (around 100 regions of interest concerned by gray matter atrophies)
and clinical profiles (with a decline on every clinical and cognitive scale). This observation
suggested that a large part of the schizophrenia cohort still encompasses several pathological
profiles. Besides, one could assume that these profiles may not be underpinned by homogeneous
subgroups, but rather by a sum of distinct pathological factors (a restricted set of neuroanatom-
ical deviations associated with a restricted set of clinical or cognitive scales). This change of
paradigm is illustrated in Fig. 4.1.

Motivation: At this point of the manuscript, the objective is to develop a method that
identifies the distinct and interpretable generative factors that are specific to the pathology
(i.e. that do not exist in the healthy population) without necessarily assum ing the presence of
homogeneous pathological subgroups. To address this objective, endeavors have been furnished
to investigate and develop Contrastive Analysis methods, and particularly Contrastive Analysis
Variational Auto-Encoders.
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Figure 4.1: Illustration of two different paradigms when modeling the pathological heterogene-
ity. (left) The Subtype Discovery paradigm assumes 1) that patients share common variability
(vertical axis) with healthy controls (white circles) and 2) that homogeneous subgroups can be
distinguished from disorder-specific variability (horizontal hyperplane), e.g. blue squares, blue
triangles, and red triangles. In the Subgroup Discovery paradigm, clusters are assumed to be
homogeneous and separable (separated with low-density zones). Subgroup Discovery methods
generally estimate subgroups by focusing on the projections that enable discriminating healthy
from patients (in that case, it disregards the vertical axis). (right) The Contrastive Analysis
paradigm assumes 1) that patients share common variability (vertical) with healthy controls
(white circles), and 2) that distinct and interpretable generative factors can be identified from
disorder-specific variability (horizontal hyperplane), e.g. color and shape continuous factors of
generation. Contrastive Analysis methods generally separate shared variability factors (vertical
projection) from disorder-specific variability factors (horizontal projections). In the contrastive
analysis setting, it is assumed that the data points are continuously distributed along the latent
factors of variability, there is thus a continuum in terms of shape (with squared-triangle data
points) and color (with purple data points).
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4.1.1 Abstract

Contrastive Analysis VAE (CA-VAEs) is a family of Variational auto-encoders (VAEs) that
aims at separating the common factors of variation between a background dataset (BG) (i.e.,
healthy subjects) and a target dataset (TG) (i.e., patients) from the ones that only exist in
the target dataset. To do so, these methods separate the latent space into a set of salient
features (i.e., proper to the target dataset) and a set of common features (i.e., exist in both
datasets). Currently, all models fail to prevent the sharing of information between latent spaces
effectively and to capture all salient factors of variation. To this end, we introduce two crucial
regularization losses: a disentangling term between common and salient representations and
a classification term between background and target samples in the salient space. We show
improved performance than previous CA-VAEs methods on three medical applications and a
natural images dataset (CelebA). Code and datasets are available on GitHub:
https://github.com/neurospin-projects/2023_rlouiset_sepvae.

4.1.2 Introduction

One of the goals of unsupervised learning is to learn a compact, latent representation of a
dataset, capturing the underlying factors of variation. Furthermore, the estimated latent di-
mensions should describe distinct, noticeable, and semantically meaningful variations. One way
to achieve that is to use a generative model, like Variational Auto-Encoders (VAEs) [150, 122]
and disentangling methods [122, 35, 256, 325, 49, 9, 167]. Differently from these methods,
which use a single dataset, in Contrastive Analysis (CA), researchers attempt to distinguish
the latent factors that generate a target (TG) and a background (BG) dataset. Usually, it is
assumed that target samples comprise additional (or modified) patterns with respect to back-
ground data. The goal is thus to estimate the common generative factors and the ones that
are target-specific (or salient). This means that background data are fully encoded by some
generative factors that are also common with the target data. On the other hand, target
samples are assumed to be partly generated from strictly proper factors of variability, which we
entitle target-specific or salient factors of variability. This formulation is particularly use-
ful in medical applications where clinicians are interested in separating common (i.e., healthy)
patterns from the salient (i.e., pathological) ones in an intepretable way.

For instance, consider two sets of data: 1) healthy neuro-anatomical MRIs (BG=background
dataset) and 2) Alzheimer-affected patients’ MRIs (TG=target dataset). As in [139, 12, 178],
given these two datasets, neuroscientists would be interested in distinguishing common factors
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of variations (e.g.: effects of aging, education or gender) from Alzheimer’s specific markers
(e.g.: temporal lobe atrophy, an increase of beta-amyloid plaques). Until recently, separating
the various latent mechanisms that drive neuro-anatomical variability in neuro-degenerative
disorders was considered hardly feasible. This can be attributed to the intertwining between
the variability due to natural aging and the variability due to neurodegenerative disease de-
velopment. The combined effects of both processes make hardly interpretable the potential
discovery of novel bio-markers.
The objective of developing such a Contrastive Analysis method would be to help separate these
processes. And thus identifying correlations between neuro-biological markers and pathologi-
cal symptoms. In the common features space, aging patterns should correlate with normal
cognitive decline, while salient features (i.e.: Alzheimer-specific patterns) should correlate
with pathological cognitive decline.
Besides medical imaging, Contrastive Analysis (CA) methods cover various kinds of applica-
tions, like in pharmacology (placebo versus medicated populations), biology (pre-intervention
vs. post-intervention cohorts) [324], and genetics (healthy vs. disorder population [140], [112]).

4.1.3 Related works

Variational Auto-Encoders (VAEs) [150] have advanced the field of unsupervised learning by
generating new samples and capturing the underlying structure of the data onto a lower-
dimensional data manifold. Compared to linear methods (e.g., PCA, ICA), VAEs make use
of deep non-linear encoders to capture non-linear relationships in the data, leading to better
performance on a variety of tasks.
Disentangling methods [122, 35, 256] enable learning the underlying factors of variation in the
data. While disentangling [325, 49] is a desirable property for improving the control of the
image generation process and the interpretation of the latent space [9, 167], these methods are
usually based on a single dataset, and they do not explicitly use labels or multiple datasets to
effectively estimate and separate the common and salient factors of variation.
Semi and weakly-supervised VAEs [199, 151, 192, 142] have proposed to integrate class labels
in their training. However, these methods solely allow conditional generalization and better
semantic expressivity rather than addressing the separation of the factors of variation between
distinct datasets.
Contrastive Analysis (CA) works are explicitly designed to identify patterns that are unique
to a target dataset compared to a background dataset. First attempts [327, 4, 100] employed
linear methods in order to identify a projection that captures the variance of the target dataset
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Figure 4.2: SepVAE reconstructions on BRATS 2021 dataset [208]. (Middle) full reconstruc-
tions using the estimated common and salient latent vectors. (Right) common-only recon-
structions using the estimated common latent vectors and fixing the salient factors to s′. The
common latent variables encode the healthy factors of variability (e.g. : brain shape and as-
pect), while the salient factors encode the pathological patterns (e.g. : tumors), which are not
visible in the right columns (common-only).
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Figure 4.3: Illustration of SepVAE training. Target and background images are encoded with
the same encoders eϕs and eϕc . The first encoder eϕs estimates the salient factors of variation
s of the target samples (y = 1). Background samples (y = 0) salient space is set to an
informationless value s′ = 0. The second encoder eϕc estimates the common factors c. Images
are reconstructed using a single decoder dθ fed with the concatenation of c and s.

while minimizing the background information expressivity. However, due to their linearity,
these methods had reduced learning expressivity and were also unable to produce satisfactory
generation. Contrastive VAE [3, 299, 254, 240, 328, 55] have employed deep encoders to capture
higher-level semantics. They usually rely on a latent space split into two parts, a common and
a salient, produced by two different encoders. First methods, such as [254], employed two
decoders (common and salient) and directly sum the common and salient reconstructions in
the input space. This seems to be a very strong assumption, probably wrong when working with
high-dimensional and complex images. For this reason, subsequent works used a single decoder,
which takes as input the concatenation of both latent spaces. Importantly, when seeking to
reconstruct background inputs, the decoder is fed with the concatenation of the common part
and an informationless reference vector s’. This is usually chosen to be a null vector in order
to reconstruct a null (i.e., empty) image by setting the decoder’s biases to 0. Furthermore, to
fully enforce the constraints and assumptions of the underlying CA generative model, previous
methods have proposed different regularizations. Here, we analyze the most important ones
with their advantages and shortcomings:

Minimizing background’s variance in the salient space Pioneer works [254, 3] have
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shown inconsistency between the encoding and the decoding task. While background samples
are reconstructed from s’, the salient encoder does not encourage the background salient la-
tents to be equal to s’. To fix this inconsistency, posterior works [299, 328, 55] have shown
that explicitly nullifying the background variance in the salient space was beneficial. This reg-
ularization is necessary to avoid salient features explaining the background variability but not
sufficient to prevent information leakage between common and salient spaces, as shown in [299].

Independence between common and salient spaces Only one work [3] proposed to pre-
vent information leakage between the common and salient space by minimizing the total corre-
lation (TC) between qϕc,ϕs(c, s|x) and qϕc(c|x)× qϕs(s|x), in the same fashion as in FactorVAE
[152]. This requires to independently train a discriminator Dλ(.) that aims at approximating
the ratio between the joint distribution q(x) = qϕc,ϕs(c, s|x) and the marginal of the posteriors
q̄(x) = qϕc(c|x)× qϕs(s|x) via the density-ratio trick [211, 265]. In practice, [3]’s code does not
use an independent optimizer for λ, which undermines the original contribution. Moreover,
when incorrectly estimated, the TC can become negative, and its minimization can be harmful
to the model’s training.

Matching background and target common patterns Another work [299], has proposed
to encourage the distribution in the common space to be the same across target samples and
background samples. Mathematically, it is equivalent to minimizing the KL between qϕc(c|y =

0) and qϕc(c|y = 1) (or between qϕc(c) and qϕc(c|y)). In practice, we argue that it may encourage
undesirable biases to be captured by salient factors rather than common factors. For example,
let’s suppose that we have healthy subjects (background dataset) and patients (target dataset)
and that patients are composed of both young and old individuals, whereas healthy subjects
are only old. We would expect the CA method to capture the normal aging patterns (i.e.:
the bias) in the common space. However, forcing both qϕc(c|x, y = 0) and qϕc(c|x, y = 1) to
follow the same distribution in the common space would probably bring to a biased distribution
and thus to leakage of information between salient and common factors (i.e., aging could be
considered as a salient factor of the patient dataset).This behavior is not desirable, and we
believe that the statistical independence between common and salient space is a more robust
property.

Contributions Our contributions are three-fold:
• We develop a new Contrastive Analysis method: SepVAE, which is supported by a sound
and versatile Evidence Lower BOund maximization framework.
• We identify and implement two properties: the salient space discriminability and the salient
/ common independence, that have not been successfully addressed by previous Contrastive

113



VAE methods.
• We provide a fair comparison with other SOTA CA-VAE methods on 3 medical applications
and a natural image experiment.

4.1.4 Contrastive Variational Autoencoders

Let (X, Y ) = {(xi, yi)}Ni=1 be a data-set of images xi associated with labels yi ∈ {0, 1}, 0 for
background and 1 for target. Both background and target samples are assumed to be i.i.d.
from two different and unknown distributions that depend on two latent variables: ci ∈ RDc

and si ∈ RDs . Our objective is to have a generative model xi ∼ pθ(x|yi, ci, si) so that: 1- the
common latent vectors C = {ci}Ni=1 should capture the common generative factors of variation
between the background and target distributions and fully encode the background samples and
2- the salient latent vectors S = {si}Ni=1 should capture the distinct and interpretable generative
factors of variation of the target set (i.e., patterns that are only present in the target dataset
and not in the background dataset). Similar to previous works [3, 299, 328], we assume the
generative process: pθ(x, y, c, s) = pθ(x|c, s, y)pθ(c)pθ(s|y)p(y). Since pθ(c, s|x, y) is hard to
compute in practice, we approximate it using an auxiliary parametric distribution qϕ(c, s|x, y)
and directly derive the Evidence Lower Bound of log p(x, y). Based on this generative latent
variable model, one can derive the ELBO of the marginal log-likelihood log p(x, y),

− log pθ(x, y) ≤ Ec,s∼qϕc,ϕs (c,s|x,y) log
qϕc,ϕs(c, s|x, y)
pθ(x, y, c, s)

(4.1)

where we have introduced an auxiliary parametric distribution qϕ(c, s|x, y) to approximate
pθ(c, s|x, y).
From there, we can develop the lower bound into three terms, a conditional reconstruction
term, a common space prior regularization, and a salient space prior regularization:

− log pθ(x, y) ≤ −Ec,s∼qϕc,ϕs (c,s|x,y) log pθ(x|y, c, s)︸ ︷︷ ︸
Conditional Reconstruction

+KL(qϕc(c|x)||pθ(c))︸ ︷︷ ︸
b) Common prior

+KL(qϕs(s|x, y)||pθ(s|y))︸ ︷︷ ︸
c) Salient prior

(4.2)

Here, we assume the independence of the auxiliary distributions (i.e.: qϕc,ϕs(c, s|x, y) =

qϕc(c|x)qϕs(s|x, y)) and prior distributions (i.e.: pθ(c, s) = pθ(c)pθ(s)). Both pθ(x|yi, ci, si)
(i.e., single decoder) and qϕc(c|x)qϕs(s|x, y) (i.e., two encoders) are assumed to follow a Gaus-
sian distribution parametrized by a neural network. To reinforce the independence assumption
between c and s, we introduce a Mutual Information regularization term KL(q(c, s)||q(c)q(s)).
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Theoretically, this term is similar to the one in [3]. This property is desirable in order to ensure
that the information is well separated between the latent spaces. However, in [3], the Mutual
Information estimation and minimization are done simultaneously 1. In this paper, we argue
that the estimation of the Mutual Information requires the introduction of an independent
optimizer, see Sec. 4.1.4. To further reduce the overlap of target and common distributions on
the salient space, we also introduce a salient classification loss defined as Es∼qϕs (s|x,y) log p(y|s).
By combining all these losses together, we obtain the final loss L:

L = −Ec,s∼qϕc,ϕs (c,s|x,y) log pθ(x|c, s, y)︸ ︷︷ ︸
a) Conditional Reconstruction

+KL(qϕc(c|x)||pθ(c))︸ ︷︷ ︸
b) Common Prior

+KL(qϕs(s|x, y)||pθ(s|y))︸ ︷︷ ︸
c) Salient Prior

+KL(q(c, s)||q(c)q(s))︸ ︷︷ ︸
e) Mutual Information

−Es∼qϕs (s|x,y) log pθ(y|s)︸ ︷︷ ︸
d) Salient Classification

(4.3)

Conditional reconstruction:

The reconstruction loss term is given by −Ec,s∼qϕc,ϕs (c,s|x,y) log pθ(x|c, s, y). Given an image x
(and a label y), a common and a salient latent vector can be drawn from qϕc,ϕs with the help
of the reparameterization trick.
We assume that p(x|c, s, y) ∼ N (dθ([c, ys + (1 − y)s′], I), i.e: pθ(x|c, s, y) follows a Gaussian
distribution parameterized by θ, centered on µx̂ = dθ([c, ys+(1−y)s′]) with identity covariance
matrix, and dθ is the decoder and [., .] denotes a concatenation.
Therefore, by developing the reconstruction loss term, we obtain the mean squared error be-
tween the input and the reconstruction: Lrec =

∑N
i=1 ||x−dθ([c, ys+(1−y)s′])||22. Importantly,

for background samples, we set the salient latent vectors to s’ = 0. This choice enables isolating
the background factors of variability in the common space only.

Common prior

By assuming p(c) ∼ N (0, I) and qϕc(c|x) ∼ N (µϕ(x), σϕ(x, y)), the KL loss has a closed form
solution, as in standard VAEs. Here, both µϕ(x) and σϕ(x, y) are the encoder outputs eϕc .

1In [3], Algorithm 1 suggests that the Mutual Information estimation and minimization depend on two
distinct parameters update. However, in practice, in their code, a single optimizer is used. This is also confirmed
in Sec. 3, where authors write: "discriminator is trained simultaneously with the encoder and decoder neural
networks".
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Salient prior:

To compute this regularization, we first need to develop pθ(s) =
∑

y p(y)pθ(s|y), where we
assume that p(y) follows a Bernoulli distribution with probability equal to 0.5. Thus, the
salient prior reduces to a formula that only depends on pθ(s|y), which is conditioned by the
knowledge of the label (0: background, 1: target). This allows us to distinguish between the
salient priors of background samples (p(s|y = 0)) and target samples (p(s|y = 1)).
Similar to other CA-VAE methods, we assume that p(s|y = 1) ∼ N (0, I) and , as in [328],
that p(s|x, y = 0) ∼ N (s′,

√
σpI), with s′ = 0 and √σp < 1, namely a Gaussian distribution

centered on an informationless reference s′ with a small constant variance σp. We preferred it to
a Delta function δ(s = s′) (as in [299]) because it eases the computation of the KL divergence
(i.e., closed form) and it also means that we tolerate a small salient variation in the background
(healthy) samples. In real applications, in particular medical ones, diagnosis labels can be
noisy, and mild pathological patterns may exist in some healthy control subjects. Using such a
prior, we tolerate these possible (erroneous) sources of variation.
Furthermore, one could also extend the proposed method to a continuous y, for instance,
between 0 and 1, describing the severity of the disorder. Indeed, practitioners could define
a function σp(y) that would map the severity score y to a salient prior standard deviation
(e.g., σp(y) = y). In this way, we could extend our framework to the case where pathological
variations would follow a continuum from no (or mild) to severe patterns.

Salient space classification;

In the salient prior regularization, as in previous works, we encourage background and target
salient factors to match two different Gaussian distributions, both centered in 0 (we assume
s′ = 0) but with different covariance. However, we argue that target salient factors should be
further encouraged to differ from the background ones in order to reduce the overlap of target
and common distributions on the salient space and enhance the expressivity of the salient space.

To encourage target and background salient factors to be generated from different distributions,
we propose to minimize a Binary Cross Entropy loss to distinguish the target from background
samples in the salient space. Assuming that p(y|s) follows a Bernoulli distribution parame-
terized by fξ(s), a 2-layers classification Neural Network, we obtain a Binary Cross Entropy
(BCE) loss between true labels y and predicted labels ŷ = fξ(s).
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Mutual Information minimization:

To promote independence between c and s, we minimize their mutual information, defined as
the KL divergence between the joint distribution q(c, s) and the marginals product q(c)q(s).
However, computing this quantity is not trivial, and it requires a few tricks in order to correctly
estimate and minimize it. As in [3], it is possible to take inspiration from FactorVAE [152],
which proposes to estimate the density-ratio between a joint distribution and the product of
the marginals. In our case, we seek to enforce the independence between two sets of latent
variables rather than between each latent variable of a set. The density-ratio trick [211, 265]
allows us to estimate the quantity inside the log in Eq.4.4. First, we sample from q(c, s) by
randomly choosing a batch of images (xi, yi) and drawing their latent factors [ci, si] from the
encoders eϕc and eϕs . Then, we sample from q(c)q(s) by using the same batch of images where
we shuffle the latent codes among images (e.g., [c1, s2], [c2, s3], etc.). Once we obtained samples
from both distributions, we trained an independent classifier Dλ([c, s]) to discriminate the
samples drawn from the two distributions by minimizing a BCE loss. The classifier is then used
to approximate the ratio in the KL divergence, and we can train the encoders eϕc and eϕs to
minimize the resulting loss:

LMI = Eq(c,s) log
(
q(c, s)

q(c)q(s)

)
≈
∑
i

ReLU
(
log

(
Dλ([ci, si])

1−Dλ([ci, si])

))
(4.4)

where the ReLU function forces the estimate of the KL divergence to be positive, thus avoiding
to back-propagate wrong estimates of the density ratio due to the simultaneous training of
Dλ([c, s]). In [3], while Alg.1 of the original paper describes two distinct gradient updates, it is
written that "This discriminator is trained simultaneously with the encoder and decoder neural
networks". In practice, a single optimizer is used in their training code. In our work, we use
an independent optimizer for Dλ, in order to ensure that the density ratio is well estimated.
Furthermore, we freeze Dλ’s parameters when minimizing the Mutual Information estimate.
The pseudo-code is available in Alg. 4, and a visual explanation is shown in Fig.4.4.

4.1.5 Experiments

Evaluation details:

Here, we evaluate the ability of SepVAE to separate common from target-specific patterns on
three medical and one natural (CelebA) imaging datasets. We compare it with the only SOTA
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Figure 4.4: Illustration of Mutual Information loss between the common and the salient space.
Given two images xa and xb, 4 sets of latents are computed: ca and sa latents of the image
a, cb and sb latents of the image b. A non-linear MLP is independently trained with a binary
cross-entropy loss to classify shuffled concatenations (i.e., from different images) with the label
0 and concatenations of latents coming from the same image with the label 1. Then, during
training, encoders should not to be able to identify whether a concatenation of latents belong
to class 0 (shuffled common and salient spaces) or class 1 (common and salient spaces coming
from the same image). We encourage that by minimizing DKL(pϕs,ϕc(c, s)||pϕc(c)× pϕs(s)).

CA-VAE methods whose code is available: MM-cVAE [299] and ConVAE 2 [3].

For quantitative evaluation, we use the fact that the information about attributes, clinical
variables, or subtypes (e.g. glasses/hats in CelebA) should be present either in the common
or in the salient space. Once the encoders/decoder are trained, we evaluate the quality of
the representations in two steps. First, we train a Logistic (resp. Linear) Regression on the
estimated salient and common factors of the training set to predict the attribute presence
(resp. attribute value). Then, we evaluate the classification/regression model on the salient
and common factors estimated from a test set. By evaluating the performance of the model, we
can understand whether the information about the attributes/variables/subtype has been put
in the common or salient latent space by the method. Furthermore, we report the background
(BG) vs target (TG) classification accuracy. To do so, a 2 layers MLPs is independently trained,
except for SepVAE, where salient space predictions are directly estimated by the classifier.

In all Tables, for categorical variables, we compute (Balanced) Accuracy scores (=(B-)ACC),
or Area-under Curve scores (=AUC) if the target is binary. For continuous variables, we

2ConVAE implemented with correct Mutual Information minimization, i.e.: with independently trained
discriminator.
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Algorithm 4 Minimizing the Mutual Information between common and salient spaces.
Input: X ∈ RB×C×W×H

For t in epochs :
Discriminator training :

Sample z = [c, s] from qϕc,ϕs .
Sample z̄ = [c, s̄] from qϕc × qϕs by shuffling s along the batch dimension.
Compute LBCE = − log(D(z))− log(1−D(z̄))
Freeze ϕc and ϕs. Update D parameters only.

Encoders training :
Sample z = [eϕc(x), eϕs(x)] from qϕc,ϕs .

Compute LMI =
∑B

i=1 ReLU
(
log D(zi)

1−D(zi)

)
Freeze D parameters. Update ϕc and ϕs.

EndFor

use Mean Average Error (=MAE). Best results are highlighted in bold, second best results
are underlined. For CelebA and Pneumonia experiments, mean, and standard deviations are
computed on the results of 5 different runs in order to account for model initializations. For
neuro-psychiatric experiments, mean and standard deviations are computed using a 5-fold cross-
validation evaluation scheme.

Qualitatively, the model can be evaluated by looking at the full image reconstruction (com-
mon+salient factors) and by fixing the salient factors to s′ for target images. Comparing full
reconstructions with common-only reconstructions allows the user to interpret the patterns
encoded in the salient factors s (see Fig.4.2 and Fig.4.5).

CelebA - glasses or hats identification:

To compare with [299], we evaluated our performances on the CelebA with attributes dataset.
It contains two sets, target and background, from a subset of CelebA [174], one with images
of celebrities wearing glasses or hats (target) and the other with images of celebrities not
wearing these accessories (background), see Sec.C.2.1 in the Appendix for more details. The
discriminative information allowing the classification of glasses vs. hats should only be present
in the salient latent space. We demonstrate that we successfully encode these attributes in the
salient space with quantitative results in Tab. 4.1, and with reconstruction results in Fig. 4.5.
Furthermore, in Fig. 4.6, we show that we effectively minimize the background dataset variance
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Figure 4.5: SepVAE qualitative example on the CelebA with accessories dataset (BG = no
accessories, TG = hats and glasses). (Middle, common+salient): Full reconstructions using
the estimated common and salient factors. (Right, common only): Reconstruction using only
the estimated common factors fixing the salient to s′. The salient latent variables capture the
accessories (hats and glasses), which are target-specific patterns. The common latents capture
the common attributes (e.g., identity, skin color).
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Table 4.1: CA-VAE methods performance on CelebA with accessories dataset. Accessories
(glasses/hat) information should only be present in the salient space, not in the common.

Glss/Hats Acc Glss/Hats Acc Bg vs Tg AUC Bg vs Tg AUC
salient ↑ common ↓ salient ↑ common ↓

ConVAE 82.32±1.17 75.01±2.526 82.46±0.586 78.39±0.41
MM-cVAE 85.17±0.60 73.938±1.66 88.536±0.39 78.036±0.35
SepVAE 87.62±0.75 72.16±2.02 93.15±1.65 77.604±0.20

Figure 4.6: PCA projections of MM-c-VAE (left) and SepVAE (right) salient space on CelebA
TEST set. Yellow: no accessories. Dark Blue: glasses. Purple: hats. We can clearly observe
that our method maximizes the target variance while reducing the background variance. We
attribute this different behavior to our salient classification loss, which reduces the overlap
between background and target salient distributions.

in the salient space compared to MM-cVAE3.

Identify pneumonia subgroups:

As in Chap.3.2, we gathered 1342 healthy X-ray radiographies (background dataset), and 2684
radiographies of pneumonia radiographies (target dataset) from [146]. Two different sub-types of
pneumonia constitute this set, viral (1342 samples) and bacterial (1342 samples), see Sec.B.5.3.
In Tab. 4.2, we demonstrate that our method is able to produce a salient space that captures
the pathological variability as it allows distinguishing the two subtypes: viral and bacterial
pneumonia.
Ablation study: In the lower part of Tab. 4.2, we propose to disable different components of

3Our evaluation process is different from [299] as their TEST set has been used during the model training.
Indeed, the TRAIN / TEST split used for training Logistic Regression is performed after the model fitting on
the set TRAIN+TEST set. Besides, we were not able to reproduce their results.
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Table 4.2: CA-VAE methods performance on the Healthy vs Pneumonia X-Ray dataset. Ac-
curacy scores are obtained with linear probes fitted on common c or salient s latent vectors of
the images of the target dataset. Pneumonia subtypes information should only be present in
the salient space. The lower part shows an ablation study of regularization losses.

Subgrp Acc Subgrp Acc Bg vs Tg Acc Bg vs Tg Acc
salient ↑ common ↓ salient ↑ common ↓

ConVAE 82.30±1.53 73.58±1.84 67.80±5.93 58.05±7.17
MM-cVAE 82.86±1.87 74.35±3.19 70.44±2.69 59.94±5.88
SepVAE 84.78±0.42 70.92±1.39 78.13±3.03 57.52±4.14

SepVAE no MI 84.10±0.48 71.792±2.94 75.186±5.69 60.35±4.73
SepVAE no CLSF 84.71±1.19 73.58±2.19 71.91±4.65 55.79±5.41
SepVAE no REG 83.98±0.85 72.61±2.05 73.03±2.97 61.43±2.25

the model to show that the full model SepVAE is always better on average. no MI means that
we disabled the Mutual Information minimization loss (no Mutual Information Minimization).
no CLSF means that we disabled the classification loss on the salient space (no Salient Classi-
fication). no REG means that we disabled the regularization loss that forces the background
samples to align with an informationless vector s’ = 0 (no Salient Prior).

Table 4.3: CA-VAE methods performance on the prediction of schizophrenia-specific variables
(SANS, SAPS, Diag) and common variables (Age, Sex, Site) using only salient factors recon-
structed by test images of the target (MD) dataset.

Age MAE ↑ Sex B-Acc ↓ Site B-Acc ↓ SANS MAE ↓ SAPS MAE ↓ Diag AUC ↑

ConVAE 7.46±0.18 72.72±1.32 54.46±2.46 3.95±0.28 2.76±0.18 58.53±4.87
MM-cVAE 7.10±0.34 72.15±2.47 56.69±9.84 4.52±0.33 3.16±0.05 70.94±4.08
SepVAE 7.98±0.25 72.61±2.19 44.10±5.78 4.14±0.39 2.60±0.27 79.15±3.39

Table 4.4: CA-VAE methods performance on the prediction of autism-specific variables (ADOS
[10], ADI-social, Diag) and common variables (Age, Sex, Site) using only salient factors recon-
structed by test images of the target (MD) dataset.

Age MAE ↑ Sex B-Acc ↓ Site B-Acc ↓ ADOS MAE ↓ ADI-s MAE ↓ Diag AUC ↑

ConVAE 3.97±0.19 66.67±1.12 40.97±2.06 10.1±1.27 5.14±0.17 54.93±2.04
MM-cVAE 3.74±0.12 64.07±2.58 40.93±2.66 10.5±2.47 5.09±0.16 54.88±2.76
SepVAE 4.38±0.09 59.61±1.78 33.58±1.86 8.55±1.68 4.91±0.17 59.73±1.78
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Parsing neuro-anatomical variability in psychiatric diseases:

The task of identifying consistent correlations between neuro-anatomical biomarkers and ob-
served symptoms in psychiatric diseases is important for developing more precise treatment
options. Separating the different latent mechanisms that drive neuro-anatomical variability in
psychiatric disorders is a challenging task. Contrastive Analysis (CA) methods such as ours
have the potential to identify and separate healthy from pathological neuro-anatomical patterns
in structural MRIs. This ability could be a key component to push forward the understanding
of the mechanisms that underlie the development of psychiatric diseases.

Given a background population of Healthy Controls (HC) and a target population suffering from
a Mental Disorder (MD), the objective is to capture the pathological factors of variability in
the salient space, such as psychiatric and cognitive clinical scores, while isolating the patterns
related to demographic variables, such as age and sex, or acquisition sites to the common
space. For each experiment, we gather T1w anatomical VBM [17] pre-processed images resized
to 128× 128× 128 of HC and MD subjects. We divide them into 5 TRAIN, VAL splits (0.75,
0.25) and evaluate in a cross-validation scheme the performance of SepVAE and the other SOTA
CA-VAE methods. Please note that this is a challenging problem, especially due to the high
dimensionality of the input and the scarcity of the data. Notably, the measures of psychiatric
and cognitive clinical scores are only available for some patients, making it scarce and precious
information.

Schizophrenia: We merged images of schizophrenic patients (TG) and healthy controls (BG)
from the datasets SCHIZCONNECT-VIP [292] and BSNIP [271]. Results in Tab. 4.7 show that
the salient factors estimated using our method better predict schizophrenia-specific variables
of interest: SAPS (Scale of Positive Symptoms), SANS (Scale of Negative Symptoms), and
diagnosis. On the other hand, salient features are shown to be poorly predictive of demographic
variables: age, sex, and acquisition site. It paves the way toward a better understanding
of schizophrenia disorder by capturing neuro-anatomical patterns that are predictive of the
psychiatric scales while not being biased by confounding variables.

Autism: Second, we combine patients with autism from ABIDE1 [67, 68] and ABIDE2 [119]
(TG) with healthy controls (BG). In Tab. 4.4, SepVAE’s salient latents better predict the
diagnosis and the clinical variables, such as ADOS (Autism Diagnosis Observation Schedule)
and ADI Social (Autism Diagnosis Interview Social) which quantifies the social interaction
abilities. On the other hand, salient latents poorly infer irrelevant demographic variables (age,
sex, and acquisition site), which is a desirable feature for unbiased diagnosis tools.
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4.1.6 Reproducing the results of Aglinskas et al, 2022

In 2022 Aglinskas et al. [6] applied a Contrastive Analysis VAE entitled cVAE to parse the
heterogeneity of a cohort with autism disorder. In their original contribution, they show that
their common vectors correlate with shared demographic variables such as age, sex, and scanner
type, but not with clinical scale measures. They also show that their salient vectors correlate
with clinical scale measures such as ADOS, DSM IV, and Vineland. Interestingly, the IQ
variable is expected to correlate with the shared latent space (as there is a natural IQ variability
in the healthy population, a Gaussian distribution around a score of 100 and with a standard
deviation of 15), but also with the pathological space (as there exist a high IQ variability within
the autism spectrum, with heterogeneous autism subtypes ranging from Asperger syndrome,
Low-Functioning Autism (LFA) to Classic Autism (CA)). In practice, our attempts to reproduce
their results were unsuccessful. We pinpoint our results compared to theirs in Fig. 4.7. For a
fair comparison, we trained the traditional VAE with β = 1, while the original code trained it
with β = 1

64
4. Interestingly, we found that the VAE’s latents correlate with demographic (age,

sex, IQ, and scanner type) and clinical variables (notably, IQ, DSM IV, and Vineland) but, by
design, does not successfully separate shared from pathological patterns.
Given their open-source code and processed datasets, we observed highly variable results de-
pending on the initialization of the models, which suggests a high epistemic error with such a
model. All the more so these results were computed within the train set, as proposed in the
original contribution, even though a cross-validation scheme would have been expected 5. This
result remains informative on the potential pitfalls and drawbacks of this Contrastive Analysis
strategy. Thus, we only compared our method with CA-VAEs enhanced with thoughtful strate-
gies aiming at separating common from target-specific latent generation factors and reducing
the epistemic variability of Contrastive Analysis VAEs. Still, the contributions introduced by
Aglinskas et al [6] remain particularly valuable and have provided novel insights and methods
when parsing the heterogeneity within psychiatric diseases. They provided a relevant method-
ology to evaluate Contrastive Analysis VAE in the context of psychiatric disorder heterogeneity
parsing and a thoughtful explainability strategy by introducing the concept of a digital healthy
avatar, as shown in Fig 4.2 aiming at generating a reconstruction of a diseased brain without
the pathological patterns.

4In practice β is set to 1 in their code, but when computing the Mean Square Error term, the authors
renormalize by the height (64) and width (64) of the image, while we would also expect the depth (64). This is
thus equivalent to having β = 1

64
5Unfortunately, we were not able to attempt to reproduce their results on their independent TEST set SFARI

as we could not access the database.
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Figure 4.7: Comparison between the original performances reported in Aglinskas et al. [6]
and ours. (left) reported RSA measures in the original contribution (standard errors obtained
from samples drawn from the latent space distributions). (right) measures from our reproduc-
tion attempt (standard errors obtained from 15 different model initializations). The "VAE"
bars compute the RSA (Representation Similarity Analysis) between the VAE’s latents with
a demographic, cognitive, or clinical variable, the higher its absolute value is, the higher the
correlation is. The "Shared" and "BG" bars compute the RSA between the CVAE’s shared (or
common) latents with a variable of interest. The "Specific" and "SL" bars compute the RSA
between the CVAE’s salient (or pathological) latents with a variable of interest.

4.1.7 Conclusions and Perspectives

In this paper, we developed a novel CA-VAE method entitled SepVAE. Building onto Con-
trastive Analysis methods, we first criticize previously proposed regularizations about (1) the
matching of target and background distributions in the common space and (2) the overlapping
of target and background priors in the salient space. These regularizations may fail to prevent
information leakage between common and salient spaces, especially when datasets are biased.
We thus propose two alternative solutions: salient discrimination between target and back-
ground samples, and mutual information minimization between common and salient spaces.
We integrate these losses along with the maximization of the ELBO of the joint log-likelihood.
We demonstrate superior performances on radiological and two neuro-psychiatric applications,
where we successfully separate the pathological information of interest (diagnosis, pathological
scores) from the “nuisance" common variations (e.g., age, site). The development of methods

125



like ours seems very promising and offers a large spectrum of perspectives. For example, it could
be further extended to multiple target datasets (e.g., healthy population Vs several pathologies,
to obtain a continuum healthy - mild - severe pathology) and to other models, such as GANs,
for improved generation quality. Eventually, to be entirely trustworthy, the model must be
identifiable, namely, we need to know the conditions that allow us to learn the correct joint
distribution over observed and latent variables. We plan to follow [147, 286] to obtain theoretic
guarantees of the identifiability of our model.
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4.2 SepCLR: Separating common from salient patterns with

Contrastive Learning

4.2.1 Abstract

Contrastive Analysis is a sub-field of Representation Learning that aims at separating com-
mon factors of variation between two datasets, a background (i.e., healthy subjects) and a
target (i.e., diseased subjects), from the salient factors of variation, only present in the tar-
get dataset. Despite their relevance, current models based on Variational Auto-Encoders
have shown poor performance in learning semantically-expressive representations. On the
other hand, Contrastive Representation Learning has shown tremendous performance leaps
in various applications (classification, clustering, etc.). In this work, we propose to lever-
age the ability of Contrastive Learning to learn semantically expressive representations well
adapted for Contrastive Analysis. We reformulate it under the lens of the InfoMax Principle
and identify two Mutual Information terms to maximize and one to minimize. We decom-
pose the first two terms into an Alignment and a Uniformity term, as commonly done in
Contrastive Learning. Then, we motivate a novel Mutual Information minimization strategy
to prevent information leakage between common and salient distributions. We validate our
method, called SepCLR, on three visual datasets and three medical datasets, specifically con-
ceived to assess the pattern separation capability in Contrastive Analysis. Code available at
https://github.com/neurospin-projects/2024_rlouiset_sep_clr

4.2.2 Introduction

In Representation Learning, practitioners estimate parametric models tailored to learn mean-
ingful and compact representations from high-dimensional data. The objective is to capture
relevant features to facilitate downstream tasks such as classification, clustering, segmentation,
or generation. Contrastive Representation Learning (CL) has made remarkable progress in
learning representations that encode high-level semantic information about inputs such as im-
ages ([318, 297, 21, 118, 108, 77, 24]) and sequential data ([213, 155, 274, 252, 267]). With
a distinct perspective, Contrastive Analysis (CA) approaches aim to discover the underlying
generative factors that 1) distinguish a target dataset from a background dataset (i.e., salient
factors) and that 2) are shared between them (i.e., common factors). It is usually assumed
that target samples comprise additional (or modified) patterns compared to background sam-
ples ([4, 327, 328, 254, 240, 100, 169, 329]). The ability to distinguish and separate common
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from salient generative factors is crucial in various domains. For instance, in medical imaging,
researchers seek to identify pathological patterns in a population of patients (target) compared
to healthy controls (background) [12, 6]. Contrastive Analysis also concerns other domains
like drug research (medicated vs. placebo populations), surgery (pre-intervention vs. post-
intervention groups), time series (signal vs. signal-free samples), biology and genetics (control
vs. characteristic-trait population, [140] ).
Current Contrastive Analysis methods are based on VAEs (Variational Auto-Encoders) [150].
This choice is particularly suitable for generation and image-level manipulations. However, as
shown in [224], VAE can fail to learn meaningful latent representations, or even learn triv-
ial representations when the decoder is too powerful [47]. Conversely, Contrastive Learning
(CL) methods have demonstrated outstanding results in many domains, such as unsupervised
learning [50], deep clustering [168], content vs style identification [286], background debiasing
[295, 65], and multi-modality [315]. This performance gap might be explained by the following
reasons. CL methods produce representations invariant to a set of user-defined image trans-
formations (translation, zoom, color jittering, etc.), whereas VAEs are highly sensitive to these
uninteresting variability factors. Furthermore, VAEs maximize the log-likelihood, which is only
a function of the marginal distribution of the input data and not of the latent representations.
Differently, CL methods based on the InfoNCE loss implicitly maximize the Mutual Informa-
tion (MI) between input data and latent features6. From a representation learning point of
view, this makes much sense since the MI depends on the joint distribution between input data
and representation [330]. Inspired by these works, we propose to reformulate the Contrastive
Analysis problem under the lens of the well-known InfoMax principle [31, 123] and leverage
the representation power of Contrastive Learning (CL) to estimate the MI terms of our newly
proposed Contrastive Analysis setting. We seek to separate the salient patterns of the target
dataset from the shared (common) patterns with the background dataset. Common factors c
should be representative of both target and background datasets (respectively y and x). Thus,
we propose to maximize the MI between x (resp. y) and c. We compute the Entropy and
Alignment to estimate the MI, as in [293] and [234]. Since salient factors s should only describe
patterns typical of the target data y, we propose to maximize the MI between s and only
y. Furthermore, we also add the constraint that background samples’ representations should
always be equal to an informationless vector s′ in the salient space. This objective is close
to other recent CA ideas, such as in Contrastive PCA [3] and CA-VAEs, but also to Super-

6as shown in Sec.4.2.4, the MI between the latent representation of two views, maximized in many recent
methods, is a lower bound of the MI between input data and latent representations.
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vised Anomaly Detection intuitions, such as in DeepSAD [239], where the entropy of anomalies
(eq. target) is maximized, whereas normal samples (eq. backgrounds) are set to a constant
vector. We propose an extension of this salient term when fine-grained target attributes are
available and propose disentangling these attributes within the salient space in a supervised
manner. Moreover, to avoid information leakage between the common c and salient space s, we
constrain the MI to be (exactly) equal to 0. This choice avoids undesirable results since mini-
mizing the MI may bring to a trivial solution where c and/or s would contain no information.
Instead, we propose a method to estimate and maximize their joint entropy H(c, s) without
requiring any assumptions about the form of its pdf nor a neural network-based approximation.
Our contributions are summarized below:

1. We introduce SepCLR, a novel theoretical framework for Contrastive Analysis based on
the InfoMax principle. We identify three Mutual Information terms: a common space
term, a salient space term, and a common-salient independence term.

2. We leverage Contrastive Learning to estimate the common and salient terms. We show
how usual contrastive losses such as InfoNCE and SupCLR can be retrieved from the
InfoMax Principle. Likewise, we derive a novel contrastive method to capture target-
specific variability while canceling background variability in the salient space.

3. To reduce the information leakage between the common and salient spaces, we suggest a
strategy that overcomes the pitfalls of usual Mutual Information Minimization methods.

4.2.3 Related Works

Our work relates to contrastive learning, mutual information, and contrastive analysis.
Contrastive Learning and the InfoMax Principle. Contrastive Learning (CL) hinges
on an intuition that dates back to [28]. Given an input sample x (image or sequence) and
two different views (i.e., transformations) v and v+ of x that potentially overlap (spatially or
sequentially), CL is based on the assumption that v and v+ should share a similar information
content. A parametric encoder fθ is then estimated by maximizing their ”agreement” in the
representation space so that their similarity/dependence is preserved in the embeddings fθ(v)
and fθ(v

+). A commonly used measure of agreement is the Mutual Information between the
two views embeddings that is maximized: θ∗ ←− argmaxI(fθ(v); fθ(v+)), where the choice of
fθ imposes some structural constraints (i.e., inductive bias). As shown in [276], this objective
can be seen as a lower bound on the InfoMax principle maxθ I(x; fθ(x)) ([173], [31]). Many
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Figure 4.8: SepCLR is trained to identify and separate the salient patterns (color variations)
of the target dataset Y from the common patterns (shape) shared between background X and
target dataset Y . Views (transformations t(·)) of both datasets are fed to two different encoders,
one for the salient space (fθs) and one for the common space (fθc). In the hyperspherical
common space, C, embeddings of views of the same image (from both X and Y ) are aligned,
while embeddings from different images are repelled (max I(c;x)+ I(c; y)). This enforces C to
represent the shared patterns (shape). In the salient space S, which is a Euclidean space, in
order not to capture background variability (i.e: shape), background embeddings are aligned
onto an information-less null vector s’ (DKL(sx||δ(s′)) = 0). Furthermore, embeddings of views
of the same image (only from Y ) are aligned while embeddings from different images are pushed
away from each other, and they are all repelled from s’ (max I(s; y)). This enforces S to capture
only the salient patterns of Y (color). To limit the information leakage between C and S, their
MI is constrained to be null, i.e: I(c; s = 0).

approaches ([155, 274, 21, 213, 275, 24]) propose to maximize I(fθ(v); fθ(v+)) rather than the
original InfoMax objective since the embeddings f(x) have a lower dimension than the original
samples x and the choice of the transformation for the views gives more flexibility. [293] simpli-
fies the usual CL loss InfoNCE [50] into an alignment (or reconstruction) and a uniformity (or
entropy) term. While the alignment term trains the encoder to assign similar representations
to positive views, the uniformity term encourages feature distribution to preserve maximal
information i.e.: maximal entropy. Recently, [234] demonstrated that these terms could be
derived from the maximization of I(fθ(V ); fθ(V

+)) and that several clustering methods could
be retrieved from this formulation. We build onto these works to introduce the CL framework
required to develop the proposed CA losses.
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Contrastive Analysis. Contrastive Analysis (CA) methods are designed to separate salient la-
tent variables (i.e: patterns that are specific to the target dataset) from common latent variables
(i.e: patterns that are shared between background and target datasets). Recently, contrastive
Variational Auto-Encoders were designed to capture higher-level semantics [3, 328, 299, 180].
These methods usually rely on a latent space split into two parts, common and salient, esti-
mated by two different encoders. To limit information leakage between common and salient
spaces, three types of regularization have been proposed. First, a usual solution is to intro-
duce an explicit regularization on the salient encoder to minimize the background information
expressivity [3, 299, 180, 328, 329]. This regularization forces the salient vectors of the back-
grounds to be close to s’ (information-less vector, often equal to 0). A second idea, proposed
in MM-cVAE [299], is to match the common space distributions of the target and background
samples by minimizing their Maximum Mean Discrepancy (MMD) [110]. This regularization
reduces the information that would enable discriminating targets from background samples
within the common space. In cVAE [3], and SepVAE [180], authors minimize the Mutual In-
formation between the common and salient spaces.
Contrastive Analysis is not disentanglement nor style vs. content separation. CA is
not about disentanglement, which aims to isolate independent variation factors in a single data-
set [176, 48, 257]. In contrast, CA seeks to separate common from target-specific generative
factors without requiring the isolation of independent factors usually defined in a supervised
manner using external attributes. Furthermore, CA is not about separating style from content
([144, 286]), where content is usually defined as the invariant part of the latent space, namely
the part shared across different views. In contrast, style refers to the varying part that accounts
for the differences between views. Content and style depend on the chosen semantic-invariant
transformations, and they are defined for a single dataset. In CA, we do not necessarily need
transformations or views, and we jointly analyze two different datasets.
Mutual Information Minimization. Mutual Information minimization has gained signifi-
cant attention in diverse applications such as disentangling [152, 257], domain adaptation [102],
style/content identification [144], and Information Bottleneck compression [11]. Typically, it
can serve as a regularizer to diminish the dependence between variables. However, computing
the value of Mutual Information is hardly possible in cases where closed forms of density func-
tions, joint or marginal, are unknown. In most machine learning setups, access is limited to
only samples drawn from the joint distribution. To accommodate, most estimation methods
(lower bound, upper bound, and reliable estimators) focus on sample-based estimation. How-
ever, most of these works either require strong assumptions about one of the distributions (e.g.,
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its form) ([11, 226]) or the introduction of an independent neural network to approximate a
distribution in a sample-based variational manner. For instance, CLUB [53] derives an upper
bound of the Mutual Information I(X, Y ) by either assuming the closed-form of p(y|x) or,
in its variational form, estimating it with a parameterized neural network qθ(y|x). Another
example concerns Total Correlation methods [180, 152] that leverage the Density Ratio trick
[265, 211] to estimate the density ratio between the joint distribution and the product of the
marginals. This technique demands optimizing an independent discriminator to discriminate
samples drawn from the joint distribution from those drawn from the product of the marginals.

4.2.4 The InfoMax principle for Contrastive Analysis

Let X = {xi}NX
i=1 and Y = {yj}NY

j=1 be the background and target data-sets of images respec-
tively. As it is commonly done in Contrastive Analysis [3, 299, 180], we suppose that both xi

and yj are drawn i.i.d. from the same conditional distribution pθ(·|c, s), that is parameterized
by unknown parameters θ and that depends on two latent variables: the common generative
factors c ∈ RDc , shared between X and Y , and the salient (or target-specific) generative
factors s ∈ RDs , which are only present in Y and not in X. The separation between c and s

can be considered a weakly supervised learning problem since the only level of supervision is
the population-based label X or Y . The user has no knowledge about the common and salient
generative factors at training (or test) time. By grounding our method on the InfoMax princi-
ple [31, 123], and since we want the common factors c to be representative of both datasets, we
propose to maximize the mutual information I between c and both datasets X and Y . Sim-
ilarly, we propose maximizing the mutual information between the salient factors s and only
the target samples Y . Since we want the background samples x to be fully encoded by c, we
enforce the salient factors s of x to be always equal to a constant value s′ (i.e., no information):
xi ∼ pθ(x|ci, si = s′). Mathematically, we do that by minimizing the Kullback–Leibler diver-
gence DKL between p(s|x) and δ(s′), a Dirac Delta distribution centered at s′. Furthermore, to
enforce the separation (i.e., independence) between c and s, we also propose to use I(c, s) = 0

as a regularization constraint.
Our objective is to separate and infer the common c and salient s factors given the input
data X and Y . We use two probabilistic encoders, fθc and fθs , parameterised by θc and θs, to
approximate the conditional distributions p(c|·) and p(s|·) respectively. The two encoders are
shared between X and Y . Furthermore, as commonly done in recent representation learning
papers, we assume to have multiple views v of each image x (or y) generated via a stochastic
augmentation function t: v = t(·). By denoting c = fθc(v), s = fθs(v), sx = fθs(t(x)), our goal
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is to find the optimal parameters θ∗ = {θ∗c , θ∗s} that maximize the following cost function:

argmaxθ λC(I(x; c) + I(y; c))︸ ︷︷ ︸
Common InfoMax

+ λSI(y; s)︸ ︷︷ ︸
Salient InfoMax

s.t. DKL(sx||δ(s′)) = 0︸ ︷︷ ︸
Information-less hyp.

and I(c, s) = 0︸ ︷︷ ︸
Independence hyp.

(4.5)

In Sec. 4.2.4, we show how to estimate the common terms, I(x; c) and I(y; c), via a formulation
similar to the alignment and entropy terms introduced in [293]. In Sec. 4.2.4, we take into
account the information-less hypothesis (i.e. background embeddings should always be equal to
an information-less vector in the salient space) to estimate the salient term I(y; s). Ultimately,
in Sec. 4.2.4, we propose a strategy to enforce the independence hypothesis i.e. I(c; s) = 0,
that prevents information leakage between the common and salient space.

Retrieve InfoNCE from InfoMax for common space

In this section, we demonstrate that I(x; c) and I(y; c) can be estimated via the multi-view
alignment and uniformity losses inspired by [293]. Full derivation can be found in Appendix
Sec. D.1. Let fθC be the common encoder and c ∼ fθC (t(.)) be the common representations.
The MI I(x; c) (same reasoning is also valid for I(y; c)) can be decomposed into:

I(x; c) = −Ex∼pxH(c|x)︸ ︷︷ ︸
Alignment

+ H(c)︸ ︷︷ ︸
Entropy

(4.6)

Entropy (Uniformity). As in [293], the entropy can be computed with a non-parametric
estimator described in [8]. To do so, we compute the approximate density function p̂(ci) with
a Kernel Density Estimator as in [217, 237], based on views vj (random augmentation of an
image with index j) uniformly sampled from both the target dataset fθc(t(y)) ∼ p(c|y) and the
background dataset fθc(t(x)) ∼ p(c|x). We choose a Gaussian kernel with constant standard
deviation τ , which results in an L2 distance between the views. However, in practice, we
constrain the outputs fθC (.) to be unit-normed, which is equivalent to directly choosing a von
Mises-Fischer kernel with concentration parameter 1

τ
. 7 As in [293], we optimize a lower bound

7Intuitively, if ||fθC (.)||2 = 1, the L2 distance between two representations can be simplified into a negative
dot-product: ||fθC (vi)− fθC (vj)||2 = 2− 2fθC (vi)

T .fθC (vj). Full proof in Appendix Sec .D.1.2.
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of this estimator in practice, called −Luniform:

Luniform = log
1

NX +NY

NX+NY∑
i=1

1

NX +NY

NX+NY∑
j=1

exp
−||fθC (vi)− fθC (vj)||22

2τ
+ log(

√
2πτ)︸ ︷︷ ︸

Constant term
(4.7)

Alignment: Differently from [293], we propose to estimate the conditional entropy −H(c|x)
with a re-substitution entropy estimator. We compute the approximate density function p̂(ci|xi)
with a Kernel Density Estimator based on samples uniformly drawn from the conditional distri-
bution cki ∼ p(c|xi), where cki = fθ(v

k
i ) and vki are K views obtained via the stochastic process

t(.). As for the entropy term, we choose a Gaussian kernel with constant standard deviation τ
to derive an L2 distance between the views. Our formulation generalizes [293], as we directly
retrieve a multi-view alignment term between K positive views of the same image and not a
single-view alignment as in [293]. However, to reduce the computational burden in practice, we
also choose a single view K=1, as in [293]. Combining the background alignment −H(c|x) and
the target alignment −H(c|y), we obtain:

Lalign = − 1

NX +NY

NX+NY∑
i=1

log
1

K

K∑
k=1

exp
−||fθC (vi)− fθC (vki )||22

2τ
+ log(

√
2πτ)︸ ︷︷ ︸

Constant term

(4.8)

On the relation with I(fθ(v), fθ(v
′). Many recent representation learning works ([51, 293])

maximize the MI between two views v and v′ of x: I(fθ(v), fθ(v′). Inspired by the InfoMax
principle, we propose instead maximizing I(fθ(v), x). As shown in [276], by directly applying
the data processing inequality, one can demonstrate that I(fθ(v), fθ(v′) is a lower bound of
I(fθ(v), x).

Derive the Background-Contrasting Alignment and Uniformity terms

In this section, we consider the maximization of the salient term I(s; y), which is decomposed
into an alignment and uniformity term as before, constrained by the information-less hypothesis:

{textargmaxI(s; y) = − Ey∼pyH(s|y)︸ ︷︷ ︸
Target-only Alignment

+ H(s)︸ ︷︷ ︸
s′-Entropy

s.t. DKL(sx||δ(s′)) = 0︸ ︷︷ ︸
Information-less hyp.

(4.9)

Target-only alignment. To estimate the target samples’ alignment term, we use the same
estimation method as in 4.2.4. Namely, we derive an alignment term between two views vi =
t(yi) and vki = t(yki ) of the same target image yi. As in Sec. 4.2.4, we use a re-substitution
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estimator with a Gaussian Kernel Density Estimation with constant standard deviation τ and
K = 1 in practice.

Ly-align = − 1

NY

NY∑
i=1

log
1

K

K∑
k=1

exp
−||fθC (vi)− fθC (vki )||22

2τ
+ log(

√
2πτ)︸ ︷︷ ︸

Constant term

(4.10)

s′-Uniformity. Concerning the Entropy term, as in Sec. 4.2.4, we propose to develop the
salient entropy with a re-substitution entropy estimator. Again, we use a lower bound of Ĥ(S)

called −Ls′-unif. Then, we estimate the density p̂(s) with a Gaussian Kernel Density Estimator
based on samples uniformly drawn from the target dataset fθS(t(y)) ∼ p(s|y) and from the
background dataset fθS(t(x)) ∼ p(s|x). Importantly, the information-less hypothesis constrains
the salient encoder to produce background embeddings always equal to the information-less
vector s′: fθS(t(x)) ∼ δ(s′). Using this hypothesis in the computations (see Sec. D.2.2 of the
Supplementary) and ignoring constant terms, we obtain:

Ls′-unif = log
1

NY

NY∑
i=1

(
exp
−||fθs(t(yi))− s′||22

τ
+

1

NY

NY∑
j=1

exp
−||fθs(t(yi))− fθs(t(yj))||22

2τ

)
(4.11)

To respect the Information-less hypothesis, we re-write Eq. 4.9 as a Lagrangian function, with
the constraint expressed as a β-weighted (β ≥ 0) KL regularization. Assuming that sx fol-
lows a Gaussian distribution centered on fθs(x) with a standard deviation τ (constant hyper-
parameter), we derive the KL divergence as an L2-distance between fθs(t(x)) and s′, as in
[117]:

F(θS, β;x, y, s) = −λSLy-align − λSLs′-unif − β
1

NX

NX∑
i=1

||fθs(t(xi))− s′||22
2τ

(4.12)

On the null Mutual Information constraint

In Eq. 4.5, to avoid information leakage between common and salient space, we constrain our
problem so that the MI between c and s is null. Another common choice would be to simply
minimize I(c, s) instead than forcing it to be equal to 0. In Tab. 4.5 and 4.6, we show that
the latter choice (i.e., I(c, s) = 0) clearly outperforms (variational) MI minimization methods,
as vCLUB [53], vL1out [226], vUB [11], and TC [180], (see Sec. D.6.7).
Minimizing H(c)+H(s) is detrimental: By def., I(c; s) = −H(c, s)+H(c)+H(s) ≥ 0, which
entails H(c; s) ≤ H(c) + H(s). Thus, a trivial way to minimize I(c; s) would be minimizing
H(c) + H(s). However, it reduces the quantity of information contained in either c or s,
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which could be detrimental. Furthermore, the Common and Salient InfoMax losses of our
framework seek to maximize H(c) and H(s) rather than minimizing them.This is why, instead
of minimizing I(c; s), we propose to simultaneously maximize H(c, s), H(c) and H(s), until
H(c, s) = H(c) +H(s), to respect the constraint I(c; s) = 0.8

k-JEM: kernel-based Joint Entropy Maximization: Here, we propose a method to esti-
mate and maximize H(c, s) without requiring any assumptions about the form of its pdf nor
requiring a neural network-based approximation ([53, 11, 226]). Inspired by [125], we develop
H(c, s) with a re-substitution entropy estimator: −Ĥ(c, s) = 1

NX+NY

∑NX+NY

i=1 log p̂(ci, si). We
estimate the density p̂θ(ci, si) with a Gaussian Kernel Density Estimation with a constant
standard deviation parameter τ with samples (c, s) uniformly drawn from the target dataset
(fθS(t(y)), fθC (t(y))) ∼ p(c, s|y) and from the background dataset (fθS(t(x)), fθC (t(x))) ∼
p(c, s|x). The indices i and j refer to two different samples in the dataset. Full computa-
tions in Appendix, Sec. D.4.

−H(c, s) =
1

NX +NY

NX+NY∑
i=1

log
1

NX +NY

N∑
j=1

exp
−||ci − cj||22

2τ
exp
−||si − sj||22

2τ
(4.13)

4.2.5 Disentangling attributes in the salient space

Here, we propose to explore an extension of the salient contrastive loss in the case where
independent fine-grained attributes about the target dataset {ai ∈ RDS}NY

i=1 are available. We
assume the existence of DS attributes and each attribute ad is generated by a single factor of
generation sdy of the target dataset. We also make the hypothesis that the given attributes
describe the entire salient variability of the target dataset,9 and thus construct our salient
encoder to output (exactly) DS latent dimensions. We aim to construct a salient space where
each salient latent dimension Sds only depends on its corresponding attribute ads . By leveraging
the attributes in a supervised manner, we re-write Eq. 4.5 by replacing I(y; s) with the sum of
all attribute Supervised InfoMax terms :

argmax I(x; c)+I(y; c)+
1

DS

Ds∑
d=1

I(ad; sd)︸ ︷︷ ︸
d-th SupInfoMax

s.t. DKL(sx||δ(s′)) = 0 and I(c, s) = 0 (4.14)

8In this work, we implicitly assume that the encoders fθc and fθs can model any distribution.
9If it is not true, one can add a Salient InfoMax term (Eq.4.5) and increase the salient space dimension.
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Taking inspiration from [74, 75], we then decompose each d-th attribute Supervised InfoMax
term in a supervised alignment and uniformity term:

I(ad; sd) ≥ 1

NY

NY∑
i=1

wσ(a
d
i , a

d
j )
||sdi − sdj ||2

τ
+ Ĥ(sd) = Ld-th SupInfoMax (4.15)

where the indices i and j refer to two different samples in the target dataset and the scalar
weight wσ(adi , adj ) =

KA(adi ,a
d
j )∑

j=1KA(adi ,a
d
j )

measures the similarity between their attributes. We define

KA as a Gaussian kernel and the entropy Ĥ(sd) is also estimated, as before, with a Gaussian
kernel.

4.2.6 Experiments

Here, we measure our method’s ability to separate common from target-specific variability
factors. We train a Logistic (or Linear) Regression on inferred factors to assess whether the
information about a characteristic present in both populations or only in the target one, is
captured in the common (C) or in the salient (S) latent space. We compute (Balanced) Accu-
racy scores (=(B-)ACC), or Area-under Curve scores (=AUC) for categorical variables, Mean
Average Error (=MAE) for continuous variables, and the sum of the differences (δtot) between
the obtained results and the expected ones.
Hyper-parameters. We empirically choose τ = 0.5 for all experiments and losses. The
other hyper-parameters are λC and λS, which weigh the common terms and salient terms, re-
spectively, and λ, which weighs the independence regularization. The choice of these weights
depends on the ratio between common and target-salient information quantity, which might
differ among datasets. Architectures and hyper-parameters are chosen as the top-performing
ones for each experiment.
SOTA CA methods We have compared the performance of our method with the most re-
cent and best-performing CA-VAE methods whose code was available: cVAE [3] 10, conVAE
[6] 11, MM-cVAE [299] and SepVAE [180]. In each experiment, all CA-VAE use the same
encoder-decoder architecture, as described in the Supplementary D.6. The architecture used
for SepCLR is also described in Sec. D.6.
Digits superimposed on natural backgrounds. In this experiment particularly suited to
CA and inspired from [327], we consider CIFAR-10 images as the background dataset (y = 0)

10Here, for cVAE, we use the fixed version of the TC regularization described in [180].
11Here, conVAE corresponds to cVAE method without the TC regularization, as in [6].
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and CIFAR-10 images with an overlaid digit as the target dataset (y = 1). In Tab .4.5, our
model outperforms all other methods in correctly capturing the common factors of variability
(i.e: objects) in the common space and the target-specific factors of variability (i.e: digits)
in the salient space.
CelebA accessories dataset. We consider a subset of CelebA [174], already introduced in
the previous chapter ([180]). Differently, in this paper, special care was employed in order to
balance the individuals of the background and target sets in terms of sex. In Tab .4.6, Sep-
CLR correctly captures the information that enables distinguishing glasses from hats only in
the salient space, and it puts the information to distinguish men from females in the common
space. Our method globally outperforms all other methods (smallest δtot). "Best Expected"
reports a perfect result (100) when the attribute should be present in that latent space and a
random result (50) when it should not.

Table 4.5: Digits on CIFAR-10 (B-ACC).
Details in Sec.D.6.7.

Digits Objects δtot ↓
S ↑ C ↓ S ↓ C ↑

cVAE 90.6 23.0 11.2 33.4 90.2
ConVAE 86.2 21.0 10.6 35.6 89.8
MM-cVAE 88.8 19.6 12.2 32.0 93.6
SepVAE 90.6 17.8 10.6 36.6 81.2
SepCLR-vCLUB sym 94.4 18.0 8.0 14.6 97.0
SepCLR-vCLUB C → S 95.2 39.4 9.2 27.2 106.2
SepCLR-vCLUB S → C 95.2 57.0 8.8 31.8 118.8
SepCLR-vL1o sym 95.0 18.4 8.4 15.4 96.4
SepCLR-vL1o C → S 94.0 23.0 10.0 31.8 87.2
SepCLR-vL1o S → C 95.4 41.0 9.2 28.8 106.0
SepCLR-vUB sym 94.6 42.0 8.2 29.0 106.6
SepCLR-vUB C → S 92.8 23.4 7.8 22.6 95.8
SepCLR-vUB S → C 96.6 41.8 8.6 28.6 105.2
SepCLR-TC 95.2 68.6 10.2 24.2 139.4
SepCLR-MMD 94.6 21.2 9.0 62.2 53.4
SepCLR-no k-JEM 95.6 94.4 9.0 42.0 145.8
SepCLR-k-MI 96.2 19.8 8.0 65.8 45.8
SepCLR-k-JEM 96.2 11.0 10.4 73.2 32.0
Best expected 100.0 10.0 10.0 100.0 0.0

Table 4.6: CelebA accessories.
(B-ACC).

Hats/Glss Sex δtot ↓
S ↑ C ↓ S ↓ C ↑

83.89 66.56 60.25 60.60 82.32
81.64 65.94 61.53 58.93 86.90
84.60 66.43 60.56 61.57 80.82
84.46 65.19 60.12 59.20 81.65
98.98 59.62 65.20 54.23 71.61
98.81 73.71 61.77 53.72 82.95
98.66 95.95 67.65 73.16 91.78
98.83 56.94 57.97 51.38 64.60
99.04 93.17 63.35 59.13 89.91
98.46 94.33 65.00 71.77 89.10
98.68 87.33 63.59 56.09 96.15
98.73 94.40 66.58 71.37 90.88
98.78 93.92 62.94 61.27 96.81
98.97 98.76 60.39 74.96 85.22
98.95 67.50 71.83 65.47 74.91
99.03 66.68 98.48 79.48 86.65
98.96 77.10 63.07 71.08 70.13
98.57 55.21 62.52 78.00 41.16
100.0 50.0 50.0 100.0 0.0

Neuro-imaging: parsing schizophrenia’s heterogeneity. Given healthy MRI scans and
patients with schizophrenia, we aim to capture pathological patterns only in the salient space
that should correlate with clinical scales (SAPS, and SANS) while not being biased by de-
mographic variables (age, sex or acquisition sites), which should be encoded in the common
space. As in [180], we gather T1w VBM [17] warped MRIs and evaluate our method in a
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cross-validation scheme. In Table 4.7, we can clearly see that our method outperforms all
others.
Table 4.7: Separate healthy from pathological variability in Schizophrenia disorder.
Best in bold.

Age MAE Sex B-ACC Site B-ACC
C ↓ S ↑ C ↑ S ↓ C ↑ S ↓

cVAE 6.43±0.18 7.27±0.25 75.06±3.48 74.99±2.15 65.12±4.06 59.62±5.42
ConVAE 6.40±0.26 7.46±0.18 74.45±1.80 72.72±1.32 60.42±3.67 54.46±2.46
MM-cVAE 6.55±0.18 7.10±0.34 72.80±3.95 72.15±2.47 63.24±1.41 56.69±9.84
SepVAE 6.40±0.13 7.98±0.25 74.19±1.81 72.61±2.19 63.89±2.16 44.10±5.78
SepCLR-k-JEM 6.64±0.21 7.72±0.45 76.5±1.98 70.85±1.89 66.94±5.06 42.40±4.91

SANS MAE SAPS MAE Diagnosis
C ↑ S ↓ C ↑ S ↓ C ↓ S ↑

cVAE 5.89±0.67 4.35±0.26 4.65±0.34 2.98±0.18 60.66±2.63 68.24±5.42
ConVAE 6.17±0.45 3.95±0.28 4.50±0.37 2.76±0.18 61.85±2.60 58.53±4.87
MM-cVAE 6.78±0.54 4.92±0.58 4.52±0.33 3.16±0.05 64.25±2.98 70.94±4.08
SepVAE 7.05±0.67 4.14±0.39 4.79±0.67 2.60±0.27 60.90±1.75 79.15±3.39
SepCLR-k-JEM 9.17±2.49 3.74±0.12 5.54±0.70 2.52±0.16 60.16±1.19 79.90±1.57

Chest and eye pathologies subtyping. We propose two experiments using subsets of CheX-
pert [136] and ODIR dataset (Ocular Disease Intelligent Recognition dataset) 12 to assess the
ability of our method in a controlled environment. About CheXpert, we have healthy X-ray
scans (background) and diseased scans (target) divided into 3 distinct subtypes: cardiomegaly,
lung edema, and pleural effusion. In the ODIR dataset, there are healthy (background) and dis-
eased fundus images (target) which are divided into 5 subtypes: Diabetes, Glaucoma, Cataract,
Age macular degeneration, and pathological Myopia. Sex-related patterns should only be cap-
tured in the common encoder.

Table 4.8: CheXpert X-ray scans (B-ACC).

Subtype Sex δtot ↓
S ↑ C ↓ S ↓ C ↑

cVAE 45.77 49.27 54.24 81.26 93.48
ConVAE 42.31 52.53 60.88 79.30 108.8
MM-cVAE 42.50 50.89 57.04 80.19 102.24
SepVAE 42.20 51.10 56.38 79.95 102.34
SepCLR-k-JEM 61.30 52.85 61.57 80.25 89.87
Best expected 100.0 33.0 50.0 100.0 0.0

Table 4.9: ODIR images (B-ACC).

Subtype Sex δtot ↓
S ↑ C ↓ S ↓ C ↑

46.13 43.91 49.11 51.86 120.03
49.80 52.01 50.82 47.01 131.86
42.79 43.66 54.91 53.76 131.02
38.64 41.44 52.91 52.62 124.75
68.54 47.71 52.48 59.62 97.03
100.0 25.0 50.0 100.0 0.0

Disentangling dSprites while contrasting with a background. To evaluate CA method
12https://www.kaggle.com/datasets/andrewmvd/ocular-disease-recognition-odir5k

139



enriched with target attributes, we provide a novel toy dataset. Background dataset X consists
of 4 MNIST digits (1-4) regularly placed on a grid. Target dataset Y consists of a dSprites item
added upon the grid of digits. dSprites only exhibit 5 generation factors (shape, zoom, rotation,
X position, Y position). Using Eq. 4.14, we train our salient encoders in a supervised manner
to capture and disentangle each attribute in a single salient space dimension (Fig. 4.9a). The
common encoder is instead trained to capture the background variability (Fig. 4.9b). Quanti-
tatively, 1st salient dimension distinguishes shapes (B-ACC= 98.23%) while the concatenation
of other salient dimensions and common dimensions does not (B-ACC= 36.08%). 2nd predicts
zoom attribute (R2 = 0.977) while others don’t 0.002. 3rd predicts rotation (R2 = 0.947), oth-
ers don’t R2 = 0.0. 4th predicts horizontal translation (R2 = 0.995), others don’t R2 = 0.017.
5th predicts vertical translation (R2 = 0.995), others don’t R2 = 0.009. This shows that our
method correctly separate common from salient information and disentangle salient factors (in
a supervised manner) at the same time.

(a) Given the latent vector of the upper left
image, we modify only one salient dimension in
each row while freezing the others, then fetch
the image in the dataset whose latent vector
is the closest.

(b) Given the common latent vector of an image (left
column), we fetch the image in the dataset whose in-
ferred common latent vector is the closest in terms of
L2 distance.

Figure 4.9: Qualitative results on attribute-supervised SepCLR

4.2.7 Limitations and Perspectives

An important question in Contrastive Analysis, is the identifiability of the models. Namely,
under which conditions can the models recover the true latent factors of the underlying data-
generating process. Recent works have shown that non-linear models, VAEs included, are
generally not identifiable. To obtain identifiability, two different solutions have been proposed:
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1) either regularizing [145] the encoder or 2) introducing an auxiliary variable so that the latent
factors are conditionally independent given the auxiliary variable [130, 147]. In CA, neither
of these solutions may be used 13. Even though SepCLR effectively separates common from
salient factors, it does not assure that all true generative factors have been identified (like
all CA methods). This is a serious limitation of CA methods that we leave for future works.
Intriguingly, we also noticed that adding a reconstruction loss during the training degrades
performance, see Sec. D.7.2 in Appendix. However, adding a powerful generator, as in [329], on
top of the frozen encoders would allow synthesizing new images and increase interpretability.

4.2.8 Conclusion

In this paper, we leverage the power of Contrastive Learning to learn semantically relevant rep-
resentations for Contrastive Analysis. We reformulate Contrastive Analysis as a constrained
InfoMax paradigm. Then, we propose to estimate the Mutual Information terms via align-
ment and uniformity terms. Importantly, we motivate a novel independence term between
common and salient spaces computed via Kernel Density Estimation (KDE). Our method out-
performs related works on toy, natural, and medical datasets specifically made to evaluate the
common/salient separation ability.

13The dataset label could be considered as an auxiliary variable, but it does not make c and s independent
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Chapter 5

Perspectives

Chapter summary. This chapter identifies key issues in current approaches to understand-
ing psychiatric diseases and offers insights into unresolved perspectives: the data scarcity and
the covariate role. In response to these challenges, this chapter introduces a methodological per-
spective entitled Normative Contrastive Analysis inspired by Normative Modeling and Transfer
Learning research.
Moreover, the chapter addresses the difficulty of current methods to generalize on new indepen-
dent acquisition sites databases, the use of multiple modalities in computational psychiatry, and
the difficulty of interpreting representation learning methods. This chapter advances several
strategies to respond to these crucial points.
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The objective of this thesis is to develop methodologies to parse the neurobiological disorder het-
erogeneity within psychiatric disorders with the goal of improving the understanding of mental
disorders. Throughout this manuscript, the developed methods operate under the assumption
that pathological heterogeneity is distinct from the variability present in the healthy sample.
Particularly, the final chapter delves into Contrastive Analysis (CA) methods, which aims at
identifying and separating distinct and interpretable pathological latent generation factors from
latent healthy generation factors.

In practical applications, these approaches face several limitations that impede their effective-
ness. Firstly, the assumption of independence between pathological variability and the variabil-
ity observed in the healthy population does not accurately reflect the biological mechanisms
underlying psychiatric disorders, as demographic factors strongly correlate with the develop-
ment of psychiatric diseases [105]. Secondly, the performance of Contrastive Analysis methods
is often hindered by the requirement for balanced diseased/control datasets, which frequently
suffer from inadequate sample sizes, especially in neuroimaging applications.

To overcome these two major limitations, this chapter proposes to conceive a new class of
methods entitled Normative Contrastive Analysis (NCA). Similarly to traditional Normative
Models (NM) [195], NCA would enable 1) integrating demographic covariates in the train-
ing and inference process and 2) transferring knowledge from a large healthy database to a
smaller case/control cohort. Unlike traditional NM, NCA would use CA techniques to separate
pathological from healthy latent factors, leading to a better interpretation of the latent space.
Compared to traditional NM, integrating patients in the training process would potentially
enhance the discriminative power between case and control groups, as further described in the
next sections.

Eventually, several challenges and opportunities remain to be addressed to improve the ap-
plicability of neuroimaging techniques such as Normative Contrastive Analysis or Subgroup
Discovery. These methods often struggle to generalize effectively to new, independent test
data samples due to distribution shifts arising from diverse acquisition sites contributing to
the databases. Moreover, the frame of studies investigated in this thesis remains restricted
to neuroanatomical images. In practice, other modalities, promising for psychiatric disorder
biomarkers search (such as diffusion MRIs, functional MRIs, and genomics data) could be fur-
ther integrated in a multi-modal setting to increase the performance of these methods. While
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deep learning methods proposed in neuroimaging generally offer valuable representations, their
interpretability remains a significant hurdle, limiting their practical utility.
Below is an outline of the perspectives addressed in this chapter:

1. leveraging large healthy imaging datasets to enhance the model performances via transfer
learning techniques,

2. integrating demographic covariates into the learning and inference process, as proposed
in normative modeling,

3. remove the data bias of the acquisition sites or acquisition scanner from the learned
representations,

4. adding and fusing novel modalities to increase the number of potential biological markers
to be discovered,

5. increasing our models’ interpretability via enhanced representation disentanglement or
enhanced generation performances.

5.1 Toward Normative Contrastive Analysis (NCA)

5.1.1 Transferring the knowledge from a large to a small cohort

Fig. 5.1 describes a methodological perspective that would integrate the ideas pinpointed in the
previous paragraph. The upper figure (1) describes leveraging the Transfer Learning strategy,
extensively studied in [76], by pre-training a deep convolutional encoder on a large healthy
heterogeneous cohort. To successfully model the general physiological variability, it proposes to
enrich the training process with demographic variables used as supervision signals. Importantly,
this pre-training process is not meant only to classify and regress demographic attributes but
also to model the general variability of the healthy population. Therefore, special care should
be employed to produce a latent space that captures both these attributes and the general
patterns of variability that exist in the input dataset. To this end, training methods such as
conditioned VAEs [150, 295], or conditioned contrastive losses [75] could be employed. Also, to
reduce the heterogeneity of the representations, debiasing techniques [24] could be employed to
encourage the encoder to disregard irrelevant patterns of variability such as acquisition sites or
machine setting attributes. This strategy is discussed in Sec. 5.2.
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Figure 5.1: Scheme depicting a perspective of debiased, covariate-adjusted Contrastive Analysis
strategy. In step (1), a model learns from a large heterogeneous cohort on a self-supervised
task. The objective is to produce a latent space that captures demographic attributes (such as
age and sex) and the general patterns of variability that exist in the input dataset. To further
reduce the heterogeneity of the representations, debiasing techniques should be employed to
encourage the encoder to disregard irrelevant patterns of variability, such as acquisition sites.
In step (2), the learned representation is transferred as "the common encoder" in order to train
a normative contrastive analysis on a disorder-specific cohort. This strategy aims at identifying
two separated lower-dimensional representations of the inputs from a small case/control cohort.
At the right, the common representations capture the general patterns of variability, for which
pathological samples do not necessarily deviate from the normal, healthy deviation. At the left,
the pathological (or salient) representations capture the patterns of variability that only exist
in the diseased population. Contrary to traditional Contrastive Analysis, covariates such as age
and sex are integrated into the training process by using a Conditional Independence constraint
(i.e. I(c, s|age, sex) = 0). This conditioning aims at preventing information leakage between
the common and salient space of groups of controls and patients of around the same age and
sex. In this setup, step 2) benefits from step 1) thanks to transfer learning and provides better
interpretable representations by separating pathological-specific dimensions from those shared
between healthy and diseased populations. Ultimately, as in Normative Modeling, a Regression
Process could be used to estimate a normative chart conditionally to age and sex, enabling to
compute deviation scores on the shared and pathological representations.
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The lower part of the figure illustrates a strategy to identify two separated lower dimensional
representations of the inputs from a small case/control cohort. At the right, the common
representations capture the general patterns of variability, for which pathological samples do not
necessarily deviate from the normal, healthy deviation. At the left, the pathological (or salient)
representations capture the patterns of variability that only exist in the diseased population.
Several choices can be made, both encoders can be initialized from step (1), to allow the low-
level features re-use, as described in [210]. The common encoder can be either frozen in step
(2) or fine-tuned.
The fine-tuning of the common encoder in step (2) could be beneficial when the small cohort
comes from different acquisition sites. In that case, domain adaptation [102] or distribution
matching [299] strategies may be considered to align the distribution of diseased and healthy
samples from the small cohort of step (2) onto the healthy population of step (1). Besides,
covariate-conditioned independence constrained could be considered to ensure that the com-
mon space does not capture disorder-specific patterns, as described in Sec.5.1.3. The salient
space aims to capture pathological variability patterns that do not exist in the general popu-
lation (such as patterns that correlate with self-disturbance, auditive or visual hallucinations,
anhedonia, or disorganized thinking, for example). The training losses required to perform this
task have been extensively studied in SepCLR’s paper [181].

5.1.2 Enhancing deep normative models with diagnosis supervision

This section motivates the need for integrating diagnosis labels during the training process of
deep normative models. In particular, it encourages separating the latent space of normative
models into a healthy and a pathological latent space.

Deep normative models. Normative modeling (NM) is a statistical framework for mapping
population trajectories of the relationships between biological readouts (such as height, mass
index, or neuroanatomical measures like cortical thickness, and gray matter volumes for ex.)
and covariates (such as age, and sex for ex.) while simultaneously preserving individual-level
information. This class of methods has been extensively studied in the context of computational
psychiatry [194, 195, 196, 148, 149, 241]. As a reason, it overcomes the shortcomings of case-
control classification by estimating the deviation scores of the response variables (e.g. brain
measures) of each individual adjusted on its covariate values (e.g. age, sex).
In recent times, numerous methodologies have emerged for the direct computation of normative
models from high-dimensional raw inputs utilizing automatic deep learning feature extractors.
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Essentially, the primary concept involves estimating normative models within the representation
space derived from a deep feature encoder trained using self-supervised techniques such as Vari-
ational or Adversarial Auto-Encoder (VAE) [294, 159, 160] or Auto-Encoder (AE) [223]. These
approaches closely resemble unsupervised Anomaly Detection (AD) methods, which strive to
construct a latent space that retains information about input images while aligning it with a
known distribution to facilitate easy computation of density and likelihood.

Toward supervised Anomaly Detection. In a medical context, Anomaly Detection meth-
ods [26, 258, 251, 222, 273, 228] generally aim at estimating the general population distribution
to compute individual-level deviation scores. Practitioners thus expect pathological samples
to deviate from the healthy, general population, which enables the development of a diagnos-
tic tool that does not necessarily fit the case/control paradigm. However, previous work has
shown that merely unsupervised anomaly detection methods could underperform when it comes
to predicting the diagnosis compared to purely supervised methods. Notably, Gornitz et al.
wrote in 2013 that “the predictive performance of purely unsupervised anomaly detection often
fails to match the required detection rates in many tasks and there exists a need for labeled data
to guide the model generation” [107].

In the context of neuropsychiatric applications, Pinaya et al. [223] conducted a comparison
between deep normative models and traditional case/control classifiers. They observed that
“Although the traditional classifiers had a better mean performance in most cases, the differ-
ences between the two approaches were not statistically significant in most of the cases”. This
finding contradicts the conventional assumption often posited by researchers: given the biologi-
cal heterogeneity inherent in psychiatric disorders, one would anticipate that a method capable
of parsing such heterogeneity would outperform traditional case/control classification methods
in most cases.

To enhance the classification capabilities of Normative Models, one potential strategy involves
training the deep encoder in a semi-supervised manner. This entails integrating the diagnosis
within the training and fine-tuning process, as proposed in Gornitz et al. [107] and Ruff et al.
[239], or in the salient space of the contributions introduced in this thesis, that is SepVAE [180],
and SepCLR [181], whose salient space losses hold close resemblance with the semi-supervised
AD method DeepSAD [239]. Still, normative models hold promising performance, and they
remain particularly pertinent as they enable integrating covariates in the training and inference
process. Therefore, such a covariates-adjustment strategy could be further incorporated into
semi-supervised anomaly detection models, or any look-alike methods integrating the diagnosis
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as a supervision signal, such as SepCLR [181]. With this objective in mind, the following section
elucidates various insights to incorporate covariate conditioning within NCA.

5.1.3 Toward covariate-conditioned Contrastive Analysis

This section describes and analyzes the pitfalls of Contrastive Analysis models in neuroimaging.
Then, it provides several strategies to overcome these limits, notably by conditioning and
adjusting the representations learned with respect to demographic covariates.

On the limits of Contrastive Analysis. In this manuscript, Contrastive Analysis models
are validated by evaluating the performance of linear models on regression and classification
tasks that aim at predicting either a) demographic variables or b) pathological variables. A
satisfactory Contrastive Analysis model is expected to a) produce shared (or common) vectors
that successfully estimate the general demographic attributes, such as age, sex, and acquisition
site but not the clinical scale measures, and b) produce salient (or pathological) vectors that
correlate with clinical and cognitive scales, but not with demographic variables (age, sex, and
acquisition site). While this behavior has been observed to a certain extent, unexpected results
were still noticed. In SepVAE and SepCLR’s papers [180, 181], the salient vectors produced
performances that are better than average/random on age and sex classification and regression
tasks. Besides, it was also observed that the sex classification performance in the common
space is relatively poor compared to similar unsupervised representation learning strategies.

These observations can be explained by the fact that demographic factors strongly correlate
with the development of psychiatric disorders [105]. Therefore, while the salient space captures
pathological patterns that vary depending on the individual’s sex (via hormonal differences,
among other causes) and age (via disorder duration, among other causes), the common space
fails to capture the age-related and sex-related natural neuroanatomical variability successfully.
Therefore, I believe that the independent hypothesis prevents information leakage between
the common and salient space. Therefore, a relevant line of research would be to integrate
demographic covariates, which are generally available, in both the evaluation and learning
process of common and salient latent spaces.

Integrating covariates in the learning process. Let us provide methodological leads that
would help integrate demographic covariates in the Normative Contrastive Analysis training
process. As a reminder, in the InfoMax optimization objective, two constraints were introduced:

149



a) the information-less hypothesis: DKL(psX ||δ(s′)) = 0 that encourages healthy samples dis-
tribution to align on a distribution with a null variance centered on a constant information-less
vector s′, and b) a null Mutual Information constraint: I(c, s) = 0, that prevents information
leakage between the common and salient space.

The integration of demographic covariates could benefit the produced representation of both
Salient and Common space:

• Salient space: The salient space disregards healthy neuroanatomical variability patterns
(including natural aging and sex-related differences), which is ensured by the information-
less hypothesis. Also, the salient space captures pathological neuroanatomical patterns
via the salient Infomax term I(s, y). However, as assumed in normative models, diseased
representations are said to be deviating from the healthy range when they are discrim-
inable from healthy samples having the same demographic attributes (i.e. age and sex).
Therefore, constructing a salient representation space that potentially discriminates dis-
eased from healthy samples requires having demographic variables (i.e. age and sex) as
inputs.

• Common space: As they are available at training, demographic attributes such as age and
sex could be used to refine the learning of the common space. The common space is ex-
pected to capture the neuroanatomical patterns associated with the general healthy vari-
ability, encompassing natural aging and sex-related brain morphology differences. These
attributes could thus be used as auxiliary supervision signals in the common Infomax
terms I(c, x) + I(s, y). Additionally, the common space ignores the pathological vari-
ability patterns via the Independence hypothesis I(c, s) = 0. This term may potentially
produce a common space that conflicts with the salient space, as the salient space captures
pathological patterns that likely correlate with age and sex attributes.

To avoid such a pitfall, practitioners should integrate the covariates (e.g. a for the age attribute)
within a Conditional Independence constraint (i.e. I(c, s|a) = 0). This conditioning would
prevent information leakage between control groups’ common and salient space and patients
around the same age (and sex). To add this conditional mutual information regularization, one
could make use of the insights introduced in [181] by only maximizing the age-conditioned joint
entropy term H(c, s|a): This paragraph uses the same notation as Sec. 4.2.4, and describes
how to estimate and maximize H(c, s|a). Using a re-substitution entropy estimator and then
a Gaussian Kernel Density Estimation, the samples (c, s) should be uniformly drawn from
the age-conditioned target distribution p(c, s|y, a) and from the age-conditioned background
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distribution p(c, s|x, a). During this sampling, I propose to weight the contribution of each
sample j by a similarity measure between aj and ai with a similarity function w(ai, aj), as in
[74]. The indices i and j refer to two different samples in the dataset.

−H(c, s|a) = 1

NX +NY

NX+NY∑
i=1

log
1

NX +NY

NX+NY∑
j=1

w(ai, aj)

Z(ai)
exp
−||ci − cj||22

2τ
exp
−||si − sj||22

2τ

(5.1)
where Z(ai) =

∑NX+NY

j=1 w(ai, aj), and w is a Kernel, that can be Gaussian or categorical for
ex. depending if a is continuous or discrete.

5.2 Debiasing methods to reduce the known irrelevant vari-

ability

When addressing diagnosis prediction or clinical scale regression with neuroimaging data, sev-
eral works have observed poor cross-acquisition site generalization performance and high over-
fitting on the training acquisition scanner settings for a broad range of prediction tasks. To
overcome this issue, several works have proposed covariate adjustment techniques to regress
out the effect of acquisition sites in the input data [289, 94, 95, 103]. However, these works
rely on linear methods and may fail to effectively generalize to deep representation learning
methods that may still overfit on non-linear patterns stemming from the acquisition settings.
Moreover, such techniques generally require the acquisition site to be known during inference.
In Deep Learning and Medical Imaging, several works have designed debiasing methods for
representation learning. In neuroimaging particularly, normative models [149, 27] have pro-
posed to consider acquisition sites as a covariate and propose to fit a Hierarchical Bayesian
Repression (HBR) process to build a healthy normative range for each acquisition site in the
training data. These methods require the acquisition site to be known during the inference
process and may fail when a given inference image comes from a new acquisition site, but
remain particularly relevant for research purposes. In natural imaging and medical imaging,
several methods [23, 24, 25, 22, 56] propose to learn a representation that captures a target
attribute (e.g. a diagnosis) while debiasing with a confound attribute (e.g. the acquisition
site). Debiasing methods have been extensively studied in the literature, and their use should
be considered in our paradigm to reduce the distribution shifts of our representations.
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Matching biased-aligned and bias-conflicted distributions. Assuming a discrete bias
attribute such as acquisition sites or scanner types, several methods emerge as good candidates
for reducing the distribution shifts of our representations. Recently, Barbano et al. [24] intro-
duced a debiasing regularization entitled FairKL. The authors denote as ”bias-aligned” samples
x.,b samples having the same bias attribute (e.g. MRIs acquired with the same scanner) and
”bias-conflicting” samples x.,b′ samples having a different bias attribute (e.g. MRIs acquired
with a different same scanner). Given an anchor x, if the bias is “strong” and easy to learn,
a bias-aligned sample x.,b will probably be closer to the anchor x in the representation space
than a bias-conflicting sample x.,b, even though they are from the same class (e.g. from the
healthy class). Additionally, a sample is said to be positive x+,. with respect to the anchor, if
it belongs to the same class (healthy or diseased for ex.).
Given these notations, the authors designed a regularization loss term aiming at aligning the
distributions of the bias-conflicting samples and the bias-aligned samples given an anchor and
its class (healthy or diseased for ex.):

RFairKL = DKL({d+,bi }||d
+,b′

k }) (5.2)

By minimizing this loss term, one encourages every positive (resp. negative) bias-conflicting
representation to have the same distance from the anchor as any other positive (resp. negative)
bias-aligned representation. This regularization could be used in practice in a Contrastive
Analysis framework, and further works could be led to investigate the impact of the choice
of the assumed distributions (Gaussian, von Mises-Fischer, or Dirac for ex.), or divergence
measures (the Maximum Mean Discrepancy or Jeffrey Divergence could also be used for ex.).

5.3 Adding modalities to increase the information quantity

The main objective of this thesis is to propose and advance state-of-the-art methods for parsing
neuroanatomical heterogeneity in psychiatric disorders. Importantly, the contributions intro-
duced in this thesis are not strictly limited to neuroanatomical imaging only. The methodologies
introduced can also be applied to various neuroimaging modalities such as diffusion MRIs [87],
functional MRIs [63, 323], as well as EEG recordings [132] or genomics data.

Discovering better biomarkers with other modalities. Adding and integrating the fea-
tures provided by other neuroimaging modalities could potentially allow the discovery of new
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brain-based biomarkers specific to mental illnesses. These ideas are motivated by related works
that found functional deviations in schizophrenia [63, 323] (notably in default-mode network,
central executive network, and salience network), deviations in diffusion connectivity patterns
in various mental disorders [87], and connectivity patterns in electroencephalography [132].
These works motivate the fusion of information from several modalities to potentially enhance
the number of biomarkers that would characterize pathological traits.

Adding and interpreting new modalities. When considering an additional modality, a
novel signal source is introduced, with potential biomarkers of interest to discover, as well as
new sources of variability. Adding a modality also makes hardly interpretable the relative con-
tributions of each modality when estimating a clinical diagnosis or a clinical scale using a deep
learning method. As done in several related works [13, 159, 7] (mostly with variational auto-
encoders), an interesting perspective consists of designing a representation learning method
(e.g. with contrastive representation learning, auto-encoders, or diffusion models) that both:

1. reduces the dimensionality of each modality with representation learning methods (such
as Contrastive Learning methods, Variational Auto-Encoders, or Latent Diffusion models,
for ex.)

2. identifies and separates latent generation factors in the representation space that underpin
1) joint / common patterns of variability between both modalities and 2) modality-specific
patterns of variability for each modality.

As an example of application, let me consider joint brain folding images and whole-brain struc-
tural observations. In the literature, it is well admitted that the neuroanatomical patterns
tangibly result from the interaction between polygenic risk factors and environmental stress
factors [231, 111]. It is also well admitted that brain folding patterns mostly stem from ge-
netic factors [39, 281], while most other neuroanatomical variability results from an interaction
between genes and environmental factors. Cortical folding could be used to identify the neu-
rodevelopmental variability from another variability that appeared later in life (e.g. atrophies
related to alcohol, or drug use). Another perspective would be to separate the patterns of
variability of structural MRIs that correlate with diffusion-based connectivity measures. Al-
ternatively, we could also explore functional-based connectivity with brain connectome from
diffusion MRI. Such applications would have the potential to bridge the gap between different
modalities and help understand their relative contributions given a task of interest (e.g. clinical
scale regression, diagnostic prediction, etc.).
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When addressing Contrastive Analysis, two methodological tools have been developed enabling
1) compressing the dimension of an input with Mutual Information maximization or Evidence
Lower BOund maximization, or 2) separating common from salient patterns by minimizing the
Mutual Information with Total Correlation estimation [180] or kernel-based Joint Entropy esti-
mation [181]. These strategies are now on the shelf to help researchers fuse and integrate several
modalities to identify the common and modality-specific information given two modalities to
help interpret their relative contributions.

5.4 Enhancing the interpretability of Contrastive Analysis

methods

In this thesis, we investigated the use of Contrastive Analysis methods to push further the
understanding of psychiatric disorders with neuroimaging data. These methods have shown
promising results in producing salient vectors that capture the pathological patterns in pa-
tients while disregarding the physiological patterns that are common in the healthy, general
population. However, these models remain hardly interpretable and would benefit from re-
search projects in this sense. To interpret the results of Contrastive Analysis, two interesting
objectives are 1) the identification of biomarkers in the input data that produce several distinct
pathological processes and 2) the artificial generation of a diseased individual’s brain without
the pathological abnormalities by inferring its healthy digital avatar [6]. With these strategies
in mind, let us identify the advantages and drawbacks of each of the classes of methods we have
investigated.

Interpretability of Contrastive Analysis representation learning methods. Con-
trastive representation methods have successfully addressed transfer learning from big to small
cohorts [76], and a method like SepCLR successfully separates common from disorder-salient
patterns [181]. However, these methods remain hardly interpretable, as they lack a powerful
decoder/generator. Thus, a solution could be to add a reconstruction strategy to these meth-
ods. However, the preliminary results obtained in this thesis when adding a reconstruction loss
term during the training were not satisfactory. One of the reasons could be that the latent
space perturbation invariance objective is not consistent with the input image reconstruction
objective as it does not allow for a unique reconstruction solution given a data point in the
latent space. A perspective would be thus to overcome the need for input perturbations (or
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data augmentations) in the positive pair sampling strategy of SepCLR, as suggested in [77].
Another interesting perspective for representation learning Contrastive Analysis methods would
be to make use of interpretability methods such as Shapley value (SHAP) [183], GradCam
[253, 46], LIME [230], RISE [220], or DRISE [221]. These interpretability methods are model-
agnostic, do not require a decoder/generator, and can directly provide saliency maps in the
input space that directly highlight the pixels involved in a variable prediction or regression.
However, current interpretability methods usually fail to produce unambiguous saliency maps
for deep encoders [322].

Performing Contrastive Analysis with a powerful generation method. This thesis
has explored, developed, and investigated CA-VAEs. These methods both produce separated
common and salient representations and image reconstructions. Theoretically, they allow prac-
titioners to visualize in the original space the effect of 1) modifying latent dimensions in the
pathological space and 2) zeroing the pathological space (i.e. reconstructing the healthy digital
version of the brain). In practice, CA-VAEs produce weaker representations than contrastive
representation methods [76], and the image reconstructions they produce are generally blurry
and hardly interpretable. Therefore, using other powerful generation methods for Contrastive
Analysis could also be considered. Recently, Florence Carton developed a GAN-based Con-
trastive Analysis method [42] that could potentially overcome CA-VAEs in terms of expressive-
ness of the representations and quality of the generated image reconstructions. Besides, the use
of (Latent) Diffusion Models [236, 124] could also be considered for Contrastive Analysis, as
these methods generate images of high quality and fidelity. However, research remains to be led
to investigate the quality of such methods’ representations in the context of psychiatry-related
neuroimaging data.

Encourage disentanglement to enhance interpretability. This manuscript has explored
the search for interpretable and distinct separated pathological and healthy latent factors
of generation. The motivation for learning separated representations of the data (pathological
and healthy) was to enhance their interpretability. In this section, an emphasis has been placed
on interpretability to improve the applicability of deep learning methods in neuroimaging.

To further increase the interpretability of deep learning methods, this paragraph argues that
future works should also focus on improving the disentanglement within each representation
(healthy or pathological). Indeed, as suggested by Bengio et al. [30], and Chen et al. [47], disen-
tangled representations offer improved interpretability in unsupervised representation learning
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by disentangling underlying factors of variation within the data. This disentanglement allows
individual components of the representation to correspond more directly to distinct features
or attributes present in the input data. Consequently, disentangled representations empower
practitioners to grasp the essential characteristics captured by the model and to discern how
each of them contributes to the overall representation, thereby enhancing interpretability in
representation learning tasks.
To produce disentanglement, several strategies could be considered. Notably, in the Variational
Auto-Encoders (VAEs) literature, unsupervised disentangling regularization has been proposed
and discussed in [122, 35, 256, 325, 49, 9, 167] in an unsupervised manner based on statistical
independence. With a more general standpoint, in 2021, Peebles et al. [219] proposed a
Hessian penalty loss, encouraging unsupervised disentanglement for any method equipped with
a deep generator. From a slightly different perspective, weakly-supervised VAEs [199, 151,
192, 142] proposed integrating a supervised signal in their training. These methods would
potentially allow conditioning either the common space latent dimensions or the salient space
latent dimensions with fine-grained characteristics, if available. For example, the common
space could be conditioned with demographic information such as education, urbanicity, body
mass index, literacy, or family situation, and the salient space could be conditioned with clinical
pathological scale measures such as e.g. delusion score, paranoia score, anhedonia score, anxiety
score. In the Contrastive Learning paradigm, supervising the salient latent space dimensions
with independent attributes has already been proposed previously in [181] and in the manuscript
in Sec. 4.2.5 and could be further investigated.
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In this Chapter, we introduce the pivotal ideas that motivate and allow understand this thesis.
First, we detail how the neuroimaging data acquisition procedures developed throughout the re-
cent decades have provided a unique window into the brain’s structure and function. Likewise,
we describe how the data pre-processing and features extraction tools have permitted drawing
significant group-level correlations between neuro-anatomical biomarkers and clinical psychi-
atric measures. Then, we detail a range of useful and relevant Machine Learning algorithms
for individual-level prediction, which will served further in the manuscript.

A.1 Acquiring data in neuroimaging

In neuroimage acquisition, multiple non-invasive in-vivo modalities can provide a window to the
underlying biological processes in the brain. In terms of spatial imaging, modalities of interest
are (CT) scans, computed tomography scanners, dMRI (Diffusion MRIs), and sMRIs (struc-
tural MRIs). Regarding functional imaging, which enables visualizing the brain’s physiological
activity through time, modalities of interest are PET scans (Positron emission tomography),
and fMRI (functional MRI). Even though these acquisition techniques are non-invasive, PET
and CT scans still involve ionizing radiations, which is not the case for MRIs, making it a safer
option for repeated imaging. Let us briefly describe these techniques of interest.
Functional MRI, invented in 1990 by Seiji Ogawa [212] measures changes in blood oxygenation
to infer neural activity. During tasks or rest, there is an increased demand for oxygenated blood
in active brain regions. fMRI detects this change by utilizing the blood-oxygen-level-dependent
(BOLD) contrast. Subjects perform tasks while inside the MRI scanner, and changes in BOLD
signal intensity are recorded over time. Functional MRI produces dynamic images reflecting
brain activity. These images are often displayed as activation maps, indicating regions with
increased neural activity during specific tasks or resting states.
Diffusion MRI [165] measures the diffusion of water molecules in tissues, providing insights into
the brain’s microstructure. By applying gradients to the magnetic field, dMRI captures the
random motion of water molecules. This information is then used to create diffusion tensor
imaging (DTI) maps, revealing the orientation of white matter tracts. Diffusion MRI provides
valuable information about the connectivity and integrity of white matter pathways in the brain.
DTI maps visualize the directionality of water diffusion, offering insights into the organization
of neural fibers.
In this thesis, we focus on neuroanatomical MRIs. Noteworthy, the methodologies we developed
are general enough to be applied to other modalities.
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A.1.1 Structural MRI (sMRI)

Neuroanatomical MRI, invented in the 70s [193], provides detailed images of the brain’s struc-
ture, revealing diverse components such as gray matter, white matter, and cerebrospinal fluid.
The imaging process involves placing the subject within the strong magnetic field of the MRI
scanner. By applying an oscillating magnetic field known as radiofrequency current (RF), the
scanner stimulates hydrogen protons in water molecules within brain tissues. The pulsing RF
current disrupts the alignment of protons, causing them to spin out of equilibrium. When the
RF field is turned off, the MRI-receiving coils detect the energy released as protons realign
with the magnetic field, allowing estimation of the time taken for protons to return to their
equilibrium state.

Different tissues in the imaged brain exhibit independent relaxation processes of T1 (magnetiza-
tion in the same direction as the static magnetic field) and T2 (transverse to the static magnetic
field). For a T1-weighted image, magnetization recovery occurs before measuring the MR sig-
nal by adjusting the repetition time (TR). In contrast, for a T2-weighted image, magnetization
decay occurs before measuring the MR signal by adjusting the echo time (TE). T1-weighted
and T2-weighted scans are the most common neuroanatomical MRI sequences. T1-weighted
MRI, utilizing short TE and TR times, enhances fatty tissue signals while suppressing water
signals, providing excellent contrast for highlighting anatomical details. This makes it particu-
larly valuable for identifying diseases related to gray matter, including demyelinating diseases,
dementia, cerebrovascular disease, infectious diseases, Alzheimer’s disease, and epilepsy. On the
other hand, T2-weighted MRI, with longer TE and TR times, enhances water signals, aiding
in detecting edema, tumors, hemorrhage, inflammation, and revealing white matter lesions.

In this thesis, our objective is to develop methodologies suitable for parsing the heterogeneity
of mental disorders given neuroimaging data. To strengthen our contributions, we develop
our methods so that they generalize to different types of input modality. Nevertheless, in this
thesis, we primarily focus on neuroanatomical T1w MRI images of the brain for stratifying
and parsing mood and psychosis mental disorders such as schizophrenia, bipolar disorder, and
autism. To justify this choice, let us draw up a non-exhaustive list of group-level evidence
of gray matter-based neuroanatomical deviating patterns that correlate well with psychiatric
diagnoses documented in the literature. But first, let us describe the pre-processing tools
required to derive and obtain input images with an enhanced signal-to-noise ratio (SNR).
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A.1.2 The anatomy of the human brain

Foremost, let us provide a brief and coarse overview of the important structures that constitute
the brain. The brain floats in the Cerebrospinal Fluid (CSF), which surrounds the brain and
fills its ventricles. It is a translucid fluid composed of water, electrolytes, proteins, and other
substances. CSF protects the brain and spinal cord from physical shocks and helps maintain a
stable environment for the brain by removing waste products and supplying nutrients.
Besides the CSF, the brain can be decomposed into three areas: the brain stem, the cerebellum
(10% of the brain weight), and the cerebrum (85% of the brain weight). The cerebellum
and the brain stem are responsible for autonomic processes such as keeping a stable heart
rate, breathing, and coordinating movements. Conversely, the Cerebrum is responsible for
high-level cognitive tasks such as information processing, memory, emotions, learning, and
decision-making. The cerebrum is connected by the brainstem to the spinal cord and can be
divided into two cerebral hemispheres connected by the corpus callosum. Each hemisphere has
an inner core composed of white matter and an outer layer, the cerebral cortex, composed of
grey matter. Coarsely, white matter is primarily composed of myelinated axons and acts as
a communication network, facilitating the transmission of signals between different regions of
the brain and connecting the various gray matter areas. Grey matter consists mainly of neuron
cell bodies, dendrites, and unmyelinated axons and is involved in processing and integrating
information, including sensory perception, muscle control, and higher cognitive functions
Across the years and decades, the cerebral cortex has been decomposed into four lobes, which are
considered to have six lobes each. The lobes are large areas that are anatomically distinguishable
and functionally distinct, with numerous ridges, or gyri, and valleys, the sulci:

1. the frontal lobe, in charge of reasoning and decision-making. It notably includes Broca’s
area, which is associated with language processing;

2. the parietal lobe, responsible for sensory integration, visuospatial processing, recognition,
and navigation;

3. the occipital lobe, involved with visual processing;

4. the temporal lobe, responsible for short and long-term memory, language processing, and
emotion association.

Overall, in recent years, the search and development of finer brain templates have been moti-
vated to quantify the structural variance between individuals. Recently, digital brain templates,
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Figure A.1: Scheme of the neuroanatomical atlas that lists well-identified brain regions. Credits
to https://dana.org/resources/neuroanatomy-the-basics/.

or atlases, generated from a single-subject or multiple subjects, are replacing conventional
printed brain templates (e.g., Talairach and Tournoux atlas [269]). Then, the International
Consortium for Brain Mapping (ICBM) adopted MNI-152 as its standard template [200, 201].
This atlas is included in different functional imaging analysis packages, including the statistical
parametric mapping package (SPM) and the FMRIB Software Library (FSL) [202]. It has been
shown that brain templates using multiple subjects provide a higher signal-to-noise ratio and
better contrast between grey matter and white matter. Therefore, the MNI-152 template was
designed from 3D brain MRI images of 152 normal subjects [191]. By default, we use this atlas
in practice in our pre-processing and feature extraction pipelines.

A.1.3 Data pre-processing tools in neuroanatomical imaging

The pre-processing pipeline for structural MRI (sMRI) involves a well-defined series of steps
designed to transform raw images into stripped and registered brain images with an enhanced
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signal-to-noise ratio appropriate for further analysis. As described in detail by, the standard
pre-processing procedure generally includes 1) intensity normalization, 2) skull stripping, 3)
tissue segmentation, 4) spatial normalization, and 5) intensity modulation.

Step 1) aims at cleaning up certain artifacts from raw scans, such as bias fields. The bias field
is a low-frequency spatially varying MRI artifact resulting from spatial inhomogeneity of the
magnetic field, variations in the sensitivity of the reception coil, and the interaction between
the magnetic field and the human body. The bias field artifact depends on the strength of the
magnetic field and causes a smooth signal intensity variation within tissue of the same physical
properties. Step 2)’s objective is to separate brain tissues from the non-brain structures such
as fat, skin, muscles, eyes, and bones. Then, given brain voxels only, step 3) further categorizes
voxels into three distinct categories, the gray matter (GM), the white matter (WM), and
the cerebrospinal fluid (CSF), providing a probability density for each tissue type in every
voxel. Then, step 4), involves a two-step transformation: a linear component addressing global
alignment and a non-linear deformation (e.g., using DARTEL [19]), ensuring local alignment of
brain structures. This spatial normalization step consists of locally expanding and contracting
the brain regions. As a result, the normalized image needs to be scaled by the amount of
contraction to preserve the total amount of Gray Matter. To ensure it, we apply step 5)
called intensity modulation. In practice, it consists of multiplying the normalized image by the
Jacobian of the transformation. Ultimately, if the global brain size is not of interest, we apply
a proportional scaling according to the individual Total Intracranial Volume (TIV), as post-
processing, to fully modulated images as suggested in [99]. In this thesis, we consistently apply
a VBM pre-processing performed [17] with the Computational Anatomy Toolbox (CAT12)
[98, 99] of Statistical Parametric Mapping (SPM) [18]. VBM pre-processing outputs with
around 300,000 GM voxels at a resolution of 1.5mm3 that quantify the amount of local Gray
Matter volume at each voxel.

A.1.4 Evidence of neuro-anatomical patterns in psychiatry

In this thesis, we focus our research on gray matter neuroanatomical deviations captured with
T1w MRI acquisition sequence. As a reason, recent years of research on psychiatric conditions
have shown that structural alterations in neuroanatomical gray matter have been consistently
observed in various mental disorders, such as as schizophrenia, bipolar disorder, and autism
spectrum disorder.
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Figure A.2: Scheme of an example of a neuroimaging pre-processing pipeline. In step 1),
the inhomogeneity aims to correct bias field artifacts. In Steps 2) and 3), non-tissue matter
is stripped from tissue matter while different types of tissue matter (GM, WM, and CSF)
are segmented. In this particular example, the pipeline conserves only the Gray Matter of the
brain. In step 4) the brain is first linearly warped onto a template (e.g. MNI-152) and then non-
linearly deformed and aligned onto the template. An intensity modulation step is performed to
preserve the total amount of Gray Matter. Typically, this step consists of reducing the intensity
of the voxels in the brain regions that have been expanded and increasing the intensity of the
voxel in the regions that have been shrunk during the template non-linear registration. Credits
to [161].

Schizophrenia disorder: For schizophrenia, early studies [141] have reported enlargement of
the lateral ventricles based on a comparison between 17 chronic schizophrenic patients and age-
matched controls. Empowered by the recently developed pre-processing and template-warping
techniques such as Voxel-Based Morphometry (VBM) and Regions-Of-Interest (ROI), several
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analyses [255, 244, 163] have revealed that schizophrenia was associated with a global brain
volume reduction, particularly in frontal and temporal lobes. A meta-analysis, dating back from
2005 [126], generally outlined gray and white matter deficits in patients with schizophrenia,
compared to healthy comparison subjects, in a total of 50 brain regions, with particularly
consistent gray matter deficits in specific brain regions, such as the left superior temporal
gyrus and parahippocampal, the inferior frontal gyrus, the left superior temporal gyrus and
the left medial temporal lobe. Also, sub-cortical structures, notably including the amygdala,
hippocampus, thalamus, and accumbens have been shown to exhibit decreased volumes in
individuals with schizophrenia in 2016, in a recent ENIGMA large-scale analysis [282], with
positive associations found between the volume of certain structures and the duration of illness
and age.

Bipolar disorder: Similarly, for bipolar disorder (BD), consistent gray matter alterations
have been noted in sub-cortical structures, with studies that date back from 2012 and 2014
revealing differences in hippocampal, thalamic, and amygdala volumes compared to healthy
controls [114, 163, 198]. In 2016, a larger study [120], the ENIGMA consortium also reported
lower hippocampal, amygdala, and thalamic gray matter volumes in BD individuals and higher
bilateral ventricular volumes, as in schizophrenia. In terms of cortical regions, the same study
also reported reduced cortical thickness in the anterior cingulate, para-cingulate, superior tem-
poral gyrus, and prefrontal regions. In 2018, gray matter volume thinning was again reported
by the ENIGMA consortium in the frontal, temporal, and parietal regions symmetrically in
brain hemispheres [121]. Interestingly, [172] also observed gray matter atrophies in frontal
and temporal regions of the bipolar group compared to a healthy group and also reported it
in schizophrenia which potentially indicates some common underlying pathological processes.
Recently, in 2022, an additional large-scale study by the ENIGMA consortium [54] confirmed
these findings while expanding the understanding of cortical thinning to include regions such
as the inferior parietal, fusiform, and inferior temporal regions associated with disruptions in
sensory processing.

Autism disorder: In autism disorder, relatively early studies have identified significant dif-
ferences in terms of gray matter volume using an approach per regions of interest (ROI).
These studies underscored gray matter deviations as well as correlations with clinical severity
in the parietal, frontal and limbic regions but also in the basal ganglia and the cerebellum
([204, 235, 290]). Some of these findings were later also observed by Ecker et al. in 2010 [80]
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and more recently, in 2022 [81], where deviations were observed in the limbic, frontal-striatal,
frontotemporal, frontoparietal and cerebellar systems, but also the cingulate region. However,
the authors explain that some results of many studies are in disagreement, and explain that
these are due to the heterogeneity of the autism spectrum disorder, which points out the need
for more individualized, reliable, and heterogeneity-aware biomarkers discovery methods.

These neuroanatomical findings provide valuable insights into the structural biomarkers asso-
ciated with mental disorders, contributing to a better understanding of their etiology. Further-
more, even though these analyses have been led at the group level, they provide compelling
promises about developing a diagnostic biomarker predictor at an individual level.

A.2 Learn statistical patterns with Machine Learning

Machine learning (ML) is a powerful computational approach that enables systems to learn pat-
terns and predict from individual inputs. At its core, machine learning involves developing and
studying statistical algorithms that can effectively generalize and thus perform tasks without
explicit instructions. A pivotal concept in machine learning is generalization. Generalization
refers to the ability of a learning machine to perform accurately on new, unseen examples/tasks
after having fitted a learning data set. The model must achieve robust generalization to provide
accurate predictions in real-world scenarios.
Machine learning is particularly suited for individual prediction and knowledge discovery due to
its capacity to identify subtle patterns within large and complex datasets. By leveraging diverse
features, machine learning models can uncover statistical relationships that may be disregarded
by group-level analytical methods. This makes Machine Learning particularly suitable for
inferring predictions based on individual characteristics, such as predicting disease outcomes
based on unique patient profiles. Moreover, machine learning can also be used in knowledge
discovery by drawing insights from data as it can identify relevant associations between input
features and variables of interest.

A.2.1 Linear Supervised Learning

Supervised learning is a type of machine learning where the algorithm is trained on a labeled
dataset. In this approach, the algorithm learns to map input data to corresponding output
labels by observing examples in the training set. Each example in the dataset consists of input-
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output pairs, with the algorithm adjusting its internal parameters to minimize the difference
between the predicted outputs and the ground truth labeled outputs. Supervised learning aims
to enable the algorithm to make accurate predictions on new, unseen data by generalizing
patterns learned from the labeled training data. This method is particularly useful for tasks
such as classification, where the algorithm is trained to categorize inputs into predefined classes,
or regression, where it predicts numerical values based on input features.

Multinomial logistic regression

In classification, logistic regression stands out for its simplicity, interpretability, and efficiency
in multiclass classification tasks. Logistic regression is a statistical method widely used in
machine learning for predicting the probability of an instance belonging to a specific class.
The multinomial logistic regression algorithm models the relationship between independent
variables (features, denoted by X, an input matrix of size [N,D]) and the probability of an
outcome (label, denoted by Y , a one-hot label matrix of size [N,K]). The logistic regression
model applies the softmax function to a linear combination of input features, where each feature
is weighted by a corresponding coefficient (stacked in a weight matrix W , of size [D,K]). The
weighted sum, augmented by a bias term (denoted by b, a weight vector of size [K]), is then
transformed through the logistic function to produce a probability score. Given an input xi of
size D, the logits are computed as follows:

Logits = Wxi + b (A.1)

The predicted output for the k-th class is obtained by transforming logits into probabilities
using the softmax function:

ŷk =
eLogitsk∑K
j=1 e

Logitsj
(A.2)

Maximum Likelihood Estimation: To quantify the difference between predictions and
ground truth labels, a cost function known as ”cross-entropy” is defined over the entire dataset:

H(Y, Ŷ ) = −
N∑
i=1

K∑
k=1

yi,k · log ŷi,k (A.3)

This cost function can be retrieved from a statistical approach by looking for the parameters θ
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that maximize L(θ) the log-likelihood of input data.

L(θ) = log
N∏
i=1

p(yi,k|xi; θ) (A.4)

Taking the logarithm of the likelihood simplifies the product into a sum:

L(θ) =
N∑
i=1

log p(yi|xi; θ) (A.5)

Assuming a generalized Bernoulli distribution for K categorical outcomes. We model the
parametric distribution of p(yi,k|xi; θ) as:

L(θ) =
N∑
i=1

log

(
K∏
k=1

p(yi,k|xi; θ)δk,yi
)

(A.6)

Again, using the logarithm properties simplifies the equation into:

L(θ) =
N∑
i=1

K∑
k=1

δk,yi log p(yi,k|xi; θ) (A.7)

Now, assuming that p(yi,k|xi; θ) is equal to our parametric estimation ŷik, we obtain the usual
”cross-entropy” cost function used in Machine Learning.

L(θ) =
N∑
i=1

K∑
k=1

yi,k log ŷi,k = −H(Y, Ŷ ) (A.8)

Gradient descent: In the pursuit of optimizing the parameters of our multinomial logistic
regression model, we turn to the iterative power of gradient descent. Having established the
foundation of our model, characterized by the weight matrix W and bias vector b, the next
step is to minimize the cross-entropy cost function H(Y, Ŷ ). This function gauges the disparity
between the predicted probabilities Ŷ and the actual class labels Y , with Y representing the true
class labels in a one-hot encoded form. To navigate this optimization landscape, we compute
the gradients of the cost function with respect to the weight matrix W and the bias vector b.
The gradients are expressed as follows:

∇WH(Y, Ŷ ) = − 1

N
XT · (Y − Ŷ ) (A.9)
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∇bH(Y, Ŷ ) = − 1

N

N∑
i=1

(Yi − Ŷi) (A.10)

Given the computation of these gradients, we use an iterative optimization process to update
the model parameters, guided by the negative gradient’s direction and influenced by a learning
rate α. The updating equation for updating the parameters θ = (W ; b) based on the gradient
is expressed as follows:

θt+1 = θt − α∇θtH(Y, Ŷ ) (A.11)

This optimization process converges towards the optimal parameters W ∗ and b∗, fine-tuning
our model parameters to minimize the classification error.

Figure A.3: Scheme of gradient descent optimization process. The blue manifold plots the
expression of the loss function H(Y, Ŷ ) for different values of θ = {W, b}. At the red point, the
red arrow in the x-y plane points in the direction that minimizes the loss function: the opposite
direction of the gradient. Image taken from https://web.stanford.edu/~jurafsky/slp3/5.
pdf

Linear regression

In regression tasks, linear regression is a key technique. Unlike classification, which aims to
predict discrete class labels, linear regression is employed when predicting continuous numerical
values. The algorithm models the relationship between input features (X, an input matrix
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of size [N,D]) and the output variable (Y , a vector of size [N ]) through a linear equation
Y = XW + b. Here, W represents the weight matrix of size [D, 1], and b is a bias term.

Maximum Likelihood Estimation: In linear regression, the maximum likelihood estima-
tion seeks parameters (W , b) that maximize the likelihood of the observed data given the model.
Assuming that the parametric estimated distribution p(y|x; θ) follows a Gaussian distribution,
the likelihood function is defined as:

L(θ) =
N∏
i=1

p(yi|xi; θ) =
N∏
i=1

1√
2πσ2

e−
(yi−(Wxi+b))2

2σ2 (A.12)

Applying the logarithm simplifies the product into a sum:

logL(θ) = −N
2
log(2πσ2)− 1

2σ2

N∑
i=1

(yi − (Wxi + b))2 (A.13)

Mean Square Error (MSE) as Cost Function: The negative log-likelihood, which is
proportional to the mean square error, serves as the cost function to be minimized during
training:

MSE =
1

N

N∑
i=1

(yi − (Wxi + b))2 (A.14)

Analytical solution: Given that y ∈ R is continuous, the MSE cost function fueled with
a linear estimation model constitutes a convex objective. This loss function is known as the
Ordinary Least Squares (OLS) regression, and its solution is given by:

θ∗ = argmin logL(θ) = (XTX)−1XTY (A.15)

The OLS regression provides a closed-form solution for the optimal parameters θ, making it
computationally efficient and widely used for linear regression tasks.

A.2.2 Linear Unsupervised Learning

Unsupervised learning represents a distinctive paradigm in machine learning where the algo-
rithm is entrusted with extracting patterns and structures from unlabeled data. In contrast to
supervised learning, there are no explicit output labels to guide the learning process. Instead,
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the algorithm explores inherent structures within the input data, aiming to uncover hidden rela-
tionships, cluster structures, latent independent dimensions, or latent distinct and interpretable
generative factors.

Clustering unlabelled data with K-Means

The k-means algorithm [175, 93], a pivotal method in unsupervised learning, is designed for
clustering data into distinct groups based on similarity. The objective of k-means is to identify
K centroids, each representing a cluster, and assign data points to the nearest centroid, iterating
until convergence. The algorithm’s simplicity and efficiency lie in its objective to minimize the
within-cluster sum of squares. Interestingly, the k-means algorithm closely relates to Gaussian
mixture models (GMMs) [203], specifically in the spherical isotropic case. While k-means
simplifies the complexities of GMMs, it offers a computationally efficient means of identifying
cluster structures in unlabeled data.

Maximum Likelihood Estimation (MLE): As for supervised methods, the objective func-
tion of K-Means can be linked to Maximum Likelihood Estimation. Let X be the dataset, C
the latent cluster assignments with k clusters, and θ the parameters (centroids). We look for
the parameters θ that maximizes the log-likelihood of observed data X:

L(θ) = log
N∏
i=1

p(xi|θ) (A.16)

From there, we can introduce the clustering assignment distribution by applying the equality
p(xi) =

∑K
k=1 p(xi|ci = k, θ)p(ci = k|θ). Also, we can use the logarithm to simplify into:

L(θ) =
N∑
i=1

log
K∑
k=1

p(xi|ci = k, θ)p(ci = k|θ) (A.17)

Given the assumption that p(ci = k|θ) follows a spherical isotropic Gaussian distribution with
standard deviation σ and mean µk, the probability of observing a data point xi knowing that
it belongs to the cluster ci is modeled as:

p(xi|ci, θ) =
1

(2πσ2)
D
2

exp

(
−∥xi − µk∥

2

2σ2

)
(A.18)
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We therefore obtain a log-likelihood function equal to:

L(θ) =
N∑
i=1

log
K∑
k=1

p(ci = k|θ) 1

(2πσ2)
D
2

exp

(
−∥xi − µk∥

2

2σ2

)
(A.19)

For simplicity, in K-Means (and spherical Gaussian Mixture), it is assumed that σ takes the
same value across all clusters.

Expectation-Maximization (EM) Optimization The Expectation-Maximization [209]
algorithm optimizes the likelihood function iteratively through Expectation and Maximization
steps. In the E-step, the algorithm computes the expected value of the log-likelihood with
respect to the current estimates of parameters. For k-means, it is equivalent to re-estimating
the cluster assignment p(c = k|θ) by assigning data points to the nearest centroid.

p(ci = k|θ) = 1 if exp

(
−∥xi − µk∥

2

2σ2

)
≥ exp

(
−∥xi − µj∥

2

2σ2

)
∀j ̸= k, 0 else. (A.20)

In the M-step, the algorithm maximizes the expected log-likelihood, updating the parameter
estimates. For k-means, this step includes recalculating the centroids θ = {µk}Kk=1 based on the
newly assigned data points.

µk =

∑N
i=1 p(ci = k|θ) · xi∑N
i=1 p(ci = k|θ)

(A.21)

These E and M steps iteratively continue until convergence, aligning with the MLE objective of
maximizing the likelihood function. In summary, the k-means algorithm, driven by MLE and
the EM optimization technique, efficiently discovers cluster structures within unlabeled data,
iteratively refining cluster assignments and centroids.

A.3 Learn complex statistical patterns with Deep Learning

In the previous section, we introduced traditional Machine Learning techniques to classify or
regress samples in a supervised manner (e.g., logistic regression, linear regression, and support
vector methods, etc...) or to discover homogeneous structure (i.e: clusters) among a set of
data points (e.g., k-means [175, 93], Gaussian mixture models [203], etc...). Even though these
methods are well-studied, interpretable, and theoretically grounded, they generally require a
limited set of human-defined, well-chosen features as input. Indeed, linear models tend to fail
on raw, structured, high-dimensional data inputs. As a reason, the complexity of the decision
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(a) K "prototypes" are
randomly initialized.

(b) Associate observa-
tions with the nearest
prototype.

(c) The centroid of each
of the k clusters becomes
the new prototype.

(d) Steps 2 and 3 are re-
peated until convergence
has been reached.

Figure A.4: Scheme of the K-Means algorithm, taken from https://en.wikipedia.org/wiki/
K-means_clustering.

function is limited to a linear function only, which can fail to capture a higher level of pattern
complexity.
In contrast, deep learning offers a more parameterized and powerful approach to handling raw,
structured, and high-dimensional data. Deep learning models, particularly neural networks, in-
troduce a hierarchy of learned features, allowing them to automatically extract complex patterns
and representations from input data. Unlike linear models, which are constrained to linear de-
cision boundaries and may struggle with complex patterns, deep learning architectures employ
multiple layers of non-linear transformations. Deep learning excels at automatically learning
input representations, eliminating the need for user-based feature extraction engineering. The
development of Deep Learning models has enabled improved performance in various domains,
including image and speech recognition and natural language processing. As an example, the
emergence and development of Deep Learning has enabled the achievement of a classification
rate of 95% on the ImageNet benchmark [61], launched in 2009. The three pivotal keys that
have fueled this success are the development of better computational resources (notably by
letting deep neural networks trained on Graphics Processing Unit (GPU), introduced in 2005,
in [263]), data availability (ImageNet dataset has grown from 3 million images in 2009 to 14
million images recently), and the architecture search of the deep neural networks (associated
with an increase in the number of learnable parameters).

A.3.1 Deep neural network optimization

In the context of deep neural networks, the optimization process plays a crucial role in the
training process. As in traditional machine learning techniques such as logistic regression or
linear regression, the training of these networks involves minimizing a chosen loss function,
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which, in the supervised case, for example, quantifies the disparity between predicted and
actual outputs across the entire dataset. Interestingly, we can derive the same loss functions
for classification and regression as with logistic and linear regression by deriving them from
the Maximum Likelihood Estimation. The only difference lies in the output estimation, which
depends on a (possibly over-)parameterized non-linear, generally non-convex function fθ rather
than a linear matrix weight W and bias vector b. Similar to logistic regression, optimization
involves a gradient descent iterative process. A widely used optimization technique for this
task is the stochastic gradient descent (SGD) [233]. Its weight updates follow the rule:

θ ← θ − α∇L(θ) (A.22)

where α denotes the learning rate. An essential advantage of SGD is its scalability, as it
can learn from large datasets by dividing the data into batches of samples. The gradient
∇L(θ) is approximated using each batch in a stochastic manner, contributing to the efficiency
optimization process. Indeed, the non-convex and non-linear nature of neural networks poses
challenges in finding global minima, but SGD[233], by iteratively updating model parameters
in the direction of the negative gradient, provides a scalable solution that is less likely to
stagnate in local minima due to its stochastic property. An important feature contributing
to the generalization of Deep Neural Networks is its architecture, as it directly impacts the
smoothness of the loss landscape and the expressivity of its decision function.

A.3.2 Deep neural network architectures

Over the recent years, many endeavors have been invested in neural network architecture de-
sign to enhance the expressivity of the decision function while preventing overfitting. In this
subsection, we provide a non-exhaustive list of architectures that have enabled performance
gains in image recognition and tabular data classification.

Multi-Layer Perceptron

The Multi-Layer Perceptron (MLP) builds upon the concept of the Perceptron, a basic linear
model using a non-linear activation function to make binary predictions (0 or 1) from the input.
However, MLP takes this idea further by allowing an arbitrary number of layers. We can stack
multiple Perceptrons together, forming a composite function fθ = fθ1◦fθ2◦...◦fθk . Each fθi(x) =
ϕ(Wix + bi), where ϕ(x) is 1 if x > 0 and 0 otherwise (Heaviside activation function). The
parameters to be learned are denoted as θi = {wi, bi}, and fθ represents the decision rule. This
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architecture generates multiple intermediate representations after each hidden layer, leading to
the final layer where the actual task is performed. The compositional architecture of Multi-
Layer Perceptron is particularly interesting to derive compressed representations that capture
non-linear feature combinations within the inputs. In practice, other non-linear activation
functions, such as the ReLU [104] or the Sigmoid function, were further found to perform
better than the Heaviside function.

Figure A.5: Diagram of a Multi-Layer Perceptron (MLP) with four hidden layers which illus-
trates how to obtain a scalar input given a n dimensional input. One neuron is the result of
applying the nonlinear transformations of linear combinations (xi, wi, and biases b). Image
taken from [82].

Convolutional Neural Networks

LeCun introduced Convolutional Neural Networks (CNNs) in 1989 [166]. These architectures
use filter layers designed for processing grid-structured data, such as images. In practice,
this type of architecture has demonstrated impressive performance gains, notably in image
recognition, which, intuitively, was first attributed to its resemblance with the organization of
the animal visual cortex. Unlike Multi-Layer Perceptrons (MLPs), CNNs use convolutional
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layers that apply filters to capture patterns of features. These filters enable the network to
recognize local patterns like edges and textures. Using them in a hierarchical manner produces
a compositional representation of the visual information. Mathematically, this corresponds
to rewriting the matrix-vector multiplication Wkx in the k-th layer fθk = ϕ(Wkx + b) by a
convolution operation Ωk ∗ x, where Ωk is the k-th kernel and has a much smaller size than the
original matrix Wk ∈ Rdk−1×dk . The convolution operation slides the kernel over the grid data,
computes element-wise multiplications, and spatially stacks the results. This operation enables
the capture of local patterns and reduces the number of learnable parameters of the layer. Let
us describe it in detail:

fθk(x)i,j =

dk−1−1∑
a=0

dk−1−1∑
b=0

ωaby(i+ a, j + b) (A.23)

where each element is defined as:

1. xi,j represents the element at position (i, j).

2. ωab represents the kernel element at position (a, b).

3. x(i+ a, j + b) represents the element at position (i+ a, j + b).

This formula describes the convolution operation, where a single kernel Ω is applied to the input
data at different positions, and the results are summed to produce the output of the convolu-
tional layer. In practice, in a traditional convolutional neural network layer, multiple kernels
are used, and resulting filtered features are stacked along the channel dimension, allowing a
greater expressivity of the features extractor.

Dense and Residual Neural Networks

Importantly, the stacking of convolutional layers has been a key component of the increase
of the performances of convolutional neural networks. However, it has been observed that
training very deep convolutional neural networks hardly leads to an optimal solution. As
a reason, the vanishing gradient problem. This issue has been first observed in 1994 [29]
with recurrent neural networks. It was shown that the gradient norms are smaller when the
gradient chain rule requires to be applied too many times, typically when the task requires
long-range dependencies in the sequential input when using a recurrent neural network. In
deep convolutional neural networks, the same optimization problem was observed as the depth
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Figure A.6: Scheme of VGG-16 [259], a Deep Convolutional Neural Architecture. Image taken
from https://learnopencv.com/tag/convolutional-neural-networks/.

of the convolutional model increases, which leads to frozen first layers weights that are barely
modified during the optimization process.
As a solution, Kaiming He et al. [116] introduced residual neural networks in 2016. Residual
layers in residual neural networks (ResNets) operate by explicitly fitting a residual mapping. In
these networks, the desired underlying mapping is denoted as h(x), and the stacked non-linear
layers are encouraged to fit another mapping, f(x) = h(x) − x. This technique consists of
recasting the original mapping into f(x) + x. The key hypothesis behind using residual layers
is that estimating the residual mapping f(x) is supposedly more tractable than estimating the
original, mapping h(x). Essentially, this approach assumes that it is easier to drive the residual
to zero than to train a stack of nonlinear layers to fit an identity mapping, particularly if an
identity mapping is considered optimal.
In the same vein, Gao Huang et al. [129] introduced dense neural networks in 2018. They
further established a dense connectivity pattern. In this architecture, all layers with matching
feature-map sizes are directly connected to each other. To maintain a feed-forward nature,
each layer receives additional inputs from all preceding layers and passes its own feature maps
to all subsequent layers. Consequently, dense connected layered networks thus require fewer
parameters than traditional convolutional networks, as they do not need to relearn redundant
feature maps. Besides better parameter efficiency, DenseNets improves the flow of information
and the scalability of the gradients throughout the network, as each layer has direct access to
the gradients from the loss function.
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Universal Approximation Theorem

As previously explained, many endeavors have searched relevant architectures allowing an ex-
pressive decision function while not being too prone to overfitting, undesirable behavior that
occurs when the model gives accurate predictions for training data but not for evaluation data
that have not been fed during the training process. Concerning the expressivity of the deci-
sion function, theoretical results have been given as evidence to justify using MLPs and CNNs
in practice. In the mathematical theories of Deep Neural Networks, universal approximation
theorems are results that enable delineating what an architecture can possibly learn. Notably,
Stinchcombe, White, and Hornik [128, 264], showed in 1989 that n-layers (providing that n is
greater than 2) MLPs with Sigmoid or ReLU activation functions had the potential to theoret-
ically learn any continuous function between two Euclidian spaces as soon as sufficient number
of hidden units are available at each layer. This theorem is extremely relevant as it states that,
theoretically, the choice of the MLP architecture can potentially solve any task, as long as it
does not overfit, or end up in a local minima during optimization. Indeed, a major weakness of
the universal approximation theorem is that while any continuous function can be arbitrarily
well approximated in a bounded input region, it does not hold outside of the input region (i.e.
approximated functions do not extrapolate outside of the input training region), which makes
models prone to overfitting. Given these results, a relevant question to be raised would be:
if MLPs are universal approximators, why would we need Convolutional and Residual Neural
Networks? The answer needs two arguments to be complete. Primarily, it has been recently
shown that deep convolutional ([331]) and residual ([171]) neural networks were also able to
approximate any continuous function to an arbitrary accuracy provided that their depth is
large enough. Secondary, it has been shown that convolutional neural networks are actually
more sample efficient than traditional fully connected networks, notably because they are not
orthogonal-equivariant or permutation equivariant, as shown in [168]. Despite these results,
deep neural architecture used nowadays could theoretically over-fit the training dataset. How-
ever, it was observed that these models generalize well on new unseen data. Understanding
this behavior remains an open problem as explained in [321].

Deep representation learning An interesting property of deep learning models is their
ability to automatically extract compressed representations of the inputs, i.e. features. This
field of interest so-called “Representation Learning”, where practitioners aim at estimating para-
metric models tailored to learn meaningful and compact representations from high-dimensional
data. The objective is reduce the input dimensionality and capture relevant features to facil-
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itate downstream tasks such as classification [158, 259], clustering [40, 41, 168, 275, 278] or
generation [150, 106].

A.3.3 Variational-Auto-Encoders

Variational Autoencoders (VAEs) [150] are a type of deep generative model that can be used
to learn a compact, continuous latent representation of a dataset. They are based on the idea
of using an encoder network to map input data points x (e.g: an image) to a latent space
z and a decoder network to map points in the latent space back to the original data space.
Given a dataset X = {xi}Ni=1 and a VAE model with encoder qϕ(z|x) and decoder pθ(x|z). The
VAE’s objective seeks the parameters ϕ, θ to maximize a lower bound of the input distribution
likelihood, which is entitled the ELBO (Evidence Lower BOund):

log pθ(x) ≤ Ez∼qϕ(z|x) log pθ(x|z)−KL(qϕ(z|x)||pθ(z)) (A.24)

where pθ(x|z) is the likelihood of the input space, and KL(qϕ(z|x)||p(z)) is the Kullback-Leibler
divergence between qϕ(z|x), the approximation of the posterior distribution, and p(z) the prior
over the latent space (often chosen to be a standard normal distribution). The first term in the
objective function, Ez∼qϕ(z|x) log pθ(x|z), is the negative reconstruction error, which measures
how well the decoder can reconstruct the input data from the latent representation. The second
term, KL(qϕ(z|x)||p(z)), encourages the encoder distribution to be similar to the prior distri-
bution, which helps to prevent over-fitting and encourages the learned latent representation to
be continuous and smooth.

Evidence Lower BOund: Interestingly, let us note that the ELBO objective can be retrieved
from the maximization of the log-likelihood of the input distribution in a simple way. Starting
with the log-likelihood of the data, log pθ(x), and using the properties of the logarithm, we can
express it as follows:

log pθ(x) = Ez∼qϕ(z|x) log pθ(x) = Ez∼qϕ(z|x) log
pθ(x, z)

pθ(z|x)
(A.25)

Applying the log product rule, introducing the auxiliary distribution qϕ(z|x) and rearranging
terms, we get:

log pθ(x) = Ez∼qϕ(z|x) log pθ(x|z)−KL(qϕ(z|x)||pθ(z)) + KL(qϕ(z|x)||pθ(z|x)) (A.26)
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Considering that the latest term is positive (KL divergence is always positive or null), we have
demonstrated the ELBO inequality introduced in the upper equation. Thus, by maximizing the
ELBO, we are effectively maximizing a lower bound on the log-likelihood of the input distribu-
tion. This generation method is particularly suited to learning a compressed representation z

that can be further investigated to uncover the latent structure of the input data.

VAE loss: Given the previous equation, we can derive the Variational Auto-Encoder loss
that is optimized in practice by making assumptions about the form of the distributions during
the ELBO derivation. To formulate the Variational Autoencoder (VAE) loss, we combine two
key components: the reconstruction error and the Kullback-Leibler (KL) divergence between
the prior and posterior distributions.

The reconstruction error quantifies the dissimilarity between the input data x and its recon-
structed counterpart x̂. This term assesses how well the decoder captures the original data
during the generative process. In practice, one usually assumes that pθ(x|z) follows an isotropic
Gaussian distribution with a fixed diagonal unit covariance matrix and a mean equals to fθ(z),
where dθ(.) is the decoder function. Using a Monte-Carlo estimation to estimate the Expecta-
tions, these choices enable to derive the reconstruction term into a Mean Squared Error function
between the input data x and its reconstructed counterpart fθ(z):

Ez∼qϕ(z|x) log pθ(x|z) = −
1

2

N∑
i=1

L∑
l=1

∥|xi − dθ(zli)∥|22 (A.27)

where zli is the l-th latent vector sampled from the posterior distribution qϕ(z|xi) via the
reparametrization trick. qϕ(z|xi) is assumed to follow a Guaussian distribution, whose param-
eters (µ(xi), σ(xi)) are inferred by the encoder fϕ(.).

Simultaneously, the KL divergence between the prior distribution pθ(x) and the posterior dis-
tribution qϕ(z|x) measures the discrepancy between these two distributions. For a standard
normal prior and a parameterized Gaussian posterior (as described in the previous paragraph),
the KL divergence analytical form can be computed as:

KL(qϕ(z|x)||pθ(z)) =
N∑
i=1

1

2

[
− log(σ2

i )− 1 + σ2
i + µ2

i

]
(A.28)

The derived Variational Autoencoder loss, combining reconstruction error and KL divergence,
presents a powerful framework for learning compact and continuous latent representations.
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Figure A.7: Scheme of VAE’s training process [150]. The probabilistic encoder estimates a
mean µ and a standard deviation σ from the input x. These two parameters are regularized
to map a normal distribution. Then it samples a latent vector z given µ and σ. Importantly,
VAEs employ a reparameterization trick, which consists of computing z = µ + σϵ where ϵ is
stochastically drawn from a normal distribution. Given z, the decoder processes the latent
vector to produce a reconstruction x′, trained to be as close as x possible via a L2-loss.

These two loss terms enable reconstructing input data while respecting a specified prior dis-
tribution, making VAEs a versatile and effective tool for latent feature discovery in complex
datasets. Moreover, the simple and versatile manner that enables obtaining the Evidence Lower
BOund has inspired many works in many different representation learning and generative meth-
ods sub-domains such as disentanglement [256, 122, 35, 49], interpretability [9, 325], conditioned
generation [167, 151, 142].

A.3.4 Contrastive Representation Learning

In the realm of Representation Learning, a recent class of methods entitled Contrastive Repre-
sentation Learning (CL) has made remarkable progress in learning representations that encode
high-level semantic information about inputs such as images ([318, 297, 21, 118, 52, 108, 77,
275]) and sequential data ([213, 155, 274, 252, 267]). Contrastive Learning methods are par-
ticularly tailored for representation learning problems as their encoders capture compact and
semantically meaningful representations that generalize well to downstream tasks.
Contrastive Learning (CL) hinges on an intuition that dates back to Becket and Hinton, in 1992
[28], and Bell and Sejnowski in 1995 [31]. Given an input sample x (image or sequence) and
two different views (i.e., transformations) v and v+ of x that potentially overlap (spatially or
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sequentially), CL is based on the assumption that v and v+ should share a similar information
content. A parametric encoder fθ is then estimated by maximizing their ”agreement” in the
representation space so that their similarity/dependence is preserved in the embeddings fθ(v)
and fθ(v

+). A commonly used measure of agreement is the Mutual Information between the
two views embeddings that is maximized: θ∗ ← argmax θI(fθ(v); fθ(v

+)), where the choice of
fθ imposes some structural constraints (i.e., inductive bias). While earlier contrastive learning
approaches were confined to specific transformations like rotation, spatial re-organization, or
context patching, contemporary methods, such as SimCLR [50], MoCo [118], [52], and CPC
[213], have emerged to accommodate diverse data transformations. These methods rely on loss
equal (or almost equal) to InfoNCE, which has inspired the representation learning community
to pursue efforts in contrastive learning approaches. As an illustration, SimCLR’s training
process is illustrated in Fig. Importantly, the InfoNCE loss is written as:

LInfoNCE = − 1

2N

N∑
i=1

log

(
exp(sim(fθ(vi), fθ(v

+
i )))∑N

j=1 exp(sim(fθ(vi), fθ(v
+
j )))

)
+

log

(
exp(sim(fθ(v

+
i ), fθ(vi)))∑N

j=1 exp(sim(fθ(v
+
i ), fθ(vj)))

) (A.29)

where each term is defined as:

• N is the number of positive pairs (corresponding views of the same sample).

• vi and v+i are a pair of views for the i-th sample.

• fθ is the parametric encoder, where fθ(a) is generally unit-normalized.

• sim(a, b) denotes the dot product between the embeddings a and b.

Intuitively, the InfoNCE loss [50], [213] encourages the model to maximize the similarity be-
tween positive pairs (i.e., fθ(vi) and fθ(v+i )) while minimizing the similarity with other negative
samples in the dataset. This encourages the model to learn representations where positive pairs
are more similar than negative pairs, effectively capturing meaningful information from the in-
put data.

Understanding InfoNCE through Alignment and Uniformity: Interestingly, [293] fur-
ther simplified the InfoNCE loss into an alignment (or reconstruction) and a uniformity (or
entropy) term. While the alignment term trains the encoder to assign similar representations
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Figure A.8: Scheme of SimCLR’s training process [50]. Two distinct data augmentation oper-
ators t and t′ are sampled from the same family of augmentations T and applied to each image
in the batch to obtain two augmented views per example. A base encoder network f(.) and
a projection head g(.) are trained to maximize agreement using a contrastive loss. After com-
pleting training, we throw away the projection head g(.) and representations produced by the
encoder f(.) as inputs for downstream tasks. Credits to https://medium.com/mlearning-ai/
self-supervised-pre-training-with-simclr-79830997be34.

to positive views, the uniformity term encourages feature distribution to preserve maximal in-
formation i.e.: maximal entropy, that is, it encourages feature distribution toward a uniform
distribution in a hyperspherical space. This analysis is interesting as it enables us to intuitively
understand the behavior of such a method. Additionally, it intuitively provides insights into the
commonly done choice of the L1 normalization of the latent features as the authors explain that
connected sets of samples with soft boundaries (i.e., well-clustered data) are almost linearly
separable in the hyperspherical space.

A.3.5 Deep Clustering

In the past decades, unsupervised and self-supervised learning techniques have proven to be
particularly effective at identifying relevant patterns and factors of variation within a dataset.
Combined with powerful Neural Networks (NNs), these methods can produce semantically
rich representations [50, 52, 118, 326]. Notably, unsupervised Deep Clustering (DC) methods
[16, 40, 41, 169, 278] seek to produce a suitable representation space for identifying homo-
geneous latent clusters based on the patterns present in the dataset. Previous methods [288]
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have already been led to develop methods that simultaneously learn feature representations and
cluster assignments using deep neural networks. Recent works such as [16, 40, 41, 184, 319],
proposed to uncover semantically groups of samples without using other auxiliary tasks (such
as a reconstruction task for example). Notably, a simple method is Deep Cluster [40], which
alternates between a pseudo-label estimation phase (i.e.: the clustering estimation step) and
the update of encoder parameters (i.e.: the descent gradient step). In detail, at each epoch,
previous clustering assignments produced by a K-Means method are used as pseudo-labels for
minimizing a Cross-Entropy loss with the network output logits. Interestingly, as in classifi-
cation methods such as Logistic Regression, this alternating double optimization setup can be
justified via a statistical framework, by assuming that pseudo-labels are the estimates of ŷi,k
between each gradient descent (see Sec 3.2.2).

Figure A.9: Scheme of DeepCluster’s training process. Image taken from the original paper [40].
Clusters are alternatively estimated from deep features then, cluster assignments are used as as
pseudo-labels to learn and update the parameters of the deep convolutional neural networks.

Later, several methods such as SwAv [41] and PCL [168] have introduced an additional con-
straint on the features encoder: the augmentation invariance with respect to user-designed
transformation functions. This choice enabled the practitioners to further guide the deep neu-
ral network representation learning by distillating domain-specific a prioris about the input-
augmentation invariance required to perform clustering. Such Deep Clustering approaches
perform feature extraction with a Deep Neural Network (can also be called "dimension reduc-
tion") jointly with clustering identification in the representation space. This kind of method
is directly relevant to our thesis objective as it lays the basis of subgroup structure discovery
performed with an automatic deep features encoder.
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Appendix B

Deep UCSL’s appendix

B.1 Sinkhorn-Knopp Soft K-Means

In this section, we describe the pseudo-code algorithm (See Alg. 0.) for the Soft K-Means
algorithm regularized with Sinkhorn-Knopp [59]. We implement this algorithm on GPU. The
Sinkhorn-Knopp algorithm directly comes from [41] and uses the same hyperparameter choice.

Algorithm 5 SK regularized Soft K-Means pseudo-code
1: Input:
2: Disease representations: Z ∈ RNy=1×D,
3: K: subgroups number, λ: SK temperature
4: N : iterations
5: Output:
6: Centroids: µ = {µk}k∈|[1,K]|.
7: Initialization step:
8: Initialize centroids µ with K-Means ++ algorithm.
9: for i in N iterations do

10: Compute soft clustering probabilities Q(ci) given a representation Zi: Q(ci) =
1/||Zi−µi||22∑K

j=1(1/||Zi−µj ||22)
.

11: Apply SK regularization: Q = SK(Q, λ).
12: Compute one-hot clustering matrix Qhot:
13: Qhot = OneHot(Q.argmax(dim = 1)).
14: for k in K subgroups do
15: Update centroid k: µk = (Z∗Qhot[:,k]).sum()

Qhot[:,k].sum()
.

16: end for
17: end for
18: Return centroids µ = {µk}k∈|[1,K]|.
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The OneHot(.) function consists of transforming a smooth probability clustering vector (e.g.:
[0.2, 0.1, 0.7]) into the hard version (i.e.: [0, 0, 1]).

B.2 Clustering re-identification

In the clustering re-identification paragraph, we aim to identify each updated cluster (epoch
t + 1) with its most similar previous cluster (epoch t). Let us clarify the notation. At epoch
t, we have estimated K subtypes, we can compute their respective centroids with the following
formula:

µtk =
N∑
i=1

1cti=kfθ(xi) (B.1)

where fθ is the encoder, xi is an input image, associated with an inferred Ct at epoch t.
At epoch t+1, we update our subtype estimation, and we estimate K updated subtypes, once
again, we can compute their centroids:

µt+1
k =

N∑
i=1

1ct+1
i =kfθ(xi) (B.2)

We wish to permute the labels of the clusters (and their centroids) estimated at epoch t+ 1 so
that there is a continuity between clusters estimated at epoch t and those estimated at epoch
t+ 1. In practice, we aim to compute a permutation function σ that maps an updated cluster
(epoch t+1) onto its most similar former cluster (epoch t). Given a similarity function s(µ, µ′)

between two centroids µ and µ′. We are seeking the optimal permutation σ∗, which maximizes
the average similarity:

σ∗ = max
σ

K∑
k=1

s(µtk, µ
t+1
σ−1(k)) (B.3)

Importantly, we wish to construct a function σ that is bijective. Indeed, as explained in the
main text, a non-bijective mapping could potentially allow for more than one previous cluster
to be merged into a single updated cluster, which may produce one or more empty clusters.
For example, assuming that K = 2 and that the estimated mapping gives σ(0) = 1, σ(1) = 1,
then after having permuted the indices of the updated clusters, we would get Ct+1

0 = ∅ be-
cause σ−1(0) = ∅). Thus, to ensure the bijectivity of σ, we propose casting our problem into
a conceptually different one. Let us explain it in detail.
Let assume that we are given K data-points: {ct+1

j , j ∈ |[1, K]|} (in our experiment, it corre-
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sponds to the K centroids of clusters estimated at epoch t + 1). Now, let’s say that we are
given K categories (which, in our case, correspond to the K clusters estimated at epoch t).
Given a similarity measure, the probability of a sample j to belong to a given category i can
be computed with the following formula:

p(cti|µt+1
j ) =

s(µt+1
j , µti)∑K

k=1 s(µ
t+1
j , µtk)

(B.4)

Algorithm 6 Subgroups re-identification pseudo-code
1: Inputs:
2: K: subgroups number
3: Previous Subgroups Centroids: µt = {µtk}k∈|[1,K]|
4: Subgroups Centroids: µt+1 = {µt+1

k }k∈|[1,K]|
5: Output:
6: Permuted Subgroups Centroids: µt+1 = {µt+1

σ−1(k)}k
7: Initialization step: Compute the similarity matrix S:
8: S = ( µt

||µt||2 )
T . µt+1

||µt+1||2 )

9: while len(np.unique(σ)) ≤ K
10: Apply SK regularization: SSK = SK(S, λ)
11: Compute permutation: σ = np.argmax(SSK , axis=1)
12: Increase SK strength: λ = 1.1× λ
13: endwhile
14: Return permuted centroids µt+1 = µt+1[σ, :]

We wish to find the closest solution where the samples get assigned to a category, and each
category has the same number of attributed samples (equipartition property). This problem
has a simple solution that can be easily estimated via an optimal transport algorithm: the
Sinkhorn-Knopp algorithm. See Alg. 0.
Importantly, note that in our case, as we have K samples for K classes, the equipartition
property is respected if and only if each sample gets mapped to a single category, which is
equivalent to having a bijective mapping between samples and categories.

B.3 Convergence guarantee

Here, we provide proof that the proposed Expectation-Maximization optimization process yields
a monotonic increase of the log of the joint conditional likelihood. The proof is very similar to
the one proposed in [209]. Calling F (θ, ϕ, ψ) the joint conditional likelihood, namely our cost

187



function), we have:

F (θ, ϕ, ψ) =
n∑
i=1

log

(
K∑
k=1

Q(ci = k)
pθ,ϕ,ψ(yi, ci = k|xi)

Q(ci = k)

)

≥
n∑
i=1

K∑
k=1

Q(ci = k) log pθ,ϕ(yi|ci = k, xi)−DKL(Q(c)||pθ,ψ(c|x))

(8)

Given a guess of the parameters θ(t) at the t-th step, the E-step consists in choosing Q(t) =

pθ(t)(ci|xi, yi) which makes the previous bound (Eq. 8) tight (i.e., the inequality holds with
equality). This means that, with this choice of Q(t), we have:

F (θ(t), ϕ(t), ψ(t)) =
n∑
i=1

K∑
k=1

Q(t)(ci = k) log pθ(t),ϕ(t)(yi|ci = k, xi)−DKL(Q(c)||pθ(t),ψ(t)(c|x))

(9)
At the t-th M-step, we freeze Q(t) and we obtain the parameters θ(t+1), ψ(t+1) and ϕ(t+1) by
maximizing the right-hand side of the equation above. Thus:

F (θ(t+1),ϕ(t+1), ψ(t+1)) ≥
n∑
i=1

K∑
k=1

Q(t)(ci = k) log pθ(t+1),ϕ(t+1)(yi|ci = k, xi)−DKL(Q
(t)||pθ(t+1),ψ(t+1)(c|x))

≥
n∑
i=1

K∑
k=1

Q(t)(ci = k) log pθ(t),ϕ(t)(yi|ci, xi)−DKL(Q
(t)||pθ(t),ψ(t)(c|x)) = F (θ(t), ϕ(t), ψ(t))

(10)
where the first inequality comes from Eq. 8 and the second one is true since we look for the
parameters θ(t+1), ϕ(t+1), ψ(t+1) that maximizes F (θ(t), ϕ(t), ψ(t)). The above result suggests that
F (θ, ϕ, ψ) monotonically increases.

B.4 Robustness of the results to initialization

Please note that Deep UCSL is robust to different initializations. Indeed, variability in the
results (i.e., ±) of the paper was obtained based on 5 different initializations.
Also, for the neuro-psychiatric case, the variability in the results (i.e., ±) of the paper was
obtained based on 5 different initializations and 5 different TRAIN/VAL splits (0.9, 0.1) to
also account for training data uncertainty.
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B.5 Implementation details

B.5.1 MNIST

The employed MNIST dataset is balanced, with 6265 digit 7 samples and 6265 samples for
the other digits. Image sizes are reduced to 32 × 32 with only one color channel. When used,
data augmentation is the same for all methods and it comprises a RandomRotation with +/-
25 degrees, a RandomAffine with translate parameters equal to (0.1, 0.1), and a shear set to
0.1. Morphological variants (i.e., morpho in the main article) had an additional erosion and
dilation (kernel randomly chosen between 2 and 4 at each image) applied with a 0.4 probability.
Concerning the model of the encoder in the MNIST experiment, we chose the same as in [272]
(i.e: four convolutional layers with 7×7 kernels, padding of 3, batch norms between each layer,
numbers of channels: 16, 32, 64, 128). We obtain a representation space of size 128 after
an average pooling layer. For Deep UCSL, the optimizer chosen was Adam with a learning
rate of 1e-4, trained during 75 epochs. The batch size was chosen as 256. Before each SK +
Soft K-Means fitting, the positive sample features were scaled with a Pytorch Robiust Scaler.
UCSL experiment was led with the same hyperparameters as in the original UCSL paper [179].
The only difference with the UCSL paper is that we balanced the MNIST dataset in this
contribution.

B.5.2 Neuro-psychiatric experiment

We gathered multiple multi-site datasets, notably SCHIZCONNECT-VIP [292], BIOBD [245],
and Bipolar and Schizophrenia Network for Intermediate Phenotype (BSNIP), all comprising of
T1-weighted 3D MRI scans. SCHIZCONNECT-VIP encompasses 4 publicly available cohorts
of controls and patients with schizophrenia. These cohorts present heterogeneous acquisition
scanners and geographical sites. As for BSNIP, the MRI images were acquired at 5 different
centers with 3T scanners across the USA. BIOBD has images of control and bipolar disorder
patients. BSNIP [271] is only used as a test set throughout this study, while SCHIZCONNECT-
VIP and BIOBD are mixed together (686 HC and 275 SZ, 307 BP patients) and then split during
training and validation splitting. VBM pre-processing was performed with CAT12 [98, 99] from
the SPM toolbox. It consists of a correction of the bias field and the noise in MRI images, the
segmentation of Gray Matter (GM), White Matter (WM), and the cerebrospinal fluid (CSF).
Images are normalized into a common standard MNI space using a linear transformation that
accounts for global alignment (rotation, translation, and global brain size), with a non-linear
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deformation [17] that locally aligns brain structures. Finally, normalized images are modulated
by the Jacobian of their transformation to account for the quantity of tissue. Images were
uniformized isotropic 1.5mm3 spatial resolution, output dimension is 121×145×121. From
there, images are cropped to 121×121×121 and padded to reach a dimension of 128x128x128.
Voxels are centered on a unit-gaussian distribution per image (i.e: mean of voxels of 0, std
of voxels of 1). All methods were trained with a batch size of 8. This is explained by the
fact that images have a huge dimension and take up a lot of memory space on the GPU. For
all neuro-psychiatric experiments, we chose the same data augmentation transformations as in
[73], that is: horizontal flip with probability 0.5; blur with probability 0.5, sigma=(0.1, 0.1);
noise with probability 0.5, sigma=(0.1, 0.1); CutOut with probability 0.5, patch size equal to
32x32x32, RandomCrop of size (96x96x96) with probability 0.5. PCL [169] implementation
parameters were m=0.9, and temperature=0.1. SimCLR [50], SupCon [153] and DeepCluster-
v2 [41] temperature was chosen as 0.1. For all methods, we chose a non-linear head with a linear
layer going to dimension 512, a ReLU layer, and another linear layer going from dimension 512
to 128 as in [73]. DeepUCSL was trained with a learning rate of 2e-5 without a scheduler.
Clusters are inferred with our SK + Soft KMeans clustering method after applying a Standard
Scaler on the latent space. For SimCLR, SupCon, and DeepCluster, clustering probabilities are
estimated by fitting a K-Means on the patients after scaling the features with a Standard Scaler.
Classification and contrastive methods were trained with a learning rate of 1e-5 during 100
epochs. Variations in the results (i.e., ±) were obtained with 5 different train-validation splits,
but were each time evaluated on the same independent test set. This enables us to account for
initialization and data uncertainty as it is common in neuro-psychiatric experiments.

B.5.3 Pneumonia experiment

In the pneumonia dataset (Fig. B.1), Chest X-ray images come from retrospective cohorts of
pediatric patients from one to five years old. All chest radiographs were filtered for quality
control to remove unreadable scans. The diagnosis labels were determined by two experts prac-
ticing and the test set was also checked by a third expert. We chose 1340 healthy samples,
1340 viral pneumonia samples, and 1340 bacterial pneumonia samples from it1. Radiogra-
phies were selected from a cohort of pediatric patients aged between one and five years old
from Guangzhou Women and Children’s Medical Center, Guangzhou. TRAIN set images were
graded by 2 radiologist experts and a third expert graded the independent TEST set to account

1https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
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Figure B.1: Pneumonia dataset image description of [146], see dataset URL and original contri-
bution. The left panel of the chest X-ray shows lungs that are free of any abnormal opacification.
On the other hand, bacterial pneumonia often displays a concentrated lobar consolidation, as
shown by the white arrows in the middle panel, which in this case is located in the upper lobe
of the right lung. Meanwhile, viral pneumonia, as seen in the right panel, typically presents
with a more widespread "interstitial" pattern affecting both lungs.

for label uncertainty. Image sizes are reduced to (224, 224). For all experiments, we trained
during 50 epochs. For Deep UCSL and the binary cross entropy method (“CE" in the main
article), we weighted each sample by dividing it by the proportion of its class (HEALTHY /
PNEUMONIA). The chosen encoder was an ImageNet pre-trained ResNet-18. For the Deep
UCSL experiment, the encoder was followed by a single linear layer of size 128. SK + Soft
K-Means was applied on a representation space of size 128 after applying a StandardScaler;
batch size was chosen as 256. For SupCon we found it unnecessary to re-weight due to class
imbalance. For the binary cross-entropy method experiment, the encoder was directly followed
by the classification prediction linear layer, K-Means is applied on a representation space of
size 512; batch size was chosen as 256. For SupCon and SimCLR, we chose a temperature of
0.1, a non-linear head with a linear layer going to dimension 128, a ReLU layer, and another
linear layer going from dimension 128 to 128. For SupCon [153], K-Means is applied on a
representation space of size 512 after a Standard Scaler, as detailed in the original paper, and
classification performance is obtained with a linear probe on the representations. Variability in
the results (i.e., ±) was obtained by relaunching the experiment with 3 different initializations.

B.5.4 Retinal OCT experiment

In the retinal OCT dataset (Fig. B.2), the Retinal optical coherence tomography (OCT)
imaging technique was used to capture cross-sectional images of the retinas of patients. 2.

2https://www.kaggle.com/datasets/paultimothymooney/kermany2018
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Figure B.2: Retinal OCT dataset image description of [146], see dataset URL and original con-
tribution. The far left image displays choroidal neovascularization (CNV) featuring a neovas-
cular membrane (indicated by white arrowheads) and accompanying subretinal fluid (indicated
by arrows). Moving to the middle left, we see diabetic macular edema (DME) characterized
by intraretinal fluid associated with retinal thickening (arrows). The middle right image shows
the presence of multiple drusen (arrowheads), which is a hallmark of early age-related macular
degeneration (AMD). Finally, the far right image depicts a normal retina with a well-preserved
foveal contour and no signs of retinal fluid or edema.

Image sizes are reduced to (224, 224). For all experiments, we trained during 50 epochs. The
dataset was divided into equal background class (HEALTHY) and target class (CNV: choroidal
neovascularization, DME: Diabetic macular edema, DRUSEN: aging-related deposit on the
retina). The chosen encoder was ResNet-18 pre-trained on Image-Net. For the Deep UCSL
experiment, the encoder was followed by a single linear layer of size 128, SK + Soft K-Means is
applied on a representation space of size 128 after having applied a StandardScaler; batch size
was chosen as 256. For SimCLR, SCAN, DeepCluster, and SupCon, we chose a temperature of
0.1, a non-linear head with a linear layer going to dimension 128, a ReLU layer, and another
linear layer going from dimension 128 to 128. For SimCLR, BYOL, DeepCluster and SupCon
[153], K-Means is applied on a representation space of size 512 after a Standard Scaler, as
detailed in the original paper, and classification performance is obtained with a linear probe
on the representations. Variability in the results (i.e., ±) was obtained by relaunching the
experiment with 3 different initializations.

B.5.5 ODIR experiment

The Ocular Disease Intelligent Recognition (ODIR) dataset is a structured ophthalmic database.
A color fundus imaging technique was used to capture left and right eye images of patients. 3.
Image sizes are reduced to (224, 224). For all experiments, we trained during 50 epochs. The
dataset was divided into equal background class (HEALTHY) and target class (Normal (N);
Diabetes (D); Glaucoma (G); Cataract (C), Age-related Macular Degeneration (A); Patholog-

3https://www.kaggle.com/datasets/tanjemahamed/odir5k-classification
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ical Myopia (M)). The chosen encoder was ResNet-18 pre-trained on ImageNet. For the Deep
UCSL experiment, the encoder was followed by a single linear layer of size 128. SK + Soft K-
Means was applied on a representation space of size 128 after applying a RobustScaler; batch
size was chosen as 256. For SimCLR, DeepCluster and SupCon [153], K-Means is applied on a
representation space of size 512 after a Standard Scaler, as detailed in the original paper, and
classification performance is obtained with a linear probe on the representations. Variability in
the results (i.e., ±) was obtained by relaunching the experiment with 3 different initializations.

B.5.6 On the input augmentation choice in Contrastive Learning

We explore the use of contrastive methods [50, 326, 213, 52, 118, 109] to enforce transformation
invariance. To summarize, a contrastive method such as SimCLR [50] uses input-distortion
invariance as a pretext task for representation learning. Specifically, it encourages two different
augmentations of an image to be closer in the representation space with respect to all other
dataset images. In this way, it can disregard irrelevant transformations, not suited for the
upstream task. This idea develops an efficient manner to regress out non-semantically rele-
vant image distortion such as rotation, flip, crop, blur, noise, or color distortion for example.
However, invariance is restricted to feasible a priori transformations, which is a non-negligible
shortcoming. Furthermore, a poor augmentation search could let irrelevant variability persist
in the representation space.
To illustrate this behavior, we analyzed the subtype discovery performance on the digit 7 of
MNIST dataset under various augmentation strategies. We proposed to enforce boldness invari-
ance by simulating it through morphological deformations. In Fig. B.3, we show the differences
between the subtypes obtained with and without this strategy. Therefore, assuming that they
are a priori known and feasible, we demonstrate that wiping uninteresting general variability
through the design of input augmentations remains possible. Yet, we show that an insufficient
invariance search leads to bad performance. Notably, in our method, our regularization natu-
rally erases such variability with a simple intuition. The intuition that given a class, negative
samples should not belong to any of its subtypes (i.e.: random probability). Thus, there is no
need for a difficult, human-based input augmentations design step.
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Figure B.3: Comparison between k-means clusters estimated using SimCLR and Morpho Sim-
CLR. In Morpho SimCLR we added the morphological transformation that aims at simulating
the boldness of the digits. SimCLR clusters seem to depict a general boldness variability, rather
than true semantic differences. On the other hand, Morpho SimCLR focuses on more interest-
ing patterns such as the middle bar.
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Appendix C

SepVAE’s appendix

C.1 Salient posterior sampling for background samples

In the original contribution, we motivated the choice of a peaked Gaussian prior for salient
background distribution with a user-defined σp. This way, the derivation of the Kullback-
Leiber divergence is directly analytically tractable as in standard VAEs.
To simplify the optimization scheme, we could also set and freeze the standard deviations
σy=0
q of the salient space of the background samples. This way, it reduces the Kullback-Leiber

divergence between qϕ(s|x, y = 0) and pθ(s|x, y = 0) to a 1
σp

-weighted Mean Squared Error

between µs(x|y = 0) and s′ : ||µxi|y=0
s −s′||22

σp
. This choice in our code simplifies the training

scheme (σy=0
q does not need to be estimated). If a continuum exists between healthy and

diseased populations, σy=0
q should be estimated.

Also, the choice of a frozen σy=0
q allows controlling the radius of the classification boundary

between background and target samples in the salient space. Indeed, the classifier is fed with
samples from the target distributions (qϕs(s|x,y=1) ∼ N(µs(x), σs(x))), and background distribu-
tions (qϕs(s|x,y=0) ∼ N(µs(x|y = 0), σq). This implicitly avoids the overlap of both distributions
with a margin proportional to σq. See Fig. C.1 for a visual explanation.
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Figure C.1: Illustration of the regularization loss within the salient space. As in MM-cVAE,
the prior qϕs(s|x,y=0) ∼ s’ on the background samples (blue) forces their variance to be as small
as possible. However, as the prior on-target samples (green) follow a normal distribution, they
may overlap with the background distribution. To avoid this case, our method trains a non-
linear classifier to avoid the overlap of both distributions with a margin proportional to σq.

C.2 Implementation Details

C.2.1 CelebA glasses and hat versus no accessories

We used a train set of 20000 images (10000 no accessories, 5000 glasses, 5000 hats) and an
independent test set of 4000 images (2000 no accessories, 1000 glasses, 1000 hats) and ran
the experiment 5 times to account for initialization uncertainty. Images are of size 64 × 64,
pixel were normalized between 0 and 1. A dataset illustration is shown in Fig.C.2 For this

Figure C.2: Celeba accessories dataset. The upper row consists of background images. The
lower row shows target images.

experiment, we use a standard encoder architecture composed of 5 convolutions (channels 3,
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32, 32, 64, 128, 256), kernel size 4, stride 2, and padding (1, 1, 1, 1, 1). Then, for each mean
and standard deviations predicted (common and salient) we used two linear layers going from
256 to hidden size 32 to (common and salient) latent space size 16. The decoder was set
symmetrically. We used the same architecture across all the concurrent works we evaluated.
We used a common and latent space dimension of 16 each. The learning rate was set to 0.001

with an Adam optimizer. Oddly we found that re-instantiating it at each epoch led to better
results (for concurrent works also), we think that it is because it forgets momentum internal
states between the epochs. The models were trained during 250 epochs. To note, MM-cVAE
used latent spaces of 16 (salient space) and 6 common space and a different architecture but
we noticed that it led to artifacts in the reconstruction (see original contribution). Also, we did
not succeed in reproducing their performances with their code, their model, and their latent
spaces, even with the same experimental setup. We, therefore, used our model setting which
led to better performances across each method with batch size equal to 512. We used βc = 0.5

and βs = 0.5, κ = 2, γ = 1e− 10, σp = 0.025. For MM-cVAE we used the same learning rate,
βc = 0.5 and βs = 0.5, the background salient regularization weight 100, common regularization
weight of 1000.

C.2.2 Pneumonia

Train set images were graded by 2 radiologist experts and a third expert graded the independent
test set. The experiment was run 5 times to account for initialization uncertainty. Images are
of size 64× 64, pixel were normalized between 0 and 1. For this experiment, we use a standard
encoder architecture composed of 4 convolutions (channels 3, 32, 32, 32, 256), kernel size 4,
and padding (1, 1, 1, 0). Then, for each mean and standard deviations predicted (common
and salient) we used two linear layers going from 256 to hidden size 256 to (common and
salient) latent space size 128. The decoder was set in a symmetrical manner. We used the same
architecture across all the concurrent works we evaluated. We used a common and latent space
dimension of 128 each. The learning rate was set to 0.001 with an Adam optimizer. Oddly we
found that re-instantiating it at each epoch led to better results (for concurrent works also). We
think that it is because it forgets momentum internal states between the epochs. The models
were trained during 100 epochs with batch size equal to 512. We used βc = 0.5 and βs = 0.1,
κ = 2, γ = 5e − 10, σp = 0.05. For MM-cVAE, we used the same learning rate, βc = 0.5 and
βs = 0.1, the background salient regularization weight 100, common regularization weight of
1000.
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C.2.3 Neuro-psychiatric experiments

The task of identifying consistent correlations between neuro-anatomical biomarkers and ob-
served symptoms in psychiatric diseases is important for developing more precise treatment
options. Separating the different latent mechanisms that drive neuro-anatomical variability in
psychiatric disorders is a challenging task. Contrastive Analysis (CA) methods such as ours
have the potential to identify and separate healthy from pathological neuro-anatomical patterns
in structural MRIs. This ability could be a key component to push forward the understanding
of the mechanisms that underlie the development of psychiatric diseases. As explained in the
main text, given a background population of Healthy Controls (HC) and a target population
suffering from a Mental Disorder (MD), the objective is to capture the pathological factors of
variability in the salient space, such as psychiatric and cognitive clinical scores, while isolating
the patterns related to demographic variables, such as age and sex, or acquisition sites to the
common space. For each experiment, we gather T1w anatomical VBM [17] pre-processed im-
ages of HC and MD subjects of size 128×128×128. We divide them into 5 TRAIN, VAL splits
(0.75, 0.25) and evaluate the performance of SOTA CA-VAEs in a cross-validation scheme. Let
us note that this is a challenging problem, especially due to the high dimensionality of the input
and the scarcity of the data. Notably, the measures of psychiatric and cognitive clinical scores
are only available for some patients, making it scarce and precious information.

Images are of size 128×128×128 with voxels normalized on a Gaussian distribution per image.
Experiments were run 3 times with a different train/val/test split to account for initialization
and data uncertainty. For this experiment, we use a standard encoder architecture composed
of 5 3D-convolutions (channels 1, 32, 64, 128), kernel size 3, stride 2, and padding 1 followed by
batch normalization layers. Then, for each mean and standard deviations predicted (common
and salient), we used two linear layers going from 32768 to hidden size 2048 to (common and
salient) latent space size 128. The decoder was set symmetrically, except that it has four
transposed convolutions (channels 128, 64, 32, 16, 1), kernel size 3, stride 2, and padding 1
followed by batch normalization layers. We used the same architecture across all the concurrent
works we evaluated. We used a common and latent space dimension of 128 each. The models
were trained during 51 epochs with a batch size equal to 32 with an Adam optimizer. For
the Schizophrenia experiment, for Sep VAE, we used a learning rate of 0.00005, βc = 1 and
βs = 0.1, κ = 10, γ = 1e− 8, α = 1

0.01
. For MM-cVAE we used the same learning rate, βc = 1

and βs = 0.1, the background salient regularization weight 100, common regularization weight
of 1000. For the Autism disorder experiment, we used a learning rate of 0.00002, βc = 1 and
βs = 0.1, κ = 10, γ = 1e− 8, σp = 0.01. For MM-cVAE we used the same learning rate, βc = 1
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and βs = 0.1, the background salient regularization weight 100, common regularization weight
of 1000.
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Appendix D

SepCLR’s appendix

D.1 Retrieve the InfoNCE loss

Let X = {(xi)}Ni=1 be the data-set of background images xi, and Y = {(xi)}Ni=1 be the data-set
of target images yi. Input samples are assumed to be independently generated from latent
unobserved variables C = {ci ∈ RD}Ni=1. We aim to estimate an encoder fθC that infers latent
factors of generation c from the inputs (and its views v).
To do so, we entitle c the latent codes produced by the common encoder fθC (t(.)), where t(.) = v

are the views generated from either x or y via a stochastic augmentation function t(.). The
objective is to construct an encoder fθC (t(.)) that is invariant to data augmentation. From the
InfoMax perspective, we seek the optimal parameters θ∗ that maximize the MI between x and
c ∼ fθC (t(x)). Foremost, we decompose the MI I(x; c) into:

I(x; c) = −Ex∼pxH(c|x)︸ ︷︷ ︸
Alignment

+ H(c)︸ ︷︷ ︸
Entropy

(D.1)

but the same reasoning is valid for the target dataset: I(c; y) = −Ey∼pyH(c|y) +H(c).

D.1.1 Derive the Uniformity term from the Entropy term

In this section, we propose to make the correspondence between the concept of Entropy, well-
known in Mutual Information literature, and the concept of Uniformity introduced in [293].
The entropy can be derived with a non-parametric estimator described in [8] with samples
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uniformly drawn from both the target and background datasets.

Ĥ(c) = − 1

NX +NY

NX+NY∑
i=1

log p̂(ci) (D.2)

Then, we compute the approximate density function p̂(ci) with a Kernel Density Estimator,
based on samples uniformly drawn from both the target dataset fθc(t(y)) ∼ p(c|y) and the
background dataset fθc(t(x)) ∼ p(c|x):

Ĥ(c) = − 1

NX +NY

NX+NY∑
i=1

log
1

NX +NY

NX+NY∑
j=1

KC(ci, cj) (D.3)

For simplicity, we choose a Gaussian kernel with constant standard deviation τ to derive an L2
distance between the views. This enables us to obtain:

Ĥ(c) = − 1

NX +NY

NX+NY∑
i=1

log
1

NX +NY

N∑
j=1

exp
−||fθ(vi)− fθ(vj)||22

2τ
+ log(

√
2πτ)︸ ︷︷ ︸

Constant term

(D.4)

where cj = fθ(vj) and ci = fθ(vi). And where vi and vj are the views obtained by feeding
the input with index i (can be a target or a background sample) through the stochastic data
augmentation function t(.). In practice, [293] minimize the asymptotic lower bound of this term
entitled Uniformity term. Using Jensen’s inequality, we obtain:

− 1

NX +NY

NX+NY∑
i=1

log
1

NX +NY

NX+NY∑
j=1

exp
−||fθ(vi)− fθ(vj)||22

2τ︸ ︷︷ ︸
=Ĥ(c)−log(

√
2πτ)

≥

− log
1

NX +NY

NX+NY∑
i=1

1

NX +NY

NX+NY∑
j=1

exp
−||fθC (vi)− fθC (vj)||22

2τ︸ ︷︷ ︸
=−Luniform

(D.5)

Given a bounded support, minimizing Luniform encourages the latent vectors to match a uniform
distribution (e.g: spherical uniform distribution on unit-norm support in [293]).
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D.1.2 Derive the Multi-View Alignment term

Differently from [293], we propose to estimate the conditional entropy on background samples
−H(c|x) with a re-substitution entropy estimator.

−H(c|x) = 1

NX

NX∑
i=1

log p̂(ci|xi) (D.6)

We compute the approximate density function p̂(ci|xi) with a Kernel Density Estimator based
on samples uniformly drawn from the conditional distribution cki ∼ p(c|xi), where cki = fθ(v

k
i )

and vki are K views obtained via the stochastic process t(.).

−H(c|x) = 1

NX

NX∑
i=1

log
1

K

K∑
k=1

KC(fθC (vi)), fθC (v
k
i )) (D.7)

KC is chosen as a von Mises-Fisher kernel with a constant concentration parameter κ = 1
τ
.

These choices enable us to retrieve a Multi-View Alignment term with K positive views rather
than only 1 as in [293]:

−H(c|x) + log(C(κ)) =
1

NX

NX∑
i=1

log
1

K

K∑
k=1

exp
−||fθC (vi)− fθC (vki )||22

2τ
(D.8)

By estimating the conditional entropy on target samples −H(c|y) in the same fashion and
summing both, we can retrieve the Alignment term written in Eq. 4.8. For computational
reasons, we restrict to only one view in this paper: K = 1.

On the connection between the Gaussian kernel and the von Mises-Fisher kernel

Let us note the kernel similarity between two representations: fθC (xi) and fθC (xj) asK(fθC (xi), fθC (xj)).
Assuming that we are given a Gaussian kernel with a constant standard deviation σ, this term
can be estimated as:

KGaussian(fθC (xi), fθC (xj)) =
1√
2πτ

exp
−||fθC (xi)− fθC (xj)||22

2τ
(D.9)

Now, we can divide the square norm into three terms:

KGaussian(fθC (xi), fθC (xj)) =
1√
2πτ

exp
−||fθC (xi)||22 − 2fθC (xi)

T .fθC (xj) + ||fθC (xj)||22
2τ

(D.10)
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Let assume that fθC (xi) and fθC (xj) are unit-normed, then this estimation get simplified into:

KGaussian(fθC (xi), fθC (xj)) =
1√
2πτ

exp
−1 + fθC (xi)

T .fθC (xj)

τ
(D.11)

which can be further simplified:

KGaussian(fθC (xi), fθC (xj)) =
1

e1
√
2πτ

exp
fθC (xi)

T .fθC (xj)

τ
(D.12)

Ignoring the normalization terms, we recognize the von Mises-Fisher kernel with concentration
hyper-parameter κ = 1

τ
:

KvMF =
1

C(κ)
exp

fθC (xi)
T .fθC (xj)

τ

D.2 Derive the Background-Contrasting InfoNCE loss in

the salient space

In this section, we propose deriving the salient term I(s; y) into a novel loss entitled BC-
InfoNCE. Foremost, let us decompose the constrained Mutual Information maximization:

argmax − Ey∼pyH(s|y)︸ ︷︷ ︸
Target Alignment

+ H(s)︸ ︷︷ ︸
s′-Entropy

s.t. DKL(sx||δ(s′)) = 0︸ ︷︷ ︸
Information-less hyp.

(D.13)

D.2.1 Alignment of target samples:

In order to estimate the target samples’ alignment term, we use the same estimation method
as in 4.2.4. First, we derive an alignment term between two views fθS(vi) and fθS(v

+
i ) of the

same target image yi using re-substitution estimation:

−Ey∼pyĤ(s|y) = 1

NY

NY∑
i=1

p̂(si|yi) (D.14)

Then, the density p̂(si|yi) is estimated with a Kernel Density Estimator based on samples
uniformly drawn from ps|yi , i.e.: {fθ(t(yi)k)|yi}Kk=1, where t(yi)k = vki are K views uniformly
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drawn from the stochastic input-transformation process t(yi):

−Ey∼pyĤ(s|y) = 1

N

N∑
i=1

log
1

N

K∑
k=1

KZ(fθ(vi), fθ(v
k
i )) (D.15)

KZ is chosen as a von Mises-Fisher kernel with a constant concentration parameter κ = 1
τ

and only K = 1 positive view is chosen. These choices enable us to derive the target alignment
term:

−Ey∼pyĤ(s|y) = 1

NY

NY∑
i=1

−||fθ(vi)− fθ(v+i )||22
2τ

(D.16)

D.2.2 s′-Uniformity:

Now, concerning the Entropy term, we propose to develop the salient entropy with a resubsti-
tution entropy estimator from samples drawn from X ∪ Y .

Ĥ(S) =− 1

(NY +NX)

∑
v∈t(X∪Y )

log p̂(fθS(v)) (D.17)

Then we estimate the density p̂(fθS(v)) with a Gaussian Kernel Density Estimator based on
latent vectors drawn from the target view fθS(t(y)) and from the background views fθS(t(x)).

Ĥ(s) =− 1

NY +NX

∑
v∈t(X∪Y )

log
1

NY +NX

∑
v+∈t(X∪Y )

exp
−||fθs(v)− fθs(v+)||22

τ (D.18)

We consider the asymptotic form of the Entropy. Therefore, we pull the log out of the exterior
sum. In practice, it is equivalent to considering a lower bound of the Entropy. Now, separating
the background and the target datasets inside the log yields:
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expLs′uniform =− 1

NY +NX

NY∑
i=1

1

NY +NX

NX∑
j=1

exp
−||fθs(yi)− fθs(xj)||22

τ

− 1

NY +NX

NY∑
i=1

1

NY +NX

NY∑
j=1

exp
−||fθs(yi)− fθs(yj)||22

τ

− 1

NY +NX

NX∑
i=1

1

NY +NX

NX∑
j=1

exp
−||fθs(xi)− fθs(xj)||22

τ

− 1

NY +NX

NX∑
i=1

1

NY +NX

NY∑
j=1

exp
−||fθs(xi)− fθs(yj)||22

τ

(D.19)

Importantly, the information-less hypothesis constrains the specific encoder to produce back-
ground embeddings aligned on the information-less vector s′. This property implies that back-
ground samples should not have any variability expressed in the latent space. Assuming that
the salient encoder respects this property yields fθS(t(x)) = s′, it enables to express Ĥ(S) as:

− expLs′uniform =2
1

NY +NX

NY∑
i=1

NX

NY +NX

exp
−||fθs(yi)− s′||22

τ
+

NX

NY +NX

NX

NY +NX

1

NY +NX

NY∑
i=1

1

NY +NX

NY∑
j=1

exp
−||fθs(yi)− fθs(yj)||22

τ

(D.20)
Assuming that the target and background datasets are balanced: NX = NY = N and

ignoring the constant terms, we obtain:

Ls′uniform = − log
1

NY

NY∑
i=1

(
exp
−||fθs(yi)− s′||22

τ
+

1

2NY

NY∑
j=1

exp
−||fθs(yi)− fθs(yj)||22

τ

)
(D.21)

D.2.3 On the Information-less hypothesis:

To respect the Information-less hypothesis, we re-write Eq. 4.9 as a Lagrangian function, with
the constraint expressed as a β-weighted (β ≥ 0) KL regularization. Assuming that sx follows a
Gaussian distribution centered on fθs(x) with a constant standard deviation τ permits deriving
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the KL divergence into an L2-distance between fθs(x) and s′. Let us re-write Eq. 4.9 under the
KKT conditions:

−F(θS, β;x, y, s) = Ly-alignment + Ls′-uniformity + β
1

NX

NX∑
i=1

||fθs(xi)− s′||22 (D.22)

D.3 Retrieve the Supervised InfoNCE loss

The Supervised counterpart of the InfoNCE loss has been introduced in [153]. Compared to
SimCLR, it consists of choosing positive pairs from the same class, while the negative pairs
term remains unchanged. Let X = {(xi)}Ni=1 be a data-set of images xi, Y = {(yi)}Ni=1 be their
associated discrete or continuous labels yi, and Z = {(zi)}Ni=1 the associated latent codes zi. Let
us introduce the maximization of Mutual Information between the labels Y and latent vectors
Z. The Mutual Information can be decomposed as follows:

I(z; y) = −Ey∼pyH(z|y)︸ ︷︷ ︸
Supervised Alignment term

+ H(z)︸ ︷︷ ︸
Uniformity term

(D.23)

The Supervised counterpart of the InfoNCE loss has been introduced in [153]. In this section,
we show that it can be derived from the MI between Y and fθ(t(X)). Compared to InfoNCE,
it consists in aligning positive views (t(xi), t(xj)) from the same class yi = yj via a supervised
alignment term −Ey∼pyH(z|y), while the entropy term estimation H(z) remains the same.
Using the re-substitution estimator and the KDE, we derive the supervised alignment term
into the alignment term of Lin

sup in [153]:

−Ey∼pyH(z|y) + log(
√
2πτ) =

1

N

N∑
i=1

log
1

|P (i)|
∑
j∈P (i)

exp
−||fθ(vi)T − fθ(vj)||22

2τ
(D.24)

where P (i) is the set of indices of samples belonging to class yi and |P (i)| is its cardinality.
In [74], the authors proposed a generalized version of SupCon, which accounts for continuous
label y.

D.3.1 On the distinction between Lin
sup and Lout

sup:

In [153], the authors show that it is preferable to optimize Lout
sup, a variant of Lin

sup where positive
samples are summed outside of the logarithm. We propose to derive Lout

sup rather than Lin
sup by
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simply computing a lower bound of the Alignment term via Jensen’s inequality:

−Ey∼pyH(z|y) + log(
√
2πτ) ≥ − 1

N

N∑
i=1

1

|P (i)|
∑
j∈P (i)

||fθ(vi)T − fθ(vj)||22
2τ

(D.25)

D.3.2 Quantify the Jensen Gap for SupInfoNCE:

In Eq.D.25, we derived a lower bound of the Conditional Entropy of the Supervised InfoMax
formulation via Jensen’s inequality. In this paragraph, we propose to a) quantify Jensen’s Gap
between both formulations and b) describe under which condition these formulations are equal
(tight bound). The Jensen’s Gap can be computed as:

JGAP =
1

N

N∑
i=1

log
1

|P (i)|
∑
j∈P (i)

exp
−||fθ(vi)T − fθ(vj)||22

2τ
− 1

|P (i)|
∑
j∈P (i)

−||fθ(vi)T − fθ(vj)||22
2τ︸ ︷︷ ︸

Dsup
GAP

(D.26)

where JGAP ≥ 0. Let us note JGAP = 0 if and only if Dsup
GAP = 0. We simplified Dsup

GAP into
the difference between a LogSumExp and a SumLogExp of fθ(vi)T .fθ(v′j). Using the fact that
LogSumExp consists of a smooth approximation of the max function, DGAP = 0 if and only if:

max
j
||fθ(vi)T − fθ(vj)||22 + log

1

N
=

1

N

N∑
j=1

||fθ(vi)T − fθ(vj)||22 , ∀i in |[1, N ]| (D.27)

where yi = yj, i.e: vi, vj and v′j are views from images from the same class y.

D.3.3 The case of a continuous y:

In [74], the authors proposed a generalized version of SupCon, which accounts for continuous
label y. It adds a weight wσ(yi, yj) before the similarity term. Let us explain how to retrieve
this formulation. From Eq. D.23, we use the resubstitution estimator:

−Ey∼pyH(z|y) + log(
√
2πτ) =

1

N

N∑
i=1

log p̂(zi|yi) (D.28)
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From there, we can use a Kernel Density estimation for the conditional distributions in the case
where we only have access to samples from the joint distribution:

−Ey∼pyH(z|y) + log(
√
2πτ) =

1

N

N∑
i=1

log
1
N

∑
j=1KY (yi, yj)KZ(fθ(xi), fθ(xj))

1
N

∑
j=1KY (yi, yj)

(D.29)

By choosing KY as a gaussian kernel: Ky(yi, yj) =
1

σ
√
2π

exp− (yi−yj)2
2σ2 and KZ as a von Mises-

Fisher kernel as usually done in Contrastive Learning literature, we retrieve [74]’s Lin
sup formu-

lation.

−Ey∼pyH(z|y) + log(
√
2πτ) =

1

N

N∑
i=1

log
1

N

∑
j=1

wσ(yi, yj) exp
−||fθ(xi)− fθ(xj)||22

2τ
(D.30)

where wσ(yi, yj) =
KY (yi,yj)

1
N

∑
j=1KY (yi,yj)

.
Now, the Jensen’s inequality can be utilized to retrieve [74]’s exact formulation.

D.4 Maximize the Joint Entropy via Kernel Density-based

Estimation

In Sec. 4.2.4, we proposed a method to estimate and minimize −H(c, s) without requiring any
assumptions about the form of its pdf nor requiring a neural network-based approximation
([53, 11, 226]). Inspired by [125], we develop H(c, s) with a re-substitution entropy estimator:

−Ĥ(c, s) =
1

NX +NY

NX+NY∑
i=1

log p̂(ci, si) (D.31)

To do so, we estimate the density p̂θ(ci, si) with a Kernel Density Estimation:

−Ĥ(c, s) =
1

NX +NY

NX+NY∑
i=1

log
1

NX +NY

NX+NY∑
k=1

KC(ci, cj)KS(si, sj) (D.32)

where cj and sj are drawn from the joint distribution p(c, s). In practice, we will draw pairs
(c, s) from (fθC (x), fθS(x)) and (fθC (y), fθS(y)) where x and y are respectively uniformly drawn
from X and Y . Importantly, as in Sec. 4.2.4, the information-less constraint still holds:fθS(x) =
s′,∀x.
For simplicity, we choose Gaussian kernels for KC and KS with a constant standard deviation
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parameter τ , which simplifies the estimation of the joint entropy into:

−Ĥ(c, s) =
1

NX +NY

NX+NY∑
i=1

log
1

NX +NY

NX+NY∑
j=1

exp
−||ci − cj||22

2τ
exp
−||si − sj||22

2τ
(D.33)

D.5 Capturing independent attributes and Disentangle with

Contrastive Learning

D.5.1 Supervised disentanglement

We can also use our framework to derive a supervised disentangling loss with known variability
factors. In this section, we propose to explore an extension of BC-InfoNCE in the case where
independent fine-grained attributes about the target dataset: {ai ∈ RDS}NY

i=1 are available.
Given this set of independent observed characteristics, we can leverage these observations in a
supervised manner to identify the independent factors of generation of the target dataset.

We assume the existence of DS attributes and construct our salient encoder to output DS

latent dimensions. We aim to construct a salient space where each salient latent dimension Sds

only depends on its corresponding attribute ads . Let us re-write Eq. 4.5 by replacing the salient
InfoMax term by each d-th attribute Supervised InfoMax term:

argmax I(x; c) + I(y; c) +
1

DS

Ds∑
d=1

I(ad; sd)︸ ︷︷ ︸
d-th SupInfoMax

s.t. DKL(sx||δ(s′)) = 0 and I(c, s) = 0

(D.34)
From there, we take inspiration from [74] to decompose each d-th attribute Supervised InfoMax
term in a supervised alignment and a uniformity term:

I(ad; sd) ≥ 1

NY

NY∑
i=1

wσ(a
d
i , a

d
j )
||sdi − sdj ||2

2τ
+ Ĥ(sd) = Ld-th SupInfoMax (D.35)

We propose to develop the Entropy term for each d-th salient dimension as in Sec. D.3.3.
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D.6 Datasets and Implementation Details

D.6.1 dSprites watermarked on a grid of digits experiment

We provide a novel toy dataset to evaluate the Contrastive Analysis method enriched with
target attributes. The background dataset X consists of 4 MNIST digits (1-4) regularly placed
on a grid. The target dataset Y consists of a dSprites item added upon the foreground of this
grid of digits. dSprites is a dataset introduced to evaluate disentanglement. Its images are of
size 64x64 pixels. Its elements only exhibit 5 generation factors, see Fig. D.1, making it easy
to evaluate the disentanglement. Possible variations are 1) shape (heart, ellipse, and square),
2) size, 3) position in X, 4) position in Y, and 5) orientation (i.e. rotation). To construct
the Contrastive Analysis dataset we use in this paper, we randomly sample MNIST images of
digits 1, 2, 3, and 4 and regularly place them on a grid. We create 25,000 background images
with this method. Then, we superimpose a random dSprite element on 25,000 distinct digit
grids to create 25 000 target images. We use the same method to derive 5,000 test images
equally balanced between the target and background classes. Importantly, we constrain the
dSprites elements to have a rotation attribute between −45 and +45 degrees. Downstream
task performances are computed on the projection head.

Figure D.1: Illustration of the dSprites dataset and its different independent variability factors:
shape, zoom, rotation, Y position, and X position.
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D.6.2 MNIST digit superimposed on CIFAR-10 background

MNIST digit superimposed on CIFAR-10 background is a simple intuitive dataset inspired
from [327]. We consider as the background dataset (y = 0) CIFAR-10 images, and as the
target dataset (y = 1) CIFAR-10 images (background) with an overlaid digit (target pattern),
see Fig. D.2. This experiment is particularly suited to CA, we expect our model to successfully
capture the background variability (i.e: natural objects semantic) in the common space and
to capture the digits variability in the salient space. In practice, we used a train set of 50000
images (25000 Cifar-10 images, 25000 Cifar-10 images with random MNIST digits overlaid)
and an independent test set of 1000 images (500, 500). Images are of size 32× 32. Pixels were
normalized between 0 and 1.
In terms of Data Augmentation for the stochastic transformation process t(.), we remained close
to SimCLR [50], as we used a RandomCrop(size=(24, 24), scale=(0.2, 1.0)) augmentation, then
a RandomHorizontalFlip(p=0.5) augmentation, a RandomColorJitter(0.4, 0.4, 0.4, 0.1) applied
with a probability 0.8 followed from a RandomGrayScale(p=0.2) augmentation.
Concerning the Neural Network architecture, both common and salient encoders were chosen
as ResNet-18 with a representation linear layer as follows: linear(512, 32) and a non-linear
projector layer as follows: (linear(32, 128), batch norm(128), relu(), linear(128, 32)). We used
an Adam optimizer with learning rate of 5e-4, batch size of 512, and trained it during 250
epochs.
As for the SepCLR’s hyper-parameters, we chose λC = 1, λS = β = 1000, and λ = 10.
Downstream task performances are computed before the projection head, as in [50].

Concerning Contrastive Analysis VAE methods, we took inspiration from experimental se-
tups in [180]. Namely, we used a standard encoder architecture composed of 4 convolutions
(channels 3, 32, 32, 32, 256), kernel size 4, and padding (1, 1, 1, 0). Then, for each mean and
standard deviations predicted (common and salient), we used two linear layers going from 256

to hidden size 256 to (common and salient) latent space size 32. The decoder was set symmet-
rically. We used the same architecture across all the CA-VAEs concurrent works we evaluated.
Interestingly, we also tried with ResNet-18 encoders but the results actually remained similar.
The learning rate was set to 0.001 with an Adam optimizer. The models were trained during
250 epochs with batch size equal to 512. We used βc = 0.5 and βs = 0.5, κ = 2, γ = 1e − 9,
α = 1

0.025
. For cVAE, we used βc = 0.5 and βs = 0.5, κ = 2 and κ = 0 for conVAE. For

MM-cVAE we used the same learning rate, βc = 0.5 and βs = 0.5, the background salient
regularization weight 100, common regularization weight of 1000.

Concerning Mutual Information minimization methods, we used the same hyper-parameters
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as for k-JEM, except for λ. λ was set to 0.1 for CLUB, as in the original paper Domain
Adaptation section [53]. Please note that we also tried values of 1 and 10, but it did not give
better results. We also chose 0.1 for vUB and vL1out. For TC, we used λ = 10. For MMD, we
used λ = 50; we motivate this choice in the Sec. D.7.1.

Figure D.2: the Superimposed MNIST digits on CIFAR background dataset. Target images are
CIFAR-10 images overlaid with an MNIST digit. Background images are CIFAR-10 images.

D.6.3 CelebA accessories

In CelebA with accessories [299], we consider a subset of CelebA [174]. It contains two sets,
target and background, from a subset of CelebA [174], one with images of celebrities wearing
glasses or hats (target) and the other with images of celebrities not wearing any of these
accessories (background). Importantly, and contrarily to MM-cVAE [299] and SepVAE [180],
we take care to balance the distribution of males and females in the background and the target
dataset to avoid gender bias with respect to the accessories. We used a train set of 20000

images, (10000 no accessories, 5000 glasses, 5000 hats) and an independent test set of 4000

images (2000 no accessories, 1000 glasses, 1000 hats). Images are of size 128× 128, normalized
between 0 and 1.
In terms of Data Augmentation for the stochastic transformation process t(.), we remained close
to SimCLR [50], as we used a RandomCrop(size=(128, 128), scale=(0.2, 1.0)) augmentation,
then a RandomHorizontalFlip(p=0.5) augmentation, a RandomColorJitter(0.4, 0.4, 0.4, 0.1)
applied wit a probability 0.8 followed from a RandomGrayScale(p=0.2) augmentation.
Concerning the Neural Network architecture, both common and salient encoders were chosen
as ResNet-18 with a representation linear layer as follows: linear(512, 16) and a non-linear
projector layer as follows: (linear(16, 128), batch norm(128), relu(), linear(128, 16)). We used
an Adam optimizer with learning rate 5e-4, a batch size of 256, and trained it during 250
epochs.
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As for the SepCLR’s hyper-parameters, we chose, as in MNIST superimposed on CIFAR-10
experiment, λC = 1, λS = β = 1000, and λ = 10. Downstream task performances are computed
before the projection head, as in [50].
Concerning Contrastive Analysis VAE methods, we took inspiration from experimental setups
in [180]. Notably, we used images of size 64x64 pixels. Namely, we use a standard encoder
architecture composed of 5 convolutions (channels 3, 32, 32, 64, 128, 256), kernel size 4, stride
2, and padding (1, 1, 1, 1, 1). Then, concerning the mean and standard deviations predicted
(common and salient), we used two linear layers going from 256 to hidden size 32 to (common
and salient) latent space size 16. The decoder was set symmetrically. We used the same
architecture across all the CA-VAEs concurrent works we evaluated. The learning rate was set
to 0.001 with an Adam optimizer. The models were trained during 250 epochs with batch size
equal to 512. We used βc = 0.5 and βs = 0.5, κ = 2, γ = 1e − 10, σp = 0.025. For cVAE, we
used βc = 0.5 and βs = 0.5, κ = 2 and κ = 0 for conVAE. For MM-cVAE, we used the same
learning rate, βc = 0.5 and βs = 0.5, the background salient regularization weight 100, common
regularization weight of 1000.
Concerning Mutual Information minimization methods, we used the same hyper-parameters as
for k-JEM, except for λ. λ was set to 0.1 for CLUB, as in the original paper Domain Adaptation
section [53]. Please note that we also tried values of 1 and 10, but it did not give better results.
We also chose 0.1 for vUB and vL1out. For TC, we used λ = 10. For MMD, we used λ = 50;
we motivate this choice in the Sec. D.7.1.

D.6.4 CheXpert

In the CheXpert subtyping experiment, we select a subset of CheXpert separated in the back-
ground dataset: 10,000 healthy X-rays and the target dataset: 3,000 with edema, 3,000 with
pleural effusion, and around 2,000 images with cardiomegaly. Images are resized to 224x224
pixels. Pixels are normalized between 0 and 1.
For SepCLR, in terms of Data Augmentation for the stochastic transformation process t(.), we
remained close to SimCLR [50], as we used a RandomCrop(size=(224, 224), scale=(0.2, 1.0))
augmentation, a RandomColorJitter(0.4, 0.4, 0.4, 0.1) applied with a probability 0.8 followed
from a RandomGrayScale(p=0.2) augmentation, a RandomRotation(degrees=45), and then a
RandomHorizontalFlip(p=0.5) augmentation.
Concerning the Neural Network architecture, both common and salient sizes are 32. Both com-
mon and salient encoders were chosen as a pre-trained ResNet-18 with a representation linear
layer as follows: linear(512, 32) and a non-linear projector layer as follows: (linear(32, 128),
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batch norm(128), relu(), linear(128, 32)). We used an Adam optimizer with a learning rate
of 5e-4, a batch size of 256, and trained it during 200 epochs. As for the SepCLR’s hyper-
parameters, we chose λC = 1, λS = 1, β = 10, and λ = 5. Downstream task performances are
computed before the projection head, as in [50].

Concerning the Contrastive VAEs, we use the same common and salient encoders. For the
decoders, we chose an architecture composed of a linear layer, taking into input the concate-
nation of common and salient space, mapping it to a size of 256. Then 7 deconvolution layers
were used with a kernel size of 4, stride of 2, and padding of 1 with filters (256 to 512, 256,
128, 64, 32, 16, 3). Output images are of size 256 × 256 and are cropped to 224 × 224. The
final activation layer is chosen as a sigmoid layer.

We used the same architecture across all the CA-VAEs concurrent works we evaluated. The
learning rate was set to 0.001 with an Adam optimizer. The models were trained during 200
epochs with batch size equal to 256. We used βc = 0.5 and βs = 0.5, κ = 2, γ = 1e − 9,
σp = 0.05. For cVAE, we used βc = 0.5 and βs = 0.5, κ = 2 and κ = 0 for conVAE. For
MM-cVAE, we used the same learning rate, βc = 0.5 and βs = 0.5, the background salient
regularization weight 100, common regularization weight of 1000.

D.6.5 ODIR (Ocular Disease Image Recognition)

In the ODIR subtyping experiment, we select a subset of the ODIR dataset separated into a
background and a target dataset. Train dataset contains 1890 healthy images, 363 diabetes im-
ages, 278 glaucoma images, 281 cataract images, 242 age-related macular degeneration images,
and 227 pathological myopia images. On the other hand, TEST dataset contains respectively
210 healthy, 37 diabetes, 26 glaucoma, 39 cataract, 23 macular degeneration, 30 myopia images.
Pixels are normalized between 0 and 1.
For SepCLR, in terms of Data Augmentation for the stochastic transformation process t(.), we
remained close to SimCLR [50], as we used a RandomCrop(size=(224, 224), scale=(0.75, 1.0))
augmentation, a RandomColorJitter(0.4, 0.4, 0.4, 0.1) applied wit a probability 0.8 followed
from a RandomGrayScale(p=0.2) augmentation, a RandomRotation(degrees=45), and then a
RandomVerticalFlip(p=0.5) augmentation.
Concerning the Neural Network architecture, both common and salient encoders were chosen
as a pre-trained ResNet-18 with a representation linear layer as follows: linear(512, 32) and a
non-linear projector layer as follows: (linear(32, 128), batch norm(128), relu(), linear(128, 32)).
We used an Adam optimizer with a learning rate of 5e-4, a batch size of 256, and trained it
during 200 epochs. As for the SepCLR’s hyper-parameters, we chose λC = 1, λS = 1, β = 100,
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and λ = 10. Downstream task performances are computed before the projection head, as in
[50].
Concerning the Contrastive VAEs, we use the same common and salient encoders. For the de-
coders, we chose an architecture composed of a linear layer, taking into input the concatenation
of common and salient space, mapping it to a size of 256. Then 7 deconvolution layers were
used with a kernel size of 4, stride of 2, and padding of 1 with filters (256 to 512, 256, 128,
64, 32, 16, 3). Output images are of size 256 × 256 and are cropped to 224 × 224. The final
activation layer is chosen as a sigmoid layer.

We used the same architecture across all the CA-VAEs concurrent works we evaluated. The
learning rate was set to 0.001 with an Adam optimizer. The models were trained during 200
epochs with batch size equal to 256. We used βc = 0.5 and βs = 0.5, κ = 2, γ = 1e − 9,
σp = 0.05. For cVAE, we used βc = 0.5 and βs = 0.5, κ = 2 and κ = 0 for conVAE. For
MM-cVAE, we used the same learning rate, βc = 0.5 and βs = 0.5, the background salient
regularization weight 100, common regularization weight of 1000.

D.6.6 Schizophrenia experiment

In this study, we analyzed neuroimaging data from several sources, including the SCHIZCON-
NECT database (which includes 368 healthy controls and 275 patients with schizophrenia) and
the BSNIP database (which includes 199 healthy controls and 190 patients with schizophrenia).
The data used in this study was collected from various scanners and locations and included
brain scans from individuals in the United States. Images are of size 128 × 128 × 128 with
voxels normalized on a Gaussian distribution per image. Experiments were run 5 times with a
different train/val split (respectively 75% and 25% of the dataset) to account for initialization
and data uncertainty. Inspired by [180], common and salient convolutional encoders were cho-
sen as 5 3D-convolutions (channels 1, 32, 64, 128, 256, 512), kernel size 4, stride 2, and padding
1 followed by batch normalization layers. Then, we used a linear layer from 32768 to repre-
sentations (sizes 128 for common and 32 for salient). Then, the projection heads were set as
non-linear with hidden sizes 128 for common and 32 for salient, with batch normalization(128)
and relu() activation functions.
For SepCLR, the data augmentations were inspired from [74], that is: horizontal flip with prob-
ability 0.5; blur with probability 0.5, sigma=(0.1, 0.1); noise with probability 0.5, sigma=(0.1,
0.1); CutOut with probability 0.5, patch size equal to 32x32x32, RandomCrop of size (96x96x96)
with probability 0.5. The models were trained during 50 epochs with a batch size equal to 32
with an Adam optimizer of learning rate of 0.0005. As for the SepCLR’s hyper-parameters, we

216



chose λC = 1, λS = 1, β = 1, and λ = 5. Downstream task performances are computed before
the projection head, as in [50]. Importantly, the classification task is computed with a 2 layers
MLPs to be comparable with SepVAE [180]

Concerning the Contrastive Analysis VAEs methods we compared with, we use the same ex-
perimental setup in terms of hyper-parameters and architecture as in [180]. Concerning the
architecture, in detail, the common and salient convolutional encoders were chosen as 5 3D-
convolutions (channels 1, 32, 64, 128, 256, 512), kernel size 4, stride 2, and padding 1 followed
by batch normalization layers. Then, we used a non-linear layer from 32768 to directly predict
mean and standard deviations (sizes 256 for common and 256 for salient) with 2048 as hidden
size with batch normalization and relu as activation functions. The decoder was set symmet-
rically, except it has 6 transposed convolutions (channels 512, 256, 128, 64, 32, 16, 1), kernel
size 3, stride 2, and padding 1, followed by batch normalization layers.

D.6.7 Mutual Information Minimization methods

To compare with k-JEM (kernel-Joint Entropy Maximization), we used the implementation
of several Mutual Information variational upper bound, namely vCLUB [53], vUB [11] and
vL1out [226] available at https://github.com/Linear95/CLUB/tree/master. Interestingly,
these methods can be implemented with a variational approximation of S from C, vice-versa
(C from S), or symmetrically (mean of both). We tried all three possibilities with different
weights and chose the best results each time to set in Tab .4.5 and Tab .4.6.
We also compared with the exact Mutual Information estimator TC of [180] and [3] inspired
by the Total Correlation introduced in [152].
In Sec. 4.2.4, we motivated the idea of minimizing the negative joint entropy (−H(C, S)) rather
than the Mutual Information (H(C) +H(S)−H(C, S)). To prove our point, we implemented
k-MI, a version of k-JEM where we also minimize the entropies H(C) + H(S). To do so, we
estimate H(C) as in the common entropy estimation in Eq. D.4 and H(S) as in the salent
entropy estimation in Eq. D.18. Interestingly, we can see that k-MI indeed underperforms
compared to k-JEM.
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D.7 Supplementary results

D.7.1 On Mutual Information minimization versus target and back-

ground distributions matching

In Contrastive Analysis, practitioners use various regularizations to respect properties estab-
lished a priori. Recent works agree that background input should be mapped to a single
information-less vector in the salient space. However, two regularizations have been proposed
to reduce the information leakage between the common and the salient space: 1- match the
distributions of targets and backgrounds in the common space, 2- minimize the mutual in-
formation between the common and salient distributions. In our framework, the latter was
naturally derived from the InfoMax principle. In Tab .D.1 and Tab .D.2, we propose to com-
pare both strategies on a) CelebA accessories and b) Digits superimposed on CIFAR-10 to
assess their effect on the common space. In both experiments, we observe that the stronger the
regularization is, the less common information (objects and sex) is captured. Also, we observe
that k-JEM ’s ability to diminish target-specific information (digits and accessories) remains
relatively consistent across the regularization strength. Concerning MMD (Maximum Mean
Discrepancy), a high regularization strength is needed to reduce target-specific information de-
spite its detrimental effect on capturing common patterns. We conclude that a low-strength
k-JEM regularization (we choose λ = 10 in practice) is the right trade-off for capturing common
patterns while canceling salient patterns.

Table D.1: Digits watermarked on CIFAR-10 (B-ACC). Comparison of k-JEM
with MMD given different strengths.

Digits Objects δtot ↓
S ↑ C ↓ S ↓ C ↑

SepCLR-no k-JEM 95.6 94.4 9.0 42.0 145.8
SepCLR-10 MMD 95.4 86.8 10.8 48.2 56.8
SepCLR-50 MMD 94.6 21.2 9.0 62.2 134.0
SepCLR-100 MMD 95.2 13.8 11.0 56.4 53.2
SepCLR-10 k-JEM 96.2 11.0 10.4 73.2 32.0
SepCLR-50 k-JEM 95.2 13.2 8.6 59.2 47.4
SepCLR-100 k-JEM 95.0 12.0 9.2 52.4 53.8
Best expected 100.0 10.0 10.0 100.0 0.0
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Table D.2: CelebA accessories (B-ACC). Comparison of k-JEM with MMD given
different strengths.

Hats/Glss Sex δtot ↓
S ↑ C ↓ S ↓ C ↑

SepCLR-no k-JEM 99.03 66.68 98.48 79.48 86.65
SepCLR-10 MMD 98.99 81.53 60.87 76.19 87.14
SepCLR-50 MMD 98.95 67.50 65.47 71.83 62.19
SepCLR-100 MMD 99.03 53.25 67.12 52.51 68.83
SepCLR-10 k-JEM 98.57 55.21 62.52 78.00 41.16
SepCLR-50 k-JEM 98.83 58.27 62.45 68.38 53.51
SepCLR-100 k-JEM 98.73 62.00 68.92 57.10 75.09
Best Expected 100.0 50.0 50.0 100.0 0.0

D.7.2 On the add of a reconstruction term

Contrastive Analysis, jointly performed with a generative process, enables performing salient
or common characteristics swapping, salient attribute generation or deletion, and novel sample
generation. Therefore, we investigated the addition of a decoder jointly trained with the encoder
parameters to reconstruct the input images (with a Mean Square Error Cost Function) during
the optimization process. We added a reconstruction term from the concatenation of the
common and salient space (as in CA-VAEs but without the need for a re-parameterization
trick) with the same decoder as in CA-VAEs, and it degrades the results. Intriguingly, we found
that it tends to degrade the results (see Tab. D.4 and Tab. D.3), which could be explained by
the fact that the reconstruction task tries to conserve unnecessary noisy information in the
latent space. However, an interesting perspective could be to include and train a generator or a
decoder for generation and interpretability purposes, given frozen representations learned with
SepCLR.

D.7.3 On the comparison with Contrastive methods

In this section, we propose to compare SepCLR with self-supervised methods that are not
based on the encoder-decoder architecture. As no Contrastive Learning methods are tailored
for Contrastive Analysis, we propose to design a naive and simple strategy to compare with
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Table D.3: Digits watermarked on CIFAR-10 (B-ACC). On the impact of a
reconstruction term in addition to SepCLR.

Digits Objects δtot ↓
S ↑ C ↓ S ↓ C ↑

SepCLR-k-JEM 96.2 11.0 10.4 73.2 32.0
SepCLR-k-JEM with 0.1 rec 98.8 10.8 40.6 47.2 85.4
SepCLR-k-JEM with 1 rec 94.4 22.2 51.8 27.4 132.2
Best expected 100.0 10.0 10.0 100.0 0.0

Table D.4: CelebA accessories (B-ACC). On the impact of a reconstruction term
in addition to SepCLR.

Hats/Glss Sex δtot ↓
S ↑ C ↓ S ↓ C ↑

SepCLR-k-JEM 98.57 55.21 62.52 78.00 41.16
SepCLR-k-JEM with 0.1 rec 97.27 67.81 67.53 62.38 75.69
SepCLR-k-JEM with 1 rec 91.51 68.87 62.77 64.39 78.98
Best expected 100.0 50.0 50.0 100.0 0.0

SepCLR. First, we infer the common features with the features of SimCLR trained on the
background dataset only (as it should have common features only). Then, we propose to infer
the salient space with a SupCon method trained to discriminate the background samples from
the target samples. This way, such a method should capture target-specific patterns while
discarding common features. Additionally, we compare with SimCLR trained on both datasets
to get a reference point (even though, in that case, the common space and the salient space are
the same unique space, which cannot perform the separation of common and salient patterns).
See Tab. D.5, Tab. D.6 and Tab. D.7 for the results. SepCLR always performs better in terms
of δtot.

D.7.4 Ablation study

In the main text, we investigated the effect of a null Mutual Information constraint by removing
the proposed loss (No k-JEM) or by minimizing the Mutual Information estimate (k-MI) rather
than the Joint Entropy estimate (see Tab. 4.5 and Tab. 4.6). Here, we propose a further
ablation study in Tab. D.8 and Tab. D.9. We report the results of our method when removing
all proposed losses one by one. We can observe that each loss is important since, when removing

220



Table D.5: Comparison of SepCLR-k-JEM with Contrastive methods on
Digits watermarked on CIFAR-1 (B-ACC)

Digits Objects δtot ↓
S ↑ C ↓ S ↓ C ↑

SimCLR on TG and BG 44.0 44.0 94.6 94.6 180.0
SimCLR + SupCon 41.4 51.4 19.0 50.0 159.0
SepCLR-k-JEM 96.2 11.0 10.4 73.2 32.0
Best expected 100.0 10.0 10.0 100.0 0.0

Table D.6: Comparison of SepCLR-k-JEM with Contrastive methods on
CelebA accessories (B-ACC).

Hats/Glss Sex δtot ↓
S ↑ C ↓ S ↓ C ↑

SimCLR on BG and TG 98.92 98.92 84.16 84.16 100.0
SimCLR + SupCon 97.93 82.15 59.98 80.76 63.44
SepCLR-k-JEM 98.57 55.21 62.52 78.00 41.16
Best Expected 100.0 50.0 50.0 100.0 0.0

Table D.7: Comparison of SepCLR-k-JEM with Contrastive methods on
ODIR dataset (B-ACC).

Subtype Sex δtot ↓
S ↑ C ↓ S ↓ C ↑

SimCLR on BG and TG 66.10 66.10 57.20 57.20 125.0
SimCLR + SupCon 68.70 57.17 51.94 58.41 107.0
SepCLR-k-JEM 68.54 47.71 52.48 59.62 97.03
Best Expected 100.0 25.0 50.0 100.0 0.0

it, we either degrade the capture of salient patterns or we fail to disregard the common features
in the salient space.

D.7.5 Performances on the background datasets

In the main text, we evaluated our method on the ability to linearly predict common attributes
in the common space only and salient attributes in the salient space only on target samples
only (as they are generated from both common and target-specific factors of variability). In
this section, we evaluate the ability to linearly predict common attributes only in the common
space. In Tab. D.10 and Tab D.11, we can see that the common performances remain good
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Table D.8: Ablation Study on Digits watermarked on CIFAR-10 (B-ACC).

Digits Objects δtot ↓
S ↑ C ↓ S ↓ C ↑

SepCLR-λ = 0 (no k-JEM) 95.6 94.4 9.0 42.0 145.8
SepCLR-β = 0 (no Infoless reg) 96.2 11.6 10.4 71.8 34.0
SepCLR-λS = 0 (no Salient term) 93.4 42.0 18.6 40.0 90.25
SepCLR-λC = 0 (no Common term) 94.4 10.4 18.8 20.4 94.4
SepCLR-k-JEM 96.2 11.0 10.4 73.2 32.0
Best expected 100.0 10.0 10.0 100.0 0.0

Table D.9: Ablation Study on CelebA accessories (B-ACC).

Hats/Glss Sex δtot ↓
S ↑ C ↓ S ↓ C ↑

SepCLR - λ = 0 (no k-JEM) 99.03 66.68 98.48 79.48 86.65
SepCLR - β = 0 (no Infoless reg) 99.12 53.88 68.82 77.29 46.29
SepCLR - λS = 0 (no Salient term) 77.50 87.73 53.30 77.55 85.98
SepCLR - λC = 0 (no Common term) 98.38 56.32 66.44 53.09 71.29
SepCLR - k-JEM 98.57 55.21 62.52 78.00 41.16
Best Expected 100.0 50.0 50.0 100.0 0.0

on background samples while the salient space is non-informative as it is supposed to be. We
can also notice that, compared to concurrent CA-VAE methods, our method is still the best-
performing one in terms of δ, as it predicts common attributes way better.

Table D.10: Balanced Accuracy results on Digits watermarked on CIFAR-10
on background samples.

Digits Objects δ ↓
S ↑ C ↓ S ↓ C ↑

MM-cVAE × × 18.2 32.8 75.4
SepVAE × × 20.0 34.4 75.6
SepCLR-k-JEM × × 28.0 74.0 44.0
Best expected × × 10.0 100.0 0.0

222



Table D.11: Balanced Accuracy results on CelebA accessories on background
samples.

Hats/Glss Sex δ ↓
S ↑ C ↓ S ↓ C ↑

MM-cVAE × × 64.27 70.48 43.79
SepVAE × × 56.42 70.19 36.23
SepCLR - k-JEM × × 64.10 86.63 27.47
Best Expected × × 50.0 100.0 0.0

D.7.6 On the impact of Lunif or Llog-sum-exp

As shown in Sec. D.1, we estimate the entropy using a resubstitution entropy estimator. This
results in one of the terms of the standard Contrastive loss (i.e., InfoNCE) that accounts for the
negative samples. As shown in Wang et Isola, this term has the same minimizer as the Lunif loss
when the number of negatives tends to be infinite. We decided to use the Lunif loss instead of the
Contrastive loss because it is computationally less expensive, and it has been shown by Wang
et Isola to lead to good representations and good downstream task performance. Furthermore,
we have also compared the two losses in the CIFAR10-MNIST dataset the CelebA accessories
(see Tab. D.12 and Tab. D.13) and found that the results are slightly better or similar using
Lunif.

Table D.12: Balanced Accuracy results on Digits watermarked on CIFAR-10.
Comparison between Lunif and Llog-sum-exp to estimate and minimize H(C)
and H(S).

Digits Objects δ ↓
S ↑ C ↓ S ↓ C ↑

SepCLR-k-JEM (Lunif) 96.2 11.0 10.4 73.2 32.0
SepCLR-k-JEM (log-sum-exp) 96.6 11.6 11.0 71.6 34.4
Best expected 100.0 10.0 10.0 100.0 0.0

D.7.7 On the impact of the encoders

In this section, we justify our choices in terms of architecture. In Tab. D.14 and Tab. D.15, we
show the performance of SepVAE and SepCLR on Digits watermarked on CIFAR-10 and CelebA
with accessories with different architectures. SepVAE with ResNet-18 performs less better or
similarly than the one described in our original paper. Conversely, SepCLR with ResNet-18
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Table D.13: Balanced Accuracy results on CelebA accessories.
Comparison between Lunif and Llog-sum-exp to estimate and minimize H(C)
and H(S).

Digits Objects δ ↓
S ↑ C ↓ S ↓ C ↑

SepCLR-k-JEM (Lunif) 98.57 55.21 62.52 78.00 41.16
SepCLR-k-JEM (log-sum-exp) 98.73 55.06 61.36 76.94 40.75
Best expected 100.0 10.0 10.0 100.0 0.0

performs better. Overall, SepCLR remains largely better than SepVAE, a consistent method
across Contrastive Analysis VAEs.

Table D.14: Results of several different encoder architectures on Digits wa-
termarked on CIFAR (B-ACC).

Digits Objects δtot ↓
S ↑ C ↓ S ↓ C ↑

SepVAE 90.6 17.8 10.6 36.6 81.2
SepVAE - ResNet 18 encoder 90.8 23.2 10.2 34.0 88.24
SepCLR with SepVAE’s encoder 75.6 28.8 16.2 52.6 96.8
SepCLR-k-JEM 96.2 11.0 10.4 73.2 32.0
Best expected 100.0 10.0 10.0 100.0 0.0

Table D.15: Results of several different encoder architectures on CelebA
accessories (B-ACC).

Hats/Glss Sex δtot ↓
S ↑ C ↓ S ↓ C ↑

SepVAE 84.46 65.19 60.12 59.20 81.65
SepVAE with ResNet-18 encoder 86.13 67.47 60.04 61.93 81.45
SepCLR - k-JEM with SepVAE’s encoder 97.89 60.01 51.07 70.51 42.68
SepCLR - k-JEM 98.57 55.21 62.52 78.00 41.16
Best Expected 100.0 50.0 50.0 100.0 0.0

D.7.8 dSprites element superimposed on a digit grid

We show supplementary qualitative results on the salient space disentanglement in Fig. D.3.
We qualitatively show that the common space captures background variability rather than fore-
ground variability in Fig. D.4. We qualitatively show that the salient space captures foreground
variability rather than background variability in Fig. D.5.
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Figure D.3: Attribute Supervised SepCLR on dSprites superimposed on a digits grid. Given
an image, sampling of the nearest neighbor images in the latent space given small displacement
given an axis of the salient space. Each row represents the variation of only one element of the
salient factor s while keeping c fixed. We can see a certain disentanglement: shape (line 1),
zoom (line 2), orientation (line 3), X and Y position (lines 4 and 5).

Figure D.4: Attribute Supervised SepCLR on dSprites superimposed on a digits grid. Given
random target images on the left, we sample the nearest neighbors in the dataset with respect
to their L2 distance in the common space only. We can see that the dSprite object remains the
same while the MNIST digit grid in the background changes across the neighbors.

We also show quantitative results in Tab. D.16 by computing the Mutual Information Gap
(MIG) score to measure the disentanglement in the DSprite-MNIST experiment. Results are
reported below, and it can be noticed that the proposed method obtains good results (MIG is
bounded by 0 and 1, where 1 indicates a perfect result).
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Figure D.5: Attribute Supervised SepCLR on dSprites superimposed on a digits grid. Given
random target images on the left, we sample the nearest neighbors in the dataset with respect
to their L2 distance in the salient space only, we can see that the dSprite object remains the
same while the MNIST digits in the background change across the neighbors.

Table D.16: Computation of MIG on the salient space in dSprites on MNIST digit grid exper-
iment.

Z1 (Shape) Z2 (Zoom) Z3 (Rotation) Z4 (Trans X) Z5 (Trans Y) Avg
Best Expected 1 1 1 1 1 1
Attr Sup SepCLR - k-JEM 0.915 0.909 0.674 0.823 0.835 0.831
Random Vector 0.002 0.003 0.007 0.007 0.0008 0.003

D.7.9 Qualitative results on CelebA with accessories

In this section, we propose to display qualitative results on the CelebA accessories dataset. In
Fig. D.6 and Fig. D.7, we propose to respectively display a 2D t-SNE plot for the salient
and common latent space of SepCLR-k-JEM on the target dataset (portraits of celebrities with
accessories). Yellow points represent people with hats, Purple points represent people with
glasses. We can clearly see that our method has correctly encoded the patterns related to the
accessories in the salient space and not in the common space.
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Figure D.6: 2D t-SNE plot of the salient space of SepCLR-k-JEM on CelebA with accessories.
We highlight in yellow and purple the actual labeled subgroups (people with hats or with
glasses), respectively. We can see that the two subgroups are clearly separated in the salient
space. Furthermore, we train a K-Means (K=2), which successfully identifies the two subgroups,
and we propose to display the 6 nearest images from both centroids. Interestingly, we observe
various backgrounds, poses, and people of different genders but with the same accessories (hats
in cluster 0 and glasses in cluster 1). This clearly shows that our method has correctly encoded
the patterns related to the accessories in the salient space and not the general ones (e.g.,
background, pose, gender, etc.).
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Figure D.7: 2D t-SNE plot of the common space of SepCLR-k-JEM on CelebA with accessories
(target dataset). We highlight in yellow and purple the actual labeled subgroups (people with
hats or with glasses), respectively. We can see that the two subgroups overlap in the common
space. This clearly confirms that our method does not encode the patterns related to the
accessories in the common space.
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