
HAL Id: tel-04688805
https://theses.hal.science/tel-04688805

Submitted on 5 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algorithms and Machine Learning for fair and classical
combinatorial optimization

Thi Quynh Trang Vo

To cite this version:
Thi Quynh Trang Vo. Algorithms and Machine Learning for fair and classical combinatorial op-
timization. Machine Learning [cs.LG]. Université Clermont Auvergne, 2024. English. �NNT :
2024UCFA0035�. �tel-04688805�

https://theses.hal.science/tel-04688805
https://hal.archives-ouvertes.fr

THÈSE POUR OBTENIR LE DIPLÔME DE DOCTEUR
DE L’UNIVERSITÉ CLERMONT AUVERGNE

En Informatique

École Doctorale Sciences Pour l’Ingénieur (ED SPI)

Algorithms and Machine Learning for fair and
classical combinatorial optimization

Présenté par Thi Quynh Trang VO
Date de la soutenance - Le 13 mai 2024

Sous la supervision des
Viet Hung NGUYEN et Mourad BAIOU

Devant le jury composé de

Dritan NACE Professeur à l’Université de Technologie de Compiègne Rapporteur
Axel PARMENTIER Chercheur HDR à l’Ecole Nationale des Ponts et Chaussées Rapporteur
Sophie DEMASSEY MCF HDR à Ecole de Mines de Paris Examinatrice
Kim Thang NGUYEN Professeur à l’Université Grenoble Alpes Examinateur
Fatiha BENDALI Professeure à l’Université Clermont Auvergne Examinatrice
Mourad BAIOU Directeur de recherche au CNRS, LIMOS UMR 6158 Co-encadrant
Viet Hung NGUYEN Professeur à l’Université Clermont Auvergne Co-encadrant, directeur de thèse

Acknowledgements

First, I would like to express my sincere gratitude to Professor Viet Hung Nguyen for the in-
valuable mentorship, guidance, and inspiration he provided throughout my time as his PhD
student. I sincerely appreciate all I have learned from him, both in research and life lessons.
His endless support and encouragement made this work possible.

I am also very grateful to Professor Mourad Baiou for his priceless mentorship and support.
He always gave me valuable guidance at critical junctures, especially at the end of my PhD
journey. His recognition of my efforts made me feel motivated to keep going.

Another person who had a significant impact on my work is Professor Paul Weng. Through
many illuminating discussions with him, I gained invaluable knowledge and feel extremely
fortunate to have had the opportunity to collaborate with him. I would also like to express my
gratitude to Professor Ngoc Chi Le. Working with him over the last four years has completely
transformed my perspective on research.

Coming from a distant country with significant differences in language and culture, there
were many things I had to learn from the beginning. Fortunately, I received tremendous help
from my colleagues in the lab. First, I want to express my gratitude to Aurelien Mombelli.
He started his PhD the same day as me and has been multi-functional, serving as my French
teacher, administrative "secretary," and drinking buddy. I also want to thank my patient col-
leagues who spoke French with me and taught me so much: Alexey, Caroline, Elodie, Simon,
Malex, Amal, Mari, Chijia, Jose, Romain, Pedro, Sofian, Tam, and others. I am grateful to the
LIMOS laboratory for hosting me and providing a supportive working environment. I also
thank the staff who assisted me greatly: Beatrice, Martine, Bastien, and Valerie. Finally, I ap-
preciate the advice and encouragement I received from LIMOS professors: Vincent, Fatiha,
Christian, Herve, and more.

I am deeply grateful for the community of Vietnamese friends who enriched my experi-
ence as a PhD student in France. First, I want to express my heartfelt appreciation to my elder
brothers, Minh and Trung. Your care and support gave me strength during those early transi-
tion days when I first arrived in France. Additionally, I owe tremendous thanks to my dearest
friends - Hieu, Loan, Thao, Phuong Anh, Tri Minh, Hoang, and Ngoc Minh. You stood by my
side, helping me and sharing my joys and sorrows. I could not have finished this thesis without
you. Finally, I am also grateful to Tung for his invaluable help in tutoring me on scientific writ-
ing and for the significant mental support he offered. His guidance bolstered me tremendously
along this journey.

i

ii

Last but not least, I am deeply thankful for my family, whose unconditional love and stead-
fast support have nurtured me. Their unwavering belief in me gives me strength and provides
a comforting home to come back to, no matter where my path leads.

Résumé

L’optimisation combinatoire est un domaine des mathématiques dans lequel un problème con-
siste à trouver une solution optimale dans un ensemble fini d’objets. Elle a des applications
cruciales dans de nombreux domaines, notamment les mathématiques appliquées, le génie
logiciel, l’informatique théorique et l’apprentissage automatique. Le branch-and-cut est l’un
des algorithmes les plus utilisés pour résoudre exactement des problèmes d’optimisation com-
binatoire. Dans cette thèse, nous nous concentrons sur les aspects informatiques du branch-
and-cut et plus particulièrement, sur deux aspects importants de l’optimisation combinatoire :
l’équité des solutions et l’intégration de l’apprentissage automatique.

Dans la partie I (chapitres 3 et 4), nous étudions deux approches courantes pour traiter la
question de l’équité dans l’optimisation combinatoire, qui a fait l’objet d’une attention parti-
culière au cours des dernières décennies. La première approche est l’optimisation combinatoire
équilibrée, qui trouve une solution équitable en minimisant la différence entre les plus grands et
les plus petits composants utilisés. En raison des difficultés à délimiter ces composants, à notre
connaissance, aucun cadre général exact basé sur la programmation linéaire en nombres entiers
mixtes (MILP) n’a été proposé pour l’optimisation combinatoire équilibrée. Pour combler cette
lacune, nous présentons au chapitre 3 une nouvelle classe de plans de coupe locaux adaptés
aux problèmes d’optimisation combinatoire équilibrée pour l’algorithme du branch-and-cut.
Nous démontrons l’efficacité de la méthode proposée dans la carde du problème du voyageur
de commerce équilibré. Notamment, nous introduisons des algorithmes pour la recherche de
bornes et des mécanismes pour la détermination des variables afin d’accélérer un peu plus les
performances.

Une deuxième approche pour traiter la question de l’équité est l’optimisation combinatoire
Ordered Weighted Average (OWA), qui consiste à utiliser l’opérateur OWA dans la fonction ob-
jectif. En raison de l’opérateur d’ordonnancement, l’optimisation combinatoire OWA est non
linéaire, même si ses contraintes d’origine sont linéaires. Deux formulations MILP de tailles
différentes ont été introduites dans la littérature pour linéariser l’opérateur OWA. Cependant,
la formulation la plus performante pour l’optimisation combinatoire OWA reste incertaine,
car l’intégration des méthodes de linéarisation peut introduire des difficultés supplémentaires.
Dans le chapitre 4, nous fournissons des comparaisons théoriques et empiriques des deux for-
mulations MILP pour l’optimisation combinatoire OWA. En particulier, nous prouvons que
les formulations sont équivalentes en termes de relaxation de programmation linéaire. Nous
montrons empiriquement que pour les problèmes d’optimisation combinatoire OWA, la for-

iii

iv

mulation avec le plus de variables peut être résolue plus rapidement avec le branch-and-cut.
Dans la partie II (chapitre 5), nous développons des méthodes d’application de

l’apprentissage automatique pour améliorer les problèmes de décision fondamentaux du
branch-and-cut, en mettant l’accent sur la génération de coupes. Ce dernier problème se réfère
à la décision de générer des coupes ou des branches à chaque nœud de l’arbre de recherche.
Nous démontrons empiriquement que cette décision a un impact significatif sur les perfor-
mances du branch-and-cut, en particulier pour les coupes combinatoires qui exploitent les faces
de la coque convexe des solutions réalisables. Nous proposons ensuite un cadre général combi-
nant l’apprentissage supervisé et l’apprentissage par renforcement afin d’apprendre des straté-
gies efficaces pour générer des coupes combinatoires dans la méthode branch-and-cut. Notre
cadre comporte deux composantes : un détecteur de coupes pour prédire l’existence de coupes
et un évaluateur de coupes pour choisir entre la génération de coupes et le branchement. En-
fin, nous fournissons des résultats expérimentaux montrant que la méthode proposée est plus
performante que les stratégies couramment utilisées pour la génération de coupes, même sur
des instances plus grandes que celles utilisées pour l’apprentissage.

Abstract

Combinatorial optimization is a field of mathematics that searches for an optimal solution in a
finite set of objects. It has crucial applications in many fields, including applied mathematics,
software engineering, theoretical computer science, and machine learning. Branch-and-cut is
one of the most widely-used algorithms for solving combinatorial optimization problems ex-
actly. In this thesis, we focus on the computational aspects of branch-and-cut when studying
two critical dimensions of combinatorial optimization: the fairness of solutions and the integration
of machine learning.

In Part I (Chapters 3 and 4), we study two common approaches to deal with the issue of fair-
ness in combinatorial optimization, which has gained significant attention in the past decades.
The first approach is balanced combinatorial optimization, which finds a fair solution by minimiz-
ing the difference between the largest and smallest components used. Due to the difficulties in
bounding these components, to the best of our knowledge, no general exact framework based
on mixed-integer linear programming (MILP) has been proposed for balanced combinatorial
optimization. To address this gap, in Chapter 3, we present a branch-and-cut algorithm and
a novel class of local cutting planes tailored for balanced combinatorial optimization prob-
lems. We demonstrate the effectiveness of the proposed framework in the Balanced Traveling
Salesman Problem. Additionally, we introduce bounding algorithms and mechanisms to fix
variables to accelerate performance further.

The second approach to handling the issue of fairness is Ordered Weighted Average (OWA)
combinatorial optimization, which integrates the OWA operator into the objective function. Due
to the ordering operator, OWA combinatorial optimization is nonlinear, even if its original
constraints are linear. Two MILP formulations of different sizes have been introduced in the
literature to linearize the OWA operator. However, which formulation performs best for OWA
combinatorial optimization remains uncertain, as integrating the linearization methods may
introduce additional difficulties. In Chapter 4, we provide theoretical and empirical compar-
isons of the two MILP formulations for OWA combinatorial optimization. In particular, we
prove that the formulations are equivalent in terms of the linear programming relaxation. We
empirically show that for OWA combinatorial optimization problems, the formulation with
more variables can be solved faster with branch-and-cut.

In Part II (Chapter 5), we develop methods for applying machine learning to enhance fun-
damental decision problems in branch-and-cut, with a focus on cut generation. Cut generation
refers to the decision of whether to generate cuts or to branch at each node of the search tree. We

v

vi

empirically demonstrate that this decision significantly impacts branch-and-cut performance,
especially for combinatorial cuts that exploit the facial structure of the convex hull of feasi-
ble solutions. We then propose a general framework combining supervised and reinforcement
learning to learn effective strategies for generating combinatorial cuts in branch-and-cut. Our
framework has two components: a cut detector to predict cut existence and a cut evaluator
to choose between generating cuts and branching. Finally, we provide experimental results
showing that the proposed method outperforms commonly used strategies for cut generation,
even on instances larger than those used for training.

Keywords: Combinatorial optimization, Mixed-Integer Linear Programming, Branch-and-
Cut, Balanced combinatorial optimization, Ordered Weighted Average, Machine Learning, Cut
generation, Combinatorial cuts.

List of publications

1. Thi Quynh Trang Vo, Mourad Baiou, Viet Hung Nguyen and Paul Weng. Learning to Cut
Generation in Branch-and-Cut algorithms for Combinatorial Optimization. In: submitted to the
ACM Transactions on Evolutionary Learning and Optimization, 2024.

2. Thi Quynh Trang Vo, Mourad Baiou and Viet Hung Nguyen. A Branch-and-Cut algorithm
for the Balanced Traveling Salesman Problem. In: Journal of Combinatorial Optimization 47,
4, 2024. DOI: https://doi.org/10.1007/s10878-023-01097-4

3. Thi Quynh Trang Vo, Mourad Baiou, Viet Hung Nguyen and Paul Weng. Improving
Subtour Elimination Constraint Generation in Branch-and-Cut Algorithms for the TSP with
Machine Learning. In: Proceedings of the 17th Learning and Intelligent Optimization
Conference (LION). Lecture Notes in Computer Science (LNCS). Springer, 2023. DOI:
https://doi.org/10.1007/978-3-031-44505-7_36.

4. Thi Quynh Trang Vo, Mourad Baiou, Viet Hung Nguyen and Paul Weng. A comparative
study of linearization methods for Ordered Weighted Average. In: Proceedings of the 12th In-
ternational Workshop on Resilient Networks Design and Modeling (RNDM), 2022. DOI:
https://doi.org/10.1109/RNDM55901.2022.9927720

5. Minh Hieu Nguyen, Mourad Baiou, Viet Hung Nguyen and Thi Quynh Trang Vo. Gener-
alized Nash Fairness solutions for Bi-Objective Minimization Problems. In: Networks Journal,
2023. DOI: https://doi.org/10.1002/net.22182

6. Minh Hieu Nguyen, Mourad Baiou, Viet Hung Nguyen, Thi Quynh Trang Vo. Propor-
tional Fairness for Combinatorial Optimization. In: Latin American Theoretical Informatics
Symposium (LATIN 2024), Mar 2024, Puerto Varas, Chile.

7. Minh Hieu Nguyen, Mourad Baiou, Viet Hung Nguyen and Thi Quynh Trang Vo. Nash
fairness solutions for balanced TSP. In: Proceedings of the 10th International Network Opti-
mization Conference (INOC), 2022. DOI: http://dx.doi.org/10.48786/inoc.2022.17

vii

https://doi.org/10.1007/s10878-023-01097-4
https://doi.org/10.1007/978-3-031-44505-7_36
https://doi.org/10.1109/RNDM55901.2022.9927720
https://doi.org/10.1002/net.22182
http://dx.doi.org/10.48786/inoc.2022.17

Contents

General introduction 1

1 General introduction 1
1.1 Research questions and scope . 2

1.1.1 Fair combinatorial optimization . 2
1.1.2 Machine Learning for Combinatorial Optimization 4

2 Background 6
2.1 Combinatorial optimization . 7

2.1.1 Branch-and-Bound . 7
2.1.2 The cutting plane method . 9
2.1.3 Branch-and-Cut . 11

2.2 Machine Learning . 11
2.2.1 Supervised learning . 13
2.2.2 Neural networks . 14
2.2.3 Reinforcement Learning . 19

I Algorithms for fair combinatorial optimization 24

3 Special-purpose branch-and-cut for balanced combinatorial optimization 25
3.1 Literature review . 27
3.2 MILP formulation for balanced combinatorial optimization 28

3.2.1 Need for a dedicated branch-and-cut algorithm for balanced combinato-
rial optimization . 30

3.3 Local bounding cuts . 31
3.4 Illustration: Branch-and-cut algorithm for the BTSP 31

3.4.1 Lower bounding algorithm . 33
3.4.2 Local search algorithm . 37
3.4.3 Edge elimination . 40
3.4.4 Variable fixing . 40
3.4.5 Separation algorithms and strategies . 41

3.5 Computational results . 42

viii

Contents ix

3.5.1 The effectiveness of the proposed branch-and-cut algorithm 43
3.5.2 Impact of local cuts, lower bounding, and k−balanced components 44
3.5.3 Comparison to the double-threshold-based algorithms 46

3.6 Conclusion . 47

4 Algorithmic aspects of fair combinatorial optimization by Ordered Weighted Average 48
4.1 OWA combinatorial optimization . 50
4.2 MILP formulations . 53

4.2.1 Formulation O-MILP [1] . 53
4.2.2 Formulation C-MILP [2] . 54

4.3 Theoretical Analysis . 56
4.3.1 Relation between the formulations . 56
4.3.2 Quality estimation for the optimal solution of (Min−P) 58

4.4 A Primal-Dual Heuristic . 60
4.5 Numerical results . 61
4.6 Conclusion . 62

II Machine Learning for Combinatorial Optimization 63

5 Machine learning to accelerate branch-and-cut for combinatorial optimization 64
5.1 Cut generation problem . 66
5.2 Literature review . 70
5.3 General framework for cut generation . 72

5.3.1 Markov Decision Process formulation . 72
5.3.2 Why don’t we learn a cut generation policy by imitation learning? 73
5.3.3 Hybrid framework for cut generation . 75

5.4 Cut detector . 76
5.4.1 Constructing training data . 77
5.4.2 Cut detector architecture . 77

5.5 Cut evaluator . 78
5.5.1 The gap-based reward function . 79
5.5.2 The time-based reward function . 81
5.5.3 Policy parametrization and training . 83

5.6 Experiments . 84
5.6.1 Setup . 84
5.6.2 The contribution of the cut detector . 86
5.6.3 The effectiveness of the proposed framework 88

5.7 Conclusion . 89

Conclusion 91

Résumé en français 94

List of Figures 100

x Contents

List of Tables 101

List of Acronyms 102

Bibliography 109

Chapter1
General introduction

Combinatorial optimization is a subfield of mathematical optimization that involves finding an
optimal solution from a finite set of possibilities. It is one of the most active research areas in
recent years since thousands of real-life decision problems that significantly impact our daily
lives can be formulated as combinatorial optimization problems. Examples include optimizing
resource plans in healthcare [3], minimizing the global transportation costs of a delivery sched-
ule [4], minimizing the emissions of greenhouse gases of logistics operations [5], and maxi-
mizing the total profit of project portfolio selection in business [6]. These problems are often
characterized by their complexity and difficulty, with many classified as NP-hard, remaining
challenges to achieve optimal or even near-optimal solutions.

While the possible solutions of combinatorial optimization are finite, their number increases
exponentially with the instance size, rendering exhaustive search intractable. To overcome this
challenge, researchers have developed efficient search algorithms tailored to specific combina-
torial optimization problems. However, these algorithms typically demand an in-depth under-
standing of the problem’s characteristics and a substantial investment in time and resources.
An alternative approach is establishing generic methods to solve various combinatorial opti-
mization problems.

One such generic method is mixed-integer linear programming (MILP), a powerful tech-
nique for modeling problems. Most combinatorial optimization problems can be formulated
naturally as MILP formulations where decisions are represented by variables that can take
either continuous or discrete values. The relationships between these variables are defined
through linear constraints, and the goal is to optimize a linear objective function subject to
these constraints.

Once a combinatorial optimization problem is formulated as an MILP problem, it can be
solved using MILP solvers. The backbone of the state-of-the-art modern MILP solvers is branch-
and-cut, which merges two well-known methods: branch-and-bound and cutting plane. While
branch-and-bound recursively partitions the search space into smaller subspaces and bounds
the objective function in each subspace, the cutting plane method iteratively adds valid in-
equalities to refine the search space. Combining these two methods allows branch-and-cut to
prune the solution space effectively and quickly converge to the optimal solution.

While powerful, the empirical performance of branch-and-cut is irregular and sensitive,

1

2 General introduction

enormously depending on problem attributes and implementation details. For example, a
minor change in the objective function or the way of representing constraints can lead to a
dramatic fluctuation in performance. Factors of the implementation, like the internal selection
strategies, the use of heuristics, or the choices of linear programming (LP) algorithms, can also
impact the branch-and-cut effectiveness.

Motivated by these issues, this thesis aims to bridge the gap in knowledge surrounding the
computational aspects of branch-and-cut when solving combinatorial optimization problems.

1.1 Research questions and scope

In this thesis, we focus on studying branch-and-cut in the context of two critical dimensions of
combinatorial optimization: the fairness of solutions and the integration of machine learning.

1.1.1 Fair combinatorial optimization

Fairness (equity) is a fundamental concept that has intrigued humans for centuries. It is some-
thing that we all desire and strive for, as it forms the foundation of our social interactions and
relationships. The idea of fairness is not limited to any specific context or situation; rather, it
is a universal concept that appears in all areas of life. For example, during times of crisis, it is
essential to ensure the equitable distribution of sparse resources, such as food and medicine,
so that every individual has access to the necessities of life. In another context, such as in a
classroom setting, all students should be treated uniformly and without discrimination based
on factors such as their wealth, abilities, or appearance.

Due to its nature, the issue of fairness has also received considerable attention from re-
searchers in combinatorial optimization. This issue arises naturally in combinatorial optimiza-
tion problems. For example, in the assignment problem that assigns tasks to workers, a solution
in which some workers receive significantly larger workloads than others could be perceived
as unfair treatment.

Various approaches have been proposed in the literature to address the issue of fairness in
combinatorial optimization with different ways to model fairness or equity. In this thesis, we
focus on two popular approaches: Balanced combinatorial optimization [7] and Ordered Weighted
Average (OWA) combinatorial optimization [8].

1.1.1.1 Balanced combinatorial optimization

Balanced combinatorial optimization, proposed by Martello et al. [7], finds a fair solution by min-
imizing the difference in values between the most expensive and least expensive components;
we call this difference the max-min distance, for abbreviation. This approach was first defined in
the context of the assignment problem [7] and then extended and generalized for other special
cases of combinatorial optimization due to its intuitive nature [7, 9–19].

There are two main approaches for solving balanced combinatorial optimization. The first
is directly constructing a solution with the smallest max-min distance by exploiting problem-
specific structures. This approach focused primarily on polynomial-solvable problems. The
second is based on the double-threshold algorithm, a general iterative framework finding

Research questions and scope 3

thresholds of the largest and smallest components. These thresholds can be found by repeat-
edly verifying the existence of a feasible solution in a given set through the so-called feasibility
subroutine. Consequently, this algorithm’s complexity depends on the feasibility subroutine,
which is sometimes NP-hard. Variants aim to reduce the complexity of feasibility verification
problems and the number of iterations needed.

To the best of our knowledge, no generic algorithm based on MILP has been proposed
for balanced combinatorial optimization despite MILP successfully tackling a wide range of
problems. The reason is that the primary challenge when solving balanced combinatorial opti-
mization is not in formulating problems but in bounding the largest and smallest components.
When these components are not tightly bound, it becomes much more difficult to prune nodes
in the enumeration tree during the branch-and-cut process. As a result, solving balanced com-
binatorial optimization problems by branch-and-cut can be incredibly time-consuming and in-
efficient.

Research question 1: How do we design branch-and-cut to solve balanced combinatorial optimization
efficiently?

To answer this question, in Chapter 3, we propose a special-purpose branch-and-cut algo-
rithm for balanced combinatorial optimization. The central of our algorithm is a new class of
local cutting planes, called local bounding cuts. These cutting planes require no problem-specific
structure and instead leverage branch-and-cut tree information to better bound the smallest
component cost. We apply the proposed branch-and-cut to solve the balanced traveling sales-
man problem (BTSP), an NP-hard case which was only solved heuristically [13] in the litera-
ture. To further accelerate performance, we develop algorithms to initialize lower and upper
bounds on the optimal value of the BTSP and additional mechanisms to tighten the largest
and smallest edge costs. Computational results on the same TSPLIB testbed as in [13] show
that our proposed approach can solve 63 out of 65 instances to proven optimality, while the
double-threshold based heuristics [13] only certify the optimality of 27 solutions.

1.1.1.2 OWA combinatorial optimization

Notice that balanced combinatorial optimization focuses only on the max-min distance, which
may lead to inefficient solutions regarding the total outcome. A more sophisticated approach is
OWA combinatorial optimization [8], whose objective function integrates the OWA operator [20].
The intuition behind OWA combinatorial optimization derives from an observation that when
dealing with solution fairness, we care about the set of component values without considering
which component takes a specific value. Thus, this approach considers each component as
an individual objective and aggregates objectives by the OWA operator. OWA combinatorial
optimization solutions are efficient in the sense of Pareto-optimal, accounting for inequality
minimization according to the Pigou-Dalton approach. This OWA-based method is well-suited
for real-life situations requiring appropriate trade-offs between fairness and efficiency.

Due to the ordering operator in the objective function, OWA combinatorial optimization
problems are non-linear, even if their original constraints are linear. Fortunately, there exist
two linearization methods for the OWA with decreasing weights. The first was proposed by
Orgyczak et al. [1], which reformulates the OWA as a combination of Lorenz components and

4 General introduction

represents each Lorenz component as a dual of a linear program. The second was introduced by
Chassein et al. [2], which uses the permutahedron as the OWA value is the maximum among
all permutations of the inner product between the OWA weights and solution components.
When comparing in terms of size, Chassein’s method uses fewer variables than Orgyczak’s.
Moreover, when applied to several continuous optimization problems, Chassein’s formulation
can be solved more quickly [2]. However, in OWA combinatorial optimization, integrating
linearization methods into the problem formulation can cause additional difficulties. Therefore,
questions remain about the comparison and relationship between the two methods in OWA
combinatorial optimization.

Research question 2: Is there any relation between the two linearization methods for OWA combi-
natorial optimization? Is the formulation with fewer variables always solved faster by branch-and-cut?

To address these questions, in Chapter 4, we conduct a comprehensive comparative study
between the two linearization methods for OWA in the context of combinatorial optimization
in both theoretical and empirical aspects. We prove that, despite employing different numbers
of variables, the two formulations are equivalent in terms of linear relaxations. Interestingly,
Orgyczak’s formulation, which uses more variables, can be solved faster than Chassein’s when
applied to the OWA traveling salesman problem.

1.1.2 Machine Learning for Combinatorial Optimization

Branch-and-cut is notoriously highly configurable. Its performance heavily depends on the
configuration of the inner decision strategies, such as variable selection, node selection, cut se-
lection, or cut generation. A deft configuration can help branch-and-cut solve computationally
challenging problems. However, identifying an effective configuration is a difficult challenge.

In practical situations, we usually repeatedly solve a combinatorial optimization problem
with many different but related instances. This process generates a vast of historical data that
can contain meaningful patterns. A natural idea is to leverage these patterns to solve new
instances faster. However, manually extracting these patterns requires significant expert effort.
Therefore, an automated tool is needed to systematically discover and leverage patterns for
constructing deft decision policies.

Recently, machine learning has emerged as a promising tool for automatically learning ef-
ficient branch-and-cut strategies from past solving experience. Machine learning algorithms
can identify patterns in data and improve performance across various domains. Compared
to manual-tuning heuristics, machine learning has two key advantages. Firstly, this approach
is more systematic, potentially resulting in more effective heuristics. Secondly, machine learn-
ing enables rapidly developing specialized strategies even for new, unfamiliar problem classes,
with less reliance on human domain knowledge.

Taking these advantages, researchers have applied machine learning to learn policies for
branch-and-cut decision problems, including variable selection [21, 22], node selection [23],
and cut selection [24], and obtained promising results. However, there is still an important
issue that has not been fully addressed - cut generation, a key design challenge when combining
branch-and-bound and cutting plane methods. Cut generation refers to the problem of de-

Research questions and scope 5

ciding whether to generate cuts or to branch at nodes of the branch-and-bound tree to reduce
overall runtime. This problem dramatically impacts branch-and-cut performance. Indeed, gen-
erating cuts can significantly reduce the tree size but can also damage the overall runtime due
to solving separation problems and LP relaxations.

Furthermore, previous machine learning works on cut-related decision problems have fo-
cused primarily on general-purpose cuts, which are based on the integrality conditions of vari-
ables. Combinatorial cuts, a crucial class of cuts encoding problem-specific structures, have yet
to receive much attention. The lack of studies on generating combinatorial cuts is a notable re-
search gap, as combinatorial cuts are indispensable when solving combinatorial optimization,
especially NP-hard problems.

Research question 3: How can we use machine learning for learning a generation policy for combina-
torial cuts?

To address this question, in Chapter 5, we propose a general machine-learning-based frame-
work to learn generation strategies for combinatorial cuts. Our framework is versatile and
applicable to various combinatorial optimization problems with different types of cuts. More-
over, the trained policies are adaptable to arbitrary-sized instances, even though they are ini-
tially trained with fixed-size examples. Experiments on two well-known classes of combina-
torial cuts, i.e., subtour elimination constraints for the traveling salesman problem and cycle
inequalities for the max-cut problem, show that our approach can significantly accelerate the
branch-and-cut performance.

Chapter2
Background

Summary

2.1 Combinatorial optimization 7

2.1.1 Branch-and-Bound . 7

2.1.2 The cutting plane method 9

2.1.3 Branch-and-Cut . 11

2.2 Machine Learning . 11

2.2.1 Supervised learning 13

2.2.2 Neural networks . 14

2.2.3 Reinforcement Learning 19

6

Combinatorial optimization 7

2.1 Combinatorial optimization

Combinatorial optimization involves maximizing or minimizing an objective function over
variables subject to constraints and integrality restrictions. In this thesis, we focus on a crit-
ical class of combinatorial optimization where the objective and constraints are linear, and all
variables are binary (restricted to 0 or 1). More precisely, we consider combinatorial optimiza-
tion problems of the form:

(IP) min cTx (2.1a)

s.t. Ax ≤ b (2.1b)

x ∈ {0, 1}n (2.1c)

where c ∈ Rn is the objective coefficient vector, A ∈ Rm×n is the constraint coefficient matrix,
and b ∈ Rm is the constraint vector. The data (c, A, b) specify an instance of the problem.
Despite its restrictions, this simple 0-1 integer programming (IP) formulation can model a wide
variety of real-world optimization problems and be easily extended to more general MILP
formulations.

Combinatorial optimization problems have search spaces that grow exponentially as the
number of variables increases. This exponential growth results in most combinatorial opti-
mization problems being NP-hard. Moreover, the data explosion in many domains, such as
business, finance, logistics, transportation, and telecommunications, leads to larger and more
complicated combinatorial optimization problems. Consequently, there is increasing demand
for approaches to solving these challenging large-scale problems.

Existing methods for addressing NP-hard combinatorial optimization problems fall into
two primary categories with different priorities. Exact methods seek a provably optimal solu-
tion by efficiently exploring the entire solution space. They enumerate candidate solutions and
systematically discard candidates by theoretical bounds. In contrast, heuristic methods prior-
itize feasibility over guaranteeing optimality. They explore only a part of the search space to
find a reasonable solution, saving computational effort compared to exact methods. However,
heuristics sacrifice the ability to prove the solution’s optimality.

In this thesis, we focus on exact approaches based on MILP for solving combinatorial op-
timization problems. In the following, we briefly outline three well-known frameworks for
exact solutions: branch-and-bound (Section 2.1.1), cutting plane (Section 2.1.2), and branch-and-cut
(Section 2.1.3).

2.1.1 Branch-and-Bound

Branch-and-bound is a principal algorithm for solving MILPs. As its name suggests, branch-and-
bound works by two key procedures: branching the feasible region into subsets and bounding
the objective value of the generated subproblems to prune the enumeration.

Given a combinatorial optimization problem formulated as (IP), our goal is to find an opti-
mal solution x∗ in the set S = {x ∈ {0, 1}n : Ax ≤ b}, called the feasible region. A natural linear
relaxation of S is the set P0 = {x ∈ [0, 1]n : Ax ≤ b} obtained by relaxing the integrality restric-
tion on the vector x. The linear program min{cTx : x ∈ P0} is called the natural LP relaxation of

8 Background

(IP). This linear program can be solved efficiently by many algorithms, such as simplex [25] or
interior point [26].

If an optimal solution x0 to the natural LP relaxation is integral, it is also an optimal solution
to (IP). In the case where x0 has at least an element with fractional value, branch-and-bound
uses a variable selection strategy to choose an index j ∈ {1, . . . , n} such that x0

j is fractional
and divided S into two subsets by adding bounds on the variable xj (i.e., xj = 0 or xj = 1).
We denote these subsets in the form S(F0, F1) where ⟨F0, F1⟩ is an ordered pair of disjoint sets
of indices whose corresponding variables have been fixed to 0 and 1, respectively. Formally,
S(F0, F1) = S ∩ {x ∈ Rn : xi = 0 ∀i ∈ F0, xi = 1 ∀i ∈ F1}.

Then, S is partitioned into a list of subsets S = {S({j}, ∅), S(∅, {j})}. For each subset
S(F0, F1) ∈ S , let IP(F0, F1): min{cTx : x ∈ S(F0, F1)} be the integer program on S(F0, F1).
Obviously, an optimal solution of (IP) is the best among the optimal solutions of IP(F0, F1);
thus, to solve (IP), we solve instead the new subproblems corresponding to the subsets in S .
Additionally, the minimum among the optimal values of the natural LP relaxations of IP(F0, F1)

is a lower bound on the optimal value of IP(F0, F1).

Given the integer program IP(F0, F1) defined on subset S(F0, F1) ∈ S , we consider its natural
LP relaxation:

LP(F0, F1) : min{cTx : x ∈ P(F0, F1)}

where P(F0, F1) is the natural linear relaxation of S(F0, F1). The problem IP(F0, F1) will be
pruned if one of the following three cases occurs:

i) Pruned by infeasibility. LP(F0, F1) is infeasible. Then, IP(F0, F1) is also infeasible since
S(F0, F1) ⊆ P(F0, F1).

ii) Pruned by integrality. An optimal solution xLP to LP(F0, F1) is integral. Therefore, xLP is an
optimal solution of IP(F0, F1) and cTxLP is an upper bound on the optimal value of (IP)
since S(F0, F1) is a subset of S.

iii) Pruned by bound. The optimal value of LP(F0, F1) is larger than or equal to the best-known
upper bound. Then, S(F0, F1) can not contain a better solution than the incumbent one.

If the problem IP(F0, F1) is not pruned, branch-and-bound repeats partitioning this problem
into two new subproblems by restricting the range of variables.

To systematically solve and bound subproblems, branch-and-bound constructs an enumer-
ation tree where each node corresponds to an LP relaxation of (IP). The root node is associated
with the natural LP relaxation of (IP). Two children of a node correspond to two subproblems
of the parent’s LP relaxation, obtained by adding new constraints on variable ranges. LetN be
the list of active nodes (i.e., that have yet to be pruned or branched on). Algorithm 1 gives a
formal description of branch-and-bound.

Combinatorial optimization 9

Algorithm 1 Branch-and-bound algorithm

Input: (c, A, b)
Output: An optimal solution x∗ (if any).

1. Initialization.

Set N ← {⟨F0 = ∅, F1 = ∅⟩}, x∗ ← Nil and UB← +∞.

2. Node selection.

if N is empty then

Return x∗ and terminate

else

Select and remove a node ⟨F0, F1⟩ from N

end if

3. Prune.

Solve LP(F0, F1).

if LP(F0, F1) is infeasible then go to step 2 ▷ Pruned by infeasibility

else

Let xLP be an optimal solution to LP(F0, F1).

if cTxLP ≥ UB then go to step 2 ▷ Pruned by bound

else

if xLP is integral then set UB← cTxLP and go to step 2. ▷ Pruned by integrality

end if

end if

end if

4. Branching. Pick an index j ∈ [n] such that 0 < xLP
j < 1. Add ⟨F0 ∪ {j}, F1⟩ and

⟨F0, F1 ∪ {j}⟩ to N . Go to step 2.

As shown in Algorithm 1, branch-and-bound presents certain open choices that require
careful consideration and planning, for example, the node selection criterion in Step 2 and the
branching strategy in Step 4. Over the past decades, many approaches to improve selection
efficiency have been proposed, but most are hand-crafted heuristics tuned by experts.

2.1.2 The cutting plane method

Another basic algorithm to solve MILP problems is the cutting plane method, which iteratively
finds and adds valid inequalities to strengthen the LP relaxation until an optimal integer solu-
tion is obtained. The cutting plane method was introduced by Ralph E. Gomory [27] with the
use of cutting planes called Gomory cuts.

10 Background

In particular, consider the IP formulation

(IP): min{cTx : x ∈ S}

where S = {x ∈ {0, 1}n : Ax ≤ b} as the previous section. We first solve the natural LP
relaxation of (IP) to obtain an optimal solution x0. As stated earlier, if x0 is integral, then it is
an optimal solution to (IP). In the case where x0 does not belong to S, the cutting plane method
finds an inequality αTx ≤ β, α ∈ Rn, β ∈ R that is satisfied by all points x in S but violated by
x0, namely that αTx0 > β. Such an inequality is called a cutting plane (cut) separating x0 from S.
The problem of finding cuts is called the separation problem.

Let P0 be the natural linear relaxation of S. Given a cut αTx ≤ β, denote

P1 = P0 ∩ {x ∈ Rn : αTx ≤ β}.

Obviously, S ⊆ P1 ⊂ P0. Therefore, the LP relaxation of (IP) on P1 is stronger than the LP
relaxation of (IP) on P0, as it can obtain an equal or better lower bound on the optimal value of
(IP). We repeatedly solve LP relaxations and add cuts until an integer solution is obtained.

Formally, let C be the set of cuts αTx ≤ β and LP(C) be the following LP problem:

LP(C) : min cTx (2.2a)

s.t. Ax ≤ b (2.2b)

αTx ≤ β ∀(α, β) ∈ C (2.2c)

x ∈ [0, 1]n (2.2d)

Then, the cutting plane method can be illustrated as in Algorithm 2.

Algorithm 2 The cutting plane method

Input: (c, A, b)
Output: An optimal solution x∗ (if any).

1: Set C ← ∅.
2: while True do
3: Solve LP(C) to obtain a solution xLP.
4: if xLP is integer then
5: return xLP

6: else
7: Solve the separation problem to find a cut αTx ≤ β separating xLP from S.
8: C ← C ∪ {(α, β)}.
9: end if

10: end while

Central to the cutting plane method is the separation problem. If xLP is not in S, there are
many cuts separating xLP from S. How do we generate efficient cuts? In general, cuts fall into
two categories: general-purpose cuts, based on variable integrality, and combinatorial cuts, based
on problem structure. Each cut type raises distinct design challenges.

In particular, separation procedures for general-purpose cuts are easy to solve and can gen-
erate many cuts. However, adding all these cuts to the LP relaxation can significantly increase

Machine Learning 11

its size, making it more challenging to solve. This raises the cut selection problem, which chooses
high-quality cuts from a candidate set to add to the LP relaxation.

In contrast, separation procedures for combinatorial cuts are more complicated and expen-
sive, but resulting cuts (if any) can significantly tighten the LP relaxation and improve bounds.
Thus, we must decide whether to execute these complex separation procedures.

In practice, the cutting plane method is rarely used alone to solve MILP problems because
it typically requires an exponential number of cuts to converge to an optimal solution. The cut-
ting plane method also suffers from numerical instability. For these reasons, branch-and-bound
was the dominant practical approach for solving MILP problems until Balas et al. (1996) [28]
demonstrated that cutting planes could be effectively incorporated within a branch-and-bound
framework. This combination enabled cutting planes to contribute substantially to solving
MILP problems in practice. This combined approach is known as branch-and-cut, which has
since replaced branch-and-bound as the leading technique for MILP solvers.

2.1.3 Branch-and-Cut

Branch-and-cut is a combination of two methods: branch-and-bound and cutting plane. Its
intuition is to execute separation procedures to find and add several cuts at nodes of the enu-
meration tree. Adding cuts can tighten bounds for accelerating pruning the enumeration tree.
By leveraging the strengths of the two methods, branch-and-cut is the backbone of the state-of-
the-art MILP solvers.

Let LP(C, F0, F1) be the following LP problem:

min cTx

s.t Ax ≤ b

αTx ≤ β ∀(α, β) ∈ C
xi = 0 ∀i ∈ F0

xi = 1 ∀i ∈ F1

x ∈ [0, 1]n.

Algorithm 3 presents a basic branch-and-cut framework.
An additional decision problem of branch-and-cut arises in Step 4 - whether to generate

cuts at the current node or proceed directly to branching. This problem is called the cut gen-
eration problem. In the literature, this decision is often made empirically based on the success
and characteristics of previously generated cuts. The size and complexity of the separation
problems also influence cut generation decisions. Developing more rigorous and automated
cut generation policies remains an open research area.

2.2 Machine Learning

Machine learning is a branch of artificial intelligence that enables computers to learn auto-
matically from data without being explicitly programmed. Using statistical methods, machine
learning algorithms build models that progressively improve as they are exposed to more data.

12 Background

Algorithm 3 Branch-and-cut algorithm

Input: (c, A, b)
Output: An optimal solution x∗ (if any).

1. Initialization.

Set N ← {⟨F0 = ∅, F1 = ∅⟩}, x∗ ← Nil and UB← +∞.

2. Node selection.

if N is empty then

Return x∗ and terminate

else

Select and remove a node ⟨F0, F1⟩ from N

end if

3. Prune.

Solve LP(F0, F1).

if LP(F0, F1) is infeasible then go to step 2 ▷ Pruned by infeasibility

else

Let xLP be an optimal solution to LP(F0, F1).

if cTxLP ≥ UB then go to step 2 ▷ Pruned by bound

else

if xLP is integral then set UB← cTxLP and go to step 2. ▷ Pruned by integrality

end if

end if

end if

4. Branching versus cut generation

Decide whether to generate cuts or to branch.

if generate cuts then

Solve the separation problem and add resulting cuts to C. Go to step 3.

5. Branching.

Pick an index j ∈ [n] such that 0 < xLP
j < 1. Add ⟨F0 ∪ {j}, F1⟩ and ⟨F0, F1 ∪ {j}⟩ to N .

Go to step 2.

Machine Learning 13

In particular, a machine learning model is trained on a large dataset, called a training set, to
discover patterns and relationships within the data. The model can then be used to make pre-
dictions on new, unseen data. For example, one could train a model on thousands of images of
handwritten digits to recognize digits in new images. The ability to adapt and improve based
on new data makes machine learning a fast-growing field, especially as computational power
and availability of big data continue to expand.

In this section, we present some fundamental notions of two primary machine learning
paradigms: supervised learning (Section 2.2.1) and reinforcement learning (Section 2.2.3). In Sec-
tion 2.2.2, we introduce neural networks, a branch of machine learning models achieving state-
of-the-art results in many machine learning tasks.

2.2.1 Supervised learning

Supervised learning is a machine learning paradigm that trains algorithms by using labeled
datasets, where each input sample is labeled by a target vector. The term “supervised" refers
to the fact that the algorithm learns under the guidance of an expert who knows the correct
answers through the labeled data. Supervised learning problems can be categorized as either
classification or regression problems, depending on the desired output. A task is called a classi-
fication problem if the outcome is limited to a finite set of discrete categories. Conversely, it is
considered a regression problem if the desired output contains at least one continuous variable.

Formally, given a training set D = {(xi, yi)}N
i=1 where xi is an input sample and yi is its

label, we denote respectively by X and Y the input and label spaces. Supervised learning aims
to learn a function

fw : X → Y,

where w is the weights of f , that fits appropriately the training set D. The function fw is an
element of a function space F , called the hypothesis space.

To solve a supervised learning problem, we first need to determine how to represent the
inputs, as in most practical situations, the input samples have complex structures like text, im-
ages, sounds, time series, or graphs. Typically, the raw inputs are transformed into descriptive
feature vectors through a process called feature extraction. Feature extraction is a critical task that
requires domain expertise to identify informative features about the inputs. The feature vec-
tor should contain enough information for the algorithm to make accurate predictions while
maintaining a reasonable dimensionality to avoid the computational burden and the curse of
dimensionality. In other words, the features must be descriptive of the underlying patterns in
the data but not overly detailed or numerous.

The next step is determining the fw’s form. This selection relies on various factors, such as
the properties of the training set, available computing resources, and assumptions about the
underlying function. For example, if we have a small dataset but strong assumptions about the
target function, parametric models with a fixed number of parameters may be a good choice.
On the other hand, non-parametric models, whose number of parameters grows with the train-
ing set size, can better handle massive, high-dimensional datasets. However, non-parametric
models usually demand substantial computing resources for training.

14 Background

x1

x2

xd

d∑
i=1

wijxj + bi

Activation function

zi

Input Weights

Output

ϕ(.)

wi1

wi2

wid

Linear combination

Figure 2.1. The schematic representation of a neuron

Once the input representation and function’s form are determined, the weights will be ad-
justed to make the function fw appropriately fit the training set. Towards this end, we need
to define an error function Ew(D) that measures the discrepancy between the samples in the
dataset D and the estimations of fw. A common choice for the error function is the mean
squared error between the predictions and target values, i.e.,

Ew(D) =
1
N

N

∑
i=1
∥ fw(xi)− yi∥2

2 (2.4)

Notice that the final goal when training a model is to predict new data correctly, not just the
data it was trained on. Thus, to evaluate a trained model, we must check both its training error
and the gap between training and testing errors. If the training error is too high, the model is
underfitted. Conversely, if the gap between training and testing error is too large, the model is
overfitted.

2.2.2 Neural networks

In this section, we present a common choice for the estimated function form: neural networks.
In recent years, neural networks have achieved state-of-the-art results in various domains like
computer vision, natural language processing, speech recognition, and recommendation sys-
tems. Their strength lies in their ability to adapt to diverse tasks or data structures, handle
large and high-dimensional data sets, and represent highly complex functions. Notably, they
can automatically learn valuable features from raw data without manual feature engineering,
which traditional models typically require.

2.2.2.1 Multilayer perceptron

A neural network is a sophisticated artificial system that aims to replicate the intricate functions
of the human brain. The fundamental elements of the neural network are processing elements,
which can also be called units, nodes, or neurons. Each neuron receives input from external
sources or surrounding units and computes an output signal to transmit to other neurons.
Figure 2.1 illustrates a neuron. Formally, a neuron is a function fi that takes a d−dimensional
vector x = (x1, . . . , xd) as input, computes a linear combination of x’s elements using a weight
vector wi = (wi1, . . . , wid), adds a bias bi, and applies a non-linear function ϕ(.) to yield a final

Machine Learning 15

Input layer

Hidden layer 1

Hidden layer 2

Output layer

Figure 2.2. A multilayer perceptron with two hidden layers

output zi. A neuron can be formulated in the following form:

zi = fi(x) = ϕ

(
d

∑
j=1

wijxj + bi

)
.

The function ϕ(.) is called an activation function. This function plays a crucial role in neural
networks by introducing non-linearity. The nonlinear aspect enables neural networks to esti-
mate complex functions that would be impossible with a simple linear model. Among the most
common activation functions are:

• The sigmoid function:

σ(x) =
1

1 + exp(−x)
.

• The tanh function:

tanh(x) =
1− exp(−2x)
1 + exp(−2x)

.

• The Rectified Linear Unit (ReLU):

ReLU(x) = max(0, x).

A neural network contains a set of neurons organized topologically. One of the most pop-
ular types of neural networks is the multilayer perceptron (MLP), which organizes neurons in
a feed-forward architecture. In this architecture, neurons are grouped into input, hidden, and
output layers. Information flows from one layer to the next and can not be transmitted in the
reverse direction. The size of a layer is determined by the number of neurons it contains. Figure
2.2 represents an MLP with two hidden layers.

16 Background

2.2.2.2 Training neural networks

After constructing a neural network and defining an error function, the next step is to employ
a training algorithm to find the network’s parameters that minimize the error function. Most
training algorithms iteratively adjust the weights by a two-stage procedure: the first stage com-
putes the error function’s derivatives with respect to the weights, and the second stage uses
these derivatives to update the weights.

The most used and efficient algorithm to compute the derivatives in neural networks is the
back-propagation algorithm [29], which propagates errors backward through the network. The
algorithm’s intuition is that the derivatives of the error function in one layer are reused to
calculate the derivatives of the error function in the previous layer.

To illustrate, we present the back-propagation computations in a fully-connected MLP
model. We consider an MLP with l hidden layers and a nonlinear activation function ϕ iden-
tifying for every unit. For simplicity, we only use a single input sample x = {x1, . . . , xd} and
assume that the target output y is a scalar, so the output layer contains only one unit. Let sk be
the number of units in hidden layer k ∈ {1, . . . , l} and s0 = d.

In layer k, each unit i first calculates a weighted sum of its inputs, i.e.

ak
i =

sk−1

∑
j=1

wk
jiz

k−1
j + bk

i (2.5)

where wk
ji is the weight of node j in layer k − 1 for incoming node i in the layer k, zk−1

j is the
output of node j in layer k− 1 (note that z0

j = xj ∀j ∈ {1, . . . , d}), and bk
i is the bias of node i in

layer k. To further simplify the mathematics, we include bk
i in the sum by using an additional

unit 0 with a fixed output zk−1
0 = 1. Therefore, (2.5) can be rewritten as

ak
i =

sk−1

∑
j=0

wk
jiz

k−1
j (2.6)

Then, the activation ϕ is applied to produce the output zk
i of unit i, i.e.,

zk
i = ϕ(ak

i) (2.7)

This process is repeatedly performed from the input layer to the output layer. It is called
forward propagation since the information is propagated forward through the network. The
network returns zl

1 (the output of the unique unit of the output layer) as the predicted output
ŷ. The error function is then computed by:

E(w) = L(ŷ, y) (2.8)

where L is a loss function that calculate the difference between ŷ and y.
Now, we need to compute the derivative of the error function E with respect to a weight

wk
ji. Using the chain rule for partial derivative, we have:

∂E
∂wk

ji
=

∂E
∂ak

i
·

∂ak
i

∂wk
ji
=

∂E
∂ak

i
· ∂

∂wk
ji

(
sk−1

∑
j=0

wk
jiz

k−1
j

)
=

∂E
∂ak

i
· zk−1

j . (2.9)

Machine Learning 17

If we denote
δk

i ≡
∂E
∂ak

i
(2.10)

then (2.9) becomes
∂E

∂wk
ji
= δk

i · zk−1
j . (2.11)

The δk
i ’s value is usually called error. From (2.11), to compute the derivatives in the network,

we only need to calculate errors δ for all units in the hidden and output layers by the following
formulations.

• For the output layer:

δl
1 ≡

∂E
∂al

1
=

∂E
∂zl

1
· ∂zl

1

∂al
1
= L′(zl

1) · ϕ′(al
1) (2.12)

• For the hidden layers:

δk
i ≡

∂E
∂ak

i
=

sk+1

∑
j=1

∂E
∂ak+1

j

·
∂ak+1

j

∂ak
i

=
sk+1

∑
j=1

δk+1
j · wk+1

ij · ϕ
′(ak

i) = ϕ′(ak
i)

sk+1

∑
j=1

δk+1
j · wk+1

ij (2.13)

Once the derivatives of the error function with respect to the weights are computed, the
next stage is to modify the weights in order to minimize the error function. Most algorithms
to tackle this task are based on the Stochastic Gradient Descent (SGD) [30], which updates the
weights by:

w← w− γ · 1
m
·

m

∑
i=1
∇wL(fw(xi), yi) (2.14)

where γ is the learning rate, {(xi, yi)}m
i=1 is a minibatch sampled from the training set. Intu-

itively, at each iteration, SGD randomly selects m samples from the training set, computes the
gradient, and uses it to update the weights. Algorithm 4 gives a description of SGD.

Algorithm 4 Stochastic Gradient Descent (SGD)

Input: A training set D = {(xi, yi)}N
i=1, initial weights w, a learning rate γ

Input: A batch size m, the number of epochs Ne

1: for k ∈ {1, . . . , Ne} do
2: for l ∈ {1, . . . , ⌊N/m⌋} do
3: Sample a minibatch {(xi, yi)}m

i=1 from D.

4: Compute the gradient: g← 1
m
·∑m

i=1∇wL(fw(xi), yi).
5: Update w: w← w− γg.
6: end for
7: end for

2.2.2.3 Universal approximation theorem

Neural networks are known for their capacity to approximate a broad range of complex func-
tions. This capacity is guaranteed by the universal approximation theorem proposed by Hornik
in 1991 [31]. The theorem proved that a neural network with at least one hidden layer and a

18 Background

bounded, continuous, and non-decreasing activation function can approximate any continuous
function defined on a compact set of Rd. More precisely, the universal approximation theorem
can be stated as follows:

Theorem 2.2.1. Let ϕ : R → R be a bounded, continuous, and non-decreasing function and C(X) be
the set of continuous functions on a compact set X ⊂ Rd, f ∈ C(Kd). Then for any ϵ > 0, there exist
d = (di)i=1,...,N ∈ RN , b = (bi)i∈1,...,N ∈ RN , and w ∈ Rd such that the function F(x) defined by

F(x) =
N

∑
i=1

diϕ

(
d

∑
j=1

wjxj + bi

)

satisfies
∀x ∈ Rd, |F(x)− f (x)| < ϵ.

While the algorithm states that we can approximate any function by a sufficiently large MLP
with a single layer, there is no guarantee that the training algorithm can find such a model
in practice because of many challenges. For example, the hidden layer may be substantial
since the theorem does not provide any upper bound on the number of neurons required.
Furthermore, even if the neuron count is reasonable, the training algorithm may fail to find the
correct set of parameters corresponding to the desired function or choose inaccurate parameters
that overfit the training data.

2.2.2.4 Graph neural networks

As shown in Figure 2.2, the architecture of MLPs does not have mechanisms to treat the rela-
tions between the elements of the input vector. When dealing with tasks of graph-structured
data, this architecture ignores the relational information inherent in graphs. A more suitable
class of neural networks for addressing graph-based tasks is Graph Neural Networks (GNNs).
The highlights of GNNs lie in their ability to model complex relationships, their flexibility in
handling graph-based tasks and graph variability, and their permutation invariance. The key
design element of GNNs is the concept of message-passing (MP) that allows GNNs to propagate
information through a graph to learn meaningful representations of nodes. In particular, MP
layers iteratively update the representations of graph nodes through their neighbors.

Let G = (V, E) be a graph, xu be the features associated with node u ∈ V, and euv be the
features of edge uv ∈ E. Denote N(u) the set of neighbors of node u in G. An MP layer updates
the representation hu of node u by

hu = ϕ

xu,
⊕

v∈N(u)

ψ(xu, xv, euv)

 (2.15)

where
⊕

is a permutation-invariant aggregation function (e.g., sum, average, and max), ϕ and
ψ are differentiable and parameterized message functions (e.g., MLP).

In a GNN, it is common to stack multiple MP layers to increase the model’s expressiveness
and its ability to capture the local and global context of nodes. However, the number of ML lay-
ers used should be chosen carefully. A GNN with an excessive number of MP layers can cause
the over-smoothing phenomenon, wherein nodes’ representations become indistinguishable.

Machine Learning 19

The outputs of MP layers are the representations of nodes. One can use these representa-
tions directly for node-level tasks that perform computation or prediction for each node in a
graph. For graph-level tasks, a pooling layer is needed to aggregate the individual node rep-
resentations into a fixed-size vector representing the entire graph. This layer is referred to as a
global pooling layer, which must be permutation invariant (e.g., sum, max, or mean pooling).
A permutation invariant pooling layer allows the model to handle different orderings of the
nodes while still producing the same graph-level output.

2.2.3 Reinforcement Learning

Another fundamental machine learning paradigm is reinforcement learning (RL). The differ-
ences between RL and supervised learning are that RL trains a model through trial-and-error,
and its predictions may have long-term effects. In particular, in RL, an agent repeatedly
performs actions to interact with the environment and observes responses from the environ-
ment to adjust its behaviors in order to maximize a numerical reward measure. This learning
mechanism–learning from interaction–is similar to how humans learn. In recent years, RL has
been applied to numerous domains, such as operational research, artificial intelligence, game-
playing, and control systems.

2.2.3.1 Markov Decision Processes

An RL system contains an agent (the decision maker) and an environment (the thing the agent
interacts with). An RL problem is usually modeled as a Markov Decision Process (MDP), which
is defined as a tupleM = (S ,A, p, r, γ) where

• S : A set of possible states of the environment;

• A: A set of actions which the agent may select at each time step;

• p(s′|s, a): A state transition probability with

p(s′|s, a) = P(st+1 = s′|st = s, at = a),

namely that it gives a probability that the environment moves to state s′ when the agent
takes action a in state s;

• r(s, a): A bounded reward function;

• γ ∈ [0, 1]: A discount factor.

The agent interacts with the environment in the MDP as illustrated in Figure 2.3. Given
an initial state s0, at each time step t, the agent observes state st ∈ S and takes an action
at ∈ A. As a result of this action, the environment moves to a new state st+1 drawn from the
transition probability p(st+1|st, at) and gives a reward rt = r(st, at). Repeating this process
results a sequence of states and actions, which refers to as a trajectory, or an episode. Let τ =

(s0, a0, s1, a1, s2, a2, . . .) be a trajectory experience by the agent. A trajectory ends when it reaches
special states, called terminal states, or the MDP’s horizon which can be infinite.

20 Background

Agent

Environment

state st reward rt action at

rt

st+1

Figure 2.3. An illustration of agent-environment interactions in MDPs at time step t

The return of trajectory τ is the sum of all its collected rewards discounted by γ, i.e.,

R(τ) =
T

∑
t=0

γtr(st, at) = r(s0, a0) + γr(s1, a1) + γ2r(s2, a2) + . . . (2.16)

where T can be infinite.

Note that there are various definitions of MDP with slightly different forms of components
in the literature. For example, the reward function r(s, a) can be written as a function r(s, a, s′)
depending on the current state, action, and next state.

2.2.3.2 Value functions and their properties

A policy π is a mapping from states to a probability distribution over actions, namely that,
π(a|s) is the probability the agent takes action a given state s. The aim of RL is to find a policy
that maximizes the expected return over trajectories. Toward this end, most RL algorithms
involve estimating value functions, functions of states that estimate the expected return if the
agent starts from a given state and follows its policy thereafter. Formally, the value function of
state s under policy π is defined by

Vπ(s) = Eπ

[
T

∑
i=0

γtr(st, π(st))

∣∣∣∣∣ s0 = s

]
(2.17)

for all s ∈ S . The function Vπ is called the state-value function for policy π.

Similarly, the action-value function for policy π, the so-called Q−function, gives the expected
return for starting from state s, taking action a, and following policy π after that. We can
formulate Qπ formally by

Qπ(s, a) = Eπ

[
T

∑
i=0

γtr(st, π(st))

∣∣∣∣∣ s0 = s, a0 = a

]
(2.18)

for all s ∈ S and a ∈ A.

We then define the optimal state-value function V∗ : S → R that gives the optimal expected
return for starting from a state s:

V∗(s) = max
π

Vπ(s) (2.19)

Machine Learning 21

for all s ∈ S . Similarly, the optimal Q-function can be defined as:

Q∗(s, a) = max
π

Qπ(s, a) (2.20)

for all s ∈ S and a ∈ A.
Value functions in RL have a fundamental property of satisfying recursive relationships.

Regarding the state-value function as an example, the quantities Vπ and V∗ satisfy the follow-
ing equations:

Vπ(s) = r(s, π(s)) + γ ∑
s′∈S

p(s′|s, a)Vπ(s′) (2.21)

V∗(s) = max
a∈A

r(s, a) + γ ∑
s′∈S

p(s′|s, a)V∗(s′) (2.22)

These above equations are the Bellman equations which represent a recursive definition of
Vπ and V∗. Intuitively, equation (2.21) states that the expected return of state s under policy
π is the sum of the immediate reward r(s, a) obtained by picking action a = π(s) and the
discounted expected returns γVπ(s′) weighted by probability p(s′|s, a) of the successor states
s′. Similarly, equation (2.22) expresses that V∗(s) can be obtain by selecting the best action a
(a = arg maxa′∈A r(s, a′)) and then behave optimally from afterwards.

The Bellman equations can be rewritten easily in terms of Q−functions through the follow-
ing connections:

Vπ(s) = Qπ(s, π(s)) (2.23)

V∗(s) = max
a∈A

Q∗(s, a) (2.24)

Then, the Bellman equations for Q−functions are

Qπ(s, a) = r(s, a) + γ ∑
s′∈S

p(s′|s, a)Qπ(s′, π(s′)) (2.25)

Q∗(s, a) = r(s, a) + γ ∑
s′∈S

p(s′|s, a)max
a′∈A

Q∗(s′, a′) (2.26)

From equation (2.26), if Q∗ is given, then the agent can easily determine the optimal policy;
for any state s, it simply finds an action that minimizes Q∗(s, a). Finding the optimal policy
from V∗ is slightly more complicated since the agent has to perform a one-step search. Further-
more, it is also a fact that the optimal solution V∗ is unique.

2.2.3.3 RL algorithms

We now briefly introduce several standard algorithms to solve MDPs. Firstly, if we know the
transition probability p(s′|s, a), we can solve MDPs by dynamic programming algorithms. For
example, by using the optimal Bellman equation (2.22), one can obtain the optimal state-value
function by iteratively performing the following update:

V(s)← max
a∈A

r(s, a) + γ ∑
s′∈S

p(s′|s, a)V(s′) (2.27)

until it converges. Then, the optimal policy can be yielded from the resulting optimal state-
value function. This method is called value iteration.

22 Background

An alternative algorithm, policy iteration, find an optimal policy by generating a sequence of
policies {π0, π1, π2, . . . }with non-decreasing performance, i.e. Vπk+1 ≥ Vπk , until it converges.
Each policy πk is generated by

πk(s) ∈ arg max
a∈A

[
r(s, a) + γ ∑

s′∈S
p(s′|s, a)Vπk−1(s′)

]
. (2.28)

In the case we do not know the transition probability, we may first attempt to learn it and
use the estimated probabilities for running dynamic programming algorithms. Such methods
are called model-based RL algorithms. Alternatively, one can try to directly learn value func-
tions, without the transition probability. This approach is called model-free RL. For instance, the
Q−learning algorithm updates the Q−function by

Q(s, a)← (1− α)Q(s, a) + α

[
r(s, a) + γ max

a′∈A
Q(s′, a′)

]
(2.29)

where α is the learning rate. The Q−values of pairs (s, a) are stored in the so-called Q−table.
It is important to note that the RL methods presented above are only efficient for small

MDPs, where the state space is discrete and small enough to store value functions explicitly.
When dealing with larger MDPs, these techniques can become intractable. For instance, if a
state is defined by an n−dimensional continuous vector, we would need to discretize the state
space into a finite set of states. However, the number of discretized states grows exponentially
with the dimension n. This exponential growth renders simple RL algorithms impractical for
large, high-dimensional state spaces.

Thus, various approaches have been proposed to find an approximation for value functions,
e.g., the Q−function. Instead of using a finite look-up table to store the Q−values of each state-
action pair, one can embed the state space in a feature vector ϕ(S) and then learn a surrogate
Q−function Qθ : ϕ(S) ×A → R whose weights θ are learned through interactions with the
environment. This is known as the fitted Q−iteration method [32]. A popular choice to represent
Qθ is deep neural networks (called Q−networks) due to their approximation capability. How-
ever, using a nonlinear function as a neural network to approximate the Q−function can lead
to instability and divergence during RL for several reasons: correlations between observations
in a trajectory, minor updates of Qθ substantially changing the policy and data distribution,
and correlations between action values and target values.

One of the most successful methods for addressing the instability issues of nonlinear func-
tion approximation in RL is the Deep Q-Network (DQN) algorithm [33]. To reduce correlations
between sequential observations, DQN utilizes an experience replay buffer D = {e1, . . . , eT}
to store collected experiences et = (st, at, st+1, rt). During learning, batches B are uniformly
sampled from D to update the Q−network weights to minimize the following loss function

LB(θ) = E(si ,ai ,si+1,ri)∼D

[(
Qθ(si, ai)− ri − γ max

a′
Qθ(si+1, a′)

)2
]

(2.30)

where θ are the weights of a separate target network. This target network has an identical
architecture to the Q−network but is periodically updated with the Q−network weights ev-
ery K steps. Keeping the target network fixed between individual updates helps decrease the
correlation between action values Q(s, a) and target values r + γ maxa′ Q(s′, a′).

Machine Learning 23

Algorithm 5 DQN algorithm

1: Initialize a replay buffer D
2: Initialize a Q-network Qθ and set θ = θ

3: for i = 1, . . . , n do
4: Set t = 0 and an initial state s0

5: while si
t is not terminal state do ▷ Execute a trajectory

6: Select a random action ai
t with probability ϵ;

otherwise, select ai
t = arg maxa Qθ(si

t, a) ▷ ϵ−greedy exploitation
7: Observe next state si

t+1, and reward ri
t = r(si

t, ai
t)

8: Store transition (si
t, ai

t, si
t+1, ri

t) into the replay buffer D ▷ Experience replay
9: Sample a mini-batch B from D ▷ Batch learning

10: Update θ following the gradient derived from equation (2.30) using B
11: Every K steps, set θ ← θ ▷ Target network
12: Set t← t + 1
13: end while
14: end for

When learning through environmental interactions, the agent faces the exploration-
exploitation dilemma [34]. On the one hand, the agent’s knowledge is partial, and thus, it needs
to try new actions to gather more information for long-term gains. On the other hand, the
agent also wants to yield more immediate rewards by making the best decision based on cur-
rent information. A common approach to balance this trade-off is ϵ−greedy exploration, which
randomly selects an action with probability ϵ. Typically, the exploration probability ϵ decreases
over time to focus more on exploitation as the agent’s knowledge improves. Algorithm 5 gives
a formal description of the DQN algorithm.

Part I

Algorithms for fair combinatorial
optimization

24

Chapter3
Special-purpose branch-and-cut for
balanced combinatorial optimization

Summary

3.1 Literature review . 27

3.2 MILP formulation for balanced combinatorial optimization 28

3.2.1 Need for a dedicated branch-and-cut algorithm for
balanced combinatorial optimization 30

3.3 Local bounding cuts . 31

3.4 Illustration: Branch-and-cut algorithm for the BTSP 31

3.4.1 Lower bounding algorithm 33

3.4.2 Local search algorithm 37

3.4.3 Edge elimination . 40

3.4.4 Variable fixing . 40

3.4.5 Separation algorithms and strategies 41

3.5 Computational results . 42

3.5.1 The effectiveness of the proposed branch-and-cut al-
gorithm . 43

3.5.2 Impact of local cuts, lower bounding, and
k−balanced components 44

3.5.3 Comparison to the double-threshold-based algorithms 46

3.6 Conclusion . 47

25

26 Special-purpose branch-and-cut for balanced combinatorial optimization

In this chapter, we study balanced combinatorial optimization [7], which minimizes the
max-min distance of the solution. This problem arises from many real-life situations. For ex-
ample, a company wants to install a manufacturing line and must source components from
multiple suppliers. Let cij represent the expected lifetime of component j from supplier i. To
minimize production downtime for maintenance, the company aims to select components with
similar lifespans so that they can be replaced simultaneously. Specifically, they want to choose
parts that minimize the range of values for cij across all selected components.

Another situation relates to the scheduling problem in factories. Let cij represent the
amount of work worker i would need to do if assigned to job j. In order to promote em-
ployee satisfaction, the work schedule should minimize the difference between the workload
assigned to the most heavily loaded worker and that of the least loaded worker. This balancing
of workloads aims to prevent overburdening some workers while underutilizing others.

In these problems, the considered components have an associated cost. The goal is to seek
a feasible collection of components for which the difference in cost between the most and least
expensive components selected is minimized. Formally, given a finite set E with cost vector
c = {ce : e ∈ E} and a family F of feasible subsets of E, balanced combinatorial optimization
seeks a feasible subset S∗ ∈ F that minimizes the max-min distance over all S ∈ F , i.e.,

min
S∈F

{
max
e∈S

ce −min
e∈S

ce

}
.

Balanced combinatorial optimization was proposed by Martello et al. [7] with applications
related to the assignment problem. In the context of the assignment problem, the set E is the cell
set of an n× n assignment matrix, ce is the value of cell e, and F consists of all subsets of cells
that constitute assignments. Since its initial formulation, balanced combinatorial optimization
has been widely studied, with researchers examining specific cases such as the balanced short-
est path [35, 36], the balanced minimum cut [11], the balanced spanning tree [10, 15] and the
balanced network flow [37]. Another research direction explores generalizations and variants
of balanced combinatorial optimization, as seen in works [14–19, 36, 38–40].

A general framework for solving balanced combinatorial optimization problems is the
double-threshold algorithm proposed by Martello et al. [7]. The intuition behind this frame-
work is to find the shortest closed interval such that a subset of E, whose element costs fall
within this interval, contains a feasible solution. Such an interval can be found by repeat-
edly verifying whether a feasible solution exists in a subset of E. Thus, the time complexity
of this framework depends on the complexity of the feasibility verification problem. Another
approach is to leverage the properties of specific problems to find an optimal solution directly
(see Section 3.1 for details). However, this approach has mainly focused on problems that can
be solved in polynomial time.

To the best of our knowledge, no exact general MILP framework exists despite MILP’s
success on many combinatorial optimization problems. The reason is that the balanced opti-
mization objective depends only on the largest and smallest component values. Thus, general-
purpose branch-and-cut algorithms without mechanisms to locate the largest and smallest
components can not solve balanced combinatorial optimization efficiently. Motivated by this
gap, in this chapter, we propose a dedicated branch-and-cut algorithm for balanced combina-
torial optimization. We showcase the effectiveness of this algorithm by applying it to the BTSP,

Literature review 27

which is an NP-hard problem.

3.1 Literature review

Most algorithms for solving balanced optimization problems are based on two approaches: one
is to directly identify a feasible subset S∗ ∈ F with the smallest max-min distance, and one is
to find the minimum range of costs such that the subset E′ ⊆ E whose element costs belong to
this range contains a feasible subset S ∈ F . Below, we present some representative works of
each approach.

An example of the first approach can be observed in a work of Camerini, Maffioli, Martello,
and Toth [9] for the balanced spanning tree problem. Their algorithm starts by arranging edges
in ascending order based on their costs and follows by initializing the tree T = ∅. At each
iteration, the edge with the lowest cost that has not been considered is added to T. If T has a
cycle, an edge with the smallest cost in the cycle will be removed. The algorithm terminates
when the max-min distance equals 0 or all edges are visited. The complexity of this algorithm
is O(mn) where m and n, respectively, are the number of edges and nodes of the given graph.
Galil and Schieber [10] reduced the algorithm’s complexity to O(m log n) for the undirected
case by using dynamic trees of Sleator and Tarjan [41].

In the context of the balanced minimum cut problem, Katoh and Iwano [11] found the
minimum range cut by the concept of upper-critical cuts. An upper-critical cut with respect
to edge e [11] is one whose max-min distance is minimum among all cuts containing e as the
smallest edge cost. They proved that the minimum range cut is an upper-critical cut with
respect to an edge in the minimum spanning tree. Such a cut can be constructed through
the maximum spanning tree and dynamic trees [41]. This approach can solve the problem in
O(m + n log n) time due to the time spent to compute the minimum and maximum spanning
trees.

Ahuja [12] proposed a parametric simplex algorithm to find an optimal solution of the bal-
anced linear programming problem, which aims to minimize the difference between the largest
cost cixi and the smallest cost cjxj given a set of constraints (Ax = b, x ≥ 0) and costs for each
xi. In particular, they developed a simplex-based algorithm that implicitly considers the ad-
ditional constraints representing the largest and smallest costs and operates on the original
constraint matrix A to benefit from its special structure.

The second approach to solving balanced optimization problems is based on the double-
threshold algorithm, a general framework proposed by Martello, Pulleyblank, Toth, and Werra
[7]. The intuition of this approach is to reduce balanced optimization problems to the problems
of finding the shortest closed interval such that the subset E′ ∈ E whose all element costs lie in
this interval contains a feasible subset S ∈ H. In particular, let v1 < v2 < · · · < vk be the sorted
distinct values of given cost vector c. A feasibility subroutine takes as input a subset E′ ⊆ E and
either outputs a S ∈ F such that S ⊆ E′ or proves that no such S exists. The double-threshold
algorithm starts with initializing l = u = 1 and T = ∞ (T is the smallest max-min distance
found so far). Then, it iteratively does the following: first, perform a feasibility subroutine
with E(l, u) = {e ∈ E : cl ≤ ce ≤ cu}; if there exists a feasible subset S ∈ F , update T by
min{T, vu − vl} and increase l by 1; otherwise, increase u by 1. In total, the algorithm requires

28 Special-purpose branch-and-cut for balanced combinatorial optimization

O(k · f (|E|)) time where O(f (|E|)) denotes the time required to solve a feasible subroutine.
A representative work using this approach is a study of Martello, Pulleyblank, Toth, and

Werra [7] for the balanced assignment problem. Here, the feasibility subroutine, which decides
whether there exists an assignment in a prescribed subset E′ ⊆ E, can be implemented in
O(n4.5) [42]. Thus, the direct application of the double-threshold algorithm would give an
O(n4.5) algorithm. To reduce the time required for the feasibility subroutine, Martello and his
team proposed a modified Hungarian algorithm [43] that can construct an assignment from a
partial one. This modification improved the time bound to O(n4) for the balanced assignment
problem.

Larusic and Punnen [13] also adopted the double-threshold framework to solve the BTSP.
However, a critical issue of this problem is that its feasibility subroutine is the Hamiltonicity
verification problem, which is NP-hard. It causes the approach to be unpractical when the
problem instance’s size is large. To tackle this issue, Larusic and Punnen heuristically solved
the Hamiltonicity verification problem at every iteration. Moreover, they developed four vari-
ants of the double-threshold algorithm to reduce the number of iterations without sacrificing
solution quality by using the bottleneck TSP [44] and the maximum scatter TSP [45]. With
these modifications, their algorithms produced good-quality solutions within 10% optimality,
estimated based on lower bounds, to 65 TSPLIB instances [46]. Furthermore, 27 solutions were
provably optimal.

3.2 MILP formulation for balanced combinatorial optimization

We consider a combinatorial optimization problem (e.g., the minimum cut, spanning tree, or
traveling salesman problem), whose feasible solutionsX ⊆ {0, 1}n can be expressed as follows:

Ax ≤ b

x ∈ {0, 1}n

where x is the vector containing decision variables, A ∈ Rm×n, b ∈ Rm, n and m are positive
integers.

For each i ∈ [n], let ci ∈ R be the cost of setting xi to 1. The balanced problem defined on a
combinatorial set X aims to minimize the difference between the largest and smallest costs of
selected variables, i.e.,

min
x∈X

max
i∈[n]
xi ̸=0

cixi −min
i∈[n]
xi ̸=0

cixi


To linearize this objective function, we denote u and l, respectively, variables representing the
highest and lowest component costs. We propose an MILP formulation for balanced combina-
torial optimization as follows:

(BCO) min u− l (3.1a)

s.t. u ≥ cixi ∀i ∈ [n] (3.1b)

l ≤ cixi + (1− xi)M ∀i ∈ [n] (3.1c)

x ∈ X (3.1d)

MILP formulation for balanced combinatorial optimization 29

where M is a constant such that l ≤ M (e.g., M = maxi∈[n] ci). Constraints (3.1b) and (3.1c) are
used to estimate the highest and lowest costs. More specifically, constraints (3.1b) ensure that
u must be greater than or equal to the costs of all components selected in the solution. On the
other hand, if a variable xi is set to 1, inequalities (3.1c) read as l ≤ ci, which are true by the
definition of l. Otherwise (i.e., xi = 0), constraints (3.1c) become l ≤ M, which are valid by the
definition of M.

The choice of M in constraints (3.1c) depends on the characters of the combinatorial set X .
M can be chosen globally for all variables or specifically for each variable xi, i ∈ [n]. Generally,
when the value of M decreases, the bounds of l become tighter. For illustration, we present an
instantiation of our general model (BCO) on the TSP.

Example 3.2.1. Given an undirected graph G = (V, E) with edge costs c, the BTSP consists in
finding a tour that minimizes the max-min distance, i.e.,

min
H∈Π(G)

{
max
e∈H

ce − min
e∈Hce

}

where Π(G) is the set of all Hamiltonian cycles in G. The BTSP is NP-hard by folklore that the
problem of finding a Hamiltonian cycle in the graph can be reduced to a BTSP with unit edge
costs.

We denote by {xe | e ∈ E} a set of binary variables where xe = 1 if edge e is in the tour
and xe = 0 otherwise. Let u and l, respectively, be variables representing the tour’s highest
and smallest edge costs. We denote by δ(S) the set of edges that have exactly one end-vertex in
S ⊂ V; δ({v}) is abbreviated as δ(v) for v ∈ V. The BTSP can be written as the following MILP
formulation:

(BTSP) min u− l (3.2a)

s.t. u ≥ cexe ∀e ∈ E (3.2b)

l ≤ cexe + (1− xe)Me ∀e ∈ E (3.2c)

∑
e∈δ(v)

xe = 2 ∀v ∈ V (3.2d)

∑
e∈δ(S)

xe ≥ 2 ∀∅ ̸= S ⊂ V (3.2e)

xe ∈ {0, 1} ∀e ∈ E (3.2f)

where Me = min{maxe′∈δ(i) ce′ , maxe′∈δ(j) ce′} for all e = (i, j) ∈ E. As in (BCO), constraints
(3.2b) and (3.2c) are used to estimate the largest and smallest edge costs of the tour. Obviously,
l ≤ maxe∈δ(i) ce, ∀i ∈ V and constraints (3.2c) are thus valid. The combinatorial set X of the
BTSP is represented by the subtour elimination polytope [47]. In particular, constraints (3.2d)
are degree constraints, which ensure that each vertex has precisely two incident edges in the
tour. Constraints (3.2e) are the well-known subtour elimination constraints (SECs) that prevent
the existence of subtours.

30 Special-purpose branch-and-cut for balanced combinatorial optimization

3.2.1 Need for a dedicated branch-and-cut algorithm for balanced combinatorial opti-
mization

Obviously, (BCO) can be solved by a general-purpose branch-and-cut algorithm. However,
the main challenge of balanced combinatorial optimization is not representing combinatorial
set X but estimating the largest and smallest costs. The lack of mechanisms to address this
task causes general-purpose branch-and-cut algorithms can not solve balanced combinatorial
optimization efficiently.

This issue can be demonstrated by the following experiment. We solve the TSP and BTSP
on the TSPLIB instance si175 (with 175 vertices) [46] by the commercial solver CPLEX 12.10,
a widely-used general-purpose branch-and-cut algorithm for MILP problems. We formulate
both problems by the same tour’s constraints, i.e., degree constraints (3.2d), SECs (3.2e), and
integral constraints (3.2f). The CPU time limit is set to 10800 seconds.

Table 3.1 shows the results of the two problems. Column “Time" indicates the running time
in seconds of the solver. Column “Gap" gives the best IP relative gap so far. Columns “Nodes"
and “Depth" respectively report the number of nodes and the depth of the search tree (i.e., the
number of edges along the longest path from the root node to a leaf node).

Problem Time Gap (%) Nodes Depth

TSP 25.52 0.00 4324 89

BTSP 10800.09 28.57 140003 987

Table 3.1. The results of the TSP and BTSP on the instance si175.

As shown in Table 3.1, the BTSP can not be solved to optimality (the value of the IP relative
gap is 28.57%) within the CPU time limit, while the TSP is solved easily in 25 seconds. The tree
size and tree depth of the BTSP are substantially larger than those of the BTSP.

A cause of these results is the use of the big-M in constraints (3.2c) to represent the smallest
edge cost l. Constraints (3.2c) force l to be smaller than or equal to ce if an edge e occurs in the
tour (xe = 1). The big-M is used to guarantee the validity of (3.2c) when an edge e is not a
tour’s edge (xe = 0). However, the big-M can lead to loose bounds for l in the LP relaxations.
For example, when Me = 100, ce = 10, and xe = 0.1, constraints (3.2c) allow l to take a value of
91, while l should not exceed 10 as the edge e is used in the solution.

Another reason relates to the objective function of the BTSP. Unlike the TSP whose objective
function depends on all edges selected in the tour, the objective function of the BTSP only
depends on the values of the largest and smallest edge costs. Unless we change all edges with
maximum or minimum cost in the tour, the objective value of the BTSP remains unchanged.
Thus, the solver has to branch on many variables to discard subtrees of the branch-and-bound
tree. It leads to an enormous search tree, which is time-consuming to explore (as illustrated in
Table 3.1).

These issues drive us to design a special-purpose branch-and-cut algorithm for balanced
combinatorial optimization, whose central is a new class of local cuts to tighten bounds on the
smallest component cost. This cut class will be presented in the next section.

Local bounding cuts 31

3.3 Local bounding cuts

The experimental results presented in Section 3.2.1 empirically demonstrate that accurately
estimating the maximum and minimum component costs in balanced combinatorial optimiza-
tion impacts the performance of the branch-and-cut method enormously. In (BCO), while the
highest cost can be directly estimated using the decision variables, the lowest cost requires a big
enough constant M. However, the value of M that validates constraints (3.1c) often provides
only loose bounds on the smallest cost in the LP relaxations. To address this, we introduce
a family of local cuts, called local bounding cuts. These cuts aim to improve the value of M
during the solving process and reinforce the bounds of l in the enumeration tree. Importantly,
these cuts do not rely on problem-specific structures, making them applicable to any balanced
combinatorial optimization problem.

Observe that in the enumeration tree, each node is associated with an ordered pair ⟨F0, F1⟩
of two disjoint index sets where F0, F1 ⊆ [n] respectively contain the index of variables that
have been fixed to 0 and 1. Given a tree node ⟨F0, F1⟩, a feasible solution found by this node or
its descendants satisfies

xi = 0 ∀i ∈ F0

xi = 1 ∀i ∈ F1.

Let IC(F1) be the minimum of C(F1) = {ci | i ∈ F1}. Obviously, the smallest component cost
of this feasible solution can not exceed IC(F1). Based on this observation, we generate local
bounding cuts as follows:

l ≤ cixi + (1− xi)IC(F1) ∀i ∈ [n]. (3.3)

As their name suggests, the local bounding cuts are locally valid, namely that these cuts
are valid only for the current node and its descendants in the enumeration tree, as they use
the specific information at the node. The local bounding cuts aim to favor early locating the
smallest component cost at the subtree to help the solver concentrate on finding a feasible
solution or proving the solution’s non-existence. These cuts can tighten the bounds of the
smallest cost l in the LP relaxations and thus narrow the interval [l, u].

3.4 Illustration: Branch-and-cut algorithm for the BTSP

In this section, we specialize the proposed branch-and-cut algorithm for the BTSP, an NP-hard
case of balanced combinatorial optimization. Besides general-purpose local bounding cuts,
we develop problem-specific algorithms to initialize lower and upper bounds on the optimal
value of the BTSP and techniques to eliminate and fix variables to improve the algorithm’s
performance further. We first present the general schema of our algorithm, followed by an
in-depth description of its vital components.

Figure 3.1 illustrates the flowchart of our branch-and-cut algorithm for the BTSP. After the
initialization step, the algorithm constructs an enumeration tree where each node corresponds
to an LP relaxation of (BTSP). The tree’s root node is associated with an LP relaxation obtained
by dropping all SECs (3.2e) and the integrality requirements on the variables xe, e ∈ E. At each
iteration, we select an active node (that has yet to be pruned or branched on) and solve the cor-
responding LP relaxation. If we obtain an optimal solution in which all xe values are integral,

32 Special-purpose branch-and-cut for balanced combinatorial optimization

Solve LP problem

Update LB

All SECs
are satisfied?

Add
violated SECs

Initialization

No

Yes

No

Yes

No

Yes

Generate cuts?

Update UB

Find and
add cuts

LP: linear programming; LB: lower bound; UB: upper bound; SECs: subtour elimination constraints

All variables xe

are integral?

Node list
empty?

Start

Stop

No

Yes

Select and
delete node

Branch and
update node list

Figure 3.1. The schema of our branch-and-cut algorithm for the BTSP. Our improvements focus
on the green components in the diagram.

Illustration: Branch-and-cut algorithm for the BTSP 33

we verify the satisfaction of SECs and add violated ones to the LP relaxations. Otherwise, we
can solve separation problems to generate cuts in order to strengthen LP relaxations or select a
variable having a fractional value to branch.

Our improvements focus on initializing, enhancing the upper bound, and generating cut-
ting planes on the enumeration tree. Other components of the branch-and-cut algorithm, such
as node selection or branching, follow the default rules of the commercial solver CPLEX 12.10.

The tightness of lower and upper bounds on the optimal value of the BTSP is crucial for
pruning the enumeration tree. To initialize good bounds, we develop a lower bounding al-
gorithm based on the biconnectivity of Hamiltonian cycles (Section 3.4.1) and a local search
algorithm for the BTSP based on k−opt algorithms [48, 49] (Section 3.4.2). The bounds found
by these algorithms are used not only to provide warm starts for the branch-and-cut algorithm
but also to sparsify the instance graph by eliminating edges that can not be part of an optimal
solution (Section 3.4.3).

During the branch-and-cut algorithm, to further improve the upper bound, when a new
incumbent solution is found, we perform our local search algorithm for the BTSP to enhance
this solution. To tighten the lower bound, we use local bounding cuts proposed in Section 3.3
and develop variable fixing cuts (Section 3.4.4). Moreover, we also propose strategies to decide
whether to generate cuts or to branch at a tree node, which are presented in Section 3.4.5.

A formal description of the proposed branch-and-cut algorithm is presented in Algorithm
6. In the remainder of this section, we present the improved components in detail. For the sake
of clarity, we present below some notations used throughout this section.

3.4.0.1 Preliminaries

Given an undirected graph G = (V, E) and a cost vector c associated with E, for any subset
S of C, we denote by δ(S) a subset of E where each edge has exactly one end-vertex in S, i.e.,
δ(S) = {(i, j) ∈ E : i ∈ S and j ∈ V \ S}. For abbreviation, we write δ(v) instead of δ({v})
for all v ∈ V. Given a Hamiltonian cycle H ∈ Π(G), we respectively denote by uH and lH the
largest and smallest edge costs in H. For an edge set F ⊆ E, we denote V(F) the end-vertices
set of edges in F and C(F) = {ce ∈ c | e ∈ F} the edge cost set corresponding to F. Without
loss of generality, we assume that C(E) = {C1, . . . , Cp} where p ≤ m is the number of distinct
components of the cost vector c and C1 < C2 < · · · < Cp. For an interval [α, β], G[α, β] stands
for a subgraph of G with edge set E[α, β] = {e ∈ E | α ≤ ce ≤ β}. We call G[α, β] the subgraph
restricted by [α, β].

3.4.1 Lower bounding algorithm

Given a graph G = (V, E) with edge costs c, we present below an algorithm partly inspired by
the Hamiltonian verification procedure in [13] to compute a lower bound on the optimal value
of the BTSP at the initialization step.

As mentioned in [13], a Hamiltonian graph must be a biconnected graph (i.e., a graph in
which for any pair of vertices u and v, there exist two paths from u to v without any vertices in
common except u and v). The intuition of the algorithm is that for all distinct costs Ci ∈ C(E),
we find the shortest interval containing Ci such that the subgraph restricted by this interval is

34 Special-purpose branch-and-cut for balanced combinatorial optimization

Algorithm 6 Branch-and-cut algorithm for the BTSP

Input: An undirected graph G = (V, E) with cost vector c ∈ R
|E|
+ .

Output: A tour whose max-min distance is minimum.

1. Initialization

Find a lower bound z. ▷ Section 3.4.1

Find a feasible solution (x′, u′, l′) of (BTSP). Let z be an upper bound on the optimal value of the BTSP. ▷

Section 3.4.2

Eliminate edges that can not occur in an optimal solution. ▷ Section 3.4.3

Let N0 be the node corresponding to the LP relaxation of (BTSP) obtained by relaxing all SECs and integral-
ity constraints.

Set z← u′ − l′, C ← ∅, N ← {⟨F0 = ∅, F1 = ∅⟩}, (x∗, u∗, l∗)← (x′, u′, l′).

2. Node selection.

if N is empty then

Return (x∗, u∗, l∗) and terminate

else

Select and remove a node ⟨F0, F1⟩ from N
end if

3. Prune

Solve LP(C, F0, F1).

if LP(C, F0, F1) is infeasible then go to step 2

else

Let (xLP, uLP, lLP) be an optimal solution of LP(C, F0, F1).

if uLP − lLP ≥ z then go to step 1

else

if xLP is integral then

if xLP satisfies all SECs then

Enhance (xLP, uLP, lLP) by the local search algorithm ▷ Section 3.4.2

Fix variables based on (xLP, uLP, lLP). ▷ Section 3.4.4

Set (x∗, u∗, l∗)← (xLP, uLP, lLP) and z← zLP. Go to step 1.

else

Add SECs violated by xLP to C. Go to step 3.

end if

end if

4. Branching versus cut generation

Decide whether to generate cuts or to branch. ▷ Section 3.4.5

if generate cuts then

Solve separation problems and add resulting cuts. ▷ Sections 3.3, 3.4.4

else

Go to Step 5

5. Branching

Pick an index j ∈ [m] such that 0 < xLP
j < 1. Add ⟨F0 ∪ {j}, F1⟩ and ⟨F0, F1 ∪ {j}⟩ to N . Go to step 2.

Illustration: Branch-and-cut algorithm for the BTSP 35

biconnected. The minimum length among these intervals is a lower bound on the minimum
max-min distance of the BTSP. Algorithm 7 gives a formal description of our lower bound-
ing algorithm. Before describing the algorithm in detail, we introduce some definitions and
lemmas.

Algorithm 7 Lower bounding algorithm for the BTSP

Input: A graph G = (V, E) with edge costs c.
Output: A lower bound on the optimal value of the BTSP.

1: Let C1 < C2 < · · · < Cp be the distinct costs of c
2: b0 ← 1; bi ← p + 1, ∀i ∈ [p]; Cp+1 ← +∞
3: for i ∈ [p] do
4: j← bi−1

5: while j ≤ p do
6: if G[Ci, Cj] is biconnected then
7: bi ← j
8: break
9: end if

10: j← j + 1
11: end while
12: end for
13: for i ∈ [p] do
14: li ← 1, ui ← p
15: for j ∈ [i] do
16: if Cbj − Cj < Cui − Cli then
17: li ← j, ui ← bj

18: end if
19: end for
20: end for
21: return mini∈[p] Cui − Cli .

Definition 3.4.1 (Biconnected interval). For any Ci ∈ C(E), a biconnected interval compatible with
Ci is an interval [α, β] such that

i) α ≤ Ci ≤ β;

ii) G[α, β] is biconnected.

The length of a biconnected interval [α, β] is the difference between β and α, i.e., β − α. We
denote by γ(Ci) the length of the shortest biconnected interval compatible with Ci.

Lemma 3.4.2. LetH be a tour in G. IfH contains an edge with cost Ci, then

uH − lH ≥ γ(Ci).

36 Special-purpose branch-and-cut for balanced combinatorial optimization

Proof. We consider the graph G[lH, uH] with edge set E[lH, uH] = {e ∈ E | lH ≤ ce ≤ uH}.
G[lH, uH] is biconnected as it contains the tour H. Since H has an edge with cost Ci, lH ≤ Ci ≤
uH. Thus, (lH, uH) is a biconnected interval compatible with Ci. By the definition of γ(Ci),
uH − lH ≥ γ(Ci).

Corollary 3.4.3. Let γ∗ = minCi∈C(E) γ(Ci) and OPT be the optimal value of (MILP-BTSP), we
have γ∗ ≤ OPT .

Thanks to Corollary 3.4.3, to obtain a lower bound on the optimal value of the BTSP, it is
sufficient to find the shortest biconnected interval compatible with Ci for all Ci ∈ C(E). The
following lemma provides a characterization of the shortest biconnected intervals.

Lemma 3.4.4. If [α, β] is the shortest biconnected interval compatible with Ci, then α and β belong to
the edge cost set of E.

Proof. We consider the graph G[α, β]. Let α′ = min{ce | e ∈ E[α, β]} and β′ = max{ce | e ∈
E[α, β]}. Obviously, α′, β′ ∈ C(E) and α′ ≤ Ci ≤ β′. Since G[α′, β′] = G[α, β] and G[α, β] is
biconnected, G[α′, β′] is also biconnected. Thus, [α′, β′] is a biconnected interval compatible
with Ci.

Since [α, β] is the shortest biconnected interval compatible with Ci, β− α ≤ β′ − α′. On the
other hand, by the definition of G[α, β], α ≤ α′ and β ≥ β′. Then, β′ − α′ ≤ β− α. The equality
holds if and only if α = α′ and β = β′.

By Lemma 3.4.4, to find the shortest biconnected intervals, we first determine the smallest
index bj ∈ [p] such that G[Cj, Cbj] is biconnected, for all Cj ∈ C(E). Note that the bj computa-
tion is according to the increasing ordering of j (i.e., starting with C1, followed by C2, and so
on). Then, the shortest biconnected interval compatible with Ci is the shortest interval [Cj, Cbj]

containing Ci. A naive way to find bj is to initially set bj by j and increase bj until G[Cj, Cbj] is
biconnected. It requires checking the graph’s biconnectivity O(|E|2) times. We can reduce it to
O(|E|) by using the following lemma.

Lemma 3.4.5. For any i, j ∈ [p], if Ci < Cj then bi ≤ bj.

Proof. We prove the lemma by contradiction. Assume that there exist two costs Ci, Cj such
that Ci < Cj and bi > bj. Obviously, G[Cj, Cbj] is a subgraph of G[Ci, Cbj]. Since G[Cj, Cbj] is
biconnected, G[Ci, Cbj] is also biconnected. On the other hand, bi is the smallest value such that
G[Ci, Cbi] is biconnected. Thus, bi ≤ bj, contradicts the assumption.

Using Lemma 3.4.5, we can set bj initially as bj−1 instead of j. This reduces the number of
biconnectivity checks at most O(|E|). The algorithm then repeatedly verifies the biconnectivity
of the graph G[Cj, Cbj] and increases bj until G[Cj, Cbj] is a biconnected graph. Since a bicon-
nected graph is a connected graph without articulation vertices, the graph’s biconnectivity can
be checked in O(|V|+ |E|) by Tarjan’s algorithm [50]. In total, the complexity of Algorithm 7
is O(|E|2).

Illustration: Branch-and-cut algorithm for the BTSP 37

3.4.2 Local search algorithm

We now propose a local search algorithm for the BTSP, called k−balanced, based on k−opt
algorithms for the TSP [48, 49]. The algorithm takes a graph G = (V, E) with edge costs c,
a tour H, and a constant k as input and returns an improved tour with a smaller max-min
distance. The purpose of this algorithm is twofold: i) to provide a good upper bound at the
initialization step, and ii) to enhance the incumbent solution in the course of the branch-and-cut
algorithm.

The intuition of k−balanced is to repeatedly perform k−exchanges (k−opt moves) to im-
prove the current tour. A k−exchange replaces k edges in the current tour with k edges in such
a way that a tour with a smaller max-min distance is achieved. Algorithm 8 sketches a generic
version of k−balanced. In the following, we describe in detail the algorithm.

Algorithm 8 Generic k-balanced

Input: A graph G = (V, E) with edge costs c, a tourH, and a constant k.
Output: A tourH′ such that uH′ − lH′ < uH − lH.

1: improved← True
2: while improved do
3: improved← False
4: Select (F, l′, u′) where F ⊂ H and [l′, u′] ⊊ [lH, uH].
5: EC(F, l′, u′)← {(i, j) ∈ E | i, j ∈ V(F) ∧ (l′ ≤ c(i,j) ≤ u′)} .
6: if exists a k-subset F ⊂ EC(F, l′, u′) such that (H \ F) ∪ F is a tour then
7: H ← (H \ F) ∪ F.
8: improved← True
9: end if

10: end while
11: return (H, lH, uH).

Given a tourH of G, at each iteration, k-balanced constructs two edge sets, F = { f1, . . . , fk}
and F = { f 1, . . . , f k}, such thatH′ = (H\ F)∪ F is a new tour with a smaller max-min distance.
We call the edges of F out-edges and the edges of F in-edges.

The max-min distance of H′ is smaller than that of H if and only if all edge costs of H′

belong to an interval shorter than [lH, uH]. Due to this fact, the out-edge set F must contain all
edges with either the maximum edge cost or the minimum edge cost inH and the in-edge set F
only comprises edges with costs belonging to a range [l′, u′] such that u′− l′ < uH− lH. In order
to avoid searching all possible intervals [l′, u′], we simply consider intervals [l′, u′] ⊊ [lH, uH].

We first describe a way to construct the in-edge set F given a triple (F, l′, u′) where F ⊂ H
and [l′, u′] ⊊ [lH, uH]. Let EC(F, l′, u′) = {(i, j) ∈ E | i, j ∈ V(F) ∧ (l′ ≤ c(i,j) ≤ u′)} the
set of edges whose end-vertices are in V(F) with costs between l′ and u′. By its definition,
EC(F, l′, u′) is precisely the set of edges that can be used to reconnect a tour fromH\ F, namely
that F ⊂ EC(F, l′, u′). To construct F, we solve the problem of completing a Hamiltonian cycle
from H \ F with only edges in EC(F, l′, u′). With k fixed, we can solve the same problem on G′

- a compressed version of G with at most 2k vertices. The construction of F is thus cheap since
it is independent of the size of G. Figure 3.2 illustrates this idea.

38 Special-purpose branch-and-cut for balanced combinatorial optimization

5

8

8

8
6

5

5

3

4

f1

f2

f3 3

5

6

5

5

3

4

36

4

3

4

6

5

6

4

6

5

5

6

5

5

3

4

3

f 2

f 1

f 34

5

6

(a) (b)

(c)(d)

4

6

5

Figure 3.2. Illustration of a 3−opt move in 3−balanced. (1.a) represents a tourH whose largest
and smallest edge costs are 8 and 3, respectively. We will remove all edges with max-cost 8
(f1, f2, f3) fromH and set (l′, u′) = (lH, uH − 1) = (3, 7). (1.b) illustrates the remainderH\ F of
the tour. The dash lines are the edges of EC(F, l′, u′) where edges have two endpoints in V(F),
and costs belong to [3, 7]. (1.c) demonstrates a compressed version G′ of G, in which paths in
H \ F are considered as edges. The problem of reconnecting H in G is equivalent to the one in
G′. (1.d) shows the resulting tour with a smaller max-min distance, i.e., 3.

Illustration: Branch-and-cut algorithm for the BTSP 39

We now present rules to select (F, l′, u′). We create three variants of k−balanced corre-
sponding to three selection rules for (F, l′, u′): k−balanced min, k−balanced max, and k−balanced
extreme.

Algorithm 9 Selection rule for k−balanced min/max

Input: A graph G = (V, E), a tourH, a constant k, and an extreme type ET.
Output: (F, l′, u′) where F ⊂ H and [l′, u′] ⊊ [lH, uH].

1: if ET is min then
2: F ← {e ∈ H | ce = lH}, l′ ← lH + 1, u′ ← uH
3: else if ET is max then
4: F ← {e ∈ H | ce = uH}, l′ ← lH, u′ ← uH − 1
5: end if
6: while |F| < k do
7: f ← arg maxe=(i,j)∈H | δ({i, j}) ∩ δ(F) ∩ {e′ ∈ E|l′ ≤ ce′ ≤ u′} |
8: F ← F ∪ { f }
9: end while

10: return (F, l′, u′)

Algorithm 10 Selection rule for k−balanced extreme

Input: A graph G = (V, E), a tourH, and a constant k.
Output: (F, l′, u′) where F ⊂ H and [l′, u′] ⊊ [lH, uH].

1: F ← ∅.
2: while |F| < k do
3: removed_cost← arg mince∈C(H\F) d(ce,H)

4: F ← F ∪ {e ∈ H | ce = removed_cost}
5: end while
6: l′ ← mine∈H\F ce

7: u′ ← maxe∈H\F ce

8: return (F, l′, u′)

Algorithm 9 describes the selection rule of (F, l′, u′) for k−balanced min/max. In these
variants, we select F in such a way as to maximize the cardinality of EC(F, l′, u′). We call this
rule the maximum candidate cardinality principle (MCCP). In particular, for k-balanced min, we
set (l′, u′) = (lH + 1, uH) and initialize F by all min-cost edges. At step i, an edge fi in H \ F is
added to the current F if it can increase the cardinality EC(F, l′, u′) the most. More precisely, fi

is the edge that has the most incident edges having one end-vertex in V(F) with costs between
l′ and u′. The selection procedure is repeated until the cardinality of F equals k. This selection
rule is applied similarly for k-balanced max with two modifications: F initially is a set of all
max-cost edges, and l′, u′ respectively equal lH and uH − 1. Such a way to select (F, l′, u′) offers
the uttermost cardinality of EC(F, l′, u′) and thus increases the probability of F’s existence.
However, it slowly decreases the max-min distance at each iteration (the gain can be only 1 per
k-exchange).

On the other hand, k-balanced extreme prioritizes dropping the max-min distance as fast as

40 Special-purpose branch-and-cut for balanced combinatorial optimization

possible. While k-balanced min/max chooses edges to remove, the removal rule of k-balanced
extreme is cost-based. For an edge cost Ci ∈ C(E), let d(Ci,H) := min(|lH − Ci|, |uH − Ci|).
The out-edge set F is iteratively constructed as follows. Initially, F = ∅. At each iteration, we
select a cost Ci ∈ C(H \ F) that yields the smallest d(Ci,H) and add all the edges with cost Ci

in H \ F to F. The process terminates when the cardinality of F is at least k. The tuple (l′, u′)
is set to (mine∈H\F ce, maxe∈H\F ce). This selection method can reduce the max-min distance
substantially. However, it also decreases the cardinality of EC(F, l′, u′) and thus decreases the
possibility of finding the in-edge set F. Algorithm 10 gives the formal description of the rule.

Table 3.2 summarizes the (F, l′, u′) selection rules of the three k−balanced variants.

F l′ u′

k−balanced min
min-cost edges and
edges found by MCCP

lH + 1 uH

k−balanced max
max-cost edges and
edges found by MCCP

lH uH − 1

k−balanced extreme
extreme-cost edges and

edges with smallest d(c,H)
mine∈H\F ce maxe∈H\F ce

Table 3.2. Selection rules of (F, l′, u′)

Notice that in all variants of k−balanced, we only consider one subset F to find k−exchange
at each iteration. Although this setting can omit high-quality k−exchanges, it allows the algo-
rithm to launch with many random initial tours and k’s values within an acceptable amount
of CPU time. Thus, we can still obtain reasonable, feasible solutions. To further improve the
algorithm, when the number of min-cost edges or max-cost edges is at most 3, we search 3−opt
moves with all valid edge triples of the tour.

3.4.3 Edge elimination

In order to improve the efficiency of solving LP relaxations, it is helpful to eliminate edges that
are not likely to be present in an optimal tour. It is important to note that the branch-and-cut
algorithm aims to refine the incumbent solution. Consequently, if we can demonstrate that the
occurrence of a specific edge would result in a worse tour compared to the current best tour,
we can remove this edge to sparsify the graph and reduce the number of decision variables.

As proven in Lemma 3.4.2, if a tour contains an edge with cost Ci, its max-min distance is at
least the length of the shortest biconnected interval compatible with Ci. Let (xH0 , lH0 , uH0) be
the initial feasible solution corresponding to a tourH0 found by Algorithm 8. Then, edges with
costs Ci satisfying γ(Ci) > uH0 − lH0 can not be part of an optimal tour; otherwise, the max-min
distance of this tour will be greater than uH0 − lH0 . By this observation, we can remove edges
e ∈ E such that γ(ce) > uH0 − lH0 .

3.4.4 Variable fixing

To decrease the number of decision variables during the branch-and-cut algorithm, we fix some
variables by adding corresponding cutting planes (e.g., add the inequality xe = 0 if we want

Illustration: Branch-and-cut algorithm for the BTSP 41

to fix xe to 0). Naturally, variables that can not help to improve the incumbent solution should
be fixed to 0. In this section, we propose two heuristics to determine such variables: one based
on biconnected intervals compatible with costs and one based on fixed costs at tree nodes.
Throughout this section, let (x, u, l) be the current incumbent solution of the enumeration tree.

3.4.4.1 Biconnected-interval-based variable fixing

Using the same arguments as in Section 3.4.3, edges with costs Ci such that γ(Ci) ≥ u− l can
not be part of tours that are better than the current best tour in terms of the max-min distance.
Thus, the variables corresponding to such edges can be permanently fixed to 0 in the remaining
nodes of the tree. Therefore, when a new incumbent solution (x, u, l) is obtained, we add the
following inequalities to LP relaxations

xe = 0 ∀e ∈ E : γ(ce) ≥ u− l. (3.4)

Obviously, the inequalities (3.4) are valid for the remainder of the enumeration tree.

3.4.4.2 Fixed-costs-based variable fixing

The second heuristic to fix variables is due to the fact that each node of the enumeration tree
is associated with two disjoint edge sets F0 and F1 where F0, F1 consist of edges that have been
fixed to 0 and 1, respectively. Given a node ⟨F0, F1⟩, let H′ be a tour found by this node or its
descendants. If the max-min distance ofH′ is smaller than the current best objective value (i.e.,
u− l), then the edges of H′ belong to either F1 or {e ∈ E : SC(F1) − (u− l) < ce < IC(F1) + (u−
l)} where SC(F1) and IC(F1) are respectively the maximum and minimum of C(F1). Thus, edges
that are not in either of these two sets can be fixed to 0 in this node and its descendant. The
inequalities corresponding to the fixing of these variables are

xe = 0, ∀e ∈ E : ce /∈ (SC(F1) − (u− l), IC(F1) + (u− l)) (3.5)

Since the validity of inequalities (3.5) depends on fixed costs at the node, these inequalities are
only valid for the considered node and its descendants.

3.4.5 Separation algorithms and strategies

In branch-and-cut algorithms, cutting planes are generated at some nodes of the tree by solving
separation problems. An efficient branch-and-cut algorithm relies on not only good separation
algorithms but also deft separation strategies. In this section, we present separation procedures
and strategies for generating subtour elimination constraints and local bounding cuts. We first
denote by (xi, ui, li) a fractional solution of an LP relaxation associated with a tree node.

3.4.5.1 Subtour elimination constraints

Recall that subtour elimination inequalities have the form ∑e∈δ(S) xe ≥ 2 where S ⊂ V. To find
subtour elimination constraints violated by xi, one can construct a graph Gi = (V, Ei) with
edge set Ei = {e ∈ E | xi

e > 0}. A weight associated with e ∈ Ei is xi
e. By this setting, a violated

42 Special-purpose branch-and-cut for balanced combinatorial optimization

subtour elimination constraint is a cut whose weight is less than 2 in Gi. Such a cut can be
found via a Gomory-Hu tree [51] of Gi, built from |V| − 1 max-flow computation.

Since solving subtour’s separation problem is computationally expensive and can provide
no cutting planes, we only generate these inequalities at every 100 nodes instead of every node
in the enumeration tree.

3.4.5.2 Local bounding cuts

At a node associated with ordered edge set pair < F0, F1 >, one can generate at most O(|E|)
local bounding cuts. However, if we generate all possible local bounding cuts at every node,
the subproblems will be enormous and hard to solve. Thus, we only generate local bounding
cuts with variables xe such that 0 < xi

e < 1 and IC(F1) < Me. In addition, since the local
bounding cuts are mainly for the optimality phase, we only generate them when the IP relative
gap is less than 0.5 at every 10 nodes.

3.5 Computational results

In this section, we present experimental results to assess the efficiency of our branch-and-cut
algorithm. All the experiments are conducted on a PC Intel Core i7-10700 CPU 2.9GHz and
64 GB RAM. The algorithm is implemented in Python using CPLEX 12.10 with default setting
and one solver thread. The CPU time limit for exploring the enumeration tree is set to 10800
seconds. To make comparisons with the DT algorithms [13], we use the identical testbed of 65
TSPLIB instances [46]. These instances include graphs with 14 to 493 vertices.

To verify the graph’s biconnectivity in the lower bounding algorithm (i.e., Algorithm 7), we
use a depth-first-search algorithm implemented by the Networkx algorithm [52].

We initialize tours for k−balanced algorithms by permutations of {1, . . . , |V|} since the
testing instances are complete graphs. The problem of completing a Hamiltonian cycle to
find k−exchanges is resolved by MILP through using CPLEX 12.10. To initialize good up-
per bounds for the branch-and-cut algorithm, we execute k−balanced extreme and 3−balanced
with 10 random tours. For instances with fewer than 50 vertices, only 3−balanced is performed.
The k values are in the set {10, 20, . . . ,K} where K is defined based on instance sizes in Table
3.3. During the branch-and-cut algorithm, we execute k−balanced min/max with k = K and
3−balanced to improve the incumbent solutions.

Graph size (|V|) |V| < 50 50 ≤ |V| < 100 100 ≤ |V| < 200 |V| ≥ 200

K − 30 50 100

Table 3.3. The values of K correspond to instance sizes.

We first select 12 instances from the test set to analyze the impact of our additional com-
ponents in the branch-and-cut algorithm. The initial set comprises four small-sized instances
(gr21, hk48, eil75, gr96), four medium-sized instances (pr136, si175, d198, tsp225) and four
large-sized instances(a280, lin318, pcb442, d493). The first experiment in Section 3.5.1 aims

Computational results 43

Instance Our B&C CPLEX

Obj Gap(%) CPU(s) Nodes Obj Gap(%) CPU(s) Nodes

gr21 115 0.0 0.6 0 115 0.0 0.2 298
hk48 156 0.0 4.3 157 156 0.0 5.7 3389
eil76 2 0.0 6.2 390 2 0.0 5241.6 470000
gr96 314 0.0 93.9 1130 314 0.0 143.1 12957
pr136 126 0.0 62.5 1126 126 0.0 243.8 15709
si175 7 0.0 150.6 3854 7 28.6 10800.0∗ 113245
d198 1122 0.0 2424.5 16892 1122 58.7 10801.4∗ 62677
tsp225 6 0.0 135.0 682 6 0.0 3955 28550
a280 3 0.0 196.8 481 3 0.0 5319.6 31856
lin318 31 0.0 499.3 1591 641 100.0 10804.8∗ 43700
pcb442 27 0.0 9013.8 1592 283 100.0 10805.6∗ 22712
d493 1193 0.0 4114.4 7399 1628 100.0 10808.1∗ 8935

Average 0.0 1391.8 2941.2 32.3 5744.1 67835.7

Table 3.4. Comparison between the two algorithms on the 12 TSPLIB instances

at comparing our branch-and-cut algorithm to the commercial solver CPLEX 12.10, a general-
purpose branch-and-cut algorithm. Then, Section 3.5.2 evaluates the impact of the components:
local bounding cuts, the lower bounding algorithm, and the k−balanced algorithm. Finally, in
Section 3.5.3, the entire testbed’s results are shown with a comparison to the results of the DT
algorithms reported in [13].

3.5.1 The effectiveness of the proposed branch-and-cut algorithm

In the first experiment, we compare our algorithm with the commercial solver CPLEX in solv-
ing (MILP-BTSP).

Table 3.4 reports the results of the two algorithms on the initial test set. Column “Instance”
displays the instance’s names where the number at the end stands for the number of graph
vertices. The results of each algorithm contain the best objective value found by the algo-
rithm within the CPU time limit (subcolumn “Obj”), the current IP relative gap (subcolumn
“Gap(%)”), the running time in seconds (subcolumn “CPU(s)”), and the number of nodes in the
enumeration tree (subcolumn “Nodes”). Notice that the running time includes the time spent
on the initialization step and the enumeration tree exploration. Instances whose running times
are marked with an asterisk (∗) are instances that cannot be solved to proven optimality within
the CPU time limit.

Numerical results illustrate that our branch-and-cut algorithm outperforms CPLEX. In-
deed, within the CPU time limit, our algorithm can solve all 12 instances to proven optimality,
whereas CPLEX can only solve 7 out of 12 instances to proven optimality. More precisely,
CPLEX fails to prove the solution optimality for si175 and d198, and could not find an optimal
solution for lin318, pcb442, and d493. Among the 12 instances, there is only one instance (gr21)
on which our algorithm performs slower; for the rest, our algorithm solves the problems 4
times faster on average than CPLEX. Furthermore, our algorithm’s average tree size is 23 times
smaller than that of CPLEX.

44 Special-purpose branch-and-cut for balanced combinatorial optimization

Instance Full Full Local cuts Full Lower bounding Full k−balanced

Gap(%) CPU(s) Gap(%) CPU(s) Gap(%) CPU(s) Gap(%) CPU(s)

gr21 0.0 0.6 0.0 0.5 0.0 0.6 0.0 0.6
hk48 0.0 4.3 0.0 3.8 0.0 3.8 0.0 16.5
eil76 0.0 6.2 0.0 471.3 0.0 1427.2 0.0 251.0
gr96 0.0 93.9 0.0 57.1 0.0 110.2 0.0 151.1
pr136 0.0 62.5 0.0 94.0 0.0 78.6 0.0 161.8
si175 0.0 150.6 0.0 3169.5 71.4 10806.9∗ 0.0 3579.2
d198 0.0 2424.5 0.0 1537.8 44.9 10810.3∗ 27.6 10824.9∗

tsp225 0.0 135.0 0.0 991.6 0.0 3096.0 0.0 4232.0
a280 0.0 196.8 25.0 10826.9∗ 100.0 10825.6∗ 0.0 10074.2
lin318 0.0 499.3 0.0 461.8 0.0 1014.8 96.1 10835.7∗

pcb442 0.0 9013.8 23.5 10899.8∗ 100.0 10858.9∗ 98.0 10847.4∗

d493 0.0 4114.4 0.0 9118.0 0.0 6568.6 98.2 10862.8∗

Average 0.0 1391.8 4.0 3136.0 26.4 4633.5 26.7 5153.1

Table 3.5. Computational results of the algorithm variants

3.5.2 Impact of local cuts, lower bounding, and k−balanced components

The aim of this section is to evaluate the effectiveness of three additional components: local
bounding cuts, the lower bounding algorithm, and the k−balanced algorithm. Toward this
end, we create four algorithm variants. The Full variant is the complete version that uses all
three components. The Full x variant represents a version excluding the component x, such as
Full Local cuts omits local bounding cuts.

The computational results in Table 3.5 indicate that all proposed components are crucial for
the efficiency of the branch-and-cut algorithm. Excluding any of these components can dra-
matically increase the algorithm’s running time and lead to failure in solving several instances
to proven optimality. We can order the impact of the components as follows: k−balanced >

Lower bounding > Local cuts. More precisely, when the k−balanced algorithm is omitted, the
computing time increases the most, i.e., 3.2 times compared to the Full version. Then, the ab-
sence of the lower bounding algorithm results in a slowdown of 2.7 times, and the lack of local
bounding cuts leads to a 1.6 times decrease in speed.

Computational results 45

Instance DT algorithms [13] Our B&C

LB Obj CPU(s) Initial LB Initial UB Obj CPU(s)

burma14 120 134 0.02 120 134 134 0.3
ulysses16 837 868 0.05 173 868 868 0.5
gr17 94 119 0.07 80 129 119 0.5
gr21 110 115 0.07 65 120 115 0.6
ulysses22 837 868 0.29 157 868 868 0.6
gr24 33 33 0.1 33 45 33 0.7
fri26 21 21 0.04 21 25 21 0.5
bayg29 23 29 0.3 23 34 29 0.8
bays29 36 38 0.37 36 49 38 1.9
dantzig42 13 13 0.66 13 21 13 1.7
swiss42 14 14 0.22 14 32 14 1.7
att48 156 192 5.1 133 223 190↓ 3.9
gr48 46 46 2.26 46 96 46 2.9
hk48 138 156 5.06 133 189 156 4.3
eil51 3 3 0.35 3 6 3 1.5
berlin52 139 149 5.33 113 151 149 5.5
brazil58 912 1124 12.51 912 1124 1097↓ 7.7
st70 5 5 1.5 5 6 5 1.9
eil76 2 2 0.63 2 5 2 6.2
pr76 498 522 7.03 498 1015 522 8.6
gr96 281 314 83.51 281 561 314 93.9
rat99 5 5 2.84 5 9 5 9.2
kroA100 137 137 46.39 137 463 137 83
kroB100 129 145 47.96 129 471 145 65.7
kroC100 120 133 51.08 120 509 133 72.7
kroD100 140 140 42.54 137 269 140 422
kroE100 137 139 48.61 137 452 139 60.9
rd100 43 43 18.68 43 53 43 10.3
eil101 2 2 1.73 2 3 2 3.5
lin105 95 100 89.26 95 183 100 26.9
pr107 877 900 29.58 53 3645 877↓ 25.2
gr120 27 31 20.39 27 94 31 67.9
pr124 364 408 258.94 364 731 406↓ 93.2
bier127 2915 3023 186.82 874 3459 2925↓ 29.8
ch130 18 22 25.91 17 60 22 56.7
pr136 103 126 29.95 103 1149 126 62.5
gr137 403 424 352.98 354 825 424 256.3
pr144 259 259 126 259 449 259 43
ch150 17 17 23.61 17 33 17 196.9
kroA150 89 91 120.43 89 452 91 122.2
kroB150 103 109 150.36 100 454 109 83.7
pr152 59 59 155.6 59 378 59 63.3
u159 142 142 38.08 135 822 142 1933.8
si175 7 7 50.76 5 21 7 150.6
brg180 0 0 0.31 0 0 0 2.8
rat195 4 4 8.58 4 16 4 499.6
d198 1105 1125 240.34 830 1355 1122↓ 2424.5
kroA200 71 76 247.38 71 599 76 1607.7
kroB200 81 82 292.5 81 522 82 1242.7

46 Special-purpose branch-and-cut for balanced combinatorial optimization

gr202 778 875 1039.92 69 933 787↓ 289.2
ts225 21 21 19.63 0 696 21 503.1
tsp225 6 6 50.05 6 21 6 135
pr226 450 504 1260.9 450 704 504 123.5
gr229 675 742 1737.24 622 1660 706↓ 849.3
gil262 3 3 46.51 3 7 3 99.5
pr264 238 415 1226.01 238 3255 340↓ 7386.6
a280 3 3 24.56 3 16 3 196.8
pr299 89 89 473.29 89 363 89 4258.6
lin318 31 31 430.65 31 133 31 499.3
rd400 11 11 269.08 11 17 11 243.3
fl417 199 260 4047.06 82 359 229↓ 10931.2∗

gr431 1943 2195 13038.11∗ 502 2876 1962↓ 6555.5
pr439 810 1548 11967.86∗ 256 2583 994↓ 11254.4∗

pcb442 26 27 571.16 26 161 27 9013.8
d493 1191 1423 3136.15 34 1592 1193↓ 4114.4

Table 3.6. Numerical results of the DT and branch-and-cut algorithms on 65 TSPLIB instances.
Instances with the bold objective value are solved to proven optimality for the first time, and
instances with objective values marked by ↓ are ones that our algorithm can provide better
solutions. For the instances fl417 and pr439, which can not be solved to proven optimality
within the CPU time limit, their current IP relative gap are 64.2% and 74.3%, respectively.

3.5.3 Comparison to the double-threshold-based algorithms

Finally, we present the results of the branch-and-cut algorithm on the entire testbed with a com-
parison to the double-threshold (DT) algorithms [13]. To ensure fairness in the comparisons, we
reproduce the lower bounding algorithm and DT algorithms using the code furnished by the
original authors1. Note that we only implement the modified double-threshold (MDT) algo-
rithm and iterative bottleneck (IB) algorithm since these algorithms are reported to be the best
among the four heuristic variants proposed in [13]. The CPU time limit for the DT algorithms
is also set to 10800 seconds.

Table 3.6 represents the algorithm’s results. Column “DT algorithms” corresponds to the DT
algorithms’ results. Subcolumn “LB” reports lower bounds on the optimal value of the BTSP
obtained by the procedure proposed in [13]. Subcolumn “Obj” represents the best objective
values found by the MDT or IB algorithm. Subcolumn “CPU(s)” gives the total time in seconds
spent by the lower bounding procedure and the DT algorithms. In column “Our B&C” which
represents the results of the proposed branch-and-cut algorithm, subcolumns “Initial LB” and
“Initial UB” respectively indicate lower and upper bounds obtained by our lower bounding
and k−balanced algorithms in the initialization step.

As shown in Table 3.6, the DT algorithms can find an optimal solution for 52 over 65 in-
stances, but only 27 solutions are certified for their optimality. In contrast, our branch-and-cut
algorithm can solve to proven optimality 63 out of 65 instances within the CPU time limit, and
thus provide optimality certificates of 36 solutions for the first time. Furthermore, for 13 of the
65 problems - mainly large-sized instances, our algorithm obtains solutions better than the DT

1See at https://github.com/johnlarusic/arrow

https://github.com/johnlarusic/arrow

Conclusion 47

algorithms. Although the two instances fl417 and pr439 can not be solved optimally within the
time limit, their best objective values so far are significantly smaller than the DT algorithms’
ones.

3.6 Conclusion

In this chapter, we proposed a branch-and-cut algorithm for balanced combinatorial optimiza-
tion. To deal with the main challenge of estimating the largest and smallest components of the
solution, we introduced local bounding cuts, a new class of local cuts that can be applied to
any balanced combinatorial optimization problem. We then specialized in the branch-and-cut
algorithm for the BTSP, an NP-hard problem. We developed additional mechanisms to locate
the highest and smallest edge costs (i.e., edge elimination and variable fixing techniques) and
algorithms to initialize lower and upper bounds on the optimal value of the BTSP. To evaluate
the effectiveness of our algorithm, we conducted experiments on TSPLIB instances with less
than 500 vertices. For 63 out of 65 instances, we obtained optimal solutions. For 13 of the 65
instances - mainly large-sized ones, our algorithm provided solutions with smaller objective
values compared with the previous work in the literature [13]. For solving exactly large-scale
instances of thousands of vertices, more mechanisms of tightening lower and upper bounds
would be needed. Interesting directions for future research would be the investigation of new
classes of local cuts for balanced combinatorial optimization.

Chapter4
Algorithmic aspects of fair combinatorial
optimization by Ordered Weighted
Average

Summary

4.1 OWA combinatorial optimization 50

4.2 MILP formulations . 53

4.2.1 Formulation O-MILP [1] 53

4.2.2 Formulation C-MILP [2] 54

4.3 Theoretical Analysis . 56

4.3.1 Relation between the formulations 56

4.3.2 Quality estimation for the optimal solution of (Min−P) 58

4.4 A Primal-Dual Heuristic . 60

4.5 Numerical results . 61

4.6 Conclusion . 62

48

Algorithmic aspects of fair combinatorial optimization by Ordered Weighted Average 49

In the preceding chapter, the issue of fairness is addressed by minimizing the disparity in
value between the most expensive and least expensive components chosen. Clearly, this ob-
jective solely depends on the extreme costs; thus, vectors with the same max-min distance can
not be discriminated. However, in practical terms, the vector (100, 1, ..., 1, 1) is more desirable
than (100, 100, ..., 100, 1). To resolve this, one can employ an aggregation function that assesses
vectors in a manner favoring lower values.

Note that in fair combinatorial optimization, our primary focus is on the distribution of
outcome values, disregarding their orders. In other words, we are more concerned with the
set of solution component values than with which components take a particular value. An
approach considering this observation is OWA combinatorial optimization, where the values
of components are aggregated by the OWA operator. This operator distinguishes itself from the
traditional weighted average in that coefficients are associated with ordered positions rather
than specific attributes.

The OWA operator is commonly used in multi-objective optimization problems where the
criteria are measured on the same scale and can be directly compared. Such problems include
network dimensioning [53], broadcasting network problems [54], and multi-objective Markov
decision processes [55], to name a few. In the context of fair combinatorial optimization, each
component used in the solution is viewed as an objective. For example, in an optimal solu-
tion of the TSP, the cost of each selected edge is an individual objective. Naturally, the vector
of component values should be both Pareto-optimal (meaning it cannot be improved on all
components simultaneously) and fair.

In order to obtain such vectors, the OWA weights are selected to be strictly decreasing
and positive. In this case, the OWA is referred to as the Generalized Gini Index (GGI) [56],
a well-known inequality measure in economics. The GGI fulfills natural properties to encode
fairness, including the Pigou-Dalton principle of transfers, which states that transferring any
small amount from one outcome to a comparatively worse-off outcome will result in a more
favored outcome vector. Moreover, the GGI increases with respect to Pareto-dominance, en-
suring that every optimal solution to the GGI is also a Pareto-optimal solution.

Due to the ordering operator in the objective function, OWA combinatorial optimization
problems are non-linear, even if their original constraints are linear. Several MILP formula-
tions have been proposed in the literature to linearize the OWA. For the GGI with decreasing
weights, there exist two ways to linearize it: one proposed by Ogryczak et al. [1] using the
cumulative ordered achievement vector (formulation O-MILP) and the other given by Chas-
sein et al. [2] employing the permutahedron (formulation C-MILP). Although C-MILP was
reported to be more efficient than O-MILP for some continuous optimization problems [2], it
remains uncertain which formulation is best for fair combinatorial optimization, as integrating
linearization methods into the formulations of OWA combinatorial optimization may imply
additional difficulties. For instance, Lesca et al. [57] proved that the OWA assignment problem
is NP-hard.

In this chapter, we provide a comparative study of the two MILP formulations for OWA
combinatorial optimization. Our study contains theoretical analysis and experimental results
on a specific combinatorial optimization problem (i.e., the TSP). In particular, we prove that
O-MILP and C-MILP are equivalent in terms of linear relaxations and estimate the GGI value

50 Algorithmic aspects of fair combinatorial optimization by Ordered Weighted Average

quality of the optimal solution of classical combinatorial optimization. We also experimentally
compare O-MILP, C-MILP, and primal-dual heuristics [8] for solving the OWA TSP. Interest-
ingly, although O-MILP uses more variables than C-MILP, its performance on the OWA TSP is
better than that of C-MILP.

The structure of this chapter is as follows. We first recall the definition of OWA combi-
natorial optimization in Section 4.1, followed by two linearization methods in Section 4.2. In
Section 4.3, we provide a theoretical analysis of the relation between the MILP formulations
and a quality evaluation of the optimal solution of the classical combinatorial optimization.
Section 4.4 presents a generic method based on the primal-dual algorithm in [8] as a faster al-
ternative to deal with large-sized instances. Experimental results to evaluate the methods are
shown in Section 4.5. Finally, our conclusions are discussed in Section 4.6.

4.1 OWA combinatorial optimization

We consider a combinatorial optimization problem whose feasible set X ∈ {0, 1}m can be de-
scribed as:

Ax ≤ b

x ∈ {0, 1}m

where A ∈ RK×m, b ∈ RK, K, m are positive integers, and x is the vector of decision variables.
We refer to the values of components selected in a feasible solution x ∈ X (i.e., components
corresponding to xi = 1, i ∈ [m]) as a value vector v = (v1, . . . , vn). We restrict the number of
selected components to being constant for all feasible solutions. Let C be an n×m matrix that
maps the feasible set X into the value set V ⊆ Rn, namely that v = Cx.

Combinatorial optimization problems typically seek a feasible solution x that optimizes
an aggregation function of value vectors. For example, in the TSP, value vector v represents
the costs of edges in the tour, and the aggregation function is the sum of the elements in v.
Formally, a combinatorial optimization problem can be formulated as follows:

min f (v) (4.1a)

s.t. v = Cx (4.1b)

Ax ≤ b (4.1c)

x ∈ {0, 1}m (4.1d)

where f is an aggregation function. In classical optimization problems, the objective is typi-
cally minimizing the total values of v’s components. In that case, the aggregation function is
the sum, and the problem can be rewritten as:

(Min−P)

min ∑
i∈[n]

vi

s.t v = Cx

Ax ≤ b

x ∈ {0, 1}m.

(4.2a)

(4.2b)

(4.2c)

(4.2d)

OWA combinatorial optimization 51

When dealing with the issue of fairness, we focus on the distribution of values in the vector
v. Thus, solutions with the same set of values, though potentially in a different order, should
be treated as identical. In order to ensure this, the aggregation function must satisfy:

f (v1, . . . , vn) = f (vτ(1), . . . , vτ(n)) (4.3)

for any permutation τ of [n]. One of such aggregation function is the OWA operator, introduced
by Yager [20]. In the OWA operator, the weights are associated with the ordered attribute
values (i.e., the largest value is multiplied by the first weight, the second largest value by the
second weight, and so on). Hence, it is permutation-independent. Formally, this operator can
be defined as follows.

Definition 4.1.1. [20] Given a vector v ∈ Rn, the OWA value of v is defined by:

OWAw(v) = ∑
k∈[n]

wkθk(v) (4.4)

where w = (w1, . . . wn) ∈ [0, 1]n and θk(v) is the kth largest component of v.

Note that Definition 4.1.1 presented here differs from the original definition introduced
by Yager [20], as the weights are not necessarily normalized. This modification simplifies the
transformation used later on without loss of generality.

The OWA allows for modeling various aggregation functions, such as the minimum (wk =

0, ∀k ∈ [n − 1] and wn = 1), average (wk = 1/n, ∀k ∈ [n]), maximum (w1 = 1 and wk =

0, ∀k ̸= n), and sum (wk = 1, ∀k ∈ [n]). In cases where the weights w are strictly decreasing and
positive, the OWA is referred to as the Generalized Gini Index (GGI) [56], a well-studied measure
to represent the income or wealth inequality in economics. We denote the GGI with weights w
by Gw.

Thanks to the weight restrictions, the GGI increases with respect to Pareto dominance, i.e.,
if v ∈ Rn Pareto-dominates v′ ∈ Rn (vi ≥ v′i ∀i ∈ [n], ∃j ∈ [n], vj > v′j) then Gw(v) > Gw(v′).
Due to this property, every optimal solution to (4.1) is a Pareto-optimal (efficient) solution. This
is consistent with the minimization of all individual solution components.

More importantly, the GGI can encode the Pigou-Dalton principle of transfers [58, 59], an
important property when measuring inequality. Intuitively, the Pigou-Dalton principle states
that transferring an amount from a higher value component to a lower one without revers-
ing their relative orders obtains a fairer value vector. The GGI is designed to decrease with
such transfers, reflecting the reduced inequality. Formally, for any v ∈ Rn where vi < vj and
ϵ ∈ (0, vj − vi), then Gw(v1, . . . , vi, . . . , vj, . . . , vn) > Gw(v1, . . . , vi + ϵ, . . . , vj − ϵ, . . . , vn). This
principle is equivalent to requiring Gw is strictly Schur-concave [60].

The equitability property encoded by the GGI can be illustrated through the Lorenz curve
[61], a widely used graphical representation of the distribution of income within a population,
as in Figure 4.1. Let θk(v) = ∑i∈[k] be the kth Lorenz component of v. Then, the GGI can be
rewritten as the weighted sum of Lorenz components, i.e.,

Gw(v) = ∑
k∈[n]

w′kθk(v) (4.5)

52 Algorithmic aspects of fair combinatorial optimization by Ordered Weighted Average

0 20 40 60 80 100

0

20

40

60

80

100

cumulative component (in %)

cu
m
u
la
ti
ve

va
lu
e
(i
n
%
)

Figure 4.1. Lorenz curves. The green line represents perfect equality. The red and blue lines
depict the Lorenz curves for vector v before and after making a Pigou-Dalton transfer, respec-
tively.

where w′k = wk − wk+1 for k ∈ [n − 1] and w′n = wn. A perfectly equal distribution of value
vectors would be one in which every component has the same value. In that case, the highest
N% of components should have N% of the total values. This can be depicted by the straight
line y = x, referred to as the line of perfect equality. Therefore, the closer the Lorenz curve of
vector v is to this line, the more equally distributed the v’s values are. When taking a Pigou-
Dalton transfer, the resulting vector’s Lorenz curve moves closer to the perfect equality line.
This represents a more equal distribution of the vector’s values through the transfer.

In summary, the GGI can encode both the notions of efficiency (with respect to Pareto dom-
inance) and fairness (with respect to the Pigou-Dalton transfer). Thus, in this chapter, we in-
vestigate OWA combinatorial optimization, which uses the GGI aggregation in the objective
function, i.e.,

(OWA−P)

min Gw(v)

s.t v = Cx

Ax ≤ b

x ∈ {0, 1}m

(4.6a)

(4.6b)

(4.6c)

(4.6d)

For illustration, we now present the concept of OWA combinatorial optimization in the context
of TSP.

Example 4.1.2. Given a graph G = (V, E) where V := [n] = {1, 2, . . . , n}, |E| = m, and a
cost vector c ∈ Rm associated with the edge set E, the TSP seeks the shortest tour which visit
each city exactly once and returns to the origin city. Therefore, v contains the costs of n edges
selected in the tour.

To represent v, we consider a directed version Gd = (V, Ed) of G. In particular, each
edge e = (i, j) ∈ E becomes two arcs (i, j) and (j, i) with cost ce, i.e., cij = cji = ce. For
each arc (i, j), let xij be a binary variable to represent the occurrence of (i, j) in a directed
tour of Gd. Denote N−(i) = {j ∈ [n]|(j, i) ∈ Ed} and N+(i) = {j ∈ [n]|(i, j) ∈ Ed} the
in-neighbor and out-neighbor sets of vertex i ∈ [n]. By the fact that each vertex i has only

MILP formulations 53

one incoming arc in the directed tour, i.e., ∑j∈N−(i) xji = 1, ∀i ∈ [n], v can be represented by
(∑j∈N−(1) cj1xj1, . . . , ∑j∈N−(n) cjnxjn).

Instead of minimizing the sum objective function, OWA TSP optimizes the GGI objective
function ∑i∈[n] wiθi(v), which can encode both the efficiency and fairness of v. A MILP formu-
lation for OWA TSP based on the subtour polytope [47] can be written as follows:

(OWA−TSP)

min Gw(v)

s.t vi = ∑
j∈N−(i)

cjixji ∀i ∈ [n]

∑
j∈N−(i)

xji = 1 ∀i ∈ [n]

∑
j∈N+(i)

xij = 1 ∀i ∈ [n]

∑
i,j∈Q,(i,j)∈Ed

xij ≤ |Q| − 1 ∀Q ⊂ V

x ∈ {0, 1}2m.

(4.7a)

(4.7b)

(4.7c)

(4.7d)

(4.7e)

(4.7f)

The OWA TSP is NP-hard since it is reduced from finding a Hamiltonian cycle problem.

Because of the objective function, OWA combinatorial optimization is non-linear. More
precisely, the ordering operator θ in the OWA function causes OWA combinatorial optimization
to become non-linear even if the original constraints are linear. Thankfully, the OWA function
can be linearized by two methods studied in [1] and [2], which are presented now.

4.2 MILP formulations

4.2.1 Formulation O-MILP [1]

In [1], Ogryczak et al. proposed a method to linearize the OWA function using the Lorenz
components of θ(v). Notice that when fixing v, θk(v) can be computed as a solution to a
knapsack problem:

θk(v) = max

{
∑

i∈[n]
viaki | ak ∈ [0, 1]n, ∑

i∈[n]
aki = k

}
(4.8)

To integrate into a LP where v is also variable, we take a dual of (4.8), which is

θk(v) =min krk +
n

∑
i=1

dki

s.t rk + dki ≥ vi ∀i ∈ [n]

dki ≥ 0 ∀i ∈ [n].

(4.9)

Combining with (4.5), we get a MILP formulation for (OWA−P), called O-MILP:

54 Algorithmic aspects of fair combinatorial optimization by Ordered Weighted Average

(O-MILP)

min ∑
k∈[n]

w′k(krk + ∑
i∈[n]

dki)

s.t rk + dki ≥ vi ∀k, i ∈ [n]

dki ≥ 0 ∀k, i ∈ [n]

v = Cx

Ax ≤ b

x ∈ {0, 1}m

(4.10a)

(4.10b)

(4.10c)

(4.10d)

(4.10e)

(4.10f)

Before presenting the second formulation, we exploit O-MILP’s structure to get useful in-
formation for later analysis. Toward this end, we consider a dual of O-MILP’s continuous
relaxation (denoted as (DO)) which has the following form:

(DO)

max − uTb− ∑
k∈[m]

tk

s.t. ∑
i∈[n]

yki = kw′k ∀k ∈ [n]

yki ≤ w′k ∀k, i ∈ [n]

∑
k∈[n]

yki + zi = 0 ∀k ∈ [n]

(uA)k − (zC)k + tk ≥ 0 ∀k ∈ [m]

yki ≥ 0 ∀k, i ∈ [n]

tk ≥ 0 ∀k ∈ [m]

uk ≥ 0 ∀k ∈ [K].

(4.11a)

(4.11b)

(4.11c)

(4.11d)

(4.11e)

(4.11f)

(4.11g)

(4.11h)

Interestingly, if we fix y and take a dual of (DO), we obtain a continuous relaxation of
(Min−P) with modified costs, i.e.

(RPy)

min ∑
i∈[n]

(∑
k∈[n]

yik)vi

s.t. v = Cx

Ax ≤ b

x ∈ [0, 1]m

(4.12a)

(4.12b)

(4.12c)

(4.12d)

As a consequence, a solution (x, v) for the formulation (RPy) with integrality conditions
x ∈ {0, 1}m is also feasible for O-MILP (in the sense that one can also find (r, d) such that
(r, d, x, v) is feasible for O-MILP and its corresponding objective function is equal to Gw(v)).
We denote (Py) the discrete version of (RPy) where x ∈ {0, 1}m.

4.2.2 Formulation C-MILP [2]

An alternative approach to linearize Gw(v), studied in [2], starts from an observation that if
we permute w and take the inner product with v, Gw(v) is the maximum value of this inner

MILP formulations 55

product considering all permutations of w. Formally, Gw(v) = maxwτ∈Π w⊤τ v where Π is the
set of all permutations (of the coefficients) of the vector w. Thus, with v fixed, Gw(v) can be
computed by the following LP problem:

max ∑
i∈[n]

∑
k∈[n]

pikwivk (4.13a)

s.t ∑
i∈[n]

pik = 1 ∀k ∈ [n] (4.13b)

∑
k∈[n]

pik = 1 ∀i ∈ [n] (4.13c)

pik ≥ 0 ∀i, k ∈ [n]. (4.13d)

Take a dual of (4.13) and integrate it into (OWA−P), we get the second MILP formulation for
(OWA−P), called C-MILP:

(C-MILP)

min ∑
i∈[n]

(αi + βi)

s.t αi + βk ≥ wivk ∀i, k ∈ [n]

v = Cx

Ax ≤ b

x ∈ {0, 1}m

(4.14a)

(4.14b)

(4.14c)

(4.14d)

(4.14e)

We also consider a dual of C-MILP’s continuous relaxation (denoted as (DC)) as the previous
section.

(DC)

max − uTb− ∑
k∈[m]

tk

s.t. ∑
i∈[n]

pikwi + zk = 0 ∀k ∈ [n]

(uA)k − (zC)k + tk ≥ 0 ∀k ∈ [m]

∑
i∈[n]

pik = 1 ∀k ∈ [n]

∑
k∈[n]

pik = 1 ∀i ∈ [n]

pik ≥ 0 ∀i, k ∈ [n]

tk ≥ 0 ∀k ∈ [m]

uk ≥ 0 ∀k ∈ [K].

(4.15a)

(4.15b)

(4.15c)

(4.15d)

(4.15e)

(4.15f)

(4.15g)

(4.15h)

Then, a dual of the above formulation with p fixed is:

(RPp)

min ∑
i∈[n]

(
∑

k∈[n]
wk pik

)
vi

s.t. v = Cx

Ax ≤ b

x ∈ [0, 1]m

(4.16a)

(4.16b)

(4.16c)

(4.16d)

56 Algorithmic aspects of fair combinatorial optimization by Ordered Weighted Average

We denote (Pp) the integer version of (RPp) over x (i.e., the constraint (4.16d) is replaced by
x ∈ {0, 1}m). Similar to O-MILP, solving (RPp) with x discrete yields a feasible solution for
C-MILP.

In comparison, C-MILP’s size is smaller than O-MILP’s due to the number of extra vari-
ables. More precisely, although both formulations use the same number of additional con-
straints (i.e., n2), C-MILP utilizes only 2n new variables instead of n2 + n as in O-MILP. These
formulations were compared experimentally for several continuous optimization problems [2].
In this paper, we provide a theoretical analysis (Section 4.3) in order to understand these for-
mulations better, and we experimentally evaluate them for combinatorial optimization (Sec-
tion 4.5).

4.3 Theoretical Analysis

In this section, we show that the two formulations are equivalent in terms of linear relaxations.
Then, we give an estimation of the GGI value corresponding to optimal solutions of (Min−P)
based on that of (OWA−P).

4.3.1 Relation between the formulations

We first introduce two notations. Let Y be the set of points that satisfy (4.11b) and (4.11c), and
P be the set of points that satisfy (4.15d), (4.15e) and (4.15f).

The following theorem relates the problems (Py) and (Pp).

Theorem 4.3.1. There exists a one-to-one correspondence ϕ : P → Y such that ∀p ∈ P , problems
(Pp) and (Pϕ(p)) have the same solutions.

This theorem directly follows from the following two lemmas, which show that the set of
feasible solutions of (Pp) for p ∈ P and that for (Py) for y ∈ Y coincide.

Lemma 4.3.2. ∀p∗ ∈ P , ∃y∗ ∈ Y such that ∀i ∈ [n], ∑k∈[n] wk p∗ik = ∑k∈[n] y∗ik.

Proof. It is sufficient to prove the result for the extreme points of polytope P . As any other
point p′ is a convex combination of some extreme solutions p1, . . . , pk, its counterpart y′ can
be obtained by the same convex combination of the counterparts y1, . . . , yk of p1, . . . , pk.

Recall that the set of extreme points of P is exactly the set of permutations on set [n]. Let
p∗ be an extreme point of P . Therefore, all the components of p∗ are null except for some n
components p∗i11 = p∗i22 = . . . = p∗inn = 1. The counterpart y∗ of p∗ can be built as follows:

y∗i11 = w′1 y∗i12 = w′2 y∗i1n = w′n
y∗i21 = 0 y∗i22 = w′2 y∗i2n = w′n

.
y∗ik1 = 0 y∗ik2 = 0 . . . y∗ikk = w′k . . . y∗ikn = w′n

. y∗inn = w′n


By considering any column k ∈ [n], one can check: y∗ ∈ Y , i.e., ∑j∈[n] y∗ijk

= kw′k and y∗ijk
≤ w′k.

Moreover, by summing any row ij for j ∈ [n], one can check: ∑k∈[n] y∗ijk
= wj = ∑k∈[n] wk p∗ijk

.

Lemma 4.3.3. ∀y∗ ∈ Y , ∃p∗ ∈ P such that ∀i ∈ [n], ∑k∈[n] wk p∗ik = ∑k∈[n] y∗ik.

Theoretical Analysis 57

Proof. Similarly to Lemma 4.3.2, it suffices to show the result for any extreme solution y in Y .
Let us consider the following transportation problem (TP) where the set of the supply nodes
and the set of demand nodes are both [n]. For any i, j ∈ [n], the supply at supply node i is equal
to ∑k∈[n] y∗ik and the demand of demand node j is equal to wj. Note that the total supply is equal
to the total demand, because ∑i∈[n] y∗ik = kw′k, ∑k∈[n] ∑i∈[n] y∗ik = ∑k∈[n] kw′k = ∑i∈[n] wi. For any
feasible solution of TP, Φ =

(
Φik
)

i,k∈[n] where Φik is the value of the commodity transported

from supply node i to demand node k, we can define a vector p as follows: pik = Φik
wk

for all
i, k ∈ [n], which by definition satisfies:

∑
i∈[n]

pik = ∑
i∈[n]

Φik

wk
=

∑i∈[n] Φik

wk
= 1, (4.17)

and

∑
k∈[n]

y∗ik = ∑
k∈[n]

Φik = ∑
k∈[n]

wk pik. (4.18)

If p does not satisfy (*) ∑k∈[n] pik = 1 for all i ∈ [n], we will construct a sequence Φt and its
associated pt such that ||∑k∈[n] pt

·k− 1||1 = ∑i∈[n] |∑k∈[n] pt
ik− 1| tends to zero, where 1 denotes

the vector in Rn whose components are all equal to 1.
We first show that if p does not satisfy (*), then ∃i, j, h, l ∈ [n] such that h < l and Φil > 0

and Φjh > 0. Let P1 = {i ∈ [n] | ∑k∈[n] p∗ik ≥ 1} and P2 = {i ∈ [n] | ∑k∈[n] p∗ik < 1} be a
partition of [n]. By assumption, P2 ̸= ∅. Let p1 = |P1|, p2 = |P2|, W1 = [p1], and W2 =

{p1 + 1, p1 + 2, . . . , n}. Among the following four cases, only one is possible:

• There exist both strictly positive flows from supply nodes in P1 to demand nodes in W2

and strictly positive flows from supply nodes in P2 to demand nodes in W1. Thus, there
are some i ∈ P1, j ∈ P2, h ∈W1 and l ∈W2 such that Φ∗il > 0 and Φ∗jh > 0.

• There exist strictly positive flows from supply nodes in P1 to demand nodes in W2 but no
strictly positive flows from supply nodes in P2 to demand nodes in W1. Observe that the
p1 greatest values that ∑k∈[n] y∗ik for i ∈ [n] can take are w′1 + w′2 + . . . + w′n−1 + w′n = w1,
w′2 + w′3 + . . . + w′n = w2, . . . , w′p1

+ w′p1+1 + . . . + w′n = wp1 . Hence ∑i∈P1 ∑k∈[n] y∗ik ≤
∑i∈[p1] wi, i.e., the total supply in P1 is less than or equal to the total demand in W1. Thus,
it is impossible that W1 only receive flows from P1 and P1 can still send positive flows to
W2.

• There exist strictly positive flows from supply nodes in P2 to demand nodes in W1 but
no strictly positive flows from supply nodes in P1 to demand nodes in W2. Thus, strictly
positive flows to W2 come uniquely from P2. Hence, we can observe that

∑
i∈P2,k∈W2

p∗ik = ∑
i∈[n],k∈W2

Φ∗ik
wk

= ∑
k∈W2

wk

wk
= |W2| = p2

But as ∑k∈[n] p∗ik < 1 for all i ∈ P2, ∑i∈P2,k∈[n] p∗ik < |P2| = p2, we have then

p2 = ∑
i∈P2,k∈W2

p∗ik ≤ ∑
i∈P2,k∈[n]

p∗ik < p2,

which is contradictory.

58 Algorithmic aspects of fair combinatorial optimization by Ordered Weighted Average

• There are no strictly positive flows from supply nodes in P2 to demand nodes in W1 and
no strictly positive flows from supply nodes in P1 to demand nodes in W2. This case is
impossible due to the same reason as the previous one.

Let Φ0 be a feasible solution of TP and p0 its associated vector. For any t ∈ N, two cases
can occur: (1) if pt satisfies (*), Φt+1 = Φt and pt+1 = pt; otherwise (2) Φt+1 and pt+1 can
defined according to the following procedure. As (*) is not satisfied, there exist i, j, h, l ∈ [n]
such that h < l and Φt

il > 0 and Φt
jh > 0. We then define Φt+1 = Φt except for the following

terms: Φt+1
ih = Φt

ih + ϵ, Φt+1
il = Φt

il − ϵ, Φt+1
jh = Φt

jh − ϵ and Φt+1
jl = Φt

jl + ϵ, where ϵ =

min(Φt
il , Φt

jh,
(∑k∈[n] pt

ik−1)wlwh
wh−wl

,
(1−∑k∈[n] pt

jk)wlwh

wh−wl
). Note that ϵ > 0 since wh > wl .

Consequently, pt+1 satisfies: pt+1
ih = pt

ih + ϵ
wh

, pt+1
il = pt

il −
ϵ

wl
, pt+1

jh = pt
jh −

ϵ
wh

and
pt+1

jk = pt
jl +

ϵ
wl

. By construction, Φt+1 and pt+1 verify (4.17) and (4.18). Moreover, ∑k∈[n] pt+1
ik

is decreased by ϵ(wl−wh)
whwl

and the sum ∑k∈[n] p∗jk is increased by the same quantity. Hence,
||∑k∈[n] pt

·k − 1||1 > ||∑k∈[n] pt+1
·k − 1||1. Clearly, sequence (pt) converges to a vector in P ,

which proves this lemma.

4.3.2 Quality estimation for the optimal solution of (Min−P)

Due to the size of the formulations, MILP solvers can only solve small-sized instances of OWA
combinatorial optimization within a reasonable amount of time. Thus, if the optimal solution
of (Min−P) is “good enough" for (OWA−P), solving exactly large-sized instances is needless.
The following theorem provides an estimation to evaluate the quality of (Min−P)’s optimal
solution regarding the GGI value.

Theorem 4.3.4. Assume that there exists an approximation ratio r between (Min−P) and its
continuous relaxation (Min − RP). Let (x, v) be an optimal solution to (Min−P) and C =

r min
(

nw1
∑n

i=1 wi
, nθ1(v)

∑i∈[n] vi

)
, we have:

Gw(v) ≤ C× Gw(v∗) (4.19)

where (x∗, v∗) is an optimal solution to (OWA−P).

Proof. In this proof, we will use OPT(P) to denote the optimal objective value of problem P
(for example, OPT(DO) is the optimal objective value of (DO)). From the assumption, we have:

OPT(Min−P) ≤ rOPT(Min−RP) (4.20)

To establish the result (4.19), we only need to prove that:

Gw(v) ≤ rCi × Gw(v∗), ∀i = 1, 2

where C1 =
nw1

∑n
i=1 wi

, C2 =
nθ1(v)

∑i∈[n] vi
.

The bound with C1 results from C-MILP while that of C2 comes from O-MILP.

1. Proof of Gw(v) ≤ rC1 × Gw(v∗): Let p ∈ Rn×n subject to pik = 1/n for i, k ∈ [n]. Obvi-
ously, p satisfies constraints (4.15d) - (4.15f) of (DC). The objective value of (RPp) is:

∑
i∈[n]

 ∑
j∈[n]

wj pij

 vi =
∑j∈[n] wj

n ∑
i∈[n]

vi (4.21)

Theoretical Analysis 59

Therefore, OPT(Pp) =
∑j∈[n] wj

n OPT(Min−P) and OPT(RPp) =
∑j∈[n] wj

n OPT(Min−RP).
This observation leads to:

Gw(v) = ∑
i∈[n]

wiθi(v)

= ∑
i∈[n]

nwi

∑j∈[n] wj

∑j∈[n] wj

n
θi(v)

≤ nw1

∑j∈[n] wj

(
∑

i∈[n]

∑j∈[n] wj

n
θi(v)

)

= C1
∑j∈[n] wj

n ∑
i∈[n]

vi

= C1
∑j∈[n] wj

n
OPT(Min−P)

(4.22)

Using the relation between OPT(Min−P) and OPT(Min−RP), we get:

∑j∈[n] wj

n
OPT(Min−P)

≤ r
∑j∈[n] wj

n
OPT(Min−RP)

= rOPT(RPp)

(a)
≤ rOPT(DC)

(b)
≤ rOPT(C-MILP)

= rGw(v∗)

(4.23)

where (a) : when fixing p = p, we have OPT(DC) = OPT(RPp) (strong duality) and both
are smaller than OPT(DC) without fixing p = p; (b): since (DC) is a dual of C-MILP’s
continuous relaxation.

We obtain the proof by combining (4.22) and (4.23).

2. Proof of Gw(v) ≤ rC2 × Gw(v∗): Recall that w′i = wi − wi+1 for i ∈ [n− 1] and w′n = wn.
From O-MILP, we have:

Gw(v) = ∑
k∈[n]

(
∑

i∈[k]
θi(v)

)
w′k

= ∑
k∈[n]

n ∑i∈[k] θi(v)
k ∑i∈[n] vi

(
k
n ∑

i∈[n]
vi

)
w′k

≤ nθ1(v)
∑i∈[n] vi

∑
k∈[n]

(
k
n ∑

i∈[n]
vi

)
w′k

= C2

(
∑

k∈[n]

k
n

w′k

)
∑

i∈[n]
vi

= C2
∑j∈[n] wj

n ∑
i∈[n]

vi

= C2
∑j∈[n] wj

n
OPT(Min−P)

(4.24)

60 Algorithmic aspects of fair combinatorial optimization by Ordered Weighted Average

The desired result follows by the application of (4.23) and (4.24).

Remark 4.3.5. Compared to the ratio established in [8], Theorem 4.3.4 generally has an addi-
tional factor r. This factor depends on the actual problem. For instance, if one considers the
metric TSP where edge weights satisfy triangle inequalities, this factor will be 3/2 [62].

4.4 A Primal-Dual Heuristic

Due to the number of additional variables and constraints, the MILP formulations are only ef-
ficient for small-sized instances. A primal-dual heuristic based on O-MILP is proposed in [8]
to deal with larger-sized instances. In this section, we generalize this method for both formu-
lations, sketched in Algorithm 11.

Algorithm 11

Input: (C, A, b).
Output: A solution to (OWA−P)

1: initialize y(0) (resp. p(0))
2: repeat
3: t← t + 1
4: solve (Py(t−1)) (resp. (Pp(t−1))) to obtain a feasible solution (v(t), x(t))
5: update y(t) (resp. p(t)) based on y(t−1) (resp. p(t−1)) and (v(t), x(t))
6: until max iteration has been reached or change on y(t) (resp. p(t)) is small
7: return (v(t), x(t)) with smallest GGI value

The algorithm starts from an initialization of y(0) (resp. p(0)) satisfying conditions (4.11b),
(4.11c), and (4.11f) (resp. (4.15d) - (4.15f)). For example, we can choose y(0) (resp. p(0)) as
proposed in the proof of Theorem 4.3.4. Then y(t) (resp. p(t)) is updated iteratively based on
the improvement of lower bounds obtained from the Lagrangian relaxation corresponding to
O-MILP (resp. C-MILP). For space reasons, we focus on formulation C-MILP (formulation O-
MILP was presented in [8]). In detail, the Lagrangian relaxation of C-MILP with respect to
constraint (4.14b) can be defined as follows

L(λ) = min ∑
i∈[n]

(1− ∑
j∈[n]

λij)αi + ∑
j∈[n]

(1− ∑
i∈[n]

λij)βi

+ ∑
i∈[n]

∑
k∈[n]

λikwivk

s.t. v = Cx (4.25a)

Ax ≤ b (4.25b)

x ∈ {0, 1}m (4.25c)

where λ = (λik)i∈[n],k∈[n] is a Lagrangian multiplier.

Numerical results 61

Instance O-MILP C-MILP HO HC

CPU1(s) CPU2(s) CPU1(s) CPU2 (s) CPU(s) Gap(%) CPU(s) Gap(%)

burma14 0.83 0.27 0.45 0.20 1.50 0.23% 1.62 0.06%
gr17 1.68 0.08 1.28 0.07 1.97 1.15% .2.32 0.23%
gr21 1.46 1.40 1.08 1.04 1.82 0.02% 2.25 0.00%
gr24 8.47 0.30 8.46 0.55 3.59 0.00% 4.09 0.00%
fri26 21.01 9.35 49.97 9.08 5.74 0.00% 4.12 0.02%
bayg29 31.06 0.70 35.86 0.55 9.31 2.51% 8.38 1.11%
bays29 37.89 7.44 57.85 21.06 9.92 0.86% 11.10 1.19%
swiss42 354.47 2.23 915.22 1.38 16.86 0.51% 20.77 0.50%
att48 731.25 18.89 655.06 4.52 45.16 1.77% 97.09 1.66%
gr48 863.02 334.84 2419.39 354.91 57.17 2.86% 56.19 1.75%
hk48 1943.39 440.99 719.89 443.49 32.21 0.03% 31.14 0.48%

brazil58 10802.1∗ 180.27 10801.6∗ 664.29 21.85 (4770.24) 21.88 (4772.03)
st70 10803.0∗ 10802.7∗ 10801.4∗ 10800.3∗ 207.48 (35.89) 169.53 (35.97)
kroA100 10800.1∗ 10800.0∗ 10803.8∗ 10800.5∗ 1202.54 (811.42) 1657.44 (790.76)

Table 4.1. Numerical results for OWA TSP.

Solving (4.25) obtains a lower bound for C-MILP. To get a meaningful bound, the La-
grangian multiplier λ has to belong to set L = {λ ∈ Rn×n

+ |∑i∈[n] λik = 1 ∀k ∈ [n] , ∑k∈[n] λik =

1 ∀i ∈ [n]}. Interestingly, if we decompose formulation (4.25) into two subproblems (S1), (S2)
where (S1) over (α, β) and (S2) over (v, x), the subproblem (S2) is exactly formulation (Pp).
Thus, updating p is equivalent to updating a projected sub-gradient step, i.e:

λ′ij ← λij − γ(αi + β j − wivj) ∀i ∈ [n], k ∈ [n] (4.26a)

λ← arg min
λ∈L
||λ′ − λ|| (4.26b)

where γ is the learning rate. Since the constraints of L involve both rows and columns of
λ ∈ Rn×n, the projection on L cannot be solved by the capped simplex projection as in [8].
Hence, we perform the projection on L by minimizing a convex quadratic function over linear
constraints.

4.5 Numerical results

In this section, we provide experimental results of two MILP formulations and the primal-
dual heuristic on an OWA combinatorial optimization problem, i.e., the OWA TSP. The testbed
consists of TSPLIB instances [46] with the number of nodes in the range of 14 to 100. The
weight w of the OWA is defined by wk = 1/k2 for k ∈ [n]. We limited the solving time for
each instance to three hours (10800s). All experiments are implemented in C++ programming
language and conducted on a computer with 3GHz Intel Core i5 CPU and 16GB of RAM. We
used ILOG CPLEX version 12.10.0 with default parameters and one thread to solve LP and
MILP problems.

In (OWA-TSP), since the number of subtour elimination constraints is exponential, we gen-
erate them progressively during the branch-and-cut algorithm. In detail, when a feasible so-
lution (r∗, d∗, x∗, v∗) (resp. (α∗, β∗, x∗, v∗)) of O-MILP (resp. C-MILP) is found, we construct a

62 Algorithmic aspects of fair combinatorial optimization by Ordered Weighted Average

graph G∗ = (V, E∗) where E∗ = {ij ∈ Ed|x∗ij = 1}. Then, a strongly connected component that
does not contain all nodes of G∗ corresponds to a subtour elimination constraint violated by
x∗. Violated constraints (if any) are added to the formulations.

For simplicity, let HO, HC be Algorithm 11 utilizing O-MILP and C-MILP, respectively.
We initialized y(0)ik = k

n w′k and p(0)ik = 1
n for i, k ∈ [n]. At time step t, the learning rate γ(t)

is computed as γ(t) = OPT(P)−Gw(v′)
||λ(t−1)||2

where OPT(P) is the objective value of (Py(t−1)) (resp.
(Pp(t−1))), v′ is the best feasible solution of O-MILP (resp. C-MILP) so far.

In Table 4.1, the number in the instance’s name is the number of nodes. Columns “O-MILP"
and “C-MILP" regroup results of O-MILP and C-MILP, where subcolumn “CPU1" reports the
time in seconds that CPLEX spent to obtain the optimal solution and subcolumn “CPU2" re-
ports the time to obtain a feasible solution as small as the solution of HO (resp. HC). Results
of instances that can not be solved within the time limit (i.e., 10800s) are marked with an aster-
isk (∗). Columns “HO" and ‘HC" report respectively results of HO and HC, where subcolumn
“CPU" is the runtime and “Gap/Obj" provides the gap in percentage between the solutions
of O-MILP (resp. C-MILP) and Algorithm 11. In the case that MILP formulations can not be
solved within the time limit, we provide instead the objective value (numbers in parentheses,
without the percent sign) corresponding to a solution found byHO (resp. HC).

Numerical results confirm that MILP formulations can only handle small-sized instances.
The running time spent to solve these formulations increases rapidly with instances’ size and
can reach up to around three hours. For example, instances with more than 50 vertices can
not be solved within three hours. Interestingly, although C-MILP was shown to be better than
O-MILP for OWA simplified portfolio optimization problem [2], its performance is worse than
O-MILP’s one when applying for OWA TSP. In contrast, HO and HC solve instance quickly,
especially large-sized instances. The time spent by Algorithm 11 increases acceptably with
instance size. Furthermore, their solutions are high-quality, namely that their optimality gap is
at most 3%.

4.6 Conclusion

In this chapter, we study OWA combinatorial optimization, a fair variant of combinatorial op-
timization that uses the GGI objective function. Our result extends the previous one [8] to
deal with OWA combinatorial optimization. Our theoretical results show that two proposed
schemes of OWA linearization in the literature are equivalent in terms of linear relaxations in
the context of OWA combinatorial optimization. These linearizations can also be exploited to
compare the GGI values of optimal solutions of the original and fair version of a combinato-
rial optimization problem. Numerical results show that O-MILP can be solved faster despite
using more variables than C-MILP for OWA TSP. Our future work will focus on deriving more
efficient heuristics and developing theoretical guarantees for those heuristics.

Part II

Machine Learning for Combinatorial
Optimization

63

Chapter5
Machine learning to accelerate
branch-and-cut for combinatorial
optimization

Summary

5.1 Cut generation problem . 66

5.2 Literature review . 70

5.3 General framework for cut generation 72

5.3.1 Markov Decision Process formulation 72

5.3.2 Why don’t we learn a cut generation policy by imita-
tion learning? . 73

5.3.3 Hybrid framework for cut generation 75

5.4 Cut detector . 76

5.4.1 Constructing training data 77

5.4.2 Cut detector architecture 77

5.5 Cut evaluator . 78

5.5.1 The gap-based reward function 79

5.5.2 The time-based reward function 81

5.5.3 Policy parametrization and training 83

5.6 Experiments . 84

5.6.1 Setup . 84

5.6.2 The contribution of the cut detector 86

5.6.3 The effectiveness of the proposed framework 88

5.7 Conclusion . 89

64

Machine learning to accelerate branch-and-cut for combinatorial optimization 65

In this chapter, we explore using machine learning to improve branch-and-cut algorithms
for solving combinatorial optimization problems. Over the past decade, machine learning has
increasingly replaced human-engineered algorithms for many tasks. With the rise of deep
learning, machine learning models can now learn end-to-end without requiring hand-crafted
feature engineering or multi-stage pipelines. By learning from big data, deep learning has
surpassed classic methods in many domains, including computer vision, natural language
processing, speech processing, and recommendation systems. Furthermore, combining deep
learning with RL can produce more powerful models than human-designed heuristics. A
prime example is AlphaGo Zero [63], a deep RL-based algorithm for playing the board game
Go. Although only trained on a small set of tremendous search space, AlphaGo Zero still can
defeat the world’s best human players.

Inspired by such successes, we believe machine learning has similar potential to replace
hand-crafted heuristics for the internal decisions of branch-and-cut. Even minor improvements
in optimization performance could bring tremendous savings when solving an extensive num-
ber of problems daily.

Previous work has shown promise in using machine learning to improve fundamental de-
cision strategies of branch-and-cut, including variable selection [21, 22, 64], node selection [23],
heuristic selection [65, 66], and cut selection [24, 67, 68]. However, cut generation—a critical
decision problem that arises when combining branch-and-bound and cutting planes in branch-
and-cut—has received less attention despite its importance. In particular, consider an MILP
formulation and suppose that we just solved one of its LP relaxations at a node of the enu-
meration tree and obtained an optimal solution xLP to this relaxation. If xLP is fractional for
at least one variable that must take on an integer value in the MILP, what strategy should be
employed next? Should we generate additional cuts to tighten the LP relaxation or branch on
the fractional variables? There is a trade-off: generating cuts can strengthen the formulation
but slowdowns processing the node due to separation process and grows the LP relaxation
size; branching is faster to execute but exponentially grows the enumeration tree, potentially
increasing the overall solving time. We should prioritize choices that lead to faster pruning of
the branch-and-bound tree: infeasibility or integrality of the created subproblems or pruning
by bounds. Nevertheless, to the best of our knowledge, no theory can directly measure the
impact of these choices, which can usually only be observed after the algorithm has finished
running. Thus, deciding whether to cut or branch poses a non-trivial challenge when designing
branch-and-cut algorithms.

The majority of previous research on cut-related strategies in branch-and-cut has focused on
general-purpose rather than problem-specific cuts. However, most combinatorial optimization
problems have underlying structures that can be exploited to generate “strong” valid inequal-
ities, called combinatorial cuts, which are typically facet-defining for the problem’s polytope.
Combinatorial cuts can considerably strengthen the LP relaxation and eliminate a substantial
portion of the infeasible region; thus, they play a critical role in solving combinatorial prob-
lems of meaningful size. Numerous studies in the literature have proposed various classes of
such cuts for specific optimization problems, yielding significant enhancements in branch-and-
cut performance. The typical approach of these studies is to identify facet-defining inequali-
ties of the convex hull of feasible solutions, present separation algorithms to generate them,

66 Machine learning to accelerate branch-and-cut for combinatorial optimization

and demonstrate computational gains. However, little attention has been paid to the practical
implementation challenges of combinatorial cuts. For example, the corresponding separation
routine of these cuts is usually computationally expensive. Naively generating combinatorial
cuts can make the separation process the dominant task and hurt the overall performance. Fur-
thermore, extra cuts may sometimes not strengthen the LP relaxation, rendering separation
wasteful. Hence, it requires careful consideration when generating combinatorial cuts during
branch-and-cut.

Motivated by these research gaps, in this chapter, we develop the first machine learning
framework for learning strategies to generate combinatorial cuts in branch-and-cut. Given a
combinatorial optimization problem and an associated class of combinatorial cuts, our frame-
work learns a policy for selecting between generating cuts or branching to perform at enumer-
ation tree nodes in order to minimize overall running time. The proposed framework contains
two components: 1) A cut detector to detect whether valid cuts exist, and 2) A cut evaluator to de-
cide whether generating them is worthwhile. The models are trained on small instances using
a combination of supervised and reinforcement learning. They can then be applied to larger
instances.

To evaluate the effectiveness of the proposed framework, we implement it for two well-
known NP-hard combinatorial optimization problems: the TSP with subtour elimination con-
straints and the Max-Cut problem with cycle inequalities. Experiments show that the learned
cut generation policies substantially accelerate branch-and-cut, even on instances of different
sizes from its training counterparts. These results help fulfill the potential of using machine
learning to enhance branch-and-cut inner strategies.

The remainder of this chapter is organized as follows. Section 5.1 presents the cut gener-
ation problem in branch-and-cut and empirically shows its impact on performance. Section
5.2 overviews previous works about cut generation and machine learning for branch-and-cut.
Section 5.3 introduces our general framework for learning a cut generation policy. Sections 5.4
and 5.5 respectively present in detail the framework’s components: the cut detector and cut
evaluator. Computational results to evaluate the method’s effectiveness are provided in Sec-
tion 5.6. Finally, some conclusions and limitations of the approaches are discussed in Section
5.7.

5.1 Cut generation problem

Given a combinatorial optimization problem P and a cut class C associated with P , one of
the primary decisions in branch-and-cut for solving P is whether to generate cuts of type C or
branch on tree nodes. This choice significantly impacts overall performance.

On the one hand, generating cuts can tighten linear relaxations and improve bounds to
prune the branch-and-bound tree faster. However, cut generation can also worsen performance
in certain situations. Firstly, the separation routine for C-type cuts may be computationally
expensive, especially for large instances. Additionally, some executions may fail to produce
valid cuts, which can result in a waste of time. Finally, at some tree nodes, additional cuts may
not strengthen the relaxation, making cut generation worthless. On the other hand, branching
avoids the cost of separation routines and immediately partitions the search space. However,

Cut generation problem 67

it may result in an exponential number of nodes in the enumeration tree.

To illustrate the impact of cut generation on the branch-and-cut performance, we consider
two well-known combinatorial cut classes: subtour elimination constraints for the TSP and
cycle inequalities for the Max-Cut problem.

Example 5.1.1. (Subtour elimination constraint generation for the TSP)
Given an undirected graph G = (V, E) with a cost vector c = (ce)e∈E associated with E, the

TSP seeks a Hamiltonian cycle (a.k.a. tour) that minimizes the total edge cost. For all edges
e ∈ E, we denote by xe a binary variable such that xe = 1 if edge e occurs in the tour and xe = 0
otherwise. The TSP can be formulated as an integer program as follows:

min cTx (5.1a)

s.t. ∑
x∈δ(v)

xe = 2 ∀ v ∈ V (5.1b)

∑
x∈δ(S)

xe ≥ 2 ∀ ∅ ̸= S ⊂ V (5.1c)

xe ∈ {0, 1} ∀ e ∈ E (5.1d)

where x = (xe)e∈E. The objective function (5.1a) represents the total cost of edges selected in
the tour. Constraints (5.1b) are degree constraints assuring that each vertex in the tour is the
end-vertex of precisely two edges. Constraints (5.1c) are subtour elimination constraints (SECs),
which guarantee the non-existence of cycles that visit only a proper subset of V. Finally, (5.1d)
are integrality constraints. Note that this formulation, introduced by Dantzig, Fulkerson, and
Johnson [47], is widely used in most branch-and-cut algorithms for the TSP.

To find violated SECs at a node of the enumeration tree, one can use an exact polynomial
time algorithm proposed by Crowder and Padberg [69]. The input of the separation algorithm
is the optimal solution xLP of the current LP relaxation. We then construct from xLP a graph
GxLP = (V, ExLP) where ExLP = {e ∈ E | xLP

e > 0}. For each edge e in ExLP , we set xLP
e as

its capacity. Due to the construction of GxLP , the value ∑x∈δ(S) xe for S ⊂ V is precisely the
capacity of the cut (S, V \ S) in GxLP . Therefore, an SEC violated by xLP is equivalent to a cut
with a capacity smaller than 2 in GxLP . Such a cut can be found by using the Gomory-Hu
procedure [51] with |V| − 1 maximum flow computations.

To evaluate the impact of SEC generation, we use three different strategies to solve (5.1)
with a specific instance, i.e., rat195 from TSPLIB [46]. Firstly, to demonstrate the necessity
of SECs, in the No cut strategy, we do not generate any cuts. The second one, Every node, is
a greedy strategy that generates cuts at every search tree node. To illustrate that the impact
of cut generation does not only depend on the number of separation routine calls, we use
a random strategy called Sample cut. This strategy executes separation precisely 100 times -
at each tree node, there is a 50% probability of generating SECs, repeating this process until
the 100th separation problem is solved. Note that these strategies are only applied to nodes
whose LP optimal solution is fractional. At nodes obtaining an integer solution, verifying and
generating SECs are mandatory to assure the feasibility of solutions. We use the commercial
MILP solver CPLEX12.10 to implement branch-and-cut with SECs and set the CPU time limit
to 3600 seconds.

68 Machine learning to accelerate branch-and-cut for combinatorial optimization

Table 5.1 shows the results of the strategies. Sample 1 and Sample 2 are two different runs
of the strategy Sample cut. Column “CPU time” gives the running time in seconds of branch-
and-cut, in which the portion of time spent by the separation routine is shown in column “Sepa
time (%)”. Column “# Nodes” reports the number of nodes in the enumeration tree, and column
“# Cuts” indicates the number of generated SECs. Columns “# Sepa” and “Sepa cuts (%)” give
the number of separation routine executions and the percentage of executions that can obtain
violated SECs, respectively.

Strategy
CPU
time

Sepa
time (%)

Nodes # Cuts # Sepa
Sepa

cuts (%)

No cut 3601.8∗ 0.0% 1506514 0 0 -
Every node 1365.7 98.2% 4105 1116 2992 4.5%
Sample 1 65.5 73.7% 3834 359 100 21.0%
Sample 2 114.5 34.5% 10543 727 100 43.0%

Table 5.1. The results of the SEC generation strategies on the instance rat195. The asterisk in
the “CPU time” column indicates strategies that fail to solve the TSP within the time limit.

Table 5.1 shows that the SEC generation strategies may significantly affect the algorithm
performance. Obviously, generating SECs is crucial, as branch-and-cut cannot solve the in-
stance to optimality without it under the given CPU time budget. In addition, adding SECs
substantially reduced the enumeration tree size. However, solving SEC separation problems
might take a major portion of computing time, and only a few separation executions obtained
violated SECs. For example, with the strategy generating SECs at every tree node, branch-
and-cut spent 98% of the CPU time to execute separation routines, but only 4.5% of executions
yielded violated SECs. Table 5.1 also indicates that the effectiveness of the strategies relies not
only on the number of solved separation problems but also on specific nodes where violated
SECs are generated. Indeed, although the number of times the separation problem is solved
is the same, the difference in nodes generating SECs makes the strategy Sample 1 outperform
Sample 2.

Example 5.1.2. (Cycle inequality generation for the Max-Cut problem)
Given an undirected graph G = (V, E) and each edge e is associated with a weight we ∈ R+,

a cut in G is a partition of V into two disjoint subsets S ⊂ V and S = V \ S. The weight of a cut
(S, S) is the sum of weights of edges with one end-vertex in S and the other in S. The Max-Cut
problem is to find a cut (S, S) in G with maximum weight.

A commonly used IP formulation for the Max-Cut problem based on the semi-metric poly-
tope [70] is the following:

max wTx (5.2a)

s.t. ∑
e∈F

xe − ∑
e∈C\F

xe ≤ |F| − 1 ∀C ∈ C, F ⊂ C with |F| odd. (5.2b)

xe ∈ {0, 1} ∀e ∈ E (5.2c)

where C is the set of chordless cycles in G. Constraints (5.2b) are cycle inequalities proposed
by Barahona and Mahjoub [70], which represents the fact that any cut intersects a cycle in an

Cut generation problem 69

even number of edges. Similar to SECs of the TSP, cycle inequalities will be generated as cuts
in branch-and-cut due to their exponential cardinality.

The separation problem for cycle inequalities can be solved by the following exact polyno-
mial algorithm, which is introduced by Barahona and Mahjoub [70]. Given an optimal solution
xLP of the LP relaxation, we construct a graph GxLP as follows: for each vertex i in G, we create
two vertices i′ and i′′ in GxLP ; for each edge ij in G, we add to GxLP edges i′ j′ and i′′ j′′ with weight
xLP

ij , and edges i′ j′′ and i′′ j′ with weight 1− xLP
ij . By this setting, a cycle inequality violated by

xLP is the shortest path with length less than 1 from i′ to i′′ in GxLP . Hence, the algorithm consists
of |V| shortest path computations in GxLP .

Strategy
CPU
time

Sepa
time (%)

Nodes # Cuts # Sepa
Sepa

cuts (%)

No cut 3600.0∗ 0.0% 302913 0 0 -
Every node 382.1 69.8% 553 23461 1246 67.1%
Sample 1 174.5 43.5% 650 10958 300 84.7%
Sample 2 493.1 35.4% 636 13379 300 89.0%

Table 5.2. The results of the cycle inequality generation strategies on the instance pm1s_100.5.
The asterisk in the “CPU time” column indicates strategies that fail to solve the problem to
optimality within the time limit.

Similar to the previous example, we solve the Max-Cut problem on instance pm1s_100.5
generated using rudy [71]. We also evaluate the performance of the strategies: No cut, Every
node, and Sample. In the strategy Sample, we increase the number of times separation problems
are solved to 300.

Table 5.2 again confirms that generating cuts is indispensable for solving the Max-Cut prob-
lem to optimality within the time limit. The results of the Every node and Sample strategies also
demonstrate that both the number of solved separation problems and the position of nodes
where cuts are generated strongly impact the algorithm’s performance. One difference be-
tween SEC generation in the TSP and cycle inequality generation in the Max-Cut problem is
that most separation problems for cycle inequalities yield valid cuts. In contrast, only a small
fraction of SEC separation problems in the TSP yield violated constraints.

Motivated by these empirical observations, we study the cut generation problem stated as
follows. Consider a combinatorial optimization problem P defined on a graph G = (V, E)
and a cut class C associated with P . A cut generation strategy π(P ,C) for C in branch-and-cut
decides whether to generate C-type cuts or to branch at each node of the enumeration tree. The
cut generation problem is to learn a cut generation strategy π(P ,C) that obtains the best average
performance τ on a given set of problem instances IP , i.e.,

π(P ,C) ∈ arg min
π∈Π

Ep∈IP [τ(p, π)]

where τ(p, π) is the running time of branch-and-cut for solving instance p with cut generation
policy π. Note that although we restrict our work to graph problems, this problem type still
can cover a wide range of real-world problems.

70 Machine learning to accelerate branch-and-cut for combinatorial optimization

Throughout this chapter, to avoid any confusion, we only consider one class of combina-
torial cuts in a branch-and-cut algorithm for a combinatorial optimization problem. Unless
otherwise specified, cuts refer to those from the particular cut class under consideration.

5.2 Literature review

Most approaches to cut generation in the literature exist in heuristic forms. Padberg and Ri-
naldi, in their research on branch-and-cut for large-scale TSP [72], empirically discovered the
tailing-off phenomenon of cuts [72, Section 4.3], which shows the cut generator’s inability to
produce cuts that can assist the optimal LP solution to escape the corner of the polytope where
it is “trapped”. To deal with the tailing-off, the authors proposed stopping the generation of
cuts if the objective value of the relaxed LP does not improve sufficiently within a given win-
dow and switching to branching. Another approach to control cut generation introduced by
Balas et al. [73] is generating cuts at every k nodes of the enumeration tree. The number k,
named “skip factor” in [73], determines the frequency of generating cuts. It can be chosen
either as a fixed constant or as an adaptive value varying throughout the enumeration tree.
Another commonly used strategy is the so-called cut-and-branch, which only generates cuts
at the root node of the enumeration tree. Overall, despite its importance, the question of the
branching versus cutting decision has yet to receive the attention it deserves.

In contrast with cut generation, cut selection, a closely related problem, has been studied ex-
tensively in the literature. While cut generation decides whether to launch separation processes
to generate cuts, cut selection requires selecting cuts from a candidate set obtained by solving
separation problems. Cut selection is usually considered for general-purpose cuts whose sep-
aration procedure is computationally cheap and provides many cuts. Due to its definition,
cut selection can be viewed as a ranking problem where cuts are sorted and chosen based on
some criteria. This point of view opened up many different approaches based on many mea-
surements of the cut quality. Among the most popular scores are efficacy [73], objective par-
allelism [74], and integral support [75], to name a few. Another research line on cut selection
is to use machine learning to learn the ranking of cuts. Most works of this approach fall into
two categories: supervised learning and RL. In the former, cuts are scored (or labeled) by an
expert, and a cut ranking function (usually a neural network) is trained to be able to choose the
best ones [67]. For the latter, one can formulate the problem of sequentially selecting cuts as a
Markov decision process. An agent can then be trained to either directly optimize the objective
value (RL) [24] or mimic a look-ahead expert (imitation learning) [68].

In recent years, using machine learning to enhance fundamental decisions in branch-and-
bound is an active research domain; we refer to [76] for a summary of this line of work. Specific
examples contain learning to branch [21, 22, 64], learning to select nodes [23], and learning to
run primal heuristics [65, 66]. Table 5.3 briefly presents several approaches to using machine
learning for branch-and-cut inner strategies. Similar to cut selection, these problems can be
reformulated as ranking [21, 22, 67], regression [64], or classification problems [65], and can
then be treated correspondingly. Most of these reformulations are possible due to the existence
of an expensive expert (for example, the strong branching expert for variable selection), which
can be used to calculate the score, label the instances, or act as an agent to be mimicked.

Literature review 71

Decision
problem

Work Learning
paradigm

Requirements Method description

Variable
selection

Khalil et al.
2016 [21]

Imitation
learning

An expert; train
and test the model
on the same in-
stance.

This work considers variable selection as a ranking
problem where the strong branching expert determines
the label of candidates. Each variable candidate is rep-
resented as a vector whose elements contain statistical
features of this variable in the enumeration tree. The
model is trained with the expert’s guide at the begin-
ning of the branch-and-bound process and then used
to the late stage of the solving process.

Alvarez et
al. 2017 [64]

Imitation
learning

An expert; train-
ing and testing in-
stances must have
the same size.

This work considers variable selection as a regres-
sion problem that directly predicts the strong branching
score of candidates. Each variable candidate is repre-
sented as a vector whose elements contain statistical
features of this variable in the enumeration tree. The
training data are collected by running the expert on a
set of fixed-size instances. The trained model is then
used on same-size instances.

Gasse et al.
2019 [22]

Imitation
learning

An expert. This work considers variable selection as a classifica-
tion problem where the label of candidates is assigned
by the strong branching expert. Each tree node is rep-
resented as a bipartite graph where one side represents
nodes, and another represents constraints. The train-
ing data are collected by running the expert on a set of
fixed-sized instances. The trained model can be used
for various-size instances.

Etheve et al.
2020 [77]

Reinforcement
learning

The node selection
is restricted to the
depth-first search;
training and test-
ing instances must
have the same size.

This work presents variable selection as an MDP. The
reward function is defined by the number of nodes in
the tree generated when solving the instance to opti-
mality. Each state is represented as a vector concate-
nated from dynamic and statistical features. The agent
is trained by the DQN algorithm.

Node selec-
tion

He et al.
2014 [23]

Imitation
learning

An expert. This work constructs an oracle that expands nodes
whose feasible set contains the optimal solution. Then,
two policies are learned to mimic the oracle: a node
selection policy determining the highest-priority node
and a node pruning policy deciding whether to prune
or expand this node. States are represented as vectors
that include node, branching, and tree features.

Song et al.
2018 [78]

Imitation
learning

An expert. This work constructs a retrospective oracle that gen-
erates feedback to train policies by querying the envi-
ronment on rolled-out search traces to find the short-
est path from the root node to a terminal state. This
approach can be scaled up by iteratively learning to
solve increasingly larger instances.

Labassi et al.
2022 [79]

Imitation
learning

An expert. This work constructs a classifier function to compare
two open nodes in the enumeration tree. Node labels
are assigned by using the diving oracle as in He et al.
[23]. Each node is represented as a bipartite graph, as
in Gasse et al [22].

Cut selection Tang et al.
2020 [24]

Reinforcement
learning

This work considers cut selection in the cutting plane
methods as an MDP where the reward function is
defined based on objective improvement. An agent
is then trained by evolution strategies. The trained
model can be applied to instances with various sizes.

72 Machine learning to accelerate branch-and-cut for combinatorial optimization

Paulus et al.
2022 [68]

Imitation
learning

An expert. This work constructs a strong-branching-like expert
for cut selection that computes the look-ahead score of
a cut, which is the objective improvement obtained by
adding this cut. Then, cut selection is reformulated as
a regression problem to predict the look-ahead score
of a cut. Each state is represented by a tripartite graph
whose nodes represent variables, constraints, and ad-
ditional cuts.

Huang et al.
2022 [67]

Supervised
learning

A labeled dataset. This work focuses on the cut selection task at the root
node of branch-and-cut. This task is considered as
a ranking problem where cuts are assigned labels by
added and solved beforehand. Each cut is represented
as a vector whose components contain dynamic and
statistical features.

Wang et al.
2023 [80]

Reinforcement
learning

The work proposes a hierarchical sequence model con-
sisting of a two-level model: a higher-lever model to
learn the number of cuts that should be selected and
a lower-level model to decide which cuts should be
added and what order of chosen cuts. The key idea
is to represent states as sequences of candidate cuts,
which can encode the underlying order information
and the interactions among cuts. The model is trained
by reinforcement learning with a hierarchical policy
gradient.

Table 5.3. Machine learning for branch-and-cut inner strategies

5.3 General framework for cut generation

In this section, we propose a general framework based on machine learning to address cut
generation and explain the key ideas behind the proposed method. We begin by presenting
an MDP formulation associated with cut generation in Section 5.3.1. Then, in Section 5.3.2, we
demonstrate why we do not use imitation learning to train the agent as in most previous works.
Finally, we present our framework integrating both supervised and reinforcement learning for
learning cut generation policies in Section 5.3.3.

5.3.1 Markov Decision Process formulation

Notice that the sequential decisions of cut generation can be assimilated to an MDP. Consider-
ing the solver as the environment and a cut generation policy as an agent, we define the state
space, action space, and transition of the MDP as follows:

State space S

At time step t, a state st ∈ S is the entire current enumeration tree, which comprises LP relax-
ations at nodes, branching decisions, the lower and upper bounds, added cuts, the incumbent
solution, the currently focused node with an optimal solution to the corresponding LP relax-
ation, and other solver statistics. The terminal state is achieved when the instance is solved to
proven optimality.

General framework for cut generation 73

x1 ≥ 1x1 ≤ 0

x2 ≥ 1x2 ≤ 0

st

A = {cut, branch}

x1 ≥ 1x1 ≤ 0

x2 ≥ 1x2 ≤ 0

LP (C, {1}, {2}

LP (C ∪ C, {1}, {2})

st+1

C: the found cut set

x1 ≥ 1x1 ≤ 0

x2 ≥ 1x2 ≤ 0

LP (C, {1}, {2, 3})

st+1

x3 ≥ 1x3 ≤ 0

at = cut

at =branch

Figure 5.1. A transition in the MDP of cut generation.

Action spaceA

At a non-terminal state st, the agent chooses action at from two options: generating cuts or
branching.

Transition

After selecting an action at, the new state st+1 is determined as follows. If at is to branch, the
solver selects a branching variable to create two child nodes, uses the node selection policy
to pick an active node (i.e., that has not been pruned nor branched on), and solves the corre-
sponding LP relaxation to get an optimal solution. Otherwise, if at is to generate cuts, the solver
launches the separation routine to find cuts, adds them to the formulation, and solves the LP
relaxation again with additional cuts to obtain an optimal solution. If no cut is found, the next
state st+1 is determined in the same way as when performing the branching action. Figure 5.1
illustrates a transition of this MDP.

5.3.2 Why don’t we learn a cut generation policy by imitation learning?

As presented in Section 5.2, most of the previous approaches to learn branch-and-cut policies
are possible due to the existence of an expert, which can be used to calculate the score, label the
instances, or act as an agent to be mimicked. The natural question is that:

Could we design such an expert for cut generation and replace it with a learned heuristic?

74 Machine learning to accelerate branch-and-cut for combinatorial optimization

The main intuition of expert strategies for branch-and-cut decisions like strong branching
for variable selection [81] or lookahead rules for cut selection [68], is to try beforehand decisions
and select the one with maximum benefit. A common decision impact measure is the bound
improvement obtained from the resulting LP relaxations.

We follow similar intuition to construct an expert for cut generation. At each node, the
expert attempts both actions of generating cuts and branching in advance. It then computes
action scores in terms of the objective improvement and selects the action with a higher score.
Formally, given the current cut pool C, the LP relaxation corresponding to the considered node
LP(C, F0, F1), a set of cuts C found by the separation routine and a branching candidate i, the
scores s of actions are computed as follows:

scuts =
∣∣∣zLP(C∪C,F0,F1) − zLP(C,F0,F1)

∣∣∣
sbranch = max

(∣∣∣zLP(C,F0∪{i},F1) − zLP(C,F0,F1)

∣∣∣ ,
∣∣∣zLP(C,F0,F1∪{i}) − zLP(C,F0,F1)

∣∣∣)
where zLP(.) is the objective value of the relaxation LP(.). In the case the cut set C is empty,
the score of generating cuts is set to −∞. If an action can yield an integer feasible solution or
fathom a node, its score is +∞. If the two actions have equal scores, the expert will prioritize
generating cuts.

To evaluate the expert policy, we use it to control the generation of two classes of cuts: sub-
tour elimination constraints for the TSP and cycle inequalities for the Max-Cut problem. Experi-
ments are conducted on 100 random TSP instances (complete graphs of 200 vertices) generated
by Johnson and McGeoch’s generator [82] and 100 random Max-Cut instances (10%−dense
graphs of 100 vertices) generated by the rudy generator [83]. To focus on decision quality, each
instance is solved twice: the first run uses the expert to record decisions, while the second run
replays those decisions to exclude decision time. Then, the results of the second runs will be
used to compare with baselines.

We compare the expert performance with the fixed and automatic strategies proposed in
[73], which generate cuts for every k nodes. For the fixed strategies, we use k = 1 (FS-1) as the
default strategy and k = 8 (FS-8), which gave the best results in [73] and is one of the best skip
factors in our own experiments. For the automatic strategy (AS) where the skip factor is chosen
based on the instance to be solved, k is computed as follows [73]:

k = min
{

KMAX,
⌈

f
cd log10 p

⌉}
(5.3)

where f is the number of cuts generated at the root node, d is the average distance cutoff of
these cuts (a distance cutoff of a cut is the Euclidean distance between the optimal solution and
the cut), p is the number of variables in the formulation, and KMAX, c are constants. Based on
the cut properties and our experiments, we set (KMAX, c) to (32, 100) for SECs and (32, 1000)
for cycle inequalities.

Table 5.4 shows the results of the expert and three baselines on the TSP and Max-Cut in-
stances. For each instance type, we report the average CPU time in seconds (column “CPU
Time”), the average number of nodes in the enumeration tree (column “# Nodes”), and the av-
erage number of generated cuts (column “# Cuts”).

General framework for cut generation 75

Cut type Strategy CPU Time # Nodes # Cuts

SECs FS-1 109.9 2769.0 506.9
FS-8 56.8 3090.1 493.8
AS 48.1 3521.1 439.3
Expert 44.4 6172.5 401.8

Cycle FS-1 275.4 297.4 14403.4
inequalities FS-8 105.9 447.8 9107.7

AS 87.1 385.9 9959.9
Expert 123.5 400.2 8106.8

Table 5.4. The numerical results of the expert policy

As shown in Table 5.4, the expert policy slightly outperforms the heuristics for subtour elim-
ination constraint generation but is significantly worse than the best baseline for cycle inequal-
ity generation. The deeper analysis further points out that the expert is expensive, requiring
429.4 average seconds for SEC decisions and 3083.5 seconds for cycle inequalities. Therefore,
the cost of the expert is not commensurate with the quality of the decisions it makes. From this
experiment, we decide to use reinforcement learning, a natural approach, to train the agent.

5.3.3 Hybrid framework for cut generation

yes

no

optimal
solution

solve separation
problem

branch

add cuts

solve LP

cut detector

cut evaluator

yes

no

cut

branch

has
cuts?

yes

no

optimal
solution

solve separation
problem

branch

add cuts

solve LP

has
cuts?

add cuts

Figure 5.2. The flowchart of exploring a tree node without (left) and with (right) our framework

We now present an overview of our framework for tackling the cut generation problem in

76 Machine learning to accelerate branch-and-cut for combinatorial optimization

branch-and-cut. The inner components will be fully described in Section 5.4 and Section 5.5.
We first observe that a principal requirement of an efficient cut generation is the existence

of cuts violated by the LP optimal solution. This requirement aims to avoid solving redun-
dant separation problems. For general-purpose cuts, this requirement is usually omitted since
separation routines are computationally cheap and guarantee to find a cut. In contrast, separa-
tion problems for combinatorial cuts are more expensive and may fail to produce any cuts, as
demonstrated in the experiment on SECs in Section 5.1.

Based on this observation, our framework consists of two separate components:

• a cut detector, a GNN that predicts the cut existence,

• a cut evaluator, an RL agent that decides whether to generate cuts.

The cut detector serves as a coarse filter before the cut evaluator makes decisions. The usage of
two components allows us to use lightweight models yet still guarantee accuracy. Furthermore,
while the benefit evaluation of generating cuts requires both local and global information about
the search tree, detecting the existence of cuts only needs an optimal solution of LP relaxation.
Consequently, when operating on trees containing thousands of nodes, we can save consider-
able time by reducing information extraction. Note that the cut detector is optional, depending
on the cut properties. It is crucial for cut types where the corresponding separation procedure
infrequently succeeds, like SECs for the TSP. However, it is unnecessary for cut types where
separation executions always obtain cuts, like cycle inequalities for the Max-Cut problem.

With this architecture, our framework uses a mixture of supervised and reinforcement
learning. Specifically, the cut detector is a classifier trained by supervised learning, and the
cut evaluator is an agent trained by reinforcement learning.

Figure 5.2 illustrates the flowchart of our framework at an enumeration tree node. After ob-
taining an optimal solution to the LP relaxation at the node, the cut detector predicts whether
the solution violates any cuts. If it predicts no cut violation, we proceed directly to the branch-
ing step. Otherwise, the cut evaluator assesses the effectiveness of additional cuts and selects
the next action to take. Note that this flow is only applied when the LP optimal solution is frac-
tional. For abbreviation, we call a fractional solution an LP optimal solution that is fractional.

5.4 Cut detector

In this section, we present the first component of our framework, the cut detector. Given an
optimal solution xLP to the LP relaxation corresponding to a node in the enumeration tree, the
cut detector aims to predict whether there exists any cut violated by xLP. This component can
be viewed as a binary classifier that takes a fractional solution xLP as inputs and returns:

y =

1 if there exists any cut violated by xLP,

0 otherwise.

Therefore, we can train the cut detector in a supervised manner. Given a training set D =

{(xLP
i , yi)}N

i=1 where xLP
i is a fractional solution, and yi is its label, our goal is to train a binary

classifier fΘD(xLP), which can predict the label of each fractional solution xLP.

Cut detector 77

5.4.1 Constructing training data

To collect training samples, we use a random cut generation strategy (i.e., generate cuts with
a probability of 0.5 at each node) on training instances, which are generated randomly. For
each problem instance, we run branch-and-cut with the random cut generation policy multi-
ple times to collect LP optimal solutions. Labels of these solutions are assigned by executing
the separation routine. Since the cut generation policy is stochastic, we can explore diverse
enumeration trees and obtain varied training samples. Although collecting samples requires
multiple branch-and-cut executions, this process is offline, so the training cost is acceptable.

5.4.2 Cut detector architecture

Recall that each fractional solution xLP is a vector whose components correspond to decision
variables. As a result, its dimension depends on the instance graph size, which can grow ex-
tremely large. Furthermore, this raw representation can not encode relationships between vari-
ables based on the underlying graph structure (e.g., xLP

i and xLP
j may represent decision vari-

ables for two adjacent edges in the instance graph), which is a key context for the separation
routine.

To address these issues, rather than directly use the raw high-dimensional vector xLP, we
propose representing xLP by the graph constructed from xLP to solve the separation problem.
We call this graph the separation-purpose graph. We then use a GNN to embed this graph into a
vector. By operating on the separation-purpose graph, the GNN incorporates the variable rela-
tionships and graph context needed for the separation routine by operating on the separation-
purpose graph. The resulting embedding provides a descriptive representation of xLP, which
is independent of instance size and permutation invariant.

We parameterize the cut detector as follows. Given a fractional solution xLP, we represent
it as its separation-purpose graph GxLP = (VxLP , ExLP) with node features V ∈ R|VxLP |×dn and
edge features E ∈ R|ExLP |×de , where dn, de ∈ R+ are the dimension of node and edge features,
respectively. For each node i ∈ VxLP , we embed its features vi ∈ Rdn to a h-dimensional vector
by an MLP:

h(0)i = Θ(0)
D vi + b(0)D

where Θ(0)
D ∈ Rh×dn and b(0)D ∈ Rh. To update the node embedding, we use two MP layers in

the form:

h(l)i = MERGE
Θ(l,1)

D

(
h(l−1)

i , AGGR
Θ(l,2)

D

({(
h(l−1)

j , ei,j

)}
|j ∈ N (i)

))
where MERGE

Θ(l,1)
D

and AGGR
Θ(l,2)

D
are the merge and aggregate functions, ei,j is the feature

vector of edge (i, j) ∈ ExLP , and N is the set of i’s neighbors in GxLP . To yield a graph embed-
ding, we apply a permutation invariant pooling layer to aggregate all node embeddings. This
graph representation is input into an MLP with a softmax activation function to compute the
probability of the solution’s labels, i.e., P(y = 0|xLP) and P(y = 1|xLP). Figure 5.3 illustrates
the cut detector architecture.

The node and edge features of the separation graph are chosen depending on the separa-
tion routine, which varies between combinatorial cut types. We provide examples of feature
selection for several cut types in the experiment section.

78 Machine learning to accelerate branch-and-cut for combinatorial optimization

xLP = (0, 0.5, 1, . . . , 0.1)

P (y = 0|xLP)

P (y = 1|xLP)

(GxLP ,V,E)

Separation-purpose graph

MP MP Pooling MLPMLP

graph
embedding

GNN

Figure 5.3. The cut detector architecture

5.4.2.1 Training the cut detector

Given a training set D = {(xLP
i , yi)}N

i=1, we optimize the cut detector parameters ΘD to mini-
mize the loss function involving the cross-entropy and regularization losses, i.e.,

L(ΘD) = LE(ΘD) + ηΩ(ΘD)

where η is a hyper-parameter for regularization penalty, LE(ΘD) is computed by

LE(ΘD) = −
N

∑
i=1

(
yi · log PΘD(yi = 1|xLP

i) + (1− yi) · log(1− PΘD(yi = 0|xLP
i))

)
and Ω(ΘD) is calculated by

Ω(ΘD) = ∥ΘD∥2
2 .

The use of the regularization loss aims to avoid the overfitting of the model.

5.5 Cut evaluator

We now present the key component of our framework - the cut evaluator. It is a deep RL agent
that learns an optimal policy for cut generation. To train the cut evaluator by RL, we need to
address two main challenges:

1. How do we define the reward function to align with the ultimate goal of minimizing
runtime?

Central to RL is the reward function, which specifies the objective to be optimized. In the
cut generation problem, our goal is to minimize branch-and-cut runtime. Thus, a naive
approach is to use the runtime directly to define rewards - specifically, defining the re-
ward of an action as the negative of the time spent performing that action. However, our
experiments show that the agent struggles to learn good policies with this reward func-
tion for two reasons. First, generating cuts has long-term benefits that are usually only
observable at the endpoints of trajectories. Nevertheless, trajectories of cut generation are
generally very long, causing the agent to fall into suboptimal policies that only branch,
as the runtime of branching is always shorter than that of generating cuts. Second, this
reward function depends on hardware and is thus non-deterministic. It means the same
action taken on different hardware or at different times may result in different rewards,

Cut evaluator 79

making it difficult for the agent to learn and generalize. To tackle these issues, we propose
two approaches: 1) using an alternative reward function based on the IP relative gap and
2) retaining the time-based reward function but using additional hypotheses to simplify
the MDP. The two directions allow our framework to adapt to various properties of cut
types.

2. How do we represent states?

As defined in Section 5.3.1, a state contains the entire search tree, a complex structure that
can not be fully represented. Thus, we can only represent states by a subset of the search
tree. In the following sections, we present two state representations corresponding to the
two proposed reward functions.

5.5.1 The gap-based reward function

5.5.1.1 Reward function definition

Our first reward function definition is based on the IP relative gap, which is the ratio between
the upper and lower bound absolute difference and the current best objective value. Branch-
and-cut algorithms terminate when the IP relative gap reaches 0, so the faster the gap decreases,
the faster the instance can be solved. Given this, we define the reward of taking action at in state
st as the resulting change in the IP relative gap, i.e.,

rt = r(st, at) = µt − µt+1 . (5.4)

where µt is the IP relative gap at state st.
A key issue with this reward definition is its sparsity - most rewards are 0. Consequently,

the agent rarely receives feedback, making learning difficult. To address the sparsity, we use
shaping rewards to provide appropriate hints to help the agent learn more efficiently. Specifi-
cally, we introduce three additional rewards:

• a penalty for each extra iteration, encouraging faster solving;

• a penalty for each time solving a redundant separation problem, discouraging unneces-
sary computations;

• a bonus for each cut found, incentivizing productive cut generation.

Together, these shaped rewards guide the agent towards balanced policies that generate cuts
efficiently. The iteration penalty promotes speed, while separation and cut rewards tune the
trade-off between the computational expense of separation versus the benefit of additional cuts.

5.5.1.2 State representation

Due to the enumeration tree complexity, we represent a state st as a collection of the following
elements:

• An optimal solution xLP
t to the LP relaxation of the considered node. It is used to provide

information about the separation problem for the agent. We represent this solution by its
separation-purpose graph as in the cut detector.

80 Machine learning to accelerate branch-and-cut for combinatorial optimization

• The problem instance. Since we focus on graph-structured combinatorial optimization, the
problem instance is a graph with features associated with nodes or edges. We also add
information about the decision variables at the currently considered node (values in the
optimal LP solution, lower and upper bounds) in the node and edge features to encode
the context of the considered node in the search tree.

• Features of the search tree. To enrich the information about the search tree in the state
representation, we design 11 tree features based on our experimental observations and
inspired by hand-crafted input features for branching variable selection proposed in [84].
The features are shown in Table 5.5. The top four features correspond to the incumbent ex-
istence, the IP relative gap, and the portions of processed and unprocessed nodes, which
help to capture the state of the search tree. The remaining features are extracted at the
considered node to describe its context through depth, objective value, optimal solution,
and fixed variables. Each feature is normalized to the range [0, 1].

Feature
group

Feature Description Ref.

Tree (4) has_incumbent 1 if an integer feasible solution is found and 0 otherwise

IP_rel_gap (upper bound - lower bound) / upper bound [84]

processed_nodes the proportion of processed nodes in the tree [84]

unprocessed_nodes the proportion of unprocessed nodes in the tree [84]

Node (7) node_depth max(1, the node depth / n) [84]

obj_quality objective value / upper bound

vars_1 the number of variables equal to 1 in the solution / N

fixed_vars the number of fixed variables / n

unfixed_vars the number of unfixed variables / n

vars_fixed_1 the number of variables fixed to 1 / N

vars_fixed_0 the number of variables fixed to 0 / n

Table 5.5. The tree features for the gap-based reward function; n is the number of decision
variables and N is the maximum number of non-zero values in an optimal solution.

5.5.1.3 Discussion

The gap-based reward function with reward shaping is hardware-independent and can provide
valuable feedback for the cut evaluator to learn. It is well-suited for cuts that significantly
strengthen LP relaxations but are rare and expensive to generate, e.g., SECs for the TSP.

However, this reward function relies heavily on properly tuned hyperparameters for the
additional shaping rewards. Finding reasonable settings requires extensive tuning that hin-
ders the framework’s scalability. Given these generalization limitations, in the next section, we
propose an alternative time-based reward definition to improve the framework’s flexibility.

Cut evaluator 81

5.5.2 The time-based reward function

5.5.2.1 Simplified MDP and the time-based reward function

As claimed above, the agent cannot learn useful policies when directly using the time-based
reward function on the original MDP. In this subsection, we propose a way to simplify the
MDP by using additional hypotheses and restrictions to help the agent learn.

Given a search tree obtained by solving the instance to optimality, we define a branch as
the unique path from a node to one of its descendant leaf nodes in the tree. Recall that a leaf
node is a fathomed node that meets one of three conditions: i) its corresponding LP relaxation
is infeasible, ii) an integer solution is obtained, and iii) its LP objective value is worse than the
current best one. Then, the search tree can be partitioned into a set of disjoint branches, as
illustrated in Figure 5.4.

: fathomed node : branch

Figure 5.4. An illustration of partitioning the tree to a set of branches

Observe that if the node selection strategy is the depth-first search, exploring the enumera-
tion tree can be viewed as repeatedly exploring branches to reach leaf nodes. From this view-
point, our idea is to construct a greedy cut generation policy to rapidly explore a branch and
yield a good integer solution. As a result, instead of working on the entire enumeration tree,
we only need to focus on less complicated branches. Furthermore, a good solution at the early
stage of branch-and-cut allows us to prune non-promising nodes before they are expanded,
reducing the tree size. Thus, we concentrate on the branch containing the root node, as it is
naturally considered more important than other branches.

Based on these intuitions, we simplify the MDP of cut generation as follows. Starting from
the root node, the agent iteratively chooses between cut generation and branching, aiming to
reach a leaf node. The reward for reaching a leaf node is the negative of the relative IP gap
at that node. Each action incurs a cost equal to its runtime. The final reward is the leaf node
reward subtracted by the total running time of all performed actions. The agent’s ultimate goal
is to discover a cut-generation policy that maximizes this final reward.

82 Machine learning to accelerate branch-and-cut for combinatorial optimization

Compared to the original MDP, the simplified version changes the terminal state definition,
state representation, and branch-and-cut node selection strategy restriction. Table 5.6 details
the differences between the two versions.

Simplified MDP Original MDP

A state st is the currently considered node A state st is the entire current enumeration tree

The terminal state is achieved
when a leaf node is reached

The terminal state is achieved when
the instance is solved to optimality

The node selection strategy is restricted to
depth-first search

The node selection strategy is not restricted

Table 5.6. The differences between the simplified and original cut generation MDPs.

With the simplified settings, the average length of trajectories is reduced significantly, al-
lowing us to use the running time as rewards. In particular, we define the reward of action at

at state st as follows:

rt = r(st, at) =

−µt, if st is the terminal state

−T(at), otherwise,

where µt is the IP relative gap at state st and T(at) is the runtime of action at. If a leaf node is
reached without finding a feasible solution, the terminal state is set to −∞.

5.5.2.2 State representation

Since a state in the simplified MDP is the current node instead of the entire search tree, we only
use two components to represent a state:

• An optimal solution xLP to the corresponding LP relaxation. We still use the information of
the optimal solution to represent the state as in the original MDP. However, instead of
representing the solution by its separation-purpose graph, which depends on the type
of cuts, we represent the solution xLP by its weighted support graph GxLP = (V, ExLP)

where ExLP = {e ∈ E : xLP
e > 0} and a capacity associated with e ∈ ExLP is xLP

e . This
representation allows the reduction of the domain knowledge requirement and increases
the framework’s generality.

• Features of the current node. We propose 12 statistic features in Table 5.7 to enrich node
information in the state representation. The first five features characterize the context
of the node within the branch. The remaining features provide information about how
effective cuts were at previous nodes. All features are normalized in [0, 1].

5.5.2.3 Discussion

The time-based reward definition provides generality and scalability for the framework, as it
can be directly applied to any cut type without needing hyperparameter tuning or domain

Cut evaluator 83

Feature
group

Feature Description Ref.

Node (5) node_depth max(1, the node depth / n) [84]

cut_node the number of nodes generating cuts / the number of processed nodes

obj_improv the objective improvement between the current and previous nodes

sol_dist the Euclidean distance between the optimal solutions
of the previous and current nodes

cut_node_dist the distance in nodes between the current node and
the last generating cut node

Cuts (7) nb_curr_cuts the number of cuts added at the current node

curr_cut_dist the average cut distance at the current node

curr_cut_improv the average objective value improvement obtained by
generating cuts at the current node

last_cut_dist the average cut distance at the last generating cut node

last_cut_improv the average objective improvement at the last generating cut node

last_round_cut_dist the average cut distance of the last cut round
at the last generating cut node

last_round_cut_improv the objective improvement obtained by
the last cut round at the last generating cut node

Table 5.7. The features extracted from the currently considered node.

knowledge. Additionally, training on the simplified MDP can substantially reduce training
time, saving on computational and implementation costs.

However, this reward function relies on the hypothesis that more efficient exploration of the
root branch leads to faster solving of the instance overall. This hypothesis is not theoretically
guaranteed and may be incorrect in some cases.

5.5.3 Policy parametrization and training

In this subsection, we present the cut evaluator architecture and training, given a reward defi-
nition and a state representation.

5.5.3.1 Policy parametrization.

We model the cut evaluator as the Q-value function of the MDP and parameterize it as a neural
network with two parts: one embedding states into feature vectors and one approximating
action Q-values.

For the first part, we encode state components separately. Graph-structured components
(e.g., the LP optimal solution or the problem instance) use GNNs, and statistic feature com-
ponents use MLPs. The final embedding concatenates component model outputs. Note that
this embedding is independent of instance size. After obtaining the state vector, we pass it to
the second part, a 3-layer perceptron, to get the Q-value approximation of actions. Figure 5.5
illustrates the cut evaluator architecture.

84 Machine learning to accelerate branch-and-cut for combinatorial optimization

Component 1

Component n

GNN

MLP

Q-value branching

Q-value cuts

MLP

State representation State encoder Concatenation

Figure 5.5. The general architecture of the cut evaluator

5.5.3.2 Training algorithm.

To train the cut evaluator, we use the DQN algorithm (Algorithm 5), i.e., the parameters of
the cut evaluator are updated to minimize an L2 loss defined with a target network using data
sampled from a replay buffer filled with transitions generated during online interactions with
the environment. For simplicity, an ϵ-greedy policy is used for exploration.

5.6 Experiments

In this section, we demonstrate the effectiveness of the proposed framework with two well-
known combinatorial cut classes: SECs for the TSP and cycle inequalities for the Max-Cut
problem.

5.6.1 Setup

All experiments are conducted on a computing server with AMD EPYC 7742 64-core CPU,
504GB of RAM, and an RTX A4000 GPU card with 48GB graphic memory.

5.6.1.1 Problem formulations.

We use IP formulations (5.1) and (5.2) in Section 5.1 to respectively solve the TSP and the Max-
Cut problem.

5.6.1.2 Branch-and-cut solver.

We use the commercial solver CPLEX 12.10 as a backend solver and CPLEX UserCutCallback
to integrate separation routines for generating cuts into the solver. We keep the CPLEX’s de-
fault settings, which are expertly tuned. However, to focus on evaluating the benefit of cut
generation, we switch off the CPLEX’s cuts. The solver time limit is 3600 seconds per instance.

5.6.1.3 Benchmarks.

For the TSP, we use random TSP instances generated following Johnson and McGeoch’s gener-
ator used for the DIMACS TSP Challenge [82]. These instances are complete graphs. We train
on 200 instances with graphs of 200 vertices and evaluate on three instance groups: instances

Experiments 85

with graphs of 200 (small), 300 (medium), and 500 vertices (large) and 100 instances per group.
Furthermore, we also assess the proposed method on 29 instances with graphs of 200 to 1000
vertices from TSPLIB [46], a well-known library of sample instances for the TSP.

For the Max-Cut problem, we use random instances generated by the well-known rudy
generator [83]. These instances are graphs of 10% density. We train on 200 instances with
graphs of 100 vertices and also evaluate on three instance groups: instances with graphs of 100
(small), 120 (medium), and 140 (large) vertices. Each group contains 100 instances.

Note that for both problems, the training phase only uses small instances, while the testing
phase assesses larger instances. This aims to evaluate the scalability and generalization ability
of the proposed framework.

5.6.1.4 The cut detector implementation

To implement the cut detector, we need to determine the node and edge features associated
with the separation graph of an LP optimal solution and the form of MP layers.

For SECs, based on their separation routine, we use node degrees as node features and edge
capacities as edge features. We use 1-GNN layers proposed in [85] as MP layers. The hidden
size of these layers is set to 128.

For cycle inequalities, we empirically observe that the corresponding separation routine can
obtain valid cuts in most executions, as shown in Table 1. Thus, we do not use the cut detector
for this cut type.

5.6.1.5 The cut evaluator implementation

For SEC generation for the TSP, we set the hyperparameters as follows: the penalty for each
action is −0.01; the penalty for each redundant separation routine is −0.1; the bonus for each
found cut is 0.01. For cycle inequality generation for the Max-Cut problem, we experimented
with many hyperparameter sets, but none of them resulted in a meaningful policy. Thus, we
did not apply the gap-based reward function for cycle inequalities. Recall that the state rep-
resentation corresponding to the gap-based reward function has three components: the LP
optimal solution, the problem instance, and the tree features. We encode these with sepa-
rate models. The LP optimal solution is encoded by a 1-GNN model [85] operating on the
separation-purpose graph constructed from the solution. Node degrees are used as node fea-
tures, and edge capacities as edge features. For the problem instance, we use an MLP layer to
embed the 4-dimensional edge features into the same space as the node embeddings. Then,
we use a modified GIN architecture [86] to integrate the edge features into updating the node
embeddings. For TSP instances, which are complete graphs, we update a node’s embedding
using its ten nearest neighbors based on edge costs. The tree features are encoded by an MLP
with two hidden layers. All feature dimensions are 64.

The time-based reward function’s state representation has two components: the LP optimal
solution and tree node features. Since we represent the LP solution by a more general graph
instead of the separation-purpose graph, we encode this with a Graphormer model [87] com-
bining GNN and Transformer architectures. The tree node features are encoded by an MLP
with two hidden layers. Again, all feature dimensions are 64.

86 Machine learning to accelerate branch-and-cut for combinatorial optimization

5.6.1.6 Training.

We train the cut detector and cut evaluator separately. To train the cut detector for SECs, we
generate 96000 labeled fractional solutions from 200 random instances. We train the cut de-
tector within 100 epochs, and the learning rate is 0.0001. For the cut evaluator, we train the
Q-learning network with one million steps using the package stable-baselines3 [88].

5.6.1.7 Baselines.

As in Section 5.3.2, we compare our proposed framework to the skip-factor-based fixed and
automatic strategies introduced in [28]. Specifically, these are FS-1 (generating cuts at every
node), FS-8 (generating cuts at every 8 nodes), and AS (generating cuts at every k nodes where
k is computed by formulation (5.3)). We experimentally observe that combinatorial cuts are
very efficient at the root node but inefficient in the later stages of computation. Therefore, we
consistently generate cuts at the root node and stop generating cuts when the IP relative gap is
less than 1%, regardless of the strategy used.

5.6.2 The contribution of the cut detector

We first conduct experiments to measure the contribution of the cut detector to the perfor-
mance. Toward this end, we implement a cut generation strategy CD that only uses the cut
detector. At every node of the enumeration tree, CD generates cuts if the cut detector predicts
that some cuts are violated by the corresponding LP optimal solution. Besides, we consider
strategies that are combinations of the cut detector and the baselines.

As mentioned earlier, we only use the cut detector for SECs of the TSP, as their separation
routine rarely produces valid cuts. Table 5.8 presents the results of the strategies for generating
SECs in branch-and-cut for the TSP. CD+FS-8 and CD+AS represent policies where the cut detec-
tor is integrated into FS-8 and AS, respectively. The column labeled “Sepa time (%)" indicates the
proportion of total CPU time spent solving separation problems. Column “# Preds" provides
information on how many decisions each strategy made. Column “# Sepa" gives the number
of separation executions, and column “Sepa cuts (%)" shows the proportion of these executions
obtaining cuts.

As shown in Table 5.8, using the cut detector can improve branch-and-cut performance sig-
nificantly. The cut detector decreases the separation time, increases the proportion of successful
separation executions, and reduces the number of cuts used. On average, the strategies using
the cut detector execute the separation routine in approximately 30% of the total decisions
made, in which 80% of executions obtain valid cuts.

When comparing the original and cut-detector-used versions of heuristics strategies (i.e., CD
versus FS-1, CD+FS-8 versus FS-8, and CD+AS versus AS), the cut-detector-used versions usually
obtain better results in all aspects including the runtime, separation time and accuracy, and
number of cuts used.

Table 5.8 also shows that the impact of cut generation not only depends on the number of
separation executions. Indeed, although wasting more time on redundant separation execu-
tions than other cut-detector-used strategies, strategy CD accelerates performance the most for
medium and large instances.

Experiments 87

Strategy
CPU
Time

Sepa
time (%)

Preds # Sepa
Sepa

cuts (%)
Cuts

SMALL FS-1 109.94 65.4% 119.13 119.13 26.3% 507.0
FS-8 56.80 38.8% 37.63 37.63 52.7% 493.8
AS 48.05 21.7% 15.07 15.07 69.9% 439.3

CD 42.78 38.9% 120.61 27.16 69.4% 404.2
CD+FS-8 37.70 24.3% 27.69 11.71 84.8% 432.5
CD+AS 37.73 15.25% 16.84 7.42 93.5% 425.92

MEDIUM FS-1 511.10 62.8% 249.21 249.21 25.6% 956.8
FS-8 424.56 34.5% 77.76 77.76 52.3% 970.2
AS 440.99 20.3% 30.90 30.90 66.2% 861.7

CD 315.16 37.2% 290.38 60.57 66.1% 784.6
CD+FS-8 318.67 20.9% 61.93 23.76 85.3% 794.5
CD+AS 316.11 13.79% 28.98 13.86 91.5% 811.55

LARGE FS-1 2,997.95 56.8% 417.72 417.72 21.7% 2,330.7
FS-8 2,916.38 26.4% 162.60 162.60 47.4% 2,425.0
AS 2,978.34 13.0% 77.88 77.88 64.9% 2,265.5

CD 2,716.23 23.3% 700.71 124.71 63.9% 1,897.3
CD+FS-8 2,875.42 11.2% 145.35 54.48 84.2% 2,148.1
CD+AS 2,935.36 6.80% 69.32 36.21 91.1% 2,171.65

TSPLIB FS-1 2,115.55 69.2% 855.07 855.07 17.3% 2,446.9
FS-8 2,056.70 44.5% 373.83 373.83 41.9% 2,694.7
AS 2,087.74 30.7% 341.83 341.83 59.1% 3,035.1

CD 1,915.09 32.4% 3,755.97 207.55 63.6% 2,115.6
CD+FS-8 1,939.04 24.9% 753.76 103.31 79.9% 2,822.9
CD+AS 1,940.56 14.6% 2,452.24 64.03 89.5% 2,643.1

Table 5.8. The results of using the cut detector in generating SECs in branch-and-cut for the
TSP

88 Machine learning to accelerate branch-and-cut for combinatorial optimization

5.6.3 The effectiveness of the proposed framework

We now assess the effectiveness of the proposed framework on two combinatorial cut classes:
SECs for the TSP and cycle inequalities for the Max-Cut problem. As demonstrated in the
experiments conducted in Section 5.1, these cut classes exhibit distinct properties. SECs are
infrequent but impactful, whereas cycle inequalities are typically numerous, yet their impact is
comparatively weaker. Hence, the designs of the proposed framework for these two cut classes
also differ.

5.6.3.1 SEC generation

For SECs, we use both the cut detector and the cut evaluator. We train the cut evaluator with
the gap-based (CE-gap) and time-based (CE-time) reward definitions. Combining with the cut
detector, we have two machine-learning-based strategies: CD+CE-gap and CD+CE-time.

Table 5.9 presents the results of our framework and the baselines on the TSP instances. For
each instance group, we report the number of instances that can be solved to optimality within
the CPU time limit over the total instances (column “Solved”), the average CPU time in seconds
(including also the running times of instances that cannot be solved to optimality within the
CPU time limit) (column “CPU Time”), the average number of nodes in the enumeration tree
(column “# Nodes”), and the average number of generated SECs (column “# Cuts”). Recall that
our goal in this paper is to accelerate the branch-and-cut algorithm; thus, the main criterion for
comparison is the CPU running time.

As shown in Table 5.9, the strategy CD+CE-gap outperforms all the baselines on all instance
groups. Indeed, CD+CE-gap solves more instances to optimality within a smaller average CPU
time. Compared to FS-8, CD+CE-gap is faster by 5% on average over all random instances, i.e.,
is 39%, 32%, and 1% faster for small, medium, and large instances, respectively. For the TSPLIB
instances, CD+CE-gap is faster by 9%, 8%, and 8% compared to AS, FS-8, and FS-1.

In contrast, the CD+CE-time strategy exhibits a lower level of competitiveness. One possible
explanation could be that this strategy generates too few cuts. In fact, for large and TSPLIB
instances, CD+CE-time only produces approximately 30% of the average additional cuts com-
pared to other strategies. This low production of cuts is insufficient to strengthen LP relax-
ations, resulting in poor performance overall.

As predicted, FS-1 has the smallest tree size on average over all instances, but its running
time is the highest due to the extra time spent on generating SECs. On the other hand, too few
cuts might be detrimental to the branch-and-cut performance. It can be seen in the comparison
between FS-8 and AS strategies on large and medium instances. Indeed, AS requires more
computing time than FS-8 despite generating fewer SECs. The numerical results give evidence
that our method can balance the separation cost and the benefit of generated SECs.

5.6.3.2 Cycle inequality generation

For cycle inequalities, we do not use the cut detector since most separation executions obtain
valid cuts. Furthermore, due to the frequent existence of cycle cuts, we can not find reasonable
hyperparameters (i.e., the bonus for found cuts) to train the cut evaluator with the gap-based

Conclusion 89

Strategy Solved CPU Time # Nodes # Cuts

SMALL FS-1 100/100 109.9 2,769.0 506.9
FS-8 100/100 56.8 3,090.1 493.8
AS 100/100 48.1 3,521.1 439.3

CD+CE-gap 100/100 34.4 3,185.7 423.7
CD+CE-time 100/100 46.7 4,769.5 157.5

MEDIUM FS-1 96/100 511.1 11,969.1 956.8
FS-8 98/100 424.6 15,983.4 970.2
AS 96/100 441.0 26,759.5 861.7

CD+CE-gap 99/100 288.5 17,390.6 726.1
CD+CE-time 96/100 383.84 52,423.7 545.1

LARGE FS-1 32/100 2,998.0 37,698.9 2,330.7
FS-8 35/100 2,916.4 55,882.8 2,425.0
AS 33/100 2,922.4 71,455.1 2,235.9

CD+CE-gap 37/100 2,889.7 72,160.1 1,965.9
CD+CE-time 29/100 3,015.2 78,291.1 833.8

TSPLIB FS-1 15/29 2,062.3 15,114.4 2,412.9
FS-8 14/29 2,056.7 19,797.6 2,694.7
AS 13/29 2,087.7 23,202.5 2,967.0

CD+CE-gap 15/29 1,890.1 30,995.7 2,622.4
CD+CE-time 14/100 2,212.8 22,995.9 951.3

Table 5.9. The numerical results of the SEC generation strategies

reward function. Thus, we only train the cut evaluator with the time-based reward function
for cycle inequalities.

Table 5.10 illustrates the efficiency of our approach for cycle inequalities. In the case of
small instances, CE-time not only minimizes the CPU time but also significantly decreases the
number of cuts, roughly by a factor of 2. As for medium instances, this strategy can solve a
higher number of instances to optimality within a CPU time that is less than 23% compared to
the best among the baseline strategies.

However, the effectiveness of CE-time diminishes when applied to large instances. Though
it can still solve more instances to optimality in a shorter runtime, the improvement is rather
modest. Only a few instances are solved to optimality. A reason could be that the impact
of cycle inequalities reaches the limit when applied to large instances, thus requiring more
powerful cut types.

5.7 Conclusion

In this chapter, we proposed a data-driven framework to learn cut generation strategies of
branch-and-cut algorithms. Our framework comprises two components: the cut detector and
the cut evaluator. We introduced two reward definitions to train the cut evaluator; thus, one can

90 Machine learning to accelerate branch-and-cut for combinatorial optimization

Strategy Solved CPU Time # Nodes # Cuts

SMALL FS-1 100/100 275.4 297.4 14403.4
FS-8 100/100 105.9 447.8 9107.7
AS 100/100 87.1 385.9 9959.9

CE-time 100/100 60.7 449.1 4443.8

MEDIUM FS-1 47/100 2777.8 1666.9 38111.5
FS-8 83/100 1703.2 3999.6 26055.0
AS 77/100 1761.2 3671.0 32186.9

CE-time 87/100 1310.2 3557.8 30723.8

LARGE FS-1 0/100 3600.1 3806.2 56115.7
FS-8 1/100 3576.5 5322.2 45548.5
AS 0/100 3600.1 3855.6 56153.8

CE-time 2/100 3559.2 4202.8 59108.2

Table 5.10. The numerical results of the cycle inequality generation strategies

easily customize the proposed framework to adapt to the properties of the considered cut type.
Experimental results demonstrated that our method outperforms commonly used heuristics
(without machine learning) for cut generation. Most importantly, the trained strategies can be
applied to instances larger than those used for training.

Our future work is to generalize this framework to other combinatorial cuts of combina-
torial optimization problems. Although we have multiple choices for framework architecture,
we wonder whether we can only use the cut evaluator with a general-purpose reward function
to reduce the expert knowledge and increase the scalability. Another direction is to investigate
the use of the proposed framework when branch-and-cut uses more than one cut class.

Conclusion

Branch-and-cut is one of the most powerful methods for solving combinatorial optimization
problems exactly. While branch-and-cut has demonstrated its ability to solve computation-
ally challenging problems, its performance is notoriously unstable and strongly dependent on
problem properties and implementation details. Within this context, this thesis studies the
computational aspects of branch-and-cut in two critical directions of combinatorial optimiza-
tion: the fairness of solutions and the interaction with machine learning.

Part I

In the first part of this thesis, we considered branch-and-cut for fair combinatorial optimiza-
tion, where the fairness of solutions is prioritized. In general, one popular approach to address
the issue of fairness is to encode a fairness or unfairness measure in the objective function.
These objective functions are usually nonlinear and thus require linearization methods. How-
ever, incorporating linearization methods into the problem formulation can cause difficulties
in solving it. Part I of this thesis presented ideas, techniques, analyses, and experiments to
improve branch-and-cut performance when dealing with nonlinear fair objective functions.

In Chapter 3, we investigated balanced combinatorial optimization, which finds a fair solu-
tion by minimizing the difference between the largest and smallest solution components. We
provided an empirical example demonstrating the difficulties of using branch-and-cut to solve
this problem class. To overcome these challenges, we proposed a specific-purpose branch-
and-cut framework whose central component is a new class of local cuts. These cuts utilize
information about the enumeration tree to tighten LP relaxations. Combined with additional
bounding mechanisms and applied to an NP-hard case study (the BTSP), this framework signif-
icantly outperforms general-purpose branch-and-cut algorithms. It also certifies the optimality
of more solutions compared to heuristic algorithms for the same test set.

However, the proposed MILP formulation relies on a large constant, known as "big-M," to
estimate the smallest solution component. Using big-M can slow branch-and-cut performance
and lead to significant losses in numerical precision. One direction for our future work is to
develop an alternative MILP formulation of balanced combinatorial optimization that does
not require a big-M parameter. We also intend to develop other cut classes to strengthen the
linear programming relaxations solved during branch-and-cut to boost algorithmic efficiency.
Another direction is to use machine learning to predict the maximum and minimum costs of

91

92 Conclusion

the tour and then utilize this information to guide branch-and-cut.

Chapter 4 investigates the second research question, which examines the relationship be-
tween two linearization methods for OWA combinatorial problems. Specifically, we have
proved the equivalence of the two formulations in terms of their LP relaxations despite their
utilization of differing numbers of extra variables. We also conducted experiments applying
the two formulations to the OWA TSP to compare their performance within a branch-and-cut
algorithm. Interestingly, numerical results showed that the formulation with more variables
can be solved more efficiently.

In this chapter, the number of solution components aggregated by the OWA is restricted
to be known and fixed; for example, in the OWA TSP, the number of components equals the
number of vertices in the graph instance. However, how can we apply this representation
of fairness in problems where the number of solution components is unknown, such as the
shortest path or minimum cut problem? Additionally, how can we linearize and solve such
problems efficiently using branch-and-cut? Besides, we also want to construct approximation
algorithms to solve OWA combinatorial optimization.

Part II

In Part II of this thesis, we studied the intersection of machine learning and combinatorial op-
timization. Machine learning offers immense potential to revolutionize the way combinatorial
optimization problems are solved today. It can automatically learn problem-specific heuristics
to substitute manually designed and generic rules for crucial decision problems within tradi-
tional methods. The second part of this thesis initiates an exploratory study to exploit machine
learning’s capacity to enhance branch-and-cut algorithms, answering our research question 3.

Chapter 5 presents the first method of using machine learning for cut generation, a vital
decision problem in branch-and-cut, with a focus on combinatorial cuts. Our method employs
a combination of supervised and reinforcement learning to train models to decide whether
to generate cuts or to branch at a node in the branch-and-bound tree. Whereas traditional
methods heavily rely on experts’ theoretical and empirical knowledge about the properties of
combinatorial cuts, the proposed method in Chapter 5 can automatically extract this informa-
tion from data. Furthermore, once trained, the model can perform on arbitrary-sized instances.
Experiments on two well-known classes of combinatorial cuts have shown impressive results:
Our method can solve more instances to optimality faster than hand-crafted heuristics. Al-
though the method’s generality is limited for large-sized instances, this work has demonstrated
machine learning’s potential to address branch-and-cut inner problems like cut generation.

While machine learning has shown potential in this area, there is still significant room for
further improvement. Firstly, while we have two reward definitions to adapt to various prop-
erties of combinatorial cuts, these definitions still rely on the choice of hyperparameters and
hypotheses, which reduce the generality and scalability of the framework. Thus, it is worth
exploring an alternative definition of the reward function that is more general. Secondly, since
representing the entire enumeration tree is too complex, we used a substitute representation
that only utilizes a subset of tree information. This can limit the full potential of machine learn-
ing for studying generation strategies. Designing better representations of the search tree is

Conclusion 93

a promising approach to improving the framework. Finally, investigating the theoretical im-
pact of cuts generated at a node on the overall performance of branch-and-cut is an interesting
direction we want to pursue.

In a bigger plan, we want to build a more versatile framework that can decide between
generating cuts or branching, select the branching variables if branching, choose which cuts to
add if generating cuts, and determine which node to explore next.

Résumé en français

L’optimisation combinatoire est un sous-domaine de l’optimisation mathématique qui consiste
à trouver une solution optimale à partir d’un ensemble fini de possibilités. Il s’agit de l’un des
domaines de recherche les plus actifs de ces dernières années puisque des milliers de problèmes
de décision réels qui ont un impact significatif sur notre vie quotidienne peuvent être formulés
sous forme de problèmes d’optimisation combinatoire. Les exemples incluent l’optimisation
des plans de ressources dans le domaine de la santé [3], la minimisation des coûts de trans-
port globaux d’un calendrier de livraison [4], la minimisation des émissions de gaz à effet de
serre des opérations logistiques [5] et la maximisation du profit total du projet sélection de
portefeuille dans l’entreprise [6]. Ces problèmes sont souvent caractérisés par leur complexité
et leur difficulté, nombre d’entre eux étant classés comme NP-difficiles, ce qui représente des
défis restant à relever pour parvenir à des solutions optimales, voire quasi optimales.

Bien que les solutions possibles d’optimisation combinatoire soient limitées, leur nombre
augmente de façon exponentielle avec la taille de l’instance, rendant la recherche exhaustive
insoluble en un temps reasonnable. Pour surmonter ce défi, les chercheurs ont développé des
algorithmes de recherche efficaces adaptés à des problèmes d’optimisation combinatoire spéci-
fiques. Cependant, ces algorithmes nécessitent généralement une compréhension approfondie
des caractéristiques du problème et un investissement important en temps et en ressources.
Une approche alternative consiste à établir des méthodes génériques pour résoudre divers
problèmes d’optimisation combinatoire.

Une de ces méthodes génériques est la Programmation Linéaire en Nombre Entier Mixte
(MILP), une technique puissante pour modéliser des problèmes. La plupart des problèmes
d’optimisation combinatoire peuvent être formulés naturellement sous forme de formulations
MILP où les décisions sont représentées par des variables pouvant prendre des valeurs contin-
ues ou discrètes. Les relations entre ces variables sont définies par des contraintes linéaires, et
le but est d’optimiser une fonction objectif linéaire soumise à ces contraintes.

Une fois qu’un problème d’optimisation combinatoire est formulé comme un problème
MILP, il peut être résolu à l’aide de solveurs MILP. La méthode de base des solveurs MILP
modernes de pointe est le branch-and-bound et le plan de coupe, qui fusionne deux méthodes
bien connues : le branch-and-bound et le plan de coupe. Alors que le branch-and-bound et
le plan de coupe divisent récursivement l’espace de recherche en sous-espaces plus petits et
débornent la fonction objectif dans chaque sous-espace, la méthode du plan de coupe ajoute de
manière itérative des inégalités valides pour affiner l’espace de recherche. La combinaison de

94

Résumé en français 95

ces deux méthodes permet au branch-and-cut d’élaguer efficacement l’espace de solution et de
converger rapidement vers la solution optimale.

Les performances empiriques branch-and-cut sont irrégulières et sensibles aux attributs
du problème et des détails de mise en œuvre. Par exemple, un changement mineur dans la
fonction objectif ou dans la manière de représenter les contraintes peut entraîner une grande
différence des performances. Des facteurs de mise en œuvre, comme les stratégies de sélection
internes, l’utilisation d’heuristiques ou les choix d’algorithmes de programmation linéaire (LP),
peuvent également avoir un impact sur l’efficacité du branch-and-cut.

Motivée par ces problématiques, cette thèse vise à combler le manque de connaissances
entourant les aspects informatiques du branch-and-cut lors de la résolution de problèmes
d’optimisation combinatoire.

Dans cette thèse, nous nous concentrons sur l’étude du branch-and-cut dans le contexte de
deux dimensions critiques de l’optimisation combinatoire : l’équité des solutions et l’intégration
de l’apprentissage automatique.

Equité des solutions

L’équité est un concept fondamental qui intrigue les humains depuis des siècles. C’est quelque
chose que nous désirons et pour lequel nous aspirons tous, car c’est le fondement de nos in-
teractions et relations sociales. L’idée d’équité ne se borne pas à un contexte ou une situation
spécifique ; il s’agit plutôt d’un concept universel qui apparaît dans tous les domaines de la vie.
Par exemple, en temps de crise, il est essentiel d’assurer la répartition équitable de ressources
rares, telles que la nourriture et les médicaments, afin que chaque individu ait accès aux né-
cessités de la vie. Dans un autre contexte, comme dans une salle de classe, tous les élèves
devraient être traités de manière uniforme et sans discrimination fondée sur des facteurs tels
que leur richesse, leurs capacités ou leur apparence.

De par sa nature, la question de l’équité a également reçu une attention considérable de la
part des chercheurs en optimisation combinatoire. Ce problème se pose naturellement dans
les problèmes d’optimisation combinatoire. Par exemple, dans le problème d’affectation qui
consiste à attribuer des tâches aux travailleurs, une solution dans laquelle certains travailleurs
reçoivent des charges de travail nettement plus importantes que d’autres pourrait être perçue
comme un traitement injuste.

Diverses approches ont été proposées dans la littérature pour aborder la question de l’équité
dans l’optimisation combinatoire avec différentes manières de modéliser l’équité. Dans cette
thèse, nous nous concentrons sur deux approches populaires : optimisation combinatoire équili-
brée [7] et optimisation combinatoire moyenne pondérée ordonnée (OWA) [8].

Optimisation combinatoire équilibrée

Optimisation combinatoire équilibrée, proposée par Martello et al. [7], trouve une solution
équitable en minimisant la différence de valeurs entre les composants les plus chers et les
moins chers ; nous appelons cette différence la distance max-min, pour abréger. Cette ap-
proche a d’abord été définie dans le contexte du problème d’affectation [7] puis a été étendue

96 Résumé en français

et généralisée à d’autres cas particuliers d’optimisation combinatoire en raison de sa nature
intuitive [7, 9–19].

Il existe deux approches principales pour résoudre l’optimisation combinatoire équilibrée.
La première consiste à construire directement une solution avec la plus petite distance max-
min en exploitant des structures spécifiques au problème. Cette approche s’est principalement
concentrée sur des problèmes solvable par des polynômes. Le second est basé sur l’algorithme
à double un cadre itératif général trouvant les seuils des composants les plus grands et les plus
petits. Ces seuils peuvent être trouvés en vérifiant à plusieurs reprises l’existence d’une solu-
tion réalisable dans un ensemble donné via ce que l’on appelle sous-programme de faisabilité. Par
conséquent, la complexité de cet algorithme dépend du sous-programme de faisabilité, qui est
parfois NP-difficile. Les variantes visent à réduire la complexité des problèmes de vérification
de faisabilité et le nombre d’itérations nécessaires.

À notre connaissance, aucun algorithme générique basé sur MILP n’a été proposé pour une
optimisation combinatoire équilibrée, bien que MILP ait réussi à résoudre un large éventail de
problèmes. La raison en est que le principal défi lors de la résolution d’une optimisation combi-
natoire équilibrée ne consiste pas à formuler des problèmes mais à déborner les composants les
plus grands et les plus petits. Lorsque ces composants ne sont pas étroitement liés, il devient
beaucoup plus difficile d’élaguer les nœuds de l’arbre d’énumération pendant le processus de
branch-and-cut. Par conséquent, résoudre des problèmes d’optimisation combinatoire équili-
brée par branch-and-cut peut être incroyablement long et inefficace.

Question de recherche 1 : Comment concevoir le branch-and-cut pour résoudre efficacement
l’optimisation combinatoire équilibrée ?

Pour répondre à cette question, au chapitre 3, nous proposons une algorithme de branche-
ment et de coupe pour une optimisation combinatoire équilibrée. Le point central de notre
algorithme est une nouvelle classe de plans de coupe locaux appelés coupes locales de délimita-
tion. Ces plans de coupe ne nécessitent aucune structure spécifique au problème et exploitent
plutôt les informations sur les arbres de branchement et de coupe pour mieux borner le plus
petit coût de composant. Ainsi, ils peuvent être appliqués à tous les problèmes d’optimisation
combinatoire équilibrée.

Nous évaluons l’algorithme proposé sur un cas NP-difficile d’optimisation combinatoire
équilibrée, c’est-à-dire le problème du voyageur de commerce équilibré (BTSP), qui n’a été
résolu que de manière heuristique par [13] dans la littérature. Pour améliorer encore les per-
formances, nous développons un algorithme de borne inférieure pour initialiser une borne
inférieure sur la valeur optimale BTSP. Nous proposons également un algorithme de recherche
locale pour fournir une borne supérieure initiale et améliorer la solution existante lors du
branchement et de la coupe. De plus, nous introduisons des techniques d’élimination des vari-
ables et de fixation de variables pour réduire la taille du problème et resserrer les relaxations
de programmation linéaire (LP). Des expériences sur le même jeu d’instances TSPLIB montrent
que notre approche peut résoudre 63 instances sur 65 avec une optimalité prouvée, tandis que
l’heuristique basée sur le double seuil [13] ne certifie l’optimalité que de 27 instances.

Résumé en français 97

Optimisation combinatoire Ordered Weighted Average

Notez que l’optimisation combinatoire équilibrée se concentre uniquement sur la distance
max-min, ce qui peut conduire à des solutions inefficaces concernant le résultat total. Une
approche plus sophistiquée est l’optimisation combinatoire OWA [8], dont la fonction objectif
intègre l’opérateur OWA [20]. L’intuition derrière l’optimisation combinatoire OWA découle
d’une observation selon laquelle, lorsqu’il s’agit d’équité de solution, nous nous soucions de
l’ensemble des valeurs des composants sans considérer quel valeur spécifique prend chaque
composante. Ainsi, cette approche considère chaque composante comme un objectif individuel
et regroupe les objectifs de l’opérateur OWA. Les solutions d’optimisation combinatoire OWA
sont efficaces au sens Pareto-optimal, prenant en compte la minimisation des inégalités selon
l’approche Pigou-Dalton. Cette méthode basée sur OWA est bien adaptée aux situations réelles
nécessitant des compromis appropriés entre équité et efficacité.

A cause de la fonction objectif, les problèmes d’optimisation combinatoire OWA sont non
linéaires, même si leurs contraintes d’origine sont linéaires. Heureusement, il existe deux méth-
odes de linéarisation de l’OWA avec des poids décroissants. La première a été proposée par
Orgyczak et al. [1], qui reformule l’OWA comme une combinaison de composants de Lorenz
et représente chaque composant de Lorenz comme un dual d’un programme linéaire. La sec-
onde a été introduite par Chassein et al. [2], qui utilise, comme valeur OWA, le permutaedre
permettant d’obtenir le maximum parmi toutes les permutations du produit interne entre les
poids OWA et les composants de la solution. En termes de taille, la méthode de Chassein
utilise moins de variables que celle d’Orgyczak. De plus, lorsqu’elle est appliquée à plusieurs
problèmes d’optimisation continue, la formulation de Chassein peut être résolue plus rapide-
ment [2]. Cependant, dans l’optimisation combinatoire OWA, l’intégration de méthodes de
linéarisation dans la formulation du problème peut entraîner des difficultés supplémentaires.
Par conséquent, des questions demeurent sur la comparaison et la relation entre les deux méth-
odes d’optimisation combinatoire OWA.

Question de recherche 2 : Y a-t-il une relation entre les deux méthodes de linéarisation pour
l’optimisation combinatoire OWA ? La formulation avec moins de variables est-elle toujours résolue
plus rapidement par branch-and-cut ?

Dans le chapitre 4, notre objectif est de comparer les deux formulations MILP lors de leur
incorporation dans le branchement et la coupe. Nous proposons des comparaisons sous les
aspects théoriques et empiriques, en particulier

• Nous prouvons que les deux formulations sont équivalentes en termes de relaxation de
programmation linéaire.

• Nous estimons la qualité de la valeur OWA de la solution optimale de l’optimisation
combinatoire classique.

• Nous évaluons les performances du branch-and-cut lors de l’utilisation de ces formu-
lations pour résoudre le problème du voyageur de commerce (TSP) d’OWA. Bien que
O-MILP utilise plus de variables supplémentaires que C-MILP, il peut être résolu plus
rapidement que C-MILP sur OWA TSP.

98 Résumé en français

Apprentissage automatique pour l’optimisation combinatoire

Branch-and-cut est hautement configurable et ses performances dépendent fortement de la con-
figuration des stratégies de décision internes, telles que la sélection de variables, la sélection de
nœuds, la sélection de coupes ou la génération de coupes. Une configuration habile peut aider
à résoudre des problèmes de calcul difficiles. Cependant, identifier une configuration efficace
est un défi difficile.

Dans des situations pratiques, nous résolvons généralement de manière répétée un prob-
lème d’optimisation combinatoire avec de nombreuses instances différentes mais liées. Ce pro-
cessus génère une vaste quantité de données historiques pouvant contenir des motifs signi-
ficatifs. Une idée naturelle consiste à exploiter ces motifs pour résoudre plus rapidement de
nouvelles instances. Cependant, l’extraction manuelle de ces motifs nécessite un effort expert
important. Par conséquent, un outil automatisé est nécessaire pour découvrir et exploiter sys-
tématiquement des motifs permettant d’élaborer des politiques décisionnelles habiles.

Récemment, l’apprentissage automatique est apparu comme un outil prometteur pour
apprendre automatiquement des stratégies efficaces de branchements et de coupes à partir
d’expériences de résolution passées. Les algorithmes d’apprentissage automatique peuvent
identifier des modèles dans les données et améliorer les performances dans divers domaines.
Par rapport aux heuristiques de réglage manuel, l’apprentissage automatique présente deux
avantages clés. Premièrement, cette approche est plus systématique, ce qui pourrait con-
duire à des heuristiques plus efficaces. Deuxièmement, l’apprentissage automatique permet
de développer rapidement des stratégies spécialisées, même pour des classes de problèmes
nouvelles et peu familières, en s’appuyant moins sur les connaissances du domaine humain.

Tirant parti de ces avantages, les chercheurs ont appliqué l’apprentissage automatique pour
apprendre des politiques pour les problèmes de décision de branchements et de coupes, y com-
pris la sélection de variables [21,22], la sélection de nœuds [23] et la sélection de coupes [24], et
obtenu des résultats prometteurs. Cependant, il reste un problème important qui n’a pas encore
été entièrement résolu : la génération de coupe, un défi de conception clé lors de la combinaison
des méthodes de branch-and-cut et de plan de coupe. La génération de coupes fait référence au
problème de décider s’il faut générer des coupes ou créer une branche aux nœuds de l’arbre de
branchement et de liaison pour réduire le temps d’exécution global. Ce problème a un impact
considérable sur les performances de branchement et de coupe. En effet, générer des coupes
peut réduire considérablement la taille des arbres mais peut également endommager le temps
d’exécution global en raison de la résolution des problèmes de séparation et des relaxations LP.

De plus, les travaux antérieurs d’apprentissage automatique sur les problèmes de décision
liés aux coupes se sont concentrés principalement sur les coupes à usage général, basées sur
les conditions d’intégralité des variables. Les coupes combinatoires, une classe cruciale de
coupes codant pour des structures spécifiques à un problème, n’ont pas encore reçu beaucoup
d’attention. Le manque d’études sur la génération de coupes combinatoires constitue une la-
cune notable dans la recherche, car les coupes combinatoires sont indispensables pour résoudre
l’optimisation combinatoire, en particulier les problèmes NP-difficiles.

Question de recherche 3 : Comment pouvons-nous utiliser l’apprentissage automatique pour appren-
dre une politique de génération de coupes combinatoires ?

Résumé en français 99

Dans le chapitre 5, nous proposons un cadre général basé sur l’apprentissage automatique
pour apprendre des stratégies de génération de coupes combinatoires. Notre idée est de for-
muler la génération de coupes sous la forme d’un problème de décision markovien (MDP) et
de former un agent à apprendre les politiques.

Bien que l’idée de représenter les problèmes de décision de branchement et de coupe sous
forme de MDP ne soit pas nouvelle [22,23], notre approche aborde le problème d’apprentissage
d’une manière nouvelle à travers deux contributions :

• Contrairement à la plupart des travaux antérieurs qui utilisent l’apprentissage par imi-
tation pour imiter un expert précieux mais coûteux, nous formons l’agent par apprentis-
sage par renforcement avec des fonctions de récompense soigneusement conçues. Pour
s’adapter à la variété des propriétés des coupes combinatoires, nous introduisons deux
définitions de fonctions de récompense : une basée sur la différence relatif de MILP et
une autre basée sur le temps d’exécution. Nous proposons en outre plusieurs techniques
de mise en forme des récompenses pour accélérer la convergence de l’algorithme.

• Notre méthode utilise une approche hybride intégrant à la fois un apprentissage super-
visé et par renforcement. Ce choix de conception est dû à l’observation selon laquelle
des prédictions coûteuses ne devraient être tentées qu’aux nœuds prometteurs où la
résolution des problèmes de séparation peut obtenir des coupes. En particulier, notre
framework se compose de deux composants distincts : 1) un cut detector, un réseau
neuronal graphique qui détecte l’existence de coupes, et 2) un cut évaluateur, un agent
d’apprentissage par renforcement qui sélectionne entre génération des coupes et des ram-
ifications. Diviser la génération de coupes en tâches spécialisées nous permet d’utiliser
des modèles légers tout en garantissant la précision.

Grâce aux choix de conception, notre cadre est polyvalent et applicable à divers problèmes
d’optimisation combinatoire avec différents types de coupes. De plus, les politiques formées
sont adaptables à des instances de taille arbitraire, même si elles sont initialement formées avec
des exemples de taille fixe. Pour évaluer l’efficacité des méthodes proposées, nous menons des
expériences sur deux problèmes d’optimisation combinatoire NP-difficiles bien connus : le TSP
avec contraintes d’élimination de sous-tours et le problème de coupe maximale avec inégalités
de sous-tours. Les résultats expérimentaux démontrent que nos méthodes peuvent améliorer
considérablement les performances des algorithmes de branchement et de coupe.

List of Figures

2.1 The schematic representation of a neuron . 14
2.2 A multilayer perceptron with two hidden layers 15
2.3 An illustration of agent-environment interactions in MDPs at time step t 20

3.1 The schema of our branch-and-cut algorithm for the BTSP. Our improvements
focus on the green components in the diagram. 32

3.2 Illustration of a 3−opt move in 3−balanced. (1.a) represents a tour H whose
largest and smallest edge costs are 8 and 3, respectively. We will remove all
edges with max-cost 8 (f1, f2, f3) from H and set (l′, u′) = (lH, uH − 1) = (3, 7).
(1.b) illustrates the remainder H \ F of the tour. The dash lines are the edges of
EC(F, l′, u′) where edges have two endpoints in V(F), and costs belong to [3, 7].
(1.c) demonstrates a compressed version G′ of G, in which paths in H \ F are
considered as edges. The problem of reconnecting H in G is equivalent to the
one in G′. (1.d) shows the resulting tour with a smaller max-min distance, i.e., 3. 38

4.1 Lorenz curves. The green line represents perfect equality. The red and blue lines
depict the Lorenz curves for vector v before and after making a Pigou-Dalton
transfer, respectively. 52

5.1 A transition in the MDP of cut generation. 73
5.3 The cut detector architecture . 78
5.4 An illustration of partitioning the tree to a set of branches 81
5.5 The general architecture of the cut evaluator . 84

100

List of Tables

3.1 The results of the TSP and BTSP on the instance si175. 30
3.2 Selection rules of (F, l′, u′) . 40
3.3 The values of K correspond to instance sizes. 42
3.4 Comparison between the two algorithms on the 12 TSPLIB instances 43
3.5 Computational results of the algorithm variants 44
3.6 Numerical results of the DT and branch-and-cut algorithms on 65 TSPLIB in-

stances. Instances with the bold objective value are solved to proven optimality
for the first time, and instances with objective values marked by ↓ are ones that
our algorithm can provide better solutions. For the instances fl417 and pr439,
which can not be solved to proven optimality within the CPU time limit, their
current IP relative gap are 64.2% and 74.3%, respectively. 46

4.1 Numerical results for OWA TSP. 61

5.1 The results of the SEC generation strategies on the instance rat195. The asterisk
in the “CPU time” column indicates strategies that fail to solve the TSP within
the time limit. 68

5.2 The results of the cycle inequality generation strategies on the instance
pm1s_100.5. The asterisk in the “CPU time” column indicates strategies that fail
to solve the problem to optimality within the time limit. 69

5.3 Machine learning for branch-and-cut inner strategies 72
5.4 The numerical results of the expert policy . 75
5.5 The tree features for the gap-based reward function; n is the number of decision

variables and N is the maximum number of non-zero values in an optimal solution. 80
5.6 The differences between the simplified and original cut generation MDPs. 82
5.7 The features extracted from the currently considered node. 83
5.8 The results of using the cut detector in generating SECs in branch-and-cut for

the TSP . 87
5.9 The numerical results of the SEC generation strategies 89
5.10 The numerical results of the cycle inequality generation strategies 90

101

Acronyms

BTSP balanced traveling salesman problem. 3

DT double-threshold. 46

GGI Generalized Gini Index. 51

GNN graph neural network. 18

IB iterative bottleneck. 46

IP integer programming. 7

LP linear programming. 2, 95

MDP Markov decision process. 19

MILP mixed-integer linear programming. 1, 94

MLP multilayer perceptron. 15

MP message passing. 18

OWA ordered weighted average. 2, 95

RL reinforcement learning. 19

SGD stochastic gradient descent. 17

102

Bibliography

[1] Włodzimierz Ogryczak and Tomasz Śliwiński. On solving linear programs with the or-
dered weighted averaging objective. European Journal of Operational Research, 148(1):80–91,
2003. (Cited on pages ix, 3, 48, 49, 53, and 97.)

[2] André Chassein and Marc Goerigk. Alternative formulations for the ordered weighted av-
eraging objective. Information Processing Letters, 115(6-8):604–608, 2015. (Cited on pages ix,
4, 48, 49, 53, 54, 56, 62, and 97.)

[3] Mohammad Fattahi, Esmaeil Keyvanshokooh, Devika Kannan, and Kannan Govindan.
Resource planning strategies for healthcare systems during a pandemic. European Journal
of Operational Research, 304(1):192–206, 2023. (Cited on pages 1 and 94.)

[4] Paolo Toth and Daniele Vigo. Vehicle routing: problems, methods, and applications. SIAM,
2014. (Cited on pages 1 and 94.)

[5] Rommert Dekker, Jacqueline Bloemhof, and Ioannis Mallidis. Operations research for
green logistics–an overview of aspects, issues, contributions and challenges. European
journal of operational research, 219(3):671–679, 2012. (Cited on pages 1 and 94.)

[6] Vahid Mohagheghi, Seyed Meysam Mousavi, Jurgita Antuchevičienė, and Mohammad
Mojtahed. Project portfolio selection problems: a review of models, uncertainty ap-
proaches, solution techniques, and case studies. Technological and Economic Development
of Economy, 25(6):1380–1412, 2019. (Cited on pages 1 and 94.)

[7] Silvano Martello, William R Pulleyblank, Paolo Toth, and Dominique De Werra. Balanced
optimization problems. Operations Research Letters, 3(5):275–278, 1984. (Cited on pages 2,
26, 27, 28, 95, and 96.)

[8] Viet Hung Nguyen and Paul Weng. An efficient primal-dual algorithm for fair combina-
torial optimization problems. In International Conference on Combinatorial Optimization and
Applications, pages 324–339. Springer, 2017. (Cited on pages 2, 3, 50, 60, 61, 62, 95, and 97.)

[9] Paolo M. Camerini, Francesco Maffioli, Silvano Martello, and Paolo Toth. Most and least
uniform spanning trees. Discrete Applied Mathematics, 15, 1986. (Cited on pages 2, 27,
and 96.)

103

104 Bibliography

[10] Zvi Galil and Baruch Schieber. On finding most uniform spanning trees. Discrete Applied
Mathematics, 20, 1988. (Cited on pages 2, 26, 27, and 96.)

[11] Naoki Katoh and Kazuo Iwano. Efficient algorithms for minimum range cut problems.
Networks, 24, 1994. (Cited on pages 2, 26, 27, and 96.)

[12] Ravindra K. Ahuja. European Journal of Operational Research. (Cited on pages 2, 27, and 96.)

[13] John Larusic and Abraham P Punnen. The balanced traveling salesmanproblem. Comput-
ers & Operations Research, 38(5):868–875, 2011. (Cited on pages 2, 3, 28, 33, 42, 43, 45, 46, 47,
and 96.)

[14] Annette Ficker, Frits Spieksma, and Gerhard J. Woeginger. Balanced optimization with
vector costs. SSRN Electronic Journal, 2016. (Cited on pages 2 and 26.)

[15] Paolo M Camerini, Francesco Maffioli, Silvano Martello, and Paolo Toth. Most and least
uniform spanning trees. Discrete Applied Mathematics, 15(2-3):181–197, 1986. (Cited on
pages 2, 26, and 96.)

[16] Anna GRINČOVÁ, Daniela KRAVECOVÁ, and Marcel KUDLÁČ. Alternative approach
to data network optimization. Acta Electrotechnica et Informatica No, 6(1):2, 2006. (Cited on
pages 2, 26, and 96.)

[17] CW Duin and A Volgenant. Minimum deviation and balanced optimization: A unified
approach. Operations Research Letters, 10(1):43–48, 1991. (Cited on pages 2, 26, and 96.)

[18] Abraham P Punnen and Yash P Aneja. Lexicographic balanced optimization problems.
Operations Research Letters, 32(1):27–30, 2004. (Cited on pages 2, 26, and 96.)

[19] Lara Turner, Abraham P Punnen, Yash P Aneja, and Horst W Hamacher. On generalized
balanced optimization problems. Mathematical Methods of Operations Research, 73(1):19–27,
2011. (Cited on pages 2, 26, and 96.)

[20] Ronald R Yager. On ordered weighted averaging aggregation operators in multicriteria
decisionmaking. IEEE Transactions on systems, Man, and Cybernetics, 18(1):183–190, 1988.
(Cited on pages 3, 51, and 97.)

[21] Elias Khalil, Pierre Le Bodic, Le Song, George Nemhauser, and Bistra Dilkina. Learning
to branch in mixed integer programming. In AAAI, 2016. (Cited on pages 4, 65, 70, 71,
and 98.)

[22] Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact
combinatorial optimization with graph convolutional neural networks. Advances in neural
information processing systems, 2019. (Cited on pages 4, 65, 70, 71, 98, and 99.)

[23] He He, Hal Daume III, and Jason M Eisner. Learning to search in branch and bound
algorithms. Advances in neural information processing systems, 2014. (Cited on pages 4, 65,
70, 71, 98, and 99.)

Bibliography 105

[24] Yunhao Tang, Shipra Agrawal, and Yuri Faenza. Reinforcement learning for integer pro-
gramming: Learning to cut. In ICML. PMLR, 2020. (Cited on pages 4, 65, 70, 71, and 98.)

[25] George Dantzig. Linear programming and extensions. Princeton university press, 1963.
(Cited on page 8.)

[26] Narendra Karmarkar. A new polynomial-time algorithm for linear programming. In Pro-
ceedings of the sixteenth annual ACM symposium on Theory of computing, pages 302–311, 1984.
(Cited on page 8.)

[27] Ralph E. Gomory. Outline of an algorithm for integer solutions to linear programs. Bulletin
of the American Mathematical Society, 64(5):275 – 278, 1958. (Cited on page 9.)

[28] Egon Balas, Sebastian Ceria, Gérard Cornuéjols, and N Natraj. Gomory cuts revisited.
Operations Research Letters, 19(1):1–9, 1996. (Cited on pages 11 and 86.)

[29] David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. Learning internal repre-
sentations by error propagation, 1985. (Cited on page 16.)

[30] Jack Kiefer and Jacob Wolfowitz. Stochastic estimation of the maximum of a regression
function. The Annals of Mathematical Statistics, pages 462–466, 1952. (Cited on page 17.)

[31] Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural
networks, 4(2):251–257, 1991. (Cited on page 17.)

[32] Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode reinforcement
learning. Journal of Machine Learning Research, 6, 2005. (Cited on page 22.)

[33] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig
Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Ku-
maran, Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control through
deep reinforcement learning. Nature, 2015. (Cited on page 22.)

[34] Michael Kearns and Satinder Singh. Near-optimal reinforcement learning in polynomial
time. Machine learning, 49:209–232, 2002. (Cited on page 23.)

[35] Lara Turner. Variants of shortest path problems. Algorithmic Oper. Res., 6, 2011. (Cited on
page 26.)

[36] Paola Cappanera and Maria Grazia Scutella. Balanced paths in acyclic networks: Tractable
cases and related approaches. Networks: An International Journal, 45(2):104–111, 2005.
(Cited on page 26.)

[37] Maria Grazia Scutellà. A strongly polynomial algorithm for the uniform balanced network
flow problem. Discrete applied mathematics, 81(1-3):123–131, 1998. (Cited on page 26.)

[38] Štefan Berežnỳ and Vladimír Lacko. Balanced problems on graphs with categorization of
edges. Discussiones Mathematicae Graph Theory, 23(1):5–21, 2003. (Cited on page 26.)

106 Bibliography

[39] AP Punnen and KPK Nair. Constrained balanced optimization problems. Computers &
Mathematics with Applications, 37(9):157–163, 1999. (Cited on page 26.)

[40] Lacko Vladimír Berežný, Štefan. The color-balanced spanning tree problem. Kybernetika,
41(4):[539]–546, 2005. (Cited on page 26.)

[41] Daniel D Sleator and Robert Endre Tarjan. A data structure for dynamic trees. In Proceed-
ings of the thirteenth annual ACM symposium on Theory of computing, pages 114–122, 1981.
(Cited on page 27.)

[42] John E Hopcroft and Richard M Karp. An nˆ5/2 algorithm for maximum matchings in
bipartite graphs. SIAM Journal on computing, 2(4):225–231, 1973. (Cited on page 28.)

[43] Harold W Kuhn. The hungarian method for the assignment problem. Naval research logis-
tics quarterly, 2(1-2):83–97, 1955. (Cited on page 28.)

[44] John LaRusic and Abraham P Punnen. The asymmetric bottleneck traveling salesman
problem: algorithms, complexity and empirical analysis. Computers & Operations Research,
43:20–35, 2014. (Cited on page 28.)

[45] Esther M Arkin, Yi-Jen Chiang, Joseph SB Mitchell, Steven S Skiena, and Tae-Cheon Yang.
On the maximum scatter traveling salesperson problem. SIAM Journal on Computing,
29(2):515–544, 1999. (Cited on page 28.)

[46] Gerhard Reinelt. Tsplib—a traveling salesman problem library. ORSA journal on computing,
3(4):376–384, 1991. (Cited on pages 28, 30, 42, 61, 67, and 85.)

[47] George Dantzig, Ray Fulkerson, and Selmer Johnson. Solution of a large-scale traveling-
salesman problem. Journal of the operations research society of America, 2(4):393–410, 1954.
(Cited on pages 29, 53, and 67.)

[48] Shen Lin. Computer solutions of the traveling salesman problem. Bell System Technical
Journal, 44(10):2245–2269, 1965. (Cited on pages 33 and 37.)

[49] Keld Helsgaun. General k-opt submoves for the lin–kernighan tsp heuristic. Mathematical
Programming Computation, 1(2):119–163, 2009. (Cited on pages 33 and 37.)

[50] Robert Tarjan. Depth-first search and linear graph algorithms. SIAM journal on computing,
1(2):146–160, 1972. (Cited on page 36.)

[51] Ralph E Gomory and Tien Chung Hu. Multi-terminal network flows. Journal of the Society
for Industrial and Applied Mathematics, 9(4):551–570, 1961. (Cited on pages 42 and 67.)

[52] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring network structure, dy-
namics, and function using networkx. In Gaël Varoquaux, Travis Vaught, and Jarrod Mill-
man, editors, Proceedings of the 7th Python in Science Conference, pages 11 – 15, Pasadena,
CA USA, 2008. (Cited on page 42.)

Bibliography 107

[53] Włodzimierz Ogryczak, Tomasz Śliwiński, and Adam Wierzbicki. Fair resource allocation
schemes and network dimensioning problems. Journal of Telecommunications and Informa-
tion Technology, (3):34–42, 2003. (Cited on page 49.)

[54] Lucie Galand and Olivier Spanjaard. Exact algorithms for owa-optimization in multiob-
jective spanning tree problems. Computers & Operations Research, 39(7):1540–1554, 2012.
(Cited on page 49.)

[55] Wlodzimierz Ogryczak, Patrice Perny, and Paul Weng. On minimizing ordered weighted
regrets in multiobjective markov decision processes. In Algorithmic Decision Theory: Second
International Conference, ADT 2011, Piscataway, NJ, USA, October 26-28, 2011. Proceedings 2,
pages 190–204. Springer, 2011. (Cited on page 49.)

[56] John A Weymark. Generalized gini inequality indices. Mathematical Social Sciences,
1(4):409–430, 1981. (Cited on pages 49 and 51.)

[57] Julien Lesca, Michel Minoux, and Patrice Perny. The fair owa one-to-one assignment prob-
lem: Np-hardness and polynomial time special cases. algorithmica, 81:98–123, 2019. (Cited
on page 49.)

[58] Arthur Cecil Pigou. Wealth and welfare. Macmillan and Company, limited, 1912. (Cited on
page 51.)

[59] Hugh Dalton. The measurement of the inequality of incomes. The Economic Journal,
30(119):348–361, 1920. (Cited on page 51.)

[60] G.H. Hardy, J.E. Littlewood, and G. Pólya. Inequalities. Cambridge Mathematical Library.
Cambridge University Press, 1952. (Cited on page 51.)

[61] Max O Lorenz. Methods of measuring the concentration of wealth. Publications of the
American statistical association, 9(70):209–219, 1905. (Cited on page 51.)

[62] David B Shmoys and David P Williamson. Analyzing the held-karp tsp bound: A mono-
tonicity property with application. Information Processing Letters, 35(6):281–285, 1990.
(Cited on page 60.)

[63] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang,
Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering
the game of go without human knowledge. nature, 550(7676):354–359, 2017. (Cited on
page 65.)

[64] Alejandro Marcos Alvarez, Quentin Louveaux, and Louis Wehenkel. A machine learning-
based approximation of strong branching. INFORMS Journal on Computing, 29(1):185–195,
2017. (Cited on pages 65, 70, and 71.)

[65] Elias B Khalil, Bistra Dilkina, George L Nemhauser, Shabbir Ahmed, and Yufen Shao.
Learning to run heuristics in tree search. In Ijcai, pages 659–666, 2017. (Cited on pages 65
and 70.)

108 Bibliography

[66] Antonia Chmiela, Elias Khalil, Ambros Gleixner, Andrea Lodi, and Sebastian Pokutta.
Learning to schedule heuristics in branch and bound. NeurIPS, 34:24235–24246, 2021.
(Cited on pages 65 and 70.)

[67] Zeren Huang, Kerong Wang, Furui Liu, Hui-Ling Zhen, Weinan Zhang, Mingxuan Yuan,
Jianye Hao, Yong Yu, and Jun Wang. Learning to select cuts for efficient mixed-integer
programming. Pattern Recognition, 123:108353, 2022. (Cited on pages 65, 70, and 72.)

[68] Max B Paulus, Giulia Zarpellon, Andreas Krause, Laurent Charlin, and Chris Maddison.
Learning to cut by looking ahead: Cutting plane selection via imitation learning. In ICML,
2022. (Cited on pages 65, 70, 72, and 74.)

[69] Manfred W Padberg and Saman Hong. On the symmetric travelling salesman problem: a
computational study. Springer, 1980. (Cited on page 67.)

[70] Francisco Barahona and Ali Ridha Mahjoub. On the cut polytope. Mathematical program-
ming, 36:157–173, 1986. (Cited on pages 68 and 69.)

[71] Rinaldi Giovanni. Rudy. https://biqmac.aau.at/biqmaclib.html, 1998. (Cited on
page 69.)

[72] Manfred Padberg and Giovanni Rinaldi. Branch-and-cut algorithm for the resolution
of large-scale symmetric traveling salesman problems. SIAM Review, 1991. (Cited on
page 70.)

[73] Egon Balas, Sebastián Ceria, and Gérard Cornuéjols. Mixed 0-1 programming by lift-and-
project in a branch-and-cut framework, 1996. (Cited on pages 70 and 74.)

[74] Tobias Achterberg. Constraint integer programming. PhD thesis, 2007. (Cited on page 70.)

[75] Franz Wesselmann and U Stuhl. Implementing cutting plane management and selection
techniques. In Technical Report. University of Paderborn, 2012. (Cited on page 70.)

[76] Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial
optimization: a methodological tour d’horizon. European Journal of Operational Research,
2021. (Cited on page 70.)

[77] Marc Etheve, Zacharie Alès, Côme Bissuel, Olivier Juan, and Safia Kedad-Sidhoum. Rein-
forcement learning for variable selection in a branch and bound algorithm. In International
Conference on Integration of Constraint Programming, Artificial Intelligence, and Operations Re-
search, pages 176–185. Springer, 2020. (Cited on page 71.)

[78] Jialin Song, Ravi Lanka, Albert Zhao, Aadyot Bhatnagar, Yisong Yue, and Masahiro Ono.
Learning to search via retrospective imitation. arXiv preprint arXiv:1804.00846, 2018. (Cited
on page 71.)

[79] Abdel Ghani Labassi, Didier Chételat, and Andrea Lodi. Learning to compare nodes in
branch and bound with graph neural networks. Advances in Neural Information Processing
Systems, 35:32000–32010, 2022. (Cited on page 71.)

https://biqmac.aau.at/biqmaclib.html

Bibliography 109

[80] Zhihai Wang, Xijun Li, Jie Wang, Yufei Kuang, Mingxuan Yuan, Jia Zeng, Yongdong
Zhang, and Feng Wu. Learning cut selection for mixed-integer linear programming via
hierarchical sequence model. arXiv preprint arXiv:2302.00244, 2023. (Cited on page 72.)

[81] David Applegate, Robert Bixby, Vašek Chvátal, and William Cook. Finding cuts in the TSP
(A preliminary report), volume 95. Citeseer, 1995. (Cited on page 74.)

[82] DS Johnson and LA McGeoch. Benchmark code and instance generation codes. http://

dimacs.rutgers.edu/archive/Challenges/TSP/download.html, 2002. (Cited on pages 74
and 84.)

[83] Rudy generator. https://web.stanford.edu/~yyye/yyye/Gset/rudy.c. (Cited on
pages 74 and 85.)

[84] Giulia Zarpellon, Jason Jo, Andrea Lodi, and Yoshua Bengio. Parameterizing branch-and-
bound search trees to learn branching policies. In AAAI, volume 35, pages 3931–3939,
2021. (Cited on pages 80 and 83.)

[85] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen,
Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph
neural networks. In AAAI, volume 33, pages 4602–4609, 2019. (Cited on page 85.)

[86] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande,
and Jure Leskovec. Strategies for pre-training graph neural networks. arXiv preprint
arXiv:1905.12265, 2019. (Cited on page 85.)

[87] C Ying, T Cai, S Luo, S Zheng, G Ke, D He, Y Shen, and TY Liu. Do transformers really
perform bad for graph representation? arxiv 2021. arXiv preprint arXiv:2106.05234. (Cited
on page 85.)

[88] Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and
Noah Dormann. Stable-baselines3: Reliable reinforcement learning implementations.
Journal of Machine Learning Research, 22(268):1–8, 2021. (Cited on page 86.)

http://dimacs.rutgers.edu/archive/Challenges/TSP/download.html
http://dimacs.rutgers.edu/archive/Challenges/TSP/download.html
https://web.stanford.edu/~yyye/yyye/Gset/rudy.c

	General introduction
	General introduction
	Research questions and scope
	Fair combinatorial optimization
	Machine Learning for Combinatorial Optimization

	Background
	Combinatorial optimization
	Branch-and-Bound
	The cutting plane method
	Branch-and-Cut

	Machine Learning
	Supervised learning
	Neural networks
	Reinforcement Learning

	I Algorithms for fair combinatorial optimization
	Special-purpose branch-and-cut for balanced combinatorial optimization
	Literature review
	MILP formulation for balanced combinatorial optimization
	Need for a dedicated branch-and-cut algorithm for balanced combinatorial optimization

	Local bounding cuts
	Illustration: Branch-and-cut algorithm for the BTSP
	Lower bounding algorithm
	Local search algorithm
	Edge elimination
	Variable fixing
	Separation algorithms and strategies

	Computational results
	The effectiveness of the proposed branch-and-cut algorithm
	Impact of local cuts, lower bounding, and k-balanced components
	Comparison to the double-threshold-based algorithms

	Conclusion

	Algorithmic aspects of fair combinatorial optimization by Ordered Weighted Average
	OWA combinatorial optimization
	MILP formulations
	Formulation O-MILP ogryczak2003solving
	Formulation C-MILP chassein2015alternative

	Theoretical Analysis
	Relation between the formulations
	Quality estimation for the optimal solution of (Min-P)

	A Primal-Dual Heuristic
	Numerical results
	Conclusion

	II Machine Learning for Combinatorial Optimization
	Machine learning to accelerate branch-and-cut for combinatorial optimization
	Cut generation problem
	Literature review
	General framework for cut generation
	Markov Decision Process formulation
	Why don't we learn a cut generation policy by imitation learning?
	Hybrid framework for cut generation

	Cut detector
	Constructing training data
	Cut detector architecture

	Cut evaluator
	The gap-based reward function
	The time-based reward function
	Policy parametrization and training

	Experiments
	Setup
	The contribution of the cut detector
	The effectiveness of the proposed framework

	Conclusion

	Conclusion
	Résumé en français
	List of Figures
	List of Tables
	List of Acronyms
	Bibliography

