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STRUCTURE

Note sur la structure de la thèse

Cette thèse est écrite en anglais pour ses chapitres principaux d’état de l’art, des
contributions, ainsi que l’introduction et la conclusion. Un résumé en français reprenant
les points principaux de chacun des chapitres est présenté en français après la table des
matières. Un résumé plus court en français et en anglais se trouve en quatrième de
couverture.

Note on the thesis structure

This thesis is written in English for its main chapters of state-of-the-art, contributions,
as well as the introduction and conclusion. A summary in French of the main points of
each chapter is presented after the table of contents. A shorter summary in French and
English can be found on the back cover.
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RÉSUMÉ DE LA THÈSE

Introduction

Ces dernières décennies ont vu la sécurité d’un nombre croissant de systèmes d’infor-
mation compromise, faisant fuiter les données personnelles et confidentielles de millions
d’utilisateurs. En 2014, la vulnérabilité “Heartbleed” [1] affecte entre 24 et 55% des sites
HTTPS les plus utilisés. Ce bug de la librairie de cryptographie OpenSSL [2], très large-
ment distribuée, utilisait les données envoyées par un utilisateur sans vérification préalable,
lui permettant d’exfiltrer des informations confidentielles stockées par le serveur. Pour ga-
rantir l’intégrité et la sécurité des données d’un utilisateur d’un système d’information,
plusieurs solutions sont mises en place au niveau de l’architecture matérielle directement,
du système d’exploitation (OS), ou à travers des environnements d’exécution dédiés.

Parmi ces environnements d’exécution, les machines virtuelles langage (VMs) sup-
portent l’exécution d’un langage de programmation en faisant abstraction du processus
de compilation et d’allocation mémoire pour l’utilisateur. Elles permettent la portabilité
directe du code applicatif sur les architectures supportées par la VM. Java ou Python
utilisent chacun une VM pour leur exécution. Ce sont des logiciels complexes qui gèrent
à la fois la compilation du langage source, son optimisation, et l’utilisation de la mémoire
par l’application. Les caractéristiques de portabilité et de garanties d’exécution font des
VMs et des langages qu’elles supportent des outils de développement intéressants. Des
VMs sont déployées sur la majorité des systèmes d’information, à travers par exemple un
navigateur web et sa VM JavaScript chargée d’exécuter sur l’ordinateur de l’utilisateur le
code JavaScript fourni par un serveur dans une page web. Un autre exemple, l’Android
Run Time (ART) permet l’exécution d’applications Android et est déployée sur tous les
smartphones utilisant cet OS. Le déploiement et l’adoption globale de VMs sur une variété
de systèmes d’information à usage du grand public, couplé à leur capacité à exécuter des
tâches à criticité importante telles que la manipulation de la mémoire et la génération de
code machine en font des cibles intéressantes pour un attaquant. En particulier, le com-
posant chargé de la compilation à la volée (“just-in-time” ou JIT en anglais), est critique
à la performance et manipule du code exécutable.
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Nous nous intéressons dans le contexte de cette thèse à la mise en place de défenses
autour des VMs, et en particulier à la sécurisation du code recompilé à la volée. Nous
motivons aussi la pertinence de l’accélération matérielle de ces défenses dans un objectif
de co-design applicatif/matériel. Nous présentons trois contributions principales :

Un générateur de binaires instrumentés, Gigue. Il génère des exécutables res-
semblant à des régions de code machine recompilé par la VM, selon des paramètres de
caractérisation. Les binaires sont complétés par des instructions aléatoires selon la caracté-
risation, et instrumentables avec des instructions dédiées. Ils sont directement exécutables
sur un processeur synthétisable ou son simulateur associé. Gigue permet la génération de
binaires variés et d’un socle de comparaison de solutions de sécurité.

Une solution d’isolation par les instructions, JITDomain. Cette solution d’iso-
lation définit des domaines à travers des instructions dédiées. La solution est appliquée
au code machine recompilé par une VM. Elle permet la garantie d’aspects importants de
sécurité à l’exécution comme la séparation de l’accès aux données, l’isolation de la pile
d’appel et le filtrage des appels systèmes. La solution est déployée sur le processeur RISC-
V open-source CVA6 [3] avec un coût minimal en ressources matérielles et performance
du binaire instrumenté.

Le port d’un compilateur JIT sur RISC-V, Cogit le compilateur à la volée de la
VM Pharo. Nous présentons le port des outils de développement et de tests utilisés par
la VM Pharo sur l’architecture RISC-V. Le compilateur JIT utilise une représentation
intermédiaire qui n’est pas directement interfaçable avec le jeu d’instruction RISC-V. Le
port valide l’intégralité des tests unitaires mis en place par la VM Pharo et l’utilisation du
compilateur JIT permet une accélération du nombre de bytecode et d’appels de fonction
exécutés. Nous étendons les outils de simulation de la VM pour permettre l’exécution
d’instructions personnalisées.

Nous présentons dans la suite de ce résumé une partie de l’état de l’art sur les attaques
et défenses de VMs ainsi que la présentation de solutions de sécurité matérielle liées à
l’isolation fine. Nous présentons ensuite un résumé de chacune des trois contributions,
puis les perspectives qui résultent de ces travaux.
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État de l’Art

Les machines virtuelles langage (VMs) sont des environnements d’exécution com-
plexes qui contiennent différents niveaux de compilation et d’exécution. Le code source
est d’abord traduit sous forme d’un arbre de syntaxe abstraite (abstract syntax tree ou
AST). Cet arbre est ensuite transformé en une autre représentation intermédiaire, propre
à l’interprétation : le bytecode. L’interpréteur exécute la succession de bytecode directe-
ment, un à un via un “switch” sur toutes les instructions existantes. Ce processus amène
à une exécution ralentie du code applicatif par rapport à du code directement compilé.
Lorsqu’une suite de bytecode est souvent utilisée, la VM fait appel à un ou plusieurs com-
pilateur(s) à la volée (ou “just-in-time” (JIT ) en anglais) qui recompilent cette succession
de bytecode en code machine directement. La granularité et la méthode de recompilation
dépendent de la VM et de son implémentation. Une trace d’exécution ou une fonction
fréquemment appelée peuvent être sélectionnés et recompilés. Enfin, ces composants qui
contrôlent le flot d’exécution travaillent avec le ramasse-miettes (ou “garbage collector”
(GC ) en anglais) pour attribuer et récupérer de la mémoire. Plusieurs algorithmes et mé-
thodes d’attribution et récupération de mémoire sont utilisés pour minimiser la latence
et le temps passé à récupérer la mémoire inutilisée. Ces composants sont responsables de
l’exécution et la gestion du code applicatif du langage qu’ils supportent.

Dans l’ensemble, les attaques contre les VM se sont d’abord concentrées sur le compi-
lateur JIT et la région de code JIT. Celle-ci nécessite un accès en écriture pour y placer
le code machine ainsi qu’un accès en exécution pour rediriger le flot de contrôle vers la
nouvelle version du code. Ces caractéristiques en ont fait un composant sensible à l’injec-
tion de code [4]. La zone de code JIT peut être utilisée pour mettre en défaut des mesures
comme la distribution aléatoire de l’espace d’adressage (ou ASLR en anglais) en utilisant
la prédictibilité de la génération du code. D’autres attaques se servent du compilateur
JIT pour renforcer des attaques existantes de réutilisation de code [5], voire l’injection de
code lui-même propice à la réutilisation de code [6]-[8]. La réutilisation de code se base sur
la détection de “gadgets”, des petites successions de code machines dédiées à une tâche
particulière et dont l’enchaînement permet d’exécuter un code arbitraire. Enfin, les repré-
sentations intermédiaires que la VM utilise sont aussi des cibles potentielles d’injections
malicieuses. C’est le cas pour le bytecode [9], instructions que l’interpréteur consomme, ou
la représentation intermédiaire du compilateur JIT pour la recompilation [10]. Ces trois
attaques se caractérisent en “code injection”, “code reuse” et “data-only”.
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Au fur et à mesure de l’évolution de la sécurité des logiciels, les défenses autour des
machines virtuelles se sont d’abord concentrées sur la perturbation du déterminisme in-
troduit par le compilateur JIT. Des propriétés telles que la diversité et la randomisation
jouent un rôle essentiel dans le renforcement de la sécurité du processus de compilation
JIT, en particulier contre les simples attaques par injection [11]-[13]. Toutefois, ces me-
sures peuvent s’avérer inadéquates face à des menaces plus sophistiquées ou pour assurer
des garanties plus fortes. Le contrôle des permissions de mémoire est une méthode simple
pour se prémunir contre l’injection de code, en empêchant les attaquants d’écrire dans la
mémoire exécutable [14], [15]. Étant donné que le compilateur JIT a explicitement besoin
de mémoire exécutable, la double allocation d’une région mémoire avec des permissions
différentes permet une séparation des accès [16], [17]. La réutilisation du code reste un
problème, le code JIT exposant les gadgets disponibles aux attaquants. Deux mesures de
protection consistent à supprimer la lisibilité du code JIT exécutable et à mettre en œuvre
un mécanisme robuste d’intégrité du flot de contrôle [18], [19]. Une isolation restrictive à
grain fin entre les composants offre la plus grande fiabilité à la VM, mais a un impact net
sur les performances, impact amorti à travers une accélération matérielle [9], [10].

Les solutions d’isolation fine à l’exécution sont coûteuses lors de leur exécution com-
plète du côté logiciel. Une proposition de primitives de sécurité supportées matériellement
amortit ce coût en performance. Pour pouvoir expérimenter avec le design et l’implémen-
tation de telles solutions, RISC-V [20] est un jeu d’instruction open-source, modulaire
et qui permet l’ajout de nouvelles instructions dédiées. Les solutions d’isolation fines se
séparent en trois catégories importantes. Tout d’abord, l’accélération de solutions d’inté-
grité de flot de contrôle. Intel supporte une pile d’appels dupliquée et séparée dans l’espace
d’adressage avec CET [21, Vol.1 Ch.17]. Des solutions comparables sont disponibles sur
RISC-V [22], [23] et proposent une vérification du flot de contrôle accélérée. Ensuite, le
marquage et la séparation de la mémoire à travers l’extension des pointeurs, qu’ARM
définit avec MTE [24] et PAC [25, Ch.B6]. RISC-V propose un équivalent sur les adresses
de la pile d’appel [26] ou l’ajout de tags en mémoire [27]. Ces pointeurs peuvent être
étendus avec de nombreuses métadonnées utilisées à l’exécution [28]-[30]. Enfin, l’isola-
tion de domaines via un moniteur dédié et l’extension des pages de mémoire [31], [32]
étend le principe des clés mémoire mis en place par Intel MPK [21, Vol.3 Sec.4.6]. Cette
isolation peut aussi se mettre en place directement par l’attribution d’un domaine à une
instruction spécifique [33], [34]. Ces solutions sont légères à la mise en place et accélérées
matériellement pour garantir une isolation fine
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Gigue : Un Générateur de Code JIT Instrumentable

La comparaison de solutions d’isolation dédiées au code JIT nécessite un changement
à trois niveaux applicatifs : l’intégration dans un processeur, une interface du système
d’exploitation ainsi qu’une extension de la VM. Cette pile technologique ralentit considé-
rablement l’expérimentation, en particulier pour le développeur matériel qui a un cycle
de retour d’expérience de son implémentation allongé. Pour permettre une possibilité de
co-design logiciel/matériel, nous proposons Gigue, un générateur de binaires similaire à
la région de code JIT qui propose une interface pour instrumenter les binaires à différents
niveaux. Notre objectif est de pouvoir exécuter ces binaires directement sur les simulateurs
“cycle-accurate” de processeurs RISC-V open-source.

Gigue est construit autour de trois objectifs principaux : la paramétrisation et détermi-
nation de caractéristiques des binaires générés, la modularité de sa génération permettant
l’instrumentation des binaires à différents niveaux, ainsi que la vérification de l’exécution
des binaires avant leur distribution. Les binaires que Gigue génère sont compilé stati-
quement et donc auto-contenus dans un exécutable ELF. Leur structure est inspirée de la
région de code JIT de la VM Pharo. Ils sont composés d’une région qui contient différentes
méthodes JIT remplies aléatoirement d’instructions, ainsi que d’autres éléments tels que
des caches polymorphiques [35], ou des “trampolines” qui contrôlent le flot d’exécution
venant et sortant. Une autre région appelle successivement toutes les méthodes présentes
dans la première dans un ordre aléatoire. Pour générer le binaire correspondant, toutes les
méthodes sont instanciées, remplies d’instructions, puis Gigue en déduit un graphe de flot
de contrôle et ajoute des appels inter-fonctions dans le corps des méthodes. Il compacte
les différentes parties dans un binaire directement exécutable.

De nombreux paramètres permettent de contrôler la génération de binaires de Gigue.
Tout d’abord, la caractérisation de la zone contenant les méthodes JIT à travers sa taille
et la fréquence d’apparition de ses différents éléments. Ensuite, le type d’application gé-
néré est contrôlée par la caractérisation des méthodes elles-même (taille et variation de
taille), la distribution des types d’instruction qui les compose (arithmétique, accès mé-
moire, changement de flot de contrôle) ou la fréquence d’utilisation des appels ainsi que
leur profondeur. Ces paramètres permettent de générer et amplifier des classes d’applica-
tions données pour tester différents paramètres. Dans un cas d’usage, nous utilisons des
informations d’exécution de différents benchmarks [36], [37] ainsi que des informations
sur la région de code JIT Pharo [38]. Nous dérivons 9 classes d’applications avec des
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tailles de méthodes et densité d’appels différentes. De manière similaire, nous générons 9
classes d’applications différentes en variant la taille des méthodes et la quantité d’appels
mémoire qui compose les méthodes. Nous démontrons l’interfaçage direct de Gigue avec
deux processeurs applicatifs open-source : CVA6 [3] et Rocket [39].

Pour permettre l’ajout d’instructions “custom” au sein des binaires générés par Gigue,
nous définissons plusieurs points d’accroche dans le processus de génération. Trois exemples
sont intégrés dans Gigue, un premier ajoute des instructions de rotation qui ne sont pas
ajoutées au jeu d’instruction par défaut ; un second ajoute une “shadow stack”, une pile
d’appel dupliquée qui stocke les adresses de retour mises en place lors d’un appel de fonc-
tion ; enfin, une authentification de pointeur est mise en place, authentifiant les adresses
de retour des fonctions lors de l’appel et les vérifiant lors du retour du flot de contrôle. Ces
trois solutions sont ajoutées dans les binaires soit dans le corps des méthodes (permier
cas) ou dans le prologue et l’épilogue des fonctions. Pour vérifier leur implémentation
dans le binaire, nous proposons une interface de test simplifié qui utilise le simulateur de
processeur Unicorn [40]. Les nouvelles instructions sont détectées, et lors de la levée d’une
exception les concernant, la routine correspondante est exécutée sur l’état du processeur
avant de continuer l’exécution. Ce support permet de garantir l’exécution des binaires
avant leur distribution, ainsi que de vérifier l’intégration des instructions dans le binaire.

JITDomain : Sécurisation du Code JIT par les Ins-
tructions

Extraits de l’état de l’art et des solutions de sécurité déjà déployées autour des VMs
et leurs éléments, nous définissons plusieurs garanties nécessaires à la sécurisation du
code JIT. Tout d’abord, la séparation de la pile d’appel et la vérification des adresses
de retour permettent de garantir l’intégrité du flot de contrôle à gros grain. Ensuite,
l’accès des données contenues dans la région du code JIT doit être strictement limitée
aux accès provenant du code JIT lui-même. Enfin, le filtrage des appels système restreint
les capacités d’un attaquant qui contrôlerait la région du code JIT. Pour permettre leur
adoption, la mise en place de ces garanties doit se faire avec un impact minimum sur les
ressources matérielles du processeur ainsi qu’un impact minimum sur la performance et
la taille du code JIT instrumenté.

Afin de séparer la région du code JIT du reste de l’application, nous étendons le prin-
cipe d’isolation de domaines par les instructions. Ce principe est présenté par les auteurs
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de RIMI [33] et consiste à dupliquer les instructions d’accès mémoire pour chaque domaine
qui doit être isolé. De cette manière, les données contenues dans le code JIT ne peuvent
être utilisées que par le code JIT lui-même et la “shadow stack” n’est accessible qu’en
utilisant les instructions load/store qui lui sont attribuées. L’espace mémoire est séparé
en plusieurs domaines qui sont présentés sur la Figure 1 avec leurs permissions associées.
Le domaine de base (bleu) contient le code statique de la VM et de ses composants et
utilise la pile pour ses appels et une zone dédiée du tas pour y stocker les objets utilisés
par l’application. La zone JIT (vert) contient le code JIT, les données associées ainsi que
les “trampolines”, des routines directement émises en code machine qui sont utilisés par
le code JIT. Les données de cette région sont placées séparément et dans une région qui
est “read-only”. Enfin, une autre pile d’appel est placée dans une zone à part et contient
les adresses de retour des appels de fonctions.

Figure 1 – Modèle mémoire de la séparation des domaines.

Pour supporter la séparation de ces domaines, plusieurs modifications sont implémen-
tées sur le processeur CVA6 [3]. Tout d’abord, l’étage de décodage est étendu avec les
nouvelles instructions d’accès mémoire depuis le code JIT (l*1/s*1 pour les différentes
variantes de taille des loads/stores), les instructions d’accès à la pile d’appel (lst/sst)
ainsi que les instructions de changement de domaine (chdom/retdom). Chaque instruction
se voit associer un domaine d’exécution et un domaine d’accès. L’attribution des domaines
se fait par extension du module “Physical Memory Protection (PMP)” déjà présent dans
le processeur et qui associe à différentes plages d’adresses leurs permissions associées. Ce
module est étendu pour intégrer des informations de domaines, vérifiées une fois les per-
missions validées. L’accès aux données est validé dans ce module, intégré dans l’unité qui
contrôle les accès mémoire. De même, les instructions de changement de domaine véri-
fient à la fois que leur domaine d’exécution correspond au domaine courant et le “fetch”
d’instructions en résultant correspond bien au nouveau domaine. Enfin, les instructions
de base du jeu d’instruction RISC-V se voient attribuer des accès au domaine de base
ainsi qu’une vérification d’absence de changement de domaine.

Les modifications apportées au processeur sont minimales et correspondent à une
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augmentation des ressources utilisées de moins de 0.5%. Nous instrumentons les binaires
générés par Gigue avec cette solution pour déterminer l’impact sur la performance. Nous
validons l’exécution des binaires dans le harnais de tests de Gigue en vérifiant le domaine
courant et accédé de chacune des nouvelles instructions. Après instrumentation, et pour
les mêmes classes d’application que celles définies dans le test d’interfaçage de Gigue, nous
exécutons les binaires sur le processeur modifié. L’impact sur la performance est minimal
sur l’intégralité des classes d’application, et s’inscrit à 1.5% en moyenne pour le nombre
de cycles, et 0.95% pour le nombre de cycles par instruction.

Extension d’un Compilateur JIT sur RISC-V

Pour pouvoir proposer un cas d’usage réel sur la mise en place de solutions d’isolation
légère, nous étendons le compilateur JIT de la VM Pharo sur le jeu d’instruction RISC-V.
Ce port est motivé par l’absence d’un compilateur JIT complet sur ce jeu d’instruction et
la validation de résultats préliminaires obtenus à travers les binaires générés par Gigue.
La VM Pharo utilise un harnais de tests complet et un environnement de simulation qui
permettent de faciliter le port de son compilateur JIT surde nouvelles architectures. Le
langage Pharo, successeur de Smalltalk-80 utilise des “images” comme support d’exécution
de ses applications, contenant à la fois le code source des principaux éléments du langage,
des outils dédiés ainsi que les objets instanciés par la VM.

Le compilateur JIT de la VM Pharo, Cogit, est un compilateur non-optimisant qui
recompile les successions de bytecode à la granularité d’une méthode. Il utilise une re-
présentation intermédiaire à deux adresses, calquée sur le jeu d’instruction x86/x64 pour
permettre sa traduction directe. Ce choix de la représentation intermédiaire a nécessité
plusieurs adaptations dans le port du compilateur sur RISC-V. Le jeu d’instruction RISC-
V fait plusieurs choix de simplification qui permettent de faciliter son implémentation dans
un processeur. Parmi eux, l’existence d’un unique mode d’adressage de la mémoire, l’ab-
sence de codes de conditions (“flag registers”) et de leurs instructions de comparaison
associées, ou l’unique utilisation de valeurs immédiates. Pour faire coïncider le processus
de compilation avec RISC-V, nous rajoutons une étape dans la compilation pour gérer
l’utilisation des codes de conditions et traduire une suite de comparaison/branchement
correctement. Nous rajoutons également des vérifications sur le traitement des valeurs
immédiates utilisées et de leur correcte extension de signe.

Pour pouvoir valider le port de Cogit sur RISC-V, nous étendons l’environnement de
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simulation propre à la VM Pharo [41], [42] en utilisant une nouvelle version du simulateur
de processeur utilisé dans le harnais de tests, Unicorn [40]. Ce simulateur est utilisé en
boîte noire pour valider les différents comportements du JIT. Plusieurs bugs ont été
corrigés dans ce simulateur et rapportés dans ses dernières versions. Le harnais de tests
a aussi été étendu avec des vérifications propres au port sur RISC-V et pour valider les
changements dans la représentation intermédiaire ainsi que contrôler l’expansion du code
généré pour combler les instructions manquantes sur RISC-V. Enfin, le débogueur de code
machine implémenté dans l’infrastructure de tests est également étendu pour afficher plus
clairement la traduction entre la représentation intermédiaire et le code machine généré.
Nous étendons le simulateur pour supporter des instructions “custom” spécifiées par le
développeur et validons leur exécution dans l’environnement de simulation.

La VM et son compilateur JIT sont finalement déployés sur une image QEMU [43]
pour mesurer le gain en performance. Nous remarquons à l’aide de “micro-benchmarks”
que le compilateur JIT permet une exécution de bytecode 40x plus rapide (en bytecode par
seconde), ainsi que 63x plus d’appels de fonctions par seconde. Cependant, pour constater
l’impact des patches nécessaires à la concordance entre la représentation intermédiaire et
le code machine généré, nous constatons également une augmentation de 48% de la taille
des méthodes JIT compilées par rapport à leur version x86/x64. Le port du compilateur
JIT ouvre la porte à une expérimentation sur la pertinence d’instructions dédiées au
compilateur dans un contexte de sécurité mais également d’accélération matérielle plus
général.

Conclusion

À travers ces travaux, nous proposons, mettons en œuvre et évaluons un cadre de
sécurité soutenu par le matériel pour protéger le code JIT. Il applique des politiques de
sécurité à la région du code JIT, comme le prévoient les défenses de l’état de l’art autour
des machines virtuelles, à un coût matériel et logiciel minimal. Pour évaluer l’impact de
la solution et la comparer à d’autres, nous proposons également Gigue, un générateur de
binaires instrumentables. Enfin, nous avons étendu le compilateur JIT du Pharo VM pour
qu’il prenne en charge l’ISA RISC-V et définit les premières étapes d’un cadre de sécurité
associé. Nous pensons que ces trois contributions, disponibles en open-source, fournissent
un environnement réaliste pour de futures évaluations et extensions dans les domaines de
la sécurité matérielle et de son application aux machines virtuelles langage.
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Chapter 1

INTRODUCTION

1.1 Motivation

Over the last decade, the security of an increasing number of computing systems has
been compromised. One of the most well-known and severe vulnerabilities was disclosed
in 2014 as the “Heartbleed” bug [1]. It affects the widely-used OpenSSL cryptographic
software library [2] through its implementation of the Transport Layer Security (TLS)
protocol “heartbeat” extension (RFC6520 [44]). The use of unmonitored user input led the
server to leak its secret keys and sensitive user information. Due to its usage in widespread
open-source web servers like Apache and nginx, the bug was estimated to affect between 24
and 55% of popular HTTPS sites [45]. Using a different attack vector on the same target
[46], Meltdown [47] and Spectre [48] exploited critical architectural vulnerabilities in Intel,
AMD and ARM processors, therefore affecting billions of devices. These attacks managed
to leak sensitive information (such as passwords or personal details) from the speculative
execution of the processor, either in out-of-order execution or branch prediction. The
security of computing systems is guaranteed by the implementation of software patches
set up once the vulnerability is revealed and identified. To this end, OpenSSL was patched
to mitigate the Heartbleed bug 1, and directives to protect against Meltdown attacks at
kernel and OS levels since completely changing the hardware might not be an option. This
leaves an open window for attackers where the bug is disclosed and users are vulnerable.
In addition, even with updates patching the vulnerabilities, several platforms are not
updated and live with the vulnerability.

To provide end users with guarantees on their application code security, several layers
of primitives are set up at the hardware level, Operating System (OS) level, virtualiza-
tion level, or through dedicated run-time environments 2. Language Virtual Machines

1. https://git.openssl.org/gitweb/?p=openssl.git;h=96db9
2. We use the word “run-time” as an adjective to qualify the dynamic nature of an object (e.g. “run-

time solution”), “runtime” as a noun to define the execution environment of a language (e.g. “the C#
runtime”), and “run time” to qualify the moment of the execution (e.g. “at run time”).
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(VMs) are the execution environment of high-level managed programming languages.
They abstract the compilation process and memory management to the developer and
offer portability of application code. Smalltalk, Java, Python, or JavaScript all use a
VM to execute and manage their code. They are complex engines composed (at least)
of a source code compiler, an interpreter, a memory manager, and an optional set of in-
creasingly optimizing run-time compilers that recompile frequently used code at run time.
Their volatility and portability make them easy to deploy on several devices while guar-
anteeing the execution of application code. For example, JavaScript VMs are deployed
in all web browsers and execute the embedded JavaScript code sent by the server on the
client computer. To this end, most web browsers embed either the Google V8 engine,
Apple JavaScriptCore, or Mozilla Firefox SpiderMonkey. Therefore, billions of devices
deploy a JavaScript VM to display the latest ECMAScript standard [49], the reference
to guarantee the inter-operability of the modern web. Other widely deployed examples
include Android applications that are Java applications compiled down to the intermedi-
ate representation of the Java Virtual Machine (JVM), Java bytecode. This bytecode is
then translated into an executable to run on the Dalvik Virtual Machine (DVM) or its
successor, Android RunTime (ART). The executable is distributed to billions of end users
and their devices.

The wide deployment and adoption of VMs coupled with their ability to handle mem-
ory and output machine code at run time makes them interesting targets for attackers
that aim at end users. Traditional code injection attacks install attacker-supplied input
in executable memory before redirecting the flow of control 3 to it. They are amplified in
the context of VMs as the Just-In-Time (JIT) compiler(s) use a memory zone to deploy
optimized and executable machine code. This zone is modified by an attacker through the
injection of a malicious payload [4], or the reuse of genuine code that contains predictable
elements that are then composed to define a payload [5], [6]. Other attack vectors through
other components such as the interpreter [9] or garbage collector [50] can be exploited
to leak sensitive information, corrupt the state of the VM, or, in the worst case, lead to
arbitrary code execution on the victim’s computer. Through the widespread distribution
of VMs presented earlier, an attacker could launch their attack by targeting an end user
with a malicious webpage or Android application to remotely execute arbitrary code. A
recent example of a major vulnerability involving a VM is Log4Shell [51], which affected

3. We use the appellation “control flow” or “flow of control” to name the order in which program
elements are executed (statements, functions, or instructions). We use the adjective “control-flow” ac-
cordingly (e.g. “control-flow integrity”).
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the popular Log4J Java logging framework. The unmonitored user input was used to in-
ject Java objects from an arbitrary URL to target malicious endpoints, therefore enabling
arbitrary Java code execution on the server.

1.2 Formulation of the Research Question

The traditional answer to disclosed vulnerabilities is to patch the issue in the affected
component and provide updates for the end users. Admitting the possible weaknesses of
parts of the system and building defense solutions with it in mind mitigate the overall
impact of a later attack. Preemptive actions and primitives that enforce security prop-
erties are highly desirable in a context that handles untrusted user input. Software-only
proposals such as Control-Flow Integrity (CFI) [52], Information Flow Control (IFC) [53],
or Data Flow Integrity (DFI) [54] offer strong security guarantees to the user. However,
along with the guarantees come a heavy cost in performance and code size, preventing
the actual usage of such solutions in performance-critical systems. While those solutions
apply to the static part of the VM, dynamically generated code and data are too ex-
pensive to instrument [18] and result in degraded versions of the solution [19]. Common
security measures such as guaranteeing that memory is never executable and writable at
the same time are not trivial to enforce on dynamically generated JIT code [10], [19] and
often result in a deterring cost in performance.

The integration of hardware-accelerated security features into vendor processors offers
a tangible performance advantage over their software counterparts. This makes them at-
tractive for performance-critical components and ensures robust isolation when deployed
around and in VMs [9], [10]. However, challenges arise when dealing with closed-source
vendor solutions such as Intel SGX [21, Vol.3 Ch.34-39], or ARM TrustZone [55]. Re-
sponding to a disclosed vulnerability targeting the mechanism becomes difficult due to
the patch cycle aligning with the next generation of processors from the vendor. Many of
these extensions were deprecated by the manufacturer itself (i.e. Intel MPX, Intel SGX,
etc.). The necessity for open and flexible solutions becomes evident, especially in light of
vulnerabilities identified in their counterparts. Dedicated instructions offer an alternative
approach to existing solutions [22], [32], or provide new fine-grain isolation techniques
[31], [33]. We raise questions about their application or design, particularly concerning
dynamically generated JIT code.
We present the thesis statement as the following:
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“Dedicating custom instructions supported by the underlying hard-
ware processor to the machine code generated by the JIT compiler of
a VM can enforce strong isolation primitives around this performance-
critical component.”

Derived from this statement, we define three research questions that tackle the different
research axes of this thesis:

RQ1: What metrics define hardware solutions in the context of JIT code, and
how can we compare solutions without complete access to a VM?

RQ2: What defines an interesting custom instruction for the JIT code, and how
can the JIT code be isolated through the instructions it generates?

RQ3: What challenges arise when adding custom instruction to the JIT compiler,
and how can it be tested without complete access to the hardware implementing
the solution?

1.3 Contribution

In this thesis, we propose a security approach that shifts away from relying solely on
software-defined security primitives. Instead, we advocate for a strategy based on lever-
aging dedicated hardware-assisted security features. Furthermore, rather than utilizing
off-the-shelf components found in commercial processors, our proposal involves extending
open-source processors through a defined methodology to create and implement a compre-
hensive solution framework. Our method taps into the extensive instruction set extension
space of the RISC-V Instruction Set Architecture (ISA) [20], [56], enabling versatile pro-
totyping within existing processors. The proposed multi-level approach emphasizes early
validation of prototyped solutions at different stages of the technology stack, ranging from
processor support to practical usage in VMs. To assist in decision-making, we provide
tools for estimating the potential impact of a solution on the JIT compiler performance
before deploying the solution in a production VM. To this end, we reconcile low-level
hardware extensions to the high-level JIT compiler through the instrumented generated
machine code. The main contributions of this thesis are the following.
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A synthetic JIT code workload generator. We introduce Gigue, a synthetic
random workload generator designed to produce executables resembling JIT code regions.
The generated binaries are self-contained and can be deployed bare-metal on the processor,
either directly or through their cycle-accurate simulator. We present how Gigue can be
utilized to generate a set of binaries and augment them by shifting their input parameters.
We run the resulting binaries on two fully-featured RISC-V cores, CVA6 [3] and Rocket
[39]. In addition, we present how we integrate custom instructions in the Gigue binaries
through hooks available at different instruction generation levels. This extension is also
present in the testing environment Gigue provides to validate to test the correct execution
of binaries, even when containing custom instructions. We also provide utilities to run,
collect, and display results, as well as patch the compilation toolchain or generate minimal
binary examples.

An instruction-level domain isolation implementation. We present JITDo-
main, an instruction-level domain isolation framework derived from embedded systems
[33] and applied in the context of JIT compilation. It takes advantage of the locality
of the JIT code region and its need for strict and performant security guarantees. To
this end, we add duplicated memory access instructions, routines to change domain, and
shadow stack instructions. The JIT code is allocated within a hardware-defined domain,
enforcing several aspects: data separation as only JIT code is permitted to access JIT
data present in the JIT code region; call stack separation as the JIT call stack is placed
into a domain accessible exclusively through the prologues and epilogues of JIT-compiled
methods; system-call filtering from the JIT code, where the execution is stopped as soon
as a system call instruction is decoded from the domain, either from the expected or hid-
den (after a disruption) control flow. We propose an implementation of the design in the
CVA6 RISC-V core [3] and present an evaluation of the solution on Gigue binaries that
implement the solution. The resulting overhead in terms of FPGA resource utilization
boils down to a 0.5% area overhead, and the performance overhead is measured at less
than 2%.

A JIT compiler port to the RISC-V ISA. We highlight the challenges of porting
a JIT compiler to the RISC-V ISA by presenting the port of Pharo VM’s JIT compiler
Cogit to the RISC-V ISA. We present the main differences between the RISC-V ISA and
more traditional x86/64 or ARMv7/v8 instruction sets. The impact of these differences
is presented through the lens of the Pharo VM JIT compiler Intermediate Representation
(IR) and on the testing and tooling ecosystem. We extended the Pharo VM development
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tools to accommodate the available RISC-V environment. Among them, is Unicorn [40],
the CPU emulator used to test JIT code from within the Pharo environment, and the
machine code debugger. We developed a version compliant with the Pharo VM’s test
harness and managed to run a minimal image on a QEMU RISC-V Fedora image getting
40x speedup over the base interpreter in the number of executed bytecodes and 63x calls
per second. To add JIT code custom instructions, we connect emulator hooks to handle
custom instructions, allowing for prototyping and validation of custom instructions and
their usage from within the VM development environment.

The contributions are linked to the research question they aim to answer in the above
figure. Their goal and articulation range from the creation of a platform for meaningful
comparison of solutions, to the implementation of a solution in hardware, along with a
port of the Pharo VM and a first implementation in its simulation environment. The
wider goal of this thesis is to provide tools to co-design hardware isolation for VMs.

1.4 Organization

The remainder of this thesis is outlined as follows. In Chapter 2, we conduct a com-
prehensive examination of the background and state-of-the-art attacks targeting language
VMs, along with the defensive measures implemented in response. We then identify a set
of practical components and their associated requirements for VMs to consider adopt-
ing. Chapter 3 delves into the RISC-V instruction set and the corresponding extensions,
viewed through the lens of the identified VM requirements. The chapter sheds light on
the solutions derived from this exploration. Next, in Chapter 4, we introduce Gigue, our
workload generator. Gigue serves as a foundational tool for comparing security solutions
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in the context of just-in-time-compiled code. Chapter 5 details our efforts in designing and
implementing JITDomain, an instruction-level domain isolation framework that exploits
just-in-time-compiled code locality for isolation. Moving forward, Chapter 6 addresses
the challenges associated with extending the Pharo VM JIT compiler to the RISC-V ISA
and how it opens up further experimentation for VM security prototyping. Finally, in
Chapter 7, we discuss the future directions of this work and conclude the thesis.
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Background & Related Works
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Chapter 2

RELATED WORK: LANGUAGE VIRTUAL

MACHINES SECURITY

In recent years, security has become a crucial issue, and the technical complexity
associated with it continues to grow. Thus, security attacks and defenses follow the usual
cat and mouse game of finding a new attack and designing a security mechanism to protect
against it. This has led to complex, heterogeneous attacks, i.e. those operating at several
levels, to which fine-grained defense mechanisms respond.

This concern also applies to language Virtual Machines (referred to as VMs, for which
an overview is provided in Section 2.1). Attackers attempt to compromise VMs and,
through it, access the victim host computer. Section 2.2 covers various attack schemes.
Defense solutions, as presented in Section 2.3, must strike a balance between security
guarantees and the performance overhead they incur. As the global summary presented
in Section 2.4, fine-grain isolation of known critical VM components is crucial for its
protection. Performance-critical components benefit from hardware-enforced guarantees
due to their lower impact on performance and the higher level of security they provide.

2.1 Background: Language Virtual Machines

Glossary: In the book “Virtual Machines: Versatile Platforms for Systems and Pro-
cesses” [57], Jim Smith and Ravi Nair introduce a taxonomy of the term Virtual Machine
and its different meanings. They split the VM characterization into two main categories,
as presented in Figure 2.1: process VMs and system VMs. Process VMs support an Ap-
plication Binary Interface (ABI), user instructions, and system calls. Process VMs using
the same guest/host Instruction Set Architecture (ISA) come as multiprogrammed sys-
tems (as included in most of today’s systems) or dynamic binary optimizers that optimize
guest instructions. Process VMs with different guest/host ISA come as dynamic trans-
lators that convert guest instructions to the host ISA, or High-Level Languages (HLL)
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VMs that perform an abstraction of the guest at a higher-level process interface. System
VMs support a complete ISA, with both user and system instructions. Their main goal is
to provide replicated and isolated system environments of a guest ISA on top of another
(or the same) host ISA.

This chapter addresses HLL VMs, which will be called Language VMs, VMs, or ex-
ecution engines transparently, with a specific focus on security, from both attacks and
countermeasures points of view.

Figure 2.1 – A Taxonomy of Virtual Machines, as presented by J. Smith and R. Nair [57].

Language virtual machines have been a major milestone in language implementation
through the two main contenders Smalltalk [58] and Java [59]. They simplified the process
of ensuring the portability of applications for developers by providing a portable execution
environment. As Java advertised in 1995, “write once, run anywhere” (as long as the Java
VM is available for the corresponding OS and architecture). Smalltalk and Self [60] have
brought to life many of the concepts that are still used today in the virtual machines
of recent languages. Among them, careful language optimizations [35], [61], [62] and
adaptation to new architectures [63], [64]. Today, virtual machines are widely deployed.
In cloud environments, as the run-time environment for supported languages; as embedded
support in web browsers to execute the JavaScript client-side part of web pages. However,
their propagation, widespread usage, and implementation complexity make them a target
of choice for attackers.

Before analyzing these attack scenarios, a deep understanding of the insights of virtual
machines is mandatory. These components, an overview of which is depicted in Figure
2.2, will be further detailed in this section, along with corresponding annotations in the
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figure.

Figure 2.2 – Virtual machine overview (derived from [9]).

2.1.1 Interpretation

To start the execution of a managed language, the source language is interpreted. This
step starts with a parser that constructs the Abstract Syntax Tree (AST) representation
of the input source language. The AST is then compiled by a bytecode compiler into
a VM-specific intermediate representation (IR) referred to as bytecode. The bytecode is
consumed by an interpreter, in a cycle of fetching the bytecode, analyzing it, executing the
corresponding action, then fetching the next bytecode. As most of the interpreter activity
decode/dispatch is spent in the dispatch loop, the base process tied in both the direct
and indirect branch predicts that impact performance [65]. “Threaded interpretation” [66]
promotes a goto implementation rather than the base switch implementation [67]. This
allows the dispatch step to occur by jumping directly to the next correct execution unit
at the end of the previous execution unit, reducing the time spent in the loop. However,
with more recent processors and more precise branch predictors, the indirect branching
prediction now presents less of an impact on performance [68] and any optimization on the
interpretation process usually fall short in the presence of a Just-in-time (JIT) compiler.
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2.1.2 Just-in-Time Compilation

JIT compilation refers to the recompilation at run time of a succession of bytecode de-
tected as of interest as being frequently called. Hence, in mixed mode Just-in-time (JIT)
compiler architecture, the interpreter, baseline of the execution is followed by a sequence
of successively higher optimizing JIT compilers. The qualifications of “succession of byte-
code” and “frequently” from the previous sentence are fine-tuned and VM-dependent. The
granularity depends on the VM: either it is an execution trace [69], [70], a method [59],
[71], or a basic-block [72]. Once a “hot path” is detected, the selected JIT compiler (which
is selected based on its degree of optimization) recompiles the succession of bytecode into
a compiler-specific Intermediate Representation (IR). The need to introduce this new IR
comes from its different goals. Whereas the bytecode is designed to be executed by the
interpreter, the JIT IR is designed to support optimization down to machine code.

The two main challenges faced by JIT compilation are: (1) ensuring calls/returns
between the interpreter and the JIT code region transparently, and (2), in the case of
dynamically typed languages, type-inferring efficiently to avoid a costly method lookup.

Control-flow dispatch: The call stack of the JIT code region needs to interact
with the native stack of the VM as well as the rest of the host architecture. To help
redirect control flow, switch between the native and JIT call stack along the defined calling
convention, as well as perform other often-used routines, the JIT compiler installs machine
code stubs called trampolines in the JIT code region. Direct call to these trampolines
avoids the use of duplicated routines throughout elements of the JIT code region.

Type inference: Dynamically-typed object-oriented languages are prone to slow-
down at method-lookup time. Identifying the correct class from which to extract a named
method for application to the final instance is a costly process. It is usually sped up
through a collection of optimizations. Inline caches specialize the type by generating ma-
chine code for the most used receiver type and verifying it with a type guard. This type
specialization can be propagated aggressively through the whole trace [73] of a tracing
compiler. It can also be extended to Polymorphic Inline Caches (PICs) [35], a machine
code jump table that redirects to the correct polymorphic method in the JIT code region
based on the receiver type. From the study of the usage of PICs, often used receiver
types are inferred to better direct caching on further executions in an optimization called
type feedback [74]. Hidden classes (as named in Google Chrome JavaScript V8 engine) or
maps [61] are introduced in Self, a dialect of Smalltalk, and help to efficiently manipulate
dynamic objects by creating a shared iterative underlying structure that stores the layout
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of live objects. Splitting the layout from the live objects and having them reference it
makes any optimization of the layout beneficial to all live objects referencing it and reifies
the JIT compilation of shared structures.

2.1.3 Additional components

In addition to the components responsible for the compilation and execution of the
source language (that is the main focus of this thesis), VMs need two parts to fully
operate: (1) a component that transparently manages memory for the applications it
executes and (2) a way to operate with the lower-level components of the execution stack:
the Operating System (OS) and shared libraries. VMs automatically grant and retrieve
memory to objects in the heap. The component responsible for memory allocation and
retrieval is called a garbage collector [75]. This component is a research area by itself,
both in the algorithms it uses, the performance it provides, and the treatment of garbage
collector-related bugs (which are often very complex). To fully integrate into modern
computer architecture, VMs also need to interact with external elements handled by the
OS through shared libraries or other routines. Foreign function interfaces (FFI) connect
the VM to its surroundings and allow it to perform OS and architecture-dependent tasks
such as syscall accesses, graphic libraries, or user-defined bridges to routines in other
languages.
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2.2 Virtual Machine Attacks

Attacks against VMs are based on known attacks against statically compiled code,
extended in the dynamic context of VMs, and taking advantage of the low-level operations
the JIT compiler has to perform. Attacks are divided into three main categories: code-
injection attacks, code-reuse attacks, and data-only attacks. These categories are
mostly presented in chronological order and highlight the vulnerability of many parts of
the VM. In the rest of this chapter, the following terminology is used to qualify attacks
and the elements surrounding them:

— Vulnerability: A weakness in an information system, system security procedures, inter-
nal controls, or implementation that could be exploited or triggered by a threat source.
Common memory vulnerabilities are: buffer overflow, from lack of array bound check-
ing, allowing an attacker to spill values on the stack; use-after-free, from dangling
pointers, referencing uncontrolled memory; or type confusion, from object metadata
confusion, giving access to memory referenced for object attributes.

— Exploit: A program, piece of code or even some data written by a hacker or malware
writer that is designed to take advantage of a bug or vulnerability in an application
or operating system.

— Payload: Objective of what a virus, worm or trojan is designed to do on a victim’s
computer, either delivered via a stager or directly placed on the victim’s computer
(called stageless, or stage-0).

— Stager: An executable used in multistage cyberattacks to establish a connection to the
command-and-control (C&C) server, deliver and then run larger malicious modules.

— Shellcode: A type of payload that spawns a shell for the attacker, by running
“/bin/sh”, often hardcoded in assembly.

2.2.1 Context and Threat Model

Context: In their work, Zhang et al. [19] illustrate the process that the Firefox Gecko
engine follows to execute and display internet resources. HTML, CSS, and multimedia
inputs are first consolidated into a Document Object Model (DOM), which is utilized by
the layout engine and rendering engine to present web pages to users. The DOM interface
also serves as a communication channel for the JavaScript VM (SpiderMonkey in Firefox)
to interact with page elements. Scripts undergo an initial interpretation and are then
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recompiled by the JIT compiler to generate platform-specific native instructions. These
instructions are placed in the JIT code region, where they may be optimized as described
earlier. The garbage collector manages memory allocation and reclamation for necessary
objects. Major web browsers, such as Firefox, Chrome, and Safari, embed production
JavaScript VMs (like SpiderMonkey and V8). These VMs continuously evolve to meet
the latest standards and user demands for high performance. However, each year, new
memory vulnerabilities are discovered in production VMs, often related to memory errors
or data validation, which can potentially lead to arbitrary code execution on the host
computer.

Threat Model: In line with the scenario and expectations surrounding modern VMs,
the fundamental threat model for VM attacks assumes that the attacker can supply arbi-
trary input data (source code) to the VM. This input is expected to be compiled, executed,
and possibly recompiled by the VM without raising any suspicion. The system incorpo-
rates static code defenses, including strong W ⊕ X policies, Data Execution Prevention
(DEP), and Address Space Layout Randomization (ASLR). These defenses have been
designed to counter overflow attacks, either they target the stack or the heap. In these
attacks, an adversary typically injects malicious code into executable memory and then
manipulates the control flow to execute it. In the remainder of this document, the threat
model is refined to better represent the capability of the new attacks. As new vulnerabil-
ities are found each year in VMs, it is expected that an attacker knows the existence of a
memory vulnerability.

Orthogonal works: Side-channel attacks exploit information from hidden auxiliary
channels, which can be either physical through time or energy leaks [47], [48], or software-
induced using memory locality properties [76]. JIT compilers, susceptible to introduce
timing side-channel vulnerabilities [77] in the generated machine code, have been ad-
dressed in the literature [78], [79]. Garbage collectors, responsible for handling sensitive
objects, are also vulnerable to side-channel attacks [50], [80], potentially revealing infor-
mation on disposed objects. We argue that these side-channel attacks, though orthogonal
to our work, should be considered in the design of a VM protection solution.

2.2.2 JIT Code Injection Attacks

A primer on code injection attacks: The Phrack article “Smashing the stack for
fun and profit” by user Aleph One [81] presented in 1996 how to use a buffer overflow
exploit to redirect the control flow to the stack where a shellcode is executed. This kind
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of attack, targeting the stack or heap, is called a code injection attack. It leads to the
execution of arbitrary code through a shellcode (a piece of code that spawns a shell)
for the attacker and a totally compromised system. In modern attacks, the shellcode is
staged and split into several parts with dedicated goals such as: allocating memory with all
permissions (RWX), downloading a payload (larger piece of code to execute), or triggering
a vulnerability. The “stack pivot” [82], [83], is a stub of code that, when executed, switches
the stack from the genuine application program to the injected malicious code (e.g. a fake
“stack” in the heap).

Threat Model Refinement: The defenses set up by the base threat model presented
in the previous section should mitigate classic code injection attacks on the statically
compiled code of the VM.

Application to VMs: JIT compilers initially wrote all run-time-generated code
onto memory pages that were simultaneously writable and executable throughout the
execution. Since the code must be written at run time to be executed, it must use memory
that is both writable and executable. This lets an attacker perform code-injection attacks
such as the one presented by Gong et al. [84] where he injects a malicious payload into
the JIT memory to gain arbitrary code execution in the Chrome browser.

A new category of code injection attacks called JIT spraying attacks is initially pre-
sented by Dion Blazakis [85]. This type of attack includes large constants (or XOR chains
of large constants) that hide a sequence of native machine code instructions when shifted
by a given number of bytes. Later, a disruption of the control flow reveals the hidden
instructions composing the exploit.

Figure 2.3 is an example of such an attack and can be split into three parts: on
the left, extracted from the original exploit presentation, the ActionScript statement that
XORs three large constants; on the right, the corresponding machine code instructions when
compiled by the ActionScript JIT compiler. As the generated code using the immediate
values is stored in executable memory, these values can be interpreted as other instructions
by shifting the execution point.

The sequence is composed of a NOP succession and cmp al instructions, semantic NOPs
that consume the original xor eax opcodes (0x35 bytes) as operands. This chain can be
extended at will and means that as long as execution begins at any of the unintended
instruction boundaries (i.e. anywhere but the middle of the CMP instruction), the NOP
chain executes. As long as the most significant byte of each immediate is 0x3c, the XOR
opcode will be masked into a CMP. The shellcode can then be placed at the end, replacing
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1 var x = 0x3c909090
2 ^ 0x3c909090
3 ^ 0x3c909090
4 ...
5

6 for (i=0; i != 10000; i++){
7 function(x)
8 }

1 # Format - addr: (raw instr) disasm instr
2

3 # Instruction sequence starting at 0x100
4 100: (0xb89090903c) mov eax, 0x3c909090
5 105: (0x359090903c) xor eax, 0x3c909090
6 10a: (0x359090903c) xor eax, 0x3c909090
7 ...
8

9 # Instruction sequence starting at 0x101
10 100: (0xb8) # Skipped
11 101: (0x90) nop
12 102: (0x90) nop
13 103: (0x90) nop
14 104: (0x3c35) cmp al, 0x35
15 106: (0x90) nop
16 107: (0x90) nop
17 108: (0x90) nop
18 10a: (0x3c35) cmp al, 0x35
19 ...

Figure 2.3 – JIT spraying example.

the 0x90 chains with instructions up to 3 bytes in length. Filling memory with a long NOP
chain defeats the idea of randomization, as executing the NOP chain at any point brings
to the shellcode (as shown in the bottom left part of Figure 2.3). An important aspect to
consider is that the vulnerability used to divert the control flow can originate from both
the VM and the JIT code itself.

The attack has then been extended by Alexey Sintsov, who demonstrated an Ac-
tionScript JIT spray shellcode for x86 [4] and for other JITs such as the JavaScriptCore
Baseline JIT (embedded in the Safari web browser). Rohlf et al. [86] extend the method
against Mozilla JaegerMonkey and TraceMonkey JavaScript engines (embedded in the
Mozilla Firefox web engine) on the x86 architecture. Gawlik et al. [87] extend the idea
to the Mozilla Firefox ASM.JS compiler, a module that uses a subset of JavaScript and
is compiled ahead-of-time. They manage to perform a new version of the JIT spraying
attack, forcing large constants to be sprayed in the JIT region.

As this type of attack was first performed on the x86 architecture, due to its lack of
instruction alignment requirement, the question of feasibility was raised for other architec-
tures that have stronger requirements, both in terms of alignment and calling conventions.
Lian et al. [7], [8] presented JIT attacks on ARM and how JIT spraying applies. By forc-
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Figure 2.4 – Code injection attacks summary.

ing the emission of 32-bit ARM AND instructions, they have control of 20 bits over each
and can make them interpreted as two 16-bit Thumb-2 instructions (ARM compressed
format). In this way, the first instruction is used to perform useful operations for the
attacker, and the second as an unconditional PC-relative forward branch to the next un-
intended instruction.

A summary of code injection attacks against JIT compilers is shown in Figure 2.4. An
attacker injects the payload 1 directly through the inputs of the VM as large constants
in plain source code. Then they manage to trigger the JIT compilation 2 by making
the source code used enough (loops are usually sufficient to trigger the JIT compilation).
Finally, a memory vulnerability 3 in live objects, the native stack, or the JIT code itself
is used to redirect the control flow 4 to the exploit.

Summary: JIT spraying attacks blurred the lines between code injection and code
reuse attacks and provided a new ground for attackers. While it is extremely powerful
on the x86 architecture and resulted in a clear mapping of attacker-supplied input to
executable memory, the attack becomes more convoluted (but not impossible) on other
architectures that enforce stronger requirements on executable code.

2.2.3 Code Reuse Attacks

A primer on code reuse attacks: In a 2007 article, Hovav Shacham defines the
concept of Return-Oriented Programming (ROP) [88]. The objective is to identify gad-
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gets, units of machine code that hold a particular function (i.e. load, store) and end
with a ret instruction. Combining them in the correct order using their successive return
addresses in a ROP chain allows the attacker to execute arbitrary code when redirecting
the control flow to the chain. To identify gadgets, code-reuse attacks traverse and dy-
namically disassemble code pages, then construct the ROP chain at run time. The author
presents the Galileo algorithm to statically analyze executables and libraries searching for
gadgets. The most common ROP payload chains together gadgets that change the stack
pointer to an attacker-controlled payload, allocate RWX memory, copy a larger shellcode
payload into it, and execute it. To locate gadgets, attackers make use of the deterministic
nature of the heap allocator when handling carefully crafted memory allocation/retrieval
operations to defeat ASLR. This technique named Heap Feng-Shui comes from the 2007
article “Heap Feng-Shui in JavaScript” [89] by Alexander Sotirov.

Threat Model Refinement: On top of the existing static code protections, defenses
now involve strong defenses against JIT spraying on dynamic code: diversification of the
output code through NOP insertion or code randomization and enforcement of the WˆX
policy on the JIT code region (see Section 2.3.2). The scenario remains the same, and
the attacker is expected to know the existence of a memory vulnerability.

Application to VMs: ROP attacks are amplified and especially interesting against
JIT compilers. While library modules may contain easier-to-find gadgets, JIT page alloca-
tions are more predictable and under the influence of untrusted inputs. If the attacker (1)
knows how to trigger JIT compilation and (2) has an idea of the resulting machine code,
then he can generate arbitrary gadgets in machine code memory. These assumptions are
plausible as (1) loops are often a sufficient way to generate compute load and trigger the
JIT compiler, and (2) similarly to Heap Feng-Shui [89], JIT Feng-Shui [86] uses language
abstractions to compel the JIT compiler to produce predictable code chunks and therefore
useful gadgets (called gaJITs by the authors). Even though the ROP technique has to
go through ASLR, an attacker can still force the engine into allocating many copies of
the native code throughout memory. Additionally, all coarse-grained ASLR solutions (i.e.
per module) are vulnerable to memory disclosure attacks where even a single run-time
address is enough to disclose its page and relations with others. The two following attacks
are presented in Figure 2.5.

Snow et al. have added JIT compilation in the ROP process to generate the payload
with JIT-ROP [5]. For precision, JIT-ROP is not directly related to the JIT code region.
It describes a technique to repeatedly locate, read, and disassemble static code and then
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Figure 2.5 – Example of two ROP attacks against VMs [5], [6].

uses a code-reuse payload built with the JIT compiler. The exploit requires the attacker
to use a memory disclosure to reveal a code pointer. Once the initial byte is disclosed
and provided, code page harvesting begins 1a , detecting API to system or library calls,
and discovering gadgets. The target program is specified in a DSL that compiles down
to the ROP chain with discovered gadgets and APIs. This program is JIT-compiled into
memory, along with an exploit buffer 2a that transfers the control flow to the ROP chain.
A call to the JITted function triggers the execution of the exploit buffer 3 and the payload
4 . This idea consists of the usual ROP attack against static disassembled code, but helps
defeat fine-grained ASLR that would be applied to the static binaries and would provide
a way to trigger the payload through the use of the JIT compiler.

Another version of the attack, focused on the dynamically-generated code only, is
presented by Athanasakis et al. [6]. They show a ROP attack only using gadgets from
the generated JIT code. They expect the static system to be hardened against code-
reuse attacks, which means the binary and libraries are compiled with G-Free [90], a
compiler that produces binaries without gadgets. The authors use 2-byte constants to
generate gadgets in memory, similar to JIT spraying. They attack IonMonkey (in Mozilla
Firefox) and ChakraCore (in Microsoft Internet Explorer) and overcome their defenses.
As presented in Figure 2.5, the needed gadgets are injected through the input source code
1b alongside a memory vulnerability. The JIT code is then disassembled to construct a
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ROP chain 2b . The control flow is passed to the ROP chain using the vulnerability in
the injected memory 3 and the exploit is launched 4 . In this way, the authors present
a complete exploit that creates the tools it needs in the JIT code region to perform the
complete execution.

The main goal is to use the system call mprotect in the case of Firefox on 32-bit Linux
and VirtualProtect for Internet Explorer on 64-bit Windows. Both system calls modify
the permissions of given memory pages. As an example, the gadgets required to perform
both system calls are presented in Figure 2.6. For mprotect (on the left), the first two
gadgets store the page address and region length in ebx and ecx. The next two gadgets
zero out eax and copy 0x7d (system call number for mprotect) to it (al corresponds to
the lowest byte of the eax register). The two following gadgets zero out edx and copy
0x7 (code for Read/Write/Execute permissions) to it. Finally, the last gadget issues the
system call. For VirtualProtect (on the right), the first four gadgets are the arguments
for the system call: the page address (%r8), region size (%r9), protection code (%rcx), and
output pointer to hold the previous protection value (%rdx). The last gadget is here to
handle stack pivoting.

1 pop %ebx (ret) ; page address
2 pop %ecx (ret) ; region size
3 xor %eax, %eax (ret) ; zero eax
4 mov 0x7d, %al (ret) ; mprotect nb
5 xor %edx, %edx (ret) ; zero edx
6 mov 0x7, %dl (ret) ; RWX code
7 int 0x80 (ret) ; syscall
8 ; Linux 32-bit

1 pop %r8 (ret) ; page address
2 pop %r9 (ret) ; region size
3 pop %rcx (ret) ; protection
4 pop %rdx (ret) ; output
5 pop %rax (ret) ; stack adjust
6

7

8 ; Windows 64-bit

Figure 2.6 – Succession of gadgets to call mprotect (left) and VirtualProtect (right).

Summary: As in more classical attacks, ROP attacks and their variants (ROP with-
out returns, JOP, SROP or BROP [91]–[94] etc.) remain powerful attacks up to this
date. They can be found in all architectures, even those that do not rely on the stack
to call/return such as ARM [7] or RISC-V [95], [96]. They require expensive defense
mechanisms to be properly mitigated, especially in dynamically generated code.

2.2.4 Data-Only Attacks

A primer on data-only attacks: Other attacks focus on data only, or as Chen et
al. [97] called them, non-control-data attacks. They come as an opposition to control-data
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attacks, where the objective of the attacker is to alter the program’s control data (e.g.
return addresses and function pointers) to execute malicious code with the privilege of the
victim process. Non-control-data attacks focus on security-critical data that applications
use and manipulate, such as configuration data, user input, user identity data, or decision-
making data. Hu et al. [98] extend the concept by creating data-oriented gadgets and
unlocking data-oriented programming (DOP), an attack technique that only uses data
values for malicious purposes, maintaining complete integrity of the control flow.

Threat Model Refinement: On top of the existing static and dynamic code protec-
tions, defenses now involve strong defenses against JIT code reuse: strong CFI is enforced
on both static and dynamic code. The scenario remains the same, and the attacker is
expected to know the existence of a memory vulnerability.

Application to VMs: Data-only attacks against VMs have been designed to focus
on the input of the VM internals. They take place at the interpretation stage through
bytecode [9] or at the JIT compilation stage, focusing on the JIT intermediate represen-
tation (IR) [10] or compilation internals [99] and their execution process is presented in
Figure 2.7. Without resulting in code injection or reuse, injecting malicious data to trick
the JIT compiler or interpreter into generating and/or executing the payload itself is a
way to compromise it.

Figure 2.7 – Data-only attacks example [9], [10].

The JIT compilation process is vulnerable as well, through both its inputs and inter-
nals. Frassetto et al. [10] present a Data-Only JIT Attack (DOJITA) that targets JIT IR.
They perform the attack against the ChakraCore VM according to the following process.
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The attacker exploits a memory-corruption vulnerability to read and write arbitrary data
memory. They identify a “hot” function in the input program. Then, they inject crafted
C++ objects, the payload, into the IR 1b . The JIT compiler spreads the payload to the
JIT code as its input comes from trusted bytecode. The generated code now contains a
malicious payload that will be executed when the victim “hot” function is called 2b . On
the other hand, the R&D team Theori [99] presents an attack that targets ChakraCore
too, bypassing the JIT Control Flow Graph (CFG). It targets a temporary buffer used
during compilation that is first readable and writable, and then marked as readable and
executable once the JIT compiler has produced all instructions. Similarly to the prece-
dent attack, it overwrites the buffer contents once the JIT compilation is triggered lets it
compile the payload into the JIT code region.

Attempting to attack the interpreter and the bytecode, Park et al. [9] present an attack
on the interpreter through the compilation of malicious bytecode. The attack proceeds in
four main phases against SpiderMonkey. The attacker leaks the location of a JavaScript
context object and the JavaScript function object of a victim function. The attacker
overwrites the function address contained in the function object with the address of a
target function (e.g. the C library system function) that holds the necessary bytecode to
hold the payload. The attacker also overwrites the contents of the context object to hold
a string representation of the path to the desired program to be executed (e.g. /bin/sh).
The interpreter loads the objects onto the stack 2a and launches the payload.

Summary: The JIT compiler manipulates and interacts with several security-critical
components at run time. JIT IR, JIT data, and JIT code are the input and output of the
compiler, and while the output has been the focus of the multiple attacks presented earlier
(and therefore the corresponding defenses), the input remains untouched. Moreover,
looking at the big picture, the VM also requires bytecode and object tables that are
generated at source code compilation and will usually not be modified at run time. It
also needs objects that are modified at run time and contain sensitive information such
as function pointers or shape and scope metadata. All of these elements are critical to
the security of the VM and require particular attention.
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2.3 VMs Countermeasures

Defenses applied to VMs started from setting up the standard protections around the
JIT code region as it is the main target for attackers and a critical element of the VM
run time. The addition of solutions expands more and more other JIT compiler internal
structures to make them more resilient. The solutions refine the isolation between the
components, shrinking the impact area of attacks targeting one of them. Lian et al. [8]
categorize them into three major axes diversification,memory protection, capability
containment, to which we add another one using dedicated hardware-supported features,
hardware-enforced isolation. These categories are mostly presented in chronological
order and highlight the interest in finer isolation at a lesser cost.

2.3.1 Diversification

Breaking determinism: Answers to JIT spraying have the main objective of fuzzing
the output of the JIT compiler. The deterministic generation of JIT code is what attackers
exploit to hide the payload in constants. This determinism is present in the JIT code
region through the contents of the JIT code, its layout, and its location in memory. As
stated by Forrest et al. [100], “the role of diversity is to extract robustness against malicious
events similarly to biological systems”. Diversification solutions for the JIT code region can
be split into two main categories, as presented by Lian et al. [8]: intra-instruction and
code layout randomization. Additional location (re)-randomization with ASLR
is discussed in Appendix A and is presented in summary Table 2.1.

Code Contents and Layout Randomization

Motivation: Adding entropy to the JIT compiler output should invalidate attackers’
assumptions. Reordering and randomization of instructions, injected at compilation time
or even in a self-induced manner at load time, help defend against JIT code injection and
reuse. Although the content of the JIT code matters, the layout of its components is also
a crucial attack vector following JIT Feng-Shui principles [86], [89].

Register randomization [11], [12], [15] and Callee-saved register save slot reordering
[101], [102] shuffle register operands in the produced output. This solution comes as an
additional compiler pass and adds fixed overhead.

Constant Folding [12], [86], and its counterpart constant blinding [6], [12], [13], [15],
[86] handle large constants in generated machine code. It runs as a traditional compiler
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optimization pass that pre-computes known operations on constants at compile time.
Folding transforms the remaining of the large user-supplied constants by splitting them
into smaller 2-byte values. Blinding transforms untrusted user-supplied constants by
XORing them with a random value at compile time. At run time, the result is then re-
XORed against the random value to reveal the obfuscated constant. These solutions add
overhead in code size and execution time.

NOP insertion [12], [13], [86], [102], [103] is the process of adding a random amount
of semantic NOPs between legitimate instructions. The accumulation of NOPs makes the
location of each instruction harder to predict. Jangda et al. [103] use a list of NOPs with
different sizes and semantic NOPs using other instructions that preserve the processor state
and minimize the risk of creating new gadgets. The authors use those NOPs and insert
them into the generated code to add noise to the result.

Function Permutation [104] randomizes the order of functions and procedure bodies in
the code segment and adds high entropy at a low-performance cost to the generated code
and data. The Readactor tool [102] uses an indirection layer to hide the code pointers
of the randomized functions to prevent any access to the hidden functions, as they are
stored in unreadable memory (see Section 2.3.2).

Discussion: Constant folding and blinding (for 3-byte constants and larger) have
been implemented in some major web browsers such as Google Chrome or Microsoft Edge
as detailed by Gawlik et al. [87]. However, Athanasakis et al. [6] show that attacks are
still possible using 2-byte long or shorter constants. They also show that applying the
solution to all immediate operands regardless of their size adds an overhead of up to 80%
in terms of the number of instructions. Instruction diversification and obfuscation come as
a low-cost setup solution to counter basic code-reuse attacks. These solutions add entropy
to the generated code and make it harder to use directly by an attacker. The simplicity
of the solution still falls short when the attacker knows the obfuscation techniques.

2.3.2 Memory Protection

Enforcing Data Execution Prevention: A common security principle to defend
against code injection attacks is to prevent data execution in the stack and on the heap.
This defense became famous with the PaX team [105] as Writable XOR eXecutable (WˆX) or
Data Execution Prevention (DEP) [106], [107]. Enforcing the idea of mutually exclusive
permissions is essential to protect applications and systems from malicious injection and
execution through the stack or heap. The concept of WˆX clashes with the main idea of a
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JIT compiler, since it needs to permanently rewrite machine code that has to be executed
later on. To still provide guarantees on the generated JIT code, the following techniques
are presented: transient protection grants temporary rights at run time, and specific
read primitives use specific hardware-defined memory for the data. The use of several
mappings on the same region is presented through process isolation in the next section.

Transient Protection

Motivation: Restricting the permissions of the JIT code following the principle of
least privilege handles one part of the WˆX policy, granting new temporary permissions
at run time lets the compiler write or execute a given stub of machine code in JIT code
memory.

A way to enforce WˆX is to grant restricted privileges to the JIT code region and grant
the additional privilege at run time. The authors of JITDefender [14] and JITSafe [15]
propose an adaptation of the concept on the Tamarin Flash VM. They define the JIT
code memory region as RW by default. The accesses for execution are instrumented to
make the pages executable but not writable (RX) then removing the execution permission
right after. The resulting overhead is less than 1% but these solutions do not protect
against JIT spraying attacks where the control flow vulnerability is triggered from within
the JIT code.

Taking a different approach, the authors of JITScope [19] and Readactor [102] authors
make the JIT code RX by default. JITScope implements three delegates (code routines)
to instrument JIT code access. These three delegates serve different purposes, namely
write gives access with write permission (RW) to the JIT code region, fwd-exec and
bwd-exec instrument the call and return from the JIT code and make sure that it can
only be accessed through them. As it reprotects memory more frequently, the incurred
performance overhead is higher (from 1.6% to 6.0%). Readactor switches between X-only
pages and RW pages at rewrite and installation time and adds an overhead of 4%.

Discussion: While these solutions protect against a single-threaded environment, race
condition attacks have been proposed by Song et al. [17] against the V8 VM. They use
Web Workers, a mechanism that allows JavaScript programs to spawn multiple threads
with communication and syncing capabilities. As an attacker uses one thread to trigger
JIT compilation and has access to writable memory, another exploits a vulnerability to
corrupt the just-accessed writable memory. While this requires the attacker to predict
the address of the memory that will be made writable by the first thread, it defeats the
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assumption of WˆX. A solution through process isolation and double-mapping of memory
is presented in the next section.

Specific Read Primitives

Motivation: Some other solutions rely on specific memory permissions to alter the
read composite of the memory access and thwart the memory disclosure vulnerabilities
at the heart of ROP attacks, making it impossible to disassemble the generated JIT code.

Backes et al. [108] use eXecute no Read memory to prevent the JIT code from being
read while leaving the memory WX. The authors ensure that the code can be executed by
the processor but cannot be read as data. The primitive is implemented as a kernel-level
modification for both Linux and Windows and is emulated in software at the cost of a
run-time overhead of 2.2% and 3.4%, respectively. As specified above, while Readactor
[102] uses a transient protection principle, it switches between X-only and RW permissions
over the memory region.

As reading the memory is the first step for a usual ROP exploit, making read exe-
cutable memory unusable is another way to fix the issue. Heisenbyte [109] use destructive
code reads to restrict the ability of adversaries to use executable memory that has been
exposed through a vulnerability to memory disclosure. They use hardware virtualization
support to identify read operations on executable memory and can instrument the JIT
code accordingly, forcing the program to crash in case of an attempt to execute a read
memory zone. In the same vein, No Execute After Read (NEAR) [110] prevents the ex-
ecution of pages that have been disclosed but have not been applied to JIT compilation
as it does not support writable pages.

Discussion: Tweaking the read primitives gives strong guarantees to the underlying
memory. However, since they rely on specific hardware, these solutions have not been
ported to production VMs. They can guarantee the integrity and privacy of the generated
JIT code. Then, the question of the integration of this type of solution in modern VMs
and the issues it brings up for the VM itself has to be addressed. In addition, constructive
reloads [111] have been presented where multiple copies of the native code are added, one
of which will be destroyed and another as a mirror to construct the ROP payload.
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2.3.3 Capability Containment

Isolation of user-supplied input: Containing and isolating untrusted elements from
performing collateral damage (such as pivoting the stack [82], [83]) lowers the impact of
attacks. Avoiding side effects from a critical VM component through isolation can occur
in two main ways: process isolation and control-flow integrity. The first method isolates
the critical component(s) from the rest of the system, while the second ensures only a
correct set of paths can be taken by the application even when dealing with untrusted
input. An extension of process isolation comes in the form of sandboxing and is presented
in Appendix B and Table 2.1.

Process Isolation

Motivation: Isolating the processes of the VM separates the components of the VM
and their accesses to sensitive memory regions. Virtual memory makes it possible to
get two different virtual mappings with different permissions linked to the same physical
memory, effectively monitoring memory accesses.

Without using a sandbox, Jauernig et al. present Lobotomy [16], an architecture that
separates the compiler and executor of a JIT engine in as many different processes that
share the memory region of the JIT code. The JIT engine is split into two processes, the
compiler and executor, that interact through separate execution contexts and synchronize
over shared memory. Concretely, the compiler process clones itself into the executor that
holds on, waiting for its semaphore. The compiler is triggered when interpretation detects
a trace that is ready for compilation. At the end of the compilation, the compiler unblocks
the executor to execute the JITted code. For an existing trace, control is given to the ex-
ecutor directly. When blocks and unblocks occur, a context switch is performed through
two system calls getcontext (which saves data structure) and setcontext (which re-
sumes from given data). Shared memory allows the different execution contexts to share
data and serves two main purposes: (1) double-mapping the JIT code pages (RW for the
compiler, RX for the executor) (2) easy communication between the compiler and executor
through mutexes and data. In general, this technique adds a run-time overhead of about
30% (but up to more than 450%).

An industrial application of process isolation without sandboxing has been initiated
with Arbitrary Code Guard (ACG) in Microsoft Edge [112]. When ACG is applied to a
Microsoft Edge Process, it prohibits the allocation of new executable memory or mod-
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ification of existing executable memory. As this idea clashes with the concept of JIT
compilation, the JIT compilation process is separated from the content process. The
isolated process receives JavaScript bytecode and sends back machine code in return. Mi-
crosoft now explores the application of this principle in tandem with hardware support
for acceleration and integration in the Windows OS.

Discussion: Both solutions isolate the process of JIT compilation from the rest of the
VM. The double-mapping of memory guarantees a thread-safe isolation of the JIT code
in its writable and executable state. While it enforces strong guarantees on the generated
code and its accesses, it comes with a deterring cost in terms of overhead

Instruction Filtering

Prohibition through filtering: Before resulting in precise Control-Flow Integrity
(CFI) [52] to add guarantees to the control flow of the program, simpler instruction
filtering mechanisms prevent critical instruction from executing. At the process level,
JITSec [113] proposes a lightweight solution to filter critical operations from the JIT
code. The authors decouple sensitive from non-sensitive code (system calls from normal
function calls). They add a kernel module to block the execution of sensitive code from
writable memory pages. It is placed between user processes and the system call handler.
It launches a small trampoline of assembly code that (1) stores the content of the registers
on the stack; (2) calls a policy-enforcing monitor function; and (3) restores the content
of registers. Step (2) locates the return address where the control flow is supposed to
return after the system call, checks it against the stack and heap memory region and, if
it is located in one of them, replaces the system call with a call to exit. The solution
prevents the execution of system calls at a small performance cost and lowers the impact
of code injection. It performs an equivalent of what the Linux seccomp [114] solution
accomplishes, namely system call filtering, at the cost of 2% performance overhead. It
guarantees that no syscall is used by an attacker-supplied piece of code, but it does not
prevent code reuse attacks in this context.

Control-Flow Integrity

A primer on control-flow integrity: Regarding control-flow integrity (CFI) as
defined by Abadi et al. [52], it is a technique that defines security policies that software
execution must follow and comply with a predefined Control-Flow Graph (CFG). This
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CFG is defined ahead of time by analysis (source code analysis, binary analysis, or exe-
cution profiling). CFI requires that, at run time, whenever a machine code instruction
transfers control, it jumps to a valid destination determined by the CFG. If most of the
instructions target a constant destination, the verification can be performed statically.
However, for computed transfers, a dynamic check needs to be performed to ensure the
sanity of the destination. Checks should be performed on both forward-edge (i.e. calls,
jumps) and backward-edge (i.e. returns) transfers. Typical solutions enforce these checks
at run time using tags and run-time checks for forward-edges or shadow stacks [115]
for backward-edges. The tag/check goes along with the constructed CFG to verify that
a control-flow branching is correct. A shadow stack copies the return addresses on calls
and checks the run-time one against the saved one on returns, ensuring that they have
not been tampered with by an attacker. The granularity of the solution depends on the
precision of the branch identification, and therefore on the precision of the CFG. Intel
presents an industrial application of this type of protection as they extended x86 proces-
sors with the Intel Control-flow Enforcement Technology (CET) [21, Vol.1 Ch.17] that
adds a coarse-grained tagging mechanism to control-flow landing points (endbranch) as
well as a shadow stack mechanism to check return addresses on return instructions.

Application to VMs: Porting this type of solution to dynamically generated ma-
chine code such as JIT-compiled code is a challenge, especially due to the impact on
performance the CFI enforcement techniques usually incur. Niu et al. present RockJIT
[18], a solution that enforces modular control-flow integrity (MCFI) [116] for JIT com-
pilers. MCFI is a CFI technique that allows modules to be independently instrumented
and linked statically or dynamically. They address the security aspect of both the JIT
compiler (static code) and the JIT code region (dynamic code) with different levels of CFI
enforcement. In the first case, the JIT compiler is compiled and instrumented to generate
an MCFI module. RockJIT then generates a CFG based on the information in the mod-
ule, and constructs MCFI tables for later use, that define this graph before launching the
execution. For VM, the CFG generation strategy is relatively fine-grained and performed
offline. In comparison, the CFG for the JIT code is coarse-grained, as it compares the
information emitted by the compiler at the time of indirect branch generation with a set
of sane targets. To determine if the destination of a control-flow transfer is sane, RockJIT
uses a verifier that keeps three address sets populated at machine code generation: start
addresses, indirect branch targets, and direct branch targets. They are updated after
code installation, deletion, or modification. This way, the JIT compiler itself runs under
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a fine-grained CFI policy and JIT code a coarse-grained policy (to reduce the impact
on a performance-critical component). The authors argue that this level of protection is
enough to protect the JIT code since it cannot contain dangerous instructions such as
system calls. In general, the solution incurs around 15% of performance overhead.

Figure 2.8 – CFI solutions.

JITScope [19] authors present a similar idea of mixed-level CFI enforcement. The
solution uses the type information from the source code to deploy fine-grained CFI on the
statically compiled code. For each function, it computes an ID derived from the function
type information and instruments a CFI security check to match the transfer target ID
against the expected ID. For the JIT code, a JavaScript delegate called CodeGen is added
to instrument a random ID at compile time, before the generation of the machine code
of an input function. When the JIT compiler is triggered to generate an indirect call
or jump, the delegate instruments CFI security checks in the generated code before the
call or jump. JITScope validates the existence of the ID before the target function and
ensures that the transfer target is a valid JIT function entry. In addition to forward-edge
transfers protection, the backward-edge transfers are protected with a shadow stack. At
each entry of the function, it stores the return address of the current function frame. At
function exit, it checks the return address of the main stack against the one stored in the
shadow stack. If they do not match the stack has been tampered with, and the program
should raise an exception. The stack is set in a separate memory region, indexed by a
dedicated segment register (available in the x86 architecture and not accessible through
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normal instructions). A new stack is also built for each thread, using thread-local storage
to guarantee a thread-safe shadow stack. In general, the solution adds around 10% of
performance overhead.

Discussion: Both solutions are summarized in Figure 2.8, the static code is protected
using a CFG (for forward-edge checks) and a shadow stack (for backward-edge checks).
Even though the dynamic code is protected using a shadow stack, it is not possible (and
too performance-impactful) to extract a precise CFG of JIT code at run time. A degraded
CFG version is used, either through function tagging or using a restricted set of possible
addresses. Overall, CFI enforcement solutions protect against complex attacks, but add
an important performance overhead.

2.3.4 Hardware-Enforced Isolation

Extracting hardware performance: Modern computing platforms are now di-
verse in terms of architectures, software provisioning models, and the type of applications
they support. Data confidentiality and integrity are now concerns not only from attacks
over the network but also from attacks originating from software or hardware compo-
nents on the same platform. This requirement comes from systems that hold multiple
mutually untrusted software components, e.g. that share a cloud platform, or handle
code/data belonging to different users. It extends to any computation that involves
security-critical components or sensitive data. The answers to these memory isolation
requirements can come in the form of hardware-based solutions such as Memory Pro-
tection Keys (MPK) or Trusted Execution Environments (TEE). We present
here the application of these techniques to a JIT compiler as found in the literature.

Trusted Execution Environments

A primer on trusted execution environments: Trusted Execution Environments
(TEEs) provide hardware-level guarantees. Schneider et al. [117] categorize them in four
levels: (1) verifiable launch of the execution environment for sensitive code/data in a way
that can be verified by a remote entity; (2) run-time isolation to enforce confidentiality
and integrity of sensitive code/data; (3) trusted IO to enable secure access to peripher-
als/accelerators and (4) secure storage for TEE data that must be stored persistently and
made available later on only to authorized entities. Intel presented an industrial TEE
named Software Guard eXtension (SGX) [118] added to Intel CPUs, that was first intro-
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duced in 2015 with the sixth generation of microprocessors. They allow isolated execution
environments called enclaves, encrypted regions, created within a user-mode process, that
cannot be accessed by any (higher privileged) system entity. The enclave is decrypted on
the fly by the CPU using an enclave-specific key. Before the enclave memory is loaded
onto the CPU, SGX verifies its integrity to ensure that an attacker does not tamper with
the contents.

Application to VMs: JITGuard [10] authors based their defense solution around
an SGX enclave, which overview of the design is presented in Figure 2.9. Since interact-
ing with the contents of an SGX enclave adds considerable overhead, especially through
context switches, isolating the whole JIT engine along with the JIT code region in an
enclave results in a huge amount of performance overhead. In particular, since the JIT
code frequently interacts with static code and is called transparently, it cannot reside in
an enclave. Therefore, JITGuard adds three important security principles to its design:
(1) isolate the JIT compiler and its data in an enclave, (2) randomize addresses of the JIT
code and JIT stack memory, and (3) build an indirection layer for trampolines (transitions
between JIT and static code).

Figure 2.9 – JITGuard solution.

The JITGuard initialization step allocates two memory regions, the trampolines and
JITGuard-region where the JIT code, the JIT stack and the writable mapping of the
trampolines reside. The enclave (1) is then started containing both the JIT compiler and
a secret to lead to the location of the JITGuard-region. The randomization (2) of the
JITGuard-region is maintained by mediating all memory accesses to the JITGuard-region
through the enclave (for JIT code generation, modification, or deletion). The indirection
(3) needed by trampolines (T on the figure) is achieved with a double-mapping of them,
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one executable, the other writable and used only through the JIT compiler, as it is
hidden in the JITGuard-region. To enable efficient interactions between static and JIT
code without involving the enclave for every interaction, trampolines need fast access to
JITted functions. JITGuard establishes an indirection mechanism using an offset over
a segmentation register (R on the figure), the contents of this register are available only
through a system call. To ensure a clean separation between JIT code and static code,
JITGuard employs its own stack, which is stored in the JITGuard region. In summary,
the complete JITGuard solution introduces a performance overhead of 9.8%.

Discussion: TEEs provide hardware-enforced guarantees on the execution of soft-
ware. However, Intel SGX was discontinued in 2021 due to the list of vulnerabilities that
have been found against the solution (mostly side-channel attacks). SGAxe [119] authors
present a transient execution attack that can recover SGX attestation keys from a fully
updated Intel machine trusted by their attestation server. SmashEx [120] authors show
that the asynchronous exception handling mechanism is prone to reentry vulnerabilities.

Memory Protection Keys

A primer on memory protection keys: Another hardware-supported memory
isolation solution is the use of Memory Protection Keys (MPKs). This mechanism pro-
vides efficient and secure in-process isolation. MPKs come as an extension to page-based
memory permissions, allowing changes in the permissions of memory ranges without going
through the kernel-level modification of the page, which is usually slow. They instead tag
page-table entries with a protection key and store the permissions for these keys sepa-
rately. Each memory region can have one associated key, while processes can have one
or more via special registers. Careful access to these keys allows for in-process isolation.
Implementations differ in the number of keys, the types of permissions and the granular-
ity of the memory region they propose [31], [121]–[123]. Intel’s Memory Protection Keys
(MPK) [21, Vol.3 Sec.4.6] use 4-bit keys stored in the page-table entry. This allows for 16
different domains per process. To change permissions, the program uses an unprivileged
instruction to write to the local thread key register User Page Key Register (PKRU). As
the PKRU is non-privileged, it allows for fast domain-switching in the userspace. The
Linux kernel provides support for Intel MPK (since v4.6) through three system calls:
pkey_alloc, pkey_free and pkey_mprotect. The kernel maintains a bitmap to keep
track of the allocated keys.

Application to VMs: Libmpk [124] authors have extended the Intel solution with
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a software abstraction to virtualize the protection keys. They applied their solution to
three JavaScript VMs (SpiderMonkey, ChakraCore, and V8) and show that they can
enforce WˆX on the generated JIT code. Their objective was to protect the VM against
race conditions [17]. The authors presented two different techniques to implement their
solution: “one key per page” and “one key per process”. In the first method, they replaced
permission switches with MPK equivalents, resulting in a faster, context-free solution.
The second method utilized a single protection key to safeguard all JIT code regions. It
ensured that only one thread had access to this protection key at any given time.

NoJITsu [9] authors extend the usage of protection keys and design their solution
around Intel’s MPK, an overview is provided in Figure 2.10. They compartmentalize
the JavaScript engine following three axes: (1) separate JIT data from JIT code and
give them different permissions, (2) add a routine to allow temporary accesses using
conjoined calls to set_pkru/write_pkru/recover_pkru to change the value of the PKRU,
and (3) isolate sensitive objects such as sensitive types (script, shape, function, etc.) and
primitive types (scalar and array data types) from other objects. Overall, their strategy
lies in a fine isolation technique of critical elements between each other. All memory write
instructions are instrumented to use the appropriate run-time memory permissions based
on which data types the instruction may access. Instrumentation targets are determined
using dynamic object-flow analysis to detect accessor functions (functions that directly
write to JavaScript objects). Accessor functions are grouped into four different types,
either member accessors, member functions of a JavaScript object class that write to
private variables; payload accessors, member functions that update the actual payload of
a JavaScript object; initialization accessors that initialize JavaScript objects; and garbage
collection accessors that update information in objects metadata and objects metadata
to ease later garbage collection. Overall, the solution adds a 5% performance overhead.

Discussion: MPKs provide fine-grained intra-process isolation. However, several
issues prevent the widespread usage of Intel’s implementation. First, the built-in number
of keys is not sufficient for fully fledged applications (such as OpenSSL [124] or persistent
memory objects [123]). Also, use-after-free vulnerabilities have been discovered on the
mechanism [124]. Other implementations compensate for these problems and provide
comparable capabilities [31], [121]–[123] to enforce strong properties on the JIT code
region.
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Figure 2.10 – NOJITsu design.

2.4 Summary

Attack Methods: Overall, attacks against VMs have started by focusing on the
JIT compiler and the tightly linked JIT code region. Its native access to memory, with
all permissions and processing of untrusted and unverified inputs, makes it a critical
component. Injection of either a version of the full exploit or gadgets through the input
source code lets attackers weaponize their exploit using the built-in compiler. Finally,
securing the compilation process and code execution does not suffice if the inputs can be
tampered with by an attacker. The data itself has been an attack vector either through
bytecode or JIT intermediate representation, allowing the spraying of shellcode in memory
even with active protections on the VM, particularly on the JIT compilers and JIT code
region.

Expected Capabilities: For a successful attack, an attacker needs access to certain
memory vulnerabilities. Typically, a method to corrupt a code pointer leading to an
attacker-controlled memory region or a stack pivot is necessary to execute code injection
or transfer control to a Return-Oriented Programming (ROP) chain. In the context
of code-reuse and data-only attacks, a memory disclosure vulnerability is necessary to
determine either the location of the binary in memory or the data memory for extracting
gadgets. Assuming the existence of such vulnerabilities is common in browser exploits
and should, therefore, be the norm when designing defenses around VMs. We define these
vulnerabilities and capabilities as:
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C1: An attacker can supply arbitrary input source code to the VM, that can
later be interpreted and recompiled at run time.

C2: An attacker has access to a memory corruption vulnerability to redirect
the control-flow of the program either from the statically-compiled VM or the
JIT-compiled code.

C3: An attacker has access to a memory disclosure vulnerability to determine
the location of the JIT code or sensitive components.

Table Summary: The Table 2.1 presents the main defense solutions that have been
deployed around VMs, classified around their main defense mechanism. The VM the
solution is deployed on is also presented, usually a JavaScript browser VM such as V8
or SpiderMonkey. The effect on attacks is tagged as countered, partially countered, or
inefficient. It is also important to note that all defenses are based on x86 architectures. ∼
denotes that the chosen solution does not fully protect against the corresponding attack.
Diversification makes it more difficult to carry out a code reuse attack, but it does not
completely prevent such attacks. Sandboxing solutions [17], [125] decouple the access to
writable and executable memory and provide a certain level of code verification. However,
they do not fully prevent code reuse attacks. Instruction filtering [113] prevents explicit
syscalls but does not provide complete protection against attacks themselves. Lastly,
JITGuard [10] is effective against JIT IR data-only attacks but may not fully protect
against bytecode data-only attacks.

Defense Methods: As software security evolves, defenses around VMs have initially
focused on disrupting the determinism introduced by the JIT compiler. Properties like
diversity and randomization play pivotal roles in fortifying the security of the JIT com-
pilation process, particularly against simple injection attacks. However, these measures
may prove inadequate against more sophisticated threats like code-reuse or data-only at-
tacks. Tightening memory permissions stands out as a straightforward method to guard
against code injection, preventing attackers from writing to executable memory. Given
the explicit need for executable memory by the JIT compiler, double mapping of the re-
gion emerges as the optimal strategy, thwarting race-condition attacks. While code reuse
remains a concern, disassembling the JIT code exposes available gadgets to attackers.
Two protective measures include removing the readability of the executable JIT code and
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Name Defense mechanism VM Code Injection
[4], [8], [85]

Code Reuse
[5]–[7]

Data Injection
[9], [10]

INSeRT [11] Diversification V8 3 7 7

RIM [12] Diversification Tamarin 3 7 7

librando [13] Diversification Hotspot, V8 3 7 7

- [103] (Re)-Diversification JikesRVM 3 ∼ 7

JITDefender [14] Transient Protection Tamarin, V8, JSCore 3 7 7

JITSafe [15] Transient Protection, Diversification Tamarin, V8, JSCore 3 7 7

XnR [108] XnR Application-Agnostic 7 3 7

Readactor [102] XnR, Diversification V8 3 3 7

Lobotomy [16] Process Isolation SpiderMonkey 3 7 7

ACG [112] Process Isolation Microsoft Edge 3 7 7

NaCl [125] Sandboxing V8, Mono Runtime Engine 3 ∼ 7

SDCG [17] Sandboxing V8 3 ∼ 7

JITSec [113] syscall Filtering Application-Agnostic ∼ ∼ 7

JITScope [19] CFI, Transient Protection SpiderMonkey 3 3 7

RockJIT [18] CFI V8 3 3 7

JITGuard [10] Intel SGX Enclave SpiderMonkey 3 3 ∼
Libmpk [124] Intel MPK for Transient Protection SpiderMonkey, ChakraCore, V8 3 7 7

NoJITsu [9] Intel MPK for Fine-Grain Isolation SpiderMonkey 3 3 3

Table 2.1 – VM defense solutions.

implementing a robust control-flow integrity mechanism. Fine-grain, restrictive isolation
between the components gives the most reliability to the VM but comes with a net impact
on performance.

Defense Requirements: The coarse-grained features of the software and hardware
(i.e. virtual memory, privilege modes, etc.) are not sufficient to protect against run-time
attacks. On the other hand, the performance of fine-grained software solutions is deterring
implementation in production environments. A clear need for hardware-accelerated fine-
grained isolation is highlighted by convoluted run-time attacks and the complexity of VMs
and their component. We define expected “software requirements (SR)” as:

SR1: The JIT code should be writable only at generation and installation time,
then executable only. It should implement a (most precise possible) CFI solution
along with a syscall filter.

SR2: The JIT data should be separated from the JIT code, should be accessible
only through the associated JIT code and should not be executable.

SR3: The static code of the VM is a source of gadgets that should be compiled
offline with controls on precise CFI and/or gadget remover tools.

SR4: The intermediate representation (bytecode or JIT IR) should only be
writable at installation, from a single entry point in the VM.
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SR5: Sensitive live objects should be given restricted write access to their at-
tributes to avoid type confusion and arbitrary memory writes.

These requirements are composable and cover the known sensible points in a VM
runtime. In the context of this thesis, we will focus on the JIT code region in particular
(SR1/SR2) but notice the importance of other requirements, leaving them for future works.
We extend the previously introduced research questions with links to their corresponding
software requirements in the figure above. Moreover, in addition to these requirements
themselves, the means to enforce them are equally important. As the latest defenses
are built on top of solutions that present known vulnerabilities, the transparency and
flexibility of the implementation alter their adoption.
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Chapter 3

OPEN HARDWARE-ACCELERATED

SECURITY FEATURES

As discussed in the previous section, contemporary approaches to safeguarding in de-
fending performance-critical components involve leveraging hardware-supported features
to seamlessly incorporate robust security measures during execution, all without intro-
ducing significant time overhead. Despite these efforts, security solutions embedded in
vendor hardware often derive from alternative mechanisms (such as tracing or debugging
functionalities) or are directly provided by the vendor, offering minimal flexibility for post-
deployment modifications. Given these constraints, we advocate the RISC-V Instruction
Set Architecture (ISA) as an optimal choice for open prototyping and the development
of adaptable security solutions. The ongoing evolution of hardware and software within
the RISC-V ecosystem is noteworthy. Recent attacks, reminiscent of those outlined in
the preceding chapter, have been successfully executed. These incidents emphasize the
critical need for open and adaptable security solutions.

3.1 Motivation

The motivation for dedicated open hardware security features is twofold. First, guar-
antee the efficiency of the solution through a dedicated set of features, either through an
extension of the processor itself or the presence of a dedicated coprocessor; second, ensure
the soundness and maintainability of the solution, either through its open-source nature
or flexibility in the design [126].

Need for dedicated solutions: Defining hardware-supported security solutions over
vendor architectures suffers from the lack of dedicated information extraction. Several
solutions have extended the debugging modules of the cores to define a security policy.
Intel Last Branch Record (LBR) [21, Vol.3 Ch.19] records the history of the most recent N
branches, with N equal to 4, 8, 16, or 32 depending on the processor. It was the basis for
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a corpus of work [127]–[129] using the LBR as a shadow stack, but the limitation of the
number of stored addresses made these solutions vulnerable to history-flushing attacks
[130], [131] hiding the effects of a ROP attack behind N genuine branches. Modern
processors also provide extensions to capture debugging information. Intel Processor
Trace (PT) [21, Chapter 33] and ARM CoreSight [132] provide traces for offline post-
processing debugging. Recent work uses these hardware extensions to enforce Control-
Flow Integrity (CFI) [133]–[137] or Dynamic Information Flow Tracking (DIFT) [138].
Extending these mechanisms to enforce security policies at runtime requires additional
decoding features [139] for better performance.

Need for flexible solutions: Industry has added efficient dedicated hardware-
assisted security extensions. Among them, when considering Intel, were added: Intel
Trusted Execution Technology (TXT) [140], Intel Memory Protection Extensions (MPX)
[21, Appendix E], Intel Software Guard Extensions (SGX) [21, Vol.3 Ch.34-39], Intel
Control-Flow Enforcement Technology (CET) [21, Vol.1 Ch.17], Intel Memory Protection
Keys (MPK) [21, Vol.3 Sec.4.6], and many more. As they are deployed by the vendor
directly in silicon, any problem in the design or implementation of these solutions may
require in-depth modifications in the next generation of the processors, hindering their
usage in the current one. For example, Intel introduced MPX in 2013, a hardware-assisted
extension for spatial memory safety that performs bound checking, which was found to be
considerably slower (up to 4x in the worst case) than its software counterparts. This led
to its removal from major compiler toolchains, before being discontinued by Intel in 2019.
As another example, Intel SGX was introduced in 2015 to define a trusted execution en-
vironment that encrypts its contents and performs on-the-fly decryption within the CPU.
It was found to be vulnerable to multiple side-channel and information leakage attacks
[119], [120] that resulted in the deprecation of SGX in 2021, from its newer generation
of processors. ARM TrustZone [55] was also found to be vulnerable to similar classes of
attacks [141], [142]. As a final example, Intel MPK [21, Vol.3 Sec.4.6] was presented in
2019 as an intra-process isolation technique that would avoid costly kernel-level switches
from trusted to untrusted domains. It was shown to have security [31], [121], [122] and
scalability [123], [124] drawbacks.

A dedicated security platform allows the developer to extract the needed information
from the core and to efficiently enforce its security model. The need for prototyping and
flexibility before integration into a commercial core brings attention to flexible solutions
that are available for multiple purposes and defined on open-source hardware.
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3.2 A Primer on the RISC-V ISA

RISC-V [20], [56] is an open, modular, and extensible Instruction Set Architecture
(ISA) that gains interest from research and industry as several processors and toolchains
become available as an alternative to vendor processors. Available RISC-V tools include
a GNU Compiler Collection (GCC) toolchain, an LLVM toolchain, a QEMU simulator,
and operating support from Linux and BSD variations. RISC-V architectures are pushed
by Chinese industries as an alternative to proprietary ARM processors, such as AliBaba
cloud’s Wujian 600 development board.

3.2.1 Modularity

The RISC-V ISA provides 32-bit, 64-bit, and 128-bit variants of its instruction set,
along with extensions defined in modular groups. The basic set of instructions is defined as
the integer extension and available as RV32I or RV64I (a superset of the 32-bit version).
It also defines a set of composable standard extensions that support a fully-featured
Operating System (OS). RV64G, an abbreviation for RV64IMAFDC, contains the integer
instructions (RV64I), multiplications and divisions (M), atomic instructions (A), floating-
point operations (F), double integers (D), and compressed instructions (C). Processors
that implement this set of extensions support the Linux OS. The scope of RISC-V is not
limited to these standard extensions; for example, the E extension for embedded devices
uses a reduced number of registers, and the V extension enables vector operations. Other
extensions are still being ratified and aim at specific application cases. Among them, the
J extension for dynamically translated languages and virtual machines is still open to
contributions.

3.2.2 Extensibility

The RISC-V standard also defines four custom opcodes, custom0-3, which are reserved
for custom use and will not be redefined by standard extensions in the future. The primary
objective is to ensure that any extension of the ISA restricted to these instructions remains
valid in the future, thus providing developers with a stable API for custom functionality
prototyping.

In addition to the custom instructions as a whole, hints enable the embedding of
behavior in existing instructions by passing specific parameters [20, Sec.2.9]. These pa-
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rameters do not alter the semantics of the instructions and do not affect a core that does
not implement them. However, they can trigger side microarchitectural effects with the
available bit space. Although their standard use has not yet been defined for all of them,
7 of them are reserved for custom use in the RV32I instruction set. They should eventu-
ally include aspects such as spatial and temporal locality of the memory system, branch
prediction, security tags, or instrumentation flags.

The Rocket processor [39] integrates these instructions and defines the Rocket Custom
Coprocessor (RoCC) interface. This interface acts as an API for custom instructions and
works as a programmable command/response module that processes custom instructions
with direct L1 cache access. It provides a simpler standardized way to extend custom
instructions through a coprocessor. The CVA6 processor [3] defines CV-X-IF, an interface
to extend the base RISC-V instruction set through a coprocessor.

3.2.3 Memory System

Privilege modes: Three privilege modes are defined in the unprivileged [20] and
privileged [56] ISA. The machine (M) mode is the highest privilege mode, mandatory
for any RISC-V core. Supervisor (S) mode is employed by the operating system, and
user (U) mode is available for the execution of the application. In addition, there is a
hypervisor (H) mode, the specification of which is still under development. This mode is
expected to enhance virtualization and containerization capabilities. These three primary
privilege levels segregate the executed code based on the permissions associated with their
respective roles. Each hardware thread runs in one of these privilege modes at any given
time, with the corresponding rights and control status registers (CSRs).

Paging: In RV64, RISC-V introduces two paging mechanisms and virtual memory
systems known as Sv39 and Sv48 [56]. Sv39 defines a 39-bit address space, while Sv48
defines a 48-bit address space, both divided into 4KB memory pages. The standard
outlines the mapping between virtual memory and the corresponding physical memory
using Page Table Entries (PTEs). Each PTE contains the address of the physical frame,
along with read (R), write (W), and execute (X) permissions for the current page. In
addition to the three permission bits and the address mapping (either 39 or 48 bits), a
10-bit space is reserved in the PTE for future use and research experiments [56].

PMP: The RISC-V standards introduce a hardware Physical Memory Protection
(PMP) module [56] designed to enforce permissions on memory access at the hardware
level. This module effectively manages various memory regions by specifying address
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Figure 3.1 – Control Status Registers used by the PMP module.

ranges and their associated permission rights, all configured in machine mode. Providing
a per-hardware-thread (hart) perspective, it enables machine mode to control the physical
addresses available for supervisor and user mode software. Several CSRs store PMP region
information, as illustrated in Figure 3.1. Specifically, the pmpaddri CSRs contain the base
address to match the PMP region along with the A field of the pmpcfgi register.

Figure 3.2 – PMP matching mechanism, with region permission matching.

The matching logic to determine whether an input tuple (address, access type)
is granted access or not is presented in Figure 3.2. The PMP module initially iterates
through pairs of addresses pmpaddri and configurations pmpi cfg to identify the region
that matches the incoming address request. PMP regions are matched based on a combi-
nation of the base address in pmpaddri and the range type defined in the pmpi cfg.A field.
The A field can hold one of four values: OFF (indicating that the region is not used), Top
Of Range (TOR, matching all addresses below it and above the previous region), Naturally
Aligned Power Of Two (NAPOT, matching a base address and a specified alignment range),
and NA4 (a specific case of NAPOT with a length of 4 bytes). In the dotted green region
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of the Figure, three regions are defined: region 1 is defined as read/write in TOR mode, it
matches all addresses beneath addr1; region 2 is defined as execute-only in NAPOT mode,
it matches addresses between addr2 and the range embedded in the address through its
alignment; and region 3 is defined as read-only in TOR mode, matching all addresses be-
tween the top of the previous region and addr3. Once the input address matches a PMP
region, the required access type is checked against the permissions granted for that region,
which are stored in the last 3 bits of the pmpi cfg register. Any failure to match a region
or access it with incorrect rights results in an access fault.

This module enforces basic access permissions for embedded devices that do not im-
plement virtual memory and is designed to complement paging. It has been used to
provide lightweight security solutions [33], [34] and serves as a foundation for a Trusted
Computing Base (TCB) [143].

3.2.4 Open-source Processor Implementations

The modularity of RISC-V has driven the creation of a wide variety of core imple-
mentations, including compact embedded cores and high-performance Systems-on-Chips
(SoCs). A notable example is the PULP initiative, which defines an extensive range of
RISC-V cores and core clusters. This spectrum includes the 32-bit 1-stage Snitch [144]
core and extends to the Hero [145] multi-cluster heterogeneous accelerators. Application-
class processors within this spectrum typically provide support for UNIX-based operating
systems and necessitate the implementation of various features such as different privilege
modes, atomic memory operations (AMOs), and hardware support for virtual memory
translation. Our work focuses on this category of processors since any language VM re-
lies on the underlying operating system for functionalities like memory allocation and
interfacing. Prominent implementations in the literature include CVA6 [3], Rocket [39],
BOOM [146], and SHAKTI [147]. D"orflinger et al. [148] conduct a comparative survey
of these application-class cores. They classify them based on the hardware description
language in which they are written, the frameworks supporting their integration, and their
performance, area, and power metrics when deployed on FPGAs or ASICs.
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3.3 Portability of known attacks to RISC-V

The open-source and modular design of the RISC-V ISA makes it a suitable choice for
experimenting with and creating hardware-supported security solutions. Since the ISA
includes a limited set of instructions, it raises questions about the potential for attacks
presented in the previous chapter to be easily portable.

Cloosters et al. [96] categorize five elements that make it more challenging to determine
ROP gadgets on RISC-V and ARM64 (rather than x86 or even ARM32): (1) The program
counter register is not a general-purpose register; (2) There is no stack-based return
instruction; (3) The arguments are passed to functions via dedicated registers rather than
via the stack; (4) Memory alignment prevents execution of hidden unaligned instruction
sequences; and (5) Long function prologue/epilogue sequences introduce side effects.

The authors [96] also introduce RiscyROP, a gadget-finding and chaining tool based
on symbolic execution, built on top of the angr framework [149], which effectively ad-
dresses the previously mentioned challenges. RiscyROP scans through a binary to extract
interesting gadgets and their information, then chains them into a Return-Oriented Pro-
gramming (ROP) sequence capable of handling attacker-supplied data. Jaloyan et al. [95]
extend the Galileo algorithm [88] to consider, not only the main execution path, but also a
hidden execution path. They introduce two hidden instruction patterns: overlapping 32-
bit instructions composed by using the last 16 bits of one instruction and the first 16 bits
of the next one, and two compressed 16-bit instructions forming a genuine 32-bit instruc-
tion. This mechanism allows attackers to conceal a backdoor in a RISC-V binary. Gilles
et al. [150] present a Jump-Oriented Programming (JOP) attack designed to perform a
system call on a system with a limited attack surface, supporting only RV32I architec-
ture. They identify gadgets ending with indirect jumps to create a JOP chain (similar to
a ROP chain but ending with jalr instead of ret) that sets up three argument registers
to target a private key, its size, and file descriptor before performing a write system call.

Only a handful of JIT compilers have been adapted to RISC-V [151], and this has only
been done since 2021. Nevertheless, sophisticated attacks against the ISA have already
been developed and are likely to target the corresponding JIT compilers soon. As the
RISC-V software environment continues to expand and more VMs are ported to RISC-V
[152], it is essential to anticipate these attacks and create safeguards for this architecture.
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3.4 Hardware Run-time Protections

Solution Refinement: Jan-Erik Ekberg presents in its lecture [153] the shift to
hardware-supported fine-grain run-time protections as a way to gain both preciseness for
applications that coarse-grained hardware implementations are not able to provide; and
performance from hardware support, that fine-grained software implementations are lack-
ing (grey arrow in Figure 3.3). RISC-V has been an important prototyping ground for
upcoming security solutions due to the reserved custom space and availability of open-
source components. Tao Lu conducted an extensive survey [154] of the security mecha-
nisms available at the time of writing.

Figure 3.3 – Coarseness of hardware/software defenses.

Coarse-grained Solutions: The global run-time protection and memory isolation
mechanisms can be categorized by coarseness, along with their hardware or software
implementation. Coarse-grained software solutions, such as virtual memory, the presence
of an OS, or containerization (and in a sense VMs) have abstracted underlying hardware
features (blue arrow in the figure). In parallel and to support established software utilities,
coarse-grained hardware solutions took into account the upper software part. Among
them, is the presence of a dedicated Memory Management Unit (MMU) along a Page
Table Walker (PTW) to quickly handle virtual-to-physical memory translation (left green
arrow in the figure). As presented earlier, RISC-V defines different privilege modes and
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exception levels to provide the basis of an OS. As an answer for more isolation, Trusted
Execution Environments (TEEs) or enclaves emerged, still keeping the precision coarse,
though. A notable example of RISC-V would be Keystone [143] developed open-source
along with its Software Development Kit (SDK).

Fine-grained Solutions: The scope of the security primitives now needs to be refined
to guarantee the protection of user data and the computing system itself against attackers.
This refinement is first presented through software primitives in the paradigms of the code
and its associated data with, for example, type-safe languages. But it also comes through
the application of guarantees on a binary, such as CFI, which is expensive to implement
precisely and verify at run time (red arrow in the figure). The cost in performance of
using software-only solutions limits the adoption of strong solutions. Co-designed with
hardware support, solutions that accelerate software-defined solutions, or enforce more
complex guarantees on the executable code pave the way for future run-time protections
(right green arrow in the figure). We present such solutions and RISC-V alternatives in the
remainder of this section. We split them into three categories: hardware control-flow
integrity, pointer extension, and domain isolation.

3.4.1 Hardware Control-Flow Integrity

Backward-edge protection: Regarding Control-Flow Integrity (CFI) backward-edge
protections, shadow stacks, despite being a low-cost solution, provide strong run-time
guarantees on the code. We present an example in Figure 3.4, where return addresses
of the application represented in the center are stored in a separate part of memory. In
their study, Burow et al. [115] compare shadow-stack implementations and advocate in
the defense of a hardware version that would then become Intel CET [21, Vol.1 Ch.17] or
ARMv9 Guarded Control Stack (GCS) [155]. Those implementations dedicate a part of
memory to the shadow stack itself, operated in hardware, and not accessible to the user.
Several implementations coexist over the RISC-V ISA. FIXER [22] uses a coprocessor
and custom instructions to push/pop return addresses in the deported shadow stack.
PHMon [156] is a configurable hardware monitor that uses Match Units (MUs) to react
on a succession of instructions and offloads a trigger to a corresponding action through
Action Units (AUs). It can be configured to act on calls and returns and offload the
return address to its dedicated memory, performing the associated equality check for a
shadow stack implementation. Both act as a supplement to the effective call stack and
require a check on returns. RIMI [33] defines a hardware domain (memory range) as its
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only call stack memory, accessible only through dedicated store instruction and isolates
the call stack entirely (presented in more detail in the next subsections). These solutions
are a low-cost high-value mechanism, that guarantees the correct control-flow for return
addresses. The hardware storage of the shadow stack separates it from the main data
memory and sanitizes its access points through custom instructions.

Figure 3.4 – Hardware CFI solutions, backward-edge (left) and forward-edge (right).

Forward-edge protection: For forward-edge CFI protection, landing pads define
the only valid branch/jump targets. Intel defines Intel Indirect Branch Tracking (IBT)
[21, Vol.1 Ch.17] and ARMv8 introduces Branch Target Identification (BTI) [25, Ch.B6]
to add support for landing pads. The right part of Figure 3.4 presents examples of code
instrumentation to support landing pads. For the RISC-V ISA, PHMon has been extended
to define forward-edge CFI [157] in tandem with µCFI [139] for a RISC-V backend (it
initially uses a run-time monitor built on top of Intel PT [21, Chapter 33]). µCFI extracts
context information and derives Unique Code Targets (UCT) from the binary at compile
time. The verification of the UCT is performed through three Match Units (MUs), one
for indirect calls where the target is extracted and one for context data. FIXER also
proposes a forward-edge policy that requires a static or run-time analysis of the program
to extract the Control-Flow Graph (CFG). The CFG is stored as a 64 by 64 policy matrix
in offloaded memory, where any check on an input caller should match the callee. The
implementation is limited to 64 call-site addresses and requires preprocessing and analysis
of the binary. Bratter [23] uses RISC-V “hints” to define instructions that store and
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check branch tags in a dedicated CSR. It is limited to four concurrent tags in the CSR
and requires the integration of additional instructions at compile time through binary
scanning. In addition, a RISC-V specification [158] is currently being drafted to support
both shadow stacks and landing pads. These solutions accelerate the CFG verification in
dedicated hardware. Different levels of CFG precision are used, either forcing control-flow
changes to function or basic-block entries or using a complete function CFG. All solutions
require the binary to be compiled with additional information, a more precise solution
impeding the compilation time.

3.4.2 Memory Tagging and Pointer Extension

Memory Tagging: To enforce temporal and spatial memory safety, which violations
are among the most used attack vectors, ARM-v8.5 introduces the hardware support of
Memory Tagging Extension (MTE) [24]. To tag code or data memory, a separate part
of memory stores one-to-one tag association to data. The corresponding tag is embedded
in the pointer-free space and checks at run time for a match. At compile-time, binaries
are instrumented and associated “colors” to divide them into isolated regions [159]. The
idea of embedded metadata to give pointer access to a region of memory is also extended
with the use of “fat pointers” and associated capabilities that go past the tag itself.
This concept is implemented by TIMBER-V [27] on the RISC-V ISA, which provides
tagged memory to define isolated regions named “enclaves”. It separates a root region, a
supervisor region, and untrusted application regions. It provides a trust manager called
TagRoot that bootstraps the enclaves and maintains isolated execution. While its memory
overhead is low due to the reuse of shared memory among enclaves (through stack and
heap interleaving as presented by the authors), the performance penalty of this isolation
is averaged at around 25%.

Pointer Authentication: As landing pads only provide coarse-grained CFI, authen-
tication and signing of memory pointers help refine it. A Pointer Authentication Code
(PAC) is computed before a control-flow change using a lightweight algorithm. As the
actual address space in 64-bit architectures uses less than 64 bits, the PAC is stored in the
unused space. ARMv8 implements pointer authentication on indirect jumps through PAC
[25, Ch.B6], and on return addresses through PAC-RET [25, Ch.B6]. It adds instructions
to compute the PAC from the address itself and a context (i.e. values of the stack pointer
or link register). Its main principle is presented in Figure 3.5. “PAC it up” [160] and
PACStack [161] extend the principle to authenticate the call stacks through Message Au-
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Figure 3.5 – Memory tagging and pointer extensions.

thentication Codes (MACs) using both the address and the MAC of the previous address
to generate the newest one. On RISC-V architectures, RetTag [26] guarantees return ad-
dress integrity through PAC authentication, and Zipper [162] chains the return addresses
using MACs. These solutions all define integrity through pointer signing rather than du-
plication of the call stack. Calls and returns are instrumented with encryption/decryption
of the signature and the performance overhead is directly linked to the hardware imple-
mentation of this mechanism. Similarly to the previous subsection, adding guarantees
to the forward-edge flow transfers is notoriously more complex. For example, the base
MTE usage only provides probabilistic checks, making it an offline software development
tool. Extended with PACStack [160] to provide run-time safety, the performance over-
head reaches 13%, and code-size overhead 22%. Overall, PAC and its derivates provide
authenticity guarantees on the addresses used without the need for a dedicated shadow
stack.

Capabilities: Extending the metadata addition in pointers through unused address
space, even more metadata is appended to the address by defining “fat pointers”. The fat
pointers add several authentication values to the metadata of the pointer, generated at
runtime, as presented in Figure 3.5. Among them Shakti-MS [163], a RISC-V processor
extension that enforces memory safety adds a Stack Frame Cookie (SFC) unique to all
functions, a ROData Cookie (RODC) to protect the read-only segment of the program’s
memory, along with a base/bound couple that determines the maximum permissible range
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the pointer can access. Along with the metadata embedded in each pointer, the authors
define wrapper functions to generate and verify them through “safe” malloc free wrap-
pers that generate and verify the fat pointers. Capability Hardware Enhanced RISC
Instructions (CHERI) [29], [30] complement the fat pointers with both a base and offset
to determine the maximum bounds of the memory access, along with permissions linked
to the pointer (i.e. fetch instructions, load/store data, load/store capabilities, etc.). A
hidden validity tag is associated with each physical memory location that can hold a ca-
pability, indicating the presence of a valid capability. Stores and loads are atomic with
their corresponding tags, maintaining a one-to-one mapping safe even with concurrent
accesses. CHERI first started as a prototype extension to the 64-bit MIPS ISA, but has
since been extended to major compiler toolchains, and defined the specification for the
ARMv8 or RISC-V ISAs [30]. These mechanisms provide strong security guarantees at a
heavy cost in code-size overhead (CHERI fat pointers are 256-bits long)

3.4.3 Domain Isolation

Memory Protection Keys: As presented in the previous chapter (Section 3.2.3),
Memory Protection Keys extend the PTE 10 unused bits to store permission keys asso-
ciated with that page. They allow for a switch of domain and permissions while staying
in the user space, making efficient permission switches. As an alternative to Intel MPK
on the RISC-V ISA, SealPK [32] stores a key in the PTE space reserved for custom use
and defines a co-processing unit that can hold up to 1024 keys, eliminating Intel’s use-
after-free vulnerability of the key, by tracking the page using each key at the OS level.
Schrammel et al. define Domain Keys for in-process isolation (Donky) [31] building on the
MPK support available in the Linux kernel. They provide a secure user-space software
framework and monitor to protect domain permissions along with a lightweight hardware
extension that stores the different domain policies through a dedicated CSR. They also
implement a dedicated CPU exception triggered on incorrect accesses or modifications of
the CSR. The (currently in draft) RISC-V N extension that implements user interrupts, is
used to integrate a Donky hardware call gate to cross domains. It is also used to filter any
system call from the user space 1. The speed-up of such solutions to transfer memory per-
missions in a process is multiple orders of magnitude faster than regular context switches.

1. Note: instruction filtering often comes along in security monitors, preventing their usage from the
untrusted region. FlexFilt [164] provides a co-processing unit dedicated to the setup and application of
flexible instruction filters at run time.
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These two solutions are presented on the left side of Figure 3.6, with their corresponding
monitors.

Figure 3.6 – Domain Isolation, PTE-based (left) and instruction-based (right).

Instruction-level Domain Isolation: Without the need for a monitor to define
domains, dedicated instructions linked to each domain present similar in-process isolation
at a lesser instrumentation cost. To this end, the RISC-V Physical Memory Protection
(PMP) unit, which already defines different memory regions, could be extended with tag
information. RIMI/DEMIX [33], [34] add a Domain Memory Protection (DMP) unit on
top of it to attribute domain information to each region. The authors duplicate memory
access instructions for each domain, tagging them with domain information, and verify
that the current domain at execution matches the one extracted at the decode stage for
a given instruction. It does not take precedence over the rules defined in the PMP and
acts only as a complementary validation. The usage of the instructions themselves, as
an isolation mechanism, provides a basis for a shadow stack, or domain isolation. Dedi-
cated load/store instructions define the shadow stack (similar to 3.4.1) and its dedicated
memory region set in the PMP/DMP. The mechanism can also be used to enforce domain
isolation through dedicated domain switch instructions tied to specific domains, along
with separated data access from each domain, once again with their dedicated memory
access instructions. As an alternative to PTE-based domain isolation, this instruction-
level design of domains provides a low overhead for strong isolation guarantees.
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3.5 Summary

Recently, complex attacks against the RISC-V Instruction Set Architecture (ISA) have
been conducted, and these are expected to become more frequent and intricate. Therefore,
it is essential to anticipate potential future attacks to establish effective defenses. Similarly
to other architectures, the shift to hardware-supported fine-grained run-time protections
is notable in the RISC-V architecture. Hardware-based solutions benefit from the space
left in RISC-V standards for extensibility at several levels. The implementation of custom
instructions and their associated hardware support is multiple and opens up the space for
prototyping in concrete use cases.

The cost of co-processing: As presented earlier, the RISC-V Rocket processor
implements a coprocessor interface named RoCC that provides a unified way to build a
hardware unit that defines custom instructions (as fixed in the RISC-V standards). Simi-
larly, the CVA6 processor defines the CV-X-IF coprocessor interface, compatible between
all cores of the CORE-V family (CVA5, CVA6 as application class cores, or CV32E40P/S
as embedded class cores). These interfaces provide a way to prototype and implement
custom instructions while keeping the main core untouched. They guarantee compatibil-
ity with future standard extensions by preserving custom instructions in their dedicated
space. However, they restrict access to the internals of the processor that might be re-
quired for the setup of more complex solutions. The balance between performance and
invasiveness is one axis of the design space. The adoption of the solution mainly de-
pends on its impact on the core resource utilization, from which we define “hardware
requirements (HR)” :

HR1: The area, latency, and energy overhead on the hardware design should
remain minimal, whether the implementation uses a co-processing unit or changes
in the pipeline.

The cost of portability: On the other hand, invasive (even minimal) changes to
the core bring out the most performance but break backward compatibility and might
discourage wider adoption. This compatibility break is also present at the level of the
added instructions. RISC-V “hints” are understood as NOPs in the case the core does not
implement the corresponding action, however, the bit space is reduced as it has to be
embedded in existing instructions. Another example is highlighted by the RISC-V CFI
[158] draft specification. The use of the instructions in shadow stack mode falls back to
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having no effect, keeping instrumented binaries portable. Using only the custom stack
as the control stack breaks compatibility with cores that do not implement the custom
instructions. Another axis opens up in the design space where portability and backward
compatibility must balance performance. The main parameters that define the possible
adoption of the solution are the impact on the code size and code performance, from
which we define:

HR2: The impact on the instrumented JIT code in terms of performance and
code size should remain minimal for the solution to be integrated.

Figure 3.7 – Requirements, Research Questions and Contributions.

Both requirements define the design space axes and partially answer RQ1. They provide
a basis to compare solutions between them in a common context, as this comparison is
often complex and not investigated in the literature, comparison being made against ven-
dor solutions or the corresponding software implementations. We extend the previously
introduced figure with the hardware requirements in Figure 3.7.
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Chapter 4

GIGUE: JIT CODE SNAPSHOT

GENERATION FOR HARDWARE TESTING

4.1 Motivation

As presented in the previous chapters, VMs are complex run-time environments re-
sponsible for the correct execution of a source language on a variety of architectures. Their
widespread deployment and the impact of vulnerabilities discovered in them motivate the
need for efficient and efficient secure solutions. The best results from the literature have
been obtained using available hardware support for security primitives in commercial
cores [9], [10], [165]. The development of such primitives in the open-source RISC-V ISA
environment encourages prototyping. However, the design of hardware security primitives
tailored for VM usage involves a large technology stack, ranging from the VM (or JIT
compiler) itself down to the processor design under test. As it considerably slows down
the development and implementation of solutions, we want to flatten the stack needed by
a hardware developer, providing a meaningful but simplified workload. It would serve as
a comparison of solutions and the implementations of requirements SR1 (JIT code pro-
tection), SR2 (JIT data separation), and investigate HR1/HR2 (impact on code size and
performance) thus providing an answer to RQ1 (comparison between solutions).

4.1.1 Technology Stack

However, when designing custom instructions for the JIT compiler, a huge technology
stack bridges the VM JIT compiler to the actual custom instruction support in hard-
ware. Figure 4.1 presents the main elements involved. On top of the hardware, lives
the operating system, providing base capabilities to the VM, itself distributed for the
OS/architecture combination. Adding custom instructions would require the extension of
the VM and OS along with the hardware itself (dotted circles on the figure).
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Figure 4.1 – JIT-oriented hardware development.

In the context of VMs, the technology stack ranges from high-level managed and dy-
namically typed source code down to generated machine code. Since the JIT compiler
generates machine code at run time, we believe that it could use JIT-specific instruc-
tions dedicated either to common security measures (shadow stack [22], pointer integrity
[28], or domain-based isolation [33]), acceleration measures (vector operations in the V
extension [20], neural network operations [166]), or VM-specific measures (type checking,
object offset verification). However, adding a new instruction to the JIT compiler requires
support from both the OS and the underlying processor. As the RISC-V ecosystem is still
developing, maintaining the whole stack covering all levels of execution makes it complex
to prototype, test new instructions and their impact at the different levels of the stack.
Alongside software complexity, the multiplicity of core implementations, either through
their design or the extensions they support, makes it very complex to maintain or test
ideas.

4.1.2 Existing Development Tools

Extended CPU emulators can be used to implement new hardware primitives and
support their corresponding actions. Among them, QEMU [43], the Unicorn [40] wrapper
on top of it, or gem5 [167]. Those emulators provide insight into both the executed
software and its underlying microarchitecture. They can be extended to support new
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instructions in two ways: addition to the simulated core itself, or instrumentation of
“illegal instructions” exceptions. The binary itself then has to implement the custom
instructions, either by generating the raw machine code bytes or extending an existing
toolchain (i.e. GCC, LLVM).

On the hardware side, testing the correct implementation of the ISA in a CPU is two-
fold: (1) ensuring the correct behavior of the ISA as defined in the standards, an assembly
test suite (riscv-tests [168]) is defined to ensure the soundness of implementation; (2)
ensuring the correct implementation of the components of the CPU, the different stages
of the pipeline, memory hierarchy and peripherals through usage of “testbenches” and
simulations. Soft-core implementations are written in Hardware Description Languages
(HDL) that are compiled into “bitstreams” tailored to an FPGA model to deploy on
a reconfigurable architecture for prototyping. Tools help simulate the design through
waveform generation, among them closed-source commercial simulators such as Synopsys
VCS, or Verilator [169].

To prototype new instruction ideas for the JIT compiler, we have to bridge the gap
in the testing framework between the correct implementation in the JIT compilation
pipeline, and guarantees enforced by the hardware itself. As stated in the introduction, the
technology stack is complex, and portability is mostly guaranteed for all VM components
(through major compilers) apart from the JIT compiler. Prototyping extensions on the
hardware side could use a simplified version of the JIT code region and assess the impact on
the core through four main metrics: (1) the performance overhead through the measured
number of cycles, (2) the code size overhead on the instrumented code, (3) the area
overhead of in FPGA resource utilization the solution adds, and (4) the impact on latency
and the maximum frequency of the design. We believe having an insight into those metrics
at the prototyping stage of a solution will guide our choice for implementation in the real
JIT compiler. To ease prototyping, we designed Gigue, a tool that generates executable
binaries similar to the JIT code region.

4.1.3 Custom Instruction Examples

To provide a better understanding of what Gigue aims to support, we present examples
of custom instructions of increasing complexity that could be added to a processor. The
first one consists of a hardware-accelerated primitive while the two others define hardware
security primitives:
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— E1: Dedicated instructions to handle bits rotation. These instructions are included
in the RISC-V B extension that is not yet ratified and integrated into the standards.

— E2: A shadow-stack implementation with two instructions to push and pop a return
address to a dedicated call stack, taken from the FIXER coprocessor implementation
[22]. Any shadow stack pop is followed with a check for equality.

— E3: A pointer authentication of return addresses that signs addresses pushed on
the stack and authenticates them on returns. It is built as a simplification of the
ARM PAC-RET [25, Ch.B6] implementation.

The implementation of (E1) adds four instructions, two rotations between registers (R-
type ror and rol) and the corresponding rotation using an immediate value (I-type rori).
The implementation of (E2) adds two new instructions dedicated to the handling of return
addresses during calls and returns that either push or pop it to the duplicated stack, using
spush and spop. Calls should use the dedicated instructions for return address push, and
returns should use the dedicated return address pop. (E3) is implemented by generating
an additional instruction before calls, signing the address to which the control-flow is
transferred. The signature is generated from the address itself and a context, the value
of important registers. In this implementation, we used the link register (ra) and stack
pointer (sp) along with a secret key. All calls are instrumented with authentication using
the instruction pac and all returns are verified with the instruction auth.

4.2 Gigue: Design

To speed up hardware prototyping in the context of JIT compilation, we present Gigue,
an open-source randomized workload generator that outputs executable snapshots similar
to the JIT code memory region. It implements JIT custom instructions without the need
to extend the whole technology stack to operate. As the JIT compiler 1 is the sole machine
code generator, a focus on its output and how it can be instrumented provides good insight
into the interest of one solution over another. Gigue is heavily parametrized to represent
different JIT code regions (and therefore different VMs) as well as different application
types running on top. Gigue usage is three-fold: (1) generate OS-independent JIT code
regions that qualify different VMs or applications; (2) generate a set of instrumented
binaries in ELF format, ready to be executed on a core; and (3) verify the execution of

1. Ahead-of-Time (AOT) compilers are not taken into consideration in this work as they generate
code offline and can instrument it with precise CFI.

86



4.2. Gigue: Design

generated binaries using a CPU emulator (Unicorn [40]) extended on the software side to
support the new instructions.

With Gigue, our objective is to ease the complexity of the technology stack involved
in the support for custom instructions in the JIT compiler. Its design revolves around
three main objectives:

1. Parametrization: Gigue is parametrizable to accurately qualify application classes.
The parameters are covered in Section 4.2.2 and qualify both the size of JIT el-
ements, the type of instructions they contain, interactions between elements and
generated data.

2. Modularity: Gigue is modular and provides facilities to add user-defined structures
that are found in the JIT code region (methods, PICs, hidden classes, etc.) and is
presented in more detail in Section 4.2.4.

3. Testing: Gigue defines a test framework to guarantee the correct setup of JIT ele-
ments and the interpretation loop. It also checks the correct decoding and execution
of the generated binary as presented in Section 4.2.5.

It generates a randomized executable workload similar to a JIT code region. The
region structure was inspired by the Pharo VM JIT code region (see Chapter 6) but
is adaptable to other architectures. The generated executable ELF file defines both an
interpretation loop and a static version of the JIT code and JIT data. The JIT code
elements (methods and optimization structures) are filled with random instructions based
on input parameters.

4.2.1 Binary Structure and Execution

Structure:

The generated binary is composed of two main domains: a JIT code region that
contains machine code structures usually found in VMs, and an interpreter loop that calls
methods in the JIT code region in random order. Figure 4.2 presents the global structure
of the binary, and presents the components of the JIT code region:

Methods: A method is characterized by its size, call number, call depth, number of
local variables, and number of used callee-saved registers. It contains (1) a prologue that
adds space on the stack to save callee-saved registers and set up local variables through
the frame pointer; (2) a body, filled with random instructions and calls to other methods
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or PICs; and (3) an epilogue, restoring register values saved on the stack and destroying
the stack frame.

PICs: A polymorphic inline cache (PIC) is characterized by a case number and
composed of a machine code switch case checking a corresponding class register for a
value and jumping to the corresponding method offset. We use simplified class values
(simple integers) and add the corresponding methods right after the “switch” statement.
Calling a method in a PIC requires loading a corresponding value into the fictive class
register before issuing a jump to the switch statement.

Trampolines: A trampoline is a machine code helper added to the JIT code re-
gion and used to handle the interoperability between the interpreter and the JIT code.
Trampoline usage covers a wide variety of utilities, from accessing object field offsets
to type-checking JIT methods and PICs, and switching execution stacks. The base
generation Gigue provides simply defines control-flow trampolines to correctly transfer
the control flow back and forth between the two parts of the binary: callJITElt and
returnToInterpreter. The call trampoline is targeted by the interpreter calls. It stores
the incoming return address on the JIT stack, changes the link register to the return
trampoline and transfers the control-flow to the initially targeted JIT method. The re-
turn trampoline restores the interpreter return address and hands back the control-flow.

Execution:
Figure 4.2 – Binary Structure

and Execution.

Gigue generates an ELF binary that
follows the execution design presented in
Figure 4.2. The JIT code region contains
methods and PICs filled with random in-
structions. The interpretation loop calls
every one of the JIT elements in random
order and each element can call other JIT
elements. A call from the interpreter goes
through the call trampoline that sets up
the return address to the return trampo-
line and transfers the control-flow. Starred
arrows set the PIC case number before
performing the call to a PIC. An assem-
bly template incorporates the interpreta-
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tion loop, the JIT code region (at a fixed
offset), and generated data whose base address is stored in a dedicated register (ensuring
correct data accesses from stores and loads). The template is then linked according to the
test framework of the riscv-tests official repository, defining the correct behavior of a
core when confronted with different instructions and scenarios as defined in the standards.
The binary is ready to be executed bare metal on a RISC-V core.

4.2.2 Parametrization

Gigue parameters are shown in Table 4.1 and split into two categories: VM Character-
ization tuning the layout of the JIT code region and Application Characterization tuning
the JIT elements. The usage of these parameters is detailed in the next sections.

Type Description Name
VM JIT code region size sizeJIT
VM Frequency of JIT elements weightselts
VM Usable registers regs
App Total number of methods nbmethods
App Method size variation µsize, σsize
App Call occupation in methods µcalls, σcalls
App Call intricacy and depth λdepth
App PIC case number λPIC
App Frequency of instructions weightsinstrs
App Data characterization sizedata, generator

Table 4.1 – List of Gigue input characterization parameters.

VM Characterization:

Parameters characterize the JIT code region for a specific VM by specifying a fixed
JIT code region size. It also specifies the types and associated weights of the different JIT
elements (methods and optimized structures) along with available registers, i.e. registers
used by the VM itself that will not be used by the application. We believe that these
values help distinguish VM JIT code regions from one another.
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Application Characterization:

Parameters characterize an application through three main categories of parameters:
method characterization (number, size and size heterogeneity), PIC characterization (PIC
number distribution), instruction characterization (frequency of each type of instruction),
and data characterization (size and layout). We show in Section 4.3 how different types
of application classes can be defined using those parameters. Together, these parameters
help define different categories of JIT code snapshots. For example, memory-intensive
cases are generated by pushing the instruction distribution in favor of loads/stores.
Intense call applications are generated by pushing the call occupation and depths of JIT
methods.

4.2.3 Code Generation

Main Generation Routine:

Gigue is designed around a Generator object, responsible for the construct of the
target binary according to the input parameters. It manages the JIT code region by
adding the different elements, starting with the chosen trampolines, then with methods
and PICs. The elements are then filled with random instructions using the Builder
object, the sole emitter of machine code in the design. The main Generator phases are
presented in order:

1. Trampolines installation: Trampolines are added at the start of the JIT code
region, their address is kept for future reference.

2. Elements addition: JIT elements are added to the JIT binary according to their
corresponding weights incrementally. They are filled with instructions at that time
and given arbitrary call occupation and depth. Their addresses are stored for call
graph resolution.

3. Call patching: Once all element addresses are known and stored, Gigue patches
each method with the corresponding calls to other elements. The call occupation
parameter is satisfied through the number of calls. The call depth is satisfied by
targeting elements with a call depth decremented by one.

4. Interpreter calls generation: The interpretation loop is generated by adding a
call to each JIT element in a randomized order. The Gigue binary correctly executes
when it manages to run through all the interpretation loop calls.
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5. Data generation: The corresponding JIT data sections are generated with a given
size, following the JIT code in the address space. This space is usually exploited to
store object tables, constant values that are too wide to be embedded into instruc-
tions as immediate values, or code pointers.

6. ELF generation: A linker script installs the binary and data in their corresponding
ELF sections, setting up U-mode and other CSRs if needed. It then outputs the self-
contained executable, ready to execute on a core.

Randomness:

Weighted Sampling: To determine used registers, instruction types, and JIT ele-
ments to generate, Gigue uses a list of weights associated with the elements. In the case
of registers, it makes it possible to add pressure on frequently used registers. For example,
temporary register t0-t6 or the hardwired zero x0 are frequently used by routines and
they should expect a stronger usage. Available instructions are split by type: R-egister,
I-mmediate, U-pper immediate, J-umps, B-ranches, S-tores, and L-oads. Note that while
load instructions officially are I-type instructions, they were isolated to have a better
separation between arithmetic instructions (R and I instructions) and memory access in-
structions (L and S instructions). As an example, it is possible to qualify memory-intensive
applications using a higher frequency for memory access instruction types.

Distribution Laws: Gigue uses probability distributions parametrized by its inputs.
These distributions can be parametrized but have been set to meaningful normal distri-
bution equivalents by default. The method size variation alters the mean method size
using a (positive or negative) percentage following a truncated normal distribution. The
call occupation uses the same principle but derives the percentage of the method body
that should be filled with calls. The call depth follows a Poisson distribution, providing
shallow call stacks when λ = 1 but more complex when used with λ = 4 for example.

Sanity Checks:

Due to the random nature of the generated workload, several sanity checks are per-
formed at generation time to guarantee the correct execution of the program. (1) The
control of the registers that are used by random instructions guarantees no crucial register
is overwritten breaking the calling convention. They are fixed at generation through the
input parameter. (2) The call patching is performed once the methods are filled with
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instructions and a leaf method is generated. Methods of a given call depth can only call
methods of the call depth strictly inferior. This call graph construction method and the
presence of a leaf method (no call depth, no callees) guarantees the complete execution
of the program. Through the call patching, we also prevent recursive and mutual func-
tion calls to avoid infinite loops. (3) Jumps and branches are sanitized to stay in the
method body and avoid landing in the middle of a call to prevent any disruption to the
pre-established control flow. (4) Data accesses are random through the offset but are
monitored using indirect accesses through a dedicated base register.

4.2.4 Modularity and Extensions

For VM characterization, each JIT element (trampolines, methods, and optimizations)
answers a simple API to be added to the binary through the Generator. New constructs
are added through a subclass of a JIT element along with its helper and probability weight.
The only element that handles machine code instructions is the Builder, responsible for
both outputting lone instructions and constructs such as calls or prologues/epilogues. It
also enforces correct alignment for data access and sanitizes the landing of branch/jump
instructions. Mechanisms using new instructions are integrated through a new subclass
of the main builder, redefining the API of the main instructions and constructs it wishes
to add or overload.

The three extension examples presented in Section 4.1.3, E1 (rotations), E2 (shadow
stack), and E3 (pointer authentication) were implemented in Gigue. Overall, the com-
plete handling of the three different extensions requires the addition of the instructions
encoding and a corresponding builder for changed constructs. The Builder element is
subclassed to: add the new instructions to their corresponding types for E1, define dif-
ferent prologues/epilogues for E2/E3, and extend calls for E2/E3. Gigue is written in
object-oriented Python code, the addition of E1 took 161 lines, E2 154 lines, and E3 162
lines of code (counted using cloc, code formatted using black) respectively. These addi-
tions are mostly boilerplate code covering the instruction details and Builder/Generator
extension. In addition to the code portion of the generator, and as presented in the next
section, the test framework is also extended with a total of: E1 33, E2 31, and E3 53
to support the software execution of custom instructions in the test framework presented
next.
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4.2.5 Test framework

Gigue uses a test suite of around 150 parametrized unit tests (expanded to 2500) to
assert guarantees on the generated binaries. Part of those tests directly run the generated
machine code. To support the decoding and execution of machine code, we use the
Capstone disassembler [170], another in-house disassembler for custom instruction unit
testing, and the Unicorn CPU emulator [40]. It is a lightweight wrapper on top of QEMU
that allows for simple binary instrumentation and tracing. We use Unicorn to execute
the complete binary before generating the ELF file. It allows for quick tracing and smoke
testing of the execution of custom instructions. It defuses early any issues that might be
encountered when dealing with the real hardware.

# tests/fixer/conftest.py
class FIXERHandler(Handler):

def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.shadow_stack = []

def handle_cficall(self, uc_emul, pc, instr):
fixer_reg = self.disasm.extract_rs1(instr)
ra = uc_emul.reg_read(fixer_reg + 1)
self.shadow_stack.append(return_address)

def handle_cfiret(self, uc_emul, *args, **kwargs):
ra = self.shadow_stack.pop()
uc_emul.reg_write(UC_FIXER_CMP_REG, ra)

...

Figure 4.3 – Handler extension for the FIXER (E2) model.

In addition to simple baseline testing of unmodified binaries, we also adapted the
Unicorn hooks to catch any unknown instruction. The custom instructions are emulated in
the software directly before redirecting the control flow to the binary. We define a Handler
base object that instruments the Unicorn execution by hooking several utilities if required.
Among them, we define an instruction tracer, a register tracer, and an exception tracer for
debugging purposes. In addition, we define a custom instruction handler API and hook:
by defining a method named handle_<name>, the handler takes care of monitoring the
PC, executing the corresponding software hook, and resuming the execution. Figure 4.3
presents how the cficall instruction from (E2) (simple shadow-stack) is handled when
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the hook is triggered. A software shadow stack is used, and the value of the link register
is read and appended to the list. On a return, the shadow stack pops the latest return
address and places it in the dedicated register.

Any newly-defined handle function passed to a subclassed Handler like the one pre-
sented in Figure 4.3 is tied to a disassembler capable of decoding new instructions. To
this end, we define pytest “fixtures”, functions that set up and arrange the test before
running the stimuli and assertion. A test function requests the result of a fixture by sim-
ply passing the fixture as an argument to the test. We define fixtures for all disassemblers,
emulator setups, and handlers. Starting from the base Disassembler and Handler, we
provide an easy way to compose the elements in the tests. In addition, a fixture at the
scope of a function can activate the base Gigue logging for a given unit test.

4.3 Workload Qualification

4.3.1 VM Qualification

By the start of 2021, no major VM held a JIT compiler targeting the RISC-V archi-
tecture. We planned to extend the Pharo VM JIT compiler as a meaningful production
VM that uses a simpler JIT compiler hierarchy than other high-level VMs. The Pharo
VM uses a linear non-optimizing JIT compiler with registers fixed ahead of time. This
extension is presented in more detail in Section 6. The predictability of the JIT compiler
helps us extract meaningful information from its configuration parameters and associated
JIT code region. To find corresponding VM parameters associated with VM description,
as presented in Table 4.1, we gathered values from the Pharo VM implementation and pre-
vious analysis around the simulation environment used by OpenSmalltalkVM [38], from
which the Pharo VM is derived. We also use information from the Pharo VM JIT code
region raw machine code.

Code size: The size of the JIT code region is defined at startup by the JIT compiler
and through an upper bound. In the case of the Pharo VM, the JIT code region is
initialized with around 1MB of memory 2 (depending on the back-end) and an upper
bound of 16MB 3. This upper bound is set to allow inter-method calls and jumps to use

2. https://github.com/pharo-project/pharo-vm/blob/pharo-10/smalltalksrc/VMMaker/CogA
bstractInstruction.class.st#L1018-1026

3. https://github.com/pharo-project/pharo-vm/blob/pharo-10/smalltalksrc/VMMaker/Cogi
t.class.st#L9748-L9755
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small offset call and jump instructions if possible. Keeping jumps constrained reduces the
number of instructions needed to redirect the control flow and avoids embedding sensible
jump targets in the JIT data.

Registers: The used registers are defined and fixed ahead of time for their intended
usage. All registers apart from the program counter, link register, stack pointer, and
frame pointer, are passed as arguments into Gigue. A class register is used during the
polymorphic inline cache switch phase to determine the correct receiver. Note that as we
initially used all registers available, once we ported the Pharo JIT compiler to RISC-V
(presented in Chapter 6), we retrofitted the list of registers to match the ones used by the
VM.

Number of sends % of linked sends
Monomorphic 3566 90.4 %
Polymorphic 307 7.8 %
Megamorphic 70 1.8 %

Table 4.2 – Inline caches usage analysis [38].

Code elements: The frequency of the different JIT code elements (methods and
PICs) is extracted from Miranda et al. [38] analysis of the JIT code region. They present
the rich simulation framework used for the OpenSmalltalkVM development and extract
information from the simulated JIT code region. They stop the simulation when the ma-
chine code zone reaches 1MB and present its contents. In Pharo, every “call” to another
method is a “message send” to another object. When the JIT compiler first generates
the corresponding machine code, it generates placeholder code to call the trampoline send
routine - “unlinked sends” - that are then resolved and inlined along with a type guard
when executed for the first time - “linked sends”. Inline caches are either monomorphic,
holding the call site they target, polymorphic, holding up to 6 different cases, or meg-
amorphic, holding up to any number of cases. Their distribution is presented in Table
4.2, showing that 90.4% of linked sends (i.e. resolved call sites) are monomorphic.

4.3.2 Application Class Qualification

We define an application class in the JIT code region through the size of the methods,
the call pressure between methods, the representation of different types of instructions,
and the size of the associated data.
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Call Pressure: Extracted from the same analysis using the simulated environment,
information on the JIT code region is presented in Table 4.3. The authors show that 1752
methods are found in the JIT code region, and, as they stopped execution after reaching
1MB, 600 bytes long methods on average. However, this method size embeds both the
metadata, type guard, prologue, epilogue, body and method-local data. Each method
contains 3.63 sends on average, however, 37.9% of those sends are unlinked (i.e. never
used), bringing down the used sends per method to 2.25 on average. To calculate the
call occupation (percentage of the method body that performs calls), we use the method
mean size, average call per method, and the call size, totaling 3%.

Number of methods 1752
Number of sends 6352
Average number of sends per method 3.63
Number of unlinked sends 2409
Percentage of unlinked sends 37.9%

Table 4.3 – JIT code region analysis [38].

Instruction distribution: The representation of the different types of instructions
is two-fold, in their usage and their encodings. The instructions encodings are tied to
the standards, and in the case of RISC-V, consists of: I-mmediate, R-egister, J-ump,
B-ranch, and S-tore. Loads in RISC-V are encoded using the I encoding, which we define
in Gigue as L-oad. As Gigue does not implement floating-point instructions, the link
between the usage representation is direct: integer arithmetic (I and R), memory accesses
(L and S), control-flow changes (B and J), and floating-point arithmetic (unimplemented).
Cross-language benchmarks designed around VMs, such as “Are We Fast Yet?” [171], are
used to compare language implementations and do not provide sufficient information on
the underlying JIT machine code. The same issue occurs with benchmarks built around
specific languages or platforms such as SPECjvm2008 [172] or DaCapo [173] around the
Java VM, or Jetstream [174] and Kraken [175] around JavaScript.

Arithmetic Memory Access Control-Flow
min 37.29% 6.57% 2.14%
max 79.43% 34.76% 41.86%

geomean 60.52% 18.87% 14.62%
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Figure 4.4 – Instruction execution distribution of the BEEBS [36] benchmark suite (left)
and SPEC CPU-2017 [37] (right).

To define these representations, we use execution analysis of the SPEC CPU-2017
benchmarks [37] (Intel Core Xeon), and the BEEBS [36] (ARM Cortex-M0) benchmark
suites. Those benchmarks are used to characterize CPUs and the energy consumption of
embedded platforms. From the two referenced studies, we extract the instruction distri-
bution and report them in the aforementioned categories in Figure 4.4. The corresponding
ranges are displayed in Table 4.4 to present the available design space to explore.

4.3.3 Summary

We derive input Gigue values from the above metrics: the ratio of the size of the JIT
code region and number of elements is kept (but minimized due to simulation times),
the list of usable registers derived from the fixed registers the Pharo VM uses, and the
weights of JIT elements (with an additional custom distribution for PIC/MIC distinction
that reproduces the distribution presented earlier) in the Pharo VM. We also propose a
baseline for application qualification by defining the number of methods and their call
occupation, profiles for instruction type distribution extracted from existing benchmark
analysis. From these parameters, we generate and augment application classes and work-
load.
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"registers": [0, 5, 13, 14, 18, 19, 20, 22, 24, 25, 26],

"elts_weights": [90, 10], // [methods, PICs]

"pic_ditribution": "custom_pic", // 8% PICs, 2% MICs

"jit_size": 20000, // Ratio kept for

"jit_nb_methods": 140, // ~600 bytes methods

"call_occupation_mean": 0.03, // ~2-3 calls/method

"instr_weights": [20, 20, 20, 12, 12, 8, 8], // [R, I, U, S, L, J, B]

"method_variation": [0.2, 0.1] // (mean, standard deviation)

"call_occupation": [0.03, 0.03] // (mean, standard deviation)

"call_depth_mean": 2, // Poisson parameter

"data_size": 2000, // Data size (1/10 JIT code)

"data_generation_strategy": "random", // Generation algorithm

4.4 Use Case

Gigue provides a synthetic workload that uses custom instructions for a hardware de-
veloper. To this end, we present the capacities of Gigue by generating different application
classes with varying call numbers and memory access intensities. We show how we qualify
both VM and applications and two subprojects from Gigue that ease the deployment and
running of benchmarks. Prelude handles the patching of the compiler toolchain and the
generation of simple test samples implementing new instructions. Toccata handles the
workload generation, running and results gathering on input cores.

4.4.1 Workload Generation

With input parameters defined, we augment the workload around two parameters: first
the number of calls performed throughout a method, and second the number of memory
accesses. In addition, we vary the number of methods and their corresponding sizes to
amplify application examples besides the initial example. For calls, the initial setup uses
a call occupation of 3% of the method bodies. We derive the call occupation to 1% and
6% of their method bodies to add new scenarios. Similarly, the base setup uses 8% of the
instructions in the method bodies to access memory (through load/store). We derive
the memory access intensities to 4% and 12% to add new scenarios.

We also experiment with the number of methods and their sizes by fixing the total
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Figure 4.5 – Application classes generation.

size of the JIT code region, and augmenting the base number of methods that generates
∼600 bytes methods to also generate ∼400 bytes or ∼800 bytes methods. The three
axes of exploration are presented in Figure 4.5, with the left part fixing the base memory
access intensity and varying the call occupations and method sizes, resulting in 9 “appli-
cation classes”. Similarly, the right part fixes the call occupation and varies both memory
access intensities and method sizes, defining 9 other “application classes”. Note that the
application classes are categorized here using their tracing results gathered by Toccata
(presented in the next subsection) and contain both prologue/epilogue instructions, along
with system utilities in the case of longer binaries, offsetting the input parameters. For
example, the memory accesses contain the additional stack frame setup instructions, and
calls are affected by prologue/epilogue instructions as well.

4.4.2 Experimental Setup

To execute the generated binaries, we use Toccata, a workload runner that instruments
Gigue through varying input parameters, runs the generated binary on top of the Verila-
tor model of a core, then collects and parses the execution results. We interface Toccata
with two cores written in different Hardware Description Languages (HDL): Rocket [39],
written in Chisel, a high-level HDL that extends Scala, and CVA6 [3], written in Sys-
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temVerilog. The experimental setup is presented in Figure 4.6, both cores at the bottom
along with their final objective of FPGA deployment through Vivado. The sources of both
cores are used to generate their corresponding Verilator [169] models (cycle-accurate sim-
ulation). Files in green represent results that Toccata collects for each Gigue generation
and run on top of a given core. Files in red represent custom instruction support, both
in the compiler toolchain (for disassembly purposes), Gigue (for generation), and in the
dedicated cores (for architectural support). To demonstrate Gigue generation capabilities,
we use unmodified cores and the base ISA as presented earlier.

Figure 4.6 – Execution setup and test framework.

We ran the workloads under Ubuntu 20.04.6 LTS, on an Intel Core-i5 machine equipped
with a 1.60GHz CPU and 16GB of memory. We fixed both core versions: version 1.6 for
Rocket, and commit bb80b3f for CVA6 (in the absence of proper version tags). Both
cores use Verilator version 5.008, and execute binaries linked and disassembled with the
RISC-V GNU toolchain version 2.40.0. Figure 4.7 presents the execution of the workloads
generated in the previous section on both cores.

Figure 4.7 presents the execution of the 9 call application classes and 9 memory access
application classes on both CVA6 (blue) and Rocket (red). We see that we can directly
augment target binaries with heavier call usage, increasing the workload on the core.
Large methods with a heavy call occupation (and an increased call depth) generate long
workloads on the cores. We also see that the increase in memory access adds overhead to
the overall execution of the binary, as memory instructions are non-trivial compared to
arithmetic instructions.
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Figure 4.7 – Gigue workloads execution on CVA6 (blue) and Rocket (red).

4.5 Summary

In this chapter, we have presented Gigue, a modular and parametrizable random work-
load generator implementing custom instructions, and modeling the JIT code region. We
have presented use cases of amplified application classes, with varying call occupations,
and memory access intensities. Those application examples were derived from information
on the Pharo VM and application benchmarks analysis. We presented the rich testing
framework provided by Gigue to guarantee the complete execution of the generated bi-
naries and show how it can be easily extended to support new custom instructions. We
showed the direct interfacing of Gigue with different cores (Rocket and CVA6) through
their Verilator model, using Toccata. Furthermore, the Gigue testing environment, and
helpers provided by Prelude, help the hardware developer get minimal executable binaries
implementing new instructions. To encourage reproducibility and usage, the Gigue code
base is open-source and available on GitHub 4.

4. https://github.com/QDucasse/gigue
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Chapter 5

JITDOMAIN: INSTRUCTION-LEVEL

SECURITY FOR THE JIT COMPILER

Taking advantage of the JIT compilation process and locality of the JIT code, we
present JITDomain, a hardware security framework based on instruction-level isolation
[33], [34]. A minimally-invasive solution on an application class core such as the CVA6 [3]
could later be compared with other solutions using a co-processing unit regarding their
respective performances and security guarantees. We present a concrete implementation
of defense requirements SR1 (JIT code protection) and SR2 (JIT data separation) to
provide an answer to RQ2. We evaluate the solution on both its software impact through
HR1 (impact on code size and performance) and hardware impact through HR2 (impact
on resource utilization).

5.1 Threat Model

Attacker capabilities: We extend the threat model presented by JITScope [19] and
extend it with more powerful attacks and up-to-date defenses [9], [10]. We assume the
attackers have the following capacities: (1) attackers can write to any writable memory,
and therefore corrupt control data such as jump/call targets and non-control-data such as
bytecode, JIT intermediate representation, or internal structures; (2) attackers can read
arbitrary mapped memory, and perform information leak attacks to bypass secret-based
defenses such as ASLR. These assumptions are derived from common attacker capabilities
and VM vulnerabilities defined in Chapter 2 through C1-C3.

We believe these assumptions are realistic as (1) memory corruption bugs are found
each year in major VMs whether in the form of out-of-bounds, overflows, use-after-frees,
or type confusion bugs; (2) heap spraying and JIT spraying [4] along with heap feng-shui
[89] have helped defeat ASLR by injecting many objects in memory or the JIT code region
to leak the address of an expected one.
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Defenser capabilities: On the defense side, we assume (1) popular defenses such as
ASLR or WˆX are deployed by the operating system; (2) stack smashing mitigations are
set up in the VM binary through compiler/preprocessor primitives, for example, canaries
(through GCC or Clang -fstack-protector) and safer common functions (through GCC
or Clang FORTIFY_SOURCE); (3) CFI measures are deployed on the static binary of the VM
either using a hardware facility equivalent to Intel Control-flow Enforcement Technology
(CET) [21, Vol.1 Ch.17] or ARMv8 Branch Target Identification (BTI) [25, Ch.B6], or a
complete software version (through Clang -fsanitize=cfi). While the last requirements
are examples from the x86 and AArch64 architectures, we believe similar solutions have
been applied to RISC-V.

5.2 Software Execution Model

In this section, we present the framework built on assumptions on custom instruc-
tions that will be guaranteed through the hardware implementation and support for the
solution.

5.2.1 Instruction-Level Domain Isolation

An instruction-level domain isolation [33] is set up by duplicating memory access
instructions and assigning them domains of authorized execution. The code in a domain
has access only to the corresponding data. Dedicated instructions are also added to change
the current domain. Instruction-level domain isolation is based on three main principles,
(1) the tagging of memory regions into “domains”, (2) the duplication of memory access,
and (3) the addition of control-flow transfer instructions to switch domains. Two checks
are performed and presented in more detail in Section 5.3: (1) check that the instruction
belongs to the domain it is being executed in, and (2) check that the instruction accesses
data from a domain it has access to.

The instrumentation of dedicated domains for the JIT code region allows three main
guarantees to be enforced on the JIT code: call stack separation, data access restriction,
and system call filtering. To this end, we define three important domains: the base domain
where the VM code and data reside (basedom), the jit domain that contains the JIT code
and data (jitdom), and a stack domain that contains the shadow stack of return addresses
(stackdom).
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5.2.2 Memory Model

The memory model expected to support the framework is described in Figure 5.1 and
is based on the Pharo VM memory model. On the left, low address, the native code of the
VM is found in the .text region and contains the compiled code of the VM components:
the interpreter, the JIT compiler, and the garbage collector. The next section .data (and
other expected sections .rodata, . . . ) are the VM global variables. Those sections are the
result of the compilation of the source code of the VM, OS-specific helpers, and dedicated
plugins, linked together in an executable put in the base domain.

Figure 5.1 – Memory model of a VM implementing JITDomain.

The next section consists of the memory managed by the VM itself, in the heap. The
executable JIT code region is allocated at startup and holds trampolines, the JIT code
itself, and JIT data (code pointers, jump tables, . . . ). The call trampoline serves as
a landing pad for interpreter calls, and the return trampoline that directs control-flow
back are set up in the jit domain. Alongside, both JIT code and data are installed in the
jit domain.

Live objects are also found in the heap, where they are placed and garbage-collected.
In the case of a generational garbage collector, space for young and old objects is allocated.
They are put in the base domain. Finally, at very high addresses, the main stack is found,
that contains both local variables, function call frames, and return addresses. A separate
stack used by the JIT code is allocated at the VM startup and managed differently. The
main stack is put in the base domain while the JIT stack is set up in the stack domain.

5.2.3 Call Stack Separation

Motivation: The motivation for call stack separation of the JIT code is to set up
a backward-edge control-flow integrity solution. Deploying CFI on JIT code is required
to prevent the redirection of the control flow necessary to launch both code-injection [4]
and code-reuse [5], [6] attacks. The dynamic constraint of JIT compilation forces usage
of degraded versions of CFI for the JIT code [18], [19]. Isolating the complete JIT call
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stack in a dedicated domain and memory region hides it from a potential attacker and
exposes less information to the general call stack and interpreter.

jit_method:

# Prologue

addi sp, sp, -16

sw s0, 0 (sp)

...

# Shadow stack save

addi ssp, ssp, -4

sst ra, 0 (ssp)

...

# Shadow stack load

lst ra, 0 (ssp)

addi ssp, ssp, 4

...

# Epilogue

lw s0, 0 (sp)

addi sp, sp, 16

ret

Figure 5.2 – Call stack
Separation.

Instrumentation: The RISC-V calling conven-
tion passes arguments in registers when possible (up
to eight registers a0-a7). If the called function uses
any of the callee-saved registers (sp and s0-s11), it
has to store them on the stack. In addition to those,
if the called function performs calls on its side, the
return address ra has to be pushed on the stack.
Spilling control-flow information to the stack opens
the door to potential attackers.

To isolate the JIT call stack, the prologue and epi-
logue of each JIT-compiled method are instrumented
to use dedicated stores and loads, sst and lst. Those
instructions are linked to the jit domain and are the
only access point to the stack domain, the region
where the shadow stack of return addresses is stored.
We use it here as the only call stack the JIT code uses
and as shown in the code snippet in Figure 5.2. This
decision is motivated by the recommendations from
Burow et al. [115] for performance and conciseness:
the check for correctness is redundant as the correct shadow return address is loaded.

Discussion: A duplicated stack can be used in two ways, either to duplicate the
existing call stack and perform comparison checks on function returns, in “shadow stack”
mode, or operate as the only call stack, separated from the common stack and with-
out performing comparison checks, in “control stack” mode. The RISC-V Zisslpcfi 1

extension draft presents both implementations and argues that the choice of one of the
other is motivated either by conciseness for the “control stack” mode or portability for
the “shadow stack” (where load/stores to the duplicated stack would boil down to NOPs
on a system that does not implement the extension).

1. https://github.com/riscv/riscv-cfi
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5.2.4 Data Access Control

Motivation: JIT data is set up in memory and accessed by JIT code. It consists of
sensitive information such as code pointers, jump target addresses, or relocation tables.
To guarantee its confidentiality and restrict access to the JIT data, only the JIT code
should be able to access it.

Instrumentation: To separate the JIT code region from the rest, JIT code and
JIT data are put in their dedicated jit domain. All memory accesses from the JIT code
use duplicated instructions that (1) are only usable from this domain, and (2) can only
access data set up in the jit domain. At run time, (1) a first hardware check is performed
to ensure that the current instruction is executing in its dedicated domain, and (2) a
second one to ensure it accesses data from the correct domain. More details on the checks
performed are presented in section 5.3.

All duplicated instructions (i.e. ending with _1) are only executable from within the
JIT code region and can only access JIT data. In contrast, the base memory accesses can
be executed from both domains, as they set up the calling convention on the main stack.
The logic to change the domain is handled by the dedicated instructions that duplicate
jalr. The first one is used by the interpreter to transfer the control-flow to JIT methods,
chdom, storing the target address and using a “call” trampoline. In response, retdom is
used to transfer execution back from the JIT region to the interpreter from a dedicated
“return” trampoline.

interpreter_loop:
...
sw t0, 0(sp)
# To call trampoline
la t1, jit_method
chdom call_trampoline
lw t0, 0(sp)
...

call_trampoline:
...
j t1

jit_method:
# Loading JIT data
lw1 t0, 24(s0)
# Storing JIT data
sw1 t0, 24(s0)
...
# To return trampoline
ret ra, 0(ra)

return_trampoline:
...
# To interpreter
retdom

Figure 5.3 – Instruction-level data isolation and domain transfers.

Discussion: Separating code and data is crucial both to guarantee data confidentiality
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by restricting its accesses and to grant them different permissions. Authors of NoJITsu
[9] define the JIT code as executable only and the JIT data as read-only. They then
monitor the functions that install, patch, and delete JIT-compiled code with additional
permissions.

5.2.5 System Call Filtering

Motivation: Powerful code attacks use one or several system calls as their final step
to allocate memory executable memory at a known address. JIT code, either genuine,
sprayed, or reused, contains user input and should not execute any powerful system call,
even in its hidden execution path.

Instrumentation: To filter out system calls from executing in the JIT code region,
we assign the RISC-V environment call (ecall) instructions to base domain. This way,
these instructions cannot be executed from within the JIT code region in U-mode. Their
availability is maintained outside that region.

Discussion: Preventing the system call instruction from executing during its decoding
phase ensures the final step of a JIT attack cannot be performed from within the JIT
code region itself and blocks the execution of injected or reused system calls. This filter
also guarantees that even if an ecall instruction is present in the hidden execution path
of the binary, it will be monitored and filtered.

5.3 Hardware Extension Design

The CVA6 CPU is a 6-stage, single-issue RISC-V core that implements the 64-bit
version of the ISA [3] with extensions RV64IMAC. It implements three privilege levels
and can support a fully-featured OS such as Linux through its support for memory vir-
tualization (through the Memory Management Unit - MMU - and Page Table Walker -
PTW -) along with branch prediction units. It is maintained by the OpenHardware group
and the French defense company Thales. An overview of the CVA6 frontend, backend,
and cache subsystem is presented in Figure 5.4.

We briefly present the six stages of the CVA6 and their main components. (1) The
PC Generation (PCGen) stage; the next program counter is chosen from the different
possible sources. Among them are the result of branch prediction, a trap vector if an
exception is raised, or a simple increment. (2) The Instruction Fetch (IF) stage; from the
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Figure 5.4 – CVA6 pipeline overview.

deduced next program counter, instructions are fetched from program memory, realigned
and passed to the next stage. (3) The Instruction Decode (ID) stage; decodes the raw
instruction input, formats them into a scoreboard entry and passes them to the next stage.
(4) Issue (IS), the formatted instruction is attributed to a corresponding functional unit
and placed into the scoreboard. Its status is traced, and this stage handles any write-back
from the execute stage. (5) The Execute (EX) stage; contains all functional units that
compute the result of instructions. It handles all arithmetic operations, branches, and
memory operations through the MMU. Finally, (6) The Commit (CO) stage propagates
any architectural state change as a side effect of executed instructions. It also provides
an interface to the flush controller, responsible for complete or partial pipeline/memory
flushes.

5.3.1 Instruction Tagging

The CVA6 core uses a scoreboard structure to keep track of decoded instructions
and their operands, along with any result or exception. We extend this structure with
two main parameters: a target domain, the domain that the instruction accesses either
through memory accesses or control-flow changes, and a domain change flag that defines if
the instruction should change domain or not. The two fields are added to the scoreboard
entries and filled in during the decoding/issue phase. In addition to those two fields, the
code domain, the domain the instruction should be executed in, is checked in the decoder
directly and does not need to be propagated further in the pipeline.

The values of these three fields (code domain, target domain, and domain change)
attributed to the different instructions, both default ones and duplicated, are presented
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Name Code Domain Target Domain Domain Change
chdom basedom jitdom Y
retdom jitdom basedom Y

b* domi current domain N
j* domi current domain N
l* domi basedom N
s* domi basedom N
l*1 jitdom jitdom N
s*1 jitdom jitdom N
lst jitdom stackdom N
sst jitdom stackdom N
ecall basedom - N
default domi domi N

Table 5.1 – Instruction Domain Tagging

Figure 5.5 – JITDomain overview, instructions and their domains.
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in Table 5.1. We use domi as a “domain-inclusive” tag, meaning it can execute from, or
target both the base and jit domains. By default, instructions are tagged with the pair
domi/domi as code and target domain, and the domain change flag is disabled. From the
table, we can see duplicated memory accesses are restricted to the jit domain for their
code and data accesses. Base memory accesses are executable from any domain, but can
only access data in the base domain. The domain change instructions chdom/retdom are
the only ones responsible for transferring between base and jit domains, chdom as the
forward change and retdom as the backward change. They are duplicated versions of
the jump-and-link-register (jalr) instruction. Next, all base control-flow changes can be
executed from any domain but should not cross domains, and require a dynamic input for
their target domain, corresponding to the current domain found at the decoding time of
the instruction. Finally, the user-space environment call instruction is set to only execute
in the base domain.

5.3.2 Control and Status Registers

Control and Status Registers (CSR) are registers that keep information on the internal
state of the CPU. They can be read-only or modified through dedicated instructions. To
implement the domain tagging of memory regions, additional CSRs are needed to store
the domain information linked to regions defined in the Physical Memory Protection unit.
The CVA6 core implements 16 PMP regions through the 64-bit wide pmpcfg0 register,
which contains configurations for PMP regions 0 to 7 (pmp0cfg to pmp7cfg), and pmpcfg1
for regions 8 to 15.

Figure 5.6 – Domain configuration and current domain CSRs.
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Aside from this PMP configuration, we define a dmpcfg CSR that contains 16 domain
configurations (dmp0cfg to dmp15cfg), displayed in the CSR register file in Figure 5.6.
Each domain configuration is associated with a PMP memory region and contains a 2-bit
field responsible for storing the associated domain and a locked bit. The configuration is
4-bit wide to keep space for additional domains if needed. We extend the PMP module
with an additional expected domain as input and perform the domain check with the
associated domain on the matched PMP region conservatively. The dmpcfg CSR is given
an address in the 0x7C0-0x7FF range to respect the “custom read/write” accessibility set
in the standards [56]. The DMP is accessible through the usual CSR read/write privileged
instructions csrr/csrw. The dmpicfg configurations contain a lock L bit that is func-
tionally identical to the one present in pmpicfg. The activation of this field extends the
DMP verification to M-mode accesses. This means that dmpcfg registers (similarly to
PMP registers) are locked and cannot change until the hardware thread (hart) is reset.

We also store the current domain in a CSR named curdom displayed in Figure 5.6. The
output from the CSR register file is directed to the other stages of the pipeline. During the
commit of an instruction that has the domain change flag chgdom of its scoreboard entry
activated, curdom is replaced with the target domain associated with the instruction, and
the pipeline is flushed. As this register should not be modified from outside the core, it is
given an address in the 0xFC0-0xFFF range to respect the “custom read-only” accessibility
[56]. The CVA6 uses two commit ports, the domain change is propagated when one of
the two ports expects to change the current domain and the other does not affect it.

5.3.3 Domain Check: Code Domain

The first check is performed on the code domain through the decoder in the decode
stage of the pipeline. According to Table 5.1 presented earlier, the decoder associates to
all instructions a code domain, a target domain, and a flag for domain change that is
passed to the issue stage in the filled scoreboard entry. The code domain associated with
the instruction decoded instruction is checked against the current domain input, coming
from the curdom CSR presented earlier. Any mismatch raises an illegal instruction fault,
propagated in the pipeline. These modifications are presented in Figure 5.7.

In addition to the tagging of all instructions with new fields for code and target
domains, the decoder is also extended to support the new instructions that duplicate
memory accesses for both the jit and stack domains along with domain changes. Apart
from the different domains, the duplicated loads/stores use the same data flow as the
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Figure 5.7 – Code domain check.

base ones. Similarly, chdom and retdom are modelled after jalr. The support for the
duplicated instructions is presented in more detail during data access in Figure 5.3 for
loads/stores, and instruction fetch in Figure 5.9 for chdom/retdom.

5.3.4 Domain Check: Data Domain

The load-store unit is one of the functional units embedded in the execute stage. It has
to manage the interface to data memory, data caches, the hardware Page Table Walker
(PTW), and the Memory Management Unit (MMU). For data accesses using stores and
loads, the PMP is used on the final translated physical address, or at any point during
the page table walk process.

Figure 5.8 – Data access domain check.

As presented in Figure 5.8, we instrument the final PMP physical access with the
expected target domain through the DMP. This expected target domain is passed along
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in the functional unit data, from the issue to the execute stage. The DMP validates the
access on top of the PMP, conservatively. In addition to the target domain check for data
accesses, we also add support for the duplicated loads and stores in the Load Store
Unit (LSU) when the decoded address is passed to the MMU.

5.3.5 Domain Check: Fetch Domain

The same idea is applied to the instruction fetch stage. The fetched address depends on
the next program counter, deduced either through a simple increment from the previous
one, branch prediction, or the resolved address obtained back from the branch unit after
a mispredict. The instruction fetch performs a request to the cache, that in turn performs
a translation request to the MMU on a miss. The different cache requests and responses
are extended with domain information that is eventually passed to the instruction PMP
and DMP in the MMU.

Figure 5.9 – Instruction fetch domain check.

The front end is conceptually split into two phases: the generation of the next PC
(PCGen) and the instruction fetch (IF). The fetch request is given an expected target
domain that depends on the next PC chosen. We distinguish three main cases: a base
control-flow change, a domain change, and a higher-level exception or debug request.
The next PC can originate from different sources (sorted from lower precedence to higher
precedence):

1. Default Assignment & Branch Predict: By default, the PC is incremented to
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PC+4, going to the next 32-bit word. Note that even in the case of compressed
(C) instructions, the complete word is fetched. Alternatively, when the branch
prediction is valid and passed, it depends on the different modules the front end
implements, such as a Branch History Table (BHT), a Branch Target Buffer (BTB),
and a Return Address Stack (RAS) to predict the next expected address to fetch.

2. Control-flow change request: When the above step fails and the branch predictor
mispredicts the next fetch address, the fetch restarts from the resolved address
obtained back from the execute stage. The branch unit charged to return the address
extracted from the actual instruction also delivers expected domain information.

3. Return from ecall & Pipeline flush: A return from an environment call, or
the way to perform a privileged call from a less privileged level, restores the saved
PC from before the call. When CSRs with side effects are modified, the pipeline is
flushed and the fetch is started over from the PC of the last instruction committed.

4. Exception/Interrupt: When exceptions or interrupts are triggered, the next PC
is set to the trap vector base address, depending on the privilege level (handled by
the CSR unit).

5. Debug: In addition, the debug unit can interrupt any control-flow requests, and it
reports requests to change the PC directly to the CPU.

Those five families of PC generation are instrumented with expected domain infor-
mation to correctly fetch the next instructions. As a reminder, only dedicated domain
change instructions chdom/retdom are expected to fetch from a different domain than the
current one.

Since we did not implement branch prediction for our custom instructions, the ex-
pected domain passed to the fetch request is set to curdom for the (1) default increment
and branch prediction case. This current domain is also expected to be maintained
throughout (3) ecall returns as they cannot be executed from the jit domain and should
recover in the base domain. In addition, (3) pipeline flushes should keep the current
domain as the effective domain is only changed at instruction commit time.

When a mispredict occurs (2), the expected domain is obtained from the resolved
address, back from the branch unit in the execute stage. The expected domain is then set
to the target domain passed in the scoreboard entry. It should either correspond to the
current domain, for base control flow changes, or the new domains for chdom/retdom.

In the case of an exception or interrupt (4), we set the expected domain to the base
domain to reach the trap vector base address set in it. The trap handler should restore
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the current domain to base domain if the exception occurred in the jit domain. Finally,
in the case of a debug request (5), as the debug primitives require additional freedom,
the expected domain is set to domi.

5.4 Evaluation

In this section, we present the evaluation of the implementation through the functional
verification through a dedicated unit test suite, we evaluate the performance overhead of
the solution using Gigue-generated binaries that implement the solution. We also present
its FPGA resource utilization to demonstrate the hardware overhead of JITDomain.

5.4.1 Functional Verification

To guarantee the correct setup of the different domain checks, the PMP/DMP logic
and update, instruction tagging and assert that the modifications of the design do not alter
its execution, we developed an assembly test suite and runner that exhaustively covers
the possible scenarios. The testing suite contains 134 unit tests split into six categories
presented in Table 5.2. Those tests cover the main code domain/target domain checks for
all memory access instructions, either from the base set of instructions, the duplicated
ones used in the jit domain, or shadow stack accesses in the stack domain. The usage
of PMP/DMP CSRs is verified using all combinations. Domain change instructions are
checked according to their corresponding code domain/target domain, and similarly, base
control-flow change instructions are tested to stay in the current domain. Pipeline flushes
are tested and expected for both chdom and retdom to ensure the domain change is
enforced for the next instruction. Finally, the prohibition of system calls is checked in the
jit domain.

Category Number of tests
Memory access instructions (base, duplicated and shadow stack) 48 + 57 + 12
PMP/DMP CSR integration and usage 4
Base control-flow changes for non-domain-changing instructions 3
Domain change instructions 6
Pipeline flushes on domain changes 2
System calls 2

Table 5.2 – JITDomain Validation Tests
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Along with the assembly tests, we provide a suite runner that interfaces with the
Verilator model of the core, gathers the results and reports them. We also provide a
patch that integrates our custom instructions in the GNU compiler toolchain and the
Spike emulator, to provide both a way to compile our simple tests, and disassemble
binaries and log traces with our custom instructions. We execute the tests using the
Verilator model and collect the trace results for validation. Our implementation of the
JITDomain framework validates all tests from the suite.

In addition to the newly developed test suite, we also ran two regression test suites
provided by the RISC-V foundation, riscv-tests 2 and riscv-arch-test 3. The first
suite defines 396 unit tests based on Test Virtual Machines (TVM) that defines how
the test should start, end, or map memory. The second suite defines 173 tests to check
the compliance of a RISC-V device to the specifications. It checks the main aspects of
the implementation to make sure the specification has been interpreted correctly. The
modified version of CVA6 passes all tests from both suites.

5.4.2 Experimental Setup

To measure the impact on the performance of the executed code, we use Gigue to
generate the same workloads, either using the base execution model or the JITDomain
framework. The values used for the application classes are derived from the benchmarks’
execution analysis presented in the previous chapter, Section 4.4. We implement the
JITDomain software solution in Gigue.

Gigue Implementation

To determine the performance overhead of the solution, we add it to Gigue as a new
Builder along with the custom instructions. We duplicate all loads and stores (lb1, lh1,
lw1, . . . , sb1, sh1, sw1, sd1), and add the two domain-changing instructions for calls and
returns changing domains (chdom and retdom). To separate the interpretation loop in
one domain and the JIT code in another, all generated loads and stores in the JIT code
are set to their duplicated versions. The prologue and epilogue of all methods in the JIT
code use sst/lst to store and load return addresses to the shadow stack. All calls from
the interpreter are modified to use chdom as their control-flow transfer instruction. They

2. https://github.com/riscv-software-src/riscv-tests
3. https://github.com/riscv-non-isa/riscv-arch-test
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target the call trampoline that pushes the incoming address on the shadow stack, sets
the return address to the return trampoline and redirects the control-flow to the initially
requested JIT method. On returns to the interpreter, the return trampoline pops the
return address from the shadow stack and defers the control-flow back to the interpreter
using retdom. Overall, the code size overhead boils down to the addition of a decrement
and increment of the shadow stack pointer in the prologue and epilogue of every JIT
method.

Core Setup

We ran the workloads under Ubuntu 20.04.6 LTS, on an Intel Core-i5 machine equipped
with a 1.60GHz CPU and 16GB of memory. We use the CVA6 commit bb80b3f (in the
absence of proper version tags), Verilator version 5.008, and execute binaries linked and
disassembled with the RISC-V GNU toolchain version 2.40.0. We use the same application
classes as the ones we defined in the last chapter: varying call occupations between 1%
and 6% of instructions in method bodies, and varying memory access intensities between
4% and 20% of the instructions in method bodies. All generated binaries use the same
seed as their corresponding un-instrumented counterpart, each configuration is generated
and executed ten times on their respective core.

5.4.3 Experimental Results

Performance Results

We present both runs and comparisons between the baseline CVA6 core and JITDo-
main implementations in Table 5.3 and Figure 5.10 for the different “call” applications,
and Table 5.4 and Figure 5.11 for the different “memory” applications. Both figures
present the overhead in terms of the number of cycles (darker color, low hatch number)
and CPI (lighter color, high hatch number).

The impact on performance in terms of the raw number of cycles taken to execute the
full binary is negligible as it averages at 1.51% for calls, and 1.27% for memory accesses.
It is the most noticeable (at 2.4% for calls, 2.2% for memory accesses) when JIT methods
are small, highlighting the additional decrement/increment of the shadow stack pointer
in the prologue/epilogue of JIT methods. The average number of cycles per instruction
is also affected to a minimal extent, averaging 0.95% for calls and 0.61% for memory
accesses. Among all scenarios, the performance impact is minimal.
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Table 5.3 – Performance overhead (raw number of cycles / cycles per instruction).

Call occupation
Method Size 1. 400 bytes 2. 600 bytes 3. 800 bytes

1. 1% of instructions 2.43% / 2.34% 1.67% / 1.47% 1.46% / 1.15%
2. 3% of instructions 2.29% / 1.52% 1.56% / 0.72% 0.98% / 0.29%
3. 6% of instructions 1.22% / 0.27% 0.94% / 0.22% 1.01% / 0.49%

Mean 1.51% / 0.95%

Table 5.4 – Performance overhead (raw number of cycles / cycles per instruction).

Memory Access
Method Size 1. 400 bytes 2. 600 bytes 3. 800 bytes

1. 4% of instructions 2.16% / 1.26% 1.39% / 0.72% 0.86% / 0.31%
2. 12% of instructions 1.69% / 0.96% 1.21% / 0.55% 0.68% / 0.19%
3. 20% of instructions 1.60% / 0.85% 1.20% / 0.50% 0.60% / 0.06%

Mean 1.27% / 0.61%
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LUTs Slice Registers
Baseline JITDomain Baseline JITDomain

Frontend 3190 3171 4058 4060
Decode Stage 609 664 266 269
Issue Stage 14936 15134 8983 9036
Execute Stage 23391 23410 7563 7571
Commit Stage 203 218 0 0
CSR Regfile 2434 2408 1691 1716
Cache Subsystem 6242 6242 2507 2509
Total 52719 52961 25482 25575

(+0.46%) (+0.36%)

Table 5.5 – JITDomain Resource Utilization
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FPGA Resource Utilization

Regarding the FPGA resource utilization, Table 5.5 presents the impact of the JIT-
Domain solution on the CVA6 core compared to its baseline unmodified counterpart.
JITDomain incurs less than 0.5% of area overhead in terms of Look-Up Tables (LUTs)
and slice registers. We estimate this area overhead to derive a negligible power overhead.
In addition, none of the core modifications interfere with a critical path, leaving the maxi-
mum frequency untouched. Overall, the JITDomain implementation has a negligible area
and power overhead and keeps the maximum operating frequency of the core.

5.5 Summary

In this chapter, we have presented JITDomain, a security framework that uses custom
instructions to enforce domain isolation. We have presented its usage from the software
use case to its hardware implementation in a fully-featured open-source core, CVA6. We
implemented the solution by extending the PMP module with domain information and
storing the current domain in a dedicated CSR. All instructions are tagged with domain
information that is enforced at the decode stage for code execution, and at the memory
access level for both instructions through the fetch stage and data in the load/store unit.
These two checks and the tagging of instructions guarantee three main primitives: call
stack separation, JIT data isolation, and system call filtering. We evaluated the imple-
mentation using Gigue-generated binaries that implement the custom instructions and
the security model defined in previous sections. The impact on performance is minimal
and corresponds to less than 2% additional cycles on average, and less than 1% CPI over
all scenarios. The corresponding impact on FPGA resources is minimal as well with 0.5%
area overhead. To encourage reproducibility of results, as well as usage and improvement
of the solution, the JITDomain implementation code base is open-source and available on
Github 4. In addition, the assembly test suite along with its patched toolchain and runner
is also available 5.

4. https://github.com/QDucasse/cva6
5. https://github.com/QDucasse/jitdomain-tests
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Chapter 6

JIT COMPILER EXTENSION TO RISC-V

By the start of 2021, no JIT compilers were ported to RISC-V in major VMs. To
be able to experiment with custom instructions on this new ISA, we wanted to use a
fully-featured VM. Major JavaScript virtual machines such as SpiderMonkey (embedded
in Mozilla Firefox) or V8 (embedded in Google Chrome) were not available on RISC-V.
The Pharo VM is an actively maintained virtual machine used in production and recently
ported to newer architectures, such as ARMv8 [42], using an iterative test framework.
We chose to extend its JIT compiler, Cogit, to the RISC-V ISA for research, to prototype
the usage of custom JIT instructions in the future.

6.1 The Pharo Virtual Machine

The Pharo language is an evolution of Smalltalk according to the Smalltalk-80 spec-
ification. It is a pure object-oriented dynamically-typed programming language that re-
volves around message passing as its way to transfer control flow. It defends a simple
syntax and extensions over the base Smalltalk language. Along with the language, Pharo
is also defined by its live development environment that provides powerful tools to navi-
gate, execute, and debug. As the environment itself is written in Pharo, any base object
or tool is extensible and inspectable. The base environment containing the main tools
is available open-source 1 as an “image”. It has been in development for more than ten
years and is used in production on a wide range of applications: from web development,
data analysis, and visualization, to user interfaces. At their core, these applications are
executed on top of the open-source Pharo Virtual Machine 2.

1. https://github.com/pharo-project/pharo
2. https://github.com/pharo-project/pharo-vm
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6.1.1 VM Compilation

Meta-circular VMs: The Pharo VM is a meta-circular VM, in the sense that its
source (the language it is written in) and target language (the language the runtime
supports) are the same. It is a VM for Pharo written in a restricted version of Pharo,
following the original design of the Squeak VM. Several other projects use dynamics and
very high-level languages for interpreters and VM implementations and each one of them
answers the bootstrap step differently. The idea comes from Common Lisp and Self [63]
and, in the same vein as the chicken and the egg, writing the run-time support for a
language in the language itself raises the question of the first run of a program. Jikes
RVM (formerly Jalapeño [176], [177]) is a Java VM with a JIT compiler that bootstraps
by self-applying the compiler on a host VM, then dumping a snapshot from the memory
of the resulting machine code. Another JVM, the MaxineVM [178], [179] follows the same
approach using a host VM to perform its initialization step. In their example, they both
used the HotSpot JVM [59]. Other VMs use a restricted version of the language that is
more easily converted into another language for the first compilation. This is the case
of the Squeak VM [180] (Smalltalk), which is then translated to C using Slang, or the
Pypy VM [181] (Python) that uses a restricted version of Python, RPython [182], that
is then translated to several available backends. The main goal for meta-circular VMs is
to take advantage of the high-level language constructs and tools during the development
process.

Figure 6.1 – Pharo VM Compilation Process.
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Slang: The Pharo VM historically inherits from the Squeak VM [180] and is written
in a restricted Smalltalk version and then transpiled to C using a VM-specific translator
called Slang [180]. Slang translates a group of classes into a single C file, transforming
methods into functions. Slang restricts the source language from some features such as
polymorphism or exceptions to correctly translate it to C code. The C code is then com-
piled along with mandatory and optional plugins to an executable that runs on the desired
architecture. During its translation process, Slang optimizes the interpreter-generated
code by inlining the different bytecode cases and organizes the cases as threaded code
following Ertl et al. guidelines [65]. This way, the main VM components, the interpreter,
parser, bytecode compiler, interpreter, and JIT compiler are all written in Slang. The
whole process is presented in Figure 6.1 and highlights the portability of the different
parts, with the JIT compiler standing out as it has to be rewritten for new architectures.

6.1.2 VM Runtime

Applications and Images: As described by Miranda et al. [38], Smalltalk is an
object system, where the entire system along with its development tools and application
code is stored in a snapshot file called an image. This image essentially is a memory
dump of the entire heap containing both objects, compiled methods, and running pro-
cesses. At run time, the VM structures the memory in different spaces: .text and .data
zone, the machine code zone (where the JIT code is installed), several segments for live
objects, and both the native C call stack (for interpretation) and Smalltalk call stack (for
JIT code). Developing applications consists of writing and editing code, which in turn
installs, modifies, and removes classes and compiled methods from the class hierarchy. As
everything is an object, the development environment itself can be inspected and altered
on the fly. The application code can be extracted and distributed with a package man-
ager, and interfaced with a version control utility. The memory layout is presented in the
next subsection in Figure 6.3, compared with its simulation environment counterpart.

Compilers: The component responsible for source code compilation is Opal. It parses
Pharo source code and translates it into an annotated Abstract Syntax Tree (AST) rep-
resentation. The AST itself is then translated into an Intermediate Representation (IR)
used for optimization purposes and designed to handle multiple sets of bytecode. Finally,
the IR is translated into the chosen bytecode set. Once a method is detected as “hot”
where it is frequently executed, the JIT compiler fires up and recompiles it to machine
code. The Pharo VM implements a JIT compiler named Cogit [41] to speed up the ex-
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ecution, which process, along with Opal, is presented in Figure 6.2. It does not model
a control-flow graph and compiles at the granularity of a method linearly, meaning the
generated machine code mostly has a one-to-one mapping to the JIT IR. No register al-
locator is defined as the CogRTL IR uses fixed virtual registers assigned ahead of time
to physical registers for each backend. CogRTL is the intermediate representation Cogit
uses to recompile the bytecode sequence it uses a 2-address-code intermediate represen-
tation (IR) called CogRTL to compile the succession of bytecode down to machine code.
Cogit recompiles the bytecode down to machine code in three main steps: (1) a scanning
phase looking for higher-level constructs (e.g. presence of calls implying the need for a
call frame); (2) a bytecode parsing phase that translates the bytecode succession into the
IR; and (3) a concretization phase where the IR is lowered down into machine code.

Figure 6.2 – Pharo source code compilation process.

Code patching: As Pharo is a dynamically typed object-oriented programming lan-
guage, the JIT compiler also implements polymorphic inline caches [35] to improve per-
formance, as presented in previous chapters. This means Cogit has to patch machine code
without the knowledge obtained from bytecode scanning. Call sites are initially compiled
as calls to dedicated trampolines send routines. The call site is then linked to the method
itself once the method lookup is performed. Cogit uses machine code stubs to rewrite
the needed hook points: a call to a trampoline becomes a type-checked entry point, a
monomorphic cache. If the type check fails, a new case is added making it a polymorphic
cache up until a threshold where it is upgraded to a megamorphic cache. This patching
method is also used by the garbage collector to update references to moved objects. Since
these patching methods use machine code stubs, they are architecture-dependent and
need to be verified for each new architecture to support.
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6.1.3 VM development process

As presented by Polito et al. [42] when presenting the port of the Pharo VM to
ARM-v8, testing and debugging a VM is a hard task, as it has to deal with a wide
range of functionalities and support both high-level and low-level mechanisms through
the different components involved. The portability it provides has to be guaranteed on
different architectures and operating systems. Taking advantage of the meta-circularity
of the VM and being able to live code and debug the VM while it is being developed eases
the otherwise tedious complete development cycle. As an example, the Maxine VM team
reported their experience when extending their VM to ARM-v7 [183] on a QEMU-based
architecture and doing heavy use of gdb, remaining low-level in the development state.

VM Simulation Framework: As the core components of the VM are written in
Slang, the whole VM execution is simulated [38] by: (1) interpreting the Slang components
directly in the live environment; (2) executing the JIT code generated using an external
processor simulator; (3) simulating the memory using a large byte array to store the object
spaces. This framework has several key advantages for VM development as it allows for
deterministic simulation since the memory is not subjected to ASLR and uses its own
clock to make VM bugs reproducible and debuggable. It allows for modularity in the
simulated components for easier prototyping before choosing which version to ship and
compile in the production VM. The simulated run-time memory is presented in Figure
6.3.

Figure 6.3 – Pharo VM simulation environment (from [38] and adapted to Pharo).

Test Harness: In addition to the simulation framework, a battery of unit tests have
been added to the Pharo VM, around its JIT compiler to test the correct implementation
of the compilation pass [42]. It works as a black box around the processor simulator,
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where the bytecode set to recompile is passed to Cogit, the machine code is executed, and
the side effects are verified. This harness was set up to speed up the port of Cogit to the
ARMv8 architecture supported by newer Apple processors. It has been developed starting
on a small scale, defining unit tests on specific tasks the JIT compiler should support,
such as bytecode compilation, correct header generation, or inline caches message sends
among others. It uses Unicorn [40] as its processor simulator, monitors the register state
and catches any raised exceptions. Unicorn is a wrapper on top QEMU [43] that provides
a variety of hooks to activate callbacks from the user side. The simulation version of Cogit
maintains a set of dictionaries holding addresses to closures, or runtime routines, both
sending messages to simulation objects. Cogit creates unique illegal addresses mapped
to each of these variables or routines, using them as a key to the dictionary. When Uni-
corn catches an exception on these addresses, the corresponding simulation environment
variable or closure is executed before sending the control flow back to the simulator.

6.2 Cogit RISC-V Backend Port

In this section, we present the port of the Cogit to the RISC-V ISA. The use of the pre-
viously introduced IR CogRTL makes the first two phases of the JIT compilation process
agnostic from the ISA. However, we present patches that had to be introduced to perform
correct mappings between the IR and machine code. Among them, we had to introduce
new IR instructions better suited for the RISC-V branching mechanism. We extended
the JIT compiler with RISC-V-specific IR instructions and defined new translations from
these IR instructions into their corresponding machine code representation. We fixed the
registers used by the Pharo VM according to the RISC-V calling convention.

6.2.1 RISC-V Design Choices

The RISC-V ISA enforces several design decisions to simplify the data flow and proces-
sor design. Patterson and Waterman present and motivate those decisions in the RISC-V
Reader book [184], and among them:

Hardware and program size: Optional and composable instruction extensions al-
low a conservative support of instructions, that fit the program application and objectives.
It directly impacts the size of the core with, for example, optional floating-point instruc-
tions (F) or multiplication and division instructions (M). A set of compressed instructions
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(C) is also available to reduce code size for frequently used instructions.
Stack and branch instructions: There are no dedicated stack instructions on

RISC-V, any push/pop to the stack has to be performed explicitly through a decre-
ment/increment of the stack pointer and a corresponding store/load. Similarly, there
are no dedicated call/return instructions that have to be handled using explicit loads
and jumps from the link register with jal/jalr (“jump-and-link” and “jump-and-link-
register”), along with the arguments set up in the 8 dedicated argument registers. To
support unconditional jumps, those instructions can be passed the hardwired zero (x0) as
the destination register instead of the link register (ra). The return instruction is also
an alias of jalr with ra as its source register. These choices simplify the design of the
processor centered around one dedicated multipurpose instruction for calls and jumps.
For branches, RISC-V does not define condition codes and instead provides instructions
to compare two registers and jump to an immediate offset directly. It also does not im-
plement delayed loads and branches like the MIPS ISA or older RISC architectures where
instructions after a branch or load instruction would be executed before the previous
instruction has taken effect. The absence of those condition codes and delayed slots re-
moves a complex hidden state from the processor pipeline and separates the architecture
from the implementation.

Figure 6.4 – RISC-V Instruction Types Encoding.

Instruction homogeneity: The source(s) and destination registers are fixed in the
instruction format, as presented in Figure 6.4. The encoding of the immediate values uses
a constant size (20 bits for U and J, or 12 bits for the other types) and they are always
sign-extended, effectively defining a single way to handle all immediate values from the
processor point of view. Instructions are aligned to 4 bytes or 2 bytes for their compressed
version and the program counter (pc) is not a general-purpose register. The stack pointer
has to be aligned at the granularity of the address space, but memory accesses have their
variants from byte to double-word accesses. All memory accesses load to/store from a
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register through a single addressing mode: base register alongside a 12-bit immediate
offset. The alignment requirement frees one bit off the encoding of branches and jumps
offset as the last address bit is not considered.

Overall, these design choices simplify processor implementation but add complexity
back to the compiler developer to correctly handle addressing modes, large immediate val-
ues, or operations found in other ISAs (e.g. arithmetic overflow check or implementation
of rotation operations).

6.2.2 CogRTL and RISC-V

CogRTL Design: The CogRTL IR was designed with the x86/x64 architectures
as the main targets with a nearly one-to-one mapping from the IR to the machine code
instructions. This design choice followed the practice of “optimizing for the common case”
which was the ubiquitous Intel x86/x64 ISA. As a result, JIT compiling to this architecture
was simple, and it also worked for ARMv7 and ARMv8, which remained close to Intel,
either for the number of registers, the many addressing modes, or the presence of flag
registers and their associated branches and jumps. As a consequence and in light of the
RISC-V shifts from traditional vendor ISAs, the CogRTL and RISC-V mapping become
less evident.

Condition Codes:

The absence of flag registers and the lack of condition codes for branching has several
implications. First, the IR to machine code mapping changes as two IR instructions result
in a single branch instruction. To change the mappings, we add a notifier to the generation
of branches and capture the following IR instruction during the IR lowering phase. We
then generate a new IR branch instruction, defined only for the RISC-V ISA that allows
for comparison between two registers. This keeps the bytecode scanning and IR generation
phases identical for all backends and acts as a simple patch over architectures that do not
implement condition codes.

Examples are presented in Figure 6.5 of the usual compare (CMP) instruction that, in
architectures implementing condition codes, subtract the contents of the operand registers
and discards the result, effectively setting up flag registers for a latter jump. We extract
the operands of the first instruction, remove it (transforming it to a Label CogRTL
instruction) and replace the conditional jump with its corresponding branch counterpart,
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Figure 6.5 – Example of
intermediate representa-
tion rewrite for conditional
jumps, changing a 2 ad-
dress code setting internal
flag registers into an
explicit comparison and
branch for two registers.

fed with the extracted operands. CogRTL defines “quick immediate values” that the
compiler tries to embed in the available space of I-type instructions before resulting in
a load from an offset in memory. In this case, the constant is loaded into a temporary
register, and the branch is operated between the temporary register and the one present
in the comparison.

Figure 6.6 – Example of in-
termediate representation
rewrite an arithmetic op-
eration and an overflow
check. A dedicated se-
quence of operations is
emitted in machine code
using temporary registers.

Additionally, as one of the expected condition codes is the check for arithmetic over-
flow, we now need to implement an overflow detection mechanism. We define new
IR instructions for arithmetic operations with the added check for an overflow, per-
formed directly in machine code, as presented in Figure 6.6. Those overflow checks
(JumpOverflow/JumpNoOverflow CogRTL instructions) are used in the generation of
arithmetic primitives 3 and in a special arithmetic bytecode.

Immediate values handling:

As presented earlier, the immediate value handling is centralized through RISC-V
instructions. All immediate values are 12-bit (I, B) or 20-bit (J, U) long and are always

3. Routines compiled Ahead-of-Time (AOT) in machine code, for acceleration or OS interface.
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sign-extended. Two common scenarios have to deal with wider immediate values: function
calls and large immediate values loading.

Function Calls: In RISC-V, function calls operate around the link register ra and
the use of the jal and jalr instructions. The first instruction takes a 20-bit offset, stores
the next program counter in a register (ra by default), and jumps to the new pc and the
sign-extended offset. It performs a pc-relative jump in a 1MB range. For any call beyond
that range, jalr adds a 12-bit offset to a value in a register, stores the next program
counter in a register (ra by default) and jumps to that value. It has to be used along
with another instruction that handles the upper bits of the offset, auipc (“add upper
immediate to pc”), to perform a complete pc-relative call. An important point is that
both instructions sign-extend their respective immediate value and additional care has to
be provided to handle the cases where the truncation of the offset in a low and high part
activates the sign bit. This also has to be checked for pc-relative loads, the succession
of auipc and l<b|w|...>. The issue has to be handled on top of the already existing
translation between the representation of integer Pharo uses and what the underlying
architecture expects. The process is presented in Figure 6.7 for both calls and PC-relative
loads. The sign bit of the lower part of the offset is canceled by adding 0x800 to the full
offset before extracting its upper 20 bits, effectively reversing the sign extension of the
12-bit lower immediate value.

Figure 6.7 – Immediate Value Handling.

Large Immediate Loads: To load an immediate value in a register, RISC-V assem-
bly uses the pseudo-instruction li (“load immediate”), that extends into 1 to 8 instruc-
tions (for 64-bit immediate values). This is handled through several concurrent policies
that are scored in gcc or through a complex recursive function in llvm. The recompiled
methods might require to be patched as presented before, and keeping space for the worst
case brings a large code size overhead. Cogit uses “quick immediate values” to try and
embed values in the available instruction space. A dedicated space is allocated for each
recompiled method to hold large immediate values that are accessed through pc-relative
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loads, resembling the .text and .data ELF segments. A manager handles the generation
of this zone and guarantees any large immediate value takes at most two instructions to
load.

Addressing Modes

The RISC-V ISA provides a single addressing mode to access memory, which is the
use of a base address register and a 12-bit sign-extended offset. In contrast, x64 and even
ARM-v8 provide additional ways to access memory, using a base register, a displacement
(offset) and a scale value, power of two, multiplied to an index register. As an example,
memory accesses in the form of [regb + regi * scale + displacement] are allowed
using the lea (Load Effective Address) instruction on x64. Similar instructions are found
in the CogRTL set and are supported translated in RISC-V machine code using a tempo-
rary register to define the final address of the access, resulting in at least two additional
machine code instructions.

6.3 Tooling Extension

This section presents the set of tools, either internal or external to the VM development
environment, that were used to port the JIT compiler. These tools have permitted the
development of the RISC-V backend without access to the target architecture through a
vendor processor.

6.3.1 Choice of the simulator

We initially started the development of the JIT compiler using the Spike simulator
from which we extracted a shared library with the main functions we needed to map
program memory, execute it, and get the register state. We managed to use it for the first
tests on simple bytecode compilation. However, the lack of unified exception handling
and hooks similar to QEMU/Unicorn made it complex to handle more complex tests that
require several exception catch-and-resume as required by the simulation environment.
The Spike extension and Pharo bindings are available open-source 4 and we kept this
option for custom instructions as their inclusion in Spike is simple and standardized.

4. https://github.com/QDucasse/spike-lib
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With the release of Unicorn2 beta, we switched to this processor simulator, updat-
ing the simulator bindings to integrate the RISC-V ISA, and performing the switch for
other backends. Through development, several bugs in the simulator were pointed out,
presented through unit tests, and corrected upstream. Among them are the activation of
different RISC-V extensions, a bug in the PC update, or precision in self-modifying code
(which we need for JIT code patching). Overall, 28 unit tests were added to the Unicorn
project, through different backends (x86/x64, ARM32/ARM64, and RISC-V32/RISC-
V64).

6.3.2 Test harness extension

To handle and verify the different issues highlighted by the translation from CogRTL
to RISC-V machine code, we extended the test harness with RISC-V-specific tests. Those
tests cover different aspects of the JIT compilation process. First, simple tests relative
to the generation of correct RISC-V instructions and their encoding (1). These were
written during development to guarantee all used instructions (around 80) have the correct
encoding by simply checking the output of the lldb disassembler. Next, we test the
correct result of mappings from IR to machine code (2), especially in cases where RISC-
V and CogRTL do not match directly. We add tests to check the correct translation
of conditional jumps to branches, as presented earlier. We also check the handling of
different sizes of immediate values in both calls, jumps and loads for correctness through
the sign-extension checks. Additional tests for the translations where no instruction is
directly available for RISC-V are also added. Combinations of machine code instructions
that handle arithmetic overflow or rotations, as well as the varying addressing modes,
are addressed separately and executed to verify their soundness (3). Overall, around 100
tests are added to validate RISC-V-specific needs.

6.3.3 Machine code debugger

The processor simulator is used in black-box by the test harness that verifies the correct
register and/or memory state once the tests are completed. While we can still inspect the
large byte array Unicorn uses as memory, the increased code size and the IR-to-machine-
code mapping no longer respecting a one-to-one ratio, it has become harder to inspect
and investigate for bugs in the generated machine code. The Pharo VM development
environment integrates a JIT code debugger that presents the state of the stack, registers,
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Figure 6.8 – Pharo machine code debugger.

and disassembled machine code. It allows for step-by-step execution as well as stack and
register state inspection.

To better navigate RISC-V machine code, we extend its functionalities and add the
support for trampoline disassembly and the corresponding CogRTL IR. To get program
code information for RISC-V, we also extend the lldb Pharo bindings to support the
RISC-V architecture. Finally, the correspondence between CogRTL, machine code, and
affected registers is shown by highlighting the linked elements from the different columns.
The prototype of the new layout that integrates the IR instructions is presented in Figure
6.8. When clicking on an IR instruction, the machine code debugger highlights the cor-
responding generated machine code instructions (third column) and the affected registers
(fourth column). These additions helped us quickly navigate and point out bugs in failing
tests.

6.3.4 Custom Instructions

To handle custom instructions in the VM development environment, we use a similar
handler to the one presented in the Gigue testing framework. When the processor sim-
ulator handling JIT code reaches a custom instruction, it raises an exception triggering
a handler hook. This hook extracts the instruction opcode and operands, checks if a
corresponding simulation method exists and calls it.

Rotation simulation: As an example, we add a custom rotation operation, part
of the (not yet ratified) B extension. As the rotation instructions are not available by
default, we use 4 corresponding RISC-V instructions to perform the rotation. Moreover,
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CogRTL defines the instructions RotateLeftCq:R: and RotateRightCq:R: as its means
to shift the content of register by a shift amount passed as a “quick value”. We modify
both translations as machine code into the emission of a single rotation with an immediate
(rori/roli) when the immediate is embeddable in 12 bits, or load the value in a register
and use the register rotation instructions otherwise (ror/rol). We define a hook on an
“unknown instruction” exception, verify the opcode and perform the desired rotation in
Pharo directly, before resuming the execution. This extension serves as an example for
future custom instruction implementation and experimentation.

JITDomain simulation: Using the same custom instruction handling mechanism,
we add partial support for the JITDomain framework by adding and verifying domains in
the simulation memory. We attribute domains to the different parts of the memory layout:
the machine code region is set to “jit domain”, the young and old spaces are attributed
the “base domain”, alongside the C stack, and the Pharo stack is set to “stack domain”.
We use a simulated current domain to check the control-flow follows the expected path,
checking the code domain tag of executed instructions. We verify the data domain using
the position of the memory access in the large byte array that is used to map memory in
the simulation environment (see Figure 6.3).

All machine code is set in the jit domain where, as a reminder, data within it can
only be accessed through duplicated loads/stores. We add the duplicated loads/stores
to the generated JIT code that loads the PC-relative immediate values (“quick values”).
This way, data embedded in the JIT method is only accessible through its method body.
All CogRTL instructions that handle “quick values” use a pc-relative load (auipc/ld)
that is changed to its duplicated counterpart (auipc/ld1). Loads and stores to outer
memory are left untouched. We trigger Unicorn hooks from the machine code region on
all duplicated and non-duplicated memory accesses to verify the correct domain of their
accesses. For duplicated memory accesses, and after checking the domain, we perform the
expected operation on memory and resume the execution.

For calls to the JIT code, as the interpreter itself is the real Pharo object, we change
the current domain artificially when sending the control-flow to the machine code region.
This mimics the action of a chdom instruction, effectively transferring the control-flow
and changing the current domain to the jit domain. We also instrument the trampoline
responsible for the callback to the interpreter (returnToInterpreter) to change domains
through the retdom instruction, effectively switching between the base domain and jit
domain.
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6.4 Validation & Evaluation

We validate the port of Cogit to the RISC-V ISA by showing its compliance with the
test harness, and by testing the speedup over the base interpreter version. The next steps
for its total validation include the execution of all Pharo core tests on a vendor processor
and would require a more robust cross-compilation toolchain and deployment process.

Functional Validation: As presented earlier, the Cogit RISC-V backend is in-
tegrated into the Pharo VM test harness. It validates all 800 present tests and the
architecture-specific ones that were added. The port was developed starting from Pharo-
X, and the tooling extensions were integrated into later versions of the Pharo VM. In
addition, the port of Unicorn to its version 2 in the Pharo testing environment was prop-
agated to all other backends as well, without incurring regressions.

Evaluation: We use a cross-compiled version of the VM with restricted features for
a RISC-V architecture. We disable the optional support for Foreign Function Interfaces
(FFI), network and socket support, graphics and fonts, as well as version control. We
then build the VM executable along with the necessary shared libraries and deploy it
on a QEMU Fedora image, version 20200108.n.0 Developer. From there, we use a
minimal Pharo image, stripped from optional external dependencies and plugins, and
execute micro-benchmarks to extract the number of bytecode and the number of sends
executed per second.

Micro-benchmark Interpreter-only With Cogit Speedup

Bytecode/second 5 183 507 211 988 023 40.89x
Sends/second 232 685 14 752 081 63.39x

Table 6.1 – Cogit Microbenchmarks Execution and Speedup

We perform 10 runs of each micro-benchmark, each compared to a baseline VM using
the interpreter only. In Table 6.1, we present the results of the experiments, with each
column containing the geometric mean of the results of the ten runs. The version of the
VM using the Cogit compiler executes 40 times more bytecode and 63 times more sends
per second, showing a net speedup over the baseline interpreter.

We also investigated the impact of the backend on the size of generated methods and
inline caches. Using the same setup and after running the previous micro-benchmarks, we
disassemble the generated JIT code region to extract the number of elements as well as
their mean size. The results are presented in Table 6.2 along with an x64 VM integrating
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Architecture JIT Code Size Methods PICs Mean Method Size

x64 137 593 bytes 2992 747 37 bytes
RISC-V 142 389 bytes 2191 384 55 bytes

Table 6.2 – Cogit JIT code region comparison.

Cogit and executing the same tests. The results shown in the table present the average
value for the 10 runs of each micro-benchmark. The impact of the mismatch between
CogRTL IR and the RISC-V ISA is highlighted through the mean method size increase as
it implies a code size overhead of 49%. RISC-V does not provide an extensive instruction
set, to simplify processor design. On the other hand, Cogit uses an intermediate repre-
sentation that was initially designed to target the dominant x86/x64 ISA and inherits
its complex instructions, patched using additional RISC-V machine code instructions and
JIT compiler passes, leading to an increase in the generated code size.

6.5 Summary

In this chapter, we have presented the port of the Cogit JIT compiler, embedded in
the Pharo VM, to the RISC-V ISA. We have presented the main steps of compilation
Cogit uses to translate Pharo bytecode into its corresponding machine code. We have
shown how the design of the Cogit intermediate representation is tied to the x86/64
ISA and needs additional work to be compatible with RISC-V. The RISC-V ISA itself
inherits from the RISC family and implements design decisions in its ISA that simplify
processor design. This complexity has to be handled on the compiler side to implement
similar capabilities to corresponding CISC instructions, at an important cost in code size
overhead. To support and validate the addition of a new backed, we extended several
of the tools already available in the Pharo VM development environment. Among them,
the processor simulator - along with support for custom instructions -, the unit test
harness with architecture-specific tests, and the machine code debugger to investigate
more easily correspondences between IR and generated machine code. The RISC-V port
validates all tests from the test harness and presents an average speedup of 40x in terms
of bytecode executed per second, and 63x in terms of sends per second over its interpreter-
only counterpart. The RISC-V backend is waiting for commodity hardware availability to
perform the last tests before its upstream integration. The complete code of the port is
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available open-source on Github 5 and is prepared to be integrated upstream. The port of
Cogit to the RISC-V ISA opens up the door to further analysis on the concrete application
of the JITDomain solution presented in the previous chapter, or the application of defense
requirements SR1-SR5.

6.6 Next Steps

In this section, we present the next steps that will guide VM exploration for security
along the requirements SR1-SR5. Regarding JIT code, Cogit uses a temporary memory
buffer to generate the CogRTL IR from which it then generates the corresponding machine
code. This buffer, along with the bytecode should be isolated in memory following SR4.
Cogit then works at the granularity of a method and uses an explicit change from exe-
cutable to writable to install the newly generated machine code. All accesses are explicitly
performed using the permission change to: install a machine code method, extend/patch
inline caches, compact JIT methods, link/unlink message sends in existing JIT methods,
or mark elements for garbage collection. These elements validate part of SR1 requirements
for writable/executable separation.

The data present in the JIT code region is handled by a LiteralsManager that stores
them in a dedicated section after the body of the method itself. While this guarantees the
proximity of the required data along with its dedicated method, it prevents clear isolation
of JIT code and data, thus refuting SR2 (JIT data separation and restricted rights). A
solution would be to dedicate part of the JIT code region to JIT data exclusively. This
makes it possible to grant different permissions to both regions, effectively setting up JIT
data to read-only, as it contains sensitive information such as jump target addresses. This
is also a requirement for the complete adoption of JITDomain over the JIT code region.

Requirements SR3 (static code protection) and SR5 (sensitive object protection) have
not been tackled by this thesis and would require additional work to design security
validation and primitives around them. The port of the Cogit compiler to RISC-V opens
up the door to further experiments with dedicated instructions, or implementation of
existing security solutions.

5. https://github.com/QDucasse/opensmalltalk-vm/tree/riscvX-conditional

139

https://github.com/QDucasse/opensmalltalk-vm/tree/riscvX-conditional




Chapter 7

CONCLUSION AND FUTURE WORKS

Language virtual machines come with a large set of interesting properties that have
led to wide adoption. As so, they also constitute a perfect target for attackers. This thesis
examines the various types of attacks to which a virtual machine in a language is exposed
and proposes ways to protect and evaluate the effects of hardware-assisted solutions. This
chapter provides a summary of the contributions of this thesis, examines the limitations
of the tools and techniques used, and suggests potential areas for future research.

7.1 Summary of Contributions

This thesis examines the development of attacks on virtual machines (VMs), but more
specifically highlights the importance of the Just-in-Time (JIT) code region in terms of
both security and performance, as it is the place where fast machine code is installed and
executed on the fly. Three types of attacks are described: code injection, code reuse, and
data-only attacks. The first two either inject or build a shellcode from the executable
part of the JIT code region. This is made possible by the predictability of both the JIT
compiler output and the location of the JIT code. Data-only attacks are distinct, yet have
the same objective: they concentrate on the inner workings or inputs of the JIT compiler
to introduce a shellcode that eventually appears in the JIT code too.

Defenses evolve around VMs on three axes: diversification, memory protection, and
capability containment. Using diversification and randomization of the JIT code, the
predictability of its output is undermined. Dividing memory accesses for execution and
writing is essential to guarantee WˆX and prevent malicious code from being installed in
the JIT code region. Capability containment comes in several forms to minimize the
capacities of the untrusted executable code while keeping the impact on performance low.
Control-flow integrity guarantees the correct execution of the program, while sandboxing
isolates the untrusted code completely. In their most secure versions, both suffer from a
prohibitive cost in performance. We motivate the use of hardware-assisted solutions that
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provide strong security guarantees while incurring reasonable performance overhead. We
also motivate the need for open and dedicated solutions, especially based on the RISC-V
ISA since it allows for prototyping on fully-featured cores and reserves space for extensions
in its standards. We defend the idea of custom instructions embedded in the JIT code
that enforce isolation or control-flow integrity principles directly.

No solution can reasonably come without objective metrics, which, in return, can only
be applied over test cases. The test cases come mostly from test benches that are static
and hence offer no domain-space exploration facility. Instead, one can wish to benefit
from non-real yet realistic test cases. Several metrics have to be taken into consideration:
security guarantees, performance impact on the software run time, and resources used
by the implementation of the design. Tooling must exhibit productivity gains, as an
example, by working at a higher level of abstraction and offering extra services such as
ease of inspection while preserving legacy compliance. They must also demonstrate that
their behavior matches the specification.

To shrink the technological stack ranging from VM and JIT compiler development
to processor support for custom extensions, we propose Gigue, a parametrizable random
workload generator, completely compatible with simulated cores. It generates a workload
whose execution model resembles the usual interpretation loop and calls to JIT methods.
It is highly modular to give access to JIT code generation at different levels in the method
body. It implements solutions from the literature along with the JITDomain method
presented and allows for direct comparison between implementations. In addition to the
generator, a test harness guarantees the sanity of the generated executables. By providing
a pluggable API for custom instruction handling, Gigue also provides testability of custom
instructions along with their application in real executable binaries. We also claim that
defining the execution policy of custom instructions on the software side, through the
processor emulator, helps outline the needs of the processor. An example use case, which
defines different application classes with varying call occupations and memory accesses,
is presented and executed unaltered on top of the Rocket and CVA6 processors. They
provide a basis to compare instrumented versions using custom instructions whose correct
execution is already guaranteed by the test framework.

The aforementioned tooling allows one to stress protection mechanisms. To guarantee
the integrity of the JIT code, we define JITDomain, instruction-level domain isolation
whose principle is taken from embedded device isolation models such as RIMI/DEMIX
[33], [34]. We define duplicated memory access instructions and dedicated domain change
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instructions. It extends the PMP defined in the RISC-V standards with additional domain
checking and uses it to enforce three policies on the JIT code: filtering of system calls,
JIT data isolation, and defines a JIT code shadow stack.

We demonstrate the efficiency of JITDomain by instrumenting Gigue binaries with
the solution and adding support for the solution in the CVA6 processor. The changes
in the processor require an additional layer on top of the PMPs (both code and data)
and domain checking in the decoder. In addition to the implementation, we provide an
assembly test suite to verify the correctness of the implementation. We evaluated the
solution using multiple classes of applications generated by Gigue, presenting a limited
impact on performance. The average overhead in terms of performance is averaged at less
than 2% in the number of cycles and less than 1% in CPI over all scenarios. Although the
implementation of the solution requires changes to the processor, they remain minimal,
only leading to a 0.5% of area overhead.

Still, an in situ extensive validation requires one to apply the proposed solutions to a
real use case, in our case, to a JIT compiler to a platform embedding our architectural
proposals. The motivation we had to test the solution on a complex VM, led us to
extend the Pharo VM JIT compiler to support the RISC-V ISA. As a result, the Pharo
community was presented with a new execution platform, which has sparked a growing
interest.

This extension requires an adaptation of the JIT compiler intermediate representation
to correctly translate down to RISC-V instructions. Existing development tools were
extended to support the new ISA. Among them, the in-image machine code debugger
(offering high productivity) was extended to support more visualizations and the new ISA.
The processor emulator was also extended and patched upstream for RISC-V correctness.
Similarly to Gigue, custom instruction handlers have been added in the Pharo VM testing
environment. Using a RISC-V Qemu image, the RISC-V JIT compiler was shown to be
40x/63x faster than the corresponding interpreter in terms of bytecode/calls per second.

7.2 Limitations

Although Gigue allows for quick and varied generation of application classes, the
random nature of the workload it generates may not be fully representative of application
execution. Although we believe that using the distribution of instruction types, once the
JIT code has reached a stable state, should provide an interesting insight into the impact
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of a custom instruction, it does not replace its final usage in a VM. In addition, Gigue
is a workload generator and, while implementing custom instruction software support in
its test framework, it does not generate a test suite for a given solution. It is meant
to work along with a test suite to assess the impact and correctness of a solution. Its
execution model and binary structure are based on the JIT code region of the Pharo VM,
which uses a non-optimizing linear JIT compiler and confines the accesses to and from its
JIT code region through dedicated trampolines. While this simplifies the adoption of the
JITDomain model, it may not be fully representative of virtual machines that use several
increasingly optimized JIT compilers.

The JITDomain execution model enforces a simple but effective isolation model. It
guarantees several policies (system calls prohibition, data access control, shadow stack
definition), but requires that the chdom and retdom instructions are used only by the
VM when calling and returning from the JIT code. In the Pharo VM, trampolines are
responsible for switching from the interpreter to the JIT code and are the only ones instru-
mented with these instructions. The trusted computing base (TCB) of the solution has
this requirement and also expects careful setup of the pmpi cfg/pmpaddri CSRs for PMP
regions and the dmpcfgi CSRs for their related domain. As it is based on the PMP, the
number of domains is limited by the number of PMP regions supported in the processor.
We presented the solution with a restricted number of domains: Only two code domains
and three data domains were defined for our needs, namely the base code/data domain,
the JIT code/data domain, and the shadow stack data domain. Additional domains may
be needed for other applications and more complex usages. Finally, hardware support for
the solution requires an extension of a processor that performs invasive changes in the
core, be they even minimal. With Gigue in mind, we want to evaluate the benefits of
this type of approach compared to coprocessor solutions that are less invasive to the core,
following already-defined extension APIs but might add additional overhead.

7.3 Future Works

Despite the few limitations the former section itemizes, this work led to many improve-
ments to existing solutions, offers a parameterized generator that can be further reused
in different contexts and by different kinds of user, validates protection schemes on a real
platform, which is called to play a major role in the next year for embedded systems, and
evaluates the pros and cons of these mechanisms by scoring their impact following a set
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of representative metrics. Also, one important contribution of our work has been to port
the Pharo VM, so that to support RISC-V.

However, this thesis opens several opportunities for future work in different domains.

7.3.1 Gigue and Hardware Development

In principle, Gigue generates workload, which calls custom instructions to test their
impact at scale. However, we believe that Gigue could also be used more extensively to
perform hardware test-driven development. The Gigue test framework provides an API
to handle custom instructions and perform the expected actions on a software counterpart
of the test. With the additional subprojects Prelude and Toccata, we define additional
helpers to speed up hardware development. Prelude defines an API to guide the devel-
oper to (1) patch the gnu toolchain with custom instructions, (2) provide simple minimal
examples (named tutorials) using the custom instructions. While Prelude is still in an
early stage and does not replace the assembly test suite that is used to verify the im-
plementation of a solution, we believe it should be extended to provide such tests along
with complete binaries implementing the solution. These are presented as 1 in Figure
7.1. On the other hand, Toccata is a workload organizer and runner. It works on top
of Gigue, using varying parameters and interfacing with any RISC-V processor using a
Verilator-simulated model. We believe that both subprojects could be extended to provide
a hardware developer with a hands-on testing suite and benchmark runner to interface
directly with its core.

We used Gigue to assess the impact of the JITDomain security solution, but another
shadow stack solution in the test framework. The primary objective when Gigue was de-
veloped was to define a modular and parameterized generator, providing the capability for
custom instructions to be integrated at various anchor points during the generation pro-
cess. Few comparisons between hardware solutions are presented in the literature because
they are often compared to their software counterparts. Gigue could serve as a common
ground for comparison between different implementations of a solution, such as different
shadow stack implementations [115] or domain isolation techniques, presented as 2 in
Figure 7.1. These comparisons are very valuable as guidance for future implementations
and also as best-practice usage. Important metrics should cover both the software part
through an increase in performance and code size, and also the hardware part through the
area, power consumption, and invasiveness of the design. This comparison in the context
of the modeled JIT code region generated in Gigue binaries would provide insight and
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guidance on the choice of a hardware-supported security solution.

Figure 7.1 – Global view of the thesis along with projected future works.

Although the JITDomain security solution was tested on CVA6, an in-order core, it
should also apply to out-of-order cores. However, support for the solution should re-
quire additional efforts. Tagging of memory access requests, whether from the instruction
fetch (and I-Cache) or load-store unit (and D-Cache), is required for JITDomain to work
correctly. The domain-changing instructions affect a CSR to store the current domain,
propagated at the instruction commit stage. They flush the pipeline to isolate the JIT
code completely during control-flow transfer. This mechanism complexifies out-of-order
execution and requires careful attention when implementing it. A shadow stack solution
defined using dedicated instructions, as presented in the JITDomain chapter, would be
implemented in out-of-order cores without complex changes to the execution model. Ex-
tension to other cores is presented as 2 in Figure 7.1. Looking in the other direction,
Gigue can also be used to compare different solutions in smaller cores, especially since
the need for VMs on embedded devices is increasing through their global adoption.
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7.3.2 JIT-Specific Custom Instructions

As presented earlier, Gigue generates random workloads based on input parameters
extracted from the stable state of the JIT code region. Gigue could also benefit from
implementing other elements in the JIT code region it generates, for example, hidden
classes, inline caches, and additional trampolines. We claim that these workloads give an
interesting insight into the impact of custom instructions in the context of (simplified)
JIT-compiled methods execution. However, using common execution traces extracted
from a real VM would help to outline a “usual execution path” and propagate meaningful
information in the Gigue binary. This idea is presented as 3 in Figure 7.1. We would like
to extend Gigue by conserving its use of JIT methods, extracted from real VM usage, and
compressing interpreter calls in the interpretation loop portion of the binary. Additional
efforts are necessary to respect the Pharo VM calling convention and the internal usage of
fixed registers. Its interface with Gigue should also be extended using the rich information
that the Pharo JIT methods contain, i.e. metadata, call frame creation, method body,
data, etc.

With the complete stack defining an extension, from the JIT compiler using custom
instructions down to the processor, or coprocessor supporting it in hardware, the question
of “what would be interesting custom instructions?” raises. We first need to complete the
verification of the Pharo VM that implements the solution on a supported processor. This
is represented as 4 in Figure 7.1. It requires additional modifications to the layout of the
JIT code region in the Pharo VM, code and data for a given JIT method are placed next
to each other, while JITDomain expects JIT code and JIT data to be fully separated.
The authors of NoJITsu [9] present a way to split the memory layout between the JIT
code, defined as executable only, and the JIT data, defined as read-only.

In a wider scope, the RISC-V J extension, currently in draft, is interested in “languages
that are interpreted or JIT compiled, or which require large run-time libraries or language-
level virtual machines” [185]. Its typical use covers garbage collection, dynamic typing,
reflection, and dynamic dispatch. Any proposal to this J extension would benefit from
having a synthetic workload that implements new instructions to assess their impact.
Fortunately, security extensions could make their way in such an extension to directly
protect VMs.
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7.4 Final Remarks

In summary, we propose, implement, and evaluate a hardware-supported security
framework to protect JIT code. It enforces security policies on the JIT code region,
as expected by state-of-the-art defenses around VMs. In addition to the proposed so-
lution itself, we propose an assembly test suite to ensure its correct implementation in
the cores. To assess the impact of the solution and measure it against others, we also
propose Gigue, a workload generator. We finally extended the Pharo VM JIT compiler
to support the RISC-V ISA and support the first steps of the security framework. We
believe that those three open-source elements provide a realistic environment for future
evaluations and extensions in the fields of both hardware security and its application to
language VMs.
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ADDRESS (RE)RANDOMIZATION

Motivation: Address Space Layout Randomization (ASLR) [186] is implemented at
the OS level in OpenBSD and Linux, effectively randomizing the location of code and
data in virtual memory. For each process, the base address of the executable, libraries as
well as the stack and heap are hidden and randomized from an attacker. These addresses
have to be guessed, at the risk of crashing the running application if they are mistaken.
However, ASLR is defeated by JIT-spraying attacks, because the code region is filled
with a NOP sled leading to the exploit. Enforcing back the OS-level idea on the generated
JIT code would add complexity for an attacker. Randomization techniques either re-
randomize the address space layout on a time basis or insert randomization components
in the JIT compiler flow.

Re-randomization techniques [187]–[192] help defeat code-reuse attacks by adding a
recurring constraint to an attacker. Ahmed et al. [193] compare solutions around fine-
grained ASLR techniques under the constraints of JIT-ROP [5]. The authors conclude
that fine-grained randomization techniques do not impose significant gadget corruption
against a JIT-ROP threat model (see Section 2.2.3). They provide a way to determine the
re-randomization upper bound for a given application (ranging from 1.5 to 3.5 seconds)
to make randomization effective.

Runtime randomization is needed to randomize the JIT memory region. Librando
[13] is a framework that applies to a JIT compiler in a black-box manner. The operating
system memory allocation functions are intercepted to analyze, diversify, and rewrite the
JIT code. All basic blocks generated are therefore randomized after the JIT compiler
has generated the output machine code, but before its installation into memory. The
contents of the calling stack are preserved, making the VM use it transparently without
reworking the compiler internals. The performance penalty is high, as it comes with a
slowdown of 1.15x on the JVM and 3.5x for V8. Isomeron [194] completes the defense
by providing both code randomization and execution-path randomization under the JIT-
ROP constraint. It does not require source code or a static analysis phase and works at
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the basic block level. The authors measure the impact of execution path randomization
on the static SPEC CPU2006 benchmark and measure 19% of average overhead.

JITGuard [10] authors store the JIT code in a randomized memory region whose
location secret is stored in a hardware enclave alongside the JIT compiler itself (see
details in Section 2.3.4). All memory accesses are zeroed out at initialization to leave
no indication of the location of the JIT code region. Any function that needs to be
JIT compiled goes through the enclave and the JIT compiler generates and installs it
in randomized memory. At run time, indirections help jump to and return from the
randomized region. Each JIT function has its dedicated trampoline that uses a segment
register and a segment jump table to jump to the randomized position in memory. Both
segment memory regions cannot be accessed by an attacker as they are hidden behind the
arch_prctl system call that is not supported in Linux. More details on this solution are
presented in Section 2.3.4.

Discussion: Code and data randomization help counter code-reuse attacks by making
it harder to disclose the location of a code or data pointer in the memory. The OS-level
ASLR solution is not sufficient to protect dynamically generated code and the VM in
general. Even fine-grained randomization [195] does not suffice when faced with a JIT-
ROP threat [5]. Re-randomization techniques allow a run-time application of memory
space randomization at a heavy cost of performance (which can still be dimensioned
following rules [193]).
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SANDBOXING

A primer on sandboxing: Sandboxes are execution environments that impose re-
strictions on system resources from applications. They come as a system call interposi-
tion at different levels (kernel, user, or both). Pure user-level sandboxes can be realized
through software-based isolation techniques such as e.g. Software Fault Isolation (SFI).
Strictly OS-based mechanisms reside entirely in the kernel (e.g. hypervisor) and rely on
hardware memory. Delegation-based sandbox architectures (e.g. Ostia [196]) come as
hybrid solutions and require the sandboxed process to drop most of its privileges and
delegate sensitive operations to the trusted process. As presented in the next two solu-
tions, SFI combines static analysis with software guards and enforces them on JIT code
at generation, modification, installation, and deletion time.

Application to VMs: Ansel et al. [125] use now-deprecated Google Native Client
(NaCl) [197], a user-level sandbox architecture based on SFI. In their setup ( 3 in Figure
B.1), the JIT compiler is defined as untrusted NaCl code, generates machine code in a
buffer, then invokes the interface with the NaCl trusted runtime to verify the generated
machine code and install it. Other interface functions modify and delete code stubs as
requested by the JIT compiler. The JIT code is separated from the JIT data to be
properly instrumented. All generated machine code is validated by the NaCl runtime
using SFI: the target code address is verified to be in boundaries with the NaCl memory
and aligned, the code is then copied to the private memory of the trusted runtime, and
it is verified using the NaCl validator, the target address range is checked to be unused,
then reserved, and the code is copied to. While the solution proposes interesting security
properties, it shows a high run-time overhead from 28% up to 60%.

Song et al. present Secure Dynamic Code Generation (SDCG) [17], a multiprocess-
based architecture that uses a delegate-based sandboxing architecture (namely seccomp
[114]). In their setup ( 2 in Figure B.1), the authors take a different approach by defining
the JIT compiler as the trusted process. The code cache is stored in shared memory that
is mapped as RX in the original process and WR in the trusted dynamic code generation
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Figure B.1 – Sandboxing overview, 1 represents a simple process isolation through context
switches such as Lobotomy [16].

process. The code cache remains R-only in the untrusted process, while the JIT compiler
can safely perform code generation, installation, patching, and deletion. The authors
extend the idea of Lobotomy with a separate process that performs more than just JIT
compilation. To keep the implementation transparent, wrappers are added to make the
trusted process invocable through remote procedure calls. SDCG is built on a delegation-
based sandbox architecture and uses it to catch system calls related to virtual memory
management. SDCG enforces three important policies on caught calls: (1) memory cannot
be mapped as both writable and executable; (2) when mapping a region as executable,
the base address and size must come from the trusted process, and the memory is always
mapped as RX; (3) the permission of non-writable memory cannot be changed. The
solution applied to V8 adds about 11% of overhead while isolating the dynamic code
generation process.

Discussion: Sandboxing helps cleanly isolate the JIT compilation process and/or
dynamically-generated code, but comes with an important instrumentation cost and can
induce a high overhead of more than 50% in the worst cases. It does not suffice against
ROP attacks with and without a scripting environment and fails against data-only attacks
where an attacker does not need to break out of the current process.
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Titre : Sécurisation matérielle de la compilation à la volée de machines virtuelles langage

Mot clés : Machine virtuelle (VM), Compilateur à la volée (JIT), RISC-V, Isolation matérielle

Résumé : Les machines virtuelles langage
(VM) sont l’environnement d’exécution des
langages de haut niveau les plus répandus.
Elles permettent une portabilité du code ap-
plicatif et la gestion automatique de la mé-
moire. Leur large diffusion couplée à l’exé-
cution de tâches de bas niveau les rendent
intéressantes pour les attaquants. Les solu-
tions purement logicielles entraînent souvent
une perte de performance incompatible avec
la compilation just-in-time (JIT). Des solutions
accélérées matériellement sont ajoutées dans
des processeurs commerciaux pour concilier
des garanties de sécurité fortes avec la per-
formance. Pour comparer ces solutions, cette
thèse s’intéresse au jeu d’instructions RISC-V

et à ses capacités d’extension. Nous présen-
tons Gigue, un générateur de binaires simi-
laires au code JIT directement exécutables sur
les softcores RISC-V. Il fournit une interface
pour des instructions personnalisées et garan-
tit leur exécution. Nous présentons une solu-
tion d’isolation de domaine au niveau des ins-
tructions ajoutée aux binaires de Gigue et dé-
ployée dans un processeur avec des modifica-
tions minimales. La solution ajoute un surcoût
de performance négligeable tout en garantis-
sant des propriétés fortes sur les domaines.
Afin de motiver le déploiement dans des cas
d’utilisation réels, nous étendons le compila-
teur JIT Pharo au jeu d’instructions RISC-V,
ainsi que son infrastructure de test.

Title: Hardware security for just-in-time compilation in language virtual machines

Keywords: Virtual Machines (VM), Just-in-time (JIT) compiler, RISC-V, Hardware isolation

Abstract: Language Virtual Machines (VMs)
are the run-time environment of popular high-
level managed languages. They offer porta-
bility and memory handling for the developer
and are deployed on most computing devices.
Their widespread distribution, handling of un-
trusted user inputs, and low-level task ex-
ecution make them interesting to attackers.
Software-only solutions that isolate their dif-
ferent components often incur a high perfor-
mance overhead incompatible with just-in-time
(JIT) compilation. Hardware-accelerated run-
time protections are pushed in vendor proces-
sors as a solution to conciliate strong secu-
rity guarantees with performance. To allow ex-
perimentation in the design and comparison

of such solutions, this thesis is interested in
the RISC-V instruction set and its extension
capabilities. We present Gigue, a workload
generator that outputs binaries similar to JIT
code directly executable on RISC-V softcores.
It provides an interface for custom instructions
and guarantees their execution. We present
an instruction-level domain isolation solution
added to Gigue binaries and implemented in
an application-class processor with processor
modifications. The solution adds negligible
performance overhead while enforcing strong
properties on domains. As an effort to moti-
vate deployment in real use cases, we extend
the Pharo JIT compiler to the RISC-V instruc-
tion set along with its testing infrastructure.
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