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Abstract ix

Long-time behavior of some Markov processes, and application to stochastic
algorithms

Abstract

This thesis is devoted to the study of the long-time behavior of some Markov processes arising in
stochastic algorithms. These algorithms are variations of Monte Carlo methods, which constitute a class
of techniques for sampling probability measures based on Markov processes. The thesis is structured
into three parts, each addressing a different type of algorithm:

1. Chapters 2 and 3 focus on sampling Gibbs measures using two distinct kinetic processes.

2. Chapter 4 explores non-convex and high-dimensional optimization through simulated annealing,
while Chapter 5 investigates optimization using a switched process.

3. Chapters 6, 7, and 8 delve into sampling quasi-stationary distributions based on the Fleming-Viot
process, a Moran-type particle system.

The motivation for these algorithms, and thus much of the research conducted for this thesis, stems from
molecular dynamics and statistics applications. By applying coupling and partial differential equation
methods, we aim to establish convergence guarantees for these algorithms.

Keywords: probability theory, stochastic calculus, coupling methods, long time behavior of markov
processes, poincaré inequality, stochastic algorithm, hypocoercivity.

Résumé

Cette thèse est consacrée à l’étude du comportement à long terme de certains processus de Markov
apparaissant dans les algorithmes stochastiques. Ces algorithmes sont des variations autour des méthodes
de Monte Carlo, qui constituent une classe de techniques d’échantillonnage de mesures de probabilité
basées sur des processus de Markov. La thèse est structurée en trois parties, chacune traitant d’un type
d’algorithme différent :

1. Les chapitres 2 et 3 portent sur l’échantillonnage des mesures de Gibbs à l’aide de deux processus
cinétiques différents.

2. Le chapitre 4 traite de l’optimisation non-convexe en grande dimension par recuit simulé, tandis
que le chapitre 5 étudie l’optimisation à l’aide d’un processus commuté.

3. Les chapitres 6, 7 et 8 traitent de l’échantillonnage de mesures quasi-stationnaires basé sur le
processus de Fleming-Viot, un système de particules de type Moran.

La motivation pour ces algorithmes, et donc pour la plupart des recherches menées dans le cadre de cette
thèse, provient de dynamique moléculaire et d’applications en statistiques. En appliquant des méthodes
de couplage et d’équations aux dérivées partielles, nous établirons des garanties de convergence pour ces
algorithmes.

Mots clés : probabilités, calcul stochastique, méthodes de couplage, comportement en temps long de
processus de markov, inégalité de poincaré, algorithme stochastique, hypocoercivité.

Laboratoire Jacques-Louis Lions
Sorbonne Université – Campus Pierre et Marie Curie – 4 place Jussieu – 75005 Paris – France
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Chapter 1

Introduction

Outline of the current chapter

1.1 Markov processes: definitions and basic properties for Monte-
Carlo purposes 2

1.2 Some methods to study the long-time behavior of Markov pro-
cesses 5
1.2.1 The PDE methods: Entropy, L2, Hk convergence . . . . . . . . . . . 5
1.2.2 Wasserstein distance and coupling methods . . . . . . . . . . . . . . 11

1.3 Stochastic algorithms and contributions of this thesis 18
1.3.1 Sampling Gibbs measures . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3.2 Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.3.3 A particle approximation for quasi-stationary distributions . . . . . . 27

The topic of this thesis is the application of the study of the long time behavior of Markov
processes to the analysis of stochastic algorithms, at the intersection of PDE theory, probabil-
ity, and applied mathematics. These algorithms are variations of Monte Carlo methods, which
constitute a class of techniques for probability measure sampling based on Markov processes. In
addition to sampling, stochastic algorithms can also be employed to model physical systems, or in
non-convex and high-dimensional optimization problems that cannot be efficiently solved using
deterministic algorithms. They offer a compelling compromise between obtaining high-quality
results and reducing computation time. The theoretical study of the underlying Markov pro-
cesses provides essential guarantees of convergence for such algorithms, which are of paramount
importance.

The motivation for most of the projects undertaken during the preparation of this thesis
stems from molecular dynamics and statistics, yet it can be applied to a broad spectrum of fields,
including population dynamics, finance, and biology. Beyond their practical applications, the
study of such algorithms gives rise to intriguing theoretical questions in the domain of coupling
methods, hypocoercivity, and metastability. Since this thesis focuses on Markov processes in
metric spaces (while non-Markovian processes are also of interest for stochastic algorithms, they
are not the primary focus of this thesis), which constitute a particular class of stochastic processes,
we will first introduce them in Section 1.1. This introduction will then be divided into two parts.
Section 1.2 will present two families of methods for the study of the long time behavior of Markov

1



2 CHAPTER 1. Introduction

processes. The final Section 1.3 will introduce some stochastic algorithms, as well as the various
contributions of this thesis.

1.1 Markov processes: definitions and basic properties for
Monte-Carlo purposes

The goal of Monte Carlo Markov Chains (MCMC) is to sample from a specified probability
measure µ using Markov chains or processes. To illustrate how this operates, let’s introduce some
notations and define Markov processes. For a more in-depth introduction to Markov processes,
refer to [58].

Notations: Throughout this introduction, (Ω,F) will denote a measurable space, and (E,d)
a metric space referred to as the state space. We use B for the Borel σ-algebra on E. As our
focus is on dynamics within a state space, we denote by C(R+, E) (resp. D(R+, E)) the set of
continuous (resp., right-continuous with left limits at all points, or cadlag) functions from R+

to E. These two sets are equipped with the product σ-algebra. Let M1(E) denotes the set of
probability measures on any set E, and if µ ∈M1(E) is a measure on E, and h : E → R, denote

µ(h) =

∫
E

hdµ.

Given d ∈ N, Md(R) denote the set of real valued matrix of size d× d.

Definition 1.1.1. We call a continuous (resp. cadlag) Markov process a random variable

X : Ω→ C(R+, E), resp. X : Ω→ D(R+, E),

with a family of probability measures (Px)x∈E on (E,B) such that:

• Px (X0 = x) = 1.

• For all x ∈ E, 0 ⩽ s1 ⩽ · · · ⩽ sm ⩽ t ⩽ t1 ⩽ · · · ⩽ tn, (Ai)1⩽i⩽m ∈ B, (Bi)1⩽i⩽n ∈ B:

Px (Xs1 ∈ A1, · · · , Xsm ∈ Am, Xt1 ∈ B1, · · · , Xtn ∈ Bn|Xt)

= Px (Xs1 ∈ A1, · · · , Xsm ∈ Am|Xt)Px (Xt1 ∈ B1, · · · , Xtn ∈ Bn|Xt) .

Informally, a Markov process X is a random function from R+ to E, such that, for all t ⩾ 0,
knowing Xt, the future is independent of the past. In mathematical terms, it is equivalent to

∀A ∈ σ(Xs, s ⩾ t), ∀B ∈ σ(Xs, s ⩽ t), P (AB|Xt) = P (A|Xt)P (B|Xt) .

The probability Px corresponds to the Markov process with initial condition x. Additionally, for
any probability measure ν ∈M1(E), a process with initial condition ν can be defined by

Pν =

∫
E

Pxν(dx).

We denote Eν the expectation under Pν and simply Ex when ν = δx. In all of this thesis, a
Markov process will be denoted either X or Z. Let’s start with a few examples that will arise
at some point in this thesis. We will not delve into the construction of such processes or the
proof of their Markovian nature, as these may be intricate subjects. Also, note that E is not
necessarily complete or separable, as we will see below.
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• The simplest Markov processes are jump processes on graphs. Let E be a (finite or count-
able) set, endowed with the trivial topology, namely d(x, y) = 1x ̸=y. For all x, y ∈ E, let
q(x, y) ⩾ 0 be a jump rate. A Markov process X on E can be defined as follows: given
some initial condition x ∈ E, let Jy be an exponential random variable with parameter
q(x, y). Write

J1 = min
y∈E

Jy, Y 1 = argmin
y∈E

Jy.

Then X jumps from a state x to a state y at rate q(x, y) in the sense that Xt = x for all
t < J1 and XJ1 = Y 1. This defines X until J1, and an induction argument then extends
Xt for all t ⩾ 0. Such processes will appear exclusively in Chapter 8.

• (Itô-)Diffusion processes on Rd: this is most important example for this thesis, appearing
in Chapters 2,4,6 and 7. They can be defined as the solution to the Itô equation:

dZt = b(Zt)dt+ σ(Zt)dBt, (1.1)

where B is a Brownian motion, b : Rd → Rd is the drift, and σ : Rd → Md(R) is the
diffusion coefficient. They are continuous Markov process, see [154]. While they can be
defined more generally, this definition is sufficient for our purpose and encompasses the two
most crucial examples for this thesis: the overdamped and kinetic Langevin processes (see
Section 1.2 and 1.3).

• Switched diffusion process: fix a family of drifts (bi) and diffusions (σi), 1 ⩽ i ⩽ N , and a
Markov chain I on the set J1, NK. Then we say that Z is a switched diffusion if it solves:

dZt = bIt(Zt)dt+ σIt(Zt)dBt.

Z here is not a Markov process, but (Z, I) is. This represents a less classical class of Markov
processes and will be discussed in Chapter 5.

• Piecewise deterministic Markov process (PDMP): fix some flow φt on a set E, jump rate
λ : E → R+, and jump kernel Q(x) : E →M1(E). Then, X is a PDMP if, by defining the
random times Tn by

Tn+1 = inf

{
t ⩾ Tn,

∫ t

Tn

λ(Xs)ds ⩾ En

}
,

where (En)n∈N is a family of independent exponential random variable of parameter 1, we
have that for all n ∈ N:

Xt = φt−Tn(XTn), ∀t ∈ [Tn, Tn+1[, XTn ∼ Q(XTn−).

The process X is deterministic between random times, at which it jumps randomly to
another location. While such processes were more recently analyzed for sampling purposes
and may not directly appear in the thesis, a mixture between PDMP and diffusion processes
will be studied in Chapter 3.

For a given Markov process (Xt), we define its semi-group (Pt)t⩾0 by:

Ptf(x) = Ex (f (Xt)) ,

for any f : E → R bounded and measurable. The process is completely characterized by its semi-
group, making it a central object of study. The semi-group also acts on the set of probability
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measures M1(E) as follows: ∫
fd (νPt) =

∫
Ptfdν,

for any ν ∈M1(E). By the definition of the semi-group, νPt is the law of Xt under Pν .

Definition 1.1.2. A measure µ is said to be an invariant (or stationary) measure for the Markov
process X if for all t ⩾ 0

µPt = µ.

There may exist no, one, or an infinite number of invariant measures. The goal of MCMC
is, given a target distribution µ, to design a Markov process X such that µ is its only invariant
measure, and X is ergodic, in one of the following senses:

1

t

∫ t

0

δXs
ds →

t→∞
µ, weakly, almost surely, (1.2)

or
Law(Xt) →

t→∞
µ, weakly. (1.3)

In these cases, the invariant measure describes the behavior of the process as time goes to infinity.
Reciprocally, the simulation of Xt (or of a trajectory (Xs)0⩽s⩽t), for large time t ⩾ 0, yields an
approximation of µ. Hence, the analysis of such convergences (under different possible norms)
will be the main topic of this thesis.

A powerful tool to study the evolution of the law of a Markov process (and thus its long-time
behavior) is its so-called generator (or equivalently the generator of its semi-group).

Definition 1.1.3. Let E be a Banach space of functions from E to R, endowed with some norm
∥ · ∥E . The generator of Pt and its domain (L,D(L)) are defined by:

f ∈ D(L), g = Lf ⇔ lim
t→0

∥∥∥∥Ptf − f
t

− g
∥∥∥∥
E
= 0.

The classical setting is to take E as the set of bounded functions, endowed with the norm
∥g∥∞ = supE |g|. In this case, for continuous or cadlag process, the generator completely deter-
mines the Markov process, and for all f ∈ D(L), we have the Kolmogorov equation:

∂tPtf = LPtf = PtLf.

However, in many cases, Pt defines a semi-group in other Banach spaces, see Section 1.2.1. The
minimal prerequisite on E that we need here is that the set of smooth and compactly supported
functions is a dense and stable by L subset of E . The link between the semi-group and the
generator (and resolvent) is the subject of the Hille-Yoshida theory, which lies outside the scope
of this introduction (see [169]). Let’s consider two examples:

• For a diffusion process (1.1) with Lipschitz continuous drift b and diffusion coefficient σ,
we have C2c ⊂ D(L), where Ckc denotes the k times differentiable functions with compact
support, and for f ∈ C2:

Lf = b · ∇f +
1

2
tr
(
σt∇2fσ

)
. (1.4)

• For a PDMP, we have C1c ⊂ D(L), and for f ∈ C1c :

Lf(x) = ∇φ(x) · ∇f(x) + λ(x)

∫
(f(y)− f(x))Q(x, dy). (1.5)
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The choice of E depends on the topology in which the long-term convergence of the semi-group
occurs and must be specified. Various topologies, such as weak, Wasserstein, L2, Hk, etc., are
available, and each require a different method to prove convergence. Depending on the process,
understanding which given norm or method is best suited is a critical part of the study.

Now, the remainder of this introduction is divided into two sections: first, Section 1.2 will
elaborate on the different methods used to study the convergence of Markov processes towards
their invariant probability measure; then, Section 1.3 will introduce the algorithms to which we
will apply the previously presented methods, as well as the contributions of this thesis.

1.2 Some methods to study the long-time behavior of Markov
processes

Two families of methods are used in this PhD to study the long-time behavior of Markov pro-
cesses, giving explicit rates in the convergences (1.3). The first family of methods, presented in
Section 1.2.1, corresponds to PDE methods, used for the convergence in entropy, and in L2 or
Sobolev spaces. We will then delve into coupling methods in Section 1.2.2.

1.2.1 The PDE methods: Entropy, L2, Hk convergence

Link between PDE and Markov process

The first family of methods to study the long-time evolution of the law of a Markov process are
based on PDEs, and the use of the generator. As seen previously, the semi-group P of a Markov
process which admits a generator L satisfies for f ∈ D(L) the Kolmogorov (or Fokker-Planck)
equation:

∂tPtf = LPtf = PtLf. (1.6)

Hence, if L is a differential operator, PDE methods can be employed to study the long-time
behavior of the semi-group. There is also a dual formulation. Denote by l the Lebesgue measure,
gt the law of the Markov process, and L∗ the dual of L in L2(l). Then, g is a weak solution to
the PDE:

∂tgt = L∗gt. (1.7)

This provides two points of view for the long-time convergence of a Markov process, depending on
the context. For instance, equation (1.6) in Sobolev spaces, as done in Chapters 2 and 3, allows
for estimates on Ptf , whereas equation (1.7) is better suited for the convergences in entropy (see
below), or for the convergence in probability of the process studied in Chapter 4. In the remainder
of this section, we will consider for simplicity diffusion processes with an invariant measure µ,
but other kinds of processes (such as PDMPs giving rise to integro-differential equations) can be
considered. In those cases, we will have E = Rd. We will have a look at two families of diffusions:

Elliptic diffusions: An elliptic diffusion Z is a diffusion in E that solves

dZt = b(Zt)dt+ σ(Zt)dBt,

where the diffusion matrix satisfies

σ(x)Tσ(x) ⩾ cId,

where σT denote the adjoint of σ, for some c > 0 and all x ∈ E, in the sense that σTσ − cId is
everywhere positive definite. The generator of these diffusions has a regularizing effect, making
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them suitable for PDE methods.

Proposition 1.2.1. Suppose that b ∈ Lp
loc for some p > d + 2, and σTσ and its inverse are

bounded. Then the law of Zt admits a Holder continuous density gt with respect to the Lebesgue
measure. If, in addition, we suppose b and σ Lipschitz continuous and Cp, then gt ∈ Cp and
Ptf ∈ Cp.

Proofs of those statements can be found in [18, 102]. The most important example of an
elliptic diffusion in this thesis is given by the so-called overdamped Langevin process

dXt = −∇U(Xt)dt+
√

2β−1dBt, (1.8)

where U : Rd → R+ will usually be taken as a smooth function. This example is crucial as it has
an explicit invariant measure given by:

νβ(dx) = Z−1
β e−βU(x)dx, (1.9)

where Zβ is a normalisation constant.
Hypoelliptic diffusions: Since the law of an elliptic diffusion with smooth coefficients at

a given time has a smooth density, it is natural to wonder which other kind of generator will
generate a smooth density, and hence be adapted to PDE methods. This corresponds to the
notion of a parabolic hypoelliptic operator.

Definition 1.2.1. We say that L is parabolic hypoelliptic or that ∂t − L is hypoelliptic if for all
u : R+ × Rd → R:

∂tu− Lu ∈ C∞ =⇒ u ∈ C∞.

If L is the generator of the semi-group P and is parabolic hypoelliptic, then Equation (1.6)
would yield the smoothness of the semi-group. Let’s now give a criterion for parabolic hypoel-
lipticity. Given two vector fields A, and B on Rd, we denote their Lie bracket as

[A,B](x) = DB(x)A(x)−DA(x)B(x),

where (DA)i,j = ∂jAi.

Definition 1.2.2. For a family of vector fields (Ai)0⩽i⩽m on Rd, define

V0 = {Ai, i ∈ J1,mK} , Vk+1 = Vk ∪ {[B,Ai], B ∈ Vk, i ∈ J0,mK} .

We say that (Ai)0⩽i⩽m satisfies the Hörmander’s bracket condition if

Span (∪∞k=0Vk) = Rd.

Proposition 1.2.2 (Hörmander’s theorem). Identify any vector field with the corresponding
differential form. Then if L = A0 +

∑m
i=1A

2
i , the (Ai)0⩽i⩽m are bounded, and satisfy the

Hörmander’s bracket condition 1.2.2, then L is parabolic hypoelliptic.

Proof of this theorem and variations can be found in [77, 28]. The most important example
of a hypoelliptic process for this thesis is the Langevin one:{

dXt = Ytdt,

dYt = −∇U(Xt)dt− γYtdt+
√

2γβ−1dBt.
(1.10)
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Here, d = 2n, X ∈ Rn and Y ∈ Rn are not Markov processes, but (X,Y ) is, and the fact that
the noise only acts on Y makes this process non-elliptic. Its generator is given by

L = y · ∇x −∇ · ∇y − γy · ∇y + γβ−1∆y = A0 + γβ−1
n∑

i=1

∂2yi
. (1.11)

We have the commutator
[∂yi

, y · ∇x] = −∂xi
.

Hence, when ∇U is bounded, (X,Y ) is hypoelliptic, as

Span(V0 ∪ V1) = Rd.

Under mild assumptions, the Langevin process admits a unique invariant probability measure
given by

µβ(dx,dy) =
e−βH(x,y)√
πβ−1

d
Zβ

dxdy, (1.12)

where Zβ is the same normalisation constant as in (1.9). Many other hypoelliptic processes exist,
such as the Generalised Langevin process [168, 132], or the chains of oscillators [125].

As we will see in Section 1.3, we are not only interested in the smoothness of the law or
of Ptf , as it is not sufficient for the study of the stochastic algorithm. Since we study Markov
processes that possess an invariant measure µ, we may introduce the following Hilbert spaces:

L2(µ) =

{
f : E → R, measurable,

∫
E

f2dµ <∞
}
,

or
Hk(µ) =

{
f ∈ L2(µ),∀α ∈ Nd, |α|1 ⩽ k,

∫
E

|∂αf |2 dµ <∞
}
.

for some k ∈ N. Both are Hilbert spaces, with scalar product

⟨f, g⟩L2(µ) =

∫
E

fgdµ, ⟨f, g⟩Hk(µ) =
∑

α∈Nd,|α|1⩽k

∫
E

∂αf∂αgdµ.

In many cases, we are interested in L∞ bounds on Ptf , and Sobolev embedding combined with
convergence in Hk(µ), will be the means to achieve such bounds, as discussed in Chapters 2, 3
and 4. The remainder of Section 1.2.1 will be devoted to presenting the usual methods for proving
convergence in such spaces, employing functional inequalities. We will first delve into the elliptic
and reversible case before introducing Gamma calculus for the study of the long-time behavior
of non-elliptic processes.

The elliptic/reversible case

In order to later justify our computations, we enforce the following

Assumption 1.2.1. E is a Hilbert space, the Markov process X defines a semi-group Pt : E → E,
and there exists a dense subset A ⊂ E such that A ⊂ D(L) and h ∈ A =⇒ h2 ∈ A.

In all the spaces E we will consider, we will have that C∞c (the set of smooth functions
with compact support) is a dense subset of E . Moreover, in the case of diffusions with regular
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coefficients, we have C∞c ⊂ D(L), and hence we may think of A as C∞c . In this section, we also
suppose that the process X is reversible:

Assumption 1.2.2. µ denotes an invariant measure for the semi-group (Pt)t⩾0, E ⊂ L2(µ),
and X is reversible with respect to µ, in the sense that for all t ⩾ 0, Pt is self-adjoint in L2(µ).

Define for h ∈ A the so-called carré du champ

Γ(h) =
1

2

(
L
(
h2
)
− 2hLh

)
. (1.13)

This definition is motivated by the following formal computation:

∂t

∫
E

(Ptf − µ (Ptf))
2 dµ = 2

∫
E

(Ptf − µ (Ptf))LPtfdµ−
∫
E

L (Ptf)
2 dµ = −2

∫
E

Γ(Ptf)dµ.

Definition 1.2.3. We say that µ satisfies a Poincaré inequality (with respect to Γ) if there exists
λ > 0 such that:

λ

∫
E

(h− µ(h))2 dµ ⩽
∫
E

Γ(h)dµ, (1.14)

for all h ∈ A.

In the reversible case, this Poincaré inequality is related to the so-called spectral gap of the
process, since λ can be taken as the greatest non-zero eigenvalue of L. Hence, it is only natural
that it is related to the long time behavior of the semi-group, as shown by the following:

Proposition 1.2.3. Under Assumption 1.2.1, the existence of a Poincaré inequality is equivalent
to: for all t ⩾ 0

∥Ptf − µ(f)∥L2(µ) ⩽ e−2λt ∥f − µ(f)∥L2(µ) , (1.15)

for all f ∈ L2(µ).

Hence, Poincaré inequality gives us convergences towards equilibrium and even speed of
convergence through λ. Take the example of the overdamped Langevin process (1.8). In this
case:

Γ(h) = β−1|∇h|2,

and the stationary measure is the Gibbs measure (1.9). It can be shown that this probability
measure satisfies the Poincaré inequality

λ

∫
Rd

(h− νβ(h))2 dνβ ⩽
∫
Rd

|∇h|2dνβ ,

if for instance U ∈ C2(Rd) and
inf |∇U |2 −∆U > −∞,

yielding exponential convergence in L2(νβ). Estimates on the Poincaré constant, and more
particularly its dependency on the dimension and the temperature β−1, are of great importance
to analyse the speed of convergence of these Markov processes and their application to stochastic
algorithms, as we will see in Section 1.3. The carré du champs also yields local information
on the semi-group, but those will not be of interest in this thesis. Moreover, other functional
inequalities exist, like the log-Sobolev and the Sobolev inequalities, which yield convergences
in other spaces, as well as other properties such as hyper and ultracontractivity, see [6]. For
instance, using a log-Sobolev inequality instead of a Poincaré inequality, one could prove the
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convergence in entropy, where the entropy of a probability measure ν with respect to µ is defined
as:

Ent (ν|µ) =


∫

ln

(
dν
dµ

)
dν if ν ≪ µ,

+∞ else.

This does not define a distance, but the entropy is particularly well-adapted to particle systems
or high dimensional settings, as this quantity scales better than Lp distances with the dimension
and is an upper bound for some Wasserstein distances, that will be defined in Section 1.2.2 (such
as the total variation distance with the Pinsker inequality).

The method presented in this Section does not require reversibility, but only a Poincaré
inequality (1.14). It however fails as such in the case of kinetic process. Let’s consider the case
of the Langevin process (1.10). Its carré du champs is expressed as:

Γ(h) = γβ−1|∇yh|2.

Considering a function h that only depends on x, an inequality of the form:

λ

∫
R2d

(h− µβ(h))
2 dµβ ⩽

∫
R2d

|∇yh|2dµβ

cannot hold with λ > 0. According to Proposition 1.2.3, it is not possible to achieve convergence
as for the overdamped Langevin process. The next section is dedicated to adapting the previously
discussed method to kinetic processes.

Hypocoercivity and generalized Gamma calculus

The Langevin process is not coercive, as in Proposition 1.2.3, but is hypocoercive, a term intro-
duced in [163].

Definition 1.2.4. A semi-group P with invariant measure µ is said to be hypocoercive on E if
there exist C > 1 and λ > 0 such that:

∥Ptf − µ(f)∥E ⩽ Ce−λt ∥f − µ(f)∥E , (1.16)

for all f ∈ E.

If C = 1, then we revert to the case of Section 1.2.1, and the process is simply coercive.
However, when C > 1, this convergence is not equivalent to the Poincaré inequality with respect
to the carré du champ. Contrary to the convergence (1.15), this property is invariant by replacing
the distance by an equivalent one on E . In fact, Villani developed in his famous memoir [163]
a method to show hypocoercive convergence by using a modified norm. This method has later
been formalized using the so-called Gamma calculus [9, 134]. Demonstrating such convergence
is usually equivalent to finding the correct distance for which the semi-group is actually coercive,
as we will now see. We are interested in the evolution of quantities of the form:∫

E

ϕ (Ptf) dµ,

for quadratic functionals ϕ : C∞(X )→ C∞(X ) of the form:

ϕ(h) = |A∇αh|2 =
∑

α1+···+α2d=α

|Aα1,...,α2d
∂α1
z1 . . . ∂

α2d
z2d

h|2,
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for some α ∈ N and tensor A, as well as linear combination of such functionals. To this end,
define:

ΓL,ϕ(h) =
1

2
(L(ϕ(h))−Dhϕ(h)Lh) , (1.17)

where Dhϕ denote the differential operator of ϕ. This definition is motivated by the following
formal computation:

d
dt

∫
E

ϕ (Ptf) dµ = −
∫
E

ΓL,ϕ (Ptf)dµ, (1.18)

which uses that µ is invariant for Pt. If we can get an inequality of the form

c

∫
E

ϕ(h)dµ ⩽
∫
E

ΓL,ϕ(h)dµ (1.19)

for all smooth h ∈ A, then this implies the convergence:∫
E

ϕ (Ptf)dµ ⩽ e−ct

∫
E

ϕ (f) dµ. (1.20)

Therefore, if
∫
E
ϕ (f) dµ is equivalent to the L2 or Hk distance, then our goal would be achieved.

This tool is particularly well adapted for the study of quadratic functional such as the L2 or Hk

norms, due to the following identity:

Proposition 1.2.4. If there exists A = (A1, · · · , Ap) : C∞ → (C∞)p a linear operator such that
ϕ(h) = |Ah|2, then

ΓL,ϕ(h) = ΓL,2(Ah) +Ah · [L,A]h,

where ΓL,2(Ah) =
∑p

i=1 Γ(Aih), Γ is the carré du champ defined in (1.13), and [L,A] =
([L,A1], · · · , [L,Ap]).

Let’s now see how this applies to the L2(µ) and H1(µ) of the Langevin process, in the case of
a bounded hessian potential: ∥∇2U∥∞ <∞. Let’s recall that under this condition, the Langevin
process admits the measure µβ defined in (1.12) as its unique invariant measure, and its generator
is given by:

L = y · ∇x −∇U · ∇y − γy · ∇y + γβ−1∆y. (1.21)

We will show convergence in H1 using Gamma calculus. We have:

[L,∇x] = ∇2U∇y, [L,∇y] = −∇x + γ∇y.

Hence using Young inequality we have:

(∇x −∇y) g · [L,∇x −∇y]g = (∇x −∇y) g ·
(
∇2U∇y +∇x − γ∇y

)
g

⩾
1

2
|∇xg|2 − 2

(
1 + γ + ∥∇2U∥∞

)2 |∇yg|2,

as well as
∇yg · [L,∇y]g = ∇yg · (−∇x + γ∇y) g ⩾ −1

4
|∇xg|2 − |∇yg|2.

Thus, with

ϕ(h) = ch2 + |(∇x −∇y)h|2 + |∇yh|2, c = γ−1β
(
2 + 2

(
1 + γ + ∥∇2U∥∞

)2)
,
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Proposition 1.2.4, the linearity of Γϕ with respect to ϕ, as well as the positivity of Γ yield that

Γϕ(g) ⩾ cΓ(g) + (∇x −∇y) g · [L,∇x −∇y]g +∇yg · [L,∇y]g ⩾
1

2
|∇g|2. (1.22)

The measure µβ satisfies the Poincaré inequality

λ

∫
R2d

(h− µβ(h))
2 dµβ ⩽

∫
R2d

|∇h|2dµβ ,

for some λ > 0, which, combined with inequality (1.22), yields

−
∫
R2d

Γϕ(g)dµβ ⩽ −κ
∫
R2d

ϕ(g)dµβ

for some κ > 0. This inequality, at least formally, yields the H1 convergence:∫
R2d

(Ptf)
2
+ |∇Ptf |2dµβ ⩽ Ce−ct

∫
R2d

f2 + |∇f |2dµβ

for some C, c > 0 that can be made explicit, and all f ∈ H1(µ). Actually, using an L2 → H1

hypoelliptic regularization [81]∫
R2d

(Ptf)
2
+ |∇Ptf |2dµβ ⩽

K

tα

∫
R2d

f2dµβ , ∀t ∈]0, 1]

for some K,α > 0, this also yield the L2 convergence:∫
R2d

(Ptf)
2 dµβ ⩽ C

e−ct

min(1, t)α

∫
R2d

f2dµβ .

These computations can be made rigorous using the Lumer-Phillips theorem. All computations
are conducted on the semi-group’s generator, and this theorem, rooted in the Hille-Yoshida
theory, allows us to transfer a property from the generator to the semi-group. In the case of
the Langevin process, Villani’s method worked thanks to the bracket condition of hypoellipticity
given in Definition 1.2.2. Regardless, some processes might exhibit hypocoercive convergence
without being hypoelliptic, as is the case for some kinetic PDMPs. In these case, other methods
exist to show hypocoercivity, such as the ones developed in [50, 1].

This method will be employed in Chapters 2, 3 and 4, in Hk spaces, to obtain either estimates
on the semi-group or on the time-marginals of the law of the process under different sets of
assumptions on the process. The proof of the inequality (1.19) will consistently rely on the use
of the Poincaré inequality throughout this thesis. In the case of non-quadratic ϕ, one could
also use other functional inequalities such as the Log-Sobolev inequality when ϕ(h) = h ln(h)
represents the entropy.

1.2.2 Wasserstein distance and coupling methods

The second family of methods we are going to look at are coupling methods, based on Wasserstein
distances. These distances are typically introduced within the context of optimal transport and
have the advantage that they don’t require a priori the existence of an invariant probability
measure, but will in fact be used for the proof of existence of such a measure, as we will discuss
later on. Moreover, they are well-suited for studying the long-term behavior of Markov processes,
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thanks to their probabilistic interpretation, even in cases where the generator is not a differential
operator.

The topology

Definition 1.2.5. For any two probability measures ν1, ν2, we define a coupling of ν1 and ν2 as
(X1, X2) such that the law of X1 (resp. X2) is ν1 (resp. ν2).

Given a distance d on E, p ∈ N, and ν1, ν2 ∈ M1(E), we define the associated Wasserstein
distance as follows:

Wd,p(ν1, ν2) =
(
inf
{
E
(
dp(X1, X2)

)
, (X1, X2) coupling of ν1 and ν2

})1/p
.

Given a Markov semi-group P , we call a coupling of (ν1Pt)t⩾0 and (ν2Pt)t⩾0 a stochastic
process (X1

t , X
2
t )t⩾0 such that (X1

t )t⩾0 and (X2
t )t⩾0 are Markov processes of semi-group (Pt)t⩾0

and initial condition ν1 for X1 and ν2 for X2.

When p = 1, it is also referred to as the Kantorovich distance. This definition yields a
distance on the space:

M1
p(E) =

{
ν ∈M1(E),

∫
E

d(x, x0)
pν(dx) <∞

}
,

and this space is independent of the choice of x0 ∈ E. We will be mostly interested in the case
p = 1 and p = 2. If d is bounded, then all these distances are equivalent. A specific instance is
when d(x, y) = 21x ̸=y and p = 1, leading to the recovery of the total variation distance denoted
by Wd(ν1, ν2) = ∥ν1 − ν2∥TV . The Wasserstein distances satisfy the following properties:

Proposition 1.2.5. • If (E,d) is a Polish space, then (M1
p,Wd,p) is also a Polish space.

• In this case, there exists an optimal coupling, meaning a coupling (X1, X2) of ν1 and ν2
such that Wd(ν1, ν2) = E

(
d(X1, X2)

)
.

• ∥ · ∥TV makes M1(E) complete for any set E, and there always exists an optimal coupling
for this distance.

Proofs of these facts can be found in [164, Theorem 6.18 and Theorem 4.1]. These properties
hold even though (E, 21x ̸=y) is not separable as soon as E is uncountable. In the sequel, we will
omit the dependence on d, and Wp will denote Wd,p. We will also refer to the law of the pair
(X1, X2) as the optimal coupling.

Now, let’s explain why the Wasserstein distance is well-suited to the study of the long-time
behavior of Markov processes. The objective is to establish a coupling for all x, y ∈ E of δxPt

and δyPt. Typically, such a coupling should ensure that X1
s = X2

s =⇒ X1
t = X2

t , ∀t ⩾ s.
When this happens, we say that the processes X1 and X2 have coupled at time s. Given that
the Wasserstein distance is defined by an infimum, any coupling, not necessarily an optimal one,
can provide an upper bound for the distance, as for all t ⩾ 0 the following inequality holds:

Wd(ν1Pt, ν2Pt) ⩽ E
(
d(X1

t , X
2
t )
)
.

More precisely we have:

Proposition 1.2.6. Suppose that (E,d) is a Polish space or that d(x, y) = 21x ̸=y, and that there
exist t0 > 0, 0 < κ < 1, α > 0 such that for all x, y ∈ E, there exists two couplings, (Xx, Xy)
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and (X̄x, X̄y), of (δxPt) and (δyPt) such that for all t ⩾ 0, (x, y) 7→ (Xx
t , X

x
t ) is measurable,

E
(
d
(
Xx

t0 , X
y
t0

)p)
⩽ κpd(x, y)p, (1.23)

and
E
(
d (Xx

t , X
y
t )

p) ⩽ αpd(x, y)p, ∀t ∈ [0, t0]. (1.24)

Then the semi-group (Pt) admits a unique invariant measure µ, and we have that for all ν ∈
M1

p(E):
Wp (νPt, µ) ⩽ Ce−ctWp (ν, µ) ,

for some constants C, c > 0 explicit in κ, α and t0.

Proof. Fix ν1, ν2 ∈M1(E), and let (X0, Y0) be an optimal coupling of ν1, ν2. Denote Xt = XX0
t

and Yt = Y Y0
t . (Xt0 , Yt0) is a coupling of ν1Pt0 and ν2Pt0 , and hence using the definition of the

Wasserstein distance and conditioning we get:

W p
p (ν1Pt0 , ν2Pt0) ⩽ E (d (Xt0 , Yt0)

p
) =

∫
E×E

E
(
d
(
Xx

t0 , Y
y
t0

)p)
π(dxdy)

⩽ κp
∫
E×E

d(x, y)pπ(dx, dy) = κpW p
p (ν1, ν2) .

Thus, the application ν 7→ νPt0 is a contraction on the complete space M1
p, and the Banach

fixed point theorem yield that it admits a unique fixed point µ ∈M1
p(E), and µ is such that

Wp

(
νP k

t0 , µ
)
⩽ κkWp (ν, µ) .

An invariant measure of the semi-group is necessarily a fixed point of Pt0 . If there exists t ⩾ 0
such that µPt ̸= µ, then, by the semi-group property of P , µPt would be a second fixed point
of Pt0 . This implies that µ is the unique invariant measure of the semi-group. Integrating
Inequality (1.24) with respect to the initial condition implies that for all t ∈ [0, t0]:

Wp (ν1Pt, ν2Pt) ⩽ CWp (ν1, ν2) .

Therefore, we may write

Wp (νPt, µ) =Wp (νPt, µPt) ⩽ κ⌊t/t0⌋Wp

(
νPt−⌊t/t0⌋t0 , µPt−⌊t/t0⌋t0

)
⩽ ακ⌊t/t0⌋Wp (ν, µ)

which concludes the proof with C = ακ−1 and c = −t−1
0 ln(κ).

Constructing a coupling that satisfies (1.24) is typically straightforward, and the main chal-
lenges arise in building the coupling from (1.23).

A first example

Let’s consider an example to illustrate how this works. Take the following SDE on Rd:

dXt = b(Xt)dt+ dBt, (1.25)

where B is a Brownian motion, and b satisfies the following one-sided Lipschitz condition:

∃κ > 0, ∀x, y ∈ Rd, (b(x)− b(y)) · (x− y) ⩽ −κ|x− y|2. (1.26)



14 CHAPTER 1. Introduction

This condition implies that the deterministic drift tends to bring points in space closer together.
It is for example satisfied by the gradient of convex functions. Let d(x, y) = ∥ · ∥2 be the
Euclidean norm. Fix x, y ∈ Rd and a Brownian motion B. We can then define the so-called
parallel coupling:

Xt = x+

∫ t

0

b (Xs) ds+Bt, Yt = y +

∫ t

0

b (Ys) ds+Bt. (1.27)

They are both driven by the same Brownian motion. Ito’s formula yields:

d|Xt − Yt|22 = 2 (b (Xt)− b (Yt)) · (Xt − Yt) dt ⩽ −2κ|Xt − Yt|22dt,

and hence
∥Xt − Yt∥2 ⩽ e−κt∥X0 − Y0∥2

which implies inequality (1.23). We can conclude that the SDE (1.25) defines a Markov process
that admits a unique invariant measure, and that the law of this process converges exponentially
fast towards this invariant measure at rate κ for the distance Wp, for all p ⩾ 1. In the case
where (1.26) only holds outside a compact set, contraction in W1 was proved in [55] for a distance
d equivalent to the euclidean one, using the famous reflection coupling introduced in [117]. In the
case of non-elliptic processes, a mix between parallel and reflection coupling was used in [56] to
prove convergence of the Langevin process (1.10). To my knowledge, it remains open to know if
it is possible to construct a metric on Rd and a coupling to prove the Wasserstein convergence for
a process satisfying the Hörmander’s bracket condition from Definition 1.2.2 and a contractivity
assumption similar to (1.26) outside a compact set.

Convergence in weighted total variation and Lyapunov functions

We have shown in the previous section the convergence of the process (1.25) in Wasserstein
distance Wp under a uniform one-sided Lipschitz condition on the drift. Now, we are interested in
the convergence of the same process in total variation distance, i.e., considering d(x, y) = 21x ̸=y.
Denote the process byXx when the initial condition is x ∈ Rd, and let’s suppose that b is Lipschitz
continuous. Then, from Proposition 1.2.1, we get that the random variable Xx

t admits a density
with respect to the Lebesgue measure, denoted by ht(x, ·), and the mapping (x, y) 7→ ht(x, y) is
continuous and non-negative. Actually, using controllability arguments, one can show that it is
positive. Suppose we have the additional condition

inf
x,y∈Rd

ht0(x, y) > 0,

which would hold if the diffusion was living in a compact space, like the periodic torus, or if a
Sobolev inequality would hold, thus implying ultracontractivity. In that case, we would satisfy
condition (1.23): the uniform creation of density implies exponential convergence towards a
unique equilibrium in total variation distance. Indeed, we can construct an explicit coupling
satisfying (1.23). Let’s write c = infRd×K̃ ht0 , where K̃ is a compact set of Lebesgue measure 1,
and denote the Lebesgue measure by l. Notice that

Law
(
Xx

t0

)
= (1− c)

Law
(
Xx

t0

)
− cl

(
· ∩ K̃

)
1− c

+ cl
(
· ∩ K̃

)
.

Now, let’s define random variables as follows:
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• Z is a random variable with law l
(
· ∩ K̃

)
.,

• B is a Bernoulli random variable with parameter c,

• For all x ∈ Rd, Zx is a random variable with law
Law(Xx

t0
)−cl(·∩K̃)

1−c .

Then, the law of the random variable

Xx = 1B=1Z + 1B=0Z
x

is indeed δxPt0 , and we have

∥δxPt0 − δyPt0∥TV ⩽ 2P (Xx ̸= Xy) ⩽ 2P (B = 0) = 2(1− c) = (1− c)∥δx − δy∥TV

for all x, y ∈ Rd, corresponding to (1.23). More generally, a condition

∀x ∈ E,Px (Xt0 ∈ ·) ⩾ cθ, (1.28)

for some probability measure θ ∈ M1, called a Doeblin condition, yields condition (1.23), and
hence convergence in total variation distance. However, when the state space is not compact,
the condition (1.28) might not hold uniformly on E. In this case, we need the existence of a
so-called Lyapunov function. In many cases of interest, the process goes back to a compact set
on which such an inequality holds.

Definition 1.2.6. A function V : E → [1,∞) is called a Lyapunov function if V has compact
level sets and there exist C > 0 and 0 < α < 1 such that:

Ex (V (Xt0)) ⩽ (1− α)V (x) + αC, (1.29)

for some t0 > 0.

Informally speaking, the existence of a Lyapunov function is equivalent to the fact that the
process returns exponentially fast to compact sets. The usual way to prove the existence of a
Lyapunov function is to use the generator characterisation: (1.29) is implied by the fact that
V ∈ D(L) and:

LV ⩽ −cV + C,

for some C, c > 0. Suppose that the one-sided Lipschitz condition holds for the drift, but only
’at infinity’: there exists some compact set K ⊂ Rd such that:

∀x ∈ Rd \K, b(x) · x ⩽ −κ∥x∥2.

Then, if V (x) = x2 + 1, we have:

LV = −2b(x) · x+ 2d ⩽ −2κV (x) + 2(κ+ d),

and hence V is a Lyapunov function. Now, let’s write

dV,β(x, y) = 21x ̸=y(1 + βV (x) + βV (y)).

The addition of a Lyapunov function to a Doeblin condition yields a Harris-type theorem, which
corresponds to the following result:
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Proposition 1.2.7. Suppose that V is a Lyapunov function satisfying (1.29), and that there
exists a probability measure θ such that for all x ∈ {V < C ′},

Px (Xt0 ∈ ·) ⩾ cθ,

for some C ′ > 2C and c > 0. Then there exists an explicit β > 0 such that ν 7→ νPt0 is a con-
traction in the space (M1(E),WdV,β ,1), and all conclusions of Proposition 1.2.6 hold. Moreover,
we have the total variation convergence:

∥νPt − µ∥TV ⩽ De−dt

∫
V (x)ν(dx),

for some D, d > 0.

This kind of method first sprung from the work of Meyn and Tweedie, see [128]. Proof of this
statement and variations can be found in [52, 79].

Particle systems

In this thesis, we primarily apply coupling methods to mean-field particle systems. For a given
vector x = (x1, . . . , xN ) ∈ EN , we define its empirical measure as:

π(x) =
1

N

∑
i=1

δxi
.

It is a probability measure that counts the number of point (xi) in any given set. A mean
field particle system is a Markov process X = (X1, . . . , XN ) with state space EN , where N is
the number of particles, such that each particle Xi only interacts with the other through their
empirical measure π (Xt). In Section 1.3, we will introduce the so-called Fleming-Viot process,
which is an instance of mean field particle system used for sampling. Another widely studied
system is the famous McKean-Vlasov particle system:

dXi
t = −∇U

(
Xi

t

)
− 1

N

N∑
j=1

∇W
(
Xi

t −X
j
t

)
dt+ dBt. (1.30)

This kind of process is interesting because it models systems made up of interacting agents.

Definition 1.2.7. We say that a (finite) sequence of random variable (Xi)1⩽i⩽N is exchangeable
if for all permutation σ : J1, NK→ J1, NK, (Xσ(i))1⩽i⩽N is equal in law to (Xi)1⩽i⩽N .

In particular, if (Xi) is exchangeable, then Xi and Xj have the same laws for all i, j. The next
proposition gives us the convergence of the empirical measure of independent random variables:

Proposition 1.2.8 ([62]). If (Zi) is a sequence of independent random variables with common
law ν with moments of order q > 0: ∫

Rd

xqν(dx) <∞.

Then for all 1 < p < q, the following convergence holds in Wp distance :

π
(
(Zi)1⩽i⩽N

)
=

1

N

N∑
i=1

δZi →
N→∞

ν,
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where is Wasserstein distance is relative to any norm on Rd.

One interesting feature of such mean field systems is that they satisfy the so-called mean field
limit: the particles interacting through their empirical measure are not independent but define
an exchangeable system. Therefore, one may hope that as N goes to infinity, the convergence of
the empirical measure towards their common law remains true, as soon as it is true at the initial
time. This is called propagation of chaos, and would yield that as the number of particles goes
to infinity, instead of seeing the interaction with all others, each particle only sees a determin-
istic averaged interaction which corresponds to their common law. Hence, they would become
independent, and converge towards a non-linear process (in example (1.30), the McKean-Vlasov
process). For such processes, the goal in Chapters 6 and 7 will be to show that the particle
system converges towards an equilibrium, at a rate that is independent of the number of particle,
see Section 1.3.3. To this end, we need a distance that scales well with the number of particles,
and which is close to the distance at hand. For convergences in total variation distances, we
define:

dN (x,y) =
1

N

N∑
i=1

1xi ̸=yi

or in the case where one needs a Lyapunov function:

dN (x,y) =
1

N

N∑
i=1

1xi ̸=yi (1 + βV (xi) + βV (yi)) .

The following lemma is the main motivation behind those distances:

Proposition 1.2.9. Let νNPN
t be the law of the particle system Xt, and denote by νk,N the

k-first particles marginal. Suppose that X0 is exchangeable, and that there exist C, c > 0 such
that

WdN

(
νNPN

t , µ
N
)
⩽ Ce−ctWdN

(
νN , µN

)
.

Then for all k ∈ J1, NK, we have:

∥
(
νNPN

t

)k − µk,N∥TV ⩽
k

N
Ce−ctWdN

(
νN , µN

)
.

Proof. A mean field particle system at time t ⩾ 0 is exchangeable as soon as its initial condition
is. Additionally, if ν1 and ν2 are two exchangeable probability measure on EN , by denoting νk1
νk2 their k particles marginal, we have:

∥νk1 − νk2 ∥TV ⩽
k

N
WdN

(ν1, ν2) .

Such distances were employed in [38] for a Fleming-Viot process and in [133] for general
processes with mean-field jump interaction. A discrete measure cannot converge in total variation
distance towards a measure with density, making the total variation distance unsuitable for the
mean field limit, where one wants to show the convergence of the empirical measure. To achieve
long-time convergence and uniform in-time propagation of chaos, a distance close to the W1
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distance in Rd must be used. For instance, the distance:

dN (x,y) =
1

N

N∑
i=1

|xi − yi|,

was used in [76, 118].

1.3 Stochastic algorithms and contributions of this thesis

Now, let’s delve into the presentation of some MCMC-type algorithms. The theoretical investi-
gation of these algorithms is rooted in the analysis of the long-time behavior of certain Markov
processes, as discussed in Section 1.2. We will explore three types of algorithms, corresponding
to the three parts of the thesis: the sampling of Gibbs measures, stochastic optimization, and
the sampling of quasi-stationary measures using Fleming-Viot particle systems.

1.3.1 Sampling Gibbs measures
The first type of algorithm involves sampling Gibbs measures. Many physical systems can be
described by a Hamiltonian (or energy) of the form:

H(x, y) = U(x) +
1

2
|y|2, (1.31)

where U : Rd → R+ (or U : Td → R+, where Td is the d-dimensional torus) is a potential
function, and |y|2/2 represents the kinetic energy. When the dimension d is large, obtaining the
exact evolution of the system becomes infeasible, and a statistical description must be employed.
In statistical physics, for systems with fixed temperature T = β−1 > 0 and size, but that can
exchange energy, the system is characterized by the Gibbs measure (1.12). The probability for
the system to be in a state (x, y) ∈ R2d solely depends on its energy and we recall that it is given
by

µβ(dx, dy) =
e−βH(x,y)√
πβ−1

d
Zβ

dxdy.

One goal of molecular dynamic is to compute macroscopic quantities of physical systems defined
by averages of the form

µβ(f) := E(f(X,Y )), (X,Y ) ∼ µβ , (1.32)

for some function f : Rd → R. One important example in chemistry is a system of N ≫ 1
particles with van der Waals interaction, which corresponds to a noble gas. In this case, d = 3N
is of the order of NA ≈ 1023, and x = (x1, . . . , xN ) represents the positions of the particles.
For a more in-depth introduction to molecular dynamics, refer to [161], as well as [111] for
a mathematical perspective. Sampling high-dimensional Gibbs measures is not exclusive to
statistical physics; it is also of paramount importance in computational statistics and machine
learning. For instance, suppose given independent and identically distributed samples (Xi, Yi)i
from an unknown probability measure µ∗ on Rd ×R. We are interested in the best predictor f∗
of Y knowing X:

f∗ ∈ argminE
(
(Y1 − f(X1))

2
)
.

The solution to this problem is given by f∗(x) = E(Y |X = x), which is not accessible in practice.
If we assume that f∗ can be efficiently approximated by a linear functional, then given a matrix
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θ, and writing U(θ) = E
(
∥Y − θX∥2

)
, a random variable whose law is the Gibbs measure

νβ(dθ) =
e−βU(θ)

Zβ
dθ,

or its expectancy, are estimators of the solution, see [114, 98]. In this case, and many others,
there is no kinetic energy, and we are only interested in the space variable marginal νβ , also
referred to as Gibbs measure, of the previously defined Gibbs measure µβ .

The tasks involved in sampling such probability measures have three aspects:

1. Designing a Markov Process: The first task is to design a Markov process X that has
the targeted probability measure as its unique invariant state and is ergodic. The rate of
convergence of this Markov process should be as high as possible, and especially it should
not approach 0 too rapidly as the dimension d goes to infinity.

2. Choosing a Discretization Scheme: A discretization scheme Xδ for the Markov process
needs to be chosen so that it can be implemented on a computer. Some processes are
easier to discretize than others, but in most cases, this introduces bias. This bias must be
considered in both the choice of the process and its numerical scheme.

3. Monte-Carlo Method for Approximation: Finally, a Monte-Carlo method is needed to
approximate the expectations of the numerical scheme. If the target is the invariant measure
µ and the numerical scheme admits an invariant measure µδ, then the ergodic property

lim
T→∞

1

T

T∑
i=1

f
(
Xδ

i

)
= µδ(f), almost surely,

can be used. The error is then given by the bias of the invariant measure, and by the fact
that T ∈ N is finite. Another solution, that allows also the computation of E(f(Xt)) for
finite t ⩾ 0, is to compute a large number M ∈ N of independent realisations of Xδ

⌊t/δ⌋, say
Xδ,i

⌊t/δ⌋, and use that fact that under some integrability assumption:

lim
M→∞

1

M

M∑
i=1

f
(
Xδ,i

⌊t/δ⌋

)
= E(f(Xt)), almost surely.

This second Monte Carlo introduces three types of errors. The first error is finite time error,
arising from the fact that we can only access E(f(Xt)) for finite t ⩾ 0. The second error is the
Monte-Carlo error, stemming from the approximation of E(f(Xδ)) (namely M is finite), and the
third error results from the bias in the numerical scheme, where E(f(Xδ

t )) ̸= E(f(Xt)). The
total error can typically be expressed in the form::

E

(∣∣∣∣∣ 1M
M∑
i=1

f(Xδ
i )− µβ(f)

∣∣∣∣∣
)

⩽ C

(
e−ct +

1√
M

+ δα
)
.

The Monte Carlo error could potentially be improved by using other estimators of E(f(Xt))
from the numerical scheme, such as Multilevel Monte Carlo methods (refer to [68]). However,
the focus in the first two chapters of this thesis will be on the first and third errors.

There are many choice for the process used in the sampling, as we will see now. The most
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commonly used process for sampling from νβ is the overdamped Langevin process:

dXt = −∇U(Xt)dt+
√

2β−1dBt, (1.33)

where B is a Brownian motion, thus making X a diffusion process, see [110, 112] for its use in
stochastic algorithms.

Assuming mild conditions on U , such as U ∈ C∞, ∇U Lipschitz continuous, and satisfying

(∇U(x)−∇U(y)) · (x− y) ⩽ −c|x− y|2

for all x, y ∈ Rd \K, where K is some compact set and c > 0, it can be shown, using the results
from Section 1.2, that this process is ergodic with respect to νβ . The specific type of convergence
depends on the assumptions about U and the methods used.

The Euler-Maruyama scheme is a well-known discretization method for Langevin-type pro-
cesses. It reads here:

Xδ
n+1 = Xδ

n − δ∇U(Xδ
n) +

√
2β−1δGn

where (Gn)n =
(
B(n+1)δ −Bnδ

)
n

a family of independent normal random variable. This dis-
cretization leads to the Unadjusted Langevin Algorithm (ULA). If ∇U is Lipschitz continuous,
it can be demonstrated that this numerical scheme converges strongly (in the sense of pathwise)
and weakly with a convergence order of 1.

Definition 1.3.1. A numerical scheme is said to converges strongly with rate of convergence α
if for all T > 0, there exists C > 0 such that for all δ small enough:

sup
0⩽n⩽T/δ

E
(
|Xδ

n −Xnδ|
)
⩽ Cδα.

A numerical scheme is said to converges weakly with rate of convergence α if for all t ⩾ 0, and
f in a suitable class of function, there exists C > 0 such that:

|E
(
f(Xδ

n)
)
− E (f(Xt)) | ⩽ Cδα,

where nδ = t.

In general, the weak and strong order of convergence are not the same, as in the case of
multiplicative noise where the strong order is 1/2. However, for the purposes of this thesis, only
weak convergence is considered since the goal is the computation of averages. Proofs for weak
convergence often rely on estimates of the semi-group, such as:

|∂αPtf(x)| ⩽ C(1 + |x|k), (1.34)

for regular enough f and |α|1 < αmax, along with moment bounds on the numerical scheme,
see [156] for instance in the case of the ULA. It can get intricate as soon as the drift is not
lipschitz continuous as in [123] where it is shown that the explicit Euler scheme might not be
ergodic for non-globally Lipchitz vector field. See also [88] for the study of the failure of the
Euler-Maruyama scheme. In such cases, alternative schemes need to be employed, as discussed
in [78, 87, 89, 90, 30]. Discretization introduces bias in the invariant measure, which can be
mitigated using a general method called metropolization. For example, in the case of the Euler
scheme for the over-damped Langevin dynamics, the Metropolis Adjusted Langevin Algorithm
(MALA) is:

• X̄δ
n+1 = Xδ

n − δ∇U(Xδ
n) +

√
2β−1δGn
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• Let U be uniform on [0, 1].

• If U ⩽ min(1, eβ(U(Xδ
n)−U(X̄δ

n+1)), then Xδ
n+1 = X̄δ

n+1, else Xδ
n+1 = Xδ

n.

This is the so-called Metropolis Adjusted Langevin Algorithm (MALA), and it is known to admit
νβ as its invariant measure. Other schemes, such as the Milstein scheme [145, Chapter 10], can
be employed to achieve better orders of convergence. Implicit numerical schemes are another
option, but they may not be well-suited for high-dimensional settings. The well-posedness of an
implicit numerical scheme is not guaranteed, and even if it were, it would likely be numerically
costly in practice.

A general class of processes are kinetic processes, which are characterized by the equations

dXt = Ytdt,

where X is the position, and noise only acts on the speed Y . Kinetic processes can be utilized
for sampling from the measure νβ using only its position variable. They are expected to exhibit
better convergence rates than elliptic diffusions, displaying a ballistic behavior rather than the
diffusive behavior of reversible processes.

To establish estimates on the semi-groups, similar to (1.34), necessary for proving weak
convergence, hypocoercive methods, as discussed in Section 1.2.1, must be employed. One of the
most physically relevant kinetic processes is the underdamped Langevin process, which models
the movement of a particle in a potential U while in contact with a heat bath at temperature
T = β−1 > 0. We recall that it solves:{

dXt = Ytdt,

dYt = −∇U(Xt)dt− γYtdt+
√
2γβ−1dBt.

Under mild assumptions, this process is ergodic with respect to µβ , allowing for the sampling of
the full Gibbs measure. A straightforward Euler-Maruyama scheme can be used for this process,
but explicit splitting schemes are commonly employed in Molecular Dynamics simulations, better
suited for Hamiltonian dynamics, see [107].

Another family of kinetic processes includes kinetic Piecewise Deterministic Markov Pro-
cesses. PDMPs have the advantage that they can be simulated exactly, eliminating bias. In
general, such processes admit νβ ⊗ π as steady states, where π is a probability measure on the
state space of the speed variable, see [138, 52]. An example of a kinetic PDMP is the Bouncy-
Particle sampler, with a generator given by

Lf(x, y)

= y · ∇xf + (v · ∇U(x))+ (f(x,R(x, y))− f(x, y)) + λ

∫
Rd

(f(x, y′)− f(x, y)) e
−v′2/2

(2π)d/2
dv′,

where λ > 0 is a refreshment parameter and R(x, y) = y − 2∇U(x) · v∇U(x)/|∇U(x)|2. The
first jump part imposes the Gibbs measure µβ as an invariant measure, and the refreshment is
introduced for ergodicity. To study the long time behavior of PDMP’s, the method developed
in [163] is not adapted, as the carré du champ is not of gradient type. However other method can
be applied, see [50, 1] for hypocoercivity, as well as coupling method described in Section 1.2.2.

There are many other processes used for sampling from a Gibbs measure. For instance, one
can mention the Hamiltonian Monte Carlo (HMC) method [69, 26]. In this method, a trajectory
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(Xt, Yt) evolves using the Hamiltonian dynamics{
dXt = Ytdt,
dYt = −∇U(Xt)dt,

and every time T , Y is re-sampled independently from the past according to a N (0, βId) distri-
bution. See also [27] for a review of various usable methods.

Contributions In Part I of this thesis, the focus will be on the weak error expansion of
numerical schemes, also known as weak backward error analysis, for kinetic processes. This
involves searching for series expansions in weak convergences, denoted as

Ez(f(X
δ
n)) = Ez(f(Xt)) + C1(t)δ

α + · · ·+ Ck(t)δ
α+k +O(δα+k+1),

for all k ∈ N, where nδ = t. More particularly, we are interested in cases where the constants Cp,
as well as the rest, are bounded in time, leading to uniform weak convergence over time. This
expansion then also applies to the bias of the invariant measure. The analysis involves estimates
such as

∂αPtf(x, y) ⩽ Ce−ct(1 + |x|k + |y|k),

for function satisfying µβ(f) = 0. The weak error expansion of numerical schemes was initially
proven and numerically studied by Talay and Tubaro in [158]. Their work primarily focuses on
the Euler-Maruyama and Milstein schemes for Elliptic SDEs with globally Lipschitz continuous
coefficients. Talay also proved similar expansions for Hamiltonian systems with polynomial
growth at infinity in [157], although using an implicit Euler scheme. Further studies on these
expansions can be found in [41, 101, 100]. For explicit numerical schemes for the Langevin
process with bounded potentials on the torus, refer to [107], and for Langevin processes with
more general kinetic energies, see [153]. Uniform convergence in time of a numerical scheme is
also explored in [3].

Chapter 2 is devoted to the sampling of Gibbs measure using the Langevin process in the
case of a singular potential, as in the case of N particles within a confining potential and subject
to Lennard-Jones interactions. Explicit numerical schemes are known to exhibit instability when
the drift of the stochastic differential equation lacks Lipschitz continuity [123]. To address the
issue of singularity, a novel numerical scheme that avoids instability phenomena and can be
applied even in high-dimensional settings is proposed. Employing hypocoercive method adapted
to the singular case as in [10], estimates on the semi-group of (1.10) are proven and used to show
uniform in time weak error expansion of this new numerical scheme, as well as at stationary.

The most expensive part when simulating the process (1.10) is the computation of ∇U . A
common approach is to substitute this gradient with a stochastic version. The goal of Chapter 3
is to explore an alternative solution. The idea is to break down the potential as ∇U =

∑K
i=0 Fi,

where F0 represents the cheap to compute part (corresponding to the short range interaction in
a gas of particles). We then consider the process:{

dXt = Ytdt,

dYt = −F0(Xt)dt− γYtdt+
√

2γβ−1dBt,

and the process jumps at rate λi according to some jump kernel qi depending on Fi in a way that
ensures that the equilibrium measure of the process is indeed the Gibbs measure. This a a mix
between diffusion and piecewise deterministic Markov process, with the latter being a type of
Markov process known for its advantageous simulation properties. This study also draws upon
hypocoercive methods.
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Perspectives: Firstly, another process employed for sampling purposes in molecular dynamics
is the generalized Langevin process [168]. It is a hypocoercive process exhibiting a higher degree
of degeneracy than kinetic processes. It would be valuable to extend the computation in Sobolev
spaces of any order for such a process to establish the weak convergence of numerical schemes.
Additionally, exploring out-of-equilibrium processes is intriguing. When the gradient ∇U in the
Langevin process (1.10) is replaced by a general force F , the invariant measure is not explicit and
may not satisfy a Poincaré inequality. Despite this, it remains important to efficiently sample
such measures. Lastly, in the context of sampling Gibbs measures, a criterion for efficiency is the
variance of the Monte Carlo estimator. This aspect could be further studied through a central
limit theorem for the occupation measure process of the two processes analyzed in Chapters 2
and 3.

1.3.2 Optimisation

Part II of this thesis delves into a problem closely related to the sampling of Gibbs measure: the
optimization of non-convex functions. The focus is on a function, called the objective function
in optimization but referred to as the potential in the thesis, U : Rd → R, which is bounded
from below. The goal is to address the problem of finding the minimum (or the minima) of
U over Rd. In various applications, non-convex potentials with multiple local minima, not
necessarily confined within a compact set, are of interest. For example, in the context of Molecular
Dynamics, U may represent the energy of a configuration of a physical system, and the minima
correspond to its metastable states. In computational statistics, U could represent minus the
logarithm of the posterior probability, and its minima indicate the maximum likelihood. A well-
known benchmark problem for non-convex optimization discussed in this thesis is the mixture
of Gaussian distributions. If (Xi) is a data set consisting of Gaussian variable with means Σiθ,
then the maximal likelihood is given by the minimum of a potential that takes the form

U(θ) = ln

(
n∑

i=1

ai exp
(
−λi

(
θ − Σ−1

i Xi

)2))
. (1.35)

When dealing with a convex U , standard gradient descent or its many variants are often sufficient
for finding the minimum. However, the challenge arises in the case of non-convex potentials, as
typical gradient descent algorithms tend to converge to local minima. One approach would be
to initiate multiple gradient descents from random initial points, but the basin of attraction for
global minima is usually of lower dimension compared to the ambient space. As a result, the
probability of starting in this set is quite low. Additionally, in high-dimensional settings, an
exhaustive search is impossible. To overcome these challenges, new paradigms that takes into
account the geometry of U are needed to explore the space. The goal is to devise algorithms
that impose minimal assumptions on U , typically requiring

U ∈ C1(Rd), lim
∥x∥→∞

U(x) = +∞.

However, these assumptions may not be sufficient for the proposed algorithms.
There are various methods for non-convex optimization, including the utilization of mean-

field particle systems like (1.30) for optimizing neural networks [86, 67] or genetic algorithms
based on Fleming-Viot-type particle systems, as discussed in Section 1.3.3, see [148]. However,
in this thesis, we will focus on two specific solutions for this optimization problem. The first one
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is provided by simulated annealing, based on the observation that, under mild assumptions,

νβ

(
U > min

Rd
U + ε

)
→

β→∞
0,

for all ε > 0, where νβ is the Gibbs measure given in (1.9). This implies that if X is an ergodic
Markov process with invariant measure νβ , and if β is large enough, X will spend most of its
times in the vicinity of the global minima. The simulated annealing algorithm involves gradually
increasing β over time. Given a generator Lβ which admits νβ as its invariant measure for
all t ⩾ 0, and a cooling schedule βt →

t→∞
∞, the goal is to design an inhomogeneous Markov

process Xt with generator Lβt
. If β increases slowly enough, the law of Xt will be close to

its instantaneous equilibrium νβt
, and X will converge in probability towards the set of global

minima of U . The faster the temperature goes to 0, the more the Gibbs measure will charge the
minimum. However, if β increases too fast, the process might become trapped in the vicinity
of a local minimum with positive probability, leading to algorithm failure. This transition is
known to occur with a logarithmic schedule: if βt = ln(1 + t)/c and the process is based on the
overdamped Langevin process:

dXt = −∇U(Xt)dt+
√
2β−1

t dBt, (1.36)

then under mild assumption on U (see below), convergence holds for c > c∗ and fails for c < c∗,
where c∗ is an explicit constant known as the largest energy barrier of the potential

c∗ = sup
x1,x2

c(x1, x2)

with
c(x1, x2) = inf

{
max
0⩽t⩽1

U(ξ(t))− U(x1)− U(x2)

}
where the infimum runs over

{
ξ ∈ C

(
[0, 1] ,Rd

)
, ξ(0) = x1, ξ(1) = x2

}
.

The phase transition is attributed to metastability, a crucial phenomenon in the study of low-
temperature processes, among other things. Let’s revisit the process with fixed temperature (1.8),
and consider a domain D ⊂ Rd corresponding to the basin of attraction for the gradient descent
from a point x0 ∈ Rd. We are concerned with the first exit time from the domain:

τ = inf {t ⩾ 0, Xt /∈ D} .

This problem was investigated in [65], revealing that τ is of the order eβ(min∂D U−minD U). When
the temperature β−1 is zero, the process behaves as a simple gradient descent, and it never
leaves D. However, over an extended period, the introduced noise causes the process to move
away from the vicinity of local minima. The speed of convergence of the law of Xt towards its
equilibrium µβ is related to the pace at which it visits space. The longer it takes to exit the
basin of attraction of local minima, the slower the convergence becomes. This can be quantified
using PDE and functional inequality as described in Section 1.2.1. Since c∗ is the minimal
energy elevation required to transition from any local minimum (or even any point), to a global
minimum, eβc

∗
represents the order of the time needed to explore space. The Poincaré inequality,

introduced in Definition 1.2.3, is one way to quantify this phenomenon.

Proposition 1.3.1 ([83, 126]). Under the assumption that either U : Td → R+ or U : Rd → R+
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and
lim inf
|x|→∞

|∇U(x)| > 0, inf
Rd
|∇U |2 −∆U > −∞,

νβ satisfies a Poincaré inequality

λ(β)

∫
Rd

f2dνβ ⩽
∫
Rd

|∇f |2dνβ ,

for all f ∈ C1,
∫
fdνβ = 0, and λ(β) satisfies

lim
β→∞

1

β
ln(λ(β)) = −c∗.

Combined with Proposition 1.2.3, this yields that the speed of convergence is of order eβc
∗
,

which is exponential bad if c∗ > 0. This situation occurs when U possesses multiple local minima.
In the context of simulated annealing, understanding metastability and exit times is crucial for
selecting appropriate cooling schedules that balance exploration and exploitation. The objective
is to avoid becoming trapped in local minima while still converging to the global minimum as
the temperature decreases. This factor will be decisive in the convergence of simulated anneal-
ing (1.36). The proof idea is usually the same. In the case of U defined on the periodic torus
Td, it proceeds as follows. Let ht be the density of Xt with respect to νβt . Assuming that
ht ∈ L2(νβt), we have:

P (U(Xt) > minU + ε) ⩽ ∥ht∥L2(νβt )
(νβt(U > minU + ε))

1/2
. (1.37)

If we can show that t 7→ ∥ht∥L2(νβt )
is bounded, then we would obtain the desired result. Formally

we have:

∂t∥ht − 1∥2L2(νβt )
= −βt

∫
Td

|∇ht|2dνβt + β′
t

∫
Rd

(ht − 1)2Udνβt

⩽ −βtλ(βt)
∫
Td

(ht − 1)2dνβt
+ β′

t∥U∥∞
∫
Td

(ht − 1)2dνβt
.

In this simple case where U is bounded (because continuous on a compact set), this computation
combined with the estimate on λ from Proposition 1.3.1 indicates that if βt = ln(1+t)

c , then
∥ht∥L2(νβt )

remains bounded as soon as c > c∗. To get the correct rate of convergence, one
must actually replace the L2 norm of the density in (1.37) by an L∞ norm and use the Sobolev
inequality. Proof of the convergence of the overdamped Langevin simulated annealing for slow
logarithmic cooling schedule and of the non-convergence for fast logarithmic cooling schedule
was first established by Holley, Kusuoaka and Strook [84, 83], using Sobolev inequalities, for a
potential U on a compact manifold. The case of Rn has been studied by Chiang, Hwang and Sheu
[37], Royer [150] and Miclo [129], under restrictive conditions on the behavior at infinity of U ,
in particular |∇U | → +∞ at infinity. These conditions are related to the functional inequalities
used in these works, in particular spectral gap and Nelson hypercontractivity inequalities. The
question of reducing these assumptions in order to consider slowly-growing potentials has been
addressed by Zitt in [171], essentially by replacing spectral gap inequalities by weaker functional
inequalities. The results of Zitt apply for instance if, outside some ball, U(x) = |x|α with
α ∈ (0, 1). More recently, Fournier and Tardif in [64] and with Monmarché in [63] have been
interested in somehow minimal conditions on the growth of U at infinity. In [63], they established
that, for coercive potentials in the sense that x ·∇U(x) ⩾ 0 for |x| large enough, there is a phase
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transition for Uα(x) = α ln(1 + ln(1 + |x|2)) at some value α∗ of α (depending on the cooling
schedule β and the dimension), i.e. there is convergence if α > α∗ and non-convergence if α < α∗,
which is related to the transient properties of Bessel processes. More generally, convergence of the
annealing algorithm is also proven in [63] under conditions that allow arbitrarily slow growth. In
[64], the convergence of the simulated annealing is established as soon as lim|x|→∞ U(x) =∞ and∫
Rd e

−α0U(x)dx <∞ for some α0 > 0. Although it doesn’t cover all the cases of [63] (notice indeed
that the condition is not met for Uα for any α > 0), this is a very simple and mild condition.
One of the main differences of [64, 63] with respect to previous works is that the question of the
recurrence of the process is treated separately from the question of convergence in probability
to the minimum of U . Indeed, once recurrence is proven, it is essentially sufficient to use the
known results of convergence in the compact case to conclude. Notice that, unfortunately, this
localization argument does not provide a rate of convergence as did previous works. Note as well
that the idea that the behavior of U at infinity is not so important already appears in [37, 150]
(see in particular [37, Lemma 6.4]) where it is proven that it is sufficient (under the conditions
enforced in these works) to prove the result in the case where U(x) = |x|4 for |x| large enough.

On the other hand, Monmarché studied in [137] the simulated annealing based on the kinetic
Langevin process: {

dXt = Ytdt

dYt = −∇U(Xt)dt− βtYtdt+
√
2dBt .

The use of this non reversible process is motivated by its better convergence properties with
respect to the overdamped process, as discussed in Section 1.3.1, although, in the regime β →
+∞, it doesn’t reduce the critical value of c in the logarithmic regime. Convergence of the
kinetic simulated annealing in established in [137] for slow logarithmic cooling schedules similar
to the overdamped case, under restrictive conditions on U , namely U is essentially quadratic at
infinity, and the Hessian of U is bounded. The proof is similar to the overdamped Langevin case
except that establishing quantitative longtime convergence estimates (at a fixed β) for the process
toward its equilibrium rely on so-called hypocoercive methods presented in 1.2.1. The arguments
of [137] have been adapted to Generalized Langevin processes in [31]. This simulated algorithm
can also be understood as a deterministic dynamics that converges towards local minima, to
which we added a noise that goes to zero with time. The same can thus be done with process
that does not admit the Gibbs measure as an equilibrium as in [23].

Contribution: Chapter 4 of this thesis is based on an article published in Electronic Journal
of Probability [95]. The goal was to combine the works [137] and [64] to show convergence of
the kinetic Langevin simulated annealing for potential under minimal conditions on the growth
of U at infinity when c > c∗. We showed as well failure of the algorithm when c < c∗ using
hypocoercivity methods in Sobolev spaces Hk, which seems to be a novel result for kinetic
processes. Indeed, unlike the elliptic case, it remains an open problem to show that Sobolev
inequality implies ultracontractivity, which was the main tool in the work [84, 83].

The previously mentioned Freidlin-Wentzell theory [65] also provides insights into the be-
havior of low-temperature diffusion processes, suggesting that such processes move from one
potential well to another by passing through index-1 saddle points. One strategy for escaping
the domain of attraction (for gradient descent) of a local minimum would hence be to actively
search for saddle points. Building on this understanding, Chapter 5, which is based on an article
published in Statistics and computing [96], we introduced a novel process for both optimisation
and saddle point search in [96]. We conducted a numerical study of this new process on basic
examples from both statistics and Molecular Dynamics, such as the Gaussian mixture (1.35), as
well as addressed fundamental theoretical questions.

Let’s motivate further this last contribution. In Molecular Dynamic, index-1 saddle points
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are also of interest, as if the local minima of the energy represent the metastable states, they
represent the transition pathways between metastable states of a physical system. However,
saddle point search remains a less standard topic than optimisation, especially in probability. A
first class of methods, based on reaction paths, requires the knowledge of two local minimizers,
and then finds a path of minimal elevation between them, which passes through a saddle point
see e.g. [70, 53]. A second class of methods, considered e.g. in [54, 121, 66, 115, 151, 17, 75] and
references within and which will be the one used in the definition of the process of Chapter 5,
relies on local walkers, analogous of the gradient descent for optimization, i.e. solutions of some
ODEs for which saddle points of U are stable equilibrium. Given some x ∈ Rd, write:

λ1(x) ⩽ λ2(x) ⩽ · · · ⩽ λd(x)

for the ordered eigenvalues of ∇2U(x), and suppose that we are given v1(x), . . . , vd(x) ∈ Rd such
that vi(x) is an eigenvector of ∇2U(x) associated to λi(x) (in other words, when the eigenvalues
are not all simple, we assume that we have an arbitrary rule to select a given eigenbasis, for
instance we take the basis obtained as the limit of the Jacobi algorithm). The idealised saddle
dynamic (ISD) is the solution of

ẋt = −
(
I − 2v1(xt)v1(xt)

T
)
∇U(xt) . (1.38)

In other words, xt follows a gradient descent, except in the direction v1(xt) where a reflection
is performed, i.e. the process follows a gradient ascent in this direction. Notice that in general
x 7→ v1(x) is not continuous so the existence of this process is unclear and may be restricted to
some parts of the space or to a finite time interval. One could also see a saddle point as a minimum
of the function x 7→ |∇U(x)|2 or variants, which was done in [51, 19]. By introducing noise into
the dynamic (1.38), we define a new process for locating index-1 saddle points. Subsequently,
by alternately switching between this process and a noisy gradient descent (specifically, the
overdamped Langevin process 1.8), we formulate a new process for optimization.

Perspectives: It would be of interest to show convergence (or non-convergence) for simu-
lated annealing based on other non-reversible processes, such as annealed piecewise deterministic
Markov process (e.g., the Zig-Zag process or Bouncy Particle Sampler), as they offer certain sim-
ulation advantages, or non-conservative overdamped Langevin process. This last example may
prove useful in the context of this last switched process. Several open questions also remain for
this switched process: how long does it take to exit from a well in the low temperature limit?
What about the speed of convergence towards its invariant measure? What is the limit of the
invariant measure when ε → 0? What would be the long-term behavior of an annealed version
of this process?

1.3.3 A particle approximation for quasi-stationary distributions

The third and final type of algorithm involves sampling the quasi-stationary distribution using the
Fleming-Viot process. Let’s first motivate this purpose. In Molecular Dynamic, it is of interest
to sample state-to-state dynamics. Assuming that we can partition space into metastable subsets
of a given Markov process X through a mapping S : Rd → N, the goal is to efficiently compute
a trajectory S(Xt). However, by definition, exiting a metastable state takes a very long time.
To accelerate such exit, various algorithms, collectively known as kinetic Monte Carlo (kMC)
methods, have been developed. One such algorithm is the parallel replica algorithm [104], which
relies on the sampling of a quasi-stationary distribution (QSD). In all generality, it is defined as
follow:
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Definition 1.3.2. Given a Markov process X living in a domain D and a stopping time τ , a
QSD is a probability measure µ that satisfies:

Pµ (Xt ∈ ·|τ > t) = µ,

for all t ⩾ 0.

This definition is similar to that of the stationary measure, and like stationary measures,
QSDs describe the long-term behavior of the process but are conditioned on the fact that τ > t.
In kMC, this stopping time corresponds to the exit time of a metastable domain D:

τ∂D = inf {t ⩾ 0, Xt /∈ D} , (1.39)

where D is an open set. In many cases, it can be shown that there exists a unique QSD
µ ∈M1(D), and

∀ν ∈M1(D), lim
t→∞

Pν (Xt ∈ ·|τ > t) = µ.

In metastable cases, this convergence is faster than the exit time of the domain D, and hence,
for some intermediate time scale, the law of X is described by the QSD. Therefore, QSDs are
another valuable tool for the study of metastability, in addition to the study of constants in
functional inequalities, as seen in Proposition 1.3.1. Moreover, it can be shown that:

Proposition 1.3.2. If µ is a QSD, then there exists α > 0 such that:

∀t ⩾ 0; Pµ(τ > t) = e−αt.

This arises from the fact that a QSD is an eigenvector of a certain operator, and α is thus
an eigenvalue. This property is actually an equivalence in many cases, see [104, Proposition 4].
The idea behind the parallel replica algorithm is to wait for some time for the law of the process
to reach its QSD, and then replace the process with N independent processes (Xi)1⩽i⩽N , all
starting from the QSD. Denote

τN1 = inf
{
t ⩾ 0,∃i ∈ J1, NK, Xi

t /∈ D
}
,

and let IN1 be the index of the particle that exited the domain at time τN1 . The property of the
QSD implies that (τN1 , X

IN
1

τN
1
) is equal in law to (τ/N,Xτ ), where X is started from the QSD.

This implies that we can sample an exit event exactly in a time N times smaller, and the error
is simply introduced by approximating the law of X with the QSD.

However, the conditioning introduces a non-linearity in the evolution of P (Xt ∈ ·|τ > t),
which adds complexity to the sampling process and introduces new phenomena compared to the
study of stationary distributions. For instance, a linear combination of QSDs is not necessarily a
QSD, implying that there might be a finite but greater than one number of QSDs (which is not
possible for stationary measures). Before delving into the sampling methods, let’s explore killed
processes further.

Stopping times, also called killing times, are usually of two types: the so-called soft-killing
and hard-killing. Hard-killing corresponds to the exit of a domain, and is usually challenging to
study. Given some domain D ⊂ E, it is given by (1.39). On the other hand, soft-killing is a
more regular case, and given some death rate λ : E → R+ and an exponential random variable
Eλ with parameter 1, we define the killing time as:

τλ = inf

{
t ⩾ 0, Eλ ⩽

∫ t

0

λ(Xs)ds
}
.
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Using τ as a general killing time, a killed process defines a non-conservative semi-group by:

Ptf(x) = E (f(Xt)1τ>t) .

Similar to the conservative Markov semi-group, Pt is solution to a PDE. If the process is killed
outside a domain D, then Ptf is the solution to the PDE with Dirichlet condition:

∂tv = Lv,

v(0, ·) = f,

v|∂D = 0,

(1.40)

for f in a suitable class of function, and where L is the generator of the underlying Markov
process. In the case of soft-killing, the semi-group is the solution to:{

∂tv = Lv − λv,
v(0, ·) = f.

. (1.41)

In any case, the considerations on long-time behavior of Markov process can be extended to
killed processes. The QSD is a left-eigenvector of this semi-group. In the case where the process
is symmetric with respect to some reference measure µ, the QSD admits a density with respect
to this measure which is a right eigenvectors of the semi-group. Usual spectral gap is now defined
as the difference between the first and second eigenvalues, which gives the rate of convergences
towards the QSD, and the first eigenvalue is the killing rate from Proposition 1.3.2. The soft-
killing case is linked with Feynman-Kac semi-group, as we have the following equality:

Ptf(x) = Ex

(
f(Xt)e

−
∫ t
0
λ(Xs)ds

)
.

The sampling of QSD is thus of interest in simulating the ground states of Schrödinger’s operator.
For further references on the study of QSDs, see [35, 47, 36, 32, 7, 60, 8] and references within.

In a manner akin to McKean-Vlasov diffusions (1.30), a mean-field particle system X, known
as the Fleming-Viot process, can be used to sample the QSD. Informally, it operates as follows:
each of the N ∈ N particles evolves independently, following the same dynamics as X, until
one of them is killed. The killed process then selects another particle uniformly at random,
branches into it, and subsequently evolves independently of the others from this new position.
More rigorously: fix some initial condition µ ∈ M1(DN ). Let (Iin)1⩽i⩽N,n∈N be a family of
independent random variables, where for 1 ⩽ i ⩽ N , Iin is uniform on {1, . . . , N} \ {i}. Let
X0 = (X1

0 , . . . , X
N
0 ) be distributed according to µ, and (X̄i) be a family of independent Markov

processes following the same dynamic as X, with X̄i
0 = Xi

0. Set

τ1 = min
i
τ i1,

where τ i1 is the killing time of X̄i. Then, denote by i1 the index of the particle which died at
time τ1. It is uniquely defined almost surely if, for example, the death time has a density on R+,
so that the probability that two particles hit the boundary at the same time is zero (this is true
in most cases of interest). For i ̸= i1, 0 ⩽ t ⩽ τ1, or i = i1 and 1 ⩽ t < τ1, simply let:

Xi
t = X̄i

t and Xi1
τ1 = X̄

I
i1
1

τ1 .

This defines the process between times 0 and τ1. The process is then defined on (τ1,∞) by
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induction: if the process is defined up to time τn−1, we define it between time τn−1 and τn in the
same way, with X0 replaced by Xτn−1 , i1 by in the index of the particle that hits ∂D at time
τn, and Ii01 by Iinn . Thus, (τn)n is the sequence of branching times of the process.

Under mild assumption, the process X = (X1, . . . , XN ) is well-defined and does not explode
in finite time, in the sense that supn τn = ∞ almost surely. This holds true immediately in the
soft-killing case as long as ∥λ∥∞ < ∞. Refer to [166, Theorem 2.1] and [14, 15] for diffusions
killed at the boundary of a domain.

If X is a Markov process with generator L, killed at rate λ, then the Fleming-Viot process is
a Markov process with generator:

Lf =

N∑
i=1

Lif +
λ(xi)

N − 1

∑
j ̸=i

(
f(xi,j)− f(x)

) ,

for f : EN → R ∈ D(L), where Lif = L (xi 7→ f(x1, ..., xN )) and xi,j
k = xk if k ̸= j and xi,j

j = xi.
A martingale formulation for a hard killed process is more challenging to define and can be found
in [71, Proposition 1].

Fleming-Viot processes were first introduced in the work of Moran [139], in the study of
population genetics models. Their application to the approximation of a QSD dates back to [25],
where the authors study the case of a Brownian motion in a rectangle. They were interested
in the following convergence, commonly known as propagation of chaos, which can be shown in
many cases:

lim
N→∞

1

N

N∑
i=1

f(Xi
t) = P (Xt ∈ ·|τ > t) , (1.42)

for f in a suitable class of functions, under certain assumptions on the initial conditions, thus
affirming that the process may be used for sampling purposes in the case of conditioned process.
Since then, many results have been proven in different cases and for various questions, including
long-time convergence, propagation of chaos, and existence of the Fleming-Viot process.

In the case of a process in a countable state space, the study began with [59]. The Fleming-
Viot process is well defined here as soon as the death rate is bounded, and the authors have
shown, under several conditions, the uniqueness of the QSD, convergence toward this QSD,
the ergodicity of the Fleming-Viot process, and the propagation of chaos for finite time and at
equilibrium. In [73], the authors improved the propagation of chaos with a quantitative rate,
introducing the π-return process. For processes in a finite state space, the propagation of chaos
is proven for all times and for the stationary measure, with a stronger convergence in [5], and
the convergence as N →∞ was refined with a central limit theorem in [108].

In the case of processes in a general space, numerous results are available. Finite-time propa-
gation of chaos is addressed in [24, 71, 165, 45], with central limit theorems as N →∞ in [29, 48].
Then, uniform-in-time propagation of chaos and long-time convergence are established in [46,
44, 149]. The long-time convergence is established when the underlying process is a Brownian
motion in [25].

Other methods of approximating a QSD have been developed in discrete and continuous cases
in [12, 13, 11], based on self-interacting processes

In cases where multiple QSDs exist, one of them is defined as the minimal and corresponds
to the greatest associated eigenvalue. The associated Fleming-Viot process is usually still an
irreducible Markov process and hence possesses a unique invariant measure. It is expected that
this invariant measure converges toward the minimal QSD, but this remains open in many cases.
This problem has been addressed in [34, 72, 160].
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Contributions: Part III of the thesis is dedicated to the study of the Fleming-Viot process.
For practical purposes, when the objective is to compute averages against the QSD, we are
interested in bounds of the form

d(πt, µ) ⩽ C

(
1

Nα
+ e−ct

)
,

for some distance d on the set of probability measure, where π is the empirical measure of the
particle system, and µ the target distribution. Such bounds allow for the separate choice of the
number of particles and the time to achieve a specific level of error. To this end, Chapters 6
and 7 prove such bounds by establishing exponential ergodicity of the Fleming-Viot system at a
rate independent of N in the sense that there exist C, c > 0 independent of N such that for all
t ⩾ 0:

∥νPN
t − µN∥TV ⩽ NCe−ct, (1.43)

where PN is the semi-group of the Fleming-Viot system with N particle, and µN its invariant
measure. The scaling in N in this convergence is what one would obtain in the case of a vector
comprised of N independent processes.

Chapter 6, based on a paper published in ESAIM: Probability and Statistics [94], is concerned
with the soft-killing case, where a numerical scheme for the system is also proposed. Chapter 7
studies the hard-killing regime for the overdamped Langevin process (1.8) in a metastable domain.
Both works are based on the coupling method presented in Section 1.2.2. These works use a
perturbation approach where the interaction is assumed to be small enough with respect to the
mixing properties of the underlying Markov process, corresponding to the metastable regime,
notably for kMC. On the other hand, Chapter 8 deals with a Fleming-Viot process based on a
non-metastable system, namely for which killing occurs on a faster time scale than convergence
to (quasi-)stationarity. In the simplest case of a countable state space, we show that in the
limit where the minimum of the killing rate goes to infinity, instead of converging towards a
deterministic measure, the empirical measure process converges towards a dynamic in the set of
Dirac measures.

Perspectives: It would be of interest to construct a coupling that implies exponential ergod-
icity (1.43) outside of the case where mixing is faster than killing. This could be achieved by
studying the variance of the particle system, as Chapter 8 suggests that in cases where the death
rate is high, the empirical measure is close to a Dirac, indicating that the particles are close to
one another.

Additionally, exploring whether exponential ergodicity, independent of N , remains true when
the first eigenvalue is smaller than the spectral gap would be valuable. Studying scenarios where
mixing might not occur in the diffusion process but could emerge through killing and re-sampling
is also intriguing. This is relevant to situations resembling Schrödinger operators that arise in
quantum physics, which are operators of the form ∆+ V , where V is a confining potential.

Another interesting question concerns the sampling of an exit event using the Fleming-Viot
process. Starting from the QSD, the exit time of a domain follows an exponential distribution,
independent of the event’s location. The parallel replica algorithm relies on sampling such a
random variable when the initial condition is the QSD. However, with the Fleming-Viot process,
there is a bias in the sampling, as we can only access its stationary measure. Under this invari-
ant measure, and with a finite number of particles, correlations exist between them, which are
expected to go to 0 as N goes to infinity. This raises crucial questions for practitioners: if τN
is the first time a particle is killed in the Fleming-Viot process, what is the limiting behavior
of (NτN1 , XτN

1
)? Given that the Fleming-Viot process enables the sampling of several killing

events, does this result in a sequence of inter-event times N(τNk − τNk−1) that converges to a
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Poisson process?
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Abstract : We show expansion à la Talay-Tubaro of a numerical scheme with rejection for
the Langevin process in the case of a singular potential. In order to achieve this, we provide
estimates on the associated semi-group of the process. The class of admissible potentials includes
the Lennard-Jones interaction with confinement, which is an important potential in molecular
dynamics and served as the primary motivation for this study.

2.1 Introduction

As explained in Section 1.3.1, we are interested here in the sampling of the Gibbs measure

µβ(dx, dy) =
e−βH(x,y)

Z
dxdy, (2.1)

35
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where
H(x, y) = U(x) +

1

2
|y|2, (2.2)

U : Rd → R+ (or U : Td → R+, where Td is the d-dimensional torus) is a potential function,
|y|2/2 represents the kinetic energy, and Z is a normalization constant. One important example
in chemistry is a system of N ≫ 1 particles with van der Waals interaction, which corresponds to
a noble gas. In this case, d = 3N , and x = (x1, . . . , xN ) represents the positions of the particles.
The potential can be written as

U(x) =

N∑
i=1

Uc(xi) +
∑

1⩽i ̸=j⩽N

Ui(|xi − xj |),

where Uc : R3N → R+ is a confining potential and for r ∈ R3,

Ui(r) = 4

(
1

|r|12
− 1

|r|6

)
.

The interaction part Ui is commonly known as the Lennard-Jones potential. In the case where
the gas is confined in a volume D, one could then get its pressure by computing the average

P = µβ(fP ), fP (x, y) =
1

3|D|

N∑
i=1

(
y2i
m
− xi · ∇xiU(x)

)
,

where m > 0 is the mass of a particle. What makes this example interesting is the presence of
singularities in the potential, as it can take infinite value, and the fact that the function fP is
not locally integrable.

For non-singular potentials, there are numerous numerical schemes available to simulated
from the Langevin process{

dXt = Ytdt,

dYt = −∇U(Xt)dt− γYtdt+
√
2γβ−1dBt,

(2.3)

The goal here is to adapt such a scheme and prove a series expansion in the weak convergence
for singular potential, focusing on the following one:X̄n+1 = X̄n + 1Eδ(X̄n,Ȳn,Gn)∈Hδ,ℓ

δȲn+1,

Ȳn+1 = Ȳn + 1Eδ(X̄n,Ȳn,Gn)∈Hδ,ℓ

(
−δ∇U(X̄n)− δγȲn +

√
2γβ−1δGn

) (2.4)

for some time step δ > 0, where (Gn) is a family of independent standard Gaussian random
variable, and where for a small fixed parameter ℓ > 0,

Hδ,ℓ =
{
ϕ ⩽ δ−ℓ

}
, (2.5)

with
ϕ(x, y) = H(x, y) + 4dγβ−1 y · ∇U(x)

1 + |∇U(x)|2
, (2.6)
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and

Eδ(x, y, g) =
(
x+ δ

(
y − δ∇U(x)− δγy +

√
2γβ−1δg

)
, y − δ∇U(x)− δγy +

√
2γβ−1δg

)
.

The definition of ϕ stems from the fact that, under our assumptions, for all b < β, ebϕ is a
Lyapunov function for the Langevin process (2.3) (see Proposition 2.3.3 below), as well as for
this numerical scheme (as proved in Lemma 2.4.2). Hence, this numerical scheme is a version
with rejection of the following (first-order) splitting scheme{

X̃n+1 = X̃n + δỸn+1,

Ỹn+1 = Ỹn − δ∇U(X̃n)− δγỸn +
√

2γβ−1δGn,
(2.7)

but we only accept a step of the scheme if its Lyapunov function doesn’t exceed some threshold
depending on the time step. We could have considered a simple Euler-Maruyama scheme, but if
the initial condition satisfies U(X0 + δY0) = ∞, then the chain would not be well defined. The
splitting scheme (2.7) is the simplest numerical scheme that is well-defined with probability 1 for
all initial conditions, and under a one-sided Lipschitz condition on U , it can be shown that this
Markov chain is ergodic. However, there is another problem, which is that even if the numerical
scheme is almost-surely well defined, X̃n has a density bounded below by the Lebesgue measure
on all compact sets. Hence, if f is not locally integrable, then :

E(f(X̃n)) =∞, ∀n ⩾ 1.

This is also the case for all splitting schemes, and it poses two problems. Firstly, it restricts us to
consider averages only against bounded functions, which excludes the computation of important
quantities such as the mean energy for the Lennard-Jones potential or the pressure of noble
gases. Secondly, it prevents the construction of a Lyapunov function, which is a critical step in
the proof of weak convergence for numerical schemes. To address these issues, we introduced the
numerical Scheme (2.4), which has better integrability properties, see Section 2.4. Any scheme
used for bounded smooth potential (e.g. splitting schemes) can be adapted in a similar manner
(namely with rejection) for singular potentials. We study this specific first-order splitting scheme
for simplicity. In the context of singular potentials in high-dimensional spaces, an implicit scheme
may be ill-defined, and in any case would have a prohibitive numerical cost. Hence, we consider
only explicit schemes. Another possible numerical scheme would have been to use rejection at
a threshold depending only on the energy, i.e. replacing

{
ϕ ⩽ δ−ℓ

}
by
{
H ⩽ δ−ℓ

}
. However,

since the Hamiltonian is not a Lyapunov function of the Langevin process, it is not clear that
this numerical scheme admits ebϕ as a Lyapunov function, and hence satisfies the integrability
property needed for the proofs. Notice in particular that ∇U is already computed for the drift,
hence no supplementary computations are needed to check if ϕ is low enough. While in practice,
averages are often computed using schemes without rejection, there are cases where rejection
could lead to better results. The discussion in Section 2.2.2 likely elaborates further on this
aspect.

There are two approaches for showing the convergence of a numerical scheme towards the
continuous process. The first one is strong convergence, which focuses on the convergence of
trajectories. However, since our goal is the computation of averages, we are interested in weak
convergence. For f : Rd → R in a suitable class of functions and t ⩾ 0, we aim to show that:

lim
δ→0

E(f(X̄n)) = E(f(Xt)),



38 CHAPTER 2. A numerical scheme for singular Langevin process

where n = ⌊t/δ⌋. Our objective is to get a series expansion of this convergence, commonly known
as expansion à la Talay-Tubaro, from the seminal work [158]. Write (Pt) for the semi-group of
the Langevin process (2.3) defined for regular and integrable enough function by:

Ptf(x, y) = E(x,y)(f(Xt, Yt)).

Methods to show weak convergence and series expansion of such convergence rely on estimates on
Ptf and its derivatives, typically of the form: for f : Rd → R, which grows at most polynomially
at infinity (as well as its derivative of all orders), for all multi-index α ∈ N2d, there exists C, k > 0
such that:

|∂αPtf(x, y)| ⩽ C(1 + |x|k + |y|k).

Such estimates cannot hold in the singular setting. Therefore, the primary objective of this work
is to establish equivalent estimates in the singular setting, which will be addressed in Section 2.3.
Those estimates will then enable us to prove in Section 2.4 an expansion à la Talay-Tubaro for
the numerical scheme (2.4), as well as for its invariant measure. In Section 2.2, we will present
the assumptions, theorems, and comparisons with existing works.

2.2 Mathematical setting and results

2.2.1 Assumptions and mains results

Fix a potential U : Rd → [0,∞] and write

D =
{
x ∈ Rd, U(x) <∞

}
, X = D × Rd, (2.8)

for the domain of definition of the process (X,Y ) solution to equation (2.3). In all of this work,
we will write z = (x, y) ∈ X for the global variable, and | · | for the l2-norm on Rd. For any
Banach space B, let C∞(B,R) denote the set of smooth functions from B to R, C∞b (B,R) the set
of bounded smooth functions, and C∞c (B,R) the set of smooth functions with compact support.
Let M1(R2d) denote the set of probability measures on R2d. We work under several sets of
assumptions. First:

Assumption 2.2.1. • U ∈ C∞(D,R+).

• D is connected and the set:

Dn =
{
x ∈ Rd, U(x) < n

}
is bounded for all n ∈ N.

• U defines a Gibbs measure at temperature β:∫
D
e−βU(x)dx <∞.

Assumption 2.2.2. • The following limit holds:

lim
x→Dc

|∇2U(x)|
|∇U(x)|2

= 0.
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• There exists c0, c∞, d0, d∞ > 0, η0 ∈ R \ [−1, 0], η∞ > 1 such that:

c∞U
2− 2

η∞ + d∞ ⩽ |∇U |2 ⩽ c0U
2+ 2

η0 + d0.

Assumption 2.2.3. For all α ∈ Nd, there exist Cα > 0, kα ∈ N such that

|∂αU | ⩽ Ukα + Cα.

Let P(U) denote the set of admissible functions for our theorems:

P(U) =
{
f ∈ C∞(X ,R)|∀α ∈ N2d, ∃C, c > 0, c < β, |∂αf | ⩽ CecH

}
.

The first theorem gives the estimates on the semi-group necessary for the proof of weak
convergence.

Theorem 2.2.1. Suppose Assumptions 2.2.1, 2.2.2 and 2.2.3. Then for all f ∈ P(U), and all
multi-index α ∈ N2d, there exist C, q > 0, b ∈ (β(1− 1

2d ), β), such that for all t > 0, z ∈ X

|∂α(Ptf − µβ(f))(z)| ⩽ Ce−qtebH(z).

This theorem allows for the proof of the two following theorems:

Theorem 2.2.2. Suppose Assumption 2.2.1, 2.2.2 and 2.2.3. Then there exists l0 > 0 such that
for all 0 < ℓ < ℓ0, f ∈ P(U), and t ⩾ 0, there exists a family (Ci(t))i of explicit real numbers
such that for all k ∈ N:

Ez(f(Z̄n)) = Ez(f(Zt)) + C1(t)δ + · · ·+ Ck(t)δ
k +O(δk+1),

where (Z̄n)n = (X̄n, Ȳn)n is the numerical scheme defined in (2.4), nδ = t, and O(δk+1) is
uniform in t.

Theorem 2.2.3. Suppose Assumption 2.2.1, 2.2.2 and 2.2.3. Then there exists δ0, ℓ0 > 0 such
that for all 0 < δ < δ0, 0 < ℓ < ℓ0, the numerical scheme defined in (2.4) admits an unique
invariant measure µβ,δ ∈ M1(R2d). For all f ∈ P(U), there exists C, c > 0 such that for all
z ∈ Hδ,ℓ: ∣∣Ez

(
f
(
Z̄n

))
− µβ,δ(f)

∣∣ ⩽ Ce−cn.

Moreover, there exists a family (C̃i)i of explicit real numbers such that for all k ∈ N:

µβ,δ(f) = µβ(f) + C̃1δ + · · ·+ C̃kδ
k +O(δk+1).

Let’s comment on those assumptions and theorems. Assumptions 2.2.1 and 2.2.2 are derived
from [10], on which this work is based. As explained in their work, Assumption 2.2.1 is the
minimal requirement to ensure the pathwise well-posedness of the process (2.3), as well as for
the Gibbs measure to be well-defined and a stationary measure of the Langevin process. As-
sumption 2.2.2 differs slightly from the one in [10], as they suppose that there exists κ > 0 such
that for all v ∈ Rd

|∇2U(x)v| ⩽ β

16d
|∇U(x)|2|v|+ κ|v|, (2.9)

which would allow potentials that exhibit logarithmic singularities. Here, we forbid those poten-
tials, following the assumption stated in [82]. This assumption plays a vital role in the construc-
tion of a Lyapunov function for both the continuous-time process and the numerical scheme. We
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need a Lyapunov function of order ebH for any b < β, which cannot be achieved under (2.9).
In this case, it would be possible that the bounds on the semi-group given by Theorem 2.2.1
are not in L1(Law(Z̄n)). Since the proof of theorem 2.2.1 relies on computation in Sobolev
spaces, and the use of Sobolev embedding, as in [170, 95], we need an additional assumption on
the derivatives of the potential of all orders in order to carry out the computation. However,
the Villani-type condition presented in [170] is not satisfied by singular potentials, as in the H1

case from [10]. Therefore, we impose Assumption 2.2.3. This set of assumptions encompasses
any repulsive interaction that exhibits a sufficiently rapid explosion (at least algebraic), such as
Lennard-Jones interaction, and Coulomb interaction as soon as the particles are living in Rq for
q ⩾ 3, coupled with an additional confinement potential. However, it’s important to note that
2-dimensional Coulomb interactions (Ui(r) ∝ ln(r)) do not satisfy these assumptions.

It is well-established in numerical probability that the proof of weak convergence relies on
estimates of the kind given by Theorem 2.2.1. The proof of this theorem is based on Gamma cal-
culus, see Section 1.2.1. This enables us to make series expansion at any order of the error induced
by the numerical scheme at each step, with a remaining term of the form δkE

(
ebH(Z̄n)

)
. This

would be infinite in the case of a numerical scheme without any rejection mechanism like (2.7),
but we will show that in the case of the numerical scheme (2.4), there is, under our assumptions,
as in the continuous setting, a Lyapunov function of this order, uniformly over small time step.
In particular, we may apply the method developed in [158] to get weak convergence as well as
expansion à la Talay-Tubaro for this numerical scheme. It can be noticed from the proofs that
the constants (Ck(t))k and (C̃k(t))k are independent of ℓ > 0, and can be expressed in the same
way as if we considered the numerical scheme (2.7) with a regular potential, as in [107]. For
instance, we have the following formula:

C1(t) =

∫ t

0

Ez (ψ(s, Zt−s)) ds,

where

ψ(t, z) = (∇U + γy)·(∇y/2−∇x)Ptf+
1

2
∂2t Ptf−

1

2
y ·∇x∂tPtf+

1

2
(∇U + γy)·∇2

yy (∇U + γy)

− 1

2
y · ∇2

x,y (∇U + γy) + γβ−1
d∑

i=1

∂xi
∂yi

Ptf −
2

3
γβ−1∂t∆yPtf

− 7

12
γβ−1 (∇U + γy) · ∇y∆yPtf +

1

3
γβ−1y · ∇x∆yPtf

+
1

2

(
γβ−1

)2 d∑
i=1

∂4yi
Ptf +

1

6

(
γβ−1

)2 d∑
i ̸=j=1

∂2yi
∂2yj

Ptf.

Besides, a corollary of Theorem 2.2.2 is the uniform in time weak convergence of the process.
For a given f ∈ P(U), and z ∈ R2d, there exists C > 0 such that for all t ⩾ 0, nδ = t:∣∣Ez(f(Z̄n))− Ez(f(Zt))

∣∣ ⩽ Cδ.

Theorems 2.2.2 and 2.2.3 are also motivated by the following fact:

2E
(
f
(
Z

δ/2
2n

))
− E

(
f
(
Zδ
n

))
= E (f (Zt))−

C2

2
δ2 +O(δ3),

which yields a better order convergence. With arbitrary order expansion, it is possible to get any
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order of convergence using a combination of
(
E
(
f
(
Z

δ/2k

2kn

)))
. This is the so-called Romberg-

Richardson interpolation. For numerical experiments on this improvement, see the work of Talay
and Tubaro [158].

2.2.2 Comparison between numerical scheme with and without rejec-
tion

In practice, numerical studies often utilize splitting schemes with no rejection on the bounded
torus. If the potential is defined on Td = (R/Z)d, then the Langevin process (2.3) would be
defined on Td×Rd. All proofs would still be valid, preserving the theorems’ validity. As discussed
in the introduction, for the numerical scheme (2.7), it is not possible to take the expectation of
unbounded functions, and an invariant probability measure may not exist. Additionally, it also
remains an open problem as to whether finite time weak expansion would still hold under our
assumptions for bounded functions and numerical schemes without rejection. Regarding the
use of schemes without rejection in practical applications, it is justified by the fact that the
continuous process does not reach the singularities. For any fixed time T > 0, one can select a
time step δ > 0 small enough so that the numerical scheme without rejection does not get close
to the singularities, and the computation of averages would yield reasonable results. However,
for a fixed δ, the scheme would approach arbitrarily close to the singularity in large time, leading
to abnormally large steps. Whereas with the rejection mechanism, it is possible to choose larger
time steps, resulting in a more computationally efficient process, and avoiding the issue of getting
too close to the singularities. This advantage of the rejection mechanism makes it a preferable
choice in certain practical scenarios, such as in the following 1-dimensional toy model:

U(x) =
1

x
+ x2,

for which we conducted the following numerical experiment: fix β−1 = 15, γ = 1, and a final
time T = 15000. Define the empirical averages by

n 7→ Sn =
1

n

n−1∑
k=0

U(Yk),

where Yk = X̄k or Yk = X̃k. For different values of δ, we simulate K = 1000 copies Si of S⌊T/δ⌋.
We plot the evolution of the proportion of copies that have more than 1% error:

δ 7→ 1

K

K∑
i=1

1Si /∈[0.99µβ(U),1.01µβ(U)],

where we estimated µβ(U) using Wolfram Alpha. We get the result in Figure 2.1.
We can observe that for very small δ, the scheme without rejection produces satisfactory

results. Nonetheless, there exists an interval of values of δ where the scheme with rejection
significantly outperforms the other. The proportion of failures does not converge to 0 because of
the error stemming from insufficiently long simulation times. For values of δ that aren’t small
enough, the energy threshold cannot, to prevent explosion, be set high enough to ensure the
convergence of the empirical averages to a value close to µβ(U) (≈ 9.035). This behavior is
illustrated in Figure 2.2, where we display a typical trajectory for both cases, with δ = 10−2.

For smaller β, the explosion phenomenon would be even more prominent because the variance
of the Gaussian distribution is proportional to γδβ−1. As β decreases, the variance increases,
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Figure 2.1: Failure probability.

(a) Without rejection. (b) With rejection.

Figure 2.2: n 7→ Sn, δ = 10−2.
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making the numerical scheme more susceptible to divergent behavior and explosions in the trajec-
tories. Hence, a smaller β exacerbates the challenge of handling the singularities and maintaining
stable and accurate numerical computations. This unstable behavior could also arise in the case
of a metastable process. The metastability imposes long simulation times, which could prove
longer than the time needed for the numerical scheme to visit the singularities. The conclusion
of this experiment/discussion is that the use of the rejection mechanism in practical applications
may help to avoid divergent behavior and explosions, leading to more stable and accurate results.

An alternative approach to address the singularities is to employ a Metropolis-adjusted
scheme, as the one presented in [136]. Similarly to our scheme, Metropolis-adjusted algorithms
tend to reject transitions going too close to singularities, but the difference is that they also reject
moves in low-energy regions, where the process spends most of its time. For the toy model dis-
cussed in this section, such a scheme exhibits remarkably high performance, with a success rate
exceeding 99% for all considered time steps. However, in high-dimensional settings, Metropolis-
adjusted schemes often result in numerous rejections and exhibit suboptimal performance. As a
result, they are typically not used in the realms of molecular dynamics or statistics, even in the
case of regular potentials.

2.3 Proof of Theorem 2.2.1

The proof of Theorem 2.2.1 relies on Sobolev embedding, and Hk-estimates. Similar results have
been established for Langevin processes and close to quadratic potentials, in the sense that there
exists 0 < m ⩽M such that mId ⩽ ∇2U ⩽MId, where Id stands for the identity matrix of size
d, in [157]. Here we will use a method previously employed in [170, 95]. For a given f ∈ P(U),
our goal is to show bound of the form:∫

X
|∂α

(
Ptfe

−bH
)
|2dz ⩽ Ce−qt,

for some 0 < b < β and all α ∈ N2d. Sobolev embedding would then yield Theorem 2.2.1.
To do so, we define a norm ∥ · ∥k that dominates the Hk-Sobolev norm, but such that t 7→
∥Ptf − µβ(f)∥k converges exponentially fast to 0. However, contrary to the cited work, we need
to take into account the singular potential by using a Lyapunov function. It was shown in [10]
that the Langevin process (2.3) admits a family of Lyapunov functions (V0,b̄) such that for all
0 < b̄ < β/(2d), ε > 0:

C−1e(1−ε)b̄H < V0,b̄ < Ce(1+ε)b̄H ,

see [10, Equation 5.2] for its exact definition and Proposition 2.3.3 below for its main properties.
Thanks to this family of Lyapunov functions, we may now define our modified Sobolev norms.
Let ∇l

x∇p
yh denote the vector of all derivative of h of order l on x and p on y:

∇l
x∇p

yh =
{
∂α1
x ∂α2

y h
∣∣ |α1| = l, |α2| = p

}
,

and its norm
|∇l

x∇p
yh|2 =

∑
|α1|=l;|α2|=p

|∂α1
x ∂α2

y h|2.
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Fix 0 < b̄ < β/(2d), and k ∈ N∗. Write V = V
1/k

0,b̄
, and for p ∈ J1, kK, Wp = V p + λ, for some

λ > 0. For h ∈ C∞(X ,R), denote:

∥h∥2mHr,k,b̄ =

∫
X
h2Wkdµβ

+

∫
X

r∑
p=1

(
p−1∑
i=0

ωi,p|∇i
x∇p−i

y h|2 + ωp,p|
(
∇p

x − ξ∇p−1
x ∇y

)
h|2
)
(1 + εpWk−p)dµβ ,

(2.10)

where (ωi,p) and (εp) are two families of positive parameters to be fixed later, and ξ = γ
2 +√

γ2

4 + 1. The exact value of ξ does not matter, as the important term is the scalar product
∇p

x · ∇p−1
x ∇y. However this expression allows for simplified computation, see inequality (2.21).

For the sequel of this work, we will drop the dependence in b̄ in the definition of the norm and
simply write ∥ · ∥mHr,k . Write:

mHk =
{
h ∈ L2(X ,R), ∥h∥mHk,k <∞

}
.

The goal is to show that for f ∈ P(U), we may chose b̄ such that ∥Ptf − µβ(f)∥mHr,k decreases
exponentially fast along the dynamic.

Theorem 2.3.1. Under Assumptions 2.2.1, 2.2.2 and 2.2.3, for all f ∈ P(U), k ∈ N, there
exists 0 < b̄ < β/(2d) such that for all t ⩾ 0, Ptf ∈ mHk, and we have that there is qk > 0 such
that:

∥Ptf − µβ(f)∥mHk,k ⩽ e−qkt∥f∥mHk,k . (2.11)

This section will be mostly about the proof of this theorem, which relies on Gamma calculus,
as presented in 1.2.1. We start by proving H1 convergence in Section 2.3.1, which serves as an
initial case for an induction argument which will prove Theorem 2.3.1 in Section 2.3.2. Finally,
Theorem 2.2.1 will be proven is Section 2.3.3.

In the sequel, we denote by L the generator of the process (2.3) given by

L = y · ∇x −∇U · ∇y − γy · ∇y + γβ−1∆y, (2.12)

and by L∗ its adjoint in L2(µβ), given by:

L∗ = −y · ∇x +∇U · ∇y − γy · ∇y + γβ−1∆y.

Recall the definition of the generalized carré du champ

Γϕ(h) =
1

2
(L(ϕ(h))−Dhϕ(h)Lh) , (2.13)

where ϕ : C∞(X ) → C∞(X ) and Dhϕ denote the differential operator of ϕ. Recall also the
Proposition that allows for the computations of this generalized carré du champ.

Proposition 2.3.1. If there exists A = (A1, · · · , Ap) : C∞ → (C∞)p a linear operator such that
ϕ(h) = |Ah|2, then

ΓL,ϕ(h) = ΓL,2(Ah) +Ah · [L,A]h,

where ΓL,2(Ah) =
∑p

i=1 Γ(Aih), Γ(h) = ΓL,h2(h), and [L,A] = ([L,A1], · · · , [L,Ap]).



2.3. Proof of Theorem 2.2.1 45

2.3.1 H1-setting

We now adapt the introduction to the singular case, as done in [10], to serve as the initialization
of our induction argument. However, the modified H1-norm used in the cited work does not
contain any Lyapunov function in the Ḣ1 part (i.e. the term with derivative of order 1), and
we need some for the induction. Hence we use a slightly different norm, given in (2.10), which
becomes for r = 1:

∥h∥mH1,k =

∫
X

(
h2Wk + ω

(
|∇yh|2 + |(∇x − ξ∇y)h|2

)
(1 + εWk−1)

)
dµβ , (2.14)

where ξ = γ
2 +
√

γ2

4 + 1, and ε > 0, will be determined later. As in [10], we need a local Poincaré
inequality:

Proposition 2.3.2. For all compact set K ⊂ X , µβ satisfies a Poincaré inequality on K: there
exists ρ > 0 such that for all f ∈ C∞(X ,R):∫

K

f2dµβ ⩽ ρ

∫
K

|∇f |2dµβ +
1

µβ(K)

(∫
K

fdµβ

)2

. (2.15)

Proof. Proof of such inequality can be found in [6].

The functions W and V satisfy the following properties, which are described in [10, Theorem
4.15]:

Proposition 2.3.3. Under Assumptions 2.2.1 and 2.2.2, for all b̄ > 0, all k ∈ N, there exists
V0,b̄ : X → [1,∞) such that if V = V

1/k

0,b̄
, Wp = V p + λ for some λ > 0, V : X → [1,∞) is C2,

and there exist α, σ > 0, J ⊂ X such that:

• For all ε > 0, there exists C > 0 such that

C−1e(1−ε)b̄H < V < Ce(1+ε)b̄H . (2.16)

• J is compact, connected, and for all p ∈ [1, k]:

L∗V p ⩽ −αp
k
V p + σ1J .

• For all p ∈ J1, kK, g ∈ C∞b (X ,R), we have that LgWp, gL
∗Wp ∈ L1(µβ) and∫

X
LgWpdµβ =

∫
X
gL∗Wpdµβ .

• ∀(x, y) ∈ X,

V k(x, y) ⩾
2σµβ(J

c)

αµβ(J)
. (2.17)

• ∀(x, y) ∈ X, v ∈ Rd,

Wk(x, y)|v|2 ⩾ β(σρ′ + 1)

((
1

2
+

2

γ2

)
|v|2 + 1

2γ2
|∇2Uv|2

)
, (2.18)
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where
ρ′ = 4(1 + ξ2)ρ/γ, (2.19)

and ρ is the constant from the Poincaré inequality on J .

In particular, (2.16) yields that limH→∞ V =∞, and (2.17) that the set J is not so large. In
order to study the evolution of the norm (2.14) along the trajectories, we use Gamma calculus.
All computations will be performed on functions h : X → R such that∫

X
hdµβ = 0. (2.20)

Recall the definition (2.13) of Γϕ. We have

[L,∇x] = ∇2U∇y, [L,∇y] = −∇x + γ∇y.

Hence from Proposition 2.3.1 we get that:

Γ|∇y·|2(h) ⩾ γβ−1|∇2
yh|2 −∇yh · (∇x − ξ∇y)h+ (γ − ξ)|∇yh|2,

and:

Γ|(∇x−ξ∇y)·|2(h) ⩾ γβ−1|(∇x∇y − ξ∇2
y)h|2 + ξ|(∇x − ξ∇y)h|2

+ ξ(ξ − γ)∇yh · (∇x − ξ∇y)h+∇2U∇yh · (∇x − ξ∇y)h.

Finally, with our choice of ξ and ϕ(h) = |∇yh|2 + |(∇x − ξ∇y)h|2, one gets:

Γϕ(h) = Γ|∇y·|2(h) + Γ|(∇x−ξ∇y)·|2(h)

⩾ γβ−1|∇2
yh|2 + γβ−1|(∇x∇y − ξ∇2

y)h|2

+ γ|(∇x − ξ∇y)h|2 −
2

γ
|∇yh|2 +∇2U∇yh · (∇x − ξ∇y)h.

Young inequality then yields:

Γϕ(h) ⩾ γβ−1|∇2
yh|2 + γβ−1|(∇x∇y − ξ∇2

y)h|2 +
γ

2
|(∇x − ξ∇y)h|2 −R(x,∇yh), (2.21)

where

R(x, v) = 2

γ
|v|2 + |∇

2Uv|2

2γ
.

Write:
H(t) = ∥Ptf −

∫
X
fdµβ∥mH1,k .

Because of the Lyapunov function, we have additional terms in the derivative of H in comparison
to the regular case. This formally reads:

H ′(t) =

∫
X

(
(Ptf)

2L∗Wk − γβ−1|∇yPtf |2Wk

)
dµβ

+ ωε

∫
X

(
|∇yPtf |2 + |(∇x − ξ∇y)Ptf |2

)
L∗Wk−1dµβ
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− ω
∫
X

(
Γ|∇y·|2(Ptf) + Γ|(∇x−ξ∇y)·|2(Ptf)

)
(1 + εWk−1)dµβ .

Hence to conclude in the H1 setting, we need a control on the additional terms. This is the
object of the next lemma, which is also the initialisation of the induction argument used in the
next section for the Hk setting:

Lemma 2.3.1. For all k ∈ N∗, under Assumptions 2.2.1 and 2.2.2, there exist q, ω, ε > 0 such
that:∫

X

(
h2L∗Wk − γβ−1|∇yh|2Wk

)
dµβ

+ ωε

∫
X

(
|∇yh|2 + |(∇x − ξ∇y)h|2

)
L∗Wk−1dµβ

− ω
∫
X

(
Γ|∇y·|2(h) + Γ|(∇x−ξ∇y)·|2(h)

)
(1 + εWk−1) dµβ

⩽ −q
(
∥h∥mH1,k +

∫
X
Wk−1

(
|∇2

yh|2 + |∇x∇yh|2
)
dµβ

)
, (2.22)

for all h ∈ C∞b (X ,R).

Notice that in contrast to inequality (4.8) of [10], we keep the higher order derivative for the
induction, see Section 2.3.2.

Proof. We first treat the L2-term using the Lyapunov property of V :∫
X
h2L∗Wkdµβ ⩽ − α

1 + λ

∫
X
h2Wkdµβ + σ

∫
J

h2dµβ .

Using Cauchy-Schwarz inequality, inequality (2.17) and that h satisfies (2.20), one gets(∫
J

hdµβ

)2

=

(∫
Jc

hdµβ

)2

⩽ µβ(J
c)

∫
X
h2dµβ ⩽

αµβ(J)

2σ(1 + λ)

∫
X
h2Wkdµβ .

The local Poincaré inequality (2.15) on J can then be written as follow:

σ

∫
J

h2dµβ ⩽ σρ′
γ

2

∫
J

(|(∇x − ξ∇y)h|2 + |∇yh|2)dµβ +
σ

µβ(J)

(∫
J

hdµβ

)2

⩽ σρ′
∫
X

γ

2
|(∇x − ξ∇y)h|2 −R(x,∇yh) +R(x,∇yh) + |∇yh|2dµβ

+
α

2(1 + λ)

∫
X
h2Wkdµβ ,

where ρ′ was defined in (2.19). Using inequality (2.18), we get:∫
X
R(x,∇yh) +

γ

2
|∇yh|2dµβ ⩽

γβ−1

σρ′ + 1

∫
X
|∇yh|2Wkdµβ .

We also have from inequality (2.21):∫
X

γ

2
|(∇x − c∇y)h|2 −R(x,∇yh)dµβ ⩽

∫
Γ|∇y·|2(h) + Γ|(∇x−c∇y)·|2(h)dµβ .
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We treat the second line of (2.22) using the Lyapunov property as follow:∫
X

(
|∇yh|2L∗Wk−1 + |(∇x − ξ∇y)h|2L∗Wk−1

)
dµβ

⩽
∫
X

(
|∇yh|2 + |(∇x − ξ∇y)h|2

)
σ1Jdµβ

⩽
2σ

γ

∫
X

(γ
2
|∇yh|2 +R(x,∇yh) +

γ

2
|(∇x − ξ∇y)h|2 −R(x,∇yh)

)
dµβ

⩽
2σ

β(1 + σρ′)

∫
X
|∇yh|2Wkdµβ +

2σ

γ

∫
Γ|∇y·|2(h) + Γ|(∇x−ξ∇y)·|2(h)dµβ .

Next, the ε-term of the third line is bounded thanks to (2.21) as follow:

−
∫
X

(
Γ|∇y·|2(h) + Γ|(∇x−ξ∇y)·|2(h)

)
Wk−1dµβ

⩽ −γβ−1

∫
X

(
|∇2

yh|2 + |(∇x∇y − ξ∇y)h|2
)
Wk−1dµβ

− γ

2

∫
X
|(∇x − ξ∇y)h|2Wk−1dµβ +

∫
X
R(x,∇yh)Wk−1dµβ .

Thanks to Assumption 2.2.2 we get that there is C > 0 such that |∇2U | ⩽ CV . This yields that

R(x,∇yh)Wk−1 ⩽ C ′ (|∇yh|2 + |∇2U∇yh|2
)
Wk−1

⩽ C ′′
(
|∇yh|2 + |∇yh|2V 1/(k−1)

)
Wk−1 ⩽ κ|∇yh|2Wk

and:

−
∫
X

(
Γ|∇y·|2(h) + Γ|(∇x−ξ∇y)·|2(h)

)
Wk−1dµβ

⩽ −γβ−1

∫
X

(
|∇2

yh|2 + |∇x∇yh|2
)
Wk−1dµβ

− γ

2

∫
X
|(∇x − ξ∇y)h|2Wk−1dµβ + κ

∫
X
|∇yh|2Wkdµβ .

We then get the following upper bound for the left-hand side of equation (2.22):

− α

2(1 + λ)

∫
X
h2Wkdµβ

−
(
γβ−1 − 2εσβ−1

σρ′ + 1
− κεω

)∫
X
|∇yh|2Wkdµβ

− εωγβ−1

∫
X

(
|∇2

yh|2 + |∇x∇yh|2
)
Wk−1dµβ

+

(
2σεω

γ
+ σρ′ − ω

)∫
X
Γ|∇y·|2(h) + Γ|(∇x−ξ∇y)·|2(h)dµβ

− γεω

2

∫
X
|(∇x − ξ∇y)h|2Wk−1dµβ .
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Taking ω > σρ′, ε small enough so that the second and fourth terms of the previous bounds are
negative, and using the fact that Wk−1 ⩽Wk (because V ⩾ 1) then concludes the proof.

Removing the second order terms, Lemma 2.3.1 formally yields:

H ′(t) ⩽− qH(t),

for some q > 0. Since Wk ⩾ 1 for all k > 0, this would imply convergence in H1-norm

∥Ptf − µβ(f)∥H1 ⩽ Ce−qt∥f − µβ(f)∥mH1,k ,

for some C > 0. This is only a formal computation, which we will justify in the proof of
Theorem 2.3.1.

2.3.2 Hk-setting

Building upon the result of the previous section, we may now perform computations in higher-
order Sobolev spaces. From those computations arise derivatives of U of arbitrary orders, hence
we now need to assume Assumption 2.2.3. Since the Lyapunov function satisfies V = ebH+o(H),
for some 0 < b < β, this assumption implies: for all α ∈ Nd, there exists κα > 0 such that

|∂αU | ⩽ καV. (2.23)

Recall the definition of the modified Sobolev norm from (2.10), fix some r ∈ J1, kK, and write:

Hr,k(t) = ∥Ptf −
∫
X
fdµβ∥mHr,k .

We formally have:

H ′
r,k(t) =

∫
X

(
(Ptf)

2L∗Wk − γβ−1|∇yPtf |2Wk

)
dµβ

+

∫
X

r∑
p=1

εp

(
p−1∑
i=0

ωi,p|∇i
x∇p−i

y Ptf |2 + ωp|
(
∇p

x − ξ∇p−1
x ∇y

)
Ptf |2

)
L∗Wk−pdµβ

−
∫
X

r∑
p=1

(
p−1∑
i=0

ωi,pΓi,p−i(Ptf) + ωpΓp(Ptf)

)
(1 + εpWk−p) dµβ (2.24)

where we wrote:
Γl,p = Γ|∇l

x∇
p
y·|2 ,

and
Γp = Γ|(∇p

x−ξ∇p−1
x ∇y)·|2

for any l, p ∈ N×N∗. As in the previous section, we need to bound this derivative. This bound is
obtained through an induction principle on r ∈ J1, kK, and the repetitive use of Proposition 2.3.1.
First we compute:

[L,∇l
x∇p

y] = γ∇l
x∇p

y − 1p⩾1∇l+1
x ∇p−1

y +

l∑
i=1

∣∣∣∣li
∣∣∣∣∇i+1U ⊗∇l−i

x ∇p
y,



50 CHAPTER 2. A numerical scheme for singular Langevin process

where the terms in the sum as to be understood as:∣∣∣∣li
∣∣∣∣∇i+1U ⊗∇l−i

x ∇p
y =

 d∑
j=1

∑
ks⩽ls

d∏
s=1

(
ls
ks

)
∂xj

∂kU∂yj
∂l−k
x ∂p+1

y

∑
lj=l,

∑
pj=p

.

Using Proposition 2.3.1, we get that:

Γl,p(h) = Γ(∇l
x∇p

yh) +∇l
x∇p

yh · [L,∇l
x∇p

y]h.

If p ⩾ 2, we may then bound below using inequality (2.23):

Γl,p(h) ⩾ γβ−1|∇l
x∇p+1

y h|2 − θl,p

(
|∇l

x∇p
yh|2 + V

l∑
i=1

|∇l−i
x ∇p+1

y h|2
)
− 1

4γ
|∇l+1

x ∇p−1
y |2, (2.25)

for some θl,p ⩾ 0. If p = 1, there is a term |∇l+1
x h|2 in the commutator, which will be problematic,

as we cannot control it by induction using the derivative of the lower-order terms. In order to
take care of it, we fix a small parameter ηl > 0, use the inequality a · b ⩽ |a|2/(2η) + η|b|2/2 and
we bound below again using inequality (2.23):

Γl,1(h) ⩾ γβ−1|∇l
x∇2

yh|2 − θl,1

(
|∇l

x∇1
yh|2 + V

l∑
i=1

|∇l−i
x ∇2

yh|2
)
− ηl|(∇l+1

x − ξ∇l
x∇y)h|2.

(2.26)

As usual in hypocoercive computations for kinetic processes, the derivative of a Sobolev norm of
order p will lack in its derivative a term of the form |∇p

xh|2. It will be the derivative of the cross
term ∇p

xh.∇p−1
x ∇y in |

(
∇p

x − c∇p−1
x ∇y

)
h|2 that will give us this missing derivative. Indeed,

using that ξ ⩾ γ and inequality (2.23), one has:

∇p
xh · [L,−ξ∇p−1

x ∇y]h = ξ∇p
xh ·

(
∇p

x − γ∇p−1
x ∇y −

p∑
i=1

∣∣∣∣pi
∣∣∣∣∇i+1U ⊗∇p−i

x ∇y

)
h

⩾
γ

2
|∇p

xh|2 − CV

(
p∑

l=1

|∇p−l
x ∇yh|2 +

p−1∑
l=1

|∇p−1−l
x ∇2

yh|2
)
. (2.27)

We also have that

|
(
∇y∇p

x − ξ∇p−1
x ∇2

y

)
h|2 ⩾

1

2
|∇p

x∇yh|2 −
1

2
ξ|∇p−1

x ∇2
yh|2

Hence after rearranging the terms, Proposition 2.3.1 again yields:

Γp(h) ⩾

γβ−1

2
|∇p

x∇yh|2 +
γ

2
|
(
∇p

x − ξ∇p−1
x ∇y

)
h|2 − θp,0V

(
p∑

l=1

|∇p−l
x ∇yh|2 +

p−1∑
l=0

|∇p−1−l
x ∇2

yh|2
)
,

(2.28)
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for some θp,0 > 0. Thanks to those different lower bounds, we will be able to prove the next
lemma which is the central part of this section.

Lemma 2.3.2. Fix k ∈ N∗. There exists (ωi,p)1⩽i⩽p⩽k, (εp)1⩽p⩽k, all positive, such that for all
r ∈ J1, kK, there exists qr > 0 such that for all h ∈ C∞b (X ,R):∫

X

(
h2L∗Wk − γβ−1|∇yh|2Wk

)
dµβ

+

∫
X

r∑
p=1

εp

(
p−1∑
i=0

ωi,p|∇i
x∇p−i

y h|2 + ωp|
(
∇p

x − ξ∇p−1
x ∇y

)
h|2
)
L∗Wk−pdµβ

−
∫
X

r∑
p=1

(
p−1∑
i=0

ωi,pΓi,p−i(h) + ωpΓp(h)

)
(1 + εpWk−p) dµβ

⩽ −qr

(
∥h∥mHr,k +

∫
X

r∑
i=0

|∇i
x∇r+1−i

y h|2Wk−rdµβ

)
. (2.29)

Proof. The proof is done by induction. The case r = 1 corresponds to Lemma 2.3.1. Let
r ∈ J1, kK, and we suppose the inequality (2.29) true for such an r. To prove the result at rank
r + 1, we want to bound:

− qr
∫
X

h2Wk +
∑

1⩽i+j⩽r,j⩾1

|∇i
x∇j

yh|2Wk−(i+j) +

r∑
i=1

|
(
∇i

x − ξ∇i−1
x ∇y

)
h|2Wk−i

 dµβ

− qr
∫
X

r∑
i=0

|∇i
x∇r+1−i

y h|2Wk−rdµβ

+ εr+1

∫
X

(
r∑

i=0

ωi,r+1|∇i
x∇r+1−i

y h|2 + ωr+1|
(
∇r+1

x − ξ∇r
x∇y

)
h|2
)
L∗Wk−(r+1)dµβ

−
∫
X

(
r∑

i=0

ωi,r+1Γi,r+1−i(h) + ωr+1Γr+1(h)

)(
1 + εr+1Wk−(r+1)

)
dµβ .

First we bound using the Lyapunov property:

|∇i
x∇r+1−i

y h|2L∗Wk−(r+1) ⩽ σ|∇i
x∇r+1−i

y h|2.

The goal now is to check that for any order of derivative, we may chose εr+1, (ωi,r+1) and (ωr+1)
such that inequality (2.29) holds true with (r + 1) instead of r. To this end, we will use the
inequality (2.25),(2.26) and (2.28) on the Γ’s. The term of order r + 2 of derivatives is:

−γβ−1

∫
X

(
r∑

i=0

ωi,r+1|∇i
x∇r+2−i

y h|2 + ωr+1

2
|(∇r+1

x ∇y − ξ∇r
x∇2

y)h|2(1 + εr+1Wk−(r+1))

)
dµβ ,

which is already what we were looking for. This does not impose any condition on the coefficient,
except the positivity of the (ω). The derivative of order r + 1 in x which was missing from the
rank r, is:
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X

(
εr+1ωr+1σ −

γωr+1

2
(1 + εr+1Wk−(r+1)) + ηrωr,r+1(1 + εr+1Wk−(r+1))

)
|
(
∇r+1

x − ξ∇r
x∇y

)
h|2dµβ .

We choose ηr = γωr+1

8ωr,r+1
, and 0 < εr+1 <

γ
8σ , so that we are left with:

−γωr+1

4

∫
X
|
(
∇r+1

x − ξ∇r
x∇y

)
h|2
(
1 + εr+1Wk−(r+1)

)
dµβ .

For the other terms of order r + 1, fix some i ∈ J0, rK. The term in |∇i
x∇r+1−i

y h|2 is:∫
X
(−qrWk−r + σεr+1ωi,r+1

+
(
ωi,r+1θi,r+1−i + ωi+1,r+1

(
1/(4γ) + θi+1,r+1−(i+1)V

))
(1 + εr+1Wk−(r+1))

)
|∇i

x∇j
yh|2dµβ .

Using that VWk−(r+1) ⩽Wk−r(1+λ), we may choose the (ωi,r+1) small enough so that this last
quantity is less than:

−qr
2

∫
X
Wk−r|∇i

x∇j
yh|2dµβ .

The lower order terms are treated in the same way, and this concludes the induction and the
proof.

Proof of Theorem 2.3.1. Instead of trying to justify the derivative (2.24), we apply a semi-group
argument. Our goal is to apply Lumer-Phillips theorem to the operator L + (qk/2)I, where I
denotes the identity operator of mHk. This theorem can be stated as follows: an operator A
on a Hilbert space generates a contraction semi-group if and only if it is maximally dissipative,
see [169, Chapter IX, p.250]. Fix 0 < b̄ < β/(2d) and k ∈ N. mHk is a Hilbert space, with scalar
product

⟨f, g⟩2mHk =

∫
X
fgWkdµβ

+

∫
X

k∑
p=1

(
p−1∑
i=0

ωi,p∇i
x∇p−i

y f · ∇i
x∇p−i

y g + ωp,p

(
∇p

x − ξ∇p−1
x ∇y

)
f ·
(
∇p

x − ξ∇p−1
x ∇y

)
g

)
(1 + εpWk−p)dµβ .

Lemma 2.3.2 and a density argument yield that the operator L+ (qk/2)I, is dissipative:

∀h ∈ D(L), ⟨(L+ (qk/2)I)h, h⟩mHk ⩽ 0,

where D(L) denote the domain of L in mHk defined by:

f ∈ D(L), g = Lf ⇔ f ∈ mHk, lim
t→0

∥∥∥∥Ptf − f
t

− g
∥∥∥∥
mHk

= 0.

We are left to show that L + qI, for some q < qk/2, is surjective. Fix q < qk/2. Thanks to
Lemma 2.3.2, we have that

Λ : (f, g) 7→ ⟨−(L+ qI)f, g⟩mHk

is coercive and continuous from
(
mHk

)2 to R, as long as k ⩾ 2. Hence, we may apply Lax-
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Milgram theorem to get that for all g ∈ mHk, there exists f ∈ mHk such that for all h ∈ mHk,
we have:

⟨−(L+ qI)f, h⟩mHk = ⟨−g, h⟩mHk ,

which implies that f is a solution to the equation

(L+ qI)f = g,

and L+(qk/2)I is maximally dissipative. Lumer-Phillips theorem then yields that the semi-group
generated by L+ qk/2 is a contraction on mHk: for all f ∈ mHk

∥eqkt/2Ptf∥mHk ⩽ ∥f∥mHk .

For all f ∈ P(U), we may fix b̄ > 0 small enough so that f ∈ mHk, and this concludes the
proof.

2.3.3 Proof of Theorem 2.2.1

The proof of Theorem 2.2.1, based on Theorem 2.3.1, uses the Lyapunov structure of V .

Proof of theorem 2.2.1. Fix some f ∈ P(U). Thanks to Proposition 2.3.3, we may fix the pa-
rameter b̄ from the Lyapunov function such that ∥f∥mHk < ∞. For all k ∈ N, we can apply
Theorem 2.3.1 to get some C > 0 such that:

∥Ptf∥mHk ⩽ Ce−qkt.

Fix 0 < b < β, C, ε > 0 such that e(β−(1−ε)b)H ⩽ CV0, for some C > 0. Thanks to Assump-
tion 2.2.3, we may write for all α ∈ N2d:∫

X

∣∣∂α (Ptfe
−bH

)∣∣2 ⩽ C
∑

|σ|⩽|α|

∫
X
|∂σPtf |2

∣∣∂α−σe−bH
∣∣2

⩽ C ′
∑

|σ|⩽|α|

∫
X
|∂σPtf |2 e−(1−ε)bH

= C ′
∑

|σ|⩽|α|

∫
X
|∂σPtf |2 e(β−(1−ε)b)He−βH

⩽ C ′′∥Ptf∥mH|α|

⩽ C ′′e−q|α|t.

We conclude with Sobolev embedding.

2.4 Weak error expansion

The main ingredient in the proof of a Talay-Tubaro expansion for a numerical scheme (or even
simply weak convergence) are the estimates given in Theorem 2.2.1. It allows to control the
error (in law) made by each step of the numerical scheme, uniformly in time. Hence we are now
able to prove Theorem 2.2.2 and Theorem 2.2.3. This section is divided into two parts. The
first one proves the existence of a Lyapunov function of order ebH , for all 0 < b < β, as well as
Theorem 2.2.2, about finite time expansion of the numerical scheme (2.4). The second part shows
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the existence of a unique stationary measure for the numerical scheme, as well as Theorem 2.2.3
for the Talay-Tubaro expansion of this stationary measure.

2.4.1 Finite-time expansion for the numerical scheme with rejection

The reason why we are interested in the scheme (2.4) instead of the scheme (2.7) is Lemma 2.4.2.
To bound the error made by the numerical scheme, and hence to prove Theorem 2.2.2, we need
uniform in n ∈ N and δ > 0 integrability. To get this integrability, we show that the Lyapunov
structure of the continuous process described in [82] still holds after discretization. This comes
from the rejection mechanism that prevents the scheme from seeing the part of space where the
gradient of the potential and its derivatives are too big compared to δ, which is a neighborhood of
the singularities and of infinity. Recall the definition of Hδ,ℓ from (2.5), and denote ζ = 4dγβ−1.
To prove Lemma 2.4.2, we first need to introduce a regularized version of the potential Û and a
modified kinetic energy Ŵ , along with a numerical scheme corresponding to the counterpart of
the scheme (2.7) for the new Hamiltonian Ĥ(x, y) = Û(x) + Ŵ (y). A comparison between this
new numerical scheme with the previously considered one will lead to the result.

Lemma 2.4.1. Under Assumptions 2.2.1 and 2.2.2, there exist δ0, ℓ0 > 0 such that for all
0 < δ < δ0 and 0 < ℓ < ℓ0, there exist

Û , Ŵ : Rd → R+

satisfying

• Û and Ŵ are bounded.

• Û = U , Ŵ = | · |2/2 on Hδ,ℓ.

• For all (x, y) ∈ Hc
δ,ℓ

ϕ̂(x, y) = Û(x) + Ŵ (y) + ζ
∇Ŵ · ∇Û(x)

1 + |∇Û(x)|2
⩾ 1/δℓ.

• For all α ∈ N2d, 1 ⩽ |α|1 ⩽ 4, there exists Cα > 0, ℓα < 1/2 such that:

|∂αÛ |, |∂αŴ | ⩽ Cα

δℓα
. (2.30)

Proof. For all 0 < ℓ < 1, 0 < δ < 1, fix a smooth, increasing and concave function

gδ,ℓ : R+ → R+

such that

gδ,ℓ(t) = t, ∀t ∈ [0, 4δ−ℓ]; g′δ,ℓ(t) ⩽
2(4δ−ℓ)2

t2
, |g(p)δ,ℓ (t)| ⩽

C

tp+1
, ∀t ⩾ 4δ−ℓ, p ∈ J2, 4K,

for some C > 0. Then define

Û = gδ,ℓ(U), Ŵ = gδ,ℓ(| · |2/2).
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Let’s show that Û and Ŵ satisfy the desired conditions. First, the conditions on gδ,ℓ yield that

gδ,ℓ ⩽ 4δ−ℓ +

∫ ∞

4δ−ℓ

2(4δ−ℓ)2

t2
dt = 12δ−ℓ,

so that Û and Ŵ are bounded. For all (x, y) ∈ Hδ,ℓ, we have using Young’s inequality:

δ−ℓ ⩾ U(x) +
|y|2

2
+ ζ

y · ∇U(x)

1 + |∇U(x)|2
⩾

1

2
H(x, y)− ζ2,

so that H ⩽ 2δ−ℓ + 2ζ2. As soon as δ−ℓ ⩾ ζ2, we have that for all (x, y) ∈ Hδ,ℓ, U(x) ⩽ 4δ−ℓ

and |y|2/2 < 4δ−ℓ, yielding Û(x), Ŵ (y) = U(x), |y|2/2 and the second point.
The definition of the modified kinetic energy implies that ∇Ŵ (y) = g′δ,ℓ(|y|2/2)y, and the

conditions on gδ,ℓ then yield

sup
y∈Rd

|∇Ŵ (y)| ⩽ max

(
√
8δ−ℓ, sup

s⩾
√
8δ−ℓ

g′(s)s

)
⩽ 16δ−ℓ/2.

To prove the third point of the lemma, we distinguish two cases: if (x, y) /∈ Hδ,ℓ satisfies U(x) <

4δ−ℓ and |y|2/2 < 4δ−ℓ, then ϕ̂(x, y) = ϕ(x, y) ⩾ δ−ℓ by definition of Hδ,ℓ. If U(x) > 4δ−ℓ or
|y|2/2 > 4δ−ℓ, we have

ϕ̂(x, y) ⩾ 4δ−ℓ − 16ζδ−ℓ/2 ⩾ δ−ℓ,

for δ small enough depending on ℓ > 0. The last point is a direct consequence of the conditions
imposed on gδ,ℓ and the definitions of Û and Ŵ .

We are now able to prove:

Lemma 2.4.2. Under Assumptions 2.2.1 and 2.2.2, there exist δ0, ℓ0 > 0 such that for all
0 < b < β, there exists Vb : X → R+ such that:

• infX Vb > 0.

• For all ε > 0, there exists C > 0 such that

C−1e(1−ε)bH ⩽ Vb ⩽ Ce(1+ε)bH .

• There exists α,K > 0 such that for all 0 < δ < δ0, 0 < ℓ < ℓ0, (x, y) ∈ Hδ,ℓ:

E(x,y)

(
Vb(X̄1, Ȳ1)

)
⩽ (1− αδ)Vb(x, y) + αδK.

Proof. Fix 0 < b < β and write:

Vb(x, y) = exp (bϕ(x, y)) , V̂b(x, y) = exp
(
bϕ̂(x, y)

)
,

where ϕ was defined in (2.6) and ϕ̂ in Lemma 2.4.1. It is different from the Lyapunov function
of [82] in that we need in the denominator of ϕ the term 1 + |∇U(x)|2 instead of |∇U(x)|2.
However, the proof written in [82] can be immediately adapted to cover the case we consider,
and it yields that there exists a compact set K1 ⊂ R2d such that for all (x, y) /∈ K1:

LVb(x, y)

Vb(x, y)
⩽ −c, (2.31)
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where L is the generator defined in (2.12). For any ε > 0, we have∣∣∣∣ζ y · ∇U(x)

1 + |∇U(x)|2

∣∣∣∣ ⩽ ε|y|2/2 + ζ2

2ε
× |∇U(x)|2

1 + |∇U(x)|2
⩽ εH + C,

for some C > 0, and this implies the first two points. Now all that remains to do to show the
third point is to show that inequality (2.31) remains true for the numerical scheme, as it stays in
the region of space where U = O(δ−ℓ). Recall the definition of Û and Ŵ from Lemma 2.4.1. We
introduce the following numerical scheme, counterpart of the scheme (2.7) for the Hamiltonian
Ĥ: {

X̂n+1 = X̂n + δ∇Ŵ (Yn),

Ŷn+1 = Ŷn − δ∇Û(X̂n)− δγ∇Ŵ (Ŷn+1) +
√

2γβ−1δGn,
(2.32)

where (Gn) is the same family of Gaussian random variable as in the definition of the scheme (2.4).
On the event

{
(X̄1, Ȳ1) ̸= (X̂1, Ŷ1)

}
, the step of (X̄1, Ȳ1) was rejected, (X̂1, Ŷ1) /∈ Hδ,ℓ, and we

have using the third point of Lemma 2.4.1

V̂b(X̄1, Ȳ1) = V̂b(x, y) ⩽ ebδ
−ℓ

⩽ V̂b(X̂1, Ŷ1). (2.33)

Suppose we have K > 0, and 0 < α < 1 both independent of δ such that:

E(x,y)

(
V̂b(X̂1, Ŷ1)

)
⩽ (1− αδ)V̂b(x, y) + αδK,

for all (x, y) ∈ Hδ,ℓ. Then, using that for all (x, y) ∈ Hδ,ℓ, Vb(x, y) = V̂b(x, y), and inequal-
ity (2.33), we would have for all (x, y) ∈ Hδ,ℓ:

E(x,y)

(
Vb(X̄1, Ȳ1)

)
= E

(
V̂b(X̄1, Ȳ1)

)
⩽ E

(
V̂b(X̂1, Ŷ1)

)
⩽ (1− αδ)V̂b(x, y) + αδK = (1− αδ)Vb(x, y) + αδK.

Thus we only have to show that the Lyapunov structure holds (partially) true for the regularized
numerical scheme (2.32). In the sequel of this proof, the notation o(δ) will denote a quantity
uniform in (x, y) ∈ R2d:

fδ(x, y) = o(δ)⇔ lim
δ→0

sup
(x,y)∈R2d

|fδ(x, y)|
δ

= 0.

We have:

V̂b(X̂1, Ŷ1)− V̂b(x, y) = V̂b(x, y)
(
ϕ̂(X̂1, Ŷ1)− ϕ̂(x, y)

)
+

1

2
V̂b(x, y)

(
ϕ̂(X̂1, Ŷ1)− ϕ̂(x, y)

)2
+ V̂b(x, y)

∑
p⩾3

1

p!

(
ϕ̂(X̂1, Ŷ1)− ϕ̂(x, y)

)p
.

A Taylor expansion on ϕ̂ yields that there exists (θ1, θ2) ∈ R2d, random, such that:

ϕ̂(Ẑ1) = ϕ̂(z) + (Ẑ1 − z) · ∇ϕ̂(z) +
1

2
∇2ϕ̂(z)(Ẑ1 − z)◦2 +

1

6
∇3ϕ̂(θ1, θ2)(Ẑ1 − z)◦3, (2.34)
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where z = (x, y) and Ẑ1 = (X̂1, Ŷ1). Condition (2.30) yields that for p ∈ {1, 2}:

E
((
∇3ϕ̂(θ1, θ2)(Ẑ1 − z)◦3

)p)
= o(δ).

Moreover, we have

(Ẑ1 − z) · ∇ϕ̂(z) = δ∇Ŵ (y) · ∇xϕ̂− δ∇Û(x) · ∇yϕ̂− δγ∇Ŵ (y) · ∇yϕ̂+
√
2γβ−1δG1 · ∇yϕ̂(x, y),

and
1

2
∇2ϕ̂(z)(Ẑ1 − z)◦2 = γβ−1δG1 · ∇2

yϕ̂(x, y)G1 + o(δ).

Thus, taking the expectation of equation (2.34) yields

E
(
ϕ̂(X̂1, Ŷ1)− ϕ̂(x, y)

)
= δ∇Ŵ (y) · ∇xϕ̂− δ∇Û(x) · ∇yϕ̂− δγ∇Ŵ (y) · ∇yϕ̂+ δγβ−1∆yϕ̂+ o(δ),

as well as
E
((

ϕ̂(X̂1, Ŷ1)− ϕ̂(x, y)
)2)

= 2δγβ−1|∇yϕ|2 + o(δ).

In the same spirit, the bounds (2.30) and equation (2.34) yield:

E
((
ϕ̂(X̂1, Ŷ1)− ϕ̂(x, y)

)p)
⩽

p∑
k=0
k odd

(
p

k

)
(C
√
δ)k

k!

2k/2(k/2)!
(Cδ1−1/ℓ)p−k

⩽ Cp
√
δ
p
p!

p∑
k=0
k odd

1

(p− k)!(k/2)!2k/2

⩽ C(Cδ)p/2p!.

Hence for δ < C−1:

E

∑
p⩾3

1

p!

(
ϕ̂(X̂1, Ŷ1)− ϕ̂(x, y)

)p ⩽ C
(Cδ)3/2

1− Cδ
= o(δ).

Finally, using that Û = U and Ŵ = | · |2/2 on Hδ,ℓ, we get that for all (x, y) ∈ Hδ,ℓ:

E(x,y)

(
V̂b(X̂1, Ŷ1)

)
− V̂b(x, y) = V̂b(x, y)

(
δ
LVb(x, y)

Vb(x, y)
+ o(δ)

)
, (2.35)

where o(δ) is uniform in (x, y). Hence, from equation (2.31), we have δ0 > 0 such that for all
(x, y) ∈ Hδ,ℓ \K1, δ < δ0:

E(x,y)

(
V̂b(X̂1, Ŷ1)

)
⩽ (1− αδ)Vb(x, y),

for some α > 0. The map LVb/Vb is continuous on the compact set K1, hence is bounded, and
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inequality (2.35) yields that there exists C > 0 such that for (x, y) ∈ K1:

E(x,y)

(
V̂b(X̂1, Ŷ1)

)
⩽ Vb(x, y) + Cδ

which concludes the proof.

This Lyapunov structure has an immediate corollary: the numerical scheme will stay away
from the singularities uniformly on δ, even though its forbidden area is a level set depending on
δ.

Corollary 2.4.1. Under Assumptions 2.2.1 and 2.2.2, there exist δ0, ℓ0 > 0 such that for all
0 < b < β, 0 < ℓ < ℓ0, z ∈ X :

sup
0<δ<δ0

sup
n∈N

Ez

(
ebH(Z̄n)

)
<∞.

Moreover, for all z ∈ X , there exists C, c > 0 such that for all a > 0, 0 < δ < δ0, 0 < ℓ < ℓ0 and
n ∈ N:

Pz

(
H(Z̄n) ⩾ a

)
⩽ Ce−ca.

Proof. Fix b < b′ < β. The second Lyapunov property of Lemma 2.4.2 implies that:

Ez

(
ebH(X̄n,Ȳn)

)
⩽ CEz

(
Vb′
(
X̄n, Ȳn

))
,

for some C > 0, whereas an induction argument using the third property yields

Ez

(
Vb′
(
X̄n, Ȳn

))
⩽ max (Vb′(x, y),K) .

Both inequality combined then gives the first point of the Corollary. The second point is a direct
application of Markov inequality.

The next lemma will allow us to do series expansion of Pt(Z̄n) to prove Theorem 2.2.2. We
write for z1, z2 ∈ R2d, [z1, z2] = {tz1 + (1− t)z2, t ∈ [0, 1]}.

Lemma 2.4.3. For all κ > 0, there exists C, δ0 > 0 such that for all 0 < δ < δ0, z1, z2 ∈
{H ⩽ κ ln 1/δ}, and |z1 − z2| ⩽ δ

2
3 , all z ∈ [z1, z2]:

H(z) ⩽ H(z1) + C

Proof. Fix z1, z2 ∈ {H ⩽ κ ln 1/δ}, such that |z1 − z2| ⩽ δ
2
3 . We have that [z1, z2] ⊂ B(z1, δ

2
3 ).

We first show that
B(z1, δ

2
3 ) ⊂ {H ⩽ κ′ ln 1/δ} ,

for some κ′ > 0. To this end, fix z ∈ B(z1, δ
2
3 ), and write for 0 ⩽ s ⩽ 1:

φ(s) = U(z1 + s(z − z1)).

Thanks to Assumption 2.2.1, we have that φ is finite and smooth for s < s0 small enough. We
show at the same time that we may have s0 = 1 and that φ(1) ⩽ κ′ ln(1/δ). We have:

φ′(s) = ∇U(z1 + s(z − z1)) · (z − z1)
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⩽ |∇U(z1 + s(z − z1))||(z − z1)| ⩽ δ
2
3

√
c0φ

2+ 2
η0 + d0 ⩽ δ

2
3
√
c0

(
φ+

(
d0
c0

) η0
2+2η0

)1+ 1
η0

.

Hence there is c1, c2 > 0 independent of z1, z and δ such that for s ⩽ s0:

φ′(s)

(φ+ c2)
1+ 1

η0

⩽ c1δ
2
3 .

Integrating this last inequation yields:

η0

(φ(s) + c2)
1/η0

⩾
η0

(φ(0) + c2)
1/η0

− c1δ
2
3 s.

Whether η0 < 0 or η0 > 1, because φ(0) ⩽ κ ln(1/δ), we have that there exists δ0, κ′ > 0 such
that for all 0 < δ < δ0, φ(1) ⩽ κ′ ln(1/δ). Hence using Assumption 2.2.2 again, we have that

∀ z ∈ B(z1, δ
2
3 ), |∇U(z)| ⩽ κ′′(ln(1/δ))1+

1
η0 ,

for some κ′′ > 0. Using a Taylor expansion on φ, we get that for all z1 ∈ {H ⩽ κ ln 1/δ} and
z ∈ B(z1, δ

2
3 ):

U(z) ⩽ U(z1) + κ′′δ
2
3 (ln 1/δ)

1
η0 ,

and this concludes the proof with C = sup0<δ<δ0 κ
′′δ

2
3 (ln 1/δ)

1
η0 .

Proof of theorem 2.2.2. As in [158], we only prove the case k = 1 for simplicity, since for k > 1,
the proof is the same. Fix some function f ∈ P(U), and write u(t, x, y) = Ptf(x, y). Recall that
u is solution to: {

∂tu = Lu,

u(t = 0, ·) = f,
(2.36)

where L is the generator defined by (2.12). For the sequel of the proof, fix t > 0. For all n ∈ N,
δ > 0 is such that nδ = t. We can write the total error made by the numerical scheme as:

Ez

(
f
(
Z̄n

))
− Ez (f (Zt)) = Ez

(
u
(
0, Z̄n

)
− u (nδ, z)

)
=

n−1∑
p=0

Ez

(
u
(
pδ, Z̄n−p

)
− u

(
(p+ 1)δ, Z̄n−(p+1)

))
.

To make a series expansion of the expectations in the sum, we need to distinguish between three
cases. Fix some κ > 0 to be determined later, n, p ∈ N, p ⩽ n, and denote:

A1 =
{
Zn−p, Zn−(p+1) ∈ {H ⩽ κ ln(1/δ)} , |Zn−p − Zn−(p+1)| ⩽ δ2/3

}
,

A2 =
{
Zn−p, Zn−(p+1) ∈ {H ⩽ κ ln(1/δ)} , |Zn−p − Zn−(p+1)| ⩾ δ2/3

}
,

A3 = {Zn−p /∈ {H ⩽ κ ln(1/δ)}} ∪
{
Zn−(p+1) /∈ {H ⩽ κ ln(1/δ)}

}
.

The event A1 is the event on which we may do a series expansion of

u
(
pδ, Z̄n−p

)
− u

(
(p+ 1)δ, Z̄n−(p+1)

)
,
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thanks to Lemma 2.4.3. Let’s first show that the two other event have very low probability as δ
goes to 0. Theorem 2.2.1 yields the existence of some 0 < b < β, C, q > 0 such that:

|u−
∫
X
fdµβ | ⩽ Ce−qtebH .

Fix q1, q2 ⩾ 1 such that
1/q1 + 1/q2 = 1, bq1 < β.

Using Holder inequality we get:∣∣Ez

((
u
(
pδ, Z̄n−p

)
− u

(
(p+ 1)δ, Z̄n−(p+1)

))
1A2

)∣∣
⩽ Ce−qpδ

((
Ez

(
ebq1H(Z̄n−p)

))1/q1
+
(
Ez

(
ebq1H̄(Zn−(p+1))

))1/q1)
(P (A2))

1/q2 .

On the event
{
H
(
Z̄n−(p+1)

)
⩽ κ ln(1/δ)

}
, there is some c > 0 such that

|∇U
(
X̄n−(p+1)

)
|+ |Yn−(p+1)| ⩽ C (ln(1/δ))

c

and ∣∣Z̄n−k − Z̄n−(k+1)

∣∣ ⩽ Cδ ln(1/δ)c +
√
δ |G|

where G is a standard Gaussian random variable. Hence for δ small enough, there is c, C > 0
such that:

P (A2) ⩽ P
(
G ⩾ cδ1/6

)
⩽ Ce−cδ1/6 ,

and finally ∣∣Ez

((
u
(
pδ, Z̄n−p

)
− u

(
(p+ 1)δ, Z̄n−(p+1)

))
1A2

)∣∣ ⩽ Ce−cδ1/6 .

Next, using Holder’s inequality again:

Ez

((
u
(
pδ, Z̄n−p

)
− u

(
(p+ 1)δ, Z̄n−(p+1)

))
1A3

)
⩽ Ce−qpδ

((
E
(
ebq1H(Z̄n−p)

))1/q1
+
(
E
(
ebq1H̄(Zn−(p+1))

))1/q1)
(P (A3))

1/q2 .

Fix b′ < β. We have, using Markov inequality:

P (A3) ⩽ 2 sup
n

P
(
eb

′H(Zn) ⩾ e−b′κ ln(1/δ)
)
⩽ 2 sup

n
E(eb

′H(Zn))δb
′κ = Cδb

′κ.

We can now fix κ > 3q2/b
′ to get that:

Ez

((
u
(
pδ, Z̄n−p

)
− u

(
(p+ 1)δ, Z̄n−(p+1)

))
1A3

)
= O(δ3).

On the event A1, we may use Lemma 2.4.3 to make a series expansion of u. For 0 ⩽ s ⩽ 1, write

φ(s) = u
(
(p+ 1− s)δ, Z̄n−(p+1) + s(Z̄n−p − Z̄n−(p+1)

)
.

Then:

(φ(1)− φ(0))1A1 =

(
5∑

r=1

φ(r)(0)

r!
+
φ(6)(θ)

6!

)
1A1

,
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for some 0 ⩽ θ ⩽ 1. Theorem 2.2.1 yields that there is C > 0, 0 < b < β such that:

|φ(6)(θ)|1A1
⩽ C

(
δ3G6 + δ7/2G5 ln(1/δ) + · · ·+ δ6(ln(1/δ))6

)
ebH(Z̄)

1A1

for some Z̄ ∈ [Z̄n−p, Z̄n−(p+1)]. However, Lemma 2.4.3 also yields that

H(Z̄)1A1
⩽ H

(
Z̄n−p

)
+ C.

Hence, Holder’s inequality yields:

E
(
|φ(6)(θ)|1A1

)
⩽ Cδ3 sup

n
E
(
eq1bH(Z̄n)

) 1
q1

= C ′δ3.

Using Holder’s inequality as in the bound for the event A2 and A3, we get that:

E

(
1A1

5∑
r=1

φ(r)(0)

r!

)
= E

(
5∑

r=1

φ(r)(0)

r!

)
+O(δ3) = δ2E

(
ψ
(
(p+ 1)δ, Z̄n−(p+1)

))
+O(δ3),

where

ψ(s, z) = (∇U + γy) · (∇y/2−∇x)u+
1

2
∂2t u−

1

2
y · ∇x∂tu+

1

2
(∇U + γy) · ∇2

yy (∇U + γy)

− 1

2
y · ∇2

x,y (∇U + γy) + γβ−1
d∑

i=1

∂xi
∂yi

u− 2

3
γβ−1∂t∆yu

− 7

12
γβ−1 (∇U + γy) · ∇y∆yu+

1

3
γβ−1y · ∇x∆yu

+
1

2

(
γβ−1

)2 d∑
i=1

∂4yi
u+

1

6

(
γβ−1

)2 d∑
i ̸=j=1

∂2yi
∂2yj

u.

The expression of ψ is found using the fact that u solves (2.36). Finally, we have that:

Ez

(
f
(
Z̄n

))
− Ez (f (Zt)) = δ2E

(
n∑

p=1

ψ
(
pδ, Z̄n−p

))
+O(δ2).

The rest follows as in the proof of Talay and Tubaro [158], which we write for the sake of
completeness. As ψ is a function of the derivative of u, Theorem 2.2.1 yields that:

∣∣Ez

(
f
(
Z̄n

))
− Ez (f (Zt))

∣∣ ⩽ Cδ2

(
n∑

p=1

e−qpδEz

(
ebH(Z̄n−p

)
+ 1

)
⩽ Cδ2

(
1

δ
+ 1

)
⩽ Cδ.

(2.37)
The function s→ Ez (ψ(z, Zt−s)) is smooth and is bounded, hence the weak convergence (2.37)
and classical Riemann summation results yield that:∣∣∣∣∣δE

(
n∑

p=1

ψ
(
pδ, Z̄n−p

))
−
∫ t

0

Ez (ψ(z, Zt−s)ds

∣∣∣∣∣ = O(δ),

which concludes the proof.
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2.4.2 Expansion for the invariant measure of the numerical scheme
with rejection

To establish an expansion of the invariant measure of the numerical scheme, we first need to prove
its existence, and ergodicity of the scheme. For this purpose, we define a metric on M1

(
R2d

)
.

Fix some 0 < b < β, and write for z1, z2 ∈ R2d:

d(z1, z2) = 1z1 ̸=z2 (1 + Vb(z1) + Vb(z2)) ,

where Vb is the Lyapunov function from Lemma 2.4.2. For any two probability measures µ, ν, we
call (Z1, Z2) a coupling of µ and ν if the law of Z1 (resp. Z2) is µ (resp. ν). From the distance
d on R2d, we define the corresponding Kantorovich distance onM1(R2d) by:

Wd(µ, ν) = inf {E (d(Z1, Z2)) , (Z1, Z2) coupling of µ and ν} .

This distance makes M1(R2d) complete. Hence, if we show that the map Law(z) 7→ Law(Z̄k),
where Z̄k is the numerical scheme given by (2.4) with initial condition z, for some k ∈ N, is
a contraction, then this would imply the existence of a unique stationary measure, as well as
exponentially fast convergence towards it for this Kantorovitch distance. It can be shown that
convergence for such a distance would imply ergodicity of the numerical scheme, in the sense of
the convergence of the average

lim
n→∞

1

n

n∑
k=1

E(x,y)

(
f
(
X̄k, Ȳk

))
= µ(f). (2.38)

Write K2 = {H ⩽ K}, where K is the constant from Lemma 2.4.2. Because Vb is a Lyapunov
function, we only need to show that there exists c > 0, k ∈ N, such that for all z ∈ K2, we have
the following Doeblin condition:

Pz

(
Z̄k ∈ ·

)
⩾ cλ (· ∩K2) , (2.39)

where λ stands for the Lebesgue measure, see for example [52, Theorem 24]. In other words, we
want to show that the numerical scheme creates density.

Lemma 2.4.4. Under Assumptions 2.2.1 and 2.2.2, there exists δ0, ℓ0 > 0 such that for all
0 < δ < δ0, 0 < ℓ < ℓ0, the numerical scheme (2.4) admits a unique stationary measure
µβ,δ ∈M1(R2d), and for all (x, y) ∈ Hδ,ℓ and f : Hδ,ℓ → R continuous:

lim
n→∞

1

n

n∑
k=1

E(x,y)

(
f
(
X̄k, Ȳk

))
= µβ,δ (f) .

Proof. As explained before, it suffices to show the so-called Doeblin condition (2.39). To achieve
such inequality, we first begin by showing, using a controllability argument, that this is locally
true, in the sense that: there exits c > 0 such that for all z ∈ K2, z0 ∈ B(z, δ) and A ⊂ B(z, δ),

Pz0

(
Z̄2 ∈ A

)
⩾ cλ(A).

To this end, we want to show that there exists (g0, g1) such that if
√

2γβ−1δ(G0, G1) = (g0, g1)
and Z̄0 = z0, then Z̄2 = z1. Since Gaussian random variables have a density with respect
to the Lebesgue measure, then if z1 7→ (g0, g1) is a diffeomorphism, the result will hold. Fix
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z0, z1 ∈ B(z, δ) and write:

F (x, y) = (x+ δ (y − δ∇U(x)− δγy) , y − δ∇U(x)− δγy) ,

and G(g0, g1) = (G1(g0, g1),G2(g0, g1)) where

G1(g0, g1) = δ(2− δγ)g0 − δ2∇U (x0 + δ (y0 − δU(x0)− δγy0 + g0)) + δg1,

and
G2(g0, g1) = (1− δγ)g0 − δ∇U (x0 + δ (y0 − δU(x0)− δγy0 + g0)) + g1.

Now, the goal is to show that there exists g0, g1 ∈ Rd such that:

H (F (z0) + (δg0, g0)) ⩽ δ−ℓ, (2.40)

and

G(g0, g1) = z1 − z0
+
(
δ2(2− γδ)∇U(x0)− δ(2− 3δγ + (δγ)2)y0, δ(1− γδ)∇U(x0) + (2γδ − (γδ)2)y0

)
. (2.41)

We have:
G = G̃

(
Id + δḠ

)
,

where G̃ is the invertible matrix:

G̃ =

(
2δId δId
Id Id

)
, G̃−1 =

(
δ−1Id −Id
−δ−1Id 2Id

)
,

and where Ḡ and its derivative are bounded on B(0, ρ), for all ρ > 0, uniformly with respect to
δ < δ0 and z0 ∈ K2. Write h = Id+ δḠ. The goal now is to show that for all ρ2 > 0, there exists
ρ1 > 0 such that h is a diffeomorphism from a neighborhood W ⊂ B(0, ρ1) of 0 to B(h(0), ρ2),
by following the proof of the local inverse theorem. To this end, for v, g ∈ R2d, write:

ϕv(g) = g − (d0h)
−1(h(g)− v).

There exists δ0 > 0 such that, for all z0 ∈ K2 and 0 < δ < δ0, this function is well defined,
i.e. d0h is invertible. For all ρ1 > 0, there exists δ0 > 0 such that for all δ < δ0, g ∈ B(0, ρ1),
|||dgϕv||| ⩽ 1/2. Hence for g, g′ ∈ BR2d(0, ρ1), we have

|ϕv(g)− ϕv(g′)| ⩽
1

2
|g − g′|.

For all ρ2 > 0, v ∈ B(h(0), ρ2), and δ small enough we have that

|(d0h)−1(h(0)− v)| < 2ρ2.

This implies that if ρ1 > 4ρ2, then for all g ∈ B(0, ρ1), we have ϕv(g) ∈ B(0, ρ1):

|ϕv(g)| ⩽ |ϕv(g)− ϕv(0)|+ |ϕv(0)| ⩽
1

2
|g|+ 2ρ2 < ρ1.

Hence we may apply Banach fixed point theorem to get that for all v ∈ B(0, ρ2), there exists
gv ∈ B(0, ρ1) such that ϕv(gv) = gv, or equivalently h(gv) = v. The fact that v 7→ gv is smooth
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is proved in the same way as in the proof of the inverse function theorem. Thus, for all ρ > 0,
there exists δ0, r > 0 such that for all z0 ∈ K2, 0 < δ < δ0, there exists a bounded neighborhood
W ⊂ BR2d(0, r) of 0, such that G is a diffeomorphism from W to BR2d(G(0, 0), ρδ). We fix

ρ > 3 + 2 sup
(x,y)∈K2

|y|+ |∇U(x)|.

Write I(z0, z1) for the left hand side of Equation (2.41). For δ small enough, I ∈ B(G(0, 0), ρδ)
for all z0, z1 ∈ B(z, δ), so that Equation (2.41) has a solution G−1(I(z0, z1)). The fact that
W ⊂ B(0, r) yields condition (2.40) for δ < ∆/r, where ∆ is the distance between K2 and Dc.
Finally, because (G0, G1) has a positive density, for z0 ∈ B(z, δ) and A ⊂ B(z, δ) we have:

Pz0

(
Z̄2 ∈ A

)
⩾ P

(
(G0, G1) ∈ G−1 ◦ I(·, z0)(A)

)
⩾ c

∫
G−1◦I(·,z0)(A)

dz′ = c

∫
A

|det(∇G ◦ I(z′, z0))|−1dz′ ⩾ c′λ(A).

Now we are able to show condition (2.39). Fix δ small enough so that the local Doeblin condition
holds true. Since K2 is compact, there exists z1, · · · , zN such that K2 = ∪Ni=1B(zi, δ). For all
measurable A ⊂ K2, we have that

λ(A) ⩽
N∑
i=1

λ(A ∩B(zi, δ)).

Hence we may restrict ourselves to A ⊂ B(zj , δ), for some j ∈ J1, NK. Up to increasing the value
of K, we may suppose that K2 is connected. In this case, there exists k ∈ N and ε > 0 such that
for all z ∈ B(zi, δ) and A ⊂ B(zj , δ), there exists a finite sequence z′0, z′1, . . . , z′k ∈ K2 satisfying
the following condition: z′0 = z, z′k ∈ B(zj , δ), and for all 0 ⩽ p ⩽ k − 1, there is ip such that
B(zp, ε), B(zp+1, ε) ⊂ B(zip , δ). Hence we have:

P
(
Z2(k+1) ∈ A

)
⩾ P

(
Z2p ∈ B(z′p, ε), 1 ⩽ p ⩽ k, Z2(k+1) ∈ A

)
⩾ (cw)kλ(A),

where w is the volume of BR2d(0, ε), and this concludes the proof.

All function f ∈ P(U) are continuous on Hδ,ℓ, thus we do indeed have the convergence (2.38)
for such function. To prove Theorem 2.2.3, we first need weak convergence of the stationary
measure of the numerical scheme, for functions that depends on time.

Lemma 2.4.5. Let g ∈ C∞ (R+ ×X,R) be such that for all α ∈ N2d, there exists Cα, qα > 0
and bα < β such that:

|∂αg(t, z)| ⩽ Cαe
−qαtebαH(z).

Under Assumption 2.2.1, 2.2.2 and 2.2.3, there exists C > 0 such that for δ small enough:

|µβ,δ(g(t, ·))− µβ(g(t, ·))| ⩽ Ce−qtδ.

Proof. The proof is very close to the proof Theorem 2.2.2, hence we will omit some details. We
fix g satisfying the assumptions of Lemma 2.4.5, t > 0, and we write u(s, z) = Ez(g(t, Zs)), where
Z = (X,Y ) is the continuous process (2.3). g(t, ·) ∈ P(U), and we have for any n ∈ N:

1

n

n∑
k=1

Ez

(
u
(
0, Z̄k

)
− u (kδ, z)

)
=

1

n

n∑
k=1

k−1∑
p=0

Ez

(
u
(
pδ, Z̄k−p

)
− u

(
(p+ 1)δ, Z̄k−(p+1)

))
. (2.42)
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Lemma 2.4.4 yields that:

1

n

n∑
k=1

Ez

(
u
(
0, Z̄k

))
=

1

n

n∑
k=1

Ez

(
g
(
t, Z̄k

))
→

n→∞
µβ,δ(g(t, ·)).

The continuous process is also ergodic, as shown by Theorem 2.3.1. Hence we have:

1

n

n∑
k=1

Ez (u (kδ, z)) =
1

n

n∑
k=1

Pkδg(t, ·)(z) →
n→∞

µβ(g(t, ·)).

As in the proof of Theorem 2.2.2, a Taylor expansion yields:∣∣∣∣∣
k−1∑
p=0

Ez

(
u
(
pδ, Z̄k−p

)
− u

(
(p+ 1)δ, Z̄k−(p+1)

))∣∣∣∣∣ ⩽ Ce−qtδ,

and letting n go to infinity in (2.42) concludes the proof.

Proof of Theorem 2.2.3. Fix f ∈ P(U) and write u(t, z) = Ez(f(Zt)), where Z = (X,Y ) is the
continuous process (2.3). We write a Taylor expansion of higher order than in the proof of
Lemma 2.4.5 to get:

k−1∑
p=0

Ez

(
u
(
pδ, Z̄k−p

)
− u

(
(p+ 1)δ, Z̄k−(p+1)

))
= δ2

k−1∑
p=0

Ez

(
ψ
(
(p+ 1)δ, Z̄k−(p+1)

))
+O(δ2),

where the term O(δ2) is independent of k. Hence we may write:

1

n

n∑
k=1

k−1∑
p=0

Ez

(
u
(
pδ, Z̄k−p

)
− u

(
(p+ 1)δ, Z̄k−(p+1)

))
=

1

n

n∑
k=1

k−1∑
p=0

δ2Ez

(
ψ
(
(p+ 1)δ, Z̄k−(p+1)

))
+O(δ2)

=
δ2

n

n∑
i=1

n∑
j=0

Ez

(
ψ
(
(iδ, Z̄j

))
− δ2

n

n∑
k=1

n∑
p=k

Ez

(
ψ
(
(p+ 1)δ, Z̄k−(p+1)

))
+O(δ2).

Using Theorem 2.2.1 and Corollary 2.4.1, we bound:∣∣∣∣∣∣ 1n
n∑

k=1

n∑
p=k

Ez

(
ψ
(
(p+ 1)δ, Z̄k−(p+1)

))∣∣∣∣∣∣ ⩽ 1

n

n∑
k=1

n∑
p=k

Ez

(
Ce−q(p+1)δebH(Z̄k−(p+1))

)

⩽
C ′

n

n∑
k=1

∞∑
p=k

e−q(p+1)δ

⩽
C ′′

n

n∑
k=1

e−qkδ →
n→∞

0.
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Ergodicity of the numerical scheme yields that

1

n

n∑
j=0

Ez

(
ψ
(
(iδ, Z̄j

))
→

n→∞
µβ,δ (ψ(iδ, ·)) ,

and Theorem 2.2.1 and Corollary 2.4.1 that:∣∣∣∣∣∣ 1n
n∑

j=0

Ez

(
ψ
(
(iδ, Z̄j

))∣∣∣∣∣∣ ⩽ Ce−qiδ.

Hence the dominated convergence theorem yields that:

1

n

n∑
i=1

n∑
j=0

Ez

(
ψ
(
(iδ, Z̄j

))
→

n→∞

∑
i⩾0

µβ,δ (ψ(iδ, ·)) .

Now Lemma 2.4.5 and Riemann sum tells us that:∑
i⩾0

µβ,δ (ψ(iδ, ·)) =
∫ ∞

0

µβ(ψ(t, ·))dt+O(δ).

Letting n go to infinity in Equation (2.42) (with g(t, ·) = f) then concludes the proof.
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Abstract : We study the long-time convergence in Sobolev spaces of the velocity jump Langevin
process, which is a process designed to sample from the Gibbs measure with a reduced number
of computation of the gradient of the potential compared to the Langevin process.

3.1 Introduction

3.1.1 Motivation

As in the previous chapter, we are interested in the sampling of the Gibbs measure

µ =
1

Zµ
exp(−βH(x, v))dxdv (3.1)

where Zµ =
∫
R2d exp(−βH(x, v))dxdv is a normalization constant. A popular process that allows

for the sampling of the Gibbs measure is the kinetic Langevin diffusion, defined as the solution
of the following SDE: {

dXt = Vtdt
dVt = −∇U(Xt)dt− γVtdt−

√
2β−1γdWt ,

(3.2)

67
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where (Wt)t⩾0 is a standard Brownian motion in Rd and γ > 0 is a friction parameter. When
simulating this dynamic, the most expensive part is the computation of the forces∇U . A common
approach is to substitute this gradient with a stochastic version, as in the stochastic gradient
descent in optimization, see [20, 146, 92], or to treat various parts of the potentials with different
time steps (multi-time-step methods), see [162]. We are interested here in an alternative approach
that involves replacing (3.2) with a hybrid model combining a classical Langevin diffusion and
a piecewise deterministic Markov process. This hybrid model still samples from µ but can be
simulated using a numerical splitting scheme that requires fewer gradient computations per time
step.

The idea involves decomposing the potential as

∇U =

K∑
i=0

Fi ,

where F0 denotes the computationally inexpensive component (typically the short-range forces
exhibiting fast variation), while the Fi terms, for i ⩾ 1, represent long-range forces, which are
computationally more demanding than F0 (as each atom interacts with all others through these
forces, unlike the short-range ones). Then, define the so-called velocity jump Langevin process
(Xt, Vt)t⩾0 as the Langevin diffusion process associated with the force F0:{

dXt = Vtdt
dVt = −F0(Xt)dt− γVtdt−

√
2β−1γdWt ,

with additional jumps at rate λi(x, v), corresponding to a jump kernel qi(x, v,dv′) depending
on Fi in such a way that ensures that the equilibrium measure of the process is indeed the
Gibbs measure µ. The Langevin velocity jump process can be simulated using a splitting scheme
similar to the BAOAB scheme introduced by Leimkuhler, where the parts corresponding to
the free transport, the forces, the friction/dissipation, and the jumps are simulated separately,
see [21, 107, 105, 106]. More precisely, the generator L will be decomposed as a sum of Markov
generators

L = LA + LB + LO + LJ ,

each corresponding to a part of the dynamic, see Section 3.1.2 below. The process can then be
discretized base on the Trotter/Strang formula

etL = e
t
2LBe

t
2LJ e

t
2LAetLOe

t
2LAe

t
2LJ e

t
2LB + o

t→0
(t2) .

The simulation of the jump part of the process is based on the thinning method, see [113, 116].
Suppose that λi ⩽ λi for 1 ⩽ i ⩽ K, and denote λ =

∑
i λi. A direct computation on the

generator shows that the jumps can be exactly simulated this way: starting from (x, v),

1. Draw E a standard exponential random variable, and let T = E/λ be the next jump time
proposal.

2. Draw I in J1,KK such that P(I = i) = λi/λ. Propose a jump of type I at time T .

3. Accept the jump with probability λI(x, v)/λI , in which case the velocity is re-sampled at
time T according to qI(x, v,dv′), otherwise the velocity at time T is simply v (there is no
jump).

Unlike a traditional numerical scheme for the Langevin diffusion (like BAOAB), where the gra-
dient ∇U is computed at every time step, here we only need to evaluate Fi when a jump of type
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i is proposed (at step 3 above), which does not occur at every time step for every i. Moreover,
the jump rate and jump kernel, first defined in [138], will depend on a parameter, in such a
way that when this parameter goes to 0, the velocity jump Langevin process converges to the
classical Langevin diffusion (in the sense that the distributions of the processes are close in the
space of càdlàg trajectories endowed with the Skorohod topology, see [138, Theorem 3.6]). As
a consequence, in addition to the sampling of the Gibbs measure, dynamical properties such as
the diffusion constants may be computed using this process.

Motivated by a weak error expansion à la Talay-Tubaro of a splitting scheme for the velocity
jump Langevin process as in Chapter 2, we prove convergence of its semi-group in Sobolev space
of arbitrary order. The derivation of estimates on the semi-group and weak error expansion is
left for future work.

3.1.2 Mathematical setting

Fix some smooth U : Rd → R. We will work under the following set of assumptions.

Assumption 3.1.1. • The Gibbs measure is well defined∫
Rd

e−U(x)dx <∞.

• U = U0 + U1 where the derivatives of U1 of all order are bounded.

• ∇2U0 as well as its derivatives of all order are bounded, and there exist κ > 0 and a compact
set K ⊂ Rd such that for all x /∈ K

−x · ∇U0(x) ⩽ −κ|x|2.

• Ψ ∈ C∞
(
Rd,R+

)
is a smooth non-negative function such that Ψ′ and all its derivative are

bounded, and
Ψ(s)−Ψ(−s) = s. (3.3)

For simplicity, in the remainder of this work, we fix β = 1, and consider a particular decom-
position of the forces. Let us denote (ei)1⩽i⩽d the canonical basis of Rd, let K = d, and

F0 = ∇U0, Fi = ∂iU1ei, i ∈ J1, dK . (3.4)

In other words, we write U as U0+U1 and decompose ∇U1 in a similar fashion as in the Zig-Zag
process:

∇U1(x) =

d∑
i=1

∂iU1(x)ei .

Fix a friction parameter γ > 0 and a constant θ > 0. Write C∞c (R2d) for the set of smooth
function with compact support from R2d to R. The Markov process we are going to study is the
so-called velocity jump Langevin process, whose Markov generator is given by

L = LH + LD + LJ
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where for any function h ∈ C∞c
(
R2d

)
:

LHh(x, v) = v · ∇xh(x, v)−∇U0(x) · ∇vh(x, v) (Hamiltonian part)

LDh(x, v) = −γv · ∇vh(x, v) + γ∆vh(x, v) (diffusion)

LJh(x, v) =
∑d

i=1 Li
Jh(x, v) (jumps)

where
Li
Jh(x, v) = λi(x, v)

∫
Rd

(h(x, v′)− h(x, v)) qi(x, v,dv′),

λi(x, v)

∫
Rd

h(x, v′)qi(x, v,dv′)

=
1 + θ2

θ2
E
[
h

(
x, v − 2θ

1 + θ2
(θvi +G) ei

)
Ψ

(
θ∂iU1(x)

1 + θ2
(θvi +G)

)]
,

and G ∼ N (0, 1) is a one-dimensional standard Gaussian variable. In the definition above,
qi(x, v, ·) is a probability measure for all (x, v) ∈ R2d, in other words λi, for all i ∈ J1, dK, is
obtained by taking h = 1 in the formula above. As explained above, this is the generator of a
Langevin process with drift given by U0, and that jumps at rate λi according to the kernel qi.
Let (Xt, Vt) be a Markov process with generator L, and let (Pt)t⩾0 be the semi-group associated
to this process

Ptf(x, v) = E(x,v) [f(Xt, Vt)] ,

defined for f : R2d → R bounded. Fix k ∈ N and define the Sobolev space of order k by

Hk(µ) =

f : R2d → R measurable,
∑

i+j⩽k

∫
R2d

|∇i
x∇j

yf |2dµ <∞

 ,

where we denoted

|∇i
x∇j

vf |2 =
∑

|α1|=i;|α2|=j

|∂α1
x ∂α2

v f |2, |αp| =
d∑

i=1

(αp)i.

Write as well
∥f∥Hk(µ) =

∑
i+j⩽k

∫
R2d

|∇i
x∇j

yf |2dµ

the Sobolev norm for f ∈ Hk(µ), and

µ(f) =

∫
R2d

fdµ.

Theorem 3.1.1. Suppose Assumptions 3.1.1. For all k ∈ N, there exist Ck, ρk > 0 such that
for all f ∈ Hk(µ) and t ⩾ 0

∥Ptf − µ(f)∥Hk(µ) ⩽ Cke
−ρkt∥f − µ(f)∥Hk(µ).
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Let’s make a few comments on the assumptions and the theorem. First, we take θ > 0 as
a positive constant for simplicity, but it can actually be taken as a function of x (for instance
θ(x) = θ0|∇U1(x)| with θ0 > 0). As explained in [138], the case θ = ∞ corresponds to the
bouncy particle sampler (see [22]), whereas when θ → 0, we retrieve the kinetic Langevin process.
Secondly, the condition (3.3) on Ψ is here to ensure the invariance of µ. In the Zigzag process, the
jump rate is usually taken such that Ψ(s) = max(0, s), which indeed satisfies the equality (3.3).
However, the computations in Sobolev spaces require that the generator has smooth coefficients,
which prevent such a Ψ. An admissible example is given by Ψ(s) = a log(exp(s/a) + 1) for any
a > 0. Finally, the choice of the decomposition (3.4) is made in order to avoid singular terms
of the form ∇U/|∇U | in the hypocoercivity computations. As explained in Section 3.1.1, this
theorem is a first step in proving uniform bounds on the semi-group of the velocity jump process,
in order to show weak error expansion of numerical schemes. The main addition with respect to
Chapter 2 is the treatment of the jump terms.

3.1.3 Notation

In all the following, | · | denotes the euclidean norm in Rd as well as the Frobenius norm for
matrices, and · the standard dot product on Rd or the Frobenius scalar product when it’s applied
on matrices. For any operators A and B, we denote [A,B] = AB − BA their commutator. In
some computations, it will be useful to work with ρ = 1−θ2

1+θ2 ∈ (−1, 1) instead of θ. In the
remainder of this work, we will denote by C various constants that may change from line to line.

3.2 Proof of Theorem 3.1.1

The proof of Theorem 3.1.1 relies on hypocoercive computations à la Villani in Sobolev spaces.
The velocity jump Langevin process is hypocoercive, in the sense that the generator of this process
is not coercive for the usual Sobolev norm. To prove exponential convergence to equilibrium,
for a given k ∈ N, we are going to introduce a norm equivalent to the classical Sobolev norm,
defined for f ∈ Hk(µ) by

Nk(f) =

∫
R2d

f2dµ+

k∑
p=1

∫
R2d

(
p−1∑
i=0

ωi,p|∇i
x∇p−i

v f |2 + ωp,p|(∇p
x −∇p−1

x ∇v)f |2
)

dµ (3.5)

where (ωi,p)p∈N,1⩽i⩽p are positive numbers. In the remainder of this work, we are going to refer
to this norm as the modified Sobolev norm. Following [163], we are going to show that we may
choose (ωi,p)p∈N,1⩽i⩽p such that for f ∈ Hk, we have

∂tNk (Ptf − µ(f)) ⩽ −ρkNk (Ptf − µ(f)) ,

for some ρk > 0. Theorem 3.1.1 is a direct consequence of the following result:

Theorem 3.2.1. There exist positive (ωi,p)p∈N,1⩽i⩽p and (ρk)k∈N∗ such that for all k ∈ N∗,
f ∈ Hk(µ) and t ⩾ 0,

Nk(Ptf − µ(f)) ⩽ e−ρktN (f − µ(f)) ,

where Nk was defined in (3.5).

The proof of this theorem relies on an induction argument and Gamma calculus, as presented
in Section 1.2.1. Fix ϕ : C∞c (R2d) → C∞c (R2d). Recall the definition of the generalized carré du
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champ

Γϕ(h) =
1

2
(L(ϕ(h))−Dhϕ(h)Lh) , (3.6)

where Dhϕ denotes the differential operator of ϕ. When ϕ(h) = h2 we retrieve the usual carré du
champ, which is simply denoted by Γ. We will show in Section 3.2.1 that µ is indeed an invariant
measure of the velocity jump process. This formally implies that:

∂tNk(Ptf − µ(f)) = −
∫
R2d

Γ(Ptf)dµ−
k∑

p=1

∫
R2d

(
p−1∑
i=0

ωi,pΓi,p(Ptf) + ωp,pΓp,p(Ptf)

)
dµ , (3.7)

where, for i < p,

Γi,p(h) = Γ|∇i
x∇

p−i
v ·|2(h) and Γp,p(h) = Γ|(∇p

x−∇p−1
x ∇v)·|2(h) .

If we could show that for all h ∈ C∞c (R2d)∫
R2d

Γ(h)dµ+

k∑
p=1

∫
R2d

(
p−1∑
i=0

ωi,pΓi,p(h) + ωp,pΓp,p(h)

)
dµ ⩾ ρkNk(h− µ(h)) ,

for some ρk > 0, then Theorem 3.2.1 would follow, at least formally, in the sense that we
haven’t justified the time derivatives. We will actually prove a slightly stronger result (see
Proposition 3.2.5 below) for the induction argument. Recall also the proposition that allows for
the computations of this generalized carré du champ.

Proposition 3.2.1. If there exists A = (A1, · · · , Ap) : C∞ → (C∞)p a linear operator such that
ϕ(h) = |Ah|2, then

Γϕ(h) = Γ(Ah) +Ah · [L, A]h,

where Γ(Ah) =
∑p

i=1 Γ(Aih)and [L, A] = ([L, A1], · · · , [L, Ap]).

For all i, j, i′, j′ such that i+ j = i′ + j′, the scalar product here has to be understood as

∇i
x∇j

vh · ∇i′

x∇j′

v h :=
∑

|α1|=i

∑
|α2|=j′

∑
|ν|=i′−i

(∂α1
x ∂α2+ν

v h)(∂α1+ν
x ∂α2

v h) .

We will also extensively use the fact that

[L, A] = [LH , A] + [LJ , A] + [LD, A].

In order to justify the discussion above, we will start by proving that the Gibbs measure is
indeed invariant for the velocity jump Langevin process in Section 3.2.1. Section 3.2.2 will treat
the case k = 1 which is the initialization of the induction argument. Section 3.2.3 will conclude
with the proof of convergence in Hk space through Theorem 3.2.1.

3.2.1 Invariance of µ

The use of the velocity jump process for the sampling of µ, as well as the use of hypocoercivity
method rely on the fact that µ is indeed an invariant measure of this process. Let us prove this
property by computing the adjoint of L in L2(µ), denoted as L∗.
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Proposition 3.2.2. Denote L∗ the adjoint of L in L2(µ). For all h ∈ C∞c (R2d), we have:

L∗h = −v ·∇xh+∇U0 ·∇vh−γv ·∇vh+γ∆vh+
1 + θ2

θ2

d∑
i=1

E
[
(h(·, V i)− h)Ψ

(
∂iU1

2
(V i

i − vi)
)]

,

with
V i = v − 2θ

1 + θ2
(θvi +G)ei,

where G is a random variable with standard Gaussian distribution.

Proof. Let g, h ∈ C∞c (R2d). By integrating by parts, we get

∫
R2d

gLHhdµ = Z−1
µ

∫
R2d

g(v · ∇xh−∇U0 · ∇vh)e
−U(x)e−|v|2/2dxdv

= −Z−1
µ

∫
R2d

hv · ∇x(ge
−U(x))e−|v|2/2dxdv

+ Z−1
µ

∫
R2d

h∇v · (ge−|v|2/2∇U0(x))e
−U(x)dxdv

= −
∫
R2d

hv · ∇xgdµ+

∫
R2d

ghv · ∇U(x)dµ+

∫
R2d

h∇U0(x) · ∇vgdµ

−
∫
R2d

ghv · ∇U0(x)dµ

=

∫
R2d

h(−v · ∇xg +∇U0 · ∇vg)dµ+

∫
R2d

ghv · ∇U1dµ .

We also have∫
R2d

gLDhdµ = Z−1
µ

∫
R2d

g(−γv · ∇vh+ γ∆vh)e
−U(x)e−|v|2/2dxdv

= γZ−1
µ

(∫
R2d

g∇v(e
−|v|2/2) · ∇vhe

−U(x)dxdv +
∫
R2d

h∆v(ge
−|v|2/2)e−U(x)dxdv

)
= γZ−1

µ

(∫
R2d

∇v(ge
−|v|2/2) · ∇vhe

−U(x)dxdv −
∫
R2d

∇vg · ∇vhe
−U(x)e−|v|2/2dxdy

+

∫
R2d

h∆v(ge
−|v|2/2)e−U(x)dxdv

)
= −γ

∫
R2d

∇vg · ∇vhdµ =

∫
R2d

hLDgdµ

For the jump part, denote k0(x, v, ·) the law of the random variable V i. Then k0 is reversible
with respect to the standard Gaussian measure, in the sense that for all x ∈ Rd,

k0(x, v,dv′)e−|v|2/2dv = k0(x, v
′, dv)e−|v′|2/2dv′. (3.8)

Indeed, since V i
j = vj for j ̸= i and

V i
i =

1− θ2

1 + θ2
vi +

2θ

1 + θ2
G = ρvi +

√
1− ρ2G,
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where ρ = 1−θ2

1+θ2 , the coordinates of V i are independent and each transition vj 7→ V i
j is reversible

for the standard one-dimensional Gaussian. Using this reversibility, and the fact that Ψ(s) −
Ψ(−s) = s, we get that∫
R2d

gLJhdµ =
1 + θ2

θ2

d∑
i=1

∫
R2d

gE
[
(h(x, V i)− h(x, v))Ψ

(
∂iU1(x)

2
(vi − V i

i )

)]
dµ

=
1 + θ2

θ2

d∑
i=1

∫
R2d

hE
[
(g(x, V i)− g)Ψ

(
−∂iU1(x)

2
(vi − V i

i )

)]

+
1 + θ2

θ2

d∑
i=1

∫
R2d

ghE
[
Ψ

(
−∂iU1(x)

2
(vi − V i

i )

)
−Ψ

(
∂iU1(x)

2
(vi − V i

i )

)]
dµ

=
1 + θ2

θ2

d∑
i=1

∫
R2d

hE
[
(g(x, V i)− g)Ψ

(
−∂iU1

2
(vi − V i

i )

)]

− 1 + θ2

2θ2

d∑
i=1

∫
R2d

gh∂iU1E
[
(vi − V i

i )
]
dµ

=
1 + θ2

θ2

d∑
i=1

∫
R2d

hE
[
(g(x, V i)− g)Ψ

(
−∂iU1

2
(vi − V i

i )

)]
−
∫
R2d

ghv · ∇U1dµ

Therefore, by summing the three terms, we get the result.

Corollary 3.2.1. Under Assumption 3.1.1, for all h ∈ C∞c (R2d)∫
Rd×Rd

Lhµ = 0.

Proof. This is a direct consequence of the fact that L∗1 = 0.

Notice in particular that LD is symmetric in L2(µ), whereas neither LH nor LJ are left
invariant by µ, only LH + LJ is.

3.2.2 Exponential decay for the H1(µ)-norm

In this section, we prove convergence of the process in H1(µ). The modified Sobolev norm here
reads

N1(h) =

∫
R2d

h2dµ+

∫
R2d

ω0,1|∇vh|2 + ω1,1|(∇x −∇v)h|2dµ,

and Equation (3.7) can be written:

∂tN1(Ptf − µ(f)) = −
∫
R2d

Γ(Ptf)dµ−
∫
R2d

(ω0,1Γ0,1(Ptf) + ω1,1Γ1,1(Ptf)) dµ .

The initialisation of the induction argument to prove Theorem 3.2.1 is

Lemma 3.2.1. Under Assumption 3.1.1, there exist ω0,1, ω1,1, ρ1 such that for all h ∈ C∞c (R2d)
satisfying µ(h) = 0:∫

R2d

Γ(h)dµ+

∫
R2d

(ω0,1Γ0,1(h) + ω1,1Γ1,1(h)) dµ ⩾ ρ1

(
N1(h) +

∫
R2d

|∇x∇vh|2 + |∇2
vh|2dµ

)
.
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The terms of order 2 are present to compensate future terms in the induction, but are not
required for the the convergence in H1(µ). This convergence relies on the so-called Poincare
inequality

Proposition 3.2.3. Under Assumption 3.1.1, the Gibbs measure (3.1) satisfy a Poincaré in-
equality: there exists CP > 0 such that∫

R2d

(h− µ(h))2 dµ ⩽ CP

∫
R2d

|∇h|2dµ . (3.9)

for all h ∈ C∞c (R2d).

Proof. Proof of such inequality can be found in [6].

In order to apply Proposition 3.2.1, we need to express the commutators. For the Hamiltonian
part we get:

[LH ,∇x] = ∇2U0∇v, [LH ,∇v] = −∇x.

For the diffusion part we get:

[LD,∇x] = 0, [LD,∇v] = γ∇v.

Regarding the jump part, we have

Lemma 3.2.2. Under Assumption 3.1.1, there exists C > 0 such that for all h ∈ C∞c (R2d):∫
R2d

|[∇x,LJ ]h|2dµ+

∫
R2d

|[∇v,LJ ]h|2dµ ⩽ C

(∫
R2d

|∇vh|2dµ+

∫
R2d

|∇2
vh|2dµ

)
.

To prove Lemma 3.2.2, we need two intermediate results:

Lemma 3.2.3. For any function g ∈ C∞c (Rd),∫
Rd

|v|2g2(v)e−|v|2/2dv ⩽ 2d

∫
Rd

g2(v)e−|v|2/2dv + 4

∫
Rd

|∇vg(v)|2e−|v|2/2dv .

Proof. This is a particular case of the Lemma A.24 of [163]. Notice that ve−|v|2/2 = −∇e−|v|2/2.
Hence, an integration by parts and Young’s inequality yield, for any x,∫

Rd

|v|2g2(v)e−|v|2/2dv = −
∫
Rd

g2(v)v · ∇e−|v|2/2dv

=

∫
Rd

∇ · (g2(v)v)e−|v|2/2dv

= d

∫
Rd

g2(v)e−|v|2/2dv +
∫
Rd

2g(v)∇g(v) · ve−|v|2/2dv

⩽ d

∫
Rd

g2(v)e−|v|2/2dv +
∫
Rd

2|∇g(v)|2e−|v|2/2dv

+
1

2

∫
Rd

|v|2g2(v)e−|v|2/2dv ,

and thus the result.
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Proposition 3.2.4 (Poincaré for Gaussians). For any function g ∈ C∞c (Rd),∫
Rd

(
g(v)− 1

(2π)d/2

∫
Rd

h(w)e−|w|2/2dw
)2

e−|v|2/2dx ⩽
∫
Rd

|∇g(v)|2e−|v|2/2dv . (3.10)

Proof. Proof of such inequality can be found in [6].

Proof of Lemma 3.2.2. For all i ∈ J1, dK, denote

gi(x, v,G) =

(
x, v − 2θ

1 + θ2
(θvi +G) ei

)
, φi(x, v,G) =

θ∂iU1(x)

1 + θ2
(θvi +G) .

We then have

[∇x,LJ ]h =

d∑
i=1

[∇x,Li
J ]h =

1

θ

d∑
i=1

E [(θvi +G)(h(gi(G))− h)Ψ′(φi(G))]∇∂iU1 ,

and

[∇v,LJ ]h =

d∑
i=1

[∇v,Li
J ]h =

d∑
i=1

E [∂iU1(h(gi(G))− h)Ψ′(φi(G))− 2∂vih(gi(G))Ψ(φi(G))] ei .

Using the fact that Ψ′, ∇U1 and ∇2U1 are bounded, there exists a constant C > 0 such that

|[∇x,LJ ]h|2 ⩽ C

d∑
i=1

E[(v2i +G2)(h(gi(G)− h)2)] ,

and

|[∇v,LJ ]h|2 ⩽ C

d∑
i=1

E[(h(gi(G))− h)2 + (∂vih(gi(G)))
2(1 + v2i +G2)] .

Recall that by denoting k0(x, v, ·) the law of the random variable

V i = v − 2θ

1 + θ2
(θvi +G)ei

where G is a random variable with standard normal distribution, k0(x, v, ·) is reversible with
respect to the standard Gaussian measure, see (3.8). By using this reversibility, and the fact
that v being fixed, V i

i ∼ N
(
ρvi, 1− ρ2

)
, we have that for any function h ∈ C∞c (R2d)∫

R2d

E
[
(1 + v2i +G2) (∂vih(gi(G)))

2
]
dµ =

∫
R2d

(∂vih)
2

(
1 + E

[
(V i

i )
2 +

(v2i − ρV i
i )

2

1− ρ2

])
dµ

=

∫
R2d

(∂vih)
2
(
2 + v2i

)
dµ

⩽ 4

∫
R2d

(
(∂vih)

2 + (∂2vih)
2
)
dµ ,

where we applied Proposition 3.2.3 to with d = 1 to vi 7→ ∂vi
h(x, v) in the last inequality. By
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denoting Πvi the projection

Πvih(x, v) =
1√
2π

∫
R
h(x, v1, . . . , vi−1, wi, vi+1, . . . , vd)e

−wi
2/2dwi ,

we also have∫
R2d

E
[
(1 + v2i +G2)(h(gi(G))− h)2

]
dµ ⩽ 2

∫
R2d

E
[
(1 + v2i +G2)((h(gi(G))−Πvih)

2 + (h−Πvih)
2)
]
dµ

⩽ 2

∫
R2d

(
3 + v2i + E

[
(V i

i )
2 +

(v2i − ρV i
i )

2

1− ρ2

])
(h−Πvih)

2dµ

⩽ 2

∫
R2d

(4 + 2v2i )(h−Πvih)
2dµ

⩽ 16

∫
R2d

(h−Πvih)
2dµ+ 16

∫
R2d

(∂vih)
2dµ ,

where we applied again Proposition 3.2.3 with d = 1 to vi 7→ h(x, v) − Πvi(x, v) in the last
inequality. The Poincaré inequality (3.10) can be written∫

R2d

(h−Πvih)
2dµ ⩽

∫
R2d

|∂vih|2dµ ,

and thus ∫
R2d

E
[
(1 + v2i +G2)(h(gi(G))− h)2

]
dµ ⩽ 32

∫
R2d

(∂vih)
2dµ .

Therefore, there exists C > 0 such that∫
R2d

|[∇,LJ ]h|2dµ ⩽ C

d∑
i=1

∫
R2d

((∂vih)
2 + |∇v∂vih|2)dµ = C

(∫
R2d

|∇vh|2dµ+

∫
R2d

|∇2
vh|2dµ

)
,

which concludes the proof.

We now have everything to prove Lemma 3.2.1.

Proof of Lemma 3.2.1. Fix ω0,1 > ω1,1 > 0 that we are going to chose later. Let’s first treat the
derivative of the L2 norm. We have for all h ∈ C∞c (R2d), (x, v) ∈ R2d

Γ(h)(x, v) = 2γ|∇vh(x, v)|2 +
d∑

i=1

λi(x, v)

∫
Rd

(h(x, v′)− h(x, v))2qi(x, v,dv′) . (3.11)

This already implies that
Γ(h) ⩾ 2γ|∇vh|2 .

To get a lower bound on Γ0,1(h) and Γ1,1(h), we use Proposition 3.2.1. Equation (3.11) yields:

Γ(∇vh) ⩾ 2γ|∇2
vh|2, Γ((∇x −∇v)h) ⩾ 2γ|(∇x∇v −∇2

v)h|2,

so that using ω0,1 > ω1,1 and Young inequality:

ω0,1Γ(∇vh) + ω1,1Γ((∇x −∇v)h) ⩾ 2γ(ω0,1 − ω1,1)|∇2
vh|2 + ω1,1

(
γ|∇2

vh|2 + 2γ/3|∇x∇vh|2
)
.
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Let us now look at the commutators. Fix ε > 0 and write using Young inequality and Lemma 3.2.2:∫
R2d

∇vh · [L,∇v]hdµ =

∫
R2d

∇vh · (−∇xh+ γ∇v + [LJ ,∇v]h) dµ

⩾ −
∫
R2d

(
1

ε
+ 1

)
|∇vh|2 +

ε

2
|(∇x −∇v)h|2 +

ε

2
C
(
|∇vh|2dµ+ |∇2

vh|2
)
dµ ,

for some C > 0. Using again Young inequality and Lemma 3.2.2, we get that there exists C > 0
such that:∫
R2d

(∇x −∇v)h · [L,∇x −∇v]hdµ =

∫
R2d

(∇x −∇v)h ·
(
∇2U0∇vh+∇xh− γ∇vh+ [LJ ,∇x −∇v]h

)
dµ

⩾
∫
R2d

1

2
|(∇x −∇v)h|2 − C

(
|∇vh|2 + |∇2

vh|2
)
dµ.

Now all is left to do is to choose ε, ω0,1 and ω1,1. We choose them such that

ω1,1

ω0,1
⩽

2γ − Cε
2γ + C

, ε < min

(
ω1,1

2ω0,1
,
2γ

C

)
, Cω1,1 + ω0,1

(
1

ε
+ 1 +

Cε

2

)
⩽ γ

so that∫
R2d

Γ(h)dµ+

∫
R2d

(ω0,1Γ0,1(h) + ω1,1Γ1,1(h)) dµ

⩾
∫
R2d

γ|∇vh|2 +
ω1,1

4
|(∇x −∇y)h|2 + ω1,1γ

(
|∇2

vh|2 +
2

3
|∇x∇vh|2

)
dµ

⩾ ρ̃1

∫
R2d

ω0,1|∇vh|2 + ω1,1|(∇x −∇v)h|2 + |∇x∇vh|2 + |∇2
vh|2dµ ,

for some ρ̃1 > 0. Since we consider h such that µ(h) = 0, the Poincaré inequality (3.9) yields
that there exists ρ1 > 0 such that

ρ̃1

∫
R2d

ω0,1|∇vh|2+ω1,1|(∇x−∇v)h|2+|∇x∇vh|2+|∇2
vh|2dµ ⩾ ρ1

(
N1(h) +

∫
R2d

|∇x∇vh|2 + |∇2
vh|2dµ

)
,

which concludes the proof.

3.2.3 Exponential decay for the Hk-norm

Recall that we defined the modified Sobolev norm as

Nk(h) :=

∫
R2d

h2dµ+

k∑
p=1

∫
R2d

(
p−1∑
i=0

ωi,p|∇i
x∇p−i

v h|2 + ωp,p|(∇p
x −∇p−1

x ∇v)h|2
)

dµ

In order to control its derivative (3.7), we prove by induction the following lemma.

Proposition 3.2.5. Under Assumption 3.1.1, there exist (ωi,p)1⩽i⩽p such that for all k ∈ N,
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there exists ρk such that for all h ∈ C∞c (R2d,R) such that µ(h) = 0:∫
R2d

Γ(h)dµ+
k∑

p=1

∫
R2d

(
p−1∑
i=0

ωi,pΓi,p(h) + ωp,pΓp,p(h)

)
dµ ⩾ ρk

(
Nk(h) +

∫
R2d

k∑
i=0

|∇i
x∇k+1−i

v h|2dµ

)
.

(3.12)

To prove this Lemma, we will need formulas for partial derivatives of products, provided by
the Leibniz formula

Proposition 3.2.6. For all g, h ∈ C∞c and α1, α2 ∈ Nd,

∂α1
x ∂α2

v (gh) =
∑

ν1⩽α1,ν2⩽α2

(
α1

ν1

)(
α2

ν2

)
(∂ν1

x ∂
ν2
v g)(∂

α1−ν1
x ∂α2−ν2

v h)

where for α = (α1, . . . , αd) and ν = (ν1, . . . , νd),(
α

ν

)
=

d∏
i=1

(
αi

νi

)
,

and
ν ⩽ α ⇐⇒ ∀i ∈ J1, dK, νi ⩽ αi.

Let us look at the commutators. As in theH1 case, we will look separately the parts associated
to the Hamiltonian dynamic LH , the diffusion LD and the jump process LJ .

Lemma 3.2.4 (Hamiltonian commutators). Let i ∈ J0, kK. There exists C > 0 such that the
following holds. If i < k, we have

∇i
x∇k+1−i

v h · [LH ,∇i
x∇k+1−i

v ]h ⩾ −|∇i
x∇k+1−i

v h|2 − C

|∇i+1
x ∇k−i

v h|2 +
i−1∑
j=0

|∇j
x∇k+2−i

v h|2
 .

In the case i = k, for all η > 0, we have

∇k
x∇vh · [LH ,∇k

x∇v]h ⩾ −η
8
|(∇k+1

x −∇k
x∇v)h|2 − C

(
1 +

1

η

)
|∇k

x∇vh|2 − C
k−1∑
j=0

|∇j
x∇2

vh|2 .

Finally, we have

(∇k+1
x −∇k

x∇v)h·[LH ,∇k+1
x −∇k

x∇v]h ⩾
1

2
|(∇k+1

x −∇k
x∇v)h|2−C

 k∑
j=0

|∇j
x∇vh|2 +

k−1∑
j=0

|∇j
x∇2

vh|2
 .

Proof. For all α1, α2 ∈ Nd with |α1| = i and |α2| = k + 1− i, where α2 = (α2,1, . . . , α2,d), write

αj
2 = (α2,1, . . . , α2,j−1, α2,j − 1, α2,j+1, . . . , α2,d),
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and we have

∂α1
x ∂α2

v LHh =

d∑
j=1

∂α1
x ∂α2

v

(
vj∂xj

h− ∂jU0∂vjh
)

=

d∑
j=1

∂α2
v (vj∂

α1
x ∂xj

h)− ∂α1
x (∂jU0∂

α2
v ∂vjh)

=

d∑
j=1

 ∑
ν2⩽α2

(
α2

ν2

)
∂ν2
v (vj)∂

α2−ν2
v ∂α1

x ∂xj
h−

∑
ν1⩽α1

(
α1

ν1

)
∂ν1
x ∂jU0∂

α1−ν1
x ∂α2

v ∂vjh


=

d∑
j=1

α2,j∂
αj

2
v ∂α1

x ∂xjh+ vj∂
α2
v ∂α1

x ∂xj
h−

∑
ν1⩽α1

(
α1

ν1

)
∂ν1
x ∂jU0∂

α1−ν1
x ∂α2

v ∂vjh

 .

Therefore,

[LH , ∂
α1
x ∂α2

v ]h =

d∑
j=1

 ∑
ν1⩽α1;ν1 ̸=0

(
α1

ν1

)
∂ν1
x ∂jU0∂

α1−ν1
x ∂α2

v ∂vjh− α2,j∂
αj

2
v ∂α1

x ∂xj
h

 .

Using the bound on the derivatives of U0, this yields that there exists a C > 0 such that

∇i
x∇k+1−i

v h · [LH∇i
x∇k+1−i

v ]h ⩾ −|∇i
x∇k+1−i

v h|2 − C

|∇i+1
x ∇k−i

v h|2 +
i−1∑
j=0

|∇j
x∇k+2−i

v h|2
 .

If i = k, then for any η > 0, using the Young inequality∑
|α1|=k;|α2|=1

j∈J1,dK

(∂α1
x ∂α2

v h)(α2,j∂
αj

2
v ∂α1

x ∂xjh) =
∑

|α1|=k;j∈J1,dK

(∂α1
x ∂vjh)(∂

α1
x ∂xjh)

=
∑

|α1|=k;j∈J1,dK

(∂α1
x ∂vjh)(∂

α1
x ∂xj − ∂α1

x ∂vj + ∂α1
x ∂vj )h

⩽

(
1 +

2

η

)
|∇k

x∇vh|2 +
η

8
|(∇k+1

x −∇k
x∇v)h|2 .

which again implies that

∇k
x∇vh · [LH ,∇k

x∇v]h ⩾ −C
(
1 +

1

η

)
|∇k

x∇vh|2 −
η

8
|(∇k+1

x −∇k
x∇v)h|2 − C

k−1∑
j=0

|∇j
x∇2

vh|2 .

Similarly, for β a multi-index such that |β| = k and i ∈ J1, dK,

[LH , ∂
β
x∂xi

− ∂βx∂vi)]h = ∂βx∂xi
h+

d∑
j=1

∑
ν⩽β

(
β

ν

)
∂ν∂i,jU0∂

β−ν
x ∂vjh

+

d∑
j=1

∑
ν⩽β;ν ̸=0

(
β

ν

)
∂ν∂jU0∂

β−ν
x ∂xi∂vjh−

d∑
j=1

∑
ν⩽β;ν ̸=0

(
β

ν

)
(∂ν∂jU0)(∂

β−ν
x ∂vi∂vjh) ,



3.2. Proof of Theorem 3.1.1 81

and thus, by applying Young inequality,

(∇k+1
x −∇k

x∇v)h · [LH ,∇k+1
x −∇k

x∇v]h ⩾
1

2
|(∇k+1

x −∇k
x∇v)h|2 − C

 k∑
j=0

|∇j
x∇vh|2 +

k−1∑
j=0

|∇j
x∇2

vh|2
 ,

which concludes the proof.

Regarding the diffusion part, we have

Lemma 3.2.5. For i ∈ J0, kK,

∇i
x∇k+1−i

v h · [LD,∇i
x∇k+1−i

v ]h = γ(k + 1− i)|∇i
x∇k+1−i

v h|2 ,

and there exists C > 0 such that

(∇k+1
x −∇k

x∇v)h · [LD,∇k+1
x −∇k

x∇v]h ⩾ −1

8
|(∇k+1

x −∇k
x∇v)h|2 − C|∇k

x∇vh|2 .

Proof. We have, for all α1, α2 ∈ Nd,

∂α1
x ∂α2

v LDh(x, v) = −γ
d∑

j=1

∂α2
v (vj∂

α1
x ∂vjh) + γ

d∑
j=1

∂α1
x ∂α2

v (∂2v2
j
h)

= −γ
d∑

j=1

vj∂
α2
v ∂α1

x ∂vjh− γ
d∑

j=1

α2,j∂
αj

2
v ∂α1

x ∂vjh+ γ

d∑
j=1

∂α1
x ∂α2

v (∂2v2
j
h).

Therefore, if |α1| = i and |α2| = k + 1− i, we have

[LD, ∂
α1
x ∂α2

v ]h(x, v) = γ

d∑
j=1

α2,j∂
α2
v ∂α1

x h = γ(k + 1− i)∂α1
x ∂α2

v h

and
∇i

x∇k+1−i
v h · [LD,∇i

x∇k+1−i
v ]h = γ(k + 1− i)|∇i

x∇k+1−i
v h|2.

Similarly, for all β ∈ Nd and i ∈ J1, dK,

(∂βx∂xi − ∂βx∂vi)LDh(x, v) = −γ
d∑

j=1

vi∂
β
x∂xi∂vjh+ γ

d∑
j=1

∂vi(vj∂
β
x∂vjh) + γ

d∑
j=1

∂βx∂xi∂
2
v2
j
h− γ

d∑
j=1

∂βx∂vi∂
2
v2
j
h

= −γ
d∑

j=1

vj∂
β
x∂xi

∂vjh+ γ

d∑
j=1

vj∂vi
∂βx∂vjh+ γ∂βx∂vih

+ γ

d∑
j=1

∂βx∂xi∂
2
v2
j
h− γ

d∑
j=1

∂βx∂vi∂
2
v2
j
h

Therefore,
[LD, ∂

β
x∂xi

− ∂βx∂vi ]h(x, v) = γ∂βx∂vih

and finally applying Young inequality
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(∇k+1
x − ξ∇k

x∇v)h · [LD,∇k+1
x −∇k

x∇v]h = γ
∑

|β|=k;j∈J1,dK

(∂βx∂xj
− ∂βx∂vj )h∂βx∂vjh

⩾
1

4
|(∇k+1

x −∇k
x∇v)h|2 − C|∇k

x∇vh|2 ,

for some C > 0.

Finally, let us look at the jump part.

Lemma 3.2.6. For all k ∈ N, there exists C > 0 such that for i ∈ J0, kK and ε > 0,∫
R2d

∇i
x∇k+1−i

v h · [LJ ,∇i
x∇k+1−i

v ]hdµ ⩾ −1

ε

∫
R2d

|∇i
x∇k+1−i

v h|2dµ

− Cε
∫
R2d

 ∑
j⩽i

l⩽k+1−j

|∇j
x∇l

vh|2 + |∇i
x∇k+2−i

v h|2

 dµ .

and∫
R2d

(∇k+1
x −∇k

k∇vh) · [LJ ,∇k+1
x −∇k

x∇v]hdµ ⩾ −1

8

∫
R2d

|∇k+1
x −∇k

x∇vh|2dµ

− C

∫
R2d

∑
i⩽k

j⩽k+1−i

|∇i
x∇j

vh|2dµ+

∫
R2d

|∇k
x∇2

vh|2dµ

 .

To prove this Lemma, we need a generalization of Proposition 3.2.3:

Lemma 3.2.7. Let n ∈ N∗. There exists C > 0 such that for any h ∈ C∞c (R),∫
R
v2nh2(v)e−v2/2dv ⩽ C

n∑
k=0

∫
R
(h(k)(v))2e−v2/2dv .

Proof. We prove the inequality by induction on n. The case n = 1 corresponds to Lemma 3.2.3.
Suppose that the inequality holds for some n ∈ N. Then∫

R
v2n+2h2(v)e−v2/2dv =

∫
R
v2n(vh(v))2e−v2/2dv

⩽ C

n∑
k=0

∫
R
((vh(v))(k))2e−v2/2dv

= C

n∑
k=0

∫
R
(kh(k−1) + vh(k))2e−v2/2dv

⩽ C

n∑
k=0

2

∫
R
(k2(h(k−1))2 + v2(h(k))2)e−v2/2dv

⩽ 2Cn2
n−1∑
k=0

∫
R
(h(k)(v))2e−v2/2dv + 4C

n∑
k=0

∫
R
(h(k)(v))2e−v2/2dv
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+ 8C

n+1∑
k=1

∫
R
(h(k))2e−v2/2dv

⩽ C̃

n+1∑
k=0

∫
R
(h(k))2e−v2/2dv ,

and hence it holds for n+ 1.

Proof of Lemma 3.2.6. Recall that we denote

gi(x, v,G) = (x, v − 2θ

1 + θ2
(θvi +G) ei), φi(x, v,G) =

θ∂iU1(x)

1 + θ2
(θvi +G) .

The functions (gi)i are smooth and we have for all i ∈ J1, dK

∂vjgi =

(
0, ej −

2θ2

1 + θ2
eifrm[o]−−j=i

)
, ∂xj

gi = (ej , 0), ∂νx∂
α
x gi = 0 ∀ |ν|+ |α| ⩾ 2 .

As a consequence, for any ν1, ν2 ∈ Nd, we have

∂ν1
x ∂

ν2
v (h(gi)) =

(
1− 2θ

1 + θ2

)ν2,i

(∂ν1
x ∂

ν2
v h)(gi) .

The functions (φi)i are smooth and we have for all i ∈ J1, dK

∂νxφi =
θ

1 + θ2
(θvi +G)∂ν∂iU1, ∂νx∂viφi =

θ2

1 + θ2
(∂ν∂iU1) .

This yields that the only non-vanishing derivatives of Ψ(φi) are of the type ∂αx ∂kviΨ(φi). For
k ∈ N and α ∈ Nd, we have:

∂kviΨ(φi) = Ψ(k)(φi)

(
θ2

1 + θ2

)k

(∂iU1)
k ,

and

∂αx ∂
k
viΨ(φi) =

(
θ2

1 + θ2

)k ∑
ν⩽α

(
α

ν

)
∂νxΨ

(k)(φi)∂
α−ν
x (∂iU1)

k.

Therefore, using that Ψ(s) ⩽ c+ |s| for some c > 0, and that Ψ′ and U1 and their derivatives of
all order are bounded, we get that for all k ∈ N and α ∈ Nd there exists C > 0 such that:

|∂αx ∂vk
i
Ψ(φi)| ⩽ C

(
1 + |θvi +G||α|

)
⩽ C ′

(
1 + |vi||α| + |G||α|

)
.
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Thus, for α = (α1, α2) ∈ N2d, we have

[∂α,Li
J ]h =

1 + θ2

θ2
(E [∂α [(h(gi)− h)Ψ(φi)]]− E[(∂αh(gi)− ∂αh)Ψ(φi)])

=
1 + θ2

θ2

(∑
ν<α

(
α

ν

)
E[(∂ν(h(gi))− ∂νh)∂α−ν(Ψ(φi))] + E[(∂α(h(gi))− ∂αh(gi))Ψ(φi)]

)

=
1 + θ2

θ2

∑
ν<α

(
α

ν

)
E

[((
1− 2θ

1 + θ2

)ν,i+d

∂νh(gi)− ∂νh

)
∂α−ν(Ψ(φi))

]

+
1 + θ2

θ2
E

[((
1− 2θ

1 + θ2

)α,i+d

− 1

)
∂αh(gi)Ψ(φi)

]
.

As a consequence, there exists a C > 0 such that

|[∂α,Li
J ]h|2 ⩽ CE[(h(gi)− h)2(1 + |vi|2|α| +G2|α|)]

+ C

( ∑
0<ν<α

E
[
(∂νh(gi))

2(1 + |vi|2|α−ν| +G2|α−ν|)
]
+ (∂νh)2(1 + |vi|2|α−ν|)

)
+ CE[(∂αh(gi))2(1 + v2i +G2)] .

As in the H1 case, the integrals with respect to µ of the previous expectations can be bounded
using the Poincaré inequality for the Gaussian measure, the reversibility of the law of V i with
respect to the Gaussian measure, as well as Lemma 3.2.7. Recall that thanks to the reversibil-
ity (3.8), ∫

R2d

E[(∂νh(gi))2]dµ =

∫
R2d

(∂νh)2dµ

Recall that V i
i = ρvi+

√
1− ρ2G whereG is a random variable with standard normal distribution.

Hence, for any n ∈ N∗,

E[(V i
i )

2n] =

2n∑
k=0

(
2n

k

)
(1− ρ2)k/2E[Gk]ρ2n−kv2n−k

i ⩽ C
(
1 + v2ni

)
.

Similarly we have:

E[(vi − ρV i
i )

2n] =

2n∑
k=0

(
2n

k

)
(−1)kρkE[(V i

i )
k]v2n−k

i ⩽ C
(
1 + v2ni

)
.

Therefore, for all ν ∈ N2d and n ∈ N∗:∫
R2d

|vi|2nE[|∂νh(gi)|2]dµ =

∫
R2d

E[V 2n
i ]|∂νh|2dµ ⩽ C

∫
R2d

(
1 + v2ni

)
|∂νh|2dµ ,

and using Lemma 3.2.7, we get:∫
R2d

|vi|2nE[|∂νh(gi)|2]dµ ⩽ C

n∑
k=0

∫
R2d

|∂kvi∂
νh|2dµ .
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Similarly we have∫
R2d

E[G2n|∂νh(gi)|2]dµ =
1

(1− ρ2)n

∫
R2d

|∂νh|2E[(vi − ρV i
i )

2n]dµ

⩽ C

∫
R2d

(
1 + v2ni

)
|∂νh|2dµ ⩽ C ′

n∑
k=0

∫
R2d

|∂kvi∂
νh|2dµ .

Now bound∫
R2d

v
2|α|
i E[(h(gi)− h)2]dµ ⩽ 2

(∫
R2d

v
2|α|
i E[(h(gi)−Πvih)

2]dµ+

∫
R2d

v
2|α|
i (h−Πvih)

2dµ
)

= 2

(∫
R2d

E[(V i
i )

2|α|](h−Πvih)
2dµ+

∫
R2d

v
2|α|
i (h−Πvih)

2dµ
)

⩽ C

∫
R2d

(
1 + v

2|α|
i

)
(h−Πvih)

2 dµ .

The Poincaré inequality (3.10) and Proposition 3.2.7 then yields

∫
R2d

v
2|α|
i E[(h(gi)− h)2]dµ ⩽ C

|α|∑
k=0

∫
R2d

(∂kvih)
2dµ ,

for some C > 0. Similarly we have∫
R2d

E[G2|α|(h(gi)− h)2]dµ ⩽ 2

(∫
R2d

E[G2|α|(h(gi)−Πvih)
2]dµ+

∫
R2d

E[G2|α|](h−Πvi
h)2dµ

)
⩽ C

(∫
R2d

E[(vi − ρV i
i )

2|α|](h−Πvih)
2dµ+

∫
R2d

(h−Πvih)
2dµ

)

⩽ C

|α|∑
k=0

∫
R2d

(∂kvih)
2dµ ,

for some constant C > 0. Putting everything together, we get that for all α ∈ N2d, there is
C > 0 such that∫

R2d

|[∂α,Li
J ]h|2dµ ⩽ C

∫
R2d

(∂vi∂
αh)2dµ+

∑
ν⩽α

|α−ν|∑
k=0

∫
R2d

(∂kvi∂
νh)2dµ

 .

For any i ∈ J0, kK and ε > 0, Young inequality yields∫
R2d

∇i
x∇k+1−i

v h · [LJ ,∇i
x∇k+1−i

v ]hdµ ⩾ −1

ε

∫
R2d

|∇i
x∇k+1−i

v h|2dµ

− Cε
∫
R2d

 ∑
j⩽i

l⩽k+1−j

|∇j
x∇l

vh|2 + |∇i
x∇k+2−i

v h|2

 dµ .
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To treat the term with derivative ∇k+1
x −∇k

k∇v, write for α ∈ Nd

[∂αx ,Li
J ]h =

1 + θ2

θ2

∑
ν<α

(
α

ν

)
E
[
(∂νxh(gi)− ∂νxh) ∂α−ν

x (Ψ(φi))
]
,

so that no derivatives of order k + 2 appear, nor derivatives of the form ∇k+1
x , and we have

∫
R2d

|[∂αx ,Li
J ]h|2dµ ⩽ C

∫
R2d

∑
ν<α

|α−ν|∑
k=0

(∂kvi∂
ν
xh)

2dµ.

Hence, the only derivatives of order k + 2 that appear in [LJ ,∇k+1
x − ∇k

x∇v]h come from the
term [LJ ,∇k

x∇v]h that we treated above. Using Young inequality, we get∫
R2d

(∇k+1
x −∇k

x∇vh) · [LJ ,∇k+1
x −∇k

x∇v]hdµ

⩾ −1

8

∫
R2d

|∇k+1
x −∇k

x∇vh|2dµ− C

∫
R2d

∑
i⩽k

j⩽k+1−i

|∇i
x∇j

vh|2dµ−
∫
R2d

|∇k
x∇2

vh|2dµ

 ,

which concludes the proof.

Combining all the commutator terms, we get that for i ∈ J0, k − 1K there exists C > 0 such
that for all ε > 0 small enough∫

R2d

∇i
x∇k+1−i

v h · [L,∇i
x∇k+1−i

v ]hdµ

⩾ −C
ε

∫
R2d

|∇i
x∇k+1−i

v h|2dµ− C
∫
R2d

|∇i+1
x ∇k−i

v h|2dµ− C
i−1∑
j=0

∫
R2d

|∇j
x∇k+2−i

v h|2dµ

− Cε
∫
R2d

 ∑
j⩽i

l⩽k+1−j

|∇j
x∇l

vh|2 + |∇i
x∇k+2−i

v h|2

 dµ ,

as well as∫
R2d

∇k
x∇vh · [L,∇k

x∇v]hdµ ⩾

− C
(
1

ε
+

1

η

)∫
R2d

|∇k
x∇vh|2dµ−

η

8

∫
R2d

|(∇k+1
x −∇k

x∇v)h|2dµ− C
k−1∑
j=0

∫
R2d

|∇j
x∇2

vh|2dµ

− Cε
∫
R2d

 ∑
j⩽k

l⩽k+1−j

|∇j
x∇l

vh|2 + |∇k
x∇2

vh|2

 dµ ,

and finally
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R2d

(∇k+1
x −∇k

k∇vh) · [L,∇k+1
x −∇k

x∇v]hdµ

⩾
1

4

∫
R2d

|∇k+1
x −∇k

x∇vh|2dµ−C
∫
R2d

∑
i⩽k

j⩽k+1−i

|∇i
x∇j

vh|2dµ−C

 k∑
j=0

|∇j
x∇vh|2 +

k∑
j=0

|∇j
x∇2

vh|2
 .

Thanks to those expressions, we are now able to prove Proposition 3.2.5.

Proof of Proposition 3.2.5. The fact that inequality (3.12) holds for k = 1 is proven in Lemma 3.2.1.
Let k ∈ N, and suppose that inequality (3.12) holds for such k and some ρk > 0 and ωi,p > 0,
0 ⩽ i ⩽ p ⩽ k. Fix some ωi,k+1 > 0, 0 ⩽ i ⩽ k + 1, ε > 0 small enough so that the previous
formulas for the commutators hold, and choose η = ωk+1,k+1/ωk,k+1. By assumption we have

∫
R2d

Γ(h)dµ+

k+1∑
p=1

∫
R2d

(
p−1∑
i=0

ωi,pΓi,p(h) + ωp,pΓp,p(h)

)
dµ

⩾ ρk

(
Nk(h) +

∫
R2d

k∑
i=0

|∇i
x∇k+1−i

v h|2dµ

)
+

∫
R2d

(
k∑

i=0

ωi,k+1Γi,k+1(h) + ωk+1,k+1Γk+1,k+1(h)

)
dµ .

By using Proposition 3.2.1, the bounds on the commutators and the fact that

Γ(∇i
x∇j

vh) ⩾ 2γ|∇i
x∇j+1

v h|2,
Γ((∇k+1

x −∇k
x∇v)h) ⩾ 2γ|(∇k+1

x ∇v −∇k
x∇2

v)h|2 ⩾ γ|∇k+1
x ∇vh|2 − 2γ|∇k

x∇2
vh|2 ,

the term or order k + 2 are bounded below by

2γ

k∑
i=0

ωi,k+1|∇i
x∇k+2−i

v h|2+γωk+1,k+1|∇k+1
x ∇vh|2−(C1+2γ)ωk+1,k+1|∇k

x∇2
vh|2−C1ε

k∑
i=0

ωi,k+1|∇i
x∇k+2−i

v h|2 .

for some constant C1 > 0. We may bound from below the terms of order k+1 for ε small enough
by

ρk

k∑
i=0

|∇i
x∇k+1−i

v h|2− sup
0⩽i⩽k+1

ωi,k+1
2C2

ε

k∑
i=0

|∇i
x∇k+1−i

v h|2−C2

ω2
k,k+1

ωk+1,k+1
|∇k

x∇vh|2+
ωk+1,k+1

8
|(∇k+1

x −∇k
x∇v)h|2 ,

for some constant C2 > 0. Finally, the term of order at most k may be bounded from below by(
ρk inf

i+j⩽k
ωi,i+j − 3C3 sup

0⩽i⩽k+1
ωi,k+1

) ∑
i+j⩽k

|∇i
x∇j

vh|2 ,

for some constant C3 > 0. Set C4 = max(C1, C2, C3) (which is independent from ε and the
weights ωi,j). Now, choose ε and ωi,k+1 for i ∈ J1, k + 1K such that

ωk+1,k+1

ωk,k+1
⩽
γ − C4ε

2γ + C4
, ε < γ/C4, ωi,k+1 < ερk/4C4, 1 ⩽ i ⩽ k−1, ωk,k+1

(
2

ε
+

ωk,k+1

ωk+1,k+1

)
< ρk/(2C4)

and
6C4 sup

0⩽i⩽k+1
ωi,k+1 < ρk inf

i+j⩽k
ωi,i+j .
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We get

∫
R2d

Γ(h)dµ+

k+1∑
p=1

∫
R2d

(
p−1∑
i=0

ωi,pΓi,p(h) + ωp,pΓp,p(h)

)
dµ

⩾ ρ̃k+1

(
k+1∑
p=1

∫
R2d

(
p−1∑
i=0

ωi,p|∇i
x∇p−i

v f |2 + ωp,p|(∇p
x −∇p−1

x ∇v)f |2
)

+

k∑
i=0

|∇i
x∇k+2−i

v h|2dµ

)
,

for any

ρ̃k+1 < min

(
ρk
2
,
ωk+1,k+1

8
, γ inf

i+j⩽k+1
ωi,i+j

)
.

As in the H1(µ) case, an application of the Poincaré inequality (3.9) yields inequality (3.12),
which concludes the induction.

Proof of Theorem 3.2.1. Our goal is to apply Lumer-Phillips theorem to the operator L+ρk/2I,
where I denotes the identity operator of Hk. This theorem can be stated as follows: an operator
A on a Hilbert space generates a contraction semi-group if and only if it is maximally dissipative,
see [169, Chapter IX, p.250]. Fix k ∈ N. The scalar product

⟨f, g⟩2k

=

∫
R2d

fgdµ+
∫
R2d

k∑
p=1

(
p−1∑
i=0

ωi,p∇i
x∇p−i

v f · ∇i
x∇p−i

v g + ωp,p

(
∇p

x −∇p−1
x ∇v

)
f ·
(
∇p

x −∇p−1
x ∇v

)
g

)
dµ

generates a norm equivalent to the usual norm of Hk. Proposition 3.2.5 and a density argument
yield that the operator L+ ρk/2I, is dissipative:

∀h ∈ D(L), ⟨(L+ ρk/2I)h, h⟩k ⩽ 0,

where D(L) denote the domain of L in Hk defined by:

f ∈ D(L), g = Lf ⇔ f ∈ Hk, lim
t→0

∥∥∥∥Ptf − f
t

− g
∥∥∥∥
Hk

= 0.

We are left to show that L+ ρI, for some ρ < ρk/2, is surjective. Fix such a ρ < ρk/2. Thanks
to Proposition 3.2.5, we have that

Λ : (f, g) 7→ ⟨−(L+ ρI)f, g⟩k

is coercive and continuous from
(
Hk
)2 to R for k ⩾ 1. Hence, we may apply Lax-Milgram

theorem to get that for all g ∈ Hk, there exists f ∈ Hk such that for all h ∈ Hk, we have:

⟨−(L+ ρI)f, h⟩Hk = ⟨−g, h⟩Hk ,

which implies that f is a solution to the equation

(L+ ρI)f = g,

and L+ρk/2I is maximally dissipative. Lumer-Phillips Theorem then yields that the semi-group
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generated by L+ ρk/2 is a contraction on Hk: for all f ∈ Hk

Nk

(
eρkt/2(Ptf − µ(f))

)
⩽ Nk (f − µ(f)) ,

which concludes the proof.
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Convergence of the kinetic
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Abstract : The convergence of the kinetic Langevin simulated annealing is proven under mild
assumptions on the potential U for slow logarithmic cooling schedules, which widely extends
the scope of the previous results of [137]. Moreover, non-convergence for fast logarithmic and
non-logarithmic cooling schedules is established. The results are based on an adaptation to non-
elliptic non-reversible kinetic settings of a localization/local convergence strategy developed by
Fournier and Tardif in [64] in the overdamped elliptic case, and on precise quantitative high
order Sobolev hypocoercive estimates.

4.1 Introduction and main results

Given a potential U : Rd 7→ R, the goal of a simulated annealing procedure is to minimize U
by designing a stochastic process (Xt)t⩾0 whose law at time t is close to the probability density

93
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proportional to e−βtU(x)dx, where β : R+ 7→ R+ is called the cooling schedule. As β goes to
infinity, this probability law concentrates around the global minimizers of U .

The most classical case is based on the overdamped Langevin process:

dXt = −βt∇U(Xt)dt+
√
2dBt ,

where (Bt)t⩾0 is a standard Brownian motion on Rd. For a fixed β, the density e−βU(x)dx is
a stationary measure for this process. The idea is thus that, if β increases sufficiently slowly,
the law of Xt gets and remains close to its instantaneous equilibrium. As a consequence, the
convergence of the simulated annealing algorithm, in the sense of convergence in probability of
U(Xt) toward minU as t → +∞, is related to the longtime convergence to equilibrium of the
process at a fixed but high β. On the contrary, when β goes to infinity too fast, the algorithm is
expected to fail with positive probability, i.e. the law of Xt is not expected to be close to e−βtU

and U(Xt) to converge to minU .
On the other hand, the simulated annealing based on the kinetic Langevin process:{

dXt = Ytdt

dYt = −∇U(Xt)dt− βtYtdt+
√
2dBt .

was studied in [137]. The present work is concerned with the kinetic Langevin simulated anneal-
ing. The contributions with respect to [137] are the following. First, following the method of
[64], the conditions on U are considerably weakened. Notice that, in the kinetic case, it means we
can consider potentials that grow slower than those considered in [137], but also potentials that
grow much faster (arbitrarily fast in fact), while the results of [137] require U(x)/(|x|2 + 1) and
∇2U to be bounded. Second, we prove the failure of the algorithm with fast cooling schedule,
which was yet to be established in an hypocoercive case. Indeed, the failure of the overdamped
Langevin simulated annealing is proven in [83] thanks to hypercontractivity results that are not
available for the kinetic process, and the hypocoercive convergence results used in [137] to prove
convergence are too weak to conclude about the failure of the algorithm in the fast cooling case
(see the discussion at the beginning of Section 4.2.4). By proving the non-convergence of the
algorithm under the same condition as in the overdamped case, we make rigorous the heuristic
discussion in [137] according to which the kinetic process does not change the optimal condi-
tion on the cooling schedule. Third, as noted in [31], a technical truncation argument in [137],
required for the rigorous computation of the modified entropy dissipation, is incorrect, and we
have solved this issue (see Section 4.4 and more precisely Remark 4.4.1).

More precisely, we study the Markov process (Zt)t⩾0 = (Xt, Yt)t⩾0 on R2d that solvesdXt = Ytdt

dYt = −∇U(Xt)dt− γtYtdt+
√

2γtβ
−1
t dBt ,

(4.1)

where γ : R+ → R+ is a friction parameter. We retrieve the settings of [137] with γt = βt.
We remark that the extension to Generalized Langevin processes as in [31] would not raise any
particular difficulty, but we don’t consider it for the sake of clarity. We will work under the
following set of assumptions :

Assumption 4.1.1.

• U : Rd 7→ R is a C∞ potential such that minU = 0, lim|x|→∞ U(x) = ∞, and there exists
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α0 > 0 such that : ∫
Rd

e−α0U(x)dx <∞.

• The cooling schedule β : R+ → R+ is given by

βt =
ln(ecβ0 + t)

c
, (4.2)

for some parameters c > 0 and β0 > 0.

• The friction γ : R+ → R+ is a C1 function and there exists κ > 0 such that for all t ⩾ 0,
γt ⩾ κ and γ′t ⩽

1
κ(1+t) . In particular there exists L such that γt ⩽ Lβt.

• The critical height c∗ of U is finite, where c∗ = supx1,x2
c(x1, x2) and

c(x1, x2) = inf

{
max
0⩽t⩽1

U(ξ(t))− U(x1)− U(x2)

}
where the infimum runs over

{
ξ ∈ C

(
[0, 1] ,Rd

)
, ξ(0) = x1, ξ(1) = x2

}
.

The condition minU = 0 is imposed for simplicity, it can always be enforced by changing
U to U − minU . The specific form of β is also made for simplicity, since it is known that, in
order to study the convergence in probability for large time for simulated annealing algorithm,
only logarithmic schedules are relevant. In particular, notice that, under Assumption 4.1.1, the
time-shifted process (Zt0+t)t⩾0 for any t0 ⩾ 0 satisfies Assumption 4.1.1 with the same U, c, κ, L
and with β0 replaced by βt0 .

The critical height c∗ represents the largest energy barrier the process has to cross in order
to go from any local minimum to any global one. In the classical overdamped case, disregarding
the question of the behavior of U at infinity, it is well known that, at least in the case where
the global minimizer of U is unique, the algorithm converges if c > c∗ (slow cooling) and has a
positive probability to fail (i.e. to never visit a global minimum) if c < c∗ (fast cooling). We
retrieve this dichotomy in the kinetic case.

In the slow cooling case, we extend the results of [137]:

Theorem 4.1.1. Under Assumption 4.1.1, assume furthermore that c > c∗. Then any solution
(Zt)t⩾0 of (4.1) satisfies

∀ δ > 0, P(H(Zt) ⩾ δ)→ 0.

Since H(x, v) = U(x) + |v|2/2, this implies the convergence in probability of Xt to the set of
global minimizers of U .

On the other hand, if c < c∗, then the process might remain stuck in a region that contains
no global minimum of U . In fact, a slightly stronger condition is required. Indeed, it is possible
that c∗ > 0 with all minima of U being global, in which case H(Zt) may go to zero with fast
cooling schedule, while the law of Zt is not close to its local equilibrium. To be more precise, we
need some additional definitions. For x, y ∈ Rd, let

c̃(x, y) = inf

{
max
0⩽t⩽1

U(ξ(t))− U(x)

}
(4.3)

where the infimum runs over
{
ξ ∈ C

(
[0, 1] ,Rd

)
, ξ(0) = x, ξ(1) = y

}
. We define the depth of

x ∈ Rd by
D(x) = inf

{
c̃(x, y), y ∈ Rd, U(y) < U(x)

}
, (4.4)
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Figure 4.1: Case with two local non-global minima x and y at the same energy level. If c < b,
then Assumption 4.1.2 holds by chosing either x̃ = x or x̃ = y and any a ∈ (c, b). If c ∈ (b,D(x)),
again Assumption 4.1.2 holds with x̃ ∈ {x, y} and any a ∈ (b,D(x)). However, if c = b,
Assumption 4.1.2 does not hold with x̃ ∈ {x, y}.

with inf ∅ = ∞. It is clear that D(x) = 0 if x is not a local minimum of U . For x ∈ Rd with
D(x) > 0 and a ∈ (0,D(x)), we define the cup of bottom x and height a (this is the vocabulary
of [80]) as

C(x, a) = {y ∈ Rd, c̃(x, y) < a}. (4.5)

We want to discard pathological cases where there are two non-global local minima x1, x2 with
U(x1) = U(x2), D(x1) = D(x2) > c and c(x1, x2) = c, see Figure 4.1 (these cases do not prevent
the result to hold, but the proof doesn’t work directly, see Remark 4.1.1 below. Notice that the
problem is not that there are two local minima with the same energy level and depth, which is
a pretty common situation as soon as there are some symmetries in the system; the problem is
that the elevation c(x1, x2) between them is exactly the parameter c chosen by the user in the
cooling schedule which, now, is a very unlikely situation). Hence, we work under the following
condition.

Assumption 4.1.2. Assumption 4.1.1 holds and there exist x̃ ∈ Rd with D(x̃) > c and a ∈
(c,D(x̃)) such that for all y ∈ C(x̃, a), c̃(y, x̃) < c.

Theorem 4.1.2. Under Assumption 4.1.2, for all initial condition such that P(X0 ∈ C(x̃, c)) > 0
and all δ > 0, the solution of (4.1) is such that

P (Xt ∈ C(x̃, c+ δ) ∀t ⩾ 0) > 0.

If U has a finite number of minima and a unique global minimum, it is easily seen that there
exists a non-global minimum x such that D(x) = c∗. More generally, since for all a < D(x) the
minimum value of U over the cup C(x̃, a) is U(x̃), if there exists a non-global minimum x of U
with depth D(x) > c, the previous results implies that, with positive probability, inft⩾0 U(Xt) ⩾
U(x̃) > minU . Moreover, even if the probability to start in C(x̃, c) is initially zero, due to the
controllability of the process, it is positive for all positive times (see e.g. [137, proposition 5]).
As a conclusion, we immediately get the following:

Corollary 4.1.1. Under Assumption 4.1.2, for all initial condition and all t0 > 0,

P (U(Xt) ⩾ U(x̃) ∀t ⩾ t0) > 0.



4.2. Main steps of the proofs 97

Notice that, in practice, one can keep track of Xs(t) where

s(t) = inf{w ∈ [0, t], U(Xw) = min
w′∈[0,t]

U(Xw′)},

so that Xs(t) may converge to a minimizer of U even if Xt does not. However, our results show
that this doesn’t solve the issue of non-convergence for fast cooling schedules.

Remark 4.1.1. In Figure 4.1, in the case c = b (so that Assumption 4.1.2 do not hold) we
cannot deduce from our results that the process stays stuck with positive probability in the cusp
C(x, b) because, for any δ > 0, C(x, b + δ) contains y (contrary to C(x, b)). In fact it is clear
that the process can stay stuck with positive probability in C(x, b+ δ) for any δ > 0 (so that the
conclusion of Corollary 4.1.1 also holds), but we cannot deduce it from our proof which requires
that the critical depth within the cusp (i.e. for a suitable modification of the potential which only
consider the local situation of this cusp, see Section 4.2.4 and Figure 4.2) is strictly smaller than
c (in order to apply a variation of Theorem 4.1.1), while it is exactly b = c in this example. We
refer to [130] where a fine analysis is conducted on a related question on finite graphs.

Finally we address the case of faster than logarithmic cooling schedules. For simplicity we
restrict this study to the case of a constant friction parameter γ (although as discussed at the end
of the proof it can be extended to the non-constant case with suitable conditions on γ depending
on β). In the following we do not assume that t 7→ βt is increasing, and possibly βt = +∞ for
some t.

Theorem 4.1.3. Assume that γt = γ is constant, that t ∈ R+ 7→ βt ∈ (0,+∞] is piecewise
continuous with ln(t) = o(βt) as t → +∞, that U ∈ C∞(Rd) and that x∗ ∈ Rd is a non-
degenerate local minimum of U , i.e. ∇U(x∗) = 0 and ∇2U(x∗) > 0. Then there exist C, r > 0
such that, denoting

εt = C

(
e−rt + sup

s⩾t/2

ln(s)β−1
s

)
,

the following holds. For all δ > 0 and all initial condition z0 = (x0, y0) ∈ R2d with |x0−x∗| ⩽ δ/2,
the solution Z = (X,Y ) of (4.1) is such that

Pz0 (|Xt − x∗| ⩽ min(δ,
√
εt) ∀t ⩾ 0) > 0 .

The rest of the paper is dedicated to the proofs of Theorems 4.1.1, 4.1.2 and 4.1.3. It
is organised as follows. The main step of the proofs in the logarithmic case are exposed in
Section 4.2, while technical intermediary results are postponed to Sections 4.3, 4.4 and 4.5.
More precisely, Section 4.3.1 is dedicated to the proof of a uniform in time energy bound, which
is the main ingredient in the proof that the process goes back infinitely many times to a compact
set. A result of small-time conditional regularization is proven in Section 4.3.2, which is used to
replace deterministic initial conditions by smooth distributions (with some quantitative bounds).
Section 4.4 presents hypocoercivity estimates similar to those of [137], which are used to prove the
convergence of the algorithm in the slow cooling case. In the fast logarithmic cooling case, similar
estimates have to be established in higher order Sobolev norms, which is the topic of Section 4.5.
Section 4.6 is dedicated to the faster than logarithmic case, with the proof of Theorem 4.1.3.

4.2 Main steps of the proofs

The sketch of the proofs is the following.
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The first point is to get uniform in time moment estimates. This would classically be
done using Lyapunov arguments, but this would typically require some assumption on ∇U ,
which we want to avoid. We adapt an argument from [64]. From these estimates, we get that
lim inft→+∞H(Zt) is almost surely finite, i.e. there exists a (random) compact set {H ⩽ A}
which will be visited infinitely often by the process.

The second step is to prove that, for any A > 0, there exists A′ > A such that, provided
the process is in {H ⩽ A} at some time t0, there is a probability at least, say, 1/4, that the
process remains in {H ⩽ A′} for all times t ⩾ t0. This is reminiscent of the study in [83] of
fast cooling schedules, where it is proven that there is a positive probability that, starting in a
potential well of depth larger than c, the process never climbs high enough to exit the well (as
in Theorem 4.1.2). We will follow a similar proof, except that we have to check the dependency
of the estimates with respect to t0 or, equivalently by taking t0 = 0, to β0. That way, we will
conclude that, each time the process goes below A, it has a probability 1/4 to never go above A′

again so that, if it goes below A infinitely often, eventually it will stay below A′.
Combining the two previous steps, we get that the process is almost surely bounded. It is

thus sufficient to prove the convergence of the process when the position space is a compact
torus, which is then similar to [137], but without the issue of the behavior of U at infinity.

The strategy for the non-convergence in the fast cooling case is similar to [83], the technical
difficulties coming from the degeneracy of the process. Indeed the estimates used in [137] in the
kinetic case to prove convergence are too weak to get that the process has a positive probability
to stay forever below some energy level. On the other hand the estimates of [83] are based on
hypercontractivity of elliptic diffusions on compact manifold. We are not aware of similar results
for hypoelliptic diffusions, and thus we overcome this difficulty by working with higher Sobolev
norms.

The faster than logarithmic case is similar and somehow simpler: in that case the process
has a positive probability to converge to (x∗, 0), it is thus sufficient to linearize ∇U at this point
and to study the corresponding Gaussian process.

4.2.1 Return to a compact set
Diffusions defined by (4.1) are time-inhomogeneous Markov processes with generator :

Lt = y · ∇x − (γty +∇xU) · ∇y + γtβ
−1
t ∆y. (4.6)

First, let us check that the process is well-defined.

Proposition 4.2.1. Under Assumption 4.1.1, let z0 ∈ R2d. There exists a unique process
Z = (X,Y ) that solves (4.1) with Z0 = z0. It is non-explosive (i.e. defined for all t ⩾ 0) and,
for all t ⩾ 0, E(H(Zt)) ⩽ H(z0) + dLt.

Proof. Since the coefficients of the diffusion (4.1) are all smooth, there is existence and uniqueness
until a time ξ of explosion. For all x, y ∈ Rd and t ⩾ 0,

LtH(x, y) = γtβ
−1
t d− γt|y|2 ⩽ Ld.

Considering for N ∈ N the stopping time τN = inf {t ⩾ 0;H(Zt) ⩾ N}, we get

E(H(ZτN∧t)) ⩽ H(z0) + dLt

which implies

P(τN < t) = P(H(ZτN∧t) ⩾ N) ⩽
H(z0) + Ldt

N
−→
N→∞

0 ,
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hence ξ < +∞ almost surely, which concludes.

The first main point is to to strengthen the energy bound of Proposition 4.2.1 to a uniform
in time estimate. For f a probability law or density on R2d, we write Ef and Pf expectations
and probabilities with respect to the process Z solving (4.1) with initial condition Z0 distributed
according to f . If f = δz for some z ∈ R2d, we write Ez and Pz instead.

Lemma 4.2.1. Under Assumption 4.1.1, there exists b > α0 that depends only on U such that
the following holds. Provided β0 ⩾ b then, for any C∞ probability density f0 with compact support,

sup
t⩾0

Ef0 (H(Zt)) ⩽
κβ0(f0) + ln(Zα0

)

β0 − α0
,

where
κβ0(f0) =

∫
R2d

f0 ln
(
1 + f0e

β0H
)
, Zα0

=

∫
R2d

e−α0H .

The proof is postponed to Section 4.3.1. The next result enables the use of Lemma 4.2.1
when the initial condition is not smooth.

Lemma 4.2.2. Under Assumption 4.1.1 with c > c∗, fix A > 1 and ε > 0. Then there exist
t∗, bA, C

1
A, C > 0 that do not depend on β0 such that, for all β0 ⩾ bA and z0 ∈ R2d with

H(z0) ⩽ A, the following holds. Writing B =
{
supt⩽t∗ H(Zt) ⩽ A+ 1

}
,

Pz0(B) ⩾ 1− ε.

Moreover, the law at time t∗ of the process (4.1) with initial condition Z0 = z0 conditioned on
the event B has a density f ct∗ that satisfies

f ct∗ ⩽ CeC
1
Aβ01{H⩽A+1}.

This is proven in Section 4.3.2. The two previous lemmas yield the following.

Proposition 4.2.2. Under Assumption 4.1.1, lim inft→∞H(Zt) <∞ almost surely.

Proof. For t large enough, βt ⩾ b where b > α0 is the constant from Lemma 4.2.1. Notice
that, for t0 ⩾ 0, (Zt0+t)t⩾0 solves (4.1) except that β0 is replaced by βt0 and γ is also time-
shifted. Hence, by the Markov property, without loss of generality, we can assume that β0 ⩾ b.
Moreover, by conditioning with respect to the initial condition, it is sufficient to consider the
case of a deterministic initial condition z0 ∈ R2d.

Fix ε > 0 and A = H(z0). From Lemma 4.2.2, there exist t∗, C ′ > 0 such that Pz0(B) ⩾ 1− ε
where B =

{
supt⩽t∗ H(Zt) ⩽ A+ 1

}
, and such that the law of the process at time t∗ and

conditioned on B has a density f̃t∗ ⩽ C ′
1{H⩽A+1}. Let C > 0 and f0 be a C∞ probability

density on R2d with compact support such that Cf0 ⩾ C ′
1{H⩽A+1}. Then, denoting by (Ft)t⩾0

the filtration associated with (Zt)t⩾0, by the strong Markov property and Lemma 4.2.1, for all
t ⩾ 0,

Ez0(H(Zt∗+t)|B) = Ez0(E(H(Zt∗+t)|Ft∗)|B) ⩽ CEf0(H(Zt)) ⩽ C
κβ0(f0) + ln(Zα0

)

β0 − α0
.

As a consequence, by Fatou’s Lemma,

Ez0

(
lim inf
t→∞

H(Zt)|B
)
⩽ sup

t⩾0
Ez0(H(Zt)|B) <∞.
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Finally
Pz0

(
lim inf
t→∞

H(Zt) =∞
)
⩽ Pz0(Bc) + Pz0

(
lim inf
t→∞

H(Zt) =∞|B
)
⩽ ε ,

which concludes since ε is arbitrary.

4.2.2 Position in a compact set
As in [64], with Proposition 4.2.2 at hand, we can now focus on the behavior of the process
when the position is in a compact set, ignoring the behavior of U at infinity. To this end, we
fix some parameter K > 0, let LK > 0 be such that {U ⩽ K} ⊂ [−(LK − 1), (LK − 1)]

d and
consider the torus MK = (R/2LKZ)d (i.e. we consider periodic boundary conditions, which
will be technically simpler than e.g. reflecting boundary conditions). We now define a process
(XK

t , Y
K
t ) on MK × Rd and a potential UK :MK 7→ R to replace the initial one.

More precisely, write θK : Rd 7→ MK the canonical projection and M̃K = ]−LK , LK ]
d, so

that MK = θK(M̃K). For a non-negative function V : Rd → R, we define the critical height
c∗(V ) with the same definition as c∗ except that U is replaced by V .

Let ŨK ∈ C∞(Rd) be equal to U on some open set OK containing {U ⩽ K}, non-negative,
2LK-periodic, and such that c∗K = c∗(ŨK) ⩽ c∗. Such a function exists from [64, Notation
9]. We write UK the corresponding function on MK , given by UK(θK(x)) = ŨK(x), and
HK(x, y) = UK(x) + |y|2/2.

Finally, given the same Brownian motion as in (4.1), we consider ZK = (XK , Y K) the process
on MK × Rd that solvesdXK

t = Y K
t dt

dY K
t = −∇xU

K(Xt)dt− γtY K
t dt+

√
2γtβ

−1
t dBt ,

(4.7)

with (XK
0 , Y

K
0 ) = (θK(X0), Y0). Write τK = inf {t ⩾ 0, Xt /∈ OK}. Then, by design,

(UK(XK
t ), Y K

t )t⩽τK = (U(Xt), Yt)t⩽τK . (4.8)

For β > 0, write µK
β the probability measure on MK × Rd with density proportional to e−βHK .

Lemma 4.2.3. Fix δ, α > 0. There exists C > 0 such that for all β > 0,

µK
β (HK > δ) ⩽ Ce−β(δ−α).

Proof. For completeness, we recall the short proof of [137, section 3.1]. First,∫
MK×Rd

e−βHK(z)dz ⩾
∫
{HK⩽α}

e−βHK(z)dz ⩾ e−βα/C,

for some constant C > 0 because
{
HK ⩽ α

}
is compact. Likewise,

{
δ ⩽ HK ⩽ δ + |y|

}
is

compact and∫
{HK⩾δ}

e−βHK(z)dz ⩽
∫
{δ⩽HK⩽δ+|y|}

e−βHK(z)dz +
∫
{HK⩾δ+|y|}

e−βHK(z)dz

⩽ e−βδ

(
C + C

∫
Rd

e−|y|dy
)

for some C > 0. The ratio of those two inequalities concludes the proof.
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The goal of this section is to prove a similar result but with the law of ZK
t instead of µK

β ,
with an explicit dependency of the constants in term of β0.

Denote by fKt the law of ZK
t . Since ∇UK and its derivatives are all bounded, if f0 is smooth,

so is fKt is for all t ⩾ 0 (see Section 4.4 for details). Consider the relative density hKt = fKt /µ
K
βt

.

We start with a uniform in time quantitative bound of the norm of hKt in L2
(
µK
βt

)
, for nice

initial conditions.

Proposition 4.2.3. Under Assumption 4.1.1 with c > c∗, let K ⩾ 1. There exists bK > 0,
which depends on U and K, such that, if β0 ⩾ bK and f0 ∈ C∞(MK ×Rd) with compact support,
then for all t ⩾ 0,∫

MK×Rd

(
hKt
)2

dµK
βt

⩽ 1 +

∫
MK×Rd

(∣∣(∇x +∇y)h
K
0

∣∣2 + 4

√
γ−1
0 β0(∥∇2

xU
K∥∞ + 1 + γ0)

2
(
hK0
)2)

dµK
0 .

The proof of this proposition is postponed to Section 4.4.

Lemma 4.2.4. Under Assumption 4.1.1 with c > c∗, fix A > 1, ε = 1/4 and consider
B, C1

A, bA, t
∗ as in Lemma 4.2.2. Set DA = 2C1

A + A + 4 + 4c and KA = DA + 1. There
exist CA > 0 and b′A ⩾ bA that do not depend on β0 such that, for all β0 ⩾ b′A and z0 ∈ R2d with
H(z0) ⩽ A, we have that, Pz0-a.s., supt∈[0,t∗]HKA

(
ZKA
t

)
1B < DA, and for all t ⩾ 0

Pz0

(
HKA

(
ZKA
t+t∗

)
⩾ DA

∣∣∣B) ⩽
CA

(ecβ0 + t)2
.

Proof. The first point is clear since, by definition of B, sup[0,t∗]HKA
(ZKA

t )1B < A+ 1 ⩽ DA.
In the rest of the proof we denote by C different constants.
Let us introduce a function which will serve as a new initial condition. Let vd and wd be

respectively the volumes of {H ⩽ A+ 1} and {H ⩽ A+ 2} in MK × Rd, and f0 ∈ C∞ be such
that (2vd)

−1
1{H⩽A+1} ⩽ f0 ⩽ 2(wd)

−1
1{H⩽A+2}. Notice that f0 does not depend on β0, and

that ∇f0 is bounded since f0 is smooth on a compact set. As in the proof of Lemma 4.2.2, from
Lemma 4.2.2 and the strong Markov property,

Pz0

(
HKA

(
ZKA
t+t∗

)
⩾ DA

∣∣∣ B) ⩽ 2vdCe
C1

Aβ0Pf0

(
HKA

(
ZKA,βt∗
t

)
⩾ DA

)
,

where ZKA,βt∗ is a process similar to ZKA except that β0 has been replaced by βt∗ and (γt)t⩾0

by (γt+t∗)t⩾0. Denote by h∗t the relative density of the law of ZKA,βt∗
t with respect to µKA

βt+t∗
.

By the Cauchy-Schwartz inequality,

Pf0

(
HKA

(
ZKA,βt∗
t

)
⩾ DA

)
=

∫
{HKA

⩾DA}
h∗tdµ

KA

βt+t∗

⩽

√∫
Rd×Rd

(h∗t )
2dµKA

βt+t∗

√
µKA

βt+t∗
(HKA

⩾ DA). (4.9)

For the second term, applying Lemma 4.2.3 with α = 1,

µKA

βt+t∗
(HKA

⩾ DA) ⩽ Ce−βt+t∗ (DA−1) .
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For the first term, Proposition 4.2.3 applies if β0 ⩾ bKA
, which yields∫

MK×Rd

(h∗t )
2 dµKA

βt+t∗

⩽ 1 +

∫
MK×Rd

(
|(∇x +∇y)h

∗
0|

2
+ 4

√
γ−1
t∗ βt∗(∥∇2

xU
K∥∞ + 1 + γt∗)

2 (h∗0)
2

)
dµKA

βt∗

⩽ Cβ
5
2
t∗

∫
{HKA

⩽A+2}
1

µ
β
KA
t∗

(z)
dz

for some C > 0 that does not depend on β0, where we used Assumption 4.1.1, that βt∗ ⩾ β0,
hK0 = fK0 /µ

K
β0

, and a uniform bound on f0 and ∇f0. For any β ⩾ 1, using that e−βUKA (x) ⩽ 1,∫
MKA

e−βUKA (x)dx ⩽ (2LKA
)d and Zβ

∫
MKA

×Rd

e−βHKA
(z)dz ⩽ (2

√
2πLKA

)d,

for all β > 0. Hence,∫
MKA

×Rd

(h∗t )
2 dµKA

βt+t∗
⩽ Cβ

5
2
t∗Zβt∗

∫
{HKA

⩽A+2}
eβt∗HKA

(z)dz ⩽ C ′eβt∗ (A+3)

Everything put together gives, if β0 ⩾ max(1, bKA
, bA), using the monotonicity of t 7→ βt, we

conclude with

P
(
HKA

(
ZKA
t+t∗

)
⩾ DA

∣∣∣ B) ⩽ Ce−
1
2βt∗+t(DA−1−2C1

A−A−3) ⩽ Ce−2cβt =
C

(ecβ0 + t)2
.

In fact, a similar proof already yields the convergence of the kinetic annealing on the compact
torus:

Proposition 4.2.4. Under Assumption 4.1.1 with c > c∗, for all K > 1 and δ > 0,

P(HK(ZK
t ) > δ) −→

t→+∞
0.

Proof. As in the proof of Proposition 4.2.2, by the Markov property, without loss of generality
we assume that β0 ⩾ bK and that the initial condition is a Dirac mass at some z0 ∈ MK × Rd.
Fix ε > 0, let A = H(z0) and, from Lemma 4.2.2 (applied to the process ZK rather than Z,
the proof is the same) let t0, C > 0 be such that the event B = {∀t ∈ [0, t0], H(ZK) ⩽ A + 1}
has a probability larger than 1 − ε and the law of ZK

t0 conditioned on B has a density f̃Kt0 ⩽
C ′
1{HK⩽A+1}. Let C > 0 and f0 be a smooth probability density on MK × Rd with compact

support such that C ′
1{HK⩽A+1} ⩽ Cf0. We then have:

P
(
HK(ZK

t+t0) > δ
∣∣ B) = E

(
P
(
HK(ZK

t+t0) > δ
∣∣ Ft0

) ∣∣ B) ⩽ CPf0

(
HK(Z̃t) > δ

)
,

where Z̃ is a process similar to ZKA except that β0 has been replaced by βt0 and γ has been time-
shifted. Denoting by f̃t the law of Z̃t (with initial condition f0), Proposition 4.2.3 means that
t 7→ ∥f̃t/µK

βt+t0
∥L2(µK

βt+t0
) is bounded. As in the previous proof, applying the Cauchy-Schwartz
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inequality and Lemma 4.2.3 with α = δ/2 then yields :

P2
f0

(
HK(Z̃t) > δ

)
⩽ CµK

βt+t0
(HK > δ) ⩽ Ce−

βtδ
2 → 0 .

As a consequence,

lim sup
t→∞

P(HK(ZK
t ) > δ) ⩽ P (Bc) + lim sup

t→∞
P
(
HK(ZK

t ) > δ
∣∣ B) ⩽ ε ,

which concludes since ε is arbitrary.

4.2.3 Localization and convergence

Building upon the results of the previous section, we can now prove the following.

Proposition 4.2.5. Under Assumption 4.1.1 with c > c∗, fix some A > 1. There exist bA > 1,
KA > A which depends on A, U , c, and κ but not β0 such that, for all β0 ⩾ bA and all initial
condition z0 ∈ {H ⩽ A},

Pz0

(
sup
t⩾0

H (Zt) ⩽ KA

)
⩾

1

4
.

Proof. It is enough to show the same result for the process ZKA since, from (4.8),{
sup
t⩾0

H(Zt) ⩽ KA

}
=

{
sup
t⩾0

H(Zt) ⩽ KA, (U
K(XKA

t ), Y KA
t )t⩽τKA

= (U(Xt), Yt)t⩽τKA
, τKA

=∞
}

=

{
sup
t⩾0

HKA
(ZKA

t ) ⩽ KA, (U
K(XKA

t ), Y KA
t )t⩽τKA

= (U(Xt), Yt)t⩽τKA
, τKA

=∞
}

=

{
sup
t⩾0

HKA
(ZKA

t ) ⩽ KA

}
.

We use the definitions and notations of Lemma 4.2.4. Let ΨA ∈ C∞(R+, [0, 1]) equal to 0 outside
of [DA,KA] and such that ΨA

(
DA+KA

2

)
= 1, and let ΦA = ΨA ◦HKA . Then, there exists C > 0,

independent of β, such that, for all t ⩾ 0, |LtΦA| ⩽ C(1 + γt)1{HKA⩾DA}.
Recall the definition B =

{
supt⩽t∗ H(Zt) ⩽ A+ 1

}
. From Ito’s formula,

ΦA

(
ZKA
t+t∗

)
1B = (Mt +Rt)1B

where Mt is a local martingale and Rt =
∫ t

t∗
LsΦA(Z

KA
s )ds. We then get that for β0 ⩾ b′A,

E
(
sup
t⩾0
|Rt|1B

)
⩽ C

∫ ∞

0

(1 + γs)E
(
1{

HKA

(
Z

KA
s+t∗

)
⩾DA

} ∣∣∣∣ B) ds

⩽ C

∫ ∞

0

(1 + Lβs)P
(
H
(
ZKA
s+t∗

)
⩾ DA

∣∣∣ B) ds

⩽ C

∫ ∞

0

1 + L ln(ecβ0 + t)

c(ecβ0 + t)2
ds.
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We take β0 large enough to get that, by Markov’s inequality, P(E|B) ⩾ 3/4, where E ={
supt⩾0 |Rt| ⩽ 1/10

}
. Now,

E ∩ B ∩
{
sup
t⩾0

HKA
(ZKA

t ) ⩾ KA

}
⊂ E ∩ B ∩

{
sup
t⩾0

Mt ⩾
9

10

}
,

so that

P
(
sup
t⩾0

HKA

(
ZKA
t

)
⩾ KA

∣∣∣∣ B) ⩽ P (Ec | B) + P
(
E ,Mt up-crosses

[
1

10
,
9

10

] ∣∣∣∣ B) .

Consider the stopping time

σ = inf

{
t ⩾ 0,Mt /∈

[
− 1

10
,
11

10

]}
.

Then Mt∧σ is a bounded local martingale, hence a martingale. Moreover, since ΦA takes values
in [0, 1], Mt =Mt∧σ for all t ⩾ 0 on E ∩ B. By Doob’s up-crossing inequality, for any T > 0, the
probability that Mt up-crosses [1/10, 9/10] before time T is bounded by E(MT∧σ− 1

10 )/(8/10) ⩽
1
4 . As a consequence,

P
(
E ,Mt up-crosses

[
1

10
,
9

10

] ∣∣∣∣ B) ⩽
1

4
.

As a conclusion,

P
(
sup
t⩾0

HKA

(
ZKA
t

)
⩾ KA

)
⩽ P (Bc) + P(Ec|B) + P

(
E ,Mt up-crosses

[
1

10
,
9

10

] ∣∣∣∣ B) ⩽
3

4
.

As announced, combining this result with Proposition 4.2.2 yields the following.

Proposition 4.2.6. Under Assumption 4.1.1 with c > c∗, almost surely, supt⩾0H(Zt) < +∞.

Proof. For A > 0, let
ΩA =

{
lim inf
t→∞

H(Zt) < A
}
.

It is sufficient to show that, for all A > 0, (Zt)t⩾0 is bounded on ΩA since, from Proposition 4.2.2,
P (∪A⩾0ΩA) = 1. Hence, we fix A > 0.

Let bA,KA be as in Proposition 4.2.5 and S0 = tA where tA satisfies βtA ⩾ bA. By induction,
for k ∈ N, define Tk = inf {t ⩾ Sk;H(Zt) ⩽ A} and Sk+1 = inf {t ⩾ Tk;H(Zt) ⩾ KA}. From
Proposition 4.2.5 and the Markov property,

P(Sk+1 <∞|Sk <∞) = P(Sk+1 <∞, Tk <∞|Sk <∞)

= E(1Tk<∞P(Sk+1 <∞|FTk
)|Sk <∞) ⩽

3

4
,

where we used that βTk
⩾ βtA ⩾ bA for all k ∈ N. This implies that a.s. there exists J ∈ N such

that SJ =∞. On ΩA, TJ is finite and supt⩾TJ
H(Zt) ⩽ KA, which concludes.

We can now finally prove Theorem 4.1.1.
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Proof of Theorem 4.1.1. Let ε > 0 and, thanks to Proposition 4.2.6, let K > 1 be such that
P
(
supt⩾0H(Zt) ⩾ K

)
⩽ ε. Using Proposition 4.2.4, for t ⩾ 0,

P(H(Zt) > δ) ⩽ ε+ P
(
sup
t⩾0

H(Zt) ⩽ K;H(Zt) > δ

)
= ε+ P

(
sup
t⩾0

HK

(
ZK
t

)
⩽ K;HK

(
ZK
t

)
> δ

)
⩽ ε+ P

(
HK

(
ZK
t

)
> δ
)
−→

t→+∞
ε.

As a consequence, lim supt→∞ P (H (Zt) > δ) ⩽ ε for all ε > 0, which concludes.

4.2.4 Full process on a compact space

One of the main point of the proof of Theorem 4.1.2 is essentially to get something of the form

∀δ > 0, Pz0

(
sup
t⩾0

H(Zt) < c+ δ

)
> 0

for suitable initial conditions z0. First, let us highlight some of the difficulties in order to motivate
the rest of this section. Refining the proof of Proposition 4.2.5, we would obtain a similar result
but with c replaced by 4c. The factor 4 is due to two things. First, in Lemma 4.2.4, we prove
a bound of order 1/t2 while the proof of Proposition 4.2.5 in fact only requires an integrable
bound, i.e. 1/t1+δ for any δ > 0 is enough. The second factor 2 is lost when the Cauchy-
Schwartz inequality is used in (4.9). To solve this, the Cauchy-Schwartz inequality has to be
replaced by the Hölder inequality, which means the L2 estimate of Proposition 4.2.3 is not
sufficient and we need Lp estimates for all p > 2, or even better, L∞ estimates (besides, in [137],
the convergence is stated in relative entropy, which is weaker than Lp for any p > 1, which is why
we said in the introduction that these results were not sufficient to conclude in the fast cooling
case). In fact in the elliptic case the proof of [83] relies on L∞ bounds. In order to get such
bounds in an hypocoercive case, we will work with Hk-Sobolev norms for k ⩾ 1, as in the work
[170] of Zhang, and then use Sobolev embeddings. This should be done with a correct control
of the dependency in time of the constants, and to do so it is convenient to work with a process
(both position and velocity) in a compact manifold. This is done by replacing the Hamiltonian
H(x, y) = U(x) + |y|2/2 by HK(x, y) = UK(x) +W (y) where W is some periodic potential with
W (y) = |y|2/2 below some threshold. This raises an issue in the dissipation of the hypocoercive
modified entropy. Indeed, in the modified H1-norm of Villani (and similarly in the modified
Hk-norm of Zhang), the key point is that the missing coercivity in x is recovered through a term

∇xh · [∇y, y∇x]h = |∇xh|2

where [A,B] = AB − BA stands for the commutator of A and B. When H is replaced by HK ,
this term becomes

∇xh · [∇y,∇W (y)∇x]h = ∇xh · ∇2W∇xh

which is negative at maxima of W . For this reason, and since anyway we are not really interested
in the process above some energy threshold, we will add some Brownian noise in the position
variable where W (y) ̸= |y|2/2.

As a conclusion, for these reasons, in this section, we consider a process ZK = (XK , Y K) on
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Figure 4.2: Construction of UK from U , with x̃ chosen so that c∗(U) = D(x̃).

a periodic torus M2
K solution of

dXK
t = ∇W (Y K

t )dt− σ(Yt)∇UK(XK
t )dt+

√
2σ(Y K

t )β−1
t dB̃t

dY K
t = −∇UK(XK

t )dt− γt∇W (Y K
t )dt+

√
2γtβ

−1
t dBt

(4.10)

where B is as in (4.1), B̃ is another independent d-dimensional Brownian motion, and σ,W and
UK are 2LK-periodic non-negative functions on Rd (with MK = (R/2LKZ)d). The term σ∇UK

has been added so that, for fixed γ, β, this new process admits the explicit stationary measure

µK
β ∝ e−βHK(x,y)dxdy

that satisfies a Poincaré inequality (see Section 4.5). Here and in all this section, when there is
no ambiguity we identify 2LK-periodic functions on Rd and functions on MK . Let us now give
the precise definition of LK , σ,W and UK .

In all this section we consider fixed U ∈ C∞(Rd), β, γ, x̃ ∈ Rd and a > 0 satisfying As-
sumption 4.1.2. Setting K = a+ 1, similarly to Section 4.2.2 we fix some LK >

√
2K + 2 large

enough so that C(x̃, a) ⊂ [−LK + 1, LK − 1]d. We consider a non-negative UK ∈ C∞(MK)
with c∗(UK) < c and such that, seen as a periodic function on Rd, UK(x) = U(x) − U(x̃)
for all x ∈ C(x̃, a). Such a function exists: indeed, since c̃ is continuous, C(x̃, a) is a com-
pact set, and then, under Assumption 4.1.2, sup{c̃(y, x̃), y ∈ C(x̃, a)} < c. We can thus choose
δ ∈ (0, a − c) small enough so that sup{c̃(y, x̃) : y ∈ C(x̃, a)} + 2δ < c and, using that the
boundary of C(x̃, a) is in {U = U(x̃) + a}, we let UK be any C∞ potential on [−LK , LK ]d

with UK(x) = U(x) − U(x̃) on C(x̃, a), UK(x) ∈ [a − δ, a + δ] for x ∈ [−LK , LK ]d \ C(x̃, a)
with UK(x) = a for all x ∈ [−LK , LK ]d \ [−LK + 1/2, LK + 1/2] so that we can extend it to
a 2LK-periodic C∞ potential on Rd. The fact that c∗(UK) < c is straightforward since a path
from any y ∈ [−LK , LK ]d to x̃ can be obtained by a straight line from y to some y∗ ∈ C(x̃, a)
with c̃(y, y∗) ⩽ 2δ and then a path to x̃, where Assumption 4.1.2 is used. See Figure 4.2 for an
illustration of the construction of UK .

Concerning the new potential W for the velocity, first, write n =
√
2K+1 and m =

√
2K+2.

Then, fix some 2LK-periodic W1 ∈ C∞(R,R) such that for all s ∈ [−m,m], W1(s) = s2/2, W1

is symmetric on [−LK , LK ], and increasing on [0, LK ]. For y ∈ [−LK , LK ]
d, we set W (y) =∑d

i=1W1(yi).
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Similarly, fix some 2LK-periodic non-negative σ0 ∈ C∞(Rd,R+) with σ0(y) = 0 for y ∈
[−n, n]d, σ0(y) = σ0

∗ for y ∈ [−LK , LK ]d \ [−m,m]d for some constant σ0
∗ > 0, and |∇σ0|2 ⩽ Cσ0

for some C > 0. Set σ = rσ0 where r > 0 is chosen small enough that ∥∇σ∥∞∥∇UK∥∞ ⩽ 1
2

and |∇σ|2 ⩽ σ.
The useful properties of W and σ can be summarized as follows :

Lemma 4.2.5. • Seeing W as a periodic function from Rd to R, there exists m ∈ (
√
2K,LK)

such that W (y) = |y|2/2 for all y ∈ [−m,m]
d.

• On MK , W has a unique local minimum, which is global.

• There exist n ∈ (
√
2K,m) and σ∗ > 0 such that, seeing σ as a periodic function from Rd

to R+, σ(y) = σ∗ for all y ∈ [−LK , LK ]
d \ [−m,m]

d and σ(y) = 0 for all y ∈ [−n, n]d.

• σ satisfies ∥∇σ∥∞∥∇UK∥∞ ⩽ 1/2 and |∇σ(y)|2 ⩽ σ(y) for all y ∈MK .

We write HK(x, y) = UK(x) +W (y),

M =
{
y ∈MK ;∇2W (y) = Id

}
and notice that, by construction, for y ∈ MK \ M, σ(y) = σ∗. Moreover, if |y|2/2 ⩽ K then
W (y) = |y|2/2 and σ(y) = 0.

By construction of UK ,W and σ, if we consider Z and ZK the solutions respectively of (4.1)
and (4.10) with the same initial condition in C(x̃, c) and the same Brownian motion B, then
H(Zt) = HK(ZK

t ) for all t ⩽ τ := inf{s ⩾ 0, H(Zs) ⩾ a}. In particular, for δ > 0 small enough
so that c+ δ < inf{UK(x), x ∈ [−LK , LK ]d \ C(x̃, a)},

{HK(ZK
t ) < c+ δ ∀t ⩾ 0} ⊂ {Xt ∈ C(x̃, c+ δ) ∀t ⩾ 0} , (4.11)

which means we are lead to prove that the left hand side has a positive probability.
Denote by fKt the law of the solution of (4.10), write µK

β = ZK
β

−1
e−βHK(z)dz where ZK

β

makes µK
β a probability measure, and let hKt = fKt /µ

K
βt

. Similarly to Section 4.2.3, the key point
is the following estimate, proven in Section 4.5.

Proposition 4.2.7. Let fK0 ∈ C∞(MK×MK). Under Assumption 4.1.2, t 7→ ∥hKt ∥∞ is bounded.

Lemma 4.2.6. Under Assumption 4.1.2, for all probability density fK0 ∈ C∞(MK ×MK) and
δ > 0, there exists C > 0 such that for all t ⩾ 0,

PfK
0

(
HK

(
ZK
t

)
⩾ c+ δ

)
⩽

C

(1 + t)1+
δ
2c

.

Proof. Applying Proposition 4.2.7, for t ⩾ 0

P
(
HK

(
ZK
t

)
⩾ c+ δ

)
=

∫
{HK⩾c+δ}

hKt dµK
βt

⩽ sup
s⩾0
∥hKs ∥∞µK

βt
(HK ⩾ c+ δ) ⩽

C

(1 + t)(1+
δ
2c )

for some C > 0, where we used Lemma 4.2.3 with α = δ/2.
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Lemma 4.2.7. Under Assumption 4.1.2, for all probability density fK0 ∈ C∞(MK ×MK) and
δ > 0, there exists tb > 1 such that

PfK
0

(
sup
t⩾tb

HK(ZK
t ) < c+ δ

)
> 0.

Proof. It is enough to show the result for δ satisfying c+ δ < a. Let B the event {H(Ztb) < c}.
Let ψK : R 7→ [0, 1] be a C∞c function equal to zero outside of

[
c+ δ

2 , c+ δ + 1
]

such that ψK < 1

on
[
c+ δ

2 , c+ δ
[

and ψK(c+ δ) = 1 and write ΨK = ψK ◦HK . We have :{
sup
t⩾tb

H
(
ZK
t

)
< c+ δ

}
=

{
sup
t⩾tb

ΨK

(
ZK
t

)
< 1

}
.

There exists some constant C > 0 such that |LΨK | ⩽ C(1 + βt)1{HK⩾c+ δ
2}, and from Ito’s

formula we can write :
Φ
(
ZK
t+tb

)
1B = (Mt +Rt)1B

where Rt =
∫ t

tb
LΨK

(
ZK
s

)
ds, and if tb ⩾ t0:

E
(
sup
t⩾tb

|Rt|1B

)
⩽ C

∫ ∞

tb

(1 + βs)E
(
1HK(ZK

t )⩾c+ δ
2

∣∣∣ B) ds

⩽ C

∫ ∞

tb

(1 + βs)P
(
HK(ZK

s ) ⩾ c+
δ

2
|B
)

ds

⩽ C

∫ ∞

tb

1 + ln(1 + t)

(1 + t)1+
δ
8c

ds

where the constant C depends only on UK and its derivative, but not on tb. Since (1 + ln(1 +

t))/(1+t)1+
δ
8c is integrable, we can take tb great enough so that the event E =

{
supt⩾tb

|Rt| ⩽ 1
10

}
has probability at least 3

4 . On E ∩ B, Mt takes value in
[
− 1

10 ,
11
10

]
because 0 ⩽ ψA ⩽ 1. Using

Doob’s up-crossing inequality as in the proof of Lemma 4.2.5, we get that the probability of ΨK

going to 1 knowing B is less then 1
2 . We conclude by :

P
(
sup
t⩾0

HKA
(ZKA

t ) < c+ δ

)
⩾ P(B)× P

(
sup
t⩾0

HKA
(ZKA

t ) < c+ δ

∣∣∣∣ B) > 0.

4.2.5 Non-convergence with fast cooling schedules

We are now ready to prove Theorem 4.1.2. In this section, Assumption 4.1.2 is enforced and we
use the definitions and notations of Section 4.2.4.

We start with a result on the position of the process for small times, as well as a Doeblin-like
condition, which will be proven in Section 4.3.2 :

Lemma 4.2.8. For all t, δ > 0, write :

Bt = {Xs ∈ C(x̃, c+ δ) ∀s ∈ [0, t]} .



4.3. Auxiliary results 109

Then, for all z0 = (x0, y0) with x0 ∈ C(x̃, c), Pz0 (Bt) > 0, and more precisely for all compact set
K included in the interior of C(x̃, c+ δ)× Rd, there exists ε > 0 such that

Pz0 (Bt, Zt ∈ ·) ⩾ εℓ (· ∩ K) ,

where ℓ stands for the Lebesgue measure.

Proof of Theorem 4.1.2. By conditioning on the initial condition, it is sufficient to prove the
result with a fixed initial condition z0 = (x0, y0) with x0 ∈ C(x̃, c). Moreover it is sufficient
to prove the result for δ > 0 small enough. We consider a fixed δ > 0 such that c + δ <
inf{UK(x), x ∈ [−LK , LK ]d \ C(x̃, a)} ⩽ a, which means (4.11) holds and {UK ⩽ c + δ} =
C(x̃, c+ δ) (seeing {UK ⩽ c+ δ} as a subset of [−LK , LK ]d).

Let fK0 ∈ C∞(MK ×MK) a probability density and tb > 0 as in Lemma 4.2.7 applied with
δ/2 instead of δ such that:

PfK
0

(
sup
t⩾tb

HK(ZK
t ) ⩽ c+ δ/2

)
> 0.

In other words, denoting by f̃ the law at time tb of the process solution to equation (4.10) with
initial condition fK0 and conditioned to {HK(Ztb) ⩽ c + δ/2}, and (ZK,tb)t⩾0 the solution to
equation (4.10) with initial condition f̃ at time tb,

Pf̃

(
sup
t⩾0

HK(ZK,tb
t ) ⩽ c+ δ/2

)
> 0.

Let Btb be as in Lemma 4.2.8. From Lemma 4.2.8 and the fact f̃ has a bounded density on its
support {HK ⩽ c+ δ/2} (which we see as a subset of [−LK , LK ]2d), there exists ε > 0 such that

Pz0 (Btb , Ztb ∈ ·) ⩾ εf̃ .

Finally, thanks to (4.11), we conclude that

Pz0 (Xt ∈ C(x̃, c+ δ) ∀t ⩾ 0) ⩾ Pz0 (Btb , Xt ∈ C(x̃, c+ δ) ∀t ⩾ tb)

⩾ εPf̃

(
sup
t⩾0

H(ZK,tb
t ) < c+ δ

)
> 0.

4.3 Auxiliary results

4.3.1 Uniform energy bounds

This section is dedicated to the proof of Lemma 4.2.1. First, we consider a family of approxima-
tion functions ηm ∈ C∞c for m ⩾ 1 in order to justify some PDE computations below. Let

Φ(s) =

{
e

1
s2−1 /

∫
e

1
u2−1 du for s ∈ (−1, 1)

0 for s ∈ R \ (−1, 1)
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and, for m ⩾ 1, Φm(s) = Φ(s/m)/m, νm = 1(−∞,m2] ∗Φm where ∗ denotes the convolution, and
finally, for z ∈ R2d,

ηm (z) = νm (ln (H(z) + 1)) .

Proposition 4.3.1. Assume U → +∞ at infinity and ∇U is bounded.

• For all m ⩾ 1, ηm ∈ C∞(Rd), has a compact support, and satisfies 0 ⩽ ηm ⩽ 1.

• For all z ∈ R2d, ηm(z)→ 1 as m→∞.

• There exists C > 0 such that Ltηm ⩽ Cβt/m and |∇ηm| ⩽ Cβt/m for all m ⩾ 1.

Proof. This is [31, Lemma 4].

Proof of Lemma 4.2.1. We first show the result when ∇U and its derivative are bounded, the
general case being then obtained by approximating U .

Hence, suppose for now that ∇U and its derivative are bounded. In this case, it can be shown
that the law of the process at time t admits a bounded density ft such that (t, z) 7→ ft(z) ∈
C∞

(
R+ × R2d

)
, see the proof of Lemma 4.4.2. Define gt(z) = ft(z)e

βtH(z) and u(t) = E (H(Zt)).
Since f and U are smooth, so is g. Consider

N(t) =

∫
R2d

gt(z) ln (1 + gt(z)) e
−βtH(z)dz .

From the inequality ln(1 + x) ⩽ ln(x) + 1/x for all x > 0,

N(t) ⩽
∫
R2d

ft(z) ln(ft(z))dxdy + βtE(H(Zt)) +

∫
R2d

e−βtH(z)dz.

Since ft is bounded on [0, T ] × R2d, and is in L1(dz) for all t ⩾ 0, t 7→
∫
R2d ft ln(ft) is locally

bounded and so is N(t). In order to differentiate N , we introduce for m ⩾ 1 the approximation

Nm(t) =

∫
R2d

ηm(z)gt(z) ln (1 + gt(z)) e
−βtH(z)dz.

Integrating by parts, we see that the dual of the generator Lt in L2(e−βtH) is

L∗
t = −y · ∇x + (−γty +∇xU) · ∇y + γtβ

−1
t ∆y (4.12)

Since ft solves ∂tft = L∗
t

(
fte

βtH
)
e−βtH , gt solves ∂tgt = β′

tHgt + L∗
t gt. Using that ηm is

compactly supported for all m ⩾ 1, we can differentiate

N ′
m(t) =

∫
R2d

ηm

(
− β′

tHgt ln(1 + gt)e
−βtH + ∂tgt ln(1 + gt)e

−βtH +
gt

1 + gt
∂tgte

−βtH

)
=

∫
R2d

ηmL
∗
t gt

(
ln(1 + gt) +

gt
1 + gt

)
e−βtH +

∫
R2d

ηm
g2t

1 + gt
β′
tHe

−βtH .

Now, using that gt ⩾ 0,∫
R2d

ηm
g2t

1 + gt
β′
tHe

−βtH ⩽ β′
t

∫
R2d

ftH = β′
tu(t).
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Consider the carré du champ operator Γt associated to L∗
t given by

Γt(g1, g2) :=
1

2
(L∗

t (g1g2)− g2L∗
t (g1)− g1L∗

t (g2)) = γtβ
−1
t ∇yg1 · ∇yg2 (4.13)

for smooth g1, g2, and Γt(g) := Γt(g, g). Using that e−βtH is invariant for L∗
t so that∫

L∗
t ge

−βtH = 0

for all smooth g and the diffusion property

L∗
t (ϕ(g)) = ϕ′(g)L∗

t (g) + ϕ′′(g)Γt(g)

for any smooth ϕ, we get∫
R2d

ηmL
∗
t gt

(
ln(1 + gt) +

gt
1 + gt

)
e−βtH

=

∫
R2d

ηmL
∗
t gt

(
ln(1 + gt) +

gt
1 + gt

)
e−βtH −

∫
R2d

L∗
t (ηmgt ln(1 + gt))e

−βtH

= −
∫
Rd×Rd

ηmΓt(gt)

(
1

1 + gt
+

1

(1 + gt)2

)
e−βtH −

∫
R2d

L∗
t (ηm)gt ln(1 + gt)e

−βtH

− 2

∫
R2d

Γt(ηm, gt ln(1 + gt))e
−βtH .

The first term is negative (since ηmΓt(gt) ⩾ 0) and the others are bounded as follows:

−
∫
Rd×Rd

L∗
t (ηm)gt ln(1 + gt)e

−βtH − 2

∫
Rd×Rd

Γ(ηm, gt ln(1 + gt))e
−βtH

=

∫
Rd×Rd

ηmL
∗
t (gt ln(1 + gt))e

−βtH

=

∫
Rd×Rd

Lt(ηm)gt ln(1 + gt)e
−βtHdxdy

⩽
Cβt
m

N(t)

thanks to Proposition 4.3.1. We conclude that for all m ⩾ 1, 0 ⩽ s ⩽ t :

Nm(t)−Nm(s) ⩽
∫ t

s

β′
ru(r) +

Cβr
m

N(r)dr.

By the monotone convergence theorem, Nm(t)→ N(t) as m→∞, hence :

N(t)−N(s) ⩽
∫ t

s

β′
ru(r)dr.

On the other hand, from the variational formula for the entropy:∫
R2d

ft ln ft = max

{∫
R2d

ft ln g; g : R2d 7→ R+,

∫
R2d

g = 1

}
,
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we get with g0 = e−α0H/Zα0 , where Zα0 =
∫
e−α0H ,

N(t) ⩾ βtu(t) +

∫
R2d

ft ln ft ⩾ βtu(t) +

∫
R2d

ft ln g0 = (βt − α0)u(t)− ln(Zα0
).

As a consequence, writing ϕ(t) = N(t) + ln(Zα0
) for t ⩾ 0,

ϕ(t) ⩽ ϕ(0) +

∫ t

0

β′
s

βs − α0
ϕ(s)ds.

Then Gronwall’s lemma gives ϕ(t) ⩽ ϕ(0) βt−α0

β0−α0
and using again that u(t) ⩽ ϕ(t)/(βt − α0)

concludes the proof in the case where ∇U and all its derivatives are bounded.
Let us now consider the general case, without any assumption on ∇U . For n large enough,

we fix some Un ∈ C∞(Rd) equal to U on B(0, n), to |x| outside of B(0, n + 1) and such that
for all x ∈ Rd, Un(x) ⩾ min(U(x), |x|)− 1. Let (Zn

t )t⩾0 = (Xn
t , Y

n
t )t⩾0 be the diffusion defined

by Equation (4.1) where U is replaced by Un and starting from the same initial distribution
f0. By design, Zt and Zn

t are equal up to the time τn = inf {t ⩾ 0; |Xt| ⩾ n}. As Z does not
explode in finite time, limn τn =∞ and, for all t ⩾ 0, limnHn(Z

n
t ) = H(Zt) almost surely, where

Hn(x, y) = Un(x) + |y|2/2. By Fatou’s lemma, for all t ⩾ 0,

E(H(Zt)) = E
(
lim inf
n→∞

Hn(Z
n
t )
)
⩽ lim inf

n→∞
E(Hn(Z

n
t )) ⩽ lim inf

n→∞

κβ0,n(f0) + ln(Zn
α0
)

β0 − α0

where κβ0,n(f0) is define as κβ0,n(f0) but with U replaced by Un. Now, since f0 is compactly
supported, κβ0,n(f0) is independent of n for n large enough. Finally, using that e−β0Un(x) ⩽
eα0(e−α0U(x) + e−α0|x|), we can apply the Dominated Convergence Theorem to get that Zn

α0
→

Zα0
as n→∞, which concludes.

4.3.2 Small time regularisation

Proof of Lemma 4.2.2. It is enough to show the first point for ∇U bounded. Indeed, for all Ũ
equal to U on {U ⩽ A+ 1}, and (Z̃)t⩾0 the corresponding process, we have the equality{

sup
t⩽t∗

H(Zt) ⩽ A+ 1

}
=

{
sup
t⩽t∗

H̃(Z̃t) ⩽ A+ 1

}
.

We only need a bound on supt⩽t∗ |Yt − y0| because :

sup
t⩽t∗
|U(Xt)− U(x0)| ⩽ ∥∇U∥∞t∗ sup

t⩽t∗
|Yt|.

From

Yt = e−
∫ t
0
γsds

(
y0 +

∫ t

0

∇U(Xs)e
∫ s
0
γududs+

∫ t

0

√
2γsβ

−1
s e

∫ s
0
γududBs

)
,

we get
sup
s⩽t
|Ys| ⩽ |y0|+ ∥∇U∥∞t+ sup

s⩽t
|Ws| ,
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where Wt = e−
∫ t
0
γsds

∫ t

0

√
2γsβ

−1
s e

∫ s
0
γududBs. Since (Wt)0⩽t⩽1 is a L2-martingale, Doob’s

inequality implies

E
(

sup
0⩽s⩽t

|Ws|2
)

⩽ 4E(W 2
t ) = 4e−2

∫ t
0
γsds

∫ t

0

2γsβ
−1
s e2

∫ s
0
γududs ⩽ 8Lt.

Now we can take t∗1 such that t∗1∥∇U∥∞ + supt⩽t∗1
Wt ⩽ 1

8
√
A

with probability larger than 1− ε.
Thus, with probability at least 1− ε, we have :

sup
t⩽t∗1

|Yt|2 ⩽ |y0|2 +
1

4
+

1

32A
.

Since A > 1, this is less than |y0|2 + 1
2 and we write t∗2 = t∗1 ∧ (2∥∇U∥∞

√
1 + |y0|2)−1.

For the second point, fix some t∗ ⩽ t∗2 and let, for t ⩽ t∗, (X̄t, Ȳt) be the solution of the
system 

dX̄t = Ȳtdt

dȲt =
√

2γtβ
−1
t dBt

(X0, Y0) = (x0, y0),

let

Nt = −
∫ t

0

√
βs√
2γs

(
∇U(X̄s) + γsȲs

)
dBs

and Q = eNt∗− 1
2 ⟨N⟩t∗P. Ito’s formula gives for t ⩽ t∗ :

βt
2γt

Ȳt · (∇U(X̄t) +
γt
2
Ȳt)−

β0
2γ0

y0 · (∇U(x0) +
γ0
2
y0)

= −Nt +

∫ t

0

(
βs
2γs

∆U(X̄s)|Ȳs|2 +
β′
s

2γs
Ȳs · (∇U(X̄s) +

γs
2
Ȳs)−

βsγ
′
s

2γ2s
Ȳs · ∇U(X̄s) +

βs
4

)
ds.

(4.14)

Using β′ ⩽ c and βt ⩽ β0 +
t∗

c , we then get 1BNt ⩽ C(β0 + 1) where C is independent from β0
and γ and depends only on sup{U⩽A+1} |∇U |, sup{U⩽A+1} |∆U |, κ and c.

Girsanov’s theorem yields that, under the change of probability P → Q, (X̄t, Ȳt)t⩽t∗ is a
solution to the original Equation (4.1) and, for all ϕ ⩾ 0, t ⩽ t∗,

E(ϕ(Xt, Yt)1B) = E(eNt∗− 1
2 ⟨N⟩t∗ϕ(X̄t, Ȳt)1B) ⩽ CeC

1
A(β0+1)E(ϕ(X̄t, Ȳt)1B) .

It only remains to show that (X̄t, Ȳt) has a density bounded by some eCβ0 . As a Gaussian process,
the density of (X̄t, Ȳt) is bounded by (2π)−d/2/ det(Qd) where Qd is the covariance matrix of the
process at time t∗. By independence, det(Qd) = (det(Q1))

d, and a straightforward computation
yields

det(Q1) = 8

∫ t∗

0

γsβ
−1
s ds

∫ t∗

0

(t∗ − s)
∫ s

0

γuβ
−1
u duds− 4

(∫ t∗

0

∫ s

0

γuβ
−1
u duds

)2

.

Now, let ϖ,λ > 1 be such that ϖλ2 < 4/3 and take t∗ small enough (depending only on c and
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κ) so that uniformly in β0 ⩾ 1

β0 ⩽ βt∗ ⩽ ϖβ0 and λ−1γ0 ⩽ γt∗ ⩽ λγ0.

This choice ensures
det(Q1) ⩾ κβ−1

0 t∗4
(

4

3ϖλ
− λ2

)
and thus the result.

Proof of Lemma 4.2.8. The first part follows from the controlability of the process, see [137,
proposition 5]. The second part follows from the fact the distribution of the process killed when
it leaves C(x̃, c+δ)×Rd solves a parabolic hypoelliptic Dirichhet problem, hence has a continuous
positive density. In fact, in the time-homogeneous case, this is exactly [109, Theorem 2.20]. In
our time-inhomogeneous case, we can proceed as follows. First, for some A′ > max(|y0|, A) large
enough, consider D the interior of C(x̃, c+ δ} × [−A′, A′] and τ = inf{s ⩾ 0, Zt /∈ D}. Then, for
all t > 0,

Pz0 (Bt, Zt ∈ ·) ⩾ Pz0 (τ > t, Zt ∈ ·) := pDt (z0, ·) .

It is well-known that pDt solves a parabolic equation with generator Lt on D. Since Lt is hy-
poelliptic, pDt (z0, ·) has a continuous density. Finally, the coefficients of Lt being smooth and
bounded on D, pDt (z0, ·) being not identically zero and the process being controllable, we can
use the strong maximum principle of [155, Theorem 6.1] to deduce that pDt (z0, ·) cannot take the
value 0 in D. As a continuous positive function, pDt (z0, ·) is thus lower bounded by a positive
constant over any compact subset of D, which concludes.

4.4 L2-hypocoercivity

In this section we use the definitions and notations of Section 4.2.2
The hypocoercivity issue arises in the proof of Proposition 4.2.3 when computing the evolution

of the L2-norm of hKt . In the standard elliptic case, as in [83], one would simply differentiate
this quantity and concludes with a Poincaré inequality of the form :∫ (

h−
∫
hdµ

)2

dµ ⩽ C

∫
Γ(h)dµ

where Γ is the carré du champ associated to the process. However, in the kinetic case, as we
saw in (4.13), Γt(f) = γtβ

−1
t |∇yf |2, which means such an inequality cannot hold since, for non-

constant functions of x, the left hand side is positive while the right hand side vanishes. For this
reason, we work with a modified norm as in [163].

More precisely, at a formal level, the proof of Proposition 4.2.3 is the following: writing

ϕt(h) = |(∇x +∇y)h|2 + σth
2 with σt = 1

2 + 2
√
γ−1
t βt(1 + ∥∇UK∥∞ + γt)

2, we introduce

Ñ(t) =

∫
MK×Rd

ϕt
(
hKt − 1

)
dµK

βt
, Ĩ(t) =

∫
MK×Rd

∣∣∇hKt ∣∣2 dµK
βt
.

Differentiating Ñ , one can (formally) check that

Ñ ′(t) ⩽ −1

2
Ĩ(t) + Cβ′

t(1 + βt)Ñ(t)
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for some constant C > 0, the definition of Ñ being motivated by the −Ĩ term in this inequality.
Using a Poincaré inequality for µK

βt
(with the full gradient rather than Γt) with a constant λ(βt)

that scales as 1/tc
∗/c ≫ β′

tβt, we get that Ñ ′(t) ⩽ 0 for t large enough (or equivalently for all
t ⩾ 0 if β0 is large enough), hence Ñ is bounded. We conclude the proof of Proposition 4.2.3 by
bounding

∥ht∥L2(µβt )
⩽ 1 + ∥ht − 1∥L2(µβt )

⩽ 1 + 2Ñ(t) .

In the remainder of this section, this formal proof is made rigorous and we give the details of
the computations.

Remark 4.4.1. The proof of [137] is based on a similar argument but, as mentioned in the
introduction, and as noticed by the authors of [31], it contains an error. The problem occurs
when it comes to justify rigorously the derivation of Ñ . In [137], a compactly-supported truncation
function is added within the integral. This leads to additionnal terms in ∂tÑ . One of these terms
is said to be non-positive in [137, Lemma 16], which is false (there is a sign error). In [31],
the authors add a small elliptic term to the dynamics, use elliptic regularity results to justify the
computation and then let the small ellipticity parameter vanish afterwards. In this section, we
make a correct version of the argument of [137], combining some bounds on the density of the
process (Lemma 4.4.2 below) and some moment estimates (Lemma 4.4.1 below). Also, notice
that, by comparison with [137, 31], we have already reduced the problem to a compact state space
for the position x, the non-compact part of the dynamics only concerns the velocity.

First, we need a few preliminary lemmas. We start by stating the following Poincaré inequality
(with the full gradient) :

Proposition 4.4.1. For UK ∈ C∞(MK ,R) there exists λ : R+ → R+ such that for all f ∈
C∞(MK × Rd) with compact support :

λ(β)

∫
MK×Rd

(
f −

∫
MK×Rd

fdµK
β

)2

dµK
β ⩽

∫
MK×Rd

|∇f |2dµK
β ,

and moreover
lim
β→∞

1

β
ln(λ(β)) = −c∗(UK)

where c∗(UK) is defined as c∗ with U replaced by UK .

Proof. The fact that the Gibbs probability measure Z̃e−βUK

satisfies a Poincaré inequality with
a constant λ(β) satisfying

lim
β→∞

1

β
ln(λ(β)) = −c∗(UK)

corresponds to [83, Theorem 1.14]. The Gaussian measure N (0, βI) also satisfies a Poincaré
inequality with constant β, and we conclude with the tensorization property of the Poincaré
inequality, see [6, Proposition 4.3.1].

For µ a probability measure, H1(µ) denotes the usual Sobolev space of functions in L2(µ)
with derivative in L2(µ).

Proposition 4.4.2. There exists C > 0 such that for all β > 1 and g ∈ H1
(
µK
β

)
,∫

y2g(x, y)2µK
β (dxdy) ⩽ C

(∫
g(x, y)2µK

β (dxdy) +
∫
|∇yg(x, y)|2µK

β (dxdy)
)
.
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Proof. This is a particular case of [163, Lemma A.18]. We give a short proof for completeness.
Notice that ye−β|y|2/2 = −β−1∇e−β|y|2/2. Hence an integration by parts and Young’s inequality
yield, for any x,∫

Rd

y2g2(x, y)e−β|y|2/2dy

= −β−1

∫
Rd

g2(x, y)y · ∇e−β|y|2/2dy

= β−1

∫
Rd

∇ · (g2(x, y)y)e−β|y|2/2dy

= dβ−1

∫
Rd

g2(x, y)e−β|y|2/2dy + β−1

∫
Rd

2g∇g(x, y) · ye−β|y|2/2dy

⩽ dβ−1

∫
Rd

g2(x, y)e−β|y|2/2dy + β−2

∫
Rd

2|∇g(x, y)|2e−β|y|2/2dy

+
1

2

∫
Rd

y2g2(x, y)e−β|y|2/2dy,

and thus∫
Rd

y2g2(x, y)e−β|y|2/2dy ⩽ 2dβ−1

∫
Rd

g2(x, y)e−β|y|2/2dy + 4β−2

∫
Rd

|∇g(x, y)|2e−β|y|2/2dy.

Conclusion follows by integrating with respect to x.

The next two lemmas will be used in forthcoming computations to justify that some quantities
are finite and therefore allowing to interchange differentiation and integration.

Lemma 4.4.1. Fix some K > 0 and any c > 0. Then for all α > 0 and initial condition
fK0 ∈ C∞ with compact support, there exists bα,K such that if β0 ⩾ bα,K , then

t 7→ EfK
0

(
e(βt−α)HK(ZK

t )
)

is finite and locally bounded.

Proof. Write τN = inf
{
t ⩾ 0, HK(ZK

t ) ⩾ N
}

and ϕt(x, y) = e(βt−α)HK(x,y). For β0 > α, we
compute for t ∈ [0, T ] :

∂tϕt + Ltϕt

=

(
β′
tHK + (βt − α)y.∇UK − γt (βt − α) y.∇yHK

+ β−1
t γt

(
(βt − α)∆yHK + (βt − α)2 |∇yHK |2

))
ϕt

⩽

(
β′
t

(
∥UK∥∞ +

y2

2

)
+ (βt − α)3∥∇UK∥∞ +

y2

βt − α
− γt (βt − α) y2

+ β−1
t γt

(
d (βt − α) + (βt − α)2 y2

))
ϕt

⩽

(
β′
0∥UK∥∞ + (βT − α)3∥∇UK∥∞ + Ld (βT − α) +

(
β′
t

2
+

1

βt − α
− γtα (βt − α)

βt

)
y2
)
ϕt.
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We can choose β0 great enough so that β′
t

2 + 1
βt−α−

γtα(βt−α)
βt

⩽ 0 for all t ⩾ 0. We then classically
get for t ∈ [0, T ] :

E
(
ϕt∧τN

(
ZK
t∧τN

))
⩽ eCT tE (ϕ0 (X0, Y0))

where CT = β′
0∥UK∥∞ + (βT − α)3∥∇UK∥∞ + Ld(βT − α). The fact that fK0 has a compact

support and Fatou’s lemma then yield the result.

Lemma 4.4.2. Fix K, c > 0. Then there exists bK such that if β0 ⩾ bK , the law fKt of the
process defined by the Equation (4.7), with an initial condition fK0 ∈ C∞ with compact support,
is smooth, bounded along with its derivative, and satisfies :

∃α > 0,∀t ⩾ 0,∃Ct such that fKt + |∇fKt | ⩽ Cte
−α|y2|

and t 7→ Ct is locally bounded.

Proof. First, by Ito’s formula, fKt (x, y) is a weak measure solution of the forward equation

∂tf
K
t = −y · ∇xf

K
t +∇UK(x) · ∇yf

K
t + γt∇v ·

(
vfKt

)
+ γtβ

−1
t ∆vf

K
t

= L̃tf
K
t + dγtf

K
t ,

(4.15)

where L̃t is the generator of the process (X̃, Ỹ ) solving

dX̃t = −Ỹtdt , dỸt = ∇UK(X̃t)dt+ γtỸtdt+
√
2γtβ

−1
t dBt .

Using again Ito’s formula, we get that the function given by

(x, y, t) 7→ ed
∫ t
0
γsdsEx,y

(
fK0

(
X̃t, Ỹt

))
,

also solves equation (4.15). Uniqueness of the weak solution of (4.15) is ensured by [18, Theorem
9.8.7], hence

fKt (x, y) = ed
∫ t
0
γsdsEx,y

(
fK0

(
X̃t, Ỹt

))
,

from which we immediately get that fKt is bounded uniformly over [0, T ] for all T > 0. Thanks
to [85, Theorem 1], fKt is smooth for all t ⩾ 0. We can always differentiate (4.15) in a weak
sense (i.e. once integrated with respect to a smooth compactly supported function of time and
space and formally integrating by parts), from which we get that ∇fKt is a weak solution of

∂t∇fKt = L̃t∇fKt + Jt∇fKt ,

where L̃t acts component-wise on ∇fKt and

Jt(x, y) =

(
dγtId ∇2UK(x)
−Id 2dγtId

)
,

which is bounded uniformly over [0, T ] for all T > 0. For a fixed T > 0, considering (Wt)t⩾0

the matrix-valued process solution of dWt = WtJT−t(X̃t, Ỹt) with W0 = Id and using again the
uniqueness of the weak solution of the PDE, we get the Feynman-Kac representation

∇fKt (x, y) = Ex,y

(
Wt∇fK0 (X̃t, Ỹt)

)
,

which can be obtained by Itô’s formula for the process (X̃t, Ỹt,Wt)t⩾0 applied to the test function
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h(x, y, w, t) = w∇fKt (x, y). Hence,∇fKt is uniformly bounded over [0, T ], and the same argument
applies to all derivatives of fKt .

Now, let us prove the Gaussian bound of the statement, starting with fKt .

For z ∈ R2d, let ϵ(z) = min(1,
fK
t (z)

2∥∇fK
t ∥∞

). If z′ ∈ B(z, ϵ(z)), fKt (z′) ⩾ fKt (z)−∥∇fKt ∥∞ϵ(z) ⩾
fK
t (z)
2 . Then for any z = (x1, y1) ∈ R2d :

E(eHK(ZK
t )/2) =

∫
Rd×Rd

eHK(x,y)/2fKt (x, y)dxdy

⩾
∫
B(z,ϵ(z))

eHK(x,y)/2fKt (x, y)dxdy

⩾ e−
∥U∥∞

2 e
|y1|2−1

4
fKt (z)

2
ω2dϵ(z)

d

where ω2d is the volume of the unit-sphere in dimension 2d. Then there are two possibilities. If
fKt (x, y) ⩾ 2∥∇fKt ∥∞, then

fKt (x, y) ⩽

(
2e

1
4 e

∥U∥∞
2

E(eHK(ZK
t )/2)

ω2d

)
e−

y2

4 .

Otherwise, fKt (x, y) ⩽ 2∥∇fKt ∥∞ and

fKt (x, y) ⩽ 2∥∇fKt ∥
d

d+1
∞

(
e

1
4 e

∥U∥∞
2

E(eHK(ZK
t )/2)

ω2d

) 1
d+1

e−
y2

4(d+1) .

In any case, using the fact that t 7→ E
(
eHK(ZK

t )/2
)

is locally bounded for β0 great enough, we

have the result for fKt with α = 1
4(d+1) . Recall the definition of the approximation functions

ηm from Proposition 4.3.1. We use them here with U replaced by UK (or equivalently with H
replaced by HK), but it doesn’t change any of their properties since now x is in a compact set.
We now turn to ∇fKt by using the approximation functions ηm from Section 4.3.1 and integrating
by parts:∫

Rd×Rd

ηme
HK
4

∣∣∇fKt ∣∣2 dz = −
∫
Rd×Rd

∇
(
ηme

HK
4 ∇fKt

)
fKt dz

= −
∫
Rd×Rd

(
∇yηm · ∇fKt e

HK
4 +

ηm
2
e

HK
4 ∇HK · ∇fKt + ηme

HK
4 ∆fKt

)
fKt dz

⩽ C

∫
Rd×Rd

e
HK
2 fKt dz = CE

(
eHK(ZK

t )/2
)

for some constant C > 0 independent from m, where we used uniform bounds on the two first
derivatives of fKt . We can then conclude in the same way as for fKt .

Setting ϕβ,γ(h) = |(∇x+∇y)h|2+σ(β, γ)h2 with σ(β, γ) = 1
2 +2

√
γ−1β(1+∥∇UK∥∞+γ)2,

we consider the modified H1-norm (and its truncated version for m ⩾ 1):

N(t, β, γ) =

∫
MK×Rd

ϕβ,γ

(
fKt
µK
β

)
dµK

β
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Nm(t, β, γ) =

∫
MK×Rd

ηmϕβ,γ

(
fKt
µK
β

)
dµK

β

as well as

I(t, β) =

∫
MK×Rd

∣∣∣∣∣∇fKtµK
β

∣∣∣∣∣
2

dµK
β

Im(t, β) =

∫
MK×Rd

ηm

∣∣∣∣∣∇fKtµK
β

∣∣∣∣∣
2

dµK
β

To study those functionals along the dynamic, write H̃m(t) = Hm(t, βt, γt), H̃(t) = H(t, βt, γt),
Ĩm(t) = Im(t, βt) and Ĩ(t) = I(t, βt).

The main technical tool that we will need in order to study the evolution of those functionals
will be, given ϕ : C∞ 7→ C∞, quantities of the form :

Γϕ,L(h) = L (ϕ(h))−Dh (ϕ) (h)L(h), (4.16)

where Dh(ϕ) is the pointwide differential of ϕ, see [135]. The reason is that for regular enough
h, by writing LK

β,γ the generator (4.6) on MK with fixed β and γ, we have

∂t

∫
MK×Rd

ϕ
(
etL

K
β,γh

)
dµK

β = −
∫
MK×Rd

Γϕ,LK
β,γ

(
etL

K
β,γh

)
dµK

β .

This kind of quantities has been studied in [135], where the author showed among other things :

Lemma 4.4.3. Let ϕ(h) = |(∇x+∇y)h|2+σh2 where σ = 1
2 +
√
γβ−1(1+∥∇U∥∞+γ)2. Then,

for all β > 0, γ > 0, h ∈ C∞:

Γϕ,LK,∗
β,γ

(h) ⩾
1

2
|∇h|2 + Γ((∇x +∇y)h),

where Γ((∇x +∇y)h) =
∑d

i=0 Γ((∂xi
+ ∂yi

)h) =
∑d

i=0 γtβ
−1
t |∇y(∂xi

+ ∂yi
)h|2.

Proof. This is [135, Example 3]. Let us simply recall the key idea (to alleviate notations we omit
the generator in the subscript of Γ). First, Γ is linear in ϕ, hence for ϕ as defined above:

Γϕ = σΓ + Γ|(∇x+∇y)·|2 ,

where Γ is the classical "carré du champs" Γ(h) = γtβ
−1
t |∇yh|2. We then have the following

equality:
Γ|(∇x+∇y)·|2(h) = Γ((∇x +∇y)h) + (∇x +∇y)h · [L,∇x +∇y]h,

where the brackets denotes the commutators of two operators. An elementary computation
concludes.

Proof of Proposition 4.2.3. First, β0 must be great enough so that we can apply all previous
lemmas of Section 4.4. Let’s first justify why Ñm, Ñ , Ĩm and Ĩ are finite. They are all finite
at time 0 because f0 has compact support. For m ∈ N, Ñm and Ĩm are finite for all times as
integrals of continuous functions with compact support.

Write ∇∗
t = −∇ + βt∇HK the dual of the gradient operator ∇ in L2

(
µK
βt

)
. Integrating by
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parts,

Ĩm =

∫
MK×Rd

ηm

∣∣∣∣∣∇ fKtµK
βt

∣∣∣∣∣
2

dµK
βt

=

∫
MK×Rd

∇∗
t

(
∇ηm∇

fKt
µK
βt

)
fKt dz

⩽
∫
MK×Rd

Cte
(βt−α)HK(z)fKt (z)dz = CtE

(
e(βt−α)HK(ZK

t )
)

for some α > 0 and Ct > 0 locally bounded and independent from m, using Lemma 4.4.2 and
that the derivatives of fKt are bounded. Lemma 4.4.1 and the monotonous convergence of Ĩm
towards Ĩ then implies that Ĩ is locally bounded. We conclude that Ñ is also locally bounded
thanks to the Poincaré inequality of Proposition 4.4.1. As in (4.12), we have that the dual in
L2(µK

β ) of the generator Lt is

L∗
t = −y · ∇x + (−γty +∇xU

K) · ∇y + γtβ
−1
t ∆y

and that fKt solves ∂tfKt = L∗
t (f

K
t e

βtHK )e−βtHK . With the regularity result from Lemma 4.4.2,
and the compactly supported approximation functions ηm, one can differentiate Nm and Im to
get for all m:

(∂tNm)(t, βt, γt) =

∫
MK×Rd

ηmDhϕβt,γt

(
hKt
) ∂tfKt
µK
βt

dµK
βt

=

∫
MK×Rd

ηmDhϕβt,γt

(
hKt
)
L∗
t

(
hKt
)
dµK

βt
−
∫
MK×Rd

L∗
t

(
ηmϕβt,γt

(
hKt
))

dµK
βt

= −
∫
MK×Rd

ηmΓϕβt,γt

(
hKt
)
dµK

βt
−
∫
MK×Rd

L∗
t (ηm)ϕβt,γt

(
hKt
)
dµK

βt

− 2

∫
MK×Rd

Γt

(
ηm, ϕβt,γt

(
hKt
))

dµK
βt
.

From Lemma 4.4.3, we get Γϕβ,γ
(h) ⩾ 1

2 |∇h|
2 + Γt((∇x +∇y)h), and since∫

MK×Rd

Γt

(
ηm, ϕβt,γt

(
hKt
))

dµK
βt

= −1

2

∫
MK×Rd

(
ηmL

∗
tϕβt,γt

(
hKt
)
+ L∗

t ηmϕβt,γt

(
hKt
))

dµK
βt

= −1

2

∫
MK×Rd

(Lt + L∗
t ) (ηm)ϕβt,γt

(
hKt
)
dµK

βt

and Ltηm ⩽ Cβt

m , we get :

(∂tNm)(t, βt, γt) ⩽ −
1

2

∫
MK×Rd

ηm
∣∣∇hKt ∣∣2 dµK

βt
−
∫
MK×Rd

Γt

(
(∇x +∇y)h

K
t

)
dµK

βt

+

∫
MK×Rd

Lt(ηm)ϕβt,γt

(
hKt
)
dµK

βt
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⩽ −1

2

∫
MK×Rd

ηm
∣∣∇hKt ∣∣2 dµK

βt
−
∫
MK×Rd

Γt

(
(∇x +∇y)h

K
t

)
dµK

βt

+
Cβt
m

∫
MK×Rd

ϕβt,γt

(
hKt
)
dµK

βt
.

Now we look at the derivative in β, knowing that ∂βZ ⩽ 0 by writting :

Nm(t, β, γ) =

∫
MK×Rd

ηm
∣∣∣∣∣(∇x +∇x) ln

(
fKt
µK
β

)∣∣∣∣∣
2
fKt
µK
β

+ ηmσ(β, γ)
fKt
µK
β

 dfKt .

This gives

(∂βNm)(t, βt, γt)

⩽ ∂βσ(βt, γt)

∫
MK×Rd

ηm
(
hKt
)2

dµK
βt

+ σ(βt)

∫
MK×Rd

ηm(UK(x) +
y2

2
)
(
hKt
)2

dµK
βt

+

∫
MK×Rd

ηm(UK(x) +
y2

2
)
∣∣(∇x +∇y)h

K
t

∣∣2 dµK
βt

+

∫
MK×Rd

2ηm(∇x +∇y) ln
(
hKt
)
· (∇x +∇y)∂β(− ln(µK

βt
))hKt dfKt .

We now have to treat all those terms. We will use that Nm ⩽ N . First, since UK is bounded,

∂βσ(βt, γt)

∫
MK×Rd

ηm
(
hKt
)2

dµK
βt

+ σ(βt)

∫
MK×Rd

ηmU
K(x)

(
hKt
)2

dµK
βt

⩽ C(1 + β2
t )Ñ

for some C > 0 (in the rest of the proof we denote by C several constants which do not depend
on t nor m). From Proposition 4.4.2, applied with g = hKt , we get :

σ(βt, γt)

∫
MK×Rd

ηm
y2

2

(
hKt
)2

dµK
βt

⩽ C(1 + β2
t )Ñ .

Again, because UK is bounded :∫
MK×Rd

U(x)
∣∣(∇x +∇y)h

K
t

∣∣2 dµK
β ⩽ CÑ.

Using again Proposition 4.4.2 we get :∫
MK×Rd

ηm
y2

2

∣∣(∇x +∇y)h
K
t

∣∣2 dµK
βt

⩽ C

(
Ñ +

√
γ−1
t βt

∫
MK×Rd

Γt

(
(∇x +∇y)h

K
t

)
dµK

βt

)
.

Finally, using that a.b ⩽ a2

2 + b2

2 and −∂β ln(µK
β ) = UK(x) + y2

2 +
∂βZβ

Zβ
, we get :

∫
MK×Rd

ηm(∇x +∇y) ln

(
fKt
µK
β

)
· (∇x +∇y)∂β(− ln(µK

βt
))
fKt
µK
βt

dfKt

⩽ C

∫
MK×Rd

ηm
∣∣(∇x +∇y)h

K
t

∣∣2( fKt
µK
βt

)2

dµK
βt
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+ C

∫
MK×Rd

ηm|(∇x +∇y)(U(x) +
y2

2
)|2
(
hKt
)2

dµK
βt

⩽ C

(
Nm + ∥∇U∥2∞

∫
ηm
(
hKt
)2

dµK
βt

+

∫
y2
(
hKt
)2

dµK
βt

)
and we conclude as the second term. Finally, since γ only appears in the definition of σ, we have
:

(∂γNm)(t, βt, γt) = ∂γσ

∫
MK×Rd

ηm
(
hKt
)2

dµK
βt

⩽ CγtÑ

From the previous computation, and from the fact that γ′t ⩽ Lβ′
t, we get :

Ñ ′
m(t) = (∂tNm)(t, βt, γt) + β′

t(∂βNm)(t, βt, γt) + γ′t(∂γNm)(t, βt, γt)

⩽ −1

2
Ĩm(t)−

∫
MK×Rd

ηmΓt

(
AhKt

)
dµK

βt

+ Cβ′
tβt

∫
MK×Rd

Γt

(
AhKt

)
dµK

βt
+
Cβt
m

Ñt + Cβ′
t(1 + β2

t )Ñt.

By integration, we get for all 0 ⩽ s ⩽ t:

Ñm(t)− Ñm(s) ⩽
∫ t

s

(
− 1

2
Ĩm(u) +

Cβu
m

Ñu + Cβ′
u(1 + β2

u)Ñu

−
∫
MK×Rd

ηmΓt

(
AhKt

)
dµK

βu
+ Cβ′

uβu

∫
MK×Rd

Γt

(
AhKt

)
dµK

βu

)
du.

We consider β0 great enough so that 1 − Cβ′
tβt ⩾ 0 for all t. Using monotonous convergence,

the fact that Ĩ ⩾ Ĩm, and Fatou’s lemma we get :

Ñ(t)− Ñ(s) ⩽
∫ t

s

(
−1

2
Ĩ(u) + Cβ′

u(1 + β2
u)Ñu

)
du.

Now, from the Poincaré inequality of Proposition 4.4.1 and the definition of σ,

λ̃(β)Ñ(t) ⩽ Ĩ(t)

for some λ̃ satisfying 1
β ln(λ̃)→ −c∗, so that we can find a λ0 such that

λ̃(βt) ⩾ λ0e
−βt

(c+c∗)
2 =

λ0
(ecβ0 + t)1−α

,

where α = (c− c∗)/(2c). Taking β0 large enough so that Cβ′
t(1 + β2

t ) ⩽ λ0/4(e
cβ0 + t)−1+α, we

have finally obtained that, if β0 ⩾ b̃K for some b̃K , then for all 0 ⩽ s ⩽ t

Ñ(t)− Ñ(s) ⩽
∫ t

s

(
− λ0
4(ecβ0 + u)1−α

Ñ(u)

)
du

and this concludes (as explained at the beginning of this section).
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4.5 Hk-hypocoercivity

In all this section, whose goal is to prove Proposition 4.2.7, we use the definitions and notations
of Section 4.2.4. In particular, fKt stands for the law of the process defined by Equation (4.10),
µK
β = e−βHK(z)dz/ZK

β where ZK
β makes µK

β a probability density on MK , and hKt = fKt /µ
K
βt

.
According to [159], fKt is a smooth function and solves

∂tf
K
t = LK,∗

t

(
fKt
µK
βt

)
µK
βt
,

but here the dual in L2(µβt
) of the generator of the process is

LK,∗
t = −β−1

t σ(y)∇∗
x∇x − γtβ−1

t ∇∗
y∇y + β−1

t

(
∇∗

x∇y −∇∗
y∇x

)
,

where the dual are taken in L2(µK
β ):

∇∗
x = −∇x ·+β∇UK ·
∇∗

y = −∇y ·+β∇W · .

Indeed, the additional diffusive part in x has been designed to be reversible. In order to prove
Proposition 4.2.7, we introduce for m ∈ N the classical Hm-Sobolev norms on (M2

K , µ
K
β ) given

by

∥h∥Hm(µK
β ) =

∑
α∈N2d,|α|⩽m

∫
M2

K

|∂αh|2dµK
β .

The general strategy is similar to the L2 case of Section 4.4, namely we will prove that ∥hKt −1∥Hm

goes to zero for all m, and conclude by a Sobolev embedding for m large enough. The constant
in the Sobolev embedding depends on the time t which should be compensated by the fact
∥hKt − 1∥Hm goes to zero fast enough. As in L2 case, we need to introduce some modified
Sobolev norm to deal with the lack of dissipativity in the x variable in some part of the space.
Following [170], for m ∈ N, we consider a modified Hm-Sobolev norm of the form

Nm(t, β) =∫
MK×MK

(
fKt
µK
β

− 1

)2

+

m∑
k=1

 k∑
i=0

ωi,k(β)

∣∣∣∣∣∇i
x∇k−i

y

fKt
µK
β

∣∣∣∣∣
2

+ ωk(β)∇k−1
x ∇y

fKt
µK
β

· ∇m
x

fKt
µK
β

 dµK
β

(4.17)

for some weights ω to be fixed later on. Recall the definition

M =
{
y ∈MK ;∇2W (y) = Id

}
.

If y ∈M, then we obtain ∇x in the derivative of∫
MK×MK

∇k−1
x ∇y

fKt
µK
β

· ∇m
x

fKt
µK
β

dµK
β
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using the commutator [∇y,∇W ·∇x], and for y /∈M, it comes from the σ(y)∇∗
x∇x part of LK,∗

t .
Here we used the notations

|∇i
x∇k−i

y h|2 =
∑

|α1|=i;|α2|=k−i

|∂α1
x ∂α2

y h|2

∇k−1
x ∇yh · ∇m

x h =
∑

|α|=k−1

d∑
j=1

∂αx ∂yj
h∂αx ∂xj

h.

We also define Ñm(t) = Nm(t, βt). Since the process is now in a compact set, we do not need the
approximation functions ηm, and the subscript here indicates the order of the Sobolev norm in
contrast to the previous section. Besides, in Section 4.4, we had to keep track of the dependency
of the constant in β0, as some uniformity in time was necessary in Proposition 4.2.5 for the
renewal argument of the proof of Proposition 4.2.6. This is no longer the case here.

In order to study the evolution of Nm, we need first to have some commutation results and
control over the derivative of the L2-norm of ∇m1

x ∇m2
y h as in Lemma 4.4.3. Here, ∇m1

x ∇m2
y h

denotes the vector of all derivative of h of order m1 on x and m2 on y:

∇m1
x ∇m2

y h =
{
∂α1
x ∂α2

y h
∣∣ |α1| = m1, |α2| = m2

}
The method used here is adapted from [170] to take into account the time-inhomogeneity and
the new dynamic. Recall the notation (4.16) for generalized Γ operators.

Lemma 4.5.1. Let m1,m2 ∈ N, then there exists some constant θ > 0 such that for all h ∈
C∞

(
M2

K

)
:

Γt,|∇m1
x ∇m2

y ·|2(h) ⩾ β−1
t

(
γt|∇m1

x ∇m2+1
y h|2 + σ|∇m1+1

x ∇m2
y h|2

)
− θ(1 + γt)

m1+1,m2+1∑
k=1,l=1

k+l⩽m1+m2

|∇k
x∇l

yh|2 − θ1m2⩾1

m2∑
l=1

|∇lσ|2|∇m1+2
x ∇m2−l

y h|2.

Proof. As in [137, Lemma 10], we have for smooth h :

Γt,|∇m1
x ∇m2

y ·|2(h) = Γt(∇m1
x ∇m2

y h) +∇m1
x ∇m2

y h ·
[
LK,∗
t ,∇m1

x ∇m2
y

]
h.

Then first :
Γt(∇m1

x ∇m2
y h) = β−1

t

(
γt|∇m1

x ∇m2+1
y h|2 + σ|∇m1+1

x ∇m2
y h|2

)
.

Then, we can write LK,∗
t = v · ∇+ β−1

t σ∆x + β−1
t γt∆y with the drift

v(x, y) =

(
−∇W (y)− σ(y)∇UK(x)
∇UK(x)− γt∇W (y)

)
.

First, [
β−1
t γt∆y,∇m1

x ∇m2
y

]
= 0.

Then, using Cauchy-Schwarz inequality,

∇m1
x ∇m2

y h·
[
β−1
t σ∆x,∇m1

x ∇m2
y

]
h = ∇m1

x ∇m2
y h · β−1

t

m2∑
l=1

(
m2

l

)
∇l

yσ · ∇m2−l
y ∇m1

x ∆xh
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⩾ −β−1
t

(
|∇m1

x ∇m2
y h|2 + θ

m2∑
l=1

|∇lσ|2|∇m1+2
x ∇m2−l

y h|2
)
.

Notice that if m2 = 0, then ∇m
x h ·

[
β−1
t σ∆x,∇m

x

]
h = 0. The next term is:

[(
−∇W − σ∇UK

)
∇x,∇m1

x ∇m2
y

]
h =

m2∑
l=1

(
m2

l

)
∇l+1

y W∇m1+1
x ∇m2−l

y h

+
∑

k⩽m1
l⩽m2

(k,l)̸=(0,0)

(
m1

k

)(
m2

l

)
∇l

yσ∇k+1
x U∇m1−k+1

x ∇m2−l
y h

and

[(
−γt∇W +∇UK

)
∇y,∇m1

x ∇m2
y

]
h = γt

m2∑
l=1

(
m2

l

)
∇l+1

y W∇m1
x ∇m2−l+1

y h

−
m1∑
k=1

(
m1

k

)
∇k+1

x UK∇m1−k
x ∇m2+1

y h.

Putting those last two lines together and using Cauchy-Schwarz we get :

∇m1
x ∇m2

y h.
[
v · ∇,∇m1

x ∇m2
y

]
h

⩾ −θ(1 + γt)

m2∑
l=1

|∇m1+1
x ∇m2−l

y h|2 +
∑

1⩽k⩽m1
1⩽l⩽m2

|∇m1−k+1
x ∇m2−l

y h|2

+

m2∑
l=1

|∇m1
x ∇m2−l+1

y h|2 +
m1∑
k=1

|∇m1−k
x ∇m2+1

y h|2
)
.

This concludes the proof.

Lemma 4.5.2. For all m ∈ N there exists some constant θ > 0 such that for all smooth h,
denoting Pm(t, β) =

∫
MK×MK

∇m−1
x ∇y

fK
t

µK
β

· ∇m
x

fK
t

µK
β

dµK
β :

(∂tP
m)(t, βt) ⩽

∫
MK×MK

−
(
1

2
1M − θ1Mc

)
|∇m

x h
K
t |2

+ θ(1 + γt)

(
m−2∑
k=1

|∇k
xh

K
t |2 + (|∇σ|2 + σ)|∇m+1

x hKt |2 +
m−1∑
k=1

|∇k
x∇yh

K
t |2
)

dµK
βt
.

Proof. The derivative of Pm is given by :

(∂tP
m)(t, βt) =

∫
MK×MK

(
∇m−1

x ∇yL
K,∗
t hKt · ∇m

x h
K
t +∇m−1

x ∇yh
K
t · ∇m

x L
K,∗
t hKt

)
dµK

βt
.

We then have to study the two terms in the integral separately at first, by using commutators.
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For any smooth h :

∇m−1
x ∇yL

K,∗
t h · ∇m

x h = ∇m−1
x

[
∇y, L

K,∗
t

]
h · ∇m

x h

+

m−1∑
k=1

∇k−1
x

[
∇x, L

K,∗
t

]
∇m−k

x ∇yh · ∇m
x h+ LK,∗

t ∇m−1
x ∇yh · ∇m

x h

= ∇m−1
x

(
−∇W∇x −∇σ∇UK .∇x − γt∇W∇y + βt∇σ∆x

)
h · ∇m

x h

+

m−1∑
k=1

∇k−1
x

(
∇2UK∇y − σ∇2UK∇x

)
∇m−k

x ∇yh · ∇m
x h+ LK,∗

t ∇m−1
x ∇yh · ∇m

x h

⩽ −
(
1

2
1M − θ1Mc

)
|∇m

x h|2 + θ

m−1∑
k=1

|∇k
xh|2 + θ(1 + γt)

m−1∑
k=1

|∇k
x∇yh|2

+ θ|∇σ|2|∇m+1
x h|2 + LK,∗

t ∇m−1
x ∇yh · ∇m

x h

where we used that |∇σ∇UK | ⩽ 1
2 . Similarly, we have :

∇m−1
x ∇yh · ∇m

x L
K,∗
t h ⩽ θ

m−1∑
k=1

|∇k
x∇yh|2 + θ

m−1∑
k=1

|∇k
xh|2 +∇m−1

x ∇yh · LK,∗
t ∇m

x h.

We conclude with the fact that :∫
MK×MK

L∗
t∇m−1

x ∇yh
K
t · ∇m

x h
K
t +∇m−1

x ∇yh
K
t · L∗

t∇m
x h

K
t dµK

βt

=

∫
MK×MK

Γt(∇m−1
x ∇yh

K
t ,∇m

x h
K
t )dµK

βt

⩽
∫
MK×Mk

θ(1 + γt)
(
|∇m

x ∇yh
K
t |2 + |∇m−1

x ∇xh
K
t |2 + |∇m

x ∇y|2
)
+ β−1

t σ|∇k+1
x h|2dµK

βt
.

In order to state the main lemma, we introduce the following set :

P =
{
g : R+ 7→ R+ smooth, ∃a,C > 0 s.t. β−a/C ⩽ g(β), |g′(β)| ⩽ Cβa

}
,

where P stands for polynomial. The main step in order to prove an analogous to Proposition 4.2.3
in higher Sobolev norms is then the following dissipation result.

Lemma 4.5.3. For all m ⩾ 1, there exist qm, rm, (ωi,m)i⩽m and ωm some functions of β, all
in P, such that if fK0 ∈ C∞(MK ×MK) then, for all t ⩾ 0,

∥hKt − 1∥Hm(µK
βt
) ⩽ qm(βt)Ñm(t)

and :

(∂tNm)(t, βt)
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⩽ −rm(βt)

∫
MK×MK

σ|∇m+1
x hKt |2 +

m∑
i=0

|∇i
x∇m+1−i

y hKt |2 +
∑

1⩽i+j⩽m

|∇i
x∇j

yh
K
t |2
 dµK

βt
.

(4.18)

Proof. The proof is by induction. In fact we start at m = 0, setting simply

N0(t, β) =

∫
MK×MK

(
fKt
µK
β

− 1

)2

dµK
β .

Hence,

(∂tN0)(t, βt) = −
∫
MK×MK

Γt

(
fKt
µK
βt

)
dµK

βt

= −
∫
MK×MK

β−1
t

(
γt|∇yh

K
t |2 + σ|∇xh

K
t |2
)
dµK

βt

which is the result for m = 0 and r0(βt) = β−1
t min(1, κ). One could also have initialized the

induction for m = 1 as in Proposition 4.2.3. Now, let’s fix m ∈ N and suppose we have the result
for m− 1 :

(∂tNm−1)(t, βt) ⩽

− rm−1(βt)

∫
MK×MK

σ|∇m
x h

K
t |2 +

m−1∑
i=0

|∇i
x∇m−i

y hKt |2 +
∑

i+j⩽m−1

|∇i
x∇j

yh
K
t |2
 dµK

βt
.

We set

Nm = Nm−1 +

∫
MK×MK

 m∑
i=0

ωi,m(β)

∣∣∣∣∣∇i
x∇k−i

y

fKt
µK
β

∣∣∣∣∣
2

+ ωm(β)∇m−1
x ∇y

fKt
µK
β

· ∇m
x

fKt
µK
β

 dµK
β

with weights to be determined later on, so that

(∂tNm)(t, βt)

= (∂tNm−1)(t, βt)−
∫
MK×MK

m∑
i=0

ωi,m(β)Γ|∇i
x∇

k−i
y ·|2(h

K
t )dµK

βt
+ ωm(β)(∂tP

m)(t, βt).

In this equality, using the two previous lemmas, the terms of order m+ 1 are bounded by:∫
MK×MK

(
ωm−1,m|∇σ|2 + ωm(σ + |∇σ|2)

)
|∇m+1

x hKt |2

− β−1
t

m∑
i=0

ωi,m(βt)
(
γt|∇i

x∇m+1−i
y hKt |2 + σ|∇i+1

x ∇m−i
y hKt |2

)
dµK

βt
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In order to get (4.18), we would like this to be less than

−rm(βt)

∫
MK×MK

(
σ|∇m+1

x hKt |2 +
m∑
i=0

|∇i
x∇m+1−i

y hKt |2
)

dµK
βt
.

Using that |∇σ|2 ⩽ σ, this is indeed the case if we impose the conditions ωm,m(β) ⩾ 4βωm(β) +
βωm1,m and ωi,m(β) ⩾ rmβmax(κ−1, 12 ). Next, the terms of order at most m − 1 are bounded
by : ∫

MK×MK

θ(1 + γt) max
0⩽i⩽m

ωi,m

∑
i+j⩽m−1

|∇i
x∇j

yh
K
t |2 − rm−1

∑
i+j⩽m−1

|∇i
x∇j

yh
K
t |2dµK

βt

which means, similarly, in order to get (4.18), we want to impose the conditions

max
0⩽i⩽m

ωi,mθ(1 + γt) ⩽
1

2
rm−1, rm−1 ⩾ 2rm.

Finally, the terms of order exactly m are bounded by

−
∫
MK×MK

(
rm−1

m−1∑
i=1

|∇i
x∇m−i

y hKt |2 +
(
rm−1σ + ωm

1

2
1M − ωmθ1Mc

)
|∇m

x h
K
t |2

−max
i
ωi,mθ(1 + γt)

m∑
i=0

|∇i
x∇m−i

y hKt |2
)

dµK
βt

which leads to the conditions: rm ⩽ 1
2ωm, ωmθ ⩽ 1

2rm−1σ∗ and 1
2rm−1σ∗ ⩾ rm.

Now, fix the ωi,m to be equal to rm−1

4θ(1+Lβ) except ωm,m equal to rm−1

2θ(1+Lβ) , then ωm =

min(σ∗rm−1

2θ ,
ωm,m

4β , ωm,m), and finally set rm = min( rm−1

2 , rm−1σ∗
2 , ωm

2 , β−1 min(κ, 2)ωi,m). These
choices ensures that all the conditions in the computations above are met, which means that
(4.18) holds. Moreover, all these functions are in P, which concludes.

Similarly to Proposition 4.4.1 but now in the fully (position and velocity) compact case, we
have the following Poincaré inequality:

Proposition 4.5.1. If UK : MK 7→ R is a C∞ function, W is as constructed in Section 4.2.4,
and µK

β is the probability measure on MK ×MK proportional to e−βHK , then there exists λ :
R+ 7→ R+ such that for all f ∈ C∞(MK ×MK) :

λ(β)

∫
MK×MK

(
f −

∫
MK×MK

fdµK
β

)2

dµβ ⩽
∫
MK×MK

|∇f |2dµK
β

and
lim
β→∞

1

β
ln(λ(β)) = −c∗(UK)

where c∗(UK) is defined as c∗ with U replaced by UK .

Proof. Using that c∗(HK) = c∗(UK) since W has only one minimum, this is [83, Theorem
1.14].

We are now ready to prove Proposition 4.2.7.
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Proof of Proposition 4.2.7. Letm = d+1. We first show that there exist some constants C1, C2 >
0 such that Ñm(t) ⩽ C1e

−C2t
α

for all t ⩾0, where α = c−c∗

2c . Indeed, we have :

Ñ ′
m(t) = ∂tNm(t, βt) + β′

t∂βNm(t, βt).

From Lemma 4.5.3 and Proposition 4.5.1,

∂tNm ⩽ − λ̃(βt)rm
2

Nm.

where λ̃ satisfies limβ→∞
1
β ln(λ̃(β)) = −c∗(UK) and rm ⩾ β−a/C for some a > 0. Hence,

we have some constant C > 0 such that λ(βt)rm/2 ⩾ Ce−
c+c∗

2 βt = C(ecβ0 + t)−1+α. On the
other hand, from the conditions on the ω’s and since ∂βeβHK ⩽ ∥HK∥∞eβH , there exist some
a,C ′ > 0 such that ∂βNm ⩽ C ′βa

tNm yielding β′
t∂βNm ⩽ C ′(1 + t)−1+α

2 Nm for some other
constant C ′ > 0, and thus :

Ñ ′
m ⩽

(
− C

(1 + t)1−α
+

C ′

(1 + t)1−
α
2

)
Ñm,

yielding our first claim.
From the Sobolev embedding, there exists C > 0 such that for any smooth h on MK ×MK ,

we have ∥h∥L∞ ⩽ C∥h∥
Hm

(
µK
β0

). Then we have :

∥h∥L∞ ⩽ 1 + ∥h − 1∥L∞ ⩽ 1 + C∥h − 1∥
Hm

(
µK
β0

) ⩽ 1 + Ceβt∥H∥∞∥h − 1∥Hm(µK
βt
).

Applying this with h = hKt and using that ∥hKt − 1∥Hm(µK
βt

) ⩽ Cβa
t Ñm(t) for some a,C > 0, we

get constants C, b > 0 such that :

∥hKt ∥L∞ ⩽ 1 + C(1 + t)be−C2t
α

,

yielding the result.

4.6 Faster than logarithmic schedules

Proof of Theorem 4.1.3. Some parts of the proof follow the proof of Theorem 4.1.2, to which we
refer for details, focusing on the new arguments in the present settings.

Up to a translation we assume without loss of generality that x∗ = 0.
As in the proof of Theorem 4.1.2, it is in fact sufficient to prove that for all δ > 0

Pf0 (|Zt| ⩽ min(δ,
√
εt) ∀t ⩾ t0) > 0

for a given fixed initial condition f0 and for t0 large enough and then use a controlability argu-
ment based on Lemma 4.2.8 and the Markov property to get the claimed result. Besides, it is
sufficient to prove this result for δ small enough and, since the times in [0, t0] are treated with
the controlability argument, focusing on the times larger than t0, we are interested in an event
under which the process stays in a small ball around 0, and we can thus modify U outside such
a ball without modifying the result.
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The Jacobian matrix of the drift b(z) = (y,−∇U(x)− γy) of the process at z = (x, y) is

J(z) =

(
0 I

−∇2U(x) −γI

)
.

Since ∇2U(0) is positive semi-definite, a simple calculation shows that the eigenvalues of J(0)
all have a negative real part, and thus there exist a positive definite symmetric matrix M of size
2d and r > 0 such that

u ·MJ(0)u ⩽ −2ru ·Mu

for all u ∈ R2d, see e.g. [4, Lemma 4.3]. Write ∥u∥M =
√
u ·Mu and let δ > 0 be sufficiently

small so that
u ·MJ(z)u ⩽ −r∥u∥2M (4.19)

for all u ∈ R2d and all z ∈ R2d with ∥z∥M ⩽ δ. As discussed above, up to a modification of U
outside the ball B(0, δ), without loss of generality we can modify the potential U outside this ball
and assume that in fact (4.19) holds for all z ∈ R2d. Similarly we assume that ∇3U is bounded.

Using that b(0) = 0, we get that for all z ∈ R2d

z ·Mb(z) = z ·M (b(z)− b(0)) =
∫ 1

0

z ·MJ(pz)zdp ⩽ −r∥z∥2M . (4.20)

Let Z and Z̃ be two solutions of (4.1) with the same initial condition and driven by the
same Brownian motion, but with two different potentials, Z being associated to U and Z̃ to
Ũ(z) = z · ∇2U(0)z/2. In particular, Z̃ is a Gaussian process. Then

d∥Zt − Z̃t∥2M ⩽ −2r∥Zt − Z̃t∥2Mdt+ 2∥Zt − Z̃t∥M |M1/2||∇U(Z̃t)−∇2U(0)Z̃t|dt

⩽ −r∥Zt − Z̃t∥2Mdt+
1

4r
∥∇3U∥2∞|M ||Z̃t|4dt .

Let (αt)t⩾0 be a positive non-increasing function, vanishing at infinity, to be chosen later on.
Then the event G = {|Z̃t| ⩽ αt ∀t ⩾ 0} implies that for all t ⩾ 0

|Zt| ⩽ |Z̃t|+ |M−1/2|∥Zt − Z̃t∥M ⩽ αt + C

(∫ t

0

α2
se

r(s−t)ds
)1/2

:= α̃t

with C2 = |M ||M−1|∥∇3U∥∞/(2
√
r). Notice that α̃t vanishes at infinity, more precisely α̃t ⩽

αt+C(α3t/4/
√
r+α0

√
te−rt/8). As a consequence, it only remains to prove that G has a positive

probability for some suitable function t 7→ αt. Again, following the proof of Theorem 4.1.2,
we see that it is sufficient to prove that t 7→ P(|Z̃t| ⩾ αt) is integrable for a given fixed initial
condition. Since Z̃ is a Gaussian process, we simply have to control its second moment. We
chose an initial condition such that E(Z̃0) = 0, so that E(Z̃t) = 0 for all t ⩾ 0.

Remark that the drift of Z̃t also satisfies (4.20), since its Jacobian matrix at any z ∈ R2d is
equal to J(0). Thus we get, for all t ⩾ 0,

∂tE
(
∥Z̃t∥2M

)
⩽ −rE

(
∥Z̃t∥2M

)
+
d|M |
βt

,
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so that, writing C ′ = |M ||M−1|(E|Z̃0|2 + d),

E
(
|Z̃t|2

)
⩽ |M−1|E

(
∥Z̃t∥2M

)
⩽ C ′

(
e−rt +

∫ t

0

er(s−t)

βs
ds
)

:= C ′κt ,

Using that the law of Z̃t is Gaussian with zero mean, we get that there exist K,h > 0 such that
for all t ⩾ 0

P(|Z̃t| ⩾ αt) ⩽ K exp

(
−hα

2
t

κt

)
.

This is integrable in time if we chose α2
t = sups⩾t 2 ln(s)κs/h (which is non-increasing). Since

ln(t) = o(βt) and κt ⩽ sups⩾2t/3 1/(rβs)+e
−rt/3(1+ t supu⩾0 1/βu), we get that κt = o(1/ ln(t)),

in other words αt → 0. We conclude by using the previous bounds on α̃t and κt and the fact
that

sup
s⩾3t/4

ln(s) sup
u⩾2s/3

β−1
u ⩽ sup

s⩾t/2

ln(s)β−1
s

to get the quantitative convergence speed εt stated in the theorem.

Remark: in order to adapt the previous proof in a case where γt is not constant, we can still
find M and r such that (4.19) holds with the Jacobian matrix of the drift at time t, but they
depend on γt, hence when differentiating ∥Zt − Z̃t∥2M there is an additional term involving ∂tM
which has to be sufficiently small to be absorbed by the contraction at rate r. Moreover, r scales
as γt when γt → 0 and as 1/γt when γt → +∞, which means for the proof to be valid, γt or 1/γt
should not be too small depending on βt.
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Chapter 5

Switched diffusion processes for
non-convex optimization and saddle
points search
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Abstract : We introduce and investigate stochastic processes designed to find local minimizers
and saddle points of non-convex functions, exploring the landscape more efficiently than the
standard noisy gradient descent. The processes switch between two behaviours, a noisy gradient
descent and a noisy saddle point search. It is proven to be well-defined and to converge to a
stationary distribution in the long time. Numerical experiments are provided on low-dimensional
toy models and for Lennard-Jones clusters.

5.1 Introduction

5.1.1 Overview

This work addresses the issue of finding the local minimizers and the saddle points of a given
non-convex potential U : Rd → R+. These questions are ubiquituous in a wide range of scientific

133
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fields. In particular, in molecular dynamics, U being the energy of a molecular system, the
minimizers are the metastable state of the system, while the saddle points are the transition
states between the former. As we will see, we will design a stochastic algorithm which targets
both local minimizers and saddle points, in such a way that each of this task benefits from the
other. In particular, the algorithm is suitable even as an optimisation tool, when the goal is only
to find the global minimizers of U .

In high dimension, this problem is challenging, as an exhaustive search is impossible and
running local search algorithms started from random initial conditions only works when it is
possible to sample starting points that have a reasonable probability to hit the basin of attraction
of the points of interest (for a gradient descent or a saddle point search), which is often not the
case when these basins are concentrated around an unknown manifold of dimension much smaller
than d.

A classical solution in order to visit the whole space while taking into account the energy
landscape (hence focusing on low-energy areas) is to follow the overdamped Langevin diffusion
process, which is the Markov process solving

dXt = −∇U(Xt)dt+
√
2εdBt , (5.1)

where B is a d-dimensional Brownian motion and ε > 0 is a temperature parameter. When ε is
small, this is a noisy perturbation of a deterministic gradient descent (contrary to the stochastic
gradient descent algorithm, here the noise is voluntarily added, it has a constant intensity and
does not come from a Monte Carlo approximation of ∇U). Under standard growth conditions
on U at infinity, the process is ergodic with respect to the measure

µε(dx) =
e−U(x)/εdx∫
Rd e−U(y)/εdy

,

i.e. the time spent in any given domain is asymptotically proportional to its probability with
respect to µε. Hence, the temperature ε has to be taken small enough to counteract the entropic
effect due to the high dimension d and ensure that the vicinity of minimizers have a high prob-
ability. Then, one can use the point of the trajectory with the lowest energy as a starting point
for a local gradient descent (or a variant, like the stochastic gradient descent). However, as ε
vanishes, it is well known that (5.1) is metastable, since transitions between different potential
wells occur in a time of order roughly ec/ε for some c > 0, due to the energy barriers induced by
low-probability regions interspersing high-probability ones. This makes the convergence of the
law of the process towards its equilibrium, and thus the exploration, very slow, which makes this
method fail in practice.

Besides, according to large deviations theory, more precisely to the Freidlin-Wentzell results
on the low noise behaviour of diffusion processes, it is known that, as ε vanishes, the process
(5.1) is likely to exit from a potential well through the saddle point with the lowest energy level
on the boundary of the well. Instead of waiting for an unlikely deviation of the Brownian motion
to lead the process (5.1) to this saddle point, this naturally motivates the definition of a process
which actively looks for it. More precisely, the main object of this work is a process which
switches randomly between two dynamics, the noisy gradient descent (5.1) and a noisy saddle
points search.

The rest of this work is organized as follows. In the remainder of the introduction, we present
two saddle point search algorithm in Section 5.1.2, and we define the stochastic processes we
are going to investigate. In Section 5.2, we conduct a theoretical study of the processes, and in
Section 5.3 a numerical study.
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5.1.2 Deterministic saddle point algorithms
Since saddle point search is less standard than optimization, let us first present some existing
deterministic algorithms on this topic. A first class of methods, based on reaction paths, requires
the knowledge of two local minimizers, and then finds a path of minimal elevation between them,
which passes through a saddle point see e.g. [70, 53]. This doesn’t correspond to our context,
where the local minimizers are unknown. A second class of methods, considered e.g. in [54, 121,
66, 115, 151, 17, 75] and references within and which will be the one of interest for us, relies on
local walkers, analogous of the gradient descent for optimization, i.e. solutions of some ODEs
for which saddle points of U are stable equilibrium. Given some x ∈ Rd, write:

λ1(x) ⩽ λ2(x) ⩽ · · · ⩽ λd(x)

for the ordered eigenvalues of ∇2U(x), and suppose that we are given v1(x), . . . , vd(x) ∈ Rd such
that vi(x) is an eigenvector of ∇2U(x) associated to λi(x) (in other words, when the eigenvalues
are not all simple, we assume that we have an arbitrary rule to select a given eigenbasis, for
instance we take the basis obtained as the limit of the Jacobi algorithm). The idealised saddle
dynamic (ISD) is the solution of

ẋt = −
(
I − 2v1(xt)v1(xt)

T
)
∇U(xt) .

In other words, xt follows a gradient descent, except in the direction v1(xt) where a reflection
is performed, i.e. the process follows a gradient ascent in this direction. Notice that in general
x 7→ v1(x) is not continuous so the existence of this process is unclear and may be restricted to
some parts of the space or to a finite time interval.

A variation of the ISD is the so-called Gentlest Ascent Dynamic (GAD) (xt, vt) ∈ Rd × Sd−1

solving {
ẋt = −

(
I − 2vtv

T
t

)
∇U(xt)

ηv̇t = −(I − vtvTt )∇2U(xt)vt ,

where η > 0 is a fixed parameter. If ∇2U(xt) were fixed in the second equation, this would be a
gradient descent on Sd−1 for the Rayleigh quotient v 7→ −vT∇2U(xt)v. As η vanishes, formally,
we recover the ISD. Contrary to the later, the GAD is always well-defined for all initial conditions
and all times.

The following results on the ISD and GAD are from [115, Theorems 2 and 3] and [54].

Proposition 5.1.1. • Any critical point of U is an equilibrium points for the ISD. It is
stable if and only if it is a index-1 saddle point.

• Any (x, v) ∈ Rd × Sd−1 with x a critical point of U and v an eigenvalue of ∇2U is an
equilibrium point of the Gentlest Ascent dynamic. It is stable if and only if x is a index-1
saddle point and v is associated to the negative eigenvalue.

• If Ω ⊂ Rd satisfies that for all x ∈ Ω, we have λ1(x) < 0 < λ2(x), then there exists a
unique saddle point z∗ in Ω, and for all x0 ∈ Ω, there exists a unique solution to the ISD
which converges exponentially fast towards z∗.

• Under the same assumption, there is δ > 0 such that if (x0, v0) ∈ Ω × Sd−1, and |v0 −
v1(x0)| < δ, then there exists a unique solution to the GAD which converges exponentially
fast towards (z∗, v1(z∗)).

The convergence results are only local, and one cannot expect more in general since the ISD
may have attracting singularities [115]. In the case of the GAD, with a potential of the form
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∑d
i=1 Ui(xi), and an initial condition v0 ∈ vect(e1, ...ei), vt will stay orthogonal to ej , j > i,

and hence the process will never get close to an equilibrium point with an eigenvector not in
vect(e1, ...ei). As in the optimization case where the overdamped Langevin diffusion (5.1) allows
for a global exploration while the gradient descent only converges locally, it is thus natural to
add a small Brownian noise to the deterministic ISD and GAD. The resulting processes will
explore eventually the whole space but, thanks to Proposition 5.1.1, will still be attracted locally
by saddle points (notice that the Freidlin-Wentzell theory on random perturbation of ODE does
not apply directly in the ISD case because of the discontinuity of x 7→ v1(x)).

5.1.3 The stochastic processes
For simplicity, from now on, we will restrict ourselves to the case of a function defined on compact
manifold (specifically the periodic torus). Indeed, in practical situation, local minima and saddle
points are located in a compact set. Most of the definitions and arguments below would be easily
adapted to Rd provided suitable modifications outside a given compact, in particular to ensure
the stability of the processes.

Write Td for the d-dimensional torus and fix some function U ∈ C2(Td,R+). As in the
previous section, we write λi(x) the ordered eigenvalues of ∇2U(x), and we consider functions
x 7→ vi(x) such that vi(x) is an eigenvector of ∇2U(x) associated to λi(x) for all x ∈ Td and
i ∈ J1, dK. Moreover, we assume that the functions vi are measurable for all i ∈ J1, dK, which is
indeed possible:

Lemma 5.1.1. For all i ∈ J1, dK there exists a measurable function vi : Td → Sd−1 such that
vi(x) is and eigenvector of ∇2U(x) associated to λi(x) for all x ∈ Td.

Proof. Given a symmetric matrix H and (e1, ..., ed) the canonical basis of Rd, the function
H 7→ (u1, µ1, ..., ud, µd), where ui is the limit of the gradient descent for the Rayleigh quotient
starting from ei and µi is the associated eigenvalue, is measurable. At least one of the µi is
the smallest eigenvalue of H, hence we may just select the smallest indices i0 such that it is the
case and consider the associated vector. We can then iterate by applying the same procedure to
(I − ui0uTi0)H(I − ui0uTi0) + (|H| + 1)ui0u

T
i0

, and similarly by induction. We conclude with the
fact that x 7→ ∇2U(x) is continuous, hence measurable.

As in Rd, for ε > 0 the overdamped Langevin process is defined on Td as the solution of (5.1).
It is ergodic with respect to µε the probability measure with density proportional to e−U/ε on
the torus. Similarly, we define the noisy ISD as the solution on Td of

dXt = −
(
I − 2v1(Xt)v1(Xt)

T
)
∇U(Xt)dt+

√
2εdBt , (5.2)

which, contrary to its deterministic counterpart, is always well-defined (see Proposition 5.2.1
below). Concerning the noisy version of GAD, we may wonder whether it is necessary to add
noise to both coordinates, and thus in general we can consider the noisy GAD as the solution on
Td × Sd−1 of {

dXt = −
(
I − 2VtV

T
t

)
∇U(Xt)dt+

√
2εdBt,

dVt = (I − VtV T
t )
[
− 1

η∇
2U(Xt)Vtdt+

√
2ε′dB′

t

]
− dε′dt, (5.3)

where η > 0, ε′ ⩾ 0 and B,B′ are independent d-dimensional Brownian motions. The second
line is such that if ∇2U(Xt) is constant then this is an overdamped Langevin diffusion on the
sphere with potential given by the Rayleigh quotient (see e.g. [110, Section 3.2.3] or [2]). In
particular, according to [110, Lemma 3.18], Vt ∈ Sd−1 for all t ⩾ 0. In fact, by contrast with
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the deterministic case, since the noisy ISD is well defined, we will not insist much on the noisy
GAD, and simply discuss the case ε′ = 0 in Section 5.2.1.

Next, we define the idealised switched process (ISP) as the Markov process (Xt, It)t⩾0 on
Td × {0, 1} where (It)t⩾0 is a Markov process on {0, 1} with constant jump rate ν > 0 and X
solves

dXt = HIt(Xt)dt+
√
2εdBt, (5.4)

with (Bt)t⩾0 a Brownian motion independent from (It)t⩾0 and, for all x ∈ Td,

H0(x) = −∇U(x) , H1(x) = −(I − 2v1(x)v1(x)
T )∇U(x) .

In other words, the process alternates between the overdamped Langevin dynamics and the noisy
ISD, the time being two switching events between independent and distributed according to an
exponential law of parameter ν. Likewise, we can define the gentle switched process (GSP) as
the Markov process (Xt, Vt, It)t⩾0 on Td × Sd−1 × {0, 1} where{

dXt = HIt(Xt, Vt) +
√
2εdBt,

dVt = (I − VtV T
t )
[
− 1

η∇
2U(Xt)Vtdt+

√
2ε′dB′

t

]
− dε′dt, (5.5)

where (It)t⩾0 is as in the ISP, independent from B,B′, and

H0(x, v) = −∇U(x) , H1(x, v) = −(I − 2vvT )∇U(x) .

Finally, let us introduce slight variations of the processes defined above. Consider

S =
{
x ∈ Td, λ1(x) = λ2(x)

}
,

which is the set of singularities of the deterministic ISD flow. As pointed out in [115], some
points of S may be attracting singularities for this flow, and thus they will also locally attract
the noisy ISD when ε is small, or the noisy GAD when ε and η are small. This behaviour may be
mitigated as follows. Fix some non-decreasing f : R+ → [1, 2] such that f(0) = 1 and f(r) = 2
for all r larger than some small threshold r∗ > 0. Then, setting a(x) = f(λ2(x) − λ1(x)) the
drift H1 in the noisy ISD may be replaced by

Ĥ1(x) = −
(
I − a(x)v1(x)v1(x)T − (2− a(x))v2(x)v2(x)T

)
∇U(x) .

In other words, when λ1(x) and λ2(x) are clearly distinguished, then we recover the previous noisy
ISD, however, on S, rather than undergoing an orthogonal reflection with respect to v1(x), ∇U(x)
is orthogonally projected on the orthogonal of the space spanned by v1(x), v2(x), which means
that, in these two directions, the process behave like a Brownian motion. Natural choices for f
would be piecewise constant (with f(r) = 1 for r < r∗) or piecewise linear (with f(r) = 1+ r/r∗
for r < r∗). In the second case, the drift H̄1 is continuous.

An analogous modification can be applied to the drift H1 of the noisy GAD, in which case
the process is then (X,V1, V2) where V1, V2 are orthogonal vectors of Sd−1 whose evolution is
given, in the case ε′ = 0, by

dV1,t = −
1

η

(
I − V1,tV T

1,t

)
∇2U(Xt)V1,tdt

dV2,t = −
1

η

(
I − V2,tV T

2,t − 2V1,tV
T
1,t

)
∇2U(Xt)V2,tdt .
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(we refer to [110, Section 3.2.3] to derive the case ε′ > 0, where the constraints are now that
|v1|2 = |v2|2 = 1 and vT1 v2 = 0).

This variation can be generalised to any degree of degeneracy of the smallest eigenvalue, i.e.
for k ⩾ 2 modifying the drift H1 in the vicinity of the set where λ1(x) = · · · = λk(x) (generically
these sets are empty for k > 2, but in many practical cases they are not, due to some symmetries
in the problem).

5.2 Theoretical analysis

Before turning to numerical experiment, we are interested in the existence of the different pro-
cesses, and some of their properties, mainly in the long time limit. For the well-known Langevin
process, we refer to [110, 112].

A valuable tool to study long time behavior of a process is the Doeblin condition. A Markov
kernel P : Td →M1(Td) is said to satisfy a Doeblin condition if there exist c > 0 and a proba-
bility measure µ such that for all x ∈ Td, P(x) ⩾ cµ. This implies that (Pn)n converges in total
variation to the unique probability measure µ∞ such that µ∞P = µ∞, see for example [79]. In
the continuous-time setting, this can be written as follow: there exists t0, c > 0 and a probability
measure µ, such that δxPt0 ⩾ cµ for all x ∈ Td, with Pt the semi-group of the process, and δxPt0

is hence the law of the process starting from x a time t0.

5.2.1 Noisy ISD and Noisy GAD

Since we work on the compact torus and the drift of the noisy ISD (5.2) is measurable and
bounded, the well-posedness and long-time behavior follows from classical results on diffusion
processes. We summarize these results on the next proposition. Apart from the continuous-time
equation (5.2), we are also interested in the corresponding Euler-Maruyama scheme. The noisy
ISD is covered by the following:

Proposition 5.2.1. Consider σ > 0, b : Td → Rd measurable and bounded, and X solution to

dXt = b(Xt)dt+ σdBt. (5.6)

Strong existence: for any initial condition x0 ∈ Td, and Brownian motion B, there exists a unique
Markov process Xx0 solution to equation (5.6), with Brownian motion B and initial condition
x0.

Moreover, this process admits a unique invariant probability measure which admits a density
with respect to the Lebesgue measure, and the law of the process converges exponentially fast
towards this stationary measure in the total variation distance.

The Euler-Maruyama scheme defined for δ > 0 by

Xn+1 = Xn + δb(Xn) +
√
δGn

with (Gn)n a sequence of standard Gaussian variables, admits as well a unique stationary measure
µδ, and there exists c, C, δ0 > 0 independent from δ such that for all 0 < δ < δ0, x0 ∈ Td:

∥Law(Xn)− µδ∥TV ⩽ Ce−cδn.

Proof. The existence of a unique solution Xx0 to Equation (5.6) with initial condition x0 comes
from [154, Corrolary 7.1.7 and 8.1.7]. By Itô’s formula, the law Mx0 of (Xx0

t )t∈[0,T ] (a probability
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measure on C([0, T ],Td)) is a measure solution to the Kolmogorov equation

∂tM
x0 = L∗Mx0 ,

where L∗ is the dual in L2(Rd) of the generator

Lφ = b(x) · ∇φ+
σ2

2
∆φ,

in the sense that for all function φ ∈ C2([0, T ]× Td,R)∫
[0,T ]×Td

(∂t − L)φ(t, x)Mx0(dt,dx) = 0.

Thus, according to [18, Proposition 6.5.1], Law(Xx0
t ) (the time-marginal of Mx0) admits a

density hx0(t, ·) with respect to the Lebesgue measure, for all t > 0, and for any compact interval
J ⊂ R+

hx0 ∈ Hp,1(J) :=

{
u : R+ × Td → R,

∫
J

∥u(t, ·)∥Hp,1dt <∞
}
,

where ∥ · ∥Hp,1 is the classical Sobolev norm, for some p > d+ 2. Since we are in a compact set,
hx0 ∈ H2,1, and [18, Proposition 6.2.7] yields that hx0 satisfies an Harnack inequality for t great
enough: there exists C, τ > 0 such that for all x0 ∈ Td and t great enough:

sup
Td

hx0(t− τ, ·) ⩽ C inf
Td
hx0(t, ·).

Since hx0(t−τ, ·) is a probability density, we have supTd hx0(t−τ, ·) ⩾ Leb(Td), where Leb stands
for the Lebesgue measure. In particular, there exists t0 > 0 such that:

inf
x0∈Td

inf
Td
hx0(t0, ·) > 0.

This is a Doeblin condition for the law of the process, with reference measure the Lebesgue
measure, and in particular it classically implies the existence of a unique stationary measure for
the process (5.2) and the exponential convergence of the law at time t toward this equilibrium.

For the Euler-Maruyama scheme, fix n = ⌊t/δ⌋, and write:

Xx0
n = x0 + δ

n−1∑
k=0

b(Xx0

k ) +
√
δ

n−1∑
k=0

Gk,

and

G = n−1/2
n−1∑
k=0

Gk.

We have δ
∑n−1

k=0 b(X
x0

k ) ⩽ t∥b∥∞. If A ⊂ Td is a measurable set, we are looking for a lower
bound on P(Xx0

n ∈ A). Let X̄x0
n be the Euler scheme seen on Rd rather than Td (considering b

as a periodic function), with initial condition given as the representant of x0 in [0, 1)d and let Ā
be the intersection of [0, 1)d with the pre-image of A by the periodic quotient Rd → Td. Then,
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P(Xx0
n ∈ A) ⩾ P(X̄x0

n ∈ Ā), and

P(X̄x0
n ∈ Ā) = P

(
√
nδG ∈ Ā− x0 − δ

n−1∑
k=0

b(Xk)

)

⩾ inf
|a|⩽2πd+t∥b∥∞

∫
Ā−a

e−|y|2/(t−δ)dy

⩾ e−2(4πd+t∥b∥∞)/tLeb(A).

In other words, the n-step transition kernel of the Euler scheme satisfies a Doeblin condition
with constant independent from the step size δ. This implies the existence of a unique stationary
measure µδ such that for all k ∈ N,

∥Law(Xk⌊t/δ⌋)− µδ∥TV ⩽ αk∥Law(X0)− µδ∥TV .

This gives for all n ∈ N

∥Law(Xn)− µδ∥TV ⩽ ∥Law(X⌊t/δ⌋⌊n/⌊t/δ⌋⌋)− µδ∥TV

⩽ α⌊n/⌊t/δ⌋⌋∥Law(X0)− µδ∥TV ⩽ Ce−cδn,

which concludes the proof.

We now turn to the analysis of the noisy GAD (5.3). When ε′ > 0, we get an elliptic
diffusion with bounded drift on a smooth compact manifold with no boundary, so essentially the
adaptation of Proposition 5.2.1 in this more general context apply. In the following we focus on
the case ε′ = 0. Indeed, one may think that it is only necessary to have noise on the position
in order to visit the whole space, and then the auxiliary vector V will go to the associated
eigenvectors. The question is whether the process is hypoelliptic and controllable. However, it is
clear that it cannot be the case in general, simply by considering counter-examples of the form

U(x) =

d∑
i=1

Ui(xi) .

Indeed, in these cases, if e.g. v0 = (1, 0, ..., 0), then vt = v0 for all t ⩾ 0, hence there are no hope
of having a unique stationary measure, and convergences towards it for all initial conditions. Let
us discuss some some additional conditions that ensure this result. First, notice that if (Xt, Vt)t⩾0

is a noisy GAD then so is (Xt,−Vt)t⩾0. In fact the relevant variable to define the process is not
Vt but the class {Vt,−Vt} on the projective sphere Pd = Sd−1/R with the equivalence relation
given by vRu iff u = −v or u = v, and we identify the process with its projection on Td × Pd

(which is still a Markov process, solution of the same SDE (5.3) but where the drift of Vt is seen
as a vector field on Pd).

Proposition 5.2.2. If U is C3, then the noisy GAD is well-defined in the sense that there exists a
unique strong solution to Equation (5.3). If in addition, we suppose that the potential U satisfies
the following:

• There exists (x̃, ṽ) ∈ Td × Pd such that:(
∂xi
∇2U(x̃)ṽ

)
1⩽i⩽d

spans ṽ⊥.
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• For all v ∈ Pd, there exists H in the convex hull of the set{
∇2U(x), x ∈ Td

}
such that, denoting by (λ̃i) the ordered eigenvalues of H and (ṽi) the associated eigenvectors,{

v = ṽ1,

λ̃1 < λ̃2.

Then the noisy GAD admits a unique stationary measure µGAD on Td×Pd with a positive
density with respect to the Lebesgue measure. Moreover, for any initial condition, the law
at time t of the process converges exponentially fast to µGAD in total variation.

Remark 5.2.1. The second condition is implied by: For all v ∈ Pd, there exists x ∈ Td such
that {

v = v1(x),
λ1(x) < λ2(x).

Proof. If U is C3, then the noisy GAD is an SDE with Lipschitz coefficient, hence its well-
posedness. The first additional assumption ensures that the generator of the noisy GAD

L = −(I − 2vvt)∇U(x) · ∇x + ε∆x −
1

η
(I − vvt)∇2U(x)v · ∇v

satisfies a weak Hörmander condition at (x̃, ṽ), see [152].
Next, we want to establish the controllability of the process, in the following sense: fix

(xini, vini), (xf , vf ) ∈ Td × Pd, δ > 0. We want to show that there exists T > 0 and a control
u ∈ C0([0, T ],Rd) such that the solution of{

x′(t) = −
(
I − 2v(t)v(t)T

)
∇U(x(t)) + u(t),

v′(t) = − 1
η (I − v(t)v(t)

T )∇2U(x(t))v(t),
(5.7)

with (x(0), v(0)) = (xini, vini), satisfies ∥(x(1), v(1))− (xf , vf )∥ ⩽ δ.
We first suppose that vini and vf are not orthogonal. Fix H such that the second condition

of Proposition 5.2.2 is satisfied with v = vf , and x1, . . . , xp, and α1, . . . , αp such that

H =

p∑
i=1

αi∇2U(xi),

p∑
i=1

αi = 1.

Fix T > 0, n ∈ N, and γ > 0 such that T = n(γ + γ2 + 2γ4) + γ2 + γ4. Write βi = α1 + ...+ αi,
and for k ∈ J0, nK:

u(t) =



(−xini + x1)/(α1γ
2) if 0 < t < α1γ

2,
(I − 2v(t)v(t)t)∇U(x1) if α1(γ

2 + γ4) < t < α1(γ + γ2 + γ4),
(xi+1 − xi)/(αi+1γ

2) if (k + βi)(γ + γ2 + 2γ4)
< t < (k + βi)(γ + γ2 + 2γ4) + αi+1γ

2,
(I − 2v(t)v(t)t)∇U(xi) if (k + βi)(γ + γ2 + 2γ4) + αi+1(γ

2 + γ4)
< t < (k + βi+1)(γ + γ2 + 2γ4)− αi+1γ

4,
(xf − xp)/γ2 if T − γ2 < t < T,
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and u is linear on the remaining intervals of size γ4. Write as well

x̄(t) = xi for (k + βi−1)γ < t < (k + βi)γ, k ∈ N.

As γ goes to 0, v converges towards the solution to

v̄′(t) = −1

η
(I − v̄(t)v̄(t)T )∇2U(x̄(t))v̄(t)

which is itself close to
w′(t) = −1

η
(I − w(t)w(t)T )Hw(t).

For clarity, we only show the second point which is the more complex one. We may write for all
0 ⩽ u ⩽ T : ∥∥∥∥∫ u

0

(I − v̄sv̄ts)∇2U(x̄)v̄sds−
∫ u

0

(I − v̄sv̄ts)Hv̄sds
∥∥∥∥

⩽

∥∥∥∥∥
∫ u

0

(I − v̄sv̄ts)∇2U(x̄)v̄sds−
m−1∑
k=0

p∑
i=1

(I − v̄kγ v̄tkγ)∇2U(xi)v̄kγαiγ

∥∥∥∥∥
+

∥∥∥∥∥
m−1∑
k=0

p∑
i=1

(I − v̄kγ v̄tkγ)∇2U(xi)v̄kγαiγ −
m−1∑
k=0

p∑
i=1

(I − v̄kγ v̄tkγ)Hv̄kγγ

∥∥∥∥∥
+

∥∥∥∥∥
m−1∑
k=0

p∑
i=1

(I − v̄kγ v̄tkγ)Hv̄kγγ −
∫ u

0

(I − v̄sv̄ts)Hv̄sds

∥∥∥∥∥ .
where m = ⌊u/γ⌋. By hypothesis on H, the second term is 0. v̄ depends on γ by definition,
but it is ∥∇U∥∞-Lipschitz for all γ > 0, hence the first and third term are going to 0 as γ → 0,
uniformly on 0 ⩽ u ⩽ T . The map v 7→ (I − vvt)Hv is C1 on a compact set, hence is Lipschitz.
Thus we have:

∥v̄(u)−w(u)∥ ⩽ L

∫ u

0

sup
r<s
∥v̄(r)−w(r)∥ds+

∥∥∥∥∫ u

0

(I − v̄sv̄ts)∇2U(x̄)v̄sds−
∫ u

0

(I − v̄sv̄ts)Hv̄sds
∥∥∥∥ ,

and

sup
0⩽u⩽T

∥v̄(u)− w(u)∥ ⩽ eLT sup
0⩽u⩽T

∥∥∥∥∫ u

0

(I − v̄sv̄ts)∇2U(x̄)v̄sds−
∫ u

0

(I − v̄sv̄ts)Hv̄sds
∥∥∥∥ →γ→0

0.

Now, all it remains to do is to fix T > 0 great enough so that w(T ) is in the δ-neighborhood of
vf , then γ small enough so that v(T ) is as well, and n accordingly.

If vini and vf are orthogonal, writing π for the canonical projection from Sd−1 to Pd, there
exists an intermediate vinter which is not orthogonal to neither vini or vf , and the same control
allows to go from (xini, vini) to (xini, vinter) in a time T , and from (xini, vinter) to (xf , vf ) in
another time T .

We conclude with [152, Theorem 2.1] for the existence of the stationary measure and the
convergence, and with [120, Theorem 5.2] for the positive density.
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5.2.2 Switched processes

When the mode (It)t⩾0 is an autonomous Markov chain on a finite set J0,m − 1K, m ∈ N (i.e.,
as it is the case in the processes we have considered in Section 5.1.3, if its jump rate does not
depend on X) then the well-posedness of switched processes of the form

dXt = HIt(Xt)dt+ σIt(Xt)dBt, (5.8)

with some drifts H0, . . . ,Hm−1 immediately follows from the well-posedness of the corresponding
diffusion processes for each i ∈ J0,m− 1K, since the process is then simply defined by induction
along the jump times of I. In particular, in view of the previous section, the ISP (5.4) is well
defined.

Moreover, in general, it is sufficient that one of the diffusion processes satisfies a Doeblin
condition to imply the same for the switched process:

Proposition 5.2.3. If I is irreducible and there exists i0 such that the diffusion (5.8) with It = i0
satisfies a Doeblin condition (see the introduction of Section 5.2), then the switched process admits
a unique invariant probability measure, and the law of the switched process converges exponentially
fast towards this stationary measure.

Proof. The existence results from the previous construction. Fix t0 > 0 such that for all t > t0,
x ∈ Rd, A ⊂ Td measurable,

Px(X̄t ∈ A) ⩾ cl(A)

where c > 0 and X̄ is a solution to equation (5.8) with I0 = i0. Since I is an irreducible Markov
process, we have for t > 0

P(Is = i0, ∀s ∈ [t, 2t]) > 0.

Hence we have:

P(X2t ∈ A, I2t = i0) ⩾ P(X2t ∈ A, Is = i0, ∀s ∈ [t, 2t])

= E
(
PXt

(
X̄t ∈ A

)
1Is=i0,∀s∈[t,2t]

)
⩾ cl(A)P(Is = i0, ∀s ∈ [t, 2t])

= c̃l(A),

which is a Doeblin condition with reference measure l ⊗ δi0 , and this concludes the proof.

Corollary 5.2.1. The ISP is well-defined, admit stationary measure, and its laws converge as
t goes to infinity exponentially fast towards its unique stationary measure in the total variation
distance.

5.3 Numerical experiments

The main goal of the present work is to gain some empirical insights on the qualitative behavior
of the processes introduced in Section 5.1.3 on simple models. Some questions that we have in
particular are the following: what happens if the direction of the gentlest ascend starting from a
local minimum does not correspond to the direction the process has to take eventually to find a
saddle point? How does the process behave in front of attractive singularities of the ISD flow?
How does the efficiency of the process (in terms of exploration) depend on the switching rate?
How does it compare to a basic overdamped Langevin process?
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We will consider three models. The first one is a mixture of Gaussian, for which we can easily
chose where are the minima and the saddle point and what are the gentlest ascend directions at
the minima. The second one is the function studied in [115], for which the unique saddle point is
separated from the two minima by singular lines. Finally, the third example, in higher dimension
and closer to a genuine application, is the Lennard-Johns cluster model with 7 particles.

Contrary to the theoretical analysis, most processes here live on Rd, which may raise a
stability issue. This can be seen in dimension 1, where the process switch between a gradient
descent and a gradient ascent, and thus can be non recurrent, or even explosive e.g. for potential
of the form |x|4 at infinity. This can be solved by a suitable modification of the dynamics outside
some compact set, for instance replacing H1 in (5.4) by H̃1(x) = H1(x)1|x|⩽R +H0(x)1|x|>R or
a smooth interpolation, or adding a deterministic jump from It = 1 to It = 0 when |Xt| ⩾ R.
Then, classical Lyapunov conditions on U implies that the process remains stable. However, this
will not be necessary in our simple numerical experiments.

5.3.1 First 2D model: a mixture of Gaussians

We consider here a mixture of Gaussian in dimension 2. The potential is of the form:

U1(x, y) = − ln

(
1

2
e−(x2+y2) +

1

2
e−sx(x−mx)

2−sy(y−my)
2

)
,

with some parameters mx,my ∈ R, sx, sy > 0. This is a classical model in statistics for multi-
modal problems. Here we take (mx,my) = (4, 0) and consider two cases, either (sx, sy) = (3, 1)
or (sx, sy) = (1, 3), see Figure 5.1 and 5.2. In those figures, we represent a typical trajectory of
the noisy ISD and of the ISP, with ε = 0.03, the final time T = 10, and ν = 0.2 in the case of the
ISP, as well as the level lines of the potential. In these two cases, there are two local minimizers
(x̃1, 0) and (x̃2, 0) separated by a unique saddle point (z̃, 0), where x̃1 < z̃ < x̃2, but they differ
by the direction taken by the saddle search in the well from the left. The yellow part represent
the trajectories of the noisy ISD, or the part of the ISP where It = 1, and in blue the part of the
ISP where It = 0 (corresponding to a gradient descent).

According to the Large Deviation Principle, for a small ε, if the initial condition corresponds
to the right local minima (x̃2, 0), the overdamped Langevin process (5.1) will typically stays in
the vicinity of this minimizer for a time exponentially long with ε, and will likely go from there
to the other minimizer by following in reverse the trajectory of a gradient descent starting from
a point arbitrarily close to the saddle point (which in the present case is a straight line from the
minimum to the saddle point), see [65, Chapter 4, Theorem 2.1] as well as their computation of
the quasi-potential.

In the case (sx, sy) = (3, 1), with some initial condition (x0, 0), z̃ < x0 < x̃2, the noisy (and
deterministic) ISD will follow the same reactive trajectory as the overdamped Langevin process,
the gentlest way to go to the saddle point being here along the gradient, but it happens much
earlier (since this is the behaviour of the deterministic system at ε = 0 and not a large deviation
from it). However, in the case, (sx, sy) = (1, 3), the gentlest way to leave the right minima is
to start along the directions (0, 1) and (0,−1), see figure 5.2. Nevertheless, independently from
this difference in the beginning of the trajectory, in both cases the saddle point is found by the
deterministic dynamics for initial condition between x̃1 and x̃2.

For initial condition (x0, y0) with x0 > x̃2, the ISD goes to infinity. Hence, the dynamics has
to be modified outside some compact set, as explained in the introduction of this section, so that
the process does not escape to infinity. In that case, one only need to wait for the process to
enter the domain of attraction of the saddle point for the deterministic ISD.
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(a) Evolution of U along the noisy ISD. (b) Trajectory of the noisy ISD.

(c) Evolution of U along the switched process. (d) Trajectory of the switched process.

Figure 5.1: Case (sx, sy) = (3, 1)
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(a) Evolution of U along the noisy ISD. (b) Trajectory of the noisy ISD.

(c) Evolution of U along the switched process. (d) Trajectory of the switched process.

Figure 5.2: Case (sx, sy) = (1, 3).
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(a) (sx, sy) = (1, 3). (b) (sx, sy) = (3, 1).

Figure 5.3: Periodized potential.

(a) (sx, sy) = (1, 3). (b) (sx, sy) = (3, 1).

Figure 5.4: Invariant measure of the ISP for ν = 0.1, ε = 0.05.

However, as an alternative way to enforce stability in order to get quantitative results, in
the present case with a simple illustrative purpose, we simply use a periodized version of the
potential. Denote

Ũ1(x, y) = − ln

(
1

2
e−L2(sin2(x/L)+sin2(y/L)) +

1

2
e−L2(sx sin2((x−mx)/L)+sy sin2((y−my)/L))

)
,

where L > 0 is a parameter, see Figure 5.3. This periodized potential has two supplementary
saddle point, but for all (x, y) ∈ R2, limL→∞ Ũ1(x, y) = U1(x, y), and we may defined the ISP
on (πLT)2.

Using a 2-D histogram, ν = 0.1, ε = 0.05, we get a representation of the invariant measure in
Figure 5.4. We see that the invariant measure charges both minima, as well as the saddle point
between the two.

Now, if the goal is to find both minima, then one can find one of them using a gradient
descent, and the second one using the ISP. Since the ISD allows to find the saddle point, then
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Figure 5.5: Time to reach a minima from the other one on the periodized potential.

if the switching rate is low enough, the switched process will do as well, and thanks to the
Brownian noise, after a first switch, will have a positive probability to be in the domain of
attraction for the gradient descent of the second minima, and thus will find it. If it was not
in the right domain of attraction, then the process will go back to the first well, and repeat
the same kind of trajectories. The success of the algorithm is then the same as the one of a
rigged coin flip. For a small ε, as long as the transitions from one well to another are driven
by this switching behaviour, the transition time behaves much better than the exponentially
long time of the overdamped Langevin dynamics (with Brownian-driven rare transitions). At a
fixed ε, when the switching rate becomes too small, the process has to wait for switching events
to cross the saddle (and eventually when it becomes very small the process behaves like the
overdamped Langevin dynamics and the transitions are driven by the small Brownian noise);
on the other hand, a large switching rate induces an averaging phenomenon (the drift along
the gentlest ascend direction vanishes), which impairs the efficiency. Thus, there should be an
optimal switching rate in terms of mean transition time. This is indeed what we observed, see
Figure 5.5. The numerical experiment were conducted with ε = 0.03, (x0, y0) = (4, 0), I0 = 0,
and the time was estimated by Monte-Carlo with n = 15 repetitions.

5.3.2 A 2D model with singular lines

Now we are interested in the following potential:

U2(x, y) = (1− x2)2 + 2y2,

for (x, y) ∈ R2, see Figure 5.6.
The deterministic ISD and GAD have been studied for this potential in [115]. This potential

has two minima, (−1, 0) and (1, 0), and one saddle point (0, 0). However, there are two lines,{
x = ±

√
4/6
}

, for which the Hessian of U has two equal eigenvalues. The deterministic GAD
and ISD cannot cross those lines, and go to infinity, see Figure 5.7. In the noisy case, the
Brownian motion may allow the process to cross the line, see Figure 5.8.

As seen in figure 5.8, the Brownian motion allow to cross the set of singularities, but for
small ε, this crossing may happen far from the set of minima and saddle point, because the
deterministic process satisfies limt→∞ yt = +∞ for x0 >

√
4/6 and y0 > 0, where (xt, yt) is the
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Figure 5.6: Level line of the potential U2.

(a) Evolution of U along the deterministic ISD. (b) Trajectory of the deterministic ISD.

Figure 5.7: ε = 0.0.
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(a) Evolution of U along the noisy ISD. (b) Trajectory of the noisy ISD.

Figure 5.8: ε = 0.05.

ISD. The singular lines are repulsive, and for x >
√
4/6, the process is attracted to the line

{x = 1}. Concretely, for the process to cross the singular line, the noise must be great enough
so that this occurs before the simulation stops due to numerical limits.

Since the existence of this singularity results from a crossing between the eigenvalues of the
Hessian of the potential U2, we study the solution to solve the issue of singularities proposed in
Section 5.1.3, to see in particular if it allows a faster convergences towards the saddle point in
our example here. Recall the set of singularities:

S =
{
(x, y) ∈ R2, λ1(x, y) = λ2(x, y)

}
,

and the modified noisy ISD (writting z = (x, y) and Zt the process):

Zt = −
(
I − 2g(Zt)v1(Zt)

tv1(Zt)− (2− g(Zt)v2(Zt)
tv2(Zt))

)
∇U2(Zt)dt+

√
2εdBt,

with g(z) = f(λ2(z)− λ1(z)) for some function f : R+ → R+ such that f(0) = 1, and f(r) = 2
for r ⩾ r∗, and some small r∗ > 0. As explained, the idea is to replace the reflection with respect
to v1(x)⊥ by a projection on vect(v1(x), v2(x))⊥.

In dimension 2, the process simply becomes a Brownian motion near S. For numerical study
we consider:

f1(r) = 1 + 1r>r∗ ,

and
f2(r) = 1 +

r

r∗
1r⩽r∗ + 1r>r∗ ,

where r∗ > 0 is a fixed parameter. An example of trajectory with f1, is given in Figure 5.9.
We compare the speed at which the process reaches the saddle point with the different cut

function f0 = 2, f1, and f2. We chose as parameter r∗ = 2, x0 = (0.9, 0), and n = 500 trials.
The average of

τ = inf {t ⩾ 0, |Xt| < 0.1} ,

over the n trials is displayed in Figure 5.10 for ε ∈ {0.03, 0.04, 0.05, 0.06}.
We can see that the regularised dynamics reach the saddle point faster than the initial dynamic

with f0. Moreover, as explained before, for smaller values of ε, there is a positive probability
that the process doesn’t reach the saddle point before hitting numerical limits. For a given
temperature ε, this probability is lower for the processes defined from f1 or f2. This possible
failure was not observed in the experiments displayed in Figure 5.10, but for ε = 0.02, we
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(a) Time evolution of U along the noisy f1-modified
ISD. (b) Trajectory of the noisy f1-modified ISD.

Figure 5.9: f1-modified ISD, ε = 0.05.

Figure 5.10: Time to reach the saddle point.
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estimated the probability of failure with 500 trials for each process. We get 0.394 for f0, and
0.046 for f2. Even at ε = 0.02, no failure was observed for f1.

Here we haven’t used any of the modifications discussed at the beginning of Section 5.3 to
enforce stability, in order to study the effects of the singular line on the time needed to find the
saddle point.

5.3.3 Lennard-Jones clusters
We now study numerically the process for a potential in higher dimension. Consider the Lennard-
Jones potential for N = 7 particles in dimension 2, given by

U3(x1, ...xN ) =
∑
i<j

W (|xi − xj |),

where xi ∈ R2 for all 1 ⩽ i ⩽ N , and for r > 0:

W (r) = 4

(
1

r12
− 1

r6

)
.

The potential U is invariant by rotation and translation of the full system and by permutation
of the particles. Once these symmetries are ruled out, it has three non-global local minima, and
an additional global one, represented in Figure 5.11. Lennard-Jones clusters in dimension 2 or 3
are classical models in physics and have been extensively, see e.g. [141, 40] and references within.

We use as initial condition the local minimum such that U ≈ −11, 47, and we compute the
time necessary for the process to visit all minima for different values of ν and ε, estimated over 20
experiments. The average time is given in Figure 5.12. These results confirm the interpretation
of Figure 5.5 discussed in Section 5.3.1. We see that the sensibility of the exploration time to
the switching rate increases as the temperature ε decreases, as should be expected: in the high
frequency regime, the drift along the gentlest ascent direction averages to zero so that, in that
direction, the process moves at the speed of a Brownian motion with variance ε; in the low
frequency regime, the transitions between different wells are driven by the Brownian noise and
thus follow an Eyring-Kramers formula, so that the mean transition time is exponentially large
with ε−1.

Since U3 is invariant by global translations and rotations of the system, 0 is always an eigen-
value of its Hessian, associated to eigenvectors which are orthogonal to ∇U3. As a consequence,
at points x where ∇2U3(x) has no negative eigenvalue, the ISD dynamics is the same as the
gradient descent dynamics. For a real application, these known symmetries should be taken into
account in order to avoid this. However, as we saw, even without addressing this issue, the ISP
still finds all minima faster than the Langevin process: even though the gentle ascend behaviour
plays no role in the vicinity of minimizers, it still makes saddle points locally attractive for the
dynamics, which is a key point for the efficiency of the exploration.



5.3. Numerical experiments 153

(a) U ≈ −11, 40 (b) U ≈ −11, 47

(c) U ≈ −11, 50 (d) U ≈ −12, 53

Figure 5.11: List of minimizers of U

Figure 5.12: Time to visit all minima of the Lennard-Jones cluster.
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Part III

Fleming-Viot processes





Chapter 6

Convergence of a particle
approximation for the
quasi-stationary distribution of a
diffusion process: uniform estimates
in a compact soft case.
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Abstract : We establish the convergences (with respect to the simulation time t; the number
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these conditions, quantitative bounds are obtained that, for each parameter (t→∞, N →∞ or
γ → 0) are independent from the two others.

157



158 CHAPTER 6. Particle approximation for the quasi-stationary distribution of a diffusion.

6.1 Introduction

6.1.1 The problem

Start from the diffusion on the d-dimensional periodic flat torus Td

dZt = b(Zt)dt+ dBt (6.1)

with b ∈ C1(Td), where (Bt)t⩾0 is a d-dimensional Brownian motion. Add a killing rate λ ∈ C(Td)
and, given a standard exponential random variable E independent from (Zt)t⩾0, define the death
time

T = inf

{
t ⩾ 0, E ⩽

∫ t

0

λ(Zs)ds
}
. (6.2)

Then a probability measure ν on Td is said to be a quasi-stationary distribution (QSD) associated
to the SDE (6.1) and the rate λ if

Law(Z0) = ν ⇒ ∀t ⩾ 0, Law(Zt | T > t) = ν .

In our case, there exists a unique QSD ν∗ and, whatever the initial distribution η0 of Z0,

Law(Zt | T > t) −→
t→∞

ν∗

see e.g. [32, Theorem 2.1]) or Corollary 6.2.8 below.
The present work is dedicated to the proof of convergence of an algorithm designed to approx-

imate ν∗. This is classically done through a system of N interacting particles whose empirical
measure converges to Law(Zt | T > t) as N → ∞, where killed particles are resurrected in a
suitable way in order to keep constant the size of the system (while a naive Monte Carlo sim-
ulation would see the sample shrink along time). This question has already been addressed by
many authors in various contexts, see the discussion in Section 1.3.3. Before introducing the
algorithm, stating our results and comparing them with previous works, for now, let us simply
highlight the main specificities of the present work.

The first novelty is that we take into account the time-discretization of the continuous-time
diffusion. That way, we establish error bounds between the theoretical target QSD and the
empirical measure indeed obtained with an actual implementation of the algorithm. There are
three sources of errors: first, the continuous-time SDE (6.1) has to be discretized with some
time-step parameter γ > 0. Second, as will be detailed below, a non-linearity in the theoretical
algorithm has to be approximated by a system of N particles. This leads to the definition of an
ergodic Markov chain whose invariant measure is close, in some sense, for large N , to the QSD
of the time-discretization of the diffusion. But then this Markov chain is only run for a finite
simulation time t = mγ, m ∈ N. A third error term then comes from the fact that stationarity
is not fully achieved. We will obtained quantitative error bounds in γ, N and t.

A second specifity is that the bound obtained for each parameter will be uniform in the other
two. For instance, the only other work in which the long-time convergence of the chain is proven
to be, under some (restrictive) conditions, uniform in N , is [38] in a finite state space. Besides,
our work is quite close in spirit to this work of Cloez and Thai.

Finally, although it was not the primary motivation of the present work, it seems that the
particular definition of the system of interacting particles considered here, in particular the
rebirth mechanism, was not considered in previous works (where, basically, killed particles are
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resurrected at the position of one of the other particles). Our variant is initially motivated by
the property stated in Proposition 6.1.1 below, which has been indicated to the second author
by Bertrand Cloez. Yet, this variant has the unintended advantage to be both discrete in time
and non-failable, in the sense that it is well-defined for all times, even though all particles die
simultaneously from time to time (see also [142] on this question).

Note that we restrict the study to a compact state space. Moreover, we only consider soft
killing at some continuous rate, and no hard killing which would correspond to the case where
T is the escape time from some sub-domain (see e.g. [11, 48]). Finally, as will be seen below,
as far as the long-time behaviour of the process is concerned we will work in a perturbative
regime, namely we will assume that the variations of λ are small with respect to the mixing
time of the diffusion (6.1) (while ∥λ∥∞ itself is not required to be small). These very restrictive
conditions, which rule out many cases of practical interest, have to be considered in light of
our very strong results (Theorems 6.1.1 and 6.1.2 below and all the corollaries of Section 6.2.5,
gathered in Figure 6.1). In fact, although already interesting by itself, this restricted framework
can be thought as a toy model motivated in particular by the case that arises in the parallel
replica algorithm [104]. In that case, T is the escape time for (6.1) from a bounded metastable
domain, so that the lifespan of the process is expected to be larger than its mixing time (and
to depend little from the initial condition, given it is far enough from the boundary). Hence,
the compact and perturbative assumptions are consistent with this objective. The restriction to
smooth killing rate, however, is made to avoid additional difficulties in the hard case where, even
in the metastable case, the probability to leave the domain is high (and exhibits high variations)
when the process is close to its boundary. The initial motivation of the present study was to
test the general strategy of the proof (via coupling aguments) in a first simple case, with the
goal of extending it later on to the metastable hard case by combining it with some Lyapunov
arguments to control the variations of the killing rate near the boundary. This is postponed for
future work.

This chapter is organized as follows. The algorithm and main results are presented in Sec-
tion 6.1.2. Section 6.2 contains the proofs, and more precisely: a general coupling argument,
which is the central tool for all our results, is presented in Section 6.2.1; the basic bounds in
terms of t→ +∞, N → +∞ and γ → 0 are then stated and proven respectively in Sections 6.2.2,
6.2.3 and 6.2.4; finally, these basic results are combined in Section 6.2.5, concluding the proofs
of the main theorems and inducing a number of corollaries.

Notations and conventions

We respectively denote P(F ) and B(F ) the set of probability measures and of Borel sets of a
Polish space F . Functions on Td are sometimes identified to [0, 1]d-periodic functions, and similar
non-ambiguous identifications are performed, for instance if x ∈ Td and G is a d-dimensional
standard gaussian random variable, x + G has to be understood in Td, etc. A Markov kernel
Q on F is indiscriminately understood as, first, a function from F to P(F ), in which case we
denote Q : x 7→ Q(x, ·) (where Q(x, ·) denotes the probability A ∈ B(F ) 7→ Q(x,A) ∈ [0, 1]);
second, a Markov operator on bounded measurable functions on F , in which case we denote
Q : f 7→ Qf (where Qf(x) =

∫
f(w)Q(x, dw)); third, by duality, a function on P(F ), in which

case we denote Q : µ 7→ µQ (so that µ(Qf) = (µQ)f). In particular, Q(x, ·) = δxQ for x ∈ F .
If µ ∈ P(F ) and k ∈ N∗, we denote µ⊗k ∈ P(F k) the law of a k-uplet of independent random
variables with law µ. Similarly, if Q is a Markov kernel on F , we denote Q⊗k the kernel on
F k such that Q⊗k(x, ·) = Q(x1, ·) ⊗ · · · ⊗ Q(xk, ·) for all x = (x1, . . . , xk) ∈ F k. We denote
E(1) the exponential law with parameter 1, U(I) the uniform law on a set I and N (m,Σ) the
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Gaussian law with mean m and variance matrix Σ. We use bold letters for random variables in
TdN and decompose them in d-dimensional coordinates, like X = (X1, . . . , XN ) with Xi ∈ Td,
or X1 = (X1,1, . . . , XN,1).

6.1.2 The algorithm and main result

Starting from the diffusion (6.1) killed at time T given by (6.2), we introduce two successive
approximations. The first is time discretization. For a given time step γ > 0 and a sequence
(Gk)k∈N of independent random variables with law N (0, Id), we consider the Markov chain on
Td given by Z̃0 = Z0 and

∀k ∈ N , Z̃k+1 = Z̃k + γb(Z̃k) +
√
γGk (6.3)

and, given E ∼ E(1) independent from (Gk)k∈N and Z0,

T̃ = inf

{
t = nγ, n ∈ N∗, E ⩽ γ

n∑
k=1

λ(Z̃k)

}
.

From classical results for Euler schemes of diffusions (see e.g. [131]), it is quite clear that, for
any A ∈ B(Td) and all t ⩾ 0,

P
(
Z̃⌊t/γ⌋ ∈ A, T̃ < t

)
−→
γ→0

P (Zt ∈ A, T < t) ,

from which, for all t ⩾ 0,

Law
(
Z̃⌊t/γ⌋ | T̃ < t

)
−→
γ→0

Law (Zt | T < t)

(we will prove this, see Corollary 6.2.4 below). Note that, from the memoryless property of the
exponential law, given a sequence (Uk)k∈N of independent variables uniformly distributed over
[0, 1] and independent from (Gk)k∈N and Z0, then ((Z̃n)n∈N, T̃ ) has the same joint distribution
as ((Z̃n)n∈N, T̂ ) with

T̂ = inf
{
t = nγ, n ∈ N∗, Un ⩽ p(Z̃n)

}
where p(z) = 1− exp(−γλ(z)) is the probability that, arriving at state z, the chain is killed.

A naive Monte Carlo sampler for the QSD would be to simulate N independent copies of the
chain (6.3) killed with probability z 7→ p(z) and to consider after a large number of iterations the
distribution of the copies that have survived. However, after a long time, most copies (possibly
all) would have died and the estimator would be very bad. To tackle this issue, we have to
introduce a rebirth mechanism to reincorporate dead particles in the system.

Denote K : Td → P(Td) the Markov kernel associated with the transition (6.3), i.e.

Kf(x) = (2π)−d/2

∫
Rd

f (x+ γb(x) +
√
γy) e−

1
2 |y|

2

dy .

For µ ∈ P(Td), let Qµ be the Markov kernel such that, for all x ∈ Td, Qµ(x, ·) is the law of the
random variable X defined as follows. Let (Xk, Uk)k∈N be a sequence of independent random
variables such that, for all k ∈ N, Xk and Uk are independent, Uk ∼ U([0, 1]) and X0 ∼ K(x, ·)
while, for k ⩾ 1, Xk ∼ µK. Let H = inf{k ∈ N, Uk ⩾ p(Xk)}, and set X = XH . Since λ is
bounded, p is uniformly bounded away from 1 and thus H is almost surely finite, so that Qµ is
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well-defined.
In other words, a random variable X ∼ Qµ(x, ·) may be constructed through the following

algorithm (in which new means: independent from all the variables previously drawned).

1. Draw X0 ∼ N (x+ γb(x), γId) and a new U0 ∼ U([0, 1]).

2. If U0 ⩾ p(X0), set X = X0 in Td (in that case, we say the particle has moved from x to
X0 without dying).

3. If U0 < p(X0) then set i = 1 and, while X is not defined, do:

(a) Draw a new X ′
i distributed according to µ, a new Xi ∼ N (X ′

i + γb(X ′
i), γId) and a

new Ui ∼ U([0, 1]).
(b) If Ui ⩾ p(Xi), set X = Xi in Td (in that case, we say the particle has died, resurrected

at X ′
i, moved to Xi and survived).

(c) If Ui < p(Xi), set i← i+ 1 (in that case, we say the particle has died, resurrected at
X ′

i, moved to Xi and died again) and go back to step (a).

From this, we define a chain (Yk)k∈N as follows. Set Y0 = Z0 and suppose that Yk has been
defined for some k ∈ N. Let ηk = Law(Yk), and draw a new Yk+1 ∼ Qηk

(Yk, ·). This somewhat
intricate definition is motivated by the following results (whose proof is postponed to Section
6.2):

Proposition 6.1.1. For all n ∈ N

ηn = Law
(
Z̃n | T̃ > nγ

)
.

In particular, as n→∞, the law ηn of Yn converges toward the QSD of Z̃. Unfortunately, it
is impossible to sample (Yk)k∈N in practice since this would require to sample according to ηk for
any k ∈ N. This is a classical case of a time-inhomogeneous Markov chain which is interacting
with its own law or, similarly, of a measure-valued sequence (ηk)k∈N with a non-linear evolution.
Such processes arise in many applications, see e.g. [43, 42] and references within. Motivated by
the Law of Large Numbers, we are lead to a second approximation, which is to use mean-field
interacting particles. For a fixed N ∈ N∗ and for x = (xi)i∈J1,NK ∈ TdN , we denote

π(x) :=
1

N

N∑
i=1

δxi
∈ P(Td)

the associated empirical distribution. Then we define the Markov operator R on TdN as

R (x, ·) = Qπ(x)(x1, ·)⊗ · · · ⊗Qπ(x)(xN , ·) .

In other words, a random variable Y ∼ Q(x, ·) is such that the Yi’s are independent with
Yi ∼ Qπ(x)(xi, ·). In order to specify the parameters involved, we will sometimes write RN,γ for
R.

Let us informally describe the transitions of such a Markov chain (Xk)k∈N: the ith particle
follows the transition given by (6.3) independently from the other particles until it dies. If it dies
at a step k ∈ N∗, then it is resurrected on another particle XJ,k−1 with J uniformly distributed
over J1, NK (in particular and contrary to most previous works on similar algorithms, J = i is
not excluded, although it doesn’t change much since its probability vanishes as N → ∞) and
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immediatly performs a step of (6.3); if it dies again after this unique step, it is resurrected again
and performs a new step, and so on until it is not killed after a resurrection and an Euler scheme
step. Then this is the new value Xi,k from which the particle follows again the transitions (6.3)
until its next death, etc.

Note that there is no problem of simultaneous death since at step k the particles are resur-
rected on positions at step k − 1, which are well-defined even if all particles die at once at step
k.

It is easily seen that R admits a unique invariant measure toward which the law of the
associated Markov chain converges exponentially fast (in the total variation sense for instance),
but a naive argument yields a convergence rate that heavily depends on N (and possibly γ).
Similarly, classical studies can be conducted for the limits N → ∞ and γ → 0 but again with
estimates that are typically exponentially bad with respect to the total simulation time. In
the following we will focus on a somewhat perturbative regime under which we will establish
estimates for each of these limits that are uniform with respect to the other parameters. Even
for the continuous-time process (corresponding to γ = 0 , see Section 6.2.4 for the definition),
such uniform results are new (see Corollaries 6.2.3 and 6.2.5).

Recall that the W1 Wasserstein distance between µ, ν ∈ P(Td) is defined by

W1 (µ, ν) = inf {E (|X − Y |) : X ∼ µ, Y ∼ ν} .

More generally, for ρ a distance on some Polish space F , denoteWρ the corresponding Wasserstein
distance on P(F ), defined by

Wρ (µ, ν) = inf {E (ρ(X,Y )) : X ∼ µ, Y ∼ ν} . (6.4)

If X ∼ µ and Y ∼ ν, we call (X,Y ) a coupling of µ and ν. If (X,Y ) is a coupling for which the
infimum in (6.4) is attained, we say that it is an optimal coupling. From [164, Corollary 5.22],
such an optimal coupling always exists.

Our first main result is a long-time convergence rate uniform in N :

Theorem 6.1.1. There exist c1, c2, γ0 > 0 and a distance ρ on Td equivalent to the Euclidean
distance, that depend only on the drift b and the dimension d, such that, if λ is Lipschitz with a
constant Lλ and

κ := c1 − c2Lλe
γ∥λ∥∞ , (6.5)

then the following holds: for all γ ∈ (0, γ0], N ∈ N and all µ, ν ∈ P(TdN ), considering the
distance ρN (x, y) =

∑N
i=1 ρ(xi, yi) for x, y ∈ TdN ,

WρN
(µRN,γ , νRN,γ) ⩽ (1− γκ)WρN

(µ, ν) .

As a consequence, there exists C > 0 that depends only on b and d such that for all γ ∈ (0, γ0],
m,N ∈ N and all µ, ν ∈ P(TdN ),

W1

(
µRm

N,γ , νR
m
N,γ

)
⩽ CN (1− γκ)m .

This means that, with respect to the metric ρN , RN,γ has a Wasserstein curvature of γκ in
the sense of [93].

Theorem 6.1.1 is proven in Section 6.2.2. From this first result, similar bounds can be obtained
for large N and small γ (see Sections 6.2.3 and 6.2.4). Combining all these results eventually
yields a quantitative bound on the error made in practice by approximating ν∗ by the empirical
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distribution of the particular particle system:

Theorem 6.1.2. Under the conditions of Theorem 6.1.1, suppose that κ given by (6.5) is posi-
tive. There exists C > 0 such that for all N ∈ N, γ ∈ (0, γ0], t ⩾ 0 and µ0 ∈ P(TdN ), if (Xk)k∈N
is a Markov chain with initial distribution µ0 and transition kernel RN,γ ,

E
[
W1

(
π(X⌊t/γ⌋), ν∗

)]
⩽ C

(√
γ + α(N) + e−κt

)
,

where

α(N) =


N−1/2 if d = 1 ,
N−1/2 ln(1 +N) if d = 2 ,
N−1/d if d > 2 .

All the constants in Theorems 6.1.1 and 6.1.2 (and all other results stated in this work) are
explicit. More precisely, c1 and γ0 come from [122, Corollary 2.2] (see Proposition 6.2.1 below)
where an explicit value is given, and all the other constants involved in our results can be tracked
by following the explicit computations.

In Theorem 6.1.2, the speeds of the different convergences (exponential in the simulation
time, with the square-root of the timestep and with α of the number of particles) are optimal
since they are optimal for non-interacting diffusions (i.e. the case λ = 0), see in particular [62]
for the large N asymptotic.

Other intermediary results will be established in the rest of the paper that are interesting by
themselves: propagation of chaos (i.e. N →∞) and continuous-time limit at a fixed time (even
without the condition κ > 0) respectively in Propositions 6.2.4 and 6.2.5. From that, results for
the continuous-time process (γ = 0), the equilibria (t =∞) or the non-linear process (N =∞),
or when two parameters among three are sent to their limits, are then simple corollaries, see
Section 6.2.5. All these results are summarised in Figure 6.1 at the end of this work.

Note that exp(−γλ(x)) is the probability that the chain is not killed when it arrives at state
x. The time step γ should be chosen in such a way that this probability is relatively large, say
at least one half. In that case, exp(γ∥λ∥∞) is typically close to 1. In other words, the positivity
of κ given by (6.5) is mostly a condition about Lλ being small enough.

This perturbation condition is different from the one considered in [133], where ∥λ∥∞ rather
than Lλ is supposed to be small (while our main arguments are a direct adaptation of the
coupling arguments of [133]). This difference comes from the fact that, in the present study, we
work with the W1 distance rather than the total variation one (which is a Wasserstein distance
but associated to the discrete metric d(x, y) = 1x ̸=y). Indeed, in our coupling arguments, we
need to control |λ(x)− λ(y)| the difference between the death rates of two processes at different
locations, which is bounded here by Lλ|x− y| and in [133] by 2∥λ∥∞1x ̸=y. In fact our argument
for the long-time convergence may easily be adapted to the total variation distance framework,
following [133]. Nevertheless this would be more troublesome in the study of the limit N →∞.
Then, one needs to couple ηk (that admits a density with respect to the Lebesgue measure) with
π(Xk) (which is a sum of Dirac masses), so that the total variation distance is not adapted. This
may be solved by considering W1 → total variation regularization results for (Euler schemes of)
diffusions, that can be established by coupling arguments again. Nevertheless, in order to focus
on the other difficulties of the problem and for the sake of clarity, we decided to stick to the
W1 distance in all the different results of this work. Similar Wasserstein coupling arguments
have been used in [38] on a similar problem (see next section) and in [167] for a different kind of
mean-field interacting particle system (also with a similar perturbative condition corresponding
to the fact σ in [167, Proposition 3.1] has to be positive, i.e. the interaction should be small with
respect to the independent mixing).
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Notice that, among all possible discretization schemes, we only considered the explicit Euler-
Maruyama one. This choice was made for simplicity, but the proofs could be extended to other
usual schemes. The main ingredient required is a Wasserstein curvature of order γ for a modified
W1 distance (see Proposition 6.2.1, based on [122, Corollary 2.2]). Similarly, we only considered
the case of an elliptic diffusion process with a constant diffusion matrix for simplicity (since we use
[122, Corollary 2.2] which covers this case), although a similar Wasserstein contraction certainly
holds in a much more general framework (even hypoelliptic non-elliptic, as in continuous-time
settings [56]). As stated in the introduction, the present paper does not aim at the broadest
generality, and by avoiding technicalities we want to highlight the main issue (i.e. the question
of the uniformity of bounds in the various parameters).

6.2 Proofs

Let us first establish the preliminary result stated in the introduction:

Proof of Proposition 6.1.1. For n ∈ N, denote

ηn = Law(Yn) , νn = Law
(
Z̃n | T̃ ⩾ nγ

)
.

Since ν0 = η0, suppose by induction that νn = ηn for some n ∈ N. Keeping the notations
introduced in the definition of the kernel Qµ, consider the events Bk = {Uk ⩾ p(Xk)}. Then, for
all bounded measurable f ,

Qµf(x) = E (f(X))

= E

(
f(X)

∑
k∈N

1Bk∩(
⋂k−1

j=0 Bc
j )

)

= E
(
f(X0)1U0⩾p(X0)

)
+
∑
k⩾1

E
(
f(Xk)1Uk⩾p(Xk)

) k−1∏
j=0

P
(
Bc

j

)
= K [f(1− p)] (x) +

∑
k⩾1

µK [f(1− p)] (µKp)k−1
Kp(x) .

In particular, integrating with respect to µ, we obtain

µQµf = µK [f(1− p)]
∑
k∈N

(µKp)
k

=
µK [f(1− p)]
µK [1− p]

.

Applied with µ = ηn, this reads

ηn+1f = E (f(Yn+1)) = E (E (f(Yn+1) | Yn)) = ηnQηn
f =

ηnK [f(1− p)]
ηnK [1− p]

.

On the other hand,

E
(
f(Z̃n+1)1T̃>(n+1)γ

)
= E

(
f
(
Z̃n+1

)
1T̃>nγ1Un⩾p(Z̃n+1)

)
= E

(
f
(
Z̃n+1

)(
1− p

(
Z̃n+1

))
1T̃>nγ

)
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= P
(
T̃ > nγ

)
νnK [f(1− p)] ,

frow which

νn+1f =
E
(
f(Z̃n+1)1T̃>(n+1)γ

)
P
(
T̃ > (n+ 1)γ

) =
P
(
T̃ > nγ

)
νnK [f(1− p)]

P
(
T̃ > nγ

)
νnK [1− p]

=
νnK [f(1− p)]
νnK [1− p]

,

which concludes.

6.2.1 The basic coupling

The long-time estimates needed to prove convergence toward equilibrium and uniform in time
estimates in N and γ are based on the fact that, as long as particles don’t die, they follow the
chain (6.3) which, like its continuous-time counterpart (6.1), have some mixing properties. In
order to quantify the latters, we start by stating [122, Corollary 2.2] in a suitable way in our
context.

Proposition 6.2.1. There exists c1, a, γ0 > 0 (that all depend only on the drift b of (6.1) and
on the dimension d) such that, denoting ρ(x, y) = (1 − exp(−a|x − y|))/a for x, y ∈ Td, then ρ
is a metric on Td with

∀γ ∈ (0, γ0] , ∀µ, ν ∈ P(Td) , Wρ (µK, νK) ⩽ (1− c1γ)Wρ(µ, ν) .

Proof. This is [122, Corollary 2.2] applied to a diffusion with smooth drift on the torus, in which
case the distance on Td for which the contraction holds is ρ.

In the rest of the paper, ρ is the metric and c1, a, γ0 are the constants given by Proposition
6.2.1. Remark that ρ is equivalent to the Euclidian metric, with

β|x− y| ⩽ ρ(x, y) ⩽ |x− y| for β = 2(1− e−a
√
d/2)/(a

√
d) ,

where we used that the diameter of Td is
√
d/2 and that r 7→ (1 − exp(−ar))/a is a concave

function with derivative 1 at zero. In particular, W1 and Wρ are equivalent.

Now, in this particle system, the contraction property of the chain (6.3) may be counterbal-
anced by the death/resurrection mechanism through which particles interact. Indeed, considering
two systems of N interacting particles, for i ∈ J1, NK the previous result means that we can cou-
ple the ith particles of both systems to get closer one to the other (on average), as long as they
don’t die. But then, one of the two particle can die and resurrect far from the other, or even if
they die simultaneously they may resurrect far apart one from the other. That being said, first,
the closer they get, the easier it is to couple them in order to die simultaneously, and second,
when they die simultaneously, keeping the particles close one to the other amount to do a suitable
coupling of the laws from which the particles are resurrected. This is quantified in the following
proposition.

In all the rest of the paper, we suppose that λ is Lλ-Lipschitz (but not necessarily that κ
given by (6.5) is positive).
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Proposition 6.2.2. Let µ0, µ1, µ
′
0, µ

′
1 ∈ P(Td) and let (X0, X

′
0) (resp. (X1, X

′
1)) be a coupling

of µ0K and µ′
0K (resp. µ1K and µ′

1K). Then

Wρ

(
µ0Qµ1 , µ

′
0Qµ′

1

)
⩽ h

(
E (ρ(X0, X

′
0)) +

q0
1− q1

E (ρ(X1, X
′
1))

)
where

h = 1−min p+ (aβ)−1γLλ

and, considering U ∼ U([0, 1]) independent from (X0, X
′
0, X1, X

′
1),

qi = P (U < p(Xi) ∧ p(X ′
i)) , i = 0, 1.

Proof. Let (Xk, X
′
k, Uk)k∈N be a sequence of independent triplet of random variables such that,

for all k ∈ N, Uk ∼ U([0, 1]) is independent from (Xk, X
′
k), which are such as defined in the

proposition for k = 0 and 1 and, for k > 1, have the same distribution as (X1, X
′
1). Set

H = inf{n ∈ N, Un < p(Xn)} and H ′ = inf{n ∈ N, Un < p(X ′
n)}. Then, by considering the law

of (Xk, Uk)k∈N alone, it is clear that XH ∼ µ0Qµ1
and, similarly, X ′

H′ ∼ µ′
0Qµ′

1
, so that

Wρ

(
µ0Qµ1

, µ′
0Qµ′

1

)
⩽ E (ρ (XH , X

′
H′)) .

Different cases are distinguished depending on the value of H and H ′. In the simplest case, none
of the particles dies:

E (ρ (XH , X
′
H′)1H=H′=0) = E

(
ρ (X0, X

′
0)1U0⩾p(X0)∨p(X′

0)

)
⩽ E (ρ (X0, X

′
0)1U0⩾min p)

⩽ (1−min p)E (ρ (X0, X
′
0)) ,

where we used the independence between U0 and (X0, X
′
0). In the second case, only one particle

dies: using that ∥ρ∥∞ ⩽ 1/a,

E (ρ (XH , X
′
H′)1H∧H′=0<H∨H′) ⩽ a−1P (U0 ∈ [p(X0) ∧ p(X ′

0), p(X0) ∨ p(X ′
0)])

= a−1E (|p(X0)− p(X ′
0)|)

⩽ a−1γLλE (|X0 −X ′
0|)

⩽ (aβ)−1γLλE (ρ(X0, X
′
0)) .

In the third case, both particles die k ⩾ 1 times:

E (ρ (XH , X
′
H′)1H=H′=k) = E

ρ (Xk, X
′
k)1Uk⩾p(Xk)∨p(X′

k)

k−1∏
j=0

1Uj<p(Xj)∧p(X′
j)


⩽ q0q

k−1
1 E (ρ (Xk, X

′
k)1Uk⩾min p)

⩽ q0q
k−1
1 (1−min p)E (ρ (X1, X

′
1)) .

Finally, combining the computations of the last two cases, the fourth one reads, for k ⩾ 1,

E (ρ (XH , X
′
H′)1H∧H′=k<H∨H′) ⩽ a−1q0q

k−1
1 P (Uk ∈ [p(Xk) ∧ p(X ′

k), p(Xk) ∨ p(X ′
k)])

⩽ (aβ)−1q0q
k−1
1 γLλE (ρ (X1, X

′
1)) .
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Summing these four cases concludes.

6.2.2 Long-time convergence

For N ∈ N∗ denote ρN the metric on TdN given by

ρN (x, y) =

N∑
i=1

ρ(xi, yi) .

The following result is similar to the results of [133, 167, 38] and based on the same coupling
argument.

Proposition 6.2.3. There exists c2 > 0 (that depends only on the drift b of (6.1) and on the
dimension d) such that for all γ ∈ (0, γ0] N ∈ N, and all µ, ν ∈ P(TdN ),

WρN
(µRN,γ , νRN,γ) ⩽ (1− γκ)WρN

(µ, ν) .

with κ given by (6.5).

Proof. It is in fact sufficient to prove this for µ = δx and ν = δy for any x, y ∈ TdN . Indeed,
assuming the result proven for Dirac masses, in the general case, considering (X0,Y0) an optimal
coupling of µ and ν and (X1,Y1) an optimal coupling of R(X0, ·) and R(Y0, ·), then X1 ∼ µR
and Y1 ∼ νR, so that

WρN
(µR, νR) ⩽ E (ρN (X1,Y1))

= E (E (ρN (X1,Y1) | (X0,Y0)))

= E (E (WρN
(δX0R, δY0R) | (X0,Y0)))

⩽ (1− γκ)E (ρN (X0,Y0))

= (1− γκ)WρN
(µ, ν) .

Hence, in the following, we fix x, y ∈ TdN . Let (Xi, Yi)i∈J1,NK be independent pairs of random
variables in Td where, for all i ∈ J1, NK, (Xi, Yi) is an optimal coupling of Qπ(x)(xi, ·) and
Qπ(y)(yi, ·). Then (X,Y) is a coupling of R(x, ·) and R(y, ·), so that

WρN
(δxR, δyR) ⩽ E (ρN (X,Y)) =

N∑
i=1

E (ρ (Xi, Yi))

=

N∑
i=1

Wρ

(
Qπ(x)(xi, ·), Qπ(y)(yi, ·)

)
.

We want to apply Proposition 6.2.2 with µ1 = π(x), µ0 = δxi
, µ′

1 = π(y) and µ′
0 = δyi

. To do
so, for all i ∈ J1, NK, we consider (X̃i, Ỹi) an optimal coupling of K(xi, ·) and K(yi, ·). From
Proposition 6.2.1,

E
(
ρ
(
X̃i, Ỹi

))
⩽ (1− c1γ) ρ(xi, yi) . (6.6)

Moreover, if J ∼ U(J1, NK) is independent from the (X̃i, Ỹi)’s, we remark that (X̃J , ỸJ) is a
coupling of π(x)K and π(y)K. Proposition 6.2.2 applied with these couplings reads, for all
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i ∈ J1, NK,

Wρ

(
Qπ(x)(xi, ·), Qπ(y)(yi, ·)

)
⩽ h

(
E
(
ρ(X̃i, Ỹi)

)
+

qi
1− q∗

E
(
ρ(X̃J , ỸJ)

))
(6.7)

where, if U ∼ U([0, 1]) is independent from the previous variables,

qi := P
(
U < p(X̃i) ∧ p(Ỹi)

)
and, conditioning on the value of J ,

q∗ := P
(
U < p(X̃J) ∧ p(ỸJ)

)
=

1

N

N∑
i=1

qi .

Summing (6.7) over i ∈ J1, NK and applying (6.6) yields

WρN
(δxR, δyR) ⩽ h

(
(1− c1γ)

N∑
i=1

ρ(xi, yi) +
Nq∗
1− q∗

E
(
ρ(X̃J , ỸJ)

))
.

Applying Proposition 6.2.1 again,

E
(
ρ(X̃J , ỸJ)

)
=

1

N

N∑
i=1

E
(
ρ(X̃i, Ỹi)

)
⩽

1

N
(1− c1γ)

N∑
i=1

ρ(xi, yi) ,

and the previous inequality becomes

WρN
(δxR, δyR) ⩽

h (1− c1γ)
1− q∗

ρN (x, y) .

Bounding 1− q∗ ⩾ 1−max p ⩾ exp(−γ∥λ∥∞) and max p−min p ⩽
√
d/2γLλ yields

h (1− c1γ)
1− q∗

⩽ (1− c1γ)
1−max p+max p−min p+ (aβ)−1γLλ

1−max p

⩽ 1− c1γ + γLλe
γ∥λ∥∞

(
(aβ)−1 +

√
d
)
,

which concludes.

As a direct consequence, Proposition 6.2.3 gives

∀m ∈ N, WρN
(µRm, νRm) ⩽ e−κmγWρN

(µ, ν) ,

with κ that does not depends on N nor γ. Provided κ > 0, and since P(TdN ) is complete forW1

(hence for WρN
) the Banach fixed-point theorem implies then that R admits a unique invariant

measure toward which it converges at rate γκ.
In the rest of the paper, κ is given by (6.5) (but is not necessarily assumed positive).

Proof of Theorem 6.1.1. The first part of the theorem has already been proven in Proposi-
tion 6.2.3. The last statement then follows from the first part, the equivalence between the
Euclidean distance and ρN and the factWρN

(ν, µ) ⩽ ∥ρN∥∞ = N
√
d/2 for all ν, µ ∈ P(TdN ).
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6.2.3 Propagation of chaos

Recall that ηk is the law at time k of the non-homogeneous Markov chain (Yk)k∈N on Td intro-
duced in Section 6.1.2 with transition kernels Qηk

and initial condition η0, and that R = RN,γ

is the transition kernel of the Markov chain (Xk)k∈N on TdN .

Lemma 6.2.1. There exist C1 > 0 such that for all N ∈ N , γ ∈ (0, γ0], η ∈ P(Td) and
µ ∈ P(TdN ),

WρN

(
µR, µQ⊗N

η

)
⩽ γNC1

∫
TdN

Wρ (π(x), η)µ(dx) .

Proof. Similarly to the proof of Proposition 6.2.3, we start with the case µ = δx for some
x ∈ TdN . Let (Xi, Yi)i∈J1,NK be N independent pairs of random variables such that for all
i ∈ J1, NK, (Xi, Yi) is an optimal coupling of Qπ(x)(xi, ·) and Qη(xi, ·). Then (X,Y) is a coupling
of RN (x, ·) and Q⊗N

η (x, ·), so that

WρN

(
δxRN , δxQ

⊗N
η

)
⩽ E (ρN (X,Y ))

=

N∑
i=1

E (ρ(Xi, Yi)) =

N∑
i=1

Wρ

(
δxi
Qπ(x), δxi

Qη

)
.

From Proposition 6.2.2 (bounding q0 ⩽ max p ⩽ γ∥λ∥∞ and 1−q1 ⩾ 1−max p ⩾ exp(−γ0∥λ∥∞))

Wρ

(
δxiQπ(x), δxiQη

)
⩽ γ∥λ∥∞

(
1 + (aβ)−1γ0Lλ

)
eγ0∥λ∥∞Wρ (π(x), η)

:= γC1Wρ (π(x), η) .

Now in the general case where µ is not a Dirac mass, considering Z0 ∼ µ, and (Z1, Z2) an optimal
coupling of R(Z0, ·) and Q⊗N

η (Z0, ·) and conditioning with respect to Z0,

WρN

(
µRN , µQ

⊗N
η

)
⩽ E (ρN (Z1, ZN )) ⩽ γNC1E (Wρ (π(Z0), η)) .

Proposition 6.2.4. There exist C2, C3 > 0 such that for all N ∈ N, γ ∈ (0, γ0], m ∈ N and
η0 ∈ P(Td), first,

WρN

(
η⊗N
0 Rm, η⊗N

m

)
⩽ C2Nα(N)γ

m∑
s=1

(1− γκ)s−1 , (6.8)

and second, if (Xk)k∈N is a Markov chain with initial distribution η⊗N
0 and transition kernel R,

then

E (Wρ (π(Xm), ηm)) ⩽ C3α(N)

(
1 + γ

m∑
s=1

(1− γκ)s−1

)
. (6.9)

Remark that when κ > 0, γ
∑m

s=1(1− γκ)s−1 ⩽ 1/κ so that (6.8) and (6.9) yield uniform in
time estimates. On the contrary, when k < 0, the estimates are exponentially bad in t = mγ.

Proof. We start with the proof of (6.8), for m ⩾ 1 (the case m = 0 being trivial). From the
triangular inequality, Proposition 6.2.3 and Lemma 6.2.1,

rm := WρN

(
η⊗N
0 Rm, η⊗N

m

)
⩽ WρN

(
η⊗N
0 Rm, η⊗N

m−1R
)
+WρN

(
η⊗N
m−1R, η

⊗N
m−1Q

⊗N
ηm−1

)



170 CHAPTER 6. Particle approximation for the quasi-stationary distribution of a diffusion.

⩽ (1− κγ)rm−1 + γNC1

∫
TdN

Wρ (π(x), ηm−1) η
⊗N
m−1(dx) .

Since Wρ ⩽ W1, estimating the last term is a classical question, that is to bound the expected
Wasserstein distance between the empirical measure of a sample of N independent and identically
distributed random variables and their common law. From [62, Theorem 1] (and since on the
torus the moments of probability measures are uniformly bounded), there exists some C ′ > 0
independent from η0, m, N and γ such that∫

TdN

W1 (π(x), ηm−1) η
⊗N
m−1(dx) ⩽ C ′α(N) .

Since r0 = 0, a direct induction concludes the proof of (6.8).
To prove (6.9), let (X,Y) be an optimal coupling of η⊗N

0 Rm and η⊗N
m . Considering J ∼

U(J1, NK) independent from (X,Y) then, conditionally to (X,Y), (XJ , YJ) is a coupling of π(X)
and π(Y), so that

Wρ (π(X), π(Y)) ⩽ E (ρ(XJ , YJ) | (X,Y)) =
1

N
ρN (X,Y) .

Taking the expectation in

Wρ (π(X), ηm) ⩽ Wρ (π(X), π(Y)) +Wρ (π(Y), ηm) ,

we conclude with (6.8) and [62, Theorem 1] again.

Corollary 6.2.1. With the notations of Proposition 6.2.4, for all k ∈ J1, NK,

Wρk

(
Law(X1,m, . . . , Xk,m), η⊗k

m

)
⩽ C2kα(N)γ

m∑
s=1

(1− γκ)s−1 .

Proof. Let (X,Y) be an optimal coupling of η⊗N
0 Rm and η⊗N

m , and let σ be uniformly dis-
tributed over the set of permutations of N elements, independent from (X,Y). Since the laws
of X and Y are exchangeable, Xσ = (Xσ(1), . . . , Xσ(N)) has the same law as X, in particular
(Xσ(1), . . . , Xσ(k)) has the same law as (X1, . . . , Xk). The same goes for Yσ, and

E

(
k∑

i=1

ρ(Xσ(i), Yσ(i))

)
= kE

(
ρ(Xσ(1), Yσ(1))

)
=

k

N
E (ρN (X,Y))

=
k

N
WρN

(
η⊗N
0 Rm, η⊗N

m

)
,

and Proposition 6.2.4 concludes.

Corollary 6.2.1 means that, for any fixed k ∈ N∗, as N goes to infinity, the k-marginals of
the system of particles converge toward the law of k independent non-linear chains, which is the
so-called propagation of chaos phenomenon.

6.2.4 Discrete to continuous time

We start by defining (Y t)t⩾0 and (Xt)t⩾0 the continuous-time analoguous of the chains (Yk)k∈N
on Td and (Xk)k∈N on TdN defined in Section 6.1.2. We start with the non-linear process. For
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t ⩾ 0, let
ηt = Law(Zt | T > t)

where Z solves (6.1) with initial distribution η0 and T is given by (6.2). We define (Y t)t⩾0 as
follows. Set Y 0 = Z0 ∼ η0, T0 = 0 and suppose that Tn and (Y t)t∈[0,Tn] have been defined for
some n ∈ N. Let (Bt)t⩾0 be a new Brownian motion on Td and E ∼ E(1), independent one from
the other. Let Ỹ be the solution of

dỸt = b(Ỹt)dt+ dBt

for t ⩾ Tn with ỸTn = Y Tn and let

Tn+1 = inf

{
t > Tn, E ⩽

∫ t

Tn

λ(Ỹs)ds
}
.

For t ∈ (Tn, Tn+1), set Y t = Ỹt. Finally, draw a new Y Tn+1
according to ηTn+1

. By induction
Tn and (Yt)t∈[0,Tn] are then defined for all n ∈ N. Since λ is bounded, Tn almost surely goes to
infinity when n → ∞ so that (Y t)t⩾0 is defined for all t ⩾ 0. Similarly to Proposition 6.1.1, it
can be established that Law(Y t) = ηt for all t ⩾ 0.

Now, as in Section 6.1.2, from the non-linear process (Y t)t⩾0, the interacting particles (Xt)t⩾0

are obtained by replacing ηt by the empirical distribution of the system when particles die and
are resurrected.

More precisely, let (Ei,k, Bi,k, Ji,k)i∈J1,NK,k∈N be a family of independent triplet of indepen-
dent random variables where, for all i ∈ J1, NK and k ∈ N, Ei,k ∼ E(1), Ji,k ∼ U(J1, NK) (except
if k = 0, in which case Ji,k = i almost surely) and Bi,k = (Bi,k,t)t⩾0 is a d-dimensional Brownian
motion. From these variables, we simultaneously define by induction the process and its death
times (Ti,k)i∈J1,NK,k∈N as follows. First, set X0 = x and Ti,0 = 0 for all i ∈ J1, NK. For all
i ∈ J1, NK, set X̂i,0,0 = xi and for k ⩾ 1, assuming that X has been constructed up to time Ti,k,
set

X̂i,k,0 = lim
t
<→Ti,k

XJi,k,t . (6.10)

For all k ∈ N, for t ⩾ Ti,k, let X̂i,k solve

dX̂i,k,t = b
(
X̂i,k,t

)
dt+ dBi,k,t ,

set

Ti,k+1 = Ti,k + inf

{
t ⩾ 0, Ei,k ⩽

∫ t

0

λ
(
X̂i,k,s

)
ds
}

and for all t ∈ [Ti,k, Ti,k+1), set Xi,t = X̂i,k,t−Ti,k
.

Then Xt = (X1,t, . . . , XN,t) is well-defined for all t ⩾ 0. Indeed, it is well defined for all
t < S1 := min{Ti,1, i ∈ J1, NK} the first death time of some particle, and is equal on this interval
to (X̂1,0,t, . . . , X̂N,0,t), which is continuous on [0, S1]. Hence, the limits involved in (6.10) are
well defined for k = 1 and all i ∈ J1, NK such that Ti,1 = S1. Then the algorithm above similarly
defines the process up to the second time some particles die, etc.

Remark that most of the times (6.10) simply reads X̂i,k,Ti,k
= XJi,k,Ti,k

(at its kth death
time, the ith particle is resurrected at the current position of the J th

i,k particle). Indeed, the only
case when this is not true is when the J th

i,k particle dies at time Ti,k. Since the probability that
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two or more particles die simultaneously is zero, this almost surely only occurs if Ji,k = i, i.e. if
the particle is resurrected at its own position.

Denote (Pt)t⩾0 the Markov semi-group associated with (Xt)t⩾0, i.e. for all t ⩾ 0, Pt is the
Markov kernel given by

Ptf(x) = E (f(Xt) | X0 = x) .

We sometimes write Pt = PN,t to specify the number of particles.

Lemma 6.2.2. There exist C4 > 0 such that for all N ∈ N, γ ∈ (0, γ0] and µ ∈ P(TdN ),

WρN
(µRN,γ , µPN,γ) ⩽ NC4γ

3/2 .

Proof. As in the proof of Lemma 6.2.1, it is sufficient to treat the case µ = δx with a fixed
x ∈ TdN . Let (Xt)t⩾0 be defined as above from random variables (Ei,k, Bi,k, Ji,k)i∈J1,NK,k∈N. In
particular, Xγ ∼ δxPγ .

To define X1 ∼ δxR, for all i ∈ J1, NK and k ∈ N, consider (X̃i,k,t)t⩾0 the solution to
X̃i,k,0 = xJi,k

and

dX̃i,k,t = b
(
X̃i,k,0

)
dt+ dBi,k,t .

Denoting
Hi = inf

{
k ∈ N, Ei,k ⩾ γλ

(
X̃i,k,γ

)}
,

set X1 := (X̃1,H1,γ , . . . , X̃N,HN ,γ).
Then (X1,Xγ) is a coupling of R(x, ·) and Pγ(x, ·), so that

WρN
(R(x, ·), Pγ(x, ·)) ⩽ E

(
ρN (X1,Xγ)

)
=

N∑
i=1

E
(
ρ(Xi,1, Xi,γ)

)
.

We now distinguish four cases, considering the events

Bi,1 = {Hi = 0 and Ti,1 > γ}
Bi,2 = {Hi = 1 and Ti,1 ⩽ γ < Ti,2 ∧ TJi,0,1}
Bi,3 = {Hi = 1 and Ti,1 > γ} ∪ {Hi = 0 and Ti,1 ⩽ γ}
Bi,4 = {Hi ⩾ 2} ∪ {Ti,2 ⩽ γ} ∪ {Ti,1 ∨ TJi,1,1 ⩽ γ} ,

that is, respectively: none of the two ith particles dies; both the ith particles die exactly once;
one particle dies but not the other; at least two deaths are involved for one of the two particle.
For all i ∈ J1, NK, Ω = ∪4j=1Bi,j , so that

E
(
ρ(Xi,1, Xi,γ)

)
⩽ E

(
ρ(Xi,1, Xi,γ)

(
1Bi,1

+ 1Bi,2
+ 1Bi,3

+ 1Bi,4

))
.

Conclusion follows by gathering the four cases.

Case 1. It reduces to the classical case of diffusions, since

E
(
|Xi,1 −Xi,γ |1Bi,1

)
= E

(
|X̃i,0,γ − X̂i,0,γ |1Bi,1

)
⩽ E

(
|X̃i,0,γ − X̂i,0,γ |

)
.
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Then

|X̃i,0,t − X̂i,0,t| =

∣∣∣∣∫ t

0

(
b(xi)− b

(
X̂i,0,s

))
ds
∣∣∣∣

⩽ ∥∇b∥∞
∫ t

0

(
|X̃i,0,s − X̂i,0,s|+ |xi − X̃i,0,s|

)
ds

By the Gronwall Lemma, for all t ⩾ 0, almost surely,

sup
s∈[0,t]

|X̃i,0,t − X̂i,0,t| ⩽ ∥∇b∥∞et∥∇b∥∞

∫ t

0

|xi − X̃i,0,s|ds . (6.11)

Since X̃i,0,s is a Gaussian variable with mean xi + sb(xi) and variance s,

E
(
|xi − X̃i,0,s|

)
⩽ sb(xi) + E

(
|xi + sb(xi)− X̃i,0,s|

)
⩽ ∥b∥∞s+

√
s . (6.12)

As a consequence, for γ ⩽ γ0,

E
(
|X̃i,0,γ − X̂i,0,γ |

)
⩽ ∥∇b∥∞eγ0∥∇b∥∞

∫ γ

0

E
(
|xi − X̃i,0,s|

)
ds ⩽ cγ3/2 . (6.13)

Case 2. We bound

E
(
|Xi,1 −Xi,γ |1Bi,2

)
⩽ E

((
|X̃i,1,γ − xJi,0 |+ |X̂i,1,γ − xJi,0 |

)
1Bi,2

)
.

Similarly to (6.12),

E
(
|X̃i,1,γ − xJi,0 |1Bi,2

)
⩽ E

(
|X̃i,1,γ − xJi,0 |1Ei,0⩽γ∥λ∥∞

)
⩽ cγ3/2 ,

where we used the independence of Ei,0 from Ji,1 and (X̃i,1,t)t⩾0. Denote (X ′
i)t⩾0 the solution

of
dX ′

i,t = b
(
X ′

i,t

)
dt+

{
dBJi,0,0,t for t < Ti,0
dBi,1,t for t ⩾ Ti,0 .

with X ′
i,0 = xJi,0

. Under the event Bi,2, X̂i,1,γ = X ′
i,γ . Moreover, Ji,0, BJi,0,0 and Bi,1 are

independent from Ti,0 and thus, by the strong Markov property, (X ′
i,t)t⩾0 is independent from

Ti,0 and conditionally to Ji,0 it has the same distribution as X̂Ji,0,0,t (namely it is a diffusion
solving (6.1) with initial condition xJi,0). Hence,

E
(
|X̂i,1,γ − xJi,0

|1Bi,2

)
⩽ E

(
|X ′

i,γ − yJi,0
|1Ei,0⩽γ∥λ∥∞

)
⩽ c′γ3/2 .

Case 3. We bound

E
(
ρ(Xi,1, Xi,γ)1Bi,3

)
⩽

1

a
P (Bi,3)

⩽
1

a
P
(∫ γ

0

λ(X̂i,0,s)ds ∧
(
γλ(X̃i,0,γ)

)
⩽ Ei,0 ⩽

∫ γ

0

λ(X̂i,0,s)ds ∨
(
γλ(X̃i,0,γ)

))
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=
1

a
E
(∣∣∣∣exp(−∫ γ

0

λ(X̂i,0,s)ds
)
− exp

(
−γλ(X̃i,0,γ)

)∣∣∣∣)
⩽

1

a
E
(∣∣∣∣∫ γ

0

λ(X̂i,0,s)ds− γλ(X̃i,0,γ)

∣∣∣∣) .

Now, ∣∣∣∣∫ γ

0

λ(X̂i,0,s)ds− γλ(X̃i,0,γ)

∣∣∣∣ ⩽ Lλ

(∫ γ

0

|X̂i,0,s − xi|ds+ γ|xi − X̃i,0,γ |
)
.

Using (6.11) together with (6.12) yields

E
(
ρ
(
Xi,1, Xi,γ

)
1Bi,3

)
⩽ c3γ

3/2 .

Case 4. We bound

E
(
ρ
(
Xi,1, Xi,γ

)
1Bi,4

)
⩽

1

a
P (Bi,4)

⩽ P (Ei,0 ∨ Ei,1 ⩽ γ∥λ∥∞) + P
(
Ei,0 ∨ EJi,0,0 ⩽ γ∥λ∥∞

)
⩽ 2

(
1− e−γ∥λ∥∞

)2
⩽ 2γ2∥λ∥2∞ .

Proposition 6.2.5. There exist C5 > 0 such that for all N ∈ N , γ ∈ (0, γ0] and η0 ∈ P(Td),

WρN

(
µRm

N,γ , µPN,mγ

)
⩽
√
γNC5γ

m∑
s=1

(1− γκ)s−1 .

As for Proposition 6.2.4, when κ > 0, γ
∑m

s=1(1− γκ)s−1 ⩽ 1/κ so that (6.8) and (6.9) yield
uniform in time estimates. On the contrary, when κ < 0, the estimates are exponentially bad in
t = mγ.

Proof. The proof is similar to Proposition 6.2.4. Denoting µm = µRm and νm = µPmγ , from
the triangular inequality, Proposition 6.2.3 and Lemma 6.2.2,

rm := WρN
(µm, νm) ⩽ WρN

(µm, νm−1R) +WρN
(νm−1R, νm−1Pγ)

⩽ (1− γκ)rm−1 +NC4γ
3/2 ,

and an induction concludes.

6.2.5 Conclusion

In this section we use the notations of the previous ones, in particular κ is given by (6.5) and
the constants C2, C3 and C5 are those of Propositions 6.2.4 and 6.2.5. We can now gather all
these previous results.

Letting either γ vanish or N go to infinity in Proposition 6.2.3, we obtain long-time conver-
gence for, respectively, the non-homogeneous self-interacting Markov chain (Yk)k∈N introduced
in Section 6.1.2 and the continuous-time Markov chain (Xt)t⩾0 defined in Section 6.2.4.
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Corollary 6.2.2. Let (ηn)n∈N be such as defined in Section 6.1.2, and (η̃n)n∈N be similarly
defined but with a different initial distribution η̃0 ∈ P(Td). For all m ∈ N and all γ ∈ (0, γ0],

Wρ (ηm, η̃m) ⩽ (1− γκ)mWρ(η0, η̃0) .

Corollary 6.2.3. For all N ∈ N∗, t ⩾ 0 and µ, ν ∈ P(TdN ),

WρN
(µPN,t, νPN,t) ⩽ e−κtWρN

(µ, ν) .

Proof of Corollary 6.2.2. The proof is based on the simple equality: For all N ∈ N and µ, ν ∈
P(Td),

WρN

(
µ⊗N , ν⊗N

)
= NWρ (µ, ν) . (6.14)

Indeed, by considering N independent couplings (Xi, Yi)i∈J1,NK,

WρN

(
µ⊗N , ν⊗N

)
⩽ E (ρN (X,Y)) =

N∑
i=1

E (ρ(Xi, Yi)) = NWρ (µ, ν) .

Conversely, if (X,Y) is an optimal coupling of µ⊗N and ν⊗N , then

Wρ (µ, ν) ⩽ E (ρ(X1, Y1)) =
1

N
E (ρN (X,Y)) =

1

N
Wρ

(
µ⊗N , ν⊗N

)
.

By the triangular inequality,

Wρ

(
η⊗N
m , η̃⊗N

m

)
⩽ Wρ

(
η⊗N
m , η⊗N

0 Rm
)
+Wρ

(
η⊗N
0 Rm, η̃⊗N

0 Rm
)
+Wρ

(
η̃⊗N
0 Rm, η̃⊗N

m

)
⩽ (1− γκ)mWρ(η

⊗N
0 , η̃⊗N

0 ) + 2C2Nα(N)γ

m∑
s=1

(1− γκ)s−1 .

where we applied Propositions 6.2.3 and 6.2.4. Using the equality 6.14, dividing by N and letting
N go to infinity concludes the proof of Corollary 6.2.2.

Remark that the beginning of the proof also applies for µ, ν ∈ P(TdN ) that are exchangeable
(i.e. invariant by any permutation of the d-dimensional coordinates), in which case, denoting,
µ(1) and ν(1) their d-dimensional marginals, we get that

Wρ

(
µ(1), ν(1)

)
⩽

1

N
WρN

(µ, ν) .

Proof of Corollary 6.2.3. Similarly to the previous proof, Corollary 6.2.3 is a direct consequence
of Propositions 6.2.3 and 6.2.5, letting m go to infinity at a fixed t and N in

WρN
(µPN,t, νPN,t) ⩽ WρN

(
µPN,t, µR

m
N,t/m

)
+WρN

(
µRm

N,t/m, νR
m
N,t/m

)
+WρN

(
νRm

N,t/m, νPN,t

)
.

We now turn to the continuous-time limit of the non-linear chain (Yk)k∈N.

Corollary 6.2.4. There exists C6 > 0 such that for all η0 ∈ P(Td) and all γ ∈ (0, γ0], if (ηn)n∈N
is such as defined in Section 6.1.2, and (ηt)t⩾0 is such as defined in Section 6.2.4 (with η0 = η0),
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then
W1

(
η1, ηγ

)
⩽ C6γ

3/2 ,

and for all m ⩾ 1,

Wρ

(
ηm, ηmγ

)
⩽
√
γC6γ

m∑
s=1

(1− γκ)s−1 .

Proof. For the first inequality, we could follow the proof of Lemma 6.2.2, but, using the notations
of the introduction, we will rather use the fact that

η1 = Law
(
Z̃1 | T̃ > γ

)
, ηγ = Law (Zγ | T > γ) ,

where the gaussian variable G0 in (6.3) is equal to Bγ/
√
γ where (Bt)t⩾0 is the Brownian motion

involved in (6.1), and T and T̃ are defined with the same E ∼ E(1). Recall the estimate (6.13)
for the error from an Euler scheme to its initial diffusion. Then we bound

E
(
|Z̃1 − Zγ | | T > γ, T̃ > γ

)
⩽

(
P
(
T > γ, T̃ > γ

))−1

E
(
|Z̃1 − Zγ |

)
⩽

(
1− e−γ0∥λ∥∞

)−1

cγ3/2 ,

which concludes the first part of the corollary.
For the second part, denoting rm =Wρ

(
ηm, ηmγ

)
, we bound

rm ⩽ Wρ

(
ηm, ηm−1Qηγ(m−1)

)
+Wρ

(
ηm−1Qηm−1

, ηmγ

)
⩽ (1− γκ) rm−1 + C6γ

3/2 ,

where we used the first part of the corollary and Corollary 6.2.2. An induction concludes.

We can now prove propagation of chaos results for the continuous-time process:

Corollary 6.2.5. For all N ∈ N, k ∈ J1, NK and all t ⩾ 0, if (Xt)t⩾0 is a Markov process with
initial distribution η⊗N

0 associated to the semigroup (PN,t)t⩾0 then, first,

Wρk

(
Law(X1,t, . . . , Xk,t), η

⊗k
t

)
⩽ C2kα(N)

∫ t

0

e−κsds ,

and second,

E
(
Wρ

(
π(Xt), ηt

))
⩽ C3α(N)

(
1 +

∫ t

0

e−κsds
)
.

Proof. As shown in the proof of Proposition 6.2.4, if (X,Y) is an optimal coupling of µ and ν,

E (Wρ (π(X), π(Y))) ⩽
1

N
WρN

(µ, ν) .

Thus, considering a time step γ = t/m, m ∈ N, we decompose

Wρ

(
π(Xt), ηt

)
⩽ Wρ

(
π(Xt), π(Xm)

)
+Wρ (π(Xm), ηm) +Wρ (ηm, ηt) ,

take the expectation, apply Propositions 6.2.4 and 6.2.5 and Corollary 6.2.4 and let m go to
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infinity. This proves the second point, and the proof of the first one is similar, with Corollary
6.2.1.

Up to now, we have sent either N or γ to their limit. When κ > 0, if we let t = mγ go
to infinity at fixed N and γ, we recover results on the equilibria of the processes. Indeed, note
that Corollary (6.2.2) together with the Banach fixed-point theorem imply that n 7→ ηn admits
a limit which is independent from η0. Together with Proposition 6.1.1, this is the unique QSD
of the Markov chain (6.3). Denote it νγ . Similarly, Proposition 6.2.3 implies that RN,γ admits
a unique invariant measure. Denote it µ∞,N,γ , and µ(k)

∞,N,γ its first kd-dimensional marginal for
k ∈ J1, NK (i.e. the law of (X1, . . . , Xk) if X ∼ µ∞,N,γ). Third, Corollary 6.2.3 implies that
(PN,t)t⩾0 admits a unique invariant measure µ∞,N .

Corollary 6.2.6. If κ > 0, then for all N ∈ N and γ ∈ (0, γ0]

WρN

(
µ∞,N,γ , µ∞,N

)
⩽
√
γNκ−1C5 ,

Corollary 6.2.7. If κ > 0, then for all N ∈ N, k ∈ J1, NK and γ ∈ (0, γ0], first,

Wρk

(
µ
(k)
∞,N,γ , ν

⊗k
γ

)
⩽ κ−1C2kα(N) ,

and second,

Eµ∞,N,γ
(Wρ (π(X), νγ)) ⩽ κ−1C3α(N) .

Proofs of Corollaries 6.2.6 and 6.2.7. Considering any η0 ∈ P(Td) and m ∈ N,

WρN

(
µ∞,N,γ , µ∞,N

)
⩽ WρN

(
µ∞,N,γ , η

⊗N
0 Rm

)
+WρN

(
η⊗N
0 Rm, η⊗N

0 Pγm

)
+WρN

(
η⊗N
0 Pγm, µ∞,N

)
Apply Proposition 6.2.3 with µ = µ∞,N,γ and ν = η⊗N

0 , Corollary 6.2.3 with the same ν and
with µ = µ∞,N , and Proposition 6.2.5. Letting m go to infinity concludes the proof of Corollary
6.2.6. The proof of Corollary 6.2.7 is similar (based on Proposition 6.2.4 and Corollary 6.2.1,
like Corollary 6.2.5).

Next, we can send two parameters to their limit. Sending N to infinity and γ to zero, we
get the long time convergence of the non-linear process (Y t)t⩾0 introduced in Section 6.2.4 (or,
equivalently, of the process Z solving (6.1) conditionned not to be dead):

Corollary 6.2.8. Let (ηt)t⩾0 be such as defined in Section 6.1.2, and (η̂t)t⩾0 be similarly defined
but with a different initial distribution η̂0 ∈ P(Td). For all t ⩾ 0,

Wρ (ηt, η̂t) ⩽ e−κtWρ(η0, η̂0) .

Proof. Thanks to Corollary 6.2.4, let γ = t/m vanish in Corollary 6.2.2.

In particular, if η̂0 is the QSD ν∗ , by definition, η̂t = ν∗ for all t ⩾ 0, so that Corollary 6.2.8
yields the uniqueness of the QSD and the exponential convergence of Law(Zt | T > t) toward ν∗
(which is a result in the spirit of [32, 36, 47, 7]).

Now, at a fixed γ > 0, letting t and N go to infinity, we obtain an error bound between the
QSD ν∗ of the continus process (6.1) and the QSD νγ of the discrete scheme.
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Corollary 6.2.9. If κ > 0, then for all γ ∈ (0, γ0]

Wρ (νγ , ν∗) ⩽
√
γκ−1C6 ,

Proof. Thanks to Corollaries 6.2.2 and 6.2.8 (applied with one of the initial condition being the
equilibrium), let m go to infinity in Corollary 6.2.4.

Finally, letting γ vanish and t go to infinity at a fixed N ∈ N, we obtain a propagation of
chaos result at stationarity (as established first in [5], and more recently with a CLT in [108] in
the case of a finite state space) for the continuous time system of interacting particle (Xt)t⩾0

introduced in Section 6.2.4.

Corollary 6.2.10. If κ > 0 and if X is a random variable with law µ∞,N , then for all N ∈ N
and k ∈ J1, NK,

WρN

(
Law(X1, . . . , Xk), ν

⊗k
∗
)

⩽ κ−1C2kα(N) ,

and second,

E
(
Wρ

(
π(X), ν∗

))
⩽ C3α(N)

(
1 + κ−1

)
.

Proof. The proof is similar to Corollary 6.2.5, letting t go to infinity in Corollary 6.2.5 thanks
to Corollaries 6.2.3 and 6.2.8.

Remark that our results at stationarity (Corollaries 6.2.6, 6.2.7, 6.2.9 and 6.2.10) all require
the perturbative condition κ > 0. Yet, propagation of chaos at stationarity for the continuous
time process follows from the works [5, 108, 46, 44, 149] in a much broader (non-perturbative)
framework (and, although it doesn’t seem to have been studied yet, the situation should be
similar for error bounds in γ rather than N). As previously discussed, error bounds on N (and
possibly γ) that are uniform in time can be obtained thanks to the long-time convergence of the
limit (N = +∞) non-linear process. In our case, when κ > 0, this long-time convergence follows
from the (uniform in N) long-time convergence of the particle system (whether it is possible to
obtain the latter from the former is unclear), but it holds in more general cases (see [32, 36,
47, 7] and references within) and, in those cases, results similar to Corollaries 6.2.6, 6.2.7, 6.2.9
and 6.2.10 should hold. The question of establishing propagation of chaos or discretization error
bounds at stationarity in a more general case (i.e. without the condition κ > 0) is out of the
scope of the present work.

All our results are summarised in Figure 6.1.

Finally, we detail the proof of our main result.

Proof of Theorem 6.1.2. For η0 ∈ P(Td), let (X,Y) be an optimal coupling of µ0R
⌊t/γ⌋ and

η⊗N
0 R⌊t/γ⌋. As in the proof of Proposition 6.2.4,

E (Wρ (π(X), π(Y))) ⩽
1

N
WρN

(
µR⌊t/γ⌋, η⊗N

0 R⌊t/γ⌋
)

⩽ ae−κ(t−γ0) ,

where we used Proposition 6.2.3 and the fact that ρN (x, y) ⩽ Na for all x, y ∈ TdN . Then, by
the triangular inequality,

Wρ (π(Y), ν∗) ⩽ Wρ

(
π(Y), η⌊t/γ⌋

)
+Wρ

(
η⌊t/γ⌋, νγ

)
+Wρ (νγ , ν∗) .
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Figure 6.1: Summary of the different results. The label of each arrow indicates the corollary or
proposition where the corresponding quantitative convergence is stated. Vertical, horizontal and
diagonal arrows correspond respectively to t, γ and N going to their limit.

Taking the expectation, applying Proposition 6.2.4 and Corollaries 6.2.2 (applied with η̃0 = νγ)
and 6.2.9, the boundedness of ρ and the equivalence of Wρ and W1 concludes.
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Chapter 7

Uniform convergence of the
Fleming-Viot process in a hard
killing metastable case
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Abstract : We study the long-time convergence of a Fleming-Viot process, in the case where
the underlying process is a metastable diffusion killed when it reaches some level set. Through a
coupling argument, we establish the long-time convergence of the Fleming-Viot process toward
some stationary measure at an exponential rate independent of N , the size of the system, as well
as uniform in time propagation of chaos estimates.

7.1 Introduction

Given some open bounded domain D ⊂ Rd, and some potential U : Rd → R+, we are interested
in the process:

dXt = −∇U(Xt)dt+
√
2εdBt (7.1)

181
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with small ε > 0, killed when it reaches ∂D the boundary of D. More precisely, write:

τ∂D = inf {t ⩾ 0, Xt /∈ D} . (7.2)

Denote byM1(D) the set of probability measures on D, and Pµ the law of the process (7.1), with
initial condition µ ∈ M1(D). Then we say that ν ∈ M1(D) is a quasi-stationary distribution
(QSD) of the process (7.1) if for all t ⩾ 0:

Pν (Xt ∈ · | τ∂D > t) = ν.

It is shown in [104] that, under some mild assumptions on U and D, the process (7.1) admits a
unique QSD, that we will denote by νε∞. It is also proven that there is convergence for all initial
condition of the law of the process conditioned on its survival toward this QSD, namely, for all
µ ∈M1(D),

Pµ (Xt ∈ · | τ∂D > t) −→
t→+∞

νε∞.

The fact that the process is killed when it exits a domain is classically referred to as a hard
killing case, by contrast with the soft killing case where the process is killed according to a
inhomogeneous Poisson process as in [94].

The present work is concerned with the question of sampling the QSD νε∞. More precisely, in
practice, the QSD is approximated by the empirical measure of a system of interacting particles,
called a Fleming-Viot (FV) process, at stationarity. This FV process is defined informally as
follows: for a given N , let X1, . . . , XN be N independent diffusions until one of them reaches
∂D. The diffusion that has been killed then branches onto one of the N − 1 remaining ones,
chosen uniformly at random. In very general settings, it is known that if the initial condition
consists in N independent random variables distributed according to a common law µ, then for
any time t ⩾ 0, we have:

a.s. πN (X1
t , . . . , X

N
t )

weak−→
N→∞

Pµ (Xt ∈ · | τ∂D > t) , (7.3)

(see Section 1.3.3) where

πN (x) =
1

N

N∑
i=1

δxi (7.4)

stands for the empirical measure of a vector (x1, . . . , xN ) ∈ DN . This would simply be the law
of large numbers if the particles were independent, which they are not due to the resurrection
mechanism. For mean-field interacting particle systems as the FV process, such a convergence
is known as a propagation of chaos phenomenon.

Two questions are addressed in this work. First, the long-time relaxation of the FV process
toward its invariant measure: a quantitative convergence in the total variation distance sense
at a rate independent from N is stated in Theorem 7.1.1. Second, the propagation of chaos:
Theorem 7.1.2 gives a quantitative version of (7.3), with a bound uniform in time. Combining
both results yields a quantitative estimate for the convergence of the empirical measure of the
FV process toward the QSD as N, t→∞.

As detailed below, these results are established under the condition that D is a metastable
state for the diffusion (7.1), in the sense that the mixing time of (7.1) within D is shorter than
the typical exit time from D. Mathematically speaking, this is reflected by the fact that c∗,
the critical height within D, is smaller than U0, the height of the boundary ∂D (see below for
the definition of c∗ and U0), and the temperature ε is small enough. This metastable context is
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typically the one where QSD are of interest, since in that case the (non-conditional) law of the
process is close to the QSD for times in intermediary scales between the mixing time and the
extinction time. Moreover, it is exactly the context of some algorithms in molecular dynamics,
such as the parallel replica algorithm presented in [104], which involves the sampling of the QSD.
In fact, for technical reasons, we will work under a stronger condition than simply c∗ < U0 (see
Assumption 7.1.3 below), which is also related to the metastability of D. While we haven’t
succeeded in this endeavor, we think that the proof may possibly be modified to work only with
the condition c∗ < U0, without the additional condition.

The paper is organized as follows. The remainder of this introduction is dedicated to the
statement of the main results. Some preliminary properties of the FV process are studied in
Section 7.2, and the main theorems are proven in Section 7.3. Finally, we prove in Section 7.4
the technical lemma which involves the additional condition.

7.1.1 Main Result

Define the critical height c∗ = c∗(U) of U as c∗ = supx1,x2∈D c(x1, x2) with

c(x1, x2) = inf

{
max
0⩽t⩽1

U(ξ(t))− U(x1)− U(x2)

}
,

where the infimum runs over {ξ ∈ C ([0, 1] , D) , ξ(0) = x1, ξ(1) = x2}. The critical height c∗ rep-
resents the largest energy barrier the process has to cross in order to go from any local minimum
to any global one (within D).

The following conditions are enforced throughout all this work.

Assumption 7.1.1. • D ⊂ Rd is open, bounded, connected and its boundary is C2.

• U : Rd → R+ is smooth on some neighborhood of D.

• minD U = 0.

• U |∂D is constant, and
U0 = U(∂D) > c∗. (7.5)

• For x ∈ ∂D, denote by n(x) the outward normal to D. For all x ∈ ∂D,

n(x) · ∇U(x) > 0. (7.6)

The condition minD U = 0 is just a choice of normalisation since the process is unchanged if
a constant is added to U . Under Assumption 7.1.1, neglecting sub-exponential terms, for small
ε, the mixing rate of the non-killed process (7.1) is known to be of order ec∗/ε (see [83]) while,
according to the theory of Freidlin-Wentzell (see [65]), the exit time τ∂D is of order eU0/ε. As
already mentioned, the condition U0 > c∗ thus describes a difference of timescales between the
mixing time and the death time. More precisely, it is known that for any neighborhood B1

of ∂D and any a < U0, supx∈D\B1
Px(τ∂D < ea/ε) vanishes with ε. The assumption that U is

constant over ∂D, which is consistent with the idea that D is a local potential well, could possibly
be relaxed, with the condition (7.5) being replaced by inf∂D U > c∗, however this adjustment
would introduce additional technical complexities to the construction of a Lyapunov function,
see Lemma 7.2.3. We will need an even stronger uniformity in terms of the initial condition. For
now, let us state it as an assumption:
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Assumption 7.1.2. There exist a > c∗ and a neighborhood B1 of ∂D such that the following
holds:

• minB1 U > a,

• minx∈B1 |∇U(x)| > 0,

• for a fixed Brownian motion (Bt)t⩾0, denoting by (Xx
t )t⩾0 the solution of (7.1) with initial

condition x for all x ∈ D and by τ∂D(Xx) its first exit time from D, we have

p̄ε := P
(
∃x ∈ D \B1, τ∂D(Xx) < ea/ε

)
−→
ε→0

0. (7.7)

We are able to prove that this is implied by the following condition, which in dimension d > 1
strengthens (7.5):

Assumption 7.1.3. One of the following is satisfied:

• d = 1.

• There exist a neighborhood B̃1 of ∂D such that infB̃1
|∇U | > 0 and

c∗ <
U0 − U1

2
, where U1 = min

B̃1

U .

As stated in Lemma 7.4.1 below, Assumptions 7.1.1 and 7.1.3 together imply Assump-
tion 7.1.2. However we don’t think that Assumption 7.1.3 is sharp, and thus we state our
main results in terms of Assumption 7.1.2. Notice that Assumption 7.1.3 is always implied by
Assumption 7.1.1 when c∗ = 0.

We define the semi-group (Pt)t⩾0 associated to a Markov process (Xt)t⩾0 in Rd by:

Ptf(x) = Ex(f(Xt))

for any bounded measurable function f : Rd → R and any t ⩾ 0, where Ex stands for the
expectation under Px = Pδx . We denote J1, NK = {1, · · · , N}.

Now, let us define rigorously the FV process, starting from some initial condition µ ∈
M1(DN ). Let (Iin)i∈J1,NK,n∈N be a family of independent random variables, where for i ∈ J1, NK,
Iin is uniform on i ∈ J1, NK \ {i}. Let (Bi)i∈J1,NK be N independent Brownian motions, and
X0 = (X1

0 , . . . , X
N
0 ) be distributed according to µ. Define X̄i as the solution to:

X̄i
t = Xi

0 −
∫ t

0

∇U(X̄i
s)ds+

√
2εBi

t

and set
τ1 = min

i
inf
{
t ⩾ 0, X̄i

t /∈ D
}
.

Then, denote by i1 the index of the particle which exits the domain at time τ1. It is uniquely
defined almost surely because, since the hitting time of the boundary has a density on R+, the
probability that two particles hit the boundary at the same time is zero (this is true for the
Brownian motion, and the general case follows from an application of the Girsanov theorem).
For i ̸= i1, 0 ⩽ t ⩽ τ1, or i = i1 and 1 ⩽ t < τ1, simply let:

Xi
t = X̄i

t and Xi1
τ1 = X̄

Ii
1

τ1 .
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This defines the process between times 0 and τ1. The process is then defined on (τ1,∞) by
induction: if the process is defined up to time τn−1, we define it between time τn−1 and τn in the
same way, with X0 replaced by Xτn−1

, i1 by in the index of the particle that hits ∂D at time
τn, and Ii01 by Iinn . Thus, (τn)n is the sequence of branching times of the process.

Under Assumption 7.1.1, the FV process X = (X1, . . . , XN ) is well-defined and does not
explode in finite time, meaning that supn τn = ∞ almost surely, see [166, Theorem 2.1]. This
defines a Markov process, and we denote by PN,ε = (PN,ε

t )t⩾0 the associated semi-group.
A law µ ∈ M1(DN ) is said to be exchangeable if it is invariant by any permutation of

the particles, i.e. (Xσ(i))i∈J1,NK ∼ µ if (Xi)i∈J1,NK ∼ µ for all permutations σ of J1, NK. For
k ∈ J1, NK, we denote by µk ∈M1(Dk) the marginal law of the k first particles under µ (which,
for exchangeable laws, is thus the marginal law of any subset of k particles).

Our first main result concerns the long time behavior of the FV process.

Theorem 7.1.1. Under Assumptions 7.1.1 and 7.1.2, there exist ε0, c, C > 0 such that, for all
ε ∈ (0, ε0], N ∈ N, t ⩾ 0, setting tε = ea/ε, the following holds.

1. For all µ, ν ∈M1(DN ),

∥µPN,ε
t − νPN,ε

t ∥TV ⩽ CN(1− c)t/tε .

2. The semi-group PN,ε admits a unique invariant measure νN,ε
∞ , which is exchangeable.

3. For all exchangeable µ, ν ∈M1(DN ), for all k ∈ J1, NK,

∥(µPN
t )k − (νPN

t )k∥TV ⩽ Ck(1− c)t/tε .

Our second result is a uniform in time propagation of chaos estimate.

Theorem 7.1.2. Under Assumptions 7.1.1 and 7.1.2, there exists ε0 > 0 such that for all
compact set K ⊂ D, all ε ∈ (0, ε0], there exist Cε, ηε > 0 such that for all µ0 ∈M1(D) satisfying
µ0(K) ⩾ 1/2, all bounded f : D → R+ and all N ∈ N,

sup
t⩾0

E
(∣∣∣∣∫

D

fdπN (Xt)− EπN (X0) (f (Xt)|τ∂D > t)

∣∣∣∣) ⩽
Cε∥f∥∞
Nηε

,

where X solves (7.1), τ∂D is defined in (7.2), πN in (7.4), and X is a FV-process with initial
condition µ⊗N

0 .

In Theorem 7.1.1, the dependency in N of the speed of convergence is the same as for
N independent diffusion processes. Moreover, the dependency in ε is also sharp. Indeed, in
Assumption 7.1.2, we can take a arbitrarily close to c∗, which means that we get a mixing time
smaller than e(c

∗+δ)/ε for any δ > 0, which is the order of the mixing time for the non-killed
process. However, as far as Theorem 7.1.2 is concerned, for independent processes, one would get
from the Bienaymé-Chebyshev inequality the explicit rate 1/

√
N . This is indeed what is proven

in [165, Theorem 1] for the FV process, but with a bound that depends on time. In other words,
we improve the result of [165] to a uniform in time bound, but at the cost of a loss in the rate
in N . Notice that ηε may be made explicit by carefully following the proofs.
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7.2 Preliminary results

For any two probability measures µ, ν, we call (X,Y ) a coupling of µ and ν if the law of X (resp.
Y ) is µ (resp. ν). For any distance d on a set E (here E = D or E = DN ), the associated
Kantorovich distance on M1(E), is defined by

Wd(µ, ν) = inf {E (d(X,Y )) , (X,Y ) coupling of µ and ν} .

We say that (X,Y ) is an optimal coupling ifWd(µ, ν) = E (d(X,Y )). The existence of an optimal
coupling results from [164, Theorem 4.1]. Given a Markov semi-group P , we call a coupling of
(µPt)t⩾0 and (νPt)t⩾0 a stochastic process (Xt, Yt)t⩾0 such that (Xt)t⩾0 and (Yt)t⩾0 are Markov
processes of semi-group (Pt)t⩾0 and initial condition µ for X and ν for Y . In particular, we have
that for such a coupling and all t ⩾ 0,

Wd(µPt, νPt) ⩽ E (d(Xt, Yt)) .

We also say that the processes X and Y have coupled at time t ⩾ 0 if Xt = Yt. Finally,
in the case where d(x, y) = 21x ̸=y, we recover the total variation distance which we write
Wd(µ, ν) = ∥µ− ν∥TV .

The proof of our theorems relies on the construction of a coupling of (µPN,ε
t )t⩾0 and (νPN,ε

t )t⩾0.
This coupling will yield that PN,ε

t is a contraction for some particular distance defined in Sec-
tion 7.3.

In order to do this, we first need some preliminary results, which is the subject of this
section. We start by studying the mixing properties of the non-killed process in Subsection 7.2.1
by embedding D into a torus. In Subsection 7.2.2, We construct a Lyapunov functional for each
particle. In Subsection 7.2.3, using the Lyapunov functional, we study the number of particle
that may stay near the boundary of the domain.

In the rest of the paper, we fix some a ∈ (c∗, U0) satisfying assumption 7.1.2 and set tε = ea/ε.
Furthermore, bold letters will always denote particle systems, in the sense that X can always be
written X = (X1, . . . , XN ) where for all 1 ⩽ i ⩽ N , Xi ∈ D.

7.2.1 Coupling of the non-killed diffusion

In this section, we show that we are able to couple two diffusions solution of (7.1) on a torus in
total variation distance in a time tε with a probability that goes to 1 as ε goes to 0, uniformly
on D. Since we are studying a process killed at the boundary of D, we are not interested in
what the potential might look like outside of D. Consider some torus Td = (R/2LZ)d, with L

big enough so that as a subset of Rd (meaning seeing Td as [−L,L[d), we have that D ⊂ Td.
Then consider some periodic potential Ũ : Rd → R+, equal to U on D as a periodic function,
and such that c∗(Ũ) = c∗(U), where c∗(Ũ) is defined as c∗(U) with U replaced by Ũ . Such a
function exists, as shown in [64, Section 4]. We still denote by Ũ the associated function on Td,
and this potential defines a diffusion on Td as:

dX̃t = −∇Ũ(X̃t)dt+
√
2εdBt. (7.8)

We note P̃ its semi-group. If we see X̃ as a process in Rd, then we have that Xt = X̃t for all
t ⩽ τ∂D, where τ∂D is the death time (7.2).

Now, we construct a coupling for the process X̃, for all initial condition (x, y) ∈ (Td)2. To
do this, we use Sobolev and Poincaré inequalities. The Sobolev inequality is used for ultra-
contractivity, whereas the Poincaré inequality is used to get an optimal convergence rate for the
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process (7.8). Let µε denote the probability measure on Td:

µε(dx) = Ze−Ũ(x)/εdx

where Z is the normalization constant. Recall those inequalities:

Lemma 7.2.1. µε satisfies a Poincaré and a Sobolev inequality: there exist p > 2, C, λε > 0,
such that

ε ln (λε)→ −c∗

as ε→ 0, and for all smooth f : Td 7→ R with
∫
Td fdµε = 0

λε

∫
Td

f2dµε ⩽
∫
Td

|∇f |2dµε (PI),

(∫
Td

fpdµε

) 2
p

⩽ Ce∥Ũ∥∞/ε

(∫
Td

f2dµε +

∫
Td

|∇f |2dµε

)
(SI).

Moreover, for all t > 0, the law of X̃t with initial condition x has a density hεt (x, ·) with respect
to µε, and both inequalities together imply the existence of some constant C̃ > 0 such that, for
all t ⩾ 1 and ε > 0,

∥hεt (·, ·)− 1∥∞ ⩽ C̃eC̃ε−1−λεt. (7.9)

Proof. The Poincaré inequality, as well as the asymptotic on λε, have been proven in [83]. The
uniform measure on Td satisfies a Sobolev inequality, see [6, section 6]. Then we can write:(∫

Td

fpdµε

) 2
p

⩽ Z− 2
p

(∫
Td

fp
) 2

p

⩽ CZ− 2
p

(∫
Td

f2 +

∫
Td

|∇f |2
)

⩽ CZ1− 2
p e∥Ũ∥∞/ε

(∫
Td

f2dµε +

∫
Td

|∇f |2dµε

)
.

Z is bounded by the volume of Td, hence Z1− 2
p is bounded uniformly on ε because p > 2 (and

thus 1− 2
p > 0). Therefore, we have the Sobolev inequality with the said constant. The last two

points are [6, Theorem 6.3.1 and Proposition 6.3.4].

Lemma 7.2.2. Recall that tε = ea/ε for some a > c∗. Under Assumption 7.1.1, there exists
ε0 > 0, such that for all 0 < ε < ε0, there exists cε > 0 such that for all x, y ∈ D, there exists a
coupling (X̃t, Ỹt)t⩾0 of (δxP̃t)t⩾0 and (δyP̃t)t⩾0 such that:

P
(
X̃tε = Ỹtε

)
⩾ cε.

Moreover, as ε→ 0,
cε → 1.

Proof. We start by bounding the total variation distance between the law of X̃t and the equilib-
rium µε. Recall that hεt (x, ·) denotes the density of the law of X̃t with respect to µε. For x ∈ D,
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using (7.9), we have:

∥δxP̃t − µε∥TV =

∫
Rd

|hεt − 1|dµε ⩽ ∥hεt (·, ·)− 1∥∞ ⩽ C̃eC̃ε−1−λεt.

Since tε = ea/ε, and ε ln(λε)→ −c∗ as ε→ 0, we have that λεtε ⩾ eb/ε, for ε small enough and
all b < a− c∗. Then, we may fix some b < a− c∗ and let:

cε = 1− 2C̃eC̃ε−1−eb/ε ,

so that limε→0 cε = 1 and for all x, y ∈ D,

∥δxP̃t − δyP̃t∥TV ⩽ ∥δxP̃t − µε∥TV + ∥δyP̃t − µε∥TV ⩽ 1− cε.

The existence of the coupling of the trajectories results from the total variation distance prop-
erties, see for example [133, Lemma 9].

7.2.2 Lyapunov functional
In order to show the convergence of the particle system, we need first the construction of some
Lyapunov function for each particle, that is to say some function of one particle that decreases
in average over time, as long as it starts large enough. This is the part where we need U to be
constant on the boundary of D. This part relies on a result first shown in [71], similar to Ito’s
formula. The process (7.1) has a generator L defined for all smooth function f : Rd → R with
compact support as:

Lf = ε∆f −∇U · ∇f. (7.10)

For a smooth function f : DN → R+, and 1 ⩽ i ⩽ N , write Lxi
for the generator L, acting only

on the i-th variable:

Lxi
f =

d∑
j=1

ε∂2(xi)j
f − ∂jU(xi)∂(xi)jf.

Write as well (τ in)n for the sequence of death times of particle i:

τ i0 = 0, τ in+1 = inf
{
t > τ in, X

i
t− ∈ ∂D

}
, (7.11)

and Ri for the point process corresponding to the jumps of this particle:

Ri(t) =

∞∑
n=1

1τ i
n⩽t.

For all x ∈ DN , 1 ⩽ i ̸= j ⩽ N , write:

xijk =

{
xk if k ̸= i
xj else .

Proposition 7.2.1 ([71], Proposition 1). Let N ∈ N, f ∈ C0
(
D̄N

)⋂
C∞

(
DN

)
. Denote by

R(f)(t) =

N∑
i=1

1

N − 1

∑
j ̸=i

∫ t

0

(
f(Xij

s−)− f(Xs−)
)

dRi(s)
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the finite variation process of the jump part, and

Q(f)(t) =

∫ t

0

N∑
i=1

Lxi
f(Xs)ds

the finite variation process of the diffusion part. Then there exists a martingale M(f) such that
almost surely for all t ⩾ 0:

f(Xt)− f(X0) = R(f)(t) +Q(f)(t) +M(f)t.

Moreover,

R(f)(t) +M(f)t =

N∑
i=1

∫ t

0

∇xif(Xs) · dBi
s +

∑
n,τn⩽t

f(Xτn)− f(Xτn−),

where the (Bi)’s are the Brownian motion used in the definition of the FV process, and the (τn)
are the death times.

This decomposition will allow us to prove the existence of the Lyapunov functional. The idea
is the following: the function V will be equal to U at the center of the domain, and near its
boundary, V will be such that ∇V is proportional to ∇U , but with |∇V | possibly greater than
|∇U |. Since n(x) ·∇U(x) > 0 on the boundary, we will also have n(x) ·∇V (x) > 0, which means
that, near the boundary, V tends to decrease along (7.1). If in addition V is maximal at the
boundary, then it can only decrease at a jump time.

Lemma 7.2.3. Under Assumption 7.1.1, there exists C1 > 0 such that for all V0 > 0 with

V0 ⩾ 4 sup
D
U + 1,

there exist ε0 > 0 and a smooth function V : D̄ 7→ R+ such that V is constant equal to V0 on
∂D, supD V = V0, 4C1 < V0, and for all N ∈ N, 0 < ε < ε0, x ∈ DN , and 1 ⩽ i ⩽ N , we have:

Ex
(
V
(
Xi

tε

))
⩽ γεV (xi) + C1(1− γε) (7.12)

where γε ∈ (0, 1) is independent from x and vanishes as ε→ 0.

The value V0 of V on the boundary is a fixed parameter that will be chosen in Section 7.3.

Proof. Fix some V0 ⩾ 4 supD U+1 =: 4θ+1. Under Assumption 7.1.1, and in particular because
of condition (7.6), there exists some set F ⊂ D such that Rd \ F is a neighborhood of ∂D, there
are no critical points of U on D \ F (the closure of D \ F ), and

sup
D\F

U ⩽ U0.

Write
Umin = min

D\F
U , ζ = inf

x∈D\F
|∇U(x)|.

Notice that ζ > 0 since |∇U | is continuous and positive over the compact set D \ F . Let
f : [0, U0] 7→ R be some smooth function satisfying the following conditions:

• for all u ⩽ Umin, f(u) = u,
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• f(U0) = V0,

• minUmin⩽u⩽U0
f ′(u) > 0.

Then, set V (x) = U(x) for all x ∈ F , and V (x) = f(U(x)) for all x /∈ F . The function V
is smooth, constant equal to V0 = f(U0) on ∂D, bounded above by V0, and we have for all
x ∈ D \ F :

LV = f ′(U)
(
ε∆U − |∇U |2

)
+ εf ′′(U)|∇U |2.

Recall that |∇U | is positive on D \ F . We consider ε0 small enough so that on D \ F we have,
for all ε < ε0:

εf ′(U)|∆U |+ ε|f ′′(U)||∇U | ⩽ 1/2f ′(U)|∇U |2.

We then have for all x ∈ D \ F :
LV (x) ⩽ −ωV (x)

where

ω =
ζ2

2V0
min

U1⩽u⩽U0

f ′(u)

is independent of ε. Now, for x ∈ F :

LV (x) ⩽ ε sup
D
|∆U |+ ωθ − ωV (x).

This inequality is thus true for all x ∈ D. Hence, we may plug it into the formula of Proposi-
tion 7.2.1 with f(x) = V (xi). Recall the definition of (τ in)n∈N from (7.11). For n ∈ N, using the
fact that V is maximal on the boundary of D, R(V ) ⩽ 0, and hence for all 0 ⩽ s ⩽ t:

E
(
V
(
Xi

t∧τ i
n

))
− E

(
V
(
Xi

s∧τ i
n

))
⩽
∫ t

s

(
−ωE

(
V
(
Xi

u∧τ i
n

))
+ ε∥∆U∥∞ + ωθ

)
du.

Writing g(t) = E
(
V
(
Xi

t∧τ i
n

))
− θ − ε∥∆U∥∞/ω, we have for t ⩾ 0 and h > 0:

g(t+ h)− g(t) ⩽ −ω
∫ t+h

t

g(u)du.

We now suppose that g is continuous. Fix η > 0 and write:

Tη = min
{
t ⩾ 0, g(t) ⩾ g(0)eωt + η

}
.

Suppose that Tη <∞ and write:

sη = max {0 ⩽ s ⩽ Tη, g(s) ⩽ g(0)eωs} .

Then by continuity we have:

g(0)e−ωTη + η − g(0)e−ωsη = g(Tη)− g(sη) ⩽ −ω
∫ Tη

sη

g(u)du

< −ω
∫ Tη

sη

g(0)e−ωudu = g(0)e−ωTη − g(0)e−ωsη ,
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hence necessarily Tη =∞, for all η > 0, and thus for all t ⩾ 0,

g(t) ⩽ g(0)e−ωt,

and
E
(
V
(
Xi

tε∧τ i
n

))
⩽ γεV (xi) +

ε∥∆U∥∞ + ωθ

ω
(1− γε) ,

with γε = e−ωtε . Because V is maximal at the boundary, t 7→ V
(
Xi

t

)
is lower-semicontinuous.

Hence, since V ⩾ 0 and τ in →∞ as n→∞, using Fatou’s lemma,

E
(
V
(
Xi

tε

))
⩽ E

(
lim inf
n→∞

V
(
Xi

tε∧τ i
n

))
⩽ lim inf

n→∞
E
(
V
(
Xi

tε∧τ i
n

))
⩽ γεV (xi) +

ε∥∆U∥∞ + ωθ

ω
(1− γε) .

Since V0 > 4θ + 1, we may take ε0 small enough so that, for all ε < ε0:

4
ε∥∆U∥∞ + ωθ

ω
< 4 sup

D
U + 1 ⩽ V0,

and hence the result with C1 = supF U + 1/4.
We are left to show that, for all n ∈ N, t 7→ E(V (Xi

t∧τ i
n
)) is continuous. Write V i(x) = V (xi).

Then from Proposition 7.2.1, we get that:

E(V (Xi
t∧τ i

n
)) = E(V (Xi

0)) + E(Q(V i)(t ∧ τ in)) + E(R(V i)(t ∧ τ in)).

Since LxiV is bounded, t 7→ E(Q(V i)(t ∧ τ in)) is continuous. For 0 ⩽ s ⩽ t, we may write

E(R(V i)(t ∧ τ in))− E(R(V i)(s ∧ τ in)) =
1

N − 1

n∑
k=1

∑
j ̸=i

E
((
V (Xj

τ i
k

)− V (Xi
τ i
k−

)
)
1s⩽τ i

k⩽t

)
,

and hence∣∣E(R(V i)(t ∧ τ in))− E(R(V i)(s ∧ τ in))
∣∣ ⩽ 2n∥V ∥∞P(Xi dies between time s and t).

The law of the death times have a density with respect to the Lebesgue measure. Hence we have
that

lim
s→t

P (Xi dies between time s and t) = 0,

and this implies the continuity of t 7→ E(R(V i)(t ∧ τ in)), which concludes the proof.

Remark 7.2.1. When Assumption 7.1.2 also holds, we will additionally suppose that V is such
that

B1 ⊂ {V > m}

for some m > 3C1, where B1 is the set from Assumption 7.1.2. Indeed, in the proof of
Lemma 7.2.3, we may choose F such that Umin < minB1

U . In this case, since V0 > 4C1,
we may impose on f that f(minB1

U) > 3C1.

We are now interested in the death probability of a particle.
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Proposition 7.2.2. Under Assumption 7.1.1, denote by (Xt) the diffusion (7.1), and

τ∂D = inf {t ⩾ 0;Xt /∈ D} .

Consider any C2 ∈ (2C1, 4C1), where C1 is given in Lemma 7.2.3. Then we have:

pε := sup
x∈{V⩽C2}

Px(τ∂D < tε)→ 0, (7.13)

as ε→ 0.

Proof. Since tε = ea/ε with a < U0, this is the theory of Freidlin-Wentzell, see [65, Chapter
6, Theorem 6.2]. Freidlin and Wentzell didn’t state the uniformity, but it follows from their
proof.

7.2.3 Particles near the boundary
We want to control the number of particles which are close to the boundary of D after a time
tε. Consider the neighborhood

B = {V > 3C1}

of ∂D, where C1 is the constant from Lemma 7.2.3. For x = (x1, · · · , xN ), write:

A(x) = # {i ∈ J1, NK;xi ∈ B} , (7.14)

where # stands for the cardinality of a set. We show that at time tε, the number of particles
close to the boundary, A(x), is a small fraction of N with high probability as N goes to infinity
or as ε goes to 0.

Lemma 7.2.4. For all α > 0, there exists ε0 > 0 such that for all ε < ε0, there exists qε > 0
such that for all N ∈ N and x ∈ DN :

Px(A(Xtε) > αN) ⩽ qNε (7.15)

and qε → 0 as ε→ 0.

Proof. The idea for the proof is the following: we want to compare the evolution of V (Xi
t) and

Ornstein-Uhlenbeck processes with small variance. If we had N independent diffusions, the result
would derive from a simple enumeration. But then the interaction through jumps can only make
the Lyapunov decrease. From Proposition 7.2.1 and the proof of Lemma 7.2.3, we have that
almost surely for all 1 ⩽ i ⩽ N and t ⩾ 0:

V
(
Xi

t

)
⩽ V (xi) +

∫ t

0

(
−ωV

(
Xi

s

)
+ ωC1

)
ds+

√
2ε

∫ t

0

∇V
(
Xi

s

)
· dBi

s.

for some ω > 0 (independent from ε). Now introduce for 1 ⩽ i ⩽ N the process:

Ki
t = V (xi)e

−ωt + C1(1− e−ωt) +
√
2ε

∫ t

0

eω(s−t)∇V (Xi
s) · dBi

s,

which solves

Ki
t = V (xi) +

∫ t

0

(
−ωKi

s + ωC1

)
ds+

√
2ε

∫ t

0

∇V
(
Xi

s

)
· dBi

s.
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From proposition 7.2.1, we have that:

V (Xi
t)−Ki

t =

∫ t

0

(
LV (Xi

s) + ωKi
s − ωC1

)
ds+

∑
n,τ i

n⩽t

V (Xi
τ i
n
)− V (Xi

τ i
n−

),

where (τ in) are the death times of particle number i as defined in (7.11). Moreover, Ki is a
continuous process, and V (Xi) is continuous between death times. Hence, V (Xi) − Ki is C1
between death times. Let f(x, y) = ((x− y)+)2, so that f is differentiable, and is non-decreasing
in the variable x. By construction of V , for all n ∈ N, V (Xi

τ i
n
) ⩽ V (Xi

τ i
n−

), hence we have for all
t ⩾ 0: ((

V (Xi
t)−Ki

t

)
+

)2
⩽ 2

∫ t

0

ω
(
Ki

s − V
(
Xi

s

)) (
V
(
Xi

s

)
−Ki

s

)
+

ds ⩽ 0.

Thus, almost surely, V
(
Xi

t

)
is bounded by Ki

t for all t ⩾ 0, and we are left to show that with
high probability, there are only a few Ki’s which are greater then 3C1 at time tε. Write:

Gi
t =
√
2ε

∫ t

0

eω(s−t)∇V (Xi
s) · dBi

s.

Fix some family of indexes (i1, . . . , ik) ∈ {1, . . . , N}k. The Gi’s are L2-martingales, hence for
any ξ ∈ R, ξ

∑k
j=1G

ij is a L2-martingale, and:

exp

ξ k∑
j=1

Gij − ξ2
〈

k∑
j=1

Gij

〉
is a local-martingale. We have that

〈
Gi, Gj

〉
= 0 for all i ̸= j because the Brownian motions are

independent, hence〈
k∑

j=1

Gij

〉
t

=

k∑
j=1

2ε

∫ t

0

e2ω(s−t)|∇V (Xi
s)|2ds ⩽

εk∥∇V ∥∞
ω

,

and using Fatou’s Lemma:

E

exp

ξ k∑
j=1

G
ij
t

 ⩽ exp

(
εξ2k∥∇V ∥∞

ω

)
,

for all t ⩾ 0. Now we can write, using the Markov inequality:

P
(
Gi1

tε > C1, · · · , Gik
tε > C1

)
⩽ P

exp

ξ k∑
j=1

Gij

 > eξkC1

 ⩽ e−ξkC1e
εξ2k∥∇V ∥∞

ω .

Taking ξ = C1ω/(2ε∥∇V ∥∞), one gets:

P
(
Gi1

tε > C1, · · · , Gik
tε > C1

)
⩽ exp

(
−C2

1ω/2ε∥∇V ∥∞
)k

=: q̃kε .
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We chose ε0 small enough so that:

V0e
−ωtε0 + C1(1− e−ωtε0 ) < 2C1.

For all 1 ⩽ i ⩽ N , we then have: {
Ki

tε > 3C1

}
⊂
{
Gi

tε > C1

}
,

and we have for all family of indexes (i1, . . . , ik):

P
(
Xi1

tε ∈ B, . . . , Xik
tε ∈ B

)
⩽ P

(
Gi1

tε > C1, . . . , G
ik
tε > C1

)
⩽ q̃kε .

Finally, we conclude with:

Px (A (Xtε) > αN) ⩽ P
(
There exist at least αN indexes i such that Xi

tε ∈ B
)

⩽
∑

αN⩽k⩽N

(
n

k

)
q̃kε

⩽ (2 (q̃ε)
α
)
N

=: qNε .

7.3 Proofs of the main theorems

Our goal is to construct a coupling of δxPN,ε and δyP
N,ε for all x,y ∈ DN in such a way that

some distance d(x,y) is contracted on average by this coupling along time. The basic idea of
the coupling is the following: particles are coupled by pair, namely we want the particle i of the
system starting at x to merge, after a time tε, with the particle i of the system starting at y.
However, contrary to the case of independent particles, here, even if two particles start at the
same position (namely xi = yi), they have a positive probability to decouple before time tε. This
can be particularly bad for some initial conditions: for instance if most of the pairs start merged
but close to the boundary while a decoupled pair is in the middle of the domain, then this will
typically lead to a lot of decoupling as coupled pairs rebirth on the uncoupled pair. This will be
tackled through the definition of the distance d.

7.3.1 Long time convergence

We now construct the coupling of (δxP
N,ε
t )t⩾0 and (δyP

N,ε
t )t⩾0 for all x,y ∈ DN , that will yield

a bound on the distance between δxP
N,ε
tε and δyP

N,ε
tε . Fix x,y ∈ DN , and a sequence (Iin) of

independent random variable, where Iin is uniform on J1, NK \ {i}.
For all 1 ⩽ i ⩽ N , consider a coupling (X̃i

t , Ỹ
i
t ) of the diffusion (7.8) starting from (xi, yi)

such as the one constructed in Lemma 7.2.2 (with these processes being independent for two
different values of the index i). Recall that Td = (R/2LZ)d, and L is great enough so that we
may consider that D ⊂ Td. Hence we may write

τ̃1 = inf
{
t ⩾ 0,∃i ∈ J1, NK, X̃i

t /∈ D or Ỹ i
t /∈ D

}
.

Denote by i1 the index of the particles that exit the domain at time τ̃1. For all i ̸= i1 and
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0 ⩽ t ⩽ τ̃1 or i = i1 and 0 ⩽ t < τ̃1, let:

Xi
t = X̃i

t and Y i
t = Ỹ i

t ,

in the sense that Xi
t (resp. Y i

t ) is the only point of D whose projection is X̃i
t (resp. Ỹ i

t ). Finally,

if X̃i1
τ̃1
/∈ D, then set Xi1

τ̃1
= X

I
i1
1

τ̃1
, else set Xi1

τ̃1
= X̃i1

τ̃1
. The same goes for Y i1

τ̃1
: if Ỹ i1

τ̃1
/∈ D, then

set Y i1
τ̃1

= Y
I
i1
1

τ̃1
, else set Y i1

τ̃1
= Ỹ i1

τ̃1
. The coupling can then be constructed by induction, just as

for the construction of the FV processes in the introduction.
Basically, the coupling is as follow: two particles with same index will be an optimal coupling

of the diffusion as long as they don’t die as constructed in Lemma 7.2.2, and if they die while
coupled, then they resurrect using the same index. By this we mean that the uniform variable
Iin used in the construction of the process in Section 7.1.1 must be the same for both systems.

We will show that this coupling yields a contraction for the Wasserstein distance associated
to a particular distance on DN , namely:

d(x,y) =

N∑
i=1

1xi ̸=yi
(1 + βV (xi) + βV (yi)) + (1 + V0)N

(
1A(x)>αN + 1A(y)>αN

)
1x ̸=y, (7.16)

where β, α > 0 are parameters that will be chosen small enough, and A(x) has been defined in
(7.14). We define as well:

d1(xi, yi) = 1xi ̸=yi
(1 + βV (xi) + βV (yi)) .

The meaning of this distance, which follows the construction of Hairer and Mattingly in [79],
is this: if xi ̸= yi and V (xi)+V (yi) < C2, where C2 is as in Proposition 7.2.2, then both particles
of index i are in the center of the domain at initial time, and we are able to couple Xi and Y i

before time tε and before they die with high probability. If xi ̸= yi and V (xi)+V (yi) ⩾ C2, then
we may not be able to couple them, but the Lyapunov functional will decrease on average. In any
case, if xi ̸= yi, E

(
d1(Xi

t , Y
i
t )
)

will decrease between initial time and time tε. If xi = yi, then we
cannot expect any contraction of E

(
d1(Xi

t , Y
i
t )
)
, since it is equal to zero at initial time, and the

probability that Xi and Y i decouple is positive (if they die and resurrect on an uncoupled pair).
In this case, if xi is in the center of the domain, then, as we will see below, the probability of
decoupling is very small and won’t be an issue. But in the case where there are many particles
coupled at t = 0 close to the boundary, many of them will get separated. This is why we added
the additional term N

(
1A(x)>αN + 1A(y)>αN

)
1x̸=y in the definition of d. If we are in this case,

this term is initially not zero but, according to Lemma 7.2.4, it will probably be zero at time tε,
which will compensate for the non-zero terms that will appear with other parts of the distance.
In other words, this term plays the role of a global Lyapunov function, by contrast with the
pairwise Lyapunov function V (xi) + V (yi).

Let’s start by bounding from above the probability to decouple. This is the part where we
use Assumption 7.1.2.

Lemma 7.3.1. Under Assumptions 7.1.1 and 7.1.2, there exists C3 such that for all 0 < α < 1/4,
there exists ε0 > 0 such that for all 0 < ε < ε0, there exists mε > 0, such that for all N ∈ N,
x,y ∈ DN with A(x), A(y) ⩽ αN , and all i ∈ J1, NK such that xi = yi, we have:

Px,y

(
Xi

tε ̸= Y i
tε

)
⩽

{
mεC3d̄(x,y)/N if xi /∈ B
C3d̄(x,y)/N if xi ∈ B
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where d̄(x,y) =
∑N

i=1 1xi ̸=yi , and limε→0mε = 0.

An intermediate lemma is needed. The goal of this lemma is to get bounds on the number
of death events. This next lemma is where we use the neighborhood B1 of ∂D from Assump-
tion 7.1.2.

Lemma 7.3.2. Under Assumptions 7.1.1 and 7.1.2, let B1 be the neighborhood of ∂D from
Assumption 7.1.2. Write the event:

A =
{
#
{
i ∈ J1, NK,∃t ⩽ tε, X

i
t ∈ B1

}
⩾ 2αN

}
.

1. There exists ε0 > 0 such that for all 0 < ε < ε0, there exists p̃ε > 0, such that for all
0 < α < 1/4, N ∈ N, x ∈ DN with A(x) ⩽ αN ,

Px(A) ⩽ (2p̃αε )
N
,

and limε→0 p̃ε = 0.

2. Moreover, if T denote the number of rebirth in the system before time tε, there exists
ε0, σ > 0, 0 < q < 1, such that for all 0 < ε < ε0 and 0 < α < 1/4:

P(T > σN,Ac) ⩽ qN .

3. Write T i the number of rebirth of particle i before time tε. We have as well that there exist
C, ε0 > 0 such that for all 0 < ε < ε0, for all 0 < α < 1/4, x ∈ DN satisfying A(x) < αN :

Ex

(
T i
1Ac

)
⩽

{
Cp̄ε if xi /∈ B
C if xi ∈ B,

where p̄ε is given in (7.7).

Proof. 1. At time t = 0, the condition on x implies that there are less than αN particles in
B. Under Assumption 7.1.2, we assumed in Remark 7.2.1 that

min
B1

U > max
D\B

U.

Hence B1 ⊂ B, and this means that for A to happen, namely for 2αN particles to visit
B1 before time tε, at least αN particles that were initially in D \B must have reached B1

before time tε. Write:
p̃ε = sup

x∈D\B
Px (τB1

< tε) ,

where τB1
is the first hitting time of the set B1 for the diffusion (7.1). Under Assump-

tion 7.1.2, a < minB1
U . Together with the fact that minB1

U > maxD\B U and [65,
Chapter 6, Theorem 6.2] yields that p̃ε → 0 as ε→ 0. The fact that a particle reaches B1

only depends on the Brownian motion driving it, hence we have:

P(A) ⩽
∑

k⩾αN

(
(1− α)N

k

)
p̃kε ⩽ (2p̃αε )

N .

2. In order to control the number of deaths of the ith particle up to time tε, we are going
to distinguish two types of rebirth events: either the particle is resurrected on a particle
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which we know never reaches B1 (i.e. stays away from the boundary), in which case we
can bound the probability that the ith particle dies again, or it is resurrected on a particle
for which we have no information, in which case it can be arbitrarily close to the boundary
and the time before the next death of the ith particle can be arbitrarily small.

For convenience, we consider in the rest of the proof that the FV process has been defined
thanks to a construction similar to the one presented in Section 7.1.1 except that the
Brownian motions driving the SDEs are changed at each death event, namely along with
the variables (Iin)n⩾0,i∈J1,NK, we consider a family of independent d-dimensional Brownian
motions ((Bn,i

t )t⩾0)n⩾0,i∈J1,NK, so that after its nth death and up to its (n+1)th death the
position of the particle i is given by Xi

τ i
n+t = X̄i

t where X̄i is the solution of (7.1) driven
by Bn,i with initial condition X̄i

0 = Xi
τ i
n

(recall the notation τ in from (7.11)). Of course the
law of the process is correct with this construction.

Denote:
S =

{
i ∈ J1, NK,∃t < tε, X

i
t ∈ B1

}
.

Then the Markov inequality yields:

P (T > σN,Ac) ⩽ e−σNE
(
eT1Ac

)
= e−σN

∑
S∈P(J1,NK)

#S⩽2αN

E
(
e
∑N

i=1 Ti1S=S

)
.

Fix S ∈ P(J1, NK), such that #S < 2αN , and recall the definition of the variable Iin used in
the construction of the FV process, which are independent uniform variables on J1, NK\{i}.
We define by induction P i

0 = 0 and :

P i
k = inf

{
n > P i

k−1, I
i
n /∈ S

}
.

Notice that, under the event {S = S}, if Iin /∈ S, it means that at its nth rebirth the particle
i is resurrected on a particle which never reaches B1 before time tε.

Setting k0(i) = 1 if xi ∈ B1 and k0(i) = 0 otherwise, we define as well

P i = inf
{
k ⩾ k0(i),∀x ∈ D \B1, τD(Xx,i,P i

k) > tε

}
,

where for n ∈ N the family of processes (Xx,i,n)x∈D\B1
is as in Assumption 7.1.2 and

are driven by the Brownian motion Bn,i. Since we have already observed that, for all
k > 0, at its (P i

k)
th death, the particle i is resurrected at a position in D \B1, the event

{∀x ∈ D\B1, τD(Xx,i,P i
k) > tε}, which is measurable with respect to the Brownian motion

BP i
k,i, implies that the particle does not die again before time tε. For k = 0, it depends

whether initially xi ∈ B1: if xi /∈ B1 (which is in particular the case if xi /∈ B) then,
again, the event {∀x ∈ D \B1, τD(Xx,i,0) > tε} implies that the particle doesn’t die before
time tε. This is not the case if xi ∈ B1. As a consequence, in any cases, under the event
{S = S}, we can bound the total number of death of the ith particle by

T i ⩽
P i∑
k=1

(P i
k − P i

k−1).

The variables (P i
k − P i

k−1)k⩾1,i are independent geometric random variables of parameter
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1 −#S > 1 − 2α. Under Assumption 7.1.2, if xi ∈ B1 (resp. if xi /∈ B1) then P i (resp.
P i + 1) is a geometric random variable of parameter 1 − p̄ε. Moreover, (P i)1⩽i⩽N is a
family of independent random variables, independent from (P i

k)k⩾1,1⩽i⩽N . We have:

E
(
e
∑N

i=1 Ti1S=S

)
⩽ E

(
e
∑N

i=1

∑Pi

k=1(P
i
k−P i

k−1)

)
=

(
E
(
e
∑Pi

k=1(P
i
k−P i

k−1)

))N

.

We are just left to show that E
(
exp

∑P i

k=1(P
i
k − P i

k−1)
)

is finite and bounded uniformly

in ε < ε0. Conditioning with respect to P i we get :

E
(
e
∑Pi

k=1 P i
k−P i

k−1

)
= E

(
E
(
eP

i
0

)P i)
⩽ E

((
e

1− eα

)P i)
,

hence the result if ε0 satisfies p̄ε0 <
1−eα

e , since we bound then

P (T > σN,Ac) ⩽

(
2e−σE

((
e

1− eα

)P i))N

.

3. In the same spirit, fix i ∈ J1, NK, and write now:

P i
k = inf

{
n > P i

k−1, I
i
n /∈ Si

}
,

where
Si =

{
j ∈ J1, NK \ {i} ,∃t < tε, X

j
t ∈ B1

}
,

and
Ai =

{
#
{
j ∈ J1, NK \ {i} ,∃t ⩽ tε, X

j
t ∈ B1

}
⩾ 2αN

}
,

and the definition of P i does not change. We have that (P i
k)k, and P i are independent

random variable, and P i is independent of Ai and Si. Indeed, Ai and Si only depends on
the Brownian motions that drive (Xj)j ̸=i. Under the event (Ai)c, the cardinality of Si is
less than 2αN . Furthermore, we have that Ai ⊂ A, and hence, as in the previous step,

E
(
T i
1Ac

)
⩽ E

 P i∑
k=1

(
P i
k − P i

k−1

)
1(Ai)c

 ⩽ E
(
P iE(P i

1|S
i,Ai, P i)

)
⩽

1

1− 2α
E(P i),

and we conclude by bounding E(P i) ⩽ p̄ε(1− p̄ε)−1 if xi /∈ B (since, then, xi /∈ B1) and,
otherwise, E(P i) ⩽ (1− p̄ε)−1.

Proof of Lemma 7.3.1. Define the sets:

U1(0) = {i ∈ J1, NK, xi ̸= yi} ,
U2(0) = {i ∈ J1, NK, xi = yi} .

Now, for t ⩾ 0, we want to define some sets U1(t), U2(t), such that if Xi and Y i decouple at
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some time s ⩾ 0, then for all t ⩾ s, i ∈ U1(t). For i ∈ U2(0), n ∈ N, write:

τ in = inf
{
t > τ in−1, X

i
t− = Y i

t− ∈ ∂D
}
,

as in(7.11), and
τ̄ id = inf

{
t ⩾ 0, Xi

t ̸= Y i
t

}
.

Since the FV-process is well-defined, almost surely, there is only a finite number of such events
before time tε, for all 1 ⩽ i ⩽ N . Then define the set U1(t) and U2(t) for t ∈ (τk−1, τk] by
induction on k ⩾ 1. Assume that the sets have been defined up to the time τk−1 for some k ⩾ 1.
Set Uj(t) = Uj(τk−1) for all t ∈ (τk−1, τk). Let i ∈ J1, NK be the index such that τk ∈ ∪n∈N{τ̄ in}.
Now we distinguish two cases. If τk ̸= τ̄ id, then Uj(τk) = Uj(τk−1) for j = 1, 2. Else set:

U1(τk) = U1(τk−1) ∪ {i} , U2(τk) = U2(τk−1) ∩ {i}c .

It is immediate to check that U1(t) and U2(t) form a partition of J1, NK for all t ⩾ 0, and that
U1(t) is non-decreasing with t and such that {i ∈ J1, NK, Xi

t ̸= Y i
t } ⊂ U1(t) for all t ⩾ 0. Recall

from Lemma 7.3.2 the event:

A =
{
#
{
i ∈ J1, NK,∃t ⩽ tε, X

i
t = Y i

t ∈ B1

}
⩾ 2αN

}
.

For n ∈ N and j = 1, 2, write ujk = #Uj(τk). At each time τk, the probability that a particle
goes from U2 to U1 is less than u1k−1/N . Hence, we have that for all k ⩾ 1:

E
(
u1k+1|Fτk

)
⩽ u1k

(
1 +

1

N

)
,

and thus

E
(
u1k
)
⩽ d̄(x, y)

(
1 +

1

N

)k

.

Using the notations of Lemma 7.3.2 , in particular T to denote the total number of death event
before time tε, using that u1n is non-decreasing, we bound

E(u1T1Ac) ⩽ E(u1σN ) +NP(T > σN,Ac)

⩽ eσd̄(x, y) +NqN ,

which is bounded uniformly on N ⩾ 1 and ε small enough, by C̃3d̄(x, y), for some C̃3 > 0, as
soon as d̄(x, y) ⩾ 1 (while, if d̄(x, y) = 0 then the two processes remain equal for all times and
thus the result is trivial). We get from all of this:

E
(
sup
t⩽tε

d̄ (Xt,Yt)1Ac

)
⩽ E(u1T1Ac) ⩽ C̃3d̄(x, y).

Now we can bound the probability to decouple starting from any xi = yi ∈ D, for a fixed i (recall
the notation T i from Lemma 7.3.2):

P
(
∃0 < t < tε, X

i
t ̸= Y i

t

)
⩽
∑
n⩾1

P
(
τ̄ id = τ̄ in,Ac, Ti > n

)
+ P(A)

=
∑
n⩾1

E
(
d̄(Xτn ,Yτn)/N1Ac

)
P (Ti > n,Ac) + (2p̃αε )

N
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⩽
1

N

∑
n⩾1

E
(
sup
t⩽tε

d̄ (Xt,Yt)1Ac

)
P (Ti > n,Ac) + (2p̃αε )

N

⩽ C̃3
d̄(x, y)

N
E(Ti1Ac) + (2p̃αε )

N .

We conclude using Lemma 7.3.2.

We need to choose the parameters involved in the definition of the distance d. There are
three of them: α, β, and V0. We fix any V0 > 4C1 (which is required in Lemma 7.2.3), any
β < (2 ∨ 4C1)

−1 and then α small enough so that

1 + 2βC1

1 + βC2
∨4βC1 + αC3(1 + 2βV0) < 1, (7.17)

and
1 + 2βV0
1 + V0

< 1, (7.18)

where we used in (7.17) that C2 > 2C1 from Proposition 7.2.2. This is possible by fixing first
some small β, and then taking any V0 > 4C1, and finally α small enough.

Lemma 7.3.3. Let x,y ∈ DN and 1 ⩽ i ⩽ N such that xi ̸= yi and V (xi) + V (yi) ⩽ C2. Then
with κ1,ε = γε ∨ (1− cε + 2pε + 4βC1(1− γε)), where γε has been defined in lemma 7.2.3, we
have:

E(d1(Xi
tε , Y

i
tε)) ⩽ κ1,εd

1(xi, yi).

Proof. Let (X̃i
t , Ỹ

i
t ) be the coupling of the diffusion (7.8) as in lemma 7.2.2, used in the con-

struction of our coupling. Then, (X̃i
t , Ỹ

i
t ) = (Xi

t , Y
i
t ) until Xi or Y i reaches ∂D. We have

:

P
(
Xi

tε = Y i
tε

)
⩾ P

(
Xi

tε = Y i
tε , τxi

> tε, τyi
> tε

)
= P

(
X̃xi

tε = Ỹ yi

tε , τxi
> tε, τyi

> tε

)
⩾ P

(
X̃xi

tε = Ỹ yi

tε

)
− P (τxi

> tε )− P (τyi
> tε )

⩾ cε − 2pε.

Using the property of the Lyapunov function described in (7.12), we then have:

E
(
d1(Xi

tε , Y
i
tε)
)
⩽ 1− cε + 2pε + 2βC1(1− γε) + γεβ (V (xi) + V (yi))

⩽ κ1,εd
1(xi, yi).

Now we focus on the particles near the boundary that are not coupled:

Lemma 7.3.4. Let x,y ∈ DN and 1 ⩽ i ⩽ N such that V (xi) + V (yi) ⩾ C2 and xi ̸= yi. Then
with κ2,ε = γε + (1− γε) 1+2βC1

1+βC2
, we have:

E(d1(Xi
tε , Y

i
tε)) ⩽ κ2,εd

1(xi, yi).

Proof. Using the Lyapunov property and the fact that γε ⩽ κ2,ε, we have:
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E
(
d1(Xi

tε , Y
i
tε)
)
⩽ 1 + 2βC1(1− γε) + βγε (V (xi) + V (yi))

⩽ κ2,εd
1(xi, yi) + 1 + 2βC1(1− γε)− κ2,ε + β(γε − κ2,ε) (V (xi) + V (yi)) .

The fact that V (xi) + V (yi) ⩾ C2 implies that

1 + 2βC1(1− γε)− κ2,ε + β(γε − κ2,ε) (V (xi) + V (yi)) ⩽ 0,

and thus the result.

Proof of Theorem 7.1.1. Let x,y ∈ DN , κε = κ1,ε ∨ κ2,ε. First suppose that 1A(x)>αN =
1A(y)>αN = 0. We decompose:

E (d (Xtε ,Ytε))

=
∑

i/xi ̸=yi

E
(
d1
(
Xi

tε , Y
i
tε

))
+

∑
i/xi=yi /∈B

E
(
d1
(
Xi

tε , Y
i
tε

))
+

∑
i/xi=yi∈B

E
(
d1
(
Xi

tε , Y
i
tε

))
+N (1 + V0) (P (A(Xtε) > αN) + P (A(Ytε) > αN)) . (7.19)

Thanks to Lemmas 7.3.3 and 7.3.4, we have that the first sum is less than κεd(x,y). From
Lemma 7.3.1, the second term is less than:

C3mε(1 + 2βV0)d(x,y),

and the third term is less than:
αC3(1 + 2βV0)d(x,y).

Finally, thanks to Lemma 7.2.4, the last term is less than:

2N (1 + V0) q
N
ε d(x,y) ⩽

−2 (1 + V0)

e ln(qε)
d(x,y).

Putting all of this together we get:

E(d(Xtε ,Ytε)) ⩽ sεd(x,y)

where
sε = κε + C3 (1 + 2βV0)mε + αC3(1 + 2βV0) +

−2 (1 + V0)

e ln(qε)
.

As ε goes to 0, sε goes to 1+2βC1

1+βC2
∧ 4βC1+αC3(1+2βV0) < 1 because of our choice of constants

(7.17).
Now, consider the case where 1A(x)>αN+1A(y)>αN > 0. Assume that x ̸= y, the result being

trivial otherwise since the processes stay equal for all times. In that case, d(x,y) ⩾ N(1 + V0)
and we simply bound

E (d (Xtε ,Ytε)) ⩽ N(1 + 2βV0 + (1 + V0)qε) ⩽

(
1 + 2βV0
1 + V0

+ qε

)
d(x,y),

for ε small enough. Since rε := 1+2βV0

1+V0
+ qε is strictly less than 1 with our choice of constants

(7.18) for ε small enough, we conclude that, with c = 1 − supε<ε0 sε ∧ rε > 0 where ε0 is small
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enough, we have for all x,y ∈ DN :

Ex,y (d (Xtε ,Ytε)) ⩽ (1− c)d(x,y).

By conditioning with respect to the initial condition we get that:

Wd

(
µPN

tε , νP
N
tε

)
⩽ (1− c)Wd (µ, ν) ,

for all probability measures µ, ν in M1(DN ), and by iteration:

Wd

(
µPN

t , νP
N
t

)
⩽ (1− c)⌊t/tε⌋Wd

(
µPN

t−⌊t/tε⌋tε , νP
N
t−⌊t/tε⌋tε

)
⩽ (1 + 2(β + 1)V0)N(1− c)⌊t/tε⌋.

We conclude the first point of the theorem using 1x̸=y ⩽ d(x,y).
Let’s now prove the second point of Theorem 7.1.1. M1

(
DN

)
endowed with the distance d

is a complete space. The contraction of PN
tε yield the existence and uniqueness of the stationary

measure νN,ε
∞ , as well as the exponential convergence of µPN,ε

t towards νN,ε
∞ . If µ is exchangeable,

then µPN,ε
t is exchangeable for all t ⩾ 0. The convergence of µPN,ε

t toward νN,ε
∞ implies that νN,ε

∞
is exchangeable. Now consider an optimal coupling for the distance d of µPN,ε

t and νN,ε
∞ PN,ε

t .
Using the exchangeability property we have:

∥µPN,k
t − νN,ε,k

∞ ∥TV ⩽ E
(
1(X1

t ,...,X
k
t ) ̸=(Y 1

t ,...,Y k
t )

)
⩽

k∑
i=1

E
(
1Xi

t ̸=Y i
t

)
= kE

(
1X1

t ̸=Y 1
t

)
⩽

k

N

N∑
i=1

E
(
1Xi

t ̸=Y i
t

)
,

and we conclude with the first point of the theorem.

7.3.2 Propagation of chaos

Recall the definition of the empirical measure πN in (7.4). As said in the introduction, the goal
is to get a uniform in time propagation of chaos result. We start from a propagation of chaos
result, with a time dependency, from [165]. Their result reads as follows:

Proposition 7.3.1 ([165], Theorem 1). For all µ0 ∈ M1(DN ), considering (Xi
t)t⩾0 the FV

process with initial condition (Xi
0) which is a random variable of law µ0, and (Xt) the diffusion

(7.1), then, for all bounded f : D → R+, all ε > 0 and all t ⩾ 0:

E
(∣∣∣∣∫

D

fdπN (Xt)− EπN (X0) (f(Xt)|τ∂D > t)

∣∣∣∣) ⩽
2(1 +

√
2)∥f∥∞√
N

√√√√E

(
1

PπN (X0) (τ∂D > t)
2

)
,

where τ∂D is defined in (7.2).



7.3. Proofs of the main theorems 203

We also need a result on the convergence of the law of the diffusion (7.1), conditioned on
survival, towards the QSD νε∞. This is from [35], although the statement is slightly modified to
fit our setting.

Proposition 7.3.2. Under Assumption 7.1.1, there exists ε0 > 0 such that for all compact
K ⊂ D, and all 0 < ε < ε0, there exists Cε, C̃ε, λε, χε > 0 such that for all µ0 ∈ M1(D)
satisfying µ0(K) ⩾ 1/4:

∥Pµ0 (Xt ∈ ·|τ∂D > t)− νε∞∥TV ⩽ Cεe
−χεt,

and
Pµ0 (τ∂D > t) ⩾ C̃εe

−λεt.

Proof. The process (7.1) satisfies equation (4.7) of [35], with D0 = F , where F was defined in
the proof of Lemma 7.2.3, some λ1 independent from ε, and φ = V . The constant λ0 defined
in equation (4.4) of [35] goes to zero as ε goes to zero, hence we may chose ε0 such that for all
ε < ε0, λ1 > λ0, and assumption of [35, Corollary 4.3] hold true. From [35, Theorem 4.1], this
yields the existence of the QSD νε∞ and of some function ϕ : D → R∗

+, uniformly bounded away
from 0 on all compact subsets of D such that for all µ0 ∈M1(D):

∥Pµ0 (Xt ∈ ·|τ∂D > t)− νε∞∥TV ⩽ Cεe
−χεtµ0(V )/µ0(ϕ).

Since V is bounded, if µ0(K) ⩾ 1/4, then µ0(ϕ) ⩾ 1/4minK ϕ, and we get that

∥Pµ0
(Xt ∈ ·|τ∂D > t)− νε∞∥TV ⩽ Cεe

−χεt
4∥V ∥∞
infK ϕ

.

For the second point, write:

Pµ0
(τ∂D > t) ⩾

1

4
inf
x∈K

Px(τ∂D > t).

Now fix 0 < Ũ1 < Ũ0 such that K ⊂ F ∪
{
U ⩽ Ũ0

}
=: F̃ , and

ω̃ := inf
(F∪{U⩽Ũ1})c

|∇U | > 0

. Fix T > 0 such that Ũ0 − ω̃2T < Ũ1, and some δ > 0 such that:

δ < min
(
dist

(
F ∪

{
U ⩽ Ũ1

}
, (F ∪

{
U ⩽ Ũ0

}
)c
)
, dist

(
F ∪

{
U ⩽ Ũ0

}
,Rd \D

))
.

Write:
E =

{
τ∂D > T,XT ∈ F̃

}
,

as well as φt(x) for the flow {
φ′
t = −∇U(φt)
φ0(x) = x

.

With our choice of T , Ũ0 and Ũ1, we have that φT ∈ F ∪
{
U ⩽ Ũ1

}
for all x ∈ F̃ . We get using

Gronwall’s Lemma:
sup

0⩽t⩽T
|Xt − φt| ⩽ e∥∇

2U∥∞T
√
2ε sup

0⩽t⩽T
|Bt|.
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IfW is a one-dimensional Brownian motion, sup0⩽t⩽T Wt has the law of |G| whereG is a standard
Normal random variable. Hence:

P
(

sup
0⩽t⩽T

|Xt − φt| ⩾ δ

)
⩽ 4dP

(
G ⩾

δe−∥∇2U∥∞T

T
√
2ε

)
⩽ 4de−

b
ε ,

where b = δe−∥∇2U∥∞T

2
√
2T

.
Now write

Ei =
{
τ∂D > (i+ 1)T and X(i+1)T ∈ F̃

}
.

We showed that for ε small enough, P (Ei+1|Ei) ⩾ 1− e−b/ε. We also have for our choice of δ:

{τ∂D < tε} ⊂ Ec⌈t/T⌉.

Hence for all x ∈ F̃ :
Px (τ∂D > t) ⩾

(
1− e−b/ε

)t/T
,

and thus the result.

In our metastable setting, this already yields propagation of chaos at equilibrium. Indeed,
if the FV process starts from its stationary measure, its law won’t change. But then from
Proposition 7.3.1, the empirical measure of this process is close to the law of the process (7.1)
conditioned on survival at time t ⩾ 0 starting from νN,ε

∞ , which is itself close to the QSD if t is
large enough.

Lemma 7.3.5. Under Assumption 7.1.1 and 7.1.2, there exists ε0 > 0 such that for all 0 < ε <
ε0, there exists Cε, ηε,1 > 0 such that if X∞ is a random vector of law νN,ε

∞ on DN , then for all
bounded function f : D → R+:

E
(∣∣∣∣∫

D

fdπN (X∞)−
∫
D

fdνε∞

∣∣∣∣) ⩽
Cε∥f∥∞
Nηε,1

.

Proof. Assumptions 7.1.1 and 7.1.2 yield the existence of νN,ε
∞ . Introduce the FV process (Xt)t⩾0

with initial condition X∞. By definition, the law of Xt is νN,ε
∞ for all t ⩾ 0. Recall the definition

of B and A from (7.14), and set K = D \B. Since νN,ε
∞ is the stationary measure of the FV

process, we get from Lemma 7.2.4 applied with α = 1/2 that for all t ⩾ 0:

P (A (Xt) > N/2) ⩽ qNε ,

where qε > 0 goes to zero as ε goes to zero. Recall the definition of λε from Proposition 7.3.2,
let t = b ln(N) for some 0 < b < 1/(2λε), and write A = {G1 (Xt) > N/2}. We have that:

E
(∣∣∣∣∫

D

fdπN (X∞)−
∫
D

fdνε∞

∣∣∣∣) = E
(∣∣∣∣∫

D

fdπN (Xt)−
∫
D

fdνε∞

∣∣∣∣) ,
and

E
(∣∣∣∣∫

D

fdπN (X∞)−
∫
D

fdνε∞

∣∣∣∣) = E
(∣∣∣∣∫

D

fdπN (Xt)−
∫
D

fdνε∞

∣∣∣∣)
⩽ E

(∣∣∣∣∫
D

fdπN (Xt)− EπN (X∞)(f(Xt)|τ∂D > t)

∣∣∣∣)
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+ E
(∣∣∣∣EπN (X∞)(f(Xt)|τ∂D > t)−

∫
D

fdνε∞

∣∣∣∣) .
On Gc1, we have that πN (X∞)(K) ⩾ 1/2. Hence, from Proposition 7.3.1 and 7.3.2, there exists
C > 0 such that:

E
(∣∣∣∣∫

D

fdπN (Xt)− EπN (X∞)(f(Xt)|τ∂D > t)

∣∣∣∣) ⩽
C∥f∥∞√

N

1

N−bλε − qNε
=

C∥f∥∞
N1/2−bλε

.

From Proposition 7.3.2, we get that:

E
(∣∣∣∣EπN (X∞)(f(Xt)|τ∂D > t)−

∫
D

fdνε∞

∣∣∣∣) ⩽
(
Ce−χεt + qNε

)
∥f∥∞ =

C∥f∥∞
N bχε

.

The fact that we chose b < 1/2λε concludes, as soon as ε is small enough so that qε < 1.

Proof of Theorem 7.1.2. Fix some ε > 0, some compact K ⊂ D, µ0 ∈M1(D) such that µ0(K) ⩾
1/2, and a random variable X0 of law µ⊗N

0 . Write:

G2 =
{
πN (X0)(K) ⩾ 1/4

}
.

We have that E(πN (X0)(K)) = µ0(K), and Var(πN (X0)(K)) = µ0(K)(1 − µ0(K))/N . Hence
we have:

P(Gc2) ⩽ 4/N.

We now fix 0 < b < 1/(2λε). For all t ⩽ b ln(N), from Propositions 7.3.1 and 7.3.2, we get
that there exists C > 0 such that:

E
(∣∣∣∣∫

D

fdπN (Xt)− EπN (X0) (f (Xt)|τ∂D > t)

∣∣∣∣) ⩽
C∥f∥∞√

N

√
1

N−bλε − CN−1
⩽

C∥f∥∞
N1/2−bλε/2

.

If t ⩾ b ln(N), we consider a random variable (Xt,X∞) which is an optimal coupling of µ⊗N
0 PN,ε

t

and νN,ε
∞ for the distance d defined in (7.16). We then bound as follow:

E
(∣∣∣∣∫

D

fdπN (Xt)− EπN (X0) (f (Xt)|τ∂D > t)

∣∣∣∣) ⩽ E
(∣∣∣∣∫

D

fdπN (Xt)−
∫
D

fdπN (X∞)

∣∣∣∣)
+ E

(∣∣∣∣∫
D

fdπN (X∞)−
∫
D

fdν∞

∣∣∣∣)
+ E

(∣∣∣∣∫
D

fdνε∞ − EπN (X0) (f (Xt)|τ∂D > t)

∣∣∣∣) .
From the proof of Theorem 7.1.1, the first term is bounded by:

E(d(Xt,X∞))

N
∥f∥∞ ⩽ C(1− c)t/tε∥f∥∞ ⩽ CN ln(1−c)/tε∥f∥∞.

From Lemma 7.3.5, the second term is bounded by:

C

Nηε,1
∥f∥∞.



206 CHAPTER 7. Convergence of the Fleming-Viot process in a hard metastable case

Finally, by Proposition 7.3.2, the third term is bounded by:(
Ce−χεt + 2P(G2)

)
∥f∥∞ ⩽ CN−χεb∥f∥∞,

and thus the result.

7.4 Establishing Assumption 7.1.2

This section is devoted to the proof of the following:

Lemma 7.4.1. Under Assumptions 7.1.1 and 7.1.3, Assumption 7.1.2 holds.

Proof. 1. Suppose first that d = 1. Under Assumption 7.1.1, D = (x1, x2) for some x1 < x2.
Set B1 = (x1, x1 + θ) ∪ (x2 − θ, x2) with θ > 0 sufficiently small so that U ′ ̸= 0 on B1 (as
a consequence of Assumption 7.1.1, U is thus decreasing (resp. increasing) on (x1, x1 + θ)
(resp. (x2 − θ, x2))) and so that min(U(x1 + θ), U(x2 − θ)) > c∗ (which is possible since
U(x1) = U(x2) = U0 > c∗).Take any a ∈ (c∗,min(U(x1 + θ), U(x2 − θ))). Using the
uniqueness of the solution to equation (7.1) we have:

{∃x ∈ D \B1, τ∂D(Xx) < tε} =
{
τ∂D(Xx1+θ) < tε

}
∪
{
τ∂D(Xx2−θ) < tε

}
.

We can conclude with [65, Chapter 6, Theorem 6.2].

2. We now suppose the second condition of Assumption 7.1.3. We set

B1 = {U > (U0 + U1)/2} ∩ B̃1,

where B̃1 is the set from Assumption 7.1.3, and we may chose any a ∈ (c∗, (U0 − U1)/2).
Fix some

U2 ∈ (a+ (U0 + U1)/2, U0) ,

U3 ∈ (U1 + a, (U0 + U1)/2) ,

0 < γ < min(U3 − U1 − a, U2 − (U0 + U1)/2− a),

see Figure 7.1.

Fix as well some T > 0 (to be chosen large enough below, independently from ε) and for
all x ∈ D \B1 write the event:

Ex = {U(Xx
T ) < U3 and ∀0 < t < T,U(Xx

t ) < U2} .

Let’s first show that there exists C > 0 such that P((Ex)c) ⩽ Ce−(a+γ)/ε for ε small enough
and T great enough, using Large Deviation results. In other words, in a fixed time interval,
with high probability, starting from a medium energy level at most (U1+U0)/2, the process
will stay below the high energy level U2 and will end below the medium energy level U3.
According to [65, Chapter 4, Theorem 1.1], the action function of the process (7.1) is:

I(φ) =
1

4ε

∫ T

0

|φ′
s +∇U(φs)|2ds

=
1

4ε

∫ T

0

(
|φ′

s|2 + |∇U(φs)|2
)
ds+

U(φT )− U(φ0)

2ε
(7.20)
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Figure 7.1: First, U0 is the energy level on the boundary of D. Then U1 is taken as low as
possible with the constraint that Assumption 7.1.3 holds, namely it is such that there exist a
neighborhood B̃1 of ∂D over which U ⩾ U1 and |∇U | is lower bounded by a positive constant.
Then U2 (resp. U3) is taken slightly below U0 (resp. (U1 + U0)/2) so that the length of the two
grey lines in the figure is larger than a, which is itself a constant larger than the critical depth
c∗. The condition that c∗ < (U0 − U1)/2 means that it is possible to find U2, U3 and a to fulfill
these constraints.
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=
1

4ε

∫ T

0

|φ′
s −∇U(φs)|2ds+

U(φT )− U(φ0)

ε
. (7.21)

For all function φ : [0, T ] → D such that φ0 /∈ B1 and there exists t ∈ (0, T ) such that
U(φt) ⩾ U2, using (7.21), we have:

εI(φ) ⩾
1

4

∫ t

0

|φ′
s +∇U(φs)|2ds ⩾ U(φt)− U(φ0) ⩾ U2 − (U0 + U1)/2 > a+ γ.

From this we deduce that for ε small enough, for all x /∈ B1:

P (∃t ∈ [0, T ], U(Xx
t ) ⩾ U2) ⩽ e−(a+γ)/ε.

Second, to bound the probability that U(Xx
T ) ⩾ U3, we consider two possible events: either

the process stays during the whole interval [0, T ] above the energy level U1 (which is unlikely
because it would mean it stays in an unstable region where ∇U is non-zero) or the process
goes down to U1 but then climbs back in a time less than T to the level U3 (which is also
unlikely). More precisely, for all functions φ : [0, T ] → D such that φt /∈ D \ B̃1 for all
t ∈ [0, T ], using (7.20), we have that

εI(φ) ⩾ T inf
B̃1

|∇U |2/4− U3/2.

We chose T great enough so that for all such functions, εI(φ) > a + γ. Then for ε small
enough we have that for all x /∈ B1,

P
(
∃t ∈ [0, T ], Xx

t /∈ B̃1

)
⩾ 1− e−(a+γ)/ε.

Next, for all functions φ : [0, T ]→ D such that φ0 /∈ B̃1 and U(φT ) > U3,

εI(φ) > U3 − U1.

Hence, for all x such that x /∈ B̃1 and ε small enough :

P(∃t ∈ [0, T ], U(Xx
t ) > U3) ⩽ e−(a+γ)/ε.

From those last two bounds we get for all x /∈ B1:

P (U(Xx
T ) > U3)

⩽ P
(
∀t < T,Xx

t ∈ B̃1

)
+ P

(
∃T > s > t > 0, Xx

t /∈ B̃1, U(Xx
s ) > U3

)
⩽ 2e−(a+γ)/ε.

Finally we get for all x /∈ B1:

P ((Ex)c) ⩽ 3e−(a+γ)/ε.

Up to now, we only have a control for a fixed initial condition x. To tackle simultaneously
all initial conditions in D \B1, we use that, in a time T , two processes which start close
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stays close (deterministically). More precisely, fix

δ < min
(
dist({U ⩽ U2} ,Rd \D), dist({U ⩽ U3} ,B1)

)
,

and δ′ > 0 such that δ′e∥∇
2U∥∞T < δ. Fix a family of point z1, . . . , zk /∈ B1 such that

D \B1 ⊂ ∪ki=1B(zi, δ
′), where B(z, r) is the ball of center z and radius r. Write the event:

E = {∀x /∈ B1, τ∂D(Xx) > T and Xx
T /∈ B1} .

If x /∈ B1, there exists i such that |x − zi| < δ′. Gronwall’s lemma then classically yields
that

sup
0⩽t⩽T

|Xx
t −X

zi
t | ⩽ δ′e∥∇

2U∥∞T < δ.

In particular, τ∂D(Xx) < T implies that U(Xzi
t ) ⩾ U2 for some t ∈ [0, T ]. Hence we have

that:
k⋂

i=1

Ezi ⊂ E ,

and for ε small enough
P(Ec) ⩽ 3ke−(a+γ)/ε.

Now write
Ei =

{
∀x /∈ B1, τ∂D(Xx) > (i+ 1)T and Xx

(i+1)T /∈ B1

}
.

We showed that for ε small enough, P (Ei+1|Ei) ⩾ 1− 3ke−(a+γ)/ε. We also have that

{∃x ∈ D \B1, τ∂D(Xx) < tε} ⊂ Ec⌊tε/T⌋.

Hence:

P (∀x ∈ D \B1, τ∂D(Xx) > tε) ⩾
(
1− e−(a+γ)/ε

)ea/ε/T

,

and thus this probability goes to 1 as ε goes to 0.
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Chapter 8

The Fleming-Viot process in a
high-killing regime: the soft killing
case.
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Abstract : We study the Fleming–Viot particle system in the limit where the selection (or
killing) rate tends to infinity. In this regime, and under two different sets of assumptions, we
show that the empirical measure of this particle system converges towards a Dirac distribution
with a moving mass. This stands in contrast to the mean-field limit, where the empirical measure
exhibits a deterministic limit.
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8.1 Introduction

8.1.1 Motivation

Fleming–Viot particle systems refer to population dynamics models in which n individuals are
subjected to two mechanisms:

• individuals evolve in some state space as independent copies of a given continuous-time
stochastic process (called the mutation process);

• they are killed at random times with a rate which depends on their current position, and
are then instantaneously duplicated at the position of a uniformly chosen individual among
the n− 1 remaining ones (this is the selection mechanism).

When the mutation process is a random walk on Zd and the killing rate λ > 0 is uniform on
this space, the empirical measure of this particle system is known to converge, in the n → ∞
limit and under a diffusive space-time rescaling for the mutation process, to the Fleming–Viot
superprocess [61], which is a measure-valued process on Rd introduced to describe the distribution
of alleles in a population with a large number of possible genetic states [57]. In particular, in this
regime, the selection mechanism is sped up by a factor n with respect to the mutation process.

The asymptotic behaviour of the system is also of interest without space-time rescaling.
Indeed, denoting by (Xt)t⩾0 the mutation process and τ the killing time, it is known that the
empirical measure of the system generally converges, when n→∞, to the deterministic quantity
P(Xt ∈ ·|τ > t), which is the law of Xt conditioned on survival up to time t. This observation,
which also holds true for hard killing mechanism, that is to say instantaneous killing when the
process reaches some subset of the state space, has motivated numerous developments on the
study of propagation of chaos and hydrodynamic limit [25, 71, 119, 5, 165, 142, 94] as well as
fluctuations [48, 108], for both soft and hard killing mechanisms, in both discrete and continuous
spaces.

From a numerical point of view, Fleming–Viot particle systems can be seen as Interacting
Particle Systems [46, 42, 149] allowing to approximate the conditional distribution P(Xt ∈ ·|τ >
t), whose evolution is given by a nonlinear Fokker–Planck equation and is therefore nontrivial to
study. The t → ∞ limit of this conditional distribution is called a quasistationary distribution
(QSD) for the process (Xt)t⩾0 [39], and plays a prominent role in population dynamics [124],
molecular dynamics [104, 49] or Monte Carlo methods [147]. For recent works on the existence
and uniqueness of QSDs, as well as convergence of the conditional distribution P(Xt ∈ ·|τ > t)
towards the QSD, we refer to [35, 36, 8].

While the numerical interest of Fleming–Viot particle systems lies in the consistency of their
n → ∞ limit, in practice they can only be implemented with finitely many particles. In this
context, one may expect their efficiency to depend on the intensity of the killing rate. More
precisely, to approximate the QSD of the mutation process by the stationary distribution of
the Fleming–Viot particle process, one needs the latter to reach stationarity on a shorter time
scale than the typical killing time. This time scale separation is referred to as the metastability
of the system [143]; in this situation, quantitative estimates for Fleming–Viot particle systems
associated with diffusions with hard killing were recently obtained in [97]. The first motivation of
the present article is to study the behaviour of Fleming–Viot particle systems in non-metastable
systems, namely for which killing occurs on a faster time scale than convergence to stationarity
for the mutation process.

We shall therefore consider the Fleming–Viot particle system for a mutation process (Xt)t⩾0

on a countably infinite space D, subjected to killing with a rate λ : D → [0,+∞) which may
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depend on the current position of the process, but which grows to +∞ uniformly in the position.
Before describing our results, let us mention that such a situation may also be relevant from
the population dynamics point of view: for instance, the recent work [91] introduced a coupled
PDE/ODE model for collective motion of cells driven by nutrient consumption and showed that
in the limit where nutrient consumption is infinitely faster than the motion of cells, the cell
distribution forms a Dirac mass whose motion is then determined by the nutrient distribution.
The situation may also be compared with the well-known condensation phenomenon of zero-
range processes with decreasing jump rates [74], although the interaction mechanism between
particles is different and, in the present situation, leads to a cluster which concentrates all the
system’s mass, and not only a macroscopic fraction.

While our model is mathematically different, our main results show that in the high-killing
regime, the Fleming–Viot particle system exhibits a similar behaviour: all particles concentrate
in a single cluster whose evolution remains random and generally depends on both the mutation
dynamics and the asymptotic ratio of the killing rates between neighbouring sites. This type
of results for Fleming–Viot particle system and related models already appears in [33] (see also
reference therein). In this work, it was proved that in the small mutation limit, after a time re-
scaling, the empirical measure of a Fleming–Viot particle process on R converges to a Dirac mass,
concentrated on the solution to some ODE. Their proof follows an averaging method developed
by Kurtz in [103], different from the one used in our present work, see Section 8.2.

8.1.2 Mathematical setting and notation

8.1.3 Mathematical setting and notation

Let D be a finite or countable set, q : D ×D → R+ and λ : D → R+. We suppose that

Q := sup
x∈D

∑
y∈D

q(x, y) <∞, sup
x∈D

λ(x) <∞.

We consider the Fleming-Viot n-particle process X = (Xt)t⩾0 in Dn for a mutation mechanism
with jump rates q(x, y), and a selection mechanism with killing rates λ(x). We are interested in
the evolution of the empirical measure π(Xt) of the system, where π is defined by:

π(x) =
1

n

n∑
i=1

δxi
. (8.1)

We write M1(D) for the set of probability measures on D and by M1
n(D) ⊂ M1(D) the set of

empirical measures of n particles in D:

M1
n(D) =

{(
kx
n

)
x∈D

∣∣∣∣∣∀x ∈ D, kx ∈ N and
∑
x∈D

kx = n

}
.

Let us also introduce the spaces:

ℓ1(M1
n(D)) =

{
u :M1

n(D)→ R, ∥u∥1 <∞
}
, ∥u∥1 =

∑
ξ∈M1

n(D)

|u(ξ)|,

and
ℓ∞(M1

n(D)) =
{
u :M1

n(D)→ R, ∥u∥∞ <∞
}
, ∥u∥∞ = sup

ξ∈M1
n(D)

|u(ξ)|.
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The empirical measure (π(Xt))t≥0 of the Fleming-Viot process is a Markov process on the
set M1

n(D), whose infinitesimal generator L acts on ℓ∞(M1
n(D)) and reads

L = Lm + Ls,

where Lm corresponds to the mutation process: for all f ∈ ℓ∞(M1
n(D)), for all ξ ∈M1

n(D),

Lmf(ξ) =
∑

x,y∈D

nξ(x)q(x, y)

(
f

(
ξ +

δy − δx
n

)
− f(ξ)

)
, (8.2)

and Ls corresponds to the selection mechanism: for all f ∈ ℓ∞(M1
n(D)), for all ξ ∈M1

n(D),

Lsf(ξ) =
∑

x,y∈D

n2

n− 1
ξ(x)λ(x)ξ(y)

(
f

(
ξ +

δy − δx
n

)
− f(ξ)

)
.

For u ∈ ℓ1(M1
n(D)) and v ∈ ℓ∞(M1

n(D)), we define the duality bracket by:

⟨u, v⟩ =
∑

ξ∈M1
n(D)

u(ξ)v(ξ).

The adjoint operators L∗, L∗
m and L∗

s are defined through this duality bracket and therefore act
on ℓ1(M1

n(D)).

As explained in Section 8.1.1, we are interested here in the high killing regime, namely

inf
D
λ→∞. (8.3)

If the death rates are large with respect to the jump rates and the number of particles, the
dynamics of the empirical measure will be dominated by the selection mechanism. If there was
only this part, then the empirical measure would become a Dirac measure in finite time. In
presence of mutation, and in the limit (8.3), the empirical measure of the Fleming-Viot system
will still form a Dirac mass, but this Dirac mass will exhibit some dynamics, in the space

∆ = {δx, x ∈ D} (8.4)

of Dirac masses on D.
We present in the next two subsections two results which confirm this intuition, respectively

when the number of particles n is fixed, and when the number of particles also tends to infinity
together with λ.

8.1.4 Fixed number of particles

In this section, the number of particles n is fixed, and we show that, in the limit (8.3), the
trajectories of the empirical process (π(Xt))t≥0 converge towards trajectories in the set of Dirac
measure. This limiting dynamics can be precisely described in terms of a Markov kernel on D.

In order to make precise the limiting regime (8.3), let us consider a family (λr)r∈N of functions
D → R+, and introduce the notation

λr = inf
x∈D

λr(x). (8.5)
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We set
αx,y,r =

λr(y)

λr(x)
, (8.6)

and we denote by Xr = (Xr
t )t⩾0 the underlying Fleming-Viot n-particle processes. We work in

this section in the following setting:

Assumption 8.1.1. The number n of particles is fixed, limr→∞ λr = +∞, and for all x, y ∈ D,
there exists αx,y,∞ ∈ [0,∞] such that:

lim
r→∞

αx,y,r = αx,y,∞. (8.7)

As explained in Section 8.1.1, it is expected that (π(Xr
t ))t≥0 converges to a process (δYt

)t≥0

where (Yt)t≥0 is a continuous-time Markov chain on D with a jump rate function which is a
perturbation of q. Intuitively, the evolution of (Yt)t≥0 is driven by the following mechanism. If
all the particles are in x ∈ D at a given time t (i.e. Yt = x), then the rate at which one particle
goes from x to y is given by nq(x, y). After such a move of one particle from x to y, since the
selection mechanism occurs on a much faster time scale than the mutation mechanism, all the
particles will concentrate on one of the two states x or y before any other jumps occurs. The
probability that a new Dirac mass at y is observed is given by a Gambler’s ruin problem, and is
equal to (αx,y,r − 1)/(αn

x,y,r − 1) (this is a consequence of Lemma 8.2.6 below). This justifies the
introduction of the new jump rates:

q̃r(x, y) =

nq(x, y)
αx,y,r − 1

αn
x,y,r − 1

if αx,y,r ̸= 1,

q(x, y) otherwise,
(8.8)

as well as their r →∞ limit:

q̃∞(x, y) =

nq(x, y)
αx,y,∞ − 1

αn
x,y,∞ − 1

if αx,y,∞ ̸= 1,

q(x, y) otherwise.
(8.9)

In the above, q̃∞(x, y) = 0 in the case αx,y,∞ =∞.
The first theorem concerns the limit of the time-marginal distribution of the empirical mea-

sure process under Assumption 8.1.1. For any random variable π in M1
n(D), we identify the

probability measure Law(π) as an element of ℓ1(M1
n(D)) and therefore use the ℓ1 norm to

measure distances between such probability measures.

Theorem 8.1.1. Under Assumption 8.1.1, for all η ∈ M1
n(D), there exists a (deterministic)

probability measure η∞ ∈ M1(D) described in Lemma 8.2.3, a random variable Y0 of law η∞,
such that if (Yt)t⩾0 is a Markov process on D with jump rate (q̃∞(x, y))(x,y)∈D and initial con-
dition Y0, then: for all t > 0,

lim
r→∞

∥Law (π(Xr
t ))− Law (δYt

) ∥1 = 0.

Moreover, if π(X0) = δz for some z ∈ D, then for all T > 0, there exists C > 0 such that if
(Y r

t )t⩾0 is a Markov process on D with jump rate (q̃r(x, y))(x,y)∈D and initial condition Y r
0 = z,

then:
sup

t∈[0,T ]

∥Law (π(Xr
t ))− Law

(
δY r

t

)
∥1 ⩽

C

λr
.
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In the first statement of the theorem, the marginal distribution is taken at time t > 0. In-
deed, if the Fleming-Viot particle system is initialized with a distribution which is not a Dirac
distribution, namely with particles spread among several sites, then on the short time scale
1/λr, the selection mechanism makes all particles condensate in a single site, whose distribu-
tion is precisely the probability measure η∞. This shows that, in general, the convergence of
Law (π(Xr

t )) to Law (δYt) cannot hold uniformly on [0, T ]. However, if the initial distribution of
the Fleming-Viot particle system is already condensed on a single site, then the second statement
of the theorem shows that the distance between Law (π(Xr

t )) and Law
(
δY r

t

)
may be controlled

uniformly on [0, T ], with a quantitative bound which is obtained by using averaging methods,
as presented in [144, Chapter 16]. The remaining distance, between Law

(
δY r

t

)
and Law (δYt

),
also vanishes (see Lemma 8.2.7), with a rate which depends on the convergence of (αx,y,r)x,y∈D

toward (αx,y,∞)x,y∈D. The proof of Theorem 8.1.1 is given in Section 8.2.

We now state a convergence result for the Fleming-Viot particle system towards the ∆-
valued dynamics (δYt)t⩾0 in the space of sample paths. For reasons which are detailed below, the
Skorohod topologies for cadlag processes is not adapted to this system, and therefore we need
to introduce another topology on the space of sample paths. To proceed, we first introduce the
total variation norm ∥ · ∥TV , and defined by: for ν, µ ∈M1(D),

∥µ− ν∥TV =
∑
x∈D

|µ(x)− ν(x)|.

Note that, since D is a finite or countably infinite set, the weak topology onM1(D) is metrized
by the total variation norm. Next, for any T > 0, let D([0, T ],M1(D)) be the set of cadlag
functions from [0, T ] toM1(D). For π, π̃ ∈ D([0, T ],M1(D)), we define the L1

TV distance by:

∥π − π̃∥L1
TV

=

∫ T

0

∥πt(x)− π̃t(x)∥TV dt =
∫ T

0

∑
x∈D

|πt(x)− π̃t(x)|dt. (8.10)

This defines a distance on D([0, T ],M1(D)), and the associated topology coincides in our case
with the so-called Meyer-Zheng topology [127]. We then have:

Theorem 8.1.2. Under Assumption 8.1.1, for all T > 0, the process (π(Xr
t ))t∈[0,T ] converges

in distribution, in L1
TV , to the process (δYt)t∈[0,T ].

The proof of this theorem is given in Section 8.3. Let us conclude this section with two
remarks. First, due to the nature of the process, the convergence in Theorem 8.1.2 does not
hold in the Skorokhod topology based on ℓ∞ norms, but in the L1

TV topology which is a weaker
topology. Indeed, when a particle jumps from x to y, one observes motions from x to y and
then back to x due to the selection mechanism, over a time-scale of order 1/λr. This im-
plies jumps of non vanishing heights (multiple of 1/n) in the process π(Xr

t ), and therefore,
one cannot expect convergence to hold in the Skorokhod topology. Second, since the mapping
π ∈ D([0, T ],M1(D)) 7→ πt ∈ M1(D) is not continuous with respect to the L1

TV distance, the
convergence in Theorem 8.1.2 does not imply the convergence of the time-marginal distribution
from Theorem 8.1.1.

8.1.5 Increasing number of particles
In this section, we are interested in a mean-field limit, namely an asymptotic regime where both
the number of particles and the killing rates go to infinity. Therefore, in addition to the r-indexed
family (λr)r∈N of death rates, we introduce (nr)n∈N ⊂ NN a sequence of numbers of particles,
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and (Xr
0)r∈N a sequence of initial conditions, such that Xr

0 ∈ Dnr . We will again denote by
Xr = (Xr

t )t⩾0 the associated Fleming-Viot particle processes.
Compared to the previous setting, we restrict ourselves to a situation where λr(x) is a bounded

perturbation of λr. In this regime, the quantities αx,y,∞ defined in the previous section are all
equal to 1, and therefore the jump rates q̃∞(x, y) in (8.9) are equal to q(x, y) whatever the value
of n. As a consequence, letting n → ∞, one may expect the limiting jump rates to be simply
q(x, y), and this will indeed be the case as stated in Theorem 8.1.3 below. Moreover, in order
to keep a moving Dirac mass as a limiting process, we impose the rates to go to infinity much
faster than the number of particles. Here is the precise setting of this section:

Assumption 8.1.2.

sup
r∈N

sup
x,y∈D

|λr(x)− λr(y)| <∞, lim
r→∞

λr
nr

=∞, and ∃η ∈M1(D), π(Xr
0) →

r→∞
η weakly.

Theorem 8.1.3. Let us assume that Assumption 8.1.2 holds. Let (Yt)t⩾0 be a Markov process
on D with jump rate (q(x, y))(x,y)∈D and initial condition η. Then, the following convergence in
law holds: for all t > 0,

π(Xr
t ) →

r→∞
δYt
,

where the convergence in law is considered with respect to the topology defined by the total vari-
ation distance on M1(D). Moreover, if π(Xr

0) = δz for some z ∈ D and for all r ∈ N, then for
all T > 0, there exists C > 0 such that for all F :M1(D)→ R bounded, and for all t ∈ [0, T ]:

|E (F (π(Xr
t )))− E (F (δYt

))| ⩽ C∥F∥∞
√
nr
λr
.

The proof is completely different in nature from the one of Theorem 8.1.1, and relies on the
Kolmogorov equation associated with the dynamics on (π(Xr

t ))t≥0, see Section 8.4.
Let us conclude this section with a few remarks. First, let us emphasize that if the killing rate

is not large enough with respect to the number of particles, then there might not be creation of
a Dirac mass. For instance, as already mentioned in Section 8.1.1, in the case λr = cnr, π(Xr

t )
converges under a proper rescaling to the Fleming-Viot super-process, see [57]. Second, it is not
difficult to check that if D is finite and the initial condition is a Dirac mass, then under Assump-
tion 8.1.2, the convergence is uniform in time. Third, the speed of convergence in Theorem 8.1.3
is not optimal. Indeed, choosing nr = n constant (which is allowed in Assumption 8.1.2), Theo-
rem 8.1.3 yields a rate of convergence of order 1/

√
λr whereas we know from Theorem 8.1.1 that

it is of order 1/λr. Fourth, it would be interesting to generalize the results to the more general
situation of arbitrary values of αx,y,∞ in (8.7), and also to prove in the setting of this section a
convergence result in path space similar to Theorem 8.1.2 (these are left for future work).

8.2 Proof of Theorem 8.1.1

We assume that Assumption 8.1.1 holds in all this section. For all x ∈ D, write:

αr(x) =
λr(x)

λr
. (8.11)

For all x ∈ D, αr(x) ⩾ 1, and we write:

L = Lm + λrL
r
0, (8.12)
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where for f ∈ l∞(M1
n(D)) we denoted:

Lr
0f(ξ) =

∑
x,y∈D

n2

n− 1
ξ(x)αr(x)ξ(y)

(
f

(
ξ +

δy − δx
n

)
− f(ξ)

)
=

1

λr
Lsf(ξ).

For simplicity, we drop the dependence in r of Lr
0 and we simply write L0.

The proof of Proposition 8.1.1 uses averaging methods [144, Chapter 16]. Let us first present
the overall idea. Recall the notation (8.1) for the empirical measure. Denote for all t ≥ 0 and
z ∈ D

πt(z) = π(Xr
t )(z), (8.13)

and let u be the law of the empirical measure process (πt)t≥0:

u(t, ξ) = P (πt = ξ) , ∀ξ ∈M1
n(D).

For all t ⩾ 0, u(t, ·) ∈ ℓ1(M1
n(D)), and we have the Kolmogorov equation:

∂tu = L∗u,

where L∗ denotes the adjoint of the generator L, and acts on ℓ1(M1
n(D)).

Let us present a formal argument in order to identify the limiting dynamics. If we assume an
expansion of the form

u = u0 +
1

λr
u1 + o

(
1

λr

)
,

with ∥u0∥1 and ∥u1∥1 bounded uniformly in r ∈ N and t ⩾ 0, then, using (8.12), a formal
identification at order (λr)

1 yields that u0 satisfies

L∗
0u0 = 0,

which shows that one expects the limiting dynamics to only take Dirac mass values. Indeed, for
all r ∈ N, L0 is the generator of a Markov process that corresponds to a Fleming-Viot process
with no mutation mechanism and only selection dynamics. We will refer in the sequel to this
dynamics as the selection dynamics. Under this dynamics, each particle of the Fleming-Viot
process is killed at rate αr, and then branches uniformly at random over the surviving particles.
Let (π0

t )t⩾0 be a Markov process with this generator L0. Every Dirac measure is an absorbing
point of such dynamics, and thus Span ({1x, x ∈ D}) ⊂ KerL∗

0, where

1x = δδx (8.14)

is a probability measure onM1
n(D), and can also be seen as an element of ℓ1(M1

n(D)). Actually,
writing (remember the notation (8.4))

τ = inf
{
t ⩾ 0, π0

t ∈ ∆
}
, (8.15)

we will show that τ <∞ almost surely (as an application of Lemma 8.2.1 below), and this will
allow us to prove that, as a bounded operator from ℓ1

(
M1

n(D)
)

to itself, L∗
0 satisfies

Span ({1x, x ∈ D}) = KerL∗
0,

see Lemma 8.2.4.
We will then postulate the limiting dynamics on u0 using our intuition on how Dirac masses
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evolve. Let us recall the intuition to derive these limiting dynamics: if the Dirac mass is at
x ∈ D, at rate nq(x, y) one particle will go from x to y. Since the selection dynamics is on a
much faster time scale, we only have to consider this part of the dynamics, and the probability
that the Dirac mass goes from x to y is given by the probability px,y of a Gambler’s ruin, see
Lemma 8.2.6. Therefore, the rates at which the Dirac mass will move from x to y is simply
nq(x, y)px,y.

To formalize this reasoning, after having introduced u0 following the expected limiting dy-
namics described above, we will define u1 as a solution to the Poisson equation

∂tu0 − L∗
mu0 = L∗

0u1 (8.16)

which is the equation formally obtained at order (λr)
0. The proof will then consist in proving

that
u− u0 −

1

λr
u1

goes to 0 as r →∞.

8.2.1 A time-scale separation result

In the selection/mutation mechanism, there exists a cascade of time-scales. The largest time
scale is the mutation one, which is independent of r ∈ N. Besides, we may define an equivalence
relation on D by x ∼ y if and only if 0 < αx,y,∞ < ∞. Then, each equivalence class associated
with this equivalence relation gives a different time scale, as, if αx,y,∞ =∞, then all particles in
y will jump away from y to go to a site with a lower death rate before any particle in x have time
to jump or move, with probability going to 1 as r goes to infinity. Lemma 8.2.1 below describes
this phenomenon, and is a cornerstone in the proofs of the results under Assumption 8.1.1. In
particular, if at a given time, the empirical process is not a Dirac mass, it will give us information
on the time taken by the process to reach the set of Dirac measures and on how the particles
will be redistributed to form a Dirac mass.

Lemma 8.2.1. Let Lr = arL
1
r + brL

2
r be a jump Markov process generator on the state space

M1
n(D), such that L1

r is a selection dynamics with partial rates:

∀f ∈ l∞(M1
n(D)), L1

rf(η) =
∑

x∈Θ,y∈D

n2

n− 1
η(x)γr(x)η(y)

(
f

(
η +

δy − δx
n

)
− f(η)

)
,

for some Θ ⊂ D and γr ⩾ 1, and such that the coefficient of L2
r are bounded from above in r:

∀f ∈ l∞(M1
n(D)), L2

rf(η) =
∑

ξ∈M1
n(D)

β2
r (η, ξ) (f(ξ)− f(η)) ,

∑
ξ∈M1

n(D)

β2
r (η, ξ) ⩽ µ̄,

for some µ̄ > 0 and all η ∈M1
n(D). Let us assume that

lim
r→∞

br
ar

= 0,

and let us introduce cr > 0 such that

lim
r→∞

cr
ar

= lim
r→∞

br
cr

= 0.
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Write
M1 =

{
ξ ∈M1

n(D), L1
rf(ξ) = 0, ∀f ∈ l∞(M1

n(D)), ∀r ∈ N
}
,

and
τ r1 = inf

{
t ⩾ 0, π̃r

t ∈M1
}
,

where π̃r is a Markov process with generator Lr. Denote by S1 the first jump of the process
coming from the brL2

r part of the generator. Then the following holds:

lim
r→∞

inf
ξ∈M1

n(D)
Pξ

(
τ r1 < c−1

r < S1

)
= 1. (8.17)

Moreover, if L2
r = 0, then there exist C, c > 0 such that

sup
r∈N

sup
ξ∈M1

n(D),

Pξ (τ
r
1 ⩾ t) ⩽ Ce−cart. (8.18)

This lemma will be applied to the Fleming-Viot generator (8.12), either with Θ = D or with
Θ a subset of D such that the killing rates on Θ are much greater then the ones on D \ Θ, in
the sense that for all x ∈ Θ, y /∈ Θ, αx,y,∞ = 0. In the latter case, the set M1 contains the Dirac
measures, as well as the empirical measures of n particles with support in D \Θ.

Proof. Let π̄ be a Markov process with generator L1
r, defined using the same jump events as π̃,

and
τ̄ r1 = inf

{
t ⩾ 0, π̄r

t ∈M1
}
.

On the event τ r1 < S1, we have τ r1 = a−1
r τ̄ r1 . Let us show that there exist C, c > 0 such that

sup
r∈N

sup
ξ∈M1

n(D),

Pξ (τ̄
r
1 ⩾ t) ⩽ Ce−ct. (8.19)

Fix ξ ∈M1
n(D), write D0 = supp(ξ) and

γ
r
= min {γr(x), x ∈ D0 ∩Θ} .

Since γr(x) ⩾ 1 for all x ∈ D, γ
r
⩾ 1 for all r ∈ N. Let xr ∈ D be such that γ

r
= γr(xr) if

D0 ⊂ Θ, and let xr ∈ D0 \Θ otherwise. Let X be a process whose empirical measure is given by
π̄, and let i0 ∈ J1, nK be such that Xi0

0 = xr. Denote

I =
{
i, Xi

0 ∈ D0 \Θ
}
∪ {i0} , n0 = |I \ {i0}| ,

and write:

Ar =
{

On [0, 1/γ
r
], Xi, i ∈ I, do not die, and all other die once and branch on Xi0

}
.

We have that Ar ⊂ {τ̄ r1 < 1}. Since the number of death events for (Xi
s)0⩽s⩽1/γ

r
is upper (resp.

lower) bounded by a Poisson random variable with parameter γ
r

if i ∈ I (resp. i /∈ I), we have
that:

Pξ (Ar) ⩾
e−n

(
1− e−1

)n−n0

nn−n0
,

and hence, we get that
inf
r∈N

inf
ξ∈M1

n(D)
Pξ (τ̄

r
1 < 1) ⩾ 1− ω,
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for some ω ∈ [0, 1). Using the Markov property at time t − 1, this implies that for all r ∈ N,
ξ ∈M1

n(D), and t ⩾ 1:
Pξ (τ̄

r
1 ⩾ t) ⩽ ωPξ (τ̄

r
1 ⩾ t− 1) ,

and this implies
sup
r∈N

sup
ξ∈M1

n(D)

Pξ (τ̄
r
1 > t) ⩽ ω⌊t⌋ ⩽ Ce−ct,

with c = − ln(ω) > 0 and C = ω−1.
Writing β2

r (η) =
∑

ξ∈M1
n(D) β

2
r (η, ξ), S1 is defined as:

S1 = inf

{
t ⩾ 0, E1 ⩽

∫ t

0

brβ
2
r (π̃

r
s)ds

}
⩾ inf {t ⩾ 0, E1 ⩽ brµ̄t} = b−1

r S̃1,

where E1 is an exponential random variable with parameter 1. Hence, S1 is bounded from below
by b−1

r S̃1, where S̃1 is an exponential random variable with parameter µ̄. Finally, using the
bound (8.19) we have:

P
(
τ r1 < c−1

r < S1

)
= P

(
a−1
r τ̄ r1 < c−1

r < S1

)
⩾ 1− P

(
τ̄ r1 ⩾

ar
cr

)
− P

(
S1 < c−1

r

)
⩾ 1− P

(
τ̄ r1 ⩾

ar
cr

)
− P

(
S̃1 <

br
cr

)
→

r→∞
1,

and hence the limit (8.17). In the case where L2
r = 0, Equation (8.19) yields:

Pξ (τ
r
1 ⩾ t) = Pξ (τ̄

r
1 ⩾ art) ⩽ Ce−cart,

which concludes the proof.

8.2.2 The initial condition

Now, we aim to address the issue of the initial condition. Given some initial condition η ∈
M1

n(D), write D0 = supp(η), where

supp(η) = {x ∈ D, η(x) > 0} ,

and
Λ =

{
x ∈ D0, min

y∈D0

αx,y,∞ > 0

}
. (8.20)

This set Λ correspond to the subset of D0 where, asymptotically in r, the order of magnitude
of the killing rate is minimal. Thanks to Lemma 8.2.1, we will be able to show that in the
limit (8.3), all particles from D0 \ Λ will be redistributed instantaneously (ie on a time scale
faster than 1/ infD0 λr) in Λ, with no movement from the particles in Λ. Moreover, the law of
the configuration obtained in Λ after this instantaneous redistribution is given by a Polya’s urn
problem, with |Λ| possible colors and initial condition nη|Λ, after nη(D0 \Λ) draws. On the time
scale 1/ infD0

λr, this measure will then form a Dirac mass according to the probability given by
commitor functions, that we are now going to define.

Recall that π0 denotes a Markov process with generator L0, and the definition (8.15) of τ .
Let us apply Lemma 8.2.1, with L2

r = 0, ar = 1, Θ = supp(π0
0), γr = αr, so that L1

r = L0 and
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τ1r = τ . Equation (8.18) then yields that τ <∞ almost surely. Denote for η ∈M1
n(D):

ψr
x(η) = Pη

(
π0
τ = δx

)
. (8.21)

The functions ψr
x are the so called committor functions, and [140, Theorem 3.3.1.] yields that

they satisfy:

ψr
x(δx) = 1, ψr

x(δy) = 0∀y ̸= x, L0ψ
r
x(ξ) = 0, ∀ξ ∈M1

n(D) \∆. (8.22)

Remark that for all ξ ∈ ∆, f ∈ ℓ∞
(
M1

n(D)
)
, L0f(ξ) = 0, so that we actually have L0ψ

r
x(ξ) = 0,

for all ξ ∈M1
n(D). The next lemma proves that the committor functions are the unique solution

to (8.22) in l∞
(
M1

n(D)
)
.

Lemma 8.2.2. Let Θ ⊂ D and γ : Θ→ [1,+∞). Let L1 be defined by: ∀f ∈ ℓ∞
(
M1

n(Θ)
)
,

L1f(η) =
∑

x,y∈Θ

n2

n− 1
η(x)γ(x)η(y)

(
f

(
η +

δy − δx
n

)
− f(η)

)
.

For all x ∈ Θ, if f ∈ ℓ∞
(
M1

n(Θ)
)

satisfies

f(δx) = 1, f(δy) = 0 ∀y ̸= x, L1f(ξ) = 0, ∀ξ ∈M1
n(Θ) \∆, (8.23)

then for all ξ ∈M1
n(Θ)

f(ξ) = Pξ

(
π1
τ1 = δx

)
,

where τ1 = inf
{
t ⩾ 0, π1

t ∈ ∆
}

and π1 is a Markov process with generator L1 and values in
M1

n(Θ).
In particular, ψr

x defined by (8.21) are the unique solution to (8.22) in ℓ∞
(
M1

n(D)
)
.

Proof. Let f be a solution to Equation (8.23). Let ξ ∈M1
n(Θ) and π1 be a Markov process with

generator L1 and initial condition ξ. The map t 7→ f(π1
τ1∧t) is a martingale, and hence for all

t ⩾ 0,
Eξ

(
f(π1

τ1∧t)
)
= f(ξ). (8.24)

Equation (8.18) from Lemma 8.2.1 yields that τ1 < ∞ almost surely, and since f is bounded,
letting t go to infinity in (8.24) yields that f(ξ) = Pξ

(
π1
τ1 = δx

)
.

We are now able to prove

Lemma 8.2.3. For all η ∈ M1
n(D), there exists η∞ ∈ M1(D) such that if π0 is a Markov

process with generator L0 and initial condition η, and Y0 is a random variable with law η∞, then

lim
r→∞

∥Law(π0
τ )− Law(δY0

)∥TV = 0.

In the statement of Theorem 8.1.1, η∞ is the law of the initial condition Y0.

Proof. Fix η ∈M1
n(D) and write η̄r = Law(π0

τ ) ∈M1 (∆). Denote D0(η) = supp(η) and

αr = inf
x∈D0

αr(x),

where αr(x) is defined in (8.11). Recall the definition of Λ from (8.20). We distinguish two cases:
if Λ = D0, then we can find the limit of η̄r when r →∞ using the fact that η̄r(δx) = ψr

x(η) and
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that (ψr
x(η))η∈M1

n(Λ) is the unique solution to a Dirichlet equation on a finite set. If Λ ̸= D0, then
using Lemma 8.2.1, we show that all particles from D0 \Λ will first be distributed on Λ, without
any particles from Λ moving, and then we can apply the argument from the case D0 = Λ.

Let us suppose that Λ = D0. Write LD0,r
0 the re-normalised generator of the selection

dynamics

LD0,r
0 f(ξ) =

∑
x,y∈D0

αr(x)

αr

ξ(x)ξ(y)

(
f

(
ξ +

δy − δx
n

)
− f(ξ)

)
,

defined for f :M1
n(D0)→ R. Denote also

αD0,∞(x) = lim
r→∞

αr(x)/αr =
1

miny∈D0
αx,y,∞

,

which is well defined and lies in [1,∞) in the case D0 = Λ, as well as

LD0,∞
0 f(ξ) =

∑
x,y∈D0

αD0,∞(x)ξ(x)ξ(y)

(
f

(
ξ +

δy − δx
n

)
− f(ξ)

)
.

LD0,∞
0 is the generator of a selection dynamics with death rates α∞,D0

. We have that

η̄r(δx) = ψr
x(η),

and for all x ∈ D0 and ξ ∈M1
n(D0),

LD0,r
0 ψr

x(ξ) = 0. (8.25)

Since D0×M1
n(D0) is a finite set, we may consider (ψ∞

x (ξ))x∈D0,ξ∈M1
n(D0) a sub-sequential limit

of (ψr
x(ξ))x∈D0,ξ∈M1

n(D0). Passing to the limit in equation (8.25), we get that for all x ∈ D0 and
ξ ∈M1

n(D0):
LD0,∞
0 ψ∞

x (ξ) = 0,

as well as ψ∞
x (δy) = 1x ̸=y. Lemma 8.2.2 then implies that

ψ∞
x (ξ) = Pξ

(
π0,∞
τ = δx

)
,

where π0,∞ is a Markov process with generator LD0,∞
0 . Hence there is a unique sub-sequential

limit, and ψr
x(ξ) converge for all ξ ∈M1

n(D0) and x ∈ D0, and this is particularly true for ξ = η.

We now suppose that Λ ̸= D0. In this case, for all x ∈ D0 \ Λ, αD0,∞ = ∞ and LD0,∞ is
ill-defined. To resort to the previous case, write

SΛ
1 = inf {t ⩾ 0, one particle starting from Λ dies} ,

and
τM1

n(Λ) = inf
{
t ⩾ 0, π0

t ∈M1
n(Λ)

}
.

Using the notation of Lemma 8.2.1, write

Θ = D0 \ Λ, ar = inf {αr(x)/αr, x ∈ D0 \ Λ} , br = 1, L2
r = LD0,r

0 .

In this case, we have M1 = ∆ ∪M1
n(Λ), and because Λ ̸= D0, ar →

r→∞
∞, and Lemma 8.2.1
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(with cr =
√
ar) yields that:

lim
r→∞

Pη

(
SΛ
1 ⩽ τM1

n(Λ)

)
= 0.

Now, using the strong Markov property at time τM1
n(Λ), write:

Pη

(
π0
τ = δx

)
=

∑
ξ∈M1

n(Λ)

Pη

(
SΛ
1 > τM1

n(Λ)

)
Pη

(
π0
τM1

n(Λ)
= ξ
∣∣∣SΛ

1 > τM1
n(Λ)

)
Pξ

(
π0
τ = δx

)
+Rr,

where a rest satisfying
Rr ⩽ Pη

(
SΛ
1 ⩽ τM1

n(Λ)

)
→

r→∞
0.

From the case D0 = Λ we get that for all ξ ∈ M1
n(Λ), Pξ

(
π0
τ = δx

)
admits a limit as r goes to

infinity. In addition,
Pη

(
π0
τM1

n(Λ)
= π

∣∣∣SΛ
1 > τM1

n(Λ)

)
corresponds to the law of a Polya urn Markov chain with with color indexed by Λ, initial condition
nη|Λ, after |D0 \ Λ| draws, and is hence independent of r. This concludes the convergence of
Pη

(
π0
τ = δx

)
towards some η̄∞ ∈M1(∆). If Y0 ∈ D is such that Law(δY0

) = η̄∞, η∞ is then the
law of Y0.

8.2.3 The Poisson equation

Let us now consider the Poisson equation (8.16). Before showing existence and uniqueness of a
solution to this equation, let us describe the kernel of L∗

0 and L0. Although this is not strictly
necessary for the proof of Theorem 8.1.1, this makes the functional setting clearer. To proceed, let
us recall that L0 is defined as an operator of ℓ∞

(
M1

n(D)
)
, and L∗

0 as an operator of l1
(
M1

n(D)
)
.

Define the weak-∗ topology on ℓ∞
(
M1

n(D)
)

by the fact that a sequence of elements (wk)k⩾1

weak-∗ converges to w if ⟨v, wk⟩ → ⟨v, w⟩ for any v ∈ ℓ1(M1
n(D)). Then l1

(
M1

n(D)
)

equipped
with the (strong) topology induced by the norm ∥·∥1, and ℓ∞(M1

n(D)) equipped with the weak-∗
topology, are each other’s topological dual. Let us now write

(KerL0)
⊥ =

{
v ∈ ℓ1

(
M1

n(D)
)
, ⟨v, w⟩ = 0, ∀w ∈ KerL0

}
,

recall the definition of the commitor functions from (8.21), and denote by A the closure of a set
A for the topology at hand.

Lemma 8.2.4. We have

(KerL0)
⊥ = {v ∈ ℓ1

(
M1

n(D)
)
, ⟨v, ψr

x⟩ = 0, ∀x ∈ D},

as well as
Span(1x, x ∈ D) = KerL∗

0.

However, the inclusion
Span(ψx, x ∈ D) ⊂ KerL0

is strict if D is infinite, and the kernel of L0 is given by

Span(ψx, x ∈ D)
w∗

= KerL0,

where A
w∗

denotes the closure for the weak-∗ topology of a set A ⊂ ℓ∞(M1
n(D)).
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Proof. For all x ∈ D, Lemma 8.2.2 yields that ψr
x ∈ KerL0, so that:

(KerL0)
⊥ ⊂ {v ∈ ℓ1

(
M1

n(D)
)
, ⟨v, ψr

x⟩ = 0, ∀x ∈ D}.

Let v ∈ ℓ1
(
M1

n(D)
)

such that ⟨v, ψr
x⟩ = 0 for all x ∈ D, and w ∈ KerL0 (and thus w ∈

ℓ∞
(
M1

n(D)
)
. The map t 7→ w(π0

t∧τ ) is a martingale, and hence for all t ⩾ 0,

w(ξ) = Eξ

(
w(π0

τ∧t)
)
.

Since w is bounded, and τ < ∞ almost surely, letting t go to infinity and the dominated
convergence theorem yields that for all ξ ∈M1

n(D):

w(ξ) =
∑
x∈D

w(δx)ψx(ξ), (8.26)

and the sum is actually finite because ψx(ξ) = 0 if x /∈ supp(ξ). We have:∑
ξ∈M1

n(D)

∑
x∈D

|w(δx)v(ξ)ψx(ξ)| =
∑

ξ∈M1
n(D)

|v(ξ)|
∑
x∈D

|w(δx)|ψr
x(ξ) ⩽ ∥v∥1∥w∥∞ <∞.

Hence, the following computation holds:

⟨v, w⟩ =
∑

ξ∈M1
n(D)

v(ξ)
∑
x∈D

w(δx)ψx(ξ) =
∑
x∈D

w(δx)
∑

ξ∈M1
n(D)

v(ξ)ψx(ξ) =
∑
x∈D

w(δx)⟨v, ψr
x⟩ = 0,

which yields that v ∈ (KerL0)
⊥, and concludes the first point.

We already saw in the introduction of Section 8.2 that Span(1x, x ∈ D) ⊂ KerL∗
0. Since L∗

0

is a bounded operator, KerL∗
0 is closed and

Span(1x, x ∈ D) ⊂ KerL∗
0.

For v ∈ KerL∗
0, the map

t 7→
∑

ξ∈M1
n(D)

v(ξ)Pξ

(
π0
t = η

)
is constant for all η ∈M1

n(D). Write for all η ∈M1
n(D):

Pξ

(
π0
s = η

)
− Pξ

(
π0
τ = η

)
= Pξ

(
π0
s = η, τ > s

)
+ Pξ

(
π0
s = η, τ < s

)
− Pξ

(
π0
τ = η

)
= Pξ

(
π0
s = η, τ > s

)
− Pξ

(
π0
τ = η, τ > s

)
,

which yields ∑
η∈M1

n(D)

∣∣Pξ

(
π0
s = η

)
− Pξ

(
π0
τ = η

)∣∣ ⩽ 2Pξ (τ > s) . (8.27)

Using the notations of Lemma 8.2.1, write:

Θ = D, ar = 1, γr = αr, L2
r = 0.

Lemma 8.2.1 then yields that there exist C, c > 0 such that for all s ⩾ 0

sup
r∈N

sup
ξ∈M1

n(D),

Pξ (τ > s) ⩽ Ce−cs. (8.28)



226 CHAPTER 8. The Fleming-Viot process in a high-killing regime

The bound (8.27) and (8.28) yields that we may let t go to infinity and get:

v =
∑
x∈D

v(δx)1x.

Since this sum converges in l1
(
M1

n(D)
)

as soon as v ∈ l1
(
M1

n(D)
)
, v ∈ Span(1x, x ∈ D), which

concludes the second point.
Define for all ξ ∈M1

n(D),
f(ξ) =

∑
x∈D

ψx(ξ).

In this sum, there are at most n non-vanishing terms, and thus f ∈ ℓ∞
(
M1

n(D)
)
. It is easily

seen that L0f = 0. If g =
∑

x∈D0
axψx(ξ) for some finite subset D0 ⊂ D and ax ∈ R, we have

that ∥f − g∥∞ ⩾ 1, yielding that

f ∈ KerL0 \ Span(1x, x ∈ D).

However, for all w ∈ KerL0, the sum (8.26) converges for the weak-∗ topology, which proves
the last point.

We are now ready to solve the Poisson equation (8.16), which relies on the next statement.
For any v ∈ ℓ1(M1

n(D)) and s ⩾ 0, let us introduce the notation

vesL0(η) =
∑

ξ∈M1
n(D)

v(ξ)Pξ(π
0
s = η), (8.29)

which defines an element of ℓ1(M1
n(D)).

Lemma 8.2.5. For all v ∈ (KerL0)
⊥(⊂ ℓ1(M1

n(D))), there exists a unique w ∈ (KerL0)
⊥ such

that
L∗
0w = v, (8.30)

given by:

w = −
∫ ∞

0

vesL0ds.

Moreover, there exists C > 0 independent of r and v such that

∥w∥1 ⩽ C∥v∥1.

Proof. Let us start with the existence. Write, for η ∈M1
n(D)

w(η) = −
(∫ ∞

0

vesL0ds
)
(η) = −

∫ ∞

0

∑
ξ∈M1

n(D)

v(ξ)Pξ

(
π0
s = η

)
ds.

We first show that w is well-defined. Recall the stopping time τ defined in (8.15). Since v ∈
(KerL0)

⊥, Lemma 8.2.4 yields that ⟨v, ψr
x⟩ = 0 for all x ∈ D, and we have∑

ξ∈M1
n(D)

v(ξ)Pξ

(
π0
τ = δx

)
=

∑
ξ∈M1

n(D)

v(ξ)ψr
x(ξ) = 0.
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Since, if η /∈ ∆, Pξ

(
π0
τ = η

)
= 0, we have that∑

ξ∈M1
n(D)

v(ξ)Pξ

(
π0
s = η

)
=

∑
ξ∈M1

n(D)

v(ξ)
(
Pξ

(
π0
s = η

)
− Pξ

(
π0
τ = η

))
.

The bounds (8.27) and (8.28) imply that w is well-defined, because v ∈ ℓ1(M1
n(D)), and we have

∥w∥1 ⩽ 2C

∫ ∞

0

e−csds∥v∥1 =
2C

c
∥v∥1.

The Kolmogorov equations yield that L∗
0Pξ

(
π0
s = ·

)
= ∂sPξ

(
π0
s = ·

)
, and hence for all η ∈

M1
n(D):

L∗
0w(η) = −

∫ ∞

0

∑
ξ∈M1

n(D)

v(ξ)L∗
0Pξ

(
π0
s = ·

)
(η) ds

= −
∫ ∞

0

∑
ξ∈M1

n(D)

v(ξ)∂sPξ

(
π0
s = η

)
ds

= −
∫ ∞

0

∂s

 ∑
ξ∈M1

n(D)

v(ξ)Pξ

(
π0
s = η

) ds.

We already saw that
lim
s→∞

∑
ξ∈M1

n(D)

v(ξ)Pξ

(
π0
s = η

)
= 0,

and hence L∗
0w(η) = v(η), which concludes the existence.

To prove uniqueness, fix w ∈ KerL∗
0 ∩ (KerL0)

⊥. The fact that L∗
0w = 0 yields that for all

η ∈M1
n(D), t ⩾ 0:

w(η) =
∑

ξ∈M1
n(D)

w(ξ)Pξ

(
π0
t = η

)
.

Letting t→∞, because w ∈ ℓ1
(
M1

n(D)
)
, Inequalities (8.27), and (8.28) then imply that

w(η) =
∑

ξ∈M1
n(D)

w(ξ)Pξ

(
π0
τ = η

)
∀η ∈M1

n(D),

and thus we may write w =
∑

x∈D w(δx)1x, where 1x was defined in (8.14), and where the
equality holds inM1

n(D). In particular, w(η) = 0 for all η ∈M1
n(D)\∆. We have for all x ∈ D:∑

η∈M1
n(D)

∑
y∈D

|w(δy)1η=δyψ
r
x(η)| =

∑
y∈D

|w(δy)|ψr
x(δy) ⩽ ∥w∥1 <∞,

and hence the following computation holds:

0 = ⟨w,ψr
x⟩ =

∑
η∈M1

n(D)

w(η)ψr
x(η)

=
∑

η∈M1
n(D)

∑
y∈D

w(δy)1η=δy

ψr
x(η) =

∑
y∈D

w(δy)ψ
r
x(δy) = w(δx).
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Thus, w = 0, which concludes for the uniqueness.

In the proof of Theorem 8.1.1, in order to apply Lemma 8.2.5, we need to show that for all
x ∈ D,

⟨∂tu0 − L∗
mu0, ψ

r
x⟩ = 0.

To this end, let us introduce

δx;y =
n− 1

n
δx +

1

n
δy ∈M1

n(D).

The next lemma provides an explicit formula for ψr
x(δx;y). The fact that we only need the values

of the committor functions on the set ∆ ∪ {δx;y;x, y ∈ D} is a consequence of the fact that, as
explained above, in the limiting regime, the selection dynamics is much faster than the mutation
dynamics, so that the support of πt is concentrated on {x, y} in the transition from δx to δy.

Lemma 8.2.6. For all x, y ∈ D, x ̸= y, the committor functions ψr
x satisfy:

ψr
x(δx;y) = αx,y,r

αn−1
x,y,r − 1

αn
x,y,r − 1

, ψr
x(δy;x) = αn−1

x,y,r

αx,y,r − 1

αn
x,y,r − 1

,

where αx,y,r is defined in (8.6).

Proof. The selection dynamics cannot extend the support of a measure, hence if supp π0
0 = {x, y},

then supp π0
t ⊂ {x, y} for all t ⩾ 0 and Zt = π0

t (x) completely determines π0
t . The process Z

corresponds to a Gambler’s ruin problem, namely a Markov process on {0, ..., n} with jump rates

p(k, k + 1) = αr(y)
k(n− k)
n− 1

, p(k, k − 1) = αr(x)
k(n− k)
n− 1

,

where αr is given by (8.11). Denote by R its generator,

τi(Z) = inf {t ⩾ 0, Zt = i} , g(k) = Pk(τn(Z) < τ0(Z)).

Then, g is solution to the problem:

Rg = 0, g(0) = 0, g(n) = 1.

We have:

Rg(k) = αr(y)
k(n− k)
n− 1

(g(k + 1)− g(k)) + αr(x)
k(n− k)
n− 1

(g(k − 1)− g(k)) .

Hence:
g(k + 1)− g(k) = α−1

x,y,r (g(k)− g(k − 1)) ,

⇔
g(k)− g(k − 1) = α−(k−1)

x,y,r (g(1)− g(0)) = α−(k−1)
x,y,r g(1),

⇔

g(k) =
α−k
x,y,r − 1

α−1
x,y,r − 1

g(1).
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The condition g(n) = 1 yields:

g(1) =
α−1
x,y,r − 1

α−n
x,y,r − 1

,

and finally:

ψr
x(δx;y) = g(n− 1) =

α
−(n−1)
x,y,r − 1

α−n
x,y,r − 1

, ψr
x(δy;x) = g(1) =

α−1
x,y,r − 1

α−n
x,y,r − 1

,

which concludes the proof.

8.2.4 Proof of Theorem 8.1.1

Let Y r and Y be jump Markov processes on D with rates q̃r and q̃∞ respectively. The last
needed result is the convergence in total variation distance of Y r towards Y . This is a general
result on jump Markov processes whose jump rates converge.

Lemma 8.2.7. Under Assumption 8.1.1

lim
r→∞

∥Law(Y r
0 )− Law(Y0)∥TV = 0 =⇒ ∀t ⩾ 0, lim

r→∞
∥Law(Y r

t )− Law(Yt)∥TV = 0.

Proof. We have that for all x, y ∈ D,

lim
r→∞

q̃r(x, y) = q̃∞(x, y),

and for all x ∈ D, ∑
y∈D

sup
r∈N

q̃r(x, y) <∞.

Hence, [99, Theorem 19.25, p. 385] concludes.

We are now in position to prove Theorem 8.1.1.

Proof of Theorem 8.1.1. Recall the jump rates:

q̃r(x, y) =

nq(x, y)
αx,y,r − 1

αn
x,y,r − 1

if αx,y,r ̸= 1,

q(x, y) otherwise,

and let Y r be the Markov process with jump rates (q̃r(x, y))x,y∈D and initial condition Y r
0 such

that the law of δY r
0

is Law(π0
τ ). Write prx(t) = P (Y r

t = x), for x ∈ D. The (prx)x∈D satisfy:∑
x∈D

prx = 1,

and the Kolmogorov equations:

∂tp
r
x =

∑
y ̸=x

(
q̃r(y, x)p

r
y − q̃r(x, y)prx

)
.

Denote by u(t) = (P(πt = ξ))ξ∈M1
n(D) the law of the empirical measure of the Fleming-Viot

process (which depends on r, even though this is not indicated explicitly for the sake of notation)
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and define the conjectured equivalent by:

u0(t) =
∑
x∈D

prx(t)1x,

which corresponds to the law of δY r
t
. Lemma 8.2.4 yields that that for all t ⩾ 0:

L∗
0u0(t) = 0.

The goal now is to solve (8.16) using Lemma 8.2.5. In order to do so, let us show that

∂tu0 − L∗
mu0 ∈ (KerL0)

⊥
.

Fix x ∈ D. First:
⟨∂tu0, ψr

x⟩ = ∂tp
r
x.

For all f ∈ ℓ1(M1
n(D)):

L∗
mf(ξ) =

∑
x̸=y

(
(nξ(y) + 1) q(y, x)f

(
ξ +

δy − δx
n

)
− nξ(x)q(x, y)f (ξ)

)
,

hence for all x ̸= y, n ⩾ 3:

L∗
mu0(η) =


−n
∑

z ̸=x q(x, z)p
r
x if η = δx,

nq(x, y)prx if η = δx;y,
0 otherwise.

In the case n = 2, the formula is adapted by L∗
mu0(δx;y) = nq(x, y)prx + nq(y, x)pry. Using

Lemma 8.2.6, this yields that:

⟨L∗
mu0,ψ

r
x⟩

= L∗
mu0(δx)ψ

r
x(δx) +

∑
y ̸=x

(L∗
mu0(δy)ψ

r
x(δy) + L∗

mu0(δx;y)ψ
r
x(δx;y) + L∗

mu0(δy;x)ψ
r
x(δy;x))

= −n
∑
z ̸=x

q(x, z)prx +
∑
y ̸=x

nq(x, y)prxαx,y,r

αn−1
x,y,r − 1

αn
x,y,r − 1

+ nq(y, x)pryα
n−1
x,y,r

αx,y,r − 1

αn
x,y,r − 1

=
∑
y ̸=x

(
−q̃r(x, y)prx + q̃r(y, x)p

r
y

)
.

Finally we get that for all x ∈ D:

⟨∂tu0 − L∗
mu0, ψ

r
x⟩ = ∂tp

r
x −

∑
y ̸=x

(
q̃r(y, x)p

r
y − q̃r(x, y)prx

)
= 0.

Lemma 8.2.4 then yields that ∂tu0 −L∗
mu0 ∈ (KerL0)

⊥. Thus, Lemma 8.2.5 yields that, for any
t ⩾ 0, there exists u1(t) ∈ (KerL0)

⊥ such that

∂tu0(t)− L∗
mu0(t) = L∗

0u1(t),



8.2. Proof of Theorem 8.1.1 231

with the explicit representation

u1(t) =

∫ ∞

0

(∂tu0(t)− L∗
mu0(t)) e

sL0ds.

From this representation and the regularity of u0(t) provided by its definition, one gets that u1
is a C1 function of t, and that ∂tu1 solves the Poisson equation

∂2t u0(t)− L∗
m∂tu0(t) = L∗

0∂tu1(t).

As a conclusion, using Lemma 8.2.5 again, we deduce that

∥u1(t)∥1 ⩽ C∥∂tu0(t)− L∗
mu0(t)∥1, ∥∂tu1(t)∥1 ⩽ C∥∂2t u0(t)− L∗

m∂tu0(t)∥1.

The Kolmogorov equations yield that ∥∂tu0∥1 ⩽ Q, and ∥∂2t u0∥1 ⩽ Q2, and since L∗
m is a

bounded operator, we have that:

sup
r∈N

sup
t⩾0
∥u1(t)∥1 <∞, sup

r∈N
sup
t⩾0
∥∂tu1(t)∥1 <∞.

Write
u = u0 +

1

λr
u1 + v.

Then v satisfies the following equation:

∂tv = L∗v +
1

λr
(L∗

mu1 − ∂tu1) , v(0) = u(0)− u0(0)−
1

λr
u1(0).

In the case where there exists z ∈ D such that π(X0) = δz, then τ = 0 so Y r
0 = z, and we have

v(0) = −u1(0)/λr. Thus we can write:

v(t) = − 1

λr
etL

∗
u1(0) +

1

λr

∫ t

0

e(t−s)L∗
(L∗

mu1 − ∂tu1) ds, (8.31)

where for any w ∈ ℓ1(M1
n(D)), η ∈M1

n(D)

etL
∗
w(η) =

∑
ξ∈M1

n(D)

w(ξ)Pξ (πt = η) .

Thanks to the bounds on ∥u1∥1 and ∥∂tu1∥1, Equation (8.31) yields that for any T > 0, there
exists C > 0 such that:

sup
t∈[0,T ]

∥v(t)∥1 ⩽ C/λr.

As a conclusion, for any t ∈ [0, T ],

∥Law (π(Xt))− Law
(
δY r

t

)
∥1 ⩽ ∥v(t)∥1 +

∥u1(t)∥1
λr

,

which concludes the proof of the second statement of Theorem 8.1.1.

To prove the first statement, with an initial condition which is not necessarily a Dirac mass,
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we first write

∥Law (π(Xt))− Law (δYt
) ∥1 ⩽ ∥Law (π(Xt))− Law

(
δY r

t

)
∥1 + ∥Law

(
δY r

t

)
− Law (δYt) ∥1,

where Y is the continuous-time Markov chain with initial condition η∞ given by Lemma 8.2.3
and jump rates q̃∞(x, y). For the first term of the right-hand side, we integrate the equation on
v between time 1/

√
λr and t to get:

v(t) = e(t−1/
√

λr)L
∗
v

(
1√
λr

)
+

1

λr

∫ t

1√
λr

e(t−s)L∗
(L∗

mu1 − ∂tu1) ds.

The second term of this last equality still goes to 0 at speed 1/λr, and we are just left with
showing that:

v

(
1√
λr

)
= u

(
1√
λr

)
− u0

(
1√
λr

)
− 1

λr
u1

(
1√
λr

)
→

r→∞
0,

in the ℓ1 distance. Since u1 is bounded in ℓ1(M1
n(D)), uniformly in t ⩾ 0 and r ∈ N, we have

that:

lim
r→∞

∥∥∥∥∥ 1

λr
u1

(
1√
λr

)∥∥∥∥∥
1

= 0.

Moreover, Y r is a continuous-time Markov chain with initial condition Y r
0 , where Y r

0 is such
that Law(δY r

0
) = Law(π0

τ ), and jump rates uniformly bounded with respect to r, hence λr →∞
yields that:

lim
r→∞

∥∥∥∥∥Law(π0
τ )− u0

(
1√
λr

)∥∥∥∥∥
1

= 0.

Let us now show that
lim
r→∞

∥u
(
1/
√
λr

)
− Law(π0

τ )∥1 = 0,

even though u(0) = η for all r ∈ N. Write

τ1 = inf {t ⩾ 0, πt ∈ ∆} , (8.32)

and S1 for the first jump of a particles due to the mutation mechanism. Using the notation of
Lemma 8.2.1, write Θ = supp(η), br = 1, L2

r = Lm, L1
r = L

supp(η)
0 , where

L
supp(η)
0 f(ξ) =

∑
x,y∈supp(η)

αr(x)ξ(x)ξ(y)

(
f

(
ξ +

δy − δx
n

)
− f(ξ)

)

as well as ar = λr, and cr =
√
λr. In this case, we have M1 = ∆, and Lemma 8.2.1 yields that:

lim
r→∞

Pη

(
τ1 <

1√
λr

< S1

)
= 1. (8.33)
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For all ξ ∈M1
n(D), we may write:

u

(
1√
λr

)
(ξ) = Pη

(
π 1√

λr

= ξ, τ1 <
1√
λr

< S1

)
+ Pη

(
π 1√

λr

= ξ,

(
τ1 <

1√
λr

< S1

)c)

= Pη

(
π0
τ = ξ, τ1 <

1√
λr

< S1

)
+ Pη

(
π 1√

λr

= ξ,

(
τ1 <

1√
λr

< S1

)c)
,

and thus

∥u
(
1/
√
λr

)
− Law(π0

τ )∥1 ⩽ 2Pη

((
τ1 <

1√
λr

< S1

)c)
→

r→∞
0.

Finally, Lemma 8.2.3 and Lemma 8.2.7 imply the convergence of ∥Law
(
δY r

t

)
− Law (δYt

) ∥1
towards 0, and conclude the proof of Theorem 8.1.1.

8.3 Proof of Theorem 8.1.2

We are now interested in the convergence of the trajectories. As stated in the introduction, there
is no hope of having convergence in the Skorohod topology. Instead, we use the L1

TV topology.
As the projection

π ∈ D([0, T ],M1(D)) 7→ πt ∈M1(D)

is not continuous for this topology, it is not enough to show compactness of the probability
measures of the trajectories, because an accumulation point would not be characterised by its
time marginal. Instead, we proceed as follows. First, let F : D([0, T ],M1(D))→ R be bounded
and Lipschitz continuous for the L1

TV distance (8.10). We decompose

E
(
F
(
(π(Xr

t ))t∈[0,T ]

))
− E

(
F
(
(δYt)t∈[0,T ]

))
=
(
E
(
F
(
(π(Xr

t ))t∈[0,T ]

))
− E

(
F
((
δY r

t

)
t∈[0,T ]

)))
+
(
E
(
F
((
δY r

t

)
t∈[0,T ]

))
− E

(
F
(
(δYt)t∈[0,T ]

)))
,

with Law(Y r
0 ) = Law(π0

τ ) and Law(Y0) = η∞. Thus, the conclusion of Theorem 8.1.2 follows
from the combination of Lemmas 8.3.1 and 8.3.2.

Lemma 8.3.1. The process (δY r
t
)t∈[0,T ] converges in distribution, in D([0, T ],M1(D)), to the

process (δYt
)t∈[0,T ].

Proof. Let us endow the setD with the distance ρ(x, y) = 1x ̸=y, and the set D([0, T ], D) of cadlag
trajectories [0, T ]→ D with the associated Skorohod J1-topology. By [99, Theorem 19.25, p. 385]
(see the proof of Lemma 8.2.7), the process (Y r

t )t∈[0,T ] converges in distribution to (Yt)t∈[0,T ] in
this space. To conclude, we now check that the mapping

D([0, T ], D) → D([0, T ],M1(D))
(yt)t∈[0,T ] 7→ (δyt)t∈[0,T ]

is continuous. Let ((ykt )t∈[0,T ])k⩾1 be a sequence of elements of D([0, T ], D) which converges to
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(yt)t∈[0,T ] in the J1-topology. We have

∥(δyk
t
)t∈[0,T ] − (δyt)t∈[0,T ]∥L1

TV
= 2

∫ T

0

1yk
t ̸=yt

dt = 2

∫ T

0

ρ(ykt , yt)dt.

By [16, p. 125], the convergence of (ykt )t∈[0,T ] in the J1-topology implies the convergence of
ρ(ykt , yt) to 0 for almost every t ∈ [0, T ], and therefore the conclusion follows from the dominated
convergence theorem.

Lemma 8.3.2. There exists a coupling of the processes (π(Xr
t ))t∈[0,T ] and

(
δY r

t

)
t∈[0,T ]

such that

lim
r→∞

E

[∫ T

0

∥π(Xr
t )− δY r

t
∥TV dt

]
= 0.

Proof. Fix T > 0. The proof of Lemma 8.3.2 is divided in five steps. The first one is dedicated
the definition of the coupling.
Step 1. Write σ0 = 0,

τk = inf {t ⩾ σk, πt ∈ ∆} ,

and
σk+1 = inf {t ⩾ τk, πt /∈ ∆} ,

for all k ∈ N. We define an intermediate process, which is not Markov:

η̄t = πτN(t)
, N(t) = max {k, τk ⩽ t} ,

and for t ∈ [0, τ0], write η̄t = πτ0 . This is a process living in ∆, and we will get a Markov process
by a time re-scaling and conditioning. Define the change of time:

s(t) = inf

{
s ⩾ 0,

∫ s

0

1πu∈∆du > t

}
.

Write Ñ(t) = max {k, σk ⩽ t}, and

Ar(T )

=
{

For all k ∈ J0, Ñ(T )K, there are no jumps from the mutation mechanism between σk and τk
}
.

If πτk = δx, then σk+1 − τk is an exponential random variable with rate n
∑

y ̸=x q(x, y). Addi-
tionally, on Ar(T ), Lemma 8.2.6 yields that the Dirac mass goes from x to y with probability

q(x, y)∑
y ̸=x q(x, y)

αn−1
y,x,r

αy,x,r − 1

αn
y,x,r − 1

.

Hence, writing
δY r,1

t
= η̄s(t),

we have that on Ar(T ), Y r,1 is exactly a continuous-time Markov chain with jump rates q̃r and
initial condition πτ0 . Let Y r,2 be another continuous-time Markov chain on D with jump rates
q̃r, initial condition with distribution Law(π0

τ ), independent of the Fleming-Viot process, and



8.3. Proof of Theorem 8.1.2 235

write:
Y r = Y r,1

1Ar(T ) + Y r,2
1Ac

r(T ).

The process Y r is a jump Markov process with jump rates q̃r and initial condition with distri-
bution Law(π0

τ ). In Step 2, we show that the probability of Ar(T ) converges to 1. In Step 3, we
show that π is close to η̄, and finally in Steps 4 and 5, we show that η̄ is close to Y r,1 in the L1

distance defined in (8.10), and thus to Y r.

Step 2. Let us show that for all T > 0,

lim
r→∞

P (Ar(T )) = 1.

For any k ⩾ 0, the events
{
Ñ(T ) ⩾ k

}
and {there is a mutation jump between σk and τk} are

independent. Thus we have:

P (Ar(T )
c)

⩽
∞∑
k=0

P
(
Ñ(T ) ⩾ k, there is a mutation jump between σk and τk

)
⩽ sup

k∈N
P (there is a mutation jump between σk and τk)

∞∑
k=0

P
(
Ñ(T ) ⩾ k

)
.

Because σk+1 − τk is an exponential random variable with parameter bounded by nQ, Ñ is
bounded by a Poisson random variable with parameter nQT , and hence:

∞∑
k=0

P
(
Ñ(T ) ⩾ k

)
= E

(
Ñ(T )

)
⩽ nQT.

The convergence (8.17) and the strong Markov property at time σk yield that

lim
r→∞

sup
k∈N

P (there is a mutation jump between σk and τk) = 0,

which concludes the proof.

Step 3. Let us now prove that the L1
TV distance between π and η̄ goes to 0 when r goes to

infinity. We have:

∥π − η̄∥L1
TV
1Ar(T ) ⩽ 21Ar(T )

Ñ(T )∑
k=0

τ̄k − σk ⩽ 2

∞∑
k=0

(τ̄k − σk)1σk⩽T ,

where
τ̄k = inf

{
t ⩾ σk, π̄

k
t ∈ ∆

}
, (8.34)

and π̄k is equal to π on [0, σk], then the particles are subject to the same jump, but only from
the selection part. The application of Lemma 8.2.1 to (π̄k

t+σk
)t⩾0 yields that there exist C, c > 0,

independent of k ∈ N, such that for all t ⩾ 0:

P (τ̄k − σk > t|σk ⩽ T ) ⩽ Ce−cλrt,
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yielding that
lim
r→∞

sup
k∈N

E (τ̄k − σk|σk ⩽ T ) = 0.

Using again that Ñ(T ) is bounded by a Poisson random variable with parameter nQT we get:

E
(
∥π − η̄∥L1

TV

)
⩽ 2TP (Ar(T )

c) + sup
k∈N

E (τ̄k − σk|σk ⩽ T )
∑
k⩾0

P
(
Ñ(T ) ⩾ k

)
= 2TP (Ar(T )

c) + sup
k∈N

E (τ̄k − σk|σk ⩽ T )E(Ñ(T ))

⩽ 2TP (Ar(T )
c) + nQT sup

k∈N
E (τ̄k − σk|σk ⩽ T ) →

r→∞
0.

Step 4. In order to show that the distance between η̄ and (δY r,1
t

)0⩽t⩽T goes to zero as well, let
us define the event

Br(T ) =


Ñ(T )∑
k=0

τk − σk < min
0⩽k⩽Ñ(T )

σk+1 − τk

 ,

and show that
lim
r→∞

P (Ar(T ),Br(T )) = 1.

Fix ε > 0, and N0 ∈ N such that P
(
Ñ(T ) > N0

)
< ε. Then

P (Br(T )c,Ar(T )) ⩽ ε+ P

(
N0∑
k=0

τk − σk > min
0⩽k⩽N0

σk+1 − τk,Ar(T )

)
.

On the event Ar(T ), the random variable min0⩽k⩽N0
σk+1−τk is lower bounded by a exponential

random variable E with parameter N0nQ, independent of the family of random variable (τk −
σk)0⩽k⩽N0

. This implies that

P

(
N0∑
k=0

τk − σk > min
0⩽k⩽N0

σk+1 − τk,Ar(T )

)
⩽ P (∃1 ⩽ k ⩽ N0, τk − σk > E/N0)

⩽ N0 sup
k∈N

P (τk − σk > E/N0) .

Lemma 8.2.1 then yields that

lim sup
r→∞

P (Ar(T ),Br(T )c) ⩽ ε,

for all ε > 0, which concludes Step 4.

Step 5. Now, using Step 4, all is left to do is show that

lim
r→∞

∥η̄ − (δY r
t
)0⩽t⩽T ∥L1

TV
= 0.

First notice that for all s ⩾ 0

∫ s

0

1πu∈∆du = s−
Ñ(s)∑
k=0

s ∧ τk − σk,
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so that

s(t) = t+

Ñ(s(t))∑
k=0

τk − σk ⩾ t.

Additionally, δY r
t
̸= η̄t only if there is p ∈ N such that t ⩽ σp ⩽ s(t), and on the event Br(T ),

t ⩽ σp < s(t) implies that Ñ(s(t)) = p. Hence

t ⩾ σp −
p∑

k=0

τk − σk.

Hence the total amount of time where δY r ̸= η̄ is bounded as follow

1Ar(T ),Br(T )

∫ T

0

1δY r
t
̸=η̄t

dt ⩽ 1Ar(T ),Br(T )

Ñ(T )∑
p=0

p∑
k=0

τk − σk ⩽
Ñ(T )∑
k=0

(Ñ(T )− k) (τ̄k − σk) .,

where τ̄k was defined in (8.34). We have:

∥δY r − η̄∥L1
TV
1Ar(T )1Br(T ) = ∥δY r,1 − η̄∥L1

TV
1Ar(T )1Br(T ) ⩽ 2

∞∑
k=0

Ñ(T ) (τ̄k − σk)1σk⩽T .

Using Cauchy-Schwarz inequality, one gets:

E

( ∞∑
k=0

Ñ(T ) (τ̄k − σk)1σk⩽T

)
⩽

∞∑
k=0

E
(
Ñ(T )2

)
E
(
(τ̄k − σk)2 1σk⩽T

)
⩽ E

(
Ñ(T )2

)
E
(
Ñ(T )

)
sup
k∈N

E
(
(τ̄k − σk)2

∣∣∣σk ⩽ T
)
.

Hence:

E
(
∥δY r − η̄∥L1

TV

)
⩽ 2TP (Ar(T ) ∪Br(T )

c)+2 sup
k∈N

E
(
(τ̄k − σk)2

∣∣∣σk ⩽ T
)
E
(
Ñ(T )2

)
E
(
Ñ(T )

)
.

yielding that
lim
r→∞

E
(
∥δY r − η̄∥L1

TV

)
= 0,

which concludes the proof.

8.4 Proof of Theorem 8.1.3

The aim of this section is to prove Theorem 8.1.3, and we therefore suppose that Assumption 8.1.2
holds for the remainder of this work. In this case, we can write:

λr = λr +mr,

where λr = infD λr, mr ⩾ 0 and

∥m∥∞ := sup
r∈N

sup
x∈D

mr(x) <∞.



238 CHAPTER 8. The Fleming-Viot process in a high-killing regime

We start by showing that πt converges to a Dirac mass. Denote still for z ∈ D:

πt(z) = π(Xr
t )(z). (8.35)

Lemma 8.4.1. Under Assumption 8.1.2, we have for all t ⩾ 0:

lim
r→∞

∑
x̸=y∈D

E(πt(x)πt(y))→ 0, lim
r→∞

E(∥πt∥∞) = 1.

Moreover, if π(X0) = δz for some z ∈ D and all r ∈ N, then:∑
x ̸=y∈D

E(πt(x)πt(y)) ⩽ (Q+ 2∥m∥∞)
nr
λr
, ∥πt∥∞ ⩾ 1− (Q+ 2∥m∥∞)

nr
λr
.

Proof. Write, for a given probability measure ξ on D,

g2(ξ) =
∑
x∈D

ξ(x)2. (8.36)

We have:

Lg2(ξ) =
∑
x ̸=y

nrξ(x)

(
q(x, y) + λr(x)

nr
nr − 1

ξ(y)

)
((

ξ(x)− 1

nr

)2

− ξ(x)2 +
(
ξ(y) +

1

nr

)2

− ξ(y)2
)

= 2
∑
x ̸=y

nrξ(x)

(
q(x, y) + λr(x)

nr
nr − 1

ξ(y)

)(
1

n2r
+
ξ(y)− ξ(x)

nr

)
⩾

2

nr

∑
x ̸=y

λr(x)ξ(x)ξ(y)− 2
∑
x̸=y

ξ(x)2q(x, y) +
2nr
nr − 1

∑
x ̸=y

λr(x)ξ(x)ξ(y)(ξ(y)− ξ(x))

⩾
2λr
nr

(1− g2(ξ))− 2Qg2(ξ)−
nr

nr − 1

∑
x̸=y

(λr(y)− λr(x))ξ(x)ξ(y)(ξ(y)− ξ(x))

⩾
2λr
nr

(1− g2(ξ))− (2Q+ 4∥m∥∞).

Using the Kolmogorov equation, this yields that for all t ⩾ 0:

∂tE(g2(πt)) ⩾
2λr
nr

(1− E(g2(πt)))− (2Q+ 4∥m∥∞)

and hence
E(g2(πt)) ⩾ 1− e−

2λr
nr

t(1− E(g2(π0)))− (2Q+ 4∥m∥∞)
nr
2λr

. (8.37)

Now, since
∑

x∈D ξ(x) = 1 for all ξ ∈M1(D), we have:

g2(πt) ⩽ ∥πt∥∞,
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which implies the result on ∥πt∥∞. We also have:∑
x ̸=y∈D

E(πt(x)πt(y)) = 1− E(g2(πt)),

which concludes the proof.

The preceding Lemma showed that πt converges towards a Dirac measure as r → ∞. The
goal of the next Lemma is to determined the law of this limiting Dirac mass.

Lemma 8.4.2. Recall that πt(x) = π(Xr
t )(x). Under Assumption 8.1.2, we have:

lim
r→0

∑
x∈D

|E(πt(x))− P (Yt = x)| = 0,

where (Yt)t≥0 is the Markov process with jump rates (q(x, y))x,y∈D and initial condition η. More-
over, if π(Xr

0) = δz for some z ∈ D and all r ∈ N, then for all T > 0, there exists C > 0 such
that for all t ∈ [0, T ]: ∑

x∈D

|E(πt(x))− P (Yt = x)| ⩽ C
nr
λr
.

Proof. The Kolmogorov equation yields that for all x ∈ D:

∂tE(πt(x)) =
∑
y ̸=x

E(πt(y))q(y, x)− E(πt(x))
∑
y ̸=x

q(x, y)

+
nr

nr − 1

∑
y ̸=x

E(πt(x)πt(y)) (λr(y)− λr(x)) .

Let (νt)t⩾0 be the unique solution to the following system:

∂tνt(x) =
∑
y ̸=x

νt(y)tq(y, x)− νt(x)
∑
y ̸=x

q(x, y) = L∗
m(νt)(x),

with initial condition ν0 = η. We can identify νt(x) = Pη (Yt = x). Besides, L∗
m is a linear

operator, and we have:

∂t (E(πt)− νt) = L∗
m (E(πt)− νt) + gt,

where
gt(x) =

∑
y ̸=x

nr
nr − 1

E(πt(x)πt(y)) (λr(y)− λr(x)) ,

for all x ∈ D. We get:

E(πt)− ηt = etL
∗
m (π (Xr

0)− η) +
∫ t

0

esL
∗
mgt−sds.

We have that for all t ⩾ 0:

∥gt∥1 ⩽
nr

nr − 1
∥m∥∞

∑
x ̸=y∈D

E(πt(x)πt(y)) ⩽ 2∥m∥∞ (1− E (g2(πt))) ,

where g2 is defined in (8.36). Since Lm is a Markov generator, Lemma 8.4.1 (and more precisely
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equation (8.37)) yields that
lim
r→∞

∥E(πt)− νt∥1 = 0,

as well as, if η = π (X0):
∥E(πt)− νt∥1 ⩽ C

nr
λr
,

for all 0 < t < T and some C > 0, which concludes the proof.

We are now in position to conclude the proof of Theorem 8.1.3.

Proof of Theorem 8.1.3. Let F :M1(D)→ R bounded, and ε > 0. Write∣∣∣∣∣E(F (π(Xr
t )))−

∑
z∈D

F (δz)P (∥π(Xr
t )− δz∥TV ⩽ ε)

∣∣∣∣∣ ⩽ ∑
z∈D

ε∥F∥∞P (∥π(Xr
t )− δz∥TV ⩽ ε)+Rr,t,

where
Rr,t ⩽ ∥F∥∞P (d(π(Xr

t ),∆) > ε) .

Using the fact that ∥πt − δz∥TV = 2 (1− πz
t ), we get

Rr,t ⩽ ∥F∥∞P (∥π(Xr
t )∥∞ < 1− ε/2) ⩽ 2∥F∥∞

ε
E(1− ∥π(Xr

t )∥∞),

and finally∣∣∣∣∣E(F (π(Xr
t )))−

∑
x∈D

F (δx)P (∥π(Xr
t )− δx∥TV ⩽ ε)

∣∣∣∣∣ ⩽ ∥F∥∞
(
ε+

2

ε
E (1− ∥π(Xr

t )∥∞)

)
.

(8.38)
Using Markov inequality, we have:

P (∥π(Xr
t )− δz∥TV ⩽ ε) = P (πz

t ⩾ 1− ε/2) ⩽ (1− ε/2)−1E(πt(z)) ⩽ (1 + ε)E(πt(z)),

as soon as ε < 1. On the other side, we have that

E(πt(z)) = E
(
πt(z)1πt(z)⩾1−ε/2 + 1πt(z)⩽1−ε/2

)
⩽ P (πz

t ⩾ 1− ε/2) + E
(
πt(z)1πt(z)⩽1−ε/2

)
.

Moreover,∑
x∈D

E
(
πt(z)1πt(z)⩽1−ε/2

)
=
∑
x∈D

E
(
πt(x)1πt(x)⩽1−ε/2

(
1∥π∥∞⩽1−ε/2 + 1∥π∥∞>1−ε/2

))
⩽ P (∥π(Xt)∥∞ < 1− ε/2) + ε

2
,

yielding that∣∣∣∣∣∑
x∈D

F (δx)P (∥π(Xr
t )− δx∥TV ⩽ ε)−

∑
x∈D

F (δx)E (πt(x))

∣∣∣∣∣ ⩽ ∥F∥∞
(
ε+

2

ε
E(1− ∥π(Xr

t )∥∞)

)
.

(8.39)
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Lastly, we have that:∣∣∣∣∣∑
x∈D

F (δx)E (πt(x))−
∑
x∈D

F (δx)E (νt(x))

∣∣∣∣∣ ⩽ ∥F∥∞ ∑
x∈D

|E(πt(x))− P (Yt = x)| . (8.40)

Equations (8.38), (8.39) and (8.40) together yield∣∣∣∣∣E(F (π(Xr
t )))−

∑
x∈D

F (δx)E (νt(x))

∣∣∣∣∣
⩽ 2∥F∥∞

(
ε+

2

ε
E(1− ∥π(Xr

t )∥∞)

)
+ ∥F∥∞

∑
x∈D

|E(πt(x))− P (Yt = x)| , (8.41)

and Lemma 8.4.1 and Lemma 8.4.2 yield

lim sup
r→∞

∣∣∣∣∣E(F (π(Xr
t )))−

∑
x∈D

F (δx)E (νt(x))

∣∣∣∣∣ ⩽ 2∥F∥∞ε.

Letting ε → 0 yields the first part of the theorem. In the case where the initial condition is a
Dirac mass, plugging ε =

√
nr/λr in equation (8.41) and Lemma 8.4.2 yields for all T > 0 and

0 < t < T :∣∣∣∣∣E(F (π(Xr
t )))−

∑
x∈D

F (δx)E (νt(x))

∣∣∣∣∣
⩽ ∥F∥∞

(√
nr
λr

+

√
λr
nr

(Q+ 2∥m∥∞)
nr
λr

+ C
nr
λr

)
⩽ C ′

√
nr
λr
,

for some C ′ > 0, and this concludes the proof.
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Long-time behavior of some Markov processes, and application to stochastic
algorithms

Abstract

This thesis is devoted to the study of the long-time behavior of some Markov processes arising in
stochastic algorithms. These algorithms are variations of Monte Carlo methods, which constitute a class
of techniques for sampling probability measures based on Markov processes. The thesis is structured
into three parts, each addressing a different type of algorithm:

1. Chapters 2 and 3 focus on sampling Gibbs measures using two distinct kinetic processes.

2. Chapter 4 explores non-convex and high-dimensional optimization through simulated annealing,
while Chapter 5 investigates optimization using a switched process.

3. Chapters 6, 7, and 8 delve into sampling quasi-stationary distributions based on the Fleming-Viot
process, a Moran-type particle system.

The motivation for these algorithms, and thus much of the research conducted for this thesis, stems from
molecular dynamics and statistics applications. By applying coupling and partial differential equation
methods, we aim to establish convergence guarantees for these algorithms.

Keywords: probability theory, stochastic calculus, coupling methods, long time behavior of markov
processes, poincaré inequality, stochastic algorithm, hypocoercivity.

Résumé

Cette thèse est consacrée à l’étude du comportement à long terme de certains processus de Markov
apparaissant dans les algorithmes stochastiques. Ces algorithmes sont des variations autour des méthodes
de Monte Carlo, qui constituent une classe de techniques d’échantillonnage de mesures de probabilité
basées sur des processus de Markov. La thèse est structurée en trois parties, chacune traitant d’un type
d’algorithme différent :

1. Les chapitres 2 et 3 portent sur l’échantillonnage des mesures de Gibbs à l’aide de deux processus
cinétiques différents.

2. Le chapitre 4 traite de l’optimisation non-convexe en grande dimension par recuit simulé, tandis
que le chapitre 5 étudie l’optimisation à l’aide d’un processus commuté.

3. Les chapitres 6, 7 et 8 traitent de l’échantillonnage de mesures quasi-stationnaires basé sur le
processus de Fleming-Viot, un système de particules de type Moran.

La motivation pour ces algorithmes, et donc pour la plupart des recherches menées dans le cadre de cette
thèse, provient de dynamique moléculaire et d’applications en statistiques. En appliquant des méthodes
de couplage et d’équations aux dérivées partielles, nous établirons des garanties de convergence pour ces
algorithmes.

Mots clés : probabilités, calcul stochastique, méthodes de couplage, comportement en temps long de
processus de markov, inégalité de poincaré, algorithme stochastique, hypocoercivité.

Laboratoire Jacques-Louis Lions
Sorbonne Université – Campus Pierre et Marie Curie – 4 place Jussieu – 75005 Paris – France
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