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3

To my home and the soul of my soul, my mother,

to my heaven, my grandmother,

to my hero, my father,

to my world, my siblings,

for their prayers, unconditional love and support.



Acknowledgment

I would like to express my deepest gratitude to the people and organizations without

whom this journey would not have been possible.

First and foremost, I extend my heartfelt thanks to my supervisors, Prof. Walid

Gaalou and Prof. Mohamedade Farouk NANNE, for their unwavering support,

insightful guidance, and invaluable mentorship throughout this research journey.

Their expertise and encouragement have been pivotal in shaping my academic and

personal growth. I am also grateful to my advisor, Dr. Mohamed Sellami, for his

patience, encouragement and expertise as well as his wisdom.

I am profoundly grateful to my dissertation committee members, Prof. Khalil

Drira, Prof. Daniela Grigori, Prof. Djamal Benslimane, Prof. Kais Klai, Prof.

Ahmedou Haouba and Prof. Joaquin Garcia-Alfaro, for their constructive feedback,

thoughtful advice, and immense patience. Their perspectives and critiques have

immensely contributed to the depth and rigor of my research.

My appreciation also goes out to the staff of the Télécom SudParis, Institut Poly-
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Résumé étendu

La blockchain, la technologie derrière les crypto-monnaies, a été initialement utilisée

pour effectuer des transactions financières dans des environnements à faible confiance

sans autorité centrale. Peu de temps après, la deuxième génération de plateformes

blockchain a étendu son applicabilité au-delà des cas d’utilisation financière. La

communauté de la gestion des processus métiers (BPM), en particulier, a vu des

opportunités pour améliorer le cadre BPM existant et renforcer les collaborations

inter-organisationnelles en utilisant la blockchain.

Bien que l’exécution des processus métiers sur la blockchain ait été largement ex-

plorée, la recherche sur le process mining des données d’exécution résultantes com-

mence tout juste à gagner du terrain. Les défis liés à la discordance entre les struc-

tures de données de la blockchain et les logs de données d’événements (event data)

ont été abordés dans la littérature. Cependant, tous les travaux existants se concen-

traient sur les processus centrés sur les activités et ignoraient les processus centrés

sur les artifacts, qui sont fréquents parmi les applications blockchain. Un autre défi

est l’extraction des données d’événements centrées sur les artifacts des applications

blockchain. Les structures de données et les systèmes de logging de la blockchain

ne sont pas intrinsèquement orientés processus. Les données et les logs générés par

les applications blockchain sont souvent fragmentés et non structurés, nécessitant

une nouvelle approche pour mapper les données de la blockchain aux éléments de

données d’événements centrés sur les arteficts. Cette approche doit tenir compte

des caractéristiques uniques des données de la blockchain, y compris leur nature

cryptographique et l’absence d’identificateurs explicites d’instances de processus.

L’intégration du process mining centré sur les artifacts avec la technologie blockchain

présente des défis, tel que le besoin d’un format de stockage approprié. Les for-

mats existants, comme XES, ne sont pas conçus pour capturer les complexités des

processus centrés sur les artifacts. Ils entrâınent souvent de la redondance et de

l’inefficacité. L’utilisation de ces formats de logging centré sur les activités pour

stocker des données d’événements centrées sur les artifacts entrâıne des problèmes de

convergence, de divergence, de dénormalisation et de perte d’informations relatives
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à l’évolution des artifacts, à leurs relations et à leurs interactions. Ces problèmes

sont à l’origine de résultats de process mining erronés et non conformes à la réalité.

Ils ont été partiellement résolus par l’introduction d’OCEL, un standard de logging

pour stocker des données d’événements centrées sur les objets. OCEL permet le

stockage de données d’objets et leur lien avec des événements, mais ne prend pas en

charge l’évolution des objets ni leurs relations. Il est donc nécessaire d’introduire

un nouveau format de logging pour capturer efficacement les données d’événements

centrées sur les artifacts, en soutenant l’évolution des objets et des relations sans

redondance.

La découverte des modèles de processus centrés sur les artifacts à partir du

nouveau format de logging proposé est également un défi crucial. Les techniques

de découverte existantes ne sont pas compatibles avec les logs centrés sur les ar-

tifacts et nécessitent souvent un prétraitement et des connaissances de domaine

approfondies. Ainsi, Une nouvelle technique de découverte est nécessaire pour au-

tomatiser l’extraction des modèles de processus centrés sur les artifacts directement

à partir du format de journal proposé. Cette technique doit être capable d’identifier

les conditions de données, les structures hiérarchiques des activités et les interactions

entre les artifacts.

Pour relever tous ces défis et débloquer le process mining centré sur les artifacts pour

les applications blockchain, nous avons mené les travaux présentés dans ce manuscrit.

Nous avons d’abord examiné, à travers une revue systématique, tous les défis con-

cernant la collecte de données d’événements pour le process mining à partir des ap-

plications blockchain. Ensuite, nous proposons ACEL, une extension d’OCEL qui

résout tous les problèmes liés au stockage des données d’événements centrées sur les

artifacts. Ce format soutient l’évolution des objets et de leurs relations, introduisant

le concept d’évolution des relations pour améliorer l’identification des dépendances

comportementales. Le format est optimisé pour éviter la redondance, garantissant

un stockage efficace des données d’événements. Nous proposons également une ap-

proche centrée sur les artifacts pour collecter des données d’événements à partir des

applications blockchain et les mapper sur des logs ACEL. Cette approche exploite

les connaissances de domaine pour interroger les logs de la blockchain et mapper

les éléments de données brutes vers les éléments de données d’événements centrés

sur les artifacts. La faisabilité de l’approche est évaluée en utilisant deux applica-

tions publiques d’Ethereum : Cryptokitties et Augur. Les opportunités de process

mining d’ACEL sont d’abord explorées en comparaison avec OCEL en utilisant des

techniques existantes de découverte conçues pour OCEL. Puis nous proposons une
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nouvelle technique de découverte automatisée pour les modèles de processus centrés

sur les artifacts. Cette technique ne nécessite pas de connaissances de domaine

et peut fonctionner directement sur le format de journal proposé. Elle combine

plusieurs solutions automatisées pour découvrir les conditions de données, les struc-

tures hiérarchiques des activités et les interactions entre les artifacts. La validité et

la précision de l’approche sont évaluées en utilisant l’application Cryptokitties.



Abstract

Blockchain, the technology behind cryptocurrencies, was initially used for conduct-

ing financial transactions in low-trust environments without a central authority.

Soon after, the second generation of blockchain platforms expanded its applicability

beyond financial use cases. The BPM community, in particular, foresaw opportuni-

ties for improving the existing BPM framework and enhancing inter-organizational

collaborations using blockchain.

While the execution of business processes on blockchain has been greatly ex-

plored, research on process mining of the resulting execution data has just started

gaining momentum. The challenges of the mismatch of blockchain data structures

with event data logs were mostly addressed. However, all the existing works were fo-

cused on activity-centric processes and discarded artifact-centric process, which are

frequent among blockchain applications. The activity-centric logging is still used,

even outside blockchain, to store artifact-centric event data. Amongst the most used

logging formats for this purpose is XES. Using XES to store artifact-centric event

data results in convergence, divergence, denormalization and loss of information

relating to artifacts’ evolution, their relations and interactions. These issues were

partly addressed by the introduction of OCEL, a standard to store object-centric

event data. OCEL allows the storage of object data and their link to events but

does not support object evolution nor object relations.

To address all these challenges and unlock artifact-centric process mining for

blockchain applications, we conducted the work presented in the following manuscript.

We first investigate, through a systematic review, all the challenges regarding the

collection of event data for process mining from blockchain applications. Then, we

propose ACEL, an extension of OCEL which solves all the issues related to the

storage of artifact-centric event data. We also propose an artifact-centric approach

to collect event data from blockchain applications and map them to ACEL logs.

The feasibility of the approach is evaluated using two public Ethereum applications:

Cryptokitties and Augur. Process mining opportunities of ACEL are first explored

in comparison to OCEL by using OCEL-tailored discovery techniques.
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Finally, we propose a discovery approach which discovers GSM models, one of the

most used modelling languages for artifact-centric processes, directly from ACEL

logs. Our approach aims to discover artifact-centric models. To do so, we use a

hierarchical clustering of activities based information gain of common conditions.

The evaluation of this approach on Cryptokitties demonstrates its feasibility and

the benefits in term of accuracy and insights of ACEL for artifact-centric process

mining.
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1.1 Research Context

Processes are everywhere. The presence of any object or entity indicates that

there is a creation process that led to its existence. Nature is abundant with pro-

cesses, from the process followed by plants to convert sunlight, carbon dioxide, and

water into glucose and oxygen, to the process followed by bees to produce honey

from collected pollen. Humans have learned to replicate the processes they observed

in nature, such is the case for agriculture which is, perhaps, one of the earliest cases

of process identification and execution. In these early times, the producers were
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often the direct consumers, i.e., individuals ran their own production processes. As

human groups evolved into organized social structures, specialization emerged, with

each group focused on its specific service or product. The second industrial revolu-

tion, during the 19th and 20th centuries, solidified this specialization, leading to the

creation of managerial positions and functional units in organizations. However, by

the late 1980s, the industry realized that their emphasis on functional optimization

caused inefficiencies and led to a lost of competitiveness. This realization trig-

gered the development, both in industry and academia, new techniques to improve

work flows and processes [1]. Research on the topic demonstrated through empir-

ical studies that process-oriented organizations outperformed non-process-oriented

ones. Additionally, the development of new types of IT systems, such as Enterprise

Resource Planning (ERP) systems and Workflow Management Systems (WfMSs),

provided tools for process improvement and automation. These research and tech-

nological advancements led to the emergence of a new discipline known as Business

Process Management (BPM). BPM is concerned with understanding and im-

proving business processes to allow organizations to enhance productivity, reduce

costs, minimize errors, and deliver higher quality products or services. In the con-

text of BPM, a business process is defined as sequences of activities or tasks that

are performed to achieve a specific business goal or objective [2].

Another focus of BPM is the use of technological advancements to improve its set

of techniques and toolbox. These advancements came from academia and industry,

where solutions, such as Process Aware Information Systems (PAIS) and Business

Process Management Systems (BPMS), were developed. Organizations were also

on the watch for emerging technologies and trends and ways to use them to their

advantage [3]. For example, this was the case with blockchain which was seen

as a promise to end the need for a central trust authority to execute transactions.

Blockchain is a decentralized and distributed ledger technology that enables secure

and transparent record-keeping of transactions across a network of computers [4].

The BPM community saw the potential benefits of blockchain for the discipline.

Indeed, blockchain can solve the problem of trustworthiness of data and traceabil-

ity, as it can not be tampered with once it is stored on the blockchain. Blockchain

can also contribute to better monitoring as all participants involved in the execu-

tion of a process have access to the same state at any given moment. Another

benefit of blockchain for BPM is that it allows for the execution of processes on

the blockchain using smart contracts 1 as a blockchain-based BPMS. This secure

1A smart contract is a program who’s code is stored and executed on the blockchain.
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execution of processes on blockchain can unlock new types of collaborations where

inter-organizational processes can be executed.

BPM encompasses all the aspects of managing a business process through a series

of phases called BPM lifecycle [2]. The BPM lifecycle, as illustrated in Figure. 1.1,

encompasses the identification, discovery, analysis, redesign, implementation and

monitoring phases. The aim of the identification phase is to identify, delimit and

inter-relate the processes relevant to solving a business problem. The result of this

phase is a new process architecture which provides a global view of all the processes

of an organization and their interconnections. The discovery phase provides more

details on the previously identified processes by representing them in one or multiple

as-is process models. The analysis phase identifies the problems related to previous

models and ranks them according to criticality. In the redesign phase, changes to

the as-is process models are proposed to solve the previously identified problems to

obtain the to-be process. During the implementation phase, the previously selected

changes are planned and executed through automation and organizational change

management. Finally, the monitoring phase follows the execution of the redesigned

process and consists in evaluating its performance at the run-time.

Identification

Discovery

Analysis

RedesignImplementation

Monitoring

Process    Architecture

As-is
Process Model

Insights on
Issues and
their impact

To-be
Process Model

Executable
Process

Insights on
Performance and

Conformance

Figure 1.1: Business Process Management Life-cycle

The automation of processes and their digitization continued to increase with the

advancement of technology and more organizations relied on process-aware informa-

tion systems. This digital transformation has led to the generation of big amounts
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of event data resulting from the execution of processes. This growing availability of

data from various information systems has driven the development of a new disci-

pline within BPM, at the intersection of process science and data science, known as

process mining. Process mining [5] is a group of techniques that uses event logs

from information systems to analyze business processes. It provides insights into

how processes are actually executed in practice, offering organizations valuable in-

formation to optimize their workflows, identify bottlenecks, and enhance efficiency.

Process mining techniques can be grouped, according to their use cases, into four

categories: automated process discovery, conformance checking, performance min-

ing, and variants analysis. Automated process discovery techniques fit primarily in

the discovery phase of the BPM lifecycle. They use data from event logs to visu-

alize process models depicting the actual execution of processes. In the monitoring

phase, performance mining techniques offer real-time tracking of process perfor-

mance. They can analyze time, cost, and quality parameters to identify deviations

from expected performance levels. By identifying process bottlenecks, inefficiencies,

and compliance issues, conformance checking techniques directly contribute to the

redesign phase of the BPM lifecycle. They provide data-driven insights that guide

the modification and optimization of process models to increase performance. Vari-

ants analysis techniques also contribute to this phase by identifying, analyzing, and

understanding the differences and similarities between various process instances or

variants. This analysis helps in uncovering best practices, pinpointing inefficiencies,

and identifying opportunities for process optimization or standardization.

Since the emergence of BPM, process modeling consisted mainly in representing

tasks/activities and their control flows, thus omitting the data flow of the process

execution. This modeling approach, known as the activity-centric approach, where

the emphasis is put on how the process operates without details about the execu-

tion data, is not very intuitive for business managers [6]. Furthermore, the process

models are usually flat, procedural, and imperative which affects the flexibility of

the modeling [7]. This gap has been progressively filled over the past years with the

introduction of a new artifact-centric approach, which takes into account data

and process aspects more intuitively for business managers. The modeling languages

in this approach use artifacts, which are evolving business entities, as primary mod-

eling concepts and use their lifecycles, which are the business operations that modify

the state of artifacts, as a representation of the process model. Artifact-centric mod-

eling languages also support the representation of the interactions between object

changes as behavioral inter-dependencies.

The same approach which consists of bringing forward the control flow per-
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spective, over the data perspective, has also been dominating the process mining

discipline. Additionally, in this activity-centric approach, process mining techniques

assume that a process model describes operations related to one independent arti-

fact, which is not true, generally. This realization has sparked a new research area

in process mining called artifact-centric process mining, where the focus is on the

data flow, which aims to solve these issues. In particular, artifact-centric process

discovery [8] takes as its input either an event log that contains information about

events, artifacts and their changes, or a relational database that includes records of

data creation, modification, and deletion. The resulting output consists of two key

components: a data model and an artifact-centric process model. The data model

details the information of each artifact, its attributes and its relationships with other

artifacts. The process model delineates the individual lifecycles of artifacts and the

interactions between them.

The input of all process mining techniques is event logs. Up until now, the

vast majority of works in the literature relied on event logs generated from Pro-

cess Aware Information Systems (PAISs) [9], Business Process Management Sys-

tems (BPMSs) [10] or obtained from relational databases [11]. However, the use

of non-conventional data sources, such as blockchain, could be beneficial. Indeed,

blockchain constitutes a trustworthy source of immutable execution data and allows

the storage of event logs on-chain to ensure their integrity. This helps establish

more trust in the process mining results. Furthermore, most existing process min-

ing techniques take an activity-centric approach instead of an artifact-centric one,

which is more adapted to real life processes. The novelty of this thesis is that it

combines an artifact-centric approach to process mining with the use of blockchain

as a data source. This combination comes with many challenges that we will present

and illustrate using a motivating example in the following sections.

1.2 Motivating Example

We selected a public blockchain application (Cryptokitties) to serve as an illustrative

and motivating example for our approach. This example will also be used to present

our approach in the forthcoming chapters.

Cryptokitties 2, is a decentralized application (dApp) built on the Ethereum

blockchain, for the breeding and selling of kitties. The journey of a kitty com-

mences with its creation, either as an original entity introduced by the developers

at the launch of the application or through special events. These initial creation

2https://www.cryptokitties.co/

https://www.cryptokitties.co/
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moment marks the entry of each kitty into the digital domain, ready to be adopted

by users of the application. Upon acquisition, these virtual kitties become part of a

user’s collection, each distinguished by unique attributes that set them apart.

Another central phase in the lifecycle of each kitty is the procreation phase where

two kitties are paired to produce an offspring. This phase encompasses two activities:

a Breeding activity and a Birth activity. The Breeding activity consists of pairing two

kitties, owned by a participant or acquired through a transaction with another par-

ticipant. This pairing is not merely a random combination but a strategic decision

influenced by the desire to propagate specific traits or attributes. The underlying

mechanism employs a form of digital genetics algorithm which determines the prob-

ability of trait inheritance. The act of breeding is subject to a cooldown period,

a designed interval that simulates a recovery phase for the involved kitties before

they are allowed to breed again. This cooldown phase varies in duration, influenced

by the number of Breeding activities a kitty has previously undertaken. Following

the Breeding activity, the Birth activity, as the culmination of the genetic combi-

nation process, results in the creation of a new kitty. The newborn kitty inherits

traits from its parents, with the specific combination of these traits influenced by

the underlying digital genetics algorithm. This algorithmic determination results

in each newborn kitty possessing a unique set of traits, contributing to the overall

diversity within the Cryptokitties ecosystem. The birth of a new kitty not only adds

to the participant’s collection but also introduces a new entity into the marketplace,

potentially possessing rare or desirable traits.

Another integral part of a kitty’s lifecycle is the auction phase which involves

another business entity called Auction and consists of the trading and exchange

of kitties within the kitty marketplace. This phase starts with the Auction Creation

activity and ends in either the Auction Completion or the Auction Cancellation activity.

The Auction Creation activity involves the creation of an auction entity and setting

its specific attributes, such as the starting price, minimum increment, and duration

of the auction. These parameters are strategically chosen by the owner to attract

potential buyers, balancing the desire for a favorable sale price against the need to

ensure the auctioned kitty is appealing to a broad audience. The Auction Completion

activity represents the culmination of the sales process, where a transfer of ownership

occurs based on the highest bid received. This activity alters the ownership status

of the kitty as the ownership is transferred from the seller to the buyer and set the

state of the auction entity as successful ending its lifecycle. The Auction Cancellation
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activity allows sellers to withdraw their kitty from sale if the auction does not meet

their expectations or if they decide against selling. This activity does not alter the

ownership status of the kitty but set the state of the auction entity as cancelled

representing another possible ending of its lifecycle.

These phases are represented using the activity-centric modeling language BPMN [12]

in Figure 1.2. The figure shows the representation of the process from the kitty

perspective, without any information regards the attributes and the artifact type.

We could only represent the lifecycle of the kitty artifact and not the interaction

between the lifecycles of both kitty and auction artifacts. This is due to BPMN

using an activity-centric approach for process modelling, which does not show the

data perspective contrarily to the artifact-centric approach. Hence, an artifact-

centric approach is more compatible with this case. Similarly to Cryptokitties,

most blockchain applications revolve around the manipulation of business entities

(assets) and depicting their process requires the use of an artifact-centric approach.

Breeding Birth

Creation of
Auction

Completion of
Auction

Cancellation of
Auction

Birth

Figure 1.2: Lifecycle of a kitty (BPMN notation)

An excerpt of event logs that could be generated after the execution of the

Cryptokitties process is given in Table 1.1, represented using the XES logging [13].

This illustrated event log presents multiple events from the same activities occurring

at the same time, such as the Birth events. It presents attributes linked to events,

such as sireId and matronId, but it is missing the linkage between these attributes

and the artifacts. Another missing information is the states of the artifacts after each

event is executed. This is due to the fact that the XES logging format is specified

for activity-centric processes and thus there is a need for an artifact-centric logging

format.
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EventId Activity Timestamp sireId matronId kittyId cooldownPeriod genes auction

E1 Breeding 23/10/23 1475706 11225643
06:11:51

E2 Breeding 23/10/23 1240424 11225643
06:11:51

E3 Birth 24/10/23 1475706 1576916 0
10:12:36

E4 Birth 24/10/23 1240424 1576916 0
10:12:36

E5 Birth 24/10/23 1475706 1240424 8658320...
10:12:36

E6 Auction 25/10/23 1576916
Creation 15:22:96

E7 Auction 25/10/23 1542698
Creation 15:22:96

E8 Auction 25/10/23 Auct1
Creation 15:22:96

E9 Auction 25/10/23 Auct2
Creation 15:22:96

Table 1.1: Cryptokitties XES log

1.3 Research Problem

Three challenges arise when trying to apply artifact-centric process mining to blockchain

applications.

The first challenge is the choice of an adequate storage format for artifact-centric

processes. The use of XES, as demonstrated in the literature [14, 15], will raise many

issues when event logs resulting from the execution of artifact-centric processes are

flattened. Flattening refers to the process of simplifying a multi-case notion event

log into simpler, one-case notion logs by creating a classic event log for each object.

It can also leads to convergence and divergence problems, as has been pointed

out recently in the literature [16]. Because of these issues that arise when using XES

to store artifact-centric event data, there is a need for a new logging format that

aligns with the specifications of artifact-centric processes. At the start of our work,

there were, to the best of our knowledge, only two object-centric logging formats

in the literature: OCEL [17] and XOC [16]. However, OCEL does not support the

storage of all the information related to artifact-centric event data. XOC supports

most of that information but it does so by storing the entire relational model with

each new even. This redundancy of information increases the size of the event log.

Thus, a new format that addresses the limitations of XOC and OCEL is needed.

Hence our first research question: (RQ1) How to capture efficiently artifact-centric

event data ?

The second challenge is about the gathering of artifact-centric event data from

blockchain applications. Blockchain’s data structures and logging system, as intro-
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duced in the context, were not designed with process awareness in mind. Indeed,

the logs’ structure does not fit any event data logging format. Several works in the

literature proposed approaches to deal with this issue [18]. However, none of them

considered the artifact-centric perspective and thus most of them used the XES

format for storing event data collected from blockchain [19, 20, 21]. The identifi-

cation and extraction of event data from blockchain needs to be done following the

structure imposed by the storage format. Thus, there is a need for a new approach

adapted to the requirements of the new format mentioned above. Hence the second

research question of our thesis: (RQ2) How to collect artifact-centric event data

from blockchain applications ?

The third challenge concerns the compatibility of artifact-centric logging for-

mats with existing discovery techniques. Most existing artifact-centric discovery

approaches are based on existing activity-centric discovery techniques and rely on

XES logs but with some pre-processing steps and additional domain knowledge

[8, 22, 23]. These approaches are not compatible with artifact-centric logs. Thus,

there is a need for an artifact-centric discovery technique that takes as input an

artifact-centric log, stored in the new format mentioned above, and that does not

require pre-processing or domain knowledge. Hence, our third research question:

(RQ3) How to discover artifact-centric process models from artifact-centric event

logs ?

1.3.1 (RQ1) How to capture efficiently artifact-centric event

data ?

It has been made clear in Sections 1.1 and 1.3 that XES is not suitable for storing

artifact-centric event data because it introduce convergence and divergence prob-

lems. Convergence occurs when events linked to multiple instance of a an object

are duplicated in its flatten log. This is illustrated by the duplication of Auction

Creation events (E5 and E7) in the XES log of the motivating example (Table 1.1).

Divergence, is a problem of creating a false causality between the events of instances

of an object because the latter is linked to another object selected as the case notion

of a log. This the case in the motivating example’s XES log, where the case notion

is that of a mother kitty and the log has consecutive events affecting its children

(E6 and E7), each from a different instance. This can lead to considering that these

events are linked to child kitty instance, when they actually refer to different in-

stances, and thus represent a loop in the process. It has also been argumented that

existing object-centric formats, such as OCEL or XOC, do not fully support all the

characteristics of such data or do so in an inefficient and unscalable way. These
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specification encompass the evolution of objects through lifecycles, the presence of

an information model, and multiple interacting cases. In particular, OCEL does

not support the evolution of objects nor relations. Without object evolution, the

lifecycle of objects, as illustrated in the motivation example, cannot be captured.

Although XOC supports these notions, it does so by storing the entire relational

model with each new event. This redundancy of information increases the size of

the event log. For optimization and adoption of the format, such redundancy needs

to be avoided. Therefore, the proposition of a new format should be investigated.

The first shortcoming of existing object-centric formats, when it comes to artifact-

centric event logs, is capturing object evolution. Indeed, these formats link events

to the object they affect but without any indication of the nature of the change.

We define object evolution as the changes made to an object’s attributes by busi-

ness operations (activities/tasks) and the state 3 the object reaches after a business

operation. Thus, the problem of capturing object evolution becomes a problem of

storing attribute changes and object states. However, since the attribute changes

are made by activities, they should be linked to events as well as to objects. Hence,

the first sub-question: (RQ1.1) How to store attribute changes and object states,

and link them to objects and events without redundancy ?

The second shortcoming is about capturing the interactions between objects.

Indeed, objects can interact with objects of different or same types. This is not

supported in OCEL and in the case of XOC, in which relations are stored, this is

done by duplicating all relations with each new event. Thus, the potential solution

to this problem should focus on optimization to avoid redundancy and oversized

logs. Additionally, the evolution of relations, i.e., creation, update, and end, is

not explicitly supported in the other formats, yet it has the potential to indicate

precisely the behavioral dependencies between events and by extension between

objects’ lifecycles.

Hence, the second sub-question: (RQ1.2) How to store relations and capture

their evolution without redundancy ?

1.3.2 (RQ2) How to collect artifact-centric event data from

blockchain applications ?

Blockchain data is not structured in an event data friendly manner, i.e., the struc-

tures used to store data about the execution of smart contracts does match that

3In the context of artifact-centric processes, the ”state” of an object refers to its current condi-
tion or status within the lifecycle of a business process. For example, in a procurement process, the
states of a purchase order artifact could include ”created”, ”approved”, ”fulfilled”, and ”closed”.
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of event logs used in BPM. Additionally, blockchain applications’ data and smart

contract event logs are scattered across blocks and might not be linked to a process

instance identifier. This fragmentation of process data requires an approach to map

blockchain data to event data. For instance, an application may have three smart

contracts but the execution of transactions generates logs from only two of them be-

cause the other smart contract does not have a logging functionality. Furthermore,

blockchain data and logs are stored in a cryptographic format which requires de-

coding. Finally, a smart contract’s code does not necessarily include explicit object

types to represent the business artifact. In the case of the motivating example, if we

look at the smart contracts’ code, we see that the auction artifact is not explicitly

an object type, but its attributes are present in the code and are manipulated by the

smart contracts’ functions. Thus it requires efforts to identify and collect process

execution data. In the literature, the attempts to solve this problem were solely fo-

cused on activity-centric event data. The approaches to extract object-centric event

data like OCEL or XOC were specific to relational databases. Relational databases

are structured, whereas blockchain data is unstructured. This calls for the inves-

tigation of a new approach tailored for extracting artifact-centric event data from

blockchain.

Thus, the new approach needs to also include the reconstruction of the informa-

tion model from the smart contract code.

The first challenge when it comes to identifying artifact-centric process data

from blockchain is the identification of artifact structures. In the approaches specific

to relational databases, this was straightforward as the artifact simply referred to

tables. In blockchain data artifacts are not explicitly defined. Hence, the first sub-

question : (RQ2.1) How to identify artifact structures from blockchain data ?

The second challenge is about the identification of the information on artifacts

that allows to discover their relations. In relational databases, the relations between

artifacts can be identified using primary and foreign keys. In blockchain, similarly

to the artifact structures, the interactions between them are implicit and they need

to be inferred. Hence, the second sub-question: (RQ2.2) How to identify artifact

relations from blockchain data ?

Once the artifacts and their relations are identified, they need to be stored in

an artifact-centric event log along with their linked events. Hence, the third sub-

question: (RQ2.3) How to generate artifact-centric event logs from event data col-

lected from blockchain ?
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1.3.3 (RQ3) How to discover artifact-centric process models

from artifact-centric event logs ?

Proposing a new artifact-centric logging format raises the challenge of adapting

it to process mining techniques. In the cases of OCEL and XOC new discovery

techniques and process representations were proposed [15, 24]. However, these the

discovery techniques do not consider object evolution and data conditions which

drive the execution of artifact-centric processes and lead to behavioral dependencies

between artifacts. Consequently, they discover flat models with no data conditions,

such as the process model of the motivating example in Figure 1.2 where we see no

hierarchical structure of activities and no data conditions. Hence, the representation

do not depict artifacts’ lifecycles and only show interactions between artifacts on a

high level. Another feature of artifact-centric process models that is not considered

by these approaches is the hierarchical structure of activities, i.e., which group of

activities when executed together help in the achievement of a business goal.

To the best of our knowledge, no approach discovers artifact-centric process

models from object or artifact-centric logs. Some approaches use mechanisms to

transform discovered Petri nets into artifact-centric models [23], but the discovery

is done from pre-processed XES logs using existing activity-centric discovery tech-

niques. Thus, to discover artifact-centric process models from artifact-centric logs

we ask the following sub-question: (RQ3.1) How to discover an information model

from an artifact-centric event log ? (RQ3.2) How to discover data conditions from

an artifact-centric event log ? (RQ3.3) How to discover the hierarchical structure

of activities from an artifact-centric event log ?

1.4 Thesis Objectives and Contributions

Considering the aforementioned research questions, we outline the core objectives

of this thesis and the contributions that have been proposed to fulfill them in the

forthcoming sections.

1.4.1 Thesis Objectives

Given the research challenges outlined earlier, this thesis aims to achieve the follow-

ing primary objectives:

Objective 1 Propose an artifact-centric logging format that supports object evo-

lution by storing attribute changes, and relations and their evolution (c.f.,

RQ1.1 and RQ1.2):
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• Link attribute changes and relations to objects and events;

• Avoid redundancy by design;

Objective 2 Identify the elements of artifact-centric data from blockchain data

(c.f., RQ2.1 and RQ2.2):

• Identify artifact structure

• Identify artifact relations

Objective 3 Propose a mapping from blockchain data to artifact-centric event data

elements(c.f., RQ2.3);

Objective 4 Automate the collection of artifact-centric event data from blockchain

data and the generation of event logs from these event data (c.f., RQ2.3);

Objective 5 Automate the discovery of artifact-centric process models from the

generated artifact-centric event logs (c.f., RQ3.1, RQ3.2 and RQ3.3):

• Automate the discovery of information models

• Automate the discovery of data conditions

• Automate the discovery of the hierarchical structure of activities

It is noteworthy that the proposed work in this thesis needs to be: (i) validated

through proof of concepts, and (ii) evaluated through different experiments

on public blockchain application logs to allow comparison with related ap-

proaches. Furthermore, the implementation, experiments, and results should

be detailed.

1.4.2 Thesis Contributions

To address the research challenges described above and reach the objectives of this

thesis, we propose the following contributions, illustrated in Figure 1.3 :

1. An artifact-centric logging format

To achieve Objective 1, we propose a logging format tailored to capture all

the characteristics of artifact-centric process data. This format supports ob-

ject evolution and relations and introduces the concept of relation evolution

to bring more precision to the identification of behavioral dependencies. Fur-

thermore, it supports all cardinalities of relations (one to one, one to many

and many to many) and allow for the capturing through relations of reflexive
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Artifact-centric
process model
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Contribution 1: An artifact-
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Addressing RQ2 Addressing RQ3

Figure 1.3: Our contributions in regard to our thesis’s research problem

interactions, i.e., interactions between objects of the same type. The format’s

structure is designed so as to avoid redundancy and thus optimize the log size.

2. An automated approach to extract artifact-centric event data from

blockchain and generate artifact-centric event logs

To achieve Objectives 2, 3 and 4, we propose an approach to convert blockchain

data into artifact-centric event logs using domain knowledge. The domain

knowledge is provided by domain experts and consists of information on the

smart contracts of the blockchain application and the business entities inter-

acting in that application. To achieve this result we follow the following steps

:

(a) Extracting artifact-centric data from blockchain (Objective 2): Using the

domain knowledge, we query the blockchain logs to collect the required

data;

(b) Mapping blockchain data into artifact-centric event data (Objective 3): we

rely on mapping rules, built based on domain knowledge, to determine

which raw data element corresponds to which artifact-centric event data

element;

(c) Generating structure artifact-centric event logs (Objective 4): we struc-

ture the previously identified artifact-centric elements in a log according

to the specifications of our proposed logging format.

3. An automated approach for the discovery of artifact-centric process

models from artifact-centric event logs To achieve Objective 5, we present

a novel process mining technique which does not require domain knowledge and
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takes as input an artifact-centric event log, in the format previously proposed,

and discovers a artifact-centric process model by combining the following au-

tomated solutions :

(a) Discovering data conditions : we focus on determining which data con-

ditions are always verified before an activity by analysing the attribute

changes. This allows us to group activities which have common data

conditions into one phase ;

(b) Discovering hierarchical structure of activities : Similarly to the group-

ing of activities into phases, our algorithm groups phases with common

condition to get another level of abstraction. Our technique takes into

consideration the necessity to have a coupling which allows for parallelism

while avoiding that different activities in different phases can be triggered

by the same data condition;

(c) Discovering artifact interactions : We discover interactions between ar-

tifacts of different types as well as between artifacts of the same type

(reflexive interaction) by relying on data conditions. This means that

when a data condition relating to one artifact triggers an activity in the

lifecycle of another artifact, it is a proof of the behavioral dependency

between both artifacts.

We publicly provide our implemented tools and experimental results to allow for

reproducibility and comparisons with related studies, especially those who use the

same case study.

1.5 Thesis Outline

The thesis is outlined as follows. The Chapter 2 presents the concepts related to

business process management, artifact-centric process mining, and blockchain. The

chapter 3 presents the related work. Our proposed format for storing artifact-centric

data is presented in Chapter 4. Chapter 5 details our approach to extract artifact-

centric event data from blockchain applications and transform them into logs in our

proposed format. In Chapter 6, we present our technique to discover artifact-centric

process models from logs in the newly proposed format. Finally, we conclude on our

work and present future research directions in Chapter 7.
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The purpose of this chapter is to provide a basic understanding of the main

concepts this thesis is founded on. We present the different approaches to process

modeling in Section 2.1. Section 2.2, introduces artifact-centric process mining. In

Section 2.3, we present the technology of Blockchain and how it is used for BPM.
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2.1 Business Process Modeling

In the evolving landscape of BPM, the distinction between artifact-centric and

activity-centric process modeling has emerged as a fundamental conceptual diver-

gence, influencing how organizations design, implement, and analyze their business

processes. This differentiation is pivotal in understanding the shift from traditional,

rigid process architectures to more flexible paradigms that better accommodate the

data-driven and dynamic nature of contemporary information-rich business environ-

ments [6]. While the activity-centric approach to process modeling offers clarity and

control for processes with a known sequence of tasks, the artifact-centric approach

provides the flexibility required to manage processes characterized by variability and

the need for responsiveness to dynamic business conditions.

The artifact-centric approach emerged along side the object-centric approach

which also aims to bring a data perspective to process models. Both these terms are

used in the literature [14, 8] and sometimes refer to the same group of techniques.

However, in our opinion the difference between them lies in the nature of the data

entities being manipulated in the processes as well and their role in the execution

of the processes. Specifically, we consider in this work that object-centric processes

involve objects that do not evolve, i.e., their properties do not change with each

event. We also consider that object-centric processes are not driven by the objects

as their states do no change.

Objects are similar to artifacts in that they represent entities within a process.

However, the term ”object” is more inclusive and can refer to any entity (physical,

digital, conceptual) involved in the process, not limited to primary business entities.

In our work, we focus on artifact-centric processes but we may use the term object

instead of artifact when the context requires it.

In the following we will detail the principles of both activity-centric and artifact-

centric approaches and provide as an example a modeling language that follows each

one of them.

2.1.1 Activity-centric process modeling

Activity-centric processes consist of a flow of tasks or activities centered around the

ordered execution of business operations. Activity-centric process modeling empha-

sizes a structured sequence of tasks or activities as the core of a process model. In

this traditional BPM approach, the models are delineated by the orderly execution

of these activities, ranging from elementary tasks to complex sub-processes. Ac-

tivities serve as the foundational unit of modularization in this approach, i.e., the
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basic building block used to construct or describe a process model. This approach

is particularly effective for processes characterized by predictable flows and minimal

variations, with the flow of the process being guided by transitions that illustrate

the movement from one task to the next.

2.1.1.1 Business Process Model and Notation

Business Process Model and Notation (BPMN) [12] is the defacto standard for busi-

ness process modeling in both academic research and industry practice. It is also an

activity-centric process modeling with a standardized graphical notation. It allows

a detailed depiction of process flows using a sequence of activities, decision points,

parallel paths, and synchronization points. BPMN diagrams consist of flow elements

(events, activities, gateways) connected by sequence flows, thereby illustrating the

order of operations within a process.

Events an event is an action that happens automatically as part of a process and

can start, intermediate, or end a process. They are represented by circles and

can be further divided into types like Start, End, and Intermediate (e.g., timer

events, message events).

Activities any work or business operation that is performed within a process can

be represented by an activity. Activities can be tasks (simple activities) or

subprocesses (complex activities that are processes themselves). They are

depicted as rounded rectangles.

Gateways controlling the divergence and convergence of sequence flows in a process

is done through gateways. They represent decision points that can affect the

path of a process. They are shown as diamond shapes and serve different

purposes for the execution of the process depending on their symbol. For

example, the exclusive gateway, represented by diamond shape with an ”X”

inside, determines a path among two or more alternatives based on a condition

or decision, ensuring that only one path is taken.

Sequence flows the order of activities within a business process is defined using

sequence flows. They are graphical elements represented by solid lines with

an arrowhead, connecting flow elements in a sequence diagram. The direction

of the arrow indicates the flow of the process, from one element to the next,

illustrating how operations are executed in a prescribed order.

The elements of the BPMN graphic notation were used to illustrate the motivating

example in Section 1.2
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2.1.2 Artifact-centric process modeling

Artifact-centric processes are a type of business processes where the primary focus

is on the manipulation and progression of business entities, known as artifacts.

Artifacts are business relevant entities like documents, files, records, objects, or any

other form of data that holds significance within the process. Additionally, artifacts

in such processes often transition through various states or stages indicating their

status or progress as they move through the work flow. The central element of an

artifact-centric process is the data artifact itself. Changes in the states of artifacts

can trigger different paths or actions within the process.

Contrasting with the activity-centric approach, artifact-centric process modeling

describes processes using artifacts, that are manipulated and transformed through-

out the process lifecycle. This paradigm emphasizes the state changes of artifacts,

caused by the execution of activities, to dictate the flow of the process. Artifact-

centric modeling languages structure process according to two key concepts :

Information model an artifact’s information model refers to the structured rep-

resentation of the data or information contained within the artifact. It defines

the attributes, properties, metadata, and relationships associated with the ar-

tifact. Essentially, it outlines what data an artifact can store and how that

data is organized.

Lifecycle an artifact’s lifecycle represents the various stages or states through which

the artifact progresses during the course of the process. It defines the sequence

of events or changes that an artifact undergoes, from its creation to its even-

tual disposition or completion. It can be seen as a micro-process contains all

activities / business operations that can affect an artifact.

2.1.2.1 Guard Stage Milestone

Guard Stage Milestone (GSM) is one of the most used artifact-centric modeling

languages. It delineates the progression of an artifact’s lifecycle by using guards,

stages, and milestones, while characterizing the information model through data and

state attributes [25].

Guards a guard is a condition or a rule that determines whether a particular tran-

sition or action in a process should take place. They are used to specify under

what circumstances a particular task or event can occur.

Stages a stage represents a specific phase or step in a process or workflow. They

provide a way to organize and structure a process into manageable units.
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Stages are used to group related activities or tasks together, often with a

common objective or outcome. They are opened and can be executed when

their guards’ conditions evaluate to true.

Milestones a milestone is a significant point or event within a process that marks

the achievement of a specific goal or the completion of a critical phase. Mile-

stones are used to track progress and can indicate key moments in a project

or workflow. They mark the closing of a stage.

In the motivating example 1.2, the auction phase can be considered as a GSM

stage. When a user wishes to sell their kitty, they initiate the CreateAuction stage,

which generates a new auction in the Created state. Other users can then place

bids to purchase the auctioned kitty. Upon the acceptance of a satisfactory bid, the

CompleteAuction stage is triggered, leading to the transfer of the kitty to the new

owner and marking the auction as Successful. Users who initiated the auction can

also cancel it by invoking the CancelAuction stage, resulting in the auction being

marked as Cancelled.

Similarly, the procreation phase can be considered as a GSM stage. After the

breeding process, both the mother and the father enter specific states: the mother

is in the Pregnant state, and the father is in the FutureFather state. Following a

predetermined cooldown period, users can initiate the Birth stage, leading to the

birth of a new kitty, which is then in the Born state. After this event, the mother

and the father transition to the BecameMother and BecameFather states, respectively.

In Fig. 2.1, we provide an excerpt of the representation of both a kitty’s and an

auction’s lifecycles using the GSM modeling language. These artifacts, namely kitty

and auction, possess data attributes that constitute their information models, such

as tokenId, cooldownPeriod and startingPrice. These attributes also indicate the

existence of relations between artifacts through the referencing of other artifacts,

e.g., SiringWithId and KittyId. Moreover, these artifacts posses status attributes,

such as Pregnant for the kitty artifact and Successful in the case of auction artifact.

Fig. 2.1 also illustrates the potential nesting of stages, exemplified by the Procreation

and SaleAuction stages. The Procreation stage, for instance, includes a guard with a

sentry comprising a data condition (k.’cooldown’≤currentTime), and a milestone

(BecameMother) with a sentry comprising an internal event related to the kitty’s mile-

stone (k.’Pregnant’.achieved()). When the guard evaluates to true, the Procreation

stage is initiated, enabling the activation of its sub-stages, Breeding and Birth, when

their respective guards also evaluate to true. For example, the sentry of the Birth

stage’s guard includes an external event (k.’giveBirth’.onEvent()), to be triggered

by a user, and a data condition (k.’Pregnant’).
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Figure 2.1: GSM process model associated with the Cryptokitties example

Artifact-centric modelling offers greater flexibility than activity-centric modelling

by adapting the process flow based on the current state of artifacts, making it more

suited to dynamic environments where process paths may need to vary based on

contextual data.

2.2 Process Mining

Process mining [26] is a discipline at the intersection of data science and process

analysis. It combines the data-centric analysis with the model-based process anal-

ysis. It provides a set of techniques and tools which provide insights that allow for

a deeper analysis of process performance and conformance. It is complementary to

the monitoring phase and essential for the discovery phase. Furthermore, it can help

in delays prediction, decision making, and process redesign. Event data provided

by Business Process Management Systems or Process Aware Information Systems

is the basis for process mining. This data is structured in event logs according to

a logging format, such as XES [13], and used as input for the process mining tech-

niques. Process mining techniques have been broadly categorized into four main

areas: Process Discovery, Conformance Checking, Performance Mining, and Vari-

ants Analysis. Each category offers a unique lens through which organizations can

analyze and refine their processes, leveraging the rich data available in event logs

to drive operational efficiency, compliance, and innovation [27, 5]. In the following

we will provide a description of XES, the most used format to store event data for

process mining, and we will present the four categories of process mining techniques.
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2.2.1 Process Discovery

Process Discovery [28] is the first and perhaps most foundational category of process

mining techniques. It focuses on extracting an accurate process model from event

logs and usually without any additional input. This category of techniques uses

algorithms to identify patterns and sequences in the event data, constructing a

comprehensive model that reflects the actual execution of the process. The discovery

of process models can reveal the underlying structure of business processes, offering

insights into how tasks are organized and executed.

2.2.2 Conformance Checking

Conformance Checking techniques [29] compare the observed behavior recorded in

event logs against predefined process models to identify deviations, non-compliance,

and areas of improvement. This type of techniques is crucial for verifying whether

the actual execution of processes aligns with the intended process design. They

help in pinpointing discrepancies between a model and a real process executions,

facilitating targeted corrective actions to enhance process compliance. Metrics such

as fitness, precision, and generalization play a key role in evaluating the degree of

conformance.

2.2.3 Performance Mining

Performance Mining [30] extends beyond the structural aspects of process models

to analyze the performance characteristics of processes. This category of techniques

focuses on extracting insights related to time, cost, and resource utilization from

event logs. Performance mining techniques can identify bottlenecks, evaluate the

impact of different process paths on performance, and suggest optimizations. By

analyzing durations between events, workload distribution, and service levels, perfor-

mance mining offers a detailed understanding of process efficiency and effectiveness,

enabling data-driven decision-making to improve process outcomes.

2.2.4 Variants Analysis

Variants Analysis [31] delves into the differences between various instances of a pro-

cess, focusing on understanding and managing process variability. This category of

techniques is particularly valuable in environments where processes are subject to

frequent changes or where customization is common. By comparing different vari-

ants of a process, organizations can identify best practices, understand the reasons



40 CHAPTER 2. Background

behind variations, and standardize processes where beneficial. Variants analysis can

reveal insights into how and why certain process paths lead to better outcomes,

facilitating the replication of success across the organization.

2.2.5 eXtensible Event Stream

Standardized data representation is paramount for process mining. The eXtensible

Event Stream (XES) [13] logging format is a standard that emerged in 2010 as a

solution to this need, providing a uniform framework for storing, managing, and

analyzing process-related data. It allows for the interoperability between process

mining tools and applications, ensuring that event data from various sources can be

easily shared, understood, and analyzed across different platforms.

At its core, the XES standard is designed to be both flexible and extensible,

capable of accommodating the wide variety of event data encountered in process

mining. An XES log file is structured hierarchically, comprising three primary levels:

log, trace, and event.

Log: The top-level element that acts as a container for multiple traces. A log rep-

resents a collection of process instances, often corresponding to the execution

of a particular process within an organization.

Trace: Each trace within a log corresponds to an instance of the process, i.e., one

process execution, encapsulating the sequence of events that occurred during

that instance. Traces allow for the aggregation of events that collectively

describe a single process execution.

Event: Events represent the lowest granularity level of the XES model. They rep-

resent individual executions of activities within a process instance. Each event

is characterized by a set of standard attributes, such as timestamp, resource

identifier, and activity name, along with any number of custom attributes that

can capture additional details relevant to the specific process context.

This format was used to represent the event data of the motivating example in

Table 1.1 (Section 1.2 ).

2.3 Blockchain

Blockchain, the technology behind cryptocurrencies, gained public recognition in

2009 with the launch of Bitcoin. This innovation did not arise in isolation but
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rather from integrating several pre-existing ideas, combining cryptographic secu-

rity, decentralized networks, proof-of-work, and innovative mechanisms to prevent

double-spending. Before 2009, these ideas existed in various academic and technical

discussions but did not capture widespread attention. Bitcoin’s successful imple-

mentation demonstrated the practical utility of blockchain, initially for conducting

financial transactions in low-trust environments without a central authority. Soon

after, the second generation of blockchain platforms expanded its applicability be-

yond financial use cases.

Blockchain technology [4] is characterized by its decentralized nature. It offers

a transparent, secure, and immutable framework for storing and transferring data

and assets. Across a network of nodes, blockchain maintains a consistent, replicated

ledger, eliminating centralized control. Some blockchain platforms enhance their ca-

pabilities with smart contracts, i.e., executable programs that automate and enforce

contract terms based on predefined conditions. Blockchain’s architecture is a series

of interlinked blocks, where each block acts as a container of verified transactions.

These transactions are authenticated and agreed upon by nodes in a peer-to-peer

network. The chain’s integrity is guaranteed by the fact that altering a single block

would invalidate the entire chain. In addition, its immutable nature renders it a

reliable source for data analytics.

The following sections delve deeper into blockchain’s data recording structures

Section( 2.3.1), examine the execution and event logs of smart contracts (Sec-

tion 2.3.2), and give an overview of the usage of Blockchain for BPM (Section 2.3.3).

2.3.1 Transactions and Logs

Blockchain transactions [32] are the fundamental records stored within the blockchain.

They can range from financial exchanges like cryptocurrency transfers to the doc-

umentation of asset ownership. The process of adding new record to a blockchain

begins with the submission of a transaction to the blockchain network, where it

undergoes verification and validation by nodes through an established consensus

mechanism. Once validated, the transaction is incorporated into a new block along-

side other confirmed transactions. This block is then chronologically added to the

blockchain, cementing the transaction into a permanent and unalterable record.

Blockchain logs, in contrast, are chronological records of events within the blockchain

network. These logs provide detailed accounts of activities like the addition of new

blocks, submission and confirmation of transactions, or alterations in network proto-

cols and settings. Both transactions and logs are pivotal to the blockchain ecosystem,

offering a transparent and tamper-proof record of network activities.
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2.3.2 Smart Contract Execution and Events

Smart contracts [33] are self-operating digital contracts recorded on the blockchain.

These contracts are essentially programs that autonomously enact the terms of an

agreement upon the fulfillment of predefined conditions. Their applications are di-

verse, ranging from automating financial transactions to streamlining supply chain

processes, ensuring adherence to contractual agreements without manual interven-

tion.

In a blockchain, smart contracts exist as code and are autonomously executed

when specific conditions are met. For instance, a smart contract might be pro-

grammed to automatically execute a payment transfer between parties once a de-

livery condition is met. This automation of contractual obligations underpins the

efficiency and reliability of blockchain-based transactions.

Events within smart contracts serve as critical notifications triggered by certain

actions or stipulated conditions in the contract’s code. These events can inform

parties about the fulfillment of specific conditions or instigate subsequent actions

within the contract framework. For instance, in the realm of supply chain manage-

ment, an event in a smart contract could be activated upon the receipt of goods at a

specified location, thereby triggering an automatic payment release to the supplier

or initiating the next contractual phase in the supply chain process.

2.3.3 Blockchain and BPM

By leveraging blockchain, businesses can achieve unprecedented levels of process

security, and trust by ensuring the non-repudiation of process transactions and ac-

tivities [34]. Blockchain’s inherent transparency fosters trust among process par-

ticipants. In BPM contexts, this means every action taken within a process is

recorded on the blockchain, visible to all authorized stakeholders, and immutable

once recorded. This transparency is instrumental in sectors where traceability and

accountability are paramount, such as supply chain management, where blockchain

can track the provenance and status of goods in real-time. Smart contracts are

among the most significant blockchain innovations for BPM. They enable auto-

mated, conditional execution of process steps, ensuring that processes are carried

out exactly as predefined. For instance, in financial services, smart contracts can

automate payments and settlements, triggering transactions only when agreed-upon

conditions are met, thereby reducing manual oversight and error.

Smart contracts can be used to exchange messages between participants on the

state of the process or to automate certain activities. Furthermore, they can be
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used as part of a complete blockchain-based business process management system

(BBPMS). These BBPMS run on top a blockchain and allow their users to design

a process model, generate its corresponding smart contracts, communicate with the

blockchain to execute tasks and track the state of process instances. The state of

the process instances is maintained on the blockchain using smart contract events,

and the workflow is managed by one or many smart contracts which act as entry

points.

2.4 Conclusion

In this Chapter, we first outlined the difference between artifact-centric and activity-

centric approaches and illustrated them with examples. Then, we introduced the

discipline of process mining and the different categories of process mining techniques.

Finally, we introduced the technology of Blockchain and its underlying concepts.

The data resulting from the execution of artifact-centric processes is the focus of

Chapter 4, where our contribution involves the adequate storage of this execution

data. In Chapter 5, we use concepts from artifact-centric process and blockchain

in our contribution which converts blockchain data into artifact-centric event data.

We use the concepts of process mining, in particular artifact-centric process mining,

to propose a discovery approach that use artifact-centric event data and produces

GSM models.
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3.1 Introduction

In this chapter, we examine existing works that pertain to different aspects of

artifact-centric process mining in the context of blockchain in order to position our

work within the literature. We categorize these works into three distinct groups,

with each group corresponding to one of the main research questions introduced in

the context section: artifact-centric logging formats (c.f., RQ1), blockchain logging

for process mining (c.f., RQ2), and artifact-centric process discovery (c.f., RQ3).

The first group, presented in Section 3.2, comprises the existing approaches related

to the topic of solving the issue of artifact-centric event data storage. The second

group, reviewed in Section 3.3, show cases the different works that consider the use of

blockchain data for the purpose of process mining. The last group, presented in Sec-

tion 3.4, encompasses the different approaches which aim to discover artifact-centric

process models. We thoroughly analyse these works to highlight the challenges we

aim to address in this thesis and compare our work to them.

44
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The work in this chapter was published in conference proceedings [18, 35, 36]

and peer-reviewed journal [37].

3.2 On storing artifact-centric event data

In this section we present the current artifact or object-centric formats proposed in

the literature. We discuss the limitations of each format when it comes to addressing

the challenges raised through the sub-questions RQ1.1 and RQ1.2. Due to the

novelty of the topic, we could only identify three related works.

Li et al. [16] introduce XOC (eXtensible Object-centric logs), a novel object-

centric logging format that extends the XES (eXtensible Event Stream) standard.

Distinctly, XOC avoids the traditional reliance on a predefined case notion inherent

in XES, enabling the accommodation and handling of multi-dimensional data with-

out necessitating its flattening. This format is specifically tailored for object-centric

data from systems such as Enterprise Resource Planning (ERP) and Customer Re-

lationship Management (CRM), focusing on how events impact the state of an in-

formation system’s relational database. XOC’s primary objective is to chronicle the

evolution of a database in tandem with the events occurring within the information

system.

Adopting an object-centric perspective, XOC facilitates the logging of multiple

case notions, to avoid the convergence and divergence issues encountered when trans-

forming object-centric logs into activity-centric formats like XES. In such object-

centric systems, data is organized around entities, or ’objects’, such as records in

database tables. These objects represent data elements, with classes grouping simi-

lar objects together (for example, all ’order’ records constituting the ’order’ class).

Inter-class relations, indicative of dependencies between database tables, are artic-

ulated through foreign and primary key references.

XOC encapsulates an object model that mirrors the state of the relational

database at a given moment. This model comprises objects, their relations, classes,

and object attributes. For instance, events, which correspond to changes in database

records, are captured in redo logs and can be derived either by aggregating simul-

taneous changes from these logs or via domain-specific knowledge.

The methodology proposed by Li et al. [16] for generating XOC logs emphasizes

the use of relational databases as a primary source of event data. It considers

that the tables of a relational database represent objects and delineates a process

for converting redo logs 1 [16] into events and employing foreign keys to deduce

1Redo logs are tables containing a list of all changes made to a database
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relationships between these objects. Consequently, XOC logs offer a comprehensive

view of the database’s evolution and its associated events, encapsulating the dynamic

state alterations within the database. Each log entry in XOC includes not only the

event attributes but also references to related objects and a snapshot of the database

post-event occurrence. However, this approach of storing the entire relational model

data for every new event, instead of just the new objects or relations, renders the

XOC format resource-intensive in terms of file size and structurally suboptimal.

Another object-centric event logging format is introduced by Ghahfarokhi et al.

[17]. The propose format, OCEL, aims to address the limitations of traditional

logging format, e.g., XES, by allowing events to relate to multiple objects. The

key feature of OCEL is its ability to associate each event with different objects,

overcoming the convergence and divergence problems found in single-case oriented

logs. It supports the storage of events, objects, and their attributes. Each event

stores information about the execution of an underlying business process activity,

e.g., breeding a kitty (Section 1.2), and the objects affected by the executed activity.

Objects represent physical and informational entities relevant to business processes,

e.g., a kitty, an auction (Section 1.2). In an OCEL log, events and objects are

uniquely identified and may have several attributes (attributes are properties of

OCEL elements, e.g., timestamp is an attribute of events). Each object is associated

with an object type and multiple objects can be linked to a single event (i.e. the

execution of an activity may affect multiple objects).

In the official standard documentation, the authors summarize the concepts of

OCEL Logs in a class diagram, as illustrated in Fig. 3.1. The main classes considered

and the relations linking them are as follows:

• A Log consists of Events and Objects.

• An Event consists of the following mandatory attributes: an Event Id, an

Activity and a Timestamp. It can have additional Attributes.

• Each Attribute has a Name and an Attribute Value.

• An event relates to one or more Objects, which it affects.

• An Object contains an Object Identifier, an Object Type, and zero to

many Attributes. It can also be related to one or many Events.

OCEL presents an efficient storage of object attributes, by decoupling attributes

at the object level from the event level, as shown in Figure 3.1, it avoid replicating

this information with each event affecting the object. It also supports lists and
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Log

Event

Object

ActivityEventID Timestamp

ObjectID ObjectType

Attribute

Name

Value

<contains> 0..*

<contains> 1..1

<contains> 1..1

<relates> 1..1

<contains> 1..1 <relates> 1..1
<relates> 0..*

<relates> 0..*

<contains> 1..1 <relates> 1..1

<contains> 0..*

Figure 3.1: OCEL model
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maps elements as data structures. Nevertheless, it is essential to highlight that

OCEL does not encompass the capacity to store relations between objects, and it

does not capture the changes that objects may undergo over time. Therefore, it

does not allow to capture all the information present in artifact-centric event data.

Goossens et al. [38] propose an extension to the OCEL format that supports

object evolution. They argue that there is a need for comprehensive event and object

attribute storage in logs, including attributes with dynamic values and the ability

to unambiguously link attributes to objects and events. Therefore they introduce

a format called Data-aware Object-Centric Event Log (DOCEL) and an associated

translation algorithm to convert XES logs into DOCEL logs. However, DOCEL does

not support the storage of object relations. Additionally, the dynamic attributes are

stored in dynamic tables where the identifiers of the events and objects linked to

them are duplicated. The algorithm was not implemented nor tested on real data,

thus we cannot evaluate its feasibility.

In Table 3.1, we summarize our comparison of the previously presented logging

formats. We evaluate to which extent they fulfill the requirements to answer RQ1.1

(How to store attribute changes and object states, and link them to objects and

events without redundancy?) and RQ1.2 (How to store relations and capture their

evolution without redundancy?), we use as criteria conciseness (avoidance of redun-

dancy) and the required artifact-centric concepts that need to be supported. We

use the notation ”x” to express that a criterion is fulfilled, ”/” to express that is

partially fulfilled and no notation when it is not fulfilled.

Format Object changes Relations Relation evolution Conciseness
XOC [16] / x
OCEL [17] x
DOCEL [38] / /

Table 3.1: Comparison of object-centric logging formats

Synthesis All the related work that deal with the storage of artifact-centric or

object-centric event data aim to overcome the limitations of classic logging formats

such as XES. The limitations of classic formats are apparent when dealing with

process event data with multiple case notions which they do not support. The

issues of classic formats extend to process mining where problematic logs presenting

convergence and divergence lead to erroneous process mining results. The related

work deal with these limitations by allowing the association of events with multiple

objects. They all store the attributes of events and objects but only XOC stores

the information related to relations between objects which is a crucial notion in

artifact-centric event data. Furthermore, they differ in the structure of their logs,
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some being more efficient than others. In particular, we found that XOC is inefficient

in term of storage because of the data duplication and similarly DOCEL presents

some data duplication. In our novel format we focus on supporting all aspects of

artifact-centric event data in an efficient way. We aim to propose an optimised

strucuture for artifact-centric event log where there is no redundancy. We follow

the structure of OCEL as it is most efficient, and we enhance it with the rest of

the concepts from artifact-centric event data, i.e., object evolution and relations.

Hence, our format captures all the information present in artifact-centric event data

but without redundancy.

3.3 On extracting event data from blockchain

Blockchain programmable platforms has brought considerable advancements in col-

laborative business processes. One of the anticipated benefits was the provision

of auditable traces for business process execution. However, practical challenges

arose, particularly concerning the structure of blockchain logs, which proved to be

inadequate for process mining techniques.

We identify two main categories of approaches, each dealing with the inadequacy

of blockchain logs for process mining at different stages of the blockchain data lifecy-

cle. We define the blockchain data life cycle as: the entrance, i.e., when data is sent

to the blockchain, the storage, i.e., when the received data is stored, in general via

smart contracts, into the blockchain, and the retrival, i.e., when the data is queried

or fetched from the blockchain.

Pre-blockchain Approaches: These tackle the problem at the source, handling

the logging of event data into the blockchain. They aim to prevent the issue by

structuring event logs before storing them on the blockchain. The event data

is this category is generated by information systems outside of blockchain and

the works of this category focus on the storage of this data on the blockchain.

Post-blockchain Approaches: These focus on transforming data already found

in blockchain, i.e., resulting from the execution of smart contracts, into process

mining suitable formats. This involves extracting data from the blockchain and

converting it into a format that is amenable to process mining techniques

In the following we present the related works on the topic of extracting event

data from blockchain using the above categories.
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3.3.1 Pre-blockchain Approaches

In their study, Ekici et al. [39] address the issue of blockchain event data inadequacy

for process mining by implementing a system that processes and stores event data as

objects on the Hyperledger blockchain. This data originates from business processes

executed by an external BPMS. They developed an application that sends event

data to a smart contract for validation and storage on the blockchain, where only

the caseID and activityName are required for logging, as timestamps are appended

during the validation process.

Brinckman et al. [40] tackle the problem of log creation and storage in the

blockchain, focusing on scientific processes. They use the Pegasus workflow tool,

extended to transmit log events to a private Ethereum blockchain via a smart con-

tract. They also explore converting blockchain data into a relational database for-

mat for SQL querying and apply machine learning algorithms to public Ethereum

transaction data for detecting unusual account activities.

Zimina et al. [41] address challenges in educational processes by leveraging blockchain

for data storage, particularly for reporting and course completion rates. They collect

logs from a Moodle-based system, storing learning process events as smart contracts

on the blockchain. These contracts, containing event descriptions and parameters,

record events with timestamps and student addresses. The data is then exported

for creating student models or educational reports.

Engelenburg et al. [42] aim to develop a blockchain-based system for secure

information sharing between government and businesses, protecting sensitive data.

The system stores events and information sharing rules on a blockchain, ensuring

confidentiality based on company policies. The blockchain is designed to add each

new event as a block, with consensus achieved through dual-party confirmation and

network node verification.

Tonnissen et al. [43] investigate a blockchain solution to address media breaks

in large business processes, which lead to incomplete event logs. They propose

using blockchain as a connector between process participants in a multinational

company’s supply chain, recording data records from suppliers’ IT systems to the

blockchain, and forwarding them to the receiving company’s IT systems through

smart contracts. This integration aims to facilitate end-to-end process mining.

3.3.2 Post-blockchain Approaches

Di Ciccio et al. [44] propose a method for tracing collaborative Business Processes

(BPs) on the Ethereum blockchain, utilizing Caterpillar [45], a blockchain-based
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BPMS. This system translates a BP model into two types of smart contracts: one

for processing (process factory) and another for managing and executing activities

(worklist factory). The worklist smart contract, acting as the gateway for activities,

is used as the identifier for process instances. To track a process instance, the

method involves filtering transactions sent to the worklist smart contract’s address,

with each transaction linked to an activity. The attributes of these activities, such

as identifiers and parameters, are derived by decrypting the transaction data field

using hash codes of the smart contract function signatures.

Mühlberger et al. [46] adopt a similar approach, also utilizing Caterpillar for

identifying process instances and activities on Ethereum. Their primary focus, how-

ever, is on generating log files. The procedure starts by gathering and hashing

the signatures of all process instance smart contract functions. Then, they collect

blocks from an Ethereum client via Remote Procedure Calls (RPC) 2, filtering the

transactions in these blocks based on the hashed signatures. Transactions are or-

ganized by process instance, corresponding to the smart contract address from the

worklist factory. The transaction hash values are decoded to extract data, which is

then structured into event and trace attributes. This structured data is exported

as an XES log [13], with the option to include additional information like block

timestamps in the XES log generation.

Koschmider et al. [47] propose a process mining method for Hyperledger blockchain,

independent of existing blockchain-based BPMSs. In their approach, each block is

viewed as a process instance and its transactions as potential activities. The pro-

cess involves retrieving blocks as JSON objects, extracting read/write operations by

iterating through blocks, and identifying state changes to document corresponding

events with predefined attributes. These events are then converted into CSV files

for process model discovery using Disco [48] and conformance checking of smart

contracts with ProM [49].

Corradini et al. [50], focusing on conformance checking, scan the Ethereum

blockchain for auditable contracts, selecting those with significant transaction ac-

tivity and user interaction. They collect transaction lists in JSON format 3 and

consider the process instance as the aggregation of all transactions linked to a user

and the smart contract. Transactions are grouped by sender and timestamp to

form user-specific traces, which are formatted in XES and analyzed using three pro-

cess mining algorithms (Heuristics miner, Inductive miner, and Split miner) with

tools like Apromore and ProM. The resulting models represent various scenarios for

2https://www.rfc-editor.org/info/rfc5531
3https://www.rfc-editor.org/info/rfc7159
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subsequent conformance checking.

Klinkmüller et al. [19] introduce a framework with modules for extracting blockchain

logs and generating smart contract events, based on a manifest file detailing event

data logging in the blockchain. The framework’s validator module checks the mani-

fest’s correctness, and transaction logs are filtered to obtain specific smart contract

data, which is then structured into event data and exported in XES format. The

framework also includes cost-effective log generation techniques and was tested on

Ethereum’s CryptoKitties Dapp4.

Expanding on this, Klinkmüller et al. [51] develop a configurable logging frame-

work with enhanced extraction capabilities, not limited to process data. Similar to

its predecessor, it uses a manifest for extraction and log generation but additionally

includes transaction-triggered data. The framework supports fine-grained queries

through various filters and offers different output formats (XES, CSV, TXT). It was

tested in case studies like Ethereum network statistics, monitoring Augur Dapp, and

analyzing Cryptokitties Dapp for process visualization and conformance.

Müller et al. [52] focus on process mining for decentralized applications, empha-

sizing control flow and organizational aspects on Ethereum. They use the Solidity

events API and transaction data to gather event data, defining process instances

as the collection of smart contract events in a transaction log. The approach cat-

egorizes activities based on involved actors and was tested to provide insights into

Ethereum’s usage and complexity.

Wirawan et al. [21] aim to incorporate transaction time in blockchain-generated

event logs to account for temporal process properties. Their framework comprises

several workflows: Extraction, Decoding, Process Mining, and Transition System Anal-

ysis. The Extraction workflow aggregates transactions, which are then decoded and

converted to XES format. The Process Mining workflow generates process models

evaluated for trace fitness, and the Transition System Analysis workflow enhances the

model with time data, analyzing process states and time metrics.

The analysis of existing works revealed varying methods for the different blockchain

logging steps followed by the family the works belong to. Key observations included:

Pre-blockchain

• Step 1 (Data Collection): Varied according to the data source, with BPMSs

the tool are already available, while other systems required custom scripts to

aggregate event data.

• Step 2 (Logs Creation): This was either straightforward in systems with

4https://www.cryptokitties.co/
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existing BPMS (Business Process Management Systems) that contain a log

creation functionality, or in the case of other systems the creation of logs

requires custom scripts.

• Step 3 (Ingestion of logs into blockchain): Logs are typically uploaded to a

blockchain by sending them to a smart contract, using either a communication

middleware or a custom application. One method involves an event-focused

blockchain, where logs are ingested as transactions with each block represent-

ing an event.

• Step 4 (Querying blockchain for logs): This is done either by call smart

contracts functions, using a client specific to each blockchain platform or by

extending the BPMS to include this functionality.

• Step 5 (Application of Process Mining): In the works examined, there was

no retrieval of the ingested data for testing, and as a result, no process mining

techniques were utilized.

Post-blockchain

• Step 1 (Data Collection): Varied according to the blockchain used, with

Ethereum-based approaches benefiting from an active community and existing

tools, while Hyperledger approaches required custom scripts.

• Step 2 (Process Instance Identification): This was either straightforward in

blockchain-based existing BPMSs, where smart contracts are identified as the

process instance, or required manual decision-making and assignment in other

cases.

• Step 3 (Activities Identification): Ranged from using business process smart

contract functions in BPMSs to decoding data in smart contract events and

using predefined rules for combining various blockchain data into activities.

• Step 4 (Logs Creation): Most approaches structured the gathered event data

in XES or CSV log files.

• Step 5 (Application of Process Mining): The approach which used the gath-

ered event logs primarily focused on process discovery and, in some cases,

conformance checking.

Tables 3.2 and 3.3 summarise the comparison of the works of each family accord-

ing to their approaches for each step.
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Table 3.2: Comparison of the pre-blockchain family
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[40] x x x x x
[39] x x x x x
[41] x x x x
[42] x x x
[43] x x x

Synthesis Our work aligns with previous studies that employed predefined rules to

map blockchain data into event logs. Nevertheless, our research uniquely concen-

trates on artifact-centric data, a focus not covered in earlier mentioned studies. To

do so, we establish specific mapping rules designed to construct artifact-centric el-

ements, including artifacts and their relations, from blockchain data. Furthermore,

we automate the generation of logs structured according to our novel logging format.

In our work, we also focus on smart contracts broadly as an event data source, rather

than limiting our examination to those specifically within BBPMs. This choice is

adopted due to the larger volume of smart contracts present on blockchain plat-

forms that are not part of BBPMS and the fact that they present a more complex

challenge in reconstructing event data. This complexity arises because the code of

these smart contracts typically does not include mechanisms designed to produce

structured event logs.

3.4 On discovering artifact-centric process mod-

els

In this section, we investigate the works related to the discovery of artifact-centric

process models. We also include the works that focused on object-centric processes.

Berti and van der Aalst [53] introduce Multiple Viewpoint Models (MVPs)

for representing process interconnections, transcending traditional case notion con-

straints. MVPs integrate various case notions into a unified model, annotated with
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Table 3.3: Comparison of the post-blockchain family
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[50] x x x x x
[47] x x x x x x x
[46] x x x x x x
[44] x x x
[19] x x x x x x
[51] x x x x x x x x
[52] x x x x x
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frequency and performance data, offering a comprehensive view of process dynam-

ics. To utilize process mining effectively, activity-centric event logs are derived

from these MVPs. MVP construction involves synthesizing Event-to-Object (E2O),

Event-to-Event (E2E), and Activity-to-Activity (A2A) graphs, with E2O linking

events to objects, E2E connecting events, and A2A associating activities. A key

feature of MVPs, especially in the A2A graph, is their ability to link activities and

label these connections with object classes and frequencies. However, each object

class’s graph is created independently, leading to separate graphs for each class.

While these graphs are presented together, they don’t explicitly show interactions

among different object classes.

Nooijen et al. [54] present a methodology for extracting artifact life-cycle mod-

els from event data in data-centric systems, particularly focusing on ERP systems.

Their approach is structured into several phases, starting with the extraction of

event data from databases, which includes event specifics, case identifiers, and their

interrelations. This initial phase is essential for defining the analysis scope. The next

phase involves identifying key process data objects (artifacts) and associated events,

critical for understanding entity interactions within the system. Subsequently, the

data is divided into XES event logs for each artifact, enabling detailed analysis

of each artifact’s life-cycle. The final phase applies conventional process discovery

techniques to these logs to build individual process models for each data object.
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However, this method does not address the interactions between different data ob-

jects, a limitation for fully understanding the overall process dynamics.

Fahland [55] use event knowledge graphs to model behavior over multiple enti-

ties. They argue that entities are a more general term then object and they use it

because they work invloves the study of the behavior of entities that are not tangible

objects. Their discovery approach involves a graph-based approach where, instead

of creating entire traces linked to a single case identifier, local directly-follows rela-

tions are established for each entities. Events can be part of multiple such relations,

depending on their correlations with different entities. This results in event knowl-

edge graphs where paths of directly-follows edges can intersect, unlike in classical

event logs where traces are disjoint. Additionally, they use querying and aggrega-

tion on the event knowledge graphs to get insights into the behaviors. They also

use querying to obtain different representations from object-centric directly-follows

graphs to Proclets. The data source they use is event tables and they project to

adapt their approach to databases.

Lu et al. [56] focus the problem of process mining in complex Enterprise Resource

Planning (ERP) systems, where processes involve multiple interrelated business ob-

jects, each with its own identifier and behavior. To address this, the paper presents

a semi-automatic approach for analyzing ERP system data. This method involves

identifying artifact-centric process models that describe the life-cycles and interac-

tions of various business objects within ERP systems. The approach includes steps

for discovering individual artifacts from relational data, extracting event logs for

each artifact, and identifying interactions between these artifacts to form a compre-

hensive process model. The discovery is done by using the flexible Heuristics Miner

on XES logs.

The work of van Eck et al. [57], introduces the Composite State Machine Miner

(CSM Miner), a tool developed to shift the focus of process discovery from the tra-

ditional activity-centric view to a state-centric view, particularly for processes with

multiple perspectives. The CSM Miner aims to discover and analyze state-based

models, where each state represents a combination of states across different process

perspectives. The tool, implemented as a plug-in for the ProM framework, inputs

XES event logs where each event signifies a state change. It constructs both a com-

posite state machine representing the overall process and individual state machines

for each perspective. The tool allows interactive exploration of these models, provid-

ing statistics and insights into state occurrences, transitions, and interdependencies

between perspectives.

The approach of Popova and Dumas [58] discovers unbounded synchronization
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conditions in artifact-centric process models, specifically GSM models, from event

logs. Synchronization conditions appear in artifact-centric processes where an arti-

fact’s state change depends on the states of a varying number of other artifacts. The

proposed approach focuses on inter-artifact synchronization, where the guard condi-

tion of one artifact’s stage may depend on the milestones of other artifacts. However,

they do not discover other data conditions nor consider reflexive interactions. The

approach uses artifact synchronization logs to capture interactions between artifacts

and applies a decision tree algorithm to extract synchronization rules.

Nguyen et al. [59] propose an approach to for business process stage identification

and process model discovery from event logs. Their stage identification approach

essentially groups activities into stages through graph cuts. It transforms the log

into a Directly-Follows Graph (DFG), then partitions this graph into stages. The

aim is to maximize modularity, ensuring high internal connectivity within stages

and minimal connectivity between different stages. The process discovery approach

involves mining individual submodels for each stage and then sequentially chaining

them to form a cohesive process model. However they do not discover stages’ nesting

and rely only on directly follows relations.

Popova et al. [23] propose an approach for converting Petri Net models into GSM

models. It uses existing algorithms for mining Petri Nets to discover the life cycles

of individual artifacts, which they then represent as GSM models. The core of the

method involves extracting the immediate ordering relations between transitions

in a PN, translating them into conditions, and incorporating them into sentries

assigned to the guards of GSM stages. However, they do not take into account

the interactions between different artifacts and consider the data conditions of the

petri-net as provided. They also do not discover the hierarchy between stages, i.e.,

they only consider atomic stages. The different levels of abstraction of operations

are thus not discovered.

In Table 3.4, each approach is evaluated based on the specific characteristics of

artifact-centric process mining, providing insights into their strengths and limita-

tions. The first column references the works we are comparing, the second column

indicates the type of event data used as input by each approach, and the third

column shows the process model representation used to display the output of the

discovery. The last column indicates whether the discovered process model presents

artifacts interactions.

Synthesis The majority of related work tends to overlook the explicit representation

of interactions between artifacts, if they consider such interactions at all. In contrast,

our work not only uncovers interactions between artifacts but also distinguishes



58 CHAPTER 3. Related work

Work Data Source Model Representation Interactions
[53] Activity-centric logs MVPs Partially
[54] ERP system data Individual artifact models No
[55] Event tables Event knowledge graphs Yes
[56] ERP system data Artifact-centric models Yes
[57] XES logs State-based models Yes
[58] Artifact synchronization logs GSM models Partially
[59] Event logs Directly-Follows Graphs No
[23] Petri Nets GSM models No

Table 3.4: Comparison of Artifact-Centric Process Mining Approaches

multiple types of these interactions.

Additionally, while artifact-centric process models are utilized as a process rep-

resentation in only two of the related works, their methodology pivots on first gen-

erating Petri Nets and then converting them into artifact-centric process models.

Our method, on the other hand, directly extracts artifact-centric process models

from event logs. Moreover, the novelty of our approach resides in its ability to dis-

cover not only the data conditions but also the hierarchical structuring of activities,

aspects largely neglected in other studies.

When it comes to data sources, the prevalent reliance is on relational databases.

Our approach stands out as the only one to leverage blockchain technology as a data

source for artifact-centric process mining. Hence, it marks a significant departure

from conventional data sources, with the aim to unlock the potential of blockchain

for artifact-centric process mining.

3.5 Conclusion

We provided in this chapter an exploration of the existing approaches relevant to

our work. We ordered the approach according to three themes: (i) On storing

artifact-centric event data, (ii) On extracting event data from blockchain, (iii) On

discovering artifact-centric process models. For each theme, we briefly presented

each work and analyzed its contributions and compare it with ours. For the first

theme, we presented the existing object-centric logging formats and we established

that they present limitations when it comes to storing artifact-centric event data.

These limitations include the lack of support for concepts like relations of objects

evolution, as well as lack of optimization of log structure. We show for the second

theme that none of the works consider the artifact-centric perspective. They focus

solely on the activity-centric perspective which reveals a gap in literature related
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to the extraction of artifact-centric event data from blockchain. The analysis of

the works related to the third theme, indicates that no approach discover artifact-

centric process models directly from event logs, i.e., without needing data external

to event logs. Additionally, they do not discover data conditions nor nesting of

stages. In following chapters, we will present our contributions to fill the research

gaps we found in the literature. In Chapter 4, we propose a logging format which

overcomes the limitations of the related object-centric logging format. Our approach

to extract artifact-centric event data from blockchain data is presented in Chapter 5.

In Chapter 6, we propose a novel approach to discover artifact-centric process models

from artifact-centric event data without the need for domain knowledge.
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Artifact-centric event logs
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4.1 Introduction

This chapter presents our approach for storing artifact-centric event data and thus

answer RQ1 (How to capture efficiently artifact-centric event data ?). Toward this

end, we propose an artifact-centric logging format which captures all information

available in artifact-centric event data. This format was designed by extending the

OCEL standard [17] to support the missing concepts of relations, and objects and

relations evolution (see Section 3.2).

In this chapter we present the limitations of these formats and motivate our

choice to use OCEL as a starting point to propose our new format (Section 4.2). No-

ticeably, the DOCEL [38] format, introduced in Section 3, presents similarities with

our proposed format. This format was introduced in the literature after our novel

format [35]. However, we will also use its limitations to present our novel format.

Drawing from these limitations we present our new format called ACEL (Artifact-

centric Event Log) which addresses them through new concepts (Section 4.3). We

present a qualitative evaluation of our novel model to capture efficiently artifact-

centric event data by comparing a sample ACEL log of Crytokitties to XOC and

OCEL logs of the same application (Section 4.4). We also evaluate the potential

of ACEL in solving process mining challenges in the context of artifact-centric pro-

cesses (Section 4.5), before concluding (Section 4.6).

The work in this chapter was published in the IEEE SCC conference [35].

4.2 Limitations of current logging formats

In Section 1.3, the challenges arising from using XES to store object-centric and

artifact-centric event data were highlighted. In this section we delve in detail into

these challenges, and their impact, and show the limitations of the formats proposed

to solve them.

To illustrate these limitations, we rely on the description of Cryptokitties in the

whitepaper [60]. This description shows that the Breeding activity affects two kitties

and the Birth actvities affects the same kitties that bred together in addition to a

new born kitty. Hence the Breeding event is associated with two instances of the

kitty artifact, one referred to as ’sire’ and the other as ’matron’, and the Birth

event is associated with the same two instances along side a new instance of the

same artifact, referred to as ’kitten’. The Breeding event affects the two kitties with

the following changes: (i) the cooldownPeriod 1 of both kitties is updated with the

1The cooldownPeriod is the time a kitty needs to wait before breeding again.
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same value, and (ii) Both kitties are linked through a relation that prohibits them

to breed with other instances of the kitty artifact before the Birth event. The Birth

event affects the two kitties with the following changes: (i) the cooldownPeriod of

’sire’ and ’matron’ is updated to zero, (ii) the relation between ’sire’ and ’matron’ is

ended allowing them to breed again with other kitties, and (iii) the new born ’kitten’

is affected two properties, its genes with a permanent value and its owner which can

change. Tables (4.1, 4.2, 4.3), 4.4 and 4.5 depict the storage of the Breeding and

Birth events in XES, XOC and OCEL, respectively. In particular, Tables 4.1, 4.2,

4.3 are the traces of one ’matron’, one ’sire’ and one ’kitten’, respectively within

a flattened XES log. The flattened XES logs was obtained by selecting the kitty

artifact as the main case notion and then filtering the events to select those relevant

to the kitty perspective. The kitty identifier was chosen to be the process instance

identifier (trace), thus the events were grouped by the id of each kitty instance.

EventId Activity Timestamp sireId matronId kittyId cooldown genes owner
Period

E1 Breeding 23/10/23 1475706 11225643
06:11:51

E2 Breeding 23/10/23 1240424 11225643
06:11:51

E3 Birth 24/10/23 1475706 1576916 0
10:12:36

E4 Birth 24/10/23 1240424 1576916 0
10:12:36

E5 Birth 24/10/23 1475706 1240424 8658320... 0xf12A13..
10:12:36

Table 4.1: Flattened XES log: trace of a ’matron’

EventId Activity Timestamp sireId matronId kittyId cooldown genes owner
Period

E1 Breeding 23/10/23 1240424 11225643
06:11:51

E2 Breeding 23/10/23 1475706 11225643
06:11:51

E3 Birth 24/10/23 1240424 1576916 0
10:12:36

E4 Birth 24/10/23 1475706 1576916 0
10:12:36

E5 Birth 24/10/23 1475706 1240424 8658320... 0xf12A13..
10:12:36

Table 4.2: Flattened XES log: trace of a ’sire’

In the following sections, we explore the limitations of the logging formats, par-

ticularly focusing on the challenges that may arise when storing artifact-centric event

data. To elucidate each point, we will refer to the tables presented earlier.
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EventId Activity Timestamp sireId matronId genes owner

E1 Birth 24/10/23 1475706 1240424 8658320... 0xf12A13..
10:12:36

Table 4.3: Flattened XES log: trace of a ’kitten’

Event Event Type References Object Model

Objects Relations
E1 Breeding o1, o2 (id = o1, class = cat, tokenId = 1240424, (r1, o1, o2)

genes = 6789232...,,
cooldownPeriod = 11225643)
(id = o2, class = cat, tokenId = 1475706,
genes = 7507913...,
cooldownPeriod = 11225643)

E2 Birth o1, o2, o3 (id = o1, class = cat, tokenId = 1240424, (r2, o1, o3)
genes = 6789232..., cooldownPeriod = 0), (r3, o2, o3)
(id = o2, class = cat, tokenId = 1475706,
genes = 7507913..., cooldownPeriod = 0)
(id = o3, class = cat, tokenId = 1576916,
genes = 8658320..., cooldownPeriod = 0)

Table 4.4: Tabular representation of artifact-centric event data in XOC

4.2.1 Deficiency

Deficiency is the disappearance of events, initially present in the event data, from

the event log. This issue only happens when using XES to store artifact-centric

or object-centric event data, as the initial event data needs to be flattened. In

Table 4.3, showing the trace of a kitten, the events related to breeding of its sire

and matron are not available. One might argue that this is not a case of Deficiency

as the events are all linked to the same artifact and if all traces are placed in the

same log the Breeding events would be accounted for. However, we argue that this

is indeed a case of deficiency but on the trace level, i.e., on an object instance level.

Indeed, this deficiency at the object instance level would still cause process discovery

issues, as the discovered lifecycle for each kitty would still be missing the causality

between the Birth and the Breeding activities. This deficiency is present in this

example due to the particularity of the example we chose, where interactions exist

between instances of the same artifact. We note here that this type of processes

were not considered in previous works, to the best of our knowledge.

The deficiency issue is avoided when using XOC, OCEL and DOCEL to store

the same events. As shown in Tables 4.4, 4.5 and 4.6, all events are within the same

log. This is due to the fact that both formats support multiple case notion and do

not force the separation of events in traces.
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Table 4.5: Tabular representation of artifact-centric event data in OCEL

Event
Activity Timestamp

Attribute
Objects

Identifier Name Value

e1 Breeding 23/10/23 06:11:51 Resource 0xf12A13.. o3, o4

e2 Birth 24/10/23 10:12:36 Resource 0xf12A13.. o5, o6

(a) Events

Object TokenId Type genes cooldownPeriod
Identifier

o1 1240424 kitty 6789232.. 0
o2 1475706 kitty 7507913.. 0
o3 1240424 kitty 6789232.. 11225643
o4 1475706 kitty 7507913.. 11225643
o5 1240424 kitty 6789232.. 0
o6 1576916 kitty 8658320.. 0

(b) Objects

4.2.2 Convergence

Convergence happens when object events referring to multiple instances of the se-

lected case notion are replicated. This replication can lead to misleading diagnostics

because it appears as though more events occurred than actually did. This is ob-

served in the XES sire and matron traces in Tables 4.1 and 4.2. In Table 4.1, two

Breeding events and three Birth events are present. This is due to the fact that

the Breeding event affects both the matron and the sire and the Birth event affects

the matron, the sire and the kitten. Since Table 4.1 is the trace of the matron, the

events Breeding and Birth are duplicated for the other instances.

Similarly to the previous issue, this one is avoided when using XOC, OCEL and

DOCEL. Tables 4.4, 4.5 and 4.6 clearly show no duplication of events are within

the same log. This is due to the fact that both formats support the association of

multiple objects to one event.

4.2.3 Divergence

Divergence arises when events linked to distinct instances of an object, that was

not chosen as the case notion, are still viewed as being causally connected due to

their association with an instance of the object selected as case notion. Essentially,

this means that events linked to various instances of one object are combined in the

log, making it challenging to clearly understand the causal links between individual

events and the specific objects they involve. This is not apparent in the example

we have because of the condition stating that two kitties that bred together can not
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Table 4.6: Tabular representation of artifact-centric event data in DOCEL

Event Activity Timestamp kitty

e1 Breeding 23/10/23 06:11:51 {1240424, 1475706}
e2 Birth 24/10/23 10:12:36 {1240424, 1475706}

(a) Events

Kitty

kittyId genes

1240424 6789232..
1475706 7507913..

(b) Objects and static attributes

CooldownPeriod

CooldownPeriodId CooldownPeriod EventId kittyId

cl1 0 e1 1240424
cl2 0 e1 1475706
cl3 11225643 e2 1240424
cl4 11225643 e2 1475706

(c) Dynamic attributes

breed again with other kitties until the Birth event happens. If this rule was not

in place, we could have seen in the XES log several Birth events involving several

matrons being duplicated in the trace of the sire. This is due to the inability of the

XES format to accommodate multiple case notions and the absence of support for

events being associated with multiple objects. Thus, this would have been avoided

by using XOC, OCEL or DOCEL.

4.2.4 Denormalization

Denormalization is the flattening of data structures when converting an object-

centric log in a classic format like XES. This leads to duplicated data without any

possibility for referencing as the data from multiple related objects is combined into

attributes of an event. Referencing allows a relation to be indicated by foreign keys

instead of duplicating all the attributes of the target object of a relation into the

the source object of this relation. It also allows to store all the constant attributes

of an object in the log and only reference the id of the object. In Tables 4.1, 4.2

and 4.3, it is clear that all the attributes of the three instances, sire, matron and

kitten, are duplicated and grouped throughout the events. In particular in the Birth

event in Table 4.3, it is impossible to know if the attribute genes belong to the sire

or the kitten nor that the sire is linked to the kitten. This issue results from the

absence of support for objects and relations by XES. Consequently, when used in
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an artifact-centric context, these flattened logs fail to reveal artifact lifecycles and

interactions among them.

XOC, OCEL and DOCEL partially solve this problem. Both of them use ob-

ject structure to group attributes of one entity. However, OCEL and DOCEL do

not support relation as shown in Table 4.5 and 4.6, and and XOC duplicates the

relational model with each event.

4.2.5 XOC or OCEL or DOCEL or a new format ?

The issues outlined above pose substantial obstacles to achieving a smooth imple-

mentation of object-centric or artifact-centric process mining. These issues become

notably pronounced during the discovery phase as established in Section 1.3. The

challenges arising during the discovery phase, specifically pertaining to artifact-

centric discovery technique, are examined in Chapter 6.

The shortcomings during the discovery phase have cascading effects on subse-

quent phases of the BPM lifecycle, such as the redesign phase. An erroneous discov-

ered model might lead to enhancements in the wrong process, while a correct model,

in term of activity ordering, lacks a comprehensive data perspective necessary for

process analysis. One might suggest that a solution to the last problem would be

to enrich the activity-centric model with data objects to gain a data perspective.

However, these attempts might not align with the actual data perspective of pro-

cesses, posing paradigm challenges. The disconnection between activity-centric and

artifact-centric representations is analogous to the challenge faced by a developer

transitioning between programming paradigms. Indeed, when designing or rework-

ing these processes, designers prioritize understanding how artifacts behave, i.e.,

how they evolve or interact, rather than determining the sequence or parallelism of

activities. This means that the traditional activity-centric approach doesn’t align

well with designing artifact-centric processes, posing challenges for designers. To

illustrate, switching between these representations is akin to the challenges faced

by a developer transitioning from the object-oriented programming paradigm to the

functional paradigm. The shift requires adapting from a familiar structure to a new

approach, causing difficulties for those accustomed to the former. The mitigation of

information loss regarding objects and relation, and the avoidance of convergence

and divergence in event data, requires the use of an artifact-centric event log or an

object-centric event log format like OCEL, DOCEL or XOC. These formats focus

on storing information about objects and their relationships to events, thereby link-

ing each event to a list of associated objects. However, these formats also exhibit

limitations in the context of artifact-centric processes, which we explore below.
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OCEL lacks the capability to capture the lifecycle of artifacts and fails to repre-

sent object evolution through events. Additionally, it overlooks storing information

about relationships between artifacts, making the analysis of artifact interactions

challenging. The format also struggles to capture activity triggering through tran-

sitions, potentially misrepresenting the relations between activities and objects in

resulting logs. Triggering through transitions occurs when an activity causes the

execution of another activity because the objects they each affect are associated

through a relation. For example, if an activity A1 impacts an object O1 and sub-

sequently affects another object O2 due to its relation with O1, by resulting in a

subsequent action A2 influencing O2, we can say that A1 triggered A2 through tran-

sition. In an OCEL log, this scenario might be represented in two ways: firstly,

where A1 is linked to both O1 and O2, and A2 is associated solely with O2; or sec-

ondly, where A1 is connected to O1, and A2 is linked to O2. The discovery of an

artifact-centric or object-centric model from these logs would give the following :

In the case of the first log the model will represent A1 as part of the lifecycles of

both objects and this is not conform to reality; In the case of the second log, the

resulting model will present no link between both activities through the objects and

this interaction would be lost.

Similarly to OCEL, DOCEL does not support relations between artifacts and

thus does not allow the discovery of artifact interactions. There is also no support

for activity triggering in this format. Additionally, DOCEL logs, as illustrated in

Table 4.6 present redundancy in the storage of data like the duplication of the events

and attributes identifiers in the dynamic attributes table. Indeed, the storage of the

values of each dynamic attribute in a separate table is not an efficient structuring of

the log and it hurdles scalability. Furthermore, there is no implementation of this

format and thus no an algorithm to generate event logs in this format. The lack of a

specification for this formats and extraction tools renders applicability impossible.

On the other hand, XOC supports relations, allows for the possibility to record

object changes by storing their attributes with each event, and implicitly acknowl-

edging transitions when events refer to related objects. However, it does not store

the state of objects and thus only partially support object evolution. Addition-

ally, the format suffers from scalability issues due to storing the complete object

model within each event element. This redundancy impedes scalability, especially

in an artifact-centric process context where processes are driven by artifact changes.

Furthermore, because XOC has been implemented only in XML, it lacks adequate

support for structured data elements such as lists and maps essential for effective

data object structuring.
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Although XOC and DOCEL support more concepts related to artifact-centric

event data than OCEL, their design of the format is not efficient and not scalable.

On the other hand, OCEL support data structures like lists and maps and decouples

the object elements from the events. For this reason we choose to build on OCEL,

benefiting from its more efficient design, to obtain a more optimal logging format

than the existing ones where there is no redundancy.

4.3 Artifact-centric event logs

In the previous section, we discussed our decision to create a new format based

on extending OCEL. This extension, called Artifact-Centric Event Log (ACEL),

aims to capture all the important aspects of artifact-centric event data. ACEL is

designed to fill in the gaps in OCEL, particularly in dealing with object evolution and

object relations. By adding concepts like lifecycle, Object changes, Relations,

and Relation Changes to OCEL, we aim to address RQ1. These concepts are

represented in Fig. 3.1 where new concepts are depicted in red and existing OCEL

concepts are in white. To illustrate the new concepts, we use Tables 4.7a, 4.7b,

and 4.7c which depict the storage in ACEL of the same Breeding and Birth events

we used for the other formats.

In the following, we provide a detailed description of these newly introduced

concepts.

4.3.1 Object Change

Object changes are the modifications that happen to artifacts’ attributes when they

are affected by events. For instance, in the GSM model of the motivating example

(see Section 2.1.2.1), after the Breeding and Birth events the attribute ’cooldownPe-

riod’ of both ’sire’ and ’matron’ changes value. This alteration in the properties of

artifacts, as mentioned in Section 1.1, is how we differentiate between artifact-centric

processes and object-centric processes. Thus, we consider that artifacts are objects

which are subject to changes after the occurrence of events. Since, the changes

happen on the attribute level of the objects, a logging format that aims to store

artifact-centric event data need to store the value of object attributes after each

event.

This is supported in XOC, as shown in Table 4.4 where the attributes’ values are

stored with each new event, even if the old values are also stored with each new event

(redundancy). However, this not the case with OCEL, where object changes are not

supported. Therefore, if we were to store this information in OCEL, we would
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Log

Event

Object

Relation

ActivityEventID Timestamp

ObjectID ObjectType

RelationID RelationType Cardinality Source

ObjectChange

Lifecycle

RelationChange

Target

ChangeStatus

Attribute

Name

Value

<contains> 0..*

<contains> 0..*

<contains> 0..*

<contains> 1..1

<contains> 1..1

<relates> 1..1

<contains> 1..1 <relates> 1..1

<relates> 0..*
<relates> 0..*

<contains> 1..1 <relates> 1..1

<relates> 1..1

<contains> 0..*

<contains> 0..*

<contains> 0..*

<contains> 1..*

<contains> 1..*

<relates> 1..1

<relates> 1..*

<contains> 1..1 <relates> 1..1
<relates> 1..1 <contains> 1..1

Figure 4.1: ACEL model (based on OCEL model)
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need to create new objects. In other words, a new object with a new identifier is

generated each time there is a modification in the objects’ attributes. For instance,

in Table 4.5, when updating the cooldownPeriod attribute of the kitty object o1, a

new object o3 is created, even when this evolution does not necessarily lead to the

creation of new objects. This results in information loss regarding object evolution

and leads to redundant entries by rewriting unchanged attributes with the same

values.

To address this in ACEL, we distinguish between two attribute types: static and

dynamic. Static attributes, such as the genes of a kitty, remain unchanged once the

object is created and are stored in object elements. However, dynamic attributes can

change post-object creation, through events. With ACEL we use dynamic attributes

to track object changes, i.e., object evolution, avoiding the unnecessary creation of

multiple objects for each change.

In ACEL, we store static attributes in object elements, while we store dynamic

attributes in a list named Object changes within event elements. As illustrated in

Tables 4.7a and 4.7b, this method ensures that only modified attributes are recorded

in the Object Changes list, minimizing redundancy, that is encountered in XOC,

and preserving the evolution of objects. For instance, contrary to Table 4.5b, ACEL

creates only two objects representing distinct kitties with static attributes (”Type”

and ”genes”) and only the altered attribute values are stored in the Object Changes

list.

4.3.2 Lifecycle

In artifact-centric processes, each step in an artifact’s lifecycle leads it to a new

state, which holds a specific semantic meaning within the process. The recording of

object states is another particularity of artifact-centric processes over object-centric

processes, as they represent the semantic meaning of object changes. These states

are necessary to achieve defined business goals by defining goal states, i.e., final

states, to prevent unwanted behaviors. This is the case in certain processes, where

one artifact can reach a particular goal state only after another artifact has reached

another specific goal state [61]. For instance, in the motivation example, after the

Breeding event, the ’sire’ can only be in the state of father after the ’matron’ it bred

with gives birth (Birth event) and becomes in the state of ’Mother’. This particular

attribute is not explicitly supported by XOC, as it is not specific to artifact-centric

processes. Table 4.4 shows that although the changes of the objects are recorded,

no state is recorded for them. OCEL also lacks the support of this concept as it

is missing the concept of object evolution, which is strongly linked to the notion of
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state.

To address this gap with ACEL, we introduce a new essential dynamic object

attribute called lifecycle for object evolution tracking. It records the state of an

artifact following an event occurrence. We store the lifecycle attribute within Object

Changes list as it is a dynamic attribute. Table 4.7 shows how we stored the state

of the sire after the Birth event in the Object Changes list as an attribute ’lifecycle’

with the value ’BecameFather’.

4.3.3 Relation

As mentioned in Section 1.1, object and artifact differ in the role they play in their

processes. Artifacts refer to a tangible or conceptual entity that undergoes various

states and transformations throughout a business process. Artifacts are the focal

points around which processes are structured. Consequently, they differ from ob-

jects in the nature of the relations linking them throughout the processes. While

artifact-centric processes focus on the lifecycle and state transitions of key business

entities, object-centric processes offer a more holistic view, capturing the intricate

web of interactions among all entities involved in a process. The relationships in

artifact-centric processes are defined by the state transitions and interactions of

these artifacts. Each artifact has a lifecycle that describes its progression through

different states, driven by business rules or process activities. Artifacts often inter-

act with each other, influencing each other’s state transitions. These interactions

can be sequential, parallel, or conditional, and they define how artifacts co-evolve

throughout the process. The relationships between objects in an object-centric pro-

cess are more complex and multidimensional compared to artifact-centric processes.

Objects can be associated with multiple events, and an event can relate to multiple

objects. This many-to-many relationship adds a layer of complexity to how objects

interact and influence each other within a process. The relations are not just defined

by state transitions but also by the interconnected nature of objects participating

in various events and activities.

XOC provides the possibility to store relations as part of events but OCEL does

not define relations for objects. However, relations establish important connections

between objects following an event. For instance, in the motivating example, after

the Breeding event, a link is formed between the kitty and the other kitty it bred

with. These connections carry vital information that can impose constraints on how

an artifact’s lifecycle progresses, such as prohibiting the other kitty from engaging

in further breeding activities before giving birth. In ACEL, relations are defined for

an object using a mandatory static attribute named source. Additionally, relations
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encompass a required static attribute called cardinality, which can assume values

such as One2Many or One2One. In XOC, the cardinality is not made mandatory

as shown in Table 4.4 where it is missing.

4.3.4 Relation Changes

Relations link one or multiple objects to a source through a mandatory dynamic

attribute we call target. This dynamic attribute, target, is recorded in the relation

changes list (see Tables 4.7a and 4.7c) as as relations can evolve due to events,

through additions or deletions of one or more targets. To capture these changes,

we introduce a mandatory attribute called changeStatus for relation changes. This

attribute, associated with the target attribute, specifies the nature of the change

(’addedTarget’ or ’deletedTarget’). This concept enables us to track the evolution

of an artifact’s relations, documenting changes over time. Notably, a single relation’s

change list can accommodate multiple target and changeStatus pairs, allowing for

the addition of new targets and deletion of previous ones. This evolution of relations

is not supported by XOC as shown in Table 4.4, where only the source and target

of the relation are referenced.

In summary, ACEL comprises events, objects, and relations, illustrated in Fig. 4.1.

Each one of these elements contains an identifier and attributes. Object and Rela-

tion elements store attributes capturing details about their creation. Similarly to

OCEL, every event element contains an activity, a timestamp, and optional addi-

tional attributes. An event can impact one or multiple objects and/or relations,

referenced by their identifiers in the event’s list of objects and/or relations, poten-

tially leading to changes. These changes are logged alongside the event within the

ObjectChanges and/or RelationChanges lists, as shown in Table 4.7a.

4.4 Qualitative Evaluation of the ACEL model

The aim of our proposed logging format is to fully capture artifact-centric event

data for the purpose of process mining. To effectively discover a model of a specific

process type, it is important to use a logging format that is rich enough to capture

all the required information (the correct logging format). To answer requirements

of process mining for event data, the logging format should structure event data

accurately, i.e., according to reality, and not introduce convergence and divergence.

Also, to ensure storage efficiency, it is important that the logging format does not

contain any redundant information. In short, the logging format should be rich,
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Table 4.7: Tabular representation of artifact-centric event data in ACEL

EventId Activity Timestamp Attribute Objects Relations

Name Value

e1 Breeding 23/10/23 Resource 0xf12A13.. 1240424, 1475706 r1
06:11:51

e2 Birth 24/10/23 Resource 0xf12A13.. 1240424, 1475706 r2, r3
10:12:36 , 1576916

ObjectChanges RelationChanges

ObjectId Attribute NewValue RelationId Target ChangeStatus

1240424 lifecycle Pregnant r1 1475706 addedTarget
1240424 CooldownPeriod 11225643
1475706 lifecycle FutureFather
1475706 CooldownPeriod 11225643

1240424 lifecycle BecameMother r2 1240424 addedTarget
1240424 CooldownPeriod 0 r3 1475706 addedTarget
1475706 lifecycle BecameFather
1475706 CooldownPeriod 0
1576916 lifecycle Born
1576916 Owner 0xf12A13..

(a) Events

ObjectId Type genes

1240424 kitty 6789232..
1475706 kitty 7507913..
1576916 kitty 8658320..

(b) Objects

RelationId Type Source Cardinality

r1 siringWith 1240424 One2One
r2 hasMother 1576916 One2One
r3 hasFather 1576916 One2One

(c) Relations

accurate and concise. In this section, we evaluate qualitatively the richness,

accuracy and conciseness of ACEL. As baselines, we consider the XES, XOC, and

OCEL standards. To compare the logging formats we rely on the listings 8.1, 8.2,

8.3 and 8.4 which show respectively XES, XOC, OCEL, and ACEL logs we manually

created according to the structure of each logging format. Based on the results of

this evaluation, we also discuss the potential of our logging to improve the results

of artifact-centric process mining.

Listing 4.1: Excerpt of an ACEL Log

1 {” a c e l : g loba l−event ” :{” a c e l : a c t i v i t y ” :” INVALID ” } . . .
2 ” a c e l : events ” :{”1” :{” a c e l : a c t i v i t y ” :” Breeding ” ,

3 ” a c e l : timestamp ”:1511415679 , ” a c e l : vmap” :{” r e sou r c e ” :
4 ”0x672eC49F7f7EaC25C3A2E651F67F579BB5Da8936”} ,
5 ” a c e l : omap” : [ ” 1240424” ] ,

6 ” a c e l : rmap ” : [ ” r1 ” ,” r2 ” ,” r3 ” ] , ” a c e l : ocmap” :{”1240424” :
7 {”CooldownPeriod ”:”11225643” ,” l i f e c y c l e ” : ” Pregnant ”} ,
8 ”1475706”:{” CooldownPeriod ” :”11225643” ,

9 ” l i f e c y c l e ” :” FutureFather ”}} ,
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10 ” a c e l : rcmap ” :{” r1 ” :{” ta r g e t ” :”0” ,
11 ” changeStatus ” :” de l e tedTarget ” } . . . } } ,
12 ”2”:{” a c e l : a c t i v i t y ” :” Birth ” ,

13 ” a c e l : timestamp ”:1511415679 , ” a c e l : vmap” :{” r e sou r c e ” :
14 ”0x672eC49F7f7EaC25C3A2E651F67F579BB5Da8936”} ,
15 ” a c e l : omap” : [ ” 1576916” ] , ” a c e l : rmap ” : [ ” r1 ” ,” r2 ” ,” r3 ” ] ,

16 ” a c e l : ocmap”:{”1576916” :{” owner ” :

17 ”0x672eC49F7f7EaC25C3A2E651F67F579BB5Da8936” ,

18 ” l i f e c y c l e ” : ” Born”} . . . } ,

19 ” a c e l : o b j e c t s ” :{”1240424” :{” a c e l : type ” :” k i t t y ” ,

20 ” a c e l : ovmap” :{” genesSequence ” :
21 ”62683762115480161608898092265987716860915438631

22 8304496692374110716999053”}} . . .} ,
23 ” a c e l : r e l a t i o n s ” :{” r1 ” :{” a c e l : type ” :” s i r ingWith ” ,

24 ” a c e l : rvmap ” : {” source ” :”1240424” ,
25 ” c a r d i n a l i t y ” :” oney2one ” } } . . . . } }

The richness of ACEl is first apparent compared to XES and OCEL, through

the presence of relations in the ACEL log excerpt in Listing 8.4 (lines 7 and 25),

while the others cannot store that information. It is then seen between ACEL and

XES in terms of object count because XES does not support the concept of object

contrarily to ACEL as shown in Listing 8.4 (lines 6 and 21). It is also visible between

ACEL and OCEL in the possibility to count traces in the ACEL log and not in the

OCEL one because OCEL does not support the notion of object evolution but rather

store attribute changes by the creation of new objects as shown in Listing 8.3 (lines 6

and 16). In XOC this information appears but is redundant and no clear indication

of state is made, while in ACEL the attribute ’lifecycle’ provides that information

(see lines 8 and 10 of Listing 8.4).

Listing 4.2: OCEL Log Snippet

1 {” o c e l : g loba l−event ” :{” o c e l : a c t i v i t y ” :” INVALID ” } . . .
2 ” o c e l : events ” : {”1”:{” o c e l : a c t i v i t y ” :” Breeding as Matron ” ,

3 ” o c e l : timestamp ”:1511415679 ,

4 ” o c e l : vmap” :{” r e sou r c e ” :
5 ”0x672eC49F7f7EaC25C3A2E651F67F579BB5Da8936”} ,
6 ” o c e l : omap ” : [ ” o1 ” ]} ,
7 ”2” :{” o c e l : a c t i v i t y ” :” Breeding as S i r e ” ,

8 ” o c e l : timestamp ”:1511415679 ,

9 ” o c e l : vmap” :{” r e sou r c e ” :
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10 ”0x672eC49F7f7EaC25C3A2E651F67F579BB5Da8936”} ,
11 ” o c e l : omap ” : [ ” o2 ” ]} ,
12 ”3”:{” o c e l : a c t i v i t y ” :” Birth as Matron ” ,

13 ” o c e l : timestamp ”:1511415679 ,

14 ” o c e l : vmap” :{” r e sou r c e ” :
15 ”0x672eC49F7f7EaC25C3A2E651F67F579BB5Da8936”} ,
16 ” o c e l : omap ” : [ o3 ] } . . .
17 }} ,
18 ” o c e l : o b j e c t s ” :{” o1 ” :{” o c e l : type ” :” k i t t y ” ,” o c e l : ovmap” :

19 {” genesSequence ” :
20 ”62683762115480161608898092265987716860915438631830449

21 6692374110716999053”}} . . .}}

The conciseness of ACEL is clear when comparing it to XOC, as ACEL does not

duplicate unchanged values contrarily to XOC (see lines 16 and 39 of Listing 8.2). It

is also clear in both the event and object count when compared to XES and OCEL,

respectively(see lines of and lines of ). First, the object count in the ACEL log is

inferior to that of the OCEL one because contrary to OCEL, ACEL does not create

a new object each time there is a change. Second, as compared to XES, ACEL

stores fewer events. This is due to the fact that in order to indicate the presence of

relations between objects, we need to define new events for each change occurring

to each object, even if it does not correspond to the execution of an activity in the

process.

Listing 4.3: XOC Log Snippet

1 <?xml ve r s i on =”1.0” encoding=”UTF−8” ?>

2 <l og xoc . v e r s i on =”1.0”> . . .

3 <event>

4 <s t r i n g key=”id ” value=”e1”/>

5 <s t r i n g key=”a c t i v i t y ” value=”Breeding ”/ > . . .

6 <model><ob j ec t s>

7 <object><s t r i n g key=”id ” value=”o1 ”/ > . . .

8 </object>

9 <object>

10 <s t r i n g key=”id ” value=”o2 ”/ > . . .

11 </object></ob j ec t s>

12 <r e l a t i o n s><r e l a t i on>

13 <s t r i n g key=”id ” value=”e1−r1−o1 ”/ > . . .

14 </r e l a t i o n ></r e l a t i o n s>
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15 </model>

16 <r e f e r en c e s>

17 <object><s t r i n g key=”id ” value=”o1”/>

18 </object>

19 <object><s t r i n g key=”id ” value=”o2”/>

20 </object>

21 </r e f e r en c e s>

22 </event>

23 <event>

24 <s t r i n g key=”id ” value=”e2 ”/ > . . .

25 <model><ob j ec t s>

26 <object><s t r i n g key=”id ” value=”o1 ”/ > . . .

27 </object>

28 <object><s t r i n g key=”id ” value=”o2 ”/ > . . .

29 </object>

30 <object><s t r i n g key=”id ” value=”o3 ”/ > . . .

31 </object></ob j ec t s>

32 <r e l a t i o n s>

33 <r e l a t i on><s t r i n g key=”id ” value=”e1−r1−o1 ”/ > . . .

34 </r e l a t i o n>

35 <r e l a t i on><s t r i n g key=”id ” value=”e2−r2−o3 ”/ > . . .

36 </r e l a t i o n>

37 . . .

38 </r e l a t i o n s ></model>

39 <r e f e r en c e s>

40 <object><s t r i n g key=”id ” value=”o1”/>

41 </object>

42 <object><s t r i n g key=”id ” value=”o2”/>

43 </object>

44 <object><s t r i n g key=”id ” value=”o3”/>

45 </object>

46 </r e f e r en c e s>

47 </event>

48 </log>

This also testifies to the accuracy of the ACEL log in comparison with the XES

log. If we consider the Birth activity of the process, we find that it corresponds

to one event (Birth) in the ACEL log (see line 12 of Listing 8.4) and three events
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(Give Birth as Matron, Give Birth as Sire, Is Born) in the XES log (see lines 20, 28

and 38 of Listing 8.1). The event Birth of a kitty in ACEL changes three kitties

lifecycles to born, becameFather and becameMother, and introduces two relations

hasFather and hasMother linking the born kitty to his parents. This testifies to a

more accurate representation of the process, since it does not introduce new activities

while capturing object evolution.

Listing 4.4: XES Log Snippet

1 <l og xes . v e r s i on =”1.0” xes . f e a t u r e s=”nested−a t t r i b u t e s ”

2 openxes . v e r s i on =”1.0RC7” > . . .

3 <t race> <s t r i n g key=”ident : p i i d ” value=”1240424”/>

4 <event>

5 < i n t key=”logIndex ” value=”1”/>

6 <s t r i n g key=”concept : name” value=”Conceive as Matron”/>

7 <s t r i n g key=”Act iv i t y ” value=”Breeding ”/ > . . .

8 <s t r i n g key=”s i r e I d ” value=”1475706”/>

9 <s t r i n g key=”cooldownPeriod” value =”11225643”/> . . .

10 </event>

11 <event>

12 < i n t key=”logIndex ” value=”2”/>

13 <s t r i n g key=”concept : name” value=”Conceive as S i r e ”/>

14 <s t r i n g key=”Act iv i t y ” value=”Breeding ”/ > . . .

15 <s t r i n g key=”matronId” value=”1240424”/>

16 <s t r i n g key=”cooldownPeriod” value =”11225643”/> . . .

17 </event>

18 <event>

19 < i n t key=”logIndex ” value=”3”/>

20 <s t r i n g key=”concept : name” value=”Give Birth as Matron”/>

21 <s t r i n g key=”Act iv i t y ” value=”Birth ”/ > . . .

22 <s t r i n g key=”k i t t y I d ” value=”1576916”/>

23 <s t r i n g key=”s i r e I d ” value=”1475706”/>

24 <s t r i n g key=”cooldownPeriod” value =”0”/> . . .

25 </event>

26 <event>

27 < i n t key=”logIndex ” value=”4”/>

28 <s t r i n g key=”concept : name” value=”Give Birth as S i r e ”/>

29 <s t r i n g key=”Act iv i t y ” value=”Birth”/>

30 <s t r i n g key=”Resource ” value=”0xf12A13 ..”/>
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31 <s t r i n g key=”k i t t y I d ” value=”1576916”/>

32 <s t r i n g key=”matronId” value=”1240424”/>

33 <s t r i n g key=”cooldownPeriod” value=”0”/>

34 <date key=”time : timestamp” value=”2023−10−24T10:12:36”/>

35 </event>

36 <event>

37 < i n t key=”logIndex ” value=”5”/>

38 <s t r i n g key=”concept : name” value=”I s Born”/>

39 <s t r i n g key=”Act iv i t y ” value=”Birth ”/ > . . .

40 <s t r i n g key=”matronId” value=”1240424”/>

41 <s t r i n g key=”s i r e I d ” value=”1475706”/>

42 <s t r i n g key=”genes ” value =”8658320.. .”/>

43 <s t r i n g key=”owner” value=”0xf12A13 . . ” / > . . .

44 </event>

45 </trace></log>

It is important to note that all the information present in XES, XOC and OCEL

is also present in ACEL and with a simple processing we can obtain XES, XOC or

OCEL logs from an ACEL log. ACEL logs on the other hand are richer since they

contain information regarding the evolution of objects and their relations.

This qualitative evaluation shows clearly that ACEL achieves the objective of

fully capturing artifact-centric event data.

4.5 ACEL for process mining: a qualitative eval-

uation

This provides a first confirmation of ACEL’s adequacy for process mining based

on the previous presentation of ACEL concepts (Section 4.3) and the example log

(Listing 8.4). It shows the potential of ACEL to solve problems of process mining

input data as follows:

4.5.1 Additional knowledge

The current event data formats do not store all the required information for artifact-

centric process mining. For example in XES the relational model is not existing and

for OCEL the relations between the objects is missing. Therefore, domain knowledge

needs to be provided before artifact-centric process mining can be applied, especially
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for the discovery of interactions between artifacts. As Listing 8.4 shows all this data

is already present in ACEL logs.

4.5.2 Depiction of reality

Artifact-centric event data is not accurately represented by other logging formats.

Although OCEL captures the multiple case notion, it does not capture the evolution

of objects. XOC store the attribute changes of objects but omit to store the state

of objects. Whereas in ACEL, as Listing 8.4 (lines 6-9) shows, object evolution is

captured through tracking of attribute and state changes of each object.

4.5.3 Convergence

This problem is solved by OCEL but not in the context of artifact-centric event data

when events of related artifacts objects are duplicated in an artifact-centric process

instance [8]. In the example when we consider the case notion as kitty and we add

the events of its related parents the Breeding activity then a breeding event for the

cases associated with both parents will be duplicated for the kitty case. Moreover,

this activity although it affects the lifecycle of kitty, is not part of it, so duplicating

it is not realistic. In ACEL this is solved by tracking attribute changes. Therefore,

if the state of a related object affects the lifecycle of the main object, the attributes

can be accessed without duplicating the event.

4.5.4 Denormalization

If a log does not support the notion of objects nor object relations, the logs will

present a form of relational denormalization, i.e., data is duplicated with no refer-

encing possible. For example, because the artifact kitty has a father and a mother,

the kitty’s data will be written twice alongside the father’s data and the mother’s

data. This is solved in ACEL because the relational model and explicitly linking

attributes and their changes to their objects is supported.

4.5.5 Transition

Activities can be triggered through transitions, i.e., an activity A1 affects an object

O1 and because O1 has a relation with O2 this leads to an activity A2 affecting

O2. In our example, the Success of Auction activity affects the object kitty but is

not part of both lifecycle. When an Auction is successful, the state of the kitty is
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not changed but a transfer activity is triggered, which is an example of interaction

between both artifacts.

4.6 Conclusion

In this chapter, we answered the research question RQ1, which is: How to cap-

ture efficiently artifact-centric event data?. We analysed the limitations of existing

object-centric logging formats (XES, OCEL and XOC) when used to store artifact-

centric data, and concluded that a new format is required. We used OCEL as a base

for our new format because of the data structures and data exchange format it uses.

To support the notion of object evolution without ambiguity, we extended OCEL

with the possibility to track object changes and in particular using the lifecy-

cle attribute which indicates the state of an object. We also added the concept of

relations between objects to capture the interactions between lifecycles. We aslo

introduced the concept of dynamic and static attributes to keep the objects

elements separate from events, contrarily to XOC, by storing the attributes whose

values are constant in the object elements. We used dynamic attributes, whose val-

ues can change with each event, to specify the nature of the change occurring to

the objects and their relations while avoiding redundancy. We also quantitatively

evaluated (a quantitative evaluation is provided in the next chapter) the potential

of our new format through a qualitative comparison between ACEL and XES, XOC,

and OCEL. In contrast to these formats we established that ACEL achieves a richer,

more concise and accurate storage of artifact-centric event data. The results of our

evaluation also showed that ACEL holds great potential to achieve more accurate

artifact-centric process mining results. One limitation of this evaluation is that is

was performed on only one use case. In next chapter will use two uses cases to show

the potential of ACEL for process mining.
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5.1 Introduction

This chapter presents our approach for extracting artifact-centric event data from

blockchain applications and generating logs in ACEL, our newly introduced format

(cf. chapter 4), from the extracted data. This approach aims to answer the research

question RQ2 (How to collect artifact-centric event data from blockchain applica-

tions ?). For that purpose, we rely on domain knowledge to ensure that the collected

data is conform to the business reality. Our approach covers all the steps to trans-

form raw blockchain data into ACEL event logs: the collection and decoding of raw

data, and the mapping of this data into ACEL elements before storing in an ACEL

log. Additionally, our approach is designed to support applications comprising many

smart contracts, i.e., their process execution involves calling functions from different

smart contracts. To fit this particularity, our approach includes an ordering step,

according to the timestamp of the logged smart contract events. Indeed, querying

blockchain platforms, such as Ethereum, for smart contracts events yield a batch

result where event are grouped according to smart contracts instead of timestamp.

Thus, we need to order them according to the timestamp to obtain an accurate

ordering of events.

The extraction, as in similar works [19, 21, 51] presented in Section 3.3 is based

on predefined rules for mapping smart contract event data to business process event

data. We propose an extraction algorithm for the Ethereum blockchain as it is

public and provides several ready to use smart contract logs. However, our algorithm

can easily be adapted to other Blockchain platforms which support smart contract

events.

In this Chapter, we also seek to study the perspective of ACEL for process min-

ing, in particular for process discovery. For that purpose, we propose an approach to

filter ACEL logs in order to adapted them to existing process discovery techniques

which support OCEL logs as input (Section 5.4).

We evaluate our contributions, regarding the extraction of ACEL logs from

blockchain and the adapting of the extracted logs for process discovery techniques,

using two popular Ethereum applications: Cryptokitties 1 and Augur 2 (Section 5.5).

The work in this chapter was published in the IEEE SCC conference [35] and in

the peer-reviewed elsevier SIMPAT journal [37].

1https://www.cryptokitties.co/
2https://augur.net/

https://www.cryptokitties.co/
https://augur.net/
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5.2 Preliminaries

5.2.1 Ethereum

Ethereum [62] is a blockchain platform that was the first to support development

of smart contracts, that run on the Ethereum Virtual Machine (EVM), and is widely

used. EVM serves as the computational backbone that enables the interpretation

and execution of smart contracts and transactions. It acts as a universal runtime

environment for decentralized applications, ensuring that code execution is consis-

tent and secure across the entire network. Ethereum supports the development of

decentralized applications (DApps) and use a native cryptocurrency, called Ether

(ETH). In Ethereum, there are two types of accounts: externally owned and contract

accounts, each identified by a unique address. This blockchain platform is consid-

ered as a turing complete system, i.e., a computation model capable of solving any

algorithmic problem provided there are enough resources like time and memory.

However, while Ethereum is Turing complete in theory, real-world constraints such

as gas limits (to prevent infinite loops) and the cost of executing code may place prac-

tical limitations on the complexity of computations that can be performed within a

smart contract. In Ethereum, ”gas” is a unit of measure for the computational work

required to execute transactions and run smart contracts on the network. Complex

operations, like storage writes or complex computations, consume more gas than

simple operations. If a transaction runs out of gas before completing its execution,

it’s considered invalid, and any changes made by the transaction are rolled back.

Smart contracts in the Ethereum context are programs written in a stack-based

bytecode language, but other high- level languages can also be used, with Solidity 3 4,

being the most commonly used. The code of the high-level languages is compiled

to bytecode that is executable on the EVM. They are deployed on the blockchain

and self execute in order to automatically facilitate, verify, or enforce the terms of a

contract or agreement between parties not trusting of each other without the need

for intermediaries. Additionally to the code, each smart contract has an account,

a balance and a private storage. The storage and balance constitute the state of

the smart contract which is modified when the contract is invoked [63] through

transaction sent to his address. The function of a smart contract can be called by

sending a transaction to the contract’s address with the function name and the input

data. To know the name of the functions and their required input data, Ethereum

3Solidity is an object-oriented smart contract programming language influenced by C++,
Python and Javascript

4https://docs.soliditylang.org/en/v0.8.23/

https://docs.soliditylang.org/en/v0.8.23/
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clients rely on the smart contract’s ABI (Application Binary Interface) [64]. The

ABI defines how to interact with a smart contract, specifying the methods, their

inputs, and outputs in a binary format. It enables communication and interaction

with Ethereum smart contracts from external applications and languages. When

invoked, the smart contract’s functions can generate events, which are recorded in

the blockchain as logs.

Transactions in the Ethereum network, are the fundamental actions that involve

the transfer of Ether or the execution of smart contracts. Each transaction contains

crucial data such as sender and receiver addresses, the amount of Ether transferred,

gas fees, the timestamp, and a unique transaction hash. It also possesses a data/-

payload field, which is empty for transactions related to Ether transfer. However,

when interacting with a smart contract, this field contains encoded data specifying

the function to be executed and any parameters associated with that function.

5.2.2 Event data in Ethereum

The primary source for business process event data in Ethereum is transaction data

and smart contract event data. Fig 5.1 shows how this data is strucutured within

the blockchain.

SinceEthereum transactions [62] contain detailed information, including times-

tamps, transaction IDs, involved parties, and actions taken. This information allows

for precise tracking of user interactions with an application, making it ideal for re-

constructing processes and identifying bottlenecks or inefficiencies. Furthermore,

real time tracking of this extracted transaction data provide insights into specific

business-related events and allows companies to monitor their process execution to

ensure compliance with their reference model. There are two types of transactions

related to smart contracts : regular and internal. Regular transactions result from

an external account (user) call to a smart contract function. The transactions are

entirely recorded in the blockchain’s blocks. Internal transactions on the other hand

are the result of a smart contract account call to another smart contract’s function.

When a smart contract function incorporates a call to another smart contract func-

tion, it is executed and any generated events in the latter contract are produced

and recorded as part of the blockchain logs. However, it is important to note that

there exists no explicit trace of this function call within the transaction data itself.

Thus, internal transactions are notably absent from the blockchain’s blocks. This

differentiation is purposefully designed within publicly available Ethereum client

implementations. Accessing this information would necessitate the modification of

the client’s behavior, i.e., rewrite the code of the client to keep a trace of internal
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transactions.

Smart contract events [33] serve the purpose of conveying detailed information

regarding the execution of functions within the EVM and their associated outcomes.

Additionally, they have the capacity to relay information pertaining to events that

occurred during the execution process to external off-chain components 5. The raw

data 6 of these smart contract events is hashed as it underwent a hashing process

before being stored on the blockchain. The data of each event include a topic, i.e

the event title (or name) and its ordered parameters, and the associated data, as

exemplified in Fig 5.1. It is noteworthy that each event is unique. This uniqueness

implies that while two events may share identical names and parameter sets, they

can differ in the arrangement of these parameters.
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Figure 5.1: Informal representation of Ethereum event data

The definition and configuration of these events is done by the smart contract

developers, who possess the flexibility to define the events’ ordering and the number

of parameters, within the constraints set forth by the supported types of the smart

contract language. Smart contract events allow the storage of information about

all types of function calls, including those of internal transactions. Indeed, smart

contract events resulting from internal transactions are preserved for reference.

5Services or systems outside of the blockchain network.
6Raw blockchain data is the unprocessed data that is directly stored on the blockchain
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5.3 Extracting ACEL logs from Ethereum

In the context of Ethereum, unlike transactions, particularly in the case of internal

transactions, smart contract events are always available and thus they provide a more

complete picture of the execution of a process. Furthermore, smart contract events

are used to emit information about the result of a smart contract function’s execution

and therefore they may contain more data. For this reason we chose smart contract

events as our source to collect the event data that we will rely on to apply process

mining. In the following we detail our approach to collect artifact-centric event

data from Ethereum and render it adequate for process mining techniques through

the generation of ACEL logs from this data. We divide our approach into three

phases, as illustrated in Fig 5.2: we start by a configuration phase (Section 5.3.1)

to gather domain knowledge from experts, then we proceed to obtain event data

from blockchain in the collection phase (Section 5.3.2), finally we map the collected

event data into ACEL elements from which we generate ACEL logs in the mapping

& generation phase (Section section 5.3.3).

2
Collection

3
Mapping & 
Generation

SC events

Blockchain
ACEL log

Configuration file

Expert with
Domain knowledge

1
Configuration

Figure 5.2: Overview of the approach to extract ACEL logs from Ethereum

5.3.1 Configuration phase

As mentioned in Section 5.2, unlike transactions, particularly in the case of internal

transactions, smart contract events are always available and thus provide a more
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complete picture of the execution of a process. Indeed, we cannot access smart

contract function calls present in internal transactions but the smart contract events

emitted during that call can be retrieved. Furthermore, smart contract events are

used to emit information about the result of a smart contract function execution

and therefore they contain more data. For this reason we choose smart contract

events as our source for event data. The collection and the mapping & generation

phases require some domain knowledge about the code of the application’s smart

contracts to collect event data and the relational model underneath to reconstruct

artifacts and their relations. The role of the configuration phase is to gather the

data required by the collection and the mapping generation phases. The collection

phase requires data about the smart contracts of the application. In general, a

blockchain application can comprise many smart contracts calling each other to

execute a transaction, thus we need the address of each relevant smart contract.

The ABI is also required to interact with the smart contract and retrieve its event

logs. ABIs are not stored on the blockchain and only the developer can provide that

information. Some Blockchain explorers 7 like Etherscan 8, an explorer of Ethereum,

are used to publish this information but it is not always the case, thus we prefer to

rely on user information. We provide flexibility in the choice of data to be collected,

i.e., the user can choose which batch of data to extract, though a configuration

parameter named Block Range. The Block Range allows the user to specify the

block from which the extraction starts and the block at which it ends.

The mapping process involves the conversion of the collected smart contract

events into ACEL elements (Artifacts, Relations, Events), which requires a precise

understanding of which parameters of the smart contract events align with the

attributes within each ACEL element. Therefore, a reference information model

is imperative to delineate the structure of artifacts and their relations. The most

accurate way to obtain this information is to rely on domain experts, which will

specify the types of Artifacts, their attributes and the relations linking them.

We group all the required domain knowledge in a configuration file that serves,

as illustrated in Fig 5.2, as input to the collection and the mapping & generation

phases. To guarantee that users who follow our approach will provide the right

information, i.e., required domain knowledge structured according to the specificities

of our approach, we propose a structured template to be followed to reduce the

manual effort and errors when creating a configuration file.

7Blockchain explorers are web-based tools that provide a user-friendly interface for accessing
and inspecting the details of individual blocks, transactions, and addresses on a blockchain network,
allowing users to track the status of transactions and analyze the blockchain’s activity.

8https://etherscan.io/

https://etherscan.io/
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The structure of our proposed template is shown in Fig 5.3. It shows that a

configuration file contains one or many SC elements (smart contract elements), this

is due to the fact that a blockchain application can run through multiple smart

contracts. The elements contained in the configuration file element are:

• A SC element contains information about the smart contract, i.e., its address

and ABI, and the blockrange. A blockrange is composed of two variables

(startBlock) and (andBlock). SC elements also contain Artifact, Relation and

SC Event elements.

– An Artifact element contains information about an artifact, i.e., its type

(object type as per OCEL nomenclature) and its attributes.

– A Relation element contains information about a relation between arti-

facts, i.e., its name (object type), the source and target artifacts and its

cardinality, e.g., one to one or many to one.

– A SC Event element contains a SC Event Topic which provides information

about a smart contract event. It also contains an Event Mapping from

the smart contract event information to ACEL elements.

∗ A SC Event Topic contains the name of the smart contract event and

the ordered list of its parameters’ names and their types as they are

written in the smart contract code.

∗ An Event Mapping contains three mappings: an ACEL Event map-

ping, an ACEL Object mapping, and an ACEL Relation mapping.

∗ An ACEL Event mapping contains information about the activity

whose execution generated the event: its name, the timestamp and

potential attributes. The name which is static and provided by the

user, the timestamp is by default mapped from the block timestamp,

and the mapping of the smart contract event parameters to the event

attributes is defined by the user as it requires domain knowledge.

∗ An ACEL Object mapping contains information about each object

modified by the event. It contains the type of object, to be chosen

from the list of Artifacts previously provided, the lifecycle of the

object which is a static value provided by the user, and a mapping

from the smart contract event parameters to the object attributes

defined by the user.

∗ An ACEL Relation mapping contains information about the created

or updated relations between objects after an event occurrence. It
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Figure 5.3: Structure of the configuration template

contains information about the relation type, to be chosen from the

list of Relations previously provided, the type of the source artifact,

and the list of targets. For each target, the type is chosen from the

Artifacts pool and the Change Status is provided by the user, as it

requires domain knowledge.

5.3.2 Collection phase

The collection phase consists of two steps: the connection to a blockchain network

and the querying of the latter for smart contract events. We automate this process

as described in Algorithm 1.

There are two ways to connect to an Ethereum network, either through a local

node or a remote one. To start a local node, we need to run an Ethereum client on
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our own machine and inevitably join the network. Remote nodes on the other hand

are clients running on the cloud and made available by service providers. Most

of these service providers impose a daily limit on the number of calls to a node

depending on the purchase plan. The advantage of using a service provider over the

use of a local node is the elimination of the configuration and maintenance efforts as

well as the need for significant storage and network resources. Based on the previous

argument we chose to design our approach for a scenario where remote nodes are

used.

The connection to the network through a remote node requires the use of Re-

mote Procedure Calls (RPCs)9 and a connection key for a blockchain client (node)

provided by the service provider. Thus, the API of the service provider and a con-

nection key are the input of Algorithm 1, along with the SCelements taken from the

configuration file. In lines 4-5 of Algorithm 1, we establish a connection to a remote

node using the connection key and and RPC call through the service provider’s API.

Once the connection is established we move to the second step of our collection

phase, that is the querying of Ethereum. As mentioned in Section 5.3.1, this step

requires the user provided data during the configuration phase. Specifically, we

need the information related to the the smart contracts in order to fetch the batch

of smart contract events available within the block range. We limit the required

information to the addresses and ABI of the smart contracts and a block range (see

SC element in Fig 5.3). In lines 6-7 of Algorithm 1 we use SCelements the list of

smart contract elements (output of configuration phase) to query the blockchain

via the node connection established in the previous step. The blockchain query,

executed via the function node.getAllEventsInRange() for each smart contract of

the application, consists of fetching ListrawSCevents all the raw smart contracts events,

within the block range, of each smart contract using its address, ABI, startBlock

and endBlock. As explained in Section 5.2, the raw smart contract events are

hashed. Thus, we use in lines 8-9 Decode() a decoding function to reverse hash

every smart contract event (rawscev) using the ABI. The result is scev a human

readable smart contract event that we add to ListSCevents the list of decoded smart

contract events in line 10. Function E is used in line 11 to map each scelement to

its ListSCevents . After the mapping, we proceed to sort the list of events by their

timestamp (line 12) using the function sortByT imestamp().

9https://www.rfc-editor.org/info/rfc5531
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Algorithm 1: Collection of Smart Contract Events

Input : SCelements a set of n smart contract elements, such that

∀sc ∈ SCelements, sc = (address, ABI, startBlock, endBlock) ;

serviceProviderAPI the API of the service provider ;

connectionKey a connection key for a blockchain node made available by

the service provider

Output: E a function that maps elements of SCelements to subsets of

SCevents, where SCevents is a set of m smart contract events

1 E ← {} ;
2 ListSCevents ← {} ▷ The list of decoded smart contract events ;

3 ListrawSCevents ← {} ▷ The list of hashed smart contract events;

4 node← serviceProviderAPI.connect(connectionKey) ▷ Connection to a

remote blockchain node;

5 If notEmpty(node)

6 ForEach sc ∈ SCelements

7 ListrawSCevents ←
node.getAllEventsInRange(address, ABI, startBlock, endBlock);

8 ForEach rawscev ∈ ListrawSCevents

9 scev ← Decode(rawscev, ABI) ListSCevents ← ListSCevents ∪ scev

▷ The decode function uses the ABI to reverse hash raw smart

contract events ;

10 E(SCelements)← ListSCevents ;

11 E ← sortByT imestamp(E) ▷ This sorting function orders event by

timestamp ;

12 return E;

5.3.3 Mapping & generation phase

Similarly to the collection phase, the subsequent mapping & generation phase re-

quires domain knowledge. All knowledge pertinent to this process, e.g, artifacts,

relations, ACEL elements mappings, is encapsulated within the configuration file,

as illustrated in Fig 5.3. To automate this phase we propose Algorithm 2 which

takes as input ConfigF ile, the configuration file (output of configuration phase),

and ListSCevents , the list of decoded smart contract events (output of collection

phase), and gives as output Log, an ACEL log.
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Algorithm 2: Event Data Extraction and Generation of ACEL logs

Input: ConfigF ile, ListSCevents

Output: Log = (E,O,R)

1 ▷ ACEL log composed of event, object and relation elements foreach sc in

configF ile.SCelements do

2 ▷ Constructing events ;

3 foreach scev in ListSCevents do

4 ev ← getMatchingEventMapping(scev, sc.SCeventsElements);

5 if notEmpty(ev) then

6 e← initializeEvent();

7 e.EA← getEventAttributes(scev, ev.AcelEventMapping);

8 e.O ←
getObjectList(scev, ev.AcelObjectMapping, ConfigF ile.artifacts);

9 e.R←
getRelationList(scev, ev.AcelRelationMapping, ConfigF ile.relations);

10 ▷ Constructing objects ;

11 foreach ob in e.O do

12 attribs←
getObjectAttributes(scev, ev.AcelObjectMapping);

13 foreach att in attribs do

14 if isStatic(att, ConfigF ile.artifacts) then

15 o←
getOrInitializeObject(scev, ev.AcelObjectMapping, ob);

16 o.OA← getObjectStaticAttribute(scev, att);

17 Log.os.add(o);

18 else

19 oc← getObjectDynamicAttribute(scev, att);

20 e.OC.ob.add(oc);

21 lc←
getObjectLifecycle(scev, ev.AcelObjectMapping, ob);

22 e.OC.ob.add(lc);

23 ▷ Constructing relations ;

// repeat lines 10-19 for each or in e.R...;

24 ▷ Generating log ;

25 Log.es.add(e);

26 return Log ;
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Our algorithm uses smart contract events to construct event, object and relation

elements and store them in an ACEL log. We start with a filtering phase where we

iterate over the smart contract events given as input and retain only those that have

been listed in the configuration file given as input (lines 4-6). Then, we proceed to

construct the event elements by affecting each one of them an identifier (line 7), its

attributes (line 8) and the identifiers to its associated objects (line 10) and relations

(line 11). We extract the event attributes and the identifiers of objects and relations

from each smart contract event using the mapping rules defined in the configuration

file. The following step consists of constructing new object elements by affecting

each one of them an identifier or retrieving old objects elements to update them

and extracting their attributes from the smart contract events (lines 12-23). We

place the extracted static object attributes in the object elements (line 17) and the

extracted dynamic object attributes in an event list of changes identified by the

object identifier (lines 20-21). The lifecycle (state) of each object is also placed

in that list of changes (lines 22-23). In the subsequent step, we construct relation

elements using the same procedure used for object elements (line 24). Finally, we

complete the log generation by adding each constructed event element the events to

the ACEL log (line 26). We add the object and relation elements to the log right

after placing the static attributes (line 18) because that is the only information they

contain, while the event element is placed last as it requires the dynamic attributes

of all its associated objects and relations. In the last step, we return the generated

ACEL log (line 27). A more detailed description of the Algorithm is available in

Chapter 8.

5.3.4 Towards a Blockchain agnostic approach

To adapt our approach to blockchain platforms other than Ethereum, one has only to

adjust the part of the algorithms that are specific to each platform. In the following,

we provide guidelines for the adaptation to be made.

Connection to the blockchain platform (Collection phase) The choice of

node type (local or remote) might depend on the options available for each

platform, thus we suggest to evaluate the cost of each option. Furthermore,

the connection request via RPC calls should be adapted to the specificity of

each platform.

Blockchain query (Collection phase) Most blockchain clients provide the pos-

sibility to customize the queries. In Ethereum, the query option of getting all

event logs at once is available. However, this might not be the case for other
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platforms and thus the syntax and type of query should be adapted to each

platform.

Smart contract events (Configuration phase) The configuration template we

defined follows the Ethereum structure for smart contract events. Hence, the

configuration template need to be modified to take into account a specific

smart contract event structure for a certain platform.

Extraction Algorithm (Mapping & Generation phase) Naturally any mod-

ification in the input of the extraction and generation algorithm necessitates

to adapt the functions of the latter to the new structure of the input. For

example, any function which extracts data from the smart contract event is

tailored for the latter’s structure and it needs to be adjusted when that struc-

ture changes.

5.4 Object-centric process mining on blockchain

data

ACEL is not supported by existing process mining techniques and in particular

discovery techniques which are the focus of this thesis. Before proposing a new

process discovery technique to support ACEL, we first sought to adapt it to the

existing techniques in order to test some of its characteristics against existing formats

like OCEL and show the potential of ACEL. This adaptation is necessary because

although ACEL follows OCEL’ structure, it is richer with new elements, e.g., lists

of object changes and relation elements, that are not supported by the discovery

techniques tailored for OCEL. Thus, we propose an approach to filter ACEL to

make it compatible with these discovery techniques while maintain most of the

artifact-centric information that make up its richness.

In this section we present our approach to adapt ACEL to existing process dis-

covery techniques.

5.4.1 ACEL’s adequacy for existing process discovery tech-

niques

Current process discovery techniques can not take an ACEL log as input and are

not designed to discover artifact-centric models from event logs [8]. However, we can

still leverage the information about artifact-centric processes captured by ACEL logs

through these techniques. Since ACEL is based on OCEL and the latter is supported
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by some existing techniques[65], we opt for adapting ACEL to those techniques.

We focus on one particular discovery algorithm [14], that discovers Object-Centric

Directly-Follows multiGraphs (OC-DFG) 10. The choice of this discovery algorithm

is motivated by the fact that it was implemented in a tool which supports OCEL.

Thus, in order to make ACEL compatible with this algorithm we need to filter it

to obtain an OCEL log, i.e., remove the new concepts which alter the structure

of OCEL logs and make it unrecognizable by existing techniques. However, this

filtering would still allow us to leverage some artifact-centric process information

captured by ACEL, namely the evolution of artifacts and their interactions at an

activity level. In the following section, we will propose a filtering method to obtain

OCEL log from ACEL while keeping a trace of object evolution.

5.4.2 Adapting ACEL to existing process discovery tech-

niques

In our proposed filtering approach, the initial step involves the elimination of the

relation concept. This entails the removal of relation elements from both the log

and the event elements’ lists of relations and relation changes. Subsequently, we

eliminate concepts related to events that are unsupported by OCEL, specifically

the lists concerning object changes, i.e., dynamic attributes. Notably, we preserve

the object elements alongside their static attributes and the lists of objects in the

events, as these aspects align with the OCEL standard. Consequently, we obtain

a log structured in accordance with OCEL while retaining a trace of object evo-

lution, even if this evolution is obscured in nature, due to the removal of dynamic

attributes. Essentially, our filtering approach captures evolution at the activity level

while omitting details at the attribute level. The resulting log enables the identi-

fication of events impacting an object’s lifecycle but without the knowledge of the

specific nature of these alterations. Thus, our filtering approach allows us to keep a

trace of object evolution. Hence, we are able to evaluate the potential of ACEL to

improve process discovery by using the OC-DFGs discovery algorithm [14].

5.5 Implementation and Evaluation

In this section, we present the implementation and evaluation of our approach

to extract artifact-centric event data from blockchain applications and generate

10An OC-DFG displays layers of Directly-Follows Graphs (DFG) [66] with a DFG for each object
type.
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ACEL logs. We also evaluate our method to apply object-centric process mining on

blockchain data by filtering ACEL logs.

5.5.1 Event data extraction and generation of ACEL logs:

Proof of concept

We implement our extraction and generation approach as a node.js Web application

available online (https://lazy-jade-armadillo-cape.cyclic.app/upload/) (see

Fig 5.4) containing two modules: a configuration module and an extraction mod-

ule. The configuration module is designed to help users create the configuration

file, required as input for the approach, and to reduce manual efforts. The ex-

traction module is meant to automate the collection and, the mapping & genera-

tion phases. For testing purposes, examples of configuration files (kittyConf.json

and augurConf.json) and their corresponding ACEL log files (kittyACEL.jsonacel

and augurACEL.jsonacel) are made available on the same Web application (https:

//lazy-jade-armadillo-cape.cyclic.app/upload/#files).

Figure 5.4: ACEL Tool

https://lazy-jade-armadillo-cape.cyclic.app/upload/
https://lazy-jade-armadillo-cape.cyclic.app/upload/#files
https://lazy-jade-armadillo-cape.cyclic.app/upload/#files
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5.5.1.1 Overview of our tool

Configuration module This module serves as a user-friendly interface, guiding

users through the creation of configuration files while performing validation checks

to ensure compliance with our proposed template model (see Fig. 5.3). The resulting

configuration file can be stored by the user and seamlessly employed as input for

the extraction module within the same Web application.

To use the configuration file assistant, the user needs to click on the Configuration

Template option from the left menu and then proceed to fill the form (see Fig 5.5).

He will need to first provide a smart contract address, the ABI of the smart contract,

and the start and end blocks. Secondly, he can create a new artifact by providing

its name and the type of its identifier (Incremental or Extracted). Incremental

identifiers require a base string (example for the artifact kitty, the base can be kit

and the instances will be identified as kit1 kit2 kit3, etc), while extracted identifiers

will be collected from the smart contract events. If the artifact has attributes they

can be added by specifying their names, types and nature (static or dynamic).

Figure 5.5: Configuration module: Smart contract element

Once a defined artifact is saved, its name will appear in the Artifacts list (see

Fig 5.6), to be updated or used in the creation of relations. Similarly, relations

are created by providing the base for their incremental identifiers, their source and

target (selected from the list of artifacts), and their cardinality.

After the creation of artifacts and relations, the user can then create a new event

and define mapping rules. He needs to provide the exact name of the smart contract
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Figure 5.6: Configuration module: Artifacts

event as well as the names of its parameters (see Fig. 5.7).

Figure 5.7: Configuration: Smart contract event topic

To define mapping rules, he needs to specify the name (activity name) of the

ACEL event (see Fig. 5.8) and select each element from the list of artifacts and

relations to define their mappings.

For each selected element a form for its attributes will appear to allow the user

to select for each attribute its corresponding value from the list of parameters (see
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Figure 5.8: Configuration: ACEL Event mapping

Fig. 5.9). Once all events are created a click on the Save File button will generate

and automatically download the configuration file, which is formatted in JSON.

Figure 5.9: Configuration module: ACEL Object Mapping

Extraction module This module takes as input a JSON-formatted configuration

file and automates the process of extracting Event data as ACEL elements and

generating ACEL logs. To test the extraction module, the user needs to click on



100 CHAPTER 5. ACEL logging for blockchain applications

the Extraction option from the left menu. A form to upload the configuration file

will appear. The user can then browse to select a file and click on the Generate

ACEL Log button to start the extraction process (see Fig. 5.10), after which an

ACEL log is automatically downloaded. To test this module, users can use one

of the examples files provided via the link https://lazy-jade-armadillo-cape.

cyclic.app/upload/#files.

Figure 5.10: Extraction module

Execution scenario The extraction and generation phases are automated and thus

are not visible to the user. In the following, we present an execution scenario from

start to end to better illustrate how our approach can be used to generate ACEL

logs for the motivating example (see Section 1.2). Initially, users complete a form

(refer to Fig. 5.5), serving as a template, to produce a configuration file. A simplified

representation of the resulting configuration file, based on the cryptokitties example,

is depicted in Table 5.1. This table showcases the user-provided details necessary for

the system to generate event data associated with the Birth event. Leveraging the

provided Smart Contract Reference, the system retrieves the corresponding smart

contract events from the blockchain and reverse hashes them using the ABI to extract

their topics and parameter values as illustrated in Table 5.2. The smart contract

events topics and parameter values serve as the basis for generating an ACEL log,

guided by the mapping rules outlined in Table 5.1.

https://lazy-jade-armadillo-cape.cyclic.app/upload/#files
https://lazy-jade-armadillo-cape.cyclic.app/upload/#files
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Table 5.1: Configuration file

SC Reference Artifacts Relations

Address=0x06012c.. kitty(id:static, hasMother (source:cat, target:cat..)
startBlock=11115450 genes:static hasFather(source:cat, target:cat..)
endBlock=11115550 owner:dynamic..)

(a)

Event Data Mapping

Sc Event Topic Event mapping Object mapping Relation mapping

Birth(owner, Name=Birth (type=cat, id=kittyId, (type=hasMother, source=kittyId
kittyId, timestamp= genes=genes, lifecycle=born) target=matronId, changeStatus=
matronId, block.timestamp (type=cat, id=matronId, addedTarget)
sireId, resource=owner lifecycle=becameMother) (type=hasFather, source=kittyId,
genes) (type=cat, id=sireId, target=sireId, changeStatus=

lifecycle=becameFather) addedTarget)])

(b)

Table 5.2: Smart contract event

Topic Data

Hashed 0x0a5311bd2a... 0x00000...000d90909..

Preprocessed Birth(owner, kittyId, owner = 0xD9090..
matronId, sireId, genes) kittyId = 1971388

matronId = 1806834
sireId = 1279559
genes = 46400655842..

5.5.1.2 Evaluation and discussion

To confirm our qualitative assessment of the performance of ACEL (Section 4.4)

compared to other formats, we extracted XES and OCEL logs from the motivating

example Cryptokitties (Section 1.2). In this evaluation we did not use XOC logs

as the approach for extracting XOC logs used in [16] is only adapted to relational

databases and cannot be used on blockchain data. We extracted a restricted event

subset (blockRange from 11115450 to 11115550) to facilitate log comparison. How-

ever, the subsequent extraction included all the smart contract event types found

in the source code of the application’s smart contracts. To extract the XES log, we

followed the approach of Klinkmuller et al. [19], which provides a configuration file

they call manifest 11 and a tool 12 to extract XES logs from Ethereum. We used our

tool to generate the ACEL log. Finally, we adapted our implementation to generate

OCEL logs. The comparative count of events, relations, objects and traces found in

the three logs (i.e., XES, OCEL and ACEL) is listed in Table 5.3.

A straightforward comparison among the three types of logs (Table 5.3) reveals

notable quantitative distinctions. ACEL stands out by capturing 34 relationships

11https://ingo-weber.github.io/dapp-data/
12https://github.com/ChrisKlinkmueller/Ethereum-Logging-Framework

https://ingo-weber.github.io/dapp-data/
https://github.com/ChrisKlinkmueller/Ethereum-Logging-Framework
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Table 5.3: Comparison of XES, OCEL and ACEL logs.

XES OCEL ACEL

Events 218 184 184
Objects 218 194
Relations 34
Traces 194 194

among kitty instances, a detail lost in other log formats. Regarding the traces,

the XES and ACEL logs have the same number of traces which is 194 traces. The

number of traces (194) in ACEL has been computed by simply counting the number

of objects. The events associated to each object can then constitute one trace.

Moreover, ACEL stores fewer objects (194 compared to OCEL’s 218), while XES

does not retain this information. The XES log exhibits a higher count of events (218

compared to 184 in ACEL and OCEL logs) because each object change is identified

as an event within the provided sample manifest by the approach’s authors [19].

It’s important to note that some events listed in the sample manifest, used

to extract the XES log, do not directly correspond to actual activity executions

within the cryptokitties smart contract. Instead, they represent relations between

kitties, a facet captured explicitly by ACEL. For instance, the Birth event, signifying

one activity in the cryptokitties application, results in the birth of a kitty along

with the introduction of parental relations (sire and matron). In the manifest,

this single event is extended into three events (Is Born, Give Birth as Matron, Give

Birth as Sire). These additional events are the only mean to capture information

about occurring changes and interactions. This speaks to the inadequacy of XES

in capturing accurate and complete artifact-centric event data. There will always

be the need for a tradeoff between accuracy and completeness. Conversely, ACEL

represents this as a single event (Birth of a kitty), altering three kitties’ lifecycles

(new states: born, becameFather and becameMother) and introducing two relations

(hasFather and hasMother) linking the born kitty to its parents. This representation

in ACEL seems to offer a more realistic view of the cryptokitties process as it does not

introduce new executed activities but effectively captures their impact on evolving

objects throughout the process.

Finally, it is important to note that all the information present in XES and

OCEL is also present in ACEL and with some filtering we can obtain XES or OCEL

logs from an ACEL log. ACEL logs on the other hand are richer since they con-

tain information regarding the evolution of objects and their relations. Thus, this

quantitative evaluation confirms the qualitative evaluation conducted in section 4.4.



103 CHAPTER 5. ACEL logging for blockchain applications

5.5.2 Process mining on ACEL logs

In this section we evaluate our approach of adapting ACEL logs to existing process

mining techniques, in particular discovery techniques. We consider the technique to

discover OC-DFGs used in [14] and we apply it to two Ethereum applications as case

studies, namely the motivating example Cryptokitties and Augur 13, a prediction

market platform. We use the Pm4py 14 implementation of the OC-DFG discovery

algorithm with ACEL-filtered OCEL logs for both Cryptokitties and Augur.

5.5.2.1 Case study 1: Cryptokitties

As discussed in Section 1.2, Cryptokitties is an Ethereum-based application fo-

cused on the acquisition and breeding of virtual kitties through auction mechanisms.

Within this context, both the kitty and the auction serve as artifacts that evolve as

a result of various engagements from users, e.g., breeding and auction creation. To

conduct our analysis, we initially extracted an ACEL log from the blockchain data

pertaining to Cryptokitties. Subsequently, this ACEL log underwent filtering to de-

rive an ACEL-filtered OCEL using our filtering technique (detailed in Section 5.4.2).

Concurrently, we extracted a classical OCEL from the identical blockchain dataset.

We then used the Pm4py tool to discover OC-DFGs from those two logs. The out-

comes are visually represented in Figure 5.11, which shows the result of applying

the discovery technique on the classic OCEL log, and in Figure 5.12, which shows

the result of discovery using the ACEL-filtered OCEL log.

5.5.2.2 Case study 2: Augur

Augur operates as a decentralized platform for predicting future events, constructed

on the Ethereum blockchain. Within Augur, users can engage in markets foreseeing

verifiable real-life events, placing bets on their potential outcomes and receiving

payouts upon market resolution. For instance, a market like ”Will the price of

Ether exceed 10,000 by August 31, 2024?” offers users two options to bet on: ’yes’

or ’no’. The resolution of a market occurs after its designated ’end event’ takes place,

and the reported outcome is provided by the initial market reporter. This reporter,

selected by the market creator upon its creation, holds the responsibility to declare

the market outcome post the ’end event’. The initially reported outcome can be

challenged, allowing other reporters to dispute it by proposing a new outcome. Users

13https://augur.net/
14https://pm4py.fit.fraunhofer.de/

https://augur.net/
https://pm4py.fit.fraunhofer.de/
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Figure 5.11: OC-DFG of the Cryptokitties classic OCEL log

can support these new outcomes through crowdsourcing 15. The outcome receiving

the most support becomes the final outcome, concluding the market. Similarly to

our approach with Cryptokitties, we extracted Augur’s events from Ethereum and

generated an ACEL log. Employing our filtering technique, we derived an ACEL-

filtered OCEL log from the initial ACEL log. Utilizing this filtered log with the

Pm4py tool, we generated an Object-Centric Directly-Follows Graph (OC-DFG),

depicted in Figure 5.13. This OC-DFG illustrates four primary artifacts: Market,

Universe, Order, and Token.

5.5.2.3 Discussion

The objective of the previous case studies was to evaluate the advantages of ACEL

over OCEL when it comes to process mining in the context of artifact-centric pro-

cesses. The primary advantage of ACEL over OCEL in the context of artifact-centric

processes becomes evident upon comparing the representations depicted in Fig. 5.11

against Fig. 5.12 and Fig. 5.13, where the first figure represents the list of activities

15Crowdsourcing in the context of Ethereum’s Augur platform refers to the decentralized, col-
lective effort of individuals (often referred to as ”reporters” or ”participants”) to contribute to the
designation of the right outcome by using their assets to vote for it.
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of the process and the other two figures depict actual OC-DFGs illustrating object

and event interrelations. Indeed, the discovery technique was not able to discover

an OC-DFG from the classic OCEL log as each object was affect by one activity

and thus the discovered model is just a list of activities with their event count. On

the other hand, the ACEL-filtered OCEL logs allows the discovery of OC-DFGs

each object in these logs was affected by many events. This disparity arises due

to the fundamental distinction in log structures: classic OCEL logs generate new

objects for each object change, contrasting with ACEL logs, which support object

evolution without necessitating the creation of new objects. This results in the case

of OCEL in a log where each object is linked to only one activity and therefore

no DFG can be discovered. This distinction underscores ACEL’s suitability and

consequential enhancement in process mining outcomes, particularly in applications

where objects undergo evolution, as observed in artifact-centric processes. Fig. 5.12

and Fig. 5.13 demonstrate that the OC-DFG derived from ACEL logs encapsu-

lates multiple perspectives (all case notions) and their interactions within a unified

model. Each perspective represents the process model associated with a distinct

case notion or artifact. For instance, in Fig. 5.13, the consistent linkage between

the market perspective and the universe perspective via the activity Creation of a

market is apparent. Moreover, these visualizations give a glimpse into the lifecycle

of each artifact, as they outline the associations of objects with pertinent activities.

Consequently, insights into the behavioral tendencies of the application’s arti-

facts emerge (given by most likely paths), such as the likelihood of a dispute being

initiated but not concluded while the initial reporter receives compensation for their

service.

This particular behavioral pattern may suggest underlying factors, such as the

efficiency of incentives (Augur’s reward and punishment system is working as re-

porters are correctly reporting) or user engagement (users are not incentivized to

conclude their dispute), though the definitive elucidation rests with domain experts.

This insights points the domain experts to an abnormal behavior which may have

many interpretations. Nonetheless, the OC-DFG serves as a comprehensive frame-

work aiding the decision-making process for domain experts, offering a consolidated

representation encompassing all perspectives simultaneously. Within this map lie

valuable insights into user behavior and data perspectives, facilitating informed de-

cisions by domain experts.
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5.6 Conclusion

In this chapter, we answered the research question raised in Section 1.3, which is:

RQ2: How to collect artifact-centric event data from blockchain applications ?. We

proposed an approach to collect artifact-centric data from blockchain applications

and automatically generate ACEL logs from this data. We divided the approach into

three phases: a configuration phase (to gather required domain knowledge), a col-

lection phase (to collect event data from blockchain), and a mapping and generation

phase (to map collected event data into ACEL elements and generate ACEL logs).

We designed a configuration template to allow for an easier and valid configuration

process. We automated the collection and mapping & generation phases through

two algorithms that we implemented in a tool available online. This tool contains

two modules: a configuration module which helps the user generate a configuration

file, and an extraction module which given a configuration file generates the corre-

sponding ACEL log. We evaluated the applicability of our tool on the Ethereum

application Cryptokitties and the resulting log allowed us to compare ACEL to other

formats and confirm its performance qualities.

We also sought to test the perspective of ACEL for process mining using logs gener-

ated by our tool. The tests were conducted on two Ethereum applications, namely

CryptoKitties and Augur. We showed that ACEL logs with some filtering can be

used with object-centric process mining techniques, which support OCEL, to dis-

cover artifact-centric models. We proposed a filtering approach to generate OCEL

logs from ACEL one while keeping object evolution. We generated ACEL logs for

each application and filtered them to obtain OCEL logs. We tested the discovery

of OC-DFGs from both types of logs. Evaluation results showed the benefits of

ACEL over OCEL for the discovery of artifact-centric models. They also showed

examples of insights, such as the detection of abnormal behaviors in the discovered

models. This first evaluation of the potential of ACEL for process mining motivates

the necessity to propose a process mining technique adapted to ACEl in order to

take full advantage of its potential.
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Chapter 6

Artifact-Centric Process Mining

for Blockchain Applications
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6.1 Introduction

This chapter presents our approach to discover GSM models from artifact-centric

event logs and thus answer RQ3 (How to discover artifact-centric process models

from artifact-centric event logs ?). To do so, we propose a discovery approach

109
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based on hierarchical clustering and that does not rely on domain knowledge nor

translation mechanisms. This approach uses invariants detection [67] to discover

data conditions and information gain [68] of common data conditions to cluster

activities into nested stages to unveil the hierarchical structure within each lifecycle.

We start this chapter by providing background on information gain and hierar-

chical clustering in Section 6.2. We then outline our approach and the design choices

made in Section 6.3. Subsequently, the details of the different phases of our approach

are provided in Section 6.4. Finally, Section 6.5.1 presents the implementation of

our approach and its evaluation using our motivating example (Section 1.2) as a

case study.

The work in this chapter was published in the proceedings of the CoopIS con-

ference [36].

6.2 Preliminaries

6.2.1 Information Gain

Information gain (IG) is a concept commonly used in the field of machine learning

and decision tree algorithms 1, particularly in the context of feature selection 2 to

decide which feature to split the data on at each step in the decision tree. IG mea-

sures the uncertainty about a target variable after partitioning the dataset based on

a feature, thus quantifying how effectively labeling the dataset by that feature can

help predict the target variable. Mathematically, IG is calculated using concepts

from information theory, specifically entropy [69]. Entropy measures the impurity

or uncertainty in a dataset, i.e., the unpredictability of its labels. The lowest en-

tropy (zero) signifies a dataset where all elements possess the same label, resulting

in a state of complete homogeneity (a pure dataset). Conversely, the highest entropy

(one) characterizes a dataset with equal proportions of different labels across its sub-

sets, leading to a state of maximal heterogeneity. IG operates inversely to entropy,

wherein an entropy of zero corresponds to an IG of one. A higher IG value for a

feature indicate that a feature provides more substantial information for predicting

a label, whereas a lower IG value signify less useful information in determining the

label from that particular feature. When a dataset is split based on a feature, the

1Decision tree algorithms create a model that predicts the value of a target variable based on
several input variables by splitting data into subsets based on the value of those input variables,
forming a tree-like structure of decisions.

2Feature selection in the context of decision trees involves identifying and selecting the most
informative feature or variables from a dataset that contribute significantly to the prediction out-
come.
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information gain is the difference between the entropy of the original dataset and the

weighted average of the values of entropy of the resulting subsets [68]. The formula

for information gain often used in decision trees for a variable v and a dataset A is:

IG (v, A) = Entropy before split − Weighted average of entropies after split

6.2.2 Hierarchical Clustering

Hierarchical clustering is a method of cluster analysis which seeks to build a hierarchy

of clusters [70]. In the realm of data analysis, it is employed for the grouping of

similar data points of a dataset into clusters, where it uniquely constructs a tree

of clusters known as a dendrogram. Hierarchical clustering is categorized into two

primary methodologies: agglomerative and divisive. Agglomerative, or bottom-up

clustering, begins with each point as a distinct cluster and merges them step by step

based on their similarity, visualized through a dendrogram. Conversely, divisive or

top-down clustering starts with all points in one cluster and divides them recursively.

Hierarchical clustering groups or divides data points based on their similarity or

dissimilarity, where the choice of similarity measure can include distance metrics

such as Euclidean, Manhattan, or domain-specific measures. In the agglomerative

approach, the algorithm treats each data point as an individual cluster initially, then

iteratively merges the nearest pair of clusters until all points are unified into a single

cluster or until achieving a specific stopping criterion. The clustering requires the

use of a distance matrix to measure the dissimilarity between clusters, determining

which clusters to merge based on a linkage criterion. The linkage criterion, such

as single, complete, or average linkage, defines the distance between two clusters.

Single linkage uses the minimum distance between points in two clusters, complete

linkage uses the maximum distance, and average linkage uses the average distance.

The divisive approach, starting with all points in one cluster, recursively splits the

most diverse cluster until reaching individual data points or a predefined stopping

point [71].

6.3 Approach Overview

Discovering the GSM model of an artifact-centric process, like the one depicted in

Section 2.3.1, encompasses the discovery of two elements. First we need to discover

the information model of every artifact relevant to the process, then we need

to discover the lifecycle of each artifact. The information model is composed

of the artifact attributes and the lifecycle comprises, the different stages and their



112 CHAPTER 6. Artifact-centric process mining

1
Discover Guards
and Interactions

ACEL log Activity data conditions

2
Discover Stages 

and
Nested Stages

GSM model

Figure 6.1: Overview of the GSM models discovery approach

hierarchical structure, as well as the guard(s) and milestone(s) of each stage, and

finally, the interactions between the different artifacts.

Discovering an artifact’s information model from an ACEL log amounts to a sim-

ple extraction process due to ACEL’s storage of the artifact relational model. This

extraction process involves gathering attribute names for each artifact and incorpo-

rating foreign keys into the information model based on the relational connections

between artifacts.

Consequently, we chose to focus on the discovery of the lifecycle, which essentially

revolves around discovering stages’ guards, their interactions, and their hierarchical

structure. Fig. 6.1 provides an overview of our proposed approach, where we divide

it into two phases: (i) the discovery of guards and interactions; (ii) the discovery of

stages and nested stages. In the following, we will explain how the first phase sums

to the discovery of data conditions and the second phase can be achieved through

hierarchical clustering.

The discovery of guards is a fundamental prerequisite for discovering stages and

delineating their hierarchical structure. A guard comprises a sentry encapsulating an

internal or external event, e.g., in the GSM model of the motivating example in Sec-

tion 2.1.2.1 (k.’Pregnant’.achieved()) and (k.’giveBirth’.onEvent()), and data conditions

e.g., (k.’cooldown’≤ currentTime). Notably, in the context of ACEL, where external

events are absent, our focus narrows to internal events for guard sentry discovery.

These internal events pertain to milestone achievements, stored in ACEL as values

of the object attribute lifecycle. Therefore, the identification of these internal events

aligns with the discovery of data conditions. In the context of GSM, internal events

are expressible through data conditions, e.g., (k.’Pregnant’). Thus, discovering guard

sentries, encompassing internal events and data conditions, becomes a challenge of

discovering data conditions related to artifact attributes and their milestones.

The milestones attributed to a stage may encompass some or all milestones of

its sub-stages or introduce new milestones. In the case of an atomic stage, the

milestones correspond to those of its associated task or activity. Notably, the mile-

stones of the parent stage may not necessarily align with the milestones of the task.

However, the notion of task-independent milestones is not supported within ACEL.
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Instead, in ACEL, an activity (task) is linked to one lifecycle (milestone) change,

since it is not tailored to the nuances of GSM. Introducing stage-specific milestones

could be achieved through an optional custom object attribute [35]. Yet, given our

reliance on traditional ACEL logs, we opt not to introduce stage-specific milestones,

defining the milestones of a parent stage as the conjunction of the milestones its

atomic sub-stage.

Within GSM, the interactions among artifacts are conveyed through internal

events concerning the attainment of milestones by other artifacts [72]. These events

are discovered through the discovery of data conditions, as previously mentioned.

The discovery of GSM stages hinges solely upon identifying their guards, as each

stage is uniquely identified by its set of guards. Notably, two stages cannot share

identical guards. Additionally, sub-stages possess their distinct guards while also

inheriting the guards of their parent stage. This inheritance establishes a hierar-

chical relationship between sub-stages and their parent stage. For instance, in the

motivating example, the Procreation stage serves as the parent of the Breeding and

Birth stages. This hierarchical representation suggests that the parent stage acts as

a cluster of sub-stages, each of which can further function as an independent cluster

housing its own sub-stages. Consequently, modeling the discovery of stages and their

hierarchical arrangement aligns with a hierarchical clustering problem wherein the

similarity is based on common guards. Importantly, these clusters must maintain

loose coupling, ensuring that the guards of one stage do not inadvertently trigger

the activation of another stage.

6.4 Discovering GSM models from ACEL logs

The following sections detail the different phases of our approach to discover GSM

models: discover guards and interactions as data conditions (Section 6.4.1) and

clustering activities to discover stages and nested stages (Section 6.4.2).

6.4.1 Discovering Guards and Interactions

In accordance with the insights provided in Section 6.3, the process of discovering

guards and interactions using an ACEL log can be assimilated to the discovery of

data conditions. These data conditions represent properties verified by observed

attribute values preceding the execution of an activity. They bear resemblance to

invariants 3 that remain true at specific program points [73]. Hence, the method-

3Invariants in program analysis are conditions or properties that remain constant throughout
the execution of a program or within specific portions of the program.
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ologies utilized to dynamically identify likely program invariants can be applied to

discover data conditions within a process, as exemplified in [74]. We have adapted

and tailored the latter approach to suit our specific context.

In the following, we delve into the details of how to obtain data conditions from an

ACEL log using invariants detection systems. Section 6.4.1.1 shows how to generate

the input of these systems, i.e., data traces which are lists of attribute values prior

to an activity’s execution. Subsequently, in Section 6.4.1.2 we present how to apply

invariant detection mechanisms to discover the data conditions prevailing within

these data traces.

6.4.1.1 Data Traces

A data trace serves, in the context of program likely invariants detection, as a

repository containing the variable values at specific points within a program. When

considering a business process (BP), a data trace encapsulates the variable values

either preceding or succeeding the execution of an activity within the process.

Systems such as Daikon [73] specialize in generating data traces for a program

by analyzing its source code. However, in the case of a business process, these traces

are extracted from the BP event logs instead of being generated from source code.

The approach outlined in [74] delineates a methodology for extracting data traces

within the context of a business process. This extraction method involves the sys-

tematic replay of events pertaining to a process instance against a reference model.

This replay process serves to update the values associated with each variable, ul-

timately capturing a single data trace. This procedure halts its execution before

reaching the targeted activity, thereby providing a business process data trace.

In our approach, we propose an innovative approach aimed at extracting data

traces from an ACEL log with no dependency on a reference model. We start by

giving in Section 6.4.1.1.1 our definition of artifact-centric process instances, one that

does not cause convergence and divergence and allows the discovery of interactions.

We also define data traces in our context, in Section 6.4.1.1.2, as being specific

to each activity. Finally, we detail in Section 6.4.1.1.3, the mechanism we use to

generate data traces from artifact-centric process instances.

6.4.1.1.1 Artifact-centric process instances. Our approach involves defin-

ing a process instance for each artifact’s lifecycle to facilitate the discovery of stages

associated with each artifact. Since our objective extends to the discovery of interac-

tions between artifacts, we also consider events linked to related artifacts. Therefore,

we propose a simple definition for a process instance:
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Definition 6.4.1 (Artifact-centric process instance) An artifact-centric pro-

cess instance comprises the sequence of events associated with an individual artifact

instance and its related instances until the end of their relations.

The identification of ACEL events concerning related artifact instances through

their relations becomes viable due to ACEL’s capacity to capture the evolution of

these relations. This process is accomplished utilizing the changeStatus attribute

associated with the relation’s target, wherein the value ’deletedTarget’ signifies

the end of a relation. The end of a relation marks the end of an interaction between

two artifact instances, consequently minimizing the probability of irrelevant data

conditions.

For example, considering a scenario involving a breeding event between a preg-

nant kitty (o1) and a prospective father kitty (o2) linked through a breedingWith

relation. Following a birth event, this relation is deleted. While o2 remains in

a breedingWith relation, it is impacted by o1’s events, anticipating a subsequent

birth event for o1 before being allowed to breed again. However, post-termination

of the relation, o2 ceases to be influenced by o1’s events. If, subsequent to the end

of the relation, o1 engages in breeding with a third kitty, it has no bearing on o2.

Our methodology also accounts for scenarios where artifact instances persist

without ”dying” and the log records multiple iterations of an artifact’s lifecycle.

Previous methodologies, as discussed in [8], predominantly address instances where

artifacts undergo a single lifecycle iteration (created→ updated→ . . .→ terminated).

In contrast, our approach accommodates instances where artifacts revisit lifecycle

stages multiple times or indefinitely, such as a kitty’s perpetual ability to engage in

breeding activities.

6.4.1.1.2 Artifact-centric activity specific traces. Building upon the previ-

ously established definition of an artifact-centric process instance and acknowledging

the potential for artifacts to revisit lifecycle stages, we formulate a definition for an

activity-specific trace:

Definition 6.4.2 (Activity-specific trace) An activity-specific trace is a sequence

of events, within a process instance, delimited by two events related to the targeted

activity.

Notably, the events resulting from the execution of the activity itself are excluded

from the activity-specific trace. This deliberate exclusion is necessitated by our ob-

jective to discover data conditions leading up to the activity’s execution. Therefore,

the activity-specific trace encapsulates a chronological sequence of events from a
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process instance, commencing after one execution of the targeted activity and con-

cluding before its next occurrence. The steps required to obtain activity-specific

traces are listed in Algorithm 3.

The Algorithm uses two steps to generate activity-specific traces. First, we start

constructing each activity’s traces by creating a trace for each object instance 4

affected by an event of this activity (line 13). In each trace, we add the other

activities’ events that affect the object instance and are situated between two events

of the activity (line 14), i.e., the activity’s events are not added. Second, we add

to each trace the events which affect object instances related to the trace’s main

object instance (its identifier). To reduce the search we use a window of related

object instances’ events (line 26) between a start event (line 20), which corresponds

the first activity’s event preceding the trace, and an end event (line 21), which

corresponds the activity’s event that directly follows the trace. We only include the

events of related instances that happen before the end of the relation linking the

related object instances and the main object instance (lines 27-29).

6.4.1.1.3 Data Trace Generation. To derive a data trace from an activity-

specific trace, we rely on a reverse traversal of the events, extracting data values

without replaying the events, described in Algorithm 4.

Beginning from the final event (line 9), we collect the first encountered value for

each attribute (lines 11, 13, 16, 20, 23) associated with every artifact instance and

we name it using a specific namespace (lines 14, 17, 21, 24). This namespacing of

attributes serves multiple purposes: enhancing readability, quantifying artifact inter-

actions, and shedding light on potential new interaction types. The namespacing is

as follows: In GSM, related artifacts are referenced within the information model of

the main artifact, i.e., they are related to, through a foreign key attribute. However,

this attribute’s name might lack explicit information regarding the artifact’s type.

Consequently, we augment this attribute’s name in the data trace by appending the

name/type of referenced artifact. For instance, as depicted in the motivating ex-

ample, the attribute k.siringWithId references another kitty. To explicitly specify

this reference, we prefix it with its artifact type, resulting in k.kitty.siringWithId

(lines 14, 17).

Contrarily to GSM, within ACEL, artifacts relations are stored as separate ele-

ments, removing the need for foreign key attributes. Consequently, we extend the

previous namespace by incorporating the relation’s type as another prefix within

the data trace (k.breedingWith. kitty.siringWithId) (lines 21, 24). Through

4Object instances are the identifiers of activity traces.
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Algorithm 3: Generation of activity-specific traces

Data: acelLog < E,O,R >, E set of events, O set of objects and R set of
relations. OT ← ∅, set of object types and A← ∅, set of activities.

Result: AT, a function associating to each couple (activity, object) a set of
traces.

1 Let OTA be a function whose domain is OT ∀ot ∈ OT,
∃(a1, ..., an) ∈ An, OTA(ot)← (a1, ..., an).

2 Let OI be a function whose domain is OT × A ∀ot, a ∈ OT,A,
∃(o1, ..., on) ∈ On, OI(ot, a)← (o1, ..., on).

3 ▷ Step 1 adding events linked to each main artifact instance ;
4 ForEach e of E
5 a ← activityName(e) ;
6 ForEach o of objectList(E)
7 ot ← type(o) ;
8 ForEach act of OTA(ot)
9 If a == act

10 Close last set of AT (ot, a, o) ;

11 else
12 If last set of AT (ot, a, o) closed
13 Open new set in AT (ot, a, o);

14 Add e to last set of AT (ot, a, o);

15 ▷ Step 2 adding events linked to related instances ;
16 ForEach ot of OT
17 ForEach a of OTA(ot)
18 ForEach oi of OI(ot,a)
19 ForEach SetEvents of AT (ot, a, oi)
20 startEvent ← getPreviousActivityEvent(a, SetEvents)
21 endEvent ← getNextActivityEvent(a, SetEvents) ;
22 ForEach e of SetEvents

23 relatedInstances ← getRelatedObjects(e, oi) ;
24 ForEach ri of relatedInstances
25 rit ← type(ri) ;
26 riSetEvents

← getEventsInInterval(rit, a, ri, startEvent,
endEvent) ;

27 ForEach rievent of riSetEvents

28 If relationNotEnded(rievent, ri, oi))
29 Add e to SetEvents of AT (ot, a, oi);

30 return AT
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Algorithm 4: Generation of Data Traces

Data: acelLog < E,O,R >, E set of events, O set of objects and R set of
relations. OT ← ∅, set of object types and A← ∅, set of activities.
AT, a function associating to each couple (activity, object) a set of
traces.

Result: DT, a function associating to each couple (object type, activity) a
set of data traces

1 Let OTA be a function whose domain is OT ∀ot ∈ OT,
∃(a1, ..., an) ∈ An, OTA(ot)← (a1, ..., an).

2 Let OI be a function whose domain is OT × A ∀ot, a ∈ OT,A,
∃(o1, ..., on) ∈ On, OI(ot, a)← (o1, ..., on).

3 ForEach ot of OT
4 ForEach a of OTA(ot)
5 ForEach o of OI(ot, a)
6 ForEach set of Reverse(AT(ot, a, o))
7 Open new set in DT (ot, a) ;
8 ForEach e of Reverse(set)
9 ForEach ob in objectChangeList(e)

10 ForEach att in objectAttributes(ob)
11 If ob == o
12 If name(att) == ’lifecycle’ and ot.’milestone’

not in DT (ot, a)
13 Add (ot.’milestone’, value(att)) to last set in

DT (ot, a) ;

14 else
15 If name(att) not in DT (ot, a)
16 Add (ot.name(att), value(att)) to last

set in DT (ot, a) ;

17 else
18 If ob in relation with o and relation not ended
19 If name(att) == ’lifecycle’ and

ot.relationName(o,ob).type(ob).’milestone’
not in DT (ot, a)

20 Add
(ot.relationName(o,ob).type(ob).’milestone’,
value(att)) to last set in DT (ot, a) ;

21 else
22 If

ot.relationName(o,ob).type(ob).’milestone’
not in DT (ot, a)

23 Add
(ot.relationName(o,ob).type(ob)name(att),
value(att)) to last set in DT (ot, a) ;

24 Close last set in DT (ot, a) ;

25 return DT
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this extension, we add business-relevant semantics and elevate the readability of a

discovered model. We also use it to indicate the cardinality of interactions, i.e.,

the number of artifact instances of the same type interacting with a main artifact.

Moreover, through this namespacing and its specification of relations’ types, we shed

lights on a novel interaction type not previously considered in existing literature, to

the best of our knowledge. Previous works focused solely on interactions between

artifacts. Whereas, in our approach, we consider interactions between instances of

the same artifact type, which we call reflexive interactions.

To depict interaction cardinalities and reflexive interactions, we consider the

Cryptokitties motivating example and specifically the Birth stage. A kitty’s birth

establishes relations between the kitty and both its father and mother. In this

scenario, the born kitty acts as the main artifact and engages in two (cardinality)

interactions with instances of the same type as the main artifact (reflexive interac-

tion).

6.4.1.2 Data Conditions

To discover data conditions from data traces, our methodology employs the same

system for dynamic detection of likely invariants as used in [74]. Alongside data

traces, this system [73] necessitates a declaration file associated to each data trace.

Declaration files specify the locations, e.g., right before the execution of a function,

within a program’s execution where data is recorded, along with the variables in-

volved at those points. Within these declaration files, we need to incorporate a

crucial attribute known as comparability. Comparability is a signed integer that

guides the system in identifying comparable variables. Variables sharing the same

comparability value are considered comparable. This attribute aids the system in

identifying pertinent invariants, specifically those involving only comparable vari-

ables, which in our case correspond to relevant data conditions. In the context of

our approach we presume that the comparability is provided.

Our approach to discovering data conditions uses the previously described system

for dynamic detection of likely invariants. We use the data traces, generated using

the method described in Section 6.4.1.1.3 to create a declaration file for each one.

Then, we serve each pair of data traces and declaration files to the system, generating

invariants for each activity of each artifact.
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6.4.2 Discovering Stages and Nested stages

In our approach to discover nested stages, we rely on common data conditions that

possess equivalent information gain (IG). These data conditions with the same

IG will serve as guards to discover stages and their hierarchical structure. Indeed,

we operate under the premise that stages sharing a common parent exhibit equal

discrimination by the parent’s guard when compared to other stages within the arti-

fact’s lifecycle. Thus, the parent’s guard will have the same IG every time it is used

to differentiate between one of the parent’s sub-stages and the rest of the lifecycle’s

stages. For example, if a stage s1, with a data condition dc as its guard, has two

sub-stages s2 and s3, the decision tree which answers the question Is this stage s2

? (here s2 is used as the label) will have an IG for dc as feature equal to the IG of

that same feature as another decision tree which answer the same question for s3.

Essentially, a parent’s guard consistently exhibits the same IG each time it helps

separate one of the parent’s sub-stages against other stages within the artifact’s

lifecycle.

The affirmation that guards are data conditions with the same IG stems from

our perspective of considering the parent stage as a label and the data condition

as a feature, as explained above in the decision tree example. For instance, in

the motivating example, if we label all activities as either partOfProcreation or

notPartOfProcreation, the data condition (k.’cooldown’ ≤ currentTime), we can

effectively splits the population (i.e., the activities) into two groups of stages. Each

activity of the first group would be labelled partOfProcreation and each activity

of the second group would be labelled notPartOfProcreation. Thus, the data con-

dition (k.’cooldown’ ≤ currentTime) would serve as the guard for the Procreation

stage.

In summary, IG can be used to know which data conditions serve as guards.

Moreover, sub-stages inherit the guard of their parent stage. Therefore, the dis-

covery of stages and nested stages consists in: (i) finding each activity’s guard by

looking for the data conditions that have the highest IG for that activity and that

do not display the same IG for other activities, (ii) finding the activities which have

common data conditions with the same IG for each activity, and grouping these

activities into atomic stages, (iii) iterating the second process to find the parent

stages of sub-stages. Thus, stage discovery takes the form of hierarchical clustering,

where similarity is based on common data conditions exhibiting identical IG.
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Our use of information gain to find data conditions is inspired from the work

of de Leoni et al. [74]. In the following, we first position our work from their ap-

proach and show how it inspired our work in Section 6.4.2.1. Then, we present the

details of our discovery approach: Our proposed similarity function for clustering

activities into stages is presented in Section 6.4.2.2, and our approach for hierarchi-

cally clustering the stages into nested stages based on that similarity is detailed in

Section 6.4.2.3.

6.4.2.1 Limitations of branching conditions for discovering GSM stages

In [74], the authors’ utilization of IG is directed toward discerning conditions that

differentiate between two tasks at a branching point in BPMN models [12]. However,

this approach does not align with our scenario due to the support for parallelism

between stages and activities of the same stage, within the context of GSM models

as well as the nesting of stages. Indeed, contrary to BPMN models, in GSM many

stages can be opened at the same time and their activities can also be executed at

the same time.

The aforementioned work also employs IG to find to the shortest relevant branch-

ing conditions, by retaining only the condition or conjunction of conditions exhibit-

ing the highest IG. For instance, within the Breeding stage in the motivating exam-

ple, if IG(!k.’Pregnant’) = IG(!k.’Pregnant’ && (k.’cooldown’ ≤ currentTime)),

the condition (!k.’Pregnant’ && k.’cooldown’ ≤ currentTime) would be discarded

according to [74]. The discarded condition is the guard of the stage procreation,

thus its absence hinders the discovery of this stage.

In contrast, our approach refrains from discarding any condition since those with

the lowest IG can be the guards of parent stages. Despite this variance in handling

conditions, the utilization of IG for branching conditions in [74] served as inspiration

for our approach to discover stages and nested stages.

6.4.2.2 Similarity Between Activities

In clustering, similarity is quantified using a distance metric, where the proximity

between two points within a cluster determines their similarity. Specifically, in

our work, we define similarity between two activities based on their common data

conditions with identical IG.When two activities possess common data conditions

exhibiting the same IG, we consider them to be the closest, indicating a similarity

in their nature. The closest possible activities share identical data conditions and

identical IG values for these conditions, rendering their distance measure equal

to zero. Conversely, activities that are the farthest apart exhibit either no shared
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common data conditions or possess common data conditions with differing IG values.
This disparity in data conditions signifies a complete dissimilarity, thereby yielding

a distance measure of one between the activities.

In the following, we define a similarity function inline with these similarity crite-

ria. This function computes the distance between two activities by considering their

respective data conditions and their associated IG values.

Definition 6.4.3 (IG of an Activity Condition) Let A be the set of an arti-

fact’s activities, C the set of these activities’ data conditions, DT the set of all data

traces, and adt : A −→ DT a mapping associating activities ∈ A to their data traces

∈ DT . The information gain of an activity’s condition is defined as:

∀a ∈ A,∀c ∈ C, IGa(c) = IG(adt(a), adt(A \ a), c)

The formula states that the information gain of a data condition c for an activity

a is equal to the information gain of c when used to discriminate between the traces

of a and the traces of all activities minus a.

Definition 6.4.4 (Similarity Function) Let a, b ∈ A; Ca (data conditions of a),

Cb (data conditions of b) ⊂ C, CCab = {c|c ∈ Ca ∧ c ∈ Cb ∧ IGa(c) = IGb(c)} the
set of common data conditions between a and b with the same IG. n = |CCab|∀ck ∈
CCab, k ∈ {1 . . . n}, IG(ck) = IGa(ck) = IGb(ck).The distance between a and b is

given by:

dist(a, b) =



1 |CCab| = 0

1− 1

1 +

log
|Ca|+ |Cb|
2× |CCab|
n∑

k=1

IG(ck)

|CCab| ≠ 0

The formula is designed to measure the dissimilarity between two activities a and b,

inversely related to their similarity. It operates under two conditions: (i) When |CCab| =
0, indicating no common data conditions with equal information gain, the distance is set to

1, representing maximum dissimilarity. (ii) When |CCab| ≠ 0, the distance is calculated

based on the log ratio of the sum of the sizes of Ca and Cb to twice the size of CCab,

normalized by the sum of the information gains of the common conditions. This reflects a

lower distance (higher similarity) when there are more common conditions with significant

information gains. The highest similarity would be when a and b have the same data

conditions with the same information gain, thus the log ratio would be equal to 0 and

the formula resolves to 0 (minimum dissimilarity and maximum similarity). The division
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by the sum of the information gains of the common conditions guarantees that as the

number of relevant common conditions increases (or as their information gain increases),

the distance decreases, reflecting increased similarity.

6.4.2.3 Hierarchical Clustering to Discover Stages and Nested Stages

In order to discover stages and nested stages we rely on a hierarchical agglomerative

clustering [75] revised to incorporate a customized distance matrix, computed using

the similarity function dist, and a distinct linkage criterion to determine when two

clusters can be merged. In our context, we chose a linkage criterion that merges two

clusters only when the distance between all points (i.e., activities) of a cluster with

all points of another cluster are identical. To optimize this criterion, we measure the

distance between two random activities, one from each cluster. This optimization is

possible because all activities of one stage/cluster share the data conditions/guard

of the stage and will all have the same distance to any other activity because the

similarity is computed using IG of common data conditions. This distance computa-

tion is based on the data conditions shared by all activities within each cluster. Our

merging condition dictates that the similarity between two clusters must differ from

one. This condition on merging helps ensure that activities lacking common data

conditions or possessing common data conditions with different IG values cannot

belong to the same stage.

The clustering process starts with the computation of a distance matrix encom-

passing all activities within an artifact. During the first iteration, the two closest

activities are grouped into a cluster. Subsequently, the distance matrix between

the remaining activities and this newly formed cluster is computed based on their

common data conditions. The data condition of the newly formed cluster is equal

to the common data conditions shared by all of the activities within this cluster.

In subsequent iterations, the next two closest activities (or one activity with the

preceding cluster if their distance is the shortest) undergo merging. This itera-

tive process persists, necessitating the recomputation of the distance matrix before

each iteration and cluster merging, until either a single cluster remains or when the

distance between all clusters is equal to one (stopping condition).

Consequently, the outcome of this process yields a hierarchical structure delin-

eating the nesting structure of stages within each artifact’s lifecycle.
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6.5 Implementation and Evaluation

In the following we present the implementation and the evaluation of our artifact-

centric process discovery approach. Section 6.5.1 presents the tool we developed to

implement our discovery approach. In Section 6.5.2, we introduce our case study

and show the outcomes of applying our tool to this specific case study. Using the

previous outcomes, we evaluate in Section 6.5.3 the effectiveness of our approach

in terms of accurate discovery results and performance of the discovery technique.

Finally, the results of the evaluation and limitations of our approach are discussed

in Section 6.5.4.

6.5.1 Implementation

To implement our discovery approach we developed a tool comprised of four Python

modules, each executing one of the steps described in Section 6.4. The modules

are executed in a sequence, described in Fig. 6.2, where the input of one module is

the output of the precedent module. The first module takes as input an ACEL log

and the last module gives as output a list of stages with their guards. The sources

of the tool are accessible through the link: https://gitlab.com/disco5/Gsm/-/

tree/main/discovery.

Activity data traceACEL log

Activity.dtrace

Activity.decls

Daikon

Activity 
data conditions

IG of Activity
data conditions

Nested Stages

G1

G2 G3

G4 G5 G6

1 2

34

Figure 6.2: Architecture of our discovery tool

The first module operates by taking an ACEL log as input and subsequently

generates the activity-specific traces associated with every artifact within the log.

Subsequently, the second module processes these activity-specific traces, storing

them in files with .dtrace format compatible with Daikon [73], an implementation of

the system for dynamic detection of likely invariants (Section 6.4.1.2). Additionally,

this module generates declaration files in the .decls format for each data trace.

Following this, Daikon is executed using these files to discover data conditions for

each activity.

https://gitlab.com/disco5/Gsm/-/tree/main/discovery
https://gitlab.com/disco5/Gsm/-/tree/main/discovery
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Moving forward, the third module receives as input both the data trace and the

discovered data conditions of all activities linked to an artifact. Its primary function

involves computing the Information Gain (IG) of data conditions for each activity,

encompassing their conjunctions. The output of this module is a table containing

data conditions as headers and individual activity lines displaying the IG associated

with their respective data conditions.

Finally, the fourth module undertakes the clustering process. Initially, it utilizes

the table generated by the previous module to execute the clustering algorithm.

This phase focuses on discovering of stages and nested stages. Subsequently, the

module assigns guards to each stage based on the clustering outcomes.

6.5.2 Case study

For our case study, we use our motivating example (Cryptokitties) and acquired

its associated ACEL log from Ethereum, using our extraction method detailed in

Chapter 5.

We present a concise depiction of the kitty artifact’s discovered lifecycle in Ta-

ble 6.1 and visually illustrate it in Figure 6.3. This lifecycle encapsulates two atomic

stages, namely S1 and S2, containing the activities Birth and Breeding, respectively.

Notably, the data conditions (K.milestone == Pregnant) and (K.breedingWith.Kitty.

milestone == FutureFather) associated with the Birth stage result from the closure

of the Breeding stage. This is a behavioral dependency which implies that the

Breeding stage consistently precedes the Birth stage. Additionally, the condition

(’K.breedingWith.Kitty’.milestone) denotes an internal event, signifying a reflexive in-

teraction exhibiting a cardinality of one, where a kitty instance maintains a ’breed-

ingWith’ relation with the primary kitty instance.

Moving to the auction artifact, Table 6.2 showcases a segment of the discovered

lifecycle, visually represented in Figure 6.4. This lifecycle unfolds as a single stage

(S1) comprising two atomic stages housing the activities CompleteAuction and Can-

celAuction. The data condition (A.milestone == Created) signifies the necessity for

an auction to be in a ’Created’ state to undergo completion or cancellation. This

condition acts as a guard, preventing both completion and cancellation actions from

occurring simultaneously on the same auction. Indeed, as depicted in the motivat-

ing example, once an auction is created, it can only proceed to completion or be

canceled.



126 CHAPTER 6. Artifact-centric process mining

Table 6.1: Excerpt of a discovered kitty lifecycle.

Stages Guards

S1 (Birth) (K.cooldownPeriod < Timestamp
and K.milestone == Pregnant and

K.breedingWith.Kitty.milestone == FutureFather )

S2 (Breeding) (K.milestone == Transferred or
K.milestone == Sold or

K.milestone == BecameMother)
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K.breedingWith.Kitty.milestone == FutureFather

Pregnant

Figure 6.3: Discovered GSM model: kitty lifecycle

6.5.3 Evaluation

In this section, we assess the effectiveness of our approach concerning the discovery

of data conditions, interactions, and the clustering algorithm’s performance.

6.5.3.1 Evaluation of Guards and Interactions Discovery

To evaluate our approach, we use as a reference the GSM model of our motivat-

ing example Cryptokitties as derived from the application’s whitepaper [60]. The

Birth stage within this model encompasses two data conditions (k.’Pregnant’ and

K.cooldownPeriod< Timestamp)), along with one external event (k.’giveBirth’.onEvent()).

Table 6.2: Excerpt of a discovered Auction lifecycle.

Stages Guards

S1 (CompleteAuction, CancelAuction) ( A.milestone == Created)
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Figure 6.4: Discovered GSM model: auction lifecycle

Our approach successfully discovered these data conditions, in addition to reveal-

ing another pertinent condition (K.breedingWith.Kitty.milestone = FutureFather). The

accuracy of this discovery is evident as this new condition contrasts with the ex-

isting one (not k.’siringWithId’.’FutureFather’) within the Breeding stage, effectively

distinguishing between the two stages.

Although external events were excluded, as explained in Section 6.3, our ap-

proach identified a reflexive interaction, embodied by the attribute K.breedingWith.Kitty.

milestone, despite its absence in the visual representation of interactions in the GSM

model of the motivating example. This discovery is important as it indicates the

mutual influence between the lifecycles of the Father and the Mother.

However, our approach encountered a limitation in discovering the Procreation

stage. This inability stemmed from the absence of the condition (K.cooldownPeriod <

Timestamp) for the Birth activity in the extracted log. The issue arose due to the logging

mechanism used in the smart contract code of Cryptokitties only registering the ’cooldown’

attribute in events linked to Breeding, overlooking Birth-related events. A more precise

logging mechanism could have facilitated the discovery of the Procreation stage.

This insight holds significance for the DApp redesign phase, and offers valuable data

for conformance checking techniques. Accurate logging would have prompted DApp de-

velopers to reinforce guard conditions preceding specific activities.
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Furthermore, our approach effectively discovered the SaleAuction stage, as depicted in

the GSM model of the motivating example, comprising two atomic stages: CompleteAuc-

tion and CancelAuction. However, the guards for these atomic stages were not discovered,

as they primarily consisted of external events that were exclueded.

6.5.3.2 Nested Stages Discovery Evaluation

We assess the effectiveness of our hierarchical clustering-based approach using the silhou-

ette coefficient [76], a metric commonly used to evaluate clustering algorithms regarding

the cohesion and separation of clusters.

Definition 6.5.1 (Silhouette Coefficient) The silhouette coefficient for a sample point

within a cluster is computed as:

S =
b− a

max(a, b)

Where a represents the average distance between the sample point and other points

within the same cluster, and b the minimum average distance between the sample point

and points in other clusters.

The silhouette coefficient ranges from -1 to 1, where a score over 0 and close to 1 indi-

cates a well-separated and correctly clustered data, a score equal to 0 indicates overlapping

clusters, while a score lower than 0 and nearer to -1 reflects incorrect clustering.

The discovered stages S1 and S2 have a silhouette coefficient of 1. Each cluster

contained only one point, and they had no common conditions, resulting in a distance

of 1 between them. Consequently, our algorithm successfully generated dense and well-

separated clusters.

6.5.4 Discussion

In this section we discuss the performance of our discovery approach and the potential

of ACEL. The accuracy of our discovered lifecycles stems from our specific definition of

artifact-centric process instances (Section 6.4.1.1) and our utilization of ACEL logs. Typ-

ically, convergence and divergence issues surface when events related to artifact objects

are duplicated within an artifact-centric process instance [8]. Fortunately, our approach

mitigated this concern by collecting data from related events and disregarding their asso-

ciated activities in the stage discovery process. However, one could argee that potential

convergence problems might persist in cases of reflexive interactions. For instance, the

Birth event linked to multiple instances of the kitty artifact could lead to duplications.

Nevertheless, ACEL’s support for transition relations, where events can impact an in-

stance without explicitly being part of its trace, resolves such issues. This ensures that
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an event associated with the Birth activity influences only the mother, and merely affects

the father and the newborn kitty.

This evaluation also underscores ACEL’s capability to enhance process mining out-

comes for artifact-centric processes, as discussed in Chapter 5. Notably, our approach

successfully derived the GSM model from ACEL logs without necessitating additional do-

main knowledge. Leveraging ACEL enabled the identification of a novel interaction type

(reflexive interactions), which was overlooked in prior works, to the best of our knowledge.

Prior research primarily focused on interactions between distinct artifact types, whereas

ACEL empowered us to uncover interactions between instances of the same artifact type.

The ability of ACEL to to enhance process mining is discussed below:

6.5.4.1 Depiction of Reality

ACEL’s support for object evolution facilitated the discovery of lifecycles, especially guards

and milestones. Each event in ACEL records the state changes of the affected artifact,

ensuring adherence to reality. Since ACEL also avoids the problem of deficiency (see

Section 4.2), the log are not missing any event and thus the discovered lifecycles are

complete.

6.5.4.2 Convergence

The absence of convergence issues in our method is attributable to our data collection

strategy, focusing on related events solely for data conditions collection while disregarding

their associated activities during stage discovery. ACEL’s ability to access attributes of

related artifact-centric objects further supported this approach. Additionally, relying on a

relation’s end as the conclusion of an interaction between two artifact instances minimized

the occurrence of irrelevant data conditions. Indeed, the end of relation being detectable

through an attribute was made possible due to ACEL’s relational evolution tracking.

6.5.4.3 Denormalization

The discovery of artifact interactions was facilitated by ACEL’s comprehensive capture of

the relational model. Consequently, the information model is easily reconstructed.

6.5.4.4 Transition

ACEL’s inclusion of the transition concept was pivotal in averting convergence concerns

in reflexive interactions. For instance, while the Birth event may be linked to multiple

kitty artifact instances, ACEL’s transition relations ensure that the event only affects the

mother, inherently influencing the father and the newborn kitty.
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6.6 Conclusion

In this chapter, we answered the question raised in the research problem section (Sec-

tion 1.3), which is: How to discover artifact-centric process models from artifact-centric

event logs ?. We proposed a technique to discover GSM models from ACEL logs using hier-

archical clustering. Our approach used a version of hierarchical clustering where similarity

is determined by common data conditions with the same information gain. We proposed

for that purpose a new similarity function and criteria for cluster merging. The data

conditions we use to compute the similarity matrix were discovered through an invariant

detection mechanism. We also proposed a naming system for the attributes of related ar-

tifact to add semantic and better understand the nature of interactions occurring between

artifacts.

We implemented and tested our approach on Cryptokitties to evaluate the performance

of the discovery algorithm and the pertinence of the results. Using the silhouette metric we

established that our hierarchical algorithm produced accurate results, i.e., dense and well-

separated clusters. The results of the evaluation also showed that our approach discovers

stages in accordance with the reality captured in the log. In particular we noted that a

lack of information in the log, due to limited logging in the smart contract, prevented us

from discovering one stage because the events were missing data. This data would have led

to the discovery of more data conditions and consequently to the discovery of more stages.

Additionally, the tests showed that our approach accurately discovers interactions between

artifacts, in particular a novel type of interactions we called reflexive interactions.
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In this chapter we summarize our contributions that provide an answer to our thesis

research question : How to discover artifact-centric models from blockchain data ?. Fol-

lowing the summary of our work (Section 7.1), we discuss our future work (Section 7.2).

7.1 Contributions

The history of process management, from nature’s intricate processes to industrial evolu-

tion, led to the emergence of Business Process Management (BPM), fostering operational

optimization. The arrival of Blockchain in 2009 heralded a paradigm shift, holding poten-

tial for BPM advancement but introducing challenges in process execution, modeling com-

plexity and analysis [34]. Traditional process modeling focused on control flows, neglecting

data flow intricacies, while existing event data formats limited capturing multi-object pro-

cesses, resulting in problematic and erroneous process mining outcomes. Consequently,

artifact-centric process mining emerged as a solution [8], aiming to bridge this gap by

exploring multi-object, interdependent processes but faces challenges in data collection,

logging format compatibility, and discovery techniques alignment with artifact-centricity.

The benefits of blockchain, in terms of trustworthiness of event data, also extend to

artifact-centric process mining. This benefit is mutual as artifact-centric process mining

on blockchain data also offers an opportunity for establishing trust in processes executed

through smart contracts and understanding the business perspective of blockchain appli-

cations. The artifact-centric perspective is more pertinent, in our opinion, for blockchain

131
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as most its applications are executed in an artifact-centric way, where the execution is

driven by the state changes of business entities.

In this thesis we aimed to foster the mutual benefits between blockchain and artifact-

centric process mining by solving the challenges that arise in this specific context. To that

end we set five main objectives: (1) Propose an artifact-centric logging format that sup-

ports artifact-centric elements while avoiding redundancy; (2) Identify the artifact-centric

event data elements present in blockchain data; (3) Propose a mapping from blockchain

data to artifact-centric event data elements; (4) Propose an automate approach for the

collection of artifact-centric event data from blockchain data and the generation of artifact-

centric event logs from these event data; (5) Propose a technique to discover artifact-centric

process models from the generated artifact-centric event logs. Consequently, we proposed

three major contributions in order to fulfill these objectives.

In the first contribution, which covers the first objective, we introduced the ACEL

(Artifact-Centric Event Log) format [35], presented in Chapter 4, which emerged as a

pivotal milestone in addressing the shortcomings of existing logging formats. In order to

propose this format we analyzed the specifications, limitations and potential of existing

object-centric logging format. After this analysis, we made the decision to extend the

object-centric logging standard OCEL [17] for more optimisation and applicability (Sec-

tion 4.2). To obtain ACEL, we enhanced OCEL with novel concepts that allowed the

capturing of object evolution as well as relations between objects and their evolution. The

novel model we proposed focused on avoiding redundancy and optimizing storage space,

while allowing easier processing of logs for process mining purposes. Through a qualitative

evaluation of the potential of ACEL to improve artifact-centric process mining results in

comparison with other logging formats, we showed its clear ability to store all the element

of artifact-centric event data in a richer, more efficient, and accurate manner. In partic-

ular, we showed that it captures all the information present in artifact-centric event data

without any redundancy in data storage.

In the second contribution, presented in Chapter 5, we fulfilled the second, third and

fourth objectives by proposing an approach which covers the steps required to automate

the collection of artifact-centric event data elements from blockchain data and the genera-

tion of ACEL logs from this data. To streamline this process, we first defined a template,

for an easier creation of a configuration file, that informs the user of the correct structure

of the configuration file. Then, we proposed an approach, which first automates the ex-

traction of smart contract events from the blockchain and then automates the process of

converting the smart contract events into ACEL elements to generate an ACEL log. Addi-

tionally, we proposed an approach to apply existing process mining techniques on ACEL,

even though they are not inherently compatible. We proposed an ACEL filtering tech-

nique to obtain an OCEL log, while preserving the evolution of objects. We implemented

our extraction and generation of ACEL logs approach as an online tool. We evaluated

this approach through a case study on Cryptokitties, which showcased its feasibility and
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further demonstrated ACEL’s performance compared to other logging formats and high-

lighted its strengths. We then evaluated our approach for applying existing process mining

techniques on ACEL using logs from Cryptokitties and Augur. We extracted ACEL logs

for these two applications using our extraction and generation approach and then applied

our filtering technique to obtain ACEL logs structured according to the OCEL standard.

We then discovered OC-DFGs using an existing process mining technique applied to the

filtered ACEL logs. Through this experiment, we demonstrated that with proper fil-

tering, ACEL logs are compatible with current process mining techniques, enabling the

discovery of artifact-centric models. Our proposed filtering method allowed us to generate

OCEL logs from ACEL while preserving object evolution. The evaluation results solid-

ified ACEL’s advantages over OCEL in discovering artifact-centric models and revealed

pertinent insights within the generated models. It also further motivated the needs for

novel process mining techniques compatible with ACEL to reap the full potential of this

novel logging format.

In the third contribution, presented in Chapter 6, we fully achieved the fifth objec-

tive, through our novel discovery approach which takes as input ACEL logs and discovers

GSM models [36]. We divided the discovery of GSM models into two key steps: (i) Iden-

tifying the information model (comprising artifact attributes and relationships) and (ii)

Discovering the lifecycle of each artifact (including stages, their guards, milestones, and hi-

erarchical structure). We argued that the information model was already present in ACEL

and thus focused on the second step. We demonstrated that we can discover lifecycles and

interactions by discovering data conditions and nested stages. To do so, we proposed an

approach which encompasses two techniques: the first discovers data conditions; and the

second utilizes these data conditions to discover nested stages. Our data condition discov-

ery technique is based on a existing invariants detection mechanism used in the literature

to discover branching conditions [74]. We adapted this mechanism to our context and

proposed a new definition for artifact-centric process instances and activity data traces.

This new definition allowed us to avoid convergence and divergence while allowing a more

efficient discovery of data conditions. Additionally, we proposed a naming convention for

related artifact attributes to enhance semantic understanding of artifact interactions. Our

discovery technique for nested stages, is based on hierachical clustering algorithms. We

adapted the hierarchical clustering approach to rely on common data conditions to deter-

mine similarity. In our proposed clustering, we defined a new similarity function and a

new linkage criterion. The similarity function computes the closeness of two activities of

stages based on the information gain of their common data conditions. The linkage crite-

rion we defined dictates that all activities within a cluster must have the same similarity

score with all activities of another cluster before they can be merged. We implemented our

approach in a tool and evaluated its efficiency using the motivating example. Through the

silhouette metric, we verified that our hierarchical clustering algorithm generated precise

results, showcasing well-defined and distinct clusters. Our evaluation also confirmed the
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accurate discovery of stages consistent with the log’s captured reality. Furthermore, our

tests highlighted the successful identification of interactions between artifacts, including

a novel type called reflexive interactions. The results of this evaluation finishes to prove

that ACEL’s ability to efficiently store artifact-centric event data marks a significant ad-

vancement for artifact-centric process mining.

Hence, all three of our contributions allowed us to answer the research question this

thesis was based on. Through all the implementations and evaluations we were able to

achieve the objectives that were set in the beginning of this thesis (Section 1.4).

7.2 Future work

Our work pioneers the application of process mining to artifact-centric processes within

the blockchain context, opening new avenues for understanding and optimizing complex

workflows with many perspectives. Hence, it opens several research directions. We will

focus in the short term on improving our two approaches (Chapters 5 and 6) and their

performance as well as addressing, in the long term, other related research issues such

how to benefit from the event data of IoT-aware processes [77] for artifact-centric process

mining. In Section 7.2.1 we present our future work to enhance our extraction approach,

then we present in Section 7.2.2 an overview of the limitations of the GSM discovery

approach we wish to address in future work and the features we plan to add to it.

7.2.1 Fully automating ACEL logs extraction

Our ACEL logs extraction approach, in Chapter 5, relies on domain knowledge to obtain

accurate ACEL logs from blockchain applications. However, the domain knowledge col-

lection (configuration phase), although supported through a template and an online tool,

lacks more automation. We plan to fully automate this part through text mining tech-

niques to enhance the configuration file creation and expedite this process, reducing the

need for manual intervention. This approach involves utilizing the user-provided smart

contract (SC) address to retrieve its corresponding source code. Upon accessing this code,

our proposed strategy involves an initial phase to identify ”Structs” 1, serving as essential

data structures utilized by SC developers for data aggregation. These identified Structs

are then presented as prospective artifacts for consideration by domain experts. The ex-

perts possess the flexibility to either adopt these proposed Structs as ready-to-use artifacts

or modify them to create novel artifacts.

Furthermore, our strategy involves detecting SC events within the source code, as the

entry points for mapping rules. Thus, for each smart contract event found in the source

code, we will guide the user in the creation of a mapping rule from the data of the event to

1https://docs.soliditylang.org/en/latest/types.html

https://docs.soliditylang.org/en/latest/types.html
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ACEL elements. By analyzing the parameters associated with each smart contract event,

we can suggest the artifacts they influence. This proactive suggestion aids domain experts

in formulating event mapping rules, contributing to automating the configuration process.

Lastly, to suggest relations between artifacts, we will focus on artifacts that are often

associated with the same smart contract events. These suggestions will enable domain

experts to validate and define the attributes of these suggested relations as per their

expertise and requirements. This comprehensive strategy anticipates a significant reduc-

tion in the manual effort required for the creation of configuration files while ensuring an

expert-driven refinement process.

7.2.2 Optimizing the discovery algorithm

Regarding our GSM discovery approach, we are working on improving its two techniques

(data conditions discovery and stages and nested stages discovery). The data condition

discovery technique relies on Daikon for invariants detection, this latter uses declaration

files to indicate pertinent variable to compare through a comparability parameter. We

have considered so far that this parameter was user provided. However, we can discover

this parameter and help guide the user in decision making. Comparability is basically how

correlated two variables are, and that information can be derived from the ACEL logs.

Indeed, from an ACEL log, we can deduce correlations between variables, for instance,

by identifying variables frequently appearing together in the ObjectChanges list. For

example, if the variables a et b of an artifact often change values, i.e., appear together in

the ObjectChanges list, this can suggest that they are correlated and thus comparable.

The second part of our future work entails addressing the limitations which arise from

the hierarchical clustering technique, particularly its incapacity to discover stage-specific

milestones and constraints limiting a single guard per stage. Future work entails address-

ing these shortcomings by integrating post-conditions and disjunctive data conditions and

refining clustering methodologies. By incorporating post-conditions and disjunctive data

conditions, we aim to enhance nested stage discovery and enable multiple guards per stage.

Refining clustering methodologies by implementing thresholds for Information Gain will

fortify accuracy and applicability.

We also aim to broaden our evaluation scope to include diverse and complex processes

and test our contributions on data sources other than blockchain. For example, we aim

to adapt our extraction algorithm to collect event data from process-aware information

systems and generate ACEL logs. This will allow us to cover more diverse process than

the use cases found in blockchain, in order to show the potential of ACEL as well as that

of our artifact-centric discovery approach.

Another perspective of our work, is to apply our approach to a context of IoT-aware

artifact-centric process. This includes processes where IoT devices act as resources for
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the execution of activities and those where they are assimilated to artifacts. Considering

this new context will raise interesting challenges, such as how to handle the continuous

flow of information coming from the devices. Furthermore, we are inclined to explore

the execution of IoT-aware artifact-centric processes on blockchain and then apply our

discovery approach on their blockchain event data.
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[20] R. Mühlberger, S. Bachhofner, C. D. Ciccio, L. Garćıa-Bañuelos, and O. López-
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Chapter 8

Appendices

8.1 Event log of Cryptokitties

The listings 8.1, 8.2, 8.3 and 8.4 show respectively the XES, XOC, OCEL and ACEL logs

we manually created according to the structure of each logging format for the Cryptokitties

blockchain application.

Listing 8.1: XES Log Snippet

1 <l og xes . v e r s i on =”1.0” xes . f e a t u r e s=”nested−a t t r i b u t e s ”

2 openxes . v e r s i on =”1.0RC7”>

3 <extens i on name=”Time” p r e f i x=”time”

4 u r i=”http ://www. xes−standard . org / time . xesext”/>

5 <extens i on name=”Concept” p r e f i x=”concept ”

6 u r i=”http ://www. xes−standard . org / concept . xesext”/>

7 <g l oba l scope=”event”>

8 <date key=”time : timestamp” value=”1970−01−01T01:00:00+01:00”/>

9 <s t r i n g key=”concept : name” value=”No g l oba l va lue f o r

10 concept : name de f ined”/>

11 </g loba l>

12 <g l oba l scope=”event”>

13 <s t r i n g key=”concept : name” value=”name”/>

14 <s t r i n g key=”org : r e s ou r c e ” value=”re sou r c e ”/>

15 <date key=”time : timestamp”

16 value=”2011−04−13T14 :02:31.199+02:00”/>

17 <s t r i n g key=”Act iv i ty ” value=”s t r i n g ”/>

18 <s t r i n g key=”Resource ” value=”s t r i n g ”/>

19 <s t r i n g key=”genes ” value=”s t r i n g ”/>

20 <s t r i n g key=”owner” value=”s t r i n g ”/>

21 <s t r i n g key=”cooldownPeriod” value=”s t r i n g ”/>
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22 </g loba l>

23 < c l a s s i f i e r name=”Act iv i ty ” keys=”Act iv i ty”/>

24 < c l a s s i f i e r name=”a c t i v i t y c l a s s i f i e r ” keys=”Act i v i ty”/>

25 <t race>

26 <s t r i n g key=”ident : p i i d ” value=”1240424”/>

27 <event>

28 < i n t key=”logIndex ” value=”1”/>

29 <s t r i n g key=”concept : name” value=”Conceive as Matron”/>

30 <s t r i n g key=”Act iv i ty ” value=”Breeding”/>

31 <s t r i n g key=”Resource ” value=”0xf12A13 ..”/>

32 <s t r i n g key=”s i r e I d ” value=”1475706”/>

33 <s t r i n g key=”cooldownPeriod” value=”11225643”/>

34 <date key=”time : timestamp”

35 value=”2023−10−23T06:11:51”/>

36 </event>

37 <event>

38 < i n t key=”logIndex ” value=”2”/>

39 <s t r i n g key=”concept : name” value=”Conceive as S i r e ”/>

40 <s t r i n g key=”Act iv i ty ” value=”Breeding”/>

41 <s t r i n g key=”Resource ” value=”0xf12A13 ..”/>

42 <s t r i n g key=”matronId” value=”1240424”/>

43 <s t r i n g key=”cooldownPeriod” value=”11225643”/>

44 <date key=”time : timestamp” value=”2023−10−23T06:11:51”/>

45 </event>

46 <event>

47 < i n t key=”logIndex ” value=”3”/>

48 <s t r i n g key=”concept : name” value=”Give Birth as Matron”/>

49 <s t r i n g key=”Act iv i ty ” value=”Birth”/>

50 <s t r i n g key=”Resource ” value=”0xf12A13 ..”/>

51 <s t r i n g key=”k i t t y I d ” value=”1576916”/>

52 <s t r i n g key=”s i r e I d ” value=”1475706”/>

53 <s t r i n g key=”cooldownPeriod” value=”0”/>

54 <date key=”time : timestamp” value=”2023−10−24T10:12:36”/>

55 </event>

56 <event>

57 < i n t key=”logIndex ” value=”4”/>

58 <s t r i n g key=”concept : name” value=”Give Birth as S i r e ”/>

59 <s t r i n g key=”Act iv i ty ” value=”Birth”/>

60 <s t r i n g key=”Resource ” value=”0xf12A13 ..”/>

61 <s t r i n g key=”k i t t y I d ” value=”1576916”/>
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62 <s t r i n g key=”matronId” value=”1240424”/>

63 <s t r i n g key=”cooldownPeriod” value=”0”/>

64 <date key=”time : timestamp” value=”2023−10−24T10:12:36”/>

65 </event>

66 <event>

67 < i n t key=”logIndex ” value=”5”/>

68 <s t r i n g key=”concept : name” value=”I s Born”/>

69 <s t r i n g key=”Act iv i ty ” value=”Birth”/>

70 <s t r i n g key=”Resource ” value=”0xf12A13 ..”/>

71 <s t r i n g key=”matronId” value=”1240424”/>

72 <s t r i n g key=”s i r e I d ” value=”1475706”/>

73 <s t r i n g key=”genes ” value =”8658320.. .”/>

74 <s t r i n g key=”owner” value=”0xf12A13 ..”/>

75 <date key=”time : timestamp” value=”2023−10−24T10:12:36”/>

76 </event>

77 </trace>

78 </log>

Listing 8.2: XOC Log Snippet

1 <?xml ve r s i on =”1.0” encoding=”UTF−8” ?>

2 <l og xoc . v e r s i on=”1.0”>

3 <s t r i n g key=”format ” value=”t o t a l ”/>

4 <event>

5 <s t r i n g key=”id ” value=”e1”/>

6 <s t r i n g key=”a c t i v i t y ” value=”Breeding”/>

7 <s t r i n g key=”timestamp” value =”23/10/2023 10:33:37”/>

8 <model>

9 <ob j ec t s>

10 <object>

11 <s t r i n g key=”id ” value=”o1”/>

12 <s t r i n g key=”c l a s s ” va lue=”cat”/>

13 <s t r i n g key=”tokenid ” value=”1240424”/>

14 <s t r i n g key=”genes ” value=”6789293”/>

15 </object>

16 <object>

17 <s t r i n g key=”id ” value=”o2”/>

18 <s t r i n g key=”c l a s s ” va lue=”cat”/>

19 <s t r i n g key=”tokenid ” value=”1475706”/>

20 <s t r i n g key=”genes ” value=”75607913”/>

21 </object>
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22 </ob j ec t s>

23 <r e l a t i o n s>

24 <r e l a t i o n>

25 <s t r i n g key=”id ” value=”e1−r1−o1”/>

26 <s t r i n g key=”r e l a t i o n ” value=”r1”/>

27 <s t r i n g key=”sou r c e ob j e c t i d ” value=”o1”/>

28 <s t r i n g key=”t a r g e t o b j e c t i d ” value=”o2”/>

29 </r e l a t i o n>

30 </r e l a t i o n s>

31 </model>

32 <r e f e r en c e s>

33 <object>

34 <s t r i n g key=”id ” value=”o1”/>

35 </object>

36 <object>

37 <s t r i n g key=”id ” value=”o2”/>

38 </object>

39 </r e f e r en c e s>

40 </event>

41 <event>

42 <s t r i n g key=”id ” value=”e2”/>

43 <s t r i n g key=”a c t i v i t y ” value=”breed ing”/>

44 <s t r i n g key=”timestamp” value =”23/10/2023 10:33:37”/>

45 <model>

46 <ob j ec t s>

47 <object>

48 <s t r i n g key=”id ” value=”o1”/>

49 <s t r i n g key=”c l a s s ” va lue=”cat”/>

50 <s t r i n g key=”tokenid ” value=”1240424”/>

51 <s t r i n g key=”genes ” value=”6789293”/>

52 </object>

53 <object>

54 <s t r i n g key=”id ” value=”o2”/>

55 <s t r i n g key=”c l a s s ” va lue=”cat”/>

56 <s t r i n g key=”tokenid ” value=”1475706”/>

57 <s t r i n g key=”genes ” value=”75607913”/>

58 </object>

59 <object>

60 <s t r i n g key=”id ” value=”o3”/>

61 <s t r i n g key=”c l a s s ” va lue=”cat”/>
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62 <s t r i n g key=”tokenid ” value=”1576916”/>

63 <s t r i n g key=”genes ” value=”8658320”/>

64 </object>

65 </ob j ec t s>

66 <r e l a t i o n s>

67 <r e l a t i o n>

68 <s t r i n g key=”id ” value=”e1−r1−o1”/>

69 <s t r i n g key=”r e l a t i o n ” value=”r1”/>

70 <s t r i n g key=”sou r c e ob j e c t i d ” value=”o1”/>

71 <s t r i n g key=”t a r g e t o b j e c t i d ” value=”o2”/>

72 </r e l a t i o n>

73 <r e l a t i o n>

74 <s t r i n g key=”id ” value=”e2−r2−o3”/>

75 <s t r i n g key=”r e l a t i o n ” value=”r2”/>

76 <s t r i n g key=”sou r c e ob j e c t i d ” value=”o3”/>

77 <s t r i n g key=”t a r g e t o b j e c t i d ” value=”o1”/>

78 </r e l a t i o n>

79 <r e l a t i o n>

80 <s t r i n g key=”id ” value=”e2−r3−o3”/>

81 <s t r i n g key=”r e l a t i o n ” value=”r3”/>

82 <s t r i n g key=”sou r c e ob j e c t i d ” value=”o3”/>

83 <s t r i n g key=”t a r g e t o b j e c t i d ” value=”o2”/>

84 </r e l a t i o n>

85 </r e l a t i o n s>

86 </model>

87 <r e f e r en c e s>

88 <object>

89 <s t r i n g key=”id ” value=”o1”/>

90 </object>

91 <object>

92 <s t r i n g key=”id ” value=”o2”/>

93 </object>

94 <object>

95 <s t r i n g key=”id ” value=”o3”/>

96 </object>

97 </r e f e r en c e s>

98 </event>

99 </log>

Listing 8.3: OCEL Log Snippet
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1 {” o c e l : g loba l−event ” :{” o c e l : a c t i v i t y ” :” INVALID ”} ,
2 ” o c e l : g loba l−ob j e c t ” :{” o c e l : type ” :” INVALID ”} ,
3 ” o c e l : g loba l−l og ” :{” o c e l : a t t r i bu t e−names ” :

4 [ ” genesSequence ” ,” cooldownPeriod ” ,”mother ” ,” f a th e r ” ,

5 ”owner ” ,” gene ra t i on ” ,” k i t t y I d ” ,” s t a r t i n gP r i c e ” ,

6 ” end ingPr ice ” ,” durat ion ” ,” t o t a lP r i c e ” ,” winner ” ,” composedId ” ] ,

7 ” o c e l : ob ject−types ” : [ ” cat ” ,” SaleAuct ion ” ,” S i reAuct ion ” ] ,

8 ” o c e l : r e l a t i on−types ” : [ ” hasMother ” ,” hasFather ” ,” breedingWith ” ,

9 ” hasSaleAuct ion ” ,” hasS i reAuct ion ” ] ,

10 ” o c e l : v e r s i on ” : ” 1 . 0 ” , ” a c e l : o rde r ing ” :” timestamp ”} ,
11

12 ” o c e l : events ” :{
13

14 ”1” :{” o c e l : a c t i v i t y ” :” Breeding as Matron ” ,

15 ” o c e l : timestamp ”:1511415679 ,

16 ” o c e l : vmap” :{” r e sou r c e ” :

17 ”0x672eC49F7f7EaC25C3A2E651F67F579BB5Da8936”} ,
18 ” o c e l : omap ” : [ ” o1 ” ]} ,
19

20 ”2” :{” o c e l : a c t i v i t y ” :” Breeding as S i r e ” ,

21 ” o c e l : timestamp ”:1511415679 ,

22 ” o c e l : vmap” :{” r e sou r c e ” :

23 ”0x672eC49F7f7EaC25C3A2E651F67F579BB5Da8936”} ,
24 ” o c e l : omap ” : [ ” o2 ” ]} ,
25

26 ”3” :{” o c e l : a c t i v i t y ” :” Birth as Matron ” ,

27 ” o c e l : timestamp ”:1511415679 ,

28 ” o c e l : vmap” :{” r e sou r c e ” :

29 ”0x672eC49F7f7EaC25C3A2E651F67F579BB5Da8936”} ,
30 ” o c e l : omap ” : [ ” o3 ” ]} ,
31

32 ”4” :{” o c e l : a c t i v i t y ” :” Birth as S i r e ” ,

33 ” o c e l : timestamp ”:1511415679 ,

34 ” o c e l : vmap” :{” r e sou r c e ” :

35 ”0x672eC49F7f7EaC25C3A2E651F67F579BB5Da8936”} ,
36 ” o c e l : omap ” : [ ” o4 ” ]} ,
37

38 ”5” :{” o c e l : a c t i v i t y ” :” Birth as k i t t y ” ,

39 ” o c e l : timestamp ”:1511415679 ,

40 ” o c e l : vmap” :{” r e sou r c e ” :
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41 ”0x672eC49F7f7EaC25C3A2E651F67F579BB5Da8936”} ,
42 ” o c e l : omap ” : [ ” o5 ” ]}
43 }} ,
44 ” o c e l : o b j e c t s ” :{
45

46 ”o1 ” :{” o c e l : type ” :” cat ” ,” o c e l : ovmap” :

47 {” genesSequence ” :
48 ”62683762115480161608898092265987716860915438631830449

49 6692374110716999053”}} ,
50

51 ”o2 ” :{” o c e l : type ” :” cat ” ,” o c e l : ovmap” :

52 {” genesSequence ” :
53 ”623332824742417442073801652020554010523726975553

54 705023219600667807529387”}} ,
55

56 ”o5 ” :{” o c e l : type ” :” cat ” ,” o c e l : ovmap” :{” genesSequence ” :
57 ”51635233541623541705670229015473862249180792272

58 2465690508248901653769675”}}}}

Listing 8.4: ACEL Log Snippet

1 {” a c e l : g loba l−event ” :{” a c e l : a c t i v i t y ” :” INVALID ”} ,
2 ” a c e l : g loba l−ob j e c t ” :{” a c e l : type ” :” INVALID ”} ,
3 ” a c e l : g loba l−l og ” :{” a c e l : a t t r i bu t e−names ” :

4 [ ” genesSequence ” ,” cooldownPeriod ” ,”mother ” ,” f a th e r ” ,” owner ” ,

5 ” gene ra t i on ” ,” k i t t y I d ” ,” s t a r t i n gP r i c e ” ,” end ingPr ice ” ,

6 ” durat ion ” ,” t o t a lP r i c e ” ,” winner ” ,” composedId ” ] ,

7 ” a c e l : ob ject−types ” : [ ” cat ” ,” SaleAuct ion ” ,” S i reAuct ion ” ] ,

8 ” a c e l : r e l a t i on−types ” :

9 [ ” hasMother ” ,” hasFather ” ,” breedingWith ” ,” hasSaleAuct ion ” ,

10 ” hasS i reAuct ion ” ] ,

11 ” a c e l : v e r s i on ” : ” 1 . 0 ” , ” a c e l : o rde r ing ” :” timestamp ”} ,
12

13 ” a c e l : events ” :{
14

15 ”1” :{” a c e l : a c t i v i t y ” :” Breeding ” ,

16 ” a c e l : timestamp ”:1511415679 , ” a c e l : vmap” :{” r e sou r c e ” :

17 ”0x672eC49F7f7EaC25C3A2E651F67F579BB5Da8936”} ,
18 ” a c e l : omap” : [ ” 1240424” ] ,

19 ” a c e l : rmap ” : [ ” r1 ” ,” r2 ” ,” r3 ” ] , ” a c e l : ocmap” :{”1240424” :
20 {”CooldownPeriod ”:”11225643” ,” l i f e c y c l e ” : ” Pregnant ”} ,
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21 ”1475706”:{” CooldownPeriod ” :”11225643” ,

22 ” l i f e c y c l e ” : ” FutureFather ”}} ,
23 ” a c e l : rcmap ” :{” r1 ” :{” ta r g e t ” :”0” ,

24 ” changeStatus ” :” de l e tedTarget ”} ,” r2 ” :
25 {” ta r g e t ” :”0” ,” changeStatus ” :” de l e tedTarget ”} ,” r3 ” :
26 {” ta r g e t ” :”0” ,” changeStatus ” :” de l e tedTarget ”}}} ,
27

28 ”2” :{” a c e l : a c t i v i t y ” :” Birth ” ,

29 ” a c e l : timestamp ”:1511415679 , ” a c e l : vmap” :{” r e sou r c e ” :

30 ”0x672eC49F7f7EaC25C3A2E651F67F579BB5Da8936”} ,
31 ” a c e l : omap” : [ ” 1576916” ] , ” a c e l : rmap ” : [ ” r1 ” ,” r2 ” ,” r3 ” ] ,

32 ” a c e l : ocmap” :{”1576916” :{” owner ” :

33 ”0x672eC49F7f7EaC25C3A2E651F67F579BB5Da8936 ” ,

34 ” l i f e c y c l e ” : ” Born ”} , ”1240424”:{” l i f e c y c l e ” : ” BecameMother ”} ,
35 ”1475706”:{” l i f e c y c l e ” : ” BecameFather ”}} ,
36 ” a c e l : rcmap ” :{” r1 ” :{” ta r g e t ” :”1475706” ,

37 ” changeStatus ” :” de l e tedTarget ”} ,
38 ” r2 ” :{” ta r g e t ” :”1240424” ,” changeStatus ” :” addeddTarget ”} ,
39 ” r3 ” :{” ta r g e t ” :”1475706” ,” changeStatus ” :” addedTarget ”}}}} ,
40

41 ” a c e l : o b j e c t s ” :{
42

43 ”1240424”:{” a c e l : type ” :” cat ” ,

44 ” a c e l : ovmap” :{” genesSequence ” :
45 ”62683762115480161608898092265987716860915438631

46 8304496692374110716999053”}} ,
47

48 ”1475706”:{” a c e l : type ” :” cat ” ,

49 ” a c e l : ovmap” :{” genesSequence ” :
50 ”623332824742417442073801652020554010523726975553

51 705023219600667807529387”}} ,
52

53 ”1475706”:{” a c e l : type ” :” cat ” ,

54 ” a c e l : ovmap” :{” genesSequence ” :
55 ”516352335416235417056702290154738622491807922

56 722465690508248901653769675”}}} ,
57

58 ” a c e l : r e l a t i o n s ” :{
59

60 ” r1 ” :{” a c e l : type ” :” s i r ingWith ” ,
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61 ” a c e l : rvmap ” : {” source ” :”1240424” ,
62 ” c a r d i n a l i t y ” :” oney2one ”}} ,
63

64 ” r2 ” :{” a c e l : type ” :” hasMother ” ,” a c e l : rvmap ” :

65 {” source ” :”1576916” ,” c a r d i n a l i t y ” :”many2one”}} ,
66

67 ” r3 ” :{” a c e l : type ” :” hasFather ” ,” a c e l : rvmap ” :

68 {” source ” :”1576916” ,” c a r d i n a l i t y ” :”many2one”}}}}

8.2 Extraction and generation of ACEL logs: Al-

gorithm

This section presents a detailed explanation of the Algorithm 2 presented in Chapter 5 in

Section 5.3.3.

To retain only the smart contract events specified by the user during the configuration

phase, we start with a filtering process. This process consists of only retaining the smart

contract events specified within the configuration file as part of SC Event elements. Line 4

of Algorithm 2 shows the filtering process where the function getMatchingEventMapping

retrieves ev the SC Event Mapping corresponding to each eligible scev smart contract event

by matching its topic with the SC Event Topics contained in SCeventsElements the list

of SC Event elements within the configuration file given as input. Thus, eligible smart

contract events are those for which a matching SC Event Mapping is found. Subsequently,

the algorithm executes the mapping rules specified in each ev (4-21). This process unfolds

as follows: the algorithm initializes e an ACEL event by assigning it an identifier (line

6) and uses the function getEventAttributes to retrieve the event’s attributes from the

data of scev in accordance with AcelEventMapping the event mapping rule withing ev,

and uses these attributes to populate EA the event attribute list (line 7). Additionally, it

assembles O and R the lists of object and relation identifiers, respectively, associated with e

by using the functions getObjectList and getRelationList which retrieves the value of the

identifiers from scev in accordance with AcelOBjectMapping and AcelRelationMapping

the object and relation mappings contained in ev (line 8-9). For each object (line 10),

the algorithm uses the function getObjectAttributes to obtain attribs the list of attribute

mappings for the object type from ACELObjectMapping (line 11). Then, it iterates

over attribs (line 12) and for each att checks whether the attribute is static or dynamic

using function isStatic (line 13). If the attribute is static it either creates a new object

element or retrieves an existing one by using the function getOrInitializeObject() which

verifies before creating a new object if the latter was already created and exists in the

log as an object element using its identifier ob. If the object does not exists it initialize
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a new one and extracts its identifier from scev using ev.AcelObjectMapping (line 14).

Subsequently, it extracts for this object the static attribute’s value from scev using function

getObjectStaticAttribute() and att (line 18). The value of the static attribute is saved in

OA the object element’s attribute list (line 15). After all values of the static attributes

have been saved in the object element’s attribute list, the object is stored in Log as part

of the list of object elements.

Similarly, the object’s dynamic attributes list is populated with dynamic attribute

values from scev using function getObjectDynamicAttribute and att. However, this list

of values is placed in OC the list of object changes of event element e (line 18). The

dynamic attributes list serves as the repository for the object’s lifecycle (line 19). In line

20, the algorithm proceeds to extract the value of the object’s lifecycle attribute. As this

value is static and provided by the user during the configuration phase, the algorithm does

not need scev. It only uses the function getObjectLifecycle() with ev.AcelObjectMapping

and the object identifier ob. Then in line 21, it adds the lifecycle value to e’s list of changes.

Analogously, the algorithm processes and stores the static and dynamic attributes of

each relation within the relation static attributes list RA and the relation dynamic at-

tributes list RC. Notably, the relation dynamic attributes list encompasses pairs denoting

the target and change status of the relation. Ultimately, the event is stored in the log (line

22), and the resultant log is returned as the output (line 23).
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