
HAL Id: tel-04689917
https://theses.hal.science/tel-04689917v1

Submitted on 6 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Traffic representations for network measurements
Raphael Azorin

To cite this version:
Raphael Azorin. Traffic representations for network measurements. Computer Science [cs]. Sorbonne
Université, 2024. English. �NNT : 2024SORUS141�. �tel-04689917�

https://theses.hal.science/tel-04689917v1
https://hal.archives-ouvertes.fr

DOCTORAL THESIS

Traffic Representations
for Network Measurements

Raphael AZORIN

A thesis submitted in 2024 in fulfillment of the requirements
for the degree of Doctor of Philosophy

in the

Computer Science, Telecommunications and Electronics Doctoral School
Sorbonne University (ED130) - EDITE de Paris

EURECOM Data Science Department

Committee in charge

Pietro Michiardi EURECOM Advisor
Massimo Gallo Huawei Research Co-advisor
Marco Mellia Politecnico di Torino Reviewer and Jury President
Marco Fiore IMDEA Reviewer
Chadi Barakat Inria Examiner
Melek Önen EURECOM Examiner

https://www.edite-de-paris.fr/
https://www.sorbonne-universite.fr/
https://www.eurecom.fr/

iii

SORBONNE UNIVERSITY (ED130) - EDITE DE PARIS

Abstract

Doctor of Philosophy

Traffic Representations for Network Measurements

by Raphael AZORIN

Measurements are essential to operate and manage computer networks, as they are
critical to analyze performance and establish diagnosis. In particular, per-flow mon-
itoring consists in computing metrics that characterize the individual data streams
traversing the network. To develop relevant traffic representations, operators need
to select suitable flow characteristics and carefully relate their cost of extraction with
their expressiveness for the downstream tasks considered. In this thesis, we propose
novel methodologies to extract appropriate traffic representations. In particular, we
posit that Machine Learning can enhance measurement systems, thanks to its abil-
ity to learn patterns from data, in order to provide predictions of pertinent traffic
characteristics.

The first contribution of this thesis is a framework for sketch-based measurements
systems to exploit the skewed nature of network traffic. Specifically, we propose
a novel data structure representation that leverages sketches’ under-utilization, re-
ducing per-flow measurements memory footprint by storing only relevant coun-
ters. The second contribution is a Machine Learning-assisted monitoring system
that integrates a lightweight traffic classifier. In particular, we segregate large and
small flows in the data plane, before processing them separately with dedicated data
structures for various use cases. The last contributions address the design of a uni-
fied Deep Learning measurement pipeline that extracts rich representations from
traffic data for network analysis. We first draw from recent advances in sequence
modeling to learn representations from both numerical and categorical traffic data.
These representations serve as input to solve complex networking tasks such as
clickstream identification and mobile terminal movement prediction in WLAN. Fi-
nally, we present an empirical study of task affinity to assess when two tasks would
benefit from being learned together.

Keywords: traffic measurements – machine learning – network data representation
– networked systems – learned sketches – sequence modeling – multitask learning

HTTPS://WWW.SORBONNE-UNIVERSITE.FR/

v

Acknowledgements

First and foremost, I am deeply grateful to both my advisors, Prof. Pietro Michiardi
and Dr. Massimo Gallo, for the invaluable lessons they taught me throughout this
PhD study. I could not have undertaken this journey without their continuous sup-
port and persistent patience. They constantly demonstrated me the tremendous
value of their expertise and experience in conducting thorough science. In partic-
ular, they taught me how important it is in research to ask the right questions. I
truly thank them for the great amount of time they took to train me.

Second, I would like to express my sincere thanks to my collaborators and co-authors,
from Huawei Paris Research Center and Sapienza University in Rome, for their trea-
sured support and technical expertise. During this PhD, I have been extremely for-
tunate to be surrounded by talented researchers that have always been excited to
discuss ideas and available to provide guidance. They have been deeply influential
in shaping my experience and skills during this journey, and I truly thank them for
making these years a wonderful time.

Last, but not least, I would like to offer my special thanks to my family and to my
friends. In particular, I would like to express my profound gratitude to my partner,
who does not know much about data science, but knows a lot about me. Without
her immense support and encouragement, I could not have completed this study.

vii

Contents

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 The Growing Complexity of Networks 1
1.2 The Importance of Traffic Monitoring 2
1.3 The Promises of Traffic Representation Learning 4
1.4 Thesis Outline and Contributions . 7

2 Background 11
2.1 Measurements Data Structures . 12

2.1.1 Key-Value Storage . 12
2.1.2 Frequency estimation . 14
2.1.3 Cardinality estimation . 17
2.1.4 Quantiles estimation . 19

2.2 Machine Learning Models . 21
2.2.1 Random Forests . 21
2.2.2 Word2Vec . 23
2.2.3 Multi-Task Learning . 24

3 Sparse Sketches Representations for Per-flow Monitoring 27
3.1 Introduction . 28
3.2 Background . 31

3.2.1 Sparse monitoring data structures 31
3.2.2 Monitoring use cases . 32

3.3 Per-flow Monitoring System Design . 33
3.3.1 Architectural components . 34
3.3.2 Baseline representation . 35
3.3.3 Sparse sketches representation (SPADA) 37

3.4 System Memory Sizing . 41
3.4.1 Sparsity factor sensitivity . 41
3.4.2 Monitoring trade-offs . 42

3.5 System Evaluation . 43
3.5.1 Experimental protocol . 43

viii

3.5.2 Experimental results . 44
3.6 Related Work and Discussion . 46
3.7 Conclusion . 47

4 Affordable Flow Size Representation with Machine Learning 49
4.1 Introduction . 50
4.2 Background and Motivation . 52

4.2.1 Machine Learning for networked systems 52
4.2.2 Use cases . 54

4.3 System Design . 55
4.3.1 Pipeline overview . 55
4.3.2 System components . 56

4.4 Machine Learning Model . 59
4.4.1 Benchmark setup . 59
4.4.2 Model design . 61
4.4.3 Model size . 64
4.4.4 Model update . 65

4.5 System Implementation . 67
4.5.1 Deployment scenario . 67
4.5.2 Random Forest implementation 67

4.6 Experimental Results . 69
4.6.1 Memory setup . 70
4.6.2 End-to-end performance . 71
4.6.3 Impact of model performance on downstream tasks 75

4.7 Conclusion . 77

5 Traffic Representation Learning for Network Measurements 79
5.1 Introduction . 80
5.2 Representation Learning for Network Data 83

5.2.1 Motivation . 83
5.2.2 Network data representation with word embeddings 86
5.2.3 Bi-modal pipeline for network entities and quantities 87
5.2.4 Experimental results . 89
5.2.5 Related work . 94
5.2.6 Concluding remarks . 95

5.3 Task Groupings for Multi-Task Learning 96
5.3.1 Motivation . 97
5.3.2 Background and related work . 98
5.3.3 Task affinity scores benchmark methodology 101
5.3.4 Experimental results . 105
5.3.5 Discussion . 108
5.3.6 Concluding remarks . 110

ix

6 Conclusion 111
6.1 Summary of Contributions . 112

6.1.1 Traditional network measurements 112
6.1.2 ML-assisted network measurements 113
6.1.3 ML-based network measurements 114

6.2 Perspectives . 115

A Appendix for Chapter 3 117
A.1 System Implementation . 117

A.1.1 The Vitis Networking P4 architecture 117
A.1.2 SPADA building blocks . 118
A.1.3 SPADA-enabled monitoring pipelines 120

A.2 Prototype Evaluation . 121
A.2.1 Cuckoo Hash Table recirculation overhead 121
A.2.2 FPGA implementation evaluation 122
A.2.3 FPGA resource requirements . 123

B Appendix for Chapter 4 125
B.1 Additional Model Analysis . 125
B.2 System Prototype . 126
B.3 Additional Trade-offs Analysis . 127

C Appendix for Chapter 5 129
C.1 Affinity Scores Computation . 129
C.2 Taskonomy Buildings . 131
C.3 Affinity Scores Raw Values . 132

Bibliography 135

xi

List of Figures

1.1 Approaches for traffic representations extraction 6

2.1 Cuckoo Hashing insertion . 12
2.2 Invertible Bloom Lookup Table insertion 13
2.3 Count-Min Sketch insertion . 15
2.4 ElasticSketch insertion . 16
2.5 Flajolet-Martin Sketch with Probabilistic Averaging 18
2.6 Distributed Distribution Sketch . 19
2.7 Skip-Gram Word2Vec . 23
2.8 Multi-Task Feed-Forward Neural Network 25

3.1 Per-flow monitoring schematic view. 28
3.2 Sketches sparsity and memory requirements analysis. 29
3.3 Generic data plane monitoring system. 32
3.4 Baseline . 36
3.5 SPADA-Cuckoo Hash Table with quotienting (qCHT) 37
3.6 SPADA -Perfect Invertible Bloom Lookup Table (pIBLT) 39
3.7 Relationship between sparsity and memory requirements for SPADA. 42
3.8 Monitoring trade-offs . 43
3.9 SPADA memory footprint by use case. 45

4.1 Motivation of DUMBO. 50
4.2 Synopsis of DUMBO. 51
4.3 DUMBO system architecture. 55
4.4 Architecture of a hierarchical Flow Manager 57
4.5 Simple vs. Hierarchical Flow Manager 58
4.6 Traffic analysis . 60
4.7 Model performance across time. 62
4.8 ML model explainable tree. 63
4.9 Model performance against size . 64
4.10 Model update stress-test. 66
4.11 Binary tree encoding in the data plane. 68
4.12 Flow scheduling slowdown. 72
4.13 IAT quantile estimation error. 73
4.14 Flow size estimation error. 74

xii

4.15 Impact of model size on flow size estimation 75
4.16 Impact of mispredictions on use cases performance. 76

5.1 Challenges for a unified ML-based measurements pipeline 81
5.2 Visualization of features in a fully-trained CNN model. 84
5.3 Generic bi-modal pipeline for network data representation learning. . 88
5.4 The clickstream identification problem 89
5.5 Bi-modal pipeline for clickstream identification. 90
5.6 Results on clickstream use case . 91
5.7 Illustrative example of Wi-Fi roaming 92
5.8 Bi-modal pipeline for terminal movement prediction. 93
5.9 Approaches comparison on movement prediction. 93
5.10 Inspection of model predictions . 94
5.11 Task grouping illustration. 99
5.12 Comparison of traditional STL and MTL architectures. 102

A.1 P4 FPGA programming framework for CHT and qCHT. 118
A.2 Recirculation overhead analysis on SPADA. 122
A.3 FPGA prototype insertion latency analysis. 123

B.1 Flow sizes distributions by protocol. 125
B.2 DUMBO ML model evaluation including ICMP traffic. 125
B.3 Block diagram of the DUMBO pipeline. 126
B.4 Impact of mispredictions on FSE use case (TCP and UDP) 128
B.5 Impact of mispredictions on FSE use case (TCP only) 128
B.6 Impact of mispredictions on IAT use case (TCP and UDP) 128
B.7 Impact of mispredictions on IAT use case (TCP only) 128

xiii

List of Tables

3.1 Sketches featuring sparse data. 31
3.2 Summary of SPADA configurations. 33
3.3 Summary of SPADA notations. 35
3.4 SPADA data structures parameters. 44
3.5 SPADA accuracy comparison on ElasticSketch. 46

4.1 Network use cases that can exploit elephants/mice classification. . . . 53
4.2 Memory allocation for DUMBO. 70

5.1 MTL gains for pairs of tasks. 106
5.2 Affinity metrics predictive power. 107
5.3 Affinity metrics partners ranking. 107
5.4 Affinity metrics best partner identification. 108
5.5 Affinity metrics computational costs. 109

A.1 SPADA FPGA prototype resources utilization. 119
A.2 MAT, (q)CHT, and pIBLT resources utilization. 124

B.1 DUMBO prototype resources utilization. 127

C.1 Affinity metrics detailed computations. 130
C.2 Taxonomical distance scores. 132
C.3 Input attribution similarity scores. 132
C.4 Representation similarity analysis scores. 132
C.5 Label injection scores. 133
C.6 Gradient similarity scores. 133
C.7 Gradient transference scores. 133

xv

List of Abbreviations

ANN Artificial Neural Network
AP Access Point
ASIC Application-Specific Integrated Circuit
CHT Cuckoo Hash Table
qCHT quotiented Cuckoo Hash Table
CMS Count Min Sketch
CNN Convolutional Neural Network
CV Computer Vision
DCN Data Center Network
DDoS Distributed Denial of Service
DDSketch Distributed Distribution Sketch
DL Deep Learning
ES Elastic Sketch
FPGA Field Programmable Gate Array
GS Gradient Similarity
GT Gradient Transference
HLL Hyper Log Log
IAS Input Attribution Similarity
IAT Inter-Arrival Time
IBLT Invertible Bloom Lookup Table
pIBLT perfect Invertible Bloom Lookup Table
IP Internet Protocol
ISP Internet Service Provider
LI Label Injection
MAT Match-Action Table
ML Machine Learning
MTL Multi-Task Learning
NIC Network Interface Card
NLP Natural Language Processing
P4 Programming Protocol-independent Packet Processors
QoE Quality of Experience
QoS Quality of Service
RF Random Forest
RSA Representation Similarity Analysis
STL Single Task Learning
TD Taxonomical Distance
TCP Transmission Control Protocol
UDP User Datagram Protocol
W2V Word 2 Vec
WLAN Wireless Local Area Network

xvii

List of Symbols

a Scalar
a Vector
A Matrix

DN Dataset of N samples
X Dataset inputs (matrix of N rows, one for each instance)
Y, y Dataset outputs (matrix, vector of N rows, one for each instance)
xi, xi i-th input instance (vector, scalar)
yi, yi i-th output instance (vector, scalar)
ŷi, ŷi i-th prediction of a model (vector, scalar)
L Loss

f : X → Y Function f with domain X and range Y
f (x) Evaluation of function f at location x
Tj Table j
Tj[x] Bucket from table j at location x

N Natural numbers
Z Integer numbers
R Real numbers
Card(S) Cardinality of the multiset S
E[·] Expectation
O(·) Big-O
| · | Absolute value function
⌊·⌋ Floor function
⌈·⌉ Ceiling function
∥a∥1 L1 norm of vector a

xix

To all the teachers I had the good fortune to learn from. . .

1

Chapter 1

Introduction

1.1 The Growing Complexity of Networks

Since their inception in the early 1960s, computer networks have dramatically evolved
in terms of scale, speed and capabilities. At its origin, networking was intended
to deal with the cooperation of time-shared and expensive computers (Marill and
Roberts, 1966). The pioneering ARPANET was the first network to connect remote
machines that interacted by exchanging information. Built on the concept of open-
architecture, networking has then fostered the interconnection of different and inde-
pendent computer networks, governed by fundamental communication principles,
including addressing, routing, and flow control protocols. In the last decades, as
computing technology became more and more accessible, and information sharing
took a prominent place in society, networking activity has spread across organiza-
tions and countries. In contrast to the early days of networking, modern networks
operate at unprecedented scale and speed. Analysts from global manufacturer Cisco
estimate that there are 30 billion networked devices in the world, operating at an av-
erage 110 Mbps broadband speed, which has more than doubled just in the last five
years (Cisco, 2020). This aggregate growth, mostly supported by the consumer seg-
ment, should not obfuscate the considerable evolution of enterprise networks. IT
departments are transforming their infrastructures to support the increasing adop-
tion of novel networked applications, e.g., based on cloud computing, Internet-of-
Things, Big Data, or artificial intelligence. In particular, the growing rate of data col-
lection and processing stresses the importance of Data-Center Networking (DCN),
with its own architectural paradigms and protocols (Alizadeh et al., 2010). In terms
of speed, already ten years ago, it was not unusual for data centers to carry aggre-
gate traffic at 100 Tbps over 100K servers (Zhu et al., 2015). In addition, the follow-
ing years have witnessed the global data center traffic grow over 25% year-on-year
(Cisco, 2018). Consequently, service providers are adapting their resources and of-
fers to cope with enterprises’ expanding requirements, e.g., in terms of bandwidth
and latency demands, but also in terms of flexibility. In networking, processes are
abstracted into logically separated planes of existence. Two planes are usually refer-
enced: the control plane, that defines and controls how data is forwarded from one

2 Chapter 1. Introduction

device to another, and the data plane, that corresponds to the actual data forwarding
process (Yang et al., 2004). By separating these two planes, novel automation oppor-
tunities have emerged with Software-Defined Networking (SDN), that provides a
programming interface for a controller to modify the configuration of the underly-
ing devices’ data plane.

Yet, this unparalleled growth of networks comes with complex challenges in Oper-
ations, Administration and Management (OAM). The steep increase in speed, vol-
ume, and diversity of network traffic translates into novel problems for operators
to master their networks. From 2013 to 2019, the number of active flows has been
estimated in the order of 100K for each Gb of forwarded traffic (Scazzariello et al.,
2023). Simultaneously, novel requirements have emerged in terms of reliability, la-
tency, or throughput to serve highly diverse applications, e.g., in DCN (Xia et al.,
2017). In turn, this stresses the need for operators to optimize network design (e.g.,
topology, linking) and operation (e.g., energy consumption). With the advent of pro-
grammable networks since the early 2010s, the number of roles and dependencies
between network devices keeps augmenting. Virtualization and SDN open new av-
enues for network management, giving more capabilities to the data plane in addi-
tion to its forwarding role, e.g., telemetry (Ben Basat et al., 2020b), congestion control
(Li et al., 2019), or even Machine Learning (ML) (Xiong and Zilberman, 2019). How-
ever, these functionalities compete for scarce resources and put further pressure on
operators to optimize their networks. In this context, the monitoring of network
behaviors becomes challenging. Consequently, configuring networks to implement
critical changes such as fault resolution or load balancing, is more demanding for
engineers. Last, networking’s mass adoption across individuals and companies is
also accompanied by the rapid growth of cybersecurity threats and malicious activ-
ity. These include ransomware, worms, botnets or spam attacks, whose size and
frequency keep increasing. For example, the worldwide number of Distributed De-
nial of Service (DDoS) attacks has almost doubled in the past five years (Cisco, 2020).
To protect networks, gaining visibility thanks to measurements and monitoring has
become a key priority in IT teams defense strategies, in particular for Internet Service
Providers (ISPs) (Netscout, 2023). As networks grow in scale, speed, and diversity,
developing a precise understanding of networks operations is both increasingly crit-
ical and challenging. In this regard, network measurements constitute a prerequisite
for operators wishing to apprehend network behavior, optimize performance and
ensure operational security.

1.2 The Importance of Traffic Monitoring

Traffic monitoring is the process of capturing and analyzing traffic to provide in-
sights on both the infrastructure status and the data flowing through the network.
A monitoring system is composed of probes or analyzers, which are hardware or

1.2. The Importance of Traffic Monitoring 3

software apparatus programmed to collect measurements, either passively or ac-
tively. In particular, passive monitoring systems are used to observe the network in
a non-intrusive manner, without injecting traffic nor interfering with it. Measure-
ment systems are crafted to extract specific traffic characteristics (e.g., throughput,
losses) that facilitate various networking tasks, including performance evaluation,
traffic engineering, and security management. These selected traffic features aim at
bridging the “semantic gap” between users’ needs and the raw data supplied by the
network (Varghese and Estan, 2004). As a result, many metrics and methodologies
have been proposed to realize such systems, ranging from aggregate monitoring to
detailed traffic dissection (D’Alconzo et al., 2019; Li et al., 2013; Yassine et al., 2015;
Chaudet et al., 2005). In a nutshell, network measurements provide operators with
a view of the network state by extracting knowledge from raw traffic data.

In particular, the ability to isolate and monitor subsets of the traffic is paramount
to debug several critical events and performance anomalies, e.g., switch faults (Zhu
et al., 2015), routing loops (Kučera et al., 2020) and blackholes (Zhou et al., 2020).
By collecting statistics on specific flows of packets that share a common property
designated as the flow key, per-flow measurements support fine-grained analyses
of network traffic. Typical flow keys include the 5-tuple, used e.g., in traffic clas-
sification, that is composed of the source and destination IP addresses, ports, and
transport protocol; or the source IP, used e.g., in super-spreader detection. The flow
characteristics selected for monitoring (e.g., size, latency) capture the traffic infor-
mation that is deemed useful by operators to solve OAM tasks. Hence, per-flow
monitoring deals with the characterization of individual traffic data streams. This
level of granularity is key to detect and investigate important network events such
as congestion (Lee et al., 2015; Li et al., 2019), packet drops (Li et al., 2016a; Li et al.,
2016b), anomaly detection (Sekar et al., 2008), or forensics investigation (Xie et al.,
2005). Furthermore, as modern networks typically support a wide variety of inter-
dependent applications and services, understanding their dependencies is essential
for network maintenance and optimization. In this respect, per-flow measurements
enable network operators to infer the structure and relationships of the applications
running on their networks (Popa et al., 2009). In this quest to gain a complete under-
standing of their networks, operators aim at monitoring as many flows as possible.

However, the large amount of active flows in high-speed networks makes the accu-
rate monitoring of all the flows impractical at scale. In practice, passive measurement
functions are typically implemented inside network devices (e.g., switches, routers)
to cope with their fast-forwarding pace. Although programmable devices provide
custom per-packet logic, their memory constraints, in the dozens of MBs (Zeng et al.,
2022), forbid the accurate monitoring of all the flows at scale. For example, consider-
ing a Tbps forwarding device in a data center, monitoring the millions of active flows

4 Chapter 1. Introduction

present with just a handful of accurate per-flow measurements would require sev-
eral GBs of memory (Scazzariello et al., 2023). To address this overhead issue, mea-
surement systems trade off memory for accuracy or coverage. For example, NetFlow
and sFlow rely on packets sampling, by capturing only a fraction of the flow pack-
ets to estimate the metrics of interest (Jang et al., 2020). Another option consists in
restricting monitoring to a subset of the active flows, i.e., filtering or sampling flows.
While these techniques successfully reduce the processing overhead, they discard a
non-negligible share of the available information, risking to produce biased or in-
complete analysis, e.g., missing critical packets or flows. Alternatively, sketches are
a family of probabilistic data structures employed to aggregate and summarize large
amounts of stream data with a small memory footprint (Han et al., 2022). However,
as they usually share memory across several flows, sketches summaries suffer from
collisions which produce estimation errors. As such, sketches can be considered as
lossy compression data structures to gain approximate knowledge about traffic be-
haviors. To sum up, it is challenging for network operators to extract approximate
but sufficient knowledge from their traffic. Segregating traffic into flows, described
by a set of hand-picked metrics, constitutes a first level of abstraction to represent
network activity. This process of developing suitable flow representations, biased to
accommodate various cost-expressiveness trade-offs, is key in the design of efficient
network measurement systems. Hence, the selection, extraction, and processing of
traffic representations is a crucial research topic.

1.3 The Promises of Traffic Representation Learning

Unlike other data modalities, e.g., images, extracting the right representation of net-
work traffic is still an open question in the research community. First, the raw traffic
under monitoring may be represented at various levels of granularity. Depending on
the intended task, the aggregated traffic observed from a vantage point may be dis-
sected into individual flows, further characterized up to packet-level measurements.
For instance, identifying if a link is congested relies on aggregated throughput in-
formation, while pinpointing the specific application responsible for congestion re-
quires flow-level measurements. Second, diverse attributes may be selected to de-
scribe the traffic under monitoring, which represent the characteristics believed to be
valid for a corresponding task. From coarse-grained properties (e.g., traffic protocol
or class) to fine-grained measurements (e.g., inter-arrival times, packet sizes), there
is a wide spectrum of options for operators to extract traffic features. Finally, the col-
lection and storage of traffic measurements are limited by the resources available on
network devices. Operators wishing to monitor a large amount of traffic typically
compromise by trading off accuracy for memory, e.g., using sampling, sketches, or
exact counting for a subset of the traffic. The measurement approximations stem-
ming from these trade-offs impact the final characterization of the traffic. For ex-
ample, describing flows by their exact length is a costly characterization, but it may

1.3. The Promises of Traffic Representation Learning 5

be justified for sensitive use cases monitoring a portion of the traffic, e.g., debug-
ging flooding attacks (Kim et al., 2004). Alternatively, imprecise information on flow
length, e.g., elephants-mice classification, might be sufficient for scheduling (Mitzen-
macher, 2021). Ultimately, traffic representations aim at best describing the charac-
teristics believed to be valid for a given task under resource constraints. Thus, we
reject the vision of a silver bullet representation that would fit all networking tasks.

Thanks to its ability to extract patterns from data, ML stands as a promising can-
didate to elicit traffic representations. In particular, ML holds promises to provide
a priori knowledge of flow characteristics learned from previous observations, i.e.,
predicting measurements. For example, flow length prediction would benefit many
network management tasks (Ðukić et al., 2019). ML algorithms have already been
applied to a large range of networking tasks, including e.g., traffic prediction with
time-series forecasting, or attack detection with clustering (Boutaba et al., 2018). Yet,
these approaches, mostly tested offline, face significant challenges to make their way
into production, namely robustness and overhead concerns. Indeed, networks are
dynamic environments with non-stationary data distributions, meaning that traf-
fic patterns are assumed to be temporally correlated and to change continuously
(O’Reilly et al., 2014). Therefore, predictive network models are expected to either
evolve, e.g., with online learning, or drift and degrade over time. Furthermore, per-
forming in-network Machine Learning at line rate requires implementing models
to operate in the data plane, hence competing for scarce resources against criti-
cal forwarding functionalities. Several works have addressed the implementation
of lightweight models, e.g., Random Forests, in programmable network switches
(Xiong and Zilberman, 2019; Zhang et al., 2021b; Busse-Grawitz et al., 2022; Akem
et al., 2022). However, we argue that considerable efforts are still needed to demon-
strate the benefits of ML-based traffic characterization over non-learned baselines,
especially relating the overhead of the end-to-end task performance over time.

With the recent rise of Deep Learning (DL) to extract rich representations from data
to solve complex tasks, researchers are starting to envision “self-driving networks”
(Feamster and Rexford, 2017). Intelligent networks able to drive themselves will rely
on a holistic representation of their state, upon which models may extract measure-
ments and translate high-level objectives into actions. However, network activity is
captured into various modalities, including but not limited to traffic. For example,
logs (e.g., text), topologies (e.g., graphs), or configuration files (e.g., structured data)
also contain information on the network. As a result, next-generation network mod-
els and digital twins are anticipated to integrate various data sources to produce
a complete representation of the network state (Zeydan and Turk, 2020; Hui et al.,
2023; Behringer et al., 2021). In this regard, thanks to their ability to automatically
extract features as an integral part of the end task, Deep Learning algorithms are
gaining attention from the networking community. Several networking problems
have been modeled with DL approaches, including e.g., Graph Neural Networks

6 Chapter 1. Introduction

FIGURE 1.1: Illustrative approaches for traffic representations extrac-
tion, with varying degrees of Machine Learning integration.

for path delay, jitter and losses estimation (Rusek et al., 2020) or Recurrent Neural
Networks for DCN performance modeling (Zhang et al., 2021a). Interestingly, some
networking tasks may be related to one another or have mutual dependencies. Thus,
they may benefit from a shared representation of their input. For example, the same
model might simultaneously provide predictions for flow completion time, along
with path delay and throughput (Wang et al., 2022b). Similarly, a single model back-
bone may learn flow features that are useful to solve several classification tasks at
the same time, such as identifying encapsulation technique, traffic type and appli-
cation name (Nascita et al., 2023). In this regard, Multi-Task Learning (MTL) is a
learning paradigm that aims at sharing the extraction of common representations
across related tasks. In pursuit of a holistic view of the network state used as a ba-
sis for various tasks, Deep Learning in general, and MTL in particular, constitute
attractive representation learning approaches for the networking community to ex-
plore. Nonetheless, the challenges already mentioned for traditional ML are only
more stringent when considering DL for networking. In addition to heavy com-
putational requirements, Deep Learning algorithms’ lack of interpretability further
hinders their adoption in practice (Zhang et al., 2022)

Ultimately, developing appropriate traffic representations for network measurements
is a challenging process. It involves the selection of suitable characteristics, carefully
related to their cost of extraction and their expressiveness, that are specific for the
considered downstream tasks. In this thesis, we consider three approaches to im-
prove this process, with varying degrees of Machine Learning involvement, as de-
picted in Figure 1.1. We propose several methodologies to facilitate knowledge ex-
traction from traffic, starting with the design of tailored data structures for traditional
sketch-based measurements, followed by the prototyping of an ML-assisted measure-
ment system, concluding with ML-based representation learning procedures.

1.4. Thesis Outline and Contributions 7

1.4 Thesis Outline and Contributions

Outline

In order to address the challenges previously mentioned, we organize the contribu-
tions of this thesis into the following chapters:

• Chapter 2 serves as a background for the rest of the thesis. It starts with a
review of the data structures used for network measurements (e.g., sketches),
then, it introduces important Machine Learning concepts and describes the
algorithms used throughout the remainder of the thesis.

• Chapter 3 presents the first contribution of the thesis, positioned in the scope
of traditional measurements. In particular, we address the problem of sparsity in
sketch-based monitoring systems and introduce novel representations to bet-
ter exploit the skewed nature of network data. We note that many sketches are
designed for extreme scenarios and are over-provisioned in practice, leaving
most counters empty. We propose a framework to store only non-zero coun-
ters, thanks to a novel flow-to-counters mapping in place of the traditional
flow-to-sketch mapping. The additional overhead induced by this indexing is
compensated by the fewer counters to maintain, which depends on the spar-
sity of the sketch. We evaluate our framework on four real traffic traces, us-
ing three per-flow sketches: DDSketch (Masson et al., 2019) for Inter-Arrival
Times quantiles estimation, HLL (Flajolet et al., 2007) for cardinality estimation
and ElasticSketch (Yang et al., 2018) for flow size estimation. Our experiments
show that our framework achieves from 2× to 11× memory requirements re-
duction wrt. state-of-the-art, while preserving the same accuracy.

• Chapter 4 introduces ML-assisted measurements where a Machine Learning model
improves the usage of classic monitoring data structures. This chapter presents
the second contribution of the thesis, in which we consider the practical imple-
mentation of a ML model in the data plane to provide timely classification
of incoming flows. Specifically, we observe that coarse-grained flow length
predictions (i.e., elephant or mice) would benefit several networking tasks in-
cluding flow scheduling, packet inter-arrival time estimation, and flow size
estimation itself. We develop and integrate a lightweight Random Forest to
classify flows as early as the fifth packet arrival. These predictions are then
leveraged by three downstream tasks at line rate. The effectiveness of our
system is demonstrated through extensive experiments on three real traffic
traces (CAIDA, MAWI, and UNI). We compare the tasks’ end-to-end perfor-
mance, including overhead, against state-of-the-art baselines, and our results
show that our system is robust to traffic patterns changes and outperforms
non-learned approaches.

8 Chapter 1. Introduction

• Chapter 5 presents ML-based measurements, where we develop Deep Learning
models that extract traffic representations to fuel downstream network mea-
surements applications. This chapter contains the last two contributions of the
thesis. We first introduce a methodology to learn rich flow representations
from both numerical and categorical traffic data. In particular, we remark that
traffic data is typically composed of quantities (numerical variables such as
measurements) related to entities (categorical variables such as ports, domain
names or access points). We revisit recent advances in sequence modeling from
Natural Language Processing (Mikolov et al., 2013b) and adapt them to the net-
working domain to encode sequences of entities based on their co-occurrences.
We demonstrate the benefit of considering categorical data in addition to nu-
merical measurements on two network analysis tasks: clickstream identifica-
tion for ISPs and terminal movement prediction in a WLAN. Our results show
that embedding network entities is not only profitable when coupled to mea-
surements, but can also outperform quantities-only approaches. Finally, we
motivate the design of a Multi-Task Learning pipeline that extracts flow rep-
resentations shared across related tasks. Specifically, to facilitate the grouping
of cooperative tasks together, we conduct a benchmark of six task affinity met-
rics, either borrowed, revisited, or novel. Our empirical campaign reveals how,
even in a small-scale scenario, task affinity scoring does not correlate well with
actual MTL performance. Yet, some metrics can be more indicative than others

• Chapter 6 concludes the thesis by commenting on the contributions above and
discussing their potential impact in the networking and Machine Learning
communities. Additionally, it discusses perspectives for future research on
traffic representations for network measurements.

Publications

This thesis is based on publications that have been peer-reviewed by technical pro-
gram committees in international conferences and workshops, mainly in the net-
working community and for some part in the Machine Learning community.

Chapter 3 is based on the following journal publication, that was presented at ACM
CoNEXT 2023. It was a collaboration with Sapienza University in Rome that con-
tributed its expertise in P4 for prototyping:

• Andrea Monterubbiano, Raphael Azorin, Gabriele Castellano, Massimo Gallo,
Salvatore Pontarelli, and Dario Rossi. “SPADA: A Sparse Approximate Data
Structure Representation for Data Plane Per-Flow Monitoring”. In Proceedings
of the ACM on Networking (2023). DOI: 10.1145/3629149

Chapter 4 is based on the following paper accepted for publication in PACMNET,
which will be presented at ACM CoNEXT 2024. It was another collaboration with
Sapienza University that contributed its expertise in data plane programmability:

https://dl.acm.org/doi/10.1145/3629149

1.4. Thesis Outline and Contributions 9

• Raphael Azorin, Andrea Monterubbiano, Gabriele Castellano, Massimo Gallo,
Salvatore Pontarelli, and Dario Rossi. “Taming the Elephants: Affordable Flow
Length Prediction in the Data Plane”. In Proceedings of the ACM on Networking
(2024). DOI: 10.1145/3649473

This paper is an extension of the following extended abstract:

• Andrea Monterubbiano, Raphael Azorin, Gabriele Castellano, Massimo Gallo,
and Salvatore Pontarelli. “Learned Data Structures for Per-Flow Measure-
ments”. In Proceedings of the 3rd International ACM CoNEXT Student Workshop
(2022). DOI: 10.1145/3565477.3569147

Part of this work was also presented in this conference poster:

• Andrea Monterubbiano, Raphael Azorin, Gabriele Castellano, Massimo Gallo,
Salvatore Pontarelli, and Dario Rossi. “Memory-Efficient Random Forests in
FPGA SmartNICs”. In Proceedings of the 19th International Conference on Emerg-
ing Networking EXperiments and Technologies. CoNEXT Posters. (2023). DOI:
10.1145/3624354.3630089

Chapter 5’s main idea of a unified Deep Learning measurements pipeline has been
introduced in the following extended abstract:

• Raphael Azorin, Massimo Gallo, Alessandro Finamore, Maurizio Filippone,
Pietro Michiardi, and Dario Rossi. “Towards a Generic Deep Learning Pipeline
for Traffic Measurements”. In Proceedings of the 2nd ACM CoNEXT Student
Workshop (2021). DOI: 10.1145/3488658.3493785

The single-task learning approach has been concretized in the following interna-
tional conference publication:

• Zied Ben Houidi, Raphael Azorin, Massimo Gallo, Alessandro Finamore, and
Dario Rossi. “Towards a Systematic Multi-Modal Representation Learning for
Network Data”. In Proceedings of the 21st ACM Workshop on Hot Topics in Net-
works (HotNets) (2022). DOI: 10.1145/3563766.3564108

This has been further developed in the following conference workshop paper for the
multi-task learning approach:

• Raphael Azorin, Massimo Gallo, Alessandro Finamore, Dario Rossi, and Pietro
Michiardi. “It’s a Match! A Benchmark of Task Affinity Scores for Joint Learn-
ing”. In 2nd International Workshop on Practical Deep Learning in the Wild during
the 37th AAAI Conference on Artificial Intelligence (2023). ARXIV: 2301.02873

The technical chapters of this thesis include materials reformatted from these pub-
lications. Although parts of these papers are reproduced in extenso, we omit the
quotation marks for readability.

https://dl.acm.org/doi/10.1145/3649473
https://dl.acm.org/doi/10.1145/3565477.3569147
https://dl.acm.org/doi/10.1145/3624354.3630089
https://dl.acm.org/doi/10.1145/3488658.3493785
https://dl.acm.org/doi/10.1145/3563766.3564108
https://arxiv.org/pdf/2301.02873.pdf

11

Chapter 2

Background

In this chapter, we lay the background that supports the rest of the the-
sis. First, we introduce the data structures considered for network mea-
surements in this work, starting with advanced key-value stores and fol-
lowing with popular sketches for frequency, cardinality and distribution
estimations over data streams. Then, we present key principles and al-
gorithms in Machine Learning, introducing Random Forests, Word2Vec
and Multi-Task Learning. The remainder of the thesis is built on the mea-
surements and models introduced in this chapter.

12 Chapter 2. Background

(A) (B)

FIGURE 2.1: Cuckoo Hashing insertion examples with two tables.
(left) x is inserted with success by moving y and z. (right) x can-
not be successfully inserted and a re-hash is required. Figures from

(Pagh and Rodler, 2004).

2.1 Measurements Data Structures

In this section, we present the various data structures used throughout the thesis for
network measurements. We first introduce two sophisticated key-value mapping
data structures: Cuckoo Hash Tables with quotienting and Invertible Bloom Lookup
Tables. Then, we detail state-of-the-art sketches used for network measurements.

2.1.1 Key-Value Storage

For per-flow network monitoring, many use cases require mapping a flow to some
measurements, stored as <key,value> pairs. This mapping is typically implemented
in a network device for monitoring at line-rate. Here, we detail two particular data
structures used for such mappings.

Cuckoo Hash Tables with quotienting. A Cuckoo Hash Table (CHT, Pagh and
Rodler, 2004) can be seen as a dictionary with constant lookup time. It is composed
of d tables T0 . . . Td−1 with r buckets each, and d hash functions h0 . . . hd−1 are used
to map each key x to the range [0, r− 1]. A <key,value> item with key x is stored in
only one of the d buckets Ti[hi(x)]. To insert x, the first position T0[h0(x)] is located
among the d designated buckets. If a free cell is found, x is inserted there with its
value and the procedure ends. If not, x is still inserted in this bucket, replacing the
old key y previously stored there1 and y is reinserted in one of its other available
d buckets, i.e., Tj[hj(y)] for j ̸= i. The procedure is repeated until all elements are
stored, as illustrated in Figure 2.1a with d = 2 tables. Note that this procedure may
loop, as depicted in Figure 2.1b. Thus, the number of loop iterations is bounded by
an external threshold specified by the user, and if this threshold is reached, the keys
are re-hashed with new hash functions. Insertions are performed in worst-caseO(n)
time, where n denotes the number of items, although a constraint on the maximum

1In the original CHT paper, insertion is biased towards the first table for faster lookups. Some
implementations favor faster insertion instead, by checking for an empty bucket across all Ti[hi(x)]
locations to insert x before moving any of the already stored <key,value> pairs.

2.1. Measurements Data Structures 13

FIGURE 2.2: Insertion of the pair (x, y) in an Invertible Bloom Lookup
Table with m = 4 buckets and d = 2 hash functions. The new item
increments the three fields in each of the buckets designated by hi(x).

table load factor enables amortized constant insertion time (Pagh and Rodler, 2004).
The lookup operation is performed in O(1) time as the key x is found in either one
of the fixed d locations indexed by Ti[hi(x)]. Variants of cuckoo hashing proposed
to use additional hash functions (Fotakis et al., 2005) or to use buckets of size larger
than one (Panigrahy, 2004) to achieve higher load factors.

Quotienting is a technique, originally proposed by (Knuth, 1973), to reduce the
memory needed to store keys: consider a universe U comprising 2u elements of u
bits each and d bijective functions mi : U → U . With quotienting, we use the r least
significant bits of mi(x) as the hash function hi(x), and store only the remaining u− r
bits of mi(x) in Ti[hi(x)], i.e., the quotient of mi(x). This method enables unambigu-
ous identification of the items stored in a cuckoo table while reducing the memory
cost of each key from u to u− r. Note that quotienting provides significant savings
when u ≈ r, i.e., when a significant fraction of the universe is stored in the qCHT.

Invertible Bloom Lookup Tables. An Invertible Bloom Lookup Table (IBLT, Goodrich
and Mitzenmacher, 2011) is a randomized data structure that enables storing <key,

value> pairs with constant insertion time. Similar to a Bloom Filter (Bloom, 1970),
an Invertible Bloom Lookup Table (IBLT) uses a single lookup table T of m buckets,
and d hash functions h0 . . . hd−1 to identify the d buckets T[hi(x)] where a pair (x, y)
is placed. Note that, to ensure that the hashes point to distinct locations, a standard
approach consists in splitting the m buckets into d tables of size m/d. To solve key
collisions, each bucket contains three fields: a counter for the number of colliding
keys, a field to sum (or XOR) the colliding keys, and a values-store summing (or
XORing) all the values associated with the colliding keys. The insertion of a new
item updates these three fields for each of the d buckets it is placed into, as illus-
trated in Figure 2.2. This operation is supported in O(1) time as it only depends on
the number of hash functions used, which is fixed. The lookup for a key x is also per-
formed inO(1) time, following a procedure similar to a membership test in a Bloom

14 Chapter 2. Background

Filter: each of the d buckets designated by the hash locations hi(x) is inspected. If
one of them has its keys-counter set to zero, then x is not present in the IBLT. If one
of them has its keys-counter set to one, then either its keys-sum field is equal to x
and the corresponding value is returned from its values-sum field, otherwise x is not
present in the IBLT. Finally, if the previous tests have failed for all d buckets, then
the lookup procedure fails and x may or may not be in the IBLT. Lookup failures
have low probability similar to the false-positive rate of a Bloom Filter (Goodrich
and Mitzenmacher, 2011).

A specificity of the IBLT is that is allows listing its content with a decoding procedure
that performs a “peeling process”. Intuitively, the peeling process operates by first
identifying the buckets where the keys-counter is equal to 1, i.e., only one value
was stored there. Then, this value is removed from all the d associated buckets, and
their keys-counter, keys-sum and values-sum fields are decremented accordingly.
Hopefully, then other buckets end up having their keys-counter equal to one, hence
the process continues iteratively. This procedure can retrieve all the <key,value>

pairs if the load factor of the IBLT is below a certain peeling threshold.

2.1.2 Frequency estimation

In network measurements, flow size corresponds to the number of packets or bytes
composing a flow. When considered in terms of packets, flow size measurement
corresponds to a particular application of frequency estimation on a stream of items.
Flow size distributions are typically skewed and heavy-tailed (Han et al., 2022): a
small fraction of the flows with very large sizes (the elephants) account for most of
the traffic, while the majority of flows are composed of a small number of packets
(the mice). Because of their impact on the network, large flows are of particular
interest for many applications, e.g., Quality of Service (QoS, Pan et al., 2003), traffic
engineering (Feldmann et al., 2000), accounting and billing (Duffield et al., 2001).
Hence, flow size is at the basis of important network measurement tasks, including
heavy-hitters and elephants detection (Tang et al., 2019; Ben Basat et al., 2017) or top-
k flows identification (Yang et al., 2019). At first sight, recording the exact length of a
flow only requires to maintain a counter. However, due to the high speed of modern
networks, this approach does not scale to monitor millions of active flows, in terms
of memory requirements in network devices. Instead of using exact counters or
sampling techniques, approximate hash-based data structures (sketches) have been
developed to estimate flow size at a reasonable memory cost, by sharing counters
across flows.

Count-Min Sketch (CMS) is used to estimate frequency in a stream of positive items
(Cormode and Muthukrishnan, 2005). A CMS is composed of L hash tables, also
called rows, of W counters each, also called buckets. These counters are initialized
at zero, and are addressed by L independent hash functions {hi}L−1

i=0 . In the context
of flow size estimation, one observes a stream of <flowkey, value> pairs, each item

2.1. Measurements Data Structures 15

FIGURE 2.3: Count-Min Sketch insertion. Each item increments one
counter in each row. Figure adapted from (Han et al., 2022)

indicating a new packet for a given flow. When estimating flow size in terms of
packets, the value is set to 1, alternatively value may be set to the packet size. At
each item arrival, the flowkey is hashed L times and the resulting hash codes are
used as indexes to increment the corresponding counters by the value, as depicted
in Figure 2.3. To estimate the size of a given flow, the CMS is queried by, first, hash-
ing the flowkey L times to identify its corresponding counters, second, returning
the minimum of the L counters thus identified. Hence, the CMS reduces the mem-
ory required to monitor the sizes of all the active flows by sharing counters across
them. However, since the space used by the CMS is usually much smaller than the
space required to represent the exact stream frequencies, there is an approximation:
hashed keys collisions may produce an overestimation of the flow size. The estima-
tion error depends on W and L, which represent the memory-accuracy trade-off of
the sketch, and also depends on the actual frequencies in the stream.

More formally, let us consider a vector s = [s1, ..., si, ..., sn] that represents the exact
frequencies observed so far in a stream of n active flows under monitoring. Then,
considering a CMS with L = ⌈ln 1

δ⌉ rows composed of W = ⌈ e
ϵ⌉ buckets, the esti-

mated flow size ŝi is bounded by2:

ŝi ≤ si + ϵ∥s∥1, (2.1)

with probability at least 1− δ, where ∥s∥1 = ∑n
i=1 |si|. Thus, the fixed hyper-parameters

δ and ϵ define the probability of error as well as the space and time requirements of
the CMS. For instance, setting δ = ϵ = 0.0001 yields a CMS composed of L = 10
rows of W = 27, 183 counters each, which requires ≈ 1MB when considering 4-byte
counters. The CMS performs insertions and queries in O(1) time as it only depends
on L that is fixed. In particular, this CMS keeps the frequency estimation error within
0.01% of the total count of all items, with a probability over 99.99%.

2Proof in (Cormode and Muthukrishnan, 2005).

16 Chapter 2. Background

FIGURE 2.4: ElasticSketch insertions considering a threshold λ = 8
and a light part CMS with L = 2 rows. Flow f4 gets ostracized from

the heavy part. Figure from (Yang et al., 2018)

ElasticSketch (ES) is an adaptive data structure that improves frequency estimation
accuracy over the plain CMS (Yang et al., 2018). In a CMS, hash collisions with high-
count items may produce serious frequency over-estimations. For example, in the
context of network measurements, a few large flows co-live with a majority of short
flows, which may suffer from high relative estimation errors. ElasticSketch is based
on the idea of segregating high-frequency items from the rest of the items stored in
the CMS. By counting these high-frequency items separately, the CMS pollution is
reduced to collisions among lower-frequency items, with lesser impact on the final
estimation error. Therefore, an ES data structure is composed of two parts: a heavy
part (e.g., a hash table with exact counters) and a light part (e.g., a CMS). Note that
the heavy part can be dynamically sized in order to adapt to a varying and unknown
number of high-frequency items in a data stream, hence the name “elastic”. To sep-
arate items between these two parts, ES introduces an ostracism mechanism. The
insertion of incoming items is first attempted in the heavy part. If the corresponding
hash table bucket is empty or already occupied by their own key, the incoming item
increments a counter of positive votes. Otherwise, if the bucket is already occupied
by a different key, the incoming item increments a separate counter recording neg-
ative votes, and it is stored in the light part instead. When an incoming item’s vote
makes the negative counter exceed a threshold, it expels the current key to the light
part and replaces it.

More formally, let us consider a heavy part H composed of a hash table of B buck-
ets addressed with a hash function h. Each bucket of H stores four fields: the
flowkey, a counter for positive votes (i.e., number of packets for this flow), a flag
indicating if the light part contains positive votes for this flow, and a counter for
negative votes (i.e., number of packets from other flows that collide to this bucket).
Let us define an ostracism threshold λ. Additionally, let us consider a light part G
that is a CMS composed of L rows of W counters each. The insertion procedure
is depicted in Figure 2.4. To insert an incoming item <flowkey, 1>, first, its corre-
sponding bucketH[h(flowkey)] in the heavy part is selected. If the bucket is empty,

2.1. Measurements Data Structures 17

we insert (flowkey, 1, F, 0) into it, where the flag F (false) indicates that no evic-
tion has happened yet. If the bucket is already occupied, let us denote its fields by
(key, vote+, f lag, vote−). If flowkey = key, then vote+ is incremented by 1. Other-
wise, if vote−

vote+ < λ after incrementing vote− by 1, then <flowkey, 1> is inserted in the
CMS. If instead vote−

vote+ ≥ λ after incrementing vote− by 1, then the current key is os-
tracized: the key is evicted to the light part by incrementing the mapped L counters
by vote+, and the heavy bucket fields are set to (flowkey, 1, T, 1). The flag T (true)
is necessary to record that some packets from flowkey may have been previously
inserted in the light part. At query time, if a flow is not present in the heavy part,
its frequency is estimated from the CMS. However, if a flow is present in the heavy
part, either its flag is set to false and its size is the corresponding vote+ counter, or
its flag is true and the number of packets vote+ is added to the query result from
the CMS. Following the notation introduced earlier for the CMS, ElasticSketch’s fre-
quency estimation ŝi is bounded by3:

ŝi ≤ si + ϵ∥sG∥1 < si + ϵ∥s∥1, (2.2)

with probability at least 1− δ, where sG denotes the sizes vector of the sub-stream
that has been recorded by the light part.

2.1.3 Cardinality estimation

Cardinality refers to the number of distinct items in a data collection (Flajolet and
Martin, 1985). In network measurements, host cardinality, also called spread, con-
sists in counting the number of distinct hosts connected to a specific source or des-
tination. Knowledge of cardinality distributions is particularly useful for service
providers to derive communication patterns between hosts (Liu et al., 2016). More
importantly, unusually large cardinalities indicate abnormal and suspicious network
events, such as DDoS attacks (high source cardinality, Zhao et al., 2006) or network
scanning from super-spreaders (high destination cardinality, Venkataraman et al.,
2005). An exact method to count cardinality consists in maintaining a per-flow list
of elements without replication and return its size. However, this trivial approach
comes at a prohibitive cost in terms of memory requirements and number of ac-
cesses, which makes it impractical to compute cardinalities in network devices at
high-speed.

To estimate cardinality at a small memory cost, Flajolet and Martin exploit proba-
bilistic counting with the Flajolet-Martin (FM) algorithm in 1985, that probably con-
stitutes the first sketch proposed. To estimate the cardinality of a multiset S, the FM
algorithm relies on encoding each element x into a binary string hash(x) of length L,
with a sufficiently uniformly distributed hash function. If the values are uniformly

3Proof in (Yang et al., 2018).

18 Chapter 2. Background

FIGURE 2.5: Flajolet-Martin Sketch with Probabilistic Averaging.
Each item’s trailing zeros pattern is recorded into one of m bitmaps.

Figure from (Han et al., 2022)

distributed, the probability of observing k trailing zeros in the binary representa-
tion of hash(x) is 1/2k+1. Intuitively, observing a large number of trailing zeroes is
less likely and indicates a greater cardinality. Hence, by hashing all the elements
contained in S, and recording the occurrences of trailing zeros patterns, one can es-
timate the number of distinct elements in the multiset S. Namely, if Card(S) = n,
then sequences of k trailing zeros have been observed approximately n/2k+1 times.
More formally, when scanning S, let us record in a vector bitmap B[0, ..., L− 1] the
position of the least significant 1-bit observed for each hash(x). The FM algorithm
uses the position of the leftmost zero in B, denoted R, as an indicator of log2(n).

However, as empirically shown by the authors, this estimate has a predictable bias
towards larger cardinalities, which can be corrected by taking into account the ex-
pectation E(R) and standard deviation σ of R under the assumption of uniformly
hashed values, i.e. E[R] ≈ log2(φn) and σ ≈ 1.12 where φ ≈ 0.77351 is a correction
factor4. Also, to address the variability of R, the elements are distributed across m
bitmap vectors {Bi}m

i=1, addressed by the same hash function. In details, for each
incoming item x, its corresponding bitmap vector is selected by α = hash(x)mod(m)

and is indexed with hash(x)div(m). This FM sketch with stochastic averaging is
depicted in Figure 2.5. The results {Ri}m

i=1 from the m bitmaps are averaged into:

A =
R1 + R2 + ... + Rm

m
, (2.3)

Finally, the cardinality of S is estimated by n ≈ m
φ 2A with φ/

√
m relative accuracy.

The LogLog algorithm (Durand and Flajolet, 2003) improves this idea with quoti-
enting. The multiset S is separated into m = 2b subsets, such that the first b bits of
hash(x) are used to select the corresponding counter Bi, while the remaining L− b

4Proof in (Flajolet and Martin, 1985).

2.1. Measurements Data Structures 19

FIGURE 2.6: DDSketch insertions. Each value is mapped to a single
bucket, whose range is maximized to maintain relative-error guaran-
tees at the lowest memory footprint. Buckets bounds and representa-

tive values are rounded.

bits are used to estimate cardinality, i.e., to record in the counter the maximum num-
ber of trailing zeroes that have been observed. Finally, the HyperLogLog (HLL,
Flajolet et al., 2007) further enhances this algorithm by discarding the largest 30%
outliers among the m results from the counters, before averaging them with a nor-
malized version of the harmonic mean. In this way, HLL reduces the relative error
to 1.04/

√
m while maintaining constant O(m) time complexity at a memory cost in

O(m log2 log2 n). For instance, hashing on L = 32 bits, setting b = 11 prefix bits,
and maintaining m = 2048 buckets of 5-bit each (enough to record up to 32 trailing
zeroes), produces a HLL sketch of 1.3 KB. This HLL can estimate cardinalities over
109 with a standard error of ≈ 0.02%. Note that, in the context of network monitor-
ing, a dedicated HLL is allocated for each flow (e.g., each destination host) and its
contacting hosts (e.g., its sources) constitutes the multiset S.

2.1.4 Quantiles estimation

Quantiles, sometimes referred to as percentiles when highlighting their partitioning
in hundredths, are compact measures to represent the distribution of a collection of
values. As a reminder, the q-quantile item xq (0 ≤ q ≤ 1) of a multiset S of n real
items is defined as the item x ∈ S whose rank R(x) is ⌊1 + q(n− 1)⌋ in the sorted
multiset. Particular quantiles include the minimum (q = 0), the median (q = 0.5)
and the maximum (q = 1). In network measurements, quantiles are particularly use-
ful to express QoS metrics. For example, one typical metric of interest is latency, cap-
tured e.g., through the distribution of flow Inter-Arrival Times (IATs) or Round-Trip
Times (RTTs). Latency distributions are typically skewed, with the highest quantiles
being the most critical. As a consequence, instead of traditional aggregates such as
the average, network operators are more interested by the extreme latencies expe-
rienced in the network, e.g., computing the 95th percentile of IATs to represent the
5% cases with the worst latency. Unfortunately, computing exact quantiles is chal-
lenging as it requires to store and sort all the values in the multiset (Cranor et al.,

20 Chapter 2. Background

Algorithm 1 : Quantile(q). From (Masson et al., 2019)
Require: 0 ≤ q ≤ 1

i0 ← min({j : Bj > 0});
count← Bi0 ;
i← i0;
while count ≤ q(n− 1) do

i← min({j : Bj > 0∧ j > i});
count← count + Bi;

end while
return 2γi/(γ + 1);

2003). Thus, this would translate into expensive memory requirements if the full set
of IATs needs to be retained to perform the exact computation.

The Distributed Distribution Sketch (DDSketch) is a state-of-the-art lossy data struc-
ture employed to estimate the quantiles of a stream of positive real values (Masson
et al., 2019). Instead of computing exact quantiles, the DDSketch stores approximate
values and sort these approximate values to compute approximate quantiles. Con-
cretely, a DDSketch is an array of buckets of fixed length, that divide the universe
of possible values into ranges. At ingestion, each bucket keeps tracks of the values
falling within its range by incrementing a counter. Each bucket defines a represen-
tative value to speak for the range it covers, as depicted in Figure 2.6. To estimate a
given quantile, the counters are summed up in order, until the bucket containing the
quantile value is found and its representative value is returned. Note that a DDS-
ketch is allocated on a per-flow basis, e.g., a single DDSketch would estimate the
IATs quantiles of a single flow.

Unlike other quantiles summaries data structures that provide rank-error guaran-
tees (e.g., the GK Sketch Greenwald and Khanna, 2001), the DDSketch guarantees
relative-error bounds. For example, a rank-error guarantee of 0.02 implies that the
estimated 95th percentile is between the actual 93th and 97th percentile. Instead, a
relative-error guarantee of 0.02 implies that the estimate lies within ± 2% of the ac-
tual percentile value. DDSketch enforces these guarantees by defining buckets whose
relative width is twice the relative error. More formally, to design a DDSketch that
guarantees an α-accurate estimation x̂q of an actual q-quantile xq, i.e., |x̂q− xq| ≤ αxq,
let us first define:

γ = (1 + α)/(1− α), (2.4)

Each bucket Bi, indexed by i ∈ Z, counts the number of values falling in]γi−1, γi].
When an incoming value x is observed, it is assigned to the bucket indexed by
⌈logγ(x)⌉. To estimate a q-quantile5, the DDSketch is queried using Algorithm 1. In
practice, the number of buckets m is not unbounded and is instead limited according

5Proof of α relative accuracy in (Masson et al., 2019).

2.2. Machine Learning Models 21

to the range of values that the DDSketch must cover. This is implemented by col-
lapsing the buckets outside of the monitored range, which guarantees logarithmic
space complexity for non-degenerate data (Masson et al., 2019). For instance, setting
α = 0.02 for a 2% relative error, a DDSketch covering the IATs range from 1 mil-
lisecond to 1 minute only requires 275 buckets, which translate to 2.2 KB with 4-byte
counters. Interestingly, covering the IAT range from 1 nanosecond to 1 day with the
same relative error only requires 802 buckets, i.e., 6.4 KB, that is a ≈ 3× increase
in memory. Besides, DDSketch answers queries in constant O(m) time. Finally, the
DDSketch is particularly popular in network measurements because of its flexibility,
as DDSketches are mergeable and offers various implementations options.

2.2 Machine Learning Models

Some of the methodologies proposed in this thesis rely on Machine Learning models
to automate pattern-matching and features extraction from network traffic. In this
section, we detail the paradigms and algorithms used throughout the thesis.

2.2.1 Random Forests

Random Forests (RFs) represent a popular supervised learning procedure based on
the aggregation of multiple decision trees predictors. They have been theoretically
characterized in (Breiman, 2001) after several earlier works (Amit and Geman, 1997;
Ho, 1998; Dietterich, 2000). In a nutshell, a RF is an ensemble of several decision
trees, each trained on a randomized fraction of the data, which are then aggregated
to produce the final RF prediction. Beside the simplicity of their bagging approaches,
RFs are recognized for their ability to handle high-dimensional features with mini-
mal pre-processing, for their interpretability and for their parallelization (Biau and
Scornet, 2016). Although several flavors of RFs have been proposed, the bootstrap-
aggregating or bagging paradigm is at the core of the algorithm.

To introduce the RF algorithm more formally, let us consider a binary supervised
classification task. Given an observed random variable X ∈ Rp, the goal is to predict
the response random variable Y that takes values in {0, 1}. We have access to pairs
of samples drawn from the random variables X and Y, that constitute the training
dataset Dn = ((X = x1, Y = y1), ..., (X = xn, Y = yn)). A classifier fn is a function of
X and Dn that attempts to estimate the label Y. For example, a classification deci-
sion tree recursively partitions the feature set into subsets, such that samples with
the same label are grouped together in successor children. This partitioning is im-
plemented by if-then-else rules based on input features and guided by a splitting
criterion such as Gini impurity minimization (Breiman, 2017) or information gain
maximization (Quinlan, 1986). The recursion goes on until a stopping criterion is
met (e.g., the node is pure).

22 Chapter 2. Background

A particular trait of decision trees is that the trees grown very deep tend to overfit
their training set. Random Forests aim at reducing this high variance by introduc-
ing randomness in the construction of the classifier. The first source of randomness
comes from the aggregation of several decision trees trained on various subsets of
the data set Dn. This bootstrap sampling aims at de-correlating the individual trees,
such that their average is less sensitive to noise in the training data. In this context,
a RF is a ensemble of m randomized classification trees h1, ..., hm, each trained on a
random sample drawn with replacement from Dn. In the original RF algorithm, the
final classification rule for an example x is obtained by a majority vote among the
individual trees (Biau and Scornet, 2016):

RF(x;Dn) = fn(x; h1, ..., hm,Dn) =

1 if 1
m ∑m

j=1 hj(x;Dn) >
1
2

0 otherwise
(2.5)

Alternative aggregations techniques have been proposed, such as the weighted aver-
age of the individual trees class probability prediction, which is implemented in the
popular Scikit-Learn Python package (Pedregosa et al., 2011). To further decrease the
variance of RFs estimators, feature bagging introduces an additional source of ran-
domness by considering only a random subset of the features at each candidate split
node. This process also aims at de-correlating the m individual trees that compose
the ensemble. Note that Random Forest algorithms are sensitive to several hyper-
parameters, including the number of trees m, the number of features to consider
at each candidate split or the minimum number of examples required to perform a
split. These parameters are typically cross-validated to optimize a success metric,
e.g., accuracy in a balanced classification setting. Finally, alternative tree-based en-
sembles have been developed, such as Gradient-Boosted Decision Trees algorithms
(Chen and Guestrin, 2016) which iteratively fit weak learners to minimize a cost
function by predicting its negative gradients.

Decision trees and Random Forests have been of particular interest for in-network
Machine Learning implementation. Their simplicity and parallelization make them
attractive candidates for deployment with low-resources consumption. Indeed, at
inference, the trees composing the forest can be independently queried in parallel
to speed up prediction time. For example, programmable switches’ Match-Action
pipelines have been adapted to implement decision trees traversals in (Xiong and
Zilberman, 2019; Busse-Grawitz et al., 2022; Zheng and Zilberman, 2021). Last, RFs
implementation in re-configurable hardware is particularly appealing, e.g., to deal
with frequent model updates (Owaida et al., 2017).

2.2. Machine Learning Models 23

FIGURE 2.7: (left) Skip-Gram samples with a context window of size
c = 2. (right) Word2Vec architecture with a vocabulary V.

2.2.2 Word2Vec

Word2Vec (W2V) corresponds to a Deep Learning methodology introduced in the
context of Natural Language Processing by (Mikolov et al., 2013b) to extract vec-
tor representations of words. The W2V algorithm captures syntactic and semantics
words relationships based on their co-occurrences in sequences of text, i.e., phrases.
W2V refers a family of to two-layer Artificial Neural Networks (ANNs) instrumented
to model natural language. These models take as input a corpus of text and output
a vector space in which each unique word of the corpus is associated to a particular
vector. Word2Vec training objective is to learn word representations that facilitates
the prediction of nearby words. The approach comes in two flavors, Skip-Gram or
Continuous Bag-of-Words, that both consider individual words and their context,
materialized by a sliding window. During training, the model is tasked to predict
neighboring words from the current word (or the opposite). This objective aims at
embedding words that share common context (i.e., that co-occur frequently) into
vectors that are close in the output space.

More formally, let us consider a vocabulary V which is the set of words present
in a text corpus. Word2Vec aims at learning a vector vw ∈ Rn for each word w
in the vocabulary. In this section, we only detail the Skip-Gram approach. Given
a sequence of words w1, w2, ..., wT, the training objective is for each target word to
maximize the probability of predicting the set of neighbor words in a context window
of size c, i.e., maximizing the average log probability (Mikolov et al., 2013b):

1
T

T

∑
t=1

∑
−c≤j≤c,j ̸=0

log P(wt+j|wt), (2.6)

In this approach, Skip-Gram training samples are pairs of target-neighbor words
< wi, wj > extracted from the corpus according to the sliding window’s size as illus-
trated in Figure 2.7 (left), and words themselves are one-hot encoded. A W2V model,
as depicted in Figure 2.7 (right), is a neural network whose architecture resembles

24 Chapter 2. Background

an Auto-Encoder with a single hidden layer. It is composed of an input layer of size
Card(V), one fully connected layer (without activation) of size n, represented by its
weights matrix Winput, and one output layer of size Card(V) with its weights ma-
trix Woutput. Given that each word is one-hot encoded, the rows of Winput act as a
look-up table and constitute the word vectors, or word embeddings, that are learned
throughout training via back-propagation. The probability P(neighbor|target) is de-
fined using the softmax function on the output layer, i.e., similar to a classification
layer:

P(neighbor|target) =
exp(v′ ⊤

neighbor vtarget)

∑Card(V)
w=1 exp(v′ ⊤w vtarget)

, (2.7)

where vw ∈ Rn is the vector representation of word w in the input layer, and v′w ∈
Rn is its output layer representation. Instead of optimizing all weights for the pre-
cise Skip-Gram objective presented above, Word2Vec typically approximately maxi-
mizes it, using negative sampling for computational efficiency (Mikolov et al., 2013b).

The Word2Vec learning procedure depends on various parameters, namely the di-
mension of the word vector space (n) and the size of the context window (c). In-
creasing the dimension n of the vector space translates into higher word embeddings
quality, although diminishing returns have been reported after some point (Mikolov
et al., 2013b). Larger context windows produce more training examples, which can
result in higher word embeddings quality, but at a higher training cost. We note
that the Word2Vec methodology has already been applied to networking, e.g., with
IP2Vec (Ring et al., 2017) or DarkVec (Gioacchini et al., 2021) to learn IP addresses
embeddings.

2.2.3 Multi-Task Learning

In Deep Learning, Multi-Task Learning (MTL) is a paradigm that seeks to improve
generalization performance by learning multiple related tasks simultaneously (Caru-
ana, 1997). MTL is based on the assumption that the domain-specific information
of related tasks can be leveraged by learning them in parallel and sharing common
representations. In the traditional Single-Task Learning (STL) approach, an induc-
tive learner is provided with training data for a specific task and a space of hy-
potheses from which it must select (i.e., learn) the one hypothesis that minimizes
error over the underlying distribution of the data (i.e., generalize). During learn-
ing, any basis for the learner to prefer some hypothesis over others is referred to as
an inductive bias (Mitchell, 1980). MTL argues that the training signals of related
tasks can be used as an inductive bias, causing the learner to favor hypotheses that
solve more than a single task (Caruana, 1997). During MTL training, the error from
several tasks is aggregated and back-propagated to update hidden representations,
hence developing features that would not have been extracted in a STL approach.
As such, Multi-Task Learning constitutes an inductive transfer mechanism between

2.2. Machine Learning Models 25

FIGURE 2.8: Multi-Task Feed-Forward Neural Network. Representa-
tions are shared across tasks in the model backbone, but private in the

task-specific heads. Figure adapted from (Zhang and Yang, 2022)

tasks. However, in practice, tasks interference may degrade performance if their re-
spective updates become unaligned or contradictory during simultaneous learning.
This negative transfer phenomenon constitutes a key challenge in MTL, which is of-
ten observed to make single-task models superior without appropriate mitigation
mechanisms (Standley et al., 2020). The Multi-Task Learning paradigm is also ap-
pealing in terms of cost-performance trade-off. Given a set of tasks to solve and a
limited computational budget for training and inference, MTL offers a flexible way
to assign tasks to models in order to maximize the overall tasks set performance.

The study of Multi-Task Learning comes into various flavors, that may be catego-
rized under three main questions: (i) what to share, (ii) when to share, and (iii) how
to share (Zhang and Yang, 2022). First, (i) concerns the object of knowledge shar-
ing, which can be feature-based, instance-based or parameter-based. Feature-based
sharing focuses on extracting higher-level representations of the input, that are com-
mon to several tasks. This approach corresponds to the initial feed-forward MTL
architecture proposed in (Caruana, 1997) that shares hidden representations across
multiple related tasks. In addition, instance-based MTL modulates knowledge shar-
ing by identifying the relevant training instances to be shared on a task basis. For
example, when few samples are available for a task but a related task has more sam-
ples at its disposal, re-sampling weights may reflect this discrepancy for fair MTL
training (Bickel et al., 2008). Finally, parameter-based MTL deals with learning re-
lations across tasks, by instrumenting the parameters of task-specific models. For
instance, one may quantify tasks relatedness by characterizing the relationships be-
tween STL models parameters(Ando et al., 2005) or by clustering tasks (Thrun and
O’Sullivan, 1996). In a learning problem involving several tasks, (ii) corresponds to
modeling choices from a task perspective, deciding which tasks should be learned

26 Chapter 2. Background

together (MTL) and which tasks should be learned alone (STL), based on their affin-
ity. This partitioning of the task space to group beneficial tasks together and sep-
arate competing tasks apart is also referred to as task grouping (Fifty et al., 2021).
Last, (iii) deals with the actual training process to share knowledge among related
tasks, implemented through model design. In this thesis, we study homogeneous
feature-based supervised MTL, i.e., learning hidden representations extracted from
the same input, and common to multiple related tasks. More formally, we consider
a set of m tasks T = {t1, t2, · · · , tm} and a dataset of N instances DN = {xi, yj

i}N
i=1,

where yj
i corresponds to the label of the ith instance for task tj. In the remainder of

this subsection, we present the main MTL approaches falling into this category.

Feature-based MTL assumes that related tasks benefit from similar features. Hence,
by sharing the knowledge extraction process across tasks, internal representations
learned for one task may be used by other tasks in the hidden layers (Caruana, 1997).
A straightforward implementation to concretize this approach consists in adding
several tasks (i.e., several outputs) to a back-propagation neural network. As de-
picted in Figure 2.8, such model is composed of a shared backbone, whose final
bottleneck layer serves as a feature map plugged to multiple per-task heads. Note
that while this architecture is illustrated with simple feed-forward layers, the back-
bone may contain more sophisticated layers, e.g., Convolutional Neural Networks.
The loss function to optimize is typically a linear combination of the individual tasks
losses, i.e.:

L =
m

∑
j=1

αjLj(X, Yj, WB, Wj), (2.8)

where αj and Lj denote the coefficient and loss function used for task tj resp., where
X denotes the input samples with corresponding labels Yj for task tj, and where WB

and Wj are the model backbone and head weights for task tj resp. Therefore, dur-
ing the backward pass, the task-specific error is back-propagated in each particular
head, while the combined error is back-propagated throughout the shared backbone,
hence sharing training signals among tasks. Additionally, several works proposed
more sophisticated loss functions to control tasks interactions dynamically through-
out training (Leang et al., 2020; Pascal et al., 2021). A more flexible feature-based
MTL approach considers that tasks require related but different representations. For
example, the Cross-Stitch architecture (Misra et al., 2016) duplicates the model back-
bone per-task, and defines feature-level relationships across tasks, materialized by
learnable parameters. These parameters are used to tune interactions between task-
specific representations during training.

27

Chapter 3

Sparse Sketches Representations
for Per-flow Monitoring

In this chapter, we propose a sparse representation to improve the mem-
ory footprint of traditional measurements systems based on sketches. Ac-
curate per-flow monitoring is critical for precise network diagnosis, per-
formance analysis, and network operation and management in general.
However, the limited amount of memory available on modern program-
mable devices and the large number of active flows force practitioners
to monitor only the most relevant flows with approximate data struc-
tures, limiting their view of network traffic. We argue that, due to the
skewed nature of network traffic, such data structures are, in practice,
heavily underutilized, i.e., sparse, thus wasting a significant amount of
memory. This chapter proposes a Sparse Approximate Data Structure
(SPADA) representation that leverages sketches’ sparsity to reduce the
memory footprint of per-flow monitoring systems in the data plane while
preserving their original accuracy. SPADA representations can be inte-
grated into a generic per-flow monitoring system and are suitable for
several measurement use cases. We test our approach on four real net-
work traces over three different monitoring tasks. Our results show that
SPADA achieves 2× to 11× memory footprint reduction with respect to
the state-of-the-art while maintaining the same accuracy, or even improv-
ing it.

28 Chapter 3. Sparse Sketches Representations for Per-flow Monitoring

Sketch f1f1

Sketch fkfk

Sketch f2f2

f1

fk

f2

f1

fk

f2

Sparse representationStandard representation

(a) Dedicated per-flow sketches (b) One large shared sketch (c) Only non-zero counters/buckets

(most counters/buckets are left to zero due to the skewed nature of network data)

Sketch f1-k

FIGURE 3.1: Per-flow monitoring using standard (a), (b) and sparse
(c) representations.

3.1 Introduction

Monitoring network traffic on a per-flow basis requires measuring several quantities
related to the packets traversing network devices. These accurate measures provide
network operators the necessary data for fine-grained Operations, Administration,
and Management (OAM) algorithms such as responsive diagnosis (Schlinker et al.,
2019; Chen et al., 2016), precise fault localization (Li et al., 2016b; Arzani et al., 2018),
traffic engineering (Benson et al., 2011), network accounting (Estan and Varghese,
2003), anomaly detection (Zhang, 2013), and many others. However, collecting per-
flow metrics requires a considerable amount of resources, especially at high speed
when the number of active flows might be very high. Considering that recent studies
estimate the number of active flows in the order of 100K per Gbps of traffic (Scaz-
zariello et al., 2023), accurately monitoring Tbps of traffic might require several GBs
for a few per-flow metrics. Programmable ASIC devices feature memories in the
order of dozens of MBs to accommodate all network applications, including L2/L3
forwarding, among others. Consequently, the amount of memory allocated for mon-
itoring is but a fraction of the total one, making accurate per-flow monitoring im-
practical due to its high memory requirements. Similarly, in FPGA-based Smart-
NICs, the amount of memory available for per-flow monitoring is scarce since the
use of large memories such as Double Data Rate Synchronous Dynamic Random
Access Memory (DDR-SDRAM) or High Bandwidth Memory (HBM) is limited by
their high access latency, i.e., tens of clock cycles, and the required resource-hungry
cache memory hierarchy.

To better understand the per-flow monitoring problem, Figure 3.1ab illustrates at
a high level how flows f1−K are typically mapped to dedicated or shared arrays of
counters (sketches). In particular, we consider a few concrete use cases: super spreader
detection, per-flow quantiles, and flow size estimation. The goal of super spreader de-
tection algorithms (Jia et al., 2020; Wang et al., 2021; Han et al., 2022) is to estimate,
for any given source IP (sIP), its “cardinality”, i.e., the number of destination IPs
(dIPs) it contacts. This task is often achieved using the HyperLogLog (HLL) (Flajolet
et al., 2007) sketch, allocating one HLL data structure for each sIP. Unfortunately,
achieving good accuracy with HLL requires a considerable amount of memory. For
this reason, practitioners usually limit the number of monitored sIP to reduce mem-
ory occupancy, or decrease the accuracy, e.g., vHLL (Jia et al., 2020; Xiao et al., 2015).

3.1. Introduction 29

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of empty buckets

0.0

0.2

0.4

0.6

0.8

1.0
CD

F
Sketch sparsity

DDSketch (64 buckets)
HLL (128 buckets)

(A) Sketch counters sparsity.

1 2 3 4 5 6 7 8 9
Number of flows [M]

0

1

10

100

1000

M
em

or
y

[M
B]

DDSketch

High accuracy
Low accuracy
All counters
Non-zero counters

1 2 3 4 5 6 7 8 9
Number of flows [M]

0

1

10

100

1000 HLL

(B) Memory requirement.

FIGURE 3.2: Flow sparsity and memory requirements analysis using
one sketch per flow from a CAIDA trace.

Similarly, monitoring per-flow quantiles (Choi et al., 2007; Ivkin et al., 2019) of rele-
vant flow properties, e.g., packet Inter-Arrival Time (IAT), packet size, etc., requires
processing the stream of all packets belonging to the same unidirectional 5-tuple us-
ing histogram-based data structures such as DDSketch (Masson et al., 2019). How-
ever, using a dedicated sketch for each monitored flow makes quantile estimation
challenging due to the high memory requirements. It is worth noting that even for
basic measurements such as flow size estimation, the amount of memory required to
monitor hundreds of thousands of flows is not negligible with ElasticSketch (Yang
et al., 2018). We remark that the above-mentioned monitoring algorithms, as well as
other existing ones (Lall et al., 2006; Chen et al., 2020; Song et al., 2020; Hartmann
and Schlossnagle, 2020; Cormode and Garofalakis, 2005; Papapetrou et al., 2015;
Arasu and Manku, 2004), require the allocation of a sketch composed by an array of
shared or dedicated counters (also called buckets, bins) for each monitored flow (cf.
Figure 3.1ab): this frequently translates into significant memory requirements mak-
ing it difficult to deploy them even for only a fraction of the active flows. Therefore,
we assert the need to reduce the memory requirements of per-flow network moni-
toring algorithms, enabling them to coexist with other critical network functions in
the data plane.

Contributions. In this chapter, we show that sizeable gains can be attained by reduc-
ing the amount of unnecessarily allocated memory without compromising the monitoring
accuracy. We remark that per-flow sketches are designed for extreme scenarios and
hence underutilized in most cases. To solve this problem, we propose a data struc-
ture representation built around the simple concept of only storing counters that
are actually used, as depicted in Figure 3.1c. To provide a quantitative idea of the
under-utilization of sketches in typical measurement tasks, Figure 3.2a reports the
CDF of the fraction of empty buckets in high accuracy DDSketch and HLL (64 and
128 buckets) on a CAIDA trace for 700K flows. In both cases, per-flow sketches are
highly underutilized, i.e., 80% of per-flow DDSketches feature at least 80% of empty
buckets, even more for HLL. This results in a huge waste of memory as observed
in Figure 3.2b, which contrasts the memory occupied by the sketches with the one

30 Chapter 3. Sparse Sketches Representations for Per-flow Monitoring

required by only non-zero counters: the picture shows one-to-two orders of mag-
nitudes of potential memory savings, which holds even for low accuracy DDSketch
and HLL (32 and 64 buckets). We remark that similar sparsity issues arise in different
use cases where sketch-based data structures are employed, (Lall et al., 2006; Chen
et al., 2020; Song et al., 2020; Yang et al., 2018; Hartmann and Schlossnagle, 2020;
Cormode and Garofalakis, 2005; Papapetrou et al., 2015; Arasu and Manku, 2004).
Thus, it can be argued that sparsity is a property common to many measurement
tasks.

Sparse monitoring data structure representations are not trivial to implement in net-
working because it is not possible to know a priori which flow will lead to sparse
data. We acknowledge that sparse data representation is a well-known technique
widely used in many fields ranging from signal processing to machine learning
(Reginald P., 1973; Yuster and Zwick, 2005; Zhang et al., 2015; Ediger et al., 2012;
Winter et al., 2017; Busato et al., 2018) – yet, to the best of our knowledge, it has never
been explored in the context of network monitoring. To support sparse monitoring
data structures in the data plane we propose a Sparse Approximate Data Structure
(SPADA) representation, which stores only relevant, i.e., non-zero, sketch counters.
One key challenge of implementing sparse representations in the data plane is stor-
ing <key, value> pairs for the non-zero counters, taking into account hardware lim-
itations and without a priori knowledge of flow sparsity. To address this challenge,
we propose two alternative solutions: (i) a qCHT, which can accommodate any kind
of data at the price of non-constant insertion time, and (ii) a novel data structure, pI-
BLT, featuring constant insertion time but only suitable for counter-based sketches.
Our main contributions are as follows:

1. we introduce a sparse representation in the context of a generic data plane
monitoring system which is beneficial for several use cases by reducing mem-
ory footprint with no accuracy penalty;

2. we design a novel data structure pIBLT, which improves over a traditional
IBLT removing false positives at the cost of a small bitmap;

3. we provide simulation code and results with the CAIDA and MAWI datasets
on three use cases, assessing memory reduction from 2× to over 11× with
respect to the state-of-the-art;

Organization. In Section 3.2, we review state-of-the-art sketches that can benefit
from SPADA and detail three use cases we use as examples throughout the chapter.
In Section 3.3, we introduce the SPADA representation within a standard per-flow
monitoring system and provide its memory occupancy analytical model. Then, we
discuss SPADA memory sizing in detail in Section 3.4. Trace-based simulation re-
sults are reported in Section 3.5. Finally, Section 3.6 discusses the related work, and
Section 3.7 concludes the chapter.

3.2. Background 31

Measure Sketch name Description Note

Cardinality
(use case a⃝)

HLL (Flajolet et al., 2007) ✓ Array of counters
Skewness
similar to the
HLL sketch used
as reference for
use case a⃝.

PCSA (Flajolet et al., 1985) Array of bit-vectors

KVM (Bar-Yossef et al., 2002) Stores up to k mini-
mum values

Fast-AGMS (Cormode et al., 2005) Array of counters
BeauCoup (Chen et al., 2020) Bitvector

Quantile
(use case b⃝)

DDSketch (Masson et al., 2019) ✓ Array of counters Skewness similar to
DDsketch used as
reference for use case
b⃝. High-level KLL

compactors not fully
allocated.

Circllhist (Hartmann et al., 2020) Array of counters

KLL (Karnin et al., 2016) Array of compactors

Flow Size
(use case c⃝)

Count-Min Sketch (Cormode et al., 2005) Array of counters Sparse when high
accuracy is needed.ECM-sketches (Papapetrou et al., 2015) Count-min sketch over

sliding windows

ElasticSketch (Yang et al., 2018) ✓ Split heavy and light
flows

Similar to CMS, the
light part can be
sparsified for high
accuracy.

LearnedSketch (Hsu et al., 2019) Split heavy and light
flows with ML

Entropy EntropySketch (Lall et al., 2006)
Up to k counters for
stream entropy estima-
tion.

TABLE 3.1: Sketches that feature sparse data. Marked (✓) ones are
used as reference in our analysis.

3.2 Background

In this section, we first identify a set of sparse monitoring data structures, then we
detail state-of-the-art sketches used for three use cases: a⃝ super spreader detection
with HLL, b⃝ per-flow packet IAT distribution with DDSketch, and c⃝ flow size es-
timation with ElasticSketch. Given their popularity and generality, we use them to
showcase the benefits of SPADA throughout the rest of the chapter.

3.2.1 Sparse monitoring data structures

We report in Table 3.1 a list of sketches that can exploit sparsity. Note that the actual
benefit of the sparse representation depends on several factors, such as the number
of flows under monitoring, the required accuracy, and the traffic skewness. Gen-
erally speaking, a sparse representation of a sketch can be beneficial when it is al-
located per-flow (i.e., a sketch for each monitored flow) since, due to the natural
skewness of traffic, many sketches will be significantly sparse as motivated before
(e.g., use cases a⃝, b⃝). Another scenario in which a sparse representation is useful
is when the sketch must provide high accuracy and thus reduce the collision proba-
bility (e.g., use case c⃝) by increasing the sketch size. We note that with appropriate
sampling strategies (Ben Basat et al., 2020b), any sketch can be sparsified if a small
loss in accuracy is acceptable.

32 Chapter 3. Sparse Sketches Representations for Per-flow Monitoring

3.2.2 Monitoring use cases

a⃝ Super spreader detection. HLL (Flajolet et al., 2007) is a data structure for cardi-
nality estimation based on the probabilistic counting method developed in (Flajolet
and Martin, 1985) and already introduced in Chapter 2. On the one hand, using a
large number of HLL counters m reduces the estimation error. On the other hand,
the use of many counters leads to sparse HLLs, as the number of distinct flow coun-
ters updated is proportional to the cardinality itself, which is typically small. For
example, on a CAIDA trace, less than 10% of sIP have a cardinality higher than 3
(90% of the HLLs only use three out of the m allocated counters). However, know-
ing in advance which flows will have high cardinality is challenging. Given this
large number of unused counters, moving to a sparse HLL representation can sig-
nificantly reduce the memory footprint of a super spreader detection system.

b⃝ Packet IAT distribution. DDSketch (Masson et al., 2019) is a data structure used
to estimate the quantiles for a set of real positive values as presented in Chapter 2.
DDSketch can be modified to accept a limited number of bins m depending on the
desired accuracy α. It is worth highlighting that in per-flow IAT monitoring, most
DDSketch counters are left to zero, as most flows consist of only a few packets, and
samples, e.g., IAT, tend to cluster around a few values. Thus, an efficient sparse
DDSketch representation would significantly reduce its memory requirements.

c⃝ Flow size estimation. ElasticSketch (Yang et al., 2018) is among the state-of-the-
art for flow size estimation. It comprises a heavy and a light part, storing elephant
and mouse flows respectively, as introduced in Chapter 2. The heavy part comprises
multiple hash tables with per-flow counters, while the light part is a Count-Min
Sketch (CMS, Cormode and Muthukrishnan, 2005). One of the effects of segregat-
ing elephants in the heavy part is that the CMS can be composed of a single row
(d = 1) of 8-bit counters, thanks to the reduced number of flows and their size. To
achieve good accuracy, the CMS still needs to be dimensioned to keep the amount of
collisions considerably low. This means budgeting a large number of counters, even
though most of them are left to zero, making the CMS sparse.

packet(s)

FlowMapFlowKey

SketchID

SketchData

³

²
+1

Index(es) to Control Plane

¹

FIGURE 3.3: Generic data plane monitoring system.

3.3. Per-flow Monitoring System Design 33

3.3 Per-flow Monitoring System Design

We provide a high-level overview of a generic per-flow monitoring data plane pipeline
depicted in Figure 3.3. First 1⃝, a flow key (e.g., IP address or 5-tuple) is extracted
at packet arrival and mapped to a SketchID via a Flow Map (FM). Second 2⃝, the
sketch counters corresponding to that flow are updated in a Sketch Data (SD) store.
Note that a wide set of network monitoring systems (Yang et al., 2018; Chen et al.,
2020; Xiao et al., 2015; Ben Basat et al., 2020a; Zhao et al., 2021) can be cast into this
two-stage monitoring system data plane. Finally 3⃝, the measurements are exported
or used locally for traffic management: as the focus of this section is on the design
and implementation of the data plane, the control plane is limited to the collection
of sketches at the end of a measurement epoch.

SPADA in a nutshell. A SPADA representation consists of a compression of the
Sketch Data by exploiting its sparsity. To showcase the generality of SPADA, we
consider three popular measurement use cases and two alternative SPADA configu-
rations summarized in Table 3.2 (right). Considered use cases are a⃝ super spreader
detection, b⃝ per-flow packet IAT quantile estimation, and c⃝ flow size estimation,
which can be performed using state-of-the-art sketches such as HLL (Flajolet et al.,
2007), DDSketch (Masson et al., 2019) and ElasticSketch (Yang et al., 2018) respec-
tively. For each use case, we consider two SPADA implementations, where flows are
inserted in the Flow Map either statically by the control plane (static), hence moni-
toring a predefined set of flows, or dynamically by the data plane (dynamic), as new
flows are received.

In the remainder of this section, we first describe the architectural components of a
generic monitoring system data plane, cf. Figure 3.3. We then detail and contrast
two approaches: a baseline that allocates one full sketch per monitored flow, and its
corresponding SPADA representation that only stores non-zero counters. We pro-
pose two alternative SPADA representations that improve over the baseline in terms
of memory footprint with different trade-offs. Finally, we discuss the pros and cons
of each representation and analyze SPADA memory sizing.

Use case Data structure† FM + SD Recirc.

a⃝ HLL - static MAT + qCHT ✓
HLL - dynamic Cuckoo Hash Table (CHT) + qCHT ✓

b⃝

DDSketch - static MAT + pIBLT ×
DDSketch - static MAT + qCHT ✓
DDSketch - dynamic CHT + pIBLT ✓
DDSketch - dynamic CHT + qCHT ✓

c⃝ ES - dynamic ES Heavy + pIBLT ✓
ES - dynamic ES Heavy + qCHT ✓

† Flows are either statically inserted by the control plane in a simple
Match-Action Table (MAT), or dynamically inserted by the data plane.

TABLE 3.2: Summary of SPADA configurations.

34 Chapter 3. Sparse Sketches Representations for Per-flow Monitoring

3.3.1 Architectural components

Flow Map. In the data plane, a first component performs a FlowToSketch mapping
to associate incoming flow packets to a specific sketch in the system. This Flow Map
takes as input a flow key (e.g., the packet TCP/IP 5-tuple) and outputs a SketchID.
Note that the way the mapping is performed might depend on the monitoring use
case. The mapping can be direct, i.e., a flow stored in the Flow Map is associated with
a specific sketch (cf. Figure 3.1a), or indirect, i.e., if a flow is not in the Flow Map, then
it is associated with a default sketch as in (Yang et al., 2018) (cf. Figure 3.1b). Finally,
flows stored in the Flow Map can be associated with additional flow metadata, e.g.,
last packet timestamp.

Sketch Data. The SketchID retrieved from the Flow Map is used to access the mea-
surement counters that need to be updated for a particular flow. These counters are
stored in the second component, which we refer to as Sketch Data. Based on the mon-
itoring task, this component may store different things. For instance, in the case of b⃝
per-flow IAT quantile estimation, the SketchID is used to access a dedicated per-flow
DDSketch. Aside from the specific way information is structured within the Sketch
Data, from a high-level perspective it is an architectural component that stores one
or multiple sketches and provides access to the monitoring counters associated with
a specific flow, sometimes shared with other flows.

Monitoring routine. In a measurement epoch, the system data plane updates the
counters stored in the Sketch Data based on incoming packets, as depicted in Fig-
ure 3.3. First, at packet arrival, the flow key (e.g., 5-tuple) is extracted and the Flow
Map is queried to retrieve the associated SketchID, optionally updating any flow
metadata. Second, the SketchID is used to access the Sketch Data and locate the
sketch for the flow. Finally, depending on the monitoring task, the measurement
associated with the last packet is used to determine one index within the sketch and
modify the corresponding counter. For b⃝ IAT quantile estimation for example, the
last IAT value is mapped to a sketch bucket with the DDSketch algorithm, and the
counter therein is incremented. At the end of the epoch, the Flow Map and Sketch
Data are read by the control plane, which reconstructs per-flow sketches by looking
up all counters belonging to a flow and computes the required metrics.

Notations. SPADA design is based on the assumption, justified by our experiments,
that among m sketch counters, the ratio p of non-zero ones is typically small. In
order to quantify the memory footprint of the monitoring system data plane, we
define nu = p ·m as the average number of sketch counters different than zero, i.e.,
the lower nu, the higher the sparsity. With SPADA, we provide a series of memory
reduction techniques whose efficiency is inversely proportional to nu. To analytically
estimate the efficiency of SPADA, we derive their memory footprint by using the
notation reported in Table 3.3.

3.3. Per-flow Monitoring System Design 35

Symbol Meaning Symbol Meaning

ns
number of sketches to store
(e.g., one per flow) sc

size (in bits) of a single
sketch counter

sk size (in bits) of the flow key p ratio of useful (non-0)
counters in a sketch

m number of sketch counters
(buckets) nu

average number of non-0
counters in a sketch

TABLE 3.3: Summary of main notations.

3.3.2 Baseline representation

Flow Map. A simple direct FlowToSketch mapping can be realized using a MAT
to provide a unique SketchID for every incoming flow. Given the huge number
of entries required, this approach is not suitable for handling previously unknown
flows. Instead, it requires populating the Flow Map statically from the control plane
with a known set of flows to monitor. Another solution consists of using a hash
of the flow key as SketchID. Although this simple approach suffers from collisions,
it can be used when approximate measurements are acceptable. Between these two
simple options, there is a wide range of possibilities trading off accuracy for memory
efficiency.

A unique, direct, FlowToSketch mapping can be realized with a CHT. A CHT pro-
vides a constant lookup time and a high memory utilization, thus is widely used to
implement this kind of per-flow mapping. However, this solution requires a careful
design: whereas cuckoo hashing is feasible in programmable data planes, it relies
on several stages and has non-constant insertion time which is handled by packet
recirculation that may severely impact the system performance. In Appendix A, we
provide P4 implementation details and show how to reduce recirculation impact.
Regardless of the Flow Map implementation, whenever a new FlowToSketch map-
ping is needed, i.e., when a packet from a previously unseen flow key is received,
a new SketchID can be obtained from a free ID counter. Then, the <flow key,

SketchID> mapping is stored in the CHT. Note that using a counter to generate
unique SketchIDs does not constitute a limitation since the system is designed for
epoch-based measurements and the counter is reinitialized at the beginning of each
epoch. Finally, we note that an indirect FlowToSketch mapping can be realized using
the Flow Map as a filter. This means that flows stored in the Flow Map are monitored
using their metadata while the remaining ones are monitored via a separate sketch,
as it is done in ElasticSketch (Yang et al., 2018).

Sketch Data. A simple way of storing measured values is to allocate enough mem-
ory for all the counters required by every per-flow sketch. Hence, in the baseline
implementation, the Sketch Data component is a list of full sketches, indexed through
the SketchID that corresponds to the location of the first bucket of the sketch as de-
picted in Figure 3.4. For instance, in the case of b⃝ per-flow IAT quantile estimation,

36 Chapter 3. Sparse Sketches Representations for Per-flow Monitoring

10

Key ID
0

1

Kfs1

Kf2 10

Key ID
0

1

Kf1

Kf2

T0
Td-1

...

Flow Map

Counters
Sketch 0

Af3
Sketch 1
Sketch 2

Full sketchesMAT or CHT
Sketch Data

1

FIGURE 3.4: Baseline Flow Map and Sketch Data representations in a
traditional per-flow monitoring data plane

the SketchID is used to locate the first bin of the DDSketch dedicated to a particu-
lar flow. At that point, the bin to be modified is retrieved simply as an offset from
the SketchID (i.e., SketchID + bin). Note that, depending on the specific task, a dedi-
cated per-flow sketch might not be required, e.g., ElasticSketch only requires a single
Count-Min Sketch.

Memory footprint. We derive the memory needed by the baseline described above
assuming that, within one epoch, the monitoring system requires ns different sketches,
i.e., one sketch per flow. We note that the CHT cannot be filled up to 100% (Kirsch
et al., 2010) and the expected number of flows needs to be overestimated in the Flow
Map. Considering a CHT Flow Map, the memory requirement of this baseline is:

Memory = ns · (RowFM−CHT + RowSD−Base), (3.1)

where RowFM−CHT and RowSD−Base are the memory required to store an entry in the
Flow Map and a sketch in the Sketch Data respectively.

RowFM−CHT and RowSD−Base can be defined as:

RowFM−CHT = sk + ⌈log2(ns)⌉, RowSD−Base = m · sc, (3.2)

where sk and ⌈log2(ns)⌉ are the flow key and the SketchID bit sizes respectively,
while m and sc are the number of sketch counters and their size in bits. Note that
independently from the Sketch Data, the Flow Map size could be further decreased by
saving key fingerprints i.e., less than sk bits.

3.3. Per-flow Monitoring System Design 37

Ba
se

lin
e

Fl
ow

 M
ap

m
 (<

ID
,In

de
x>

)
i

[0
..r

-1
]

Counters

Sketch Data
T₀

Td-1

...

qCHT

m (<0,5>) f1_bin5_cnt0
[r..u-1]

[r..u-1]

[r..u-1]
m (<0,0>) f1_bin0_cnt0
m (<1,2>) f2_bin2_cnt0

Quotient

FIGURE 3.5: SPADA representation of the Sketch Data with qCHT

3.3.3 Sparse sketches representation (SPADA)

In this section, we describe the SPADA representation for the Sketch Data. The main
idea is to replace per-flow sketches with a series of non-zero counters, addressable
with the pair <SketchID, index> where index is the sketch counter position in the
logical per-flow sketch. The key difference with respect to the baseline is that the
memory required by each sketch depends on the number of its non-zero elements.
Indeed, while the baseline Sketch Data statically reserves an entire sketch upon re-
ceiving the first packet of a flow, SPADA creates a “virtual sketch” by reserving a
unique SketchID whenever a new flow is received, and dynamically assigns pre-
reserved counters whenever a new <SketchID, index> pair is required. We design
two possible implementations of the sparse Sketch Data: the first one uses a qCHT,
while the second one uses a modified version of the IBLT, namely perfect IBLT (pI-
BLT). While the former has the drawback of requiring data plane recirculation, it
provides additional flexibility compared to the pIBLT, as the latter can only be used
with sketches whose update operation consists of a linear increase.

Sparse Sketch Data with qCHT. This version of the Sketch Data is based on a Cuckoo
Hash Table (CHT), a key-value data structure with constant lookup time. As shown
in Figure 3.5, we use <SketchID,index> pairs (of u bits) as CHT keys and use it to
store non-zero counters. A CHT comprises d tables (d = 4 in our settings), hence
<SketchID,index> pairs are hashed d times to generate one index per table. The
CHT stores both key and value, and key conflicts are resolved by moving entries
across the various tables; this comes at the price of a non-constant insertion time. To
reduce the size of keys in the table, SPADA uses a CHT with quotienting (qCHT). A
full description of the CHT and of the quotienting technique has been provided in
Chapter 2. As a reminder, a qCHT relies on d bijective functions mi to hash the keys,
uses the least r significant bits of the hashes to index the tables, and only stores the
remaining u− r bits for conflict resolutions instead of the whole key of u bits.

38 Chapter 3. Sparse Sketches Representations for Per-flow Monitoring

Before analytically deriving the memory required by a qCHT Sketch Data, let us first
analyze the simpler case of a sparse Sketch Data using a simple CHT:

Memory = ns · (RowFM−CHT + nu · RowSD−CHT), (3.3)

where the first part of the equation is the memory required for a CHT Flow Map as
for the baseline while the second part is the size of one entry in the sparse Sketch
Data with CHT, multiplied by the expected number of non-zero sketch counters nu.
We can then express RowSD−CHT as follows:

RowSD−CHT = (⌈log2(ns ·m)⌉) + sc, (3.4)

where ⌈log2(ns · m)⌉ is the size of each key stored in the CHT, i.e., <SketchID,

index>, and sc the size of each counter in bits. Now that we have derived the
memory requirement of the sparse Sketch Data using a simple CHT, let us detail
the case when using a qCHT. Since we use a qCHT composed of 4 tables, each table
contains up to (ns · nu)/4 elements. Therefore, it can be addressed by using only
r = ⌈log2(ns · nu/4)⌉ bits instead of u = ⌈log2(ns ·m)⌉, i.e., the full length of the key.
To detect collisions, the remaining u− r quotient bits are stored in the table:

u− r = ⌈log2(ns ·m)⌉ − ⌈log2(ns · nu/4)⌉ ≈ 2+ log2(m/nu) = 2+ log2(1/p), (3.5)

The memory requirements for the sparse Sketch Data using qCHT can be summa-
rized as:

RowSD−qCHT ≈ (2 + log2(1/p)) + sc, (3.6)

It is worth noting that u− r is small since the sparse Sketch Data stores a significant
fraction of the items in the <SketchID, index> universe. This is a quite different
setting compared to the Flow Map one, as in the latter case the key size may exceed
100 bits, leading to negligible savings.

To provide a rough idea of SPADA-qCHT memory saving, we report here a concrete
monitoring use case for b⃝ IAT quantile estimation. We use the 5-tuple as flow key,
and a DDSketch with m = 64 counters, i.e., bins, of size sc = 8 bits. We assume a
conservative bin usage ratio of p = 0.15 and a small ns = 100K number of sketches.
Note that sparsity factors extracted from real traffic traces later used in the eval-
uation section are between 0.003 and 0.16. The baseline implementation requires
7.9 MB overall, of which 6.4 MB for the Sketch Data store. SPADA-qCHT requires
the same 1.5 MB Flow Map and a 1.5 MB sparse Sketch Data, for 3 MB overall, i.e.,
62% memory saving. Note that these savings result from both the quotienting tech-
nique and sparse representation. Indeed, a sparse Sketch Data using CHT without
quotienting would lead to an overall memory footprint of 5.2 MB, i.e., 35% memory
saving.

3.3. Per-flow Monitoring System Design 39

Ba
se

lin
e

Fl
ow

 M
ap

h
(<

ID
,In

de
x>

)
i

T₀
Td-1

...

f1_bin0_cnt +
f2_bin2_cnt+...

...
f1_bin5_cnt +

Counters

Sketch Data
pIBLT

1

Bitmap
B[j]= <ID, Index> in T0? 1:0j

<0,2><0,0>

1
<1,5>

1
....

FIGURE 3.6: SPADA representation of the Sketch Data with pIBLT

SPADA-qCHT has two main drawbacks. First, each non-zero counter requires more
memory with respect to its baseline counterpart. Indeed, we store the quotient of the
key <SketchID, index> in addition to the counter itself. However, this overhead is
greatly compensated by the fact that only non-zero counters are stored. Memory
saving thus depends on the sparsity factor p: the lower p, the more negligible this
per counter overhead, leading to higher memory savings. A quantitative analysis
of this effect can be appreciated in Section 3.4 where we show memory savings at
different sparsity factors. The second drawback is that CHTs in programmable data
planes are challenging as they require a non-constant number of memory accesses
at insertion time, which might not be acceptable on constrained hardware. In Ap-
pendix A.1 we address this challenge and propose a CHT implementation compati-
ble with programmable data planes.

Sparse Sketch Data with pIBLT. To overcome the limitations of qCHT, we propose
an alternative SPADA representation based on the Invertible Bloom Lookup Table
(IBLT), a structure that provides key-value storage with a fixed number of memory
accesses, as introduced in Chapter 2. As a reminder, IBLT aggregates multiple keys
within the same bucket, while each key is stored in d separate buckets addressed
with d hash functions hi. Using IBLT introduces two challenges. First, the per-bucket
overhead is higher than the qCHT, as each bucket requires: a counter maintaining
the number of colliding keys stored in the bucket, the sum (or XOR) of the colliding
keys, and the sum (or XOR) of the values associated to such keys. Second, to extract
stored values, the IBLT uses a peeling procedure named ListEntries, that imposes
a strict upper bound to the load factor, i.e., 82% achieved using d = 3 (Walzer, 2021).

We propose an improved IBLT that uses a bitmap B to keep track of <SketchID,
index> pairs, i.e., B features 2u = ns ·m bits, one for each possible pair. We call this
modified structure perfect IBLT (pIBLT). Differently from a IBLT, our pIBLT does not
need to count the number of colliding keys per bucket, not does it require to store
summed (or XORed) keys to take note of which ones contribute to the correspond-
ing bucket. Instead, such information is retrieved from the bitmap B. Therefore, in

40 Chapter 3. Sparse Sketches Representations for Per-flow Monitoring

Algorithm 2 pIBLT ListEntries
Require: B, T0 . . . Td−1

1: Initialize: all aij = 0; initialize bi values from counters in T0 . . . Td−1
2: for j ∈ [0 . . . 2u − 1] do
3: if B[j] == 1 then
4: save key keyj (i.e., a pair <SketchID, index>)
5: for all i ∈ {h0(keyj), . . . , hd−1(keyj)}, set aij = 1
6: end if
7: end for
8: solve the linear system A · x = b
9: return pairs (keyj, xj) for all saved keys

pIBLT each bucket only sums the values of its associated keys. Besides, the bitmap
removes false positives and does not require peeling to retrieve entries, that can be
derived by solving a system of linear equations A · x = b, where aij ∈ {0, 1} indi-
cates whether keyj contributed to bucket bi, and xj denotes the value associated with
keyj. We detail the new ListEntries in Algorithm 2. Note that this ListEntries

procedure is only executed in the control plane after a measurement epoch. There-
fore, the time needed to solve the linear system does not introduce any overhead in
the data plane monitoring pipeline.

The Sketch Data implemented using pIBLT is illustrated in Figure 3.6. We use a pI-
BLT with d = 4 tables, each indexed using a different hash function and featuring
ns · nu/4 locations. Each location simply stores the sum of its associated sketch coun-
ters. At each update, the d buckets associated with the <SketchID, index> key are
incremented, and the corresponding bit in the bitmap is set. It can be proven (Dubois
and Mandler, 2002; Dietzfelbinger et al., 2010; Pittel and Sorkin, 2016) that A · x=b
has a unique solution with high probability when the load factor is below a thresh-
old ck. For d = 4, ck = 0.97, which is higher than the IBLT peeling threshold i.e., 0.82.
Even if the probability that A · x = b does not have a unique solution is small, we
remark that in this case, it is possible to derive an approximate resolution. For exam-
ple, in PR-Sketch (Sheng et al., 2021) an iterative method provides the solution with
minimum ℓ2-norm. FlowLidar (Monterubbiano et al., 2023a) presents an alternative
method based on an initial peeling phase removing dependent rows from A.

Memory footprint. For the pIBLT, the memory requirements can be expressed as:

Memory = ns · (RowFM−CHT + nu · sc) + (ns ·m), (3.7)

where the space occupied by the CHT Flow Map is the same as the baseline, nu · sc

is the space occupied to store the counters of a single sketch, and ns · m is the size
of the bitmap B. Similarly to the qCHT version, the advantages of using a pIBLT
Sketch Data in place of the baseline diminishes with increasing values of p, i.e., with
an increasing number of non-zero counters.

3.4. System Memory Sizing 41

We now highlight the SPADA-pIBLT memory footprint referring to the same use
case b⃝ as previously for SPADA-qCHT. As the Flow Map is the same, its required
memory remains 1.5MB. Concerning the Sketch Data, we need 800KB for the bitmap,
that is, one bit for each possible <SketchID, index> pair, while the 4 tables require
ns · nu · sc = 960KB. Therefore the total memory is around 3.26MB, which is similar
to the case of the qCHT, i.e., 60% smaller compared to the baseline.

We remark that pIBLT supports only additive counters, e.g., used in CMS or DDS-
ketch, hence it is not suitable for HLL since it requires reading values at update time
to write the maximum. Furthermore, with a qCHT Sketch Data, increasing m, i.e., the
number of buckets of each sketch, has negligible impact on the memory size. This
is not true for the pIBLT Sketch Data, as the size of the bitmap storing the non-zero
<SketchID, index> pairs grows linearly with the number of buckets.

3.4 System Memory Sizing

In this section, we analyze the relationships between sparsity, the number of flows
to be monitored, and the required memory size. We detail the trade-offs of us-
ing SPADA in place of the baseline, comparing the two proposed solutions based
on qCHT and pIBLT in multiple settings. This synthetic analysis breaks down the
advantages that SPADA can bring in practice and provides an insight into proper
system configuration based on the available memory and the number of flows to
monitor.

3.4.1 Sparsity factor sensitivity

The baseline Sketch Data memory footprint depends on (i) the number of flows ns

to monitor, i.e., number of sketches in most use cases, and (ii) the desired accuracy,
i.e., m buckets per sketch. Additionally, SPADA Sketch Data memory footprint de-
pends on a worst-case sparsity assumption, i.e., average ratio of non-zero counters
per sketch p. Despite allowing flexible bucket assignments across different flows,
our solution requires fixing the total number of non-zero buckets in practice. If the
average p of the data is higher than the expected one, the Sketch Data reaches its
critical load factor, making new insertions impossible.

Figure 3.7a depicts the Sketch Data memory footprint for the three implementations
varying p, assuming ns = 100K sketches with m = 64 buckets each, and a bucket
size sc = 8 bits. The plot also reports the sparsity factors for two reference use
cases, i.e., a⃝ super spreader and b⃝ IAT quantiles estimation, extracted from the
worst-case trace used in our evaluation (cf. trace M2 in Table 3.4 for further details).
We remark that the pIBLT bitmap introduces a constant cost that is relatively high
when p is small, i.e., when data is highly sparse. This disadvantage diminishes for
higher values of p, as the pIBLT does not use extra memory to store the key of each
bucket like the qCHT. For p > 0.25 the disadvantage of the bitmap disappears and

42 Chapter 3. Sparse Sketches Representations for Per-flow Monitoring

0.01 0.1 1
Sparsity factor p

0

2

4

6

8

Si
ze

 o
f S

ke
tc

h
Da

ta
 [M

B] trace M2
case ⓐ

trace M2
case ⓑ

baseline
qCHT
pIBLT
CHT

(A) ns=100K, m=64

0.01 0.1 1
Sparsity factor p

0

10

20

30

40

Si
ze

 o
f S

ke
tc

h
Da

ta
 [M

B]

baseline
qCHT
pIBLT

(B) ns=500K, m=64

0.01 0.1 1
Sparsity factor p

0

5

10

15

Si
ze

 o
f S

ke
tc

h
Da

ta
 [M

B]

baseline
qCHT
pIBLT

(C) ns=100K, m=128

FIGURE 3.7: Relationship between data sparsity p and memory re-
quirements of SPADA data structures

the qCHT requires slightly more memory. In general, both solutions greatly outper-
form the baseline even for very conservative sparsity assumptions (up to p≈ 0.75).
Finally, we remark that the vanilla CHT is not a good solution for the Sketch Data
implementation in most cases, as it occupies more memory than the baseline when
p≈ 0.3. This also showcases the impact of quotienting, that makes the per-counter
overhead of CHT more and more detrimental against qCHT as p increases (i.e., as
more <SketchID, index> pairs are inserted in the Sketch Data). Additionally, Fig-
ures 3.7b and 3.7c also report the size of the Sketch Data according to p, but with ×5
more flows under monitoring and ×2 more buckets respectively.

We note that, in extreme cases when the worst-case p exceeds expectations, SPADA
can stop adding new counters or start allowing sharing them across different flows
at the cost of losing accuracy with respect to the original per-flow sketch, as it would
happen for non-SPADA structures with more memory. Nevertheless, we remark
that, as highlighted in Figure 3.7a, the memory trade-off provided by SPADA is
better when compared to a non-sparse implementation, even for very conservative
sparsity assumptions (up to p = 0.7).

3.4.2 Monitoring trade-offs

By exploiting sparsity, SPADA reduces the memory footprint of the Sketch Data un-
der conservative ratios p. Here, we express these memory gains in terms of addi-
tional monitoring capacity provided to the system thanks to SPADA. Specifically,
based on the system requirements, i.e., considering a fixed memory budget or a de-
sired accuracy, we provide insights on how to properly set up SPADA.

First, Figure 3.8a contrasts the required Sketch Data memory with the number of
monitored flows. For instance, assuming that 10 MB are pre-allocated for the Sketch
Data, a baseline implementation would allow to monitor≈150K flows, while SPADA
can monitor ≈ 400K assuming a worst-case p = 0.3. Second, Figure 3.8b shows the
trade-off between the number of monitored flows and the desired monitoring accu-
racy, i.e., number of buckets per sketch m, for 10 MB of available memory. Based on
the number of desired flows, one can adjust the expected sparsity factor p to reach
the desired monitoring precision: with 500K flows, setting p=0.3 only grants m≈50

3.5. System Evaluation 43

0 1 2 3 4 5 6 7 8 9 10
flows [100K]

10−1

100

101

Si
ze

 o
f S

ke
tc

h
Da

ta
 [M

B]

p=0.1
p=0.2p=0.3
p=0.5

baseline
qCHT
pIBLT

C1ⓐ
M2ⓑ

(A) Memory vs. number of flows for various val-
ues of p (m=64).

0 1 2 3 4 5 6 7 8 9 10
flows [100K]

101

102

103

bu

ck
et

s p
er

 sk
et

ch

p=0.1
p=0.2
p=0.3
p=0.5

baseline
qCHT
pIBLT

(B) Max number of buckets per sketch m in 10 MB
of Sketch Data.

FIGURE 3.8: Monitoring trade-offs

counters per sketch, while p = 0.2 brings m to ≈ 70. We highlight that properly
selecting p, hence sizing the system accordingly, requires additional considerations
based on historical knowledge, traffic predictions, and the purpose of the monitor-
ing system itself.

3.5 System Evaluation

In this section, we evaluate SPADA on reference use cases using CAIDA 2016 (The
CAIDA Anonymized Internet Traces Dataset 2016) and MAWI 2019 datasets (The MAWI
Working Group Traffic Archive 2019) and a custom software simulator available at
https://github.com/cpt-harlock/SPADA. We compare SPADA against state-of-the-
art approaches in terms of memory requirements and accuracy (when affected). Ad-
ditionally, we provide in-depth analysis of SPADA’s memory requirements based
on sparsity. Evaluation of the FPGA implementation and discussion of its feasibility
in real systems is deferred to Appendix A.

3.5.1 Experimental protocol

To evaluate the efficiency of SPADA in a realistic scenario, we feed the simulator
with 1-hour CAIDA traces and 5-minute MAWI traces. In particular, we consider:

• C1 2016-01-21 13:00 – 14:00

• C2 2016-03-17 14:00 – 15:00

• M1 2019-04-09 22:15 – 22:20

• M2 2019-04-09 13:15 – 13:20

For CAIDA traces, we consider 1-second epochs, while for MAWI traces we use 1-
minute epochs since they feature fewer packets. We consider TCP traffic only from
all traces.

https://github.com/cpt-harlock/SPADA

44 Chapter 3. Sparse Sketches Representations for Per-flow Monitoring

Use case Parameters Sparsity factor

sk m ns C1 ns C2 ns M1 ns M2 p C1 p C2 p M1 p M2

a⃝ 32 64 36K 11K 5.4K 7.6K 0.020 0.028 0.051 0.061
32 128 36K 11K 5.4K 7.6K 0.010 0.015 0.028 0.034

b⃝ 104 32 59K 31K 41K 100K 0.068 0.078 0.139 0.162
104 64 59K 31K 41K 100K 0.040 0.048 0.092 0.107

c⃝ 104 0.5M 59K 31K 41K 100K 0.085 0.025 0.039 0.124
104 4M 59K 31K 41K 100K 0.011 0.003 0.005 0.016

TABLE 3.4: Data structure parameters for each use case and their
sparsity values for traces C1, C2 and M1, M2.

For a⃝ super spreader detection, we use source IPs as flow keys and m = 64 or
m = 128 counters for the HLL sketches (error 13% and 9% respectively). For b⃝
IAT quantile estimation, we use 5-tuples as flow keys and DDSketches with m= 32
or m=64 counters each (relative error α=0.28 and α=0.14 respectively). Finally, for
c⃝ flow size estimation, we build a baseline ElasticSketch (ES) of 818KB, divided into

a heavy part of 318KB and a light part of 500KB (i.e., a CMS composed of m= 512K
8-bit counters). SPADA-ES allocates the same amount of memory to the heavy part
(Flow Map), uses a qCHT to store the light part (Sketch Data), and is tested using
ES open source simulator (Elastic Sketch source code 2023). Additionally, we evaluate
a more accurate SPADA-ES “virtually” increasing the CMS size (m = 4M). In our
simulations both Flow Map and Sketch Data are sized to keep the load factor below
90%, and all (q)CHTs feature a stash with 16 additional buckets (Kirsch et al., 2010).
Table 3.4 lists the main SPADA parameters for uses cases a⃝, b⃝ and c⃝, also report-
ing the sparsity recorded for the various traces, expressed as the average ratio of
non-zero sketch counters pCi, ranging from 0.003 to 0.162.

3.5.2 Experimental results

Memory occupancy. Figures 3.9a, 3.9b and 3.9c contrast the memory occupied by the
baseline and SPADA monitoring system. Colored histograms average values across
the epochs, with error bars for min and max values when available. Overall, SPADA
reduces memory occupancy from 2× for b⃝ (DDSketch), 2.5× for c⃝ (ElasticSketch),
to 11× for a⃝ (HLL). More precisely, the sparser the baseline sketches, the higher
the memory saving. As previously analyzed, SPADA-pIBLT requires more memory
than SPADA-qCHT due to the additional bitmap. However, the memory saving with
respect to the baseline is still significant with the advantage of avoiding recirculation
in the Sketch Data component.

Additionally, Figures 3.9a, 3.9b and 3.9c show over-dimensioned SPADA memory
footprint using a conservative fixed value of p (grey bars), where we set p to the
double of the highest value observed in each experiment — cf. Table 3.4. We remark
that with qCHT and pIBLT Sketch Data, memory reduction is still sizeable despite

3.5. System Evaluation 45

(A) Super spreader detection. (B) IAT quantile estimation. (C) Flow size estimation.

FIGURE 3.9: Memory footprint for the reference use cases comparing
SPADA with SOTA baselines.

conservative settings. Conversely, as expected for the CHT, the per-counter over-
head is too high, and hence its memory occupancy is in practice similar, sometimes
even higher, than the baseline (for p≈0.3).

Processing time for pIBLT lookup. At the end of the measurement epoch, the con-
trol plane dumps the pIBLT content and solves the linear system associated with it.
Note that, even though this computation does not affect the data plane, the system
needs to be solved before the end of the next epoch to avoid overloading the resolu-
tion system. Since the resolution time of a linear system is superlinear with respect
to the number of equations, we use a first-level hash function to split the rows of the
linear system into a set of smaller disjoint linear systems. This reduces the compu-
tation time and enables the use of multiple cores. In particular, with two threads of
an Intel i7-10700K CPU clocked at 3.80 GHz, the linear system of the pIBLT is solved
in less than one second (960 ms). We achieved this result by splitting the 36K rows
of the linear system into 36 independent linear systems of 1K rows each. The time
needed for solving each of these systems is approx. 15 ms.

Flow size estimation accuracy. While for use cases a⃝ (super spreader) and b⃝ (IAT
quantiles), the estimation accuracy is not impacted, use case c⃝ (flow size estimation)
requires additional consideration. As shown in Figure 3.9c, with SPADA we can
increase the CMS size m from 512K to 4M with minimal impact on memory. We now
compare the accuracy of the baseline ElasticSketch (ES) with our enhanced SPADA-
ES. Table 3.5 reports Average Relative Error (ARE), Average Absolute Error (AAE),
and the fraction of flows for which the sketch provides the exact result (ER). We
note that, despite the much smaller memory footprint, SPADA-ES always provides
better accuracy than the baseline ES. In particular, SPADA-ES achieves one order
of magnitude better AAE and ARE than ES. Furthermore, SPADA-ES provides the
exact count for more than 98% of flows in all traces, whereas the standard ES tops at
98% only in C2 which is the trace featuring fewer flows.

46 Chapter 3. Sparse Sketches Representations for Per-flow Monitoring

Metric m C1 C2 M1 M2

ARE ES 0.5M 0.10 0.01 0.05 0.30
SPADA-ES 4M 0.01 2E-3 6E-3 0.03

AAE ES 0.5M 0.16 0.02 0.12 0.97
SPADA-ES 4M 0.02 3E-3 5E-3 0.12

ER ES 0.5M 0.93 0.98 0.97 0.89
SPADA-ES 4M 0.99 0.99 0.99 0.98

TABLE 3.5: ES and SPADA-ES accuracy for traces C1, C2, M1, M2.

3.6 Related Work and Discussion

Several Flow-to-ID mapping techniques have been proposed in the literature (Pontarelli
et al., 2019; Zhao et al., 2021; Barbette et al., 2020). Since SPADA main goal is to
compact the Sketch Data, we do not directly review them but we remark that such
techniques could be used in SPADA to further reduce the memory footprint.

In the context of cardinality estimation, HLL (Flajolet et al., 2007) and BeauCoup (Chen
et al., 2020) are popular and efficient methodologies proposed in the literature. HLL
enhancements (Jia et al., 2020; Xiao et al., 2015) try to exploit sparsity to reduce the
data structure memory footprint. Unlike SPADA however, these approaches employ
a counter-sharing mechanism that affects the measurement accuracy. BeauCoup in-
stead, performs distinct counting through “coupons” collection in bit-vectors whose
size trades off memory occupancy and accuracy e.g., for m = 256 bits for each vec-
tor. BeauCoup error is comparable with HLL using the same memory while m= 32
increases the error by ≈ 3× for ≈ 70% less memory. Unlike BeauCoup, SPADA
provides significant memory saving without sacrificing accuracy. It is worth men-
tioning that SPADA can also be applied to BeauCoup, as the bit-vectors are affected
by sparsity (p ≈ 0.1). Finally, SPADA can reduce the size of a series of other data
structures in the context of cardinality estimation, e.g., PCSA (Flajolet and Martin,
1985), KVM (Bar-Yossef et al., 2002), and Fast-AGMS (Cormode and Garofalakis,
2005). Similar considerations apply to the quantile estimation use case. In particular,
Circllhist (Hartmann and Schlossnagle, 2020) and KLL (Karnin et al., 2016) feature
sparse arrays similar to DDSketch and can be implemented using SPADA repre-
sentations. Other approaches rely on a compact data representation by restricting
the data collection to a subset of more relevant flows. For instance, SQUAD (Sha-
hout et al., 2023) combines the problem of quantile estimation with the one of heavy
hitter detection, hence dynamically restricting quantile estimation only to the most
frequent flows. Instead, SPADA does not need to rely on a prediction mechanism
and significantly reduces the memory footprint without the drawback of restricting
monitoring to a few flows. The key difference between SPADA and the aforemen-
tioned approaches is that it relies on sparse data representation to mitigate memory
footprint. This leads to a generic technique that can be applied to a variety of other
use cases as summarized in Table 3.1.

3.7. Conclusion 47

Existing sparse representations are typically restricted to static data structures and
include well-known techniques such as Compressed Sparse Row, Coordinate For-
mat, etc. Dynamic sparse representations such as STINGER (Ediger et al., 2012),
AIM (Winter et al., 2017), and HORNET (Busato et al., 2018) have been recently
proposed in the context of graph and matrix representations for parallel processing
units, e.g., GPU. However, such solutions are deployed on hardware where memory
access is not constrained, unlike programmable switches. Finally, sparse represen-
tation directly relates to Compressive Sensing (Fornasier and Rauhut, 2015). In the
context of sketching, NZE (Huang et al., 2021) uses Compressive Sensing to design
specific sketches that can approximately reconstruct the desired measurement, e.g.,
flow size estimation. Although NZE goal is similar to SPADA, we note that the re-
construction complexity in our case is negligible, whereas for NZE it exponentially
increases with the number of flows.

3.7 Conclusion

This chapter presented SPADA, a Sparse Approximate Data Structure representa-
tion. SPADA is a method to reduce the data plane memory occupancy of per-flow
monitoring systems without affecting accuracy. SPADA exploits the observation
that, due to the skewed nature of network traffic, only a handful of sketch coun-
ters are used for most flows. This leads to heavily underutilized data structures in a
number of monitoring use cases. SPADA has been designed to efficiently represent
such sparse data by only storing non-zero sketch buckets and relies on (q)CHT and
on a novel data structure pIBLT. We performed extensive simulations and experi-
ments on real traces for three popular monitoring use cases, achieving a memory
reduction between 2× and 11× while maintaining the same accuracy and introduc-
ing limited computational overhead.

Related publication

Andrea Monterubbiano, Raphael Azorin, Gabriele Castellano, Massimo Gallo, Sal-
vatore Pontarelli, and Dario Rossi (Nov. 2023c). “SPADA: A Sparse Approximate
Data Structure Representation for Data Plane Per-Flow Monitoring”. In: Proceedings
of the ACM on Networking 1.CoNEXT3. DOI: 10.1145/3629149

https://doi.org/10.1145/3629149

49

Chapter 4

Affordable Flow Size
Representation with Machine
Learning

In this chapter, we develop a Machine Learning-assisted measurements sys-
tem that provides coarse flow size representations to improve the usage
of monitoring data structures. We first note that early flow size predic-
tion would be beneficial for a wide range of networking use cases. How-
ever, implementing an ML-enabled system is a challenging task due to
network devices’ limited resources. While previous works have demon-
strated the feasibility of running simple ML models in the data plane,
their integration in a practical end-to-end system is not trivial. Addi-
tional challenges in resources management and model maintenance need
to be addressed to ensure the network task(s) performance improve-
ment justifies the system overhead. To this regard, we propose DUMBO,
a versatile end-to-end system to generate and exploit flow size hints
at line rate. Our system seamlessly integrates and maintains a simple
ML model that offers early classification of elephants and mice flows
in the data plane. We evaluate the proposed system on flow schedul-
ing, per-flow packet inter-arrival time distribution, and flow size estima-
tion using three real traffic traces. Our results show that DUMBO out-
performs traditional state-of-the-art approaches by equipping network
devices data planes with a lightweight ML model. Code is available at
https://github.com/cpt-harlock/DUMBO.

https://github.com/cpt-harlock/DUMBO

50 Chapter 4. Affordable Flow Size Representation with Machine Learning

100 101 102 103 104 105 106

Flow size [# packets]
0.0

0.2

0.4

0.6

0.8

1.0

CD
F

UNICAIDA

MAWI
flows

traffic share
elephants

flows
traffic share

elephants

FIGURE 4.1: Flow sizes distribution and traffic share on three network
traces.

4.1 Introduction

Flow size prediction is an important yet challenging problem in the networking com-
munity. Accurately predicting flow size provides valuable information for network
administrators to improve network management, as acknowledged in (Ðukić et al.,
2019). Flow size distributions exhibit a heavy-tailed nature, with the majority of
flows being short (referred to as mice) and a small fraction of them being signifi-
cantly larger (known as elephants). To provide a concrete example, Figure 4.1 reports
the flow size distribution from three different traffic traces: CAIDA (The CAIDA
Anonymized Internet Traces Dataset 2016), MAWI (The MAWI Working Group Traffic
Archive 2019), and UNI (Benson et al., 2010). While elephants represent only a tiny
fraction of all flows, e.g., the top 1%, they correspond to a substantial portion of the
overall volume. Consequently, elephants significantly impact network management
and monitoring tasks (Ðukić et al., 2019; Hsu et al., 2019). Due to the dynamic na-
ture of network traffic, precise flow size prediction is a difficult operation to perform,
especially in the data plane.

We argue that early elephant flows identification is a more attainable objective, which
still offers a significant advantage for network management and monitoring tasks.
Our broad vision encompasses a networking system that seamlessly integrates ma-
chine learning (ML) models directly into the data plane, enabling the provision of
timely flow size hints. Downstream networking tasks can then leverage these hints
to enhance their overall performance and efficiency. One notable family of tasks
that can greatly benefit from traffic predictions is network management: this includes
congestion control, scheduling, and routing, wherein several studies have explored
the usage of measurements or forecast-based hints (Lee et al., 2015; Li et al., 2019;
Kumar et al., 2020; Alizadeh et al., 2013; Gao et al., 2019; Perry et al., 2014; Ðukić et
al., 2019; Poupart et al., 2016; Sacco et al., 2020). Another family that would benefit
from traffic predictions is network monitoring, in which approximate data structures
are typically used to reduce system memory footprint. By leveraging ML hints, the

4.1. Introduction 51

Observe
Observe traffic from
simple monitoring

Learn hints from
observations

Exploit hints to
improve tasks

size, inter-arrival time, DoS, etc.

scheduling, congestion control, etc.
Learn Optimize

Monitoring /Security

Management

FIGURE 4.2: Synopsis of DUMBO.

monitoring system can dedicate more memory to elephant flows, which are natu-
rally more important than the others cf. Figure 4.1. In turn, this segregation helps
reduce estimation errors, thereby improving the reliability of various monitoring
tasks (Karnin et al., 2016; Masson et al., 2019; Yang et al., 2018) as demonstrated by
(Hsu et al., 2019; Du et al., 2021).

A high-level view of an ML-enabled data plane pipeline is illustrated in Figure 4.2.
In a nutshell, the system collects lightweight observations (or measurements) which
are used to train an ML model providing hints that are then exploited to improve
downstream tasks. Despite its potential, several challenges must be addressed to
realize such a system. One significant challenge pertains to the limited number
of available operations and memory scarcity in network devices, e.g., SmartNICs,
switches, etc. Introducing an ML model in network devices incurs overhead which
effectively competes for resources with existing network functionalities. Therefore,
the ML-enabled data plane benefits must outweigh the associated costs and apply to
multiple network tasks, while ensuring that the imprecision of the model does not
degrade the performance of the tasks it is supposed to support.

Contribution. This chapter presents DUMBO, a comprehensive system that pro-
vides traffic characteristics hints in the form of simple binary classifications, ele-
phants or mice flows. Our proposal is based on three key observations: (i) simple
hints can be learned by a constrained machine learning model, (ii) whose implemen-
tation in the data plane can be realized with modern programmable hardware, and
(iii) that holds significant value for multiple downstream networking tasks. While
previous work has addressed some of these aspects individually (Hsu et al., 2019;
Du et al., 2021; Zhang et al., 2021b; Xiong and Zilberman, 2019; Akem et al., 2022),
we conduct an end-to-end analysis of the system, spanning from design to imple-
mentation and experimentation. DUMBO leverages a single ML model to enhance
various networking tasks, carefully considering the trade-offs between performance
gains and overhead. By encompassing a holistic approach, we address the entire
system lifecycle, examine its design choices, and evaluate its benefits on the final
tasks performance metrics. In contrast to existing literature, this approach enables
us to accurately assess the capabilities and the benefits of our system.

52 Chapter 4. Affordable Flow Size Representation with Machine Learning

Organization. Section 4.2 introduces the scientific background and main motiva-
tions of this work, presenting the use cases we consider to showcase DUMBO: flow
scheduling, packet inter-arrival time distribution, and flow size estimation. Sec-
tion 4.3 presents the system design and Section 4.4 investigates the development of
a suitable ML model, including a thorough analysis of model performance, size, and
update. Section 4.5 presents the details of the system implementation. Section 4.6
validates the system end-to-end using real traffic traces, also providing a perfor-
mance trade-off analysis. Section 4.7 concludes the chapter.

4.2 Background and Motivation

In this section, we first motivate our ML-based data plane pipeline and position our
contribution with respect to related work. We then introduce the three use cases we
use as a reference to evaluate the end-to-end effectiveness of our approach.

4.2.1 Machine Learning for networked systems

Predicting flow size. Previous studies have demonstrated the advantages of early
flow size prediction in various networking scenarios, such as flow scheduling (Ðukić
et al., 2019), routing (Poupart et al., 2016; Sacco et al., 2020), congestion control (Lee et
al., 2015), and flow measurements (Hsu et al., 2019; Du et al., 2021). While statistics-
based heuristics can be used efficiently (Sivaraman et al., 2017; Ben Basat et al.,
2020a), they often necessitate a long detection time, thereby diminishing the utility
of the provided hints. Therefore, researchers have turned to ML techniques to train
models that can approximate flow sizes in advance. Most studies have focused on
offline analysis, proposing complex and computationally expensive Deep Learning
models, such as Recurrent Neural Networks (Hsu et al., 2019; Du et al., 2021).

The possibility of obtaining accurate flow size predictions has been questioned in
(Ðukić et al., 2019), leading researchers to investigate the implications of acquiring
such information. However, in the context of job scheduling, (Mitzenmacher, 2021)
recently provided theoretical evidence that a simple binary hint of whether a job is
“big” or “small” can lead to significant gains in the scheduling task, even when the
hint is not accurate. We believe that this observation is true also for many network-
ing tasks that identify flows using TCP/IP five-tuple. Hence, we consider a simple
Random Forest model for a classification task, similarly to (Hsu et al., 2019; Du et
al., 2021; Zhang et al., 2021b), i.e., predict “elephants” or “mice” flows based on the
first few packets. We define elephants as the top-1% (cf. Figure 4.1) and mice as the
rest. In (Hsu et al., 2019; Du et al., 2021), authors only use features from the flow
five-tuple, thus being able to perform classification using only the first packet. Be-
cause such an approach is highly vulnerable to traffic variations, pHeavy (Zhang et
al., 2021b) proposes to wait for the first 5—20 packets to extract additional features,
hence providing a later prediction. Compared to pHeavy, we limit the DUMBO

4.2. Background and Motivation 53

pipeline to the first 5 packets and develop a model that can be run at the beginning
of the flow and is 3.5×more precise.

Deployment trade-off. Despite the rich literature, several challenges remain un-
resolved for practical flow size prediction in network devices data planes with a
limited amount of resources e.g., Smart NICs, switches. We argue that prior works
that address the ML deployment aspect of the problem (Xiong and Zilberman, 2019;
Akem et al., 2022; Siracusano et al., 2022; Zheng and Zilberman, 2021; Akem et al.,
2023; Zhang et al., 2021b; Busse-Grawitz et al., 2022) are far from demonstrating an
end-to-end pipeline that can be adopted in practice. The traditional ML pipeline,
involving the selection of the best model on a validation dataset and its subsequent
use in the target environment, has known limitations (D’Amour et al., 2022; Arp et
al., 2022; Amodei et al., 2016). This approach overlooks the properties of the target
system and focuses solely on classification performance rather than evaluating the
system end-to-end. Indeed, a critical aspect of data plane ML integration pertains
to the trade-off between the model benefits and its deployment overhead. Although
this trade-off has been partially studied (Xiong and Zilberman, 2019; Akem et al.,
2022; Zheng and Zilberman, 2021; Akem et al., 2023; Busse-Grawitz et al., 2022),
we posit that considerable effort is still needed. We highlight two main problems
that affect the analysis done by existing works. On one hand, (i) the effectiveness
of a model should be defined by its ability to consistently provide valuable hints
for downstream tasks and the penalties that may result from incorrect predictions,
and not by an offline performance metric. On the other hand, (ii) the operational
overhead should be characterized by all the additional components needed for the
model to operate in the data plane.

When designing DUMBO, we take into account these aspects and evaluate the de-
ployment trade-off by accounting for the memory and processing overhead and re-
late the model performance metric with the actual end-to-end performance of the
tasks. For the deployment to be practical, DUMBO should impose limited mem-
ory and processing overhead, and outperform its non-learned counterparts which
operate without any hint but have access to more resources. Finally, we include in

Family Use case References Description

Network
management

Congestion
control

FACC (Lee et al., 2015), HPCC (Li et
al., 2019), ORCA (Abbasloo et al., 2020),
Swift (Kumar et al., 2020)

Elephant flows are
treated separately e.g.,
lower priority.

Scheduling and
routing

pHost (Gao et al., 2019), pFabric (Al-
izadeh et al., 2013), MLRouting (Poupart
et al., 2016), Blaster (Sacco et al., 2020),

Security
and
Monitoring

Heavy hitter,
DoS

Elastic Sketch (Yang et al., 2018) and
CMS-like Elephant flows are

allocated more accurate
data structures.Quantile esti-

mation
KLL (Karnin et al., 2016), DDS-
ketch (Masson et al., 2019)

TABLE 4.1: Network use cases that can exploit elephants/mice hints.

54 Chapter 4. Affordable Flow Size Representation with Machine Learning

our pipeline a mechanism that periodically updates the model using newly sam-
pled data to maintain the system performance stable over time. To the best of our
knowledge, this is the first work proposing a complete data plane ML pipeline (i)
detailing all its components, their deployment overhead, and a system prototype,
(ii) evaluating the end-to-end pipeline performance on the downstream tasks, and
(iii) demonstrating its long-term deployment effectiveness.

4.2.2 Use cases

As suggested by (Ðukić et al., 2019; Mitzenmacher, 2021), getting early access to
hints about the flow size may enhance a series of networking tasks which we survey
in Table 4.1. In this chapter, we reference three use cases described below to support
our claims with some concrete examples.

Flow scheduling. Flow scheduling refers to the process of efficiently allocating net-
work resources to different flows (e.g., identified by TCP/IP 5-tuple). It involves
determining the next packet to be forwarded and possibly prioritizing some flows.
Leveraging flow size estimation has emerged as a promising approach to optimize
flow scheduling algorithms in recent years. For instance, pFabric (Alizadeh et al.,
2013) aims at minimizing the average flow completion time by prioritizing small
flows over huge ones. However, it requires end-hosts to communicate flow resid-
ual length, which requires, in turn, applications and network devices modifications.
An alternative strategy is pHost (Gao et al., 2019), which strives for optimal perfor-
mance akin to pFabric, but without requiring network device modification. Unlike
pHost and pFabric, DUMBO does not require the involvement of end-hosts to pro-
vide flow size hints. Yet, such a system could still prioritize smaller flows over larger
ones, thereby offering scheduling performance similar to pFabric and pHost.

Flow packets IAT distribution estimation. A popular network measurement task
for Service-Level Agreement is the estimation of packet inter-arrival time (IAT) quan-
tiles. Precise IAT distribution monitoring is impractical given the amount of mem-
ory it would require, which calls for approximate measurement techniques. A well-
known sketch for distribution estimation is DDSketch (Masson et al., 2019), which is
allocated once per each flow under measurement. As previously described in Chap-
ter 2, a DDSketch contains multiple buckets (more buckets lead to more accurate
estimation) that correspond to different ranges of IAT values. Mice are composed of
a few packets, which yield only a handful of IAT values to be inserted into the corre-
sponding DDSketch buckets, thus leaving the majority of the buckets empty. Early
knowledge of flow size can help dimension the number and the size of buckets to
allocate per flow. Therefore, DUMBO employs flow size hints to use more and/or
bigger buckets for elephants. To the best of our knowledge, we are the first to pro-
pose a learned DDSketch using flow size hints. Other sketches such as KLL (Karnin
et al., 2016), and GKsketch (Greenwald and Khanna, 2001) can similarly benefit from
flow size hints.

4.3. System Design 55

3a

4a 4b

1

3b

2

5

Elephants Tracker

Tree1 Treen

Model

Prediction

Result T1 Result Tn

FlowID Features

Flow Manager

F1 f1,1 ... f1,m

F2

... ...

Mice Tracker

Packets

Sampling
(for model updating)

FIGURE 4.3: DUMBO system architecture.

Flow size estimation. Flow size estimation is a popular network monitoring task
that is typically addressed by employing probabilistic data structures like the Count-
Min Sketch (CMS, Cormode and Muthukrishnan, 2005). As introduced in Chapter 2,
in a CMS, flow keys are hashed to identify flow counters that are shared across mul-
tiple flows. Intuitively, the estimation error of mice flows that share counters with
elephant flows is particularly impacted. Recent variants of the CMS attempt to seg-
regate elephants from mice and count them in separate data structures. For instance,
ElasticSketch (ES, Yang et al., 2018), also presented in Chapter 2, uses a voting algo-
rithm to decide whether a flow should be counted in the CMS or in a dedicated
bucket. Parallel to this line of research, (Hsu et al., 2019; Du et al., 2021) explore the
use of an ML model to make such a decision. These works show promising results
evaluating the learned CMS offline, yet they do not take system implementation into
account.

4.3 System Design

Our system is built around the concept that coarse flow size predictions in the data
plane benefit several network tasks. For this reason, we aim at classifying flows
based on their size, with reasonable confidence, and as early as possible within the
first few packets of the flow. Late predictions would reduce the benefits of the ML-
enabled data plane pipeline. In this section, we present the system design for inte-
grating such ML hints in the data plane. Figure 4.3 presents the high-level DUMBO
system design with its four components: Elephant Tracker, Flow Manager, Model, and
Mice Tracker. In the following, we first introduce the processing pipeline, and then
we detail the specific design of each component.

4.3.1 Pipeline overview

The first component in the processing pipeline (cf. Figure 4.3) is the Elephant Tracker,
whose role is twofold. First, it collects precise monitoring data (e.g., packet count,
timestamps, etc.) for the elephant flows. In addition to that, it serves as a cache
for elephant predictions from the model. Upon receiving a packet (step 1⃝), the
system performs a lookup in the Elephant Tracker. If the flow is found therein, i.e.,
the flow was already predicted as an elephant, it is updated, and the processing
pipeline ends. Otherwise, the packet is sent to the Flow Manager (step 2⃝), which

56 Chapter 4. Affordable Flow Size Representation with Machine Learning

detects if the packet belongs to a new flow, e.g., using the SYN flag or relying on
a bloom filter (Bloom, 1970). The primary role of the Flow Manager is to collect
the features that need to be extracted from the first k packets of each flow. Once
these features have been collected, they are sent to the Model (step 3a⃝), triggering a
prediction. If the Model predicts an elephant flow, the packet is sent to the Elephant
Tracker, e.g., by packet recirculation in modern programmable pipelines, together
with the information collected so far, and a new entry for this flow is created (step
4a⃝). If the model predicts a mouse, the packet is sent to the Mice Tracker component
instead (step 4b⃝), where monitored metrics are stored in a compact probabilistic data
structure, e.g., with sketches. In addition, the Flow Manager serves as a negative
cache for flows predicted as mice: if a packet that does not belong to a new flow,
and has no entry in the Elephant Tracker nor in the Flow Manager, it is directly sent
to the Mice Tracker (step 3b⃝). Similarly, any entry that gets evicted from the Flow
Manager before collecting k packets is directly treated as a mouse without triggering
any prediction. Note that the system continuously samples packets to trigger model
updates when needed (step 5⃝).

4.3.2 System components

Elephant Tracker The Elephant Tracker keeps track of flows that are predicted as
elephants by the model. It can be implemented with a simple multi-level1 and multi-
entry2 hash table. This hash table stores 6-byte flow fingerprints3 and precise flow
monitoring data for the task at hand (e.g., 3-byte counters recording flow length).
Hash table and fingerprint collisions can be handled using existing Flow to ID map-
ping solutions such as (Zhao et al., 2021; Pontarelli et al., 2019; Barbette et al., 2020;
Sengupta et al., 2022) that fit in modern programmable hardware like FPGA-based
smart NICs and Tofino switches.

The Elephant Tracker is accessed whenever a new incoming packet is processed by
the system. We first extract the flow fingerprint from the packet, then perform a
lookup on the hash table for the flow entry, that is, we check if the flow was al-
ready classified as an elephant by the Model. If so, the data stored in the entry
is updated according to the metrics extracted from the last packet (e.g., increment
the corresponding counter recording flow length). The data stored in each flow en-
try might significantly vary based on the monitoring tasks performed by the sys-
tem. For instance, in the case of measuring packets IAT, each entry of the Elephant
Tracker features the timestamp of the last seen packet and a DDSketch to provide
accurate quantile estimation. In this use case, the system updates the latest times-
tamp and uses the previous one to compute the IAT, then it updates the DDSketch
accordingly. Insertions of new entries in the Elephant Tracker are dictated by the

1Multi-level refers to a hash table with h successive hash functions used to address h separate tables.
2Multi-entry refers to a hash table with multiple entries for a single addressable bucket.
3An efficient fingerprinting algorithm can be derived by hashing the 5-tuple flow identifier.

4.3. System Design 57

Hierarchical Flow manager
FlowID Features 1-pkt

F1 f1,1 ... f1,m

F2

...

FlowID Features k-pkts

F1 f1,1 ... f1,m

F2

...

Flow filter
(optional)

...

FIGURE 4.4: Architecture of a hierarchical Flow Manager. Flow en-
tries move to the next stage when a new packet is collected.

Model, i.e., the system occupies a pre-reserved entry whenever a new flow is pre-
dicted to be an elephant. Notice that, due to the use of a hash table, such insertion
may fail (that is, the entry in the hash table is already allocated to another flow).
In this case, the system treats the new flow as a mouse and forwards its packets
and metadata to the Mice Tracker. We note that the Model decision needs to be
back-propagated to the Elephant Tracker; however, this operation is not possible in
programmable switches, because the Elephant Tracker is the first component of the
processing pipeline. Therefore, we need to recirculate a certain fraction of packets.
Since this is only needed at insertion time, i.e., one packet per inserted flow, and
since elephant flows account for only 1% of all the flows, we expect a negligible
recirculation overhead due to the Elephant Tracker.

Flow Manager. The Flow Manager is responsible for collecting flow features from
the first k packets of each flow that are necessary to get hints from the Model. Once
the required features have been accumulated, the Flow Manager forwards them to
the Model for inference. Similarly to the Elephant Tracker, the Flow Manager is or-
ganized as a multi-entry hash table, using the same 6-byte fingerprint as a key. The
Flow Manager is accessed only when there is a miss in the Elephant Tracker. If this
is the case, the system first checks if the packet belongs to a flow that has never
been seen so far. To do so, a possible strategy is to exploit packet headers in case
of TCP flows i.e., SYN, SYN-ACK flags. Alternatively, to accommodate non-TCP
traffic, another strategy is to query an optional Flow Filter component as illustrated
in Figure 4.4, which can be implemented with a Bloom Filter (Bloom, 1970). If the
flow is new, it is inserted in the hash table in a free bucket or evicting an old flow.
The new entry is initialized with the features extracted from the first packet and its
timestamp. If the flow is not new and there is a match in the Flow Manager, the cor-
responding entry is updated with the latest feature values. When the k-th packet of
the flow arrives, the system packages the collected features from the updated coun-
ters values, extracts the 5-tuple features from the packet header (TCP/IP ports and
addresses), and forwards them to the Model for inference, also freeing the entry in
the Flow Manager. Finally, if the flow is not new but is not in the Flow Manager, it is
considered a mouse and directly forwarded to the Mice Tracker for further process-
ing. This situation can occur in two cases: (i) the flow has been previously predicted
as a mouse by the model and then evicted from the Flow Manager, or (ii) the flow

58 Chapter 4. Affordable Flow Size Representation with Machine Learning

1 2 3 4
packets collected at eviction

0.00

0.05

0.10

0.15

0.20

Fr
ac

tio
n

of
 E

le
ph

an
ts

Hierarchical Flow manager
Baseline Flow manager

FIGURE 4.5: Simple vs. Hierarchical Flow Manager elephants evic-
tions. Elephants discarded before reaching k = 5 packets.

has been evicted from the Flow Manager before reaching k packets. We remark that
flow eviction occurs when there is a collision in the hash table and no free slots are
available to store the new flow. In this case, we evict the least recently used flow en-
try in the bucket. In practice, after detecting the entry with the smallest timestamp
within the bucket and its position, its place is taken by the newly inserted flow: the
flow evicted is sent to the Mice Tracker and considered as mouse thereupon.4

The Flow Manager described above has the drawback of possibly evicting flows
close to reaching k packets, i.e., just before model inference. To address this problem
we organize the Flow Manager hierarchically as illustrated in Figure 4.4. The first
table keeps track of flows that have accumulated one packet so far, the second table
those that have accumulated two packets, and so on. Eviction is restricted among
flows with the same amount of packets. In this way, flows close to reaching k packets
are implicitly given priority over the others. Note that this hierarchical structure is
compatible with programmable pipelines because when a hit occurs, the flow simply
needs to be moved to the next level. Figure 4.5 compares a hierarchical Flow Man-
ager with a simple one, using a CAIDA traffic trace with k = 5 and a fixed memory
budget. In this simple example, the hierarchical version reduces early evictions of
the elephants to 22% (32% with simple Flow Manager).

Model. The model is responsible for producing hints in the form of a binary ele-
phant/mice classification by taking as input the flow features collected by the Flow
Manager. We recall that, if a flow is evicted from the Flow Manager before accu-
mulating k packets, it will never get to the Model and thus never get a chance to
be correctly classified. Therefore, the Flow Manager plays a key role in the overall
quality of the hints provided by the Model. Hence, we highlight the importance
of carefully co-designing the Flow Manager and Model components to get the best
performance.

4This can be done without recirculation in FPGAs by adopting a two-stage pipelined memory ac-
cess: the first stage for reading the memory, the second for performing the update. This approach
would be hard to implement in other popular programmable architecture, like Intel(R) Tofino, due to
its constrained memory model, hence requiring packet recirculation.

4.4. Machine Learning Model 59

Mice Tracker. The role of the Mice Tracker is to approximately monitor flows pre-
dicted as mice. Simply disregarding these flows would be inaccurate because some
of them are actually elephants mispredicted as mice, while others did not get a
model prediction due to early eviction from the Flow Manager. As a result, the Mice
Tracker serves as a backup monitoring data structure, similar to the approach used
in (Yang et al., 2018; Hsu et al., 2019). In our system, the Mice Tracker comprises
one or multiple approximate data structures such as Count-Min Sketch for flow size
estimation or compact DDSketches (Masson et al., 2019) for IAT distribution estima-
tion.

4.4 Machine Learning Model

The goal of the DUMBO ML model is to classify flows according to their size as
quickly as possible while maintaining high performance and low memory overhead.
In this section, we first introduce the data, metrics and baselines used to compare
our approach, and then we detail model design and sizing. Finally, we present an
automatic update mechanism to ensure model robustness over time.

4.4.1 Benchmark setup

Datasets. To motivate our choices, we run model micro-benchmarks using the fol-
lowing traffic traces:

• CAIDA on 2016-01-21 13:00 – 13:59
(The CAIDA Anonymized Internet Traces Dataset 2016)

• MAWI on 2019-04-09 18:45 – 19:44
(The MAWI Working Group Traffic Archive 2019)

• UNI on 2010-01-12 20:00 – 22:29
(Benson et al., 2010)

As (Hsu et al., 2019; Du et al., 2021), we label flow sizes above the 99th percentile
as elephants (positive class) and the rest as mice (negative class). Similarly, we con-
sider minute-defined measurement epochs to extract uni-directional flows from each
trace. In Figure 4.6 we report the amount of flows and their size distributions for
each trace, broken down by protocol. This analysis motivates us to deliberately ex-
clude ICMP traffic from our dataset. Indeed, ICMP traffic features smaller flows
and would only make the early classification task less challenging on MAWI. On the
other hand, this exclusion would have almost no impact on CAIDA and UNI traces
as they feature almost no ICMP flows. Therefore, we focus on TCP and UDP traffic
in the remainder of this chapter, which represent ≈1M, ≈500K, and ≈5K flows per
epoch for CAIDA, MAWI, and UNI respectively. Still, we report results including
ICMP traffic in Appendix B.1.

60 Chapter 4. Affordable Flow Size Representation with Machine Learning

0.5
1.0

flo

ws 1e6 CAIDA

0.51.0

flo

ws 1e6 MAWI

TCP UDP ICMP
Protocol

25005000

flo

ws UNI

0
50

100

CD
F

[%
]

Top 1%: 357 pk
5pk

CAIDA

0
50

100

CD
F

[%
]

Top 1%: 17 pk
5pk

MAWI

101 103 105

Flow size (TCP+UDP)
0

50
100

CD
F

[%
]

Top 1%: 990 pk
5pk

UNI

0
50

100

CD
F

[%
]

Top 1%: 348 pk
5pk

CAIDA

0
50

100

CD
F

[%
]

Top 1%: 8 pk
5pk

MAWI

101 103 105

Flow size (TCP+UDP+ICMP)
0

50
100

CD
F

[%
]

Top 1%: 986 pk
5pk

UNI

FIGURE 4.6: Traffic analysis for the 50th minute of each trace.

Metrics. The elephants/mice classification task is heavily imbalanced by design
resulting in unequal consequences for mispredictions. It is important to note that bi-
nary classifiers typically output the probability that a sample belongs to the positive
class. The classification result depends on a fixed threshold applied to this output.
Tuning this probability threshold corresponds to selecting a trade-off between Pre-
cision and Recall. As a reminder, precision P and recall R take their values in the
interval [0, 1] (higher is better) and are defined as:

P =
Tp

Tp + Fp
, (4.1) R =

Tp

Tp + Fn
, (4.2)

where Tp are true positives, Fp false positives and Fn false negatives. To ensure a fair
comparison between classifiers irrespective of this arbitrary threshold, an appropri-
ate metric is the Average Precision (AP) score. It is calculated as:

AP = ∑
n
(Rn − Rn−1) · Pn, (4.3)

where Pn and Rn are the precision and recall for the n-th threshold. In a nutshell,
the AP score is the average of precisions at each threshold, weighted by the increase
in recall from the previous threshold. Thus, the AP score summarizes the trade-offs
achievable with a given model by considering all its possible probability thresholds.
It can be interpreted as the area under the Precision-Recall curve of a binary classifier.

Baselines. In our benchmark campaign, we compare against pHeavy (Zhang et
al., 2021b) that consists in a pipeline of successive decision trees queried at various
packet arrivals (e.g., 5-20) in order to filter out mice progressively until the model
makes a final prediction. Hence, pHeavy can only predict elephants when the last
model stage is reached (e.g., 20th packet). Additionally, pHeavy optimizes for high
recall and high specificity (true negative rate) to guide model training. However,
these metrics are insensitive to class imbalance, which is inherent to elephants/mice
classification (i.e., 1:99 imbalance ratio by design in our settings).

4.4. Machine Learning Model 61

4.4.2 Model design

Packet features. We choose Random Forests (RF) (Breiman, 2001) models which are
typically preferred over more sophisticated algorithms (e.g., Deep Learning) for data
plane implementation, due to their simplicity and interpretability (Busse-Grawitz et
al., 2022; Lee and Singh, 2020; Xiong and Zilberman, 2019; Zheng et al., 2022b; Zheng
and Zilberman, 2021; Zheng et al., 2022a; Akem et al., 2022). Ideally, the RF model
should provide a prediction as early as possible i.e., at the first packet. In this case,
the flow 5-tuple is the only feature fed to the model. As in (Hsu et al., 2019; Du
et al., 2021), the 5-tuple is transformed into 97 binary features: 32 + 32 features for
source and destination IPs, 16 + 16 features for source and destination ports and 1
feature for protocol (TCP or UDP in our case). Binary features have the advantage
of simplifying the RF deployment in the data plane. Similarly, it is also desirable for
a data plane implementation to have binary leaves only. In vanilla RF, each leaf is
assigned an impurity value, which in practice equals the proportion of one class over
the other among training samples that map to that leaf. Such values are provided as
output by every tree at inference time and then averaged across the forest to output
a class probability. This probability of the sample belonging to the positive class
is then thresholded to output the final elephant vs mouse classification result. To
simplify data plane implementation and avoid costly floating point operations, we
fine-tune an appropriate probability threshold within the training pipeline, encode
it directly in each tree leaf, and use them as votes for class prediction.

Flow features. While obtaining timely predictions from the first packet is attractive,
this can limit the model’s long-term performance. Therefore, we integrate additional
flow features to better characterize their behavior. After analysis, we select four ag-
gregated features collected from the first k packets of the flow, namely the mean and
standard deviation of packet sizes and inter-arrival times. To do so, the Flow Manager
stores a 2-byte timestamp of the last packet and four 2-byte counters for the aggre-
gated features per each flow. These counters store the sum of the measured values
S = ∑i xi and the sum of their square Q = ∑i xi

2. After k packets, we compute the
mean µ = S/k and standard deviation σ =

√
(kQ− S2)/(k(k− 1)). In conclusion,

the k-packets model takes as input 101 features from a flow: 97 binary features for
the 5-tuple and 2 + 2 aggregated features.

Evaluation. To validate our model design, we train the Random Forest on the first
5 minutes of traffic in CAIDA, MAWI, and the first 95 minutes in UNI (as this trace
features fewer flows), and use the last 55 minutes for testing. The model hyper-
parameters (number of trees, max depth, etc.) are obtained through random search
with 2-fold cross-validation on the training minutes, optimizing for Average Preci-
sion (AP) score. This first training phase does not consider any model size constraint;
we consider this model as an upper bound in terms of achievable performance with

62 Chapter 4. Affordable Flow Size Representation with Machine Learning

13:05 13:20 13:35 13:50
0.2
0.4
0.6

AP CAIDAOurs 5pk
Ours 1pk

pHeavy 5pk
pHeavy 16/18 pk

18:50 19:05 19:20 19:35
0.3
0.5
0.7
0.9

AP MAWI

21:35 21:50 22:05 22:20
0.2
0.4
0.6

AP UNI

Ours 5pk
Ours 1pk

pHeavy 5pk
pHeavy 16/18 pk

FIGURE 4.7: Model performance across time.

RF. Figure 4.7 compares models’ performance on the test set constituted by the re-
maining 55 minutes of each trace. We remark that, as expected, adding aggregated
features (with k = 5) leads to stable performance within the full test set. We also
tested k > 5 but obtained stable performance starting from k = 5, hence, in the
remainder of this chapter we use the 5-packet model. We remark that using only ag-
gregated features (no 5-tuple) does not provide accurate predictions (AP score≈20%
lower, not reported in the figure) as the model cannot correlate flow characteristics
with its source and destination. Finally, we remark that classification on MAWI ap-
pears easier than on the two other traffic traces. This is partly explained by their
different flow size distributions: in MAWI ≈90% of the flows have less than five
packets, while this represents only ≈50% of the flows in CAIDA and UNI. This also
explains the higher performance of pHeavy on MAWI: when using its last pipeline
stage at the 18th packet arrival in the model we trained, most mice have already been
filtered out. The results on UNI indicate comparatively lower and less stable perfor-
mance. This can be attributed to the limited amount of flows available for training
and testing (i.e., ×100 less than CAIDA). To finalize our model for the ML-enabled
data plane pipeline integration, we then use the last minute of the training set to em-
pirically tune the probability threshold for elephants prediction. This threshold has
a direct impact on the model Recall and Precision: the lower the threshold, the larger
the number of flows predicted as elephants thereby favoring Recall over Precision
and vice versa. Interestingly, this threshold enables us to control the fraction of flows
that the model classifies as elephants, which is a crucial parameter for appropriately
sizing the Elephant Tracker. Once the appropriate threshold is selected, it is encoded
in all trees’ leaves.

4.4. Machine Learning Model 63

pk size std (5pk) <= 0.2
samples = 100.0%

proba = 0.03

iat mean (5pk) <= 0.195
samples = 5.3%
proba = 0.201

True

iat mean (5pk) <= 0.113
samples = 94.7%

proba = 0.021

False

samples = 2.2%
proba = 0.476

pk size mean (5pk) <= 1196.5
samples = 3.1%
proba = 0.012

iat mean (5pk) <= 0.263
samples = 3.1%
proba = 0.006

samples = 0.1%
proba = 0.255

samples = 0.1%
proba = 0.089

samples = 2.9%
proba = 0.003

dst port bit 15 <= 0.5
samples = 36.1%

proba = 0.036

iat mean (5pk) <= 0.214
samples = 58.6%

proba = 0.011

dst ip bit 2 <= 0.5
samples = 16.1%

proba = 0.059

samples = 20.0%
proba = 0.018

iat mean (5pk) <= 0.004
samples = 10.2%

proba = 0.032

samples = 5.9%
proba = 0.104

samples = 0.1%
proba = 0.288

pk size std (5pk) <= 22.478
samples = 10.1%

proba = 0.029

samples = 0.4%
proba = 0.152

protocol udp <= 0.5
samples = 9.7%
proba = 0.025

pk size mean (5pk) <= 941.3
samples = 9.7%
proba = 0.024

samples = 0.0%
proba = 0.229

iat std (5pk) <= 0.153
samples = 9.5%
proba = 0.022

samples = 0.1%
proba = 0.114

dst ip bit 0 <= 0.5
samples = 9.4%
proba = 0.021

samples = 0.1%
proba = 0.11

dst port bit 10 <= 0.5
samples = 5.7%
proba = 0.014

samples = 3.8%
proba = 0.033

iat std (5pk) <= 0.093
samples = 5.1%
proba = 0.009

samples = 0.6%
proba = 0.052

samples = 3.8%
proba = 0.005

samples = 1.3%
proba = 0.021

dst ip bit 22 <= 0.5
samples = 27.5%

proba = 0.018

samples = 31.1%
proba = 0.004

pk size std (5pk) <= 6.826
samples = 15.2%

proba = 0.008

dst ip bit 18 <= 0.5
samples = 12.2%

proba = 0.032

samples = 0.1%
proba = 0.12

pk size mean (5pk) <= 982.2
samples = 15.1%

proba = 0.007

dst port bit 3 <= 0.5
samples = 15.1%

proba = 0.007

samples = 0.0%
proba = 0.168

pk size mean (5pk) <= 457.3
samples = 14.7%

proba = 0.006

samples = 0.4%
proba = 0.041

samples = 14.3%
proba = 0.005

samples = 0.4%
proba = 0.037

pk size mean (5pk) <= 1231.7
samples = 5.7%
proba = 0.006

samples = 6.5%
proba = 0.055

pk size std (5pk) <= 19.768
samples = 5.7%
proba = 0.006

samples = 0.0%
proba = 1.0

samples = 0.1%
proba = 0.045

samples = 5.6%
proba = 0.005

CAIDA

FIGURE 4.8: Simplified representation of the explainable tree ex-
tracted with TrusteeML (Jacobs et al., 2022) on CAIDA. Probability
threshold is 0.043 for ≈20K elephants. Samples proportions may not

sum to 100% because of top-k branches pruning.

Explainability. To interpret the trained model, we use the TrusteeML library (Ja-
cobs et al., 2022) to extract a high-fidelity and low-complexity tree that explains the
decisions of the model. TrusteeML is a framework that aims at identifying model
under-specification issues such as shortcut learning or spurious correlations. It takes
a model-agnostic approach to iteratively train various decision trees (students) that
best mimic the model’s decisions (teacher). Students are trained on various samples
of the training set using bagging, and the misclassified samples are used to augment
the initial training set at each iteration. The student with the highest fidelity is se-
lected for top-k branch pruning to make it easily interpretable at the expense of per-
formance. Each branch represents a decision rule that accounts for a certain fraction
of the input samples, and only the top-k branches are kept after pruning. This over-
all process is repeated several times to select as final explainer the pruned student
that is the most stable across runs (i.e., the highest mean agreement across pruned
students). Figure 4.8 shows a simplified explainable tree extracted with TrusteeML.
Note that this is a heavily-pruned version of the tree, that aims at interpretability at
the expense of performance. When analyzing the model, we note that the four ag-
gregated features we introduce rank first in terms of feature importance (measured
by the number of samples the feature is used to classify).

64 Chapter 4. Affordable Flow Size Representation with Machine Learning

101 102 103
Memory [KB]

0.0

0.2

0.4

0.6

0.8

1.0

Av
g.

 A
P

sc
or

e
4257 KB

1627 KB

542 KB98 KB

13 KB

CAIDA

original
quantized
pruned+quantized
strongpruned+quantized
pHeavy

FIGURE 4.9: Model performance against size. In addition to features
quantization, we further reduce the model size by iteratively remov-

ing the least performing trees (forest pruning).

4.4.3 Model size

In the data plane, memory is often limited, making it crucial to limit the size of the
model size to minimize system overhead. Alternative approaches for elephant flow
detection, such as pHeavy (Zhang et al., 2021b), employ tiny models but require
≈5 MB per 100K flows to store the required features because of late predictions e.g.,
at 18th packet. We argue that reserving this amount of memory is problematic in
programmable network devices. Data structures dedicated to flow-size monitoring
and management are typically allocated less than 1 MB of memory. For this reason,
and to limit the system overhead, we target much smaller memory footprints for the
full system, i.e., in the order of 1 MB. To evaluate the amount of memory required for
the RF, as in (Monterubbiano et al., 2023b) we consider three alternative decision tree
implementation approaches: Match Action Table (MAT), which exploits MAT avail-
able in programmable network devices, full tree, which involves storing fully-grown
binary trees (including nodes not used by the actual decision tree), and hybrid, which
consists in storing fully-grown trees up to a certain depth, and individual tree nodes
from that level downward. We defer the reader to Section 4.5 for additional details
about model system implementation and size estimation. Here we report only the
model memory occupation obtained using the best strategy among the three.

As depicted in Figure 4.9, the original 5-packets model we obtain by training on
the first 5 minutes of the CAIDA trace requires over 4 MB (red cross). It achieves
an average AP score of 0.68 in the remaining 55 test minutes. This is influenced by
unconstrained model parameters such as (i) the memory used to store feature values,
and (ii) the number of trees composing the forest. To reduce the model size and meet
the memory constraints of the data plane, we employ simple strategies with training
speed and future model updates in mind. These strategies include quantization

4.4. Machine Learning Model 65

of feature values and forest pruning. For (i), we discretize the aggregated floating
point features using quantiles. This pre-processing step is part of the automated
model training process. It creates an input feature vector with only binary values,
making it easier to integrate the model into the data plane. Aggregated features
quantization provides a ×2.6 reduction in size for a 1.7% decrease in performance
(blue diamond). For (ii), we prune the forest by removing the worst-performing trees
until a given size constraint is respected (≈500 KB in our settings). This procedure
allows precise control over the size-performance trade-off of the final model and
is also part of the model training routine. We select a conservative final model of
size 542 KB (green circle), i.e., achieving over ×7.8 size reduction for an AP score
of 0.64 (5.7% performance decrease). While stronger pruning led to a 98 KB model
with a 0.50 AP score (purple pentagon), we stick with the 542 KB model to provide
conservative results. We observed similar model size reduction on MAWI and UNI.

4.4.4 Model update

Active learning. Model maintenance is needed to account for drifts in traffic behav-
iors and ensure that the quality of the predictions is sufficient for benefiting down-
stream tasks. Since traffic patterns are dynamic, we expect model performance to
degrade over time, for which we need to periodically update the model. In our case,
the classification task requires new training samples i.e., input features describing
the flow and the corresponding label, to learn and adapt to the newest patterns. The
challenge lies in the sampling policy implemented to acquire fresh data points. On
the one hand, we should not distort the flow size distribution to keep the training set
representative of the real data. On the other hand, we need to constrain sampling to
incur a reasonably low overhead. Following these guidelines, we draw from active
learning and uncertainty sampling (Di Cicco et al., 2023; Settles, 2011) to determine
which flows to sample. During each measurement epoch, the model itself is used to
identify challenging flows that should be sampled. By aggregating votes from indi-
vidual RF trees, we can quantify the uncertainty of the model prediction. Hence, we
select for sampling flows with more than k = 5 packets that do not reach a voting
agreement threshold, e.g., 0.6 and send them to the control plane. It is important
to note that the agreement threshold is different than the one for model prediction.
This sampling strategy has the advantage of selecting challenging flows with limited
overhead, but it may also distort the actual data distribution. To alleviate this short-
coming, we additionally randomly sample 1% of the flows that reach the model, i.e.,
1% of the flows with more than k = 5 packets. In our experiments, combining both
uncertainty and random sampling leads to an overall sampling rate below 3% in
the worst case. Sampled flows collected at the controller are appended to the initial
training dataset to constitute a retraining buffer. To keep a stable re-training cost,
the training buffer is a FIFO queue of a fixed size equal to the initial training dataset
(e.g., 2.5M flows with at least 5 packets for CAIDA). Finally, we implement a drift

66 Chapter 4. Affordable Flow Size Representation with Machine Learning

13:15 13:35 Break 19:00 19:20
CAIDA MAWI

0.0

0.2

0.4

0.6

0.8

1.0

AP
 sc

or
e

model CAIDA
model MAWI

active model
FNR
active model
FNR

13
h0

5
13

h1
5
13

h2
5
13

h3
5
13

h4
5
Brea

k
18

h5
0
19

h0
0
19

h1
0
19

h2
0
19

h3
0

CAIDA MAWI

0.0

0.2

0.4

0.6

0.8

1.0

F1
 sc

or
e

FIGURE 4.10: Model update stress-test.

detector to adapt quickly to sudden traffic changes. This detector triggers when the
flow features sampled by the controller drift abruptly from one epoch to another,
resets the retraining buffer, and triggers frequent model updates.

Stress test. Starting from a model trained on CAIDA, Figure 4.10 shows a 10-minute
periodic active model update strategy in a worst-case scenario where, after 50 min-
utes of CAIDA test traffic (corresponding to a slow drift), the traffic abruptly changes
to MAWI for the next 50 minutes (corresponding to out-of-distribution). Clearly, due
to significant differences (e.g., IAT, IP addresses, flow size distribution), we expect a
static model trained on CAIDA to be unfit to perform flow classification on MAWI
traffic (dashed green line). However, even in such an extreme scenario, the active
model update strategy (solid blue) quickly recovers to match the performance of a
static model trained exclusively on MAWI data (dashed red). We also report False
Negative Rate (FNR, i.e., the rate of elephants mispredicted as mice) over time, and
show that it only requires two model updates to return to reasonable levels. We re-
mark that model re-training does not need to be frequent and periodic, but can be
triggered when performance on randomly sampled flows becomes unsatisfactory,
i.e., after a long drift or an abrupt change. Finally, we highlight that the training
time for a single tree on such a large dataset is ≈30 s on a single core from an In-
tel(R) Xeon(R) Platinum 8164 2.00GHz CPU, i.e., ≈1 minute training with 15 cores
for a forest of 30 trees. Subsequent updates of the model weights on the FPGA target
do not introduce any considerable extra overhead (≈1 ms in our case for rewriting
the trees in the FPGA memory), hence allowing for line-rate updates in our system.

4.5. System Implementation 67

4.5 System Implementation

In this section, we first motivate a FPGA-based deployment scenario for DUMBO.
Then, we detail three methodologies to implement a binary Random Forest in an
FPGA-based SmartNIC and analytically derive the corresponding memory require-
ments. The full system prototype and evaluation in a real FPGA prototype is de-
ferred to Appendix B.2.

4.5.1 Deployment scenario

The DUMBO system leverages machine learning techniques to enhance the de-
ployment of various network applications in high-speed networks such as the ones
connecting data center servers. The introduction of SmartNICs and programmable
switches has opened up opportunities to offload an increasing number of network
applications from end-host CPUs (precious to cloud providers) to networking de-
vices. While programmable switches could potentially incorporate the proposed
ML-enabled data plane, we believe that FPGA-based SmartNICs are ideal candi-
dates for implementing this technology due to their rapid adoption and flexibility.
The first public example of the deployment of FPGA-based SmartNICs was pre-
sented in 2018 (Firestone et al., 2018), where a fleet of more than 1 million hosts is
equipped with an ad-hoc SmartNIC. Today, key players such as Alibaba, Amazon,
Baidu, Huawei, and Tencent now expose FPGAs to application developers in their
data center infrastructures or as part of their service offerings. A comprehensive sur-
vey discussing these and other advances (Michel et al., 2021; Pontarelli et al., 2019;
Ibanez et al., 2019; Rivitti et al., 2023) can be found in (Bobda et al., 2022). We argue
that the processing power of FPGA-based SmartNICs, already prevalent in large
data centers, can be efficiently utilized for ML inference.

4.5.2 Random Forest implementation

When implementing a RF in a programmable pipeline, i.e., FPGA in our case, it
is critical to meet stringent throughput and memory size constraints. In particular,
achieving one inference at each clock cycle is desirable for packet processing tasks as
it greatly simplifies implementation. This calls for a pipeline architecture that can be
realized using a Match-Action Table (MAT) implementation, a full tree representation,
or a hybrid implementation. As previously mentioned, we restrict the analysis to
binary features and binary leaves.

MAT implementation. MATs are commonly employed in the processing pipeline of
network devices. Packet-processing tasks are implemented by a sequence of MATs,
each one operating based on the result of the previous one. In (Lee and Singh, 2020),
MATs were used to implement a decision tree by representing each level of the tree
by a match-action stage. Alternatively, (Xiong and Zilberman, 2019) implements a
decision tree using one stage per feature, to match it with all its potential values and

68 Chapter 4. Affordable Flow Size Representation with Machine Learning

Features

Match-Action Table
Label

...

1

11

1

1

0

0 0

0 0 XX

X

X XXXX

(A) MAT tree optimized en-
coding.

(B) Full tree encoding.

Full Tree Hybrid Layers

Pointer to next
layer address

Nt-3

Nt-2

Nt-1

Nt
nodes

(C) Hybrid tree encoding.

FIGURE 4.11: Visualization of different techniques for encoding a bi-
nary tree in the data plane.

output a feature code word that indicates a branch. An additional last stage is then
required to match the concatenated features codes to the resulting leaf of the tree.
This approach scales well for Random Forests (Zheng and Zilberman, 2021), where
each additional tree in the forest only requires an extra MAT. In our binary classifi-
cation case with binary input features, a decision tree can be implemented using a
single MAT featuring one rule for each leaf (i.e., each traversal) of the tree. In each
row, the matching key corresponds to the concatenation of the feature bits, while the
action corresponds to the predicted label. The memory required (in number of bits)
for a Random Forest RF implemented with MATs is then:

MemMAT = ∑
t∈RF

Lt(2 F + 1), (4.4)

where t represents a tree from the Random Forest, Lt the number of leaves for t,
F the number of binary features, and the factor of two relates to the encoding of a
ternary value (i.e., “0”, “1”, or “do not care”) for each feature, that requires two bits.
We depict this approach in Figure 4.11a. A simple optimization consists of encoding
only the leaves that correspond to one of the two classes. If one of the two classes is
under-represented in the tree’s leaves, this leads to a decrease in memory, since only
the leaves corresponding to the less frequent class are stored in the MAT.

Full tree implementation. In contrast to the MAT implementation, the full tree ap-
proach reserves a separate memory block for each level of the tree. Each node in
the tree is numbered sequentially starting from 1 to 2Dt − 1, where Dt is the tree
depth, as depicted in Figure 4.11b. Consequently, traversing the tree for inference
is straightforward: given any node i, its children in the next layer are found at the
memory offset 2i and 2i + 1 depending on the result of the parent split condition.
However, this approach potentially leads to considerable memory overhead if the
tree is sparse, as it assumes each tree to be fully grown. In our binary classification
case with binary input features, each node is only required to store (i) one flag bit to
distinguish between the two types of nodes (split or leaf); and (ii) the index of the
feature to compare against (if it is a split node) or the predicted class label (if it is a

4.6. Experimental Results 69

leaf node). The memory required in bits for a RF is thus:

MemFT = ∑
t∈RF

(2Dt − 1)(⌈log2(F)⌉+ 1), (4.5)

where Dt is the tree depth. We remark that, while this implementation can be more
efficient in terms of memory occupancy than MAT in some cases, it has the drawback
of requiring more memory accesses.

Hybrid implementation. The full tree representation may waste a significant amount
of memory in the case of a sparse tree that is far from being a full binary tree. In
our case, we observe that the trees composing the RF are often full only up to a
certain level. Hence, the vanilla full tree implementation would lead to significant
memory waste for the deepest layers that contain very few nodes (e.g., last layer in
Figure 4.11b). We propose a hybrid approach that uses the full tree representation
for the top layers and an indexed encoding for the bottom ones. We identify the max-
imum number of nodes N in any layer of any tree in the forest. We encode the first
M = ⌊log2(N)⌋ + 1 layers using the full tree implementation. For the remaining
deeper and sparser layers, we only allocate N nodes. For each of these nodes, we
store a pointer to their left child in the next layer, cf. Figure 4.11c. The right child is
thus located at this address plus 1. The memory required in bits for a Random Forest
RF can then be expressed as:

MemHyb = ∑
t∈RF

(2M − 1)(⌈log2(F)⌉+ 1)︸ ︷︷ ︸
full tree implementation

+ N(Dt −M)(⌈log2(F)⌉+ 1 + ⌈log2(N)⌉)︸ ︷︷ ︸
indexed encoding

,

(4.6)

4.6 Experimental Results

In this section, we detail the memory allocation for the system components and eval-
uate DUMBO on three tasks: flow scheduling, flow packets IAT distribution estima-
tion, and flow size estimation. First, for every use case, we compare the end-to-end
performance of DUMBO with state-of-the-art baselines and with a competitor ML
pipeline based on pHeavy hints (Zhang et al., 2021b) obtained within the first 5-
packets. Then, we analyze the deployment trade-off between model performance
and pipeline memory overhead. We run our tests on a custom packet-level simula-
tor using the last ten minutes of traffic traces from CAIDA, MAWI, and UNI datasets.
We highlight that UNI features ≈5K flows per minute, which is significantly lower
than CAIDA and MAWI with≈1M and≈500K flows per minute, respectively. How-
ever, we still include results on UNI, also used in (Zhang et al., 2021b), as it enables
us to estimate the applicability of our approach on datacenter-like traffic.

70 Chapter 4. Affordable Flow Size Representation with Machine Learning

4.6.1 Memory setup

We categorize memory allocation into system-related, and network task-related. This
distinction stems from the observation that, while system-related memory is shared
across the various network tasks that benefit from ML hints, task-related memory
may significantly vary based on the use case.

System-related (DUMBO). We allocate 1 MB in total for Model, Flow Manager,
and Elephant Tracker. We consider a conservative model size of 542 KB. The size
of the Flow Manager depends on the number of simultaneous flows. We use the
CAIDA training traces, which feature the highest amount of flows across our eval-
uation traces, to estimate this quantity. Accordingly, we allocate a hierarchical Flow
Manager whose stages are broken down following the observed flow size distribu-
tion; this amounts to 290 KB, each entry requiring 6 bytes for the flow fingerprint,
2 bytes for the timestamp, and four 2-byte counters to collect the aggregated fea-
tures. The size of the Elephant Tracker depends on the number of flows predicted as
elephants, which is controlled in DUMBO by tuning the model probability thresh-
old. The training pipeline uses the last minute of the training trace to empirically
determine a threshold that sends 2% of the flows to the Elephant Tracker (i.e., ≈20K
flows on CAIDA with a 20% overprovisioning). This amounts to 117 KB, each entry
requiring 6 bytes for the flow fingerprint.

System-related (pHeavy). Our implementation of the pHeavy model only takes
13 KB. However, flow management requires much more memory due to extra fea-
tures and eviction strategy (based on (Zhang et al., 2021b), it would take ≈50 MB
on CAIDA traces, 1M flow per minute). To make comparison feasible, we replace
flow tuples with our same fingerprints and apply a more aggressive eviction strat-
egy that replaces flows after 5 seconds of inactivity, thus constraining pHeavy flow
management to ≈1.6 MB in the worst case. For the Elephant Tracker, we use the
same configuration as in DUMBO and similarly tune a model probability threshold.

Task-related. The base system is sufficient to run the scheduling use case. The two
other use cases (IAT distribution and flow size estimation) however, require addi-
tional memory for measurements for both Mice and Elephant Trackers. In our ex-
periments, we allocate 33 MB of memory for IAT distribution and 2 MB for flow

Component System Scheduling IAT est. Flow size est.

Model 542 KB n.a. n.a. n.a.
Flow Manager 290 KB n.a. n.a. n.a.
Elephant Tr. 117 KB n.a. 1.26 MB 59 KB
Mice Tr. n.a. n.a. Remaining mem. Remaining mem.

TOTAL 1 MB n.a. 33 MB 2 MB

TABLE 4.2: Memory allocation for DUMBO.

4.6. Experimental Results 71

size estimation. Detailed memory allocations can be found in Table 4.2. In partic-
ular, the Elephant Tracker for flow size estimation requires one additional 3-byte
counter for measurements, while the IAT distribution estimation use case requires
a 2-byte timestamp and a DDSketch. Finally, the remaining available memory from
the use case budget is fully allocated to the Mice Tracker. This consists of a Count-
Min Sketch for flow size estimation or an array of coarse DDSketches for IAT distri-
bution estimation. In the case of pHeavy, we remove from this remaining budget the
extra memory it needs for flow management.

4.6.2 End-to-end performance

Flow scheduling. For the flow scheduling use case, we evaluate the performance of
the system in terms of average normalized Flow Completion Time (FCT) as defined
in (Alizadeh et al., 2013; Gao et al., 2019), i.e.:

normalized FCT = actual FCT/ideal FCT, (4.7)

The ideal FCT is the time required to transmit a flow when the whole network fabric
is composed of a single 10 Gbps link and there are no other flows, while the actual
FCT is the measured flow completion time. We design a scheduling policy based on
model predictions, assuming that the Flow Manager collects measurements from the
first k = 5 packets of each flow. Each packet is assigned one out of three priorities
from 0 (highest) to 2 (lowest). We assign priorities as follows: if the packet is one of
the first k− 1, it is assigned to the highest priority queue; if the packet has no entry in
the Elephant Tracker nor in the Flow Manager, we assume it is a mouse and assign it
to the medium priority queue; if the packet belongs to a flow predicted as elephant,
it is assigned to the lowest priority queue. Our priority queues schema is much less
fine-grained than pFabric, where the exact residual flow size is used to determine
packet priority. Yet, we argue that residual flow size is hard to obtain and that the
proposed coarse-grained priority definition is easier to implement and sufficient to
reduce FCT.

We evaluate our approach using YAPS (Kumar et al., 2016), a packet-based network
simulator used in (Gao et al., 2019) to evaluate pHost and pFabric, two state-of-the-
art baselines we compare against. We use the same network topology as in pFabric:
the fabric interconnects 144 hosts through 9 leaf switches (top-of-rack) connected to
4 spine switches in a full mesh. Each leaf switch has sixteen 10 Gbps downlinks, and
four 40 Gbps uplinks. The simulator randomly generates 1M flows based on user-
provided CDFs, which we extract from CAIDA, MAWI, and UNI traces. To simulate
ML hints (DUMBO or pHeavy), we use the model confusion matrix computed on
the respective trace’s test minutes. Then we instrument the confusion matrix to sim-
ulate authentic predictions, i.e., mimicking the model performance one could expect
on the trace. This process allows us to reasonably evaluate ML-based approaches

72 Chapter 4. Affordable Flow Size Representation with Machine Learning

1

2

3

4
load = 0.5

(w/ hints) pHeavy 5pk
(w/ hints) DUMBO

FIFO
pHost

pFabric

CAIDA MAWI UNI
1

3

5

7 load = 0.8

No
rm

al
ize

d
FC

T

FIGURE 4.12: Flow scheduling slowdown.

at various loads (i.e., number of concurrent flows), even on the UNI dataset that
contains fewer flows than the other traces. Results reported in Figure 4.12 show
that pFabric and pHost perform near-optimally with an average slow down with
respect to the ideal one within 1.13-1.28×, and 1.13-1.48× respectively. We remark
that these two best-performing policies are often impractical, as both of them as-
sume exact knowledge of the flow size by modifying end-hosts (this often requires
changes to all the applications involved in the system). Instead, DUMBO only re-
lies on hints extracted from the first k = 5 packets to assign scheduling priorities.
Nonetheless, our system often provides performance close to pFabric and pHost
(average slow down 1.19-2.64× with respect to the ideal), while operating without
any dependence on end hosts and with much fewer priority queues. We note that
both ML-enabled systems largely outperform host-agnostic FIFO scheduling. Com-
paratively, pHeavy scores an average slowdown 1.18-4.22×. We note that DUMBO
outperforms pHeavy on all traces but MAWI, where all approaches perform on par.
This is due to the flow sizes distribution of MAWI, which features over 90% of flows
with less than 5 packets and 99% of flows with less than 16 packets, hence making
it a less challenging trace for scheduling. Finally, we remark that DUMBO could
manage more priority queues by leveraging the model prediction confidence, i.e.,
the number of trees votes in agreement. This optimization is impractical for pHeavy
because it features a single tree per stage.

Flow IAT distribution estimation. To evaluate DUMBO performance on the IAT
distribution estimation use case, we measure the 75th and 95th IAT quantiles and de-
fer results on other quantiles to Appendix B.3. We compare against baselines that use
the same 33 MB total memory budget to estimate the IAT distribution of all flows.
The first baseline allocates one DDSKetch of 32×1-byte buckets for each flow, and
the second baseline a DDSketch of 16×2-byte buckets per flow. For DUMBO and

4.6. Experimental Results 73

75thq. 95thq.
UNI

0.
10

0.
15

0.
20

16 bins, 2 bytes
32 bins, 1 byte
32 bins, 2 bytes
(2x memory)

0.
21

(w/ hints) pHeavy 5pk
(w/ hints) DUMBO

75thq. 95thq.
CAIDA

0.
11

0.
13

75thq. 95thq.
MAWI

0.
02

0.
03

0.
04

0.
05

M
ea

n
Re

la
tiv

e
Er

ro
r

FIGURE 4.13: IAT quantile estimation error.

the pHeavy-based solution we use DDSketches of two different sizes based on the
predicted flow class: 32×2 bytes buckets for elephants (high-accuracy DDSketches),
and 31×1 byte buckets for mice (low-accuracy DDSketches). For these two hint-
based approaches, we allocate 215 high-accuracy DDSketches and 220 low-accuracy
ones, hence using the same amount of memory as for the baselines (33 MB). The
rationale behind this strategy is that most flows do not require a high number of
buckets for accurately estimating IAT, hence wasting memory with oversized DDS-
ketches. We argue that longer flows i.e., Elephants, naturally lead to a higher number
of IAT measurements, thus to a higher chance of overflowing counters.

The custom packet-level simulator we use to evaluate IAT and flow-size distribu-
tions (DUMBO Simulator 2024) replays the test traffic traces, and simulates the full
set of DUMBO system components. When a flow exits the Flow Manager, model
predictions are gathered from an ML model written in Python and wrapped to the
simulation using ONNX (ONNX. Open Neural Network Echange 2017). Results in Fig-
ure 4.13 assess the advantages of hint-based approaches over both baseline configu-
rations, in terms of mean relative estimation error, plotting the median over the 10
test minutes. As a reference, we also report an “ideal” performance when allocating
accurate DDSketches for all the flows (32 2-byte buckets — i.e., doubling the mem-
ory). Remarkably, DUMBO provides errors close to this ideal setup while halving
the memory requirements. Finally, the pHeavy-based solution reports a higher error
compared to DUMBO, although it achieves decent end-to-end performance partly
because of the heavy-lifting operated by the Flow Manager: the information it stores
allows for exact quantile computation for a fraction of the flows with less than k = 5
packets. This explains why in some cases DUMBO and pHeavy even outperform
the “ideal” baseline.

74 Chapter 4. Affordable Flow Size Representation with Machine Learning

10
20
30 CAIDA

(w/ hints) pHeavy 5pk
(w/ hints) DUMBO

CMS
ElasticSketch

1.0 1.5 2.0

1
2
3

MAWI

0.010 0.015 0.020
Memory [MB]

0
5

10 UNI

AW
AE

FIGURE 4.14: Flow size estimation error.

Flow size estimation. Finally, we evaluate the flow size estimation use case in terms
of average weighted absolute estimation error (AWAE) as in (Hsu et al., 2019; Du
et al., 2021). We size the ML-enabled pipelines and the two baselines to fit three dif-
ferent memory budgets, namely 1, 1.5, and 2 MB. The first baseline is a plain Count-
Min Sketch (CMS) with 2 rows of 3-byte buckets, and the second is ElasticSketch
(ES) (Yang et al., 2018), a popular sketch for flow size estimation. For DUMBO and
the pHeavy-based solution, the Elephant Tracker is augmented with an additional
3-byte counter for each entry, to monitor exact flow sizes for the elephants. The
approximate monitoring of short flows is delegated to the Mice Tracker which con-
sists of a CMS of 2 rows, with 3-byte buckets in the first row and 2-byte buckets in
the second row. This allows for a wider second row, while the first one serves as a
backup in case of overflow and mitigates the effect of model misprediction. Similar
to our hint-based approach, ES also dedicates exact counters for monitoring the size
of elephants. However, ES does not use a model to provide hints but rather uses a
dynamic mechanism called ostracism to determine which flows should be removed
from the exact counters and moved to the mice CMS instead. For ES, we evaluate
different repartitions for the memory allocated between the elephant exact counters
and the mice CMS, reporting results with the best memory partitioning. Finally, due
to the lack of flows in the UNI traces, we downsize the memory setup by 100×when
simulating with this dataset.

As for the previous use case, we use our custom simulator (DUMBO Simulator 2024)
with test traffic traces. Results averaged over the 10 test minutes are shown in Fig-
ure 4.14. We remark that, for all considered memory budgets, DUMBO outper-
forms both the plain CMS and state-of-the-art ElasticSketch. On CAIDA, where the
number of flows to measure is substantial, the pHeavy-based solution exhibits poor
performance at low memory budgets. This is explained by pHeavy misclassifying
many mice (low precision) and saturating the Elephant Tracker; this leaves no space

4.6. Experimental Results 75

for legitimate elephants that would then pollute the mice CMS. The lower the mem-
ory budget, the smaller the mice CMS and the greater the impact of low-precision
hints. Notably, on MAWI (or UNI), the relative (or absolute) small amount of flows
with more than 5 packets leads to lower penalization for mice flows misclassified
as elephants by both hint-based approaches. Additionally, pHeavy is impractical
to deploy in a low-memory regime because it extracts more features from incoming
packets, hence requiring much more memory for the Flow Manager (≈1.6 MB on
CAIDA, exceeding the 1.0 MB system-related memory of DUMBO by ≈600 KB that
are detracted from the task-related memory).

4.6.3 Impact of model performance on downstream tasks

In this subsection we analyze DUMBO end-to-end performance with respect to
memory overhead and model quality. First, we investigate the impact of model
size to identify the maximum memory overhead that can be tolerated. Second, we
characterize the impact of model mispredictions on the performance of the down-
stream tasks. To do so, we use our custom simulator (DUMBO Simulator 2024) run
with CAIDA traces and the system configuration introduced in the previous section.

Memory overhead. Figure 4.15 shows the impact of model size on the flow size
estimation task when 1 MB of memory is available for the task itself. The figure
plots the size of the ML model alone (top axis) and the overhead of the whole ML
pipeline (bottom axis). DUMBO is denoted with a black star (542 KB model, 949 KB
pipeline, 19 AWAE). The impact on the end-to-end performance also depends on
the ML hints quality, here characterized in terms of the percentage of misclassified
elephants (colored solid lines). Note that these misprediction rates are simulated by
artificially modifying the model confusion matrix, thus, the resulting predictions do
not depend on actual flow features but are instead stochastic. Our findings assess
that the ML pipeline overhead greatly impacts the deployment feasibility and effec-
tiveness on the downstream task. For instance, a model that wrongly classifies 20%

200 400 600 800 1000
Model size [KB]

600 800 1000 1200 1400
ML pipeline overhead [KB]

10

20

30

40

50

AW
AE

Elephants mispredictions:
10%
20%
30%

40%
60%
80%

DUMBO
(pHeavy AWAE=214)

oracle CMS ElasticSketch

FIGURE 4.15: Impact of model size on flow size estimation (CAIDA).

76 Chapter 4. Affordable Flow Size Representation with Machine Learning

of elephants as mice still brings more than 20% benefits in terms of AWAE compared
to ElasticSketch as long as the ML pipeline fits 1 MB. However, for an ML pipeline
overhead of 1.2 MB, this benefit disappears as the end-to-end error exceeds ElasticS-
ketch’s. Finally, with such hints quality, a pipeline requiring more than 1.35 MB is not
beneficial even when compared to a simple CMS. Moreover, the plot shows that the
end-to-end performance deterioration due to pipeline overhead is more severe than
the deterioration due to hints degradation. For instance, a pipeline that fits 1 MB
is better than ElasticSketch with up to ≈ 40% elephants mispredictions. Last, Fig-
ure 4.15 also reports oracle performance (i.e., a model without any mispredictions).
Interestingly, even an oracle would not bring any benefit over the ElasticSketch and
CMS baselines if the ML pipeline exceeds ≈1.2 MB and ≈1.4 MB respectively. In ad-
ditional experiments in Appendix B.3, we notice that, counter-intuitively, the mice
misprediction rate plays a more impactful role on the end-to-end performance: for
a 1 MB pipeline, a model featuring 3.5% (4.5%) mice mispredictions performs worse
than the ES (CMS) baseline. This result is due to the imbalanced nature of traffic:
even a slight increase in mice misprediction rate translates into a huge overall num-
ber of mice flows being wrongly classified as elephants, hence preventing legitimate
elephants from entering the Elephant Tracker.

Mispredictions costs. Figure 4.16a analyzes the impact of misprediction rates on
the IAT estimation task. As per previous sections, for this use case, the memory
allocated to the task itself is one order of magnitude larger than the pipeline size:
therefore, we do not show how the trade-off changes varying the pipeline size, as ef-
fects are negligible. The plot reports mean relative error on the 95-th quantile (other
quantiles in Appendix B.3) varying elephants misprediction rate from 0 to 1 and
mice misprediction rate consequently, i.e., so that ≈20K flows are classified as ele-
phants. Results show that a model featuring low elephant mispredictions provides
end-to-end performance similar to the baseline that uses twice the same amount of
memory i.e., allocating high precision DDSketches for all the flows. Notably, for this
use case, pHeavy reports good performance, as its memory overhead has relatively

0.0 0.2 0.4 0.6 0.8 1.0
Elephants mispredictions

0.105

0.110

0.115

0.120

0.125

M
ea

n
re

la
tiv

e
er

ro
r Baselines

32 bins 1 byte
2x memory

0.023 0.028 0.033 0.037 0.042 0.047
Mice mispredictions

hint-based (synth) DUMBOhint-based (synth) DUMBO

(A) IAT estimation, 95th quantile.

0.0 0.2 0.4 0.6 0.8 1.0
Elephants mispredictions

1
2
3
4
5
6
7

No
rm

al
ize

d
FC

T

Baselines
FIFO
pFabric

0.023 0.028 0.033 0.037 0.042 0.047
Mice mispredictions

hint-based (synth) DUMBOhint-based (synth) DUMBO

(B) Flow scheduling.

FIGURE 4.16: Impact of mispredictions on use cases end-to-end per-
formance (CAIDA).

4.7. Conclusion 77

less impact on the IAT estimation task. In general, our tests show that up to≈30% of
elephants misprediction i.e., ≈3% of mice mispredictions, a hint-based system pro-
vides a relative error only≈2% higher compared to the ideal configuration that uses
twice the memory budget.

Last, Figure 4.16b analyzes the impact of mispredictions on the scheduling use case,
simulating 1M flows with a load of 0.8. Similar to the previous use cases, the plot re-
ports the normalized FCT when varying the elephants misprediction rate between 0
and 1 (and mice misprediction rate accordingly to classify≈20K flows as elephants).
We recall that our system considers only three priority queues (one for each pre-
dicted class and one for the Flow Manager), in contrast to pFabric which considers
each flow’s residual size to assign fine-grained priorities. As a consequence, even a
perfect binary hint-based system that correctly classifies all elephants cannot reach
the performance of pFabric. Yet, DUMBO only increases FCT by 1.85× compared
to pFabric (solid black line), without any end-host involvement. Additionally, we
note that the model ability to detect elephants (recall) is more important than its pre-
cision in this three-queues setting. This explains the FCT gap between pHeavy and
DUMBO on CAIDA (+28% recall), which is further visible on UNI (+56% recall).

4.7 Conclusion

In this chapter, we presented DUMBO, an end-to-end system design to generate
and benefit from approximate flow size predictions in the data plane. These predic-
tions are generated using a lightweight ML model based on custom Random Forests.
We investigated the model training and update routine to enable accurate and sta-
ble classification of incoming flows into elephants or mice, using both packet-level
and flow-level features aggregated from the first k packets. Furthermore, we care-
fully studied the data plane implementation feasibility of the components at play
in an ML-enabled pipeline and analyzed the various trade-offs to consider. Finally,
we evaluated the proposed system on three network tasks (flow scheduling, inter-
arrival time estimation, and flow size estimation). Thanks to its good hints quality
and careful data plane pipeline design, DUMBO is more efficient compared to both
classic and ML-enabled data plane solutions in the state of the art.

Related publications

Raphael Azorin, Andrea Monterubbiano, Gabriele Castellano, Massimo Gallo, Sal-
vatore Pontarelli, and Dario Rossi (Mar. 2024). “Taming the Elephants: Affordable
Flow Length Prediction in the Data Plane”. In: Proceedings of the ACM on Networking
2.CoNEXT1. DOI: 10.1145/3649473

https://doi.org/10.1145/3649473

78 Chapter 4. Affordable Flow Size Representation with Machine Learning

Andrea Monterubbiano, Raphael Azorin, Gabriele Castellano, Massimo Gallo, Sal-
vatore Pontarelli, and Dario Rossi (2023b). “Memory-Efficient Random Forests in
FPGA SmartNICs”. In: Companion of the 19th International Conference on Emerging
Networking EXperiments and Technologies. CoNEXT Posters ’23. Paris, France: As-
sociation for Computing Machinery, 55–56. ISBN: 9798400704079. DOI: 10.1145/

3624354.3630089

Andrea Monterubbiano, Raphael Azorin, Gabriele Castellano, Massimo Gallo, and
Salvatore Pontarelli (2022). “Learned Data Structures for Per-Flow Measurements”.
In: Proceedings of the 3rd International CoNEXT Student Workshop. CoNEXT Student
Workshop ’22. Rome, Italy: Association for Computing Machinery, 42–43. ISBN:
9781450399371. DOI: 10.1145/3565477.3569147

https://doi.org/10.1145/3624354.3630089
https://doi.org/10.1145/3624354.3630089
https://doi.org/10.1145/3565477.3569147

79

Chapter 5

Traffic Representation Learning for
Network Measurements

In this chapter, we envision ML-based measurements systems, using Deep
Learning approaches to extract rich traffic representations. We organize
our contributions to address (i) the encoding of network data into rep-
resentations that facilitate knowledge extraction, and (ii) the design of
a unified Deep Learning model that serves several tasks simultaneously.
First, we remark that networking activity is captured by a mixture of var-
ious modalities, e.g., numerical data from measurements, free text logs
history or categorical hosts identities. This makes networking tasks par-
ticularly interesting from a representation learning perspective. Hence,
we propose a systematic multi-modal approach to learn representations
from network data. We exploit recent advances in language modeling
to encode network entities and quantities. We demonstrate the superi-
ority of this bi-modal approach on two toy examples: ISP clickstream
identification and terminal movement prediction in WLAN. Second, we
advocate for a Multi-Task Learning paradigm to exploit potential syner-
gies among networking tasks that are related to one another, e.g. mea-
surements. To approach this challenge, we develop task affinity metrics
aiming at grouping cooperative tasks together while separating compet-
ing tasks, a priori. Through an extensive empirical campaign, we assess
the relationship between actual Multi-Task Learning performance and
six task affinity estimation techniques. As a first step, we conduct this
benchmark in the Computer Vision domain, taking advantage of well-
established tasks, datasets and models. While no affinity metric is per-
fectly predictive of Multi-Task Learning performance, some can be more
indicative than others to hint at beneficial task groupings, leading to in-
creased overall performance and reduced model costs by mutualizing
computation.

80 Chapter 5. Traffic Representation Learning for Network Measurements

5.1 Introduction

Traffic measurements are key for network management as testified by the rich liter-
ature from both academia and industry. At their foundation, measurements rely on
transformation functions f (x) = y, mapping input traffic data x to an output per-
formance metric y. Yet, common practices adopt a bottom-up design (i.e., metric-
based) which leads to invest a lot of efforts into (re)discovering how to perform
such mapping and create specialized solutions. For instance, sketches are a compact
way to extract traffic properties (heavy-hitters, super-spreaders, etc.) but require
analytical modeling to offer correctness guarantees, and careful engineering to en-
able in-device deployment and network-wide measurements. Rather than relying
on network experts domain knowledge, Deep Learning offers algorithms to learn
f (x) = y mappings. Artificial Neural Networks (ANNs) act as universal functions
approximators as they can learn complex input-output data relationships with auto-
matic feature extraction. Thus, contextualized to networking tasks, Deep Learning
(DL) could empower a top-down design (i.e., model-based), potentially fostering
automation and generalization. Yet, we claim that its application to networking is
still in its infancy and we identified two research questions that require more work
in the community.

First, considering the nature of network traffic, (i): What is the appropriate represen-
tation of network traffic to facilitate knowledge extraction? A DL model approximates a
function mapping an input x to an output y. Under the hood, this mapping is op-
erated via a double transformation. First, the raw data x is projected into a latent
space by the model backbone, which does most of the knowledge extraction. Sec-
ond, points in the latent space are transformed into the final outputs y thanks to the
model head, which is typically a simple fully connected layer. These two transfor-
mations compose the f (x) = y mapping. Conceptually, the latent representation is
expected to capture latent properties. Despite being automatic, the effectiveness of
the feature extraction operated by DL algorithms highly depends on the input rep-
resentation. Specifically, the input should be presented in a way that stresses the
salient characteristics deemed helpful for the mapping. For example, images used
in Computer Vision (CV) are represented as static quantities grids of fixed size, al-
lowing Convolutional Neural Networks to extract patterns at different scales in the
picture (low-level, mid-level and high-level features by exploiting spatial locality).
Words in Natural Language Processing (NLP) are embedded in a vectorial space to
capture their semantic and syntactic relationships, and encoded sequentially for fur-
ther processing by an ANN. Similarly, in networking, traffic patterns may emerge
when capturing properties across several packets or events presented in sequences.
Thus, we need to adapt the DL workflow to the specific characteristics of traffic
data (Wang et al., 2018). In networking, data is typically abundant and captured
in various modalities. For example, from raw traffic (e.g., PCAP), network activ-
ity may be characterized by quantitative measurements (i.e., time-series), related to

5.1. Introduction 81

(A) Challenge (i) (B) Challenge (ii)

FIGURE 5.1: Challenges for a unified Deep Learning measurements
pipeline. (left) Encoding various data sources and modalities to fa-
cilitate knowledge extraction. (right) Sharing representations across

related and cooperative tasks.

various entities (e.g., flows, devices, links). Alternatively, network activity may be
recorded into logs and tickets (i.e., text) and network infrastructure may be described
by topologies (i.e., graphs) and configuration files (i.e., structured data). This calls
for a systematic multi-modal representation learning strategy in order to harness the
potential of all data sources available to solve network tasks. We illustrate this chal-
lenge in Figure 5.1a. Thus, question (i) calls for a deeper investigation of the design
space.

Second, considering generalization, (ii): How to design a unified pipeline that serves
several networking tasks? This suggests that parts of the learning process might be
shared across different networking tasks, e.g., measurements or their applications.
The baseline DL approach consists in a single pair of model backbone and model
head, trained by a loss minimization objective between a single target (e.g., a mea-
surement) and its prediction. To this extent, this kind of supervised ANNs act as
feature extractors for Single-Task Learning (STL). CV and NLP demonstrated that it
is possible to reuse ANNs knowledge across related tasks, e.g., with transfer learn-
ing. Alternatively, the feature extraction process performed by ANNs can be de-
signed to learn several mappings (i.e., several measurements) at the same time with
Multi-Task Learning (MTL). Network operators may be interested in mutualizing
the learning process to amortize training, inference and maintenance costs across
several related measurement tasks. MTL would enable operators to derive multiple
measurements from a single common representation of the input traffic, thus reduc-
ing the burdens of managing several individual models. To accommodate this need,
a traditional Multi-task Learning process considers several model heads plugged
on the same model backbone. Each head takes care of a specific target mapping and
the latent space construction is guided by concurrent supervised learning objectives.
The intuition behind this approach is that one task may benefit from the knowledge

82 Chapter 5. Traffic Representation Learning for Network Measurements

learned during the training of other related tasks. However, this is not a guaran-
tee and, as MTL success is dependent on various factors, this knowledge transfer
can even be detrimental to some tasks (Caruana, 1997). In particular, to prevent
negative transfer across tasks, it is critical to group cooperative tasks together and
separate competing tasks (Standley et al., 2020). This particular challenge is depicted
in Figure 5.1b. Hence, question (ii) calls for actionable methods to uncover optimal
tasks groups in order to reap the benefits of MTL.

Contributions In this chapter, we first advocate for a multi-modal network data rep-
resentation, modeling sequences of corresponding entities and quantities. We draw
from recent NLP advances by repurposing the Word2Vec methodology to extract
entities meaning from their co-occurrence in sequences. We demonstrate the su-
periority of this multi-modal approach over the traditional unimodal one on two
challenging examples: ISP clickstream identification and terminal movement pre-
diction in WLAN. Second, we empirically analyze synergies between tasks learned
together, aiming at grouping beneficial tasks and separating detrimental ones. We
present an empirical comparison of six task affinity metrics and introduce an origi-
nal proposal. Unfortunately, beyond traffic classification (Wang et al., 2022a; Aceto
et al., 2019; Draper-Gil et al., 2016), network modeling lacks large public datasets of
real network activity for multi-task learning. Instead of turning to simulated data,
we conduct this benchmark on the reputed Taskonomy Computer Vision Multi-Task
dataset. We show that the actual MTL performance does not correlate well with any
of the metrics surveyed, while some techniques can still yield insights prior to joint
training.

Organization In Section 5.2, we first deal with question (i), by introducing a sys-
tematic multi-modal representation learning methodology for networking data. We
detail and evaluate this strategy against standard uni-modal approaches, i.e., learn-
ing from network quantities alone. Then, in Section 5.3, we tackle question (ii), and
expose the details of the task grouping problem for Multi-Task Learning as a first
step. Finally, we present several task affinity estimation techniques for joint learning
and we benchmark them in an empirical campaign.

5.2. Representation Learning for Network Data 83

5.2 Representation Learning for Network Data

In this section, we propose a first approach to address research question (i) What is
the appropriate representation of network traffic to facilitate knowledge extraction? Learn-
ing the right representations from complex input data is the key ability of success-
ful Deep Learning models. The latter are often tailored to a specific data modal-
ity. For example, Recurrent Neural Networks (RNNs) were designed for sequences
of words, while Convolutional Neural Networks (CNNs) were designed to exploit
spatial correlation in images. Unlike Natural Language Processing and Computer
Vision, each of which targets a single well-defined modality, network ML problems
often have a mixture of data modalities as input. Yet, instead of exploiting such
abundance, practitioners tend to rely on sub-features thereof, reducing the problem
to a single modality for the sake of simplicity. In this section, we advocate for ex-
ploiting all the modalities naturally present in network data. As a first step, we
observe that network data systematically exhibits a mixture of quantities (e.g., mea-
surements), and entities (e.g., IP addresses, domain names, etc.). Whereas the former
are generally well exploited, the latter are often underused or poorly represented
(e.g., with one-hot encoding). We propose to systematically leverage language mod-
els to learn entity representations whenever significant sequences of such entities
are historically observed. Through two diverse use-cases, we show that such entity
encoding can benefit and naturally augment classic quantity-based features.

We first motivate our multi-modal approach in Section 5.2.1, then we abstract our
bimodal approach in Section 5.2.2. We formalize our processing pipeline in Sec-
tion 5.2.3 and apply it to two illustrative use cases in Section 5.2.4. Finally, we show
supporting examples from the literature in Section 5.2.5 and discuss future opportu-
nities in Section 5.2.6.

5.2.1 Motivation

In this subsection we first motivate the use of Deep Learning for automatically ex-
tracting representations from data, drawing example of its success in various do-
mains (e.g., images, text). Then, we argue that this approach can be adapted to the
particular multi-modality of network data.

Representation learning. Deep Learning’s success is mainly due to its ability to
learn good representations from complex unstructured data. Such ability is a fun-
damental aspect of intelligent agents, both artificial and biological. The representa-
tion learning ubiquity is perhaps best witnessed by the striking similarities between
features learned by Artificial Neural Networks and biological brains. Two represen-
tative examples are visual and spatial representations. Decades after the discovery
of simple and complex cells by 1983 Nobel prize winners Hubel and Wiesel (Hubel
and Wiesel, 1968; Hubel and Wiesel, 1959), it was found that ANNs learn similar

84 Chapter 5. Traffic Representation Learning for Network Measurements

FIGURE 5.2: Visualization of features in a fully-trained CNN model.
Adapted from (Zeiler and Fergus, 2014).

simple-to-complex representations (Zeiler and Fergus, 2014; Kruger et al., 2012; Ci-
chy et al., 2016) as illustrated in Figure 5.2. The same applies for the 2014 Nobel prize
winning discovery of Place and Grid cells (Hafting et al., 2005; Franzius et al., 2007),
for which some neurons encode places and space representations. Similar represen-
tations were found in artificial agents that learn how to navigate (Banino et al., 2018;
Cueva and Wei, 2018). Advances in NLP also corroborate the importance of learn-
ing good representations, by first pre-training neural networks on large unlabeled
datasets with self-supervised tasks, followed by per-task fine tuning with few labels
– which is behind the success of GPT-3 in few-shot learning (Brown et al., 2020). A
similar process proved crucial for few-shot image classification, where learning good
representations or embeddings, followed by training linear classifiers outperformed
state-of-the-art few-shot methods (Tian et al., 2020).

Casting these observations to networking, to fully exploit DL potential, it seems nec-
essary to put more focus on representation learning for network data. This is all the
more important, given the abundance of unlabeled data generated and collected by
networks. Such appeal is however immediately moderated by the complexity of net-
work data, namely its multi-modality. Indeed, the most prominent advances in DL
have been obtained on classic single modalities. From the perspective of input data,
NLP takes sequences of categorical variables as input and CV takes as input pixel
values stored in fixed-size matrices. Additionally, within the same language, words
have a coherent meaning across contexts and corpora. The same applies to visual
features which are universal across domains to some extent. This is far from being
the case in network data which is way more dynamic and heterogeneous (including
multi-variate timeseries, flow and system logs, topologies, routing events, etc.) and
where identifiers may have a more local significance. Lacking a universal network
data representation, DL has been applied to network problems in a rather oppor-
tunistic way focusing on a specific modality, or handcrafting input features. On the
opposite side, each classic modality in mainstream DL tasks has its own research
community. For example, CV heavily relies on variations of CNNs, e.g., AlexNet
(Krizhevsky et al., 2017), ResNet (He et al., 2016) or MobileNet (Howard et al., 2017),
to handle images tasks such as classification or segmentation. Modern NLP models

5.2. Representation Learning for Network Data 85

instead take as input words and sub-words vector representations, pre-trained using
word embedding techniques, e.g., Word2Vec (Mikolov et al., 2013b) or ELMo (Peters
et al., 2018), on large corpora of raw text. Sequence to sequence models (Long-Short
Term Memory, Hochreiter and Schmidhuber, 1997 and Transformers, Vaswani et al.,
2017) are then often applied on such sequences of vector representations to solve a
language task, e.g., classification or translation.

Network data bi-modality. As such, a legitimate yet challenging question emerges:
what is the representation learning strategy that is best fit for the various network
data modalities? It is exactly to answer this question that we call for research arms
in this section. We believe that in order to take full advantage of emerging DL tech-
niques, the networking community must rethink its “retina” i.e., input data format,
and “visual cortex” i.e., representation learning strategy, used to extract knowledge
from the input. Even assuming that for each modality there exists a different learn-
ing strategy, it is unlikely that each of them requires a new DL discipline. Alterna-
tively, and more realistically, one could map each of the existing network modalities
to the best-fit existing representation learning technique.

Taking a first principled step beyond uni-modality, we remark the existence of a nat-
ural dichotomy in network data, where we identify two network data types: quanti-
ties which are measured features such as numbers of packets, bytes, etc. and entities
(or categorical data in ML terminology) which instead range from the named ob-
jects that relate to these measurements e.g., source IP, user id, to various attributes
or events’ names e.g., “interface down”. We argue that language model pre-training
is an appropriate tool to learn a representation for such entities, emphasizing on the
similarity between sequences of co-occurring network traffic entities and sequences
of words in natural language. Indeed, similar to natural language, the order and con-
text in which network entities co-appear in network logs is often not arbitrary, hence
patterns could be learned from it using appropriate language models (Mikolov et
al., 2013b; Peters et al., 2018). Accordingly, we propose to leverage language model
pre-training to learn vector representations, also known as embeddings, whenever (i)
significant sequences of such entities are historically observed and (ii) these entities
are consistently named across time and space.

Throughout this section, we refer to this network data dichotomy as entity-quantity
bi-modality, that we explore as a first principled step towards network data multi-
modality. In particular, we advocate for the need to use language model pre-training,
such as word embeddings, to learn rich entities representations. The latter can then
be simply concatenated with quantities or their representations before performing a
DL task. We illustrate our proposal with two toy cases: (i) clickstream identification,
where entities are sequences of domain names that carry a semantic meaning, and
(ii) WLAN terminal movement prediction, where entities are access points identi-
fiers that are not expected to have any semantic.

86 Chapter 5. Traffic Representation Learning for Network Measurements

5.2.2 Network data representation with word embeddings

As a first step, we narrow the scope to a representative family of network data. We
then provide some background on word embeddings used as a language model pre-
training method, illustrating why and under which conditions they are suitable to
deal with network data.

Entities and quantities in network data. While producing a thorough taxonomy
of network data types is a challenging and useful target, it is outside the scope of
this chapter. Instead, as a first step, we simply notice the difference between two
main families of data types, for which a unified representation learning methodol-
ogy could be devised. As argued earlier, network data include a mixture of entities
and quantities. Quantities represent telemetry derived by measurement apparatus,
while entities are abstract objects often related to them. The latter are typically de-
scribed by names assigned by humans e.g., trouble tickets, IP addresses, domain
names, host identifiers, etc., hence carrying a semantic meaning. We further argue
that sequences of entities carry precious information encoded in the non-arbitrary
order in which the elements appear in the sequence i.e., the “context”. We advocate
that such sequences must be systematically leveraged, and that NLP self-supervised
pre-training is an appropriate representation learning technique. We also acknowl-
edge that not all network data is sequential or measured over time i.e., network
topologies. However such data often pertains to entities e.g., node names or identi-
fiers, for which sequence data is abundant e.g., routing advertisement, in which case
our proposed representation learning guidelines are still applicable to some extent.

Word and character embeddings. Oversimplifying, the closest problem in DL is
sequence modeling in NLP – words are nothing more than sequences of entities that
follow each other. To perform a DL task, words must be first transformed into a nu-
merical representation. This can be naively done using integer or one-hot encoding.
Modern NLP models instead, either build or take as input word vector representa-
tions obtained through self-supervised pre-trained models created from large text
corpora. A well known word embedding technique, which we use in this section
for its simplicity, is Word2Vec (W2V, Mikolov et al., 2013b). W2V transforms each
word into a high dimensional vector, hence embedding it into an hyperspace. In
practice, word embeddings are sometimes complemented with sub-word or charac-
ter level embeddings (Kim et al., 2016; Chen et al., 2015), i.e., with separate vector
representations for handling out-of-vocabulary words, misspellings, etc.

As presented in Chapter 2, W2V is a simple neural network with one hidden layer
(whose dimension is the embedding vectors size), trained to predict a target word
from its neighboring context, or vice versa. Word2Vec thus does not need expen-
sive or human-made labels, but rather cheaply and automatically builds labels to
supervise the training from the sequence data itself, thus it is self-supervised. First,

5.2. Representation Learning for Network Data 87

all words are encoded using one-hot encoding, resulting in a one-hot vector of the
size of the vocabulary in which each position represents one word. The neural net-
work is then trained on large amounts of sequences of words from which <target,

neighbor> pairs are extracted for training. At the end of the training, for each po-
sition in the one-hot encoding, the learned weights of the hidden layer are used to
form the vector representing the corresponding word. Two main parameters hence
influence the learned representations: the size of the embedding layer, and the size
of the context window from which pairs are built.

Although trained to predict the missing words in a sequence, vector representations
learned by word embeddings exhibit interesting properties. A well known example
is the ability to extract semantic relationships by doing simple arithmetic operations
on vectors e.g., King - Men + Woman = Queen. Another popular example is that
vector representations of different languages exhibit strikingly similar structures,
such that with few adjustments one can observe that words with similar meaning
fall in the same positions in each language vector space (Mikolov et al., 2013a). This
observation opened the way later to self-supervised language translation using only
single-language corpora (Lample et al., 2017).

Conditions to apply language model pre-training. In NLP, Word2Vec and lan-
guage model pre-training do not impose particular conditions the language must
satisfy. However, moving away from natural language to any arbitrary sequence of
named entities, we believe that at least two conditions must be satisfied. The fore-
most is the (i) naming consistency. Like words in natural language, network entities
are expected to keep the same meaning. We note however that exceptions may exist,
e.g., the word “set”. As such, contextual word embeddings like ELMo (Peters et al.,
2018) have been devised to solve this problem. Moreover, we require corpora (ii) sta-
bility: while this is true in natural language as adding a new word to the vocabulary
is infrequent, observing a new entity in network data is rather frequent. Drawing
the proper conclusion from the above conditions, we infer that sequences of entities
containing, e.g., non-consistently anonymized IP addresses, are not suitable for en-
tity embedding. Instead, entities that are named consistently and relatively stable
over time are good candidates.

5.2.3 Bi-modal pipeline for network entities and quantities

In this subsection we sketch a generic bimodal pipeline, consisting of four steps
namely Pre-training, Sample selection, Training and Inference, as shown in Figure 5.3.

Pre-training. Similarly to self-supervised pre-training, the first phase of the pro-
posed pipeline consists in leveraging huge amounts of unlabeled data to learn rele-
vant representations. As shown in the leftmost part of Figure 5.3, the pipeline takes
sequences of unlabeled network data as input. Note that this pre-training phase is
segmented by data type, i.e., entities and quantities, each being encoded with the

88 Chapter 5. Traffic Representation Learning for Network Measurements

FIGURE 5.3: Generic bi-modal pipeline for network data representa-
tion learning.

most suitable representation learning model. Entities representations are learned
using Word2Vec, per entity type. For example, sequences of IP addresses are used
to train an IP2Vec model that embeds each IP address in a vector space. Similarly,
sequences of access points are fed to an AP2Vec model to learn a representation of
each access point, etc. Quantities representations may instead be learned with (Vari-
ational) Auto-Encoders (VAEs, Kingma and Welling, 2014) or other self-supervised
learning methods. At the end of the pre-training phase, we have at our disposal
entities and quantities encoders, learned by exploiting large amount of historical
unlabeled data.

Sample selection. Once encoders have been pre-trained, the next step is to define
the input samples for the downstream tasks. By input sample, we mean the individ-
ual subject that the task(s) will take as input. Unlike classic DL tasks whose input
samples are often clear, e.g., a matrix of normalized pixel values for CV or a se-
quence of words embeddings for NLP, network-related tasks may have a variety of
input samples. For example, if the goal is to classify IP addresses (or flows) as ma-
licious or benign, then the input sample should be a vector representation of the IP
address (or the flow). Alternatively, the input sample could be the first k packets of a
flow, or a sequence of flows, etc. Once the input sample defined, its fixed-size vector
representation is created by combining (i) the corresponding entities embeddings,
and (ii) the corresponding quantities (or their encoded representations). For exam-
ple, if the input samples is a sequence of k packets from five-tuple flows, its vector
representation could be composed of the flow source and destination addresses em-
beddings, the flow source and destinations ports embeddings and the flow protocol
embedding entities, combined with the sequence of k (encoded) packets size quanti-
tie. For the sake of simplicity, in the remainder of this section, entities and quantities
representations are combined by simple concatenation.

Training. When pre-training and sample selection are done, training a downstream
task is rather straightforward. In an unsupervised use-case, one can simply clus-
ter the unlabeled vector representations in order to group similar input samples to-
gether. Alternatively, in a supervised use-case, one can first associate labels to the
input samples and then feed pairs of vector representations and labels to train a

5.2. Representation Learning for Network Data 89

(A) Users’ view (B) ISP’s view

FIGURE 5.4: Challenges for clickstream identification (left) Each web
page downloads objects corresponding to the core domain content,
or to support domains resources. (right) An ISP collects entangled
traffic flow logs, from which it desires to identify the corresponding

pages and domain type (core or support).

classifier or a regressor. Notice that, the more robust representations learned, the
fewer labeled samples required for the downstream task (Tian et al., 2020; Brown
et al., 2020). For example, in the clickstream toy case presented hereafter, we use
a relatively small labeled dataset leveraging page visits of top 1000 Alexa ranking
websites.

Inference. The last step is to use the trained model to perform inference for the
downstream task. Classic ML challenges on how to keep the models up-to-date also
apply here, but are out of the scope of this chapter.

5.2.4 Experimental results

This subsection illustrates the advantages of embedding network entities, as op-
posed to using only quantities, with two use-cases. In showcasing our approach,
we only focus on categorical data embeddings. Otherwise stated, we use Word2Vec
pre-training for entities and leave raw unprocessed quantities as they are. While a
better representation of quantities might be learned (e.g., using auto-encoders), we
leave it for future work and focus our experiments on characterizing the benefits of
embedding network entities.

Clickstream identification In modern Web traffic, a single page corresponds to the
download of tens of objects, retrieved from tens of different locations, respectively
70 and 50 in the top 1000 Alexa ranking websites. Since the advent of encryption, an
Internet Service Provider (ISP) collecting web traffic flow logs cannot infer (i) which
flow belongs to which page, nor (ii) which flow queries the domain of the main
page i.e., core domain and which queries a necessary resource to render the page, i.e.,
support domains. These challenges, referred to as clickstream identification, are illus-
trated in Figure 5.4. Such knowledge could be useful for ISPs to estimate per-page

90 Chapter 5. Traffic Representation Learning for Network Measurements

FIGURE 5.5: Bi-modal pipeline for clickstream identification.

Web quality of experience metrics from flow logs. Beyond the usefulness of the sce-
nario itself, the two tasks above come with a number of methodological challenges
that we believe are well suited to illustrate the proposed bi-modal representation
learning scheme.

Let us consider a network vantage point that collects per-flow size & duration mea-
surements (quantities) and domain names (entities). Following our guidelines, the
first step is pre-training. In this case, we learn a Domain2Vec model from histori-
cal sequences of domain names in our dataset. Later, this Domain2Vec model will
be used to embed each domain name in each input sample. As mentioned earlier,
domain names can be embedded either with word or both word and character em-
beddings. With character embedding, words like cdn, cdn21, and cdn22 will have
similar embeddings even if they never co-occur in similar contexts. For our evalua-
tion, we consider a Web traffic dataset of 20K domains retrieved by downloading 10
times each of the Web pages from the top 1,000 Alexa ranking, and recording flow
logs. The pre-training dataset is then constructed by synthetically generating 100K
multisessions of 3 to 10 (median of 6) simultaneous page visits. Using a context win-
dow of 200 flows, we create pairs of <target, neighbor> domain names from this
long historical sequence of multisessions. Domain2Vec is then trained with a hidden
size of 200 to generate domain names vector representations, as shown in the left
part of Figure 5.5.

Given the two tasks (i) and (ii) described above, an input sample is a series of con-
secutive flows corresponding to the simultaneous query of an unknown number of

5.2. Representation Learning for Network Data 91

−8 −6 −4 −2 0 2 4 6

−8

−6

−4

−2

0

2
Page 1

Page 2
Approach Precision [%] Recall [%]

Q1 Q2 Q3 Q1 Q2 Q3

Naive 100 100 100 14 16 20
Quantities 66 75 100 50 60 75
Word emb. 75 100 100 33 50 66

Word+Char emb. 80 100 100 58 77 87

FIGURE 5.6: (left) PCA visualization of domain names embeddings
for two pages. (right) Representation learning comparison on click-

stream identification.

web pages. Each sample is thus a sequence of flows, each represented by its corre-
sponding domain name embedding as well as its size and duration measurements,
as depicted in the right part of Figure 5.5. We do not encode quantities in this ex-
periment and instead keep raw flow measurements, that we concatenate with their
domain name embeddings. The first ML task (i) aims to “disentangle” flows by as-
sociating them to their Web page. First, we qualitatively show how the entity-based
representation helps solving this task. Figure 5.6 (left) plots a 2 component PCA rep-
resentation of the domain names embeddings from flows that belong to two distinct
web pages. Interestingly, without additional feature learning, the domain embed-
dings of different pages are already “disentangled”, i.e., flows of different pages
cluster in different regions, thus hinting that entity-based embeddings extract use-
ful features. The subsequent task (ii) is to classify each flow in a sequence as either
core or support. The supervised learning dataset consists of 60K similarly synthesized
multisessions, i.e., 60K sequences of entangled flows corresponding to simultaneous
page visits. Each page load corresponds to several flows, one of which is labeled as
core because it queries the domain of the main page, and the remaining flows are
labeled as support because they query external domain names resources. Hence, the
task is to predict a sequence of binary labels for each multisession (i.e., each input
sample). We select around 900 pages for training and validation sets, which corre-
sponds to 50K multisessions. We test on 10K multisessions composed by the remain-
ing unseen 100 pages which queried more than 1.2K unseen support domains. All in
all, training/validation and test sessions queried respectively 15K and 2K domains.
For this task, we consider as a baseline a naive predictor which systematically tags
the first domain as core and the subsequent ones as support. Hence, this baseline
correctly classifies the first flow, but misses the other core domains in case of a mul-
tisession. We compare this baseline against Gated Recurrent Unit (GRU, Cho et al.,
2014) models fed with different flow representations: quantity-only features (flow
size and byte progression), word embedding only, and word & character embed-
dings. In the following, we quantitatively show how the entity-based representation
helps solving this task. Figure 5.6 (right) presents results in terms of precision and
recall of the minority class, i.e., core domains. For each multisession, we compute
precision and recall in predicting the core domains of the sequence. We show the

92 Chapter 5. Traffic Representation Learning for Network Measurements

FIGURE 5.7: Illustrative example of Wi-Fi roaming. (1) the user termi-
nal is associated to AP A. (2) the terminal receives weak signal from
AP A and starts probing nearby APs. (3) the terminal has compared

response signals and shifts to AP B.

distribution of these metrics across all multisessions, i.e, across all test samples, us-
ing quartiles. Despite the difficulty of the task, all models performed better than
the naive baseline. Surprisingly, entity-based encoding outperformed the quantity-
based one. Also, character embedding adds value compared to word embedding
only. Note that, in this case, one-hot encoding the entities is not a viable solution
because the test set contains unseen domain names.

Movement prediction in Wireless LANs A Wireless LAN deployment typically
involves several Access Points (AP) providing network connectivity to mobile ter-
minals, e.g., cellphones, laptops. In this context, an important problem is to predict
whether a terminal is going to move away from its access point, reconnecting to
another one. We depict this situation in Figure 5.7. Predicting terminal movement
allows the network operator to proactively steer the terminal to roam before its sig-
nal actually degrades.

For this use case, let us consider network data composed of series of received signal
strength indicators (RSSI) (quantities) and the set of APs traversed over time (enti-
ties). In other words, each terminal or user has a current associated AP and a signal
strength towards it. For pre-training, we consider a dataset of real network data with
approximately 2K mobile terminals and 240K movement events across 80 different
APs located in a canteen WLAN. Following our bi-modal pipeline, the pre-training
phase aims at learning to encode entities (and quantities) from historical sequences.
This time, the historical RSSI and AP sequences are grouped by user. Sequences of
per-user APs are then used to train an AP2Vec embedding model as depicted in the
left part of Figure 5.8. Similar to the previous use case, we keep raw unprocessed
quantities as they are. The AP2Vec pre-training is executed with context window
size of 10 APs and generates an embedding vector of size 20. At the end of the
pre-training phase, we have at our disposal a trained model for AP embedding.

5.2. Representation Learning for Network Data 93

FIGURE 5.8: Bi-modal pipeline for terminal movement prediction.

For the terminal movement prediction downstream task, each input sample is a se-
quence of 10 consecutive RSSI experienced by a user during 10 seconds, concate-
nated with its last AP vector representation. Each sequence is labeled according to
the action that the user will take in the next 20 seconds: either stay associated with
its last AP or move to a different AP. We train a 1D CNN classifier on 3 days of these
input samples and test the model on 2 other days of data. Figure 5.9 compares two
input representation approaches to solve this task: RSSI+AP2Vec embedding (i.e.,
using quantities and entity) versus RSSI-only (i.e., using only quantities). The figure
plots the precision and recall obtained over 10 runs of each approach. From the re-
sults it is clear that the bi-modal network data representation helps the ML task to
reach a more accurate movement prediction. In particular, Figure 5.10 illustrates the
disadvantage of the quantities-only approach (bottom) for a specific user by plotting

FIGURE 5.9: Approaches comparison on movement prediction.

94 Chapter 5. Traffic Representation Learning for Network Measurements

FIGURE 5.10: Comparison of model predictions for a specific user.

RSSI and corresponding model predictions over time. The quantities-only approach
fails to identify RSSI degradations that do not lead to departure from the AP, hence
producing more false positives than the model that uses quantities and entity rep-
resentation. It is worth mentioning that for this use case, given the limited number
and stability of entities (i.e., 80 fixed APs), one-hot encoding is also a viable solution
as embedding technique. Although finding the optimal embedding technique is out
of the scope of this work, we report that AP2Vec led to a slightly better model in our
experiments.

5.2.5 Related work

Recent work started learning alternative representations for entities. One of the
first efforts is IP2Vec (Ring et al., 2017) which embeds source and destination IP
addresses and ports with the objective of identifying IP addresses with similar be-
haviors. However, the embedding training is limited only to the 5-tuples, and hence
does not exploit the the historical sequences of entities. With the goal of identifying
malicious behaviors, DANTE (Cohen et al., 2020) also leverages Word2Vec, but to
embed ports that are sequentially tried by attackers. Similarly to DANTE, Darkvec
(Gioacchini et al., 2021) uses word embeddings to project potential attackers, iden-
tified by IP, and grouped by service, identified by ports, into a latent space with the
goal of clustering senders with similar behaviour. Another example (Gonzalez et al.,
2021), close to the clickstream use case, leverages Word2Vec to build user profiles
from browsing historical data.

An alternative to learning representations is feature engineering, but the latter often
ends up in using a single modality. Searching for the best representation, Traffic
Refinery (Bronzino et al., 2021) seeks the right balance between a feature-selection
that is effective, i.e., accurate, and feasible, i.e., deployable at line rate. nPrintML
(Holland et al., 2021) takes an orthogonal approach to network data representation
with respect to the one proposed in this section, by representing packets headers
in a one-hot encoding format that is then used to feed classical ML models. While

5.2. Representation Learning for Network Data 95

replacing feature engineering from network data, such approach is extremely costly
and fails to identify relevant patterns. Finally, with a few exceptions (Atmaja et al.,
2022), we could not find examples in other domains beyond the classic (image, text)
bi-modality. It could be a matter of time before this issue is similarly tackled in other
areas.

5.2.6 Concluding remarks

As a first step towards multi-modality, we proposed a bi-modal network data rep-
resentation of entities and quantities, in which historical sequences of entities are sys-
tematically transformed into vector representations using word embeddings. We
showed the effectiveness of such representation through two toy examples as well as
recent examples from the literature. As networks and systems in general are rife with
sequential events, we believe the scope for potential applications of bi-modal data
representation learning are broader than the illustrative toy cases. Other relevant
use cases in networking include sequences of IP addresses, BGP advertisements,
routing events, alarms, etc. With the widespread of data-driven decision taking (e.g.
finance, manufacturing), applications beyond networks are likewise numerous. Yet,
network data is more complex than co-occuring sequences of events and quantities
illustrated in this section. Although useful as a conceptual framework, our bi-modal
representation is only the starting point of the journey towards modeling more gen-
eral multi-modality network data. For instance, as entities often exhibit complex
relationships that can be represented by time-evolving graphs, Graph Neural Net-
works (GNNs) and graph embedding techniques seem to be another necessary piece
in the quest towards multi-modality. Incorporating these pieces in the bigger puzzle
of network data representation remains an interesting open research question for the
networking community as a whole.

96 Chapter 5. Traffic Representation Learning for Network Measurements

5.3 Task Groupings for Multi-Task Learning

In this section, we take a first step to tackle research question (ii) How to design a
unified pipeline that serves several networking measurements? Network measurements
fundamentally rely on transformation functions, that map input traffic data to an
output metric or label. Traditionally, this mapping is implemented with specialized
algorithms and data structures designed by network domain experts (e.g., sketches).
Alternatively, Deep Learning algorithms propose instead to learn such input-output
mapping by automatically extracting features from data. While they come with var-
ious challenges (e.g., implementation, robustness, generalization), neural networks’
ability to extract rich representations from complex data make them appealing can-
didates for modeling traffic measurements. For example, Deep Learning-based rep-
resentations have already been successfully adapted to model flow completion time,
throughput or round-trip-time (Zhang et al., 2021a), as well as delay, jitter and losses
(Rusek et al., 2020). Interestingly, some networking tasks and measurements might
be related or dependent on one another. This relatedness constitutes an opportu-
nity to exploit synergies by learning multiple tasks simultaneously to extract traffic
representations common to several downstream tasks. For example, (Nascita et al.,
2023) presents a CNN model that shares the same extracted features to solve three
traffic classification tasks at once. (Wang et al., 2022b) uses the common traffic rep-
resentations learned from a single GNN to provide predictions for flow completion
time, path delay and throughput simultaneously. Alternatively, (Collet et al., 2023)
learns to predict and aggregate intertwined forecasts to solve a global performance
objective (e.g., QoE). Thus, we argue that Multi-Task Learning (MTL) is an appropri-
ate paradigm for related networking tasks to benefit from a shared representation of
their input.

While the promises of MTL are attractive, e.g., improving generalization (Caruana,
1997) or reducing training, inference as well as maintenance costs (Standley et al.,
2020), characterizing the conditions of its success is still an open problem in Deep
Learning. Some tasks may benefit from being learned together while others may
be detrimental to one another. From a task perspective, grouping cooperative tasks
while separating competing tasks is paramount to reap the benefits of MTL. While
task relatedness plays a decisive role, recent work suggests that the training con-
ditions themselves, e.g., model capacity, learning rate or training set size, have a
significant impact on the outcomes of MTL (Standley et al., 2020; Fifty et al., 2021).
Therefore, estimating task affinity for joint learning is a key endeavor. Yet, the litera-
ture is lacking of a benchmark to assess the effectiveness of tasks affinity estimation
techniques and their relation with actual MTL performance. In this section, we take
a first step in recovering this gap by (i) defining a set of affinity estimation techniques
by both revisiting contributions from previous literature as well as presenting new
ones and (ii) benchmarking them on a large public dataset. Unfortunately, there are not
many network traffic datasets that are public and fit for MTL (Draper-Gil et al., 2016;

5.3. Task Groupings for Multi-Task Learning 97

Barut et al., 2021; Sharafaldin et al., 2018; Ren et al., 2018). Furthermore, when con-
sidering task affinity assessment in particular, these datasets either contain too few
tasks (i.e., up to three tasks) to properly evaluate numerous combinations of tasks
groups, or contain tasks that are too closely related by design (e.g., hierarchical traffic
classification, creating tasks by varying class granularity from traffic type to applica-
tion name). Thus, instead of relying on simulated traffic data and hand-crafted tasks
for this empirical campaign, we take a detour into the Computer Vision domain to
benefit from Taskonomy (Zamir et al., 2018), an established dataset that offers a col-
lection of 25 diverse tasks. Our findings reveals how, even in a small-scale scenario,
task affinity estimation does not correlate well with actual MTL performance. Yet,
some metrics can be more indicative than others.

In Section 5.3.2, we review the state of the art on MTL affinity characterization. In
Section 5.3.3, we present the affinity metrics selected for benchmarking and detail
our evaluation protocol. Then, we introduce our experimental setup and present
our results in Section 5.3.4. Finally, we discuss the advantages and limitations of
these metrics in Section 5.3.5.

5.3.1 Motivation

For more than two decades since its inception (Caruana, 1997), Multi-Task Learning
has been extensively studied by the Deep Learning community. For practitioners
interested in the best strategy to learn a collection of tasks, the promises of MTL are
numerous and attractive. First, learning to solve several tasks simultaneously can be
more cost-efficient from a model development and deployment perspective. Second,
if the tasks learned together cooperate, MTL can even outperform its Single-Task
Learning counterpart for the same computational cost (Standley et al., 2020). How-
ever, MTL potential advantages are tempered by the difficulty of estimating task
affinity, i.e., identify tasks benefiting from joint learning, without testing all combi-
nations of tasks. This calls for task affinity metrics, to quantify a priori and at a cheap
computational cost the potential benefit of learning tasks together. The quest for the
perfect affinity estimation technique is further exacerbated by MTL performance’s
strong dependency on the learning context, i.e., the data and models used for train-
ing. For instance, tasks cooperating in one learning context can result in competition
when using slightly different data or models (Standley et al., 2020). Recent works
(Fifty et al., 2021; Standley et al., 2020) have integrated this context-dependency
when designing task grouping strategies. While these approaches avoid a com-
plete search across all task combinations, they still require training and comparing
some MTL models for the final network selection. Furthermore, those studies show
that even in a small-scale scenario, MTL performance cannot be accurately predicted
without actually performing MTL.

98 Chapter 5. Traffic Representation Learning for Network Measurements

Despite providing assessment of task affinity, previous literature lacks of a broader
comparison of the associated metrics. In this work, we take a first step in recover-
ing this gap by presenting an empirical comparison of several task affinity estima-
tion techniques. Some of these techniques are inspired by previous literature rang-
ing from Transfer Learning to Multi-Task Learning: taxonomical distance (Zamir
et al., 2018), input attribution similarity (Song et al., 2019), representation
similarity analysis (Dwivedi and Roig, 2019), gradient similarity (Zhao et al.,
2018) and gradient transference (Fifty et al., 2021). We benchmark an additional
technique which is an original proposal: label injection. We evaluate all of them
on the public Taskonomy dataset (Zamir et al., 2018) which is a well-known large
benchmark spanning several Computer Vision tasks. Note that our objective is not
to present a novel state-of-the-art MTL architecture but rather an objective bench-
mark of task affinity estimation techniques. More specifically we aim to understand
if task affinity estimation can (i) be used as proxy for true MTL performance and
(ii) suggest the best partner task to improve the performance of a target task. These
metrics and their discussion aim at helping practitioners gauge the benefit of MTL
for their own set of tasks.

5.3.2 Background and related work

In this section, we first review relevant work on MTL and task grouping, briefly
present the Taskonomy dataset, and finally introduce task affinity characterization.

Multi-Task Learning. As introduced in Chapter 2, the promises of MTL are based
on the assumption that cooperative tasks benefit from inductive transfer during joint
learning. By being learned together, tasks are encouraged to share, at least partially,
common representations, e.g., the extracted feature vector at the model’s bottleneck,
depending on the model architecture. The intuition is that some tasks might ex-
hibit compatible goals and help one another during training through synergies, i.e.,
positive transfer. However, tasks interference can still degrade performance if their
respective updates become unaligned or contradictory during simultaneous learn-
ing i.e., negative transfer through competition.

To mitigate these effects, two complementary lines of research both aim at reducing
task interference and increasing task synergies. The first direction focuses on model
design, hence crafting the model such that it is adapted to learn a certain set of tasks.
In this case, the task set is fixed while the model is adapted to fit all the tasks under
consideration. Through hard parameter sharing, task weights can be adapted during
training in order to balance their impact on the combined loss (Leang et al., 2020;
Pascal et al., 2021). Alternative approaches focus on tuning gradients to mitigate
task interference during MTL training (Chen et al., 2018; Yu et al., 2020; Kendall
et al., 2018). In soft parameter sharing instead, parameters are segregated by task
and the model is guided, during MTL learning, to only share information when it is

5.3. Task Groupings for Multi-Task Learning 99

FIGURE 5.11: (left) A valid task grouping. Model1 is assigned both
Taska and Taskb for inference. Model2 is assigned Taskc for inference
and it uses Taskb as a cooperative task only during training. (right)
An invalid task grouping. Model1 and Model2 are both assigned to

solve Taskb at inference time.

beneficial (Sun et al., 2020; Misra et al., 2016). The second research direction is more
recent and focuses on task grouping strategies by identifying cooperative tasks that can
be grouped to be profitably learned together. In this case, the model design is fixed
while the task set is adapted i.e., split into potentially overlapping subsets. Recent
works from (Fifty et al., 2021) and (Standley et al., 2020) show promising results
as they succeed in stimulating positive transfer by combining only tasks that are
beneficial to one another. While these two research directions are complementary,
our work is more in the scope of the latter as we benchmark affinity metrics that
should indicate if tasks benefit one another when learned together.

Task grouping. Task grouping strategies aim at assigning tasks to models (that can
be STL or MTL) in order to maximize the total performance of all the tasks under
consideration, given a computational budget. More formally, let us consider the
following:

• a set of n tasks T = {t1, t2, ..., tn} that need to be solved;

• a total computational budget of β Multiply-Add operations;

• a set of k ≤ n models M = {m1, m2, ..., mk}, each one associated with its re-
spective amount of Multiply-Adds operations C = {c1, c2, ..., ck}.

Task grouping aims at constructing M such that for all ti ∈ T there exists exactly
one model mj ∈ M assigned to solve task ti at inference time, while respecting the
computational budget ∑k

j=1 cj ≤ β. Thus, any model fromM can learn an arbitrary
number of tasks as long as each task is assigned to one and only one model at in-
ference time. To illustrate this point, we present valid and invalid task groupings in
Figure 5.11. The final objective of task grouping is to maximize the aggregated test
performance:

P = ∑
ti∈T

P(ti|M), (5.1)

100 Chapter 5. Traffic Representation Learning for Network Measurements

where P(ti|M) denotes the performance1 of task ti using its assigned model from
M. It is worth mentioning that the task grouping problem differs from simple
model selection as (i) the objective (aggregated performance) and constraints (to-
tal cost) concern all tasks and models simultaneously and (ii) any model can learn
an arbitrary number of tasks.

The optimal task grouping is typically obtained by testing all task combinations
within the computational budget. Therefore, to be as efficient as possible, group-
ing strategies rely on task affinity estimates that guide the search of a solution in the
task groups space. This approach might only identify sub-optimal task groups but
it has a much a lower cost than an exhaustive search. Sophisticated task grouping
strategies are studied in (Fifty et al., 2021) in terms of performance and runtime.
Such strategies include Higher-Order Approximation from (Standley et al., 2020),
gradients cosine similarity maximization and task transference approximation from
(Fifty et al., 2021). Our work complements this benchmark of grouping strategies as
we are interested in assessing the strengths and weaknesses of the underlying affin-
ity metrics. This includes an evaluation of the predictive quality of such metrics.
Indeed, the perfect affinity estimation technique should not only identify the best
partner tasks, but also be a proxy of the true MTL performance. Overall, we aim for
a broader view of affinity metrics qualities w.r.t. what provided in the literature.

Taskonomy – the reference framework. From a Transfer Learning perspective,
Taskonomy (Zamir et al., 2018) has been a successful attempt at clarifying trans-
fer synergies between visual tasks. From an MTL perspective, (Standley et al., 2020)
performs a broad empirical campaign on the same dataset to identify which visual
tasks should be trained together with MTL. In particular, they evaluate if learning
a target task with a partner task could outperform learning the target task alone.
Thus, this framework quantifies task affinity as the performance gained on a task
learned in MTL versus STL. First, the authors show that cooperation between tasks
is not symmetrical, as one task may benefit from another but not necessarily the op-
posite. Second, by comparing MTL performance gains for the same pairs of tasks
but learned in various settings i.e., different dataset size or different MTL model
capacity, they unveil the impact of the training context itself on task cooperation.
Based on this framework, (Fifty et al., 2021) monitors the evolution of task affini-
ties during MTL training. Their experimentation on the CelebA dataset (Liu et al.,
2018) suggests that task cooperation evolves throughout training. Furthermore they
also show that hyper-parameters such as the learning rate or the batch size can also
affect cooperation. Those works provide an in-depth view of relevant MTL train-
ing dynamics. Our work complements these findings with an in-breath view across
several affinity estimation techniques that integrate, at varying degrees, data, model
and hyper-parameters dependencies.

1Minimizing the model loss, or using a task-specific metric such as Intersection over Union for
semantic segmentation.

5.3. Task Groupings for Multi-Task Learning 101

Task affinity. As previously mentioned, (Standley et al., 2020) showed that task
affinity is not symmetric, hence, in the remainder of this section, we refrain from
using the term “metric” that carries mathematical properties. Instead, we group
the methods aiming at quantifying task affinity for MTL under the term affinity
scores for short, and break them down into three main categories depending on
their requirements for computation.

Model-agnostic affinity scores are computed using solely the data at hand. This may
be accomplished using nomenclatures or taxonomies to loosely relate tasks. For
example, Object classification and Semantic segmentation are both considered to be
semantic tasks while Depth estimation is a 3-D task (Zamir et al., 2018). This can
also be more sophisticated and make use of information theory to quantify how
dependent two tasks are, e.g., using labels entropy as in (Bingel and Søgaard, 2017).

STL-based affinity scores make use of STL models and compare them to estimate
affinity between tasks. Common approaches include comparing the STL models
latent representations using e.g., the Representation Similarity Analysis (Dwivedi
and Roig, 2019). Another option is to compare the STL models attribution maps
assuming cooperative tasks use the same features (Caruana, 1997). Also, drawing
from Meta-Learning, (Achille et al., 2019) estimates affinity as the distance between
tasks in an embedded space that encodes task complexity.

MTL-based approaches estimate task affinity during the training of surrogate MTL
model(s). Such computations need to be more efficient than testing all tasks com-
binations, otherwise it would defeat its very purpose of efficiently quantifying task
affinity. (Fifty et al., 2021) proposes an affinity extraction method by simulating the
effects that task-specific updates of the model parameters would have on other tasks.
(Standley et al., 2020) extends pairwise MTL performance gain to higher-order task
combinations i.e., groups of three or more tasks. Also, both (Fifty et al., 2021) and
(Zhao et al., 2018) propose to compute the cosine similarity between task-specific
gradient updates as a way to estimate task affinity during MTL training.

5.3.3 Task affinity scores benchmark methodology

Based on the assumption that grouping cooperative tasks together is a key success
factor of MTL, we are interested in quantifying task affinity through several scores.
In this section, we motivate the affinity scores selected and we detail the evaluation
protocol implemented to benchmark them.

Affinity scores To simplify reasoning on task cooperation and competition, we re-
strict ourselves to pairwise task affinity estimation, i.e., affinity scores for 2-task MTL.
We depict typical STL and pairwise-MTL architectures in Figures 5.12a and 5.12b.
Considering two tasks t1 = a and t2 = b and a batch of examples X , we denote:

102 Chapter 5. Traffic Representation Learning for Network Measurements

(A) STL model architecture. (B) MTL model schematic architecture.

FIGURE 5.12: Schematic comparison of traditional STL and MTL ar-
chitectures for two tasks t1 = a and t2 = b. θB denotes the backbone
weights, θH the single head weights, while θHa and θHb denote the

separate heads weights.

• their respective loss functions La and Lb

• their respective STL models STLa and STLb with losses

• LSTLa = La(X , STLa)

• LSTLb = Lb(X , STLb)

• their joint MTL model MTL(a,b) with loss

• LMTL(a,b) = La(X , MTL(a,b)) + Lb(X , MTL(a,b))

We consider six task affinity scores that we further describe in the remainder of this
section. Their detailed computations are available in Appendix C.1. Some scores are
symmetric, i.e., assessing how much two tasks a and b help each other regardless
of direction; others instead are asymmetric, i.e., assessing how much a target task a
benefits from being learned with a partner task b. For each metric we report its cat-
egory (model-agnostic, STL-based or MTL-based) and contribution (borrowed from
literature, revisited from literature or novel).

Taxonomical distance (TD) Model-agnostic – borrowed: A natural way of assessing
affinity between tasks from a human perspective is to organize them through a hi-
erarchical taxonomy. For example, classification datasets such as (Van Horn et al.,
2018) or (Wah et al., 2011) provide hierarchical class granularity that can be used to
group similar tasks together as in (Achille et al., 2019). In our case, we used the tasks
similarity tree from (Zamir et al., 2018). This symmetric affinity score is computed
as the distance between a and b in the tree.

Input attribution similarity (IAS) STL-based – revisited: (Caruana, 1997) de-
fines related tasks as tasks that use the same features. Following this definition we
assess how tasks relate to one another in terms of input attribution similarity using
InputXGradient (Shrikumar et al., 2017) to compute attribution maps for STLa and
STLb. The affinity score is then obtained via the cosine similarity of the attribution
maps (Song et al., 2019). Therefore this score is symmetric.

Representation similarity analysis (RSA) STL-based – revisited: RSA, a well-
known method in computational neuro-sciences (Dwivedi and Roig, 2019), relies
on the assumption that, if tasks are similar, they learn similar representations, i.e., a
given input should be projected in similar locations in the latent space. Referring to

5.3. Task Groupings for Multi-Task Learning 103

Figure 5.12a, this score compares the latent representations structures between the
respective backbones θB of STLa and of STLb. In a nutshell, RSA uses the Spearman
correlation of Representation Dissimilarity Matrices. This is a symmetric score.

Label injection (LI) STL-based – novel: Another way to estimate task affinity is to
measure the performance gained from adding the target label of another task to the
input. For example, a task a targeting the classification of handwritten digits could
be paired with a task b targeting the prediction of even and odd digits. Since the two
tasks are (clearly) related, “injecting” the label of task b, i.e., providing it as com-
plementary input when training task a, could lead to performance increase for task
a. The performance of label injection can be considered as a proxy of task affinity.
This affinity score is asymmetric. It is computed as the performance gain between
the standard STL model for task a and the b-injected STL model for a denoted by
STLa←b, i.e., using the test losses from the fully trained models:

LSTLa −LSTLa←b

LSTLa←b

, (5.2)

Gradient similarity (GS) MTL-based – borrowed: This task affinity score relies on
the assumption that cooperative tasks yield similar i.e., non-contradictory, weights
updates to the model backbone during MTL training. This score, which we borrow
from (Fifty et al., 2021; Zhao et al., 2018), is symmetric. It is computed as the cosine
similarity between gradients from each task loss with respect to the MTL model
common backbone weights. Using the notation from Figure 5.12b, we the compute
following cosine similarities at each epoch, and average them throughout training:

Scos

(
∂La(X , θB, θHa)

∂θB
,

∂Lb(X , θB, θHb)

∂θB

)
, (5.3)

Gradient transference (GT) MTL-based – borrowed: During MTL training, by sim-
ulating task-specific updates to the common backbone, one can estimate how it
would impact the other task’s performance. This corresponds to the losses look-
ahead ratio defined in (Fifty et al., 2021). This asymmetric score is computed com-
paring the loss of task a after updating the common backbone according to b, and
the loss of task a before this simulated update. Referring to the notation from Fig-
ure 5.12b, we denote the b-specific update of the common backbone by θB|b. Thus, we
compute the following ratios at each epoch and average them throughout training:

La(X , θB|b, θHa)

La(X , θB, θHa)
, (5.4)

Evaluation We evaluate these affinity scores against the true MTL performance.
Moreover, we evaluate the scores across three levels by progressively relaxing the
constraint of the analysis.

104 Chapter 5. Traffic Representation Learning for Network Measurements

True performance: MTL gain. As in (Standley et al., 2020), we quantify MTL success as
the relative gain between STL and MTL performance in terms of test loss. MTL gain
for a target task a when using a partner task b is defined as:

G(a|b) =
LSTLa −LMTL(ā,b)

LMTL(ā,b)

, (5.5)

where LSTLa is the test loss for task a in a STL configuration, and LMTL(ā,b) is the
test loss for task a in a MTL configuration using tasks a and b for joint learning. Note
that the contribution of task b to the MTL loss is not considered when computing the
gain, yet is considered during training. We perform an exhaustive search through
all possible pairs of tasks to compute the “ground truth” affinities. These serve as
baseline against which each affinity score is evaluated.

Level 1: predictive power. As previously stated, an ideal affinity score should be a
proxy of the actual MTL gain: higher/lower score should imply large/small benefit
from joint training. This is a stringent requirement, yet easy to quantify by mean
of Pearson’s correlation. Specifically, for each target task a and affinity scoring tech-
nique, we compute the correlation between the MTL gain across all partner tasks
(the true performance) and the affinity score across the same partners (the proxy of
the performance). It follows that affinity scoring techniques with correlation values
close to −1 (perfect negative correlation) and +1 (perfect positive correlation) have
strong predictive power; correlation values close to zero imply no predictive power.

Level 2: partners ranking. To relax the previous requirement, we define as acceptable
an affinity score capable to successfully rank potential partner tasks by decreasing
order of MTL gain. More formally, for a target task a, and a set of partner tasks P ,
we want an affinity score δ such that:

∀ ti ∈ P , rank(δ(a, ti)) = rank(G(a|ti)), (5.6)

To evaluate the agreement between the ranking given by the affinity score and the
actual ranking by MTL gain obtained by exhaustive search, we use Kendall’s cor-
relation coefficient (Kendall, 1948) that ranges from −1 (opposite rankings) to +1
(same rankings).

Level 3: best partner identification. In case only pairs of tasks are considered for MTL,
one is essentially interested in finding the best partner. This means that we can
further relax the previous constraint and for a target task a, we want an affinity
score δ such that:

arg max
ti∈P

δ(a, ti) = arg max
ti∈P

G(a|ti), (5.7)

To evaluate this, we report the MTL gain obtained when choosing the top partner
according to the affinity score and compare it with the maximum MTL gain obtained
when choosing the actual best partner.

5.3. Task Groupings for Multi-Task Learning 105

5.3.4 Experimental results

Dataset. In this work, we select a portion of the Taskonomy medium-size split.
This constitutes a representative dataset of Computer Vision tasks, composed of la-
beled indoor scenes from 73 buildings whose list is available in Appendix C.2. The
whole dataset amounts to 726,149 input images which represent approximately 1.2
TB including the various labels. We select the same five tasks as (Standley et al.,
2020; Fifty et al., 2021) to conduct our experiments, namely:

• Semantic segmentation (SemSeg)

• 2D SURF keypoints identification (Keypts)

• Edges texture detection (Edges)

• Depth Z-Buffer estimation (Depth)

• Surface normals estimation (Normal)

A detailed description of the tasks can be found in the supplementary material from
(Zamir et al., 2018).

Models definition. We build on the work of (Standley et al., 2020) to train five STL
models for the five aforementioned tasks and ten pairwise MTL models. Models are
variants of the Xception architecture (Chollet, 2017), composed of a backbone that
learns a latent representation of the input and a head. In the case of the STL models,
the backbone output is forwarded to a single head that produces the final prediction,
cf. Figure 5.12a. In the case of the pairwise MTL models, the shared backbone output
is forwarded to two disjoint heads, one for each task under consideration by the MTL
model, cf. Figure 5.12b. In this work, as well as in (Standley et al., 2020; Fifty et al.,
2021), we only consider hard parameter sharing for the MTL backbone. While this
approach simplifies reasoning about shared representations and weights updates, it
does not incorporate task interference mitigation strategies.

In terms of model capacity, we replicate the Xception17 models design from prior
work in (Standley et al., 2020), allowing each STL model only half of the capacity
i.e., number of Multiply-Add operations, of a pairwise MTL model. This constraint
is implemented by reducing the number of channels in the CNN blocks composing
the backbone. Therefore, STL and MTL models use the same architecture but with
varying capacity. Each model is trained for 50 epochs with a decreasing learning
rate, selecting the best-performing epoch on the validation set as final model. Fi-
nally, hyper-parameters are set to default values from (Standley et al., 2020) with no
further tuning.

In the remainder of this section, we report our evaluation based on the methodology
described previously. The detailed values of each affinity score are instead reported
in Appendix C.3.

106 Chapter 5. Traffic Representation Learning for Network Measurements

MTL gain on
Trained

with SemSeg Keypts Edges Depth Normal Avg.

SemSeg - -11.81 -10.22 -0.55 +0.95 -5.41
Keypts -6.70 - -8.67 -9.87 -13.88 -9.78
Edges -22.01 +1.26 - -8.24 +2.18 -6.70
Depth +18.02 -3.81 +16.69 - -6.37 +6.13

Normal +50.24 +29.56 +78.05 -0.45 - +39.35

TABLE 5.1: True performance: MTL gain. Ground-truth MTL gain for
each target task (column) and each partner task (row). E.g., the task
Edges performs 78.05% better than learned alone in STL when trained

with Normal as partner.

MTL gain. In Table 5.1, we report the ground truth MTL gain for each pair of
tasks. We reiterate that these results serve as reference for evaluating the affinity
scores. Furthermore, recall that MTL gains are tightly related to the specific training
conditions of our experiment i.e., the data, models and hyper-parameters used, and
they may vary if computed in another setting. From this table, we note that some
tasks are more helpful than others. For example, Normal is a helpful partner task, but
fails to be significantly assisted by any other task. Overall, we find MTL gains to be
highly asymmetric. Nonetheless, almost all tasks would benefit from being learned
with their best partner. This is in line with the findings of (Standley et al., 2020).

Predictive power. Table 5.2 shows the Pearson correlation between the MTL gain
and each individual affinity score. Each row considers a separate target task, while
the last row labeled as all-at-once reports the correlation computed using all pairs of
all target tasks together. Starting from such an aggregate scenario, we can see that no
scoring technique strongly correlates with the MTL gains. Only Label injection

(LI) moderately correlates with MTL gain across all tasks pairs (Pearson corr. =

0.47). This invalidates the predictability property desired for an ideal affinity score.
Interestingly, when considering a single target task at a time, some affinity scores
successfully predict MTL performance. For example, Depth’s MTL gains can be pre-
dicted using Input attribution similarity (IAS), with a corr. = 0.98. Yet, no
scoring provides a stable correlation across all tasks pairs.

Partners ranking. In Table 5.3, we evaluate each affinity scoring technique in terms
of its ability to correctly rank potential partner tasks according to the MTL gains
they provide. For a given target task, we compare the rank obtained from the affin-
ity score with the rank obtained from the MTL gains by mean of the Kendall rank
correlation. As in the predictive power evaluation table, each row reports on the
correlation for each target task separately while in this case the last line summa-
rizes the overall performance using the average of the rank correlations across tar-
get tasks. Starting from the aggregate view, we observe that no score-based ranking
correlates strongly with true ranking. Only Label injection (LI) and Gradients

5.3. Task Groupings for Multi-Task Learning 107

Model
agnostic STL-based MTL-based

Task TD IAS RSA LI GS GT

SemSeg 0.4 0.99 0.81 0.99 0.79 0.76
Keypts -0.03 -0.06 -0.37 0.95 0.22 -0.08
Edges -0.34 -0.44 -0.68 0.90 -0.37 -0.66
Depth 0.90 0.98 0.96 0.64 0.69 0.97

Normal 0.60 0.38 0.20 -0.11 -0.19 0.40

All-at-once 0.08 0.08 -0.15 0.47 -0.08 -0.02

TABLE 5.2: Level 1: predictive power. Affinity scores correlation with
MTL gain. E.g., using Label injection (LI) to estimate affinities
for the target task SemSeg, its output strongly correlates with the ac-

tual MTL gains (Pearson corr. = 0.99).

similarity (GS) show a moderate and positive correlation (average Kendall corr.
= 0.47 and 0.4 resp.). Differently from before, when considering specific targets
tasks, the correlation does not necessarily improve. For instance, Keypts and Normal
STL-based scores completely fail, yet MTL-based scores are not necessarily better.
Still considering Keypts target task, notice how Label injection (LI) showed sig-
nificantly higher Pearson correlation, while the Kendall correlation shows that half
of the partner tasks are wrongly ranked according to the affinity score.

Best partner identification. Table 5.4 shows the top-1 partner according to each
affinity scoring technique. This is to be compared with the maximum MTL gain that
can be achieved using the actual best partner. Label Injection (LI) correctly iden-
tifies the best partner for four out of five tasks. However, not a single affinity score is
capable of correctly identifying Normal’s best partner for MTL. Furthermore, Keypts
and Edges seem to be particularly difficult tasks for best partner identification. All
scores but Label injection (LI) recommend choosing either one as best partner
for the other, while the actual best choice is Normal for both of them.

Model
agnostic STL-based MTL-based

Task TD IAS RSA LI GS GT

SemSeg 0.0 1.0 0.33 1.0 0.67 0.67
Keypts 0.0 0.0 0.0 0.0 0.67 0.33
Edges -0.33 -0.33 -0.33 0.67 0.0 -0.33
Depth 1.0 0.67 1.0 0.67 1.0 0.67

Normal 0.33 0.0 0.0 0.0 -0.33 0.0

Average 0.2 0.27 0.2 0.47 0.4 0.27

TABLE 5.3: Level 2: partners ranking. Comparison of partner tasks
ranking by affinity score versus by MTL gain. E.g., Label injection
(LI) perfectly ranks partners for the target task SemSeg (Kendall

corr.= 1).

108 Chapter 5. Traffic Representation Learning for Network Measurements

Model-agnostic STL-based MTL-based

Task Expected
partner TD IAS RSA LI GS GT

SemSegNormal Normal (0) Normal (0) Depth (-32.2) Normal (0) Depth (-32.2) Depth (-32.2)
Keypts Normal Edges (-28.3) Edges (-28.3) Edges (-28.3) Normal (0) Edges (-28.3) Edges (-28.3)
Edges Normal Keypts (-86.7) Keypts (-86.7) Keypts (-86.7) Normal (0) Keypts (-86.7) Keypts (-86.7)
Depth Normal Normal (0) SemSeg (-0.1) Normal (0) Normal (0) Normal (0) SemSeg (-0.1)
Normal Edges SemSeg/Depth (-4.9) SemSeg (-1.2) Depth (-8.6) Depth (-8.6) Depth (-8.6) Depth (-8.6)

TABLE 5.4: Level 3: best partner identification. Comparison of best part-
ner selection by affinity score. In parenthesis, we report the difference
of MTL gain between the actual best and the selected partner. E.g., for
the target task Keypts the actual best partner is Normal and all scores
but Label injection (LI) select Edges leading to 1.26 - 29.56 = -28.3

points decrease in performance gain.

5.3.5 Discussion

A perfect affinity score should be both predictive of the actual MTL gain and cheap
to compute. As prior work hints that the training conditions themselves impact
MTL gain, it seems particularly tough to reconcile these properties as we also verify
throughout our experimental campaign. In this section, we benchmark various affin-
ity scoring techniques that incorporate data, model and hyper-parameters depen-
dencies at varying degrees: from model-agnostic scores that do not take these into
account, through STL-based scores that try to include them, to MTL-based scores
that are supposed to be the closest to the actual MTL learning conditions. Unfor-
tunately, none of the selected scores, not even the MTL-based ones that are close
to MTL training, can accurately predict MTL gain across all pairs of tasks. How-
ever, Label injection (LI), the original affinity score we introduce, appears use-
ful for predicting the gains corresponding to potential partners given a target task.
We also observe that, surprisingly, MTL-based scores are not necessarily better than
STL-ones, i.e., not even quantifying affinity during the actual MTL training seems
sufficient to link affinity to performance.

From a cost perspective, except for Taxonomical distance (TD), all the scoring
techniques we benchmark require some model training. We quantify the compu-
tational cost of an affinity score by the total amount of training it requires to es-
timate affinities across all pairs of tasks. Let us consider n tasks and a standard
half-capacity STL model with its respective number of Multiply-Add operations
denoted by cs. Using this notation, we report the computational cost associated
with each affinity score in Table 5.5. While Input attribution similarity (IAS)

and Representation similarity analysis (RSA) only require one STL model per
task, LI requires to train an additional STL-injected model for each ordered pair. We
note that, in some scenario, the STL models may be readily available, such that the
costs associated with IAS and RSA can be amortized. Regarding MTL-based scores,
both Gradient similarity (GS) and Gradient transference (GT) require to train
a full-capacity MTL model for each unordered pair of tasks. Note that we neglect
the cost of the simulated task-specific update during GT training. Finally, while TD

5.3. Task Groupings for Multi-Task Learning 109

Model
agnostic STL-based MTL-based

Cost TD IAS RSA LI GS GT

of
Multiply-Adds

0 n · cs n · cs n · cs+
2(n

2) · cs
(n

2) · 2cs (n
2) · 2cs

TABLE 5.5: Affinity scores costs. Comparison of training costs con-
sidering all pairs across n tasks, where cs denotes the amount of

Multiply-Add operations for a standard half-capacity STL model.

may appear cost-efficient, it has been established using a Transfer Learning-based
taxonomy that itself requires STL models training, cf. (Zamir et al., 2018).

From a practical perspective, LI can correctly identify the best partner for most tasks,
except for Normal, for which none of the other scores succeeded. As in (Standley et
al., 2020), we find that Normal is different from the other tasks: it benefits others but
it is better learned alone. We conjecture that the high complexity of this task makes
it a good partner for sharing knowledge during joint learning, but prevents it from
being helped by easier tasks. To further corroborate this hypothesis, task complexity
need to be incorporated in the affinity scoring design. We believe that Task2Vec from
(Achille et al., 2019) is a first step towards this direction as it establishes a distance
metric between tasks incorporating task difficulty from a Transfer Learning perspec-
tive. Unfortunately, Task2Vec cannot be directly used in our context as it has only
been defined for homogeneous tasks, i.e., from the same domain. Indeed, in (Achille
et al., 2019), the tasks are defined using coarse or fine-grained classification varia-
tions from the same hierarchy. We leave the exploration of this research direction as
future work.

While this empirical campaign provides a better understanding of the challenges to
take up when designing task affinity scores, it is not conclusive given the high vari-
ability coming from data, models, and tasks used for MTL. In other words, while
some results are encouraging, more research is required to make those mechanisms
actionable for an actual model design and operation. In this direction, we identify
some limitations that we intend to tackle in future work. First, this analysis is lim-
ited to five Computer Vision tasks. Some model-agnostic affinity scores such as TD

might not be trivially adapted to other task domains. Second, the affinity scores we
defined can only estimate pairwise task affinity. While this is a reasonable starting
point, various effects may be at play when learning more than two tasks simulta-
neously. (Zhang et al., 2021c) propose a new perspective on a sample-wise basis to
quantify task transfer and interference separately. However, their metrics are de-
fined for classification tasks only and their adaptation to heterogeneous tasks is an
open question. Third, the MTL architecture we selected features hard parameter
sharing and a static combined loss with equal weights. Although this design choice
is consistent with prior work and facilitates reasoning on tasks cooperation, it does
not take advantage of the recent advances in task interference mitigation techniques

110 Chapter 5. Traffic Representation Learning for Network Measurements

for MTL training (Chen et al., 2018; Yu et al., 2020; Kendall et al., 2018). Indeed,
tasks may be affine but still interfere during joint learning if no mechanism is im-
plemented to attenuate it, which is why MTL architecture design and task grouping
strategies are complementary lines of research.

5.3.6 Concluding remarks

Based on the assumption that identifying cooperative tasks to be learned together
is a key success factor of MTL, we borrowed, adapted and designed various task
affinity scores for this purpose. We benchmarked these scores for pairs of tasks on
a public Computer Vision dataset to discuss their strengths and weaknesses. Al-
though no score is perfectly predictive of MTL gain, some of them still hold value
for practitioners, by being able to identify the best partner for a given target task.
This empirical campaign offers a better understanding of the conditions that allow
MTL to be superior to STL and sheds light on the challenges to be met when pre-
dicting it. We leave the study of porting these findings to the networking domain as
future work, once a large and public multi-task networking dataset is established.

Related publications

Raphael Azorin, Massimo Gallo, Alessandro Finamore, Maurizio Filippone, Pietro
Michiardi, and Dario Rossi (2021). “Towards a Generic Deep Learning Pipeline for
Traffic Measurements”. In: Proceedings of the CoNEXT Student Workshop. CoNEXT-
SW ’21. Virtual Event, Germany: Association for Computing Machinery, 5–6. ISBN:
9781450391337. DOI: 10.1145/3488658.3493785

Zied Ben Houidi, Raphael Azorin, Massimo Gallo, Alessandro Finamore, and Dario
Rossi (2022). “Towards a Systematic Multi-Modal Representation Learning for Net-
work Data”. In: Proceedings of the 21st ACM Workshop on Hot Topics in Networks.
HotNets ’22. Austin, Texas: Association for Computing Machinery, 181–187. ISBN:
9781450398992. DOI: 10.1145/3563766.3564108

Raphael Azorin, Massimo Gallo, Alessandro Finamore, Dario Rossi, and Pietro Michiardi
(2023). “It’s a Match! A Benchmark of Task Affinity Scores for Joint Learning”. In:
Association for the Advancement of Artificial Intelligence (AAAI). 2nd International Work-
shop on Practical Deep Learning in the Wild. Washington D.C., USA. URL: https :

//arxiv.org/pdf/2301.02873.pdf

https://doi.org/10.1145/3488658.3493785
https://doi.org/10.1145/3563766.3564108
https://arxiv.org/pdf/2301.02873.pdf
https://arxiv.org/pdf/2301.02873.pdf

111

Chapter 6

Conclusion

In this thesis, we discussed the challenges of appropriately represent-
ing traffic for various network measurements and their applications. We
proposed several solutions to address these challenges, in particular by
leveraging Machine Learning (ML) algorithms. In this chapter, to con-
clude this thesis, we first recapitulate the main contributions. Then we
discuss the impact and limitations of the research conducted. Finally, we
detail future research challenges and opportunities in traffic representa-
tion learning for network measurements.

112 Chapter 6. Conclusion

6.1 Summary of Contributions

As discussed throughout this thesis, traffic measurements are a prerequisite for many
network operations and management tasks. Measurements provide operators with
a view of their network activity, which is essential to evaluate performance, estab-
lish diagnosis, and address issues. In particular, per-flow monitoring deals with the
characterization of individual data streams flowing through the network. Through
the selection, collection, and analysis of specific metrics, measurements describe (i.e.,
represent) network activity at different levels of granularity. This process of extracting
a traffic representation is both critical and challenging. It requires carefully relating
the cost and feasibility of obtaining specific traffic characteristics, with their expres-
siveness to fuel various downstream networking tasks. In this thesis, we proposed
several solutions to improve this process, segregated by their degree of Machine
Learning integration.

6.1.1 Traditional network measurements

In Chapter 3, we introduced sparse sketches representations for per-flow moni-
toring. Sketches are dimensioned for extreme scenarios, while only a minority of
flows require high-accuracy and memory-intensive sketches. Hence, a majority of
per-flow sketches end up under-utilized, wasting precious memory. Based on this
observation, our solution SPADA consists in storing only non-zero sketch counters,
which requires to address various data plane implementation challenges, i.e., storing
<key, value> pairs for the relevant counters, taking into account hardware limita-
tions and without a priori knowledge of flow sparsity. Our solution comes with two
implementation flavors, corresponding to two key-value data structures for coun-
ters update (quotiented Cuckoo Hash Tables and perfect Invertible Bloom Lookup
Tables), with distinct advantages and drawbacks in terms of flexibility and over-
head. Compared to traditional approaches that reserve a full sketch of fixed size
as soon as the first packet of a new flow arrives, our solution instead dynamically
assigns pre-allocated per-flow counters when needed. Thus, it requires maintaining
fewer counters to monitor active flows. We evaluated the overhead of SPADA due
to the additional counter indexes on three monitoring use cases using real traffic
data. We recorded from 2× to 11× memory footprint reduction with respect to the
state-of-the-art while maintaining the same accuracy.

Open questions. The memory savings achievable by SPADA depend on the actual
sparsity of the sketches. When configuring our framework, the system’s Sketch Data
is sized according to a worst-case average sparsity estimation, computed from his-
torical traffic records. Under-estimating sparsity leads to reduced memory savings
but over-estimating it risks overflowing the data structure. Although we demon-
strated the advantage of our solution even taking into account conservative spar-
sity factors (twice the observed sparsity on real traces), sketches’ under-utilization

6.1. Summary of Contributions 113

is dependent on traffic patterns, which are dynamic. Hence, an interesting ques-
tion is how to extend this framework to adapt to sudden changes in sparsity. Also,
for sketch algorithms that require non-additive counters update rules (e.g., Hyper-
LogLog for cardinality estimation), our solution works only in its quotiented Cuckoo
Hash Table flavor, which triggers some packet re-circulations. Even if worst-case
evaluations (i.e., with a load factor ≈90%) on real traces assess that SPADA’s re-
circulation rate remains acceptable (below 5%), further research efforts could im-
prove this aspect of the proposed system.

6.1.2 ML-assisted network measurements

In Chapter 4, we presented a machine learning solution to provide early and af-
fordable flow size representation. In particular, we integrated a custom Random
Forest classifier in the data plane to provide timely and coarse-grained prediction
of flow size (i.e., the flow is going to be an elephant or a mouse). While impre-
cise, such early knowledge of a key flow characteristic proved valuable to improve
various networking use cases. The proposed system, DUMBO, has been tuned to
meet stringent memory-performance trade-offs. Additionally, DUMBO is equipped
with an active learning mechanism to adapt its lightweight classifier to traffic pat-
tern changes. We demonstrated the superior performance of our system over state-
of-the-art non-learned approaches for flow scheduling, per-flow packet inter-arrival
time distribution, and flow size estimation, using real traffic traces.

Open questions. While useful in several use cases, this approach based on ML hints
might be extended to enhance more networking tasks. In DUMBO, a single binary
hint on the flow’s expected length (i.e., elephants/mice classification) is leveraged
across three networking tasks. This information could be useful to additional use
cases, e.g., congestion control. However, distinct tasks might exhibit different sen-
sitivity to mispredictions, which makes it challenging to tune model performance
(i.e., precision and recall in our case). For example, scheduling queues could tolerate
lower hint precision than what is acceptable for flow size exact counters before be-
ing saturated by mispredicted mice. Hence, an interesting research question pertains
to model performance tuning to best satisfy diverse use cases. Alternatively, other
kind of hints could bring benefits to additional tasks, e.g., recent work proposed to
predict packet drops to improve buffer management (Addanki et al., 2024). Finally,
the implementation of more sophisticated and higher-performing ML models in the
data plane is a promising research direction. For example, providing finer-grained
classification, flow size regression (Hsu et al., 2019) or even inferring multiple flow
metrics from the same model seems to be achievable with higher-capacity ML archi-
tectures (e.g., neural networks). In this regard, weights quantization initiatives for
hardware accelerators (e.g., Umuroglu et al., 2017 for Binarized Neural Networks)
are attractive but require further evaluation to ensure their implementation is prof-
itable in a data plane monitoring system.

114 Chapter 6. Conclusion

6.1.3 ML-based network measurements

In Chapter 5, we proposed traffic representation learning methodologies for net-
work measurements. We first motivated the use of Deep Learning algorithms to ex-
tract rich representations from complex traffic data in order to solve multiple down-
stream networking tasks. Then, we introduced a systematic bi-modal representation
learning methodology, tapping into network categorical data by leveraging word
embeddings. In particular, we proposed to exploit the information contained in the
non-arbitrary ordering of network entities that occur in sequences. We demonstrated
the added benefit of incorporating such knowledge on two toy networking use cases:
clickstream identification and WLAN terminal movement prediction. Finally, we ad-
vocate for a Multi-Task Learning (MTL) approach to serve several network measure-
ments simultaneously. As a first step towards this objective, we addressed the task
grouping problem that deals with the identification of cooperative and competing
tasks. Specifically, we benchmarked six task affinity metrics on an established MTL
dataset. While this empirical campaign shed more light on the conditions for MTL
to outperform single-task learning from a task perspective, no metric was perfectly
predictive of task cooperation.

Open questions. In the first part of our work on ML-based measurements, our ap-
proach considers network entities and quantities separately during pre-training. We
used Word2Vec pre-training to embed network entities’ co-occurrence patterns in
a vector space, and then concatenate these representations with quantities to serve
as input to fine-tune a model for a specific downstream task. While successful in
two use cases, this embed-then-concatenate approach may be sub-optimal to cap-
ture relationships between entities and quantities, as these are only learned in the
final training phase. More recent architectures, e.g., Transformers (Vaswani et al.,
2017), are now ubiquitous in various domains (e.g., speech, images, text), featuring
superior attention-based mechanisms to produce rich embeddings. Interestingly,
Transformers have been applied beyond language categorical data, e.g., learning
embeddings from images numerical pixel data (Dosovitskiy et al., 2020). Hence,
future traffic embedding techniques may consider self-attention to relate network
entities and quantities to one another, within the same pre-training procedure rather
than in isolation. Regarding the simultaneous learning of multiple tasks in the sec-
ond section of this chapter, our work only scratched the surface of MTL for network
measurements. Indeed, we only addressed this research direction from a task per-
spective, and in an orthogonal domain (computer vision). While our benchmark was
not conclusive in this scenario, we conjecture that task difficulty plays an important
role in characterizing affinity. Further work may integrate this dimension into affin-
ity estimation techniques, e.g., using a framework such as Task2Vec (Achille et al.,
2019). Finally, we leave the adaptation of our approach to the networking domain
as future work, to bridge traffic sequence modeling with Multi-Task Learning.

6.2. Perspectives 115

6.2 Perspectives

One of the main research hypotheses of this thesis is that Machine Learning can pro-
vide traffic representations that enhance network measurement tasks. We broke down this
hypothesis into ML-assisted and ML-based measurements and showed that it can
outperform traditional non-learned measurements in some conditions. In the fol-
lowing, we reflect on the challenges faced and the lessons learned along this journey.
Finally, we suggest avenues to explore in order to foster future research in the field.

First, we underscore that the transition from a theoretically sound concept to the ac-
tual deployment of an ML-enabled system within constrained devices is a complex
and iterative process. While based on previous theoretical works (Mitzenmacher,
2021; Hsu et al., 2019; Du et al., 2021), we faced numerous engineering challenges
and trade-off decisions to propose an affordable yet effective ML networked system.
This journey required a deep understanding of both the underlying protocols and
systems (e.g., which tasks can exploit which hints), and of the practical constraints
involved (e.g., strike a balance between model performance and overhead). The
main challenge we faced was to simplify the tasks and models previously consid-
ered while retaining sufficient hint value to benefit a real measurement system. In
particular, it involved careful model design to develop a predictor that fits the strin-
gent memory and computation constraints of network devices. We downgraded a
difficult flow size regression task into a simpler binary classification and developed
a custom Random Forest with low space and computation complexity for data plane
implementation. Additionally, the dynamic nature of traffic patterns, too often over-
looked in prior works on learned-sketches, prompted us to design a model update
mechanism based on active learning (Settles, 2011). Also, the complex interplay
between system components required us to characterize various memory-accuracy
trade-offs, in order to guide their sizing and satisfy diverse use cases. To foster
research in this direction and stimulate capitalization on our work, we made our
model, system and evaluation code publicly available at (DUMBO Simulator 2024).
We note that ML-assisted networked systems are gaining more traction, e.g., with
the recent Credence (Addanki et al., 2024) or QCLIMB (Li et al., 2024) system pro-
posals. As various types of affordable and valuable traffic hints emerge (e.g., predic-
tions on flow class, flow size, packet drops), an interesting future direction concerns
the prediction of diverse flow characteristics to serve numerous use cases simulta-
neously. In our work, we concentrated our efforts on fully exploiting the value of a
single prediction (e.g., flow size). Future work may instead study the implementa-
tion of multiple or multi-task models in constrained network devices.

Second, we highlight the inherent difficulty of learning from network data, which
is still a relatively new modality to the broader field of representation learning. In-
stead of developing hand-crafted models to predict selected traffic characteristics
(e.g., flow size), we envisioned the automatic extraction of relevant traffic features

116 Chapter 6. Conclusion

thanks to Deep Learning algorithms (i.e., representation learning). Inspired by suc-
cessful methodologies in other domains (Mikolov et al., 2013b; Fifty et al., 2021),
we proposed to adapt and tailor recent advances in representation learning to auto-
matically extract knowledge from network data. In this journey, we acknowledged
the complexity of learning representations from network data. Compared to the
more mature Natural Language Processing and Computer Vision communities, net-
working data representation learning is still in its infancy. For instance, no clear
consensus has emerged yet regarding the correct encoding of input data to facilitate
knowledge extraction. Indeed, some approaches favor ingesting packets or flow
features, some consider multivariate time series (e.g., packets inter-arrival times and
direction) while others rely on payload features (Yang et al., 2021). Instead, (Hol-
land et al., 2021) advocates for one-hot encoding packet headers. In addition, down-
stream tasks, which should guide architecture and input encoding choices, are also
harder to define. From this wide array of input options and end-tasks, we recognize
the unfeasibility of a silver bullet representation. Navigating this uncharted space
from a representation learning point of view may seem daunting at first. Given
the abundance of network data in practice, it is unfortunate that large, public, and
recent-enough network datasets are still so few in number from a practical research
standpoint. Additionally, we note that a critical specificity of network data is that it
is dynamic. This property limits the robustness of the representations that may be
learned from historical (i.e., offline) traffic data. To make an analogy with language,
while a single word may have various meanings depending on its context, it is un-
common for these meanings to change over time or across data sets. On the contrary,
the meaning carried by a network flow’s five-tuple is not stable across time or space.
Finally, network activity is captured into various modalities (e.g., traffic, textual logs,
graph topologies, structured data). Hence, developing methodologies to summarize
disparate data sources and efficiently represent the network state is a key endeavor
for the community (Feamster and Rexford, 2017; Behringer et al., 2021). In this re-
gard, neural compression approaches constitute an interesting research direction to
encode and compress network data.

117

Appendix A

Appendix for Chapter 3

In this appendix, we provide details on the implementation of a SPADA pipeline
in P4 and benchmark it on a Xilinx FPGA-based SmartNIC target. We deferred this
implementation work here because it has not been conducted as part of the PhD pro-
gram and was the responsibility of external collaborators from Sapienza University,
Rome.

A.1 System Implementation

We implement SPADA using the Xilinx Vitis Networking P4 (AMD, 2023). The
framework translates P4 code into Intellectual Property blocks for AMD-Xilinx FP-
GAs. Such blocks can then be integrated into a wrapper, as the AMD Xilinx Open-
NIC Shell (AMD OpenNIC Project 2023) or the NetFPGA-PLUS (NetFPGA publisher,
2023), which provide basic networking functionalities, and deployed in an FPGA-
based SmartNIC. Our implementation exploits the NetFPGA-PLUS reference NIC
using the Xilinx Alveo U280 (2×100Gbps QSFP, 8GB DDR, 41MB SRAM, 1M Look-
up Tables, and 2M Flip-Flops) as target board. All the processing pipelines are
clocked at 180 MHz, which is the standard frequency for the NetFPGA-PLUS data-
path. In the following, after a brief Vitis Networking P4 architecture overview, we
detail basic SPADA data structures implementations, and two full-fledged SPADA
monitoring pipelines synthesized for the Xilinx Alveo U280 FPGA, contrasting them
with baseline designs.

A.1.1 The Vitis Networking P4 architecture

The Vitis Networking P4 architecture (cf. Figure A.1a) is composed of three main
blocks: (i) a parser, (ii) a match action engine, and (iii) a deparser. Extern blocks are
directly implemented in Verilog HDL and can be added to the P4 pipeline using a
configurable interface. In our prototype, we use externs to deploy data plane acces-
sible registers, similar to those in Banzai (Sivaraman et al., 2016) or Tofino (Agrawal
and Kim, 2020).

118 Appendix A. Appendix for Chapter 3

FIFO

 Metadata

Deparser
Engine

Headers(in)

(out)(in)

Parser

Headers

(in)

(out)

(out)

(out) Metadata

Match-Action
Engine

Headers

Payloads Payloads

(in)

(in)

(out)

(out)

 Metadata

Control Plane

 Metadata

To/From User
Externs

Metadata

Packet
AXIS

Packet
AXIS

(in)

(A) Vitis Networking P4 Architecture.

LB
In

Single pipeline

AG

Recirculation
Forwarding

Out

CountersQuotient

T0 T1 T2 T3 Stash

CountersQuotient

T0 T1 T2 T3 Stash

CountersQuotient

T0 T1 T2 T3 Stash

CountersQuotient

T0 T1 T2 T3 Stash

(B) P4 pipeline for CHT and qCHT.

FIGURE A.1: Details of P4 FPGA programming framework and CHT
and qCHT implementation pipelines.

A.1.2 SPADA building blocks

SPADA monitoring pipelines can be built using two of the following building blocks:
MAT, (q)CHT, and pIBLT. Here, we detail their implementation in Vitis Networking
P4 while the required hardware resources with the Xilinx Alveo U280 FPGA-based
Smart-NIC as target are deferred to Appendix A.2.3.

Match Action Table. The MAT is the basic programming unit offered by the P4
language abstraction. Each MAT is defined by: what data to match on, a list of
possible actions, and an optional number of properties, e.g., size, default action, etc.
In SPADA, the MAT can be used to implement the Flow Map when FlowToSketch

mappings are statically pushed from the control plane. Its implementation in the
Vitis P4 framework is directly supported by the compiler and requires specifying
the matching key, the algorithm (exact or ternary), the action, and the table length.
The resulting block offers an AXI4 interface that can be wired to the control plane to
populate the MAT. We implement two different MATs: one matching on source IP
for cardinality estimation (use case a⃝), and one matching on TCP/IP 5-tuple for IAT
quantile estimation (use case b⃝). Both MAT actions consist of writing in the packet
metadata an integer SketchID.

Cuckoo Hash Table with quotienting. In SPADA the CHT, optionally with quo-
tienting when needed, can be used for the Flow Map or the Sketch Data. Its P4 im-
plementation requires d hash functions (implemented with externs in the Vitis P4
framework) to compute the table indexes. Unlike the MAT, implementing a CHT in
P4 is challenging due to its non-constant insertion time. Indeed, when all designated
CHT indexes for an item are occupied, in our implementation, one of them is ran-
domly chosen, replaced, and reinserted elsewhere. This would require accessing the
same memory multiple times in a pipeline, which is not allowed in P4. Hence, CHT
insertion may force recirculating keys and values (as we are monitoring, packets can
be forwarded normally), potentially impacting the processing rate of the forwarding
pipeline. To mitigate this problem, we implement a CHT with four tables, i.e., d=4,
augmented with a small memory called stash (Kirsch et al., 2010) that enables fixed
insertion time via lazy recirculation. The high-level architecture of the simple P4
pipeline is depicted in Figure A.1b (top). At key insertion, the packet first traverses
the different pipeline modules one by one, each implementing a single table Tr. If

A.1. System Implementation 119

a free position is found, then the item is inserted there; otherwise, the key is stored
in the next free slot in the stash. Our system is based on a per-epoch measurement
approach in which elements are deleted only at the end of an epoch. Hence it is safe
to insert a key in the first available slot without checking if the key is already present
in a subsequent table. We note that the same key might be stored twice in the stash,
hence possibly recirculated in two separate tables. However, at the end of the mea-
surement epoch, any duplicated value is reconciled by the control plane resolving
potential conflicts. We expect this phenomenon to be limited since CHTs are reset at
each epoch and packets of the same flow may fall in separate counters. The recircu-
lation process is triggered whenever a stash insertion makes it exceeds a predefined
threshold. In this case, we randomly pick a table Tr and insert the evicted item into it,
replacing any previously stored item. The replaced item then traverses the pipeline
starting from block r, looking for an empty memory slot among its other designated
positions in other tables. If an empty slot is found, the item is inserted there, and
the recirculation process ends; otherwise, it is stored in the stash, triggering another
recirculation.

This solution has the drawback of only recirculating one item at a time. To overcome
this limitation, we stack up to four (smaller) CHT that operate on parallel datapaths
fed by a hash-based load balancer. Each datapath features its own stash, and re-
circulation is triggered on all datapaths at the same time. We call this mechanism
“batch recirculation” since a single recirculation step moves more than one item at a
time. Note that different recirculation policies might be implemented, e.g., recircu-
late when one (aggressive) or all (conservative) stashes reach the threshold. Finally,
an output aggregator is responsible for recomposing a single output stream of pack-
ets.

Perfect Invertible Bloom Look-up Table. Due to its simple insertion routine, im-
plementing the pIBLT in P4 does not present particular challenges. Similarly to the
CHT, the P4 code employs four externs for d = 4 hashes used to identify the indexes
within each table, and another one for both the bitmap and the buckets.

Use case Pipeline LUT [K - %] LUTRAM [K - %] FF [K - %] BRAM [# - %]

- NetFPGA 125.6 - 9.6 17.1 - 2.8 201 - 7.7 279 - 13.8

a⃝
HLL Baseline 401.7 - 30.8 186.1 - 30.9 225.2 - 8.6 354 - 17.5
SPADA-HLL (static, 4 datapaths) 206.9 - 15.8 67.3 - 11.1 329 - 12.61 358 - 17.7

b⃝
DDSketch Baseline 388.7 - 30 187 - 31 237.5 - 9.1 390 - 19.3
SPADA-DDSketch (static) 183.1 - 14 57.4 - 9.5 241.7 - 9.3 390 - 19.3

c⃝ ES Baseline 387.2 - 29.7 193.8 - 32.2 227.3 - 8.7 282 - 13.9
SPADA-ES 185.9 - 14.2 66.8 - 12 248.1 - 9.5 282 - 13.9

TABLE A.1: Prototypes resources utilization.

120 Appendix A. Appendix for Chapter 3

A.1.3 SPADA-enabled monitoring pipelines

In this section, we use the building blocks described above to implement pipelines
for use cases a⃝, b⃝, and c⃝ and wrap them in the NetFPGA-Plus architecture. The
pipelines feature three P4 blocks: (i) a MAT or CHT for the Flow Map, (ii) a mid-
dle block that computes the bucket index, and (iii) a pIBLT or qCHT for storing the
sparse Sketch Data. Table A.1 contrasts the basic NetFPGA-Plus reference NIC hard-
ware requirements to the ones for HLL, DDSketch, and ElasticSketch (with m = 32
and sc = 16 bits) wrapped in this reference NIC. It also details resource usage for
static and dynamic versions as well as monitoring system baselines. In general,
we remark that the additional hardware requirements to deploy our monitoring
data plane on top of the NetFPGA-Plus reference NIC architecture are marginal,
i.e., ≈ +10%. Additionally, we note that baseline implementations require ≈ 2×
hardware resources with respect to their SPADA counterparts and would be able to
accurately monitor fewer flows in the data plane.

HLL. We implement the HLL sketching algorithm for super spreader detection (use
case a⃝) in two steps within the second and third P4 blocks above. The middle block
relies on a single extern to compute the hash of the destination IP and uses the output
to (i) identify the index of the HLL sketch bucket, and (ii) compute the value to be
stored in the bucket, i.e., the number of consecutive leading zeroes. The bucket index
is concatenated to the SketchID to build the key <SketchID, index>, and both key
and value are attached to the packet as metadata. Finally, the block implementing
the Sketch Data is responsible for checking whether the newly computed value is
greater than the one currently stored, and replacing it if so. For HLL we use smaller
sc = 8 bits counters.

DDSketch. For IAT quantile estimation (use case b⃝), the Flow Map stores the SketchID
and the timestamp of the last packet for each flow. The latter is used to compute the
IAT upon reception of a new packet. The IAT value is attached to the packet as
metadata and used by the middle block to identify the relevant DDSketch bin index

through a small MAT table. In particular, we select the longest prefix matching be-
tween the current IAT value and precomputed delimiters of DDSketch buckets. The
key is built using the <SketchID, index> pair and written in the packet metadata.
The last block is responsible for incrementing the counter stored in the correspond-
ing bucket.

ElasticSketch. For flow size estimation with ElasticSketch (use case c⃝), the first
P4 block implements the Flow Map: four hash tables constituting the heavy part that
stores elephant flows. In particular, every flow key is associated with an exact packet
counter and positive and negative votes to implement the ostracism mechanism.
Flows identified as mice by the ostracism are dynamically evicted. Mice flows are
stored in a separate Sketch Data: a single-row Count-Min Sketch (CMS). The second

A.2. Prototype Evaluation 121

P4 block computes a hash on the flow key for mice flows, thus identifying the corre-
sponding bucket within the CMS, and attaches the index as user-defined metadata.
Finally, the last block is responsible for incrementing the relevant CMS bucket. Note
that, as there is only one sketch, in this case, the key for the Sketch Data is composed
of the sole bucket index.

A.2 Prototype Evaluation

In this section we first evaluate the (q)CHT recirculation overhead and discuss its
feasibility in real systems. Then, we evaluate latency and throughput of the FPGA
implementation, both via real prototype experiments and with accurate Verilog sim-
ulations.

A.2.1 Cuckoo Hash Table recirculation overhead

In this part, we evaluate the computational overhead of SPADA-qCHT due to CHT
recirculations. For simplicity, we assume asynchronous recirculation loops in our
simulations, hence we never experience insertion failures due to stashes overload.
In this set of tests, we fix the number of CHT slots to 216, with 16 additional slots
for the stash, equally split among the available datapaths and trigger recirculation
when all stashes reach a threshold of 50%, unless otherwise specified.

Synthetic keys. We first run a stress test that consists of inserting random keys in
the CHT until a target load factor is reached. Figure A.2a (top) shows the average
recirculation rate when starting from an empty CHT. We observe that when using a
single datapath, the recirculation rate to reach a load factor of 90% is 20%. This dras-
tically improves when using four datapaths thanks to batch recirculation. Note that
additional experiments with a more aggressive policy, i.e., recirculate when at least
one stash reaches the threshold, reported up to 26% more recirculations w.r.t. the
conservative policy when using 4 datapaths. This is due to recirculations triggered
when some stashes are still empty, thus wasting available datapaths. Figure A.2a
(bottom) provides the 90th percentiles loop length when starting from non-empty
CHT, i.e., we count recirculations that occur when the CHT is at the target load in
order to evaluate the recirculation overhead in the worst case. We observe that, at
90% load, most packets trigger less than 4 recirculations (90th percentile) when us-
ing a single datapath. Recirculation is halved when using 4 datapaths, so that 90% of
the packets at 90% load trigger at most 2 recirculations. Further experiments showed
that average recirculation is much lower: at 90% load, we measured 1.6 (resp. 0.6)
loops per packet with 1 (resp. 4) datapath(s), meaning that every insertion triggered
less than one recirculation on average. Thus, in most cases, the recirculation over-
head is negligible and does not affect the system performance.

122 Appendix A. Appendix for Chapter 3

(A) w/ uniform random keys. (B) Overall — w/ real traffic. (C) Worst case — w/ real traffic.

FIGURE A.2: (a) CHT recirculation rate (top) and 90th percentile loop
length (bottom) vs. load factor with random keys. (b) Overall and (c)
worst-case recirculation rate on real traces for super spreader detec-

tion.

Real traces. We then evaluate SPADA-qCHT recirculation overhead on real traffic.
Unlike the previous analysis, we remark that on real traffic a large fraction of pack-
ets only update already occupied <SketchID, index> pairs, thus not triggering any
recirculation. Figure A.2b reports the recirculation rate with respect to the overall
number of packets. This set of results refers to the HLL use case a⃝ with m = 64
and m = 128. Simulations are performed using 1, 2, and 4 datapaths and the CHT is
dimensioned to reach 90% load factor. We observe an overall recirculation rate be-
low 2% for a single datapath and around 0.5% when using 4 datapaths with CAIDA
traces. Recirculation rate drops drastically with MAWI traces as they feature much
fewer flows, i.e., sIP in the HLL use case a⃝. Our findings assess the feasibility of
the recirculation approach in real scenarios as the extra bandwidth required to re-
circulate is negligible. Figure A.2c reports worst-case values, which correspond to a
fully loaded table (around 90%). In this case, the recirculation rate is much higher
but stays below 5% when 4 datapaths are used. Other data plane applications that
exploit recirculation exhibit similar, e.g., (Sonchack et al., 2021) with 2% on average,
or higher, e.g., (Sengupta et al., 2022) with 16% in worst-case, recirculation rates.

A.2.2 FPGA implementation evaluation

Finally, we evaluate throughput and latency of our SPADA-qCHT FPGA implemen-
tation through real FPGA experiments and clock cycle-accurate Verilog simulations.
The latter enables better visibility of latency degradation since it usually corresponds
to a few clock cycles over the 960 ns of the plain Open NIC Shell. Note that SPADA
is a passive monitoring system, meaning that monitoring logic does not delay in-
coming packets or influence forwarding decisions. Thus, any additional latency in-
troduced by SPADA is due to (i) the arbiter that multiplexes input packets and (ii)
processing of recirculated packets.

Figure A.3 shows CHT per-packet latency of the SPADA-qCHT Verilog simulation at
maximum throughput, varying the insertion rate, that is, how many packets trigger
the insertion of a new key. Note that the latency in the figure does not take into
account the latency overhead of the Xilinx Open NIC Shell used to host the system.

A.2. Prototype Evaluation 123

(A) Single datapath. (B) 2 datapaths.

FIGURE A.3: FPGA insertion latency vs. load factor at different inser-
tion rates (average over 100 runs).

With a single datapath, latency is≈40 clock cycles (200 ns) for a low CHT load factor,
i.e., <65%. At 90% load, latency increases to more than 200 clock cycles (1000 ns) in
the worst case that every packet triggers a new CHT insertion. However, the latency
increase is much more limited at lower insertion rates, and becomes negligible when
performing 1 insertion every 20 packets. Note that in CAIDA and MAWI traces,
worst case insertion rate is 1 every 38 packets. As depicted in Figure A.3b, when
using 2 datapaths, we do not observe latency increase even at very high load factors
and insertion rates (4 datapaths not shown as results are similar).

Concerning throughput, our simulations show no throughput degradation and no-
failure insertions up to 85% load factor for a single datapath, and up to 89.0% for 2
datapaths, and 4 datapaths also in the worst case of 1 insertion at every packet. This
is mainly because we clock the system at 180 MHz, and the maximum throughput
with minimum size packets (64B) at 100 Gbps is 144 Mpps thereby leaving 36 Mpps
for packet recirculations. To confirm the Verilog simulations we tested our FPGA
prototype with minimum-sized packets at maximum throughput. The experiments
confirm no throughput degradation, while the measured latency is 1160ns, that is
200 ns latency due to SPADA-qCHT plus 960 ns overhead given by the Xilinx Open
NIC Shell.

A.2.3 FPGA resource requirements

Table A.2 reports the hardware resource requirements for SPADA building blocks
namely MAT, CHT, qCHT, and pIBLT. Data structures are dimensioned for 214 en-
tries in the Flow Map, each with 216 buckets of 16 bits in the Sketch Data, assuming
“virtual sketches” with m=32 buckets unless otherwise specified. The table reports
the number of LUTs (expressed in thousands, K, and in percentage, %) used as logic,
those used as distributed RAMs (LUTRAM), and the number of Flip-Flops (FF) and
Block RAMs (BRAM). It is worth mentioning that due to the Vitis P4 framework ar-
chitecture, the MAT Table A.2 (top) is mainly mapped to the BRAM memory element
and that, as expected, the 5-tuple one requires more resources as it has a bigger flow
key.

124 Appendix A. Appendix for Chapter 3

Datapaths Building Block LUT [K - %] LUTRAM [K - %] FF [K - %] BRAM [# - %]

- MAT (Src IP) 7.3 - 0.57 2.3 - 0.4 12.2 - 0.47 73 - 3.62
- MAT (5-tuple) 10.3 - 0.8 2.8 - 0.5 18.4 - 0.71 109 - 5.41

1 CHT 53.2 - 4.09 43.7 - 7.27 41.6 - 1.6 1 - 0.05
qCHT 37.3 - 2.87 29.3 - 4.88 32.2 - 1.24 1 - 0.05

2 CHT 57.8 - 4.44 43.3 - 7.21 58.2 - 2.32 3 - 0.15
qCHT 48.3 - 3.71 34.9 - 5.81 57.8 - 2.22 3 - 0.15

4 CHT 80 - 6.14 53.8 - 8.96 109.5 - 4.20 5 - 0.25
qCHT 70.9 - 5.44 46.2 - 7.70 108.8 - 4.17 5 - 0.25

- pIBLT 40.5 - 3.11 35.4 - 5.9 8.8 - 0.34 1 - 0.05

TABLE A.2: MAT, (q)CHT, and pIBLT resources utilization.

Table A.2 (middle) details the FPGA hardware resources required by CHT and qCHT
with 1, 2, and 4 datapaths, for m = 32. We recall that the qCHT is a CHT that stores
a quotient instead of the full key, hence saving a significant amount of memory as
the table highlights. The extra memory (mainly BRAM) for multiple datapaths is
due to the load balancing and interconnection overhead. This overhead is fixed, i.e.,
does not depend on the hash table size, and is also related to the specific synthesizer
optimizations. In particular, we observed that the memory required to synthesize a
single datapath diminishes by increasing the number of datapaths. With multiple
datapaths, such memory reduction may compensate for the extra memory required
by the load balancer.

Table A.2 (bottom) details the memory requirements for the pIBLT with 216 counters
and a bitmap B of size 219 bits, assuming “virtual sketches” with m = 32. It is worth
mentioning that in this case pIBLT occupies fewer resources with respect to qCHT.
This is mainly due to the limited amount of sketch counters m. Increasing m would
lead to a bigger bitmap B and hence bigger pIBLT.

125

Appendix B

Appendix for Chapter 4

B.1 Additional Model Analysis

Here we provide additional analysis on the data used for training and evaluation
and on the model itself. In particular, in Figure B.1 we analyze the flow size distri-
butions of each trace, broken down by protocol. As expected, ICMP traffic features
shorter flows. We report model performance including ICMP traffic in Figure B.2,
while we based our evaluation on combined TCP and UDP traffic in the chapter.

0
50

100

CD
F

[%
]

Top 1%: 408 pk
5pk

CAIDA

0
50

100

CD
F

[%
]

Top 1%: 17 pk
5pk

MAWI

101 103 105

Flow size (TCP)
0

50
100

CD
F

[%
]

Top 1%: 29 pk
5pk

UNI

0
50

100

CD
F

[%
]

Top 1%: 38 pk
5pk

CAIDA

0
50

100

CD
F

[%
]

Top 1%: 12 pk
5pk

MAWI

101 103 105

Flow size (UDP)
0

50
100

CD
F

[%
]

Top 1%: 1025 pk
5pk

UNI

0
50

100

CD
F

[%
]

Top 1%: 15 pk
5pk

CAIDA

0
50

100

CD
F

[%
]

Top 1%: 1 pk

MAWI

100 101 102

Flow size (ICMP)
0

50
100

CD
F

[%
]

Top 1%: 5 pk

UNI

FIGURE B.1: Flow sizes distributions by protocol for the 50th minute
of each trace.

13:05 13:20 13:35 13:500.3
0.5
0.7
0.9

AP
 sc

or
e

CAIDA

UDP 1pk ICMP 1pk

18:50 19:05 19:20 19:350.3
0.5
0.7
0.9

AP
 sc

or
e

MAWI

All protos 1pk TCP 1pk

UDP 1pk ICMP 1pk

All protos 1pk TCP 1pk

13:05 13:20 13:35 13:50
0.2
0.4
0.6

AP
 sc

or
e

CAIDAOurs 5pk
Ours 1pk

pHeavy 5pk
pHeavy 16/18 pk

18:50 19:05 19:20 19:35
0.3
0.5
0.7
0.9

AP
 sc

or
e

MAWI

Ours 5pk
Ours 1pk

pHeavy 5pk
pHeavy 16/18 pk

101 102 103
Memory [KB]

0.0

0.2

0.4

0.6

0.8

1.0

Av
g.

 A
P

sc
or

e

4422 KB

1622 KB

501 KB

50 KB

13 KB

CAIDA

original
quantized
pruned+quantized
strongpruned+quantized
pHeavy 33

75
10

37
51

3
62-40.0

0.2

0.4

0.6

0.8

1.0

original 5pk
quantized 5pk
pruned+quantized 5pk
ultrapruned+quantized 5pk
pHeavy 16pk

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

13:15 13:35 Break 19:00 19:20
CAIDA MAWI

0.0

0.2

0.4

0.6

0.8

1.0

AP
 sc

or
e

model CAIDA
model MAWI

active model
FNR
active model
FNR

13
h0

5
13

h1
5
13

h2
5
13

h3
5
13

h4
5
Brea

k
18

h5
0
19

h0
0
19

h1
0
19

h2
0
19

h3
0

CAIDA MAWI

0.0

0.2

0.4

0.6

0.8

1.0

F1
 sc

or
e

FIGURE B.2: Model evaluation including all three protocols (i.e., TCP,
UDP and ICMP) on CAIDA and MAWI. The large volume of ICMP

flows makes the classification task easier, especially on MAWI.

126 Appendix B. Appendix for Chapter 4

FIGURE B.3: Xilinx Vivado block diagram of the DUMBO pipeline
for a simplified 3-layer RF model and 3-stage Flow Manager.

B.2 System Prototype

In this section, we provide details on the implementation of DUMBO on a Xilinx
FPGA-based SmartNIC target. We deferred this implementation work here because
it has not been conducted as part of the PhD program and was the responsibility of
external collaborators from Sapienza University, Rome.

We realize a fully working prototype wrapping the DUMBO architecture into the
Xilinx OpenNIC shell (AMD OpenNIC Project 2023), providing a system able to pro-
cess a 100 GbE link. We consider the flow size estimation use case, where the Mice
Tracker is a Count-Min Sketch with 4 × 214 buckets of 2 bytes and the Elephant
Tracker is a hash table with 4× 212 slots containing exact counters. The Flow Man-
ager is composed of a total of 215 slots. For the RF hybrid implementation, we imple-
ment a model composed of 33 trees with a maximum depth maxt∈RF(Dt) = 23 levels
and a maximum number of nodes per layer of N = 940. Thus, we fix the threshold
to switch from the full tree implementation to the indexed encoding at M = 10. All
the syntheses have been carried out targeting the AMD-Xilinx Alveo U280 and an
operating frequency of 180 MHz, which is more than the one needed to sustain the
full throughput of 144 Mpps, i.e., the maximum rate for a 100 GbE link.

Figure B.3 depicts the main DUMBO building blocks where, for the sake of clarity,
we only show a 3-layer tree instead of the full RF model and a 3-stage Flow Manager.
Packets flow from left to right, neglecting the light grey blocks which contain minor
glue logic. First, packets traverse the Elephant Tracker, then three levels of Flow
Manager, three layers of decision tree, and are finally directed to the Mice Tracker
or the Elephant Tracker based on the prediction. Finally, packet and byte counters
are disseminated into the OpenNIC shell to monitor the datapath and identify the
location of possible packet drops.

Table B.1 reports the FPGA resource consuption of the full system and of the DUMBO
pipeline (neglecting the OpenNIC shell). The full system requires less than 15% of

B.3. Additional Trade-offs Analysis 127

DUMBO Full system

CLB LUTs 93878 (7.20%) 187419 (14.38%)
CLB Registers 242467 (9.30%) 369083 (14.16%)
Block RAM 717 (35.57%) 860.5 (42.68%)

TABLE B.1: DUMBO prototype resources utilization.

available logic resources and ≈40% of memory resources. Note that a significant
fraction of logic resources is due to the fixed overhead of the OpenNIC infrastruc-
ture. Instead, if needed, DUMBO resources can be augmented in terms of memory
for Elephant and Mice Trackers and a larger RF Model.

For performance, we measured FPGA throughput and latency. The full system is
able to sustain the full 100 GbE throughput regardless of packet size. To assess the
latency of the prototype, we test both the full system included in the shell and the
plain OpenNIC shell without the DUMBO pipeline. The baseline OpenNIC shell
has a latency of around 960 ns. For the whole system, as we consider the flow size
estimation use case which is a pure monitoring application, the forwarding decision
is taken independently from the counting procedure. Thus, there is no latency degra-
dation due to the Machine Learning pipeline. If instead we consider the scheduling
use case, the packet is classified after traversing the Elephant Tracker and Flow Man-
ager blocks, inducing an additional latency of 14 clock cycles (≈70 ns).

B.3 Additional Trade-offs Analysis

Here we provide additional results on the CAIDA trace concerning the trade-offs
between memory overhead and end-to-end performance, and how these are im-
pacted by the model mispredictions. Similar to the analyses presented in the techni-
cal chapter, we simulate various misprediction rates taking into account that ≈20K
flows are classified as elephants. Note that these rates are simulated by tweaking
the confusion matrix, thus, the resulting predictions do not depend on actual flow
features but are instead stochastic. Figure B.4ab show the impact of elephants and
mice mispredictions varying memory overhead on combined TCP and UDP traffic
(Figure B.4a also appears in the technical chapter), while Figure B.5ab show results
for TCP-only traffic. Additionally, we show in Figure B.4c and Figure B.5c how the
offline AP-score metric translates into end-to-end average weighted absolute error
for combined TCP and UDP traffic, and TCP-only respectively. Last, in Figure B.6
and Figure B.7 we show how changing the misprediction rates affects the Mean Rel-
ative Error (MRE) when computing multiple quantiles for the IAT estimation use
case, respectively on TCP+UDP and TCP-only traffic (Figure B.6c also appears in
the main chapter). Note that the DUMBO marker (black star) corresponds to the ac-
tual model performance while solid lines refer to simulated performance trade-offs
by artificially modifying the model confusion matrix.

128 Appendix B. Appendix for Chapter 4

200 400 600 800 1000
Model size [KB]

600 800 1000 1200 1400
ML pipeline overhead [KB]

10

20

30

40

50
AW

AE
Elephants mispredictions:

10%
20%
30%

40%
60%
80%

DUMBO
(pHeavy AWAE=214)

oracle CMS ElasticSketch

(A) Impact of FNR.

200 400 600 800 1000
Model size [KB]

600 800 1000 1200 1400
ML pipeline overhead [KB]

10

20

30

40

50

AW
AE

Mice mispredictions:
2.5%
3.0%
3.5%

4.0%
4.5%
5.0%

DUMBO
(pHeavy AWAE=214)

oracle CMS ElasticSketch

(B) Impact of FPR.

200 400 600 800 1000
Model size [KB]

600 800 1000 1200 1400
ML pipeline overhead [KB]

10

20

30

40

50

AW
AE

Model AP-score:
0.1
0.2
0.4

0.6
0.8
0.9

DUMBO
(pHeavy AWAE=214)

oracle CMS ElasticSketch

(C) Impact of AP score.
FIGURE B.4: Impact of mispredictions on flow size estimation use

case (TCP and UDP).

200 400 600 800 1000
Model size [KB]

600 800 1000 1200 1400
ML pipeline overhead [KB]

10

20

30

40

50

AW
AE

Elephants mispredictions:
10%
20%
30%

40%
60%
80%

DUMBO
(pHeavy AWAE=208)

oracle CMS ElasticSketch

(A) Impact of FNR.

200 400 600 800 1000
Model size [KB]

600 800 1000 1200 1400
ML pipeline overhead [KB]

10

20

30

40

50

AW
AE

Mice mispredictions:
2.0%
2.5%
3.0%

3.5%
4.0%
4.5%

DUMBO
(pHeavy AWAE=208)

oracle CMS ElasticSketch

(B) Impact of FPR.

200 400 600 800 1000
Model size [KB]

600 800 1000 1200 1400
ML pipeline overhead [KB]

10

20

30

40

50

AW
AE

Model AP-score:
0.1
0.2
0.4

0.6
0.8
0.9

DUMBO
(pHeavy AWAE=208)

oracle CMS ElasticSketch

(C) Impact of AP score.
FIGURE B.5: Impact of mispredictions on flow size estimation use

case (TCP only).

0.0 0.2 0.4 0.6 0.8 1.0
Elephants mispredictions

0.107

0.108

0.109

0.110

M
ea

n
re

la
tiv

e
er

ro
r Baselines

32 bins 1 byte
2x memory

0.023 0.028 0.033 0.037 0.042 0.047
Mice mispredictions

hint-based (synth) DUMBOhint-based (synth) DUMBO

(A) 75-th quantile.

0.0 0.2 0.4 0.6 0.8 1.0
Elephants mispredictions

0.106

0.108

0.110

0.112

M
ea

n
re

la
tiv

e
er

ro
r Baselines

32 bins 1 byte
2x memory

0.023 0.028 0.033 0.037 0.042 0.047
Mice mispredictions

hint-based (synth) DUMBOhint-based (synth) DUMBO

(B) 90-th quantile.

0.0 0.2 0.4 0.6 0.8 1.0
Elephants mispredictions

0.105

0.110

0.115

0.120

0.125

M
ea

n
re

la
tiv

e
er

ro
r Baselines

32 bins 1 byte
2x memory

0.023 0.028 0.033 0.037 0.042 0.047
Mice mispredictions

hint-based (synth) DUMBOhint-based (synth) DUMBO

(C) 95-th quantile.

0.0 0.2 0.4 0.6 0.8 1.0
Elephants mispredictions

0.10

0.15

0.20

M
ea

n
re

la
tiv

e
er

ro
r Baselines

32 bins 1 byte
16 bins 2 byte
2x memory

0.023 0.028 0.033 0.037 0.042 0.047
Mice mispredictions

hint-based (synth) DUMBOhint-based (synth) DUMBO

(D) 99-th quantile.
FIGURE B.6: Impact of mispredictions on IAT use case (TCP and

UDP).

0.0 0.2 0.4 0.6 0.8 1.0
Elephants mispredictions

0.127

0.128

0.129

0.130

0.131

M
ea

n
re

la
tiv

e
er

ro
r Baselines

32 bins 1 byte
2x memory

0.019 0.023 0.027 0.03 0.034 0.038
Mice mispredictions

hint-based (synth) DUMBOhint-based (synth) DUMBO

(A) 75-th quantile.

0.0 0.2 0.4 0.6 0.8 1.0
Elephants mispredictions

0.126

0.128

0.130

0.132

0.134

M
ea

n
re

la
tiv

e
er

ro
r Baselines

32 bins 1 byte
2x memory

0.019 0.023 0.027 0.03 0.034 0.038
Mice mispredictions

hint-based (synth) DUMBOhint-based (synth) DUMBO

(B) 90-th quantile.

0.0 0.2 0.4 0.6 0.8 1.0
Elephants mispredictions

0.13

0.14

0.15

M
ea

n
re

la
tiv

e
er

ro
r Baselines

32 bins 1 byte
2x memory

0.019 0.023 0.027 0.03 0.034 0.038
Mice mispredictions

hint-based (synth) DUMBOhint-based (synth) DUMBO

(C) 95-th quantile.

0.0 0.2 0.4 0.6 0.8 1.0
Elephants mispredictions

0.10

0.15

0.20

0.25

M
ea

n
re

la
tiv

e
er

ro
r Baselines

32 bins 1 byte
16 bins 2 byte
2x memory

0.019 0.023 0.027 0.03 0.034 0.038
Mice mispredictions

hint-based (synth) DUMBOhint-based (synth) DUMBO

(D) 99-th quantile.
FIGURE B.7: Impact of mispredictions on IAT use case (TCP only).

129

Appendix C

Appendix for Chapter 5

C.1 Affinity Scores Computation

In Table C.1, we detail the computation of each selected affinity score. Considering
two tasks t1 = a and t2 = b and a batch of examples X , we denote:

• their resp. losses functions La and Lb

• their resp. STL models STLa and STLb with losses

• LSTLa = La(X , STLa)

• LSTLb = Lb(X , STLb)

• their joint MTL model MTL(a,b) with loss

• LMTL(a,b) = La(X , MTL(a,b)) + Lb(X , MTL(a,b))

Note that if the score is symmetric, it assesses how much the two tasks help each
other regardless of direction. If it is asymmetric, it considers how much the target
task a benefits from being learned with the partner task b. While all scores could not
be constrained to lie in the same range, higher always means more affinity.

130 Appendix C. Appendix for Chapter 5

Affinity
scoring Type Computation Comment Range

Taxonomic.
distance

(TD)

Model-
agn. Distance between tasks in a taxonomy tree.

Symmetric.
Taxonomy

borrowed from
(Zamir et al.,

2018). Multiplied
by −1 for

consistency i.e.,
higher is better.

]−∞, 0]

Input
attr.

similarity
(IAS)

STL-
based

1
|X | ∑

x∈X
Scos(Attr(STLa, x), Attr(STLb, x)), (C.1)

where Scos is cosine similarity, X denotes a batch
of examples and Attr the attribution method used.

Symmetric.
Revisited from

(Song et al., 2019).
Computed on
a subset of the
test set (2,048
images) using

InputXGradient
attribution
(Shrikumar
et al., 2017).

[−1,+1]

Repr.
similarity
analysis
(RSA)

STL-
based

RSA(θBa, θBb,X), (C.2)

where RSA denotes the Representation
Similiarity Analysis, X a batch of exam-
ples, θBa and θBb the backbone weights

of the STL models for tasks a and b resp.

Symmetric.
Revisited from
(Dwivedi and
Roig, 2019).

Computed on a
subset of the test

set (2,048 images).

[−1,+1]

Label
injection

(LI)

STL-
based

LSTLa −LSTLa←b

LSTLa←b

, (C.3)

where STLa←b represents the STL model for
task a, modified to ingest the corresponding

label from task b in addition to the input.

Asymmetric.
Novel proposal.

Computed
using test losses.

]−∞,+∞[

Gradient
similarity

(GS)

MTL-
based

1
N

N

∑
i=1

Scos(
∂La(X , θi

B, θi
Ha)

∂θi
B

,
∂Lb(X , θi

B, θi
Hb)

∂θi
B

),

(C.4)
where N denotes the number of training

epochs, Scos the cosine similarity, X a batch
of examples, θi

B the weights of the common
MTL backbone at the ith epoch, θi

Ha and θi
Hb the

weights of the heads for a and b at the ith epoch.

Symmetric.
Borrowed from

(Fifty et al., 2021;
Zhao et al., 2018).

[−1,+1]

Gradient
transf.
(GT)

MTL-
based

1
N

N

∑
i=1

1−
La(X , θi+1

B|b , θi
Ha)

La(X , θi
B, θi

Ha)
, (C.5)

where N denotes the number of training epochs,
X a batch of examples, θi+1

B|b the weights of the
common MTL backbone updated using the loss

of task b at the epoch i + 1, θi
Ha and θi

Hb the
weights of the heads for a and b at the ith epoch.

Asymmetric.
Borrowed from

(Fifty et al., 2021).
]−∞,+∞[

TABLE C.1: Tasks affinity scores description and computation consid-
ering two tasks t1 = a and t2 = b.

C.2. Taskonomy Buildings 131

C.2 Taskonomy Buildings

We split our subset of the Taskonomy dataset into train, validation and test sets, on
a per-building basis.

Train set These buildings amount to 603,437 input images.

• adairsville

• airport

• albertville

• anaheim

• ancor

• andover

• annona

• arkansaw

• athens

• bautista

• bohemia

• bonesteel

• bonnie

• broseley

• browntown

• byers

• scioto

• nuevo

• goodfield

• donaldson

• hanson

• merom

• klickitat

• onaga

• leonardo

• marstons

• newfields

• pinesdale

• lakeville

• cosmos

• benevolence

• pomaria

• tolstoy

• shelbyville

• allensville

• wainscott

• beechwood

• coffeen

• stockman

• hiteman

• woodbine

• lindenwood

• forkland

• mifflinburg

• ranchester

• springerville

• swisshome

• westfield

• willow

• winooski

• hainesburg

• irvine

• pearce

• thrall

• tilghmanton

• uvalda

• sugarville

• silas

Validation set These buildings amount to 82,345 input images.

• corozal

• collierville

• markleeville

• darden

• chilhowie

• churchton

• cauthron

• cousins

• timberon

132 Appendix C. Appendix for Chapter 5

• wando

Test set These buildings amount to 40,367 input images.

• ihlen

• muleshoe

• noxapater

• mcdade

C.3 Affinity Scores Raw Values

In Table C.2 to C.7, we report the raw affinities estimations for all tasks, using each
affinity scoring technique. Results are rounded at the second decimal.

Affinities estimations
with SemSeg Keypts Edges Depth Normal

SemSeg - -8 -6 -8 -5
Keypts -8 - -4 -12 -9
Edges -6 -4 - -10 -7
Depth -8 -12 -10 - -5

Normal -5 -9 -7 -5 -

TABLE C.2: Taxonomical distance (TD). Distance between tasks
in the similarity tree from (Zamir et al., 2018). Multiplied by −1 for

consistency (i.e., higher means more affinity).

Affinities estimations
with SemSeg Keypts Edges Depth Normal

SemSeg - 0.25 0.23 0.31 0.45
Keypts 0.25 - 0.52 0.18 0.23
Edges 0.23 0.52 - 0.18 0.22
Depth 0.31 0.18 0.18 - 0.29

Normal 0.45 0.23 0.22 0.29 -

TABLE C.3: Input attribution similarity (IAS). Cosine simi-
larity between STL models attribution maps.

Affinities estimations
with SemSeg Keypts Edges Depth Normal

SemSeg - 0.33 0.37 0.46 0.46
Keypts 0.33 - 0.66 0.04 0.05
Edges 0.37 0.66 - 0.12 0.13
Depth 0.46 0.04 0.12 - 0.69

Normal 0.46 0.05 0.13 0.69 -

TABLE C.4: Representation similarity analysis (RSA). Repre-
sentation similarity analysis using the STL models backbones output.

C.3. Affinity Scores Raw Values 133

Affinities estimations
with SemSeg Keypts Edges Depth Normal

SemSeg - -2.93 -3.50 -3.07 +3.70
Keypts -8.47 - +4.97 -8.31 +1.42
Edges -15.93 -4.20 - -9.58 +2.42
Depth +4.04 -3.34 -1.26 - +20.29

Normal +25.68 +60.29 +23.79 +66.30 -

TABLE C.5: Label injection (LI). Performance gain (%) when in-
corporating the label from the partner task in the STL model’s input,

relative to standard STL.

Affinities estimations
with SemSeg Keypts Edges Depth Normal

SemSeg - 0.51 0.39 1.93 1.54
Keypts 0.51 - 1.89 0.75 1.0
Edges 0.39 1.89 - 0.92 0.59
Depth 1.93 0.75 0.92 - 8.40

Normal 1.54 1.0 0.59 8.40 -

TABLE C.6: Gradient similarity (GS). Cosine similarity between
task-specific gradient updates on the MTL backbone. Averaged

across all training epochs. Multiplied by 100.

Affinities estimations
with SemSeg Keypts Edges Depth Normal

SemSeg - +0.02 +0.25 +1.69 +0.74
Keypts -0.03 - +0.38 -0.01 +0.01
Edges -0.20 +0.71 - +0.19 +0.27
Depth +0.47 +0.01 +0.15 - +0.90

Normal +0.27 +0.03 +0.16 +1.26 -

TABLE C.7: Gradient transference (GT). Look-ahead ratio simu-
lating the effect of applying task-specific updates to the MTL back-

bone for the other task. Averaged across all training epochs.

135

Bibliography

Abbasloo, Soheil, Chen-Yu Yen, and H. Jonathan Chao (2020). “Classic Meets Mod-
ern: A Pragmatic Learning-Based Congestion Control for the Internet”. In: Pro-
ceedings of the Annual Conference of the ACM Special Interest Group on Data Com-
munication on the Applications, Technologies, Architectures, and Protocols for Computer
Communication. SIGCOMM ’20. Virtual Event, USA: Association for Computing
Machinery, 632–647. ISBN: 9781450379557. DOI: 10.1145/3387514.3405892.

Aceto, Giuseppe et al. (2019). “MIRAGE: Mobile-app Traffic Capture and Ground-
truth Creation”. In: 2019 4th International Conference on Computing, Communications
and Security (ICCCS), pp. 1–8. DOI: 10.1109/CCCS.2019.8888137.

Achille, Alessandro et al. (2019). “Task2vec: Task embedding for meta-learning”. In:
Proceedings of the IEEE/CVF international conference on computer vision, pp. 6430–
6439.

Addanki, Vamsi, Maciej Pacut, and Stefan Schmid (2024). “Credence: Augmenting
Datacenter Switch Buffer Sharing with ML Predictions”. In: 21st USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI’24).

Agrawal, Anurag and Changhoon Kim (2020). “Intel Tofino2 – A 12.9Tbps P4-Programmable
Ethernet Switch”. In: 2020 IEEE Hot Chips 32 Symposium (HCS), pp. 1–32. DOI:
10.1109/HCS49909.2020.9220636.

Akem, Aristide Tanyi-Jong, Michele Gucciardo, and Marco Fiore (2023). “Flowrest:
Practical Flow-Level Inference in Programmable Switches with Random Forests”.
In: Proceedings of IEEE International Conference on Computer Communications (INFO-
COM).

Akem, Aristide Tanyi-Jong et al. (2022). “Henna: Hierarchical machine learning in-
ference in programmable switches”. In: Proceedings of the 1st International Workshop
on Native Network Intelligence.

Alizadeh, Mohammad et al. (2010). “Data center tcp (dctcp)”. In: Proceedings of the
ACM SIGCOMM 2010 Conference, pp. 63–74.

Alizadeh, Mohammad et al. (2013). “pfabric: Minimal near-optimal datacenter trans-
port”. In: ACM SIGCOMM Computer Communication Review 43.4, pp. 435–446.

https://doi.org/10.1145/3387514.3405892
https://doi.org/10.1109/CCCS.2019.8888137
https://doi.org/10.1109/HCS49909.2020.9220636

136 Bibliography

AMD (2023). Xilinx Vitis Networking P4, https: // www. xilinx. com/ products/

intellectual-property/ ef-di-vitisnetp4. html . AMD Inc. (Visited on 06/22/2023).

AMD OpenNIC Project (2023). https://github.com/Xilinx/open-nic.

Amit, Yali and Donald Geman (1997). “Shape quantization and recognition with ran-
domized trees”. In: Neural computation 9.7, pp. 1545–1588.

Amodei, Dario et al. (2016). “Concrete problems in AI safety”. In: arXiv preprint
arXiv:1606.06565.

Ando, Rie Kubota, Tong Zhang, and Peter Bartlett (2005). “A framework for learn-
ing predictive structures from multiple tasks and unlabeled data.” In: Journal of
Machine Learning Research 6.11.

Arasu, Arvind and Gurmeet Singh Manku (2004). “Approximate Counts and Quan-
tiles over Sliding Windows”. In: Proceedings of the Twenty-Third ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems. PODS ’04. Paris,
France: Association for Computing Machinery, 286–296. ISBN: 158113858X. DOI:
10.1145/1055558.1055598.

Arp, Daniel et al. (2022). “Dos and don’ts of machine learning in computer security”.
In: 31st USENIX Security Symposium (USENIX Security 22), pp. 3971–3988.

Arzani, Behnaz et al. (2018). “007: Democratically Finding the Cause of Packet Drops”.
In: 15th USENIX Symposium on Networked Systems Design and Implementation (NSDI
18). USENIX Association, pp. 419–435. ISBN: 978-1-939133-01-4. URL: https://
www.usenix.org/conference/nsdi18/presentation/arzani.

Atmaja, Bagus Tris, Akira Sasou, and Masato Akagi (2022). “Survey on bimodal
speech emotion recognition from acoustic and linguistic information fusion”. In:
Speech Communication.

Azorin, Raphael et al. (2021). “Towards a Generic Deep Learning Pipeline for Traf-
fic Measurements”. In: Proceedings of the CoNEXT Student Workshop. CoNEXT-SW
’21. Virtual Event, Germany: Association for Computing Machinery, 5–6. ISBN:
9781450391337. DOI: 10.1145/3488658.3493785.

Azorin, Raphael et al. (2023). “It’s a Match! A Benchmark of Task Affinity Scores for
Joint Learning”. In: Association for the Advancement of Artificial Intelligence (AAAI).
2nd International Workshop on Practical Deep Learning in the Wild. Washington D.C.,
USA. URL: https://arxiv.org/pdf/2301.02873.pdf.

Azorin, Raphael et al. (Mar. 2024). “Taming the Elephants: Affordable Flow Length
Prediction in the Data Plane”. In: Proceedings of the ACM on Networking 2.CoNEXT1.
DOI: 10.1145/3649473.

https://www.xilinx.com/products/intellectual-property/ef-di-vitisnetp4.html
https://www.xilinx.com/products/intellectual-property/ef-di-vitisnetp4.html
https://github.com/Xilinx/open-nic
https://doi.org/10.1145/1055558.1055598
https://www.usenix.org/conference/nsdi18/presentation/arzani
https://www.usenix.org/conference/nsdi18/presentation/arzani
https://doi.org/10.1145/3488658.3493785
https://arxiv.org/pdf/2301.02873.pdf
https://doi.org/10.1145/3649473

Bibliography 137

Banino, Andrea et al. (2018). “Vector-based navigation using grid-like representa-
tions in artificial agents”. In: Nature 557.7705, pp. 429–433.

Bar-Yossef, Ziv et al. (2002). “Counting Distinct Elements in a Data Stream”. In: Ran-
domization and Approximation Techniques in Computer Science. Ed. by José D. P. Rolim
and Salil Vadhan. RANDOM 2002. Springer, pp. 1–10. ISBN: 978-3-540-45726-8.

Barbette, Tom et al. (Feb. 2020). “A High-Speed Load-Balancer Design with Guar-
anteed Per-Connection-Consistency”. In: 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20). USENIX Association, pp. 667–683.
ISBN: 978-1-939133-13-7.

Barut, Onur et al. (2021). “Multi-task hierarchical learning based network traffic an-
alytics”. In: ICC 2021-IEEE International Conference on Communications. IEEE, pp. 1–
6.

Behringer, Michael H. et al. (May 2021). A Reference Model for Autonomic Networking.
RFC 8993. DOI: 10.17487/RFC8993. URL: https://www.rfc-editor.org/info/
rfc8993.

Ben Basat, Ran et al. (2017). “Optimal elephant flow detection”. In: IEEE INFOCOM
2017-IEEE Conference on Computer Communications. IEEE, pp. 1–9.

Ben Basat, Ran et al. (2020a). “Designing heavy-hitter detection algorithms for pro-
grammable switches”. In: IEEE/ACM Transactions on Networking 28.3, pp. 1172–
1185.

Ben Basat, Ran et al. (2020b). “PINT: Probabilistic In-Band Network Telemetry”. In:
Proceedings of the Annual Conference of the ACM Special Interest Group on Data Com-
munication on the Applications, Technologies, Architectures, and Protocols for Computer
Communication. SIGCOMM ’20. Virtual Event, USA: Association for Computing
Machinery, 662–680. ISBN: 9781450379557. DOI: 10.1145/3387514.3405894.

Benson, Theophilus, Aditya Akella, and David A Maltz (2010). “Network traffic
characteristics of data centers in the wild”. In: Proceedings of the 10th ACM SIG-
COMM conference on Internet measurement, pp. 267–280.

Benson, Theophilus et al. (2011). “MicroTE: Fine Grained Traffic Engineering for
Data Centers”. In: Proceedings of the Seventh COnference on Emerging Networking
EXperiments and Technologies. CoNEXT ’11. Tokyo, Japan: Association for Comput-
ing Machinery. ISBN: 9781450310413. DOI: 10.1145/2079296.2079304.

Biau, Gérard and Erwan Scornet (2016). “A random forest guided tour”. In: arXiv
preprint arXiv:1511.05741.

Bickel, Steffen et al. (2008). “Multi-task learning for HIV therapy screening”. In: Pro-
ceedings of the 25th International Conference on Machine Learning. ICML ’08. Helsinki,

https://doi.org/10.17487/RFC8993
https://www.rfc-editor.org/info/rfc8993
https://www.rfc-editor.org/info/rfc8993
https://doi.org/10.1145/3387514.3405894
https://doi.org/10.1145/2079296.2079304

138 Bibliography

Finland: Association for Computing Machinery, 56–63. ISBN: 9781605582054. DOI:
10.1145/1390156.1390164.

Bingel, Joachim and Anders Søgaard (2017). “Identifying beneficial task relations for
multi-task learning in deep neural networks”. In: arXiv preprint arXiv:1702.08303.

Bloom, Burton H (1970). “Space/time trade-offs in hash coding with allowable er-
rors”. In: Communications of the ACM 13.7, pp. 422–426.

Bobda, Christophe et al. (2022). “The future of FPGA acceleration in datacenters and
the cloud”. In: ACM Transactions on Reconfigurable Technology and Systems (TRETS)
15.3, pp. 1–42.

Boutaba, Raouf et al. (2018). “A comprehensive survey on machine learning for net-
working: evolution, applications and research opportunities”. In: Journal of Internet
Services and Applications 9.1, pp. 1–99.

Breiman, Leo (2001). “Random Forests”. In: Machine Learning 45.

– (2017). Classification and regression trees. Routledge.

Bronzino, Francesco et al. (2021). “Traffic Refinery: Cost-Aware Data Representation
for Machine Learning on Network Traffic”. In: Proc. ACM Meas. Anal. Comput. Syst.
5.3. DOI: 10.1145/3491052.

Brown, Tom et al. (2020). “Language models are few-shot learners”. In: Advances in
neural information processing systems 33, pp. 1877–1901.

Busato, Federico et al. (2018). “Hornet: An Efficient Data Structure for Dynamic
Sparse Graphs and Matrices on GPUs”. In: 2018 IEEE High Performance extreme
Computing Conference (HPEC), pp. 1–7. DOI: 10.1109/HPEC.2018.8547541.

Busse-Grawitz, Coralie et al. (2022). pForest: In-Network Inference with Random Forests.
arXiv: 1909.05680 [cs.NI].

Caruana, Rich (1997). “Multitask learning”. In: Machine learning 28.1, pp. 41–75.

Chaudet, Claude et al. (2005). “Optimal positioning of active and passive monitoring
devices”. In: Proceedings of the 2005 ACM conference on Emerging network experiment
and technology, pp. 71–82.

Chen, Haoxian et al. (2016). “Felix: Implementing Traffic Measurement on End Hosts
Using Program Analysis”. In: Proceedings of the Symposium on SDN Research. SOSR
’16. Santa Clara, CA, USA: Association for Computing Machinery. ISBN: 9781450342117.
DOI: 10.1145/2890955.2890971.

Chen, Tianqi and Carlos Guestrin (2016). “Xgboost: A scalable tree boosting system”.
In: Proceedings of the 22nd acm sigkdd international conference on knowledge discovery
and data mining, pp. 785–794.

https://doi.org/10.1145/1390156.1390164
https://doi.org/10.1145/3491052
https://doi.org/10.1109/HPEC.2018.8547541
https://arxiv.org/abs/1909.05680
https://doi.org/10.1145/2890955.2890971

Bibliography 139

Chen, Xiaoqi et al. (2020). “BeauCoup: Answering Many Network Traffic Queries,
One Memory Update at a Time”. In: Proceedings of the Annual Conference of the ACM
Special Interest Group on Data Communication on the Applications, Technologies, Archi-
tectures, and Protocols for Computer Communication. SIGCOMM ’20. Virtual Event,
USA: Association for Computing Machinery, 226–239. ISBN: 9781450379557. DOI:
10.1145/3387514.3405865.

Chen, Xinxiong et al. (2015). “Joint learning of character and word embeddings”. In:
Twenty-fourth international joint conference on artificial intelligence.

Chen, Zhao et al. (2018). “Gradnorm: Gradient normalization for adaptive loss bal-
ancing in deep multitask networks”. In: International conference on machine learning.
PMLR, pp. 794–803.

Cho, Kyunghyun et al. (2014). “On the properties of neural machine translation:
Encoder-decoder approaches”. In: arXiv preprint arXiv:1409.1259.

Choi, Baek-Young et al. (2007). “Quantile sampling for practical delay monitoring in
Internet backbone networks”. In: Computer Networks 51.10, pp. 2701–2716.

Chollet, François (2017). “Xception: Deep learning with depthwise separable convo-
lutions”. In: Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, pp. 1251–1258.

Cichy, Radoslaw Martin et al. (2016). “Comparison of deep neural networks to spatio-
temporal cortical dynamics of human visual object recognition reveals hierarchical
correspondence”. In: Scientific reports 6.1, pp. 1–13.

Cisco (2018). Cisco Global Cloud Index (2016–2021) White Paper. Tech. rep. URL: https:
//newsroom.cisco.com/c/r/newsroom/en/us/a/y2018/m02/global-cloud-

index-projects-cloud-traffic-to-represent-95-percent-of-total-data-

center-traffic-by-2021.html.

– (2020). Cisco Annual Internet Report (2018–2023) White Paper. Tech. rep. URL: https:
//www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/

annual-internet-report/white-paper-c11-741490.html.

Cohen, Dvir et al. (2020). “DANTE: A Framework for Mining and Monitoring Dark-
net Traffic”. In: Computer Security – ESORICS 2020: 25th European Symposium on
Research in Computer Security, ESORICS 2020, Guildford, UK, September 14–18, 2020,
Proceedings, Part I. Springer-Verlag, 88–109.

Collet, Alan et al. (2023). “AutoManager: a Meta-Learning Model for Network Man-
agement from Intertwined Forecasts”. In: IEEE International Conference on Computer
Communications.

https://doi.org/10.1145/3387514.3405865
https://newsroom.cisco.com/c/r/newsroom/en/us/a/y2018/m02/global-cloud-index-projects-cloud-traffic-to-represent-95-percent-of-total-data-center-traffic-by-2021.html
https://newsroom.cisco.com/c/r/newsroom/en/us/a/y2018/m02/global-cloud-index-projects-cloud-traffic-to-represent-95-percent-of-total-data-center-traffic-by-2021.html
https://newsroom.cisco.com/c/r/newsroom/en/us/a/y2018/m02/global-cloud-index-projects-cloud-traffic-to-represent-95-percent-of-total-data-center-traffic-by-2021.html
https://newsroom.cisco.com/c/r/newsroom/en/us/a/y2018/m02/global-cloud-index-projects-cloud-traffic-to-represent-95-percent-of-total-data-center-traffic-by-2021.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html

140 Bibliography

Cormode, Graham and Minos Garofalakis (2005). “Sketching Streams through the
Net: Distributed Approximate Query Tracking”. In: Proceedings of the 31st Interna-
tional Conference on Very Large Data Bases. VLDB ’05. Trondheim, Norway: VLDB
Endowment, 13–24. ISBN: 1595931546.

Cormode, Graham and Shan Muthukrishnan (2005). “An improved data stream
summary: the count-min sketch and its applications”. In: Journal of Algorithms 55.1,
pp. 58–75.

Cranor, Chuck et al. (2003). “Gigascope: A stream database for network applica-
tions”. In: Proceedings of the 2003 ACM SIGMOD international conference on Manage-
ment of data, pp. 647–651.

Cueva, Christopher J and Xue-Xin Wei (2018). “Emergence of grid-like representa-
tions by training recurrent neural networks to perform spatial localization”. In:
arXiv preprint arXiv:1803.07770.

D’Amour, Alexander et al. (2022). “Underspecification presents challenges for cred-
ibility in modern machine learning”. In: The Journal of Machine Learning Research
23.1, pp. 10237–10297.

Di Cicco, Nicola et al. (2023). “Poster: Continual Network Learning”. In: Proceedings
of the ACM SIGCOMM 2023 Conference, pp. 1096–1098.

Dietterich, Thomas G (2000). “Ensemble methods in machine learning”. In: Interna-
tional workshop on multiple classifier systems. Springer, pp. 1–15.

Dietzfelbinger, Martin et al. (2010). “Tight Thresholds for Cuckoo Hashing via XOR-
SAT”. In: Automata, Languages and Programming. Ed. by Samson Abramsky et al.
Springer, pp. 213–225. ISBN: 978-3-642-14165-2.

Dosovitskiy, Alexey et al. (2020). “An image is worth 16x16 words: Transformers for
image recognition at scale”. In: arXiv preprint arXiv:2010.11929.

Draper-Gil, Gerard et al. (2016). “Characterization of encrypted and vpn traffic us-
ing time-related”. In: Proceedings of the 2nd international conference on information
systems security and privacy (ICISSP), pp. 407–414.

Du, Elbert, Franklyn Wang, and Michael Mitzenmacher (2021). “Putting the “Learn-
ing” into Learning-Augmented Algorithms for Frequency Estimation”. In: 38th
International Conference on Machine Learning. PMLR.

Dubois, O. and J. Mandler (2002). “The 3-XORSAT threshold”. In: The 43rd Annual
IEEE Symposium on Foundations of Computer Science, 2002. Proceedings. IEEE, pp. 769–
778. DOI: 10.1109/SFCS.2002.1182002.

https://doi.org/10.1109/SFCS.2002.1182002

Bibliography 141

Duffield, Nick, Carsten Lund, and Mikkel Thorup (2001). “Charging from sampled
network usage”. In: Proceedings of the 1st ACM SIGCOMM Workshop on Internet
Measurement, pp. 245–256.

DUMBO Simulator (2024). URL: https://github.com/cpt-harlock/DUMBO (visited
on 02/28/2024).

Durand, Marianne and Philippe Flajolet (2003). “Loglog counting of large cardinal-
ities”. In: Algorithms-ESA 2003: 11th Annual European Symposium, Budapest, Hun-
gary, September 16-19, 2003. Proceedings 11. Springer, pp. 605–617.

Dwivedi, Kshitij and Gemma Roig (2019). “Representation similarity analysis for
efficient task taxonomy & transfer learning”. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp. 12387–12396.

D’Alconzo, Alessandro et al. (2019). “A survey on big data for network traffic moni-
toring and analysis”. In: IEEE Transactions on Network and Service Management 16.3,
pp. 800–813.

Ediger, David et al. (2012). “STINGER: High performance data structure for stream-
ing graphs”. In: 2012 IEEE Conference on High Performance Extreme Computing. IEEE,
pp. 1–5. DOI: 10.1109/HPEC.2012.6408680.

Elastic Sketch source code (2023). https://github.com/BlockLiu/ElasticSketchCode.

Estan, Cristian and George Varghese (Aug. 2003). “New Directions in Traffic Mea-
surement and Accounting: Focusing on the Elephants, Ignoring the Mice”. In:
ACM Trans. Comput. Syst. 21.3, 270–313. ISSN: 0734-2071. DOI: 10.1145/859716.
859719.

Feamster, Nick and Jennifer Rexford (2017). “Why (and how) networks should run
themselves”. In: arXiv preprint arXiv:1710.11583.

Feldmann, Anja et al. (2000). “Deriving traffic demands for operational IP networks:
methodology and experience”. In: Proceedings of the Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communication. SIGCOMM ’00.
Stockholm, Sweden: Association for Computing Machinery, 257–270. ISBN: 1581132239.
DOI: 10.1145/347059.347554.

Fifty, Chris et al. (2021). “Efficiently identifying task groupings for multi-task learn-
ing”. In: Advances in Neural Information Processing Systems 34, pp. 27503–27516.

Firestone, Daniel et al. (2018). “Azure Accelerated Networking: SmartNICs in the
Public Cloud”. In: 15th USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI 18), pp. 51–66.

Flajolet, Philippe and G Nigel Martin (1985). “Probabilistic counting algorithms for
data base applications”. In: Journal of computer and system sciences 31.2, pp. 182–209.

https://github.com/cpt-harlock/DUMBO
https://doi.org/10.1109/HPEC.2012.6408680
https://github.com/BlockLiu/ElasticSketchCode
https://doi.org/10.1145/859716.859719
https://doi.org/10.1145/859716.859719
https://doi.org/10.1145/347059.347554

142 Bibliography

Flajolet, Philippe et al. (June 2007). “HyperLogLog: the analysis of a near-optimal
cardinality estimation algorithm”. In: AofA: Analysis of Algorithms. DMTCS Pro-
ceedings DMTCS Proceedings vol. AH, 2007 Conference on Analysis of Algo-
rithms (AofA 07). Ed. by Philippe Jacquet, pp. 137–156. DOI: 10.46298/dmtcs.
3545.

Fornasier, Massimo and Holger Rauhut (2015). “Compressive Sensing.” In: Handbook
of mathematical methods in imaging 1, pp. 187–229.

Fotakis, Dimitris et al. (2005). “Space efficient hash tables with worst case constant
access time”. In: Theory of Computing Systems 38.2, pp. 229–248.

Franzius, Mathias, Henning Sprekeler, and Laurenz Wiskott (2007). “Slowness and
sparseness lead to place, head-direction, and spatial-view cells”. In: PLoS compu-
tational biology 3.8, e166.

Gao, Peter X et al. (2019). “phost: Distributed near-optimal datacenter transport over
commodity network fabric”. In: Proceedings of the 11th ACM Conference on Emerging
Networking Experiments and Technologies, pp. 1–12.

Gioacchini, Luca et al. (2021). “DarkVec: automatic analysis of darknet traffic with
word embeddings”. In: Proceedings of the 17th International Conference on emerging
Networking EXperiments and Technologies. ACM.

Gonzalez, Roberto et al. (2021). “User Profiling by Network Observers”. In: Pro-
ceedings of the 17th International Conference on emerging Networking EXperiments and
Technologies. ACM.

Goodrich, Michael T. and Michael Mitzenmacher (2011). “Invertible bloom lookup
tables”. In: 2011 49th Annual Allerton Conference on Communication, Control, and
Computing (Allerton). IEEE, pp. 792–799. DOI: 10.1109/Allerton.2011.6120248.

Greenwald, Michael and Sanjeev Khanna (2001). “Space-efficient online computa-
tion of quantile summaries”. In: ACM SIGMOD Record 30.2, pp. 58–66.

Hafting, Torkel et al. (2005). “Microstructure of a spatial map in the entorhinal cor-
tex”. In: Nature 436.7052, pp. 801–806.

Han, Hui et al. (2022). “Applications of sketches in network traffic measurement: A
survey”. In: Information Fusion 82, pp. 58–85.

Hartmann, Heinrich and Theo Schlossnagle (2020). Circllhist – A Log-Linear Histogram
Data Structure for IT Infrastructure Monitoring. DOI: 10.48550/ARXIV.2001.06561.

He, Kaiming et al. (2016). “Deep residual learning for image recognition”. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition.

Ho, Tin Kam (1998). “The random subspace method for constructing decision forests”.
In: IEEE transactions on pattern analysis and machine intelligence 20.8, pp. 832–844.

https://doi.org/10.46298/dmtcs.3545
https://doi.org/10.46298/dmtcs.3545
https://doi.org/10.1109/Allerton.2011.6120248
https://doi.org/10.48550/ARXIV.2001.06561

Bibliography 143

Hochreiter, Sepp and Jürgen Schmidhuber (1997). “Long Short-Term Memory”. In:
Neural Computation 9.8, pp. 1735–1780.

Holland, Jordan et al. (2021). “New Directions in Automated Traffic Analysis”. In:
Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications
Security. DOI: 10.1145/3460120.3484758.

Houidi, Zied Ben et al. (2022). “Towards a Systematic Multi-Modal Representation
Learning for Network Data”. In: Proceedings of the 21st ACM Workshop on Hot Topics
in Networks. HotNets ’22. Austin, Texas: Association for Computing Machinery,
181–187. ISBN: 9781450398992. DOI: 10.1145/3563766.3564108.

Howard, Andrew G et al. (2017). “Mobilenets: Efficient convolutional neural net-
works for mobile vision applications”. In: arXiv preprint arXiv:1704.04861.

Hsu, Chen-Yu et al. (2019). “Learning-Based Frequency Estimation Algorithms”. In:
International Conference on Learning Representations.

Huang, Qun et al. (Apr. 2021). “Toward Nearly-Zero-Error Sketching via Compres-
sive Sensing”. In: 18th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 21). USENIX Association, pp. 1027–1044. ISBN: 978-1-939133-21-2.

Hubel, David H and Torsten N Wiesel (1959). “Receptive fields of single neurones in
the cat’s striate cortex”. In: The Journal of physiology 148.3, p. 574.

– (1968). “Receptive fields and functional architecture of monkey striate cortex”. In:
The Journal of physiology 195.1, pp. 215–243.

Hui, Linbo et al. (2023). “Digital Twin for Networking: A Data-Driven Performance
Modeling Perspective”. In: IEEE Network 37.3, pp. 202–209. DOI: 10.1109/MNET.
119.2200080.

Ibanez, Stephen et al. (2019). “The p4 to netfpga workflow for line-rate packet pro-
cessing”. In: Proceedings of the 2019 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pp. 1–9.

Ivkin, Nikita et al. (2019). “QPipe: Quantiles Sketch Fully in the Data Plane”. In: Pro-
ceedings of the 15th International Conference on Emerging Networking Experiments And
Technologies. CoNEXT ’19. Orlando, Florida: Association for Computing Machin-
ery, 285–291. ISBN: 9781450369985. DOI: 10.1145/3359989.3365433.

Jacobs, Arthur S. et al. (2022). “AI/ML and Network Security: The Emperor has no
Clothes”. In: Proceedings of the 2022 ACM SIGSAC Conference on Computer and Com-
munications Security. CCS ’22. Los Angeles, CA, USA: Association for Computing
Machinery.

https://doi.org/10.1145/3460120.3484758
https://doi.org/10.1145/3563766.3564108
https://doi.org/10.1109/MNET.119.2200080
https://doi.org/10.1109/MNET.119.2200080
https://doi.org/10.1145/3359989.3365433

144 Bibliography

Jang, Rhongho et al. (2020). “Sketchflow: Per-flow systematic sampling using sketch
saturation event”. In: IEEE INFOCOM 2020-IEEE Conference on Computer Commu-
nications. IEEE, pp. 1339–1348.

Jia, Peng et al. (2020). “Accurately Estimating User Cardinalities and Detecting Super
Spreaders over Time”. In: IEEE Transactions on Knowledge and Data Engineering 34.1,
pp. 92–106.

Karnin, Zohar, Kevin Lang, and Edo Liberty (2016). “Optimal quantile approxima-
tion in streams”. In: 2016 ieee 57th annual symposium on foundations of computer sci-
ence (focs). IEEE, pp. 71–78.

Kendall, Alex, Yarin Gal, and Roberto Cipolla (2018). “Multi-task learning using un-
certainty to weigh losses for scene geometry and semantics”. In: Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 7482–7491.

Kendall, Maurice George (1948). Rank correlation methods.

Kim, Myung-Sup et al. (2004). “A flow-based method for abnormal network traf-
fic detection”. In: 2004 IEEE/IFIP Network Operations and Management Symposium
(IEEE Cat. No.04CH37507). Vol. 1, 599–612 Vol.1. DOI: 10.1109/NOMS.2004.1317747.

Kim, Yoon et al. (2016). “Character-aware neural language models”. In: Thirtieth
AAAI conference on artificial intelligence.

Kingma, Diederik P. and Max Welling (2014). “Auto-Encoding Variational Bayes”.
In: 2nd International Conference on Learning Representations, ICLR.

Kirsch, Adam, Michael Mitzenmacher, and Udi Wieder (2010). “More Robust Hash-
ing: Cuckoo Hashing with a Stash”. In: SIAM Journal on Computing 39.4, pp. 1543–
1561. DOI: 10.1137/080728743.

Knuth, Donald Ervin (1973). The art of computer programming: sorting and searching,
pp. 723–723.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton (2017). “Imagenet classifi-
cation with deep convolutional neural networks”. In: Communications of the ACM
60.6, pp. 84–90.

Kruger, Norbert et al. (2012). “Deep hierarchies in the primate visual cortex: What
can we learn for computer vision?” In: IEEE transactions on pattern analysis and
machine intelligence 35.8, pp. 1847–1871.

Kučera, Jan et al. (2020). “Detecting routing loops in the data plane”. In: Proceedings
of the 16th International Conference on emerging Networking Experiments and Technolo-
gies, pp. 466–473.

Kumar, Gautam, Akshay Narayan, and Peter Gao (2016). YAPS Network Simulator.
URL: https://github.com/NetSys/simulator (visited on 06/22/2023).

https://doi.org/10.1109/NOMS.2004.1317747
https://doi.org/10.1137/080728743
https://github.com/NetSys/simulator

Bibliography 145

Kumar, Gautam et al. (2020). “Swift: Delay is Simple and Effective for Congestion
Control in the Datacenter”. In: Proceedings of the Annual Conference of the ACM Spe-
cial Interest Group on Data Communication on the Applications, Technologies, Archi-
tectures, and Protocols for Computer Communication. SIGCOMM ’20. Virtual Event,
USA: Association for Computing Machinery, 514–528. ISBN: 9781450379557. DOI:
10.1145/3387514.3406591.

Lall, Ashwin et al. (2006). “Data streaming algorithms for estimating entropy of net-
work traffic”. In: ACM SIGMETRICS Performance Evaluation Review 34.1, pp. 145–
156.

Lample, Guillaume et al. (2017). “Unsupervised machine translation using monolin-
gual corpora only”. In: arXiv preprint arXiv:1711.00043.

Leang, Isabelle et al. (2020). “Dynamic task weighting methods for multi-task net-
works in autonomous driving systems”. In: 2020 IEEE 23rd International Conference
on Intelligent Transportation Systems (ITSC). IEEE, pp. 1–8.

Lee, Chunghan et al. (2015). “Flow-Aware Congestion Control to Improve Through-
put under TCP Incast in Datacenter Networks”. In: 2015 IEEE 39th Annual Com-
puter Software and Applications Conference. Vol. 3, pp. 155–162. DOI: 10.1109/COMPSAC.
2015.225.

Lee, Jong-Hyouk and Kamal Singh (2020). “Switchtree: in-network computing and
traffic analyses with random forests”. In: Neural Computing and Applications, pp. 1–
12.

Li, Bingdong et al. (2013). “A survey of network flow applications”. In: Journal of
Network and Computer Applications 36.2, pp. 567–581.

Li, Wenxin et al. (2024). “Flow Scheduling with Imprecise Knowledge”. In: 21st USENIX
Symposium on Networked Systems Design and Implementation (NSDI’24).

Li, Yuliang et al. (2016a). “FlowRadar: A Better NetFlow for Data Centers”. In: 13th
USENIX symposium on networked systems design and implementation (NSDI 16), pp. 311–
324.

– (2016b). “LossRadar: Fast Detection of Lost Packets in Data Center Networks”. In:
Proceedings of the 12th International on Conference on Emerging Networking EXperi-
ments and Technologies. CoNEXT ’16. Irvine, California, USA: Association for Com-
puting Machinery, 481–495. ISBN: 9781450342926. DOI: 10.1145/2999572.2999609.

Li, Yuliang et al. (2019). “HPCC: High Precision Congestion Control”. In: Proceedings
of the ACM Special Interest Group on Data Communication. SIGCOMM ’19. Beijing,
China: Association for Computing Machinery, 44–58. ISBN: 9781450359566. DOI:
10.1145/3341302.3342085.

https://doi.org/10.1145/3387514.3406591
https://doi.org/10.1109/COMPSAC.2015.225
https://doi.org/10.1109/COMPSAC.2015.225
https://doi.org/10.1145/2999572.2999609
https://doi.org/10.1145/3341302.3342085

146 Bibliography

Liu, Weijiang, Chao Liu, and Shuming Guo (2016). “A hash-based algorithm for
measuring cardinality distribution in network traffic”. In: International Journal of
Autonomous and Adaptive Communications Systems 9.1-2, pp. 136–148.

Liu, Ziwei et al. (2018). “Large-scale celebfaces attributes (celeba) dataset”. In: Re-
trieved August 15.2018, p. 11.

Marill, Thomas and Lawrence G Roberts (1966). “Toward a cooperative network of
time-shared computers”. In: Proceedings of the November 7-10, 1966, fall joint com-
puter conference, pp. 425–431.

Masson, Charles, Jee E. Rim, and Homin K. Lee (Aug. 2019). “DDSketch: A Fast and
Fully-Mergeable Quantile Sketch with Relative-Error Guarantees”. In: Proc. VLDB
Endow. 12.12, 2195–2205. ISSN: 2150-8097. DOI: 10.14778/3352063.3352135.

Michel, Oliver et al. (2021). “The programmable data plane: Abstractions, architec-
tures, algorithms, and applications”. In: ACM Computing Surveys (CSUR) 54.4,
pp. 1–36.

Mikolov, Tomas, Quoc V Le, and Ilya Sutskever (2013a). “Exploiting similarities
among languages for machine translation”. In: arXiv preprint arXiv:1309.4168.

Mikolov, Tomas et al. (2013b). “Distributed representations of words and phrases
and their compositionality”. In: Advances in neural information processing systems
26.

Misra, Ishan et al. (2016). “Cross-stitch networks for multi-task learning”. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition, pp. 3994–
4003.

Mitchell, Tom M (1980). The need for biases in learning generalizations.

Mitzenmacher, Michael (2021). “Queues with small advice”. In: SIAM Conference on
Applied and Computational Discrete Algorithms (ACDA21). SIAM, pp. 1–12.

Monterubbiano, Andrea et al. (2022). “Learned Data Structures for Per-Flow Mea-
surements”. In: Proceedings of the 3rd International CoNEXT Student Workshop. CoNEXT
Student Workshop ’22. Rome, Italy: Association for Computing Machinery, 42–43.
ISBN: 9781450399371. DOI: 10.1145/3565477.3569147.

Monterubbiano, Andrea et al. (2023a). “Lightweight Acquisition and Ranging of
Flows in the Data Plane”. In: Proceedings of the ACM SIGMETRICS/IFIP PERFOR-
MANCE Joint International Conference on Measurement and Modeling of Computer
Systems, Vol. 7, No. 3, Article 44, December 2023. SIGMETRICS ’24. Association for
Computing Machinery. DOI: 10.1145/3626775.

https://doi.org/10.14778/3352063.3352135
https://doi.org/10.1145/3565477.3569147
https://doi.org/10.1145/3626775

Bibliography 147

Monterubbiano, Andrea et al. (2023b). “Memory-Efficient Random Forests in FPGA
SmartNICs”. In: Companion of the 19th International Conference on Emerging Network-
ing EXperiments and Technologies. CoNEXT Posters ’23. Paris, France: Association
for Computing Machinery, 55–56. ISBN: 9798400704079. DOI: 10.1145/3624354.
3630089.

– (Nov. 2023c). “SPADA: A Sparse Approximate Data Structure Representation for
Data Plane Per-Flow Monitoring”. In: Proceedings of the ACM on Networking 1.CoNEXT3.
DOI: 10.1145/3629149.

Nascita, Alfredo et al. (2023). “Improving Performance, Reliability, and Feasibility
in Multimodal Multitask Traffic Classification with XAI”. In: IEEE Transactions on
Network and Service Management 20.2, pp. 1267–1289. DOI: 10.1109/TNSM.2023.
3246794.

NetFPGA publisher (2023). NetFPGA-PLUS, https : / / netfpga . org / NetFPGA -

PLUS. html . (Visited on 06/22/2023).

Netscout (2023). Netscout DDoS Threat Intelligence Report - Issue 11. Tech. rep. URL:
https://www.netscout.com/threatreport.

ONNX. Open Neural Network Echange (2017). https://github.com/onnx/onnx.

O’Reilly, Colin et al. (2014). “Anomaly Detection in Wireless Sensor Networks in a
Non-Stationary Environment”. In: IEEE Communications Surveys & Tutorials 16.3,
pp. 1413–1432. DOI: 10.1109/SURV.2013.112813.00168.

Owaida, Muhsen et al. (2017). “Scalable inference of decision tree ensembles: Flexible
design for CPU-FPGA platforms”. In: 2017 27th International Conference on Field
Programmable Logic and Applications (FPL). IEEE, pp. 1–8.

Pagh, Rasmus and Flemming Friche Rodler (2004). “Cuckoo hashing”. In: Journal of
Algorithms 51.2, pp. 122–144. ISSN: 0196-6774. DOI: 10.1016/j.jalgor.2003.12.
002.

Pan, Rong et al. (2003). “Approximate fairness through differential dropping”. In:
ACM SIGCOMM Computer Communication Review 33.2, pp. 23–39.

Panigrahy, Rina (2004). “Efficient hashing with lookups in two memory accesses”.
In: arXiv preprint cs/0407023.

Papapetrou, Odysseas, Minos Garofalakis, and Antonios Deligiannakis (June 2015).
“Sketching Distributed Sliding-Window Data Streams”. In: The VLDB Journal 24.3,
345–368. ISSN: 1066-8888. DOI: 10.1007/s00778-015-0380-7.

Pascal, Lucas et al. (2021). “Maximum Roaming Multi-Task Learning”. In: Proceed-
ings of the AAAI Conference on Artificial Intelligence 35.10, pp. 9331–9341.

https://doi.org/10.1145/3624354.3630089
https://doi.org/10.1145/3624354.3630089
https://doi.org/10.1145/3629149
https://doi.org/10.1109/TNSM.2023.3246794
https://doi.org/10.1109/TNSM.2023.3246794
https://netfpga.org/NetFPGA-PLUS.html
https://netfpga.org/NetFPGA-PLUS.html
https://www.netscout.com/threatreport
https://github.com/onnx/onnx
https://doi.org/10.1109/SURV.2013.112813.00168
https://doi.org/10.1016/j.jalgor.2003.12.002
https://doi.org/10.1016/j.jalgor.2003.12.002
https://doi.org/10.1007/s00778-015-0380-7

148 Bibliography

Pedregosa, F. et al. (2011). “Scikit-learn: Machine Learning in Python”. In: Journal of
Machine Learning Research 12, pp. 2825–2830.

Perry, Jonathan et al. (2014). “Fastpass: A centralized" zero-queue" datacenter net-
work”. In: Proceedings of the 2014 ACM conference on SIGCOMM, pp. 307–318.

Peters, ME et al. (2018). “Deep contextualized word representations. arXiv 2018”. In:
arXiv preprint arXiv:1802.05365 12.

Pittel, Boris and Gregory B. Sorkin (2016). “The Satisfiability Threshold for k-XORSAT”.
In: Combinatorics, Probability & Computing 25.2, pp. 236–268. DOI: 10.1017/S0963548315000097.

Pontarelli, Salvatore et al. (Feb. 2019). “FlowBlaze: Stateful Packet Processing in Hard-
ware”. In: 16th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 19). USENIX Association, pp. 531–548. ISBN: 978-1-931971-49-2.

Popa, Lucian et al. (2009). “Macroscope: End-point approach to networked appli-
cation dependency discovery”. In: Proceedings of the 5th international conference on
Emerging networking experiments and technologies, pp. 229–240.

Poupart, Pascal et al. (2016). “Online flow size prediction for improved network
routing”. In: 2016 IEEE 24th International Conference on Network Protocols (ICNP),
pp. 1–6. DOI: 10.1109/ICNP.2016.7785324.

Quinlan, J. Ross (1986). “Induction of decision trees”. In: Machine learning 1, pp. 81–
106.

Reginald P., Tewarson (1973). Sparse Matrices. Mathematics in science and engineer-
ing: a series of monographs and textbooks. Academic Press. ISBN: 9780126856507.

Ren, Jingjing et al. (2018). “A longitudinal study of pii leaks across android app ver-
sions”. In: Network and Distributed System Security Symposium (NDSS). Vol. 10.

Ring, Markus et al. (2017). “IP2Vec: Learning Similarities Between IP Addresses”. In:
2017 IEEE International Conference on Data Mining Workshops (ICDMW), 657–666.
DOI: 10.1109/ICDMW.2017.93.

Rivitti, Alessandro et al. (2023). “eHDL: Turning eBPF/XDP Programs into Hard-
ware Designs for the NIC”. In: Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems, Volume
3, pp. 208–223.

Rusek, Krzysztof et al. (2020). “Routenet: Leveraging graph neural networks for net-
work modeling and optimization in sdn”. In: IEEE Journal on Selected Areas in Com-
munications 38.10, pp. 2260–2270.

Sacco, Alessio, Flavio Esposito, and Guido Marchetto (2020). “A Federated Learning
Approach to Routing in Challenged SDN-Enabled Edge Networks”. In: 2020 6th

https://doi.org/10.1017/S0963548315000097
https://doi.org/10.1109/ICNP.2016.7785324
https://doi.org/10.1109/ICDMW.2017.93

Bibliography 149

IEEE Conference on Network Softwarization (NetSoft), pp. 150–154. DOI: 10.1109/
NetSoft48620.2020.9165506.

Scazzariello, Mariano et al. (2023). “A High-Speed Stateful Packet Processing Ap-
proach for Tbps Programmable Switches”. In: 20th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 23), pp. 1237–1255.

Schlinker, Brandon et al. (2019). “Internet Performance from Facebook’s Edge”. In:
Proceedings of the Internet Measurement Conference. IMC ’19. Association for Com-
puting Machinery, 179–194. ISBN: 9781450369480. DOI: 10.1145/3355369.3355567.

Sekar, Vyas et al. (2008). “CSAMP: A System for Network-Wide Flow Monitoring”.
In: 5th USENIX Symposium on Networked Systems Design and Implementation (NSDI
08). San Francisco, CA: USENIX Association.

Sengupta, Satadal, Hyojoon Kim, and Jennifer Rexford (2022). “Continuous In-Network
Round-Trip Time Monitoring”. In: Proceedings of the ACM SIGCOMM 2022 Confer-
ence. SIGCOMM ’22. Amsterdam, Netherlands: Association for Computing Ma-
chinery, 473–485. ISBN: 9781450394208. DOI: 10.1145/3544216.3544222.

Settles, Burr (2011). “From theories to queries: Active learning in practice”. In: Active
learning and experimental design workshop in conjunction with AISTATS 2010. JMLR
Workshop and Conference Proceedings, pp. 1–18.

Shahout, Rana, Roy Friedman, and Ran Ben Basat (2023). “Together is Better: Heavy
Hitters Quantile Estimation”. In: Proceedings of the ACM on Management of Data 1.1,
pp. 1–25.

Sharafaldin, Iman, Arash Habibi Lashkari, and Ali A Ghorbani (2018). “Toward gen-
erating a new intrusion detection dataset and intrusion traffic characterization.”
In: ICISSP 1, pp. 108–116.

Sheng, Siyuan et al. (June 2021). “PR-Sketch: Monitoring per-Key Aggregation of
Streaming Data with Nearly Full Accuracy”. In: Proc. VLDB Endow. 14.10, 1783–1796.
ISSN: 2150-8097. DOI: 10.14778/3467861.3467868.

Shrikumar, Avanti, Peyton Greenside, and Anshul Kundaje (2017). “Learning impor-
tant features through propagating activation differences”. In: Proceedings of the 34th
International Conference on Machine Learning - Volume 70. ICML’17. Sydney, NSW,
Australia: JMLR.org, 3145–3153.

Siracusano, Giuseppe et al. (Apr. 2022). “Re-architecting Traffic Analysis with Neu-
ral Network Interface Cards”. In: 19th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 22). Renton, WA: USENIX Association, pp. 513–
533. ISBN: 978-1-939133-27-4.

Sivaraman, Anirudh et al. (2016). “Packet Transactions: High-Level Programming
for Line-Rate Switches”. In: Proceedings of the 2016 ACM SIGCOMM Conference.

https://doi.org/10.1109/NetSoft48620.2020.9165506
https://doi.org/10.1109/NetSoft48620.2020.9165506
https://doi.org/10.1145/3355369.3355567
https://doi.org/10.1145/3544216.3544222
https://doi.org/10.14778/3467861.3467868

150 Bibliography

SIGCOMM ’16. Florianopolis, Brazil: Association for Computing Machinery, 15–28.
ISBN: 9781450341936. DOI: 10.1145/2934872.2934900.

Sivaraman, Vibhaalakshmi et al. (2017). “Heavy-hitter detection entirely in the data
plane”. In: Proceedings of the Symposium on SDN Research, pp. 164–176.

Sonchack, John et al. (2021). “Lucid: A Language for Control in the Data Plane”. In:
Proceedings of the 2021 ACM SIGCOMM 2021 Conference. SIGCOMM ’21. Virtual
Event, USA: Association for Computing Machinery, 731–747. ISBN: 9781450383837.
DOI: 10.1145/3452296.3472903.

Song, Cha Hwan et al. (2020). “FCM-Sketch: Generic Network Measurements with
Data Plane Support”. In: Proceedings of the 16th International Conference on Emerg-
ing Networking EXperiments and Technologies. CoNEXT ’20. Barcelona, Spain: As-
sociation for Computing Machinery, 78–92. ISBN: 9781450379489. DOI: 10.1145/
3386367.3432729.

Song, Jie et al. (2019). “Deep model transferability from attribution maps”. In: Ad-
vances in Neural Information Processing Systems 32.

Standley, Trevor et al. (2020). “Which tasks should be learned together in multi-task
learning?” In: International Conference on Machine Learning. PMLR, pp. 9120–9132.

Sun, Ximeng et al. (2020). “Adashare: Learning what to share for efficient deep multi-
task learning”. In: Advances in Neural Information Processing Systems 33, pp. 8728–
8740.

Tang, Lu, Qun Huang, and Patrick PC Lee (2019). “Mv-sketch: A fast and compact
invertible sketch for heavy flow detection in network data streams”. In: IEEE IN-
FOCOM 2019-IEEE Conference on Computer Communications. IEEE, pp. 2026–2034.

The CAIDA Anonymized Internet Traces Dataset (2016). https://www.caida.org/
catalog/datasets/passive_dataset/.

The MAWI Working Group Traffic Archive (2019). http://mawi.wide.ad.jp/mawi/.

Thrun, Sebastian and Joseph O’Sullivan (1996). “Discovering structure in multiple
learning tasks: The TC algorithm”. In: ICML. Vol. 96. Citeseer, pp. 489–497.

Tian, Yonglong et al. (2020). “Rethinking few-shot image classification: a good em-
bedding is all you need?” In: European Conference on Computer Vision. Springer,
pp. 266–282.

Ðukić, Vojislav et al. (2019). “Is advance knowledge of flow sizes a plausible assump-
tion”. In: 16th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 19), pp. 565–580.

Umuroglu, Yaman et al. (2017). “FINN: A Framework for Fast, Scalable Binarized
Neural Network Inference”. In: Proceedings of the 2017 ACM/SIGDA International

https://doi.org/10.1145/2934872.2934900
https://doi.org/10.1145/3452296.3472903
https://doi.org/10.1145/3386367.3432729
https://doi.org/10.1145/3386367.3432729
https://www.caida.org/catalog/datasets/passive_dataset/
https://www.caida.org/catalog/datasets/passive_dataset/
http://mawi.wide.ad.jp/mawi/

Bibliography 151

Symposium on Field-Programmable Gate Arrays. FPGA ’17. Monterey, California, USA:
Association for Computing Machinery, 65–74. ISBN: 9781450343541. DOI: 10.1145/
3020078.3021744.

Van Horn, Grant et al. (2018). “The inaturalist species classification and detection
dataset”. In: Proceedings of the IEEE conference on computer vision and pattern recog-
nition, pp. 8769–8778.

Varghese, George and Cristian Estan (2004). “The measurement manifesto”. In: ACM
SIGCOMM Computer Communication Review 34.1, pp. 9–14.

Vaswani, Ashish et al. (2017). “Attention is all you need”. In: Advances in neural in-
formation processing systems 30.

Venkataraman, Shobha et al. (2005). “New streaming algorithms for fast detection of
superspreaders.” In: NDSS. Vol. 5, pp. 149–166.

Wah, Catherine et al. (2011). The caltech-ucsd birds-200-2011 dataset.

Walzer, Stefan (2021). “Peeling Close to the Orientability Threshold: Spatial Cou-
pling in Hashing-Based Data Structures”. In: Proceedings of the Thirty-Second An-
nual ACM-SIAM Symposium on Discrete Algorithms. SODA ’21. Virtual Event, Vir-
ginia: Society for Industrial and Applied Mathematics, 2194–2211. ISBN: 9781611976465.

Wang, Chao et al. (2022a). “AppClassNet: a commercial-grade dataset for applica-
tion identification research”. In: SIGCOMM Comput. Commun. Rev. 52.3, 19–27.
ISSN: 0146-4833. DOI: 10.1145/3561954.3561958.

Wang, Haibo et al. (2021). “Randomized error removal for online spread estimation
in data streaming”. In: Proceedings of the VLDB Endowment 14.6, pp. 1040–1052.

Wang, Mowei et al. (2018). “Machine Learning for Networking: Workflow, Advances
and Opportunities”. In: IEEE Network 32.2, pp. 92–99. DOI: 10.1109/MNET.2017.
1700200.

Wang, Mowei et al. (2022b). “xNet: Improving Expressiveness and Granularity for
Network Modeling with Graph Neural Networks”. In: IEEE INFOCOM 2022 -
IEEE Conference on Computer Communications, pp. 2028–2037. DOI: 10.1109/INFOCOM48880.
2022.9796726.

Winter, Martin, Rhaleb Zayer, and Markus Steinberger (2017). “Autonomous, inde-
pendent management of dynamic graphs on GPUs”. In: 2017 IEEE High Perfor-
mance Extreme Computing Conference (HPEC), pp. 1–7. DOI: 10.1109/HPEC.2017.
8091058.

Xia, Wenfeng et al. (2017). “A Survey on Data Center Networking (DCN): Infrastruc-
ture and Operations”. In: IEEE Communications Surveys & Tutorials 19.1, pp. 640–
656. DOI: 10.1109/COMST.2016.2626784.

https://doi.org/10.1145/3020078.3021744
https://doi.org/10.1145/3020078.3021744
https://doi.org/10.1145/3561954.3561958
https://doi.org/10.1109/MNET.2017.1700200
https://doi.org/10.1109/MNET.2017.1700200
https://doi.org/10.1109/INFOCOM48880.2022.9796726
https://doi.org/10.1109/INFOCOM48880.2022.9796726
https://doi.org/10.1109/HPEC.2017.8091058
https://doi.org/10.1109/HPEC.2017.8091058
https://doi.org/10.1109/COMST.2016.2626784

152 Bibliography

Xiao, Qingjun et al. (June 2015). “Hyper-Compact Virtual Estimators for Big Net-
work Data Based on Register Sharing”. In: SIGMETRICS Perform. Eval. Rev. 43,
417–428.

Xie, Yinglian et al. (2005). “Worm origin identification using random moonwalks”.
In: 2005 IEEE Symposium on Security and Privacy (S&P’05). IEEE, pp. 242–256.

Xiong, Zhaoqi and Noa Zilberman (2019). “Do switches dream of machine learning?
toward in-network classification”. In: Proceedings of the 18th ACM Workshop on Hot
Topics in Networks, pp. 25–33.

Yang, Lily et al. (2004). Forwarding and Control Element Separation (ForCES) Framework.
RFC 1654. RFC Editor. URL: https://www.rfc-editor.org/in-notes/rfc3746.
txt.

Yang, Lixuan et al. (2021). “Deep Learning and Zero-Day Traffic Classification: Lessons
Learned From a Commercial-Grade Dataset”. In: IEEE Transactions on Network and
Service Management 18.4, pp. 4103–4118. DOI: 10.1109/TNSM.2021.3122940.

Yang, Tong et al. (2018). “Elastic Sketch: Adaptive and Fast Network-Wide Mea-
surements”. In: Proceedings of the 2018 Conference of the ACM Special Interest Group
on Data Communication. SIGCOMM ’18. Budapest, Hungary: Association for Com-
puting Machinery, 561–575. ISBN: 9781450355674. DOI: 10.1145/3230543.3230544.

Yang, Tong et al. (2019). “HeavyKeeper: an accurate algorithm for finding Top-k ele-
phant flows”. In: IEEE/ACM Transactions on Networking 27.5, pp. 1845–1858.

Yassine, Abdulsalam, Hesam Rahimi, and Shervin Shirmohammadi (2015). “Soft-
ware defined network traffic measurement: Current trends and challenges”. In:
IEEE Instrumentation & Measurement Magazine 18.2, pp. 42–50.

Yu, Tianhe et al. (2020). “Gradient surgery for multi-task learning”. In: Advances in
Neural Information Processing Systems 33, pp. 5824–5836.

Yuster, Raphael and Uri Zwick (July 2005). “Fast Sparse Matrix Multiplication”. In:
ACM Transaction on Algorithms 1.1, 2–13. ISSN: 1549-6325. DOI: 10.1145/1077464.
1077466.

Zamir, Amir R et al. (2018). “Taskonomy: Disentangling task transfer learning”. In:
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3712–
3722.

Zeiler, Matthew D and Rob Fergus (2014). “Visualizing and understanding convolu-
tional networks”. In: Computer Vision–ECCV 2014: 13th European Conference, Zurich,
Switzerland, September 6-12, 2014, Proceedings, Part I 13. Springer, pp. 818–833.

https://www.rfc-editor.org/in-notes/rfc3746.txt
https://www.rfc-editor.org/in-notes/rfc3746.txt
https://doi.org/10.1109/TNSM.2021.3122940
https://doi.org/10.1145/3230543.3230544
https://doi.org/10.1145/1077464.1077466
https://doi.org/10.1145/1077464.1077466

Bibliography 153

Zeng, Chaoliang et al. (Apr. 2022). “Tiara: A Scalable and Efficient Hardware Accel-
eration Architecture for Stateful Layer-4 Load Balancing”. In: 19th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 22). Renton, WA:
USENIX Association, pp. 1345–1358. ISBN: 978-1-939133-27-4.

Zeydan, Engin and Yekta Turk (2020). “Recent Advances in Intent-Based Network-
ing: A Survey”. In: 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring),
pp. 1–5. DOI: 10.1109/VTC2020-Spring48590.2020.9128422.

Zhang, Qizhen et al. (2021a). “MimicNet: fast performance estimates for data center
networks with machine learning”. In: Proceedings of the 2021 ACM SIGCOMM 2021
Conference, pp. 287–304.

Zhang, Tianzhu et al. (2022). “Interpreting AI for Networking: Where We Are and
Where We Are Going”. In: IEEE Communications Magazine 60.2, pp. 25–31. DOI:
10.1109/MCOM.001.2100736.

Zhang, Xiaoquan et al. (2021b). “pHeavy: Predicting heavy flows in the programmable
data plane”. In: IEEE Transactions on Network and Service Management 18.4, pp. 4353–
4364.

Zhang, Ying (2013). “An Adaptive Flow Counting Method for Anomaly Detection
in SDN”. In: CoNEXT ’13. Santa Barbara, California, USA: Association for Com-
puting Machinery, 25–30. ISBN: 9781450321013. DOI: 10.1145/2535372.2535411.

Zhang, Yipeng, Tyler L Hayes, and Christopher Kanan (2021c). “Disentangling Trans-
fer and Interference in Multi-Domain Learning”. In: arXiv preprint arXiv:2107.05445.

Zhang, Yu and Qiang Yang (2022). “A Survey on Multi-Task Learning”. In: IEEE
Transactions on Knowledge and Data Engineering 34.12, pp. 5586–5609. DOI: 10.1109/
TKDE.2021.3070203.

Zhang, Zheng et al. (2015). “A survey of sparse representation: algorithms and ap-
plications”. In: IEEE access 3, pp. 490–530.

Zhao, Qi, Jun Xu, and Abhishek Kumar (2006). “Detection of super sources and des-
tinations in high-speed networks: Algorithms, analysis and evaluation”. In: IEEE
Journal on Selected Areas in Communications 24.10, pp. 1840–1852.

Zhao, Xiangyun et al. (2018). “A modulation module for multi-task learning with ap-
plications in image retrieval”. In: Proceedings of the European Conference on Computer
Vision (ECCV), pp. 401–416.

Zhao, Zongyi et al. (2021). “Efficient and Accurate Flow Record Collection With
HashFlow”. In: IEEE Transactions on Parallel and Distributed Systems 33.5, pp. 1069–
1083.

https://doi.org/10.1109/VTC2020-Spring48590.2020.9128422
https://doi.org/10.1109/MCOM.001.2100736
https://doi.org/10.1145/2535372.2535411
https://doi.org/10.1109/TKDE.2021.3070203
https://doi.org/10.1109/TKDE.2021.3070203

154 Bibliography

Zheng, Changgang and Noa Zilberman (2021). “Planter: seeding trees within switches”.
In: Proceedings of the SIGCOMM’21 Poster and Demo Sessions, pp. 12–14.

Zheng, Changgang et al. (2022a). “Automating in-network machine learning”. In:
arXiv preprint arXiv:2205.08824.

Zheng, Changgang et al. (2022b). “IIsy: Practical in-network classification”. In: arXiv
preprint arXiv:2205.08243.

Zhou, Yu et al. (2020). “Flow event telemetry on programmable data plane”. In: Pro-
ceedings of the Annual conference of the ACM Special Interest Group on Data Commu-
nication on the applications, technologies, architectures, and protocols for computer com-
munication, pp. 76–89.

Zhu, Yibo et al. (2015). “Packet-level telemetry in large datacenter networks”. In: Pro-
ceedings of the 2015 ACM Conference on Special Interest Group on Data Communication,
pp. 479–491.

	Abstract
	Acknowledgements
	Introduction
	The Growing Complexity of Networks
	The Importance of Traffic Monitoring
	The Promises of Traffic Representation Learning
	Thesis Outline and Contributions

	Background
	Measurements Data Structures
	Key-Value Storage
	Frequency estimation
	Cardinality estimation
	Quantiles estimation

	Machine Learning Models
	Random Forests
	Word2Vec
	Multi-Task Learning

	Sparse Sketches Representations for Per-flow Monitoring
	Introduction
	Background
	Sparse monitoring data structures
	Monitoring use cases

	Per-flow Monitoring System Design
	Architectural components
	Baseline representation
	Sparse sketches representation (SPADA)

	System Memory Sizing
	Sparsity factor sensitivity
	Monitoring trade-offs

	System Evaluation
	Experimental protocol
	Experimental results

	Related Work and Discussion
	Conclusion

	Affordable Flow Size Representation with Machine Learning
	Introduction
	Background and Motivation
	Machine Learning for networked systems
	Use cases

	System Design
	Pipeline overview
	System components

	Machine Learning Model
	Benchmark setup
	Model design
	Model size
	Model update

	System Implementation
	Deployment scenario
	Random Forest implementation

	Experimental Results
	Memory setup
	End-to-end performance
	Impact of model performance on downstream tasks

	Conclusion

	Traffic Representation Learning for Network Measurements
	Introduction
	Representation Learning for Network Data
	Motivation
	Network data representation with word embeddings
	Bi-modal pipeline for network entities and quantities
	Experimental results
	Related work
	Concluding remarks

	Task Groupings for Multi-Task Learning
	Motivation
	Background and related work
	Task affinity scores benchmark methodology
	Experimental results
	Discussion
	Concluding remarks

	Conclusion
	Summary of Contributions
	Traditional network measurements
	ML-assisted network measurements
	ML-based network measurements

	Perspectives

	Appendix for Chapter3
	System Implementation
	The Vitis Networking P4 architecture
	SPADA building blocks
	SPADA-enabled monitoring pipelines

	Prototype Evaluation
	Cuckoo Hash Table recirculation overhead
	FPGA implementation evaluation
	FPGA resource requirements

	Appendix for Chapter4
	Additional Model Analysis
	System Prototype
	Additional Trade-offs Analysis

	Appendix for Chapter5
	Affinity Scores Computation
	Taskonomy Buildings
	Affinity Scores Raw Values

	Bibliography

