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CHAPTER 1

1.1 Introduction

In pursuit of customisation and smartness in the manufacturing industry, continuous in-
depth integration of digital and intelligent manufacturing technologies led to the concept
of smart manufacturing [1, 2]. Meanwhile, the development of modern information
technologies also initiated and enriched various paradigms of smart manufacturing, such
as digital twin, Industry 4.0, cloud manufacturing and IoT-enabled manufacturing [2, 3].
As shown in Fig. 1.1, smart manufacturing can generate enormous benefits spanning
across the entire manufacturing life cycle, including intelligent maintenance, procedure
optimisation, and process modelling.[4, 5]

. 7 S .
mtigont 56 ok bk (o

industrial

= Intelligent maintenance
Smart = Procedure optimisation
manufacturing » Manufacturing predictive modelling

Za

Manufacturing ]
technology e

Machining Product Design Tolerance analysis

Figure 1.1: Smart manufacturing concept and applications [1].

As a fundamental topic of smart manufacturing, manufacturing predictive mod-
elling (MPM) aims to construct high-fidelity predictive representations of the con-
cerned properties of products, processes or manufacturing systems, such as the health
conditions of machine tools, the surface roughness of products, or the milling dynamic
stability states, as shown in Fig. 1.2 [6, 7]. A well-established predictive model is nec-
essary for subsequent process optimisation and decision-making [8]. Take for example
composite manufacturing, the large size, complex shape and high accuracy requirements
of aerospace composite parts impose increasing demands on deformation control during
curing process [9]. Therefore, constructing the predictive model from the curing tem-
perature to the final deformation field can provide essential support for further curing
process optimising [10, 11].

Traditional mechanism-based modelling methods aimed to construct the basic
functional form to describe the nonlinear manufacturing process based on a series of
physical and chemical laws or mechanisms [12]. Different mechanism models have been
developed and widely applied in simulating the manufacturing systems and processes,
such as the dynamic milling model [13] and the thermochemical curing model of com-
posites [14]. Since manufacturing processes are always accompanied by a large number
of non-linear multi-physics dynamics, mechanism-based modelling contains inevitable
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Figure 1.2: Manufacturing predictive modelling

assumptions and simplifications, and sometimes ill-posed solutions due to the limited
capacity of describing complex manufacturing processes [3]. Therefore, it is of great
difficulty or even impossible to establish accurate mechanism models [15].

With the substantial developments of machine learning techniques, data-driven
modelling, which can learn the relationships between complex influence factors and
concerned properties from collected data, has gained considerable attention in both aca-
demic and engineering fields [4, 16]. MPM problems can be categorised as supervised
learning tasks, where model training requires labelled data, meaning that each data sam-
ple contains the input, also known as the feature, and an associated output label [17]. In
contrast to mechanism-based models, data-driven models can establish precise nonlin-
ear relationships between inputs and outputs with powerful expressive capacity, with-
out requiring assumptions of mechanisms or formulas. Therefore, different data-driven
modelling methods have been developed and applied in various MPM problems, such as
composite deformation analysis [18], milling stability analysis [19] and tolerancing for
additive manufacturing [20].

However, the high performance and generalisability of data-driven modelling meth-
ods heavily rely on significant amount of labelled data [21]. Although advanced sensors
and high-speed communication techniques enable companies to collect massive data of
manufacturing process, these data can truly enable and promote smart manufacturing
only when labelled with meaningful information [22]. Nevertheless, it is usually ex-
pensive and time-consuming to label manufacturing data both computationally and ex-
perimentally. Taking composite manufacturing as an example, a complete curing state
simulation of a typical aerospace composite part (e.g. the wing skin of the Boeing 787)
requires several hours or days [10], and the actual curing experiments are even more
expensive for accumulating labelled data [23]. To train a data-driven cutting tool dy-
namics prediction model, it would take weeks to carry out a large amount of impact
testing experiments manually for label collection [24, 25]. Besides, in the era of cus-
tomised manufacturing, the variable configuration and flexible requirements make it
impossible to collect sufficient labelled data for all potential manufacturing configura-
tions [6, 26]. Therefore, establishing data-driven MPM models with limited labelled data
is an inevitable challenge for the development of smart manufacturing technologies [27,
28].

Therefore, this research focused on data-driven manufacturing predictive modelling
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under data scarcity. Generally speaking, the information carried in the data set directly
determines the upper bound of the performance of the data-driven models, especially
in circumstances of data scarcity. Previous researchers focused on how to train a data-
driven model based on given dataset. This presupposition deprives us of the possibility of
actively exploiting the data-generating process. Therefore, by reassessing the complete
process from data generation to data modelling, this project proposed to solve the data
scarcity challenge from the following perspectives:

« If only a small number of labelled data can be collected, how to collect a better
dataset that can benefit model training?

« In cases where labelled data is insufficient, how to leverage other related data or
mechanisms to enhance the performance of the data-driven model?

1.2 Global overview and literature review

1.2.1 The concept of smart manufacturing

The fourth industrial revolution was formalised in the mid-2000s and today has become
the heart of the development of the more than ever globalised world industry [29]. This
revolution started with the advent of information, and its dissemination through com-
munication at the heart of the so-called industry 4.0, finally promoting the generation
and development of smart manufacturing,.

Scholars and institutions have given several interpretations of smart manufacturing
concerning different application scenarios and perspectives. Tao et al. [30] described
smart manufacturing aims to convert data acquired across the product lifecycle into man-
ufacturing intelligence in order to yield positive impacts on all aspects of manufacturing,
where the key element is data and the enabler is manufacturing intelligence, namely the
fusion of machine learning and manufacturing. Similarly, Jianrong et al. [1] described
the connotation of smart manufacturing as the integration of both manufacturing and
intelligent technologies to solve manufacturing problems.

Lu et al. [31] defined smart manufacturing as fully-integrated, collaborative and re-
sponsive operations that respond in real time to meet changing demands and conditions in
the factory, in the supply network, and in customer needs via data-driven understanding,
reasoning, planning, and execution of all aspects of manufacturing processes, facilitated by
the pervasive use of advanced sensing, modelling, simulation, and analytic technologies.
This definition points out the various application scenarios, data-driven solutions and
also potential sources of data. Wallace and Riddick [32] described smart manufacturing
as a data-intensive application of information technology at the shop floor level and above
to enable intelligent, efficient, and responsive operations.

Recent research brought more connotations to smart manufacturing toward sustain-
able, resilient and human-centric [33]. Andrew et al. [34] pointed out that resiliency and
sustainability in smart manufacturing are worthy of business consideration, and then
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introduced several trends of data-driven manufacturing resiliency. Research in human-
centric smart manufacturing focused more on the integration of human-in-the-loop with
technologies, to address challenges of human-machine relationships based on human-
generated data and product-sensed data [35].

Despite the slight differences in the above definitions, it is indisputable that data is
the irreplaceable fuel and advanced data modelling methods are the enablers for smart
manufacturing. Smart manufacturing can meet the demands in various applications,
including factory level [36, 37], supply chain level [38, 39] and manufacturing process
level[40, 16]. This research aimed to develop advanced data-driven techniques for man-
ufacturing predictive modelling.

1.2.2 Data-driven technologies in smart manufacturing

With the increasing complexity of manufacturing systems, traditional mechanism-based
modelling cannot satisfy the above-mentioned requirements for smart manufacturing.
Data-driven manufacturing utilises data analytics and machine learning techniques to
exploit the data from manufacturing to refine the manufacturing process, improve the
flexibility and smart level of manufacturing [30]. Different data-driven smart manu-
facturing frameworks have been developed by previous researchers to provide support
and guidance for the application of data-driven techniques [4]. This section will review
the two development stages of data-driven smart manufacturing frameworks, and then
analyse their characteristics and limitations.

In the early stage of developing a data-driven smart manufacturing framework, many
researchers focused on the data perspective regarding the life cycle of data from the
manufacturing system and the data processing techniques. Tao et al. [30] introduced
a manufacturing data life cycle from data collection, data storage, and data processing
to final data application, as well as the key techniques of each step. Based on this, they
developed a data-driven smart manufacturing framework consisting of the manufactur-
ing module, data-driven module, real-time monitoring module, and problem processing
module. Majeeda et al. [41] proposed a similar big-data-driven smart additive manufac-
turing framework by defining the whole data flow in the manufacturing cycle.

These frameworks described the behaviour flows of data in the manufacturing sys-
tem, thus deepening the understanding of the significance of data. Furthermore, as
shown in Fig. 1.3, Wang et al. [42] proposed a framework of big-data-driven smart
manufacturing by combining ’correlation’, 'prediction’ and ’regulation’, which meant
analysing the correlation from the perspective of data, predicting with machine learning
methods, and optimising process based on the prediction results. Kong et al. [22] de-
veloped a data construction framework that integrated data collecting with subsequent
data organisation and data representation.

These data-perspective frameworks provided valuable guidance for various manu-
facturing applications [43]. However, despite these achievements, various shortcomings
of these pure data-driven modelling methods, in particular deep learning algorithms,
have drawn more attention to the additional problems in manufacturing predictive mod-
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Figure 1.3: The framework of big data-driven intelligent manufacturing. [42].

elling. First, the requirements for the huge amount of labelled data bring non-negligible
labelling costs. Furthermore, there is still a lack of understanding about the interpretabil-
ity and reliability of data-driven modelling [44]. Recent researchers also started to think
that it may not be wise to ignore existing mechanism knowledge in pursuing purely
data-driven modelling. Based on this inspiration, physics-informed data-driven mod-
elling was proposed in machine learning and different engineering scenarios, including
manufacturing predictive modelling [45]. The term ’physics’ here refers to a general
concept that includes not only physical and chemical laws, but also mechanistic for-
mulas and well-studied prior knowledge. For manufacturing problems, the empirical
knowledge about process parameters and machining equipment can also be defined as
‘physics’ for improving pure data-driven models.

Recent MPM research started to leverage physics knowledge to improve the inter-
pretability of data-driven models and reduce data requirements [46]. As shown in Fig.
1.4, Mozaffar et al. [47] introduced Mechanistic Artificial Intelligence for manufacturing
process, defined as the methods that combined the raw mathematical power of Al meth-
ods with mechanism-driven principles and engineering insights. Similarly, Wang et al.
[46] reviewed several data-physics combination strategies and defined a Hybrid Physics-
based and Data-driven framework for smart manufacturing. The three defined modelling
schemes were physics-informed machine learning, machine learning-assisted simula-
tion, and explainable artificial intelligence. Greis et al. [48] developed a physics-guided
self-aware approach that used numerical experiments to enhance the performance of
the data-driven model of experimental data. Similarly, Saha et al. [49] proposed a Hi-
erarchical Deep Learning Neural Netowrk that combined data and physics on different
levels, as shown in Fig. 1.5.

Although various information was defined as "physics’ in the above research, the de-
tailed form of "physics’ and its influence on modelling remains unclear. For example, the



DATA MODELLING FOR SMART MANUFACTURING: CONTEXT AND CHALLENGES

Process
Modeling

Muitiphysics modeling
Calibration &
Validation

Physical
mechanisms

Q( Data Physics- ))
generation informed

Mechanistic \‘ / Data-driven

features \ / discovery
Proc'ess Al methods Process
Design Control

Figure 1.4: Mechanistic Artificial Intelligence (Mechanistic-Al) for advanced manufacturing processes.
[47]

Challenging Problems Al Solutions
Data Collection
Type 1: z .
Purely data- rr-:gature_Engllnierlr!g
driven pra Reg o
Classification
‘3 Type 2: Data Collection HIDe_N_N:
= 0 Mechanistically Feature Engineering A unified
o insufficient Di ion Reductii Al
2, problems with Regression
= limited data framework
Type 3: Data Generation
K i 11\% Feature Engineering
¢ e
prloblems Reduced Order Mod:

Regression
Classification
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mechanism or physics formulas can be interpreted and generalised. But these properties
will degrade when we use these models to generate simulation data. Some simulation
software tools have been developed based on the physics and mechanism of manufac-
turing process, such as Vericut for cutting simulation [50] and Comsol for composite
curing simulation [26]. Although the simulation models are mechanism-based, the sim-
ulated data can also be used to support the building of data-driven MPM models. The
milling stability model follows the dynamic equilibrium equation strictly [13]. But after
simulating the discrete milling stability data from the model, the simulation data cannot
provide the milling state prediction for the cutting parameters out of the distribution
[51]. That means that simulation data cannot hold the interpretability and generalisabil-
ity of the original physics model. Therefore, simulation data and physics formulas have
different characteristics and deserve different treatment, although they are both defined
as 'physics’ information in previous research. A well-designed framework should care-
fully distinguish between the generalisable physics information and non-generalisable
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simulation data, as well as other available data from the manufacturing system.

The previous research in data-driven manufacturing frameworks had deeply inves-
tigated the life cycle of data and revealed that the widely recognised data scarcity prob-
lem restricted further applications of data-driven manufacturing. The previous research
showed that the integration of physics knowledge could be a potential solution for data-
driven manufacturing under data scarcity [49, 47]. For example, the cutting force model
can be used to design the specific neural network [52], the milling dynamics model can be
used to compensate for the insufficient chatter experimental data [19]. However, there
is a lack of a systematic framework that clearly analyses the characteristics of different
available information and the practicable techniques that can make full use of various
types of data. This is one of the gaps addressed by this research.

1.2.3 Manufacturing process data and modelling techniques

As a fundamental topic of smart manufacturing, data-driven MPM aims to build the pre-
dictive model of the concerned properties of manufacturing based on the input data of
interest [6]. Therefore, data-driven MPM can be categorised as supervised learning,
which is defined as the machine learning task of learning a function that maps an input
to an output based on the given input-output pairs [53, 54]. The input and output are
defined as features and labels respectively, and their combination is named labelled data
[54]. The effectiveness of data-driven MPM depends on both the data and the modelling
approach. Therefore, this section will first introduce manufacturing process data collec-
tion and analyse the characteristics of different data. After that, a series of data-driven
modelling methods and their applications are provided in detail.

1.2.3.1 Manufacturing process data collection

Data collection is the foundation of data-driven MPM. The manufacturing data may
come from online monitoring, offline measurement, simulation or historical accumu-
lation. The cost and quality of data collection will influence the selection of modelling
as well as the potential application scenarios [54]. This section will introduce the related
work about manufacturing data from different sources. Besides, the characteristics of
data are also analysed to reveal their influence on the subsequent modelling.

(i) Data collection from online monitoring

The development of sensory techniques enables real-time collection of various phys-
ical signals from manufacturing system, namely online monitoring [55]. Since the setup
and embedding of sensors do not interfere with the manufacturing process, online mon-
itoring can record the evolution of the concerned attributes completely during the man-
ufacturing process [56, 57].

For milling or turning scenarios, the cutting force during material removal can lead
to variable current and power of the spindle and feed axes, thus the machining process
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can be monitored by the current and power sensors installed on machine tools [15]. At
the same time, since the cutting force will cause the vibration of the cutting tool, work-
piece, and then the vibration of the air, the machining process can also be monitored by
installing an acceleration sensor on the part, or setting up a microphone sensor to moni-
tor the acoustic signal [56]. Fig. 1.6a shows an acoustic monitoring example for milling.
Fig. 1.6b and Fig. 1.6c are advanced milling process monitoring sensors, namely 3D
piezoelectric technique from Precision Drive Systems [58] and rotating dynamo-meters
from Kistler [59], respectively.

a. Acoustic monitoring b. Vibration monitoring ¢. Rotating force monitoring

Figure 1.6: Data collection by online monitoring.

For the curing of composites workpiece, the curing degree, viscosity, flowing and
other properties of the resin will change along with the variable external heat and pres-
sure [60]. At the same time, the thermal expansion and chemical shrinkage of the mate-
rial will also lead to the inevitable curing stress [61]. Monitoring these properties with
thermocouples [62], Fiber Bragg Grating (FBG) or other advanced sensors is necessary
for the quality control and process optimisation of CFRP curing [63].

The increasing number of sensors and the sampling frequency of the equipment make
it possible to build large-scale monitoring data for almost all manufacturing processes,
including structural part milling[64] and metal additive manufacturing[65]. Although
monitoring data can comprehensively describe the real changing process of physical
properties in the manufacturing process, the low value-density and the big volume bring
significant challenges for data processing and data modelling [66]. Meanwhile, the high
volume of monitoring data does not mean sufficient information for manufacturing pre-
dictive modelling. These data can only enable and promote smart manufacturing when
labelled with meaningful information [40]. Normally, the monitoring data play the role
of input feature of deep learning models to predict the attributes of interest.

In summary, the monitoring data is usually big volume, and easily accessible because
of advanced sensors. But the value density is relatively low and thus requires further data
mining and data processing to obtain useful labelled data. Besides, the online monitoring
data is used as the input feature for predictive modelling, which means these data have
to be labelled with other concerned information.
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(ii) Data collection from offline measurement

Offline measurement refers to the targeted manual data collection during the period
out of manufacturing behaviour, such as the idle state of manufacturing equipment [67],
and when carrying out quality assessment of manufactured products [68]. Generally,
specialised equipment will be utilised to collect the data that characterise the key prop-
erties of manufacturing systems or products, and these data can potentially contribute
to assessing or optimising the manufacturing process.

The key properties of products include geometrical information [69], mechanical
properties [70] and other indicators that can be used to evaluate the performance of the
manufacturing process. For milling operations, the geometrical data collection consists
of the interim geometrical measurement of the workpiece and the final quality assess-
ment after machining [71]. The concerned indicators include the dimensional deviations
measured by Coordinate Measurement Machine, and the surface texture from the rough-
ness tester [72]. For additive manufacturing process, the X-ray computed tomography
(XCT) is widely used for its ability to reconstruct the internal structures of the work-
piece [73]. Besides the geometrical information, the mechanical properties, material
characterisation and micro-morphology have also received a lot of attention in additive
manufacturing [74].

The key properties of a manufacturing system include the equipment parameters,
healthy state or other internal indicators that can reflect or influence the manufacturing
process [55]. Take an industrial robot as an example, the kinematics parameters, dynam-
ics parameters, and the load capacity of the end effector are all influential parameters
for robot welding [75] or robot polishing [76]. For a machine tool, the pose-dependent
dynamics [77], tool wears [78] and the repeatability [79], are properties considered by
engineers and researchers.

The above-mentioned key properties of the manufacturing system are usually the
target or the labels in predictive modelling. The effectiveness of data-driven models
heavily relies on sufficient labelled data. However, it is normally expensive and time-
consuming to collect sufficient above key property labels because of the expensive mea-
surement equipment, complex measurement procedures and even strict requirements
of operations [80]. For the tool wear prediction problem, the input feature is the mon-
itoring signal, and the output label is the tool wear value. The combination of signal
data and the corresponding tool wear constitute a labelled sample. As shown in Fig.
1.7, to measure the tool wear of milling, the machine tool has to be stopped first, then
the cutting tool is removed from the spindle and fixed in front of a special microscope
[80]. Engineers have to find both the original boundary and the broken boundary of
the blades, and then calculate the final wear value. It will take more than 10 minutes to
collect one tool wear label.

Fig. 1.8 shows an example of collecting the pose-dependent tool tip dynamics of a
five-axes machine center [24]. Tool tip dynamics, including natural frequency w, damp-
ing ratio £ and stiffness K, are very important for chatter suppression in machining com-
plex parts like the aero-engine impeller. In the machine’s workspace defined by three
linear axes (X, Y, Z) and two rotating axes (A, C), the tool tip dynamics (w, &, K') usu-
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Figure 1.7: Tool wear measurement using microscope. [80]

ally varies at different positions, thus the data-driven model f that maps (X, Y, Z, A, C)
to (w, &, K) is required for predicting the pose-dependent dynamics. The input feature
of this case refers to the coordinates of the machine tool, and the output labels are the
corresponding tool tip dynamics. The data pair of the coordinate and the tool tip dy-
namics constitute one labelled sample. Since the workspace of the machine tool is huge,
for each tool-holder assembly, the machine has to be turned off for a couple of weeks
to carry out a large amount of impact testing experiments manually for label collection
in different coordinates[81]. Moreover, a CNC machine usually has more than one hun-
dred frequently used tool-holder assembles. Therefore, it is impossible to collect enough
tool tip dynamics data in real manufacturing practice [24].

Various tool-holder
assembles

Manual impact testing overall the whole workspace for data collection

Signal collection

(w;, &, K;) identification
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Figure 1.8: Machine center pose-dependent dynamics measurement. [24]

To sum up, the key properties of manufacturing processes can be defined as the
to-be-predicted labels in data-driven MPM problems, such as the above-mentioned tool
wear value. These property data are normally collected from ineffective offline manual
measurements with specialised instruments, which means that it is difficult to collect
sufficient labelled data for real applications.

(iii) Data collected from simulation

With the continual deep understanding of manufacturing processes, various simula-
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tion software tools have been developed based on mechanism knowledge, which further
benefits manufacturing process analysis and optimisation. Multi-body dynamics (MBD)
models can analyse the kinematics and dynamics of manufacturing systems, including
industrial robots and machine tools [82]. Fig. 1.9 shows an example of machine center
pose-dependent dynamics simulations. The complexity of machine tool brings signifi-
cant computational efforts for the simulation data generation. Finite element analysis
softwares are widely used in simulating metal cutting [83], additive manufacturing[84]
and composite curing[85]. Simulation data has also plays important roles in data-driven
MPM. For example, surrogate model based optimisation requires simulation data to train
a high-fidelity replica of the simulation process for the iterative process optimisation
[86]. Compared with experimental data, simulation data have its own characteristics
in accuracy and low collection cost, thus deserves different processing in data-driven
MPM.
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Figure 1.9: Machine center pose-dependent dynamics simulations. [82]

Manufacturing process simulation offers various complementary advantages com-
pared with online monitoring and offline measurement. Firstly, online monitoring places
high demands on the locations of sensors and the working environment. During the
milling process, the cutting tool rotates and interacts with the workpiece, thus bringing
great difficulties to the setup of accelerometers. At the same time, the cutting environ-
ment with metal chips and coolant cannot meet the high requirements of many sensors
[87]. On the contrary, advanced finite element models can comprehensively simulate
tool vibration [88], and chip formation mechanism [83]. Secondly, the setup of specific
sensors may bring negative impacts on the performance of the product. During com-
posite curing, the Fiber Bragg Gratings (FBG) sensors used to measure the temperature
and degree of cure will be part of the workpiece after curing, thus bringing inevitable
influences to the mechanical properties of the workpiece [89]. FE software tools allow
a complete simulation of the internal properties and thus can be the complementary
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information for monitoring data.

However, manufacturing simulation techniques still have some noteworthy limita-
tions. Because of the complexity of the manufacturing process, simulation systems gen-
erally focus on the primary mechanism of the process, thus leading to inevitable as-
sumptions, simplifications and approximation [82]. For example, during the simulation
of machine tool dynamics, the FE models have to make assumptions about the joints by
experience because it is difficult to obtain the interfaces and joint parameters between
components [81]. For the cutting deformation simulation of aircraft structural parts, the
initial residual stress inside the stock workpiece is unpredictable, thus the distribution
of stress is generally designed based on experience, which brings inevitable inaccuracy
in predicting the final deformation [90].

Another limitation of manufacturing simulation is the trade-off between computa-
tional cost and model accuracy. Theoretically, numerical simulation can output high-
fidelity solutions, which require expensive computing resources and time. For example,
the FE model of a machine tool has a very large order, typically 1,000,00 degrees of free-
dom, which brings time-prohibitive simulation . Therefore, it is impossible to build the
pose-dependent dynamics analysis model using full simulation. A practical solution is
reduced order FM modelling which seeks the balance between fidelity and computa-
tional cost by reducing the degree of freedom of the model [82]. Another example is the
composite part curing shown in Fig. 1.10. The computation time and cost will signifi-
cantly increase with the higher fidelity, and it will take several hours or days to conduct
the complete 3D thermo-chemical analysis of the wing skin of the Boeing 787 [85]. The
balance between fidelity and cost reflects the fact that in data-driven MPM problems, the
generation of data should depend on the accuracy and quantity of data required for the
purpose of modelling.
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Figure 1.10: Trade-off between simulation time and accuracy for thermo-chemical analysis of composite
parts. [85]

In summary, the simulation data can provide a complete representation of the man-
ufacturing process without restrictions on experimental conditions, but there exist in-
evitable assumptions, simplifications and approximations about the manufacturing pro-
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cess. Besides, the trade-off between computation accuracy and cost means that simu-
lation data can be generated with different fidelity based on different purposes of the
application scenarios. High-fidelity data and low-fidelity data can play different roles in
data-driven manufacturing predictive modelling.

1.2.3.2 Data driven modelling methods

Data-driven modelling technologies have been applied in manufacturing predictive mod-
elling in the 20th century, even before the concept of smart manufacturing [91]. The de-
velopment of modern information technologies has breathed a new lift into data-driven
modelling. Early data-driven studies used statistical approaches to analyse the effects
between parameters. For example, the Response Surface Method was proposed to in-
vestigate the relationship between several explanatory variables and one or more re-
sponse variables [92]. This method was used early in chemistry and biology, and later
also applied in tool wear prediction, surface-roughness modelling [93], and other man-
ufacturing scenarios [91]. Another related approach is the surrogate model, also called
metamodel or emulator [94], which refers to constructing an approximation model of
collected data from experiments or simulations instead of the engineering process [95].
For example, Gustave et al. [96] built a surrogate model for additive manufacturing to
predict the melt pool depth under the given laser power, scan speed, and laser beam size
combination. Despite the different names, the above two approaches essentially belong
to data-driven modelling approaches.

This section will first present two of the representative supervised machine learning
methods that are widely used in data-driven MPM, namely neural network and Gaus-
sian process regression, and then introduce deep learning based modelling methods.
The characteristics and limitations of these methods are also discussed.

(i) Neural network based manufacturing predictive modelling

Neural Network (NN) is widely used in data-driven modelling, especially for regres-
sion problems with low dimensional inputs [97]. A standard neural network consists of
the input layer, multiple hidden layers and the output layer. These layers are connected
by trainable weight parameters, and the non-linear activation function of the neurons
enables the neural network to fit non-linear functions with high accuracy. After ob-
taining labelled data, the features are fed into the network to perform forward matrix
computation for obtaining the predicted label. The loss function can be calculated by
comparing the predicted labels with the actual labels, and the network parameters can
then be continuously updated by minimising the loss function using gradient descent
[98].

For the fully connected neural network, the number of trainable parameters will in-
crease exponentially as the input dimension increases. More parameters will enlarge
the hypothesis spaces of the model and bring significant difficulties to model training.
Therefore, the fully connected neural network is more suitable for tasks with low input
dimensions. For example, As shown in Fig. 1.11, Postel et al. [99] proposed a neural
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network to predict the relationship between the input cutting parameters (spindle speed
and cutting depth) and the unknown cutting coefficients, including the linear tangen-
tial and radial cutting coeflicients. In this case, the label is not the direct output of the
network layer, but the stability results predicted using the network output. Since the
stability prediction is non-differentiable, this neural network cannot be trained using
the gradient descent method. The parameters of the network were updated using the
genetic algorithm to reduce the loss between the predicted stability results and the ex-
perimental results. Since this neural network has only two-dimensional input and one
hidden layer, the model was trained with only 40 labelled cuts (21 stable and 19 un-
stable). Ramezankhani et al. [26] trained a neural network to predict the temperature
thermal lag for composite part manufacturing. This problem is a regression task, and the
input feature consists of five-dimension parameters of the curing process. In the exper-
iments, 44,000 labelled data were generated using RAVEN software to train the neural
network. In summary, the amount of required labelled data increases significantly with
the parameter complexity of the modelling task.
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Figure 1.11: Illustration of neural network for milling stability prediction. [99]

(ii) Gaussian process regression

Gaussian process (GP) regression is a non-parametric probabilistic regression model
that is widely used for low-dimensional few-sample regression problems in manufac-
turing processes [17]. For a given labelled dataset, GP can learn the joint distribution
and inference the conditional distribution of the samples to be predicted. As a proba-
bilistic model, GP can provide both the predicted means and the uncertainties, which
can help to quantify the reliability of predicted results [100]. The predicted means of
GP is consistent with the kernel least squares method under L-2 regularisation, namely
kernel ridge regression. Compared with the randomness of the neural networks, GP can
always provide stable prediction results. Note that, the computation complexity of GP
is O(N?3)(N is the number of training samples), so a large dataset will significantly in-
crease the computing cost of GP. Fig. 1.12 show the application of GP in melt pool depth
prediction [96], surface reconstruction [101] and cutting tool wear prediction.
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Figure 1.12: Gaussian process regression in manufacturing applications.

(iii) Deep learning based manufacturing predictive modelling

Many modelling tasks in the manufacturing process involve high-dimensional data
inputs, namely a very large number of input dimensions. For example, the monitor-
ing signals with high sampling rates mean a high-dimensional input vector, the time
series [102]. The high-resolution simulation data of a workpiece is normally repre-
sented by a mesh grid with thousands of nodes. As shown in Fig. 1.13(a), traditional
machine learning models such as GP and NN are technically not applicable to process
high-dimensional data because of their insufficient representation ability. Therefore, en-
gineers have to generate and select different high-level features from the original high-
dimensional data to enhance the performance of traditional machine learning models.
For tool wear prediction, different signal features can be generated and selected from
the original monitoring signals, e.g., time domain features such as mean square, vari-
ance, peak coefficient, empirical mode decomposition, and frequency domain features
including Fourier analysis and wavelet analysis [103]. Conceivably, the complex fea-
ture selections of traditional machine learning tasks cannot match the requirements of
modern data-driven manufacturing predictive modelling.
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Figure 1.13: Comparison between two techniques: a) traditional machine learning, b) deep learning. [40]

Deep learning, also a subcategory of machine learning, enables automatic feature
learning through more hidden layers and more expressive structures, thus can handle
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complex high-dimensional data [40]. As shown in Fig. 1.13(b), the multiple hidden lay-
ers of the deep neural network continuously pass the primary features of each layer to
the more abstracted representation of the later layer, and the fully connected layers at
the end will play the role of classification or regression using the high-level features.
The advanced abstract representability enables deep learning to explore the correlation
between input and out from the massive amounts of data [40]. Various deep learning
frameworks have been proposed for different data structures and task requirements,
such as Deep Convolutional Network [104], Long and Short Term Memory network
[105], deep autoencoders etc [106]. These methods have led to new directions for man-
ufacturing predictive modelling.

Fig .1.14 show the AlexNet model for machining state detection proposed by Rahimi
et al. [107]. The task is defined as predicting the stability of the milling process based
on the monitoring data of the microphone. Therefore, the monitoring data is defined
as the input feature, and the cutting state classification is the corresponding label. The
combination of the input signal and the output cutting state constitute one labelled data.
AlexNet is a famous convolutional neural network framework for image recognition
problems.The continuous monitoring signal was segmented into smaller windows and
the time-frequency spectrum of each window with the size of 400 x 52 was defined as
the input of the model. The output is the probability of the five-dimension predefined
machine stages, namely air cutting, chatter, the entrance of cutting, the exit of cutting,
and stable state. This model can achieve a superior prediction accuracy of 98.90% com-
pared with the traditional detection method (59.58%). Meanwhile, the authors designed
464 cutting tests to collect 53,884 milling labelled data. The experimental results do show
the effectiveness of the deep learning method, but it is prohibitively expensive to collect
such an amount of chatter data in real manufacturing scenarios.
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Figure 1.14: AlexNet deep learning model for machining state detection. [107]

As shown in Fig .1.15, Humfeld et al. [18] from Boeing proposed an LSTM network to
predict the time-temperature histories of composite tools. The model aimed to investi-
gate the relationship between the curing parameters and the corresponding temperature
series in the workpiece for further process optimisation. The air temperature profile is
the input feature, and the temperature histories of the part are the output label to be
predicted. Because of the high-dimensional input and output temperature profiles, the
LSTM model requires sufficient labelled data to achieve a high prediction accuracy. In
this case, 100,000 simulations were conducted by a commercial FE software, RAVEN.
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Figure 1.15: LSTM Neural Network to predict time-temperature histories of composite workpiece and
tool. [18]

As reviewed above, the strong representability of deep learning facilitates the mod-
elling and mining of complex manufacturing processes. However, the performance of
deep learning relies on a large number of labelled data, which becomes an inevitable
challenge for manufacturing applications.

1.2.4 Advanced modelling techniques for data-scarcity scenario

Although various data-driven modelling methods have been developed for manufactur-
ing predictive modelling, the the high cost and difficulties in data labelling restrict its
further development and applications. Establishing data-driven models with limited la-
belled data is an inevitable challenge for the development of smart manufacturing. This
Section will review several advanced modelling techniques for data-scarcity scenarios,
including active data generation, transfer learning, and data-physics combina-
tion.

1.2.4.1 Active data generation

Although many studies have shown that the distribution of samples has a significant
impact on the performance of data-driven models [108, 109], most manufacturing pre-
dictive modelling studies had not concerned with the generation of the labelled data set.
This Section will introduce existing and potential techniques for the active generation of
the labelled data, which means actively determining which samples to label. The aim of
active labelling is to ensure the information requirements of data-driven modelling with
as few samples as possible. As shown in Fig. 1.16, active labelling should be considered
from two perspectives. Initial active labelling means to determine the distribution of
data before performing experimental labelling or simulation labelling. Iterative active

labelling refers to querying new labelled data after training the model with previous
labelled data.

(i) Initial active labelling: data sampling

Initial active labelling aims to find a subset from the potential unlabelled data pool
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Figure 1.16: Two stage active labelling framework.

for labelling. Therefore initial active labelling becomes equivalent to selecting the initial
unlabelled dataset. This problem here can be treated as a data sampling problem, which
is a statistical analysis technique widely used in many fields [68]. Before the concept of
smart manufacturing, the initial active labelling problems have already been investigated
in Design of Experiments [110] and meta-modelling field [111]. This Section will review
the potential solutions of initial active labelling techniques from multiple research fields,
including sampling from feature space, distribution and discrete data, as shown in Fig.
1.17.
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(a) Sampling from feature space.  (b) Sampling from distribution.  (c) Sampling from discrete data.

Figure 1.17: Three sampling scenarios.

The most intuitive solution of initial active learning is the representative sampling,
which samples a coreset that represents the distribution of the total data [112]. Coreset
selection is attracting immense attention in accelerating computation, reducing labelling
effort, mining informative patterns and many other aspects [108]. From the perspective
of combinatorial optimisation, selecting an optimal training coreset from a potential
data pool can be attributed to a submodular function maximisation problem that appears
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in various applications, including sensor placement, and multi-document summarising,
feature selection and so on [113]. Representativeness is the primary objective for the
coreset selection problem, where the selected coreset is expected to represent the Prob-
abilistic Density Function of the potential total dataset.

The representativeness-based coreset selection strategy depends on how the poten-
tial data pool is defined. If the entire potential dataset is given by defining the feature
space (Fig. 1.17a), uniform sampling, Hammersley random sampling, or curvature-based
sampling are practical representativeness-based sampling methods [114]. For multidi-
mensional features, Latin hypercube sampling and Sobol sampling can ensure represen-
tativeness while balancing the uniform and random properties. Note that, most design
of experiments and meta-modelling problems can be defined as sampling from the given
feature space. Fig. 1.18 show the illustration of uniform sampling, random sampling
and Latin hypercube sampling, respectively. The uniform sampling and Latin hyper-
cube sampling can maintain the representativeness of each dimension, which also re-
strict their application in high-dimensional sampling problems.
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(a) Uniform sampling.  (b) Random sampling.  (c) Latin hypercube sampling.
Figure 1.18: Sampling from given feature space.

If the dataset is defined by the underlying distribution (Fig. 1.17b), probabilistic sam-
pling methods, including Markov Chain Monte Carlo or Gibbs sampling, can provide rea-
sonable samples to approximate the distribution [17]. In practice, most potential datasets
exist in the form of a finite amount of unlabelled data without predefined distribution
information (Fig. 1.17c). Therefore, clustering becomes the most simple but reasonable
strategy to select the representative initial unlabelled dataset [112, 115]. Take k-means
clustering as an example, suppose the potential dataset N is partitioned into ns obser-
vation groups as {N', ..., N™}. The objective function is then defined as minimising
the within-cluster sum of distances:

min ) Y fx— pl® (1.1)

i=1 xeN?

where T = {11, . . ., lin, } is the optimised representative unlabeled dataset, and p; is the
sample that represent the group N°. Therefore, the dataset 1" can be actively labelled to
construct the initial labelled dataset Dy.
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Apart from representativeness-based sampling, adaptive sampling places more points
in regions of interest by learning the information from the meta-model [116]. Curvature-
based sampling for surface reconstruction is a classical adaptive sampling example, where
a higher density of samples is assigned in the region with higher curvature [117]. Fig.
1.19 shows the error map of the reconstructed surface under Latin hypercube sampling
and curvature-based sampling, where adaptive sampling can achieve a high reconstruc-
tion accuracy. Although the idea of adaptive sampling is reasonable and effective, there
is alack of a general method to quantify the region of interest, and most existing research
relies on task-specific indicators [116], such as the curvature of surfaces.
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(a) Latin hypercube sampling. (b) Curvature based sampling

Figure 1.19: Different sampling methods for surface reconstruction.

(ii) Iterative active labelling: active learning

After training a data-driven model with the initial coreset, iterative active labelling
can improve the performance of the model by querying new promising samples, that
is what defines the active learning technique [118]. The criteria definition for active
queries and the number of queries are the primary focus of active learning. The general
representation of the iterative active labelling is

A T 1.2
max Alx | T), (1.2)

where A 4(z | T') means the marginal gain of the sample z for the given subset 7" and
data-driven algorithm A.

The query criteria can be the representativeness when generating the initial coreset,
that is, to exploit the data structure of unlabelled data to find the target samples and im-
prove the distribution of the coreset [119]. Another query criterion is informativeness,
which measures the ability of an instance in adding new information or reduce the uncer-
tainty of a statistical model [120]. For example, Query-by-Committee chooses samples
that result in maximum disagreement amongst an ensemble of basis data-driven models
[121]. Uncertainty sampling selects the instances with the maximum uncertainty, thus
the new dataset will train a more reliable model by reducing uncertainties [119].
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A similar concept in design of experiment is Sequential Experimental Design. As
shown in Fig. 1.20, it consists of space-filling sampling or adaptive sampling, which
are similar to representativeness-based active learning and informativeness-based ac-
tive learning. The difference is that Sequential Experimental Design generally focuses
on sampling from feature space (as shown in Fig. 1.17a), while active learning in the
machine learning field targeted at sampling from data pool (as shown in Fig. 1.17c).

— Space-filling

Sequential —

Figure 1.20: Sampling categories in Design Of Experiments (DoE). [116]

The above-mentioned active learning techniques have been widely used in manu-
facturing predictive modelling problems. Leco et al. [122] proposed an active learning
algorithm for robotic machining error modelling that made online inspection decision
based on the prediction confidence of the current model . Hughes et al. [123] presented
a risk-based active learning solution for structural health classification, in which the
promising class-label information was queried by the expected value for each incipient
data point. Similarly, Arellano et al. [124] built a Bayesian Convolutional Neural Net-
work for online tool condition classification, that could determine whether the incoming
data should be labelled. Those applications demonstrate that active learning strategies
could achieve satisfactory model performance with smaller training dataset.

1.2.4.2 Transfer learning

To reduce labelling consumption, transfer learning, which can improve the performance
of learning by leveraging rich labelled data from related domains [125, 126], has drawn
much attention recently in multiple machine learning fields including natural language
processing, and image recognition [127, 128]. The basic illustration of transfer learning
is shown in Fig. 1.21. The objective is to improve the learning of the target task using
the knowledge from similar tasks, namely the source tasks, so that the target task only
needs a few labelled data. From a probabilistic point of view, transfer learning methods

22



DATA MODELLING FOR SMART MANUFACTURING: CONTEXT AND CHALLENGES

refer to adapting distribution discrepancy between different tasks so as to extract the
common knowledge across domains [125].

This Section will introduce two transfer learning techniques widely used in man-
ufacturing predictive modelling, namely covariate shift adaptation and parameters
transfer .

Similar
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Figure 1.21: The illustration of transfer learning concept.

(i) Covariate shift adaptation

Suppose Dy = {X;,ys} as the auxiliary data from the source domain and D; =
{Xt,y:} as the direct labelled data from the target domain, where the X, and X; are
input features of two domains, y, and y; are output labels. Since the two datasets are
generated from different domains, they cannot be processed consistently with a stan-
dard machine learning algorithm. The purpose of transfer learning is to extract com-
mon and transferable information through a customised learning procedure. According
to different distribution assumptions, transfer learning problems can be categorised into
covariance shift, conditional shift and prior shift [129]. Covariance shift classification is
the most well-investigated transfer learning configuration [126], in which the marginal
distribution of features across domains are assumed to be different while conditional dis-
tribution remains consistent, namely p (y, | Xs) = p(y: | X;¢) and p (X;) # p (X;). The
failure diagnosis and cutting condition classification problems are classical covariance
shift scenarios in manufacturing [130, 131]. The primary challenge of covariance shift
lies in adapting the distribution difference between p (X;) and p (X;). If there is under-
lying common knowledge in the two datasets, a knowledge transformation operator ¢
can be learned by minimising the distribution between the embedded representation of
two datasets as:

mindis [p (¢ (X)) . (5 (X)) (13)

where dis[] is the distribution distance involving Maximum Mean Discrepancy (MMD),
Kullback-Leiblec divergence, and Wasserstein distance [132]. The specific form of op-
eration transformation ¢ is also diverse, which can be subspace, neural network, and
low-rank decomposition [126].
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Xu et al.[133] proposed a digital-twin-assisted fault diagnosis method using deep
transfer learning to realise fault diagnosis both in the virtual space and the physical
space, the procedure is shown in Fig .1.22. The process monitoring data in the two en-
vironments have different distributions, while the state classification results share the
same label space, namely four classes, ’'Good’, "Warning’, "Watch’ and Fault’. As defined
above, this is a classical covariance shift scenario which can be solved by minimising the
distribution difference between the features of two domains. Therefore, Xu et al.[133]
added an adaptation layer between the feature extraction and classification layer and
then minimising the Maximum Mean Discrepancy distance to train the feature extrac-
tion layers.

Data
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Results
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Figure 1.22: Digital twin-assisted fault diagnosis using deep transfer learning. [134]

The idea of learning invariant features using deep neural networks has been well
explored in the machine learning field. Tzeng et. al [135] first introduced Maximum
Mean Discrepancy to deep networks to learn a representation that is both semantically
meaningful and domain invariant. Long et al. [136] extended deep convolutional neural
networks to domain adaptation problems and explored the transferability of different
layers in the networks. Wu et al. [137] proposed the Geometric Knowledge Embed-
ding method to learn underlying geometric structures to minimise the Maximum Mean
Discrepancy in a graph convolutional network. These deep learning methods have also
been generalised to heterogeneous domain adaptation [127, 138], multi-source domain
adaptation [139] and other settings.

As shown in Fig. 1.23, a similar idea was also applied in the tool wear state prediction
task, where the monitoring data from different cutting conditions were defined as source
data and target data respectively. Theoretically, both the marginal distribution p(X) and
conditional distribution p (y | X) across two cutting environments should be adapted
because different cutting conditions will lead to different signals and tool wear values.
Their research adapted the covariate shift using an adversarial framework, where the
feature extractor had to learn the common feature from two domains so as to maximise
the domain discrimination loss while minimising the classification loss.

24



DATA MODELLING FOR SMART MANUFACTURING: CONTEXT AND CHALLENGES

. - oLs
‘-'_. (."..Sl x = i
= ol
oo, y
Source Domain .
T x | Feawre Extractor —— 3
| > - — P 1> LS
| \ Label classifier )
H N .
Target Domain -~ — —
omain Discrimination
i Lp -
g —> GRL— H, —» 4 1+ LS,
P "‘
Ty aLs
* _, LS, - =
3 ovy
) 08, T el -
GRL ' s T

Gradient reversal layer Forward propagation Backward propagation

Figure 1.23: Adversarial domain adaptation transfer learning model for tool wear state prediction. [133]

Covariate shift classification problems have been well investigated in both the ma-
chine learning field and the manufacturing field. However, there are many regression
tasks involving transferable scenarios in manufacturing engineering, which have the
characteristic of conditional shift p (ys | X;) # p(y: | X;). Chapter 3 will focus on the
distribution adaptation for regression tasks under conditional shift.

(ii) Parameters transfer

Parameters transfer methods refer to the reuse and fine-tuning of parameters that are
pre-trained in the source domain based on the assumption that similar tasks may share
similar network parameters [140]. Yosinski et al. [141] first revealed that the features
extracted by layers of the network may be generic or task-specific, and parameters pre-
trained by the source dataset usually perform better than random initialisation. After
that, this technique had been widely adopted in both industrial and academic fields [106].
Many large-scale networks (such as Resnet ' and Alenet * ) with pre-trained parameters
were reused as backbone models for other similar problems to reduce data requirements
and accelerate model training.

As shown in Fig. 1.24, Ramezankhani et al. [26] proposed a parameters transfer
scheme for composites curing, where the input was the five-dimension parameters of the
curing process, and the outputs were thermal lag and exotherm, that have been proven
to be key metrics for the quality of composites part. The source data consisted of 44,000
simulated labelled data under one-hold curing cycles, and the target data included only
500 labelled data under two-hold curing cycles. Firstly, a full-connected neural network
with six hidden layers and ten neurons per layer was established with source data. Then
the transfer-ability of each layer was investigated comprehensively by freezing the pre-
trained parameters. The authors found that increasing the number of frozen layers could

Thttps://pytorch.org/vision/main/models/resnet.html
*https://pytorch.org/hub/pytorch_vision_alexnet/
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restrict the flexibility of the model, which led to high prediction errors. The experimental
results shown that freezing one layer could achieve the best performance of 1.91 K of
MSE.
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Figure 1.24: The cross-process transfer learning method in composites curing. [26]

A similar fine-tuning solution was also developed by Postel et al. [19] for milling sta-
bility prediction. The basic model was a deep neural network with a softmax function at
last to output classification results. The input of the model consisted of cutting param-
eters and tool dynamics, and the output of the model was a binary value to represent
stability or chatter. As shown in Fig. 1.25, 14850 simulation samples were defined as
the source data to train the source model. After that, part of the model parameters was
fine-tuned on a small experimental dataset with 10 100 samples. The author investigated
the influence of the training set size on the final performance of the target model. The
experimental results shown that the transfer learning model could significantly reduce
the data requirements compared with the deep neural network.

Although the parameters transfer method is convenient to implement, Li et al. [104]
demonstrated that fine-tuning the pre-trained network via minimising the empirical
Mean Square Error based on limited target data might suffer from the risk of overfit-
ting. This drawback was also summarised by Postel et al. [19] in terms of the shape
of the experimental milling stability lobe. According to the milling stability theory, the
stability boundary should follow strict lobe characteristics, which is a basic mechanism
constraint. However, insufficient samples of transfer learning will lead to significant
randomness in the stability boundary and loss of physical interpretability.

1.2.4.3 Data physics combination

Manufacturing industry has a much longer history than data-driven modelling, and
pioneering engineers and researchers shave broad and in-depth understanding of the
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Figure 1.25: The cross-process transfer learning method in composites curing. [19]

physics and accumulated prior knowledge of various manufacturing processes [46]. Al-
though the knowledge may not be accurate enough to describe the complex real manu-
facturing process, it is certainly unwise to abandon these priors in pursuit of data-driven
models. Despite various related concepts being developed, such as physics-hybrid learn-
ing [46] and physics-guided learning [85], the basic strategies of data-physics combina-
tion can be categorised into designing the loss function and designing the model
structure.

(i) Design physics-informed loss function

Data-driven predictive models, such as neural networks, aim to learn a parametric
hypothesis that satisfies the observation of the training dataset. The inconsistency be-
tween the predicted results and the true labels is defined as the loss function to provide
direction for the gradient-descent optimisation of the model [142]. The inconsistency
between the predicted results and the priors could also be included in the loss function
as a punishment to enforce the physics priors [143].

The physics priors here include strong priors and weak priors. Strong priors re-
fer to the strict mathematical formulas that can describe global and local phenomena
or properties in the manufacturing process, such as dynamics force models in milling
operations [13], and heat transfer equations in composites curing [10]. Besides strong
priors, there always exist weak priors defined as empirical knowledge in non-formula
form. Since each input or output of MPM problems has an explicit interpretation, the
most simple but intuitive weak prior is the feasible region of physics parameters, such as
the power limit of manufacturing equipment and tool wear value limit [64]. Empirical
knowledge can also provide evolution constraints of parameters or the coupling con-
straints between multiple parameters. For example, the remaining life of a cutting tool
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always decreases along with machining times, and the degree of cure of prepreg always
increases and finally approaches 100% during heating [144]. Weak priors can provide
soft penalty constraints or regularisation terms to the final loss function, while strong
priors can sometimes even replace the traditional loss function, especially for partial
differential equations, such as Physics Informed Neural Networks [145] (Fig. 1.26) and
Hamiltonian Neural Networks [146]. In practice, the loss function can be the weighted
combination of predicted loss and physics loss so as to leverage both the data and physics
priors.

_________________________

_________________________

%(1’,7 t) - gR(“v T, t)

Figure 1.26: Physics informed neural networks [145]

(ii) Design model structure

Another kind of strategy focuses on designing specialised model structures that im-
plicitly intergrating the physics priors of tasks. For example, Deep Lagrangian Networks
[147] directly incorporate each part of the robot dynamics equations to construct ex-
plainable data-driven networks (as shown in Fig. 1.27). The global structure from strong
priors normally requires craftsmanship and elaborate implementations, thus not very
practicable. For MPM problems, the widely-existed weak priors can be integrated into
feature extraction modules more easily, such as the physics-guided input module based
on tool cutting force model[52], or the specialised activation function for transient ther-
mal analysis [85].
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Figure 1.27: Deep Lagrangian networks [147]

Fig. 1.28 shows a neural network for composites curing temperature prediction, in
which the network structure was designed with several physical priors [148]. According
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to the analytical solution of heat transfer equation, the temperature has cosine function
relationship with the coordinate x has an exponential relationship with ¢. Therefore,
the sine activation function was added for x and an exponential activation function was
designed for ¢. The two convective heat transfer coefficients h; and hy were input to
the network after the multiply of = term and ¢ term, rather than in the sample input
positions. With these well-designed details, the experiments shown that the network
could maintain strong generalisability compared with traditional neural network.

sin(¥)  Multiply ELU(Z) ELUZ)  ELU()

Figure 1.28: Neural network with physics-informed features for composites manufacturing. [148]

Fig. 1.29 is a mechanism-based structured deep neural network for cutting force fore-
casting proposed by Cheng et al. [15]. The mechanism here can also be categorised into
physics knowledge. During the milling process, the cutting force generation consisted of
the static part and the dynamic parts. The mechanism of the static part was integrated
into the input monitoring signal, and then the processed features were passed to the
dynamic part, which was a neural network. These sub-models could approximate differ-
ent functions during cutting force generation, and the connected model could naturally
inherit the physical interpretability and generalisation ability of the mechanism.
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Figure 1.29: Mechanism-based structured deep neural network (MS-DNN) for cutting force forecasting.

[15]

29



CHAPTER 1

Although different data physics combination methods have been proposed and ap-
plied in manufacturing predictive modelling, they are only applicable to low-dimensional
modelling problems. Physics-informed loss functions heavily rely on the automatic dif-
ferentiation of output parameters on the neural input, which only exists in strict ordinary
differential equations or partial differential equations, while existing model design re-
search focuses on the low-dimensional input-output relationship. There is still a lack of
investigation of how to apply prior knowledge for the high-dimensional mapping man-
ufacturing predictive modelling problems. Many manufacturing predictive modelling
problems have high-dimensional inputs and outputs in the form of fields or functions,
such as the prediction of deformation fields in composite manufacturing processes [149],
or stress field of workpieces during milling processes [90]. It remains a challenge to
predict the high-dimensional property field of workpieces for existing data-driven mod-
elling methods, which will be the research topic of this research as described in Chapter
4.

In summary, the challenge for modelling part property fields lies in how to represent
high-dimensional complex geometries and extract low-dimensional features without in-
creasing the complexity of the data-driven model.

1.3 Research gap, aim and objectives

In previous Sections, the basic concepts and definitions of data-driven smart manufac-
turing were introduced. Furthermore, the existing manufacturing process data collection
and modelling methods were also presented. This Section will identify the research gap
and state the main aim and objectives of this research.

1.3.1 Research gaps

Due to the expensive efforts of labelled data collection, establishing data-driven models
with limited labelled data is an inevitable trend and also a challenge for the development
of smart manufacturing. As reviewed above, existing MPM research has deeply investi-
gated the different manufacturing process data and modelling techniques. In summary,
existing MPM research suffers from the following research gaps, which also bring inspi-
ration for the thesis.

(i): Passive data generation and collection: Previous research focused on how
to train data-driven models based on given insufficient datasets, which means that the
datasets are defined as determined and passive modelling conditions. This presuppo-
sition of passive data generation deprives us of the possibility of exploiting the data
generation process actively. Despite the limitation of data size, different samples have
different values for model training, and the distribution of the training data will also in-
fluence the performance of the machine learning model. Therefore, a research question
is how to actively generate a more informative but smaller dataset to preserve the char-
acteristics of the task while reducing the required amount of training data. However, ex-
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isting representativeness-based sampling methods cannot capture the core samples that
can reflect the characteristics of the models. There is a requirement for a new method
that can actively guide the generation of labelled data by leveraging various types of
information from manufacturing systems.

(ii): Insufficient modelling information: Generally, the information carried by
a dataset directly determines the upper limit of performance of a data-driven model, es-
pecially when data is scarce. Therefore, it is impossible to build an accurate model with
insufficient modelling information. Since the labelled data is scarce, it is necessary to
compensate for the insufficient information from other available information sources,
such as using transfer learning and data-physics combination. As reviewed in Section
1.2.4.2, several transfer learning methods have been developed for covariate shift prob-
lems, while the conditional shift problems widely existing in MPM problems are not well-
investigated. For the existing data-physics combination research, the physics-informed
loss function heavily relies on the strict form of mechanism equation and is only appli-
cable for low-dimensional prediction. For high-dimensional prediction problems, such
as the workpiece property field prediction, the complex parameterisation of data-driven
models and the massive demand for labelled data remain as challenges.

1.3.2 Aim and objective

Based on the above-mentioned research gaps, this research aimed at setting up a sys-
tematic framework and developing machine learning methodologies for manufacturing
predictive modelling under data scarcity scenarios. The main research objectives are
described below:

« Objective 1: : Investigating the influence of the distribution of labelled data on the
performance of data-driven modelling and developing data generation strategies
considering the distribution and task-dependent values.

« Objective 2: : Analysing transfer learning problems in manufacturing under the
conditional distribution shift. Developing transfer learning techniques for reusing
knowledge from similar tasks to reduce data requirements and enhance the per-
formance of process modelling.

+ Objective 3: : Integrating physics knowledge to data-driven models to reduce the
data requirements and increase generalisability and interpretability.

« Objective 4: : Applying the developed technologies for the high-dimensional
property field prediction case and evaluating the modelling performance in data-
scarcity scenarios.
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1.4 The proposed framework for data-driven manu-

facturing predictive modelling under data scarcity

This project proposed a systematic guidance framework from data generation to data
modelling to deal with the data scarcity problems in MPM problems. As shown in Fig.
1.30, the framework starts with the definition of three types of available information
sources in manufacturing systems and then focuses on how to build data-driven models
through multiple interactive operations of these three types of information.

Thesis i Future

,—V‘ Auxiliary data }—* framework i Applications
Knowledge . Process

g : optlmlsatlon

My
N :
¢ i e+ Decision
"'ll, o Active Data Direct f (X) : Ki
5 Generation labelled data Data-driven making
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System : )
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Assisting o Data-Physics
Combination Poe
{ Physics priors

Figure 1.30: The proposed framework for data-driven smart manufacturing under data scarcity.

From the information perspective, the data-driven MPM can potentially extract in-
formation from not only task-related direct labelled data, but also the auxiliary data with
potential value for process modelling, as well as the physics prior knowledge. These
three information sources have different but complementary characteristics for model
training. The direct labelled data here refers to the labelled data that can be directly used
for training the target MPM tasks. It is the most valuable but always insufficient because
of the expensive labelling processes, as reviewed in Section 1.2.3. Auxiliary data refers
to the data that, apart from the direct labelled data, still benefits the training of the MPM
tasks, for example, the data from similar tasks. The widely exsiting auxiliary data is less
valuable but may compensate for the insufficient direct labelled data (As reviewed in
Section 1.2.4.2). The physics priors, including strict formulas or weak priors, are more
general and do not require special collections. As reviewed in Section 1.2.4.3, integrating
these priors into data-driven models can potentially reduce the requirement for labelled
data and enhance the generalisability of models.

Based on the defined three information sources, the framework also allows how to
leverage the different information sources to achieve small-data modelling, including
active generation of direct labelled data, knowledge transfer from the auxiliary data and
data-physics combination, which correspond to the research objectives listed above.

« Active data generation: This part aims to generate a small but informative dataset
that preserves the valuable information of the MPM task so as to reduce the re-
quired amount of training data. An aggregation-value-based sampling method
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was developed based on Game theory. The special value function defined from
auxiliary data and physics priors can be used to guide the sampling of the direct
labelled data. Experiments demonstrated that the size of labelled data could be
reduced by more than 50 % under the fixed accuracy requirements.

« Knowledge transfer: Transferring the auxiliary information of manufacturing
systems can compensate for the insufficient target labelled data. A transfer learn-
ing method based on structured distribution adaptation was proposed for the widely
existing conditional shift MPM problems. Experiments on different MPM prob-
lems shown that the proposed method could enhance the performance of the task
under data scarcity by leveraging the available auxiliary data.

 Data-physics combination: A physics-guided low-dimensional neural operator
was proposed for solving the high-dimensional workpiece property field predic-
tion problems. Detailed experiments and analysis revealed that embedding the
physics priors of the MPM problem into the data-driven model enabled more ef-
fective information extraction under the small amount of labelled data.

1.5 Thesis structure

Chapter 1 introduced the background of smart manufacturing, reviewed the related liter-
ature in data-driven MPM and summarised the aim and objectives of this thesis. Chapter
2 describes a proposed aggregation-value-based sampling method based on game theory
to address the challenge of passive data generation. Experiments on several manufactur-
ing cases demonstrated that the proposed method can sample a smaller but informative
dataset to reduce the labelled data requirements. Chapter 3 presents a structured distri-
bution adaptation method for transferring knowledge from the auxiliary data. Chapter 4
describes a proposed physics-informed neural operator by embedding the prior knowl-
edge of MPM problems into the feature learning component of the network. Chapter 5
describes the validation of the proposed framework by a complex case study about com-
posite part deformation prediction. The three developed techniques, namely active data
generation, knowledge transfer and data-physics combination, were all applied in this
case to show the effectiveness in data scarcity scenarios. Finally, in Chapter 6, the main
contribution of this research is summarised, and future research work is recommended.
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Data-driven modelling has shown promising potential in many industrial applica-
tions, while the expensive and time-consuming labelling of experimental and simulation
data restricts its further development. Since the distribution of training data influences
the performance of data-driven models, designing a small but informative dataset that
preserves the characteristics of the task and significantly reduce the required amount of
training data [109, 108, 150]. As shown in Fig. 1.30, this Chapter will investigate objec-
tive c of the proposed framework, data generation, i.e., the direct labelled data gen-
eration with the assistance of auxiliary data and physics priors. An aggregation-value-
based sampling is proposed based on the Game theory for sampling the most promising

labelled data.

2.1 Introduction and challenge analysis

Generating a smaller but informative subset can potentially reduce the data labelling
efforts of MPM problems. As shown in Fig 2.1, the generation of the direct labelled data
can be defined as sampling a specialised subset from the sample space of the modelling
task. The sample space can be defined discretely as a potential dataset where one sample
refers to one data point. The aimless expensive labelling from experiments or simulations
can then be replaced by directly labelling the informative subset.

Sample space Sampled subset
Tasks to be Data-driven
m({delled o OOO o) o O. model
Bj‘\ oo 2 - oo 2
] > O Oo — o) O@ e > f(x)
—~ 00 © o0 ©

Figure 2.1: Problem definition of data sampling

Representativeness-based sampling is the most widely used sampling method, where
the selected samples are expected to represent the characteristics that should be pre-
served, such as the probabilistic distribution or the representative data patterns. [150].
Probabilistic sampling methods aim at finding a reasonable subset to approximate the
probabilistic distribution of the sample space [17]. If the sample space is given by a
discretised potential dataset, clustering sampling can select some clusters as the repre-
sentative subset [151]. Similarly, low-rank-based methods can select the fewest samples
to preserve the representative patterns or basis for high-dimensional samples [109, 152].
An important underlying presupposition of representativeness-based sampling meth-
ods is that the representative samples should provide more valuable information for the
data-driven model [108]. Although reasonable, the presupposition is insufficient be-
cause representativeness is only the indirect characterisation of the value of samples.
Thus, some core samples that can reflect the characteristic of the models might not be
captured. This problem is further exacerbated in highly imbalanced real-world datasets
where the representative sample set, with high probability, may miss the dominant sam-
ples [151].

To directly quantify the contribution of each sample during model training, researchers
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recently proposed another interesting indicator, the value of samples. The value func-
tion v(z) is then defined as the function that can quantitatively measure the value of
the sample x with respect to a given learning algorithm and a performance metric [153].
The first attempt at data valuation was leave-one-out (LOO) and the subsequent influ-
ence function method [154], in which a specific value was determined for each sample
according to the performance difference when the sample was removed from the sample
space. A fundamental limitation is that these methods can only represent the marginal
gain for one specific sample set N\{i}. From the perspective of game theory, training
a dataset can be treated as a coalitional game, in which all data samples are players
working for a common goal. Based on the cost-sharing theory, Ghorbani et al. [153]
introduced Shapley value into data valuation and sample selection problems. The Shap-
ley value of each sample was represented as the average marginal gains of all potential
subsets. Then highest-ranking samples were selected as the satisfied sample set based
on the standard greedy algorithm in submodular function maximisation [155, 156]. A
series of improved versions and accelerating algorithms were further proposed to boost
the development of Shapley value in the machine learning field [153].

Although Shapley value can provide a “favourable and fair” valuation of data, the
highest value sample set sometimes reduced the data diversity, especially when the size
of the sample set was small, which would lead to high generalisation error [157]. Further
analysis in multiple datasets revealed the high-value samples clustering phenomenon in
the feature space. The samples that are close to each other in the sample space, namely
neighbouring samples, might carry similar or redundant feature information, which can-
not bring a proportional contribution to the model training. Therefore, close or similar
samples can only provide very few additional contributions for machine learning tasks,
regardless of regression, classification or structural learning tasks [158, 159].

This means that the sum of the values of samples in the selected subset cannot rep-
resent the actual value of the subset. Therefore, defining the actual value of a sam-
ple set considering redundant information becomes the critical challenge for
sample selection problems. This research will break the limitations of the existing
representative-based and value-based sampling methods, and propose a new sampling
method by identifying the redundant information and quantifying the value of the sub-
set.

2.2 General idea of the new introduced aggregation-
value-based sampling (AV4Sam)

As shown in Fig. 2.2a, existing value-based sampling methods determine the optimal
sample set by maximising the sum of sample values, which leads to information redun-
dancy and reduces the diversity of the samples [153]. To overcome this problem, this
Chapter describes a proposed Aggregation-Value-based Sampling method (AV4Sam). As
shown in Fig. 2.2b, to represent the values of neighbouring samples, the Value Aggrega-
tion Function (VAF) is constructed by aggregating the values of its neighbouring sam-
ples. Therefore, the close samples would share significant overlaps in their VAFs, which
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can explicitly represent the redundant information carried by these samples. Since the
close high-value samples cannot increase the ‘area’ of VAFs, the union of individual VAFs
becomes a reasonable representation of the actual value of a sample set. Based on this,
aggregation value, defined as the expectation of the united VAFs, can be the intuitive
target to assess the sampling results. Maximising the aggregation value can effectively
find the most contributing samples while mitigating redundant information.

a. b.

Existing method: New method:
Maximise the individual values Maximise the aggregation value

Information
redundancy T\

Value function

Value function

»

i 20
Sample space  S:S5: S, 83 S1 Sample space

y

Figure 2.2: The general idea of aggregation-value-based sampling.

The implementation procedure of the proposed AV4Sam is shown in Fig. 2.3, where
a value function for the sample space is established first, followed by maximising the
aggregation value for sampling. The purpose of aggregation-value-based sampling is
to reduce the labelling efforts for industrial applications by designing an informative
but smaller sample set, thus it is less meaningful if the establishment of value function
requires too much labelled data. Although the proposed method is derived from Shap-
ley value function, the basic idea of the aggregation value can be generalised to other
forms of value function as long as it is positively correlated with the real contribution
of samples. Therefore, the proposed method is generalised to more practical scenarios
in the case studies by introducing four value function schemes A, B, C and D which are
explained below.

Scheme A: evaluate value function from direct labelled data. Sufficient direct
labelled data could provide a more accurate value function but increase the labelling
burden. Therefore, the case study on this scheme aims to demonstrate that the proposed
method could find a better sample set rather than focusing on comparing the labelling
efforts.

Scheme B: reuse value function from similar tasks. Just as transfer learning
and meta-learning can utilise data from similar or relevant tasks to assist the target task,
the value function from similar tasks, such as different manufacturing systems or cutting
conditions, could also provide a reference for the target task.

Scheme C: reuse value function from low fidelity data. High-fidelity manufac-
turing process simulation is expensive and time-consuming, while simplified low-fidelity
models are far more efficient. Although not accurate enough, the low-fidelity data can
still provide an effective value function to select better samples for the following high-
fidelity simulation.
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Scheme D: define value function from prior knowledge. With a broad and
in-depth understanding of the prior knowledge of various manufacturing processes, re-
searchers and engineers can define specific value functions according to the sample re-
quirements. From this point of view, AV4Sam can be extended to various engineering-
based sampling scenarios, such as curvature-based sampling for surface measurement[160],
adaptive sampling for aerodynamic modelling[116].

Sample space Sampled subset
o OOOO N Evaluate . Maximise , O ‘e .
Oo%o 500 value function aggregation value O.OO CeC®
o o

° 0° T ‘ e®
Scheme A: Scheme B: Scheme C: Scheme D:
Evaluate value function Reuse value function Reuse value function Define value function
from direct labelled data from similar tasks from low fidelity data from prior knowledge

Figure 2.3: The implementation procedure of the proposed aggregation-value-based sampling method.

The following Sections will introduce the details of the proposed method. The four
schemes will be validated in the case study Section.

2.3 Valuation of data using the Game theory

Data-driven modelling method is able to learn the mapping from the input features to
output labels based on the given labelled data. From the probabilistic perspective, train-
ing a data-driven model can be regarded as learning the joint or conditional probability
distribution on the given observable dataset [17]. However, according to the Game the-
ory, training a model can also be defined as a coalition game between finite players [153],
with each data sample defined as a participating player and the training accuracy of the
model defined as the estimated value of the coalition game.

This section will first give a basic definition of the sampling problem for data-driven
modelling from the perspective of the coalition game and then construct the value func-
tion for data samples based on the Shapley theory.

2.3.1 Sub-modularity in model training

Suppose there are n data points in the dataset /V for a given data-driven modelling task.
The sampling problem means to obtain a subset S from the entire dataset /N, namely
S C N. Therefore, N is defined as the sample space, and each data point in N refers
to one sample. From the perspective of the Game theory, the dataset NV can be treated
as n players for a cooperative game, where the sampling problem refers to finding the
best players combination to achieve a better performance in the game. This section will
first introduce two important concepts from cooperative game theory, marginal gain and
sub-modularity [161].
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Denote ¢ : 2N — R as the indicator function that describes the prediction accuracy
of the model trained on any subset of the sample space. The function ¢ is defined on
the power set of IV, i.e. the set of all subsets of N, denoted as 2Vl The domain for the
function values of ¢ is the real space R.

For a subset S C N and a given machine learning model A. (S, A) denotes the
model prediction accuracy achieved by training the model A on the subset S. For the
classification task, ©(S,.4) can be the prediction accuracy (%) of the model. However,
for the regression task, ¢(S,.A) can represent the negative value of the Mean Square
Error (MSE) or Mean Absolute Error (MAE) of the model because a smaller MSE value
means a higher accuracy of the model. In this case, the optimal subset sampling can be
defined as the following optimisation problem:

max ¢(S, A) (2.1)

SCN

For the simplicity of expression, the indicator function ¢(S, .A) will be abbreviated
as ¢(5) because the learning model A is consistent in the context. For example, ¢(N)
refers to the prediction accuracy of the model training on the total dataset V.

Intuitively, the ’contribution’ of a single sample during the training of a data-driven
model can be represented as the difference in the model performance when the sample
was removed from the current dataset. Therefore, to quantify the influence of a single
sample on model training, the marginal gain, also known as discrete derivative, can be
defined as follow [162].

Definition 1 (Marginal gain) For a set function ¢ : 2Nl — R, a subset S C N, and an
element e € N. The marginal gain of ¢ at N respect to e is defined as:

Agle ] 5) = p(SU{e}) —p(S) (2.2)

Marginal gain can represent the increase in performance when sample e is added
to the set .S, or the decrease in performance when sample e is removed from the set
S U {e}. Therefore, it does represent the ’contribution’ of the sample to some extent.
The sampling method that defines the marginal gain directly as a measure of the sample
value is called Leave-one-out (LOO) [154].

Since the marginal gain of a sample e is defined based on the subset .S, it is obvious
that different subset .S will bring different marginal gains for the same sample e. For a
small size of training data, the additional sample may provide a significant increment in
the prediction performance of a data-driven model. However, when there is sufficient
training data available, the same sample could be ineffective in improving the prediction
accuracy of the model. Therefore, the LOO methodology does not provide a fair and
objective valuation of the sample.

As analysed above, increasing the amount of training data does not consistently lead
to a linear increase in the model’s performance, i.e. the marginal gain of the sample e
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on the set function ¢(S) decreases as the size of the set S increases. The diminishing
return property of marginal gain is defined as sub-modularity.

Definition 2 (Sub-modularity) A set function o : 2Nl — R, is submodular if for every
A C B C N,ande € N\B it holds that:

Aule] A) = Ayle| B) (23)

The sub-modularity of the model training describes the influence of existing samples
on the valuation of additional samples. In the following sections, sub-modularity will
be the basis of the Shapley value theory and also the basic assumption of the proposed
sampling method. Note that, the data-driven model training can not always hold sub-
modularity because of the uncertainty and performance difference of machine learning
algorithms. This situation will be discussed in Section 2.6.1.2.

2.3.2 Valuation of data based on Shapley theory

2.3.2.1 The definition of Shapley value

In order to fairly assess the contribution of each player in a cooperative game, Shapley
L.S [163] proposed an axiomatic criterion for the fair valuation in 1953 and accordingly
introduced the concept of Shapley value, defined as the average marginal gain under
all subsets. The Shapley theory is widely used in economics and has also been intro-
duced into the machine-learning field in recent years. Sundararajan et al. [164] used
the Shapley value to quantitatively estimate the contribution of each feature of the data
to explain the feature extraction ability of a neural network. Duval et al. [165] tried to
estimate the contribution of each node in a graph neural network based on the Shapley
value. Ghorbani et al.[153] first proposed to estimate the sample value based on Shapley
theory, and the effectiveness of the Shapley value was also validated through a series of
experiments.

Based on the definition of indicator function (.S, A), ¢ (.5) for short, and the dataset
N, Shapley value of datapoint z, € N can be given as:

(2.4)

where S represents a subset of NV without sample (z., y.), (¢ (S U {z.}) — ©(9)) is the
difference in the predictor’s performance when trained on the S U {z.} and S, namely

the marginal gain defined above. < n’§’1 ) is the number of subsets of size |S| in

N\ {z.}. Therefore, the Shapley value of each training data will be determined by the
training dataset, the learning algorithm as well as the indicator function.
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Fig. 2.4 gives an intuitive example of the effect of Shapley values on a classification
task. As shown in Fig. 2.4a, removing high-value samples leads to a rapid decrease in
classification accuracy from 0.73 to below 0.6, while the removal of low-value samples
even leads to an increase in model accuracy. Considering the presence of noisy sam-
ples in the real dataset, removing low-value samples can potentially improve the data
quality, and therefore the prediction accuracy can be increased. For the sample addition
experiment shown in Fig. 2.4b, adding high-value samples can bring rapid increase to
the model accuracy. By comparison, the model accuracy increases very slowly when
adding low-value samples.

(a) Influence of removing samples (b) Influence of adding samples
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Figure 2.4: Remove or add points based on Shapley value for a classification task.

Fig. 2.5 shows another example of Shapley values on a regression task. Since a
smaller MSE means a better regression performance, Fig. 2.5a shows that removing the
high-value samples can lead to a significant increase in MSE. Similarly, adding high-
value samples can achieve a low MSE effectively compared with adding low-value sam-
ples, as shown in Fig. 2.5b.
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Figure 2.5: Remove or add points based on Shapley value for a regression task.
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2.3.2.2 Truncated Monte Carlo for Shapley value approximation

Theoretically, computing the Shapley value in Eq. 2.4 requires all the marginal gains,
which are exponentially large in the number of training data. That is an unacceptable
computational burden and not practical for real applications. Consequently, Ghorbani
et al. [153] proposed an approximate method to estimate the Shapley value, named
truncated Monte Carlo Shapley (TMC-Shapley). This section first introduces the basic
idea of TMC-Shapley and then proposes a modified version TMC-Shapley.

For the TMC-Shapley method, the Shapley value can be formulated as the following
expectation evaluation problem, shown in Eq. 2.5.

v(z.) = Eron [@ (S7 U{z.}) — 0 (57)] (2.5)

where II is the uniform distribution over all n ! possible permutations of training dataset
N, and S is the subset of N consisting of all the samples before =, in permutation 7.
The basic idea of TMC-Shapley is sampling a limited number of permutations 7 instead
of calculating the marginal gains on all the subsets 21/,

In the beginning, a random permutation of NV is first generated. Then, the marginal
gain ¢ (SE U {z.}) — ¢ (S) for each sample z, can be calculated under the given learn-
ing algorithm and indicator function. The indicator function value ¢ (S%) under the
permutation 7 can be used to calculate both the marginal gain of z; and the marginal
gain of z;_1, namely the preceding samples of z;. Therefore, the computation of the
marginal gains for the samples in the permutation 7 requires n indicator operations,

namely ¢ (S7) ..., ¢ (S7).

To further reduce the computational efforts, the required n indicator oper-
ations can also be reduced, which leads to the proposed modified TMC-Shapley
method. Each permutation has a starting point S and a truncating point S""¢. Be-
sides, a special convergence criterion is defined for the iteration of different permuta-
tions.

Starting point in one permutation: For a machine learning task, the performance
of the trained model is unstable when the size of the training set is very small. For
the regression task, the marginal gains of the top few samples might have significant
orders of magnitude difference, which will bring significant error to the following data
valuation. Therefore, a minimum initial data size ny can be pre-defined when calculating
marginal gain, namely starting from ¢ (5™) instead of ¢ (S2).

Truncating point in one permutation: Considering the sub-modularity of model
training described in the previous section, the larger the number of samples in the set S,
the smaller the marginal gain ¢ (S¥ U {x.}) — ¢ (S%). Since the marginal gain always
approaches zero as the number of training data increases, the indicator operations can be
truncated, and then the marginal gain of the following data points in this permutation
can be directly set to zero. That means, the originally required indicator operations
[0 (SY), ..., (S™)] can be simplified to [..., ¢ (S™0), p (Smoth) ... @ (Skruney ],

where ¢ (SZ"¢) refers to the truncated indicator value. The tolerance for the indicator
truncation is defined as ap(N)(0 < a < 0.1). When o(N) — ¢ (SL) < ap(N), the
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following marginal gain will be set to zero. ¢(N) refers to the prediction accuracy of
the model training on the total dataset V.

Convergence criterion for permutation iterations: After repeating the above
steps under more permutation 7, each sample will have more calculated marginal gains,
and the Shapley value of each sample can be simply approximated by the average of all
marginal gains. The number of permutations can be determined by the convergence of
the marginal gains. In this research, the convergence criterion is defined as the maxi-
mum variation of the last % iterations of Shapley values:

max {% Zm: (vt (25) — Vmin (1)), 0 =1,2, ... ,n} < f (2.6)

where m is the total number of iterations, 0 < k < m is a constant, and the sum sz_ &
represents the Shapley value’s variation of the last k iterations, v; (x;) is the Shapley
value of the sample x; after completing the ¢y, iteration, and vy, (z;) = min{v; (z;),
t =m —k,...,m}. The above criterion means that the Shapley value approximation is
considered to achieve convergence when the maximum fluctuation of all Shapley values
in the last k iterations is less than the given convergence tolerance f.

With the help of the defined starting points and truncating points, the proposed
modified TMC-Shapley can provide more stable marginal gain results while reducing
the computation efforts. To ensure the convergence of the Shapley value and reduce the
randomness of the training process, the number of iterations increases until reaching
the convergence criterion. The details of the proposed modified TMC-Shapley method
are described in Algorithm 1.

2.3.2.3 Establish value function from discretised Shapley values

The Shapley theory can give the value of all samples in a given dataset N. However,
when new samples are added to the dataset, the marginal gains have to be completely re-
calculated to update the Shapley values of all samples in the new dataset according to Eq.
2.4. Therefore, after obtaining the Shapley values of all samples in the initial dataset, a
general Shapley value function v(x) can be learnt from the paired data [{z1, v (x1)}, {x2,
v(za)}, ..., {xn,v(z,)}] to predict the value of samples out of the dataset. Note that,
the discrete Shapley values and the learnt value function have different properties.

« According to the Shapley value theory, the sum of the Shapley values of the dis-
crete samples equal to the maximum accuracy indicator that can be achieved in
the sample space N, i.e. ¢ (N) = >."  v(x;). However, the continuous value
function does not have this property, i.e. the continuous value function only re-
flects the relative value relationship between samples, but the function values are
directly related to the accuracy indicator.

« Because of the noise in the dataset or the approximation error of the Shapley value,
the discrete Shapley values of samples have inevitable random errors. However,
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Algorithm 1 Modified Truncated Monte Carlo Shapley
Input: Training data N with size n, learning algorithm A, and indicator function

¥, No, &, /67 k
Output: Shapley value of all training data v; (x;),i =1,2,...,n

Initialise Shapley value of sample vy (z;) =0,i =1,2,...,n
while Convergence criteria not met do
t+t+1
Generate random permutation of training dataset NV, denoted as ;
Initialize @ «— ¢ ({m¢[1], ..., 7 [no]}, A) and k. = 0.
for j € {ng,no+1,...,n} do
if (N, A) — ¢! ;| < ap(N, A) then

QO;‘ — 902'71
else
903‘ @ ({ﬂ-t[l]v ce ’Wt[j]} 7"4)
end if
ve (mlf]) = o (mlg]) + 7 (05 — #51)
end for
end while
v () < vy (my [Index (x;)]),i =1,2,...,n
vy () vy () —min{wv (z;),i=1,2,...,n},i=1,2,...,n

the value function is able to eliminate the random error by fitting the discrete
Shapley values.

As the case shown in Fig. 2.6a, the size of the blue circle means the Shapley value
of each point when fitting the curve using the Gaussian process regressor. It can be
observed that the values of turning points are larger than boundary points. When the
model to be learnt is differentiable, the value function v(x) should also be differentiable,
which means these points near local maxima are all high-value samples. The Shapley
values of all samples are shown in Fig. 2.6b, there exist clear random errors despite
the global trend of the values. The fitted value function is shown in Fig. 2.6c. The
random errors of discrete Shapley values are eliminated, and the smooth value function
can benefit the sampling method in the following section.

2.4 Aggregation-value-based sampling method

This section will endow training data with two non-negligible meanings, namely repre-
sentativeness for probability density and values for game theory, leading to the proposed
AV4Sam method. A novel Value Aggregation Function (VAF) is designed to capture
the influence of neighbouring values by adding a kernel function to the value function.
The aggregation value is then derived to an elegant form, the expectation of the united
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(a) Shapley value in regression task (b) Shapley value for discrete samples (c) Shapley value function
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Figure 2.6: The discrete Shapley values and the value function.

VAF. The approximate optimal sample set can be easily obtained by greedy optimisation
of the aggregation value.

2.4.1 Value aggregation considering neighbouring influences

For a machine learning task, it is more reasonable to evaluate the contribution of one
sample considering the value of its neighbourhoods rather than only its own value,
where the neighbourhood refers to the samples with a small distance in the sample
space. Suppose the aggregation coefficients are positively correlated with the Euclidean
distance in the feature space, the VAF of a given instance x, is designed by adding a
kernel function to the value function as:

V' (z,2,) = v(x)k (2, x) (2.7)

where k (z, x,) is a kernel function. The kernel function can influence how much infor-
mation is aggregated from neighbouring samples. It plays a similar role as filtering in
signal processing, convolution in image recognition, and attention mechanism in deep
learning [166, 167].

VAF v’ (z, x,) can express the neighbouring influence of instance z,. Intuitively, the
influence degree of the sample z, to its neighbouring sample should be inversely pro-
portional to the Euclidean distance between the samples. Therefore, the classical kernel
functions, including Radial Basis Function (RBF), the Laplace Kernel, and the Polynomial
Kernel, are all effective. This research will adopt RBF because of its simplicity. The com-
parison of the different kernel functions will be analysed in detail in the experimental
Section 2.6.2.

Fig. 2.7a-c show the different influence ranges that are controlled by different band-
width parameters o of the kernel function. As shown in Fig. 2.7a, it is obvious that the
VAF V' (z, z.) will converge to v (x,) when bandwidth approaches zero. By comparison,
when the bandwidth becomes too large, the VAFs for all samples converges to the value
function v(x) itself (as shown in Fig. 2.7c), i.e., the values at each point are no longer
distinguishable.

To descript the quantitative contribution of the observation instance z., the expec-
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Figure 2.7: Shapley value for a regression toy case.

tation of VAF is defined as the aggregation value of sample z, :

tugg (2) = [ pla)0’ (@) do (28)

where p(x) is the probability density function of the variable z in the sample space.
When the potential dataset is given by a limited set /V, the discrete version of aggregation
value is given as:

Bagg (T4) = % Z v (2, 2) (2.9)

zeN

Eq. 2.8 and 2.9 can output the aggregation value of one sample. But for a set S with
more than one sample, the VAF is not the sum of the individual VAFs. Next section will
introduce the VAF of a sample set.

2.4.2 Represent the value of a subset

The neighbouring samples in the sample space might carry similar or redundant fea-
ture information, which cannot bring a proportional contribution to the model training.
Therefore, the value of a sample set can not be defined as the sum of the individual value.
The defined aggregation value can represent the values of the neighbouring samples,
thus, can be used to represent the redundant information.

As shown in Fig. 2.8, since the VAF of each instance is defined on the entire feature
space, the VAFs of different samples may overlap, which can represent the redundant
information explicitly. If two samples are very close to each other, the majority of their
VAFs will overlap. The two samples in Fig. 2.8a are far from each other, so there is only
a little overlap of the VAFs. In contrast, the two samples close to each other in Fig. 2.8b
have greater overlaps of their VAFs, namely more redundant information.

Therefore, the VAF of a set can be represented as the "union’ of the individual VAFs,
just like the union in Boolean geometry operations. Consequently, the VAF of the set
S ={x1,29,..., 2y} is then defined as:

V'(x,S) =v(x)max {k (x,21),..., k(z,2,)} (2.10)
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(a) VAFs of two distant points (a) VAFs of two close points
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Figure 2.8: Shapley value for a regression toy case.

The function can intuitively represent the neighbouring value distribution and show
how much value should be aggregated for a sample s when set S is available. The quan-
titative expression, namely the aggregation value of set S, is therefore the same:

Vagg(S) = /p(a:)v’(x,S)d:v (2.11)

Similarly, the estimation under finite number of samples is:

Dagq(S) = % > (2, S) (2.12)

zeN

Under this definition, closed high-value instances cannot provide high aggregation
value. The optimal sample set selection problem can be defined as a submodular optimi-
sation problem [162]:

max Vagg(S) (2.13)

It is admitted that the above problem is not a strict submodular optimisation problem

because Shapley values of some instances could sometimes be negative. This situation
is discussed in Section 2.6.1.2.

2.4.3 Greedy optimisation of the aggregation value

Submodular maximisation is an NP-hard problem, which means that the optimal solu-
tion is ordinarily inaccessible. Fortunately, the greedy algorithm can provide an approx-
imation to the optimal solution of the submodular maximisation problem with the guar-
antee up to a factor of 1 —1/¢e[168]. Starting from the empty set Sy, the greedy algorithm
queries the new sample to maximise the marginal gain A (e | S;_1) = Uggq (Si—1 U {e})—
Uagg (Si—1). Then iterative set S; can be obtained as:

S;=5;,_1U {argmaxA (e] Si_l)} (2.14)

e
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Figure 2.9: The greedy optimisation of the aggregation value.

The illustration of greedy-based sampling is shown in Fig. 2.9. The redundant infor-
mation can be represented as the overlapped grey regions of VAFs.

Since the defined aggregation value is always nonnegative and monotone with in-
creased samples, it is easy to obtain a basic approximation guarantee of greedy sub-
modular maximisation [162]. Suppose ¢ points are sampled from the set N, let S* €
argmax {U,4,(S) : |S| < k} be an optimal set of size k. The approximation bound can

S

be given as:
Bagg (Se) = (1 — 7% 440 (57) (2.15)

The sampling problem has been transferred to a simple greedy optimisation prob-
lem. The optimal subset S* can conveniently be sampled from the potential dataset V.
The maximisation of aggregation value can balance the distribution and value of points,
which breaks the limitations of the traditional value-based sampling method. The fol-
lowing section will validate the proposed sampling method with detailed experiments.

2.5 Case study

This section will validate and analyse the proposed sampling method in different manu-
facturing predictive modelling problems. Although the aggregation-value-based method
is derived from the Shapley value function, the basic idea of the aggregation value can be
generalised to other forms of value function as long as it can provide a positive correla-
tion with the real contribution of samples. Therefore, the case study section generalises
the proposed method to more practical scenarios with different value function schemes.

2.5.1 Evaluate value function from direct labelled data

Figure 2.10a-d report the detailed results of different sampling methods on four datasets.
Different number of samples are selected from the potential dataset. A machine learning
model is then trained on the selected samples and evaluated on the test set. ‘HighAV’
(High Aggregation Value) is the high valuable dataset sampled by the proposed AV4Sam
method. ‘HighSV’ (High Shapley Value) means sampling the high-Shapley-value sam-
ples greedily to construct the sample set [153]. ‘Cluster’ is the clustering-based core set
selection strategy [151]. Lastly, Random’ means generating the sample set randomly.
The detailed data processing and model training are reported in the Supplementary data
(S2, S3). The brief description of these tasks is summarised below.
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1. Image classification: Cifar10 [169] is a widely used classification dataset in the
image process field. A small dataset is constructed from Cifar10 to evaluate the
generalisability of the proposed method, and the result is shown in Fig. 2.10a.

2. Rolling bearing fault classification: The bearing fault dataset from the Case
Western Reserve University (CWRU) [170] is a famous benchmark dataset in the
fault diagnosis field. The vibration signals of normal and faulty conditions are col-
lected under different motor loads (HP=0,1,2,3). Two 10-way classification prob-
lems (HP=0, HP=1) are formulated, and the classification accuracies with varying
numbers of samples from all methods are shown in Fig. 2.10b(HP=1).

3. Composite curing: Predicting the thermal lag of temperature from curing pa-
rameters is an important task for the quality control of composite parts. 600 com-
binations of curing parameters are generated from a reasonable range, and the
corresponding thermal lags are simulated using Finite Element (FE) software [85,
10]. The MAE results are shown in Fig. 2.10c.

4. Tool wear prediction: The tool wear dataset from the Prognostics and Health
Management Society [171] consists of collected monitoring signals during milling
and the corresponding tool wear values for three blades of cutting tools. The input
of the regression problem is the extracted 64-dimensional features. Two regres-
sion tasks are formulated, blade No. 2 of cutting tool No. 4 and blade No. 3 of
cutting tool No. 6, B2C4 and B3C6 for short. The MAE results are shown in Fig.
2.10d(B3C6).

Figure 2.10a-d illustrate that High AV can consistently achieve superior performance,
especially when the number is limited. Under most circumstances, HighAV outperforms
the uncertainty boundary of Random (grey region) while Cluster is only better than Ran-
dom occasionally but far more unstable. The Cluster results fluctuate sharply because
similar sample sizes (e.g. 49 and 51 in Fig. 2.10d) can lead to totally different clusters,
and some high-value samples might be missed. In Fig. 2.10b, the results of HighSV show
‘step effect’, namely suddenly increasing at some point (around 350 in Fig. 2.10b).

Theoretically, minimising the aggregation value can also provide the worst sample
set. As seen in Fig. 2.10, ‘LowAV’ (Low Aggregation Value), sampled by greedily min-
imising the aggregation value, can always provide far worse results than the lowest
bound of Random. Although the low valuable sample set seems meaningless for real
application, it does reveal the importance of the distribution of training data, as well as
the magic of AV4Sam.

Table 2.1 summaries the regression and classification results with training data from
different sampling methods under different samples size (30, 50, 80, 100). It is clear
that the proposed AV4Sam method can provide better sample sets compared to other
sampling methods.
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Figure 2.10: Comparison of different sampling methods.

2.5.2 Reuse value function from similar tasks

To avoid data labelling for the value function, this section investigates the possibility of
reusing the value function learnt from a similar task on the target task without training
a new one. As introduced in Section 2.5.1, the fault diagnosis dataset CWRU consists of
two classification tasks, HP0 and HP1. Suppose the dataset CWRU HPO is available, the
value function of CWRU HPO can be calculated first and applied in the sampling of the
problem CWRU HP1.

Figure 2.11a presents the cross tasks application of reusing value function from CWRU
HPO0 on HP1. It can be observed that the accuracy of HighSV is even lower than Random,
but HighAV can consistently achieve leading performance. This phenomenon reveals
that the effectiveness of HighSV relies heavily on the accuracy of the value function.
However, HighAV is more robust, meaning that a less accurate value function can still
provide helpful value information. The same conclusions can also be summarised from
Fig. 2.11b, which are results of cross tasks application of reusing the value function of
B2C4 on B3Cé.
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Table 2.1: Summary of model performance with training data from different sampling methods.

CWRU HP1 acc/%) Cifar10 (acc/%) Tool (MAE/um)  Composite (MAE/K)

Samples 50 100 30 80 50 100 30 80

Random 73.18% 80.52% 61.47% 69.60% 9.32 7.98 10.90 6.54
Cluster 74.80% 81.56% 62.62% 66.56% 72.20 8.16 9.90 5.95
HighSV  4857% 55.84% 59.00% 70.62% 9.90 7.98 16.54 5.87
HighAV 83.12% 87.79% 70.20% 74.71% 8.88 6.70 5.70 4.41

The best results are marked with bold.
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(a) Reusing v(x) of task CWRU HP0 on HP1. (b) Reusing v(z) of task B2C4 on B3Cé.

Figure 2.11: Comparison of different sampling methods.

2.5.3 Reuse value function from low fidelity data

This section investigates Scheme C for the composites curing case, in which the value
function is first calculated from the simplified low-fidelity Finite Difference (FD) model,
and then reused for parameters designing in high-fidelity FEM simulations.

2.5.3.1 Problem statement

The illustration of the curing of a 1-D composite-tool system is shown in Fig. 2.12a. The
actual temperature of the composite part always lags behind the designed cure cycle
(Fig. 2.12 right). Thus, the thermal lag is defined as the maximum difference between
the cure cycle and the actual temperature of any point in the part thickness during the
heat-up step [85, 10].

The objective here is to establish the data-driven prediction model of the thermal lag,
where the input features include the heating rate, the cooling rate, the hold temperature,
the hold time, and the heat transfer coefficients of both sides. Since the labelled data
comes from the time-consuming high-fidelity FEM simulation, a better sampling method
should reduce the number of simulations while maintain the required accuracy of the
data-driven model.
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Figure 2.12: Tllustration of 1-D composite-tool curing system and one hold cure cycle.

The detailed procedure of AV4Sam on this case is shown in Fig. 2.13. 600 curing
parameters are generated first as the potential dataset. The simplified FD model is es-
tablished first as the low-fidelity model. The thermal lags of the 600 curing parameters
are obtained with the low-fidelity model, the simulation data is therefore defined as the
low-fidelity data. Although the low-fidelity data is not accurate enough for composite
manufacturing, it can be used to calculate the value-function v(z). An optimal param-
eters sample set S is then determined based on the proposed sampling method for the
subsequent complete high-fidelity FEM simulations.

Generate potential cure parameter
combinations N
Calculate the low fidelity temperature
history using simplified FD model

y N

_Eﬂ Calculate value function using low-fidelity
g thermal lag data

‘:‘ L v

_Zén Sample the subset by maximising the

E

aggregation value T8¥ Vagg

Is

Simulate on the parameter subsets using
commercial FEM software

|

Train the final data-driven thermal lag
prediction model

Output model

Figure 2.13: The workflow of sampling curing parameters for composites simulation.
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2.5.3.2 Experimental results

To compare the influence of the data sampling on the performance of the data-driven
model, a parameters sample set with n=40 instances was selected from the potential
dataset by different sampling methods. A Gaussian Process Regression (GPR) model
was then trained on the simulation results of the selected samples and evaluated on the
test set. The MAE of 10 repeated trials of four methods are shown in Fig. 2.14. It can be
observed that HighAV achieved a superior and stable performance with MAE around 5K.
Conversely, Cluster is slightly better than Random, and HighSV is very unstable, even
worse than Random. These results show that the distribution of the designed curing
parameter combinations significantly influences the performance of data-driven models,
and the proposed HighAV provided a better sample set stably.

20
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pr ¥
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Random Cluster HighSV  HighAV
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Figure 2.14: MAEs of 10 repeated trails of different samples selection methods with 40 samples for com-
posite task.

Figure 2.15 presents how many samples were required to achieve an MAE of 5K for
different sample selection methods. In each independent experiment, a sample set was
constructed by increasing instances one by one from an empty set until the MAE became
less than 5K stably. The size of the final sample set was recorded as the required size of
this trial. As shown in the scatters and box plots of 10 repeated tests in Fig. 2.15, HighAV
achieved the MAE of 5K with around 50 samples, much less than the required number
of Random and Cluster.

Table 3.2 presents the detailed required samples for different sampling methods to
stably achieve an MAE of 5K and 6K. These results demonstrated that the proposed
sampling method could reduce the data-collecting effort of FEM simulations in the com-
posite curing problem while maintaining the required accuracy.

2.5.4 Define value function from prior knowledge
This section investigates Scheme D for the case of surface measurement and reconstruc-

tion, in which the value function is defined from prior knowledge, the absolute Gaussian
curvature of the surface.
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Figure 2.15: Required samples of different samples selection methods to achieve an MAE of 5K for com-
posite task.

Table 2.2: Comparison of the required number of samples.

Composite ! Surface !
MAE 6K 5K 0.1lmm 0.01lmm
Random 172+21 234+30 122+10 292+8
Cluster 83+5 12448 85+3 199+4
HighSV 68+8 104+21 331+8 -
HighAV 25%5 53+11 62+2 147+1

! The required number of samples M for different sampling methods to achieve an predefined
required MAE. Considering the uncertainties of different methods, the number M is defined
as: during the sampling from 20 to 520 points, for any sample set with more than M samples,
the MAE is always less than the required one. A+B represents the mean (A) and standard
deviation (B) of the required number M in 10 repeated trials.

2.5.4.1 Problem statement

Dimensional inspection and reconstruction of engineering products comprising free-
form surfaces require accurate measurement of a large number of discrete points using
a coordinate measuring machine with a touch-trigger probe [172]. An efficient sampling
method should enable the reconstruction of the surface under the required accuracy with
a limited amount of measurement points.

Curvature and other geometric features are widely used prior knowledge for tradi-
tional measurement sampling methods. By defining the curvature of the surface as the
value function v(x), the proposed aggregation-value-based sampling method can also
be extended to sample the measurement points for further surface reconstruction.

Figure 2.16 shows the full workflow of how to design the measurement points through
the proposed sampling method. The potential measurement sample set IV, can be first
generated from the nominal surface uniformly or randomly. Each sample in the set /N is
represented by the x,y, 2 coordinates of a point. The curvature function obtained from
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the CAD model is then defined as the value function v(z) for performing the HighAV
sampling, in which the indicator function should be the reconstruction error of the nom-
inal surface. For a given number of planned samples, an optimal subset S € N will be
obtained by maximising the aggregation value. Theoretically, the points in the subset S
could preserve valuable information when reconstructing the nominal surface. There-
fore, it is reasonable that these points could also guide the measurements and the recon-
struction of the real surface.

(- ORIy lv-—— Generate potential measurement samples N

l "

w
Calculate the absolute Gaussian ~ ”() Sample the subset s by maximising the é uE
curvature as the value function v(x) aggregation value 78X %agg = =
s} =
Reconstructe the surface based on the Measure the surface on the
measured points < | sampled points E

Reconstructed surface

Figure 2.16: The full workflow of sampling measurement points for the surface measurement and recon-
struction.

In this case, a Matlab Peak surface shown in Fig. 2.17 was adopted for the simulated
measurements and reconstruction. The function of the Peak surface (Eq. 2.16) is defined
as the nominal CAD surface without noise. As the colour map shown in Fig. 2.17, the
absolute Gaussian curvature evaluated by the python library Pyntcloud is defined as the
value function, which could provide information about the importance of different re-
gions when reconstructing the surface. The set of the potential sample space /N consists
of 900 points uniformly sampled from the Peaks function. The basis learner for surface
reconstruction is Gaussian Process Regression (GPR) based on the GPyTorch package
and the indicator function is the MAE of the reconstruction result. After the HighAV
sampling, the points in the sampled subset S will measured to get the real coordinate of
the physical surface. Normally, there will be geometrical and dimensional defects from
the manufacturing process. In this case, a Gaussian noise ¢ = 0.02mm is added on
the points in the sampled subset S to simulate the measurement points S,,cs. Another
set N,.q; With 1600 points integrating a Gaussian noise o = 0.02mm is assumed as the
coordinate of the real surface to evaluate the accuracy of the reconstructed surface.
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Figure 2.17: The absolute Gaussian curvature function of Peaks surface.

2.5.4.2 Experimental results

Figure 2.18 presents the MAEs of four sampling methods with different number of sam-
ples from 20 to 520. MAEs refer to the error between the surface reconstructed by .S,,cqs
and the simulated real points N,.,. HighAV has a small MAE for almost any size of
samples.
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Figure 2.18: The relationship between number of samples and the MAE of the reconstructed surfaces for
different sampling methods.

Table 4.3 presents the required samples for different sampling methods to stably
achieve an MAE of 0.1mm and 0.01lmm. It is clear that HighAV reduced the required
measurement points under the predefined MAE.

Figure 2.19a is the error distribution map of the reconstructed surface with 140 mea-
surement points sampled by HighAV. MAE is 0.010mm and the maximum absolute error
(marked as MAX) is 0.078mm. Figure 2.19b shows the errors of the surface reconstructed
with 140 points sampled by Cluster. MAE and MAX are 0.015mm and 0.139mm respec-
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tively. It is clear that HighAV can reduce the error of areas with high curvatures, which
plays a similar role as traditional curvature-based sampling.

a. MAE = 0.010 mm b. MAE = 0.015 mm
MAX = 0.078 mm MAX = 0.139 mm I

2(mm)

0
“mmy 20, -40

Figure 2.19: The error map of the surface reconstructed.

2.6 Formal analysis of AV4Sam

2.6.1 Characteristic of the method

The above mentioned results show that AV4Sam can provide superior and stable sam-
ple sets compared with Shapley-value-based or representativeness-based methods. This
section comprehensively analyses the characteristics of AV4Sam and explains why it
works.

2.6.1.1 Value distribution analysis

Fig. 2.20a-c show the t-SNE visualised features of the samples in the composite task.
These samples are generated by HighSV, HighAV and Cluster, respectively. Green points
are part of the dataset, and blue points are samples in the generated sample sets.

The red background in Fig. 2.20a-b represents the Shapley value field, and the darker
the shade of red, the larger the Shapley value. Almost all the samples in Fig. 2.20a are
concentrated in the upper-left high-value area, showing that this high-value samples
clustering phenomenon would result in a severe information redundancy phenomenon.
Shapley-Value-based sampling tends to be deficient because the sample set does not
represent the dataset.

The blue background in Fig. 2.20c is the kernel density estimation result of the sam-
ples’ distribution in the dataset. The sample set of Cluster is representative of the proba-
bilistic density of the dataset. Still, samples in the high-value area are random and insuf-
ficient, which explains the unstable fluctuation of Cluster in Fig. 2.10d-e. As shown in
Fig. 2.20b, the sample set generated by HighAV take both Shapley value and probabilis-
tic density into consideration and provide balanced and reasonable results. The same
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Figure 2.20: Samples distribution analysis of the composite task.

observations can also be summarised from Fig. 2.21a-c, which are features of the CWRU
HP1 task.

Due to the information redundancy phenomenon, the functions between the number
of samples and the corresponding performance of the data-driven model are usually ap-
proximately logarithmic, as shown in the black curves in Fig. 2.20e and Fig. 2.21e, which
are MAE of the composite task and classification accuracy of CWRU HP1 respectively.
Therefore, the direct sum of Shapley value of all samples (blue curves in Fig. 2.20e and
Fig. 2.21e) cannot reflect the variation trend of the performance reasonably. On the con-
trary, the defined aggregation value (red curves in Fig. 2.20e and Fig. 2.21e) can provide
a more correlative evaluation of the actual performance.

Fig. 2.20d and Fig. 2.21d illustrate the label distributions under different number of
samples of the two tasks. The abscissa 1-9 in Fig. 2.20d shows that the labels of thermal
lag are divided into nine intervals, and the 1-10 in Fig. 2.21d are the ten categories
of bearing faults. The red cross represents the vacancy of the label in that interval.
It’s interesting that HighSV always suffers from the vacancy of specific intervals in the
label space, this may come from the low Shapley value of these samples. However, the
distribution of the labels will directly influence the generalisability of the data-driven
models. The model could not provide reliable prediction results when the training data
did not cover the label space. Cluster results show a relatively balanced label distribution,
despite a few missing labels, and the situation is improved when with more samples. On
the contrary, HighAV can cover all the label intervals with only a few samples in both
the regression and the classification tasks.
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Figure 2.21: Samples distribution analysis of the CWRU task.

2.6.1.2 Sub-modularity analysis

Sub-modularity of the model training is the basic assumption for the proposed sampling
methods. This section will analyse the distribution of Shaply value and its influence on
the sub-modularity property, which can provide support for the definitions in Section

2.3.1.

Composite:19.33%<0 Cifar10:19.8%<0 CWRU HP1:29.91%<0 Tool wear B3C6:26.48%<0
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Figure 2.22: Shapley value distribution for the four cases.

Fig. 2.22 shows the distribution of the calculated Shapley value for four tasks. The
title of each figure shows the proportion of points with a negative Shapley value. The
Shapley value means the contribution of each sample in the model training, so the out-
lier or noise may have a negative influence on the modelling, thus resulting in a negative
Shapley value. In addition, the uncertainties and approximation error of the modified
TMC Shapley method may also lead to negative Shapley values. Anyway, these nega-
tive Shapley values may have two influences on the basic assumption of the proposed

aggregation method.
« As shown in definition 2 in the Section 2.3, the sub-modularity requires A, (e |
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A) > Ay(e | B) for A C B C N [9]. Suppose set A consists of only a few
samples, in contrast, set B has sufficient samples to train a high-accuracy model,
namely |A| < |B|. An outlier sample e may reduce the performance of the subset
A significantly but only have a few negative influences on the subset B, which
means Ay (e | A) < Ag(e | B) < 0. Therefore, the aggregation value 0,4,(5) is
not a strict sub-modular function anymore.

« The defined aggregation value 0,4,(S) is maximised using the greedy algorithm,
but greedy submodular maximisation requires the submodular function to be non-
negative and monotone [162], namely U,45(B) > 0444(A) > 0 for any A C
B C N. Therefore, the negative Shapley values will influence the effectiveness
of greedy optimisation. Although greedy optimisation can still work for most
situations with negative Shapley values, there is a simple way to avoid insta-
bility. After the calculation of the modified TMC-Shapley method, each point
v; should subtract the smallest Shapley value in the set to keep it nonnegative:
v; = v; —min (v, -+ ,0,), for i = 1,---  n. After this operation, the function
Uagg(S) is a strict nonnegative and monotone submodular function, which brings
a guarantee for the greedy optimisation of Eq. 2.15.

2.6.2 Sensitivity of the method

This section will analyse the sensitivity of the proposed sampling method in terms of
the kernel parameter and the randomness of the Shapley value approximation.

2.6.2.1 Kernel function

The kernel function plays an important role in aggregating the neighbouring values and
constructing VAFs. This section investigates the performance of three different kernel
functions, Radial Basis Function (RBF) kernel, Laplace kernel and Inverse Multiquadric
(IM) kernel.

RBF kernel:
2
k(x;, ;) = exp (—M> ,o = 1e2 (2.17)
o
where the denominator can also be expressed as the equivalent definition o = 2/2.

Laplace kernel:

k(x;,x;) = exp (—M) ., o=1e2 (2.18)
o

IM kernel: .

j) = 5 )
Vs — ) + 2

k(x;,x c=1 (2.19)
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Figure 2.23: The sensitivity of HighAV on different kernel functions.

Figure 2.23 compares the HighAV results for the composite case with different kernel
functions. The upper three curves are the results of LowAV, the lowest aggregation value
subset. The bottom three curves are the results of HighAV, the highest aggregation value
subset. It can be found that different kernel functions have similar convergence curves
despite slight fluctuations. Considering the uncertainty of sampling, all three kernels
can provide similar sampling performance for the proposed sampling method. The RBF
kernel is selected for all the case studies because it is simple and general enough.

2.6.2.2 Kernel width

The bandwidth parameter of the kernel function o, which determines the influence
range, is the one and only parameter in AV4Sam. When o is too small, the neighbouring
values will not be aggregated, and AV4Sam will degenerate into Shapley-value-based
sampling. On the other hand, AV4Sam will be less effective when o is too large because
the aggregation value of all samples could be too similar to be distinguished.

Fig. 2.24a and Fig. 2.24c show performance on the composite task and the Cifar10
task concerning o from 0.05 to 1000. The darker shade means worse performance, and
the red line is the selected parameters in the previous experiments. The large light-
yellow region implies that the AV4Sam can achieve relatively robust performance in
a wide range of 0. For the composite task, the performance is almost consistent for
o € [1,1000].

Fig. 2.24b and Fig. 2.24d show the degeneration process of the method as ¢ becomes
smaller. For the composite task in Fig. 2.24b, HighAV turns to HighSV gradually from
0 = 1to o = 0.1. The degeneration process of the Cifar10 task (Fig. 2.24d) is more
abrupt, which can also be observed in the bottom left corner of Fig. 2.24c.
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Figure 2.24: Kernel width analysis of HighAV sampling.

2.6.2.3 Robustness

Since the calculation of Shapley value always brings random errors, this section analyses
the sensitivity of HighSV, HighAV and LowAV with five random trials of Shapley value
function. Fig. 2.25a-b show robustness performance on the composite task and the
Cifar10 task, respectively. It is clear that HighAV is far more stable and robust than
HighSV. For HighSV, the slight random error of the Shapley value would change the
samples significantly, thus reducing the stability and robustness. However, AV4Sam can
aggregate the values of neighbouring samples by a kernel function, which plays the role
of smoothing filter, so that HighAV can be less sensitive to the random error of Shapley
value. The robustness of the proposed method enables the value function reuse and
prior-knowledge-based value function in Scheme B,C,D.

2.7 Summary

Considering the expensive and time-consuming data labelling in manufacturing pre-
dictive modelling problems, sampling a smaller but informative dataset can potentially
reduce labelling efforts. This chapter proposed an aggregation-value-based sampling
(AV4Sam) strategy for optimal sample set selection for data-driven manufacturing ap-
plications. The proposed method has the appealing potential to reduce labelling efforts
for machine learning problems. A novel aggregation value is defined to explicitly rep-
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Figure 2.25: Robustness analysis of HighAV sampling.

resent the invisible redundant information as the overlaps of neighbouring values. The
sampling problem is then recast as submodular maximisation on the aggregation value,
which can be solved using the standard greedy algorithm.

Comprehensive experiments on several manufacturing datasets demonstrated that
AV4Sam could achieve superior sampling performance compared with existing repre-
sentative based sampling and value based sampling methods. Four schemes of value
function show the generalisability of the proposed sampling methods. The selected op-
timised samples could provide more accurate and robust prediction results under the
exact size of labelled data. On the other hand, the size of labelled data could be re-
duced by more than 50% under the fixed accuracy requirements. The detailed analysis of
the feature distribution and aggregation value interprets the superiority of aggregation-
value-based sampling.

AV4Sam can design a small but informative labelled dataset for further data mod-
elling. When the sampled labelled dataset is insufficient to train a data-driven model,
transferring the knowledge from similar or relative datasets can improve the perfor-
mance of the target model. Chapter 3 will focus on transfer learning to leverage the
auxiliary data and compensate for the insufficient information of the direct labelled data.
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As mentioned in Section 1.3, when the direct labelled data is insufficient to train a
model, leveraging auxiliary data can potentially compensate for the insufficient mod-
elling information and reduce the requirements for a large amount of labelled data. This
Chapter will focus on objective 0, i.e., knowledge transfer introduced in Fig. 1.30.
The conditional distribution shift situation widely existing in MPM problems was in-
vestigated, and a structured distribution adaption method was proposed to facilitate the
knowledge transfer from auxiliary data to the target task, thus improving the perfor-
mance of the target model under data scarcity situations.

3.1 Introduction and Challenge analysis

Data-driven MPM continuously suffers from insufficient labelled data because of ex-
pensive and time-consuming experiments or simulations. Nevertheless, widely existing
auxiliary data in manufacturing systems can afford transferable knowledge for the MPM
problem to compensate insufficient direct labelled data. Learning the data-driven model
of the MPM problem from a given dataset can be defined as the target task. In the ma-
chine learning field, the new paradigm, transfer learning, aims at transferring knowledge
from a similar task to enhance the performance of the target task [173]. Therefore, the
data from similar tasks can be defined as auxiliary data or source data, and the direct
labelled data can be expressed as the target data.

d. Data of similar configurations b. Data obtained by different sensors  C. Simulated data that is close to real data
o) Cutting Laser scanner Milling o
S ] data simulation 4 “ L/
> TN .
ol
2 = t = 4 )
l Transfer l Transfer l Transfer
8
3 Cutting Touch probe Real
B data milling
©
el
o]
9]
=
o

Figure 3.1: Transfer learning examples in manufacturing fields. (a) Transfer learning problem on pose-
dependent tool tip dynamics prediction from tool A to tool B. (b) Multi-sensor surface measurement can
be defined as the transfer learning problem from a large number of low-precision laser points to a small
number of high-precision probe points. (c) Transfer learning problem on milling stability prediction from
simulation data to real experimental data.

The auxiliary data in MPM problems can come from similar tasks, such as different

but similar configurations, measurement data from different sensors or simulated data.
Fig. 3.1a-c show the examples of transfer learning regression problems in manufactur-

66



TRANSFER LEARNING BASED ON STRUCTURED DISTRIBUTION ADAPTATION

ing fields. As shown in Fig. 3.1a, different milling tools have similar pose-dependent
dynamics, therefore, transferring knowledge from existing data set of milling tool A can
potentially reduce the data requirements of milling tool B. For the surface measurement
problem shown in Fig. 3.1b, since it is time-consuming to collect sufficient touch probe
points, the laser scanner data can act as the auxiliary data. Therefore, the multi-sensor
measurement problem can be defined as a transfer learning setting, where the knowledge
of the overall shape of the surface is transferred from the dataset of the laser scanner
to the dataset of the touch probe. Fig. 3.1c shows a simulation-to-real transfer setting
for the data-driven milling stability prediction problem, where the simulated stability
diagram lobe is defined as the auxiliary data to compensate expensive real experimental
stability data.

From a probabilistic point of view, transfer learning refers to minimising distribution
discrepancy between the two tasks so as to extract common knowledge. Various transfer
learning methods have been proposed according to different assumptions about the dis-
tribution shift between source and target data, including covariate shift [174, 175], prior
probability shift [176, 177], sample selection bias [178, 179], and conditional distribution
shift[180]. This research focused on conditional distribution shift regression situations
that widely exist in MPM problems. In probability theory and statistics, the conditional
distribution of y given x is the probability distribution of ¥y when x is known to be a
particular value, namely p (y|x) [177]. The different conditional distribution means that
the two tasks have different probability distributions of y under the particular value of
z, ie. p(y|x), # p (y|x),. For example, the two cutting tools in Fig. 3.1a have the same
feature space, namely the posture spaces of the machine tool, but different tip dynamics
under any posture. The simulated and real stability diagrams in Fig. 3.1c have similar
feature space, i.e. the cutting parameter combinations, but different stable boundaries
under the same spindle speed. The above problems with the same feature space but
different conditional distributions can be categorised into conditional distribution shift
regression situations. As illustrated in Fig. 3.2, transfer learning under conditional shift
aims to minimise the distribution discrepancy between the conditional distributions of
the source data and target data, namely mindis [p (y|x), — p (y|x),].
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Figure 3.2: Illustration of conditional distribution adaptation.

The core challenges in conditional shift problems lie in the representation and
adaptation of the conditional distribution discrepancy across tasks [139]. For clas-
sification problems, the conditional distribution shift can be represented using pseudo-
labels because the label spaces maintain consistency between tasks [181]. However,
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the predicted value for regression problems is a continuous variable, pseudo label-based
methods are not applicable [182]. Thus, conditional shift regression problems are typi-
cally supervised problems, which require labelled target data [183].

Previous research about conditional shift regression problems can be categorised
into mapping-based methods, weighting-based methods and parameter-based methods.
Mapping-based methods aim to establish the mapping from the hypothesis function of
the source task to the target task. The mapping function can be predefined according to
the complexity of the distribution discrepancy, such as scale-offset transformation [184,
180], the residual function [185], or nonlinear mapping [186]. However, since the trans-
formation function was trained only on the target data, the final performance highly
depends on the amount of the labelled target data. Weighting-based methods adjust the
importance of training data in two tasks to reduce the distribution discrepancy across
tasks. The weights of instances could be estimated directly by Kullback-Leibler Induc-
tive Transfer Learning (KLITL) [187], or adjusted adaptively during the iteration training
such as TLB [188]. Parameter-based methods trained the target model using a few la-
belled data by adding a new parametric structure based on the reused task-independent
framework [80, 189]. Since the information of the source data was contained in the
reused framework, the whole model was only updated on limited labelled target data,
which means that only the discretised conditional distribution near the training points
was aligned, and there are no constraints on regions without target data [187, 188].

To summarise, previous conditional shift research only adapted the discretised distri-
bution discrepancy near the labelled data without constraints on the entire feature space,
a global distribution adaptation still required a large amount of labelled data. Therefore,
representing and adapting the conditional distribution discrepancy with a small amount
of labelled data remains as a significant challenge. This Chapter will describe a pro-
posed new conditional distribution adaptation method by representing the distribution
discrepancy in the latent space. The following Sections will first give the general idea of
the proposed method, followed by the details of distribution discrepancy representation
and adaptation.

3.2 Generalidea of structured conditional distribution

adaptation

As shown in Fig. 3.3a, existing conditional adaptation methods directly adapts the dis-
tribution discrepancy of the few labelled data (the blue points). There are not enough
constraints on the other region of the feature space that is without labelled data, which
would lead to inevitable over-fitting during adaptation. In this research, the conditional
distribution discrepancy is assumed to be generated by a finite number of latent vari-
ables, then the discretised discrepancy on the original feature space could be
transferred to structured discrepancy defined in the k-dimensional latent space.
After solving the distribution discrepancy of the latent space, the latent variable could be
decoded to the original feature space to represent the distribution discrepancy globally.
The structured distribution discrepancy representation could provide enough constraints
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on the whole feature space, therefore, could lead to a stable adaptation result without
requiring for too much labelled data. Fig. 3.3b illustrates the structured representation
with Gaussian Mixture Model (GMM), in which the original distribution discrepancy is
assumed to be controlled by three Gaussian distributions. Fig. 3.3¢ shows another struc-
tured representation with fuzzy rules, in which the original distribution discrepancy is
assumed to be represented by multiple linear rules.

Discretised adaptation Structured adaptation
in the original feature space in the K-dimensional latent space
Aa.
=
Only adapt the =
oo R0, few labelled
[ 28 6%, data °
Py L]
o ® v g% ~ .
[} [ o4
« ® . Sl
e °
> Gaussian Mixture model Fuzzy rules
T

Figure 3.3: (a) Existing method: Discretised adaptation in the original feature space. (b) Structured adapta-
tion in the K-dimensional Gaussian Mixture Model. (c) Structured adaptation in the K-dimensional fuzzy
rules.

The proposed structured distribution adaptation consists of two main steps: (a) the
representation and (2) the adaptation of structured distribution discrepancy. The
representation step means representing the residual or the distribution discrepancy as
the limited number of structured components in the defined latent space. This Chapter
describes two structured representation schemes, Gaussian Mixture Model in Section
3.3.2 and fuzzy rules in Section 3.3.3. The adaptation step aims to design an optimisation
target to minimise the distribution discrepancy on the latent space. A Conditional Em-
bedding Operator Discrepancy (CEOD) is introduced in Section 3.4, and then generalised
to fine-tuning deep learning settings in Section 3.4.1.

3.3 Structured distribution discrepancy representation

3.3.1 Conditional distribution shift problem definition

Assumming that a regression task for manufacturing predictive modelling with a small
number of training data D, = {(x},4i),...,(x,,y,)}, defined as the target task,
where the input feature is x! € R, and y! € R! is the corresponding output la-
bel, a continuous variable. The available auxiliary data is defined as the source data
D, = {(Xf, T (Xfls, yfls) }, where x? is the input and y; is the corresponding out-
put. The size of the source data should be much larger than the target data, i.e. ny > n;.
For the example shown in Fig. 3.1a, the tool tip dynamics dataset of cutting tool A is
the source data, or auxiliary data while the tool tip dynamics dataset of cutting tool B
is the target data. The task refers to learning a regression model from the input fea-
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ture, namely the posture coordinates of a machine tool, to the output label, namely the
dynamic parameters.

Supposing that the underlying hypothesis functions of the source task and the target
task are f; and f;, respectively, then the observed training data can be modelled as:

y=rfx)+e yl=fi(xh) +el (3.1)

It is assumed that the observed labels differ from the functions by additive noise €
and ¢!, and these noises follow a zero-mean Gaussian distribution € ~ N (0, 02). From
the probabilistic viewpoint, each observed training data can be written as conditional
distribution as p (y§ | x{) and p (3! | x!). The whole source and target dataset can be
represented as p (y, | X,) and p (y; | X;) respectively, where X, = [x{,x3,...,x} | N
ys = [yf,yé, . ,y;‘;JT, X, = [x’i,xg, . ,XHT and y; = [yi, yho.. ,yf%}T. This re-
search focused on the transfer learning problem for regression under a conditional shift
situation, which means the identical marginal distributions p (X;) = p (X;) but different
conditional distributions p (y; | Xs) # p (y: | X;). Since the source data size is adequate,
the source model f; can be estimated directly with supervised machine learning algo-
rithms. The goal of transfer learning is to learn the target function f; to predict the labels

y" € Y7 for the target task.

>

Before the distribution adaptation, this Section will represent the distribution dis-
crepancy between p (ys | X;) and p (y; | X;) by two structured components, i.e. Gaus-
sian mixture model and fuzzy rules.

3.3.2 Discrepancy representation by Gaussian mixture model

Since the feature space and the marginal distributions of two tasks are consistent, the
distribution discrepancy between two conditional distributions can be modelled as a
residual function h(x) :

h(x) = fi(x) = fs(x) (32)
From the probabilistic viewpoint, the residual distribution can be represented as:
p(h | %) = N (fi(%) = f(x), 207) (33)

The most intuitive way to adapt the discrepancy is fitting the residual function h(x) with
only target data D, as Ref [185]. However, the method only ensures that the conditional
mean values near the training points are aligned, and there are no constraints on regions
without target data. Because the target data is insufficient, directly fitting h(x) can only
adapt the discretised conditional discrepancy.

The most straightforward way to discretise the residual function is to solve the resid-
ual value of each sample of source data, namely y;*¥ = y, + h, where h € R™ is a
residual vector for source data, so that the new source data {y?*", X;} follows the sim-

ilar conditional distribution with the target data {y;, X;}. Therefore, h can be obtained
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by minimising the distribution discrepancy between the new source data and the target
data as:

h = argminDist [p (y5 | Xs),p (y: | X¢)] (3.4)

heRns

where p (y2V | Xj) is the conditional distribution of the new source data after the com-
pensation of the residual. Since the size of target training data is not enough to estimate
the target function f, it is also fundamentally ill-posed to estimate residual vector h
when n; is far less than n,. The optimisation of Eq. 3.4 would be unstable because
there are infinitely many possible h that could have given rise to the observed limited
target data. Therefore, it is reasonable to model the residual function in a parametric
way to control the solution space. Since the source task and the target task share the
same marginal distribution. The common marginal distribution p(x) can be represented
by a finite number of Gaussian distributions, where the k-th Gaussian distribution is

characterised by the mixing coefficient 7, mean vector p,, and covariance matrix 3y :

K
p(x) =D mN (x| py,, Ti) (3.5)

k=1

where Zszl 7, = 1. To illustrate the assignments of data points to specific components
of the mixture model, a latent variable z € R¥*! is introduced, in which only one
element equal to 1 and others are zero. For example, if a data point belongs to k-th
component of the mixture, then z; = 1 and z; = 0, for ¢ # k. Therefore, the probability
of the assignment can be represented as p (z, = 1) = my, therefore:

K
p(z) =[] = (3.6)
k=1

where [] refers to the product of the sequence 7;*. Based on the latent variable z, the
marginal distribution p(x) can be obtained by integrating the joint distribution as:

p(x) = / p(x, z)dz = / p(@)p(x | 2)dz (3.7)

z

Note that the mixing coefficient 7;, mean vector p; and covariance matrix 3 can be
solved by the Expectation Maximisation (EM) algorithm [17]. After building the Gaus-
sian mixture model on x, the distribution discrepancy on the feature space can be rep-
resented by marginalising the joint distribution over the latent variable z as:

p(h | %) = / p(h | 2)p(z | x)dz
IZ( (3.8)
— S plh =1 pla=1]x)

Denote wy, as the residual of the k-th component of the mixture, then the residual
function h(x) can be characterised as weighted superposition as:

K
h(x) = wip (5 =1 x) (3.9)
k=1
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where the posterior probability p(z | x) can be obtained by Bayes’s theorem as:

Cpx|2)p) N (x| e S0 T, 77
p(z | x) = o) SE N (x| . 5) (3.10)

Denote v (z) = p (21 = 1 | x;), then:
N (% | py, Ei)

v (zik) = (3.11)
SN (x| 1y, %)
Now the residual function h(x) can be represented as:
K
h(x) =Y wey (z) (3.12)
k=1

Till now, the problem of solving h € R" is transferred to the problem of solving the
component residual vector w € R¥ on the structured Gaussian mixture model, which
is more tractable because the marginal distribution can always be approximated using
a limited number of Gaussian distributions with K < n,. The new representation can
significantly reduce the degree of freedom of the residual function. Then the properties
of the latent variables w can be optimised by matching the kernel embedding conditional
distributions between two tasks.

3.3.3 Discrepancy representation by fuzzy rules

This section will investigate another structured distribution discrepancy representation
method based on Takagi-Sugeno-Kang (TSK) fuzzy systems. As shown in Fig. 3.4a, the
source data is firstly represented by the TSK fuzzy rules. The distribution discrepancy
can be defined as the residual terms on the fuzzy rules (Fig. 3.4b). Therefore, the distri-
bution adaptation problem becomes solving the residual terms on the fuzzy rules. The
target model can be represented based on the adapted fuzzy rules as shown in Fig. 3.4c.
The background of the TSK fuzzy system will be introduced first, followed by the two
steps of the fuzzy rules-based distribution representation method.

3.3.3.1 Takagi-Sugeno-Kang fuzzy system

TSK fuzzy system is an intelligent model defined with fuzzy logic and fuzzy rules [190].
Because of the interpretability and powerful approximation capabilities, TSK fuzzy sys-
tem has been widely used for modelling complex non-linear systems [191]. Supposing
that a TSK fuzzy system has d inputs z; € X;,...,24 € X4, one outputy € Y and
K rules,then the structure of K-th TSK fuzzy rule for the system consists of IF-THEN in

the form:
IFa:lisA’f/\xgisAé/\.../\xdisA'j (3.13)
THEN yisrg(z) k=1,2,.... K '
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Figure 3.4: Transfer learning based on fuzzy rules. (a) Represent the source data with fuzzy rules. (b)
Evaluate the residual terms on the fuzzy rules. (c) Reconstruct the target model.

Where Aé? is the fuzzy set of j-th input dimension under the k-th. A fuzzy set is described
by its membership function p 4« (z) as:
J

Al = {(J:j,,uA? (xj)> |z; € Xj} (3.14)

The shape of membership function is determined up to the designer. The commonly
used membership function is the Gaussian membership function:

e (=)

Where c;‘? and aé? are the center value and the spread of the fuzzy set A? . These two
parameters are defined as the antecedent parameters, which can be calculated by fuzzy
partition algorithms such as Fuzzy c-means (FCM) [192].

The membership degree of fuzzy set A* can be the product of membership degrees
of each dimension as:

d
i (x) = HMA;. (x;) (3.16)
j=1
The normalized membership degree is given by:

() = ) (3.17)

Zf:l i1, (x)

Where A\, means the degree of activation of the K-th rule. Then the output of TSK
fuzzy system can be formulated by a combination of sub-models as [190]:

K
Y= Me(x)ri(x) (3.18)
k=1

3.3.3.2 Constructing the TSK fuzzy system of the source task

As defined in Section 3.3.1, for the source data D,, denote X, € R"*? as the matrix
having the vectors of input features and y, € R™*! as the vector containing the output
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label:

S

X, = [x3,x5, x5 ] ye = [uh s ] (3.19)

TSK fuzzy system can represent nonlinear dynamical systems with TSK fuzzy rules
with high precision. Denote the TSK fuzzy system of the source task as FS;, then the
output of FS; can be represented by a combination of series sub-models as:

K
FS,(x) = > Ae(x)r(x) (3.20)
k=1
where K is the number of fuzzy rules, A\; (x) is the normalized membership degree which
can be calculated with antecedent parameters as Eq. 3.17. The antecedent parameters are
obtained by fuzzy partition [193], which can be regarded as reflections of the marginal
distribution of X'. Because of the assumption that p (X,) = p (X;), the antecedent pa-
rameters can be shared across tasks to preserve the distribution information of source
data. 7 (x) is the k-th fuzzy rule, a linear function of the input variables.

Denote p* € R(@+1) as the linear coefficient vector of 7 (x), then the consequent pa-
rameters of the TSK fuzzy system is p = [pl p - p¥ ] T e RUHDEXD Tpe consequent
parameters of FS, can be solved with labelled dataset D;.

d+1)K

To solve the consequent p, donate XP & R X as:

XP = [[1XE, ToXE, . .o T XE] (3.21)

where X¢ = [X,, 1]e R"™*@* js the extended matrix by appending a unitary column
to X;. I'y € R™*" is a diagonal matrix having the normalized membership degree
Ak (x;) as its i-th diagonal element:

Ak (Xl) R 0
Iy, = : : (3.22)
0 e Mg (an)

Then the consequent parameters p € R@+DK

method as :

can be solved with the least square
-1
p= X0 x| ()T, (3.23)

After that, the TSK fuzzy system of the source data, FS;, is completely constructed
and can be used to represent the distribution discrepancy.

3.3.3.3 Constructing the target model with fuzzy residual

Given that there are only small amounts of labelled target data, the TSK fuzzy system
of the target task FS,; cannot be constructed directly. The antecedent parameters of the
source fuzzy system to can be reused preserve the marginal distribution properties of
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the source data. For the labelled target data D;, denote X; € R™*?¢ and y, € R™*! as
the input and output respectively:

Xo=[xixb . ox ]y = b vhoul] (3.24)
For an instance (x!, y!) in D;, the output of FS; is
K
FS, (x1) =) " A (x!) i (x]) (3.25)
k=1

Since conditional distributions of the two datasets are different, i.e. p(ys | Xs) #
p(y: | Xy), thus hgs, (x}) # y!. Assuming the distribution discrepancy can be repre-
sented by the residual term defined on the fuzzy rules. Therefore, the target fuzzy sys-
tem FS,; can be constructed by appending a residual term wy, to each fuzzy rule of FS;
as:

[M] =

FSy(x) = > A(x) (re(x) + wy) (3.26)

k=1
where the antecedent parameters \; (x) (k = 1,..., K) are reused to preserve the dis-
tribution properties of the source data while the residual term zx(k = 1,..., K) can

be used to represent the conditional distribution discrepancy betweenp (y; | X;) and
p (y: | X¢), therefore, hgs, (x) could be decomposed into the following representation as

FSy(x) = > Ae(x)ri(x) + h(x) (3.27)

The former component is the TSK fuzzy system of source task, but it can be easily re-
placed by any supervised regression model. The latter term can be defined as the residual
function that represents the distribution discrepancy:

h(x) =Y A (%) wy (3.28)
k=1

where wy, is the to-be-solved residual term of each fuzzy rule.

The fuzzy residual function has the consistent form as the Gaussian Mixture Model
residual function in Eq. 3.12. The residual function h(x) can be easily represented by
solving the component residual vector w € R¥ on the structured fuzzy rules.

Although Gaussian Mixture Model and fuzzy system schemes have similar struc-
tured distribution discrepancy representation results, they have different characteristics.
Implementing the fuzzy system-based method requires fuzzy partition, which is gener-
ally more stable for problems with small-size data and low-dimensional feature spaces.
The tool tip dynamics problem of the case study section will adopt the fuzzy rules so-
lution. By comparison, Gaussian Mixture Model has more powerful implementation
approaches even for large-size noisy data, and there are also more open-source libraries,
such as scikit-learn [194]. The multi-sensor measurement case will adopt Gaussian Mix-
ture Model because the dataset consists of more than 30000 noisy points.
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3.4 Conditional distribution discrepancy adaptation

After the distribution discrepancy representation based on Gaussian Mixture Model or
fuzzy rules, the structured residual terms can be solved by adapting the conditional dis-
tribution. It is known that kernel embedding of marginal distribution is widely used in
transfer learning problems under covariate shift situations [195]. However, kernel em-
bedding for conditional shift problems has not drawn much attention. This Section de-
scribes a proposed new measure, Conditional Embedding Operator Discrepancy (CEOD),
to adapt the conditional distribution discrepancy based on the kernel embedding theory.
After that, the new measure is generalised to deep learning scenarios by defining a hy-
brid loss function.

3.4.1 Embedding representation of distribution

Distribution adaptation in transfer learning aims to minimise distribution discrepancy.
The quantified criterion that can measure the discrepancy between distributions is de-
fined as the distance between distributions [177]. In machine learning and statistics,
many criteria are developed to measure the distribution distance, such as KL-divergence
and JS-divergence [196]. However, most methods rely heavily on density estimation,
a well-known complicated mathematical statistics problem [197]. Kernel embedding
emerges as a new distance estimation method that can avoid density estimation [198].
The key idea is to map the conditional distribution into a reproducing kernel Hilbert
space, and then the distance between distributions is available via simple feature space
operations [199]. This section will first introduce the basic idea of kernel embedding of
distribution.

In statistical hypothesis testing, a two-sample test aims to determine whether the
discrepancy between these two distributions is statistically significant. The kernel em-
bedding can quantify the discrepancy between two sets of distributions. Supposing that
dataset X, and X, are sampled from P and (), respectively, the distance between the
distribution P and () can be evaluated directly by comparing X, and X,. For example, if
P and () are the same distribution, they should have the same expectation value, namely
the first moment of distribution:

P=Q = |EX)]-E[X)][|=0 (3.29)

However, the same expectation does not mean the same distribution.
|E[X,] —E[X]l=0 =» P=0Q (3.30)

which means that the equal first moment is necessary but insufficient. The norm dis-
tance between the first moment cannot represent the actual distance between the two
distributions. However, if both the first and second moments, namely E[(X)], E[(X?)],
are equal, the two distributions may have a closer distance. Furthermore, if the infinite
number of moments of the two distributions are the same, it can be proved that P = @)
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[198]. Fig. 3.5 illustrates the distribution embedding. The left figure means two differ-
ent distributions, P and (). It is challenging to measure the distance between the two
distributions directly. After embedding the distributions into a new space, the norm
between the new representations, namely the expectations, can be used to evaluate the
distance between distributions. The space that carries the infinite number of moments
is a Reproducing Kernel Hilbert Space.

Pe9 Hilbert Space
E[X,]

S .\iistance(P, Q)

1 . EfX,]

Figure 3.5: Embedding of distributions into a Hilbert space via an expectation operation, revised from.
[198]

Suppose a feature map ¢ : X — H, where H refers to an reproduced kernel Hilbert
space. Therefore (X ) refers to the infinite-dimensional feature of X, for example,
o(X) = [X, X% X3,---]. If the expectations of the infinite-dimensional representa-
tions ¢(X) of the two distributions are the same, it can also be proved that P = @
[198], namely:

IElp(X)] —Elp(Xa)ll;, =0 = P=Q (3.31)

where ||- ||§{ refers to the 2-norm defined on the space H. Therefore, the norm distance
between the map expectation can be naturally defined as the distribution distance. Max-
imum Mean Discrepancy (MMD), one of the most famous measures for adapting the
marginal distribution discrepancy, is then defined as:

MMD(P, Q) = |[E[p(X,)] — E[p(X,)]|I%

3.32
= (s, — s, 32

I

where Ux, and Uy, are known as distribution embedding operator. The distribution
discrepancy is now represented as a scalar value, which can then be directly defined as
the optimisation target for the distribution adaptation.

MMD is widely used in the transfer learning field for marginal distribution adapta-
tion [195, 136]. In contrast, there is still a lack of effective measures for the conditional
distribution shift regression problems.

3.4.2 Conditional embedding operator discrepancy

In this Section, a Conditional Embedding Operator Discrepancy (CEOD) was designed
to measure the conditional distribution discrepancy based on the theory of kernel em-
bedding of conditional distributions.
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The distribution discrepancy between the source and target tasks is represented by
the component residual vector w in the previous section. To adapt the distribution dis-
crepancy, w can be estimated by minimising the distribution distance between the new
source data and the target data as:

w = argmin Dist [p (y2 | Xy),p (y: | X¢)] (3.33)
weRK
where y"*v = y, +v,w,~, € R™>*X is the posterior probability matrix whose element

is v (zix) = p(2x = 1 | x7) that defined in Eq. 3.11.

Similar to MMD, the inspiration for conditional distribution discrepancy comes from
the field of hypothesis testing, a conditional embedding operator is proposed by Song
et al. [200], which embeds p(y | X) into RKHS and makes it possible to measure the
distance between two conditional distributions.

According to the distribution embedding theory [198], the conditional distribution
p(y | X) can be represented by conditional embedding operator as [199]:

Uyx = Eyx[o(y) @ ¢(X)|Exx[¢(X) © ¢(X)] (3.34)

where ® is the tensor product, E is the expectation operation, ¢(-) and ¢(+) are feature
maps of variables x and y respectively. This operator is very similar to the embedding
operator of the marginal distribution shown in Eq. 3.32.

Then the empirical estimation of the conditional embedding operators of p(y; | X;)
can be represented as:

-~

1 - t t 1 - t t
Uy,1x, = - Z v (v) ¢ (x) - Z ¢ (x1) ¢ (x;)
=1 =1

= ¢ (ve) Kxox, + A " 67 (X;)

(3.35)

where Ky, x, is the kernel matrix of X;, A, is the regularisation parameter to ensure the
invertibility of the kernel matrix. Similarly, the empirical estimation of p (y2*V | X;) can
be given by:

. 1Y s n LN s o
Uynew 1x, = N ; v (u7) & (%) N ; o) o (x5 (3.36)

= (v57) (Kx.x, + nsAd) ! o' (Xs)
The distance between the two distributions can be represented as the Conditional

Embedding Operator Discrepancy (CEOD) [199]:

2

CEOD(p (2 | X.) . p (v | X)) = [ty ix, = Uyux. |, (3:37)
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It can be further simplified as:

CEOD = A+ B —2C
A =Tr[¢(X,) (Kx.x, + nAd) 7 K(Kxx, + 14D 7 07 (X,)]
=Tr KXSXS + 1) T K (Kx,x, + nsA) " Ky, x|
Tr ) (Kxox, + neded) 'K (Kox, +1A0) 7 67 (Xy)] (3.38)

I

B=Tr[o(X
Tr [( thxt +nAJd) K (KXtXt +nAd) ™! KXtXt]

[0 (X

I

C

Tr I(XSXS + ns)\cl) Kc (thxt + nt ) ¢T (Xt)}
Tr KX x. + 1A d) T K (Kx, x, + A )™ thxs}

where K = Kynew ynew , K" = Ky, y;, K¢ = Kynew y, are kernel matrix.

To achieve a stable optimisation of w, the final loss function is defined as the com-
bination of the CEOD and the traditional MSE loss of regression:

L(w) = BCEOD(p (y2 | X,),p(y¢ | Xo)) + (1 — B)Luse + Arw'w (3.39)

where )\, is the penalty term, and [ is the trade-off parameter to control the influence
of different terms. The MES loss Lj;sg is defined as:

MsE = Z - ?Jz (3.40)

The component residual vector w can then be optimised by minimising the defined
loss function with gradient descent. The conditional distributions p (y2" | X;) and
p (v | X;) are aligned so that the new source data can be merged with the target data
as {Xs, y2V } U {X}, y:}. Then the target model can be trained on the merged data sets
using a general supervised learning algorithm.

The main contribution of this Section is the defined loss function in Eq. 3.39, which
can be used to adapt the conditional distribution discrepancy for different machine learn-
ing models, including deep transfer learning. For a given pre-defined source model, the
model parameters can be fine-tuned by minimising the CEOD loss function on the target
data. The case study Section 3.5 will validate the proposed CEOD in different machine
learning models.

3.5 Case study

The proposed transfer learning method consists of structured conditional distribution
representation and distribution adaptation. Therefore, several case studies were carried
out to demonstrate the effectiveness of both representation and adaptation.
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3.5.1 Case study one: Tool dynamics prediction

3.5.1.1 Problem statement

This case study focused on the pose-dependent tool tip dynamics (TCP) of a five-axes
machine center. The dynamic parameters of the cutting tool are necessary inputs to
the milling dynamics milling model. They have a significant impact on the stability of
the milling process as well as the surface quality of the machined part. However, the
dynamics typically vary with the changing postures of the machine tool axis during the
machining process. The accurate prediction of the pose-dependent tool tip dynamics
has become one of the critical challenges for the milling process stability control [24].
Considering the time-consuming experimental data collection, transferring TCP data
from a similar tool to the target task can reduce labelling efforts.

Fig. 3.6a shows the impact test experiments for collecting the tool tip dynamics.
The tool tip was first excited by an impact hammer, and the response signal was then
collected by the accelerometer to calculate the Frequency Response Function (FRF). After
that, the key dynamic parameters, including natural frequency w, damping ratio &, and
stiffness K, were identified from the FRF, as shown in Fig. 3.6b.

Fig. 3.6c illustrates transferring the dynamics from one cutting tool to another. By
leveraging the knowledge from the source data, the data-driven TCP dynamics model of
the target can be built with only a limited number of labelled data.

a. o b. C.

Real (m/N)

2 :
600 700 800 900 1000 1100 1200

Impact hammer
PCB 086C03

Accelerometer
PCB 352C23

Imag (m/N)

600 700 800 900 1000 1100 1200
Frequency (Hz) :

(ws, &, K;) identification

Figure 3.6: The problem statement of the TCP case study. (a) The impact test experiments for TCP dy-
namics collection. (b) Frequency response function. (c) Transfer learning settings.

Tool tip dynamics usually change with the coordinates of the machine tool axes,
including three linear axes (X, Y, Z) and two rotating axes (A, C'). Therefore, the mod-
elling task aims to learn the map from (X, Y, Z, A, C) to (w, £, K). The dataset TCP was
constructed in the author’s laboratory by collecting the dynamics data of two milling
tools (74, Tp) for 381 coordinates of a five-axes machining centre manually [173]. T4 is
a 3-flute cutter with a diameter of 8mm and a length of 65mm, while 7 is a 2-flute cut-
ter with a diameter of 10mm and a length of 85mm. The multivariate random variables
x is the coordinates of the machine centre and three labels (w, £, K ) constitute three
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prediction tasks: w = f,(x),& = fe(x), K = fx(x). The two tools and three prediction
tasks can construct six transfer learning tasks: f, : T4 — T, fo, : T — Ta, fe : Ta —
T, fe : Tp = Ta, fr : Ta — T, fx : Tp — Ta.

Fig. 3.7 shows the FRFs of Ty and Tz with axis A from —90° to 90°. As Aix A goes
from 90° to 0°, both sets of FRFs change from flat to steep and reach their maximum
amplitude at 0°. The similar changing trends of the 7'y and I’z can provide explainable
transferability for transfer learning performance.

x 107 x10°
6 1-
z z
E4 £
[0} [0}
S = 0.5
S52- =
€ €
< <
0. 0L
1200 ~ 1200 .
100 100
800 . -~ 0
~— .50 ~—
Frequency (Hz) 600 -100 Axis A Frequency (Hz) 600 -100 Axis A

Figure 3.7: The similar changing trends of the two TCP tasks.

3.5.1.2 Experimental settings

In this case, the conditional distribution discrepancy between two datasets was repre-
sented and adapted based on the fuzzy system scheme introduced in Section 3.3.3. The
hyperparameter, including the number of fuzzy rules K, the kernel width, and others,
were selected based on the five-fold cross-validation of the source data. The number of
fuzzy rules was set to ' = 8. Because of the similarity in TCP dynamics, it is possible to
reduce the labelled data requirements for the target task. Therefore, the target data size
is very insufficient, namely n, = 10% X n,. The proposed method is uniformly marked as
CDA (Conditional Distribution Adaptation) for simplicity of expression. To evaluate the
performance of the proposed method, several state-of-art methods were implemented
for comparison:

« Residual Approximation (RA)[185]: The RA method builds the target model
by computing the offset between the target data and the source model with GP.
This method is widely used in condition shift situations, such as the multi-source
fusion problems [185] or multi-sensor surface measurement [201]. The residual
function of RA was trained on the target labelled data directly without using the
distribution information of the source data.

« Transfer learning by boosting (TLB)[188]: The TLB method, named as Two-
stage TrAdaBoost.R2, which is a famous boosting-based regression transfer algo-
rithm, trains the source data and target data together by adaptively adjusting the
instance weights.
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+ General Transformation Function (GTF)[184]: GTF is an algorithm-dependent
hypothesis transfer learning method which characterises the relationship between
the source and the target tasks by establishing a general transformation function.

« Domain adaptation under generalised target shift (GeTarS) [180]: GeTarS
proposes to resample the source instances by reweighting or transforming to re-
produce the distribution on the target task. And the marginal distribution and
conditional distribution are embedded in a reproducing kernel Hilbert space.

« Target: GP prediction using only target data.

« Source: GP prediction using only source data.

3.5.1.3 Experimental results

Tab. 3.1 shows the experimental results, the mean absolute error (MAE) and the cor-
responding Standard Deviation (STD) of 6 transfer learning tasks with target data size
ny = 10% x n,. All results were the average values of 20 repeated trials with randomly
selected target data. The lowest MAEs of each transfer task is marked in bold. CDA per-
formed better than other methods in most tasks (5/6 tasks). For the two learning tasks
of w, CDA achieved an MAE of 5.24 Hz and 6.82 Hz, which was much less than other
methods.

Table 3.1: Transfer learning performance for TCP case.

Data GTF RA TLB GeTarS CDA

fo:Tp — Ty 1398+0.72 6.06+0.58 13.25+0.51 12.24+1.09 5.24 +0.22
fe:Tp — Ty 0.71+0.03 0.55+£0.05 084+0.05 0.64+0.05 0.53+0.04
fr:Tp — Ty 0.76 £+0.04 0.51+0.07 090+0.05 0.70+0.04 0.56 +£0.04
fo:Ta—Tp 1522+044 826+184 14.64+0.36 13.76+0.25 6.82+0.57
fe:Ta —1Tp 091 +0.03 0.67+0.09 0.91=+0.01 0.85+0.03 0.60 +0.02
fr:Ta—1TB 091+£0.03 073006 092+£0.02 0.87+0.02 0.68 +0.04

Note: The best results for each transfer learning task are marked in bold. The MAE unit for
the natural frequency w is Hz. The MAE unit for the damping ratio £ is %. The MAE unit
for the stiffness K is 1e6N/m.

To compare the robustness of different methods, Fig. 3.8 shows the boxplots of MAEs
constructed from 20 trials with random target data. Each boxplot consists of the lower
to upper quartile values of the data, with a line at the median. In Fig. 3.8a-c, RA can
achieve the minimum MAE by the lower quartile values, but the long box means that RA
is more sensitive and unstable. In contrast, CDA can provide lower MAE and maintain
robustness.

To further reveal the relationship between the transfer learning performance and the
size of the target data, all transfer learning methods were carried out with the size of the
target data from 20 to 70. Fig. 3.9 shows the relationship between the size of the target
data and the MAEs for the task f,, : T4 — T and fy : T4 — T.
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Figure 3.8: The robustness analysis of different methods.

The MSE:s for all transfer learning methods decreased as the target data increased, in-
dicating that more target data is beneficial for improving transfer learning performance.
In the case of limited target data size, the MSEs learned with only the target data were
much larger than those of the transfer learning method, implying that transfer learning
is effective for data-scarce scenarios. For Fig. 3.9b, the source model had a significantly
large MAE of more than 1.8e6 N/m, which means that a large distribution discrepancy
exists between the source data and target data. TLB in Fig. 3.9b follows the MAE value
of Source and decreases slightly with the increasing target data size. It is reasonable be-
cause TLB directly trains the model with weighted source data and target data, the model
performance will turn toward the source model because ngs > n;. In both Fig. 3.9a and
Fig. 3.9b, CDA could achieve significantly low MAEs even with a limited number of

target data.
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Figure 3.9: MAEs with different size of target data.

3.5.1.4 Distribution discrepancy analysis

Although the above Sections have verified the performance of the transfer learning, it
is still necessary to analyse the performance of the distribution discrepancy adaptation.
This section will investigate whether the global distribution discrepancy was reduced
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and what the difference was between minimising the embedding distribution discrep-
ancy and minimising the loss of the training target data.
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(a) Without adaptation. (b) Adaptation by TLB. (c) Adaptation by CDA.

Figure 3.10: Distribution discrepancy after adaptation for the task f,, : Tp — T4 .

Figs. 3.10,3.11,3.12 show the comparison results of distribution discrepancy of three
transfer tasks, f, : T — Ta, f¢ : Tp — Ta and fx : Tp — T4 . Each figure con-
sists of three joint distribution plots, including original discrepancy across tasks (Figs.
3.10a,3.11a ,3.12a), discrepancy after adaptation using TLB (Figs. 3.10b,3.11b ,3.12b), and
discrepancy after adaptation using the proposed CDA (Figs. 3.10¢,3.11¢ ,3.12¢). The ab-
scissa of these plots x,., is the feature space reduced to 1-dimension using Principal
Components Analysis (PCA). The vertical axis is the residual between the hypotheses
of two tasks, i. e. h(x) = f;(x) — fs(x). The colour maps are the joint probability
densities p(h(x), X,.,) estimated using Kernel Density Estimation (KDE) based on the
residual data to represent the distribution discrepancy. The darker areas in the colour
maps mean greater probability. The upside subplots are the marginal probability den-
sity curve p (x) obtained by integrating along the Y direction of the joint distribution
graphs. The subplots on the right side are the marginal probability density curve p (h)
obtained by integrating along the X direction of the joint distribution graphs. And the
blue curves are density curves of conditional distribution for specific z = C, for exam-
ple p(h|x = 0.5) as shown in Figs. 3.10(a)(b)(c). The black points in Figs. 3.10bc,3.11bc
,3.12bc are part of target training data.

Figs. 3.10a, 3.11a, 3.12a show that there exists a clear conditional distribution dis-
crepancy for all three tasks, where the red distributions p(h | z = 0.5) are all far away
from the middle A~ = 0. According to the joint distribution and the conditional distri-
bution p(h | = 0.5) in Figs. 3.10, both TLB and CDA can reduce the distribution
discrepancy, but the conditional distribution of CDA is closer to &~ = 0. The black data
points in CDA are more distributed than in TLB, which means the prediction error on
these points is bigger. That is because CDA can learn a more general representation of
the global distribution rather than the prediction loss on the labelled target data.

As shown in Fig. 3.11b, almost all black points lie on the curve A = 0, but there
is still an apparent shift for p(h | = 0.5). This means TLB cannot adapt the global
conditional shift by only considering the loss of the target data. Meanwhile, the mean
value of the blue curve in Fig. 3.11c is closer to i~ = 0 although there are no training
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Figure 3.11: Distribution discrepancy after adaptation for the task f¢ : Tp — T4 .
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Figure 3.12: Distribution discrepancy after adaptation for the task fx : Tp — T4 .

data in x = 0.5, which demonstrates that CDA can adapt the conditional distribution
globally because of the structured discrepancy representation. The same conclusion can
also be obtained in the density curve p(h | x = 0.5) in Fig. 3.12b-c and 3.12b-c.

The above results indicated that the proposed CDA could achieve a significant im-
provement the accuracy, especially when with a small size of training data. Further
analysis shows that the conditional distribution discrepancy could be reduced globally
with the proposed structured representation.

3.5.2 Case study two: Multi-sensor measurement

3.5.2.1 Problem statement

With the development of modern manufacturing technology, complex surfaces have
been increasingly used in aerospace, optics, moulds and other fields [202, 203]. Ge-
ometry measurement of these surfaces plays an essential role in different aspects of the
manufacturing industry, including quality control, reverse engineering, and specifica-
tions verification [204]. Touch probes can provide high-precision measurement results,
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but it is usually time-consuming and requires a specific environment that might limit
their application scenarios [101]. By comparison, non-contact measurement sensors,
such as structured light and laser scanners, can acquire high-resolution point clouds
of the target object fastly, but the relatively low precision cannot meet the practical
requirements. Considering the complementary measurement quality and speed of dif-
ferent sensors, multi-sensor data fusion has become a significant development trend for
complex surface measurement [205, 201]. The general definition of multi-sensor data
fusion refers to combining data from several sensors into a common representational
format so that the metrological evaluation can benefit from all available sensor informa-
tion and data [205].

This case study aims to fuse the measurement data from the laser scanner and the
touch probe so that the metrological evaluation can benefit from all available sensor in-
formation and data [101]. Since the probe is much more accurate than the laser scanner,
the insufficient probe data is considered the true reference of the surface, and the laser
scanner data can be treated as the auxiliary data. Therefore, the multi-sensor fusion
problem here can be defined as a transfer learning setting, where the knowledge of the
laser scanner data, including the overall shape of the target surface, is transferred to the
domain of the touch probe. As shown in Fig. 3.13, the two measurement datasets are
defined as source and target data, respectively.

« Source data D, : Laser scanner dataset with high density, low metrological per-
formance, consists of around 30,000 points measured by the Kreon Aquilon laser
scanner shown in Fig. 3.13b.

« Target data D; : Touch probe dataset with low density but high metrological
performance, consists of n; = 96 points measured by the touch probe sensor
mounted on a Kreon Ace measuring arm, as shown in Fig. 3.13c.

It is assumed that the difference between the laser scanner data and the touch probe
data consists of systematic and random errors. The distribution adaptation in this trans-
fer learning task refers to estimating and compensating the error function, namely the
residual, between the two measurement datasets. This experiment focused on the nearly
cylindrical surface that has sharply varying gradients. As the arrows shown in Fig.
3.13d, some points on the surface have normal vectors almost perpendicular to the z-
axis, which brings a significant challenge for the residual modelling.

3.5.2.2 Experimental settings

In this case, the conditional distribution discrepancy between two measurement datasets
is represented based on the Gaussian mixture model introduced in Section 3.3.3. The
two best-known methods in multi-sensor fusion are weighting fusion and residual ap-
proximation fusion [206, 207], corresponding to transfer learning method RA and TLB
mentioned in the previous sections. Therefore, these two methods were implemented to
compare the transfer learning results.
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Figure 3.13: The problem statement of the multi-sensor measurement case. (a) The transfer learning set-
tings. (b) The laser scanner Kreon Aquilon. (c) The touch probe with Kreon Ace arm. (d) The target surface
for the multi-sensor measurement.

First, assume that all laser scanner points D, are generated by a K" Gaussian distri-
bution, where the point clouds belonging by each distribution constitute a point cluster.
Therefore, the residual function h(w) can be represented by the Gaussian mixing of all
the component residual wy, defined on each point cluster.

h(x) =) wyy (2) * g (3.41)
k=1

Note that the above equation is almost the same with Eq. 3.12, the difference is the ny
in the end. The component residual defined in each point cluster has a primary normal
vector ni. Therefore, the final residual function should be the Gaussian mixing of all
component residual wy, on the corresponding normal vector.

Considering the density of the touch probe points D; is much smaller than that of
the laser scanner point D, which means each touch probe point cloud corresponds to a
subset of the laser scanner point cloud. Therefore, the number of the Gaussian distribu-
tion can be set as the size of touch probe data, namely K = n; = 96. Each probe point
can intuitively be defined as the center of the corresponding Gaussian distribution, i.e.
W, defined in Eq. 3.5.

Fig. 3.14 shows the point clusters of different Gaussian distributions for the exper-
imental surface, where the points belonging to each cluster are marked with the same
colour. After the clustering of D;, each point cluster can approximate the local region
of the target surface linearly, which means the component residual wy, can also be eval-
uated conveniently.

3.5.2.3 Experimental results

Considering the high accuracy of the touch probe, this experiment used the 190 probe
points as the reference to evaluate the error of the fused point cloud. Fig. 3.15 shows the
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Figure 3.14: The point clusters of different Gaussian distributions.

error maps of the transfer learning results. The 3D plot shows the errors of all 190 test
points, where the deep blue and deep red points mean large errors and green points have
relatively small errors. The statistical results are also provided below the 3D figures. For
Fig. 3.15a, the result of TLB, the laser scanner data and touch probe data are combined
together with different weights to learn the surface model. Since the number of laser
points is much larger than the number of probe points, this result in Fig. 3.15a is almost
identical to fitting the laser points directly. The left side of the surface with greater slopes
has significantly larger errors of over 0.1mm, while the smooth area at the top of the
surface has a relatively smaller error. Fig. 3.15b is the error map of RA transfer learning
method. There still exist significant errors in the left region despite the overall error
reduction. Fig. 3.15c shows the error map after fusion by the proposed CDA method.
The most region of the surface is green, which means that the error is greatly reduced
compared to Fig. 3.15a-b.

The error statistics for the above three comparisons are shown in Tab. 3.2, where o
is the standard deviation of the Gaussian distribution fitted from the error distributions
in Fig. 3.15. E,,, and E,,,, denote the mean and maximum value of the absolute errors
at the test points. RA can reduce the overall error slightly with o from 0.045mm to
0.042mm. In contrast, CDA can reduce E,,, from 0.039mm to 0.017mm and E,,,, from
0.124mm to 0.078mm, significantly outperforming the RA method.

Table 3.2: The comparison of error statistics on the measurement case.

Method o (mm) Eqpg(mm) FErgz (mm)
TLB 0.045 0.039 0.124
RA 0.042 0.032 0.138
CDA 0.022 0.017 0.078

3.5.2.4 Distribution discrepancy analysis

As analysed in Section 3.1, existing transfer learning method, such as RA, can only adapt
discretised distribution discrepancy near the labelled data. At the same time, the pro-
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Figure 3.15: Comparison of the transfer learning results for the multi-sensor measurement case. (a) The
error map of TLB. (b) The error map of RA. (c) The error map of CDA.

posed CDA can represent the distribution discrepancy structurally based on GMM. Fig.
3.16 compares the residual modelling of RA and CDA to explain the difference between
discretised and structured representations. The z direction residual of all training touch
probe points is shown in Fig. 3.16a, where the complex and sharply varying distribution
significantly challenges RA. By comparison, for the proposed CDA method, the distri-
bution discrepancy of the two data sets can be represented by the residual defined on
each cluster, as shown in Fig. 3.16b. The simplicity of the sub-residuals means that the
CDA model can provide an accurate and efficient representation of the residuals be-
tween different measurement data. Because of the simple structured representation, the
distribution adaptation can be easily carried out by solving the sub-residuals with a least
square method.

3.5.3 Case study three: Tool wear prediction

3.5.3.1 Problem statement

This case study validated the proposed CEOD loss function in deep transfer learning
settings. The conditional distribution adaptation was realised by fine-tuning the network
parameters with the CEOD-based loss function defined in Eq. 3.39.

The healthy condition of cutting tools directly influences the machining process sta-
bility, and the final quality of the product [78]. Due to the complexity of the cutting
process, it is difficult to predict the tool wear accurately using mechanism models. Since
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Figure 3.16: Comparison of the distribution discrepancy representation. (a) The discretised distribution
discrepancy represented by RA. (b) The structured distribution discrepancy represented by CDA.

the tool wear will result in inconsistent cutting width, further leading to the fluctuation
in the cutting force and other signals, building data-driven models from the monitoring
cutting force to the corresponding tool wear becomes a potential solution. Fig. 3.17a
illustrates the input feature and output label of the tool wear prediction problem.

As reviewed in Section 1.2.2.1, collecting tool wear data requires expensive instru-
ments and time-consuming operations. It is almost impossible to collect sufficient la-
belled tool wear data for the target tool [80]. Therefore, transferring knowledge from
existing source tool can potentially reduce the labelled data requirements for the target
tool. The tool wear dataset from the Prognostics and Health Management Society con-
ference data challenge [171] consists of seven types of monitoring signals and tool wear
values for three blades of two cutting tools (C4 and C6). This case study selects z-axis
milling signal as the input feature, and the output label is the measured tool wear value
(um). Chapter 2 also includes the tool wear prediction problem, but the input data were
pre-extracted high-level features to simplify the regression problem. In this case, the in-
put cutting force is the sequence signal window with 20000 discrete values, namely with
the shape of 20000 x 1. Four transfer learning tasks are constructed: C4 — C6-Blade2,
C4 — Cé6-Blade3, C6 — C4-Blade2, C6 — C4-Blade3.

3.5.3.2 Experimental settings

The deep learning structures of the source and tasks are the same, as shown in Fig.
3.17b. Four 1-D convolution modules are introduced to extract features from the input
monitoring signal series. Each convolution module consists of a convolution layer, a
batch normalisation layer and a max-pooling layer. For each task, the source data size
is ny = 315, and the target data size is 30. The transfer learning procedure consists of
two steps, pre-training the source model and fine-tuning part of the model parameters
to adapt the distribution discrepancy.

Step 1: Pre-training the source model. The structure of the source model is shown
in Fig. 3.17b left. The detailed configurations of the neural network are listed in Tab. 3.3.
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Figure 3.17: The problem statement of the tool wear prediction case. (a) The input feature and output label
of the tool wear prediction problem. (b) The deep learning model and the transfer learning settings.

The loss function for training is the L2 loss on the source data:
s 1 S s 5\2
MSE = - Z (f (%) — ;) (3.42)
5 i=1

Step 2: Distribution Adaptation based: After the pre-training the model of the
source tool, the parameters of the feature extraction layers were frozen and reused for
the target tool. As shown in Fig. 3.17b right, three linear layers that map the features
to the output tool wear values were fine-tuned to adapt the distribution discrepancy
between the two datasets. The parameters of the three linear layers 8, were updated
based on the following loss function defined in Section 3.4, where the hyperparameters
were as follows: § = 1le — 2, A, = le — 5.

L(6;) = BCEOD(p (yi™ | X,),p(y: | Xi)) + (1 = B)Llysp + A0, 0 (3.43)

Table 3.3: The configurations of the neural network

Item Configuration

Convolution modules Cov(1, 64, 5, stride=5) + BN + Relu
Cov(64, 64, 5, stride=5) + BN + Relu
Cov(64, 64, 5, stride=5) + BN + Relu
Cov(64, 64, 3, stride=5) + BN + Relu + flatten

Linear layer 384 — 64 — 16 — 1
Learning rate le-3
Epoch 100

To evaluate the performance of the proposed method in deep learning settings, the
state-of-art deep transfer learning method DAN (Deep Adaptation Networks) [181] was
implemented for comparison. DAN aims to learn transferable features by minimising
the MMD of two tasks in a reproducing kernel Hilbert space. It is a classical method for
marginal distribution adaptation of classification problems.
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3.5.3.3 Experimental results and analysis

Tab. 3.4 presents the MAE and corresponding STD of all transfer learning tasks, where
all results are the mean values of 20 repeated trials with different random seeds. The
proposed CDA significantly reduced the MAE, and outperformed all comparison meth-
ods in 3/4 of tasks. Although TLB shows superior performance in task C6 — C4-Blade2,
CDA still achieved satisfactory stable results compared with other methods. In sum-
mary, transferring the knowledge from the source tool improved the prediction of the
target tool, which then reduced the label acquisition cost for the target task.

Table 3.4: Comparison results of different transfer learning methods for tool wear case.

Data C4 — Co6-Blade2 C4 — C6-Blade3 C6 — C4-Blade2 C6 — C4-Blade3

Target 36.50 £ 0.61 43.52 £ 0.67 39.22 £ 14.13 45.04 £ 0.27
RA 63.79 £ 3.21 65.16 + 2.28 36.768 + 13.87 26.29 £ 9.43
TLB 15.59 + 2.37 16.28 + 4.05 1535+ 2.14 15.69 + 2.74
DAN 34.85 £ 3.82 43.62 + 2.34 47.17 £3.91 45.48 £ 4.98
CDA 13.03 + 1.01 15.37 £ 1.20 15.10 + 1.05 17.60 + 1.20

(um) The best results are marked with bold.

3.6 Summary

This Chapter focused on transferring knowledge from auxiliary data to compensate for
the insufficient modelling information and reduce the requirements of labelled data.
Since existing transfer learning methods only adapt discretised distribution discrepancy
of limited target data, this research proposed a structured conditional distribution adap-
tation, in which the discretised discrepancy on the original feature space could be trans-
ferred to structured discrepancy defined in the k-dimensional latent space, including
Gaussian Mixture Model and fuzzy rules. After that, a conditional distribution discrep-
ancy adaptation method was proposed based on the defined conditional embedding op-
erator discrepancy.

The proposed transfer learning method was validated in several manufacturing prob-
lems, including tool top dynamics prediction, multi-sensor measurement, and tool wear
predictions. The results indicated that the proposed method could achieve a significant
improvement in both accuracy and precision. Further analysis showed that the latent
variables could learn a more general residual representation. Thus the conditional dis-
tribution discrepancy can be reduced globally. The experimental results in this Chap-
ter demonstrated that leveraging the available auxiliary data could enhance the perfor-
mance of the task under data scarcity.

Transfer learning can effectively utilize auxiliary data to compensate for the lim-
ited modelling information. Similarly, the widely-exists physics priors of manufacturing
problems, although not in the data form, also have the potential to enhance the perfor-
mance of the data-driven model. Chapter 5 will explore the feasibility of combining the
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data-driven method with physics knowledge to address the challenging task of predict-
ing high-dimensional part property fields.
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The quality properties or manufacturing process properties of workpieces or prod-
ucts are typically represented by high-dimensional discretising points of their part geom-
etry. How to build a data-driven prediction model of high-dimensional part properties
with a limited number of labelled data remains a challenge for data-driven intelligent
manufacturing. This Chapter investigates the objective e of the framework intro-
duced in Fig. 1.30, data-physics combination, i.e., integrates the physics priors to en-
hance the learning performance of the data-driven models. To address the complex high-
dimensional field mapping MPMs problems, this Chapter proposes a physics-guided low-
dimensional neural operator, which integrates physics-guided basis functions into the
data-driven model to reduce the complexity and improve the ability to extract explain-
able features. The proposed model can predict the high-dimensional property field of
the workpiece accurately with only a small number of labelled data.

4.1 Introduction and Challenge analysis

Modelling the properties of workpieces that can reflect the manufacturing state is essen-
tial for quality control and process optimisation. For example, the residual stress fields
during the milling of metal parts significantly affect the final machining deformation
and fatigue performance [90]. For composite parts curing, temperature, stress, and de-
gree of cure fields during solidification directly determine the mechanical performance
and service life of the parts [149].

a. Norminal geometry and deformation b. Residual stress field of an aircraft wing

Figure 4.1: Examples of part properties that are represented by high-dimensional discretised mesh points.
(a) The nominal geometry and deformation [208]. (b) The residual stress field of an aircraft wing.

Part properties, such as the residual stress fields of metal parts or curing deforma-
tion of composites parts, whether the intermediate process properties or the final quality
properties, are typically represented on a large size of discretising points of the part ge-
ometry [88, 209]. Fig. 4.1a-b shows part property examples of deformation and stress
field, which are both defined on a large size of discretised mesh points. Therefore, the
output label of the data-driven part property prediction model is not a simple scalar, but a
high-dimensional part property field, which means that the data-driven predictive mod-
elling would require complex parametric models and extensive labelled data [90, 210].
However, obtaining high-dimensional labelled data part property field is usually very
expensive, whether through simulation or experimental measurement [85]. Therefore,
building a predictive model of high-dimensional part properties with a limited number
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of labelled data remains a challenge for data-driven intelligent manufacturing.

Predicting high-dimensional property fields of parts requires geometry represen-
tation and feature extraction from high-dimensional data. Convolutional neu-
ral networks and neural operators are currently widely used models for predicting part
property fields.

Deep convolutional neural networks (CNNs) and deconvolution techniques have
shown promise in learning mappings between high-dimensional images, and thus can
be used to approximate high-dimensional part property fields discretely [211]. For ex-
ample, U-Net, a special CNN for image segmentation in biomedical tasks [212], has been
applied in surface textured defects modelling [213], strain field of composite parts [214]
and other high-dimensional property field predictions. However, due to the limitations
in the image convolution operations, CNNs require image-like regular grid as input,
which restricts their applicability for 2D or 3D complex geometries that widely exist
in engineering fields. Another limitation comes from the inductive bias of image fea-
ture extraction. CNN involves sliding fixed-size kernels over the images to extract local
features, which means the basic assumption that the advanced features of figures only
depend on the neighbouring pixels [215]. However, many engineering problems involve
global features rather than local features, such as mechanical vibration mode [216], fluid
mode decomposition [217] and structural parts processing deformation [218]. To sum
up, traditional CNN-based models remain inapplicable in function mapping learning
problems of complex geometries.

Recently, neural operators [219] (or operator networks [220]), that could directly
learn the mappings between function spaces, have shown promising results in high-
dimensional property field prediction. Neural operators aim to build generalised models
that are independent of the domain discretisation, which means that, a model with a
limited number of parameters can be generalised to the geometric domain with high
discretisation resolution[219]. Lu et al. [221] proposed the first neural operator frame-
work, DeepOnet, based on the universal approximation theorem. Li et al. [222] for-
mulated the approximation of the infinite-dimensional function mapping with multiple
integral operators, and proposed the Graph Neural Operator (GNO) by the massage pass-
ing mechanism of graph neural networks. The parameters of GNO are defined on the
graph kernel that is independent of the domain discretisation, which means that the
model complexity will not increase with the high-dimensional discretisation of the part
geometry, enabling a resolution-independent neural operator. However, GNO suffers
from unstable training, and the O(K?) complexity (where K is the number of edges in
the graph) [223]. Based on this neural operator structure, the same authors then pro-
posed Fourier Neural Operator(FNO) [211], which parameterised the integral operators
in the Fourier domain. The high-dimensional mapping is then transferred to the low-
dimensional discretisation-invariant parameterisation of few frequency modes. Despite
the significant success of FNO, the fast Fourier transform of FNO requires the input
and output functions to be defined on a regular domain with a lattice grid mesh, which
means that FNO is inherently inapplicable to complex geometry, including irregular do-
main boundaries or irregular meshing [220].

As discussed previously, both CNN and FNO are only suitable for regular domains.
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For complex 2D geometries, irregular grids need to be transformed into Cartesian grids
using techniques such as elliptic coordinate transformation [224], grid resampling [225],
or grid interpolation [220]. However, these techniques are still limited to simple 2D ir-
regular domains due to their poor intrinsic geometrical representation. Since the struc-
ture and parameter complexity of CNN and FNO depend on the data grid, the interpola-
tion of 3D complex geometries will significantly increase the burden of model training
and the requirement for labelled data [226].

In summary, the challenge for modelling part property fields lies in how to represent
high-dimensional complex geometry of workpiece and extract low-dimensional
features without increasing the complexity of the data-driven model.

4.2 General idea of physics-guided low-dimensional
neural operator

To predict the high-dimensional part property fields, existing deep learning methods
have to interpolate complex geometry into a high-resolution regular domain (Fig. 4.2a),
which significantly increases the complexity of the model and the number of labelled
data required. Just like the feature extraction in CNN that is designed based on the
physics prior of the image recognition problem, predicting high-dimensional property
fields of complex parts can also leverage the physics priors when designing the model
structure. This Chapter describes a proposed physics-guided low-dimensional neural
operator. As shown in Fig. 4.2b, A series of physics-guided basis is constructed and
embedded in the neural network layers to extract the low-dimensional information from
the part property fields. The high-dimensional mapping in the spatial geometric
domain is then transferred to the low-dimensional mapping in the basis domain,
thus significantly reducing the complexity of the model and the requirements for labelled
data.

Existing method New idea
High-dimensional mapping Low-dimensional mapping
D —
—_—> L-layer -
_
_—
S ”
Y B ' [ ) —’. ‘QA
\ _— \ ‘; ’3
—_— L
Physics guided basis
Represent the complex geometry into regular domain * Input any complex geometry directly
Learn CNN or FNO feature on Euclidean space * Learn Physics guided feature on manifold
Complex parameterisation & require more labelled data * Simple parameterisation & require less labelled data

Figure 4.2: The general idea of physics-guided low-dimensional neural operator.

Based on the above ideas, the detailed physics-guided low-dimensional neural opera-
tor (LNO) is shown in Fig. 4.3. The basic architecture of the LNO consists of multi-layer
iterative L-layers and two traditional linear layers P and () at the beginning and the
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end. Physics-guided basis functions, including geometry-related basis and attribute-
related basis, are constructed before training the model. Each L-layer forms an in-
terpretable low-dimensional representation by encoding the input property field of the
complex geometry into the physics-guided basis functions, which could significantly
reduce the model complexity by parameterising it in the basis space.

Section 4.3 will first provide the mathematical problem definition and introduce the
basic framework of the neural operator. Section 4.4 will construct the physics-guided
basis functions and then define the iterative L-layer.
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Figure 4.3: The framework of LNO

4.3 Problem definition and background

4.3.1 Problem definition

Traditional neural networks are commonly used for predicting scalars or low-dimensional
vectors, such as in classification or regression tasks. In contrast, predicting high-dimensional
part property fields of parts can be framed as predicting a function over a geometry do-
main. The mapping between function spaces is known as an operator. Neural operators

are a novel concept in the field of machine learning, aimed at learning mappings between
input and output functions based on training data [219].

This section first provides the problem definition of predicting part property fields
from the operator perspective, then defines the learning objective. Suppose that the
target property functions are defined on a bounded domain D on the d-dimensional Eu-
clidean space R?. Considering that the computational domain in engineering and sim-
ulations are often complex geometries, more generally, D is assumed to be a manifold
embedded in a d-dimensional Euclidean space, such as surfaces (2d manifolds in R?) or
solids (3d manifolds in R?) [227]. For numerical implementation, the computation do-
main is usually discretised into L points, namely {p,}};, C D. The boundary definition

99



CHAPTER 4

and discretisation of the domain will influence the complexity of the numerical com-
putation. The regular geometric domains can be represented by matrixes conveniently,
while the complex geometric domains are typically represented by mesh defined with
vertices and polygons. In this research, the regular domain refers to the rectangle do-
main discretised into lattice grid mesh, as shown in Fig. 4.4a. The complex geometric
domain consists of both irregular boundaries and irregular mesh discretisation, as shown
in Fig. 4.4b-d.

% 9D
\

Figure 4.4: The examples of the regular domain and irregular domain. (a) Rectangle domain with regular
mesh (b) Rectangle domain with irregular mesh (c) 2d irregular geometric domain (d) 3d irregular geo-
metric domain.

Suppose that the input function and the output function are both defined on domain
D, and take values in R% and R%, namely a(z) : D — R%, u(x) : D — R, For
example, considering the mapping from the temperature field to the deformation field
in the composites curing. The input temperature field is denoted as a(z), and the output
deformation field is denoted as u(x). Note that x only refers to one sample in the domain
of definition, and its actual meaning depends on the specific problem. It can represent
the spatial coordinates of a grid node or the index of nodes. A and U/ are defined as
the Banach spaces for the input and output functions, so that a € A(D;R%) and u €
U(D;R%). For most engineering problems, both a(z) and u(x) are scalar functions
with specific physical meaning, that is, d, = d, = 1, such as the deformation field
or temperature field. But from a more general perspective, a(z) and u(z) can also be
defined as attribute vectors on spatial node z, thus dimension d,, and d, can be greater
than one, such as stress field and other vector fields.

To construct the machine learning loss function, it is necessary to introduce the norm
of functions || - ||. It is assumed that both A and U are Banach spaces, i.e., complete
normed spaces. Furthermore, G is defined as the underlying map between the input
and output functions, so that, G : A(D;R%) — U(D;R%). The neural operator aims
to approximate G by constructing a parametric operator Gy using a neural network pa-
rameterised by § € R?, i.e. Gy ~ G. The learning target can then be defined as an
empirical-risk minimisation problem:

min E |G — Goll,, (4.1)

where ||-||; denotes the norm defined in the Banach space U, typically using the L? norm.
Therefore, both spaces A and U are assumed to be L? spaces, which are function spaces
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consisting of functions that are square integrable in domain D. Like classical supervised
learning, the neural operator trains model parameters # using the data set consisting of
input functions a and output functions u. Supposing that the training data consists of
N samples, {a, u}Y | thatis, u® = G(a?), then Eq. 4.1 can be expressed as

N A i
ggﬂlgm;\\u() = Go ()] (4.2)

4.3.2 Neural network structure

This research took the kernel integral operator scheme, a family of infinite-dimensional
operators proposed by Kovachki et al. [219]. As shown in Eq. 4.3, the neural oper-
ator consists of two feature mapping layers P, () and [ kernel integral operator lay-
ers. The shallow network P maps input function a(z) to get vo(z) = P(a(x)), where
P :R% — R% d, > d,, so as to expand the dimension of node features to increase the
representation ability, similar to the convolution channel expansion in CNN. Multiple
kernel integral operators will update the input function iteratively as vg(x) +— v1(z) —

. +— v(z). After that, the final shallow network () will project the node features to
the output dimension, namely u(z) = Q (v;(x)), where Q : R% — R%: The iterative
structure can be represented as:

(Go(a)) () = Qovovy_i0---0v oPla)(z) (4.3)
where the iteration from v; to v, can be represented as:
Ve (x) =0 (Wuo(z) + (Ko(ve))(x)), Ve e D (4.4)

where W and o are linear transformations and non-linear activation function as in the
traditional neural network. Kg(v;) : R% — R% parameterised by 6 is the kernel inte-
gral operator, which plays the key component of the neural operator that maintains the
discretisation-invariant property field. It is defined as:

Ko(0) (x) = /D vo(z,y)u(y)dy Vre D (45)

where 1y refers to the parameterised kernel function. Different kernel integral operator
definitions will lead to different instantiations of the neural operator [219].

The above derivations present the theoretical form of the neural operator, where both
input and output are represented as functions. In practice, the input field function a(z)
and the output field function u(z) are discretely represented as high-dimensional prop-
erty matrices consisting of n, nodes, that is, a € R™*da and u € R™*%_ The discrete
form of the network architecture is shown in Fig. 4.5. The shallow network P increases
the property dimension d, to P(a) € R"*% Since the number of geometric discrete
nodes n, is usually very large, direct parameterisation in the n, dimension would lead
to overly complex network parameters. Therefore, the iterative kernel integration mod-
ule of the neural operator will simplify the parameterisation form, and the output field
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v, after the iterative operation remains the same size as R"=*% Finally, the shallow
network () transforms the node features to the dimension of the original output, that is,
P(v;) € Rnaxdu,

Operator:  a(x) —* . — — - — u(x)
Iterative kernel integration

Mapping: R™Xda ——» RMXdy Non-linear operators RuXdy — 5 RAxXdy

Figure 4.5: The basic structure of neural operator.

4.3.3 Fourier iterative kernel integration operator

The key procedure for the neural operator is to construct the iterative kernel integration
module Ky (v), which will be parameterised in a low-dimensional pattern space rather
than the original high-dimensional input space. Existing FNO can only handle function
mapping problems on regular domains, which is incapable of addressing the property
field prediction of complex parts. This section will first analyse the limitations of Fourier
iterative kernel integration operators, and introduce the inspiration of low-dimensional
iterative kernel integration operators for complex geometric domains.

By introducing the convolution theorem, FNO parameterises the kernel integral op-
erator directly in the Fourier domain. Denoting k¢ (z,y) = k¢(x — y), then the kernel
integral operator can be transferred into the convolution operation form:

Ko(v) (x) = / k(@ — y)o(y)dy = (ko % v)(z) Y€ D (46)

D

where kg * v is the convolution operation. By the convolution theorem, namely F{x x*

v} = F{ko} - F{v}, then:
Ko(v)(z) = F H{F{ke} - F{v,}}(x) Vz €D (4.7)

where F{-} is the Fourier transform and 7 ~*{-} refers to the inverse Fourier transform.
FNO is proposed to directly parametrise ry in the Fourier domain, that is Ry = F{ry}.
Therefore, the parameterisation of matrix Ry is only related to the number of frequency
modes involved, but independent of the resolution of the original computational domain.
The k-th frequency mode of input v; () is the complex-valued function F{v; } (k) € C%,
which can then be passed to the complex-valued parameterised matrix Ry (k) € C¥ >,
followed by the inverse Fourier transform back to the original computational. FNO picks
a finite-dimensional parameterisation by truncating the top £; frequency modes, so the
size of the parameterisation matrix R is k; X d,, X d,.

FNO can significantly reduce the model complexity because it is parameterised in
the truncated Fourier domain rather than the original high-dimensional computational
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domain. However, harnessing the fast Fourier transform also means that it requires a
regular domain as input, and cannot deal with complex geometry, including irregular
domain boundaries or irregular meshing.

Fourier transform and modes truncating on input function v(z) can be treated as
decomposing v(z) into the first k; Fourier bases:

ky
v(x) &~ Zakwk(x) Ve € D (4.8)
k=1

where wy,(z) = €?™* is the Fourier basis, and x represents the Euclidean coordinates of
domain discrete points. Note that this equation is only valid for domain D of Euclidean
space. FNO requires the regular domain because the Fourier basis is defined in Euclidean
space. Therefore, the key to implementing operator learning on complex geometric do-
mains lies in how to construct a set of basis functions of the geometric domain. After
that, the high-dimensional learning problem on the original computational domain can
be transferred to a low-dimensional learning problem in the basis function space.

4.4 Physics-guided low-dimensional neural operator

for complex geometric domains

The challenge for implementing neural operators on complex parts is constructing the
basis functions of the geometric domain. The mechanism of the manufacturing process
may lead to many inherent modes of the part property fields, which are typically explain-
able and exhibit low-frequency characteristics in the geometric space, such as the overall
distortion trend of the deformation field during the machining of structural components
[90], or the uneven distribution of temperature fields caused by thermal conduction dur-
ing the curing of composite parts [9]. Therefore, constructing the basis functions of the
geometric domain can help the neural operator model learn the inherent features and
potentially reduce the complexity of the model.

This Section will first describe the solution of the frequency-domain basis functions
of complex geometry based on the Laplace operator and extract attribute-related basis
functions based on the proper orthogonal decomposition. Then, it will describe how the
low-dimensional iterative kernel integration operator is constructed based on the two
groups of basis functions.

4.4.1 Laplacian spectrum for complex geometric domains

Considering that FNO can only extract frequency information of the regular domain, an
intuitive question lies in how to extract the frequency information of arbitrarily com-
plex geometry, more specifically, how to find a set of orthogonal bases of the irregular
domain D that reflect its frequency information. The eigenfunctions of the Laplace op-
erator can also provide the frequency basis in Euclidean space, and can even be extended
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to Riemannian manifolds. This Section will first introduce the Laplacian spectrum for
complex geometric domains, which will be used to construct the low-dimensional kernel
integral operator.

The Laplace operator, also known as Laplacian, occurs in a wide range of differential
equations describing engineering problems, such as heat transfer function, Poisson’s
equation, diffusion equation and wave equation. [228]. For the Euclidean space R, the
Laplacian A f is a second-order differential operator defined as the divergence V- of the
gradient V f, that is Af = V2f = V - Vf. It can be explicitly represented with the
d-dimensions as:

S~

(4.9)

Q
o

<

d_ 52
Af =
f=2 5
7j=1
The eigenvalue problem for the Laplacian, also known as the Helmholtz equation

[229], can be defined as:
Ap(z) = Ap(x), z €D (4.10)

where \ and ¢(x) that satisfy this equation are defined as the eigenvalues and the corre-
sponding eigenfunctions. In fact, the Fourier basis 1;,(z) = €2™*? is also an eigenfunc-
tion of the Laplacian in the Euclidean space. Following Eq. 4.10, thus:

d2

= @e%i’“ = —(27k)%e®™M = —(21k) %y, () (4.11)

A (Y(x))

It is clear that the Fourier basis ¢2™**  also known as the plane wave functions, are the

eigenfunction of Laplacian with the eigenvalue A = —(27k)%. More generally, plane
waves will be eigenfunctions for any linear operation which commutes with
translations [230], where the Laplacian is the most representative one. There-
fore, FFT in FNO can be treated as projecting the data from the original computational
domain to the Laplacian basis. That means that the orthogonal frequency basis of the do-
main, the Laplacian spectrum, can play the same role as the FFT in FNO but without the
limitation of regular-domain requirements. In general, the equivalent resolution-
independent neural operators can be implemented as long as the Laplacian spec-
trum of the domain [¢(x), ¢o(z), ..., ¢, ()] can be constructed.

This research focused on parts with complex geometric domain, namely the mani-
folds embedded on R3. But Eq. 4.9 only gives the continuous Laplacian in the Euclidean
space. In fact, the Laplacian can be extended to the Riemannian manifold (also known as
the Laplace—Beltrami operator [231]), such as the graph Laplacian defined on the struc-
ture of a graph [232], or the mesh Laplacian defined on a geometric mesh [233].

The Laplacians of different geometric meshes are strictly defined in the differential
geometry field [234], including triangular mesh, quadrilateral mesh or tetrahedral mesh.
Taking the example of the triangular mesh, as shown in Fig. 4.6 and Eq. 4.12, the discrete
Laplacian of a scalar function f on a vertex ¢ is defined by the cotangent function of the
adjacent nodes, where N (i) is the vertex 7 on the geometric mesh. The Laplacian of
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J

Figure 4.6: Cotangent Laplace operator of the triangular mesh.

triangular mesh is also called the cotangent Laplace operator, which can be derived in
many different ways, including finite analysis, finite volume method, or discrete exterior
calculus [235].

(Af)i~ 5 Y (cotas; +cot By) (fi — f;) (4.12)

JEN(9)

N —

After defining the mesh Laplacian of complex geometries, the geometry-aware Lapla-
cian spectrum [¢; (), p2(x), . .., ¢k, (z)] can be solved by Galerkin method, power iter-
ation, or other numerical methods [236, 237].

Fig. 4.7 shows the Laplace spectrum of three basic geometries, including the quadri-
lateral lattice sphere, quadrilateral lattice blank and triangular lattice torus. It can be ob-
served that the Laplace spectrum exhibits the frequency information from low to high,
which is similar to Fourier transformation in the regular domain. Therefore, the low-
frequency information of the part property can be obtained by projecting the property
field onto the low-frequency Laplace spectrum.

¢20 ¢30
© ©

Figure 4.7: The Laplace spectrum of the basic geometries.
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4.4.2 Proper orthogonal decomposition for attribution field

Proper orthogonal decomposition (POD) is a statistical dimensional reduction method
commonly used in fluid dynamics, and structural analysis [238]. It can obtain low-
dimensional embedding information from observed high-dimensional dataset, which
can potentially be applied in the neural operator. POD calculation only involves the
property information of the grid nodes in domain D without involving the Euclidean
coordinates of the grid nodes. Therefore it is valid for both regular and irregular do-
mains. This section will extract the low-dimensional modes from the to-be-predicted
property field of the training dataset.

For a neural operator learning problem, both the input and output can be the prop-
erty fields defined on the geometric domain. But the POD of the output field has a more
significant influence on the prediction performance. For the output property field u(z),
POD aims to solve a set of basis functions 1, (x) from the training dataset, thus repre-
senting the original high-dimensional data as a linear superposition of a finite number
(kp) of basis functions:

ko
u(z) ~ Z arr(z)a (4.13)
k=1

where ay, is the superimposed weight of each basis function.

Assuming that the training dataset consists of N samples with the output property
field {u® € R*=*d} § = 1...N. Since k, < n,, vector a = [y, -+, ay,] can be
regarded as a low-dimensional representation of the property field w. To simplify the
subsequent computation, let d, = 1, then the overall output property fields of the N
group of training samples is represented as U € R™*"_ If d,, is larger than 1, the POD
of each dimension of d, can be obtained separately in the following way.

A set of ¢ (x) for all training samples satisfying Eq. 4.13 is called a POD basis
function, basis for short. The decomposition problem can be defined as an optimal
least-squares approximation problem [239], and is commonly solved by Singular-Value-
Decomposition (SVD), i.e. :

U=U0UxV' (4.14)

where U = [1(x),¥s(), - ,¢n(x)] € R™*N is a set of orthogonal POD bases, 3 €
RM*N js a square matrix of corresponding singular values. The original property field
data can then be approximated by a finite number (£,) of POD bases, i.e:

U~ 0,5,V (4.15)

where U, = [¢1(z),¥2(), - -+ , ¢y, (x)] € R™**» refers to the POD bases correspond-
ing to the first k, maximal singular values. 3J, and V; are the truncated matrices of X
and V', respectively.

Fig. 4.8 shows the POD bases of the deformation and temperature fields of a compos-
ite part in the experimental validation. The vertical coordinates are the singular values
for the different basis, representing the corresponding influential weight in the original
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Figure 4.8: The proper orthogonal decomposition of the deformation field and temperature field.

field. As shown in Fig. 4.8a, the maximum singular value of the deformation field ex-
ceeds 100, while the weight after the 10-¢% basis is considerably less than 1. A similar
trend is also shown in Fig. 4.8b. This result indicates that a few POD bases are sufficient
to represent the main patterns of the property field, which means the integration of POD
bases can potentially enhance the feature extraction of the neural operator. However, as
POD is a data-driven dimensional reduction method, the accuracy and generalisability
are affected by the given dataset, namely U. The size and noise of the training set U can
influence the generalisability of the obtained POD basis. Additionally, the maximum
POD basis is equivalent to the number of training samples, namely N, which may lead
to inadequate POD bases when the number of training samples is limited.

4.4.3 Low-dimensional kernel integral operator

The POD bases can reflect the embedding modes of the property field, while the Laplace
spectrum is a group general basis that can represent the frequency information of the
geometric domain. Combining the two sets of bases (property-related and geometry-
related) can enhance the feature extraction capability of the neural operator model.

In this research, a low-dimensional iterative kernel integral operator was constructed
based on the combined bases. Supposing that the combined bases consist of k; Laplace
bases and k, POD bases, i.e., are denotedas ® = [¢1(z), ..., ¢y, (2), ¥1(2), ..., ¢y, (z)] €
R™>km <where k,,, = k; + k, is the total number of basis functions.

The low-dimensional kernel integral operator, namely the L-layer in Fig. 4.3, consists
of encoder &£, parameterisation mapping Ry and decoder D [240], namely:

Ko(vy) :=DoRyo& (4.16)

where encoder £ projects input function v; : L?(D;R%) to the Laplacian spectrum
[61(2), pa(), ..., ¢, (x)]. After that, parameterisation mapping Ry can be defined in
the finite-dimensional space R*, and the size of parameters only depends on the size of
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the truncated mode k,,. Lastly, the new feature is mapped back to the output function
space v 11 : L?(D;R%) by the decoder D. The three-step procedures can be represented
in the following diagram:

[2(D; Ry 22y [2(D; R

lg DT (4.17)

RFEmxdy Re RFmxdy

When the input space is discretised into n, nodes, the input function v;(x) can be
represented discretely as a V, € R"*%_ Note that input matrix V, does not contain
the coordinate of the discrete points or other geometric information in the domain, but
only lists the function values of n,, discrete points. When performing FFT on the regular
domain, the input function is defined in the grid coordinates of the Euclidean space,
two-dimensional or three-dimensional spacial coordinates will bring extra dimensions
for the input data. However, for the manifolds represented by mesh grids, the input and
output data only contain the function value of each node, x in v;(z) actually expresses
the index of the node rather than the node coordinates. Both the Laplace and POD
bases are discretised into a vector form as ¢, € R™*! ¢y, € R"*1 and all k,, bases
comprise the basis matrix ® € R" ¥~  The complex geometric information of the
domain has been embedded in the Laplacian spectrum. The entire implementation of
the low-dimensional kernel integral operator is defined on the node index rather than
the Euclidean coordinates, which means the 2D or 3D geometric domain shares the same
structure without increasing the complexity of the model.

The encoder of the discretised input matrix V; can be expressed as:
E(V,) = oV, (4.18)

where ®T € R¥»*"= refers to the pseudo inverse of the Laplacian spectrum matrix @,

defined as:

Pl = (dTd) T (4.19)

Denoting the parameterisation mapping Ry as the matrix R € RFm*dvxdv the map-
pings on the encoded frequency information can then be represented as:

RypoE(V,) = (R (2'V,)) (4.20)

where the tensor operation is defined as:

dv
(R-(@TVt))kJ:ZRk,l,j(CI)TVt)kJ, k=1, kn, 1=1,....d, (4.21)

J=1

The decoder process is simply the linear transformation with the Laplacian spectrum
matrix:

DoRyo& =9 (R-(2'V,)) (4.22)
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The neural operator with the above-defined low-dimensional kernel integration layer
constitutes the proposed Low-dimensional Neural Operator (LNO). LNO is similar to
FNO in that both are discretisation-invariant by the frequency-domain parametrisation.
But LNO has two notable advantages:

+ The generalisability on the complex geometries: Fourier transform is only
applicable to rectangular domains with regular grids, while the Laplacian spec-
trum can be generalised from Euclidean space to Riemannian geometry, including
2D, 3D surfaces or 3D solid models that are discretised by triangular mesh, quadri-
lateral mesh or tetrahedral mesh.

« The generalisability on the domain dimensions: The Laplace integral op-
erator implementation is defined in the node index rather than the Euclidean
coordinates of the nodes, thus the LNO framework is general for two or three-
dimensional, regular or irregular geometries.

4.5 Case studies

This Section describes the verification of the proposed LNO on the 2D Darcy flow prob-
lem with complex domain and the 3d composite part curing deformation prediction prob-
lem. The proposed LNO was compared with the popular neural operator DeepOnet and
its variant POD-DeepOnet. For the 2D Darcy case, the complex domain was interpolated
to a regular domain for the implementation of FNO. For the 3d composite part case, FNO
was not implemented because of the prohibitive complexity of 3d spatial interpolation.

4.5.1 Darcy flow

4.5.1.1 Problem definition

Darcy flow equation is a classical law for describing the flow of fluid through a porous
medium, widely used in various engineering fields, such as resin flow simulation in com-
posites manufacturing [241]. Darcy problem is also adopted as the benchmark for the
performance verification of various neural operators [211, 220]. This case study focused
on the Darcy equation on 2D irregular geometric domain:

=V - (a(z,y)Vu(z,y)) = f(z,y) x,yeD (4.23)

where a(x,y) is the diffusion coefficient field, u(z, y) is the pressure field and f(z,y) is
the source term to be specified.

The experiments on Darcy flow consisted of two cases, involving different geomet-
ric meshes and different boundary conditions. The geometric domain had an irregular
boundary with a thin rectangle notch inside, which could increase the complexity of
the boundary condition. As shown in Fig. 4.9a, the geometric domain of case 1 was a
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triangle mesh with 2282 modes, where the outside boundary condition (red boundary)
follows u = ugp(z) and the three boundaries of the inside rectangle follows u = 0.
The geometric domain of case 2 was a triangle mesh with 592 nodes. As shown in Fig.
4.9b, the two boundaries of the inside rectangle had different boundary conditions. The
left and right sides had a close Euclidean distance but a relatively far geodesic distance,
which could bring more challenges to neural operator learning. The boundary condi-
tion functions ugp(z) in Fig. 4.9c were generated from a gaussian process defined in
Ref. [220].

(a) Case1: 2282 Nodes (b) Case 2: 592 Nodes (c) Boudary condition

0.8 1.0

— u = ugp(z)

0.8

0.6
0.6

ugp(z)
0.4

Y 04

0.2 0.2

! 0.0 . ; K s : 0.0 i i i
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
T x x

Figure 4.9: The geometric domain and boundary conditions of the Dary flow cases.

The learning target in the Darcy flow problem was the mapping from the diffusion
coefficient field a(x, y) to the pressure field u(z, y):

G:a(x,y) — u(z,y) (4.24)

where the source term was set to 1, i.e. f = 1. The input diffusion coeflicient field
a(x,y) was generated by the Gaussian random field with a piecewise function, namely
a(z,y) = t(u), where p is a distribution defined by u = N (0, (—A +97)72) [219].
After sampling from this distribution, the diffusion field a(z, y) could be generated from
the following piecewise function:

12, p=>0

=1y L2 (4.25)

The labelled data for training the neural operator model was the pair of a(z,y) and
u(z,y). 1200 sets of input data a(x,y) were randomly generated first. Then the corre-
sponding u(x,y) was solved by Matlab’s SOLVEPDE toolbox [242]. 1000 of them were
used as the training data, and the rest 200 samples were defined as the test data.

4.5.1.2 Experimental settings

Considering that the compared operator models have similar architectures, the selection
of model parameters follows these principles: (1) The common parameters of all models
are set to the same values, that is, the training learning rate is 0.001, the batch size is
100, and the iteration is 1000. (2) The parameters of each model are optimised based on
the recommended values from the public source code.
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LNO: The network structure of LNO is designed similarly to Darcy case studies of
FNO [211], including 4 L-layers, k; = k, = 32, d, = 32, the learning rate is 0.001, the
batch size is 100, the number of iterations is 1000, and the optimizer is Adam. Note that
the combined bases ® and its pseudo-inverse ® are pre-calculated before training, and
the forward training of the low-dimensional kernel integral follows Eq. 4.22.

FNO: Since the original FNO cannot deal with the complex geometric domain, the
mesh interpolation solution from research published in the paper [220] is adopted to
construct a 50*50 regular grid for FNO. The function values of the new mesh nodes are
fitted by the original irregular nodes. The numbers of Fourier modes in both directions
are k,, = 20, and the network width parameter is set to d, = 64.

DeepOnet: The structure of the DeepOnet model follows the original settings of
Darcy flow case in the paper [220], where the branch network is a fully connected net-
work with hidden layers of 256*256*100, and the trunk net is the fully connected network
with hidden layers of 128%128*128*100.

POD-DeepOnet: POD-DeepOnet is the latest variant of DeepOnet, in which the
branch network can directly learn the weights of the POD basis. The case study was com-
pared with POD-DeepOnet because the POD-based dimensional reduction technique is
widely used and proven effective in PDE solving and surrogate modelling problems. The
model structure followed the original setting in the paper [220], and the size of the POD
basis is set to 64, equal to k,,.

The loss function for all methods in this experiment is the relative L, loss that is
defined as below:

(4.26)

4.5.1.3 Experimental results

Fig. 4.10 shows the convergence of training loss and test loss of all methods in Case
1. All methods were trained at the same learning rate (0.001) for the same number of
iterations (1000). DeepOnet and POD-DeepOnet can achieve a very small training loss
of around 10~ after 400 iterations, which is much smaller than the 1072 of LNO and
FNO. As to the test loss from Fig. 4.10(b), LNO can archive 1072 in only 100 iterations,
which convergences much faster than the other three methods.

Tab. 4.1 shows the final training results of each method in Casel, where A(B) refers
to the mean and standard variation of 10 repeated trials. Both the training and test
errors of FNO are more than 2%, which means that the reconstruction of the regular
grid brings significant approximation error of the frequency information. DeepOnet
and POD-DeepOnet can provide a test error of 1.8% with a training error close to 0. In
comparison, LNO has a superior performance with a test error of only 1.38%.

Fig. 4.11 presents the comparative prediction results of one test sample in Case 1.
Fig. 4.11ais the mesh grid of the domain. Fig. 4.11b is the input diffusion coefficient field
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Figure 4.10: The convergence of loss functions for Case 1 of Darcy flow problem

Table 4.1: The performance comparison for Case 1 of Darcy flow problem.

Method Parameter Train error(%) Test error(%)
FNO(Grid) 13,132,545 2.712(0.076) 2.780(0.081)
DeepOnet 722,248 0.004(0.000) 1.878(0.025)
POD-DeepOnet 3,722,200 0.004(0.000) 1.839(0.020)
LNO 532,961 0.820(0.195) 1.384(0.021)

Training error and test error are relative Lo error.

a(x,y) generated by Eq. 4.25. Fig. 4.11c is the reference value of the output pressure field
u(z,y) solved by Matlab. Fig. 4.11d is the pressure field predicted by the LNO. Fig. 4.11e-
h are the prediction errors of FNO, DeepOnet, POD-DeepOnet and LNO, respectively.
Anean in each figure refers to the average absolute error over all nodes in the geometric
domain, and A,,,, is the maximum absolute error on all nodes. Due to inaccurate grid
interpolation, FNO has the most significant error (up to 0.16), especially in the boundary
region. DeepOnet and POD-DeepOnet show significant errors on the right side of the
rectangle where the output field has a large gradient. Meanwhile, LNO can reduce A,,c4,,
and A, significantly compared with all other methods.

Tab. 4.2 shows the final training results of each method in Case2. The overall results
are similar to Tab. 4.1, with LNO also achieving the smallest test error and DeepOnet
and POD-DeepOnet still showing significant overfitting. Note that the parameterisation
of FNO and LNO is independent of the grid resolution, so Case 1 and Case 2 can share the
same network architecture with exactly the same number of parameters. By comparison,
the number of parameters of DeepOnet and POD-DeepOnet increases with the grid size.

Fig. 4.12 shows the comparative prediction results of one test sample in Case 2 of
Darcy flow problem. Due to the inconsistent left and right boundary conditions in the
rectangular region, the output field shows an abrupt change near the upper boundary of
the rectangle. All four methods have significant errors in this region, while LNO is still
able to output more accurate predictions, with A,,c,, and A,,,, smaller than the other
three methods.
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Figure 4.11: The comparison of prediction results for Case 1 of the Darcy flow problem.

Table 4.2: The performance comparison for Case 2 of Darcy flow problem.

Method Parameter Train error(%) Test error(%)
FNO(Grid) 13,132,545 2.490(0.094) 2.670(0.087)
DeepOnet 289,608 0.004(0.000) 1.927(0.023)
POD-DeepOnet 1,018,200 0.004(0.000) 1.896(0.030)
LNO 532,961 1.001(0.051) 1.681(0.014)

Training error and test error are relative Lo error.

4.5.2 Composite part deformation prediction

4.5.2.1 Problem definition

This Section will describe the investigation of the effectiveness of the proposed LNO
method on a complex 3d irregular geometry, namely predicting the curing deformation
of a Carbon Fiber Reinforced Polymer (CFRP) composite part based on a given temper-
ature field. The large size, complex shape and high accuracy requirements of aerospace
CFRP parts impose increased demands on deformation control during the curing pro-
cess [9]. To reduce the distortion of curing, the part geometry was divided into several
regions to apply different curing temperatures. Therefore, constructing the predictive
model of the temperature field to deformation field on the geometry can provide essen-
tial support for further curing process optimising. As shown in Fig. 4.13, the learning
problem of this case is defined as the mapping from the temperature field a(z,y, z) to
the deformation field u(z, y, z) on the given composites part.
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Figure 4.12: The comparison of prediction results for Case 2 of the Darcy flow problem.

Temperature field Deformation field

G: a(z,y,2) — u(z,y, 2)

Figure 4.13: The problem definition of the composite part deformation prediction problem.

As shown in Fig. 4.14a, the part geometry is represented by a tetragonal mesh con-
structed in the Finite Element Method (FEM) simulation[243], comprising a total of 8576
nodes. The input temperature field is designed according to the actual requirements and
constraints of the curing process. The internal and external surfaces of the composite
part are divided into 20 separate curing zones, with the temperature of each zone gen-
erated randomly between the 370K ~ 400/K. Therefore, the input data of the neural
operator learning problem is the temperature values on 8576 grid nodes. The defor-
mation fields of the composite part were simulated by FEM considering heat transfer,
curing reactions, viscoelastic mechanics and other processes [9]. A total of 300 data pairs
of temperature-to-deformation fields were simulated, 200 of them are defined as training
data and the rest 100 as test data.

4.5.2.2 Experimental settings

Considering the prohibitive computational burden of the spatial mesh interpolation of
3D parts, FNO is not implemented in this task, and this research only compares the
proposed LNO with DeepOnet and POD-DeepOnet. The basis sizes of LNO are also
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(a) Mesh (b) Input temperature field (c) Ground truth deformation (d) Predicted by LNO
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Figure 4.14: The composite part curing deformation prediction problem. (a) Mesh of the composite part.
(b) The input temperature field of a test sample. (c) The ground truth deformation field of a test sample.
(d) The predicted deformation field of a test sample.

k; = k, = 32. The other parameters are consistent with the Darcy flow case. Meanwhile,
this section also compares the reduced-order regression method, which is commonly
used for finite element simulation surrogate modelling problems in engineering [244].
High-dimensional input and output fields are usually translated into a small number
of representative indicators, such as POD mode weights or other statistical indicators
[245]. In this case, a Gaussian process reduced order model (marked as GP-POD) was
developed to predict the POD eigenvalues of the deformation field. The input of GP-POD
is a 10-dimensional vector representing the temperatures of the 10 curing regions, and
the output of the model is the top 50 POD eigenvalues of the deformation field solved
from the training data. And the final deformation field can be reconstructed based on
the POD eigenvectors and the predicted POD eigenvalues.

4.5.2.3 Experimental results

The quantitative performance of different methods is shown in Tab. 4.3, the values in
brackets refer to the standard deviation of ten repeated experiments. The test error of
LNO is only 0.22%, much smaller than that of GP-POD and DeepOnet (1.21% and 0.51%),
and the number of parameters of the LNO model is also smaller than DeepOnet and
POD-DeepOnet. Relative L2 error can reflect the overall prediction performance on the
entire data set, but as composite curing is a risk-sensitive problem, it is more meaningful
to focus on the maximum error of the predicted deformation field predicted. £, in Tab.
4.3 is defined as the maximum absolute value of the deformation prediction error over all
nodes of all test samples. It can be seen that the F,,,, of LNO is only 0.015mm, which
is much smaller than the other comparison methods, while the standard deviation of the
maximum error predicted by LNO is only 0.001mm.

Figures 4.14b-d depicts the LNO predicted result of a test sample, where b-d refer
to the input temperature field, the ground truth deformation field and the predicted
deformation field, respectively. The deformation field predicted by FNO is quite close to
the reference value. Fig. 4.15 depicts the deformation field prediction errors of the four
methods on the sample shown in Figures 4.14. GP-POD and DeepOnet have large and
non-uniform errors on the right and bottom regions of the part, while POD-DeepOnet
shows a more uniform global error on the upper side of the part. By comparison, the
LNO is ’light green’ over the entire part, with obviously far less error than the other
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Table 4.3: The performance comparison of different methods on the composite case.

Method Parameters Test error(%) E, 4 (mm)
GP-POD - 1.21(0.06) 0.181(0.020)
DeepOnet 828,872 0.51(0.03) 0.028(0.003)
POD-DeepOnet 4,396,488 0.47(0.07) 0.027(0.004)
LNO 68,977 0.22(0.03) 0.015(0.001)

three methods. The maximum deformation prediction error over all nodes is marked
separately for different methods in Fig. 4.15. It can be seen that the maximum errors
of GP, DeepOnet and POD-DeepOnet are all higher than 0.1mm, while the maximum
prediction error of LNO is only 0.004mm.

(a) GP (b) DeepOnet (c) POD-DeepOnet (d) LNO

D(mm)
00165

'0 00825

|°:?:f“ » » »

Moax Error = 0.066mm Mox Error = 0.017mm Max Error = 0.037mm Max Error = 0.004mm

Figure 4.15: The comparison of deformation prediction error.

The training convergence of different methods is shown in Fig. 4.16. The training
error of all three methods reaches 0.05% after 1000 iterations. However, there is a sig-
nificant difference in the test error convergence of the three methods. LNO achieves an
error of less than 0.5% in only about 100 iterations, which is significantly faster than
other methods.

- a) Traning error - b) Test error
5001873 (a) 9 30162 (b)
—— DeepOnet — LNO
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—— LNO —— POD-DeepOnet
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Figure 4.16: The convergence of loss functions for the composite case.

To verify the performance of different methods under the limited label data scenario.
Fig. 4.17 presents the test error and maximum error (£),,,) for each method with 100
training samples and 200 training samples. With a smaller sample size, The test error
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and F,,,, for all methods increase significantly, with LNO still maintaining the lead.
It can also be seen that the LNO achieves a test error of 0.045% and a maximum error
of 0.027mm with 100 samples. By contrast, DeepOnet and POD-DeepOnet require 200
samples to achieve similar error performance.
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Figure 4.17: The convergence of loss functions for the composite case.

4.5.3 Analysis and discusions

(1) Node-level prediction errors

The above experiments only investigated the L, error and the maximum prediction
error for each case, this Section will analyse the distribution of prediction error over all
nodes of all test samples. Fig 4.18a-c show the statistical results of the three cases. It can
be seen that the prediction errors of all nodes for all methods show Gaussian distribu-
tions with mean values approximating 0. The estimated standard deviations of different
methods are marked in each figure. In Fig. 4.18a, Case 1 of the Darcy flow problem, the
nodes’ standard deviation for LNO is o = 0.0073, which is slightly smaller than the re-
maining three methods. In Fig. 4.18c, the composite case, the standard deviation of the
LNO is only o = 0.0164mm, which is substantially lower compared to existing methods.
In summary, LNO reduces the prediction error uniformly and comprehensively for most
nodes.

(2) Laplacian and POD basis

LNO contains geometric-related Laplacian bases and attribute-related POD bases.
The two groups of bases have different characteristics, and thus are able to enhance the
feature extraction capability of the model. Fig. 4.19 shows the LNO for the composite
case with different base combinations, with the same total number of bases of k,,, = 64.
"TWO basis’ means 32 Laplacian bases and 32 POD bases, 'POD basis’ stands for only
64 POD bases, namely k; = 0, k, = 64, and 'LBO basis’ means only 64 Laplacian bases
ie. k; = 64,k, = 0. As shown in Fig. 4.19a-b, in both the training and test steps,
the combination bases, “Two basis’, can convergent to a very low loss quickly, much
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Figure 4.18: The distribution of deformation prediction error over all nodes. (a) Case 1 in the darcy flow
problem. (b) Case 2 in the darcy flow problem. (c) Composite case.

better than the single bases results, which means the two groups of bases can provide
complementary physics information of feature extraction in LNO.

(a) Traning error (b) Test error
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Figure 4.19: The training convergence of LNO under different bases.

4.6 Summary

Predicting high-dimensional property fields of parts can provide valuable support for
quality control and process optimisation. However, the geometry representation and the
feature extraction normally require complex parametric models and extensive labelled
data. This research proposed a physics-guided low-dimensional neural operator, which
transforms the issue of high-dimensional field mapping of part property field into a low-
dimensional mapping issue in the basis domain. The physics-guided bases, including
geometric-related and attribute-related bases, are embedded into the neural network
structure to enhance the feature extraction ability.

The proposed the physics-guided low-dimensional neural operator can represent
complex geometry with a limited number of basis, thus can significantly reduce the
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parameter complexity of the data-driven models. The experiment on the 3D composite
deformation field prediction case demonstrated that the proposed model could provide
an accurate prediction result with fewer labelled data. Further analysis revealed that
the two groups of bases can provide complementary information for feature extraction.
The proposed LNO could potentially be applied in various part property field predic-
tion problems, such as deformation or stress field prediction for curing, machining or
assembling. A well-established LNO model could also support process optimisation by
utilising the collected simulation data or experimental data. Chapter 5 will describe the
combination of the LNO model with the sampling method developed in Chapter 2 and
the transfer learning method developed in Chapter 3, and the validation of the effective-
ness in a more complex manufacturing case.
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CHAPTER 5

This Chapter describes the validation of the developed technologies in a composite
part deformation prediction case. A data-driven deformation prediction system was de-
veloped based on the methods described in Chapter 2, 3, and 4. The effectiveness of the
system was validated on a complex Carbon Fiber Reinforced Polymer part.

5.1 Data-driven curing deformation prediction system
for composites manufacturing

5.1.1 Introduction of the case study

Carbon Fiber Reinforced Polymer (CFRP) composite materials, which are lightweight
and high-strength, are preferred materials for weight reduction and performance en-
hancement in modern aerospace industries [246]. CFRP parts used in aerospace have
large size and complex shapes, therefore imposing higher requirements on deformation
control during the manufacturing process. As one of the key processes of composites
manufacturing, curing refers to using high temperatures to stimulate the chemical reac-
tions and physical changes of the resin, thereby forming CFRP parts with load-bearing
properties. Non-uniform residual stresses generated during the curing process can cause
curing deformations such as spring-back, warpage, and bending-twisting combination,
which not only risks the CFRP parts being scrapped but also becomes an important rea-
son for damages and failures during subsequent assemblies [247].

Massive Iterations

Temperature Expensive Deformation
field T Numerical Solver field'D

Optimise T
No

Acceptable

Yes

Optimised T

Curing device

Figure 5.1: The composite curing problem.

Regulating the curing temperature distribution of a part is an effective means of
controlling curing deformation. As shown in Fig. 5.1, optimising the curing tempera-
ture field usually requires a large number of iterations based on the prediction results
of the curing deformation field. Therefore, establishing a fast prediction model from the
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curing temperature field to the deformation field is of great significance for optimising
and designing the temperature field of CFRP parts [11]. Numerical simulation methods,
such as the finite element method, have become the most widely used curing process
modelling methods. However, high-fidelity curing deformation simulation requires ac-
curate modelling of complex physicochemical processes and fine meshing of the part
calculation domain, resulting in highly expensive and time-consuming calculations. For
example, it would take several hours to simulate the complete deformation field of the
Boeing 787 wing skin part during the curing process, and hundreds of labelled training
data would require several months to obtain. Therefore, the computational efficiency of
the traditional numerical modelling methods is insufficient to meet the requirements for
the temperature field optimisation of the CFRP parts. This Chapter will describe a devel-
oped data-driven curing deformation prediction system based on the proposed methods
described in previous Chapters to achieve accurate and efficient prediction.

5.1.2 The developed data-driven curing deformation prediction
system based on the proposed methods

Since traditional data-driven deformation predicting modelling rely on a large number
of high-fidelity data samples, this research developed a data-driven curing deformation
prediction system based on the proposed methods, aiming to reduce the number of high-
fidelity data samples required while ensuring model prediction accuracy. The complex
physicochemical processes and fine meshing in the curing simulation lead to the very
time-consuming acquisition of high-fidelity simulation data, whilst a large amount of
low-fidelity simulation data could be obtained quickly by simplifying the curing process
or simplifying the meshing. Although the prediction accuracy of low-fidelity simulation
data cannot meet the requirements of subsequent curing temperature field optimisa-
tion, it can provide auxiliary information for high-fidelity sample design and data-driven
model training.

The main elements and interaction between the elements of the system are shown
in Fig. 5.2. The system consists of three modules: the sampling module (described in
Chapter 2), the LNO modelling module (described in Chapter 4) and the transfer learn-
ing module (described in Chapter 3). For the CFRP parts to be manufactured, a large
amount of low-fidelity simulation data was first generated by the finite element simula-
tion software. The sampling module used the low-fidelity simulation data to construct
a value function, and then guided the generation of a small amount of high-fidelity data
based on the proposed AV4Sam. At the same time, the LNO modelling module trained a
neural operator model based on the low-fidelity simulation data, regarded as the source
model. The transfer learning module used the generated small amount of high-fidelity
simulation data to update the source model, thus constructing a highly accurate CFRP
construction curing deformation prediction model.

The framework and core algorithms were developed based on the Python language
[248]. The data pre-processing and statistical analysis was carried out based on the
sklearn library[249]. The data-driven models were parameterised and optimised based
on the automatic differentiation library Pytorch[250]. The geometric information pro-
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cessing and extraction were carried out based on Pyvista[251]. The visualisation inter-
face was developed on PyQt5[252]. The following sections will introduce the interface
and functions of the three modules.

;;/‘“' o g | Lowfidelity Low-fidelity simulation Train LNO Modelling ﬁ
3 — >
\ Simulate data (Auxiliary data)
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oo + .mat y: <: python
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Figure 5.2: The framework of the developed data-driven deformation prediction system.

5.1.3 The sampling module

The sampling module aims at selecting a small set of samples from the part temperature
field sample space that is of greater value for model training. This section uses the C-
shaped part described in Chapter 4 as an example to illustrate the function and operation
flow of the software module. First, 300 groups of temperature field data are randomly
generated from the part curing temperature design space, and the corresponding defor-
mation field data are obtained using a simplified finite element simulation. After that,
300 temperature-to-deformation data pairs constitute the low-fidelity data set. The pur-
pose of this module is to use cheap low-fidelity simulation data to evaluate a small set of
samples that are more valuable for data-driven model training, so as to guide the gener-
ation of high-fidelity simulation data. The software interface of this module is shown in
Fig.5.3.

The sampling module first imports the simulated low-fidelity data set to evaluate the
value function of samples. The basic learners for valuation include ANN from the Py-
torch library and Gaussian process regression models from the GPytorch library. After
setting the convergence index and parameter tolerance, the Shapley values of all sam-
ples can be calculated, and the performance of the model of adding/removing samples
is also plotted in the software, which can provide a reference for the user to observe the
effectiveness of the value function. After obtaining the value function, the optimal tem-
perature field samples can be determined by clicking the button ’Start Sampling’. The
default kernel function is the RBF function.

As the case set up in Fig.5.3, the sampled 20 temperature fields will be stored in .mat
or .csv format as the output of this module. This means that these 20 samples are the most
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valuable temperature samples for data-driven model training among the input 300 sets of
samples. The sampled temperature field data will be imported to FEM software through
a Python script to carry out the high-fidelity deformation simulation. The simulated
20 temperature-to-deformation data pairs constitute the high-fidelity data, which is the
direct labelled data mentioned in Fig. 5.2.
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Figure 5.3: The sampling module of the developed system.

5.1.4 The neural operator training module

The neural operator training module is developed based on Python and the deep learn-
ing library Pytorch. Due to the scarcity of high-fidelity simulation data, this module
will build a deformation field prediction model based on low-fidelity simulation data.
The trained model is defined as the source model, which would be the input for the sub-
sequent transfer learning. The software interface of this module is shown in Fig .5.4.
Firstly, the low-fidelity simulation data and the mesh file (.stl or .vtk) of the part are im-
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ported. This module would solve the physics-based basis, including the POD basis of the
low-fidelity simulation data and the Laplacian basis of the geometry. After setting the
LNO training parameters, clicking the button ’Start Training’ would automatically call
the two sets of basis and train the neural operator model. The final training performance
of the model and the loss function convergence would be displayed in the software af-
ter training. Users can select any samples manually from the test data to display the
prediction deformation field and the corresponding prediction errors.

After training the source model based on the low-fidelity simulation data, the model
architecture and model parameters are stored in .pkl format, which would be used as
input information for the subsequent transfer learning module.

Sampling Modelling  Transfering

Data preparation
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e e N N N N
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Results
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0.00 4, . :
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Epochs o Error = 00038 T
D:'parts\composites'sourcemodel.pkl | Save the pretrained source model

Figure 5.4: The LNO modelling module of the developed system.

5.1.5 The transfer learning module

The transfer learning module was developed based on Pytorch to transfer the parameters
of the source model trained from low-fidelity simulation data to high-fidelity data.
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Figure 5.5: The transfer learning module of the developed system.

The software interface of the transfer learning module is shown in Fig.5.5. The pro-
posed CEOD-based loss function was adopted to train the transfer learning model pa-
rameters. This module first imports the target data, i.e., the high-fidelity simulation data
obtained from the sampling module, and imports the pre-trained source model file in .pkl
format. The ’Source Model Structure’ function could display the network structure and
detailed dimensions of each layer in the source model. Then users could manually select
which parts of the model to finetune. The default setting would finetune all the param-
eters. After clicking ’Start training’, the transfer learning model would be trained based
on the selected parameters and to-be-updated layers. The final trained model would be
saved in .pkl format. The model obtained from this module could be used to predict the
deformation field and optimise the temperature field for CFRP curing. For a given input
temperature field data, the trained model could perform forward propagation to directly
calculate the corresponding deformation field.
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5.2 Validation of the developed data-driven curing de-

formation prediction system

This Section will describe the validation of the effectiveness of the developed framework
on a complex composite part. The comparison with the existing data-driven modelling
methods shows that the developed framework could predict the deformation accurately
with much less high-fidelity simulation data.

5.2.1 The experimental CFRP part

The CFRP workpiece used for verification is shown in Fig. 5.6a. This workpiece is a com-
plex closed revolving structure formed by multiple curved surfaces (Fig. 5.6b), which
would deform significantly after high-temperature curing. The curing process is zoned
self-resistance electric heating, where the internal and external surfaces of the workpiece
are divided into 20 areas according to the radius of curvature for independent temper-
ature control. The maximum deformation of the part with the un-optimised uniform
temperature field is more than 4 mm, which cannot meet the actual requirement for fur-
ther assembly. Optimisation of the temperature field iteratively based on deformation
simulation results is an effective means for curing deformation control.

a.

260 mm __—]

Figure 5.6: The CFRP part for system validation.

The widely used simulation model in the CFRP curing deformation modelling field is
Path-dependent (PD) intrinsic structure model, which has high prediction accuracy but
requires expensive simulation costs. It would take 7050s, i.e., about 2 hours, to simulate
the curing deformation for one temperature field. Classical GA optimisation requires
up to 8000 iterations, which means more than 60 days for simulation. Establishing a
data-driven model for curing deformation prediction can significantly reduce efforts of
data simulation. As introduced in Chapter 4, the deformation prediction problem can
be defined as the mapping from the temperature field a(z, y, ) to the deformation field
u(z,y, z) on the 3D geometric part. According to the deformation prediction evaluation
criteria provided by the engineers of a collaborating company, the maximum prediction
error of the deformation field predicted by the data-driven model should be less than 5%
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of the maximum deformation, which means 4mm * 5% = 0.2mm. Therefore, the fol-
lowing experiments focus on achieving a maximum prediction error of less than 0.2mm
with as less high-fidelity simulation data as possible.

In this case, the multi-step stable Rapid Prediction Model for curing deformation
simulation proposed by Liu et al. [9] was selected as the low-fidelity simulation model.
The CFRP workpiece was divided into a geometric mesh composed of 8576 nodes in
Comsol. The Rapid Prediction Model can simulate the curing deformation in only 65s.
Although the accuracy of the Rapid Prediction Model is not as good as the high-fidelity
Path-dependent model, it can provide auxiliary information for subsequent high-fidelity
data generation and model training. In this case, 300 groups of low-fidelity simulations
are generated by Rapid Prediction Model first. A small set of high-value temperature
field data are determined by the aggregated value sampling module, and the correspond-
ing deformation fields are then simulated by the Path-dependent model to construct the
high-fidelity simulation data.

5.2.2 The experimental settings

This research used the classical operator model DeepOnet as the reference to verify the
deformation prediction performance of the developed system under the data scarcity
scenario. The detailed settings of each comparison method are introduced as below:

DeepOnet: Training deep-operator-network directly trained with randomly selected
high-fidelity simulation data as the reference. The network architecture was designed
based on the basic structure proposed by Lulu et al. [220], which includes a fully con-
nected backbone network of 250250100 and a fully connected branch network of 128*128
*128"100 with hidden layers. The model was trained with Adam optimiser with a learn-
ing rate of 0.001, a batch size of 100, and 10000 iterations. The training data includes
randomly generated sets of 20/30/50/100/200 temperature fields and their correspond-
ing high-fidelity simulated deformation fields.

LNO+Sampling: Training low-dimensional neural operator model with the sam-
pled high-fidelity simulation data. The LNO model has 4 L-layers. Considering the com-
plexity of the 3d deformation field, the number of input bases was set to 128 to improve
the expressiveness of the model, ie., £, = 128, d, = 64. The LNO model was trained
with Adam optimiser with a learning rate of 0.001, a batch size of 10, and 10000 itera-
tions. The training data are datasets with 20/30/50/100/200 high-fidelity simulation data
sampled by the proposed sampling method.

LNO+Sampling+TL: Training the LNO model based on the low-fidelity simula-
tion data and then transferring the model to the sampled high-fidelity simulation data.
LNO+Sampling+TL is the complete scheme in the framework shown in Fig. 5.2. The
transfer learning part utilises the proposed conditional kernel embedding loss function
to update the parameters of the source model with 300 iterations.
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5.2.3 Results and analysis

To verify the prediction performance of each method in the data scarcity scenario, each
model is first trained with only 20 high-fidelity training data. Fig .5.7 shows one predic-
tion result of LNO+Sampling+TL on the test set. Fig .5.7 a-c are the input temperature
field, the ground-truth output deformation field and the predicted deformation field,
respectively. It can be seen that the predicted deformation field is very close to the ref-
erence value.

(a) Input temperature field (b) Ground truth deformation c) LNO+Sampling+TL

T(K) D(mm)
395, 3 72
|390
385,
379, 0 931
374,

Figure 5.7: The deformation prediction result with 20 high-fidelity training data.

Fig .5.8 provides the deformation field prediction errors of the four methods for the
above-mentioned sample. The four figures share a consistent colour scale. Fig .5.8 a
is the direct prediction result of the source model trained with only low-fidelity data.
The maximum error is as high as 0.976mm, which means that the accuracy of the low-
fidelity simulation data cannot meet the demand of engineering applications. Fig .5.8 b
shows the deformation field prediction error of DeepOnet, where the maximum error
is 0.44mm. Fig .5.8 c is the prediction error of LNO+Sampling. The maximum error is
reduced to 0.239mm, while the right area of the part still has a significant error. Fig .5.8
d shows the prediction error of LNO+Sampling+TL. It can be observed that the whole
part is 'light green’, and the maximum error is only 0.089mm.

a) Low-fidelity model b) DeepOnet c) LNO+Sampling d) LNO+Sampling+TL
o
Iom
000
|o 20
-0.440
Max Error = 0.976mm Max Error = 0.44mm Max Error = 0.239mm Max Error = 0.089mm

Figure 5.8: The deformation prediction errors of different methods with 20 high-fidelity training data.
Fig .5.9 shows the performance of the three methods with different sample sizes.

The test set consists of 100 high-fidelity simulation data. The vertical axis of Fig .5.9 is
Evaz, the average value of the maximum error on the 100 test samples. The horizontal
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axis is the number of high-fidelity samples, namely 20, 30, 50, 100 and 200. All meth-
ods achieve smaller F,,,, with more samples, while LNO+Sampling+TL has the lowest
errors, followed by LNO+Sampling, and DeepOnet has the biggest errors for all sample
sizes.

The difference between LNO+Sampling+TL and LNO+Sampling is larger in the case
of the small number of samples, including 20 and 30. It means that transfer learning can
significantly improve model performance in data scarcity situations. For the 200-sample
scenario, the maximum errors of LNO+Sampling and LNO+Sampling+TL have similar
performance, only 0.037mm and 0.036mm, which is more than 80% error reduction
compared to F,,q, = 0.197mm of DeepOnet.

The actual requirement of this workpiece provided by the collaborating company is
that the maximum prediction error of the deformation field should be less than 0.2mm.
Therefore, a more practical indicator is the number of high-fidelity samples required
to achieve the given accuracy requirement. The performance requirement, F,,,, =
0.2mm, is marked with a pink line in Fig .5.9. DeepOnet has E,,,, = 0.197mm with 200
high-fidelity samples, while LNO+Sampling can provide a £,,,, below 0.2mm with only
50 high-fidelity samples. In contrast, LNO+Sampling+TL can achieve E,,,, = 0.186mm
with only 20 high-fidelity samples, which means that the prediction accuracy re-
quirement is satisfied with one-tenth of the sample size of DeepOnet.

0.8 -
0.7 - 0.638 B DeepOnet
LNO+Sampling
0.6 - BN LNO+Sampling+TL
’ 0.497
_05-
2 0.404
=04 - | 0.364
§ 0.322 Performance
M3 | 0.264 Requirement
02} 0.186% 0.179 % / 0.197¢
’ 0.156 ,
0.112 0,085
01y 2 0.066
. 0.037 0.036
0.0 - |
20 30 50 100 200
Trainig size

Figure 5.9: The performance comparison under data scarcity scenarios.
The above analysis shows that the system can significantly improve the accuracy of

model prediction with same number of samples. Meanwhile, the system can significantly
reduce the required number of samples for a given prediction accuracy requirement.
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5.3 Summary

To validate the proposed methods described in the previous Chapters, this Chapter de-
scribed the data-driven deformation prediction system for composite manufacturing and
introduced the system framework and functionality. The developed system was vali-
dated on a complex CFRP workpiece. The experimental results show that the system can
reduce the curing deformation prediction error by 80% compared with existing methods
when the same number of training data was given. Meanwhile, for the given prediction
accuracy requirements, the developed system reduced the required number of training
data by 90% compared with the existing methods.
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CONCLUSIONS AND FURTHER WORK

Apreés la pluie, le beau temps.

- Comtesse de Ségur
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Data-driven smart manufacturing has demonstrated tremendous potential and drawn
increasing research attention. Due to the expensive efforts of labelled data collection,
establishing data-driven models with limited labelled data is an inevitable trend and a
challenge for developing smart manufacturing. This thesis proposed a new framework
for data-driven predictive manufacturing modelling under data-scarcity scenarios. This
Chapter will summarise the main contributions of the reported research and provide
future research perspectives.

6.1 Summary of contributions

The most important effort of this research was exploiting manufacturing data gen-
erating process to improve the subsequent data modelling process. For man-
ufacturing predictive modelling problems under limited labelled data, the upper limit
performance for data driven models was restricted by the information contained in the
dataset. Previous researchers focused on how to train data-driven models based on given
datasets, which overlooked the potential of actively leveraging the data-generating pro-
cess. This research proposed a new framework and developed several methods for man-
ufacturing predictive modelling under data scarcity scenarios. The main contributions
are summarised below:

+ A comprehensive literature review of data-driven manufacturing was carried out. The
basic concepts related to smart manufacturing and recently developed frameworks
about data-driven manufacturing have been thoroughly analysed. As a result, typi-
cal manufacturing processes and widely-used machine learning methods were cate-
gorised based on different characteristics. The literature review confirmed that data
labelling of the manufacturing process was expensive and time-consuming both com-
putationally and experimentally. Several advanced modelling techniques for data-
scarcity scenarios were reviewed in depth and two research gaps were identified, i.e.,
(1) passive data generation and collection, and (2) insufficient modelling infor-
mation, which not only supported the framework of this research but also provided
direction for the development of data-driven manufacturing technologies in industry.

« For research gap 1 (passive data generation and collection), this research proposed
a novel aggregation-value-based sampling method to actively select optimal labelled
data for data-driven manufacturing applications. A new concept, aggregation value,
was proposed to describe the contribution of samples to the performance of data-
driven models. The value function was first established based on the auxiliary data
or physics priors, then the optimal dataset could be obtained by greedily maximis-
ing the aggregation value. Experiments on several manufacturing cases demonstrated
that the proposed method could provide optimised samples compared with existing
representativeness based and value-based sampling methods, thus could potentially
reduce the labelling efforts for manufacturing predictive modelling problems.

« For research gap 2 (insufficient modelling information), this research focused on trans-
fer learning to leverage the transferable knowledge from similar manufacturing con-
figurations so as to compensate for the insufficient modelling information of the direct
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labelled data. A structured conditional distribution adaptation method was proposed
to adapt the distribution difference between different tasks to extract the transferable
knowledge. The validation of the proposed transfer learning method was conducted in
various manufacturing problems including predicting tool top dynamics, multi-sensor
measurement, and tool wear. The experimental results conclusively demonstrated that
leveraging auxiliary data, when direct labelled data was insufficient, could improve the
modelling performance.

« This research further proposed a physics-guided low-dimensional neural operator for
predicting high-dimensional part property fields. By incorporating physics priors into
the neural network structure, this approach could enhance the learning capabilities of
neural network and reduces the need for labelled data. The high-dimensional mapping
of the part property field could be transformed into a simpler low-dimensional map-
ping within the physics-based domain. This novel model efficiently represents com-
plex geometries using a limited number of basis, resulting in a substantial reduction
in parameter complexity for data-driven models. The experimental analysis, focus-
ing on predicting 3D composite deformation fields, demonstrated that the proposed
model could deliver accurate predictions even with a smaller amount of labelled data
compared with existing deep learning methods.

« Finally, this research developed an integrated data-driven curing deformation predic-
tion system based on the above proposed methods of sampling, transfer learning and
physics-guided low-dimensional neural operator. The developed system was validated
using a complex CFRP workpiece. The experimental results demonstrated that the sys-
tem could achieve an 80% reduction in prediction error for curing deformation com-
pared to existing techniques when provided with the same amount of training data.
Additionally, when considering the desired prediction accuracy, the developed sys-
tem significantly reduced the required training data by 90% compared to the existing
method.

6.2 Future research perspectives

Data-driven manufacturing predictive modelling under data-scarcity scenarios is an im-
portant challenge for smart manufacturing. This thesis reported a proposed modelling
framework that incorporated sampling, knowledge transfer, and data-physics combina-
tions. However, this was only the beginning. There still exist a series of topics that
deserve in-depth study:

+ Process optimisation: The purpose of manufacturing predictive modelling is the
subsequent process analysis and optimisation. Previous surrogate-model-based opti-
misation methods mainly considered prediction models established from data. When
direct labelled data, auxiliary data, and physical priors are all available simultaneously,
the optimisation problem may have more constraints and more solutions. Therefore, a
worthwhile research topic is how to integrate multiple information in manufacturing
predictive modelling to establish a process optimisation model.
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+ The connection with digital twin: This research focused on the establishment of
predictive models where the data involved can be monitoring data, simulation data or
experimental data. The digital twin is more concerned with the bidirectional interac-
tion between the virtual model and the actual model, so it is an interesting direction to
combine the data-driven prediction model of simulation data and the prediction model
of experimental data to build a digital twin model.

+ Integration of multiple physics priors: The method described in Chapter 4 utilised
simple physics priors to design the network architecture, thereby enhancing the fea-
ture extraction capabilities of neural networks. In practical manufacturing processes,
there are often multiple different physical priors, including strong priors from formu-
las and empirical weak priors. Therefore, how to integrate multiple priors to guide
both network architecture and loss function design deserves further research.
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