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Abstract

Digital pathology presents today a fundamental tool for medical diagnosis, ex-
ploiting technological advances in digitalization to transform biological sam-
ples into digital data, thus facilitating their visualization and analysis. How-
ever, these methods, often based on conventional microscopy, encounter limita-
tions that sometimes hinder their effectiveness.
From this perspective, unconventional imaging methods such as Fourier pty-
chographic microscopy offer promising prospects for overcoming these limita-
tions. Indeed, FPM offers access to the phase in complement of the intensity
and allows examining a large Field of View at a high resolution at a reasonable
design cost.
This thesis explores Fourier ptychographic microscopy (FPM) ’s potential in
thin blood smear analysis. Several results have been obtained thanks to a multi-
disciplinary approach integrating deep learning and microscopy. We have first
focused our attention on the problem of limited complexity of parasite detection
for malaria diagnosis. The joint exploitation of intensity and phase is shown to
improve the performance of a deep network detector. To this end, a complex-
valued CNN has been introduced in Faster-RCNN architecture for efficient fea-
ture extraction.
Secondly, we have considered a more complex application, namely the classi-
fication of white blood cells, where the benefits of joint exploitation of inten-
sity and phase were also confirmed. Furthermore, to reduce the imbalance of
classes encountered in this task, we propose a novel physics-informed GAN
model dedicated to generating intensity and phase images. This model avoids
the mode collapse problem faced with usual GAN implementation.
Finally, we have considered optimizing the FPM microscope design. To this
end, we explore strategies combining simulations, neural networks, and image
formation modeling. We demonstrate that FPM can use low resolutions with-
out significantly compromising performance.

5



This thesis underscores the interest in tailoring machine learning in connection
to microscopy principles and highlights the potential of Fourier ptychographic
microscopy for future automated diagnosis systems.
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Résumé
La pathologie numérique constitue aujourd’hui un outil fondamental pour le
diagnostic médical, exploitant les avancées technologiques en matière de numéri-
sation pour transformer les échantillons biologiques en données numériques,
facilitant ainsi leur visualisation et leur analyse. Cependant, ces méthodes, sou-
vent basées sur la microscopie conventionnelle, rencontrent des limitations qui
entravent parfois leur efficacité.
Dans ce contexte, des méthodes d’imagerie non conventionnelles telles que la
microscopie ptychographique de Fourier (FPM) offrent des perspectives promet-
teuses pour surmonter ces limitations. En effet, la FPM offre un accès à la phase
en complément de l’intensité et permet d’examiner un large champ de vision à
haute résolution à un coût de conception raisonnable.
Cette thèse explore le potentiel de la microscopie ptychographique de Fourier
dans l’analyse des frottis sanguins minces. Plusieurs résultats ont été obtenus
grâce à une approche multidisciplinaire intégrant l’apprentissage en profondeur
et la microscopie.
Nous nous concentrons d’abord sur le problème limité de la détection des par-
asites pour le diagnostic du paludisme. L’exploitation conjointe de l’intensité
et de la phase permet d’améliorer les performances d’un détecteur de réseau
neuronal profond. À cette fin, un CNN à valeurs complexes a été introduit dans
l’architecture Faster-RCNN pour une extraction efficace des caractéristiques.
Ensuite, nous examinons une application plus complexe, à savoir la classifica-
tion des globules blancs, où les avantages de l’exploitation conjointe de l’intensité
et de la phase ont également été confirmés. Nous nous intéressons également
au problème du déséquilibre des classes rencontré dans cette tâche, nous pro-
posons un nouveau modèle GAN informé par la physique dédié à la génération
d’images d’intensité et de phase. Ce modèle évite le problème de mode collapse
rencontré avec l’implémentation habituelle des GAN.
Enfin, nous considérons l’optimisation de la conception du microscope FPM. À
cette fin, nous explorons des stratégies combinant simulations, réseaux neu-
ronaux et modélisation de la formation d’images. Nous démontrons que la
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FPM peut utiliser des résolutions faibles sans compromettre significativement
les performances.
Cette thèse souligne l’intérêt d’adapter l’apprentissage automatique en lien avec
les principes de la microscopie et met en évidence le potentiel de la microscopie
ptychographique de Fourier pour les futurs systèmes de diagnostic automa-
tisés.
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Synopsis en français

This synopsis is provided in compliance with the 1994 law on the use of the French
language. It outlines the structure of the thesis and summarizes its chapters and con-
tributions.
Ce synopsis est fourni en conformité avec la loi de 1994 relative à l’emploi de la
langue française. Il reprend la structure de la thèse et résume les chapitres et les
contributions de la thèse.

Introduction

La pathologie numérique se développe rapidement dans le domaine médical.
Elles se base sur des technologies de numérisation pour convertir les spécimens
biologiques, des tissus aux échantillons de cellules, en ensembles de données
numériques complets. L’objectif premier de la pathologie numérique est de fa-
ciliter l’amélioration des capacités d’analyse. Avec la croissance exponentielle
de l’information médicale, la pathologie numérique apparaît comme une so-
lution permettant aux professionnels de la santé de gérer et d’interpréter effi-
cacement de larges volumes de données numériques. Cette transition vers les
plateformes numériques rationalise le processus de diagnostic et libère le poten-
tiel des techniques informatiques avancées, principalement grâce aux réseaux
neuronaux profonds. Ce processus analytique va au-delà des approches di-
agnostiques conventionnelles, ouvrant la voie à des techniques innovantes qui
s’appuient sur la fusion d’information provenant de sources disparates. En inté-
grant divers ensembles de données et en exploitant des algorithmes avancés, la
pathologie numérique permet aux cliniciens d’adopter une nouvelle perspec-
tive, facilitant ainsi des diagnostics plus nuancés et plus complets. L’analyse
numérique des frottis sanguins est considérée comme un outil efficace pour di-
agnostiquer plusieurs pathologies, qu’il s’agisse de cancers, d’infections ou de
troubles hématologiques. Plusieurs systèmes automatisés ont été développés à
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cette fin. Ils utilisent des images de microscopie conventionnelle et des analyses
d’apprentissage automatique pour compter et caractériser morphologiquement
les différents types de cellules sanguines, telles que les globules blancs, les glob-
ules rouges et les plaquettes. Parmi ces systèmes :

• Cellavision commercialise un système d’hématologie complet capable de
classer de nombreuses catégories de globules blancs. Malgré des pro-
grès significatifs, les biologistes rencontrent des difficultés en raison de
performances limitées, nécessitant des retours fréquents à la microscopie
manuelle.

• Easyscango est un système commercial pour le diagnostic du paludisme
combinant l’analyse de frottis sanguins épais et fins pour garantir une
haute sensibilité, mais le traitement est complexe et chronophage.

• Noul propose un système mobile compatible avec l’hématologie et la par-
asitologie, acquérant des images à grand champ de vision, mais ses per-
formances sont encore trop limitées pour une large diffusion.

Ces automates de pathologie numérique présentent des inconvénients qui lim-
itent leur adoption par les biologistes :

• En microscopie conventionnelle, il est difficile de contrôler la qualité de
l’image sur l’ensemble du champ de vision, ce qui peut entraîner une mau-
vaise interprétation des caractéristiques cellulaires.

• En raison d’une zone de mesure trop restreinte, le diagnostic fiable est
compromis, notamment lors de la recherche d’événements rares.

• Les informations fournies sont uniquement qualitatives.

La microscopie non conventionnelle représente une avancée significative dans
le domaine de l’imagerie, capable de répondre à certaines limitations de la
microscopie conventionnelle. Elle se réfère à des techniques et dispositifs op-
tiques innovants qui s’écartent des optiques géométriques et physiques tradi-
tionnelles, incluant des méthodes avancées de traitement d’images, l’optique
adaptative, l’imagerie computationnelle et l’holographie. Parmi les méthodes
récentes, on peut citer l’imagerie de phase quantitative (QPI) basée sur des dis-
positifs interférométriques, présentant plusieurs avantages :
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• Une résolution améliorée grâce à un mécanisme d’ouverture numérique
synthétique.

• Une imagerie quantitative en intensité et en phase fournissant des infor-
mations supplémentaires sur les propriétés optiques des échantillons bi-
ologiques.

• Une correction des aberrations via la manipulation numérique des fronts
d’onde.

• Une profondeur de champ étendue grâce à la manipulation des fronts
d’onde post-acquisition.

Cependant, la mise en œuvre de la QPI dans des environnements non contrôlés
est difficile en raison de la sensibilité de ces méthodes aux vibrations. Une alter-
native prometteuse est la microscopie ptychographique de Fourier (FPM), une
technique d’imagerie computationnelle simple à mettre en œuvre, sans néces-
siter de configuration interférométrique et offrant des avantages théoriques de
la QPI avec des spécificités supplémentaires, comme une stabilité accrue et un
coût réduit.
L’objectif de cette thèse est d’explorer le potentiel de la FPM dans l’analyse
des frottis sanguins, à travers des expériences visant à détecter le parasite re-
sponsable du paludisme et à classifier différents types de globules blancs, en
utilisant des méthodes d’apprentissage profond adaptées aux spécificités de la
FPM. La thèse est structurée autour de plusieurs axes, notamment l’évaluation
de l’impact de la FPM pour la classification automatique et l’optimisation de
la configuration du microscope et des réseaux de neurones profonds pour ces
tâches.
Les contributions de cette thèse incluent :

1. Le développement d’une méthodologie basée sur des réseaux neuronaux
profonds pour traiter les images d’intensité et de phase.

2. La quantification de l’apport de la FPM pour améliorer la détection des
globules rouges infectés et la classification des globules blancs.

3. La proposition d’un modèle GAN informé par la physique pour synthé-
tiser de nouvelles images bimodales de FPM.

4. L’optimisation de la configuration du microscope pour l’amélioration de
la tolérance aux résolutions faibles grâce à l’ajout d’images de phase.
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Ces différentes contributions sont présentées de façon synthétique dans les sec-
tions suivantes.

Contribution de la phase pour l’analyse des objets
colorés

Dans la littérature, l’introduction de la microscopie bimodale (intensité et phase)
est liée principalement à la capacité de l’imagerie de phase à révéler des struc-
tures invisibles sur des échantillons, sans nécessité de marquage. Ceci est par-
ticulièrement intéressant pour les échantillons transparents. Dans le premier
chapitre de ce travail, contrairement aux cas d’application couverts dans les
travaux publiés précédemment, nous nous interrogeons sur la pertinence de la
microscopie bimodale, plus précisement du couplage intensité et phase, dans le
contexte des échantillons colorés où souvent l’information d’intensité est décrite
comme suffisante.
Pour répondre à cette question, on considère une application biologique : la dé-
tection automatique de malaria qui consiste en une localisation et identification
des globules rouges parasités sur des images de frottis colorés numérisées par
un microscope. Ce sujet est choisi parce qu’il n’est pas encore résolu malgré sa
complexité relativement limitée (deux classes d’objets à détecter, globule rouge
sain / globule rouge parasité). Malgré plusieurs études , les sensibilités atteintes
sont jugées encore insuffisantes pour des raisons qui ne sont pas complètement
établies. Parmi les principales hypothèses, est évoquée la difficulté posée par
la microscopie à produire des images de qualité parfaitement contrôlée sur un
champ de vision complet avec une information suffisament discriminante.
Dans ce contexte, les images de phase sont donc intéressantes car elles peuvent
révéler de fines variations dans l’épaisseur optique de l’échantillon mesuré, une
information supplémentaire à celle fournie par les images d’intensité qui codent
l’information d’absorption. Ce couplage pourrait faciliter la distinction entre un
globule rouge sain et un globule rouge parasité.
Une étude de performance en termes de sensibilité et de spécificité est réalisée.
Les performances obtenues avec le couple intensité et phase sont comparées à
celles reposant sur les seules images d’intensité. Comme mentionné dans la par-
tie introductive, tout au long de cette thèse, nous nous concentrons sur la tech-
nique la FPM comme méthode d’imagerie. Elle sera employé pour l’acquisition
des images d’intensité et de phase car elle est facile à mettre en œuvre et très
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tolérante aux vibrations.
Le protocole expérimental repose d’abord sur une acquisition et une reconstruc-
tion d’une base d’image spécifique à la tâche. Des frottis sanguins minces de 9
patients infectés par la malaria sont scannés avec un microscope FPM. Chaque
champ de vision (FOV) est acquis avec 13 images brutes, où chaque image est
obtenue en éclairant l’objet avec une LED avec un angle d’illumination spéci-
fique. Les images bimodales (intensité et phase) sont reconstruites à l’aide de
l’algorithme e-PIE. Les champs de vue reconstruits sont ensuite découpés en
plus petites images contenant environ 200 à 300 globules rouges en moyenne.
Un expert étiquette chaque image en indiquant la position de chaque globule
rouge à l’aide d’une boite et en fournissant un label indiquant la présence ou
l’absence de parasite.
Pour la tâche de détection, une architecture Faster-RCNN est employée. Plus
précisément deux modèles Faster R-CNN sont développés et entraînés pour dé-
tecter et classer les globules rouges, il diffèrent dans le type d’entrée exploitée
:

• Un modèle utilisant uniquement les images d’intensité (I-RV).

• Un modèle utilisant les images d’intensité et de phase (I/ϕ-RV).

Les hyper-paramètres des modèles sont optimisés pour maximiser les perfor-
mances de détection. Les modèles sont entraînés et évalués en utilisant une
validation croisée à cinq plis. Les performances des modèles sont évalués en
termes de taux de vrais positifs (TPR) et de taux de vrais négatifs (TNR).
Les résultats montrent que le modèle I/ϕ-RV, qui utilise les images d’intensité
et de phase simultanement, améliore significativement la détection des globules
rouges parasités par rapport au modèle I-RV utilisant uniquement les images
d’intensité. Le modèle I/ϕ-RV affiche un taux de détection des parasites de
95.22% contre 93.33% pour le modèle I-RV. Les résultats illustrent donc la con-
tribution de l’information de phase à l’amélioration de la qualité du diagnostic
des événements rares. Dans cette étude de cas, nous observons que l’image
de phase apporte une information complémentaire à l’intensité, même dans le
cas d’objets non transparents, où la phase est habituellement considérée comme
ayant un effet mineur. Ce premier chapitre montre l’impact positif des images
bimodales intensité-phase et le valide dans une étude de cas relativement sim-
ple mais non résolue sur le diagnostic du paludisme. Un cas d’étude plus com-
plexe sera étudié dans le chapitre suivant dans le but de chercher d’une généric-
ité.
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Classification des globules blancs

Dans le chapitre précédent, une preuve de concept a montré la contribution de
l’utilisation conjointe de la phase et de l’intensité obtenues en FPM pour les
échantillons colorés en étudiant le problème simple de la détection des para-
sites du paludisme dans les globules rouges. Ce chapitre étend ces résultats
prometteurs à un problème plus complexe : la classification des globules blancs
à partir de frottis sanguins fins colorés. Ce problème est considéré comme plus
complexe que la détection des parasites car il implique 5 classes qui se ressem-
blent fortement, avec des déséquilibres biologiques naturels dans la représenta-
tion de ces classes dans le sang.
L’objectif principal est de classifier de manière automatique les types de leuco-
cytes (globules blancs) que l’on trouve généralement dans le sang des individus
sains, notamment les neutrophiles, les éosinophiles, les basophiles, les lympho-
cytes et les monocytes.
La première partie du travail vise à étendre la preuve de concept de l’efficacité
de l’information bimodale dans la classification des échantillons colorés à un
problème plus complexe.
La seconde partie propose une méthode innovante de génération d’images syn-
thétiques pour compléter les classes de globules blancs sous-représentées, visant
à améliorer les performances de classification. L’originalité de cette méthode ré-
side dans l’introduction préalable du modèle de formation d’images physiques
dans un modèle GAN qui permet d’augmenter la diversité des images générées
et de réduire le phénomène d’effondrement de mode. Ce modèle est couplé à
un protocole d’entraînement spécifique qui exploite des similarités entre cer-
taines classes pour proposer une approche fine-tuning. Ce protocole offre la
possibilité d’apprendre des GAN pour synthétiser des images de classes avec
seulement un nombre très limité d’échantillons.

Classification des globules blancs en FPM

L’objectif principal est de développer et d’évaluer un système robuste de classi-
fication automatique des globules blancs chez les patients ne présentant pas de
troubles hématologiques.
La classification porte sur cinq types de globules blancs : les neutrophiles, les
lymphocytes, les monocytes, les éosinophiles et les basophiles.
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L’étude vise également à surmonter les limites des systèmes automatiques actuels,
qui nécessitent souvent une vérification manuelle par des spécialistes.

Protocole expérimental

Le protocole expérimental employé comprends plusieurs étapes :

• Acquisition de données FPM : Un ensemble d’images de globules blancs
a été créé en utilisant la microscopie FPM. Des frottis sanguins de 129 pa-
tients en unité de soins intensifs ont été scannés à trois longueurs d’onde
pour produire 3 couples des images d’intensité et de phase. Une base de
27326 globules blancs a été recueillie et étiquetée par un spécialiste en hé-
matologie.

• Acquisition d’une base d’images en microscopie classique : les mêmes
frottis sanguins numérisés en FPM ont également été numérisés en util-
isant un microscope classique (Di-60 de Cellavision) afin de permettre une
comparaison avec les systèmes existants.

• Développement et entrainement des modèles: 4 modèles de réseaux neu-
ronaux convolutionnels (CNN) ont été entrainés pour la tâche de classifi-
cation, en utilisant une même architecture, inspirée du VGG-16 et simpli-
fiée afin de l’adapter à la complexité du problème.

1. I-CNN: Un modèle utilisant uniquement les images d’intensité.

2. ϕ-CNN : Un modèle utilisant uniquement les images de phase.

3. I-ϕ-CNN : Un modèle utilisant conjointement les images d’intensité
et de phase.

4. Di-60-CNN : Un modèle utilisant les images de microscopie clas-
sique.

Les modèles sont comparés à travers trois indicateurs de performance : la
précision totale, la précision moyenne par classe et le rappel moyen par
classe.

17



Résultats et conclusion

Les résultats des expériences ont montré que le modèle I-ϕ-CNN, qui utilise
conjointement les images d’intensité et de phase, surpasse les autres modèles
enrainés sur une modalité des images FPM (I-CNN et ϕ-CNN). Le modèle I-ϕ-
CNN est particulièrement efficace pour identifier les classes sous-représentées
telles que les éosinophiles et les basophiles. L’analyse d’un t-SNE a confirmé
que le modèle I-ϕ-CNN permet une meilleure séparation des classes de glob-
ules blancs dans l’espace des caractéristiques, par rapport aux autres modèles.
La comparaison du modèle I-ϕ-CNN avec le modèle Di-60-CNN met en évi-
dence la supériorité notable du modèle I-ϕ-CNN par rapport au modèle Di-
60-CNN, en particulier pour les classes des basophiles, des éosinophiles et des
monocytes. Cette différence significative peut être attribuée à un problème de
déséquilibre des données entre les classes, ce qui affecte davantage le modèle
Di-60-CNN, entraînant des performances inférieures dans la reconnaissance et
la séparation de ces classes, contrairement au modèle I-ϕ-CNN.
Les résultats montrent que l’exploitation conjointe des informations d’intensité
et de phase améliore de manière significative les performances de la classifica-
tion des globules blancs. L’amélioration de la précision et de la fiabilité suggère
que le modèle I-ϕ-CNN a le potentiel de réduire la nécessité d’une vérification
manuelle par des spécialistes, faisant ainsi progresser les systèmes de classifica-
tion automatique.

Génération d’images bi-modales synthétiques en util-
isant les GAN

L’étude de classification précédente a démontré une amélioration des perfor-
mances en combinant les données d’intensité et de phase dans les réseaux neu-
ronaux pour classer les globules blancs. Bien que le modèle soit performant
dans la classification des classes les plus représentées, telles que les neutrophiles
et les lymphocytes, sa précision doit encore être améliorée pour les classes moins
représentées. En particulier, des performances insuffisantes peuvent être ob-
servées dans la classe des basophiles.
Pour améliorer les performances de cette classe, un protocole d’augmentation
du nombre d’échantillons en utilisant les modèles génératifs de type GAN est
employé. Compte tenu des difficultés d’implémentation et d’entraînement des
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GAN classiques (dans le cas d’images bi-modales), tel que l’effondrement de
mode (mode collapse) et l’instabilité, une approche innovante est explorée :
un GAN informé par la physique, dans lequel les équations de formation de
l’image (modèle direct de la FPM) sont insérées dans le formalisme neuronal.
Combiné à une procédure de fine-tuning, ce modèle peut synthétiser des exem-
ples supplémentaires qui enrichissent les classes sous-représentées.

Méthodologie et résultats

L’objectif principal de notre étude est de générer des images de basophiles à
la fois en intensité et en phase. Étant donné le nombre limité d’échantillons
disponibles pour cette classe spécifique, nous avons choisi de commencer par
entraîner notre GAN sur une classe similaire plus abondante : les neutrophiles.
Ce choix initial permet de former et d’optimiser un premier GAN avant de
réaliser un fine-tuning par la suite sur les quelques exemples spécifiques de
la classe des basophiles.
Initialement, cette approche du fine-tuning a été employée pour entrainer un
GAN classique. Ce GAN classique est composé de deux modèles : un généra-
teur et un discriminateur. Le générateur prend en entrée un bruit aléatoire et
produit simultanément deux canaux. Le premier canal est associé à l’intensité
de l’objet, tandis que le second correspond à l’image de phase. Le discrim-
inateur prend en entrée les deux canaux représentant l’intensité et la phase
générées par le générateur ou extraites de l’ensemble de données FPM. Ensuite,
à l’aide d’une architecture neuronale, le discriminateur extrait les caractéris-
tiques pertinentes des images d’entrée, qui sont ensuite utilisées pour classer
les exemples comme réels ou synthétiques. La tâche de classification est ensuite
utilisée pour calculer des fonctions de coût et effectuer la rétropropagation pour
le générateur et le discriminateur.
Dans ce contexte, le principal défi consiste à concevoir un discriminateur qui
interprète correctement les informations d’intensité et de phase des images.
Le discriminateur doit apprendre à extraire les caractéristiques pertinentes de
ces deux canaux afin d’encoder correctement les caractéristiques essentielles de
l’intensité et de la phase et d’effectuer une classification qui tient compte de ces
deux informations.
Il est important de noter que l’intensité et la phase sont deux types d’informations
provenant de domaines de représentation différents (absorption et chemin op-
tique). Malgré leur corrélation, elles ont des plages de valeurs et des distribu-
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tions différentes, même après normalisation. Cette divergence dans les espaces
de représentation peut rendre la tâche de génération d’images bimodales (in-
tensité et phase) particulièrement complexe.
Les résultats ont été jugés insuffisants car ils ne présentaient qu’une variabil-
ité limité. Malgré l’incorporation de la perte de Wasserstein et d’autres tech-
niques de régularisation, les résultats obtenus restaient peu divers. Les mod-
èles entrainés rencontraient un problème d’effondrement de mode (mode col-
lapse), où le générateur produisait des images trop similaires et peu diversi-
fiées, ne capturant pas la variabilité attendue dans les données réelles. De plus,
ce type d’approche n’apporte aucune amélioration de performance pour les
classes sous-représentées. Ce constat est en accord avec avec la littérature, qui
indique une difficulté quant à l’apprentissage des données bi-modales à travers
des modèles GANs.
Pour surmonter ce problème, une approche innovante est explorée : le GAN in-
formé par la physique. Le générateur produit des canaux d’intensité et de phase
similairement au GAN classique. Mais, le discriminateur ne traite pas directe-
ment la sortie du générateur. Dans notre cas, il est précédé d’un modèle direct
de la FPM qui génère une pile d’images correspondante à ce que le microscope
FPM capturera de l’objet observé en l’éclairant par les différentes LEDs. Le dis-
criminateur prend cette pile d’images en entrée et les classe comme réelles ou
synthétiques en utilisant l’architecture CNN.
Tout d’abord, en intégrant des connaissances physiques sur la relation entre
l’intensité et la phase de l’image, le modèle est mieux équipé pour régulariser la
génération d’images en assurant la cohérence entre ces deux aspects. En outre,
le discriminateur du modèle informé par la physique est conçu pour prendre
en compte plusieurs représentations des images, ce qui permet une évaluation
plus précise de leur réalisme et de leur cohérence avec les images réelles. Cette
approche facilite l’apprentissage de caractéristiques de données plus subtiles et
plus complexes, améliorant ainsi la différenciation entre les images réelles et
synthétiques.
L’approche informée par la physique a montré des résultats supérieurs dans la
génération d’images bimodales . Les images produites étaient plus diversifiées
et réalistes. Les scores FID pour le GAN informé par la physique étaient en
moyenne 25% plus bas que ceux du GAN classique, ce qui indique une réduc-
tion significative de la différence entre les distributions des images générées et
des images réelles.
De plus, les résultats montrent que l’augmentation des données sur les ba-
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sophiles à l’aide d’un GAN a un impact significatif sur la précision de la classifi-
cation. Le modèle avec augmentation grâce aux images issues du GAN montre
une précision significativement plus élevée pour les basophiles par rapport au
modèle sans augmentation. Plus précisément, le modèle sans augmentation at-
teint une précision de 94,00% avec un écart-type de 0,024, tandis que le modèle
avec augmentation atteint une précision remarquablement améliorée de 99,37%
avec un écart-type de 0,002. Cette augmentation substantielle de la précision,
d’environ 5%, indique que l’ajout d’images synthétiques a considérablement
amélioré la capacité du modèle à classer correctement les basophiles.
L’approche GAN informé par la physique se distingue par sa capacité à améliorer
la variabilité du GAN tout en limitant le phénomène d’effondrement de mode.
Cette approche innovante génère des images qui complètent les classes sous-
représentées, telles que les basophiles, dans cette étude, améliorant ainsi de
manière significative les performances de classification. Cette combinaison met
en évidence l’importance des GANs informées par la physique et de l’approche
de fine-tuning pour limiter les défis de la classification des cellules sanguines.

Optimisation du système pour une application opéra-
tionnelle

Dans les chapitres précédents, la contribution de la microscopie FPM pour la
classification des cellules sanguines a été explorée, démontrant son potentiel
pour deux applications distinctes. En exploitant la bimodalité, la microscopie
FPM a considérablement amélioré les performances du modèle, mettant en év-
idence une synergie entre l’intensité et la phase. Toutefois, pour passer à un
système opérationnel, une optimisation globale du système est nécessaire.
La dernière partie du travail propose donc des études visant à optimiser le sys-
tème selon deux axes principaux. Tout d’abord, l’accent est mis sur l’optimisation
de l’exploitation des informations bimodales dans les réseaux de neurones. Bien
que l’information bimodale ait révélé un gain de performance significatif, il
reste à savoir comment exploiter pleinement son potentiel dans les modèles
de traitement d’images. Deuxièmement, l’optimisation de la configuration op-
tique du microscope, en particulier le choix de l’objectif, est abordé. L’objectif
est de trouver le meilleur compromis entre la taille du champ de vision, la réso-
lution et la performance de la classification. Cette approche combine des don-
nées expérimentales et un modèle de formation d’images optiques pour prédire
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l’observation des échantillons et étudie les performances du modèle sur ces ob-
servations.
Cette approche d’optimisation du système par modélisation à partir de don-
nées expérimentales est illustrée par une application spécifique : la détection
de la malaria. Cependant, les principes et les méthodes présentés s’appliquent
à toute application de microscopie nécessitant une amélioration du champ de
vision et des performances de détection.

Réseau de neurones à valeurs complexes

Le FPM permet d’accéder à des données bimodales en reconstruisant à la fois
l’intensité et les informations de phase. L’approche la plus classique des réseaux
neuronaux considère ces deux images comme des canaux d’information in-
dépendants. En effet, elles représentent deux paramètres physiques distincts
résultant de l’interaction lumière-matière. Typiquement, une image code les
paramètres d’absorption (intensité) tandis que l’autre représente le chemin op-
tique (phase). Dans ce contexte, il est courant d’appliquer des convolutions
classiques à valeurs réelles pour extraire indépendamment les informations per-
tinentes de chaque image et les fusionner ensuite dans les différentes couches
du réseau.
Toutefois, les images bimodales acquises peuvent également être considérées
comme les composantes d’une matrice à valeurs complexes appelée matrice de
transfert. Cette matrice est étroitement liée au champ électromagnétique com-
plexe de l’échantillon observé. Dans cette optique, l’utilisation de convolutions
à valeurs complexes devient une second option intéressante. Inspirée par le
filtrage complexe en physique, qui s’est avéré révéler des détails (par exem-
ple, dans l’imagerie en champ sombre), l’intégration de convolutions à valeurs
complexes dans les réseaux neuronaux permet d’extraire simultanément des in-
formations des deux modalités grâce à leur représentation complexe.
L’étude du formalisme le plus adapté pour l’exploration conjointe des images
d’intensité et de phase dérivées de la reconstruction FPM implique une anal-
yse utilisant des représentations à valeurs réelles et complexes dans le cadre
du Faster-RCNN. Le Faster-RCNN à valeurs complexes est obtenu à partir de
l’architecture à valeurs réelles en remplaçant les convolutions de la branche
partagée par des convolutions à valeurs complexes, en remplaçant la fonction
d’activation par CReLU et utilisant un type de pooling adapté. L’objectif ap-
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plicatif est resté le même. Premièrement, localiser les globules rouges dans ces
images et deuxièmement, les classer dans des catégories distinctes, à savoir les
parasites ou les cellules saines. Deux modèles Faster-RCNN ont été mis en œu-
vre pour la détection des parasites Plasmodium Falciparum.

• Un Faster-RCNN classique à valeurs réelles utilisant l’intensité et la phase
(I/ϕ-RV)

• Un Faster-RCNN à convolution à valeurs complexes utilisant l’intensité et
la phase (I/ϕ-CV).

L’évaluation des modèles se fait en évaluant le taux de vrais négatifs (TNR) et le
taux de vrais positifs (TPR). Les résultats mettent en évidence plusieurs avan-
tages clés du modèle I/ϕ-convolutions à valeurs complexes par rapport au
modèle I/ϕ-RV. I-ϕ-convolutions à valeurs complexes détecte 350 cellules in-
fectées et 187 cellules saines de plus que I/ϕ-RV. ϕ-RV, ce qui démontre des ca-
pacités de classification supérieures, particulièrement utiles pour identifier les
cellules infectées peu nombreuses parmi les cellules saines. I/ϕ-convolutions
à valeurs complexes présente moins de cellules infectées mal classées, ce qui
indique une meilleure différenciation entre les cellules infectées et les cellules
saines. Les catégories saines et infectées présentent moins de cellules manquées
avec Iϕ-convolutions à valeurs complexes, ce qui suggère une meilleure sen-
sibilité de détection. Les deux modèles présentent un TNR robuste (>99%),
reflétant une détection précise des globules rouges sains. Le réseau neuronal
à valeurs complexes surpasse le réseau à valeurs réelles d’environ 2% en ter-
mes de TPR, ce qui démontre une sensibilité accrue dans la détection des cel-
lules infectées par le paludisme. Les intervalles de confiance plus étroits avec
les convolutions à valeurs complexes soulignent ses capacités de généralisa-
tion supérieures. L’étude démontre que l’intégration de réseaux neuronaux
à valeurs complexes améliore la détection des globules rouges infectés par le
paludisme à partir d’images bimodales FPM. Cette approche améliore la préci-
sion de la classification, la sensibilité et la vitesse de convergence, ce qui promet
des avancées dans le domaine de l’imagerie biomédicale et des outils de diag-
nostic.
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Optimisation du microscope ptychographique de Fourier
pour la classification du paludisme : choix de l’objectif

Cette partie se concentre sur l’optimisation de la configuration du microscope
en étudiant les performances du réseau neuronal pour différentes ouvertures
numériques. Cette approche vise à déterminer l’ouverture numérique minimale
viable pour l’application spécifique du diagnostic du paludisme. Notre étude
se limite à la classification binaire des globules rouges en cellules infectées et
saines.

Processus d’optimisation du choix de l’objectif

Différents réseaux neuronaux doivent être formés pour étudier les performances
en fonction de la résolution de l’image dans le cadre du FPM. Pour entraîner
ces classificateurs, il faut créer différents ensembles de données à diverses ré-
solutions. Habituellement, cela nécessite l’acquisition de données FPM pour
chaque objectif considéré et la reconstruction de leurs cartes intensité-phase.
Pour éviter ce processus coûteux, un protocole spécifique pour dériver les bases
de données nécessaires à partir d’une base de données initiale, reposant sur un
modèle de formation d’image physique, est proposé.
Le processus commence par l’acquisition d’un ensemble de données de glob-
ules rouges recueillies auprès de 9 patients infectés. Le champ de vision de la
zone de bonne diffusion a été capturé à l’aide du dispositif FPM décrit dans la
section 3.3.1, ce qui a permis de reconstruire des images d’intensité et de phase
pour l’ensemble du champ de vision avec une ouverture synthétique de 0.9 (NA
= 0.45). Ensuite, les globules rouges ont été sélectionnés au hasard et extraits
pour générer des images individuelles de taille 64 ×64. Cet ensemble de don-
nées comprend 12 000 cellules, réparties de manière égale entre 6 000 cellules
saines et 6 000 cellules infectées par le parasite. Cet ensemble de données est
ensuite combiné avec les modèles de formation et de reconstruction d’images
pour déduire les ensembles de données à plus faible résolution.
Pour chaque valeur de NA (NA entre 0.1 et 0.45), les images des 6000 globules
rouges sains et parasités sont dégradées en résolution en utilisant le modèle de
formation d’image impliqué dans l’algorithme de reconstruction FPM. Cela cor-
respond à un filtrage complexe de l’image dans l’espace de Fourier. La forme
du filtre consiste en un disque centré sur (0,0) avec un rayon r = 2πNA/λ. Un
ensemble de données contenant des images d’intensité et de phase à la résolu-
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tion correspondante est généré pour chaque NA.
Les ensembles de données produits selon le protocole décrit ci-dessus sont util-
isés pour former les deux modèles neuronaux (I-RV-CNN et I/ϕ-CV-CNN)
partageant la même architecture. Le premier modèle utilise exclusivement les
données d’intensité, tandis que le second traite les informations d’intensité et de
phase. Notamment, pour le second modèle, nous optons pour une architecture
à valeurs complexes. Les résultats montrent que la performance de classifica-
tion est systématiquement meilleure lorsque les images d’intensité et de phase
sont utilisées dans un CNN à valeurs complexes. Deuxièmement, l’évolution
des courbes est différente dans les deux cas. En particulier, les performances
pour le modèle I/ϕ-convolutions à valeurs complexes est relativement stable
sur une large gamme de NA (jusqu’à NA=0.2), et la pente de la tangente est
proche de zéro. Ce n’est pas le cas du réseau I-RV, qui présente une détério-
ration avec la diminution de NA ; la valeur de la pente est égale à 7.34 et 3.82
pour la sensibilité et la spécificité, respectivement. Enfin, lorsque NA passe en
dessous de 0.15, les performances chutent brutalement pour les deux modèles.
Pour le diagnostic automatique du paludisme, les résultats suggèrent qu’un
objectif avec une ouverture numérique aussi faible que 0,2 (accessible avec un
objectif à grossissement 4x) pourrait être une option praticable. Avec un tel ob-
jectif, le champ de vision associé est environ 600 fois plus grand que celui d’un
objectif 100x, qui est la norme pour l’examen visuel des frottis sanguins par les
experts. Pour NA = 0, 2, nous estimons la sensibilité et la spécificité à 98,1%
et 99,3% respectivement. Ces chiffres pourraient être encore améliorés avec un
ensemble de données d’apprentissage plus étendu.

Conclusion

Dans le cadre d’une recherche multi-disciplinaire, ce travail étudie le benécifice
d’une méthode de microscopie non conventionnelle, la FPM, dans deux applica-
tions médicales confrontées aux limites de la microscopie classique. La FPM est
une méthode d’imagerie de phase quantitative, stable et peu coûteuse, adaptée
à une utilisation clinique de routine. Elle permet d’obtenir à la fois des images
d’intensité et de phase en utilisant des modèles de reconstruction adéquats.
L’objectif principal de cette thèse était de montrer comment l’information en-
richie fournie par le cadre FPM peut aider à améliorer le diagnostic et le suivi
des pathologies hématologiques et parasitologiques. Pour deux cas d’utilisation
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spécifiques (détection de parasites pour le diagnostic de la malaria et analyse
des globules blancs), nous avons exploré différents aspects liés à la concep-
tion de systèmes de détection basés sur le FPM dans les frottis sanguins. Dans
la première partie, nous avons étudié l’intérêt de la phase pour l’analyse des
objets colorés. Certaines hypothèses théoriques ont été avancées et validées
sur le cas d’utilisation limité de la détection de parasites (classification en 2
classes). Les résultats démontrent que le couplage de l’intensité à la phase est
plus efficace que l’utilisation de l’intensité seule. Cette question est étudiée
sur une application plus complexe dans la seconde partie, à savoir la classifi-
cation automatique des globules blancs. Les résultats montrent que le modèle
combinant l’intensité et la phase est plus performant que ceux qui exploitent
une seule modalité en termes de précision et de rappel où une amélioration
allant jusqu’à 30% est observée, ce qui permet de mieux classer les différents
types de globules blancs et de mieux séparer les classes. En outre, les images
fournies par ces méthodes offrent de meilleures performances que celles des au-
tomates actuels, avec une amélioration des performances de 30% pour certaines
classes. Les travaux ont également abordé d’autres problèmes limitants dans
certaines applications biomédicales, comme le problème du déséquilibre des
classes, fréquemment rencontré dans les applications biomédicales. Après des
tentatives infructueuses de mise en œuvre d’un modèle GAN classique capable
de générer des images FPM bimodales de bonne qualité, nous avons proposé
une approche innovante, un GAN inspiré de la physique. En utilisant le modèle
de formation d’images FPM couplé à des modèles génératifs adversaires, cette
approche GAN informée par la physique a été capable de générer des images
proches de la réalité avec une grande diversité, ce qui a permis de répondre au
problème d’effondrement de mode. De plus, cette approche GAN informée par
la physique, couplée à une procédure de fine-tuning a pu générer des images
synthétiques pour une classe contenant initialement très peu de représentants.
Nos résultats ont montré que l’intégration de données synthétiques amélio-
rait significativement les performances de classification, en particulier pour les
classes minoritaires, sans dégrader les performances des classes non augmen-
tées. La dernière partie est consacrée à quelques tentatives d’optimisation du
cadre FPM précédent vers un outil de diagnostic efficace. Tout d’abord, nous
avons implémenté des couches de neurones convolutifs à valeurs complexes
dans un RCNN plus rapide afin de détecter les globules rouges parasites. Les
résultats montrent une amélioration des performances de détection des prob-
lèmes, portant la sensibilité à 97.15%. Il a également permis une convergence
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plus rapide et une meilleure généralisation avec des intervalles de confiance
complexes par rapport aux modèles à valeurs réelles. La deuxième partie a
été consacrée à l’optimisation du choix de l’objectif du microscope en mettant
l’accent sur l’équilibre entre la résolution et la vitesse d’acquisition des données,
c’est-à-dire la taille du champ de vision. Les résultats ont démontré que les im-
ages FPM permettent de résister à une faible résolution et à une augmentation
de la taille du champ de vision. Il est suggéré qu’une ouverture numérique
aussi faible que 0.2 peut être suffisante pour obtenir des performances élevées
tout en réduisant le temps d’acquisition.
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1.1 Motivation

Digital pathology rapidly expands within the medical field, leveraging scan-
ning technology to convert biological specimens from tissue to cell samples into
comprehensive digital datasets. The primary objective of digital pathology is
to facilitate enhanced analytical capabilities. With the exponential growth of
medical information, digital pathology emerges as a solution, enabling health-
care professionals to manage and interpret vast volumes of numerical data ef-
ficiently. This transition to digital platforms streamlines the diagnostic pro-
cess and unlocks the potential for advanced computational techniques, mainly
through deep neural networks. This analytical process extends beyond conven-
tional diagnostic approaches, paving the way for innovative techniques that
rely on cross-referencing information from disparate sources. By integrating di-
verse datasets and leveraging advanced algorithms, digital pathology enables
clinicians to adopt a novel perspective, facilitating more nuanced and compre-
hensive diagnoses.
Digital blood smears analysis is foreseen as an efficient tool to diagnose sev-
eral pathologies, ranging from cancers or infections to hematological disorders.
Several automated systems have been developed to this end. They use con-
ventional microscopy images and machine learning analysis to count and mor-
phologically characterize the different types of blood cells, such as white blood
cells, red blood cells, and platelets. Among those systems:

• Cellavision commercializes a complete hematology system that can clas-
sify many White Blood Cell classes. Despite significant progress over the
last ten years, biologists report difficulties due to limited performance. As
a result, frequent back and forth tomanuel microscopy is necessary.

• Easyscango is a commercial system for malaria diagnosis that combines
thick and thin blood smear analysis to guarantee high sensitivity. The
processing is, therefore, time-consuming and complex.

• Noul proposes a mobile system compatible with hematology and para-
sitology, acquiring large field-of-view images. However, its performance
is still too limited for its widespread diffusion to biologists.

We can see from the above descriptions that these digital pathology automata
suffer from some drawbacks that limit their appropriation by biologists:
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• In conventional microscopy, controlling image quality across the entire
field of view is difficult. Objects located at different depths within the
specimen may appear blurry, which can lead to misinterpretation of cel-
lular characteristics. This restriction makes distinguishing fine details and
subcellular structures difficult, complecating the identification of certain
blood elements.

• Due to a too ristricted measurement area, reliable diagnosis is fundamen-
tally compromised, especially when searching for rare events.

• The provided information is qualitative.

Unconventional microscopy represents a significant advance in the imaging
field that has the potential to answer some conventional microscopy limita-
tions. It refers to optical techniques and devices that diverge from traditional
geometrical and physical optics. This field involves the development of inno-
vative ways to manipulate and generate images. These methods may include
advanced image processing techniques and approaches that involve coherent
manipulation of light. It includes adaptive optics, computational imaging, and
holography. Among the most recent, we can cite Quantitative Phase imaging
(QPI) methods based on interferometric devices, which present the following
advantages:

• Improved resolution thanks to a synthetic numerical aperture mechanism
(up to a factor 2).

• Quantitative intensity and phase imaging: An interferometry setup pro-
vides additional information on biological samples’ optical properties.

• Aberration correction using numerical wavefront manipulation during
the calculation step.

• Extended depth of field thanks to wavefront manipulation post-acquisition
in the image formation model.

Although QPI has made significant advances, their implementation in uncon-
trolled environments is challenging due to their sensitivity to vibration.
A promising alternative for these QPI methods is Fourier ptychographic mi-
croscopy (FPM) [153, 133]. FPM is a computational imaging technique relying
on inverse problem-solving. FPM is simple to implement as it does not require
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an interferometric setup and offers the theoretical QPI advantages with addi-
tional specificities:

• Extended space bandwidth product: The synthetic numerical aperture
can be very high and goes to factors up to 6.

• Reduced cost: FPM relies on a classical microscope where a LED matrix
replaces the light source.

• Stability: The FPM is resistant to vibrations and can be used in various
environmental conditions.

Fourier ptychographic microscopy (FPM) has gained significant interest over
the last years (see Figure 1.1). FPM demonstrated its potential and relevance for
observing objects of interest at high resolution. The demonstrated results rely
on visual observation. However, phase imaging quality obtained through a re-
construction process has not yet been thoroughly investigated. That means that
its interest in a digital pathology framework is not guaranteed. Therefore, in-
depth experimental studies are needed. Such studies can also provide valuable
insights for designing automatic FPM systems.

Figure 1.1: The development of FPM has experienced remarkable growth in the
number of related publications since its introduction in 2013. (Images sourced
from the scientific journal article [147])
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1.2 Objective and contributions

The objective of this thesis is to explore the potential of FPM in blood smear
analysis. Our approach consists of numerous experiments for advanced sta-
tistical analysis. More precisely, these experiments will be conducted on two
specific tasks: detecting the parasite responsible for malaria and classifying dif-
ferent types of white blood cells. They were chosen based on the available bio-
logical specimens, and the results were analyzed and questioned by biologists’
teams specialized in parasitology and hematology. The work aims to identify
the possible contribution of the FPM, particularly the phase images for analyz-
ing stained samples using deep learning methods for building classifiers. For
this purpose, the thesis is structured around the following different axes :

• Evaluation of the impact of FPM for automatic classification in applica-
tions requiring increased sensitivity, such as malaria parasites detection
and white blood cell classification. Particular focus is placed on proper ex-
ploitation of enriched information, namely bimodal (intensity and phase)
images as compared to a classical intensity image.

• Choice and adaptation of Deep Learning models to the physics specifici-
ties of FPM framework.

• Investigate some design rules for an FPM-based digital pathology frame-
work. This concerns the optimization of the microscope configuration
(choice of objective lens) and the Deep Neural Networks (Information
coding and processing).

This thesis offers several contributions:

1. Developing a methodology based on deep neural networks for process-
ing intensity and phase images to obtain performance comparison met-
rics. These DNN models have been adapted to the bimodal nature of the
information by introducing complex convolutions for efficient feature ex-
traction from images.

2. Quantifying the contribution of the coupling between intensity and phase
images resulting from FPM to improve both the detection of red blood
cells infected by malaria parasites and the classification of white blood
cells, highlighting the importance of the exploitation of phase information
in the case of stained samples.
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3. Proposing a physics-informed GAN model (PI-GAN) to synthesize new
FPM bi-modal images, improving the diversity of generated images and
limiting the impact of the mode collapse problem encountered with clas-
sical GANs. This corresponds to an essential advance in the field thanks
to an efficient regularization obtained by introducing the image formation
model in the loss functions. This model is associated with an innovative
strategy for fine-tuning GANs. This combination demonstrated its ability
to complete minority classes even when only a few samples were available
for learning the GAN.

4. Optimizing the microscope configuration by studying the best trade-off
between the resolution and the size of the field of view, demonstrating
that introducing the phase in addition to the intensity images allows better
tolerance at a lower resolution.

1.3 Thesis outline

This manuscript is organized into 6 chapters describing the work carried out
for various contributions.
Following this introductive chapter, the chapter 2 presents the multidisciplinary
context of the thesis. It exposes the limits of classical microscopy and the contri-
bution of unconventional microscopy to overcome them, the concepts of neural
networks, and the two applications examined in this thesis.
Chapter 3 questions the interest of surplus information on a simple but yet un-
satisfactory solved question (parasite detection in red blood cells for malaria
detection). To this end, performance with intensity and phase are calculated
and compared with intensity alone. This chapter sets up a detection network
based on the Faster-RCNN architecture to compare these two models.
Chapter 4 is dedicated to a more complex application, namely white blood cell
classification from thin-stained blood smears, since it can have a significant bi-
ological impact. In the first part of the work, we confirm the results obtained
in chapter 3 and its general scope. A comparison with conventional imaging
methods was also carried out. Moreover, we also investigated the problem of
under-represented classes, often present in biology. To this end, we introduce
a physics-informed GAN to produce synthetic bimodal images, as the classical
GAN model gave unsatisfactory results in producing this bi-modal informa-
tion.
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Chapter 5 aims to optimize the FPM approaches regarding information pro-
cessing and microscope configuration. It has been applied to malaria detection
use-case but could be easily extended to other cases. In this chapter, we explore
an implementation via complex-valued CNN in the Faster-RCNN, which seems
well adapted to the bimodal specificity of the data. Next, the chapter looks at
optimizing the choice of the microscope objective lens using a method that com-
bines experimental data and imaging models to obtain varied databases at dif-
ferent resolutions. Performance shows increased stability when intensity and
phase are exploited together.
Chapter 6 offers a retrospective of the research carried out in this thesis, high-
lighting the impact of FPM on advanced diagnostics while identifying relevant
neural architectures, taking into account the bimodal nature of the informa-
tion. It also explores avenues for future research that could expand on these
advances.

A pre-study of the work presented in Chapter 4 was conducted and os pre-
sented in Annexe A. In particular, the methodology for implementing GANs
for classes with a low number of representatives carried out on a classic image
database is presented.
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This chapter aims to provide a general overview of the multidisciplinary con-
text of the thesis. It begins by discussing the role of microscopy for medical
diagnosis, before explaining classical microscopy concepts and limitations and
those of unconventionnel microscopy. Subsequently, it outlines the fundamen-
tal principles of neural networks and briefly introduces the two applications
explored in this thesis.

2.1 Advanced imaging Modalities in medical diag-
nosis

The significance of precise and reliable diagnostic procedures cannot be over-
stated within medical diagnosis. A precise diagnosis forms the cornerstone
of patient care, guiding clinicians in tailoring treatment strategies and closely
monitoring disease progression [25]. This crucial process commences with a
thorough assessment of the patient’s clinical presentation, incorporating initial
hypotheses. However, the refinement and validation of these observations are
pivotal, accomplished through meticulous laboratory investigations and ad-
vanced diagnostic imaging techniques [18]. These additional steps not only
serve to corroborate suspected diagnoses but also provide invaluable insights
essential for an accurate and comprehensive medical evaluation [104].
Various diagnostic techniques exist in contemporary medicine, each offering
varying degrees of precision and yielding distinct observations. While some
methods emphasize cellular morphology, revealing structural abnormalities,
others explore intricate biochemical or molecular signatures, unraveling the un-
derlying physiological processes. Certain diagnostic modalities offer a panoramic
view of tissues, facilitating a holistic understanding, while others provide un-
precedented detail into subcellular structures, aiding in nuanced disease char-
acterization. These varying approaches collectively contribute to the holistic
understanding required for accurate medical diagnoses.
Among these advanced diagnostic tools, several stand out as macroscopic tools.
This includes Magnetic resonance imaging (MRI), an advanced medical tech-
nique for obtaining two or three-dimensional images. Based on the principles
of nuclear magnetic resonance (NMR), it exploits the quantum properties of
atomic nuclei to analyze the chemical composition of biological tissues. Since
its first studies in 1973 [69], MRI has gradually evolved to become a common
clinical technique in the 1980s. Today, it is widely used to study anatomical
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structures and soft tissue pathologies, providing complementary information
to other imaging modalities. Its ability to characterize and differentiate tissues
based on their physical and biochemical properties makes it a crucial tool for
medical diagnosis [106]. MRI is used in various fields of medicine; in neurol-
ogy, it allows neuroanatomical structures to be explored with great precision,
facilitating the diagnosis of brain tumors, strokes, and degenerative diseases
such as Alzheimer’s disease [105, 33, 102]. In oncology, MRI evaluates the ex-
tension of tumors, defines their vascularization and evaluates the response to
treatments, playing an essential role in the monitoring and treatment of cancers
[129], particularly in the areas of breast [92] and prostate oncology [94]. The
advantages of MRI lie in its high spatial resolution for soft tissues, allowing
the precise distinction of different anatomical structures without exposure to
ionizing radiation. However, this technology remains expensive, requiring spe-
cialized facilities and potentially longer examination times than other imaging
modalities. In addition, it has limitations in imaging bone tissue, restricting its
usefulness for the fine detection of fractures or bone damage.
Another medical imaging technique called Positron Emission Tomography (PET)
involves administering radionuclides to the patient, which emit positrons [141,
56]. This imaging technology is widely used in oncology to assess the presence
and progression of tumors [23]. It also makes it possible to visualize the func-
tioning of organs and tissues, thus helping diagnose and manage neurological
and cardiac diseases, among others [96, 17, 46, 128]. The advantages of PET
lie in its ability to provide precise functional and metabolic information, allow-
ing early detection of abnormalities before they are detectable by other imaging
methods. However, the high cost of the procedure, the need for radioactive
isotopes, and the short lifespan of radioisotopes sometimes limit its use, in ad-
dition to the exposure to ionizing radiation associated with this technique.
Finally, ultrasound, or ultrasonography, is also a medical imaging technique
that uses high-frequency sound waves to produce real-time images of the inside
of the body [95, 75]. Ultrasound is used in various medical fields, including ob-
stetrics to view the fetus during pregnancy, cardiology to examine the heart and
blood vessels, gastroenterology to study the abdominal organs, and radiology
for comprehensive diagnostics. It makes it possible to observe internal organs,
detect abnormalities, guide medical procedures such as biopsies and punctures,
and monitor the progression of diseases [112, 91, 10]. The advantages of ultra-
sound lie in its safety, non-invasiveness, and painlessness for the patient. It does
not involve ionizing radiation, making it safe, especially for pregnant women.
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However, its effectiveness may be limited in some cases due to the difficulty
in obtaining clear images through bone or gas, and its interpretation may vary
depending on the operator.
The advent of imaging techniques has undeniably transformed the field of med-
ical diagnostics, equipping healthcare professionals with a range of indispens-
able tools to evaluate physiological conditions. Innovations such as MRI, PET,
endoscopy, and ultrasound yield invaluable perspectives into the intricate land-
scapes of anatomical structures and pathological deviations. However, in some
cases, macroscopic imaging approaches may not be sufficient to provide a com-
plete diagnosis, for example, the observations of specific microscopic structures
need to be observed microscopically. In such cases, microscopic observation is
essential to establish the precise pathology.

2.2 Microscopy

Classical microscopy techniques have always played an essential role in med-
ical diagnosis by providing healthcare professionals with a detailed and com-
prehensive view of cellular and subcellular structures. These techniques have
proven highly effective in recognizing specific features associated with vari-
ous illnesses. In this section, we will delve into the history and principles of
the microscope, discuss its applications in medical diagnosis, and highlight the
limitations of this technique.

2.2.1 Brief history

The history of microscopy dates back to antiquity, but its significant devel-
opment occurred in the 17th century, marking the beginnings of modern mi-
croscopy. In 1590, brothers Hans and Zacharias Janssen designed the com-
pound microscope, a rudimentary device using lenses to increase the size of
objects observed. However, with the publication of "Micrographia" by Robert
Hooke in 1665, microscopy was brought to life [49]. Antonie van Leeuwenhoek,
a Dutch merchant, made a significant contribution in the 1670s by making his
own simple but remarkably powerful microscopes. Constant improvements in
the objectives and lenses of optical microscopes have marked successive ad-
vances. The 19th century saw significant developments, with the formulation
of the theory of image formation in microscopy in 1873 by Ernst Abbe [2]. The
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real revolution occurred in the 20th century with the invention of the electron
microscope by Ernst Ruska in the 1930s [61]. This device allowed exploration
on a smaller scale than that is accessible by optical microscopy, thus opening
new perspectives in cell biology and materials science. Since then, microscopy
has expanded rapidly [11, 89, 154].

2.2.2 Basic Concepts of Microscopy

The device

The microscope device shown in Figure 2.1 can be divided into two fundamen-
tal components that serve distinct purposes.
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Figure 2.1: Basic microscope scheme. 1-Eyepiece tube; 2-Objectives support; 3-
Objective; 4-Stage; 5-Condenser; 6-Adjustment knob; 7-Light source; 8-Base.

The first part, the optical component, is primarily responsible for enabling sam-
ple visualization. it includes an illumination source necessary to illuminate the
sample. Köhler illumination [63] is the current standard for research and diag-
nostic microscopes, providing even illumination and optimal resolution in con-
ventional microscopes. Following the illumination source, a condenser focuses
the light onto the sample. The sample is then placed between the condenser
and the objective, which is the most crucial component of the microscope. An
objective is a converging lens system with a short focal length that projects a
magnified, inverted image of the sample onto the lower focal plane of the eye-
piece for further magnification and observation. The objective’s characteristics
are generally imprinted on the objective itself. The second part, the mechanical
component, provides stability and comfort while using the microscope. It in-
cludes a base for stability, an objective holder, an eyepiece holder tube, a stage
that moves in two dimensions, and an adjustment knob for fast and precise
focusing.
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Microscopy principle

When the light sources illuminate the sample, the light interacts with the com-
ponents of the sample. Some elements absorb light, while others reflect or trans-
mit it. The light modified by these interactions then enters the microscope ob-
jective. The objective lens is the first to capture the light coming from the sam-
ple. This lens is designed to magnify the sample image and focus the modified
light to form a sharp, magnified image on the microscope’s focal plane. This
enlarged image, formed by the objective, is then observed by the eye through
the microscope’s eyepieces.

Classical microscopy resolution

The most critical aspect to consider when using a microscope is the resolution.
Distinguishing and visualizing the smallest details in the observed samples re-
lies heavily on it. However, light diffraction, caused by the wave nature of
light, inherently limits this capability. Instead of a precise point representation,
the image of a point viewed through an optical microscope appears as a light
spot, known as an Airy spot or Point Spread Function (PSF). This light diffusion
causes neighboring points’ images to overlap, making it difficult to differentiate
between them and ultimately decreasing the microscope’s resolution capacity.
There are many definitions of resolution in microscopy depending on the mi-
croscopic setup [2, 110]. The most used definition is based on Abbe’s theory,
which proposes a resolution limit equation, expressed as the smallest distance
below which two adjacent points can no longer be discerned. This formula is
determined by the illumination wavelength λ, the refractive index at the lens
exit n, and the half angle of the maximum light cone accessible α. The formula
for calculating the resolution is in the form:

dAbbe =
λ

2 · n · sin α
=

λ

2 ·NA
(2.1)

Where λ is the wavelength used, n is the refractive index, and α is the aperture
angle. The numerical aperture of the lens (NA) represents the product of the
refractive index and the sine of the aperture angle, playing a crucial role in de-
termining the resolution. Two main approaches can be considered to improve
the resolution: increasing the refractive index and decreasing the wavelength.
Using immersion lenses, where the front of the lens is immersed in a liquid with
a high refractive index, can increase this index or the increase of the objective
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numerical aperture.
Rayleigh’s formulation suggests that resolution is proportional to half the wave-
length of light used, multiplied by a factor that depends on the numerical aper-
ture of the objective.

dRayleigh =
1.22 · λ

NAobj + NAcond
(2.2)

In this formulation, the condenser numerical aperture NAcond also impacts res-
olution by controlling the amount of incident light.

Imaging requirement

The microscope is commonly used to capture images of samples being studied.
When integrating a camera into the microscope, it is important to ensure that the
images captured accurately reflect what is observed under the microscope. The
Shannon-Nyquist theorem is a principle that states that in order to reconstruct
a signal from samples accurately, the sampling frequency must be at least twice
as high as the maximum frequency present in the original signal. In the case of
capturing images via a camera connected to a microscope, the Shannon-Nyquist
theorem dictates that the image sampling rate must be high enough to capture
the fine details of the observed sample effectively. Important information could
be lost if the sampling rate is too low, even if the other microscope components
can observe it.

Sample preparation

Sample preparation is also critical for precise and in-depth observations in mi-
croscopy. Appropriate techniques preserve cellular and tissue structures and
provide essential morphological and functional details. Specific probes or fluo-
rescent dyes can selectively label biological constituents, allowing targeted vi-
sualization of particular structures or processes within the samples.
After the specimen collection, specimens may undergo different preparation
pathways depending on the desired microscopic examination technique. The
first common step is fixation. The fixation stage aims to stop cellular and bio-
chemical processes, thereby preventing cell degradation and deterioration. It
thus makes it possible to maintain the morphology of the cells, thus preserving
their characteristics and spatial organization.
For blood smears, the fixation stage involves spreading blood on a glass slide,
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which is then fixed to stabilize the cells and prevent their degradation. The most
common fixation is carried out with methanolic or ethanolic alcohol, which al-
lows the precipitation of cellular proteins. For other samples, such as biological
tissues, commonly used solutions for fixation include formaldehyde and glu-
taraldehyde.
Secondly, it is essential to ensure that the observed parts are distinguishable.
This often requires a marking process, which can be accomplished using var-
ious methods. Among these, we find particular staining techniques. Staining
involves the Application of specific dyes to biological samples to improve the
visibility and differentiation of cellular structures. It relies on specific chemical
reactions between dyes and cellular components. Some dyes selectively bind
to proteins, lipids, or nucleic acids, thus making it possible to highlight dif-
ferent cellular structures. Different dyes are used in microscopy to highlight
specific structures. Common examples include the dye H&E (Hematoxylin and
Eosin) [134, 22], known to stain cell nuclei blue and cytoplasm pink. Giemsa
is used for staining chromosomes and detecting blood parasites, while MGG
(May-Grunwald Giemsa) [42] is used to stain blood cells. Microscope exami-
nation may also rely on fluorescence, which is based on the ability of certain
materials, called fluorochromes, to absorb light at a specific wavelength and re-
emit light at a different wavelength [5]. Fluorescence is based on the excitation
of a fluorochrome with a specific light, followed by light emission at a higher
wavelength. Excitation occurs at a specific wavelength, and emission occurs at
a longer wavelength. This technique provides excellent sensitivity and speci-
ficity for visualizing specific structures in cells or tissues. Fluorescent labeling
involves using specific antibodies or probes labeled with fluorochromes to tar-
get specific proteins or cellular structures. Samples are incubated with these
labeling agents to allow the fluorochromes to bind to the targets of interest.
Fluorochromes are selected according to their affinity for the structures to be
visualized and their emission properties. Specific antibodies, when used, selec-
tively bind to target antigens, allowing fluorochromes to label these structures
specifically. Overall, preparing samples for microscopy is a multi-step and in-
tricate task involving several meticulous steps that must be undertaken with
precision.
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2.2.3 Microscopy applications in biomedical fields

The microscope has played a vital role in the progression of biology and medicine.
As a result, microscopes have now become an indispensable tool in modern
medicine [30]. In oncology, it is employed to identify various cancer types, in-
cluding lymphoma, basal cell carcinoma, and squamous cell carcinoma [79, 53].
Likewise, in hematology, microscopy plays a significant role in diagnosing con-
ditions like sickle cell anemia, leukemia, and thrombocytopenia [27, 99, 131]. It
is also helpful in identifying malaria by detecting Plasmodium parasites in the
blood [145]. In microbiology, microscopy is utilized to diagnose parasitic infec-
tions such as giardiasis, amoebiasis, and toxoplasmosis. Additionally, it is im-
portante for identifying the bacteria responsible for infections like tuberculosis,
syphilis, and gonorrhea [58, 37]. In dermatopathology, microscopy examines
skin cells and structures to diagnose a range of skin conditions [93].

2.2.4 Classical microscopy limits

Although microscopy has found numerous applications across various domains
over the years, its progress has been hindered by several limitations that have
restricted advancements in this technique. The diffraction limit constraint is
one of the most significant limitations, as it sets a maximum resolution for the
microscope and affects its ability to observe fine details. When the features are
smaller than this limit, they cannot be resolved, reducing the precision of micro-
scopic observations. Additionally, optimizing the resolution, field of view, and
depth of field, known as the space bandwidth product, presents inherent chal-
lenges. Improving one of these parameters usually comes at the expense of the
others, which can restrict the microscope’s ability to provide a wide field of view
and fine detail simultaneously. Another challenge lies in the qualitative nature
of the information obtained by microscopes. Although they allow for precise
visualizations, classical microscopes do not always provide precise quantitative
data, limiting their applicability in studies that require precise measurements.
Sample preparation processes, such as fixation, staining, and marking, can be
time-consuming and complicated. These processes require technical expertise
and time, which can be a constraint for studies that require quick or large sam-
ple volumes. Finally, only nontransparent objects can be studied.
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2.3 Unconventional optics

The limitations of conventional microscopy have spurred the creation of spe-
cialized techniques designed to overcome these challenges. Consequently, un-
conventional optics has emerged as a field encompassing novel methods and
approaches in microscopy. Unconventional optics are optical techniques and
devices that diverge from traditional geometrical and physical optics methods.
This field involves the development of innovative ways to manipulate, gen-
erate, and detect light by utilizing non-trivial optical concepts. These meth-
ods may include optimized structures, advanced image processing techniques,
unusual optical properties of materials, and approaches that involve coherent
manipulation of light. Unconventional optics are powerful alternatives to con-
ventional methods, focusing on overcoming resolution limitations, Space Band-
width Product (SBP), and sample preparation. This section briefly overviews
some of these techniques, highlighting their potential by showcasing the re-
markable boundaries they have already surpassed. These approaches include
but are not limited to, holography, lensless microscopy, and structured illumi-
nation microscopy.

2.3.1 Holographic microscopy

Basic principles of holography

The origin of holography is rooted in the groundbreaking work of Dennis Ga-
bor in 1948. He discovered that the diffraction pattern of the electron beam
contained information regarding the amplitude and phase of the electron wave.
Gabor created an optical synthesis of the object’s field by recording the electron
wave’s diffraction. Consequently, image formation using visible light optics
was more advanced than electron optics. This revolutionary imaging principle
was appropriately named "holography" due to its ability to capture the com-
plete optical field. Over time, there have been significant advancements in the
field, such as the emergence of potent coherent light sources, commonly re-
ferred to as lasers, and the successful validation of Gabor’s holographic stor-
age and reconstruction principle. In the late 1960s, J.W. Goodman introduced
digital holography. This approach entails electronically capturing holograms,
which are then subjected to numerical processing to recreate the digital object.
Digital holography, or DH, generates holographic interference through optical
processes. Digital holographic microscopy stands out among other microscopy
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techniques as it does not capture the projected image of the object. Instead, it
records the light wavefront information that emanates from the object as a holo-
gram, which is used in a numerical reconstruction algorithm to calculate the
object image. Therefore, the computer algorithm replaces the image-forming
lens in traditional microscopy. The information is captured on a digital image
sensor or photodetector from which an image of the object is reconstructed. In
order to produce a hologram, a coherent light source, such as a laser, is needed
to create the necessary interference pattern. The laser light is split into an object
beam and a reference beam. The object beam is expanded to illuminate the sam-
ple, creating the object wavefront. Once the object wavefront is collected by a
lens or microscope objective, it is combined with the reference wavefront using
a beam splitter to create the hologram. Using a digitally recorded hologram, a
computer can use a numerical reconstruction algorithm to produce a viewable
image of the object wavefront.

Digital holography in biomedical applications

Several studies have used digital holography in the field of biomedical appli-
cations. It allows detailed observation of cells and molecular processes at the
subcellular level. It makes it possible to easily measure cellular properties that
were previously very difficult to study in living cells, such as the thickness, vol-
ume and refractive index of cells, thanks to the quantitative phase obtained by
reconstruction and without labeling [84, 108, 90]. In [107], fluctuations in the
membrane of red blood cells depending on their cellular state are highlighted
using a digital holographic microscopy approach thanks to its high resolution.
In, [8, 136] digital holographic microscopy was used to identify red blood cells
accurately (RBCs) infected by malaria. To go further, [137] proposes a flow cy-
tometry approach that relies on digital holographic microscopy to differenti-
ate leukocytes without the use of labels or reagents, thus offering automated
diagnosis of hematological disorders based on on morphological criteria. In
oncology, [83] have proposed a significant advance in digital holography by
improving the quality of images obtained via quantitative phase contrast mi-
croscopy. Their approach made it possible to achieve a lateral resolution limited
by diffraction at 0.5 µm. A notable feature of this method is its ability to sig-
nificantly reduce coherent noise, thereby providing precise phase holographic
images with a phase profile reaching an optical thickness of approximately 30
nm. These improvements enabled clear visualization and quantitative preci-
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sion of intracellular and intranuclear organelles of SKOV-3 ovarian cancer cells.
[3] explores phase-shift digital holographic microscopy to measure deformation
without invasiveness to explore and characterize the biomechanical properties
of cancer cells, particularly in the context of breast cancer, where differences
between invasive and non-invasive methods were examined. These studies
revealed significant variations in cellular deformation, suggesting a potential
link between these mechanical properties and the metastatic behavior of can-
cer cells. [29] harnessed the power of digital holographic microscopy combined
with quantitative phase imaging (QPI) to quantify the effects of three types of
organic nanoparticles on cellular cytotoxicity. This approach, free of labeling,
made it possible to monitor cell growth in real-time and to analyze, over 24
hours, the evolution of the dry mass of cells exposed to nanoparticles and to
a control agent. [82] uses advanced imaging techniques to examine cervical
smears. Researchers combined color and phase images to identify important
information by analyzing cervical cells. They found that using these two im-
ages together improved the ability to group cells accurately.

2.3.2 Lensless microscopy

Basic principles of lensless microscopy

Lensless microscopy is an innovative imaging technique that captures image
samples without conventional optical lenses, typically used in conventional mi-
croscopes. Unlike traditional microscopes, this technique is based on the prin-
ciples of light diffraction. It is based on the direct recording of diffraction pat-
terns produced by the sample. The operating process of lensless microscopy
is based on several fundamental principles. It generally requires a coherent
light source, such as a laser, to illuminate the sample. This light coherence cre-
ates complex diffraction patterns as the light interacts with the structure of the
sample. When coherent light passes through or interacts with the sample, it is
diffracted. A detector, often a digital camera, captures these diffraction patterns.
The recorded diffraction patterns undergo digital processing to reconstruct an
image of the sample. Image processing algorithms and diffraction-based recon-
struction techniques convert these patterns into an interpretable image.
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Lensless microscopy in biomedical applications

Lensless microscopy represents a significant advancement in the biomedical
field, offering versatile solutions for various cell and tissue imaging applica-
tions. Huang et al. [52] proposed a lensless holographic microscope based
on online holography. This approach offers a portable, affordable, and high-
precision alternative for biological imaging, overcoming the limitations of ex-
pensive and bulky traditional microscopes. Using an iterative phase recovery
algorithm, this technique improves the resolution of holographic images, in-
cluding automatic identification and precise counting of cells. Similarly, [151]
explored the integration of lensless microscopy with a microfluidic chip to mon-
itor and sort sperm. Their system targeted the identification of the most motile
sperm in samples with concentration or motility deficiencies, potentially im-
proving the success rates of assisted reproductive techniques, particularly for
cases of male infertility. [73] revealed a lightweight, portable, lensless holo-
graphic microscope capable of imaging samples in reflection and transmission
modes. This versatility, combined with a spatial resolution of up to 2 µm, makes
it ideal for resource-constrained environments, providing precise imaging solu-
tions in global health and water quality monitoring contexts. Additionally, [41]
have developed a lensless microscope enabling the imaging of entire human
tissues with a field of view approximately 100 times larger than conventional
high-resolution microscopes. This device provides sufficient spatial resolution
and contrast for clinical diagnosis, representing a valuable tool for pathology
laboratories in developed and developing countries. Finally, [26] presented
a lensless microscope based on online holography, providing high-resolution
label-free imaging with a wide field of view. This versatile microscope enables
real-time observations of cellular dynamics without fluorescent labels or exten-
sive sample preparation, paving the way for various biomedical applications
from individual cell analysis to tissue imaging.

2.3.3 Structured illumination microscopy

Basic principles of structured illumination microscopy

Structured illumination microscopy (SIM) represents a super-resolution microscopy
method that overcomes the resolution limitations of diffraction. By acquiring
multiple images of the same sample under various lighting patterns, SIM com-
putationally combines these images to obtain a single reconstruction with up
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to 2x improvement over diffraction-limited resolution. The key concept be-
hind SIM is based on the well-known moiré fringes. When two patterns are
superimposed in a multiplying manner, moiré fringes appear in their prod-
uct. A series of images acquired at various orientations of the lighting pattern
are mathematically deciphered to extract this information. Indeed, high spa-
tial frequencies, usually not visible, can be captured using a structured lighting
model. To achieve near-isotropic resolution expansion, the illumination pat-
tern must be rotated at least two other equally spaced angles, typically 60°, and
additional data must be acquired for these pattern orientations. All these com-
ponents, represented by circles in Fourier space, are assembled according to
their original positions to form a final reconstructed image with extended res-
olution. Structured illumination microscopy takes advantage of the concept of
reciprocal space, providing a more informative representation of physical real-
ity, especially in terms of spatial resolution. The maximum resolution expansion
limitation is 2x the conventional resolution limit due to the limitation imposed
by diffraction in generating the illumination pattern.

Structured illumination microscopy in biomedical applications

In turn, structured illumination microscopy has offered significant advances
over the limits of microscopy. [43] addressed the lateral resolution limit of
optical microscopes using structured illumination microscopy. Their method
overcame this limitation by illuminating the sample with spatially structured
excitation light, revealing high-resolution information normally inaccessible.
Using structured illumination patterns combined with image processing, they
outperformed conventional resolution by a factor of two, delivering resolution-
enhanced images on complex biological samples. This approach has opened
up possibilities for high-resolution imaging in various fields, biology, and other
disciplines requiring precise visualization of structures. [150] investigated the
application of SIM in hematology and pathology to visualize cellular structures
with improved spatial and axial resolution. Their study showed the ability
of SIM to obtain detailed three-dimensional morphological images of normal
and abnormal blood cells, opening new perspectives for research in hematol-
ogy and pathology. SIM revealed subtle morphological details, outperform-
ing conventional and confocal microscopy techniques for better visualization of
cells. [97] explored SIM microscopy as a diagnostic tool for nephrotic diseases.
Their study compared SIM to electron microscopy for visualizing podocytes,
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demonstrating that SIM can provide a similar resolution to electron microscopy
while enabling 3D visualization and providing greater speed and ease of use.
This method presents an effective and potentially less expensive alternative to
electron microscopy for diagnosing nephrotic diseases, showing detailed im-
ages and clearly distinguishing healthy from diseased tissues. [139] used SIM
microscopy to visualize ultrastructural details of placental tissue, overcoming
the limitations of conventional microscopy. Their method offered improved vi-
sualization of ultrastructural structures, with better resolution and increased
contrast compared to deconvolution microscopy.

2.3.4 Synthesis and comparison of techniques

Unconventional techniques have opened up new lanes to surmount the con-
straints of conventional microscopy. Holographic, lensless, and structured il-
lumination microscopy are notable examples of such techniques. By present-
ing superior visualization and analysis capabilities, they have brought about a
paradigm shift in the field of microscopy. A key advantage of these innova-
tive techniques is their capacity to surpass the inherent resolution limitations
of traditional microscopy. By surpassing the diffraction limit, these methodolo-
gies can achieve remarkably improved spatial resolutions, enabling the obser-
vation of tiny cellular and subcellular structures with unprecedented precision.
The second advantage is the capability of label-free imaging, which provides
a distinct advantage. These techniques maintain the natural state of biological
samples by eliminating the need for labels or dyes. This enables accurate obser-
vations of cellular architecture and dynamics without alteration while reducing
preparation time. Quantitative phase imaging is also a distinctive feature of
many unconventional microscopy techniques. It helps to measure the physical
properties of cells and tissues. This quantitative information can be collected
without staining or labeling, making it an invaluable tool for understanding cel-
lular characteristics and behavior. The presented techniques exhibit exceptional
flexibility in various sample types, surroundings, and imaging methods. Un-
conventional microscopy offers numerous advantages and is a game-changer.
It gives researchers and healthcare professionals a new perspective on biomed-
ical applications imaging, enabling them to explore the intricacies of life at the
cellular and molecular levels.
Despite their potential benefits, these diagnostic methods face significant lim-
itations restricting their everyday use. For instance, holography can be pro-
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hibitively expensive and can be sensitive to vibrations and environmental changes.
Structured Illumination also has challenges, such as the need for controlled
lighting conditions that may only sometimes be feasible in specific diagnostic
settings. Additionally, it can be disrupted by reflective surfaces and translucent
materials. Furthermore, lens-free imaging reconstruction remains a complex
process that requires significant processing times and may not offer the level of
spatial resolution necessary to visualize fine details or structures.
Recently, even more promising perspectives have emerged in the field of mi-
croscopy, addressing certain limitations of existing techniques and offering in-
creased stability and efficiency. One such advancement is Fourier ptychographic
microscopy, which integrates computational imaging with traditional microscopy
to overcome the constraints of conventional methods. FPM holds significant
promise due to its compatibility with clinical environments and its cost-effectiveness.
This unconventional imaging technique will be described in details in Chap-
ter 3.

2.4 Artificial Neural Networks

Artificial Neural Networks (ANNs) are computer systems that are inspired by
the functioning of the human brain. These systems are designed to learn from
data, detect complex patterns, and perform various tasks, from image recog-
nition to language translation to complex decision-making. Today, ANNs are
widely used in various fields, such as computer science, biology, finance, and
medicine.
In this section we will not provide a comprehensive view of this floorishing
domain. We concentrate on the fondamentals and the Convolutional Neural
Networks(CNN) which are the basis elements of all the neural networks mod-
els that have been used in this thesis.

2.4.1 Brief history

The history of neural networks dates back to Aristotle’s proposal of "associa-
tionism" in 300 B.C. Since then, researchers have been working to create a ma-
chine that can imitate human brains. In 1943, the McCulloch-Pitts (MCP) model
was introduced as one of the prototypes of artificial neural models. This model
laid the theoretical foundation for formal neural networks by explaining how
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biological neurons could be modeled using simple logical elements. However,
the MCP model could not be learned. In the 1950s and 1960s, a neurophysi-
ologist named Frank Rosenblatt created the perceptron. This was one of the
early models of artificial neural networks that could learn. The perceptron was
explicitly designed to classify various tasks by analyzing patterns and making
decisions based on the input provided. However, due to its linear structure, it
had limitations and needed to be improved for solving complex problems. The
field of neural networks experienced an "A.I. winter" in the 1970s and 1980s due
to limited progress, technical challenges, and computing power constraints. As
a result, funding and academic interest were significantly reduced. During the
1990s, significant advancements in learning algorithms (ability to process non-
linearity), increased availability of big data, and a boost in computing power
sparked renewed interest in neural networks. As a result, more complex archi-
tectures, like Deep Neural Networks (DNNs), have been developed, allowing
for more efficient problem-solving and processing of complicated data such as
images, temporal sequences, and textual information. However, the full power
of Neural Networks is essentially visible in the present period, when spectacu-
lar performances are obtained in many applicative fields.

2.4.2 Fundamental principle of artificial neural networks

The neuron

Artificial neural networks are designed to mimic the functioning of biological
neural networks, which are responsible for implicit associations in the brain.
These networks are composed of individual artificial neurons that follow the
principles of biological nerve cells. To understand how a biological nerve cell
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Figure 2.2: Matching biological and artificial neurons.
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works, it receives input signals from other neurons through synapses. It is made
up of dendrites which receive electrical signals. These signals are summed at
the level of the emergence cone, and if they reach or exceed a given thresh-
old, the neuron produces a nerve impulse. This impulse excites other neurons
by crossing the axon and the terminal branches. The frequency of emission
of nerve impulses by a neuron depends on the sum of excitations received. The
artificial neuron is a device with several inputs and an output. It receives a vari-
able number of inputs from upstream neurons. Each of these inputs is assigned
a weight, representing the strength of the connection. Each neuron produces a
single output, which results from thresholding the sum of the received inputs.
This output then branches to power a variable number of downstream neurons.
In comparison, as illustrated in Figure 2.2, the analogy between the biological
and artificial neurons is their ability to receive weighted inputs, sum them, and
produce an output if a threshold is reached. Artificial neurons use weights to
adjust each input’s impact, mimicking how biological synapses strengthen or
weaken connections between neurons.

Multilayers perceptron

Further, similarly to biological nervous tissue, an artificial neural network is
formed by an assembly of interconnected neurons. This network is generally
organized into different layers of neurons. The most common architecture cor-
responds to multilayer perceptrons (MLP) [118], in which the neurons are orga-
nized into different layers The architecture of such networks typically includes
three primary layers: input, hidden, and output. The input layer serves as
the starting point, providing input signals to the following layers for process-
ing. The hidden layers consist of sets of parallel neurons that work together
to process signals, with each layer connected to the subsequent layer through
weighted connections. Finally, the output layer at the network’s end generates
the final results or outputs based on the problem being addressed. This layered
structure enables hierarchical information processing as input signals journey
through the network. Specific weights are associated with connections between
neurons, regulating signal transmission. These weights determine the modifi-
cation and propagation of signals across the neural network, facilitating data
processing and output generation. In summary, the neural network is designed
to produce an output as a function of an input signal. Mathematically, the out-
put y of a Multilayer Perceptron (MLP) with a single hidden layer comprising
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m neurons can be represented mathematically as:

y(x) =
m

∑
i=1

wi · f (wi0 +
n

∑
j=1

wij · xj)

This equation illustrates the output generated by the MLP, where wi and wij
represent the network’s weights, xj denotes the input features, and f () repre-
sents the activation function applied in the hidden layer to introduce nonlinear-
ity. A structured architecture enables the MLP to approximate various complex
functions by assigning suitable weights and activation functions. This relation-
ship between the network’s structure and functional approximation abilities is
consistent with the principles of the universal approximation theorem. Indeed,
within a feedforward neural network, a single hidden layer with adequate neu-
rons can theoretically approximate any continuous function on a bounded and
closed input space.

The learning principle

The learning process in neural networks refers to the iterative procedure through
which a neural network adjusts the weights assigned to connections between
neurons to improve its ability to perform a specific task [71]. The neurons’
weights are generally initialized with a small random number following a Gaus-
sian distribution. Therefore, MLPs produce random outputs at the beginning.
The adjustment of the weights occurs primarily through a technique known as
error backpropagation. It is essentially the mechanism by which the network
learns to recognize patterns and perform tasks more accurately through expo-
sure to data and adjustment of its internal parameters. This process involves
presenting data to the network to produce an output called the forward passes.
A defined loss or loss (or cost) function that measures the error between the net-
work’s outputs and the expected or actual results is backpropagated and used to
adjust the weights (backward passe) and reduce this error gradually. The contri-
bution to the error is determined at each neuron based on the weights associated
with its connections. These contributions are used to update the weights incre-
mentally, typically leveraging optimization algorithms like stochastic gradient
descent (SGD) [19], Adam [60], or RMSprop[40]. The training phase of a neural
network relies first on an input dataset commonly referred to as the training
set, facilitating weight adjustments through backpropagation. The quality and
diversity of data utilized for neural network training play a pivotal role in its
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predictive accuracy. Consequently, the dataset’s quality, volume, and represen-
tativeness are pivotal determinants in ensuring the neural network’s efficacy
and reliability during learning. Following the learning phase, the model un-
dergoes a testing phase to evaluate its generalization capabilities on an inde-
pendent dataset, distinct from the training set, known as the test set. Neural
networks rely on an objective function, also known as cost or loss functions,
that vary according to the task. The Mean Squared Error (MSE) cost function is
commonly used for regression tasks where the output is a continuous number,
but the Mean Absolute Error (MAE) can also be used. Cross-entropy or binary
cross-entropy can be used for classification tasks. Other loss functions for more
specific tasks, such as text generation and generative tasks, are also used. The
capabilities of traditional neural networks, such as Multilayer Perceptrons, have
expanded considerably in data modeling. However, processing images with
such architectures is limited. The abundance of visual data in various fields
necessitates more complex models that can comprehend and analyze this in-
formation. Images contain a wealth of spatial information and pixel-by-pixel
relationships that MLPs cannot efficiently capture since they process each pixel
separately, obscuring pixel relationships’ spatial structure and significance. Ob-
ject recognition, pattern detection, and understanding of visual contexts require
a more comprehensive understanding of local patterns, feature hierarchy, and
translation invariance, which traditional architectures have difficulty capturing
due to their uniform structure. As a result, their ability to recognize objects in
complex visual contexts is limited.

2.4.3 Convolution neural networks

The shortcomings of the MLPs previously described give rise to new types of
neural networks. These models, called convolutional neural networks, are in-
spired by how the human visual cortex processes visual information. The hu-
man brain visually breaks down complex scenes into simple features, processed
hierarchically across different specialized regions of the visual cortex. Early re-
gions detect features such as edges, textures, and shapes, while more advanced
regions aggregate these features to form increasingly complex visual represen-
tations. The transposition of this biological intuition into CNNs has revolution-
ized image processing [70]. CNNs, designed with a specialized layer structure
inspired by the visual cortex, have ushered in a new era in computer vision. The
first layers of CNNs act as filters, identifying basic patterns like lines, shapes
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and textures, while the upper layers integrate these patterns to recognize com-
plex visual entities. This specialized layered architecture allows CNNs to ef-
ficiently capture the spatial structure of images, significantly increasing their
capabilities to perform sophisticated tasks such as classifying objects in com-
plex scenes. CNNs are built on specific principles that allow efficient analysis
of images [67], exploiting the spatial structure and local relationships between
pixels. These networks are designed around specialized layers to extract essen-
tial visual features progressively.

Convolutional Layer

The convolutional layer in a CNN is based on a spatial filter, where a receptive
field moves across an input image. This process involves a localized filter sys-
tematically traversing the input data, performing element-wise multiplication
and summation within overlapping regions. Each spatial location undergoes
this operation, generating a single value representing a distinctive feature of
that segment. The principle is illustrated in Figure 2.3. In the case of multi-
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Figure 2.3: Convolution principle.

channel input, specific filters are applied separately to each channel, and the
results are aggregated using a summation.

Pooling Layers

Pooling layers typically follow convolutional layers and are responsible for re-
ducing the spatial dimensionality of the activation maps generated by convolu-
tion. Max pooling, a commonly used technique, selects the maximum value in
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specific regions, reducing spatial resolution while retaining essential features.
This dimensionality reduction enhances computational efficiency and network
robustness.

CNN learning Principle:

A CNN processes input images through modules. Successive convolutional
blocks, comprised of multiple convolutions and pooling operations, progres-
sively extract information, ultimately generating a low-dimensional yet detailed
representation called the final feature map. These convolution layers initially
employ filters with learnable weights, functioning as localized windows over
the input image to capture fundamental features like edges, gradients, and ba-
sic textures. As the network progresses through deeper layers, these learned
filters evolve, becoming more sophisticated and abstract. They start detecting
higher-level features, including intricate shapes, complex textures, and even
specific components of objects. These extracted features evolve into highly spe-
cialized and task-oriented representations moving deeper into the network. The
deeper layers decode increasingly complex concepts, such as object parts or spe-
cific patterns for the network’s ultimate task. Subsequent layers, designed for
specific tasks such as classification or segmentation, receive this distilled infor-
mation as input. The effectiveness of this hierarchical feature extraction process
heavily relies on the convolution block weights, which the model learns during
training. The quality of the extracted features profoundly impacts the model’s
overall performance, making the evolution from basic edges to intricate, task-
relevant features a critical aspect of CNNs. Note that the filter coefficients are
learned by the backpropagation algorithm as in MLP and are therefore adapted
to the task at hand in opposition to classical image processing filters the coeffi-
cients of which are fixed.

2.4.4 CNN for microscopic diagnosis

Convolutional neural networks (CNNs) have been largely explored in medi-
cal images applications [116, 31, 78]. We will limit ourselves in this section
to details some of its outcomes for nonconventional optics as it corresponds
to the imaging context of this thesis. Convolutional neural networks (CNNs)
have been explored for unconventional optics techniques and applications, aim-
ing to overcome some limitations. [114] demonstrate the capability of neural
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networks in performing phase recovery and holographic image reconstruction
from intensity-only measurements, enhancing imaging efficiency and computa-
tional speed.[55] propose a sensitive system for anthrax detection in biodefense
using holographic microscopy and deep learning algorithm exploring phase
images. The system achieves high sensitivity and specificity, offering rapid,
label-free screening of pathogens. [123] propose using Deep Convolutional
Neural Networks (DCNNs) to simplify optical systems for phase imaging. This
framework aims to replace traditional optical lenses with computational algo-
rithms, potentially leading to more cost-effective and more straightforward sys-
tems for phase imaging in biological specimens. [54] employ deep CNNs to
predict the focal position in whole slide imaging, addressing autofocusing chal-
lenges without axial scanning, enhancing imaging quality, and system through-
put in digital pathology and microscopy. [148] combine Digital Holographic Mi-
croscopy with a classifier based on handcrafted features extracted from phase
to improve RBC segmentation accuracy and separation ability, particularly in
complex cellular arrangements, offering potential applications in medical di-
agnostics and cell biology research. [77] employ Mask R-CNN to differentiate
between thalassemic and healthy RBCs in quantitative phase images, achiev-
ing high accuracy in detection and segmentation. This model provides detailed
single-cell characterization, aiding clinical decision-making in detecting abnor-
mal RBCs. [98] delves into lensless imaging systems. These systems, employing
microfluidic devices, diffusers, and CMOS sensors, demonstrate the potential of
CNNs in cell identification, especially in distinguishing between cow and horse
red blood cells. The article showcases the robustness and superiority of CNN-
based lensless cell identification systems. [122] explore supervised machine
learning for automated classification of lipid droplets in label-free, quantitative-
phase images, showcasing the superiority of Convolutional Neural Networks
(CNNs) in accurately classifying these structures. [143] introduce an automated
RBC counting system employing Fourier Ptychographic Microscopy and a Con-
volutional Neural Network and achieving remarkably high accuracy in estimat-
ing the number of RBCs. [142] discusses the role of Quantitative Phase Imaging
(QPI) and Fourier Ptychographic Microscopy (FPM) in label-free cell imaging.
It emphasizes the potential of integrating deep learning approaches with FPM
to enhance image correction, analysis throughput, and overall cell analysis in
high-throughput setups. [130] discuss the limitations of 2D CNNs in processing
volumetric information encoded within holograms. They propose 3D Convolu-
tional Neural Networks to decode volumetric data efficiently, showcasing supe-
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rior classification performance and enhanced depth information extraction for
holographic imaging. [132] explore Fourier Ptychographic imaging combined
with deep learning for accurate breast cancer histopathological image classifi-
cation. This hybrid approach showcases significant strides in accurately classi-
fying breast cancer images.

In summary, convolutional neural networks have demonstrated significant ad-
vantages in the area of non-traditional imaging. They are precious in overcom-
ing device limitations and speeding up the acquisition process. However, the
number of applications developed in this field has been limited, with a primary
focus on phase modality imaging of transparent objects. Furthermore, these
methods have been constrained by the size of their databases. Presently, there
is no effective approach for processing bi-modal information and exploring its
complementarity, nor its potential impact on studying colored objects.

2.5 Biological context

The experimental part of this thesis focusses on two specific applications re-
lated to the health field: detecting the parasite responsible for malaria from thin
blood smears for parasitology and classifying white blood cells from thin blood
smears for hematology.
This part, therefore, aims to present the proposed applications demonstarting
the current limits of microscopy in their specific context and how FPM imaging
could help to overcome these limitations.

2.5.1 Parasitology

Malaria, a parasitic disease caused by the Plasmodium genus, remains a seri-
ous threat to global health, particularly in tropical and subtropical areas. This
disease is transmitted by Female Anopheles mosquitoes, impacting millions of
individuals annually. The 2019 statistics underscore the magnitude of malaria,
with an estimated 229 million people worldwide affected and causing nearly
409,000 fatalities. Sub-Saharan Africa bears over 90% of the global mortality
burden, with multiple parasite species adding to the complexity of the disease.
Malaria is caused by several types of parasites, each with varying degrees of
severity. Among all, Plasmodium falciparum is considered the most dangerous
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form of the parasite responsible for malaria due to several characteristics inher-
ent to this species. Plasmodium falciparum can lead to severe cases of malaria.
Infections caused by this species can rapidly escalate to critical conditions, in-
cluding cerebral malaria, severe anemia, and organ damage.
Early malaria diagnosis is fundamental in fighting against the disease as it helps
prevent drug resistance and the spread of the disease. An efficient diagnos-
tic system enables a quick response during epidemics, reducing the impact on
public health. It is the cornerstone of strategies to combat malaria, facilitat-
ing prompt therapeutic measures, containing transmission, and optimizing the
use of medical resources, all of which are essential in minimizing the impact of
malaria on global health.

Challenges in automated malaria diagnosis

In order to diagnose malaria, two important medical questions need to be an-
swered. The first question is related to the amount of parasites present in the
body (parasitic load), while the second one deals with the species of the para-
site. However, it can be difficult for medical professionals to analyze a sample
when the parasitic load is extremely low. Standards set the detection limit for
the ability to detect one parasitized red blood cell at 200000. This would re-
quire too much attention and observation time for a human to be feasible, with
sufficient patient safety. For these reasons, determining the parasitic load is
subdivided into two steps: the first seeks to determine if parasites are present
in the blood. Highly sensitive techniques such as PCR or thick smear are used
instead of smear observation in this case. The response is binary. In case of
a positive response, the second step deals with determining the parasitic load.
For this, a restricted area of the smear containing typically 5000 red blood cells
is observed. It allows distinguishing the parasitic load level per slice (typically
> 5%, between 2-5%, 0.5-2%, and less than 0.5%). These slices guide the choice
of treatment.
Thus, a complete malaria diagnosis cannot be done using microscopic obser-
vation of the blood smear exclusively, and several complementary techniques
are indeed required. This diagnosis must be made in less than 40 minutes. It
should be noted that in addition to the various steps mentioned, smears must
be prepared beforehand. This involves spreading blood on a microscope slide,
fixing it, and staining it. Staining allows identifying and distinguishing cellular
compartments of interest. It consists of methylene blue or methylene azure B
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and eosin [101]. Depending on the nature of the parasite compartments (nu-
cleus, vacuole, cytoplasm, ...), specific interactions/bonds are established. The
immobilization of the dye molecules is then relatively specific. Depending on
the case, some preferentially bind to proteins, others to amino acids [59]. Since
their absorption properties are also distinct, distinguishing the nature of the
compartments of interest by the appearance of different colors is possible. It
should be noted that the compartments sought are often transparent. Thus,
dyes make them visible to detectors sensitive to light intensity (eye or camera)
by modifying their absorption properties.
The advent of sample digitization techniques by microscopy was supposed to
simplify approaches and free up expert time for the most serious situations.
However, this is not the case yet, and to date, there is no solution to diagnose
malaria completely from a digitized smear. The company Noul proposes the
closest solution to achieving this. It consists of a traditional microscope that
integrates a motorization device for scanning large sample areas. A spreading
and coloring system is also present to prepare the smear from a drop of blood.
Finally, a deep-learning algorithm exploits the images (intensity only) to count
the percentage of parasitized red blood cells.
The sensitivities achieved are still insufficient for reasons that are not com-
pletely established. Among the main hypotheses, this is due to the difficulty
posed by microscopy in producing images with a fully controlled quality over
a complete field of view. At the high resolutions that is employed (typically
200-300 nm), focus conditions are not constant within a field of view. This prob-
lem does not exist when a human observes the sample under the microscope,
as the operator can adjust the microscope focus according to the red blood cell
he is looking at. For a digitized sample, the focus is set globally over the field of
view. Moreover, some fine information about the parasite may be deteriorated
or lost during digitization. A camera has a linear response, unlike the human
eye, which has a logarithmic response. The quantization step (or associated
quantization noise) can then hinder the exploitation of images.
Motic proposes the second available solution with its easy-scan-go equipment.
Similarly to Noul, a traditional microscope is used here again. The device inte-
grates a stage to measure the thick smear to achieve sufficient sensitivity. In this
sense, the solution is hybrid and does not rely solely on smear analysis.
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FPM for malaria diagnosis

FPM is an alternative approach to address the challenge of studying a large
number of blood cells in a reasonable time. Indeed, FPM provides a more fa-
vorable balance between resolution and field of view size than conventional
microscopy techniques.
This technique will be described with more details in Chapter 3. We illustrate
in this section the intensity and phase images, it provides, offer complementary
information that helps to characterize the parasite and red blood cells precisely,
as shown in Figure 2.4. Indeed, in addition to the compartments of the parasite
visible in the intensity image aI, the phase image aΦ shows the nuclear material
(N arrow) in white and the cytoplasm (C arrow). Additionally, the phase bΦ

shows the hollow center of the red blood cell not visible on the intensity image
bI.
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Figure 2.4: Illustrative images of stained blood smears obtained with FPM after
reconstruction. (aI) Intensity and (aΦ) phase images of two red blood cells para-
sitized with Plasmodium falciparum. In the intensity image, hemozoin pigments
are indicated with the H arrow. Details of parasite structures hardly visible in
the intensity image such as nuclear material N and cytoplasm C are revealed
in the phase image. For comparison, intensity and phase images of healthy red
blood cells are presented in (bI,bΦ) respectively.

2.5.2 Hematology

Hematology, a specialized branch of medicine, focuses on the study of blood
cells, providing a valuable window into the body’s immune status and over-
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all health. This discipline plays an essential role in the early diagnosis of dis-
eases, monitoring immune responses and detecting any hematological abnor-
malities. At the heart of diagnostic hematology is the identification and count-
ing of leukocytes, commonly known as white blood cells, which are of paramount
importance in the evaluation of various medical conditions.
Leukocyte identification is a important process in the diagnosis of medical con-
ditions. It involves the differentiation of different types of white blood cells
present in a blood sample, each characterized by distinct morphological traits
observable under a microscope. For example, neutrophils are distinguished by
their multilobed nucleus and fine cytoplasmic granulations. On the other hand,
Eosinophils are characterized by a bilobed nucleus and eosinophilic granula-
tions and are involved in allergic responses and parasitic infections. Basophils
have a bilobed nucleus and cytoplasmic granulations, which are major in aller-
gic reactions. Lymphocytes, notably T and B lymphocytes have round nuclei
and are essential for the immune response, while monocytes, with their kidney-
shaped nucleus and agranular cytoplasm, develop into macrophages in tissues.
Leukocyte count, another essential component of hematology, involves deter-
mining the concentration of white blood cells in a microliter of blood. This
measurement is generally carried out using hematological devices, which allow
rapid and precise counting, thus facilitating diagnosis and clinical monitoring.
White blood cell identification and counting are important in diagnosing many
medical conditions. In particular, they make it possible to detect bacterial and
viral infections, autoimmune diseases such as systemic lupus erythematosus,
leukemia, and blood cancers, allergies, and parasitic infections. Additionally,
hematological disorders and genetic diseases, such as aplastic anemia, throm-
bocytopenia or sickle cell disease, can be diagnosed through white blood cell
analysis.

Limits of classical microscopy in white blood cell classification

Despite its long history of use in diagnostic hematology, conventional light mi-
croscopy has several intrinsic limitations that limit its ability to classify white
blood cells accurately. Among these limitations, optical resolution plays a im-
portant role. This technique is subject to the constraints of the optical properties
of the lenses used and the wavelength of visible light. These resolution lim-
itations can make it difficult to distinguish the fine morphological features of
different types of white blood cells, mainly when dealing with subpopulations
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of cells with morphological similarities. Another major limitation of conven-
tional optical microscopy lies in the morphological resemblance between cer-
tain classes of white blood cells. For example, neutrophils, eosinophils, and ba-
sophils can share similar morphological characteristics, making them difficult
to differentiate using conventional microscopy. This morphological similarity
can lead to confusion in the manual classification of cells, thus compromising
diagnostic accuracy. Finally, manual identification and classification of white
blood cells using conventional microscopy can be time-consuming and require
skilled human resources, which can be costly in terms of time and labor. This
time and cost constraint may limit the scalability of this approach and its ability
to handle large sample volumes.

FPM advanatges for white blood cells classification

FPM offers a promising solution to overcome the limitations inherent in con-
ventional optical microscopy, particularly with regard to the accurate classifi-
cation of white blood cells. It provides access to the intensity and phase pair.
By exploiting phase, which is not usually exploited, this technique can provide
information on refractive index variations within cells, which can be used to
differentiate cells with similar morphological characteristics but different opti-
cal properties.
Figure 2.5 illustrates the difference between images of a white blood cell cap-
tured using conventional microscopy and those taken using FPM. Acquiring
images of white blood cells with a conventional microscope can often be af-
fected by (a1) focusing problems. On the other hand, FPM offers the possibil-
ity of carrying out digital focus correction after the acquisition, thus making
it possible to obtain improved and homogeneous focus across all acquisitions.
Furthermore, even when the focus is correct (a1), the detail and contrast of the
chromatin in the nuclei of the globules and the definition of the granules are of-
ten insufficient. However, when we observe the images obtained from the FPM
(bI) and (bϕ), they present a different contrast. The complementarity between
these two types of images allows a better definition of cellular compartments,
in particular thanks to the phase image (bϕ), which highlights the details of the
chromatin in the nuclei of the globules.
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Figure 2.5: Illustrative images of stained blood smears obtained. c1 and c2 are
images from A single-cell morphological dataset of leukocytes from AML patients and
non-malignant controls (AML-Cytomorphology LMU). (c1) white blood cell out of
focus and (c2) a single white blood cell on focus. (dI,dΦ) are respectively the
intensity and the phase image of white blood cells from an FPM acquisition.

2.5.3 Conclusion

The images presented in Figure 2.4 and Figure 2.5 suggets that FPM holds great
promise forimproving medical diagnosis in parasitology and hematology. In
parasitology, where the early detection of malaria is critical for global public
health, FPM imaging offers a precise visualization of Plasmodium parasites in
blood samples, providing a valuable alternative to conventional microscopy. In
hematology, FPM imaging can differentiate blood cells with similar morpho-

78



logical characteristics but different optical properties, improving the accuracy
of leukocyte classification and facilitating the diagnosis of various medical con-
ditions.
FPM imaging has significant advantages over conventional light microscopy,
such as improved resolution and increased ability to differentiate similar cells.
It is exepcted that its adoption in parasitology and hematology can lead to sig-
nificant improvements in medical diagnosis, which can have positive implica-
tions for the clinical management of patients and global public health.
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Chapter 3

Phase contribution for stained
objects analysis
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The main reasons for using bimodal microscopy lie primarily in its ability to
reveal invisible structures on label-free samples. This is particularly interesting
for transparent samples as it has been studied in the literature.
In this chapter, in contrast to the application cases covered in previously pub-
lished works, we question the relevance of bimodal microscopy in the context
of stained samples. To address this question, we consider a biological applica-
tion (malaria) that requires automatic detection of parasitized red blood cells on
images of stained smears. This topic is chosen because it is still unsolved. Its
relatively limited complexity (two classes of objects to detect, healthy red blood
cell / parasitized red blood cell) is used to evaluate the interest in exploiting
phase images in addition to intensity images. For this purpose, a performance
study in terms of sensitivity and specificity is conducted. The performances ob-
tained are compared to those relying on intensity images alone. Faster R-CNN
architecture is used to detect red blood cells. Training deep neural networks of-
ten requires a large dataset. We focus on FPM microscopy rather than quantita-
tive phase microscopy (QPI) or digital holography to facilitate their acquisition.
This recent technique is stable and relatively insensitive to environmental con-
ditions (including vibrations). It is, therefore, well adapted for acquiring large
sample areas with reduced experimental effort, as is necessary for dataset col-
lection.
The chapter is organized as follows. The first section introduces the role of dyes
and their possible effect on phase images. A simplified optical model is in-
troduced and studied to identify the possible distinctions that can be expected
between an intensity image and a phase image on stained smears. The second
section introduces the principle of FPM microscopy. Its main characteristics and
positioning are detailed compared to digital holography approaches, including
QPI. In the third section, the experimental work and data exploitation are intro-
duced. The performances achieved by exploiting intensity and phase images
are discussed comparatively to those obtained from intensity images alone.

3.1 Phenomenological model of stained samples

As mentioned in section 2.5.1, dyes are used to modify the optical properties
(absorption) of the targeted cellular compartments, allowing their identifica-
tion and distinction based on their spectral absorption characteristics.
Regarding image analysis, parasite detection involves identifying typical mor-
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phological forms within red blood cells. These forms result from contrasts in
signal intensity due to the presence of dyes. Each pixel’s relative variations
in intensity levels are thus exploited, as are their spectral variations associated
with compartment colors.
However, another optical property that could potentially be relevant for par-
asite detection is the variations in optical path length introduced by different
cellular compartments of the parasite, as illustrated in Figure 3.1.

Figure 3.1: Schematic cross-section of a red blood cell (left) a red blood cell not
containing a parasite, (right) a red blood cell infected with a parasite.

The left side of the figure illustrates a schematic cross-section of a red blood
cell. The optical index is homogeneous throughout the volume, with no nu-
cleus present. However, when the cell hosts a parasite, i.e., its complete cell
(right), the overall volume of the cell may be altered. Additionally, specific
compartments within the parasite cell may introduce an optical index different
that of the red blood cell, such as its cytoplasm, nucleus, and vacuoles. This is
undoubtedly the case for hemozoin, a compound resulting from the parasite’s
hemoglobin degradation.
By definition, the optical path length traveled by light is the curvilinear integral
of the path G taken by light from point A to B.

LΓ =
∫

Γ
n dl (3.1)

Given that the optical index is affected by the presence of the parasite, its pres-
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ence should be observable in the phase images recorded on the sample since
:

∆ϕ =
2πLΓ

λ
(3.2)

An illustration of the expected phase signal for a sample measured in trans-
mission is presented in Figure 3.1(top). For a healthy red blood cell, the phase
measured as a function of x should exhibit two lobes; however, when the cell
hosts a parasite, this curve is no longer as regular. It should exhibit more or less
pronounced variations depending on the thickness and nature of the parasite
compartments traversed.
Phase images are, therefore, interesting as they can reveal fine variations in
the optical thickness of the measured sample. Digital holography or QPI ap-
proaches are traditionally used to obtain high-resolution phase images. Their
main advantage is that they can dispense with any sample labeling or staining,
i.e., label-free imaging.
To the best of our knowledge, the potential benefit of characterizing samples
through phase imaging on stained smears has not yet been studied. However, it
seems entirely conceivable that the additional information provided by a phase
image and the intensity image could make distinguishing between a healthy red
blood cell and a parasitized red blood cell easier for image analysis algorithms.
This represents a promising approach to explore when seeking to improve par-
asite detection sensitivity.
Nevertheless, ensuring that these two images are not equivalent is essential.
To do this, let’s analyze the impact of a dye on the phase image using a phe-
nomenological optical model of the sample. The simplest model often used
describes the sample as a collection of dipoles [1] with a dipole moment P⃗(r),
where P is the volumetric dipole moment of the sample and r is the coordinate
space vector (x, y, z). The resulting total dipole moment associated with the col-
lection of dipoles contained within an elementary volume dv centered at r then
equals

dP = P⃗ (r) dv (3.3)

This dipole collection description is interesting because it allows us to relate the
material’s optical index to P⃗. Let us recall that a dipole is defined as a system
composed of two opposite electric charges of the same magnitude, separated
by a certain distance, as illustrated in Figure 3.2; P⃗ is represented by an arrow
indicating the direction of the dipole moment that measures the separation of
positive and negative electrical charges. In this description, the system’s behav-
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+q −qP⃗
r⃗

Figure 3.2: Representation of an electric dipole with a positive charge +q and a
negative charge −q separated by a distance r⃗, forming a dipole moment p⃗.

ior influenced by an external electromagnetic field is described by the equation
associated with a harmonic oscillator, see Equation 3.4 :

m
d2⃗r
dt2 + mγ

d⃗r
dt

+ mω2
0⃗r = F⃗ext (3.4)

Where m is the mass of the dipole, γ is the damping coefficient, ω0 is the natural
frequency of the dipole, and F⃗ext is the external force of the electromagnetic field.
The term mω2

0⃗r represents the restoring force, assumed to be the same in all di-
rections (proportional to the electron’s movement) in the case of an isotropic
oscillator. The term mγ⃗r describes the energy dissipation process experienced
by the dipole.
Under the effect of a monochromatic electric field at a frequency ω, this dipole
experiences quasi-elastic forces and, therefore, has a natural oscillation frequency
ω0 related to a spring constant. The oscillating motion is governed by the equa-
tion 3.5. In Fourier domain this equation can also be written as follows:

−mω2r̃ + jmωγr̃ + ω0r̃ = qE(ω) (3.5)

Under the hypothesis of a linear response, the optical index of the medium can
be deduced from this equation and the formula of the electrical susceptibility in
the form:

n = n′ + jn” with n′ =

√
1 +

ω2
0 −ω2

(ω2
0 −ω)2 + γ2ω2

and n” =

√
1 +

γω

(ω2
0 −ω2)2 + γ2ω2

(3.6)

The optical index is complex. The real part of n, n′ is associated with the phase
delay experienced by light propagation and the imaginary part n” with its ab-
sorption properties. Its spectral characteristics are shown in Figure 3.3. The left
panel corresponds to the imaginary part of n, while the right panel represents
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its real part. The model’s free parameters are w0 and γ. They can be completely
determined from the measured absorption spectral properties (resonance wave-
length and linewidth).
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Figure 3.3: Example of Kramers-Kronig relations between the real and imagi-
nary part of the refractive index for a specific ω0.

It is interesting to note that near the wavelength where absorption is maximal,
significant variations in phase are expected. This implies that the presence of
the dye should also be observable in the phase image. However, the contrasts
expected in the intensity and phase images should differ because of the different
curve evolutions. Thus, although we expect to observe various compartments
of the parasites in phase images attached to label-free samples, these observa-
tions should be even more evident on stained samples. This comes from the
relationship between the imaginary part of the index (absorption) and its real
part (phase shift). Although the invoked model is phenomenological, this prop-
erty is general due to the Kramer-Krönig relations [66], which are always valid
and based on a principle of causality. In the continuation of the work, we will
mainly consider stained samples for the following reasons:

• Effects of dyes on phase images are expected.

• Ground truth, as defined by biologists, relies on observing stained sam-
ples. Comparing the analyses obtained by the developed microscopy and
those currently used by biologists will thus be simplified.
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3.2 Fourier ptychography microscopy for phase imag-
ing

As mentioned in Chapter 2, throughout this thesis, we focus on Fourier Ptycho-
graphic Microscopy (FPM) technique. We use it to access phase images because
it’s easy to implement and highly tolerant to vibrations. This allows it to mea-
sure large number of samples, which is necessary for the studies conducted.
The quantativity of the phase images produced remains unresolved in the liter-
ature. Although we don’t directly address the question, we are more interested
in identifying whether the phase images it is capable of producing can be of
interest for automatic diagnosis.

3.2.1 Device and principle

FPM is a cost-effective device that uses an LED array illumination light source
instead of the conventional microscope light source, a monochromatic camera,
as shown in Figure 2.1. Unlike interferometry systems, these devices do not
require complex optical components such as lasers and precise optical mirrors,
which considerably lower costs.
The data collection procedure of FPM is a simple process that involves placing a
two-dimensional sample at the microscope’s focal plane and illuminating it suc-
cessively with each diode of the LED matrix. This process enables the acquisi-
tion of multiple low-resolution images that are subsequently reconstructed into
a high-resolution image using an iterative algorithm. FPM does not require any
reference beam to generate interference since it only collects intensity images,
which reduces environmental stability requirements and can be a significant
advantage in clinical settings.
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Figure 3.4: FPM principle. (a) Sketch of microscope configuration equipped
with its LED matrix, (b) illustration of the angular illumination of the sample
as determined with spatial position of LED i, (c) individual spectral regions
acquired by each individual LED. The different raw images captured by the
camera are assembled in Fourier Domain with a phase retrieval algorithm. The
grayed regions are related to LEDs 1, 2, and 3.

In detail, let us consider an LED array consisting of a central diode placed on
the optical axis and a ring array of n-1 individually controllable LEDs. The
diodes in the matrix are conveniently indexed from 1 to n and are positioned in
a sequential order starting from the center. This led matrix is placed at distance
d (typically several cm) such that the illumination at the sample level can be
considered coherent (Zernike –Van Cittert theorem ) [144] and assimilable to
a plane wave of wave vector ki. The wave vector ki is defined as: |ki| = 2π

λ

by a far-field approximation. Each diode i is thus assigned to a unique illumi-
nation propagation direction ui of inclination θi. λ represents the wavelength
used. Under these conditions, the electromagnetic field immediately beneath
the sample that originates from the diode i is written as:

E−i (x, y) = A · ej(kx
i ·x+ky

i ·y) (3.7)

where A, kx
i , and ky

i represent its complex amplitude and the projection of the
vector ki along the x and y axes. Furthermore, under a thin-sample approxima-
tion, the interaction between the light and the sample is modeled by a transfer
matrix M(x, y). For the LED i, the electromagnetic field immediately above the
sample is calculated from M with E+

i (x, y) = M(x, y) · E−i (x, y) and the electro-
magnetic field formed at the camera plane by the microscope objective of the
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point-spread-function PSF(x,y) is:

Ecam
i (x, y) =

[
M

( x
G

,
y
G

)
· E−i (x, y)

]
∗ PSF(x, y) (3.8)

where G represents the magnification of the microscope objective and * is the
convolution product, as in [39]. In the spectral domain, Ecam is expressed as:

Êcam
i (kx, ky) = A · M̂

(
G
(
kx − kx

i
)
, G

(
ky − ky

i
))
·CTF

(
kx, ky) (3.9)

Where CTF denotes the coherent optical transfer function of the microscope
objective (the Fourier Transform of PSF). For a lens that is aberration free, the
CTF (kx, ky)) function is equal to 1 inside a disk D of radius r = 2π · NA

λ cen-
tered at (0, 0) and zero elsewhere. Here, NA denotes the objective’s Numerical
Aperture, and ̂ denotes the function in the Fourier domain. The ith recorded
image Ii is then associated with the following equation:

Ii(x, y) = |Ecam
i (x, y)|2 (3.10)

This last equation corresponds to the forward problem relative to the image for-
mation of the sample with the ith LED. Examination of Equations (3.9) and (3.10)
reveals that the region of the object spectrum imaged with diode i corresponds
to the spectral region of M bounded by the

(
kx

i , ky
i
)

translated disk D. For illus-
trative purposes, figure 3.4.c shows the zones corresponding to each LED in the
spectrum.
It is interesting to note that capturing the sample from various illumination an-
gles allows for the covering of a much broader spectral region than what is
accessible by the objective lens. To utilize this information, it is necessary to
know how to assemble the different images in the spectral domain appropri-
ately (aperture synthesis mechanism) and also to retrieve the phase of the im-
ages, which is inevitably lost during measurement.
For this purpose, a reconstruction algorithm is employed. It relies on solving
an inverse problem and utilizes the various acquired images. The model incor-
porates knowledge of the objective’s transfer function and the source configu-
ration (position of each diode in space, emission wavelength).
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3.2.2 Reconstruction process

Image reconstruction through the inversion of forward models is a standard
process in unconventional optics. Solving the inverse problem involves mini-
mizing an error function using algorithms like the Gerchberg-Saxton (GS) algo-
rithm or its variants [152, 32].
Several algorithms have been proposed to recover intensity and phase. In this
thesis, we explore Extended PIE (e-PIE) [81], an improved version of PIE [115].
E-pie was chosen because it incorporates probe correction, support constraints,
and enhanced convergence properties.
The e-PIE algorithm operates through iterative steps to refine the estimates of
the object and illumination functions, continuing until convergence is attained.
It begins by initializing the object to be reconstructed, denoted as Oi(r), and the
illumination function Pi(r), representing the illuminating waveform. Typically,
the initial object is a randomly chosen function awaiting determination, while
the initial waveform is a roughly estimated support function based on the illu-
mination region of the wavefront.
Then, the complex object undergoes multiplication by the illumination func-
tion, applying a specific shift to each region R(i) knowing that each region cor-
responds to one measure made by the device:

ψi(r) = Oi(r)Pi(r− R(i)) (3.11)

Next, a Fourier transform is applied to the resulting ψi(r):

ψ̃i(ν) =
√

Ii(ν)
F[ψi(r)]
|F[ψi(r)]|

(3.12)

Subsequently, a corrected output field is computed:

ψ′i(r) = F−1[ψi(ν)] (3.13)

Finally, for iteration i, the object Oi+1 and Pi+1 are updated using the ePIE algo-
rithm:
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Algorithm 1 e-PIE Algorithm.
Input: Experimental measurements ψ′i(r)
Output: Reconstructed object Oi+1(r) and Pi+1(r)
Initialize object Oi(r) and Pi(r)
Set maximum number of iterations Nmax and convergence criterion

Loop: i← 1 to Nmax

• Calculate ψi(r) = Oi(r)Pi(r− R(i))

• Perform Fourier transform: ψ̃i(ν) =
√

Ii(ν)
F[ψi(r)]
|F[ψi(r)]|

• Compute corrected output field: ψ′i(r) = F−1[ψi(ν)]

• Update object: Oi+1(r) = Oi(r) + α
P∗i (r−R(i))
|Pi(r−R(i))|2max

(ψ′i(r)− ψi(r))

• Update probe: Pi+1(r) = Pi(r) + β
O∗i (r+R(i))
|Oi(r+R(i))|2max

(ψ′i(r)− ψi(r))

If Convergence criterion is met:

– Break

In the e-PIE algorithm, α and β represent the correction coefficient used to weigh
the object and illumination function corrections, respectively. This iterative pro-
cess continues until convergence or until the maximum number of iterations is
reached, resulting in a reconstructed phase and intensity of the object.

3.2.3 Intensity and phase images obtained on label-free and
stained sample

Figure 3.5 shows FPM images obtained on a parasitized red blood cell to illus-
trate the impact of dyes. The top images correspond to the intensity and phase
images produced on the sample under label-free conditions. Conversely, after
staining the smear, the bottom images correspond to the images obtained on the
same cells after staining.
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Figure 3.5: FPM images from a parasitized red blood cell. The top row displays
intensity and phase images acquired under label-free conditions, while the bot-
tom row showcases images obtained after staining the smear.

The intensity image serves as a reference, making it easy to locate the cellular
compartments of the parasite due to the staining provided by MGG. Noticeably,
the phase image also allows for the identification of the main compartments
sought. It also presents color variations by combining images corresponding to
an optical delay in the three channels (Red, Green, and Blue). The appearance
of colors should thus be interpreted as variations in the light propagation time
in the sample depending on the wavelength. Although the noticeable compart-
ments in these two images are close, the arrows indicate noticeable differences.
The yellow arrow points to a delicate structure not visible in the intensity im-
age.
Examining the images taken before staining, we can still detect the parasite.
However, many details about the compartmental structure are lost, and there is
minimal disparity between the intensity and phase images.
Thus, as envisaged in section 3.1, staining seems to impact the phase image.
It allows for obtaining images with complementary information and reveals
structures at specific locations that are different from those identifiable in the
intensity image. The significance of this complementarity needs to be clarified
from the perspective of automatic diagnosis through statistical analysis. This
question is addressed in the following section.

93



3.3 Automatic bimodal analysis of blood smear im-
ages

In this study, the case of Plasmodium Falciparum is examined to study the con-
tribution of the phase in FPM for the stained samples. Plasmodium Falciparum is
the causative agent of the most severe and usually fatal form of malaria. At the
beginning of the infection, parasitemia may be quite low. The goal is to detect
red blood cells and classify them as parasites or healthy cells. At the time of
the study, the data was acquired using a single channel, green. This was due to
the device’s limitations, which only allowed this wavelength exploitation, and
also because the green channel is particularly interesting for studying red blood
cells and parasites [103].
This section will detail the dataset used for evaluation, the deep learning archi-
tecture implemented for detecting parasites in red blood cells over the complete
field of view (localization and classification of red blood cells into two classes),
and the results obtained.

3.3.1 Microscope configuration and dataset

The microscopic configuration used consists of an upright microscope equipped
with a Plan Apochromat objective with a magnification of 10× and a numerical
aperture of 0.45. The camera uses a large "1.1" CMOS sensor with a resolution
of 12.34 Mpix and a pixel size of 3.45 µm (UI-3200SE from IDS). The camera
has a global shutter and an optical area of 14.158 mm × 10.370 mm. The total
resolution of the camera is 4104 × 3006 pixels. Similar to [126, 76], the LED ar-
ray consists of a central diode placed on the optical axis and from a ring array
of 12 individually controllable LEDs (from Adafruit industry). Each sample is
illuminated by a single wavelength λ = 525. The data set was created from
scanning thin blood smears from nine patients and was scanned using the FPM
microscope setup described above. The area of good spreading is fully scanned
with 16 fields of view (FOV). For each FOV acquired, 13 raw images were ac-
quired, each corresponding to an LED with a specified illumination angle. The
reconstruction of the bimodal phase intensity images is then carried out using
the E-Pie algorithm. The reconstructed images are then cropped into smaller bi-
modal images, so that each image contains approximately 200 to 300 red blood
cells. An expert labeled all fields by indicating the position of each red blood
cell with a box around the cells and providing a label indicating the presence or
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absence of a parasite. The final dataset contains 2216 bimodal intensity phase
images of 896 × 896 pixels, showing 418389 healthy cells and 65140 infected
cells. Although the database is limited in number of patients, it should be noted
that the images contain parasites of different sizes and the infection levels vary
between 1 and 5%, which is representative of real-world use cases in the diag-
nosis of malaria.

3.3.2 Faster-RCNN architecture

Numerous object detection models have been developed in the literature. These
models aim to localize objects in an image and label them simultaneously. These
models vary in accuracy, speed, and complexity, offering different trade-offs
depending on the application’s needs. They generally rely on a reasonably
sized labeled database, which indicates each object localization and class la-
bel. One of the earliest region-based approaches for object detection was R-
CNN [35], which successfully detected objects with high precision. However,
it needed to be faster due to its multiple processing steps and required signif-
icant computational resources. Fast R-CNN [34] was introduced to overcome
this limitation, which used a single convolutional pass over the entire image
and managed regionalization externally. This approach improved speed and
accuracy but still needed to overcome the challenge of generating regional pro-
posals. Faster R-CNN [113] introduced the Region Proposal Network (RPN) to
address this issue, integrating regionalization more effectively. However, its im-
plementation can be challenging, and its speed depends on the number of pro-
posals generated. Another popular object detection model is YOLO (YouOnly
LookOnce). YOLOv1 and v2 are well-known for their fast and efficient single-
inference passes, making them ideal for real-time object detection. However,
the available versions at the moment this work was conducted may struggle
with identifying small items and are less precise in complex scenes. SSD (Sin-
gleShot Multibox Detector) was introduced to address this limitation, offering
high performance and speed that is capable of detecting objects of various sizes.
However, it may deliver less accurate results than FasterR-CNN for smaller ob-
jects [111, 7]. Lastly, YOLO v3 boasts improved accuracy compared to YOLO
v1 and v2 and is better at identifying small items. However, it requires sig-
nificant computing power. In this chapter, the Faster-RCNN architecture was
explored for its ability to generate regional boundaries with minimal time cost
compared to older versions of RCNN and for its accuracy in detecting small
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objects compared to other models such as Yolo and SDD. Its architecture is pre-
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Figure 3.6: The architecture and different modules of the Faster-RCNN model:
(a) the feature maps extraction module, (b) the region proposal networks mod-
ules, and (c) the Fast-RCNN networks module for classification.

sented in the figure, it relies on two modules: two decision networks (b) and (c)
connected through a feature extractor (a). An image is given as an input to the
model and processed by the feature extractor layers, represented in Figure 3.6
(a). Here, the feature extractor is based on VGG-16 architecture [124], which is a
succession of 16 layers of 3x3 convolutions with ReLU activation functions and
pooling layers. A feature map is then produced and transmitted simultaneously
to modules (b) and (c).
Module (b) corresponds to the Regional Proportional Network (RPN). The RPN
is responsible for detecting objects of interest in an image by generating a set of
candidates represented by potential bounding boxes that may contain objects of
interest. Formally, the RPN proposes the bounding box coordinates p and their
associated probability P(object) of containing an object of interest.
Its architecture is presented in Figure 3.6; it relies on two modules: two deci-
sion networks (b) and (c) connected through a feature extractor (a). An image
is given as an input to the model and processed by the feature extractor layers
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Figure 3.6 (a). Here, the feature extractor is based on VGG-16 architecture [124],
which is a succession of 16 layers of 3x3 convolutions with ReLU activation
functions and pooling layers. A feature map is then produced and transmitted
simultaneously to modules (b) and (c).
Module (b) corresponds to the Regional Proportional Network (RPN). The RPN
is responsible for detecting objects of interest in an image by generating a set of
candidates represented by potential bounding boxes that may contain objects of
interest. Formally, the RPN proposes the bounding box coordinates p and their
associated probability P(object) of containing an object of interest.
This is achieved using a set of predefined anchors a, placed at evenly distributed
positions across the feature map generated by the CNN backbone; the anchors
are predefined bounding boxes of various sizes and aspect ratios (Usually, three
different size and three ratios are fixed before the learning step according to
the objects in the dataset specificities, this produces 9 different anchors that are
placed at different positions of the feature map). The generated proposals p
are merged from the anchors using offsets ∆(x, y, w, h) predicted by the net-
work. The score associated with each proposition is calculated by considering
the probability that the proposition matches an object of interest and the inter-
section over union (IoU) between the proposition and the actual bounding box.

score(p, r) = P(object) · P(anchor) · IoU(p, r) (3.14)

p = a + ∆(x, y, w, h) (3.15)

Anchors a are defined as boxes of fixed size with different positions xa, ya and
scales wa, ha deduced from the size and ratio.

a = (xa, ya, wa, ha) (3.16)

The score(p, r) represents the probability that the proposition p corresponds to
an object of interest, and it is used to classify propositions. These proposals
are then used to generate regions of interest (RoIs) which will be submitted to
the next module for the classification (Label association) and regression task
(Bounding Box coordinates adjustment). The set of bounding boxes is sent to
the second branch (module (c)) with the feature map resulting from the module
(a).
In module (c), the corresponding region of the bounding box p is pooled from
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the feature map f by a RoI mechanism Pooling or RoIAlign, then sent to the Fast-
RCNN network to predict its class P(Class|p) and provide its final coordinates
∆(x, y, w, h). These predictions will be used to refine the RPN results.

RoIAlign(f, p) = ∑
i,j

fij · area(int(bin(p))ij) (3.17)

bin(p) calculates the bins (discrete spatial locations) of the RoI.

P(Class|p) = Softmax(Wclass · FC([RoIAlign(f, p), f, p]) + bclass) (3.18)

FC denotes the fully connected layer, Wclass, bclass denote the weights and bias
of the classification layer, respectively.

∆(x, y, w, h) = Wregression · FC([RoIAlign(f, p), f, p]) + bregression (3.19)

Wregression, bregression denote the weights and bias of the regression layer, respec-
tively.

3.3.3 Results and discussion

The intensity and phase images resulting from the FPM reconstruction are ex-
plored using Faster-RCNN. The objective is to detect the red blood cells and
classify them into parasites or healthy cells (Binary classification). We recall
that our dataset is composed of 418389 healthy cells and 65140 infected cells
More precisely, two Faster-RCNN models for Plasmodium Falciparum parasites
detection were implemented; the models have the same number of trainable
parameters:

• A classical real-valued Faster-RCNN using intensity only (I-RV);

• A classical real-valued Faster-RCNN using intensity and phase (I/ϕ-RV);

The specifics of the architecture are detailed in Table 3.1.
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Module Layer Input Shape Output Shape Kernel Size

Feature extractor

Convolution (896, 896, 2) (896, 896, 64) (3, 3)

Convolution (896, 896, 64) (896, 896, 64) (3, 3)

MaxPooling (896, 896, 64) (448, 448, 64) (2, 2)

Convolution (448, 448, 64) (448, 448, 128) (3, 3)

Convolution (448, 448, 128) (448, 448, 128) (3, 3)

MaxPooling (448, 448, 128) (224, 224, 128) (2, 2)

Convolution (224, 224, 128) (224, 224, 256) (3, 3)

Convolution (224, 224, 256) (224, 224, 256) (3, 3)

Convolution (224, 224, 256) (224, 224, 256) (3, 3)

MaxPooling (224, 224, 256) (112, 112, 256) (2, 2)

Convolution (112, 112, 256) (112, 112, 512) (3, 3)

Convolution (112, 112, 512) (112, 112, 512) (3, 3)

Convolution (112, 112, 512) (112, 112, 512) (3, 3)

MaxPooling (112, 112, 512) (56, 56, 512) (2, 2)

Convolution (56, 56, 512) (56, 56, 512) (3, 3)

Convolution (56, 56, 512) (56, 56, 512) (3, 3)

Convolution (56, 56, 512) (56, 56, 512) (3, 3)

RPN

Convolution (56, 56, 512) (56, 56, 512) (3, 3)

Convolution (56, 56, 512) (56, 56, 9× 4) (1, 1)

Convolution (56, 56, 512) (56, 56, 9) (1, 1)

Fast RCNN

RoI proposition function - (1500, 4) -

RoI Pooling function - (7, 7, 512) -

Flattening layer (7, 7, 512) (25088) -

Fully connected (25088) (4096) -

Dropout (0.5) (4096) (4096) -

Fully connected (4096) (4096) -

Dropout (0.5) (4096) (4096) -

Fully connected (4096) (4× 3) -

Fully connected (4096) (3) -

Table 3.1: Parameters of Faster-RCNN architecture as shown in Figure 3.6.
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Several key hyper-parameters in the Faster-RCNN architecture have been tuned.
The search for the best hyper-parameters for each network was carried out in
such a way as to have an optimal classification performance for each experi-
ence. A random search was used to choose the maximum number of boxes to
be predicted by the RPN. Moreover, we noticed that this number greatly in-
fluences the rate of well-detected parasitized cells (Positive Rate). Indeed, if a
small number of boxes is chosen, several cells are not detected, which gives a
low positive rate, knowing that most cells are healthy. Contrariwise, a very high
number of boxes leads to certain confusion (several boxes are predicted for one
object), degrading the classification quality. For I-RV, this parameter was fixed
to 1200 boxes, while in the I/ϕ-RV model, the optimal parameter was fixed to
1500 boxes as in the original paper. Among others, the anchors used in the RPN
are the most influential parameters, which have to be chosen considering the
variability in blood cell sizes between patients. This was done by calculating
the average size of the boxes in the images, the minimum and the maximum,
and the standard deviation. This led us to choose the three sizes 30, 50 and 70,
with ratios 0.5, 1 and 2 producing the 9 anchors. The total number of predic-
tions produced by the Fast RCNN model (branch c) was set at 301 by studying
the maximum number of boxes in the images used.
All models have been trained using a 5-fold cross-validation. This method is
used here to establish the confidence intervals. More precisely, in this work, we
used a k-split cross-validation algorithm [125], as it better estimates the model’s
generalization ability by performing not one but k measures of the validation
metric. Its principle is simple: The data sample is divided into k smaller sam-
ple datasets. k independent evaluations of the model are then made. A single
sample dataset is retained for testing the model at each evaluation, while the
remaining samples are used for training.
The experiments’ results are averaged, and the standard deviation is computed
to estimate each evaluation metric robustly. Here, we chose a five-fold cross-
validation where the original dataset was partitioned into five equitably sized
subsets (roughly 443 samples per subset).
To compare the performance of the two implementations, we use two criteria,
the True Positive Rate TPR and the True Negative Rate TNR of parasite detec-
tion. This is performed on the same databases and with the same protocols.
TPR and TNR result from the definitions of TP, TN, FP, and FN, which were
adapted slightly to our specific Plasmodium falciparum detection task according
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to malaria specialists as follows :

TPR =
TP
P

=
TP

TP + FN
TNR =

TN
N

=
TN

TN + FP
(3.20)

• True positive TP is the number of well-classified parasitized red blood
cells;

• True negative TN is the number of well-classified healthy red blood cells,
the extra healthy cells, and missed healthy cells;

• False positive FP is the sum of the wrongly classified healthy red blood
cells and the extra parasite blood cells;

• False negative FN is the sum of the wrongly classified parasitized red
blood cells and the missed parasites.

The parasite detection results for the different implementations are in Tables 5.1
and 5.2. The details of the output boxes for each model are shown in Table 3.2.

I-RV I /ϕ-RV

Well-classified infected 12,116 12,320

Misclassified infected 528 433

Well-classified healthy 81,818 82,778

Misclassified healthy 551 295

Missed infected 356 186

Missed healthy 1086 601

Added infected 127 154

Added healthy 347 554

Table 3.2: Detailed results of Faster-RCNN predictions averaged to the nearest
unit over the five folds.

A localization threshold of 0.7 was used to construct the table. This means that a
predicted bounding box is considered correctly positioned if it overlaps with the
corresponding ground truth box by at least 70%. If the predicted label matches
the ground truth label, the model considers the cell in this box well-classified.
Otherwise, the cell is considered misclassified. The missed cells correspond
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to the boxes containing cells labeled by the specialist that the model did not
predict. Lastly, the model’s added boxes are the boxes that have poor overlap
with ground truth or boxes that do not correspond to labeled objects. Integrat-
ing phase information positively impacts the model performance for classifying
healthy and infected cells shown in Table 3.2. The I/ϕ-RV model demonstrates
superior capability than the I-RV model for this task. Specifically, the I/ϕ-RV
model correctly predicted 204 more infected cells and 960 more healthy cells
than the I-RV model. Additionally, the improvements are also evident in the
reduction of classification errors. The number of misclassified infected cells is
reduced by 95, while the number of misclassified healthy cells is also reduced
by 256. Furthermore, the model reduces the number of undetected healthy cells
by 485 and the number of undetected infected cells by 170. However, it should
be noted that there is a slight increase in the number of false cell detections.
This increase can be attributed to the increased number of region proposals in
branch (b). In the context of model performance comparison, I/ϕ-RV is more
efficient for the task than I-RV. This suggests that integrating phase information
enhances the classification abilities of the Fast R-CNN module. From Table 3.3,

I-RV I /ϕ-RV

TNR 99.18 ± 0.20% 99.34 ± 0.24%

TPR 93.33 ± 1.33% 95.22 ± 0.73%

Table 3.3: Detailed results of Faster-RCNN predictions averaged to the nearest
unit over the five folds.

we observe a high TNG and a TPR. If the TNG is equivalent between the two
models. The varying TPR is 93.33% for I-RV and 95.22% for I/ϕ-RV. These
values are promising, as the main goal in Plasmodium Falciparum detection is to
obtain a high TPR to detect cases of early-stage infection, where parasite cells
are extremely sparse among the total red blood cells.
To statistically validate the performance difference between these two models,
we employed the McNemar test [109, 88]. The resulting p-values, lower than
0.001 for each fold, indicate that the two models do not share the same error
rate. The results, therefore, illustrate the contribution of phase information to
improving the quality of diagnosis of rare events. In this case study, we observe
that the phase image brings complementary information to intensity, even in
the case of non-transparent objects, where the phase is usually considered to
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have a minor effect. It can, therefore, provide valuable information for analyz-
ing microscopic images.

3.4 Conclusion

In the first part, this chapter presents the details of the FPM, which is consid-
ered in this thesis to be an efficient and non-costly tool for acquiring phase in-
formation in complement of intensity. In the second part, the impact of the bi-
modal intensity-phase images was validated in a relatively uncomplicated but
unsolved malaria diagnostic case study: detecting and classifying Plasmodium
falciparum parasites in red blood cells. By combining intensity and phase in-
formation, FPM significantly improves the sensitivity of infected cell detection
compared to intensity alone. These first results will be further studied in the
next chapter. Indeed, Chapter 4 will explore the benefits of FPM for a more
complex classification task (White Blood Cell), which has several challenges,
such as class imbalance and a restricted quantity of data.
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Chapter 4

White blood cell classification
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In the previous chapter, a proof of concept demonstrated the contribution of
the joint use of phase and intensity derived from FPM for stained samples by
studying the simple problem of detecting malaria parasites in red blood cells.
This chapter extends these promising results to address a more complex chal-
lenge: classifying white blood cells from stained thin blood smears.
This study is part of TAMIS project. TAMIS project focuses on the reliable and
efficient automated characterization of blood cells, encompassing leukocytes,
schistocytes, and platelets from thin blood smears, using FPM images that al-
low access to enriched information. This chapter will only address the leukocyte
problem.
The main goal is to accurately and automatically classify distinct leukocyte sub-
types typically found in the bloodstream of healthy individuals, including neu-
trophils, eosinophils, basophils, lymphocytes, and monocytes.
The first part of this work aims to extend the proof of concept of the effective-
ness of bimodal information in classifying colored samples to a more complex
problem. This problem is considered more complex than parasite detection be-
cause it involves 5 classes that strongly resemble each other, with natural bio-
logical imbalances in the representation of these classes in the blood.
The second part proposes an innovative method for generating synthetic im-
ages to complete the under-represented classes of white blood cells, aiming to
improve classification performance. This method’s originality lies in first in-
troducing the physical image formation model in a GAN model, increasing the
diversity of the images generated and reducing the phenomenon of collapse
mode.
A protocol for using similarities between certain classes to propose a tine-tuning
approach is implemented. It offers the possibility of learning GANs for synthe-
sizing images of classes with only a very limited number of samples.

4.1 FPM bi-modal images contribution for white blood
cells classification

Given the regulatory framework of the "RGPD" and anonymization constraints,
this work will focus on white blood cell classification in patients without hema-
tological problems into five classes, namely neutrophils, lymphocytes, mono-
cytes, eosinophils, and basophils. Although this step does not yet allow the
diagnosis of hematological diseases such as leukemia, it is crucial for detect-
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ing infections, autoimmune diseases, inflammatory reactions, and allergic reac-
tions.
As Section 2.5.2 explains, specialized centers use automatic systems to carry
out this step. However, due to their limited performances in many situations,
manual proofreading by a specialist using a conventional microscope is often
necessary, thus highlighting the need to improve this automatic classification.
This study involves the creation of a first dataset of images of white blood cells
using FPM that will be described in Section 4.1.1 and the choice of classification
models adapted to this task. This study mainly investigates FPM contribution
by comparing the performances of three neural network models:

• a model exploiting only the intensity (I-CNN)

• a model exploiting only the phase (ϕ-CNN)

• a model exploiting the intensity-phase jointly (I-ϕ-CNN)

to study the differences and similarities in the classification results obtained by
these three configurations and their respective advantages in distinguishing the
different classes of white blood cells.
Furthermore, we extend our analysis by comparing these results with those ob-
tained by a model trained using conventional images provided by a reference
white blood cell classification device. Those images were acquired on the same
thin blood smears of our FPM dataset.

4.1.1 White blood cell FPM dataset

Microscope configuration

The microscope setup is similar to that used in Chapter 3, where the objec-
tive lens was replaced with a 20× objective with a numerical aperture of 0.75.
This configuration uses three wavelengths separately to scan the samples: λ =

625, 525, and 465.

The dataset

This study focuses on patients without hematologic pathology from the inten-
sive care unit. These patients mainly have healthy white blood cells from the 5
classes mentioned earlier but may have some abnormal white blood cells that
rarely appear. The blood smears were prepared with a Sysmex spreader stainer.
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They were separated into two batches, each with a specific purpose: the first
batch was used for training the models, and the second was used to evaluate
generalization performance.
The first batch included 54 thin blood smears, while the second had 75. For
each slide, 60 fields were scanned to cover the area of good spreading, ensur-
ing a minimum of 200 white blood cells per slide, or approximately three blood
cells per field. An operator carefully examined each field to extract white blood
cells centered in 512× 512 pixels images.
Then, for each white blood cell, a reconstruction was carried out for the three
wavelengths in intensity and phase, thus making it possible to create a repre-
sentation including three intensity modalities and three phase modalities, as
illustrated in Figure 4.1 (a). Each modality carries unique information due to
the distinct absorption properties of dyes for each wavelength. The phase im-
ages are also different, which is likely related to Kramer-Kronig relations. These
different modalities provide additional information; for example, the phase in
the red channel reveals the presence of vacuoles, invisible in the other phase’s
images, while the green channel intensity map shows a granulation density not
visible in the other modalities.
In addition to these 6 modalities, the combination of the three intensity chan-
nels is also carried out to provide a color image of the specimen for annotation
by a specialist (See Figure 4.1 (b)).

A hematology expert carefully annotated each image using a classification sys-
tem including the five classes of white blood cells. Additional classes have been
added to exclude blurry images and white blood cells that do belong to abnor-
mal classes to exclude them, ensuring reliable annotations.
After this first labeling step, the annotations were checked and corrected if nec-
essary by the expert, thus guaranteeing the quality and consistency of the an-
notated data. This meticulous annotation process ensured the quality and reli-
ability of the dataset while eliminating problematic elements.

Table 4.1 presents the number of samples used in the training and test datasets.
We notice a strong imbalance in the number of representatives, which reflects
natural imbalances in the human body. The models were trained on Batch 1
using a 75% split for the training and 25% split for the validation and tested on
Batch 2.
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Figure 4.1: (a) Example of a neutrophil polynuclear white blood cell acquired
with FPM in three wavelengths reconstructed according to 6 different modali-
ties (Objective lens 20×0.75); (b) Combination of the three intensity images to
reproduce an image similar to that seen with conventional color camera mi-
croscopy.

Cell Type Batch 1 Batch 2

Neutrophils 8520 (73%) 11378 (72%)

Eosinophils 296 (2%) 294 (2%)

Basophils 56 (Less than 1% ) 93 (Less than 1%)

Lymphocytes 2144 [18%) 2906 (18%)

Monocytes 616 (5%) 1023 (7%)

Total 11632 15694

Table 4.1: White blood cell counts in Batch 1 and Batch 2 collected in FPM white
blood cells dataset.

4.1.2 Architecture choice

Initially, the architecture chosen was MobileNetV1 [50] due to its relatively large
representation capacity compared to its small size, making it suitable to be em-
bedded as part of an automatic scanning and classification system design. How-
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ever, this choice was quickly abandoned because, during the learning process,
the curves presented extreme oscillations, as shown in Figure 4.2.

Figure 4.2: MobileNet architecture learning and accuracy curves showing high
oscillations.

These oscillations may indicate overfitting due to the network’s high modeling
capacity, which explains its poor fit on the validation set at some points. They
can also be due to numerical instability when calculating gradients. Unfortu-
nately, this model does not make it possible to reliably choose an optimal point
based on the validation set.
For this reason, VGG16 [124] architecture was tested but quickly showed signs
of overfitting on the training set. To limit this overfitting, we reduced the num-
ber of free parameters of this architecture by modifying the number of neurons
in the fully connected layers and introducing dropout layers for regularization.
The architecture is detailed in Table 4.2.
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Layer Type Description

Convolution layers

1 Conv2D 64 3x3 filters, ReLU

2 Conv2D 64 3x3 filters, ReLU

3 MaxPooling2D window 2x2

4 Conv2D 128 3x3 filters, ReLU

5 Conv2D 128 3x3 filters, ReLU

6 MaxPooling2D window 2x2

7 Conv2D 256 3x3 filters, ReLU

8 Conv2D 256 3x3 filters, ReLU

9 Conv2D 256 3x3 filters, ReLU

10 MaxPooling2D window 2x2

11 Conv2D 512 3x3 filters, ReLU

12 Conv2D 512 3x3 filters, ReLU

13 Conv2D 512 3x3 filters, ReLU

14 MaxPooling2D window 2x2

15 Conv2D 512 3x3 filters, ReLU

16 Conv2D 512 3x3 filters, ReLU

17 Conv2D 512 3x3 filters, ReLU

18 MaxPooling2D window 2x2

Fully connected layers

19 Dense 500 units, ReLU

20 Dropout rate = 0.5

21 Dense 200 units, ReLU

22 Dropout rate = 0.5

23 Dense 5 units, softmax

Table 4.2: Description of the adapted layers of the VGG16 model.

In the original architecture, the fully connected layers had 4096 neurons each,
representing a high complexity. This number was reduced to 500 for the first
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fully connected layers and 200 for the second connected layers. Two dropout
layers with 50% dropout were introduced for regularization. The last fully con-
nected layer is set to 5 neurons, according to the classification task need. The
models were trained with cross-entropy loss and a learning rate set to 10−4 for
all experiments, with a batch-size equal to 64. The models’ performances are
compared on three metrics :

• Accuracy: This metric measures the overall correctness of the model’s pre-
dictions by comparing the total number of correct predictions to the total
number of samples. It provides a general assessment of the model’s per-
formance across all classes.

• Precision: Precision focuses on the relevance of the model’s positive pre-
dictions within a specific class. It calculates the ratio of true positive pre-
dictions to all positive predictions made by the model for that class. In
other words, precision quantifies how many of the predicted positive sam-
ples are actually relevant.

• Recall: Recall, also known as sensitivity, measures the ability of the model
to identify all relevant instances of a class correctly. It calculates the ratio
of true positive predictions to all actual positive instances in the dataset.
Recall provides insight into how well the model captures all positive cases,
regardless of the number of false positives.

in addition, two other metrics were used, Average Precision (Avg Precision)
that measures the overall precision of a model across multiple classes. It is cal-
culated by averaging the precision values for each class, and Average Recall
(Avg Recall) that quantifies the overall recall of a model across multiple classes.
It is calculated by averaging the recall values for each class.

4.1.3 Results and discussion

Bi-modal information contribution

The performance of the I-ϕ-CNN, I-CNN and ϕ-CNN models were evaluated
for white blood cell classification. The results are presented in the two tables 4.3
and 4.4, where the standard deviations were calculated according to the Gaus-
sian approximation, taking into account the large size of the test set and some
statistical hypothesis and assumptions as explained in [109].
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Model Accuracy Avg. Precision Avg. Recall

I-CNN 96.19% ± 0.001 88.34% 81.44%

ϕ-CNN 94.96% ± 0.001 86.66% 83.88%

I-ϕ-CNN 98.34% ± 0.001 94.66% 93.82%

Table 4.3: Globals models performance metrics.

In Table 4.3, the I-ϕ-CNN model performs best in all measured metrics. Al-
though its accuracy is close to that of the other models, it still shows 2% im-
provement. The fact that accuracy values are near for the models can be at-
tributed partly to the strong representation of the neutrophil class, which all
three models characterize well due to its high number of samples, contributing
significantly to overall accuracy.
However, the difference becomes more notable when looking at average Preci-
sion and average Recall metrics. The I-ϕ-CNN model stands out with an av-
erage precision of 94.66% and a recall of 93.82%, demonstrating its ability to
characterize the classes and effectively separate them distinctly.
The I-CNN and ϕ -CNN models exhibit similar performance levels. However,
when analyzing their average Precision and average Recall, we can see differ-
ences in their ability to characterize and distinguish different classes of white
blood cells.
Comparing these two models, we notice that the I-CNN model demonstrates a
higher average precision, implying that it performs better in separating white
blood cell classes. However, it may encounter difficulties characterizing each
element correctly, as evidenced by its lower average recall. In contrast, the ϕ

-CNN model exhibits a higher average recall, indicating its superior ability to
classy white blood cells. Nevertheless, it may struggle with separating the dif-
ferent classes due to its lower average Precision.
This suggests that the contribution observed by jointly exploiting intensity and
phase is not due to only one of the modalities but to the reinforcement of infor-
mation by exploiting both, which shows an important interest in using infor-
mation from the phase, even in the case of colored objects.
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For a more detailed analysis of the performance of each model, it is necessary
to examine specific metrics for each class, as presented in Table 4.4.

By analyzing the performance for each class, it becomes evident that the I-

Classes
I-ϕ-CNN I-CNN ϕ-CNN

Precision recall Precision recall Precision recall

Basophils 98.64% ± 0.013 81.49% ± 0.042 91.72% ± 0.037 49.91% ± 0.051 88.15% ± 0.037 72.04% ± 0.046

Éosinophiles 86.30% ± 0.018 98.63% ± 0.006 67.71% ± 0.023 92.00% ± 0.016 72.29% ± 0.025 77.21% ± 0.024

Lymphocytes 98.27% ± 0.002 95.96% ± 0.003 95.56% ± 0.004 95.14% ± 0.003 93.83% ± 0.012 90.24% ± 0.012

Monocytes 88.69% ± 0.009 93.63% ± 0.007 89.08% ± 0.010 71.06% ± 0.014 81.97% ± 0.012 81.89% ± 0.012

Neutrophils 99.54% ± 0.0006 99.43% ± 0.0007 97.99% ± 0.001 99.29% ± 0.007 97.05% ± 0.001 97.85% ± 0.001

Table 4.4: Metrics performances of each class.

ϕ-CNN model generally has the best performance among the three evaluated
models. Although the three models present similar performances for the neu-
trophil class, significant differences appear for the other classes where the I-ϕ-
CNN model stands out for its improved performance. In particular, it handles
class imbalances better than the other two models. The small amount of data
in some classes, such as eosinophils (296 images) and basophils (56 images),
further affects the performance of the I-CNN and ϕ-CNN models. The I-CNN
model shows 49.91% Recall for basophils and 67.71% Precision for eosinophils,
while the ϕ-CNN model shows 72.04% Recall for basophils and lower preci-
sion of 72.29% for eosinophils. In contrast, the I-ϕ-CNN model stands out with
higher Recall for eosinophils 98.64% and higher Precision for basophils 81.49%.
This shows that the joint exploitation of intensity and phase when classes are
underrepresented improves performances, even if these performances must be
improved to reach the levels required for clinical use.
The model also improves performance in classes with more representatives,
such as monocytes and lymphocytes. In general, the I-ϕ-CNN model stands out
for its ability to provide both high Precision and high Recall for all white blood
cell classes. It is followed by the ϕ-CNN model, which shows slightly lower
but still strong performance, demonstrating the importance of phase even for
colored samples. In contrast, the I-CNN model generally presents the lowest
performance among the three models evaluated, which is consistent with the
weaknesses observed in conventional microscopy.
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To better visualize our models’ differences, a dimensionality reduction tech-
nique, t-SNE (t-distributed Stochastic Neighbor Embedding) [138], was per-
formed on the images to visualize the feature representations extracted by the
three models. t-SNE allows the data to be projected into a reduced-dimensional
space while preserving the relationships (even non-linear) between the original
points as much as possible. Using this technique, we can visualize the data dis-
tribution and evaluate the separability of classes in the feature space. In this
case, we projected the representative vector of size 200 before the output layer
provided by each model into a two-dimensional space.

(a) t-SNE I-CNN representation. (b) t-SNE ϕ-CNN representation.

(c) t-SNE I-ϕ-CNN representation.

Figure 4.3: t-SNE representation for each model.
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Figure 4.3, the t-SNE for each model is represented. Each point in the graph
represents an image in the dataset, and the colors of the points indicate the cor-
responding class labels. The light gray lines represent the decision boundary
between different data classes in this reduced-dimensional space.
By observing the three representations, we see that the main advantage of the
I-ϕ-CNN model lies in its ability to better separate classes than other models.
Unlike the other two models, we can see the basophil and eosinophil classes,
which are far apart from each other and all the other classes as well.
Additionally, images of the monocyte class are represented as a continuation
of the lymphocyte class for the I-CNN and ϕ-CNN models. This is a common
confusion, for example, among young hematologists. However, in the I-ϕ-CNN
model, it is possible to better separate these two classes by creating more distant
groups with a few border elements.
For the I-CNN and ϕ-CNN models, the linear separators presented fail to dis-
tinguish class boundaries clearly. This indicates that the boundaries between
classes are complex and cannot be summarized as a linear boundary. For the
I-ϕ-CNN model, we can see that the linear separators are sufficient to separate
the classes accurately. This suggests that this model might have a better ability
to learn the distinctive features of each class, thus allowing it to separate them
more efficiently in the latent space, unlike both I-CNN and ϕ-CNN models.

Furthermore, an analysis of the classification results was carried out with the
hematologists; it involved examining all the classification errors made by the
models and their respective images to identify any discernible patterns. This
analysis showed that for the I-ϕ-CNN model, the border elements between
monocytes and lymphocytes, often difficult to classify, are mainly due to a sub-
class, granular lymphocytes, a case of granule lymphocytes. This observation
made the confusion understandable.
Probability analysis showed that, in this case, the model produces shared proba-
bilities of affiliation distributed equally between the two classes of lymphocytes
and monocytes.
The creation of a class of grain lymphocytes could also help resolve this confu-
sion and would constitute an interesting solution to explore in the future.
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Comparaison with existing commercial system

The following work studies the differences between FPM images and conven-
tional images by comparing the results obtained from FPM images to those ob-
tained by a commonly used imaging commercial system.
To carry out this comparison, the blood smears digitized in FPM were digitized
using the Di-60® Cellavision, an automated machine used in a clinical routine
that allows, among other things, the digitization of white blood cells.
Several differences can be noted between the two configurations. While we use
a 20× magnification lens with a numerical aperture of 0.75, the Di-60® uses a
100× magnification lens with a numerical aperture 1.5. Indeed, thanks to the
synthetic numerical aperture mechanism and the configuration of the LEDs cho-
sen, the FPM configuration achieves a numerical aperture of 1.5. In turn, while
preserving a wider field of view in one shot, our device collects a minimum of
3 white blood cells with a high resolution. For the Di-60® device, the numer-
ical aperture 1.5 guarantees high resolution (around 206 nm according to the
Nikon), but the use of high magnification, which in turn considerably reduces
the size of the field of view in one shot and does not allow you to acquire only
one white blood cell at a time.
Furthermore, the Di-60® configuration incorporates a color camera, enabling
direct production of color images containing a single white blood cell with
dimensions of 352×357 pixels. Unfortunately, the device does not allow any
phase imaging or reconstruction. A first visual comparison of the same white
blood cells acquired by the two methods is illustrated in Figure 4.4.
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Figure 4.4: Comparison of FPM intensity images (top) and their equivalent in
Di-60 (bottom) on different white blood cells.

In Figure 4.4, FPM images (top) have the same quality and level of resolution as
their Di-60 equivalents (bottom). FPM demonstrates that it can obtain images
of similar resolution with half the numerical aperture (0.75) and a synthetic nu-
merical aperture mechanism. Additionally, although only the intensity is repre-
sented here, this method provides access to the sample phase.

The Di-60® dataset was acquired and labeled employing an identical protocol
as that used for the FPM dataset; a Di-60-CNN model was trained on a training
dataset containing the same blood smears as those used in the FPM dataset. Al-
though it cannot be guaranteed that the same cells were captured, this discrep-
ancy is insignificant given the minimal variability of white blood cells within a
single healthy patient.
The architectural framework employed for the Di-60-CNN model mirrors the
one used for the FPM dataset and is consistent with the same training proce-
dures. Subsequently, performance metrics were computed for both models and
reported in Table 4.5.
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Classes
I-ϕ-CNN Di-60-CNN

Precision recall Precision recall

Basophils 98.64% ± 0,013 81.49% ± 0,042 100% ± 0,0 51.92% ± 0,06

Éosinophiles 86.30% ± 0,018 98.63% ± 0,006 67.79% ± 0,06 78.43% ± 0,05

Lymphocytes 98.27% ± 0,002 95.96% ± 0,003 95.18% ± 0,006 95.36% ± 0,006

Monocytes 88.69% ± 0,009 93.63% ± 0,007 87.28% ± 0,01 84.39% ± 0,01

Neutrophils 99.54% ± 0,0006 99.43% ± 0,0007 97.74% ± 0,002 98.98% ± 0,003

Table 4.5: Metrics performances of each class.

These results highlight the notable superiority of the I-ϕ-CNN model compared
to the Di-60-CNN, particularly for the basophil, eosinophil, and monocyte classes.
Confusion between monocytes and lymphocytes is significantly more pronounced
in Di-60-CNN, where the model only provides 84% Precision and Recall. When
examining the performance of the models for the basophils and eosinophils.
The I-ϕ-CNN model shows an accuracy of 98.64% , while the Di-60-CNN model
achieves a perfect precision of 100%. However, regarding Recall, the I-ϕ-CNN
model achieves 81%, while the Di-60-CNN model only achieves 51.92%. For
eosinophils, the I-ϕ-CNN model shows superior performance with 86.30% Pre-
cision and 98.63% Recall, while the Di-60® RV-CNN model shows 67.79% lower
Precision and a recall of 78.43%.
This significant difference can be attributed to a problem od data imbalance be-
tween the classes that affects the Di-60-CNN model more, resulting in lower
performance in recognizing and separating these classes.

This study shows that the quantity of information can considerably impact the
performance of the models. Furthermore, this highlights the increased poten-
tial of phase and intensity joint exploitation, particularly in complex contexts,
suggesting that its impact could be even more significant in pathological white
blood cell classification cases.

4.2 Synthetic bi-modal image generation using GAN

The previous classification study demonstrated performance improvement by
combining intensity and phase data in neural networks to classify white blood
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cells. Although the model performs well in classifying the most represented
classes, such as neutrophils and lymphocytes, its accuracy still needs to be im-
proved for less represented classes. Notably, the performance gap can be mainly
observed in the basophil class. To improve this class’s performance, we will
explore the effect of increasing the number of samples. To this end, we will ex-
plore a bimodal GAN. Given the difficulties in implementing and training clas-
sical GANs, such as mode collapse and instability, an innovative approach is
explored: a physics-informed GAN, in which the direct image formation equa-
tions are inserted in the neural formalism. Combined with fine-tuning, this
model can synthesize additional examples that enrich the underrepresented
classes.

4.2.1 Generative Adversarial models principle

Generative modeling [36] is a field of machine learning that aims to generate
new examples that closely resemble the original dataset by identifying patterns
in input data. One promising approach in this field is Generative Adversar-
ial Networks (GANs)[38], which use neural network architectures within deep
learning. GANs involve a new framework for estimating generative models via
an adversarial process, where two models, the generator (G) and the discrimi-
nator (D), are trained together.
The generator takes random noise vector z⃗ as input and generates synthetic data
samples that mimic the data distribution x⃗fake, while the discriminator uses fake
and real data samples x⃗real estimates the probability that a sample came from
the real data rather than G by performing binary classification, Figure 4.5.
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z⃗ Generator x⃗fake

x⃗real Discriminator Real or Fake classification Losses calculation

Figure 4.5: Illustration of a Generative Adversarial Network (GAN) architec-
ture. The figure shows the components of a GAN, including the generator (G),
discriminator (D), and loss calculation. Dashed arrows show backpropagation,
where gradients are propagated backward through both networks during train-
ing.

The core of our approach lies in the adversarial training of the generator and
discriminator performed using losses based on the classification task and prop-
agated through the discriminator and the generator. This is achieved through
the use of a minimax objective function, which we define as:

Loss(D, G) = min
G

max
D

[
E ⃗xreal∼pdata( ⃗xreal)

[log D( ⃗xreal)] + Ez⃗∼pnoise (⃗z)[log(1− D(G(⃗z)))]
]

(4.1)
Where pdata( ⃗xreal) denotes the distribution of real data, and pnoise(⃗z) represents
the distribution of the noise vector z⃗. ~ indicate the belonging fact. Here, D()
and G() denote the discriminator’s and the generator’s output, respectively. E

is the expected value of a function over a probability distribution (Expectation).
The discriminator aims to maximize the objective function using gradient as-
cent, whereas the generator aims to minimize it using gradient descent. The
generator faces convergence and learning issues due to the discriminator’s gra-
dient ascent. This happens because when the generator creates a sample, it is
often classified as fake by the discriminator. The generator wants to learn from
the gradients to fool the discriminator, but they tend to be relatively flat, mak-
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ing it harder for the model to learn. The generator’s objective function is for this
modified as follows:

LG = max
G

Ez⃗∼pnoise (⃗z)[log D(G(⃗z))] (4.2)

with this formulation, the generator aims to maximize the likelihood of the dis-
criminator being wrong rather than minimizing the likelihood of the discrim-
inator being correct. The interplay between the generator and discriminator
drives the iterative training process of GANs, continuously improving the gen-
erator’s ability to produce increasingly realistic outputs. As the competition be-
tween the generator and discriminator intensifies, the GAN converges towards
an equilibrium, where the generator produces synthetic samples indistinguish-
able from real data.
It is important to emphasize that for this interplay to work optimally, the gen-
erator and the discriminator must have equivalent complexity. Indeed, if the
generator is simple compared to the discriminator, it risks easily fooling it. Con-
versely, if the discriminator is very efficient, the generator will need help to
improve and will produce images of limited quality. Adjusting the balance be-
tween the two components constitutes a major challenge in designing effective
GAN models.

The loss formulation presented in equations 4.1 and 4.2 represents the classical
approach commonly used in GAN training. Other cost functions are also used
to improve the stability of GAN models, facilitate convergence, and increase di-
versity. The most widely used cost function is Wasserstein’s loss [9]; the primary
distinction of this loss lies in the fact that the discriminator no longer performs
classification but instead produces a single value using an embedding in latent
space to describe the images.
Unlike traditional GANs, where the discriminator outputs a probability indi-
cating whether the input is real or fake, the Wasserstein GAN (WGAN) frame-
work uses the discriminator to approximate the Wasserstein distance between
the data distribution and the model distribution. This distance measures how
far two probability distributions are from each other. The Weierstrass loss can
be formulated as follows for the generator:

LG = −Ez∼pnoise [D(G(z))] (4.3)
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And for the discriminator:

LD = −Ex∼pdata [D(x)] + Ez∼pnoise [D(G(z))] (4.4)

Other regularization techniques are also commonly used to stabilize the train-
ing of GANs and improve their convergence. Among them, gradient regular-
ization and weight normalization are particularly widespread [72]. The Weier-
strass loss and the regularization technique will be employed in some of the
implemented architecture to promote diversity and stability.

Once the GAN training is done, the trained GAN models are evaluated accord-
ing to a qualitative criterion through visual observation of generated images
and the FID score metric that provides the quantitative evaluation. The Frechet
Inception Distance (FID) is defined by using the Inception V3 model pre-trained
on the ImageNet dataset to produce an embedding for each image, then calcu-
lated as :

FID = ∥µr − µg∥2
2 + Tr(Σr + Σg − 2(ΣrΣg)

1/2)

g and r are the real and synthetic embeddings assumed to be two multivariate
normal distributions, µg and µr are the magnitudes of the vector g and r. Tr
is the trace of the matrix, Σg and Σr are the covariance matrix of the vectors.
The lowest the FID scores, the higher the similarity between the two groups of
images.

4.2.2 Classical GAN approach

FPM dataset has the particularity of containing bimodal intensity and phase
images. The GAN model must respect this property by generating an intensity
and a phase image simultaneously. To this perspective, we propose a first clas-
sic approach. it architecture is illustrated in Figure 4.6.
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Figure 4.6: Classical GAN approaches applied to intensity and phase bimodal
data.

The generator takes random noise as input and produces two channels simul-
taneously representing intensity and phase. The first channel is associated with
the object’s intensity, while the second corresponds to the phase image. The dis-
criminator takes two channels representing intensity and phase generated by
the generator or extracted from the FPM dataset as input. Then, using neural
architecture, the discriminator extracts relevant features from the input images,
which are then used to classify the examples as real or synthetic. The classifi-
cation task is then used to compute losses and to perform backpropagation for
both the generator and discriminator.
In this context, the main challenge is to design a discriminator that adequately
interprets image intensity and phase information of images. In our architecture,
the discriminator is designed to take an image represented by two channels as
input: one channel for the intensity and another for the phase. Using a con-
volutional neural network (CNN) architecture, the model must learn to extract
relevant features from these two channels to adequately encode essential fea-
tures in both intensity and phase and carry out a classification that considers
both. It is important to note that intensity and phase are two types of infor-
mation coming from different representation domains (absorption and optical
path). Despite their correlation, they have different value ranges and distribu-
tions, even after normalization. This divergence in representation spaces can
make the task of generating bimodal images (intensity and phase) particularly
complex.
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Let us recall that our goal is to generate intensity and phase images for the ba-
sophil class. Due to the limited number of samples available for this class, we
will initiate the GAN training process using a similar class: the neutrophils.
Subsequently, we will refine the model using a fine-tuning approach targeting
the basophil class. Note that the proposed approaches only focus on a single
wavelength (green channel).

Neutrophil GAN

A collection of 8520 bimodal images (comprising both intensity and phase) of
256 × 256 pixels, with neutrophil blood cells positioned at the center used to
train the model.
The choice of generator and discriminator architectures was made empirically.
This empirical research also focused on some hyper-parameters, such as batch-
size and learning rates. The objective was to optimize the stability of the model
by guaranteeing appropriate complexity for the optimization of the adversar-
ial game and to optimize the model’s performance. The generator architecture
was chosen inspired by the architecture of StyleGAN2 [57]. It first introduces a
mapping network, detailed in Table 4.6, that aims to transform the initial ran-
dom noise vector by projecting it into a specific feature space, allowing more
meaningful control over the generated images, which facilitates the manipula-
tion of particular attributes of the generated images, leading to more diverse
and realistic results. The generator uses the resulting vector in a series of gener-
ator blocks to generate the final image incrementally. Each generator block uses
a combination of convolution layers, batch normalization, and leaky ReLUs to
generate increasingly detailed features. Finally, a convolution layer with tanh
activation produces the final image with Table 4.7.
The architecture of the generator is complex. This choice was made during the
architecture research phase, where smaller generators (fewer layers and fewer
filters, no mapping network...) were used, but the generated images needed
more resolution and details, and only one of the channels was optimized (ei-
ther the intensity or the phase).
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Layer (Type) Output Shape Parameters number

Input (InputLayer) (None, 128) 0

Dense (Dense) (None, 128) 16512

LeakyReLU (LeakyReLU) (None, 128) 0

Dense (Dense) (None, 128) 16512

LeakyReLU (LeakyReLU) (None, 128) 0

Dense (Dense) (None, 128) 16512

LeakyReLU (LeakyReLU) (None, 128) 0

Dense (Dense) (None, 128) 16512

LeakyReLU (LeakyReLU) (None, 128) 0

Table 4.6: Mapping network architecture.
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Layer (Type) Output Shape Parameters number

Input (InputLayer) (None, 128) 0

Dense (Dense) (None, 131072) 16777216

BatchNormalization (BatchNormalization) (None, 131072) 524288

LeakyReLU (LeakyReLU) (None, 131072) 0

Reshape (Reshape) (None, 16, 16, 512) 0

Conv2D (Conv2D) (None, 16, 16, 256) 3276800

BatchNormalization (BatchNormalization) (None, 16, 16, 256) 1024

LeakyReLU (LeakyReLU) (None, 16, 16, 256) 0

UpSampling2D (UpSampling2D) (None, 32, 32, 256) 0

Conv2D (Conv2D) (None, 32, 32, 128) 819200

BatchNormalization (BatchNormalization) (None, 32, 32, 128) 512

LeakyReLU (LeakyReLU) (None, 32, 32, 128) 0

UpSampling2D (UpSampling2D) (None, 64, 64, 128) 0

Conv2D (Conv2D) (None, 64, 64, 64) 204800

BatchNormalization (BatchNormalization) (None, 64, 64, 64) 256

LeakyReLU (LeakyReLU) (None, 64, 64, 64) 0

UpSampling2D (UpSampling2D) (None, 128, 128, 64) 0

Conv2D (Conv2D) (None, 128, 128, 64) 102400

BatchNormalization (BatchNormalization) (None, 128, 128, 64) 256

LeakyReLU (LeakyReLU) (None, 128, 128, 64) 0

UpSampling2D (UpSampling2D) (None, 256, 256, 64) 0

Conv2D (Conv2D) (None, 256, 256, 2) 3200

Table 4.7: Generator detailed architecture for neutrophils generation using clas-
sique GAN approach.

This generator was trained along with the discriminator described in Table 4.8
using batch-size fixed to 4, learning rate fixed to 2× 10−4 and 4× 10−4 for the
discriminator and the generator respectively. The complete model was trained
for 1000 iterations, each generating 10000 images. The best model selection was
based on the FID score calculated separately for intensity and phase. The strat-
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egy adopted was to choose the model offering the best balance between the
minimization of the FID for the intensity and that of the FID for the phase. In
practice, it turned out that the model that minimizes the FID for intensity also
minimizes the FID for phase. The model was trained using a Weierstrass loss,
as the initial version was observed to produce no variability.

Layer (Type) Output Shape Parameters number

InputLayer (InputLayer) (None, 128, 128, 2) 0

Conv2D (Conv2D) (None, 64, 64, 128) 2432

LeakyReLU (LeakyReLU) (None, 64, 64, 128) 0

Conv2D (Conv2D) (None, 32, 32, 128) 147584

BatchNormalization (BatchNorm) (None, 32, 32, 128) 512

LeakyReLU (LeakyReLU) (None, 32, 32, 128) 0

Conv2D (Conv2D) (None, 16, 16, 256) 295168

BatchNormalization (BatchNorm) (None, 16, 16, 256) 1024

LeakyReLU (LeakyReLU) (None, 16, 16, 256) 0

Conv2D (Conv2D) (None, 8, 8, 256) 590080

BatchNormalization (BatchNorm) (None, 8, 8, 256) 1024

LeakyReLU (LeakyReLU) (None, 8, 8, 256) 0

GlobalAveragePooling2D (None, 256) 0

Dense (Dense) (None, 1) 257

Table 4.8: Discriminator detailed architecture for neutrophils generation using
classique GAN approach.
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Examples of images produced by this model in intensity and phase were com-
pared to real images to assess the generation quality in Figure 4.7.

Figure 4.7: Illustration of different neutrophils. (a) shows images of neutrophils
that were randomly extracted from the FPM database in intensity and phase; (b)
shows images of neutrophils that were randomly extracted from a set of 10,000
images generated by the GAN model.

In Figure 4.7, we observe a random sample of neutrophils exhibiting high vari-
ability of multilobed nuclei, coated in cytoplasm containing fine granules, shown
in the first two rows in intensity and phase. The second row represents neu-
trophil images generated by the randomly extracted GAN model. These gen-
erated images have several positive aspects. First, the resolution of the images
generated is quite satisfactory, allowing details such as granules to be observed.
Furthermore, the overall structure of the images shows a multilobed organi-
zation with fine granulations consistent with the expected data characteristics.
However, despite these positive aspects, certain weaknesses persist. We indeed
observe a certain repetition in the generated images, testifying to a lack of vari-
ability in the results. Indeed, the images of neutrophils presented in columns 2
and 3 are identical, as are those in columns 4 and 5, which are very similar. The
same goes for the three neutrophils in columns 6, 7 and 8. Of the ten examples
shown here, only six images are unique. Even after adding the Weierstrass loss
in addition to the mapping network, the problem persists. Although this loss
helps introduce some diversity into the generated samples, it fails to resolve it
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completely.

This model faces a challenge called mode collapse, in which the generator tends
to produce a limited set of outputs, often repeating the same patterns or features
across different samples. Mode collapse occurs when the generator discovers a
strategy to effectively fool the discriminator by producing a set of very realis-
tic but little varied samples. In such situations, the discriminator may need to
be more confident in distinguishing real samples from fakes, leading to gener-
ator stagnation. The latter then finds itself unable to explore the complete set
of possible data modes, limiting itself to a restricted subset. More formally, the
generator fails to capture the diversity inherent in the data distribution, harm-
ing the generated samples’ quality and variety.
This problem is well known in the literature of GAN models, for which sev-
eral studies have proposed solutions such as the Wasserstein loss or even ap-
proaches based on regularization[119, 13, 100, 72]. Despite these advances, col-
lapse mode can still occur under certain conditions. In the case of the studied
bimodal GAN model, the fact that it generates two distinct outputs (intensity
and phase) can aggravate the problem of mode collapse due to the complexity of
the task. Generating two distinct outputs simultaneously can place additional
constraints on the generator network, making it more challenging to explore the
full diversity of the data distribution. This problem has also been observed in
other applications seeking to produce multiple outputs, such as magnetic res-
onance imaging (MRI) [68], where complex tasks can make limiting collapse
mode particularly difficult [120, 121, 62, 20].

Basophils GAN

Despite the persistent collapse mode when training GANs on the neutrophil
class, an attempt was made to synthesize basophil images to improve the ba-
sophil class. Unlike the neutrophil class, which had a larger dataset, the ba-
sophil dataset only included 54 images for training. Our attempts to generate
basophils from scratch completely failed. The similarity between basophils and
neutrophils was explored through a fine-tuning process to address this chal-
lenge. These two types of white blood cells are characterized by cytoplasmic
granules visible in their cytoplasms. Additionally, basophils and neutrophils
have a lobed nucleus, although that of neutrophils. We trained the neutrophil
GAN and used fine-tuning approaches to adjust the parameters of the first
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model so that we could generate basophils using the same architecture.
Compared to real images, the images produced are represented in Figure 4.8.

Figure 4.8: Illustration of different basophils. (a) shows images of basophils
that were randomly extracted from the FPM database in intensity and phase;
(b) shows images of basophils that were randomly extracted from a set of 1000
images generated by the GAN model.

We see that the images remain generally faithful to the representation of real
images of basophils. However, we also see that the outlines of the nuclei are not
as well defined as in real images of basophils. However, it is also evident that
the model is more affected by a severe collapse mode. The images represented
have minimal variability, and only two main forms are produced. It can be ob-
served that the basophils generated in columns 3, 4, 6, 9 and 10 are the same, as
are the images in columns 2, 5, 7 and 8. Only 3 different patterns are observed
over the 10 representations.

A classification-based approach is employed to assess the generative model of
basophils and the quality of the generated images beyond a visual inspection.
The performance of a model trained exclusively on a dataset containing 54 real
basophils is compared to that of a model trained on a mixture of these same real
basophils and 1000 basophils generated by a GAN. For each model, 75% of the
data was used for training and 25% for validation. The test dataset contains 93
images of real basophils in both cases. The results are summarized in Table 4.9.
The classification results show no improvement despite the augmentation pro-
tocol. The models with data augmentation even get the worst performances on
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Classes
Model without augmentation Model with augmentation

Precision Recall Precision Recall

Basophils 94.00% 99.66% 92.59% 99.52%

Eosinophils 98.31% 96.70% 97.87% 95.50%

Lymphocytes 99.07% 98.38% 98.70% 97.35%

Monocytes 96.73% 97.24% 92.25% 96.47 %

Neutrophils 99.69% 99.00% 99.70% 99.78%

Table 4.9: Performance metrics for each class.

the other classes. This may be caused by the augmentation that added many el-
ements that were too similar, leading the model to overfit these specific training
elements. As a result, the model lost its ability to generalize effectively over the
test base. In agreement with the state of the art, the complexity of our problem,
mainly due to the bimodal images, does not allow us to produce effective GAN
models. This type of approach does not provide any performance improvement
for under-represented classes.

4.2.3 Physics-informed GAN approach

We performed multiple experiments to adjust and optimize the architecture and
hyper-parameters with the aim of escaping the mode collapse phenomenon.
This this task was a significant challenge, given the number of possible combi-
nations of the architectures and proposals for different possible cost functions.
The results obtained with conventional GAN for producing joint intensity-phase
bimodal images remain unsatisfactory, which is in line with the known chal-
lenges associated with multimodal GANs, as reported in the literature.
In our case, bimodal images are obtained through a reconstruction process from
a physical model. Given this particularity, we propose an innovative GAN ap-
proach.
This new approach aims to maintain a consistent link between intensity and
phase images throughout the generation process. To do this, we rely on physics-
inspired neural networks (PINNs for Physics-Inspired Neural Networks). The
idea is to develop a GAN architecture that integrates these physical principles

133



to better capture the relationship between the two image modalities. This ap-
proach is detailed below.

Figure 4.9: Physics-informed GAN approaches applied to intensity and phase
bimodal data.

The main concept is shown in Figure 4.9. The process begins with the gener-
ator, which takes random noise as input and produces two distinct channels
simultaneously representing the intensity and phase of the sample. The first
channel encodes the intensity of the simulated object, while the second chan-
nel corresponds to the spatial distribution of the phase, as in classical GAN.
This generated intensity and phase data is then used to feed an imaging model,
which uses the equations detailed in Chapter 3 to produce a stack of raw im-
ages that simulate what the FPM microscope would produce as raw images for
a specific object under a defined configuration.
The discriminator then comes into play, taking as input multi-channel data rep-
resenting the raw images produced by the imaging models. These images are
constructed either from intensity and phase data produced by the generator or
from intensities and phases extracted from the FPM dataset. Using its neural
architecture, the discriminator extracts relevant features from input images and
then uses them to classify examples as real (from the real dataset) or synthetic
(generated by the generator). The classification task is then used to calculate
losses and perform backpropagation, thus making it possible to adjust the gen-
erator and discriminator parameters to improve the quality of the synthetic im-
ages produced. This approach shifts the learning paradigm of the GAN.
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Instead of focusing on recognizing the real intensity and phase of the synthetics,
this model focuses on optimization from the stack of raw images, establishing
a link between the intensity and the phase generated, which could be assimi-
lated into a regularization. Indeed, the images produced by this physical model
are only intensity images and are represented in the same space with the same
range of values, which simplifies feature extraction.
We first trained a neutrophil GAN with this model, which we will use as an
initialization for basophil GAN later in this chapter.

Neutrophil GAN

The model was optimized using the same architecture’s search method as in the
previous approach with the classical GAN on neutrophils. The generator archi-
tecture also starts with a mapping network followed by a CNN architecture as
detailed in Table 4.10.
This differs from the classic GAN approach; the discriminator does not process
directly the generator output. In our case, it is preceded by an imaging model
that generates a stack of 13 LEDs containing 128× 128 images corresponding to
what the FPM microscope would capture of the observed object. The discrim-
inator takes this stack of images as input, as input and classifies them as real
or synthetic using CNN architecture. The precise details of the discriminator
architecture are provided in Table 4.11.
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Layer (Type) Output size Parameters number

Input (Input) (latent_dim,) -

Dense (Dense) 128 16512

LeakyReLU (Activation) 128 0

Dense (Dense) 128 16512

LeakyReLU (Activation) 128 0

Dense (Dense) 128 16512

LeakyReLU (Activation) 128 0

Dense (Dense) 128 16512

LeakyReLU (Activation) 128 0

Reshape (Reshape) (16, 16, 512) 0

Conv2D (Convolution2D) (16, 16, 256) 1179648

BatchNormalization (BatchNorm) (16, 16, 256) 1024

LeakyReLU (Activation) (16, 16, 256) 0

UpSampling2D (UpSampling2D) (32, 32, 256) 0

Conv2D (Convolution2D) (32, 32, 128) 294912

BatchNormalization (BatchNorm) (32, 32, 128) 512

LeakyReLU (Activation) (32, 32, 128) 0

UpSampling2D (UpSampling2D) (64, 64, 128) 0

Conv2D (Convolution2D) (64, 64, 64) 73728

BatchNormalization (BatchNorm) (64, 64, 64) 256

LeakyReLU (Activation) (64, 64, 64) 0

UpSampling2D (UpSampling2D) (128, 128, 64) 0

Conv2D (Convolution2D) (128, 128, 32) 18432

BatchNormalization(BatchNorm) (128, 128, 32) 128

LeakyReLU (Activation) (128, 128, 32) 0

UpSampling2D (UpSampling2D) (256, 256, 32) 0

Conv2D (Convolution2D) (256, 256, 2) 576

Activation (Activation) (256, 256, 2) 0

Table 4.10: Physics-inspired generator starting with a mapping network fol-
lowed by a CNN architecture.
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Layer (Type) Output Output size

InputLayer (InputLayer) - (128, 128, 13)

Conv2D (Conv2D) (None, 64, 64, 32) 832

LeakyReLU (LeakyReLU) (None, 64, 64, 32) 0

Conv2D (Conv2D) (None, 32, 32, 64) 51264

BatchNormalization(BatchNorm) (None, 32, 32, 64) 256

LeakyReLU (LeakyReLU) (None, 32, 32, 64) 0

Conv2D (Conv2D) (None, 16, 16, 128) 204928

BatchNormalization(BatchNorm) (None, 16, 16, 128) 512

LeakyReLU (LeakyReLU) (None, 16, 16, 128) 0

Dense (Dense) (None, 1) 8193

Table 4.11: Detailed architecture of discriminator of the physics-inspired GAN.

The physics informed GAN was trained using batch-size fixed to 2, learning
rate fixed to 4× 10−4 for both the discriminator and the generator. The com-
plete model was trained for 1000 iterations, and each iteration generated 10000
images. The best model was chosen according to the minimum FID score on
phase and intensity. This model generated the images shown in Figure 4.10.

Figure 4.10: Generated neutrophils random sample from physique-informed
GAN.

The images produced by the physics-informed model exhibit an overall multi-
lobed structure with fine granulations, thus approximating the morphological
characteristics observed in images of real neutrophils (see Figure 4.7). Further-
more, these images exhibit remarkable diversity and a striking resemblance to
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authentic images, marking a marked improvement over previous results ob-
tained with conventional GAN.

For a quantitative evaluation of the performance of classical GAN and the physics-
informed GAN, the FID score was calculated over 8520 samples for real and
generated images using both models. The results obtained are summarized in
Table 4.12

Model Intensity (FID) Phase (FID)

Classical model 87.84 63.43

Physics informed model 84.90 45.69

Table 4.12: Quantitative comparison between the classical GAN and physic-
informed GAN on neutrophils.

The physics-informed model displays lower FID scores for both intensity and
phase, thus reflecting a substantial improvement in image generation quality
compared to the classical model. Furthermore, this significant improvement in
fidelity in phase reproduction could be attributed to better consistency between
the generated intensity and phase. This could be justified by directly incorpo-
rating images combining intensity and phase into the discrimination process
rather than extracting features separately, as is classical in classical approaches.
The improvements observed with the physics-informed model can be attributed
to several features inherent to its architecture. First, by integrating physical
knowledge about the relationship between image intensity and phase, the model
is better equipped to regularize image generation by ensuring consistency be-
tween these two aspects. Additionally, the physics-informed model’s discrim-
inator is designed to consider multiple representations of the images, allow-
ing a more accurate assessment of their realism and consistency with real im-
ages. This approach facilitates learning more subtle and complex data features,
thereby improving differentiation between real and synthetic images.

Basophil GAN

A GAN model for basophil augmentation was trained to evaluate the model’s
effectiveness in increasing minority classes. This model is trained using the
physics-inspired architecture used for neutrophils. This architecture exploits
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the structural similarity between basophils and neutrophils, similar to the ap-
proach adopted in the case of classic GAN; the neutrophil GAN model was used
as an initialization for basophils GAN, and this model was then fine-tuned us-
ing the 54 available images. The best model was chosen according to the FID
score. Illustrations of randomly selected images generated by this model are
shown in Figure 4.11.

Figure 4.11: Generated basophils random samples from physics-informed
GAN.

Physics-informed GAN demonstrated promising performance in basophil im-
age generation. The generated images present appreciable diversity and resolu-
tion, which allows a faithful representation of the morphological characteristics
of basophils. More precisely, we observe that the nuclei contours are more de-
fined and the granules are clearly defined. Furthermore, this GAN effectively
reproduces the original distribution of basophils, strengthening its ability to
generate synthetic data consistent with real samples. The fine-tuning strategy
allowed us to learn from a sample as small as 54 representatives to generate ba-
sophils.

Subsequently, a second evaluation of the basophil model was performed using
a classification task. For each model, 75% of the data was used for training and
25% for validation. The tests were conducted only on real data, with an identical
test set for both models. We performed 50 initializations for the model without
GAN augmentation and 50 initializations for the model with GAN augmenta-
tion, where in each iteration, 100 images were randomly selected from the GAN
model. The exploratory architecture adopted was that of a MobileNet, chosen
for its superior performance in five-class classification.
The results show that augmenting basophil data using a GAN significantly
impacts classification accuracy. The model with augmentation shows signifi-
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Classes
Model without augmentation Model with augmentation

Precision Recall Precision Recall

Basophils 94.00% ± 0.024% 99.66% ± 0.009% 99.37% ± 0.002% 99.78% ± 0.002%

Eosinophils 98.31% ± 0.013% 96.70% ± 0.013% 96.62% ± 0.026% 97.73% ± 0.01%

Lymphocytes 99.07% ± 0.003% 98.38% ± 0.002% 99.24% ± 0.005% 98.98% ± 0.005%

Monocytes 96.73% ± 0.013% 97.24% ± 0.016% 97.52% ± 0.010% 97.96% ± 0.015%

Neutrophils 99.69% ± 0.001% 99.00% ± 0.001% 99.86% ± 0.0007% 99.85% ± 0.001%

Table 4.13: Performance metrics for each class.

cantly higher accuracy for basophils compared to the model without augmen-
tation. Specifically, the model without augmentation achieves an accuracy of
94.00% with a standard deviation of 0.024, while the model with augmentation
achieves a remarkably improved accuracy of 99.37% with a standard deviation
of 0.002. This substantial increase in accuracy, of approximately 5%, indicates
that adding augmented data has significantly enhanced the model’s ability to
classify basophils correctly.
The physics-informed GAN approach stands out for its ability to improve the
variability of the GAN while limiting the collapse mode phenomenon. This
innovative methodology generates images that complement underrepresented
classes, such as basophils, in this study, significantly improving classification
performance. This combination highlights the importance of physics-informed
GANs combined with the fine-tuning approach to limit the challenges of blood
cell classification.

4.3 Conclusion

The integration of FPM phase and intensity information demonstrated remark-
able potential in classifying white blood cells from thin-stained blood smears,
which was the proof of concept presented Chapter 3. Specifically, by exploit-
ing joint intensity phase information, the models demonstrated superior perfor-
mance in accurately distinguishing distinct leukocyte subtypes. This improve-
ment is particularly notable for underrepresented classes.
Comparative analysis with conventional imaging methods highlights the ad-
vantages of FPM, Indeed, the integration of phase imaging alongside intensity
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imaging has proven to be essential, improving diagnostic capabilities and out-
performing traditional methods like the Di-60-CNN model.
WBC classification faces the question of class imbalance and a limited amount
of data. Generative Adversarial Networks (GANs) are generally used to ad-
dress these issues. Generating FPM images requires synthesizing bimodal im-
ages. Our trials to use classical GAN to this end came up against the problem of
mode collapse, limiting the variability and usefulness of the generated samples.
We, therefore, introduced an innovative approach, a Physics-Informed GAN, to
synthesize new FPM bimodal images, improving the diversity of generated im-
ages and limiting the impact of the mode collapse problem encountered with
classical GANs. This corresponds to an essential advance in the field thanks to
an efficient regularization obtained by introducing the image formation model
in the loss functions. This model is associated with an innovative strategy for
fine-tuning GANs. This combination demonstrated its ability to complete mi-
nority classes even when only a few samples were available for learning the
GAN, as in the basophil class.
This approach constitutes a first step that must be expanded to encompass the
generation of three wavelengths at once. Addressing challenges such as main-
taining balance and ensuring coherence among the different wavelengths still
needs to be discussed.
An article is currently being prepared for the publication of this work.
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In previous chapters, the value of FPM microscopy for blood cell classification
has been explored, demonstrating its potential for two distinct applications. By
exploiting bimodality, FPM significantly improved model performance, high-
lighting a synergy between intensity and phase. However, to move to an oper-
ational system, an overall optimization of the workflow is necessary.
This chapter, therefore, proposes some studies for optimizing the system along
two main axes. First, the focus is put on optimizing the bimodel information ex-
ploitation in DNN. Although bimodal information revealed a significant gain
in performance, how to fully exploit its potential in image processing models
remains. Second, optimizing the microscope’s optical configuration, particu-
larly the lens choice, is discussed. The objective is to find the best compromise
between the size of the field of view, the resolution and the classification per-
formance. This approach combines experimental data and an optical image
formation model to predict the observation of samples and studies the model’s
performance on these observations.
This approach to optimizing the system by modeling from experimental data
is illustrated through a specific application: the detection of malaria. However,
the principles and methods presented apply to any microscopy application re-
quiring improved field of view and detection performance.

5.1 Exploitation of the bi-modal FPM information
through complex-valued neural networks

FPM provides access to bi-modal data by reconstructing both intensity and
phase information.
The most classic approach in neural networks considers these two images as
independent information channels. Indeed, they represent two distinct physi-
cal parameters resulting from the light-matter interaction. Typically, one image
encodes the absorption parameters (intensity) while the other represents the
optical path (phase). In this context, it is common to apply classical real-valued
convolutions to independently extract the relevant information from each im-
age and then merge them across the different layers of the network.
However, the acquired bi-modal images can also be considered as the compo-
nents of a complex-valued matrix called a transfer matrix. This matrix is closely
linked to the complex electromagnetic field of the observed sample. With this
in mind, using complex-valued convolutions becomes a fair processing option.
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Inspired by complex filtering in physics, which has proven to reveal details (for
example, in dark-field imaging) [144], the integration of complex-valued con-
volutions in neural networks makes it possible to simultaneously extract infor-
mation from both modalities thanks to their complex representation. This ap-
proach could provide an advantage to the feature extraction stage and improve
performance. Complex-valued convolution falls under the domain of complex-
valued neural networks.

5.1.1 State of the art of complex-valued neural networks

Complex-valued neural networks (CVNNs) are a type of neural network archi-
tecture that processes data and parameters using complex numbers, represent-
ing amplitude and phase information. Unlike traditional neural networks that
only handle real numbers, CVNNs leverage complex numbers to encode addi-
tional information about the data.
This section aims to provide a comprehensive overview of CVNNs found in the
literature. It explores the theoretical foundations, practical applications, and
limitations of CVNNs

Theoretical Foundations of Complex Neural Networks

The literature has extensively examined the theoretical foundations of CVNNs,
covering both implementation and theoretical aspects. For instance, [48, 47]
aimed to showcase the primary benefits of CVNNs, namely their capacity to
control both phase rotation and amplitude. This feature enables a reduction
in the degrees of freedom required for learning when compared to real-valued
networks. As a result, CVNNs are particularly well-suited for applications that
involve wave information processing.
Furthermore, [21] presents proof of the approximation theorem for complex-
valued neural networks. Similarly, [135] investigates the blocks comprising
real-valued neural networks and their counterparts in CVNNs. Mathematical
and empirical studies have been conducted on back-propagation, cost function
selection, and activation functions for this type of network in [65, 28, 16].

Applications of Complex Neural Networks

CVNNs have been implemented in various applications across diverse fields,
showcasing their versatility and efficacy in addressing a wide range of complex
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problems. We will highlight some of these applications and what they have
demonstrated.
Regarding MRI data, [140] studied CVNNs for MRI fingerprinting, showing
that these networks outperform real-valued models in classifying tissue param-
eters. Additionally, [149] presented a comprehensive complex-valued convolu-
tional neural network for synthetic aperture radar (SAR) target classification. By
avoiding the complex pooling operation and preventing overfitting, their model
improved the average accuracy compared to equivalent real-valued models.
Moreover, [14] explored the effectiveness of CVNNs in classifying non-circular
complex data, indicating that CVNNs had better accuracy and were more resis-
tant to overfitting compared to real-valued models.
In the field of hyperspectral image processing, [4] proposed a complex neural
network architecture to improve the spatial resolution of images. Based on fre-
quency analysis, their approach overcame spectral distortions and improved
the quality of hyperspectral images. For medical ultrasound imaging, [74] de-
veloped an innovative method using complex ultrasound signals with complex
weights to improve image quality. Their fully complex neural network model
demonstrated significant improvement in the resolution and contrast of ultra-
sound images.
In the context of radar target classification in interferometric synthetic aperture
(InSAR) data, [127] developed a complex adaptive convolutional neural net-
work capable of accurately distinguishing different terrain shapes. Their model
demonstrated a remarkable ability to identify slopes, plains, and even geologi-
cal features such as small volcanoes.
In these fields, where phase information is obtained directly from a measure,
CVNNs exhibit smaller errors and better generalization abilities than their real-
valued counterparts. However, CVNNs have yet to be applied to classify bi-
modal intensity-phase images produced by FPM microscopy, where phase re-
sults from computational reconstruction rather than a direct measure.
Moreover, while CVNNs have been primarily utilized in tasks such as regres-
sion and classification, they have yet to be employed in detection tasks. This
highlights the potential for further exploration in leveraging CVNNs for such
applications.
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5.1.2 Complex-valued layers

In complex-valued convolutional neural networks, real-valued layers need to
be substituted with complex-valued layers. This is done by representing com-
plex data using its real and imaginary parts, which enables the application of
this type of filtering using standard neural network implementations.
However, this filtering changes the network’s operations, including activation
functions and other aspects. The following section details the differences in im-
plementing real versus complex convolution in CNN.

Convolution layers

One of the key operations in CNNs is convolution. Real-valued convolution is
used to extract meaningful features from the input data while preserving the
spatial relationships and patterns present in the data.
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Figure 5.1: Schematic representation of the filtering operation in a real-valued
implementation (a) versus a complex-valued one (b).

Figure 5.1 (a) illustrates the principle of real-valued convolution when applied
to our case; each component of the input image, here intensity and phase, is pro-
cessed independently by its corresponding kernels. The intensity component is
convoluted with intensity kernels, and the phase component is convoluted with
phase kernels. In this way, distinct characteristics are extracted for each channel
individually.
However, after the individual convolutions, the resulting filtered images are
mixed to form the final output, where the corresponding pixel values of the
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different filtered images are added together to create a single output channel.
In this manner, the neural network aggregates both information adaptively, de-
pending on the task.
In other words, the two physical processes in the system are treated as separate
channels during the convolution process, allowing specific features to be ex-
tracted independently from each channel. This independence ensures that the
unique information from both processes is preserved and adaptively merged.
As a result, the final output benefits from the complementary nature of the two
independent physical processes.
While real-valued convolutions operate on real numbers, complex convolutions
consider inputs as complex numbers. Complex convolutions use complex num-
bers as coefficients in the filters to jointly extract features from amplitude and
phase.
Since standard deep-learning libraries can natively only handle real numbers,
some adaptation in the implementation of the convolution block of the network
is required, as depicted in Figure 5.1 (b). Complex numbers are represented
as pairs of real numbers (real and imaginary parts), so the operation may be
adapted to the existing implementations (Tensorflow, PyTorch) as described be-
low. The idea is to introduce the complex domain operations in the formalism
usually exploited for real-valued convolution. The changes will, therefore, con-
cern the representation of the filter weights and the input by using a bi-modal
(real, imaginary) representation and redefining the convolution operation.
More precisely, one can define the complex convolution using only real val-
ues while considering the particularities of the four arithmetic operations. The
complex-valued input M is written as M = (MR + iMI). The complex convo-
lution filter K is given by K = (KR + iKI). This is equivalent to defining two
real-valued filters, where one represents the real part and the other the imagi-
nary part of the complex filter (See Figure 5.1). The convolution of M by K is
written:

K ∗M = (MR + iMI) ∗ (KR + iKI)

= (MR ∗ KR −MI ∗ KI) + i(MR ∗ KI + MI ∗ KR)
(5.1)

A tensorial representation can be given by:[
R(M ∗ K)

I(M ∗ K)

]
=

[
KR −KI

KI KR

] [
MR

MI

]
(5.2)
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Activation fonction

Similarly, activation functions that introduce non-linearity must be adapted to
complex-valued data. The usual functions are inappropriate due to their re-
liance on real number operations, specifically the maximum function (max).
One such example is the rectified linear unit (ReLU). The max function cannot
be straightforwardly extended to complex numbers. The other activation func-
tions are also unsuitable for complex numbers; Sigmoid or Tanh have singular-
ities for some complex numbers values (iπ(2N − 1)). As a result, alternative
activation functions have been developed that are more suitable for complex-
valued data.
Several choices have been made in the literature to design activation functions
adapted to learning from complex data [28]. One of them, defined as the ex-
tended version of ReLU for complex-valued data, called CReLU, has been pro-
posed and tested in [135], which reports that CReLU is giving the best perfor-
mances in comparison to other functions like Sigmoid that seems unstable.
The complex activation CReLU applies The complex activation CReLU applies
separate ReLU on both the real and the imaginary part of a neuron, i.e.:

CReLU(z) = ReLU(R(z)) + iReLU(I(z)) (5.3)

Where R(.) and I(.) are the real and the imaginary parts, respectively.
This activation function will be used in our complex-valued architecture. This
function allows the cancellation separately (or jointly, when both real and imag-
inary parts are negative) of the real and imaginary parts when they are negative
and preserves only the most relevant extracted information.

Pooling layers

Adapting the pooling operation to suit CVNNs represents another transforma-
tion that must be made. In CNNs, the pooling operation is crucial in retaining
salient features by downsampling the feature maps. Typically, max pooling is
the preferred approach in CNNs due to its ability to ensure numerical stability
during training and facilitate a reduction in feature map dimensions. However,
this operation poses challenges when applied to complex-valued data, as it is
not inherently defined in this domain.
A plausible solution involves applying max pooling separately to the real and
imaginary channels of the complex-valued data. While this approach maintains
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numerical stability, it disregards the mathematical correlation between the real
and imaginary components, potentially leading to suboptimal performance in
feature extraction. Alternatively, an average pooling operation emerges as a
viable solution for CVNNs, as it is well-defined within the complex domain,
thereby preserving the integrity of complex-valued data and ensuring efficient
feature extraction processes. Therefore, in our CVNN implementations, we opt
for average pooling as a suitable alternative to max pooling, ensuring compat-
ibility with complex-valued data while maintaining effective feature extraction
capabilities.

5.1.3 Experimental Evaluation

Dataset

The dataset referenced in this chapter is the same as the one utilized in Chap-
ter 3, Section 3.3.1. The dataset comprises thin blood smears obtained from nine
patients and scanned through the FPM microscope, producing 2216 bi-modal
intensity-phase images, each measuring 896× 896 pixels. In total, the dataset
contains 418389 healthy cells and 65140 infected cells.

Implementation Design

The study of the most adapted formalism for the joint exploration of intensity
and phase images derived from FPM reconstruction involves an analysis uti-
lizing both real and complex-valued representations within the framework of
Faster R-CNN; this architecture has been described in Chapter 3, Section 3.3.2
for real-valued formalism. The complex-valued Faster-RCNN is obtained from
the real-valued architecture by replacing the convolutions in the shared branch
(Module (a)) with complex-valued convolutions, changing the activation func-
tion to CReLU and average pooling as described in Section 5.1.2. To ensure a
fair comparison between the models, the number of filters for each convolution
in the complex-valued version was fixed to half its number in the real-valued
version. This was done because each filter in the complex-valued version in-
cludes real and imaginary representant parts. The objective remained the same.
First, localize the red blood cells within these images, and second, classify them
into distinct categories, namely parasites or healthy cells.
Two Faster R-CNN models were implemented for Plasmodium Falciparum para-
site detection.
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• A classical real-valued Faster-RCNN using intensity and phase (I/ϕ-RV);

• A complex-valued convolution Faster-RCNN using intensity and phase
(I/ϕ-CV).

A hyper-parameter search was carried out for complex-valued architectures in
the same way as for real-valued architecture described in Chapter 3. The an-
chor’s size and ratios remain unchanged. We also used the same number of the
total predictions produced by the Fast RCNN model (branch c). The maximum
number of boxes to be predicted by the RPN was fixed at 1500 boxes.

Data pretreatment

The data must be normalized to ensure fast and efficient learning in the chosen
architecture. Here, a normalization adapted to each representation was carried
out.
In the case of the real-valued network, each channel has been normalized using
a min-max normalization applied to each channel separately to ensure the in-
formation can be mixed and extracted consistently as described Chapter 3. In
the case of complex networks, the min-max normalization is performed on the
module of the data to guarantee the preservation of the relationship between
the module and the phase and, thus, preserve its physical meaning.

5.1.4 Results and Discussion

The performance evaluation of the two models involves a comprehensive com-
parison based on two key performance indicators: the True Positive Rate (TPR)
and the True Negative Rate (TNR). These indicators have been slightly adjusted
to accommodate the use case. For a detailed explanation of these performance
metrics, please refer to Section 3.3.3 of Chapter 3.
The parasite detecting results for the two implementations are provided in Ta-
bles 5.1 and 5.2.
The details of the output boxes for each model are shown in Table 5.1. A local-
ization IoU threshold of 0.7 was used to construct the table. This means that a
predicted bounding box is considered correctly positioned if it overlaps with the
corresponding ground truth box by at least 70%. If the predicted label matches
the ground truth label, the model considers the cell in this box well-classified.
Otherwise, the cell is considered misclassified. The missed cells regroup the
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I /ϕ-RV I /ϕ-CV

Well-classified infected 12,320 12,670

Misclassified infected 433 324

Well-classified healthy 82,778 82,965

Misclassified healthy 295 372

Missed infected 186 46

Missed healthy 601 169

Added infected 154 119

Added healthy 554 620

Table 5.1: Detailed results of Faster-RCNN predictions averaged to the nearest
unit over the five folds.

boxes containing cells the model did not predict. Lastly, the model’s added
boxes are the boxes that have poor overlap with ground truth or boxes that do
not correspond to actual objects.
When comparing the two models based on the performances given in Table 5.1,
the I/ϕ-CV appears to be the most efficient for the task. This model achieves
the highest number of accurately classified infected (350 more infected cells are
detected) and healthy cells (187 more healthy cells are detected) while having
the lowest count of misclassified infected cells. These results strongly suggest
that incorporating the complex feature extractor improves the classification ca-
pabilities of the Fast-RCNN module (classification branch). Additionally, this
model has the lowest count of missed cells in both healthy and infected cate-
gories, indicating a significant enhancement in the capabilities of the RPN mod-
ule (detection branch). This suggests that this model has a greater capacity to
find infected cells and distinguish them from healthy blood cells, which will
allow it to better meet the high sensitivity requirements obligatory for the diag-
nosis of malaria.
From the performances presented in Table 5.2, it is evident that the True Neg-
ative Rate (TNG) scores indicate robust and accurate detection of healthy red
blood cells for both models. Meanwhile, the True Positive Rate (TPR) are 95.22%
for I/ϕ-RV and 97.15% I /ϕ-CV. These findings are promising, especially in
the context of Plasmodium Falciparum detection, where the primary objective is
to achieve a high TPR for the early identification of infection cases, given the
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I /ϕ-RV I /ϕ-CV

TNR 99.34 ± 0.24% 99.10 ± 0.07%

TPR 95.22 ± 0.73% 97.15 ± 0.30%

Table 5.2: Experiments evaluation metrics.

sparse presence of parasite cells among the total red blood cell population.
The comparison between the complex and real implementations for intensity-
phase images underscores the relevance of the complex-valued formalism. No-
tably, a discernible improvement of approximately 2% in TPR with the complex
formalism compared to the real one. Additionally, the narrower confidence in-
tervals provided by the complex formalism (I /ϕ-CV versus I /ϕ-RV) further
accentuate the superior generalization capabilities of complex-valued neural
networks, as evidenced by the mean TNG and TPR values.
To statistically validate this performance disparity between the real and complex-
valued models, we employed the McNemar test [109, 88]. The resulting p-
values, lower than 0.001 for each fold, unequivocally reject the null hypothesis,
indicating that the two models do not share the same error rate. This substanti-
ates the superior performance of the model employing the complex formalism,
with significantly different marginal proportions, thus affirming the validity of
the performance outcomes.
Furthermore, the results reveal that even a partial implementation of the com-
plex formalism, confined to the initial stages of the model to derive the feature
map utilized in subsequent branches, yields performance enhancements.

Another interesting aspect of the complex CNN implementation is its capacity
for faster convergence. This phenomenon is illustrated in Figure 5.2, where the
total loss for each epoch of each model is shown. Notably, the real-valued model
attains its lowest loss value (0.43) on the validation dataset after 94 epochs. In
this contrast, the complex-valued model reaches its optimal validation point
with a lower loss value (0.34) in just 35 epochs, as denoted by the cross markers
in Figure 5.2.
It is essential to reconsider the underlying motivations driving the utilization

of intensity and phase images in the proposed models. On the one hand, the
real-valued convolution approach explores parameters associated with light-
matter interactions, such as absorption and optical path. On the other hand,
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Figure 5.2: Train and validation loss curves for complex-valued and real-valued
models.

the complex-valued implementation filters the image associated with matrix
transfer, a process linked to the electromagnetic (EM) field emanating from the
sample.
From a physical standpoint, both complex and real-valued filtering methodolo-
gies for extracting relevant features from intensity and phase data are justifi-
able. The performance improvement observed with the complex model can be
explained by the effectiveness of the complex formalism, which includes both
input coding and complex filtering. This interpretation finds support in the
reduction of confidence intervals observed with complex filtering in Table 5.2,
indicating greater precision, reliability, and tighter generalization capabilities.
As previously cited, these findings align with established practices across vari-
ous application domains.
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Adopting the complex implementation is well-justified when dealing with bi-
modal data. Furthermore, as highlighted by previous studies, this implemen-
tation enriches the network’s representative capacity, consequently enhancing
the performance of our detection application.
Note that, in previous studies, both intensity and phase result from the acquisi-
tion device (such as MRI or radar), and improvement is observed with a com-
plex implementation. This improvement remains valid for our case, where the
phase results from a computational reconstruction process.
This section shows that complex-valued formalism is more effective than its
real-valued counterpart in processing bi-modal data acquired through FPM mi-
croscopy to detect malaria in red blood cells. This comparative analysis high-
lights the significant advantages offered by complex-valued neural networks,
particularly their higher performance and strong generalization abilities. The
promising results obtained demonstrate the viability and effectiveness of complex-
valued neural networks, especially in situations where multi-modal data is preva-
lent.
Moreover, limiting the complex-based implementation to the convolution part
of a DNN is sufficient to benefit from the bi-modal, complex nature of the infor-
mation. This point is interesting, as it will allow generalization to many deep
network models that use convolution in their first stage for feature extraction.
Therefore, this work should easily be extended to other QPI imaging techniques
and applications, relying on various deep network architectures.
In addition, this part also offers a first step towards optimizing the system by
adapting the neural networks approach to the bi-modal nature of the data pro-
duced by the microscope, which maximizes the efficiency of the whole system.

5.2 Fourier Ptychographic microscope optimization
for malaria classification: objective lens choice

In this part, we focus on optimizing the microscope setup by studying the neu-
ral network’s performance for different numerical apertures. This approach
aims to determine the minimum viable numerical aperture for the specific ap-
plication of malaria diagnosis. Our study is limited to the binary classification
of red blood cells into infected and healthy cells, thus providing valuable in-
sights for system optimization in this specific context.
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5.2.1 Objective lens optimization pipeline

Different neural networks must be trained to study the performance as a func-
tion of the image resolution in the FPM framework. To train those classifiers,
different datasets at various resolutions must be created. Usually, this requires
FPM data acquisition for each objective lens considered and their intensity-
phase maps reconstruction. To avoid this costly process, we designed a specific
protocol to derive these databases from an initial database relying on a physical
image formation model. The workflow is described in figure 5.3. The process
begins with acquiring a dataset of red blood cells collected from 9 infected pa-
tients. The field of view of the good spreading area was captured using the FPM
device described in section 3.3.1, resulting in reconstructed intensity and phase
images for the entire field of view with a synthetic aperture of 0.9 (NA = 0.45).
Subsequently, red blood cells were randomly selected and extracted to gener-
ate individual images of size 64 ×64. This dataset includes 12,000 cells, split
evenly between 6,000 healthy and 6,000 parasite-infected cells. This dataset is
then combined with the image formation and reconstruction models to infer the
lower-resolution datasets.

Optical representation of 
RBC

I          ɸ

NA = 0.75

NA = 0.6

NA = 0.1

...

Classification

NA = 0.9 Image formation 
model with a 
chosen NA

Optical 
parameters 

reconstruction 
by FPM 

...

Figure 5.3: Workflow: intensity and phase maps reconstruction for different
NA from experimental data and image formation model and their usage in the
different classification task.

For each NA value (NA between 0.1 and 0.45), the images of the 6000 healthy
and parasitized red blood cells are downgraded in resolution using the image
formation model involved in the FPM reconstruction algorithm. This corre-
sponds to complex image filtering in Fourier space. The filter shape consists of
a disk centered at (0,0) with a radius r = 2πN A/λ. A dataset containing inten-
sity and phase images at the corresponding resolution is generated for each NA.
This principle is illustrated in Figure 5.4 for some values of NA, showing the fil-
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ter’s radius reduction over NAs and the modification of intensity and phase
images.

Figure 5.4: Datasets generation examples.

5.2.2 Experimental protocol

The datasets produced according to the protocol described above are used to
train the two neural models (I-RV-CNN and I /ϕ-CV-CNN) sharing the same
architecture, namely nine convolutional layers with ReLU activation and three
max-pooling layers, followed by two hidden layers and an output layer. The
first model exclusively utilizes intensity data, while the second processes in-
tensity and phase information. Notably, for the second model, we opt for a
complex-valued architecture. Notably, for the second model, we opt for a complex-
valued architecture, which is efficient for processing bi-modal data in Section 5.1.1
by replacing the real-valued convolution, the activation function, and the pool-
ing with their equivalent in complex-valued as details in Section 5.1.1. Each
model was trained using five-fold cross-validation, and the hyperparameters,

158



such as learning rate and batch size, were adjusted to ensure optimal conver-
gence for each model at each numerical aperture.

5.2.3 Results and discussion

Models performances are summarized in Figure 5.5.
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Figure 5.5: Sensitivity and specificity performances for each NA.

The left-hand figure corresponds to sensitivity, and the right-hand figure cor-
responds to specificity. The blue curves are obtained by exploiting intensity
and phase images jointly I /ϕ-CV-CNN. The yellow curves are relative to the
exploitation of intensity images alone (I-RV-CNN model). The curves in con-
tinuous lines correspond in each point to the average obtained on the five folds
of cross-valuation. The hallow around corresponds to the zone of the standard
deviation of more or less the standard deviation. The dotted curves represent
the tangent to each curve.
Several interesting elements can be noted. Firstly, and in coherence with the re-
sults obtained in Section 3.3.3, classification performance is systematically bet-
ter when both intensity and phase images are used in a complex-valued CNN.
Secondly, the evolution of the curves is different in the two cases (cf. dotted
curves). In particular, it can be seen that performance for the I /ϕ-CV model
is relatively stable over a wide range of NAs (down to NA=0.2), and the tan-
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gent slope is near zero. This is not the case for the I-RV network, which exhibits
a deterioration with decreasing NA; the slope value equals 7.34 and 3.82 for
sensitivity and specificity, respectively. Finally, when NA falls below 0.15, per-
formance drops sharply for both models.
For automatic malaria diagnosis, the results suggest that an objective lens with
a numerical aperture as low as 0.2 (accessible with a 4x magnification objective)
could be a practicable option. With such a lens, the associated field of view is
approximately 600 times larger than that of a 100x lens, which is the standard
for expert visual examination of blood smears. For N A = 0.2 we estimate sen-
sitivity and specificity at 98.1% and 99.3% , respectively. These figures could be
further improved with a more extensive learning dataset.

5.3 Conclusion

This chapter was devoted to presenting tw studies aiming to optimize a sys-
tem based on deep learning and an FPM microscope for specific tasks related
to malaria diagnosis. Incorporating phase information in addition to intensity
has significantly improved the performance of classification tasks, which con-
firms the proof of concept of Chapter 3. With complex-valued neural networks
(CVNN) outperforming their real-valued counterparts, a first optimization at
the level of exploitation has been introduced. This superiority was demon-
strated in malaria detection, where CVNNs exhibited significantly higher sen-
sitivity and specificity than real-valued models. In addition, the objective lens
optimization study, based on the performance of the neural networks, has made
it possible to put forward an approach to overcome as much as possible the
compromise between the resolution and the size of the field of view in the diag-
nosis of malaria through the classification task. The results suggest that using
objective lenses with a numerical aperture (NA) as low as 0.2 may be sufficient
to achieve high performance in terms of sensitivity and specificity. This digital
opening value considerably reduces the acquisition times required for scanning
objects of interest and reduces the resolution constraints necessary in the stud-
ied problem. Validation of these findings using an experimental dataset and
generalization over other applications is now needed.
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Chapter 6

Conclusion and perspectives

6.1 Conclusions

As part of multidisciplinary research, this thesis explored the application of an
unconventional microscopy method, FPM, in two medical applications facing
the limits of classical microscopy. FPM is a low-cost, stable, quantitative phase
imaging method suitable for routine clinical use. It allows obtaining both inten-
sity and phase images using adequate reconstruction models. The main objec-
tive of this thesis was to show how the enriched information provided by the
FPM framework can help to improve the diagnosis and monitoring of hemato-
logical and parasitological pathologies. Towards two specific use-cases (para-
site detection for malaria diagnosis and white blood cell analysis), we explored
different aspects related to the design of FPM-based detection systems in blood
smears.
In Chapter 3, we studied the interest of the phase for the analysis of stained
objects. Some theoretical hypotheses have been put forward and validated on
the limited use-case of parasite detection (2-classes classification). The results
demonstrate that coupling intensity to phase is more efficient than using inten-
sity alone.
In chapter 4, this issue is studied on a more complicated application, namely
for automatically classifying white blood cells. The results show that the model
combining intensity and phase outperforms those exploiting a single modality
in terms of precision and recall where an enhancement of up to 30% is observed,
thus better classifying different types of white blood cells and allowing better
separation of classes. In addition, the images provided by these methods of-
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fer better performance than those of current automata, with an enhancement of
performance of 30% over some classes. The work also addressed other limiting
problems in certain biomedical applications, such as the problem of class im-
balance, which is frequently encountered in biomedical applications. After un-
successful attempts to implement a classical GAN model able to generate good
quality bi-modal FPM images, we proposed an innovative approach, a physics-
inspired GAN. Using the FPM image formation model coupled with adversarial
generative models, this physics-informed GAN approach was able to generate
images close to reality with a high diversity that made it possible to respond to
the mode collapse problem. Moreover, this physics-informed GAN approach,
coupled with a fine-tuning procedure, could generate synthetic images for a
class initially containing very few representatives. Our results showed that in-
tegrating synthetic data significantly improved the classification performance,
particularly for minority classes, without degrading the performance of non-
augmented classes.
Chapter 5 is dedicated to some attempts to optimize the previous FPM frame-
work towards an efficient diagnostic tool. First, we implemented complex-
valued convolutional neural layers in a Faster RCNN to detect parasite red cells.
The results show improved problem detection performance, bringing the sen-
sitivity to 97.15%. It also enabled faster convergence and better generalization
with intricate confidence intervals compared to real-valued models. The second
part of chapter 5 was dedicated to optimizing the choice of the microscope ob-
jective lens by emphasizing the balance between the resolution and the speed
of data acquisition, i.e., size of the field of view. The results demonstrated that
FPM images allow resistance to low resolution and an increase in the field of
view size. It is suggested that a numerical aperture as low as 0.2 may be suffi-
cient for high performance while reducing acquisition time.

6.2 Perspectives

Different perspectives of this work can be envisaged in continuation of the con-
tributions already obtained in this thesis.
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6.2.1 Towards an FPM-based system for digital pathology

In continuation of chapter 5, several issues have to be tackled to comfort our
first results, such as:

• Optimization of the acquisition device: Additional experiments are nec-
essary to validate the results of optimizing the microscopic configuration
in chapter 5.

• Considering more complicated biological tasks per the biologist’s needs.
The experimental databases that we considered in this thesis were of lim-
ited size and diversity. It is necessary to perform other experiments on
databases acquired following the biologist’s needs. For instance, for malaria
diagnosis, it is crucial to expand tasks to more complex levels, such as
recognizing infection stages and classifying parasite types, in order to de-
sign a complete automated diagnosis system. Furthermore, dilution tests
should be performed to understand the sensitivity limits better and con-
firm FPM’s advantages. For white blood cell classification, the FPM frame-
work (including GAN implementation) can be tested further for classify-
ing malignant cells and diagnosing blood pathologies such as leukemia.

6.2.2 Physics-Informed GANs (PI-GANs)

In the present study, we only considered one wavelength, so we had only to pro-
duce two modalities from one wavelength, one for intensity and one for phase,
and the PI-GAN was implemented in this case. A further study should consider
the three available wavelengths and design a synthetic image formation model
in that case in order to benefit from the complementarity of the three channels.
Other approaches for synthetic image production are proposed in the literature
as an alternative to GAN, such as diffusion models. Implementing such models
with the physics-inspired scheme is also an interesting extension of the present
work. Let us quote that using PI-GAN could find interest in other contexts
where images are computationally obtained via an image formation model, no-
tably in radar approaches, often faced with limited data problems.

6.2.3 Label-free imaging

In all the datasets considered in this work, the images resulted from a coloration,
and it was an interesting outcome of our work to show that intensity and phase
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were complementary. They could be used efficiently in a DNN.
Accessing a label-free method presents several benefits: it simplifies the prepa-
ration process, reduces the necessity for handling potentially harmful reagents,
and preserves the natural chemical state of the observed cell.
In the absence of staining (label-free mode), absorption information is limited
but can be supplemented by phase information characterizing the optical path-
way, which carries a differential signal depending on the nature and texture of
the cellular compartments.
So, future investigations should evaluate the interest in FPM approaches in this
label-free context, where phase information is even more crucial than in colored
images.

6.2.4 Diffraction tomography using FPM

Fourier ptychography relies on the thin sample assumption, limiting its suitabil-
ity to thin samples. However, medical diagnoses often involve thicker objects
like muscle tissue, which do not meet this assumption.
Examining samples with reconstructions at different planes would be relevant
in this context. This entails capturing samples using the FPM device or digitally
reconstructing intensity and phase by varying the distance of the sample from
the microscope. This will produce multiple pairs of bimodal images describing
the object. The next step involves developing new methods to process these
different intensity and phase images and extract pertinent information on the
object.
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It is worth noting that data accessibility for TAMIS project was constrained,
with availability only during the concluding phase of the thesis. Nonetheless,
the project adeptly capitalizes on an existing repository of classical imaging
data, notably the A Single-cell Morphological Dataset of Leukocytes from AML
Patients and Non-malignant Controls (AML-Cytomorphology_LMU) dataset
[85], recognized as one of the foremost datasets. The following describes the
preparatory work carried out while waiting for the availability of TAMIS data.
This work focused on identifying the inherent limitations and challenges de-
scribed in the contemporary scientific literature related to the classification of
white blood cells. The study proposed a method to overcome one of the main
limitations: the data imbalance within the classes. The methodology involves
data preparation and GAN architecture with a fine-tuning strategy to achieve
high-quality synthetic images in small-size classes. The work presented in this
chapter greatly influenced the work of the chapter 4 and generated several ideas
that were subsequently reused.

A.1 AML Cytomorphology LMU dataset

The AML Cytomorphology LMU dataset [85] was published in 2019 to show-
case its capabilities in classifying white blood cells [86]. The authors noted a lack
of effective automatic cytomorphological examination devices, which classify
white blood cells and diagnose blood-related pathologies like acute myeloid
leukemia (AML). They attributed this to the inadequacy of available databases
in cytomorphology, which are often limited in terms of patient numbers or im-
ages. Consequently, the generalizability and reliability of the models developed
are limited. To address this issue, the authors digitized a database containing
over 18,000 images of white blood cells divided into 15 classes, making it one of
the largest open databases of its kind.

A.1.1 Image Acquisition and images annotation

The dataset comprises 18,365 segmented white blood cell images (400 × 400 ×
3) annotated by hematology experts. These images were acquired from blood
smears taken from 100 patients diagnosed with acute myeloid leukemia (AML)
at the University Hospital of Munich between 2014 and 2017, as well as from
100 patients without signs of hematological malignancy. This dataset was ob-
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tained using an M8 digital scanner (Precipoint GmbH, Freising, Germany) with
an optical magnification of 100× with oil immersion (with a resolution of 14.14
pixels per micrometer). This device uses a Köhler illumination.
The scanning process involved selecting an area of interest within the mono-
layer region of the blood smear, approximately 20 mm² in size, and scanning it
at high magnification. The resulting digitized data consisted of multiresolution
pyramidal images, each approximately 1 GB. These images were then annotated
by trained examiners experienced in routine cytomorphological diagnostics at
Munich University Hospital. Annotation was carried out single-cell, with ap-
proximately 100 cells differentiated in each smear.
The dataset was labeled according to 15 classes corresponding to cells nor-
mally present in the blood: eosinophils, lymphocytes, monocytes, basophils,
neutrophils, and pathological cells indicative of conditions such as myeloblasts.
Additionally, morphological classes containing fewer than 10 images were merged
with neighboring classes to ensure adequate training samples. Table A.1 shows
the distribution of images in the different classes: the distribution of cells
among classes is highly imbalanced. Upon examination of the figures, it can
be noted that the monocytes, myeloblast, lymphocytes, and neutrophils classes
have significantly higher counts than the other classes.

A.1.2 Class imbalance in AML Cytomorphology LMU Dataset

Despite its volume, the database collected presents a strong imbalance of classes,
limiting the performance of the neural network models that could be trained on
it. These models give deficient performances for classes with low numbers of
images because they have not seen enough representatives for these classes and,
therefore, cannot characterize them.
The article’s authors faced this problem and proposed a class rebalancing pro-
tocol. The data of each class was increased by generating additional images
from existing ones. Random transformations were applied for each image in
the dataset, including rotations from 0 to 359 degrees and horizontal and verti-
cal flips, to produce 10,000 images per class.
The classification results for the 15 classes using a ResNext [146] model with
5-fold cross-validation strategies are presented in Table A.2:
The table illustrates that the most represented classes of white blood cells, in-
cluding segmented neutrophils, typical lymphocytes, and monocytes, are iden-
tified with precision and sensitivity exceeding 90%, which is encouraging.
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Cell Type Number of Cells

Neutrophil (segmented) 8,484

Neutrophil (band) 109

Lymphocyte (typical) 3,937

Lymphocyte (atypical) 11

Monocyte 1,789

Eosinophil 424

Basophil 79

Myeloblast 3,268

Promyelocyte 70

Promyelocyte (bilobed) 18

Myelocyte 42

Metamyelocyte 15

Monoblast 26

Erythroblast 78

Smudge cell 15

Table A.1: Number of cells for each cell type in the dataset.

However, the algorithm’s performance may be compromised for less common
classes such as basophils or promyelocytes due to the limited number of train-
ing images available, despite employing augmentation strategies. For less rep-
resented classes, such as metamyelocytes and monoblasts, the performance is
lower in precision and sensitivity, and the strategy employed does not improve.

A.2 State of the art of data imbalance in white blood
cells classification

The class imbalance problem is not limited to the previously studied database.
Indeed, it constitutes a fundamental challenge in classifying white blood cells,
closely related to the natural distribution of these cells in humans. The white
blood cell population shows a strong disparity between classes, with some classes
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Cell Class Precision (%) Sensitivity (%)

Neutrophil (Segmented) 99.0 96.0

Neutrophil (Band) 25.0 59.0

Lymphocyte (Typical) 96.0 95.0

Lymphocyte (Atypical) 20.0 7.0

Monocyte 90.0 90.0

Eosinophil 95.0 95.0

Basophil 48.0 82.0

Myeloblast 94.0 94.0

Promyelocyte 63.0 54.0

Promyelocyte (Bilobed) 45.0 41.0

Myelocyte 46.0 43.0

Metamyelocyte 7.0 13.0

Monoblast 52.0 58.0

Erythroblast 75.0 87.0

Smudge Cell 53.0 77.0

Table A.2: Performance metrics of AML Cytomorphology LMU from the origi-
nal paper [87].

being significantly more represented than others. This disparity is even more
pronounced in cases of hematological pathologies, where certain classes of cells
can become extremely rare, being present only in diseased individuals. There-
fore, collecting representative images of these minority classes becomes partic-
ularly arduous, aggravating data imbalance and further complicating the clas-
sification task.
When data is imbalanced between classes, machine learning models may tend
to favor majority classes over minority classes. This can cause the model’s per-
formance to decline in classifying less-represented classes, as it may struggle to
learn to distinguish these classes from the majority classes effectively. There-
fore, it is importante to consider and address class imbalance to achieve robust
and accurate classification models in the medical domain, especially in white
blood cell classification.
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The solution has long been to exclude the problematic classes in several ap-
proaches. Several approaches [24, 12] have avoided basophils class, which are
represented at less than 1% in the human blood. This is not acceptable when it
comes to developing automatic diagnostic methods.
Other approaches, such as oversampling (increasing the number of instances in
the minority class by randomly duplicating existing instances) and undersam-
pling (reducing the number of instances in the majority class to match the size
of the minority class), have been explored in previous work [117, 64]. While
these approaches have shown some interest in increasing performance in un-
derrepresented classes, they also have several limitations. Oversampling can
often lead to overfitting on very weakly represented classes and can introduce
bias. As for undersampling, it is often the cause of performance degradation on
the most represented classes because it excludes an important number of this
class samples, thus limiting variability.
More promising approaches have been proposed to overcome this challenge.
Several works [80, 6] explored using synthetic data based on Generative Adver-
sarial neural Networks (GANs) to compensate the lack of representent in minor-
ity classes. This type of model shows good performance. GANs allowed in the
case where all classes have a deficient number of representatives to observe an
improvement in classification performance by introducing synthetic GAN data
[6, 44]. In other more complex approaches, a DC-GAN network coupled with a
residual neural network (ResNet) has been used to deal with imbalanced data,
emphasizing a new loss function. The experimental results demonstrated this
model’s effectiveness for classifying white blood cell images for certain under-
represented classes [80]. However, classes presented my few examples, such as
basophils, were excluded from this study because the number of samples does
not allow learning a GAN.
Other more successful works propose augmentation methods with a combina-
tion of GAN models. An approach called SyntheticCellGAN (SCG) [15] was
designed with two GANs to automatically generate artificial images of white
blood cells with realistic morphological characteristics. The generated synthetic
images significantly improved performance and reduced the impact of under-
represented classes. However, this approach combines different literature datasets
to provide sufficient samples to train the GANs. Its implementation is limited
by the time required to collect the actual images and the limited number of sam-
ples for some rare cell classes.
In conclusion, this literature review shows that synthetic data generation meth-

188



ods utilizing GANs represent a promising approach for rebalancing imbalanced
classes. However, it is worth noting that these methods often require substantial
amounts of data to learn the underlying distributions effectively. Consequently,
there is a clear need to develop methodologies capable of learning to generate
classes, especially when the number of samples for certain classes is exceed-
ingly low.
The methodology proposed in this chapter introduces an approach for gener-
ating synthetic images to address the under-representation of certain classes,
mainly focusing on high-quality outputs. Its innovative aspect lies in its adap-
tive transfer learning process, which enables the model to effectively generate
images for moderately under-represented classes and tackle extreme imbalance
cases, even with limited samples (less than 50 representatives).

A.3 Methodology

In this study, we focus on classifying white blood cells in the context of a healthy
patient. This is done to position the work in the same framework as TAMIS
project. We consider five classes of white blood cells: Basophils, Eosinophils,
Monocytes, Lymphocytes, and Neutrophils. For this purpose, a subset was ex-
tracted from the AML Cytomorphology LMU dataset. The distribution of the
cells within the five classes is listed in Table A.3.

Cell Type Number

Basophils 79

Eosinophils 424

Lymphocytes 3948

Monocytes 1789

Neutrophils 8484

Table A.3: The distribution of the five classes of white blood cells extracted from
the AML Cytomorphology LMU dataset.

In Table A.3, it is apparent that the distribution of cells among the five classes
is highly imbalanced. Lymphocytes, Monocytes, and Neutrophils have signifi-
cantly higher counts compared to the classes of Basophils and Eosinophils.
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Our aim is to design a GAN-based strategy to increase the number of samples in
the under-represented classes. For this, an approach based on training a GAN
for each minority class is proposed.
After evaluating various architectures, we implemented StyleGAN2 [57]. This
choice was driven by the fact that other architectures yielded images with lower
resolutions and lacked the desired level of detail.

A.3.1 StyleGAN architecture

StyleGAN2 [57] is a generative model developed by NVIDIA in 2019, repre-
senting the second version of the original StyleGAN model, aiming to produce
even more realistic and detailed images. Similarly to usual GANs, it consists of
a generator and a discriminator. The general functioning of GANs was intro-
duced in Chapter 4
Its particularity lies on several principles introduced within the generator that
enable significant improvements in the quality and variability of the produced
images. The architecture of this generator is illustrated in Figure A.1.

The input layer of the generator receives a random noise vector. This noise vec-
tor is the seed from which the architecture generates the image. The noise vector
passes through a mapping network. This network consists of multiple fully con-
nected layers. It projects the noise vector into a more structured latent space. It
also aims to increase the variability of the output images by increasing the dif-
ferences between the input white noise vectors by passing through numerous
layers. This transformation yields a style vector that guides image generation.
Once the style vector is obtained, the generator creates the image using a syn-
thesis network. This network is designed to progressively generate the image,
starting from low-detailed images and gradually adding finer details. Each res-
olution level in the synthesis network comprises synthesis and normalization
blocks. The synthesis block employs convolutional layers to generate image
features at a specific resolution and upsampling layers to increase the spatial
resolution of the image progressively. Modulation and demodulation layers are
also introduced in the original StyleGAN2 architecture. Modulation scales each
input feature map of a convolutional layer based on the incoming style vector,
achieved by multiplying the convolution weights by the corresponding scale
factors from the style vector. Demodulation adjusts the output feature maps
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Figure A.1: Illustration of the styleGAN2 generator.

of the convolutional layer by normalizing them according to their L2 norms,
ensuring a unit standard deviation for the output activations. White noise is
also added at each generator stage to increase diversity and improve learning.
Finally, the output layer generates the final image using the outputs of the last
block using a convolution to produce the desired number of channels.
This architecture has been adapted to allow 400 × 400 images to be generated
by adjusting the convolution filter size in the architecture.
For the discriminator, we used ResNet [45] architecture.
The implemented StyleGAN2 was trained using a combination of several cost
functions. The generator is based on the usual adversarial loss and perceptual
loss, a mean square error applied to the embeddings of the images extracted
using a pre-trained model (Here inception V3). This loss was used to improve
the details of the images produced. A regularization loss on the weights was
applied to penalize large weights in the network and allow better convergence.
This loss introduces a penalization coefficient γ that helps control the strength
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of the penalization. The greater the γ coefficient, the stronger the regularization.
The discriminator is trained using adversarial loss.

A.4 GAN Implementation and Experimentation

GAN data augmentation was performed for basophils and eosinophils follow-
ing different strategies, as explained below.

A.4.1 Metrics

The trained GAN models are evaluated using a qualitative criterion through vi-
sual observation of generated images and a blind evaluation by a hematologist.
The FID score metric provides the quantitative evaluation. The Frechet Incep-
tion Distance (FID) is defined by using the Inception V3 model pre-trained on
the ImageNet dataset to produce an embedding for each image, then calculated
as :

FID = ∥µr − µg∥2
2 + Tr(Σr + Σg − 2(ΣrΣg)

1/2)

Where g and r are the real and synthetic embeddings assumed to be two multi-
variate normal distributions, µg and µr are the magnitudes of the vector g and
r. Tr is the trace of the matrix, Σg and Σr are the covariance matrix of the vec-
tors. Low FID scores indicate that the two groups of images are similar or have
similar statistics.

A.4.2 Data pre-processing and hyperparameters tuning

The number of images used for training the StyleGAN2 is 351 for the eosinophils
and 64 for the basophils. Including three 90-degree rotations and two mirrors
in addition to the original image allows the number of images to be multiplied
by a factor, bringing the sample’s number to 384 for basophils and 2106 for
eosinophils.
Data normalization was applied to all images to ensure the pixel values were
between -1 and 1 (i.e., 0 to 255 before normalization).
All the models were trained to generate 500000 images and evaluated each
20000 image. The best model was chosen using the lowest FID.
Two hyperparameters were important for ensuring the convergence of the mod-
els. The first is the batch-size, and the second is the γ coefficient. A batch-size
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of 4 was chosen for training all the GAN because higher values lead to model
divergence. The regularization coefficient γ was initially set to 8 to impose
higher regularization, stabilizing the gradient values during the early stages
of model training. As the model progressed and became more stable, this coef-
ficient gradually decreased by dividing it several times by 2. Lowering γ allows
the model to capture finer details more easily, facilitating learning of intricate
features as the training progresses.

A.4.3 Eosinophils generation

For eosinophils, the StyleGAN was trained from scratch. The best model was
chosen based on its FID score, achieving a score of 16.63 for the FID indicator.
The generated images are compared to the real basophils images in figure A.2.

Figure A.2: Comparaison of generated and real eosinophils images.

it can be seen that the model produced high-quality images. The resemblance to
real eosinophils is striking in many instances, indicating high fidelity in the gen-
erated samples. The generated eosinophils exhibit bilobed shapes with promi-
nent pink to orange granules, often obscuring the nucleus. The model manages
to avoid generating a lot of out-of-focus images even if some images out of fo-
cus exist in the training sample. It thus responds to the natural description of
this class in humans.
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A.4.4 Basophils generation

Unlike the eosinophils class, the basophils dataset encompasses only 64 images
for the training. In our first attempt to train basophils from scratch, the FID
score was stacked around 117, and the generated images were visually very
bad.
To solve this problem, the similarity between basophils and neutrophils was
explored in a fine-tuning process. Indeed, basophils and neutrophils share
some morphological characteristics, such as multi-lobed nuclei and granular
cytoplasm. First, we trained a neutrophil GAN using 80% of the available im-
ages of these classes. After achieving a satisfactory FID score of 6.02, we em-
ployed fine-tuning approaches to adjust the first model’s weights to generate
basophils. The basophils model was chosen based on its FID score, achieving
a score of 29.58 for the FID indicator. The generated images are compared to
the real basophils images in figure A.3 The model generated images of medium

Figure A.3: Comparaison of generated and rael basophils images.

quality for basophils. The generated basophils display characteristic features
such as irregularly shaped nuclei and abundant dark blue to purple granules
in their cytoplasm. The model seems satisfactory when compared to the real
images. However, the generated images have numerous out-of-focus images,
several images without blur, and sometimes insufficient grain resolution. These
imperfections are due to the limited number of images in the training set. Ad-
ditionally, it is important to note that several real images exhibit out-of-focus
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and blur. The quality of the GAN largely depends on the quality of the training
data, which becomes even more critical when the number of representatives is
reduced. Despite the rather medium visual quality of the synthetic basophil im-
ages, we performed a classification task using this augmented data to see how
much it could improve the classification performance.

A.5 Classification using GAN augmented images

To study the impact of enriching the eosinophil and basophil classes, classifi-
cation performances before and after this enrichment were compared. A clas-
sification into five classes using the MobileNetV1 [51] model was performed in
two configurations.
For the first model, only real data was used, a classic learning approach where
80% of the data from each class was used for training and 20% for testing was
used.
For the first model, only real data was used, in which 80% of the data from each
class was used for training, and the remaining 20% was used for testing. For the
second approach, the model was trained using synthetic images to complete the
underrepresented classes. This model was then tested on the same dataset as
the initial model. The model’s training was carried out with 1000 examples of
each class per epoch. When the class is sufficiently represented, the 1000 ex-
amples are drawn randomly at each epoch to cover all the diversity of the class
(dynamic sampling). For underrepresented classes (basophils and eosinophils),
a sufficient number of samples is generated using StyleGAN and added to the
real data to reach 1000 images.
Figure A.4 represents the two confusion matrices before the enrichment (left)
and after the enrichment (right). The confusion matrix of the model trained on
the imbalanced dataset shows varying performance. Among the classes benefit-
ing from good performance, neutrophils and lymphocytes stand out. However,
the model performs poorly for the least represented class. Basophils were cor-
rectly classified in only 5 of 15 cases, corresponding to an accuracy rate of 33.3%.
This is certainly due to the underrepresentation of this class in the dataset. The
results in the second matrix demonstrate that improvement is evident in the
case of the basophil class, where an increase in accuracy of 50% was observed.
It is also remarkable that the introduction of GAN did not degrade the perfor-
mance of most classes.
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Figure A.4: Comparaison of confusion matrixes before and after GAN data aug-
mentation.

A.6 Conclusion

Incorporating synthetic images into the dataset significantly improves classifi-
cation performance, especially for minority classes. This improvement demon-
strates the effectiveness of data augmentation using GANs to compensate for
class imbalance and improve the generalization of classification models without
degrading performance in non-augmented classes. The accuracy of the basophil
class increased significantly from 33.3% before data augmentation, to 87% after
adding the synthetic images. Therefore, the proposal of the fine-tuning strategy
proved effective for learning to generate images of classes with less than 100
samples by exploiting the similarities between classes.
However, it is essential to emphasize that the success of this approach depends
on the quality of the synthetic images generated by the GAN. The proximity of
synthetic data distribution to real data is important for significantly improving
classification performance. It was noted during the experiments that images
generated with a high FID do not allow an improvement in classification to be
observed, or even worse when the image generation has many defects and is
far from the distribution of the real data, severe performance degradation can
be observed.
Finally, the approach must be extended to other pathological classes in ULM
dataset, which have been excluded to simplify. It should be noted that, unfortu-
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nately, some classes only have around ten images, which could challenge learn-
ing the GAN even with the fine-tuning strategy. In this case, other approaches
should be investigated, notably less data-consuming as diffusion models.
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Titre: Analyse automatique des images des frottis sanguins : intérêt de la phase
en microscopie ptychographique de Fourier

Mots clés: Microscopie ptychographique de Fourier, Réseaux de neurones pro-
fonds, Réseaux antagonistes génératifs, Hématophatologie

Résumé: La pathologie numérique
constitue aujourd’hui un outil fon-
damental pour le diagnostic médi-
cal, exploitant les avancées tech-
nologiques en matière de numérisa-
tion pour transformer les échantillons
biologiques en données numériques,
facilitant ainsi leur visualisation et
leur analyse. Cependant, ces méth-
odes, souvent basées sur la micro-
scopie conventionnelle, rencontrent
des limitations qui entravent parfois
leur efficacité.
Dans ce contexte, des méthodes
d’imagerie non conventionnelles telles
que la microscopie ptychographique
de Fourier (FPM) offrent des perspec-
tives prometteuses pour surmonter
ces limitations. En effet, la FPM of-
fre un accès à la phase en complément
de l’intensité et permet d’examiner
un large champ de vision à haute
résolution à un coût de conception
raisonnable.
Cette thèse explore le potentiel de
la microscopie ptychographique de
Fourier dans l’analyse des frottis
sanguins minces. Plusieurs résul-
tats ont été obtenus grâce à une ap-
proche multidisciplinaire intégrant
l’apprentissage en profondeur et la
microscopie.
Nous nous concentrons d’abord sur
le problème limité de la détection
des parasites pour le diagnostic du
paludisme. L’exploitation conjointe
de l’intensité et de la phase permet
d’améliorer les performances d’un dé-

tecteur de réseau neuronal profond. À
cette fin, un CNN à valeurs complexes
a été introduit dans l’architecture
Faster-RCNN pour une extraction ef-
ficace des caractéristiques.
Ensuite, nous examinons une appli-
cation plus complexe, à savoir la
classification des globules blancs, où
les avantages de l’exploitation con-
jointe de l’intensité et de la phase ont
également été confirmés. Nous nous
intéressons également au problème
du déséquilibre des classes rencon-
tré dans cette tâche, nous proposons
un nouveau modèle GAN informé
par la physique dédié à la génération
d’images d’intensité et de phase. Ce
modèle évite le problème de mode col-
lapse rencontré avec l’implémentation
habituelle des GAN.
Enfin, nous considérons l’optimisation
de la conception du microscope FPM.
À cette fin, nous explorons des straté-
gies combinant simulations, réseaux
neuronaux et modélisation de la for-
mation d’images. Nous démontrons
que la FPM peut utiliser des résolu-
tions faibles sans compromettre signi-
ficativement les performances.
Cette thèse souligne l’intérêt
d’adapter l’apprentissage automa-
tique en lien avec les principes de
la microscopie et met en évidence
le potentiel de la microscopie pty-
chographique de Fourier pour les fu-
turs systèmes de diagnostic automa-
tisés.



Title: Automatic analysis of blood smears images: contribution of phase
modality in Fourier Ptychographic Microscopy

Keywords: Fourier ptychographic microscopy, Deep neural networks, Gé-
naratifs adversarial models, Hematopathology

Abstract: Digital pathology presents
today a fundamental tool for medi-
cal diagnosis, exploiting technologi-
cal advances in digitalization to trans-
form biological samples into digital
data, thus facilitating their visualiza-
tion and analysis. However, these
methods, often based on conventional
microscopy, encounter limitations that
sometimes hinder their effectiveness.
From this perspective, unconventional
imaging methods such as Fourier pty-
chographic microscopy offer promis-
ing prospects for overcoming these
limitations. Indeed, FPM offers access
to the phase in complement of the in-
tensity and allows examining a large
Field of View at a high resolution at a
reasonable design cost.
This thesis explores Fourier ptycho-
graphic microscopy (FPM) ’s potential
in thin blood smear analysis. Several
results have been obtained thanks to
a multidisciplinary approach integrat-
ing deep learning and microscopy. We
have first focused our attention on the
problem of limited complexity of par-
asite detection for malaria diagnosis.
The joint exploitation of intensity and
phase is shown to improve the perfor-
mance of a deep network detector. To

this end, a complex-valued CNN has
been introduced in Faster-RCNN ar-
chitecture for efficient feature extrac-
tion.
Secondly, we have considered a more
complex application, namely the clas-
sification of white blood cells, where
the benefits of joint exploitation of
intensity and phase were also con-
firmed. Furthermore, to reduce the
imbalance of classes encountered in
this task, we propose a novel physics-
informed GAN model dedicated to
generating intensity and phase im-
ages. This model avoids the mode col-
lapse problem faced with usual GAN
implementation.
Finally, we have considered optimiz-
ing the FPM microscope design. To
this end, we explore strategies com-
bining simulations, neural networks,
and image formation modeling. We
demonstrate that FPM can use low
resolutions without significantly com-
promising performance.
This thesis underscores the interest
in tailoring machine learning in con-
nection to microscopy principles and
highlights the potential of Fourier pty-
chographic microscopy for future au-
tomated diagnosis systems.
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