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Résumé

Les volumes 3D discrets proviennent de diverses sources, notamment la segmentation
d’images, la simulation numérique, et les éditeurs basés sur les voxels. Notre intérét
réside dans le traitement de la géométrie des surfaces discretes entourant ces volumes,
permettant la reconnaissance de structures locales telles que des segments de plans
discrets. Cependant, les surfaces discretes ont une géométrie pauvre, composée de
surfels carrés paralléles aux axes. Pour analyser ces surfaces, des algorithmes de type
plane-probing adaptent le voisinage autour d’un point en développant itérativement
une approximation de plan, souvent sous forme de triangles, en fonction des infor-
mations locales. Notre objectif est d’analyser ces surfaces discrétes en utilisant les
méthodes de type plane-probing.

Nous introduisons les algorithmes de type plane-probing existants dans un cadre
général. De plus, nous proposons une nouvelle variante de 1’algorithme de type plane-
probing qui prend en compte un voisinage plus étendu que ceux des algorithmes
existants. Nous proposons également une implémentation efficace de cette nouvelle
variante.

Une découverte importante est que la suite de tétraedres formée a partir de deux tri-
angles consécutifs crée une triangulation de Delaunay dans une partie du plan discret.
Cette propriété est vérifiée pour la nouvelle variante introduite. En conséquence, le
triangle final retourné par ’algorithme a trois angles aigus ou droits. Ce résultat nous
permet de déterminer I’étendue du voisinage considéré au cours des calculs.

Enfin, nous proposons quelques ajustements afin d’adapter ce type d’algorithme a des
surfaces discretes, permettant ainsi de déduire un estimateur de vecteurs normaux.
Nous nous concentrons notamment sur la convergence multigrille de cet estimateur,
qui a été observée expérimentalement pour des positions bien identifiées sur des sur-
faces discrétes convexes.
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Abstract

Discrete 3D volumes come from various sources, including image segmentation, nu-
merical simulation, and voxel-based editors. Our focus is on processing the geome-
tries of digital surfaces surrounding these volumes, enabling the recognition of local
structures such as pieces of digital plane. Data is manipulated without alteration,
making it easy to use octrees for efficient spatial representation. However, digital
surfaces have an indigent geometry, consisting of square surfels parallel to the axes.
To analyze these surfaces, plane-probing algorithms adapt the neighborhood around
a point by iteratively developing a plane approximation, often in the form of trian-
gles, based on local information. Our goal is to analyze these discrete surfaces using
plane-probing methods.

In each iteration, these plane-probing algorithms select a point in a specific neigh-
borhood and update one of the vertices of the currently constructed triangle. In this
context, we introduce existing plane-probing algorithms in a general framework. Ad-
ditionally, we propose a new variant of the plane-probing algorithm that considers a
larger neighborhood than existing algorithms. We have also made improvements to
the implementation of this new variant.

An important discovery is that the sequence of tetrahedra formed from two consec-
utive triangles creates a Delaunay triangulation in a part of the digital plane. This
property holds for the introduced new variant. As a result, the final triangle of the
algorithm is always acute, making it easier to find the minimal base. These results
lead us to discussions about locality, helping us estimate the space required for the
algorithm.

Finally, we suggest some adjustments to adapt this type of algorithm to discrete
surfaces, thereby deducing an estimator of normal vectors. We particularly focus on
the multigrid convergence of this estimator, which has been experimentally observed
for well-defined positions on convex discrete surfaces.
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CHAPTER

Introduction

Diverse sources give rise to 3D discrete volumes, encompassing image segmentation
techniques employed in materical science [Fli+05], medical imaging [Hil+99], simu-
lations replicating physical processes [Mar+10], voxel-based editing tools,and various
other sources. Efficient octree-type spatial data structures facilitate the manipulation
of this data. However, many high-level tasks in computer graphics, computer vision
and 3D image analysis require a rich geometry. Our focus lies in processing the ge-
ometry of digital surfaces that surround a set of voxels. This allows us to recognize
local structures, such as segments of digital planes, or estimate differential quantities.
A drawback of working with a digital surface is the inherent geometric limitation, as,
at any resolution, it comprises square surface elements that are parallel to one of the
axes.

To overcome this while analyzing digital surfaces, it is often necessary to capture local
geometric properties surrounding a specific point. This can be achieved by either con-
sidering a fixed neighborhood (e.g., employing a Euclidean ball with a predetermined
radius) or by adapting this neighborhood based on local geometric characteristics.
When the depicted neighborhood is too small, we lack sufficient information to gen-
erate meaningful results. Conversely, an excessively large neighborhood could lead to
the loss of fine details in the digital surface. Thus the choice of the neighborhood is
very important.

In many methods, the size of the neighborhood is a user-defined parameter, but here
we focus on parameter-free methods. In particular, we focus on the plane-probing
algorithms, which iteratively construct a plane approximation using prescribed up-
dating rules. What makes plane-probing algorithms promising is their ability to
dynamically determine the most effective way to probe the digital surface. The algo-
rithm achieves this by extending a local pattern, typically in the form of a triangle,
from a point of interest so that it aligns with an estimated tangent plane.

In this thesis, our objective is to investigate various geometric properties of the plane-
probing algorithms. We aspire to enhance the estimation of first-order geometric
quantities associated with the algorithm through the development of these theoret-
ical findings. We implement estimators for normal vectors based on plane-probing
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Chapter 1. Introduction 2

algorithms, eliminating the need for user-defined parameters. Additionally, we seek
for precision improvement when the resolution is sufficiently increased.

PARameter-free Analysis of DIgital Surfaces This thesis is funded by the
French Agence Nationale de la Recherche with the project, PARameter-free Analysis
of DIgital Surfaces (PARADIS).

Organization of the manuscrit In this thesis, we present an exploration of the
plane-probing algorithms and their associated properties. The organization of this
work is structured into six chapters. Chapter 2 establishes the foundational knowledge
by reviewing the state of the art and introducing essential notations. In chapter 3,
we introduce our novel algorithm variant, providing insights into its practical imple-
mentation and performance. Chapter 4 narrows our focus to a critical invariant of
the L-algorithm, namely, the Delaunay property. Chapter 5 is dedicated to a detailed
examination of various aspects related to the locality of our algorithm. Finally, in
chapter 6, we present empirical results and discuss the multigrid convergence of our
algorithm.
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CHAPTER

Preliminary

In this chapter, we first explain why plane-probing algorithms have emerged as a
potential tool in the context of digital surface analysis. Then, we present tetrahedron-
based plane-probing algorithms in a uniform way and, in particular, prove their ter-
mination and correctness on digital planes. Based on those fundamental elements,
our contributions will be presented in the next chapters.

2.1 Digital volume and surface analysis

In the field of digital geometry, we explore the digitized version of continuous objects
as discrete sets, much like pixels on a screen. The research does not limit to 2D but
also nD. Given a Euclidean space, a digital volume is a set of volume elements, i.e.,
voxels. The concept of a voxel can be visualized as small cubes, then a digital volume
can be perceived as a collection of identical small cubes that share the sames axes of
direction [KR04] (see Fig. 2.1).

ey —
y’ o
- ....... -

FI1GURE 2.1: Example of a digital volume: a digital bunny
Non-invasive acquisition tools such as magnetic resonance, X-ray tomography or

micro-tomography are essential for observation and measurements in various fields,
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Chapter 2. Preliminary 4

for instance, in material sciences [Fli+05] or medical imaging [Hil+99]. These de-
vices typically produce 3D images. Digital volumes come from the segmentation of
such 3D images. They are also generated in voxel-based editing tools and in scien-
tific modeling [Dar+09; Jon+10; Mar+10]. Indeed, digital volumes offer advantages:
regularity of the support, existence of efficient octree-based spatial data structures
[KSA13; VMG17], integer-only and exact computations, etc.

We consider a closed digital surface as boundary of a digital volume [RKW91]. A
digital surface consists of surface elements, i.e., surfels, and can be visually interpreted
as a quadrangular mesh with squares.

A drawback of working with a digital surface is its inherent geometric limitation, as,
at any resolution, it comprises square surface elements that are parallel to one of
the axes, while many high-level tasks in computer graphics, computer vision and 3D
image analysis require an accurate normal vector field. The context of this thesis is
the estimation of such normal vector field from a digital surface, when considering it
as the digitization of an unknown continuous surface. The accuracy of the estimates
is expected to improve as the digitization step becomes increasingly finer. This is
the idea of multigrid convergence [Kle00; CLR12]. In the next section, we review
the most common methods for normal estimation not only on digital surfaces, but
also on meshes and point clouds in order to show why plane-probing algorithms have
emerged as a potential tool in this context.

2.2 Normal estimation

There are only six potential directions for the normal of a surfel, including the three
axes and their opposites. In order to obtain a more relevant direction, it is necessary
to aggregate the geometrical information contained in a larger surface patch. This
can be achieved by either considering a fixed neighborhood (sec. 2.2.1) or by adapting
this neighborhood based on local geometric characteristics (sec. 2.2.2).

2.2.1 Kernel methods

The local geometric information can be aggregated in various ways.

Fitting. [Hop+92] devised a method for estimating normal vectors at specific data
points. This involved computing the least squares best-fitting plane using a set of
points from the local neighborhood surrounding the point of interest. Various other
fitting surfaces have also been explored, such as jets, which are essentially truncated
Taylor expansions of surface expressions [CP05; CP08]. In the initial stages of all
fitting methods, the essential step involves gathering the points to be used in the
fitting process. In the case of meshes, a breadth-first search is employed to visit
neighboring points until a sufficient set of points is collected. Conversely, in point-
cloud scenarios, the k-nearest-neighbors strategy is commonly employed. In both
situations, the number of points to collect typically remains a user-defined parameter,
despite the existence of some proposed heuristics for automatic selection [Hop+92;
CPO05]. All fitting methods tend to smooth sharp features, and thus fail to correctly
estimate normal vectors near edges.
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Chapter 2. Preliminary 5

Voronoi diagram. Instead of approximating the tangent space, an alternative ap-
proach relies on Voronoi diagrams to provide a more accurate estimation of the or-
thogonal space. [AB99] first used the furthest vertex of the Voronoi cell to estimate
the normal vectors for point clouds. To enhance the stability of these estimations,
[All407] proposed to apply linear fitting to the Voronoi cell or to the union of Voronoi
cells within a neighborhood. In further advancements, [MOG11] proposed the Voronoi
Covariance Measure (VCM), that computes a weighted average of covariance matrices
derived from Voronoi cells, as opposed to calculating the covariance matrix of their
union. In their method, only the intersection between the Voronoi diagram and a ball
around the data point is taken into account in order to get purely local information
about the surface geometry. A digital variant was proposed in [Cue+15].

Integral invariants. In mesh-based approaches, an alternative method involves
aggregating surface geometry within a spherical region. This is accomplished by
computing integrals over the intersection between the sphere and the volume bounded
by the mesh [Pot+09]. The covariance matrix of this intersection set serves as a means
to estimate principal curvatures, principal directions, and the normal direction. There
exists also a digital adaptation [LCL17]. The choice of the ball radius represents a
user-defined parameter in these methods. In addition, the ball radius is usually the
same for the whole digital surface and completely ignores the features. The above-
mentioned digital variants [Cue+15; LCL17] are multigrid-convergent for digitization
of smooth shapes if the radius is conveniently chosen with respect to the grid step.

Convolution. Starting from initial normal vector estimates (e.g., unit vectors per-
pendicular to surfels), several methods refine these estimates by applying convolution
using a specified smoothing kernel. This technique has been employed in both dig-
ital curves [EMC11; EM16] and surfaces [FM09]. However, it comes with certain
limitations: The user must specify the kernel parameters, including its size, and the
treatment, which is usually isotropic, smooths out sharp features. However, if the
kernel size is some function of the grid step, multigrid convergence can be obtained
in two dimensions [EMC11]. In mesh denoising, more advanced local filters, such as
the bilateral one, are used to preserve sharp edges and corners. However, these filters
typically involve several user-defined parameters [FDC03; Zhe+11].

2.2.2 Geometric methods

The methods described above aggegrate the geometrical information within a neigh-
borhood of predetermined size. It is crucial to wisely select that size and find the
right balance between obtaining accurate estimates and preserving sharp features.
Indeed, when the neighborhood is too small, we lack sufficient information to gener-
ate meaningful results. Conversely, an excessively large neighborhood could lead to
lose fine details.

In digital geometry, researchers try to process the geometry in another way. The
neighborhoods are defined from a primitive so that their shape and size depend on
the local geometry. The primitives are typically segments of digital lines or planes.

Digital straight segment (DSS) The set of maximal DSSs, i.e., inextensible
straight parts, can be computed by one scan of the digital curve [FT99; Fes05] and
provides a multigrid-convergent normal estimator [LVV07]. In addition to conver-
gence, this normal estimator has several sought-after properties: (i) it preserves sharp
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Chapter 2. Preliminary 6

features (ii) local convexity [RS11], and (iii) without any input parameter. Asymp-
totic properties of maximal DSSs can also be used to estimate the local amount of
noise along the digital curve [KL12]. A last benefit is that normal integration over
the digital curve provides a multigrid-convergent length estimator [CK04].

Maximal segments on 2D slices. In higher dimension, to the best of our knowl-
edge, only one parameter-free normal estimator has been proposed in 3D [TD99] and
extended to nD [LV03]. It is based on maximal DSSs on 2D slices. Maximal DSSs
provide windows of adaptive size but the slicing truncates the geometric information
and leads to an artificial spatial variability because two neighbor surfels only share
one slice over two.

Digital plane segments (DPS) Another possible approach is to mimic the 2D
tool box by computing the set of DPSs that locally fit the digital surface. This
approach has been used for surface area estimation [KS01], reversible polyhedrization
[SDCO04] and normal estimation [CL11]. In the latter approach, DPSs are initiated
by a maximal circular neighborhood around a seed, with no adjustments made to
their normal vector during extension. While this constitutes a consistent definition
of maximality, the approach struggles to recovers the geometry of the digital surface
near sharp edges and corners. The primary challenge lies in developing an efficient
scanning technique to identify DPSs that can effectively reveal the local geometry
through their size and shape.

Recognition of digital plane segments Recognizing digital planes is a way to
ensure the validity of a digital plane segment. Researchers initially addressed this
challenge in finite scenarios, such as identifying digital planes within digital cubes
[KS91]. The authors of [GDZ05] treated this problem as a linear programming issue
and proposed an algorithm with high theoretical complexity but apparent linear time
execution concerning the input size of integer points. In the field of digital plane
recognition, [DR94] introduced the concepts of "leaning points" and "leaning planes"
and provide an algorithm that recognize a piece of digital plane around a given point.
Simultaneously, other research efforts have contributed algorithms emphasizing com-
putational efficiency [Buz03]. Some researchers have also explored the fitting of planes
between two sets of points, rather than examining the entire point set [Veel2].

2.2.3 Prior research on plane-probing algorithms

The main challenge is not really to recognize DPSs, but more to find which data points
should be taken into account during the recognition process to obtain DPSs tangent
to the digital surface. In this thesis, we mainly focus on plane-probing algorithms that
allow to decide on-the-fly how to probe the digital surface and make grow an implicit
DPS tangent by construction. The growth direction is given by both arithmetic and
geometric properties.

Plane-probing algorithms can mainly be categorized into two types: tetrahedron-based
plane-probing algorithms [LPR16a; LPR16b; LPR17; RL19] and parallelepiped-based
plane-probing algorithms [LMR20].

We compare side by side the tetrahedron-based plane-probing algorithms (see Fig. 2.2)
and the parallelepiped-based plane-probing algorithms (see Fig. 2.3). For example, we
consider the normal N = (1,2, 5). Both algorithms return the same normal at the end
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Chapter 2. Preliminary 7

of iteration, but have very different behavior. Tetrahedron-based plane-probing algo-
rithms always have its base triangle inside the digital plane, whereas parallelepiped-
based plane-probing algorithms shows a parallelepiped that strolls between the border.

e A
T NC - pRa— -
47

(A)i=0 (B)i=1 (C) i =2 (D) i=3 (E) i =4

FIGURE 2.2: The evolution (from left to right) of a tetrahedron-based
plane-probing algorithm on a digital plane of normal (1,2,5).

(c)i=2

FIGURE 2.3: The evolution (from left to right) of a parallelepiped-
based plane-probing algorithm on a digital plane of normal (1,2,5).

Parallelepiped-based plane-probing algorithms are essentially wrappers around tetrahedron-
based plane-probing algorithms and will be described in chapter 6. Except in [LPR16a],
tetrahedron-based plane-probing algorithms are local by construction, because they
update the three vertices of the tetrahedron base until it matches the normal of the
digital plane, while the apex of the tetrahedron remains fixed. That is why we will
focus on this kind of algorithms in the upcoming section.

2.3 Plane-probing algorithms

A digital plane refers to an infinite digital set that can be defined using a normal
vector N € Z3\ {0} and a shift value u € Z as follows [Rev91]:

P~ = {x€Z% | u<x-N <+ |NJ:} (2.1)

To put it differently, it comprises all integer points that lie between two parallel,
infinite continuous planes. Fig. 2.4 represents an illustration of a digital plane.

In this thesis, when we mention any digital plane, we suppose w.l.o.g. that p = 0 and
that the components of N are positive, i.e., N € N*\ {0}:

Pn:={xcZ|0<x-N<|N|} (2.2)

In this section, we focus on tetrahedron-based plane-probing algorithms applied on a
digital plane [LPR16b; LPR17; RL19]. Given a digital plane P € {Pn | N € N3\ {0}}
of unknown normal vector, a plane-probing algorithm computes the normal vector N
of P by sparsely probing it with the predicate “is x in P?”, denoted by InPlane(x)
hereafter.
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s
FIGURE 2.4: A segment of a digital plane

In the following, we describe a general framework for tetrahedron-based plane-probing
algorithms (see also Algorithm 1).

2.3.1 Initialization

FI1GURE 2.5: Illustration of the starting triangle

Let (eg, e1,e2) be the canonical basis of Z3. Given a starting point p that belongs to
the plane P, let q be equal to p+ (1,1,1). The point q is by definition not in P. We
define the initial triangle as follow

T(O) = (V£O))k€{071,2} = (q - ek)kG{O,l,Q}' (2'3)

We suppose that every vertex of the first triangle is in the digital plane, i.e. TO - P
(see Fig. 2.5 and Algorithm 1, line 1).

2.3.2 Neighborhoods

At every step i € N, the triangle T C P represents the current approximation of

the plane P. One vertex of T(#) = (v,(;) is updated per iteration. That vertex

)ke{o 1,2}
is replaced by a point of P from a candidate set, also called neighborhood.

We first define three sets of integer pairs as follow:

Su = {(a, 8) € {(1,0), (0, 1)}. (2.4)
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Chapter 2. Preliminary 9

S = {(a, 8) € {(1,A),(\, 1) | A € N} (2.5)
St = {(a, §) € N*\ (0,0)}. (2.6)

Let S be one of the three sets above. At every step 4, the neighborhood is now defined
as follows:

Néi) = {v,(f) + am,(jj_l + Bm,(:}rQ |k € Z/3Z, (a,p) € S} , (2.7)
where Vi, k, m,g) =q - v,(;).

The point q is fixed, and we note p¥) = q — Zke{o,m} ml(f). We drop the index i
when there is no ambiguity.

We denote respectively N, @ 0 N, @ ) and N @ the neighborhood associated with the sets
S, Srand SL See Fig. 2. 6 for an 1llustrat10n of the neighborhoods. The H-algorithm
is based on NV 55, which looks like an Hexagon, whereas the R-algorithm is based on

N, ég, which consists of Rays. In this paper, we propose a lattice-based algorithm,
denoted by the letter L, for lattice, and which uses the largest neighborhood N, é’LL)
We indeed have Sy C Sg C Sp, and Vi, N(g C Néf; C NgL)

FIGURE 2.6: Illustration of the neighborhoods. N ég (black square),
N, 5(‘;) (squares) and N, 5(‘2) includes every point on the lattices.

We discuss more about neighborhood in Sec. 3.1

The algorithm terminates at a step n, when the neighborhood has an empty inter-
section with the plane, i.e., when N, én) NP = 0 (Algorithm 1, line 3). The proof of
termination is postponed to Sec. 2.5.

2.3.3 Pre-order

At every step 1, let HS:) be the open half-space delimited by T and containing the

neighborhood /\/’éi). In addition, let B(T,x) be the closed ball defined by T® and a
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fourth point x not in the plane passing by T,

As in [RL19], for any pair x,x’ € ng), we say that x is closer to T(® than x, denoted

x' <) X, if and only if we have the inclusion: (B(T®), X’)ﬁ”)'-lgf)) C (B(T®, x)ﬂ?—[@)
(See Fig. 2.7). By examining the link between the relation <. and the intersection
of balls with half-spaces, we obtain the following claim:

sl
T
vyl
=
\v - ’
\“?‘:
s\ \“
NS

e
7l

7
e
AN
dl; SN
=iy
L

A
‘v’"
L=
7\
[
piv:

o
|
L/

X

X%

\ S

o=

N V\I&,A ]

\ g‘ﬁ‘\'lv 4!!!!\ ' SCRMW
NS NRN W 22

VN
'\

FIGURE 2.7: Tllustration of B(T®, x) and B(T®, x’) for two points
x,x' € 7-[5?).

Remark 2.1. For alli € {0,...,n}, <q@) is a total preorder on HSE).

Proof. Here, we focus on a step i € {0,...,n} and ignore the exponent (i) in the
notations. For any pair x,x’ C H4, we remind that x’ <t x if and only if (B(T,x')N
H) C (B(T,x) N Hy).

o Reflexivity: the ball defined by T and x € H is unique, thus (B(T,x)NH4) C
(B(T,x) N Hy).
e Transitivity: it is induced from the transitivity of the order C.

o Totality: <v is total if (B(T,x')NHy) C (B(T,x)NHy) or (B(T,x)NHy) C
(B(T,x') N Hy) for all x,x" € Hi. We have two cases according to the pair
x,x":

— if B(T,x) = B(T,x’), both alternatives are obviously true.

— if B(T,x) # B(T,x’), the intersection of the boundary of the two balls is a
curve lying in a plane, which is by definition, the one containing T. Since
H. does not contain that plane, we necessarily have either (B(T,x’) N

H+) - (B(T,X) N H+) or (B(T,X) N ’H+) - (B(T,X/) N ’H+)
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O]

Remark 2.2. The order is not antisymmetric because there exist co-spherical cases
where x # x' but B(T,x) = B(T,x’).

2.3.4 Update rule

At each iteration, the algorithm replaces a vertex of T with a point of the set

N, éi) NP that is a closest one according to <5;). More precisely, if the set N, g) NP

is not empty, there is at least an index k € {0,1,2} and a pair of integers («, 3) €
N2\ (0,0) that satisfies the following relation:

Vx € Ng) NP, v,(f) + ozm,(gl + ﬁml(:l2 <t X. (2.8)

Remark 2.3. The triple (k,«, ) may not be unique when several points are cospher-
ical.

The update rule is then [LPR17, Lemma 2]:

(4)

i+1
VI(cZJF ¥ Vl(c) toamy, + ﬁmk-s-w

(i+1) . _ ()
Vit1 = Vit (2.9)
G 0

k+2 T Vite

As shown in Algorithm 1, lines 4 to 6, equations (2.8) and (2.9) are used to update
the current triangle.

Algorithm 1: Plane-probing algorithms H, R ([LPR17]) and L[LRC22]

Input: The predicate InPlane := “Is a point x € P?”, a point p € P, the type of
neighborhood S € { Sy, Sg, S} (see equatlons (2.7))

Output: A normal vector N and a basis of the lattice {x | x - N = ||N||; —1}.

q<p+(1,1,1); (Vi(g ))ke{0,1,2} — (q4 — er)refo,1,2} ; // initialization

140

while ./\/éi) N{x | InPlane(x)} # 0 do
Let (k,«, 8) be such that, for all y € J\/(l N {x | InPlane(x)},

VI(CZ) +a(g— Vk+1) +B(q — Vk+2) <T@ ¥ ; // equation (2.8)
v,(;H) (1) +a(q v,(H)_l) + 8(q — VI(H)Q) ; // equation (2.9)
Vi € {0, ,2}\k, Vit i
| i i+ 1

8 B« {Véi) — v(li),vgi) — Vgi),véi) — Véi)} ;
9 Let by and by be the shortest and second shortest vectors of B ;

10

return by x bg, (by,bs) ; // x denotes the cross product

2.4 Invariant properties

Before proving that the algorithms terminate on a digital plane, we gather in this
section some properties that the L-algorithm shares with its predecessors studied in
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[LPR17]. These properties are invariant at every iteration and they are essential for
the proof of termination in sec. 2.5.

Theorem 2.1 ([LPR17], Lemma 5). Foralli € {0,...,n}, Vk € {0,1,2}, m;-N > 0.

Proof. For any k € {0,1,2} and i € {0,...,n}, we recall the definition m,(j) = q—vg)
in equation (2.7). We can conclude since q is not in the plane P (q-N > ||N||;) and
vg) is in the plane P (Vg) < |IN[1)- O
Lemma 2.1 ([LPR17], Lemma 6). For all i € {0,...,n — 1}, let k* be the updated
vertex such that V (i+1) + vk) (2.9). Then V(Z—H) N > v,(;*) N, i.e., mgfl) ‘N <
mg*) -N.

Proof. For all ¢ € {0, . — 1}, by equation (2.9), only one vertex changes at each
step, V](;*) . Then, we have v}(€+ ) = (Z) + ozm,(g*) 11t 6mk*) 49, Which is equivalent to
m,(jjl) = m,(f*) — am,g) i1 ﬁmk* L2 for some integers «, 3. We can conclude with
theorem 2.1. O

We say a point x is higher than another one y when x-N > y-N. Thus, the algorithm
always replaces a vertex with a higher candidate point in direction N. That property

is a key point in the proof of Theorem 2.2. It also implies that the set N g NP is
always finite.

Lemma 2.2. For alli € {0,...,n}, the set of candidate points ./\fg) NP is finite.

Proof. The scalar product (V,(j) + a(mk +1) + [(m;, +2)) - N tends to infinity when
a or 8 (or both) tend to inﬁnity That is to say, when «a or f is large enough,

the point v,(f) + a(mk_H) + 6(mk+2) does not belong to P. Therefore, the set

{v,(:) —Fozm,(ﬁ1 +Bmk+2 | (a,B) € S} N P is finite for all £ € Z/3Z and we can
conclude. 0

Theorem 2.2 ([LPR17], Lemma 3). For alli € {0,...,n}, det(m(()l)7 mgl), mg)) =1.

Proof. Let M be the 3 x 3 matrix formed by the vectors mé ), m(1 ), mg) .We have
det (M®) = det (m( ) mgl), g)) and in particular, det (M(©)) = det (eg, e1, e3) = 1.
We now prove that if det (M®) = 1 for Vi € {0,...,n — 1}, then det (M(+D) = 1.
By equation (2.9), only one vertex changes at each step, let us say v,(j). Then, we

have v,(~C b - (Z) —|—am,(€+1 +Bmk+2, which is equivalent to m,(jﬂ) m,(C) am,(;)_l

Bka)rQ, for some non-negative integers a, 8 such that not both are null. The other
vertices are not modified so the remaining two rows of M(*1 are not modified. We
get
det(MO+D) = det(mg) - O‘ml(w)rl ﬁmg}ﬂ, m,(;}rl, m,(CJ)rQ)
= det(m,(;)7 m,&j_l, m,(cj_Q) (by linearity)

= det(M®) =1, (by induction hypothesis)
O

This shows that, for all steps i € {0,...,n}, {m[()) m(1 ), mg)} is a basis of Z3, which
is especially useful in sec. 4.1.
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2.5 Termination and correctness of the algorithm

On a digital plane, we have an upper bound for the number of steps. The proof of
the following theorem requires some invariant properties introduced in the previous
section. For sake of clarity, we use the bar notation whenever a scalar product with
N is required, i.e., X instead of x - N for any vector x € Z3.

Theorem 2.3 ([LPR17],Theorem 1). The number of steps, n, is less than or equal
to [[N|[x — 3.

Proof. The result comes from the fact that the sequence (3>, ﬁ,({:i))i:07_,_7n is a strictly
decreasing sequence of integers between ||N||; and 3 because:

* Vk,m;(co) = €j42 and Zkﬁ](f) = [IN[x.

e by theorem 2.1,

Vi€ {0,...,n}, Vk, m) > 1 then > my’ >3,
k

e by lemma 2.1,

Vie {0,...,n—1}, Zml(j) > Zml(jﬂ)-
k k

This bound is reached for any normal of components (1,1,r) with » € N\ {0}.

The correctness of the algorithm is studied in [LPR17] for the H-algorithm and the
R-algorithm. The proofs are actually valid for any neighborhood S. Since we focus
below on the last step n, we omit the exponent (n) in the proofs to improve their
readability.

Theorem 2.4 ([LPR17|,Theorem 2). If p is a lower leaning point (i.e. P = 0
and thus @ = ||N||1), the vertices of the last triangle are upper leaning points, i.e.

vk € {0,1,2}, 9" = IN|l - 1.

Proof. Let us introduce the following notation for the sides of the triangles: d; :=
my 1 — myo for all k € Z/3Z.

The first step of the proof is to show that the vertices of the last triangle are all
at the same height, i.e., my = m; = my. If not, then there exist k € Z/37Z such
that dy := My — Mo # 0. In this case, either (i) d < 0 or (ii) dj > 0. Since
q = |IN||1 and |dg| < ||N||1, either (i) @ +dg € P or (ii) g — dj, € P. This implies
that Ng NP # (), which is a contradiction because Ng NP = () at the last step. As a
consequence, Yk, d; = 0 and Yk, my, = +, a strictly positive integer.

The second step of the proof is to show that v = 1. Let us denote by 1 the vector
containing ones. We can write the last system as MIN = ~1. Since M is invertible
(because det (M) = 1 by theorem 2.2), N = M~!'y1 and as a consequence 7 = 1
(because the components of N are relatively prime and M~! is unimodular).
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We conclude that Vk, mj = 1 and, straightforwardly, v, = ||N||; — 1. O

The above theorem leads to two important results:

Corollary 2.1 ([LPR17],Corollary 4). If p is a lower leaning point, the normal of

A

the last triangle is equal to N, i.e., N(T() = N.

Proof. On one hand, MN(T) = 1 because Vk, ((mg — m;) X (m; — my)) - my, =
(mp41 X myi9) - my = det (M), which is equal to 1 by theorem 2.2.

On the other hand, MN = 1 by theorem 2.4. Since M is invertible, we have N(T) =
N. O

Corollary 2.2 ([LPR17],Corollary 5). If p = 0, the normal of T s equal to N and
any two edges form a basis of the 2D lattice of upper leaning points, i.e., the lattice
{xeZ3|x-N=|N|; —1}.

Proof. By theorem 2.2, the lattice
{q + amy,q + bmj,q + cmgy | (a,b,c) € Zg}

is equivalent to Z3. Thus, the fundamental domain of this 3D lattice does not contain
any integer point. This implies that the facet conv(T), does not contain any integer
point neither. We also know that the vertices of T are at the same height theorem 2.4
Therefore for any k € Z/37, (mg1—mgo, mgo—my) forms a basis of the 2D lattice
of upper leaning points. O

2.6 Conclusion

In this chapter, we introduce the fundamental concept of digital surfaces. We explore
various techniques for estimating normal vector and perform geometric analyses on
discrete point sets. Within the more specific context of the tetrahedron-based plane-
probing algorithms on a digital plane, we establish the notation that will be utilized
in subsequent chapters and offer theoretical insights into the algorithm’s validity.
Notably, our upcoming focus in the next chapter is on a novel variant, the L-algorithm.
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CHAPTER

L-algorithm

Plane-probing algorithms are methods which adapt the neighborhood progressively.
The first plane-probing algorithm was proposed in [LPR16a]. It probes some points in
the digital surface and the output represents locally an approximation on the digital
surface. Other tetrahedron-based plane-probing algorithms, such as the H-algorithm
and the R-algorithm, were proposed later [LPR17]. The L-algorithm is one of the
tetrahedron-based algorithms that considers more points than other variants. It is
introduced in our paper that has been presented in the 2nd International Conference
on Discrete Geometry and Mathematical Morphology [LRC22]. In this chapter, we
discuss about the implementation of L-algorithm and its performance.

3.1 L-neighborhood

As defined in Sec. 2.3.2, the H, R and L-algorithm differ in terms of neighborhood.
At every step i, from (2.6) and (2.7), the L-neighborhood can be rewritten as:

NG = {80+ am{(), + Bm{), | k € 2/32, (0, 5) € S, = {(a, 5) € N2\ (0,0)}}.
(3.1)

Since the set N, éZL) N P is finite (by lemma 2.2), this ensures that the algorithm can
find the closest point with regard to the relation <p. However, finding a closest
point in N, élL) N P with exhaustive search could require a lot of probes and becomes
an expensive task for the L-algorithm (see lines 4 and 5 of Algorithm 1). In practice,
one does not need to probe so much, because one can safely discard a large part of

N, S(fL) N P. The aim of the next few sections is to show and prove how to reduce the
actual number of probes.

In following sections, we focus on a step i € {0,...,n} and for the sake of simplicity,
we drop the exponent (7) in the notations. Furthermore, we focus on the 2D lattice

Vk € 237, Ly = {vi +amy 1 + fmy o | (a, ) € S}
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FIGURE 3.1: Illustration of the L-neighborhood N, éi) that includes
every point on the lattices (marked as rhombus).
3.2 L-neighborhood navigation

The first idea is to discard the points “further” than others with respect to < . To
begin, we introduce two circumsphere related results:

S

+ 2u
=0+u

(A) Lemma 3.1 (B) Lemma 3.2

Ficure 3.2: Illustrations for circumsphere related lemmas. A point
is depicted as a black disk if it is inside the ball of interest, and as a
hollow disk if it is not in the closed ball.

Lemma 3.1. Let u,w be two non-zero vectors of R3. Let B be a closed ball whose
border passes through the origin O and the point S := O 4+u+w. Ifu-w >0, at
least one of the two points U := O +u and W := O + w lies in the ball.
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Proof. Consider a ball B with centre ¢ and radius r. Using the equivalence O &
OB < 12 = ||c|? it follows:

SciBe (O+u+w—c)l=|c? s (ut+w)?=2u+w)-c (3.2)
U¢ B (0O+u—c)>|c> e 2-u<u? (3.3)
WeB& (O+w—c)?>|c? <2 w>w (3.4)

If u-w > 0 and suppose that U ¢ B, then

2

u —|—W2

< (u+w)? < u? 42w - c. (3.5)
~— ~—
uw>0 (3.2) and (3.3)

Subtracting u? from both sides gives (3.4), thus W € B. With similar proof, if
u-w>0and W ¢ B, we will have U € B. O

Lemma 3.2. Let u be a non-zero vector in R3. Let B be a closed ball whose border
passes through the origin O. If U := O + u does not lie in the interior B of the ball
B, then no point O + du such that § > 1 lies in the ball B.

Proof. Consider a ball B with centre ¢ and radius r, and recalling that O € 0B is
equivalent to 72 = ||c/|?, we get

O+u¢Be (u—c?>|c? <2 -u<u (3.6)
We then compute:

(O + 6u —¢)? = 5%u® — 26u - c + ||¢?

> 6(6 — Du? + ||¢/|? (by (3.6) and factoring u?)
> 72, (since § > 1, u® > 0 and ||c||* = 7%)
We conclude since (O + du — ¢)? > r? is equivalent to O + du ¢ B. O

An elementary application of the above two lemmas is the following result:

Lemma 3.3. For all k € Z/3Z, let Ay be the set {vi+au+ pw | (a, ) € Si.},
where u, W are any two non-zero vectors of Z3 such that vi, +u,vy, +w € Ho. If
u-w > 0, we have either v +u <t x for all x € Ay, or v + w <7 X for all x € Aj.

Proof. Let us consider the ball B(T,x) for a point x := vi +au+ fw, with a, 5 > 1.
Since au - fw > 0, by Lemma 3.1, we know that either vi + au or vy + Sw lies
in B(T,x). Let us assume w.lo.g. that vy + au € B(T,x), which means that
vi + au <t x. By Lemma 3.2, we then conclude that vy +u <t vy +aou <t x. [0

From now on, let us denote the angle between two vectors u and w as Zuw. By
lemma 3.3, if the angle between my; and my,2, denoted as Zmy1my 2 is acute or
right, the number of points that one needs to consider in Ly is only two: v + myyq
and vi + myyo.
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Chapter 3. L-algorithm 18

When the angle is obtuse we divide the angle into two with the vector my,1 + myyo.
Then we know that at least one of the following angle is acute: Zmy. 1 (my41+my42)
or Z(my41 + myyo)myo. If one of the two angles is obtuse, we continue the divide
operation with this angle until we do not spot any obtuse angle (see Algorithm 2).

Definition 3.1. For any pair of linearly independent non-zero vectors (u,w) € Z3 x
73, we define a sequence of vector pairs Q&w = {(uj,w;)} as follow:

1. ug = u and wg = w.

2. For any j > 0, the pair (w1, W;y1) is defined in the following cases:

(wjp1, wit1) := (uj +wj,wj) if (uj+w;)-w; <0,

(3.7)
(W41, W) = (W, w5 +wy) - ifug - (u; +wy) < 0.
We remark that the above cases in (3.7) only exist when u; - wj; < 0.
For k € Z/3Z, we define the (naive) candidate set as
(k) _
Candy’ = U {u,w}. (3.8)

(U, wW)E€Qmy 4y my 4 n

Algorithm 2: CREATECANDIDATELISTNAIVE(InPlane, T, q, k)

Input: The predicate InPlane, the triangle T, the point q and an index k € {0, 1,2}
Output: A list Candék) of candidate points around vertex vy
Initialize Cand(()k); (u,w) < (q — Vit1,9 — Viiy2);
Add v +u to C’andék);
Add v, +w to Cand(()k);
while u-w < 0do
Add v +u+w to Cand(()k);
if u-(u+w)<0then
L (u,w) + (u+w,w);
else
if w-(u+w) <0 then
[ (u,w) + (w,u+w);

return Cand(()k) ;

This process will end because:

Lemma 3.4. For any k € Z/37Z, C’and(()k) 18 finite.

Proof. In fact, for any j > 0, if the pair (uj;+1,w;y1) exists, then we have either
Uj1 - Wil = U5 - Wy + |llj|2 Oor Uj41 - Wyl = U5 - Wy + ’Wj|2. The negative integer
sequence (u; - w;); is thus strictly increasing and bounded by zero, thus finite. O

We have just shown how to navigate through the L-neighborhood naively and select a

finite set of candidate points C’and(()k)

point in Candék) N P and update one vertex of the triangle. This method works, but

. The algorithm will compare and find the closest
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there exist a faster way to explore the neighborhood, which we will introduce in the
following section.

3.3 Reduction of the L-neighborhood

We propose a more efficient algorithm (Algorithm 3) that selects a small and sufficient
set of candidate points included in L.

3.3.1 A Smaller Candidate Set

In the preceding section, we divided the target angle into two parts, and then pro-
ceeded only if there was an obtuse angle remaining. This process can be optimized
because, in any angle partition containing an obtuse angle, there is at most one obtuse
angle. In the following, we will explain how to identify and locate this obtuse angle,
if it exists. Then, we will show how to recursively divide the angle between the two
vectors my1 and mg o issued from vy.

Vk+mk+2\/Vk+mk“ B
Vi Vi + M2 Vi Vit g1

(a) (B)

FIGURE 3.3: Angle between myi; and mgyo : (a) when my4q -

my o > 0, (b) when my 1 -myio < 0and myqo- (M1 +mgio) < 0.

Here, we also have (my41 +ymyg42) - (mgr1 + (7 + Dmyg4o) < 0 with
v =1 (see Lemma 3.5 and the green angle).

When tracing along the points on a ray of the 2D lattice £; and considering the angles
formed with the point vi, we observe that there can be at most one obtuse angle (see
for instance Fig. 3.3 (b)). Furthermore, if the obtuse angle exists, we would know its
location (lemma 3.5) and we can prove that other angles are all acute (lemma 3.6).

Lemma 3.5. Let u, w be two non-zero and linearly independent vectors in Z3. If
there exists v > 1 such that

(ut+yw) - (u+ (v +1w) <0, (3.9)
then ~y is the unique integer greater than or equal to 1 that verifies

(u+(y+Dw) - w>0>(u+yw) - w. (3.10)

In this case, v = Hv‘;H‘Q’J
Proof. We refer to Fig. 3.3(b) for an example where u = my; and w = my4o. By
rewritting the left-hand side of (3.9) as (u+ yw) - ((u + yw) + w) and developing,

we get

lu+yw|? + (u+9w) - w< 0= (u+yw)-w <0,
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which is the right-hand side of (3.10). Similarly, by rewritting the left-hand side of
(3.9) as (u+ (y+1)w) —w) - (u+ (v + 1)w) < 0 and developing, we have

I+ (y+ Dw)|* = w- (u+ (v + 1)w) < 0.

As this expression is strictly negative by (3.9), we obtain (u+ (v + 1)w) - w > 0,
which is the left-hand side of (3.10). To end, by developing (3.10) and isolating the

v, we obtain v+ 1 > —2¥ > ~, thus unicity. O

[[wil

Lemma 3.6. Let u, w be two non-zero and linearly independent vectors in 73. If
there exists v > 1 wverifying (3.9), then for all c € {0,1,...,v — 1}, (u+cw) - (u+
(c+1)w) > 0.

Proof. First, observe that for all ¢ € N\ {0},
(u+(c=1)w)-(u+cew)=(u+cw) - (u+ (c+1)w) —2w- (u+cw).  (3.11)

To determine the sign of —2w - (u + c¢w), note that we obviously have cw? < yw?
and, from the right-hand side of (3.10), yw? < —u - w. As a result,

ew?< —u-wew-(utew) <0.

Since —2w - (u+cw) > 0, it is enough to show that the statement is true for ¢ = y—1
because the result for the smaller values of ¢ then follows by induction.

By (3.10), we also have w - (u +yw) < 0 < (u + yw)?2. Therefore,
2w - (0 4W) < (1 AW) + W (1+ W) = (04 yw) - (1 (y + Dw).

From this lower bound and replacing ¢ by 7 in (3.11), we finally obtain (u + (y —
1)w) - (u+~yw) > 0, which concludes the proof. O

The two previous lemmas provide a set of lattice bases whose vectors form an acute
angle. Indeed, with u = mg; and w = my 5 and assuming that ~ exists, we have
(mg41 + (v + 1)mgyo) - myyo > 0 (lemma 3.5) and for all ¢ € {0,1,...,v — 1},
(myy1+cmgyo) - (Mg + (c+ 1)myi2) > 0 (lemma 3.6). Then, it straightforwardly
follows from lemma 3.3 that the closest points in the set

{vie+ my o} U{vi + my1 +cmyyo | c€{0,...,7+1}}

are closer than any other points in the set

L\ A{vi + a(myy1 +ymyyo) + S(mpyq + (v + 1)myyo) | (o, 8) € S}

(see fig. 3.4).

One part of £y, cannot be covered because (my1+ymygi9)- (Mg +(y+1)mgi2) < 0.
In this case, we can again apply previous lemmas to the pair of vectors (u,w) =
(mgyo, Mg + v+ myio). We recursively apply the lemmas until we can no longer
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Vi +mgyo

FIGURE 3.4: When v = 2, ie. (mpi1 + 2mpyo) - (Mg +

3myi2) < 0 (green angle). For any point in £j that is not within

the green angle, it is “further” than one of the points of the set
{mpy1 + cmpy2 | 0 <c <41} or the point my .

find an obtuse angle. Here, we define formally a sequence of points in order to describe
the candidate set of points deduced from previous results.

Definition 3.2. For any pair of linearly independent non-zero vectors (u,w) € Z3 x
73, we define a sequence of vector pairs Quw = {(u;, w;j)}tisg as follows:

1. ug =u and wg = w.

2. For any j > 0, the pair (w1, Wjt1) exists if and only if there exists v; > 1
such that
(uj +5wj) - (w5 + (9 + Dwy) <0, (3.12)

then
Wjy] =W, Wjq1::=u; +7Wj. (313)

Definition 3.3 (Candidate set). For k € Z/37Z and for any pair of vectors (u,w) in
the set {(my11, mgi9), (Mo, myg1)}, we define

C). = U {vi+w;}U{vi+u;+cw;|ce{0,...,7;+1}}.
(uj,w;)€Q(u,w)

The finiteness of C}, stems from the finiteness of €2y w:

Lemma 3.7. The sequence Quw = {(uj, W;)},5 is finite.

Proof. From (3.13), we have for any j > 0, —uj41 - wjp1 = —w; - (u; + vjwy).
Developing the last expression, we obtain —u; - w; — v;||w;||?, which is strictly less
than —u; - w;. Therefore, the sequence of natural numbers {—u; - w;} j>0 18 strictly
decreasing. Since, in addition, —u; - w; > ||w;||* while there exists v; > 1, there is a
lower bound and it follows that the sequence €, w is finite. O

We have just proven that only a small part of £; has to be taken into account. In
the subsequent section, we demonstrate a further reduction of the candidate set.

3.3.2 Technical details related to the preorder

We could further decrease the number of points, which will be detailed in sec. 3.3.3.
To achieve this, we need to understand more about the preorder <t and some tech-
nical details. The following result will serve further in the proof of lemma 3.9 and
Theorem 4.1.
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Another preoreder First, we observe that there is another preorder in the half-
space H_, the open half-space lying below the plane incident to T.

Lemma 3.8. For all x,y € Hy, if y <t x (i.e. (B(T,y)NHs)< (B(T,x)NHy)),
then (B(T,x)NH_) C (B(T,y)NH_).

Proof. Again, we have two cases according to the pair x,y:
o if B(T,x) = B(T,y), the statement is obviously true.

o if B(T,x) # B(T,y), we first note that we can symmetrically define a total
preorder with H_ instead of H ., which means that there are only two possible
cases: either (B(T,x)NH_) C (B(T,y)NH_) or (B(T,y)NH_) C (B(T,x)N
H_). We now show by contradiction that the second one is impossible. Indeed,
if we have the two following inclusions

(B(T,y) NHy) € (B(T,x) NHy),
(B(T,y)NH_) C (B(T,x)NH_),

by taking the union of both sides of the inclusions, we obtain B(T,y) C B(T, x),
which raises a contradiction as the two balls are assumed to be disinct and, by
definition, intersect.

O]

Understanding the Preorder with Determinants The implicit equation of the
sphere can be written as a determinant. Thus, we can describe the algebraic distance
of a point x” to the circumsphere of T U {x} as a 5 x 5 determinant:

Vo V] Vg X !

! 2
or(x,x) =] vp?2 viZ vo? x% ¥

1 1 1 1 1

This notation ér(, ) is first introduced in [RL19]. We remark that ér(x,x') <0 <
x" <7 x means that x’ is inside or on the circumball of T U {x}. By the update
rule of the algorithm, if x is the chosen point, then ér(y,x) < 0 for all points in the
neighborhood y € Ng (see algorithm 1 - line 4).

Let us consider the point vy as the origin. In order to simplify notations, we set

y:=x-—vp,y :=x' —vpand using dy, = v — vy = my —myy for all k, we have:

dy -d2 y ¥y

3.14
do> dy? y? y”? (314

o (y,y') =or(vo+y,vo+y) =

The relation between the algebraic distance of a point y to the circumball of T U {x}
converts to the following:

Vy,y' € Hy, 03(y,y) >0 vo+y<tvo+y (3.15)
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Let us denote by [z,z’,z"] the 3 x 3 matrix composed of columns z,z’,z". We give
below a formula for 6%(z,z’ + az") for any z,7’,z” € R3 using the cofactor expansion
of the determinant (3.14):

03 (z, 2 + az") = —do? det [~dy, 2,2 + az"] + dy? det [dg, z, 2’ + az”]

— z?det [dg, —da, 2z + az”] + (2 + az”)? det [dy, —d2, 7.

Due to the multilinearity inherent in the determinant’s nature, we can derive the
following identity [RL19, equation (6)]:
o (2,2 + az") = 6%(z,2') + adp(z,2")

+ (az(Z"Q) +a( - 2" + 27 z")) det [dg, —d2, z]. (3.16)
In particular, when a = 1, we have:
0%(2,2' +72") = 0%(2,2') + 0% (z,2") + (22 - 2") det [d2, —d1, 2. (3.17)

The above equation is used below as well as in sec. 4.2.3.

3.3.3 Even smaller candidate set

The set C} described in sec. 3.3.1 is a union of subsets of aligned points. We show
below that, for each subset, the last point is always closer than the other ones:

Lemma 3.9. For any vectors u,w € Ly such that there exists v > 1 such that

(u+yw)-(u+(y+1)w) <0, then for any 0 < ¢ < vy—1, we have u+yw <t u+cw.

Proof. We assume w.l.o.g. that ¥ = 0 and we use the notation 0} (x,y) introduced
in [RL19], where x and y are relative points of Z3 when considering v as origin. We
recall that if vo +x € Hy, then vo +x <1 vo +y & o}(x,y) > 0.

In order to show that for all 0 < ¢ < v — 1, 6%(u + yw,u + ecw) > 0, we use the
identity described in (3.17).

Indeed, as ¢ =y — (7 — ¢), we obtain (with z =2' =u+~yw and 2’ = —(y — c)w):

Fp(u+yw,u+ ew) =03 (u+ yw, u+ yw) + 63 (u + yw, — (v — c)w)

=0 >0, see item 1

—2(y—¢) (ut+yw)-w det[my—m;, my— mg,u+yW|.

<0 by Lemma 3.5 (3.10) >0, see item 2

1. Let ‘H_ be the open half-space lying below the plane incident to T. Let us
set x := u+yw and y := —(y — ¢)w. By definition, vo + x € Hy and
vo+y € H_. We have to prove that vo + x <t vg +y. Let x* be the closest
point chosen for update. By definition, x* <7 v + x, which implies that
(H- N B(T,vp +x)) C (H- N B(T,x*)) (see Lemma 3.8). Due to the above
inclusion relation, since vo + y is not in the interior of B(T,x*) (by Delaunay
property, see chapter 4), vo+y is not in the interior of B(T, vo + x) either, i.e.,
vo+x<tvy+y.
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2. For any (a, 8) € S, det [mg — my, mp — my, am; + Smy] = a+S > 0, because
det [mg, m;, my| = 1 (see Theorem 2.2). Notably,

det [mg — m;, mg — my,u + yw| > 0.

O

Lemma 3.9 shows that the last point should be the closest. However, in the case
where this last point is not in P, we can resort to a binary search as in [LPR17,
Algorithm 4].

3.4 Algorithm

Fig. 3.5 sums up the process of filtering the set £;. However, we have to discard the
points that are not in P. For this purpose, we use the predicate InPlane in the whole
procedure detailed in Algorithm 3.

ww>0 7 Ves ‘Addvk+u,vk+W’

- . (Lemma 3.3)
|\LO Yes, replace (u,w) + (w,u+yw)
{u.(u—i—w)go ?} ves,

Y exchange Compute 7y (Lemma 3.5)
No uandw |(u+yw) - (u+(y+1)w) <0 7

v Yes No
[(u-l—w)-wgo ‘?J/ v

: Find and add the closest point in
N*O {u aF CW}OSC§7+1 (Lemma 39)

‘Add Vi +u, v + w and vk—i-u—l—w’

FIGURE 3.5: Roadmap
Theorem 3.1. Algorithm 3 requires O(log ||N||1) calls to the predicate InPlane.

Proof. We consider the sequence of vectors (uj, W;)o<j<jn... For any j > 2, if we
rewrite the equation (3.13) with only u;_s, u;—; and u;, we obtain the relation
u; = u;_s+y;u;_1. We use the bar notation - above any vector x to denote its height
relative to N. Otherwise said, X := x - N. Then, we have u; = uw;_3 + yu;_1 >
uj_2+u;1 (because v; = 1land u;_; > 0 by recurrence). By induction, we have for
all 2 < j < jmaa, Uj > ol3] (To + W), which leads to jmer € O(log ||N||1), because
the last point must be in P, i.e., @, .. < |[[N||i. Note that there is only one call to
the predicate at each rank 2 < j < jj4. (and at most four calls before), hence a total
of O(log ||N|1) calls at the last rank. It remains to notice that the final search also
requires at most O(log||N||1) calls with an appropriate procedure such as [LPR17,
Algorithm 4]. O

The overall complexity of the L-algorithm is discussed in the next section.
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Algorithm 3: CREATECANDIDATELIST(InPlane, T, q, k)

Input: The predicate InPlane, the triangle T, the point q and an index k € {0, 1,2}
Output: A list Candy, of candidate points around vertex vy

1 Initialize Candy; (my, mz) < (g — Vit1,9 — Vii2);
2 Add vi + m; (resp. vi + my) to Candy, if InPlane(vy + my) (resp. InPlane(vy + my));
3 if InPlane(vy + m1) and InPlane(vy + my) then
4 (u,w) + (mp, my);
5 while u-w < 0do
6 if u-(u+w)<0orw-(u+w)<0then
7 if u-(u+w)<0 then
8 ‘ (u,w) < (w,u);
9 Compute v = {WJ,
10 if (u+yw)-(u+(y+1)w) <0) then
11 if InPlane(u+ yw) then
12 Add vi 4+ u + yw to Candy;
13 (u,w) + (w,u+yw);
14 else
15 Find a closest point x* € {vi +u+ ¢W}o<c<~y+1 such that
InPlane(x*) and add it to Candy; break;
16 else
17 Find a closest point x* € {v} + u+ ¢W}o<c<y—1 such that InPlane(x*)
| and add it to Candy; break;
18 else
19 L Add v + u+ w to Candy, if InPlane(vg + u + w); break;

20 return Candy;
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n Nean Yo N
alg. avg. avg. max. avg.
H 25.3756 | 6.00 6 152.25
R 19.2534 | 17.73 25 271.31
R! | 19.2534 | 9.77 15 131.23
L 19.2529 | 12.03 21 144.85

TABLE 3.1: Statistics of plane-probing algorithms (on planes whose
normal is in x). N/, denotes the number of calls to predicate at a
step ¢ and n is the number of steps.

3.5 Overall complexity and performance

Thanks to Theorem 3.1, we obtain the global complexity of the L-algorithm:
Corollary 3.1. For L-algorithm, the total number of predicate calls is in O(||N||1 log ||N][1).

Proof. There are O(||N||1) steps (see Sec. 2.5) and O(log | N||1) calls to the predicate
at every step due to Algorithm 3 (Theorem 3.1). O

For comparison, the total number of predicate calls in worst cases is in O(||IN||;) for
the H-algorithm, O(]|N||;log||N||1) for the R-algorithm [LPR17] and O(||N||;) for
the Rl-algorithm [RL19).

To provide more statistics, we have considered a large collection of implicit digital
planes with normal vectors in a set y with relatively prime components, in the range
(1,1,1) to (200,200,200). The cardinal of the set x is 6578833. For all variants of
tetrahedron-based plane-probing algorithms, we compare in Tab. 3.1: the number n
of steps, the number N ga” of calls to the predicate per iteration and the total number
of calls Z?:_ol “ - The results are obtained from a C++ implementation using the
DGtal Library [Thel0]. The numbers do not perfectly match with the table shown
in [RL19] due to different implementation choices (e.g., the ordering in case of co-

spherical points).

(a) (B) ()

FIGURE 3.6: The evolution for normal (2, 5, 156) with H-algorithm (a),
R-algorithm (b) and L-algorithm (c). Every triangle of the evolution
is superimposed. The initial triangle is blue. The last one is red.

In terms of the number of steps, the L-algorithm requires a fewer number of steps
to obtain the exact normal vector of the plane. In particular, we observe that the
steps of L-algorithm are included in the ones of R-algorithm for all vectors in x. For
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example, for the digital plane of normal vector N = (2,5,6) (see Fig. 3.6), the L-
algorithm uses 40 steps while the R-algorithm uses 50 steps to find the exact normal
vector. Visibly, the H-algorithm requires more steps.

We also remark that, in practice, the L-algorithm usually examines fewer points at
each step than the R-algorithm. However, it does not outperform the R!-algorithm,
the optimized version of R-algorithm. The experimental results are shown in tab. 3.1.

In Fig. 3.7, we compare the complexity of different variants with a family of normal
vectors {(3,19,7),1 <r <500}. We measure the number of calls to the predicate
InPlane at each iteration. In the upper image, we divide the number by the number
of the iteration for each normal vector and the curves correspond to the statement in
Theorem 3.1. In the bottom image, we look at the sum of the numbers of calls of all
iterations. We remark that for this particular example, the H-algorithm requires a
constant number of call to the predicate but the total number of calls might be more
than other variants because it needs more steps.

Normal=(3,19,r)

Nb of call/iter

Normal =(3,19,r)

Total nb of call

FIGURE 3.7: Number of calls to predicate (upper: per iteration; bot-
tom: in total) for normal vectors of form {(3,19,7),1 < r < 500}.

Furthermore, there is a possible improvement for the implementation. In fact, the H-
neighborhood is included in the R-neighborhood, and the latter is in the L-neighborhood
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(sec. 2.3.2). In the computation for the Fig. 3.7, no matter which kind of neighbor-
hood is chosen, the six points of the H-neighborhood are necessarily probed at each
iteration. However, some of the points remain inside the H-neighborhood after the
vertex update. Or, to put it differently, the H-neighborhood of two consecutive steps
have points in common. Therefore, instead of probing all of them repeatedly at each
iteration, one can use a cache so as not to probe twice the same point.

Fig. 3.8 compares the number of predicate calls for different plane-probing algorithms
in a simple family of digital planes. The figure also shows the result of an optimized
variant of the L-algorithm, denoted L-opt, that decreases the number of calls at each
step by some values that are bounded by a constant. We remark that this optimization
is not reserved for the L-algorithm, it can also be applied to the H-algorithm and the
R-algorithm.

Normal =(3,19,r)

Nb of call/iter

FIGURE 3.8: Number of calls to predicate per iteration for N €
{(3,19,7),1 < r < 500}.

3.6 Properties

Besides comparing the complexity among the different variants of plane-probing al-
gorithms, we also carry out several experiments on some geometrical properties. Par-
ticularly, there are two of them worth mentioning;:

The Delaunay property Here, we consider the set of normal vector of coprime
coordinates between (1,1,1) and (80, 80,80), and the results are shown in tab. 3.2.
At each step, the algorithm updates one of the three vertices of the base triangle.
Thus, the cardinal of the union of the vertices of two consecutive triangles is equal
to four. Let B® be the ball determined by the four distinct points of T~ U T,
In tab. 3.2, we compute the number of points Cn that are found both in the digital
plane and in the ball B%). No points are found in any balls for the L-algorithm while
75235972 points are found for H-algorithm and 424 points for R-algorithm.

The fact that there is no point found for the L-algorithm is a very interesting property.
We name it the Delaunay property and we will prove that it is indeed an invariant
for the L-algorithm in the next chapter.
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Nst. Cn>0 CN
alg. total total avg.
H 247457 | 75235972 | 471.46
R 90 424 2.44
L 0 0 0

TABLE 3.2: Statistics of plane-probing algorithms (on planes whose

normal is inbetween (1, 1,1) and (80, 80,80)). Cn denotes the number

of points lying both in P and in B, the closed ball that passes through
the vertices of two consecutive triangles.

Non-decreasing ball radius We consider the same collection of implicit digital
planes, as in the previous subsection, with normal vectors in a set x with relatively
prime components, in the range (1,1, 1) to (200, 200,200). In addition, we tested for
all normal vectors in the set x that, for the L-algorithm, the sequence of radii of the

balls {B(i)}o<'< is non-decreasing.

Stsn—

In fig. 3.9, we show an example where the balls’ radius are not monotone for the
H-algorithm and R'-algorithm.

Radius of circumscribed spheres

4000 T T T T

3500 |- -

3000 = -1

2500 |- |‘ —

2000 |- “H |

1500 N

Radius

1000 |- “ “

0 | | ! I !
0 20 40 60 80 100 120 140 160 180

Iteration

FIGURE 3.9: Radius of B®) for N = (198,195,193) during probings
with the H, the R' and our L-algorithm.

This is also a property that is true only for the L-algorithm. We postpone its proof
also to the next chapter (see sec. 4.3).
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3.7 Conclusion

In this chapter, we have introduced the L-algorithm, which is a new tetrahedron-based
plane-probing algorithm. It considers a larger neighborhood compared to previous
methods. Efficiently probing this expanded neighborhood was a key focus of our
discussion, ensuring that the algorithm can be implemented effectively. We also
delved into the complexity analysis of the L-algorithm, which helps us understand
how it performs in terms of computational resources.

Additionally, we discussed invariant properties of the algorithm, which are character-
istics that remain consistent throughout its execution. In the upcoming chapter, we
will dive deeper into one specific invariant property known as the Delaunay property,
further enhancing our understanding of the L-algorithm and its applications.
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CHAPTER

Delaunay property

One major property that the L-algorithm satisfies is the Delaunay property (see
property 4.1). In this chapter, we introduce this property and prove that it is an
invariant property for the L-algorithm. The majority of the work conducted in this
chapter has been organized and presented in a paper [Lu+23] that we have submitted
to the journal, Theoretical Computer Science.

For convenience let T(—1) denotes the degenerated triangle whose three vertices are
all at 0. For all i € {0,...,n}, let B% be the ball uniquely determined by the
four distinct points of TU—1) U T®, In previous chapter, we have experimentally
observed that the following property is verified by the L-Algorithm, but neither by
the H-Algorithm, nor by the R-Algorithm:

Property 4.1 (Delaunay property for plane-probing algorithms). Foralli € {0,...,n},
the ball BY does not contain any point of P in its interior.

If a point is randomly chosen in the set N, éZL) NP at each iteration, our procedure would
still terminate and return a triangle whose normal is equal to the normal of the plane.
However, that triangle might possess a significantly bad aspect ratio, with vertices
potentially distant from the initial point. The Delaunay property is noteworthy as
it ensures both minimal basis and computational locality for the L-algorithm. It is
a strong geometric result which ensures that the last triangle has only acute or right
angles (Corollary 5.1, in chapter 5), and that its vertices stay close enough to the
starting point (Sec. 5.3, in chapter 5).

The main purpose of this chapter is to prove the following theorem:

Theorem 4.1. The L-algorithm verifies the Delaunay property (Property 4.1).

Remind that for all i € {0,...,n}, H(ﬁ (resp. H(_Z)) is the open half-space delimited
by T that contains (resp. does not contain) the neighborhood N, éfL)

The proof of Theorem 4.1 requires the following lemma whose quite technical and
lengthy proof is postponed to Sec. 4.1:
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Lemma 4.1. For all i € {0,...,n — 1}, if the interior of B contains no point of
P, then the interior of B4tV contains no point of P N ’Hgf).

By assuming Lemma 4.1 as true, we can establish the proof of Theorem 4.1 through
an inductive approach.

FIGURE 4.1: An 2D representation of an induction step: The (dark to
light) green segments indicates the triangles at each step. The last tri-

angle (lightest green) aligns with the digital plane P. ’ngi) correspond

to the half-plane above the triangle T(!). The yellow region indicates

the intersection ’Hﬁ) NP. The balls B® and B+ are respectively in
red and purple.

Proof. of Theorem 4.1

Base case B, which passes through all the vertices of a unit cube, contains no
integer point in its interior and as a consequence, no point of P.

Induction step We assume that B(%) contains no point of P in its interior for any
i € {0,...,n—1} and we want to show that no point of P lies in the interior of BO+1),
Fig. 4.1 serves as visual aid.
By definition, the boundary of B and the boundary of B(t1 pass through the
vertices of T and there is a point x*, chosen by the algorithm, lying in 7—[5? and
such that x* € TO+D\ T,

First, we can safely discard the points of P that are located in . Indeed, x* € ”Hgi)
(by definition) and x* ¢ B® (by hypothesis) together imply that (B®) N ’H&)) -
(BUH) 0 ’Hﬁ)), thus (BO+HY) N ’H@) C (B n H@) (see Lemma 3.8). We conclude
that the interior of (B(”l) N H(_l)) contains no point of P, because it is included in

the interior of (B(i) N 'H@), itself included in the interior of B%), which is assumed to
contain no point of P.
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If we denote by #(® the plane containing T, we can similarly show that the interior
of (BU+1) NH) contains no point of P, because (BUH) N H®) = (BO nHO) by
the definition B®) and B+1).

Finally, regarding the points of P that are located in Hgf), by Lemma 4.1, we know
that none of them are in the interior of B4+ which concludes. O

4.1 Proof of Lemma 4.1

This section is dedicated to the proof of lemma 4.1. For a fixed step ¢, the main idea

is to partition the points of HSZ) into different categories according to their position

and we treat each case with distinct lemmas before concluding.

Let us consider the parallelepiped that is generated from the point q and the vectors
{—m,(;) }ke{o e We first introduce the following lemma that shows that the lowest

point of the parallelogram is always in the digital plane.

Lemma 4.2. For alli € {0,...,n}, p®) - N >0, with p®) :=q -, mz(j)-

Proof. By definition p(®) = o and o is assumed to belong to P. As a consequence,

Foranyi € {1,...,n—1}, thereis (k, a, §) such that m,(fﬂ) = m,(f) —aml(ﬁl—ﬁmglw
m,gz_:_ll) = m,(;_)H and mgg_:;) = mg_)w by (2.9). Then, we remark that p(+?) . N —p(®).
N = am/,(ﬁr1 -N + ﬂml(ﬁ2 - N, which is strictly positive by Theorem 2.1. We can
therefore conclude by induction. O

Since we now focus on a step ¢ € {0,...,n — 1}, for sake of simplicity, we drop the
exponent (7) in the notations of this section.

4.1.1 Outline of the proof and notations

Remind that p is equal to q — >, mg. We conveniently describe any integer point
y € Z3 as a linear combination of mg, m; and ms, which form a basis of Z3 (by
Theorem 2.2), i.e., y := p+ > cpmg, with ¢, € Z for all k € Z/3Z. By construction,
the bounding plane of H is defined by the vertices {p + mp+m;,p+m; + mo, p +
mg + ma}. All lattice points y on this plane are such that Y ; ¢z = 2. Hence, for
any lattice point y, we have y € Hy < ", ¢ > 3. In this section, we always assume
that y € H.

We consider several cases:
(Case 1) the coefficients ¢y, c1, co are all strictly positive (see Lemma 4.3),

(Case 2) one coefficient is zero and the others are strictly positive; these points are exactly
the ones probed in the L-algorithm (see also the definition of the candidate
points, equation (3.1)),

(Case 3) one coefficient is strictly negative and the others are strictly positive (see Lemma 4.4
and Lemma 4.5),

(Case 4) one coeflicient is strictly positive and the others are strictly negative or null (see
Lemma 4.6 and Lemma 4.7).
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To check that any y € H4 is in one of the previous cases, it is enough to consider the
partition of Z3 into eight octants depending on the signs of the coefficients and with
a convention for null coefficients (see Fig. 4.2). The negative octant, in red, does not
intersect H4 and is therefore discarded. The positive octant is itself divided into two
regions, the interior, in yellow, corresponds to (Case 1), whereas the boundary faces,
in green, correspond to (Case 2). Among the last six octants, three of them, in blue,
correspond to (Case 3), whereas the other three, in purple, correspond to (Case 4).

(B) () (D) (=)

FIGURE 4.2: The discrete space Z3 (intersected with the box [5, 5]°

for the illustration) is partitioned into five regions: the yellow, green,

blue and purple regions respectively correspond to (Case 1), (Case 2),

(Case 3) and (Case 4), the red one is discarded because none of its

points lie in 4 (the three black arrows indicate the direction of the
grid axes).

The proofs of the following lemmas require a lot of technical details that are postponed
in Sec. 4.2 for the sake of readability. They also require the following notation (see
Fig. 4.3):

Vk € Z/3Z, d; = my ] —Mgyo =Veyo — Viyg. (4.1)

For sake of clarity, we use the bar notation whenever a scalar product with N is
required, i.e., ¥ instead of y - N for any vector y € Z3.

Lemma 4.2 ensures that p > 0. Since Vk € Z/37Z, my, > 0 by Theorem 2.1, all points
of the form p + >, cxmy with positive coefficients are such that p + > cymy > 0.
That is why we will only check if p+3";, cxmy < ||N||1, whenever we want to determine
whether such a point is in P or not.

Finally, let ¥ be the set of all permutations over {0, 1,2}. Permutations will be useful
to describe in a uniform way the various sign combinations of the coefficients.
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FIGURE 4.3: Notations for vy, (black), my (red) and dj (blue). Note
that N, (grey) is used only in Sec. 4.2.1.

4.1.2 (Case 1)

The following lemma indicates that the points y corresponding to (Case 1) do not
need to be considered because they are not in P.

Lemma 4.3. Lety = p + >, cpmy, be such that Y, c, > 3. If co,c1,c2 > 0, then
y ¢P.

Proof. Note that y = q + >_p(cx — 1)my. Since (¢ — 1) > 0 for all k € Z/3Z
(by hypothesis), § = |N||; (by definition) and mj > 0 (by Theorem 2.1), then
¥=a+ Xi(ex —1)M 2= N and y ¢ P. O

4.1.3 (Case 3)

This section contains Lemma 4.4 and Lemma 4.5 that focus on (Case 3). More
precisely, they indicate that the points y corresponding to (Case 3) do not need to be
considered because if they are in P, then there is at least one specific point x € NgNP
(Lemma 4.4) such that x <7 y (Lemma 4.5).

Lemma 4.4. Lety = p + >, cxmy be such that >, cx > 3. Let 0 € ¥ be such
that co) < 0 and co1),¢o2) > 0. If y € P, then p + 2mg,q) + myo) € P or
P +m,q) +2m,po) €P (the two points can be both in P).

In addition, if —cq0)y < min (cy(1), Co(2)) — 1, then p + (co0) + Co1))My(1) + (Co(0) +
00(2))1110(2) cP.
Proof. We assume w.l.o.g. that o is the identity, i.e., 0(0) = 0, 0(1) = 1 and 0(2) = 2.

Since y € P, we have

Yy=pP+ chﬁk =q+ Z(Ck — 1)my < [|NJ}.
k i

Since q = ||N||1, the last inequality is equivalent to > ;(cx — 1) < 0.

With A set to min (7, M) and noticing that ¢ < 0 < —(cp—1) > 1, we equivalently

have
(01 + co — 2)h

—(co—1)

(01 — 1)ﬁ1 + (CQ — 1)m2
—(co—1)

<
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In addition, we have

ch23<=>61+62—22—00+1,
k

which means that h < my.

We conclude that if h = m; (resp. h = my), p + 2m; + My (resp. p + my + 2my)
is strictly smaller than p + Y, m; = q = ||N||; and thus, the point p 4+ 2m; + my
(resp. p+ m; + 2mpy) is in P.

For the second part, we similarly derive from ), (cx — 1)y < 0:

(min (c1, ) — 1)
—(co — 1)

(Cl — 1)m1 + (CQ — 1)m2
—(co—1)

(m; +mp) <

Since we assume (min (c1,c3) — 1) > —cp, we have % > 1 and it follows
that (ﬁl —i—ﬁg) < my.

As a consequence,

P+ (co+c1)my + (co+ co)My <P+ Y iy =y < Ny,
k

which concludes. O

Lemma 4.5. Lety = p + >, ckxmy be such that >, cx, > 3. Let 0 € ¥ be such that
Co(0) < 0 and c,(1),¢o(2) > 0. If y € P and if the interior of B contains no point of
P, then there ewists a point x € Ng NP such that x <t y.

Proof. We assume w.l.o.g. that o is the identity. We also assume w.l.o.g. that c¢; < co
and consider three separate cases (see Fig. 4.4):

(i) (e1—1) <e2 < —c,
(i) (e1 —1) < —co < ¢z,
(iii) —cy < (61 — 1) < €.

(iii)

—Co - ...

| | | I
C1 C2

3
L

FIGURE 4.4: Relative position of —cg with respect to ¢; and ¢s. Three
separate cases, (i), (ii), and (iii), are considered in the proof.

Since y € P, either p + m; + 2mgy or p + 2m; + my is in P by Lemma 4.4. For (i)
and (ii), we suppose here that only p + m; + 2ms € P, because the case where only
p + 2m; + my € P can be proven symmetrically. For (iii), Lemma 4.4 provides a
stronger result, that is y € P implies p+ (co+¢1)mj + (co+ c2)mgy € P, which in turn
implies both p + m; + 2my € P and p 4+ 2m; + my € P because (¢p 4+ ¢1) > 2 and
(co+c2) > 2 (p+my +2my, p+ 2m; + My < P+ (o +c1)my + (o + c2)mp < [Ny
by Theorem 2.1).
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Let u := —mg + m; + my. By equation (4.1), u is also equal to d; + m;. The first
step of the proof is to show the following results:

d; -my >0, (4.2)
mo -u > 0, (4.3)
p+m;+2my € P = dou>0, (4.4)
(—d2) -u >0, (4.5)
and
P+2m;+me € P=m; -u>0. (4.6)

Those results are used in a second step to complete the proof: (4.2), (4.3), (4.4), (4.5)
are used in cases (i) and (ii), while (4.3) and (4.6) are used in case (iii).

First step If p+m;+2my isin P, sois p+2my (p+2m, < p+my +2my < ||N|;
by Theorem 2.1). As the interior of B does not contain any point of P by hypothesis,
p + 2my ¢ B. By rewriting

p+2my =vy—dg=va+d; —dp,

we can apply Lemma 4.13 with the two vectors (—dg),d; and the point vy as origin.
Since vy, vo —dyp = vy and v + d; = vq are indeed on the boundary of B, we
get (—dp) - dy > 0. From that, we finally get (4.2) because (—dy) - d; > 0 implies
d; - ms > 0 by Lemma 4.10.

We can similarly get (4.3) and (4.6). To explain why, we focus on the case where
p + m; + 2my is assumed to be in P because the other case is symmetric. Note
first that p + mg € P (using the same arguments as in the previous paragraph for
p + 2my). As a consequence, both p + m; + 2my and p + mgy are not in B by
hypothesis. We can then apply Lemma 4.14 with the two vectors mg, (—u) and the
point v as origin. Since vy and vg 4+ mo — u = vy are indeed on the boundary of B,
we get my - (—u) < 0 and thus (4.3).

By Lemma 4.12, my - (dy +my) > 0 implies d; - (d; + my) > 0. Since u = dj + my,
(4.4) is actually a simple consequence of (4.3).

It remains (4.5), whose proof is separated into two distinct cases.
If dy - dg <0, we have dy - (d; + m;) < 0 and thus (4.5) by Lemma 4.11.

Otherwise, i.e., if (—d;) - d2 < 0, we apply Lemma 4.13 with vectors (—d;), d2 and
the point vy as origin. Since the points vg, v — d; = vo and vg + do = vy are on
the boundary of B, we deduce that the point vo — d; + ds = q — u is necessarily in
the interior of B. Moreover, since no point of B belongs to P, we deduce that q —u
is not in P.

We have therefore @ —u > ||[N||; & u < 0. It follows that Vo < ||[N|; = Ve + U <
|IN||1, which means that the point vo4+u = p+2m;+m; is in P. In this case, we have
(4.6) and as a consequence, (4.5), because mj -(d;+m;j) > 0 implies da-(d;+m;) < 0
by Lemma 4.12.

Second step

Cette thése est accessible a I'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0123/these.pdf
© [J-T. Lu], [2023], INSA Lyon, tous droits réservés



Chapter 4. Delaunay property 38

(i) We assume first that (¢; — 1) < ¢a < —¢g. One can check that

y:P+ZCkmk
k

= vo + comg + (01 — 1)m1 + (CQ — 1)m2

= vy + (—Co —c1 + 1)((311) + (—Co —Co + 1)(—(212) + (ch — 2)11.
k

Let w:= (—co—c1+1)(d1) + (—co—ca+1)(—d2) + (X4 ¢k — 2)u. All its coefficients,
ie, (—co —c1 + 1), (—co —ca+ 1), (X, ck — 2), are positive by hypothesis. Since
we also have (4.4) and (4.5), we can apply Lemma 4.17 to show that 6% (my, w) > 0,
which is equivalent to vo +mgy <7 vo+w by (3.15). As a result, there exists a point
in Ng NP, namely v + mg, which is closer than y according to <.

(ii) We assume now 0 < (¢; — 1) < —¢p < c2 and we rewrite y as another positive
linear combination:

y = vo+ comg + (¢; — 1)m; + (¢ — 1)my

=vo+ (—co—c1 +1)(d1) + (g + c2 — 1)(mg2) + (¢1 — 1)(u).

By assumptions, all coefficients, i.e., (—co—c1+1), (cog+c2—1), (¢1 — 1), are positive.
From that and (4.2), (4.3), (4.4), (4.5), we can use Lemma 4.18 to get vop+my <7 y.
Again, there exists a point in NgNP, namely vo-+msy, which is closer than y according
to <.

(iii) We finally assume 0 < —¢p < (¢1 — 1) < ¢ and we rewrite y as:

y = v +comg + (01 — 1)m1 + (CQ — 1)m2

=vgy+ (Co +c1 — 1)(m1) + (Co +co — 1)(m2) + (—Co)(u).

By assumptions, all coefficients, i.e., (co + ¢1 — 1), (co + c2 — 1), (—cp), are positive.
From that and (4.3), (4.6), Lemma 4.19 shows that there exists a point x := v +
am; + fmg, with a, 8 € N\ (0,0),a < (co+c1 —1),8 < (co + ¢2 — 1), such that
x <7 y. To conclude (iii), it remains to check that such a point is in P. Indeed, since
p+ (co+ c1)my + (¢o + c2)my € P (Lemma 4.4), we have:

X=p+ (a+1)m; + (B+1)m2 <P+ (co + c1)my + (co + c2)my < || N]|1.

4.1.4 (Case 4)

This section contains Lemma 4.6 and Lemma 4.7 that focus on (Case 4). More
precisely, they indicate that the points y corresponding to (Case 4) do not need to
be considered because, as in the previous section, if they are in P, then there is at
least one specific point x € Ng NP (Lemma 4.6) such that x < y (Lemma 4.7).

Lemma 4.6. Lety = p + >, ckmy be such that ", cx, > 3. Let 0 € ¥ be such that
Co(0)s Co(1) < 0, then'y € P implies both:
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* Pt+myq) +2myeo) €P orp+m,q) +2m,p) €P,
* P+2m,py €P.

Proof. We assume w.l.o.g. that o is the identity.

Since y € P, we have

Y=p+ > amp=q+» (¢ —1)my < |NJ1.
k k

Since q = ||N||1, the last inequality is equivalent to >, (cx — 1) < 0.

With A set to max (Wp,m;) and noting that (c; — 1) > 2 (since >, cp > 3 and
o, c1 < 0), we equivalently have

—(cop— 1)y — (¢1 — 1)m —co — 2)h
my < (CO )mo (Cl )m1 <( Co c1 + ) .
62—1 62—1

In addition, we have

=3 e—1>—c—c1+2,
k

which means that ms < h.

We conclude that if h = my (resp. h = my;), p + m; + 2my (resp. P + My + 2my)
is strictly smaller than p + Y, m; = q = ||N||; and thus, the point p + m; + 2m,
(resp. p + mg + 2my) is in P. A fortiori and whatever h is, p + 2my € P. O

Lemma 4.7. Lety = p + > ckxmy, be such that )", cx, > 3. Let 0 € X be such that
Co(0)) Co(1) < 0. If y € P and if the interior of B contains no point of P, then there
exists a point x € Ng NP such that x <Ty.

Proof. We assume w.l.o.g. that o is the identity.

Since y € P, p+ 2my € P by Lemma 4.6. That point, which is also at vg — dg =
vi +dj, is not in the interior of B by hypothesis and we can apply Lemma 4.13 with
the two vectors (—dg),d; and the point vy as origin to get (—dg) - d; > 0.

Furthermore, either p + m; + 2ms € P or p + 2m; + ms € P by Lemma 4.6. We
assume below that p+m; +2ms € P, because the case where only p+2m; +ms € P
can be proven symmetrically.

One can check that

Yy =P+ Y cemy =vo+comg+ (c1 — 1)my + (cz — 1)my
k

=vo+ (—c1 + 1)(—=do) + (—co)d1 + O e — 2)my.
K

Let w := (—c1 + 1)(—do) + (—co)d1 + Ok ek — 2)ma. All coefficients, i.e., (—c1 + 1),
(—co), (X kck — 2), are positive. Since, in addition, (—dp) - d; > 0, we can use
Lemma 4.20 to show that 5%(m2, w) > 0, which is equivalent to vo +mg <1 v+ W,
where vo +w =y and vg + my = p + m; + 2ms. O

Cette thése est accessible a I'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0123/these.pdf
© [J-T. Lu], [2023], INSA Lyon, tous droits réservés



Chapter 4. Delaunay property 40

4.1.5 Conclusion of the proof

Now we have all the material required to prove Lemma 4.1:

Proof. For all i € {0,...,n — 1}, the interior of B is assumed to contain no point
of P.

Let x* be the point chosen by the algorithm at step i, i.e., x* = T0+D \ T, We
want to show that x* <7y, forally € Pﬂ?-[gf). Let y be denoted as p'?) +> % ckm,(j).

Note that >, cx > 3 because y € ’Hgf). Moreover, since y € P, the coefficients cannot
be all strictly positive by Lemma 4.3.

o if one coefficient is zero and the others are strictly positive (Case 2), then
x* <1y by the design of the algorithm,

o if one coefficient is strictly negative and the others are strictly positive (Case 3),
then there exists a point x € Mg N P such that x <t y by Lemma 4.5. Then,
x* <7 x by the design of the algorithm and x* <t y by transitivity.

e if one coefficient is strictly positive and the others are strictly negative or
null (Case 4), then, similarly, there exists a point x € Ng NP such that x <ty
by Lemma 4.7. Then, x* <t x by the design of the algorithm and x* <ty by
transitivity.

Since there is no other possibility, the proof is complete. ]

The proof is long and technical. Fig. 4.5 indicates the relationships between each
lemmas. The color code follows the partition showed in Fig. 4.2. Respectively, we
have yellow for (Case 1), blue for (Case 3) and purple for (Case 4). The mixed color
between blue and purple indicates that the lemmas are used for both cases. The gray
color is for citation from [LPR17], which we mentioned in Chapter 2.

Theorem 4.1: Delaunay Property

Lemma 4.1

FI1GURE 4.5: Lemmas used for the proof of Delaunay property.
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4.2 Technical details

The proof of Lemma 4.1 refers to several technical details that we elaborate in this sec-
tion. The results are organized into three categories. First, we present, in Sec. 4.2.1,
several useful angle relations in the tetrahedron formed by the current triangle and the
fixed point q. Then, we present several general and purely geometrical circumsphere-
based properties in Sec. 4.2.2, because the relation <t and the selection of a closest
point according to <t involves circumspheres. Finally, in sec. 4.2.3, we derive in an
algebraic way several other results about the comparison of specific points according
to <7. These results are used in Lemma 4.5 and Lemma 4.7, which are the main
ingredients in the proof of Lemma 4.1.

4.2.1 Projection-based results

Remind that k is taken modulo 3. To keep notations short, we simply write Vk
instead of Vk € Z/3Z in this section. Let us introduce the following extra notations
(see Fig. 4.3):

vk, N = m{ | x m{),,
>_kef0,1,2) Nl(f) = N(T®).

Note that the following equality also holds for the estimated normal vector, which is
normal to the current triangle:

Vi € {0,...,n}, { (4.7)

Vie{0,...,n}, ¥k, N(T®) =d{" x d{’),.

Lemma 4.8. For alli € {0,...,n}, Vk, N . R | >0 and N - N(T®) > 0
Proof.

Base Case The triangle T(?) and q forms a trirectangular tetrahedron. We have

vk, N R = 0 and KO- N(TO®) > 0.

Induction case We now assume that for any ¢ € {0,...,n—1}, Vk, N,(;) -N;J)rl >0
and N,(j) . N(T(i)) > 0. By the update rule, equation 2.9, we straightforwardly have:

i+1 (2 i+1 X (2 Sr(i+1 (2 (2
NIE) )= l(e)’ N;H) __NSﬁL)l N() Nl(c+2) _—Nl(c+)2 5Nl(c)v
and

(41 Sr(i+1 (e r(2 (e
R R = NP R+ o NP,

k+1
+1 Sr(i+1 (2 (2 (7 R 3 (2 (2
Nl(cj-_l) 'Ni(c:2) = Nl(cj-l : Nl(cJ)rz + O‘(Nl(c) : Nl(c+2) + BN k:+1 Nl(i‘)) + aﬁHNIE:)H27

~ (3

i+1 i+1 (e ) S
NIE::Q) Ni(j ) = N](C-)‘rz : Nl(c) +/B”Nl(c)||2‘

Since we have VEk, N,(fﬂ) Nl(clill) > N(l) Nl(jll and Ngfrl) -N(T0HD) > N(Hl)

N(T(”l)), the induction hypothesis implies the result. O
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From now on, we omit once again the exponent (i) for clarity. We go on with this
purely geometrical result (see Fig. 4.6):

Lemma 4.9.

Let d and d’ be two vectors that span a plane of normal N := d’ x d. Let m be
another vector that projects along N into the interior of the convex combination of d
and d’, i.e. (Nxd) - m<0and(Nxd) m>0.1Ifd-d >0, thend-m >0 and
d -m > 0.

d/
FIGURE 4.6: Illustration of Lemma 4.9. Note that m does not belong

to the span of d and d’. However, it projects along N into the interior
of the convex combination of d and d’ (hatched area).

Proof. We first expand (N x d)-m < 0, which is equivalent to (d x m)-(d xd’) > 0,
using the scalar quadruple product rule:

|d|’d" - m — (d-d')d - m > 0. (4.8)
We then similarly expand (N x d’) - m > 0, equivalent to (d’ x m) - (d x d’) <0, as:
(d-d)d -m — ||d’||*d - m < 0. (4.9)

If d - d’ =0, we can conclude from (4.8) for d’ - m and from (4.9) for d - m.

If not, then d-d’ > 0 and we can derive lower and upper bounds for d’-m, respectively
from (4.8) and (4.9):

(d-d) , |2
d- d -
T ¢ W )

d-m. (4.10)

Multiplying both sides by ||d||? and (d - d’) leads to:
d-d/?d- m < [d]?d|?d - m < (|d- & - |@2]d]?)(d - m) <o.

Since ||d - d’||? < ||d’||?||d||?, we conclude that d - m > 0. In addition, since d - m > 0
and d - d’ > 0, it follows from (4.10) that d’ - m > 0. O

We now combine the two preceding lemmas to find angular relations in the tetrahe-
dron formed by the current triangle and q, i.e., involving the vectors (my) and (dg).
See Fig. 4.7. These results are used in Lemma 4.5 and in sec. 4.2.3.

Lemma 4.10. For all k, if di, - dg11 < 0, then dgrq - mpyo > 0 and di - my10 < 0.
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my 2 dit1 my 2 dpyr my my o dp1 mp mgyo dpyr my
(a) (B) (c) (D)

FIGURE 4.7: Tlustration of Lemma 4.10 in (a), Lemma 4.11 in (b)
and Lemma 4.12 in (¢) and (d).

Proof. We use Lemma 4.9, with d,d’, m respectively set to (—dg), dgs1 and my_ 5.
Note that the normal dy x dyy; is by definition equal to N(T). Note also that
Lemma 4.8 implies

(N(T) x (=dg)) - mpro =(N(T) x (mppo — myi1)) - Mo

(
= — (mk+1 X mk+2) N(T)

R R (4.11)
— Ry - R(T)
<0.
And,
(N(T) x (d41)) - mpy2 =(N(T) X (my —my)) - mys
= — (mk X mk+2) : N(T) (4'12)

=Nip1 - N(T)

>0.

These are the projection criterions of Lemma 4.9.

Since we assume in addition that (—dg) - dxy+1 > 0, we conclude by Lemma 4.9 that
(—dk) ~My4o > 0 and dg4q - mpyo > 0. ]
Likewise,

Lemma 4.11. For allk, if dj-dg+1 < 0, then dg-(dx+my) > 0 and d11-(dp+my) <
0.

Proof. We use Lemma 4.9, with d, d’, m respectively set to (—dg), dg+1 and —(dy +
my,). Note that the normal is equal to N(T) and the projection criterion is implied
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by Lemma 4.8

(N(T) x (=dy)) - (dy, + my) =

—my4q + mk+2) X mk) . N(T) (413)

I
~ o~ o~

Nito + Nip1) - N(T)

And,

(N(T) x dgy1) - (dy, + my) =(N(T) x dys1) - (=dppr + mgy1)

X dgy1) - (Mpgyq)

(N(
(dk+1 x (my1)) - N(T)
(
(-N

) (4.14)
my o — my) X (myy1)) - N(T)

A

~Ny)) - N(T)

<0.

From Lemma 4.9, we thus have dj, - (dg + my) > 0 and dgy1 - (dg + my) > 0. d

Finally,

Lemma 4.12. For all k, if my, - (dg +my) > 0, then dgy1-my < 0 and dgyq - (dg +
my) < 0. Similarly, if my1-(dg+mg) > 0, then d-my 1 > 0 and dy-(dx+my) > 0.

Proof. We focus on the first part, because the proof of the second part is quite similar.

We use Lemma 4.9, with d,d’, m respectively set to (dx + mk) my, and (—dgi1).

Note that the normal is equal to my x (dg +my) = Nk+1 + Nk+2 and the projection

criterion is implied by Lemma 4.8

(Nji1 + Nyp2) x (dg +my)) - (—dyr1) =((Ng1 + Niyo) x (mpy1 — diy1)) - (—dpgr)
=((Ngs1 + Nigo) x (myy1)) - (—dgs)

my 1) X (—dip1)) - (Nepr + Nipo)

Myp1) X (—Myeps +my)) - (Negr + Nyso)

k= Nigo) - (Njp1 + Nipo)

=_ (Nk . Nk+1 + Ny, - Nk+2 + Nkz—i—? : Nl<:+1 + ||Nk+2||2)

(4.15)
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And,

(N1 + Ny2) x my) - (—dyr1) =(myg x (=dps1)) - (N1 + Nypa)

=(my, x (—mypp2 +my)) - (Npp1 + Nygo)

=Nit1 - (Nyg1 + Nigo) (4.16)
:(HNk+1H2 + Ny - Nk+2)
>0.

From Lemma 4.9, we thus have dgy1 - my < 0 and dgy1 - (dg + my) < 0, which
concludes. O

4.2.2 Circumsphere-based results

In this section, we show several general and purely geometrical circumsphere-based
results. They are the cornerstone of many proof in this thesis. Lemma 4.13 is the most
often used, notably in some of the key results, such as Lemma 4.5 and Lemma 4.7, as
well as in Corollary 5.1. Lemma 4.14 is invoked in Lemma 4.5, whereas Lemma 3.2
and Lemma 4.15 are crucial in sec. 4.2.3.

U U
4 £ y
7 \ ’ \ - "
w w
(A) Lemma 4.13 (B) Lemma 4.14
0O —
SN W u

O—-u W
(¢) Lemma 4.15
FIGURE 4.8: Illustrations for circumsphere-based lemmas of sec. 4.2.2.

A point is depicted as a black disk if it is inside the ball of interest,
and as a hollow disk if it is not in the closed ball.

Lemma 4.13. Let u,w be two non-zero vectors of R®. Let B be a closed ball whose
border passes through the origin O as well as through U := O +u and W := O +w.
The point S := O +u+w belongs to the interior of the ball B if and only if u-w < 0.

Cette thése est accessible a I'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0123/these.pdf
© [J-T. Lu], [2023], INSA Lyon, tous droits réservés



Chapter 4. Delaunay property 46

Proof. Consider a ball B with centre ¢ and radius r. First O € 9B is equivalent to

r2 = ¢2. Using this relation it follows:

UcdBs (0O+u—c)P?=ce2-u=1u? (4.17)
WedBs (0O+w—c)=c a2 w=w (4.18)
SeBe (O+u+w—0<s+w)?<2u+w)- e (4.19)

Developing (u + w)? in (4.19), we get u? + w? + 2u-w < 2(u + w) - ¢, which is
equivalent to u? + w? + 2u-w < u? +w? by (4.17) and (4.18). Subtracting u? + w?
from both sides gives the equivalent formulation u-w < 0. O

Lemma 4.14. Let u,w be two non-zero vectors of R3. Let B be a closed ball whose
border passes through the origin O and the point S := O +u+w. If U := 0O+ u and
W := O + w do not lie in the ball B, then u-w < 0.

Proof. This lemma is the reverse version of Lemma 3.1. O
Lemma 4.15. Let u,w be two non-zero vectors of R®. Let B be a closed ball whose
border passes through the origin O and the two points U := O +u and W := O +w.
No point of the set A := {O — au — bw | (a,b) € N?} lies in the interior B of the ball
B.

Proof. Consider a ball B with centre ¢ and radius r, and recalling that O € 0B is

equivalent to r? = ¢?, we get
UcdBe (0O+u—cP=cta 2 u=u? (4.20)
WedBa (O+w—c)=ce2-w=w (4.21)

We then compute for arbitrary non-negative integers a and b:

(O —au—bw — ¢)? = & + (au + bw)? + 2¢ - (au + bw)

=2 + (au + bw)? + au® + bw? (using (4.20) and (4.21))
> 2. (since a > 0, b > 0 and ¢ = r?)
We conclude since (O — au — bw — ¢)? > 2 is equivalent to O —au —bw ¢ B. O

4.2.3 Proximity results

In this section, we demonstrate some technical lemmas that give the order relations
induced by the spheres circumscribing the current triangle. They are used in the
proofs of Lemma 4.5 and Lemma 4.7 to establish the Delaunay property.

Most proofs in this section uses (3.17).
Lemma 4.16. Let u:= —mg+m; + my. Ifd;-u >0 (resp. (—=dz)-u > 0), then
6% (my,au) > 0 (resp. 6%(ma,au) > 0) for all a € N.

Proof. The lemma is trivially true for ¢ = 0 and we can safely assume that a > 1.
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Base case Using Lemma 4.13 with the vectors d;, u and the origin set to va,
d; -u > 0 implies that the ball whose border passes through T and vo +u = vg+m;
does not include vy +d; +u = vg + u in its interior. That means that 5%(m1, u) >0
and we can similarly show that 6% (ma, u) > 0 if (—d2) - u > 0.

Induction step Let m be either m; or my. We now assume that for some a € N,
8% (m, au) > 0 and we want to show that 6%(m, (a + 1)u) > 0.

By (3.17), we have

6% (m, (a + 1)u) = 6% (m, au) + 63 (m, u)

+ 2a(u - u)det [d2, —d1, m].

Since det [d2, —d;, m] = det [mg, m;, ms], which is equal to 1 by Theorem 2.2, the
whole sum is strictly positive due to the induction hypothesis and the base case. [

Lemma 4.17, Lemma 4.18, Lemma 4.19 are respectively used in the cases (i), (ii) and
(iii) of the proof of Lemma 4.5.

Lemma 4.17. Let u := —mg + m; + my and w := a(dy) + b(—dz) + c(u), with
a,bye>0. Ifdy -u >0 and (—dz) -u > 0, then 6% (maz, w) > 0.

Proof. By (3.17), we have

o (my, w) = o3 (my, ad; + b(—dz)) + 53(my, cu)
+2((ady + b(~dy)) - cu) det [da, ~dy, my].

We show below that the three terms are positive, so is the whole sum.

e For the first term, we apply Lemma 4.15 with the vectors —d;, ds and the
origin set to v to deduce that the point vo+ad;j +b(—dz) is not in the interior
of the ball passing through T and v + my. Thus, 6% (mg2,ad; + b(—dz)) > 0.

e Since (—d3)-u >0, 6} (mgz, cu) > 0 by Lemma 4.16.

o Finally, (ad;+b(—dz2))-cu > 0 because a, b, ¢,d;-u and (—ds)-u are assumed to
be positive and, using Theorem 2.2, one can easily check that det [do, —dj, mg] =
det [mo, mj, mg] =1.

O

Lemma 4.18. Let u := —mg + m; + my and w := a(d;) + b(mz) + c(u), with
a,bye>0. Ifmg-u > 0,d;-u>0,(—ds)-u>0 andd;-my > 0, then 6% (mg, w) > 0.

Proof. By (3.17), we have

5%(m2, W) = 591\(m2, ad; + bmg) + 5%(m2, Cll)

+2((ady + bmy) - cu) det [dy, —dy, my)].
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One can easily check that det [d2, —d1, mg] = det [mg, m;, my], which is equal to 1
by Theorem 2.2.

In addition, we use (3.17) again to decompose the first term and finally get

5%(m2, W) = 5% (mg, adl) + 5%\ (mg, bmg) + 5%(1’[12, cu)

+ 2ab(d; - mp) + 2(ad; + bmy) - cu.

We can now prove that each term of the sum is positive:

o For the first two terms, we consider the ball whose border passes through T and
vo+mg. If a =0 (resp. b € {0,1}), the point vo+ad; (resp. vo+bmy) trivially
belongs to the boundary of the ball, which implies a null term. If a > 1 (resp.
b > 2), we consider the ray from vs in direction d; (resp. from vg in direction
my) and we use Lemma 3.2 to show that the point vy 4+ ad; (resp. vo + bmy)
does not belong to the interior of the ball, which means that 6% (mz,ad;) > 0
(resp. 6% (ma,bms) > 0).

o Since (—d3) - u > 0, 6% (m2, cu) > 0 by Lemma 4.16.

e All scalar products of the last two terms are positive or null due to the hypothe-
ses.

O
Lemma 4.19. Let u:= —mop+m; +my, w := a(my)+b(ms)+c(u), with a,b,c > 0.

Let A be the set {am; + fmy | o, 8 € N\ (0,0),a < a,8 < b} and w' € A be such
that Vw" € A, 0% (w',w") > 0. If m; - u > 0 and my - u > 0, then 63(W', w) > 0.

Proof. By (3.17), we have

SF(wW',w) = 6% (W', (amy + bmy)) + 53(W/, cu)

+ 2<(am1 +bmy)) - cu) det [dg, —dy, w].

o The first term 6% (W', (am; + bmy)) is positive by definition of w'.

. 2((am1 +bmy)) -cu) is positive because we assume that a,b,c, m;-u and ms-u

are positive. Moreover, setting w’ := a’m; + b’'my and using Theorem 2.2, one
can easily check that

det [dg, —d;, w'] = (a’ + V') det [mg, m1, my] = (a’ +b') > 1.

As a consequence, the third term of the sum is positive.
e It remains to show that the second term is also positive.

By Lemma 4.12, my -u > 0 = d; - u > 0. From the last inequality, we have
by Lemma 4.16, §%(mj,cu) > 0, which means that vy + m; <t vo + cu.
However, since vo +w’ <t vo+mj by definition of w’, we have by transitivity
vo + W <1 vo + cu, i.e., SH(W, cu) > 0.

O]
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Lemma 4.20 is used in the the proof of Lemma 4.7.
Lemma 4.20. Let w := a(—dp) + b(d1) + c¢(m2), with a,b,c > 0. If (—dg) -d; >0,
then 6% (mg, w) > 0.

Proof. By (3.17), we have

o (ma, w) = & (m2, a(—do) + b(d1)) + 63 (mg, cmy)
+2((a(~do) + bey) - emy ) det [da, —dy, m].

One can easily check that det [de, —d;, m3] = det [mg, m;, my], which is equal to 1
by Theorem 2.2.

In addition, we use (3.17) again to decompose the first term and finally get

5% (ma, w) = 0% (ma, a(—do)) + 6% (ma, b(d1)) + 6% (m2, cmy)
+ 2ab((—do) - d1) + 2(a(—do) + bd1) - cmy,

We can now prove that each term of the sum is positive:

e For the first term, we consider the ball whose border passes through T and
vp +u. If a = 0, the point v + a(—dgy) = vq trivially belongs to the boundary
of the ball, which implies a null term. If ¢ = 1, we apply Lemma 4.13 with the
vectors (—dp), d; and the origin set to va to deduce from (—dg) - d; > 0 that
the point vo + dj 4+ a(—dy) = vo + a(—dp) does not belong to the interior of
the ball, which means that 63 (ma, a(—dg)) > 0. For a > 2, we consider the ray
from vq in direction —dg to show that we have the same result in that case too.

e The two next terms are also positive or null and we can verify this using
Lemma 3.2 as in the proof of Lemma 4.18 (first item).

o The fourth term is positive because a,b and ((—dp) - d1) are assumed to be
positive.

o For the sign of the last term, it is enough to note that ((—dp) - d;) > 0 also
implies my - (—dg) > 0 and msy - d; > 0 by Lemma 4.10. As a consequence,
the term (a(—dp) + bd1) - cmy develops into two positive scalar products and
is therefore positive.

O

4.3 Increasing radius of ball

The Delaunay property allows us to prove this geometrical property, that is only true
for the L-algorithm.

Lemma 4.21. The sequence of radii of {B(i)}og;gn s non-decreasing.

Proof. We conveniently denote by #(™ the upper leaning plane {xeR|x-N=
IN|1 — 1}, and by Hgf) the open half-space lying above it, i.e., {x € R?® | x-N >
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IN|l1—1}. We show below how the claim of the lemma is a by-product of the following
property:

Property 4.2. For alli € {1,...,n}, the center of B, denoted by C®, belongs to
both HSE) and HSLH).

Note that C(© is neither in ’HSS) nor in ’HS:L). The base case of the induction is V).

Base case: If we translate everything so that q = (0,0,0), Véo) = (-1,0,0), v§°) =
(0,—1,0) and Véo) = (0,0, —1), then CY = (0.5,0.5,0.5), no matter which point is
chosen for T in the H-neighborhood N, S(?{) ! We can indeed check that every point
of T and N, S((I){) (and therefore T()) verify the following equation:

(z—0.5)% 4+ (y — 0.5)* + (2 — 0.5)* = 2.75 (4.22)

(1)

Moreover, if we take the case where v, ’ = (1,0, —1) as example, and compute the
following determinant:

11 1 1 1 0 0 0
1 1.5
~1 0 1 05 |-1 1 2 15
= =0 2 2|=1+2=3>0, (423)
0 -1 0 05 |0 -1 0 05
0 -1 05

0 0 -1 05 0 0 -1 05

we found that CM) e ngl). The other cases, when a different point of N, équ) is picked,
(n)

are similar by symmetry or rotation. In addition, we also have trivially CV) € H M
For the following, we use Fig. 4.9 as visual aid.

Induction step: Suppose that C(?) belongs to both ’Hﬁ) and HT). We want to show
that C(t1) belongs to both Hgfﬂ) and Hgf).

Let H be the plane that coincide with T and ¢® be the circumcenter of T®. Let
£ be the straight line that is perpendicular to H® and passes through @,

, 7 . A
\&say that a point x is higher that a point y on £® if and only if ¢z - N(T®) >
¢y - N(T®), where N(T®) is the normal of triangle T().

If the two balls B® and B+ are identical, there is nothing to say. Otherwise, by
the Delaunay property, we know that one of the vertices of T(+1) belongs to ’HEP,
but does not belong to B, This implies that CtY) is higher than C® on £®. Since
€ belongs to both Hgf) and ”Hf) by hypothesis, Cit1) also belongs to both Hgf) and
7—[5:1). It remains to show that C(+1) ngﬂ).

Let p( be the intersection between £ and H*Y . Since p¥) clearly does not belong

to HT), C(+1) ig further than p® on £ and as a consequence, C(it1) e H$+l).

The position of C( and CtY) on the line £(9) clearly implies that the radius of C(i+1)
is larger than the radius of C(Y). Therefore, we can conclude. 0

IThe angle between the rays emitted from the vertices of TO is always right. No matter which
neighborhood we adopt, B will surely pass one of the point of the H-neighborhood.
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L)

FIGURE 4.9: Tllustration for the proof of lemma 4.21.

4.4 Conclusion

In this chapter, we introduce the Delaunay property as an invariant of the L-algorithm.
We discussed that proving this property involves a lengthy process with many tech-
nical details, particularly concerning the connections between spheres, angles, and
other projection-related results. In addition, we show how the property is useful in
proving some interesting geometric results, such as the radius of the circumscribing
balls is non-decreasing.

In the next chapter, we will apply the Delaunay property to study how the L-algorithm
behaves locally.
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CHAPTER

Study of locality

In sec. 2.5, we demonstrate that on digital planes, the plane-probing algorithms can
accurately compute the normal vector of the digital plane. Despite the fact that the
digital plane is infinite and it has unlimited amount of points at the algorithm’s dis-
position, the algorithm only probes a finite number of points that are by construction
local around the initial point p. We would like to measure the space that encompasses
the points visited by the algorithm in order to understand more about its behavior.

Comparison among different tetrahedron-based algorithms on a digital plane are il-
lustrated in Fig. 5.1, where only the triangles corresponding to the bases are drawn.
Both figures are presented in the projection of direction p — q. p and q are super-
imposed on a point that belong inside all triangles. We observe that the L-algorithm
probes points more locally than the H-algorithm.

FIGURE 5.1: The evolution for normal (1,73,100) with H-algorithm

(a) and R-algorithm (b). Here, L-algorithm has the same output as

the R-algorithm. Every triangle of the evolution is superimposed. The
initial triangle is blue. The last one is red.

We collect in this chapter three theoretical results about locality of plane-probing
algorithms. In sec. 5.1, we show that the point q also projects into the triangles
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along the estimated normal at each step. Then, we show in sec. 5.2 that for L-
algorithm, the last triangle always has acute or right angles. Based on this result,
we obtain a tight bound for the distance between the vertices of the triangle T
and the point q in sec. 5.3, which will be useful in sec. 5.4 for an estimation of the
minimum required space that encompasses every triangle.

5.1 Projection of q onto the triangles

For tetrahedron-based plane-probing algorithms, the apex of the tetrahedron does not
move, stays right above the starting point and always projects into the opposite face,
i.e., the base, in the direction of the starting point [LPR17, Lemma 4]. In other words,
if we draw a line that passes by the points p and q, it will always pass through the
interior of each triangle.

Let us recall the notations introduced in sec. 4.2 in equation (4.7) (see Fig. 4.3):

vk € /32, N == m{}, x m}],,

Vi € {0,...,n}, o E T Tk
{ Eke{0,1,2} Nl(c) =: N(T(Z )-

We also recall the following equality that describes the normal to the current triangle:

Vi€ {0,...,n}, Vk € 2/32, R(TW) =d{"’ x d{’),.

Lemma 5.1. For any step Vi € {0,...,n}, let p)(q) be the projection of the point
q onto the plane that encompasses the current triangle T in the direction of the
normal N(T®). The projection p®)(q) lies inside the triangle.

Proof. We can prove by contradiction. If the point is on or outside of the current
triangle, there exists one k¥ € Z/3Z such that we can observe the following: The

plane, in which the triangle lies, is divided into two half-planes by the straight line
,(J,)Jrl and V](j,) 4o+ The point v,(j/) and the projection p(!(q)
belong to distinct half-plane, so does the projection of the triangle defined by v,(f,) 1
V,(j)JFQ and p(q), and the triangle T, Thus,

that passes the vertices v

This contradicts the invariant property that we proved in lemma 4.8 in sec. 4.2, which
is valid for all tetrahedron-based plane-probing algorithms. O

5.2 Acute triangle and minimal basis

On a digital plane, if x is one of the highest point, we know that x - N = ||N||; — 1.
We call them upper leaning points. These points forms a 2D lattice and any two edges
of the final triangle T(™ can be a basis of this lattice (See Fig. 5.2.) The form of the
last triangle is thus closely related to the basis of the lattice of those upper leaning
points.

Cette thése est accessible a I'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0123/these.pdf
© [J-T. Lu], [2023], INSA Lyon, tous droits réservés



Chapter 5. Study of locality 54

FIGURE 5.2: Tllustration of upper leaning points (marked with dots)
and the last triangle T (marked in blue).

One major consequence of the Delaunay property (Theorem 4.1) is the following
result:

Corollary 5.1. The final triangle T has acute or right angles.

Proof. By Theorem 4.1, the circumsphere B does not contain any point of P in its
interior. In particular, the circumcircle passing by T(™ does not strictly contain the
points v+ (vglkﬂ) - vg,,k)) + (szkH) - v%k)), for all k € Z/3Z. By Lemma 4.13, this
implies that the final triangle has three acute or right angles. O

This geometrical result has another consequence that requires the following definition:

Definition 5.1. Let L be a rank-two integral lattice. A basis (x,y) of L is minimal
if and only if ||x||2, [|¥ll2 < |x — ¥ll2 < ||x + yll2, where || - ||2 denotes the Fuclidean
norm.

Such a basis is said minimal because this definition matches with the well-known
Minkowski’s minima [Ngu09, Theorem 7]. We can retrieve a minimal basis of the
underlying lattice in a digital plane from the last triangle returned by the L-algorithm.

Corollary 5.2. The two shortest edges of the final triangle T form a minimal
basis of the lattice of upper leaning points.

Proof. We know by Theorem 2.2 that any two edges of the final triangle form a basis
of the lattice of upper leaning points. We show below that the fact that all angles
are acute or right (Corollary 5.1) implies that the two shortest edges form a minimal
basis.
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Let x,y,z be respectively equal to (vgn) - v(()n)), (vgn) - v(()n)) and (vén) - vgn)) and
assume w.l.o.g. that x and y are the two shortest vectors, i.e., ||x||2,[yll2 < ||z]|2.
On one hand, since —z = x — y, we have by definition

[1xl2, [Iyll2 < lIx = yll2:

On the other hand, since x -y > 0 by Corollary 5.1, it is obvious that
Ix = yll2 < llx+ vl

Putting all together, we have [|x||2, ||y|l2 < ||x — ¥|l2 < ||x + y||2, which means by
definition that the basis (x,y) is minimal. O

Thanks to the Delaunay property, we have been able to prove that the L-algorithm
always terminates with an acute or right triangle. In addition, the two shortest edges
of the final triangle form a minimal basis of the lattice of upper leaning points.

Experimentally, the H-algorithm does not always return an acute triangle (see Fig. 5.3).
The R-algorithm seems to always return acute triangle as L-algorithm does, but we
currently do not have theoretical proof for this observation.

MINRN

Sl\essss—
TN T

A
-""2"'

FI1GURE 5.3: Example of a case where the H-algorithm does not return
an acute triangle (N = (67,1,91)). The ending triangle is depicted in
red.

5.3 Maximal distance

In this section, we use the previous result to show that the last triangle cannot be too
far away from the starting point. Fig. 5.4 displays an example of the maximal distance
at each step. The figure shows a case where the H-algorithm ends with an triangle
which has a further vertex with respect to the point q than the two other variants who
have same behavior. In the following, we aim to find a bound for maximal distance
on the last triangle T,
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FIGURE 5.4: Maximal distance of the vertices of the last triangle T
to q for N = (2071, 8513, 6444) per iteration during probings with the H, the R and
the L-algorithm.

The goal of this section is to show an upper bound for the magnitude of the last three
vectors (ml(cn)) kez,/3z, 1-€., for the distance of the three vertices (vl(cn)) kez,/3z from the
fixed point q, which is located very close to the starting point p.

Let x,y,z be respectively equal to (vgn) — v(()n)), (vgn) — v(()n)) and (vgn) — vgn)) and

assume w.l.o.g. that their magnitude are such that ||x[|2 < [|y]l2 < ||z]|2.

Let us focus on the rank-two lattice L := {x € Z® | x - N = |N||; — 1}. Its volume,
denoted by wvol(L), is defined as the square root of the Gram determinant of any
basis (b1, bs) of L [Ngu09, Definitions 3 and 7]. If we choose the basis returned by
Algorithm 1 (see also Theorem 2.2), we can easily compute that vol(L) = |N||2.

By Corollary 5.2, ||x||2 and ||y||2 are respectively the shortest and second shortest
non-zero vectors of L, i.e., the first and second Minkowski’s minima of L. We can
therefore relate them with vol(L) and thus ||N||2 using known results from lattice
theory. Equation (5.1) involves Hermite’s constant [Ngu09, Definition 14|, whereas
equation (5.2) involves Minkovski’s Second Theorem [Ngu09, Theorem 5| and the
trivial lower bound v/2 < ||x|:

2
(13 < %HNH% (5.1)

2
I3 < /2N (5:2)
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Furthermore, since the last triangle T has three acute or right angles by Corol-
lary 5.1, we can use the law of cosines to bound from equations (5.1) and (5.2), the
length of the longest side:

2 2
2]z < \/\/EIIN\z + 3 INE- (5:3)

Now, for all k € Z/3Z, let us consider the orthographic projection of m,gn) in direction

N defined as: N N
(n) (n) _ (n)
p(mf?) = m) — (] \N\Iz) NI

(n)

Since pn(my,, ) is trivially bounded by ||z||2, we can derive from (5.3) an upper bound

for ||m](€n)||2 as follows:

2 2 2
(V12 — (a2 _ ( (i>.N> ( (m N > < N )
pN{my, = |jm 2{m tm
[P ( Mz = llmy I3 BN ko IN[o |IN|2
. N \?2
:|m(n)||2_<m(l).>
A NN

\[HN||2+ =N

N \? 2 2
= 3 < (i) 1)+ oINla+ SIN3

Since a direct consequence of Theorem 2.2 is m,(cn) -N =1, we finally obtain

2 1
vk € Z/3Z, |lm{” |3 < ZIINJ3 + —=[IN]l2 +
g gl \f N3
Hence,
max{||lm{"” |2} < \/2IINII§ INT|2 + : TENEE (5.4)
k 3 V3 [IN1]3

This result shows that the last triangle has vertices not too far away from q and thus,
from the starting point p. More precisely, their distance to q is comparable to the
magnitude of the normal vector of the digital plane. This provides some evidence
that the L-algorithm locally probes the digital plane to determine its normal vector.
This property is quite important for the analysis of digital surfaces with the help of
a plane-probing algorithm.

Note, however, that this result is still partial, because our derivation only holds for
the last triangle T( and not for all previous triangles. Even if it is unlikely, points
farther away might be probed in the course of the algorithm.

Experimental results We wish to estimate the proximity of the probes to the
initial vertex q during the iterations. Experimentally, we want to know how tight the
theoretical bound that we computed is. In Fig. 5.5, we measure the max distance of
the last triangle computed by the L-algorithm for all normals whose lo-norm is less
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than 200 and compare them with the above theoretical bound. Both the theoretical
bound and the bound given by experiments shows that the max distance is linear
with respect to ||N||2.

Distance from the apex of the vertices of the last triangle

ma'x distaﬁce
120 upper bound ———

100

80

60

max distance

40

20

20 40 60 80 100 120 140 160 180 200
I2-norm of the normal vector

FIGURE 5.5: The relation between maximum distance and the ls-norm

of normal vectors. Each green dot corresponds to the output of the

L-algorithm for a given normal vector in y. The theoretical upper
bound is in blue.

5.4 Probing space

In previous section, we obtain a upper bound for the max distance of the last trian-
gle T( . Additionally, we wish to establish an area that encompasses every vertices

of the triangles {T(i)}ve{o y We define the probing space as the convex hull

conv( {T(i)} , ) Here we show how the points are all included in a paral-
Vie{0,...,n}

lelepiped that contains that area.

To begin, we recall the update rule of the algorithm. For all 7 € {0,...,n — 1}, there

exists a permutation o = o) from the group of permutation of three indices {0, 1,2},
and two non-negative integers o and ( such that we can rewrite the update rules:

i+1 / i i

mfr(O)) = mg()O) - O‘mg()n - 5m¢(;()2) (5.5)
i) ()
o) =My (5.6)
1) ()

m gy = Mgy (5.7)

If we align the digital plane with its normal direction, we identify the point p as one
of the lowest point and the point q as one of the highest. All the points that the
algorithm visits are in between. We try to describe the set of points that encompasses

Cette thése est accessible a I'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0123/these.pdf
© [J-T. Lu], [2023], INSA Lyon, tous droits réservés



Chapter 5. Study of locality 59

the probing space. We start by looking at the relation between the triangle T(?) and
the following sets:

Vi€ {0,...,n}, Coneq(i) = {q — chm,(:),ck e N,k €{0,1, 2}} , (5.8)
k
and
Vie{0,...,n}, Conep® = {p +3 dpml) dy € Nk € {0, 1,2}} . (5.9)
k
For some given step ¢ € {0,...,n}, the following lemma states that the set Coneq(i)

encompasses the vertices of all previous triangles.
Lemma 5.2. Forallie {1,...,n}, j €{0,...,i}, T C Coneq".
Proof. In order to show that for all £ € {0,1,2}, q — m,(gj) € Coneq(i), we will

prove by recurrence the property P@: for all k € {0,1,2}, for all j € {0,...,i},
mgf) =Y clml(z) with ¢; > 0 for all [ € {0,1,2}.

First, it is easy to prove P(0), We assume now P® for any step 4 in {1,...,n — 1}
and will prove P+,

For all k£ € {0,1,2}, m,(Cj ) can be seen as a linear combination of the three vectors

m(()iH), mgiﬂ), mgﬂ), because they form a basis of Z? due to Theorem 2.2. It follows:

m}gj) -y clml(m)
I

= Z Clml(l) - an(O)m((;()l) - ’BCU(O)mg:L()2)
l

= oMby + (Co(1) = ACo0) MUY + (Co2) — Bea(o)) M.

Since we assume P, the coefficients are non-negative by identification, i.e.,

CO'(O) Z 07
(cor) — @cy0)) > 0,
(Co(2) — Beo(o)) = 0.

As a consequence, ¢, (), Co(1), Co(2) are all non-negative, which proves PU+D) and con-
cludes.

O
Similarly, the two following results show that C’onep(i) encompasses the vertices of
all previous triangles.

Lemma 5.3. Forallic {l,...,n—1}, Conep(i) - Conep(“'l).
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Proof. Let z € Conep(i). By definition there exist coefficients such that x = p +
Dok ckml(j). It follows:

r=p-+ chm,(j)
k

=p+ Z Ckm](:+1) + OzCo(O)m((:(J;)l) + Bco(o)mgi(;)l)
k
=p+ ca(o)mgzg)l) + (co(1) + @Cy(0)) mgg)l) + (¢o(2) + Beo0)) ml(:;;)l) € Conep(”l).
—_———— —_—
>0 >0

Lemma 5.4. For allic {1,...,n}, T® c C’onep(i).

Proof. Tt is trivial that T(® ¢ D©. We assume now that TGO < C’onep(i) for
i € {0,...,n — 1} and will prove that T+ C Cone, ™). For k € {0(1),0(2)}, we

have q — m,(;H) =q- m,(f) € Conep(i) C Conep(iH) by Lemma 5.3. In addition, for

0(0), we have

q-— mg;g)l) = q-— m((;()o) —i—amg()l) + ﬁmg()Q) € Conep(i) \C/ Conep(Hl).
5’_/ Lemma 5.3
EConep(’) by hypothesis
Therefore, T+ ¢ Conep(i"'l), which concludes. O

Combining all precedent lemmas, all the vertices of each triangle would belong to
Coneq™ and Conep™. That is to say, for all i € {1,...,n} and k € {0,1,2},
q-— m,(;) € Coneq™ (by Lemma 5.2) and q — mg) € Conep™ (by Lemma 5.4).

Now, we want to compute the intersection between C’oneq(") and C’onep(”), which

lies in a parallelepiped that has edges that follow the direction m,(gn). Our objective

is to determine the integers tg, t1, and to that satisfy

tom(()n) + t1m§”) 4 tgmgn) =q-p=(1,1,1). (5.10)

The problem is actually equivalent to solving the following system:
1

M®™ | = (1], (5.11)
1

where

Recall that det(M(™)) = 1 (see theorem 2.2), then by Cramer’s rule:

Cette thése est accessible a I'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0123/these.pdf
© [J-T. Lu], [2023], INSA Lyon, tous droits réservés



Chapter 5. Study of locality 61

1 m, my -,
1omi”, mf”,
t
0 det(MI(m))
= (m{" x m{”) - (1,1,1)
In the end, for all k € {0,1,2}
tr = (m{"”, x m{",) - (1,1,1) = |[K|],. (5.12)

We conclude that the probing space is included in a parallelepiped that can be de-
scribed as follow:

a— Y wemy” |0 <y < \\N,@rh}. (5.13)
k

In practical terms, the parallelepiped is currently larger than the precise probing
space (see Fig. 5.6).

FIGURE 5.6: The evolution for normal (1,5,7) with L-algorithm and
the parallelpiped (black) that encompasses all vertices of triangles.

In fact, we know that the sequence of radii of the balls circumscribing consecutive
triangles is non-decreasing (see Sec. 4.3). It is likely that the projections of vertices of
all triangles stay in the projection of the last ball, which delimits a space that is much
smaller than the parallelepiped. There is potential for improvement in the future.
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5.5 Conclusion

In this chapter, we have demonstrated that the point q consistently projects onto the
triangles. This projection occurs in two directions: first, along the shift vector q — p,
and second, along the normal vector of the current triangle. Additionally, we have
delved into the connection between the algorithm’s output and the minimal basis of
the underlying lattice within the digital plane. Building on this, we have established
a constraint for the distance between the final triangle T and the point q. To
conclude, we have provided a coarse estimation of the probing space.
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CHAPTER

Estimation

Within the context of plane-probing algorithms, one of the significant applications in-
volves estimating normal fields. In previous chapters, we focused on tetrahedron-based
algorithms on digital planes whose expected normal vector is identical everywhere.
While these methods have interesting geometric properties, the true challenge lies in
estimating the normal field on a digital surface for tetrahedron-based approaches due
to their initialization conditions and stop criteria. In this chapter, we aim to over-
come these limitations by introducing parallelepiped-based algorithms, as presented
in [LMR20]. Alongside this approach, we explore existing digital methods for normal
estimation and share our efforts to enhance the multigrid convergence of these algo-
rithms on digital surfaces. We also draw comparisons between the convergence curves
of our method and other established approaches, which are mostly implemented with
the DGtal library.

6.1 Multigrid convergence

The topological boundary of the shape digitization is never the same as the boundary
of an Euclidean object, on which the normal vector field is defined. Consequently, a
direct comparison between the true normal field and the estimated one is not feasible.
To address this issue, we use a geometric definition that asserts that any surface
element in close proximity to the point of interest on the shape will have its estimated
normal vector gradually approaching the expected one [Kle00; CLR12].

Definition 6.1. Let X C R3 be a compact simply connected volume. The Gauss
digitization of X with grid step h > 0, denoted by DS(X)y, is the set of all discrete
points p € h(Z3) = {(ha, hb, he) | (a,b,c) € Z3} lying in X. In other words,

DS(X), = X N h(Z?). (6.1)

Let us denote by X a family of compact simply connected subsets of R? and by
DS(X);, the Gauss digitization of X € X with grid step h. For any x in the topological
boundary 0X of X, let N(X,z) be the unit vector normal to X at x. A discrete
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normal estimator is a family of mappings which associates to any digital surface
DS(X);, and a point y € DS(X);, some value of R3. Note that we usually have
constant estimates per surface element.

Definition 6.2. The estimator N is multigrid-convergent for the family X if and
only if, for any X € X, h > 0, for any x € 0X,

Yy € ODS(X)y, with ||y — |1 < h, [N(DS(X)s,y) — N(X,2)|| < 7x(h),

where Tx , : RT™ — RY has null limit at 0. This function defines the speed of
convergence of N toward N at point x of X. The convergence is uniform for X when
every Tx , is bounded from above by a function Tx independent of x € X with null
limit at 0.

In practice, we compare the two corresponding normals by examining their angular
difference rather than measuring the magnitude of their difference. Therefore, all
the experimental results in this section will be shown in terms of angle errors (in
radians). The method is currently implemented in the DGtal library, and Fig. 6.1
demonstrates its multigrid convergence. The mean value is converging when the grid
step h decreases, but the algorithm failed to converge on some of the surfels according
to the curve of maximum values. Our aim is to identify the cause of non-convergence
some surfels and to improve the convergence of the method.

6.2 Normal estimation with plane-probing algorithm

In previous chapters, we show that a plane-probing algorithm calculates the normal
vector of P by selectively testing integer points using the predicate "is x in P?" (see
Algorithm 1). While initially designed for digital planes, these algorithms can also be
employed with arbitrary digital surfaces, as demonstrated in [LPR17] and [LMR20].

Definition 6.3. We consider the digital surface as a boundary of a 3D volume. When
we spot three surfels which are adjacent to each other on a digital surface, by adding
an additional point x to the set of points of the surfels, we can construct a cube which
has these points as vertices. If the point x lies outside of the volume, the corner
created by the three adjacent surfels is a reentrant corner.

The initialization of tetrahedron-based plane-probing algorithms are limited to reen-
trant corners (see Tab. 6.1). This kind of configuration does not usually exist regularly
on a digital surface(see Fig. 6.2).

Let us note DS as a digital surface. We can run tetrahedron-based plane-probing
algorithms on reeentrant corners, which are defined by a point p € DS and an octant
s € {1, £1, £1} that points to a point that is outside of the digital surface DS. The
algorithm is illustrated in Algorithm 4

6.2.1 Parallelepiped-based plane-probing algorithm

[LMR20] introduced the parallelepiped-based plane-probing algorithm that is more
generic to apply on digital planes. In this subsection, we compare the differences
between tetrahedron-based and parallelepiped-based plane-probing algorithms.
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Ficure 6.1: Convergence graph of normal estimation of

parallelepiped-based plane-probing algorithm implemented in the DG-
tal Library on various shapes. The parameters of the shapes are de-
tailed in Tab. 6.1.
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FIGURE 6.2: Illustration of the reentrant corners (red) on a digital
ellipsoid.

Algorithm 4: Normal vector estimation with plane-probing algorithms

Input: The predicate InSurface := “Is a point x € DS?”, an octant s € {£1,+1,+1}, a
point p € DS the type of neighborhood S € {Spy, Sk, SL} (see equations (2.7))

Output: A normal vector N

q<p+s; (V;go))ke{o,m} — (a4 —ex)refo,1,2})

140

while Néi) N{x | InSurface(x)} # 0 do

4 Let (k,, 8) be such that, for all y € Ng) N {x | InSurface(x)},

N =

w

V}:) +a(a- Vl(cij_l) +6(a —V;(ﬁg) <ro ¥ // equation (2.8)
s V,(;—H) . V](;) +Oz(q _Vl(;jq) +ﬂ(q_vz(€lj.2) ; // equation (2.9)

vie {0,1,2}\ k, Vl(iﬂ) — vl(i) ;
| i< i+ 1
B (o) v ) )
Let by and by be the shortest and second shortest vectors of B ;

©

// initialization

10 return by X by ;

// x denotes the cross product

Initialization on one surfel

The parallelepiped-based algorithm necessitates a sin-

gle surfel from the digital surface and an additional integer point situated outside
the digital surface. The point, denoted as p, along with the surfel, serves as the
foundation for defining a cube, and more specifically, a parallelepiped. These initial
configurations of the starting parallelepiped are limited to just five possibilities, as
illustrated in Fig. 6.3, ignoring the cases that are identical by symmetry and rotation.
It is worthy to note that among the five cases, there is only Fig. 6.3-(E) where we

can start a tetrahedron-based plane-probing algorithm.

Translation of the point q The parallelepiped has an orientation, and this ori-
entation can change when there are fewer than four vertices on the surface. In the
tetrahedron-based case, the point q remains stationary, but in the parallelepiped-based
algorithm, it may sometimes move. Thus, we note g instead of q, where i is the
iteration step. As a result, the final triangle representing the surface can end up

relatively distant from the initially selected surfel.

In the previous chapter 5, we have conclusion admitting that q®” = q© for all
steps 7 on a digital surface. The fact that the parallelepiped-based algorithm does not

Cette thése est accessible a I'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0123/these.pdf
© [J-T. Lu], [2023], INSA Lyon, tous droits réservés



Chapter 6. Estimation 67

(A) (B) () (D) (®)

F1GURE 6.3: Illustration of all possible initialization configuration for

parallelepiped-based plane-probing algorithm. The reference surfel is

marked in green. A point is black if it is in the digital surface and
white if it is outside.

necessarily satisfy this property might generate results that are less likely to stay true
to local information.

Different predicate In tetrahedron-based algorithms, we check if a point x is part
of DS by comparing its height within DS to the height of ) in the normal direction.
We do this without needing to know the specific normal direction we’re looking for.

On the other hand, in parallelepiped-based algorithms, a broader criterion known as
NotAbove is employed to evaluate the position of a point x, whether it belongs to DS
or not. This evaluation is in relation to the position of q(¥ with respect to the border
of the Gaussian discretization.

When dealing with digital surfaces, we utilize Algorithm 5. To select the suitable
upper bound value denoted as L, careful consideration is essential. L should strike
a balance, neither too small to ensure correctness nor excessively large for efficiency.
In our experimental work, we set L equal to the length of the longest side of the
bounding box encompassing the digital surface.

Algorithm 5: Implementation of predicate NotAbove for digital surfaces

Data: InSurface, ¢ and an integer L
Input: A point x € Z3
Output: true iff x is less high than q(? in the normal direction

1u+x—q®;// direction

2 5sq;// starting point

31+ 1;

4 while [ < L do

5 if InSurface(s + lu) then return True ;
6 L l+—1+1

7 return Fulse;

6.2.2 Pre-estimation

Sometimes, there is no unique way to initialize the algorithm. The initial paral-
lelepiped could be visualized as a cube where the initial surfel is one of the face. If
the other four points are all not in the digital surface, there are four possible ways to
start the algorithm (see Fig. 6.4).

The impact of the pre-estimation remains an open problem. One could initialize the
algorithm with a randomly given pre-estimation. In our estimaton, we use the result
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(A) (B) (©) (D)

FIGURE 6.4: The parallelepiped-based algorithm accept at most four
different possible cases to start the algorithm. Take the case (A) in
Fig. 6.3 as example, there are four points that are outside of the digital
surface so there are four choices for the point q(®) (marked in green).

of the estimation with the slice method as pre-estimaton. We devide the space above
the target surfel into four octants from the middle point of the surfel in the direction
of the two axes. The pre-estimated normal would point into one of the octant and
we will choose the vertices that belong to the octant as point q®.

Algorithm 6 shows an example of parallelepiped-based algorithm using the NotAbove
predicate.

Algorithm 6: Normal vector estimation (parallelepiped-based)

Input: The predicate NotAbove, an octant s € {+1,+1,+1}, a point p € DS the type
of neighborhood S € {Sp, Sg, S} (see equations (2.7))

Output: A normal vector N

q+p+s; (V;io))ke{o,m} +— (q— ek)ke{o,1,2} ; // initialization

14+ 0;

while ./\/éi) N{x | NotAbove(x)} # () do

Let (k, v, B) be such that, for all y € Ng) N {x | NotAbove(x)},

vg) +alq — v](:jrl) + B(q — Vl(jJ)rQ) <ro ¥ // equation (2.8)
v,(;Jrl) — v,(;) +a(q — v,(;il) + B(q — v,(;lQ) ; // equation (2.9)
vi e {0,1,2} \ k, VI(ZH) — vl(l) ; // compute TU+D | updated copy of T

if Card({x € TI) | NotAbove(x)}) < 4 then
compute q(“t1) | translated copy of q(¥) ; // IV is parallelepiped at step
7.

| i1+ 15

B (v ) )

Let by and by be the shortest and second shortest vectors of B ;

return b; x by ; // X denotes the cross product

Finally, we include Tab. 6.1 summarizing the differences and similarities between
the tetrahedron-based method and the parallelepiped method.  There is only the
parallelepiped-based version of the H-algorithm (PH) and R-algorithm (PR) in the
DGtal library. We implemented the parallelepiped-based version of the L-algorithm
(PL) and the convergence graph showed in this chapter are generated with this imple-
mentation. Two examples of the evolution of the parallelepiped-based algorithm are
shown in Fig. 6.5. The first example shows the classic behavior like the tetrahedron-
based algorithm, the point q does not change its position. The second example shows
a case where the point q translates.
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(D) Example 2,3 =0

(E) Example 2, i =1

(F) Example 2, i =2

FIGURE 6.5: Tllustration of the parallelepiped-based algorithm on an
ellipsoid. The algorithm stops when the H-neighborhood does not
intersect with the digital ellipsoid. The points p and q are depicted in
red. We represent the parallelepiped in black and the H-neighborhood

in blue.

tetrahedron-based

parallelepiped-based

Initialization

det(m mgz , m_gly)

| The ﬁo_m_t q always projects onto
the triangle T in the direction

of N

three vertices that belongs to the
surface

Returns the exact normal on a
digital plan

The point q is fixed

Reentrant corner

A surfel and a point
outside of the surface

TABLE 6.1: Comparison between tetrahedron-based algorithm (H,R,L)
and parallelepiped-based algorithm (PH,PR,PL).
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6.3 Estimation on selected surfels

The current implementation of the plane-probing on digital surface is not doing well
on some of the surfels. In Fig. 6.1, the overall average of the deviation of the estimated
normal vectors to the expected ones are decreasing, but the maximum curve does not
decrease. Here, we aim to identify the characteristics of the surfels, on which the
plane-probing algorithm has good performance.

6.3.1 Framework of the experiment

Since the plane-probing algorithm returns the exact normal vector of a digital plane,
we try to find the surfels that encourage the algorithm to performs similarly as on a
digital plane. We look for similar initial condition as for tetrahedron-based algorithm.
We also decide to add constraints on the position of the point q. More precisely, we
impose two following rules:

1. We can find a reentrant corner in the initial parallelepiped.
2. There is no translation throughout iterations.

In Fig. 6.6, we have graphically represented the angle error in relation to the grid
step for the plane-probing method, applied to two different surfaces: a sphere with
a radius of 9 and an ellipsoid, whose equations is given in Tab. 6.2. Each shape
has undergone digitization across 20 grid steps, which were evenly distributed on a
logarithmic scale ranging from h = 1 to h = 0.02. By selecting a subset of surfels
carefully, the curve of maximum errors is also decreasing and we observe multigrid
convergence. In the following, we would like to compare this experimental result with
existing methods.

6.3.2 Comparison with existing methods for digital surface estima-
tion

In this subsection, we present experimental results utilizing the DGtal Library. We
conduct tests on various geometric convex closed shapes and generate statistical data
regarding the divergence between an estimated vector and its corresponding true
normal. To determine the true normal’s associated point, we identify the embedded
point of the surfel and seek the nearest point on the target continuous shape. We
calculate the true normal as the normal of the associated point using the polynomial
equation of the shape.

l Shape X [ DGtal name [ Equation [
Sphere sphere9 2y +22-92=0
Ellipse ellipse 90 — 3%z —2%y> —22=0

TABLE 6.2: Equations of Euclidean shapes for our experimental eval-
uation.

Slice In Fig. 6.7, we have conducted a comparative analysis between the method of
maximum segments on 2D slices and our estimator, alongside the theoretical upper
bound represented by h'/3 for the slice approach. We show results on two discretized
shape: the sphere of radius 9 and the ellipsoid described in Tab. 6.2. Each shape
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Convergence of the normal estimation for sphere9 discretized at decreasing h
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FIGURE 6.6: Convergence graph of normal estimation on selected
corners only.
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has undergone digitization across 21 grid steps, which were evenly distributed on a
logarithmic scale ranging from h =1 to h = 0.01.

Both methods exhibit similar performance characteristics. It is noteworthy that both
estimators appear to approach the ground-truth normals, on average, as the dis-
cretization step approaches zero. The performance of the two estimators on maxi-
mum error varies on different shapes, while the slice method performs slightly better
on average.

Convergence of the normal estimation for sphere9 discretized at decreasing h
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FIGURE 6.7: Convergence graph of normal estimation with max seg-
ment method.

Voronoi Covariance Measure (VCM) We recall that the VCM computes a
weighted average of covariance matrices from individual Voronoi cells. This method
extracts local information of the surface geometry as it considers the intersection
between the Voronoi diagram and a local region around a data point.
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In Fig. 6.8, we compare the performance of our estimator with a digital adaptation of
this approach in the DGtal Library. We choose the same two discretized shapes: the
sphere of radius 9 and the ellipsoid. Each shape has undergone digitization across 11
grid steps, which were evenly distributed on a logarithmic scale ranging from A =1
to h = 0.025. The results shows that the VCM methods performs a better estimation
than our method.

Convergence of the normal estimation for sphere9 discretized at decreasing h
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FI1GURE 6.8: Convergence graph of normal estimation with voronoi
covariance measure.

Integral Invariant The integral invariant method involves aggregating surface ge-
ometry within a spherical region, utilizing integrals over the intersection of the sphere
and the mesh-bound volume to estimate principal curvatures and normals. Digital
adaptations also exist in the DGtal Library.
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The choice of the ball radius is a user-defined parameter [CLL13]. We follow the
implementation detail given in [LCL17] for our choice of the radius of the ball. The
ball radius is expressed as r = kh3. We choose the constant k = 2 such that at h = 1,
it gives a reasonable value for the ball radius. Each shape has undergone digitization
across 20 grid steps, which were evenly distributed on a logarithmic scale ranging
from h =1 to h = 0.019. Fig. 6.9 shows that the integral invariant method performs
slightly better performance than our method.

Convergence of the normal estimation for sphere9 discretized at decreasing h
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FI1GURE 6.9: Convergence graph of normal estimation with integral
invariant method (ball radius = 3).
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6.3.3 Relation between estimated normals vectors and the ones on

the convex hull

At a grid step of size h, we construct the convex hull of the digital volume. Our
hypothesis is that the plane-probing algorithm’s output closely resembles a tangent
plane associated with one of the faces of the convex hull. Through experimentation,
we have observed that the normal vectors associated with the faces of a digital vol-
ume’s convex hull exhibit multigrid convergence toward the true normal field in its
continuous counterpart.

In Fig. 6.10, we illustrate various final states resulting from the plane-probing algo-
rithm. Fig. 6.10-(A) represents the case where the algorithm seems to stop prema-
turely. Fig. 6.10-(B) represents the case where the estimated normal is identical to
the normal of the corresponding facet of the convex hull. Fig. 6.10-(C) represents the
case where the estimated normal does not match the normal of the corresponding
facet of the convex hull. Fig. 6.10-(D) represents the case where the final triangle is

exactly a facet of the convex hull.

(a) (B)
é ‘2\ e % ;
() ()
FI1GURE 6.10: Illustration of the final triangle and the convex hull of
an ellipsoid.
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6.4 Conclusion and perspectives

In this chapter, we have discussed various digital methods for estimating normals.
Our exploration has included the suitability of the plane-probing algorithm for this
purpose. Our efforts have been directed towards refining the existing implementation
of the algorithm in the DGtal Library. In this chapter, we have discussed various
digital methods for estimating normal vectors. We aim to refine the existing imple-
mentation of the algorithm in the DGtal Library.

Throughout our experiments, we made adjustments to elements like pre-estimation
and ending configuration. Unfortunately, these changes did not result in significant
improvements in the algorithm’s performance. Subsequently, we returned to a more
basic approach, limiting the algorithm’s use to specific corners that closely resembled
an ideal starting point for the tetrahedron-based plane-probing algorithm. Through
this examination, we observed a pattern of multigrid convergence within this re-
stricted context We aim to refine the existing implementation of the algorithm in the
DGtal Library..

As we look forward to the future, our main goal is to broaden the scope of our normal
estimation techniques to include all surfels. We also aim to enhance the algorithm’s
flexibility by making it applicable to non-convex shapes. These future developments
hold potential for advancing the field of digital geometry and normal estimation.
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Conclusion

In conclusion, digital geometry is intriguing due to its compatibility with octree-
type spatial data structures. 3D volumes have inherent geometric limitations, but
researchers have developed various methods to estimate geometric quantities. In this
thesis, we focus on plane-probing algorithms that dynamically adapt and retrieve
information on digital objects. These algorithms expand from a starting point, typ-
ically a triangle, and collect information by checking points that are selected based
on specific criteria.

To begin, we explained the general framework of the tetrahedron-based plane-probing
algorithm on a digital plane. We introduced the L-algorithm, a new and theoretically
sound plane-probing algorithm that outperforms previous variants, namely the H-
algorithm and the R-algorithm. It examines more potential points in each step, which
reduces the number of steps required to achieve the correct normal vector. Both in
prior studies and in our work, it has been demonstrated that the tetrahedron-based
plane-probing algorithm precisely determines the normal vector of a digital plane.

Furthermore, we demonstrated how to probe a few points per step to ensure that
the overall complexity is in O(||NJ|;log(||NJ]1)). We also explore some invariant
properties of the L-algorithm. In particular, we discovered that the L-algorithm
consistently produces triangles with better compactness properties, forming a local
3D Delaunay triangulation.

We then established the Delaunay property for plane-probing algorithms, and the
L-algorithm adheres to it. The proof is lengthy and necessitates several technical
details on the geometry of the sphere and projection. This property helps in esti-
mating distances between points, which is valuable for determining the locality of the
algorithm.

Later, we conducted a discussion on the locality of the algorithm. We studied the
distance between each vertex of the triangle and the upper leaning point. As a result,
we obtained a tight bound for the location of the last triangle and a broader bounding
parallelepiped that encompasses all triangles’ vertices.
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However, achieving accuracy in these algorithms is a challenging task on a digital
surface. We attempted to enhance the multigrid convergence of the normal estimator.
In this context, we identified the optimal conditions for the plane-probing algorithm
to yield a reliable estimation, thereby limiting the scope of our experiments. We
compared the performance of the plane-probing algorithm to other existing methods
within this scope.

Looking forward, our research sets the stage for further exploration of the L-algorithm’s
performance, especially its locality aspect. We aim to optimize its performance and
seek an alternative optimization for this variant, similar to what previous studies
accomplished with the R-algorithm. In practice, we observed that the R-algorithm
returns a non-obtuse triangle, much like the L-algorithm. We aim to prove this the-
oretically in the future.

Additionally, we aspire to establish tighter distance bounds for vertices in the tetrahe-
dra or parallelepiped to measure how well these algorithms perform locally. This could
be a crucial element in improving the normal estimator on digital surfaces. Our goals
also involve extending our normal estimation techniques to cover all types of surfaces,
including non-convex shapes. Another long-term objective is to develop other plane-
probing-based estimators for various geometric differential quantities. These efforts
will contribute to advancing the field of digital geometry and normal estimation.
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