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Nomenclature

Physical Constants and Geometric Parameters

F Faraday’s constant [C/mol]

R Universal gas constant [J/ (K kg)]

T Temperature [K]

σ Conductivity [S/m]

l− Thickness of positive electrode [m]

0sep Position at separator/electrode interface [m]

lsep Thickness of separator [m]

0+ Position at positive electrode/separator interface [m]

l+ Thickness of positive electrode [m]

LT Total thickness of the cell [m]

Rs Solid particle radius [m]

ϵ Volume fraction [-]

a± Specific interfacial surface area [m2/m3]

Electrochemical Parameters

η−li Overpotential [V]

j±n Molar ionic flux [mol/m2 s]

ϕ−
s Solid phase potential [V]

ϕ−
e Electrolyte phase potential [V]

i−Li Current associated with lithium plating [A/m2]

i−0 Exchange current density [A/m2]
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i−e Molar current density of lithium in the electrolyte, [A/m2]

α Charge transfer coefficient

cs,max Maximum concentration of solid material [mol/m3]

c±ss(x, t) Concentration of lithium ions on the surface of the solid particles [mol/m3]

c±s (x, r, t) Concentration of lithium ions in the solid phase [mol/m3]

ce(x, t) Concentration of lithium ions in the electrolyte [mol/m3]

N±
Ls(t) Total amount of cyclable lithium in the individual electrodes [mol]

N±
Le(t) Total amount of cyclable lithium in the electrolyte [mol]

NLs(t) Total amount of cyclable lithium available in the combined electrodes [mol]

VT Cutoff voltage [V]

I Applied current [A]

ISOP Maximum obtainable current [A]

De Diffusion coefficient in the electrolyte [m2/s]

Ds Diffusion coefficient in the solid phase [m2/s]

κ Electrolyte conductivity, Siemens per meter

σ Conductivity of the solid [S/m]

αa, αc Anodic, cathodic charge transfer coefficient [-]

fc/a Mean molar activity coefficient [-]

k± Kinetic reaction rate [m3/mol/s]

Acronyms

SOC State of Charge

SOH State of Health

SOP State of Power

BMS Battery Management System

MPMe Multi-Particle Model with Electrolyte dynamics

LiB Lithium-ion Battery

EV Electric Vehicle
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Contexte

Les batteries au lithium-ion (LiBs) sont devenues une pierre angulaire de la transition mon-

diale vers les énergies renouvelables, jouant un rôle essentiel dans l’atténuation du change-

ment climatique et des effets du réchauffement global [23]. Leur efficacité et leurs avan-

tages environnementaux en ont fait le choix privilégié pour diverses applications, en par-

ticulier dans le secteur des véhicules électriques (VE) [24]. La transition vers les sources

d’énergie renouvelable a été accélérée par les avantages des LiBs, tels que la haute den-

sité énergétique et l’impact environnemental réduit par rapport aux batteries tradition-

nelles [25]. L’électrification du secteur automobile, motivée par les préoccupations con-

cernant les émissions des véhicules, repose fortement sur les LiBs [26]. Cependant, des défis

liés à la performance, à la sécurité, à la durée de vie et à la gestion des LiBs subsistent [25].

Aborder ces défis est crucial pour une adoption plus large des VE et pour l’électrification

durable du secteur des transports [27].

Le projet INSTABAT, dans le cadre du programme de recherche et d’innovation Horizon

2020 de l’Union européenne, vise à faire progresser la technologie LiB pour les VE en surveil-

lant des paramètres clés en temps réel [28]. Le projet combine des capteurs physiques, des

capteurs virtuels et des algorithmes avancés de système de gestion de batterie (BMS) pour

atteindre ses objectifs [29].

Cette recherche de doctorat, menée dans le cadre d’INSTABAT, se concentre sur l’avancement

de la modélisation LiB et la conception d’observateurs pour les LiBs. Les principaux objec-

tifs comprennent la formulation d’un modèle réduit d’une cellule de batterie tenant compte

des profils d’échange de Li inhomogènes, la conception d’un observateur utilisant de nou-

velles données de capteurs, l’intégration d’une dépendance physique supplémentaire dans le

modèle et l’observateur, et le test de l’efficacité de l’observateur.

Malgré les avantages potentiels, des défis subsistent dans l’évaluation précise de SOX

des LiBs en raison de leur comportement complexe dans des conditions variables [30]. Les

modèles utilisés sont complexes, avec des variables interdépendantes qui rendent la con-

ception de l’observateur difficile. L’intégration d’une dépendance supplémentaire, telle que

la température, ajoute à la complexité et au coût computationnel. Aborder ces défis nécessite
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une combinaison de modélisation mathématique, de techniques de contrôle avancées, d’algorithmes

d’estimation robustes et de validation expérimentale.

Les principales contributions de cette recherche de doctorat comprennent la formula-

tion d’un modèle multi-particules avec dynamique de l’électrolyte (MPMe), la conception

d’un observateur qui intègre les technologies de capteurs potentiels, et l’intégration d’une

dépendance physique supplémentaire dans le modèle et l’observateur. Ces contributions ont

conduit à la publication d’un article de journal et d’un article de conférence :

• Asif, Mian Mohammad Arsalan, and Federico Bribiesca-Argomedo. 2023.

“Electrochemical State Observer Design for Li-Ion Batteries With Het-

erogenous Electrode Lithiation.” IEEE Control Systems Letters 7: 3199-

3204. https://doi.org/10.1109/LCSYS.2023.3304248.

• Asif, Mian Mohammad Arsalan, Federico Bribiesca-Argomedo, and Vincent

Heiries. 2023. “Real time estimation of electrochemical states in Li-ion

batteries and exploitation in BMS algorithms.” Presented at the Battery

2030+ 3rd Annual Conference.

Globalement, cette recherche vise à améliorer la performance, la sécurité et la fiabilité des

LiBs dans les applications VE, avec ses résultats documentés dans des rapports techniques

et des articles de recherche pour assurer une diffusion et un impact plus larges.
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État de l’art

Modèles de Batterie : La compréhension et la prédiction du comportement des LiBs

nécessitent des modèles adaptés. Les modèles principaux abordés sont :

• Modèles de Circuit Équivalent (ECMs) : Ces modèles représentent le comporte-

ment électrique des LiBs à l’aide de circuits. Bien qu’ils soient efficaces en termes de

calcul, ils peuvent ne pas détailler les processus électrochimiques internes [31–34]. La

Figure 1 illustre le modèle de Thévenin, un exemple d’ECM, tiré de [1, 2].

Figure 1: Le modèle de Thévenin, un exemple d’ECM, tiré de [1, 2]

• Modèles basés sur les données: Ces modèles, tels que les réseaux neuronaux artifi-

ciels (ANNs) [3,35], les Machines à Vecteurs de Support (SVMs) [36], et autres, peuvent

identifier des relations complexes mais nécessitent une grande quantité de données et

peuvent être exigeants en ressources [3,37]. La Figure 2 présente la structure générale

des ANNs.

• Modèles Électrochimiques (EChMs) : Ces modèles fournissent une vision détaillée

des processus électrochimiques internes, mais peuvent être coûteux en calcul [9]. La

Figure 3 dépeint le modèle P2D, un type d’EChM.

Techniques d’Estimation d’État : Pour une gestion efficace des LiBs, l’estimation

d’état est primordiale. Les techniques principales sont :

• Méthodes en Boucle Ouverte : Des méthodes comme le comptage de Coulomb et

les techniques basées sur OCV sont simples mais peuvent manquer de précision sur la

durée [38–40].
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Figure 2: La structure générale des ANNs [3]

• Méthodologies Adaptatives et Basées sur l’IA : Des techniques telles que le

moindre carré récursif (RLS), les filtres de Kalman, et les approches d’intelligence

artificielle peuvent être gourmandes en ressources [14,41–45].

• Techniques d’Estimation Basées sur des Modèles et Hybrides : Ces méthodes

combinent des informations détaillées et diverses approches pour une meilleure estima-

tion [33,34,46–49].

Modèle de Dégradation du Lithium : La dégradation des LiBs est un aspect crucial

à considérer. Elle est classifiée en :

• Mécanismes : Transformations internes, tant physiques que chimiques, de la batterie

[17,20].

• Modes : Conséquences observables au niveau cellulaire dues aux mécanismes.

• Effets Opérationnels : Résultats tels que la réduction de capacité ou de puissance,

conséquences des modes [20].
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Figure 3: Le modèle P2D, un type d’EChM [4]

En somme, une connaissance approfondie des modèles de batterie, des techniques d’estimation

d’état, et des mécanismes de dégradation est vitale pour optimiser la performance et la dura-

bilité des LiBs.
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Développement et Analyse du Modèle Multi-Particules

avec Dynamique de l’Électrolyte (MPMe)

Ce chapitre se penche sur les subtilités de la modélisation des batteries lithium-ion, soulignant

la nécessité d’une représentation plus précise des dynamiques internes de la batterie. Bien

que le modèle Doyle Fuller Newman (DFN, de [50]) soit complet, il est gourmand en calculs,

le rendant inadapté pour des applications en temps réel. Ce chapitre présente le Modèle

Multi-Particules avec Dynamique de l’Électrolyte (MPMe) comme une solution qui fait le

lien entre le DFN et le Modèle à Particule Unique avec Électrolyte (SPMe) [21].

Dérivation du Modèle : Le MPMe vise à :

• Reconstituer les hétérogénéités présentes dans les dynamiques internes de la batterie.

• Offrir une efficacité de calcul pour les applications en temps réel.

• Faciliter l’intégration de nouvelles données de capteurs pour la conception d’observateurs.

• Incorporer la dépendance de la température pour divers paramètres électrochimiques.

• Assurer la conservation du lithium dans les deux phases de la batterie.

• Intégrer un modèle de dégradation du lithium pour l’électrode négative.

Le MPMe utilise une représentation multi-particules, formulant des couches à l’intérieur des

régions positives, négatives, du séparateur de la batterie. Chaque couche des côtés négatif

et positif possède une particule, chaque particule ayant des couches radiales.

Simulation du MPMe : La validation du MPMe est réalisée à travers des simulations

MATLAB, en le comparant au modèle DFN à grande échelle et au SPMe. Les résultats

du modèle MPMe, notamment en ce qui concerne le comportement de la tension, montrent

sa précision supérieure par rapport au SPMe. La Figure 4 montre la comparaison entre le

modèle DFN à grande échelle, le SPMe et le MPMe proposé, et la Figure 5 montre l’erreur

entre le modèle DFN et ses dérivés (SPMe et MPMe) pour une charge constante de 2C.

Hétérogénéité Spatiale des États Internes : Le modèle MPMe capture les états in-

ternes de la batterie, y compris la concentration de lithium dans les électrodes et l’électrolyte,
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Figure 4: Total Voltage Comparisons for 2C constant charge
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Figure 5: Error in Total Voltage Comparisons 2C constant charge

le potentiel électrique dans les deux phases, la surtension, et d’autres facteurs cruciaux. Le

modèle montre l’hétérogénéité présente dans ces états, en particulier sous différents scénarios
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de charge. Les figures 6 et 7 montrent l’hétérogénéité des électrodes solides.
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Figure 6: Hétérogénéité dans l’électrode negative (Charge constante à 4C)
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Figure 7: Hétérogénéité dans l’électrode positive (Charge constante à 4C)

Conservation du Lithium dans le Système : Le modèle MPMe assure la conservation

du lithium, un aspect crucial pour des simulations précises à long terme. Cette conservation

peut être observée à la fois dans les phases solide et électrolytique de la batterie. La Figure

8 montre la conservation du lithium dans la phase solide lors d’une simulation de charge

constante à 4C.

Intégration de la Dépendance à la Température dans le Modèle de Batterie

: Ce chapitre présente le Modèle à Particule Unique avec Dynamique de l’Électrolyte et

Thermique (SPMeT, de [51]) qui prend en compte les variations de température à travers la

batterie au lithium-ion. Le modèle SPMeT combine le modèle SPMe avec un modèle ther-

mique, en utilisant la loi d’Arrhenius pour les paramètres dépendant de la température. Le
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Figure 8: Lithium total dans la phase solide (charge constante à 4C)

chapitre utilise ensuite le principe du SPMeT dans le cadre du MPMe, démontrant l’impact

significatif de la dépendance à la température sur le comportement de la batterie. La Figure

9 montre l’effet de la température sur la tension totale à une charge constante de 1C pour

le MPMe.

En conclusion, le Chapitre 3 présente le MPMe comme un modèle robuste et efficace

pour capturer les dynamiques internes des batteries lithium-ion, comblant le fossé entre le

modèle DFN détaillé et le SPMe plus simple. Le chapitre souligne l’importance de prendre

en compte les variations de température et d’assurer la conservation du lithium pour une

modélisation précise de la batterie.
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Observateurs d’État pour le MPMe

Ce chapitre propose une analyse détaillée des observateurs pour les batteries lithium-ion, se

concentrant à la fois sur les concentrations d’électrolyte et de lithium solide. L’importance

de ces observations est mise en évidence, étant donné leur rôle dans la compréhension du

comportement des ions de lithium à l’intérieur de la batterie.

Observateur de Concentration de Lithium dans l’Électrolyte

Cette section approfondit la construction et l’analyse de stabilité de l’observateur d’état

pour la concentration de lithium dans l’électrolyte des batteries lithium-ion. Le processus

d’observation est essentiel pour comprendre la diffusion des ions lithium à l’intérieur de

l’électrolyte.

Hypothèses :

Assumption 1. Le coefficient de diffusion, noté De, est considéré comme constant dans le

temps et uniformément borné dans la variable spatiale. Cela signifie qu’il existe une valeur

positive minimale, De, et une valeur maximale, De, le coefficient de diffusion se situe entre

ces deux limites. Dans le reste de la thèse, nous considérerons De comme une fonction de la

variable spatiale x [5].

Assumption 2. Une mesure de la concentration de lithium dans l’électrolyte, notée ce(xr, t),

est disponible en un point spécifique du séparateur, xr. Cette hypothèse est cruciale car elle

fournit un point de référence pour l’observateur. En ayant une concentration connue à un

endroit spécifique, il devient possible d’estimer la concentration dans d’autres parties du

système [5].

Assumption 3. Le profil spatial des flux ioniques molaires, représenté par j±n (x, t), est

supposé être précisément prédit par le modèle sans nécessité de correction. Cela implique

que le profil de courant ionique, i±e (x, t), est connu. Cette hypothèse découple l’analyse de

stabilité de l’observateur d’électrolyte de celle de l’observateur d’électrode. Cependant, il

convient de noter que c’est une limitation de la conception actuelle. La stabilité du système
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interconnecté n’est démontrée que dans les résultats de simulation. Cette limitation n’est pas

propre à cette approche; d’autres méthodologies dans la littérature, citée comme [21], font

également des hypothèses similaires [5].

Simplification du Modèle :

L’équation de diffusion de l’électrolyte du modèle Doyle-Fuller-Newman (DFN) est sim-

plifiée en utilisant la première hypothèse ci-dessus tout en conservant ses caractéristiques

essentielles. L’équation simplifiée est :

ϵjec
j
e,t(x, t) =

∂

∂x

[
De(x)c

j
e,x(x, t) +

(1− t0c)

F
ije(x, t)

]

Formulation de l’Observateur de Concentration de l’Électrolyte :

Un observateur est développé sur la base de l’équation de diffusion de l’électrolyte simplifiée.

Cet observateur estime la concentration de l’électrolyte en utilisant des mesures à l’électrode

de référence. La formulation de l’observateur introduit un terme d’injection d’erreur pour

tenir compte des écarts entre les états réels et estimés. En utilisant les hypothèses men-

tionnées précédemment pour simplifier le modèle, nous pouvons écrire le système observateur

comme suit :

ϵjeĉ
j
e,t(x, t) =

∂

∂x

[
De (x) ĉ

j
e,x(x, t) +

1− t0c
F

ije(x, t)

]
− P [ce(xr, t)− ĉe(xr, t)]

où xr ∈ [0sep, lsep] désigne la position spatiale de l’électrode de référence.

Analyse de Stabilité :

La stabilité de l’observateur est cruciale. Une proposition établit que le système d’erreur est

exponentiellement stable sous certaines conditions. La stabilité est analysée en utilisant une

fonction candidate de Lyapunov, et les conditions de stabilité sont dérivées. Pour prouver

la stabilité du système, la fonction de Lyapunov suivante est utilisée:
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VT =V1 + βV2

, V1(u(·, t))
.
=
1

2

∫ LT

0

ϵeu
2(x)dx ≥ 0,

V2(u(·, t))
.
=
1

2

∫ LT

0

[
ϵeDe(x)u

2
x(x)

]
dx ≥ 0,

Observateur d’État pour la concentration de lithium solide

Hypothèses

La construction des observateurs d’état pour les électrodes solides est basée sur :

Assumption 4. Une mesure de tension à une électrode de référence Vref (t) est disponible.

Ceci permet des estimations indépendantes des potentiels OCV U± pour chaque électrode [5].

Assumption 5. On suppose que la courbe OCV des électrodes U± est uniformément mono-

tone décroissante de telle manière que, en définissant f(a, b)
.
= U(a)−U(a− b), la propriété

suivante est satisfaite :

∃k1, k2 < 0 t.q. ∀a, b k1b
2 ≤ f(a, b)b ≤ k2b

2

Notez que les preuves peuvent être adaptées sans problème si la fonction est monotone crois-

sante, nécessitant seulement un changement de signe dans le gain de rétroaction [5].

Formulation de l’Observateur

L’observateur pour la concentration de lithium en phase solide intègre le terme d’erreur de

tension, en utilisant la tension de l’électrode de référence. Le système d’erreur contraste les

systèmes physique et observateur, avec des coordonnées radiales transformées pour simplifier

la notation. L’observateur de la concentration de lithium en phase solide est formulé en
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injectant le terme d’erreur de tension [5] :

ĉ±s,t(x, r, t) =
1

r2
∂

∂r

[
D±

s r
2ĉ±s,r

]
ĉ±s,r(x, 0, t) = 0

ĉ±s,r(x,R
−
s , t) =− j±n (x, t)

D±
s

− g±0
[
U(c±ss(x, t))− U(ĉ±ss(x, t))

]
où c±ss(x, t)

.
= c±s (x,R

±
s , t) . La Figure 10 montre la structure globale de l’observateur.
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Figure 10: Structure de l’observateur avec injection d’erreur de tension de [5]
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Analyse de Stabilité

La stabilité est confirmée en définissant une fonction de Lyapunov et en garantissant la

définitude négative de sa dérivée temporelle. Les observateurs proposés, bien qu’ils ne con-

servent pas le lithium total dans les électrodes, travaillent avec un autre observateur pour

corriger les erreurs au fil du temps. Pour prouver la stabilité du système, la fonction de

Lyapunov suivante est utilisée:

Vs =
1

2

∫ 1

0

R2
s

Ds

r2z2(r, t)dr

Validation des observateurs avec les résultats de simulation

Des simulations utilisant un modèle DFN simplifié valident l’efficacité des observateurs. Sous

une décharge de 2C, les observateurs, même lorsqu’ils sont initialisés avec des valeurs incor-

rectes, convergent rapidement vers les vraies valeurs. En utilisant le cycle de conduite UDDS

avec un courant de crête de 6C comme on peut le voir sur la Figure 11, les observateurs suiv-

ent efficacement les tensions et corrigent les erreurs initiales, prouvant leur robustesse comme

on peut le voir sur la Figure 12. Ces résultats montrent la convergence rapide des obser-

vateurs proposés avec Injection d’Erreur de Tension (VEI). L’erreur de suivi peut être vue

dans le Tableau 1. La Figure 13 montre le c±s (x, r, t) et z±(x, r, t) normalisés, l’erreur cor-

respondante dans c±s (x, r, t), à deux instants différents : t0 = 0 et t∗ = 594 secondes, où le

courant atteint son maximum pendant la simulation.

error (mV) V (t) Vref (t) V (t)− Vref (t)
VEI 5.4502 3.0438 2.8405

VEI (5mV noise) 6.9501 4.1694 4.2133
VEI (10mV noise) 10.0511 6.5705 6.7245

Table 1: Erreur RMS des tensions de [5]
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Figure 11: Profil de courant du cycle UDDS de [5]
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Prédictions Avancées du BMS - Exploitation de l’Observateur

pour les Estimations d’État : Résumé du Chapitre

Ce chapitre se penche sur les prédictions avancées faites par les Systèmes de Gestion de

Batterie (BMS) et le rôle de l’observateur dans les estimations d’état. L’accent est prin-

cipalement mis sur les états clés de la batterie : État de Charge (SOC), État de Santé

(SOH), État de Puissance (SOP) et l’identification l’électrocomposition du lithium. La Fig-

ure 14 offre un aperçu complet de l’architecture de l’algorithme BMS proposé. Le chapitre

éclaire l’intégration du modèle MPMe et des observateurs d’état avec de nouveaux capteurs

pour améliorer la précision des prédictions du BMS. L’architecture de l’algorithme BMS

proposé est présentée, mettant l’accent sur la synergie entre les différents composants. Des

discussions détaillées sur les estimations du SOC et du SOH soulignent leur importance, les

méthodologies et la précision de l’algorithme BMS. Le phénomène l’électrocomposition du

lithium ses implications et sa gestion sont explorés en profondeur, mettant en évidence ses

défis et les stratégies pour une gestion efficace. Enfin, le chapitre présente les subtilités de

l’estimation du SOP, son importance et les facteurs influençant sa prédiction. Les Figures

15, et 16 montrent l’estimation en temps réel du SOC, et SOP en utilisant les Algorithmes

BMS.
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Figure 14: Représentation schématique de l’algorithme BMS proposé de [6]
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Summary of the Chapter

Lithium-ion batteries (LiBs) have become a cornerstone in the global transition away from

fossil fuels, playing a pivotal role in mitigating climate change and global warming effects.

Their efficiency and environmental benefits have made them the preferred choice for various

applications, especially in the electric vehicle (EV) sector. The transition to renewable energy

sources has been accelerated by the advantages of LiBs, such as high energy density and

reduced environmental impact compared to traditional batteries. The automotive sector’s

electrification, driven by concerns over vehicular emissions, heavily relies on LiBs. However,

challenges related to LiB performance, safety, lifespan, and management remain. Addressing

these challenges is crucial for the broader adoption of EVs and the sustainable electrification

of the transport sector.

The INSTABAT project, part of the European Union’s Horizon 2020 Research and In-

novation Program, aims to advance LiB technology for EVs by monitoring key parameters

in real-time. The project combines physical sensors, virtual sensors, and advanced battery

management system (BMS) algorithms to achieve its objectives.

This PhD research, conducted within the INSTABAT framework, focuses on advancing

LiB modeling and observer design for EVs. The primary objectives include formulating a

reduced model considering inhomogeneous Li exchange profiles, designing an observer using

new sensor data, incorporating additional physical dependence into the model and observer,

and testing the observer’s effectiveness.

Despite the potential benefits, challenges persist in precise SOX assessment of LiBs due

to their complex behavior under varying conditions. The models used are intricate, with

interdependent variables that make observer design challenging. Incorporating additional

dependence, such as temperature, adds complexity and computational cost. Addressing these

challenges requires a combination of mathematical modeling, advanced control techniques,

robust estimation algorithms, and experimental validation.

The main contributions of this PhD research include the formulation of a multi-particle

model with electrolyte dynamics (MPMe), the design of an observer that integrates potential

sensor technologies, and the incorporation of additional physical dependence into the model
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and observer. These contributions have led to the publication of a journal paper, and a

presentation at a conference:

• Asif, Mian Mohammad Arsalan, and Federico Bribiesca-Argomedo. 2023.

“Electrochemical State Observer Design for Li-Ion Batteries With Het-

erogenous Electrode Lithiation.” IEEE Control Systems Letters 7: 3199-

3204. https://doi.org/10.1109/LCSYS.2023.3304248.

• Asif, Mian Mohammad Arsalan, Federico Bribiesca-Argomedo, and Vincent

Heiries. 2023. “Real time estimation of electrochemical states in Li-ion

batteries and exploitation in BMS algorithms.” Presented at the Battery

2030+ 3rd Annual Conference.

In essence, this research aims to enhance the performance, safety, and reliability of LiBs in

EV applications, with its findings documented in technical reports and research papers to

ensure wider dissemination and impact.

1.1 Motivation

Lithium-ion batteries (LiBs) have emerged as a pivotal technology in the global pursuit to

transition from fossil fuels, combat the escalating crisis of global warming, and mitigate the

adverse effects of climate change [23]. The efficiency, and durability of LiBs have rendered

them an optimal choice for a wide array of applications. These applications span various

sectors, with a particularly prominent role in the field of electric vehicles (EVs), which stand

at the forefront of the transport sector’s green revolution [24].

The rampant burning of fossil fuels for transportation and energy production has been a

key contributor to greenhouse gas emissions that increase global warming and trigger drastic

climate change [52]. The growing environmental crises have prompted a global shift towards

renewable energy sources and advanced energy storage technologies. Lithium-ion batteries,

owing to their high energy density, long cycle life, and relatively lower environmental impact

compared to traditional lead-acid and nickel-cadmium batteries, have emerged as crucial

enablers in this transition [25].
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In the automotive sector, the vigorous drive towards electrification is fundamentally

propelled by increasing environmental concerns over vehicular emissions contributing to air

pollution and climate change [26]. LiBs, as the primary energy storage technology in EVs,

are central to this transition. These batteries provide a means of efficiently harnessing and

utilizing renewable energy, thus reducing the sector’s dependence on fossil fuels and the

associated greenhouse gas emissions [53].

However, despite the promising role of LiBs in EVs, several challenges related to perfor-

mance, safety, lifespan, and affordability still need to be addressed. Additionally, the issue

of battery management, including State of Charge (SOC), State of Power (SOP), and State

of Health (SOH) estimation, pose significant hurdles for the efficient use of LiBs in EVs [25].

This makes it imperative to intensify research efforts focused on LiBs for EV applica-

tions. It is through such research that we can refine the design and operation of these

batteries, enhance their safety and efficiency, extend their lifespan, and reduce costs. These

advancements will facilitate the broader adoption of EVs and contribute significantly to

global climate change mitigation efforts by promoting the sustainable electrification of the

transport sector [27].

1.2 INSTABAT Project

The INSTABAT project [28] (funded under the European Union’s Horizon 2020 Research and

Innovation Program Grant 955930) is a significant research endeavor focused on advancing

lithium-ion battery technology for EV applications. Its primary objective is to monitor key

parameters of Li-ion battery cells in real-time, enabling the development of higher accuracy

States of Charge, Health, Power, Energy, and Safety (referred to together as SOX) indicators

[28]. By achieving accurate and comprehensive monitoring, the INSTABAT project aims to

enhance battery safety, quality, reliability, and overall lifespan.

To fulfill its objectives, the INSTABAT project adopts a multi-faceted approach, com-

bining the integration of physical sensors, the development of virtual sensors, and the design

of advanced battery management system (BMS) algorithms. These components work syner-

gistically to provide a comprehensive understanding of battery behavior and enable effective
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control strategies.

The project focuses on the development and adaptation of four innovative physical sen-

sors: optical fiber sensors with Fiber Bragg Grating and luminescence probes, reference elec-

trodes, and photo-acoustic gas sensors [29]. At the beginning of the project, these sensors

were at different stages of maturity, with some already successfully implemented in labora-

tory battery cells, while others are still in the concept stage. The sensors are strategically

positioned within the battery cells to monitor various key parameters, including temperature,

heat flow, pressure, strain, Li concentration, CO2 concentration, and impedance. Through

reliable and operational monitoring of these parameters, the INSTABAT project aims to

obtain valuable insights into the physico-chemical degradation phenomena occurring within

the battery cell [29].

Complementing the physical sensors, virtual sensors are developed based on electro-

chemical and thermal reduced models. These virtual sensors leverage the available sensor

information and a priori knowledge about the battery system models to estimate the values

of variables that are challenging to directly measure. By utilizing advanced algorithms and

model-based approaches, the virtual sensors provide real-time estimations of internal battery

variables, further enhancing the accuracy of the SOX cell indicators.

The collaborative efforts within the INSTABAT project extend beyond sensor develop-

ment and integration [29]. The project also focuses on the development of advanced BMS

algorithms that incorporate data from both physical and virtual sensors. These algorithms

utilize the measured and estimated parameters to improve state prediction, allowing for a

more precise estimation of key battery performance metrics, such as SOC, SOH, and SOP.

The enhanced BMS algorithms contribute to optimized battery management and control

strategies, ultimately improving the overall functionality and safety of Li-ion batteries in EV

applications.
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1.3 Objectives of the PhD

This PhD research is conducted within the framework of the INSTABAT project [28], focus-

ing on specific tasks that contribute to the advancement of lithium-ion battery modeling and

observer design for electric vehicle applications. The primary objectives of this PhD thesis

are as follows:

1. Formulate a reduced model that considers inhomogeneous Li exchange profiles between

the electrode and electrolyte. The model will capture the spatial variations in Li-

ion concentration within the battery, providing a more accurate representation of the

electrochemical behavior and performance characteristics.

2. Design an observer that utilizes newly available sensor data in conjunction with the

improved model dynamics to accurately represent the battery dynamics. These sensor

data, obtained from the INSTABAT project, include measurements such as tempera-

ture, current, voltage, and Li concentration. The observer will leverage the additional

information to estimate the internal states of the battery system with enhanced accu-

racy and reliability.

3. Incorporate additional physical dependence of parameters into the model and observer,

such as temperature dependence and very limited aging mechanisms of the battery. By

considering these dependencies, the model and observer will provide a more compre-

hensive representation of the battery’s behavior, accounting for temperature variations

and the degradation processes that occur over the battery’s lifetime.

4. Test the effectiveness of the developed observer and confirm the validity of the designed

observer on an experimental setup. The performance of the observer will be assessed

in terms of estimation accuracy, convergence, and robustness.

By accomplishing these objectives, the PhD research aims to advance the understanding

of lithium-ion battery behavior, improve state prediction accuracy, and contribute to the

development of more robust battery management and control strategies for electric vehicle
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applications. The outcomes of this research will have practical implications for enhancing

the performance, safety, and reliability of lithium-ion batteries in real-world EV applications.

1.4 Challenges and Issues

Precise SOX assessment of lithium-ion batteries remains challenging due to their varying

characteristics under different working environments [30]. The models used to represent

the behavior of lithium-ion batteries are highly complex, with interdependent variables that

pose significant challenges in observer design [21]. Developing observers capable of accurately

estimating the internal states of the battery requires advanced mathematical techniques and

a thorough understanding of the system dynamics. Furthermore, proving the convergence

of the designed observers necessitates the use of complex mathematical analysis.

One of the challenges in incorporating additional physical dependence, such as tempera-

ture, to improve the accuracy of the models and observers is the increased complexity and

computational cost. The already intricate models become even more complex when addi-

tional variables are considered. This complexity raises concerns about the computational

efficiency and real-time implementation of the models and observers [54]. To ensure practi-

cal feasibility, an efficient simulation and model reduction technique must be developed to

accurately simulate the models and observers while retaining their essential behavior. The

design and proof of convergence for the observers become more intricate as the number of

incorporated physical variables increases [55, 56].

In addition to the complexity of the models and observers, another challenge lies in the

parametric uncertainty and state dependence of the lithium-ion battery system. The behav-

ior of the batteries can vary due to manufacturing tolerances, aging effects, and operating

conditions [57]. Accounting for these uncertainties and variations in the models and observers

is crucial for robust and reliable performance. Developing strategies to handle parametric

uncertainty and state-dependence, such as sensitivity analysis and adaptive algorithms, is

essential for accurate state prediction and estimation [58].

Furthermore, implementing the developed models and observers on an actual experi-

mental setup introduces practical challenges. The models and observers need to be capable
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of running in real-time to provide timely and accurate state estimation [21]. Real-time

implementation requires efficient algorithms and hardware considerations to ensure the com-

putational demands are met. Additionally, the models and observers must be validated and

tested on real battery cells under various operating conditions to ensure their effectiveness

and reliability in practical applications [59].

Addressing these challenges requires a comprehensive approach that combines mathemat-

ical modeling, advanced control techniques, robust estimation algorithms, and experimental

validation. Overcoming these challenges will contribute to the improvement of lithium-ion

battery management and control for electric vehicle applications.

1.5 Summary of the PhD Thesis and Main Contribu-

tions

This PhD thesis within the context of the INSTABAT project aims to address the challenges

associated with lithium-ion battery modeling and observer design for electric vehicle appli-

cations. The main contributions of the PhD research, discussed in various sections of the

thesis, include:

1. Formulation of a multi-particle model with electrolyte dynamics (MPMe) that consid-

ers inhomogeneous Li exchange profiles between the electrode and electrolyte (Section

3).

2. Design of an observer that enables potential sensor technologies (among those studies

in the Horizon 2020 INSTABAT project) in conjunction with the MPMe model to

accurately estimate battery dynamics (Section 4).

3. Incorporation of additional physical dependencies, such as temperature dependence and

limited plating mechanisms, into the model and observer to enhance their accuracy and

applicability (Sections 3 and 4).

Based on this, a journal paper has been published, and our has been presented at a

conference:
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• Asif, Mian Mohammad Arsalan, and Federico Bribiesca-Argomedo. 2023.

“Electrochemical State Observer Design for Li-Ion Batteries With Het-

erogenous Electrode Lithiation.” IEEE Control Systems Letters 7: 3199-

3204. https://doi.org/10.1109/LCSYS.2023.3304248.

• Asif, Mian Mohammad Arsalan, Federico Bribiesca-Argomedo, and Vincent

Heiries. 2023. “Real time estimation of electrochemical states in Li-ion

batteries and exploitation in BMS algorithms.” Presented at the Battery

2030+ 3rd Annual Conference.

The preparation of another journal paper on the experimental validation of the designed

observer and battery model is also expected.

The research conducted in this PhD thesis aims to advance the field of lithium-ion battery

modeling and observer design, particularly for electric vehicle applications. By providing a

comprehensive understanding of the state of the art, developing the MPMe model, designing

an observer using newly available sensor data, incorporating additional physical dynamics,

and addressing sensitivity analysis, this research contributes to the improvement of battery

management and control strategies. The documentation of research findings in technical

reports and the publication of research papers ensure the dissemination and wider impact of

the research outcomes.

The outcomes of this research have practical implications for enhancing the performance,

safety, and reliability of lithium-ion batteries in real-world electric vehicle applications.

1.6 Conclusion of the Chapter

This chapter has provided a comprehensive background and established the foundational

knowledge required for the subsequent discussions and analyses throughout this thesis.

Lithium-ion batteries (LiBs) have been recognized as a pivotal technology in the transi-

tion away from fossil fuels, particularly in the electric vehicle (EV) sector, due to their high

energy density and reduced environmental impact. However, the complexity and challenges

related to LiB performance, safety, lifespan, and management, particularly in precise State
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of Charge, State of Power, State of Health, (SoX) estimation, and observer design, have been

highlighted.

The INSTABAT project, under the European Union’s Horizon 2020 Research and In-

novation Program, has been introduced as a significant endeavor towards advancing LiB

technology for EVs by focusing on real-time monitoring of key parameters. This PhD re-

search, conducted within the INSTABAT framework, has been detailed to focus on advancing

LiB modeling and observer design for EVs, with specific objectives including the formulation

of a reduced model, designing an observer using new sensor data, incorporating additional

physical dependence into the model and observer, and testing the observer’s effectiveness.

The main contributions of this research, including the formulation of a multi-particle

model with electrolyte dynamics (MPMe), the design of an observer that integrates poten-

tial sensor technologies, the incorporation of additional physical dependence into the model

and observer, and BMS algorithms based on the proposed observer and model, have been

elucidated. These contributions have been documented through a published journal paper

and a conference presentation, with further research underway.

In essence, this research aims to enhance the performance, safety, and reliability of LiBs

in EV applications, contributing to the broader adoption of EVs and the sustainable electri-

fication of the transport sector. The subsequent chapters will delve deeper into the specific

methodologies, models, and analyses employed in this research, providing a detailed explo-

ration of the developed models, observer design, and experimental validations.
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Summary of the Chapter

Battery Models: Battery models are pivotal for understanding and predicting LiB behav-

ior. The main models discussed include:

• Equivalent Circuit Models (ECMs): Representing the electrical behavior of LiBs

through circuits, ECMs are computationally efficient but may not capture detailed

internal electrochemical processes.

• Machine Learning Models: These models, including Artificial neural networks

(ANNs), Support Vector Machines (SVMs), and others, can learn complex relationships

but require extensive data and can be computationally intensive.

• Electrochemical Models (EChMs): EChMs provide a comprehensive understand-

ing of internal electrochemical processes, though they can be computationally demand-

ing.

State Estimation Techniques: State estimation is crucial for effective LiB manage-

ment. The techniques include:

• Open-Loop Methods: Direct estimation methods like Coulomb Counting and OCV

based methods are simple but may lack long-term accuracy.

• Adaptive Filter-Based and AI-Based Methodologies: Methods like Recursive

Least Square (RLS), Kalman filters, and Artificial Intelligence (AI) algorithms offer

limited state estimation but can be resource-intensive.

• Model-Based and Hybrid Estimation Techniques: Model-based methods pro-

vide detailed insights, while hybrid methods combine multiple approaches for enhanced

estimation.

Lithium Degradation Model: As LiBs expand their applications, understanding their

degradation is essential. The degradation is categorized into:

• Mechanisms: Physical and chemical transformations within the battery.
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• Modes: Observable consequences at the cell level due to mechanisms.

• Operational Effects: Outcomes like capacity or power fade resulting from the modes.

In essence, a comprehensive understanding of battery models, state estimation techniques,

and degradation mechanisms is vital for optimizing LiB performance and longevity in diverse

applications.

2.1 Battery Models

In the field of LiB research, various modeling approaches have been developed to under-

stand and predict battery behavior. These models play a crucial role in designing control

strategies, optimizing battery performance, and ensuring safe and reliable operation. In

this section, we will discuss different battery models, including Equivalent Circuit Models,

Machine Learning models, and Electrochemical models, highlighting their characteristics,

applications, advantages, and limitations.

Battery Models

Electrical Circuit 

Models

(Section 2.1.1)

Machine Learning 

models

(Section 2.1.2)

Electrochemical 

models

(Section 2.1.3)

Figure 2.1: Battery Models

2.1.1 Equivalent Circuit Models

Equivalent Circuit Models (ECMs) are widely used in the field of LiB modeling. These

models represent the electrical behavior of a LiB through an electrical circuit that approx-
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imates the battery’s input-output characteristics [31]. ECMs are computationally efficient

and provide a relatively simple way to describe battery dynamics. They have been exten-

sively studied and applied in various applications, ranging from battery management systems

to electric vehicle design [32]. Most commonly used ECMs are briefly discussed in Table 1.

ECMs typically consist of electrical components such as resistors, capacitors, and current

sources, which represent the different electrochemical processes occurring within the battery.

These components are interconnected to simulate the complex electrochemical behavior of

the LiB. The parameters of the circuit elements are determined through system identification

techniques, where experimental data or electrochemical characterization tests are used to

estimate the model parameters [60].

Advantages of ECMs include their simplicity, low computational complexity, and good

representation of the LiB’s overall input-output behavior [54]. They can accurately capture

the dynamic response of the battery under different operating conditions, including charge

and discharge processes. ECMs are particularly useful for real-time applications where fast

estimation of the battery’s SOX indicators is required [33].

However, ECMs also have significant limitations. They provide a simplified represen-

tation of the complex electrochemical processes occurring within the battery, which limits

their accuracy in capturing detailed internal behavior [33, 34]. ECMs lack the ability to

capture spatial variations within the battery, such as temperature gradients and concentra-

tion gradients. Furthermore, ECMs are highly dependent on accurate parameter estimation,

which can be challenging due to variations in cell manufacturing, aging effects, and nonlinear

dependencies [15].

Several variants of ECMs have been proposed to improve their accuracy and applicabil-

ity. These include dynamic ECMs that account for time-varying behavior [61], parameter

identification methods that consider aging effects [62], and temperature-dependent models

that incorporate thermal dynamics [63]. These advancements aim to enhance the fidelity of

ECMs in representing LiB behavior under various operating conditions.

Despite their limitations, ECMs remain popular due to their simplicity, computational

efficiency, and reasonable accuracy for many practical applications. They serve as a founda-

tion for more advanced LiB models and are often used as a benchmark for comparison with
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Classification Configuration Description Advantages Disadvantages
Rint Model [22] A resistor is con-

nected in series
with ani Ideal
voltage source.

Simple, easy
parameter mea-
surement.

The dynamic char-
acteristics of the
battery are not re-
flected, has low ac-
curacy, and a small
range of applica-
tions

Thevenin
Model [1, 2]

It utilizes a series
of n RC circuits
connected in se-
ries to represent
the polarization
phenomenon in
electrical systems.

The RC loop is
commonly used
to simulate bat-
tery dynamics.
Higher-order RC
loops enhance the
fidelity of battery
simulations.

The impact of load
current accumula-
tion over time, as
well as the change
in open-circuit
voltage and self-
discharge, are not
taken into account.
Higher number
of loops increases
computational
burden.

PNGV model [1] The Thevenin
equivalent circuit
model incorporates
the addition of
capacitor Cp to
accurately depict
the alteration in
open-circuit volt-
age resulting from
the accumulation
of load current over
time.

The calculation
burden is reduced
in comparison
to the 1st order
Thevenin equiva-
lent circuit model,
while maintaining
a higher level of
accuracy.

The problem
of battery self-
discharge is still
not addressed.

GNL model [1] The utilization of
two RC loops in
the model serves to
represent concen-
tration polarization
and electrochem-
ical polarization.
This structure
closely aligns with
the internal char-
acteristics of the
cell, contributing
to a more accurate
representation of
its behavior.

Compared to the
PNGV model, the
proposed approach
considers the varia-
tion in open circuit
voltage caused
by load current
accumulation over
time and incor-
porates battery
self-discharge. This
results in higher
precision and wider
applicability of the
model.

Compared to the
PNGV model, the
proposed model
involves more com-
plex calculations
and a larger com-
putational burden.

Table 2.1: ECM Table adapted from [22]
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other modeling approaches [34].

In conclusion, ECMs are widely used in LiB modeling due to their simplicity and compu-

tational efficiency. While they provide a good approximation of the battery’s input-output

behavior, they have limitations in capturing detailed internal electrochemical processes and

spatially resolved information [33].

2.1.2 Machine Learning Models

Machine learning models have emerged as powerful tools for battery modeling and estimation,

leveraging their ability to learn complex relationships from data. Various types of machine

learning models have been extensively investigated and applied in battery research. In this

section, we discuss some of the prominent types, along with their distinct advantages and

limitations.

Artificial Neural Networks: Artificial Neural Networks (ANNs) are computational

models inspired by the structure and functioning of biological neural networks [35]. ANNs

consist of interconnected artificial neurons, organized in layers, that enable information pro-

cessing [64]. Figure 2.2 shows the general structure of the general structure of Neural Net-

works. ANNs excel at capturing intricate nonlinear relationships and can handle both re-

gression and classification tasks effectively. They possess the capability to learn and adapt

to diverse data patterns and structures, reducing the reliance on manual feature engineering.

However, ANNs typically require a substantial amount of labeled training data to achieve

optimal performance. The training process can be computationally intensive, and the risk

of overfitting arises when the network is not appropriately regularized or when training data

is limited [3, 37,65–68].

Support Vector Machines : Support Vector Machines (SVM) are supervised learning

models that aim to find an optimal hyperplane to separate data points into distinct classes

[36]. SVM are widely used in lithium-ion battery modeling due to their ability to capture

complex relationships and accurately predict battery behavior [69]. SVM excels at handling

high-dimensional data and can detect nonlinear patterns, making it suitable for capturing

the intricate dynamics of lithium-ion batteries. SVM’s requires careful selection of kernel

functions and hyperparameters is crucial for optimal performance. Also, the computational
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Figure 2.2: General structure of the general structure of Neural Networks [3]

complexity of SVM can be a challenge when dealing with large datasets. Overall, SVM is a

valuable tool in lithium-ion battery modeling, offering accurate predictions and insights for

battery design and optimization. [69,70]. Figure 2.3 shows the Flow chart for SVM modeling

of a battery.

Decision Trees : Decision Trees (DT) are powerful supervised learning models used

for classification and regression tasks. They are commonly employed in lithium-ion battery

modeling due to their ability to capture complex relationships and accurately predict bat-

tery behavior [8]. Decision Trees construct a hierarchical structure of decision rules based on

the training data, allowing for interpretable and intuitive representations of battery perfor-

mance [41,71]. They can handle both numerical and categorical data, making them suitable

for various battery parameters. Decision Trees excel at capturing nonlinear patterns and

interactions among battery features, enabling accurate predictions. However, they may suf-

fer from overfitting and sensitivity to outliers, which can be mitigated through pruning and

ensemble techniques [71]. Figure 2.4 shows the Flow chart for DT modeling of a battery.
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Figure 2.3: Flow chart for SVM modeling of a battery [7]

Deep Learning Models: Deep learning models, such as deep neural networks (DNNs),

have gained significant attention in lithium-ion battery modeling due to their ability to

extract intricate patterns from complex data [72]. DNNs adopt the adjective “deep” as they

consists of multiple layers of interconnected neurons that learn hierarchical representations of

the input data. In the context of lithium-ion battery modeling, DNNs are employed to predict

battery behavior and performance based on various input parameters. These models excel

at capturing nonlinear relationships and can handle high-dimensional data, making them

well-suited for the complexities of battery systems [73]. DNNs can learn complex feature

representations automatically, enabling them to uncover hidden patterns and correlations

in battery data [74]. However, training deep learning models requires a large amount of

labeled data and significant computational resources. Overfitting can also be a concern,

necessitating regularization techniques and careful model architecture design [75–77].

Ensemble learning Models: Ensemble learning (EL) is a powerful approach in machine

learning that combines multiple models to improve overall performance and robustness.

In the context of lithium-ion battery modeling, ensemble learning has shown promise in

enhancing prediction accuracy and capturing complex battery behavior [78].
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Figure 2.4: Flow chart for DT modeling [8]

There are two main types of ensemble learning: model-level ensemble and data-level

ensemble [41,71]. In model-level ensemble, multiple individual models, such as decision trees

or support vector machines, are trained independently and their predictions are combined

using techniques like majority voting or averaging. This approach leverages the diversity of

models to reduce bias and improve generalization capability [79,80].

Data-level ensemble, on the other hand, focuses on creating diverse training sets to train

individual models. This can be achieved through techniques such as bootstrapping, where

multiple subsets of the original training data are randomly sampled with replacement. Each

subset is then used to train a separate model. By creating diverse training sets, data-level

ensemble methods can effectively capture different aspects of the data and enhance the

overall predictive performance. Figure 2.5 shows the random forest algorithm which uses

multiple decision trees to form a “forest” [81–85].

Ensemble learning offers several advantages in lithium-ion battery modeling. Firstly,

it can help mitigate the limitations of individual models and improve overall prediction

accuracy. The combination of multiple models or diverse training data can enhance the

robustness of the predictions, particularly in scenarios with complex battery behavior and
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Figure 2.5: Schematic of EL Data-level technique with the use of Decision trees [8]

limited data availability [78].

However, ensemble learning also comes with certain challenges. It requires additional

computational resources and can be more complex to implement compared to using a sin-

gle model. The selection of appropriate ensemble techniques and combination strategies

is crucial, as poorly designed ensembles may not yield improved results and can lead to

computational overhead [71].

In conclusion, machine learning models offer promising avenues for battery modeling and

estimation [8,35,36,72,78]. Their ability to learn complex relationships from data and adapt

to diverse patterns makes them valuable tools in battery research [64, 69, 71, 73]. However,

it is important to acknowledge the limitations associated with these models. One of the

key challenges is the requirement for a significant amount of labeled training data, which

may not always be readily available [3, 37, 65–68]. Additionally, the training process can be

computationally intensive, necessitating powerful hardware resources [75–77]. Overfitting

is another concern that needs to be carefully addressed to ensure the generalization and
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robustness of the models [3, 37, 65]. Interpretability can also be a challenge, particularly

for deep learning models, as their complex architectures and learned representations can be

difficult to interpret and explain [74]. This means that the internal states of the LiB are not

replicable to a large degree, providing little insight into the internal dynamics of the LiB.

Overall, while machine learning models offer significant advantages, careful consideration of

these limitations should be made when applying them in battery modeling tasks [41,71].

2.1.3 Electrochemical Models

Electrochemical Models (EChMs) are advanced modeling approaches that aim to capture

the detailed electrochemical processes occurring within LiBs. Unlike ECMs, which provide a

simplified electrical representation of the battery, EChMs take into account the underlying

chemical reactions and transport phenomena that govern battery behavior. EChMs offer a

deeper understanding of the internal states and mechanisms of LiBs, making them valuable

tools for studying battery performance, degradation, and optimization.

EChMs are typically based on partial differential equations (PDEs) that describe the

internal variables of the battery such as lithium-ion concentration, potential distribution,

and temperature. EChMs incorporate fundamental principles of electrochemistry, such as

Butler-Volmer kinetics for electrode reactions, Nernst diffusion for ion transport, and Ohm’s

law for electronic conduction.

Comparison of Electrochemical Battery Models

Electrochemical battery models are pivotal in understanding the intricate behaviors of lithium-

ion batteries. These models, ranging from empirical to physics-based, offer insights into the

battery’s operational characteristics and degradation mechanisms. We now detail a compar-

ison of several key electrochemical battery models.

Pseudo-Two-Dimensional Model (P2D) The Pseudo-Two-Dimensional (P2D) model,

grounded in the porous electrode theory by John Newman [86, 87] , offers a detailed rep-

resentation of the battery’s electrochemical behavior. The model spatially resolves battery

dynamics across two primary dimensions: the x direction spanning the collectors and the
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r direction within the solid-phase particles, which gives the model its name [88–90]. This

model:

• Envisions the cathode and anode as a series of spherical particles submerged in a liquid

electrolyte, as depicted in Figure 2.6.

• Captures the spatiotemporal distribution of four states: solid-state lithium concentra-

tion (cs), liquid-state lithium concentration (ce), electrode potential (ϕs), and elec-

trolyte potential (ϕe) [91].

• Uses four partial differential equations (PDEs) to describe processes like spherical

diffusion of cs, linear diffusion of ce, and the Ohm’s laws for both ϕs and ϕe [50].

• Incorporates the Butler–Volmer equation to represent the intercalation reaction current

density at the particle surface [92].

• Considers battery aging effects due to electrochemical side reactions, such as solvent

reduction and lithium plating [62].

Despite its detailed representation and high accuracy in estimating battery SOH, the P2D

model is computationally intensive due to its nonlinearly coupled PDEs . This complex-

ity has limited its direct application in real-time control and estimation. However, recent

advancements have applied model reduction and approximation techniques to estimate the

model’s states, making it invaluable for in-depth studies on battery behavior, degradation,

and control [4, 11].

Electrode Average Model (EAM) The EAM [93] offers a simplified representation.

By neglecting the spatial variation of the solid phase concentration and focusing on the

electrolyte phase concentration, it:

• Directly links the electrolyte phase concentration with the battery’s State of Charge

(SOC).

• Provides a straightforward setup with fewer parameters.

• Ensures high accuracy in estimating battery SOC, especially for real-time applications.
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Figure 2.6: The LiB P2D model from [4]

However, the EAM’s simplicity comes at the cost of voltage prediction accuracy and potential

information loss. Its empirical nature also makes parameter identification challenging [4,94].

Porous Electrode with Polynomial Model (PPM) The PPM [95] merges the parabolic

approximation with the P2D model. By using a parabolic profile to describe each spherical

particle, it excels at higher discharge rates (> 1C).

Single Particle Model (SPM) The SPM [96–98] simplifies the representation by viewing

each electrode as a single spherical particle. This model:

• Simplifies the PDEs of solid phase concentration to ODEs.

• Achieves high accuracy at low discharge rates (< 1C).

However, its accuracy diminishes at higher rates, with voltage prediction errors ranging

significantly.
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SPM with Electrolyte (SPMe) Building upon the SPM, the SPMe [99] incorporates

the concentration of the electrolyte phase. While it retains the foundational principles of the

SPM, it offers enhanced accuracy at high discharge rates. Yet, this added complexity makes

it a more intricate model compared to the traditional SPM.

Note: The SPM stands out as a reliable model, prompting extensive research to enhance

its predictive accuracy. This includes considering degradation factors, thermal dynamics,

and various conditions like mechanical stress [21, 100, 101]. Additionally, the evolution of

battery models, from empirical to physics-based, underscores the industry’s drive to achieve

a balance between accuracy and computational efficiency. As battery technologies advance,

the need for models that can capture their behaviour becomes paramount, making the study

and improvement of these models crucial [95].

EChMs offer several advantages over ML models and ECMs in capturing the detailed

electrochemical processes within LiBs which include:

1. Internal Behavior: EChMs provide a more comprehensive understanding of the

internal behavior of LiBs compared to ML models and ECMs. By incorporating fun-

damental principles of electrochemistry, EChMs capture the spatiotemporal variations

of the key variables aforementioned. This allows for a detailed analysis of phenomena

such as concentration polarization, electrode kinetics, and diffusion limitations, which

directly impact battery performance.

2. Mechanism-based: EChMs are based on physical and chemical principles, making

them mechanism-based models. They accurately represent the underlying electro-

chemical processes occurring within the battery, such as charge transfer reactions, ion

transport, and diffusion. In contrast, ML models and ECMs rely on empirical correla-

tions or simplified electrical representations, respectively, which may not fully capture

the intricacies of the electrochemical behavior.

3. Flexibility: EChMs offer flexibility in incorporating various boundary conditions and

operating conditions, making them suitable for studying diverse battery chemistries

and designs. They can be adapted to different battery configurations and chemistries

by appropriately modifying the model parameters and equations. This flexibility allows
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for detailed investigations of specific LiB systems and the optimization of battery

performance.

4. Insight into Aging and Degradation: EChMs enable the study of complex aging

and degradation mechanisms in LiBs. By considering the spatiotemporal variations of

variables, EChMs can simulate capacity fade, electrode degradation, and other aging

phenomena. This information is crucial for predicting battery lifespan, optimizing

battery management strategies, and designing more durable LiBs.

While EChMs offer significant advantages, they also have certain limitations. EChMs are

computationally intensive and require sophisticated numerical techniques for solving gov-

erning equations. The accurate parameterization of EChMs can be challenging, as it often

relies on detailed experimental data and electrochemical characterization. Furthermore, the

complexity of EChMs may limit their accessibility to non-experts in electrochemistry and

numerical methods.

Efforts are underway to address these limitations and make EChMs more practical and

efficient. Simplified versions of EChMs, such as P2D models and reduced-order models,

aim to strike a balance between accuracy and computational efficiency [9]. Reduced order

models like Single Particle Models (SPMs) offer a less complex alternative to the DFN

model, preserving most of its predictive capabilities at a significantly lower computational

cost [9]. These models, originally introduced by Atlung et al in 1979 [102], are based on the

concept that the behavior of particles within each electrode can be adequately represented

by a single representative particle. Various versions of SPMs have been proposed, some

incorporating electrolyte dynamics and others not, either derived directly from a list of

simplifying assumptions [21, 103–106] or through asymptotic methods used to derive the

reduced order models directly from the DFN model [107–111].

All these models fall under the “SPM-type” category and share fundamental character-

istics, but they are distinguished into two subcategories: models with electrolyte dynamics

(SPMe) and those without (SPM). A key feature of SPM-type models is the decoupling

of the spatial variables in the PDEs, which effectively simplifies the problem to a one-

dimensional space and significantly reduces the computational complexity compared to the
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DFN model [9].

Additionally, model reduction techniques and optimization algorithms are being devel-

oped to enhance the efficiency and parameterization of EChMs. Figure 2.7 shows a summary

of the techniques used to simplify and reduce the complexity of the P2D EChM. For a more

complete detail on these reduction techniques, we refer the reader to [9].

Figure 2.7: Relationships between major Model Order Reduction techniques for the P2D
model [9]

In summary, EChMs offer a comprehensive understanding of the internal electrochemi-

cal processes within LiBs. They outperform ML models and ECMs by capturing detailed

behavior, providing insights into aging and degradation, and offering flexibility in studying

diverse battery systems. While EChMs have computational and parameterization challenges,

ongoing research aims to overcome these limitations and make EChMs more accessible and
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practical for various applications in LiB research and development.

2.2 State Estimation

Accurate estimation of the internal states of a LiB is crucial for effective control and manage-

ment. State estimation techniques play a vital role in monitoring and predicting the battery’s

behavior, such as SOX indicators, and other important parameters. In this subsection, we

will explore various state estimation methods employed for Li-ion batteries.
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Figure 2.8: State Estimation Techniques

2.2.1 Open-Loop Methods for state estimation

Open-loop methods, also known as direct methods, estimate the battery’s internal states

based solely on the battery’s input and do not use feedback from the output to self-correct.
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One widely used open-loop method for Li-ion batteries is the Coulomb Counting Estima-

tion [38–40]. This method calculates the SOC based on the integral of the battery’s charg-

ing/discharging current over time, using the initial SOC and nominal capacity.

Coulomb Counting Estimation

Coulomb Counting Estimation is conceptually simple and computationally efficient, mak-

ing it suitable for real-time applications [38]. It does not require a complex model of the

battery system and can provide reasonably accurate SOC estimates under ideal conditions.

The method assumes that the battery operates under ideal behavior, without considering

the effects of capacity fade, aging, and other factors that can impact the accuracy of the

estimation [39].

OCV based method

The OCV based look-up table method utilizes the direct mapping relationship between SOC

and external characteristics parameters like OCV and impedance. This approach involves

extensive laboratory experiments to characterize battery behavior and establish a relation-

ship between OCV and SOC [112]. The OCV look-up table method is conceptually simple

and highly accurate [50]. The SOC estimation based on OCV employs a flowchart shown in

Figure 2.9. Initially, the lithium-ion battery (LiB) is fully charged and then discharged using

current pulses, followed by a rest period to measure the corresponding OCV. The mapping

between OCV and SOC is established, and the instantaneous OCV measurement provides

the SOC level. Hysteresis is observed in LiB, with higher voltage during charging compared

to discharging, attributed to factors such as ohmic resistance, polarization resistance, and

concentration polarization [51]. However, accurate OCV measurement requires sufficient

rest time for the battery to reach an equilibrium condition, and OCV measurements are

influenced by ambient temperature and battery aging [112,113].

Advantages of open-loop methods include their simplicity, low computational cost, and

real-time performance [38]. They are particularly useful when accurate knowledge of the

battery model is not available or when computational resources are limited. Open-loop

methods can provide a quick estimate of the battery’s SOC, allowing for basic monitoring
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Figure 2.9: The flowchart of OCV-SOC estimation method [10]

and control of the battery system.

However, open-loop methods have certain limitations. They are highly dependent on

accurate initial SOC estimation and nominal capacity information [40]. They also cannot

be used while charging/discharging the battery and only work at rest [34]. Inaccurate initial

SOC estimation and capacity degradation over time can lead to cumulative errors in the SOC

estimation. Coulomb Counting Estimation does not account for aging effects, variations in

battery behavior, and other factors that can affect the battery’s performance. Therefore,

open-loop methods may not provide accurate SOC estimates over the long term, especially
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in the presence of aging and capacity fade [39]. These factors make Open-loop methods

unsuitable as a means to achieve the objectives of this PhD.

Towards Closed-Loop Approaches

It is important to note that open-loop methods are typically used as an initial estimate or

as a complement to other more sophisticated state estimation techniques. Combining open-

loop methods with feedback-based approaches can improve the accuracy and reliability of the

overall state estimation process, especially in the presence of varying operating conditions and

aging effects [38]. This is called Closed-loop estimation. Figure 2.10 illustrates a schematic

representation of a generic closed-loop estimation approach for Voltage prediction. We now

discuss different types of closed-loop observer techniques used in the state estimation of LiBs.

Figure 2.10: Schematic of a closed-loop feedback estimation algorithm. The output mea-
surement (in this case, voltage) is used as feedback to correct the state or parameter esti-
mation [11].

2.2.2 Adaptive Filter-Based Methodologies for state estimation

Adaptive filter-based methodologies are a class of state estimation techniques that utilize

adaptive algorithms to continuously update the battery model parameters and improve the

accuracy of state estimation [41]. These methods are particularly useful in scenarios where
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the battery’s characteristics change over time, such as variations in capacity, internal resis-

tance, or other electrochemical parameters.

Recursive Least Squares

One popular adaptive filter-based method is the Recursive Least Squares (RLS) algorithm

[41]. The RLS algorithm is an iterative method that estimates the battery model parameters

by minimizing the least-squares error between the predicted and measured battery outputs.

By adaptively updating the model parameters, the RLS algorithm can account for changes

in the battery’s behavior and improve the accuracy of state estimation. The RLS algorithm

uses a forgetting factor to control the impact of past measurements on the current estimate,

allowing it to prioritize recent data while still retaining some memory of previous observa-

tions. The advantage of the RLS algorithm is its ability to track time-varying parameters and

provide accurate state estimates in dynamic battery systems. Some literature that use RLS

in predicting battery states include [114–120]. However, use of RLS identification in a real-

time environment raises problems such as the speed of parameter convergence, covariance

matrix ‘blow up’, and biased identification [121].

Kalman filter-based

Kalman filter-based techniques are widely used in lithium-ion battery modeling for state

estimation and prediction tasks. The Kalman filter is an optimal recursive estimator that

combines measurements and a dynamic system model to estimate the true state of a system.

In the context of lithium-ion battery modeling, various Kalman filter-based techniques are

employed, including the Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF),

and Particle Filter (PF).

The Extended Kalman Filter is commonly used to estimate the state of a nonlinear

battery system by linearizing the system dynamics and applying the Kalman filter equations

[42,122–126]. It provides accurate state estimation but relies on the assumption of Gaussian

noise and linearity of the system dynamics [43].

The Unscented Kalman Filter, on the other hand, addresses the limitations of the EKF

by employing a deterministic sampling technique known as the unscented transformation
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[127–130]. It captures the nonlinearities of the battery system more accurately and is more

robust to non-Gaussian noise.

Figure 2.11: Illustration of the state observer based on Adaptive UKF algorithm [12].

Particle Filters are another class of Kalman filter-based techniques that utilize Monte

Carlo sampling methods. They represent the probability density function of the battery

state using a set of particles, allowing for more flexible and accurate state estimation in

nonlinear and non-Gaussian systems [44]. Particle Filters are particularly useful when the

battery behavior is highly nonlinear or when the system model is not precisely known.

Kalman filter-based techniques offer several advantages in lithium-ion battery modeling

[41]. They provide state estimation that enables accurate tracking of battery dynamics and

estimation of battery parameters such as SOC and SOH [131, 132]. These techniques can

handle noisy measurements, accommodate nonlinear system dynamics, and provide real-time

state estimation, making them suitable for online battery management and control [44].

However, Kalman filter-based techniques also have limitations [41]. They rely on accurate

system models and assumptions about noise characteristics, which may not always hold in

practical scenarios. Nonlinearities, parameter uncertainties, and model mismatches can lead

to suboptimal performance. They also have some convergence issues with the covariance

matrices. Additionally, computational complexity can be a concern, particularly with high-
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dimensional state spaces or large numbers of particles in Particle Filters [41].

In summary, Kalman filter-based techniques, including the EKF, UKF, and Particle

Filters, are valuable tools in lithium-ion battery modeling for state estimation and predic-

tion tasks. They offer accurate and real-time estimation of battery states and parameters.

However, consideration should be given to system nonlinearities, noise characteristics, and

computational requirements when applying these techniques in practical battery modeling

applications.

Adaptive Filter-Based Methodologies, while offering certain advantages, present several

challenges in their use for the objectives of this PhD. These methods often demand extensive

data-driven adaptations which is challenging when working with the limited and evolving

sensor data from the ongoing INSTABAT project. Also, the inherent parameter adaptation

characteristic of many adaptive filter-based approaches is not be well-suited to this research,

as the battery model parameters are expected to undergo changes throughout the PhD. Addi-

tionally, the transparency and interpretability limitations of some filter-based techniques can

impede their ability to effectively capture the intricate inhomogeneous Li exchange profiles

within the battery, which is a key focus of this research.

2.2.3 Adaptive AI-Based Methodologies

State estimation in LiBs is a challenging task due to the complex and nonlinear nature of

battery behavior. Adaptive AI-based methodologies have emerged as effective approaches

for addressing these challenges and improving the accuracy of state estimation [11,41]. This

subsubsection explores several adaptive AI-based methodologies, including Particle Swarm

Optimization (PSO), Genetic Algorithm (GA) based estimation, Fuzzy-based Neural Net-

works (FNN), Artificial Neural Networks (ANN), and Fuzzy Logic-based estimation. These

methodologies leverage the adaptive capabilities of AI algorithms to enhance the estimation

accuracy in LiBs.
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Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a population-based optimization algorithm inspired

by the social behavior of bird flocking or fish schooling. In PSO, a population of particles

moves through the search space, searching for the optimal or near-optimal solution. Each

particle adjusts its position and velocity based on its own experience and the best experience

of the swarm. PSO has been applied to battery state estimation to optimize battery model

parameters and improve the accuracy of state estimation [13, 45, 133, 134]. By adapting the

model parameters, PSO can enhance the estimation accuracy, leading to better SOH and

SOH estimation in LiBs [135]. The flow diagram of PSO is shown in Figure 2.12.

Advantages of PSO include its ability to handle high-dimensional optimization problems

and its simplicity in implementation. It can effectively explore the parameter space and

converge to near-optimal solutions. However, PSO may suffer from premature convergence

or getting stuck in local optima if not properly tuned. It also requires defining appropriate

fitness functions and parameter settings.
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Figure 2.12: The flow diagram of PSO from [13]
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Genetic Algorithm based Estimation

Genetic Algorithm (GA) is a search and optimization algorithm inspired by the process of

natural selection. It mimics the biological evolution by using mechanisms such as selection,

crossover, and mutation to iteratively generate new candidate solutions. GA-based estima-

tion techniques have been employed to optimize battery model parameters and improve state

estimation accuracy in LiBs [14,15]. By searching the parameter space, GA can find optimal

or near-optimal values that minimize the estimation error. This adaptability improves the

accuracy of SOC and SOH estimation in LiBs.

Figure 2.13: Battery model parameters determination using GA [14,15]

The advantages of GA-based estimation include its ability to handle nonlinear and non-

convex optimization problems, its global search capabilities, and its ability to handle con-

straints. GA can explore a wide range of solutions and converge to better estimates. How-

ever, GA may require a large population size and a high number of generations to achieve

accurate results, making it computationally intensive. It also requires careful selection of

genetic operators and parameter settings to ensure effective exploration and exploitation of

the search space.
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Fuzzy-based Neural Networks

Fuzzy-based Neural Networks (FNN) combine fuzzy logic principles with neural networks to

handle the uncertainties and imprecisions inherent in LiB modeling and estimation [41,136].

Fuzzy logic provides a systematic way to model and reason about imprecise or uncertain

information, while neural networks can learn complex relationships between input and state

variables. FNN has been applied to LiB state estimation, capturing the nonlinear rela-

tionships and adaptively updating the estimation models [41, 137]. Figure 2.14 shows the

structure of Neural Networks used in predicting the SOC of a battery.

Figure 2.14: Predicting SOC using Neural Networks [16]

The advantages of FNN include their ability to handle nonlinearities, uncertainties, and

imprecise information. FNN can effectively capture complex relationships and adapt to

varying operating conditions in LiBs [41]. It provides robust estimation results and can

handle imprecise input data. However, FNN may require a significant amount of training

data to ensure accurate estimation results. The training process for neural networks can

also be computationally intensive, requiring appropriate network architectures and training

algorithms [11].
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Artificial Neural Networks

Artificial Neural Networks (ANN) have been widely used in various fields, including battery

state estimation. ANN is a computational model inspired by the structure and function of

the human brain. It consists of interconnected nodes (neurons) organized in layers, allowing

the network to learn from input-output data and generalize to unseen data. ANN-based es-

timation techniques have been applied to LiBs, capturing the complex relationships between

input variables and battery states [138]. Figure 2.14 shows the structure of Neural Networks

used in predicting the SOC of a battery.

The advantages of ANN include their ability to learn from large amounts of data, their

capability to handle nonlinear and complex relationships, and their adaptability to varying

operating conditions [41]. ANN can effectively capture the dynamic behavior of LiBs and

provide accurate state estimation. However, ANN models may lack interpretability, as they

are considered black-box models. The training process for ANN can also be computationally

demanding, requiring careful selection of network architectures, training algorithms, and

hyperparameters [138].

In summary, adaptive AI-based methodologies, including PSO, GA-based estimation,

FNN, and ANN, offer promising approaches for state estimation in LiBs. These method-

ologies leverage the adaptive capabilities of AI algorithms to handle the complexities and

uncertainties associated with LiB behavior. They can capture the nonlinear relationships,

adapt to varying operating conditions, and provide accurate SOC and SOH estimation.

However, considerations should be given to data availability, computational resources, in-

terpretability, and parameter tuning when applying these methodologies in practical LiB

applications.

While Adaptive AI-based methodologies offer potential advantages, they are not ideal

for this PhD’s objectives. These methods rely on data-intensive training, which becomes im-

practical given the limited availability of sensor data from the evolving INSTABAT project.

Also, many of these AI-based approaches necessitate parameter tuning for optimal perfor-

mance, but the ever-changing nature of the battery model parameters throughout the course

of this PhD renders them unfeasible. Additionally, the lack of interpretability in ANN mod-
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els conflicts with the goal of accurately capturing inhomogeneous Li exchange profiles within

the battery.

2.2.4 Model-Based Methodologies for state estimation

Model-based methodologies for state estimation in LiBs utilize mathematical models that

describe the electrochemical and electrical behavior of batteries. These methodologies in-

clude ECMs and EChMs. By incorporating detailed physics-based models, model-based

methodologies aim to provide accurate and interpretable state estimation in LiBs.

Electrical Circuit Models

ECMs are widely used for battery state estimation due to their simplicity and computational

efficiency. ECMs represent the LiB as an equivalent circuit, where the electrical components

of the circuit correspond to different electrochemical processes and phenomena occurring

within the battery. These models relate the terminal voltage of the battery to its internal

states, such as SOC and SOH [33,34].

One example of an ECM commonly used for LiB state estimation is the Thevenin model

[1, 2]. The Thevenin model represents the battery as an ideal voltage source in series with

an internal resistance. The voltage source represents the OCV of the battery, which is a

function of the SOC. The internal resistance accounts for the voltage drop across the battery

due to its internal resistance and polarization effects.

Advantages of ECMs include their simplicity, fast computation, and ease of implemen-

tation [33]. They provide a good trade-off between accuracy and computational complexity,

making them suitable for real-time applications. ECMs are widely used in practical LiB

applications, such as electric vehicles and portable electronics, where real-time estimation is

crucial for battery management and control [34].

In electric vehicle applications, ECMs can be used to estimate the SOC and SOH of

the battery in real-time. By measuring the terminal voltage and using the ECM, the SOC

can be estimated based on the relationship between the terminal voltage and the battery’s

OCV [33]. The SOH estimation can also be performed by monitoring the internal resistance
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of the battery, which can indicate the degradation or aging of the battery [60].

However, ECMs have limitations in capturing the complex electrochemical processes

occurring inside the battery. They provide limited information about the internal behavior of

the battery, making them less suitable for applications that require detailed insights into the

electrochemical phenomena [33]. The accuracy of ECMs may also be affected by variations

in temperature, current rate, and aging effects, as these models do not explicitly consider

these factors. Despite these limitations, ECMs remain a practical and efficient choice for

battery state estimation in many applications [34].

In summary, ECMs offer a simple and computationally efficient approach for LiB state

estimation. They are widely used in practical applications and provide a good trade-off

between accuracy and computational complexity. While ECMs may lack the detailed insights

provided by more complex models, they are suitable for real-time estimation and can be

effectively employed for SOC and SOH estimation in LiBs.

This PhD aims to formulate a battery model that captures inhomogeneous Li exchange

profiles and incorporates physical dependencies, such as temperature dependence and plat-

ing mechanisms. ECMs, with their simplified equivalent circuit representations, cannot ad-

equately account for these complex electrochemical processes and dependencies on a spatial

level inside the battery, limiting their ability to provide detailed insights into the battery’s

behavior.

Electrochemical Models

EChMs, including the DFN model, are complex systems composed of interconnected PDEs

and algebraic equations. The PDEs primarily depict transport phenomena within the cell,

such as diffusion and advection, while the algebraic equations represent relative potentials

and reaction rates driven by these potentials. This intricate combination presents a chal-

lenging problem for observer design [46].

Recent efforts have focused on reducing DFN-like models to create manageable observa-

tion problems. Some studies have directly addressed the observation problem of a discretized

version of the DFN model [139], but the resulting algorithms are often difficult to tune, and

their convergence frequently depends on the selection of non-trivial parameters.
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Numerous studies have centered around a specific reduced, yet still infinite-dimensional,

model known as the SPM [140–155]. This model and its variants primarily overlook the

electrolyte behavior in the cell and concentrate on solid diffusion in the electrodes. However,

for fast-charging applications, the fidelity of the SPM and similar reductions are limited due

to high electrolyte polarization and potential lithium depletion.

To enhance accuracy at high C rates, more advanced extensions of the SPM model have

been developed [156–163]. Based on these extended models, a first batch of observer designs

has been proposed [159, 160, 164–168]. However, these approaches often lack convergence

and stability guarantees, lose spatially distributed information, or do not ensure lithium

conservation due to the model reduction methods employed or the feedback designs.

A significant approach to achieving provably stable estimation algorithms for extended

SPM models was presented in a study where a Single-Particle Model with electrolyte dy-

namics (SPMe) was developed [21]. This model was used to extend a previous observer

design [143] while maintaining convergent error estimates. Importantly, the reduced model

retains the fundamental electrochemical sense of the variables and the infinite-dimensional

(i.e., PDE) structure of the DFN model. The use of a PDE model allows for the physical

significance of equations and feedback laws to be retained independently of the discretiza-

tion method used for the algorithm implementation. This decouples the problem of observer

design from that of optimizing the model reduction for practical implementation.

However, EChMs are computationally expensive and require detailed knowledge of ma-

terial properties, kinetic parameters, and other battery-specific parameters [55]. Obtaining

accurate parameter values for EChMs can be challenging, as these parameters can vary with

operating conditions and battery aging [56]. Additionally, EChMs often require complex nu-

merical methods, such as finite element methods or finite difference methods, for solving the

coupled partial differential equations, which adds to the computational complexity [57,58].

Despite these challenges, EChMs are valuable tools for research and development in LiB

technology [59]. They provide a detailed understanding of battery behavior and can be

used for optimizing battery performance, design, and control strategies [55, 56]. However,

their high computational requirements and parameter sensitivity make them less suitable for

real-time applications compared to simpler models like equivalent circuit models [55–57].
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For the objectives of this PhD, EChMs emerge as the most suitable choice. They ex-

cel in capturing intricate electrochemical phenomena occurring within the battery, offering

a detailed understanding of internal states and behaviors critical for formulating a bat-

tery model with inhomogeneous Li exchange profiles and incorporating physical dependen-

cies. EChMs accurately simulate complex processes, including lithium-ion diffusion and

interfacial reactions, which are fundamental for comprehending battery performance and

degradation. Importantly, EChMs can retain the electrochemical sense of variables and the

infinite-dimensional structure of the DFN model, allowing for the development of provably

stable estimation algorithms. This unique advantage decouples observer design from model

reduction challenges encountered during practical implementation, aligning perfectly with

the research goals. While EChMs are computationally demanding and require precise pa-

rameterization, their ability to provide in-depth insights into battery behavior makes them

indispensable for achieving the objectives of this PhD research.

2.2.5 Hybrid estimation techniques for state estimation

Accurate SOC and SOH estimation of LiBs is pivotal for optimal EV performance. Hybrid

state estimation methods, combining model-based and machine-learning approaches, offer

a promising solution to address the limitations of each individual method. We perform a

review of some of these methods in the existing literature.

The PSO algorithm has been frequently employed with model-based methods for SOC

estimation of LiBs [47]. Key parameters of the ECM, such as voltage, capacity, resistance,

and temperature, are optimized using PSO as a search algorithm [169, 170]. PSO was also

used to search for optimal SVM parameters for SOC estimation [171]. A NN algorithm-based

SOC estimation model was developed for LiB batteries used in EV application with the PSO

algorithm used to search for the best values of network parameters [172].

GA has been effectively used for optimizing the ECM model parameters for precise SOC

estimation [48], for OCV methods [173], and in combination with the coulomb counting

method [174]. Further applications of GA with Fuzzy NN methods have demonstrated

satisfactory SOC tracking precision and superior performance [175,176].

An increasing interest exists in hybrid physics-ML modeling for LiBs, combining the
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benefits of both approaches. One study [45] integrates a one-dimensional electrochemical

model with various types of NNs. Another study [46] employs recurrent NNs to learn the

differences between LiB terminal voltage and SPM output voltage. Additionally, in [47],

an NN is combined with a simplified SPM and lumped thermal model to predict terminal

voltage. Recently, [49] expands ML to conduct aging-aware hybrid modeling with EChM

models, leading to the design of a hybrid model conscious of the SOH.

Hybrid state estimation techniques hold immense promise in achieving the goal of ac-

curate state estimation for LiBs. Nevertheless, they also bring forth significant challenges,

encompassing complexities, data dependencies, and computational resource demands. In the

context of this PhD research, we have made the decision to use of EChMs in developing both

the model and observer. This decision is grounded in the practical constraints of available

sensor data. While acknowledging the potential of hybrid techniques, we view them as a

promising perspective once we have access to complete experimental results from these novel

sensors.

2.3 Lithium Ion Battery Degradation

2.3.1 Degradation Mechanisms of Lithium-Ion Batteries

Lithium-ion batteries (LiBs) have transitioned from their nascent applications in consumer

electronics to more demanding roles in transport and large-scale energy storage systems. As

their prominence in these sectors grows, a comprehensive understanding of the underlying

degradation mechanisms becomes paramount. This review delves into these mechanisms,

elucidating the intricate relationships between various degradation processes and their ob-

servable outcomes.

Degradation in LiBs is multifaceted and can be systematically classified into three distinct

levels [177]:

1. Mechanisms: These refer to the actual physical and chemical transformations taking

place within the battery [178]. They are the foundational causes of degradation and

often remain elusive to direct observation during battery operation [179].
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Figure 2.15: Representation of Li-ion battery aging factors and their associated degradation
effects, modified version from [17].

2. Modes: Representing a mid-level perspective, modes encapsulate the observable con-

sequences at the cell level that arise due to the underlying mechanisms [180]. They

offer a more tangible insight into the degradation process [181,182].

3. Operational Effects: At the highest level, operational effects, such as capacity or

power fade, manifest as the direct outcomes of the degradation modes [183]. These

effects are readily measurable and are often the primary indicators of battery health

[184].

The degradation process is structured into these three levels for clarity and systematic

understanding. Within the realm of mechanisms, five primary and thirteen secondary pro-

cesses have been identified that contribute to degradation during standard operation. These

mechanisms culminate in five discernible modes [177].
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Primary Degradation Mechanisms and Their Implications

The primary mechanisms play a pivotal role in shaping battery performance. Let’s delve

into some of the prominent lithium degradation mechanisms, offering insights into their

consequences and adverse impacts on battery operation.

Key Degradation Mechanisms

1. Solid-Electrolyte Interphase (SEI) Growth: The SEI is a crucial passivation

layer that forms on most negative electrode (NE) surfaces when the liquid electrolyte

interacts with the electron-conductive surface of the NE, especially when operating at

voltages below the electrochemical stability window of the electrolyte [185]. This layer

initially forms during the first cycle, leading to a capacity reduction. As the cell ages,

the SEI layer thickens, predominantly on graphite NEs, due to various reasons such as

diffusion of solvent molecules through the existing SEI, exposure of new electrode sur-

faces from cracking, and deposition of side reaction products [177]. The growth of the

SEI layer can be influenced by factors like high temperatures and high currents [186].

The SEI layer, while serving as a protective barrier, also consumes the electrolyte sol-

vent, leading to reduced conductivity and increased impedance in cells. SEI formation

can be seen as illustrated in Figure 2.16 from [18].

2. Lithium Plating: Lithium plating is a side reaction where metallic lithium forms

on the NE surface instead of intercalating into it [187]. This phenomenon can be

triggered by various factors including low temperatures, high state of charge (SOC),

high charge currents, and insufficient NE mass. The plated lithium can undergo further

side reactions with the electrolyte, leading to SEI growth. Over time, this can result

in the formation of “dead lithium” that cannot be recovered, leading to loss of lithium

inventory and increased impedance. Lithium plating is observable on the physical

battery as seen in Figure 2.17 from [19].

3. Positive Electrode Structural Change and Decomposition: The degradation

of the positive electrode (PE) is highly dependent on its chemistry [188]. For lay-

ered oxides like NMC (LiNixMnyCozO2), the main degradation mechanisms include
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Figure 2.16: SEI formation in LiBs from [18]

phase change, oxidation of lattice oxygen, electrolyte decomposition, and TM/Li+

site exchange. These processes can lead to the release of lattice oxygen, formation of

gaseous products, and electrolyte decomposition. The similar ionic radii of Li+ and

Ni2+ can also lead to site switching in the PE crystal lattice, affecting the diffusion of

Li [189,190].

Interplay Between Degradation Mechanisms

The degradation mechanisms in LiBs are not isolated events. They often interact, leading

to a cascade of effects [177]. For example, lithium plating can induce further SEI growth,

consuming more electrolyte in the process. Similarly, the dissolution of transition metals

from the positive electrode can accelerate SEI formation on the NE [19,191–193].
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Figure 2.17: Lithium plating in LiBs from [19]

Figure 2.18: Schematic showing the basic components of a lithium ion battery cell and
the location and consequences of the degradation mechanisms covered in this review, with
primary mechanisms labelled in green and secondary mechanisms labelled in dark red [20].
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2.3.2 Operational Implications of Lithium Degradation

From an operational standpoint, the culmination of these mechanisms and modes manifests

as capacity and power fade [177]. Capacity fade refers to the reduction in the usable capacity

of the battery, while power fade denotes a decrease in the deliverable power post-degradation

[194,195]. These operational effects are the primary metrics used in assessing battery health

and predicting end-of-life scenarios [177].

Observable Consequences (Modes)

The degradation mechanisms lead to observable modes, which include [177]:

1. Loss of Active Material (LAM): Active mass of the negative electrode that is no

longer available for the insertion of lithium due to particle cracking and loss of electrical

contact or blocking of active sites by resistive surface layers. Similarly, the active mass

of the positive that is no longer available for the insertion of lithium due to structural

disordering, particle cracking, or loss of electrical contact. [177,196–200].

2. Loss of Lithium Inventory (LLI): Lithium ions that are consumed by parasitic

reactions, such as surface film formation (e.g. SEI growth), decomposition reactions,

and lithium plating, and are no longer available for cycling between the positive and

negative electrode, leading to capacity fade [196].

3. Stoichiometric Drift: Associated with LLI, this mode refers to the imbalance be-

tween the electrodes in terms of their lithium content, which can affect the overall

performance and efficiency of the battery [201].

4. Impedance Change: This mode groups mechanisms that affect the kinetic behavior

of the cell, leading to increased resistance [202]. Factors like SEI growth, pore blockage,

and loss of electrolyte can contribute to this mode [203].

Operational Effects

The culmination of degradation mechanisms and modes results in operational effects, the

most prominent being:
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1. Capacity Fade: This refers to a reduction in the usable capacity of the cell, which

can be due to loss of active material, loss of lithium inventory, or other degradation

mechanisms that reduce the cell’s ability to store energy [194].

2. Power Fade: A reduction in the deliverable power of the cell post-degradation, often

linked to increased impedance and reduced efficiency of the cell [195,204].

In conclusion, understanding the intricate web of degradation mechanisms, modes, and

their operational implications is crucial for enhancing the longevity and reliability of LiBs,

especially as they find applications in more demanding sectors. In this PhD, we will concen-

trate our efforts on integrating lithium plating into our proposed models and BMS algorithms,

aligning with the available electrochemical data and adhering to the stringent timelines set

by the INSTABAT project.

2.4 Conclusion of the Chapter

This chapter embarked on an exploration of battery modeling, state estimation methodolo-

gies, and degradation mechanisms in lithium-ion batteries (LiBs), laying a robust foundation

for the subsequent research endeavors in this PhD thesis.

Initially, battery modeling was discussed, emphasizing the significance of capturing in-

homogeneous Li exchange profiles and incorporating physical dependencies like temperature

and plating mechanisms. State estimation methodologies like Adaptive Filter-based tech-

niques, which despite their adaptability and robustness, are constrained by their dependency

on accurate initial parameter values and their susceptibility to inaccuracies amidst system

nonlinearities [3, 11, 71]. Adaptive AI-based methodologies, while potent in managing com-

plex, nonlinear systems and possessing the capability to learn and adapt from data, are

deemed suboptimal due to their intensive data requirements, challenges in parameter tun-

ing, and a lack of interpretability, especially in the context of the evolving INSTABAT

project [41,205].

We then moved towards Model-Based Methodologies, with a focus on Electrical Circuit

Models (ECMs) and Electrochemical Models (EChMs). ECMs, despite their computational
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efficiency and widespread application in practical scenarios, were found to be limited in cap-

turing complex electrochemical processes and dependencies within the battery, thus restrict-

ing their capability to provide detailed insights into the battery’s internal behavior [33, 34].

EChMs, on the other hand, emerged as the methodology of choice for this research, owing

to their unparalleled ability to capture intricate electrochemical phenomena and provide a

detailed understanding of internal states and behaviors, which are pivotal for formulating

a battery model that encapsulates inhomogeneous Li exchange profiles and incorporates

physical dependencies [55–59].

Hybrid methodologies, which amalgamate model-based and machine-learning approaches,

were acknowledged for their potential to address the limitations of individual methods by

optimizing key parameters and enhancing SOC estimation. However, due to the complexities,

data dependencies, and computational resource demands they introduce, and considering the

practical constraints of available sensor data in this research, their application is viewed as

a promising future perspective [47,48,169–176].

The latter part of the chapter delved into the degradation mechanisms of LiBs, providing

a systematic understanding of the degradation process, from mechanisms to modes and their

operational effects, such as capacity and power fade [177, 194, 195]. The degradation mech-

anisms, including pivotal ones like Solid-Electrolyte Interphase (SEI) Growth and Lithium

Plating, were elucidated, offering insights into their consequences and adverse impacts on

battery operation [19, 185, 187]. Within the strict INSTABAT project timeline, this PhD

research prioritizes integrating lithium plating into proposed models and BMS algorithms.

In conclusion, the detailed exploration and critical analysis of various state estimation

methodologies and degradation mechanisms have informed the decision to utilize EChMs

for developing both the model and observer in this PhD research. The subsequent chapters

will delve deeper into the development of the proposed model and observer, guided by the

foundational knowledge established in this chapter, and will explore the implications of the

developed models in the context of LiBs.
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Summary of the Chapter

This chapter delves into the intricacies of lithium-ion battery modeling, emphasizing the

need for a more accurate representation of the battery’s internal dynamics. The Doyle

Fuller Newman (DFN) model, while comprehensive, is computationally intensive, making it

unsuitable for real-time applications. This chapter introduces the Multi-Particle Model with

Electrolyte dynamics (MPMe) as a solution that bridges the gap between the DFN and the

Single Particle Model with Electrolyte (SPMe).

Derivation of the Model: The MPMe aims to:

• Reconstruct the heterogeneities present in internal battery dynamics.

• Offer computational efficiency for real-time applications.

• Facilitate the integration of new sensor data for observer designs.

• Incorporate spatial temperature dependence for various electrochemical parameters.

• Ensure lithium conservation in both battery phases.

• Integrate a lithium degradation model for the negative electrode.

The MPMe uses a multi-particle representation, formulating layers within the battery’s pos-

itive, negative, and separator regions. Each layer in the negative and positive sides has one

particle, with each particle having radial layers.

Simulation of the MPMe: The MPMe’s validation is conducted through MATLAB

simulations, comparing it with the full-scale DFN model and the SPMe. The MPMe model’s

results, especially in voltage behavior, demonstrate its higher accuracy compared to the

SPMe.

Spatial Heterogeneity of Internal States: The MPMe model captures the battery’s

internal states, including lithium concentration within the electrodes and electrolyte, electric

potential across both phases, overpotential, and other crucial factors. The model showcases

the heterogeneity present in these states, especially under different charging scenarios.
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Lithium Conservation in the System: The MPMe model ensures the conservation

of lithium, a crucial aspect for accurate long-term simulations. The conservation can be seen

in both the solid and electrolyte phases of the battery.

Integration of Temperature Dependence in the Battery Model: The chapter

introduces the Single Particle Model with Electrolyte and Thermal Dynamics (SPMeT) that

considers temperature variations across the Li-ion battery. The SPMeT model combines

the SPMe model with a thermal model, using the Arrhenius law for temperature-dependent

parameters. The chapter further utilises the principle of the SPMeT in the MPMe framework,

demonstrating the significant impact of temperature dependence on battery behavior.

In conclusion, Chapter 3 presents the MPMe as a robust and efficient model for cap-

turing the internal dynamics of lithium-ion batteries, bridging the gap between the detailed

DFN model and the simpler SPMe. The chapter underscores the importance of considering

temperature variations and ensuring lithium conservation for accurate battery modeling and

simulations.

3.1 Doyle-Fuller-Newman Model

In this chapter, we will focus on the development of an electrochemical PDE-based model

that is derived from the full-scale (Doyle-Fuller-Newman) DFN model [50]. To do this, we

start by providing a complete account of the DFN model.

The DFN model divides the cells into three regions: anode, separator, and cathode. It

considers two phases in the Li-ion battery: the electrolyte with states evolving over the x

dimension, and the solid with states evolving in the x as well as the r dimension [21]. Figure

3.1 shows the schematic of the DFN model during the charging of the battery.

The solid concentration c±s (x, r, t) and electrolyte concentration cje(x, t) evolve over time

t through the diffusion equations [21]:

∂c±s (x, r, t)

∂t
=

1

r2
∂

∂r

[
D±

s r
2∂c

±
s

∂r

]
(3.1)

ϵje
∂cje(x, t)

∂t
=

∂

∂x

[
Deff

e (cje)
∂cje
∂x

+
(1− t0c)

F
ije(x, t)

]
(3.2)
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Figure 3.1: Schematic representation of the charging process of a Li-ion battery cell. At the
top, are the three battery cell domains: negative electrode, separator, and positive electrode;
in the middle part and at the bottom, the two phases: the electrolyte phase and the solid
phase, respectively.

for j ∈ {−, sep,+}. These are dependent upon the electrolyte electric potential ϕe(x, t) ,

solid electric potential ϕ±
s (x, t), ionic current i±e (x, t), and molar ionic fluxes j±n (x, t) [50]:

σeff,±∂ϕ
±
s

∂x
(x, t) = i±e (x, t)− I(t) (3.3)
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κeff ∂ϕe

∂x
(x, t) = −i±e (x, t) + κeff (ce)

2RT

F
(1− t0c)

(
1 +

d ln(fc/a)

d ln ce

)
∂ ln ce
∂x

(x, t) (3.4)

∂i±e
∂x

(x, t) = a±Fj±n (x, t) (3.5)

j±n (x, t) =
1

F
i±0 (x, t)

[
e

αaF
RT

η±(x,t) − e−
αaF
RT

η±(x,t)
]

(3.6)

i±0 (x, t) = k±[c±ss(x, t)]
αc
[
ce(x, t)

(
c±s,max − c±ss(x, t)

)]αa (3.7)

η±(x, t) = ϕ±
s (x, t)− ϕe(x, t)− U±(c±ss(x, t))− FR±

f j
±
n (x, t) (3.8)

c±ss(x, t) = c±s (x,R
±
s , t) (3.9)

where Deff
e = De(ce).(ϵ

j
e)

brug, σeff = σ.(ϵjs + ϵjf )
brug, and κeff = κ(ce).(ϵ

j
e)

brug are effective

electrolyte diffusitivity, effective solid conductivity, and effective electrolyte conductivity

given by the Bruggeman relationship [21].

The solid-phase diffusion boundary conditions are:

∂c±s
∂r

(x, 0, t) = 0 (3.10)

∂c±s
∂r

(x,R±
s , t) = − 1

D±
s

j±n (x, t) (3.11)

Equation (3.10) shows that there is no lithium flux on average at the center of the solid

particles since the model averages over angular variables while Equation (3.11) states that

the solid-phase lithium flux at the surface of the particles is equal to the molar ionic flux jn.

The electrolyte-phase diffusion boundary conditions are:

∂c−e
∂x

(0−, t) =
∂c+e
∂x

(0+, t) = 0 (3.12)

D−,eff
e (ce(L

−))
∂c−e
∂x

(L−, t) = Dsep,eff
e (ce(0

sep))
∂csepe

∂x
(0sep, t) (3.13)

Dsep,eff
e (ce(L

sep))
∂csepe

∂x
(Lsep, t) = D+,eff

e (ce(L
+))

∂c+e
∂x

(L+, t) (3.14)

ce(L
−, t) = ce(0

sep, t) (3.15)

ce(L
sep, t) = ce(L

+, t) (3.16)

Equation (3.12) states that there is zero Lithium flux at both edges of the battery as Lithium
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cannot flow out of it. Equations (3.13) and (3.14) state that between two regions of the

battery, there is a Lithium flux continuity. Equations (3.15) and (3.16) state that there is a

continuity in the value of the concentrations between different regions.

The boundary conditions for the electrolyte-phase potentials are:

ϕe(0
−, t) = 0 (3.17)

ϕe(L
−, t) = ϕe(0

sep, t) (3.18)

ϕe(L
sep, t) = ϕe(L

+, t) (3.19)

The ionic current boundary conditions are given by:

i−e (0
−, t) = i+e (0

+, t) = 0 (3.20)

Note that ie(x, t) = I(t) for x ∈ [0sep, L
sep]. The input to the model is the applied current

density I(t)[A/m2] and the output voltage measured across the current collectors is given by

V (t) = ϕ+
s (0

+, t)− ϕ−
s (0

−, t) (3.21)

More complete detail of the model is given in [50, 91, 206, 207]. The DFN model exhibits a

mathematical structure comprising linear partial differential equations (PDEs), quasi-linear

PDEs, ordinary differential equations (ODEs) in space, and nonlinear algebraic constraints.

This intricate structure poses a significant challenge for model-based state estimation. Al-

though solving the equations in their full form guarantees high accuracy and precision, it

incurs substantial computational costs.

In an endeavor to alleviate the computational burden, researchers have devised simplified

versions of the DFN model, such as the Single Particle Model (SPM) [208]. Subsequently,

efforts were made to incorporate electrolyte dynamics into the simplified model, leading to

the development of the Single Particle Model with Electrolyte dynamics (SPMe) [21].
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3.2 Single Particle Model with Electrolyte Dynamics

(SPMe)

We now detail the SPMe [21] which offers a simplified solution to the DFN model, enabled

by the following assumptions:

1. The concentration of lithium in the solid phase of each electrode remains constant

along the spatial coordinate x and uniformly across time. Mathematically, c±s (x, r, t)

and j±n (x, t) are constant in the x-direction.

2. The exchange current density term i±0 (x, t) can be approximated as a constant over x

and represented by its averaged value î±0 (t).

3. The total moles of lithium in both the solid and electrolyte phases are conserved.

Combining this assumption with the first one, j±n can be proportionally related to the

input current I(t).

4. The constants αa = αc = α are approximately equal, which holds true in most practical

scenarios.

With the first assumption in conjunction with (3.5), we can express the molar ion flux

as proportional to the input current:

j̄+n =
I(t)

Fa+L+
, j̄−n =

I(t)

Fa−L− (3.22)

The ionic current ie(x, t) exhibits a trapezoidal shape as depicted in Figure 3.2 from [21].

Subsequently, we can derive the equations for solid-phase diffusion and electrolyte diffu-

sion:

∂c±s (r, t)

∂t
=

1

r2
∂

∂r

[
D±

s r
2∂c

±
s

∂r

]
(3.23)

∂c̄±s
∂r

(0, t) = 0,
∂c̄±s
∂r

(R±
s , t) = ± 1

D±
s Fa±L± I(t) (3.24)
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Figure 3.2: Simplified form of ie(x, t) in the SPMe model [21].

∂c−e (x, t)

∂t
=

∂

∂x

[
Deff

e (c−e )

ϵ−e

∂c−e
∂x

+
(1− t0c)

ϵ−e FL− I(t)

]
(3.25)

∂csepe (x, t)

∂t
=

∂

∂x

[
Deff

e (csepe )

ϵsepe

∂csepe

∂x

]
(3.26)

∂c+e (x, t)

∂t
=

∂

∂x

[
Deff

e (c+e )

ϵ+e

∂c+e
∂x

+
(1− t0c)

ϵ+e FL+
I(t)

]
(3.27)

The simplified overpotential is determined using the Butler-Volmer equation [209], taking

into account the aforementioned assumptions and substitutions [210]:

η̄±(t) =
RT

aF
sinh−1

(
∓I(t)

2a±L±ī±0 (t)

)
(3.28)

The electrolyte potential is obtained by integrating across x across the entire cell, yielding

the expression:

ϕ̄+
e (0

+, t)− ϕ̄−
e (0

−, t)

=
L+ + 2Lsep + L−

2κ̄
I(t) +

2RT

F
(1− t0c)kf (t)[ln ce(0

+, t)− ln ce(0
−, t)].

(3.29)
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By combining (3.22), (3.28), and (3.29), the expression for the output voltage can be

derived:

V (t) =
RT

aF
sinh−1

(
−I(t)

2a+L+ī+0 (t)

)
− RT

aF
sinh−1

(
I(t)

2a−L−ī−0 (t)

)
+ U+(c̄+ss(t))− U−(c̄−ss(t))

−

(
R+

f

a+L+
+

R−
f

a−L−

)
I(t)

+
L+ + 2Lsep + L−

2κ̄
I(t)

+
2RT

F
(1− t0c)kf (t)[ln ce(0

+, t)− ln ce(0
−, t)]

V (t) =h
(
c̄+ss, c̄

−
ss, ce(0

+, t), ce(0
−, t), I(t)

)

(3.30)

3.3 Derivation of the Multi-Particle Model with Elec-

trolyte Dynamics (MPMe)

In this section, we present one of the main contributions of this PhD Thesis. In order to

increase the fidelity of this model at higher C-rates, we set to develop a model with the

following characteristics:

• Able to reconstruct the heterogeneities present in the internal battery dynamics.

• Simple and computationally cheap to run in real-time applications.

• Can easily cater to the implementation of new sensor data for observer designs.

• Incorporates Temperature dependence on a spatial level for different electrochemical

parameters.

• Lithium conservation in both phases of the battery.

• Integrates a lithium degradation model for the negative electrode.
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In the SPMe, the solid-phase dynamics are represented using a single particle in both, the

cathode and the anode. In order to have a more accurate representation of the DFN model

with the ability to reproduce the heterogeneities present inside a real battery, we propose a

Multi-Particle Model with electrolyte dynamics (MPMe) to better represent the dynamics of

the battery. The MPMe uses a multi-particle representation by formulating layers within the

positive, negative, and separator regions of the battery. The representation of the MPMe can

be seen in Figure 3.3. We can see in the figure that each layer of the negative and positive

side has one particle. As seen, each particle has radial layers. The lengths are also denoted

in the figure for each region and individual layer within them. In Figure 3.4 shows the fluxes

C
o
lle

c
to

r

C
o
lle

c
to

r

Negative Region Positive RegionSeparator

0 0 0

Figure 3.3: MPMe Model.

in individual layers for each respective region of the battery. Note that in the separator,

there will be interaction between the electrolyte and the solid electrode layers. As we can

see from the figure, each layer has several parameters. This includes:

• The Overpotential η±(x, t)

• The Open-Circuit Voltage U±(x, t)

• the electrolyte electric potential ϕ±
e (x, t)

• The concentration of lithium in the electrolyte ce(x, t)

• The electrolyte diffusivity D±
e (ce, t)

• The molar ionic fluxes j±n (x, t) and hence also the ionic current i±e (x, t)
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• The concentration of the lithium in the solid phase c±s (x, r, t) and hence also the solid

surface concentration c±ss(x, t)

±( , )

±( )
±( ±)

Diffusion Fluxes Right (i)Diffusion Fluxes Left (i)

±( ±, )

±( , )

±( , )

±( , )

± ( , )

±( , )

Figure 3.4: MPMe Model fluxes

Each layer has it’s own single-particle to represent the solid-dynamics within the cathode

and anode regions. Figure 3.5 shows detail on the construction of the radial layers in each

particle of a single finite volume. We can see that each radial layer has its own:

• concentration of lithium in the solid phase c±s (x, r, t)

• solid diffusivity coefficient D±
s (r, t)

• Volume of the sphere V (j)

• Radius of the sphere hs ∗N j

• The outermost shell interacts with the electrolyte phase through a relationship with

the molar ionic fluxes j±n (x, t)
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Figure 3.5: MPMe Model radial fluxes

For every layer, this leads to different solid surface concentration cjss,i(x, t), leading to a

different molar ion flux jjn,i(x, t), and therefore different ionic current ije,i(x, t). Unlike the

SPMe where the ie(x, t) is trapezoid-shaped, it now has a constant slope for every individual

layer that varies between layers. Figure 3.6 shows the shape of the ije,i(x, t) for the MPMe.

ie(x,t)

I(t)

0- 0+L- 
0sep

L+ 
Lsep

x

Figure 3.6: MPMe Model: ie(x, t)

The anode, separator, and cathode regions are all denoted through j ∈ {−,+, sep} with

each region having variable total number of layers denoted by N j. Note that if we reduce

N j = {1, 1, 1}, the system transforms to the regular DFN model but with a single particle

representation of the solid phase. For layers within the same region, with constant j, the

boundary conditions are given as:
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cje,i(h
j, t) = cje,i+1(0, t) (3.31)

∂cje,i
∂x

(hj, t) =
∂cje,i+1

∂x
(0, t) (3.32)

where i ∈ {1, . . . , N j − 1} and requires N j ≥ 2 . (3.31) dictates that there is continuity

of value between two layers of the same region while Equation (3.32) dictates that there is

continuity of fluxes between two layers of the same region of the electrolyte. Inter-regional

boundary conditions are similar to the DFN model and can be denoted as:

c−e,N−(h
−, t) = csepe,1 (0, t) (3.33)

csepe,Nsep(hsep, t) = c+e,1(0, t) (3.34)

Equation (3.34) dictates that there is continuity of value of concentrations of lithium between

the last layer of the anode and the first layer of the separator. Equation (3.33) dictates that

there is continuity of value of concentrations of lithium between the last layer of the separator

and the first layer of the cathode. These are similar to Equations (3.15) and (3.16) conditions

defined earlier in the DFN model.

∂c−e,1
∂x

(0, t) =
∂c+e,N+

∂x
(h+, t) = 0 (3.35)

D−,eff
e (c−e,N−(h

−))
∂c−e,N−

∂x
(h−, t) = Dsep,eff

e (ce,1(0))
∂csepe,1

∂x
(0, t) (3.36)

Dsep,eff
e (csepe,Nsep(hsep))

∂csepe,Nsep

∂x
(hsep, t) = D+,eff

e (c+e,1(0))
∂c+e,1
∂x

(0, t) (3.37)

Equation (3.35) is similar to Equation (3.12) and states that there is no flux leaving the

sides of the battery. Equations (3.36) and (3.37) are synonymous to Equations (3.13) and

(3.14), stating that flux entering one region is equal to the flux leaving the adjacent region.

Figure 3.7 shows the potentials inside the battery for the MPMe. The positive domain

is now defined as x ∈ (xr, LT ) and the negative domain as x ∈ (0, xr). Here, xr denotes
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Figure 3.7: Potentials inside the battery from [5]

the location within the separator where the reference electrode is positioned, associated with

the voltage Vref (t). . Using 3.7 and the governing equations in (3.1-3.9), we can write the

following relationships for the positive and negative domain voltages:

Vref(t) =∆ϕ−
e (x

−) +
(
ϕe(x

−)− ϕs(x
−)
)
+∆ϕs(x

−)

Vref(t) =ϕe(x
r, t)− ϕe(x

−, t)− U(c−ss(x
−, t))

− FR−
f j

−
n (x

−, t)− η−(x−, t) + ϕ−
s (x

−, t),

V (t)− Vref(t) =∆ϕ+
e (x

+) +
(
ϕs(x

+)− ϕe(x
+)
)
+∆ϕs(x

+)

V (t)− Vref(t) =ϕe(x
+, t)− ϕe(x

r, t) + ϕ+
s (L

T , t)

− ϕ+
s (x

+, t)− FR+
f j

+
n (x

+, t)− η+(x+, t) + U(c+ss(x
+, t))

(3.38)
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where x+ and x− represent specific points within the positive and negative domains of

the battery, respectively.

The total voltage of the battery, V (t), is determined by the sum of the voltages across the

positive and negative domains. Essentially, it represents the difference in the solid electric

potential between the collectors:

V (t) = ϕ+
s (L

T , t)− ϕ−
s (0, t) (3.39)

3.4 Simulation of the MPMe

The validation of the proposed MPMe model is conducted through simulations on the MAT-

LAB coding platform. Initially, the model is simulated and subsequently compared with the

full-scale DFN model in MATLAB to ensure its accuracy.

3.4.1 Validation of the Model

To assess the accuracy of the proposed DFN against existing techniques, the PDE-based

model was simulated using MATLAB. For this purpose, the finite volume-based MPMe model

was temporally discretized. This can be achieved through various techniques, including

explicit, implicit, and Crank-Nicolson schemes.

In this PhD, we have decided to use the implicit scheme for the simulation of the MPMe,

DFN, and SPMe models. This choice is attributed to the increased computational efficiency,

as it enables us to use sufficiently large time steps for practical applications. This is a

necessary objective in the final implementation of the developed virtual electrochemical

sensors.

We now proceed to conduct a comparative analysis to emphasize the accuracy and via-

bility of the MPMe model. In the conducted simulations, the DFN model was implemented

with a highly granular finite volume-based approach, with a time step of 0.1 seconds and

spatial layers defined as N j = [20, 8, 20], ensuring a detailed representation of the electro-

chemical phenomena. In contrast, the proposed MPMe model, with the same underlying
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equations as that of the DFN, was configured with a coarser time step of 1 second and a

spatial discretization of N j = [4, 2, 4], providing a balance between computational efficiency

and model accuracy. Lastly, the SPMe model was employed with a time discretization of 1

second and a simplified spatial representation using single layers. These spatial and temporal

discretizations apply to all subsequent simulations of these models unless otherwise stated

and align with those in [5].

Figure 3.8 displays the total voltage of the battery between the collectors, obtained

from simulations of a full-scale DFN model, the previously derived MPMe model, and the

SPMe model for the purpose of comparison. Here, the full-scale DFN model is a very finely

discretized (in both spatial and temporal dimensions) finite volume simulation, and it serves

as the reference for comparing the MPMe and SPMe models. All three simulations start with

the same SOC, total amount of lithium, and an identical current profile. The simulation

results are shown for a constant charging scenario of 2C current.
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Figure 3.8: Total Voltage Comparisons for 2C constant charge

It can be observed from Figure 3.8(a) that the voltage obtained from the MPMe simula-

tion is closer to the reference DFN simulation, when compared to the SPMe simulation. The

discrepancy between the DFN and its derivatives is illustrated in Figure 3.8 (b). Figures 3.9

and 3.10 show the Voltages and corresponding errors for the negative and positive domain

for the 2C constant charge scenario, respectively.

Similarly, the simulations are compared for a C-rate of 4C constant charge current profile,

and the corresponding voltage and error curves are depicted in Figures 3.11(a) and 3.11(b),
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Figure 3.9: Negative Domain Voltage (Vref (t)) Comparisons for 2C constant charge
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Figure 3.10: Positive Domain (V (t)− Vref (t)) Voltage Comparisons for 2C constant charge

respectively. Figures 3.12 and 3.13 show the Voltages and corresponding errors for the

negative and positive domain for the 4C constant charge scenario, respectively.

The results clearly demonstrate that the MPMe simulation exhibits higher accuracy

compared to the existing SPMe derivatives. This confirms the validity of the MPMe model

in better replicating the system’s voltage behavior.
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Figure 3.11: Total Voltage Comparisons for 4C constant charge
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Figure 3.12: Negative Domain Voltage (Vref (t)) Comparisons for 4C constant charge
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Figure 3.13: Positive Domain Voltage (V (t)− Vref (t)) Comparisons for 4C constant charge
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3.4.2 Spatial Heterogeneity of Internal States

While accurately reproducing the input-output behavior of a battery is undeniably impor-

tant, the true value of the EChM models lies in their capacity to faithfully replicate the bat-

tery’s internal electrochemical parameters. This encompasses the internal variations within

the battery that influence its dynamics. Unlike the SPMe approach, which was discussed

earlier and linearizes the internal states, the MPMe model comprehensively captures these

internal states. These states include the concentration of lithium within the electrodes and

electrolyte, the electric potential across both phases, the overpotential, and other crucial

factors.

Figures 3.14(a) and 3.14(b) illustrate the heterogeneity present in both the positive and

negative solid electrodes of the battery, as observed in the simulation conducted at 4C

constant charge.

Similarly, the concentration of lithium in the electrolyte can also be viewed spatially

through the battery for a constant 4C charge as seen in Figure 3.15. The polarity of the

concentration depends on the diffusion coefficient, current density, and temperature. Higher

current and lower electrolyte diffusion coefficient leads to an increased polarity in the con-

centration of the electrolyte. The effect of temperature will be discussed in more detail in a

subsequent section.
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Figure 3.14: Heterogeneity in the Electrodes (4C Constant Charge)
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Figure 3.15: Heterogeneity in Electrolyte (4C Constant Charge)

With the heterogeneity of the lithium concentration in both phases now highlighted, we

can illustrate its impact on the prediction of other significant electrochemical parameters that

play a crucial role in monitoring and optimizing the performance of LiBs. These parameters

include the electric potential in both phases, and the ionic current. Figures 3.16(a), 3.16(b),

3.17, and 3.18 depict the reconstruction of and heterogeneity present in these aforementioned

electrochemical variables.
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Figure 3.16: Electric Potential in the negative electrodes (4C Constant Charge)
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Figure 3.17: Electric Potential in the Electrolyte (4C Constant Charge)
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Figure 3.18: Ionic Current (4C Constant Charge)
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3.4.3 Lithium Conservation in the System

Another crucial aspect of the MPMe model is its inherent conservation of lithium, owing to

its finite volume-based approach. Figure 3.19 illustrates the total amount of lithium present

in the solid phase of the battery. It can be seen that the total lithium remains constant as

the simulation progresses, affirming its conservation.
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Figure 3.19: Total Lithium in Solid Phase (4C Constant Charge)

A similar assessment can be conducted for the electrolyte phase of the battery. In Figure

3.20, the total amount of lithium in the electrolyte is presented. The minimal variation

implies that lithium is conserved within the electrolyte.

Based on these observations, we conclude that the total amount of lithium is conserved

in both phases. However, it’s important to note that this conservation doesn’t apply to

individual electrodes. Figure 3.21 demonstrates the variations in the total moles of cyclable

lithium within the negative and positive electrodes, respectively. This parameter holds sig-

nificance as it contributes to determining the state-of-charge (SoX) parameters in subsequent

discussions. Additionally, it’s worth noting that the sum of cyclable lithium in the negative

and positive electrodes equates to the amount shown in Figure 3.19, which remains nearly

constant.
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Figure 3.20: Total Lithium in Electrolyte Phase (4C Constant Charge)
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Figure 3.21: Total Lithium in individual Solid electrodes (4C Constant Charge)
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3.4.4 Simulation Analysis: Effects of Incorrect Lithium Amounts

In this section, we delve into a detailed analysis of the implications arising from deviations

in the total lithium content within the solid and electrolyte phases of the LiB.

Revisiting the previously discussed 2C constant charge simulation, we introduce devia-

tions in the total lithium content. Initially, we focus on the electrolyte phase and subse-

quently shift our attention to the solid phase.

Deviation in Lithium Content within the Electrolyte Phase

We executed the simulation for the MPMe and SPMe models, introducing a 10% reduction

in the lithium content of the electrolyte phase. Figure 3.22(a) presents the resultant voltage,

while Figure 3.22(b) delineates the associated voltage error. The results indicate a notable

discrepancy in the voltage when comparing the full-scale DFN model, which maintains the

correct lithium content, with its derivatives (MPMe and SPMe).
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Figure 3.22: Total Voltage V (t) Comparisons for 2C constant charge with altered lithium
content in the electrolyte

Deviation in Lithium Content within the Solid Phase

Similarly, we conducted the simulation with a 10% reduction in the lithium content of the

battery’s solid phase. Figure 3.23(a) presents the total voltage curve, and Figure 3.23(b)

provides insights into the associated voltage errors. The results underscore that even minor

deviations in the lithium content can lead to significant errors in voltage predictions.
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Figure 3.23: Total Voltage V (t) Comparisons for 2C constant charge with altered lithium
content in the solid phase

These findings emphasize the importance of accurate lithium content measurements.

Addressing this challenge is a significant contribution of this research. In the next chapter of

this PhD thesis, we will present a non-conservative observer that helps correct this deviation

in total lithium with the individual electrodes of the battery [5].

3.5 Integration of Temperature dependence in the Bat-

tery model parameters

3.5.1 Single Particle Model with Electrolyte and Thermal Dynam-

ics

In the previous subsection, we discussed the SPMe model which does not consider tempera-

ture variations across the Li-ion battery in many of its variables. To address this limitation,

the Single Particle Model with Electrolyte and Thermal Dynamics (SPMeT) [51] was devel-

oped. The SPMeT model combines the SPMe model with a thermal model derived from [211].

In SPMeT, temperature-dependent parameters follow the Arrhenius law:

P (Tavg) = Pref exp

(
EαP

R

(
1

Tref

− 1

Tavg

))
(3.40)

When conducting real-time simulations of Li-ion batteries, a judicious balance must be
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struck between model complexity and accuracy. Furthermore, ensuring the numerical con-

servation of total lithium over time is crucial, as seemingly minor errors in lithium transfer

between the solid and electrolyte phases can accumulate and lead to inaccurate simulations

over extended time frames.

3.5.2 Thermal dependence of parameters

The battery behavior is dependent on the thermal conditions of the battery, particularly

when operating in a wide temperature range (INSTABAT specifications [28, 29]). We now

extend the principle of the SPMeT for the dependence of transport and kinetic parameters

on the temperature into our approach, the MPMe framework.

An Arrhenius law is used for the solid diffusion coefficient relating the transport of lithium

with the concentration gradient in the solid phase of the electrodes. In this case, the diffu-

sivity coefficient will take the following form:

D±
s = D±

s,0 exp

[
−E±

a,d

R

(
1

T
− 1

T0

)]
(3.41)

The conductivity of the electrolyte is another important parameter in determining the

ohmic potential drop through the electrolyte. The relationship between the conductivity of

the electrolyte κ, and the temperature and concentration is expressed from [212] as:

√
κ

ce
=

∫ 2

i=0

∫ 2

j=0

κi,j · cie · T j (3.42)

The electrolyte diffusion coefficient is considered as depending on the temperature and

concentrations based on relationship (from [213] which requires the previously computed

value of conductivity) :

De =
κkBT

e2Nace
(3.43)
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The reference current density is used to determine the ionic current using Butler-Volmer

kinetics. An Arrhenius law is used to model its thermal dependence, with T0 = 298.15K:

i±o,ref = i±o,ref,0 exp

[
−E±

a,k

R

(
1

T
− 1

T0

)]
(3.44)

3.5.3 Effect of Temperature on battery behaviour

We now demonstrate the effect of change in operating temperature in the values of the

internal electrochemical variables predicted by our reduced model. The simulation used to

demonstrate the temperature variation uses a 1-C constant discharge of the battery from

near 100% SOC. The three temperatures compared are 0oC, 25oC and 60oC.
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Figure 3.24: Concentration in electrolyte in the battery for different temperatures

Figure 3.24 shows the different values of electrolyte concentration through the battery

113
Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0117/these.pdf 
© [M.M.A. Asif], [2023], INSA Lyon, tous droits réservés



for a constant 1C discharge at different temperatures. It can be seen that the concentration

profile is significantly dependent on temperature.
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Figure 3.25: Solid concentration near the current collector at positive electrode, for different
temperatures for a 1C discharge and after 1000s

Figure 3.25 shows the solid concentration of the positive electrode for different tempera-

tures for a particle located near the positive collector. There is a positive relationship between

the diffusivity of the positive electrode concentration and temperature. The simulation is

taken at a 1-C constant discharge from 100% SOC at time t=1000s.

Figure 3.26 shows the solid concentration of the negative electrode for different temper-

atures for a particle located near the negative collector. There is a positive relationship

between the diffusivity of the positive electrode concentration and temperature.

Figure 3.27 shows the corresponding overall voltage curves for the surface concentrations

shown in Figure 3.25 and Figure 3.26 with a constant current profile of 1-C discharge. The

shape of the electrolyte is similar to that in Figure 3.24 for the corresponding temperatures.

This shows the effect of temperature on the overall voltage from the parameters discussed

previously.
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different temperature for a 1C discharge and after 1000s
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3.6 Conclusion of the Chapter

This chapter has elucidated the development and capabilities of the Multi-Particle Model

with Electrolyte (MPMe), showcasing its pivotal role in simulating and understanding Li-

ion battery dynamics with a keen focus on maintaining a balance between computational

efficiency and physical accuracy.

The MPMe has an intrinsic ability to conserve lithium across various domains of the

battery, ensuring the stability and reliability of its predictions. Its adeptness in accurately

replicating the system’s voltage behavior, while minimizing computational complexity, un-

derscores its potential applicability in real-time scenarios and advanced Battery Management

Systems (BMS).

Moreover, the model’s capability to capture the spatial heterogeneity of internal states

and to conserve lithium in the system, even under varied operational scenarios, has been dis-

tinctly highlighted through simulations under different C-rates and temperature conditions.

The incorporation of temperature dependencies into the model enhances its accuracy

under varied thermal conditions, providing crucial insights for optimizing and managing

battery operations across different thermal environments.

In summary, the MPMe model emerges as a robust, reliable, and computationally efficient

tool for simulating and analyzing Li-ion battery dynamics. The subsequent chapters delve

deeper into the applicability of the MPMe model in the development of state observers and

Battery Management System algorithms, leveraging the principles and findings discussed in

this chapter.
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State Observers for the MPMe
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Summary of the Chapter

This chapter offers a detailed analysis of observers for lithium-ion batteries, focusing on

both the electrolyte and solid lithium concentrations. The importance of these observations

is highlighted, given their role in understanding lithium ion behavior within the battery.

Electrolyte Lithium Concentration Observer

This section delves into the construction and stability analysis of the state observer for the

electrolyte lithium concentration in lithium-ion batteries. The observation process is pivotal

for understanding the diffusion of lithium ions within the electrolyte.

Assumptions:

To simplify the formulation of the electrolyte observer, we take some assumptions. These

include the diffusion coefficient, De, now being uniformly bounded, allowing the decoupling

of its dependencies. A measurement of the lithium concentration, ce(xr, t), is assumed to be

available at a specific point in the separator, xr. The spatial profile of molar ionic fluxes,

j±n (x, t), is assumed to be accurately predicted by the model. These assumptions will be

rigorously discussed in the chapter.

Model Simplification: The Doyle-Fuller-Newman (DFN) model’s electrolyte diffusion

equation is simplified using the first assumption above while retaining its essential charac-

teristics. The simplified equation is:

ϵjec
j
e,t(x, t) =

∂

∂x

[
De(x)c

j
e,x(x, t) +

(1− t0c)

F
ije(x, t)

]

Formulation of the Electrolyte Concentration Observer: An observer is developed

based on the simplified electrolyte diffusion equation. This observer estimates the electrolyte

concentration using measurements at the reference electrode. The observer’s formulation

introduces an error injection term to account for discrepancies between actual and estimated

states.

Stability Analysis: The stability of the observer is crucial. A proposition establishes

that the error system is exponentially stable under certain conditions. The stability is
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analyzed using a candidate Lyapunov function, and conditions for stability are derived.

State Observer for the solid lithium concentration

Assumptions Similar to the electrolyte observer, the solid observer also requires some

assumptions for its formulation. The construction of state observers for solid electrodes is

based on the assumed availability of a voltage measurement at a reference electrode Vref(t),

and the assumption that the OCV curve of the electrodes U± is monotonically decreasing.

These assumptions will also be rigorously discussed in the chapter.

Observer Formulation The observer for the solid-phase lithium concentration integrates

the voltage error term, using the reference electrode’s voltage. The error system contrasts the

physical and observer systems, with radial coordinates transformed for notation simplicity.

Stability Analysis Stability is confirmed by defining a Lyapunov function and ensuring its

time derivative’s negative definiteness. The proposed observers, while not conserving total

lithium in electrodes, work with another observer to correct errors over time.

Validation of the observers with simulation results

Simulations using a simplified DFN model validate the observers’ efficacy. Under a 2C

discharge, the observers, even when initialized with incorrect values, converge rapidly to

true values. Using the UDDS drive cycle with a peak current of 6C, the observers effectively

track voltages and correct initial errors, proving their robustness.
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4.1 State Observer for the Electrolyte Lithium Con-

centration

This chapter is based on our journal publication:

Asif, Mian Mohammad Arsalan, and Federico Bribiesca-Argomedo. 2023.

“Electrochemical State Observer Design for Li-Ion Batteries With Heterogenous

Electrode Lithiation.” IEEE Control Systems Letters 7: 3199-3204.

https://doi.org/10.1109/LCSYS.2023.3304248.

In the aforementioned publication, we emphasized the significance of real-time reconstruc-

tion of electrochemical state information for achieving high-fidelity monitoring and optimal

performance in advanced battery management systems. We introduced a Partial Differential

Equation (PDE) based observer tailored for a simplified Doyle-Fuller-Newman electrochem-

ical model of a Li-ion battery. This observer is designed to reconstruct the internal states

of the battery using current and voltage measurements. Furthermore, we explored the po-

tential benefits of integrating new sensor technologies within the battery cell, with a specific

focus on the utilization of reference electrode and fiber-optic sensors. The stability of the ob-

server components was rigorously analyzed using Lyapunov techniques. Through simulation

results, we demonstrated the observer’s capability in spatially tracking the electrochemical

states of the original system. Additionally, we assessed the robustness of the observer in the

presence of noise in input measurements.

In this chapter, we delve deeper into the derivation of the observer and provide a more

comprehensive discussion of its contributions and implications. Note that from henceforth,

for the sake of notational simplicity and to streamline subsequent analyses, we represent

Deeff as De.

In this section, we will discuss the construction and stability analysis of the state observer

for 1) ce in the electrolyte, and 2) c±s in the electrode domains, including new measurements

available from a reference electrode and a potential Li concentration sensor [5].

The process of observing the state of the electrolyte lithium concentration is a crucial

aspect in understanding the behavior of lithium-ion batteries. This observation is particularly

significant when considering the diffusion of lithium ions within the electrolyte. To derive
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the observer for the electrolyte concentration, certain assumptions are made to simplify the

complex nature of the system.

4.1.1 Assumptions

Assumption 6. The diffusion coefficient, denoted as De, is considered to be constant in

time and uniformly bounded in the spatial variable x . This means that there exists a mini-

mum positive value, De, and a maximum value, De, such that for any concentration cje, the

diffusion coefficient lies between these two bounds. In the remainder of the Chapter, we will

consider De as a function of spatial variable x [5].

Assumption 7. A measurement of the lithium concentration in the electrolyte, denoted as

ce(xr, t), is available at a specific point in the separator, xr. This assumption is crucial as

it provides a reference point for the observer. By having a known concentration at a specific

location, it becomes feasible to estimate the concentration in other parts of the system [5].

Assumption 8. The spatial profile of molar ionic fluxes, represented by j±n (x, t), is assumed

to be accurately predicted by the model without any need for correction. This implies that the

ionic current profile, i±e (x, t), is known. This assumption decouples the stability analysis of

the electrolyte observer from that of the electrode observer. However, it’s worth noting that

this is a limitation of the current design. The stability of the interconnected system is only

demonstrated in simulation results. This limitation is not unique to this approach; other

methodologies in the literature, such as the one cited as [21], also make similar assumptions

[5].

While these sensors may not be commonly found in current Li-ion cells, they are actively

researched. In particular, this work is part of the ongoing European INSTABAT project

[28, 205], which focuses on the development of new sensor technologies, including these two

specific sensors. The choice of these assumptions was driven by the sensors expected to be

developed in the course of this project (and integrated into a Proof-of-Concept platform).

The main objective of the current work is to prepare adequate algorithms to exploit signals

coming from these sensors and integrate them into the BMS system. This is a necessary

step for any techno-economic feasibility study of the sensors. Several works demonstrate
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the existing research of these sensors [214–218]. This helps substantiate the feasibility of

Assumption 7 and the upcoming Assumption 9. More precisely, one of the newest sensing

technologies currently under development uses optical sensors to reconstruct the lithium

concentration [214].

4.1.2 Model Simplification

In the context of the Doyle-Fuller-Newman (DFN) model, the electrolyte diffusion equation

plays a pivotal role in characterizing the behavior of lithium-ion batteries. To facilitate a

more tractable analysis and further investigations, it is often beneficial to derive a simplified

representation of this equation [5].

Given the equation (3.2) and under the constraints imposed by Assumption 6, we can

derive a more concise expression for the electrolyte diffusion. This derivation aims to re-

tain the essential characteristics of the system while reducing its complexity for analytical

purposes.

ϵjec
j
e,t(x, t) =

∂

∂x

[
De(x)c

j
e,x(x, t) +

(1− t0c)

F
ije(x, t)

]
(4.1)

It is worth noting that the boundary conditions corresponding to this equation remain

analogous to those of the original model.

It is crucial to understand that while simplifications are made for analytical convenience,

care is taken to ensure that the essence and critical dynamics of the original system are

preserved. This refined model serves as a foundation for further studies and investigations

into the intricate behaviors of lithium-ion batteries.

4.1.3 Formulation of the Electrolyte Concentration Observer

The study of lithium-ion batteries, especially in the context of the Doyle-Fuller-Newman

(DFN) model, necessitates the development of tools and methodologies to monitor and

predict their behavior. One such tool is the observer, which allows for the estimation of

system states based on available measurements and a mathematical model of the system.
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Building upon the foundation laid by the simplified electrolyte diffusion equation, as

articulated in Equation (4.1), we endeavor to design an observer that capitalizes on the elec-

trolyte concentration measurements at the reference electrode. This approach is motivated

by the potential benefits of having real-time estimates of the electrolyte concentration, which

can be instrumental in optimizing battery performance and longevity.

Incorporating Assumption 7, the formulation of the electrolyte concentration observer

is enriched by introducing an error injection term (P [ce(xr, t)− ĉe(xr, t)]) into the diffusion

equation. This term serves to account for discrepancies between the actual and estimated

states, thereby enhancing the accuracy of the observer.

ϵjeĉ
j
e,t(x, t) =

∂

∂x

[
De (x) ĉ

j
e,x(x, t) +

1− t0c
F

ije(x, t)

]
− P [ce(xr, t)− ĉe(xr, t)]

(4.2)

where xr ∈ [0sep, lsep] denotes the spatial location of the reference electrode.

To further elucidate the performance of the observer, we define the error system as

the disparity between the physical system, represented by (3.2), and the observer system

depicted in (4.2). Let u(x)
.
= ce(x, t)− ĉe(x, t) be the error in the electrolyte concentration

estimation. Under Assumptions 6 and 7, the diffusion equation governing the dynamics of

this error system can be articulated as:

ϵjeut(x) = [De (x)ux(x)]x + Pu(xr) (4.3)

This equation is accompanied by boundary conditions that mirror those of the original

system, as delineated in Section 3.3.

For the sake of analytical tractability and notational brevity, we have opted to suppress

the explicit time-dependence of the variables u(x). However, it is imperative to recognize

that these variables, along with their derivatives, are intrinsically time-dependent, and this

temporal aspect plays a significant role in the dynamics of the system.
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4.1.4 Stability Analysis

A critical aspect of any observer design is ensuring its stability. For the given system, a

proposition is presented that establishes the conditions under which the error system is

stable [5].

Proposition 1. ∀P < 0, the origin of the error system in (4.3) is exponentially stable in

the H1(0, L
T ) norm if Assumptions 6 - 8 hold [5].

Proof. Let us define a candidate Lyapunov function VT = V1 + βV2 where

V1(u(·, t))
.
=
1

2

∫ LT

0

ϵeu
2(x)dx,

V2(u(·, t))
.
=
1

2

∫ LT

0

[
ϵeDe(x)u

2
x(x)

]
dx,

(4.4)

ϵe > 0 varies with regions j ∈ {−, sep,+}, and β > 0 is chosen later. Also, from As-

sumption 6, De ≥ De ≥ 0 and, therefore there exists a positive constant αV such that

VT ≥ αV ||u||2H1(0,LT ). By differentiating V1 with respect to time and using the error system

equations, the time derivative is obtained:

V̇1 =

∫ LT

0

ϵeut(x)u(x)dx

By substituting Equation (4.3) into the integral on the right-hand side of the equation, we

obtain:

V̇1 =

∫ LT

0

∂

∂x
[De(x)ux(x)]u(x)dx+

∫ LT

0

Pu(xr)u(x)dx (4.5)

Integration by parts on the first term on the right-hand side can be performed to give:

V̇1 = −
∫ LT

0

De(x)u
2
x(x)dx+

∫ LT

0

Pu(xr)u(x)dx

≤ −De

[∫ xr

0

u2
x(x)dx+

∫ LT

xr

u2
x(x)dx

]
+

∫ LT

0

Pu(xr)u(x)dx

Lets us now define for the negative domain, the following relationship through integration
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by parts:

∫ xr

0

u2(x)dx =u2(xr)xr − 2

∫ xr

0

xu(x)ux(x)dx

Using Young’s Inequality, the right-hand side of the equation becomes:

∫ xr

0

u2(x)dx ≤u2(xr)xr + A1

∫ xr

0

xu2(x)dx+
1

A1

∫ xr

0

xu2
x(x)dx

≤xr

[
u2(xr) + A1

∫ xr

0

u2(x)dx+
1

A1

∫ xr

0

u2
x(x)dx

]

for any A1 > 0. Rearranging the above inequality and writing xr ≤ MA where MA =

max{xr, L
T − xr} yields:

−
∫ xr

0

u2
x(x)dx ≤A1u

2(xr) +
A2

1MA − A1

MA

∫ xr

0

u2(x)dx (4.6)

Following a similar process on the positive domain yields:

−
∫ LT

xr

u2
xdx ≤ A2u

2(xr) +
A2

2(MA)− A2

MA

∫ LT

xr

u2dx (4.7)

for any A2 > 0. Now adding (4.6) and (4.7), defining A
.
= A1 = A2 > 0, and then rearranging

the inequality yields

−
∫ LT

0

u2
xdx ≤−

[
A− A2MA

MA

] ∫ LT

0

u2dx+ 2Au2(xr) (4.8)

We choose A ∈ (0, 1/MA) to ensure that (A− A2MA) > 0. By utilizing equation (4.8) with

V1(t) ≤ (ϵ̄e/2)
∫ LT

0
u2(x)dx, the resulting expression for V̇1 is:

V̇1 ≤−DeκA

∫ LT

0

u2(x)dx+ 2DeAu
2(xr) +

∫ LT

0

Pu(xr)u(x)dx

≤− 2De

ϵ̄e
κAV1 + 2DeAu

2(xr) +

∫ LT

0

Pu(xr)u(x)dx

where κA = (A − A2MA)/MA, and ϵ̄e is the maximum value of ϵe. Using the following
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relationships:

∫ LT

xr

Pu(xr)u(x)dx =Pu(xr)

[
[LT − xr]u(xr) +

∫ LT

xr

∫ x

xr

ux(s)dsdx

]
∫ xr

0

Pu(xr)u(x)dx =Pu(xr)

[
xru(xr) +

∫ xr

0

∫ x

xr

ux(s)dsdx

]

on the last term on the right-hand side of the inequality, the candidate Lyapunov function

V1 can be expressed as

V̇1 ≤− 2De

ϵ̄e
κAV1 + 2DeAu

2(xr) + Pu2(xr)(L
T )

+

∫ LT

0

Pu(xr)

∫ x

xr

ux(s)dsdx

By employing Young’s and Cauchy-Schwarz Inequalities on the fourth term of the right-hand

side of the above inequality, we obtain

V̇1 ≤− 2De

ϵ̄e
κBV1(t) +

LT

2γ
|x− xr|

∫ max{xr,x}

min{xr,x}
u2
x(s)ds

+ u2(xr)

[
2DeA+ PLT +

P 2LT

2
γ

]
where γ > 0. We now bound the integral and absolute coefficient of the second term on the

right-hand side with the interval [0, LT ] to obtain

V̇1 ≤− 2De

ϵ̄e
κBV1(t) +

(LT )2

2γ

∫ LT

0

u2
x(x)dx

+ u2(xr)

[
2DeA+ PLT +

P 2LT

2
γ

]

We now differentiate V2 with respect to time and utilize the expression in (4.3) to obtain:

V̇2 =

∫ LT

0

(De(x)ux(x) [De(x)ux(x)]xx) dx

126
Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0117/these.pdf 
© [M.M.A. Asif], [2023], INSA Lyon, tous droits réservés



Integration by parts on the right-hand side can be performed to yield:

V̇2 = −
∫ LT

0

∂

∂x
[De(x)ux(x)]

2 dx

Utilizing Poincare’s Inequality, writing the term on the right-hand side of the inequality

as the sum of two elements, and introducing the inequality V2(t) ≤ (ϵ̄e/2)
∫ LT

0
De(x)u

2
xdx,

allows us to rewrite the above inequality as

V̇2 ≤ − α

4LT 2D
2
e

∫ LT

0

u2
x(x)dx− 1− α

4LT 2 De

∫ LT

0

De(x)u
2
x(x)dx

≤ − α

4LT 2D
2
e

∫ LT

0

u2
x(x)dx− 1− α

2ϵ̄eLT 2DeV2

where 0 < α < 1. We can now write the Lyapunov function VT and its time derivative as

VT (t) =V1(t) + βV2(t)

V̇T (t) =V̇1(t) + βV̇2(t)

≤− 2De

ϵ̄e
κAV1(t) +

[
LT 2

2γ
− αD2

e

4LT 2β

]∫ LT

0

u2
x(x)dx

− 1− α

2ϵ̄eLT 2βDeV2(t) + u2(xr)

[
2DeA+ PLT (1 +

P

2
γ)

]
≤− De

ϵ̄e
min

{
2κA,

1− α

2L̄T 2

}
VT (t) +

[
LT 2

2γ
− αD2

e

4LT 2β

]

×
∫ LT

0

u2
x(x)dx+ u2(xr)

[
2DeA+ PLT +

P 2LT

2
γ

]

In order to guarantee the exponential stability of the solution, it is necessary to satisfy the

following constraints:

2LT 4 − αD2
eβγ ≤ 0,

4DeA+ 2PLT + P 2LTγ ≤ 0.
(4.9)
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With the choice of parameters:

γ = − 1

P
,

0 < A ≤ min

{
LT

4γDe

,
1

MA

}
,

β ≥ 2(LT )4

γαD2
e

,

the constraints in (4.9) are satisfied. This proves the exponential stability of the electrolyte

state observer system.
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4.2 State observer for the solid lithium concentration

using voltage error injection

4.2.1 Assumptions

In this subsection, we delve into the intricacies of constructing state observers for solid

electrodes, leveraging the voltage available at the reference electrode [5]. The foundation of

this construction is built upon the following assumptions:

Assumption 9. A voltage measurement at a reference electrode Vref (t) is available. This

allows for independent estimations of OCV potentials U± for each electrode [5].

Assumption 10. The OCV curve of the electrodes U± is assumed to be uniformly mono-

tonically decreasing in such a way that, defining f(a, b)
.
= U(a) − U(a − b), the following

property is satisfied:

∃k1, k2 < 0 s.t. ∀a, b k1b
2 ≤ f(a, b)b ≤ k2b

2 (4.10)

Note that the proofs can be adapted without problem if the function is monotonically increas-

ing, requiring only a change of sign in the feedback gain [5].

4.2.2 Observer Formulation

Using Assumption 9, the solid-phase lithium concentration observer is formulated by inject-

ing the voltage error term [5]:

ĉ±s,t(x, r, t) =
1

r2
∂

∂r

[
D±

s r
2ĉ±s,r

]
ĉ±s,r(x, 0, t) = 0

ĉ±s,r(x,R
−
s , t) =− j±n (x, t)

D±
s

− g±0
[
U(c±ss(x, t))− U(ĉ±ss(x, t))

]
(4.11)

where c±ss(x, t)
.
= c±s (x,R

±
s , t) . Let us define the error system as the physical system repre-

sented by (3.1) and (3.11) minus the observer system (4.11), once again using Assumption
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8 to decouple the stability analysis of both observers:

zt(r, t) =
1

r2
∂

∂r

[
Dsr

2zr(r, t)
]

zr(R
±
s , t) =g0

[
U(z̄(R±

s , t))− U(ẑ(R±
s , t))

]
, zr(0, t) = 0.

where z(r, t)
.
= c±s (x, r, t)− ĉ±s (x, r, t), ẑ

.
= ĉ±s (x, r, t), z̄

.
= c±s (x, r, t), and the dependence on

x has been suppressed [5]. To arrive at this error injection term, at particular points x±, the

voltage equations in (3.38) are used to write [5]:

U(ĉ−ss(x
−, t)) = −V̂ref(t) + ϕ̂e(x

r, t)− ϕ̂e(x
−, t)

− FR−
f ĵ

−
n (x

−, t)− η̂−(x−, t) + ϕ̂−
s (x

−, t)

U(ĉ+ss(x
+, t)) = V̂ (t)− V̂ref(t)− ϕ̂e(x

+, t) + ϕ̂e(x
r, t)− ϕ̂+

s (L
T , t)

+ ϕ̂+
s (x

+, t) + FR+
f ĵ

+
n (x

+, t) + η̂+(x+, t)

(4.12)

Assumption 8 implies in particular that ϕ±
s and j±n are identical in both the estimated and

real systems, and since the electrolyte subsystem observer converges exponentially to the

actual value, we approximate the terms necessary for the error injection term using the

measured voltages as follows [5]:

U(c−ss(x
−, t))− U(ĉ−ss(x

−, t)) ≈ Vref (t)− V̂ref (t)

U(c+ss(x
+, t))− U(ĉ+ss(x

+, t)) ≈ [V (t)− Vref (t)]− [V̂ (t)− V̂ref (t)]
(4.13)

Using Assumption 10, we can express the error system in a compact form as:

zt(r, t) =
1

r2
∂

∂r

[
Dsr

2zr(r, t)
]

zr(R
±
s , t) = g0f(z̄(R

±
s , t), z(R

±
s , t)), zr(0, t) = 0

The radial coordinates are now transformed via normalization with the scaled value of R±
s

such that r̄ = r/R±
s . This simplifies the notation by allowing us to drop the bars over the
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radial coordinates, resulting in the final expression for the error system [5]:

zt(r, t) =
1

R2
sr

2

∂

∂r

[
Dsr

2zr(r, t)
]

(4.14)

zr(1, t) = Rsg0f(z̄(1, t), z(1, t)), zr(0, t) = 0 (4.15)

4.2.3 Stability Analysis

The proof commences with the definition of a candidate Lyapunov function. The time deriva-

tive of this function is computed, and by employing integration by parts and substituting

appropriate expressions, we derive certain inequalities [5]. Utilizing the properties from As-

sumption 10, we further refine these inequalities. The choice of boundary gain ensures the

negative definiteness of the time derivative of the Lyapunov function, thereby establishing the

exponential stability of the electrode observers. The detailed mathematical manipulations

and transformations are presented in the proposition and it’s proof below .

Proposition 2. For α ∈ (0, 1), let g0 be chosen such that 0 < g0 ≤ −3/[2k2αRs] with k2

defined in Assumption 10, then the origin of the error system given by Equations (4.14)-(4.15)

is exponentially stable in the L2(S) norm, where S = {r ∈ R3| ||r|| ≤ 1} if Assumptions 8 -

10 hold [5].

Proof. Let us define a candidate Lyapunov function [5]:

Vs =
1

2

∫ 1

0

R2
s

Ds

r2z2(r, t)dr

There exists some positive constant αVs > 0 such that Vs ≥ αVs||z||2L2(S). We now compute

the time derivative

V̇s =

∫ 1

0

∂

∂r

[
r2zr(r, t)

]
z(r, t)dr

By expanding the right-hand side of the equation, utilizing the method of integration by
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parts, and substituting zr(1, t) with the expression in Equation (4.15), we obtain:

V̇s =z(1, t)Rsg0f (z̄(1, t), z(1, t))−
∫ 1

0

r2zr
2(r, t)dr

Using the properties defined in Assumption 10, we are able to write:

V̇s ≤k2Rsg0z
2(1, t)−

∫ 1

0

r2zr
2(r, t)dr

Since k2 is negative, we define a strictly positive constant ks = −k2Rsg0 such that g0 > 0.

We then split the first term on the right-hand side of the inequality into two parts to obtain:

V̇s ≤ks
[
−αz2(1, t)− (1− α)z2(1, t)

]
−
∫ 1

0

r2zr
2(r, t)dr. (4.16)

where 0 < α < 1. Let us now manipulate the term −ksαz
2(1, t) through a change of

variables:

w(r, t) = z(r, t)r

wr(r, t) = z(r, t) + rzr(r, t)

which allows us to write −z2(1, t) = −w2(1, t). We can now use Poincare’s Inequality to

write

−z2(1, t) ≤ −1

2

∫ 1

0

w2(r, t)dr + 2

∫ 1

0

wr
2(r, t)dr

≤ −Ds

R2
s

Vs + 2

∫ 1

0

(z(r, t) + rzr(r, t))
2dr

Through integration by parts,
∫ 1

0
(2rz(r, t)zr(r, t))dr = z2(1, t) −

∫ 1

0
z2(r, t)dr, which allows

us to write

−z2(1, t) ≤ −DsVs

3R2
s

+
2

3

∫ 1

0

r2zr
2(r, t)dr (4.17)

As the coefficient ksα is strictly positive, we substitute the result of the inequality (4.17)

132
Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0117/these.pdf 
© [M.M.A. Asif], [2023], INSA Lyon, tous droits réservés



into the main Lyapunov inequality (4.16), and combine common terms to write:

V̇s ≤− ks
αDs

3R2
s

Vs +

[
2ksα

3
− 1

] ∫ 1

0

r2zr
2(r, t)dr − (1− α)ksz

2(1, t)

With the choice of boundary gain 0 < g0 ≤ −3/[2k2αRs], the time derivative of the candidate

Lyapunov function is negative definite which proves the exponential stability of the electrode

observers. Using the maximum value of g0, we can further simplify the inequality to:

V̇s ≤ − Ds

2R2
s

Vs −
3(1− α)

2α
z2(1, t)

The proposed electrode observers are non-conservative; they do not conserve the total

amount of lithium in the electrodes. They are used in conjunction with the conservative

observer proposed in [21] at a larger time scale. This enables the observer system to gradually

correct an error in solid-phase lithium over time. The overall structure of the combined

PDE-based observers for the electrolyte and electrode lithium concentrations is illustrated

in Figure 4.1.
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Figure 4.1: Observer structure with voltage error injection from [5]
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4.3 Validation of the observers with simulation results

In this section, a comprehensive simulation analysis using a finite volume based simplified

DFN model is conducted to evaluate the efficacy of the proposed observers for the electrolyte

and electrodes.

Note that, for observer validation, an initial configuration is employed wherein the ob-

server gain is set to a high value. This deliberate choice is made with the objective of

facilitating rapid convergence of the system to its actual states, with a specific focus on

css(x, t), a key determinant of output voltages. Following the initialization phase, character-

ized by the time until application of current in the simulation, the observer gains are reduced

by a magnitude of 10. This strategic adjustment is intended to diminish the influence of

observer injection on the intricate internal diffusion processes within the solid particle layers,

thereby promoting a more ‘natural’ emulation of the system.

4.3.1 Constant Discharge Scenario at 2C Current

To assess the efficacy of the two observers under a constant current scenario, a 2C discharge

is employed. The data provided to the observers encompass voltage measurements at the

reference electrode and the collectors, current, and temperature. The observers are initialized

with incorrect values of SOC and total moles of lithium in the solid and electrolyte phases,

5% and 25%, respectively. It’s worth noting that a time step of one second was used in the

computation of these results, and higher precision can be achieved with finer discretizations.

A constant current profile for the 2C discharge cycle is used with a step at t = 100

seconds. The constant 2C current is a typical scenario for many applications, and it serves

as a benchmark for evaluating the observer’s performance.

Figure 4.3(a) and 4.3(b) showcase that the Voltage Error Injection (VEI) observer rapidly

converges to the true voltages of the positive and negative domains, with the RMS of the

error presented in Table 4.1. The overall voltage is the summation of the two plots.

error (mV) V2C(t) Vref 2C(t) V2C(t)− Vref 2C(t)
VEI 0.344 0.1149 0.4149

Table 4.1: RMS error of the voltages for 2C scenario
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Figure 4.2: Error in Voltages with the 2C constant discharge

The observer promptly tracks c±ss 2C(x, t) and rectifies the initial error in total moles of

lithium in the solid phase NLs 2C , as indicated in Table 4.2. The error in c±ss 2C(x, t) is

spatially averaged.

error (%) c−ss 2C c+ss 2C NLs 2C

VEI 0.3010 0.2340 0.0041

Table 4.2: RMS value of percentage errors in c±ss 2C and NLs 2C

The convergence of the electrolyte observer under the 2C scenario is also noteworthy.

After an initialization period of 100 seconds, the observer rapidly converges to the actual

value and total moles of lithium in the electrolyte (NLe 2C), with an RMS percentage error
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of only 0.0265 and 0.0366, respectively. This further underscores the reliability and precision

of the proposed electrolyte observer in tracking the system’s state under a constant current

scenario.

Note that the reasons for the overshoot of the observers include the initial higher gain and

the time discretization. A finer temporal discretization would result in reduced overshoots

and increased accuracy of results at the exchange of computational cost.
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Figure 4.3: Voltages with the 2C constant discharge
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4.3.2 Electric Vehicle charge/discharge cycle

To evaluate the performance of the two observers under varying operating conditions, the

UDDS drive cycle which features a peak current of 6C is utilized [5]. The data provided

to the observers include the voltage readings at the reference electrode and the collectors,

current, and temperature.The observers are initialized with incorrect values of SOC and total

moles of lithium in the solid and electrolyte phases, 5% and 25%, respectively. Note that a

time step of one second was used in the computation of these results and higher accuracy

can be achieved with smaller discretizations.

Figure 4.4 depicts the current profile of the UDDS drive cycle. The peak of 6-C is higher

than those reported in previous studies, which demonstrates the performance of the observer

in extreme conditions. Figure 4.5(b) and 4.5(c) demonstrate that the Voltage Error Injection

0 200 400 600 800 1000 1200 1400 1600
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C
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a
te

Figure 4.4: Current profile of the UDDS cycle from [5]

(VEI) observer quickly converges to the true voltages of the positive and negative domains

with RMS of the error shown in Table 4.3. The total voltage is the sum of the two plots. This

result is an improvement of the result in [21], wherein the utilization of a 4C UDDS current
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yielded an RMS error of 7.4 mV. The observer quickly tracks c±ss(x, t) and corrects the initial

error (mV) V (t) Vref (t) V (t)− Vref (t)
VEI 5.4502 3.0438 2.8405

VEI (5mV noise) 6.9501 4.1694 4.2133
VEI (10mV noise) 10.0511 6.5705 6.7245

Table 4.3: RMS error of the voltages from [5]

error in total moles of lithium in the solid phase NLs as shown in Table 4.4. Note that the

error in c±ss(x, t) is spatially averaged [5]. Figure 4.6 displays the normalised c±s (x, r, t) and

z±(x, r, t), the corresponding error in c±s (x, r, t), at two different time instances: t0 = 0 and

t∗ = 594 seconds, where the current reaches its maximum during the simulation. This figure

shows that the observer system is able to estimate the original system on a spatial level [5].

Under the same initial conditions, the robustness of the observer is now tested against

voltage noise at the three measurement points of measurement: both collectors and the

reference electrode. VEI (5mV noise) signifies a cumulative voltage noise level of 15mV. The

RMS values of the voltage and spatially averaged error in c±ss(x, t) are presented in Tables

4.3 and 4.4, respectively. The observer is able to handle large noise in measurement with

little loss in accuracy.

error (%) c−ss c+ss NLs

VEI 0.4717 0.3346 0.0089
VEI (5mV noise) 0.4673 0.3424 0.1657
VEI (10mV noise) 0.5275 0.3791 0.2067

Table 4.4: RMS value of percentage errors in c±ss and NLs from [5]

The convergence of the electrolyte observer is now discussed. Simulation results show

that after initialization of 200 seconds, the observer quickly converges to the actual value

and total moles of lithium in the electrolyte (NLe) as shown in Figure 4.8, with an RMS

percentage error of only 0.0269 and 0.0370, respectively. These results confirm the proposed

electrolyte observer’s reliability and accuracy in tracking the system’s state [5].

Again, note that the reasons for the overshoot of the observers include the initial higher

gain and the time discretization. Hence, a finer temporal discretization would result in

reduced overshoots and increased accuracy of results at the exchange of computational cost.
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Figure 4.5: Voltages with the UDDS Cycle from [5]
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4.4 Conclusion of the Chapter

This chapter has delved into the development and validation of state observers for both elec-

trolyte and solid lithium concentrations in battery systems, each with its unique formulation,

assumptions, and stability analysis.

The observer for the electrolyte lithium concentration was formulated under certain as-

sumptions and model simplifications. The stability analysis was conducted through the

definition of a candidate Lyapunov function, and by employing integration by parts and

substituting appropriate expressions, certain inequalities were derived. The choice of bound-

ary gain ensured the negative definiteness of the time derivative of the Lyapunov function,

establishing the exponential stability of the electrode observers.

The observer for the solid lithium concentration was developed with a focus on utilizing

Voltage Error Injection (VEI) as a mechanism to enhance convergence to the true voltages

of the positive and negative domains. Assumptions and model simplification were crucial in

ensuring the negative definiteness of the time derivative of the Lyapunov function, thereby

proving the exponential stability of the electrode observers [5]. The overall structure of the

dual observers was proposed which showed the solid and electrolyte observers working in

unison to track the internal states of the battery.

The observers were validated under various scenarios, including a 2C discharge and a

UDDS profile, to evaluate their performance under different operating conditions. In the 2C

discharge scenario, the observers were initialized with incorrect values of SOC and total moles

of lithium in the solid and electrolyte phases, and yet, they demonstrated rapid convergence

to the true voltages of the positive and negative domains, with minimal RMS error [5].

Under the UDDS profile, even with a peak current of 6C, the observers showcased robust

performance, effectively tracking the system state and correcting initial errors in the total

moles of lithium in both the solid and electrolyte phases. The observer system was able to

estimate the original system on a spatial level, even under varying conditions, affirming its

reliability and accuracy in tracking the system’s state [5].

In summary, the developed observers have demonstrated robust and reliable performance

in estimating the states of lithium concentrations in both the electrolyte and solid phases of
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battery systems under various conditions and scenarios. This chapter has provided a solid

foundation for further exploration and development of state observers in battery manage-

ment systems, contributing to the overarching goal of enhancing the safety, reliability, and

performance of battery systems in practical applications.
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Summary of the Chapter

This chapter delves into the advanced predictions made by Battery Management Systems

(BMS) and the role of the observer in state estimations. The primary focus is on the key

battery states: State of Charge (SOC), State of Health (SOH), State of Power (SOP), and

the identification of Lithium Plating. The chapter elucidates the integration of the MPMe

model and state observers with novel sensors to enhance the accuracy of BMS predictions.

The proposed BMS algorithm’s architecture is presented, emphasizing the synergy between

various components. Detailed discussions on SOC and SOH estimations highlight their

significance, methodologies, and the precision of the BMS algorithm. The phenomenon

of lithium plating, its mechanism, implications, and management are explored in-depth,

emphasizing its challenges and strategies for effective management. Lastly, the chapter

presents the intricacies of SOP estimation, its importance, and the factors influencing its

prediction.
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5.1 Battery Management System Predictions

This chapter is derived from our work presented at the Battery 2030+ 3rd Annual Conference:

Asif, Mian Mohammad Arsalan, Federico Bribiesca-Argomedo, and Vincent

Heiries. 2023. “Real time estimation of electrochemical states in Li-ion batter-

ies and exploitation in BMS algorithms.” Presented at the Battery 2030+ 3rd

Annual Conference.

In the referenced work [6], we introduced an electrochemical observer, drawing inspiration

from [21], and juxtaposed it with a higher order discretization of the Doyle–Fuller–Newman

Model as detailed in [50]. We further explored innovative approaches on how this observer

can be harnessed by the latest BMS SOX indicators. Moving beyond the realm of enhanced

SOC estimation, we integrated the physics-based model into an estimation algorithm specif-

ically designed to determine the power capability of the battery cell. This integration is

pivotal in ensuring that the battery operates within its safe regions, thereby preventing any

potential deviations from its safe operating area. The estimation of the battery’s maximum

available power is achieved by formulating and subsequently solving a constrained nonlinear

optimization problem.

In this chapter, we will delve deeper into Battery Management Systems, provide a more

comprehensive discussion on SOX predictors, and elucidate the broader implications of our

findings.

Battery Management Systems (BMS) play a pivotal role in ensuring the optimal perfor-

mance, safety, and longevity of lithium-ion batteries. A cornerstone of an effective BMS is

its ability to accurately predict key battery states, which are instrumental in making real-

time decisions that influence battery operation and health. In this section, we delve into the

intricacies of using the observer to derive these critical state predictions for the BMS.

The primary states of interest, which serve as the bedrock of our BMS predictive frame-

work, encompass:

1. State of Charge (SOC): A measure of the current battery capacity relative to its max-

imum capacity.
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2. State of Health (SOH): An indicator of the overall condition and health of the battery,

reflecting its current state compared to a fresh, undegraded battery.

3. State of Power (SOP): A metric that quantifies the battery’s ability to deliver or accept

power under specific conditions.

4. Identification of Lithium Plating: Recognizing the onset and progression of lithium

plating within the battery, which can have significant implications for battery perfor-

mance and safety.

Building upon the foundation laid by the previously introduced MPMe model and the

state observers tailored for novel sensors, this section elucidates how spatially heterogeneous

information, gleaned from these tools, can be harnessed to refine the accuracy of the afore-

mentioned BMS predictors. Such an approach not only enhances the precision of state

estimations but also offers deeper insights into the battery’s internal dynamics, facilitating

more informed BMS decision-making.

Figure 5.1 shows the input current for the BMS simulations. Figure 5.2 provides a

comprehensive overview of the proposed BMS algorithm’s architecture. It delineates the

interplay between the inputs, the underlying battery model, the state observer, and the

resultant BMS predictors. This holistic framework underscores the synergy between various

components, emphasizing the importance of each element in achieving accurate and reliable

BMS predictions.
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Figure 5.1: Current profile used in BMS predictions from [6].
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Figure 5.2: Schematic Representation of the Proposed BMS Algorithm from [6]
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5.2 State of Charge Estimation

The State of Charge (SOC) is a pivotal parameter in battery management, representing the

current charge level of a battery in relation to its maximum capacity. In essence, it provides

a quantifiable measure of the remaining energy in a battery, expressed as a percentage of the

battery’s total capacity.

A more technical approach to predicting the SOC involves the evaluation of N±
Ls(t),

which denotes the total cyclable lithium present inside the individual cells of the battery.

This metric serves as a reliable indicator of the battery’s state, offering insights into its

charge status and overall health.

To ensure precision in SOC estimation, the Battery Management System (BMS) Algo-

rithm is employed. Notably, the viability of this algorithm is shown by its accuracy; the root

mean square (RMS) error in the estimation of N±
Ls(t) is remarkably low, registering at less

than 0.04%. Such a minimal error margin underscores the robustness and reliability of the

BMS Algorithm in SOC prediction.
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Figure 5.3: Error inN±
Ls(t) showcasing the accuracy of the BMS Algorithm in SOC estimation

from [6].

The accompanying Figure 5.3 provides a visual representation of the error in N±
Ls(t),

further emphasizing the precision of the BMS Algorithm in estimating the SOC.
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Figure 5.4: SOC estimation

It’s important to note that the presented results stem from a comparison between two

simulations. The full-scale DFN simulation is more finely discretized in both space and time,

offering a detailed representation. However, when compared with experimental results, the

errors are expected to be higher. Factors that would affect the accuracy of SOC prediction

would include the accuracy of the estimated parameters like diffusion coefficients, conduc-

tivities, and the OCV curve. Also, the sensor noise is a key factor that needs to be taken

into account.
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5.3 State of Health Estimation

The State of Health (SOH) is a fundamental metric in battery management systems, offering

insights into the overall condition and longevity of a battery. It quantifies the level of

degradation a battery has undergone since its inception, providing a clear indication of its

remaining useful life. In essence, the SOH serves as a health index, enabling users and

systems to make informed decisions regarding battery usage, maintenance, and replacement.

The BMS Algorithm approach to predicting the SOH involves the evaluation of NLs(t),

which represents the total amount of cyclable lithium available in the battery’s electrodes.

Initially, the algorithm establishes a baseline, setting the SOH to 100%, which corresponds

to a new battery. As the battery undergoes charge and discharge cycles, the BMS Algorithm

tracks changes in NLs(t), reflecting the battery’s evolving state.

The prediction of SOH is further refined using c±s (x, r, t), a parameter that accounts for

the concentration of lithium ions across the electrodes. However, it’s crucial to ensure the

correct initialization of the total amount of lithium in the system, as an incorrect initialization

can lead to deviations in the SOH estimation.

The robustness and precision of the BMS Algorithm in SOH estimation are underscored

by its accuracy metrics. Specifically, the RMS error in the estimation of NLs(t) is remarkably

low, registering at less than 2e−4%. Such a minimal error margin emphasizes the algorithm’s

capability to provide reliable and consistent SOH predictions. However, it is important to

note that this is again a comparison between two simulations, and actual experimental results

would vary. Experimental validation of these methods remains a perspective in the short

term, based on the advancement of the INSTABAT project [28,29].

Figure 5.5 offers a visual representation of the error in NLs(t), further emphasizing the

BMS Algorithm’s reliability in estimating the SOH. Such accurate estimations are pivotal

for ensuring the safe and efficient operation of batteries, especially in critical applications

where battery reliability is paramount.

In conclusion, the SOH serves as a vital metric, encapsulating the health and degradation

status of batteries. Accurate SOH estimations, facilitated by advanced algorithms, pave the

way for optimized battery usage, extended battery life, and enhanced safety protocols.
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Figure 5.5: Error inNLs(t) illustrating the precision of the BMS Algorithm in SOH estimation
from [6].

5.3.1 Lithium Plating Management

Lithium plating, a phenomenon that has garnered significant attention in the realm of

lithium-ion battery research, poses challenges to both the performance and safety of these

energy storage systems [177]. This phenomenon is characterized by the deposition of metallic

lithium on the anode surface, a process that deviates from the conventional intercalation of

lithium ions into the anode’s crystal structure [19].

1. Governing Equations: The phenomenon of lithium plating can be mathematically

represented through a set of equations that capture the electrochemical dynamics at

play:

η−li (x, t) = ϕ−
s (x, t)− ϕ−

e (x, t)

i−Li(x, t) = i−0

[
e

αη−F
RT − e

−(1−α)η−F
RT

]
, for η− < 0

i−t,e(x, t) = i−e (x, t) + i−Li(x, t)

(5.1)

These equations, derived from fundamental electrochemical principles, offer insights
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into the conditions under which lithium plating occurs and its subsequent effects on

the battery’s performance [177,187,219].

2. Role of the BMS: With a comprehensive understanding of the lithium plating mech-

anism and its associated reactions, the BMS can make informed decisions to optimize

various facets of battery performance. Specifically, the BMS can:

(a) Enhance the accuracy of SOH and SOC estimations, thereby providing a more

realistic assessment of the battery’s operational state [55,177].

(b) Improve fast charging capabilities by monitoring and mitigating conditions con-

ducive to lithium plating [177,220].

(c) Bolster safety measures by preemptively identifying and managing scenarios that

might lead to lithium plating and its associated risks [220].

Figure 5.6 shows the spatially averaged η−li (x, t) over time from Equation (5.1). This

shows that when η−li (x, t) is negative, lithium plating occurs in those areas. It is important

to note that these are areas where there is fast charging occurring.

Figure 5.6: Lithium Plating Zone from [6]

Figure 5.7 illustrates η−li (x, t) over space x, at a specific time instance when the charging

is at its peak. A notable observation from the figure is the heightened occurrence of lithium

plating near the collectors compared to regions closer to the separator. This spatial varia-
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tion in lithium plating can be attributed to various factors, including current distribution,

electrode morphology, and electrolyte concentration gradients [6].
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Figure 5.7: Lithium Plating Zone over space from [6]

In conclusion, lithium plating, while posing challenges to lithium-ion battery performance

and safety, can be effectively managed through a combination of fundamental understanding,

mathematical modeling, and proactive battery management strategies [6].

5.4 State of Power

The State of Power (SOP) is a pivotal metric in battery management, offering insights

into the instantaneous power that a battery can deliver or absorb under given conditions.

Accurate SOP estimation is paramount for optimizing battery performance, ensuring safety,

and extending battery life [6, 220].

In the context of the BMS presented in this work, the SOP and the maximum obtainable

current, denoted as ISOP , are predicted leveraging a set of key parameters. Specifically,

the cutoff voltage, represented as VT , and the lithium-ion concentrations in the solid phase,

c±s (x, r, t), and in the electrolyte, ce(x, t), serve as the foundational inputs for the SOP
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estimation algorithm.

With a comprehensive understanding of these internal states, the BMS can furnish a more

nuanced and accurate prediction of the SOP. Furthermore, the integration of the lithium plat-

ing model augments the SOP estimation process. Lithium plating, a phenomenon that can

significantly impact battery performance and safety, plays a crucial role in determining the

power capabilities of the battery, especially during high-demand scenarios like fast charging.

By accounting for the effects of lithium plating, the BMS can optimize the power extracted

from the battery, thereby enhancing its lifecycle and ensuring efficient energy utilization [6].

Figure 5.8: Schematic representation of the SOP estimation algorithm, illustrating the in-
terplay of key parameters and their influence on SOP prediction, adapted from [6].

Simulating the SOP Algorithm on every time step can have significant computational

expenses, posing challenges for real-time applications. This issue can be addressed by sim-

ulating it over an extended time scale or by employing coarser discretizations of the model

inside the SOP Algorithm. These adjustments can enhance computational efficiency and

alleviate the constraints associated with real-time processing.

In summation, the SOP estimation methodology delineated herein offers a comprehensive

approach to predicting the power capabilities of lithium-ion batteries. By integrating key

internal states and accounting for phenomena like lithium plating, the BMS ensures that the

battery operates optimally, safely, and efficiently across diverse operational scenarios [6].
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Figure 5.9: SOP prediction from [6].

5.5 Conclusion of the Chapter

This chapter has provided an in-depth exploration into the advanced predictions made by

Battery Management Systems (BMS) and the pivotal role of the observer in state estimations,

focusing on key battery states: State of Charge (SOC), State of Health (SOH), State of Power

(SOP), and the identification of Lithium Plating.

The integration of the MPMe model and state observers with novel sensors has been

discussed, enhancing the accuracy of BMS predictions and ensuring the battery operates

within its safe regions [6]. The proposed BMS algorithm’s architecture has been presented,

emphasizing the synergy between various components and enhancing the precision of state

estimations, which not only offers deeper insights into the battery’s internal dynamics but

also facilitates more informed BMS decision-making.

SOC, representing the current charge level of a battery in relation to its maximum capac-

ity, has been discussed in detail, with a focus on the evaluation of N±
Ls(t), which denotes the
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total cyclable lithium present inside the individual cells of the battery. The BMS Algorithm

has been employed to ensure precision in SOC estimation, demonstrating a remarkably low

RMS error in the estimation of N±
Ls(t) [6].

SOH, providing a clear indication of a battery’s remaining useful life, has been explored,

with the BMS Algorithm approach to predicting the SOH involving the evaluation of NLs(t).

The robustness and precision of the BMS Algorithm in SOH estimation have been demon-

strated by its accuracy metrics, with the RMS error in the estimation of NLs(t) being re-

markably low [6].

The phenomenon of lithium plating has been explored in-depth, emphasizing its chal-

lenges and strategies for effective management. Lithium plating, characterized by the de-

position of metallic lithium on the anode surface, has been discussed, with a focus on the

governing equations and the role of the BMS in enhancing the accuracy of SOH and SOC

estimations, improving fast charging capabilities, and bolstering safety measures [19,55,177,

187,219,220].

SOP, offering insights into the instantaneous power that a battery can deliver or absorb

under given conditions, has been discussed. The SOP and the maximum obtainable current,

denoted as ISOP , are predicted leveraging a set of key parameters, with the integration of

the lithium plating model augmenting the SOP estimation process [6].

In summary, the chapter has provided a comprehensive exploration of the advanced

predictions made by BMS, with a focus on key battery states and the role of the observer in

state estimations. The insights and methodologies discussed herein pave the way for further

research and development in the realm of BMS and battery technology.
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This PhD research has delved deeply into the intricacies of Lithium-ion batteries (LiBs),

their modeling, state estimation, and management, especially in the context of electric ve-

hicles (EVs).

• Chapter 1 provided a comprehensive background on the significance of LiBs in the

global transition away from fossil fuels, emphasizing their pivotal role in the EV sector.

The chapter also introduced the INSTABAT project and set the objectives of this

research within its framework [23,24,28].

• Chapter 2 offered a detailed review of battery models and state estimation techniques

and their relevance to the objectives of this PhD. From Equivalent Circuit Models to

Machine Learning Models and Electrochemical Models, the chapter highlighted the

strengths and limitations of each approach [3, 31–33,35].

• Chapter 3 introduced the Multi-Particle Model with Electrolyte dynamics (MPMe), a

novel model bridging the gap between the detailed DFN model and the simpler SPMe.

The chapter emphasized the model’s ability to capture internal battery dynamics on a

spatial level, incorporate temperature dependence, and ensure lithium conservation.

• Chapter 4 delved into the development of state observers for both the electrolyte and

solid lithium concentrations. The chapter discussed the formulation, assumptions, and

stability analysis of these observers, validating their efficacy through simulations [5].

• Chapter 5 explored the integration of the MPMe model and state observers into an

advanced Battery Management System (BMS) algorithm. The chapter discussed the

predictions of key battery states which include SOC, SOH, and SOP, emphasizing the

role of the observer in enhancing the accuracy of these predictions.

6.1 Main Contributions of this PhD:

1. Formulation of the Multi-Particle Model with Electrolyte dynamics (MPMe) that cap-

tures the heterogeneities present in internal battery dynamics on a spatial level, offers
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computational efficiency for real-time applications, includes temperature dependence

of variables, and actively conserves lithium.

2. Development of state observers for both the electrolyte and solid lithium concentra-

tions, providing a robust mechanism for tracking and estimating key battery states

including their respective concentrations, the total amount of cyclable lithium in the

battery, and voltages of individual electrodes.

3. Integration of the MPMe model and state observers with novel sensors to enhance the

accuracy of Battery Management System (BMS) predictions.

4. Presentation of an advanced BMS algorithm architecture that synergizes various com-

ponents for precise estimations of SOC, SOH, SOP, and identification of Lithium Plat-

ing.

In essence, this research has made significant strides in advancing LiB technology for

EVs, offering novel methodologies and tools that address the challenges faced by LiBs and

pave the way for their broader adoption in the EV sector. The findings of this research,

documented in technical reports and research papers [29], are poised to significantly enhance

the performance, safety, and reliability of LiBs in the future.

6.2 Future Perspectives

The advancements made in this research provide a solid foundation for future explorations

in the realm of LiB technology. As we look ahead, several promising avenues emerge:

1. Experimental Validation: A pivotal next step within the INSTABAT Project is to

subject the developed observer system to rigorous experimental validation. The plan

is to first assess the observers using experimental datasets, followed by laboratory tests

to ascertain their real-time performance and reliability.

2. Use of hybrid state estimation techniques: When access to experimental data

from the INSTABAT is available, we can enhance our current model (MPMe) and
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proposed state observers using hybrid state estimation techniques, such as combining

them with ML or AI.

3. Spatial Thermal Dynamics Integration: Enhancing the MPMe model with spatial

thermal dynamics presents a promising direction. While the current model acknowl-

edges temperature dependence, it doesn’t account for spatial temperature variations.

Addressing this would refine the model’s accuracy, aligning it more closely with real-

world conditions.

4. Exploring Different Chemistries: Broadening the scope of the observers to ac-

commodate various battery chemistries could significantly expand their applicability.

This extension would bolster the versatility of the observers, amplifying the research’s

impact across diverse battery applications.

5. Advancements in Lithium Degradation Management: Managing lithium degra-

dation remains a complex challenge. While the current MPMe model provides some

insights into lithium plating, there’s ample room for further exploration. Future en-

deavors should focus on integrating the other types of lithium degradation phenomena

and enhancing the precision of the model, observer, and associated algorithms.

6. Exploration of Sensor Technologies: This research underscores the transforma-

tive potential of integrating additional sensors into observer formulation. A logical

progression would be to investigate other sensor technologies, assessing their potential

applicability, and contributions, to battery modeling and control strategies.

In essence, the future of energy storage is bright, and the contributions of this research

will undoubtedly play a pivotal role in shaping it. The above perspectives provide a roadmap

for continued exploration and innovation in the field of LiB technology.
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