
HAL Id: tel-04690891
https://theses.hal.science/tel-04690891v1

Submitted on 6 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Integral points, monodromy, generic vanishing and
Fourier-Mukai transform

Haohao Liu

To cite this version:
Haohao Liu. Integral points, monodromy, generic vanishing and Fourier-Mukai transform. Mathe-
matics [math]. Sorbonne Université, 2024. English. �NNT : 2024SORUS112�. �tel-04690891�

https://theses.hal.science/tel-04690891v1
https://hal.archives-ouvertes.fr
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Huybrechts, Masaki Kashiwara, Joseph Lipman, Claude Sabbah, Pierre
Schapira, Toshiyuki Tanisaki, Jean-Baptiste Teyssier, John Voight and Rainer
Weissauer. I appreciate the patience and detailed replies of Will Sawin
and Marco Maculan to my questions on their respective work. Proposition
6.7.4.4 and its proof, both due to Claude Sabbah, are explained to me by
Gabriel Ribeiro. I thank Claude Sabbah for finding out a mistake in a
previous version. The example in Remark 3.5.3.3 is due to Will Sawin.
Lemma 6.6.2.7 is due to Pierre Schapira. Peter Scholze kindly answered my
questions, to whom Lemma 3.2.3.12 is due. My gratitude goes to Botong
Wang for answering my question on his work. I thank Oren Ben-Bassat and
Lie Fu for raising Questions 1.8.1.1 and B.5.0.2 respectively.

I am indebted to Giuseppe Ancona for his helpful comments and suggestions
on earlier drafts. I thank Christian Schnell for answering my questions on
his work, and for his feedback on this thesis. I express my deep gratitude

3
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Résumé

Cette thèse est une compilation de plusieurs résultats vaguement liés. Ils
concernent la non-densité des points entiers sur les variétés algébriques, la
méthode de Lawrence-Venkatesh-Sawin et la géométrie analytique complexe.

Dans Chapitre 2, parallèlement au principe alternatif d’Ullmo et Yafaev
sur les points rationnels des variétés de Shimura, nous montrons que la
conjecture de Lang sur les points intégraux des variétés de Shimura est soit
vraie, soit très fausse.

Le Chapitre 3 est un complément à la comparaison des monodromies
dans les travaux respectifs de Lawrence-Sawin et Krämer-Maculan. Nous
prouvons qu’il existe de nombreux caractères, tels que le groupe de monodromie
correspondant est normal dans le groupe tannakien générique.

Le Chapitre 4 contient un théorème de l’annulation générique pour les
variétés dans la classe Fujiki C. En particulier, cela s’applique aux variétés
algébriques complexes propres lisses ainsi qu’aux variétés kählériennes compactes.

Dans Chapitre 5, nous prouvons un analogue de la formule d’inversion de
Fourier pour la transformation de Fourier-Mukai sur des tores complexes. Il
corrige une inexactitude dans la littérature. En application, nous retrouvons
la classification de Matsushima-Morimoto des fibrés vectoriels homogènes
sur des tores complexes.

Le Chapitre 6 est une transformation de Fourier-Mukai analytique sur
les D-modules, dont la version algébrique a été étudiée par Laumon et
Rothstein. Nous étendons leur résultat de dualité des variétés abéliennes aux
tores complexes. En application, nous réprouvons le théorème de Morimoto,
selon lequel sur un tore complexe, tout fibré vectoriel admettant une connexion
admet une connexion intégrable.

Mots-clés

Conjecture de Lang, groupe de monodromie, annulation générique, transformation
de Fourier-Mukai, D-module.
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Abstract

This dissertation is a compilation of several loosely related results. They
concern the nondensity of integral points on algebraic varieties, the Lawrence-
Venkatesh-Sawin’s method and complex analytic geometry.

In Chapter 2, parallel to Ullmo and Yafaev’s alternative principle on
rational points of Shimura varieties, we show that Lang’s conjecture about
integral points on Shimura varieties is either true or very false.

Chapter 3 is a complement to the monodromy comparison step in Lawrence-
Sawin’s and Krämer-Maculan’s respective work. We prove that there are
many characters, such that the corresponding monodromy group is normal
in the generic Tannakian group.

Chapter 4 contains a generic vanishing theorem for Fujiki class C. In
particular, it applies to smooth proper complex algebraic varieties as well
as compact Kähler manifolds.

In Chapter 5, we prove an analog of the Fourier inversion formula for
the Fourier-Mukai transform on complex tori. It corrects a misstatement
in the literature. As an application, we recover Matsushima-Morimoto’s
classification of homogeneous vector bundles on complex tori.

Chapter 6 is a lift of the analytic Fourier-Mukai to D-modules, whose
algebraic version is studied by Laumon and Rothstein. We extend their
duality result from abelian varieties to complex tori. As an application, we
reprove Morimoto’s theorem that on a complex torus, every vector bundle
admitting a connection admits a flat connection.

Keywords

Lang conjecture, monodromy group, generic vanishing, Fourier-Mukai transform,
D-module.
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Chapter 1

Introduction

1.1 Rational points

Intuitively, given an algebraic variety over a number field, the complexity
of its geometry affects how many rational points (over finite extensions of
the base field) it can posses. In Chapter 1, by an algebraic variety, we
mean a geometrically integral, finite type, separated scheme over a field.
An algebraic variety of dimension one is called a curve. Subvarieties means
closed subvarieties.

1.1.1 Mordell conjecture

Let K be a number field. Let S be a finite subset of places of K containing all
the infinite ones. Let OK,S be the ring of S-integers. For an affine algebraic
variety X over K, choose an affine embedding (i.e., a closed immersion to an
affine space) i : X ↪→ An

K over K. An OK,S-integral point of X relative to i
refers to an element p ∈ X(K) such that the coordinates of i(P ) ∈ An

K(K)
lie in OK,S .

Remark 1.1.1.1. Let X ⊂ An
OK,S

be the scheme-theoretic image of the

composition X
i→ An

K → An
OK,S

. Because X is reduced, the generic fiber
of X → SpecOK,S is X. The set of OK,S-integral points of X relative to i
coincides with X (OK,S). By [Ser97, p.94], this set is quasi-integral relative
to OK,S . It may depend on the choice of the affine embedding i.

Let C be either the projective line P1
K with at least three punctures, or

a genus one curve over K with at least one puncture. By Siegel’s theorem
[Sie29, p.252] (see also [Ser97, p.95]), relative to every affine embedding of C,
there are only finitely many OK,S-integral points. For curves of higher genus,
Mordell [Mor22, (5), p.192] conjectures the finiteness of rational points,
which is proved by Faltings.

Fact 1.1.1.2 (Faltings, [Fal83, Satz 7]). Let Y be a smooth projective curve
over K of genus ≥ 2. Then Y (K) is finite.
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A sample application of Faltings’s theorem is a partial solution to Fermat’s
Last Theorem: for every integer n ≥ 4, there are only finitely many pairwise
coprime integer solutions to the equation xn+yn = zn. Indeed, the projective
plane curve (known as the n-th Fermat curve) in P2

Q cut out by this equation
has genus (n−1)(n−2)/2(≥ 2). It is more than a decade earlier than Andrew
Wiles’s complete solution in 1994 to Fermat’s conjecture.

Parshin [Par68] constructed a family of curves over Y , with which he
showed that Mordell’s conjecture (Fact 1.1.1.2) is a consequence of Shafarevich’s
conjecture for curves. This conjecture in turn follows from Shafarevich’s
conjecture for abelian varieties and Torelli’s theorem.

We recall the statement of Shafarevich’s conjecture. A smooth proper
variety (resp. abelian variety) over a discrete valuation field E is said to
have good reduction if it is isomorphic to the generic fiber of a smooth
proper scheme (resp. an abelian scheme) over the integer ring OE of E.
By [Mil20, Prop. 6.4], there is at most one such abelian scheme. A smooth
proper variety (resp. an abelian variety) over the number field K is said
to have good reduction at a finite place v of K, if its base change to the
completion Kv has good reduction.

Fact 1.1.1.3 (Shafarevich conjecture, [Fal83, Korollar 1, p.365 (resp. Satz
6)]). For every integer g at least two (resp. one), up to K-isomorphism there
are only finitely many smooth projective curves (resp. abelian varieties)
defined over K of genus (resp. dimension) g, with good reduction outside S.

In 1983, Faltings proved Shafarevich’s conjecture for abelian varieties
and hence Mordell’s conjecture, “opening thereby a new chapter in number
theory”.1 Faltings’s proof can be decomposed into two parts, Facts 1.1.1.4
and 1.1.1.5.

Fact 1.1.1.4 ([Fal83, Satz 5]). For every integer g > 0, up to K-isogeny
there are only finitely many abelian varieties over K of dimension g, with
good reduction outside S.

Fact 1.1.1.4 is weaker than Shafarevich’s conjecture for abelian varieties.
Its proof is to consider the representations of the absolute Galois group ΓK of
K on the Tate modules of abelian varieties over K. For one thing, by Tate’s
conjecture over number fields [Fal83, Korollar 2], the Galois representation
on the Tate module determines the abelian variety up to K-isogeny. For
another, by Weil’s conjecture proved by Deligne [Del74, Thm. 1.6], there
are only finitely many such representations up to isomorphism.

Fact 1.1.1.5. Let A be an abelian variety over K. Then up to K-isomorphism,
there are only finitely many abelian varieties over K which are K-isogenous
to A.

1quotation from [Blo84, p.41]

11



Faltings introduced a differential height function, now known as Faltings’s
height, to measure the “complexity” of abelian varieties. Height function is
a tool of global nature, as it collects the information at every place of the
base number field. The core of the proof of Fact 1.1.1.5 is [Fal83, Lem. 5],
which proves that Faltings’s height does not change much under isogenies.

1.1.2 Lang conjectures

From [CHM97, p.2], “one natural generalization to higher dimensions of the
notion of ‘curve of geometric genus g ≥ 2’ is ‘variety of general type’.” For a
smooth projective variety X over a field, let ωX be its canonical line bundle.
For an integer d ≥ 0, let Pd(X) = h0(X,ω⊗d

X ) be the d-th plurigenus of
X. The Kodaira dimension κ(X) is defined to be −∞ (or −1 depending on
the convention) if Pd(X) = 0 for every integer d > 0; otherwise, it is the
minimum real number r such that the sequence {Pd(X)/dr}d>0 is bounded.
From [Laz04, Eg. 2.1.5], the Kodaira dimension is the “most basic” integer
birational invariant of X. If κ(X) = dimX, then X is called of general type.
For instance, a smooth projective curve is of general type if and only of its
genus is at least two.

A high-dimensional analog of Mordell’s conjecture (Fact 1.1.1.2) is conjectured
by Lang (see, e.g., [CHM97, Conjecture A]).

Conjecture 1.1.2.1 (Weak Lang conjecture). Let X be a positive dimensional
smooth projective variety of general type over a number field K. Then X(K)
is not Zariski dense in X.

Using techniques from Diophantine approximation, Faltings proves the
weak Lang conjecture (Conjecture 1.1.2.1) for subvarieties of abelian varieties,
which gives a second proof of Mordell’s conjecture (Fact 1.1.1.2). From
[Hin98, p.95], a subvariety of an abelian variety is of general type if and
only if its stabilizer is finite.

Fact 1.1.2.2 ([Fal91, Thm. 1]). Let A be an abelian variety over a number
field K. Let X ⊂ A be a subvariety of general type. Then X(K) is finite.

Based on Faltings’s work [Fal94], Moriwaki proves another particular
case of the weak Lang conjecture (Conjecture 1.1.2.1). By [Deb05b, p.1445],
a smooth projective variety with ample cotangent bundle is of general type.

Fact 1.1.2.3 ([Mor95, p.114]). Let X be a smooth projective variety over
a number field K. If the cotangent bundle Ω1

X/K is ample and generated by

global sections, then X(K) is finite.

Conjecture 1.1.2.1 is stronger than the uniformity conjecture.

Fact 1.1.2.4 ([CHM97, Thm. 1.1]). Assume Conjecture 1.1.2.1 for all number
fields. Then for every number L and every integer g ≥ 2, there is an
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integer B(L, g) such that every smooth curve C over L of genus g, one
has #C(L) ≤ B(L, g).

Conjecture 1.1.2.1 for algebraic surfaces was independently raised by
Bombieri, so also known as the Bombieri-Lang conjecture. It gives a conditional
solution to the Erdös-Ulam problem.

A rational distance set in R2 is a subset such that every pairwise distance
between its points is rational. Erdös and Ulam conjectured in 1945 that
there is no dense rational distance set in R2.

Fact 1.1.2.5 ([Sha18, Cor. 1.4]). Assume Conjecture 1.1.2.1 for algebraic
surfaces over all number fields. Let S be an infinite rational distance set.
Then either all but at most 4 points of S are on a line, or all but at most 3
points of S are on a circle.

A complex manifold M is called Brody hyperbolic if every morphism
C → M of complex manifolds is constant. By [DR16, p.417], a compact
Riemann surface is Brody hyperbolic if and only if its genus is at least two.

Conjecture 1.1.2.6 ([Lan86, Conjeture 5.6], see also [BD21, Conjecture,
p.2]). A complex smooth projective variety is hyperbolic if and only if every
subvariety is of general type.

Conjecture 1.1.2.6 is known as the geometric Lang conjecture. It lies
between algebraic geometry and complex analytic geometry. Both directions
of it are unknown till now. For subvarieties of abelian varieties, Conjecture
1.1.2.6 is confirmed by [Yam19, Cor. 1.3] (and Brody’s theorem [Bro78,
p.213] that Brody hyperbolicity agrees with Kobayashi hyperbolicity for
compact complex manifolds).

Conjecture 1.1.2.7 would follow from Conjectures 1.1.2.1 and 1.1.2.6.

Conjecture 1.1.2.7 ([Lan74, (1.3)]). Let X be a smooth projective variety
over a number field K. If a complex analytification of X is Brody hyperbolic,
then X(K) is finite.

1.1.3 Lang conjecture for Shimura varieties

Shimura varieties are higher-dimensional analogs of modular curves. As
Alex Youcis puts it, the reason to study Shimura varieties is multiple:
They are highly symmetrical objects with rich actions of various Lie groups;
They are moduli spaces of abelian varieties (with extra structures); They
are moduli spaces of motives; They are objects conjectured to realize the
global Langlands correspondence, etc. However, to define Shimura varieties
requires an exceptional amount of technical sophistication. See [Mil17b] for
a reference.

Let (G,X) be a Shimura datum, and let K ≤ G(Af ) be a sufficiently
small, neat, compact open subgroup. Let S be a connected component of the
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complex manifold ShK(G,X). From Nadel’s work [Nad89, Thm. 0.2], the
Baily-Borel compactification S∗ of S is Brody hyperbolic. As the canonical
model of ShK(G,X) exists (see, e.g., [Mil17b, p.128]), S is naturally a
smooth quasi-projective variety defined over a number field F . Then Lang’s
conjecture (Conjecture 1.1.2.7) predicts that S(F ′) is finite for every finite
extension F ′/F . Similar speculation for integral points on Shimura varieties
of abelian type is confirmed by Ullmo. His proof relies on Faltings’s solution
to Shafarevich’s conjecture for abelian varieties (Fact 1.1.1.3).

Fact 1.1.3.1 ([Ull04, Thm. 3.2 (a)]). Suppose that the Shimura datum
(G,X) is of adjoint abelian type. Let Γ ≤ G(Q) be a net arithmetic lattice.
Then for every number field F , every finite set of places Σ of F and every
model (in the sense of [Ull04, Def. 2.2]) M of X+/Γ over OF,Σ, the set
M(OF,Σ) is finite.

Concerning the rational points on general Shimura varieties, Lang’s
conjecture (Conjecture 1.1.2.1) is related to an alternative principle [UY10,
Thm. 1.1]. For a projective variety Z over a number field, Ullmo and Yafaev

[UY10, (1)] define its Lang locus ZL to be the Zariski closure of ∪MZ(M)
>0

,
where M runs through finite extensions of the definition field of Z (inside

a fixed algebraic closure), and Z(M)
>0

is the union of positive-dimensional
irreducible components of the Zariski closure Z(M).

The Lang locus measures the failure of Lang’s conjecture, since ZL = ∅ if
and only if Z satisfies Conjecture 1.1.2.7. For Shimura varieties, Fact 1.1.3.2
shows that Lang’s conjecture is either true or very false.

Fact 1.1.3.2 (Ullmo-Yafaev’s all-or-nothing principle, [UY10, Thm. 1.1]).
Let S be a (connected) Shimura variety of sufficiently high level. Then S ∩
(S∗)L is either ∅ or S.

As Shimura varieties are not proper in general, it is equally natural
to consider integral points instead of rational points. For quasi-projective
varieties over Q̄, we define an “integral Lang locus” (Definition 2.6.0.1)
measuring the infiniteness of integral points of a chosen integral model. This
locus is independent of the choice of the integral model. It is empty if and
only if the variety has only finitely many integral points over each number
field where the variety can be defined. We give a result parallel to Fact
1.1.3.2 for integral points. It shows that the Lang conjecture on integral
points [Lan91, IX, Conjecture 5.1] is either true or very false for Shimura
varieties.

Theorem (Theorem 2.6.0.13). The integral Lang locus of a (connected)
Shimura variety S is either ∅ or S.

In fact, we form several axioms for an abstract locus formation, and
prove that such an alternative principle results from the axioms. Both Lang
locus and integral Lang locus satisfy the axioms.
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1.2 Lawrence-Venkatesh technique

Lawrence-Venkatesh’s new proof [LV20] of Faltings’s theorem (Fact 1.1.1.2)
sheds light on the weak Lang conjecture (Conjecture 1.1.2.1). This technique,
compared with Faltings’s strategy, is of local nature. We give a highly
sketchy review, and refer the reader to [LV20] for more details.

1.2.1 Setting

Let K,S be as in Section 1.1.1. Let f : X → Y be a smooth proper
morphism of smooth algebraic varieties over K. By enlarging S, one may
choose a smooth proper morphism f̃ : X → Y between smoothOK,S-schemes
whose base change to K is f : X → Y . Lawrence-Venkatesh’s idea uses the
induced variation of local Galois representations, to prove that Y(OK,S) is
not Zariski dense in Y .

Remark 1.2.1.1. If Y is as in Mordell’s conjecture (Fact 1.1.1.2), then by
properness of Y over K and [Poo17, Thm. 3.2.13 (ii)], the natural map
Y(OK,S) → Y (K) is bijective. By dimY = 1, every non-Zariski-dense
subset of Y is finite. That is why one only needs nondensity of integral
points to get finiteness of rational points in this case.

Lawrence and Venkatesh [LV20] apply the following machinery to a
variant of the relative curve constructed by Parshin (and of a construction
due to Kodaira).

1.2.2 Galois representations

Choose a finite place v of K, such that underlying rational prime p is
unramified in K and no place dividing p is in S. Let Ov ⊂ Kv be the integer
ring of the completion. There is a natural inclusion Y(OK,S) ⊂ Y(Ov). For
every y ∈ Y(Ov), the fiber Xy is a smooth proper scheme over Ov with
generic fiber Xy:

Xy y

X Y

SpecOv

Xy y

XKv YKv

SpecKv.

Let RepQp(ΓKv) the category of (continuous) Qp-representations of the absolute
Galois group ΓKv . For every integer d ≥ 0, there is a local Galois representation

ρdy : ΓKv → GL(Hd
ét(Xȳ/Kv,Qp))
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on the d-th étale cohomology group. For a locally small category C, let C/ ∼
be the set of isomorphism classes of objects of C. Hence, one gets a map
ρ : Y(Ov) → RepQp(ΓKv)/ ∼. Representations are more or less “linear”
data.

1.2.3 p-adic Hodge theory

The functor Dcris in p-adic Hodge theory induces a functor from the category
RepQp(ΓKv) to the category FVecKv of filtered vector spaces overKv. Because
the Kv-algebraic variety Xy has a smooth proper model Xy over Ov, the
p-adic Galois representation ρdy is crystalline in the sense of [BC09, p.133].
By Fontaine’s conjecture proved by Faltings [Fal88, Cor., p.69], this functor
sends ρdy to the de Rham cohomology Hd

dR(Xy/Kv) equipped with its Hodge
filtration (in the sense of [Sta24, Tag 0FM8]). That is informally depicted
below.

Y(OS)
choosing a suitable place v|p

⊂ Y(Ov)
ρ→ RepQp(ΓKv)/ ∼

Dcris→ FVecKv/ ∼ .

Locally, one can interpret the map

Y(Ov)→ FVecKv/ ∼ (1.1)

as a period map. There is an algebraic vector bundle V = HddR(X/Y ) on
Y , and a decreasing Hodge filtration F •V by vector subbundles, whose fiber
at every y ∈ Y (Kv) is Hd

dR(Xy/Kv) with its Hodge filtration. By [KO68],
there is a natural flat connection ∇GM on V , known as the Gauss-Manin
connection.

1.2.4 Complex period map

To define the period map, we begin reviewing the complex analytic analog.
Consider a variation of Hodge structure (V, F •V,∇) on a connected complex
manifold Y , where V → Y is a (holomorphic) vector bundle, F •V is a
decreasing filtration of V by vector subbundles, and ∇ is a flat connection
on V . (On a complex manifold, by connection we mean a holomorphic
connection in the sense of [Huy05, Def. 4.2.17].) Take a base point y0 ∈
Y and a small open disk Ω ⊂ Y around y0. As ∇ is flat, for y ∈ Ω,
the parallel transport induces a C-linear isomorphism of fibers Vy → Vy0 .
In general, the connection ∇ does not respect the filtration F •V . Still,
the fiberwise filtration F •Vy is transported to a filtration on the fiber Vy0 ,
which has the same dimensional data as the filtration F •Vy0 . Let Flag be
the complex projective variety parameterizing the filtrations of Vy0 of this
common dimension data. In this way, one gets a holomorphic map

ΦC : Ω→ Flag, y 7→ transport of F •Vy to Vy0 .

It is only locally defined on Y , and called a period map.
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1.2.5 p-adic period map

Let k/Qp be a finite field extension. Let Ok be the integer ring of k. Let
mk be the maximal ideal of Ok. Let Y be a smooth Ok-scheme with generic
fiber Y . Let Ȳ be the special fiber of Y:

Y Y Ȳ

Spec k SpecOk SpecOk/mk.

Fix a base point y0 ∈ Y(Ok). Let r : Y(Ok) → Ȳ(Ok/mk) be the
reduction map. Set Ω = r−1(r(y0)), and call it the residue disk around y0.
Then Ω is an open neighborhood of y0 in the analytic manifold Y an over
k. Consider a triple (V, F •V,∇), where V is a vector bundle on Y , F •V be
a decreasing filtration on V by vector subbundles, and ∇ a flat connection
on V . As in Section 1.2.4, one can define a flag variety Flag over k, and a
p-adic period map Φp : Ω→ Flag which is k-analytic.

1.2.6 Ax-Schanuel property of period map

In the notation of Section 1.2.1, take k = Kv. Take the triple (V, F •V,∇) to
be (HddR(X/Y ) ⊗K Kv,Hodge filtration,∇GM) on YKv . When the fibers of
V on a residue disk Ω are identified by the Gauss-Manin connection ∇GM,
the restriction of the map (1.1) to Ω coincides with the p-adic period map
Φp. Because Y(Ov) is covered by finitely many residue disks, to prove that
Y(OK,S) is not Zariski dense in Y , it suffices to prove the nondensity of
Ω ∩ Y(OK,S). Fact 1.2.6.1 counts essentially on Bakker-Tsimerman’s Ax-
Schanuel type result [BT19]. Let Hp be the Zariski closure of Φp(Ω) in
Flag.

Fact 1.2.6.1 ([KM23, Prop. 7.10 (4)]). Let Z ⊂ Hp be a subvariety with
dimHp ≥ dimZ + dimY . Then Φ−1

p (Z) is not Zariski dense in YKv .

The situation is summarized as follows.

Φ−1
p (Z) Z

Hp

YKv Ω Flag.

nondense

Φp

Take Z to be the Zariski closure of Φp(Ω(OK,S)) in Hp. If dimHp ≥ dimZ+
dimY , then by Fact 1.2.6.1, the subset Ω ∩ Y(OK,S) ⊂ Y is not Zariski
dense.

17



1.2.7 Summary

To show nondensity of integral points in Lawrence-Venkatesh’s method, one
needs to show that dimHp is “large” when compared with the dimension
of the image of OK,S-integral points. Let HC be the image of the complex
period map ΦC corresponding to the variation of Hodge structures induced
by fC : XC → YC. For one thing, as the Gauss-Manin connection ∇GM

is defined on K, one gets dimHp ≥ dimHC. Using Hodge theory, one
proves that HC contains the orbit of ΦC(y0) under the monodromy action.
For another thing, using Faltings’s finiteness theorem (see, e.g., [LV20,
Lem. 2.3]), one gets an upper bound (involving the centralizer of the crystalline
Frobenius operator arising from the comparison of de Rham cohomology and
crystalline cohomology) on Φp(Ω(OK,S)).

1.3 Lawrence-Sawin technique

The technique of Lawrence-Venkatesh is a promising approach to the weak
Lang conjecture (Conjecture 1.1.2.1), because it is successfully applied in
higher dimension. For example, based on this technique, Lawrence and
Sawin establish in an innovatory way the Shafarevich conjecture for hypersurfaces
in abelian varieties.

1.3.1 Statements

Let K,S be as in Section 1.1.1. Let A be an abelian variety over K of
dimension g, with good reduction outside S. A subvariety V ⊂ A is said to
have good reduction at a place v /∈ S of K, if the Zariski closure of V in the
unique abelian scheme A/OKv with generic fiber AKv is smooth.

Fact 1.3.1.1 (Lawrence-Sawin, [LS20, Thm. 1.1]). Suppose g ≥ 4. Fix an
ample class ϕ in the Néron-Severi group of A. Then there are only finitely
many hypersurfaces H ⊂ A over K representing ϕ, with good reduction
outside S, up to translation by points in A(K).

Using a similar technique, Krämer and Maculan obtained an analog for
subvarieties of dimension less than half the dimension of the ambient abelian
variety.

Fact 1.3.1.2 (Krämer-Maculan, [KM23, Cor., p.3]). Fix a polynomial P ∈
Q[z] of degree d < (g − 1)/2 and an ample line bundle L on A. Then up
to translation by points in A(K), there are only finitely many nondivisible
geometric complete intersections of ample divisors X ⊂ A over K, with good
reduction outside S, that have Hilbert polynomial P with respect to L and
satisfy 2χ(X ×X,Ωd

X×X) ≤ χtop(X ×X).
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In both cases of Facts 1.3.1.1 and 1.3.1.2, the dimension of the base
algebraic variety Y in Section 1.2 is grater than one. So nondensity of the
set of integral points is strictly weaker than finiteness. To get finiteness
of integral points, an idea suggested in [LV20, Sec. 10.2] is to iterate the
Lawrence-Venkatesh argument by replacing Y with the Zariski closure of
integral points. In this manner, an estimate of topological monodromy
group that is uniform in subvarieties of the variety Y under consideration
is needed. The main novelty of [LS20] is to compare the monodromy with
a Tannakian group. (The comparison involved in the proof of Fact 1.3.1.2
leans on [JKLM23].) This idea is similar to the study of monodromy groups
of variation of Hodge structures via Mumford-Tate groups in [And92].

This Tannakian group arises from sheaf convolution developed fundamentally
by Krämer-Weissauer [KW15b]. We give a cursory review of the comparison.

1.3.2 Tannakian theory of sheaf convolution

Tannakian formalism is a way to reconstruct a group from its representations.
By the Tannaka–Krein duality, a compact group can be recovered from
the abelian category of its complex representations together with the tensor
product operation.

Definition 1.3.2.1 ([DM22, Def. 2.19]). A rigid, symmetric, monoidal
abelian category (C,⊗) of unit object 1 is a neutral Tannakian category over
a field k if it admits an exact faithful k-linear tensor functor ω : C → Veck
(called a fiber functor) and if End(1) = k as rings.

Fact 1.3.2.2 ([DM22, Thm. 2.11], [Del90, Sec. 9.2]). Let (C,⊗) be a neutral
Tannakian category over a field k with a fiber functor ω : C → Veck.
Then there is a natural affine group scheme Aut⊗(C,ω) over k (called the
Tannakian group of (C,⊗) at ω), such that ω factors through an equivalence
C → Repk(Aut⊗(C,ω)) of symmetric monoidal categories. If k is algebraically
closed, then Aut⊗(C,ω) is independent of the choice of ω up to k-isomorphism.

Let X be an algebraic variety. Let ℓ be a prime number invertible on
X. Let Q̄ℓ be an algebraic closure of Qℓ. Let Db

c(X) be the triangulated
category of complexes of Q̄ℓ-étale sheaves on X with bounded, constructible
cohomologies. Perverse sheaves on X are the singular version of local
systems. They form a full, abelian subcategory Perv(X) of Db

c(X). This
abelian category is Noetherian and Artinian. For every smooth subvariety
Y ⊂ X, the complex of sheaves Q̄ℓ,Y [dimY ] is a perverse sheaf on X.

We review the work of Krämer and Weissauer. Let A be an abelian
variety over a field of characteristic zero. Let a : A × A → A be the group
law. Let pi : A×A→ A (i = 1, 2) be the projection to the i-th factor. The
bifunctor

(·) ∗ (·) : Db
c(A)×Db

c(A)→ Db
c(A), (−,+) 7→ Ra∗(p

∗
1 −⊗Lp∗2+)
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is called the convolution on A. In general, Perv(A) is not stable under
the convolution. Still, its quotient modulo the subcategory of “negligible
objects” is stable under the convolution. Let N(A) ⊂ Perv(A) be the full
subcategory comprised of (so-called negligible) objects with Euler characteristic
zero.

Fact 1.3.2.3 ([Krä22, 1.b]). The subcategory N(A) is a Serre subcategory
(in the sense of [Sta24, Tag 02MO (1)]) of Perv(A). Let P̄ (A) be the quotient
abelian category (in the sense of [Sta24, Tag 02MS]). Then the convolution
descends to a bifunctor ∗ : P̄ (A)× P̄ (A)→ P̄ (A). Moreover, (P̄ (A), ∗) is a
neutral Tannakian category over Q̄ℓ.

Every object F ∈ Perv(A) generates a Tannakian subcategory ⟨F ⟩ of
P̄ (A). Let G(F ) be the (unique up to isomorphism) Tannakian group of
⟨F ⟩. The computation of the Tannakian group in [LS20] follows essentially
the general approach in Krämer’s work [Krä22; Krä21].

1.3.3 Monodromy group and generic Tannakian group

Let A be an abelian variety over an algebraically closed field of characteristic
zero. In Lawrence-Sawin [LS20, Sec. 11], the strategy of Lawrence-Venkatesh
is applied to the universal family of hypersurfaces f : U → Hilb over the
corresponding Hilbert scheme

U Hilb×A

Hilb.

f

More generally, Krämer and Maculan [KM23, Sec. 1.4] consider (the
complex analytic analog of) the following setting. Let Y be a smooth
algebraic variety over k with generic point η. Let X ⊂ A×Y be a subvariety,
such that the projection f : X → Y is smooth of relative dimension d:

X A× Y

A Y.

π f

Then Rdf∗Q̄ℓ is a lisse sheaf on Y . To get “big monodromy”, they “twist”
this lisse sheaf as follows. Let C(A)ℓ be the scheme (recalled in Section 3.4)
parameterizing pro-ℓ characters of the étale fundamental group πét1 (A, 0).
For every character χ ∈ C(A)ℓ, let Lχ be the corresponding rank one
lisse sheaf on A. Then Vχ := Rdf∗π

∗Lχ is a lisse sheaf on Y and V1 =
Rdf∗Q̄ℓ. Let Mon(χ) be the Zariski closure of the image of the monodromy
representation πét1 (Y, η̄)→ GL(Vχ,η̄) of Vχ. We need to find χ such that the
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monodromy group Mon(χ) is big enough to carry out Lawrence-Venkatesh-
Sawin’s method.

Denote the perverse sheaf Q̄ℓ,Xη [d] on Aη by Pη. Let Pη̄ be its scalar
extension along the extension k(η̄)/k(η). By Krämer-Weissauer’s theorem
(Fact 1.5.1.1), for a generic χ ∈ C(A)ℓ, the functor

ωχ : ⟨Pη⟩(⊂ P̄ (Aη))→ VecC, F 7→ H0(Aη̄, F ⊗L Lχ)

is a fiber functor. Using ωχ(Pη) = Vχ,η̄, one can compare Mon(χ) with
G(Pη): By [JKLM23, p.28], for a generic character χ ∈ C(A)ℓ, the monodromy
group Mon(χ) is a closed subgroup of G(Pη).

To apply Bakker-Tsimerman’s Theorem (Fact 1.2.6.1), one needs a lower
bound on Mon(χ). The proof of the lower bound uses the normality of
the geometric generic Tannakian group G(Pη̄) inside the generic Tannakian
group G(Pη).

1.3.4 Normality of geometric generic Tannakian group

Let k be a field of characteristic zero with an algebraic closure k̄. Let A be
an abelian variety over k.

Fact 1.3.4.1 ([LS20, Lem. 3.7]). Let Gk (resp. Gk′) be the Tannakian
fundamental group of the category of geometrically semisimple perverse
sheaves on A (resp. the summands of the pullbacks to Ak̄ of geometrically
semisimple perverse sheaves on A), modulo the full subcategory of “negligible
objects”. Then Gk′ is naturally a closed normal subgroup of Gk, with quotient
isomorphic to the Tannakian group of the neutral Tannakian category (RepQ̄ℓ(Γk),⊗).

The assumption of geometric semisimplicity in Fact 1.3.4.1 is removed in
[JKLM23]. Let K/k be a field extension. Let k′ be the algebraic closure of
k in K. Assume that k′/k is Galois. Let C ⊂ P̄ (A) be a full abelian tensor
subcategory. Let CK ⊂ P̄ (AK) be the full subcategory of subquotients of
the pullbacks to AK of perverse sheaves on A. Fix a fiber functor ω : CK →
VecQ̄ℓ .

Fact 1.3.4.2 ([JKLM23, Thm. 4.3]). There is a short exact sequence of
proalgebraic groups

1→ Aut⊗(CK , ω)→ Aut⊗(C, ω)→ Aut⊗(C ∩ RepQ̄ℓ(Gal(k′/k)), ω)→ 1.

1.3.5 Monodromy group and geometric generic Tannakian
group

The normality result (Fact 1.3.4.1) and an analog of Larsen’s alternative
[LS20, Lem. 5.4] permit one to get a lower bound on Mon(χ). Under certain
geometric conditions on the family f : X → Y , by [LS20, Thm. 5.6] and
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[JKLM23, Thm. 4.10], for a generic character χ ∈ C(A)ℓ, the corresponding
monodromy group Mon(χ) contains the geometric generic Tannakian group
G(Pη̄)

Mon(χ) G(Pη)

G(Pη̄).

normal

1.3.6 Summary

In brief, in the work of Lawrence-Sawin and that of Krämer-Maculan, the
uniform estimation on the monodromy group Mon(χ) follows from a comparison
to the Tannakian group G(Pη̄) (of perverse sheaves on the geometric generic
fiber). Both Mon(χ) and G(Pη̄) are embedded as closed subgroups in the
Tannakian group G(Pη) on the generic fiber. Moreover, G(Pη̄) is normal in
G(Pη). This normality is used to prove Mon(χ) ⊃ G(Pη̄) for most characters
χ.

1.4 Normality of monodromy group

Complementing the normality of geometric Tannakian groups (Facts 1.3.4.1
and 1.3.4.2), we prove that for many characters χ ∈ C(A)ℓ, the associated
monodromy group Mon(χ) is also normal in the generic Tannakian group
G(Pη). This result poses a restriction on what the monodromy group can
be.

1.4.1 Relative perverse sheaves

In Section 1.3.3, one uses a perverse sheaf Pη on the generic fiber Aη of an
abelian scheme A× Y → Y . Hansen and Scholze’s work [HS23] on relative
perverse sheaves provides a way to study a family of perverse sheaves. Let
f : X → Y be a morphism of algebraic varieties. Assume that the prime ℓ is
invertible in the base field. By [HS23, Thm. 1.1], the category Db

c(X) has a
unique t-structure, called the relative perverse t-structure, which restricts to
the perverse t-structure on every geometric fiber of f . The heart Perv(X/Y )
of the relative perverse t-structure is called the category of relative perverse
sheaves in [HS23, p.636]. For every y ∈ Y , restricting to the fiber over y
induces a functor Perv(X/Y )→ Perv(Xy). An object of Perv(X/Y ) should
be thought as a family of perverse sheaves. However, the abelian category
Perv(X/Y ) may not be Artinian.

To get an abelian category with many of the same properties familiar
in the absolute setting, Hansen and Scholze add a condition, i.e., universal
local acyclicity recalled in Definition 3.2.2.1. Roughly, an object of Db

c(X) is
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universally locally acyclic if it satisfies the base change theorem. The relative
perverse t-structure preserves universally locally acyclic complexes. The
resulting abelian subcategory PervULA(X/Y ) ⊂ Perv(X/Y ) is Noetherian,
Artinian and compatible with Verdier duality. Moreover, if Y is smooth
with generic point η, then the functor PervULA(X/Y )→ Perv(Xη) exhibits
a Serre subcategory. In this sense, a universally locally acyclic, relative
perverse sheaf is determined by the perverse sheaf on the generic fiber.

1.4.2 Statement

Let k be an algebraically closed field of characteristic zero. Let A be an
abelian variety over k. Let Y be an algebraic variety over k with generic
point η. Let pY : A× Y → Y be the projection, which is a constant abelian
scheme. Let K ∈ Perv(A× Y/Y ) be semisimple in Db

c(A× Y ) in the sense
of Definition 3.2.1.3.

Theorem 1.4.2.1 (Theorem 3.1.2.2). Assume dimA > 0. Then there are
uncountably many characters χ : πét1 (A)→ Q̄∗

ℓ with the following properties:
RpY ∗(K ⊗ Lχ) is a lisse sheaf on Y , and its monodromy group is a closed
normal subgroup of the generic Tannaka group G(K|Aη) (defined on p.20).

In spirit, Theorem 1.4.2.1 is similar to André’s normality theorem.

Fact 1.4.2.2 ([And92, Thm. 1]). Let X be a smooth complex algebraic
variety. For a polarizable good variation of mixed Hodge structure over X
and every x in the complement of some meager subset of X, the corresponding
connected monodromy group is a normal subgroup of the corresponding derived
Mumford-Tate group.

Fact 1.4.2.2 is proved via the theorem of the fixed part due to Griffiths-
Schmidt-Steenbrink-Zucker. In our case, an analog of the fixed part theorem
is Theorem 1.4.2.3.

Theorem 1.4.2.3. Assume that Y is smooth and K ∈ PervULA(A×Y/Y ).
Then there is a subobject K0 ⊂ K in PervULA(A× Y/Y ) with the following
property: For a general pro-ℓ character χ : πét1 (A)→ Q̄∗

ℓ , one has

H0(Aη̄,K
0|Aη̄ ⊗L Lχη) = H0(Aη̄,K|Aη̄ ⊗L Lχη)Γk(η) .

1.5 Generic vanishing

1.5.1 Known results

In the construction of the Tannakian category in Fact 1.3.2.3, the existence
of a fiber functor is deduced from Krämer-Weissauer’s generic vanishing
theorem.
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Fact 1.5.1.1 (Krämer-Weissauer, [KW15b, Thm. 1.1]). Let P be a perverse
sheaf on a complex abelian variety A. Let Π(A) := Hom(π⊤1 (A),C∗). Then
there is a finite union S(P ) of translates of strict algebraic subtori of Π(A),
such that for every character χ ∈ Π(A) \ S(P ) and every integer i ̸= 0, one
has H i(A,P ⊗L Lχ) = 0.

The proof of Fact 1.5.1.1 relies on two ingredients. The first is Deligne’s
[Del02] characterization of rigid symmetric monoidal abelian categories. It
shows that a construction of André-Kahn [AKO02] leads to a super Tannakian
category. The other is Kashiwara’s conjecture for semisimple perverse sheaves.
Its solution [Dri01] in turn relies on de Jong’s conjecture proved in [BK06;
Gai07]. Fact 1.5.1.1 shows that the super Tannakian category is in fact a
neutral Tannakian category. As [KW15b, Sec. 3] explains, Krämer-Weissauer’s
theorem is a (partial) generalization of Green-Lazarsfeld’s generic vanishing
theorem.

Fact 1.5.1.2 ([GL87, Thm. 2]). Let X be a compact Kähler manifold. Let

w(X) = max{codimX Z(ω) : ω ∈ H0(X,Ω1
X) \ {0}},

where Z(ω) denotes the zero-locus of a holomorphic one form ω. Then
for any integers i, j ≥ 0 with i + j < w(X) and a generic line bundle
L ∈ Pic0(X), one has H i(X,Ωj

X ⊗ L) = 0.

Green-Lazarsfeld’s theorem is an analog of the Kodaira-Nakano vanishing
theorem and answers a problem of Beauville [Uen83, Problem 8, p.620]
affirmatively. Fact 1.5.1.1 implies generic vanishing theorem for compact
Kähler manifolds whose Albanese manifolds are abelian varieties (for example,
projective manifolds). In this sense, it generalizes Fact 1.5.1.2 partially. The
reason for such restriction is that Fact 1.5.1.1 is stated for abelian varieties.
To recover generic vanishing for all compact Kähler manifolds, one needs a
generalization of Fact 1.5.1.1 to all complex tori.

Fact 1.5.1.3 (Bhatt-Schnell-Scholze, [BSS18, Thm. 1.1]). Let P be a perverse
sheaf on a complex torus A. Then there is a strict Zariski closed subset S(P )
of the algebraic torus Π(A) such that for every character χ ∈ Π(A) \ S(P )
and every integer i ̸= 0, one has H i(A,P ⊗L Lχ) = 0.

1.5.2 Results for Fujiki class C

Existing vanishing results are mainly stated for Kähler manifolds. Deligne
[Del68] shows that parallel to the Kähler setting, every complex smooth
proper algebraic variety (not necessarily Kähler) admits a Hodge theory. We
show that generic vanishing results hold for such varieties. Instead of giving
a demonstration parallel to the Kähler situation, one can give a uniform
proof in Fujiki class C.
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A compact complex manifold is called in Fujiki class C, if it is the
meromorphic image of a compact Kähler manifold. Compact Kähler manifolds
and smooth proper complex algebraic varieties are in this class. Fujiki class
C admits a Hodge theory. We give a generic vanishing theorem for Fujiki
class C. Let X be a complex manifold in Fujiki class C. Let α : X → Alb(X)
be an Albanese morphism of X. Let r(α) be its defect of semismallness in
the sense of Definition 4.5.2.1. Let F be a flat unitary vector bundle on X
in the sense of Definition 4.2.2.2.

Theorem 1.5.2.1 (Theorem 4.7.1.3). For any integers p, q ≥ 0 with dimX−
p− q > r(α) and a generic line bundle L ∈ Pic0(X), one has

Hq(X,Ωp
X ⊗OX F ⊗OX L) = 0.

Corollary (Corollary 4.7.2.6). Suppose that X is the analytification of a
complex smooth proper algebraic variety. Then for any integers p, q ≥ 0
with dimX − p− q > r(α), the locus

{L ∈ Pic0(X) : Hq(X,Ωp
X ⊗OX F ⊗OX L) ̸= 0} (1.2)

is contained in a finite union of translates of strict abelian subvarieties of
the Picard variety Pic0X/C.

The strategy of the proof of Theorem 1.5.2.1 is considering the unitary
local system L corresponding to F (provided by the Riemann-Hilbert correspondence).
Its derived pushout Rα∗L along the Albanese morphism is a complex of
constructible sheaves on the complex torus Alb(X). Taking the perverse
sheaf cohomologies, one deduces a generic vanishing result for Rα∗L from
the Bhatt-Schnell-Scholze theorem (Fact 1.5.1.3). Theorem 1.5.2.1 follows.

Fact 1.5.1.3 generalizes Krämer-Weissauer’s theorem (Fact 1.5.1.1) to
complex tori, but with a coarser control of the jump locus S(P ) of a perverse
sheaf P . The finer control in Fact 1.5.1.1 results from the classification
[KW15b, Prop. 10.1 (a)] of negligible (i.e., of Euler characteristic zero)
simple perverse sheaves.

Do Krämer-Weissauer’s theorem (Fact 1.5.1.1) and the classification have
generalizations to all complex tori? A positive answer would allow one to
describe the failure locus of generic vanishing theorem for all compact Kähler
manifolds. The proof of [KW15b, Prop. 10.1 (a)] uses Poincaré’s reducibility
theorem for abelian varieties, which fails for complex tori. Still, Schnell
[Sch15, Thm. 7.6] gives an independent proof of Fact 1.5.1.1 as well as that
classification. Schnell’s proof is relatively elementary and makes use of a lift
of the Fourier-Mukai transform.

1.6 Fourier-Mukai transform

Fourier-Mukai transform on abelian varieties, initiated by Mukai [Muk81],
is an analog of the classical Fourier transform. For a ringed space (X,OX),
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let Mod(OX) be the category of OX -modules. Let D(OX) be the derived
category of the abelian category Mod(OX).

1.6.1 Construction

Let k be an algebraically closed field. Let A be an abelian variety over k
with dual abelian variety B. Let pA : A× B → A (resp. pB : A× B → B)
be the projection to A (resp. B). Denote the normalized Poincaré bundle
on A×B by P.

Definition 1.6.1.1. The pair of functors

RŜ = RpB∗(P ⊗L p∗A·) : D(OA)→ D(OB),

RS = RpA∗(P ⊗L p∗B·) : D(OB)→ D(OA)

is called the Fourier-Mukai transform between A and B.

The Fourier-Mukai transform has found many applications in algebraic
geometry: the Künneth decomposition for Chow motives [DM91], the study
of stable bundles on elliptic surfaces [Bri98], a new proof of Torelli’s theorem
[BP01], etc. Motivated by noncommutative geometry, [BBP07] studies the
Fourier-Mukai transform on complex tori. Similar to the classical Fourier
inversion, a duality result for the Fourier-Mukai transform is stated in [Muk81,
Thm. 2.2] (resp. [BBP07, Thm. 2.1]) in the algebraic (resp. analytic)
case. However, both statements are imprecise (Lemma 5.2.0.6). In the
algebraic case, the minor problem is bypassed by adding the quasi-coherence
condition. For an algebraic variety X, let Dqc(OX) ⊂ D(OX) be the full
subcategory of objects with quasi-coherent cohomologies.

Fact 1.6.1.2 (Mukai). The functor RŜ (resp. RS) restricts to a functor
Dqc(OA) → Dqc(OB) (resp. Dqc(OB) → Dqc(OA)). Moreover, there are
canonical isomorphisms of functors

RS ◦RŜ ∼= T−g[−1]∗A : Dqc(OA)→ Dgood(OA);

RŜ ◦RS ∼= T−g[−1]∗B : Dqc(OB)→ Dgood(OB),

where T denotes the degree shift of triangulated categories. In particular,
RŜ : Dqc(OA)→ Dqc(OB) is an equivalence with a quasi-inverse T g[−1]∗ARS.

1.6.2 Complex tori

In the analytic setting, there are several competing definitions of “quasi-
coherent” sheaves. A choice is the so-called good sheaves proposed by
Kashiwara [Kas03, Def. 4.22] (Definition A.1.4.1). With good sheaves, we
give a way to correct [BBP07, Thm. 2.1] in Chapter 5. First, we show that
good sheaves are analytic analogs of quasi-coherent sheaves. For a complex
manifold X, let Good(OX) ⊂ Mod(OX) (resp. Dgood(OX) ⊂ D(OX)) be the
full subcategory of good sheaves (resp. objects with good cohomologies).
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Proposition (GAGA, Proposition B.3.0.2, Theorem B.4.0.2). Let X be a
complex smooth proper algebraic variety. Then analytification induces an
equivalence abelian (resp. triangulated) categories Qch(OX)→ Good(OXan)
(resp. Dqc(OX)→ Dgood(OXan)).

Let A be a complex torus of dimension g. Let B be its dual torus. Set
RS : D(OB) → D(OA) and RŜ : D(OA) → D(OB) for the corresponding
Fourier-Mukai transform.

Theorem 1.6.2.1 (Mukai, Ben-Bassat, Block, Pantev, Theorem 5.4.1.1).
The functor RŜ (resp. RS) restricts to a functor Dgood(OA)→ Dgood(OB)
(resp. Dgood(OB)→ Dgood(OA)). Moreover, there are canonical isomorphisms
of functors

RS ◦RŜ ∼= T−g[−1]∗A : Dgood(OA)→ Dgood(OA);

RŜ ◦RS ∼= T−g[−1]∗B : Dgood(OB)→ Dgood(OB).

In particular, RŜ : Dgood(OA)→ Dgood(OB) is an equivalence with a quasi-
inverse T g[−1]∗ARS.

Mukai’s proof of Fact 1.6.1.2 uses the flat base change theorem, of
which we need an analytic analogue to prove Theorem 1.6.2.1. Our analytic
replacement (Theorem 5.3.2.3) concerns only smooth base changes, but this
weak version suffices for our purpose.

1.6.3 Homogeneous vector bundles

As an application of the analytic Fourier-Mukai transform, we recover Matsushima-
Morimoto’s classification of homogeneous vector bundles on complex tori
([Mat59; Mor59], see also [FL14, Thm. 7.1]).

The classification of vector bundles on a complex manifoldX is completely
worked out by Grothendieck [Gro57a] if X is the Riemann sphere P1

C, and
by Atiyah [Ati57b] if X is an elliptic curve. From [Muk78, p.239], when
X is an abelian variety of higher dimension, “there are ‘too’ many vector
bundles on X”. Still, there are classification results for some special classes
of vector bundles.

A vector bundle on a complex torus is called homogeneous if it is invariant
under all translations. For example, a line bundle on the complex torus A
is homogeneous if and only if its isomorphism class is in Pic0(A).

For an abstract group G, a finite dimensional complex representation
G→ GL(V ) is called unipotent, if G acts on V by unipotent endomorphisms.
By [Mil17a, Cor. 14.2], there is a basis of V for which G acts through upper
triangular matrices with ones on the diagonal. An extension of finitely
many OA is called a unipotent vector bundle on A. By [FL14, Lem. 5.1],
for every unipotent vector bundle U on A of rank r, there is a unipotent
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representation ρ : π1(A, 0) → GLr(C) inducing U . More precisely, let Cρ
be the local system of rank r on A corresponding to ρ. Then Cρ ⊗CA OA is
isomorphic to U . The extension of two homogeneous vector bundles is still
homogeneous, so every unipotent vector bundle is homogeneous.

Theorem (Matsushima-Morimoto, Theorem 5.5.3.6). A vector bundle F
on the complex torus A is homogeneous if and only F is isomorphic to
⊕ni=1Li⊗CXCρi, where n ≥ 0 is an integer, Li ∈ Pic0(X) and ρi : π1(X, 0)→
GLri(C) is a unipotent representation of dimension ri.

1.7 Laumon-Rothstein transform

Laumon and Rothstein independently lift the Fourier-Mukai transform to
D-modules and establish a duality result similar to Mukai’s duality (Fact
1.6.1.2). The lift is referred to as the Laumon-Rothstein transform.

1.7.1 D-modules

On a complex manifold X, an OX -module with a flat connection is called a
DX -module. A DX -module is a flat vector bundle if and only if it is coherent
over OX . The reason that we need D-modules is twofold. For one thing,
by the Riemann-Hilbert correspondence (see, e.g., [HT07, Thm. 7.2.1]),
perverse sheaves on X are equivalent to regular holonomic DX -modules. For
another, Krämer-Weissauer’s convolution theory relies on [KW15b, Prop. 10.1
(a)]. Its proof (resp. an independent proof of Schnell [Sch15]) uses characteristic
cycles (resp. the Laumon-Rothstein transform) of D-modules.

1.7.2 Construction

Let A be an abelian variety over an algebraically closed field. Let B be the
abelian variety dual to A. Set g = dimA. The Laumon-Rothstein transform
turns left DA-modules to modules over a commutative ringed space: the
universal vector extension (in the sense of Fact F.1.0.2). By independent
work of Rosenlicht [Ros58] and Serre [Ser88, Ch. VII], there is a universal
vectorial extension π : B♮ → B, where B♮ is a connected commutative
algebraic group of dimension 2g. By Mazur-Messing’s theorem (see, e.g.,
[Lau96, Thm. 2.1.2]), B♮ is the moduli space of flat line bundles on A. This
allows Schnell [Sch15] to apply Simpson’s nonabelian Hodge theory [Sim93]
there.

Let Db(DA) be the bounded derived category of the category of left
DA-modules. Let Db

qc(DA) (resp. Db
c(DA)) be the full subcategory of

Db(DA) of objects with O-quasi-coherent (resp. D-coherent) cohomologies.
Let Db

c(OB♮) be the full subcategory of Db(OB♮) of objects with coherent
cohomologies. Let P♮ be the pullback of the Poincaré bundle P along the
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morphism π × IdA : B♮ × A → B × A. There is a natural flat connection
∇♮ relative to B♮ on P♮. Then the pair (P♮,∇♮) is naturally a DB♮×A/B♮-

module. Let p̃r : B♮ ×A→ A and p̃r♮ : B♮ ×A→ B♮ be the projections.

Definition 1.7.2.1 ([Lau96, p.14]). The Laumon-Rothstein transform between
A and B is a pair of functors

F̃ = Rp̃r♮∗DRB♮×A/B♮((P♮,∇♮)⊗LO
B♮×A

p̃r∗·) : Db
qc(DA)→ Db

qc(OB♮),

F̃ ♮ = Rp̃r∗((P♮,∇♮)⊗LO
B♮×A

Lp̃r♮∗·) : Db
qc(OB♮)→ Db

qc(DA).

Fact 1.7.2.2 (Laumon-Rothstein, [Lau96, Thm. 3.2.1, Cor. 3.1.3], [Rot96,
Thm. 4.5, Thm. 6.2], [Rot97]). There are canonical isomorphism of functors

F̃ ♮F̃ ∼= T−g[−1]∗A : Db
qc(DA)→ Db

qc(DA), F̃F̃ ♮ ∼= T−g[−1]∗B♮ : Db
qc(OB♮)→ Db

qc(OB♮).

In particular, the functor F̃ : Db
qc(DA) → Db

qc(OB♮) is an equivalence of

categories. It restricts to an equivalence Db
c(DA)→ Db

c(OB♮).

1.7.3 Schnell’s proof of Fact 1.5.1.1

The Laumon-Rothstein transform is a geometric tool to study generic vanishing
theorems for perverse sheaves. The Riemann-Hilbert correspondence induces
an isomorphism Φ : (B♮)an → Π(A)an of complex manifolds. By [Sch15,
Sec. 3], for a holonomic DA-module M , the support of its Laumon-Rothstein
transform Supp F̃(M) ⊂ B♮ is identified (via Φ) with the failure locus (in
Π(A)) of generic vanishing for M . Schnell “deforms” the Laumon-Rothstein
transform to a transform for Higgs bundles.

On a complex manifold X, a connection on a vector bundle may not
be OX -linear. Higgs bundles can be regarded as degenerations of vector
bundles with flat “linear” connection.

Definition 1.7.3.1. A Higgs bundle is a vector bundle E on X with a
holomorphic one form ϕ ∈ Γ(X, End(E)) taking values in the bundle of
endomorphisms of E with ϕ ∧ ϕ = 0.

Deligne’s λ-connection is a notion interpolating between flat bundles and
Higgs bundles.

Definition 1.7.3.2. For λ ∈ C, a λ-connection of a vector bundle E on
X is a C-linear morphism of sheaves ∇ : E → Ω1

X ⊗OX E such that for
every open subset U ⊂ X, every f ∈ OX(U) and every s ∈ Γ(U,E), one has
∇(f · s) = f ·∇s+λdf ⊗ s. A λ-connection is flat if the OX -linear curvature
operator ∇ ◦∇ : E → Ω2

X ⊗OX E is zero.

Then 1-connection is exactly a connection, and a vector bundle with
a flat 0-connection is the same as a Higgs bundle. The moduli spaces of
λ-connections on projective varieties are studied in Simpson’s work [Sim97].
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For a complex abelian variety A, Schnell [Sch15, Sec. 10] analyzes the
moduli space E(A) of line bundles on A with λ-connections. Let λ : E(A)→
A1

C be the morphism taking the parameter of generalized connections. By
[Sch15, Lem. 10.7, 10.9], one has λ−1(1) = B♮, and λ−1(0) is the moduli
space of rank one Higgs bundles on A (i.e., MDol(A) in [Sim93, p.363]). The
morphism λ is real-analytically trivial, recovering the isomorphism of real
Lie groups MDol(A)→ B♮ in [Sim93, p.364].

Schnell [Sch15, Sec. 11] introduces an “extended Fourier-Mukai transform”
taking values in D(OE(A)). Restricting to λ−1(1), it coincides with the
Laumon-Rothstein transform. Restricting to λ−1(0), it is essentially the
Fourier transform for Higgs bundles in [Bon06; Bon10].

Schnell deforms the holonomic DA-module M to an OT ∗A-module M ′,
which is a “generalized” Higgs bundle (more precisely, a holonomic Higgs
module as [Sab07, Example 5.1.6 (1)] shows). By definition of holonomicity,
the subspace SuppM ′ ⊂ T ∗A has pure dimension g. Therefore, the support
of the Fourier transform ofM ′ is a strict subset of λ−1(0). It is the intersection
of the support of the extended Fourier-Mukai transform of M in E(A) with
λ−1(0). Using the real analytic isomorphism λ−1(0) → λ−1(1), Schnell
proves that the support of F̃(M) is also a strict subset of B♮. The generic
vanishing theorem (Fact 1.5.1.1) follows from this strictness. Details can be
found in [Sch15, Prop. 18.2].

1.7.4 Complex tori

An analytic Laumon-Rothstein transform may help to extend Schnell’s method
to all complex tori. By [Fav12, Thm. 3], an abelian variety A is determined
by Db

c(DA). From the Laumon-Rothstein duality (Fact 1.7.2.2), it is also
determined by Db

c(OB♮). However, this fails in the analytic case. Let A,B
be complex tori dual to each other, of dimension g. By Proposition F.5.4.5
1, the universal vectorial extension π : B♮ → B still exists. Contrary to the
algebraic case, the complex Lie group B♮ is isomorphic to (C∗)2g. Then B♮

can only tell the dimension of A. In particular, one can no longer recover
the complex structure of A from B♮! That is why we need to replace B♮ by
something else in an analytic Laumon-Rothstein duality.

In fact, we construct an OB-subalgebra AB of π∗OB♮ , and define a pair
of functors

F̃ : D(DA)→ D(AB), F̃ ♮ : D(AB)→ D(DA).

A coherent DA-module is called good if it admits global good filtration. (In
the algebraic case, every coherent D-module admits a global good filtration.
The complex analytic analog is false.) Let Db

good(DA) (resp. DO−good(DA))

be the full subcategory of Db(DA) (resp. D(DA)) of objects with good
(resp. OA-good) cohomology. Theorem 1.7.4.1 is a “lift” of the analytic
Mukai duality (Theorem 1.6.2.1).
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Theorem 1.7.4.1 (Theorem 6.1.2.2). 1. The pair (F̃ , F̃ ♮) is a lift of Fourier-
Mukai transform in the sense that the following squares are commutative:

D(DA) D(AB)

D(OA) D(OB),

F̃

RŜ

D(DA) D(AB)

D(OA) D(OB),

F̃♮

RS

where the vertical functors are forgetful.

2. One has

F̃F̃ ♮ ∼= T−g[−1]∗B : DO−good(AB)→ DO−good(AB),

F̃ ♮F̃ ∼= T−g[−1]∗A : DO−good(DA)→ DO−good(DA).

Moreover, F̃ ♮F̃ restricts to a functor Db
good(DA)→ Db

good(DA).

1.7.5 Vector bundles with connection

A smooth vector bundle on a smooth manifold always admits a smooth
connection. In the complex analytic case, a (holomorphic) vector bundle
many not admit any (holomorphic) connection.

Fact 1.7.5.1 (Atiyah, [Ati57a, Theorems 2, 5, 6]). Let X be a compact
Kähler manifold. Let E be a vector bundle on X admitting a connection.
Then for every integer k > 0, the k-th Chern class ck(E) is zero in H2k(X,R).

Fact 1.7.5.1 leads to Question 1.7.5.2, which is attributed to Atiyah in
[BD24, p.1].

Question 1.7.5.2. Does every vector bundle on a compact Kähler manifold
admitting a connection also admit a flat connection?

Using the analytic Laumon-Rothstein transform, we recover a result of
Matsushima [Mat59, Thm. 1] and Morimoto [Mor59, Thm. 2], which answers
Question 1.7.5.2 affirmatively for complex tori.

Theorem. 1. (Theorem 6.3.3.1) Let E be a coherent module on a complex
torus with a connection ∇. Then E is a homogeneous vector bundle
and the pair (E,∇) is translation invariant.

2. (Proposition 6.5.2.1) A homogeneous vector bundle on a complex torus
admits a flat connection.

1.8 Future directions

Several possible topics for further research are as follows. Depending on the
limit of the author’s knowledge, they vary from a vague idea to a relatively
concrete plan.
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1.8.1 Analytic quasi-coherent sheaves

As the proof of Theorem 1.6.2.1 needs a bit six-functor formalism in complex
analytic geometry, there are a few natural questions: Does Theorem 1.6.2.1
have an analog for analytic quasi-coherent sheaves in Scholze and Clausen’s
sense [Sch19; Sch22]? What is the relation between the notions of analytic
quasi-coherence existing in the literature: the one of Scholze and Clausen,
good sheaves proposed by Kashiwara and quasi-coherent sheaves in the sense
of [RR74, p.100]? Moreover, the Gabriel-Rosenberg reconstruction theorem
(see, e.g., [Bra18, Thm. 1.1]) shows that a quasi-separated scheme X can be
recovered from Qch(X). Does it have an analytic analog?

Question 1.8.1.1. LetX and Y be compact complex manifolds. If Good(OX)
and Good(OY ) are equivalent as abelian categories, then is X isomorphic to
Y ?

1.8.2 Analytic Krämer-Weissauer’s vanishing theorem

With the analytic Laumon-Rothstein transform and Theorem 1.7.4.1, we
can study analytic holonomic D-modules (instead of perverse sheaves only)
following Schnell [Sch15]. This shall lead to a convolution theory on complex
tori, extending that on abelian varieties. The resulting analytic Krämer-
Weissauer theorem would hopefully give a finer control of the loci (1.2) for
not only projective manifolds but also compact Kähler manifolds.

1.8.3 Lawrence-Venkatesh’s method

Faltings [Fal83] deduces Mordell’s conjecture (Fact 1.1.1.2) from Shafarevich’s
conjecture [Fal83, Satz 6]. For any integers g ≥ 1 and n ≥ 3, the Siegel
varietyAg,n is a Shimura variety parameterizing principally polarized abelian
varieties of dimension g with a level n-structure. Using Shafarevich’s conjecture
(Fact 1.1.1.3), Ullmo [Ull04, Prop. 3.1 (a)] shows that every integral model of
Ag,n has only finitely many integral points. Now that Lawrence-Venkatesh’s
method [LV20] can recover Faltings’s theorem, a natural question is whether
it can also prove the finiteness of integral points of Ag,n.

The situation should be compared to that in [LS20, p.7], where the
authors consider the universal hypersurface inside a constant abelian scheme
and compare its Tannakian group with the monodromy group. Similarly, to
study Shafarevich’s conjecture (Fact 1.1.1.3), we can consider the convolution
of relative perverse sheaves on the universal abelian variety over Ag,n. Then
we may relate the Tannakian group associated with the universal theta
divisor computed in [KW15a] to the corresponding monodromy group.
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1.9 Overview

The thesis consists of several independent chapters. Chapter 2 contains an
arithmetic result related to Conjecture 1.1.2.1. The geometric foundation
of the work [LS20; KM23] has inspired the study in Chapters 3, 4 and 6.
Chapter 3 is related to the monodromy comparison part of [LS20; KM23].
Chapters 4, 5 and 6 are of complex analytic nature, completely independent
of arithmetic. Appendix A reviews generalities of sheaves of modules over
ringed spaces and supplements Chapter 5. Appendix B extends the classical
GAGA theorem from coherent sheaves to quasi-coherent sheaves. Appendix
C shows that quasi-coherent sheaves on complex analytic spaces form an
abelian category. Appendix D complements Chapter 4 by giving more
details. Appendix E concerns basics of D-modules and adds a detail on the
Laumon-Rothstein theorem (Fact 1.7.2.2). Appendix F details a construction
used in Chapter 6 and investigates related group-theoretic problems.
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Chapter 2

Integral points of Shimura
varieties: an “all or nothing”
principle

2.1 Introduction

A complex analytic space X is called Brody hyperbolic, if every morphism
C → X is constant. For example, by [Cos05, p.78], a genus g connected
compact Riemann surface is Brody hyperbolic if and only if g ≥ 2. Conjecture
2.1.0.1 predicts that hyperbolicity restricts the behavior of rational points.

Conjecture 2.1.0.1 (Lang, [Lan74, (1.3)], [Lan86, p.160]). Let X be an
integral projective variety over a number filed F (⊂ C). If the complex
analytification X(C) is Brody hyperbolic, then the set of rational points X(F )
is finite.

Ullmo and Yafaev [UY10] study Conjecture 2.1.0.1 in the case of Shimura
varieties. Let (G,X) be a Shimura datum in the sense of [Mil17b, Def. 5.5].
Let K be a small compact open subgroup of G(Af ). For every connected
component S of ShK(G,X), denote the Baily-Borel compactification of S
by S∗. In [UY10, p.691], Fact 2.1.0.2 is derived from [Nad89, Thm. 0.2].

Fact 2.1.0.2 (Nadel). There is an open subgroup K ′ of K, such that for
every induced finite étale cover S′ → S, the Baily-Borel compactification
S′∗(C) is Brody hyperbolic.

For one thing, by Fact 2.1.0.2, shrinking K to a sufficiently small open
subgroup, one may assume that the Shimura variety S(C) is Brody hyperbolic.
For another, S∗ has a natural structure of projective variety over a number
field F (⊂ C). Then Conjecture 2.1.0.1 predicts S(F ′) to be finite for every
finite extension F ′/F . Ullmo and Yafaev [UY10] introduce “Lang locus”
(recalled in Example 2.2.0.2) for algebraic varieties over Q̄ to measure the
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possible failure of Conjecture 2.1.0.1. By construction, the Lang locus of an
algebraic variety X is empty if and only if it has only finitely many rational
points over every number field on which X can be defined. The Lang locus
of Shimura varieties satisfies an alternative principle.

Fact 2.1.0.3 ([UY10, Thm. 1.1]). Let S be a Shimura variety of sufficiently
high level. Then its Lang locus is either empty or full S.

As Ullmo and Yafaev put it, Fact 2.1.0.3 means that for Shimura varieties,
Conjecture 2.1.0.1 is either true or very false.

Shimura varieties may not be proper, so it is natural to consider integral
points. Conjecture 2.1.0.1 predicts that S has only finitely many integral
points. We define a notion of “integral Lang locus” (Definition 2.6.0.1) for
algebraic varieties over Q̄ that measures the failure of finiteness of integral
points. Then we derive an analogue of Fact 2.1.0.3 for this locus.

Theorem 2.1.0.4 (Theorem 2.6.0.13). The integral Lang locus of a Shimura
variety is either empty or full.

A minor difference is that by the Chevalley-Weil theorem, we don’t need
the level structure to be high. As Example 2.6.0.5 shows, Theorem 2.1.0.4
is not a direct corollary of Fact 2.1.0.3.

Notation and conventions

Let Q̄ be the algebraic closure of Q in C. Let Af be the ring of finite
adèles of Q. For a topological space X, let X>0 be the union of irreducible
components of X of positive Krull dimension. Then for every subspace
Y ⊂ X, one has Y >0 ⊂ X>0.

An algebraic variety means a finite type, separated scheme over a field.
The closure of a subset of an algebraic variety is taken in the Zariski topology.
A subvariety is assumed to be Zariski closed. By an étale cover X → Y ,
we mean a finite étale morphism between integral algebraic varieties. In
particular, it is surjective. If the automorphism group Aut(X/Y ) of the
étale cover acts transitively on each fiber, then X → Y is called a Galois
cover, of Galois group Aut(X/Y ).

2.2 Locus formation

We shall show that an alternative principle (Corollary 2.5.0.4) for an abstract
locus is a consequence of some axioms listed in Section 2.2.

Suppose that for every integral algebraic variety X over Q̄, one has
a subvariety XL ⊂ X. For a reducible algebraic variety Z over Q̄, let
Z = ∪ni=1Zi be the irreducible decomposition. Set ZL := ∪ni=1Z

L
i . Suppose

that the formation (·)L satisfies Assumption 2.2.0.1.
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Assumption 2.2.0.1. For any integral algebraic varieties X,Y over Q̄:

1. Every irreducible component of XL has positive dimension;

2. For every closed immersion i : X → Y over Q̄, one has i(XL) ⊂ Y L;

3. For every étale cover f : X → Y over Q̄, one has f(XL) ⊂ Y L;

4. One has XL ⊂ (XL)L;

5. For every finite birational morphism f : X → Y over Q̄, one has
f(XL) ⊂ Y L.

By Assumption 2.2.0.1 2, for every integral algebraic variety X over Q̄,
one has XL ⊃ (XL)L. From Assumption 2.2.0.1 4, one has XL = (XL)L.

Example 2.2.0.2. We recall the Lang locus defined in [UY10, Sec. 2.2]
and the reason why it satisfies Assumption 2.2.0.1. By [Sta24, Tag 01ZM
(1), Tag 01ZQ], for every integral algebraic variety X over Q̄, there exists a
number field F , an algebraic variety XF over F called a model of X, and an
isomorphism ϕ : XF ⊗F Q̄→ X over Q̄. For every finite subextension M/F
inside Q̄, let X(XF ,M) be the image of the injection1 ϕ∗ : XF (M)→ X(Q̄).
The Lang locus XUY of X relative to (XF , ϕ) is defined to be the Zariski
closure of

∪MX(XF ,M)
>0

in X, where M runs through all finite subextensions of F . By Lemma
2.2.0.3, the Lang locus XUY depends only on X. It measures the failure of
finiteness of rational points, since XUY∅ if and only if XF (M) is finite for
every finite subextension M/F .

Every irreducible component of XUY of dimension 0 is an isolated point

p. Then p is contained in X(XF ,M)
>0

for some finite extension M/F ,
so there is a positive dimensional irreducible component C of X(XF ,M)
containing p. Since C ⊂ XUY, one has a contradiction. This contradiction
proves Assumption 2.2.0.1 1. From [UY10, Lemme 2.3 (resp. 2.5)], the
formation (·)UY satisfies Assumption 2.2.0.1 3 and 5 (resp. 2 and 4).

Lemma 2.2.0.3. The Lang locus XUY of X is independent of the choice of
(XF , ϕ).

Proof. Take another model XF ′ over a number field F ′ and an isomorphism
ϕ′ : XF ′⊗F ′ Q̄→ X. Then ϕ′−1◦ϕ : XF⊗F Q̄→ XF ′⊗F ′ Q̄ is an isomorphism
over Q̄. By [EGA IV 2, Prop. 4.8.13], because XF ′ is separated over F ′, the
morphism is defined over a number field F ′′ containing both F and F ′. For

1The natural map XF (M) → XF may not be injective. For instance, let F = Q,
M = Q(

√
2) and XF = A1

Q. Then ±
√
2 ∈ XF (M) are mapped to the same closed point

of XF corresponding to the maximal ideal (x2 − 2) ⊂ Q[x].
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every finite extension M/F , there is a number field M ′ containing M and

F ′′. Then X(XF ,M) ⊂ X(XF ′ ,M ′), so X(XF ,M)
>0 ⊂ X(XF ′ ,M ′)

>0
and

hence the Lang locus relative to (XF , ϕ) is contained in that relative to
(XF ′ , ϕ′). The reverse inclusion follows by symmetry.

Remark 2.2.0.4. 1. The Lang locus XUY in Example 2.2.0.2 is different
from the Zariski closed subset XL

F of XF defined by [UY10, (1)]. Let
φ : X → XF be the morphism of schemes induced by ϕ : XF ⊗F Q̄→
X. Then φ is integral. For every finite extension M/F , let XF [M ] be
the image of the natural map XF (M) → XF . Then φ(X(XF ,M)) =
XF [M ]. Because surjective integral morphisms preserve the dimension,

one has φ(X(XF ,M)) = XF [M ] and φ(X(XF ,M)
>0

) = XF [M ]
>0

.
Therefore, φ(XUY) = XL

F .

2. For a finite birational morphism f : X → Y of integral algebraic
varieties over Q̄, it is not clear whether the induced map XUY → Y UY

is surjective. That is why we require only inclusion but not equality
in Assumption 2.2.0.1 5.

We gather some consequences of Assumption 2.2.0.1.

Lemma 2.2.0.5. Let X be an algebraic variety over Q̄.

1. If X = ∪ri=1Zi, where each Zi is a subvariety of X, then XL = ∪ri=1Z
L
i .

2. If Z is an irreducible component of XL, then ZL = Z.

3. If f : X → Y is Galois cover over Q̄, then f−1(f(XL)) = XL. Let Z ⊂
Y be an irreducible subvariety, and let Z ′ be an irreducible component
of f−1(Z). Then f(f−1(Z)L) = f(Z ′L).

Proof.

1. By Assumption 2.2.0.1 2, one has ∪ri=1Z
L
i ⊂ XL. If Y is an irreducible

component of X, then there exists an index i with Y ⊂ Zi. From
Assumption 2.2.0.1 2, one has Y L ⊂ ZLi and hence XL ⊂ ∪ri=1Z

L
i .

2. Write XL = ∪ni=1Zi for the irreducible decomposition with Z1 = Z.
By Assumption 2.2.0.1 4, one has

Z ⊂ XL = (XL)L = ∪ni=1Z
L
i .

As Z is irreducible, there is an index i with Z ⊂ ZLi ⊂ Zi. As Z = Z1

is an irreducible component of XL, one has i = 1 and Z = ZL.

3. For every x ∈ f−1(f(XL)), there is x′ ∈ XL with f(x′) = f(x). Let
Θ be the Galois group of f : X → Y . There is θ ∈ Θ with θ(x′) = x,
so x ∈ XL by Assumption 2.2.0.1 2. Therefore, f−1(f(XL)) = XL.
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Since Θ permutes transitively the irreducible components of f−1(Z),
one has f−1(Z) = Θ · Z ′. By Part 1, one has f−1(Z)L = Θ · Z ′L and
hence f(f−1(Z)L) = f(Z ′L).

2.3 Shimura varieties

We review some basic facts about Shimura varieties, the main objects of
interest in this note. We use essentially results on the geometry of Hecke
correspondences and special subvarieties from [UY10; UY14].

Complex structure

Let G be an affine algebraic group over Q.

Definition 2.3.0.1 ([Pin90, Sec. 0.1, p.13]). For every prime number p,
choose an embedding Q̄→ Q̄p.

1. For an element g = (gp)p ∈ GLn(Af ), let Γp ≤ Q̄×
p be the subgroup

generated by all eigenvalues of gp ∈ GLn(Qp). If the intersection of
torsion subgroups

∩p(Q̄× ∩ Γp)tor

for p running through all primes is trivial, then g is called neat.

2. An element of G(Af ) is neat if its image under some faithful algebraic
representation of G→ GLn/Q is neat.

3. A subgroup of G(Af ) is neat if all its elements are neat.

Fact 2.3.0.2 ([Pin90, p.13]).

1. Let K be a compact open subgroup of G(Af ). Then there is a normal
open subgroup K ′ of K that is neat.

2. Let K be a neat compact open subgroup of G(Af ). Then K ∩G(Q) is
a neat subgroup of G(Q) (in the sense of [Mil17b, p.34]).

Let (G,X) be a Shimura datum. The set G(R) is naturally a (real) Lie
group. For a Lie group L, let L+ be its identity component. Let Gad be the
quotient of G by its center. Set G(R)+ to be the preimage of Gad(R)+ under
the natural morphism G(R) → Gad(R) of Lie groups. By [Noo06, p.168]
and [Mil17b, Prop. 5.9], X is naturally a finite disjoint union of isomorphic
hermitian symmetric domains. Let X+ be a connected component of X. By
[Mil17b, Prop. 5.7 (b)], the stabilizer of X+ in G(Q) is G(Q)+ := G(Q) ∩
G(R)+. Set G(Q)+ := G(Q) ∩G(R)+. Then G(Q)+ ⊂ G(Q)+ ⊂ G(Q).
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Let K be a compact open subgroup of G(Af ). From Fact 2.3.0.2 1,
by passing to an open subgroup of K, we may and always assume that
K is neat. Then by [Pin90, Prop. 3.3 (b)], ShK(G,X) := G(Q)\X ×
G(Af )/K is naturally a complex manifold. For every g ∈ G(Af ), put
Γg := gKg−1 ∩ G(Q)+ and Sg := Γg\X+. By Fact 2.3.0.2 2 and [Mil17b,
Prop. 4.1], Γg is a neat (hence torsion-free) arithmetic subgroup of G(Q)
in the sense of [Mil17b, p.33]. From [Mil17b, Prop. 3.1], Sg = [X+, g]K
is naturally a connected complex submanifold of ShK(G,X). Let C be
a set of representatives for the double coset space G(Q)+\G(Af )/K. From
[Mil17b, Lemmas 5.12 and 5.13], the set C is finite, and as complex manifold2

ShK(G,X) = ⊔g∈CSg.
By [Mil17b, Thm. 3.12, Cor. 3.16], the complex manifold Sg has a

canonical structure of a complex algebraic variety. The algebraic variety
Sg is an irreducible, smooth, arithmetic locally symmetric variety in the
sense of [Mil17b, p.58]. From [Mil17b, p.40], it is Zariski-open in its Baily-
Borel compactification S∗

g , which is a projective variety. Thus, ShK(G,X) is
naturally a smooth quasi-projective (possibly disconnected) complex algebraic
variety.

Lemma 2.3.0.3. Let (H,XH) be s Shimura subdatum of (G,X) in the
sense of [CLZ16, p.894]. Then there is a compact open subgroup K0 of
G(Af ), such that for every open subgroup K of K0, the induced morphism
ShK∩H(Af )(H,XH)→ ShK(G,X) is a closed immersion.

Proof. By [Mil17b, Aside, p.58], there is a compact open subgroup K0

of G(Af ), such that for every open subgroup K of K0, there is an open
subgroup K ′ of K∩H(Af ), such that the induced morphism ShK′(H,XH)→
ShK(G,X) is a closed immersion. The morphism ShK∩H(Af )(H,XH) →
ShK(G,X) is separated, so the morphism pK′,K∩H(Af ) : ShK′(H,XH) →
ShK∩H(Af )(H,XH) is a closed immersion. By [Sta24, Tag 025G], pK′,K∩H(Af )
is an isomorphism. Therefore, ShK∩H(Af )(H,XH)→ ShK(G,X) is a closed
immersion.

Remark 2.3.0.4. In [DJK20, p.6], it writes that ShK∩H(Af )(H,XH)→ ShK(G,X)
is a closed immersion for every compact open subgroup K of G(Af ). This
is a typo, as the first paragraph of [Mil17b, p.59] explains.

Canonical model

Let E(G,X) ⊂ Q̄ be the reflex field in the sense of [Mil17b, Def. 12.2] of
the Shimura datum (G,X). By [Mil17b, Rk. 12.3 (a)], E(G,X) is a number
field. From [Mil99, Rk. 2.4 (b)] and [Mil17b, p.128], ShK(G,X) admits a
unique (up to a unique isomorphism) canonical model over E(G,X) in the
sense of [Mil17b, Def. 12.8]. Hence, one obtains a smooth quasi-projective

2Compare with [EY03, Sec. 5, p.634] and [Noo06, p.169].
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variety ShK(G,X) over E(G,X). By [Moo98b, p.282] and [GN20, Remark
(3), p.56], every connected component S of ShK(G,X) and its inclusion
S → S∗ to the Baily-Borel compactification are defined over a finite abelian
extension of E(G,X). Such an S is called a Shimura variety associated
with (G,X,K). By [Moo98b, Prop. 2.9] and [Mil17b, Thm. 5.17], when K
is sufficiently small, S is a connected Shimura variety in the sense of [Mil17b,
Def. 4.10].

By [Del71b, Cor. 5.4], for every morphism of Shimura data ϕ : (G′, X ′)→
(G,X) and every compact open subgroup K ≤ G(Af ) containing ϕ(K ′),
the induced morphism ShK′(G′, X ′)→ ShK(G,X) is defined over a number
field. Assume that ϕ is the identity of (G,X). Then the induced morphism
pK′,K : ShK′(G,X) → ShK(G,X) is surjective finite étale and defined over
E(G,X). For every g ∈ G(Af ), the image of the irreducible component
[X+, g]K′ of ShK′(G,X) is the irreducible component [X+, g]K of ShK(G,X).
The restriction [X+, g]K′ → [X+, g]K is an étale cover defined over a finite
extension of E(G,X), called an étale cover of Shimura varieties. From
[CK16, p.1901], when K ′ is normal in K, this étale cover is Galois with
Galois group (gKg−1 ∩ G(Q)+)/(gK ′g−1 ∩ G(Q)+). Moreover, K/K ′ acts
on the complex algebraic variety ShK′(G′, X ′), and this action permutes the
irreducible components of p−1

K′,K([X+, g]K).

Remark 2.3.0.5. The last paragraph of [UY10, p.694] is a typo. The family
of étale covers of Shimura varieties over S is not directed, in the sense that
for such covers S1 → S and S2 → S, there may not be any étale cover of
Shimura varieties S1,2 → S that covers both S1 and S2.

Hecke correspondences

For every g ∈ G(Af ), let T (g) be the morphism of complex manifolds

ShK(G,X)→ Shg−1Kg(G,X), [x, a]K 7→ [x, ag]g−1Kg.

By [Mil17b, Thm. 13.6], it descends to an isomorphism of algebraic varieties
over E(G,X). For every h ∈ G(Af ), the morphism T (g) sends the connected
component [X+, h]K of ShK(G,X) isomorphically to the connected component
[X+, hg]g−1Kg of Shg−1Kg(G,X). The algebraic correspondence

ShK(G,X)
pK∩gKg−1,K← ShK∩gKg−1(G,X)

pK∩gKg−1,gKg−1

→ ShgKg−1(G,X)
T (g)→ ShK(G,X)

over E(G,X) is denoted by TA
g , and called the adelic Hecke correspondence

induced by g.
Let S = (K ∩ G(Q)+)\X+. For every q ∈ G(Q)+, let Sq := (K ∩

q−1Kq ∩ G(Q)+)\X+. Then Sq (resp. S) is a connected component of
ShK∩q−1Kq(G,X) (resp. ShK(G,X)). The map IdX+ : X+ → X+ (resp.
the map X+ → X+, x 7→ q · x) induces an étale cover αq : Sq → S (resp.
βq : Sq → S). There is a commutative diagram
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S Sq S

ShK(G,X) ShK∩q−1Kq(G,X) ShK(G,X)

αq βq

pK∩q−1Kq,K T (q−1)pK∩q−1Kq,q−1Kq

of complex manifolds. Therefore, the correspondence

S
αq← Sq

βq→ S

is algebraic and defined over a number field. It is called the (rational) Hecke
correspondence induced by q, and denoted by Tq.

Let {qi}ni=1 be elements of G(Q)+ ∩KgK satisfying

G(Q)+ ∩KgK = ⊔ni=1Γq
−1
i Γ, Γ := K ∩G(Q)+.

By [KY14, p.881], the correspondence on S ⊂ ShK(G,X) induced by TA
g

decomposes as
∑n

i=1 Tqi . For instance, the correspondences TA
1 and T1 are

the identity.

Special subvarieties

Definition 2.3.0.6. [Moo98a, Def. 2.5] An irreducible subvariety Z of
ShK(G,X) over C is called special, if there exists a connected, reductive
algebraic subgroup H of G defined over Q, an element g ∈ G(Af ) and a
connected component D+

H of

DH := {x ∈ X|hx : ResC/R(Gm)→ GR factors through HR},

such that Z(C) is the image of D+
H × gK in ShK(G,X)(C) = G(Q)\X ×

G(Af )/K.

By [Moo98a, 2.4], DH is a finite union of H(R)-conjugacy classes. Let
C be the H(R)-conjugacy class containing D+

H . Then (H,C) is a Shimura
subdatum of (G,X). From [Del71b, Cor. 5.4] and [Moo98a, Rk. 2.6], the
inclusion of a special subvariety into ShK(G,X) is defined over a number
field.

Example 2.3.0.7. 1. A complex point s ∈ ShK(G,X) is a special subvariety,
if and only if there is a special point x ∈ X (in the sense of [Mil17b,
Def. 12.5]) and g ∈ G(Af ) with s = [x, g]K .

2. When H = G, the corresponding special subvarieties of ShK(G,X)
are precisely the connected components.

For every g ∈ G(Af ), an irreducible subvariety Z of ShK(G,X) over C
is special if and only if T (g)(Z) is special in Shg−1Kg(G,X). By [Moo98a,
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Sec. 2.9], an irreducible component of the intersection of a family of special
subvarieties of ShK(G,X) over C is again special. Therefore, for a complex
irreducible subvariety Y of ShK(G,X), there is a smallest special subvariety
ZY of ShK(G,X) containing Y . We say that Y is Hodge generic in ZY . Let
S := ResC/RGm be the Deligne torus.

Definition 2.3.0.8. The generic Mumford-Tate group (denoted by MT(X))
of the Shimura datum (G,X) is the smallest closed subgroup H of G over
Q, such that every h : S → GR in X factors through HR. If MT(X) = G,
then the Shimura datum (G,X) is called irreducible.

The subgroup MT(X) is normal in G, connected and reductive. By
[Che09, Def. 1.3.3], (MT(X), X) is a Shimura subdatum of (G,X). Fact
2.3.0.9 characterizes special subvarieties as Hecke image of irreducible components
of a Shimura subvariety. Recall that K ≤ G(Af ) is a neat, compact open
subgroup. For g ∈ G(Af ), the quotient Sg = Γg\X+ is an irreducible
component of ShK(G,X), and gKg−1 ∩H(Af ) is neat.

Fact 2.3.0.9 ([UY10, Lem. 2.7]). Let (H,XH) ⊂ (G,X) be an irreducible
Shimura subdatum. Let X+

H be a connected component of XH contained
in X+. Set ΓH,g = gKg−1 ∩ H(Q)+ and Z̃g := ΓH,g\X+

H (an irreducible
component of ShgKg−1∩H(Af )(H,XH)). Then the image Zg of Z̃g under the
morphism over C

ShgKg−1∩H(Af )(H,XH)→ ShK(G,X), [x, h] 7→ [x, hg]

is a special subvariety of Sg. The induced morphism π : Z̃g → Zg is finite
and birational. Conversely, every special subvariety of Sg arises in this way.

Remark 2.3.0.10. If the special subvariety Zg in Fact 2.3.0.9 is normal, then
by Zariski’s main theorem (see, e.g., [Liu06, Cor. 4.6]), π : Z̃g → Zg is an
isomorphism.

2.4 Locus at infinite level

Given an étale cover f : X → Y over Q̄, the induced map f : XL → Y L may
not be surjective. Ullmo and Yafaev introduce a sublocus that lifts along
étale covers of Shimura varieties.

Definition 2.4.0.1. For a Shimura variety S, its locus at infinite level is

SL∞ := ∩f :S′→Sf(S′L),

where f : S′ → S runs through all étale covers of Shimura varieties over Q̄.
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Remark 2.4.0.2. By Assumption 2.2.0.1 3, one has SL∞ ⊂ SL. By Assumption
2.2.0.1 1, every irreducible component of SL∞ is positive dimensional. For
any g, h ∈ G(Af ), the Hecke isomorphism T (g) : [X+, h]K → [X+, hg]g−1Kg

identifies the loci at infinite level.

Remark 2.4.0.3. Given an étale cover f : T → S of a Shimura variety S over
Q̄, we don’t know whether f(TL) contains SL∞ . The following example
shows that f may not be dominated by any étale cover of Shimura varieties
over S.

Let G = GL2. For every integer n > 1, let K(n) be the compact open
subgroup of G(Af ) defined in [Mil17b, Proof of Prop. 4.1]. Then K(n) ∩
G(Q) = Γ(n) is a principal congruence subgroup of SL2(Z). Let X = H± ⊂
C be the union of the upper and the lower upper half-planes. Let (G,X)
be the Siegel Shimura datum in the sense of [Mil17b, p.69]. Let X+ be the
upper half-plane. Then the modular curve Y (n) := Γ(n)\X+ coincides with
the Shimura variety [X+, 1]K(n). By Fact 2.3.0.2 1, there is n0 > 1 such that
K(n) is neat for every n ≥ n0.

The congruence subgroup problem of SL2(Z) has a negative solution.
Take a finite-index, noncongruence subgroup Γ of SL2(Z). Replacing Γ
with Γ ∩ Γ(n0), one may assume Γ ⊂ Γ(n0). Let Y := Γ\X+. Then the
projection f : Y → Y (n0)(C) is a finite-sheeted cover of complex manifolds.
By [Har77, Appendix B, Thm. 3.2], Y has a unique structure of normal
complex algebraic variety making f : Y → Y (n0) a finite morphism of
schemes. From [SGA 1, XII, Prop. 3.1 (iii)], f is an étale cover over C. By
[Ser07, Thm. 6.3.3], f descends to an étale cover over Q̄.

There is no étale cover of Shimura varieties f ′ : Y ′ → Y (n0) that covers
f : Y → Y (n0). Assume the contrary. Let K ′ be the open subgroup of
K(n0) corresponding to f ′. As f ′ factors through a finite-sheeted cover
Y ′(C) → Y (C), taking fundamental groups, one has K ′ ∩ G(Q) ⊂ Γ. By
[Mil17b, Prop. 4.1], K ′ ∩ G(Q) is a congruence subgroup of G(Q), which
contradicts the choice of Γ.

Let S be a Shimura variety associated with (G,X,K). Let ShK(G,X)L∞

be the union of the loci at infinite level of its connected components.

Lemma 2.4.0.4. 1. One has ShK(G,X)L∞ = ∩K′pK′,K(ShK′(G,X)L),
where K ′ runs through the normal open subgroups of K.

2. There exists an open subgroup K1 of K, such that every étale cover
of Shimura varieties f1 : S1 → S induced by pK1,K satisfies f1(S

L
1 ) =

SL∞.

Proof. 1. For x ∈ ShK(G,X), one may assume that S is the irreducible
component of ShK(G,X) containing x. Assume first x ∈ ShK(G,X)L∞ .
Then x ∈ SL∞ . For every open normal subgroup K ′ of K, choose
an irreducible component S′ of ShK′(G,X) with pK′,K(S′) = S. As
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S′ → S is an étale cover of Shimura varieties, one has x ∈ pK′,K(S′L) ⊂
pK′,K(ShK′(G,X)L). One obtains ShK(G,X)L∞ ⊂ ∩K′pK′,K(ShK′(G,X)L).

Conversely, assume x ∈ ∩K′pK′,K(ShK′(G,X)L). For every étale
cover of Shimura varieties f : S1 → S, there is an open subgroup
K1 of K, such that S1 is an irreducible component of ShK1(G,X).
There is a normal open subgroup K2 of K with K2 ⊂ K1. Choose
an irreducible component S2 of ShK2(G,X) with pK2,K1(S2) = S1.
By assumption, there is an irreducible component S′

2 of p−1
K2,K

(S)

with pK2,K1(S′L
2 ) ∋ x. As K2 ≤ K is normal, K/K2 permutes the

irreducible components of p−1
K2,K

(S). Thus, there is g ∈ K such that
T (g) : ShK2(G,X)→ ShK2(G,X) restricts to an isomorphism S′

2 → S2
over Q̄. By Assumption 2.2.0.1 3, one has pK2,K1(T (g)S′L

2 ) ⊂ SL1 .
Then x ∈ f(pK2,K1(T (g)S′L

2 )) ⊂ f(SL1 ). Thus, one has x ∈ SL∞ ⊂
ShK(G,X)L∞ , which shows

ShK(G,X)L∞ ⊃ ∩K′pK′,K(ShK′(G,X)L).

2. The algebraic variety ShK(G,X)Q̄ is topologically Noetherian, so the

family of closed subsets {pK′,K(ShK′(G,X)L)} for normal open subgroups
K ′ of K has a minimal member pK1,K(ShK1(G,X)L). Let f1 : S1 → S
an étale cover of Shimura varieties induced by pK1,K . For every étale
cover of Shimura varieties f2 : S2 → S associated with an open
subgroup K2 of K, there is a normal open subgroup K1,2 of K with
K1,2 ⊂ K1 ∩K2. Let S′

2 be an irreducible component of ShK1,2(G,X)
with pK1,2,K2(S′

2) = S2. One has

f1(S
L
1 ) ⊂ pK1,K(ShK1(G,X)L)

(a)

= pK1,2,K(ShK1,2(G,X)L)

(b)

=pK1,2,K(K/K1,2 · S′L
2 ) = pK1,2,K(S′L

2 )
(c)

⊂ f2(S
L
2 ),

where (a) uses the choices of K1, (b) is because K/K1,2 permutes the
irreducible components of ShK1,2(G,X), and (c) uses Assumption 2.2.0.1
3.

In Lemma 2.4.0.4 2, for another étale cover of Shimura varieties S2 → S1,

the composition SL2 → SL1
f1→ SL∞ is still surjective.

Lemma 2.4.0.5. Let f : T → S be an étale cover of Shimura varieties
over Q̄. Then f−1(SL∞) = TL∞. In particular, TL∞ = T is equivalent to
SL∞ = S, and SL∞ = SL implies TL∞ = TL.

Proof. There is an open subgroup K1 of K, such that T is an irreducible
component of ShK1(G,X), and pK1,K : ShK1(G,X) → ShK(G,X) restricts
to f : T → S.
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� We show TL∞ ⊂ f−1(SL∞).

Fix t ∈ TL∞ , and set s = f(t). For every open subgroup K ′ of K, there
is t′ ∈ ShK′∩K1(G,X)L with pK′∩K1,K1(t′) = t. By Assumption 2.2.0.1
3, one has s′ := pK′∩K1,K′(t′) ∈ ShK′(G,X)L. Then s = pK′,K(s′) ∈
pK′,K(ShK′(G,X)L). By Lemma 2.4.0.4 1, one has s ∈ ShK(G,X)L∞ and
hence s ∈ SL∞ .

� We show TL∞ ⊃ f−1(SL∞).

Take t ∈ f−1(SL∞). Then s := f(t) ∈ SL∞ . For every étale cover of Shimura
varieties u : Z → T associated with an open subgroup K2 of K1, there is
a normal open subgroup K3 of K with K3 ⊂ K2. Let N be an irreducible
component of p−1

K3,K2
(Z). Then the restriction v : N → Z is an étale cover

of Shimura varieties, and the composition N
v→ Z

u→ T
f→ S is a Galois

cover. One has

(u ◦ v)−1(t) ⊂ (f ◦ u ◦ v)−1(s) ⊂ (f ◦ u ◦ v)−1(SL∞)

⊂(f ◦ u ◦ v)−1((f ◦ u ◦ v)(NL))
(a)

= NL,

where (a) uses Lemma 2.2.0.5 3. Thus, one has u−1(t) ⊂ v(NL) ⊂ ZL and
t ∈ u(ZL). Hence, one has t ∈ TL∞ .

� The equality TL∞ = T is equivalent to SL∞ = S.

If TL∞ = T , then SL∞ = f(f−1(SL∞)) = f(TL∞) = f(T ) = S. Conversely,
if SL∞ = S, then TL∞ = f−1(SL∞) = f−1(S) = T .

� The equality SL∞ = SL implies TL∞ = f−1(SL∞) = f−1(SL)
(b)

⊃ TL,
where (b) uses Assumption 2.2.0.1 3. Hence, one obtains TL∞ = TL.

Assume S = [X+, 1]K . Let Z be a special subvariety of S over Q̄. Let
(H,XH) ⊂ (G,X) be an irreducible Shimura subdatum and π : Z̃ → Z be
as in Fact 2.3.0.9.

Lemma 2.4.0.6. There is a open subgroup K ′ of K, such that

1. the induced étale cover of Shimura varieties f : S′(:= [X+, 1]K′)→ S
is Galois and satisfies S′L = S′L∞;

2. for every irreducible component Z ′ of f−1(Z), the restriction f |Z′ :
Z ′ → Z factors through an étale cover h : Z ′ → Z̃ with h(Z ′L) = Z̃L∞.
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Proof. By Lemma 2.4.0.4 2, there is an open subgroup K0,H ≤ K ∩H(Af ),
such that the induced étale cover g0 : Z̃0(:= [X+

H , 1]K0,H
) → Z̃ satisfies

g0(Z̃
L
0 ) = Z̃L∞ . Similarly, there is an open subgroup K1 ≤ K, such that

K1 ∩H(Af ) ⊂ K0,H and the étale cover f1 : S1(:= [X+, 1]K1)→ S satisfies
f1(S

L
1 ) = SL∞ . By Lemma 2.4.0.5, one has SL1 = SL∞

1 . From Lemma
2.3.0.3, there is a normal open subgroup K ′ of K contained in K1, such
that the induced morphism ShK′∩H(Af )(H,XH) → ShK′(G,X) is a closed

immersion. Set S′ := [X+, 1]K′ . Let f : S′ → S be the restriction of
pK′,K : ShK′(G,X)→ ShK(G,X).

1. Since K ′ is normal in K, the cover f is Galois. By Lemma 2.4.0.5 and
SL1 = SL∞

1 , one has S′L = S′L∞ .

2. The morphism of Shimura varieties Z̃1(:= [X+
H , 1]K′∩H(Af )) → S′ is a

closed immersion, so is the induced morphism π′ : Z̃1 → f−1(Z). Let
h : Z̃1 → Z̃ be the restriction of the morphism

pK′∩H(Af ),K∩H(Af ) : ShK′∩H(Af )(H,XH)→ ShK∩H(Af )(H,XH).

Then h is an étale cover of Shimura varieties. The situation is depicted
as a commutative diagram

Z̃1 f−1(Z) S′

Z̃0 f−1
1 (Z) S1

Z̃ Z S.

π′

h

□

f

□ f1

π

Since h factors through Z̃0, one has h(Z̃L1 ) = Z̃L∞ .

Claim 2.4.0.7. The closed immersion π′ identifies Z̃1 with an irreducible
component of f−1(Z).

The Galois group of the Galois cover f : S′ → S permutes the
irreducible components of f−1(Z), so Z ′ has similar properties.

Proof of Claim 2.4.0.7. Since Z̃1 is irreducible, it is contained in an irreducible
component C of f−1(Z). By [Sta24, Tag 0BAC], as π : Z̃ → Z is birational,
there is a nonempty open subset Ũ ⊂ Z̃, such that U := π(Ũ) is open in Z,
and π|Ũ : Ũ → U is an isomorphism. Consider the commutative square of
algebraic varieties
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h−1(Ũ) f−1(U)

Ũ U.

π′|h−1(Ũ)

h|h−1(Ũ) f

π|Ũ

The morphism h−1(Ũ)→ Ũ (resp. f−1(U)→ U) is a base change of the étale
morphism h : Z̃1 → Z̃ (resp. f : S′ → S), so it is étale. By [Sta24, Tag 03PC
(10)], the morphism π′|h−1(Ũ) : h−1(Ũ) → f−1(U) is étale. From [Sta24,

Tag 03PC (9)], h−1(Ũ) is an open subset of f−1(U), hence a nonempty
open subset of C. Since C is irreducible, h−1(Ũ) is dense in C. Therefore,
C = Z̃1.

Let S = Sg be a Shimura variety associated with (G,X,K). Lemma
2.4.0.8 is used in the proof of Theorem 2.5.0.1.

Lemma 2.4.0.8. If SL∞ ̸= ∅ is a finite union of special subvarieties of S,
then SL = S.

Proof. The Hecke isomorphism T (g) : ShgKg−1(G,X) → ShK(G,X) sends
[X+, 1]gKg−1 to Sg. It keeps the special subvarieties. Thus, one may assume
g = 1 (by replacing K with gKg−1). Write SL∞ = ∪ni=1Zi for the irreducible
decomposition. By assumption, for every 1 ≤ i ≤ n, the subvariety Zi ⊂ S
is special. Let πi : Z̃i → Zi be a finite birational morphism given by Fact
2.3.0.9.

Claim 2.4.0.9. One has Z̃L∞
1 = Z̃1.

For every q ∈ G(Q)+, we prove

TqZ1 ⊂ SL. (2.1)

Let (H,XH) ⊂ (G,X) be an irreducible Shimura subdatum, Z̃1 = [X+
H , 1]K∩H(Af ),

and π1 : Z̃1 → Z1 be as in Fact 2.3.0.9. For every irreducible component
Zq ⊂ α−1

q (Z1), there is an irreducible component Z̃q of ShK∩q−1Kq∩H(Af )(H,XH)
with the following properties:

� The morphism ShK∩q−1Kq∩H(Af )(H,XH)→ ShK∩H(Af )(H,XH) restricts

to an étale cover of Shimura varieties α′
q : Z̃q → Z̃1.

� The image of Z̃q under the morphism

ShK∩q−1Kq∩H(Af )(H,XH)→ ShK∩q−1Kq(G,X)

is Zq.
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Conjugating by q gives another irreducible Shimura subdatum (qHq−1, q ·
XH) ⊂ (G,X), and a morphism of Shimura data (H,XH)→ (qHq−1, q·XH).
Let Z̃ ′

q be the image of Z̃q under the induced morphism

ShK∩q−1Kq∩H(Af )(H,XH)→ ShK∩qH(Af )q−1(qHq−1, q ·XH).

Then Z̃ ′
q is an irreducible component of ShK∩qH(Af )q−1(qHq−1, q ·XH), and

the restriction β′q : Z̃q → Z̃ ′
q is an étale cover of Shimura varieties. By Fact

2.3.0.9, the morphism ShK∩qH(Af )q−1(qHq−1, q ·XH)→ ShK(G,X) restricts

to a finite birational morphism π′q : Z̃ ′
q → βq(Zq). Consider the commutative

diagram

Z̃1 Z̃q Z̃ ′
q

Z1 Zq βq(Zq).

π1

α′
q β′

q

π′
q

αq βq

From Claim 2.4.0.9 and Lemma 2.4.0.5, one has Z̃ ′
q = Z̃ ′L∞

q = Z̃ ′L
q . Then

βq(Zq) = π′q(Z̃
′
q) = π′q(Z̃

′L
q )

(a)

⊂ βq(Zq)
L, where (a) uses Assumption 2.2.0.1

5. By Assumption 2.2.0.1 2, one has βq(Zq) ⊂ SL, which proves (2.1).
From [KUY18, Lem. 2.5], the special subvariety Z1 of S contains a

special point z. By [LZ19, Rk. 2.7], {Tqz}q∈G(Q)+ is dense in the complex

manifold S(C). By (2.1), the algebraic Zariski closed subset SL ⊂ S contains
{Tqz}q∈G(Q)+ , which implies SL = S.

Proof of Claim 2.4.0.9. First, we prove

SL∞ ⊂ ∪ni=1πi(Z̃
L∞
i ). (2.2)

LetKi be a normal open subgroup ofK given by Lemma 2.4.0.6 for πi. There
is a normal open subgroup K ′ of K with K ′ ⊂ ∩ni=1Ki. Set Si := [X+, 1]Ki
and S′ := [X+, 1]K′ . Let gi : S′ → Si, fi : Si → S, and f : S′ → S be
the induced Galois cover of Shimura varieties. Then for every 1 ≤ i ≤ n,
one has figi = f . By construction of f : S′ → S, one has S′L = S′L∞ and
f(S′L) = SL∞ .

For every irreducible component C ⊂ S′L, the subset f(C) of SL∞ is
irreducible. Then there is 1 ≤ i ≤ n with f(C) ⊂ Zi. Thus, gi(C) is
an irreducible subset of f−1

i (Zi). There is an irreducible component Z ′ of
f−1
i (Zi) containing gi(C). By Lemma 2.4.0.6, the morphism fi|Z′ : Z ′ → Zi

factors through an étale cover Z ′ → Z̃i. Therefore, Z ′ and g−1
i (Z ′) are

smooth. One has

g−1
i (Z ′) ⊂ f−1(Zi) ⊂ f−1(SL∞)

(a)

= S′L,
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where (a) uses Lemma 2.4.0.5. Then C is an irreducible component of
g−1
i (Z ′). As g−1

i (Z ′) is smooth, gi|C : C → Z ′ is an étale cover. The setting
is summarized in the diagram

C g−1
i (Z ′) S′

Z ′ f−1
i (Zi) Si

Z̃i Zi S.

□ gi

□ fi

πi

One has

f(C)
(a)

= f(CL) = figi(C
L)

(b)

⊂ fi(Z
′L)

(c)

⊂ πi(Z̃
L∞
i ),

where (a), (b) and (c) use Lemma 2.2.0.5 2, Assumption 2.2.0.1 3 and Lemma
2.4.0.6 2 respectively. This proves (2.2).

From (2.2), one has Z1 ⊂ ∪ni=1πi(Z̃
L∞
i ). Since Z1 is irreducible, there is

1 ≤ j ≤ n with Z1 ⊂ πj(Z̃
L∞
j ) ⊂ Zj . As Z1 is an irreducible component of

SL∞ , one has j = 1. Then dim Z̃L∞
1 ≥ dimZ1 = dim Z̃1. The irreducibility

of Z̃1 proves Z̃L∞
1 = Z̃1.

2.5 Ullmo-Yafaev alternative principle

Let (G,X) be a Shimura datum. Let (·)L be a locus formation satisfying
Assumption 2.2.0.1. Let (·)L∞ be the corresponding locus formation at
infinite level for Shimura varieties. Theorem 2.5.0.1 is an alternative principle
due to Ullmo and Yafaev.

Theorem 2.5.0.1. Let S be a Shimura variety associated with (G,X,K).
Then either SL∞ = ∅ or SL∞ = S.

Proof. By Hecke isomorphisms, one may assume S = [X+, 1]K . By Lemma
2.4.0.5, one may replace S by an étale cover induced by an open subgroup
of K. One may thereby assume SL = SL∞ ̸= ∅. By Assumption 2.2.0.1 1
(resp. Lemma 2.2.0.5 2), for every irreducible component Z of SL, one has
dimZ > 0 (resp. ZL = Z).

Claim 2.5.0.2. The subvariety Z ⊂ S is special.

By Claim 2.5.0.2, the locus SL is a finite union of special subvarieties.
From Lemma 2.4.0.8, one has SL∞ = S.

Proof of Claim 2.5.0.2. Let SM ⊂ S be the smallest special subvariety containing
Z. From Fact 2.3.0.9, there is a Shimura subdatum (H,XH) ⊂ (G,X), such
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that the restriction π : S̃M (:= [X+
H , 1]K∩H(Af ))→ SM of ShK∩H(Af )(H,XH)→

ShK(G,X) is finite birational.
Take a Galois cover f : S′ → S given by Lemma 2.4.0.6 for the special

subvariety SM ⊂ S. Since f is finite surjective, there is an irreducible
component T ⊂ f−1(Z) with f(T ) = Z. Since Z ⊂ SL is an irreducible
component, T is an irreducible component of

f−1(SL) = f−1(SL∞)
(a)

= S′L∞
(b)

= S′L.

Here (a) and (b) use Lemma 2.4.0.5. There is an irreducible component S′
M

of f−1(SM ) containing T .
By Lemma 2.4.0.6, f : S′

M → SM factors through an étale cover h :
S′
M → S̃M . Consider the commutative diagram

T S′
M f−1(SM ) S′

S̃M SM S.

h □ f

π

One has

h(T )
(a)

= h(TL) ⊂ h(S′L
M )

(b)

= S̃L∞
M , (2.3)

where (a) and (b) uses Lemma 2.2.0.5 2 and Lemma 2.4.0.6 2 respectively.
We show that the nonempty, irreducible, closed subset h(T ) is Hodge

generic in S̃M . Since π : S̃M → SM is finite surjective, there is an irreducible
component Z̃ of π−1(Z) with π(Z̃) = Z. By [KY14, p.879], for every special
subvariety V of S̃M containing h(T ), the image π(V ) is a special subvariety
of S containing πh(T ) = f(T ) = Z. Hence, one has π(V ) = SM . Therefore,
dimV ≥ dimSM = dim S̃M . Since S̃M is irreducible, one has V = S̃M .

Then by (2.3) and Lemma 2.5.0.3, one has S̃M = S̃L∞
M = S̃LM . As a

result, SM = π(S̃M ) = π(S̃LM )
(c)

⊂ SLM ⊂ SL, where (c) uses Assumption
2.2.0.1 5. Since Z is an irreducible component of SL and SM is irreducible,
one has Z = SM .

Lemma 2.5.0.3. Let S = [X+, 1]K ⊂ ShK(G,X). If SL∞ contains a
nonempty irreducible closed subset that is Hodge generic in S, then SL∞ =
S.

Proof. By Lemma 2.4.0.5, for every q ∈ G(Q)+, one has TqS
L∞ = βq(α

−1
q (SL∞)) =

βq(S
L∞
q ) = SL∞ . Write SL∞ = U1∪U2, where U1 is the union of irreducible

components of SL∞ that are Hodge generic in S, and U2 is the union of the
remaining irreducible components. By Remark 2.4.0.2 and assumption, one
has dimU1 > 0.

Let C be an irreducible component of TqU2. There is an irreducible
subvariety Cq ⊂ Sq with βq(Cq) = C and αq(Cq) ⊂ U2. Then αq(Cq) is
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not Hodge generic in S. Thus, there is a strict, special subvariety V of S
containing αq(Cq). Then C ⊂ Tq(αq(Cq)) ⊂ TqV . There is an irreducible
component W of TqV containing C. By [LZ19, Remark 2.7], W is a special
subvariety of S. Since dimW ≤ dimV < dimS, the subvariety C of S is not
Hodge generic. As every irreducible component of TqU2 is not Hodge generic
in S, by U1 ⊂ TqS

L∞ = TqU1 ∪ TqU2, one has U1 ⊂ TqU1. By dimU1 > 0
and [UY10, Thm. 1.2], one has U1 = S and SL∞ = S.

Corollary 2.5.0.4. There is a compact open subgroup K0 of G(Af ), such
that for every open subgroup K of K0 and every Shimura variety S associated
with (G,X,K), either SL = ∅ or SL = S.

Proof. By Lemmas 2.4.0.4 2 and 2.4.0.5, there is a neat compact open
subgroup K0 of G(Af ), such that for every open subgroup K ≤ K0, one
has SL = SL∞ . The result follows from Theorem 2.5.0.1.

2.6 “All or nothing” principle for integral points

We define an locus concerning integral points, analogous to the Lang locus
(·)UY concerning rational points. For this locus, we verify Assumption
2.2.0.1. Then an alternative principle follows.

Let X be an integral algebraic variety over Q̄. As in Example 2.2.0.2,
there is a number field F ⊂ Q̄, an integral algebraic variety XF over F and
an isomorphism XF ⊗F Q̄ → X over Q̄. For every finite set Σ of places of
F including all archimedean ones, let OF,Σ be the ring of Σ-integers. When
Σ is sufficiently large, there exists an integral scheme X and a dominant,
separated morphism X → SpecOF,Σ of finite type, whose generic fiber is
XF . (From [Har77, III, Prop. 9.7], X is flat over OF,Σ.) We call X an
integral model for X relative to (F,Σ). By a finite extension (M,Ω)/(F,Σ)
, we mean a finite extension M/F inside Q̄ together with a finite set Ω of
places of M containing all the places above Σ. For every (M,Ω)/(F,Σ), let
X(X ,M,Ω) be the image of the injection

X (OM,Ω)→ X(Q̄), x 7→ x|Spec Q̄.

Definition 2.6.0.1. Let X I be the Zariski closure of

∪(M,Ω)/(F,Σ)X(X ,M,Ω)
>0

inside X, where (M,Ω) runs though all finite extensions of (F,Σ). We call
X I the integral Lang locus of X relative to the integral model (X , F,Σ).

The integral Lang locus X I is a subvariety of the Lang locus XUY of X.

Lemma 2.6.0.2. Given two integral models Xi over OFi,Σi (i = 1, 2) for
X, one has X I1 = X I2 .
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Proof. For i = 1, 2, let ϕi : XFi ⊗Fi Q̄ → X be the isomorphism in the
corresponding model. By [EGA IV 3, Cor. 8.8.2.5], there is a common finite
extension (F3,Σ3) of (F1,Σ1) and (F2,Σ2), such that there is an OF3,Σ3-
isomorphism

X1 ⊗OF1,Σ1
OF3,Σ3 → X2 ⊗OF2,Σ2

OF3,Σ3

extending the isomorphism ϕ−1
2 ϕ1 : XF1⊗F1 Q̄→ XF2⊗F2 Q̄. For every finite

extension (M1,Ω1)/(F1,Σ1), there is a common finite extension (M2,Ω2) of
(F3,Σ3) and (M1,Ω1). Then

X1(OM1,Ω1) ⊂ X1(OM2,Ω2) = X2(OM2,Ω2),

so X(X1,M1,Ω1) ⊂ X(X2,M2,Ω2). Therefore,

X(X1,M1,Ω1)
>0 ⊂ X(X2,M2,Ω2)

>0 ⊂ X I2 .

Hence X I1 ⊂ X I2 . The other inclusion follows by symmetry.

By Lemma 2.6.0.2, one may use the notation XI for X I and call it the
integral Lang locus of X. We extend the definition to reducible algebraic
varieties as in Section 2.2.

Remark 2.6.0.3. Assume that X is proper over Q̄. Then there is an integral
model (X , F,Σ) for X, such that X is proper over OF,Σ. Then by [Poo17,
Thm. 3.2.13 (ii)], XI coincides with the Lang locus XUY.

Definition 2.6.0.4. [Ull04, Déf. 2.3] An integral algebraic variety X over
Q̄ is arithmetically hyperbolic if XI = ∅.

An integral algebraic variety X over Q̄ is arithmetically hyperbolic if and
only if for one (hence for every by Lemma 2.6.0.2) integral model (X , F,Σ),
the set of integral points X (OM,Ω) is finite for every finite extension (M,Ω)/(F,Σ).
Thus, [Ull04, Lem. 2.4] follows from Lemma 2.6.0.2.

Example 2.6.0.5. Let X = P1 \ {0, 1,∞} = Y (2) be a modular curve over
Q̄. Its Baily-Borel compactification is X∗ = P1, and XUY = X. By the
Siegel-Mahler theorem (see, e.g., [HS00, Thm. D.8.1]), X is arithmetically
hyperbolic.

A complex analytic space is called Kobayashi hyperbolic, if its Kobayashi
pseudo-distance (in the sense of [Kob98, p.50]) is a metric. Every Kobayashi
hyperbolic, complex analytic space is Brody hyperbolic. Conversely, Brody
[Bro78, p.213] proves that every compact, Brody hyperbolic complex analytic
space is Kobayashi hyperbolic. In view of Remark 2.6.0.3, Conjecture 2.6.0.6
implies Conjecture 2.1.0.1.

Conjecture 2.6.0.6 ([Lan91, IX, Conjecture 5.1], [Ull04, Conjecture 2.5]).
Let X be a quasi-projective, integral algebraic variety over Q̄. If the complex
analytic space X(C) is Kobayashi hyperbolic, then X is arithmetically hyperbolic.
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Fact 2.6.0.7 is an evidence of Conjecture 2.6.0.6. It relies on Faltings’s
solution [Fal83, Satz 6] to Shafarevich’s conjecture.

Fact 2.6.0.7 ([Ull04, Thm. 3.2 (a)]). Let (G,X) be an adjoint Shimura
datum of abelian type (in the sense of [Ull04, p.4118]). Let K be a neat
compact open subgroup of G(Af ). Then every irreducible component of
ShK(G,X)Q̄ is arithmetically hyperbolic.

Remark 2.6.0.8. By [Moo98b, 2.17], the model over Q̄ of ShK(G,X) defined
by Faltings [Fal82] (used in [Ull04, Thm. 3.2 (a)]) is the scalar extension of
the canonical model along the field embedding E(G,X)→ Q̄.

We prove that an alternative principle holds for integral points on Shimura
varieties, by checking Assumption 2.2.0.1. Since an irreducible component
of XI with dimension 0 would be an isolated point, Assumption 2.2.0.1 1
holds. Lemma 2.6.0.9 verifies Assumptions 2.2.0.1 2, 3 and 5.

Lemma 2.6.0.9. Let f : Z1 → Z2 be a morphism of integral algebraic
varieties over Q̄. If f has finite geometric fibers, then f(ZI1 ) ⊂ ZI2 .

Proof. One may choose a number field F , a finite set Σ of places of F
containing all the archimedean ones, an integral model Zi over OF,Σ for Zi
(i = 1, 2) and a morphism f ′ : Z1 → Z2 over OF,Σ extending f . For every
finite extension (M,Ω)/(F,Σ), one has f ′(Z1(OM,Ω)) ⊂ Z2(OM,Ω). Hence,
one obtains

f(Z1(Z1,M,Ω)) ⊂ Z2(Z2,M,Ω), f(Z1(Z1,M,Ω)) ⊂ Z2(Z2,M,Ω).

Let C ⊂ Z1(Z1,M,Ω) be an irreducible component of positive dimension.
Then f(C) is irreducible but not a singleton. (For otherwise, C is a finite
set by assumption, which is a contradiction). Hence

f(C) ⊂ Z2(Z2,M,Ω)
>0 ⊂ ZI2 .

Therefore, f(Z1(Z1,M,Ω)
>0

) ⊂ ZI2 and f(ZI1 ) ⊂ ZI2 .

Corollary 2.6.0.10 ([Ull04, Prop. 2.6]). A locally closed subvariety of an
arithmetically hyperbolic variety is also arithmetically hyperbolic.

Proof. It follows from Lemma 2.6.0.9.

Lemma 2.6.0.11 verifies Assumption 2.2.0.1 4 for integral Lang locus.

Lemma 2.6.0.11. Let X be an integral algebraic variety over Q̄. Then
XI ⊂ (XI)I .
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Proof. Write XI = ∪ni=1Yi for the irreducible decomposition. Take an
integral model (X , F,Σ) for X. Let Yi be the scheme-theoretic image of
the composition Yi → X → X . Then Yi is an integral model of Yi relative
to (F,Σ). For every finite extension (M,Ω)/(F,Σ), the Zariski closed subset

X(X ,M,Ω) of X is the disjoint union of X(X ,M,Ω)
>0

with a finite subset
{p1, . . . , pt} of X(Q̄).

Consider x ∈ X (OM,Ω), i.e., a section x : Spec(OM,Ω) → X to the
structure morphism X → Spec(OM,Ω). If x|Spec Q̄ /∈ {p1, . . . , pt}, then

x|Spec Q̄ ∈ X(X ,M,Ω)
>0 ⊂ XI .

Thus, there exists an index 1 ≤ i ≤ n with x|Spec Q̄ ∈ Yi. Since Yi is Zariski
closed in X , the section x factors through Yi, i.e., x ∈ Yi(OM,Ω). Therefore,

X(X ,M,Ω) ⊂ ∪ni=1Yi(Yi,M,Ω) ∪ {p1, . . . , pt}.

Then

X(X ,M,Ω)
>0 ⊂ ∪ni=1Yi(Yi,M,Ω)

>0 ⊂ ∪ni=1Y
I
i = (XI)I ,

so XI ⊂ (XI)I .

Lemma 2.6.0.12 implies [Ull04, Prop. 2.8].

Lemma 2.6.0.12 (Chevalley-Weil). If f : X → Y is an étale cover over Q̄,
then f(XI) = Y I . In particular, XI = X (resp. XI = ∅) is equivalent to
Y I = Y (resp. Y I = ∅).

Proof. By Lemma 2.6.0.9, one has f(XI) ⊂ Y I . There is a number field F ,
a finite set Σ of places of F containing all the archimedean ones, and a finite
étale morphism f ′ : X → Y between integral models over OF,Σ extending f .

From the Chevalley-Weil theorem (see, e.g., [Ser97, p.50]), for every
finite extension (M,Ω)/(F,Σ), there is a finite extension (M ′,Ω′)/(M,Ω)
with Y (Y,M,Ω) ⊂ f(X(X ,M ′,Ω′)). Since zero dimensional schemes are
discrete, one has

Y (Y,M,Ω)
>0 ⊂ f(X(X ,M ′,Ω′)

>0
) ⊂ f(XI).

Hence Y I ⊂ f(XI).
If XI = X, then Y = f(X) = f(XI) = Y I . Conversely, if Y I = Y ,

then dimX = dimY = dimY I ≤ dimXI . Since X is irreducible, one has
XI = X.

If XI = ∅, then Y I = f(XI) = ∅. Conversely, if Y I = ∅, then by
Assumption 2.2.0.1 3, one has XI = ∅.

Theorem 2.6.0.13. The integral Lang locus of a Shimura variety is either
empty or full.
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Proof. Take the locus formation (·)L := (·)I to be that of integral Lang locus.
By Lemmas 2.6.0.9 and 2.6.0.11, it satisfies Assumption 2.2.0.1. By Lemma
2.6.0.12, one has SI = SL∞ . The result follows from Theorem 2.5.0.1.
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Chapter 3

Normality of monodromy
group in generic Tannakian
group

3.1 Introduction

3.1.1 Background

Constructing local systems (or ℓ-adic lisse sheaves) with a prescribed monodromy
group is an important problem having a long history.

In positive characteristics, Katz and his collaborators exhibit local systems
whose monodromy groups are the simple algebraic group G2 ([Kat88, 11.8]),
2.J2 ([KRL19]), the finite symplectic groups ([KT19b]), the special unitary
groups ([KT19a]), etc. In particular, the exceptional Lie groups appear
unexpectedly in algebraic geometry.

In characteristic zero, such constructions help to understand Galois groups
of number fields. Dettweiler and Reiter [DR10] prove the existence of a local
system on P1

Q \ {0, 1,∞} whose monodromy group is G2. It produces a
motivic Galois representations with image dense in G2. Their proof relies
on Katz’s middle convolution of perverse sheaves. Yun [Yun14] constructs
local systems with some other exceptional groups as monodromy groups. As
applications, he answers a long standing question of Serre, and solves new
cases of the inverse Galois problem. His construction uses the geometric
Langlands correspondence.

A new proof of Mordell’s conjecture [LV20], and its potential generalization
to higher dimensional varieties over number fields, rely on the existence of
local systems with big monodromy over the variety in question. Lawrence
and Sawin [LS20] use this technique to prove Shafarevich’s conjecture for
hypersurfaces in abelian varieties. Krämer and Maculan [KM23] apply
roughly the same strategy to obtain an arithmetic finiteness result for very
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irregular varieties of dimension less than half the dimension of their Albanese
variety. In both cases, the construction of local systems uses perverse
sheaves.

In [LS20], that construction rests on comparing the monodromy group
with the Tannakian group from Krämer-Weissauer’s convolution theory [KW15b].
As [JKLM23, p.4] comments, this comparison is similar to the study of
monodromy groups via Mumford-Tate groups in [And92].

We briefly outline their argument. On an abelian variety A, a quotient of
the abelian category Perv(A) (of perverse sheaves) is a Tannakian category
under sheaf convolution. Let X be an irreducible algebraic variety with
generic point η. Let K be a universally locally acyclic, relative perverse
sheaf on the constant abelian scheme pX : A × X → X (intuitively, a
family of perverse shaves on A parameterized by X). The Tannakian group
G(K|Aη̄) of K|Aη̄ ∈ Perv(Aη̄) is normal in the Tannakian group G(K|Aη) of
K|Aη ∈ Perv(Aη) ([LS20, Lem. 3.7], [JKLM23, Thm. 4.3]). This normality
is used to prove that for most character sheaves Lχ on A, the monodromy
groups Mon(K ⊗ p∗ALχ) in the sense of Definition 3.4.3.4 contain G(K|Aη̄).
Then Lawrence-Venkatesh’s machinery works for these twists K ⊗ p∗ALχ.

3.1.2 Statements

In the main result (Theorem 3.1.2.2), we prove that the generic Tannakian
group of a semisimple, relative perverse sheaf is reductive. Moreover, for
many characters, the monodromy group is a normal subgroup of this reductive
group. This normality puts further restriction on the monodromy group.
Using Krämer’s method ([Krä22, Thm. 6.2.1]), Lawrence and Sawin [LS20,
Lem. 4.6] even show that the geometric generic Tannakian group is simple.

Setting 3.1.2.1. Let k be an algebraically closed field of characteristic zero.
Let X be an integral algebraic variety over k with generic point η. Let A be
an abelian variety over k. Denote by pX : A×X → X and pA : A×X → A
the projections.

Let ℓ be a prime number. Let Q̄ℓ be an algebraic closure of Qℓ. Let
Db
c(A×X) be the triangulated category of bounded constructible Q̄ℓ-sheaves

on A × X. Let πét1 (A) be the étale fundamental group of A based at the
geometric origin point. For every character χ : πét1 (A) → Q̄×

ℓ , let χη :
πét1 (Aη) → Q̄×

ℓ be the pullback of χ along (pA|Aη) : πét1 (Aη) → πét1 (A). Fix
a relative perverse sheaves (Definition 3.2.3.2) K for pX : A×X → X that
is a semisimple object of Db

c(A×X) (in the sense of Definition 3.2.1.3). Let
Mon(K,χη) be the corresponding monodromy group. Let Gωχ(K|Aη) be the
Tannakian monodromy group (Definition 3.4.2.1) of K|Aη , referred to as the
generic Tannakian group.

Theorem 3.1.2.2 (Theorems 3.5.1.1, 3.5.3.1). Assume dimA > 0. Then
there are uncountably many characters χ : πét1 (A)→ Q̄×

ℓ , such that Gωχ(K|Aη)
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is a well-defined reductive group. It contains Mon(K,χη) as a closed, reductive,
normal subgroup.

The line of the proof of Theorem 3.1.2.2 is similar to that of André’s
normality theorem [And92, Thm. 1]. André proves that for a polarizable
good variation of mixed Hodge structure, the connected monodromy group
outside a meager locus is normal in the derived Mumford-Tate group. As
[And92, p.10] explains, the normality is a consequence of the theorem of
the fixed part due to Griffiths-Schmidt-Steenbrink-Zucker. In our case, an
analog of the theorem of the fixed part is Theorem 3.1.2.3.

Let C(A)ℓ be the cotorus parameterizing pro-ℓ characters of πét1 (A) (Definition
3.3.1.3). For every χℓ′ ∈ C(A)ℓ′ and every χℓ ∈ C(A)ℓ, set χ = χℓ′χℓ. Let
PervULA(A×X/X) ⊂ Db

c(A×X) be the full subcategory of pX -universally
locally acyclic (ULA, Definition 3.2.2.1) relative perverse sheaves. It is an
abelian category.

Theorem 3.1.2.3 (Theorem 3.5.2.1). Assume that X is smooth and K ∈
PervULA(A × X/X). Then there is a subobject K0 ⊂ K in PervULA(A ×
X/X) with the following property: For every character χℓ′ : πét1 (A)→ Q̄×

ℓ of
finite order prime to ℓ, there is a nonempty Zariski open subset U ⊂ C(A)ℓ,
such that for every χℓ ∈ U , one has

H0(Aη̄,K
0|Aη̄ ⊗L Lχη) = H0(Aη̄,K|Aη̄ ⊗L Lχη)Γk(η) .

The proof of Theorem 3.1.2.3 uses the projection pA : A×X → A, which
restricts our results to constant abelian schemes. We leave the question
whether Theorem 3.1.2.2 has an analog for relative perverse sheaves on an
arbitrary (non-constant) abelian scheme.

Notation and conventions

An object of an abelian category is semisimple if it is the direct sum of
finitely many simple objects. An abelian category is semisimple if every
object is semisimple. For a field k, its absolute Galois group is denoted by
Γk. An algebraic variety means a scheme of finite type and separated over k.
A linear algebraic group is reductive, if its identity component is reductive (in
the sense of [Mil17a, 6.46, p.135]). For a topological group, its Q̄ℓ-characters
are assumed to be continuous. For an irreducible algebraic variety X (on
which ℓ is invertible) and a Q̄ℓ-character χ of its étale fundamental group
πét1 (X), let Lχ be the corresponding rank one lisse Q̄ℓ-sheaf on X.

3.2 Recollections on constructible sheaves

No originality is claimed in Section 3.2. Let k be a field. Let ℓ be a prime
number invertible in k. Fix an algebraic closure k̄ of k. For every algebraic
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variety X over k, denote by Db
c(X) := Db

c(X, Q̄ℓ) the triangulated category
of complexes of Q̄ℓ-sheaves on X with bounded constructible cohomologies
defined in [Bei+82, p.74]. Let DX : Db

c(X) → Db
c(X)op be the Verdier

duality functor. The heart of the standard t-structure on Db
c(X) is denoted

by Cons(X), which is the category of constructible Q̄ℓ-sheaves on X. For
F ∈ Cons(X), set SuppF := {x ∈ X|Fx ̸= 0} to be its support. Then
SuppF is a quasi-constructible subset of X in the sense of [EGA IV 3,
10.1.1]. Let Loc(X) ⊂ Cons(X) be the full subcategory of lisse Q̄ℓ-sheaves
on X. For every integer n, let Hn : Db

c(X)→ Cons(X) be the functor taking
the n-th cohomology sheaf.

For every subset S ⊂ X, let S̄ be its Zariski closure. Let pD≤0(X) ⊂
Db
c(X) be the full subcategory of objects K with dim SuppHnK ≤ −n for

every integer n. Let pD≥0(X) ⊂ Db
c(X) be the full subcategory of objects K

with DXK ∈ pD≤0(X). Then (pD≤0(X), pD≥0(X)) defines the (absolute)
perverse t-structure on Db

c(X), whose heart is denoted by Perv(X). The
functor DX interchanges pD≤0(X) and pD≥0(X). For every integer n, let
pHn : Db

c(X)→ Perv(X) be the functor taking the n-th perverse cohomology
sheaf. For a morphism f : X ′ → X of schemes and K ∈ Db

c(X), set
K|X′ := f∗K.

3.2.1 Basics

Fact 3.2.1.1 (Projection formula, [FK88, Rk. (2), p.100], [Sta24, Tag 0F10
(1)]). Let f : X → Y be a morphism of algebraic varieties over k̄. Let
L ∈ Db

c(Y ) be an object with HnL ∈ Loc(X) for every integer n. Then
there is a natural isomorphism (Rf∗−)⊗L L→ Rf∗(−⊗L f∗L) of functors
Db
c(X)→ Db

c(Y ).

Let X be an algebraic variety over k.

Fact 3.2.1.2 ([FK88, Prop. 12.10]). For every F ∈ Cons(X), there is a
nonempty Zariski open subset U ⊂ X with F |U ∈ Loc(U).

Definition 3.2.1.3 ([BC18, Def. 78]). An object K ∈ Db
c(X) is called

semisimple if it is isomorphic to a finite direct sum of degree shifts of
semisimple objects of Perv(X).

If K ∈ Db
c(X) is semisimple, then it is isomorphic to ⊕n∈ZpHn(K)[−n]

in Db
c(X), and each pHn(K) is a semisimple object of Perv(X). A degree

shift of a semisimple object of Db
c(X) is still semisimple.

Example 3.2.1.4. Every perverse cohomology sheaf of a semisimple object
of Db

c(X) is semisimple. By contrast, its cohomology sheaves may be no
longer semisimple in Db

c(X).
Consider k = C and X = A1. Let j : U = A1 \ {0, 1} → X be the

inclusion. Then the topological fundamental group πtop1 (Uan,−1) is the free
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group generated by two loops a and b, surrounding 0 and 1 respectively.
There is a unique morphism

πtop1 (Uan,−1)→ SL2(Z) (3.1)

sending a, b to

A =

(
−1 −2
0 −1

)
, B =

(
−1 0
−2 −1

)
respectively. By Grauert-Remmert’s theorem (see, e.g., [SGA 1, XII, Cor. 5.2]),
the étale fundamental group πét1 (U,−1) is the profinite completion of πtop1 (Uan,−1).
Since SL2(Zℓ) is a profinite group, the morphism (3.1) extends naturally to
a continuous morphism

πét1 (U,−1)→ SL2(Zℓ) ↪→ GL2(Q̄2
ℓ ). (3.2)

The representation (3.2) is irreducible. Otherwise, assume that v :=
(x, y)T ̸= 0 ∈ Q̄2

ℓ generates a 1-dimensional subrepresentation. Then Av =
(−x−2y,−y)T is parallel to v. Therefore, y = 0. Similarly, Bv = (−x,−2x−
y)T is parallel to v, then x = 0, a contradiction.

Let L be the rank two simple lisse Q̄ℓ-sheaf on U corresponding to (3.2).
Then Lan is the local system on Uan corresponding to (3.1). For every small
open ball B0 ⊂ Xan centered at 0, the C-vector space H0(B0, j

an
∗ Lan) is

the kernel of the linear operator A − 1 on the stalk Lan
−1. Since A − 1 is

invertible, one has H0(B0, j
an
∗ Lan) = 0. Therefore, the stalk (jan∗ Lan)0 = 0.

Similarly, the stalk (jan∗ Lan)1 = 0. In conclusion, the natural morphism
jan! Lan → jan∗ Lan is an isomorphism in Cons(Xan).

We prove thatH1(Uan, Lan) = H1(πtop1 (Uan,−1), Lan
−1) is nonzero. Define

a map f : πtop1 (Uan,−1) → Q̄2
ℓ inductively. Set f(e) = 0, f(a) = f(b) =

(1, 0)T , f(a−1) = −A−1f(a), and f(b−1) = −B−1f(b). Once f is defined for
every element of πtop1 (Uan,−1) with length n ≥ 1, we define it on elements
of length n+ 1 as follows. For every element g ∈ πtop1 (Uan,−1) of length n,
set

f(ag) = Af(g) + f(a), f(bg) = Bf(g) + f(b),

f(a−1g) = A−1f(g) + f(a−1), f(b−1g) = B−1f(g) + f(b−1).

The map f is a crossed homomorphism. It is not a boundary, because the
equation (A− 1)x = (B − 1)x = (1, 0)T admits no solution in Q̄2

ℓ .
Therefore, Lan is in the cohomology support loci of Uan (in the sense

of [Bud+17, p.295]). From [HT07, Example 8.1.35 (ii)], one has j!L[1] ∈
Perv(X). By [Bud+17, p.299], jan! Lan[1] is not semisimple in Perv(Xan).

By [Bei+82, Thm. 4.3.1 (ii)], the intermediate extension K := j!∗L[1]
is a simple object of Perv(X). We claim that H−1K is not semisimple
in Db

c(X). From [HT07, Prop. 8.2.11], K is isomorphic to τ≤−1Rj∗L[1],
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where τ≤−1 : Db
c(X) → Db

c(X) is the truncation functor with respect to
the standard t-structure. Thus, H−1K is isomorphic to H−1(Rj∗L[1]) =
j∗L in Cons(X). Then (H−1K)an is isomorphic to jan! Lan in Cons(Xan).
From [Kat90, p.375], one has (H−1K)[1] ∈ Perv(X). Since (H−1K)an[1] is
not semisimple in Perv(Xan), by [Kat90, Lem. 12.7.1.1], (H−1K)[1] is not
semisimple in Perv(X). The claim is proved.

Lemma 3.2.1.5 is used in the proof of Theorem 3.5.1.1.

Lemma 3.2.1.5. Let U ⊂ X be an open subset of X. Then the functor
(−)|U : Perv(X) → Perv(U) sends every simple object of Perv(X) to a
simple or zero object of Perv(U). In particular, the functor (−)|U : Db

c(X)→
Db
c(U) preserves semisimplicity.

Proof. Let K be a simple object of Perv(X). By [Bei+82, Thm. 4.3.1 (ii)],
there is an irreducible, locally closed and geometrically smooth subvariety
j : V → X and a simple lisse Q̄ℓ-sheaf on V , such that K is isomorphic
to j!∗L[dimV ]. If V is disjoint from U , then K|U = 0. Otherwise, take a
geometric point x̄ on V ∩ U . From [SGA 1, V, Prop. 8.2], the morphism
πét1 (U ∩ V, x̄) → πét1 (V, x̄) is surjective. Thus, the composite representation
πét1 (U ∩ V, x̄) → GL(Lx̄) is also simple, i.e., the lisse Q̄ℓ-sheaf L|U∩V is
simple. Let h : U ∩ V → U be the base change of j : V → X along the
inclusion U → X. Then K|U is isomorphic to h!∗L|U∩V [dim(U ∩ V )], hence
simple in Perv(U).

When k = C, Fact 3.2.1.6 1 follows from Kashiwara’s conjecture for
semisimple perverse sheaves and the paragraph following [Bei+82, Thm. 6.2.5].
Kashiwara’s conjecture is formulated in [Kas98, Sec. 1]; see also [Dri01,
Sec. 1.2, 1]. It is reduced to de Jong’s conjecture by Drinfeld [Dri01], which
in turn is proved in [BK06] and [Gai07]. The case of general k follows via
Lemma 3.2.1.7.

Fact 3.2.1.6. Let k be an algebraically closed field of characteristic 0. Let
f : X → Y be a proper morphism of algebraic varieties over k. Let K be a
semisimple object of Db

c(X).

1. (Decomposition theorem) Then Rf∗K is a semisimple object of Db
c(Y ).

2. (Global invariant cycle theorem, [Bei+82, Cor. 6.2.8]) Let i be an
integer. By Fact 3.2.1.2, there is a nonempty connected open subset
V ⊂ Y such that HiRf∗K|V is a lisse sheaf. Then for every y ∈ V (k),
the canonical map

H i(X,K)→ H i(Xy,K|Xy)π
ét
1 (V,y)

is surjective.
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Lemma 3.2.1.7. Let E/F be an extension of algebraically closed fields. Let
X be an algebraic variety over F . Then:

1. The functor (−)|XE : Db
c(X)→ Db

c(XE) is fully faithful. It induces an
exact functor Perv(X)→ Perv(XE).

2. An object of Perv(X) is simple (resp. semisimple) if and only if its
image under (−)|XE : Perv(X)→ Perv(XE) is simple (resp. semisimple).

Proof. 1. In characteristic zero, it is the first half of [JKLM23, Lem. A.1].
That proof works in positive characteristic as well.

2. Let K ∈ Perv(X). By [Bei+82, Thm. 4.3.1 (ii)] and [Esn17, Prop. 5.3],
K is simple if and only if K|XE is simple. Thus, if K is semisimple, so is
K|XE . Now assume that K|XE is semisimple. For every subobject P ⊂
K in Perv(X), there is a morphism r : K|XE → P |XE in Perv(XE)
with r|P |XE

= IdP |XE
. By Part 1, there is a morphism r′ : K → P in

Perv(X) with r′|K|XE
= r and r′|P = IdP . Thus, P admits a direct

complement in K. By Lemma 3.2.1.8 2, K is semisimple.

Lemma 3.2.1.8. Let A be an abelian category. Let X ∈ A be a Noetherian
and Artinian object.

1. Let Y be a simple subquotient of X. Then there is a composite series
of X with one graded piece isomorphic to Y . In particular, up to
isomorphism X has only finitely many simple subquotients.

2. If every subobject of X admits a direct complement, then X is semisimple.

Proof.

1. There is a subobject i : X0 ⊂ X and a quotient q : X0 → Y in
A. Let N = ker(q). By [Sta24, Tag 0FCH, Tag 0FCI], both N and
X/X0 are Noetherian and Artinian. From [Sta24, Tag 0FCJ], they
admit composite series. A composite series of X/X0 is equivalent to
a filtration X0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ Xn = X by subobjects such
that Xi/Xi−1 is simple for every 1 ≤ i ≤ n. This filtration and every
composite series of N glue to a composite series of X with a step
N ⊂ X0, whose factor is isomorphic to Y . By the Jordan-Hölder
lemma [Sta24, Tag 0FCK], up to isomorphism Y has finitely many
choices.

2. One may assume X ̸= 0. Let P be the family of nonzero semisimple
subobjects of X. As X is Artinian, it has a simple subobject, so
P is nonempty. Since X is Noetherian, P has a maximal element
i : X0 → X. By assumption, there is a subobject F ⊂ X with
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X0⊕F = X. Then F = 0. (Otherwise, by [Sta24, Tag 0FCJ], F has a
nonzero simple subobject F0. Then X0⊕F0 ∈ P is strictly larger than
X0, which is a contradiction.) Therefore, i is an isomorphism and X
is semisimple.

Remark 3.2.1.9. In a Noetherian and Artinian abelian category, an object
may have infinitely many distinct (non semisimple) subobjects up to isomorphism.

Lemma 3.2.1.10. Let L be a lisse Q̄ℓ-sheaf of rank one on X. Then −⊗LL :
Db
c(X)→ Db

c(X) is an equivalence of categories. It is t-exact for the perverse
t-structures.

Proof. Let L−1 be the lisse sheaf dual to L. By associativity of the derived
tensor product ⊗L, the pair of functors (−⊗LL,−⊗LL−1) is an equivalence.

1. Right t-exactness: The functor is t-exact for the standard t-structures.
Thus, for every K ∈ pD≤0(X) and every integer n, one has Hn(K ⊗L
L) = Hn(K)⊗LL. Therefore, one has SuppHn(K⊗LL) = SuppHn(K).
Thus, K ⊗L L ∈ pD≤0(X).

2. Left t-exactness: By Part 1, for every K ∈ pD≥0(K), one has L−1 ⊗L
DXK ∈ pD≤0(X). By [KW01, II, Cor. 7.5 f)], one has isomorphisms

DX(K ⊗L L)→ RHom(L,DXK)→ L−1 ⊗L DXK

in Db
c(X). Therefore, one gets K ⊗L L ∈ pD≥0(X).

3.2.2 Universal local acyclicity

In Section 3.2.2, all schemes are assumed to be quasi-compact and quasi-
separated. For a scheme X and a geometric point x̄ on X, denote by Osh

X,x̄

the strict henselization (in the sense of [Sta24, Tag 04GQ (3)]) of OX,x̄. Set
X(x̄) := SpecOsh

X,x̄.
Let f : X → S be a separated morphism of finite presentation between

Z[1/ℓ]-schemes.

Definition 3.2.2.1 ([Sta24, Tag 0GJM], [Bar23, Def. 1.2]). Let K be an
object of Db

c(X).

� If for every geometric point x̄ on X and every geometric point t̄ on S(s̄)
with s̄ = f(x̄), the canonical morphism RΓ(X(x̄),K)→ RΓ(X(x̄)×S(s̄)

t,K) is an isomorphism, then K is called f -locally acyclic.
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� If for every morphism S′ → S of schemes, in notation of the cartesian
square

X ′ X

S′ S

g′

f ′ □ f

g

(3.3)

g′∗K is f ′-locally acyclic, then K is called f -universally locally acyclic
(f -ULA). Let DULA(X/S) ⊂ Db

c(X) be the full subcategory of f -ULA
objects.

By [HS23, Thm. 4.4], an object K ∈ Db
c(X) is f -ULA if and only if K is

universally locally acyclic in the sense of [HS23, Def. 3.2]. Thus, the notation
DULA(X/S) agrees with that in [HS23]. It is a triangulated subcategory of
Db
c(X).

Fact 3.2.2.2.

1. ([Bar23, Lem. 3.7 (ii)]) If S = Spec k, then DULA(X/k) = Db
c(X).

2. ([Bar23, Lem. 3.7 (i)]) If f : X → S is an isomorphism, then DULA(X/S) ⊂
Db
c(X) is the full subcategory of objects whose cohomology sheaves are

lisse.

3. ([HS23, Prop. 3.4 (i)]) Let g : S′ → S be a morphism of Z[1/ℓ]-schemes.
Then in the notation of (3.3), the functor g′∗ : Db

c(X) → Db
c(X

′)
restricts to a functor DULA(X/S)→ DULA(X ′/S′).

4. ([Ric14, Lem. 3.15], [Bar23, Lem. 3.6 (i), (ii)]) Let f ′ : Y → S be a
separated morphism of finite presentation between Z[1/ℓ]-schemes. Let
h : X → Y be a morphism of S-schemes. If h is smooth (resp. proper),
then the functor h∗ : Db

c(Y ) → Db
c(X) (resp. Rh∗ : Db

c(X) → Db
c(Y ))

restricts to a functor DULA(Y/S)→ DULA(X/S) (resp. DULA(X/S)→
DULA(Y/S)).

5. ([HS23, p.643]) Let g : S → T be a smooth morphism of Z[1/ℓ]-
schemes. Then DULA(X/S) ⊂ DULA(X/T ).

6. ([Zhu17, Thm. A.2.5 (4)]) Let fi : Xi → S (i = 1, 2) be a separated
morphism of finite presentation between Z[1/ℓ]-schemes. Let Ki ∈
DULA(Xi/S). Then K1 ⊠S K2 ∈ DULA(X1 ×S X2/S).

Although the derived external tensor product preserves universal local
acyclicity (Fact 3.2.2.2 6), Example 3.2.2.3 shows that the derived tensor
product of two ULA complexes may not be ULA.
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Example 3.2.2.3. Let f : X → S be the morphism A2
C → A1

C, (a, b) 7→
a + b. Let i : A → X (resp. j : B → X) be the inclusion of a-axis (resp.
b-axis) of X. Then fi : A → S (resp. fj : B → S) is an isomorphism. Let
K = i∗Q̄ℓ,A and K ′ = j∗Q̄ℓ,B. By Fact 3.2.2.2 2 and 4, one has K,K ′ ∈
DULA(X/S). As K ⊗L K ′ is the skyscraper supported at the origin of X
with stalk Q̄ℓ, it is not f -ULA. (Otherwise, from [Bar23, Lem. 3.6 (iv)], the
skyscraper viewed as a sheaf on A is fi-ULA, which contradicts Fact 3.2.2.2
2.)

Lemma 3.2.2.4. Assume that S is irreducible with generic point η. Let
K ∈ DULA(X/S). If K|Xη̄ = 0 in Db

c(Xη̄), then K = 0.

Proof. It suffices to prove that for every s ∈ S, one has K|Xs̄ = 0 in Db
c(Xs̄).

By [EGA II, Prop. 7.1.9], there is a discrete valuation ring R and a separated
morphism g : Spec(R) = S′ → S, sending the generic (resp. closed) point
ξ (resp. r) of S′ to η (resp. s). Let i : R → Rh be the henselization of
R (in the sense of [Sta24, Tag 04GQ (1)]). By [Sta24, Tag 0AP3], Rh is a
discrete valuation ring. From [Mil80, I, Exercise 4.9], the local morphism i
is injective. Then i∗ : Spec(Rh) → S′ preserves the generic (resp. closed)
point. Replacing R by Rh, one may assume further that R is henselian.

Consider the following cartesian squares

X ′
r̄ X ′

(r̄) X ′
ξ̄

r̄ S′
(r̄) ξ̄,

ī

□ □

j̄

where every vertical morphism is a base change of f : X → S. In the
notation of (3.3), let RΦ : D+(X ′) → D+(X ′

r̄) be the vanishing cycle
functor. Let RΨ : D+(X ′) → D+(X ′

r̄) be the nearby cycle functor. Set
K ′ = g′∗K. By definition, one has RΨ(K ′) = ī∗Rj̄∗(K

′|X′
ξ̄
). As R is

henselian, from [Ill06, (1.1.3)], there is a natural exact triangle K ′|X′
r̄
→

RΨ(K ′) → RΦ(K ′)
+1→ in D+(X ′

r̄). Since K ′|X′
ξ̄

is a pullback of K|Xη̄ = 0,

one has K ′|X′
ξ̄

= 0 and RΨ(K ′) = 0. By [Ill06, Cor. 3.5], the universal local

acyclicity of K implies RΦ(K ′) = 0. Therefore, one gets K ′|X′
r̄

= 0.
Since K ′|X′

r̄
is the pullback of K|Xs̄ under the field extension k(r̄)/k(s̄),

by Lemma 3.2.1.7 1, one gets K|Xs̄ = 0.

3.2.3 Relative perverse sheaves

Let f : X → S be a morphism of algebraic varieties over k. Then S is
bon in the sense of [KL85, (1.0)]. In particular, f is separated and of finite
presentation. Set KX/S := Rf !Q̄ℓ ∈ Db

c(X) to be the relative dualizing
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complex. The functor

DX/S(−) = RHom(−,KX/S) : Db
c(X)→ Db

c(X)op

is called the relative Verdier dual . By [KL85, (1.1.5)], as S is bon, there is
a canonical morphism of functors IdDbc(X) → DX/S ◦ DX/S .

Fact 3.2.3.1 is stated for∞-categories in [HS23], but holds for the underlying
triangulated categories (described in [HRS23, Lem. 7.9]) by [HS23, Footnote
1].

Fact 3.2.3.1.

1. ([HS23, Thm. 1.1]) There is a unique t-structure (p/SD≤0(X/S), p/SD≥0(X/S))
on Db

c(X), called the relative perverse t-structure, with the following
property: An object K ∈ Db

c(X) lies in p/SD≤0(X/S) (resp. p/SD≥0(X/S))
if and only if for every geometric point s̄ → S, the restriction K|Xs̄
lies in pD≤0(Xs̄) (resp. pD≥0(Xs̄)). In particular, for every s ∈ S,
the functor (−)|Xs : Db

c(X) → Db
c(Xs) is t-exact, where the source

(resp. target) is equipped with the relative (resp. absolute) perverse
t-structure.

2. ([HS23, Thm. 1.9]) The relative perverse t-structure on Db
c(X) restricts

to a t-structure (p/SDULA,≤0(X/S), p/SDULA,≥0(X/S)) on DULA(X/S).

3. ([HS23, Prop. 3.4]) The functor DX/S preserves DULA(X/S), and the

morphism IdDULA(X/S) → DX/S ◦ DX/S of functors DULA(X/S) →
DULA(X/S) is an isomorphism. The formation of DX/S : DULA(X/S)→
DULA(X/S)op commutes with any base change in S, so DX/S exchanges
p/SDULA,≤0(X/S) with p/SDULA,≥0(X/S).

Definition 3.2.3.2. Let Perv(X/S) (resp. PervULA(X/S)) be the heart of
the relative perverse t-structure on Db

c(X) (resp. DULA(X/S)).

By Fact 3.2.3.1 1, an object K ∈ Db
c(X) lies in Perv(X/S) if and only if

for every geometric point s̄→ S, one has K|Xs̄ ∈ Perv(Xs̄).

Example 3.2.3.3.

1. ([HS23, p.632]) If S = Spec(k), then Perv(X/k) = Perv(X).

2. If f is universally injective, then Perv(X/S) = Cons(X).

3. ([Bar23, Lem. 3.7 (ii)]) If f is smooth of relative dimension r, then the
functor (−)[r] : Loc(X)→ Db

c(X) factors through PervULA(X/S).

Example 3.2.3.4. Let i : Y → X be a closed immersion of S-schemes, with
Y → S smooth of relative dimension d and with geometrically connected
fibers. If L is a lisse Q̄ℓ-sheaf on Y , then i∗L[d] ∈ PervULA(X/S).
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Indeed, by Fact 3.2.2.2 2, one has L ∈ DULA(Y/Y ). From the smoothness
of Y → S and Fact 3.2.2.2 5, one has L ∈ DULA(Y/S). Using the properness
of i : Y → X and Fact 3.2.2.2 4, one has i∗L[d] ∈ DULA(X/S). For
every geometric point s̄ → S, let is̄ : Ys̄ → Xs̄ be the base change of
i along the morphism Xs̄ → X. By the proper base change theorem,
i∗L[d]|Xs̄ = (is̄)∗(L|Ys̄)[d] ∈ Perv(Xs̄). Therefore, i∗L[d] ∈ PervULA(X/S).

Lemma 3.2.3.5. If S is geometrically unibranch and irreducible, then PervULA(X/S)
is a Serre subcategory of Perv(X/S).

Proof. By definition, PervULA(X/S) is a strictly full subcategory of Perv(X/S).
By Fact 3.2.3.1 2 and [Bei+82, Thm. 1.3.6], PervULA(X/S) is an abelian
subcategory of Perv(X/S) and closed under extensions in DULA(X/S). As
DULA(X/S) ⊂ Db

c(X) is a triangulated subcategory, PervULA(X/S) is closed
under extensions in Perv(X/S). Because S is geometrically unibranch,
from the proof of [HS23, Thm. 6.8 (ii)], PervULA(X/S) is closed under
subquotients in Perv(X/S). By [Sta24, Tag 02MP], it is a Serre subcategory.

Fact 3.2.3.6 ([HS23, Thm. 1.10 (ii)]). Assume that S is geometrically
unibranch and irreducible with generic point η. Then the functor

(−)|Xη : PervULA(X/S)→ Perv(Xη)

is exact and fully faithful, and its essential image is stable under subquotients.

For every integer j, let p/SHj : Db
c(X)→ Perv(X/S) be the j-th cohomology

functor associated with the relative perverse t-structure.

Lemma 3.2.3.7. Suppose that S is smooth over k and irreducible with
generic point η. Assume that K ∈ PervULA(X/S) is semisimple in Db

c(X).
Then K|Xη is semisimple in Perv(Xη).

Proof. By Fact 3.2.3.6, for every subobject M ⊂ K|Xη in Perv(Xη), there

is a subobject K ′ ⊂ K in PervULA(X/S) with K ′|Xη = M . By Lemma
3.2.3.8 and smoothness of S, the morphism K ′[dimS] → K[dimS] is a
monomorphism in Perv(X). Because K is semisimple in Db

c(X), its shift
K[dimS] is semisimple in Perv(X). Thus, there is a subobjectN ⊂ K[dimS]
in Perv(X) with K[dimS] = (K ′[dimS])⊕N . Then K = K ′⊕(N [−dimS])
in Db

c(X). For every nonzero integer j, one has

0 = p/SHj(K) = 0⊕ p/SHj(N [−dimS])

in Perv(X/S). Hence p/SHj(N [−dimS]) = 0 and N [−dimS] ∈ Perv(X/S).
Consequently, K|Xη = M ⊕ (N |Xη [−dimS]) in Perv(Xη). By [Bei+82,
Thm. 4.3.1 (i)], the abelian category Perv(Xη) is Noetherian and Artinian.
As every subobject of K|Xη in Perv(Xη) admits a direct complement, the
semisimplicity follows from Lemma 3.2.1.8 2.
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Lemma 3.2.3.8 is stated without proof for regular schemes S in [HS23,
p.636].

Lemma 3.2.3.8. Assume that S is smooth over k of equidimension d. Then
the shifted inclusion

(−)[d] : DULA(X/S)→ Db
c(X) (3.4)

is t-exact, where DULA(X/S) (resp. Db
c(X)) is equipped with the relative

(resp. absolute) perverse t-structure. In particular, it induces an exact
functor

(−)[d] : PervULA(X/S)→ Perv(X). (3.5)

Proof. 1. The functor (−)[d] : Db
c(X) → Db

c(X) is right t-exact, where
the source (resp. target) is equipped with the relative (resp. absolute)
perverse t-structure. For every geometric point s̄ on S, the functor
(−)|Xs̄ : Db

c(X) → Db
c(Xs̄) is t-exact for the standard t-structures.

Then for every integer n and everyK ∈ p/SD≤0(X/S), one hasHn(K[d])|Xs̄ =
Hn+d(K|Xs̄). Hence

Xs̄ ∩ SuppHn(K[d]) = SuppHn+d(K|Xs̄).

As K|Xs̄ ∈ pD≤0(Xs̄), one has dim SuppHn+d(K|Xs̄) ≤ −n − d. By
Lemma 3.2.3.11 3, one has

dim SuppHn(K[d]) ≤ −n.

From Lemma 3.2.3.11 1, the Zariski closure of SuppHn(K[d]) in X
has dimension at most −n. Hence K[d] ∈ pD≤0(X).

2. The functor (3.4) is left t-exact. One may assume that k is algebraically
closed. For every K ∈ p/SDULA,≥0(X/S), by smoothness of S and the
proof of [Bar23, Lem. 3.12], DX(K[d]) is (noncanonically) isomorphic
to (DX/SK)[d] inDb

c(X). From Fact 3.2.3.1 3, DX/SK ∈ p/SDULA,≤0(X/S).
By Part 1, one has (DX/SK)[d] ∈ pD≤0(X). Hence K[d] ∈ pD≥0(X).

Remark 3.2.3.9. In Lemma 3.2.3.8, the functor (−)[d] : Db
c(X) → Db

c(X)
may not send Perv(X/S) to Perv(X). Indeed, let k = C, and let f : X =
0→ S = A1

C be the inclusion of the origin. By Example 3.2.3.3 1, the relative
perverse t-structure on Db

c(X) coincides with the standard one (which is also
the absolute perverse t-structure). Then Perv(X/S) = Perv(X).

Lemma 3.2.3.10. If S is integral with generic point η and dimS = d,
then the functor (−)|Xη [−d] : Db

c(X) → Db
c(Xη) is t-exact for the absolute

perverse t-structures. In particular, it restricts to an exact functor

(−)|Xη [−d] : Perv(X)→ Perv(Xη). (3.6)
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Proof. 1. Right t-exactness: For every K ∈ pD≤0(X) and every integer n,
one has SuppHn(K|Xη [−d]) = SuppHn−d(K|Xη) = Xη∩SuppHn−d(K).
By Lemma 3.2.3.11 4, one has

dim SuppHn(K|Xη [−d]) ≤ dim Supp(Hn−d(K))− d ≤ −n.

From Lemma 3.2.3.11 1, one has K|Xη [−d] ∈ pD≤0(Xη).

2. Left t-exactness: For every K ∈ Db
c(X) and every integer n, one has

SuppHn(DXη(K|Xη [−d])) = SuppHn((DXK)|Xη [−d]). (3.7)

Indeed, from [SGA 4 1/2, Thm. 2.13, p.242], by shrinking S to a
nonempty open subset, one may assume that K ∈ DULA(X/S). By
the proof of [Bar23, Lem. 3.12], one has DXK = (DX/SK)(d)[2d].
From Fact 3.2.3.1 3, (DXK)|Xη [−d] is a Tate twist of DXη(K|Xη [−d]),
which proves (3.7).

Now assumeK ∈ pD≥0(X). Then DXK ∈ pD≤0(X). From Part 1, one
has (DXK)|Xη [−d] ∈ pD≤0(Xη). By (3.7), one has DXη(K|Xη [−d]) ∈
pD≤0(Xη), or equivalently, K|Xη [−d] ∈ pD≥0(Xη).

By convention, the dimension of an empty space is −∞.

Lemma 3.2.3.11. Let X be a scheme of finite type over a field F . Let C
be a quasi-constructible subset of X.

1. Then dimC = dim C̄.

2. Let {Bi}ni=1 be finitely many locally closed subsets of X and B =
∪ni=1Bi. Then dimB = maxni=1 dimBi.

Let f : X → Y be a morphism between schemes of finite type over F .

3. Let n ≥ 0 be an integer such that dim(C∩f−1(y)) ≤ n for every y ∈ Y .
Then dimC ≤ dimY + n.

4. Assume that Y is integral with generic point η. Then dimY +dim(C∩
Xη) ≤ dimC.

Proof.

1. AsX is a Noetherian scheme, the topological subspace C is Noetherian.
Therefore, C is the union of finitely many irreducible components.
Thus, one may assume further that C is nonempty and irreducible.
Then the reduced induced closed subscheme C̄ of X is integral and of
finite type over F . By [Bor91, AG. Prop. 1.3], C contains a nonempty
open subset of C̄. By [Har77, II, Exercise 3.20 (e)], one has dimC =
dim C̄.
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2. For every 1 ≤ i ≤ n, since Bi ⊂ B, one has dimBi ≤ dimB. Then
maxi dimBi ≤ dimB. As Bi is quasi-constructible in X, by 1, one has
dimBi = dimBi. As {Bi}ni=1 is a finite closed cover of B̄, one gets
dimB ≤ dim B̄ = maxi dimBi = maxi dimBi.

3. By 2, one may assume that C is locally closed in X. Taking irreducible
components, one may assume further that C is irreducible. Let Z be
the Zariski closure of f(C) in Y . Then Z is irreducible. With reduced
induced subscheme structures, one views C and Z as integral schemes
of finite type over F . Moreover, f : X → Y induces a dominant
morphism g : C → Z over F . By [Har77, II, Exercise 3.22 (b)], for
every y ∈ f(C) = g(C), one has

n ≥ dimC ∩ f−1(y) = dim g−1(y) ≥ dimC − dimZ.

Hence dimC ≤ dimZ + n ≤ dimY + n.

4. As in the proof of 3, one may assume that C is an irreducible, locally
closed subset of X and view C as an integral scheme of finite type over
F . One may assume that C∩Xη is nonempty. As Cη is homeomorphic
to C ∩ Xη, the morphism C → Y induced by f is dominant. Thus,
by [Har77, II, Exercise 3.22 (c)], one gets dimC ∩ Xη = dimCη =
dimC − dimY .

Lemma 3.2.3.12. Assume that S is smooth over k, integral with generic
point η and dimS = d. Then:

1. Let A ∈ PervULA(X/S), and let B[d] be a subquotient of A[d] in
Perv(X). If the image B|Xη ∈ Perv(Xη) of B[d] under the functor
(3.6) is zero, then B[d] = 0 in Perv(X).

2. The functor (3.5) identifies PervULA(X/S) as a Serre subcategory of
Perv(X).

Proof.

1. By regularity of S and [HS23, Cor. 1.12], one has B ∈ DULA(X/S).
Since B|Xη = 0, by Lemma 3.2.2.4, one has B = 0.

2. It follows from the definition that the functor (3.5) is fully faithful.
Its essential image is closed under extensions in Perv(X), because
PervULA(X/S) is closed under extensions in the triangulated subcategory
DULA(X/S) of Db

c(X).

We claim that the essential image is closed under taking subobjects.
Take K ∈ PervULA(X/S) and a subobject L[d] of K[d] ∈ Perv(X). As
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S is integral, Lemma 3.2.3.10 shows that L|Xη ⊂ K|Xη is a subobject in
Perv(Xη). By smoothness of S and Fact 3.2.3.6, there is a subobject
L′ ⊂ K in PervULA(X/S) with L′|Xη = L|Xη . Set M = K/L′ ∈
PervULA(X/S). Let N [d] be the image of L[d] under the morphism
K[d]→M [d] in Perv(X). As the sequence

0→ L′[d] ∩ L[d]→ L[d]→ N [d]→ 0

is exact in Perv(X), by Lemma 3.2.3.10, the sequence

0→ L′|Xη ∩ L|Xη → L|Xη → N |Xη → 0

is exact in Perv(Xη). Hence N |Xη = 0. Since N [d] is a subobject
of M [d] ∈ Perv(X), by Part 1, one has N [d] = 0. Then L[d] ⊂
L′[d] is a subobject in Perv(X). Since (L′[d])/(L[d]) is a quotient
of L′[d] in Perv(X) and (L′|Xη)/(L|Xη) = 0 in Perv(Xη), one gets
(L′[d])/(L[d]) = 0 in Perv(X). Therefore, L[d] = L′[d]. The claim is
proved.

Similarly, the essential image is closed under taking quotients. By
[Sta24, Tag 02MP], the essential image is a Serre subcategory of Perv(X).

3.3 Cotori

3.3.1 Definition and basic properties

By [Rob00, p.127], there is a canonical absolute value on Q̄ℓ extending the
discrete absolute value | · |ℓ on Qℓ. It induces a topology on Q̄ℓ which is
totally disconnected. A subset A ⊂ Q̄ℓ is closed if and only if for every finite
subextension E/Qℓ of Q̄ℓ, the subset A∩E is closed in the discrete valuation
field E.

For a profinite group G, let C(G) be the group of ℓ-adic characters, i.e.,
continuous morphisms χ : G → Q̄×

ℓ . Then χ(G) are compact subgroup of
Q̄×
ℓ .

Lemma 3.3.1.1.

1. Let C be a compact subset of Q̄ℓ. Then there is a finite subextension
E of Q̄ℓ/Qℓ with C ⊂ E.

2. Let G ≤ Q̄×
ℓ be a compact subgroup. Then there is a finite subextension

E of Q̄ℓ/Qℓ with G ⊂ O×
E .

3. In 2, let G(ℓ) (resp. G(ℓ′)) be the ℓ-Sylow subgroup (resp. maximal
prime-to-ℓ quotient) of G. Then the topological group G

∼−→ G(ℓ)×G(ℓ′),
and G(ℓ′) is finite.
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Proof. 1. Otherwise, there is a sequence of elements x1, x2, . . . in C with
[Qℓ(xn+1) : Qℓ] > [Qℓ(xn) : Qℓ] for every integer n > 0. Let B ⊂ C be
the (infinite) set of elements of this sequence. For every subset S ⊂ B,
every finite subextension F/Qℓ, the set S ∩ F is finite, so closed in
F . Therefore, S is closed in Q̄ℓ. In particular, the set B is closed and
hence compact in C. Every subset of B is closed in B, so B is discrete.
Thus, B is finite, a contradiction.

2. By 1, there is a finite subextension E of Q̄ℓ/Qℓ containing G. By
[Ser92, Thm. 1 2, p.122], one has G ⊂ O×

E .

3. By 2 and [Ser92, Cor., p.155], G is an ℓ-adic Lie group. From Lazard’s
theorem (see, e.g., [GSK09, p.711]), there is a pro-ℓ open subgroup
U ≤ G. By [RZ10, Cor. 2.3.6 (b)], there is an ℓ-Sylow subgroup
H ≤ G containing U . Since G is compact, [G : U ] is finite. Thus, the
group G/H is finite of order prime to ℓ. By [RZ10, Prop. 2.3.8], G is
isomorphic to G/H×H. Since G is commutative, by [RZ10, Cor. 2.3.6
(c)], G has exactly one ℓ-Sylow subgroup.

Let C(G)ℓ′ (resp. C(G)ℓ) be the subgroup of characters of finite order
prime to ℓ (resp. that are pro-ℓ). Then there is a canonical isomorphism
C(G)ℓ

∼−→ C
(
(G(ℓ))ab

)
. By Lemma 3.3.1.1 3, one has C(G) = C(G)ℓ′ ×C(G)ℓ.

We review the contents of [GL96, Sec. 3.2]. Fix an integer n ≥ 0. Let

An be a free Ẑ-module of rank n. Let {γ1, . . . , γn} be a Zℓ-basis of A
(ℓ)
n .

Let R = {OE : E/Qℓ is a finite subextension of Q̄ℓ}, which is a directed set
under inclusion. For every R ∈ R, let mR be the maximal ideal of R. Let

R[[A
(ℓ)
n ]] := lim←−i,j≥1

(R/mi
R)[A

(ℓ)
n /ℓj ] be the completed group ring. There is

a canonical injective morphism A
(ℓ)
n → R[[A

(ℓ)
n ]]× of groups.

Fact 3.3.1.2 ([GL96, p.509]). The ring R[[A
(ℓ)
n ]] is a Noetherian, regular,

complete, local domain of Krull dimension 1 + n. There is an isomorphism
of topological rings

R[[A(ℓ)
n ]]→ R[[X1, . . . , Xn]], γi 7→ 1 +Xi. (3.8)

Gabber and Loeser introduce a scheme of ℓ-adic characters.

Definition 3.3.1.3. Write Rn = Q̄ℓ ⊗Zℓ Zℓ[[A
(ℓ)
n ]]. Define the “cotorus”

associated with An to be Cℓ := SpecRn.

By [GL96, Prop. A.2.2.3 (ii)], the scheme Cℓ is integral, Noetherian and
regular. Its set of closed points coincides with Cℓ(Q̄ℓ), and it is Zariski dense
in Cℓ. If n > 0, then Cℓ is not locally of finite type over Q̄ℓ.

Lemma 3.3.1.4. Every character χ : A
(ℓ)
n → Q̄×

ℓ extends canonically to a
surjective morphism Rn → Q̄ℓ of Q̄ℓ-algebras.
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Proof. There is a finite subextension E/Qℓ in Q̄ℓ containing all the χ(γi).
Then for every f =

∑
α∈Nn cαX

α ∈ Zℓ[[X1, . . . , Xn]], by completeness of E,
the series

∑
α∈Nn cα

∏n
i=1(χ(γi) − 1)αi converges in E. Denote its limit by

f(χ(γ1)−1, . . . , χ(γn)−1). The composition Zℓ[[A
(ℓ)
n ]]→ E of (3.8) followed

by
Zℓ[[X1, . . . , Xn]]→ E, f 7→ f(χ(γ1)− 1, . . . , χ(γn)− 1)

extends χ. It induces the stated surjection. The construction is independent

of the choice of the Zℓ-basis of A
(ℓ)
n .

By Lemma 3.3.1.4, for every χ ∈ C(An)ℓ, the corresponding character

A
(ℓ)
n → Q̄×

ℓ induces a surjection Rn → Q̄ℓ. Let Ψ(χ) be the corresponding
element of Cℓ(Q̄ℓ). Hence a map

Ψ : C(An)ℓ → Cℓ(Q̄ℓ). (3.9)

Fact 3.3.1.5 ([GL96, p.519]). The map (3.9) is bijective.

3.3.2 Cotori are Baire

The objective of Section 3.3.2 is Lemma 3.3.2.11, used in the proof of
Theorem 3.5.3.1. We show that over an uncountable algebraically closed
field, a reasonable scheme has uncountably many rational points outside a
countable union of strict closed subsets. Fix an uncountable, algebraically
closed field k.

Baire schemes

Definition 3.3.2.1. A scheme X over k is called k-Baire, if its dimension
dimX is finite and X(k) \ ∪i≥1Zi(k) is uncountable for every countable
sequence {Zi}i≥1 of closed subschemes of X with dimZi < dimX for all i.
A k-algebra R is called k-Baire if Spec(R) is k-Baire.

Remark 3.3.2.2. An algebraic curve over k is k-Baire. In Definition 3.3.2.1,
The underlying reduced induced closed subscheme Xred → X induces a
bijection Xred(k)→ X(k), so X is k-Baire if and only Xred is k-Baire. If X
is irreducible and k-Baire, then X \ ∪i≥1Zi is Zariski dense in X.

Remark 3.3.2.3. Let k = C. Let X be a complex algebraic variety with
dimX > 0. The analytification Xan of X is locally compact Hausdorff.
Then by the Baire category theorem (see, e,g., [Wil70, Cor. 25.4 a)]), X is
C-Baire.

Lemma 3.3.2.4. Let f : X → Y be a finite surjective morphism of schemes
over k. If Y is k-Baire, then so is X.
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Proof. Let {Zi}i be a sequence of closed subschemes of X with dimZi <
dimX. Then for every integer i ≥ 1, since f is a closed morphism, Yi :=
f(Zi) is closed in Y . Endow each Yi with the reduced induced structure.
Let Z ′

i := f−1(Yi) = Yi ×Y X. Then there is a canonical closed immersion
Zi → Z ′

i. The restriction Zi → Yi of f is a finite surjective morphism.
By [Sta24, Tag 0ECG], one has dimX = dimY and dimYi = dimZi. In
particular, dimX is finite and dimYi < dimY .

As k is algebraically closed, the induced map X(k)→ Y (k) is surjective.
Then the induced map

X(k) \ (∪i≥1Z
′
i(k))→ Y (k) \ (∪iYi(k))

is surjective. Because Y is k-Baire, the target is uncountable. Then X(k) \
(∪i≥1Zi(k)) is also uncountable, as it contains the source.

Lemma 3.3.2.5. Let X be a Noetherian scheme over k.

1. Then X is k-Baire if and only if X has an irreducible component C
with dimC = dimX, such that the underlying reduced induced closed
subscheme C is k-Baire.

2. Assume that n := dimX − 1 is finite. If X has uncountably many
(pairwise set-theoretically distinct) irreducible, k-Baire, closed subschemes
of dimension n, then X is k-Baire.

Proof. 1. Assume that there is such a component C. Consider a sequence
of closed subschemes {Zi}i≥1 of X with dimZi < dimX for all i ≥ 1.
Then for every i ≥ 1, one has dimC ∩ Zi ≤ dimZi < dimX =
dimC. Since C is k-Baire, the set C(k)\∪i(C∩Zi)(k) is uncountable.
Therefore, X(k) \ ∪iZi(k) is also uncountable.

Assume that every component of X of maximum dimension is not k-
Baire. As X is Noetherian, one can write X = ∪nj=1Cj as a finite union
of the irreducible components. For every j with dimCj = dimX, the

scheme Cj is not k-Baire. Therefore, there is a sequence {Zji }i≥1

of closed subschemes of Cj such that dimZji < dimCj for all i and

Cj(k)\∪iZji (k) is countable. The finite family of components Ck with

dimCk < dimX, joint with the sequences {Zji }i for all j with dimCj =
dimX, gives a countable family {Zs}s of closed subschemes of X with
dimZs < dimX for all s. Then X(k) \ (∪sZs(k)) is countable, so X
is not k-Baire.

2. Consider a sequence of closed subschemes {Zi}i≥1 of X with dimZi <
dimX for all i ≥ 1. Every Zi is a Noetherian scheme, so it has
only finitely many irreducible components. The set of irreducible
components of the family {Zi}i is countable. Thus, one may assume
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that every Zi is irreducible. By assumption, X has an n-dimensional,
irreducible, k-Baire closed subscheme X ′ which is set-theoretically
distinct from any Zi. For every i ≥ 1, because dimX ′ = n ≥ dimZi
and Zi is irreducible, one has X ′ ̸⊂ Zi and X ′ ∩ Zi ̸= X ′. Since X ′

is irreducible, one has dim(X ′ ∩ Zi) < dimX ′. As X ′ is k-Baire, the
set X ′(k) \ ∪i≥1(X

′ ×X Zi)(k) is uncountable, which is a subset of
X(k) \ ∪i≥1Zi(k). Therefore, X is k-Baire.

Lemma 3.3.2.6 is well-known.

Lemma 3.3.2.6. If X is a finite type scheme over k with dimX > 0, then
X is k-Baire.

Proof. Since X is of finite type over k, its dimension m is finite and X has
only finitely many irreducible components. Replacing X with an irreducible
component of dimension m, one may that assume X is irreducible. Then
by [Har77, Exercise 3.20 (e), p.94], every nonempty open subset of X has
dimension m. Replacing X by an affine open, one may assume that X
is affine. By Noether’s normalization lemma, there is a finite surjective
morphism p : X → Am

k over k. By Lemma 3.3.2.4, one may assume X =
Am
k .

By induction on m > 0, we prove that Am
k is k-Baire. When m = 1, one

has dimA1
k = 1, and A1

k(k) is uncountable. By Remark 3.3.2.2, A1
k is k-

Baire. Assume the statement for m− 1 with m ≥ 2. The set of hyperplanes
in Am

k is uncountable. By the inductive hypothesis, every hyperplane is
k-Baire. From Lemma 3.3.2.5 2, so is Am

k . The induction is completed.

Baireness of cotori

We show that every positive dimensional cotorus is Q̄ℓ-Baire.

Definition 3.3.2.7 ([BGR84, Def. 1, p.205]). Let A be a k-algebra, and let
A[X] → B be an injective ring map. We say that B is k-Rückert over A if
there is a nonempty family W of monic polynomials in A[X] such that the
following axioms are fulfilled:

1. If f, g ∈ A[X] are monic polynomials with fg ∈W , then f, g ∈W .

2. For every w ∈W , the A-algebra B/w is isomorphic to A[X]/w.

3. For every b ∈ B \ {0}, there is an automorphism σ of the k-algebra B
and a unit u ∈ B× such that uσ(b) ∈W .

Remark 3.3.2.8. From Axiom 1, one gets 1 ∈W . If W = {1}, then by Axiom
3, for every b ∈ B \ {0}, one has b ∈ B×, i.e., B is a field. Conversely, if B
is a field, then B is k-Rückert over A with W = {1}.
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If W ̸= {1}, then Spec(B) → Spec(A) is surjective. Indeed, take w(̸=
1) ∈W . By Axiom 2, there is an A-isomorphism B/w → A[X]/w, hence an
isomorphism Spec(A[X]/w)→ Spec(B/w) of schemes over SpecA. Because
w is a monic polynomial different from 1, the ring map A → A[X]/w is
injective and finite. The induced morphism Spec(A[X]/w) → Spec(A) is
surjective, so Spec(B/w)→ Spec(A) is surjective.

For a commutative ring R and an ideal I ⊂ R, let VR(I) = SpecR/I(⊂
SpecR). For r ∈ R, let VR(r) = VR(rR). Lemma 3.3.2.9 is used in the
induction step of the proof of Lemma 3.3.2.11.

Lemma 3.3.2.9. Let A be Noetherian k-algebra of dimension n. Let B be
a domain, but not a field, containing A[X]. Assume that B is k-Rückert
over A.

1. The ring B is Noetherian of dimension n+ 1.

2. Suppose that A is k-Baire. Let S be an uncountable subset of A such
that for every s ∈ S, one has dimVA(s) = n − 1. Suppose that the
family {VA(s)}s∈S is pairwise disjoint. Then B is k-Baire.

Proof. For every b ∈ B \ (B× ∪{0}), by Axiom 3, there is an automorphism
σ of the k-algebra B and a unit u ∈ B× such that w := uσ(b) is in W .
Since b is not a unit, one has w ̸= 1. By Axiom 2, the A-algebra B/w is
isomorphic to A[X]/w. Since w(̸= 1) is a monic polynomial over A, the ring
map A→ A[X]/w is injective finite.

1. One has

dimB/b = dimB/w = dimA[X]/w
(a)

= dimA = n, (3.10)

where (a) uses [Sta24, Tag 00OK]. The domain B is not a field, so
dimB = n+ 1. By [BGR84, Prop. 2, p.206], the ring B is Noetherian.

2. The morphism SpecA[x]/w → SpecA is finite surjective. Then by
Lemma 3.3.2.4, the algebra A[X]/w is k-Baire. As σ is over k, the
k-algebra B/b is isomorphic to B/w. Then B/b is k-Baire.

For every s ∈ S, one has dimVA(s) < dimA, so s ̸= 0. As B is not
a field, from Remark 3.3.2.8, the morphism Spec(B) → Spec(A) is
surjective. The preimage of VA(s) under the surjection Spec(B) →
Spec(A) is VB(s), so VB(s) is nonempty. In particular, s /∈ B× and
B/s is k-Baire. Moreover, the family {VB(s)}s∈S is pairwise disjoint.
By (3.10), one gets dimVB(s) = n.

By Part 1, B is Noetherian. Then for every s ∈ S, by Lemma 3.3.2.5 1,
there is a k-Baire irreducible component Cs ⊂ Spec(B/s) of dimension
n. The family {Cs}s∈S is pairwise disjoint. From Lemma 3.3.2.5 2, B
is k-Baire.
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Set Sn := Q̄ℓ ⊗Zℓ Zℓ[[X1, . . . , Xn]]). By [GL96, Prop. 3.2.2 (1)], the
natural morphism Sn → Q̄ℓ[[X1, . . . , Xn]] is injective. Then the isomorphism
(3.8) identifies Rn with the Q̄ℓ-subalgebra Sn ⊂ Q̄ℓ[[X1, . . . , Xn]].

Fact 3.3.2.10. For every integer n ≥ 0,

1. ([GL96, Thm. A.2.1, Prop, A.2.2.1]) the ring Sn is a Noetherian,
regular, Jacobson domain of Krull dimension n;

2. ([GL96, Prop A.2.2.2, proof of A.2.2.3 (ii)]) Sn+1 is Q̄ℓ-Rückert over
Sn.

Lemma 3.3.2.11. For every integer n ≥ 1, the algebra Sn is Q̄ℓ-Baire.

Proof. Since Q̄ℓ is a flat Zℓ-module, the injection Zℓ[X1, . . . , Xn]→ Zℓ[[X1, . . . , Xn]]
induces an injection Q̄ℓ[X1, . . . , Xn]→ Sn. The natural morphism

Spec(Q̄ℓ[[X1, . . . , Xn]])→ An
Q̄ℓ (3.11)

of schemes over Q̄ℓ factors through a morphism pn : Spec(Sn)→ An
Q̄ℓ

.
Let M = ∪EmE , where E runs through all finite subextensions of Qℓ ⊂

Q̄ℓ, and mE is the maximal ideal of the ring of integers of E. ThenM is the
maximal ideal of the integral closure Zℓ of Zℓ inside Q̄ℓ. By [Rob00, Prop.,
p.128], the residue field Zℓ/M is an algebraic closure of the finite field Fℓ,
so it is countable. As Zℓ is uncountable, so is the set M.

For every (a1, . . . , an) ∈ Mn, there is a surjective morphism of Q̄ℓ-
algebras:

Q̄ℓ[[X1, . . . , Xn]]→ Q̄ℓ, f 7→ f(a1, . . . , an).

Its kernel is a Q̄ℓ-point of Spec(Q̄ℓ[[X1, . . . , Xn]]), whose image under (3.11)
is (a1, . . . , an) ∈ AnQ̄ℓ(Q̄ℓ). Hence Mn ⊂ pn(Spec(Sn)(Q̄ℓ)). In particular,

Spec(Sn)(Q̄ℓ) is uncountable.
By induction on n > 0, we prove that Sn is Q̄ℓ-Baire, and {VSn(X1 −

a)}a∈M is a pairwise disjoint family of (n − 1)-dimensional subsets. When
n = 1, by Fact 3.3.2.10 1, S1 is Q̄ℓ-Baire. Moreover, {VS1(X1 − a)}a∈M is a
pairwise distinct family of closed point of Spec(S1). The statement is proved
for n = 1. Assume the statement for n − 1 with n ≥ 2. By Fact 3.3.2.10,
(3.10), and Lemma 3.3.2.9 2, the statement holds for n. The induction is
completed.

3.4 Krämer-Weissauer theory

Let k be a field of characteristic zero. Let Veck be the category of finite
dimensional k-vector spaces. Choose an algebraic closure k̄ of k. Let
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RepQ̄ℓ(Γk) be the category of continuous, finite dimensional Q̄ℓ-representations

of Γk. Let A be an abelian variety over k. Recall that πét1 (Ak̄) is a free Ẑ-
module of rank 2 dimA. With the notation of Section 3.3, set

� C(A) = C(πét1 (Ak̄)): the group of characters πét1 (Ak̄)→ Q̄∗
ℓ ;

� C(A)ℓ′ = C(πét1 (Ak̄))ℓ′ : the group of characters of finite order prime to
ℓ;

� C(A)ℓ: the cotorus assigned to πét1 (Ak̄).

3.4.1 Generic vanishing theorem

For an object K ∈ Perv(A), set

S(K) := {χ ∈ C(A)|H i(Ak̄,K ⊗L Lχ) ̸= 0 for some integer i ̸= 0}.

Fact 3.4.1.1 ([KW15b, Thm. 1.1], [Wei16, Vanishing Theorem, p.561,
Thm. 2]). For every perverse sheaf K ∈ Perv(A) and every character χℓ′ ∈
C(A)ℓ′, the set

{χℓ ∈ C(A)ℓ(Q̄ℓ)|χℓ′χℓ ∈ S(K)}

is the set of Q̄ℓ-points of a strict Zariski closed subset of the scheme C(A)ℓ.

We review [KW15a, p.725]. Because of char(k) = 0, for every K ∈
Perv(A), its Euler characteristic satisfies

χ(A,K) :=
∑
i∈Z

(−1)i dimQ̄ℓ H
i(Ak̄,K) ≥ 0. (3.12)

Let N(A) ⊂ Perv(A) be the full subcategory of objects K with χ(A,K) = 0.
From the additivity of the function χ(A,−) : Ob(Perv(A))→ N and (3.12),
N(A) is a Serre subcategory of Perv(A). Let P̄ (A) := Perv(A)/N(A) be the
quotient abelian category. For every χ ∈ C(A), set

Eχ(Ak̄) = {K ∈ Perv(Ak̄)|H i(Ak̄,K ⊗L Lχ) = 0, ∀i ∈ Z \ {0}}.

Then Eχ(Ak̄) is closed under extensions in Perv(Ak̄). Let Pχ(A) ⊂ Perv(A)
be the full subcategory of objects K with Q ∈ Eχ(Ak̄) for every simple
subquotient Q of K|Ak̄ in Perv(Ak̄).

By [Bei+82, Thm. 4.3.1 (i)], every object K ∈ Perv(A) is Noetherian
and Artinian. For every χℓ′ ∈ C(A)ℓ′ , by Fact 3.4.1.1 and Lemma 3.2.1.8 1,
the set {χℓ ∈ C(A)ℓ(Q̄ℓ)|K ∈ Pχℓ′χℓ(A)} is the set of Q̄ℓ-points of a strict
Zariski closed subset of C(A)ℓ.

Lemma 3.4.1.2. Let A be a Noetherian and Artinian abelian category. Let
E be a class of objects of A closed under isomorphisms. Let S ⊂ A be the
full subcategory of objects every nonzero simple subquotient of which is in E.
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1. Then S is a Serre subcategory of A.

2. If further E is closed under extensions, then S ⊂ E.
Proof.

1. (a) We prove that S is closed under subquotients. Let X be an object
of S with a subquotient Y . Every simple subquotient of Y is that
of X, hence in E . Thus, Y ∈ S.

Let 0 → L
f→ M

g→ N → 0 be a short exact sequence in A with
L,N ∈ S. Let Q be a nonzero simple subquotient of M . We prove
that Q ∈ E .

(b) First, assume that Q is a quotient of M . The natural morphism
L → Q is either an epimorphism or zero, in which case Q is a
simple quotient of L or N respectively. Hence Q ∈ E .

(c) Now assume that Q is general. There is a subobject M0 ⊂ M
and an epimorphism M0 → Q. Then

0→ f−1(M0)→M0 → g(M0)→ 0

is a short exact sequence in A with f−1(M0) (resp. g(M0)) a
subobject of L (resp. N). From Part 1a, both f−1(M0) and
g(M0) are in S. From Part 1b, one has Q ∈ E .

From Part 1c, one has M ∈ S, and S is closed under extensions. The
result follows from [Sta24, Tag 02MP].

2. By [Sta24, Tag 0FCJ], every object X ∈ S admits a filtration in A

0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ Xn = X

by subobjects such that each Xi/Xi−1 is a simple subquotient of X.
Then Xi/Xi−1 ∈ E . As E is closed under extensions, one has X ∈ E .

By Lemma 3.4.1.2 1, for every χ ∈ C(A), the subcategory Pχ(A) ⊂
Perv(A) is a Serre subcategory. From Lemma 3.4.1.2 2, for every K ∈ Pχ(A)
and every integer i ̸= 0, one has

H i(Ak̄,K ⊗L Lχ) = 0. (3.13)

From the proof of [LS20, Lem. 3.4 (3)], the functor

ωχ = H0(Ak̄, · ⊗L Lχ) : Pχ(A)→ VecQ̄ℓ (3.14)

is exact. Let Nχ(A) be the full subcategory of Pχ(A) of objects in N(A).
For every K ∈ Nχ(A), by [KW15b, Cor. 4.2], one has χ(A,K ⊗L Lχ) = 0.
From (3.13), one has H0(Ak̄,K ⊗L Lχ) = 0. By [Sta24, Tag 02MS], the
functor ωχ factors uniquely through an exact functor (still denoted by ωχ)

Pχ(A)/Nχ(A)→ VecQ̄ℓ . (3.15)
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3.4.2 Tannakian groups

Let (C,⊗) a neutral Tannakian category (in the sense of [DM22, Def. 2.19])
over an algebraically closed field Q of characteristic 0, with a fiber functor
ω : C → VecQ. Let Aut⊗(C, ω) be the corresponding affine group scheme
over Q. By [Del90, Sec. 9.2, p.187], up to isomorphism of group schemes,
Aut⊗(C, ω) is independent of the choice of ω. (See [Wib22, Thm. 1.2] for an
elementary proof.)

For an object K ∈ C, let ι : ⟨K⟩ ↪→ C be the full subcategory whose
objects are the subquotients of {(K⊕K∨)⊗n}n≥1. Then (⟨K⟩,⊗) is a neutral
Tannakian subcategory of C (in the sense of [Mil07, 1.7]), for which ωι :
⟨K⟩ → VecQ is a fiber functor. The group scheme Aut⊗(⟨K⟩, ωι) is the
image of the natural morphism Aut⊗(C, ω)→ GL(ω(K)).

Definition 3.4.2.1. The algebraic group Aut⊗(⟨K⟩, ωι) is called the Tannakian
monodromy group of K at ω and is denoted by Gω(K).

By [Sim92, p.69], Gω(K) is reductive if and only if K is semisimple in C.

Example 3.4.2.2. With tensor product, RepQ̄ℓ(Γk) is a neutral Tannakian
category over Q̄ℓ. The forgetful functor ω : RepQ̄ℓ(Γk) → VecQ̄ℓ is a fiber
functor. The Tannakian monodromy group of an object ρ : Γk → GL(V ) at
ω is the Zariski closure of ρ(Γk) ⊂ GL(V ).

3.4.3 Sheaf convolution

Let m : A ×k A → A be the group law on A. Let pi : A ×k A → A be the
projection to i-th factor (i = 1, 2). The bifunctor

∗ : Db
c(A)×Db

c(A)→ Db
c(A), − ∗+ := Rm∗(p

∗
1 −⊗Lp∗2+)

is called the convolution on A.

Example 3.4.3.1. For every closed reduced subvariety i : X → A, let δX :=
i∗Q̄ℓ,X ∈ Db

c(A). Then for every closed point x ∈ A, one has δx ∗δX = δx+X .

By [Wei11] and [JKLM23, Sec. 3.1], the pair (Db
c(A), ∗) is a rigid, symmetric

monoidal category, with unit δ0. For every K ∈ Db
c(A), its adjoint dual is

K∨ := [−1]∗ADAK.

Fact 3.4.3.2 ([KW15b, proof of Thm. 13.2], [LS20, Lem. 3.4 (4)], [JKLM23,
Prop. 3.1]). The convolution on A induces a bifunctor

P̄ (A)× P̄ (A)→ P̄ (A), (−,+) 7→ pH0(− ∗+)

fitting into a commutative square
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Perv(A)× Perv(A) Db
c(A)

P̄ (A)× P̄ (A) P̄ (A).

∗

pH0

It makes P̄ (A) a neutral Tannakian category over Q̄ℓ. For every χ ∈ C(A),
the subcategory Pχ(A)/Nχ(A) ⊂ P̄ (A) is a Tannakian subcategory, on which
(3.15) is a fiber functor.

Example 3.4.3.3. [KW15a, Example 7.1] Fix a closed point x ∈ A. Then
δx ∈ Perv(A). Then S(δx) is empty and for every χ ∈ C(A), one has
δx ∈ Pχ(A). If x is a torsion point of order n, then Gωχ(δx) is isomorphic
to Z/n. If x is not a torsion point, then Gωχ(δx) is isomorphic to Gm/Q̄ℓ .

Let ψ : πét1 (A)→ Q̄×
ℓ be a character, and set ψ′ = ψ|πét

1 (Ak̄)
. The functor

ωψ : Perv(A)→ RepQ̄ℓ(Γk), K 7→ H0(Ak̄,K ⊗L Lψ)

fits into a commutative square

Perv(A) RepQ̄ℓ(Γk)

Pψ
′
(A) VecQ̄ℓ

ωψ

ω

(3.14)

The quotient functor Pψ
′
(A)/Nψ′

(A) → RepQ̄ℓ(Γk) of ωψ|Pψ′ (A) induces a
morphism of affine groups schemes

ω∗
ψ : Aut⊗(RepQ̄ℓ(Γk), ω)→ Aut∗(Pψ

′
(A)/Nψ′

(A), ωψ′). (3.16)

Definition 3.4.3.4. For everyK ∈ Perv(A), let Mon(K,ψ) be the Tannakian
monodromy group of ωψ(K) in RepQ̄ℓ(Γk).

For every K ∈ Pψ
′
(A), the functor ωψ|⟨K⟩ : ⟨K⟩ → ⟨ωψ(K)⟩ induces

a closed immersion of linear algebraic groups ω∗
ψ : Mon(K,ψ) → Gωψ′ (K),

which is the projection of (3.16) in GL(ωψ′(K)).

3.5 Main results

Consider Setting 3.1.2.1. For every character χ ∈ C(A), denote the pullback
of χ along (pA|Aη)∗ : πét1 (Aη) → πét1 (A) by χη : πét1 (Aη) → Q̄×

ℓ . Then
the restriction χη|πét

1 (Aη̄)
is identified with χ via the isomorphism (pA|Aη̄)∗ :

πét1 (Aη̄)→ πét1 (A). LetK ∈ Perv(A×X/X) be an object which is semisimple
in Db

c(A×X).
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We shall prove that the monodromy group ofK is normal in its Tannakian
group. By the normality criterion (Lemma 3.5.0.1), it suffices to show that
the monodromy is reductive, and to consider the monodromy fixed part of
all the representations of the Tannakian group. Such representations are
from perverse sheaves.

Lemma 3.5.0.1. Let G be a linear algebraic group over an algebraically
closed field C. Let H be a closed, reductive subgroup of G. If for every
V ∈ RepC(G), the subspace V H is G-stable, then H is normal in G.

Proof. By [Gro06, Cor. 2.4] and reductivity, H is observable in G (in the
sense of [BBHM63, p.134]). From [And21, Prop. C.3], H is normal in G.

3.5.1 Reductivity

Theorem 3.5.1.1. For every χ ∈ C(A) \ S(K|Aη), the monodromy group
Mon(K|Aη , χη) is reductive.

Proof. By Lemma 3.2.1.5, when X is replaced by a nonempty open subset,
the semisimplicity of K in Db

c(A × X) is preserved. Moreover, the Γk(η)-
representation ωχη(K|Aη) and hence the group Mon(K|Aη , χη) remain unchanged.
Thus, by [Sta24, Tag 056V], one may assume that X is smooth. As K is
semisimple in Db

c(A×X), from Lemma 3.2.1.10, so is K ⊗L p∗ALχ. By Fact
3.2.1.6 1, the object RpX∗(K ⊗L p∗ALχ) is semisimple in Db

c(X).
By the proper base change theorem (see, e.g., [Sta24, Tag 095T]), for

every integer n, one has

HnRpX∗(K ⊗L p∗ALχ)η̄ = Hn(Aη̄,K|Aη̄ ⊗L Lχ).

Since χ /∈ S(K|Aη), when n ̸= 0, one has Hn(Aη̄,K|Aη̄ ⊗L Lχ) = 0. By
Fact 3.2.1.2, there is a nonempty open subset U0 (resp. Un for every integer
n ̸= 0) of X such that [H0RpX∗(K ⊗L p∗ALχ)]|U0 is a lisse Q̄ℓ-sheaf (resp.
[HnRpX∗(K ⊗L p∗ALχ)]|Un = 0). The set

J := {n ∈ Z : HnRpX∗(K ⊗L p∗ALχ) ̸= 0}

is finite and X is irreducible, so U := U0 ∩ ∩n∈JUn is a nonempty open
subset of X. Shrinking X to U , one may assume further that HnRpX∗(K⊗L
p∗ALχ) = 0 for every integer n ̸= 0, and that H0RpX∗(K ⊗L p∗ALχ) is a lisse
Q̄ℓ-sheaf on X.

Thus, the semisimple object RpX∗(K ⊗L p∗ALχ)[dimX] of Db
c(X) lies in

Perv(X), so it is semisimple in Perv(X). By [Ach21, Prop. 3.4.1], the object
RpX∗(K ⊗L p∗ALχ) of Loc(X) is semisimple. Therefore, the corresponding
representation

πét1 (X, η̄)→ GL(H0(Aη̄,K|Aη̄ ⊗L Lχ))
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is semisimple. Because X is smooth, the natural morphism η∗ : Γk(η) →
πét1 (X, η̄) is surjective. Then the composition Γk(η) → GL(H0(Aη̄,K|Aη̄ ⊗L
Lχ)), i.e., the representation ωχη(K|Aη), is semisimple. Consequently, the
algebraic group Mon(K|Aη , χη) is reductive.

Example 3.5.1.2. In Theorem 3.5.1.1, the algebraic group Mon(K|Aη , χη)
may not be semisimple. Let X be a smooth, projective, integral algebraic
curve over k of genus 1. Then πét1 (X, η̄) ∼= Ẑ2. There exists a character
σ : πét1 (X, η̄) → Q̄×

ℓ of infinite order. Let A = Spec(k). Then C(A) = {1}
and Mon(Lσ|Aη , 1) = Gm/Q̄ℓ is an algebraic torus.

Remark 3.5.1.3. In view of Example 3.2.1.4, the semisimplicity ofH0RpX∗(K⊗L
p∗ALχ) in Db

c(X) is not clear a priori. That is why we exclude characters in
the spectrum S(K|Aη) in Theorem 3.5.1.1.

Remark 3.5.1.4. Let i : Y → A × X be a closed subvariety, such that the
induced morphism f : Y → X is smooth with connected fibers of dimension
d:

Y A×X

X A.

i

f
pX

pA

By Example 3.2.3.4, one has K := i∗Q̄ℓ,Y [d] ∈ PervULA(A×X/X). By Fact
3.2.1.6 1, it is semisimple in Db

c(A ×X). Assume that X is smooth. Then
for every χ ∈ C(A) \ S(K|Aη), the algebraic group Mon(K|Aη , χη) coincides
with the Zariski closure of the image of the monodromy representation of
the lisse Q̄ℓ-sheaf Rdf∗i

∗p∗ALχ on X, which is studied in [KM23, Sec. 1.4]
(but with coefficient C instead of Q̄ℓ).

3.5.2 Fixed part

Theorem 3.1.2.3 follows from Theorem 3.5.2.1 and Fact 3.4.1.1, because the
union in Condition 1 of Theorem 3.5.2.1 is in fact a finite union.

Theorem 3.5.2.1. Assume that X is smooth and K ∈ PervULA(A×X/X).
Then there exists a subobject K0 ⊂ K in PervULA(A×X/X) such that for
every χ ∈ C(A) with

1. χ /∈ ∪j∈ZS(pHj(RpA∗K)),

2. K|Aη ∈ Pχ(Aη) and

3. pH0(RpA∗K) ∈ Pχ(A),

one has ωχη(K0|Aη) = ωχη(K|Aη)Γk(η).
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Proof. By properness of pX : A × X → X and Fact 3.2.2.2 4, one has
RpX∗K ∈ DULA(X/X). Then from Fact 3.2.2.2 2, the sheaf H0RpX∗K is
lisse. Since X is smooth, by [Sta24, Tag 0BQM], the canonical morphism
Γk(η) → πét1 (X, η̄) is surjective. Thus, from Fact 3.2.1.6 2, the natural map

H0(A×X,K ⊗L p∗ALχ)→ ωχη(K|Aη)Γk(η) (3.17)

is surjective.
By Fact 3.2.1.1, one has

H0(A×X,K ⊗L p∗ALχ) = H0(A, (RpA∗K)⊗L Lχ). (3.18)

By Condition 1, for any integers i ̸= 0 and j, one has

H i(A, pHj(RpA∗K)⊗L Lχ) = 0.

By Lemma 3.2.1.10, the spectral sequence in [Max19, Rk. 8.1.14 (6)] becomes

Ei,j2 = H i(A, pHj(RpA∗K)⊗L Lχ)⇒ H i+j(A, (RpA∗K)⊗L Lχ).

It degenerates at page E2. Hence

H0(A, (RpA∗K)⊗L Lχ) = H0(A, (pH0RpA∗K)⊗L Lχ). (3.19)

Set K1 := p∗A
pH0(RpA∗K) ∈ Db

c(A × X). By Fact 3.2.2.2 1, one
has pH0(RpA∗K) ∈ DULA(A/k). From Fact 3.2.2.2 3, one gets K1 ∈
DULA(A×X/X). For every x ∈ X(k), the restriction pA|Ax : Ax → A is an
isomorphism of abelian varieties over k, so the functor (pA|Ax)∗ : Perv(A)→
Perv(Ax) is an equivalence of abelian categories. It sends pH0(RpA∗K) to
K1|Ax , so K1|Ax ∈ Perv(Ax) and hence K1 ∈ PervULA(A × X/X). From
K1|Aη = (pA|Aη)∗pH0(RpA∗K) and Condition 3, one has K1|Aη ∈ Pχ(Aη).
Then

ωχ(K1|Aη) = H0(A, pH0(RpA∗K)⊗L Lχ). (3.20)

Every fiber of pA : A × X → A has dimension dimX, so by [Bei+82,
4.2.4], the functor

RpA∗[−dimX] : Db
c(A×X)→ Db

c(A)

is left t-exact for the absolute perverse t-structures. From Lemma 3.2.3.8,
as X is smooth and K is ULA, one has K[dimX] ∈ Perv(A × X) and so
RpA∗K ∈ pD≥0(A). Taking the perverse truncation, one has pτ≤0(RpA∗K) =
pH0(RpA∗K). Via the adjunction formula (see, e.g., [KW01, p.107]), the
natural morphism

pτ≤0(RpA∗K)→ RpA∗K

in Db
c(A) (from the definition of t-structure) induces a morphism h : K1 →

K in Db
c(A×X). Then h is a morphism in PervULA(A×X/X). Let K0 be
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the image of h in the abelian category PervULA(A×X/X). By Fact 3.2.3.1
1, the functor Perv(A × X/X) → Perv(Aη) is exact. Then K0|Aη is the
image of h|Aη : K1|Aη → K|Aη in Perv(Aη).

Because Pχ(Aη) is an abelian subcategory of Perv(Aη), by Condition 2,
the image of h|Aη in Pχ(Aη) is still K0|Aη . As the functor (3.14) is exact,
the image of ωχ(h|Aη) : ωχ(K1|Aη) → ωχ(K|Aη) is ωχ(K0|Aη). Combining

(3.17), (3.18), (3.19) with (3.20), one gets ωχ(K0|Aη) = ωχη(K|Aη)Γk(η) .

3.5.3 Normality

By [JKLM23, Thm. 4.3], for every character χ ∈ C(A), the geometric generic
Tannakian group Gωχ(K|Aη̄) is a normal closed subgroup of the generic
Tannakian group Gωχ(K|Aη). Theorem 3.5.3.1 shows that for uncountably
many characters, the corresponding monodromy group is also a normal
closed subgroup of the generic Tannakian group.

For every χℓ′ ∈ C(A)ℓ′ and every χℓ ∈ C(A)ℓ, set χ = χℓ′χℓ.

Theorem 3.5.3.1. For every χℓ′ ∈ C(A)ℓ′, there is a countable union B =
∪i≥1Bi of strict closed subsets of C(A)ℓ, such that for every χℓ ∈ C(A)ℓ(Q̄ℓ)\
B,

� one has K|Aη ∈ Pχ(Aη);

� the algebraic group Gωχ(K|Aη) is reductive;

� and Mon(K|Aη , χη) is a normal closed subgroup of Gωχ(K|Aη).

By Lemma 3.3.2.11, when dimA > 0, the set C(A)ℓ(Q̄ℓ)\B is uncountable.
Thus, Theorem 3.1.2.2 follows from Theorem 3.5.3.1. We sketch the proof
of Theorem 3.5.3.1. For every representation V of the Tannakian group
G(K|Aη) and every χℓ′ ∈ C(A)ℓ′ , by Theorem 3.1.2.3, there is a strict
Zariski closed subset BV of the cotorus C(A)ℓ, such that for every χℓ ∈
(C(A)ℓ \ BV )(Q̄ℓ), the monodromy invariant V Mon(K|Aη ,χη) is a G(K|Aη)-
subrepresentation. Choose B = ∪VBV (Q̄ℓ). From Lemma 3.5.0.1, normality
holds when χℓ /∈ B.

Proof. Both Mon(K|Aη , χη) and Gωχ(K|Aη) depend only on the generic fiber
of pX : A × X → X. Therefore, shrinking X to a nonempty open subset
does not change them. Thus, one may assume that X is smooth. By [SGA
4 1/2, Thm. 2.13, p.242], one may assume further K ∈ PervULA(A×X/X).
By smoothness of X and Lemma 3.2.3.7, the object K|Aη of Perv(Aη) is
semisimple. From Lemma 3.5.3.5 1, the object K|Aη ∈ P̄ (Aη) is also
semisimple. Therefore, a (hence every) Tannakian group of the neutral
Tannakian category ⟨K|Aη⟩(⊂ P̄ (Aη)) is a reductive, algebraic group over
Q̄ℓ. Then by Lemma 3.5.3.4, there is a countable sequence of objects
{K̄i}i≥1, such that every object of ⟨K|Aη⟩ is isomorphic to some K̄i. To
apply Theorem 3.1.2.3, we need semisimple objects of Db

c(A×X).
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Claim 3.5.3.2. For every object N ∈ ⟨K|Aη⟩, there is L ∈ PervULA(A×X/X)
that is semisimple in Db

c(A×X), such that L|Aη isomorphic to N in P̄ (Aη).

From Claim 3.5.3.2, for every integer i ≥ 1, there is Ki ∈ PervULA(A×
X/X) that is semisimple in Db

c(A × X) with Ki|Aη isomorphic to K̄i in
P̄ (Aη). From smoothness of X and Theorem 3.1.2.3, there is a subobject
K0
i ⊂ Ki in PervULA(A×X/X) and a strict Zariski closed subsetBi ⊂ C(A)ℓ,

such that for every χℓ ∈ (C(A)ℓ \Bi)(Q̄ℓ), one has Ki|Aη ∈ Pχ(Aη) and

ωχη(Ki|Aη)Γk(η) = ωχη(K0
i |Aη). (3.21)

Set B := ∪i≥1Bi. For every χℓ ∈ C(A)ℓ(Q̄ℓ)\B, one has K|Aη ∈ Pχ(Aη).

For every i ≥ 1, by χℓ /∈ Bi(Q̄ℓ) and (3.21), the subspace ωχη(Ki|Aη)Mon(K|Aη ,χη)

is Gωχ(K|Aη)-stable. By Theorem 3.5.1.1 and Lemma 3.5.0.1, the subgroup
Mon(K|Aη , χη) of Gωχ(K|Aη) is normal.

Proof of Claim 3.5.3.2. From Lemma 3.5.3.4, the object N ∈ P̄ (Aη) is
semisimple. There is an integer n ≥ 0 such that N is a subquotient of
(K|Aη ⊕K|∨Aη)∗n in P̄ (Aη).

We “globalize” the fiberwise convolution functors as follows. Define a
bifunctor

∗X :Db
c(A×X)×Db

c(A×X)→ Db
c(A×X),

(−,+) 7→ R(m× IdX)∗(p
∗
13 −⊗Lp∗23+),

(3.22)

where pij are the projections on A × A × X. By the proper base change
theorem, for every x ∈ X(k), one has (− ∗X +)|Ax

∼−→ (−|Ax) ∗ (+|Ax)
as bifunctors Db

c(A × X) × Db
c(A × X) → Db

c(Ax). Therefore, one has
(− ∗X +)|Aη

∼−→ (−|Aη) ∗ (+|Aη) as bifunctors Db
c(A ×X) ×Db

c(A ×X) →
Db
c(Aη).

The bifunctor (3.22) restricts to a bifunctor DULA(A×X/X)×DULA(A×
X/X)→ DULA(A×X/X). Indeed, for any K ′,K ′′ ∈ DULA(A×X/X), by
Fact 3.2.2.2 6, one has

p∗13K
′ ⊗L p∗23K ′′ ∈ DULA(A×A×X/X).

By Fact 3.2.2.2 4, one gets K ′ ∗X K ′′ ∈ DULA(A×X/X).
Set K∨ := ([−1]A × IdX)∗DA×X/XK. By Fact 3.2.3.1 3, one has K∨ ∈

PervULA(A×X/X) and (K∨)|Aη = (K|Aη)∨. Then

(K ⊕K∨)∗Xn) ∈ DULA(A×X/X).

Set M := p/XH0((K ⊕ K∨)∗Xn) ∈ PervULA(A × X/X). Then M |Aη =
pH0([K|Aη ⊕ (K|Aη)∨]∗n) in Perv(Aη). By Lemma 3.5.3.5 3, there is a
semisimple subquotient L′ of M |Aη in Perv(Aη), whose image in P̄ (Aη) is
N . By smoothness of X and Fact 3.2.3.6, there is a semisimple subquotient
L of M in PervULA(A × X/X) with L|Aη = L′. By smoothness of X and
Lemma 3.2.3.12 2, the object L[dimX] is semisimple in Perv(A×X). Then
L is semisimple in Db

c(A×X).
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Remark 3.5.3.3. When A = Spec(k), the bifunctor (3.22) becomes ⊗L :
Db
c(X) × Db

c(X) → Db
c(X). The derived tensor product may not preserve

semisimplicity in the category Db
c(X). That is why we need semisimplicity

in PervULA(A×X/X) in the last paragraph of the proof of Claim 3.5.3.2.
In fact, consider k = C, X = A1 and U = X \ {0}. Let j : U → X

be the inclusion. Then πét1 (U, 1) = Ẑ. The unique surjective morphism
πét1 (U, 1) → Z/2 corresponds to a rank one lisse Q̄ℓ-sheaf L on U . Then
L⊗L L ∼= Q̄ℓ,U , and Lan is a Q̄ℓ-local system on Uan = C \ {0}.

Let U0 be a punctured ball in Xan = C centered at 0 containing 1. One

has H0(U0, L
an) = (Lan)π

top
1 (U0,1) = 0, and H1(U0, L

an) coincides with the
group cohomology H1(πtop1 (U0, 1), Lan

1 ), where the πtop1 (U0, 1) = Z-action on
the stalk Lan

1 is the monodromy. For every crossed homomorphism f : Z→
Lan
1 , every integer j, one has f(1 + j) = f(1) − f(j). Therefore, when j is

even (resp. odd), f(j) is 0 (resp. f(1)). In particular, f is a boundary and
hence H1(πtop1 (U0, 1), Lan

1 ) = 0. Thus, Lan is not in the cohomology support
loci of U0. From [Bud+17, p.299], jan! Lan[1] is a simple object of Perv(Xan).
Set M := j!L[1]. By [Bei+82, p.150], the natural morphism j!∗L[1]→M is
an isomorphism in Db

c(X). In particular, M is a simple object of Perv(X).
From [KW01, II, Cor. 7.5 g)], one has

N := M ⊗LM = j!(L⊗L j∗j!L)[2] = j!Q̄ℓ,U [2].

By [HT07, Example 8.1.35 (ii)], one has N [−1] ∈ Perv(X). Let i : 0 → A1

be the inclusion. From the short exact sequence

0→ j!Q̄ℓ,U → Q̄ℓ,X → i∗(Q̄ℓ,0)→ 0

in Cons(X), one gets an exact sequence

pH0(Q̄ℓ,X)→ pH0(i∗(Q̄ℓ,0))→ pH1(j!Q̄ℓ,U )→ pH1(Q̄ℓ,X)→ pH1(i∗(Q̄ℓ,0))

in Perv(X). Since i∗(Q̄ℓ,0), Q̄ℓ,X [1] ∈ Perv(X), it gives a short exact sequence

0→ i∗(Q̄ℓ,0)→ N [−1]→ Q̄ℓ,X [1]→ 0

in Perv(X). This sequence does not split as N [−1] is supported on U .
Therefore, N [−1] is not a semisimple object of Perv(X). It follows that
M ⊗L M is not semisimple in Db

c(X). (This sequence also shows that the
support of a perverse sheaf may be smaller than that of a subquotient.)

For a category C, let C/ ∼ be the class of isomorphism classes of objects
in C.

Lemma 3.5.3.4. Let (C,⊗) be a neutral Tannakian category over k with a
fiber functor ω : C → Veck. Assume that Aut⊗(C, ω) is a reductive, algebraic
group over k. Then the underlying abelian category is semisimple, and C/ ∼
is countable.
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Proof. Set G = Aut⊗(C, ω). Let Rep(G) be the category of k-rational
representations of G. Then C is equivalent to Rep(G). Because k has
characteristic zero, by [Mil17a, Cor. 22.43], the abelian category Rep(G)
is semisimple. As k is algebraically closed, by [AHR20, Thm. 2.16], there
is an at most countable set X+ and for every λ ∈ X+, a unital k-algebra
A λ with the following property: The set Irr(G) of isomorphism classes of
simple objects of Rep(G) is in bijection with the set of pairs (λ,E), where
λ ∈ X+ and E is an isomorphism class of simple left A λ-modules. For
every λ ∈ X+, from [AHR20, Lem. 2.19], the algebra A λ is semisimple.
Then by [Lan02, XVII, Thm. 4.3, Cor. 4.5], the set of isomorphism classes
of simple left A λ-modules is finite. Therefore, Irr(G) is at most countable.
Consequently, Rep(G)/ ∼ is countable.

Lemma 3.5.3.5. Let A be an abelian category. Let B ⊂ A be a Serre
subcategory. Consider the quotient functor F : A → A/B.

1. Let X ∈ A. Let i : Y → F (X) be a monomorphism in A/B. Then
there is a monomorphism j : Z → X in A and an isomorphism u :
Y → F (Z) in A/B fitting into a commutative diagram in A/B

F (Z)

Y F (X).

F (j)u

i

Dually, up to isomorphism every quotient in A/B lifts to a quotient
in A. In particular, if X ∈ A is a simple object, then F (X) is either
simple or zero in A/B.

2. Let V ∈ A be a Noetherian and Artinian object. If F (V ) is simple in
A/B, then there is a simple subquotient W of V in A such that F (W )
is isomorphic to F (V ) in A/B.

3. Assume that A is Noetherian and Artinian. Let X ∈ A. If Y is a
simple subquotient of F (X) in A/B, then there is a simple subquotient
W of X, with F (W ) isomorphic to Y in A/B.

Proof.

1. By the construction in the proof of [Sta24, Tag 02MS] and the right
calculus of fractions in [Sta24, Tag 04VB], there is a diagram

M

Y X

g

f
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in A, such that F (f) is an isomorphism and F (g) = i ◦ F (f) in
A/B. Therefore, F (g) is a monomorphism. Since F is exact, one
has F (ker(g)) = ker(F (g)) = 0, so ker(g) ∈ B. Let q : M →
M/ ker(g) be the epimorphism in A, and let j : M/ ker(g)→ X be the
monomorphism in A induced by g. Then F (q) is an isomorphism in
A/B. Set u : Y → F (M/ ker(g)) to be the morphism F (q) ◦F (f)−1 in
A/B. Then u is an isomorphism with the stated property.

2. Let P be the family of subobjects V ′ of V in A with V/V ′ ∈ B.
Then P is nonempty since V ∈ P . As V is Artinian in A, there is
a minimal object U ∈ P. Moreover, the morphism F (U) → F (V ) is
an isomorphism in A/B. Let Q be the family of subobjects of U ∈ A
lying in B. Then Q is nonempty since 0 ∈ Q. As V is Noetherian
in A, so is U . Thus, Q has a maximal object U0. Then W := U/U0

is a subquotient of V ∈ A and the morphism F (U) → F (W ) is an
isomorphism in A/B. In particular, W ̸= 0 in A.

We claim that W is simple in A. Indeed, let U ′ → W be a subobject
in A. Then there is a subobject U ′′ of U in A containing U0 with
U ′′/U0 = U ′. As F (U ′′) is a subobject of a simple object F (U) in A/B,
either the morphism F (U ′′)→ F (U) is an isomorphism or F (U ′′) = 0.
If F (U ′′) = 0, then U ′′ ∈ B and U ′′ ∈ Q. Since U0 is maximal in Q,
one has U0 = U ′′, so U ′ = 0. If F (U ′′) → F (U) is an isomorphism,
then U/U ′′ ∈ B. Since the sequence

0→ U/U ′′ → V/U ′′ → V/U → 0

is exact in A, and B is closed under extensions, one gets V/U ′′ ∈ B and
U ′′ ∈ P. Since U is minimal in P, one has U ′′ = U . The morphism
U ′ →W is thus an isomorphism in A. The claim is proved.

3. By 1, there is a subquotient Z of X in A with F (Z) isomorphic to Y .
Then F (Z) is simple in A/B. By assumption, Z is Noetherian and
Artinian in A. Thus from 2, there is a simple subquotient W of Z in
A with F (W ) isomorphic to F (Z) and to Y in A/B.

Example 3.5.3.6. Let s : X → A ×X be a section to pX : A ×X → X.
Let F be a lisse Q̄ℓ-sheaf on X, and let σ : πét1 (X, η̄) → GL(Fη̄) be the
corresponding monodromy representation. By Fact 3.2.2.2 2, one has F ∈
DULA(X/X). Then from Fact 3.2.2.2 4, one has K := Rs∗F ∈ DULA(A ×
X/X). For every x ∈ X(k), by the proper base change theorem, K|Ax ∈
Db
c(Ax) is the skyscraper supported at the closed point s(x) ∈ Ax with

stalk Fx. Thus, K|Ax ∈ Perv(Ax) and K ∈ PervULA(A×X/X). Moreover,
K|Aη̄ is the skyscraper supported at s(η̄) ∈ Aη̄ with stalk Fη̄. Therefore, the
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generic and the geometric generic Tannakian groups agree and are computed
in Example 3.4.3.3.

For every χ ∈ C(A), by Fact 3.2.1.1, one has K ⊗L p∗ALχ = Rs∗(F ⊗L
s∗p∗ALχ). Thus, RpX∗(K⊗L p∗ALχ) = F ⊗L s∗p∗ALχ is a lisse Q̄ℓ-sheaf on X.
The corresponding πét1 (X, η̄)-representation is the tensor product of σ with
the character

πét1 (X, η̄)
(pA◦s)∗→ πét1 (A, pAs(η̄))

∼−→ πét1 (A, 0)
χ→ Q̄×

ℓ .

The Γk(η)-representation induced by pulling back along η∗ : Γk(η) → πét1 (X, η̄)
is ωχη(K|Aη).

Assume that F is semisimple in Loc(X). Then F [dimX] is a semisimple
object of Perv(X). By Fact 3.2.1.6 1, the object K is semisimple in Db

c(A×
X).
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Chapter 4

Generic vanishing theorem
for Fujiki class C

4.1 Introduction

Recall the historical origin of generic vanishing results. In the last paragraph
of [Enr39], Enriques gave an upper bound on the dimension of the paracanonical
system of curves on some class of algebraic surfaces. However, in [Enr49,
p.354] he pointed out a mistake in the proof of his result as well as a similar
theorem by Severi [Sev42]. Catanese [Cat83, p.103] posed Conjecture 4.1.0.1.

Conjecture 4.1.0.1. For a smooth projective surface S/C without irrational
pencils, the dimension of the paracanonical system {KS} is at most the
geometric genus pg(S).

In 1987, Green and Lazarsfeld [GL87, Theorem 4.2] provided a positive
answer to Conjecture 4.1.0.1. Its proof uses a result of generic vanishing
type [GL87, Prop. 4.1].

As is explained in [Uen83, pp.619–620], the dimension of {KS} in Conjecture
4.1.0.1 is related to Conjecture 4.1.0.2, which is also of generic vanishing
type.

Conjecture 4.1.0.2 ([Uen83, Problem 8, p.620]). Let X be a projective
manifold and α : X → Alb(X) be an Albanese morphism. If dimα(X) > 1,
then H1(X,L) = 0 for generic L ∈ Pic0(X).

Green and Lazarsfeld [GL87] proved a strengthening of Conjecture 4.1.0.2.
Since then, the theory of generic vanishing results has been very much
investigated and numerous authors have contributed to its development,
so the overview in Section 4.1.1 is by no means complete.

For a finitely generated Z-module H, let Htor be the submodule of H
comprised of torsion elements and Hfree := H/Htor. We use the words
“locally free sheaf” and “vector bundle” interchangeably. Let F → X be

91



a (holomorphic) vector bundle on a complex manifold. The dimension of a
complex space always means the complex dimension. For any three integers
p, q,m ≥ 0, the corresponding jumping locus is defined as

Sp,qm (X,F ) := {L ∈ Pic0(X) : hq(X,Ωp
X ⊗OX L⊗OX F ) ≥ m}.

For simplicity, p (resp. m, resp. F ) is omitted when p = 0 (resp. m = 1,
resp. F = OX). Roughly speaking, generic vanishing results show that
these loci are small (in some sense) and study their structure when F is flat
unitary (in the sense of Definition 4.2.2.2).

4.1.1 Known results

Let X be a connected compact Kähler manifold, α : X → Alb(X) be the
Albanese map associated with some base point and F → X be a flat unitary
vector bundle. Each locus Sp,qm (X,F ) is an analytic subset of the complex
torus Pic0(X) (see the proof of Theorem 4.7.1.3 1) and “generic” means
outside a strict analytic subset. In the literature, generic vanishing results
concerning Sq(X,F ) (resp. Sp,q(X,F )) are usually called of Kodaira type
(resp. Nakano type). Such results typically involve the following invariants:

� dimα(X);

� w(X) := max{codim(Z(η), X) : 0 ̸= η ∈ H0(X,Ω1
X)}, where Z(η)

denotes the zero-locus of the 1-form η;

� the defect of semismallness r(α) of α (in the sense of Definition 4.5.2.1).

Using deformation theory of cohomology groups, Green and Lazarsfeld
[GL87, Remarks (1), p.401] proves Fact 4.1.1.1, which is of Kodaira type
and implies Conjecture 4.1.0.2.

Fact 4.1.1.1. For every integer k ≥ 0, one has

codimPic0(X)(S
k(X,F )) ≥ dimα(X)− k.

In particular, if k < dimα(X), then Hk(X,F ⊗OX L) = 0 for a generic line
bundle L ∈ Pic0(X).

Green and Lazarsfeld also give a Nakano-type generic vanishing theorem.

Fact 4.1.1.2 ([GL87, Remarks (1), p.404]). For any integers i, j ≥ 0 with
i+ j < w(X), one has Si,j(X,F ) ̸= Pic0(X).

In another direction, there are known results concerning the structure of
the jumping loci.

Fact 4.1.1.3 ([GL91, Thm. 0.1 (1)]). For any two integers k,m ≥ 0, the
subset Skm(X) is a finite union of translates of subtori of Pic0(X).
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Beauville and Catanese conjectured in [Cat91, Problem 1.25] and [Bea92,
p.1] that for every integer q ≥ 0, the locus Sq(X) is a finite union of torsion
translates of subtori of Pic0(X). When X is a projective manifold, this
conjecture is proved by Simpson [Sim93, Sec. 5].

Fact 4.1.1.4 (Simpson). If X is furthermore projective, then for any two
integers k,m ≥ 0, the locus Skm(X) is a finite union of torsion translates of
subtori of Pic0(X).

Some arguments of [Sim93] are of arithmetic nature, so they do not apply
to the Kähler case. Campana [Cam01, Sec. 1.5.2] provided a partial answer
for not only Kähler manifolds but also for Fujiki class C (Definition 4.7.1.1).

Later on, Wang [Wan16, Cor. 1.4] answered affirmatively Beauville and
Catanese’s conjecture in full generality.

Fact 4.1.1.5 (Wang). For any three integers p, q,m ≥ 0, the subset Sp,qm (X)
of Pic0(X) is a finite union of torsion translates of subtori.

Hacon [Hac04, Cor. 4.2] uses Fourier-Mukai transforms of coherent modules
on complex abelian varieties to recover Fact 4.1.1.1 when X is a projective
manifold. This algebraic viewpoint sheds new insight on this topic. Similarly,
as a byproduct of the theory on convolution of perverse sheaves on abelian
varieties, Krämer and Weissauer obtain a Nakano-type generic vanishing
theorem. The proof of [KW15b, Thm. 3.1] gives Fact 4.1.1.6.

Fact 4.1.1.6. If furthermore the Albanese torus Alb(X) is algebraic, then
for any two integers p, q ≥ 0 with p+q < dimX−r(α), the locus Sp,q(X,F )
is contained in a finite union of translates of strict subtori of Pic0(X).

Around the same time, by different methods Popa and Schnell [PS13,
Thm. 1.2] obtained precise codimension bounds.

Fact 4.1.1.7. If furthermore X is a projective manifold, then

codimPic0(X)(S
p,q(X)) ≥ |p+ q − dimX| − r(α)

for any two integers p, q ≥ 0. Moreover, for every X there exist p and q for
which the inequality becomes an equality.

4.1.2 The main result and a sketch

An algebraic variety means an integral scheme of finite type and separated
over a field. By [Del68, Prop. 5.3] and [Del71a, Thm. 3.2.5], even though not
necessarily Kähler, a complex smooth proper algebraic variety also admits
Hodge theory. It is natural to ask if generic vanishing results also hold for
such varieties. The aim of this note is to show that generic vanishing result is
not only true for Kähler manifolds, but also for complex manifolds in Fujiki
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class C. This class contains compact Kähler manifolds as well as smooth
proper algebraic varieties.

Here is the main result that is of Nakano type.

Theorem (Theorem 4.7.1.3). Let X be an n-dimensional complex manifold
in Fujiki class C with an Albanese morphism α : X → Alb(X), and let F
be a flat unitary vector bundle on X. Then for any two integers p, q ≥ 0
with p+ q < n− r(α), the locus Sp,q(X,F ) is a strict analytic subset of the
complex torus Pic0(X).

For smooth proper algebraic varieties, the following finer result follows
from Corollary 4.7.2.6 and Lemma 4.6.1.2. It is not immediate from previously
known generic vanishing results.

Corollary 4.1.2.1. Let X be an n-dimensional smooth proper, complex
algebraic variety with an algebraic Albanese morphism α : X → Alb(X). Let
L be a unitary local system on the analytification Xan, and let F = L⊗COXan

be the corresponding holomorphic vector bundle. Then, for any two integers
p, q ≥ 0 with p+ q < n− r(α), the subset Sp,q(X,F ) is contained in a finite
union of translates ( torsion translates if L is semisimple of geometric origin
in the sense of [Bei+82, p.163]) of strict abelian subvarieties of the Picard
variety Pic0X/C.

Here is the outline of the proof of Theorem 4.7.1.3. By the Riemann-
Hilbert correspondence restricted to unitary objects, we pass from flat unitary
vector bundles to unitary local systems. The corresponding cohomology
groups are related by the Hodge decomposition (Fact 4.7.1.2). In this way,
the initial generic vanishing problem for a flat unitary vector bundle twisted
by line bundles is reduced to a generic vanishing problem for a unitary local
system twisted by rank 1 local systems.

By pushing forward along the Albanese map, the problem about the
local system on a manifold in Fujiki class C is converted to a problem about
a complex of sheaves on a complex torus. The last problem is solved by
Krämer and Weissauer [KW15b] for perverse sheaves (on complex abelian
varieties) and by the subsequent generalization (to all complex tori) due to
Bhatt, Schnell and Scholze [BSS18].

This text is organized as follows. Sections 4.2 reviews the unitary Riemann-
Hilbert correspondence. Section 4.3 and 4.4 construct the Jacobian and the
Albanese map for regular manifolds, relaxing the usual Kähler condition.
Several definitions of defect of semismallness are proved to be equivalent
in Section 4.5. The work of Krämer and Weissauer on generic vanishing
for perverse sheaves is recalled in Section 4.6. Finally in Section 4.7, the
previous results are applied to prove the main result, Theorem 4.7.1.3, for
Fujiki class C.
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4.2 Riemann-Hilbert correspondence

In Section 4.2, we review how the classical Riemann-Hilbert correspondence
restricts to an equivalence between unitary local systems and flat unitary
vector bundles on complex manifolds. The reason to introduce this restricted
equivalence is that unitary local systems on manifolds in Fujiki class C admit
Hodge decomposition (Fact 4.7.1.2).

4.2.1 Unitary local systems

LetX be a path-connected, locally path-connected and locally simply connected
topological space with a base point x0 ∈ X. Let Loc(X) be the category of
local systems (of finite dimensional C-vector spaces) on X. Let π1(X,x0)
be the fundamental group of X at x0 and RepC(π1(X,x0)) be the category
of its finite dimensional complex representations. By [Del70, Cor. 1.4, p.4],
the functor taking the stalk at x0 gives rise to an equivalence

Loc(X)→ RepC(π1(X,x0)) (4.1)

compatible with tensor products. The image under (4.1) of a local system
on X is called the corresponding monodromy representation.

Every compact subgroup of GLr(C) can be conjugated into the unitary
subgroup Ur(C). Therefore, for every representation ρ : π1(X,x0)→ GL(V ),
the following conditions are equivalent:

1. The closure of ρ(π1(X,x0)) inside GL(V ) is compact;

2. There is a hermitian inner product h : V ⊗C V̄ → C such that
ρ(π1(X,x0)) is contained in the corresponding unitary group U(V, h).

When the conditions hold, ρ is called unitary. Let RepuC(π1(X,x0)) ⊂
RepC(π1(X,x0)) be the full subcategory of unitary representations. Let
Locu(X) be the full subcategory of Loc(X) corresponding to RepuC(π1(X,x0))
via the equivalence (4.1). Its objects are called unitary local systems on X.
Every unitary local system is semisimple, since every unitary representation
is so.

4.2.2 Flat unitary bundles

Let E → X be a holomorphic vector bundle on a complex manifold with
a hermitian metric h. By [Huy05, Prop. 4.2.14], there exists a unique
hermitian connection ∇h that is compatible with the holomorphic structure
(in the sense of [Huy05, Def. 4.2.12], i.e., ∇0,1 = ∂̄E), which is called
the Chern connection of (E, h). The corresponding curvature form, called
the Chern curvature, is an End(E, h)-valued (1, 1)-form, (see, e.g., [Huy05,
Prop. 4.3.8 iii)]).
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For every integer k ≥ 0 (resp. any two integers i, j ≥ 0), let AkX (resp.

Ai,jX ) be the sheaf of smooth k (resp. (i, j)) forms on X. Then there is a

direct sum decomposition AkX = ⊕i+j=kAi,jX . In general, a (smooth) flat
connection ∇ on E that is compatible with the holomorphic structure needs
not to be a holomorphic connection (in the sense of [Huy05, Def. 4.2.17]).

Lemma 4.2.2.1. Let E → X be a holomorphic vector bundle with a flat
connection ∇ : E → E ⊗A0

X
A1
X . If ∇ is compatible with the holomorphic

structure, then ∇ is a holomorphic connection.

Proof. Take a local holomorphic frame {e1, . . . , er} of E, and denote the
corresponding local smooth connection matrix 1-form by Ω. As ∇0,1 = ∂̄E ,
one has Ω0,1 = 0. By flatness, dΩ + Ω ∧ Ω = 0. Taking the (1, 1) part of
it, one gets ∂̄Ω = 0, i.e., Ω is a holomorphic form. This shows that ∇ is
holomorphic.

Let Mod(OX) be the category ofOX -modules, and let VB(X) ⊂ Mod(OX)
be the full subcategory of finite locally free OX -modules. Let DE(X) be the
category of holomorphic vector bundles with a flat holomorphic connection.
Forgetting the connection gives a functor DE(X)→ VB(X). Let DEu(X) ⊂
DE(X) be the full subcategory comprised of objects (F,∇) such that there
exists a hermitian metric on F whose Chern connection is ∇.

Definition 4.2.2.2. An object in the essential image of DEu(X) under the
forgetful functor DE(X)→ VB(X) is called a flat unitary vector bundle on
X.

From [Huy05, Eg. 4.2.15], the trivial line bundle OX is flat unitary. By
Lemma 4.2.2.1, a holomorphic vector bundle is flat unitary if and only if it
admits a hermitian metric whose Chern connection is flat.

4.2.3 An equivalence

LetX be a connected complex manifold. By the Riemann-Hilbert correspondence
[Del70, Thm. 2.17, p.12], the pair of functors

Loc(X)→ DE(X), L 7→ (L ⊗C OX , IdL ⊗ d); (4.2)

DE(X)→ Loc(X), (E,∇) 7→ ker(∇) (4.3)

forms an equivalence of categories. It is compatible with tensor products
and preserves the rank.

Theorem 4.2.3.1 (Unitary Riemann-Hilbert correspondence). The equivalence
(4.2), (4.3) restricts to an equivalence between Locu(X) and DEu(X).
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Proof. First, we prove that the functor (4.2) sends Locu(X) to DEu(X).
Consider a unitary local system L onX. Since the corresponding monodromy
representation is unitary, we may choose a hermitian inner product hx0 on
the stalk Lx0 such that the representation factors through U(Lx0 , hx0). For
any x ∈ X, choose a path γ from x0 to x and propagate hx0 along this curve,
i.e., using the linear isomorphism γ∗ : Lx0 → Lx induced by γ, we translate
hx0 to a hermitian inner product hx of Lx. This hx is independent of the
choice of γ by assumption. Hence a positive definite hermitian form h on L
that is invariant under the monodromy action. Then h extends naturally to
a (smooth) hermitian metric h′ on the associated holomorphic vector bundle
L ⊗C OX on X and the corresponding flat holomorphic connection IdL ⊗ d
is a hermitian connection. Therefore, IdL ⊗ d is the Chern connection of
(L ⊗C OX , h

′) and (L ⊗C OX , IdL ⊗ d) ∈ DEu(X).
Conversely, we prove that the functor (4.3) sends DEu(X) to Locu(X).

Consider a holomorphic hermitian vector bundle (E, h) on X whose Chern
connection ∇h is flat. Around every point we can find a local ∇h-horizontal
holomorphic frame {e1, . . . , er} of E. For any 1 ≤ i, j ≤ r, since the
connection ∇h is compatible with h, we have

d[h(ei, ej)] = h(∇hei, ej) + h(ei,∇hej) = 0.

Therefore, the local function h(ei, ej) is locally constant and the parallel
transport along every closed path onX preserves the hermitian inner products
on the fibers of E. The sheaf ker(∇h) of horizontal sections of E forms a
local system on X, whose stalks are exactly the fibers of E. Thus, it admits
a monodromy-invariant positive definite hermitian form and is consequently
unitary.1

4.3 Hodge theory and Jacobian

In Section 4.3, we review the definition of Jacobian and show that for every
complex manifold admitting Hodge theory (Definition 4.3.1.1), its Jacobian
has nice expected properties.

4.3.1 Regular manifolds

Let X be a complex manifold. Let d : A•
X → A•+1

X be the exterior derivative.

Then d = ∂ + ∂̄, where ∂ : A•,•
X → A•+1,•

X and ∂̄ : A•,•
X → A•,•+1

X are the
(1, 0) and (0, 1) part of d respectively. For every E ∈ Locu(X), every integer
k ≥ 0, define a decreasing filtration of AkX ⊗C E by

F p = F p(AkX ⊗C E) := ⊕i≥pAi,k−iX ⊗C E . (4.4)

1The definition of unitary local system in [Tim87, p.152] seems to forget this invariance.
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Then (d ⊗ IdE)(F p) ⊂ F p. Therefore, this filtration induces a spectral
sequence, called the Frölicher spectral sequence:

Ep,q1 = Hq(X,Ωp
X ⊗C E)⇒ Hp+q(X, E), (4.5)

where the differential dp,q1 : Ep,q1 → Ep+1,q
1 is induced by the operator ∂ :

Ap,qX → Ap+1,q
X on X. It is the classical notion in [Voi02, Sec. 8.3.3] when E

is the constant sheaf CX .
Although the Hodge theory for the first cohomology groups H1 suffices

for most properties of the Jacobian and the Albanese, in the sequel we
mainly work with manifolds admitting Hodge theory in all degrees. Such
manifolds are called “regular” for convenience.

Definition 4.3.1.1 (Regular manifold, [Del+75, 5.21 (2)]). Assume that X
is compact. Let E ∈ Locu(X). If the following conditions are satisfied:

1. The corresponding spectral sequence (4.5) degenerates at page E1;

2. For every integer k ≥ 0, the filtration induced by F •(A•
X ⊗C E) on

Hk(X, E) gives a complex Hodge structure of weight k, in particular
a Hodge decomposition

Hk(X, E) = ⊕p+q=kHq(X,Ωp
X ⊗C E); (4.6)

3. For any integers p, q ≥ 0, the conjugation map induces a C-anti-linear
isomorphism

Hq(X,Ωp
X ⊗C E)→ Hp(X,Ωq

X ⊗C E∨),

where E∨ = Hom(E ,CX) is the dual local system.

Then X is called E-regular (and simply regular when E = CX).

For instance, classical Hodge theory asserts that compact Kähler manifolds
are regular (see e.g., [Voi02, Sec. 6.1.3]). Because of Fact 4.3.1.2, regular
manifolds are also called ∂∂̄-manifolds.

Fact 4.3.1.2 (∂∂̄-lemma, [Del+75, 5.14, 5.21], [Var86, Prop. 3.4], [Huy05,
Cor. 3.2.10]). Assume that X is compact. Then X is regular if and only if
for every d-closed smooth (p, q)-form η on X, the following conditions are
equivalent:

1. η is d-exact;

2. η is ∂-exact;

3. η is ∂̄-exact;
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4. η is ∂∂̄-exact.

If the above conditions hold and η is real, then there is a real smooth (p −
1, q − 1)-form ρ on X with η = i∂∂̄ρ.

Remark 4.3.1.3. For Fact 4.3.1.2, it is important that the decomposition
(4.6) is induced by the filtration (4.4). In fact, [Ceb+16, Prop. 4.3] constructs
a non-regular, compact complex manifold X of dimension 3, such that the
spectral sequence (4.5) for E = CX degenerates at page E1, with numerical
Hodge symmetry hp,q(X) = hq,p(X) for any two integers p, q ≥ 0. In this
case, there is a non canonical decomposition of the form (4.6).

For the rest of Section 4.3.1, we assume that X is a regular manifold.
For every integer k ≥ 0 (resp. any two integers p, q ≥ 0), the space of global
∂-closed, ∂̄-closed smooth k (resp. (p, q)) forms on X is denoted by Zk(X)
(resp. Zp,q(X)). For any two integers p, q ≥ 0, the Dolbeault cohomology
group Hq(X,Ωp

X) is denoted by Hp,q(X).

Corollary 4.3.1.4. For any integers p, q ≥ 0 and k := p + q, there is a
canonical commutative diagram

Zp,q(X) Zk(X)

Hp,q(X) Hk(X),ιp,q

where the first row is the natural inclusion and each vertical map is surjective.
Moreover,

Hk(X,C) = ⊕p+q=kim(ιp,q), (4.7)

where each im(ιp,q) can be identified with Hp,q(X). The complex conjugation
map Zp,q(X)→ Zq,p(X) descends to a C-antilinear isomorphism Hp,q(X)→
Hq,p(X) (Hodge symmetry).

Proof. For each ∂̄-closed (p, q)-form η on X, ∂η is a d-closed, ∂-exact (p +
1, q)-form. By Fact 4.3.1.2, there is a (p, q−1)-form ρ on X with ∂η+∂∂̄ρ =
0, then the (p, q)-form η + ∂̄ρ is in Zp,q(X). Therefore, the map taking
Dolbeault cohomology class Zp,q(X)→ Hp,q(X) is surjective.

Note that η+∂̄ρ is d-closed. Its de Rham cohomology class is independent
of the choice of ρ. Indeed, if ρ′ is another (p, q − 1)-form with η + ∂̄ρ′ also
d-closed, then ∂̄(ρ−ρ′) is d-closed and ∂̄-exact. By Fact 4.3.1.2, it is d-exact.

Thus the map

ιp,q : Hq(X,Ωp
X)→ Hp+q

dR (X,C), [η]→ [η + ∂̄ρ]

is a well-defined C-linear map. By a third application of Fact 4.3.1.2, the
map ιp,q is injective. Thus, Hp,q is identified with im(ιp,q).
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We claim that the sum
∑

p+q=k im(ιp,q) is direct. In fact, if αp,q ∈
Zp,q(X) for each pair (p, q) with p + q = k and the de Rham class of∑

p+q=k α
p,q is 0 in Hk

dR(X,C), then there is a (k − 1)-form β on X with
dβ =

∑
p+q=k α

p,q. Thus,

αp,q = ∂(βp−1,q) + ∂̄(βp,q−1).

The ∂-exact form ∂(βp−1,q) is thereby ∂̄-closed, so d-closed. By Fact 4.3.1.2
again, ∂(βp−1,q) is ∂̄-exact, hence [αp,q] = 0 in Hp,q(X) for every (p, q). The
claim is proved.

By assumption,

dimCH
k(X,C) =

∑
p+q=k

dimCH
p,q(X),

hence the decomposition (4.7). In particular, the map taking de Rham
cohomology class Zk(X)→ Hk(X,C) is surjective. The complex conjugate
of Zp,q(X) is exactly Zq,p(X), the Hodge symmetry follows.

Lemma 4.3.1.5 is used in the proof of Corollary 4.3.2.2.

Lemma 4.3.1.5. For every integer k ≥ 0, the map Hk(X,C)→ Hk(X,OX)
induced by the inclusion C→ OX coincides with the projection Hk(X,C)→
H0,k(X) given by the Hodge decomposition (4.7).

Proof. Consider the following commutative diagram

CX A0
X A1

X . . .

OX A0,0
X A0,1

X . . .

d

p0,0

d

p0,1

∂̄ ∂̄

The first row is an acyclic resolution of CX by (smooth) Poincaré lemma,
and the second row is the Dolbeault resolution. The first vertical map is
the inclusion and each p0,j : AjX → A0,j

X is taking the (0, j)-part of a j-form.
It is a morphism of complexes. Taking global sections, the induced map on
k-th cohomology groups is the first map in the statement.

For a class [α] ∈ Hk(X,C), we may assume that the representative k-
form α is ∂-closed and ∂̄-closed by Corollary 4.3.1.4. Then its image under
the first map Hk(X,C) → Hk(X,OX) is represented by the (0, k)-part of
α, which is still ∂-closed and ∂̄-closed. This describes exactly the projection
induced by the Hodge decomposition (4.7).
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4.3.2 Jacobian

For a connected compact complex manifold X, let b1(X) := dimCH
1(X,C)

be its first Betti number. The exponential short exact sequence

0→ Z→ OX
f 7→exp(2πif)−→ O∗

X → 1

induces a long exact sequence

H0(X,OX)
f 7→exp(2πif)−→ H0(X,O∗

X)→ H1(X,Z)

→H1(X,OX)→ H1(X,O∗
X)

δ→ H2(X,Z).
(4.8)

Set Pic(X) := H1(X,O∗
X) for the Picard group, NS(X) := im(δ) for the

Néron-Severi group, Pic0(X) = ker(δ) and Picτ (X) := δ−1(H2(X,Z)tor).
As X is compact connected, one has H0(X,OX) = C, H0(X,O∗

X) = C∗ and
the first map in (4.8) is surjective. Accordingly, the third map H1(X,Z)→
H1(X,OX) is injective and

Pic0(X) =
H1(X,OX)

H1(X,Z)
. (4.9)

If X is a complex torus, then H2(X,Z) is torsion free and

Pic0(X) = Picτ (X). (4.10)

For general X, let Loc1(X) (resp. Locu,1(X)) be the set of isomorphism
classes of rank-1 (resp. and unitary) local systems on X. Then Loc1(X)
is a group under tensor product and Locu,1(X) is a subgroup. For each
L ∈ Loc1(X), L := L⊗C OX is a flat line bundle on X. By [Dem12, Ch. V,
§ 9], L ∈ Picτ (X), whence a group morphism

Loc1(X)→ Picτ (X), L 7→ L ⊗C OX . (4.11)

Remark 4.3.2.1. Theorem 4.2.3.1 implies that a line bundle on X is flat
unitary if and only if its class in Pic(X) lies in the image of the restriction
of (4.11):

Locu,1(X)→ Picτ (X). (4.12)

The image of (4.12) may not to be contained in Pic0(X). For instance, let
X be an Enriques surface, then π1(X,x0) = Z/2, # Locu,1(X) = Z/2. By
Corollary 4.4.2.2 2 below, the map (4.12) is an isomorphism, while Pic0(X)
is trivial.

Corollary 4.3.2.2. Assume that X is regular. Then Picτ (X) has a natural
structure of compact complex Lie group with identity component Pic0(X)
that is a complex torus of dimension b1(X)/2. Moreover, π0(Picτ (X)) =
NS(X)tor.
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Proof. The inclusion R ⊂ OX induces an R-linear map

ϕ : H1(X,R)→ H1(X,OX). (4.13)

Because of Lemma 4.3.1.5 and the Hodge symmetry in Corollary 4.3.1.4,
taking complex conjugate inside H1(X,C) induces an R-linear map

ϕ̄ : H1(X,R)→ H0(X,Ω1
X). (4.14)

If ξ ∈ ker(ϕ), then the image of ξ under the injection H1(X,R)→ H1(X,C)
is ϕ(ξ)+ϕ̄(ξ) = 0, so ξ = 0. This shows that ϕ is injective. But dimRH

1(X,R) =
dimRH

1(X,OX) = b1(X), so ϕ is a linear isomorphism.
The map H1(X,Z) → H1(X,OX) in (4.8) factors through ϕ. Since

H1(X,Z) is a full lattice of H1(X,R), it remains a full lattice in H1(X,OX).
Therefore, the quotient Pic0(X) is a complex torus of dimension b1(X)/2.
The Z-module Pic0(X) is divisible, so the short exact sequence

0→ Pic0(X)→ Picτ (X)→ NS(X)tor → 0

spits. Therefore, there is a natural structure of compact complex Lie group
on Picτ (X) satisfying the stated properties.

The complex torus Pic0(X) in Corollary 4.3.2.2 is called the Jacobian of
the regular manifold X.

Example 4.3.2.3. Here are two examples showing how Corollary 4.3.2.2
fails for non-regular compact complex manifolds.

1. LetX be a Hopf surface. The first Betti number b1(X) is one, H1(X,Z) =
Z and H1(X,OX) = C, so the complex manifold Pic0(X) = C/Z is
not compact. However, by [Kod64], the Frölicher spectral sequence of
CX degenerates.

2. Let Y be a Calabi-Eckmann manifold in the sense of [BS17, Sec 1.2].
Then H1(Y,OY ) = C and Y is simply connected, so H1(Y,Z) = 0
and b1(Y ) = 0, but Pic0(Y ) = C is not compact and b1(Y )/2 <
dim Pic0(Y ).

4.4 Albanese torus

We turn to the conception of Albanese torus and Albanese map. They help
to reduce some problems about general complex manifolds to those about
complex tori. They are also tools to study the Jacobian. Again, Section 4.4
conveys the fact that Hodge theory guarantees the usual properties of the
Albanese torus and Albanese map.

Fix a connected regular manifold X and a base point x0 ∈ X.
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4.4.1 Basics of Albanese torus

From [Uen06, Cor. 9.5, p.101], every element of H0(X,Ω1
X) is d-closed, so

there is a well-defined natural map

ι : H1(X,Z)→ H0(X,Ω1
X)∨, [γ] 7→ (β 7→

∫
γ
β), (4.15)

where γ runs through closed paths on X. Set

Alb(X) = H0(X,Ω1
X)∨/im(ι). (4.16)

Lemma 4.4.1.1. On Alb(X), there is a natural structure of h1,0(X)-dimensional
complex torus with H1(Alb(X),Z) = im(ι).

Proof. Using the R-linear isomorphism (4.14) and de Rham isomorphism

H1
dR(X,R)→ H1(X,R),

the map (4.15) is identified with the natural map H1(X,Z)→ H1
dR(X,R)∨.

The latter extends to an R-linear isomorphism H1(X,R)→ H1
dR(X,R)∨ by

Poincaré duality. Therefore,

ker(ι) = H1(X,Z)tor (4.17)

and im(ι) is a full lattice in H0(X,Ω1
X)∨ isomorphic to H1(X,Z)free. Thus,

the quotient Alb(X) is a complex torus with the stated properties.

The complex torus Alb(X) in Lemma 4.4.1.1 is called the Albanese torus
of X. For each x ∈ X, choose two paths γx, γ′x connecting x0 to x. Then
the composition γ of γx followed by the reverse of γ′x is a closed path on X
and ∫

γx

• −
∫
γ′x

• =

∫
γ
• = ι([γ])

belongs to im(ι). Therefore, [
∫
γx
•] = [

∫
γ′x
•] in Alb(X). As [

∫
γx
•] is

independent of the choice of γx, we write it as
∫ x
x0
•. For the fixed base

point x0 ∈ X, the associated Albanese morphism is

αX,x0 : X → Alb(X), x 7→
∫ x

x0

•.

The subscripts X and x0 are omitted when they are clear from the context.

Proposition 4.4.1.2.

1. The Albanese map αX,x0 : X → Alb(X) is a morphism of complex
manifolds and the formation of Albanese map is functorial for the pair
(X,x0).
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2. The induced morphism αx0,∗ : H1(X,Z)→ H1(Alb(X),Z) is surjective
with kernel H1(X,Z)tor.

3. The morphism αx0 satisfies the following universal property: every
morphism of pointed complex manifolds (X,x0) → (A, 0) with A a
complex torus factors uniquely through a morphism of complex tori
Alb(X)→ A. In particular, the complex subtorus of Alb(X) generated
by αx0(X) is Alb(X).

4. The pullback morphism α∗
x0 : H1(Alb(X),Z)→ H1(X,Z) is an isomorphism

of weight 1 Z-Hodge structures independent of the choice of x0.

5. The pullback α∗
x0 : Pic0(Alb(X)) → Pic0(X) is an isomorphism of

complex tori independent of the choice of x0. In particular, the complex
tori Alb(X) and Pic0(X) are dual to each other ( in the sense of [BL04,
p.34]).

Proof.

1. When X is Kähler, it is proved in [Huy05, Prop. 3.3.8]. The general
case is similar.

2. By Lemma 4.4.1.1, H1(Alb(X),Z) = im(ι). Let γ : [0, 1] → X be a
closed path on X based at x0. It defines a path

ζ : [0, 1]→ H0(X,Ω1
X)∨, ζ(t) =

∫ γ(t)

γ(0)
•,

where the integral is along a part of γ. Then

ζ (mod im(ι)) = αx0 ◦ γ : [0, 1]→ Alb(X).

Therefore, αx0,∗[γ] = ζ(1)−ζ(0) =
∫
γ • = ι([γ]). Hence a commutative

triangle

im(ι) = H1(Alb(X),Z)

H1(X,Z) H0(X,Ω1
X)∨

αx0,∗

ι

Therefore, αx0,∗ is surjective and ker(αx0,∗) = ker(ι) = H1(X,Z)tor,
where the last equality uses (4.17).

3. The universal property follows from Point 1. Let T be the complex
subtorus of Alb(X) generated by αx0(X). Then the pointed morphism
αx0 : (X,x0)→ (T, 0) factors through αx0 : (X,x0)→ (Alb(X), 0), so
T = Alb(X).
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4. From [BL04, Thm. 1.4.1 b)], the map α∗
x0 : H1,0(Alb(X))→ H1,0(X)

is a C-linear isomorphism. By [BL04, Sec 1.3, p.13], H1(Alb(X),Z) is
naturally isomorphic to Hom(im(ι),Z). By Poincaré duality, the latter
is identified with H1(X,Z), so

α∗
x0 : H1(Alb(X),Z)→ H1(X,Z)

is an isomorphism of weight 1 Z-Hodge structures. Up to translation,
different base points give rise to the same Albanese map. More precisely,
for x ∈ X, Tαx(x0) ◦ αx0 = αx, where

Ta : Alb(X)→ Alb(X), u 7→ u+ a

is the translation by a on Alb(X). The independence stated in Point
4 follows.

5. As the isomorphism (4.9) is functorial in X, there is a commutative
diagram with exact rows

H1(Alb(X),Z) H1(Alb(X), OAlb(X)) Pic0(Alb(X)) 0

H1(X,Z) H1(X,OX) Pic0(X) 0.

α∗
x0

α∗
x0

α∗
x0

By Point 4, the left two vertical maps are isomorphisms independent of
x0. Therefore, the right vertical map is an isomorphism independent
of x0. As Alb(X) is a complex torus, by [BL04, Proposition 2.4.1],
Pic0(Alb(X)) is the dual torus of Alb(X). As α∗

x0 : Pic0(Alb(X)) →
Pic0(X) is an isomorphism, Pic0(X) is dual to Alb(X).

Remark 4.4.1.3. By [Uen06, Cor. 9.5, p.101], for every connected regular
manifold X the formation of Alb(X) and αx0 agrees with the construction
in [Bla56, §2]. Then [Bla56, p.163] gives another proof of the universal
property stated in Proposition 4.4.1.2 3.

Example 4.3.2.3 1 (continued). IfX were a Hopf surface, thenH1(X,Z) =
Z andH0(X,Ω1

X) = 0. Equation (4.16) would define a point and Proposition
4.4.1.2 2 would fail.

4.4.2 Back to Jacobian

Albanese torus helps to understand the Jacobian. Corollary 4.4.2.1 is used
to show the jumping loci are analytic subsets.
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Corollary 4.4.2.1 (Universal line bundle). There exists a unique (up to
isomorphism) line bundle L on X × Pic0(X) such that its pullback module
to {x0}×Pic0(X) is trivial and for every point y ∈ Pic0(X), the isomorphism
class of the pullback line bundle L|X×{y} in Pic(X) is y.

Proof. Consider the map

f = αx0 × IdPic0(X) : X × Pic0(X)→ Alb(X)× Pic0(X).

By Proposition 4.4.1.2 5 and [GH78, Lemma, p.328], there is a holomorphic
line bundle P on Alb(X) × Pic0(X) that is trivial on {0} × Pic0(X) such
that for every y ∈ Pic0(X), the line bundle P|Alb(X)×{y} is of class y in

Pic0(Alb(X)). Let L = f∗P, then L|{x0}×Pic0(X) = f∗(P|{0}×Pic0(X)) is

trivial. For every y ∈ Pic0(X), the line bundle

L|X×{y} = f∗(P|Alb(X)×{y}) = α∗
x0(P|Alb(X)×{y})

is of class y in Pic0(X). The existence is proved. The uniqueness follows
from [BL04, Cor. A.9].

Let
Char(X) = Hom(H1(X,Z),C∗)

be the group of characters of the first homology of X. Every χ ∈ Char(X)
induces a line bundle Lχ := Lχ ⊗C OX . By [Hat05, Cor. A.8, A.9], the
abelian group H1(X,Z) is finitely generated. From [Mil17a, Ch. 12 b.],
Char(X) has a natural structure of diagonalizable algebraic group over

C, with identity component Char◦(X) isomorphic to Gb1(X)
m . Moreover,

Charu(X) := Hom(H1(X,Z), S1) is a real Lie subgroup of Char(X) of
dimension b1(X). There is a canonical group isomorphism by taking character
sheaves

Charu(X)→ Locu,1(X), χ 7→ Lχ. (4.18)

Set T (X) := Hom(H1(X,Z)free, S
1). Then T (X) is the identity component

of Charu(X). From Corollary 4.3.2.2, composing the isomorphism (4.18)
and the map (4.12) gives a morphism of real Lie groups

T (X)→ Pic0(X), χ 7→ Lχ. (4.19)

In Corollary 4.4.2.2 1, the isomorphism allows one to identify certain characters
with topologically trivial line bundles. This identification is used in the proof
of Theorem 4.7.1.3. When X is in Fujiki Class C (resp. Kähler), Corollary
4.4.2.2 2 is also in [Ara90, Lem. 2] (resp. the proof of [Wan16, Cor. 1.4]).

Corollary 4.4.2.2.

1. The morphism (4.19) is an isomorphism of real Lie groups.
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2. The map (4.12) is a group isomorphism and NS(X)tor = H2(X,Z)tor.
In particular, every element of Picτ (X) is a flat unitary line bundle.

Proof.

1. Lemma 4.4.1.1 gives an identification H1(X,Z)free = im(ι). By [BL04,
Prop. 2.2.2], the natural group morphism

Hom(im(ι), S1)→ Pic0(Alb(X)) (4.20)

defined via factors of automorphy [BL04, p.30] is an isomorphism.
The map (4.19) is the composition of (4.20) with the isomorphism
α∗
x0 : Pic0(Alb(X))→ Pic0(X) in Proposition 4.4.1.2 5.

To sum it up:

Charu(Alb(X)) = Hom(im(ι), S1) T (X) Charu(X) = Locu,1(X)

Pic0(Alb(X)) Pic0(X) Picτ (X).

∼

(4.20) (4.19) (4.12)

α∗
x0

∼

2. The commutative diagram of abelian sheaves on X

0 Z R S1 0

0 Z OX O∗
X 0

Id

f 7→exp(2πif)

has exact rows. Moreover, the Z-module R is injective. Therefore,
there is a commutative diagram with exact columns

0 0 0

H1(X,Z) H1(X,Z) Hom(H1(X,Z),Z)

H1(X,OX) H1(X,R) Hom(H1(X,Z),R) 0

H1(X,O∗
X) H1(X,S1) Charu(X) Hom(H1(X,Z)tor, S

1)

H2(X,Z) H2(X,Z) Ext1Z(H1(X,Z),Z) Ext1Z(H1(X,Z)tor,Z)

0 0,

≃
=

≃
(4.13)

δ

≃ r

≃ψ

= ξ
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where r is the restriction, and the horizontal morphisms in the middle
column are from [Hat05, Thm. 3.2]. By [Hat05, p.196], the image
of the injection ξ : Ext1Z(H1(X,Z),Z) → H2(X,Z) is H2(X,Z)tor.
Thus, there is a natural isomorphism ψ : Hom(H1(X,Z)tor, S

1) →
H2(X,Z)tor fitting into a commutative diagram

0 T (X) Locu,1(X) Hom(H1(X,Z)tor, S
1) 0

0 Pic0(X) Picτ (X) H2(X,Z)tor 0,

(4.19)

r

(4.12) ψ

δ

where the first row is exact. Thus, δ is surjective and the second row
is also exact. By the five lemma, the middle vertical map (4.12) is an
isomorphism.

4.5 Defect of semismallness

We review the defect of semismallness of a morphism, an invariant introduced
by de Cataldo and Migliorini that plays a crucial role in the decomposition
theorem and Lefschetz’s theorem. It appears in Fact 4.1.1.6 and Theorem
4.7.1.3. Its main property that we need is Proposition 4.5.3.2. Complex
analytic spaces are in the sense of [CAS, p.7].

4.5.1 Stratifications and constructible sheaves

We refer to [BF84, Sec. 2.1] for the definitions of constructible stratifications
and Whitney stratifications of a complex analytic space.

Theorem 4.5.1.1 is about the semicontinuity of fiber dimension. Although
it is well-known, a short proof is included due to the lack of reference. Its
analogue in algebraic geometry is a celebrated theorem of Chevalley [EGA
IV 3, Cor. 13.1.5].

Theorem 4.5.1.1 (Analytic Chevalley theorem). Let f : X → Y be a
proper morphism of reduced complex analytic spaces. For every integer n ≥
0, let Yn = {y ∈ Y : dim f−1(y) = n} and Y≥n = ∪m≥nYm. Then Y≥n is an
analytic subset of Y . In particular, {Yn}n∈N is a constructible stratification
of Y .

Proof. Let Fn := {x ∈ X : dimx f
−1(f(x)) ≥ n}. By [Fis76, Thm. 3.6,

p.137], Fn is an analytic subset of X. By the definition of global dimension
[CAS, p.94], one has Y≥n = f(Fn). By Remmert theorem (see, e.g., [Whi72,
Thm. 4A, p.150]), the subset Y≥n is analytic in Y .
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Definition 4.5.1.2. ([BF84, p.125]) Let f : X → Y be a morphism of
complex analytic spaces. Assume that two Whitney stratifications X : X =
⊔αXα and Y : Y = ⊔λYλ satisfy that:

1. For each α, there is λ with f(Xα) ⊂ Yλ;

2. For each pair (α, λ) with f(Xα) ⊂ Yλ, the restricted morphism f :
Xα → Yλ is smooth.

Then such a pair (X,Y) is called a Whitney stratification of f .

Fact 4.5.1.3 ([Hir77, Thm. 1], [BF84, Lem. 2.4], [GM88, Thm, p.43]). Let
f : X → Y be a proper morphism of complex analytic spaces. Suppose that
X and Y are constructible stratifications of X and Y respectively. Then
there exists a Whitney stratification (X′,Y′) of f such that X′ and Y′ refine
X and Y respectively.

Corollary 4.5.1.4 is useful but implicit in the literature.

Corollary 4.5.1.4. Let X be a complex analytic space. For finitely many
constructible stratifications of X, there exists a Whitney stratification of X
refining all of them.

Proof. It suffices to consider the case of two constructible stratifications X1

and X2 of X. By Fact 4.5.1.3, there is a Whitney stratification (X,X′) of
IdX : X → X such that X (resp. X′) refines X1 (resp. X2). Moreover, X
refines X′ by Definition 4.5.1.2. Then X is a Whitney stratification refining
both X1 and X2.

For a complex analytic spaceX, using analytic constructible stratifications,
one can define constructible sheaves. LetDb

c(X) be the triangulated category
of complexes of sheaves of C-vector spaces whose cohomology is bounded and
constructible (see, e.g., [Dim04, p.82]).

Fact 4.5.1.5 ([KS90, Prop. 8.5.7 (b)], [Dim04, Thm. 4.1.5 (b)]). Let f :
X → Y be a morphism of complex analytic spaces and K ∈ Db

c(X). If f is
proper on Supp(K), then Rf∗K ∈ Db

c(Y ).

Corollary 4.5.1.6. Let f : X → Y be a proper morphism of complex
analytic spaces and K ∈ Db

c(X). Then there exists a Whitney stratification
(X,Y) of f such that for every integer i and every stratum S of Y, the
restriction Hi(Rf∗K)|S is a local system on S.

Proof. By Fact 4.5.1.5, Rf∗K ∈ Db
c(Y ). In particular, there are only finitely

many j ∈ Z with Hj(Rf∗K) ̸= 0. For each such j, there is an admissible
partition (in the sense of [Dim04, p.81]) Pj on Y such that the restriction
of Hj(Rf∗K) to each stratum of Pj is a local system. By Corollary 4.5.1.4,
there exists a Whitney stratification Y0 of Y refining the finitely many Pj .
By Fact 4.5.1.3, there is a Whitney stratification (X,Y) of f satisfying the
properties.
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4.5.2 Equivalent definitions

The defect of semismallness measures how far a morphism of complex manifolds
is from being semismall (see, e.g., [KW01, Def. 7.3, p.156]). However, in the
literature there exist multiple seemingly different definitions. We review
some of them and show that they are equivalent.

Definition 4.5.2.1. Let f : X → Y be a proper morphism of complex
manifolds with dimX = n.

� ([EV89, Def. 1.1]) Define

r1(f) = max
Z

(dimZ − dim f(Z)− codimX(Z)), (4.21)

where Z runs through all irreducible analytic subsets of X.

� ([Max19, Def. 9.3.7]) For a Whitney stratification (X = ⊔Sα, Y =
⊔Tλ) of f , we choose a point yλ ∈ Tλ in each stratum, and define

r2(f) = max
λ
{2 dim f−1(yλ) + dimTλ − n}. (4.22)

(By convention, the empty space has dimension −∞.)

� ([CM05, Def. 4.7.2]) For each integer i ≥ 0, let Yi = {y ∈ Y :
dim f−1(y) = i}. Define

r3(f) = max
i≥0

(2i+ dimYi − n).

� ([PS13, Def. 2.8]) For each integer i ≥ 0, let Y≥i = {y ∈ Y : dim f−1(y) ≥
i} for each i ≥ 0. Define

r4(f) = max
i≥0

(2i+ dimY≥i − n).

� ([CM09, Sec. 3.3.2, part 2]) Define r5(f) = dimX ×Y X − n.

� ([Wil16, Sec 3.2]) Define

r6(f) = max{i ∈ Z : pHi(Rf∗CX [n]) ̸= 0}.

Proposition 4.5.2.2. The first five numbers in Definition 4.5.2.1 are all
equal.

This common integer is called the defect of semismallness of f and
denoted by r(f). We shall show r(f) = r6(f) in Proposition 4.5.3.2 2.

Proof.
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� r3(f) = r4(f): As each Yi is a subset of Y≥i, one has r3(f) ≤ r4(f).
There are only finitely many integers i ≥ 0 with Y≥i nonempty, so the
maximum defining r4(f) is attained at some i0(≥ 0). Then

2(i0 + 1) + dimY≥i0+1 ≤ 2i0 + dimY≥i0 .

Since Y≥i0 = Y≥i0+1 ∪ Yi0 , one has dimY≥i0 = dimYi0 . Then

r4(f) = 2i0 + dimY≥i0 − n ≤ r3(f).

Therefore, r3(f) = r4(f).

� r2(f) = r5(f): By Thom’s first isotopy lemma (see, e.g., [Mat12,
Prop. 11.1]), for every λ, the restriction f |f−1(Tλ) : f−1(Tλ) → Tλ
is a topologically locally trivial fibration. Therefore, dim f−1(yλ) is
independent of yλ ∈ Tλ and

dim f−1(Tλ)×Tλ f
−1(Tλ) = dimTλ + 2 dim f−1(yλ). (4.23)

As {f−1(Tλ)×Tλ f−1(Tλ)}λ is a locally finite partition of X×Y X into
locally closed subsets (in the analytic Zariski topology), one has

dimX ×Y X = max
λ

[dim f−1(Tλ)×Tλ f
−1(Tλ)]. (4.24)

Plugging (4.23) into (4.24) we get r5(f) = r2(f). In particular, r2(f)
is independent of the choice of the stratifications.

� r1(f) ≤ r2(f): For every irreducible analytic subset Z ⊂ X, f(Z)
is an irreducible analytic subset of Y . Then {Y \ f(Z), f(Z)} is
a constructible stratification of Y . Fact 4.5.1.3 yields a Whitney
stratification (X = ⊔Sα, Y = ⊔Tλ) of f with Y = ⊔Tλ refining
{Y \ f(Z), f(Z)}. There exists λ0 such that Tλ0 is an open subset
of f(Z), hence dimTλ0 ≤ dim f(Z). Then f−1(Tλ0)∩Z is a nonempty
open subset of Z. Therefore,

dimZ = dim(f−1(Tλ0) ∩ Z) ≤ dim f−1(Tλ0).

Then

2 dimZ−dim f(Z) ≤ 2 dim f−1(Tλ0)−dimTλ0 = 2 dim f−1(yλ0)+dimTλ0 .

This shows r1(f) ≤ r2(f). In particular, the maximum in (4.21) is
indeed attained.

� r2(f) ≤ r1(f): Fix a Whitney stratification Y = ⊔λTλ defining r2(f).
For every λ with f−1(yλ) nonempty, Tλ is an analytic subset of Y
of dimension dimTλ. Then f−1(Tλ) is a nonempty analytic subset of
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X. Let Z0 be an irreducible component of f−1(Tλ) with dimZ0 =
dim f−1(Tλ). Then f(Z0) ⊂ Tλ and dim f(Z0) ≤ dimTλ. Therefore,

2 dim f−1(yλ)+dimTλ = 2 dim f−1(Tλ)−dimTλ ≤ 2 dimZ0−dim f(Z0).

This shows r2(f) ≤ r1(f).

� r2(f) ≤ r3(f): By Theorem 4.5.1.1, {Yi} is a constructible stratification
of Y . By Fact 4.5.1.3, there is a Whitney stratification (X = ⊔Sα, Y =
⊔Tλ) of f such that the stratification Y = ⊔Tλ refines Y = ⊔iYi. For
every λ, there is i0 with Tλ ⊂ Yi0 . In particular, for every yλ ∈ Tλ,
one has dim f−1(yλ) = i0, so

2 dim f−1(yλ) + dimTλ ≤ 2i0 + dimYi0 .

This shows r2(f) ≤ r3(f).

� r3(f) ≤ r2(f): For every integer i ≥ 0 with Yi nonempty, Yi =
⊔λ(Yi ∩ Tλ) is a constructible stratification, so there is an index λ0
with dim(Yi ∩ Tλ0) = dimYi. Then dimYi ≤ dimTλ0 . One may take
yλ0 ∈ Yi ∩ Tλ0 . Then

2i+ dimYi ≤ 2 dim f−1(yλ0) + dimTλ0 ,

which shows r3(f) ≤ r2(f).

From the diagonal inclusion X → X ×Y X, one gets dimX ≤ dimX ×Y
X, so r(f) = r5(f) ≥ 0. If r(f) = 0, then f is said to be semismall.

Example 4.5.2.3.

1. If f : X → Y is a proper morphism of complex manifolds that is flat
of relative dimension r, then r(f) = r.

2. Let X be projective manifold such that −KX is nef and α : X →
Alb(X) be the Albanese map associated with some base point. Then
r(α) = dimX − dimα(X) by [Lu+10, Theorem].

4.5.3 Direct image of local systems

Defect of semismallness is an important invariant appearing in the decomposition
of direct image of perverse sheaves. Proposition 4.5.3.2 is an elementary
instance. We begin with a well-known estimation of cohomological dimension
of a complex analytic space, used in the proof of Proposition 4.5.3.2. An
analogue for topological manifolds is [KS90, Prop. 3.2.2 (iv)].
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Lemma 4.5.3.1. Let X be a paracompact (in the sense of [Mun00, Def.,
p.253]) complex analytic space of complex dimension n. Then Hq(X,F ) = 0
for every abelian sheaf F on X and every integer q > 2n.

Proof. By [CAS, Prop., p.94], there is an open covering {Uα}α ofX such that
for each α, there is a finite morphism fα : Uα → Bα of complex analytic
spaces to an open ball Bα ⊂ Cn. As X is Hausdorff paracompact, by
[Mun00, Lemma 41.6], there exists a locally finite open covering {Vα} on X
such that Vα ⊂ Uα for each α.

From [Mun00, p.314], for every α, the topological dimension covdim(Bα)
in the sense of [Mun00, Def., p.305] is 2n. By [KK83, Prop. 51 A.2], the
topological space X is metrizable. From [Mun00, Thm. 32.2], each Uα is
normal. Therefore, by [Eng95, Thm. 3.3.10, p.200], covdim(Uα) ≤ 2n. By
[Eng95, Theorem 3.1.3, p.169], covdim(Vα) ≤ 2n. Similarly, X is normal, so
covdim(X) ≤ 2n by [Eng95, Thm. 3.1.10, p.172]. By Alexandroff theorem
(see, e.g., [Bre12, p.122]), the cohomological dimension dimZX in the sense
of [Eng95, p.75] is at most 2n.

The category Db
c(X) has a natural perverse t-structure (p being the

middle perversity)
(pD≤0(X), pD≥0(X)),

whose heart Perv(X) is a C-linear abelian category ([Bei+82], see also
[HT07, Thm. 8.1.27]). An object of Perv(X) is called a perverse sheaf on X.
For every integer i, the functor taking the i-th perverse cohomology sheaf is
denoted by pHi : Db

c(X)→ Perv(X). For any two integers a ≤ b, set

pD[a,b](X) := {K ∈ Db
c(X) : pHi(K) = 0, ∀i /∈ [a, b]};

D[a,b](X) := {K ∈ Db
c(X) : Hi(K) = 0, ∀i /∈ [a, b]}.

Verdier dualityDX : Db
c(X)→ Db

c(X) is a contravariant auto-equivalence
that interchanges pD≤0(X) and pD≥0(X) (see, e.g., [HT07, p.192]).

Proposition 4.5.3.2 is an analytic analogue of [CM03, Prop. 10.0.7]. It
allows local coefficients and in our case permits to descend some problems
about local systems on X to problems about complexes of sheaves on Y .
The proof is different from that in [CM03], in particular it does not use the
decomposition theorem [CM03, Thm. 10.0.6].

Proposition 4.5.3.2. Let f : X → Y be a proper morphism of complex
manifolds, where X is of pure dimension n. Let L a local system on X.
Then:

1. Rf∗(L[n]) ∈ pD[−r(f),r(f)](Y ). In particular, Rf∗L[n] ∈ Perv(Y ) when
f is moreover semismall.

2. When L = CX , for j = ±r(f), one has pHj(Rf∗CX [n]) ̸= 0. Hence
r(f) = r6(f).
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Proof. From Corollary 4.5.1.6, there exists a Whitney stratifications (X =
⊔αXα, Y = ⊔λYλ) of f such that for every λ, every integer j, the restriction
Hj(Rf∗L[n])|Yλ is a local system. For each λ, choose a point yλ ∈ Yλ.

1. First, we show that Rf∗L[n] ∈ pD≤r(f)(Y ). Fix an integer i. If
dimYλ > r(f)− i, then by (4.22), one has i+n > 2 dim f−1(yλ). Since
the fiber f−1(yλ) is a compact complex analytic space, by Lemma
4.5.3.1,

H i+n(f−1(yλ),L|f−1(yλ)) = 0.

By proper base change theorem (see, e.g., [Mil13, Thm. 17.2]),

Hi(Rf∗L[n])yλ = H i+n(f−1(yλ),L|f−1(yλ)).

So Hi(Rf∗L[n]) = 0 on every stratum Yλ with dimYλ > r(f) − i.
Therefore, dim SuppHi(Rf∗L[n]) ≤ r(f) − i and hence Rf∗L[n] ∈
pD≤r(f)(Y ).

It remains to show Rf∗L[n] ∈ pD≥−r(f)(Y ). By what we have proved,
Rf∗L∨[n] ∈ pD≤r(f)(Y ). Since DX(L[n]) = L∨[n], one has

Rf∗L∨[n] = Rf∗DX(L[n]) = DY (Rf∗L[n]).

The last equality uses Verdier’s duality (see, e.g., [Max19, Prop. 5.3.9]).
This shows Rf∗L[n] ∈ pD≥−r(f)(Y ).

2. By (4.22), there exists λ0 with r(f) = 2 dim f−1(yλ0) + dimYλ0 − n.
In particular, f−1(yλ0) is nonempty. Let i0 = r(f) − dimYλ0 , then
i0 + n = 2 dim f−1(yλ0). By proper base change theorem again,

Hi0(Rf∗C[n])yλ = H i0+n(f−1(yλ),C) ̸= 0.

Therefore, Yλ0 ⊂ SuppHi0(Rf∗C[n]) and hence

dim SuppHi0(Rf∗C[n]) ≥ dimYλ0 = r(f)− i0.

Then Rf∗C[n] /∈ pD≤r(f)−1(Y ). Together with Point 1, this shows

pHr(f)(Rf∗CX [n]) ̸= 0.

The other part follows from Verdier’s duality.

4.6 Generic vanishing for constructible sheaves

In Section 4.6, we review the generic vanishing theorem for (complexes of)
constructible sheaves on a complex torus. The case of abelian varieties is
treated in [KW15b] and the general case in [BSS18]. We shall reduce the
generic vanishing problem on a manifold in Fujiki class C to results on its
Albanese torus.
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4.6.1 Thin subsets

To state Krämer-Weissauer’s theorem, we recall the terminology “thin subset”
introduced in [KW15b, p.532 and p.536].

Fix a complex torusA. Then Char(A) has a natural structure of algebraic
torus over C of dimension 2 dimA and T (A) = Charu(A) is a real Lie
subgroup of Char(A). For each complex subtorus B ⊂ A, let K(B) be
the kernel of the morphism of algebraic tori Char(A) → Char(B) induced
by functoriality. The induced morphism π1(B, 0) → π1(A, 0) is injective
with torsion-free cokernel of rank 2 dimA−2 dimB, so K(B) is an algebraic
subtorus of Char(A).

Definition 4.6.1.1. A thin subset of Char(A) is a finite union of translates
χi ·K(Ai) for certain characters χi ∈ Char(A) and certain nonzero complex
subtori Ai ⊂ A. If every χi can be chosen to be a torsion point of Char(A),
then such a thin subset is called arithmetic.

A thin subset of Char(A) is strict and Zariski closed. If the complex
torus A is nonzero and simple, then a subset of Char(A) is thin if and only
if it is finite.

For each complex subtorus B ⊂ A, we have a functorial commutative
diagram

Charu(A) Locu,1(A) Picτ (A) Pic0(A)

Charu(B) Locu,1(B) Picτ (A) Pic0(B)

(4.18)

ϕ

(4.12)

ψ

(4.10)

(4.25)

where all the horizontal maps are isomorphisms by Corollary 4.4.2.2 2.
A subset of Pic0(A) is called (arithmetic and) thin, if it is the intersection

of Charu(A) with a (arithmetic and) thin subset of Char(A) when Pic0(A)
is identified with Charu(A) via the diagram (4.25).

Lemma 4.6.1.2. Every thin subset of Pic0(A) is a finite union of translates
of strict complex subtori.

Proof. Let B be a subtorus of A. As the induced morphism π1(B, 0) →
π1(A, 0) is injective with torsion-free cokernel of rank 2(dimA−dimB), the
restriction morphism ϕ : Charu(A) → Charu(B) in (4.25) is surjective, and
its kernelK(B)∩Charu(A) is the group of unitary characters of π1(A, 0)/π1(B, 0).
Therefore, the kernel of the morphism ψ : Pic0(A)→ Pic0(B) in (4.25) is a
complex subtorus of dimension dimA− dimB.

For a connected regular manifold X, let α : X → Alb(X) be its Albanese
morphism corresponding to some base point. Then α induces a morphism
α∗ : Char(Alb(X)) → Char(X) of algebraic groups. By Proposition 4.4.1.2
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2, this map identifies Char(Alb(X)) with the identity component Char◦(X)
of Char(X). Thus we can define thin subsets of Char◦(X). By Proposition
4.4.1.2 5, Pic0(X) is naturally identified with Pic0(Alb(X)), thus we can
define (arithmetic and) thin subsets of Pic0(X).

4.6.2 Generic vanishing result on regular manifolds

Roughly speaking, Krämer-Weissauer’s theorem controls the failure of vanishing
for perverse sheaves on complex tori, measured by the following loci.

Let X be a compact complex manifold of dimension d. For any integers
k ≥ 0, i and for every K ∈ Db

c(X), consider the cohomology support locus

Σi(X,K) := {χ ∈ Char(X) : H i(X,Lχ ⊗K) ̸= 0}.

Let Σ ̸=0(X,K) := ∪i ̸=0,i∈ZΣi(X,K). Similarly, let Σ>j(X,K) := ∪i>jΣi(X,K)
for every integer j. By Verdier’s duality, H2d−i(X,K∨⊗Lχ−1) is the C-linear
dual of H i(X,K ⊗ Lχ). Therefore,

Σ2d−i(X,K∨) = {χ−1 : χ ∈ Σi(X,K)}. (4.26)

Fact 4.6.2.1. Let X be a compact Kähler manifold, and let K ∈ Db
c(X).

Then:

1. ([Wan16, p.547]) For every integer i, the subset Σi(X,K) of Char(X)
is Zariski closed.

2. ([BSS18, Thm. 1.1]) If X is a complex torus, and if K ∈ Perv(X),
then Σ ̸=0(X,K) is a strict subset of Char(X).

3. ([KW15b, Thm. 1.1 and Lem. 11.2 (c)]) If further X is a complex
abelian variety, then Σ ̸=0(X,K) is contained in a thin (and arithmetic
when K is semisimple of geometric origin) subset of Char(X).

Corollary 4.6.2.2. Let X be a compact Kähler manifold, and let K ∈
Db
c(X). Then:

1. There are only finitely many integers i such that Σi(X,K) ̸= ∅. In
particular, Σ ̸=0(X,K) and for every integer j, Σ>j(X,K) are Zariski
closed in Char(X).

2. If X is a complex torus, and if K ∈ pD≤m(X) for some integer m,
then Σ>m(X,K) ̸= Char(X).

3. If X is a complex abelian variety, and K ∈ pD≤m(X) for some integer
m, then Σ>m(X,K) is contained in a thin (and arithmetic when K is
semisimple of geometric origin) subset of Char(X).

Proof. The proof is sketched in [KW15b, p.533].
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1. There exist two integers c < d such that K ∈ D[c,d](X). Applying
[KS90, Proposition 10.2.12] to the proper morphism X → p, where
p is a point, one gets two integers a < b such that Rf∗(D

[c,d](X)) ⊂
D[a,b](p). For every character sheaf L on X, the functor ∗ ⊗L L :
Db
c(X) → Db

c(X) is t-exact with respect to the standard t-structure.
Consequently, K⊗L L ∈ D[c,d](X) and hence Rf∗(K⊗L L) ∈ D[a,b](p).
For all integers i /∈ [a, b], Σi(X,K) = ∅. This shows the first part of the
assertion. The second part of the assertion follows from Fact 4.6.2.1
1.

2. By shifting degree, one may assume m = 0. From [KW15b, Prop. 4.1],
for every character sheaf L on X, the functor ·⊗LL : Db

c(X)→ Db
c(X)

is t-exact for the perverse t-structure. Then for every integer j, one
has pHj(K ⊗L L) = pHj(K)⊗L L. Consider the subset

W = ∪j∈ZΣ̸=0(X, pHj(K)) (4.27)

of Char(X). It is in fact a finite union, because by [Dim04, Remark
5.1.19], pHj(K) ̸= 0 for only finitely many integers j. By Fact 4.6.2.1
2, W ̸= Char(X).

For every χ ∈ Char(X)\W , consider the Grothendieck spectral sequence
from [CM09, p.545]

Ei,j2 = H i(X, pHj(K)⊗L Lχ)⇒ H i+j(X,K ⊗L Lχ). (4.28)

For any integers i ̸= 0 and j, one has H i(X, pHj(K) ⊗L Lχ) = 0, so
the spectral sequence (4.28) degenerates (in the sense of [Sta24, Tag
011O (2)]) at page E2 and hence

Hj(X,K ⊗L Lχ) = H0(X, pHj(K)⊗L Lχ)

for every integer j. Now that K ∈ pD≤0(X), for every i > 0 one
has pHi(K) = 0 and hence H i(X,K ⊗L Lχ) = 0. This shows χ /∈
Σ>0(X,K). One concludes that Σ>0(X,K) ⊂W .

3. As pHj(K) ̸= 0 for only finitely many integers j, by Fact 4.6.2.1 3,
the subset W defined by (4.27) is contained in a thin (and arithmetic
when K is semisimple of geometric origin) subset of Char(X).

Theorem 4.6.2.3 is a generic vanishing result for local systems on a
manifold admitting Hodge theory. When X is a projective manifold, [PS13,
Theorem 1.5] gives a dimension estimate of Σk(X,CX).
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Theorem 4.6.2.3. Let X be a connected regular manifold of dimension n.
Let α : X → Alb(X) be the Albanese map associated with some base point
and E be a local system on X. Let k be an integer either < n − r(α) or
> n+ r(α). Then:

1. Σk(X, E) ∩ Char◦(X) is a strict Zariski closed subset of Char◦(X).

2. If furthermore Alb(X) is algebraic, then Σk(X, E)∩Char◦(X) is contained
in a thin subset of Char◦(X).

Proof. In view of (4.26), one may assume k > d+ r(α). Set K := Rα∗E [d+
r(α)]. We first prove

Σk(X, E) ∩ Char◦(X) = Σk−d−r(α)(Alb(X),K) ⊂ Σ>0(Alb(X),K). (4.29)

This is used in the proof of both 1 and 2.
Indeed, by Proposition 4.5.3.2, the complex of sheavesK lies in pD≤0(Alb(X)).

For every χ ∈ Char◦(X), let Dχ (resp. Lχ) be the corresponding character
sheaf on Alb(X) (resp. on X). Then α∗Dχ = Lχ. By [KW01, Cor. 7.5 (g),
p.109], Rα∗(E ⊗L Lχ) = (Rα∗E)⊗L Dχ in Db

c(Alb(X)). It follows that

Hk(X, E⊗Lχ) = Hk(Alb(X), (Rα∗E)⊗LDχ) = Hk−d−r(α)(Alb(X),K⊗LDχ),

whence (4.29). Now Point 1 follows from Fact 4.6.2.1 1 and Corollary 4.6.2.2
2, and Point 2 follows from Corollary 4.6.2.2 3.

4.7 Generic vanishing result for manifolds in Fujiki
class C

In Section 4.7.1, we recall the definition of Fujiki class C, the object of central
interest in this note. Then we restrict mainly to algebraic varieties in Section
4.7.2.

4.7.1 Fujiki class C

Definition 4.7.1.1 (Fujiki class C, [Uen80, Def. 1]). A compact complex
manifold is called in Fujiki class C if it is the meromorphic image of a compact
Kähler manifold.

Every compact Kähler manifold is in Fujiki class C. The reason why
Fujiki class C is interesting is two-fold. For one thing, this class is large
enough in practice. For another, in this class there is a Hodge theory with
unitary local systems as coefficients.

Fact 4.7.1.2 ([Tim87, Cor. 5.3], [Ara90, Thm. 1, Thm. 2, Cor. 2]). Let X
be a complex manifold in Fujiki class C. Then for every unitary local system
E on it, X is E-regular.
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In particular, from Fact 4.7.1.2, every manifold in Fujiki class C is regular.
As is explained in Section 4.3 and Section 4.4, the Jacobian and Albanese
of a complex manifold in Fujiki class C behave well.

Theorem 4.7.1.3. Let X be a connected n-dimensional complex manifold
in Fujiki class C, and let α : X → Alb(X) be the Albanese map associated
with some base point. Let E → X be a flat unitary vector bundle. Then for
any integers p, q ≥ 0:

1. The locus Sp,q(X,E) is an analytic subset of Pic0(X).

2. One has Sn−p,n−q(X,E∨) = {L ∈ Pic0(X)|L∨ ∈ Sp,q(X,E)}.

3. If p+ q < n− r(α) or p+ q > n+ r(α), then Sp,q(X,E) is contained
in a strict (and thin when Alb(X) is algebraic) subset of Pic0(X).

Proof.

1. The projection p2 : X × Pic0(X) → Pic0(X) is a regular family in
the sense of [CAS, p.207]. Let p1 : X × Pic0(X) → X be the other
projection. Let P be the universal line bundle on X×Pic0(X) given by
Corollary 4.4.2.1. Applying the upper semi-continuity theorem [CAS,
p.210] to the vector bundle P ⊗ p∗1Ω

p
X and the regular family p2, one

gets that Sp,q(E) is an analytic subset of Pic0(X).

2. By the Serre duality (see, e.g., [Huy05, Prop. 4.1.15]), for every L ∈
Pic(X), there is a perfect pairing

Hq(X,Ωp
X ⊗OX L⊗OX E)×Hn−q(X,Ωn−p

X ⊗OX L
∨ ⊗OX E

∨)→ C,

so L ∈ Sp,q(X,E) if and only if L∨ ∈ Sn−p,n−q(X,E∨).

3. By Theorem 4.2.3.1, there is a unitary local system E on X such that
E ⊗C OX is isomorphic to E. For every χ ∈ Charu(X), the Hodge
decomposition (4.6) of E ⊗C Lχ provided by Fact 4.7.1.2 is

Hk(X, E ⊗C Lχ) =⊕p+q=k Hq(X,Ωp
X ⊗C E ⊗C Lχ)

=⊕p+q=k Hq(X,Ωp
X ⊗OX E ⊗OX Lχ).

Therefore, under the isomorphism (4.19), one has

Σk(X, E) ∩ T (X) = ∪p+q=kSp,q(X,E). (4.30)

The result follows from Theorem 4.6.2.3.

Remark 4.7.1.4. Theorem 4.7.1.3 3 extends Fact 4.1.1.6 from Kähler manifolds
to Fujiki class C. As dimX − r(α) ≤ dimα(X), the numerical hypothesis in
Theorem 4.7.1.3 is more restrictive than that in Fact 4.1.1.1. An example
from [GL87, Remark, p.401] is reconsidered in the last paragraph of [KW15b,
Sec. 3], to show that the bound p + q < dimX − r(α) is optimal for Fact
4.1.1.6.
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4.7.2 Moishezon manifolds

Moishezon manifolds are examples of manifolds in Fujiki class C.

Definition 4.7.2.1 (Moishezon manifold, [MM07, Def. 2.2.12]). A connected
compact complex manifoldX is called Moishezon, if it has dimX algebraically
independent meromorphic functions.

By [MM07, Thm. 2.2.16], for every Moishezon manifold X, there is
a proper modification π : X ′ → X with X ′ a projective manifold. In
particular, X is the meromorphic image of a projective manifold, hence in
Fujiki class C. Conversely, by the proof of [Voi02, Cor. 12.12], a connected
compact complex manifold that is the meromorphic image of a projective
manifold must be Moishezon. For more references, see [JM22, Sec. 1].

The intersection of the two subclasses, Kähler and Moishezon, is exactly
the class of projective manifolds. More precisely, Moishezon’s theorem (see,
e.g., [Voi02, Thm. 12.13]) asserts that a Moishezon manifold is Kähler if
and only if it is projective. By [Ogu94, Thm. 1], a Moishezon manifold
may not be homotopy equivalent to any Kähler manifold. The Kodaira-
Spencer stability theorem (see, e.g., [Voi02, Thm. 9.1]) shows that small
deformations of a Kähler manifold are Kähler. Similarly, by [AT13, Cor. 3.7],
small deformations of a regular manifold are regular. By contrast, from
[Cam91, Sec. 0], there is a small deformation of a Moishezon manifold that
is not in Fujiki class C. In particular, there exists a regular manifold that is
not in Fujiki class C.

Moishezon manifolds are abundant. By [Har77, p.442], for every smooth
proper, complex algebraic variety X, its analytification Xan is a Moishezon
manifold. Hironaka [Hir60] (see also [Har77, p.443]) gives examples of
Moishezon manifolds that are not algebraic, and smooth proper algebraic
varieties that are not projective. The situation is depicted below. Every
inclusion in this graph is strict.
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Regular

Fujiki class C

Moishezon Kähler

Projective

Proper algebraic

We need Proposition 4.7.2.2 on the algebraicity of Picard torus and
Albanese torus to compare them with the Picard variety and Jacobian
variety of an algebraic variety.

Proposition 4.7.2.2. If X is a Moishezon manifold, then Alb(X) and
Pic0(X) are complex abelian varieties dual to each other.

Proof. By [MM07, Thm. 2.2.16], X admits a proper modification π : X ′ →
X with X ′ a projective manifold. By [Voi02, Prop. 7.16], the Jacobian
Pic0(X ′) is projective. From Proposition 4.4.1.2 5, the torus Alb(X ′) is
dual to Pic0(X ′), so Alb(X ′) is algebraic. By [Uen06, Prop. 9.12, p.107],
the morphism π∗ : Alb(X ′) → Alb(X) given by Proposition 4.4.1.2 1 is an
isomorphism.

Remark 4.7.2.3. By [BL04, p.70], the analytic dual torus of a complex
abelian variety is an abelian variety. Moreover, by [MRM74, p.86], the
(algebraic) dual abelian variety (defined in [MRM74, p.78]) of a complex
abelian variety coincides with its analytic dual torus, so we do not distinguish
the two duals in this case.

Remark 4.7.2.4. Another proof of Proposition 4.7.2.2 is as follows. From
Lemma D.3.0.1, there is an integer n ≥ 1 such that Alb(X) is the image
of Xn under certain morphism. As the product of finitely many Moishezon
manifolds, Xn is a Moishezon manifold. Then the complex torus Alb(X) is
Moishezon, so projective by Moishezon Theorem.

Let X be a smooth proper complex algebraic variety of dimension n with
a base point x0 ∈ X(C). Let Sch/C (resp. Set) be the category of C-schemes
(resp. sets). The fppf-sheaf associated to the functor

PX/C : (Sch/S)op → Set, T 7→ Pic(X ×C T )
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is called the relative Picard functor of X. From [BLR90, p.211, p.231 and
p.233], the relative Picard functor of X is represented by a smooth group
scheme PicX/C over C. In particular, the group PicX/C(C) = Pic(X). By

[BLR90, Thm. 3, p.232], the identity component Pic0X/C of PicX/C is proper
over C, hence a complex abelian variety called the Picard variety of X.

From [Ser58, Thm. 5], there is a complex abelian variety Alb(X) with a
C-morphism αX,x0 : (X,x0)→ (Alb(X), 0) of pointed varieties satisfying the
following universal property (similar to that stated in Proposition 4.4.1.2 3):
every C-morphism of pointed varieties (X,x0) → (A, 0) with A a complex
abelian variety factors uniquely through a morphism of abelian varieties
Alb(X) → A. Such morphism αx0 is unique up to a unique isomorphism.
We call Alb(X) the algebraic Albanese variety of X and αX,x0 : (X,x0) →
(Alb(X), 0) the algebraic Albanese morphism corresponding to x0.

For every OX -module F , let F an be the corresponding OXan-module
defined in [SGA 1, Exp. XII, 1.3]. Hence a functor

Mod(OX)→ Mod(OXan), F 7→ F an.

By Serre’s GAGA [SGA 1, Exp. XII, Thm. 4.4], the natural group morphism

Pic(X)→ Pic(Xan), L 7→ Lan

is an isomorphism. Corollary 4.7.2.5 2 of GAGA type compares the algebraic
Picard variety and the analytic Jacobian. Once again, it is well-known, but
a proof is given for the lack of reference.

Corollary 4.7.2.5.

1. The analytification of Alb(X) (resp. αX,x0 : X → Alb(X) ) is Alb(Xan)
(resp. αXan,x0 : Xan → Alb(Xan)).

2. The analytification of Pic0X/C is Pic0(Xan).

Proof.

1. SinceXan is a Moishezon manifold, by Proposition 4.7.2.2, its Albanese
torus Alb(Xan) is projective. By Chow’s theorem [BL04, Cor. A.4],
the map αXan,x0 is algebraic. By Proposition 4.4.1.2 3, every algebraic
morphism (X,x0) → (A, 0) to a complex abelian variety A factors
uniquely through an analytic (hence algebraic by Chow’s theorem
again) morphism of complex tori Alb(Xan)→ Aan. The result follows.

2. By [Moc12, Prop. A.6], the (algebraic) dual abelian variety of Pic0X/C
is Alb(X). By Proposition 4.4.1.2 5, Pic0(Xan) is the (analytic) dual
torus of Alb(Xan) = Alb(X)an, so Pic0(Xan) is the analytification of
Pic0X/C.
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Identifying Pic0X/C with Pic0(Xan) via Corollary 4.7.2.5 2, one can define

thin subsets of Pic0X/C. Define the defect of semismallness of a proper

morphism f : M → N between complex algebraic varieties by r(f) = r(fan).
With this terminology, we get the following generic vanishing result for
smooth proper algebraic varieties.

Corollary 4.7.2.6. Let E be a unitary local system on Xan, and let E =
E ⊗C OXan be the corresponding holomorphic vector bundle. Then for any
integers p, q ≥ 0 with p + q > n + r(α) or p + q < n − r(α), the locus
Sp,q(Xan, E) is contained in a thin (and arithmetic when E is semisimple of
geometric origin in Db

c(X
an)) subset of Pic0X/C.

Proof. By Corollary 4.7.2.5 1, the analytification αan
X,x0

: Xan → Alb(X)an

coincides with αXan,x0 : Xan → Alb(Xan), and by definition, r(α) = r(αan).
From Theorem 4.7.1.3 3, the locus Sp,q(Xan, E) is contained in a thin subset
of Pic0(X).

What remains to show is the assertion in the parentheses. Assume that
E is semisimple of geometric origin. By the decomposition theorem [Bei+82,
Thm. 6.2.5], K := Rα∗E [n + r(α)] is semisimple of geometric origin in
Db
c(Alb(Xan)). By Theorem 4.7.1.3 2, one may assume that p+q > n+r(α),

so that

Sp,q(Xan, E) ⊂ Σp+q(Xan, E) ∩ T (X) ⊂ Σ>0(Alb(X),K),

where the first inclusion follows from (4.30) and the second from (4.29).
From Corollary 4.6.2.2 3, Σ>0(Alb(X),K) is contained in an arithmetic thin
subset of Pic0X/C.

Remark 4.7.2.7. By Chow’s theorem, every analytic subset ofXan is algebraic.
Therefore, Db

c(X
an) coincides with Db

c(X(C),C) defined in [Bei+82, p.66]
using algebraic Whitney stratifications.
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Chapter 5

Fourier-Mukai transform on
complex tori, revisited

5.1 Introduction

For a ringed space (Z,OZ), let D(Z) be the derived category of the abelian
category of OZ-modules. A scheme of finite type and separated over a field
is called an algebraic variety. For two algebraic varieties (resp. complex
analytic spaces) M,N , let pM : M × N → M and pN : M × N → N
be the projections. For an object K ∈ D(M × N), the integral transform

ϕ
[M→N ]
K : D(M)→ D(N) with integral kernel K is defined as

ϕ
[M→N ]
K (·) = RpN,∗(K ⊗L p∗M ·). (5.1)

When Z is a complex analytic space, let Dgood(Z) ⊂ D(Z) be the full
subcategory consisting of complexes whose cohomology sheaves are good
(Definition A.1.4.1). Roughly speaking, an analytic sheaf of modules is good
if it can be approximated by coherent submodules. For a complex torus X
of dimension g, let X̂ be the dual complex torus. Let P be the normalized1

Poincaré line bundle on X × X̂. Define functors RS : D(X̂) → D(X) and

RŜ : D(X)→ D(X̂) by RS = ϕ
[X̂→X]
P , RŜ = ϕ

[X→X̂]
P . The pair (RS,RŜ)

is called the Fourier-Mukai transform of X. Theorem 5.1.0.1 establishes an
analog of the Fourier inversion formula for this pair.

Theorem 5.1.0.1 (Theorem 5.4.1.1). The functor RŜ (resp. RS) restricts
to a functor Dgood(X)→ Dgood(X̂) (resp. Dgood(X̂)→ Dgood(X)). Moreover,
there are natural isomorphisms of functors

RS ◦RŜ ∼= [−1]∗X [−g] : Dgood(X)→ Dgood(X),

RŜ ◦RS ∼= [−1]∗
X̂

[−g] : Dgood(X̂)→ Dgood(X̂),

1i.e., both pullback modules P|X×0 and P|0×X̂ are trivial
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where [−g] denotes degree shift.

Theorem 5.1.0.1 is a complex analytic variant of [Muk81, Thm. 2.2]
(Statement 5.2.0.4, which has a minor problem for lack of quasi-coherence
condition). For complex tori, a parallel false assertion is made as [BBP07,
Thm. 2.1] (Statement 5.2.0.5). Theorem 5.1.0.1 shows that “good sheaves”
on complex manifolds serve as substitutes for “quasi-coherent sheaves” on
algebraic varieties in this case. As an application, we recover Matsushima-
Morimoto’s classification of homogeneous vector bundles on complex tori.

Theorem (Theorem 5.5.3.6). A vector bundle F on the complex torus X
is translation invariant if and only if there is an integer n ≥ 0, unipotent
vector bundles2 U1, . . . , Un on X and P1, . . . , Pn ∈ Pic0(X), such that F is
isomorphic to ⊕ni=1(Pi ⊗ Ui).

Notation and conventions

For a topological space M , the category of abelian sheaves on M is denoted
by Ab(M). The category of ringed spaces is denoted by RingS. For a
ringed space (X,OX), let Mod(OX) be the category of OX -modules. The full
subcategory of Mod(OX) comprised of quasi-coherent (resp. coherent) OX -
modules in the sense of Definition A.1.1.1 3 (resp. 6) is denoted by Qch(X)
(resp. Coh(X)). For a closed subset Z ⊂ X, let CohZ(X) ⊂ Coh(X) be the
full subcategory consisting of modules with support contained in Z.

Given a symbol ∗ ∈ {∅,+,−, b}, the notationD∗(X) refers to the unbounded/bounded
below/bounded above/bounded derived category of Mod(OX) in order. The
full subcategory of D∗(X) consisting of the complexes whose cohomologies
are coherent (resp. quasi-coherent) is denoted by D∗

c (X) (resp. D∗
qc(X)).

Denote by RHomX : D(X)op ×D(X) → D(X) the internal hom bifunctor
constructed in [Sta24, Tag 08DH].

For a locally ringed space X and x ∈ X, let ix : (x,OX,x)→ (X,OX) be
the canonical morphism of locally ringed spaces. For an OX,x-module M ,
the OX -module (ix)∗M is denoted by Mx.

All complex analytic spaces (in the sense of [KK83, Def. 43.2]) are
assumed to be paracompact. Let An be the category of complex analytic
spaces. The dimension of a complex manifold always refers to the complex
dimension, which is assumed to be finite.

When X is an abelian variety (resp. complex torus), its dual abelian
variety (resp. complex torus) is denoted by X̂. The normalized Poincaré
bundle on X × X̂ is denoted by P. For y ∈ X̂ (resp. x ∈ X), let Py (resp.
Px) denote the line bundle P|X×y (resp. P|x×X̂).

2Definition 5.5.2.6
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5.2 Fourier-Mukai transform

Complex tori are generalizations of complex abelian varieties. Every complex
torus of dimension 1 is an abelian variety. By contrast, for every integer
g ≥ 2, a very general complex torus of dimension g is not3 an abelian
variety (see, e.g., [BZ23b, p.21]).

The Fourier-Mukai transform is an analog of the classical Fourier transform.
It is proposed by Mukai [Muk81] on abelian varieties and complex tori. Let
k be an algebraically closed field. Let X be an abelian variety over k (resp.

a complex torus) of dimension g. Write RS and RŜ for ϕ
[X̂→X]
P and ϕ

[X→X̂]
P

respectively. The pair (RS,RŜ) is called the Fourier-Mukai transform of X.
The functor RS (resp. RŜ) restricts to a functor Db(X̂) → Db(X) (resp.
Db(X)→ Db(X̂)).

Let X be an abelian variety. The usual exchange of translation and
time shifting (resp. multiplication and convolution) of Fourier transform
finds analog for Fourier-Mukai transform, namely the exchange of translation
and line bundle twisting (resp. tensor product and Pontrjagin product) in
[Muk81, (3.1) (resp. (3.7))]. Moreover, Mukai proves a duality theorem
similar to the classical Fourier inversion formula.

Fact 5.2.0.1. [Algebraic Mukai duality] There are canonical isomorphisms
of functors

RS ◦RŜ ∼= [−1]∗X [−g] : Dqc(X)→ Dqc(X);

RŜ ◦RS ∼= [−1]∗
X̂

[−g] : Dqc(X̂)→ Dqc(X̂).

In particular, the functor RS : Dqc(X̂) → Dqc(X) is an equivalence of
categories, with a quasi-inverse [−1]∗

X̂
◦RŜ[g].

Example 5.2.0.2 ([Muk81, Eg. 2.6]). For every y ∈ X̂(k), one hasRS(ky) =
Py and RŜ(Py) = k−y[−g].

Remark 5.2.0.3. Combining Fact 5.2.0.1, the natural equivalenceD(Qch(X))→
Dqc(X) from [BN93, Cor. 5.5] with the compatibility of derived direct images
[TT90, Cor. B.9], one gets [Rot96, Mukai’s Theorem, p.569] stated for
Db(Qch(∗)) instead of Dqc(∗). The quasi-coherence restriction is essential
for Čech resolution with respect to affine covers in [Rot96, p.571].

The proof of Fact 5.2.0.1 uses the projection formula and the flat base
change theorem (see, e.g., [Lip60, Prop. 3.9.4, Prop. 3.9.5]). Compared

3To the contrary, it is incorrectly implied in [BBR94, p.151] that every complex torus
of dimension 2 admits a compatible structure of algebraic complex surface. In fact, it fails
for each 2-dimensional complex torus X that is not a projective manifold. For otherwise,
assume there is a complex algebraic surface V with V an ∼= X. Then V is proper by [SGA
1, XII, Prop. 3.2 (v)]. In consequence, the algebraic variety V is projective by [Har77,
p.357]. Thus, X is a projective manifold, a contradiction.
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with Fact 5.2.0.1, the original statement (Statement 5.2.0.4) has no quasi-
coherence restriction.

Statement 5.2.0.4 ([Muk81, Thm. 2.2]). The functorRS gives an equivalence
of categories between D(X̂) and D(X), and its quasi-inverse is [−1]∗

X̂
◦RŜ[g].

In [BBP07, Thm. 2.1], an assertion similar to Statement 5.2.0.4 is made
for complex tori.

Statement 5.2.0.5. Let X be a complex torus. Then the integral transform
RS : Db(X̂)→ Db(X) is an equivalence of triangulated categories.

However, Lemma 5.2.0.6 shows that Statement 5.2.0.4 (resp. Statement
5.2.0.5) holds if and only if g = 0.

Lemma 5.2.0.6 ([(ht16]). Let X be an abelian variety or a complex torus.
If the functor RS : Db(X̂) → Db(X) is an equivalence of categories, then
dimX = 0.

Proof. When X is a complex torus, let k = C. In both cases, let F = kN0 be
the product of a countable infinite family of k0 in Mod(OX̂). Since kN = k⊕I

as k-module for some index set I, the direct sum sheaf k⊕I0 is isomorphic to
F . Therefore, by [Sta24, Tag 07D9 (2)], F is the direct sum of I copies of
k0 in Db(X̂). We claim that F is the product of N copies of k0 in Db(X̂).

By [Gro57b, p.129], the abelian category Mod(OX̂,0) satisfies the AB 4*)

axiom. From [Sta24, Tag 07KC (2)], the inclusion Mod(OX̂,0)→ Db(Mod(OX̂,0))

commutes with countable products. Let i : 0→ X̂ be the closed immersion.
Since i∗ : Mod(OX̂,0)→ Mod(OX̂) is exact, there is a commutative square

Mod(OX̂,0) Mod(OX̂)

Db(Mod(OX̂,0)) Db(X̂).

i∗

Ri∗

Since Ri∗ : Db(Mod(OX̂,0)) → Db(X̂) has a left adjoint, it commutes with

products. As F = i∗(k
N), the claim is proved.

As RS : Db(X̂) → Db(X) is an equivalence, inside Db(X), the object
RS(F ) is the direct sum of I copies of RS(k0), as well as the product of
N copies of RS(k0). By Example 5.2.0.2 (when X is an abelian variety)
and Lemma 5.2.0.8 (when X is a complex torus), one has RS(k0) = OX .
Therefore, RS(F ) is isomorphic to O⊕I

X and to ON
X in Mod(OX).

Assume the contrary dimX > 0. Then there is a nonempty connected
open subset V ⊂ X, such that OX(V ) is an integral domain but not a field.
In particular, the ring OX(V ) is not Artinian. By [Har77, II, Exercise 1.11]
(when X is an abelian variety) and Corollary A.1.5.4 (when X is a complex
torus), the OX(V )-module Γ(V,RS(F )) is isomorphic to OX(V )⊕I and to
OX(V )N. However, this contradicts Fact 5.2.0.7.
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Fact 5.2.0.7 ([Len68, Thm, p.211]). If A is a commutative ring such that
AN is a free A-module, then A is Artinian.

For algebraic varieties, the analog of Lemma 5.2.0.8 follows from the flat
base change theorem and the projection formula.

Lemma 5.2.0.8. Let X,Y be two complex analytic spaces, let K ∈ D(X ×
Y ), and let x ∈ X. Consider the closed embedding hx : Y → X × Y, y 7→
(x, y). Then ϕ

[X→Y ]
K (Cx) = Lh∗xK.

Proof. Let p : X × Y → X, q : X × Y → Y be the two projections. Denote
the closed embedding of complex analytic spaces x→ X by jx. The cartesian
square

Y x

X × Y X

p0

hx □ jx

p

in the category An induces a natural morphism ϕ : p∗Cx → Rhx,∗OY in
Mod(OX×Y ). Both sheaves are supported on {x} × Y .

For two (Hausdorff) locally convex topological vector spaces E,F over
C, the completed projective topological tensor product E⊗̂CF is defined in
[Gro55, Ch. I, Déf. 2, p.32]. For every y ∈ Y , by [CAS, p.27], the stalk
OX×Y,(x,y) = OX,x⊗̂COY,y. Then

(p∗Cx)(x,y) = C⊗OX,x OX×Y,(x,y) = OY,y.

Therefore, ϕ(x,y) : (p∗Cx)(x,y) → (hx,∗OY )(x,y) is an isomorphism. Thus, ϕ
is an isomorphism.

By [Sta24, Tag 0B55], the natural morphism (Rhx,∗OY )⊗LK → Rhx,∗(Lh
∗
xK)

is an isomorphism. Then

ϕ
[X→Y ]
K (Cx) = Rq∗(p

∗Cx ⊗L K) ∼= Rq∗(Rhx,∗OY ⊗L K)
∼=Rq∗Rhx,∗(Lh∗xK) ∼= R(qhx)∗(Lh

∗
xK) = Lh∗xK.

The minor problem with Statement 5.2.0.4 occurs in the proof of [Muk81,
Prop. 1.3], when the flat base change theorem [Har66, Prop. 5.12] stated
for objects of Dqc(∗) is applied to objects in D−(∗). Similarly, the minor
problem with Statement 5.2.0.5 originates from a lack of certain analytic
quasi-coherence in the wrong Statement 5.2.0.9 (a counterpart of [Muk81,
Prop. 1.3]). A modification of Statement 5.2.0.9 is Proposition 5.4.2.3.
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Statement 5.2.0.9 ([BBP07, p.427]). If M , N , and P are compact complex
manifolds and K ∈ Db(M ×N) and L ∈ Db(N ×P ), then one has a natural
isomorphism of functors from Db(M) to Db(P ):

ϕ
[N→P ]
L ◦ ϕ[M→N ]

K
∼= ϕ

[M→P ]
K∗L ,

where
K ∗ L = RpM×P∗(p

∗
M×NK ⊗L p∗N×PL) ∈ Db(M × P ),

and pM×N , pM×P , pN×P are the natural projections M ×N ×P →M ×N ,
etc.

When X is an abelian variety of positive dimension, by Fact 5.2.0.1,
RS(F ) is the product of N copies of OX in Qch(X). It is not isomorphic to
ON
X by Lemma 5.2.0.10.

Lemma 5.2.0.10. Let X be an integral scheme with generic point η. If the
OX-module ON

X is quasi-coherent, then the natural morphism η → X is an
isomorphism.

Proof. Consider an arbitrary affine open U = Spec(A) ⊂ X. Then A is an
integral domain of fraction field κ(η). We show that the natural inclusion
A→ κ(η) is an isomorphism.

For otherwise, there exists f ∈ A \ (A∗ ∪ {0}). Let Df ⊂ U be the
corresponding standard open subset. Note Γ(U,ON

X) = AN and Γ(Df , O
N
X) =

(Af )N. As ON
X ∈ Qch(X), the natural Af -module morphism Γ(U,ON

X)f →
Γ(Df , O

N
X) is an isomorphism. Or equivalently, the natural map ϕ : (AN)f →

(Af )N is an isomorphism.
In particular, there exists a = (a0, a1, . . . ) ∈ AN and an integer m ≥ 0

such that ϕ(a/fm) = (1/f i)i≥0. Then am+1 = f−1 in Af . There exists an
integer n ≥ 0 such that (am+1f − 1)fn = 0 in A. Since A is a domain,
am+1f − 1 = 0 in A. This contradicts the fact that f /∈ A∗.

Therefore, the natural morphism η → U is an isomorphism. The proof
is completed as U is taken arbitrarily.

Lemma 5.2.0.11 computes the derived restriction of a relatively flat
module, which is a partial converse to [Huy06, Lemma 3.31] in the analytic
setting.

Lemma 5.2.0.11. Let f : S → X be a flat morphism of complex analytic
spaces, and let K be an OS-module flat over X. For x ∈ f(S), let ix : Sx →
S be the inclusion of the fiber over x. Then Li∗xK = i∗xK.

Proof. To simplify the notation, we denote ix by i. By [Sta24, Tag 0B55],
the natural morphism

Ri∗OSx ⊗LOS K → Ri∗(Li
∗K) (5.2)
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is an isomorphism. They are supported on Sx, since for every integer n one
has

Hn(Ri∗(Li
∗K)) = Ri∗H

n(Li∗K) = i∗H
n(Li∗K).

For every s ∈ Sx, the morphism j : (s,OS,s)→ S of ringed spaces is flat
and j∗ : Mod(OS) → Mod(OS,s) is taking the stalk at s. Let mx be the

maximal ideal of OX,x. As the ring map f#s : OX,x → OS,s is flat, one has

OSx,s = (OX,x/mx)⊗OX,x OS,s = (OX,x/mx)⊗LOX,x OS,s. (5.3)

By [Sta24, Tag 079U], one has

Lj∗(Ri∗OSx ⊗LOS K) = Lj∗Ri∗OSx ⊗LOS,s Lj
∗K

=OSx,s ⊗LOS,s Ks = [(OX,x/mx)⊗LOX,x OS,s]⊗
L
OS,s

Ks

=(OX,x/mx)⊗LOX,x (OS,s ⊗LOS,s Ks)

=(OX,x/mx)⊗LOX,x Ks = (OX,x/mx)⊗OX,x Ks,

(5.4)

where the third (resp. fourth, resp. last) equality uses (5.3) (resp. Lemma
5.4.2.1, resp. the flatness of the OX,x-module Ks).

Then for every integer n ̸= 0, every s ∈ Sx, the stalk

[Hn(Ri∗OSx⊗LOSK)]s = Hn[Lj∗(Ri∗OSx⊗LOSK)] = Hn((OX,x/mx)⊗OX,xKs) = 0,

where the second equality uses (5.4). Hence

i∗H
n(Li∗K) = Hn[Ri∗(Li

∗K)] ∼= Hn(Ri∗OSx ⊗LOS K) = 0,

where the second equality uses (5.2). Thus, for every integer n ̸= 0, Hn(Li∗K) =
0 in Mod(OSx).

Remark 5.2.0.12. Lemmas 5.2.0.8 and 5.2.0.11 yield an analytic version of
[Huy06, Eg. 5.4 vi)]: Let X,Y be two complex analytic spaces. Let x ∈ X
and K be an OX×Y -module flat over X. Then ϕ

[X→Y ]
K (Cx) = K|{x}×Y .

Remark 5.2.0.13. Here is an example showing the necessity of the flatness
of f in Lemma 5.2.0.11.

Let A = C[t] and B = C[x, y]/xy. Then the B-module xB (resp. yB) is
isomorphic to B/y (resp. B/x). Let S = Spec(B) and X = Spec(A) = A1

C.
The morphism A → B of k-algebras defined by t 7→ x induces a morphism
f : S → X of schemes. Let K be the coherent OS-module corresponding to
theB-moduleB/y. ThenK is flat overX, because the ring map composition
A → B → B/y is an isomorphism. Let i : S0 → S be the inclusion of the
fiber over 0 ∈ X(C). Then i is a closed immersion defined by ideal xB ⊂ B,
so Li∗K is induced by K ⊗LB (B/x). By [Osb12, Exercise 9, b), p.72],

TorB2 (B/y,B/x) = (yB)⊗B (xB) ∼= (B/x)⊗B (B/y) = B/(x, y) = C.

In particular, Li∗K ̸= i∗K. Taking analytification one gets L(ian)∗Kan ̸=
(ian)∗Kan.
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Corollary 5.2.0.14 follows from Lemma 5.2.0.11, and it is an analytic
counterpart of [Huy06, Example 5.4 vi)].

Corollary 5.2.0.14. In Lemma 5.2.0.8, if K ∈ Mod(OX×Y ) is flat over

X, then ϕ
[X→Y ]
K (Cx) = i∗K.

By Corollary 5.2.0.14 and Theorem 5.4.1.1, Example 5.2.0.2 remains true
when X is a complex torus.

5.3 Good modules

As Section 5.2 explains, to obtain an analytic analogue of Fact 5.2.0.1, it
is necessary to find a substitute for quasi-coherence on complex manifolds.
We show that goodness introduced by Kashiwara (Definition A.1.4.1) can
be used as such.

5.3.1 Functoriality

In Corollary 5.3.1.16, we prove that goodness is preserved by integral transforms.
To prove this, we show that goodness is preserved by the operations involved
in (5.1).

Example 5.3.1.1. [Har66, Example 1., p.68] Let f : X → Y be a morphism
of ringed spaces. Then the derived pullback Lf∗ : D(Y )→ D(X) (constructed
in [Spa88, Prop. 6.7 (a)]) is bounded above (in the sense of [Lip60, 1.11.1]),
and the derived pushout Rf∗ : D(X)→ D(Y ) is bounded below.

Proposition 5.3.1.2 (Pullback). Let f : X → Y be a morphism of complex
analytic spaces. Then Lf∗ : D(Y )→ D(X) restricts to a functor

1. Db
c(Y )→ Db

c(X) when Y is a complex manifold or f is flat;

2. Dgood(Y )→ Dgood(X).

Proof.

1. Because Y is smooth or f is flat, by Lemma 5.3.1.3, the morphism f
has finite tor-dimension. Thus, Lf∗ restricts to a functor Db(Y ) →
Db(X).

Consider F ∈ Db
c(Y ). To prove that Lf∗F ∈ Db

c(X), by [Har66, I,
Prop. 7.3 (i)], one may assume F ∈ Coh(Y ). This case is proved by
Lemma A.1.3.3.

2. (a) Let G ∈ D−
good(Y ). By Example 5.3.1.1, Lemma A.1.4.3 3 and a

dual of [Har66, Prop. 7.3 (ii)], to prove Lf∗G ∈ Dgood(X), one
may assume G ∈ Good(Y ). Let U be a relatively compact open
subset of X. Then f(Ū) is a compact subset of Y , so contained
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in a relatively compact open subset V of Y . Since G is good,
its restriction G|V =

∑
i∈I Gi is the sum of a directed family of

coherent OV -submodules of G|V . Let g : f−1(V ) → V be the
base change of f along the inclusion V → Y . As Lf∗ commutes
with colimits, one has

(Lf∗G)|f−1(V ) = colimi∈ILg
∗Gi.

For every integer n, in Mod(Of−1(V )) one has

Hn(Lf∗G)|f−1(V ) = Hn
(
(Lf∗G)|f−1(V )

)
=Hn(colimi∈ILg

∗Gi) = colimi∈IH
n(Lg∗Gi).

Since Gi is coherent, by Lemma A.1.3.3, the Of−1(V )-module
Hn(Lg∗Gi) is coherent. By Lemma A.1.4.3 3, theOf−1(V )-module
Hn(Lf∗G)|f−1(V ) is good. Since Ū is a compact subset of f−1(V ),
the subset U is relatively compact in f−1(V ). Hence, Hn(Lf∗G)|U
is the sum of a directed family of coherent submodules. Hence
Lf∗G ∈ Dgood(X).

(b) Then consider the general case C ∈ Dgood(Y ). For every integer
m ≥ 0, the m-th canonical truncation Cm := τ≤mC (in the sense
of [Sta24, Tag 0118 (4)]) is in D−

good(Y ). From the proof of [Lip60,
Prop. 2.5.5], there is a bounded above complex of flat OY -modules
Qm with a quasi-isomorphism Qm → Cm that is functorial in
Cm. Moreover, the complex Q := colimmQm is K-flat (in the
sense of [Spa88, Def. 5.1]), and the canonical morphism Q → C
is a quasi-isomorphism. Because Lf∗ : D(Y ) → D(X) admits
a right adjoint, it commutes with colimits. Thus, the resulting
morphisms

colimmLf
∗Qm → Lf∗Q→ Lf∗C

are isomorphisms in D(X).

Let Ch(Mod(OX)) be the category of chain complexes over Mod(OX).
The directed set N can be seen naturally as a category. Define a
functor N→ Ch(Mod(OX)), m 7→ f∗Qm. Because Mod(OX) is
a Grothendieck abelian category, for every integer n, by [Hov99,
Lem. 1.5], the natural morphism

colimmH
n(f∗Qm)→ Hn(colimmf

∗Qm)

in Mod(OX) is an isomorphism. Hence an isomorphismHn(Lf∗C) ∼=
colimmH

n(Lf∗Qm) in Mod(OX). Since Qm ∈ D−
good(Y ), by Case

2a, the OX -module Hn(Lf∗Qm) is good. By Lemma A.1.4.3 3,
so is the OX -module Hn(Lf∗C).
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The tor-dimension tor-dim f of a morphism f : X → Y of ringed spaces
is defined to be the lower dimension (in the sense of [Lip60, 1.11.1]) of the
functor Lf∗ : D−(Y ) → D(X). If f is flat, then tor-dim f = 0. If f
has finite tor-dimension, then Lf∗ : D−(Y ) → D(X) restricts to a functor
Db(Y )→ Db(X). The weak dimension wgld(R) of a commutative ring R is
defined to be the supremum of flat dimension of all R-modules.

Lemma 5.3.1.3. Let f : X → Y be a morphism of complex analytic spaces,
with Y a complex manifold. Then f has finite tor-dimension.

Proof. From [Lip60, (2.7.6.4)], one only needs to show that for every x ∈ X,
the flat dimension of the OY,f(x)-module OX,x is uniformly bounded. By
definition, the flat dimension of every OY,f(x)-module is bounded by the
weak dimension of the ring OY,f(x). Because Y is a complex manifold, the
local ring OY,f(x) is Noetherian regular. By Lemma 5.3.1.4, wgldOY,f(x) is
the Krull dimension of OY,f(x), which coincides with the dimension of the
complex manifold Y near f(x).

Lemma 5.3.1.4 (Serre). Let R be a commutative, Noetherian, regular local
ring. Then wgld(R) coincides with the Krull dimension of R, hence finite.

Proof. From [Osb12, Cor. 4.21], the weak dimension coincides with the
global dimension of R. By Serre’s theorem (see, e.g., [Osb12, p.332]), the
global dimension equals the Krull dimension, which is finite.

Proposition 5.3.1.5 (Tensor product). Let X be a complex analytic space.
Then the bifunctor (constructed in [Spa88, Thm. A. (ii)]) ⊗L : D(X) ×
D(X)→ D(X) restricts to a bifunctor

1. Db(X)×Db(X)→ Db(X) (resp. Db
c(X)×Db

c(X)→ Db
c(X)) when X

is a complex manifold;

2. Dgood(X)×Dgood(X)→ Dgood(X).

Proof.

1. The weak dimension of a ringed space (M,OM ) is defined to be supx∈M wgld(OM,x).
By [HT07, (C.2.20)], to prove the statement for Db(X), it suffices to
bound the weak dimension of X. As X is smooth, for every x ∈ X,
the stalk OX,x is a Noetherian, regular local ring. Thus, by Lemma
5.3.1.4, its weak dimension wgld(OX,x) is equal to the dimension of
the complex manifold X near x. Therefore, the weak dimension of X
is at most dimX

Consider any F,G ∈ Db
c(X). To prove that F ⊗L G ∈ Db

c(X), by
[Har66, I, Prop. 7.3 (i)], one may assume F,G ∈ Coh(X). Then the
conclusion follows from [GH78, 4., p.700].
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2. Take F,G ∈ Dgood(X). To prove that F ⊗L G ∈ Dgood(X), as in the
proof of Proposition 5.3.1.2 2, one may assume that F,G ∈ D−

good(X).
By a dual of [Har66, I, Prop. 7.3 (ii)], one may assume that F,G ∈
Good(X). Let U be a relatively compact open subset of X.

For every integer n, we claim that the OU -module Hn(F ⊗LOX G)|U
is good. By assumption, the restrictions F |U =

∑
i∈I Fi and G|U =∑

j∈J Gj can be written as sums of directed families of coherent submodules.

By [Sta24, Tag 08DJ], the functor ⊗LOU (G|U ) : D(U) → D(U) has a
right adjoint, so

(F ⊗L G)|U = colimi∈I [Fi ⊗L (G|U )]. (5.5)

By [Sta24, Tag 05NI (2)], there exists a complex C• of flat OU -modules
and a quasi-isomorphism C• → G|U . Then for every i ∈ I, in D(U)

Fi ⊗OU C
• ∼−→ Fi ⊗LOU G|U . (5.6)

Define a functor I → Ch(Mod(OX)) by i 7→ Fi ⊗ C•. By [Hov99,
Lem. 1.5], the natural morphism

colimi∈IH
n(Fi ⊗ C•)→ Hn(colimi∈I(Fi ⊗ C•))

in Mod(OU ) is an isomorphism. Combining it with (5.5) and (5.6),
one gets an isomorphism in Mod(OU )

colimi∈IH
n(Fi ⊗LOU G|U )→ Hn(F ⊗LOX G)|U .

Because Good(U) is closed under colimits in Mod(OU ) by Lemma
A.1.4.3 3, one may assume that F |U is coherent. Similarly, one may
assume further that G|U is coherent. Then the claim follows from
Lemma A.1.3.4.

Remark 5.3.1.6. Proposition 5.3.1.5 2 can also be derived from Proposition
5.3.1.2 2 as in the proof of [Bjö93, Thm. 3.2.13 (3)].

As the proof of Theorem 5.3.1.7 is lengthy, we split it into a series of
lemmas.

Theorem 5.3.1.7 (Pushout). Let f : X → Y be a proper morphism of
complex analytic spaces. If dimX is finite, then Rf∗ : D(X) → D(Y )
restricts to a functor Dgood(X)→ Dgood(Y ) (resp. Db

good(X)→ Db
good(Y )).

Proof. By Lemma 5.3.1.11, the functor Rf∗ restricts to a functor Db(X)→
Db(Y ). We show that Rf∗F ∈ Dgood(Y ) for every F ∈ Dgood(X). By
[Har66, I, Prop. 7.3 (iii)], Lemmas 5.3.1.11 and A.1.4.3 3, one may assume
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that F ∈ Good(X). For every relatively compact open subset V ⊂ Y , its
closure V̄ is compact in Y . As f is proper, the preimage f−1(V̄ ) is compact.
Thus, U := f−1(V ) is a relatively compact open subset of X. Since F is
good, F |U = colimi∈IFi, where {Fi}i∈I is a directed family of coherent OU -
submodules of F |U . Let g : U → V be the base change of f . Fix an integer
n. By Lemma 5.3.1.9, in Mod(OV )

(Rnf∗F )|V = Rng∗(F |U ) = colimi∈IR
ng∗Fi.

As a base change of f , the morphism g is proper. Then by Fact 5.3.1.8, for
every i ∈ I, the OV -module Rng∗Fi is coherent. By Coh(V ) ⊂ Good(V ) and
Lemma A.1.4.3 3, the OV -module (Rnf∗F )|V is good. Therefore, Rf∗F ∈
Dgood(Y ).

Fact 5.3.1.8 (Grauert direct image theorem, see e.g., [CAS, p.207]). Let
f : X → Y be a proper morphism of complex analytic spaces. Then Rf∗ :
D(X)→ D(Y ) restricts to a functor Coh(X)→ Dc(Y ).

Lemma 5.3.1.9. Let f : X → Y be a proper map between locally compact,
Hausdorff spaces. Then for every integer n ≥ 0, the functor Rnf∗ : Ab(X)→
Ab(Y ) commutes with filtrant colimits.

Proof. Let (Fi, fij)i∈I be a filtrant inductive system with colimit F in Ab(X).
Since the abelian category Ab(Y ) is Grothendieck, the filtrant colimit G =
colimi∈IR

nf∗Fi exists and there is a canonical morphism ϕ : G → Rnf∗F
in Ab(Y ). For every y ∈ Y , the functor Ab(Y ) → Ab taking the stalk
at y commutes with colimits, so Gy = colimi∈I(R

nf∗Fi)y. By [Mil13,
Thm. 17.2], for every i the stalk (Rnf∗Fi)y = Hn(Xy, Fi|Xy). Then by
[God58, Thm. 4.12.1], the morphism ϕy : Gy → (Rnf∗F )y is an isomorphism.
Therefore, ϕ is an isomorphism.

The proof of Fact 5.3.1.10 is similar to that of [KS90, Prop. 3.2.2].

Fact 5.3.1.10. Let X be a locally compact, Hausdorff topological space which
is countable at infinity. Suppose that there is an integer n ≥ 0 such that
every point of X has an open neighborhood homeomorphic to a locally closed
subset of Rn. Then for every abelian sheaf F on X and every integer j > n,
one has Hj(X,F ) = 0.

Lemma 5.3.1.11. Let X be a complex analytic space of finite dimension
n. Let f : X → Y be a proper morphism of complex analytic spaces. Then
for an object E ∈ D(X) with Hm(E) = 0 for every integer m > 0, one
has H i(Rf∗E) = 0 for every integer i > 2n. In particular, the functor
Rf∗ : D(X)→ D(Y ) is bounded.
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Proof. For every open subset V ⊂ Y and every OX -module M , from i > 2n
and Fact 5.3.1.10, one has H i(f−1(V ),M) = 0. Applying Lemma 5.3.1.14
to the functor Γ(f−1(V ), ·) : Mod(OX)→ Ab, one gets

H i(RΓ(f−1(V ), E)) = H i(RΓ(f−1(V ), τ≥1E)) = 0.

By Lemma 5.3.1.13, the OY -module H i(Rf∗E) = 0.

Remark 5.3.1.12. The finite dimension condition in Lemma 5.3.1.11 is necessary.
For every integer m ≥ 1, let Tm be a complex torus of dimension m, and
let fm : Tm → SpecanC be the canonical morphism. Let f : X → Y be
⊔m≥1fm : ⊔m≥1Tm → ⊔m≥1 SpecanC. Then f is proper. For every integer
q ≥ 1, the sheaf Rqf∗OX ̸= 0.

Lemma 5.3.1.13 is a derived version of [Har77, III, Prop. 8.1].

Lemma 5.3.1.13. Let f : X → Y be a continuous map of topological spaces.
Then for every integer i and every F ∈ D(Ab(X)), the sheaf H i(Rf∗F ) on
Y is the sheaf associated to the abelian presheaf V 7→ H iRΓ(f−1(V ), F ).

Proof. By [Spa88, Thm. D], there is a quasi-isomorphism F → I, where
I is a K-injective complex of abelian sheaves on X. Then the canonical
morphism Rf∗F → f∗I is an isomorphism in D(Ab(Y )). By [Mur06,
Lem. 3], H i(Rf∗F ) is the sheaf associated the presheaf

V 7→ H i
(
Γ(V, f∗I)) = H i

(
Γ(f−1(V ), I)) = H i

(
RΓ(f−1(V ), F )).

Lemma 5.3.1.14. Let X be a ringed space as in Fact 5.3.1.10. Let F :
Mod(OX) → Ab be an additive functor. Assume that F commutes with
countable products, and there is an integer N ≥ 0 with RpF (M) = 0 for
every integer p ≥ N and every M ∈ Mod(OX). Then the right derived
functor RF : D(X) → D(Ab) exists. Moreover, for any integers i ≥ j, the
natural transformation

H i(RF ·)→ H i(RF (τ≥j−N+1·)) : D(X)→ Ab

is an isomorphism.

Proof. The existence ofN and [Wei95, Cor. 10.5.11] show thatRF : D+(X)→
D+(Ab) extends to a right derived functor RF : D(X)→ D(Ab) of F .

For every integer m and every E ∈ D(X), set Em := τ≥−mE. Then
{Em}m∈Z forms an inverse system in D(X). Let n be as in Fact 5.3.1.10.
Then for every open subset U ⊂ X, any integers p(> n) and q, one has
Hp(U,Hq(E)) = 0. Then by [Sta24, Tag 0D64], the canonical morphism
E → R limmEm is an isomorphism in D(X). Since F commutes with
countable products, from [Sta24, Tag 08U1], in D(Ab) one has RF (E)

∼−→
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R limmRF (Em). For every integer i, by [Sta24, Tag 08U5], there is a short
exact sequence in the category Ab

0→ R1 lim
m
H i−1(RF (Em))→ H i(RF (E))→ lim

m
H i(RF (Em))→ 0. (5.7)

We claim that R1 limmH
i−1(RF (Em)) = 0.

For every integer m ≥ N − i, by [Sta24, Tag 08J5], there is an exact
triangle

H−m(E)[m]→ Em → Em−1
+1→ H−m(E)[m+ 1] (5.8)

in D(X). By assumption, one has

H i(RF (H−m(E)[m])) = Ri+mF ((H−m(E)) = 0;

H i(RF (H−m(E)[m+ 1])) = Ri+m+1F ((H−m(E)) = 0.

Taking the long exact sequence associated with (5.8), one concludes that the
canonical morphismH i(RF (Em))→ H i(RF (Em−1)) in Ab is an isomorphism.
Since the inverse system {H iRF (Em)}m≥1 is constant starting with m =
N − i−1, it satisfies the Mittag-Leffler condition in the sense of [Sta24, Tag
02N0]. From [Sta24, Tag 07KW (3)], one obtains

R1 lim
m
H i(RF (Em)) = 0,

which proves the claim.
When i ≥ j, as the inverse system is constant from m = N − j − 1,

one has limmH
i(RF (Em)) = H i[RF (EN−j−1)]. Then the sequence (5.7)

induces an isomorphism H i(RF (E))→ H i(RF (τ≥j−N+1E)).

Remark 5.3.1.15. In the statement of Lemma 5.3.1.14, because Mod(OX) is
a Grothendieck abelian category, it has enough injectives. By [Ver66, p.338],
the total right derived functor RF : D+(X) → D+(Ab) exists (even if F
may not be left exact).

Corollary 5.3.1.16. Let X,Y be complex manifolds (resp. complex analytic
spaces), with X compact and Y finite dimensional. If F is an object of

Db
c(X×Y ) (resp. Dgood(X×Y )), then ϕ

[X→Y ]
F restricts to a functor Db

c(X)→
Db
c(Y ) (resp. Dgood(X)→ Dgood(Y )).

Proof. Because X is compact, its dimension is finite and the projection
X × Y → Y is proper. Thus, X × Y is finite dimensional. The result is a
combination of Proposition 5.3.1.2 1 (resp. 2), Proposition 5.3.1.5 1 (resp.
2), Fact 5.3.1.8 and Lemma 5.3.1.11 (resp. Theorem 5.3.1.7).

Remark 5.3.1.17. Although we don’t need the functors RHom, f! and f !, it
is interesting to know whether they preserve goodness or not.
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5.3.2 Base change theorems

As a replacement for the (algebraic) flat base change theorem (used in
Mukai’s proof of Fact 5.2.0.1), we give an analytic smooth base change
theorem. It is a consequence of Theorem 5.3.2.3 and Fact 5.3.2.2.

Consider a cartesian square in the category An:

X ′ X

S′ S.

g′

f ′ □ f

g

(5.9)

Then [Sta24, Tag 08HY] gives a natural transformation of functors D(X)→
D(S′)

Lg∗Rf∗ → Rf ′∗Lg
′∗, (5.10)

coming from the adjunction in [Sta24, Tag 079W].

Smooth base change

Definition 5.3.2.1. A morphism g : S′ → S of complex analytic spaces is
called locally product, if for every s′ ∈ S′, there is an open neighborhood U
of s′ ∈ S′ and a complex analytic space Z, such that g(U) is open in S and
there is a g(U)-isomorphism U → g(U)× Z.

By [CD94, II, Cor. 2.7], a locally product morphism is flat.

Fact 5.3.2.2 ([Gro60b, Thm. 3.1]). A morphism of complex analytic spaces
is smooth (in the sense of in the sense of [Gro60b, Déf. 3.2]) if and only if
it is a submersion (in the sense of [Fis76, p.100]). In particular, a smooth
morphism is locally product.

Theorem 5.3.2.3. Consider the square (5.9) with both dimX and dimX ′

finite, f : X → S proper and g : S′ → S locally product. Then (5.10)
restricts to an isomorphism of functors Dgood(X)→ Dgood(S′).

We begin the proof with several lemmas.

Definition 5.3.2.4. A morphism of complex analytic spaces g : S′ → S
is said to satisfy property QS if for every proper morphism f : X → S of
complex analytic spaces, every coherent OX -module F and every integer
i ≥ 0, the base change morphism g∗Rif∗F → Rif ′∗(g

′∗F ) induced by (5.9)
is an isomorphism in Mod(OS′).

Lemma 5.3.2.5 shows that the property Q is local on the source and the
target.

Lemma 5.3.2.5. Let g : S′ → S and be a morphism of complex analytic
spaces.
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1. Let h : S′′ → S′ be another morphism of complex analytic spaces. If g
and h satisfy QS and QS′ respectively, then gh satisfies QS.

2. Assume that {S′
i}i∈I (resp. {Sj}j∈J) is an open covering of S′ (resp.

S) such that for every i ∈ I (resp. j ∈ J), the morphism g|S′
i

: S′
i → S

(resp. g−1(Sj)→ Sj) satisfies QS (resp. QSj ). Then g satisfies QS.

3. If g is an open embedding of complex analytic spaces, then g satisfies
QS.

Proof. 1. The proof is similar to that of [Day23, Lem. 2.13 (2)].

2. It follows from the local nature of sheaves.

3. The proof is similar to that of [Har77, III, Cor. 8.2].

Lemma 5.3.2.6. Let f : X → S be a proper morphism of complex analytic
spaces, with S Stein. Then for every coherent OX-module F and every
integer n ≥ 0, one has Hn(X,F ) = H0(S,Rnf∗F ).

Proof. By properness of f and Fact 5.3.1.8, theOS-moduleRnf∗F is coherent.
As S is Stein, from Cartan’s Theorem B (see, e.g., [KK83, Sec. 52, Thm. B]),
for every integer m > 0 one has Hm(S,Rnf∗F ) = 0. The conclusion follows
from [Sta24, Tag 01F4 (2)].

Remark 5.3.2.7. As an application of Lemma 5.3.2.6, we give an enhancement
of Lemma 5.3.1.11 for good modules. Let f : X → Y be a proper morphism
of complex analytic spaces with dimX finite. Then for every good OX -
module G and every integer n > dimX, one has Rnf∗G = 0.

Assume first thatG is coherent. For every Stein open subset V ⊂ Y , from
Cartan’s Theorem A (see e.g., [GR04, Theorem A, p.XVIII]), the restriction
Rnf∗G|V is generated by sections H0(V,Rnf∗G|V ). By Lemma 5.3.2.6, one
has

H0(V,Rnf∗G|V ) = Hn(f−1(V ), G|f−1(V )),

which vanishes by [Rei64, Cor., p.2333]. Thus, Rnf∗G|V = 0. Hence
Rnf∗G = 0.

Assume now thatG ∈ Good(X) is arbitrary. For every relatively compact
open subset W ⊂ Y , the open subset f−1(W ) of X is relatively compact.
Then there is a directed family of coherent submodules {Gi}i∈I of G|f−1(W )

such that G|f−1(W ) = colimi∈IGi. By Lemma 5.3.1.9, one gets (Rnf∗G)|W =
colimi∈IR

n(f |f−1(W ))∗Gi = 0. Hence Rnf∗G = 0.

Lemma 5.3.2.8. Let X,Y be complex analytic spaces, with Y Stein. Let
p : X × Y → X be the projection. Then for every coherent OX-module
F and every integer i ≥ 0, the natural morphism H i(X,F )⊗̂COY (Y ) →
H i(X×Y, p∗F ) of locally convex topological vector spaces is an isomorphism.
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Proof. Choose a Stein covering U of X. Let C• be the Čech complex of
F relative to U . Then H i(C•) = H i(X,F ). By [EP+96, Prop. 4.1.5], for
every integer q, the q-th term Cq of the complex C• is a Fréchet space.
Moreover, {U × Y : U ∈ U} forms a Stein covering of X × Y . By [EP+96,
Prop. 4.2.3, Thm. 4.2.4], the Čech complex of p∗F relative to this Stein
covering is C•⊗̂CO(Y ). Therefore, H i(C•⊗̂CO(Y )) = H i(X × Y, p∗F ). By
[EP+96, Prop. 4.1.5], O(Y ) is a unital Fréchet nuclear algebra, so from
[EP+96, Thm. A1.6 (d)], the functor ∗⊗̂CO(Y ) preserves exact sequences,
hence commutes with taking cohomology groups of the Čech complexes.

We consider the special case of products.

Corollary 5.3.2.9. Let S,Z be two complex analytic spaces. Then the
projection S × Z → S satisfies QS.

Proof. Fix a proper morphism X → S of complex analytic spaces and a
coherent OX -module F . By Lemma 5.3.2.5, we may assume that S,Z are
Stein spaces. Then the result follows from Lemma 5.3.2.6, Lemma 5.3.2.8
and [EP+96, Prop. 4.2.3, Thm. 4.2.4].

Corollary 5.3.2.10. Every locally product morphism g : S′ → S of complex
analytic spaces satisfies QS.

Proof. Fix s′ ∈ S′, and let s = g(s′). Since g is locally product, there is an
open neighborhood U (resp. V ) of s′ ∈ S′ (resp. s ∈ S), a complex analytic
space Z and an isomorphism ψ : U → Z × V of complex analytic spaces
such that the diagram

U Z × V

V

g|U

ψ

p2

commutes, where p2 is the projection to the second factor. By Corollary
5.3.2.9, g|U : U → V satisfies QV . By Lemma 5.3.2.5, the morphism g :
S′ → S satisfies QS .

Proof of Theorem 5.3.2.3. The morphism f ′ is a base change of f , hence a
proper morphism. Because dimX,dimX ′ are finite, by Theorem 5.3.1.7 and
Proposition 5.3.1.2 2, the functors Lg∗Rf∗ and Rf ′∗Lg

′∗ restrict to functors
Dgood(X)→ Dgood(S′).

For every K ∈ Dgood(X), we prove that the base change morphism
Lg∗Rf∗K → Rf ′∗Lg

′∗K in D(S′) is an isomorphism. By Lemma 5.3.1.11,
the functors Rf∗ : D(X) → D(S) and Rf ′∗ : D(X ′) → D(S′) are bounded.
From [Har66, I, Prop. 7.1 (iii)] and Lemma A.1.4.3 3, one may assume
that K ∈ Good(X). For every s′ ∈ S′, there is a relatively compact open
neighborhood V ⊂ S of g(s′). The preimage f−1(V ) is a relatively compact
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open subset of X. Consider the base change of the square (5.9) along the
open embedding V → S:

f−1(V )×V g−1V f−1(V )

g−1(V ) V.

v′

u′ □ u

v

Because g is locally product, so is v. One can writeK|f−1(V ) = colimi∈IGi,
where {Gi}i∈I is a directed family of coherent submodules of K|f−1(V ). By
Lemma 5.3.1.9, the natural morphism

(g∗Rif∗K)|g−1(V ) → Rif ′∗(g
′∗K)|g−1(V ) (5.11)

in Mod(Og−1(V )) is the colimit of the morphisms

v∗Riu∗Gi → Riu′∗v
′∗Gi.

By Corollary 5.3.2.10, for all i ∈ I, they are isomorphisms. Then (5.11) is
an isomorphism.

Remark 5.3.2.11. In the proof of [BBR94, Lem. 5], an analytic flat base
change result is applied without further justification. In [MS08, p.153], a
flat base change theorem for cartesian squares in the category of complex
manifolds is stated, referring to [Spa88] for the proof. However, the cited
result [Spa88, Prop. 6.20] is for cartesian squares in the category RingS.
In general, a cartesian square in the category of complex manifolds is not
cartesian in RingS. For example, the complex vector space C2 is the product
of two copies of C in the category of complex manifolds, but is not the
product even in the subcategory LRS ⊂ RingS of locally ringed space. (By
contrast, from [Sta24, Tag 01JN], every cartesian square in the category of
schemes remains cartesian in LRS.)

In fact, by [Gil11, Cor. 5], the product E of two copies of C in LRS exists.
By the universal property of E, there is a unique morphism f : C2 → E in
LRS induced by the two projections pi : C2 → C. Let o = f(0) ∈ E. We
claim that the local ring OE,o is not Noetherian.

The local ring A := OC,0 = C{z} is the ring of convergent power series.
Let B = A ⊗C A. Let ϵ : B → A be the surjective (diagonal) morphism
defined by ϵ(f ⊗ g) = fg. Set I = ker(ϵ). Let c : A → C be the ring map
taking the constant term. Then cϵ : B → C is surjective, so m = ker(cϵ)
is a maximal ideal of B containing I. Set S = B \ m. Then OE,o =
S−1B. From [Tu97, p.367], I/I2 is a free B/I-module of infinite rank.
Thus, S−1(I/I2) = (S−1I)/(S−1I2) is a free S−1(B/I) = (S−1B)/(S−1I)-
module of infinite rank. In particular, the ideal S−1I of the ring S−1B is
not finitely generated. The claim is proved.
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By [GH78, p.679], the ring C{x, y} is Noetherian. Thus, the local

morphism f#0 : OE,o → OC2,0 = C{x, y} is not an isomorphism. Hence,
f is not an isomorphism in LRS.

Non-smooth base change

Remark 5.3.2.12. A base change theorem for algebraic varieties may not
have a direct generalization to complex analytic spaces. For example, the
affine base change theorem [Sta24, Tag 02KG] fails for morphism of Stein
manifolds. In the cartesian square (5.9), assume that S = SpecanC is a
point, X = C and S′ is a positive-dimensional complex manifold. Then
there is an open subset U ⊂ S′ isomorphic to an open ball in Cn with n > 0.
On the one hand, by Cartan’s Theorem B, Rf∗OX = f∗OX = OC(C). Thus,
g∗Rf∗OX is a free OS′-module of infinite rank dimCOC(C). From Corollary
A.1.5.4, Γ(U, g∗Rf∗OX) = OU (U) ⊗C OC(C). On the other hand, one has
f ′−1(U) = U × C and g′∗OX = OX′ , so

Γ(U, f ′∗g
′∗OX) = Γ(f ′−1(U), OX′)

=Γ(U × C, OU×C)
(a)

= OU (U)⊗̂COC(C),

where (a) uses [EP+96, p.75]. The natural morphism Γ(U, g∗Rf∗OX) →
Γ(U, f ′∗g

′∗OX) is not an isomorphism, so the base change morphism g∗f∗OX →
f ′∗g

′∗OX is not an isomorphism.

Lemma 5.3.2.13 is used in the proof of Proposition 5.5.1.2.

Lemma 5.3.2.13 (Base change). Consider the cartesian square (5.9) with
dimX,dimS′ finite and f flat proper. Then (5.10) induces an isomorphism
Lg∗Rf∗ → Rf ′∗Lg

′∗ of functors Dgood(X)→ Dgood(S′).

Proof. Because dimX is finite, by Theorem 5.3.1.7 and Proposition 5.3.1.2
2, the functor Lg∗Rf∗ : D(X) → D(S′) restricts to a functor Dgood(X) →
Dgood(S′). Consider the following commutative diagram

X ′ S′ ×X X

S′ S′ × S S,

i′

f ′

g′

IdS′×f
p′

f

i

g

p

where the morphism i : S′ → S′ × S is defined by i(s′) = (s′, g(s′)), and
p : S′ × S → S is the projection. Then i is a closed embedding of complex
analytic spaces.
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Because p is locally product, by Theorem 5.3.2.3, the natural transformation
Lp∗Rf∗ → R(IdS′×f)∗Lp

′∗ : Dgood(X)→ Dgood(S′×S) is an isomorphism.
Because f is flat proper, so is IdS′ × f . Moreover, dim(S′ ×X) = dimS′ +
dimX is finite. Thus, there are isomorphism of functors Dgood(X) →
Dgood(S′)

Lg∗Rf∗ ∼= Li∗Lp∗Rf∗
∼−→ Li∗R(IdS′ × f)∗Lp

′∗

(a)
∼−→Rf ′∗Li′∗Lp′∗ ∼= Rf ′∗Lg

′∗,

(5.12)

where the isomorphism (a) uses Lemma 5.3.2.14 2. By [Sta24, Tag 0E47],
the isomorphism (5.12) is induced by (5.10).

Lemma 5.3.2.14. In the cartesian square (5.9), assume that g is a closed
embedding of complex analytic spaces. Then:

1. The base change morphism f∗g∗OS′ → g′∗OX′ in Mod(OX) is an
isomorphism.

2. If f is flat proper and X has finite dimension, then (5.10) is an
isomorphism.

Proof. 1. Let I be the kernel of the canonical surjection OS → g∗OS′

in Mod(OS). Since f∗ : Mod(OS) → Mod(OX) is right exact, the
sequence

f∗I → OX → f∗g∗OS′ → 0

is exact in Mod(OX). Because g is a closed embedding, by [Gro60a,
Remarque 2.10], the square (5.9) is cartesian in the category RingS.
Then from [Gro60a, 9–05], the cokernel of the morphism f∗I → OX
in Mod(OX) is g′∗OX′ . Therefore, the morphism f∗g∗OS′ → g′∗OX′ is
an isomorphism.

2. As g is a closed embedding, the functor g∗ : Ab(S′)→ Ab(S) is exact
and g−1g∗ = IdAb(S′). Therefore, the functor Rg∗ = g∗ : D(S′) →
D(S) is conservative in the sense of [Rie17, p.180]. Thus, it suffices to
show that the natural transformation

Rg∗Lg
∗Rf∗E → Rg∗Rf

′
∗Lg

′∗E
∼−→ Rf∗Rg

′
∗Lg

′∗E (5.13)

of functors D(X) → D(S) is an isomorphism. By [Sta24, Tag 0B55],
the natural morphisms

(Rg∗OS′)⊗LOS Rf∗E → Rg∗Lg
∗Rf∗E,

(Rg′∗OX′)⊗LOX E → Rg′∗Lg
′∗E
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are isomorphisms. One has

Rg′∗OX′ = g′∗OX′

(a)
∼←− f∗g∗OS′

(b)

= Lf∗Rg∗OS′ ,

where (a) uses Point 1, and (b) uses the flatness of f . Thus, the natural
transformation (5.13) becomes

(Rg∗OS′)⊗LOS Rf∗E → Rf∗(Lf
∗Rg∗OS′ ⊗LOX E).

It is an isomorphism by the finiteness of dimX, the properness of f
and Fact 5.3.2.15.

From Fact 5.3.1.10, one gets Fact 5.3.2.15 as a special case of [Spa88,
Prop. 6.18]. A slight variant can also be derived from [KS90, Prop. 2.6.6]
and Lemma 5.4.2.1.

Fact 5.3.2.15 (Projection formula). Let f : X → Y be a morphism of
complex analytic spaces. If dimX is finite, then there is a canonical isomorphism
(Rf!−)⊗LOY (+)→ Rf!(−⊗LOX Lf

∗+) of bifunctors D(X)×D(Y )→ D(Y ).

5.3.3 Compatibility

For a complex algebraic variety X, let ψX : Xan → X be its complex
analytification. With quasi-coherence condition, the algebraic and analytic
integral transforms are compatible.

Corollary 5.3.3.1. Let X,Y be two complex algebraic varieties, with X
proper. Then for every K ∈ Dqc(X × Y ), the natural square

D(X) D(Y )

D(Xan) D(Y an),

ϕ
[X→Y ]
K

ψ∗
X ψ∗

Y

ϕ
[Xan→Y an]
Kan

restricts to a commutative square

Dqc(X) Dqc(Y )

Dgood(Xan) Dgood(Y an).

ϕ
[X→Y ]
K

ψ∗
X ψ∗

Y

ϕ
[Xan→Y an]
Kan

(5.14)
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Proof. From [Sta24, Tag 08DW (1)], [Sta24, Tag 08DX (1)] and [Sta24, Tag

08D5 (1)], the functor ϕ
[X→Y ]
K restricts to a functor Dqc(X)→ Dqc(Y ). By

Corollary 5.3.1.16 and compactness of Xan, the functor ϕ
[Xan→Y an]
Kan restricts

to a functor Dgood(Xan)→ Dgood(Y an). By Lemma B.2.0.3, the functor ψ∗
X

(resp. ψ∗
Y ) restricts to a functor Dqc(X) → Dgood(Xan) (resp. Dqc(Y ) →

Dgood(Y an)).
By [Sta24, Tag 0D5S] (resp. [Sta24, Tag 079U]), analytification commutes

with derived pullback (resp. tensor product). As X is proper over C, the
projection pY : X×Y → Y is proper. By Proposition B.3.0.1, analytification
commutes with derived direct image. Thus, the square (5.14) is commutative.

Remark 5.3.3.2. Fact B.2.0.2 (Theorem B.4.0.2) proves Corollary 5.4.1.2
(resp. Theorem 5.4.1.1) for complex tori that are algebraic. Because if X is
a complex abelian variety, then every functor in the square

Db
c(X) Db

c(X̂)

Db
c(X

an) Db
c(X̂

an)

RŜ

ψ∗
X

ψ∗
X̂

RŜ

Dqc(X) Dqc(X̂)

Dqc(X
an) Dqc(X̂

an)

RŜ

ψ∗
X

ψ∗
X̂

RŜ

is an equivalence. In fact, by [Huy06, Def. 5.1] and the natural equivalence
Db(Coh(X)) → Db

c(X) in [SGA 6, Exp. II, Cor. 2.2.2.1], the functor RŜ :
D(X)→ D(X̂) restricts to a functor Db

c(X)→ Db
c(X̂). The functor on the

top of the square is an equivalence by Fact 5.2.0.1. From Fact B.2.0.2, the
vertical functors are also equivalences. From Corollary 5.3.1.16, the functor
RŜ restricts to a functor Db

c(X
an) → Db

c(X̂
an). The commutativity of the

square follows from Corollary 5.3.3.1.

5.4 Analytic Mukai duality

5.4.1 Statement

Let X be a complex torus of dimension g.

Theorem 5.4.1.1 (Mukai, Ben-Bassat, Block, Pantev). There are natural
isomorphisms of functors

RS ◦RŜ ∼−→ [−1]∗X [−g] : Dgood(X)→ Dgood(X);

RŜ ◦RS ∼−→ [−1]∗
X̂

[−g] : Dgood(X̂)→ Dgood(X̂).

In particular, RS : Dgood(X̂) → Dgood(X) is an equivalence of categories,

with a quasi-inverse [−1]∗
X̂
RŜ[g].
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Corollary 5.4.1.2. 4 The functors RS : Db
c(X̂) → Db

c(X) and RŜ :
Db
c(X)→ Db

c(X̂) are equivalences of triangulated categories.

Proof. It follows from Corollary 5.3.1.16 and Theorem 5.4.1.1.

Remark 5.4.1.3. A Mukai duality for complex tori similar to Corollary 5.4.1.2
is stated in [Blo10, p.314], with Db(Coh(∗)) at the place of Db

c(∗). However,
Prof. Jonathan Block told the author that here we should stick to Db

c(∗). In
fact, in general the abelian category Coh(X) does not have enough injectives,
so it is unclear how to define the derived direct image involved in [Blo10,
p.314]. Moreover, recently Prof. Alexey Bondal announced5 that for a
generic complex torusX of dimension> 2, the natural functorDb(Coh(X))→
Db
c(X) is not an equivalence.

5.4.2 Proof

We follow the strategy of [BBP07, Thm. 2.1] to prove Theorem 5.4.1.1.

Preliminaries

Lemma 5.4.2.1 (Associativity). Let A,B be two sheaves of rings on a
topological space X. For M ∈ D(Mod(A)), N ∈ D(BiMod(A,B)),6 and
K ∈ D(Mod(B)), there is a canonical isomorphism M ⊗LA (N ⊗LB K) =
(M ⊗LA N)⊗LB K in D(BiMod(A,B)).

Proof. By [Sta24, Tag 06YF], there exists a quasi-isomorphism M ′ → M
(resp. K ′ → K) in D(Mod(A)) (resp. D(Mod(B))), where M ′ (resp. K ′) is
a K-flat complex of A (resp. B) modules. From [Sta24, Tag 06YH], one has

M ⊗LA (N ⊗LB K) = M ′ ⊗A (N ⊗LB K)

=M ′ ⊗A (N ⊗B K ′) = (M ′ ⊗A N)⊗B K ′

=(M ⊗L N)⊗B K ′ = (M ⊗LA N)⊗LB K.

Lemma 5.4.2.2, an analytic analog of [Muk81, Example 1.2], exhibits
the derived pullback and direct image as particular examples of integral
transforms.

Lemma 5.4.2.2. Let f : X → Y be a morphism of complex analytic spaces.
Let i : Γf → X × Y be the inclusion of the graph of f . Set F = i∗OΓf ∈
Mod(OX×Y ). Then there are canonical isomorphism of functors

ϕ
[X→Y ]
F

∼−→ Rf∗ : D(X)→ D(Y ); (5.15)

ϕ
[Y→X]
F

∼−→ Lf∗ : D(Y )→ D(X). (5.16)
4[PPS17, Thm. 13.1] relies on Statement 5.2.0.5.
5https://www.mathnet.ru/eng/present35371
6Here, BiMod(A,B) denotes the category of sheaves of (A,B)-bimodules.
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Proof. Let g : Γf → X be the projection. Since g is an isomorphism of
complex analytic spaces, one has a canonical isomorphism

Lg∗
∼−→ R(g−1)∗ (5.17)

of functors D(X)→ D(Γf ). Consider the following diagram

Γf X × Y

X Y.

i

g
pX

pY

f

As i is a closed embedding of complex analytic spaces, by [Sta24, Tag 0B55],
the natural transformation

Ri∗OΓf ⊗
L Lp∗X(·)→ Ri∗Li

∗Lp∗X(·) (5.18)

is an isomorphism of functors D(X)→ D(X × Y ). One has

ϕ
[X→Y ]
F :=RpY ∗(F ⊗L p∗X ·) = RpY ∗(Ri∗OΓf ⊗

L Lp∗X ·)
(a)
∼−→RpY ∗Ri∗Li

∗Lp∗X

(b)
∼−→ RpY ∗Ri∗Lg

∗

(c)
∼−→RpY ∗Ri∗R(g−1)∗

(d)
∼−→ Rf∗,

where (a) (resp. (c)) uses (5.18) (resp. (5.17)), and (b), (d) are from [Spa88,
Thm. A (iii)].

Thus, (5.15) is proved. The proof of (5.16) is similar.

Proposition 5.4.2.3 is the first ingredient of the proof of Theorem 5.4.1.1,
which expresses the composition of two integral transforms as another integral
transform.

Proposition 5.4.2.3. Let M,N,P be complex analytic spaces, with M,N
compact and dimP finite. Let pij be the projections of the product M×N×
P . For K ∈ Dgood(M ×N) and L ∈ D(N × P ), set

H = Rp13∗(p
∗
12K ⊗L p∗23L)(∈ D(M × P )).

Then there is a natural isomorphism ϕ
[N→P ]
L ϕ

[M→N ]
K

∼−→ ϕ
[M→P ]
H of functors

Dgood(M)→ D(P ).

Proof. Let

a : M ×N →M, b : N × P → P,

p : M ×N → N, q : N × P → N,

u : M × P →M, v : M × P → P

147

https://stacks.math.columbia.edu/tag/0B55


be projections.
The morphism q is locally product. Properness of p follows from the

compactness of M . By Propositions 5.3.1.2 2 and 5.3.1.5 2, the functor K⊗L
a∗· : D(M)→ D(M×N) restricts to a functor Dgood(M)→ Dgood(M×N).
Then one can apply Theorem 5.3.2.3 to the cartesian square

M ×N × P M ×N

N × P N,

p12

p23 □ p

q

so the base change natural transformation induces an isomorphism

q∗Rp∗(K ⊗L a∗·)→ Rp23∗p
∗
12(K ⊗L a∗·) (5.19)

of functors Dgood(M)→ Dgood(N × P ). Thus, one has isomorphisms

ϕ
[N→P ]
L ϕ

[M→N ]
K =Rb∗[L⊗L q∗Rp∗(K ⊗L a∗·)]

(a)
∼−→Rb∗[L⊗L Rp23∗p∗12(K ⊗L a∗·)]
(b)
∼−→Rb∗Rp23∗[p∗23L⊗L p∗12(K ⊗L a∗·)]
∼=Rp3∗[p∗23L⊗L p∗12(K ⊗L a∗·)]
∼=Rv∗Rp13∗(p∗12K ⊗L p∗23L⊗L p∗1·)
(c)
∼←−Rv∗[H ⊗L u∗·] = ϕ

[M→P ]
H ,

of functors Dgood(M) → D(P ) where (a) uses (5.19), and (b) (resp. (c)) is
from the compactness of M (resp. N) and Fact 5.3.2.15.

Fact 5.4.2.4, the other ingredient of the proof of Theorem 5.4.1.1, calculates
the cohomology of the Poincaré bundle.

Fact 5.4.2.4 ([Kem91, Thm. 3.15]). Let X be a complex torus of dimension
g. Let pX : X × X̂ → X, pX̂ : X × X̂ → X̂ be the two projections. Then
for the normalized Poincaré bundle P, one has RpX∗P = C0[−g] in Db(X)
and RpX̂∗P = C0[−g] in Db(X̂).

Proof of Theorem 5.4.1.1

By Corollary 5.3.1.16, the functor RS (resp. RŜ) restricts to a functor
Dgood(X̂) → Dgood(X) (resp. Dgood(X) → Dgood(X̂)). Let pij be the

projections of X ×X × X̂. Set

H = Rp12,∗(p
∗
13P ⊗L p∗23P).
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By Propositions 5.3.1.2 1 and 5.3.1.5 1, Fact 5.3.1.8 and Lemma 5.3.1.11,
one has H ∈ Db

c(X ×X). By Proposition 5.4.2.3, one has an isomorphism

of RS ◦ RŜ ∼−→ ϕ
[X→X]
H of functors Dgood(X) → Dgood(X). Let m : X ×

X → X be the group law. Since the OX×X×X̂ -module p∗13P is flat, one has

p∗13P⊗Lp∗23P = p∗13P⊗p∗23P. By [BL04, Lem. 14.1.7],7 the OX×X×X̂ -module

p∗13P ⊗p∗23P is isomorphic to (m× IdX̂)∗P. Then H
∼−→ Rp12,∗(m× IdX̂)∗P.

Because the morphism m is smooth, applying Theorem 5.3.2.3 to the
cartesian square

X ×X × X̂ X × X̂

X ×X X

m×IdX̂

p12 □ pX

m

in the category An, one has an isomorphism m∗RpX,∗P → H in Db
c(X×X).

Let i : Γ[−1] → X × X be the inclusion of the graph of [−1]X : X → X.

From Fact 5.4.2.4, one has H
∼−→ m∗C0[−g] = i∗OΓ[−1]

[−g]. By Lemma

5.4.2.2, there is an isomorphism ϕ
[X→X]
H

∼−→ [−1]∗X [−g] of functors D(X)→
D(X), which shows the isomorphism RS ◦ RŜ ∼−→ [−1]∗X [−g] of functors
Dgood(X)→ Dgood(X). The proof of the second isomorphism is similar.

5.5 Properties of Fourier-Mukai transform

For later reference purposes, we check that each result starting from Theorem
2.2 to (3.12’) in [Muk81] has an analytic version. We only indicate the
necessary modifications in statements and proofs.

For a complex torus X, let gX be its dimension. Let (RSX , RŜX) be the
Fourier-Mukai transform of X. The subscripts are omitted when there is
only one complex torus in context. Let pX : X×X̂ → X, pX̂ : X×X̂ → X̂ be

the projections. For a morphism ϕ : X → Y of complex tori, let ϕ̂ : Ŷ → X̂
be the dual morphism.

5.5.1 Functoriality

Exchange of translations and twists

For every point x of the complex torus X, let Tx : X → X, x′ 7→ x′ +x be
the translation by x.

Proposition 5.5.1.1. For every x ∈ X and every x̂ ∈ X̂, there are canonical
isomorphisms

RS ◦ T ∗
x̂
∼= (· ⊗OX P−x̂) ◦RS, (5.20)

RS ◦ (· ⊗OX̂ Px) ∼= T ∗
x ◦RS (5.21)

7It is stated for abelian varieties, but its proof works for complex tori.
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of funtors D(X̂)→ D(X).

Proof. We prove (5.20). From [BL04, Cor. A.9], one gets

T ∗
(0,−x̂)P

∼−→ P ⊗OX×X̂
p∗XP−x̂; (5.22)

T ∗
(x,0)P

∼−→ P ⊗OX×X̂
p∗
X̂
Px. (5.23)

Then there are isomorphisms

RS(T ∗
x̂ ·) =RpX∗(P ⊗OX×X̂

p∗
X̂
T ∗
x̂ ·)

=RpX∗(P ⊗OX×X̂
T ∗
(0,x̂)p

∗
X̂
·)

=RpX∗T
∗
(0,x̂)(T

∗
(0,−x̂)P ⊗OX×X̂

p∗
X̂
·)

∼−→RpX∗R(T(0,−x̂))∗(T
∗
(0,−x̂)P ⊗OX×X̂

p∗
X̂
·)

∼=RpX∗(T
∗
(0,−x̂)P ⊗OX×X̂

p∗
X̂
·)

(a)
∼−→RpX∗(p

∗
XP−x̂ ⊗ P ⊗OX×X̂

p∗
X̂
·)

(b)
∼←−P−x̂ ⊗RpX∗(P ⊗OX×X̂

p∗
X̂
·)

=P−x̂ ⊗RS(·)

of functors D(X̂) → D(X), where (a) (resp. (b)) uses (5.22) (resp. Fact
5.3.2.15).

We prove (5.21) as follows:

RS(Px ⊗ ·) =RpX∗(P ⊗OX×X̂
p∗
X̂

(Px ⊗ ·))

=RpX∗(P ⊗OX×X̂
p∗
X̂
Px ⊗ p∗X̂ ·))

(a)
∼−→RpX∗(T

∗
(x,0)P ⊗OX×X̂

p∗
X̂
·)

=RpX∗T
∗
(x,0)(P ⊗OX×X̂

T ∗
(−x,0)p

∗
X̂
·)

∼−→RpX∗R(T(−x,0))∗(P ⊗OX×X̂
T ∗
(−x,0)p

∗
X̂
·)

∼=R(T−x)∗RpX∗(P ⊗OX×X̂
p∗
X̂
·)

∼=T ∗
xRS(·),

where (a) uses (5.23).

Exchange of the direct image and the inverse image

A result similar to Proposition 5.5.1.2 is stated as [Lau96, Prop. 1.3.1].
As Laumon omits its proof, we give one. The Fourier-Mukai transform is
functorial.
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Proposition 5.5.1.2. For a morphism ϕ : Y → X of complex tori, there
are canonical isomorphisms of functors

Lϕ∗ ◦RSX ∼= RSY ◦Rϕ̂∗ : Dgood(X̂)→ Dgood(Y ), (5.24)

Rϕ∗ ◦RSY ∼= RSX ◦ Lϕ̂∗(·)[gX − gY ] : Dgood(Ŷ )→ Dgood(X). (5.25)

Proof. The isomorphism (5.25) follows from (5.24) as follows. There are
isomorphisms

Rϕ∗RSY

(a)
∼−→[−1]∗XRSXRŜXRϕ∗RSY (·)[gX ]

(b)
∼−→[−1]∗XRSXLϕ̂

∗RŜYRSY (·)[gX ]

(c)
∼−→[−1]∗XRSXLϕ̂

∗[−1]∗Y (·)[gX − gY ]

=RSXLϕ̂
∗(·)[gX − gY ]

of functors Dgood(Ŷ ) → Dgood(X), where (a) and (c) use Theorem 5.4.1.1,
and (b) uses (5.24).

To prove (5.24), we show

(ϕ× IdX̂)∗PX ∼= (IdY × ϕ̂)∗PY . (5.26)

Set L := (ϕ×IdX̂)∗PX⊗OY×X̂
(IdY ×ϕ̂)∗P−1

Y . By definition, on the one hand

for every x̂ ∈ X̂, one has L|Y×x̂
∼−→ ϕ∗Px̂ ⊗P−1

ϕ̂(x̂)

∼−→ OY ; on the other hand,

one has L|0×X̂
∼−→ ϕ̂∗OŶ

∼−→ OX̂ . By the seesaw principle [BL04, Cor. A.9],

these imply L
∼−→ OY×X̂ .

By applying Theorem 5.3.2.3 to the cartesian square

Y × X̂ X̂

Y × Ŷ Ŷ

p2

IdY ×ϕ̂ □ ϕ̂

pŶ

in the category An, the base change natural transformation

p∗
Ŷ
Rϕ̂∗ → R(IdY × ϕ̂)∗p

∗
2 (5.27)

induces an isomorphism of functorsDgood(X̂)→ Dgood(Y×Ŷ ). By Propositions

5.3.1.2 2 and 5.3.1.5 2, the functor PX⊗p∗X̂(·) : D(X̂)→ D(X×X̂) restricts

to a functor Dgood(X̂)→ Dgood(X × X̂). Because pX is smooth proper, by
applying Lemma 5.3.2.13 to the cartesian square
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Y × X̂ X × X̂

Y X

p1

ϕ×IdX̂

□ pX

ϕ

in the category An, the base change natural transformation induces an
isomorphism

Lϕ∗RpX∗(PX ⊗ p∗X̂ ·)→ Rp1∗L(ϕ× IdX̂)∗(PX ⊗ p∗X̂ ·) (5.28)

of functors Dgood(X̂)→ Dgood(Y ).
There are isomorphisms

Lϕ∗ ◦RSX =Lϕ∗RpX∗(PX ⊗ p∗X̂ ·)
(a)
∼−→Rp1∗L(ϕ× IdX̂)∗(PX ⊗ p∗X̂ ·)
∼=Rp1∗[L(ϕ× IdX̂)∗PX ⊗L L(ϕ× IdX̂)∗p∗

X̂
·]

∼=Rp1∗[(ϕ× IdX̂)∗PX ⊗ p∗2·]
(b)
∼−→Rp1∗[(IdY × ϕ̂)∗PY ⊗ p∗2·]
∼=RpY ∗R(IdY × ϕ̂)∗[L(IdY × ϕ̂)∗PY ⊗ p∗2·]
(c)
∼←−RpY ∗[PY ⊗R(IdY × ϕ̂)∗p

∗
2·]

(d)
∼←−RpY ∗[PY ⊗ p∗ŶRϕ̂∗·]

=RSYRϕ̂∗

of functors Dgood(X̂) → Dgood(Y ), where (a) (resp. (b), resp. (c), resp.
(d)) uses (5.28) (resp. (5.26), resp. Fact 5.3.2.15, resp. (5.27)). This proves
(5.24).

Remark 5.5.1.3. In Proposition 5.5.1.2, if ϕ is an isogeny, then

ϕ∗ ◦RSX ∼= RSY ◦ ϕ̂∗ : Dgood(X̂)→ Dgood(Y );

ϕ∗ ◦RSY ∼= RSX ◦ ϕ̂∗ : Dgood(Ŷ )→ Dgood(X).

In fact, ϕ is finite flat and gY = gX . By [GR04, Thm. 4, p.47], the functor
ϕ∗ : Mod(Y )→ Mod(X) is exact, so Rϕ∗ = ϕ∗ as a functor D(Y )→ D(X).
By the flatness, the inverse image ϕ∗ : Mod(X) → Mod(Y ) is exact and
Lϕ∗ = ϕ∗ as a functor D(X)→ D(Y ).

In [Muk81, (3.4)]), for an isogeny ϕ : Y → X of abelian varieties, the
derived functor Rϕ∗ : Dqc(Y ) → Dqc(X)) is also written as ϕ∗, but for a
different reason [Sta24, Tag 08D7].
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For the first half of [Muk81, Prop. 3.11 (4)], the result [MRM74, Sec.
23, Lem. 3] cited in its proof still holds for complex tori, with a similar (and
simpler) proof.

Exchange of the Pontrjagin product and the tensor product

Let pi be the two projections X ×X → X. Define a bifunctor ∗R : D(X)×
D(X) → D(X) by − ∗R + = Rm∗(p

∗
1 − ⊗Lp∗2+). As in Corollary 5.3.1.16,

the bifunctor ∗R restricts to a bifunctor Dgood(X)×Dgood(X)→ Dgood(X)
(resp. Db

c(X)×Db
c(X)→ Db

c(X)).

Fact 5.5.1.4 ([Muk81, (3.7)]). For every F ∈ Dgood(X̂), there are canonical
isomorphisms

RS(F ∗R ·) ∼= RS(F )⊗L RS(·),
RS(F ⊗L ·) ∼= RS(F ) ∗R RS(·)[g]

of functors Dgood(X̂)→ Dgood(X).

Commutativity with external tensor product

Let M,N be two complex analytic spaces. Let p : M × N → M and
q : M × N → N be the projections. The bifunctor D(M) × D(N) →
D(M ×N), (−,+) 7→ (p∗−)⊗L (q∗+) is denoted by (·) ⊠L (·).

Proposition 5.5.1.5. Let X,Y be two complex tori and Z = X ×Y . Then
there is a canonical isomorphism RSZ(− ⊠L +) = RSX(−) ⊠L RSY (+) of
bifunctors Dgood(X̂)×Dgood(Ŷ )→ Dgood(Z).

Proof. By the seesaw principle, one has PZ
∼−→ PX ⊠L PY . Then there are

canonical isomorphisms

RSZ(−⊠L +) =RpZ∗[PZ ⊗L Lp∗Ẑ(−⊠L +)]
∼−→RpZ∗[(PX ⊠L PY )⊗L (Lp∗

X̂
(−) ⊠L Lp∗

Ŷ
(+))]

∼−→R(pX × pY )∗[(PX ⊗L Lp∗X̂(−)) ⊠L (PY ⊗L Lp∗Ŷ (+))]

(a)
∼←−RpX∗(PX ⊗L Lp∗X̂(−)) ⊠L RpY ∗(PY ⊗L Lp∗Ŷ (+))

=RSX(−) ⊠L RSY (+)

of bifunctors Dgood(X̂) × Dgood(Ŷ ) → Dgood(Z), where (a) uses Lemma
5.5.1.6 2.

Lemma 5.5.1.6.
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1. Let X,Y, T be complex analytic spaces, with X,T finite dimensional.
Let f : X → Y be a proper morphism. Then there is a canonical
isomorphism

Rf∗(−) ⊠L (+)→ R(f × IdT )∗(−⊠L +)

of bifunctors Dgood(X)×D(T )→ D(Y × T ).

2. Let fi : Xi → Yi (i = 1, 2) be proper morphism of complex analytic
spaces. If X1, X2 and Y1 are finite dimensional, then there is a canonical
isomorphism

(Rf1∗−) ⊠L (Rf2∗+)→ R(f1 × f2)∗(−⊠L +)

of bifunctors Dgood(X1)×Dgood(X2)→ Dgood(Y1 × Y2).

Proof.

1. Consider the notation in the commutative diagram

X × T X

T Y × T Y,

u

f×IdT
v □ f

pq

where u, v, p and q are projections. Since v = q ◦ (f × IdT ), there
is a canonical isomorphism v∗

∼−→ L(f × IdT )∗q∗ of functors D(T ) →
D(X × T ). As f × IdT is a base change of f , it is also proper. As
dim(X × T ) is finite, by Fact 5.3.2.15, the canonical morphism

[R(f × IdT )∗u
∗−]⊗L q∗+→ R(f × IdT )∗[u

∗ −⊗Lv∗+] (5.29)

of bifunctors D(X)×D(T )→ D(Y × T ) is an isomorphism.

By Theorem 5.3.2.3, one has a canonical isomorphism

p∗Rf∗ → R(f × IdT )∗u
∗ : Dgood(X)→ Dgood(Y × T ). (5.30)

Therefore, there are canonical isomorphisms

(Rf∗−) ⊠L + =(p∗Rf∗−)⊗L q∗+
(a)
∼−→[R(f × IdT )∗u

∗−]⊗L q∗+
(b)
∼−→R(f × IdT )∗[u

∗ −⊗v∗+]

=R(f × IdT )∗(−⊠L +),

of bifunctors Dgood(X) × D(T ) → D(Y × T ), where (a) (resp. (b))
uses (5.30) (resp. (5.29)).
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2. Since dim(X1 × X2) is finite, as in Corollary 5.3.1.16, the bifunctor
R(f1×f2)∗(−⊠L+) restricts to a bifunctor Dgood(X1)×Dgood(X2)→
Dgood(Y1 × Y2).
As dimY1,dimX2 are finite, by Point 1, there are canonical isomorphisms
of bifunctors

(Rf1∗−) ⊠L +→ R(f1 × IdX2)∗(−⊠L +) : Dgood(X1)×D(X2)→ D(Y1 ×X2),

(Rf1∗−) ⊠L (Rf2∗+)→ R(IdY1 × f2)∗[(Rf1∗−) ⊠L +] : D(X1)×Dgood(X2)→ D(Y1 × Y2).

Then there is a canonical isomorphism of bifunctors

(Rf1∗−) ⊠L (Rf2∗+)→ R(IdY1 × f2)∗[(Rf1∗−) ⊠L +]

→R(IdY1 × f2)∗R(f1 × IdX2)∗(−⊠L +)

→R(f1 × f2)∗(−⊠L +) : Dgood(X1)×Dgood(X2)→ Dgood(Y1 × Y2).

Skew commutativity with duality

We summarize classical facts about the duality theory on complex manifolds.

Fact 5.5.1.7. Let X be a complex manifold of pure dimension n, and let
ωX =

∧n ΩX be the canonical line bundle.

1. ( [RR70, p.81, p.90]) The dualizing functor DX = RHomX(·, ωX)[n] :
D(X)→ D(X) restricts to a functor Dc(X)→ Dc(X) and the natural
transformation Id→ DX ◦DX : Dc(X)→ Dc(X) is an isomorphism.
If X is compact, then DX exchanges8 D+

c (X) with D−
c (X), and induces

an equivalence Db
c(X)→ Db

c(X).

2. ( [RRV71, p.264]) There is a canonical isomorphism RHomX(−,+)→
DX(−⊗L DX+) of bifunctors Dc(X)×D+

c (X)→ D(X).

3. ( [RRV71, p.264], [Bjö93, p.122]) Let f : X → Y be a proper morphism
of complex manifolds. Then there is a canonical isomorphism of functors
Rf∗DX → DYRf∗ : Dc(X)→ D(Y ).

Proposition 5.5.1.8 ([Muk81, (3.8)]). There are canonical isomorphisms
of functors

DX ◦RS
∼−→ ([−1]∗X ◦RS ◦DX̂)[g] : D+

c (X̂)→ D−
c (X);

DX̂ ◦RŜ
∼−→ ([−1]∗

X̂
◦RŜ ◦DX)[g] : D+

c (X)→ D−
c (X̂).

8By [FS13, p.4971], in general the functor RHomX(·, ωX) : D(X) → D(X) does not
exchange Db,≤0

c (X) and Db,≥0
c (X).
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We make some preparation for the proof of Proposition 5.5.1.8. Lemma
5.5.1.9 is an adaption of [Har66, Ch.II, Prop. 5.8] and [Sta24, Tag 0C6I].

Lemma 5.5.1.9. Let f : X → Y be a flat morphism of complex analytic
spaces. Then:

1. There is a canonical natural transformation of bifunctors

f∗RHomY (−,+)→ RHomX(f∗−, f∗+) : D(Y )×D(Y )→ D(X).
(5.31)

2. The natural transformation (5.31) restricts to an isomorphism of bifunctors
D−
c (Y )×D(Y )→ D(X).

Proof. Set G ∈ D(Y ).

1. By [Spa88, Thm. D ], there is a functorial quasi-isomorphism G→ G′,
where G′ is a K-injective complex over Mod(OY ). There are natural
transformations of functors D(Y )→ D(X)

f∗RHomY (·, G)→ f∗HomY (·, G′)→ HomX(f∗·, f∗G′)

→RHomX(f∗·, f∗G′)
∼←− RHomX(f∗·, f∗G).

2. By [Har66, I, Examples 1], the (contravariant) functors

f∗RHomY (·, G), RHomX(f∗·, f∗G) : D(Y )→ D(X)

are bounded below. Consider F ∈ D−
c (Y ). To show the natural

morphism f∗RHomY (F,G) → RHomX(f∗F, f∗G) : D−
c (Y ) → D(X)

is an isomorphism, by [Har66, I, Prop. 7.1 (ii)], one may assume
F ∈ Coh(Y ). By [Sta24, Tag 08DL], one may shrink Y to open
subsets. Thus, from Lemma A.1.3.1, one may assume that there is
a quasi-isomorphism K → F , where K is a complex of finite free
OY -modules. The morphism f is flat, so f∗K → f∗F → 0 is a
globally free resolution of f∗F . The morphism (5.31) is identified
with f∗HomY (K,G)→ HomX(f∗K, f∗G), which is an isomorphism.

Lemma 5.5.1.10. Let E → X be a holomorphic vector bundle on a complex
manifold, and let E∨ be the dual vector bundle. Then there is an isomorphism
of functors E∨ ⊗DX · → DX(E ⊗ ·) : D(X)→ D(X).

Proof. Since E is a vector bundle, one has isomorphisms

E ⊗ · ∼−→ HomX(E∨, ·) ∼−→ RHomX(E∨, ·)

156

https://stacks.math.columbia.edu/tag/0C6I
https://stacks.math.columbia.edu/tag/08DL


of functors D(X)→ D(X). Then

DX(E ⊗ ·) = RHomX(RHomX(E∨, ·), ωX)[dimX].

As E∨ is a perfect object of D(X) (in the sense of [Sta24, Tag 08CM]), by
[Sta24, Tag 0G40], one has DX(E ⊗ ·) = RHomX(·, ωX)[dimX] ⊗L E∨ =
E∨ ⊗DX ·.

Corollary 5.5.1.11. Let f : X → Y be a flat morphism of complex manifolds
of relative dimension n. Write ωf = ωX ⊗OX f∗ω∨

Y for the relative dualizing
line bundle. Then there is a canonical isomorphism of functors DXf

∗DY →
ωf ⊗OX f∗(·)[n] : D−

c (Y )→ D−
c (X).

Proof. One has

DXf
∗DYOY = DX

(
f∗RHomY (OY , ωY )[dimY ]) = DX(f∗ωY [dimY ])

=RHomX(f∗ωY , ωX)[dimX − dimY ]
(a)

= HomX(f∗ωY , ωX)[n]

=f∗ω∨
Y ⊗OX ωX [n] = ωf [n],

(5.32)
where (a) uses that f∗ωY is a line bundle on X.

By Fact 5.5.1.7 1 and 2, there is an isomorphismDY
∼−→ RHomY (·, DYOY )

of functorsD−
c (Y )→ D+

c (Y ). From Lemma 5.5.1.9 2, there are isomorphisms

f∗DY
∼−→ f∗RHomY (·, DYOY )

∼−→ RHomX(f∗·, f∗DYOY )

of functors D−
c (Y ) → D+

c (X). Then by Fact 5.5.1.7 1 and 2 again, there
are isomorphisms

DXf
∗DY

∼−→ f∗(·)⊗L DXf
∗DYOY

(a)

=f∗(·)⊗LOX ωf [n]
(b)

= f∗(·)⊗OX ωf [n]

of functors D−
c (Y ) → D−

c (X), where (a) (resp. (b)) equality uses (5.32)
(resp. local freeness of ωf ).

Lemma 5.5.1.12. There is an isomorphism RpX∗(P−1⊗Lp∗
X̂
·) = [−1]∗XRS

of functors D(X̂)→ D(X).

Proof. By [BL04, Cor. A.9], one has P−1 ∼−→ ([−1]X × [1]X̂)∗P. Since pX̂ ◦
([−1]X × [1]X̂) = pX̂ , there are isomorphisms

RpX∗(P−1 ⊗L p∗
X̂
·) ∼−→ RpX∗([−1]X × [1]X̂)∗(P ⊗L p∗

X̂
·)

∼←−[−1]∗XRpX,∗(P ⊗L p∗X̂ ·) = [−1]∗XRS

of functors D(X̂)→ D(X).
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Proof of Proposition 5.5.1.8. By Fact 5.5.1.7 1 and 3, There are isomorphisms

DX ◦RS = DXRpX,∗(P ⊗L p∗X̂ ·)
∼−→ RpX,∗DX×X̂(P ⊗L p∗

X̂
·)

of functorsD+
c (X̂)→ D−

c (X). From Lemma 5.5.1.10, there is an isomorphism
DX×X̂(P ⊗L p∗

X̂
·) ∼−→ P−1 ⊗L DX×X̂p

∗
X̂
· of functors D(X̂) → D(X × X̂).

By Fact 5.5.1.7 1, the functor DX̂ restricts to a functor D+
c (X̂)→ D−

c (X̂),
whence Corollary 5.5.1.11 yields an isomorphism DX×X̂p

∗
X̂

= (p∗
X̂
DX̂ ·)[g] of

functors D+
c (X̂)→ D−

c (X × X̂). Therefore, there are isomorphisms

DX ◦RS
∼−→ RpX,∗(P−1 ⊗L p∗

X̂
DX̂ ·)[g]

(a)
∼−→ [−1]∗XRS(DX̂ ·)[g]

of functors D+
c (X̂)→ D−

c (X), where (a) uses Lemma 5.5.1.12.
The second isomorphism follows from the first by swappingX and X̂.

5.5.2 Unipotent vector bundles

Definition 5.5.2.1 ([Muk81, Def. 2.3]). We say that W.I.T. (weak index
theorem) holds for a coherent module F on the complex torus X if there
is an integer i(F ) such that H iRŜ(F ) = 0 for every integer i ̸= i(F ). In
that case, the integer i(F ) is called the index of F and the coherent module
F̂ := H i(F )RŜ(F ) on X̂ is called the Fourier transform of F . We say that
I.T. (index theorem) holds for F if there is an integer i0 such that for every
L ∈ Pic0(X) and every integer i ̸= i0, one has H i(X,F ⊗OX L) = 0.

Fact 5.5.2.2 ([Nak94, p.80]). Let F be a coherent OX-module, then I.T.
holds for F if and only if W.I.T holds for F and F̂ is locally free on X̂.

Example 5.5.2.4 show that that the word “Artinian” in Statement 5.5.2.3
is a typo. It should be “finite length” as in [Muk78, Thm. 4.12 (1)].

Statement 5.5.2.3 ([Muk81, Eg. 2.9]). Let X be an abelian variety. Let
ModAr(OX̂,0) ⊂ Mod(OX̂,0) be the full subcategory comprised of Artinian
OX̂,0-modules. Then the functor Mod(OX) → Mod(OX̂,0) taking the stalk

at 0 restricts to an equivalence Coh0(X̂)→ ModAr(OX̂,0) of categories.

Example 5.5.2.4. When dimX = 1, the ring OX̂,0 is a discrete valuation

ring (DVR). Let C(X̂) be the fraction field of OX̂,0 (or equivalently, the

field of rational functions on X̂). By Lemma 5.5.2.5 2, the OX̂,0-module

C(X̂)/OX̂,0 is Artinian but not finitely generated, so cannot be the stalk at

0 ∈ X̂ of any coherent OX̂ -module.

Lemma 5.5.2.5. Let R be a DVR with a uniformizer π and fraction field
K, then:
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1. For every nonzero proper R-submodule M ⊊ K, there is an integer n
such that M = πnR.

2. The R-module K/R is Artinian but not finitely generated.

Definition 5.5.2.6. A vector bundle U on a complex analytic space M is
called unipotent if it has a filtration by vector subbundles

0 = U0 ⊂ U1 ⊂ · · · ⊂ Un−1 ⊂ Un = U

such that Ui/Ui−1
∼= OM for all 1 ≤ i ≤ n. Denote the full subcategory of

Coh(M) consisting of unipotent vector bundles by Uni(M).

By [FL14, Lem. 5.1], every unipotent vector bundle on a complex torus
admits a flat holomorphic connection whose underlying local system is unipotent.

Proposition 5.5.2.7. 1. W.I.T. with index g holds for every unipotent
vector bundle on X.

2. The functor HgRŜ : Mod(OX)→ Mod(OX̂) restricts to an equivalence

Uni(X) → Coh0(X̂), with a quasi-inverse H0RS = RS : Coh0(X̂) →
Uni(X).

3. For every unipotent vector bundle U → X and every integer i ≥ 0,
one has H i(X,U) = ExtiOX̂,0

(C, Û).

Proof. 1. Because RŜ is a triangulated functor, the full subcategory of
Coh(X) comprised of modules satisfying W.I.T. of a fixed index is
closed under extensions. By Lemma 5.2.0.8 and Theorem 5.4.1.1, one
has RŜ(OX) = RŜRS(C0)

∼−→ C0[−g]. Then W.I.T. with index g
holds for OX , so it holds for every unipotent vector bundle on X.

2. By Point 1, one has an isomorphism of functors HgRŜ
∼−→ RŜ[g] :

Uni(X) → Mod(OX̂). The full subcategory of Mod(OX) comprised

of modules F with Supp
(
HgRŜ(F )) ⊂ {0} is closed under extensions

and contains OX , so it contains UniX . Since Uni(X) ⊂ Coh(X),
the functor HgRŜ : Mod(OX) → Mod(OX̂) restricts to a functor

Uni(X)→ Coh0(X̂).

For every F ∈ Coh0(X̂), the restriction Supp(p∗
X̂
F ⊗ P) → X of pX

is finite. By [GR04, Thm. 4, p.47], one has RS(F ) = H0RS(F ).
By Lemma 5.5.2.8 3, the OX̂ -module F has a filtration with successive
quotients isomorphic to C0. ThenRS(F ) has a filtration with successive
quotients isomorphic to RS(C0) = OX . By [EGA I, Ch. 0, 5.4.9], every
term of this filtration is finite locally free. Therefore, RS(F ) ∈ Uni(X)
and RS restricts to a functor Coh0(X̂) → Uni(X). By Theorem
5.4.1.1, the functor HgRŜ : Uni(X) → Coh0(X̂) is an equivalence
with a quasi-inverse RS.
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3. It follows from [Muk81, Prop. 2.7] and Point 1.

For a commutative ringR, let Modf (R) ⊂ Mod(R) be the full subcategory
comprised of R-modules of finite length. Lemma 5.5.2.8 1 confirms a guess
in [Gro60a, 9–12] for complex field.

Lemma 5.5.2.8. Let X be a complex analytic space. Let x ∈ X.

1. The functor i−1
x : Mod(OX)→ Mod(OX,x) taking the stalk at x restricts

to a functor Cohx(X)→ Modf (OX,x). In particular, if X is a singleton,
then dimCOX is finite.

2. The functor ix,∗ : D(OX,x)→ D(OX) restricts to a functor Modf (OX,x)→
Cohx(X).

3. The functor i−1
x : Cohx(X)→ Modf (OX,x) is an equivalence.

Proof. 1. For every F ∈ Cohx(X), to prove that Fx is a finite length
OX,x-module, one may assume that Fx ̸= 0. As F is a finite type OX -
module, Fx is a finite OX,x-module. Then SuppOX,x(Fx) is nonempty.
Let mx be the maximal ideal of OX,x. For every f ∈ mx, there is an
open neighborhood U of x ∈ X such that f is the stalk of some f̄ ∈
OX(U). Then f̄ vanishes on Supp(F ). By the Rückert Nullstellensatz
(see, e.g., [CAS, p.67]), there is an integer n ≥ 1 such that f̄nF = 0

near x. In particular, f ∈
√

AnnOX,x(Fx). Therefore,

mx ⊂
√

AnnOX,x(Fx).

By [CAS, Corollary, p.44], the ideal mx is finitely generated, so there
is an integer N ≥ 1 with mN

x ⊂ AnnOX,x(Fx). By [Sta24, Tag 00L6],
SuppOX,x(Fx) is the unique closed point of Spec(OX,x). By [Sta24, Tag
00L5], the OX,x-module Fx has finite length. The second statement
follows from Lemma 5.5.2.9.

2. Up to isomorphism, the only simple OX,x-module is the residue field
C. Every M ∈ Modf (OX,x) has a composite series with successive
quotients isomorphic to C. Thus, Mx has a filtration with successive
quotients isomorphic to Cx. Since Cx is coherent, by [Sta24, Tag
01BY (4)], Mx is coherent. Therefore, ix,∗ restricts to a functor
Modf (OX,x)→ Cohx(X).

3. Let ix : (x,OX,x) → (X,OX) be the canonical morphism of locally
ringed spaces. There is a canonical isomorphism i∗x(ix)∗

∼−→ IdMod(OX,x)

of functors Mod(OX,x)→ Mod(OX,x). By adjunction, (ix)∗ : Mod(OX,x)→
Mod(OX) is fully faithful. By Point 2, pushout (ix)∗ restricts to a
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functor Modf (OX,x)→ Cohx(OX). For every object F of Cohx(OX),
by Point 1, Fx is an object of Modf (OX,x). The adjunction morphism
F → (ix)∗(Fx) is an isomorphism. Thus, (ix)∗ : Modf (OX,x) →
Cohx(OX) is essentially surjective and hence an equivalence. Therefore,
the functor i∗x : Cohx(OX) → Modf (OX,x) (taking the stalk at x) is
an equivalence.

Lemma 5.5.2.9. Let F → A be a ring map, with F a field and (A,m) an
Artinian local ring. If dimF A/m is finite, then dimF A is finite.

Proof. Because A is an Artinian local ring ring, by [Ati69, Prop. 8.4], there
is an integer n > 0 with mn = 0. For every integer i ≥ 0, the A-module mi is
finitely generated, so the A/m-module mi/mi+1 is finitely generated. Thus,
dimF m

i/mi+1 = dimF A/m · dimA/mm
i/mi+1 is finite. Then dimF A =∑n

i=0 dimF m
i/mi+1 is finite.

5.5.3 Homogeneous vector bundles

Definition 5.5.3.1. A vector bundle E on the complex torusX is homogeneous
if for every x ∈ X, one has T ∗

xE
∼= E. Let H(X) ⊂ Coh(X) be the full

subcategory comprised of homogeneous vector bundles.

For a complex analytic space M , let Cohf (M) ⊂ Coh(M) be the full
subcategory consisting of objects with finite support.

Proposition 5.5.3.2. 1. For every integer i, the functor H iRŜ : Mod(OX)→
Mod(OX̂) restricts to a functor H(X)→ Cohf (X̂).

2. W.I.T. holds for every homogeneous vector bundle on X with index g.

3. The functor HgRŜ : Mod(OX)→ Mod(OX̂) restricts to an equivalence

of categories H(X)→ Cohf (X̂), with a quasi-inverse H0RS.

Proof. 1. Let E be a homogeneous vector bundle on X. By Corollary
5.3.1.16, the OX̂ -module H iRŜ(E) is coherent. For every x ∈ X, by

Proposition 5.5.1.1, one has RŜ(E)
∼−→ RŜ(T ∗

−xE)
∼−→ P ∗

x ⊗ RŜ(E),

so H iRŜ(E)
∼−→ P ∗

x ⊗H iRŜ(E). From Lemma 5.5.3.4, the support of
H iRŜ(E) is finite.
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2. For every integer i ̸= g, by Point 1, one has H iRŜ(E) ∈ Cohf (X̂) and

0 =H i−g([−1]∗XE)

=H i([−1]∗XE[−g])

(a)
∼−→H iRS ◦RŜ(E)

=H iRpX∗(P ⊗L p∗X̂RŜ(E))

(b)
∼−→H0RpX∗(P ⊗L p∗X̂H

iRŜ(E))

=H0RS(H iRŜ(E)),

where (a) (resp. (b)) uses Theorem 5.4.1.1 (resp. [GR04, Thm. 4,
p.47]).

It remains to prove that for every F ∈ Cohf (X̂) with H0RS(F ) = 0,
one has F = 0. Since F is the direct sum of finitely many coherent
submodules whose supports are singletons, one may assume that Supp(F )
is a singleton. By Proposition 5.5.1.1, one may assume that F ∈
Coh0(X̂). From Proposition 5.5.2.7 2, one has F = 0.

3. By Point 1, the functor HgRŜ : Mod(OX)→ Mod(OX̂) restricts to a

functor H(X)→ Cohf (X̂). From Point 2, one has an isomorphism of

functors HgRŜ ∼= RŜ[g] : H(X)→ Cohf (X̂).

By Propositions 5.5.1.1 and 5.5.2.7, the functor H0RS : Mod(OX̂)→
Mod(OX) restricts to a functor H0RS = RS : Cohf (X̂) → H(X).

By Theorem 5.4.1.1, the functor HgRŜ : H(X) → Cohf (X̂) is an
equivalence with a quasi-inverse H0RS.

For a sheaf of module F on a complex analytic space, denote the torsion
part of F (in the sense of [CD94, p.60]) by T (F ).

Lemma 5.5.3.3. Let X be a compact Kähler manifold. Let F be a coherent
OX-module. Then for every irreducible component C ⊂ Supp(F ), there is
a connected compact Kähler manifold Z and a morphism h : Z → X, such
that h(Z) = C and h∗F/T (h∗F ) is a vector bundle on Z of positive rank.

Proof. By [CAS, p.76], Supp(F ) is an analytic subset of X. Because X is a
Kähler manifold, with the induced reduced complex structure, the subspace
C is a Kähler space in the sense of [Var89, II, 1.3]. Let i : C → X be the
inclusion. Set

D = {x ∈ C : i∗F is not locally free at x}.

From [Ros68, Prop. 3.1], D is a strict analytic subset of C. By Rossi’s
theorem (see, e.g. [Rie71, Thm. 2]), there is a reduced irreducible complex
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analytic space W and a proper modification f : W → C, such that W \
f−1(D)→ C \D is biholomorphic and E := N/T (N) is a vector bundle on
W , where N = f∗i∗F . From [GD71, Cor. 5.2.4.1], one has Supp(N) = W .
From [CD94, I, Thm. 9.12], one gets Supp(T (N)) ̸= W . Therefore, the rank
r of the vector bundle E is positive.

Since f : W → C is bimeromorphic, the space W is in the Fujiki class
C (defined in [Fuj78, p.34]). By [Fuj78, Lem. 4.6, 1)], there is a connected
compact Kähler manifold Z with a surjective morphism g : Z →W . Denote

the composition Z
g→W

f→ C
i→ X by h. Then h(Z) = C. As E is flat over

OW , by [Sta24, Tag 05NJ], applying g∗ to the natural short exact sequence

0→ T (N)→ N → E → 0

in Mod(OW ), one gets a short exact sequence in Mod(OZ):

0→ g∗T (N)→ h∗F → g∗E → 0.

As g∗E is torsion free, g∗T (N) ⊃ T (h∗F ). One has g∗T (N) ⊂ T (g∗N) =
T (h∗F ). Therefore, T (h∗F ) = g∗T (N) and h∗F/T (h∗F ) = g∗E is a vector
bundle on Z of rank r > 0.

Lemma 5.5.3.4. Let M be a coherent sheaf on the complex torus X. If
M ⊗ P ∼= M for all P ∈ Pic0(X), then Supp(M) is finite.

Proof. Suppose the contrary that Supp(M) is infinite. With the reduced
induced complex structure, the complex subspace Supp(M) has positive
dimension. Let C be an irreducible component of Supp(M) of maximal
dimension. Take a morphism h : Z → X provided by Lemma 5.5.3.3.
Then the rank r of the vector bundle E := h∗M/T (h∗M) is positive. As
h(Z) = C, the morphism of complex tori h∗ : Pic0(X)→ Pic0(Z) is nonzero.
In particular, there is L ∈ Pic0(X) such that the line bundle (h∗L)⊗r is
nontrivial.

On the other hand, we claim that the line bundle (h∗L)⊗r is trivial.
Indeed, by assumption M ⊗L ∼= M , so h∗M ⊗h∗L ∼= h∗M . Since T (h∗M ⊗
h∗L) = T (h∗M) ⊗ h∗L, one gets E ⊗ h∗L ∼= E. Taking the determinant of
both sides, one has det(E) ⊗ (h∗L)⊗r ∼= det(E). As det(E) is an invertible
sheaf, the line bundle (h∗L)⊗r on Z is trivial. The claim is proved, which
gives a contradiction.

Remark 5.5.3.5. The proof of [Muk81, Lem. 3.3] (the algebraic counterpart
of Lemma 5.5.3.4) relies on the following fact: Every positive dimensional
projective variety contains a projective curve. By contrast, from [Pil00, Lem.
4.3], every simple non-algebraic complex torus contains no one-dimensional
analytic subset.
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The classification of homogeneous vector bundles on complex tori is due
to Matsushima [Mat59] and Morimoto [Mor59]. Using the Fourier-Mukai
transform, Mukai [Muk81, p.159] proves an analog for abelian varieties. We
can similarly recover Matsushima-Morimoto’s theorem.

Theorem 5.5.3.6. A vector bundle F on the complex torus X is homogeneous
if and only if there is an integer n ≥ 0, unipotent vector bundles U1, . . . , Un
on X and P1, . . . , Pn ∈ Pic0(X), such that F is isomorphic to ⊕ni=1Pi ⊗ Ui.

Proof. It follows from Propositions 5.5.1.1, 5.5.2.7 2 and 5.5.3.2 3.
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Chapter 6

Sheaves with connection on
complex tori

6.1 Introduction

6.1.1 Background

Mukai [Muk81, Sec. 2] introduces an analog of the Fourier transform for
sheaves of modules on abelian varieties, known as the Fourier-Mukai transform.
Laumon [Lau96] and Rothstein [Rot96] study independently its lift to sheaves
with connection (integrable or not). They both prove the Fourier inversion
formula for the lift. Laumon [Lau96, Thm. 6.3.3] applies it to investigate
generalized 1-motives. Meanwhile, as an application, Rothstein [Rot96,
Thm. 3.2] recovers Matsushima’s theorem [Mat59]: every vector bundle on
an abelian variety admitting a connection is translation invariant. Schnell’s
work [Sch15] about holonomic D-modules on abelian varieties relies upon
the lift of the Fourier-Mukai transform.

Let k be an algebraically closed field. Let A,B be abelian varieties over k
dual to each other. Set g = dimA. Let pA (resp. pB) denote the projection
from A× B to A (resp. B). Let P be the normalized Poincaré line bundle
on A × B. We adopt the following sign convention for the Fourier-Mukai
transform:

RS1 = RpA∗(P ⊗L p∗B·) : D(OB)→ D(OA);

RS2 = RpB∗(P−1 ⊗L p∗A·) : D(OA)→ D(OB),
(6.1)

For a triangulated category, let T denote the degree shift automorphism.
For an algebraic variety V over k, denote by Dqc(OV ) ⊂ D(OV ) (resp.
Db
c(OV ) ⊂ Db(OV )) the full subcategory of objects whose cohomologies are

quasi-coherent (resp. coherent) OV -modules. Mukai establishes an analog
of the Fourier inversion formula for this triangulated subcategory.
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Fact 6.1.1.1 (Mukai, [Muk81, Thm. 2.2], [Rot96, p.569]). 1. There are natural
isomorphisms of functors

RS1 ◦RS2 ∼= T−g : Dqc(OA)→ Dqc(OA),

RS2 ◦RS1 ∼= T−g : Dqc(OB)→ Dqc(OB).

In particular, RS1 : Dqc(OB)→ Dqc(OA) is an equivalence of triangulated
categories, with a quasi-inverse T gRS2.

2. The functor RS1 : D(OB)→ D(OA) restricts to an equivalence Db
c(OB)→

Db
c(OA).

Let 0→ H0(A,Ω1
A)→ B♮ p→ B → 0 be the universal vectorial extension

of B (constructed in [Ros58, Prop. 11]). For an algebraic variety V , denote
the forgetful functor D(DV ) → D(OV ) by forV . Let Dqc(DA) ⊂ D(DA)
(resp. Db

c(DA) ⊂ Db(DA)) be the full subcategory of objects whose cohomologies
are quasi-coherent OA-modules (resp. coherent DA-modules). Laumon and
Rothstein lift the Fourier-transform to D-modules and establish a duality
result similar to Fact 6.1.1.1.

Fact 6.1.1.2 (Laumon, Rothstein).

1. There are functors RS1 : D(OB♮) → D(DA) and RS2 : D(DA) →
D(OB♮) fitting into commutative squares

Dqc(OB♮) Dqc(DA)

Dqc(OB) Dqc(OA),

RS1

Rp∗ forA

RS1

Dqc(OB♮) Dqc(DA)

Dqc(OB) Dqc(OA).

Rp∗

RS2

forA

RS2

2. (Remark 6.1.1.4) There are natural isomorphisms of functors

RS1RS2 ∼= T−g : Dqc(DA)→ Dqc(DA),

RS2RS1 ∼= T−g : Dqc(OB♮)→ Dqc(OB♮).

Thus, RS1 : Dqc(OB♮) → Dqc(DA) is an equivalence of triangulated
categories.

3. ([Lau96, Cor. 3.1.3], [Rot96, Thm. 6.2]) The functor RS1 : D(OB♮)→
D(DA) restricts to an equivalence RS1 : Db

c(OB♮)→ Db
c(DA).

Remark 6.1.1.3. Laumon and Rothstein use apparently different definitions
for the functors on D-modules. We sketch why the two definitions agree.

In the notation of [Lau96, p.14] and [Vig21, Sec. 2.1.1], one has functors
F̃ : Db

qc(DA) → Db
qc(OB♮) and F̃ ♮ : Db

qc(OB♮) → Db
qc(DA) defined by
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composition

Db
qc(DA) Db

qc(OB♮)

Db
qc(DB♮×A/B♮) Db

qc(DB♮×A/B♮);

F̃

p̃r!(B
♮)

(P̃,∇̃)⊗LO
B♮×A

·

p̃r♮
+/B♮

Db
qc(OB♮) Db

qc(DA)

Db
qc(DA×B♮/B♮) Db

qc(DA×B♮/B♮).

F̃♮

p̃r♮,♭
/B♮

(P̃,∇̃)⊗LO
A×B♮

·

p̃r
(B♮)
+

Applying the projection formula (to IdA× p : A×B♮ → A×B) and the flat
base change to the cartesian square

A×B♮ A×B

B♮ B,

IdA×p

p
B♮ pB

p

one gets an isomorphism forAF̃ ♮ ∼= F ′Rp∗ of functors Db
qc(OB♮)→ Db

qc(OA).
This shows the compatibility with the Fourier-Mukai transform, as well as
that [−1]∗AF̃ ♮ is the restriction of [Rot96, (4.16)] to Db

qc(OB♮). (The sign is
due to different conventions.) Fact 6.1.1.2 1 is not mentioned in [Lau96],
and is implicitly used in the derivation of [Rot96, (2.25)]. For Rothstein’s
definition, the compatibility can be proved as in Proposition 6.3.1.2.

Remark 6.1.1.4. The direct image functor pA∗ : Mod(OA×B) → Mod(OA)
restricts to a left exact functor pA∗ : Qch(OA×B)→ Qch(OA). LetR(qc)pA∗ :
D(Qch(OA×B))→ D(Qch(OA)) be the right derived functor of the restriction.
Denote the functor

R(qc)pA∗(P ⊗OA×B p
∗
Bπ∗·) : D(Qch(OB♮))→ D(Modqc(DA))

by R(qc)S1. Strictly speaking, [Rot96, Thm. 4.5] and [Rot97] demonstrate
that the functor R(qc)S1 is an equivalence. In comparison, Laumon’s result
[Lau96, Thm. 3.2.1] is stated for bounded derived categories Db

qc and needs
the characteristic of k to be 0.

We sketch how to get Fact 6.1.1.2 2 from Rothstein’s original statement.
For every algebraic variety V , by [Sta24, Tag 077P (1)], the abelian category
Qch(OV ) has enough injectives. Furthermore, from [Con00, Lem. 2.1.3], the
inclusion ιV : Qch(OV )→ Mod(OV ) preserves injectives. Let Mod(OB)sp be
as in Example 6.2.1.5 (resp. Mod(OA×B)−1−cxn denote Mod(OA×B)πB ,−π∗

B1−cxn

). Let Qch(OB)sp (resp. Qch(OA×B)−1−cxn) be the full subcategory of quasi-
coherent objects.

Then the exact functor π∗ : Qch(OB♮)→ Qch(OB)sp is the restriction of
Rπ∗ : D(OB♮) → D(Mod(OB)sp). Using [Lip60, Prop. 3.9.2] and [Har66, I,
Prop. 7.1 (iii)], one proves that the canonical square
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D(Qch(OB♮)) Dqc(OB♮)

D(Qch(OB)sp) Dqc(Mod(OB)sp)

Lι
B♮

π∗ Rπ∗

is commutative. Similarly, using [Kas04, Remark 3.2], one proves that the
canonical square

D(Qch(OA×B)−1−cxn) Dqc(Mod(OA×B)−1−cxn)

D(Modqc(DA)) Dqc(DA)

pA∗ RpA∗

Lι′A

is commutative. Therefore, the following square is commutative

D(Qch(OB♮)) D(Modqc(DA))

Dqc(OB♮) Dqc(DA).

R(qc)S1

Lι
B♮ Lι′A

RS1

(6.2)

By [Sta24, Tag 09T4] and Theorem E.1.0.4, the two vertical functors in (6.2)
are equivalences. As R(qc)S1 is an equivalence, so is the bottom row.

Remark 6.1.1.5. From [Sch14, p.97] and the square in [HT07, p.38], the
bifunctor⊗O on relativeD-modules is compatible with that on the underlying
O-modules. However, the following triangles

Db
qc(DA×B♮/B♮) Db

qc(DA×B♮/B♮)

Db
qc(OA×B♮),

for

(P̃,∇̃)⊗LO
A×B♮

·

(P̃,∇̃)⊗LO
A×B♮

·

Db
qc(OA×B♮) Db

qc(DA×B♮/B♮)

Db
qc(OA×B♮)

P̃⊗LO
A×B♮

·

(P̃,∇̃)⊗LO
A×B♮

·

for

are not commutative in general. Thus, the first remark in [Vig21, p.58] is
not true. In particular, the last but one equations in the proofs of [Vig21,
Propositions 2.2.12 and 2.2.13] are wrong. Similarly, in [Lau96, p.14], the
relative integrable connection on (P̃, ∇̃) ⊗O

B♮×A
p̃r♮∗M ♮ is induced by not

only ∇̃, but also the canonical relative connection on p̃r♮∗M ♮.
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6.1.2 Extension to complex tori

Let X,Y be complex tori dual to each other and of dimension g. Define
the analytic Fourier-Mukai transform RS1 : D(OX) → D(OY ) and RS2 :
D(OY ) → D(OX) by formulae similar to (6.1). For a complex manifold Z,
letDgood(OZ) ⊂ D(OZ) be the full subcategory of objects whose cohomologies
are good OZ-modules (in the sense of [Kas03, Def. 4.22]). In [BBP07,
Thm. 2.1], a result similar to Fact 6.1.1.1 is established for complex tori.

Fact 6.1.2.1 (Mukai, Ben-Bassat, Block, Pantev).

1. (Theorem 5.4.1.1) There are natural isomorphisms of functors

RS1RS2 ∼= T−g : Dgood(OY )→ Dgood(OY ),

RS2RS1 ∼= T−g : Dgood(OX)→ Dgood(OX).

In particular, RS1 : Dgood(OX) → Dgood(OY ) is an equivalence of
categories with a quasi-inverse T gRS2.

2. ([PPS17, Thm. 13.1]) The functor RS1 : D(OX) → D(OY ) restricts
to an equivalence Db

c(OX)→ Db
c(OY ).

We lift the analytic Fourier-Mukai transform to D-modules, and give an
analog of Fact 6.1.1.2. Good D-modules are reviewed in Section 6.6.1. For
a complex manifold Z and an OZ-algebra R, let DO−good(R) ⊂ D(R) (resp.
Db

good(R) ⊂ Db(R)) be the full subcategory of objects whose cohomologies
are good over OZ (resp. R).

Theorem 6.1.2.2.

� (Prop. 6.5.1.3) There is a canonical commutative OX-algebra AX , such
that the functors RS1 and RS2 lift naturally to triangulated functors
RS1 : D(AX)→ D(DY ) and RS2 : D(DY )→ D(AX) respectively.

� (Thm. 6.5.1.4) The functors RS1 and RS2 restrict to equivalences
RS1 : DO−good(AX) → DO−good(DY ) and RS2 : DO−good(DY ) →
DO−good(AX) respectively.

� (Thm. 6.6.3.1) The functors RS1 and RS2 restrict to equivalences
RS1 : Db

good(AX) → Db
good(DY ) and RS2 : Db

good(DY ) → Db
good(AX)

respectively.

Remark 6.1.2.3. Arinkin [Fav12, Thm. 3] uses Fact 6.1.1.2 3 to show that an
abelian variety A can be recovered from the triangulated category Db

c(DA).
By Proposition F.5.4.7, however, for a complex abelian varietyA, the complex
Lie group (A♮)an (associated with A♮) is isomorphic to (C∗)2g. So an analytic
version of Fact 6.1.1.2 3 needs a modification.
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The proof of Fact 6.1.1.2 due to Laumon [Lau96] and that of Rothstein
[Rot97] are different. Let π♮ : A♮ → Spec(k) be the structural morphism. As
an immediate step, Laumon [Lau96, Thm. 2.4.1] proves that the adjunction

morphism OSpec(k) → Rπ♮∗OA♮ is an isomorphism in Db
qc(OSpec(k)). By

contrast, when k = C, the adjunction morphismOSpecan(C) → R(π♮)an∗ O(A♮)an

is not an isomorphism. Still, the proof of [Rot97] works for complex tori.
We follow it closely, except that the underived Fourier-Mukai transforms
[Rot97, (2.14), (2.15)] are ignored. Instead, we define the corresponding
functors on the derived categories directly. We should notice four misprints
therein.

� [Rot97, (2.11)] should be

π̃12
∗P = [(1X × m̃)∗P]⊗OX×Y×Ỹ

[π̃13
∗P̃−1],

where π̃ij denotes the projections on X×Y ×Ỹ and Ỹ is the first-order
neighborhood of 0 in Y .

� [Rot97, (2.23)] should be

π∗13P−1 ⊗ π∗23P = (ϵX × 1Y )∗P,

where πij denotes the projections on X ×X × Y .

� In [Rot97, (2.24)], the starting equation should be

π̃∗12O∆ ⊗ π̃∗13P̃−1 ⊗ π̃∗23P̃.

� In [Rot97, Prop. 2.4], the notation Mod(X × X)(−1,1)−sp should be
Mod(X ×X)(1,−1)−sp.

Notation and conventions

For a sheaf F on a topological space, let SuppF be its support. For a (not
necessarily commutative) ringed space (X,R), let Mod(R) be the category of
left R-modules. Let Coh(R) ⊂ Mod(R) be the full subcategory of coherent
R-modules. Given a symbol ∗ ∈ {∅,+,−, b}, the notation D∗(R) refers to
the unbounded/bounded below/bounded above/bounded derived category
of the abelian category Mod(R) in order. Let D∗

c (R) ⊂ D∗(R) be the full
subcategory of objects whose cohomologies are coherent R-modules (in the
sense of [Sta24, Tag 01BV]).

Let k be an algebraically closed field. An algebraic variety refers to an
integral scheme of finite type and separated over k. For a complex manifold
Z and z ∈ Z, let iz : (z,C)→ (Z,OZ) be the closed embedding of complex
manifolds. Set Cz := (iz)∗C, which is a coherent OZ-module. Let X,Y be
complex tori dual to each other and of dimension g.
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6.2 Preliminaries

For the convenience of the reader, we recall the notation of [Rot97, Sec. 2.1].

6.2.1 Categories of splittings

For a complex manifold Z and a (holomorphic) vector bundle M → Z, by
[Har77, III, Prop. 6.3 (c)], one has H1(Z,M) = Ext1(OZ ,M). Thus, every
α ∈ H1(Z,M) determines a short exact sequence in Mod(OZ)

0→M → Eα
µα→ OZ → 0. (6.3)

Since OZ is a flat OZ-module, by [Sta24, Tag 05NJ], for every F ∈ Mod(OZ),
the sequence (6.3) remains exact after tensored with F :

0→M ⊗OZ F → Eα ⊗OZ F
µα⊗IdF→ F → 0.

Definition 6.2.1.1. Define a category Mod(OZ)α−sp as follows: the objects
are pairs (F,ψ), where F ∈ Mod(OZ) and ψ : F → Eα ⊗OZ F is an α-
splitting on F , i.e., an OZ-linear splitting of µα ⊗ IdF . The morphisms in
Mod(OZ)α−sp are required to be compatible with the splittings.

Example 6.2.1.2. If α = 0 and M = Ω1
Z , then an α-splitting ϕ on a vector

bundle E → Z is exactly a holomorphic 1-form on Z with values in End(E).
The pair (E, ϕ) is a Higgs bundle (in the sense of [Sim92, p.6]) if and only
if [ϕ, ϕ] = 0.

Lemma 6.2.1.3. For an OZ-module F , there is an α-splitting on F if and
only if the map i∗ : H1(Z,M) → H1(Z,M ⊗OZ End(F )) (induced by the
natural morphism OZ → End(F )) sends α to 0. In that case, the set of
α-splittings on F has a natural simple transitive action of the abelian group
HomOZ (F,M ⊗OZ F ).

Proof. The natural morphism OZ → End(F ) induces a morphism

i : M → HomOZ (F,M ⊗OZ F ), i(m)(f) = m⊗ f.

There is a canonical evaluation morphism ev : HomOZ (F,M ⊗OZ F )⊗F →
M ⊗OZ F, ev(ϕ⊗ f) = ϕ(f). The five-term exact sequence of the spectral
sequence

Ei,j2 = Exti(OZ , Extj(F,M ⊗OZ F ))⇒ Exti+j(F,M ⊗OZ F )

gives an injection ι : Ext1(OZ ,Hom(F,M ⊗OZ F )) → Ext1(F,M ⊗OZ F ),
which is Ext1(F, ev) ◦ (· ⊗ F ):
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Ext1(F,M ⊗OZ F )

Ext1(OZ ,M) Ext1(F,M ⊗OZ F ) Ext1(F,Hom(F,M ⊗OZ F )⊗ F )

Ext1(OZ ,Hom(F,M ⊗OZ F )).

(i⊗IdF )∗
=

·⊗F

i∗

Ext1(F,ev)

·⊗F
ι

One has

ev ◦ (i⊗ IdF )(m⊗ f) = ev(i(m)⊗ f) = i(m)(f) = m⊗ f,

so ev◦(i⊗IdF ) = IdM⊗OZF as morphisms M⊗OZ F →M⊗OZ F . Therefore,
the diagram is commutative. Then F admits an α-splitting if and only if
α ⊗ F = 0 if and only if i∗(α) = 0. Any two α-splittings on F differ by a
unique element of Hom(F,M ⊗OZ F ).

To each object (F,ψ) ∈ Mod(OZ)α−sp, we assign an element

[ψ,ψ] ∈ Γ(Z, (∧2M)⊗OZ End(F )) (6.4)

as follows. The sequence (6.3) induces a short exact sequence

0→ ∧2M → ∧2Eα
ωα→M → 0,

where
ωα(ρ1 ∧ ρ2) = µα(ρ1)ρ2 − µα(ρ2)ρ1.

The flatness of M ensures the exactness when tensoring with F :

0→ (∧2M)⊗ F → (∧2Eα)⊗ F ωα⊗IdF→ M ⊗OZ F → 0. (6.5)

Let a : Eα ⊗ Eα → ∧2Eα be the morphism defined by e⊗ e′ 7→ e ∧ e′. Let ψ1

be the composition

Eα ⊗ F
IdEα⊗ψ→ Eα ⊗ (Eα ⊗ F )

∼−→ (Eα ⊗ Eα)⊗ F a⊗IdF→ (∧2Eα)⊗ F,

where the isomorphism in the middle is from the associativity of tensor
product.

Lemma 6.2.1.4. One has (ωα ⊗ IdF )ψ1ψ = 0.

Proof. Locally, the vector bundle Eα has a (holomorphic) frame {e1, . . . , er}.
For a local section f ∈ F , write ψ(f) =

∑r
i=1 ei ⊗ fi, where fi are local

172



sections of F . For every 1 ≤ i ≤ r, write ψ(fi) =
∑r

j=1 ej ⊗ f
(i)
j , where f

(i)
j

are local sections of F . As ψ is a section to µα ⊗ IdF , one has

f = (µα ⊗ IdF )ψ(f) =

r∑
i=1

µα(ei)fi; (6.6)

fi = (µα ⊗ IdF )ψ(fi) =
r∑
j=1

µα(ej)f
(i)
j . (6.7)

From (6.6), one has

ψ(f) =
r∑
i=1

µα(ei)ψ(fi). (6.8)

By construction, one has ψ1ψ(f) =
∑r

i,j=1(ei ∧ ej)⊗ f
(i)
j . Then

(ωα ⊗ IdF )ψ1ψ(f) =

r∑
i,j=1

[µα(ei)ej − µα(ej)ei]⊗ f (i)j

=
r∑
i=1

µα(ei)
r∑
j=1

ej ⊗ f (i)j −
r∑
i=1

ei ⊗ [
r∑
j=1

µα(ej)f
(i)
j ]

(a)

=
r∑
i=1

µα(ei)ψ(fi)−
r∑
i=1

ei ⊗ fi

(b)

=ψ(f)− ψ(f) = 0,

where (a) and (b) use (6.7) and (6.8) respectively.

From Lemma 6.2.1.4 and (6.5), one has ψ1ψ(F ) ⊂ (∧2M) ⊗ F . The
morphism ψ1ψ : F → (∧2M)⊗F gives an element [ψ,ψ] ∈ Γ(Z, (∧2M)⊗OZ
End(F )).

Example 6.2.1.5. For the complex torus X, set g = H1(X,OX). Then

H1(X, g∗ ⊗C OX) = g∗ ⊗C g = End(g).

Hence a category Mod(OX)T−sp for each T ∈ End(g). The identity element
1 ∈ End(g) corresponds to the tautological exact sequence [Rot96, (1.3)]:

0→ g∗ ⊗C OX → E → OX → 0. (6.9)

We also write Mod(OX)sp for Mod(OX)1−sp. For (F,ψ) ∈ Mod(OX)sp, the
element [ψ,ψ] lies in

Γ(X,∧2g∗ ⊗C OX ⊗OX End(F )) = ∧2g∗ ⊗C End(F ),

and we recover [Rot96, (4.8)]. Similarly, H1(X×X, g∗⊗OX×X) = End(g)⊕
End(g), so for every pair T1, T2 ∈ End(g), the category Mod(OX×X)(T1,T2)−sp

is defined.
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6.2.2 Categories of twisted connection

We continue to review the twisted (relative) connection introduced in [Rot97,
p.206]. Consider a smooth morphism of complex manifolds f : Z → S, with
relative cotangent sheaf Ω1

f . As f is smooth, Ω1
f is a vector bundle on

Z. Let df : OZ → Ω1
f denote the differential relative to f . An element

α ∈ H1(Z,Ω1
f ) determines an extension

0→ Ω1
f → Eα

µα→ OZ → 0. (6.10)

Definition 6.2.2.1. On an OZ-module F , an α-connection is an f−1(OS)-
linear splitting ∇ : F → Eα ⊗OZ F to µα ⊗ IdF , satisfying the Leibniz rule

∇(hϕ) = h∇(ϕ) + df (h)⊗ ϕ, (6.11)

where h and ϕ are local sections ofOZ and F respectively. Let Mod(OZ)f,α−cxn

be the category of pairs (F,∇), where F ∈ Mod(OZ) and ∇ is an α-
connection on F .

Example 6.2.2.2. If α = 0, then α-connection are exactly f -relative connection.
Define a sheaf D̃Z/S of noncommutative OZ-algebras by gluing the following
local data. If {ξ1, . . . , ξn} is a local frame of (Ω1

f )∨ (the vector bundle dual to

Ω1
f ) on an open subset U ⊂ Z, then a multiplication law on OU{ξ1, . . . , ξn}

is introduced by imposing the commutation relation [ξi, h] = ξi(h) for local
sections h of OZ . Let it be D̃Z/S |U . Then Mod(Z)f,0−cxn = Mod(D̃Z/S).
The category Mod(OZ)f,0−cxn is denoted by Mod(OZ)cxn when f is the
structure morphism Z → Specan(C).

Remark 6.2.2.3. In fact, a twisted connection is a particular splitting. Define
another extension

0→ Ω1
f → Eα′ → OZ → 0 (6.12)

in Mod(OZ) as follows. As an extension of abelian sheaves, (6.12) is same
as (6.10). Let h (resp. s′) be a local section of OZ (resp. Eα′) and s denote
the local section of Eα induced by s′. The OZ-module structure on Eα′ is
defined such that the local section hs + µα(s)dfh of Eα induces the local
section hs′ of Eα′ .

We claim this indeed defines an OZ-module structure on Eα′ . For local
sections h1, h2 of OZ , let t be the local section of Eα induced by h2s

′. Then
t = h2s + µα(s)dfh2, so µα(t) = h2µα(s). Thus, the local section of Eα
corresponding to h1(h2s

′) is

h1t+µα(t)dfh1 = h1h2s+h1µα(s)dfh2+h2µα(s)dfh1 = (h1h2)s+µα(s)df (h1h2).

Therefore, h1(h2s
′) = (h1h2)s

′. The claim is proved.
By construction, the morphisms in (6.12) are OZ-linear. Then (6.12)

is indeed an extension in Mod(OZ), hence a new extension class α′ ∈
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Ext(OZ ,Ω
1
f ). An α-connection on F ∈ Mod(OZ) is equivalent to an α′-

splitting on F . Hence an equivalence of categories

Mod(OZ)f,α−cxn → Mod(OZ)α′−sp.

There is a notion of integrable α-connection in [Rot97, Remark, p.206].
Let Mod(OZ)f,α−cxn,fl be the full subcategory of Mod(OZ)f,α−cxn of objects
whose connection are integrable. Then Mod(OZ)f,0−cxn,fl coincides with
MIC(f) defined in [ABC20, 4.3.7], which is further equivalent to Mod(DZ/S).
HereDZ/S is the sheaf of ring of relative differential operators on Z/S defined
in [SS94, p.9].

Example 6.2.2.4. For the dual complex tori X,Y , consider the projection
pX : X × Y → X. Since Ω1

pX
= p∗X(g∗ ⊗C OX), there is a natural morphism

p∗X : End(g) = H1(X, g∗ ⊗C OX)→ H1(X × Y,Ω1
pX

).

For every T ∈ End(g), the category Mod(OX×Y )pX ,p∗XT−cxn (resp. Mod(OX×Y )pX ,p∗XT−cxn,fl)
is also written as Mod(OX×Y )T−cxn (resp. Mod(OX×Y )T−cxn,fl).

Fact 6.2.2.5 is taken from the two remarks in [Rot97, pp.206–207].

Fact 6.2.2.5. The Poincaré bundle P is naturally an object of Mod(OX×Y )−1−cxn,fl.

In local coordinates, the p∗X(−1)-connection on P is explained in [Rot96,
(1.10) and p.575ff.], except that we use a Stein open cover of X instead of
Rothestein’s affine open cover.

6.2.3 Functors between them

Recall that the Fourier-Mukai transform (6.1) is the composition of the
pullback, the tensor product with P as well as the derived direct image.
Rothstein’s lift to modules with connection keeps an extra track of the
splittings and connection.

Remark 6.2.3.1. Rothstein [Rot97, Sec. 2.2] uses Čech resolutions for quasi-
coherent sheaves, while we are dealing with all O-modules. Combining
[Rot97, (2.21)] with the fact that twisted relative connection are kinds of
splittings (Remark 6.2.2.3), the categories under consideration (Mod(OX)sp,
Mod(OX×Y )T−cxn, etc.) are equivalent to categories of modules over sheaves
of certain noncommutative flat O-algebras. In particular, each of them is
a Grothendieck abelian category. By [Sta24, Tag 079P], each category has
enough K-injectives. From [HT07, Lem. 1.5.2 (ii)], each category has enough
objects flat over O. By [Sta24, Tag 070K, Tag 079P], all the (left exact)
direct image functors involved below admit right derived functors on the
unbounded derived categories.
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From splittings to connection

Given T ∈ End(g) and (F,ψ) ∈ Mod(OX)T−sp, the induced morphism

p−1
X ψ : p−1

X F → p−1
X ET ⊗p−1

X OX
p−1
X F

is p−1
X OX -linear. By Example 6.2.2.4, the sequence (6.9) induces a short

exact sequence in Mod(OX×Y )

0→ Ω1
pX
→ p∗XET → OX×Y → 0.

Its extension class is p∗XT ∈ H1(X × Y,Ω1
pX

). Define another p−1
X OX -linear

morphism

∇ψ : p∗XF (= OX×Y ⊗p−1
X OX

p−1
X F )→ p∗XET ⊗OX×Y p

∗
XF (=

p∗XET ⊗p−1
X OX

p−1
X F = OX×Y ⊗p−1

X OX
p−1
X ET ⊗p−1

X OX
p−1
X F )

by
∇ψ(h⊗ s) = dpX (h)⊗ s+ h⊗ ((p−1

X ψ)(s)),

where h (resp. s) is a local section of OX×Y (resp. p−1
X F ). By construction,

∇ψ satisfies the Leibniz rule (6.11). So it is a p∗XT -connection on p∗XF .
Thus, we get the exact functor in [Rot97, (2.5)]:

p∗X : Mod(OX)T−sp → Mod(OX×Y )T−cxn. (6.13)

Tensoring with Poincaré bundle

By Fact 6.2.2.5 and [Rot97, (2.10)], the functor

· ⊗OX×Y P : Mod(OX×Y )1−cxn → Mod(OX×Y )0−cxn (6.14)

restricts to Mod(OX×Y )1−cxn,fl → Mod(OX×Y )0−cxn,fl(∼= Mod(DX×Y/X)).
The functor (6.14) is an equivalence of abelian categories, with a quasi-
inverse · ⊗OX×Y P−1.

From connection to splittings

For every (F,∇) ∈ Mod(OX×Y )1−cxn, the morphism

∇ : F → p∗XE ⊗OX×Y F (= p−1
X E ⊗p−1

X OX
F )

is a p−1
X OX -linear splitting to (p−1

X µ1)⊗ IdF . By the projection formula (see
e.g, [KS90, Prop. 2.6.6]), the induced morphism

pX∗∇ : pX∗F → E ⊗OX pX∗F

is anOX -linear splitting to µ1⊗OX IdpX∗F . Hence (pX∗F, pX∗∇) ∈ Mod(OX)sp.
Thus, one has a left exact functor (a special case of [Rot97, (2.13)]):

pX∗ : Mod(OX×Y )1−cxn → Mod(OX)sp. (6.15)

If (F,∇) is integrable, then [pX∗∇, pX∗∇] defined in (6.4) is zero.
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Between connection

We define the inverse image and the direct image of relative connection on
changing bases. Consider a cartesian square of complex manifolds

W Z

T S,

g′

f ′ □ f

g

(6.16)

where f is smooth. For every (F,∇) ∈ Mod(OZ)f,0−cxn, by [ABC20, Sec. 4.2],
the relative connection ∇ is equivalent to an OZ-linear splitting to the
natural projection P 1

f ⊗OZ F → F , where P 1
• denotes the sheaf of first order

jets (defined in [ABC20, Sec. 4.1.2]). Applying g′∗ to the induced splitting,
we get an OW -linear splitting to the natural projection P 1

f ′⊗OW g′∗F → g′∗F .
This is equivalent to an f ′-connection on g′∗F . Hence an inverse image
functor

g′∗ : Mod(OZ)f,0−cxn → Mod(OW )f ′,0−cxn. (6.17)

It is right exact. By [ABC20, Sec. 5.1], the connection induced by ∇ is
integrable if ∇ is so.

Now for direct image. Fix α ∈ F 1(Z,Ω1
f ). For every

(F,∇) ∈ Mod(OW )f ′,g′∗α−cxn,

by projection formula (see e.g, [Har77, II, Ex. 5.1 (d)]), one has

g′∗(F ⊗OW g′∗Eα) = (g′∗F )⊗OZ Eα.

Then the induced morphism

g′∗∇ : g′∗F → (g′∗F )⊗OZ Eα

is f−1(OS)-linear. Since df ′ : OW → Ω1
f ′ and df : OZ → Ω1

f are related by
g′∗df = df ′ , the induced map g′∗∇ satisfies the Leibniz rule (6.11). Hence,
the pair (g′∗F, g

′
∗∇) ∈ Mod(OZ)f,α−cxn. In this manner, we get a left exact

functor
g′∗ : Mod(OW )f ′,g′∗α−cxn → Mod(OZ)f,α−cxn. (6.18)

When α = 0, the functor (6.18) sends MIC(f ′) to MIC(f).

Example 6.2.3.2. Take (6.16) to be

X × Y Y

X Specan(C),

pY

pX □
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then p∗Y : Mod(OY )cxn → Mod(OX×Y )0−cxn sits on the left of the diagram
[Rot97, (2.15)] and

pY ∗ : Mod(OX×Y )0−cxn → Mod(OY )cxn (6.19)

is [Rot97, (2.12)]. They restrict respectively to functors

pY ∗ : Mod(DX×Y/X)→ Mod(DY ); (6.20)

p∗Y : Mod(DY )→ Mod(DX×Y/X). (6.21)

Remark 6.2.3.3. Take α = 0 ∈ H1(Z,Ω1
f ). From another point of view, the

morphism OZ → g′∗OW between sheaves of rings extends to a morphism
D̃Z/S → g′∗D̃W/T . Then (6.17) and (6.18) are respectively the pullback and

the pushout along the induced morphism (W, D̃W/T )→ (Z, D̃Z/S) of ringed
spaces. By [Sta24, Tag 0096], the functor (6.17) is the left adjoint to (6.18).
Then from [Sta24, Tag 09T5], the derived functor

Lg′∗ : D(Mod(OZ)f,0−cxn)→ D(Mod(OW )f ′,0−cxn)

is the left adjoint to

Rg′∗ : D(Mod(OW )f ′,0−cxn)→ D(Mod(OZ)f,0−cxn).

6.3 Rothstein transform on modules with connection

6.3.1 Construction

Definition 6.3.1.1. Define functorsRS1 : D(Mod(OX)sp)→ D(Mod(OY )cxn)
and RS2 : D(Mod(OY )cxn)→ D(Mod(OX)sp) by

RS1 = RpY ∗(P ⊗OX×Y p
∗
X ·), RS2 = RpX∗(P−1 ⊗OX×Y p

∗
Y ·).

Here RpY ∗ (resp. RpX∗) is the right derived functor of (6.19) (resp. (6.15)).
The pair (RS1, RS2) is called the Rothstein transform.

LetDO−good(Mod(OY )cxn) ⊂ D(Mod(OY )cxn) (resp. DO−good(Mod(OX)sp) ⊂
D(Mod(OX)sp)) be the full subcategory of objects whose cohomologies are
good O-modules (in the sense of [Kas03, Def. 4.22]). In view of Proposition
6.3.1.2, the Rothstein transform is compatible with the Fourier-Mukai transform.

Proposition 6.3.1.2. There are commutative squares

D(Mod(OX)sp) D(Mod(OY )cxn)

D(OX) D(OY ),

RS1

RS1

D(Mod(OY )cxn) D(Mod(OX)sp)

D(OY ) D(OX),

RS2

RS2

where the vertical functors are forgetful. In particular, RS1 and RS2 restrict
to functors DO−good(Mod(OX)sp)→ DO−good(Mod(OY )cxn) and DO−good(Mod(OY )cxn)→
DO−good(Mod(OX)sp)) respectively.

178

https://stacks.math.columbia.edu/tag/0096
https://stacks.math.columbia.edu/tag/09T5


Proof. All the functors p∗X : Mod(OX)→ Mod(OX×Y ), (6.13), (6.14) and

P ⊗OX×Y · : Mod(OX×Y )→ Mod(OX×Y )

are exact. To prove the commutativity of the first square, it remains to do
so for the square

D(Mod(OX×Y )0−cxn) D(Mod(OY )cxn)

D(OX×Y ) D(OY ).

RpY ∗

forX×Y forY

RpY ∗

Since the forgetful functor forY : Mod(OY )cxn → Mod(OY ) is exact, the
composition forYRpY ∗ : D(Mod(OX×Y )0−cxn)→ D(OY ) is the right derived
functor of

forY ◦ pY ∗ : Mod(OX×Y )0−cxn → Mod(OY ).

From Remark 6.2.3.1, [Sta24, Tag 0096] and [Sta24, Tag 08BJ], the
functor forX×Y : Mod(OX×Y )0−cxn → Mod(OX×Y ) preserves K-injective
complexes. By Lemma E.1.0.11, the compositionRpY ∗forX×Y : D(Mod(OX×Y )0−cxn)→
D(OY ) is the right derived functor of

pY ∗forX×Y : Mod(OX×Y )0−cxn → Mod(OY ).

Since forY ◦ pY ∗ = pY ∗ ◦ forX×Y , the first square is indeed commutative.
By the commutativity of the first square and Corollary 5.3.1.16, the

transform RS1 preserves O-goodness. The other half about RS2 is similar.

6.3.2 Rothstein’s theorem

Theorem 6.3.2.1 (Rothstein). There are natural isomorphisms RS1RS2
∼=

T−g on DO−good(Mod(OY )cxn) and RS2RS1
∼= T−g on DO−good(Mod(OX)sp).

We begin the proof of Theorem 6.3.2.1 with Lemma 6.3.2.2, a direct
adaption of [Rot97, Prop. 2.4] for complex tori.

Lemma 6.3.2.2. Let ∆ ⊂ X × X be the diagonal. Define a morphism of
complex tori ϵX : X ×X → X, (x1, x2) 7→ x2 − x1. Then

Rp12∗(ϵX × 1Y )∗P ∼= O∆[−g]

in Db(Mod(OX×X)(1,−1)−sp), where p12 : X × X × Y → X × X is the
projection.

Proof. The identificationRpX∗P ∼= C0[−g] inDb(OX) from [Kem91, Thm. 3.15]
can be lifted to an isomorphism in Db(Mod(OX)−1−sp). As stated in the
last sentence of the proof of [Vig21, Prop. 2.1.21], a morphism of modules
with splittings (or connection) is an isomorphism whenever the underlying
morphism of O-modules is so. Then apply Theorem 5.3.2.3 to the cartesian
square
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X ×X × Y X × Y

X ×X X.

ϵX×1Y

p12 pX

ϵX

Arguing as in Lemma 6.3.2.2, we can prove the analytic version of [Rot97,
Prop. 2.5, Prop. 3.1]. These three results are used in the proof of Theorem
6.3.2.1 below.

Proof of Theorem 6.3.2.1. Repeat the proof of [Rot97, Thm. 3.2], which
requires the projection formula and the smooth base change theorem for
modules with connection. For this, we first construct the corresponding
comparison morphism that is compatible with the underlying O-module
comparison morphism. The construction reduces to the adjunction between
derived inverse image and derived direct image of relative connection in
Remark 6.2.3.3.

The compatibility with O-module comparison morphism can be proved
in a way similar to Proposition 6.3.1.2. On the level of O-modules, the
comparison morphism is an isomorphism by Fact 5.3.2.15 and Theorem
5.3.2.3. (This type of arguments can also be found in the proof of [Vig21,
Prop. 2.1.21, Thm. 2.1.33].)

Remark 6.3.2.3. Rothstein’s first proof of [Rot96, Thm. 2.2] is based on a
problematic lemma [Rot96, Lem. 2.3]. The problem is explained in [Rot97,
Sec. 1]. To save his first proof, one may attempt to replace this “lemma” by
its close variant, the bounded way-out lemma (see e.g., [Lip60, Lem. 1.11.3
(i)]). The difficulty is that, a priori, there is no canonical choice of a natural
transformation between the two functors to be compared, which is required
by way-out argument. For instance, in the end of the proof of Proposition
5.4.2.3, there are isomorphism arrows of opposite directions.

6.3.3 Matsushima’s theorem

A holomorphic vector bundle H → Y is called homogeneous if T ∗
yH is

isomorphic to H for all y ∈ Y , where Ty : Y → Y is the translation by
y. The first half of Theorem 6.3.3.1 is a special case of [Mat59, Thm. 1].

Theorem 6.3.3.1 (Matsushima). Let E be a coherent OY -module with a
connection ∇. Then E is a homogeneous vector bundle, and the pair (E,∇)
is translation invariant.

Proof. By Proposition 6.3.1.2, for every integer i, the coherent OX -module
H iRS2(E) admits a 1-splitting. By Lemma 6.3.3.2, the support ofH iRS2(E)
is finite. Consequently, there is an isomorphismRS2(E)

∼−→ ⊕i∈ZT−iH iRS2(E)
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in Db
c(OX). From Proposition 5.5.3.2 3 and Fact 6.1.2.1 2, it induces an

isomorphism in Db
c(OY )

T−gE → ⊕i∈ZT−iH0RS1(H
iRS2(E)),

and each H0RS1(H
iRS2(E)) is a homogeneous vector bundle on Y . Then E

is isomorphic to H0RS1(H
gRS2(E)), hence a homogeneous vector bundle.

Then we adopt the argument in [BK09, Footnote (6), p.388]. For every
y ∈ Y , T ∗

y∇ is a connection on T ∗
yE

∼−→ E and T ∗
0∇ = ∇. The map

Y → H0(Y,Ω1
Y ⊗ End(E)), y 7→ T ∗

y∇−∇

is holomorphic. By Cartan-Serre’s theorem, H0(Y,Ω1
Y ⊗End(E)) is a finite-

dimensional vector space. From compactness of Y , the map is constantly
zero. Therefore, T ∗

y (E,∇) ∼= (E,∇) for all y ∈ Y .

Lemma 6.3.3.2. Let F be a coherent OX-module admitting a 1-splitting
on the complex torus X. Then F is finitely supported.

Proof. Suppose to the contrary that Supp(F ) is infinite. By [CAS, p.76],
Supp(F ) is an analytic set in X. Then dim Supp(F ) ≥ 1. Let C be an
irreducible component of Supp(F ) of maximal dimension. Write i : C → X
for the inclusion. Take a morphism h : Z → X provided by Lemma 5.5.3.3.
Then h(Z) = C and F ′′ := F ′/T (F ′) is a vector bundle on Z of positive rank
r, where F ′ = h∗F and T (∗) denotes the torsion part of a sheaf of modules.
In consequence, the morphism of complex tori h∗ : Pic0(X) → Pic0(Z)
is nonzero. However, we claim that its tangent map at origin h∗ : g →
H1(Z,OZ) is zero.

Let E ′ = h∗E . Because OX is flat over itself, pulling back (6.9) to Y and
tensoring with F ′′, by [Sta24, Tag 05NJ] one has a short exact sequence

0→ g∗ ⊗C F
′′ → E ′ ⊗OZ F

′′ → F ′′ → 0. (6.22)

Since E ′ is a vector bundle on Z, one has

E ′ ⊗ F ′

T (E ′ ⊗ F ′)
= E ′ ⊗ F ′′.

Then the splitting on F induces a splitting F ′′ ψ
′
→ E ′ ⊗ F ′′ of (6.22).

Let β be the natural morphism β : OZ → End(F ′′). By Lemma 6.2.1.3,
the composition

End(g)
Idg∗⊗h∗→ g∗ ⊗C H

1(Z,OZ)
Idg∗⊗H1(Z,β)
→ g∗ ⊗C H

1(Z, End(F ′′))

sends 1 ∈ End(g) to 0. Therefore, the mapH1(Z, β)h∗ : g→ H1(Z, End(F ′′))
is zero. The morphism τ : End(F ′′)→ OZ taking trace satisfies τβ = r·IdOZ .
Then h∗ = 1

r τ∗H
1(Z, β)h∗ = 0 as a map g→ H1(Z,OZ). The claim follows.

The claim gives a contradiction.
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Corollary 6.3.3.3. Every local system (of finite dimensional C-vector spaces)
on a complex torus is translation invariant.

Proof. Let L be a local system on Y . By Theorem 6.3.3.1, the pair (L ⊗C
OY , IdL ⊗ d) is translation invariant. The result follows from the Riemann-
Hilbert correspondence [Del70, I, Thm. 2.17].

6.4 Laumon-Rothstein sheaf of algebras

6.4.1 Construction

To lift the Fourier-Mukai transform to D-modules, we recall (in Definition
6.4.1.1) the sheaf AX from [Rot96, p.576]. In the notation of (6.9), fix a
C-basis {ω1, . . . , ωg} of the C-vector space

H0(Y,Ω1
Y ) = g∗ = Γ(X, g∗ ⊗C OX) ⊂ Γ(X, E).

For each Stein open subset U ⊂ X, by Cartan’s Theorem B (see, e.g., [KK83,
Sec. 52, Thm. B]) one has H1(U, g∗ ⊗C OX) = 0. Thence (6.9) induces a
short exact sequence

0→ g∗ ⊗C OX(U)→ E(U)
µ→ OX(U)→ 0.

Whence, there is ρ ∈ E(U) with µ(ρ) = 1 ∈ OX(U). For two such pairs
(U, ρ) and (Ũ , ρ̃) with U ∩ Ũ ̸= ∅, one has µ(ρ̃ − ρ) = 0 ∈ OX(U ∩ Ũ), so
ρ̃−ρ ∈ g∗⊗COX(U∩Ũ). There exists a unique tuple f1, . . . , fg ∈ OX(U∩Ũ)
such that

ρ̃− ρ =

g∑
i=1

ωi ⊗ fi

in E(U ∩ Ũ).

Definition 6.4.1.1. For each chosen pair (U, ρ) as above, introduce independent
variables xρ1, . . . , x

g
ρ and put

AX |U = OU [xρ1, . . . , x
ρ
g].

For another choice (Ũ , ρ̃) with the tuple (f1, . . . , fg) as above, we glue AX |U
and AX |Ũ by the rule

xρi − x
ρ̃
i |U∩Ũ = fi. (6.23)

The resulting sheaf AX is a sheaf of commutative OX -algebra.

Let
0→ g∗ → X♮ π→ X → 0 (6.24)
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be the universal vectorial extension1 of X constructed in (F.22). Then X♮

is the moduli space of flat line bundles on Y . In coordinate-free terms, AX
is the OX -subalgebra of π∗OX♮ of sections whose restriction to each fiber of
π is a polynomial on g∗. For every integer m ≥ 0, let OX♮(m) ⊂ OX♮ denote
the subsheaf of sections whose restriction to the fibers of π are homogeneous
polynomials of degree m. Similar to [Bjö93, Def 1.6.1], there exists a sheaf
of graded rings O[X♮] := ⊕m≥0OX♮(m)(⊂ OX♮) on X♮. Then AX = π∗O[X♮]

and Γ(X,AX) = C.

Remark 6.4.1.2. Unlike the analytic case, if X is an abelian variety, then the
notation AX in [Rot96, p.576] is the algebraic direct image π∗OX♮ . Morally,
such difference also lies between algebraic and analytic D-modules. For
a complex manifold or a smooth algebraic variety V , let p : T ∗V → V
be the natural projection of the cotangent bundle. Denote by GDV the
associated graded ring of the degree filtration on DV . From [HT07, p.57], in
the algebraic case GDV is p∗OT ∗V . By contrast, in the analytic case, GDV

is the OV -submodule of p∗OT ∗V of sections whose restriction to each fiber
of p is a polynomial.

Remark 6.4.1.3. The sheaf of rings AX is functorial in X in the following
sense. Let ϕ : X ′ → X be a morphism of complex tori. Let ϕ̂ : Y → Y ′

be the morphism dual to ϕ. By Proposition F.5.4.7, it induces a morphism
ϕ♮ : X ′♮ → X♮ of complex Lie groups fitting into a commutative diagram

0 H0(Y ′,Ω1
Y ′) X ′♮ X ′ 0

0 H0(Y,Ω1
Y ) X♮ X 0.

ϕ̂∗

π′

ϕ♮ ϕ

π

For each local section of O[X♮], its ϕ♮-pullback (a local section of OX′♮)
restricts to a polynomial on each fiber of π′. Indeed, this restriction is the
ϕ̂∗-pullback of a restriction to a fiber of π. Therefore, the natural morphism
OX♮ → ϕ♮∗OX′♮ restricts to a morphism O[X♮] → ϕ♮∗O[X′♮]. The resulting

morphism of ringed spaces (X ′♮, O[X′♮]) → (X♮, O[X♮]) descends to another
morphism of ringed spaces

ϕ̃ : (X ′,AX′)→ (X,AX), (6.25)

which is compatible with ϕ. In particular, the following square

D(AX′) D(AX)

D(OX′) D(OX)

Rϕ̃∗

Rϕ∗

(6.26)

1By [Rot96, p.567], it is also the g∗-principal bundle associated to the tautological
extension (6.9).
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is commutative, where the vertical functors are forgetful. If M is an OX -
module, then

Lϕ̃∗(AX ⊗OX M) = AX′ ⊗OX′ Lϕ
∗M. (6.27)

6.4.2 Basic properties

Notice that AX has a natural degree filtration {AX(m)}m∈Z, where

AX(m) = π∗(⊕mj=0OX♮(j))

is the OX -submodule of AX of polynomials of degree at most m. See also
[Rot96, Sec. 5.3] and the end of [Lau96, p.10]. Then AX(0) = OX , AX(1) =
E∨ (cf. the start of [Lau96, p.10]), and every AX(m) is a locally free OX -
module of finite rank. Moreover, for any integers m,n ≥ 0, one has

AX(n)AX(m) = AX(n+m). (6.28)

Thus, AX is a sheaf of positively filtered rings (in the sense of [Bjö93, p.459,
p.464]) on the complex torus X.

We review some terminology from [Bjö93, A:III]. A coherent sheaf of
rings on a locally compact Hausdorff space is called noetherian if every
increasing sequence of ideal sheaves is stationary over relatively compact
subsets ([Bjö93, 2.24, p.470]). Let R be a commutative filtered ring. If
the subring ⊕v∈ZRvT v of R[T, T−1] is a noetherian ring, then R is called a
noetherian filtered ring.

Definition 6.4.2.1 ([Bjö93, A.III, 1.7, Def. 1.11, 1.19]). A filtration on an
R-module M is a family of additive subgroups {Mv}v∈Z such that

Mv ⊂Mv+1; RkMv ⊂Mk+v; ∪vMv = M.

This filtration is called separated if ∩v∈ZMv = 0, and called good if⊕v∈ZMvT
v

is a finitely generated ⊕v∈ZRvT v-module.

A zariskian filtered ring is a noetherian filtered ring such that all the
good filtrations on every finitely generated module are separated. A filtered
sheaf of rings is called stalkwise zariskian if every stalk is a zariskian filtered
ring ([Bjö93, Def. 2.6, p.465]).

Lemma 6.4.2.2. The sheaf of rings AX is coherent and noetherian. The
sheaf of filtered rings AX is stalkwise zariskian.

Proof. By (6.23), the graded ring associated to the degree filtration of AX
is

GAX := ⊕m≥0AX(m)/AX(m− 1) = Sym(g)⊗C OX = OX [x1, . . . , xg].
(6.29)
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Here for each chosen pair (U, ρ) as in Section 6.4.1, xi|U ∈ Γ(U,AX(1)/AX(0)) ⊂
Γ(U,GAX) is the image of xρi ∈ Γ(U,AX(1)). From [Bjö79, Thm. 1.26,
p.460], AX is stalkwise zariskian. The other part follows from [Bjö79,
Prop. 1.27, p.460, Thm. 2.7, p.465]. (See also the proof of [Bjö93, Thm. 1.2.5].)

In view of the difference mentioned in Remark 6.4.1.2, the statement of
[Rot96, Prop. 4.4] is slightly modified as Fact 6.4.2.3. For every AX -module
F and every chosen pair (U, ρ) as in Section 6.4.1, define ψρU : F (U) →
E(U)⊗OX(U) F (U) by

ψρU (s) = ρ⊗ s+

g∑
i=1

ωi|U ⊗ (xρi s).

Then (µ1 ⊗ IdF )(ψρU (s)) = s. In light of (6.23), the family {ψρU}(U,ρ) glues
to a 1-splitting ψF : F → E ⊗OX F . One has ψF = ψAX ⊗AX IdF . By
commutativity of AX and [Rot96, (4.9)], one has [ψF , ψF ] = 0.

Fact 6.4.2.3. The resulting functor Mod(AX) → Mod(OX)sp induces an
equivalence from Mod(AX) to the full subcategory of Mod(OX)sp of objects
(F,ψ) with [ψ,ψ] = 0.

From Fact 6.4.2.3 and the proof of [Rot96, Prop. 4.1], the functor
(6.13) restricts to an exact functor p∗X : Mod(AX) → Mod(OX×Y )1−cxn,fl.
Similarly by [Rot96, Prop. 4.2], the functor (6.15) restricts to a functor

pX∗ : Mod(OX×Y )1−cxn,fl → Mod(AX). (6.30)

6.5 Laumon-Rothstein transform

6.5.1 Construction and properties

Definition 6.5.1.1. Define functors

RS1 = RpY ∗(P ⊗LOX×Y p
∗
X ·) : D(AX)→ D(DY ); (6.31)

RS2 = RpX∗(P−1 ⊗LOX×Y p
∗
Y ·) : D(DY )→ D(AX), (6.32)

whereRpY ∗ : D(MIC(pX))→ D(DY ) (resp. RpX∗ : D(Mod(OX×Y )1−cxn,fl)→
D(AX)) is the right derived functor of (6.20) (resp. (6.30)), and p∗Y :
D(DY ) → D(DX×Y/X) is from the exact functor (6.21). The pair is called
the Laumon-Rothstein transform.

Example 6.5.1.2. The π∗OX♮-module π∗Cz is naturally an AX -module.
Its underlying OX -module is Cπ(z). One has RS1(π∗Cz) = (L,∇).
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Proposition 6.5.1.3. There are commutative squares

D(AX) D(DY )

D(OX) D(OY );

RS1

RS1

D(DY ) D(AX)

D(OY ) D(OX),

RS2

RS2

where the vertical functors are forgetful. In particular, RS1 (resp. RS2)
sends DO−good(AX) (resp. DO−good(DY )) to DO−good(DY ) (resp. DO−good(AX)).

Proof. The proof is similar to that of Proposition 6.3.1.2, as AX (resp. DY )
is flat over OX (resp. OY ).

With Proposition 6.5.1.3, the proof of Theorem 6.5.1.4 is similar to that
of Theorem 6.3.2.1.

Theorem 6.5.1.4 (Laumon, Rothstein). There are natural isomorphisms of
functors RS1RS2 ∼= T−g on DO−good(DY ) and RS2RS1 ∼= T−g on DO−good(AX).

Proposition 6.5.1.5 follows from Proposition 6.5.1.3, Theorem 6.5.1.4 and
Fact 6.1.1.1 1 as in the proof of [Rot96, Thm. 6.1], cf. [Lau96, Prop. 3.1.2,
Cor. 3.2.4].

Proposition 6.5.1.5. There are natural isomorphisms of functors

RS2(DY ⊗LOY ·) ∼= AX ⊗
L
OX

RS2(·) : Dgood(OY )→ DO−good(AX);

RS1(AX ⊗LOX ·) ∼= DY ⊗LOY RS1(·) : Dgood(OX)→ DO−good(DY ).

For x ∈ X (resp. y ∈ Y ), let Px = P|x×Y (resp. Py = P|X×y) be the
pullback line bundle on Y (resp. X). For a closed analytic subset S of a
complex manifold Z, [Kas03, (3.30), p.51] defines a DZ-module BS|Z .

Corollary 6.5.1.6. For any x ∈ X and y ∈ Y , one has

RS2(DY ⊗OY Cy) = AX ⊗OX P−y;

T gRS1(AX ⊗OX P−y) = DY ⊗OY Cy = iy+C = B{y}|Y ;

RS1(AX ⊗OX Cx) = DY ⊗OY Px;

T gRS2(DY ⊗OY Px) = AX ⊗OX Cx.

Proof. By [HT07, Example 1.6.4], one has DY ⊗OY Cy = B{y}|Y . The result
follows from Theorem 6.5.1.4, Proposition 6.5.1.5, Fact 6.1.2.1 and Lemma
5.2.0.8.
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6.5.2 Matsushima-Morimoto theorem

Proposition 6.5.2.1, due to Matsushima [Mat59, Thm. 1] and Morimoto
[Mor59, Thm. 2], is a converse to Theorem 6.3.3.1. For abelian varieties,
Nakayashiki [Nak94, Prop. 5.9] gives a proof using the Fourier-Mukai transform.

Proposition 6.5.2.1. A homogeneous vector bundle on a complex torus
admits an integrable connection.

Proof. Let E → Y be a homogeneous vector bundle. Set Ê = HgRS2(E).
According to Proposition 5.5.3.2 and Fact 6.1.1.1, one has E = H0RS1(Ê)
and Supp(Ê) is finite. By Lemma 6.5.2.2, Ê has an AX -module structure.
By Proposition 6.5.1.3, the OY -module underlying H0RS1(Ê) is E. The
DY -module H0RS1(Ê) carries naturally an integrable connection.

The proof of Proposition 6.5.2.1 needs Lemma 6.5.2.2, a converse to
Lemma 6.3.3.2.

Lemma 6.5.2.2. If F is an OX-module with finite support on the complex
torus X, then F admits a 1-splitting ψ with [ψ,ψ] = 0.

Proof. There is a decomposition F = ⊕mi=1Fi, where Supp(Fi) is a singleton
for each i. Thus, one may assume that Supp(F ) is a singleton. Then there
exists an open neighborhood U ⊂ X of Supp(F ) and a morphism of complex
manifolds s : U → X♮ that is a local section to (6.24). Let ι : U → X be the
inclusion. Applying π∗ to the morphism of sheaves of rings OX♮ → s∗OU , one
gets a morphism π∗OX♮ → ι∗OU . As AX is an OX -subalgebra of π∗OX♮ , this
endows ι∗OU an AX -module structure.2 Since the canonical OX -morphism
IdF ⊗ ι# : F → F ⊗OX ι∗U is an isomorphism, F also obtains an AX -module
structure. This induces such a splitting by Fact 6.4.2.3.

Proposition 6.5.2.1, together with Theorem 6.3.3.1, yields (a slight generalization
of) Morimoto’s theorem [Mor59, Thm. 2, p.91].

Corollary 6.5.2.3 (Morimoto). A coherent module admitting a connection
on a complex torus is a vector bundle admitting an integrable connection.

6.6 Good modules

6.6.1 Definition

We define good AX -modules. We also review several definitions of good
D-modules in the literature, and show that they are equivalent.

Let Z be a complex manifold.

2This example shows that Lemma 6.3.3.2 fails without coherent condition.
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Definition 6.6.1.1 ([Bjö93, 2.5, p.465]). LetR be a positively filtered sheaf
of rings on Z such that the associated graded ring GR is coherent. Let M
be a coherent left R-module. A filtration on M is an increasing sequence
of subsheaves {Mv}v∈Z satisfying ∪v∈ZMv = M and RkMv ⊂ Mk+v for all
integers k ≥ 0 and v. This filtration is called

� B-good ([Bjö93, Remark 2.16, p.467]) if for every x ∈ Z, there exists
an open neighborhood U , a finite set {m1, . . . ,ms} ⊂ Γ(U,M) and
integers k1, . . . , ks such that Mv|U =

∑s
i=1Rv−kimi for all integers v.

� locally good ([Meb89, Prop. 2.1.12 (i)]) if every Mv is coherent over
OZ , and if for every x ∈ Z, there is an open neighborhood U of x and
an integer k0 ≥ 0 such that RmMk0 = Mm+k0 on U for all integers
m ≥ 0.

The proof of Lemma 6.6.1.2 is similar to that of [HT07, Prop. 2.1.1, Def.
2.1.2].

Lemma 6.6.1.2. Let M• = (Mv)v∈Z be a filtration on a coherent AX-
module M . Then M• is B-good if and only if M• is locally good. (In that
case, we call M• a good filtration on M .)

Proof. � Assume that M• is B-good. By Lemma 6.4.2.2 and [Bjö93,
Thm. 2.17, p.467], theGAX -module⊕v∈ZMv/Mv−1 is coherent. Because
of (6.29) and the proof of [Bjö93, Prop. 1.4.5], for every integer v, the
OX -moduleMv/Mv−1 is coherent. From [Bjö93, Prop. 2.23, p.470], the
filtration M• is locally bounded blow. Then by induction on v ∈ Z,
one proves that the OX -module Mv is coherent.

For every x ∈ X, by definition, there is an open neighborhood U ⊂ X
of x, sections m1, . . . ,ms ∈ Γ(U,M) and integers k1, . . . , ks such that
Mv|U =

∑s
i=1AX(v − ki)mi for all integers v. Put k0 = maxsj=1 kj .

For every integer k ≥ 0, one has AX(k)Mk0 ⊂Mk+k0 . Moreover,

Mk+k0 |U =

s∑
i=1

AX(k+k0−ki)mi

(a)

⊂
s∑
i=1

AX(k)AX(k0−ki)mi ⊂ AX(k)Mk0 ,

where (a) uses (6.28). Hence AX(k)Mk0 = Mk+k0 on U .

� Conversely, assume that M• is locally good. For a fixed x ∈ X,
take U and k0 provided by the definition of local goodness. Since
Mk0 is coherent over OX , by shrinking U , one may assume that the
OU -module Mk0 |U is generated by sections s1, . . . , sm ∈ Γ(U,Mk0).
Define a morphism ofAX -modules ϕ : AmX |U →M |U , (f1, . . . , fm) 7→∑m

j=1 fjsj . Since M• is a filtration, for every integer v, one has
AX(v−k0)Mk0 ⊂Mv. Hence ϕ(AX(v−k0)m) ⊂Mv. By construction,
one has ϕ(AX(0)m) = Mk0 |U . For every integer k ≥ k0, on U one has

Mk = AX(k − k0)Mk0 = AX(k − k0)ϕ(AX(0)m) ⊂ ϕ(AX(k − k0)m).
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Therefore, the filtration M• is B-good.

From [HT07, Thm. 2.1.3 (i)], a coherent DV -module on a smooth
algebraic variety V admits a globally defined good filtration. By contrast,
Malgrange [Mal04, p.405] gives a coherentD-module on the complex manifold
C∗ × CP1 that does not admit any global good filtration.

Definition 6.6.1.3. An OZ-module F is called

� countably quasi-good ([KS97, p.942]) if every compact subset of Z has
an open neighborhood U such that F |U is the union of an increasing
sequence of coherent OU -submodules.

� quasi-good ([KS16, p.12]) if for every relatively compact open subset
U ⊂ Z, the restriction F |U is a sum of coherent OU -submodules.

A DZ-module M is called

� good coherent if for every relatively compact open subset U of Z, there
is a finite filtration {Mk}k∈Z of M |U such that each quotient Mk/Mk−1

is a coherent DU -modules admitting a good filtration. ([Sai89, p.369],
[SS94, p.10] and [KS96, p.43])

� S-quasi-good ([KS96, p.43]) if for every relatively compact open subset
U ⊂ Z, the restriction M |U admits a filtration {Mv}v∈Z by coherent
DU -submodule such that each quotientMv/Mv−1 admits a good filtration
and Mv = 0 for v ≪ 0.

Proposition 6.6.1.4. Let M be a coherent DZ-module. Then the following
are equivalent.

1. For every relatively compact open subset U of Z, there is a coherent
OU -submodule F ⊂M |U with DU · F = M |U .

2. For every relatively compact open subset U of Z, the DU -module M |U
admits a good filtration.

3. The DZ-module M is good coherent.

4. The DZ-module M is S-quasi-good.

5. The OZ-module M is countably quasi-good.

6. The OZ-module M is good.

7. The OZ-module M is quasi-good.

Proof. We follow the circular chain.
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1 implies 2 See [Bjö93, 1.4.10].

2 implies 3 For every relatively compact open subset U of Z, define a finite filtration
of M |U by M0 = 0 and M1 = M |U . Then the graded piece M1/M0

admits a good filtration over U .

3 implies 4 For every relatively compact open subset U of Z, consider the filtration
{Mk} in the definition. By induction on k, one proves that each Mk

is DU -coherent.

4 implies 5 Every quotient Mv/Mv−1 admits a good filtration, then by [Bjö93,
Cor. 1.4.6], it is countably quasi-good. By induction on v and using
[KS97, Lem. 2.1.1], one proves that every Mv is countably quasi-
good. Therefore, for every integer v, there is an increasing sequence
{Mk

v }k≥1 of coherent OU -submodules of Mv with Mv = ∪k≥1M
k
v . For

every integer k ≥ 1, let Mk :=
∑

i≤k,v≤kM
i
v. By [Sta24, Tag 01BY],

Mk is a coherent OU -submodule of Mk. Then

M = ∪v∈ZMv = ∪v∈Z ∪i≥1 M
i
v = ∪k≥1M

k,

so M is countably quasi-good.

5 implies 6 An increasing sequence forms a directed family.

6 implies 7 By definition.

7 implies 1 Let U be a relatively compact open subset of Z. Because M is a finite
type DZ-module, for every x ∈ Ū , there is a relatively compact open
neighborhood U(x) ⊂ Z of x, an integer n(x) ≥ 1 and sections

{sxi }1≤i≤n(x) ⊂ Γ(U(x),M)

generating the DU(x)-module M |U(x). By compactness of Ū , the open
cover {U(x)}x∈Ū of Ū has a finite subcover {U(xj)}1≤j≤r. Then V =
∪rj=1U(xj) is a relatively compact open subset of Z containing U . By
Condition 7, one may write M |V =

∑
α∈I Gα, where I is an index set,

and each Gα is a coherent OV -submodule of M |V .

For every x ∈ Ū , there is an open neighborhood V (x) ⊂ U(x) of x, such
that for each 1 ≤ i ≤ n(x), the restriction sxi |V (x) ∈ Γ(V (x), Gα(x,i))
for some index α(x, i) ∈ I. By compactness of Ū again, the open cover
{V (x)}x∈Ū has a finite subcover {V (x′k)}1≤k≤m. Then

F :=
∑

1≤k≤m,1≤i≤n(x′k)

Gα(x′k,i)

is a finite typeOV -submodule ofM |V . By Lemma 6.6.2.7, it is coherent
over OV . Moreover, DU · F |U = M |U .
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The proof of Proposition 6.6.1.5 is similar to that of Proposition 6.6.1.4.

Proposition 6.6.1.5. LetM be a coherent AX-module on the complex torus
X. Then the OX-module M is good if and only if there is a coherent OX-
submodule F ⊂M with AX · F = M .

Let the sheaf of rings R be either DZ or AX on the fixed complex torus
X.

Definition 6.6.1.6. [Kas03, Def. 4.24] A coherent R-module is good if the
underlying O-module is good.

For example, by Lemma 6.4.2.2 and [Bjö93, Thm. 1.2.5], the left R-
moduleR is good. Let Good(R) ⊂ Coh(R) (resp. Db

good(R) ⊂ Db
O−good(R))

be the full subcategory of goodR-modules (resp. objects whose cohomologies
are good R-modules). By Proposition 6.6.1.4, the category Db

good(DZ) is

what Björk denotes by Db
coh(DZ)f in [Bjö93, p.119].

Fact 6.6.1.7 (GAGA).

� ([HK84, Thm. 1.1 (2)]) Let V be a smooth proper complex algebraic
variety. Then the analytification functor induces an equivalence Coh(DV )→
Good(DV an).

� Let A be a complex abelian variety. Then the analytification functor
induces an equivalence Coh(AA)→ Good(AAan)

A coherent DZ-module is called holonomic if its characteristic variety
is of (minimal) dimension dimZ. Malgrange ([Mal94, p.35], [Mal96, p.367],
see also [Sab11, Thm. 4.3.4 (2)]) proves that every holonomic DZ-module
is generated by a coherent OZ-submodule, so it is a good DZ-module.
Let Db

h(DZ) ⊂ Db(DZ) be the full subcategory of objects with holonomic
cohomologies.

6.6.2 Basic properties

Let R be either DZ on a complex manifold Z or AX on the fixed complex
torus X.

Lemma 6.6.2.1 (Induced modules). The functor R ⊗OZ · : Mod(OZ) →
Mod(R) is exact. It restricts to a functor R ⊗OZ · : Coh(Z) → Good(R),
and induces a t-exact functor R⊗LOZ · : D

b
c(OZ)→ Db

good(R).

Proof. As R is flat over OZ , the functor is exact. Consider the degree
filtration {R(m)}m≥0 of R, where R(m) ⊂ R is the OZ-submodule of
polynomials of degree at most m. Each R(m) is vector bundle on Z and
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R = colimmR(m). Therefore, the O-module R is good. By Proposition
5.3.1.5 2, for every coherent OZ-module F , the O-module R⊗OZ F is good.
Because F is an OZ-module of finite presentation, R⊗OZ F is an R-module
of finite presentation. By [Bjö93, Thm. 1.2.5] and Lemma 6.4.2.2, this R-
module is coherent. The other part follows.

Lemma 6.6.2.2. The category Good(R) is a weak Serre subcategory of
Mod(R). In particular, Db

good(R) is a triangulated subcategory of Db(R).

Proof. The first half is a combination of [Kas03, Prop. 4.23], [Sta24, Tag
01BY] and [Sta24, Tag 0754]. The second half follows from [Yek19, Prop. 7.4.5].

For a morphism of complex manifolds f : M → N , the direct image of
D-modules f+ : D(DM )→ D(DN ) is constructed in [Bjö93, 2.3.12].

Fact 6.6.2.3 ([Bjö93, Thm. 2.8.1, 2.8.7]). Let f : W → Z be a morphism of
complex manifolds. For every M ∈ Db

good(DW ), if f |Supp(M) : Supp(M) →
Z is proper, then f+M ∈ Db

good(DZ).

Lemma 6.6.2.4. Let f : W → Z be a proper morphism of complex manifolds.
Then the direct image functor f+ : D(DW )→ D(DZ) restricts to a functor
DO−good(DW )→ DO−good(DZ).

Proof. Take M ∈ DO−good(DW ). By [Sab11, Remark 3.3.4 (4)], the functor
f+ has finite cohomological dimension. So to prove f+M ∈ DO−good(DZ),
by [Har66, I, Prop. 7.3 (iii)], one may assume that M ∈ Mod(DW ). Define
a morphism i : W →W ×Z, w 7→ (w, f(w)), which is a closed embedding.
Let q : W × Z → Z be the projection. By [Sab11, Thm. 3.3.6 (1)], one has
f+ = q+i+. The restriction q|W : W → Z is proper. By [Bjö93, Prop. 2.4.8],
one has f+M = Rq∗DRW×Z/Z(i+M)[dimZ]. As each term of the (relative)
de Rham complex DRW×Z/Z(i+M) is OW×Z-good and supported on W , by
Theorem 5.3.1.7, Rq∗[DRW×Z/Z(i+M)] ∈ Dgood(OZ).

From [HT07, Rk. 1.5.10], for a closed embedding i : M → N of complex
manifolds, the inverse image i∗ : Mod(DN ) → Mod(DM ) may not preserve
D-coherence. For smooth morphisms, Fact 6.6.2.5 can be proved by applying
[Kas03, Thm. 4.7] or repeating the proof of [HT07, Prop. 1.5.13 (ii)].

Fact 6.6.2.5. Let f : M → N be a smooth morphism of complex manifolds.
Then Lf∗ : Db(DN ) → Db(DM ) restricts to functors Db

c(DN ) → Db
c(DM )

and Db
good(DN )→ Db

good(DM ).

Lemma 6.6.2.6 concerns the local existence of good filtrations on coherent
AX -modules.
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Lemma 6.6.2.6. Let M be a coherent AX-module on the complex torus X.
For every x ∈ X, there is an open neighborhood U of x and a positive good
filtration on M |U .

Proof. Let AqX |U
ϕ→ ApX |U

ϵ→ M |U → 0 be a local presentation of M on
a relatively compact open neighborhood U of x. For every integer v, set
Mv = ϵ(AX(v)p), which is an OU -submodule of M |U . Then Mv = 0 when
v < 0. Moreover, ∪v∈ZMv = M |U and for any integers m, k ≥ 0, one has
AX(m)Mk ⊂ Mk+m. Thus, {Mv}v∈Z is a positive filtration of M |U . For
every integer k ≥ 0, one has AX(k)M0 = Mk. It remains to prove that Mk

is coherent over OU .
We claim that ϕ(AX(m)q) ∩ AX(k)p is coherent over OU . In fact, for

every y ∈ U , there is an integer s ≥ max(0, k −m) such that ϕ(AX(m)q) ⊂
AX(m + s)p near y. In side the coherent OX -module AX(m + s)p, the
two OX -submodules ϕ(AX(m)q) and AX(k)p are finite type. By [Sta24,
Tag 01BY], their intersection ϕ(AX(m)q)∩AX(k)p is coherent near y. The
claim is proved.

Because AX(k)p is a noetherian OX -module, the increasing sequence of
submodules {ϕ(AX(m)q) ∩ AX(k)p}m≥0 is stationary on U . Therefore, the
union ϕ(AqX) ∩ AX(k)p = ker(ϵ) ∩ AX(k)p is coherent over OU . Since the
sequence

0→ ker(ϵ) ∩ AX(k)p → AX(k)p →Mk|U → 0

is exact in Mod(OU ), the restriction Mk|U is OU -coherent. The constructed
filtration is therefore good.

When R = DZ , Lemma 6.6.2.7 is [Sab11, Exercise E.2.4 (4)]. On
a complex manifold Z, an OZ-module F is pseudo-coherent if for every
open subset U of X, every finite type OU -submodule of F |U is of finite
presentation ([Kas03, Def. A.5]).

Lemma 6.6.2.7. If M is a coherent R-module, then M is pseudo-coherent
over OZ .

Proof. Let F ⊂ M be a finite type O-submodule. For every point x, by
[Meb89, Prop. 2.1.9] (in the case R = DZ) and Lemma 6.6.2.6 (in the case
R = AX), there exists an open neighborhood U of x and a good filtration
on M |U . By [Bjö93, Cor. 1.4.6] (in the case R = DZ) and Lemma 6.6.1.2
(in the case R = AX), M |U is the sum of an increasing sequence of coherent
OU -submodules. Hence M |U is good over OU . By Lemma A.1.4.2 1, the OU -
module M |U is pseudo-coherent. As pseudo-coherence is a local property,
M is pseudo-coherent over OZ .

Lemma 6.6.2.8. Let M be a good R-module. Let N be a finite type R-
submodule of M . Then N is good over R.
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Proof. By [Sta24, Tag 01BY (1)], N is coherent over R. For every relatively
compact open subset U of X and every x ∈ Ū , there is an open neighborhood

U(x) ⊂ X of x, an integer n(x) > 0 and sections {si(x)}n(x)i=1 ⊂ Γ(U(x), N)
generating the R|U(x)-module N |U(x). The open cover {U(x)}x∈Ū of Ū has a
finite subcover {U(xj)}mj=1. Let N0 be the OU -submodule of N |U generated
by the finitely many local sections

{si(xj)}1≤j≤m,1≤i≤n(xj).

Then N0 is a finite type OU -module. Because M |U is good over R|U , by
Lemma 6.6.2.7, the OU -module N0 is coherent. By construction, one has
R|U ·N0 = N |U . Therefore, the R-module N is good by Propositions 6.6.1.4
(in the case R = DZ) and 6.6.1.5 (in the case R = AX).

6.6.3 Preservation of goodness

Theorem 6.6.3.1. The functor RS1 : D(AX) → D(DY ) restricts to an
equivalence Db

good(AX)→ Db
good(DY ), with a quasi-inverse T gRS2 : Db

good(DY )→
Db

good(AX).

Proof. 1. For every coherent OY -module F , one has RS2(DY ⊗LOY F ) ∈
Db

good(AX).

By Proposition 6.5.1.5, one has RS2(DY ⊗LOY F ) = AX⊗LOX RS2(F ). By

Fact 6.1.2.1 2, one has RS2(F ) ∈ Db
c(OX). From Lemma 6.6.2.1, one gets

AX ⊗LOX RS2(F ) ∈ Db
good(AX).

2. For everyM ∈ Good(DY ) and every integer i, theAX -moduleH iRS2(M)
is good.

Descending induction on i ∈ Z. The OX -module underlying H iRS2(M) is
H iRS2(M). By Lemma 6.6.3.2, one has H iRS2(M) = 0 when i > 2g. In
particular, H iRS2(M) is good over AX .

Assume the statement for i+1. By Proposition 6.6.1.4, there is a coherent
OY -submodule F ⊂M with DY ·F = M . Let M ′ be the kernel of the natural
epimorphism DY ⊗OY F →M . Then

0→M ′ → DY ⊗OY F →M → 0 (6.33)

is a short exact sequence in Mod(DY ). By Lemma 6.6.2.1, the DY -module
DY ⊗OY F is good. By Lemma 6.6.2.2, so is M ′. From (6.33), one has an
exact sequence in Mod(AX)

H iRS2(M
′)→ H iRS2(DY ⊗OY F )→ H iRS2(M)

→H i+1RS2(M
′)→ H i+1RS2(DY ⊗OY F ).

(6.34)
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By 1, the AX -module HjRS2(DY ⊗OY F ) is good for j ∈ {i, i+ 1}. By the
inductive hypothesis, so is H i+1RS2(M

′).
Let G = ker[H i+1RS2(M

′)→ H i+1RS2(DY ⊗OY F )]. By Lemma 6.6.2.2,
the AX -module G is good (hence of finite type). The sequence (6.34) yields
an exact sequence

H iRS2(DY ⊗OY F )→ H iRS2(M)→ G→ 0,

so H iRS2(M) is a finite type AX -module for every coherent DY -module M .
In particular, H iRS2(M

′) is a finite type AX -module.
Let N = im(H iRS2(M

′)→ H iRS2(DY ⊗OY F )). It is a finite type AX -
submodule of the good AX -module H iRS2(DY ⊗OY F ). By Lemma 6.6.2.8,
the AX -module N is a good. The sequence (6.34) yields an exact sequence

0→ N → H iRS2(DY⊗OY F )→ H iRS2(M)→ H i+1RS2(M
′)→ H i+1RS2(DY⊗OY F ).

By Lemma 6.6.2.2, the AX -module H iRS2(M) is good. The induction is
completed.

From 2, Lemma 6.6.2.2 and [Har66, I, Prop. 7.3 (i)], the functor RS2
restricts to a functor Db

good(DY )→ Db
good(AX). Similarly, using Proposition

6.6.1.5, one can prove thatRS1 restricts to a functorDb
good(AX)→ Db

good(DY ).
By Theorem 6.5.1.4, the restrictions are equivalences.

The proof of Theorem 6.6.3.1 needs a cohomological dimension estimation.

Lemma 6.6.3.2. For an OX-module F , one has RS1(F ) ∈ D[0,2g](OY ).
Similarly, for an OY -module G, one has RS2(G) ∈ D[0,2g](OX).

Proof. By left exactness of the functor pY ∗ : Mod(OX×Y )→ Mod(OY ), one
has RiS1(F ) = 0 for every integer i < 0. For every y ∈ Y , let M be the
restriction (as sheaves) of P ⊗OX×Y p∗XF to X × y. For every integer j,
by the proper base change theorem (see e.g., [Mil13, Thm. 17.2]), one has
RjS1(F )y = Hj(X × y,M). When j > 2g, by [KS90, Prop. 3.2.2 (iv)],
one has Hj(X × y,M) = 0. Therefore, RjS1(F ) = 0. The other part is
similar.

6.7 Relations with other functors

The properties [Muk81, (3.1), (3.4), (3.8)] of the Fourier-Mukai transform
have analogs for the Laumon-Rothstein transform.

6.7.1 Duality

Let Z be a complex manifold. Denote by ∆OZ the duality (contravariant)
functor RHomOZ (·, ω−1

Z )[dimZ] : Db
c(OZ) → Db

c(OZ). The duality functor
on DZ-modules ∆DZ : D(DZ) → D(DZ) is defined by ∆DZF = G[dimZ],
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where G is the complex of left DZ-modules associated with the complex
RHomDZ (F,DZ) of right DZ-modules. By [Bjö93, Def. 2.11.1], ∆DZ restricts
to a functor Db

c(DZ) → Db
c(DZ), and the natural transformation Id →

∆DZ ◦∆DZ is an isomorphism of functors Db
c(DZ)→ Db

c(DZ).

Lemma 6.7.1.1 ([KS16, p.16]). The functor ∆DZ : D(DZ) → D(DZ)
restricts to a functor Db

good(DZ)→ Db
good(DZ).

Proof. Suppose F is a coherent OZ-module and N = DZ ⊗OZ F , then by
[Bjö93, (ii), p.122], there is G ∈ Db

c(OZ) with ∆DZN = DZ ⊗OZ G. By
Lemma 6.6.2.1, ∆DZN ∈ Db

good(DZ).

Take M ∈ Db
good(DZ). To prove ∆DZM ∈ Db

good(DZ), by [Har66, I,
Prop. 7.3 (i)], one may assume M ∈ Good(DZ). By Proposition 6.6.1.4 and
[Bjö93, Thm. 1.5.8], for every relatively compact open subset U ⊂ Z, there
is a finite length exact sequence in Mod(DU ):

0→ DU ⊗OU F
−n → · · · → DU ⊗OU F

0 →M |U → 0,

where each F i is a coherent OU -module. For every i, one has ∆DU (DU ⊗OU
F i) ∈ Db

good(DU ). By Lemma 6.6.2.2, one has (∆DZM)|U = ∆DU (M |U ) ∈
Db

good(DU ). Hence ∆DZM ∈ Db
good(DZ).

For algebraic varieties, an analogue of Fact 6.7.1.2 is stated as [HT07,
Cor. 2.6.8 (iii), Prop. 3.2.1]. From [HT07, p.101], all the arguments in
[HT07, Sec. 2.6] are valid for analytic D-modules.

Fact 6.7.1.2.

1. The contravariant functor ∆DZ : Db
h(DZ)→ Db

h(DZ) an equivalence.

2. Let M be a coherent DZ-module. Then M is holonomic if and only if
H i(∆DZM) = 0 for all integers i ̸= 0.

3. [Bjö93, Thm. 3.2.13 (3)] The bifunctor −⊗LOZ + : Db(DZ)×Db(DZ)→
Db(DZ) restricts to a bifunctor Db

h(DZ)×Db
h(DZ)→ Db

h(DZ).

Fact 6.7.1.3. Let f : W → Z be a morphism of complex manifolds. Then:

1. [Bjö93, Thm. 3.2.13 (1)] The inverse image Lf∗ : Db(DZ)→ Db(DW )
restricts to a functor Db

h(DZ)→ Db
h(DW ).

2. [Sab11, Thm. 4.4.1] If F ∈ Db
h(DW ) is such that f |Supp(F ) is proper,

then f+F ∈ Db
h(DZ).

Restricted to the complex torus Y , [Bjö93, (ii), p.122] becomes [Rot96,
(6.12)]:

∆DY (DY ⊗LOY ·) ∼= DY ⊗LOY ∆OY · : Db
c(OY )→ Db

c(DY ).
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Define the duality (contravariant) functor ∆AX : Db(AX)→ Db(AX) as

∆AX = T gRHomAX (·,AX).

It restricts to a functor Db
c(AX) → Db

c(AX). Similar to Lemma 6.7.1.1, it
restricts to a functor Db

good(AX) → Db
good(AX). Theorem 6.7.1.4 follows

from Proposition 6.7.1.5 and Fact 6.7.1.2 2, in the same way how Theorem
6.5 follows from Propositions 6.3 and 6.4 in [Rot96].

Theorem 6.7.1.4 (Rothstein). Let F ∈ Db
good(AX) be an object such

that RS1(F ) is concentrated in a single degree i ∈ Z. Then H iRS1(F )
is holonomic if and only if RS1∆

AXF is concentrated in degree g − i.

Proposition 6.7.1.5 can be deduced from Corollary 6.7.1.8, Proposition
6.5.1.5 and Proposition 5.5.1.8, in the same way that [Rot96, Prop. 6.3] is
proved.

Proposition 6.7.1.5. One has

RS2∆
DY = [−1]∗XT

−g∆AXRS2 : Db
good(DY )→ Db

good(AX),

∆DY RS1 = [−1]∗Y T
gRS1∆

AX : Db
good(AX)→ Db

good(DY ).

Remark 6.7.1.6. Both [Rot96, (6.13), (6.14)] miss a factor [−1]∗, due to a
missing [−1]∗X in [Rot96, (6.15)]. Still, this sign does not affect the statement
of [Rot96, Thm. 6.5].

Lemma 6.7.1.7 ([Huy06, (3.13)]). For any objects K,L ∈ D(OZ) and
M ∈ D−

c (OZ), the natural morphism (provided by [Sta24, Tag 0BYS])

K ⊗LOZ RHomOZ (M,L)→ RHomOZ (M,K ⊗LOZ L) (6.35)

is an isomorphism in D(OZ).

Proof. By [Har66, I, Prop. 7.1 (ii)], one may assume that M ∈ Coh(OZ).
By [Sta24, Tag 08DL] and [GH78, p.696], one may shrink Z such that M
admits a globally free resolution F →M , where the complex F is

0→ OknZ → · · · → Ok1Z → Ok0Z → 0

with OkiZ placed in degree −i. The morphism (6.35) becomes

K ⊗LOZ HomOZ (F,L)→ HomOZ (F,K ⊗LOZ L),

which is an isomorphism.

Corollary 6.7.1.8 proves the analytic counterpart of [Rot96, (6.12)].

Corollary 6.7.1.8. There is a canonical isomorphism ∆AX (AX ⊗LOX ·)
∼=

AX ⊗LOX ∆OX · of functors Db
c(OX)→ Db

c(AX).
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Proof. By [Rot96, (6.2)], one has

∆AX (AX ⊗LOX ·) = T gRHomAX (AX ⊗LOX ·,AX) = T gRHomOX (·,AX).

By Lemma 6.7.1.7, it equals T gRHomOX (·, OX)⊗LOX AX = AX ⊗LOX ∆OX ·.

Example 6.7.1.9. Let F = T gAX ∈ Db
good(AX). By Corollary 6.5.1.6,

one has RS1(F ) = DY ⊗OY C0. One has ∆AXF = AX , and RS1∆
AXF

is concentrated in degree g. Then by Theorem 6.7.1.4, the DY -module
DY ⊗OY C0 is holonomic.

Example 6.7.1.9 leads to a question: When is an induced D-module
holonomic? A full answer is in Proposition E.1.0.12.

Remark 6.7.1.10. There is seemingly a paradox. Suppose g = 1 and let
i : 0 → Y be the inclusion. Then the OY -modules pullback i∗C0 = C and
i∗(DY ⊗OY C0) = (i∗DY ) ⊗C (i∗C0) = i∗DY is the fiber of DY at 0, which
is nonzero. On the other hand, by [Bjö93, p.87] the derived inverse image
i+(DY ⊗OY C0) is a complex of D0 = C-modules concentrated in degree
−1. From [Bjö93, 2.3.7], its underlying complex of O0 = C-modules is
Li∗(DY ⊗OY C0). Its 0-th cohomology i∗(DY ⊗OY C0) is zero, a contradiction!
We suggest catching the mistake.

In fact, DZ has two different structures of OZ-modules. Consider local
sections h (resp. δ) of OZ (resp. DZ). One module structure defines h ·
δ as hδ, the product in DZ . This OZ-module is denoted by Dl

Z . Then
forZ(DZ) = Dl

Z .
The other OZ-module structure defines h·δ as the reversed product δh in

DZ . Denote this OZ-module by Dr
Z . Given an OZ-module F , which one is

used in the tensor product defining the induced left DZ-module DZ ⊗OZ F?
In fact, it relies on the (DZ , OZ)-bimodule structure on Dr

Z . But M :=
forZ(DZ ⊗OZ F ) is NOT the OZ-module tensor product of F with neither
Dr
Z nor Dl

Z .
Return to the special case F = C0 = OY /I on Y , where I ⊂ OY is

the coherent ideal sheaf corresponding to the closed embedding i : 0 → Y .
Take a local coordinate z around 0 ∈ Y such that OY,0 = C{z} and the
maximal ideal m0 = (z) ⊂ OY,0. Let ∂ be the corresponding local vector
field near 0 ∈ Y . Let M = forY (DY /DY I). The C-vector space M0 = C[∂],
and its OY,0-action is defined by z · v = zv for all v ∈ M0. The O0-module
for0(H

0i+(DY ⊗OY C0)) = i∗M = M0/m0M0.
By [∂, z] = 1, for every integer k ≥ 0, one has ∂k = 1

k+1(∂k+1z−z∂k+1) ∈
DY,0m0 +m0DY,0. So, M0/m0M0 = 0, even though the O-module pullback
to 0 of both Dl

Y ⊗OY C0 and Dr
Y ⊗OY C0 are nonzero.
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6.7.2 Pullback and pushout

Proposition 6.7.2.1 ([Lau96, Prop. 3.3.2]). Let f : X ′ → X be a morphism
of complex tori, with dimX ′ = g′. Let f̂ : Y → Y ′ be the morphism dual
to f . Let f̃ : (X ′,AX′) → (X,AX) be the induced morphism (6.25). Then
there are canonical isomorphisms of functors

1.

Lf̂∗RS′
1
∼= RS1Rf̃∗ : DO−good(AX′)→ DO−good(DY ); (6.36)

Rf̃∗RS
′
2
∼= T g−g

′
RS2Lf̂

∗ : DO−good(DY ′)→ DO−good(AX). (6.37)

2.

RS′
2f̂+
∼= Lf̃∗RS2 : Db

good(DY )→ Db
good(AX′); (6.38)

f̂+RS1 ∼= T g
′−gRS′

1Lf̃
∗ : Db

good(AX)→ Db
good(DY ′). (6.39)

Proof. 1. The isomorphism (6.37) follows from (6.36) as follows:

Rf̃∗RS
′
2

(a)
∼=T gRS2RS1Rf̃∗RS

′
2

(b)
∼=T gRS2Lf̂

∗RS′
1RS

′
2

(c)
∼=T g−g

′
RS2Lf̂

∗,

where (6.36) (resp. Theorem 6.5.1.4) is used in (b) (resp. (a) and (c)).
Then we prove (6.36).

By (6.26) (resp. the proof of [HT07, Prop. 1.5.8]), the derived direct
image (resp. inverse image) functor of A-modules (resp. D-modules)
regards that of the underlying O-modules. From Proposition 5.3.1.2
2, the functor P ′ ⊗LOX′×Y ′ p

∗
X′ · : D(AX′) → D(OX′×Y ′) restricts to a

functor DO−good(AX′) → Dgood(OX′×Y ′). An application of Lemma
5.3.2.13 to the cartesian square

X ′ × Y X ′ × Y ′

Y Y ′

1X′×f̂

p2 □ pY ′

f̂

yields a canonical isomorphism of functors

Lf̂∗RpY ′ → Rp2∗L(1X′ × f̂)∗ : Dgood(OX′×Y ′)→ Dgood(OY ). (6.40)

Applying Theorem 5.3.2.3 to the cartesian square
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X ′ × Y X ′

X × Y X,

p1

f×1Y □ f

pX

of complex manifolds, one gets a natural isomorphism

p∗XRf̃∗ → R(f × 1Y )∗p
∗
1 (6.41)

of functors DO−good(AX′)→ D(Mod(OX×Y )1−cxn,fl).

Then

Lf̂∗RS′
1 =Lf̂∗RpY ′(P ′ ⊗LOX′×Y ′ p

∗
X′ ·)

(a)
∼=Rp2∗L(1X′ × f̂)∗(P ′ ⊗LOX′×Y ′ p

∗
X′ ·)

∼=Rp2∗[L(1X′ × f̂)∗P ′ ⊗LOX′×Y
L(1X′ × f̂)∗p∗X′ ·]

∼=Rp2∗[(1X′ × f̂)∗P ′ ⊗LOX′×Y
p∗1·]

(b)
∼=Rp2∗[(f × 1Y )∗P ⊗LOX′×Y

p∗1·]
∼=RpY ∗R(f × 1Y )∗[(f × 1Y )∗P ⊗LOX′×Y

p∗1·]
(c)
∼=RpY ∗[P ⊗LOX×Y R(f × 1Y )∗p

∗
1·]

(d)
∼=RpY ∗[P ⊗LOX×Y p

∗
XRf̃∗·]

=RS1Rf̃∗,

where (a), (b), (c) and (d)) use (6.40), (5.26), Fact 5.3.2.15 and (6.41)
respectively. This proves (6.36).

2. The isomorphism (6.39) follows from (6.38) as follows:

f̂+RS1
(a)
∼=T g

′
RS′

1RS
′
2f̂+RS1

(b)
∼=T g

′
RS′

1Lf̃
∗RS2RS1

(c)
∼=T g

′−gRS′
1Lf̃

∗,

where (a) and (c) use Theorem 6.6.3.1, and (b) uses (6.38). Then we
prove (6.38).

Using (6.27), one can prove that Lf̃∗ : D(AX) → D(AX′) restricts
to a functor Db

good(AX)→ Db
good(AX′). From Fact 6.6.2.3, the direct

image functor f̂+ : Db(DY )→ Db(DY ′) restricts to a functorDb
good(DY )→
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Db
good(DY ′). There are canonical isomorphism of bifunctorsDb

good(DY )op×
Db

good(AX′)→ Ab:

HomDbgood(AX′ )(RS
′
2f̂+−,+)

(a)
∼= HomDbgood(DY ′ )(f̂+−, T

g′RS′
1+)

(b)
∼= HomDbgood(DY )(−, T

gLf̂∗RS′
1+)

(c)
∼= HomDbgood(DY )(−, T

gRS1Rf̃∗+)

(d)
∼= HomDbgood(AX)(RS2−, Rf̃∗+)

∼= HomDbgood(AX′ )(Lf̃
∗RS2−,+),

where (a) and (d) use Theorem 6.6.3.1, (b) uses [Bjö93, Thm. 2.11.8],
and (c) uses (6.36). From Yoneda’s lemma, there is a canonical isomorphism
RS′

2f̂+
∼= Lf̃∗RS2 of functors Db

good(DY )→ Db
good(AX′).

6.7.3 External tensor product

For two complex manifolds U, V , recall the (exact) external tensor product
bifunctor

(·) ⊠O (·) : Mod(DU )×Mod(DV )→ Mod(DU×V ) (6.42)

defined in [Bjö93, 2.4.4]. By exactness, it descends to

D(DU )×D(DV )→ D(DU×V ). (6.43)

Remark 6.7.3.1. By [Bjö93, 2.4.13], the bifunctor (6.42) restricts to bifunctors
Coh(DU )×Coh(DV )→ Coh(DU×V ) and Good(DU )×Good(DV )→ Good(DU×V ).
Then by [Har66, I, Prop. 7.3 (i)], the bifunctor (6.43) restricts to bifunctors
Db
c(DU )×Db

c(DV )→ Db
c(DU×V ) andDb

good(DU )×Db
good(DV )→ Db

good(DU×V ).

By [Bjö93, p.139], it also restricts to a bifunctor Db
h(DU ) × Db

h(DV ) →
Db
h(DU×V ).

Using Lemma 5.5.1.6 (at the place of [HT07, Lem. 1.5.31]), Lemma
6.6.2.4 and [Sab11, Thm. 3.3.6 (1)], one can argue as in [HT07, Prop. 1.5.30]
to get Fact 6.7.3.2.

Fact 6.7.3.2.

1. Let U, V, Z be complex manifolds. Let f : U → V be a proper morphism.
Then the natural transformation

f+(−)⊠O(+)→ (f×IdZ)+(−⊠O+) : DO−good(DU )×D(DZ)→ D(DV×Z)

is an isomorphism.
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2. Let fi : Ui → Vi (i = 1, 2) be two proper morphisms of complex
manifolds. Then the natural transformation (f1+−) ⊠O (f2++) →
(f1 × f2)+(−⊠O +) of bifunctors

DO−good(DU1)×DO−good(DU2)→ DO−good(DV1×V2)

is an isomorphism.

For a complex torus X, let forX : Mod(AX)→ Mod(OX) be the forgetful
functor. Let X ′ be another complex torus. Set X ′′ = X × X ′. Write
u : X ′′ → X and u′ : X ′′ → X ′ for the projections. Let Y ′, Y ′′ be the dual
of X ′ and X ′′ respectively. For an AX -module F and an AX′-module G,
denote ũ∗F ⊗AX′′ ũ′

∗
G by F ⊠A G. By construction, one has

AX′′ =AX ⊠O AX′ = u−1AX ⊗u−1OX u
′∗AX′

=OX×X′ ⊗u−1OX⊗Cu′−1OX′ (u−1AX ⊗C u
′−1AX′).

(6.44)

Since the u−1OX ⊗C u
′−1OX′-module OX×X′ is flat, so is the u−1AX ⊗C

u′−1AX′-module AX′′ . As

F ⊠A G = AX′′ ⊗u−1AX⊗Cu′−1AX′ (u−1F ⊗C u
′−1G),

the bifunctor

−⊠A + : Mod(AX)×Mod(AX′)→ Mod(AX′′)

is exact in both arguments. Consider the diagonal morphism δ : X → X2.
There is a canonical isomorphism of bifunctors

Lδ̃∗[−⊠A +] ∼= (−)⊗LAX (+) : D(AX)×D(AX)→ D(AX). (6.45)

Although the tensor product of two AX -modules is different from the tensor
product of the underlying OX -module, Lemma 6.7.3.3 shows that external
products do agree. It is used in the proof of Lemma 6.7.3.5.

Lemma 6.7.3.3. There is a natural isomorphism of bifunctors

forX′′(−⊠A+)→ (forX−)⊠O(forX′+) : Mod(AX)×Mod(AX′)→ Mod(OX′′).

Proof. There are natural isomorphisms of functors Mod(AX)→ Mod(OX′′):

forX′′ ũ∗ :=u−1 · ⊗u−1AXAX′′

(a)

=u−1 · ⊗u−1AX (u−1AX ⊗u−1OX u
′∗AX′)

∼=u−1 · ⊗u−1OXu
′∗AX′

∼=(u−1 · ⊗u−1OXOX′′)⊗OX′′ u
′∗AX′

∼=u∗forX · ⊗OX′′u
′∗AX′ ,
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where (a) uses (6.44). Similarly, there is a natural isomorphism of functors
forX′′ ũ′

∗ ∼= u∗AX ⊗OX′′ u
′∗forX′ · : Mod(AX′) → Mod(OX′′). One has

natural isomorphisms of bifunctors

forX′′(−⊠A +) := ũ∗ −⊗AX′′ ũ′
∗
+

∼=(u∗forX −⊗OX′′u
′∗AX′)⊗u∗AX⊗OX′′ u

′∗AX′ (u∗AX ⊗OX′′ u
′∗forX′+)

∼=(u∗forX−)⊗OX′′ (u′∗forX′+)

:=(forX−) ⊠O (forX′+).

Remark 6.7.3.4. Using the Laumon-Rothstein transform, we can reprove
(6.44) as follows:

AX ⊠O AX′

(a)

=for(RS2(DY ⊗OY C0)) ⊠O for(RS′
2(DY ′ ⊗OY ′ C0))

(b)

=RS2(DY ⊗OY C0) ⊠O RS ′2(DY ′ ⊗OY ′ C0)

(c)

=RS ′′2 ((DY ⊗OY C0) ⊠O (DY ′ ⊗ C0))

=RS ′′2 ((DY ⊠O DY ′)⊗OY ′′ (C0 ⊠O C0))

(d)

=RS ′′2 (DY ′′ ⊗ C0)

(e)

=for(RS′′
2 (DY ′′ ⊗ C0))

(f)

=AX′′ ,

where (a) and (f) use Corollary 6.5.1.6, (b) and (e) use Proposition 6.5.1.3,
and (c) (resp. (d)) uses Proposition 5.5.1.5 (resp. [Bjö93, 2.4.4, (i)]).

Lemma 6.7.3.5. There are canonical isomorphisms of bifunctors

RS′′
2 [−⊠O +] ∼= RS2 −⊠ARS

′
2+ :

DO−good(DY )×DO−good(DY ′)→ DO−good(AX′′),
(6.46)

RS′′
1 [−⊠A +] ∼= RS1 −⊠ORS

′
1+ :

DO−good(AX)×DO−good(AX′)→ DO−good(DY ′′).
(6.47)

Proof. It follows from Proposition 5.5.1.5, Lemma 6.7.3.3 and Proposition
6.5.1.3.

6.7.4 Convolution and tensor product

For the dual complex tori X and Y , let m : X2 → X and µ : Y 2 → Y be
their respective group law. Let m̃ : (X2,AX2)→ (X,AX) be the morphism
of ringed spaces induced by m via Remark 6.4.1.3.
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Definition 6.7.4.1 (Convolution, [Lau96, p.22]). Define bifunctors

∗D : D(DY )×D(DY )→ D(DY ), − ∗D + = µ+[−⊠L
O +],

∗A : D(AX)×D(AX)→ D(AX), − ∗A + = Rm̃∗[−⊠L
A +].

As µ is proper, by Fact 6.6.2.3, Lemma 6.6.2.4 and Facts 6.7.1.2 and
6.7.1.3 2, the direct image µ+ restricts to functorsDb

good(DY 2)→ Db
good(DY ),

DO−good(DY 2) → DO−good(DY ) and Db
h(DY 2) → Db

h(DY ). Together with
Remark 6.7.3.1, this implies that the bifunctor ∗D restricts to bifunctors
Db

good(DY ) × Db
good(DY ) → Db

good(DY ), DO−good(DY ) × DO−good(DY ) →
DO−good(DY ) and Db

h(DY )×Db
h(DY )→ Db

h(DY ). As an example, there is a
canonical isomorphism B{y}|Y ∗D (−)→ T ∗

−y of functors D(DY )→ D(DY ).

Lemma 6.7.4.2. The pair (D(DY ), ∗D) is a symmetric tensor triangulated
category (in the sense of [Bal10, Def. 3]) with unit DY ⊗OY C0.

Proof. Let i : Specan(C)→ Y be the inclusion of 0 ∈ Y . Then DY ⊗OY C0 =
i+C. There are canonical isomorphisms

(i+C) ∗D · :=µ+[(i+C) ⊠O ·]
=µ+[(i+C) ⊠O (IdY+·)]
(a)
∼=µ+(i× IdY )+(C⊠O ·)
(b)
∼=IdY+ = IdD(DY )

of functors D(DY ) → D(DY ), where (a) and (b) use Fact 6.7.3.2 1 and
[Sab11, Thm. 3.3.6 (1)] respectively, Therefore, DY ⊗OY C0 is the unit. The
other axioms can be verified as in [Wei07, pp. 10-11].

Proposition 6.7.4.3 ([Wei11]). For every M ∈ Db
good(DY ), the functor

·∗DM : Db
good(DY )→ Db

good(DY ) admits a right adjoint ([−1]∗Y ∆DYM)∗D ·.

Proof. Define an automorphism f : Y 2 → Y 2 of the complex torus Y 2 by
f(a, b) = (a+ b,−a). Then p1f = µ, p2f = [−1]Y p1 and µf = p2. One has
Lf∗OY 2 = OY 2 in Db(DY 2).
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For any objects F,G ∈ Db
good(DY ), there are canonical bijections

HomDbgood(DY )(F ∗DM,G) := HomDbgood(DY )(µ+(F ⊠OM), G)

(a)

= HomD(DY 2 )(F ⊠OM,T gµ∗G)

(b)

= HomD(DY 2 )(OY 2 ,∆DY 2 (F ⊠OM)⊗LOY 2
T gµ∗G)

(c)

= HomD(DY 2 )(OY 2 , (∆DY F ) ⊠O (∆DYM)⊗LOY 2
T gµ∗G)

:= HomD(DY 2 )(OY 2 , p∗1∆
DY F ⊗LOY 2

p∗2∆
DYM ⊗LOY 2

T gµ∗G)

= HomD(DY 2 )(f
∗OY 2 , f∗[p∗1∆

DY F ⊗LOY 2
p∗2∆

DYM ⊗LOY 2
T gµ∗G])

= HomD(DY 2 )(OY 2 , µ∗∆DY F ⊗LOY 2
p∗1[−1]∗Y ∆DYM ⊗LOY 2

T gp∗2G)

:= HomD(DY 2 )(OY 2 , T gµ∗∆DY F ⊗LOY 2
([−1]∗Y ∆DYM ⊠O G))

(d)

= HomD(DY 2 )(OY 2 , T g∆DY (µ∗F )⊗LOY 2
([−1]∗Y ∆DYM ⊠O G))

(e)

= HomD(DY 2 )(µ
∗F, T g([−1]∗Y ∆DYM ⊠O G))

(f)

= HomD(DY )(F, µ+([−1]∗Y ∆DYM ⊠O G))

(g)

= HomDbgood(DY )(F, ([−1]∗Y ∆DYM) ∗D G),

where (a), (c), (d), (f) and (g) use [Bjö93, Thm. 2.11.8], Proposition 6.7.4.4,
[Kas03, Thm. 4.12], [Kas03, Thm. 4.40] and Lemma 6.7.1.1 in order, and
both (b), (e) use [Kas03, (3.13)]. As the bijections are functorial in F and
G, the adjunction follows.

The proof of Proposition 6.7.4.3 needs the commutativity of duality with
external tensor product for D-modules.

Proposition 6.7.4.4. Let Zi (i = 1, 2) be two complex manifolds. Then
there is a canonical isomorphism

(∆DZ1−)⊠O(∆DZ2+)→ ∆DZ1×Z2 (−⊠O+) : Db
c(DZ1)×Db

c(DZ2)→ Db
c(DZ1×Z2)op.

Proof. For a complex manifold Z, the sheaf DZ ⊗CZ D
op
Z is naturally a CZ-

algebra, and DZ is naturally a left DZ⊗CZ D
op
Z -module. For Ni ∈ D(DZop

i
),

by [HT07, p.39], there is a natural isomorphism in D(Dop
Z1×Z2

):

N1 ⊠O N2 = (N1 ⊠C N2)⊗DZ1
⊠CDZ2

DZ1×Z2 . (6.48)

First, we construct the natural transformation. Take Mi ∈ Db
c(DZi).
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Claim 6.7.4.5. Then there is a natural morphism in Db((DZ1 ⊠C DZ2)op):

RHomDZ1
(M1, DZ1) ⊠C RHomDZ2

(M2, DZ2)

→RHomDZ1
⊠CDZ2

(M1 ⊠C M2, DZ1 ⊠C DZ2).
(6.49)

Claim 6.7.4.6. There is a natural morphism in Db(Dop
Z1×Z2

):

RHomDZ1
⊠CDZ2

(M1 ⊠C M2, DZ1 ⊠C DZ2)⊗DZ1
⊠CDZ2

DZ1×Z2

→RHomDZ1
⊠CDZ2

(M1 ⊠C M2, DZ1×Z2).
(6.50)

Again, there is a natural morphism in Db(Dop
Z1×Z2

):

RHomDZ1
⊠CDZ2

(M1⊠CM2, DZ1×Z2)→ RHomDZ1×Z2
(M1⊠OM2, DZ1×Z2),

(6.51)
which can be defined by taking a DZ1×Z2 ⊗C D

op
Z1×Z2

-injective resolution of
DZ1×Z2 .

Composing the morphisms (6.48), (6.49), (6.50) and (6.51) in order, one
gets a natural morphism in Db(Dop

Z1×Z2
):

RHomDZ1
(M1, DZ1) ⊠O RHomDZ2

(M2, DZ2)

→RHomDZ1×Z2
(M1 ⊠OM2, DZ1×Z2).

(6.52)

We prove that the constructed natural transformation is an isomorphism.
To show (6.52) is an isomorphism, by [Har66, I, Prop. 7.1 (i)], one may
assume Mi ∈ Coh(DZi) for i = 1, 2. By shrinking Zi and using [KS90,
Prop. 11.2.6], one may find a bounded resolution of Mi by free DZi-modules
of finite rank. Thus, one may further assume that Mi = DZi . Since
ωZ1×Z2 = ωZ1 ⊠O ωZ2 in Mod(Dop

Z1×Z2
), by [HT07, Eg. 2.6.3], in this case

(6.52) is an isomorphism.

Proof of Claim 6.7.4.5. Take a DZi ⊗C D
op
Zi

-injective resolution DZi → I∗i .
Then I∗1 ⊠C I

∗
2 is a complex of modules over

(DZ1⊗CD
op
Z1

)⊠C (DZ2⊗CD
op
Z2

) = (DZ1 ⊠CDZ2)⊗C (DZ1 ⊠CDZ2)op. (6.53)

By [Sta24, Tag 013K (2)], there exists an injective resolution I∗1 ⊠C I
∗
2 → I∗

(hence an induced injective resolution DZ1 ⊠C DZ2 → I∗) over (6.53). The
natural morphism DZi → DZi ⊗CD

op
Zi

is flat, so every injective DZi ⊗CD
op
Zi

-
module is injective over DZi . Similarly, every term of the complex I∗ is
injective over DZ1 ⊠C DZ2 . Then (6.49) is defined to be the composition of
the natural morphisms

HomDZ1
(M1, I

∗
1 ) ⊠C HomDZ2

(M2, I
∗
2 )→ HomDZ1

⊠CDZ2
(M1 ⊠C M2, I

∗
1 ⊠C I

∗
2 )

→ HomDZ1
⊠CDZ2

(M1 ⊠C M2, I
∗).
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Proof of Claim 6.7.4.6. Take an injective resolution DZ1 ⊠CDZ2 → J∗ over
(6.53). By [Sta24, Tag 013K (2)], over (DZ1 ⊠CDZ2)⊗CD

op
Z1×Z2

there exists
an injective resolution J∗ ⊗DZ1

⊠CDZ2
DZ1×Z2 → K∗. Then (6.50) is defined

to be the composition of the natural morphisms

HomDZ1
⊠CDZ2

(M1 ⊠C M2, J
∗)⊗DZ1

⊠CDZ2
DZ1×Z2

→HomDZ1
⊠CDZ2

(M1 ⊠C M2, J
∗ ⊗DZ1

⊠CDZ2
DZ1×Z2)

→HomDZ1
⊠CDZ2

(M1 ⊠C M2,K
∗).

Corollary 6.7.4.7 ([Lau96, Cor. 3.3.3]). The equivalence RS2 : (Db
good(DY ), ∗D)→

(Db
good(AX),⊗LAX ) is a strong monoidal functor (in the sense of [SS03,

Def. 3.3]). In fact, there are canonical isomorphisms of bifunctors

RS2(− ∗D +) ∼= (RS2−)⊗LAX (RS2+) : Db
good(DY )×Db

good(DY )→ Db
good(AX);

(6.54)

(RS1−) ∗D (RS1+) ∼= T−gRS1(−⊗LAX +) : Db
good(AX)×Db

good(AX)→ Db
good(DY );

(6.55)

RS1(− ∗A +) ∼= (RS1−)⊗LOY (RS1+) : DO−good(AX)×DO−good(AX)→ DO−good(DY );
(6.56)

(RS2−) ∗A (RS2+) ∼= T−gRS2(−⊗LOY +) : DO−good(DY )×DO−good(DY )→ DO−good(AX).
(6.57)

Proof. Let δX : X → X2 =: X ′ be the diagonal morphism. Its dual
morphism is µ : Y 2 → Y . There are canonical isomorphisms of bifunctors

RS2(− ∗D +) :=RS2µ+(−⊠O +)

(a)
∼=Lδ̃∗XRS

′
2(−⊠O +)

(b)
∼=Lδ̃∗X(RS2 −⊠ARS2+)

(c)
∼=(RS2−)⊗LAX (RS2+),

where (a), (b) and (c) use (6.38), (6.46) and (6.45) respectively. This shows
(6.54).

By Corollary 6.5.1.6, the functor RS2 preserves units, so it is strong
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monoidal. In addition, (6.55) follows:

(RS1−) ∗D (RS1+)
(a)
∼=T gRS1RS2(RS1 − ∗DRS1+)

(b)
∼=T gRS1(RS2RS1 −⊗LAXRS2RS1+)

(c)
∼=T gRS1(T−g −⊗LAXT

−g+)

=T−gRS1(−⊗LAX +),

where (a) and (c) (resp. (b)) use Theorem 6.6.3.1, (resp. (6.54)).
Because the diagonal morphism δY : Y → Y 2 is dual to m : X ′ = X2 →

X, there are canonical isomorphisms of bifunctors

RS1(− ∗A +) :=RS1Rm̃∗(−⊠A +)

(a)
∼=Lδ∗YRS

′
1(−⊠A +)

(b)
∼=Lδ∗Y (RS1 −⊠ORS1+)

(c)
∼=(RS1−)⊗LOY (RS1+),

where (a), (b) and (c) use (6.36), (6.47) and [HT07, p.39] respectively. This
demonstrates (6.56). Then (6.57) follows:

(RS2−) ∗A (RS2+)
(a)
∼=T gRS2RS1(RS2 − ∗ARS2+)

(b)
∼=T gRS2(RS1RS2 −⊗LOY RS1RS2+)

(c)
∼=T gRS2(T−g −⊗LOY T

−g+)

=T−gRS2(−⊗LOY +),

where (a) and (c) (resp. (b)) use Theorem 6.5.1.4 (resp. (6.56)). The other
axioms can be verified as in [Krä22, Prop. 3.1].

Remark 6.7.4.8. We reprove Proposition 6.7.4.3 using the Laumon-Rothstein
transform as follows. By [Sta24, Tag 08DJ], for every objectM ∈ Db

good(AX),

the functor · ⊗LAX M : Db
good(AX) → Db

good(AX) admits a right adjoint
RHomAX (M, ·). By [Huy06, p.84], the right adjoint is naturally isomorphic
to T−g∆AX (M)⊗LAX ·. Then combining Proposition 6.7.1.5 with Corollary
6.7.4.7, one gets Proposition 6.7.4.3.

6.7.5 Translation and multiplication

For every y ∈ Y , there is a canonical isomorphism T ∗
(0,y)P ∼= P ⊗OX×Y p

∗
XPy

in Mod(X × Y )−1−cxn,fl, where p∗X : Mod(OX) → Mod(DX×Y/X) is the
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pullback of relative D-modules. The functor

P ⊗OX×Y (·) : Mod(DX×Y/X)→ Mod(OX×Y )−1−cxn,fl

is from [Rot97, (2.10)]. Arguing as in [Muk81, (3.1)], we deduce Proposition
6.7.5.1 from the projection formula.

Proposition 6.7.5.1. There are canonical isomorphisms of functors

RS2 ◦ T ∗
y
∼= (· ⊗OX Py) ◦RS2 : D(DY )→ D(AX),

RS1 ◦ (· ⊗OX Py) ∼= T ∗
y ◦RS1 : D(AX)→ D(DY ).

Similar results hold for the Rothstein transform.

Remark 6.7.5.2. As the proof does not use the smooth base change, goodness
over O is not necessary in Proposition 6.7.5.1.

Proposition 6.7.5.3 is a variant of [Sch15, Thm. 9.5 (a)].

Proposition 6.7.5.3. For a flat line bundle (L,∇) on Y , let z ∈ X♮ be the
corresponding point. There are canonical isomorphisms of functors

RS2(· ⊗OY (L,∇)) ∼= RS2(·) ∗A π∗Cz : DO−good(DY )→ DO−good(AX),
(6.58)

RS1(·)⊗OY (L,∇) ∼= RS1(· ∗A π∗Cz) : DO−good(AX)→ DO−good(DY ).
(6.59)

Proof. By Example 6.5.1.2 and Theorem 6.5.1.4, one has RS2(L,∇) =
T−gπ∗Cz. Then (6.58) follows from (6.57). By Theorem 6.5.1.4, (6.58)
implies (6.59).
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Appendix A

Sheaves of modules

A.1 Sheaves of modules

We recall some facts about sheaves of modules. Let (X,OX) be a ringed
space.

A.1.1 Generalities

Definition A.1.1.1. An OX -module F is called

1. ([Sta24, Tag 01B5]) of finite type if every x ∈ X admits an open
neighborhood U such that F |U is generated by finitely many sections;

2. ([Sta24, Tag 01BN]) of finite presentation if for every x ∈ X, there
is an open neighborhood U ⊂ X, integers n,m ≥ 0 and an exact
sequence of OU -modules

OmU → OnU → F |U → 0;

3. ([EGA I, 5.1.3]) quasi-coherent if for every x ∈ X, there is an open
neighborhood U ⊂ X, two sets I, J and a morphism O⊕J

U → O⊕I
U

whose cokernel is isomorphic to F |U ;

4. ([Kas03, Def. A.5 (1)]) pseudo-coherent if for every open subset U ⊂
X, every finite type OU -submodule of F |U is of finite presentation.
Let PCoh(X) ⊂ Mod(OX) be full subcategory of pseudo-coherent
modules;

5. ([Kas03, Def. A.5 (2)]) K-coherent if F is pseudo-coherent and of finite
type;

6. ([Sta24, Tag 01BV]) coherent if F is of finite type and for every open
subset U ⊂ X and every finite collection {si}1≤i≤n in F (U), the kernel
of the associated morphism OnU → F |U is of finite type over OU .
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Every property in Definition A.1.1.1 is local, in the sense that it restricts
to every open subset, and if it holds on each member of an open covering of
X, then it holds on X.

Lemma A.1.1.2. Let 0 → F
i→ G

r→ H → 0 be a short exact sequence in
Mod(OX). If F,H are of finite presentation, then so is G.

Proof. For every x ∈ X, by [Sta24, Tag 01B8], there is an open neighborhood

U of x such that the sequence G(U)
rU→ H(U)→ 0 is exact. Up to shrinking

U , there exist integers m,n, p, q ≥ 0 and two exact sequences

OmU → OnU
f→ F |U → 0, OpU → OqU

h→ H|U → 0.

The morphism h is defined by q elements s1, . . . , sq of H(U). For each
1 ≤ i ≤ q, choose a preimage ti ∈ G(U) of si. Consider the morphism
ϕ : On+qU → G|U determined by if(e1), . . . , if(en), t1, . . . , tq ∈ G(U). Hence
a commutative diagram with two exact middle rows

0 OmU ker(ϕ) OpU

0 OnU On+qU OqU 0

0 F |U G|U H|U 0

0 coker(ϕ) 0.

f ϕ g

By the snake lemma, ϕ is surjective and ker(ϕ) is finite type. Shrinking U
again, one may find an integer k ≥ 0 and a surjection OkU → ker(ϕ). The
induced sequence OkU → On+qU → G|U → 0 is exact. Therefore, G is of finite
presentation.

A.1.2 Pseudo-coherent modules

Lemma A.1.2.1.

1. Let 0 → F
i→ G

r→ H → 0 be a short exact sequence in Mod(OX). If
F,H are pseudo-coherent, then so is G.

2. Let I be a directed set. Let (Mi, fij) be a direct system over I consisting
of pseudo-coherent OX-modules. Then M := colimi∈IMi in Mod(OX)
is pseudo-coherent.

3. If {Mα}α∈A is a family of pseudo-coherent OX-modules, then S :=
⊕α∈AMα is also pseudo-coherent.
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Proof. Let U be an open subset of X.

1. Let M be a finite type submodule of G|U . Then the kernel of r|M :
M → H|U is (F |U ) ∩M . Thus, r|M induces an injection M/(F |U ∩
M) → H|U . As H is pseudo-coherent, the finite type OU -submodule
M/(F |U ∩ M) is of finite presentation. By [Sta24, Tag 01BP (2)],
F |U ∩M is of finite type. As F is pseudo-coherent, F |U ∩M is of
finite presentation. By Lemma A.1.1.2 applied to the exact sequence
0 → F |U ∩M → M → M/(F |U ∩M) → 0, the OU -module M is of
finite presentation. Thus, G is pseudo-coherent.

2. Let N be a finite type submodule of M |U . For every x ∈ U , from
the first three lines of the proof of [Sta24, Tag 01BB], there is an
open neighborhood V ⊂ U of x and i ∈ I such that N |V ⊂ Fi|V .
Since Fi is pseudo-coherent, N |V is of finite presentation. As finite
presentation is a local property, N is of finite presentation. Thus, M
is pseudo-coherent.

3. Let I be the set of all finite subsets of A with the inclusion order.
Then I is a directed set. For B ∈ I, set FB = ⊕α∈BMα. By Point 1,
FB is pseudo-coherent. For B ≤ B′ in I, set fB,B′ : FB → FB′ to be
the inclusion. Hence a direct system (FB, fB,B′) over I. By Point 2,
the OX -module S = colimB∈IFB is pseudo-coherent.

Lemma A.1.2.2 allows one to apply results on K-coherent sheaves in
[Kas03] to coherent sheaves.

Lemma A.1.2.2. An OX-module is K-coherent if and only if it is coherent.

Proof. Let U ⊂ X be an open subset. Assume that F is a K-coherent
module. Let {si}1≤i≤n be a finite collection in F (U), and let f : OnU → F |U
be the associated morphism. Then imf is a finite type submodule of F |U .
Because F is pseudo-coherent, imf is of finite presentation over OU . From
[Sta24, Tag 01BP (2)], ker f is of finite type over OU . Therefore, F is
coherent.

Conversely, assume that F is a coherent OX -module. Let M be a finite
type submodule of F |U . By [Sta24, Tag 01BY (1)], M is coherent over OU .
From [Sta24, Tag 01BW], M is of finite presentation. Thus, F is pseudo-
coherent and hence K-coherent.

The module OX is quasi-coherent, but in general not pseudo-coherent.
If it is pseudo-coherent, then OX is called a coherent sheaf of rings.

Lemma A.1.2.3. If X is a locally Noetherian scheme, then every quasi-
coherent module is pseudo-coherent.
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Proof. By [EGA I, Cor. 9.4.9], a quasi-coherent module is a directed limit
of coherent modules, hence pseudo-coherent by Lemma A.1.2.1 2.

Example A.1.2.4. Let X = A1 be the affine line over a field. Let U =
X \ {0}, and let j : U → X be the inclusion. By [Har77, II, Example
5.2.3], the OX -module j!OU is not quasi-coherent. From [Har77, II, Exercise
1.19 (c)], it is a submodule of the coherent module OX . Hence, j!OU is
pseudo-coherent.

Definition A.1.2.5 defines a local property. It is weaker than [Bjö93,
A:III, 2.24] and [Kas03, Def. A.7].

Definition A.1.2.5. Assume that OX is a coherent sheaf of rings. If for
every open subset U ⊂ X, every family of coherent ideal sheaves {Ii}i in OU ,
the ideal sheaf

∑
i Ii is OU -coherent, then OX is called a quasi-Noetherian

sheaf of rings.

Example A.1.2.6. 1. If (X,OX) is a locally Noetherian scheme, then
OX is quasi-Noetherian.

2. If (X,OX) is a complex analytic space, then by the Oka-Cartan theorem
(see, e.g., [Kas03, Thm. A.12]), OX is quasi-Noetherian.

A.1.3 Analytic coherent modules

Let X be a complex analytic space. We show that a coherent OX -module
admits a local free resolution, from which we deduce that coherence is
preserved by derived pullbacks and tensor products. An analog of Lemma
A.1.3.1 for algebraic varieties is [Har77, III, Example 6.5.1]. By local syzygies
[GH78, p.696], on complex manifolds, every coherent module local admits a
finite-length, finite free resolution.

Lemma A.1.3.1. Every x ∈ X admits an open neighborhood U , such
that for every coherent OX-module F , there is a (possibly infinite-length)
resolution

· · · → On1
U → On0

U → F |U → 0,

where ni ≥ 0 are integers.

Proof. Shrinking X to an open neighborhood of x, one may assume that
X is Stein. By [GR04, Thm. 8, p.108], there is a compact neighborhood
K ⊂ X of x, such that Theorem B is valid on K in the sense of [GR04,
Def. 1, p.100]. Let U = K◦.

For a coherent OX -module F , we construct inductively a sequence of
morphisms. From [GR04, Cor. p.101], there is an integer n0 ≥ 0, an open
neighborhood U0 of K ⊂ X and a morphism f0 : On0

U0
→ F |U0 in Mod(OU0)

such that f0|U is an epimorphism in Mod(OU ). Set ker(f−1)|U0 = F |U0 .
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Given such a morphism fj : O
nj
Uj
→ ker(fj−1)|Uj for an integer j ≥ 0 and an

open neighborhood Uj ⊂ X of K, by [Sta24, Tag 01BY (3)], the OUj -module
ker(fj) is coherent. By [GR04, Cor. p.101], there is an open neighborhood
Uj+1 ⊂ Uj of K, an integer nj+1 ≥ 0 and a morphism fj+1 : O

nj+1

Uj+1
→

ker(fj)|Uj+1 in Mod(OUj+1) such that fj+1|U is an epimorphism. Thus, one
gets a sequence

· · · → On2
U

f2|U→ On1
U

f1|U→ On0
U

f0|U→ F |U → 0

in Mod(OU ). By construction, it is exact, hence a resolution of F |U .

Example A.1.3.2. Assume that x ∈ X is a singular point. Then F := Cx
is a coherent OX -module, but for every open neighborhood U ⊂ X of x,
there is no finite-length resolution of F |U by finite locally free OU -modules.
(Otherwise, such a resolution induces a finite-length free resolution of the
OX,x-module Fx = C = OX,x/mx. From [Osb12, Ch. 4, Prop. 4.4], the
projective dimension pdOX,x OX,x/mx is finite. By [Mat87, Lem. 1, p.154]
and [Osb12, Prop. 4.9], the global dimension of the ring OX,x is finite. By
Serre’s theorem (see, e.g., [Osb12, p.332]), the local ring OX,x is regular.
From [Ser56, p.6], x is a smooth point of X, a contradiction.)

Therefore, Lemma A.1.3.1 fails if one consider only finite-length resolutions.
See also [EP+96, Thm. 4.1.2].

Lemma A.1.3.3. Let f : X → Y be a morphism of complex analytic spaces.
Then derived pullback Lf∗ : D(Y )→ D(X) restricts to a functor Coh(Y )→
Dc(X).

Proof. Let F be a coherent OY -module. For every x ∈ X, by Lemma
A.1.3.1, there is an open neighborhood V of f(x) ∈ Y , such that there is a
resolution E• → F |V → 0 by finite free OV -modules. Let g : f−1(V ) → V
be the base change of f along the inclusion V → Y . Then the morphism
g∗E• → (Lf∗F )|f−1(V ) in D(f−1(V )) is an isomorphism. For every integer
j ≥ 0, the Of−1(V )-module g∗Ej is finite free. Thus, the Of−1(V )-module

(H−jLf∗F )|f−1(V ) is coherent. Since coherence is a local property, the OX -

module H−j(Lf∗F ) is coherent.

Lemma A.1.3.4. For any coherent OX-modules F and G, one has F ⊗LOX
G ∈ Dc(X).

Proof. For every x ∈ X, by Lemma A.1.3.1, there is an open neighborhood
U ⊂ X of x and a resolution E• → F |U → 0 by finite free OU -modules. The
natural morphism E•⊗OU G|U → F |U ⊗LOU G|U in D(U) is an isomorphism.

For every integer n, the OU -module Hn(E•⊗LOU G|U ) = Hn(E•⊗OU G|U ) is

coherent. Therefore, the OU -module Hn(F⊗LOXG)|U = Hn(F |U⊗LOUG|U ) is

coherent. Since coherence is a local property, the OX -module Hn(F ⊗LOX G)
is coherent.
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A.1.4 Good modules

Assume that the ringed space X is locally compact Hausdorff.

Definition A.1.4.1. [Kas03, Def. 4.22] AnOX -module F is called good if for
every relatively compact open subset U ⊂ X, there exists a directed family
{Gi}i∈I of coherent OU -submodules of F |U such that F |U =

∑
i∈I Gi, where

{Gi}i∈I being a directed family means that for any i, i′ ∈ I, there is i′′ ∈ I
with Gi +Gi′ ⊂ Gi′′ (and hence F |U = colimi∈IGi). The full subcategory of
Mod(OX) consisting of good OX -modules is denoted by Good(X).

Lemma A.1.4.2 (Goodness vs. pseudo-coherence).

1. ([Kas03, p.77]) One has Coh(X) ⊂ Good(X) ⊂ PCoh(X).

2. Let E be a pseudo-coherent OX-module. If on every relatively compact
open subset U ⊂ X, the OU -module E|U is the sum of its finite type
submodules, then E is good.

Proof.

1. By definition, every coherentOX -module is good. Let E be a goodOX -
module. Let W be an open subset of X, and let F ⊂ E|W be a finite
type OW -submodule. We show that F is of finite presentation over
OW . Replacing (X,E) with (W,E|W ), one may assume that W = X.
Because X is locally compact, for every x ∈ X, there exists a relatively
compact open neighborhood U ⊂ X of x and finitely many sections
s1, . . . , sn ∈ F (U) generating F |U . As E is good, E|U =

∑
i∈I Gi is the

sum of a directed family of coherent submodules. There exists i0 ∈ I
and an open neighborhood V of x ∈ U with si|V ∈ Gi0(V ) for all
1 ≤ i ≤ n. Then F |V is a finite type submodule of Gi0 |V . By [Sta24,
Tag 01BY (1)], F |V is OV -coherent. As coherence is a local property,
F is coherent. From [Sta24, Tag 01BW], F is of finite presentation.

2. The family of finite type submodules of E|U is directed, since the sum
of two finite type submodules is of finite type. For every relatively
compact open subset U ⊂ X, as E is pseudo-coherent, every finite
type submodule of E|U is pseudo-coherent and hence coherent. Thus,
E is good.

Basic properties of good modules (similar to those of quasi-coherent
modules on algebraic varieties) are recapped in Lemma A.1.4.3. Point 3
should be compared to [Con06, Lemma 2.1.8 (1)].

Lemma A.1.4.3.
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1. For every family of objects {Fi}i∈I in Good(X), the direct sum ⊕i∈IFi
in Mod(OX) is good.

2. The subcategory Dgood(X) is closed under direct sums in D(X). Moreover,
the inclusion functor Good(X) → Dgood(X) commutes with direct
sums.

Suppose that OX is quasi-Noetherian. Then:

3. The subcategory Good(X) ⊂ Mod(OX) is weak Serre and closed under
filtered colimits in Mod(OX). In particular, Good(X) is a locally
Noetherian category (in the sense of [Gab62, p.356]).

4. The inclusion functor Dgood(X)→ D(X) is a triangulated subcategory.

Proof.

1. Over every relatively compact open subset U of X, the direct sum
(⊕i∈IFi)|U is the sum of its coherent OU -submodules. By Lemma
A.1.2.1 3, the OX -module ⊕i∈IFi is pseudo-coherent. By Lemma
A.1.4.2 2, it is good.

2. Since Mod(OX) is a Grothendieck abelian category, by [Sta24, Tag
07D9], the category D(X) has arbitrary direct sums and they are
computed by taking termwise direct sums of any representative complexes.
Then by [Wei95, Exercise 1.2.1], for every integer q, the functor Hq :
D(X) → Mod(OX) commutes with direct sums. The result follows
from Point 1.

3. As OX is quasi-Noetherian, by [Sta24, Tag 0754] and the proof of
[Kas03, Prop. 4.23], Good(X) is a weak Serre subcategory of Mod(OX).
From [KS06, Thm. 18.1.6 (v)], the category Mod(OX) is a Grothendieck
abelian category. By Point 1 and [Sta24, Tag 002P], the filtered
colimits in Good(X) exist and agree with the filtered colimits in Mod(OX).
Thus, filtered colimits in Good(X) are exact.

Because of [Sta24, Tag 01BC], there is a set of coherent OX -modules
{Fi}i∈I such that each coherent OX -module is isomorphic to exactly
one of the Fi. Then {Fi} is a family of Noetherian generators of
Good(X). Therefore, the category Good(X) is locally Noetherian.

4. It follows from [Yek19, Prop. 7.4.5] and Point 3.

Lemma A.1.4.4. A good module on a complex analytic space is quasi-
coherent.
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Proof. Let F be a good module on a complex analytic space X. From
[Fri67, Thm. I, 9, Rem. I, 10], every x ∈ X admits a neighborhood
K that is a Noetherian Stein compactum. There is a relative compact
open subset U of X containing K. As F is good, the OU -module F |U =∑

i∈I Fi is the sum of a directed family of coherent subsheaves. Applying
the functor Γ(K, ·) to the directed family {Fi}i∈I in Coh(U), by [Tay02,
Prop. 11.9.2], one gets a directed family of finitely generated Γ(K,OK)-
submodule {Mi}i∈I of Γ(K,F ), whose associated family in Mod(OK) is
{Fi|K}i∈I . Let M be colimi∈IMi in Mod(Γ(K,OK)). Since the localization
functor Mod(Γ(K,OK))→ Mod(OK) is left adjoint to Γ(K, ·) : Mod(OK)→
Mod(Γ(K,OK)), the localization preserves colimits. Then F |K is associated
to M . By Lemma C.2.0.5, F is quasi-coherent.

Remark A.1.4.5. The restriction of a good OX -module to an open subset
U is a good OU -module. Unlike quasi-coherence on schemes, goodness is
not a local property. In fact, by Lemma A.1.4.3 3, every free module on a
complex manifold is good, while Gabber [Con06, Eg. 2.1.6] gives a locally
free (hence quasi-coherent and pseudo-coherent), but not good module on
the unit open disk in C. (In particular, the converse of Lemma A.1.4.4 is
wrong for noncompact complex manifolds.) Still, given an OX -module F ,
if for every relatively compact open subset U ⊂ X, the OU -module F |U is
good, then F is good.

Definition A.1.4.6 ([KS06, Def. 6.3.3]). In a category C with small filtered
colimits, an object X is of finite presentation, if HomC(X, ·) : C → Set
commutes with small filtered colimits.

Remark A.1.4.7. In an additive category with arbitrary direct sums, an
object of finite presentation is necessarily compact, but the converse is false.
Let M be a finite module but not of finite presentation over a commutative
ring R. By [Ren69, no. 2], M is a compact object of the abelian category
Mod(R). From [Sta24, Tag 0G8P], M is not an object of finite presentation.

Lemma A.1.4.8. Let (X,OX) be a ringed space. If the topology is Hausdorff
compact, then every OX-module of finite presentation is an object of finite
presentation of Mod(OX).

Proof. Let G = colimi∈IGi be a filtered colimit in Mod(OX). Let F be an
OX -module of finite presentation. By [Sta24, Tag 0GMV], the canonical
morphism colimi∈IHomOX (F,Gi) → HomOX (F,G) is an isomorphism. By
compactness ofX and [God58, Thm. 4.12.1], the canonical map colimi∈IH

0(X,HomOX (F,Gi))→
H0(X, colimi∈IHomOX (F,Gi)) is bijective. Then the canonical map colimi∈I HomMod(OX)(F,Gi)→
HomMod(OX)(F,G) is bijective.

Lemma A.1.4.9. Let X be a compact complex analytic space. Then the
objects of finite presentation in Good(X) are precisely objects of Coh(X).
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Proof. Let F ∈ Good(X) be an object of finite presentation. By compactness
of X, there is a directed family of coherent submodules {Fi}i∈I with F =∑

i∈I Fi. Then the canonical morphism colimi∈I Hom(F, Fi) → Hom(F, F )
of abelian groups is an isomorphism. Thus, there is i0 ∈ I and an element
Hom(F, Fi0) lying over IdF . As IdF factors through Fi0 , one has F = Fi0 ∈
Coh(X).

Conversely, by [Sta24, Tag 01BW], every object of Coh(X) is an OX -
module of finite presentation. From Lemma A.1.4.8 and compactness of X,
it is an object of finite presentation in Mod(OX). By Lemma A.1.4.3 3, it
is also an object of finite presentation in Good(X).

A.1.5 Sections of direct sum of sheaves

By [Har77, II, Exercise 1.11], on a Noetherian topological space, taking
section commutes with (possibly infinite) direct sum of sheaves. This fails
on complex manifolds, as Example A.1.5.1 shows.

Example A.1.5.1. Let X = C. Let F be the OX -module ⊕n≥0Cn. There
is a section s ∈ Γ(X,F⊕N), such that for every integer n ≥ 0, the stalk
sn ∈ (F⊕N)n = (Fn)⊕N = C⊕N is (1, 1, . . . , 1, 0, 0, . . . ), where the first n+ 1
entries are 1 and all the other entries are 0. Then s has no preimage under
the canonical map Γ(X,F )⊕N → Γ(X,F⊕N). For otherwise, let (tn)n≥0 ∈
Γ(X,F )⊕N be a preimage of s. Then there are only finitely many integers
n ≥ 0 with tn ̸= 0. Every tn has only finitely many nonzero stalks. However,
s has infinitely many nonzero stalks, which is a contradiction.

Let X be a complex manifold. An OX -module is called privileged if for
every connected open subset U ⊂ X and every x ∈ U , the map Γ(U,F )→ Fx
taking the stalk at x is injective. By the identity theorem (see, e.g., [GH78,
p.7]), OX is privileged.

Lemma A.1.5.2. Assume that X is connected. Let {Fi}i∈I be a family of
privileged OX-modules. Then the canonical map ⊕i∈IΓ(X,Fi)→ Γ(X,⊕i∈IFi)
is bijective.

Proof. Let P be the presheaf direct sum of {Fi}i∈I . Let θ : P → ⊕i∈IFi
be the sheafification morphism. Then P (X) = ⊕i∈IΓ(X,Fi) and θX :
⊕i∈IΓ(X,Fi)→ Γ(X,⊕i∈IFi) is the colimit of

θ
(J)
X : ⊕i∈JΓ(X,Fi)→ Γ(X,⊕i∈IFi),

where J runs through the finite subsets of I. For every such J , by [Sta24,
Tag 01AH (4)], the presheaf direct sum of {Fi}i∈J is a subsheaf of ⊕i∈IFi,
so the map θ

(J)
X is injective. Therefore, their limit map θX is also injective.

We prove that θX is surjective.
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By construction of sheafification in [Har77, p.64], for every s ∈ Γ(X,⊕i∈IFi),
there is a covering {Uα}α∈A of X by nonempty connected open subsets
and an element tα ∈ Γ(Uα, P ) for each α ∈ A such that sx = tα,x in
(⊕i∈IFi)x = ⊕i∈IFi,x for every x ∈ Uα.

Fix x0 ∈ X and α0 ∈ A with x0 ∈ Uα0 . Then there is a finite subset
I0 ⊂ I such that tα0 ∈ Γ(X,⊕i∈I0Fi) ⊂ Γ(X,P ). Let B ⊂ A be the subset
of indices α with tα /∈ Γ(Uα,⊕i∈I0Fi). Set V = ∪α∈BUα. Then V is open in
X and its complement

X \ V ⊂ ∪α∈A\BUα. (A.1)

For every α ∈ A \B, we claim that Uα ⊂ X \ V .
In fact, for every y ∈ Uα, every β ∈ A with y ∈ Uβ and every i ∈ I \ I0,

the stalk tiβ,y = siy = tiα,y = 0 in Fi,y. Since Fi is privileged and Uβ is

connected, the map Γ(Uβ, Fi)→ Fi,y is injective. Thus, tiβ = 0 in Γ(Uβ, Fi).
Therefore, tβ ∈ Γ(X,⊕i∈I0Fi), i.e., β /∈ B. Hence y /∈ V .

From the claim and (A.1), the subsetX\V = ∪α∈A\BUα is also open inX
and contains Uα0 . Since X is connected, one has V = B = ∅. Consequently,
tα ∈ Γ(X,⊕i∈I0Fi) for every α ∈ A. Then the family {tα}α∈A glues to a
preimage of s in Γ(X,⊕i∈I0Fi) ⊂ Γ(X,P ). Thus, θX is surjective and hence
a group isomorphism.

Corollary A.1.5.3. If F is a locally free (possibly of infinite rank) OX-
module, then F is privileged.

Proof. Let U be a connected open subset of X. Fix x0 ∈ U . We prove that
the map Γ(U,F ) → Fx0 is injective. Take s ∈ Γ(U,F ) with sx0 = 0. By
[Har77, II, Exercise 1.14], the set Z := {x ∈ U : sx = 0} is open in U .

We claim that Z is closed in U . Let {xn}n≥1 be a sequence of points
in Z converging to y ∈ U . Because F is locally free, there is a connected
open neighborhood V ⊂ U of y, a set I and an isomorphism ϕ : F |V

∼−→ O⊕I
V

of OV -modules. There is an integer N > 0 with xN ∈ V . Because OV is
privileged, from Lemma A.1.5.2, the map on the bottom of the commutative
square

Γ(V, F ) FxN

Γ(V,O⊕I
V ) O⊕I

V,xN

ϕV ϕxN

is injective. Then so is the map on the top. Since sXN = 0, one has s|V = 0
and sy = 0. Hence y ∈ Z. The claim is proved.

Because U is connected and x0 ∈ Z, by claim one has Z = U . Therefore,
s = 0 in Γ(U,F ).
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Corollary A.1.5.4. Let X be a connected complex manifold. Let {Fi}i∈I be
a family of locally free OX-modules. Then the canonical map ⊕i∈IΓ(X,Fi)→
Γ(X,⊕i∈IFi) is bijective.

Proof. It follows from Lemma A.1.5.2 and Corollary A.1.5.3.

A.2 Gabber’s example

We present an example of a locally free module on the open unit disc that is
not good. It illustrates that goodness on complex manifolds, unlike quasi-
coherence on algebraic varieties, is not a local property. This construction
is already exhibited in the context of rigid geometry by [Con06, Example
2.1.6], which attributes the originality to Gabber. Furthermore, in [Con06,
p.1058] it is mentioned that Gabber’s example makes sense in complex-
analytic geometry as well. We reproduce this construction with a few extra
details.

Lemma A.2.0.1. Let X be a complex manifold, U be a dense open subset of
X. If F is a locally free OX-module, then the restriction map r : Γ(X,F )→
Γ(U,F ) is injective.

Proof. Every x ∈ X admits a connected open neighborhood V such that F |V
is free OV -module. Then Γ(V, F ) is a free Γ(V,OX)-module by Corollary
A.1.5.4. By density of U , V ∩U is nonempty. For every s ∈ ker(r), s|V ∩U =
0. As F |V is free and the map Γ(V,OX) → Γ(V ∩ U,OX) is injective, the
restriction s|V = 0. By local nature of sheaves, s = 0.

Lemma A.2.0.2. Let X be a Hausdorff locally compact space, K be a
compact subspace and j : K → X be the inclusion. Then for every q ∈ Z
and every F ∈ Ab(X), the canonical morphism ψq : colimUH

q(U,F ) →
Hq(K, j−1F ) is an isomorphism, where U ranges through the family of open
neighborhoods of K in X. The two groups are written as Hq(K,F ).

Proof. We prove that both sides are the q-th right derived functor applied
to F of a same functor.

Define a category I as follows. The objects are the open subsets of
X containing K. For every U, V ∈ I, if U ⊃ V , then HomI(U, V ) is a
singleton; else HomI(U, V ) = ∅. Thus, I is a small category. Let AbI be
the category of functors from I to Ab. By [Wei95, Exercise 2.3.7], AbI is an
abelian category with enough injectives. Recall that Ab is a Grothendieck
abelian category, so colimI : AbI → Ab is exact. By [KS90, Prop 2.5.1], the
composition of the functor Φ : Ab(X)→ AbI defined by Φ(F )(U) = Γ(U,F )
with colimI : AbI → Ab is Γ(K, j−1·) : Ab(X) → Ab. Therefore, the q-th
right derived functor of Γ(K, j−1·) is colimI ◦RqΦ = colimUH

q(U, ·).
The functor Γ(K, j−1·) : Ab(X) → Ab is the composition of j−1 :

Ab(X) → Ab(K) with Γ(K, ·) : Ab(K) → Ab(X). Every injective object
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G of Ab(X) is c-soft, so j−1G is c-soft by [KS90, Propositon 2.5.7 (i)]. By
[KS90, Proposition 2.5.10], j−1G is right acyclic for Γ(K, ·). By [Sta24, Tag
015M], Hq(K, j−1·) is also the q-th right derived functor of Γ(K, j−1·). We
conclude that ψq is an isomorphism.

Definition A.2.0.3 (Compact Stein set). [Con06, p.1053]LetK be a compact
subset of a complex manifoldX. IfHq(K,F ) = 0 for every open neighborhood
U of K ⊂ X, every coherent OU -module and every q ∈ N∗, then K is called
a compact Stein set in X.

Lemma A.2.0.4 ([Con06, p.1058]). Let K be a compact compact Stein set
in a complex manifold X, F be a good OX-module, then Hq(K,F ) = 0 for
all q ∈ N∗.

Proof. There is a relative compact open subset U ⊂ X containing K. By
definition, F |U = colimiFi, where {Fi} is a direct family of coherent OU -
submodules of F |U . By [God58, II, Thm. 4.12.1], Hq(K,F ) = colimiH

q(K,Fi) =
0.

Example A.2.0.5 (Gabber). Let ∆ be the open unit disc in C and let
K = {z ∈ C : |z| ≤ 1/2}. Then B(0, 2/3) is a relatively compact open
subset of ∆ containing K. By [Dou66, Thm. 3 (B), p.51, (a) p, 53], K is a
compact Stein set in ∆.

Let x′, x′′ be two distinct points of the interior of K. Let U ′ = ∆ \ {x′},
U ′′ = ∆ \ {x′′} and define U = U ′ ∩ U ′′. Let

F ′ = ⊕n∈ZOU ′e′n, F ′′ = ⊕n∈ZOU ′′e′′n

be two free sheaves with countably infinite rank on U ′ and U ′′ respectively.
We glue F ′ and F ′′ to define a locally free O∆-module F as follows.

Define h ∈ O∆(U) by

h(z) = e
1

z−x′+
1

z−x′′ , ∀z ∈ U.

Then h has essential singularities at x′ and x′′. Define F by identifying F ′|U
and F ′′|U with the free sheaf ⊕n∈ZOUen via the conditions

e2m = e′2m|U = e′′2m|U + he′′2m+1|U ,
e2m+1 = e′′2m+1|U = e′2m+1|U + he′2m+2|U

for every m ∈ Z respectively.
We prove that Γ(K,F ) = 0. For every s ∈ Γ(K,F ), by Lemma A.2.0.2,

there is an open subset W of ∆ containing K such that s lifts to an element
of Γ(W,F ). By Corollary A.1.5.4, Γ(U,F ) = ⊕n∈ZΓ(U,O∆)en. So, s|U∩W =∑

n∈Z fnen with fn ∈ O∆(U ∩W ) that vanish for all but finitely many n.
Note that

s|U ′′ =
∑
n∈Z

(f2ne
′′
2n + (f2nh+ f2n+1)e

′′
2n+1)|U ′′ .
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Therefore, f2n and f2nh + f2n+1 are holomorphic near x′ for all n ∈ Z.
Similarly, f2n+1 and f2n+1h+ f2n+2 are holomorphic near x′′ for all n ∈ Z.

We claim that s|U∩W = 0. Otherwise, let n0 be the maximum with
fn0 ̸= 0. If n0 is odd (resp. even), fn0 and hfn0 are holomorphic near x′′

(resp. x′). The ratio h = hfn0/fn0 is meromorphic near x′′ (resp. x′). It
contradicts the choice of h. The claim is proved.

By Lemma A.2.0.1, the restriction map Γ(W,F ) → Γ(W ∩ U,F ) is
injective, so s = 0.

We prove that F is not good. Let t be the standard coordinate on ∆,

then 0 → F
t→ F → F/tF → 0 is a short exact sequence in Mod(O∆).

The associated cohomology sequence induces an injection H0(K,F/tF ) →
H1(K,F ) by Lemma A.2.0.2. As F/tF is the skyscraper supported at the
origin, we have H0(K,F/tF ) ̸= 0 and hence H1(K,F ) ̸= 0. By Lemma
A.2.0.4, the O∆-module F is not good. and F |K is not induced by a
Γ(K,OK)-module. In particular, F is not quasi-coherent in the sense of
last paragraph of [BBP07, p.443]. Nevertheless, F is quasi-coherent in the
sense of [EGA I, 5.1.3] since it is locally free.
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Appendix B

Quasi-coherent GAGA

B.1 Introduction

Serre’s work [Ser56] (known as GAGA) reveals the close relation between
algebraic geometry and analytic geometry. An algebraic variety means a
finite type, separated scheme over a field. Let X be a complex algebraic
variety. Then the set of complex points X(C) underlies a natural complex
analytic space (in the sense of [Ser56, Déf. 1]) structure, denoted by Xan.
When X is a projective variety, Serre [Ser56, Théorèmes 2 et 3] proves
that the abelian category of (algebraic) coherent sheaves on X is naturally
equivalent to that of (analytic) coherent sheaves on Xan. By [Ser56, Thm. 1],
the equivalence leaves cohomology groups invariant. Hall [Hal23] extends
the equivalence to the bounded derived category of coherent sheaves (Fact
B.2.0.2).

A natural question is to find analogous equivalences for the larger category
of quasi-coherent sheaves on X. We show that Kashiwara’s notion of good
modules (Definition A.1.4.1) is an analytic counterpart of quasi-coherent
sheaves on algebraic varieties.

For a ringed space (X,OX), let Mod(OX) be the abelian category of
OX -modules. Let D(X) be the unbounded derived category of Mod(OX).
For an algebraic variety (resp. a complex analytic space) X, let Qch(X) ⊂
Mod(OX) (resp. Good(X) ⊂ Mod(OX)) be the full subcategory of quasi-
coherent (resp. good) modules. Let Dqc(X) (resp. Dgood(X)) be the full
subcategory of D(X) comprised of objects with quasi-coherent (resp. good)
cohomologies.

Theorem (Proposition B.3.0.2, Theorem B.4.0.2). Let X be a proper scheme
over C. Then the analytification functor Dqc(X) → Dgood(Xan) is an
equivalence of triangulated categories. It restricts to an equivalence of abelian
categories Qch(X)→ Good(Xan).
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B.2 Review

We recall the work of Serre [Ser56], which gives an equivalence of algebraic
coherent sheaves and analytic coherent sheaves on complex projective varieties.
The theory is extended to complex, proper algebraic varieties in [SGA 1,
Exp. XII].

Let X be a complex algebraic variety. Let An (resp. Set) be the category
of complex analytic spaces (resp. sets). Let ΨX be the functor An → Set
sending a complex analytic space Y to the set HomC(Y,X) of morphisms
of spaces with a sheaf of C-algebras. By [SGA 1, Exp. XII, Thm. 1.1],
the functor ΨX is represented by a complex analytic space Xan (called the
analytification of X) and a flat morphism ψX ∈ HomC(Xan, X). From
[SGA 1, Exp. XII, Prop. 2.1 (viii)], because X is of finite type over C, the
dimension of Xan is finite.

Remark B.2.0.1. Strictly speaking, complex analytic spaces are allowed to
be non-Hausdorff in [SGA 1, Exp. XII]. In our case, the algebraic variety X
is assumed to be separated over C. By [SGA 1, Exp. XII, Prop. 3.1 (viii)],
the topology of Xan is Hausdorff.

By [SGA 1, Exp. XII, 1.2], for every morphism f : X → Y of complex
algebraic varieties, there is a commutative square

Xan X

Y an Y

ψX

fan f

ψY

(B.1)

in the category of ringed spaces. In other words, the analytification induces
a functor (·)an from the category of complex algebraic varieties to An.

For a ringed space (Y,OY ), let Coh(Y ) ⊂ Mod(OY ) be the full subcategory
comprised of coherent sheaves in the sense of [Sta24, Tag 01BV]. Let
Dc(Y ) ⊂ D(Y ) and Db

c(Y ) ⊂ Db(Y ) be the full subcategories of objects
with coherent cohomologies. As ψX is flat, the pullback functor

ψ∗
X : Mod(OX)→ Mod(OXan), F 7→ F an (B.2)

is exact, admits a right adjoint and commutes with colimits. It extends
to a functor D(X) → D(Xan), which is t-exact relative to the standard t-
structures. From [SGA 1, Exp. XII, 1.3], it restricts to a functor Db

c(X)→
Db
c(X

an) and Coh(X)→ Coh(Xan).
Fact B.2.0.2 can be retracted from [Hal23, Remark 1.1 and the proof of

Theorem A]. Neeman [Nee21, Example A.2] modifies Hall’s proof to some
extent.

Fact B.2.0.2. Assume that the complex algebraic variety X is proper. Then
the functor (B.2) induces an equivalence Db

c(X)→ Db
c(X

an) of triangulated
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categories. In particular, it restricts to an equivalence of abelian categories
Coh(X)→ Coh(Xan).

By Lemma A.1.4.3, Good(X) is a weak Serre subcategory of Mod(OX),
and Dgood(X) is a triangulated subcategory of D(X).

Lemma B.2.0.3. For the complex algebraic variety X, the functor (B.2)
restricts to a functor

Qch(X)→ Good(Xan) (B.3)

and induces a functor

Dqc(X)→ Dgood(Xan). (B.4)

Proof. By Fact B.2.0.4, every quasi-coherent OX -module F can be written
as the sum of a direct family of coherent OX -submodules

F =
∑
i∈I

Fi. (B.5)

As ψ∗
X commutes with colimits, one has

ψ∗
XF = colimi∈Iψ

∗
XFi (B.6)

in the category Mod(OXan). Since ψ∗
X is exact, each ψ∗

XFi is a coherent
OXan-submodule of ψ∗

XF . Therefore, the OXan-module ψ∗
XF is good.

For every G ∈ Dqc(X) and every integer n, because (B.2) is an exact
functor, the OXan-module Hn(ψ∗

XG) = ψ∗
X(HnG) is good by last paragraph.

Hence ψ∗
XG ∈ Dgood(Xan).

Fact B.2.0.4 ([EGA I, Cor. 9.4.9], [Sta24, Tag 01PG]). On a Noetherian
scheme, every quasi-coherent sheaf is the sum of the directed family of all
coherent submodules.

B.3 GAGA for quasi-coherent sheaves

Using Fact B.2.0.4 and that ψ∗
X commutes with colimits, we extend GAGA

from coherent sheaves to quasi-coherent sheaves.
When Y = SpecC, Proposition B.3.0.1 generalizes [Ser56, Thm. 1].

Proposition B.3.0.1. Let f : X → Y be a proper morphism of complex
algebraic varieties. Then the base change natural transformation (Rf∗·)an →
Rfan∗ (·an) (induced by the commutative square (B.1)) induces an isomorphism
of functors Dqc(X)→ Dgood(Y an).
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Proof. By [Lip60, Prop. 3.9.2], for every F ∈ Dqc(X), one has Rf∗F ∈
Dqc(Y ). By Lemma B.2.0.3, one has F an ∈ Dgood(Xan) and (Rf∗F )an ∈
Dgood(Y an). From [SGA 1, Exp. XII, Prop. 3.2 (v)], since f is proper, the
morphism fan : Xan → Y an is proper. By Theorem 5.3.1.7, as Xan has
finite dimension, one has Rfan∗ F an ∈ Dgood(Y an). Therefore, both functors
(Rf∗·)an and Rfan∗ (·an) restrict to functors Dqc(X)→ Dgood(Y an).

We prove that the morphism (Rf∗F )an → Rfan∗ F an is an isomorphism.
By Lemma 5.3.1.11 (resp. [Lip60, Prop. 3.9.2]), the functorRfan∗ : D(Xan)→
D(Y an) (resp. Rf∗ : Dqc(X) → Dqc(Y )) is bounded. From [Sta24, Tag
06YZ], the inclusion functor Qch(X) → Mod(OX) exhibits Qch(X) as a
weak Serre subcategory of Mod(OX) in the sense of [Sta24, Tag 02MO].
Then by the way-out argument [Har66, I, Prop. 7.1 (iii)], one may assume
F ∈ Qch(X). By [KS06, Prop. 13.1.5 (ii), p.320], it suffices to check that
for every integer n ≥ 0, the natural morphism (Rnf∗F )an → Rnfan∗ (F an) in
Mod(OY an) is an isomorphism.

One can write F as in (B.5). By [Sta24, Tag 07TB], one has

colimi∈IR
nf∗Fi

∼−→ Rnf∗F.

The analytification commutes with colimits, so

colimi∈I(R
nf∗Fi)

an ∼−→ (Rnf∗F )an.

By [SGA 1, XII, Thm. 4.2], the natural morphisms (Rnf∗Fi)
an → Rnfan∗ (F an

i )
are isomorphisms. By Lemma 5.3.1.9, the natural morphism

colimi∈IR
nfan∗ (F an

i )→ Rnfan∗ (F an)

is an isomorphism.

Proposition B.3.0.2 shows that goodness on complex analytic spaces is
an analytic counterpart of quasi-coherence on complex algebraic varieties.

Proposition B.3.0.2. Suppose that the complex algebraic variety X is
proper. Then (B.3) is an equivalence of abelian categories.

Proof. � The functor (B.3) is essentially surjective: Indeed, by properness
of X and [SGA 1, Exp. XII, Prop. 3.2 (v)], Xan is compact. Then for
every good OXan-module G, one can write G =

∑
i∈I Gi as the sum of

a directed family of coherent OXan-submodules. From the equivalence
ψ∗
X : Coh(X) → Coh(Xan) in [SGA 1, XII, Thm. 4.4], there is a

filtered inductive system {Hi}i∈I in Coh(X) whose analytification is
the filtered inductive system {Gi}i∈I . By [Sta24, Tag 01LA (4)], the
colimit H of {Hi}i∈I in Mod(OX) exists and lies in Qch(X). Because
ψ∗
X commutes with colimits, one has Han = colimi∈IGi. In particular,

Han is isomorphic to G in Good(Xan).
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� The functor (B.3) is fully faithful: For any quasi-coherent OX -modules
F and G, we have to show that the canonical morphism

HomOX (F,G)→ HomOXan (F an, Gan) (B.7)

is an isomorphism. Assume first that F is coherent.

– From [GW20, Exercise 7.20 (b)], one has

[HomOX (F,G)]an = HomOXan (F an, Gan).

– As F is of finite presentation, the OX -module HomOX (F,G) is
quasi-coherent.

Therefore, by Proposition B.3.0.1, the canonical morphism

H0(X,HomOX (F,G))→ H0(Xan,HomOXan (F an, Gan))

is an isomorphism, which is exactly (B.7).

By (B.5) and (B.6), the general case follows.

B.4 Derived category of quasi-coherent sheaves

Theorem B.4.0.2 extends GAGA further to the derived category of quasi-
coherent sheaves.

By [Sta24, Tag 0BKN], for every ringed space Y , the derived category
D(Y ) has products and derived limits. This together with Definition B.4.0.1
plays an essential role in the step 4 of the proof of Theorem B.4.0.2.

Definition B.4.0.1. � ([Sta24, Tag 07LS]) LetA be an additive category
with arbitrary direct sums. An object K ∈ A is called compact, if
HomA(K, ·) : A → Ab preserves direct sums.

� ([Sta24, Tag 090Z]) Let D be a triangulated category. Let (Kn, fn)n>0

be a system of objects of D. An object K is a homotopy colimit of the
system if the direct sum ⊕n>0Kn exists and there is an exact triangle

⊕n>0Kn
(1−fn)n→ ⊕n>0Kn → K

+1→ ⊕n>0Kn[1]. In this case, we write
K = hocolimnKn.

A triangulated categoryD with arbitrary direct sums is compactly generated,
if there is a family of compact objects {Ei}i∈I such that ⊕i∈IEi generates D.
Let S be an algebraic variety. By [Nee96, Prop. 2.5], Dqc(S) is compactly
generated. By [Sta24, Tag 09M1], the compact objects of Dqc(S) are exactly
the perfect complexes in D(S). By [Orl06, p.1827], when S is smooth, the
full subcategory of perfect complexes coincides with Db

c(S).
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Theorem B.4.0.2. If the complex algebraic variety X is proper, then the
functor (B.4) is an equivalence of triangulated categories.

Proof. By compactness of Xan and Lemma B.4.0.6, the perfect complex
OXan is a compact object of D(Xan). Then from the proof of [Hal23,
Lem. 4.3], the functor ψ∗

X : Dqc(X)→ D(Xan) admits a right adjoint functor
Rψqc,∗ : D(Xan)→ Dqc(X) which preserves small coproducts.

1. The functor ψ∗
X : Dqc(X)→ D(Xan) is fully faithful.

The unit of the adjunction η : Id→ Rψqc,∗ψ
∗
X is a natural transformation of

functorsDqc(X)→ Dqc(X). From Fact B.2.0.2, it restricts to an isomorphism
of functors Db

c(X)→ Db
c(X). By [BB03, Thm. 3.1.1 1], the compact objects

of Dqc(X) are precisely the perfect complexes. From [Nee96, Prop. 2.5],
Dqc(X) is generated by a family of perfect complexes {Ei}i∈I . By [Sta24,
Tag 0FXU (1)], every perfect complex in D(X) belongs to Db

c(X), so the
ηEi are isomorphisms. From Lemma B.4.0.5, the unit η is an isomorphism.
Thus, 1 is proved.

2. The functor (B.4) restricts to an equivalence Db
qc(X)→ Db

good(Xan).

We prove that every object F ∈ Db
good(Xan) is in the essential image of

Db
qc(X) → Db

good(Xan). Induction on the cohomological length of F . By
Proposition B.3.0.2, it holds when F has length zero. Suppose that it is true
for objects of length ≤ n and F has length n+ 1. There is an integer i such
that the truncations τ≤iF and τ>iF have length ≤ n. There is a canonical
exact triangle

τ≤iF → F → τ>iF
+1→ τ≤iF [1]

in Db
good(Xan). By 1 and the inductive hypothesis, the morphism +1 :

τ>iF → τ≤iF [1] is in the essential image of Db
qc(X) → Db

good(Xan). Then
so is F . The essential surjectivity together with 1 proves 2.

3. The functor ψ∗
X : D+

qc(X)→ D+
good(Xan) is an equivalence.

By Lemma B.4.0.3, for every F ∈ D+
good(Xan), one has hocolimn>0 τ

≤nF
∼−→

F . Every τ≤nF is in Db
good(Xan). From 2, there is a system (Kn)n>0

of objects of Db
qc(X), whose image under ψ∗

X is isomorphic to the system
(τ≤nF )n>0. Since (B.4) respects coproducts, it respects homotopy colimits.
Since Qch(X) is closed under filtered colimits in Mod(OX), the subcategory
Dqc(X) is closed under homotopy colimits in D(X). Then F is isomorphic to
the image ofK := hocolimn>0Kn ∈ Dqc(X) under ψ∗

X . There is an integer q,
such that H i(F ) = 0 for every integer i < q. Then ψ∗

XH
i(K) = H i(ψ∗

XK) =
0. By Proposition B.3.0.2, one has H i(K) = 0. Hence K ∈ D+

qc(X). Thus,

the functor ψ∗
X : D+

qc(X)→ D+
good(Xan) is essentially surjective. By 1, it is

an equivalence.
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4. Every Z ∈ Dgood(Xan) is in the essential image of (B.4).

By Lemma B.4.0.4, the canonical morphism Z → Rlimn>0 τ
≥−nZ is

an isomorphism in D(Xan). By 3, there is an inverse system (Y −n)n>0

of objects of D+
qc(X), whose image is isomorphic to the inverse system

(τ≥−nZ)n>0. Let Y be Rlimn>0 Y
−n in D(X). For any integers n ≥ 1

and q, the functor ψ∗
X transforms the morphism Hq(Y −n−1)→ Hq(Y −n) in

Qch(X) to Hq(τ≥−n−1Z)→ Hq(τ≥−nZ) in Good(Xan).
The morphism Hq(τ≥−n−1Z) → Hq(τ≥−nZ) is a surjection, and when

n ≥ −q, it is an isomorphism. By Proposition B.3.0.2, so is Hq(Y −n−1) →
Hq(Y −n). Then by [Sta24, Tag 0A0J (1)], the canonical morphismHq(Y )→
Hq(Y min(q,−1)) is an isomorphism. In particular, the OX -module Hq(Y ) is
quasi-coherent. Hence, Y is in Dqc(X).

For every integer m > 0, the functor ψ∗
X transforms the projection∏

n>0 Y
−n → Y −m to ψ∗

X(
∏
n>0 Y

−n)→ τ≥−mZ. Thus, one has a morphism
ψ∗
X(

∏
n>0 Y

−n)→
∏
n>0 τ

≥−nZ inD(Xan). It fits to a commutative diagram

ψ∗
X(

∏
n>0 Y

−n)[−1] ψ∗
X(

∏
n>0 Y

−n)[−1] ψ∗
XY ψ∗

X(
∏
n>0 Y

−n)

∏
n>0 τ

≥−nZ[−1]
∏
n>0 τ

≥−nZ[−1] Z
∏
n>0 τ

≥−nZ

in D(Xan), where the rows are exact triangles. By TR3, it induces a
morphism of triangles. Hence, one has a commutative square

Hq(ψ∗
XY ) Hq(ψ∗

XY
min(q,−1))

Hq(Z) Hq(τ≥min(q,−1)Z)

∼

∼

∼

in Mod(OXan). Therefore, for every integer q, the induced morphismHq(ψ∗
XY )→

Hq(Z) is an isomorphism. Consequently, the morphism ψ∗
XY → Z is an

isomorphism in Dgood(Xan). Thus, 4 is proved.
By 4 and 1, the functor (B.4) is an equivalence.

Lemma B.4.0.3. Let A be an abelian category, where colimits over Z>0

exist and are exact. Then the natural transformation hocolimn>0 τ
≤n· → Id

is an isomorphism of functors A → A.

Proof. It follows from [Sta24, Tag 0949] and the construction of canonical
truncations.

Lemma B.4.0.4. Let X be a complex analytic space. Then the natural
transformation Id→ Rlimn>0 τ

≥−n· is an isomorphism of functors D(X)→
D(X).
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Proof. For every x ∈ X, there is an integer dx ≥ 0, and a fundamental
system Ux of open neighborhoods of x, such that every U ∈ Ux is a closed
complex subspace of a domain in Cdx . By Fact 5.3.1.10, for every E ∈ D(X),
any integers p > 2dx and q, one has Hp(U,Hq(E)) = 0. Then by [Sta24,
Tag 0D63], the canonical morphism E → Rlimn>0 τ

≥−nE is an isomorphism
in D(X).

Lemma B.4.0.5. Let C,D be triangulated categories. Assume that C has
direct sums. Let {Ei}i∈I be a family of compact objects of C such that ⊕i∈IEi
generates C. Let F,G : C → D be triangulated functors preserving direct
sums. Let η : F → G be a natural transformation. If for every i ∈ I,
the morphism ηEi : F (Ei) → G(Ei) is an isomorphism in D, then η is an
isomorphism.

Proof. From [Sta24, Tag 09SN], every object X ∈ C can be written as
X = hocolimn>0Xn, where

� X1 is a direct sum of shifts of the Ei,

� each transition morphism Xn → Xn+1 fits into an exact triangle Yn →
Xn → Xn+1 → Yn[1],

� and Yn is a direct sum of shifts of the Ei.

Since F,G preserve direct sums, and the ηEi are isomorphisms, so are the
{ηYn}n>0 and ηX1 . By [Sta24, Tag 014A] and induction on n > 0, one proves
that the ηXn are isomorphisms. By [BN93, Lem. 4.1], F,G : C → D preserve
homotopy colimits. Therefore, ηX is an isomorphism.

Lemma B.4.0.6. Let X be a compact complex analytic space. Then every
perfect object of D(X) belongs to Db

c(X). It is a compact object of D(X)
and of Dgood(X).

Proof. Let E ∈ D(X) be a perfect object. By definition, there is an open
covering X = ∪i∈IUi, such that for every i ∈ I, there is a morphism of
complexes E•

i → E|U which is a quasi-isomorphism, with Eji = 0 for all

but finite many integers j, and every Eji is a direct summand of a finite
free OX -module. Since X is compact, one has E ∈ Db(X). By [Sta24, Tag
01BY (1)], every Eji is coherent. Therefore, every Hj(E)|Ui is coherent over
OUi . Thus, Hj(E) is coherent over OX for all j. Hence E ∈ Db

c(X). In
particular, E is in Dgood(X).

Let E∨ := RHom(E,OX) ∈ D(X). From [Sta24, Tag 08DQ], there
is a natural isomorphism HomD(X)(E, ·) → H0(X,E∨ ⊗LOX ·) of functors

D(X)→ Ab. The functor E∨⊗LOX · : D(X)→ D(X) commutes with direct
sums. Since X is compact, dimX is finite. Then by Lemma B.4.0.7, the
functor H0(X, ·) : D(X)→ Ab also commutes with direct sums. Therefore,
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E is a compact object of D(X). By Lemma A.1.4.3 2, Dgood(X) is closed
under direct sums in D(X). Then E is also a compact object of Dgood(X).

Lemma B.4.0.7. Let f : X → Y be a proper morphism of complex analytic
spaces. If dimX is finite, then the functor Rf∗ : D(X) → D(Y ) commutes
with direct sums.

Proof. First, we prove that for every integer q, there is a natural isomorphism

Rqf∗
∼−→ Rqf∗τ≥q−2 dimX : D(X)→ Mod(OY ). (B.8)

Indeed, by [Sta24, Tag 08J5], for every object E ∈ D(X), there is an exact
triangle τ≤q−2 dimX−1E → E → τ≥q−2 dimXE → (τ≤q−2 dimX−1E)[1]. It
induces an exact sequence

Rqf∗τ≤q−2 dimX−1E → Rqf∗E → Rqf∗τ≥q−2 dimXE → Rq+1f∗τ≤q−2 dimX−1E

in Mod(OY ). From Lemma 5.3.1.11, one has

Rqf∗τ≤q−2 dimX−1E = Rq+1f∗τ≤q−2 dimX−1E = 0.

Hence, one has an isomorphismRqf∗E → Rqf∗τ≥−q−2 dimXE which is functorial
in E.

Let {Ei}i∈I be a family of objects of D(X). Set E = ⊕i∈IEi. To
prove that the canonical morphism ⊕i∈IRf∗Ei → Rf∗E in D(Y ) is an
isomorphism, it suffices to show that for every integer q, the induced morphism
⊕i∈IRqf∗Ei → Rqf∗E in Mod(OY ) is an isomorphism. Since τ≥q−2 dimXE =
⊕i∈Iτ≥q−2 dimXEi, by (B.8), one may assume that E and all the Ei are in
D≥q−2 dimX(X). Then from [Sta24, Tag 015J], one has canonical spectral
sequences

Rsf∗H
t(E)⇒ Rs+tf∗E, Rsf∗H

t(Ei)⇒ Rs+tf∗Ei.

By Lemma 5.3.1.9, for any integers s and t, the canonical morphism⊕i∈IRsf∗Ht(Ei)→
Rsf∗H

t(E) in Mod(OY ) is an isomorphism. Consequently, the canonical
morphism ⊕i∈IRqf∗Ei → Rqf∗E is an isomorphism.

Corollary B.4.0.8. If the complex algebraic variety X is proper, then the
functor ψ∗

X : Dc(X)→ Dc(X
an) is an equivalence of triangulated categories.

Proof. For every F ∈ Dc(X) and every integer i, theOXan-moduleH i(ψ∗
XF ) =

ψ∗
XH

i(F ) is coherent. Thus, the functors ψ∗
X : Dc(X) → Dc(X

an) is
well-defined. By Theorem B.4.0.2, the functor ψ∗

X : Dc(X) → Dc(X
an)

is fully faithful. By Theorem B.4.0.2, for every F ∈ Dc(X
an), there is G ∈

Dqc(X) with ψ∗
XG isomorphic to F . Then the OXan-module ψ∗

XH
i(G) =

H i(ψ∗
XG)

∼−→ H i(F ) is coherent. By Fact B.2.0.2 and Proposition B.3.0.2,
the OX -moduleH i(G) is coherent, soG ∈ Dc(X). Therefore, ψ∗

X : Dc(X)→
Dc(X

an) is essential surjective and hence an equivalence.
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B.5 Compact objects

We determine the compact objects of the derived category of an algebraic
compact complex manifold.

Corollary B.5.0.1. Let X be a proper complex algebraic variety. Then
the compact objects of Dgood(Xan) are precisely the perfect complexes in
D(Xan).

Proof. By compactness of Xan and Lemma B.4.0.6, prefect complexes are
compact objects of Dgood(Xan). Conversely, let F be a compact object of
Dgood(Xan). By Theorem B.4.0.2, there is a compact object G ∈ Dqc(X)
with ψ∗

XG isomorphic to F . By [Sta24, Tag 09M1], G is a perfect complex
in D(X). By definition, F is a perfect complex in D(Xan).

Let X be a compact complex manifold.

Question B.5.0.2. Does the full subcategory of Dgood(X) of compact objects
coincide with Db

c(X)?

Question B.5.0.3. Is the category Dgood(X) compactly generated?

When X is the analytification of a smooth proper complex algebraic
variety, Corollary B.5.0.1 (resp. Theorem B.4.0.2) answers Questions B.5.0.2
(resp. B.5.0.3) affirmatively.
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Appendix C

Quasi-coherent sheaves on
complex analytic spaces

C.1 Introduction

Let (X,OX) be a ringed space. The category of OX -modules is denoted by
Mod(OX).

Definition C.1.0.1. An OX -module F is called quasi-coherent if for every
x ∈ X, there is an open neighborhood U ⊂ X of x, two sets I, J and a
morphismO⊕J

U → O⊕I
U with cokernel isomorphic to F |U . The full subcategory

of Mod(OX) of quasi-coherent modules is denoted by Qch(X).

According to [Sta24, Tag 01BD], in general Qch(X) is not an abelian
category. By [Sta24, Tag 06YZ], if X is a scheme, then Qch(X) is a weak
Serre subcategory (in the sense of [Sta24, Tag 02MO (2)]) of Mod(OX). We
show a complex analytic analog of this result, contrary to a guess made in
[m)].

Theorem C.1.0.2. If X is a complex analytic space, then Qch(X) ⊂
Mod(OX) is a weak Serre subcategory. In particular, it is an abelian subcategory.

C.2 Preliminaries

Let (X,OX) be a ringed space. Every OX(X)-module induces naturally a
quasi-coherent OX -module.

Example C.2.0.1 ([Sta24, Tag 01BI]). Let f : (X,OX) → ({∗}, OX(X))
be the morphism of ringed spaces, with f : X → {∗} the unique map and

f ♮∗ : OX(X) → OX(X) the identity. Then f is flat. For an OX(X)-module
M , its pullback f∗M is called the sheaf associated with M . This OX -
module is quasi-coherent. The functor f∗ : Mod(OX(X)) → Mod(OX) is
called localization and denoted by ·̃.
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From [EGA I, 4.1.1], on a scheme the direct sum of any family of quasi-
coherent modules is quasi-coherent. It fails for complex manifolds, shown
by Example C.2.0.2.

Example C.2.0.2. [sta] Let X ⊂ C be the unit open disk. For every integer
n ≥ 2, Gabber ([Con06, Eg. 2.1.6], see also Example A.2.0.5) constructs a
locally free (hence quasi-coherent) OX -module Fn of infinite rank, such that
for every open subset U ⊂ X containing {±1/n}, one has Γ(U,Fn) = 0. We
prove that F := ⊕n≥2Fn is not quasi-coherent.

Assume the contrary. Then there is an open neighborhood V of 0 ∈ X,
a set I and a quotient morphism q : O⊕I

V → F |V . There is an integer N ≥ 2
with {±1/N} ⊂ V . Let p : F |V → FN |V be the quotient morphism. Because
HomMod(OV )(OV , FN |V ) = Γ(V, FN ) = 0, the morphism pq = 0. However, it
contradicts FN |V ̸= 0.

Let X be a complex analytic space in the sense of [GR04, p.18]. For an
inclusion i : K → X of a compact subset, let OK = i−1OX . Then OK is
naturally a sheaf of rings on K.

Definition C.2.0.3. A compact subset K ⊂ X is a Stein compactum, if K
has a fundamental system of open neighborhoods that are Stein subspaces
of X. A Stein compactum K is Noetherian if OK(K) is a Noetherian ring.

Fact C.2.0.4 ([Fri67, Thm. I, 9, Rem. I, 10]). Every x ∈ X admits a
neighborhood which is a Noetherian Stein compactum in X.

Lemma C.2.0.5. Let F be an OX-module. Then the following conditions
are equivalent:

1. ([BBP07, Def. 5.1]) Every x ∈ X admits a neighborhood K which is
a Noetherian Stein compactum, such that F |K is associated with an
OK(K)-module.

2. The OX-module F is quasi-coherent.

Proof.

� Assume Condition 1. For every x ∈ X, take such a K and suppose
that F |K is associated with an OK(K)-module M . There are sets
I, J and an exact sequence OK(K)⊕I → OK(K)⊕J → M → 0 in
the category of OK(K)-modules. By [Sta24, Tag 01BH], it induces
an exact sequence O⊕I

K → O⊕J
K → F |K → 0 in Mod(OK). Then the

OK◦-module F |K◦ is quasi-coherent. Thus, Condition 2 is proved.

� Assume Condition 2. Because X is locally compact Hausdorff, for
every x ∈ X, by [Sta24, Tag 01BK], there is an open neighborhood
U ⊂ X of x such that F |U is associated with a Γ(U,OX)-module.
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From Fact C.2.0.4, there is a neighborhood K of x ∈ U which is
a Noetherian Stein compactum. By [Sta24, Tag 01BJ] applied to the
morphism (K,OK)→ (U,OU ) of ringed spaces, F |K is associated with
an OK(K)-module. Thus, Condition 1 is proved.

Lemma C.2.0.6. Let K be a Noetherian Stein compactum in X.

1. The natural transformation Id→ Γ(K, ·̃) of functors Mod(OK(K))→
Mod(OK(K)) is an isomorphism.

2. The localization functor ·̃ : Mod(OK(K)) → Mod(OK) is exact, fully
faithful.

3. For every OK(K)-moduleM and every integer q > 0, one has Hq(K, M̃) =
0.

Proof.

1. Let M be an OK(K)-module. We prove that the morphism M →
Γ(K, M̃) is an isomorphism. Assume first that M is finitely generated.
Then the result follows from [Tay02, p.299]. Assume now that M is
arbitrary. Let {Mi}i∈I be the family of all finitely generated submodules
of M . This family is directed in the inclusion relation and

M =
∑
i∈I

Mi. (C.1)

By [Sta24, Tag 01BH (4)], the localization functor preserves colimits.
Therefore,

M̃ = colimi∈IM̃i. (C.2)

By [God58, Thm. 4.12.1], one has

Γ(K, M̃) = colimi∈IΓ(K, M̃i) = colimi∈IMi = M.

2. The exactness is proved in [Tay02, Prop. 11.9.3 (ii)]. For any M,N ∈
Mod(OK(K)), we prove that the natural morphism

HomOK(K)(M,N)→ HomOK (M̃, Ñ) (C.3)

is an isomorphism.

Assume first that M is finitely generated. As the ring OK(K) is
Noetherian, the OK(K)-module M is of finite presentation. Then by

[GW20, Exercise 7.20 (b)], one has ˜HomOK(K)(M,N) = HomOK (M̃, Ñ).
By Point 1, the morphism (C.3) is an isomorphism. Assume now that
M is arbitrary. By (C.1) and (C.2), the morphism (C.3) is the inverse
limit of the morphisms HomOK(K)(Mi, N)→ HomOK (M̃i, Ñ), each of
which is an isomorphism.
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3. When M is finitely generated, it follows from [Tay02, Prop. 11.9.2] and
[Car57, Thm. 1 (B)]. Assume now that M is arbitrary. By (C.2) and
[God58, Thm. 4.12.1], one has Hq(K, M̃) = colimiH

q(K, M̃i) = 0.

C.3 Proof of Theorem C.1.0.2

1. For every morphism f : F → G in Qch(X), we prove that ker(f), coker(f)
in Mod(OX) lie in Qch(X).

For every x ∈ X, by Lemma C.2.0.5, there is a neighborhood A (resp. B)
of x ∈ X which is a Noetherian Stein compactum and an OA(A)-module M
(resp. OB(B)-module N), such that F |A (resp. G|B) is associated with M
(resp. N). By Fact C.2.0.4, there is a neighborhood C of x ∈ A◦∩B◦ which
is a Noetherian Stein compactum. From [Sta24, Tag 01BJ], F |C (resp. G|C)
is associated with M ⊗OA(A) OC(C) (resp. N ⊗OB(B) OC(C)). By Lemma
C.2.0.6 2, there is a morphism

ϕ : M ⊗OA(A) OC(C)→ N ⊗OB(B) OC(C)

in Mod(OC(C)) whose localization is f |C : F |C → G|C . The restriction
functor Mod(OX)→ Mod(OC◦) is exact, so ker(f)|C◦ (resp. coker(f)|C◦) is
the localization of ker(ϕ⊗OC(C) IdOX(C◦)) (resp. coker(ϕ⊗OC(C) IdOX(C◦)))
in Mod(OX(C◦)). Therefore, the OX -modules ker(f), coker(f) are quasi-
coherent.

2. Let
0→ F ′ → F → F ′′ → 0 (C.4)

be a short exact sequence in Mod(OX), with F ′, F ′′ quasi-coherent.
We prove that F is quasi-coherent.

By Lemma C.2.0.5, for every x ∈ X, there is a neighborhood K ′ (resp. K ′′)
of x which is a Noetherian Stein compactum, and an OK′(K ′)-module M ′

(resp. OK′′(K ′′)-module M ′′) whose localization is F ′|K′ (resp. F ′′|K′′). By
Fact C.2.0.4, there is a neighborhood K of x ∈ K ′◦∩K ′′◦ that is a Noetherian
Stein compactum. From [Sta24, Tag 01BJ], F ′|K (resp. F ′′|K) is associated
with the OK(K)-module M ′⊗OK′ (K′)OK(K) (resp. M ′′⊗OK′′ (K′′)OK(K)).

Let P = Γ(K,F ). By Lemma C.2.0.6 1 and 3, the sequence (C.4) induces
a short exact sequence in Mod(OK(K)):

0→M ′ ⊗OK′ (K′) OK(K)→ P →M ′′ ⊗OK′′ (K′′) OK(K)→ 0.

From Lemma C.2.0.6 2, by localization it induces a shot exact sequence in
Mod(OK):

0→ ˜M ′ ⊗OK′ (K′) OK(K)→ P̃ → ˜M ′′ ⊗OK′′ (K′′) OK(K)→ 0.
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By restricting to K◦ and [Sta24, Tag 01BJ], one has a commutative diagram

0 ˜M ′ ⊗OK′ (K′) OX(K◦) ˜P ⊗OK(K) OX(K◦) ˜M ′′ ⊗OK′′ (K′′) OX(K◦) 0

0 F ′|K◦ F |K◦ F ′′|K◦ 0

in Mod(OK◦). The vertical morphisms are given by the canonical morphism
P ⊗OK(K) OX(K◦)→ Γ(K◦, F ) in Mod(OX(K◦)), and the adjunction of ·̃ :
Mod(OX(K◦)) → Mod(OK◦) and Γ(K◦, ·) : Mod(OK◦) → Mod(OX(K◦)).
The rows are exact, and the two outside vertical arrows are isomorphisms.
By the five lemma, the middle vertical morphism is an isomorphism. By
Example C.2.0.1, the OK◦-module F |K◦ is quasi-coherent. Consequently, F
is quasi-coherent.

By 1, 2 and [Sta24, Tag 0754], Qch(X) is a weak Serre subcategory of
Mod(OX).
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Appendix D

Complex analytic geometry

D.1 Dimension of the fiber product

Section D.1 aims at understanding the dimension of the fiber product of
algebraic varieties/complex analytic spaces. The proof in the analytic case
is inspired by that in the algebraic case. Therefore, we begin with the
algebraic situation.

D.1.1 Algebraic case

Fix a field k. Under flatness condition, the dimension of the fiber product
behaves well.

Lemma D.1.1.1. Let X,Y, Z be three schemes of finite type over k and
f : X → Z, g : Y → Z be k-morphisms. Assume that the schemes X,Z are
irreducible, Y is equidimensional, and g is flat. Put W = X ×Z Y . If W is
nonempty, then W is equidimensional of dimension dimX+dimY −dimZ.

Proof. Applying [Har77, Ch. III, Corollary 9.6] to the flat morphism g, we
find that g is of relative dimension dimY − dimZ. By virtue of [Sta24, Tag
02NK], its base change W → X is also flat of relative dimension dimY −
dimZ. Then the reverse direction of the cited [Har77, Ch. III, Corollary 9.6]
shows that W is equidimensional of dimension dimY − dimZ + dimX.

In the proof of Proposition D.1.1.2, the general case is reduced to the
case of a flat morphism.

Proposition D.1.1.2. Let X,Y, Z/k be three finite type schemes, f : X →
Z, g : Y → Z be dominant k-morphisms. Assume that X,Z are irreducible
and Y is equidimensional, and put W = X ×Z Y , then dimW + dimZ ≥
dimX + dimY .

Proof. Since the reduction Zred → Z is a universal homeomorphism, we may
assume that Z is an integral scheme. By generic flatness [Sta24, Tag 052A],
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there is a nonempty affine open subset U ⊂ Z such that the restriction
g−1(U) → U is flat. By [Sta24, Tag 01UA], the morphism g−1(U) → U
is open. By shrinking U , we may assume further that g−1(U) → U is
surjective.

Because f is dominant, f−1(U) is a nonempty open subset ofX. Therefore,
by [Har77, Ch. II, Exercise 3.20 (e)] we have dimU = dimZ, dim f−1(U) =
dimX and g−1(U) is equidimensional of dimension dimY . Hence, we may
base change everything along U → Z which does not increase dimW . In
particular, we can assume that g is flat surjective. Then W → X is also flat
surjective. In particular, W ̸= ∅. We conclude by Lemma D.1.1.1.

Example D.1.1.3 shows that the inequality in Proposition D.1.1.2 can be
strict.

Example D.1.1.3. If f : X → P 3
k is the blow up at a point p ∈ P 3(k),

then the morphism f is projective surjective, dimX = 3, dimX ×P 3
k
X = 4

and the defect of semismallness r(f) = 1.

Corollary D.1.1.4. Let X,Y/k be two finite type schemes and f : X → Y
be a k-morphism. If the scheme X is irreducible, then dimX ×Y X ≥
2 dimX − dim f(X), where f(X) is the Zariski closure of f(X) in Y .

Proof. Because the reduction Xred → X is a universal homeomorphism, we
may assume that X is reduced. Let Z → Y be the scheme theoretic image
of f . By [Har77, Ch. II, Exercise 3.11 (d)], the induced morphism X → Z
is dominant and the underlying topological space of Z is f(X). Therefore,
Z is also irreducible. By magic square [Vak23, 1.3.S], the natural morphism
X ×Z X → X ×Y X is the base change of the diagonal isomorphism Z →
Z×Y Z, hence also an isomorphism. By Proposition D.1.1.2, dimX×Y X =
dimX ×Z X ≥ 2 dimX − dimZ.

D.1.2 Analytic case

The contents of this section is parallel to those of Section D.1.1. Lemma
D.1.2.1 is an analogue of [Har77, III, Corollary 9.6], whose proof is also a
direct adaptation. A complex analytic space is called equidimensional if
every irreducible component is of same dimension.

Lemma D.1.2.1. Let f : X → Y be a flat morphism of complex analytic
spaces, and assume that Y is irreducible. Then the following conditions are
equivalent:

1. X is equidimensional of dimension n+ dimY ;

2. for every y ∈ f(X), the fiber Xy is equidimensional of dimension n.

In that case, we say f is flat of relative dimension n.
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Proof. Assume 1. Given y ∈ f(X), let Z be an irreducible component of
Xy. Because the set of irreducible components of a complex analytic space is
locally finite, there is x ∈ Z which is not in any other irreducible component
ofXy. Applying [CD94, Proposition 2.11, p.113], we have dimx Z+dimy Y =
dimxX. As Y,Z are irreducible hence pure dimensional, we have dimy Y =
dimY and dimx Z = dimZ. Now that dimxX = dimY + n, we have
dimZ = n.

Conversely, assume 2. Let W be an irreducible component of X. Let
x ∈W be a point which is not contained in any other irreducible component
of X and y = f(x). Then we have dimxX = dimW and dimy Y = dimY .
Applying [CD94, Proposition 2.11, p.113], we obtain

dimx(Xy) + dimy Y = dimxX.

By assumption, dimx(Xy) = n. Thus dimW = dimY + n as required.

Lemma D.1.2.2 is similar to Lemma D.1.1.1.

Lemma D.1.2.2. Let f : X → Z, g : Y → Z be complex analytic space
morphisms. Assume that X,Z are irreducible, Y is equidimensional, and g
is flat. Put W = X ×Z Y . If W is nonempty, then W is equidimensional of
dimension dimX + dimY − dimZ.

Proposition D.1.2.3 is the main result of Section D.1.

Proposition D.1.2.3. Let X,Y, Z be irreducible complex analytic spaces.
Let f : X → Z, g : Y → Z be morphisms and put W = X ×Z Y . If
f is surjective and the (Euclidean) topology of X is second-countable, then
dimW + dimZ ≥ dimX + dimY .

Proof. Because reduction does not change the dimension [CAS, p.96], we
may assume that X,Y, Z are reduced. Let A = {x ∈ X : f is not flat at x}.
By Frisch’s theorem [CD94, Theorem 2.8, p.112], A is an analytic subset
of X and f(A) ̸= Z. Then X \ f−1(f(A)) → Z \ f(A) is a surjective flat
morphism. By shrinking X,Y, Z suitably, we may assume further that f is
flat surjective. ThenW is nonempty and we conclude by Lemma D.1.2.2.

The invariant dimX ×Y X considered in Corollary D.1.2.4 appears in
the definition of defect of semismallness (Definition 4.5.2.1).

Corollary D.1.2.4. Let f : X → Y be a proper morphism of irreducible
complex analytic spaces. If the (Euclidean) topology of X is second-countable,
then dimX ×Y X ≥ 2 dimX − dim f(X).

Proof. The image Z := f(X) is an analytic subset of Y . Endow Z with the
reduced structure of complex analytic space. Then Z is also irreducible and
the morphism f : X → Z is surjective. The natural morphism X ×Z X →
X ×Y X is an isomorphism. Then we conclude by Proposition D.1.2.3.
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D.2 Connection on line bundles

The purpose of Section D.2 is to show Lemma D.2.0.4. For one thing, it is
closely related to Corollary 4.4.2.2. For another, it implies the possibility
to extend the Donaldson-Uhlenbeck-Yau theorem and nonabelian Hodge
theory to manifolds more general than Kähler ones (Remarks D.2.0.6 and
D.2.0.7). For work towards this direction, see [BD23], which extends nonabelian
Hodge theory to Fujiki class C manifolds.

We begin the proof with a variation of the classical maximum principle.

Proposition D.2.0.1. Let U ⊂ Rn be a nonempty connected open subset,
f : U → C be a harmonic function. If |f | attains its maximum in U , then f
is constant.

Lemma D.2.0.2 concerns the uniqueness of solution to ∂̄∂-equation.

Lemma D.2.0.2. Let f : Xn → C be a smooth function on a compact
connected complex manifold X with ∂̄∂f = 0, then f is constant.

Proof. Since X is compact, the subset A = {x ∈ X : |f(x)| = maxt∈X |f(t)|}
is nonempty closed in X. For any p ∈ A, there exists a local holomorphic
coordinate (U ; z1, . . . , zn), where U is a connected open neighborhood of p in
X. With this chart, we identify U as an open subset of Cn. Since ∂̄∂f = 0,

we have ∂2f
∂z̄j∂zl

= 0 for all 1 ≤ j, l ≤ n. In particular,
∑n

j=1
∂2f

∂z̄j∂zj
= 0, or

equivalently, f is a harmonic function on U . By Proposition D.2.0.1, f is
constant on U and so U ⊂ A. Therefore, A is open inX. By connectedness of
X, A = X. So for any p ∈ X, f is locally constant near p. By connectedness
of X again, f is constant.

Let X be a regular manifold for the rest of Section D.2.
We need a comparison between the Atiyah class (in the sense of [Huy05,

Def. 4.2.18]) and the first Chern class. For Kähler manifolds, it is [Ati57a,
Prop. 12].

Lemma D.2.0.3. Let X be a regular manifold. Let L→ X be a holomorphic
line bundle. Let A(L) ∈ H1(X,Ω1

X) be the Atiyah class of L. Then

i

2π
A(L) = cR1 (L)

in H2(X,R). In particular, L admits a holomorphic connection if and only
if L ∈ Picτ (X).

Proof. By Corollary 4.3.1.4, we have a commutative diagram

Z1,1(X) Z2(X)

H1(X,Ω1
X) H2

dR(X;C),

ϕ ψ

ι1,1
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where ϕ is taking Dolbeault cohomology class and ψ is taking de Rham
cohomology class. Take a hermitian metric h on L. LetR be the corresponding
Chern curvature form. By [Huy05, Corollary 4.4.5], R ∈ Z1,1(X). Then
by [Huy05, Proposition 4.3.10], A(L) = ϕ(R) and cR1 (L) = i

2πψ(R). The
equality follows. The second part follows from [Huy05, Proposition 4.2.19].

Lemma D.2.0.4. Let X be a regular manifold, L ∈ Picτ (X), then:

1. L admits a unique (up to a positive scalar) hermitian metric whose
Chern connection is flat;

2. Every holomorphic connection on L is flat.

Proof. 1. We begin with the existence. By Corollary 4.4.2.2 2, there is a
unitary local system L ∈ Locu,1(X) on X with L⊗COX = L. Applying
Theorem 4.2.3.1 the existence of such metric follows.

Now for uniqueness. Let h, h′ be two hermitian metrics whose respective
Chern connections∇,∇′ are flat holomorphic connections. By Theorem
4.2.3.1, ker(∇), ker(∇′) ∈ Locu,1(X) have the same induced line bundle.
By Corollary 4.4.2.2 2, ker(∇) = ker(∇′) in Locu,1(X). The hermitian
metrics h, h′ restrict to two monodromy invariant hermitian forms
on the common local system ker(∇). Moreover, by Theorem 4.2.3.1
one can recover the hermitian metric on the line bundle L from the
restricted hermitian form on the local system. Since this local system
is of rank 1, at one stalk these two hermitian forms differ by a scalar.
Globally they differ by this scalar as they are monodromy invariant.
Then the metrics h, h′ also differ by a scalar.

2. By Lemma D.2.0.3 and [Huy05, Prop. 4.2.19], L admits a holomorphic
connection. We show that the curvature forms (which are global
holomorphic 2 forms) of different holomorphic connections on L are the
same. In fact, for two such connections D,D′ on L, by [Huy05, p.179],
D′ −D ∈ H0(X,Ω1

X). This form is d-closed by [Uen06, Corollary 9.5,
p.101]. By [Huy05, Lemma 4.3.4], the curvature of D′ equals that of
D.

We adopt the argument in [BK09, Footnote (6), p.388]. By Cartan-
Serre theorem [Car53, Théorème], the complex vector spaceH0(X,Ω2

X)
is finite dimensional. Taking the curvature form of one (hence every)
holomorphic connection on elements of Pic0(X), we get a holomorphic
map Pic0(X)→ H0(X,Ω2

X). As the complex torus Pic0(X) is compact
connected, this map is constant. The canonical connection on the
trivial line bundle OX(∈ Pic0(X)) is flat, so this map is constantly
zero. In other words, for everyK ∈ Pic0(X), any holomorphic connection
on K is flat.
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As L ∈ Picτ (X), there is an integer n ≥ 1 such that L⊗n ∈ Pic0(X).
Take a holomorphic connection on L of curvature form R, then it
induces a holomorphic connection on L⊗n of curvature form nR. As
nR = 0, it holds that R = 0. The flatness follows from the first
paragraph and the existence in Point 1.

Remark D.2.0.5. Here is a second proof of Lemma D.2.0.4 1. Take a hermitian
metric h on L. Locally its Chern curvature is given by ∇ = d + h−1∂h.
More precisely, let s be a local holomorphic frame for L, and by abuse
of notation let h be the local (smooth positive) function h(s, s). Then
∇(s) = (h−1∂h) ⊗ s and the Chern curvature form R = ∂̄(h−1∂h) is a
d-closed smooth (1, 1)-form whose de Rham class is 0. Moreover iR is a real
form. (This is part of Chern-Weil theory, see [Huy05, Proposition 4.3.8 (iii),
4.3.10 and p.196].) Therefore, by Fact 4.3.1.2, there is a smooth function
f : X → R with

R+ ∂̄∂f = 0. (D.1)

Define a new hermitian metric h′ by

h′(s, s) = efh(s, s). (D.2)

Then the new Chern connection is given by ∇′(s) = ∇(s) + (∂f) ⊗ s. The
new curvature form R′ = R + ∂̄∂f = 0, i.e., the new Chern connection is
flat and compatible with the holomorphic structure, hence a holomorphic
connection.

So far we have established the existence of such metric. As for uniqueness,
any hermitian metric h′ with flat Chern connection is in the form of (D.2)
where f is a solution to (D.1). Lemma D.2.0.2 shows that such a solution
f is unique up to addition by constant. So such metric h′ is unique up to a
positive scalar.

Remark D.2.0.6. When X is a compact Kähler manifold, Lemma D.2.0.4
1 is a consequence of known results. In fact [Kob87, Proposition 5.7.7 (a)]
shows a holomorphic line bundle is slope stable. By Donaldson-Uhlenbeck-
Yau theorem [UY86, Corollary 8.1, p.292], there is L ∈ Locu,1(X) such
that L = L ⊗C OX , and L induces such a metric via Theorem 4.2.3.1. For
any such hermitian metric, its Chern connection is a Hermitian-Yang-Mills
connection. The uniqueness of such metric is mentioned in [Bea92, (3.2) c)]
and follows from [UY86, Theorem, p.262] and [Che22, Corollary 2.18].

Remark D.2.0.7. Lemma D.2.0.4 can be viewed as a step toward nonabelian
Hodge theory on regular manifolds. In fact, by [Sim92, Example, p.21],
a semisimple local system on a compact Kähler manifold is unitary if and
only if the associated Higgs bundle (E, θ) has θ = 0. The metric given by
Lemma D.2.0.4 is exactly the harmonic metric provided by Corlette Theorem
[GRR15, Theorem 1, p.151].
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D.3 Jacobi inversion theorem

In this section, we give a refinement of Proposition 4.4.1.2 3.

Lemma D.3.0.1. For a pointed regular manifold (X,x0), for every n ≥
h1,0(X), the holomorphic map fn : Xn → Alb(X) defined by (x1, . . . , xn) 7→∑n

i=1 αx0(xi) is surjective.

When X is a compact Riemann surface, then Lemma D.3.0.1 reduces to
(part of) Jacobi inversion theorem in [GH78, p.235].

Two proofs are provided. They are inspired by [Voi02, Lemma 12.11]
and [BL04, Proposition 11.11.8] respectively, but with an extra attention to
the feasible range of n. The first proof is shorter, while the second proof
provides a stronger result, Lemma D.3.2.1.

D.3.1 First proof

Lemma D.3.1.1. Let X be a compact complex manifold. Then there there
is subset S ⊂ X with #S ≤ h1,0(X) such that, for any η ∈ H0(X,Ω1

X) with
η(x) = 0 in the (holomorphic) cotangent space (T hxX)∨, we have η = 0.

Proof. For every x ∈ X, let Vx be the subspace {η ∈ H0(X,Ω1
X) : η(x) = 0}

of H0(X,Ω1
X). Then ∩x∈XVx = {0}. Hence, there is a subset S ⊂ X with

#S ≤ h1,0(X) and ∩x∈SVx = {0}.

Here is the first proof.

First proof of Lemma D.3.0.1. Consider the cotangent map (dpfn)∗ : (T hfn(p)Alb(X))∨ →
(T hpX

n)∨ at p = (p1, . . . , pn) ∈ Xn. Since the cotangent bundle Ω1
Alb(X) is

trivial, this map is identified with the composition

H0(Alb(X),Ω1
Alb(X))→ (T hfn(p)Alb(X))∨ →

n∏
i=1

(T hpiX)∨.

By Proposition 4.4.1.2 4, it is further identified with the natural map

H0(X,Ω1
X)→

n∏
i=1

(T hpiX)∨. (D.3)

By Lemma D.3.1.1, there exist n0 ≤ h1,0(X) and x = (x1, . . . , xn0) ∈
Xn0 such that for any η ∈ H0(X,Ω1

X) with η(xi) = 0 for all i, we have η = 0.
Then for every n ≥ n0, the map (D.3) is injective when p = (x, x0, . . . , x0).
Or equivalently, fn is a submersion of smooth manifolds near p. From local
normal form theorem, the image fn(Xn) contains a nonempty open subset
of Alb(X). By Remmert theorem [Whi72, Theorem 4A, p.150], fn(Xn) is an
analytic subset of Alb(X). By [CAS, Theorem, p.168], fn(Xn) = Alb(X),
i.e, fn is surjective.
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D.3.2 Second proof

To certain extent, Lemma D.3.2.1 shows that a generating subset of a
complex torus generates the complex torus “uniformly”.

Lemma D.3.2.1. Let A be a g-dimensional commutative complex Lie group.
Let M be a compact irreducible analytic subset of A containing 0. If the
complex Lie subgroup of A generated byM is A, then for every integer n ≥ g,
the map fn : Mn → A defined by (x1, . . . , xn) 7→

∑n
i=1 xi is surjective. In

particular, A is a complex torus.

Proof. Since M is connected, the identity component of A contains M .
Therefore, A is connected.

The statement is true when g = 0. So we assume g > 0, then M ̸= {0}
and hence dimM ≥ 1. For every n ≥ 1, let An = fn(Mn), which is an
analytic subset of A by Remmert theorem [Whi72, Theorem 4A, p.150].
Since f1 : M → A is the inclusion, we find A1 = M ∋ 0. For every x ∈Mn,
fn+1(x, 0) = fn(x), so An ⊂ An+1, hence an increasing sequence of analytic
subsets of A:

A1 ⊂ A2 ⊂ . . .

Consider the integer sequence of analytic dimensions {dim0An}n≥1. By
[CAS, p.96], this sequence is non-decreasing and bounded above by dim0A =
g. Therefore, there is n0 ≤ g such that dim0An0 = dim0An0+1.

By assumption, Mn is an irreducible complex analytic space. By [CD94,
(14.14), p.89], the complex analytic spaceAn is irreducible and pure dimensional
for every n ≥ 1 and An0 = An0+1.

We claim that for every m > n0, An0 = Am.
We prove the claim by induction on m. It holds when m = n0 + 1. If

it is true for m − 1 with m ≥ n0 + 2, then for every (x1, . . . , xm) ∈ Mm,∑m−1
i=1 xi ∈ Am−1 = An0 , so there is (p1, . . . , pn0) ∈ Mn0 with

∑n0
j=1 pj =∑m−1

i=1 xi. Then

m∑
i=1

xi = xm +

n0∑
j=1

pj ∈ An0+1 = An0 .

Therefore, Am = An0 . The induction is completed.
For every x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Mn, we have fn(x) +

fn(y) = f2n(x, y), so An+An ⊂ A2n. In particular, An0+An0 ⊂ A2n0 = An0 .
This shows An0 is closed under addition.

We are going to show that −An0 = An0 and then An0 would be a
subgroup of A.

AsA is commutative connected, by [AK01, Proposition 1.1.2], its universal
covering is in the form of π : Cg → A and the lattice ker(π) is identified with
the fundamental group π1(A, 0). As π is locally biholomorphic and every
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An is irreducible, the preimage π−1(An) is an analytic subset of Cg, every
irreducible component of whom is of dimension dimAn. Any two different
irreducible components are disjoint and differ by a translation by an element
of ker(π).

Let Vn be the unique irreducible component of π−1(An) containing 0,
then π(Vn) = An. Fix an integer k ≥ 1 and let [k] : A → A be the
multiplication by k. As An0 is closed under addition, we get [k]An0 ⊂ An0 .
As π is a group morphism, we have k·π−1(An0) ⊂ π−1(An0). As k : Cg → Cg
is biholomorphic, kVn0 is an irreducible analytic subset of Cg isomorphic to
Vn0 . As 0 ∈ kVn, we have kVn0 ⊂ Vn0 . As dim kVn0 = dimVn0 , by [CD94,
(14.14), p.89] again, we get kVn0 = Vn0 , i.e., the morphism k : Vn0 → Vn0 is
biholomorphic.

For every x(̸= 0) ∈ An0 , we check that −x ∈ An0 . In fact, take v ∈
Vn0 ∩ π−1(x). Then v ̸= 0. By last paragraph, v/k ∈ Vn0 for every k ≥ 1.
Let l be the complex line in Cg spanned by v. By the identity theorem
for holomorphic functions on l, the smallest analytic subset of l containing
{v/k}k≥1 is l. Now that Vn0∩l is an analytic subset of l containing {v/k}k≥1,
we get l = Vn0 ∩ l ⊂ Vn0 . In particular, −v ∈ Vn0 and then −x ∈ An0 as
desired.

So far we have shown that An0 is a subgroup of A that is a complex
analytic subset. By Corollary F.2.0.5, An0 is an embedded complex Lie
subgroup of A. By assumption, An0 = A. From the claim we get the
surjectivity of fn for every n ≥ n0. In particular, A is compact, hence a
complex torus.

Example D.3.2.2. In Lemma D.3.2.1, we cannot remove the condition that
0 ∈ M . For example, consider A = C∗ and M = {2}. The irreducibility
of M is also necessary. For instance, take A to be the elliptic curve C/Z[i],
M = {0, x}, where x ∈ A \ Ator. Then fn is not surjective for all integers
n ≥ 1.

Second proof of Lemma D.3.0.1. Let M = αx0(X), which is an irreducible
analytic subset of Alb(X) by Remmert theorem [Whi72, Theorem 4A, p.150]
and [CD94, (14.14), p.89]. In addition, 0 ∈ M . The proof is completed by
citing Proposition 4.4.1.2 3 and Lemma D.3.2.1.
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Appendix E

D-modules

E.1 Unbounded Bernstein’s equivalence

In Section E.1, let X be a smooth algebraic variety over be an algebraically
closed field k of characteristic zero. Let Qch(OX) ⊂ Mod(OX) and Modqc(DX) ⊂
Mod(DX) be the full subcategories of objects quasi-coherent over OX . They
are weak Serre subcategories.

Fact E.1.0.1 (Bernstein, [Bor+87, VI, Thm. 2.10]). The natural functor

ι′X : Db(Modqc(DX))→ Db
qc(DX)

is an equivalence.

Remark E.1.0.2. The first sentence of the proof in [Bor+87] needs (implicitly)
[Mur07, Remark 64] and Fact E.1.0.3.

Fact E.1.0.3 can be proved as [Bor+87, I, Prop. 12.8, VI, Prop. 1.14].

Fact E.1.0.3. Let B be an weak Serre subcategory of an abelian category
A. Then the full class Ob(B) of objects in B is a generating class of Db

B(A)
(defined in [Sta24, Tag 06UP]) in the sense of [Bor+87, I, Def. 12.4].

Theorem E.1.0.4 is an unbounded generalization of Fact E.1.0.1. It is left
“to the reader to state and prove” in [Nee96, p.207]. We follow the strategy
pointed out in [gdb], and do not claim originality here.

Theorem E.1.0.4. The functor

ι′X : D(Modqc(DX))→ Dqc(DX) (E.1)

induced by the inclusion Modqc(DX) → Mod(DX) is an equivalence of
categories.
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We need a series of lemmas for the proof of Theorem E.1.0.4. For an
open immersion j : U → X, we have a natural morphism of ringed spaces
j : (U,DU ) → (X,DX). From [Bor+87, VI, 5.2] and [HT07, Prop. 1.5.29],
the functor j+ : D(DU ) → D(DX) is the right derived functor of the
corresponding (left exact) direct image j∗ : Mod(DU ) → Mod(DX). By
[Ber83, 2, p.12] and [Sta24, Tag 0096], the inverse image j∗ : Mod(DX) →
Mod(DU ) is left adjoint to j∗. Lemma E.1.0.5 2 helps to construct a quasi-
inverse to (E.1).

Lemma E.1.0.5.

1. The category Modqc(DX) is a locally noetherian Grothendieck category.

2. The inclusion functor ι′ : Modqc(DX) → Mod(DX) admits a right
adjoint Q′ = Q′

X : Mod(DX) → Modqc(DX). The unit natural
transform η′ : IdModqc(DX) → Q′ι′ is an isomorphism.

Proof. By [Sta24, Tag 01LA (4)], Qch(OX) ⊂ Mod(OX) is an abelian
subcategory closed under colimits. Then so is Modqc(DX) ⊂ Mod(DX).

1. When X is affine, by [HT07, Prop. 1.4.4 (ii)], the functor Γ(X, ·) :
Modqc(DX) → Mod(DX(X)) is an equivalence of abelian categories.
As the ring DX(X) is left noetherian, the category Mod(DX(X)) is
locally noetherian by the last paragraph of [Gab62, p.402].

For a general X, one may assume that there exists an open covering
X = U ∪V , such that the statement holds for U and V . Arguing as in
[Gab62, Prop. 2, p.441], one can prove that Modqc(DX) is the gluing
of Modqc(DU ) and Modqc(DV ) along Modqc(DU∩V ) in the sense of
[Gab62, VI. 1]. Let j : U → X be the inclusion. Then

j∗ : Modqc(DX)→ Modqc(DU )

is exact and left adjoint to

j∗ : Modqc(DU )→ Modqc(DX).

The (counit) natural transformation ϵ : j∗j∗ → IdModqc(DU ) is an
isomorphism of functors Modqc(DU ) → Modqc(DU ). From [Gab62,
Prop. 5, p.374], the subcategory ker(j∗) of Modqc(DX) is localizing
(in the sense of [Gab62, p372]), and j∗ induces an equivalence

Modqc(DX)/ ker(j∗)→ Modqc(DU ).

A similar result holds for V . Then by [Gab62, Lem. 2, p.442], the
gluing category Modqc(DX) is locally noetherian.

2. It follows from 1 and Lemma E.1.0.7.
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Remark E.1.0.6. For an affine (possibly singular) variety V , by [GR14, 4.7.1,
5.5], the abelian category Modqc(DV ) is still Grothendieck.

Lemma E.1.0.7. Let A be a Grothendieck abelian category. Let F : A → B
be a functor preserving all colimits.

1. Then F admits a right adjoint G : B → A.

2. If further F is fully faithful, then the unit natural transformation η :
IdA → GF is an isomorphism.

Proof. 1. Let Set be the category of sets. For each object Y ∈ B, consider
the functor

HomB(F (·), Y ) : Aop → Set.

It transforms colimits into limits. Then by [Sta24, Tag 07D7], it is
representable. From [ML78, Cor. 2, p.85], the functor F admits a
right adjoint.

2. If follows from Yoneda’s lemma.

By [Sta24, Tag 077P (2)], the inclusion ι = ιX : Qch(OX) → Mod(OX)
admits a right adjointQX = Q : Mod(OX)→ Qch(OX), called the coherator
of X. To reduce the problem to the study of OX -modules, consider the
square

Mod(DX) Modqc(DX)

Mod(OX) Qch(OX),

Q′
X

forX forX

QX

(E.2)

where the vertical functors are forgetful.

Lemma E.1.0.8. Suppose that X is affine. Write R = Γ(X,DX). Then:

1. The functor ·̃ := DX ⊗R · : Mod(R)→ Mod(DX) is left adjoint to the
global section functor Γ(X, ·) : Mod(DX)→ Mod(R);

2. The square (E.2) is commutative.

Proof.

1. Let (σ, σ#) : (X,DX) → ({∗}, R) be the morphism of ringed spaces,
with σ : X → {∗} the unique map and σ# given by IdR. Then
Γ(X, ·) = σ∗ : Mod(DX) → Mod(R). By [Sta24, Tag 01BH], the
functor ·̃ = σ∗. The adjunction follows from [Sta24, Tag 0096].
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2. From 1 and [HT07, Prop. 1.4.4 (ii)], the functor Q′ : Mod(DX) →
Modqc(DX) is the composition of Γ(X, ·) : Mod(DX)→ Mod(R) with
·̃ : Mod(R) → Modqc(DX). The largest rectangle in the following
diagram

Mod(DX) Mod(R) Modqc(DX) Mod(R)

Mod(OX) Mod(OX(X)) Qch(OX) Mod(OX(X))

Γ(X,·)

Q′

DX⊗R· Γ(X,·)

Γ(X,·)

Q

OX⊗OX (X)· Γ(X,·)

is same as the small square on the left, hence commutative. Moreover,
the two horizontal functors Γ(X, ·) on the right are equivalences, so Q′

is compatible with Q.

The abelian categories Mod(DX) and Mod(OX) are Grothendieck. By
[Sta24, Tag 079P] and [Sta24, Tag 070K], the functor Q′ : Mod(DX) →
Modqc(DX) and Q : Mod(OX) → Qch(OX) admit right derived functors
RQ′ : D(DX)→ D(Modqc(DX)) and RQ : D(OX)→ D(Qch(OX)).

Lemma E.1.0.9. 1. The square (E.2) is commutative.

2. The square

D(DX) D(Modqc(DX))

D(OX) D(Qch(OX)),

RQ′
X

forX forX

RQX

is commutative.

Proof.

1. We deduce a formula for Q′
X . Since X is quasi-compact, there is a

finite cover {Uα}α∈I of X by affine opens. For any α ̸= β in I, since
X is separated over k, the scheme Uαβ := Uα ∩ Uβ is affine. Denote
all the various open immersions Uαβ → X and Uα → X as j. For
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every DX -module F , the sheaf axiom gives an equalizer diagram in
Mod(DX):

0→ F → ⊕αj∗(F |Uα) ⇒ ⊕(α,β)j∗(F |Uαβ ),

where the two right morphisms are induced by the inclusions Uαβ →
Uα and Uαβ → Uβ. By Lemma E.1.0.10, it induces another equalizer
diagram in Modqc(DX):

0→ Q′
XF → ⊕αj∗Q′

Uα(F |Uα) ⇒ ⊕(α,β)j∗Q
′
Uαβ

(F |Uαβ ). (E.3)

There is a natural transformation ι′Q′
X → IdMod(DX) : Mod(DX) →

Mod(DX). Applying forX : Mod(DX)→ Mod(OX), one gets a natural
transformation forX ◦ ι′ ◦Q′

X → forX : Mod(DX)→ Mod(OX). Since
forX ◦ ι′ = ι ◦ forX : Modqc(DX)→ Mod(OX) and QX is right adjoint
to ι, there is a natural transformation

µX : forX ◦Q′
X → QX ◦ forX

of functors Mod(DX) → Qch(OX). By Lemma E.1.0.8 2, it is an
isomorphism when X is affine.

For a general X, by (E.3) and [TT90, (B.14.2)], there is a commutative
diagram of functors Mod(DX)→ Qch(OX):

0 forXQ
′
X ⊕αj∗forUαQ

′
Uα

(·|Uα) ⊕(α,β)j∗forUαβQ
′
Uαβ

(·|Uαβ )

0 QX forX ⊕αj∗QUαforUα(·|Uα) ⊕(α,β)j∗QUαβ forUαβ (·|Uαβ ),

µX

where the two vertical arrows on the right are isomorphisms. Therefore,
µX is an isomorphism.

2. The morphism (X,DX) → (X,OX) of ringed spaces is flat, and the
direct image functor is the forgetful functor forX : Mod(DX)→ Mod(OX).
By [Sta24, Tag 08BJ], it preserves K-injective complexes. The conclusion
follows from Point 1, Lemma E.1.0.11 and [Sta24, Tag 070K].

Lemma E.1.0.10. Let j : U → X be an open immersion. Then the
natural transformation j∗ ◦ Q′

U → Q′
X ◦ j∗ : Mod(DU ) → Modqc(DX) is

an isomorphism.

251

https://stacks.math.columbia.edu/tag/08BJ
https://stacks.math.columbia.edu/tag/070K


Proof. As j∗ : Mod(DX) → Mod(DU ) restricts to a functor Modqc(DX) →
Modqc(DU ), one has ι′U j

∗ = j∗ι′X as functors Modqc(DX) → Mod(DU ).
The functor j∗ : Mod(DU ) → Mod(DX) regards the direct image j∗ :
Mod(OU ) → Mod(OX), so it also restricts to a functor Modqc(DU ) →
Modqc(DX). As Q′ is right adjoint to ι′ and j∗ is right adjoint to j∗, the
isomorphism follows.

Lemma E.1.0.11. Let F : A → B and G : B → C be left exact functors of
abelian categories. Assume that A, B are Grothendieck. If for ever K-
injective complex I over A, the natural morphism GF (I) → RG(F (I))
in D(C) is an isomorphism,1 then the canonical natural transformation
(constructed in [Sta24, Tag 05T2 (1)]) t : R(G ◦ F ) → RG ◦ RF is an
isomorphism of functors from D(A)→ D(C).

Proof. Let A be a complex over A. As A is Grothendieck, by [Sta24, Tag
079P], there is a quasi-isomorphism A → I such that I is a K-injective
complex. By [Sta24, Tag 070K], the morphism tA is the composition of
isomorphisms

R(G ◦ F )(A) = GF (I)→ RG(F (I)) = RG(RF (A)).

Proof of Theorem E.1.0.4. By [Sta24, Tag 09T5], RQ′ : D(DX)→ D(Modqc(DX))
is right adjoint to Lι′ = ι′ : D(Modqc(DX))→ D(DX). Let Ψ′ : Dqc(DX)→
D(Modqc(DX)) (resp. Ψ : Dqc(OX) → D(Qch(OX)) ) be the restriction of
RQ′ (resp. RQ). By Lemma E.1.0.9 2, there are natural commutative
squares

D(Modqc(DX)) Dqc(DX)

D(Qch(OX)) Dqc(OX),

Lι′

for for

Lι

Dqc(DX) D(Modqc(DX))

Dqc(OX) D(Qch(OX)),

Ψ′

for for

Ψ

where Lι is induced by the inclusion ι : Qch(OX)→ Mod(OX).
Since Ψ is right adjoint to ι, the counit ϵ′ : ι′Ψ′ → IdDqc(DX) (resp. unit

η′ : IdD(Modqc(DX)) → Ψ′ι′) is compatible with the counit ϵ : ιΨ→ IdDqc(OX)

(resp. unit η : IdD(Qch(OX)) → Ψι). The functor for : D(DX) → D(OX)
is conservative. By [Sta24, Tag 09T4], the counit ϵ and the unit η are
isomorphisms, so are the counit ϵ′ and the unit η′. In particular, the functor
(E.1) is an equivalence with a quasi-inverse Ψ′.

Proposition E.1.0.12. Let X be a complex manifold. Let F be an OX-
module. Then the following conditions are equivalent:

1i.e., F (I) computes RG in the sense of [Sta24, Tag 05SX (1)]
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1. the induced module DX ⊗OX F is holonomic;

2. F is coherent with Supp(F ) discrete.

Corollary E.1.0.13. Let X be a connected complex manifold. Let (E,∇)
be a nonzero flat vector bundle on X. If the corresponding DX-module is
induced by some OX-module, then X is a point.

Proof. Let F be an OX -module with DX ⊗OX F = (E,∇). As DX is a
locally free OX -module, one has Supp(F ) = Supp(E) = X. By Proposition
E.1.0.12, since (E,∇) is a holonomic DX -module, X = Supp(F ) is discrete
and hence a point.

Lemma E.1.0.14 and Lemma E.1.0.15 are needed for the proof of Proposition
E.1.0.12.

Lemma E.1.0.14. Let A be a Gorenstein local ring (in the sense of [Sta24,
Tag 0DW7 (1)]) of Krull dimension n. Let M be a finite A-module. Then
the following conditions are equivalent:

1. For all integers i ̸= n, one has Exti(M,A) = 0;

2. the length of M is finite.

Proof. Let k be the residue field of A.

� Assume Condition 1. To prove 2, one may assume M ̸= 0. As A is
Gorenstein, A[0] is a dualizing complex of A. By [Mat87, Thm. 18.1,
p.141], one has RHomA(k,A[n]) = k[0], so A[n] is the normalized
dualizing complex of A (in the sense of [Sta24, Tag 0A7M]). Let d
be the depth of M . By [Sta24, Tag 0B5A], the module M is Cohen-
Macaulay and

M = Extn−dA (Extn−dA (M,A), A).

Thus, Extn−dA (M,A) ̸= 0. By Condition 1, one has n− d = n. Hence
dim Supp(M) = d = 0. By [Ati69, Exercise 19 v), p.46], one has
dimA/Ann(M) = 0. Then A/Ann(M) is an artinian ring. From
[Eis95, Cor. 2.17], the length of M is finite.

� Assume Condition 2. Induction on the length l(M) of M . When
l(M) = 0, one has M = 0 and Condition 1 holds. Now assume l(M) >
0 and the statement holds for all modules of length less than l(M).
There is a submodule N of M such that M/N is a simple module and
l(N) < l(M). By [Sta24, Tag 00J2], the module M/N is isomorphic to
k. For every integer i ̸= n, the short exact sequence 0 → N → M →
M/N → 0 induces an exact sequence Exti(M/N,A)→ Exti(M,A)→
Exti(N,A). By the inductive hypothesis, Exti(N,A) = 0. By [Mat87,
Thm. 18.1, p.141], one has Exti(M/N,A) = 0. Hence Exti(M,A) = 0.
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Lemma E.1.0.15. Let X be a complex analytic space. Let F be a coherent
OX-module. Then the length of the OX,x-module Fx is finite for all x ∈ X
if and only if the subspace Supp(F ) ⊂ X is discrete.

Proof. The “if” part follows from Lemma 5.5.2.8 1. We prove the “only
if” part. By coherence of F and [CAS, p.76], Supp(F ) is a closed analytic
set of X. Assume to the contrary that Supp(F ) is not discrete. Then
dim Supp(F ) > 0. Let C be an irreducible component of Supp(F ) of
maximal dimension. Endow C with the reduced induced closed subspace
structure. Let i : C → X be the closed embedding of complex analytic
spaces.

For every x ∈ C, the morphism OX,x → OC,x is surjective. Then
by [Sta24, Tag 00IX], one has lOC,x(i∗F )x = lOX,x(i∗F )x. The morphism
Fx → (i∗F )x of OX,x-modules is surjective, so lOX,x(i∗F )x ≤ lOX,xFx. In
particular, the length of (i∗F )x over OC,x is finite. By [GD71, Cor. 5.2.4.1],
the support of i∗F is C. Replacing (X,F ) by (C, i∗F ), one may assume
further that X is irreducible with dimX > 0.

By the generic freeness [Ros68, Prop. 3.1], there is x0 ∈ X such that Fx0
is a free OX,x0-module. As the support of F is X, from [RS17, p.238], F
is not a torsion sheaf. Then by irreducibility of X and [Ros68, p.69], the
OX,x0-module Fx0 has positive rank. Thus, OX,x0 has finite length over itself,
hence an artinian ring. The dimension formula in [CAS, p.96] and [CD94,
(14.14), p.89] yield dimX = dimx0 X = dimOX,x = 0, a contradiction.

Proof of Proposition E.1.0.12. LetM = DX⊗OXF and F̂ = RHomOX (F,OX).
By [Sta24, Tag 08DJ], one has

HomOX (ωX , F̂ ) = RHomOX (ωX ⊗OX F,OX). (E.4)

Provided that F is coherent, [Bjö93, (ii) p.122] gives

∆DXM = DX ⊗OX HomOX (ωX , F̂ )[dimX]. (E.5)

Plugging (E.4) into (E.5), one gets

∆DXM = DX ⊗OX RHomOX (ωX ⊗OX F,OX)[dimX].

For every nonzero integer i, one has

H i(∆DXM) = DX ⊗OX Ext
i+dimX
OX

(ωX ⊗OX F,OX).

By [Sta24, Tag 01CB] and [GH78, 1. p.700], its stalk at x ∈ X is isomorphic
to

DX,x ⊗OX,x Exti+dimxX
OX,x

(Fx, OX,x).
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� Assume Condition 2. By [Bjö93, 1.5.1], the DX -module M is coherent.
By Lemma E.1.0.15, the OX,x-module Fx has finite length. As OX,x is
a noetherian regular local ring of Krull dimension dimxX, by Lemma
E.1.0.14, one has Exti+dimxX

OX,x
(Fx, OX,x) = 0 for all x ∈ X. Hence

H i(∆DXM) = 0. From Fact 6.7.1.2 2, theDX -moduleM is holonomic.

� Assume Condition 1. From [SS94, p.55], the OX -module F is coherent.
From Fact 6.7.1.2 2, for every nonzero integer i, one has H i(∆DXM) =
0. AsDX,x is a nonzero freeOX,x-module, one gets Exti+dimxX

OX,x
(Fx, OX,x) =

0. By Lemma E.1.0.14, the OX,x-module Fx has finite length for every
x ∈ X. From Lemma E.1.0.15, the support of F is discrete.

The proof of Proposition E.1.0.16 is similar to that of Proposition E.1.0.12.

Proposition E.1.0.16. Let k be an algebraically closed field of characteristic
zero. Let X be a smooth separated irreducible scheme over k of finite type.
Let F be an OX-module. Then the following conditions are equivalent:

1. the induced module DX ⊗OX F is holonomic;

2. F is coherent with Supp(F ) finite.
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Appendix F

Group extensions of complex
Lie groups

F.1 Introduction

In the history of cohomology theory of abelian varieties over positive characteristic
fields, the study of group extension problem played an important role.
For instance, Rosenlicht obtains Fact F.1.0.1 through considering vectorial
extensions of abelian varieties. Let k be an algebraically closed field. Let
A be an abelian variety over k of dimension g. The dual abelian variety of
A is denoted by A∨. Let A♮ be the moduli space of line bundles equipped
with an integrable connection on A∨.

Fact F.1.0.1 ([Ros58, Theorems 1 and 2]). The dimension of the k-vector
space H1(A,OA) is g.

A notable byproduct of Rosenlicht’s work is the existence of universal
vectorial extension. Short exact sequence of algebraic groups are defined in
[Ros58, Sec. 2, p.691].

Fact F.1.0.2 ([Ros58, Prop. 11]). There is a canonical short exact sequence
0→ H0(A∨,Ω1)→ A♮ → A→ 0 of commutative algebraic groups over k. It
is universal among vectorial extensions in the following sense: For another
such exact sequence 0 → V → E → A → 0 with V a vector group, the
following diagram

0 H0(A∨,Ω1) A♮ A 0

0 V E A 0

=

can be completed to be commutative making the left square a pushout.
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For a smooth algebraic variety X over k, let Qch(OX) (resp. Qch(DX))
be the category of quasi-coherent OX (resp. left DX) modules. Laumon
[Lau96, Thm. 3.2.1] and Rothstein [Rot96, (1.17)] independently proves
that the Fourier-Mukai transform Db(Qch(OA))→ Db(Qch(OA∨)) lifts to a
canonical equivalence Db(Qch(OA♮))→ Db(Qch(DA∨)).

The cohomology theory of complex analytic analogue of abelian varieties,
namely complex tori, is elementary. By contrast, as far as we know, the
existence of universal vectorial extension in the analytic setting is not covered
in the literature. For a Lie group G, its identity component is denoted by
G0. Let π0(G) := G/G0. The main results are summarized as follows.

Proposition (Proposition F.4.3.1). For two commutative complex Lie groups
A,B, the commutative extensions of A by B are classified by the abelian
group

Ext1Z(π0(A), π0(B))⊕HomAb(π1(A0), π0(B))⊕ coker(s).

Here s is the restriction morphism HomVec(L(A), L(B0))→ HomAb(π1(A0), B0),
A0 (resp. B0) signifies the identity component of A (resp. B), the notation
π1(∗) refers to the fundamental group, and A/A0 = π0(A) denotes the 0-th
homotopy group of A and similar for B.

Theorem. Let A be a complex torus of dimension g. Then:

� (Theorem F.5.2.4 (resp. F.5.3.2)) The dual torus Pic0(A) (resp. tangent
space T0A = H1(A,OA)) naturally classifies the extensions of A by the
multiplicative group C∗ (resp. additive group C).

� (Propositions F.5.4.5 1 and F.5.4.7) There is an extension

0→ H0(A∨,Ω1
A∨)→ (C∗)2g → A→ 0

that is universal among all vectorial extensions of A.

We emphasis some differences between the analytic case and the algebraic
case. For a complex torus A, let Div(A) be the group of analytic divisors
on A modulo linear equivalence. Let Pic(A) be the group of isomorphic
classes of line bundles on A. By [Deb05a, Sec. 4.3, Cor. 4], the natural
map Div(A) → Pic(A) is surjective if and only if A is an abelian variety.
This is why the Picard group is used in Theorem F.5.2.4, while the divisor
group appears in its algebraic analogue [Wei49, no. 2] and [Ser88, Thm. 6].
Discrete groups like Z are not (finite type) algebraic groups, but there is no
reason to exclude them as complex Lie groups. Plenty of important analytic
morphisms are not algebraic, like the universal covering (exponential map)
exp : C→ C∗.

The organization is as follows. The main goal of this text is to classify
extensions of complex Lie groups. Section F.2 contains preliminaries about
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complex Lie groups. In Section F.3 we define complex Lie group extensions
and give several first results about the classification. Then we focus on
commutative extensions in Section F.4. Commutative extensions of complex
tori deserve extra attention, and they are discussed in Section F.5. Some
extensions with complex-tori base are automatically commutative, as Section
F.6 shows. Noncommutative extensions are treated superficially in Section
F.7.

Convention and notation

A statement about Lie groups is understood to hold for both real and
complex Lie groups. The topology underlying a Lie group is always assumed
to be second countable.1

The Lie algebra of G is written as L(G). And Z(G) denotes the center
of G. The automorphism group of G is denoted by Aut(G). Let Inn : G→
Aut(G) be the group morphism defined by taking conjugation g 7→ g • g−1.
Then the subgroup Inn(G) of inner automorphisms is normal in Aut(G).
Let Out(G) = Aut(G)/ Inn(G) be the group of outer automorphisms. Let
Gop be the Lie group opposite to G. (If G is complex, then so is Gop.) There
is a natural identification of real/complex manifolds G → Gop denoted by
g 7→ g∗. If G is connected, then the universal covering group of G is denoted
by G̃ and the fundamental group of G with the identity eG as the base point
is denoted by π1(G).

Complex Lie subgroups refer to embedded closed complex Lie subgroups.
If G is a complex Lie group and S ⊂ G is a subset, by [HN11, Exercise 15.1.3
(b)] there is a smallest complex Lie subgroup of G containing S, called the
complex Lie subgroup generated by S.

Let Vec (resp. Ab, resp. Set) be the category of finite dimensional
complex vector spaces (resp. abelian groups, resp. commutative complex Lie
groups, resp. sets). For a complex manifold X and a commutative complex
Lie group B, let BX be the abelian sheaf on X of germs of holomorphic
maps from X to B.

F.2 Generalities on complex Lie groups

Two fundamental facts about complex Lie groups are recalled.

Fact F.2.0.1 ([Bou72, Ch. III, §3, no. 8, Prop. 28]). Let f : G → H be a
morphism of complex Lie groups. Then:

1. ker(f) is a normal complex Lie subgroup of G and L(ker(f)) = ker(def :
L(G)→ L(H)).

1A partial reason for such restriction is that, in this case, Condition (2) of [Hoc51b,
Definition 1.1] is implied by Condition (1), showed in p.542 loc.cit.

258



2. If f(G) is closed in H, then f(G) is a complex Lie subgroup of H,
and f induces a complex Lie group isomorphism G/ ker(f) → f(G).
In particular, if f is surjective, then def : L(G)→ L(H) is surjective.
If f bijective, then f is an isomorphism.

Remark F.2.0.2. Fact F.2.0.1 2 fails if the topology of G is not assumed to
be second countable. For example, let τ (resp. τ ′) be the discrete topology
(resp. the Euclidean topology) of C, then Id : (C, τ)→ (C, τ ′) is a bijective
morphism but not open.

Right principal bundle is defined in [Bou07, 6.2.1]. Left principal bundle
can be defined similarly.

Fact F.2.0.3 ([HBS66, Thm. 3.4.3], [Bou72, Ch. III, §1, Propositions 10
and 11]). Suppose G is a complex Lie group and K is a normal complex
Lie subgroup of G. Then the group G/K has a unique structure of complex
manifold, such that the quotient map π : G→ G/K is a submersion.2 With
this structure, G/K is a complex Lie group and p is a left principal K-bundle
under the natural left group action K × G → G defined by (k, g) 7→ kg. In
particular, every surjective morphism of complex Lie groups is open.

We recall that principal bundles are classified by the first sheaf cohomology,
in the following way. Let X (resp. B) be a complex manifold (resp.
commutative complex Lie group). Let S be the set of isomorphism classes
of principal B-bundles3 over X. Define a map

Ψ : S → H1(X,BX) (F.1)

as follows. For every [p : P → X] ∈ S, there exists an open cover {Ui}i∈I
of X and a family of local trivializations fi : Ui × B → p−1(Ui) for every
i ∈ I. For any indices i, j ∈ I and every x ∈ Ui ∩ Uj , there exists a unique
element bij(x) ∈ B such that bij(x) · fi(y) = fj(y) for all y ∈ p−1(x). Hence
a morphism bij : Ui ∩ Uj → B of complex manifolds. Moreover, for any
indices i, j, k ∈ I and every x ∈ Ui ∩ Uj ∩ Uk, they satisfy the 1-cocycle
relation bij(x) + bjk(x) + bki(x) = 0. Thus, the family {bij}i,j∈I defines an
element Ψ(p) of H1(X,BX).

As per [HBS66, 3.2 b), p.41], the map Ψ is bijective. The structure of
abelian group on H1(X,BX) is translated to S via Ψ. The zero element of
S is the class of the trivial principal B-bundle. For every pair [p1 : P1 → X]
and [p2 : P2 → X] in S, by taking a family of trivialization for each pi, we
can define a morphism ϕ : P1 ×X P2 → P1 + P2 of principal B-bundles on
X such that or every b, b′ ∈ B, u ∈ P1, v ∈ P2 with p1(u) = p2(v), one has

ϕ(b · u, b′ · v) = (b+ b′) · ϕ(u, v). (F.2)

2in the sense of [Bou07, 5.9.1]
3Here B is commutative, so it is unnecessary to specify the principal bundle to be left

or right.

259



In particular, ϕ is surjective. Restricted to the fiber at some x ∈ X, ϕ is
induced by the group law of B and the chosen trivializations.

We need a complex version of Cartan’s subgroup theorem. Notice that a
real analytic closed subgroup of a complex Lie group may not be a complex
analytic subset.

Lemma F.2.0.4 ([Bjö93, p.513]). Let X be a complex manifold, Y ⊂ X be
a complex analytic subset. If p ∈ Y is a smooth point of Y , then near p, the
subset Y is an embedded complex submanifold of X.

Proof. As the problem is local, we may assume that X is an open subset
Cn, there exist f1, . . . , fm ∈ OX(X) with OX,p/(f1, . . . , fm) = OY,p and
Y = Z(f1, . . . , fm). Let r = rankp(f1, . . . , fm). By reordering subscripts,
one may assume

det(
∂fi
∂zj

)1≤i,j≤r ̸= 0.

Then (f1, . . . , fr) : X → Cr is a holomorphic submersion near p. Therefore,
near p, the subset Z(f1, . . . , fr) is an embedded complex submanifold of X
of dimension n− r. By the Jacobian criterion (see, e.g., [CAS, p.114]), one
has embpY = n − r. By the criterion of smoothness [CAS, p.116], one has
dimp Y = n − r. Now that Y ⊂ Z(f1, . . . , fr), near p the subset Y is an
irreducible component of Z(f1, . . . , fr), hence also an embedded complex
submanifold of X.

Corollary F.2.0.5 contains [Lee01, Prop. 1.23] as a special case.

Corollary F.2.0.5 (Complex Cartan subgroup theorem). Let G be a complex
Lie group, and let H be a subgroup that is a complex analytic subset of G.
Then H is a complex Lie subgroup of G.

Proof. Endow H with the induced structure of reduced complex analytic
space. By [CAS, p.117], the complex analytic space H has a smooth point
p. For every q ∈ H, the left multiplication by qp−1 gives a biholomorphic
map G → G, which sends H to H and maps p to q. Therefore, q is also a
smooth point of H. By Lemma F.2.0.4, H is a complex submanifold of G
near q for all q ∈ H. Thus, H is a complex submanifold of G and hence a
complex Lie subgroup.

In Lemma F.2.0.6, if G is furthermore connected, then the result of is
contained in [Bou72, Ch.III, Sec. 6, no. 4, Cor. 4].

Lemma F.2.0.6. Let G be a complex Lie group. Then the center Z(G) is
a complex Lie subgroup of G.

Proof. The holomorphic map G × G → G defined by (x, y) 7→ yxy−1 is a
group action of G on itself. By [Bou72, Ch. III, Sec. 1, no. 7, Prop. 14], for
every x ∈ G, the stabilizer CG(x) of x ∈ G is a complex Lie subgroup of G.
Therefore, so is Z(G) = ∩x∈GCG(x) by [HN11, Exercise 15.1.3 (a)].
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A complex Lie group isomorphic to a complex Lie subgroup of GLn(C)
for some integer n ≥ 1 is called linear. Proposition F.2.0.7, due to Matsushima
and Morimoto, is a characterization of commutative linear complex Lie
groups.

Proposition F.2.0.7. Let B be a connected commutative complex Lie group.
Then the following conditions are equivalent:

1. B is isomorphic to Cm × (C∗)n for some integers m,n ≥ 0;

2. the complex Lie group B is linear;

3. B is a Stein group (i.e., the underlying complex manifold is a Stein
manifold).

In that case, the pair (m,n) is unique.

Proof. See [HN11, Exercise 15.3.1] for the fact that 1 implies 2. Since
GLn(C) is a Stein manifold, 2 implies 3. As per [MM60, Proposition 4], 3
implies 1. The uniqueness is contained in the Remmert-Morimoto decomposition
(see, e.g., [AK01, Thm. 1.1.5]).

Remark F.2.0.8. The commutativity ofB in Proposition F.2.0.7 is important.
In fact, by [Ari19, Sec. 1], there is a connected Stein group that is not linear.
This differs from the algebraic case. By [Mil17a, Cor. 4.10], every affine
algebraic group is linear.

In some sense, Definition F.2.0.9 is an antipode to Stein groups.

Definition F.2.0.9. A connected complex Lie group on which every holomorphic
function is constant is called a toroidal group.4

Complex tori are compact toroidal groups. From [AK01, p.1], there exist
toroidal groups that are not compact. Every toroidal group is a semi-torus
in the sense of [NW13, Def. 5.1.5].

By [AK01, 1.1.5], every connected commutative complex Lie group G
is uniquely isomorphic to Cl × (C∗)m × X with a toroidal group X. In
particular, G can be presented as an extension of a complex torus by a
connected linear group. (From [NW13, pp.169-170], a semi-torus can admit
nonequivalent presentations, while semiabelian varieties admit exactly one
algebraic presentation.)

4also known as a Cousin group
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F.3 Group extensions

Given a surjective Lie group morphism p : E → Q, by Fact F.2.0.1, K :=
ker(p) is a normal Lie subgroup of E and the induced morphism E/K → Q
is an isomorphism. We write it as

1→ K
i→ E

p→ Q→ 1 (F.3)

and call it a short exact sequence. In that case, E is called an extension
of the base Q by the extension kernel K. Moreover, dep : L(E) → L(Q) is
surjective of kernel L(K), hence an extension of Lie algebras

0→ L(K)→ L(E)
dep→ L(Q)→ 0.

When K ⊂ Z(E), such an extension is called central. If (F.3) is a central
extension with Q commutative, as in [MRM74, p.222], using Fact F.2.0.3
one can construct a skew-symmetric bimorphism

e : Q×Q→ K, (F.4)

to measure the deviation of E from commutativity. Indeed, the group E is
commutative if and only if e is constant.

Several topological properties of Lie groups are preserved by extensions.

Fact F.3.0.1. If K,Q in (F.3) are compact (resp.connected, resp. discrete),
then so is E.

Proof. The statement concerning connectedness is in [Che46, Prop. 2, p.36].
The others are consequences of Fact F.2.0.3.

Fact F.3.0.2 ([HN11, Cor. 16.3.9]). If (F.3) is a central extension of complex
Lie groups, where K is finite and E is connected, then Q is linear if and
only if E is linear.

The finiteness of K in Fact F.3.0.2 is necessary. Consider the exact
sequence 0 → Z2 → C → A → 0 defining a complex torus A. Here Z2 and
C are linear, while A is not.

Similarly, an extension E of a finite group Q by a linear group K is
linear. Indeed, let ρ : K → GLn(C) be a faithful representation, then
the induced representation IndEK ρ : E → GLmn(C) is also faithful, where
m = #Q. Again, the finiteness of Q is essential here. Example F.3.0.3
shows the statement fails when Q is only discrete and linear but infinite.

Example F.3.0.3. Deligne [Del78] (see also [KRW20, p.470]) shows that
for any integers g ≥ 2, n ≥ 3, there is a central extension 1 → Z/n →
G→ Sp2g(Z)→ 1 for which G is not residually finite. By Malcev’s theorem
([Mal40, Thm. VII]; see also [Nic13, p.1]), the discrete complex Lie group G
is not linear, even though Z/n and Sp2g(Z) are linear.
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We turn to the classification of extensions. Two Lie group extensions C
and C ′ of B by A are called equivalent if there exists a morphism f : C → C ′

making a commutative diagram

0 B C A 0

0 B C ′ A 0.

Id f Id

In this case, f is bijective, hence an isomorphism by Fact F.2.0.1. The trivial
extension of Q by K refers to the equivalence class of the obvious sequence

1→ K → K ×Q→ Q→ 1.

Fact F.3.0.4 ([Bou72, Ch.III, no.4, Prop. 8]). The Lie group extension
(F.3) is trivial if and only if there is a morphism r : E → K with ri = IdK .
The extension is a semidirect product if and only if there is a morphism
s : Q→ E with ps = IdQ.

The extension (F.3) defines a group morphism ψ : Q → Out(K), called
the outer action corresponding to the extension. We call (K,ψ) the extension
kernel of (F.3). Equivalent extensions induce the same outer action. For two
complex Lie groups Q,K and a group morphism ψ : Q → Out(K), denote
by Ext(Q,K,ψ) the set of equivalence classes of extensions of Q by K with
outer action ψ.

Since the center Z(K) is a characteristic complex Lie subgroup of K by
Lemma F.2.0.6, there is a canonical group morphism Aut(K)→ Aut(Z(K))
which passes to another group morphism Out(K) → Aut(Z(K)). Hence a
group morphism

ψ0 : Q→ Aut(Z(K)) (F.5)

induced by ψ. When K is commutative, ψ = ψ0 and the construction of Baer
sum ((F.41) and [FLA19, p.444]) makes Ext(Q,K,ψ) an abelian group.

F.3.1 Pullback and pushout

Extensions can be pulled back.

Example F.3.1.1 (Pullback). Given a morphism g : Q′ → Q of complex
Lie groups, pulling (F.3) back along g gives an extension of Q′ by K as
follows.

The map E ×Q′ → Q defined by (x, h′) 7→ p(x)−1g(h′) is holomorphic,
so the preimage E′ of the identity element eQ ∈ Q is an analytic subset of
E ×Q′. As E′ = {(x, h′) ∈ E ×Q′ : p(x) = g(h′)} is a subgroup of E ×Q′,
by Corollary F.2.0.5, E′ is a complex Lie subgroup of E ×Q′ (which is the
extension group). Let p′ : E′ → Q′ and ϵ : E′ → E be the projections. Then
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the triple (E′, ϵ, p′) is the fiber product E ×Q Q′ in the category of complex
Lie groups.

For every h′ ∈ Q′, by surjectivity of p, there is x ∈ E with p(x) = g(h′).
Then (x, h′) ∈ E′ with p′(x, h′) = h′. Hence p′ is surjective.

Define a morphism i′ : K → E′ by i′(k) = (k, eQ′). Then i′ is injective.
Since p′i′ is trivial, i′(K) ⊂ ker(p′). Conversely, for every (x, h′) ∈ ker(p′),
h′ = eQ′ and p(x) = g(eQ′) = eQ. Thus, x ∈ K and (x, h′) = i′(x) ∈ i′(K).
Hence a commutative diagram with exact rows

1 K E′ Q′ 1

1 K E Q 1.

i′

Id

p′

ϵ g

i
p

The first row is called the pullback extension of (F.3) along g. Its outer
action is ψg : Q′ → Out(K). Hence a map Ext(Q,K,ψ) → Ext(Q′,K, ψg).
As in [Hoc51a, p.99], it is a group morphism when K is commutative.

The universal property of pullback shows that the first row of every such
commutative diagram is determined by the second row and g : Q′ → Q. By
construction, the pullback of a central extension is also central.

A pushout extension along a morphism f : K → K ′ of complex Lie
groups may not exist. When it exists, it satisfies a universal property.

Lemma F.3.1.2. Consider a commutative diagram of complex Lie groups,
where each row is exact

1 K E Q ‘

1 K ′ E′ Q 1.

f

p

m Id

ι π

(F.6)

Then the triple (E′,m, ι) has the following universal property: For every
commutative diagram of complex Lie groups

K E

K ′ E′

H

i

f

ϕ

m

ψ

ι

η

with ψ(m(c)−1bm(c)) = ϕ(c)−1ψ(b)ϕ(c) for every c ∈ E and b ∈ K ′, there
exists a unique morphism η : E′ → H keeping the diagram commutative.

In particular, up to a unique equivalence, the second row of (F.6) has at
most one choice when the first row and f : K → K ′ are given.
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Proof. We construct a map η : E′ → H as follows. For every c′ ∈ E′,
there exists c ∈ E with p(c) = π(c′). Let b′ = m(c)−1c′. Then π(b′) =
p(c)−1π(c′) = eQ, so b′ ∈ K ′. Define η(c′) = ϕ(c)ψ(b′).

To show that η is well-defined, we claim that η(c′) is independent of the
choice of c. Indeed, take another c1 ∈ E with p(c1) = π(c′), then p(c−1c1) =
eQ, hence c−1c1 ∈ K. This time the element in K ′ is b′1 = m(c1)

−1c′,
so b′ = f(c−1c1)b

′
1 in K ′ and hence ψ(b′) = ϕ(c−1c1)ψ(b′1). Therefore,

ϕ(c)ψ(b′) = ϕ(c1)ψ(b′1) in H as claimed.
We check that η is holomorphic near c′ ∈ E′. Indeed, by Fact F.2.0.3,

there is an open neighborhood U of π(c′) ∈ Q, and a holomorphic map
s : U → E with ps = IdU . The map

π−1(U)→ U ×K ′, x 7→ (π(x), [msπ(x)]−1x)

is biholomorphic. The map

U ×K ′ → H, (u, b′) 7→ ϕ(s(u))ψ(b′)

is holomorphic. The composition is exactly η|π−1(U).
We check that η is a group morphism. For c′i ∈ E′ (i = 1, 2), choose ci ∈

E with p(ci) = π(c′i). Then for c′1c
′
2 we can choose c1c2. Let b′1 = m(c1)

−1c′1
and b′2 = m(c2)

−1c′2. Then

b′ := m(c1c2)
−1c′1c

′
2 = m(c2)

−1b′1m(c2)b
′
2.

By the construction of η, one has

η(c′1c
′
2) = ϕ(c1c2)ψ(b′)

=ϕ(c1)ϕ(c2)ψ[m(c2)
−1b′1m(c2)]ψ(b′2)

=ϕ(c1)ψ(b′1)ϕ(c2)ψ(b′2) = η(c′1)η(c′2)

Then η is a morphism of complex Lie groups. By construction, η is the
unique group morphism keeping the diagram commutative.

Example F.3.1.3. Assume that Q is connected. As the map p : E → Q in
(F.3) is open by Fact F.2.0.3, p(E0) is a nonempty open subgroup of Q and
hence p(E0) = Q by the connectedness of Q. Then the following diagram is
commutative and each row is exact

1 K ∩ E0 E0 Q 1

1 K E Q 1

Id

By Lemma F.3.1.2, the second row is determined by the inclusion K∩E0 →
K (an open normal subgroup) and the first row.
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F.3.2 Rudimentary classification

Let K,Q be complex Lie groups, where Q is discrete. Consider an abstract
group extension 1→ K → E → Q→ 1. Then as a set E = ⊔xxK, where x
runs through a set of left representatives of E/K. Thus E admits a unique
complex manifold structure making the maps holomorphic. However, the
group law of E needs not to be holomorphic in this complex structure. The
semidirect product sequence 1 → C → C ⋊ Z/2 → Z/2 → 1 serves as an
example, where Z/2 acts on C by complex conjugation. But when the base
is discrete and the outer action is trivial, the Lie group extension problem
reduces to the abstract group extension problem.

Proposition F.3.2.1. Let K,Q be complex Lie groups. If Q is discrete, then
the natural forgetful map ϕ : Ext(Q,K, 1) → ExtAbs(Q,K, 1) is bijective,
where ExtAbs(Q,K, 1) denotes the set of isomorphism classes of abstract
group extensions of Q by K with trivial outer action. In fact, for every
abstract group extension 1→ K → E → Q→ 1, E admits a unique complex
manifold structure making the sequence an extension of complex Lie groups.

Proof. We prove that ϕ is injective. Consider E1, E2 ∈ Ext(Q,K, 1) with
ϕ(E1) = ϕ(E2). Then there is an abstract group isomorphism f : E1 → E2

making a commutative diagram

K E1

E2.

f

For every x ∈ E1, the restriction xK → f(x)K of f is holomorphic, since
the left multiplication K → xK (resp. K → f(x)K) by x (resp. f(x))
in E1 (resp. E2) is biholomorphic. Thus, f is holomorphic and hence an
equivalence of complex Lie group extensions.

We prove that ϕ is surjective. Given an abstract group extension 1 →
K → E → Q → 1 in ExtAbs(Q,K, 1), we endow E with the complex
structure making the maps holomorphic. We show the group law m : E ×
E → E is holomorphic. Choose a set-theoretic section s : Q → E. Then
the map K ×Q→ E defined by (a, b) 7→ as(b) is biholomorphic. With this
identification, m becomes the map

µ : K ×Q×K ×Q→ K ×Q, (a, b, a′, b′) 7→ (as(b)a′s(b′)s(bb′)−1, bb′) = (aρ(a′)s(b)s(b′))s(bb′)−1, bb′),

where ρ : K → K is x 7→ s(b)xs(b)−1. Since the outer action is trivial,
ρ ∈ Inn(K). Therefore, the map K ×K → K defined by (a, a′) 7→ aρ(a′) is
holomorphic. Because Q is discrete, µ (and hence m) is holomorphic. Then
E is a complex Lie group and the abstract extension lifts to Ext(Q,K, 1).

Corollary F.7.2.6 below is a result about discrete base with nontrivial
outer action. We turn to two other simple cases.
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Proposition F.3.2.2. Every extension of C is a semidirect product. In
particular, every central extension of C trivial.

Proof. Let 0 → B → C
p→ C → 0 be an extension. Then 0 → L(B) →

L(C)
dep→ L(C) → 0 is an exact sequence of Lie algebras. Take a C-linear

map ds : L(C) → L(C) with dep ◦ ds = IdL(C). Because dimC L(C) = 1,
ds is a Lie algebra morphism. As C is simply connected, there is a unique
morphism s : C→ C with des = ds. Since de(ps) = IdL(C), one has ps = IdC.
Therefore, this extension is a semidirect product by Fact F.3.0.4.

Proposition F.3.2.3. Let B be a connected commutative complex Lie group.
Then every central extension of C∗ by B is trivial.

Proof. Let C be a central extension of C∗ by B. Consider the pullback
extension along exp(2πi•) : C → C∗. By Proposition F.3.2.2, there is a
morphism ρ : C → C ′ with p′ρ = IdC. Then pϵρ(1) = exp(2πi) = 1, so
ϵρ(1) ∈ B. As B is connected commutative, its exponential map expB :
L(B)→ B is surjective. Take v ∈ L(B) with expB(−v) = ϵρ(1).

Z

1 B C ′ C 0

1 B C C∗ 1

Id

p′

ϵ exp(2πi•)

ρ

p

Define a holomorphic map

ρ′ : C→ C ′, ρ′(z) = expB(zv)ρ(v).

We check that ρ′ is a group morphism. For every z, w ∈ C,

ρ′(z + w) = expB((z + w)v)ρ(z + w) = expB(zv) expB(wv)ρ(z)ρ(w)

= expB(zv)ρ(z) expB(wv)ρ(w) = ρ′(z)ρ′(w),

where the last but one equality uses B ⊂ Z(C).
Therefore, ρ′ is a complex Lie group morphism. Moreover, ρ′(1) =

expB(v)ρ(1) = ϵρ(−1)ρ(1). Then ϵρ′(1) = eC . Therefore, ρ′(Z) ⊂ ker(ϵ).
Thus, ρ′ induces a morphism s : C∗ → C making a commutative diagram

C C ′ C

C∗ C C∗

ρ′

exp(2πi•)

p′

ϵ exp(2πi•)

s p

Since p′ρ′ = IdC and exp(2πi•) : C → C∗ is surjective, ps = IdC∗ . From
Fact F.3.0.4, the extension C is trivial.
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Example F.7.1.7 gives a result about non-central extensions of C∗.
Now assume that the Lie group K is discrete and commutative. We recall

results5 from [Hoc51b, Sec. 3].

Fact F.3.2.4 ([Hoc51b, p.545]). Let K,Q be Lie groups. If K is discrete
commutative and Q is connected, then the extension (F.3) of Lie groups is
central.

Corollary F.3.2.5. Let K,Q be commutative Lie groups. If Q is connected
and K is discrete, then every extension of Q by K is commutative.

Proof. Let (F.3) be such an extension. By Fact F.3.2.4, this extension is
central. Then consider the induced continuous map (F.4). Since Q is
connected and K is discrete, this map is constant, or equivalently, E is
commutative.

Let Abc be the abelian category of abelian groups that are at most
countable. Fact F.3.2.6 shows that the universal cover of a connected Lie
group is “universal” among all the extensions with discrete commutative
kernels.

Fact F.3.2.6 (Hochschild, [Hoc51b, Thm. 3.2 and Cor.]). Let Q be a connected
Lie group. Then the functor Ext(Q, ·, 1) : Abc → Ab is represented by
π1(Q) and the class of the universal cover sequence 1 → π1(Q) → Q̃ →
Q → 1 in Ext(Q, π1(Q), 1). Hence an isomorphism ΓK : Ext(Q,K, 1) →
HomAb(π1(Q),K) functorial in K ∈ Abc. Moreover, E ∈ Ext(Q,K, 1) is
connected if and only if ΓK(E) is surjective.

F.4 Commutative Extensions

F.4.1 Generalities

Let C be the category of commutative complex Lie groups.

Lemma F.4.1.1. The category C is naturally an additive category with finite
direct products.

Proof. The Hom sets are commutative groups, and composition of morphisms
is bilinear. Moreover, the product G1×G2 of two commutative complex Lie
groups is both a product and a coproduct of G1 and G2 in C.

By [Mil17a, Thm. 5.62], the category Alg of commutative complex algebraic
groups is an abelian category. By contrast, as Example F.4.1.2 and Example
F.4.1.3 show, C is NOT an abelian category.

5They are stated for real Lie groups, but the proofs extend to the complex setting.
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Example F.4.1.2. The morphism i : Z2 → C, (a, b) 7→ a + b
√

2 is
injective. The image is dense in R and not closed in C. For every morphism
f : C → X in C with fi = 0, one has f = 0 by the identity theorem for
holomorphic maps. Thus i is a monomorphism and epimorphism in C, but
not an isomorphism.

Example F.4.1.3. Let p : C2 → C2/Z4 be the natural projection. Let
i : C → C2 be the closed embedding defined by z 7→ (z,

√
2z). Then the

composition pi : C→ C2/Z4 is an injective morphism (hence a monomorphism)
in C. By [Lee13, Example 7.19], pi(C) is a connected dense subset of C2/Z4.
In particular, pi is an epimorphism in C. The cokernel of pi is the zero
morphism C2/Z4 → 0. However, pi is not an isomorphism in C.

Proposition F.4.1.4 3 is a special case of [Con14, Prop. D.2.1]. An
elementary proof is given.

Proposition F.4.1.4.

1. HomC(C∗,C) = 0.

2. For A ∈ C, the map

HomC(Cn, A)→ HomVec(L(Cn), L(A)), f 7→ def

is a group isomorphism.

3. Let f : C∗ → C∗ be a morphism in C. Then there is an integer
k such that f(z) = zk for every z ∈ C∗. Hence an isomorphism
Z = HomC(C∗,C∗).

Proof. The Lie algebra of C∗ is C. The exponential map exp : C → C∗ is
normalized as w 7→ e2πiw.

1. Let f : C∗ → C be a morphism. Then def : C → C is linear. There
is a ∈ C with def(v) = av for all v ∈ C. Since 1 ∈ C = L(C∗)
is mapped to 1 ∈ C∗ under the exponential map exp(2πi•), one has
0 = f(1) = def(1) = a. Then def = 0 and f = 0.

2. It follows from the fact that Cn is simply connected and both groups
are commutative.

3. Consider the induced linear map on Lie algebras df : C → C. There
is a unique complex number k such that df(w) = kw for all w ∈ C.
Then

e2πik = exp(df(1)) = f exp(1) = f(1) = 1.

Therefore, k is an integer. For every z ∈ C∗, there is w ∈ C with
exp(w) = z. Then f(z) = f(exp(w)) = exp df(w) = exp(kw) = zk.
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Given a surjective morphism p : C → A in C, let i : B → C be its kernel.

We write it as 1 → B
i→ C

p→ A → 1 and call it a short exact sequence in
C. In that case, C is called an extension of A by B. Two such extensions C
and C ′ are called equivalent if there exists a morphism f : C → C ′ making
a commutative diagram

0 B C A 0

0 B C ′ A 0.

Id f Id

In this case, f : C → C ′ is an isomorphism in C. For A,B ∈ C, the set of
isomorphism classes of extensions of A by B is denoted by Ext(A,B).

Proposition F.4.1.5.

1. The formation Ext(•, •) : Cop × C → Set is a covariant functor.

2. Let E be the collection of extensions in C. Then the pair (C, E) is an
exact category in the sense of [Sta24, Tag 05SF].

Proof. 1. Fix A,B ∈ C and an element of Ext(A,B): 0 → B
i→ C

p→
A→ 0.

(a) If f : B → B′ is a morphism in C, then

g : B → C ×B′, b 7→ (−b, f(b))

is a morphism in C. It is injective and the (set-theoretic) image is
closed in C×B′. By Fact F.2.0.1 2, g identifies B as a complex Lie
subgroup of C×B′. Let f∗C be the quotient (C×B′)/B provided
by Fact F.2.0.3. The canonical map B′ → C × B′ induces an
injective morphism f∗i : B′ → f∗C since B ∩ ({0} × B′) = {0}.
Moreover, B is in the kernel of the composition C × B′ → A by
(c, β) 7→ p(c), hence a surjective morphism f∗p : f∗C → A.

Note that f∗p ◦ f∗i = 0, so f∗i(B
′) ⊂ ker(f∗p). For every element

x of ker(f∗p), take a representative (c, β) ∈ C ×B′. As p(c) = 0,
c ∈ B. Then (0, β + f(c))− (c, β) = g(c). Therefore,

x = [(0, β + f(c))] = f∗i(β + f(c)) ∈ f∗(B′).

Thus, f∗i(B
′) = ker(f∗p)

Therefore, the sequence

0→ B′ f∗i→ f∗C
f∗p→ A→ 0
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is exact and f∗C ∈ Ext(A,B′). Hence a morphism f∗ : Ext(A,B)→
Ext(A,B′) in the category Set.

Let F be the canonical morphism C → f∗C. By construction, the
extension f∗C ∈ Ext(A,B′) has the following universal property:
for every morphism h : A → A′ in C, every C ′ ∈ Ext(A′, B′),
every morphism G : C → C ′ making the diagram commutative

0 B C A 0

0 B′ f∗C A 0

0 B′ C ′ A′ 0,

f F

G

Id

Id u h

(F.7)

there exists a unique morphism u : f∗C → C ′ keeping the diagram
commutative.

(b) If h : A′ → A is a morphism in C, by Example F.3.1.1, we get
a morphism h∗ : Ext(A,B) → Ext(A′, B) in the category Set.
Let F be the canonical projection h∗C → C. By construction,
the extension g∗C has the following universal property: for every
morphism g : B′ → B, every extension C ′ ∈ Ext(A′, B′), every
morphismG : C ′ → C making the following diagram commutative

0 B′ C ′ A′ 0

0 B h∗C A′ 0

0 B C A 0,

g v

G

Id

Id F h

(F.8)

there exits a unique morphism v : C ′ → h∗C keeping the diagram
commutative.

(c) Let f : B → B′, g : A → A′ be morphisms in C, C ∈ Ext(A,B),
and C ′ ∈ Ext(A′, B′). Then the relation f∗C = g∗C ′ in Ext(A,B′)
is equivalent to the existence of a morphism F : C → C ′ making
a commutative diagram

0 B C A 0

0 B′ C ′ A′ 0.

f F g

Indeed, it follows from the universal properties in Points (1a) and
(1b). For every X ∈ Ext(A′, B), in view of the diagram
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0 B g∗X A 0

0 B X A′ 0

0 B′ f∗X A′ 0,

Id g

f Id

one has f∗g
∗X = g∗f∗X. This completes the proof.

2. It follows from Part 1 and Lemma F.4.1.1.

Example F.4.1.6. If A is a complex torus with dimA = g, B is the discrete
group Q/Z, then Ext(A,B) is isomorphic to B2g by Fact F.3.2.6. Even
though B is an injective object of Ab, the functor Ext(·, B) : Cop → Ab is
nonzero.

Example F.4.1.7. For an extension 0 → B
i→ C

p→ A → 0 in C, the
pushout i∗C ∈ Ext(A,C) is the trivial extension. In fact, i∗C = C × C/B
with the embedding

B → C × C, b 7→ (−b, b).

The group law C × C → C descents to a morphism r : i∗C → C. Then
r ◦ i∗(i) = IdC . By Fact F.3.0.4, i∗C is trivial.

Similarly, as the diagonal inclusion C → C×C factors through a morphism
s : C → p∗C and p∗(p)◦s = IdC , the pullback p∗C ∈ Ext(C,B) is also trivial.

Fact F.4.1.8 follows from Proposition F.4.1.5.

Fact F.4.1.8 ([Ros58, Prop. 5], [Ser88, Prop. 1, p.163]). 1. For every A,B ∈
C, under the Baer sum Ext(A,B) is an abelian subgroup of Ext(A,B, 1).

2. The functor Ext : Cop × C → Ab is additive.

3. For any C,C ′ ∈ Ext(A,B), the product C×C ′ is naturally an element
of Ext(A×A,B ×B).

4. Let d : A → A × A the diagonal map of A and s : B × B → B the
group law of B. Then C + C ′ = d∗s∗(C × C ′) in Ext(A,B).

Corollary F.4.1.9. For every commutative complex Lie group A, the restriction
Ext(A, ·) : Vec → Ab factors through a functor from Vec to the category of
all complex vector spaces.

By Example F.4.3.3 below, for every V ∈ Vec, dimC Ext(A, V ) is finite.
Hence an additive functor Ext(A, ·) : Vec→ Vec.
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Example F.4.1.10. Endowing each object of Abc the discrete topology
gives a functor Abc → C. This functor identifies Abc as a full subcategory
of C. The subcategory Abc is closed under extension by Fact F.3.0.1.
From Proposition F.3.2.1, the forgetful natural transformation Ext(−,+)→
Ext1Z(−,+) is an isomorphism of functors Abop

c × C → Ab.

Example F.4.1.11. Analytification functor (•)an : Alg → C identifies Alg
as a subcategory of C (which is not full). The extension problem within
the subcategory Alg is discussed by Rosenlicht [Ros58] and Serre [Ser88,
Ch. VII]. They define a similar additive functor ExtAlg : Algop × Alg →
Ab. For every A,B ∈ Alg, there is a natural morphism ExtAlg(A,B) →
Ext(Aan, Ban). In general, this morphism is neither injective nor surjective.

By [MM66, Introduction, 1.], when A is a complex abelian variety, one
hasExtAlg(Ga, A) = 0 while ExtAlg(Gm, A) is (non-canonically) isomorphic
to the torsion subgroup Ator of A. But Ext(C∗, Aan) = 0 by Proposition
F.3.2.3, so the natural morphism ExtAlg(Gm, A) → Ext(C∗, Aan) is not
injective.

For any two complex abelian varieties Xi (i = 1, 2) of positive dimension,
ExtAlg(X2, X1) is countable while Ext(Xan

2 , Xan
1 ) is uncountable. In fact, by

[BL99, Ch. 1, Prop. 6.1, Cor. 6.3], the natural morphism ExtAlg(X2, X1)→
Ext(Xan

2 , Xan
1 ) is an embedding onto the torsion subgroup of Ext(Xan

2 , Xan
1 ).

Lemma F.4.1.12 is mentioned at the bottom of [Hoc51b, p.546].

Lemma F.4.1.12. If G is a commutative connected Lie group, then G is a
divisible Z-module.

Proof. The exponential map exp : L(G)→ G is surjective. For every x ∈ G,
there is v ∈ L(G) with exp(v) = x. For every integer n ≥ 1, exp(v/n) ∈ G
and n(exp(v/n)) = x.

Corollary F.4.1.13. An extension 0 → B → C → A → 0 in C with B
connected and A discrete is trivial. In particular, for every G ∈ C, the
natural exact sequence

0→ G0 → G→ G/G0 → 0

is a trivial extension, hence a non-canonical isomorphism G→ G0 ×G/G0

in C.

Proof. By Lemma F.4.1.12, the Z-module B is divisible, so the functor
Ext1Z(·, B) : Ab → Ab is zero. Since A is discrete, the result follows from
Example F.4.1.10.

Example F.4.1.14. The abelian group underlying a complex torus B is
divisible by Lemma F.4.1.12, hence an injective object of Ab and Ext1Z(•, B) :
Ab → Ab is zero. However, Ext(•, B) : Cop → Ab can be nonzero. In
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fact, [BL04, (8) b), p.68] gives an example of a nontrivial exact sequence of
complex tori

0→ B → C → A→ 0

with dimA = dimB = 1.

F.4.2 Exact sequences of Ext

Let 0→ A′ i→ A
p→ A′′ → 0 be an exact sequence in C, i.e., A ∈ Ext(A′′, A′).

For f ∈ Hom(A′, B), there is f∗A ∈ Ext(A′′, B). Hence a map

d : Hom(A′, B)→ Ext(A′′, B), d(f) = f∗A.

Then d is a group morphism. The formation of d is functorial in B.

Proposition F.4.2.1. Let B ∈ C. The sequence in Ab with canonical
morphisms

0→HomC(A′′, B)→ HomC(A,B)
i∗→ HomC(A′, B)

d→Ext(A′′, B)
p∗→ Ext(A,B)→ Ext(A′, B)

is exact and functorial in B.

Proof.

� Exactness at Hom(A,B) follows from Fact F.2.0.1.

� Exactness at Hom(A′, B): By Example F.4.1.7, the composition

Hom(A,B)
i∗→ Hom(A′, B)→ Ext(A′′, B)

is zero. Now take ϕ ∈ ker(d). By Fact F.3.0.4, there is a morphism
r : ϕ∗A → B with rϕ∗(i) = IdB. Let F : A → ϕ∗A be the canonical
morphism. Then rF i = rϕ∗(i)ϕ = ϕ as morphism A′ → B. Hence
ϕ ∈ im(i∗).

� Exactness at Ext(A′′, B): By Example F.4.1.7, for every ϕ ∈ Hom(A′, B),
one has p∗d(ϕ) = p∗ϕ∗A = ϕ∗p

∗A = 0, i.e., p∗ ◦ d = 0.

Take an extension 0 → B
f→ C

g→ A′′ → 0 whose class in Ext(A′′, B)
belongs to ker(p∗). By Fact F.3.0.4, there is a morphism s : A→ p∗C
with p∗(g) ◦ s = IdA. Let F : p∗C → C be the canonical morphism.
Define ψ : A → C by ψ = F ◦ s. Then 0 = p|A′ = p ◦ p∗(g) ◦ s|A′ =
g ◦ ψ|A′ . Thus, there is a factorization ϕ : A′ → B with f ◦ ϕ = ψ|A′ .

By construction, the extension group of d(ϕ) = ϕ∗A ∈ Ext(A′′, B) is
(A×B)/D, with D = {(−a′, ϕ(a′)) : a′ ∈ A′}. Define

A×B → C, (a, b) 7→ ψ(a) + f(b).

Since ψ(−a′) + f(ϕ(a′)) = 0 for all a′ ∈ A′, this map induces a
factorization ϕ∗A→ C in the middle
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0 A′ A A′′ 0

0 B ϕ∗A A′′ 0

0 B C A′′ 0

0 B p∗C A 0.

i

ϕ

p

Id

ϕ∗i

Id Id

f

g

Id

p∗(g)

F p

s

ψ

keeping the diagram commutative. Then C = ϕ∗A = d(ϕ) in Ext(A′′, B).
One has ker(p∗) = im(d).

� Exactness at Ext(A,B): As the composition A′ → A → A′′ is zero
and Ext(·, B) : Cop → Ab is an additive functor, the composition
Ext(A′′, B)→ Ext(A,B)→ Ext(A′, B) is zero.

Take an extension 0 → B
f→ C1

g→ A → 0 with i∗(C1) = 0 in
Ext(A′, B). Then there is a morphism s : A′ → i∗C1 with i∗(g) ◦ s =
IdA′ . The composition ϕ : A′ → C1 is injective. Indeed, if a′ ∈ ker(ϕ),
then s(a′) = (a′, 0) in A′ × C1. Thus, i(a′) = 0 by the construction of
pullback extension. Since i is injective, one has a′ = 0.

Let C := C1/ϕ(A′) and C1 → C be the quotient morphism. Let
f0 : B → C be the induced morphism. Then f0 is injective. Indeed, if
b ∈ ker(f0), then f(b) = ϕ(a′) for some a′ ∈ A′. One has (a′, f(b)) ∈
i∗C1, so i(a′) = gf(b) = 0. Hence a′ = 0 and f(b) = 0. Since f is
injective, one has b = 0.

Because pgϕ = p ◦ i = 0, the morphism pg : C1 → A′′ descends to a
surjective morphism g0 : C → A′′. We prove that the bottom row of
the diagram

0 B i∗C1 A′ 0

0 B C1 A 0

0 B C A′′ 0.

Id

i∗(g)

i

s

ϕ
f

Id

g

p

f0 g0

is exact.

Since gf = 0, one has f0(B) ⊂ ker(g0). Conversely, for c ∈ ker(g0),
there is c1 ∈ C1 with [c1] = c. Since pg(c1) = g0(c) = 0, one gets
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g(c1) ∈ A′. Then gϕg(c1) = g(c1). So c1 − ϕg(c1) ∈ ker(g) = B and

f0(c1 − ϕg(c1)) = [c1 − ϕg(c1)] = c.

Therefore, ker(g0) = f0(B). In particular, one has C ∈ Ext(A′′, B).
By the universal property showed in the diagram (F.8), one has C1 =
p∗C.

Example F.4.2.2. Let A be a complex torus, and let B be a finite abelian
group. Then HomC(A,B) = 0. Let integer n(≥ 1) be a multiple of #B.
Applying Proposition F.4.2.1 to the exact sequence in C

0→ A[n]→ A
[n]A→ A→ 0,

one gets an exact sequence in Ab:

0→ Hom(A[n], B)→ Ext(A,B)
f→ Ext(A,B).

Since the morphism [n]B : B → B is zero in C, by Fact F.4.1.8, f = ([n]B)∗ =
0. Hence an isomorphism Hom(A[n], B) → Ext(A,B) that is functorial in
B, which is also confirmed by Fact F.3.2.6.

Let 0 → B′ → B → B′′ → 0 be an exact sequence in C. If A ∈ C and
ϕ ∈ Hom(A,B′′), then ϕ∗B ∈ Ext(A′, B). Define a map d : Hom(A,B′′) →
Ext(A,B′) by d(ϕ) = ϕ∗B.

Proposition F.4.2.3. Let 0→ B′ → B → B′′ → 0 be an exact sequence in
C and A ∈ C. Then the sequence

0→ Hom(A,B′)→ Hom(A,B)→ Hom(A,B′′)
d→ Ext(A,B′)→ Ext(A,B)→ Ext(A,B′′)

in Ab is exact and functorial in A.

The proof is analogous to that of Proposition F.4.2.1 and is thereby
omitted.

Consider the extension problem with connected bases. Corollary F.4.2.4
should be compared to [Sha49, Thm. 1]: for two compact connected real Lie
groups G,H, the cokernel of the restriction morphism Hom(H̃, Z(G)) →
Hom(π1(H), Z(G)) is isomorphic to the group of extensions of H by G.

Corollary F.4.2.4. Let A,B be commutative complex Lie groups. Assume
that A is connected with universal cover ω : Ã → A. Then there is a
canonical exact sequence in Ab:

0→ HomC(A,B)
·◦ω→ HomC(Ã, B)

r→ HomAb(π1(A), B)→ Ext(A,B)→ 0,
(F.9)

where r is induced by restriction.
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Proof. By Proposition F.3.2.2, Fact F.3.2.6 and Corollary F.4.1.13, the
functor Ext(C, •) : C → Ab is zero. By Fact F.4.1.8, one has

Ext(Cn, •) = 0. (F.10)

The proof is concluded by Proposition F.4.2.1.

Remark F.4.2.5. In Corollary F.4.2.4, if B discrete, then HomC(Ã, B) = 0
and the natural morphism Hom(π1(A), B)→ Ext(A,B) is an isomorphism,
which agrees with Fact F.3.2.6.

F.4.3 Determination of commutative extension group

The commutative extension problem of complex Lie groups is answered by
Proposition F.4.3.1. Fix two commutative complex Lie groups A,B.

Proposition F.4.3.1. There is a non-canonical isomorphism in Ab:

Ext(A,B)→ Ext1Z(A/A0, B/B0)⊕HomAb(π1(A0), B/B0)⊕ Ext(A0, B0),

and Ext(A0, B0) is the cokernel of the restriction morphism

s : HomVec(L(A), L(B))→ HomAb(π1(A0), B0).

Proof. By Corollary F.4.1.13, there are non-canonical isomorphisms A →
A/A0 × A0 and B → B/B0 × B0 in C. Using Fact F.4.1.8, one gets an
isomorphism in Ab:

Ext(A,B)→ Ext(A/A0, B0)⊕Ext(A/A0, B/B0)⊕Ext(A0, B/B0)⊕Ext(A0, B0).

By Corollary F.4.1.13, one has Ext(A/A0, B0) = 0. By Example F.4.1.10,
the natural morphism Ext(A/A0, B/B0)→ Ext1Z(A/A0, B/B0) is an isomorphism.
Fact F.3.2.6 gives a natural isomorphism HomAb(π1(A0), B/B0)→ Ext(A0, B/B0).
Corollary F.4.2.4 identifies Ext(A0, B0) with the cokernel of the restriction
map r : HomC(Ã0, B0) → HomAb(π1(A0), B0). By Proposition F.4.1.4 2,
the group morphism

t : HomC(Ã0, B0)→ HomVec(L(A), L(B)), ϕ 7→ deϕ

is an isomorphism. The proof is finished by setting s = rt−1.

For every C ∈ Ext(A,B), by Fact F.2.0.3, the morphism C → A is a
principal B-bundle. The bijection (F.1) gives rise to a canonical map

π : Ext(A,B)→ H1(A,BA). (F.11)

Fact F.4.3.2 is taken from [Ros58, pp.698-699] and the proof of [Ser88, Ch.
VII, no. 5, Prop. 5].
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Fact F.4.3.2. The map (F.11) is a group morphism and the formation
of π is functorial, in the sense that it commutes with the morphisms f∗ :
Ext(A,B) → Ext(A,B′) defined by f : B → B′ and g∗ : Ext(A,B) →
Ext(A′, B) defined by g : A′ → A. When B is a vector group, the map π is
C-linear.

Example F.4.3.3. Let X be a toroidal group, and let ω : X̃ → X be the
universal covering of kernel F . Then F is a discrete subgroup of the vector
space X̃. By Proposition F.4.2.1,

HomC(X,C)→ HomC(X̃,C)→ HomC(F,C)→ Ext(X,C)→ Ext(X̃,C)

is an exact sequence in Ab. From Definition F.2.0.9, HomC(X,C) = 0. By
Proposition F.10, Ext(X̃,C) = 0. Hence the first exact row of Diagram
(F.12).

According to [AK01, p.48], there is a C-linear isomorphism HomC(X̃,C)→
H0(X,Ω1

X) and every global holomorphic 1-form on X is d-closed. So
taking de Rham cohomology class results in a linear map H0(X,Ω1

X) →
H1(X,C). The inclusion CX → OX induces a linear map H1(X,C) →
H1(X,OX). By universal coefficient theorem (see, e.g., [Hat05, Thm. 3.2]),
the natural morphism HomC(F,C) → H1(X,C) is an isomorphism. Hence
a commutative diagram

0 HomC(X̃,C) HomC(F,C) Ext(X,C) 0

0 H0(X,Ω1
X) H1(X,C) H1(X,OX).

≃ ≃ (F.11)

(F.12)
Let b1(X) := dimCH

1(X,C) be the first Betti number of X, i.e., the Z-rank
of F . From [AK01, p.48], as a C-vector space

Ext(X,C) =
H1(X,C)

H0(X,Ω1
X)

(F.13)

is of dimension b1(X)− dimX.
If X is a toroidal theta group,6 then π : Ext(X,C) → H1(X,OX) is a

C-linear isomorphism by [AK01, Thm. 2.2.6 b)]. Otherwise, X is a toroidal
wild group6and H1(X,OX) is infinite dimensional by [AK01, Prop. 2.2.7].

A seemingly different way to compute the last factor in Proposition
F.4.3.1, i.e., the group of commutative extensions of two connected commutative
complex Lie groups, is given in Example F.4.3.4.

6in the sense of [AK01, Def. 2.2.1]
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Example F.4.3.4. Start by the special case that X is a toroidal group and
B is a connected commutative complex Lie group. Denote the kernel of the
universal cover of B (resp. X) by ι : K → B̃ (resp. F → X̃). By (F.10)
and Proposition F.4.1.4 2, the sequence

0→ HomC(X̃,K)→ HomC(X̃, B̃)→ HomC(X̃, B)→ 0

is exact in Ab. As F is a free Z-module,

0→ HomC(F,K)→ HomC(F, B̃)→ HomC(F,B)→ 0

in Ab is also exact. Applying Proposition F.4.2.1 and the snake lemma to
the commutative diagram

0 HomC(X̃,K) HomC(X̃, B̃) HomC(X̃, B) 0

0 HomC(F,K) HomC(F, B̃) HomC(F,B) 0,

one gets an exact sequence in Ab:

0→ HomC(X,B)
j→ Ext(X,K)

ι∗→ Ext(X, B̃)→ Ext(X,B)→ 0. (F.14)

SinceK is a free Z-module, by Fact F.3.2.6, Ext(X,K) = H1(X,Z)⊗ZK.
By Fact F.4.1.8 and (F.13), one has

Ext(X, B̃) =
H1(X,C)

H0(X,Ω1
X)
⊗C B̃.

The group morphism ι∗ is induced by the Z-bilinear map

H1(X,Z)×K → (
H1(X,C)

H0(X,Ω1
X)

)⊗C B̃, (η, x) 7→ [η]⊗ ι(x).

Thus we can compute Ext(X,B) from (F.14).
For a general connected commutative complex Lie group A, by [AK01,

1.1.5], A = Cl × (C∗)m × X0 for some integers l,m ≥ 0 and a toroidal
group X0. By Fact F.4.1.8, Proposition F.3.2.2 and Proposition F.3.2.3,
Ext(A,B) = Ext(X0, B), reducing to the previous case.

F.5 Commutative extensions of complex tori

F.5.1 Primitive cohomology classes

Every central extension of a compact real Lie group by a vector group is
trivial, shown by Fact F.5.1.1.
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Fact F.5.1.1 (Iwasawa, [Iwa49, Lem. 3.7], [Hoc51a, Footnote 10, p.107]).
Let (F.3) be an exact sequence of real Lie groups. If K is a vector group
and Q is compact, then this extension is a semidirect product. In particular,
if this extension is central, then it is trivial.

Contrary to the real case, Example F.5.1.2 shows a commutative extension
of a complex torus by a vector group can be nontrivial.

Example F.5.1.2 ([MM60, p.145, Exemple], [Har76, Sec. I.3]). Set C =
C∗ × C∗. Then B = {(ez, eiz) : z ∈ C} is a complex Lie subgroup of C
(but not an algebraic subgroup of Gm×Gm) isomorphic to C. The quotient
A = C/B is an elliptic curve. The exact sequence 0→ B → C → A→ 0 is
a nontrivial extension, as C is not biholomorphic to B ×A.

In the remainder of Section F.5, unless otherwise specified, let A be a
complex torus of dimension g and B be a commutative complex Lie group.
Let sA : A×A→ A be the group law of A. The dual of A is A∨ = Pic0(A).

The analogue of Proposition F.5.1.3 for abelian varieties is [Ros58, Prop. 9].

Proposition F.5.1.3. The morphism (F.11) is injective.

Proof. Let C ∈ ker(π). The principal bundle C → A is trivial, so there is
a morphism s : A → C of complex manifolds with ps = IdA. Then there
exists a unique b ∈ B with b · s(eA) = eC , where dot signifies the action of
B on the fiber p−1(eA). Define

s′ : A→ C, s(a) = b · s(a).

Then s′ is a complex manifold morphism with ps′ = IdA. Replacing s by s′,
we may suppose that s(eA) = eC . By [NW13, Thm. 5.1.36], s is a morphism
in C. By Fact F.3.0.4, C = 0 in Ext(A,B). Therefore, π is injective.

We propose to determine the image of (F.11). Let Mfd be the category
of complex manifolds. Define a functor

T : Mfdop → Ab, T (X) = H1(X,BX).

When X is a point, T (X) = 0. Let X1, X2 ∈ Mfd, and let pi : X1×X2 → Xi

(i = 1, 2) be the projection to the i-th factor. There is a morphism p∗1⊕ p∗2 :
T (X1)× T (X2)→ T (X1 ×X2).

Definition F.5.1.4. [Ser88, (29), no.14, Ch. VII] For A ∈ C, an element
x ∈ T (A) = H1(A,BA) is called primitive if s∗A(x) = p∗1(x) + p∗2(x) in
T (A×A). Denote by PT(A) the subgroup of T (A) formed by the primitive
elements.

Fact F.5.1.5 ([Ser88, Lem. 8, p.181]). The functor PT : Cop → Ab is
additive.
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Theorem F.5.1.6 is an analytic analog of [Ser88, Thm. 5, p.181].

Theorem F.5.1.6. Assume that B0 is linear. Then the image of the morphism
(F.11) is the set of primitive elements of H1(A,BA).

Proof. Take C ∈ Ext(A,B) and put x = π(C). By Facts F.4.1.8 and F.4.3.2,

s∗A(x) = s∗Aπ(C) = πs∗A(C) = π(p∗1C+p∗2C) = p∗1π(C)+p∗2π(C) = p∗1x+p∗2x,

so x is primitive.
Conversely, let x ∈ H1(A,BA) be a primitive element and let p : C →

A be the corresponding principal B-bundle. We show that there exists
a structure of commutative complex Lie group on C which makes it an
extension of A by B.

By Corollary F.4.1.13, every morphism of complex manifolds A → B is
constant. Let C ′ → A×A be the pull-back of C → A along sA : A×A→ A.
As x is primitive, C ′ = p∗1C + p∗2C in T (A × A). Choose a surjection
p∗1C×A×A p∗2C → C ′ satisfying (F.2). Since p∗1C = C×A and p∗2C = A×C,
as a complex manifold p∗1C ×A×A p∗2C is isomorphic to C × C. Hence a
morphism g : C × C → C of complex manifolds:

C × C = p∗1C ×A×A p∗2C p∗1C + p∗2C = C ′ C

A×A A.

g

p

sA

(F.15)

By construction, it satisfies

g(b · c, b′ · c′) = (b+ b′) · g(c, c′) (F.16)

for every c, c′ ∈ C and b, b′ ∈ B.
Choose a point e ∈ p−1(eA). Since p(g(e, e)) = sA(eA, eA) = eA, there

exists a unique b ∈ B with b ·g(e, e) = e. Replacing e by b ·e, we can suppose
that

g(e, e) = e. (F.17)

We verify that (C, e, g) is a group.

Identity According to (F.15), there is a morphism h : C → B of complex
manifolds with g(c, e) = h(c) · c for all c ∈ C. By (F.17), h(e) = eB.
Furthermore, (F.16) shows that h(b ·c) = h(c) for all b ∈ B. Therefore,

h factors as C
p→ A

h̄→ B. The morphism h̄ of complex manifolds is
constant, so g(c, e) = c for all c ∈ C. The formula g(e, c) = c is proved
similarly.
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Associativity According to (F.15), there is a complex manifold morphism u : C ×
C × C → B with

g(c, g(c′, c′′)) = u(c, c′, c′′) · g(g(c, c′), c′′)

for all c, c′, c′′ ∈ C. Then u(e, e, e) = eB. Equation (F.16) shows
that u factors through a morphism ū : A × A × A → B of complex
manifolds. Then ū is of constant value eB. Therefore, g(c, g(c′, c′′)) =
g(g(c, c′), c′′) for all c, c′, c′′ ∈ C.

Inverse Denote by iA : A → A (resp. iB : B → B) the inverse map of A
(resp. B). Let C− → A be the principal B-bundle corresponding to
−x ∈ H1(A,BA). There is a morphism f : C → C− of principal B-
bundles over A, such that for every b ∈ B, c ∈ C, f(b · c) = (−b) · c.
Since 0A = iA + IdA, by Fact F.5.1.5, 0 = 0∗Ax = i∗Ax + x, hence
i∗Ax = −x. In other words, the pullback of p : C → A along iA is
C− → A.

C i∗AC C

A A

f

i

p

iA

The induced morphism i : C → C of complex manifolds is such that
for every c ∈ C, b ∈ B,

i(b · c) = (−b) · i(c). (F.18)

Since i(e) ∈ p−1(eA), there is b ∈ B with b · i(e) = e. Define i′ : C → C
by i′(x) = b · i(x) and replace i by i′. Then we may further assume
that i(e) = e. Because

p(g(c, i(c))) = sA(p(c), pi(c)) = sA(p(c), iA(p(c))) = eA,

there exists a morphism v : C → B of complex manifolds such that
g(c, i(c)) = v(c) · e and v(e) = eB. By (F.16) and (F.18), v factors
through v̄ : A→ B, which is of constant value eB. Therefore, g(c, i(c)) =
e for all c ∈ C.

In conclusion, (C, e, g, i) is a complex Lie group and (F.15) shows that p :
C → A is a morphism. Define an injective map ι : B → C by b 7→ b · e. By
(F.16), then ι is a morphism. Since ι(B) = p−1(e), the sequence

0→ B
ι→ C

p→ A→ 0

is exact. By Proposition F.6.0.2 2 below, C is commutative and hence
C ∈ Ext(A,B). (The commutativity of C can also be proved using an
argument of similar type.) Therefore, x = π(C) is in the image of π.
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F.5.2 The case B = C∗

We review some basics about (holomorphic) line bundles on complex tori.

Definition F.5.2.1. [Wei48, Ch.VIII, n.58] Let L → A be a line bundle
on a complex torus. If for every a ∈ A, the pullback line bundle T ∗

aL is
isomorphic to L, then we write L ≡ OA. Here Ta : A → A is defined by
Ta(x) = x+ a.

By [BL04, p.36], L induces a morphism

ϕL : A→ A∨, a 7→ T ∗
aL⊗ L−1.

Then L ≡ OA is equivalent to ϕL = 0. Then [BL04, Prop. 2.5.3] becomes
Fact F.5.2.2.

Fact F.5.2.2. Let L→ A be a line bundle on a complex torus. The following
conditions are equivalent:

1. L is analytically equivalent to OA;

2. L ∈ Pic0(A);

3. L ≡ OA.

Proposition F.5.2.3. Let L→ A be a line bundle on complex torus. Then
L ≡ OA if and only if s∗AL = p∗1L⊗ p∗2L.

Proof. If s∗AL = p∗1L ⊗ p∗2L, then for every a ∈ A, the line bundle T ∗
aL =

(s∗AL)|A×a = (p∗1L⊗ p∗2L)|A×a = L, i.e., L ≡ OA.
Conversely, if L ≡ OA, then for every a ∈ A, (s∗AL)|A×a = T ∗

aL =
L = (p∗1L)|A×a. Therefore, s∗L ⊗ p∗1L−1 → A × A is a line bundle, whose
restriction to A × a is trivial for all a ∈ A. By seesaw theorem [BL04,
A.8], there is a line bundle M → A such that s∗L ⊗ p∗1L−1 = p∗2M . Then
s∗L = p∗1L⊗p∗2M . Hence, L = s∗L|0×A = (p∗1L⊗p∗2M)|0×A = M . Therefore,
s∗L = p∗1L⊗ p∗2L.

Theorem F.5.2.4 is mentioned without proof in [KKN08, Sec. 1.2]. The
analogue for abelian varieties is in [Wei49, no. 2].

Theorem F.5.2.4 (Weil). If A is a complex torus, then π : Ext(A,C∗) →
Pic0(A) is an isomorphism.

Proof. For B = C∗, the sheaf BA = O∗
A and H1(A,BA) = Pic(A). The

class of a line bundle L → A is primitive means the line bundle s∗AL is
isomorphic to p∗1L⊗p∗2L on A×A. By Proposition F.5.2.3 and Fact F.5.2.2,
it is equivalent to [L] ∈ Pic0(A). Then Proposition F.5.1.3 and Theorem
F.5.1.6 complete the proof.
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With the identifications provided by Theorem F.5.2.4 and Proposition
F.4.1.4 3, [AK01, Remark 1.1.16] can be rephrased in a coordinate-free way
as follows. It is a criterion telling whether a semi-torus is a toroidal group.

Fact F.5.2.5. Let r ≥ 1 be an integer, and let 0→ (C∗)r → X → A→ 0 be
an extension in C. Denote by (L1, . . . , Lr) ∈ (A∨)r the point corresponding to
the equivalent class [X] ∈ Ext(A, (C∗)r). Then the following are equivalent:

� X is a toroidal group;

� for all σ ∈ Zr \ {0},
∑r

i=1 σiLi ̸= 0 in A∨;

� for every nontrivial morphism f : (C∗)r → C∗, the pushout extension
f∗X of A by C∗ is nontrivial.

F.5.3 The case B = C

When B = C, the sheaf BA = OA. Fact F.5.3.1 can be found in, e.g.,
[Men20, (3.1)].

Fact F.5.3.1 (Künneth formula). Let X,Y be connected complex manifolds.
Assume that Y is compact. Then there is a canonical decomposition H1(X×
Y,OX×Y ) = H1(X,OX)⊕H1(Y,OY ).

The analogue of Theorem F.5.3.2 for abelian varieties is [Ros58, Theorem
1].

Theorem F.5.3.2 (Rosenlicht, Serre). If A is a complex torus, then the
canonical morphism π : Ext(A,C)→ H1(A,OA) is a C-linear isomorphism.
In particular, dimC Ext(A,C) = dimA.

Proof. Let m1 (resp. m2) be the injection A→ A×A defined by a 7→ (a, 0)
(resp. a 7→ (0, a)). Let pi : A×A→ A (u = 1, 2) be the two projections. By
Fact F.5.3.1, p∗1 and p∗2 identify T (A × A) as the direct sum T (A) ⊕ T (A).
The projection to ith factor is m∗

i . Because sA ◦mi = IdA, one has s∗A(x) =
p∗1x+ p∗2x for every x ∈ T (A), i.e., x is primitive. Then Proposition F.5.1.3
and Theorem F.5.1.6 conclude the proof.

Remark F.5.3.3. Another way to prove Theorem F.5.3.2 is to use (F.13). In
this case, the diagram (F.12) can be completed into a commutative diagram
with exact rows

0 HomC(Ã,C) Hom(π1(A),C) Ext(A,C) 0

0 H0(A,Ω1
A) H1(A,C) H1(A,OA) 0.

π

(F.19)
The bottom row comes from the Hodge structure on H1(A,C) ([Huy05,
Lem. 3.3.1]).
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Corollary F.5.3.4. Let A be a complex abelian variety, and let n(≥ 0) be
an integer. Then the natural morphism ExtAlg(A,Gn

a) → Ext(Aan,Cn) is
an isomorphism.

Proof. It is a combination of [Ser88, Thm. 7, p.185], Theorem F.5.3.2 and
[Ser56, Thm. 1].

F.5.4 Universal vectorial extension

Definition F.5.4.1. [Ros58, p.705] Let H be a vector group. An extension

0→ H → G→ A→ 0 (F.20)

in C is called decomposable if there exists an extension

0→ H1 → G1 → A→ 0

in C of A by a vector subgroup H1 of H, and H ′ is a vector subgroup of
H of positive dimension with an isomorphism f : G1 ⊕ H ′ → G such that

the maps H1 → H → G and H1 → G1

f |G1→ G coincide. Otherwise, the
extension G is called indecomposable.

Proposition F.5.4.2. The extension (F.20) is decomposable if and only if

there is a strict vector subgroup H1 of H and an extension 0→ H1 → G1
p1→

A→ 0 with ι∗G1 = G, where ι : H1 → H is the inclusion.

Proof. If G is decomposable, by definition, we can write G = G1⊕H ′, where
H ′ ⊂ H is a positive-dimensional vector subgroup and 0 → H1 → G1 →
A → 0 is an extension in C of A by a vector subgroup H1 ⊂ H making a
commutative diagram

0 H1 G1 A 0

0 H G A 0

ι Id

By the universal property (F.7), G = ι∗G1. Moreover,

dimH1 = dimG1−dimA = dimG−dimH ′−dimA = dimH−dimH ′ < dimH.

Conversely, assume that ι∗G1 = G. Choose a vector subspace H ′ of H
with H = H ′ ⊕ H1, then dimH ′ = dimH − dimH1 > 0. The composed
morphism G1 ⊕H ′ pr1→ G1

p1→ A is surjective of kernel H1 ⊕H ′ = H, hence
a commutative diagram

0 H1 G1 A 0

0 H G1 ⊕H ′ A 0

ι Id
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with exact rows. By the universal property (F.7), G = ι∗G1 = G1⊕H ′. This
identification makes the maps H1 → H → G and H1 → G1 → G coincide.
Therefore, G is decomposable.

Proposition F.5.4.3. Let 0 → Cn → G → A → 0 be an extension in C.
Let qi : Cn → C be the i-th coordinate function. Then G is indecomposable
if and only if the family {qi,∗G}1≤i≤n of vectors in Ext(A,C) is linearly
independent.

Proof. Assume that {qi,∗G} is linearly dependent. By changing of coordinate,
one may assume that qn,∗G = 0 in Ext(A,C). By Fact F.3.0.4, there is a
morphism r : qn,∗G→ C with inr = Id on qn,∗G.

0 Cn G A 0

0 C qn,∗G A 0

i

qn α Id

in

r

Then inrαi = αi = inqn. Since in is injective, one has

rαi = qn. (F.21)

Let q : Cn → Cn−1 be the projection to the first (n−1) coordinates. Let
β : G→ q∗G be the canonical morphism. Define a morphism

ϵ : G→ q∗G⊕ C, g 7→ (β(g), rα(g)).

Then the right square of the following diagram is commutative.

0 Cn G A 0

0 Cn−1 ⊕ C q∗G⊕ C A 0

i

q⊕qn ϵ Id

By (F.21), the left square of the above diagram is commutative. Therefore,
ϵ is an equivalence of extensions and G = q∗G⊕ C is decomposable.

Conversely, assume that G is decomposable. By Proposition F.5.4.2,
there is a vector subgroup ι : H1 → Cn with dimH1 < n and an extension
0 → H1 → G1 → A → 0 with ι∗G1 = G. There is a linear combination
f =

∑n
i=1 aiqi : Cn → C, where a1, . . . , an ∈ C are not all zero, such that

fι = 0. Then
∑m

i=1 aiqi,∗G = f∗G = (fι)∗G1 = 0. Thus, the family {qi,∗G}i
is linearly dependent.

Corollary F.5.4.4 follows from Proposition F.5.4.3 and Theorem F.5.3.2.

Corollary F.5.4.4. Let 0 → V → G → A → 0 be an extension in C by a
vector group V . If dimC V > g, then G is decomposable.

Proposition F.5.4.5 is an analytic analogue of [Ros58, Prop. 11].
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Proposition F.5.4.5.

1. There is a C-vector group H with dimCH = g and an indecomposable
extension

0→ H → G→ A→ 0 (F.22)

such that for every V ∈ Vec, the map

ϕV : HomVec(H,V )→ Ext(A, V ), l 7→ l∗G (F.23)

is a linear isomorphism. In other words, H together with the extension
(F.22) represents the functor Ext(A, •) : Vec→ Vec.

2. A G′ ∈ Ext(A, V ) is indecomposable if and only if the corresponding
linear map ϕ−1

V (G′) : H → V is surjective.

Proof.

1. By Theorem F.5.3.2, dimC Ext(A,C) = g. Take a C-basis {G1, . . . , Gg}
of Ext(A,C). By Fact F.4.1.8, Ext(A,Cg) = ⊕gi=1Ext(A,C), so there is
an elementG ∈ Ext(A,Cg) corresponding to (G1, . . . , Gg) ∈ ⊕gi=1Ext(A,C).
Hence an extension 0 → H → G → A → 0, where H = Cg. By
Proposition F.5.4.3, G is indecomposable.

When l ∈ H∨ is taking the i-th coordinate of H = Cg, l∗G =
Gi. Therefore, the image of the linear map ϕC contains a basis of
Ext(A,C). Thus, ϕC is surjective. Since dimCH

∨ = dimC Ext(A,C),
ϕC is a linear isomorphism. Since every V ∈ Vec is the direct sum of
finitely many copies of C and the formation of ϕV is functorial in V ,
ϕV is also a linear isomorphism.

2. By Proposition F.5.4.2, G′ is decomposable iff there is a proper linear
subspace ι : V1 → V with G′ in the image of the map ι∗ : Ext(A, V1)→
Ext(A, V ) iff there is a proper linear subspace ι : V1 → V with ϕ−1

V (G′)
in the image of the map ι∗ : HomVec(H,V1) → HomVec(H,V ) iff
ϕ−1
V (G′) : H → V factors through a proper linear subspace ι : V1 → V

iff ϕ−1
V (G′) : H → V is not surjective.

The extension (F.22) is called the universal vectorial extension of A. (As
a representing object, such an extension is unique up to equivalence.) By
(F.23) and Theorem F.5.3.2, H = H0(A∨,Ω1

A∨).

Example F.5.1.2 (continued). Since dim Ext(A,C) = 1, this nontrivial
extension is equivalent to the universal vectorial extension.

We proceed to give an explicit construction of the universal vectorial
extension.
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Proposition F.5.4.6. Let B♮1 be the group of isomorphic classes of rank 1
local systems on A. Let B♮ be the group of isomorphic classes of pairs (L,∇),
where L → A is a holomorphic line bundle and ∇ is a flat holomorphic
connection on L. Then there exist natural identifications of groups

B♮ = B♮1 = HomAb(π1(A),C∗) = H1(A,C∗) =
H1(A,C)

H1(A,Z)
.

They are isomorphic to (C∗)2g.

Proof. By the Riemann-Hilbert correspondence [Del70, Théorème 2.17, p.12],
the map B♮ → B♮1 defined by (L,∇) 7→ ker(∇) is a group isomorphism. By
[Del70, Corollaire 1.4, p.4], there is an isomorphismB♮1 → HomAb(π1(A),C∗).
By the universal coefficient theorem [Hat05, Thm. 3.2], there is a natural
isomorphism H1(A,C∗)→ Hom(π1(A),C∗). The exact sequences 0→ Z→
C exp(2πi•)→ C∗ → 0 of constant sheaves on A gives rise to an exact sequence

H0(A,C)→ H0(A,C∗)→ H1(A,Z)→ H1(A,C)→ H1(A,C∗)→ H2(A,Z)→ H2(A,C).

Since the first map is surjective and the last map is injective, it breaks into
a short exact sequence

0→ H1(A,Z)→ H1(A,C)→ H1(A,C∗)→ 0

and hence an isomorphism H1(A,C)/H1(A,Z)→ H1(A,C∗) functorial in A.
Moreover, there is a non-canonical isomorphism H1(A,C∗)→ (C∗)2g.

By [Dem12, Ch. V, §9], every (L,∇) ∈ B♮ has [L] ∈ Pic0(A) = A∨. The
bottom row of (F.19) induces an exact sequence in C:

0→ H0(A,Ω1
A)→ H1(A,C)

H1(A,Z)
→ H1(A,OA)

H1(A,Z)
→ 0. (F.24)

Using the identifications B♮ ∼= H1(A,C)
H1(A,Z) from Proposition F.5.4.6 and A∨ =

Pic0(A) = H1(A,OA)/H1(A,Z), (F.24) is an extension of A∨ by H0(A,Ω1
A)

and gives a morphism B♮ → Pic0(A), which sends (L,∇) to L. Hence a
commutative diagram

0 HomC(Ã,C∗) HomAb(π1(A),C∗) Ext(A,C∗) 0

0 H0(A,Ω1
A) B♮ Pic0(A) 0,

π

u

where the first exact row is (F.9) and the second comes from (F.24). The
left vertical isomorphism uses Proposition F.4.1.4 2 and the isomorphism
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L(A)∨ → H0(A,Ω1
A) given by [BL04, Thm. 1.4.1 b)]. The middle vertical

isomorphism is contained in Proposition F.5.4.6.
When A is an abelian variety, it is proved in [Mes73, p.260] that (F.24)

is the universal vectorial extension of A∨. The proof is based on [Ros58,
Thm. 1]. In a similar manner, Proposition F.5.4.7 follows from Theorem
F.5.3.2.

Proposition F.5.4.7. The extension (F.24) is the universal vectorial extension
of A∨ = Pic0(A). In particular, the extension group is isomorphic to (C∗)2g

(as a complex Lie group).

Proof. Let U = H0(A,Ω1
A). Pushing out the extension (F.24) defines a

natural transformation ψ : HomVec(U, •)→ Ext(A∨, •) between two functors
on Vec.

We claim that ψC is an isomorphism. Choose u ∈ ker(ψC) ⊂ HomVec(U,C).
As the push-out along u is trivial, by Fact F.3.0.4, there is a morphism
r : E → C with ir = IdE . Let u′ : H1(A,C) → C be the morphism in C
induced by r. Then u′ = deu

′ is C-linear. Now that u′(H1(A,Z)) = 0 and
H1(A,Z) contains a C-basis of H1(A,C), one has u′ = 0. As the diagram
commutes, u = 0.

H1(A,C)

0 U H1(A,C)
H1(A,Z) A∨ 0

0 C E A∨ 0

u′

u

i

r

Therefore, ψC is injective. By Theorem F.5.3.2, dimC Ext(A∨,C) = dimC HomVec(U,C).
Therefore, ψC is a linear isomorphism. Similar to the proof of Proposition
F.5.4.5 1, ψ is a natural isomorphism of the two functors.

Another construction of the universal vectorial extension is in [Nak94,
Prop. 2.4]7.

Remark F.5.4.8. The real Lie group extension underlying (F.24) is trivial by
Fact F.5.1.1. Indeed, consider the real analytic group morphism A∨ → B♮

defined by L 7→ (L,∇L), where ∇L is the unique flat Chern connection on L
given by Lemma D.2.0.4 1. This map is a real Lie group section to (F.24),
but not holomorphic.

Remark F.5.4.9. Let A be a complex abelian variety of dimension g. By
Corollary F.5.3.4, the extension (F.22) is equivalent to an algebraic one.
Thus, the analytification of the algebraic universal vectorial extension 0 →

7stated for complex abelian varieties but the proof extends to complex tori.
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Gg
a → E → A → 0 is exactly the analytic universal vectorial extension .

From [Bri09, Prop. 2.3 (i)] and the footnote in [MRM74, p.34], the algebraic
variety E is anti-affine, i.e., every morphism E → A1

C of algebraic varieties
is constant. On the other hand, by Proposition F.5.4.7, Ean is isomorphic
to (C∗)2g as a complex Lie group, so Ean is not a toroidal group. Although
E is not an affine variety, Ean is a Stein manifold. See also Serre’s example
[Har70, Exampe 3.2, p.232].

Remark F.5.4.10. Universal vectorial extensions can be defined for not only
complex tori but also toroidal groups. Consider a toroidal group X of
dimension n. Similar to Proposition F.5.4.5, the functor Ext(X, ·) : Vec →
Vec is represented by Ext(X,C)∨, which is the kernel of the natural linear
map H1(X,C)→ H0(X,Ω1

X)∨ by (F.13).
An extrinsic description is possible. Choose a presentation

0→ (C∗)n−q → X → T → 0 (F.25)

according to [AK01, 1.1.14], where T is a complex torus of dimension q. For
every V ∈ Vec, by Proposition F.4.2.1, the induced sequence

HomC((C∗)n−q, V )→ Ext(T, V )→ Ext(X,V )→ Ext((C∗)n−q, V )

is exact in Vec. By Proposition F.4.1.4 1, HomC((C∗)n−q, V ) = 0. By
Proposition F.3.2.3, Ext((C∗)n−q, V ) = 0. Thus, the morphism Ext(T, V )→
Ext(X,V ) is a C-linear isomorphism. In other words, the natural transformation
Ext(T, ·) → Ext(X, ·) between the two functors on Vec is an isomorphism.
In this way, the case of toroidal groups is reduced to the case of complex
tori.

F.5.5 Application to the functor Ext(A, •)

Analogue of Proposition F.5.5.1 for abelian varieties is [Ros58, Cor., p.711].

Proposition F.5.5.1. If B is a complex Lie subgroup (not necessarily
connected) of A, then there is a natural exact sequence in Ab:

0→ Ext(A/B,C)→ Ext(A,C)→ Ext(B,C)→ 0.

Proof. By Corollary F.4.1.13, there is an isomorphism B → B0 × B/B0

in C and Ext(B/B0,C) = 0. By Fact F.4.1.8, Ext(B,C) = Ext(B0,C).
Since B is compact and B0 is open in B, the quotient B/B0 is finite, thus
HomAb(B/B0,C) = 0. By the compactness of B0, HomC(B0,C) = 0. Then
Hom(B,C) = 0. Now that A,B0, A/B are complex tori, Theorem F.5.3.2
implies dim Ext(A,C) = dim Ext(A/B,C) + dim Ext(B,C). This together
with Proposition F.4.2.1 proves the stated exactness.

The proof of Theorem F.5.5.2 is shorter than that of its algebraic analogue
[Ser88, Thm. 12, p.195].
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Theorem F.5.5.2. If 0 → B′ → B
ϕ→ B′′ → 0 is an exact sequence in C,

then the sequence8 in Ab

Ext(A,B′)→ Ext(A,B)
ϕ∗→ Ext(A,B′′)→ 0 (F.26)

is exact. If B′′
0 is linear, then the first map in (F.26) is injective.

Proof. By Proposition F.4.2.3, it suffices to prove that ϕ∗ : Ext(A,B) →
Ext(A,B′′) is surjective. From (F.10) and Proposition F.4.2.1, one obtains
a commutative square

Hom(π1(A), B) Hom(π1(A), B′′)

Ext(A,B) Ext(A,B′′),
ϕ∗

where the vertical maps are surjective. Since π1(A) is a free Z-module, the
top row is surjective, then so is the bottom.

Now assume that B′′
0 is linear, then HomC(A,B′′) = 0. By Proposition

F.4.2.3, the first map is injective.

Remark F.5.5.3. The linearity of B′′
0 is necessary to guarantee the injectivity

in Theorem F.5.5.2. For instance, let 0 → Cg → (C∗)2g → A → 0 be the
universal vectorial extension of A and assume g ≥ 1. By Proposition F.4.2.3,
the natural sequence 0 → HomC(A,A) → Ext(A,Cg) → Ext(A, (C∗)2g) is
exact. Thus, IdA is a nonzero element in the kernel of the first map of (F.26).

Example F.5.5.4. Applying Theorem F.5.5.2 to the exact sequence 0 →
Z → C exp(2πi•)→ C∗ → 1, and using Fact F.3.2.6, Theorems F.5.2.4 and
F.5.3.2, one gets an exact sequence

0→ Hom(π1(A),Z)→ H1(A,OA)→ Pic0(A)→ 0. (F.27)

In particular, Ext(A, ·) tuns the exponential map to the universal cover of the
complex torus A∨. Identifying Hom(π1(A),Z) with the sheaf cohomology
H1(A,Z), th sequence (F.27) is also induced by the exponential sequence of
sheaves on A:

0→ ZA → OA
exp(2πi)→ O∗

A → 1.

Theorem F.5.5.5 is an analytic version of [Ser88, Thm. 13, p.196]

Theorem F.5.5.5. If 0→ L
i→ C → A→ 0 is an exact sequence in C with

L connected and G ∈ Abc. Then there is a natural exact sequence

0→ Ext(A,G)→ Ext(C,G)
i∗→ Ext(L,G)→ 0.

8induced by Proposition F.4.2.3
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Proof. As L is connected and G is discrete, HomC(L,G) = 0. By Proposition
F.4.2.1, it suffices to show that i∗ : Ext(C,G) → Ext(L,G) is surjective.
For every L′ ∈ Ext(L,G), by Theorem F.5.5.2, the map Ext(A,L′) →
Ext(A,L) is surjective. Thus, there exists C ′ ∈ Ext(A,L′) having image
C ∈ Ext(A,L).

0 0

0 G ker(α) 0

0 L′ C ′ A 0

0 L C A 0

0 0 0

β

α

i

By the snake lemma, α is surjective and β is an isomorphism. Therefore,
C ′ ∈ Ext(C,G) and i∗C ′ = L′ in Ext(L,G).

In Example F.5.5.6, we give another proof of [BL99, Prop. 5.7, p.21],
which computes the extension group of two complex tori.

Example F.5.5.6. Let Xi = Cgi/ΠiZ2gi (i = 1, 2) be two complex tori,
where the chosen period matrix is of the form Πi = (τi, Igi) with τi ∈Mgi(C)
and det(Im(τi)) ̸= 0. Define ξ : M(2g1 × 2g2,Z) → M(g1 × g2,C) by
ξ(P ) = Π1P

(
Ig2
τ2

)
.

Define a map ρ : M(g1 × g2,C) → Ext(X2, X̃1) as follows. For every
α ∈M(g1 × g2,C), let α′ = (α, 0) ∈M(g1 × 2g2,C). Consider the sequence

0→ Cg1 i→ Cg1+g2
{(α′v,Π2v) : v ∈ Z2g2}

p→ X2 → 0,

where i is induced by Cg1 → Cg1+g2 defined by x 7→ (x, 0) and p is induced
by the second projection Cg1+g2 → Cg2 . It is an exact sequence. Denote
its class by ρ(M) ∈ Ext(X2, X̃1). This sequence fits into a commutative
diagram

0 X̃1
Cg1+g2

{(α′v,Π2v):v∈Z2g2} X2 0

0 X1 X X2 0,
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where the second row is ψΠ1,Π2(α′) ∈ Ext(X2, X1) defined in [BL99, p.20],
and

X =
Cg1+g2

{(Π1u+ α′v,Π2v) : u ∈ Z2g1 , v ∈ Z2g2}
.

Then ρ is a linear isomorphism by Theorem F.5.3.2.
Define a map ϕ : M(2g1 × 2g2,Z) → Ext(X2, π1(X1)) as follows. Given

P =

(
P1 P2

P3 P4

)
∈M(2g1×2g2,Z), with each Pi ∈M(g1×g2,Z), we set A =

τ1P2 + P4 ∈M(g1 × g2,C) and α = ξ(P ). The linear map Cg1+g2 (I,−A)→ Cg1

sends (u, 0) to u for all u ∈ Cg1 and sends (α′v,Π2v) to Π1

(
P1 −P2

P3 −P4

)
v ∈

Π1Z2g1 for all v ∈ Z2g2 . Thus it descents to the vertical morphism in the
middle of the following commutative diagram

0 Cg1 Cg1+g2
{(α′v,Π2v):v∈Z2g2} X2 0

0 X1 X1 0 0,

(Ig1 ,−A)
(F.28)

where the first row is of class ρ(α) = ρ(ξ(P )). The snake lemma gives an
extension of X2 by π1(X1), whose class is denoted by ϕ(P ).

The image of ϕ(P ) under the pushout map Ext(X2, π1(X1))→ Ext(X2, X̃1)
is exactly the first row of (F.28), i.e., ρ(ξ(P )). Then ϕ is a group isomorphism
by Fact F.3.2.6. And there is a commutative diagram

M(g1 × 2g2,C)

M(2g1 × 2g2,Z) M(g1 × g2,C) M(g1×g2,C)
Im(ξ)

Ext(X2, π1(X1)) Ext(X2, X̃1) Ext(X2, X1) 0

ψΠ1,Π2

ξ

ϕ ρ

α 7→α′

where the second row is from (F.14) and the induced dotted isomorphism is
exactly the content of [BL99, Proposition 5.7, p.21].

To conclude Section F.5.5, we show that the groups of commutative
extensions of complex tori by linear groups are naturally complex Lie groups.
Let T (resp. S) be the full subcategory of C comprised of complex tori (resp.
objects whose identity component is linear). Then Ext : T op × S → Ab is
an additive functor by Fact F.4.1.8. Theorem F.5.5.7, an analytic analogue
of [Wu86, Theorem 5], lifts this functor.
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Theorem F.5.5.7 (Wu). There is a natural way to lift Ext : T op×S → Ab
to an additive functor Ext : T op × S → C.

Proof. First we define a complex Lie group structure on Ext(A,H), where
A ∈ T and H ∈ S. Let g = dimA.

If there is an isomorphism f : H → (C∗)n in S, then by Theorem F.5.2.4,
f gives rise to an isomorphism Ext(A,H) → (A∨)n making Ext(A,H) a
complex torus. The complex structure on Ext(A,H) is independent of the
choice of the isomorphism f .

If H is connected, by Proposition F.2.0.7, there is an isomorphism u :
H → V × Hm, where V ∈ Vec and Hm is a power of C∗. Then u∗ :
Ext(A,H) → Ext(A, V ) × Ext(A,Hm) is an isomorphism. By Theorem
F.5.3.2, the vector space Ext(A, V ) is finite dimensional. Together with
last paragraph, Ext(A,H) inherits a complex Lie group structure, which is
independent of the choice of u.

For a general object H ∈ S, the natural exact sequence 0 → H0 →
H → H/H0 → 0 in C is trivial by Corollary F.4.1.13. Thus, the resulting
exact sequence 0 → Ext(A,H0) → Ext(A,H) → Ext(A,H/H0) → 0 in Ab
is also trivial. Now that Ext(A,H/H0) = HomAb(π1(A), H/H0) by Fact
F.3.2.6, one regards it as a discrete group. From the complex structure on
Ext(A,H0), the group Ext(A,H) has a unique complex Lie group structure,
such that the identity component is Ext(A,H0).

It remains to show:

1. If A ∈ T is fixed, then Ext(A, ·) sends morphisms in S to morphisms
in C.

2. If H ∈ S is fixed, then Ext(·, H) sends morphisms in T to morphisms
in C.

To show 1, let h : H → H ′ be a morphism in S. By decomposing H,H ′

according to Corollary F.4.1.13 and Proposition F.2.0.7, one may assume
that each of H and H ′ is either discrete, C or C∗.

� If H is discrete, then so is Ext(A,H), hence Ext(A, h) is a morphism
in C.

� If H = H ′ = C, by Proposition F.4.1.4 2, h is a linear map. By
Corollary F.4.1.9, so is Ext(A, h).

� If H = C, H ′ = C∗. By Proposition F.4.1.4 2, h is the composition of
a linear map C → C followed by the exponential map exp(2πi·) :
C → C∗. By Example F.5.5.4, Ext(A, h) is the composition of a
linear map H1(A,OA) → H1(A,OA) followed by the universal cover
H1(A,OA)→ A∨. Thus, Ext(A, h) is a morphism in C.

� IfH ′ is discrete andH is connected, then h is trivial and so is Ext(A, h).
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� If H = C∗ and H ′ = C, then h is trivial by Proposition F.4.1.4 1 and
so is Ext(A, h).

� If H = H ′ = C∗, then h is a power map by Proposition F.4.1.4 3.
Then Ext(A, h) is a power map of A∨, hence a morphism in C.

This proves 1.
To show 2, let g : A → A′ be a morphism in T . By decomposing H

again, we may divide the proof into three cases.

� H = C∗. By pulling back line bundles, g induces the dual morphism
g∗ : Pic0(A′)→ Pic0(A). It is identified with Ext(g,H) by Fact F.4.3.2
and Theorem F.5.2.4.

� H is discrete. Then so is Ext(A′, H) and thus Ext(g,H) is a morphism
in C.

� H = C. By pulling back, g induces a C-linear map H1(A′, OA′) →
H1(A,OA). It is identified with Ext(g,H) by Fact F.4.3.2 and Theorem
F.5.3.2.

This proves 2.

Remark F.5.5.8. In Theorem F.5.5.7, we cannot generalize from complex
tori to toroidal groups, nor remove the linear restriction.

Let X be a toroidal group. Then HomC(X,C∗) = 0, hence (F.14)
specializes to

0→ Ext(X,Z)
i→ Ext(X,C)→ Ext(X,C∗)→ 0. (F.29)

Note that Ext(X,Z) = H1(X,Z) (Fact F.3.2.6), and by (F.13) the injection i
is the composition of the inclusionH1(X,Z)→ H1(X,C) with the projection

H1(X,C)→ H1(X,C)
H0(X,Ω1

X)
.

When X is compact, the sequence (F.29) lifts to an exact sequence in
C by Theorem F.5.5.7. As opposed to the compact case, when X is not
compact and consider the presentation (F.25), one has 1 ≤ q < n, so

rankZExt(X,Z) = n+ q > 2q = dimR Ext(X,C).

Therefore, the image of i is not closed in the vector space Ext(X,C) (a
phenomenon seen in Example F.4.1.2). In particular, the sequence (F.29)
has no lift to an exact sequence in C.

Let A,B be two complex tori, g = dimA, g′ = dimB and reconsider
(F.14):

0→ HomC(A,B)
j→ Ext(A, π1(B))→ Ext(A, B̃)→ Ext(A,B)→ 0.
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Here, Ext(A, B̃) is a C-vector space of dimension gg′ by Theorem F.5.3.2.
Identifying Ext(A, π1(B)) with HomAb(π1(A), π1(B)) via Fact F.3.2.6, j is

the map ρr in [BL04, p.10]. The quotient Ext(A,π1(B))
HomC(A,B) is a free abelian group

of rank 4gg′−rankZ HomC(A,B). As long as rankZ HomC(A,B) < 2gg′ (say,
when A = B is an elliptic curve without complex multiplication, then Z =
HomC(A,B)), the image of the induced injection Ext(A,π1(B))

HomC(A,B) → Ext(A, B̃)

is not closed. In particular, Ext(A,B) has no structure of complex Lie group
making this sequence exact in C.

F.6 Extensions of complex tori are often commutative

In Section F.6, we prove that under suitable hypotheses, an extension of a
complex torus is commutative.

Proposition F.6.0.1. If 1 → B → C
p→ A → 1 is a central extension of

complex Lie groups, where A is a toroidal group, then C is commutative. Or
equivalently, for every B ∈ C, the natural injection Ext(A,B)→ Ext(A,B, 1)
is an isomorphism.

Proof. Consider the holomorphic map A × A → B given by (F.4). By
[NW13, Thm. 5.1.36], it is a group morphism, so constant. Thus, C is
commutative.

An algebraic analogue of Proposition F.6.0.2 is [Wu86, Cor. 2, p.370].

Proposition F.6.0.2. Let 1 → K → E → A → 1 be an extension of
complex Lie groups, where A is a complex torus.

1. If Z(K)0 is Stein, then Z(K) = Z(E) ∩K.

2. If K is commutative and K0 is Stein, then E is commutative.

Proof.

1. Since Z(E) ∩ K ⊂ Z(K), it suffices to prove that Z(K) ⊂ Z(E).
Consider the group morphism (F.5): θ : A → Aut(Z(K)). For every
x ∈ Z(K), the map

ϕ : A→ Z(K), a 7→ θa(x)x−1

is continuous. Moreover, ϕ(0) = eK . By the connectedness of A,
ϕ(A) ⊂ Z(K)0. As Z(K)0 is Stein and A is compact, ϕ(A) is the
singleton {eK}. Therefore, θa(x) = x for every x ∈ Z(K), which
proves Z(K) ⊂ Z(E).

2. By 1, K ⊂ Z(E). By Proposition F.6.0.1, E is commutative.
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In Proposition F.6.0.3, when B is isomorphic to Cn for some integer
n ≥ 0 or to C∗, we recover [BZ23a, Lem. 2.10].

Proposition F.6.0.3. Let 1 → B → C
p→ A → 1 be an exact sequence of

complex Lie groups, where A is a complex torus and B is commutative. If
the group B/B0 is torsion (i.e., every element of B/B0 has finite order),
then C is commutative.

Proof. Let Z be the center of C. By Proposition F.6.0.1, it suffices to check
B ⊂ Z.

The outer action induces a morphism A→ Aut(B0)(≤ GL(L(B))). It is
trivial by the compactness of A, i.e., B0 ≤ Z. By Corollary F.4.1.13, one
may assume B = B0 ×D, where D is a discrete subgroup of B isomorphic
to B/B0 and D ∩ B0 = {eB}. Let q : B → D and r : B → B0 be the
corresponding projections.

It remains to show that 0 ×D(≤ B) is contained in Z. Fix d ∈ D and
put b = (0, d) ∈ B. The map

ν : C → C, c 7→ cbc−1

is holomorphic and ν(e) = b. For every b′ ∈ B, one has

ν(cb′) = cb′bb′−1c−1 = cbc−1 = ν(c).

The right multiplication action of B on the complex manifold C has quotient
A by Fact F.2.0.3, so ν factors through a morphism u : A → B of complex
manifolds. Then qu : A → D is continuous. Since A is connected, qu is
constant. Since qu(eA) = d, one gets qu ≡ d.

On the other hand, the map ru : A→ B0 is holomorphic. By assumption,
there is an integer n ≥ 1 (depending on d) such that dn = eD in D. Thus,
bn = eB. For every c ∈ C, one has ν(c)n = (cbc−1)n = cbnc−1 = eB.
Therefore, ru(A) is contained in the torsion subgroup B0,tor of B0. In view
of [AK01, Prop. 1.1.2], B0,tor is totally disconnected. Since A is connected,
ru is constant.

Since ru(eA) = 0, one has ru ≡ 0. Therefore, u ≡ b, i.e., b ∈ Z.
Therefore, 0×D ⊂ Z and the proof is completed.

Corollary F.6.0.4 follows immediately from Proposition F.6.0.3.

Corollary F.6.0.4. Given an extension

0→ (C∗)n → G→ A→ 0 (F.30)

of complex Lie groups, where A is a complex tours and n(≥ 1) is an integer,
then G is a semi-torus.
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Corollary F.6.0.5. In Corollary F.6.0.4, if A is algebraic, then G admits a
unique structure of semiabelian variety such that (F.30) defines a commutative
extension of algebraic groups.

Proof. From Corollary F.6.0.4, (F.30) defines an element of Ext(Aan, (C∗)n).
By [Ser88, Thm. 6, p.184] and Theorem F.5.2.4, the natural map ExtAlg(A,Gn

m)→
Ext(Aan, (C∗)n) is identified with the analytification map [Pic0(A)]n →
[Pic0(Aan)]n, hence a group isomorphism. In particular, there is a unique
exact sequence 0 → Gn

m → C → A → 0 in Alg whose analytification is
equivalent to (F.30).

Lemma F.6.0.6 is used in the proof of Proposition F.6.0.7.

Lemma F.6.0.6. Let G be a real Lie group with Lie algebra g.

1. If X,Y ∈ g are such that [X, [X,Y ]] = 0 and [Y, [X,Y ]] = 0, then
exp(X) exp(Y ) exp(−X) exp(−Y ) = exp([X,Y ]).

2. If X ∈ g satisfies that exp(X) commutes with every element of G0 and
[X, g] ⊂ Z(g), then X ∈ Z(g).

Proof.

1. According to Baker-Campbell-Hausdorff formula (see, e.g., [Far08,
Cor. 3.4.5]), there is a symmetric open neighborhood U of 0 ∈ g such
that for every A,B ∈ U , exp(A) exp(B) = exp(Z), where

Z = Z(A,B) = A+B + [A,B]/2 + . . .

and ”...” indicates terms involving higher commutators of A and B.
There is a symmetric open neighborhood V of 0 ∈ U such that Z(A,B) ∈
U for every A,B ∈ V .

Define f : R→ G by

f(t) = exp(tX) exp(tY ) exp(−tX) exp(−tY ) exp(−t2[X,Y ]).

Then f is real analytic. There is ϵ > 0 such that tX, tY ∈ V for
all t ∈ (−ϵ, ϵ). By assumption, [Z(tX, tY ), Z(−tX,−tY )] = 0 and
Z(tX, tY ) + Z(−tX,−tY ) = t2[X,Y ]. Then

f(t) = exp(Z(tX, tY )) exp(Z(−tX,−tY )) exp(−t2[X,Y ]) = eG

for all t ∈ (−ϵ, ϵ) (see [Laz54, p.144]). By [Azz+23, Cor. A.5], f(1) =
eG.

2. Let D = exp−1(eG). There is an open neighborhood W of 0 ∈
g such that exp(W ) is open in G and exp : W → exp(W ) is a
diffeomorphism. Then D ∩ W = {0}. For every Y ∈ g, there is
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k > 0 with [X,Y/k] ∈ W . By assumption, [X,Y/k] ∈ Z(g), so
[X, [X,Y/k]] = 0 and [Y/k, [X,Y/k]] = 0. Since exp(Y/k) ∈ G0, it
commutes with exp(X). By 1, one has exp([X,Y/k]) = eG. Then
[X,Y/k] ∈ D ∩W . Therefore, [X,Y ] = 0. Thus, X ∈ Z(g).

An algebraic analogue of Proposition F.6.0.7 is [Ros56, Cor. 2, p.433].

Proposition F.6.0.7. Let 1 → B → C
p→ A → 1 be an exact sequence of

complex Lie groups, with A complex torus and B commutative. Then C0 is
commutative.

Proof. We may assume that C is connected by replacing C (resp. B) with
C0 (resp. B ∩ C0). Let ω : Cg → A be the universal covering of A. Denote
by b (resp. c) the Lie algebra of B (resp. C). Let η : A → Aut(B) be the
outer action. Then η induces a holomorphic morphism η0 : A → Aut(B0).
Because Aut(B0) is complex Lie subgroup of GL(b), η0 is trivial.

Consider the pullback extension along ω.

0 ker(ϵ) ker(ω)

1 B E Cg 1

1 B C A 1

0

π|ker(ϵ)

Id

π

ϵ ω

p

By the snake lemma, ϵ is surjective and π restricts to an isomorphism
ker(π) → ker(ω). In particular, deϵ : L(E) → L(C) is an isomorphism.
By Fact F.2.0.3, the morphism ϵ is open. Since E0 is open in E, ϵ(E0) is
an open subgroup of C. By connectedness of C, ϵ(E0) = C. Similarly,
π(E0) = Cg. By Fact F.7.2.7 1 below, B ∩ E0 is connected. Therefore,
B∩E0 ⊂ B0. Since B0 ⊂ B∩E0, one has B0 = B∩E0. Hence an extension
1 → B0 → E0 → Cg → 1. The outer action is η0ω : Cg → Aut(B0), so it is
a central extension. Then

0→ b→ c→ Cg → 0 (F.31)

is a central extension of Lie algebras. In particular, b ⊂ Z(c). We shall
prove the extension (F.31) is trivial.

We show that expE : c → E0 is surjective. Indeed, for every x ∈
E0, there is v ∈ c with dep(v) = π(x). Then π(expE(v)) = π(x), so
π(x expE(−v)) = 0 and hence x expE(−v) ∈ B0. As B0 is connected
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commutative, there is u ∈ b with expB(u) = x expE(−v). Since u ∈ Z(c),
one gets x = expE(u) expE(v) = expE(u+ v).

By Corollary F.4.1.13, there is a decomposition B = B0 × D, where
D ∈ Abc is discrete. The natural morphism E0×D → E0 → Cg is surjective
of kernel B0 ×D, hence the first row of the diagram

1 B E0 ×D Cg 1

1 B0 E0 Cg 1

1 B E Cg 1

Id

Id

ϕ

By Lemma F.3.1.2, there is an equivalence of extensions ϕ : E → E0 ×D.
Fix x ∈ ker(ϵ), let ϕ(x) = (ϕ1(x), ϕ2(x)) ∈ E0 ×D. For every y ∈ E0,

(y, 1)ϕ(x)(y, 1)−1 = (yϕ1(x)y−1, ϕ2(x)) ∈ ϕ(ker(ϵ)).

Hence, ϕ−1((yϕ1(x)y−1, ϕ2(x))) ∈ ker(ϵ). The map

E0 → ker(ϵ), y 7→ ϕ−1((yϕ1(x)y−1, ϕ2(x)))

is continuous. As E0 is connected and ker(ϵ) is discrete, this map is constantly
x. Thus, yϕ1(x)y−1 = ϕ1(x). Therefore, ϕ1(x) commutes with every
element of E0. As expE : c → E0 is surjective, there is X ∈ c with
expE(X) = ϕ1(x). Since Cg is an abelian Lie algebra, [c, c] is contained in
the kernel of dep : c → Cg, which is b. Then [c, c] ⊂ Z(c), i.e., [c, [c, c]] = 0.
By Lemma F.6.0.6 2, X ∈ Z(c).

Consider the commutative diagram

c Cg

E Cg

dep
expE Id

π

Then π(x) = π(ϕ1(x)) = dep(X) ∈ dep(Z(c)). Therefore, ker(ω) = π(ker(ϵ)) ⊂
dep(Z(c)). Since dep is C-linear and ker(ω) contains a C-basis of Cg, one has
dep(Z(c)) = Cg. Consequently, there is a C-linear map s : Cg → Z(c) with
dep◦s = IdCg . As s : Cg → c is a Lie algebra morphism, the central extension
(F.31) is trivial and c is the direct sum of b and Cg. In particular, c is abelian.
As C is connected and its Lie algebra is abelian, C is commutative.

Example F.6.0.8 shows that the the condition that B/B0 is torsion (resp.
K0 is Stein) in Proposition F.6.0.3 (resp. Proposition F.6.0.2 2) is necessary.
Moreover, in Proposition F.6.0.7, the commutativity of C fails in general.
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Example F.6.0.8. Let A be a complex torus and B = A×Z be the product
group. Consider the complex manifold morphism A × B → B defined by
(a, a′, k) 7→ (a′ + ka, k). It is a non trivial group action of A on B. Let C
be the corresponding semidirect product (see [Bou72, Ch.III, no. 4, Prop.
7]), then the resulting complex Lie group extension 1 → B → C → A → 1
is not central.

F.7 Noncommutative extensions

F.7.1 Lifted extensions

The real Lie group extension problem is studied by G. Hochschild in [Hoc51a]
and [Hoc51b]. As Example F.7.1.1 shows, the case of real Lie groups is
different from the case of complex Lie groups.

Example F.7.1.1. Let G = C. The morphism of real Lie groups ρ :
C → C∗ = Aut(G) defined by z 7→ ez̄ is an action of G on itself which
is real analytic but not holomorphic. Hence an exact sequence of real Lie
groups 1 → G → G ⋊ρ G → G → 1 by [Bou72, Ch. III, no. 4, Prop. 7].
However, the middle term has no structure of complex Lie group making
the maps holomorphic. Therefore, [Iwa49, Theorem 7] fails for complex Lie
groups. Besides, this shows that the real Lie group extension problem and
the complex one are different.

In Section F.7, we review Hochschild’s work, but in the context of
complex Lie groups. References to the original statement are given when
the proofs are similar modulo slight modifications. All results in the sequel
are essentially known.

In Section F.7.1, the goal is to derive Corollary F.7.1.6, a result about
the extensions of a commutative group by a connected group.

Let L be a complex Lie group and K ∈ C. For a fixed holomorphic group
action L×K → K, let ϕ : L→ Aut(K) denote the induced group morphism.
Let Z(L,K, ϕ) denote the set of crossed morphisms, i.e., morphisms ρ : L→
K of complex manifolds such that ρ(l1l2) = ρ(l1)ϕl1(ρ(l2)) for all l1, l2 ∈ L.
Then Z(L,K, ϕ) is an abelian group under addition. (When ϕ is trivial,
Z(L,K, ϕ) = Hom(L,K).)

For a normal complex Lie subgroup H of L, define

OphomL(H,K, ϕ) = {ψ ∈ Hom(H,K) : ψ(lhl−1) = ϕl(ψ(h)),∀l ∈ L, h ∈ H}.

Then OphomL(H,K, ϕ) is a subgroup of Hom(H,K). When H ⊂ Z(L), one
has

OphomL(H,K, ϕ) = HomC(H,Kϕ(L)), (F.32)

where Kϕ(L) = ∩l∈L{x ∈ K : ϕl(x) = x} is the set of elements fixed by
ϕ(L)(≤ Aut(K)). Here Kϕ(L) is indeed a complex Lie subgroup of K
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by Corollary F.2.0.5. When ϕ is trivial, OphomL(H,K, ϕ) is the set of
morphisms H → K invariant under the conjugation action of L.

Proposition F.7.1.2. Assume that H is a normal complex Lie subgroup of
L contained in ker(ϕ). For every ρ ∈ Z(L,K, ϕ), ρ|H ∈ OphomL(H,K, ϕ),
hence a group morphism Z(L,K, ϕ) → OphomL(H,K, ϕ), whose image is
denoted by ZH(L,K, ϕ).

Proof. For every h, h′ ∈ H, ρ(hh′) = ρ(h)ϕh(ρ(h′)) = ρ(h)ρ(h′) since h ∈
ker(ϕ). Thus ρ|H ∈ Hom(H,K). In particular, ρ(eL) = eK . For every l ∈ L,

eK = ρ(eL) = ρ(ll−1) = ρ(l)ϕl(ρ(l−1)),

so ρ(l)−1 = ϕl(ρ(l−1)). Then

ρ(lhl−1) = ρ(lh)ϕlh(ρ(l−1))

=ρ(lh)ϕl(ρ(l−1)) = ρ(lh)ρ(l)−1

=ρ(l)ϕl(ρ(h))ρ(l)−1 = ϕl(ρ(h)).

The last equality uses the commutativity ofK. Therefore, ρ|H ∈ OphomL(H,K, ϕ).

Let ω : Q′ → Q be a surjective morphism of connected complex Lie
groups with kernel F . Let η : Q → Aut(K) be a group morphism such
that the induced group action Q × K → K is holomorphic. As K is
commutative, the pulling back map ω∗ : Ext(Q,K, η) → Ext(Q′,K, ηω)
is a group morphism. Fact F.7.1.3 gives a description of ker(ω∗).

Define a map σ : OphomQ′(F,K, ηω)→ Ext(K,Q, ηω) as follows. As the
group action defined by η is holomorphic, the semidirect complex Lie group
K⋊ηωQ

′ exists by [Bou72, Ch.III, no.4, Prop. 7]. For ψ ∈ OphomQ′(F,K, ηω),
the morphism F → K ⋊ηω Q

′ defined by k 7→ (ψ(k), k) identifies F as a
normal complex Lie subgroup of K ⋊ηω Q

′. Let E = K ⋊ηω Q
′/F . The

projection K ⋊ηω Q
′ → Q′ descends to a morphism E → Q. The injection

K → K ⋊ηω Q
′ induces a morphism K → E. Then the resulting sequence

1 → K → E → Q → 1 is exact with outer action ηω, whose equivalence
class is denoted by σ(ψ).

Fact F.7.1.3 ([Hoc51a, Thm. 1.1]). The map σ is a group morphism and
the sequence

Z(Q′,K, ηω)→ OphomQ′(F,K, ηω)
σ→ Ext(Q,K, η)

ω∗
→ Ext(Q′,K, ηω)

is exact.

The use of Fact F.7.1.3 is based on the existence of ω : Q′ → Q such that
every extension in Ext(Q,K, η) becomes a semidirect product when pulled
back to Ext(Q′,K, ηω) along ω.
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Fact F.7.1.4 ([Hoc51a, Thm. 2.1]). Let Q be a connected complex Lie group.
Assume that η : Q → Aut(K) is a group morphism such that the induced
group action is holomorphic. Then there exists a simply connected complex
Lie group Q′ and a surjective morphism ω : Q′ → Q such that the pullback
morphism ω∗ : Ext(Q,K, η)→ Ext(Q′,K, ηω) is zero.

Remark F.7.1.5. The connectedness condition of the extension kernel in
[Hoc51a, Theorems 1.1 and 2.1] is in fact unnecessary.

Corollary F.7.1.6 follows from Fact F.7.1.3 and Fact F.7.1.4.

Corollary F.7.1.6 ([Hoc51a, Cor. 2.1]). In the notation of Fact F.7.1.4,
Ext(Q,K, η) = OphomQ′(F,K, ηω)/ZF (Q′,K, ηω), where F = ker(ω).

Example F.7.1.7. Let Q = C∗, L = C and ω : L → Q be defined by
ω(z) = e2πiz. Then F = ker(ω) = Z. Let C∗ ×K → K be a holomorphic
group action and η : C∗ → Aut(K) be the induced group morphism. Then
OphomL(F,K, ηω) = Hom(Z,Kη(C∗)) = Kη(C∗). By Proposition F.3.2.2
and Corollary F.7.1.6, one has Ext(C∗K, η) = Kη(C∗)/ZZ(C,K, ηω).

F.7.2 Factor systems

It is well-known that extensions of abstract groups can be classified in terms
of factor systems, see [CE99, Ch. XIV, Sec. 4]. This description relies on
the existence of set-theoretical cross sections. In general, nevertheless, it is
not possible to find a continuous cross section to a surjective morphism of
topological groups.

Consider the extension (F.3) of complex Lie groups with outer action
ψ : Q→ Out(K).

Example F.7.2.1. Assume that there is a cross section to (F.3), i.e., a
morphism s : Q → E of complex manifolds with ps = IdQ. Replacing
s by s(eQ)−1s when necessary, one may assume that s is normalized as
s(eQ) = eE . Define

f : Q×Q→ E, f(g, h) = s(g)s(h)s(gh)−1.

Then f is holomorphic. Since p(f(g, h)) = eQ, f(g, h) ∈ K, so f factors
through K. The map f measures the failure of s to be a morphism. If E is
commutative, then additionally f is symmetric in the sense of [Ser88, (16),
p.166]:

f(x, y) = f(y, x) ∀x, y ∈ Q. (F.33)

Define ϕ : Q → Aut(K) by ϕg = Inns(g) |K . Then ϕ is a map (but not
necessarily a group morphism) lifting ψ, and the induced map

Q×K → K, (g, x) 7→ ϕg(x) (F.34)
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is holomorphic. When K is commutative, ϕ = ψ is a group morphism
independent of the choice of s. When (F.3) is a central extension, ϕ is
constantly IdK .

Moreover, f and ϕ satisfy the following relations:

f(eQ, h) = f(g, eQ) = eK ;

ϕe = IdK ;

ϕgϕh = Innf(g,h) ϕgh;

f(g, h)f(gh, k) = ϕg(f(h, k))f(g, hk).

(F.35)

Example F.7.2.1 motivates Definition F.7.2.2.

Definition F.7.2.2 (Factor system). If a morphism f : Q × Q → K of
complex manifolds and a map ϕ : Q→ Aut(K) making (F.34) holomorphic
satisfy the relations (F.35), then f is called a ϕ-factor system (and simply
a factor system when ϕ is trivial, in which case the last relation in (F.35) is
f(g, h)f(gh, k) = f(h, k)f(g, hk).) A factor system f is called symmetric if
(F.33) holds.

When K is commutative, the set of ϕ-factor systems is an abelian group
under addition.

We examine how the ϕ-factor system f induced by s in Example F.7.2.1
depends on the choice of the cross section s.

Example F.7.2.3. Let s′ : Q→ E be another normalized cross section still
inducing ϕ. Define

g : Q→ E, g(x) = s(x)−1s′(x).

Then g(eQ) = eE as s, s′ are normalized and g is holomorphic. For every
x ∈ Q, p(g(x)) = eQ, so g(x) ∈ K. For every k ∈ K, Inns(x) k = ϕx(k) =
Inns′(x) k, so g(x) ∈ Z(K), i.e., g factors through Z(K). Then s′(x) =
s(x)g(x). Let f ′ be the factor system induced by s′. Then

f ′(x, y) = s′(x)s′(y)s′(xy)−1

=s(x)g(x)s(y)g(y)[s(xy)g(xy)]−1

=ϕx(g(x))s(x)s(y)g(y)g(xy)−1s(xy)−1

=ϕx(g(x))f(x, y)s(xy)g(y)g(xy)−1s(xy)−1

=ϕx(g(x))f(x, y)ϕxy(g(y)g(xy)−1)

=gϕ(x, y)f(x, y),

where gϕ : Q×Q→ K is a morphism of complex manifolds defined by

gϕ(x, y) = ϕx(g(x))ϕxy(g(y)g(xy)−1). (F.36)

When (F.3) is a central extension, ϕ is trivial, then (F.36) reduces to
[Ser88, (15), p.166]: gϕ(x, y) = g(x)g(y)g(xy)−1.
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Example F.7.2.3 motivates Definition F.7.2.4.

Definition F.7.2.4. Let f, f ′ be two ϕ-factors systems. If there is a holomorphic
map g : Q→ Z(K) with g(eQ) = eE such that f ′ = gϕf with gϕ defined by
(F.36), then f and f ′ are called ϕ-equivalent, denoted by f ∼ϕ f ′.

In Definition F.7.2.4, ∼ϕ is an equivalent relation on the set of ϕ-factor
systems. When K is commutative, inside the group of all ϕ-factor systems,
the elements ϕ-equivalent to the zero form a subgroup. A result similar to
Proposition F.7.2.5 for algebraic groups is in [Ser88, Ch. VII, Sec. 1, no.4].

Proposition F.7.2.5. Let K,Q be complex Lie groups with a map ϕ : Q→
Aut(K) such that (F.34) is holomorphic and the induced map ψ : Q →
Out(K) is a group morphism. Then:

1. The set F of ∼ϕ-equivalence classes of ϕ-factor systems is canonically
identified with the subset E ⊂ Ext(Q,K,ψ) of equivalence classes of
extensions of Q by K which admit at least one normalized cross section
inducing ϕ.

2. When K is commutative, the identification in 1 is a group isomorphism.

3. If further Q is also commutative and ϕ = ψ = 1 is trivial, then the
subgroup of equivalence classes of symmetric factor systems corresponds
to the subgroup of equivalence classes of commutative extensions.

Proof. We only prove 1. Examples F.7.2.1 and F.7.2.3 construct a map
Φ : E → F . (Note that equivalent extensions induces the same ϕ-equivalence
class.)

Conversely, we define a map Ψ : F → E by the following construction.
Given a ϕ-factor system f , one can construct an exact sequence 1 → K →
Ef,ϕ → Q→ 1 of complex Lie groups with a (holomorphic) normalized cross
section s : Q → Ef,ϕ as follows. Let Ef,ϕ = K ×Q as a complex manifold.
Define a map

g : Ef,ϕ × Ef,ϕ → Ef,ϕ, g((k, x), (l, y)) = (kϕx(l)f(x, y), xy).

As f and the map (F.34) are holomorphic, so is g. Moreover, (F.35) shows
g defines an associative multiplication. The pair (1, 1) ∈ Ef,ϕ is the identity,
and the inverse of (k, x) is

(ϕ−1
x [k−1f(x, x−1)−1], x−1).

Hence (Ef,ϕ, g) is a complex Lie group. The projection p : Ef,ϕ → Q is a
surjective morphism. The map i : K → Ef,ϕ by k 7→ (k, 1) is the kernel of
p. Moreover, define s : Q→ Ef,ϕ by s(g) = (1, g), then s is normalized cross
section. Put Ψ(f) = Ef,ϕ.
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We check that ΨΦ = IdE . Indeed, the map Ef,ϕ → E defined by
(k, x) 7→ ks(x) is an equivalence of extensions. We check that ΦΨ = IdF , or
equivalently s induces f and ϕ. In fact, for every x ∈ Q, k ∈ K, one has

ϕx(k)s(x) = (ϕx(k), 1)(1, x) = (ϕx(k), x) = (1, x)(k, 1) = s(x)k,

so ϕx = Inns(x) |K , i.e., s induces ϕ. For every y ∈ Q,

s(x)s(y)s(xy)−1 = (1, x)(1, y)(1, xy)−1

=(f(x, y), xy)(ϕ−1
xy [f(xy, y−1x−1)−1], y−1x−1)

=(f(x, y)ϕxyϕ
−1
xy (f(xy, y−1x−1)−1)f(xy, y−1x−1), 1)

=(f(x, y), 1).

Therefore, s induces f .

When the base Q of (F.3) is discrete, then a set-theoretic cross section
is automatically holomorphic.

Corollary F.7.2.6. Let Q be a discrete complex Lie groups, and let η : Q→
Aut(K) be a group morphism. Then the group Ext(Q,K, η) is isomorphic
to the group of ∼η-equivalence classes of η-factor systems. Furthermore, if
Q is also commutative, then Ext(Q,K) is isomorphic to the group of ∼-
equivalence classes of symmetric factor systems.

Proof. Since Q is discrete, the group action Q × K → K induced by η is
holomorphic. The first (resp. second) half follows from Proposition F.7.2.5
2 (resp. 3).

Another important case where a cross section exists is with simply connected
bases. For this, we need a holomorphic version of Malcev’s theorem ([Mal42,
(E), p.12], [Hoc51a, Lemma 3.1], [Mac60, Theorem 3.2]).

Fact F.7.2.7 (Malcev, [Bou72, Ch. III, § 6, no. 6, Prop. 14, Cor. 2]). Let
L be a connected complex Lie group, N be a normal immersed complex Lie
subgroup of L.

1. If N is closed in L and L/N is simply connected, then N is connected.

2. If L is simply connected, N is connected, then N is closed in L and
there exists a biholomorphic map f : L→ N×L/N making a commutative
diagram

L N × L/N

L/N,

f

q
p2
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where p2 is the projection to the second factor and q : L→ L/N is the
quotient morphism.

In the same way that [Hoc51a, Theorem 3.1] follows from [Hoc51a,
Lemma 3.1], Fact F.7.2.8 can be deduced from Fact F.7.2.7.

Fact F.7.2.8. Let (F.3) be an exact sequence of complex Lie groups, where
E is connected and Q is simply connected. Then there exists a cross section,
i.e., a holomorphic map s : Q → E with ps = IdQ. In particular, the
principal K-bundle p : E → Q is trivial.

Example F.7.2.9. Let A be a complex elliptic curve. Take a nonzero
element of A∨, which induces a nontrivial extension E of A by C∗ via
Theorem F.5.2.4. By Proposition F.5.1.3, the principal C∗-bundle E → A is
nontrivial. Therefore, Fact F.7.2.8 fails if the base is not simply connected.

Corollary F.7.2.10 follows immediately from Fact F.7.2.8 and Proposition
F.7.2.5.

Corollary F.7.2.10. Let K,Q be complex Lie groups, where K is connected
commutative and Q is simply connected. Let η : Q→ Aut(K) be a complex
Lie group morphism9. Then Ext(Q,K, η) is isomorphic to the group of ∼η-
equivalence classes of η-factor systems.

Similar to [Hoc51a, Theorem 3.2], Fact F.7.2.11 can be proved using Fact
F.7.2.7 and Fact F.7.2.8,

Fact F.7.2.11. Let K,Q be complex Lie groups, where K is connected and Q
is simply connected. Then the map (on the set of equivalence classes) which
associates with each extension of Q by K the induced extension of L(Q)
by L(K) is injective. The image is the set of classes of those extensions
0→ L(K)→ E→ L(Q)→ 0 in which the derivation

[x, •]E|L(K) ∈ Der(L(K)) = L(Aut(L(K)))

belongs to L(Aut(K)) for every x ∈ E. Furthermore, if K is commutative
and η : Q→ Aut(K) is a morphism, then the resulting map

Ext(Q,K, η)→ Ext(L(Q), L(K), deη)

is a group isomorphism.

A connected Lie group is called semisimple if its Lie algebra is semisimple.
Analogue of Fact F.7.2.12 for semisimple real Lie groups H and real vector
groups G is contained in the proof of [Hoc51b, Theorem 5.1]. Fact F.7.2.12
can be proved in a similar way.

9Here Aut(K) is a complex Lie subgroup of GL(L(K)) by [Lee01, Propositions 1.26
and 1.27].
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Fact F.7.2.12. Let G,H be connected complex Lie groups, where G is
commutative and H is semisimple. Let η : H → Aut(G) be a morphism
of complex Lie groups. If ϕ ∈ Z(H,G, η) is a crossed morphism, then there
exists g ∈ G such that ϕ(x) = ηx(g)g−1 for all x ∈ H. In particular, ϕ ≡ eG
on ker(η).

Theorem F.7.2.13 is a complex version of [Hoc51a, Theorem 4.4].

Theorem F.7.2.13. In Fact F.7.2.12, Ext(H,G, η) is canonically isomorphic
to HomAb(π1(H), Gη(H)).

Proof. Let ω : H̃ → H be the universal covering of H. Then ker(ω) = π1(H)
is a discrete subgroup of H̃. By Fact F.3.2.4, π1(H) ⊂ Z(H̃). Then (F.32)
gives

OphomH̃(ker(ω), G, ηω) = Hom(π1(H), Gη(H)).

By Fact F.7.2.12, for every ρ ∈ Z(H̃,G, ηω), ρ|kerω = 1, i.e., Zker(ω)(H̃,G, ηω) =

0. By Fact F.7.2.11, the natural map Ext(H̃,G, ηω)→ Ext(L(H), L(G), deη)
is a group isomorphism. Since L(H) is a semisimple complex Lie algebra,
Levi’s theorem [Ser92, Theorem 4.1, p.48] affirms that Ext(L(H), L(G), deη) =
0. By Fact F.7.1.3, Ext(H,G, η) = Hom(π1(H), Gη(H)).

F.7.3 Non-abelian kernels and extensions of the center

For two complex Lie groups K,Q and a group morphism θ : Q→ Out(K), if
θ is induced by some extension of Q by K, then the extension kernel (K, θ)
is called extendible. The problem to determine the extendibility of a given
extension kernel is more difficult than that for abstract groups treated in
[EM47, Theorem 8.1], because of the obstruction to the existence of a cross
section. For extendible kernels, Corollary F.7.3.8 shows that the problem
for extensions by K can be reduced to that with an abelian kernel, namely
Z(K).

Let 1→ K → E
p→ Q→ 1 and 1→ K ′ → E′ p

′
→ Q→ 1 be two extension

of complex Lie groups. Denote their outer action by θ : Q → Out(K) and
θ′ : Q → Out(K ′) respectively. Assume that Z(K) = Z(K ′) := C and θ, θ′

induce a common center action10 θ0 : Q → Aut(C). Hence a commutative
diagram

Out(K)

Q Aut(C)

Out(K ′)

θ

θ′

θ0 (F.37)

10see (F.5)
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We recall the multiplication of kernels defined in [EM47, Sec. 4]. The group
law C × C → C is holomorphic, so the subset

C∗ := {(x, x−1) : x ∈ C} (F.38)

is analytic in C × C. By Lemma F.2.0.6, C × C is an analytic subset of
K × K ′. As C∗ is a central subgroup of K × K ′, it is also a complex Lie
subgroup of K × K ′ by Corollary F.2.0.5. Let K ′′ = K × K ′/C∗. From
[EM47, p.328], the morphism C → K ′′ by g 7→ [(g, 1)] identifies C as the
center of K ′′.

For every x ∈ Q, select automorphisms α ∈ θ(x)(⊂ Aut(K)) and α′ ∈
θ′(x)(⊂ Aut(K ′)). Because the diagram (F.37) is commutative, α × α′ is
an automorphism of K ×K ′ sending C∗ into itself. It thus determines an
automorphism α′′ of K ′′. The class [α′′] ∈ Out(K ′′) depends only on θ, θ′,
but not the choices of α, α′. Hence a group morphism

θ′′ : Q→ Out(K ′′) (F.39)

that also induces θ0 : Q→ Aut(C).

Definition F.7.3.1. The pair (K ′′, θ′′) constructed above is called the C-
product of the two given extension kernels (K, θ) and (K ′, θ′).

Example F.7.3.2. If K ′ = C is commutative, it is asserted in [EM47,
(4.4)] that K ′ acts as an identity for the C-product. To make it explicit,
we define a surjective morphism ϕ : K × C → K of complex manifolds by
ϕ(k, k′) = k′k. Then ϕ is a morphism and C∗ = ker(ϕ). Thus, ϕ induces an
isomorphism σ : K ′′ → K satisfying [EM47, (4.2), (4.3)].

Then we review the multiplication of the given two extensions, contained
the proof of [EM47, Lem. 5.1].

As the map E × E′ → Q by (x, x′) 7→ p′(x′)p(x)−1 is holomorphic, the
preimage of eQ

D = Dp,p′(E,E
′) = {(x, x′) ∈ E × E′ : p(x) = p′(x′)}, (F.40)

is analytic in E×E′. Since D is a subgroup of E×E′, by Corollary F.2.0.5,
D is a complex Lie subgroup of E × E′.

For every (x, x′) ∈ D with y = p(x) = p(x′), every g ∈ C, the element

(x, x′)(g, g−1)(x−1, x′−1) = (θ0(y)(g), θ0(y)(g)−1)

is in C∗. Therefore, C∗ defined by (F.38) is normal in D.
As C∗ is a normal complex Lie subgroup of D, we can set E′′ = D/C∗.

The inclusion K ×K ′ → D descends to an injective morphism K ′′ → E′′.
The map D → Q defined by (x, x′) 7→ p(x) induces a surjective morphism
p′′ : E′′ → Q whose kernel is K ′′. Hence an extension 1 → K ′′ → E′′ →
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Q→ 1. The induced outer action Q→ Out(K ′′) is (F.39). We call (E′′, p′′)
the C-product of the two given extensions (E, p) and (E′, p′), written as
(E′′, p′′) = (E, p) ⊗ (E′, p′). Thus, [EM47, Lemmas 5.1 and 5.2] hold for
complex Lie groups.

Fact F.7.3.3. The C-product of two extendible kernels is extendible. The
kernel of the C-product (E, p) ⊗ (E′, p′) of two extensions is the C-product
of the two kernels.

Proposition F.7.3.4. When K ′ = C, (E′, p′) is the semidirect product
C ⋊θ0 Q, then (E′′, p′′) is naturally equivalent to (E, p).

Proof. Consider the subgroup D ≤ E×E′ = E×(C⋊θ0Q) defined in (F.40).
Define a map ψ : D → E by (x, c, q) 7→ cx for x ∈ E and (c, q) ∈ C ⋊θ0 Q.
Then ψ is holomorphic.

We check that ψ is a group morphism. Take another (x, c′, q′) ∈ D.
Since θ0,q(c

′) = θp(x)(c
′) = xc′x−1, one has

ψ((x, c, q)(x′, c′, q′)) = ψ(xx′, cθ0,q(c
′), qq′)

=cθ0,q(c
′)xx′ = cxc′x′ = ψ(x, c, q)ψ(x′, c′, q′).

For every g ∈ C, ψ(g, g−1) = eE , so C∗ ⊂ kerψ. Thus, ψ induces a
morphism ϵ : E′′ → E. Together with σ defined in Example F.7.3.2, ϵ fits
into a commutative diagram.

1 K ′′ E′′ Q 1

1 K E Q 1

σ ϵ Id

Therefore, ϵ is an equivalence of extensions.

By construction, C-product defines a map Ext(Q,K, θ)×Ext(Q,K ′, θ′)→
Ext(Q,K ′′, θ′′). When K ′ = C, it specializes to

Ext(Q,K, θ)× Ext(Q,C, θ0)→ Ext(Q,K, θ), (F.41)

which defines an action of the abelian group Ext(Q,C, θ0) on the set Ext(Q,K, θ).
If further K is also commutative, by [Hoc51a, p.97], (F.41) is exactly the
group law defined by the Baer sum on Ext(Q,C, θ0).

Definition F.7.3.5. [EM47, p.329] For every extension kernel (K, θ), let θ∗

be the composition of θ : Q→ Out(K) with the natural group isomorphism
Out(K) → Out(Kop). Then the extension kernel (Kop, θ∗) is called the
inverse of (K, θ).
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For every (E, p) ∈ Ext(Q,K, θ), define p∗ : Eop → Q by p∗(x∗) = p(x−1),

then it is a surjective morphism. Since ker(p∗) = Kop, 1 → Kop → Eop p∗→
Q → 1 is an extension. The associated outer action is θ∗. Thus, we get
an element (Eop, p∗) ∈ Ext(Q,Kop, θ∗) of (E, p). It is called the inverse of
(E, p) and its extension kernel is the inverse of (K, θ).

It is a classical result that the group action (F.41) is simple transitive.
For abstract groups, see [EM47, Lem. 11.2 and 11.3]. For algebraic groups,
see [FLA19, Thm. 1.1]. It remains true for complex Lie groups. The first
half, Fact F.7.3.6, can be proved in the same way as in [Hoc51b, Thm. 1.1],
using the inverse in the group Ext(Q,C, θ0) and Proposition F.7.3.4.

Fact F.7.3.6. Let K,Q be complex Lie groups, C = Z(K). Let θ : Q →
Out(K) be a group morphism that induces θ0 : Q → Aut(C). Then the
action of Ext(Q,C, θ0) on Ext(Q,K, θ) defined by (F.41) is free.

Theorem F.7.3.7 is analogue to [EM47, Lemma 11.2].

Theorem F.7.3.7. In the notation of Fact F.7.3.6, if Ext(Q,K, θ) is nonempty
(i.e., the extension kernel (K, θ) is extendible), then its Ext(Q,C, θ0)-action
defined by (F.41) is transitive. Equivalently, for every (E, p), (E1, p1) ∈
Ext(Q,K, θ), there exits F ∈ Ext(Q,C, θ0) with F ⊗ E equivalent to E1.

Proof. Define Dp1,p∗(E1, E
op) like (F.40). Set

S = {(x−1
1 , x∗) ∈ Dp1,p∗(E1, E

op) : x1kx
−1
1 = xkx−1,∀k ∈ K}.

Then S is a subgroup of E1 × Eop. For every k ∈ K, the map

ϕk : E1 × Eop → K (x1, x
∗) 7→ x−1

1 kx1xk
−1x−1

is holomorphic, so ϕ−1
k (eK) is analytic in E1×Eop. Then S = Dp1,p∗(E1, E

op)∩
∩k∈Kϕ−1

k (eK) is analytic in E1 × Eop, by [Whi72, Theorem 9C, p.100]. By
Corollary F.2.0.5, S is a complex Lie subgroup of E1 × Eop.

The map K × Kop → K by (k, k′∗) 7→ kk′ is holomorphic, so K∗ =
{(k−1, k∗) : k ∈ K} is an analytic subset of K ×Kop. It is a subgroup of S,
hence a complex Lie subgroup of S by Corollary F.2.0.5.

For every (x−1
1 , x∗) ∈ S, k ∈ K, one has

(x−1
1 , x∗)(k−1, k∗)(x1, (x

∗)−1) = (x−1
1 k−1x1, x

∗k∗(x−1)∗)

=(x−1k−1x, (x−1kx)∗) ∈ K∗,

so K∗ is a normal subgroup of S. Let F = S/K∗ and ν : S → F be
the quotient morphism. The map i : C → F defined by c 7→ [(c, 1)] is an
injective morphism.

The map ϕ̄ : S → Q defined by ϕ̄(x−1
1 , x∗) = p(x−1) is a morphism

with K∗ contained in the kernel. We check that ϕ̄ is surjective. For every
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h ∈ Q, there exist x ∈ E and x1 ∈ E1 with p(x) = p1(x1) = h−1. Since
the two automorphisms of K, Innx |K and Innx1 |K have the same class θh−1

in Out(K), there exists k0 ∈ K such that Innx1 |K = Innx |K Innk0 . Then
(x−1

1 , (xk0)
∗) ∈ S and ϕ̄(x−1

1 , (xk0)
∗) = h.

If (x−1
1 , x∗) ∈ ker ϕ̄, then p1(x1) = p(x1) = eQ, so x1, x ∈ K. Moreover,

x1kx
−1
1 = xkx−1 for all k ∈ K. Then x−1

1 x ∈ C, so (x−1
1 , x∗) = (x−1

1 x, 1∗)(x−1, x∗).
Thus, [(x−1

1 , x∗)] = i(x−1
1 x) ∈ i(C).

Thus ϕ̄ induces a surjective morphism ϕ : F → Q with i(C) ⊃ kerϕ. In

addition, ϕi is trivial, so i(C) ⊂ ker(ϕ). Hence an extension 1→ C
i→ F

ϕ→
Q→ 1 with the induced action Q→ Aut(C) coinciding with θ0.

It remains to show that the C-product extension F ⊗E is equivalent to
E1. By construction, F ⊗ E is represented by G = Dϕ,p(F,E)/C∗, where
C∗ = {(c, c−1) ∈ F × E : c ∈ C}. The pullback of Dϕ,p(F,E) along the
natural surjection S × E → F × E is Dϕν,p(S,E).

For every (a, b∗, x) ∈ Dϕν,p(S,E) ⊂ E1 × Eop × E, one has p1(a) =
p(b−1) = p(x), whence bx ∈ K and a · (bx) ∈ E1. Define a holomorphic map
τ : Dϕν,p(S,E)→ E1 by τ(a, b∗, x) = a · (bx).

E1

Dϕν,p(S,E) Dϕ,p(F,E) G

S × E F × E

E1 × Eop × E

τ
ν∗

ν×IdE

We check that τ is a group morphism. For every (a, b∗, x), (a′, b′∗, x′) ∈
Dϕν,p(S,E), since (a′, b′∗) ∈ S and bx ∈ K, one has a′−1(bx)a′ = b′(bx)b′−1.
Hence,

τ(a, b∗, x)τ(a′, b′∗, x′) = [a(bx)][a′(b′x′)]

=aa′[a′−1(bx)a′](b′x′) = aa′[b′(bx)b′−1](b′x′)

=aa′(b′bxx′) = τ(aa′, (b′b)∗, xx′) = τ(aa′, b∗b′∗, xx′).

We check that τ is surjective. For every x1 ∈ E1, p1(x1) ∈ Q. As
ϕν : S → Q is surjective, there is (a, b∗) ∈ S with ϕν(a, b∗) = p1(x1). Then
p1(a) = p1(x1). Thus, a−1x1 ∈ K. Let x = b−1(a−1x1) ∈ E. Then p(x) =
p(b−1) = ϕν(a, b∗), so (a, b∗, x) ∈ Dϕν,p(S,E) and τ(a, b∗, x) = a(bx) =
a(a−1x1) = x1.

We check that ker(ν∗) ⊂ ker(τ). For every (x1, x
∗, y) ∈ ker(ν∗) ⊂ E1 ×

Eop×E, there is c ∈ C with ([(x1, x
∗)], y) = (c, c−1) in F ×E. Equivalently,

y = c−1 in E and [(x1, x
∗)] = [(c, 1∗)] in F = S/K∗. Whence, (x1c

−1, x∗) ∈
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K∗, i.e., x ∈ K and x1 = x−1c. Therefore, (x1, x
∗, y) = (x−1c, x∗, c−1)

with x ∈ K, c ∈ C. Thus, τ(x1, x
∗, y) = x−1c(xc−1) = eE1 and (x1, x

∗, y) ∈
ker(τ).

Conversely, we check ker(τ) ⊂ ker(ν∗). For every (a, b∗, x) ∈ ker(τ), one
has a(bx) = eE1 , so a ∈ K. Because (a, b∗) ∈ Dp1,p∗(E1, E

op), we obtain
p(b−1) = p(a) = eQ and hence b ∈ K. Since Inna−1 = Innb ∈ Aut(K),
one has ab ∈ C. Therefore, [(a, b∗)] = [(ab, 1∗)] = i(ab) in F = S/K∗ and
(a, b∗, x) = (ab, (ab)−1) ∈ C∗ ≤ F × E. Then (a, b∗, x) ∈ ker(ν∗).

Therefore, ker(τ) = ker(ν∗), so τ induces an isomorphism G → E1 that
establishes an equivalence between the two elements of Ext(Q,K, θ).

Fact F.7.3.6 and Theorem F.7.3.7 yield Corollary F.7.3.8.

Corollary F.7.3.8. Let K,Q be complex Lie groups, C = Z(K), θ :
Q → Out(K) be a group morphism. Let θ0 : Q → Aut(C) be the induced
group morphism. If Ext(Q,K, θ) is nonempty, then Ext(Q,K, θ) is in (non-
canonical) bijection with Ext(Q,C, θ0).

F.8 Maximal morphisms

A result stronger than Proposition F.5.1.3 holds.

Definition F.8.0.1. [Ser88, Definition 1, p.125]. Let X be a complex
manifold, A be a complex torus. A morphism f : X → A is called maximal

if whenever f factors as X
g→ A′ h→ A, where A′ ∈ C is connected and

h − h(0) : A′ → A is a finite morphism, it holds that h − h(0) is an
isomorphism.

Proposition F.8.0.2. If X is a regular manifold11, then the Albanese morphism
f : X → Alb(X) associated to some base point x ∈ X is maximal.

Proof. Assume that f factors as X
g→ A′ h→ Alb(X), where A′ ∈ C is a

connected and h − h(0) is a finite morphism. Then A′ is compact, hence
a complex torus. Choosing g(x) as the new zero element of A′, we get
a new structure of complex torus on A′, to which we stick from now on.
Then h is a finite morphism. By Proposition 4.4.1.2 3, there is a morphism
ϕ : Alb(X) → A′ with ϕf = g and the complex Lie subgroup of Alb(X)
generated by f(X) is Alb(X) itself. Then hϕf = f and hence hϕ = IdAlb(X).
In particular, h is surjective. By Fact F.3.0.4, the exact sequence 0 →
ker(h) → A′ h→ A → 0 defines a trivial extension, so A′ is isomorphic to
ker(h)×A. By connectedness of A′, ker(h) = 0 and h is an isomorphism.

When f = IdA, Proposition F.8.0.3 reduces to Proposition F.5.1.3.

11in the sense of [Var86, p.233]
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Proposition F.8.0.3 ([Ser88, Prop. 14, p.188]). Let X be a connected
compact complex manifold, A be a complex torus, B ∈ C. Let f : X → A be
a maximal morphism. If B0 is linear, then the composed morphism

Ext(A,B)
π→ H1(A,BA)

f∗→ H1(X,BX) (F.42)

is injective.

Proof. Let C ∈ ker(f∗ ◦ π). Then the principal fiber bundle f∗p : f∗C → X
is trivial. Fix a point c ∈ f∗C lying over 0 ∈ C. Then there is a morphism
s : X → f∗C with f∗p ◦ s = IdX and s(f∗p(c)) = c. Let t : X → C be the
morphism induced by s.

f∗C X

0 B C A 0

0 B ∩A′ A′ A 0

f∗p

f

s

t

p

h−1

h

Id

By Remmert’s theorem [Whi72, Theorem 4A, p.150], t(X) is an analytic
subset of C. By [CD94, (14.14), p.89], the analytic space t(X) is irreducible.
Moreover, t(X) is compact and 0 = t(f∗p(c)) ∈ t(X). Let A′ be the complex
Lie subgroup of C generated by t(X). By Lemma D.3.2.1, A′ is a complex
torus. Then (A′∩B)0 is a compact. As a closed complex submanifold of B0,
(A′ ∩ B)0 is also a Stein manifold, hence a point. Thus, A′ ∩ B is discrete
and compact, hence finite. Therefore, h : A′ → A is a finite morphism. As

the maximal morphism f factors as X
t→ A′ h→ A, h is an isomorphism.

Then h−1 : A→ C is a morphism and ph−1 = IdA. By Fact F.3.0.4, C = 0
in Ext(A,B).

Example F.8.0.4. Let X be a regular manifold, f : X → A be the Albanese
morphism associated to some base point x ∈ X. When B = C, the composed
morphism (F.42) is a linear isomorphism f∗ : H1(A,OA) → H1(X,OX).
When B = C∗, it is the inclusion of the identity component Pic0(A) →
Pic(X).

F.9 Commutative extensions of real Lie groups

Let R be the category of commutative real Lie groups. The solution to the
extension problem within R is summarized in Proposition F.9.0.2. Similar
to Lemma F.4.1.1, the category R is additive but not abelian. Parallel to
the construction in Section F.4, we can define an additive functor ExtR :
Rop ×R → Ab by considering commutative extensions.
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Proposition F.9.0.1 generalizes [Har76, Proposition 5, p.110] (which says
that C is isomorphic to A×B) and [HN11, Lemma 15.3.2] (which is for real
tori). The similar statement for complex tori is false, shown by Example
F.4.1.14.

Proposition F.9.0.1. Let 0 → B → C → A → 0 be an extension of
commutative real Lie groups. If A,B are connected, this extension is trivial.

Proof. Similar to Proposition F.3.2.2, every extension of R is a semidirect
product, hence ExtR(R, •) = 0 onR. Similar to Proposition F.3.2.3, ExtR(S1, B) =
0. According to [Har76, Proposition 4, p.109], A is isomorphic to (S1)n×Rm
for some m,n ∈ N. As the functor ExtR(•, B) : R → Ab is additive, we get
ExtR(A,B) = 0.

Proposition F.9.0.2. For every A,B ∈ R, there is a non canonical isomorphism
in Ab:

ExtR(A,B)→ Ext1Z(A/A0, B/B0)⊕HomAb(π1(A0), B/B0).

Proof. By a real version of Corollary F.4.1.13, there are non canonical
isomorphisms in R: A → A/A0 × A0 and B → B/B0 × B0. By additivity
of the bifunctor ExtR, we get an isomorphism in Ab:

ExtR(A,B)→ ExtR(A/A0, B0)⊕ExtR(A/A0, B/B0)⊕ExtR(A0, B/B0)⊕ExtR(A0, B0).

Using Lemma F.4.1.12, one can prove that ExtR(A/A0, B0) = 0. Identical
to Example F.4.1.10, ExtR(A/A0, B/B0) = Ext1Z(A/A0, B/B0). Similar to
Corollary F.3.2.5 and [Hoc51b, Thm. 3.2], ExtR(A0, B/B0) = HomAb(π1(A0), B/B0).
By Proposition F.9.0.1, ExtR(A0, B0) = 0. The proof is completed.
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[BGR84] Siegfried Bosch, Ulrich Güntzer, and Reinhold Remmert. Non-
archimedean analysis. Vol. 261. Springer Berlin, 1984.
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IV. Étude locale des schémas et des morphismes de schémas,
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Zahlkörpern”. In: Inventiones mathematicae 73.3 (1983), pp. 349–
366.

[Fal88] Gerd Faltings. “Crystalline cohomology and p-adic Galois representations”.
In: Algebraic analysis, geometry, and number theory. Johns
Hopkins University Press, 1988, pp. 25–80.

[Fal91] Gerd Faltings. “Diophantine approximation on abelian varieties”.
In: Annals of Mathematics 133.3 (1991), pp. 549–576. doi:
10.2307/2944319.

[Fal94] Gerd Faltings. “The general case of S. Lang’s conjecture”. In:
Barsotti Symposium in Algebraic Geometry. 1994, pp. 175–
182.

[Far08] Jaques Faraut. Analysis of Lie Groups. Cambridge University
Press Cambridge, 2008. doi: 10.1017/CBO9780511755170.

[Fav12] David Favero. “Reconstruction and finiteness results for Fourier-
Mukai partners”. In: Advances in Mathematics 230.4-6 (2012),
pp. 1955–1971.

[Fis76] Gerd Fischer. Complex analytic geometry. Vol. 538. Springer,
1976. doi: 10.1007/BFb0080338.

[FK88] Eberhard Freitag and Reinhardt Kiehl. Etale cohomology and
the Weil conjecture. Vol. 13. Springer Science & Business
Media, 1988. doi: 10.1007/978-3-662-02541-3.

[FL14] Carlos Florentino and Thomas Ludsteck. “Unipotent Schottky
bundles on Riemann surfaces and complex tori”. In: International
Journal of Mathematics 25.06 (2014), p. 1450056. doi: 10.
1142/S0129167X14500566.

[FLA19] Mathieu Florence and Giancarlo Lucchini Arteche. “On extensions
of algebraic groups”. In: L’Enseignement Mathématique 65.3
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λ-connection, 29
p-adic period map, 17
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Berstein equivalence theorem, 247
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coherator, 249
coherent sheaves, 210
complex period map, 16
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defect of semismallness, 110

flat unitary vector bundle, 96
Fourier-Mukai transform, 26
Fujiki cass C, 118

Gauss-Manin connection, 16
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generic Mumford-Tate group, 42
geometric Lang conjecture, 13
good reduction, 11
good sheaves, 215
Green-Lazarsfeld generic

vanishing theorem, 24

Hecke correspondence, 41
Higgs bundle, 29
holonomic D-modules, 191
homogeneous vector bundle, 27

integral Lang locus, 51
integral model, 51
integral points relative to an

affine embedding, 10

Jacobian, 102

Kodaira dimension, 12
Krämer-Weissauer generic

vanishing theorem, 24

Lang locus, 36
Laumon-Rothstein theorem

algebraic, 166
analytic, 186

Laumon-Rothstein transform, 29,
185

Lawrence-Sawin theorem, 18

Matsushima-Morimoto theorem,
28

Moishezon manifold, 120
Mordell conjecture, 10
Mukai duality, 26

neat subgroup, 38
neutral Tannakian category, 19

plurigenus, 12

quasi-coherent sheaves, 210

regular manifold, 98
relative perverse sheaves, 66
relative Verdier dual functor, 66
Rothstein transform, 178
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semisimple constructible complex
of sheaves, 59

Shafarevich conjecture, 11
special subvariety, 41

Tannakian group of a perverse
sheaf, 20

Tannakian monodromy group, 80

unipotent representation, 27

unipotent vector bundle, 27

universal vectorial extension, 256

universally locally acyclic, 63

Whitney stratification of a
morphism, 109
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