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Chapter 1

Introduction

Orthodontics is one of the dentistry fields that focuses on the development of teeth, dental
occlusion, and facial growth. It is concerned with the diagnosis, prevention, interception, and
treatments of malocclusion. Orthodontics mostly works on the craniofacial skeleton, especially
teeth and the alveolar bone supporting the teeth.

One important key to orthodontic treatment’s success is the accuracy of the diagnosis and
the treatment plan. A small mistake in either the diagnosis or the planning may lead to
dramatic cost, not only in terms of money and time, but it may cause serious consequences to
the patient’s health. Therefore, orthodontists usually have to consider many factors such as
the patient’s medical history, dental history, examinations, radiographs, and even 3d-models
to clearly understand the patient’s condition before starting orthodontic treatment. Among
these factors, radiographs seem to contribute the most to the orthodontic diagnosis because
they reveal the structure of tooth roots, craniofacial skeleton, and nerves hidden from human
eyes.

Along with the development of science and technology in general, the dental industry has
also made significant achievements and progress in applying modern technologies to the diag-
nostic process and treatment regimen. The application of artificial intelligence (AI), especially
deep learning (DL), or convolutional neural networks (CNNs), has become more popular in
the medical field than ever before. In the field of dentistry, deep learning models also have
their advantages by working with images. They have been used for recognizing, classifying,
and segmenting different components in multiple types of photographs, especially radiographic
images [114] [24] [163]. Furthermore, deep learning algorithms also contribute to the diagnosis
process by detecting and recognizing dental complications [98] [91] [4].

Despite the promising performance of deep learning in processing dental images, as reported
in these studies, the application of CNNs as a diagnostic aid in orthodontics is facing multiple
obstacles. Firstly, the type of data is limited to radiographic images. There is no machine
learning model trained to recognize dental elements or detect gum diseases in images captured
by common devices such as smartphone-cameras, to the limit of our knowledge at the moment of
writing. Besides, data like radiographs can only be captured by expensive professional devices,
so it is difficult to collect many samples for training convolutional networks. This explains
why the datasets used in these papers are very limited. Moreover, current applications of deep
learning in dentistry and orthodontics are stopping at solving one single task like classification,
recognition, segmentation, etc. In contrast, it takes a series of networks and algorithms to
make a product or service that solve a real-life problem. Therefore, studying and realizing deep
learning algorithms for orthodontic diagnosis with a large dataset that can be easily collected
than radiographs would be a worth-considering contribution.
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1.1 Objectives & Contributions

This thesis aims to study the latest technologies of deep learning and apply them to aid in
orthodontic imaging. Instead of processing all types of images used in the orthodontic field,
we focus on color images taken by smartphones through the Dental Monitoring application
of the company Dental Mind. This is the first company in the world to monitor orthodontic
progress and detailed oral health assessment via smartphone. Orthodontics is a complex process
involving many steps before, during and after the treatment. Within the limits of this thesis,
deep learning technology is applied to serve the image processing and diagnosis of common
diseases in the orthodontic process. We also study the problems neural networks encounter
while working with dental imaging and propose remedies. The contributions of the thesis are
as follows:

1.1.1 Diagnosis Using Photos Captured by Mobile Phones

Several studies have shown the potential of using deep neural networks to detect problems in
teeth and gums. Juan et al.’s work [82] applies computer vision methods to diagnose periodontal
diseases by measuring depth probing automatically. A special camera obtained images fitted
together with a dental probe. In [77], the authors used multi-view CNNs for detecting dental
diseases from red fluorescent images. Rana et al. [129] used a convolutional autoencoder
for segmenting inflammation from intraoral fluorescence images. Deep learning was also used
on periapical radiographs to diagnose and predict periodontally compromised teeth in [99]
and detection of dental caries in [98]. The common drawback of these methods is that they
require x-rays or fluorescent techniques for obtaining images, which means patients still have
to be diagnosed at clinics. To ease this process, we apply deep learning models directly to
images captured by smartphone to detect problems such as gingivitis and crowding of teeth.
This study is an important piece of the puzzle to make remote examination simpler and more
accessible, especially for patients who live far away from the clinic, have to travel frequently,
or are too busy to have appointments. Dentists, in particular orthodontists, also benefit from
this approach as it saves them time, so they can spend more time with difficult cases, as well
as serve more patients in a period of time. Despite the advantages, automatic diagnostics on
images captured with a smartphone also encounter certain difficulties. Patients use their own
smartphones to take pictures, so our database’s images vary in size, lighting conditions, shooting
angle, sharpness, etc. For this reason, before image diagnosis, we also propose a corresponding
preprocessing, which includes image processing algorithms combined with pre-trained machine
learning models. The preprocessing helps to increase the diagnosis accuracy. Different factors
that may help increase the training performance, such as the use of multiple views and data
augmentation techniques, are also studied in the chapter. Furthermore, we study the prediction
features of the classifier using saliency maps.

1.1.2 CNN-based Domain Adaptation for Data Augmentation

Lack of training data is a pervasive problem when someone wants to apply deep learning
to problem-solving in the medical field [115]. Dentistry and orthodontics are no exception.
Schwendicke et al. [143] show that despite the great potential of machine learning in dentistry,
constructing large datasets for training neural networks faces multiple barriers. It is difficult to
find databases of dental images with the size of thousands of samples. In the scope of this thesis,
we are allowed to study on the Dental Mind database. Having many images is not enough; they
need to be carefully labeled to be used as training data, which takes time and effort. Therefore,
we study methods for data augmentation. Most research on data augmentation in the medical
field focuses on parameter selection and ordering image processing operations such as rotate,
scale, crop, add noises, etc [74]. Recently, with the rapid development of adversarial generative
networks (GANs) [56], many studies have been carried out to apply these models to medical
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data augmentation to train deep learning models [46] [45]. Most of them tend to generate
new samples from existing samples in the same image domain. One potential but not popular
research direction to apply GANs-based domain adaptation model for augmenting training
data. Our thesis studies different state-of-the-art image translation models and applies them to
generate additional training samples to increase learning models’ accuracy that diagnose dental
problems. Specifically, we prepare a dataset containing 3d models of teeth, reconstructed from
real images of teeth. This dataset gives us thousands of pairs of samples to train a GANs-based
supervised image-to-image translation network that transforms projections of 3d teeth models
to real-looking images. These synthesised images serve as additional training data. We also
study multiple scenarios and factors that affect the domain adaptation model’s performance,
contributing to the outcome of the final diagnosis model.

1.1.3 Disentangled Unsupervised Image-to-Image Translation

Among domain adaptation methods, unsupervised image-to-image translation is widely used
because it does not require paired samples, which is usually not accessible in this kind of
problem. Thanks to this simplicity, the approach is applied for various image translation tasks,
and different architectures have also been proposed. These extensions are mostly additional
training constraints, such as the reconstruction of the original image [188], pixel-wise loss [148],
semantic features [160], etc., which help to enhance the quality of output images. An often
overlooked problem with unsupervised image translation models is the change in the structure of
the image caused by the transformation, also called label-shift [101]. Because training images
are not labeled, there is no constraint that stops label-shift from happening. This problem
becomes serious when we apply one of these models for generating images in the medical
domain. In [29], a common image translation model reportedly modifies details of tumors in
images while translating them between two types of MR images. Having the ability to control
features of the generated images is one way to address this problem. In [73], an unsupervised
image-to-image translation method is introduced with a style vector that contains domain-
irrelevant features of the output images. We study the features stored in this style vector and
propose modifications in the method’s architecture to learn meaningful features, so that we can
control those features by adjusting the vector’s value.

1.1.4 Generation of Aligners in Portraits

Besides learning to diagnose orthodontic images, we also have a chance to contribute to another
work related to orthodontic treatments. We use deep learning technology to modify images to
help patients see relatively how their teeth will look when they wear orthodontic appliances.
Besides price, comfort and time, appearance is an important factor for a patient to decide on
his orthodontic treatment when there are multiple possible options. Having a predicted image
of their appearance during treatment will help the patient make a more suitable choice, mini-
mizing the feeling of disappointment and the willingness to give up while wearing orthodontic
appliances. In the scope of the thesis, we focus on only one kind of appliance: aligner, which has
been widely used thanks to its convenience. Our output image criterion is sharpness, realism
and high-resolution.

1.2 Thesis Outline

In Chapter 2, we explain certain basic dentistry concepts, the structure of teeth, common
dental problems, especially diseases related to teeth and gums that often appear in orthodontic
treatment. We then describe orthodontic treatment procedures with appliances involved. The
chapter also covers orthodontic appliances-related problems that a remote monitoring system
should be aware of. At the end of the chapter, we give a glimpse of some of Dental Mind’s
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services and products related to this thesis and discuss their problems. Note that the Dental
Mind products and services descriptions in this thesis are not exhaustive representations but
are only freakishly descriptive to help readers understand our work context.

Chapter 3 covers the state-of-the-art deep learning algorithms and technologies used in
this thesis, such as object recognition and segmentation, normalization techniques, generative
adversarial networks (GANs) and their evaluation metrics, image-to-image translation models.
We also explain the background of some topics that are related to our proposed method:
disentangled representation learning and few-shot domain adaption for classification. The end
of the chapter mentions state-of-the-art achievements of deep learning in the domain of dentistry
and orthodontics.

In Chapter 4, we train a deep neural network to detect the presence of gingivitis in oral
images taken by smartphone cameras. To detect gingivitis at the level of teeth, we combine
networks pre-trained at the host company to form a preprocessing pipeline. Our experiments
show that gingivitis detection is improved when it is done on multiple views, while augmenting
the training data using an unsupervised image translation technique does not improve the
classification performance. From this project, we also learn that our neural network detects
gingivitis based more on the gum’s shape than its texture.

In Chapter 5, we generate training data by transforming the style of 3d-models of teeth
to make them look realistic and then to use them as additional training data for detecting
crowded teeth. We apply a state-of-the-art supervised image-to-image translation method to
transform each view of a 3d teeth model into a colored image. Also, data augmentation is
also implemented in the 3d environment by rotating the teeth models on the x, y and z axes.
Experiments show that using synthetic data significantly improves learning performance but
using too much synthetic data can be problematic. It also points out that 3d augmentation
can slightly increase the classification accuracy.

In Chapter 6, we propose a new multimodal image translation method - InfoMUNIT - an
extension of the state-of-the-art method MUNIT. Our method allows controlling the style of the
generated images and improves their quality and diversity. It learns to maximize the mutual
information between a subset of style code and the output images’ distribution. Experiments
show that our model can translate one image from the source domain to multiple images in
the target domain and explore and manipulate features of the outputs without annotation.
Furthermore, it achieves superior diversity and competitive image quality to state-of-the-art
methods in multiple image translation tasks. We also propose F-InfoMUNIT, an extension of
InfoMUNIT, for a few-shot domain adaptation and apply it for augmenting training data. The
method produces a comparable performance compared to state-of-the-art methods in the field.

In Chapter 6, we generate plastic aligners on a high-resolution portrait of patients using two
unsupervised image translation methods with two different architectures. The networks take
images of teeth having no appliances as inputs and make them look like wearing transparent
aligners. We compare the two methods in terms of generated image quality, resolution and
memory consumption. Our best model contributes to a commercial product of Dental Mind,
namely Vision (Section 2.4.3).

Chapter 8 is a summary of the thesis results. We also discuss the advantages and limitations
of each work and suggest some directions for future work.



Chapter 2

Context

2.1 Dental problems

Dental health is important and greatly affects the health of the entire human body and its
quality. Studies have shown a strong link between poor dental health and other diseases such
as cardiovascular disease [36], pulmonary disease [112] and diabetes mellitus [93]. Improving
dental health can also improve life quality. According to [121], patients having symptoms such
as bad breath, toothache, sore gums, and so on suffer a lot in their lives physically and mentally.
In this section, we describe common dental problems and discuss prevention and treatment.

2.1.1 Tooth decay

Figure 2.1: Structure of a tooth, image from [162]

Teeth are an important and complicated part of the human body. Each tooth consists of
multiple components with different roles and characteristics. Enamel is the outermost layer
of the tooth that covers the inner layers. It is made of calcium phosphate and other minerals
making it white and strong. The enamel layer creates a sturdy sheath that protects the softer
components and plays an essential role in crushing food before it reaches the esophagus and
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stomach. Enamel cannot be regenerated once damaged, but it can be slowly built up thanks
to minerals from saliva and fluoride from toothpaste or other sources. Dentin (or dentine)
is the second hard layer of the tooth. Made up of mineral hydroxyapatite, organic material,
and water, the dentin is not as strong as enamel and is yellow in color. If the enamel layer
is damaged or faded, the yellow color of the dentin will be exposed, changing the color of the
tooth. Dentin provides good support for enamel because it is less likely to be mineralized and
more flexible than the outer layer. Dentin keeps forming throughout life while Unlike enamel,
dentin can be generated throughout life to be healed naturally if the damage is not too much.
This is a sensitive component of the teeth, so the patient may feel pain when the dentin is
exposed to hot or cold temperatures or certain strong spices. Under the dentin is where the
pulp is located. The pulp is the center of the teeth carrying connective tissue, blood vessels,
and nerves. The pulp is the most vulnerable part of the tooth. Losing the protection of the
enamel and dentin, the pulp is rapidly destroyed, which may cause a lot of pain because the
nerves inside the pulp are damaged. The tooth hidden under the gum is protected by a strong
layer similar to enamel but much thinner, less hard, and forms throughout its lifetime.

Figure 2.2: Different stages of tooth decay, image from [144]

Tooth decay happens when enamel (the outer surface of a tooth) is damaged by acids
generated by bacteria living in the plaque inside a patient’s mouth. According to [144] tooth
decay can be found in one of the following stages. Firstly, a white spot can be seen as the enamel
is slightly damaged for being attacked by acids. At this stage, the enamel can heal itself if the
corrosion is stopped. However, if the problem is ignored, the layer will be further damaged, and
the spot becomes darker and forms a hole in the tooth. These holes are called cavities or dental
caries. Cavities cannot be healed automatically but need to be filled by professionals. After this
stage, things start to get worse rapidly. If not treated, the tooth decay will reach the dentin,
the weaker tissue protected by the enamel. The patient will experience pains when eating hot
or cold foods because tubes that connect to nerves of the tooth are exposed. Afterward, if not
being stopped, the damage will go further inside and reach the pulp, the inmost layer of the
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tooth, where nerves and blood vessels can be found. The patient may experience some pains
as it swells. The most serious tooth decay stage is when bacteria get inside the pulp, cause
infection and generate pus there. This can get very painful not only at the tooth but the whole
jaw and face. Because of the inflammation, the gums can swell, and the patient may experience
fevers. At this stage, a dentist’s treatment is essential to prevent from going into the bond
and spreading to other areas. There are chances that the tooth is dead and must be removed.
It takes a lot of effort to treat tooth decay when it gets serious, but one can prevent it from
happening by practicing good dental hygiene.

2.1.2 Dental calculus

Figure 2.3: Dental calculus on the lingual of the mandibular anterior teeth, from [38]

Dental calculus (or dental tartar) is a strong plaque that covers some parts of teeth (Fig-
ure 2.3). It results from the chemical reaction happening when the minerals in saliva combine
with gingival crevicular fluid (GCF) from dental plaque. This process kills bacteria inside the
plaque but at the same time produces a form of strong precipitation with a rugged surface,
inviting more plaque to build up. The tartar can develop on the gumline, go deeper inside
and create the gap between gum and teeth. As a consequence, it weakens tooth roots and
causes gum diseases. While the patient can remove dental plaque by brushing, it takes a dental
professional to remove tartar when it is already hardened. Therefore, brushing teeth twice per
day is a simple way to prevent dental calculus, and once the tartar is detected, the patient
should seek dental care as soon as possible to ease the process of removing the tartar.

2.1.3 Gingivitis

Gingivitis (Figure 2.4): The early form of multiple periodontal diseases (PDs) affecting the
gingiva and the supporting tissues of teeth. When being inflamed by gingivitis, the gums
become swollen and red and bleed sometimes. Periodontal diseases are also the primary reason
for tooth loss in adults. Research shows that the chance of having PDs increases when a person
is under orthodontic treatment [172]. If not treated promptly, PDs can lead to serious diseases
such as diabetes, pneumonia due to inhalation, strokes, and cardiovascular disease [128]. In
contrast, the early stage of PDs, often known as gingivitis, can be treated much more easily
than when it has progressed to severe levels. Slight gingivitis can be treated simply by brushing
teeth correctly and regularly.
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Figure 2.4: Gums with gingivitis (left, pointed by yellow arrows) versus healthy gum (right),
from [183]

2.1.4 Gingival recession

Figure 2.5: Two teeth with gingival recession (pointed by the arrows), from [137]

Gingival recession (receding gums) is one of the most common PDs. It occurs when gingiva
tissue is missing, exposing the teeth’ root, as shown in Figure 2.5. The problem is mostly
found in patients at the age of 40 or older, but sometimes it happens to teenagers [2]. There
are several causes of gingival recession, such as PDs, dental tartar, aggressive tooth brushing,
tooth crowding, hormonal changes, etc. Because the tooth root is not well covered, the tooth
with receding gum becomes weak and over-sensitive to temperature and spices. It also creates
a gap where bacteria can stay and directly attack the root of teeth. The consequences of
receding gums can be mentioned as tooth displacement, leading to tooth loss, over-sensitive
tooth, large holes between teeth, discolored tooth, and cavities at the tooth’s exposed area.
Taking care of dental health, including brushing teeth regularly and having checkups with
dentists, is recommended to prevent a gingival recession.
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2.1.5 Dental malocclusion

In the domain of dentistry, malocclusion refers to the misalignment of teeth. It negatively affects
the function of teeth and causes multiple dental issues. Because teeth are not well aligned, it
is difficult for them to brush their teeth properly, leading to cavities and gum issues. Most of
the malocclusion cases are inherited, but some childhood habits may also lead to malocclusions
such as overuse of pacifiers, frequent use of bottle feeding, or even thumb sucking [18]. Besides,
there are a few cases in which the malocclusion is caused by sports injuries, poor dental care,
or tumors. Most malocclusion conditions can be treated by orthodontic techniques, while some
complicated cases may require jaw surgeries. Malocclusion can be categorized into five types:

Figure 2.6: An example of serious crowding of teeth, from [43]

• Crowding of teeth: (or crowded teeth) is a dental problem that happens when there is
not enough room in the mouth for all teeth, as shown in Figure 2.6. It makes teeth bunch
up, overlap, or even twist. Patients with crowded teeth usually have difficulties in oral
hygiene, allowing the harmful bacteria to grow and lead to gum disease and tooth decay
[65]. There are several levels of crowding which require different treatment techniques.

In this research, we develop a machine learning model to recognize the crowding of teeth.

Figure 2.7: Two types of crossbite, from [174]
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• Crossbite: is the condition that upper teeth and lower teeth cannot find each other when
the person bites. It usually happens when a group of top teeth stays inside of lower
teeth when biting. Crossbite can happen to front teeth (anterior crossbite) and molars
(posterior crossbite) (Figure 2.7).

• Overbite: also known as buck teeth, refers to the condition that upper front teeth cover
too much of the lower front teeth. This is usually a not serious problem, so the treatment
is a matter of patient choice.

• Underbite: in opposite to overbite, means the upper front teeth do not go down enough
when the person bites. It may cause difficulties biting, chewing, and speaking as well.

• Openbite: is the condition that the upper front teeth and lower front teeth do not touch
when the person bites. People who have open-bite also have difficulties eating and talk.
Compared to an underbite, an open-bite is more obvious, affecting the person’s appear-
ance and making them feel inferior.

As mentioned above, malocclusion, especially the crowding of teeth, makes it difficult to
brush teeth properly. Insufficient dental hygiene leads to the accumulation of plaque and the
formation of tartar and tooth decay. Tooth decay develops to cavities and slowly damages the
tooth layer by layer while tartar builds up and attacks the gingiva by causing gingivitis and
gingival recession. Therefore, treating malocclusion improves dental hygiene, leads to better
dental health, and prevents a wide range of dental diseases. Orthodontic treatments can treat
most malocclusion conditions [125].

2.2 Orthodontic treatments
Orthodontic treatment is the process that improves the appearance and performance of teeth
correcting their alignment [44]. It may require removing or replacing teeth in certain cases.
There are three main reasons for taking orthodontic treatments. First, it improves significantly
the appearance of teeth which links to the jaws and face. Research has shown that the change
in appearance after the orthodontic process has a markedly positive impact on the patient’s
mental health [78]. Specifically, post-orthodontic patients tend to be more confident in their
appearance and participate more in social activities and sports. They become more positive, so
anxiety and depression decreased. Second, it corrects the bite function. An unaligned bite can
strain the jaw joints, which in the long run will cause jaw dysfunctions [168]. It is also the cause
of wear on certain teeth’ surfaces, making them more susceptible to acid and bacterial attacks.
Third, bacteria are less likely to stick and multiply in the teeth after orthodontic treatment.
The teeth, after being aligned, also make brushing easier. Thereby, the risk of oral diseases is
significantly reduced, and oral health is improved.

This section describes the procedure of a usual orthodontic treatment and explains different
techniques of the process.

2.2.1 Overview of the Process

The orthodontic treatment process includes a series of stages.

Oral Examination

First of all, the orthodontist performs a full exam of the patient teeth to evaluate the dental
health and the complexity of the problem. Normally the patient needs to get panoramic X-rays
to determine the position of teeth accurately. These scans show the exact biting position of
all teeth and reveal if there is any tooth that is growing inside. The orthodontist sometimes
requires a 3D scan to get more details that are not be clearly shown in the panoramic x-ray.
The 3D scan is more costly than the panoramic x-ray, so it is required only when necessary.



2.2. ORTHODONTIC TREATMENTS 11

Treatment Planning

Based on the results of the test and the scans, the orthodontist creates a plan for the treatment,
including the following factors:

• Oral health: Having good dental health is very important during the treatment because
serious dental problems can cause interruptions during the process. Therefore, dentists
need to ensure that the patient has good oral health. In some cases, if the patient has
severe problems with the teeth or gums, the dentist will order these before starting the
orthodontic process. If these diseases are mild, they can be treated in parallel with the
orthodontic process.

Figure 2.8: Types of human teeth, diagram from [175]

• Lower arch: Orthodontists often use the lower jaw as the starting point for planning
movements because its size and shape are less likely to be moved than the upper jaw [136].
Sometimes, tooth extraction is required if the degree of crowding is too high. Premolars
(bicuspids) are the teeth standing between cuspids and molars (see Figure 2.8). Working
as transition teeth, they are usually removed in cases of crowding of teeth to gain spaces
without affecting the appearance or function.

• Upper arch: Upper teeth are planned to fit around the lower ones so that they would
make a proper bite. Extraction of a tooth in the lower jaw usually leads to the extraction
of a corresponding upper one. Besides, the maxilla’s premolars can always be removed if
it lacks space for teeth to be aligned correctly.

• Choosing an appliance: Based on the movements being planned above (and teeth ex-
tractions if needed), the orthodontist needs to find out the appliance to achieve the goal.
Normally, the same treatment outcome can be accomplished by different choices of appli-
ances. Therefore, the orthodontist will propose all the possible appliances for the patient
to choose. We will explain the most common orthodontic appliances in the next section.
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Fitting appliance and checkups

After the appliance is placed, the patient will have a follow-up appointment with the dentist
every 4-8 weeks. These checkups are intended to evaluate the orthodontic process. The dentist
needs to make sure all teeth move according to plan. They will have to replace or adjust if
any part of the appliance is damaged or not working properly. The patient’s oral health is also
carefully checked during each appointment as it directly affects the treatment’s effectiveness.
Each visit usually lasts an average of about 45 minutes.

Post-treatment

Depending on the case’s complexity, the orthodontic treatment may last from a few months to
a few years. At the end of the treatment, the appliance is removed, and a retainer is usually
placed behind the teeth to prevent them from moving back to the initial unaligned state.

2.2.2 Orthodontic Appliances

During the orthodontic treatment, the patient has to wear appliances that put force on teeth
to the right position. In general, the treatments can be done using different techniques, which
vary in the level of convenience, duration, and cost. In this part, we describe the most common
types of appliances and the corresponding components.

Metal Braces

Figure 2.9: Metal braces with components, image from [6] with modifications.

Metal braces (also called traditional braces) are the most popular type of braces used for
a wide range of dental malocclusion. Being shown in Figure 2.9, the technique consists of a
few components: brackets, molar bands, archwires, either rubber bands or ligatures, and some
auxiliary components such as power chains, coil springs, and inter-maxillary elastics.

• Brackets: are metal squares that are attached on the front-side of teeth using bonding
cement. They are designed with a slot in the middle where the archwires go through and
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control the patient’s teeth’ movement. Some brackets have a hook connected to them,
which is used to attach auxiliary components such as rubber bands and coil springs.

• Molar bands: work similarly to brackets, but they wrap around the tooth. They are used
in cases where it is difficult to use common brackets such as partially erupted teeth or
not fully grown teeth. Orthodontists can use them to attach headgear as well.

• Archwires: are placed after brackets, and molar bands are already cemented. They move
teeth via brackets and molar bands. Archwires can be made of several metal materials
such as stainless steel or nickel-titanium.

• Ligatures: are used to fix the archwire with the bracket of each tooth firmly. They can
be made of rubber bands with colors or twisted stainless steel.

Figure 2.10: Self-ligating brackets, from [16]

• Self-ligating brackets: (Figure 2.10) are special brackets that have their own ligatures so
they can hold the wire firmly by themselves.

• Other auxiliary components: such as coil spring, inter-maxillary elastics, and power chain,
can also be used for supporting the treatment with braces.

– Coil spring: (Figure 2.11) is installed on the archwire to enlarge space between teeth,
normally in the case of crowded teeth.

– Inter-maxillary elastic: is another auxiliary that is attached to one tooth on the
upper jaw and another from the lower jaw. It is used to make a force that controls
the movement of teeth and sometimes for redirecting the jaws’ movement.

– Power chain: (Figure 2.12) is an elastic chain that is stretched over braces to reduce
the spaces between teeth quickly. This is a preferred auxiliary for closing the space
between more than two teeth.



14 CHAPTER 2. CONTEXT

Figure 2.11: Metal fixed appliances with rubber bands and coil spring (on the right), from [13]

Figure 2.12: Power chain on the upper teeth and elastic rings on the lower teeth, from [126]

Ceramic Braces

Ceramic braces work the same way as metal braces, but the brackets are made of ceramic which
matches the color of the teeth [11]. Many patients choose ceramic braces because they are less
visible than the metal ones so that their appearances do not change too much by wearing the
appliances. The ceramic material’s main advantage is that it has a similar color and texture
to the enamel of teeth, making them less noticeable. They can customize the color of the
brackets to match the color of the patient’s teeth perfectly. Combining with white archwires
and transparent ligatures, ceramic braces become even less visible.

However, ceramic braces also have some disadvantages. Firstly, they are approximately
30 − 40% more expensive than metal braces. Secondly, they are less durable than metal and
two times more likely to break during the treatment [22]. When a ceramic bracket is broken, it
must be removed to install a new one. It increases the duration of the treatment and is harmful
to the enamel surface of the tooth. Thirdly, ceramic brackets are larger than metal ones, so it
is harder for the patient to brush their teeth, especially the gum line where plaque can build
up, forming tartar and cause dental complications.
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Figure 2.13: Ceramic braces with white archwires and white ligatures, from [11]

Figure 2.14: Lingual braces attached behind teeth, from [154]

Lingual Braces

Lingual braces are another variant of traditional braces. Instead of attaching the bracket to
the teeth’ front-side, lingual brackets are fixed to behind the teeth to become invisible from the
outside like in Figure 2.14. This method can be applied to correct most bite problems except
deep overbite cases as the upper brackets can touch the lower teeth when the patient bites.
Compared to the other two methods, lingual braces cause more difficulty when the wearer
speaks because they limit the tongue’s working space. Plus, it usually costs more than other
treatment options. Therefore, since the invisible aligner is introduced, fewer people are wearing
lingual braces [154].

Clear Aligners

Clear aligners (or transparent aligners) is a different approach compared to the other three. The
method uses transparent plastic trays as braces to apply a force on teeth to move them to the
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Figure 2.15: An example of wearing transparent aligners on the lower teeth. Attachments are
circled. Image from [21]

right position. The process is started by making a digital 3d model of the patient teeth. Based
on this model, a computer program suggests a treatment plan including all the movements to
be made and a series of aligners that gradually move teeth toward the designed direction. The
patient must wear each aligner for about two weeks and at least 22 hours per day to work
efficiently [110].

In many cases, attachments (or buttons) are also added to improve the aligners’ performance.
These attachments are small white dots of dental bonding that are attached to the surface of
teeth. The way attachments and transparent aligners work are just like bracket and archwire
in traditional braces. These attachments make the aligner stays firmly on teeth and provides
anchor points so that the aligner can move teeth easily and precisely. Aligners can be combined
with inter-maxillary elastics to correct the bite of the patient. To use the inter-maxillary
elastics, additional buttons (usually made of metal) are attached to teeth at positions that are
not covered by the aligner or directly on the aligner itself. Like brackets, these buttons and
attachments are simply removed once the treatment is finished.

Clear aligners come with multiple advantages. Firstly, they are removable. Patients can
remove aligners when necessary (maximum two hours per day) and put them back later. Brush-
ing teeth without wearing appliances is also much easier and more efficient than when wearing
braces. Therefore, during the treatment, patients wearing removable aligners have lower chances
of having dental complications than traditional braces wearers. Secondly, these appliances are
usually made of transparent plastic (Figure 2.15) that does not change the patient’s appearance
while wearing them. The smooth surface of aligners is also much more comfortable than metal
or ceramic brackets, which may sometimes hurt the mouth’s soft tissue. Thirdly, it requires
fewer and shorter appointments with the orthodontist because the whole treatment is already
planned, and all the aligners are produced at the beginning of the treatment. The orthodontist
only has to make sure teeth are moving correctly so that the patient can switch to the next
aligner.

Transparent aligners also have some drawbacks. The price of the treatment is usually higher
than other options, except lingual braces. Those aligners are precisely printed using 3d-printers
to match each patient’s treatment stage while all components of other braces such as brackets,
archwires, rubber bands, and so on are mass-produced. Moreover, letting the patient remove
aligners when they want increases the chance that they may break or lose their aligners. It
interrupts the treatment and makes it more expensive because they have to reproduce an
aligner. Besides, if a patient loses her aligners and does not receive the replacement quickly
enough, the teeth can move incorrectly, and the orthodontist has to make a new plan for the
treatment again. For this reason, it is recommended to put aligners safely in their boxes.
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In the following parts, we discuss in detail problems that can happen during orthodontic
treatments and the importance of detecting them on time.

2.2.3 Appliances-related problems

In this part, we describe problems that may occur during orthodontic treatments related to
appliances. In this thesis’s scope, we focus on the two most popular appliances: braces and
aligners.

Figure 2.16: An example of aligner not seated well on one tooth, from [40]

• Aligner: There are a few problems that may happen when a patient is wearing an aligner.

– Incisal gap: is the space formed when a patient is wearing an aligner, but a tooth
is not completely entering inside. It usually happens when a patient is not wearing
the aligner correctly, or the movement of the teeth is not going as planned.

– Absence of attachment or button: may happen when a great force is made on them,
such as biting a hard food or brushing teeth carelessly. It is recommended to eat soft
food for a few days at the beginning of the treatment because the bond between the
attachments/buttons and the teeth is still weak, and they are more likely to fall off.
Losing of attachment will reduce the aligner’s performance, while missing a button
will make it impossible to use the rubber band. Therefore, detecting the absence of
attachments and buttons is essential to keep the treatment efficient.

– Damaged aligner: This problem is less likely to happen, but the patient must receive
a new aligner when it does. The patient themselves can spot the problem when the
fragment damage is obvious, but sometimes, the damage can be so small that they
do not notice. This is why an orthodontic monitoring system must take care of this
problem too.
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Figure 2.17: An example of a broken bracket which is detached from the tooth, from [135]

• Braces:

– Bracket debonding: is usually performed by the orthodontist at the clinic to remove
the bracket off the teeth once the treatment is done. However, for some reason,
the bracket is detached from one or more teeth. This is a serious problem and
must be informed to the orthodontist immediately for reparation. Most patients
can realize it easily when it happens to one of the front teeth or when multiple
brackets are detached at the same time, but sometimes patients do not notice the
problem. Therefore, detecting debonding brackets should be detected by the dental
monitoring system.

– Loss of tie: is less emergence than the previous problem because sometimes the metal
wire is still sitting in its place even when the rubber tie is lost. However, it is just a
matter of time before the wire comes off the bracket because the presence of the tie
strengthens the link between the wire and the bracket. Therefore, even though it is
not urgent, losing ties should be detected and reported to the orthodontist.

– Opening of the self-ligating clip: is as important as the loss of tie. The self-ligating
clip has to stay closed to hold the wire in its place. Once it is accidentally opened,
there is a high chance that the wire will get out of the bracket.

– Power chain damaged and disengaged: are also monitored during orthodontic treat-
ments. As it applies force on the teeth to close the gap between them, sometimes
the power-chain can be broken. Losing or broken power chains will leave space be-
tween these teeth which negatively affects the treatment. There is a small possibility
that the patient may swallow pieces of broken power chain with foods, which can be
dangerous in certain situations.

– Spring damaged or loosed: is less likely to happen to compare to the problems above,
but it also can delay the treatment. Like other parts of braces, the coil spring can
get loose or fall off when a strong force is applied to it.

In short, orthodontic appliances can have problems during the treatment, and each type of
appliance has its own problems that can interrupt the treatment. Therefore, it is important for
the patient to regularly visit the orthodontist to be detected and solved as quickly as possible
if a problem happens.
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2.3 Dental Checkups

Dental checkups, in general, are appointments between a patient and a dentist for evaluating
dental health, recognizing dental problems, and proposing treatment if necessary. The dentist
can make use of the appointment to remove plaque and tartar from the patient’s teeth if they
are already built up. Basically, a healthy person is recommended to visit the dentist once
or twice a year, while a person with dental complications should be checked up as twice as
frequently [176]. During orthodontic treatment, the patent needs to visit every one or two
months.

In fact, people visit dentists much less often than needed. According to the survey in [155],
more than one-third of French people visit their dentists less than once per year. One-fourth
of them have never visited a dentist for any dental checkup in their lives. Similarly, about
one-third of Americans visit their dentists less than once per year [180]. The main reasons
that people are not getting dental checkups are their costs (59%), fear of dentists (22%), and
the inconvenient time/location for the appointments (19%), as reported in [3]. Therefore, it is
important to make dental checkups less costly and more accessible.

Online medical consultation (OMC) has recently become a promising consulting approach
in multiple medical domains [108]. In OMC appointments, the patients do not meet the doctor
in person but via a video call. OMC platforms usually make it possible for patients to talk
with the doctor, transfer files and media such as photos and videos. It only requires an internet
connection and a device with a camera connected to the internet. Because the appointments
are not in-person, it is not limited by geography or weather conditions and flexible in time for
both doctors and patients. As a result, online consultations are generally much cheaper than
in-person consultations. One disadvantage of online consultations is that it is not applicable
for certain checkups that require professional setup. Moreover, if the doctor wants to diagnose
the patient, the diagnosis’s result heavily depends on the quality of the images taken by the
patient. For this reason, the process of taking photos should be simple enough so that patients
can accomplish it correctly. It leads us to the next section, which explains the state-of-the-art
online dental checkups and consulting platforms developed by the Dental Mind company.

2.4 Dental Mind

Dental Mind (initially H42, also known as Dental Monitoring, or DM) was founded in 2013
as the first company to provide a solution that uses smartphones to monitor teeth’ movement
during orthodontic treatments remotely. Today, the company has grown and provided three
main services:

2.4.1 Dental Monitoring

Patient Dental	Monitoring Orthodontist

(1) (2)

(3)(4)

Figure 2.18: The working pipeline of Dental Monitoring service
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Dental Monitoring is the initial service of Dental Mind. It enables orthodontists to remotely
monitor the evolution of the treatment (including movement-tracking and problem detection).
Thanks to the platform, they can also contact each other from far away. Figure 2.18 gives us
an overview of the system. First, using the Dental Monitoring mobile application, the patient
takes a series of photos of their teeth. The application also provides instructions step-by-step
so that the patient can easily take pictures from all the required angles. Then, those photos are
sent to DM to be processed and diagnosed by a team of dentists and dental experts assisted by
computer programs, including scripted programs and learning-based programs. Next, a report
is generated and set to the orthodontist. Based on the report, the orthodontist can monitor
the evaluation of the treatment. They can send feedback and instructions to the patients and
set an appointment if necessary. Alternatively, via Dental Monitoring, the orthodontist can
define some rules, also called protocols, so that certain feedback will be sent automatically to
the patients according to the report. We explain each steps in details below:

Taking intraoral photos

The patient does this step with the help of the Dental Monitoring mobile application. There
are two fashions for taking the scan: using only a cheek-retractor or using the DM ScanBox.

Figure 2.19: Wearing a too small cheek-retractor (left) and wearing a cheek-retractor correctly
(right). Image from [31]

• Using a cheek-retractor: The scan can be done using a cheek-retractor and a smartphone
with the Dental Monitoring application installed. The cheek-retractor is a piece of dental
equipment that holds the patient’s mouth open while retracting the lips and cheek to
reveal as many teeth as possible. It is widely used in dental cliques for dental examinations
and treatments. To start the scan, the patient puts on a cheek-retractor. It is important
to wear the right size of cheek-retractor and wear it properly so that all teeth can be easily
seen (Figure 2.19). Teeth will not show clearly if the patient wears a too-small cheek-
retractor, while wearing an oversized one may cause pains. Following the application’s
instruction, the patient takes three sets of photos: closing teeth, slightly opened teeth,
and widely opened teeth. For the first two series of photos, the scan is done from-ear-to-
ear, so the patient slowly moves the camera horizontally (panning). The third series of
photos focus on the molar teeth, so the patient must move the camera vertically. As the
instruction is shown on the phone’s screen, the patient must stand in front of a mirror.

• Using a DM ScanBox: This scan’s equipment includes a cheek-retractor, a DM ScanBox,
and a smartphone with a Dental Monitoring application installed. With the DM ScanBox,
the patient does not have to worry about the camera’s distance to their mouth or whether
the retractor is well aligned with the phone. The box also stops noisy lights from the
environment, which affect the quality of the photos. To start the scan, the patient launches
the application and wears the cheek-retractor on. Then the smartphone is steadily placed
in the front of the box with the camera facing inward. Afterwards, the patient lifts the
DM ScanBox to the front of the retractor. When they are close enough, they will be
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Figure 2.20: A person scanning her teeth using the DM ScanBox. Teeth are closed and the
camera is moving horizontally. Image from [31]

pulled together automatically thanks to the magnets, and the scan is ready to be started.
The camera movement in the scan using the DM ScanBox is the same as when using only
the retractor: a horizontal scan with closed teeth, a horizontal scan with slightly opened
teeth, and a vertical scan with widely opened teeth.

Once the photos are taken, the patient can preview the images before submitting them to
the system.

Image selection

Among the submitted images, there are usually duplicates and bad-quality images. Sent images
are sometimes rotated because of the camera configuration of the smartphone. In this step, the
images are cropped (and rotated if they are in the incorrect orientation), and the best photos
are selected. From each submission, 10 photos corresponding to 10 required angles are chosen
from over thirty submitted photos, as shown in Figure 2.21. Those 10 angles cover most of the
visible sides of teeth, enables orthodontists and technicians to diagnose dental complications and
detect problems. At the beginning of the thesis, Dental Mind already developed a few neural
networks to handle this phase. One network is a classifier being trained to predict the camera’s
orientation of the given image. Based on the output of this classifier, the image is re-rotated to
the usual orientation. Afterward, we apply a BLSTM network (see Section 3.2.2) to find out
10 best images for 10 best angles, because the mobile application usually takes multiple photos
for each angle. The third network used in this step is an object detection model that draws a
bounding box around the mouth region, the only valuable part for the following phases. Each
image is cropped according to the predicted coordinate. Finally, these images are submitted to
a queue, waiting to be diagnosed for dental complications and treatment-related problems.

3D Reconstruction

It is challenging to tell how much each tooth has moved by just looking at 2d images. Therefore,
to be more precise, the technicians take the 3d model of the patient teeth (taken at the beginning
of the treatment), rotate, move and scale teeth until the 3d model match the position of teeth
from all perspective. By comparing this up-to-date 3d model with the previous ones, they can
precisely compute how much each tooth has moved and realized whether the treatment is going
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Figure 2.21: A photoset with 10 selected images after being cropped.

well or not. The orthodontist can access these insights via the Dental Monitoring dashboard,
as shown in Figure 2.22.

Diagnosis

Afterwards, the selected photos are diagnosed by technicians with the assistance of machine
learning models. This step aims to find out as many common dental problems and orthodontic-
related problems that it can see via photos as possible. Therefore, there are a handful of
problems to be detected. Firstly, depends on the chosen treatment, appliance-related problems
are checked. For example, if the patient is under treatment with invisible aligners, the technician
will look for problems such as unseated aligner (incisal gap), detached aligner, aligner distortion,
aligner fracture, absence of buttons, and absence of attachments. Otherwise, if the treatment is
braces, they will look for braces-related problems. Most of these problems are already explained
in Section 2.2.3. Then, they evaluate the intraoral health by reporting multiple problems such
as dental calculus (Section 2.1.2), not sufficient cleaning of appliance, not sufficient oral hygiene,
gingivitis (Section 2.1.3), gingival recession (Section 2.1.4), cavities (Section 2.1.1), detached
dental crown and dental fracture.

Even though diagnosing dental problems via images only takes a few minutes, saving patients
and dentists a lot of time, the burden is now shifted to the technicians who diagnose many dental
images being submitted every day from around the world. The diagnosis must be accurate and
quick, so they have to focus completely. As the task repeats, it becomes stressful. Therefore, it
would be helpful to develop machine learning models that can handle simple predictions so that
humans can focus more on complicated parts that take more dental experience and knowledge.

Another challenge of the Dental Monitoring diagnostic process is the uniformity of diagnostic
results. To put it another way, different technicians sometimes come up with slightly different
conclusions for the same picture. For example, when something looks like gingivitis appears
on a photo, one technician can report immediately that gingivitis has occurred and suggest
immediate treatment. At the same time, another would say that the sign is too mild and
should be followed up for a more certain conclusion. However, if a learning model is well
trained to recognize dental problems, the answers will always be consistent.
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Figure 2.22: The interface of the Dental Monitoring dashboard where orthodontists can review
and compare the diagnosis results of the submitted scans. Image from [32]

Protocols

Via the Dental Monitoring platform, orthodontists can set up their protocols, in which they
define instructions for technicians and validators in certain situations. For example, the or-
thodontist can design a protocol to automatically send a message to remind the patient to wear
the aligner carefully if it is not well seated at certain teeth while ignoring the problem if it
happens on other teeth which are not being treated. With protocols, orthodontists can also
give some notes to technicians to pay more attention to some teeth or some certain problems
regarding the ongoing treatment.

Reports and Messages

When the diagnosis is made, a report containing chosen images and the diagnosis results is
sent to the orthodontist. According to the protocol, a message is also sent to the patient with
predefined instruction from the orthodontist. The patient can also see the images of the scan
and a summarised version of the report. The patient can contact the orthodontist easily and
send an unscheduled scan if they find it necessary through the mobile application. Messages
between patients and orthodontists are delivered in real-time, which means patients can receive
instant support when they need it. Communicating with the orthodontist between weeks of
checkups also encourages the patient’s commitment to the treatment.

2.4.2 SmileMate Virtual Consultation

SmileMate is an online consultation platform in which dentists/orthodontists can vision pa-
tients’ dental health conditions. The service reduces the number of in-person appointments,
which helps prevent the spread of Covid-19 [169] while enabling dentists to keep in contact with
their patients. As a web-based service, it requires no application installation. SmileMate also
makes it easier for new patients to accept treatment. In general, people do not visit dentists
less than once per year, [3] which means that problems are detected when they have already
started for months. With SmileMate, anyone can take a simple scan at home. The photos are
diagnosed automatically, and the dentist can give recommendations. All of this is done with-
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out an appointment. Knowing their dental problems and having advice from the dentist, the
patient is now more likely to decide to get treatment. The way SmileMate works is explained
in three steps below:

Taking photos

Figure 2.23: An example of photos to be taken on the SmileMate platform, image from [34]

Firstly, the patient visits the SmileMate website. Following the instructions, the patient
takes a set of photos of their teeth. Unlike Dental Monitoring, SmileMate does not require a
cheek-retractor for the scan because it serves new patients or people thinking about signing up
for dental treatment. It is recommended to have a second person take the photos. The patient
can use fingers to reveal the molars (Figure 2.23).

Diagnosis

Afterward, the photos are submitted to be diagnosed for dental problems like in the Dental
Monitoring service. When the diagnosis is made, the dentist receives a report explaining the
patient’s oral health condition.

Report and Recommendations

The system can add recommendations to the report before being sent to the patient. The
platform is considered a useful tool for orthodontists and dentists to lead new patients to be
converted into acceptance of necessary treatments. Via SmileMate, dentists can also have online
video consultations with their patients. It enables dentists to keep the contact with patients
who have difficulties having regular physical checkups.

2.4.3 Vision

Showing patients how their teeth may look like during and after the treatment would improve
the chance that a patient decides to take the orthodontic treatment and become committed
during the process. The vision service includes two features: Appliance Selection and Smile
Prediction. Advantage: personalized, using patient’s teeth which makes it realistic.

Appliance Selection

Different types of orthodontic appliances have their own pros and cons. So each patient needs
to choose the right appliance before starting a two-year-long treatment. One of the factors
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that cannot be ignored when choosing a treatment method is appearance. Usually, the patient
decides by looking at images of other patients wearing appliances. However, sometimes the
reality does not match the imagination, and the patient may regret their decisions. Changing
the type of appliance during treatment is not recommended as it is complicated and costly.
Appliance Selection avoids this by virtually letting the patient "try" each appliance. It gives
the patient a predicted vision of how their smile would look like during the treatment with each
appliance type. At the moment of writing, the service covers the three most common types of
appliance: metal braces, ceramic braces, and aligners, as can be seen in Figure 2.24.

(a) Input image (b) Output 1: Metal braces (c) Output 2: Ceramic braces (d) Output 3: Aligners

Figure 2.24: An example of images generated by Vision - Appliance Selection, images from [33]

The process of generating appliance images can be explained as follows. First, the or-
thodontist takes two images of the patient’s smile: one with cheek-retractor and one without
cheek-retractor via the Vision application installed. Then, the two images are submitted to the
system to be edited by generative neural networks of Dental Mind. Finally, the results are sent
back to the orthodontist. The whole process must not take longer than minutes because the
patient should see the results right in the appointment so that the orthodontist can help the
patient choose the most suitable appliance for them.

Smile Prediction

It is reported that visualized goals are significantly more achievable than difficult-to-visualized
ones [23]. When people can visualize their goal, they tend to be more motivated and committed
to the goal. Orthodontic treatments are challenging as it takes time for teeth to move to the
desired position. The patient also needs to take care of their teeth during the progress carefully.
Therefore, having a predicted vision of the result will definitely motivate them to commit to the
treatment. Smile Prediction works on the same input images taken for Appliance Selection, so
Vision is actually a 2-in-1 service. Generative networks of the Dental Mind modify the photo
of the patient’s current smile to make it look more aligned. One advantage of this service is
that it works on the given image, which means all the patient’s teeth’ characteristics are kept.
It only aligns teeth and whitens them when being asked, As shown in Figure 2.25.
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(a) Input image (b) Output image

Figure 2.25: An example of the image generated by Vision - Smile Prediction, images from [33]



Chapter 3

State of the Art

Convolutional neural networks (CNN), aka. deep neural networks, or deep learning, have con-
stantly been growing in these years and achieved remarkable successes in many fields, especially
computer vision [94].

In the field of medical imaging, researchers can apply deep learning to various parts of the
human body. In [41], CNNs were trained for skin cancer detection on smartphone-captured
images. The method archived comparable accuracy to the classification done by experts. In
neuroscience, scientists applied deep learning to detect brain tumors on magnetic resonance
(MR) images [60]. CNNs were also used for retinal vessel segmentation [48] from digital fundus
photographs. Moreover, deep learning also helped to identify chest pathology [146] on a dataset
of radiographs. Also, on x-ray photos, Spampinato et al. trained a deep network to assess
skeletal bone age in human bone [152].

The development of deep learning also caused many new research directions in this field to
be born. In this thesis, we focus on generative adversarial networks, image-to-image translation,
domain adaptation techniques and try to apply them in the domain of orthodontics.

3.1 Object detection and instance segmentation

R-CNN [54] is known as one of the first works where convolutional neural networks (CNN)
being applied for object detection. Using selective search [164], the method scans the image and
generates about two thousand region proposals that potentially contain objects. Afterwards,
these bounding boxes are resized and fed to a CNN for classification. R-CNN significantly
outperforms conventional methods at the time, which are usually based on SIFT [105] and
HOG [30] features. However, due to a large number of region proposals, the approach takes
time for training and inference. Plus, the selective search algorithm in R-CNN is not trainable,
which makes the model less adaptable. There are three main directions to develop the original
technique.

The first way is to optimize the post-classification. He et al. propose SPPnet [64] with a spa-
tial pyramid pooling (SPP) layer, which uses the same classifier for multiple input resolutions.
The technique is robust to region size and scale and enables SPPnet to run noticeably faster
than R-CNN. Fast R-CNN [53] uses a CNN for generating a feature map from the input image.
This feature map is then used for identifying the region proposals, which are then wrapped,
resized and fed into two fully connected (FC) layers that learn to predict the offset values of
the bounding box and the category of the object inside. As a result, Fast R-CNN is almost ten
times faster than R-CNN in training and about 20 times faster than R-CNN in testing.

Another direction of development is to use CNNs for improving the performance of the
region proposals. Faster R-CNN [134] introduces a region proposal network (RPN) to predict
the region proposals from the feature map. This is done with a training procedure that enables
this network to share convolutional layers with Fast R-CNN. By doing this, the final classifier
does not have to extract the mid-level features again but pool them directly from the output

27
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of region proposals.
The third group of approaches does not include the proposals in their pipeline but directly

predicts bounding boxes and categorizes them. Combining a deep convolutional network with
the sliding window approach, OverFeat [145] computes the bounding boxes of objects from
the classification feature maps. Because its localizer of OverFeat only gets local information
when making a prediction, the method is more likely optimized for object localization than
detection. YOLO [131] makes it even more straightforward by directly using the top feature
map for predicting bounding boxes and the confidences of underlying object categories. This
simplicity helps this method to perform real-time object detection.

Figure 3.1: Comparison in the architecture of SSD and YOLO. Figure from [103]

Liu et al. propose Single Shot MultiBox Detector (SSD), [103] which uses multi-scale convo-
lutional bounding boxes on multiple feature maps of the CNN (Figure 3.1). Like YOLO, SSD
architecture takes the VGG-16 convolutional network [150] as its base, which predicts bounding
boxes and classification scores of objects inside each box. Instead of operating detection on a
single scale of feature map like in [145] and [131], the base network of SSD is improved with
additional convolutional layers with sizes decreased progressively. Thanks to the feature maps
of these layers, the prediction is made on multiple scales. These feature layers also replace fully
connected layers in YOLO and make SSD run faster and more robust. Inheriting anchor boxes
from Faster R-CNN, SSD applies them to multiple feature maps at multiple levels of resolution.

3.2 Recurrent Neural Networks
Recurrent Neural Networks (RNNs) are neural networks that have their output neurons con-
nected and applied recursively to the inputs. The architecture performs very well on tasks
that use sequential data such as natural language processing [55], signal processing [58], or text
generation [158]. One main disadvantage of RNNs is the lack of time backpropagation which
causes troubles when processing long sequences of data.

3.2.1 Long-Short Term Memory

Long-Short Term Memory (LSTM) [69] is the architecture proposed to address the problem of
short-term memory in traditional RNNs. The method applies a memory & gating mechanism
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Figure 3.2: The architecture of a LSTM cell. Figure from [83]

Figure 3.2, to handle sequences containing long-term dependencies. The method performs very
well in many applications such as handwriting recognition [19], music generation [111], and
image captioning [179].

3.2.2 Bidirectional Long-Short Term Memory

Figure 3.3: The overall architecture of BLSTM. Figure from [182]

A variation of RNN is bidirectional recurrent neural networks (BRNN) [141] which trains
two recurrent networks at the same time, one for the forward direction and one for the backward.
This architecture can access both states, before and after, of a sequential input at a time frame.
This idea is also adopted in to LSTM networks to become bidirectional long-short term memory
(BLSTM), in which, two LSTM networks are trained in two opposite directions of the sequential
data as shown in Figure 3.3. The network is shown to outperform state-of-the-art models on
sequence classification problems [57].
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3.3 Adaptive Instance Normalization

Adaptive Instance Normalization (AdaIN) is a technique that normalizes the content features
of an input image using parameters extracted from given style features. The method is widely
used among generative networks and style transfer networks. The background of AdaIN includes
batch normalization [79], instance normalization and conditional instance normalization.

3.3.1 Batch normalization

The original purpose of batch normalization (batch norm) is to stabilize and accelerate the
training of deep neural networks by reducing the difference in the distribution of input between
convolutional layers. One of the main challenges that one may face while training deep neural
networks is the problem called internal covariate shift [79], which refers to the change in the
distribution of layers’ input during the training. This difference in distribution between features
of layers in a convolutional network makes the update procedure unstable as it keeps aiming for
a moving target. For this reason, deep networks take a lot of time to converge or cannot even
converge at all. The idea behind batch normalization is to standardize inputs of the network’s
layers by fixing their means and variances. Batch normalization also makes the network less
sensitive to the initial parameters and the choice of hyperparameters of the training. Therefore,
it can be considered as a regularization technique besides dropout [153]. The method is found
useful in both discriminative models and generative models [127].

Given an input batch x ∈ RN×C×H×W where N,C,H and W are respectively batch size,
number of channels, height and width, the batch normalization of the batch x is defined as:

BN(x) = γ

(
x− µ(x)
σ(x)

)
+ β. (3.1)

During the training, γ and β are learned from the training data. In batch normalization,
µ(x) and σ(x) are the mean and the standard deviation of the input batch x. Note that for each
feature channel, µ(x) and σ(x) are computed independently across N , H and W . Therefore,
the mean and standard deviation of the feature channel c of x are respectively computed as:

µc(x) =
1

NHW

N∑

n=1

H∑

h=1

W∑

w=1

xnchw, (3.2)

σc(x) =

√√√√ 1

NHW

N∑

n=1

H∑

h=1

W∑

w=1

(xnchw − µc(x))2 + ε. (3.3)

3.3.2 Instance Normalization

It is shown in [165] that replacing batch normalization layers in feed-forward style transfer
networks with instance normalization layers can significantly improve their performance. The
instance normalization is defined the same as batch normalization in Equation 3.1

IN(x) = γ

(
x− µ(x)
σ(x)

)
+ β, (3.4)

except that the mean and standard deviation are computed independently, not only for each
channel but also for each input sample:

µnc(x) =
1

HW

H∑

h=1

W∑

w=1

xnchw, (3.5)
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Figure 3.4: Illustration of normalization methods. Each cube represents a feature map tensor
where N , C and (W,H) are respectively the number of samples in the batch, the number of
feature channels and the spatial dimension. Figure from [177]

σnc(x) =

√√√√ 1

HW

H∑

h=1

W∑

w=1

(xnchw − µnc(x))2 + ε. (3.6)

Figure 3.4 visualizes the difference between different kinds of normalization methods, in-
cluding batch norm and instance norm.

3.3.3 Conditional Instance Normalization

An extension of instance normalization is called conditional instance normalization (CIN) in-
troduced in [39] for style transfer. For each style s, they propose to learn a set of parameters γs
and βs instead of learning one set of parameters γ and β in batch normalization and instance
normalization. The conditional instance normalization is defined as:

CIN(x; s) = γs
(
x− µ(x)
σ(x)

)
+ βs. (3.7)

Thanks to CIN, a single convolutional network can learn to generate images in very different
styles being learned from the training data. Experimental results in [39] show that the set of
learned styles in CIN does not take many parameters of the network, but they completely
change the style of images in the inference phase. The number of CIN parameters increases
linearly with the number of styles and the number of feature maps, making it difficult to apply
the method for large models and large datasets with tens of thousands of styles. Besides, the
styles are learned only during the training phase, so the only way to apply new styles to the
set is to retrain the network.

3.3.4 Adaptive Instance Normalization

While IN normalizes the input to a single style specified by the affine parameters, adaptive
instance normalization (AdaIN) computes those parameters directly from a style input. There-
fore, it has no learned parameters like γ and β in the previous works.

Given a content input x and a style input y, the AdaIN layer is defined as:

AdaIN(x, y) = σ(y)

(
x− µ(x)
σ(x)

)
+ µ(y). (3.8)

In other words, after being normalized to get rid of the current style, the content input is
scaled by σ(y) and then shifted by µ(y) for applying the new style coming from the style input.
These statistic components do not affect a lot the structure of the content input, but they make
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changes in its style. They are both computed across spatial dimensions for each channel and
each sample, like in instance normalization (Equation 3.5 and Equation 3.6).

3.4 Generative Adversarial Learning

Generator

Real
images

Fake	images

Discriminator Real	/	Fake

Random
noise

Figure 3.5: Generative adversarial network structure.

We will introduce original GANs, then some variants of GANs, especially the ones that lead
to image-to-image translation solutions.

Generative adversarial nets were introduced in 2014 by Goodfellow et al. [56]. The GAN
structure being shown in Figure 3.5 consists of two parts: a generator G, which learns the
distribution of a given real dataset to generate plausible samples, and a discriminator D, which
learns to distinguish between real and fake samples. The two models are trained at the same
time and fight against each other in a mini-max game.

Let x be a data point belonging to the distribution pdata(x) and z be a noise variable coming
from a prior distribution pz(z). Generator G(z, θg) is a neural network that learns to map each
data point from noise space to one in the data space. In the other hand, discriminator D(x, θd)
is another neural network learning to label its input. The input of D can be x as the real sample
or G(z) as the generated sample. Overall, the objective function of GANs can be understood
as below:

min
G

max
D

V (G,D) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))]. (3.9)

The two networks are usually made of neural networks, but they can be other types of
differentiable models too. One can imagine the generator as a criminal who tries to make fake
money and the discriminator as a police officer who tries to tell if the money is real or fake.
Both of them start the training simultaneously, so they are both bad at the beginning but
get better after time. After a certain number of training steps, the discriminator should be
very good at detecting fake images, while the generator should be able to generate real-looking
images. GANs have been rapidly developed and adopted into many branches of research.

3.4.1 GANs Architectures

For improving the performance of GANs, multiple modifications in terms of architecture have
been proposed. In [116], cGAN was proposed to make use of labeled data. The label is used as
an additional input of the generator, encouraging the model to exploit attributes of the dataset.
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The discriminator is also modified so that it does not only verify if the generated image looks
realistic but also if it matches the given label. As a result, cGANs learn the difference between
categories and are able to generate images associated with the chosen category. The drawback
of this method is that it can only work on labeled datasets which are costly and not always
possible.

In [132], GAWWN generates images with conditions in the form of text, bounding boxes
and landmarks. InfoGANs [26] are introduced as a version of GANs, which can learn the
disentangled representation of images without any annotations.

Another important extension of GANs is deep convolutional GANs (DCGANs) [127]. The
work proposes a deep neural architecture for GANs, which comes with batch normalization [79],
strided convolutions and ReLU to make the training efficient. DCGANs are further improved
in [139] by using feature matching, a new objective function, which requires the generator to
match the target data’s statistics instead of directly maximizing the discriminator output. The
authors also suggest using mini-batches for training the discriminator, historical averaging, label
smoothing [159], and virtual batch normalization. The model succeeds in generating images
32 × 32 images from CIFAR-10 [89] but fails to generate objects when being trained with 128
× 128 images from the ILSVRC2012 [138] dataset with 1,000 categories. Salimans et al. [139]
also introduce Inception Score as an evaluation metric for comparing GAN models.

Improving the resolution of the output is another important factor for developing GANs.
ProGAN [85] learns to generate high-resolution images by progressively increase the number of
convolutional layers in both generator and discriminator during the training. The idea is yet
similar to StackGAN [184] and StackGAN++ [185], except for a few points. First, ProGAN
does not take any additional input as a condition but directly generates images from noise.
Second, early convolutional layers of ProGAN are kept for the whole training, while in we need
multiple GANs to reach the high resolution. ProGAN succeeds in generating realistic 1024
× 1024 images. In [84], StyleGAN is proposed with significant upgrades, especially bilinear
sampling and mapping network with adaptive instance normalization (AdaIN).

3.4.2 GAN Loss Functions

Realizing that the loss function of GANs is the key to stabilizing the training and the quality of
the outputs, different modifications of the training objective are proposed. One disadvantage
of the original GAN loss is that it saturates easily because it does not consider the distance
of a data point to the decision boundary of the discriminator, but only the correctness of the
predicted label. This is why the log loss is ineffective. Besides, when the gradient of the
discriminator is saturating to 0, the generator will fail to learn as well because it is trained
using the discriminator gradient.

Figure 3.6: The sigmoid cross-entropy loss function in standard GANs (left) and the least-
square loss function in LSGAN (right). Figure from [113].

Least-square GANs (LSGAN) [113], on the other hand, consider the distance of a data
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point through the discriminator’s prediction boundary. Specifically, it pushes data points that
are far from the boundary toward the boundary by proportionally penalizes generated samples
according to their distances to the boundary. This helps the generator slowly learn the real data
distribution. Moreover, by penalizing the generated samples that stay far from the classification
boundary, the loss function produces more gradients for training the generator. As a result,
the training becomes more stable. Figure 3.6 visualizes the difference between the sigmoid
cross-entropy loss and the least-square loss. While the sigmoid cross-entropy loss is flattened
when the value of x is large, the chance for the least-square loss to saturate is much lower. In
contrast, LSGAN generates a great amount of gradient at these points. The objective functions
of LSGANs is defined as:

min
D

VLSGAN(D) =
1

2
Ex∼pdata(x)[(D(x)− 1)2] +

1

2
Ez∼pz(z)[(D(G(z)))2] (3.10)

min
G
VLSGAN(G) =

1

2
Ez∼pz(z)[(D(G(z))− 1)2] (3.11)

The method is widely used in early adversarial image-to-image translation methods such
as [80] and CycleGAN [188]. Thanks to its stability, multiple networks that generate high-
resolution and diverse outputs such as Pix2pixHD [173] and MUNIT [73] also adopt LSGAN
for their training.

x

Lo
ss

Figure 3.7: Comparison of an optimal discriminator and a critic when learning to differentiate
two Gaussian distributions. WGAN critic always generates clean gradients while the discrimi-
nator saturates, leading to vanishing gradients. Figure from [5]

WGAN [5] is another alternative for the traditional GAN discriminator that applies Wasser-
stein distance in the training loss. In traditional GANs, the generator learns to minimize the
gap between the real and predicted probability distributions for real and images that it gen-
erates. This objective is based on the idea of Kullback-Leibler divergence. WGAN, however,
addresses the training of the generator from the point of view of the Earth-Mover’s distance
(EMD) or the Wasserstein metric. Generally speaking, given two distributions representing two
ways of pilling up the same amount of dirt over a region, the EMD is the minimum effort of
transforming one pile into another. The effort is computed by multiplying the amount of dirt
being moved by the total distance of movement. Mathematically, let Ps and Pt respectively be
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the source distribution and the target distribution, γ(x, y) represents the amount of "mass" to
be moved from x to y for transforming Ps into Pt, and π(Ps,Pt) represents the set of all joint
distributions γ(x, y). EMD is defined as:

W (Ps,Pt) = inf
γ∈π(Ps,Pt)

E(x,y)∼γ[||x− y||]. (3.12)

WGAN replaces the traditional discriminator predicting if an image is real or fake by a term
called critic scoring how close an image is to the real data distribution. The advantage of the
Wasserstein distance is that it is always continuous and differentiable even when the critic is
already well trained, so the network does not saturate. Still, it keeps providing useful gradients
that help to minimize the EMD, unlike a traditional discriminator, which tends to provide
unreliable gradients once being well-trained 3.7. Also, being independent of the discriminator
loss, WGAN is free from the problem of balancing a generator and a discriminator, making
it easier to choose a network architecture. The training motivation is also eased to lower the
generator loss instead of seeking an equilibrium between the two sub-networks. Therefore, the
WGAN loss is related to the quality of the generated images leading to convergence toward the
direction where the outputs are more realistic. This property is also helpful to understand the
behavior of the model during the training.

Figure 3.8: Gradient norms of WGAN critics (training on the Swiss Roll dataset [157]). A high
value of c causes the gradient to explode, while its low value leads to the vanish of the gradient.
The gradient is stable when a gradient penalty is applied. Figure from [59]

In [59], it is pointed out that for achieving 1-Lipschitz functions, WGAN applies a technique
called weight-clipping, which requires an additional parameter c. The research shows that the
network performance is sensitive to the chosen value of c. To deal with the problem, Gulrajani
[59] proposes an improvement for WGAN called gradient penalty (WGAN-GP) which is a soft
version of the Lipschitz constraint in WGAN. In WGAN-GP, differentiable functions are 1-
Lipschitz if and only if they have gradients of the norm at most 1 everywhere. The objective
becomes:

L = Ex̂∼Pg [D (x̃)]− Ex∼Pr [D (x)] + λEx̂∼Px̂

[
(||∇x̃D (x̃) ||2 − 1)2

]
, (3.13)

where x̂ ∼ Px̂ are a random samples given during the training. The objective L in Equa-
tion 3.13 consists of two elements the original critic loss of WGAN and the gradient penalty
which is weighted by a parameter λ. As proposed in [59], the objective performs well with
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λ = 10 on various network architectures and datasets. Besides, batch normalization is also
removed for the norm of the critic’s gradient is penalized for each input independently and
because it does not contribute to the performance. As a result, the gradient of WGAN-GP is
stabilized thanks to the gradient penalty as can be seen in Figure 3.8.

3.5 GANs Evaluation Metrics

The objective of GANs, and generative models in general, are to generate samples that match
the given dataset. In this section, we explain several popular GANs evaluation metrics that are
used in the thesis.

3.5.1 Inception Score

Inception score (IS) is one of the most popular metrics for evaluating image generation models’
performance. Before describing IS, it is necessary to explain the deep neural network called
Inception v3 [159]. The network is trained on the ImageNet dataset [138] for image classification
tasks. ImageNet contains more than one million images that are divided into 1000 classes. The
network learns to predict the category y of each given image x, providing a vector of probabilities
p(y|x) ∈ [0, 1]1000.

Being trained on such a large and diverse dataset, Inception v3 can extract complicated
features of images. Therefore, the model is often fine-tuned to implement image classification
on target datasets (transfer learning).

The idea behind IS is to feed generated images to an Inception v3 network pre-trained on
ImageNet and calculates a statistic of the output. Given G as a generator that is trained to
generate images x from a latent distribution pg, the inception score of G is computed as:

IS(G) = exp(Ex∼pgDKL(p(y|x)||p(y))), (3.14)

where DKL(p||q) is the KL-divergence [167] between two given distributions. Basically,
a high value of KL divergence refers to a large difference between p and q. p(y|x) is the
conditional class distribution while p(y) is the marginal class distribution. IS evaluates the
generative network based on two factors. First, generated images must contain objects that are
clear enough so that the classifier can confidently tell which class it belongs to, leading to a low
entropy p(y|x). Second, the generator must generate diverse images for all ImageNet classes,
leading to a high entropy p(y). If a generative model satisfies both factors, the KL-divergence
of the two distributions will be large, which means IS will also be high. Moreover, poor quality
images may still get high IS if they have clear local textures where deep convolution classifiers
tend to pay attention to.

IS also has some drawbacks. In [10], it is pointed out that using the Inception v3 network,
which is pre-trained on the ImageNet dataset, can be problematic. If a generative model is
trained to produce images that are unfamiliar to ImageNet (Eg. dental images, skin cancer
dataset, x-ray datasets, and so on), there will be a high chance that the Inception v3 network
cannot classify the object, causing a low IS even though the output looks realistic. Besides,
having high prediction confidence does not assure a realistic object generated in the image.
Deep convolutional networks actually pay a lot of attention to local features for classifying
images [17]. Therefore, if a GAN generates a non-sense image with many local features that
give Inception v3 high prediction confidence, it can still achieve a high IS. Figure 3.9 shows
some examples of unrealistic images which get almost perfect IS. In short, IS is not suitable for
generative models, which are trained datasets that are different from ImageNet, and it can be
tricked easily using local features.
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Figure 3.9: Generated samples that achieve an Inception Score of 900.15 (the maximum value
is 1000), which is much higher than state-of-the-art generative networks, which are on the order
of 10. Images from [10].

3.5.2 Conditional Inception Score

Conditional inception score (CIS) is introduced in [73] as an extension of the original IS. The
metric is designed especially for evaluating the performance of multimodal image-to-image
translation models that generate multiple images from one single input image. It measures not
only the quality of outputs but also the diversity of the outputs that are generated from one
single input.

Considering the task is to learn the translation from domain X1 to domain X2. CIS requires
that all the two domains’ training samples are labeled based on their non-domain specified
features. For example, if the two image domains are cats and dogs, they can be labeled
according to the pose of the head. Assuming this requirement is satisfied, a classifier can be
trained to predict the label of each sample in the two domains. The prediction is represented as
p(y|xi), i ∈ 1, 2. CIS requires a high entropy of p(y2, x1) and a low entropy of p(y2, x1→2) (x1→2

is the image transformed from domain X1 to domain X2). Combining the two objectives, we
compute the CIS as:

CIS = Ex1∼p(x1)[Ex1→2∼p(x2→1|x1)[KL(p(y2|x1→2)||p(y2|x1))]] (3.15)

3.5.3 Learned Perceptual Image Patch Similarity (LPIPS)

Figure 3.10: Computing the perceptual distance d0 between two patches of images x and x0
using the LPIPS technique, diagram from [186].
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LPIPS [186] is a deep learning based metric to compute the perceptual difference between
pairs of images. In generative models, LPIPS is used to compute the diversity of the generated
samples by computing the perceptual distance between all pairs. The method makes use of
convolutional layers of deep networks, which are well-trained on large datasets for classification
tasks to extract features from images, as shown in Figure 3.10. Given x, x0 as two patches
between which we want to compute the distance and the pre-trained network F , we firstly
feeding the two patches to F to get all the hidden features which are then unit-normalized in
the channel dimensions. For the layer l in L layers of F, the normalized features of the two
patches are expressed as ŷl, ŷl0 ∈ RHl×Wl×Cl . Then, after being scaled by a vector wl ∈ RCl and
we compute the L2 distance of the scaled activations between the two patches. Computing the
average spatially and the channel-wise sum, the obtain the final distance score. Mathematically,
it is designated as:

d(x, x0) =
∑

l

1

HlWl

∑

h,w

||wl · (ŷlhw − ŷl0hw)||22 (3.16)

Compared to classical pixel-wise measures, LPIPS reportedly provides much closer answers
to human judgment, which requires an understanding of high-order image structure and context.
CNNs being used for LPIPS are usually AlexNet [90], VGG [150] and SqueezeNet [75].

3.5.4 Fréchet Inception Distance

Fréchet Inception Distance (FID) is another popular metric developed for evaluating the quality
of images generated by GANs. The method is considered to be more consistent than IS [66].
As explained above, IS evaluates the quality of an image generator based on the classification
performance of the Inception v3 network on the synthesized images. For this reason, IS actually
measures how close the generated images to ImageNet, which is used to train Inception v3,
instead of the target dataset. It is not assured to perform a fair evaluation on other datasets,
especially the ones that are very different from ImageNet. One may think of training Inception
v3 on the same dataset that is used for training GANs, but this solution is limited by the cost
of labeling data and training the classifier. Once the dataset is modified, the classifier has to
be retrained. To overcome this problem, FID compares the statistics of the fake image set to
the statistics of the real dataset. Like IS, FID also uses the pre-trained Inception v3 model
for extracting image features. Still, instead of getting features from all hidden layers like IS, it
takes the output of the last pooling layer of the network to represent perceptual features of the
image.

The value of FID is the Fréchet distance between two multivariate Gaussian distributions :

d2((m,C), (mw, Cw)) = ||m−mw||22 + Tr(C + Cw − 2(CCw)
1/2). (3.17)

3.6 Image-to-Image Translation
The translation of images from one domain to another has been a challenging problem in com-
puter vision. Thanks to the evolution of convolutional neural networks, especially generative
adversarial networks (GANs) [56], many deep learning models have been recently proposed to
address the problem of image translation and achieve impressive outcomes.

3.6.1 Supervised Approaches

The Pix2pix method [80] is one of the earliest works on image-to-image translation based on
conditional GANs. The generator G in Pix2pix learns to map each image s in the source domain
(instead of one noisy input like the standard cGAN) to one image x in the target domain. The
discriminator D is also different. It is trained to distinguish between the real pair (s, x) and the



3.6. IMAGE-TO-IMAGE TRANSLATION 39

Generator

Discriminator
True/False

Input Generated output

Input

Ground-truth Discriminator
True/False

Negative label

Positive label

Figure 3.11: Pix2pix architecture.

fake pair (s,G(s) As shown in 3.11. Pix2pix is trained in a supervised manner in a minimax
game:

min
G

max
D

V (G,D) = E(s,x)[logD(s, x)] + E(s)[log(1−D(s,G(s)))]. (3.18)

It is able to generate images with a resolution up to 256×256.

...

...

G2 G2

G1

2x downsampling

Residual blocks

Residual blocks

Figure 3.12: Pix2pixHD multi-resolution generator.

Wang et al. propose Pix2pixHD [173] as an upgraded version of Pix2pix with multiple
factors to generate high-resolution images. Firstly, they introduce a coarse-to-fine generator
demonstrated in Figure 3.12. The generator in the method represented as a tuple G = {G1, G2}.
G1 is the global generator, while G2 is called the local enhancer. G1 consists of a convolutional
layer, then a set of residual blocks and a transposed convolutional layer. The global generator
takes a semantic map as input and returns an output image at the output, both of the resolutions
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1024× 512. G2 also consists of convolutional layers as a front-end, a set of residual blocks and
the transposed convolutional layer as a back-end. The input image of resolution 2048 × 1024
is given to the front-end of G2 while its down-sampled version (1024 × 512) is given to the
front-end of G1. G1 learns to generate an image according to the given segmentation map.
Feature maps at the end of G1 are element-wise summed with the feature maps generated by
the front-end of G2 to become the input of the residual blocks of G2. Finally, these residual
blocks and the back-end of G2 learn to generate an image. During training, the global generator
G1 is trained before the local enhancer G2. Then, the whole network is fine-tuned together.

To deal with multi-resolution generators, multi-scale discriminators are also introduced in
the paper. Basically, they use one discriminator to evaluate the quality of the generated image
at each resolution. These discriminators share the same structure but operate at different
scales. The learning problem in Equation 3.18 becomes:

min
G

max
D1,D2

∑

k=1,2

V (G,Dk). (3.19)

Furthermore, features extracted by convolutional layers of discriminators are also used to
distinguish between real and synthesized images. This difference is call the feature matching
loss. Let D(i)

k be the ith layer feature extractor of discriminator Dk, Ni represents the number
of elements in each layer, and T the total number of layers, the feature matching loss is denoted
as:

VFM(G,Dk) = E(s,x)

T∑

i=1

1

Ni

[||D(i)
k (s, x)−D(i)

k (s,G(s))||1]. (3.20)

Finally, the full objective of Pix2pixHD is the combination of the multi-scale GAN loss from
Equation 3.19 and Equation 3.20, which is represented as:

min
G

((max
D1,D2

∑

k=1,2

V (G,Dk)) + λ
∑

k=1,2

VFM(G,Dk)) (3.21)

where λ is the weight controlling the importance of the two objectives.

3.6.2 Unsupervised Approaches

Learning to translate images using unpaired data is more challenging than with paired data
because we do not know exactly which data-point in the source domain corresponds to which
one in the target domain. Thus, it is reasonable to add some constraints to the training when
it is possible. One popular assumption in most image-to-image translation research is that the
structure of an image must not be changed too much by the translation. This is similar to
language translation, in which a phrase must have the same meaning after being translated to
another language. Shrivastava et al. [148] propose a training strategy in which a deep network
learns to transform the style of synthesized images to make them look more real. To preserve the
annotation, they add a pixel-wise loss between the style transfer network’s input and output.
Similar approaches are applied in later works, such as specific-task loss [15], semantic features
[160], or distance between pairs of input samples [12] and so on. These constraints are useful
for some specific tasks and datasets but cannot be applied robustly.

Cycle consistency is another well-known loss function being used in many bi-direction im-
age translation models such as DualGAN [181], CycleGAN [188], and DiscoGAN [86]. In
these networks, an image being translated from domain A to domain B can also be translated
backward to obtain the original image and vice versa, as can be seen in Figure 3.13. The
cycle-consistency loss is computed by the pixel-wise difference between the original image and
the reconstructed one. Specifically, let X and Y be two domains that we want to learn the two
mappings G : X → Y and F : Y → X. The two data distributions are respectively represented
as x ∼ pdata(x) and y ∼ pdatay). The cycle-consistency loss is then computed as:
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Figure 3.13: CycleGAN loses explanation: A pair of generators and a pair of discriminators for
two domains (a). A forward cycle-consistency loss (b) and a backward cycle-consistency loss.
Figure from [188]

Ex∼pdata(x)[||F (G(x))− x||1] + Ey∼pdata(y)[||G(F (y))− y||1] (3.22)

As this cycle loss is not domain-related, it can be applied to most of the bi-direction trans-
lation models. In [1], Almahairi et al. extend CycleGAN for learning a many-to-many mapping
by combining images with noises. Despite its ease of use, cycle loss does not assure any consis-
tency in terms of annotation, which means labels of images can be flipped by the translation.
Hoffman et al. [70] proposed to use both cycle consistency and semantic consistency during
the training. However, this semantic constraint is not always accessible because it requires a
pre-trained classifier of a similar dataset.

Another way to preserve the structural information after the transformation is to define a
shared latent space where domain-independent features are stored. In UNIT [102], Liu et al.
propose to break the translation into two stages: encoding the source image to a latent code
and then decoding this code to an image in the target domain. In order to improve the diversity
of the translation, some methods have been proposed to provide a fixed number of outputs [25]
[52] [7]. In [187], Bicycle-GAN was able to generate multiple outputs from one input image,
but this method requires paired data.

Figure 3.14: The overview of MUNIT. Figure from [73].

To gain additional control over the translated image features, Huang et al. develop MUNIT
[73] as an extension of UNIT by splitting the latent code into two parts: content and style
(Figure 3.14). Let xi ∈ X; i = 1, 2 be the input image from each of the two domains. The
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translation model in MUNIT consists of a content encoder Ec
i , a style encoder Es

i and a decoder
Gi. An input image xi can be encoded into content code ci = Ec

i (xi) and style code si = Es
i (xi)

while the decoder generates an image by combining a content code and a style code. For
translating an image from one domain to another, eg. from X1 to X2, we first extract the
content code c1 = Ec

1. Then, we give c1 to the decoder G2 which generates image for the second
domain. For the diversity of the output, G2 takes s2, a randomly sampled style code, as the
second input. Therefore, the result of the translation is defined as:

x1→2 = G2(c1, s2). (3.23)

Similarly, we can have the opposite translation:

x2→1 = G1(c2, s1), (3.24)

where c2 = Ec
2 and s1 is also randomly generated.

The architecture of MUNIT is trained for multiple objectives, including bidirectional recon-
struction losses and adversarial loss. The bidirectional reconstruction losses ensure that in each
pair of encoder and decoder, they are inverses of each other. The bidirectional reconstruction
objective can be understood that when an image is encoded into latent codes, and then these
latent codes are decoded again, we should be able to obtain an image that is identical to the
original one. Therefore we have two image reconstruction losses for two domain:

V x1
recon = Ex1∼p(x1)[||G1(E

c
1(x1), E

s
1(x1))− x1||1], (3.25)

V x2
recon = Ex2∼p(x2)[||G2(E

c
2(x2), E

s
2(x2))− x2||1]. (3.26)

Similarly, when a latent code is decoded to generate an image, then we should be able to
reconstruct the latent code by encoding this image. Therefore, we have two content reconstruc-
tion losses and two style reconstruction losses:

V c1
recon = Ec1∼p(c1),s2∼q(s2)[||Ec

2(G2(c1, s2))− c1||1], (3.27)

V c2
recon = Ec2∼p(c2),s1∼q(s1)[||Ec

1(G2(c1, s2))− c1||1], (3.28)

V s1
recon = Ec2∼p(c2),s1∼q(s1)[||Ec

1(G2(c1, s2))− s1||1], (3.29)

V s2
recon = Ec1∼p(c1),s2∼q(s2)[||Es

2(G2(c1, s2))− s2||1], (3.30)

where q(si) is the Gaussian prior distribution, and ci = Ec
i (x1) (i = 1, 2) with xi is an

input image from the domain Xi. Like many other image-to-image translation methods, MU-
NIT applies the L1 function is to compute the element-wise differences between the original
image/latent code and the reconstructed ones because it makes the generated images look
sharper.

As a GANs-based bidirectional image-to-image translation method, MUNIT is also trained
with an adversarial loss so that the generated images match the distribution of the target data.
Given Di as the discriminator which distinguish generated images from Gi and the images from
the domain Xi, the adversarial losses are denoted as:

V s1
adv = Ec2∼p(c2),s1∼q(s1)[log(1−D1(G1(c2, s1)))] + Ex1∼p(x1)[logD1(x1)], (3.31)

V s2
adv = Ec1∼p(c1),s2∼q(s2)[log(1−D2(G2(c1, s2)))] + Ex2∼p(x2)[logD2(x2)]. (3.32)

The final objective of MUNIT is the combination of the losses above:
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min
E1,E2,G1,G2

maxD1, D2V (E1, E2, G1, G2, D1, D2) =

λx(V
x1
recon + V x2

recon) + λc(V
c1
recon + V c2

recon) + λs(V
s1
recon + V s2

recon) + V s1
adv + V s2

adv,
(3.33)

in which, λx, λc, and λs are respectively the hyperparameters responsible for the weight of
the reconstructions of images, content code and style code in the time the training.

Figure 3.15: The overview of DRIT++. Figure from [97].

DRIT++ [97] is very similar idea to MUNIT with pairs of content encoders Ec
x, E

c
y, style

(attributes) encoders Ea
x, E

a
y , generators Gx, Gy and discriminators Dx, Dy (Figure 3.15), where

x and y are the two input images respectively from the two domains X and Y . Moreover,
DRIT++ also has a content discriminator Dc

adv that distinguishes between the two domains’
content codes. The goal is to trains the two content encoders to generate identical content
codes to ensure they do not contain domain-related features, which means that there is only
one content space for all the encoded content from the two domains. For this objective, a
content adversarial loss is introduced:

V c
adv(E

c
x, E

c
Y , D

c) = Ex[
1

2
logDc(Ec

x(x)) +
1

2
log(1−Dc(Ec

c(x)))]

+Ey[
1

2
logDc(Ec

y(y)) +
1

2
log(1−Dc(Ec

c(y)))]
(3.34)

DRIT++ also applies a cross-cycle consistency loss, which says, when an image is trans-
formed to another domain, with the content code extracted from the new image and the at-
tribute of the original image, we should be able to reconstruct it. Specifically, let x and y are the
two input images, u = Gx(E

c
y(y), E

a
x(x)) and v = Gy(E

c
x(x), E

a
y (y)) are the two cross-domain

translated images, the cross-cycle consistency loss is explained as:
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V cc(Gx, Gy, E
c
x, E

c
y, E

a
x, E

a
y ) =

Ex,y[||Gx(E
c
y(v), E

a
x(u))− x||1 + ||Gy(E

c
x(u), E

a
y (v))− y||1].

(3.35)

Both MUNIT and DRIT++ store image style in an entangled manner.

3.6.3 Multi-domain Image-to-Image Translation

Most image-to-image translation methods are cross-domain models, which means they learn the
mappings between only two domains using two generators. In reality, some problems require
translations among more than two domains. For example, considering a face dataset with
emotions labeled as "happy", "sad", "angry" and so on, we can learn mappings to change the
emotion of the face. In this case, each emotion label can be understood as a domain. Let n be
the number of domains, then the number of generators that we need for mappings between all
pairs is n(n− 1). Imagine we have a face dataset with 8 different emotions. We need to train
56 generators which is costly.

Figure 3.16: StarGAN architecture and training, diagram from [28]

In StarGAN [28], only one generator is trained to perform image-to-image translations
for multiple domains. This approach has two main advantages. Firstly, it saves time and
resources as only one model is trained for multiple domains. Secondly, the model becomes
robust because it is trained using the data of multiple domains. Figure 3.16 demonstrates the
architecture and the training of StarGAN. The discriminator D of StarGAN does not only
distinguish between real/generated images but also learns to predict the corresponding domain
of images (Figure 3.16.a). Unlike in cross-domain image-to-image translation models where we
have to build one discriminator for each domain, this single discriminator can work on multiple
domains. The generator G is also shared among domains, so it takes an input image x and a
label c which defines the target domain (Figure 3.16.b). Using these two inputs, G generates a
fake image which is then sent to the discriminator (Figure 3.16.d). StarGAN also inherits the
cycle-consistency loss from unsupervised former image-to-image translation models. Given the
generated image and the label of the original model as inputs, G is meant to generate an image
that looks as close as possible to the original image.

StarGAN v2 [27] is introduced as a more robust version of StarGAN. The idea behind Star-
GAN v2 is that the style of a domain is diverse, so it should be represented as a domain-specific
style code instead of just a single one-hot vector. The framework includes four components.
In addition to a generator G and a discriminator D, the network adopts a mapping network F
and a style encoder E, as shown in Figure 3.17. The generator (Figure 3.17.a) of StarGAN v2
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Figure 3.17: StarGAN v2 architecture and training, diagram from [27]

takes two inputs: an image x from the source domain X and style code s. The style code s does
not go through G as x but is injected into the generator’s feature maps using a technique called
adaptive instance normalization (AdaIN), which has become popular in GANs [73] [84]. Note
that s does not only contain the information of the target domain but also contains encoded
additional domain-specific features that the generated image must contain. This style code can
be generated by the mapping network F or the style encoder E, which will be explained in the
following. The mapping network (Figure 3.17.b) F generates a style code s = Fy(z) with z and
y are respectively a random latent code and a domain label. F starts with a multilayer percep-
tron (MLP) followed by multiple branches so that it can generate style codes for each domain
differently. The structure of StarGAN v2 enables the mapping network to learns the attributes
of images represented as domain-specific style codes. The style encoder E (Figure 3.17.c) also
generates a style code corresponding to each target domain, but unlike F , it extracts the in-
formation from a given image x. Giving the encoded style to the generator G, we transfer the
style from a reference image to another. This is a significant advantage of StarGAN v2 to the
first work. Like the other sub-network of the architecture, the discriminator D (Figure 3.17.d)
also has domain-specific branches (denoted as Dy) that learn to distinguish between real and
fake images for each domain.

StarGAN v2 is trained for multiple objectives. Let x ∈ X be an input image and y ∈ Y the
original domain of x. A latent code z ∈ Z and a target domain ỹ are randomly sampled during
the training. The mapping network F generates a domain specific-style code s̃ = Fỹ(z) which
is then given to the generator G which produces an output image G(x, s̃). The adversarial loss
is then denoted by:

Vadv = Ex,y[logDy(x)] + Ex,ỹ,z[log(1−Dỹ(G(x, s̃)))]. (3.36)

For minimizing the adversarial loss, F must learn to generate the style code z that cor-
responds to the given y. In contrast, G must learn to provide images that D would fail to
recognize as a generated image.

The method also has a style reconstruction loss so that the generator Gmust learn to include
features in the style code s̃ into the generated image G(x, s̃. We do this by giving the image
to the style encoder E to get an extracted style code and minimize the difference between this
reconstructed code and the style code s̃. The style reconstruction loss is denoted as:

Vstyle = Ex,ỹ,z[||s̃− Eỹ(G(x, s̃))||1]. (3.37)

Minimizing this loss forces G to generate images using the giving style code instead of ran-
domly generating samples as in the traditional GANs. We can find a similar style-reconstruction
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loss in multiple image-to-image translation techniques [102] [73] that encode the style of the
input image into a latent code. However, StarGAN v2 uses only one style encoder for multiple
domains. As mentioned above, an advantage of StarGAN v2 compared to the original StarGAN
is generating diverse images. The generator G is enforced to maximize the difference between
images that are generated using the same input image but different style codes. Specifically,
the diversity sensitive loss is denoted as:

Vdiverse = Ex,ỹ,z1,z2 [||G(x, s̃1)−G(x, s̃2)||1], (3.38)

where the style codes s̃1 and s̃2 are respectively Fỹ(z1) and Fỹ(z2). By regularizing G with
this term, we encourage the generator to explore as much as possible the dataset distribution
so that it can generate diverse images containing meaningful features. Last but not least, the
widely-used cycle-consistency loss is also included in StarGAN v2. It ensures that the generator
G only modifies domain-related characteristics of the input image while keeping other features
on the generated image. In detail, given an input image x, we have y as the original domain,
and ŝ = Ey(x) as the extracted style code of x. To satisfy the cycle-consistency, G must learn
to reconstruct the original image using the generated image G(x, s̃) and the style code ŝ:

Vcycle = Ex,y,ỹ,z[||x−G(G(x, s̃), ŝ)||1], (3.39)

Combining those losses, we have the full training objective of StarGAN v2:

min
G,F,E

max
D

Vadv + λstyleVstyle − λdiverseVdiverse + λcycleVcycle, (3.40)

in which, λstyle, λdiverse and λcycle are the hyperparameters that can be used to balance the
weight of each term in the total objective.

3.7 Disentangled Representation Learning

Learning the features of images in an unsupervised fashion has received attention from the
computer vision community for years.

Most methods in the early stage were based on restricted Boltzmann machines [67] and
stacked autoencoders [171]. Models in [130] and [106] were proposed for semi-supervised learn-
ing and achieved promising results on the MNIST dataset. In [127], a GANs-based method was
shown to represent the dataset in a code space where basic linear structures are supported.

Another branch of research uses labeled data to learn disentangled representation. The rep-
resentation is divided into two parts: one for the given labels and one for other features. Similar
fashions of training can be found in different model structures such as bilinear models [161],
multi-view perceptron [189], variational autoencoders (VAEs) [88] and adversarial autoencoder
[109].

For minimizing the dependency on variation labels, weakly supervised methods were de-
veloped. Reed et al. [8] propose correspondence-based training strategies for a higher-order
Boltzmann machine consisting of hidden unit groups, and each group represents a factor of
variation. A similar technique is applied to VAE [92] to manipulate brightness and pose in
images of 3D objects. These two methods share one drawback: they require grouped data
points that are difficult to collect in real-life applications.

There are not many works on completely unsupervised disentangled representation learning.
In [35], hossRBM is introduced as a generalized version of spike-and-slab restricted Boltzmann
machine, which entangles variation factors using its higher-order interactions on latent variables.
However, the method is not effective in terms of computation cost.

In InfoGAN [26], Chen et al. develop an extension of GAN, which learns interpretable and
meaningful representations of the given dataset in a completely unsupervised manner. The
generator of InfoGAN is expressed as G(z, c), in which z is the noise just like in the standard
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Figure 3.18: InfoGAN structure.

GANs, and c is the latent code. Let I(c;G(z, c)) be the mutation information between the
latent code and the generator distribution. To make z to store the semantic features of the
data distribution, the network must learn to maximize I(c;G(z, c)). In fact, it is not simple to
directly maximize this mutual information without accessing the posterior probability P (c|x).
For solving this problem, Q is proposed as the auxiliary distribution approximating P (c|x), and
LI(G,Q) becomes the variational lower bound of the mutual information between the latent
code c and the observations. Combining LI(G,Q) with the standard GAN loss, we have a
mini-max game with a variational regularization of mutual information, which is the objective
function of InfoGAN:

min
G,Q

max
D

VInfoGAN(D,G,Q) = V (D,G)− λLI(G,Q) (3.41)

where λ is a hyperparameter controlling the importance of the two objectives. Practically,
Q is represented in two parts: the categorical latent code in the form of a softmax non-linearity
and a continuous latent code in the form of factored Gaussian. The overall architecture of
InfoGAN is represented in Figure 3.18.

(a) (b)

Figure 3.19: Manipulating image features using latent codes on MNIST dataset: From top to
bottom, the first latent code of the input of InfoGAN varies which changes the digit number.
From left to right, the second (a) and third (b) latent code vary which respectively changes the
pose and the boldness of the digits.

Experimental results (Figure 3.19) show that InfoGAN successfully learns disentangled and



48 CHAPTER 3. STATE OF THE ART

interpretable representations on multiple datasets without any form of supervision.

3.8 Few-shot Domain Adaptation

In the last decay, deep learning has become the favored approach for most image classification
tasks given many labeled samples. In reality, however, even though the amount of data is
large, labeled data is usually in short. Few-shot learning is a group of techniques that focus on
training learning models using a small amount of annotated data. One well-known approach
in this group is meta-learning (also called “learning to learn”), where we develop models that
can adapt rapidly with a new dataset using a few samples to accomplish certain tasks. Meta-
learning can be seen in three main branches: model-based, metric-based and optimization-
based. Methods such as [140] and [118] aim to address this problem by developing specific
model architectures that make use of the meta-information of images, so they are called model-
based methods. Metric-based methods, on the other hand, learn an efficient distance metric
that learns to cluster similar data samples into groups [151], [156]. The third type of meta-
learning, optimization-based [42], [123], optimizes the initialization of parameters so that the
model converges quickly in training. These works show the potentials of meta-learning in few-
shot image classification. Still, most of them only work on a single target domain without
considering that there are similar datasets that do not share the same distribution but can
contain similar features to be exploited.

Domain adaptation methods aim to exploit features on a dataset where many annotated
samples are accessible and to test on a target dataset that does not have the same but a similar
distribution to the source. We can implement domain adaptation in an unsupervised fashion.
In [14] and [71], reweighing and sample-selection techniques are applied to achieve the domain
adaptation. In contrast, other works focus on learning the mapping that transforms samples
from the source domain to ones in the target domain. These methods do not require labels
from the target domain.

Figure 3.20: DANN architecture consists of a feature extractor (in green), a label predictor (in
blue) and a domain classifier (in red). Figure from [49].

DANN [49] aims to match feature space between two distributions by modifying the fea-
ture representation. As shown in Figure 3.20, the architecture of DANN has a dual-branches
structure. The input image x is given to the feature extractor Gf to be encoded into a vector
f . Then, the label predictor Gy takes f and predicts the label of the input images x while
the domain classifier Gd is trained to predict the domain label of x. Gf and Gd are connected



3.8. FEW-SHOT DOMAIN ADAPTATION 49

via a gradient reversal layer component, which acts as an identity transformation during the
forward propagation while multiplies the gradient by −1 during the backpropagation. Thanks
to Gd, the feature extractor Gf learns to map the images from the two domains into one single
distribution, and thanks to Gy, it learns to encode the classification features at the same time.
After training, the feature extractor and the label predictor are kept as a feed-forward model,
which takes an image as input and produces a prediction vector. The method is tested on
multiple domain adaptation tasks and achieves promising results.

Labeling a few samples from the target domain and using them for training is not a costly
approach but can bring great benefit. Methods following this direction are called few-shot
domain adaptation, which aims to train learning models on a source domain (where many
annotated samples are available) and test it on a target domain (where just a few samples are
labeled). The scenario is prevalent in the real world, but few studies are made in this direction.

Figure 3.21: The training of FADA in three stages. (a) Features extractor g and label predictor
h are trained on the source domain Ds. (b) A domain-class discriminator (DCD) is trained
while g is frozen. (c) DCD is frozen while g and h are trained. Figure from [117]

Few-shot adversarial domain adaptation (FADA) [117] is a CNN-based that performs a
few-shot classification by minimizing both a classification loss and an adversarial loss at the
same time. Figure 3.21 explains the training steps of FADA. First, we train a network f , which
consists of a feature extractor g and a label predictor h, using samples from the source domain
with the classification loss. Second, we plug g into a domain-class discriminator (DCD) and
train this network while freezing g. The feature extractor g encodes features of images from the
two domains while the DCD is trained with an adversarial loss to realize the domain where the
features come from. Afterwards, the DCD is frozen while we train g and h to classify samples
from both domains. The method produces promising results even when only a few samples of
the target domain are available.

Figure 3.22: Summary training of F-CADA in four stages. Figure from [190]

F-CADA [190] has a similar but more complicated structure. It contains two encoders (fea-
ture extractors), two label classifiers and a discriminator for the extracted features. Figure 3.22
illustrates the training process of F-CADA in four stages. Firstly, a source encoder and a
source classifier are trained using labeled samples from the source domain. They should be
well-trained as the number of labeled samples in this domain is large. At the second stage, a
target encoder is trained to transform target data to a feature space, while the source encoder
is also fine-tuned to map the source data to this space. A domain discriminator is trained at
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the same time to predict the target of the feature while the two encoders are trained to fool the
network. This step ensures features extracted from the two domains are represented similarly
in the feature space. For the third stage, a classifier takes outputs of the source encoder and
learns to predict the image label from the source domain. This classifier is supposed to perform
well on the outputs of the source encoder thanks to a large number of labeled samples. Finally,
the classifier is plugged into the target encoder’s output layer to classify testing target samples.
The advantage of F-CADA over FADA is that it has two independent encoders for encoding
images of two domains. Still, they both map the images into the same feature space. The
method holds state-of-the-art performance on multiple few-shot domain adaptation tasks.

3.9 Deep Learning in Dentistry
The continuous development of artificial intelligence and the boom in dental diagnostic tech-
nology in recent years have opened up many opportunities for the application of artificial
intelligence in this field, especially where digital images are available. Photographic and ra-
diographic images are both used in the domain of dentistry, but radiographic images are used
more often because they also reveal the hidden parts of teeth, which are important for diagnosis.
Using radiographic images, CNNs are trained for multiple computer vision tasks such as clas-
sification, recognition and segmentation of anatomical structures or dental complications. For
example, deep learning models are used for recognizing teeth in cone-beam computed tomogra-
phy (CBCT) images [114], periapical films [24] and panoramic radiographs [163]. In [68], a deep
learning model is proposed for assessment of molar root morphology on panoramic radiographic
images. CNNs are also used to define anatomical structures before planning dental surgeries.
In [170], a deep learning model is trained for segmenting the inferior alveolar nerve (IAN) and
the roots of third molars on dental panoramic radiographs for the purpose of planning before
wisdom tooth extraction.

Researchers also apply CNNs for detecting dental caries, inflammation, and periodontal
diseases on multiple types of digital images. Near-infrared trans-illumination (NITI) imaging is
getting attention as an effective method for capturing and detecting dental caries in their early
phase. In [20] and [142], neural networks are trained to automatically detect and localize dental
lesions in this type of image with an accuracy higher than 80%. Radiographs are usually used
in addition to visual observation to identify the deformation of teeth when enamel and dentin
are damages. In [98], CNNs are shown to detect and diagnose dental caries in panoramic dental
radiographs effectively. In another research [91], CNNs are applied to detect periodontal bone
loss (PBL) on radiographic images, which is an important element for evaluating dental health.
Oral cancer is a serious problem, but it can be effectively cured if it is detected and treated in
time. CNNs are also used for detecting cancerous and precancerous lesions. Especially, in [166],
a low-cost and portable solution is proposed for practicing oral cancer screening with the help
of a smartphone camera. This is one of a few applications CNNs in the domain of dentistry
being done outside of the laboratory environment. In [4] deep learning, object detection models
are trained to detect radiolucent lesions of the mandible in panoramic radiographic images and
achieves a high sensitivity (0.88).

These studies have shown the huge potential of deep learning for processing and diagnosing
images in the domain of dentistry. However, most of them share some basic drawbacks. Firstly,
these deep learning models are trained using small datasets (hundreds of samples), leading
to a high risk of overfitting. Lack of diversity in the training data makes it impossible to
extend these works widely. Secondly, up to 90% accuracy can be considered high in many
conventional applications but is quite low in the medical field in general and in dentistry in
particular. Certain errors in the diagnostic process can also put a patient’s health and life in
danger. Thirdly, the majority of CNN’s applications in the dental field mentioned above are
limited to an experimental environment and are not incorporated into an applicable pipeline
as a complete product or service.



Chapter 4

Detecting Gingivitis in Oral Images
Captured by Smartphone Cameras using
CNN

4.1 Introduction

Periodontal diseases (PDs) are inflammatory diseases affecting the gingiva and the supporting
tissues of teeth and also the primary cause of tooth loss in adults. Research shows that the
chance of having PDs increases when a person is under orthodontic treatment [172]. If not
treated promptly, PDs can lead to serious diseases such as diabetes, pneumonia due to inhala-
tion, strokes and cardiovascular disease [128]. In contrast, the early stage of PDs, often known
as gingivitis, can be treated much more easily than when it has progressed to severe levels.
Therefore, orthodontic patients need to be frequently diagnosed to detect the early signs of
PDs - commonly known as gingivitis - to provide timely dental care. Thanks to the rapid in-
crease of worldwide smartphone ownership, remote health care applications have become more
accessible than ever. With smartphones, patients can take pictures of a body part and send
them to doctors or even computer programs for diagnosis [41].

In this work, we detect gingivitis from images captured by phone cameras using convolu-
tional neural networks (CNNs). Experimental results show that our classifier can distinguish
between healthy and inflamed gingivae with an accuracy of 90.88%, and the area under the
ROC curve (AUC) is 95.52%.

4.2 Dataset

Images used in this work were collected from the Dental Mind database. We are using 592
records from 280 patients for this research, acquired in six months in 2018. Each record consists
of eight images captured by a smartphone from different poses: left, front and right for opened
mouth; left, slightly-left, front, slightly-right and right for the closed mouth, with the help of
a cheek-retractor (Figure 4.1). Photos in our dataset were taken by various types of phones in
different lighting conditions. Note that our work has been done locally at Dental Mind, and
patient information was removed from the dataset. Dentists annotate the dataset at the level
of teeth, which means if gingivitis appears on the region of the gingiva surrounding a tooth,
we mark the tooth as gingivitis. Otherwise, the tooth is marked as healthy. In the processing
phase, we crop a pair only if both teeth have the same label. Gingivitis appears in 274 records
in the dataset, while the other records are completely healthy. We obtain 19978 patches from
all records after preprocessing.
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4.3 Methodology

This section describes a pipeline including a preprocessing phase being composed of masking
and cropping, then a deep neural network to predict the existence of gingivitis in a record.

4.3.1 Preprocessing

Figure 4.1: Preprocessing procedure

We aim to train a CNN from patches containing gum region between pairs of teeth, where
gingivitis usually appears. We develop a preprocessing procedure to extract those patches from
the dataset, consisting of hundreds of records. Each record contains oral images of a patient
from eight poses (Figure 4.1a). Images resolutions vary from 611 × 328 up to 3774 × 2261
pixels as they are captured by patients using different devices.

Images from records (Figure 4.1a) are cropped to the region of interest (ROI) containing
gums and teeth (Figure 4.1.b). The ROI is defined by Single Shot MultiBox Detector (SSD)
[47], a popular object detection algorithm that we fit and use to detect the oral region in images.
Since textures of teeth do not contribute to gingivitis detection and might cause the network to
learn biases such as braces (because gingivitis often occurs during orthodontic treatments), we
mask out the region of teeth in the image using a contour detection and segmentation method,
namely Richer Convolutional Features (RCF) [104] (Figure 4.1.c1). Next, Mask R-CNN [63],
a deep learning segmentation technique applied for teeth detection to obtain bounding boxes
of all teeth (Figure 4.1.c2). We ignore the bounding boxes of molar teeth because they are not
usually well-captured.

Figure 4.2: Cropping pairs of teeth
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As gingivitis is more visible at the gum tissues between pairs of teeth, we crop patches of
images containing the gum region below and between two teeth. As illustrated in Figure 4.1.d
and Figure 4.2, for each pair of bounding boxes (red), we compute a larger box (cyan) that
covers the two boxes. Then, the box is shifted toward the gum (upward if the pair of teeth
comes from maxillae, and downward if it is from mandibular). The border of the final patch is
in yellow. The shifting distance equals half of the height h of the large box. Finally, we rotate
all mandibular patches by 180 degrees (Figure 4.1.f) and resize all patches to 128×128 (RGB).
To avoid deformation, we apply zero-padding to all patches to make them square-shaped before
resizing.

4.3.2 Classification model

Figure 4.3: Gingivitis classifier architecture

We train a CNN which classifies those 128 × 128 patches in two classes: healthy and
gingivitis. The network architecture consists of multiple blocks: Convolution + Batch nor-
malization + ReLU, Max-pooling following and Fully connected layers at the end as shown in
Figure 4.3. Two neurons at the end of the network represent the classification probability of
the input image on two classes: healthy and gingivitis. The classifier’s input will be predicted
to the class, which is represented by the output neuron carrying a larger value. The sum of
two neurons is 1.0, so if one of the two output neurons has a value greater than 0.5, the input
patch is predicted to the class that the neuron represents. Since each pair of teeth is captured
from several views, we feed all views of the pair through the CNN and obtain a prediction for
each view. The final prediction of a pair of teeth is computed as:

pfinal =
1

N

N∑

i=1

pi (4.1)

where pi denotes the prediction result of a single view, and N is the number of views the
pair appears.

4.3.3 Data augmentation using style-transfer GAN

Style-transfer networks have been used recently to deal with the problem of lacking data in
medical image analysis [147]. In this work, we use a style-transfer model named MUNIT [73]
in order to generate gingivitis patches from healthy patches and vice versa. MUNIT consists
of an encoder Ei and a decoder Gi for each data domain Xi(i = H,G) (H represents healthy
class and G represents gingivitis class). The encoder Ei transforms input xi to become content
code ci and style code si as following:
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Figure 4.4: Using MUNIT for augmenting training data to train the gingivitis classifier
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Figure 4.5: Some examples of fake samples generated using MUNIT

(ci, si) = (Ec
i (xi), E

s
i (xi)) = Ei(xi). (4.2)

We implement style transformation by swapping the encoder-decoder pairs. For instance,
given a healthy patch xH , we can synthesize an artificial gingivitis that is denoted as:

xH→G = GG(E
c
H(xH), sr) (4.3)

in which, sr is a style latent code drawn from prior distribution q(sr) ∼ N(0, I). Similarly,
artificial healthy patches can be synthesized as

xG→H = GH(E
c
G(xG), sr) (4.4)

where xG is a patch from domain gingivitis. By modifying sr, we can receive multiple
versions of the output which share the same content but differ in style.

We apply MUNIT for data augmentation as described on the left of Figure 4.4. First,
we train MUNIT with training data of two classes. Then, we apply the pre-trained MUNIT
for synthesizing artificial data. From each real patch as input, we synthesize three outputs
(Figure 4.5) by using three different values of sr. Finally, we combine the original data with
artificial data to train our classifier.
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Table 4.1: Accuracy (%) and AUC (%) of classifiers trained with original data and on enlarged
data with two prediction techniques: single view and multiple views.

Single view Multiple views
Accuracy AUC Accuracy AUC

Real data 88.81 ± 3.55 94.98 ± 2.82 90.88 ± 3.25 95.52 ± 1.88
Real + Artificial data 88.15 ± 4.07 94.81 ± 2.91 90.43 ± 3.64 95.51 ± 2.00

4.4 Experiments

4.4.1 Training classifier

Our classifier is trained with a batch size of 128 and Adam optimizer [87] with a learning rate
of 10−4 on 3500 epochs. We validate the model every 15 epochs and compute the average result
at the end of the training. We construct two versions of the classifier: one is trained on the
given training set, and the second one is trained on the same training set mixed with artificial
images generated by MUNIT. Using this set of hyperparameters, it takes 50 hours to finish the
training on a GeForce GTX 1080 Ti graphic card.

4.4.2 Training MUNIT

The multimodal style-transfer network is trained using the same hyperparameters as described
in the original paper [73] except for the number of epochs and batch size. We train the model
for 2800 epochs with a batch size of 14 instead of 1 million iterations and batch size of 1 for all
datasets as in the paper. We use larger batch sizes and fewer training steps for optimizing the
computing resource. Input/output size of the model is also reduced from 256×256 to 128×128.
MUNIT and the classifier share the same training set (Fig. 4). We use the same device that
trained our classifier to train MUNIT, and it took 9 days for the training.

4.4.3 Cross-validation

The accuracy and area under the ROC curve (AUC) of the classifiers are estimated by 10-fold
cross-validation. Note that MUNIT learning is included in the cross-validation loop to avoid
that the artificial images overfit the test set. Data is divided at the level of records to assure
that images coming from one record will never appear in the training set and validation set
at the same time. The data of each fold contains about 18,000 patches and 2,000 patches for
training and validation, respectively.

4.5 Results and Discussion
The classifier is evaluated using a cross-validation procedure by accuracy and area under the
ROC curve (AUC). As shown in Table 4.1 and Figure 4.6, the classifier achieves better accuracy
and AUC by combining the predictions of multiple views. This phenomenon is similar to reality,
where doctors also need to look at patient teeth from several angles for a proper diagnosis.

The table also shows that adding artificial training data using the style-transfer network
does not improve classification performance in this case, even though they look convincing on
the right side of Figure 4.5.

We also see that the model performs differently based on the location from where patches
were cropped. The model achieved an AUC of 96.17 ± 2.23 when evaluated with patches among
incisors and canines and an AUC of 94.25 ± 2.25 when evaluated with patches among canines
and premolars. Since gum regions from the front usually look clearer than ones from the side
and the back, they are easier to be recognized by the classifier. This result is reasonable because
teeth from the front are displayed more clearly and frequently.
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Figure 4.6: ROC curves and AUC of the classifier when being trained on real data versus
enlarged data, evaluated using single view and multiple views.

Figure 4.7: Examples of saliency maps of healthy samples (a) & (b) and gingivitis samples (c)
& (d). The brightness of pixels represent how much they contribute to the prediction.
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Figure 4.8: ROC curves and AUC of the gingivitis classifier when being trained on only real
data, enlarged data of MUNIT and enlarged data by InfoMUNIT. The result is evaluated in
two modes: single view and multiple views.

4.5.1 Saliency Map

Recent work [51] showed that CNNs trained on the ImageNet dataset tend to be biassed towards
texture rather than object shapes as we usually think.

Even if we obtained a high accuracy of gingivitis prediction, we have to check if our classifier
has really learned the concept of gingivitis or based its decision on the artifact in the training
set. A common approach to interpreting the decision of a CNN is to visualize the saliency
maps. Saliency maps compute the gradient of the output prediction with respect to the input
image and highlight image pixels that contribute the most to the predicted output [149].

As can be seen in Figure 4.7, there is a high distribution of white dots on the boundary
between gum and (masked) teeth. The density of dots on the gum region is also high but not
as much at the boundary. This result suggests that both shape and texture contribute to the
classification result, but the shape of the border between teeth and gum seems to be the most
important component. The cause of this result may come from different lighting conditions
between photos in the dataset. The color of the gums can be displayed more boldly in one
camera but lighter in other cameras. In contrast, the shape of the gums does not change even
if images are taken by different devices and under various conditions. This is coherent to the
conclusion of an orthodontist in our team, stating that the most recognizable sign of gingivitis
is swollen gum.

4.5.2 Data augmentation using InfoMUNIT

Later, we develop InfoMUNIT as an extension of MUNIT for disentangled multimodal image-
to-image translation. The method successfully generates more realistic and diverse outputs
than MUNIT. Therefore, applying InfoMUNIT for data augmentation would be an interesting
experiment. For the limitation of time, we do not apply the cross-validation procedure for this
test, so we just randomly use one of the prepared fold of data. As can be seen in Figure 4.8,
InfoMUNIT does not make a lot of differences compared to MUNIT. They both do not improve
the classification performance but, in fact, reduce it, suggesting that this approach is not quite
suitable for data augmentation.
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4.6 Conclusion
In conclusion, this work proposes a pipeline to detect gingivitis from photos taken with smart-
phone cameras with high accuracy. Our approach opens new ways for the diagnosis and follow-
up of PDs. We can imagine the following use-case : Initially, a patient wears a cheek-retractor
and takes images of his/her mouth from different angles. Then, images are sent to a clinic to be
automatically preprocessed and given to the classifier to detect gingivitis. Finally, the results
are sent back to the patient. Moreover, if gingivitis is detected in the images, the system sends
the images and results to the dentist and triggers an appointment if needed.

For future work, some questions will be addressed. We will investigate why enlarging the
training dataset with a style-transfer network does not improve the classification performance,
although the artificial images look very similar to real images. We will also improve the model
performance by adding preprocessing steps to emphasize the images’ structural information
using techniques such as adjusting histogram or edge detection.



Chapter 5

Adversarial Domain Transfer for
Improving Dental Crowding Detection

5.1 Introduction

Crowding of teeth is a dental problem that happens when there is not enough room in the mouth
for all teeth. It makes teeth bunch up, overlap or even twist. Patients who have crowded teeth
usually have difficulties in oral hygiene, giving the harmful bacterial the opportunity to grow
and lead to gum disease and tooth decay [65].

At Dental Mind, we develop a solution for remotely tracking the orthodontic treatment
progress through a mobile application. It would be helpful to train a neural network that
automatically detects and estimates the level of teeth crowding by looking at oral images
captured by this application.

The regular problem that we face in this project is lacking annotated data. In order to
train a network to predict the existence or the level of dental crowding, we need a data set
containing pairs of one photo and one ground-truth label. Labeling this type of data is time-
consuming and costly, so we do not have many samples like that. The label can be estimated
by looking at the taken photos but cannot be highly accurate without access to the position
of teeth. An alternative solution is to implement the measurement in 3d-models of teeth, but
in this case, labels are paired with a 3d-model instead of a colored image. However, a CNN is
trained on this type of data will not work well on colored images. This issue can be considered
as a domain adaptation problem. In this project, we aim to use a generative network called
Pix2pixHD [173], to transform projections of 3d-models of teeth into real-looking images, which
can be used to train a deep classifier that learns to detect the existence of teeth crowding in
real images.

Our goal is to learn to detect the existence of dental crowding from oral images. The work
can be extended in the future to estimate the levels of crowding by using more output categories
or regression labels.

5.2 Methodology

This section describes a deep classifier that is trained to detect dental crowding and a GAN-
based model that synthesizes additional training data from 3d-models.

5.2.1 Classification model

We train a deep CNN classifier to distinguish between crowded samples and no-crowding sam-
ples. As the main purpose of this work is to study the effectiveness of using synthetic data,
we choose a simple architecture for the classifier so that it will not take too long for training
and tuning hyperparameters. The architecture of the classifier is visualized in Figure 5.1. It
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Figure 5.1: Crowded teeth classifier architecture.

has a simple architecture consisting of convolutional layers and max-pooling for downsampling.
All convolutions are followed by batch normalization and ReLU activation. Compared to the
gingivitis classifier in the previous chapter, this model is much deeper for the much larger size
of the input images.

5.2.2 Domain adaptation for data augmentation

To deal with the lack of training data, we take photos of 3d-models and then use Pix2pixHD
[173] to generate realistic details on those gray-scaled images. Those generated images are used
as additional training data for the classifier. Our pipeline for enlarging the training dataset is
described in the session of Experiments.

...

...
2x downsampling

Residual blocks

Residual blocks

Local Enhancer Local Enhancer

Global network

Figure 5.2: Coarse-to-fine generator. The residual network being trained in the first phase is
in yellow. Layers which are appended in the second phase are in green.

As described in Section 3.6.1, Pix2pixHD is developed based on Pix2pix [80] to translate
images on a higher resolution. Compared to Pix2pix, the model has significant improvements.
Firstly, the coarse-to-fine generator of Pix2pixHD is trained in multiple phases. In the first
phase, a residual network is trained on low-resolution images to generate low-resolution images.
In the second phase, residual layers are appended to the trained network to be jointly trained.
The second phase can be repeated to produce higher resolution images. Figure 5.2 visualizes
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this process. Secondly, it uses discriminators that have an identical network structure but
operate at different image scales. For our case, we train two discriminators: one for the global
network’s output and one for the local enhancer’s output. Thirdly, Pix2pixHD learns to extract
features from different layers of its discriminator and match these features from the real and
generated image, not only from the output layer as in Pix2pix.
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Figure 5.3: The architecture in detail of each sub-network in Pix2pixHD: Generator includ-
ing Global Network (left) and Local Enhancer (middle), and Discriminator (right). For our
experiment, the input image is in RGB with the size of 300×300.

The detailed architecture of each sub-network in Pix2pixHD can be seen in Figure 5.3. The
generator of the network is inspired by the one from CycleGAN [188] but divided into a global
network and a local enhancer. The global network is basically similar to CycleGAN, with
convolutional layers with stride for downsampling, residual blocks, fractional stride convolu-
tional layers for upsampling and another convolutional layer at the end where it produces the
low-resolution output image. The convolutional layers are followed by instance normalization
and ReLU. Reflection padding is used to avoid artifacts at the image boundary. Note that the
size of the global network input is already divided by two for each side. The full-size image is
given to the local enhancer, which consists of convolutional layers where it is down-sampled,
residual blocks, and fractional stride convolutional layers to restore the original size. The last
feature map in the global network is added to the input of the first residual block in the local
enhancer. The structure can be easily extended to work with even larger size images by creating
another local enhancer that has the input of its first residual block added with the last feature
map in the first local enhancer. Instance norm, ReLU and reflection padding are also used for
convolutions of the local enhancer, just like in the global network.

Pix2pixHD adopts the Patch-GAN [80] architecture for its discriminator. We randomly
crop 70 × 70 patches from real images and generated images and train the discriminator to
predict if the pair of input is real or fake (see Figure 3.11). The network simply consists of
four 4× 4 convolutional layers with stride = 2 and one convolution with stride = 1. All those
convolutional layers are followed by instance normalization and leaky ReLU as recommended
in [80]. The last convolution produces a one-dimensional output.
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5.3 Experiments

5.3.1 Dataset

The dataset for this study is collected from the Dental Mind database. All experiments are
implemented at the company to keep the data safe. We use three datasets, namely A, B and
C, for our experiments.

Dataset A consists of dental 858 records (425 records are labeled as no-crowding; 433 records
as crowding). Each record consists of 6 images taken from 6 views being represented in Fig 5.4.
We use 258 records (125 no-crowding records and 133 crowding records) which means 1548
images for training and 600 records (3600 images) for validation. We resize images to the size
of 300×300 (RGB) and apply zero-padding to make them squared shape. Images from different
records are mixed and fed to the CNN.

Figure 5.4: Six views selected from a record. First column: left and front-left, second column:
front and front-bottom, last column: right and front-right.

Figure 5.5: Six projections of a 3d-model. First column: left and front-left, second column:
front and front-bottom, last column: right and front-right.

Dataset B consists of 516 3d-models of teeth (250 models are labeled as no-crowding; 266
models as crowding). We take photos of those 3d-models from the same six views as photos
in dataset A were taken (Figure 5.5) to get 3096 images at the end. Those images will be
transformed to real-looking images by Pix2pixHD, then mixed with dataset A train the dental
crowding detector. We resize those images to the size of 512 × 256 (RGB) and apply zero-
padding to make them in the expected shape without scaling them.

Dataset C is collected for training Pix2pixHD and contains 7064 pairs of one 3d-model
and one real image. The positions of teeth in 3d match with the positions of teeth in the
corresponding photos. We use 6535 pairs for training and the rest for validating the model
during training. Images are resized to 512× 256.
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5.3.2 Training

Pix2pixHD is trained for transforming 3d models of teeth to corresponding realistic images.
The model is trained on dataset C, using Adam optimizer [87] with a learning rate of 2× 10−4

for the first 200 epochs. Over the next 200 epochs, the learning rate is linearly decayed to zero.
After being trained, the model is used to transform 3096 projection images in dataset B into
real-looking images Figure 5.6. Those synthetic images will be used as additional training data
for the crowded-teeth detector.

Figure 5.6: Six synthetic samples generated by Pix2pixHD from 3d-models in Figure 5.4. First
column: left and front-left, second column: front and front-bottom, last column: right and
front-right.

The crowded teeth detector is trained for one million iterations, with a batch size of 16
learning-rate of 10−4 and Adam optimizer [87]. Validation is done every 2000 training iterations.
In our experiments, the classifier is trained multiple times with different training datasets. In the
first experiment, we train the classifier with 1548 real samples from dataset A with no synthetic
samples. In the second and third training, we respectively add 1548 and 3096 synthetic images
(3d-models projections transformed by Pix2pixHD) to the training data.

In order to make use of the 3d-models, we slightly rotate those models by 2 degrees on the
x, y and z-axis to generate more images before sending them to Pix2pixHD to be transformed
into real-looking images. This action increases the number of synthetic images in the training
set by 27 times, leading to an unbalanced ratio between real and synthetic samples. In order
to close this gap, we duplicate all real samples seven times and 15 times. The results in the
next session show that it is helpful to do so.

5.3.3 Results and Discussion

We evaluate our classifier’s performance based on its maximum and average classification ac-
curacy through the training process. Figure 5.7 shows that the classification performance is
increased when we add more synthetic data to the training set. This result suggests that
Pix2pixHD successfully learned to map samples from the source domain (projections of 3d
models) to the target domain (realistic images).

We also study the effect of data augmentation in 3d environment by slightly rotating the
teeth models across the three axes. Applying augmentation in 3d environment helps to increase
the number of synthetic samples, which means increasing the size of training data. However, as
can be seen in Figure 5.8, when the amount of synthetic data is too large, the performance of
the model drops. For this reason, duplicating the set of real samples is a considerable approach
for this problem. The results show that the ratio between the number of real samples and
synthetic samples has a significant impact on the classification performance.
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Figure 5.7: Average and maximum classification accuracy over the number of additional syn-
thetic samples.

Figure 5.8: The effect of 3d-augmentation on the accuracy of the crowded teeth classification
model.

5.3.4 Conclusion

In this work, we train a deep neural network that detects the existence of crowding teeth from
oral images taken from smartphone cameras. Then, we study the effect of using synthetic data
created from projections of 3d-model and image-transformation GANs. Experimental results
show that our synthetic data boosts the classification performance of the dental crowding
detector. In future works, we will upgrade the classifier to be able to predict the level of the
crowding problem and also study the effect of synthetic data in this scenario.
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Aligner generation using generative
adversarial networks

6.1 Introduction

Orthodontic treatment is the process that aims to correct the positions of teeth to improve the
facial appearance, correct problems with the bite, and prevent and solve dental complications.
In most cases, the patient can choose between multiple types of treatments that are different
in multiple factors such as duration, convenience, price, appearance, etc. Normally, after the
first examination, including x-ray scans and 3d scans of the teeth, the orthodontist can quickly
outline one or more treatment plans using different technologies such as metal braces, ceramic
braces, lingual braces, aligners and so on. The orthodontist also gives a comparison explaining
the advantages and disadvantages of each method based on multiple factors listed above. Dif-
ferent patients have different preferences. While certain patients are willing to sacrifice time
and convenience in return for a lower price, some others tend to pay more to have a discrete
and quick treatment. Therefore, it is important for the orthodontist to clearly explain all the
characteristics of all the possible options and provide useful advice according to the situation so
that the patient makes a decision that they will not regret later when the treatment is already
started.

However, in many cases, patients are still hesitant to choose treatment because they are
concerned that it is not suitable for their face. For example, ceramic braces look suitable on
the face of patient A, but it does not mean that patient B will feel satisfied wearing them,
which may increase the chance that the patient will abandon the treatment [120]. Unlike
clothes, unfortunately, braces cannot be simply "tried on", so the patient can only "imagine"
how they will look with the appliances.

It would be helpful if a computer vision solution can locate teeth in a photo and generate
appliances according to their positions. Such application must satisfy two requirements. Firstly,
all teeth must be detected and located precisely. Second, the generated details must look
realistic, sharp and match the lighting and color conditions of the rest of the photo.

The contributions of this work are following. Firstly, we apply two widely used unpaired
image-to-image translation methods for generating details of aligners on images of teeth. Sec-
ondly, we study characteristics and compare their performance to find out the most suitable
method for the application at Dental Mind. Thirdly, with team R&D of the company, we
propose a pipeline with pre/post-processing to apply the generation model for production.

6.2 Dataset

We prepare a dataset from 5739 photosets of 1087 patients who have been treated by wearing
aligners. About 3 to 5 images are retrieved from each photoset. The number of images from
photosets is not the same because low-quality images are rejected. From each photo set, we
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get one image without an appliance and one image with aligners. As a result, we collect
23384 images, of which 11692 images are without an appliance, and 11692 images contain teeth
wearing aligners. For each category, 11192 images are used for training and 500 images are
used for validation.

The dataset contains images taken with the ScanBox and without the ScanBox because
they look alike after being cropped. They are cropped and selected as described in Section
2.4.1. We use only images of the front and slightly turn views. The size of images varies, but
most of them are of high quality (about 2000 pixels of width and 1000 pixels of height).

6.3 Methodology

In this section, we firstly describe the overall system of the application. Then we explain the
architecture and the training of the two image translation methods used to generate aligners
on dental images.

6.3.1 Pipeline

in Section 2.4.3, we explain the idea of the Appliance Selection application by Dental Mind
company which aims to generate multiple types of orthodontic appliances on given portrait
photos of a patient. It supports metal braces, ceramic braces and transparent aligners. In the
scope of this work, we focus on generating transparent aligners.

Lips Segmentation  
Network

Teeth Detection  
Network

Aligner Generator 
& Post-processing 

Figure 6.1: An overview of the aligner generator method with preprocessing steps.

Figure 6.1 demonstrates the process of generating aligners on a patient’s portrait. The
orthodontist firstly takes a portrait photo of the patient. To maximize the technique’s benefit,
the patient is asked to smile while trying to show as many teeth as possible. Naturally, when a
person smiles, most of the upper teeth are visible, while not much of the lower teeth are seen.
However, in this application, we would like to show the patient how aligners would look on teeth
from upper and lower arches. Therefore, it is important to remind the patient to make both
arches visible when shooting the portrait. Proper lighting condition is highly recommended.

Afterwards, the photo is submitted to our server to be treated. A segmentation network
locates the oral region in the photo and erases it from the photo (top-middle of Figure 6.1).
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Meanwhile, an object detection network detects teeth in the photo, draws a rectangle containing
them and crop it out (bottom-middle of Figure 6.1). The cropped image is then sent to an
image-to-image translation network which generates details of aligners on the teeth. We apply
the color-transferring technique [133] for adopting the original color of the original image to the
generated one. Next, the generated image is combined with the treated portrait to produce the
final result (top-right of Figure 6.1), which is then sent back to the orthodontist to be shown to
the patient. Having an estimated vision of how the appliance will look like can help the patient
be more confident with his/her choice of treatment.

In this work, we train image-to-image translation models to generate transparent aligners
on images of teeth. The model succeeds in generating realistic details of aligners on images of
resolution up to 1024×1024. Our work is the first research ever working on generating aligners
on teeth. We also propose a post-process step to keep transfer as many domain-irrelevant
attributes as possible from the original images to the outcome.

6.3.2 CycleGAN

CycleGAN [188] is a deep learning model which is widely used for unsupervised image-to-image
translation tasks such as horses↔, edges↔shoes, satellite-view↔map and so on.

Architecture

The method is known for the cycle-consistency loss, enabling the neural network to learn
from unpaired samples. This is a suitable approach for our case where it is impossible to
have pairs of oral images with the same pose and distance from the smartphone camera. We
train CycleGAN to learn the mapping between two domains: no-aligners and with-aligner, as
displayed in Figure 6.2.

For each training step, the network is fed with two input images: xA from domain A (not
wearing aligners) and xB from domain B (wearing aligners). The image xA serves as an input
of GA→B which learns to map images from domain A to domain B. The output of GA→B is
defined as:

xA→B = GA→B(xA) (6.1)

The generated image is then sent to GB→A to be reverse the transformation and result an
image reconA that belongs to the domain A:

x̂A = GB→A(xA→B) = GB→A(GA→B(xA)). (6.2)

Similarly, the input image xB from domain B is transformed by the generator GB→A:

xB→A = GB→A(xB) (6.3)

and reconstructed by the generator GA→B:

x̂B = GA→B(xB→A) = GA→B(GB→A(xB)). (6.4)

Training Losses

The model is trained with an adversarial loss which encourages the realism of the generated
images and cycle-consistency loss to keep domain-irrelevant features after the transformation
between two domains.

CycleGAN contains two discriminators for the two domains. For generating realistic images
of domain B, we have discriminator DB as a classifier that learns to distinguish real images xB
and generated images xA→B. The first adversarial objective is defined as:
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Figure 6.2: The overview of CycleGAN architecture. The model is trained to generate and
remove aligners on dental images.

LGAN(GA→B, DB, A,B) = ExB∼pdata(xB)[logDB(xB)]

+ ExB∼pdata(xB)[log(1−DB(GA→B(xA)))]
(6.5)

Similarly, the adversarial objective of the discriminator DA which learns to detect generated
samples GB→A(xB) from the training samples xA is expressed as:

LGAN(GB→A, DA, B,A) = ExA∼pdata(xA)[logDA(xA)]

+ ExA∼pdata(xA)[log(1−DA(GB→A(xB)))]
(6.6)

Last but not least, the cycle consistency loss of the model is calculated as follow:

Lcyc(GA→B, GB→A) = ExA∼pdata(xA)[||GB→A(GA→B(xA))− xA||1]
+ ExB∼pdata(xB)[||GA→B(GB→A(xB))− xB||1].

(6.7)

The ultimate training objective of the model is defined as:

LCycleGAN = LGAN(GA→B, DB, A,B) + LGAN(GB→A, DA, B,A)

+ λLcyc(GA→B, GB→A).
(6.8)

For increasing the efficiency of the training, we apply the least-squares loss [113] at the
place of the negative log-likelihood. Least-square loss is becoming more and more popular in
the training of GANs for its stability. Particularly, GA→B and GB→A are trained to minimize
the two objectives, respectively:

ExA∼pdata(xA)[(DB(GA→B(xA))− 1)2] (6.9)
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and

ExA∼pdata(xB)[(DA(GB→A(xB))− 1)2] (6.10)

The least-square loss is applied for the pair of discriminators as well. Therefore, DB is
trained to minimize

ExB∼pdata(xB)[(DB(xB)− 1)2] + ExA∼pdata(xA)[(DB(GA→B(xA)))
2] (6.11)

while DA learns to minimize

ExA∼pdata(xA)[(DA(xA)− 1)2] + ExB∼pdata(xB)[(DA(GB→A(xB)))
2]. (6.12)

Training Details
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Generator Discriminator

Figure 6.3: The architecture in details of the generators (left) and discriminators (right) in
CycleGAN. For our experiment, the input image is in RGB with the size of 320x320.

We follow the architecture of CycleGAN in [188]. Figure 6.3 displays the architecture in
detail of CycleGAN sub-networks. The generators consist of three convolutional layers, nine
residual blocks, two fractionally-strided convolutional layers (stride 1/2), and one final convolu-
tional layer that outputs an RGB image. Convolutions are followed by instance normalization.
With this structure, the inputs and outputs of the generator always have the same size. For
maximizing 11 GB of frame buffer on our device GTX 1080 Ti graphic card [124], the model is
trained with images of size 320× 320.

The discriminator does not take the whole image as input but randomly picks patches of
size 70× 70 for the prediction. Experiments of Zhu et al. in [188] show that the discriminators
perform well on those patches as on full-size images. Plus, training discriminators on those
patches consume less computation resource and training time than training with full-size images.
The discriminator is trained using the last 50 generated images rather than only the last one.
Adam is applied as the optimizer for the training with the initial learning rate of 0.0002, and
decays to zero from the 101th epoch to the 200th epoch where the training ends. We apply the
batch size of 1 and λ (Equation 6.8) of 10 to emphasize the cycle consistency.
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6.3.3 StarGANv2

StarGANv2 [27] is another unsupervised image-to-image translation model.

Architecture

Instead of training one generator and one discriminator for each mapping, only one generator
G and one discriminator D are used for all the translations. It has two more networks than
CycleGAN: a mapping network F and a style encoder E. However, F , E and D share early
layers, so StarGANv2, in fact, contains fewer training parameters than CycleGAN. In other
words, StarGANv2 consumes less memory and is less likely to be over-fitted.

Figure 6.4: The overview of StarGANv2 architecture. The model is trained to generate(A→ B)
/remove (B → A) aligners on dental images.

Figure 6.4 illustrates the architecture of StarGANv2. Given an input image xA and a
domain-specific style code sB, the generator G generates an output xA→B. The input image of
G can come from the real dataset or being generated by G itself, while the style code can be
sent from the mapping network F or the style encoder E. The style code sB can be generated
by the mapping network F or the style encoder E. It is injected into G using adaptive instance
normalization (AdaIN), widely used in style transfer models for simplicity and efficiency. Using
domain-specific style code is one of the biggest differences of StarGANv2 to the original of
StarGAN, [28] where a domain label is used. According to [27], a single label does not contain
enough reference information, so it limits the diversity of generated images. Therefore, using a
domain-specific style code assures that the generated image resembles the target domain and
increases the output diversity at the same time. Containing multiple branches, the mapping
network F generates a style code for each domain given a random latent code z. This archi-
tecture enables F to learn the representations of both domains. The style encoder E learns
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to extract style from any given image. It also provides a style code for each domain thanks
to the multiple-branches architecture like in F . Using E and G, we can learn to transfer the
style of one image to another. In the scope of this research, we do not implement this task. In
this work, we have two domains: no-aligners and with-aligners, so E and F have two branches
representing the two domains. Like any other GANs-based model, StarGANv2 includes a dis-
criminator D, which distinguishes between real and fake images. Like E and F , D also consists
of multiple branches to deal with multiple domains’ images.

In total, StarGANv2 consists of four networks, just like CycleGAN, to learn the mappings
between two domains of data. However, one main advantage of StarGANv2 to CycleGAN is
that E, F andD share most of their convolutional layers, leading to a smaller amount of learning
parameters and lower computation cost. This characteristic enables us to train StarGANv2 on
high-resolution images.

Training Details

For our experiments, all training losses of StarGANv2 are kept just like explained in Sec-
tion 3.6.3: Equations 3.36, Equations 3.37, Equations 3.38, Equations 3.39 and Equations 3.40.
Weights in Equations 3.40 are set as λstyle = λdiverse = λcycle = 1 for all trainings.

The StarGANv2 network is trained on the same dataset as CycleGAN. Thanks to the
compacted architecture, we can train the model on a much larger resolution compared to
CycleGAN. It is trained at three different resolutions: 256 × 256, 512 × 512 and 1024 × 1024.
We try to maximize the batch size to make use of the memory of our computing device, GTX
1080 Ti. The batch size settings for the three resolutions are respectively 4, 2 and 1. The
model is trained during 200 thousand iterations to make sure that it is well converged. As the
diversity of outputs is not our critical goal, we decay λdiverse to 0 over the first 100 thousand
training iterations. Then, λdiverse = 0 until the end of the training so that the model can focus
more on improving the quality of output images. Other training hyperparameters are set like in
the original work of StarGANv2. The classical Adam optimizer [87] is applied with β1 = 0 and
β2 = 0.99. G,D and E are trained with a learning rate of 10−4 while the learning rate of F is
10−6. Parameters of the model are initialized with Kaiming initialization (or He initialization)
[61]. Biases related to the AdaIN are set to 1 while other biases are set to 0. We apply R1

regularization with γ = 1 and the non-saturating GAN loss [56] to stabilize the training.
Figure 6.5 displays in detail the configuration of all StarGANv2 sub-networks.
StarGANv2 generator (Figure 6.5 top-left) starts and ends with a convolutional layer, with

12 residual blocks [62] at the middle. The first four blocks are followed by average-pooling
operations to downsample the width and height of the tensor. Then, the tensor goes through
four blocks without downsampling. The four last residual blocks are followed by upsampling
operations to recover the size of the input. Instance normalization (Section 3.3.2) is applied
for the first six residual blocks while applying adaptive instance normalization (aka. AdaIN,
Section 3.3.4) for the other blocks. Through these AdaIN layers, the generator injects a style
code into the transformation so that the given style code influences the output image style.

The mapping network (Figure 6.5 top-right) is a (multilayer perceptron) MLP that begins
with four fully connected layers and then splits into two domain-specified branches. Each branch
consists of four fully connected layers. The input latent is a vector with 16 digits sampled from
the Gaussian distribution. All layers in the mapping networks have the dimension of 512 except
the final layer of each branch that produces the style code, which is a vector of 64 dimensions.
Pixel normalization and feature normalization are not applied in our model because they do
not improve the performance of StarGANv2 according to [27].

The discriminator (Figure 6.5 bottom-left) in StarGANv2 has the multi-task architecture.
Like the mapping network, it also has one branch for each domain. It contains convolutional
layers, six residual blocks with pooling layers for downsampling, another convolutional layer
before divided into two branches. Each contains a fully connected layer. Each fully connected
layer outputs a single neuron that holds the prediction true/false for one domain. The last resid-
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Figure 6.5: The architecture of each sub-network in StarGANv2: Generator (top-left), mapping-
network (top-right), discriminator (bottom-left) and style encoder (bottom-right). In this ex-
ample, the input image is in RGB with the size of 256× 256.

ual block and the 4× 4 convolutional are followed by leaky ReLU [107]. Feature normalization
and PatchGAN technique in CycleGAN [188] are reported to not increase the discriminator’s
performance according to [27] so we do not apply them.

The style encoder has an identical structure as the discriminator with convolutional layers
and residual blocks, except for the two branches’ output layers. For each domain, it produces
a domain-specified style code of length 64.
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6.4 Evaluation
We measure the performance of our models on two factors: realism and diversity of the gen-
erated images. The two metrics are Fréchet Inception Distance (FID, Section 3.5.4) and the
learned perceptual image patch similarity (LPIPS, Section 3.5.3) are chosen for the evaluation.
The evaluation is done using 800 images in the validation set.

6.4.1 Fréchet Inception Distance (FID)

FID computes the distance between the set of generated images and the set of real images in
the feature space. A small FID value means that the generated images and real images look
alike, which means generated images are realistic. Each image in the two sets is represented
by a feature vector computed by feeding the image to the Inception v3 network pre-trained on
ImageNet and getting the output at its last pooling layer.

Real images  
with no aligners

Trained Generator Fake images  
with aligners

Feature vectors  
of fake images  
with aligners

InceptionV3

Trained Generator
Real images  
with aligners

InceptionV3
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of real images  
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Frechet Inception Distance

InceptionV3

Fake images  
with no aligners

Feature vectors  
of fake images  
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Feature vectors  
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with no aligners

InceptionV3

Frechet Inception Distance

Figure 6.6:

Figure 6.6 explains how we generate images and computing FID from them. For each image
in the validation set, we generate a fake image for the opposite domain, compute the feature
vectors of those generated images, and compare them with the feature vectors of the target
domain’s real images. In this test, note that from one image in the validation set, we generate
only one output. Therefore, the numbers of fake images generated by each method are equal,
making the FID test fairer.

6.4.2 Learned Perceptual Image Patch Similarity (LPIPS)

LPIPS computes the distance in terms of visual features between two given images. The features
are computed using a pre-trained CNN. In our experiments, we adopt an AlexNet model that
is trained for the classification task on ImageNet. To measure the diversity of our models’
outputs, we compute the LPIPS between all the possible pairs among all generated images. As
our validation set contains 400 images, the amount of pairs being used to compute LPIPS is
equal to

C(400, 2) =
400!

2!(400− 2)!
= 79800. (6.13)
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Then, the mean value of all the LPIPS of all pairs is considered the final LPIPS. A higher
value of LPIPS refers to a better diversity.

6.5 Results & Discussions

In this section, we compare the performance of the two methods CycleGAN and StarGANv2,
on two transformation tasks: no-aligner→with-aligner and with-aligner→no-aligner. Using FID
and LPIPS metrics, we measure the performance of the two networks in terms of image quality
and diversity.

6.5.1 Image Quality

Input

CycleGAN
(320x320)

StarGANv2
(256x256)

StarGANv2
(512x512)

StarGANv2
(1024x1024)

Figure 6.7: Qualitative comparison between outputs of CycleGAN and StarGANv2 at multiple
resolutions for the task no-aligner→with-aligner.

Figure 6.7 shows the qualitative comparison of CycleGAN and StarGANv2. As mentioned
before, 320 × 320 is the maximum size that our device can train CycleGAN, so we choose to
train the network on this resolution to benefit the capacity. StarGANv2, for technical reasons,
accepts only resolutions that are powers of 2 and consume less memory than CycleGAN, so we
train the network on three different resolutions: 256× 256, 512× 512 and 1024× 1024. As can
be seen from Figure 6.7, output images generated by both methods look quite realistic. The
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Figure 6.8: Qualitative comparison between outputs of CycleGAN and StarGANv2 at multiple
resolutions for the task with-aligner→no-aligner.

figure also shows that StarGANv2 successfully generates realistic images even at high resolution
(1024 × 1024) with well-generated details. One can also notice that the output of CycleGAN
at the resolution of 320 × 320 contains tiny artifacts making it less realistic than the outputs
of StarGANv2 even at the resolution of 256 × 256. We observe a similar trend in Figure 6.8
when the two networks are trained for removing aligners from images where the patient is
wearing aligners. Taking a deeper look at the results, we can see that different models give
slightly different shapes for the teeth number 12. This is because, in the input, the edge of
these teeth is not well displayed. Intuitively, removing aligners is more difficult than adding
them on teeth because we do not have a clear vision of the original shape of teeth because of
aligners’ presence. As the scope of this project, we focus on generating aligners on teeth, but
improving the performance of StarGANv2 for the opposite task would be addressed in future
work.

The two methods are also compared quantitatively using FID as the evaluation technique,
displayed in Figure 6.9. As explained before, FID measures the difference between the generated
images and the real ones. A good generative model should generate images that produce a small
FID. According to the figure, StarGANv2 achieves a significantly lower FID at all resolutions
compared to CycleGAN. We also observe that the FID of StarGANv2 raises with the image
resolution. However, the FID of StarGANv2 at the size of 1024× 1024 is still much lower than
the score of CycleGAN at a much smaller size (320× 320).
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Figure 6.9: Comparison of the Fréchet Inception Distance (FID) between generated samples
and real samples in the test set for the two methods CycleGAN and StarGANv2 (lower is
better). The comparison is done on two tasks: generating aligner (left) and removing aligner
(right).

6.5.2 Image Diversity
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Figure 6.10: Comparison of the LPIPS between generated samples and real samples in the test
set for the two methods CycleGAN and StarGANv2 (higher is better). The comparison is done
on two tasks: generating aligner (left) and removing aligner (right).

We apply LPIPS as the metric to compare the ability to generate diverse outputs between
CycleGAN and StarGANv2. Figure 6.10 display the comparison result. It is shown that
StarGANv2 gets a lightly higher LPIPS score at all resolutions than CycleGAN at the image
size of 320× 320. This improvement can be explained by the diversity sensitive loss (Equation
3.38) used for training StarGANv2 but not in CycleGAN.

6.6 Conclusion
In this chapter, we apply image-to-image translation methods CycleGAN and StarGANv2 to
generate aligner details on portraits that help orthodontic patients approximate how they will
look wearing aligners. Our experiments show that both techniques perform well on dental
images, just like other datasets such as horses↔zebras, edges↔shoes or edges↔handbags. We
also point out that StarGANv2 uses computation resources more effectively so it can work
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with images up to the resolution of 1024×1024 on our device GTX 1080Ti, while CycleGAN
is limited at the size of 320 × 320. Not only uses memory effectively, but StarGANv2 also
generates highly realistic images at the resolution of 1024× 1024. For future work, it would be
beneficial if the speed of inference can be reduced so that the output can be generated faster,
even in real-time.





Chapter 7

Informative Multimodal Unsupervised
Image-to-Image Translation

7.1 Introduction

Image-to-image translation can be described as the general problem of mapping an image from
one domain to another. This seemingly simple approach is the foundation of many applications
in computer vision, such as colorization [76], style transfer [50], super-resolution [37], denoising,
inpainting [178]. Moreover, image-to-image translation has also been applied for data augmen-
tation and achieved competitive results [119] [102] [70]. Based on the availability of data, the
problem can be considered as supervised learning where the dataset contains paired samples,
or unsupervised learning, where the dataset consists of two independent sets of images. This
work focuses on the unsupervised image-to-image problem, which is more applicable due to its
ease of obtaining data and more challenged in terms of training.

Unsupervised image-to-image translation leads us to the idea that an image in a domain
can be translated into multiple images in the second domain, which means the translation
can be multimodal. For example, in image colorization, one image can be colored in multiple
ways. Some methods [96] [73] have been proposed to use a noisy vector as an additional input
of the decoder. The style of the generated images can then be manipulated by changing the
values of the style-vector. However, the style-vectors in existing methods are entangled, and
the translated images are not interpretable as a result. Lacking control over features of the
output can be problematic when important information is linked to these features. In the work
of Cohen et al. [29], it is shown that CycleGAN was adding/removing tumors from images
when transforming MRI images from Flair to T1, especially when there is an imbalance among
classes in the training data. Therefore, learning to control the features of the translated images
is essential. In this chapter, we propose some improvements on MUNIT [73] - a standard in
the field of multimodal image translation - by applying the mutual information maximization
technique. Our method, called InfoMUNIT, generates more diverse images and especially can
manipulate their textural and structural features without requiring any annotation.

7.2 Methodology

Our objective is to translate images from a source domain A to a target domain B, and at
the same time, to learn the representation of the target domain. Following the idea called
partially shared latent space in [73], we assume that each image can be encoded as a content
code containing general structural information and a style code which defines how the image
looks like. In state-of-the-art methods, this style latent code is entangled. In this work, we
disentangle this style code by maximizing the mutual information between this code and the
generated image’s features.

79
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7.2.1 Network architecture

Let xA and xB be two images from domain A and B respectively. Our objective is to learn a
function FA→B that projects images from domain A to domain B, x̂A→B = FA→B(xA). This
function can be decomposed into parts: the encoder and the generator. The encoder Ec

A

extracts the content code cA from the image. The content code is a matrix representing the
content of an image independently of its style. The generator GB generates images in domain
B from an content code and a style code s : x̂A→B = GB(cA, s) = GB(E

c
A(xA), [s

′, i]). Since
we want a one-to-many projection, a style code sB is inputted in the generator to introduce
variability in the generated images. The style code s is a vector created by concatenating two
parts s′ and i where s′ stores entangled style of the generated images, i contains disentangled
features of the generated images. s′ and i are drawn from a normal distribution N(0, I). The
generator learns a function that links the points from a Gaussian distribution to the different
ways to apply the style of domain B to a content code. In the same way, we define the function
that projects images from domain B to domain A with generator GA and encoder Ec

A. Notice
that the content space and style space are common to both domains. These generators project
a couple of points from these common spaces to the image sub-spaces corresponding to their
domain.

For the learning of these functions, we need to complete our architecture with autoencoders
and discriminators. Autoencoders are used to reconstruct the original images from their de-
composition into a content code and a style code. Let Es

A (resp. Es
B) denote the encoder that

extracts from an image of domain A (resp. B) its style code sA = [s′A, iA] (resp. sB = [s′B, iB]).
The autoencoder of domain A is therefore defined by x̂A = GA(E

c
A(xA), E

s
A(xA)). Autoencoders

are also used to reconstruct the content ĉA = Ec
A(GB(cA, s)) and style codes ŝ = Es

B(GB(cA, s)).
The discriminator DB is used to align the distribution of images produced by the generator
GB with the distribution of original images from domain A. It is also used to disentangle
the style variables contained in the vector i. In the same way, we define the autoencoders
x̂B = GB(E

c
B(xB), E

s
B(xB)), ĉB = Ec

B(GA(cB, s)), ŝ = Es
A(GA(cB, s)) and discriminator DA.

Figure 7.2 shows the complete architecture of InfoMUNIT. Each image is encoded by two
encoders into a style code and a content code and reconstructed by a decoder (also called
generator). To translate an image from a domain to another domain, we first extract its
content code, combine it with a random style code, and send them both to the generator of the
target domain. A part of the style code is used to store disentangled features of output images.
We also train a pair of discriminators to distinguish between generated images and real images
for each domain. The generators are also trained to maximize the mutual information between
features being extracted by those discriminators and the disentangled part in the style code.

Figure 7.1 visualizes in detail the configuration of all sub-networks in MUNIT and InfoMU-
NIT. In terms of network architecture, our InfoMUNIT is not much different from the original
MUNIT, except the discriminator. The content encoder and decoder form an autoencoder
similar to the generator in CycleGAN [188] with convolutional layers for downsampling and
upsampling with 3×3 residual blocks the middle. In MUNIT/InfoMUNIT, upsampling is done
by 2× 2 nearest-neighbor upsampling followed by a 5× 5 convolution. Style encoder is a new
point in the architecture of MUNIT compared to CycleGAN [188] and UNIT [73]. It com-
presses the style of an input image to an 8-dimensional vector using a series of 7× 7 and 4× 4
convolutional layers. The sub-network also applies a global average pooling layer [100] before
the final fully-connected layer. An advantage of global average pooling over fully connected is
that it takes fewer learning parameters and at the same time increases the robustness of the
architecture to input sizes. Each feature map is compressed into a single neuron regardless of
its width and height. The style code is injected into the decoder feature maps using AdaIN
(Equation 3.8), which works on the feature maps’ mean and variance. The technique is suitable
to make changes in style without changing too much structural information of the output im-
age. The main difference in architecture between InfoMUNIT and MUNIT is the discriminator.
While the MUNIT discriminator simply consists of residual blocks and a 1 × 1 convolutional
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Figure 7.1: The architecture of each sub-network in MUNIT and InfoMUNIT including Con-
tent Encoder (top-left), Style Encoder (top-middle), Decoder (bottom-left), Discriminator in
MUNIT (bottom-middle) and Discriminator in InfoMUNIT (bottom-right).

layer at the end, the InfoMUNIT discriminator has an additional branch that represents the
Q distribution (Equation 7.9). Our goal is to train the decoder to learn to preserve a piece of
information stored in the style code (output of the style encoder) in Q (the second output of
the discriminator).

7.2.2 Model learning

Our model’s training consists of minimizing a combination of reconstruction losses and adver-
sarial losses and maximizing the variational mutual information.

Like most autoencoder-based architecture, the encoders EC
A and ES

A compress input images
to content code and style code while the generator GA takes them to reconstruct the original
image from domain A. The image reconstruction loss LxArec makes sure the encoder and decoder
inverse each other. L1 loss is chosen for the image reconstruction as it usually obtains well
the sharpness of the reconstructed image. For the same reason, we have similar reconstruction
losses for content code LcArec and style code LsArec.

LxArec = ExA∼p(xA)[‖ GA(E
c
A(xA), E

s
A(xA))− xA ‖1] (7.1)

LxBrec = ExB∼p(xB)[‖ GB(E
c
B(xB), E

s
B(xB))− xB ‖1] (7.2)

LcArec = EcA∼p(cA),s∼ p(s)[‖ Ec
B(GB(cA), s)− cA ‖1] (7.3)

LcBrec = EcA∼p(cB),s∼p(s)[‖ Ec
A(GA(cB), s)− cB ‖1] (7.4)

Lsrec = EcA∼p(cA),s∼p(s)[‖ Es
B(GB(cA), s)− s ‖1]

+ EcB∼p(cB),s∼p(s)[‖ Es
A(GA(cB), s)− s ‖1] (7.5)
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Figure 7.2: Overview of InfoMUNIT.

where p(xA) (resp. p(xB)) is the distribution of images from domain A (resp. B), p(cA)
(resp. p(cB)) is the distribution of content code extracted from images from domain A (resp.
B), and p(s) is the distribution of style code that is the unit Gaussian distribution N(0, I).
Note that the distributions p(cA) and p(cB) are unknown and the learning set do not contains
examples of cA and cB., we need there fore to generate cA and cB samples from the encoders
and training images cA = (Ec

A(xA)) and cB = (Ec
B(xB)).

The objective of the adversarial losses associated with the discriminators is to align the
distributions of the real images with the distribution of the generated images. Like in the
GAN, the discriminators try to predict if an image is a real one or an artificial image produced
by the generator. When the generators are frozen, the generators try to fool the discriminators
into generating images close to the real ones. The adversarial losses are defined by ;

LAadv = ExB∼p(xB),s∼p(s)[log(1−DA(GA(E
C
B (xB); s)))]

+ExA∼p(xA)[logDA(xA)] (7.6)

LBadv = ExA∼p(xA),s∼p(s)[log(1−DB(GB(E
C
A (xA); s)))]

+ExB∼p(xB)[logDB(xB)] (7.7)

where the output of the discriminator DA(x) (resp. DB(x) ) is the probability that the image
x is a real image from the domain A (resp. B).

Inspired by the idea of InfoGAN [26], we want a part of the style code to be disentangled
features of the output to control and improve the diversity of the translated images. The style
code is split into two parts s = [s′, i]. To encourage the subvector i to represent the output’s
disentangled features, we maximize the mutual information between i and the generated images.

I(i, GB(cA, [s, i])) and I(i, GA(cB, [s, i])) (7.8)
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In practice, maximizing this mutual information is not achievable without access to the dis-
tribution P (i|x), which is not available in our case. However, according to [9], we can define
an additional distribution Q(i|x) as an approximation of P (i|x), and get a lower bound of the
mutual information term. Thus we have:

I(i, GB(cA, [s, i])) ≥ Lmi(GB, QB) =

Ei∼p(i),xA→B∼P (GB(cA,[s′,i]))[logQB(i|xA→B)] (7.9)

Where p(i) is a normal distribution and P (GB(cA, [s
′, i])) is the distribution of the images

generated by GB with the style vector [s′, i]. In practice, QB shares the same layers of the
discriminator DB as they both extract features from GB(cA, [s

′, i]) . QB is implemented as a
secondary output of the discriminator DB that is notes î. This means the closer the vector i
and predicted vector î are, the more mutual information between i and the generated image is
achieved. In the same way, we define Lmi(GA, QA).

The learning of our model consists both to minimize the total loss w.r.t the encoders and
generators and to maximize it w.r.t the discriminators :

min
EA,EB ,GA,GB

max
DA,DB

L(EA, EB, GA, GB, DA, DB) =

LxAdis + LxBdis + λx(LxArec + LxBrec) + λc(LcArec + LcBrec)
+λs(Lsrec)− λmi(Lmi(GA, QA) + Lmi(GB, QB)) (7.10)

where λx, λc, λs and λmi represent the importance of each loss. In our trainings, we set λx = 10,
λc = λs = λmi = 1 as the image reconstruction is the most important loss in our structure.

7.2.3 Few-shot learning architecture

We also aim to address the problem of few-shot learning by proposing some extensions in our
method. The architecture of our extended work, F-InfoMUNIT, is shown in Figure 7.3. In
addition to the InfoMUNIT’s components, F-InfoMUNIT adopts a content discriminator Dc

(violet) that learns to predict the domain of content codes. Simultaneously, the encoders now
have one more objective, which is to fool this discriminator. This discriminator is inspired by
the domain-invariant feature space from [190]. Another additional component of F-InfoMUNIT
is the content classifier Cc (yellow), which learns to predict the content code label. Because
training Cc requires labels, it is fed using only content codes extracted from labeled samples.

7.3 Experiments

7.3.1 Implementation Details

Our network consists of a content encoder, a style encoder, a generator, and a discriminator
for each domain. We give the implementation details of each of these networks.

Content Encoder.

Input images are firstly led to the content encoder, where they are down-sampled by strided
convolutional layers and further processed by residual blocks. We apply Instance Normalization
for all convolutional layers in the content encoder. The output of the content encoder is the
content code in the form of a tensor.
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Figure 7.3: Overview of F-InfoMUNIT.

Style Encoder.

Similarly, the style encoder also down-samples input images using strided convolutional layers
and a global pooling layer. A fully connected (FC) layer is applied to produce a style code as a
vector consisting of 8 digits, in which 2 final digits represent the information code (disentangled
style) Ii of the image.

Generator.

The generator takes content code and style code as inputs to reconstruct the initial input image.
The content code goes through residual blocks and upsampling layers. These residual blocks
are upgraded with Adaptive Instance Normalization (AdaIn) layers [72] which receive style
parameters from a multilayer perception (MLP) which has the style code as its input.

Multi-purpose Discriminator.

Our discriminator consists of two branches. The first branch is a traditional discriminator,
which can be found in most of the GAN-based models. The second branch consists of convo-
lutional blocks to learn the Q distribution. These two branches share the first convolutional
blocks.

Hyperparameters.

In all our experiments in the paper, we apply Adam optimizer with β1 and β2 as 0.5 and 0.999
respectively. The learning rate is initially set to 0.0001, with a weight decay of 0.0001 applied
every 100 thousand iterations. Our weight losses are λx = 10, λc = λs = λmi = 1.
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Baselines

We compare our proposed method InfoMUNIT with the following unpaired image-to-image
translation techniques: CycleGAN[188], MUNIT[73] and DRIT++[97]. Those methods’ train-
ing procedures are done using official source code and configurations provided by their authors
on GitHub.com.

7.3.2 Evaluation

We use three performance measures that estimate the quality and the diversity of the generated
images to compare InfoMUNIT with the baselines.

Conditional Inception Score

Based on Inception Score (IS) [139], Huang et al. [73] introduced Conditional Inception Score
(CIS) specified for evaluating multimodal image-to-image tasks. While IS measures the quality
and diversity of all generated images at once, CIS focuses on the diversity of images translated
from the same input image. Having multiple input images in the test set, we compute CIS for
each group of images generated from the same input, and finally, take the mean CIS for the
whole test set.

Fréchet Inception Distance

Fréchet Inception Distance (FID) [66] computes the distance between the set of generated
images and the target domain’s set images. It is computed by calculated the distance between
the Inception feature vectors for the two sets of images. Thus, FID can be used for evaluating
networks that are trained on specific datasets without requiring a classifier pre-trained on a
similar dataset. The lower FID we have, the more realistic the generated images are. Normally,
those feature vectors are taken from the third pooling layer of the Inception model, which
contains 2048 features. Due to the small size of our datasets, we compute the distance using
features of the second pooling layer containing 192 features.

LPIPS Distance

The translation diversity is also measured by LPIPS distance which is shown in [186] to be
highly correlated with human judgment. We compute LPIPS distance, with AlexNet as the
backbone network, on generated samples of each input image, then take the average value. The
larger distance among them, the more diverse they are.

Few-shot classification

To evaluate the performance of our models on the task of few-shot domain adaptation, we
first train them to translate images from the source domain to the target domain. Using the
generated images, we train a classifier to predict the label of samples from the test dataset from
the target domain. As an unsupervised domain adaptation method, InfoMUNIT does not have
access to labels of training data. F-InfoMUNIT, additionally, accesses to labels of all training
data from the source domain and one labeled sample from each category of the target domain.
Other methods such as DANN, FADA, and F-CADA used for the comparison already have
their own classifier embedded in their architecture, so there is no need to have an additional
classifier for them. Note that DANN, like MUNIT and InfoMUNIT, does not access any labels
either, making its training "zero-shot".
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7.3.3 Datasets

We use multiple datasets for evaluating InfoMUNIT and compare its performance with state-
of-the-art techniques on the task of image-to-image translation. Each dataset contains two sets
of images, and our network is trained to transform images between the two domains. We crop
and down-sample all images to the size of 64× 64, in RGB-color mode.

Edges↔Shoes and Edges↔Bags

These two datasets contain images of shoes and handbags along with their edges, introduced
in Isola et al. [80]. The edges↔shoes dataset contains 138667 pairs of samples while the
edges↔bags dataset contains 49925 pairs. From each dataset, we keep 200 pairs of samples for
testing and the rest for training. Note that we do not use the paired information of these two
datasets.

Cats↔Dogs

The dataset comprises 1364 photos of dogs and 871 photos of cats, cropped to their heads [97].
We keep 100 images from each set for testing while the rest is used for training.

Portraits (Painted↔Real)

This dataset consists of 1814 painted portraits and real 6452 portraits captured by cameras
[97]. We keep 100 images from each set for testing while using the rest for training.

SVHN↔MNIST

For our few-shot domain adaptation experiments, we train F-InfoMUNIT to transform images
between two data domains, represented by two datasets MNIST [95] and SVHN [122]. The
MNIST dataset contains images of handwritten digits in the form of binary images. Images are
at the size of 28× 28, and each one contains one digit. The value of the digit is also the label
of the image. The dataset consists of 60000 training images and 10000 testing images. The
SVHN dataset is a collection of photos of street view house numbers. Each digit is cropped
and labeled by its digit value. In total, the dataset has 73257 digits for training and 26032
for testing. For our experiments, all images are resized to 64 × 64 and converted to the RGB
format.

7.4 Results

7.4.1 Image Quality

The qualitative comparison of InfoMUNIT and other methods is shown in Figure 7.4. The
objective of InfoMUNIT is to increase the diversity and ability to control features of generated
images compared to MUNIT and the state-of-the-art, while not hurting their quality. As
shown in Figure 7.4, the quality of images generated by InfoMUNIT is at least as good as
the images from other methods. The result is confirmed in Table 7.1 where we apply FID to
evaluate the realism of the generated images quantitatively. Even though InfoMUNIT does
not out outperform other methods in terms of image quality in any task, its performance is
stable across all tasks. The performance of InfoMUNIT is close to the best method for each
dataset. InfoMUNIT performs equivalent to or better than MUNIT. This shows that the
disentangled features also have an impact on the quality of the images. Notice that DRIT++
is the best for the first four tasks but totally fails in the last four tasks. This is illustrated by
the strange dog images generated by DRIT++ in Figure 7.4. On the opposite, CycleGAN gives
the best performance for the last four tasks but is bad in the first four tasks and especially



7.4. RESULTS 87
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&	GT MUNIT InfoMUNITCycleGAN DRIT++

Figure 7.4: Random samples generated by our method and baselines, trained on two datasets:
edges→bags (left) and cats→dogs (right). The input images (and ground-truths) are displayed
in the first column. Other columns show random outputs of baseline methods and InfoMUNIT.

InfoMUNIT MUNIT CycleGAN DRIT++
edge2bag 2.81 2.56 4.23 1.69
bag2edge 7.68 8.52 58.53 5.64
edge2shoe 1.28 1.44 4.86 1.13
shoe2edge 4.69 8.83 88.03 4.24
dog2cat 9.24 13.48 2.56 21.59
cat2dog 6.31 6.31 2.02 18.14
paint2real 2.96 3.02 2.56 7.29
real2paint 8.60 8.51 3.97 18.85
Average 5.45 6.58 20.84 9.82

Table 7.1: Fréchet Inception Distance (FID). Lower value means better performance.

in the bag2edge and shoe2edge tasks. On average, InfoMUNIT achieves the best FID value
among the four image-to-image translation methods. The good quality of images generated by
InfoMUNIT is stable on multiple datasets.

7.4.2 Image Diversity

Table 7.2 and Table 7.3 respectively show the CIS and LPIPS scores that evaluate the diversity
of generated images. CycleGAN is not a multimodal method and can generate only one output
from one input, so it does not appear in this table. The LPIPS and CIS scores of InfoMUNIT
are clearly superior to the scores of DRIT++ and MUNIT. The only exceptions are for the
shoe2edge task where the LPIPS of DRIT++ is higher and for the real2paint task where the
LPIPS of MUNIT is higher. In both cases, the LPIPS of InfoMUNIT is very close to the
best score and still higher than the LPIPS of the third method. Overall datasets, the scores of
InfoMUNIT are significantly better than the other methods. Figure 7.5 and Figure 7.6 illustrate
the higher diversity of InfoMUNIT compared to MUNIT. These results show that InfoMUNIT
generates significantly more diverse outputs than MUNIT and DRIT++.

7.4.3 Controlling Features

In this subsection, we show the advantage of InfoMUNIT over its predecessor MUNIT in manip-
ulating features. From Figure 7.5, we can observe that varying values of style code in MUNIT
can lead to slight changes like the color of the object. With InfoMUNIT, we can significantly
manipulate the features of the object. The first disentangled feature controls the bag’s size,
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InfoMUNIT MUNIT DRIT++
edge2bag 3.00 2.07 2.13
bag2edge 2.01 1.07 1.60
edge2shoe 2.35 2.23 1.76
shoe2edge 1.44 1.00 1.51
dog2cat 2.24 1.97 1.11
cat2dog 2.65 2.24 1.09
paint2real 1.96 1.91 1.74
real2paint 2.14 2.26 1.14
Average 2.40 1.88 1.51

Table 7.2: LPIPS distance. Higher value means better performance.

InfoMUNIT MUNIT DRIT++
edge2bag 0.42 0.29 0.30
bag2edge 0.35 0.04 0.22
edge2shoe 0.26 0.24 0.22
shoe2edge 0.24 0.00 0.12
dog2cat 0.32 0.32 0.04
cat2dog 0.30 0.28 0.03
paint2real 0.25 0.25 0.11
real2paint 0.33 0.30 0.06
Average 0.31 0.21 0.14

Table 7.3: Conditional Inception Score (CIS). Higher value means better performance.

(a)	Input

(b)	Varying	two	last	digits	of	style	code	of	MUNIT

(c)	Varying	two	last	digits	of	style	code	of	InfoMUNIT

Figure 7.5: Manipulating two last digits in the style code of MUNIT and InfoMUNIT on
edges→bags task.
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(a)	Input

(b)	Varying	two	last	digits	of	style	code	of	MUNIT

(c)	Varying	two	last	digits	of	style	code	of	InfoMUNIT

Figure 7.6: Manipulating two last digits in the style code of MUNIT and InfoMUNIT on
edges→shoes task.

and the second one controls the color from white to black. We also notice that InfoMUNIT can
propose different textures of the bag.

The performance of InfoMUNIT on the edges→shoes task is illustrated in Figure 7.6 and
Figure 7.7. While MUNIT can only change some small details of the shoes, we can significantly
manipulate the color of the shoes with InfoMUNIT. Varying the first info style code makes the
color changed from bright to dark while varying the second one changes the color from cold to
warm. In Figure 7.6, we can see that the first info style code is also responsible for the shoes’
style. From left to right, it turns a sneaker into a pump and makes it darker at the same time.
This effect makes sense as pumps are more likely to have dark colors than sneakers. The second
info-style code turns a dark, sporty shoe into a brown leather shoe. In Figure 7.7, we combine
the two features represented by the two last two dimensions of the style code of InfoMUNIT.
From left to right, we increase the value of the first informational style code, while the value
of the second informational style code is increased when traveling from top to bottom. Going
down the vertical direction, we see that the shoe color becomes warmer, while following the
horizontal direction, the color becomes darker.

Please note that the value of each disentangled feature in this test is plotted from −2 to
2 instead of −1 to 1 in the training phase, which means the generator is receiving style code
values that it has never seen before. This explains why the images on the border look a bit
extreme and unrealistic. We plot them out to study the meaning of the learned features instead
of evaluating the output realism.

We run the same test on the gingivitis dataset and receive results in Figure 7.8 and Fig-
ure 7.9. As shown in Figure 7.8, by modifying the value of the two last digits of the style code
(informational style code in the case of InfoMUNIT), both models can make some changes to
the output features. MUNIT seems to learn to make slight modifications on the height of teeth
and the color of the gum, while InfoMUNIT makes changes on the appearance of the cheek-
retractor and the level of infection of the gum. By varying the two last digits of InfoMUNIT,
we obtain significantly more changes than in the case of MUNIT. This result is similar to the
result that we found in Figure 7.5 and Figure 7.6. In Figure 7.9, we combine the two features
learned by InfoMUNIT and stored them into the two last digits of the style code. Moving
from left to right and top to bottom, we get similar trends as in Figure 7.8. Moreover, we also
observe on the right of the figure that increasing the value of the second feature, which leads
to more red gingiva, also slightly reduces the amount of cheek-retractor in the image. This
phenomenon can be explained by the fact that gingivitis is more likely to be observed near the
front teeth than molars, where the gum is usually partially covered by the retractor. This helps
us to understand more about the characters of the dataset.
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(a)	Input

(b)	Outputs	generated	by	InfoMUNIT	

Figure 7.7: Combination of the two last digits in the style code of InfoMUNIT on edges→shoes
task. From left to right (b), we vary the value of the first information latent code. From top
to bottom, we vary the second one.

7.4.4 The length of information latent code

We perform some experiments to investigate the impact of the length of information latent
code i on the generated images varying from 1 to 8. Table 7.4 shows some of these results on
the edge2shoe datasets. We see that the FID, CIS and LPIPS weakly vary with the length of
i. We conclude from these results that the quality and diversity of the generated images by
InfoMUNIT are robust to the information latent code’s length.

Length of i 1 2 4 6 8
FID 2.99 2.81 3.19 3.11 3.37
CIS 2.59 3.00 3.64 3.61 3.65
LPIPS 0.42 0.42 0.47 0.47 0.46

Table 7.4: Performance of InfoMUNIT with different lengths of information latent code.

7.4.5 Few-shot Domain Adaptation

We extend our method to implement a few-shot domain adaptation and test it by training a
classifier on generated samples. Our method F-InfoMUNIT is trained for a one-shot domain
adaptation task, and the performance is compared with state-of-the-art few-shot domain adap-
tation methods in Figure 7.10. Even though InfoMUNIT is not proposed for few-shot learning,
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(a) Input

(b) Varying two last digits of style code of MUNIT

(c) Varying two last digits of style code of InfoMUNIT

Figure 7.8: Manipulating two last digits in the style code of MUNIT and InfoMUNIT on the
task healthy→gingivitis.

it stays on the list to show the improvement of F-InfoMUNIT to its original architecture. As
can be seen from the figure, F-InfoMUNIT significantly outperforms DANN and FADA in this
task but still achieves 4.79% lower classification accuracy than the state-of-the-art model F-
CADA. However, compared to the original InfoMUNIT, it is clear that the additional content
classifier and content discriminator in F-InfoMUNIT make a great gain in the classification
performance (31.74% accuracy). We believe that our method can be improved even further
and achieve higher performance in future works.

7.5 Conclusion
We proposed an extension of MUNIT called InfoMUNIT, which can manipulate features of the
translated images. Our method is demonstrated in multiple image-to-image translation tasks.
It achieves comparable translated image quality to state-of-the-art approaches and outperforms
them in terms of output diversity. Moreover, our method improves the user’s control of the
generated images, this kind of tool can make the image manipulation method more usable
for real-life applications. We also extend our method to perform one-shot domain adaptation
(F-InfoMUNIT) and achieve promising classification accuracy.
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(a) Input

(b) Various outputs generated by InfoMUNIT

Figure 7.9: Combination of the two last digits in the style code of InfoMUNIT on
healthy→gingivitis task. From left to right (b), we vary the value of the first information
latent code. From top to bottom, we vary the second one.
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Figure 7.10: Classification accuracy on the test data (target domain) of few-shot learning
models including FADA, F-CADA and F-InfoMUNIT on the one-shot learning task DANN,
in particular, does not learn from any target samples making it zero-shot. We also show the
results when the classifier is trained only on source data (lower bound), only on generated data
and directly on the target domain (upper bound).





Chapter 8

Conclusion

This chapter summarizes the thesis’s contributions, their advantages and drawbacks, experi-
ences learned during our research and some suggestions for future works.

8.1 Summary of Contributions

This section summarizes contributions being made during three years of the doctoral program
with a short explanation of how they are linked to the template of the thesis.

In Chapter 4, we propose a preprocessing pipe-line that includes pre-trained teeth detection
and recognition models and training a deep learning model to detect the presence of gingivitis on
images of teeth. The model is evaluated in 10-fold cross-validation and achieves an accuracy of
90.88± 3.25% and an AUC of 95.52± 1.88%. We learn that combining the model’s prediction
on multiple views provides a more accurate final result, which also helps us take advantage
of our dataset, where we usually have multiple views of all teeth. Besides the traditional
data augmentation technique, we also train an unsupervised image-to-image translation model
(MUNIT [73]) that learn to generate synthetic samples of healthy samples and infected samples.
Generated samples are mixed with real training data. However, our experiments show that this
approach does not improve the classification model even though the generated outputs look
realistic for human eyes. From the saliency maps, we find out that our model actually pays
a lot of attention to the boundary between the gum and the teeth, which supports the idea
that CNNs predictions are based on the texture and the structural information of objects.
The diagnosis process of Dental Mind includes the detection of gingivitis on patients’ gums.
Therefore, this work assists dental technicians at the firm to complete their tasks more quickly.
One of the main limitations of this work is the binary classifier which only gives two answers,
yes/no, to the presence of gingivitis. However, the formation of gingivitis is a continuous
process, including multiple phases. Therefore, the prediction can be even more precise if the
classifier can distinguish multiple levels of gingivitis.

In Chapter 5, we apply a supervised image-to-image translation model (Pix2pixHD [173]
as a data augmentation method for our CNNs-based dental crowding classifier. Additional
training samples are generated by Pix2pixHD, which is trained to generate dental images from
projections of 3d models of teeth. Plus, we propose additional augmentations operations in
the 3d environment to generate even more samples. As a result, our classifier’s accuracy is
improved from 71.45% to 82.10% thanks to three thousand synthetic samples. This result
demonstrates the advantage of supervised image translation models that can be used when
paired data is available over unsupervised ones trained using unpaired data. We also realize
that our model’s accuracy increases with the number of generated images to a saturation point.
Then, if the generated images continue to be added, the model’s accuracy will decrease because
it is over-fitted with generated data. There is still a gap between the distribution of generated
sample and the real dataset, even though they look very realistic for humans. The work can
be extended by replacing the binary classifier with one that can distinguish among multiple
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levels of dental crowding. Similar to the work on gingivitis, the prediction is limited to a binary
classification model. Therefore, training a classifier that categories multiple types of crowding
will be more beneficial. Besides, the model Pix2pixHD that is trained in our experiments
is still far from perfectly capturing the contribution of the training dataset, causing a drop
in the classifier’s performance when being trained with a large amount of generated images.
Improving the performance of the GAN-based image translation model would improve the
quality of generated images, raising the classification model’s performance.

In Chapter 6, we adopt two image translation methods CycleGAN[188] and StarGANv2[27],
for generating aligners on images of teeth. Our experiments show that both methods succeed in
learning to generate realistic images, but StarGANv2 is outstanding in multiple ways. Firstly,
on our computation device GTX 1080Ti, CycleGAN is limited to the size of 320 × 320 while
StarGANv2 can work with images with the size up to 1024 × 1024, which is considered high-
resolution. Secondly, images generated by StarGANv2 are more realistic and more diverse
than CycleGAN’s output according to FID and LPIPS metrics. The qualitative comparison
also shows that CycleGAN generates images containing more artifacts than ones generated
by the other method. Therefore, StarGANv2 is the suitable image translation model for our
task. We also propose a pipe-line that takes the images from the orthodontist, preprocess these
images, gets them translated by the pre-trained model, recolors them using the original image
as reference and sends the result back to the orthodontist. The project directly contributes to
the application of the host company. For future work, it would be helpful to study and optimize
the model’s size and inference time. It would significantly change the user experience if the
transformation could be done in real-time.

In Chapter 7, we propose InfoMUNIT, a new unsupervised multimodal image-to-image
translation method that learns to disentangle features of the training data by maximizing the
mutual information between style latent codes and generated images. The backbone of the
model is taken from MUNIT, [73] and the discriminator is modified based on the idea of Info-
GAN [26]. We experiment with the model on multiple well-known datasets and compare our
model with state-of-the-art unsupervised image-to-image translation methods. InfoMUNIT
outperforms others in terms of image quality (FID) and diversity (CIS, LPIPS). Our method
also provides some controls on certain features of the dataset that it learns without any an-
notation. By tweaking the values of the style code, one can modify the characteristics of the
generated images. Thanks to our method, we can learn the mapping between data domains and
modify the generated images to have desired features. The method is also extended to perform
one-shot domain adaptation, called F-InfoMUNIT. The model achieves promising classification
accuracy, which is comparable to state-of-the-art works.

8.2 Future Work

In this section, we propose some perspectives to improve our work in the future.
As said above, the gingivitis detection model in Chapter 4 can be extended by working

with multiple gingivitis levels. We propose two approaches to address the problem. Firstly, the
classifier will be modified to classify more than two classes, and the dataset will be relabeled
accordingly. For example, if we choose to distinguish between four levels of gingivitis (including
one class for healthy samples), the classifier must produce a four-dimension vector representing
its prediction, and each sample in the dataset must be tagged with one of the four labels. The
second approach is to represent different gingivitis stages on a scale between 0.0 and 1.0 (0 for
completely healthy samples and 1.0 for extremely noticeable gingivitis) and train a regression
CNN model that predicts the score. The advantage of this idea is that the model learns the
training loss related to the levels of gingivitis. For the first approach, the four classes are treated
equally. In the second approach, predicting a healthy case as noticeable gingivitis leads to a
higher loss than predicting it as slight gingivitis. However, the second approach makes it more
complicated for annotation. In short, both directions are worth to be explored in different ways.



8.2. FUTURE WORK 97

It is also interesting to explore other GAN-based techniques to augment the training data for
this problem as all the methods that we try in this work do not bring any improvement in the
performance. Self-supervised learning can be a promising direction. Another possible idea to
improve this work is to train one single model that detects multiple periodical problems because
they share the same inputs: images of the gingiva. Such a model can reduce the computation
cost and increase the inference speed, hence speeding up the whole monitoring process.

The crowding detection model in Chapter 5 can also be improved similarly to the gingivitis
detection model. One can train a classifier will more than two classes or a regression model
to predict a score representing the crowding level. Labeling such kind of data is actually
simpler in this case than the case of gingivitis because we have access to the 3d models of
teeth. Knowing each tooth’s position and size, it is straightforward to compute the degree
of crowding thanks to existing methods [81]. Data augmentation in the 3d environment can
be further explored by slightly applying basic transformations like translation, rotation and
scaling on teeth. These modifications will affect the crowding score, so it must be recalculated
after the data augmentation process. Another improvement that can be made to this work
is improving the performance of the image-to-image translation model used to generate oral
images from projections of 3d models. One obstacle when performing data augmentation in
the 3d environment is when the generated images are not realistic enough, or more specifically,
not close enough to the real dataset’s distribution. The more generated images are used for
the training, the more saturated the classifier becomes. Thus, having a robust image-to-image
translation model is important. As shown in Figure 5.8, our model’s classification performance
drops when a great number of synthesized images are used in training. Therefore, to benefit
from the 3d augmentation operations, it is necessary to improve the translation model or finding
another that generates more realistic images.

In Chapter 6, even the quality and the resolution of the generated images are sufficient for
our production, there is still room for improvement. Firstly, the generation of output images
is a black-box, which means we can not modify the output images’ features when necessary.
Thus, a study on how to learn disentangled features in a robust image translation method like
StarGANv2 would significantly contribute to Dental Mind and the research community. Sec-
ondly, the image translation process in Figure 6.1 is always followed by an independent color
transferring step, which adds a few seconds to our pipe-line. With a great number of requests
being sent to our server every day, these few seconds are significant. In the architecture of
StarGANv2, most of the non-domain-specified characteristics are preserved after the transfor-
mation, but the image’s color is still somehow changed. Making the generator keeping the
color condition of the input image could be a great improvement for our application because it
removes a post-processing step. One may try to add another training objective that minimizes
the difference in terms of colors between the input and the generated image so that the gen-
erator learns to preserve the original color of the original image at the same time learning to
translate the image to the target domain, which means generating aligners in our application.

Our proposed InfoMUNIT in Chapter 7 shows the ability to learn disentangled features
in unsupervised image-to-image translation models using an additional learning objective that
maximizes the mutual information between the style code and the output image. The image
resolution in our experiments is limited to 64× 64 while most image translation methods now
can bear with images of size up to 1024×1024. Therefore, making InfoMUNIT work with higher
resolution images is one of our priorities. Simply adding more layers may get the job done, but
the architecture would be weighty. Therefore, developing a more efficient architecture would
be necessary. Another idea for extending InfoMUNIT is to improve its ability for disentangling
features. The results in Section 7.4.3 show that the method can learn multiple features of the
dataset. However, multiple features are still mixed in the same info-style dimension, making
it difficult to modify features separately. Solving this problem will be a great step forward
for translating images with disentangle features. Another direction is to apply the logic of
InfoMUNIT to multi-domain image translation methods like StarGANv2, which can translate
images at high resolution and convincing details but still lack the controls on the outputs. The
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approach is promising because there is only one generator for all the cross-domain translations,
so it will learn the features shared among all domains, while each generator of InfoMUNIT can
learn features from only one domain.
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work in Chapter 4: Detecting Gingivitis in Oral Images Captured by Smartphone Cameras
using CNN is ready to be submitted as a scientific paper but cannot be submitted at the mo-
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Abstract. Periodontal diseases (PDs) are a major cause of tooth loss
among adult men and women. During orthodontic treatment, patients
are reported to be more likely to have PD infection than before and after
the treatment. Therefore, it is important for orthodontic patients to be
frequently diagnosed to detect the early signs of PDs - commonly known
as gingivitis - to provide timely dental care. In this paper, we propose
a methodology to detect the presence of gingivitis from images of teeth
captured by smartphone cameras. Our pipeline includes a preprocessing
step of image masking and cropping, then a convolutional neural net-
work that makes predictions for each patient based on a set of images.
We also study the effect on the classification performance of enlarging
the training dataset with traditional data augmentation methods and
domain transfer based on Generative Adversarial Networks (GANs). Ex-
perimental results show that our classifier is able to distinguish between
healthy and inflamed gingivae with an accuracy of 90.88% and the area
under ROC curve (AUC) is 95.52%.

Keywords: Image synthesis · Generative adversarial networks · Deep
learning · Data augmentation · Gingivitis · Periodontal diseases · Dental
care.

1 Introduction

Periodontal diseases (PDs) are the inflammatory diseases affecting gingiva and
the supporting tissues of teeth and also the primary cause of tooth loss in adults.
Research shows that the chance of having PDs increases when a person is under
an orthodontic treatment [16]. If not treated promptly, PDs can lead to serious
diseases such as diabetes, pneumonia due to inhalation, strokes and cardiovas-
cular disease [12]. In contrast, the early stage of PDs, often known as gingivitis,
can be treated much more easily than when it has progressed to severe levels.
Therefore, diagnosing gingivitis frequently is the key to prevent PDs.

Thanks to the rapid increase of worldwide smartphone ownership, remote
health care applications have become more accessible than ever. With smart-
phones, patients can take pictures of a body part and send them to doctors or
even computer programs for diagnosis [1]. In this paper, we detect gingivitis from
images captured by phone cameras using convolutional neural networks (CNNs).



2 No Author Given

2 Related work

For the last decade, deep learning models have achieved groundbreaking advance-
ments in many domains, especially computer vision [9]. In the field of medical
imaging, deep learning can be applied to various parts of human body. In [1],
CNNs were trained for skin cancer detection on smartphone-captured images.
In neuroscience, scientists applied deep learning for detection of brain tumors
on magnetic resonance (MR) images [4]. CNNs were also used for retinal vessel
segmentation [3] from digital fundus photographs.

Despite numerous research of deep learning in medical images processing,
applications in dental diagnostics have not been fully explored. The work of
Juan et al. in [7] was one of the earliest attempts using computer vision meth-
ods to automatically diagnose periodontal diseases by measuring depth probing.
Images were obtained by a special camera fitted together with a dental probe.
Rana et al. [13] used a convolutional autoencoder for segmenting inflammation
from intraoral fluorescence images. Deep learning was also used on periapical
radiographs for diagnosis and prediction of periodontally compromised teeth in
[10] . The common drawback of these methods is that they require techniques
such as x-rays or fluorescent for obtaining images, which means patients still
have to be diagnosed at clinics. In this work, we train a CNN for detection of
gingivitis with oral photos taken by smartphone cameras instead of using profes-
sional clinical equipment. The simplicity of our method facilitates more frequent
medical examinations, so that the disease will be detected and treated promptly.
To our knowledge, no study has been done on automatically detecting PDs from
this type of image.

The lack of annotated data is a popular problem when applying deep learn-
ing to medical imaging. Aside from basic augmentation methods (e.g. flipping,
random crop, rotating, ...), data synthesis using adversarial learning has been
used recently for enlarging training datasets [14]. In this paper, we use a style-
transfer model based on generative adversarial network (GAN) to enlarge the
training data and test its impact on the prediction performances.

Our work has several contributions. First, we apply deep learning for gin-
givitis detection in colored images. Second, we develop a pipeline that predicts
the presence of gingivitis from photos captured by smartphones. Third, we use
style-transfer GANs for data augmentation on dental images.

3 Methodology

In this section, we describe a pipeline including a preprocessing phase being
composed of masking and cropping, then a deep neural network to predict the
existence of gingivitis in a record.

3.1 Preprocessing

We aim to train a CNN from patches containing gum region between pairs of
teeth, where gingivitis usually appears. We develop a preprocessing procedure
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Fig. 1. Preprocessing procedure

to extract those patches from the dataset which consists of hundreds of records.
Each record contains oral images of a patient from eight poses (Fig. 1a). Images
resolutions vary from 611 × 328 up to 3774 × 2261 pixels as they are captured
by patients using different devices.

Images from records (Fig. 1a) are cropped to the region of interest (ROI)
containing gums and teeth (Fig. 1b). The ROI is defined by Single Shot MultiBox
Detector (SSD) [2], a popular object detection algorithm that we fit and use to
detect the oral region in images. Since textures of teeth do not contribute to
gingivitis detection and might cause the network to learn biases such as braces
(because gingivitis often occurs during orthodontic treatments), we mask out the
region of teeth in the image using a contour detection and segmentation method
namely Richer Convolutional Features (RCF) [11] (Fig. 1c1). Next, Mask R-
CNN [5], a deep learning segmentation technique, is applied for teeth detection
to obtain bounding boxes of all teeth (Fig. 1c2). We ignore the bounding boxes of
molar teeth because they are not usually well-captured. Afterward, as illustrated
in Fig. 1d, for each pair of bounding boxes (red), we compute a larger box (cyan)
which contains the two boxes. Then, the box is shifted (yellow) toward the gum
(upward if the pair of teeth comes from maxillae, and downward if it is from
mandibular). The shift distance equals the height h of the large box divided by
2 . Finally, we rotate all mandibular patches by 180 degrees (Fig. 1f) and resize
all patches to 128 × 128 (RGB). To avoid deformation, we apply zero-padding
to all patches to make them square-shaped before resizing.

3.2 Classification model

We train a CNN which classifies those 128× 128 patches in two classes: healthy
and gingivitis. The network architecture consists of multiple blocks: Convolution
+ Batch normalization + ReLU, Max-pooling following and Fully connected
layers at the end as shown in Fig. 2. Since each pair of teeth is captured from
several views, we feed all views of the pair through the CNN and obtain a
prediction for each view. The final prediction of a pair of teeth is computed as
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Fig. 2. Gingivitis classifier architecture

pfinal = 1
n

∑n
i=1 pi where pi denotes the prediction result of a single view and n

is the number of views of the pair.

3.3 Data augmentation using style-transfer GAN

Style-transfer networks have been used recently to deal with the problem of
lacking data in medical image analysis [14]. In this work, we use a style-transfer
model named MUNIT [6] in order to generate gingivitis patches from healthy
patches and vice versa. MUNIT consists of an encoder Ei and a decoder Gi

for each data domain Xi(i = H,G) (H represents healthy class and G repre-
sents gingivitis class). The encoder Ei transforms input xi to become content
code ci and style code si as following: (ci, si) = (Ec

i (xi), E
s
i (xi)) = Ei(xi). We

implement style transformation by swapping the encoder-decoder pairs. For in-
stance, given a healthy patch xH , we can synthesize an artificial gingivitis patch
xH→G = GG(Ec

H(xH), sr) in which, sr is a style latent code drawn from prior
distribution q(sr) ∼ N(0, I). Similarly, artificial healthy patches can be synthe-
sized as xG→H = GH(Ec

G(xG), sr) where xG is a patch from domain gingivitis.
By modifying sr we can receive multiple versions of the output which share the
same content but differ in style.

We apply MUNIT for data augmentation as described on the left of Fig.
3. First, we train MUNIT with training data of two classes. Then, we apply
the pretrained MUNIT for synthesizing artificial data. From each real patch as
input, we synthesize three outputs (on the right of Fig. 3) by using three different
value of sr. Finally, we combine the original data with artificial data to train
our classifier.

4 Experiments

4.1 Dataset

Images used in this work were collected from (anonymized) database. For this
research, we are using 592 records from 280 patients, acquired in six months
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Fig. 3. Using MUNIT for augmenting training data to train the gingivitis classifier
(left) and some examples of inputs and outputs (right).

in 2018. Each record consists of eight images captured by a smartphone from
different poses: left, front and right for opened mouth; left, slightly-left, front,
slightly-right and right for closed mouth, with the help of a cheek retractor (Fig.
1a). Photos in our dataset were taken by various types of phones in different
lighting conditions. Note that our work has been done locally at (anonymized)
and patient information was removed from the dataset. All pairs of teeth in the
dataset are labeled by dentists as healthy or gingivitis. Gingivitis appears in
274 records in the dataset while the other records are completely healthy. We
obtain 19978 patches from all records after preprocessing.

4.2 Experiments

Our classifier is trained with a batch-size of 128 and Adam optimizer [8] with
a learning rate of 10−4 on 3500 epochs. We validate the model every 15 epochs
and compute the average result at the end of the training. We construct two
versions of the classifier: one is trained on the given training set and the second
one is trained on the same training set mixed with artificial images generated
by MUNIT. Using this set of hyperparameters, it takes 50 hours to finish the
training on a GeForce GTX 1080 Ti graphic card.

The multimodal style-transfer network is trained using the same hyperpa-
rameters as described in the original paper [6] except the number of epochs and
batch-size. We train the model for 2800 epochs with batch-size of 14 instead of 1
million iterations and batch-size of 1 for all datasets as in the paper. Input/out-
put size of the model is also reduced from 256 × 256 to 128 × 128. MUNIT and
the classifier share the same training set (Fig. 4). We use the same device that
trained our classifier to train MUNIT and it took 9 days for the training.
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The accuracy and area under ROC curve (AUC) of the classifiers are esti-
mated by 10-fold cross-validation. Note that MUNIT learning is included in the
cross-validation loop in order to avoid that the artificial images overfit the test
set. Data is divided at the level of records to assure that images coming from one
record will never appear in training set and validation set at the same time. The
data of each fold contains about 18,000 patches and 2,000 patches for training
and validation respectively.

4.3 Results and Discussion

The classifier is evaluated using cross-validation procedure by accuracy and area
under ROC curve (AUC). As can be seen from Table 1 and Fig. 4, the classifier
achieves better accuracy and AUC by combining the predictions of multiple
views. This phenomenon is similar to reality where doctors also need to look at
patient teeth from several angles for a proper diagnosing.

The table also shows that adding artificial training data using style-transfer
network does not improve classification performance in this case, even though
they look convincing in Fig. 3 (on the right side).

We also see that the model performs differently based on the location from
where patches were cropped. The model achieved an AUC of 96.17 ± 2.23 when
evaluated with patches among incisors and canines and an AUC of 94.25 ± 2.25
when evaluated with patches among canines and premolars. Since gum regions
from the front usually look clearer than ones from the side and the back, they
are easier to be recognized by the classifier.

Table 1. Accuracy (%) and AUC (%) of classifiers trained with original data and on
enlarged data with two prediction techniques: single view and multiple views.

Single view Multiple views
Accuracy AUC Accuracy AUC

Real data 88.81 ± 3.55 94.98 ± 2.82 90.88 ± 3.25 95.52 ± 1.88

Real + Artificial data 88.15 ± 4.07 94.81 ± 2.91 90.43 ± 3.64 95.51 ± 2.00

Even if we obtained a high accuracy of gingivitis prediction, we have to check
if our classifier has really learnt the concept of gingivitis or based its decision on
artifact in the training set. A common approach to interprete the decision of a
CNN is to visualize the saliency maps. Saliency maps compute the gradient of
the output prediction with respect to the input image and highlight image pixels
that contribute the most to the predicted output [15].

As can be seen on the right of Fig. 4, there is a high distribution of white
dots on the boundary between gum and (masked) teeth. The density of dots
on the gum region is also high but not as much at the boundary. This result
suggests that both shape and texture contribute to the classification result, but
the shape of the border between teeth and gum seems to be the most important
component. The cause of this result may come from different lighting conditions



Detecting Gingivitis in Oral Images from Smartphone Cameras 7

Fig. 4. ROC curves and AUC of the classifier when being trained on real data versus
enlarged data, evaluated using single view and multiple views (left) and examples of
saliency maps generated from patches (right).

between photos in the dataset. The color of the gums can be displayed more
boldly in one camera, but lighter in other cameras, while the shape of the gums
does not change even if images are taken by different devices and under various
conditions. This is coherent to the conclusion of a orthodontist in our team,
stating that the most recognizable sign of gingivitis is swollen gum.

5 Conclusion

In conclusion, this paper proposes a pipeline to detect gingivitis from photos
taken with smartphone cameras with high accuracy. Our approach opens new
ways for the diagnosis and follow-up of PDs. We can imagine the following
use-case : Initially, a patient wears a cheek retractor and takes images of his/her
mouth from different angles. Then, images are sent to a clinic to be automatically
preprocessed and given to the classifier to detect gingivitis. Finally, the results
are sent back to the patient. Moreover if gingivitis is detected in the images, the
system sends the images and results to the dentist and triggers an appointment
if needed.

For future work, some questions will be addressed. We will investigate why
enlarging the training dataset with style-transfer network does not improve the
classification performance, although the artificial images look very similar to real
images. We will also improve the model performance by adding preprocessing
steps to emphasize the structural information in the images.
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ABSTRACT

We propose a new method of multimodal image translation, called InfoMUNIT, which is an exten-
sion of the state-of-the-art method MUNIT. Our method allows controlling the style of the generated
images and improves their quality and diversity. It learns to maximize the mutual information be-
tween a subset of style code and the distribution of the output images. Experiments show that our
model cannot only translate one image from the source domain to multiple images in the target do-
main but also explore and manipulate features of the outputs without annotation. Furthermore, it
achieves a superior diversity and a competitive image quality to state-of-the-art methods in multiple
image translation tasks.
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1. Introduction

Image-to-image translation can be described as the general problem of mapping an image
from one domain to another domain. This seemingly simple approach is the foundation
of many applications in the field of computer vision such as colorization [1], style transfer
[2], super-resolution [3], denoising, inpainting [4]. Moreover, image-to-image translation
has been also applied for data augmentation and achieved competitive results [5] [6] [7].
Based on the availability of data, the problem can be considered as supervised learning
where the dataset contains paired samples; or unsupervised learning where the dataset
consists of two independent sets of images. This work focuses on the unsupervised image-
to-image problem which is more applicable due to its ease of obtaining data but also more
challenged in terms of training.

Unsupervised image-to-image translation leads us to the idea that an image in a domain
can be translated into multiple images in the second domain, which means the translation
can be multimodal. For example, in image colorization, one image can be colored in
multiple ways. Some methods [8] [9] have been proposed to use a noisy vector as an
additional input of the decoder. The style of the generated images can then be manipulated
by changing the values of the style-vector. However, the style-vectors in existing methods
are entangled and the translated images are not interpretable as a result. Lacking control
over features of the output can be problematic when important information are linked
to these features. In the work of Cohen et al. [10], it is shown that CycleGAN was
adding/removing tumors from images when transforming MRI images from Flair to T1,
especially when there is an imbalance among classes in the training data. Therefore,
learning to control the features of the translated images is essential. In this paper, we



propose some improvements on MUNIT [9] - a standard in the field of multimodal image
translation - by applying the mutual information maximization technique. Our method,
called InfoMUNIT, generates more diverse images and especially can manipulate their
textural and structural features without requiring any annotation.

2. Related Works

2.1. Multimodal unsupervised image-to-image translation

The translation of images from one domain to another has been a challenging problem in
computer vision. Thanks to the evolution of convolutional neural networks, especially gen-
erative adversarial networks (GANs) [11], many deep learning models have been recently
proposed to address the problem of image translation and achieved impressive outcomes.

The research of Isola et al. in [12] is one of the earliest works on image-to-image trans-
lation based on GANs. In [13], the method is upgraded using multi-scale generators and
discriminators to translate high-resolution images. These methods require paired data for
training which is not usually available in practice.

Learning to translate images using unpaired data is more challenging than with paired
data because we do not know exactly which data-point in the source domain corresponds
to which one in the target domain. Thus, it is reasonable to add some constraints to the
training when it is possible. One popular assumption in most image-to-image translation
research is that the structure of an image must not be changed too much by the translation.
This is similar to language translation, in which, a phrase must have the same meaning
after being translated to another language. Shrivastava et al. [14] propose a training
strategy in which, a deep network learns to transform the style of synthesized images to
make them look more real. To preserve the annotation, they add a pixel-wise loss between
the input and output of the style transfer network. Similar approaches are applied in later
works such as specific-task loss [15], semantic features [16], or distance between pairs of
input samples [17] and so on. These constraints are useful for some specific tasks and
datasets but cannot be applied robustly.

Cycle consistency is another well-known loss function being used in many bi-direction
image translation models such as DualGAN [18], CycleGAN [19], and DiscoGAN [20].
In these networks, an image being translated from domain A to domain B can be also
translated backward to obtain the original image. As this cycle loss is not domain related,
it can be applied to most of the bi-direction translation models. In [21], Almahairi et
al. extend CycleGAN for learning a many-to-many mapping by combining images with
noises. Despite its ease of use, cycle loss does not assure any consistency in terms of
annotation which means labels of images can be flipped by the translation. Hoffman et al.
[7] proposed to use both cycle consistency and semantic consistency during the training.
However, this semantic constraint is not always accessible because it requires a pretrained
classifier of a similar dataset.

Another way to preserve the structural information after the transformation is to define
a shared latent space where domain-independent features are stored. In UNIT [6], Liu
et al. propose to break the translation into two stages: encoding the source image to
a latent code and then decoding this code to an image in the target domain. To gain
some control over features of the translated image, Huang et al. develop MUNIT as an
extension of UNIT, by splitting the latent code into two parts: content and style. With
this network, multimodal translation can be done by combining a content code of an image
with randomized style codes. The output images inherit content (or structure) from the
input image but differ in style (Eg. textures or colors). In DRIT++ [22], a similar idea to



MUNIT is introduced but differs slightly in style transformation techniques. Both MUNIT
and DRIT++ store image style in a completely entangled manner, they offer no control
over the style of output images despite their diversity. In this work, we extend MUNIT by
disentangling the style code without requiring any additional annotations or pretrained
networks.

2.2. Unsupervised disentangled representation learning
Learning the features of images in an unsupervised fashion has received attention from
the computer vision community for years.

Most methods in the early stage were based on restricted Boltzmann machines [23] and
stacked auto-encoders [24]. Models in [25] and [26] were proposed for semi-supervised
learning and achieved promising results on the MNIST dataset. In [27], a GANs-based
method were shown to represent the dataset in a code space where basic linear structures
are supported.

Another branch of research uses labeled data to learn disentangled representation. The
representation is divided into two parts: one for the given labels and on for other fea-
tures. Similar fashions of training can be found in different model structures such as
bilinear models [28], multi-view perceptron [29], variational autoencoders (VAEs) [30] and
adversarial autoencoder [31].

For minimizing the dependency on variation labels, weakly supervised methods were devel-
oped. Reed et al. [32] propose correspondence-based training strategies for a higher-order
Boltzmann machine consisting of hidden units groups and each group represent a factor
of variation. A similar technique is applied to VAE in [33] to manipulate brightness and
pose in images of 3D objects. These two methods share one drawback that they require
grouped data points which are difficult to collect in real-life applications.

There are not many works on completely unsupervised disentangled representation learn-
ing. In [34], hossRBM is introduced as a generalized version of spike-and-slab restricted
Boltzmann machine, which entangles variation factors using its higher-order interactions
on latent variables. However, the method is not effective in terms of computation cost.

In InfoGAN [35], Chen et al. develop an extension of GAN which maximizes the mutual
information between certain variables in the latent code and samples from an unlabeled
dataset. This technique enables the model to learn the disentangled representation of
images without asking for labels. In this work, we upgrade MUNIT with the mutual
information learning objective from InfoGAN to enable it to manipulate features of the
translated images.

3. Method

Our objective is to translate images from a source domain A to a target domain B, and at
the same time to learn the representation of the target domain. Following the idea called
partially shared latent space in [9], we assume that each image can be encoded as a content
code which contains general structural information and a style code which defines how the
image will look like. In the state-of-the-art methods, this style latent code is entangled. In
this work, we disentangle this style code by maximizing the mutual information between
this code and the generated image.

3.1. Network architecture
Let xA and xB be two images from domain A and B respectively. Our objective is
to learn a function FA→B that projects images from domain A to domain B, x̂A→B =



FA→B(xA). This function can be decomposed into parts: the encoder and the generator.
The encoder Ec

A extracts the content code cA from the image. The content code is a
matrix representing the content of an image independently of its style. The generator
GB generates images in domain B from an content code and a style code s : x̂A→B =
GB(cA, s) = GB(Ec

A(xA), [s′, i]). Since we want a one-to-many projection, a style code sB
is inputted in the generator to introduce variability in the generated images. The style
code s is a vector created by concatenating two parts s′ and i where s′ stores entangled
style of the generated images, i contains disentangled features of the generated images. s′

and i are drawn from a normal distribution N(0, I). The generator learns a function that
links the points from a Gaussian distribution to the different ways to apply the style of
domain B to a content code. In the same way, we define the function that projects images
from domain B to domain A with generator GA and encoder Ec

A. Notice that the content
space and style space are common to both domains. This is the generators that project
a couple of points from these common spaces to the image sub-spaces corresponding to
their domain.

For the learning of these functions, we need to complete our architecture with autoencoders
and discriminators. Autoencoders are used to reconstruct the original images from their
decomposition into a content code and a style code. Let Es

A (resp. Es
B) denote the encoder

that extracts from an image of domain A (resp. B) its style code sA = [s′A, iA] (resp. sB =
[s′B, iB]). The autoencoder of domain A is therefore defined by x̂A = GA(Ec

A(xA), Es
A(xA)).

Autoencoders are also used to reconstruct the content ĉA = Ec
A(GB(cA, s)) and style

codes ŝ = Es
B(GB(cA, s)). The discriminator DB is used to align the distribution of

images produced by the generator GB with the distribution of original images from domain
A. It is also used to disentangle the style variables contained in the vector i. In the
same way, we define the autoencoders x̂B = GB(Ec

B(xB), Es
B(xB)), ĉB = Ec

B(GA(cB, s)),
ŝ = Es

A(GA(cB, s)) and discriminator DA. Figure 1 shows the complete architecture of
InfoMUNIT.

3.2. Model learning

The training of our model consists to minimize a combination of reconstruction losses and
adversarial losses while maximizing the variational mutual information.

Similar to most auto-encoder based architecture, the encoders EC
A and ES

A compress input
images to content code and style code while the generator GA takes them to reconstruct
the original image from domain A. The image reconstruction loss LxA

rec makes sure the
encoder and decoder inverse each other. L1 loss is chosen for the image reconstruction as
it usually obtains well the sharpness of the reconstructed image. For the same reason, we
have similar reconstruction losses for content code LcArec and style code LsArec.

LxA
rec = ExA∼p(xA)[‖ GA(Ec

A(xA), Es
A(xA))− xA ‖1] (1)

LxB
rec = ExB∼p(xB)[‖ GB(Ec

B(xB), Es
B(xB))− xB ‖1] (2)

LcArec = EcA∼p(cA),s∼ p(s)[‖ Ec
B(GB(cA), s)− cA ‖1] (3)

LcBrec = EcA∼p(cB),s∼p(s)[‖ Ec
A(GA(cB), s)− cB ‖1] (4)
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Figure 1: Overview of InfoMUNIT. In this structure, each image is encoded by two
encoders into a style code and a content code, and reconstructed by a decoder (also

called generator). For translating an image from a domain to another domain, we firstly
extract its content code, then combine it with a random style code, and send them both

to the generator of the target domain. A part of the style code is used to store
disentangled features of output images. We also train a pair of discriminators to

distinguish between generated images and real images for each domain. The generators
are also trained to maximize the mutual information between features being extracted by

those discriminators and the disentangled part in the style code.

Lsrec = EcA∼p(cA),s∼p(s)[‖ Es
B(GB(cA), s)− s ‖1]

+ EcB∼p(cB),s∼p(s)[‖ Es
A(GA(cB), s)− s ‖1] (5)

where p(xA) (resp. p(xB)) is the distribution of images from domain A (resp. B), p(cA)
(resp. p(cB)) is the distribution of content code extracted from images from domain A
(resp. B), and p(s) is the distribution of style code that is the unit Gaussian distribution
N(0, I). Note that the distributions p(cA) and p(cB) are unknown and the learning set do
not contains examples of cA and cB., we need there fore to generate cA and cB samples
from the encoders and training images cA = (Ec

A(xA)) and cB = (Ec
B(xB)).

The objective of the adversarial losses associated to the discriminators is to align the
distributions of the real images with the distribution of the generated images. Like in
the GAN, the discriminators try to predict if an image is a real one or an artificial image
produced the generator. When the generators are frozen, the generators try to fool the
discriminators in generating images close to the real ones. The adversarial losses are



defined by:

LAadv = ExB∼p(xB),s∼p(s)[log(1−DA(GA(EC
B (xB); s)))]

+ExA∼p(xA)[logDA(xA)] (6)

LBadv = ExA∼p(xA),s∼p(s)[log(1−DB(GB(EC
A (xA); s)))]

+ExB∼p(xB)[logDB(xB)] (7)

where the output of the discriminator DA(x) (resp. DB(x) ) is the probability that the
image x is a real image from the domain A (resp. B).

Inspired by the idea of InfoGAN [35], we want a part of the style code to be disentangled
features of the output in order to control and improve the diversity of the translated
images. The style code is split into two parts s = [s′, i]. To encourage the subvector
i to represent disentangled features of the output, we maximize the mutual information
between i and the generated images.

I(i, GB(cA, [s, i])) and I(i, GA(cB, [s, i])) (8)

In practice, maximizing this mutual information is not achievable without access to the
distribution P (i|x) which is not available in our case. However, according to [36], we can
define an additional distribution Q(i|x) as an approximation of P (i|x), and get a lower
bound of the mutual information term. Thus we have:

I(i, GB(cA, [s, i])) ≥ Lmi(GB, QB) =

Ei∼p(i),xA→B∼P (GB(cA,[s′,i]))[logQB(i|xA→B)] (9)

Where p(i) is a normal distribution and P (GB(cA, [s
′, i])) is the distribution of the images

generated by GB with the style vector [s′, i]. In practice, QB shares the same layers of the
discriminator DB as they both extract features from GB(cA, [s

′, i]) . QB is implemented
as a secondary output of the discriminator DB that is notes î. This means the closer
the vector i and predicted vector î are, the more mutual information between i and the
generated image is achieved. In the same way, we define Lmi(GA, QA).

The learning of our model consists both to minimize the total loss w.r.t the encoders and
generators and to maximize it w.r.t the discriminators :

min
EA,EB ,GA,GB

max
DA,DB

L(EA, EB, GA, GB, DA, DB) =

LxA

dis + LxB

dis + λx(LxA
rec + LxB

rec) + λc(LcArec + LcBrec)
+λs(Lsrec)− λmi(Lmi(GA, QA) + Lmi(GB, QB)) (10)

where λx, λc, λs and λmi represent the importance of each loss. In our trainings, we set
λx = 10, λc = λs = λmi = 1 as the image reconstruction is the most important loss in our
structure.

4. Experiments

4.1. Implementation Details

Our network consists of a content encoder, a style encoder, a generator, and a discriminator
for each domain. We give the implementation details of each of these network.



4.1.1. Content Encoder

Input images are firstly led to the content encoder where they are down-sampled by strided
convolutional layers and further processed by residual blocks. We apply Instance Normal-
ization for all convolutional layers in the content encoder. The output of the content
encoder is the content code in a form of a tensor.

4.1.2. Style Encoder

Similarly, the style encoder also down-samples input images using strided convolutional
layers and a global pooling layer. A fully connected (FC) layer is applied to produce a style
code as a vector consisting of 8 digits, in which, 2 final digits represent the information
code (disentangled style) Ii of the image.

4.1.3. Generator

The generator takes content code and style code as inputs to reconstruct the initial input
image. The content code goes through residual blocks and upsampling layers. These
residual blocks are upgraded with Adaptive Instance Normalization (AdaIn) layers [37]
which receive style parameters from a multilayer perception (MLP) which has the style
code as its input.

4.1.4. Multi-purpose Discriminator

Our discriminator consists of two branches. The first branch is a traditional discrimina-
tor which can be found in most of the GAN-based models. The second branch consists
of convolutional blocks to learn the Q distribution. These two branches share the first
convolutional blocks.

4.1.5. Hyperparameters

In all our experiments in the paper, we apply Adam optimizer with β1 and β2 as 0.5 and
0.999 respectively. The learning rate is initially set to 0.0001, with a weight decay of 0.0001
applied every 100 thousand iterations. Our weight losses are λx = 10, λc = λs = λmi = 1.

4.1.6. Baselines

We compare our proposed method InfoMUNIT with following unpaired image-to-image
translation techniques: CycleGAN[19], MUNIT[9] and DRIT++[22]. The training proce-
dures of those methods are done using official source code and configurations provided by
their authors on GitHub.com.

4.2. Evaluation

We use three performance measures that estimate the quality and the diversity of the
generated images, to compare InfoMUNIT with the baselines.

4.2.1. Conditional Inception Score

Based on Inception Score (IS) [38], Huang et al. [9] introduced Conditional Inception Score
(CIS) specified for evaluation of multimodal image-to-image tasks. While IS measures the
quality and diversity of all generated images at once, CIS focuses on the diversity of images
that are translated from the same input image. Having multiple input images in the test
set, we compute CIS for each group of images generated from the same input, and finally,
take the mean CIS for the whole test set.



4.2.2. Frechet Inception Distance

Frechet Inception Distance (FID) [39] computes the distance between the set of generated
images and the set images in the target domain. It is computed by calculated the distance
between the Inception feature vectors for the two sets of images. Thus, FID can be used
for evaluating networks that are trained on specific datasets without requiring a classifier
pretrained on an alike dataset. The lower FID we have, the more realistic the generated
images are. Normally, those feature vectors are taken from the third pooling layer of the
Inception model which contains 2048 features. Due to the small size of our datasets, we
compute the distance using features of the second pooling layer containing 192 features.

4.2.3. LPIPS Distance

The translation diversity is also measured by LPIPS distance which is shown in [40] to
be highly correlated with human judgment. We compute LPIPS distance on generated
samples of each input image, then take the average value. The larger distance among
them, the more diverse they are.

4.3. Datasets

We use multiple datasets for evaluating InfoMUNIT and compare its performance with
state-of-the-art techniques on the task of image-to-image translation. Each dataset con-
tains two sets of images and our network is trained to transform images between the two
domains. We crop and down-sample all images to the size of 64× 64, in RGB-color mode.

4.3.1. Edges↔Shoes and Edges↔Bags

These two datasets contain images of shoes and handbags along with their edges, intro-
duced in the work of Isola et al. [12]. The edges↔shoes dataset contains 138667 pairs of
samples while the edges↔bags dataset contains 49925 pairs. From each dataset, we keep
200 pairs of samples for testing and the rest for training. Note that we do not use the
paired information of these two datasets.

4.3.2. Cats↔Dogs

The dataset is comprised of 1364 photos of dogs and 871 photos of cats, cropped to their
heads [22]. We keep 100 images from each set for testing while the rest is used for training.

4.3.3. Portraits (Painted↔Real)

This dataset consists of 1814 painted portraits and real 6452 portraits captured by cameras
[22]. We keep 100 images from each set for testing while using the rest for training.

5. Results

5.1. Image Quality

The qualitative comparison of InfoMUNIT and other methods is shown in Figure 2. The
objective of InfoMUNIT is to increase the diversity and ability to control features of
generated images compared to MUNIT and the state-of-the-art, while not hurting their
quality. As being shown in Figure 2, the quality of images generated by InfoMUNIT are
at least as good as the images from other methods. The result is confirmed in Table 1
where we apply FID to quantitatively evaluate the realism of the generated images. Even
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Figure 2: Random samples generated by our method and baselines, trained on two
datasets: edges→bags (left) and cats→dogs (right). The input images (and

ground-truths) are displayed in the first column. Other columns show random outputs of
baseline methods and InfoMUNIT.

Table 1: Frechet Inception Distance (FID). Lower value means better performance.

InfoMUNIT MUNIT CycleGAN DRIT++

edge2bag 2.81 2.56 4.23 1.69

bag2edge 7.68 8.52 58.53 5.64

edge2shoe 1.28 1.44 4.86 1.13

shoe2edge 4.69 8.83 88.03 4.24

dog2cat 9.24 13.48 2.56 21.59

cat2dog 6.31 6.31 2.02 18.14

paint2real 2.96 3.02 2.56 7.29

real2paint 8.60 8.51 3.97 18.85

Average 5.45 6.58 20.84 9.82

though InfoMUNIT does not out outperform other methods in terms of image quality in
any task, its performance is stable across all tasks. The performance of InfoMUNIT is
close to the best method for each datatset. InfoMUNIT gives performance equivalent or
better than MUNIT. This shows that the disentangled features have also an impact on
the quality of the images. Notice that DRIT++ is the best for the first four tasks but
totally fails in the last four tasks. This is illustrated by the strange dog images generated
by DRIT++ in the Figure 2. On the opposite, CycleGAN gives the best performance for
the last four tasks but is bad in the first four tasks and especially in the bag2edge and
shoe2edge tasks. On average, InfoMUNIT achieves the best FID value among the four
image-to-image translation methods. The good quality of images generated by InfoMUNIT
is stable on multiple datasets.

5.2. Image Diversity

Table 2 and Table 3 respectively shows the CIS and LPIPS scores that evaluate the
diversity of generated images. CycleGAN is not a multimodal method, it can generate
only one output from one input so it does therefore not appear in this table. The LPIPS
and CIS scores of InfoMUNIT are clearly superior to the scores of DRIT++ and MUNIT.
The only exceptions are for the shoe2edge task where the LPIPS of DRIT++ is higher and
for the real2paint task where the LPIPS of MUNIT is higher. In both cases the LPIPS
of InfoMUNIT is very close to the best score and still higher than the LPIPS of the third



Table 2: LPIPS distance. Higher value means better performance.

InfoMUNIT MUNIT DRIT++

edge2bag 3.00 2.07 2.13

bag2edge 2.01 1.07 1.60

edge2shoe 2.35 2.23 1.76

shoe2edge 1.44 1.00 1.51

dog2cat 2.24 1.97 1.11

cat2dog 2.65 2.24 1.09

paint2real 1.96 1.91 1.74

real2paint 2.14 2.26 1.14

Average 2.40 1.88 1.51

Table 3: Conditional Inception Score (CIS). Higher value means better performance.

InfoMUNIT MUNIT DRIT++

edge2bag 0.42 0.29 0.30

bag2edge 0.35 0.04 0.22

edge2shoe 0.26 0.24 0.22

shoe2edge 0.24 0.00 0.12

dog2cat 0.32 0.32 0.04

cat2dog 0.30 0.28 0.03

paint2real 0.25 0.25 0.11

real2paint 0.33 0.30 0.06

Average 0.31 0.21 0.14

method. Over all datasets, the scores of InfoMUNIT are significantly better than the other
methods. Figure 3 and Figure 4 illustrate the higher diversity of InfoMUNIT compared to
MUNIT. This results show that InfoMUNIT generates significantly more diverse outputs
than MUNIT and DRIT++.

5.3. Controlling Features

In this subsection, we show the advantage of InfoMUNIT over its predecessor MUNIT in
manipulating features. From Figure 3, we can observe that varying values of style code
in MUNIT can lead to slight changes like color of the object. With InfoMUNIT, we can
significantly manipulate the features of the object. The first disentangled feature controls
the size of the bag and the second one control the color from white to black. We also
notice that InfoMUNIT is able to propose different textures of the bag.

The performance of InfoMUNIT on the edges→shoes task is illustrated in Figure 4 and
Figure 5. While MUNIT can only change some small details of the shoes, we can signif-
icantly manipulate the color of the shoes with InfoMUNIT. Varying the first info style
code makes the color changed from bright to dark, while varying the second one changes
the color from cold to warm. In Figure 4, we can see that the first info style code is also
responsible for the style of the shoes. From the left to the right, it turns a sneaker to a
pump and makes it darker at the same time. This effect makes sense as pumps are more
likely to have dark colors than sneakers.

Please note that the value of each disentangled feature in this test is plotted from −2 to 2
instead of −1 to 1 in the training phase, which means the generator is receiving style code
values that it has never seen before. This explains why the images on the border looks a



(a)	Input

(b)	Varying	two	last	digits	of	style	code	of	MUNIT

(c)	Varying	two	last	digits	of	style	code	of	InfoMUNIT

Figure 3: Manipulating two last digits in the style code of MUNIT and InfoMUNIT on
edges→bags task.

(a)	Input

(b)	Varying	two	last	digits	of	style	code	of	MUNIT

(c)	Varying	two	last	digits	of	style	code	of	InfoMUNIT

Figure 4: Manipulating two last digits in the style code of MUNIT and InfoMUNIT on
edges→shoes task.

bit extreme.

5.4. The length of information latent code

We perform some experiments to investigate the impact of the length of information latent
code i on the generated images in varying this value from 1 to 8. Table 4 shows some of
these results on the edge2shoe datasets. We see that the FID, CIS and LPIPS weakly vary
with the length of i. We conclude from these results that the quality and diversity of the
generated images by InfoMUNIT are robust to the length of the information latent code.

6. Conclusion

We proposed an extension of MUNIT called InfoMUNIT which can manipulate features of
the translated images. Our method is demonstrated in multiple image-to-image translation
tasks. It achieves comparable translated image quality to state-of-the-art approaches
and outperforms them in terms of outputs diversity. Moreover, our method improves
the control of the user on the generated images, this kind of tool can make the image
manipulation method more usable for real life applications.



(a)	Input

(b)	Outputs	generated	by	InfoMUNIT	

Figure 5: Combination of the two last digits in the style code of InfoMUNIT on
edges→shoes task. From left to right (b), we vary the value of the first information

latent code. From top to bottom, we vary the second one.

Table 4: Performance of InfoMUNIT with different lengths of information latent code.

Length of i 1 2 4 6 8

FID 2.99 2.81 3.19 3.11 3.37

CIS 2.59 3.00 3.64 3.61 3.65

LPIPS 0.42 0.42 0.47 0.47 0.46
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Titre: Réalisation d’une Aide au Diagnostic en Orthodontie par Apprentissage Profond
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formation d’Image; Few-Shot Learning

Résumé: L’analyse et le diagnostic précis à
partir d’images dentaires sont un facteur es-
sentiel de la réussite des traitements orthodon-
tiques. De nombreux procédés de traitement
d’image ont été proposés pour résoudre ce prob-
lème. Cependant, ces études fonctionnent prin-
cipalement sur de petits ensembles de don-
nées de radiographies dans des conditions de
laboratoire et ne sont pas vraiment applica-
bles en tant que produits ou services complets.
Dans cette thèse, nous construisons des mod-
èles d’apprentissage profond pour diagnostiquer
des problèmes dentaires tels que la gingivite et
les dents chevauchées à l’aide de photos prises
par de téléphones portables. Nous étudions les
couches cachées de ces modèles pour trouver les
forces et les limites de chaque méthode. Nous
proposons un pipeline complet intégrant le pré-
traitement des images, l’apprentissage du mod-
èle et le post-traitement des résultats pour créer
un processus d’analyse complet prêt à être mis

en production en situation réel. Afin d’améliorer
la fiabilité des modèles, nous avons étudié dif-
férentes méthodes d’augmentation des données,
en particulier les méthodes d’adaptation de do-
maine en utilisant des approche de transfert
d’images, à la fois supervisée et non supervisée,
et obtenons des résultats prometteurs. Les ap-
proches de transformation d’images sont égale-
ment utilisés pour simplifier le choix des ap-
pareils orthodontiques par les patients en leur
montrant à quoi pourraient ressembler leurs
dents pendant le traitement. Nos méthodes per-
mettent de générées des images réalistes et en
haute définition. Nous proposons également un
nouveau modèle de transformation d’image non
supervisé qui peut manipuler les caractéristiques
de l’image sans nécessiter d’annotation supplé-
mentaire. Notre modèle surpasse les techniques
de pointe sur plusieurs applications de transfor-
mation d’images et est également étendu pour
les problèmes de « few-shot learning ».
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Title: Realization of a Diagnostic Aid in Orthodontics by Deep Learning

Keywords: Orthodontics; Diagnosis; Deep Learning; Domain Adaptation; Image-to-Image
Translation; Few-Shot Learning

Abstract: Accurate processing and diagno-
sis of dental images is an essential factor de-
termining the success of orthodontic treatment.
Many image processing methods have been pro-
posed to address this problem. Those studies
mainly work on small datasets of radiographs
under laboratory conditions and are not highly
applicable as complete products or services. In
this thesis, we train deep learning models to di-
agnose dental problems such as gingivitis and
crowded teeth using mobile phones’ images. We
study feature layers of these models to find the
strengths and limitations of each method. Be-
sides training deep learning models, we also em-
bed each of them in a pipeline, including pre-
processing and post-processing steps, to create
a complete product. For the lack of training

data problem, we studied a variety of methods
for data augmentation, especially domain adap-
tation methods using image-to-image transla-
tion models, both supervised and unsupervised,
and obtain promising results. Image transla-
tion networks are also used to simplifying pa-
tients’ choice of orthodontic appliances by show-
ing them how their teeth could look like dur-
ing treatment. Generated images have are re-
alistic and in high resolution. Researching fur-
ther into unsupervised image translation neural
networks, we propose an unsupervised image-
to-image translation model which can manipu-
late features of objects in the image without re-
quiring additional annotation. Our model out-
performs state-of-the-art techniques on multiple
image translation applications and is also ex-
tended for few-shot learning problems.
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