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General Introduction 

“… and there was light.”  

As the evolution of the universe has unfolded throughout the ages, one entity has 
consistently held a place of paramount significance - light. From the very inception of time, light 
has spread its luminescent thread through the formation of our universe, an enduring symbol 
of both mystery and illumination. It is a phenomenon that never fades, for even in the darkest 
corners of space, traces of light persist, as an eternal element of this world. Through ingenuity 
and curiosity, humans learned to harness and manipulate this force, discovering new 
enlightenment areas. It is a story of invention, exploration, and scientific revelation. Starting 
from the ancient civilizations of Egypt and Mesopotamia, where humans first wondered at the 
principles of reflection and refraction, to the Greeks, particularly Euclid, who laid the earliest 
foundations of geometrical optics in the 3rd century BCE. Jumping forward to the 11th century, 
to the Arab scholars with Alhazen, who explored the principles of vision, light, and the formation 
of images in his work “Book of Optics”, setting the stage for the next scientific revolution in 
optics. In the 17th century, the genius, Sir Isaac Newton with his groundbreaking experiments 
with prisms demonstrating the dispersion of white light into colors, revealed the true nature of 
light's composite character. The 19th century witnessed important discoveries in optics, 
including Augustin-Jean Fresnel's wave theory of light, which elegantly explained phenomena 
like diffraction and interference, and James Clerk Maxwell's famous equations, unifying 
electricity and magnetism and identifying light as an electromagnetic wave.  

The journey continued, marked by intriguing inventions and demonstrations in the field of optics 
over the years, until a revolutionary chapter began in 1960 - the invention of lasers. It was Dr. 
Theodore Maiman's pioneering work that led to the birth of the laser [1], a breakthrough 
technology that set the stage for advancements in the world of optics. Following this discovery, 
both new experimental explorations and reevaluation of prior studies saw an exponential 
acceleration in the years that followed [2]. In 1961, Peter Franken and his team showed the 
first experimental nonlinear effect using a ruby laser demonstrating the phenomenon of 
second-harmonic generation [3]. In the remaining years of the 1960s, the revelation that under 
certain conditions, when intense light interacts with a nonlinear medium, new frequencies can 
be produced, led to various other nonlinear optical phenomena, including four-wave mixing, 
frequency broadening, and phase modulation, unlocking an immense potential of nonlinear 
optics in shaping the future of technology and communication. This was mostly recognized in 
1966 with Charles Kao and George Hockham’s work on optical communication [4] who paved 
the way toward the development of optical fibers, leading to modern telecommunications 
networks. As the exploration of nonlinear effects in optical media gained momentum, new 
horizons opened up. Notably, in 1970, the work of Robert Alfano and Sidney Shapiro [5] 
leading to supercontinuum generation, involved exploiting the nonlinear properties of glass to 
broaden the spectral range of initially monochromatic light. Six years after, Lin and Stolen [6] 
were able to demonstrate such phenomena in optical fibers. The supercontinuum generation 
process, achieved by focusing high-intensity laser pulses into nonlinear media, demonstrated 
the remarkable ability to create broadband optical sources spanning a vast range of 
wavelengths, from ultraviolet to infrared. Supercontinuum generation, alongside spectral 
broadening and frequency conversion processes in guided optics [7], are examples of complex 
nonlinear optical phenomena that have formed the foundation of demanding fields spanning 
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advanced light source development, telecommunications, metrology, spectroscopy, and 
microscopy - to only name a few.  

Researchers soon realized that the control and optimization of these processes have become 
essential to tailor nonlinear interactions and achieve the desired output properties, paving the 
way towards the enhancement and adaptability of photonic sources for various applications. 
Over the last few years, science went globallly through a major change with the rise of artificial 
intelligence (AI). AI and machine learning quickly spread to many areas of optical science, 
such as telecommunication, sensing, imaging, and even ultrafast optics [8]. In many ways, this 
rise of AI completely transformed how scientists approached complex problems and made the 
most of nonlinear optical effects. Machine learning thus became popular due to its ability to 
find patterns, predict behaviors, and process big data. In nonlinear optics, it became an 
important part of experiments and numerical simulations, helping scientists understand and 
control complex effects and develop advanced technological solutions such as smart photonics 
sources.  

The research work presented in this manuscript directly fits in this research area, and aims to 
contribute to the study and development of novel approaches for generating and characterizing 
broadband light with tailored multidimensional properties. To this end, the approach currently 
explored within my research team aims at leveraging machine learning techniques to optimize 
ultrashort pulses and their properties during complex nonlinear propagation within single-mode 
fibers, integrated optical waveguides, or even multimode optical fibers. Overall, the research 
efforts surrounding my thesis are presented in Figure. 1, illustrating the different scientific and 
technologic building blocks being currently adressed. 

 
Figure. 1 Overview of the current research directions of the project team for the development of smart 

photonic sources, along with its different technological and scientific building blocks. The approach 
taken includes advanced and multidimensional optical processing of ultrashort pulses, the study of 

nonlinear propagation dynamics, and the development of suitable optical monitoring tools for 
multidimensional characterization. The targeted applications of these “smart sources” are also 

summarized on the right panel. 
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This thesis took place at the XLIM Research Institute at the University of Limoges, within a 
collaborative regional project SCIR from Nouvelle-Aquitaine (AAP-2020), focusing on the 
optimization and control of coherence dynamics and instabilities in the infrared region. 
However, my work is also emcompassed in a broader ERC Starting Grant project called 
STREAMLINE and funded by the European Research Council. STREAMLINE (Smart 
PhoTonic sources harnEssing Advanced Multidimensional Light Optimization towards 
machIne-leaRning-Enhanced imaging), is a multidisciplinary research project aiming at 
advancing the control of optical wavepackets and their nonlinear evolution dynamics through 
machine learning techniques. It seeks to develop smart optical sources with reduced 
complexity, advanced functionalities, and on-demand reconfigurability. These smart sources 
aim at being implemented into various applications such as metrology and microscopy, but 
more specifically towards novel multimodal imaging architecture, with the target of driving a 
paradigm shift in computational imaging. 

Globally, our research focuses on the multidimensional control over the spectral, temporal, and 
spatial properties of ultrafast pulses, providing an extremely large parameter space and 
numerous degrees of freedom to explore rich nonlinear propagation dynamics. While the 
spatial dimension (and multimode propagation dynamics) remains outside the scope of this 
thesis, my research was oriented towards complementary tasks related to the spectral and 
temporal control of optical waveforms, the study of their propagation dynamics and, finally, 
their characterization. 

In the spectral domain, optical processing is studied and performed using a programable 
Fourier filter known as a Waveshaper. In the temporal domain, pulse processing is achieved 
with an integrated waveguide system constituting an integrated photonic pulse processor 
(IPPP). The latter works by splitting an ultrashort pulse into multiple replicas with adjustable 
power, temporal separation, and optical patterns that can be optimized to e.g. favor specific 
spectral enhancements during nonlinear propagation. Leveraging machine learning 
techniques (such as genetic algorithms (GA) and particle swarm optimization (PSO)), allows 
optimizing these parameters and achieve a desired pulse shaping for particular applications.  

Understanding the propagation of light in waveguides, especially the various nonlinear 
processes that can occur during nonlinear fiber propagation, is essential to successfully control 
these propagation dynamics and implementing the necessary characterization tools is of 
paramaount importance in this case.To assess such a large and finely-tunable parameter 
space, one indeed need to rely on advanced optical monitoring methods such as Frequency-
Resolved Optical Gating (FROG) or high-resolution real-time characterization techniques. With 
such approaches, we can measure and identify the properties of the different signals studied 
in our system as well as the stability of broadened output spectra obtained after nonlinear 
propagation in optical fibers.  

Importantly, the beginning of my thesis coincided with the initial stages of the laboratory setup. 
I therefore strongly contributed to the lab’s establishment by initiating the assembly of 
experimental setups. Among others, this included creating a homemade FROG aiming to 
measure, over a large span (> ns), the multiplexed train of pulses (< ps) generated within the 
IPPP chip, to finely tune their temporal properties. Similarly, as the central objective of this 
work revolves around intelligent control, I devoted a large portion of this thesis to the creation 
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of computer-based interfaces, designed to facilitate the operation of all the instruments 
acquired and used in our experimental setups.  

Furthermore, as scientifc environment and circumstances evolved—such as the launch of a 
new project, the onset of the COVID-19 pandemic, and the arrival of new Ph.D. students—my 
research direction shifted toward the development of innovative techniques focused on 
shaping, optimizing and characterizing relevant spectral properties in incoherent nonlinear 
fiber optics. In this context I set up a real-time Dispersive Fourier-transform (DFT) 
characterization technique within the lab, allowing for the detection of shot-to-shot fluctuating 
dynamics in broadband output spectra after highly nonlinear fiber propagation.  

Overall, my thesis thus mainly focuses on the smart control of incoherent nonlinear effects in 
single-mode optical fibers, achieved by optimizing the spectral properties of ultrafast pulses. 
In this framework, this manuscript is organized in four main chapters summarizing the core of 
my thesis work, while complementary experimental and numerical work is also provided in the 
Appendices section for completeness. 

In Chapter I, I provide an overview of the main phenomena observed in guided nonlinear 
optics, with a specific focus on noise-driven and incoherent nonlinear dynamics that will occupy 
an important part in this thesis.  

Chapter II focuses on optical pulse processing and characterization techniques commonly 
used in the litterature and specifically implemented in our experimental work. After an 
introduction on the time-frequency duality in ultrafast optical processing, I discuss in three 
parts: (i) the control of ultrafast pulses using both spectral and temporal shaping strategies; (ii) 
the optical techniques employed for characterizing these signals, and (iii) the different 
approaches used for the optimization of these properties and nonlinear dynamics via machine 
learning strategies. In this chapter, we also introduce and devote a particular attention to real-
time characterization techniques, especially the dispersive Fourier-transform method, that will 
be further discussed and studied in the next chapter. 

The wide-ranging applications of this DFT technique across various domains are detailed in 
Chapter III. Here, we introduce and study in details a novel DFT approach. This work, done in 
collaboration with the Institute of Photonics at Leibniz University of Hannover in Germany, 
combines quantum-based technology measurements and the study of incoherent nonlinear 
dynamics. We report in this case the enhancement of the detection quality using such real-
time characterization techniques. To achieve this, I conducted a two-week experimental 
campaign in Hanover, resulting in the development and validation of a new DFT-based 
approach, with higher performances in terms of sensitivity and resolution.  These results 
demonstrate the applicability of our DFT scheme for the characterization of optical quantum 
states, the measurement of noise-driven fiber propagation dynamics, and further opens up 
exciting possibilities for improved imaging and detection capabilities. This, among others, 
allows to bridge our studies with imaging applications that stand to benefit from the project's 
advancements, but also provide an important framework for optimizing nonlinear instabilities 
as discussed in the next chapter. 

In Chapter IV, we focus on the concept of “smart control” of nonlinear effects studied in this 
thesis. First, we perform a numerical study of the behavior of a nonlinear phenomenon known 
as modulation instability (MI), by exploring its dynamical response to different optical seeding 
scenarios and various initial conditions in the presence of noise. We also report experimental 
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demonstrations of our ability to optimize this noise-drive MI process via evolutionary algorithm  
and DFT measurements, thus allowing us to find the optimal parameters of optical seeds to 
imprint on the initial pulse depending on the targetted properties. 

The innovations carried out and the results obtained through this thesis paves the way towards 
complementary development of smart photonics sources. We discuss this point in the 
Conclusion of this manuscript and develop briefly the perspectives of this work and their 
related applications. 

Finally, in the Appendices section, we report on the complementary work carried out during 
this thesis. In particular, Appendix 1. discusses numerical studies related to the optimization 
of supercontinuuum for multiphoton microscopy. This optimization is obtained numerically by 
leveraging suitable optical pulse pattern formation with an integrated photonic pulse processor 
system available in the lab. Similarly, Appendix 2. illustrates the work made for the in-house 
devellopement of a special FROG system allowing for the experimental characterization of 
such pulse patterns with a good resolution and a large temporal span. 
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Chapter I. Nonlinear phenomena in optical fibers 

In this chapter, I provide an overview of the key nonlinear phenomena occurring in optical 
waveguides, specifically optical fibers. Optical fibers are an important tool in light and 
information transmission. Understanding their various properties and their associated linear 
and nonlinear effects is essential for enabling efficient light manipulation for targeted 
applications. We start with an overview of fibers and guided optics in Section I.1. First, we 
underline the principles of fiber optics and the guiding properties that allow effective light 
propagation. Additionally, we succinctly introduce the fabrication techniques employed in 
creating these waveguides, and briefly touch upon the most common types of waveguides 
used in guided optics. In Section I.2, we focus on the principles of pulse propagation in optical 
fibers by elaborating on both linear and nonlinear underlying mechanisms and by describing 
the wave propagation equation in fiber optics. We also explore the different key linear 
phenomena that can occur during propagation such as dispersion, and, which influences the 
form of the pulse and its power attenuation along the fiber (Section I.2.1). In the realm of 
nonlinear propagation (Section I.2.2), we investigate the Kerr effect, by describing the process 
of phase modulation and its impact on the pulse propagation, as well as the Raman effect 
occurring from the light interacting with the fiber material. Section I.3 examines the methods 
employed to solve the intricate equations governing these nonlinear phenomena. We discuss 
the Nonlinear Schrödinger Equation and its generalized form used for modeling and 
understanding pulse propagation in optical fibers, but also the split-step technique used to 
numerically easily solve these equations. Expanding upon this foundation, Section I.4 
explores different propagation regimes that can typically occur during propagation depending 
on the underlying nonlinear effects, and the parameters of both the pulse and the guiding 
material. We discuss the interplay between the dispersion and nonlinear effects and their link 
to the formation of optical solitons. Additionally, we examine the dispersion regimes, which 
play a pivotal role in shaping the dynamics of pulse propagation. To provide practical insights, 
Section I.5 presents examples of various propagation regimes. We begin by providing an 
overview of the different types of optical solitons encountered in fiber optics including 
fundamental solitons and higher-order solitons and breathers. Moreover, we briefly introduce 
the modulation instability (MI) process which will be the main studied nonlinear phenomenon 
in this thesis. We further explore the principles of four-wave mixing and associated propagation 
dynamics encountered when adding a weak modulation to the system, or from noise 
amplification. Lastly, in Section I.6 we discuss the generation of supercontinuum, by 
examining their different formation mechanisms and associated properties depending on the 
input pulse characteristics and the different dispersion regimes. This chapter aims at 
enhancing our understanding of the various dynamics occurring in optical fibers, paving the 
way for the core focus of the thesis: the characterization, control and optimization of selected 
effects and phenomena arising during nonlinear propagation. 

I.1. Fiber and guided optics overview 

An optical fiber typically consists of a cylindrical dielectric waveguide that has the property of 
guiding light over long distances. Commonly, it consists of a thin filament waveguide that 
confines an electromagnetic wave between two different layers — the core and the cladding 
— with different refractive indices 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. While early work on guided optics [9] 
was investigated by Colladon and Babinet, and Tyndall in 1870 showing how light can travel 
in a stream of water opening the possibility of light transmission in glass rods, the first 
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significant advancement in the development of optical fibers in 1966 can be attributed to 
George Hockham and Charles Kao, who was awarded the Nobel Prize in Physics in 2009 for 
his work on achieving long-distance optical communication using these low-loss optical 
fibers [4]. It involved purifying Silica glass fibers to significantly reduce light scattering, enabling 
them to guide the light over long distances with minimal output loss. This breakthrough laid the 
foundation for the development of practical optical fibers and their adoption as a high-speed 
and efficient telecommunication channel. Fiber optics quickly gained attention from various 
fields, specifically, the low-loss transmission of light signals through fiber optics led to a 
revolution in the telecommunications industry. Their capability to enable high-speed data 
transmission and facilitate the growth of the internet networks, allowed for the  transmission of 
vast amounts of information across continents, contributing to the development of global 
communication systems [10].  

Apart from telecommunication, fiber optics found diverse applications in numerous fields of 
optics and beyond. For example, fiber optics are extensively used in sensing 
applications [11], [12] to measure physical quantities such as temperature, strain [13], 
pressure, and chemical composition. Optical fiber sensors offer high sensitivity, immunity to 
electromagnetic interference, and the ability to remotely monitor conditions in challenging 
environments. With this development, fiber optics led to a revolution in medical imaging 
techniques. Flexible fiber optic bundles are nowadays used in endoscopy [14], to visualize and 
diagnose internal organs, as well as in the development of new high-precision and high-
resolution internal imaging techniques [11]. Most importantly, fiber optics brought tremendous 
advances in laser technology with the creation of fiber lasers [15]. Before the development of 
fiber optics, lasers primarily used bulk materials as the gain medium for light transmission. For 
example, T. Maiman is known for developing the first laser using a ruby crystal. Subsequently, 
other crystal lasers emerged, such as the Nd:YAG and Ti:Sa lasers. In addition, lasers like the 
He-Ne and CO2 lasers, based on gases, can be used in various applications. However, these 
lasers often offer limitations in terms of size, robustness, flexibility, and efficiency. With the 
introduction of optical fibers, the gain medium and the laser cavity can be integrated into 
flexible and compact fiber cables, enabling efficient, stable and versatile laser operation [2]. 
Fiber lasers use the unique properties of optical fibers to confine and guide laser light within 
the fiber core. This confinement allows for efficient light amplification and generation of high-
power laser beams with excellent spatial beam properties. In addition, different dopants or 
specialty-tailored fibers have been developed to provide a versatile platform for various laser 
configurations and designs, including emission wavelength, repetition rate, pulse duration..., 
enabling precise control and targeting of laser energy. Fiber lasers have been extensively used 
in both scientific research and industrial applications. Moreover, with the ability to generate 
ultrashort and high-power laser pulses within fibers, the fundamental study of nonlinear 
phenomena in fiber optics has become a research field in its own right. Starting from the 
mitigation of transmission impairments in telecommunication (i.e. using higher power laser to 
limit the number of amplifiers along the transmission line), nonlinear fiber optics have been an 
active research field for almost half a century, driving fundamental knowledge and associated 
technological advances in many related fields spanning instrumentation, sensing, and 
metrology (e.g. frequency- comb-based measurements – Nobel Prize in Physics 2005 [16]). 
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I.1.1. Principle and guiding properties 

As mentioned before, an optical fiber must be composed of at least two layers with different 
refractive indices in order to guide light effectively. Generally, it is comprised of three main 
layers: the core, the cladding, and the coating:  

The core of the fiber is most commonly made of pure silica, providing an excellent transparency 
from ~800 to 2000 nm [10], and thus making them the weapon of choice in most 
telecommunication applications (e.g. in the C-band around 1.5 µm). 

However, it is worth noting that there are various types of fibers with cores made from different 
materials. Doped silica (such as germanium dioxide (GeO2) can increases the refractive index 
of the core and is often used in telecommunication fibers. Polymers can also be used 
depending on the intended application and desired optical properties, such as polymethyl-
methacrylate (PMMA) plastic optical fibers, and polycarbonate fibers [17].  

So-called “active fibers” acquire distinctive optical properties by the addition of selective 
dopants (e.g. Erbium, Ytterbium) within the fiber core (and eventually the fiber cladding). These 
dopants provide optical gain, resulting in the amplification of the optical signal within particular 
spectral regions. Such active fibers have been instrumental to fiber laser development and 
form the backbone of widespread telecom components such as Erbium-doped fiber amplifier 
(EDFA) [18]. Other type of glasses with extended transparency above 2 µm (e.g. chalcogenide, 
or heavy metal fluoride glasses (ZBLAN fibers), etc.) have also been used for the operation of 
optical fibers in the mid IR window [19], [20]. 

Regarding the geometrical arrangement of optical fiber, the core’s diameter generally varies 
between 10 µm and 85 µm, depending on the type of the fiber [21] and guiding properties 
required for a targeted application.  

The optical cladding, surrounding the core, is also typically made of glass material, and is 
designed to have a lower refractive index. Lastly, the plastic coating serves to protect the 
optical fiber and facilitate its handling, it acts as an insulator against external factors such as 
rain, storms, and humidity.  

Guidance in an optical fiber can be explained when the differences in the refractive indices 
between the core and the cladding enable the common phenomenon known as total internal 
reflection [9]. This means that light incident in the core with the correct angle is endlessly 
reflecting at the fiber’s core-cladding interface (see Figure I.1).  

In order for total internal reflection to occur, two crucial conditions must be met. Firstly, the 
refractive index of the core must exceed that of the cladding (𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 > 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐). Secondly, total 
internal reflection is achieved when the incident angle (Ф) formed between the incident beam 
and the normal to the core-cladding interface is greater than a critical angle (Ф𝜔𝜔) defined by 
the Snell-Descartes law �𝑝𝑝𝑛𝑛𝑛𝑛(Ф𝜔𝜔) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
�. 
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Figure I.1 Illustration of the different layers of an optical fiber and the total reflection of light (orange) 

between the core and the cladding. 

An electromagnetic wave traveling within an optical fiber can be defined by its propagation 
vector 𝑘𝑘0����⃗ . The magnitude of the propagation vector, represented as |𝑘𝑘0����⃗ |, is inversely 
proportional to the wavelength of the wave 𝜆𝜆0, with  𝑘𝑘0 = 2𝜋𝜋

𝜆𝜆0
  [22]. The direction of the 

propagation vector indicates the direction in which the wave is traveling. When the wave enters 
the fiber, it can propagate along multiple paths or modes within the core, depending on the 
core diameter, the wavelength operating range, and the fiber’s material.  

These modes correspond to different spatial distributions of the electric and magnetic fields 
associated with the light wave, and each one of them is associated with a unique constant of 
propagation: 𝛽𝛽0 = 𝑘𝑘0𝑛𝑛𝑐𝑐𝑒𝑒𝑒𝑒 = 2𝜋𝜋

𝜆𝜆0
𝑛𝑛𝑐𝑐𝑒𝑒𝑒𝑒, where 𝑛𝑛𝑐𝑐𝑒𝑒𝑒𝑒 is the refractive index of the guided modes.  

For a mode to be guided, it should then satisfy the condition: 

𝑘𝑘0𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 < 𝑘𝑘0𝑛𝑛𝑐𝑐𝑒𝑒𝑒𝑒 < 𝑘𝑘0𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (Eq. I.1) 

In this case, to describe the mode’s propagation characteristics [23], one can compute the 
normalized frequency (𝑉𝑉), following the relation: 

𝑉𝑉 =
2𝜋𝜋
𝜆𝜆0
𝜔𝜔 𝑁𝑁𝑁𝑁 (Eq. I.2) 

where 𝜔𝜔 is the core radius, and 𝑁𝑁𝑁𝑁 the numerical aperture defined as: 

𝑁𝑁𝑁𝑁 =  �𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 − 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2  (Eq. I.3) 

Based on the value of 𝑉𝑉, different light propagation regimes can occur in an optical fiber. The 
two main regimes are mode number dependent. As a consequence, they are named in 
accordance with their guiding capabilities as single-mode fibers (SMF) and multimode fibers 
(MMF).  

Typically, when 𝑉𝑉 <  2.405, the fiber supports only the so-called fundamental mode so that, at 
the operating wavelength 𝜆𝜆0, only one mode is allowed to propagate. In this thesis, we mainly 
work with a central wavelength around 1550 nm. In such a regime, light propagation does not 
experience significant modal dispersion nor walk-off and typically allows for long-distance 
signal transmission with high bandwidth.  
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On the other hand, when 𝑉𝑉 is larger than the cutoff value for single-mode operation  
(𝑉𝑉 > 2.405), the fiber can support multiple modes to propagate simultaneously. However, due 
to the different propagation paths taken by the modes (when considering a geometrical optics 
description), multimode fibers suffer from modal dispersion, leading to temporal walk-off and 
significant signal distortion.  

 
Figure I.2 A single-mode highly nonlinear fiber with 5.6 µm core diameter observed with a microscope. 

It is important to note that the regimes previously mentioned are strictly associated to fibers 
exhibiting a step-index profile. However, as previously hinted there are numerous variations in 
fiber types, allowing guided propagation with properties depending on the fiber design, 
material, and characteristics of the fiber. Among others, graded-index (GRIN) profiles which 
can be obtained by the specific diffusion of dopants in the fiber core to offer a reduced core 
size and enhanced nonlinearity (via large index contrasts between the core and the cladding) 
to obtain a so-called highly nonlinear fiber (HNLF). Conversely, large mode area (LMA) fibers 
allow for single mode operation with large core size, thus allowing the delivery of higher power 
optical signals without significant nonlinear distortions (via extremely weak index contrasts). 

In the following work, detailed in Chapter III and Chapter IV, we mainly focus on standard 
single-mode optical fibers, including both step-index telecom fibers (i.e. SMF 28) and HNLF 
fibers operating in the telecom band around 1550 nm (see Figure I.2). For completeness, we 
also provide a succinct overview in section I.1.3 of the most common fibers and waveguides 
for which the reported study may be readily transposed.  

I.1.2. Fabrication 

The fabrication process of fiber optics (see Figure I.3) begins with the manufacture of a glass 
preform, which is a large cylindrical structure that contains both the core and cladding glass 
materials and serves as the precursor of the fiber. As we mentioned before, high-purity fused 
silica (SiO2) is commonly the most used material for its ease of shaping, isotropic nature, and 
resistance to thermal and mechanical shocks. Dopants such as Germanium (Ge) and Titanium 
(Ti) can be added to create a slight refractive index difference between the core and cladding. 
The preform is typically made by processes such as modified chemical vapor deposition 
(MCVD) or vapor axial deposition (VAD) [24], [25]. These techniques involve depositing 
multiple layers of materials with specific refractive index profiles onto the inner surface of a 
glass tube. 
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Once the glass preform is synthesized, it undergoes cleaning and inspection to remove 
impurities and defects. Then, the preform is heated in a fiber drawing tower, until it softens and 
collapses under its own weight. The softened preform is then carefully stretched, and the fiber 
is continuously drawn from the preform at a controlled speed, resulting in a long, thin strand of 
glass. To protect the delicate fiber and provide mechanical strength, a protective coating is 
applied to the drawn fiber. Subsequently, a curing process is implemented to harden the 
coating, enhancing its mechanical strength.  

 
Figure I.3 Fabrication process: (a) Preform preparation of a Ge-doped silica fiber using the MCVD 
technique. (b) Fiber drawing by heating and stretching of the preform in fiber tower, creating a thin 

optical fiber and coating with a thin layer of resin. 

 
Finally, a fiber testing is applied where various tests and inspections are conducted to ensure 
the quality and performance of the fiber. Optical and mechanical tests are performed to 
measure parameters such as optical loss, attenuation, bandwidth, and physical properties. 
These tests ensure that the fiber meets the required specifications. After successfully 
completing the testing phase, the fiber is spooled onto large reels or spools to facilitate its 
handling, storage, and transportation. This process should be carried out in a controlled 
environment to minimize the introduction of contaminants or excessive mechanical stresses 
on the fiber, and appropriate tension on the fiber should be ensured. Clean rooms or controlled 
manufacturing areas help maintain the desired cleanliness and temperature conditions during 
the spooling process. 

While the basic steps of fabrication remain similar for different types of fibers, there may be 
some variations and additional steps depending on the specific requirements of the fibers, as 
we will see in the following section.  

I.1.3. Other specialty fibers and optical waveguide  

As mentioned before, optical fibers are structures with the main role of guiding light. In fact, 
these can be classified within a more general class of optical waveguides. We refer to optical 
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waveguides as every structure that consists of at least two layers with different refractive 
indices and possessing the ability to confine the spatial region in which light can propagate. 

We provide below a quick overview of the most common optical waveguides used for the study 
and control of nonlinear effect, also illustrated in Figure I.4.  

However, it is worth noting that other type of optical waveguides spanning plasmonic 
waveguides (based on evanescent coupling), spatial filaments/plasma waveguides [21], as 
well as liquid-based suspensions and biological waveguides (e.g. RBC) [26], also exists but 
fall out of the scope of the current study. 

 
Figure I.4. Illustrative examples of specialty optical fibers: (a) PM fiber; (b) Multicore fiber; (c) Solid-

core PCF; (d) Hollow-core PCF; (e) Tapered fiber. 

 
Specialty optical fibers: 

Apart from the standard fibers, one can find specialty optical fibers, tailored to possess unique 
optical properties and characteristics. For instance, polarization maintaining (PM) fibers are 
special types of fibers designed to maintain the polarization state of light as it travels through 
them. They enable for the two orthogonal polarized modes to travel at different velocities by 
introducing anisotropy within the core of the fiber, by using an elliptical core, or through the 
application of controlled uniaxial stress such as showed in Figure I.4.a, for the PANDA 
fiber [27]. 

One can also find optical fibers featuring multiple individual cores within a single fiber structure. 
They are known as multicore fibers (Figure I.4.b). In such fibers, each core acts as a separate 
waveguide and carry its independent optical signal. As in this case, the phase changes in each 
beam, caused by external factors, are quite similar, making it easier to recombine the beams, 
where the relative phase values will have the most significant impact [28], [29]. 
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In addition, there are some specialized types of fiber, such as photonic crystal fibers (PCF) 
that are composed of a periodic transverse arrangement of holes running along the length of 
the fiber. 

PCF can have various refractive index profiles depending on the specific arrangement of 
periodic holes (see Figure I.4.c-d). For example, some PCFs have a solid core surrounded by 
microstructured holes with specific arrangement and a lower average refractive 
index [30], [31]. Such design allows for a precise control over the fiber’s dispersion properties. 
These fibers offer a broadband guiding, making them highly versatile for applications like 
supercontinuum generation and nonlinear optics. On the other hand, hollow core PCFs (HC-
PCF) have a central hollow region or with an index lower than the cladding. The presence of 
the hollow core creates a photonic band gap (PBG) or a region where certain wavelength of 
light cannot propagate. This unique property allows HC-PCFs to confine light within the hollow 
core, making them suitable for various applications [32]. One of the key advantages of HC-
PCFs is their potential for filling the hollow regions with different gases or liquids, which can 
significantly modify the behavior of light passing through. This tunability makes them valuable 
in applications where precise control over light-matter interactions or the propagation dynamics 
of light are required [33], [34], [35]. 

Additionally, there are other specialized types of waveguides like nanowire waveguides, 
enabling strong light confinement and allowing to guide and manipulate light at a nanoscale, 
or high-index glasses-based waveguides (Hydex) with tunable optical properties which are 
highly used in photonics integrated circuits, and have been demonstrated to present various 
capabilities and application for nonlinear optics in CMOS-compatible platforms [36] (see 
below). One can also mention tapered fibers (Figure I.4.e). These fibers are created by heating 
and pulling to reduce their diameter along a certain length, enabling mode matching and 
efficient light coupling, thus reducing losses, and enhancing for example, the nonlinear effects 
and sensing performances [37].  

Integrated waveguides: 

Integrated waveguides are a fundamental component of modern photonics and nonlinear 
optics and are an essential component in photonic integrated circuits (PIC) devices. These 
waveguides are fabricated using materials like silicon (Si), indium phosphide (InP), or 
germanium arsenide (GeAs), etc., enabling to effectively control light within sub-micron-scale 
structure due to their high transparency and refractive indices. The choice of substrate material 
in waveguides fabrication plays a critical role in either enabling advantages or imposing 
constraints on the technology. For example, for optical fibers communication applications, 
commercialized InP-based integrated waveguides are highly used [38]. One key advantage of 
integrated waveguides, is also their ability to leverage crystalline structures like silicon, 
introducing nonlinear properties (featuring both second and third-order nonlinear responses). 
Additionally, these waveguides can harness the potential of heterogeneous structures and 
hybrid materials, permitting tailored designs for various applications. In this context, silicon 
nitride (SiN), silicon oxynitride (SiON), and silica (SiO2) waveguides have gained 
popularity [39]. Silica-on-silicon integrated optics, using silicon wafers allows for the creation 
of diverse components, such as couplers, filters, and modulators into one single device, 
achieved in a scalable manner, allowing for the development of compact and highly efficient 
photonic circuits [40], [41]. Silica glass also plays a role in waveguide fabrication due to its 
extremely low-loss and its compatibility with standard semiconductor fabrication techniques, 
specifically with the introduction of high index doped-silica (Hydex) in optical photonic 
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integrated circuits [42], [43], [44]. In Figure I.5, we present the Hydex photonic integrated 
circuit – on chip – that we will work with during this thesis and will be further explained in 
Chapter II and Appendix 1. Our PIC implementation plays the role of an integrated pulse 
splitter, by means of Mach-Zehnder interferometers. The Hydex glass platform of the chip is 
distinguished by low linear losses (< 0.06 dB/cm), negligible nonlinear (two-photon) absorption 
and high nonlinearity.  

 
Figure I.5 Photonic on-chip processor with integrated waveguide circuit seen on a computer keyboard 

to illustrate its size, and under microscope with a guided red laser to better see its design. 
 
To understand the guided propagation of light within waveguides (and specifically, in fiber 
optics), we provide below a succinct review of key effects and related linear and nonlinear 
phenomena. 

I.2. Pulse propagation in guided optics 

Using a general approach, an electromagnetic wave can be described by Maxwell's 
equations [24] as: 

𝛻𝛻.𝐷𝐷��⃗ = 𝜌𝜌 (Eq. I.4) 

𝛻𝛻.𝐵𝐵�⃗ = 0 (Eq. I.5) 

∇ × 𝐸𝐸�⃗ = −
∂B��⃗
∂t

 
(Eq. I.6) 

∇ × 𝐺𝐺��⃗ = 𝐽𝐽 +
∂D��⃗
𝜕𝜕𝑎𝑎

 
(Eq. I.7) 

Where, 𝐸𝐸�⃗  and 𝐺𝐺��⃗  are the electric and magnetic fields, respectively. 

𝐷𝐷��⃗  and 𝐵𝐵�⃗  are the corresponding electric and magnetic flux densities, respectively. 

𝐽𝐽 is the electric current density vector, and 𝜌𝜌 is the electric charge density. 

 

To understand the behavior of an optical pulse while propagating in a medium, we need to 
consider the interaction between the pulse and the medium's properties. In the case of optical 
fibers, the medium's response to an incident optical pulse propagating along a direction is 
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described by the polarization and magnetization responses 𝜙𝜙�⃗  and 𝜙𝜙��⃗ , respectively. These two 
can be defined through the relations: 

𝐷𝐷��⃗ =  𝜀𝜀0𝐸𝐸�⃗ + 𝜙𝜙�⃗  (Eq. I.8) 

𝐵𝐵�⃗ = 𝜇𝜇0𝐺𝐺��⃗ + 𝜙𝜙��⃗  (Eq. I.9) 

With 𝜀𝜀0 and 𝜇𝜇0 the vacuum permittivity and permeability, respectively. 

However, as optical fibers are nonmagnetic media, the magnetization 𝜙𝜙 can be considered 
negligible (𝜙𝜙 = 0). In addition, as fiber optics are dielectric media, there are no free charges, 
which implies that 𝐽𝐽 = 0, and 𝜌𝜌 = 0, which makes  𝛻𝛻.𝐷𝐷��⃗ = 0 and thus, ∇.𝐸𝐸 = 0. 

From the equations above, one can derive the wave equation considering the speed of light c 
as 𝜇𝜇0𝜀𝜀0 = 1

𝑐𝑐2
 : 

∇ × ∇ × 𝐸𝐸�⃗ = −𝜇𝜇0𝜀𝜀0
𝜕𝜕2𝐸𝐸�⃗
𝜕𝜕𝑎𝑎2

− 𝜇𝜇0
𝜕𝜕2𝜙𝜙�⃗
𝜕𝜕𝑎𝑎2

=  −
1
𝜔𝜔2
𝜕𝜕2𝐸𝐸�⃗
𝜕𝜕𝑎𝑎2

− 𝜇𝜇0
𝜕𝜕2𝜙𝜙�⃗
𝜕𝜕𝑎𝑎2

 (Eq. I.10) 

The polarization response is central to the wave equation, and generally, can be represented 
as a Taylor expansion of the electric susceptibility 𝜒𝜒 which divides a linear response 𝜙𝜙𝐿𝐿  from a 
nonlinear response 𝜙𝜙𝑁𝑁𝐿𝐿  depending on the incident electric field 𝐸𝐸�⃗ (𝜈𝜈, 𝑎𝑎) as defined by [45] :  

𝜙𝜙�⃗ (𝜈𝜈, 𝑎𝑎) =  𝜀𝜀0�χ(j)
∞

𝑗𝑗=1

𝐸𝐸�⃗ (𝜈𝜈, 𝑎𝑎)𝑗𝑗 

              =  𝜀𝜀0 𝜒𝜒(1)𝐸𝐸�⃗ (𝜈𝜈, 𝑎𝑎) + �𝜀𝜀0 𝜒𝜒(2)𝐸𝐸�⃗ (𝜈𝜈, 𝑎𝑎)2 + 𝜀𝜀0 𝜒𝜒(3)𝐸𝐸�⃗ (𝜈𝜈, 𝑎𝑎)3 + ⋯�    

              = 𝜙𝜙�⃗𝐿𝐿(𝜈𝜈, 𝑎𝑎) + 𝜙𝜙�⃗𝑁𝑁𝐿𝐿(𝜈𝜈, 𝑎𝑎) 

         (Eq. I.11) 

The polarization 𝜙𝜙�⃗𝐿𝐿(𝜈𝜈, 𝑎𝑎) is associated with the first-order electric susceptibility 𝜒𝜒(1) and 
describes a linear propagation in an optical fiber. 

In our work, we consider the nonlinear polarization 𝜙𝜙�⃗𝑁𝑁𝐿𝐿(𝜈𝜈, 𝑎𝑎) including the terms up until the 
third order, which is sufficient for the optical powers at play. However, for centrosymmetric 
materials like silica, which is commonly used in optical fibers, the second-order susceptibility 
𝜒𝜒(2) is typically negligible. 

Therefore, the nonlinear response arises mainly from the third-order susceptibility 𝜒𝜒(3), which 
leads to nonlinear phenomena such as the Kerr effect (self-phase modulation), four-wave 
mixing, and third harmonic generation, which will be further discussed. 

I.2.1. Linear propagation 

In this section, we first consider the linear contribution only, and thus assume that the nonlinear 
response is null, i.e. 𝜙𝜙�⃗𝑁𝑁𝐿𝐿(𝜈𝜈, 𝑎𝑎) = 0, in (Eq. I.11). Therefore, the wave equation (Eq. I.10) 
becomes:  

∇ × ∇ × 𝐸𝐸�⃗ (𝜈𝜈, 𝑎𝑎) = −
1
𝜔𝜔2
𝜕𝜕2𝐸𝐸�⃗ (𝜈𝜈, 𝑎𝑎)
𝜕𝜕𝑎𝑎2

− 𝜇𝜇0𝜀𝜀0 𝜒𝜒(1) 𝜕𝜕
2𝐸𝐸�⃗ (𝜈𝜈, 𝑎𝑎)
𝜕𝜕𝑎𝑎2

 (Eq. I.12) 
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To further simplify the wave propagation equation, we can consider  
𝛻𝛻 × 𝛻𝛻 × 𝐸𝐸 =  𝛻𝛻(𝛻𝛻.𝐸𝐸) − 𝛻𝛻2 𝐸𝐸, and as in fiber optics ∇.𝐸𝐸 = 0, we obtain: 

𝛻𝛻 × 𝛻𝛻 × 𝐸𝐸 =  −𝛻𝛻2𝐸𝐸 (Eq. I.13) 

and the (Eq. I.12) becomes: 

∇2𝐸𝐸�⃗ (𝜈𝜈, 𝑎𝑎) =
1
𝜔𝜔2
𝜕𝜕2𝐸𝐸�⃗ (𝜈𝜈, 𝑎𝑎)
𝜕𝜕𝑎𝑎2

+
1
𝜔𝜔2
𝜒𝜒(1) 𝜕𝜕

2𝐸𝐸�⃗ (𝜈𝜈, 𝑎𝑎)
𝜕𝜕𝑎𝑎2

= (1 + 𝜒𝜒(1))
1
𝜔𝜔2
𝜕𝜕2𝐸𝐸�⃗ (𝜈𝜈, 𝑎𝑎)
𝜕𝜕𝑎𝑎2

 (Eq. I.14) 

 
By considering 𝐸𝐸�(𝜈𝜈,𝜔𝜔) = ∫ 𝐸𝐸�⃗ (𝜈𝜈, 𝑎𝑎)𝑛𝑛𝑐𝑐𝑖𝑖𝑖𝑖+∞

−∞ 𝑑𝑑𝑎𝑎 and 𝜒𝜒�(1)(𝜔𝜔) the Fourier transform of the temporal 

electric field 𝐸𝐸�⃗ (𝜈𝜈, 𝑎𝑎) and the first-order susceptibility 𝜒𝜒(1) (see section 0 for more details), and 
the dielectric constant 𝜀𝜀(𝜔𝜔) = 1 + 𝜒𝜒(1)(𝜔𝜔), we can then write the wave equation in the 
frequency domain as:  

∇2𝐸𝐸�(𝜈𝜈,𝜔𝜔) − 𝜀𝜀(𝜔𝜔)
𝜔𝜔2

𝜔𝜔2
 𝐸𝐸�(𝜈𝜈,𝜔𝜔) = 0 (Eq. I.15) 

 
Expressing the susceptibility 𝜒𝜒�(1)(𝜔𝜔) and the dielectric constant 𝜀𝜀(𝜔𝜔) as complex numbers with 
their real and imaginary parts as: 𝜒𝜒(1) =  𝑅𝑅𝑛𝑛{𝜒𝜒�(1)(𝜔𝜔)} + 𝑛𝑛 𝐼𝐼𝑛𝑛{𝜒𝜒�(1)(𝜔𝜔)}  

and considering that  𝜀𝜀𝐿𝐿(𝜔𝜔) = �𝑐𝑐+𝑐𝑐𝑖𝑖𝑐𝑐
2𝑖𝑖

�
2
allows us to separate and quantify two aspects of the 

material's response that we will discuss in the following section; the refractive index 𝑛𝑛 of the 
fiber, and the linear losses 𝛼𝛼 through the two following relations: 
 

𝑛𝑛𝐿𝐿(𝜔𝜔) = 1 +
1
2
𝑅𝑅𝑛𝑛{𝜒𝜒�(1)(𝜔𝜔)} (Eq. I.16) 

𝛼𝛼𝐿𝐿(𝜔𝜔) =
𝜔𝜔
𝑛𝑛𝜔𝜔
𝐼𝐼𝑛𝑛{𝜒𝜒�(1)(𝜔𝜔)} (Eq. I.17) 

I.2.1.1. Dispersion 

When a pulse propagates through an optical fiber, the different wavelengths composing the 
pulse will travel at slightly different speeds in the waveguide, leading to a pulse distortion 
generating a temporal broadening of the optical pulse. This process is called Chromatic 
Dispersion. This variation in velocity can depend on the mode of propagation considered and 
causes a change in both the temporal profile and the spectral phase of the optical wave.  

There are two main types of chromatic dispersion: material dispersion and waveguide 
dispersion. 

1- Material Dispersion: 

The refractive index 𝑛𝑛 = 𝜔𝜔/𝑃𝑃 is the ratio between the speed of light in vacuum (𝜔𝜔) and in the 
propagation medium (𝑃𝑃). It measures how much the speed of light changes when it passes 
through a particular material. In fiber optics, the refractive index can change due to the 
interaction between light and the materials used in the fiber and it can depend on various 
factors such as the material's composition, but also on the wavelength of light. This 
wavelength-dependent variation is known as material dispersion.  



Lynn SADER | Ph.D. Thesis | University of Limoges | 2023 33 
License CC BY-NC-ND 4.0 

In fiber optics, the variation of the refractive index 𝑛𝑛 in function of the wavelength, or the optical 
frequency of the electromagnetic wave �𝜔𝜔 = 2𝜋𝜋𝑐𝑐

𝜆𝜆
�, can be described using the Sellmeier 

equation [23], [24], [46]: 

𝑛𝑛2(𝜔𝜔) =  1 + �
𝐵𝐵𝑗𝑗  𝜔𝜔𝑗𝑗2 

𝜔𝜔𝑗𝑗2  −  𝜔𝜔2

𝑚𝑚

𝑗𝑗=1

 (Eq. I.18) 

where 𝜔𝜔𝑗𝑗 and 𝐵𝐵𝑗𝑗 are the resonance frequencies, and the coefficient of the j the resonance, 
respectively, which can be experimentally determined [47] and have been computed in fused 
silica for 𝑛𝑛 = 3 [48]. This approximation remains valid when considering wavelengths far away 
for a resonance 𝐵𝐵𝑗𝑗, as typical of fiber optics in the telecom wavelength around 1550 nm (i.e. 
the case studied in this work). 

To characterize material dispersion, we consider the Taylor series expansion [24] of the 
constant of propagation 𝛽𝛽(𝜔𝜔) = 𝑖𝑖

𝑐𝑐
𝑛𝑛 around a central frequency 𝜔𝜔0: 

𝛽𝛽(𝜔𝜔) =  𝛽𝛽0  +  𝛽𝛽1(𝜔𝜔 −  𝜔𝜔0) +
1
2
𝛽𝛽2(𝜔𝜔 − 𝜔𝜔0)2 +

1
6

 𝛽𝛽3(𝜔𝜔 − 𝜔𝜔0)3 + ⋯ (Eq. I.19) 

In this case, 

• 𝛽𝛽0 = 𝛽𝛽(𝜔𝜔0) represents the constant of propagation at 𝜔𝜔0. 

• 𝛽𝛽1 = ∂β0(ω)
∂ω

 = 1
𝑐𝑐
�𝑛𝑛 + 𝜔𝜔 𝜕𝜕𝑐𝑐

𝜕𝜕𝑖𝑖
�, with 𝑛𝑛𝑐𝑐 =  𝑛𝑛 + 𝜔𝜔 𝜕𝜕𝑐𝑐

𝜕𝜕𝑖𝑖
  denominated as the group index and 

equal to 𝑛𝑛𝑐𝑐 = 𝑐𝑐
𝑣𝑣𝑐𝑐

 and with 𝑃𝑃𝑐𝑐 defined as the group velocity. Reformulating, one can 

typically obtain 𝛽𝛽1 = 𝑐𝑐𝑐𝑐
𝑐𝑐

= 1
𝑣𝑣𝑐𝑐

. 

• 𝛽𝛽2 =  ∂
2β0(ω)
∂ω2 = 1

𝑐𝑐
�2 𝜕𝜕𝑐𝑐

𝜕𝜕𝑖𝑖
+ 𝜔𝜔 𝜕𝜕2𝑐𝑐

𝜕𝜕𝑖𝑖2� = 1
𝑐𝑐
𝜕𝜕𝑐𝑐𝑐𝑐
𝜕𝜕𝑖𝑖

= 1
𝜕𝜕𝑣𝑣𝑐𝑐/𝜕𝜕𝑖𝑖

 represents the group-velocity 

dispersion parameter (GVD), also sometimes called second-order dispersion. The 
GVD is responsible for the dispersion of 𝑃𝑃𝑐𝑐 and thus leads to a “symmetric” pulse 
distortion (i.e. temporal spreading). 

• 𝛽𝛽3 =  ∂
3β0(ω)
∂ω3 = 1

𝑐𝑐
�3 𝜕𝜕2𝑐𝑐

𝜕𝜕𝑖𝑖2 + 𝜔𝜔 𝜕𝜕3𝑐𝑐
𝜕𝜕𝑖𝑖3�, represents the third-order dispersion (TOD), which 

becomes relevant when dealing with ultrashort pulses. In this case, TOD (and higher-
order dispersion terms) may have a significant impact on the pulse propagating and 
such odd dispersion term inherently yields “asymmetric” pulse distortion. 

In optical fibers, a particular relevant variable is the zero-dispersion wavelength (ZDW). This 
wavelength, denoted as 𝜆𝜆𝑍𝑍𝑍𝑍𝑍𝑍 (see Figure I.6), corresponds to the point where the GVD value 
vanishes to become zero.  It determines the wavelength where 𝛽𝛽2 changes sign and where 
one moves from one dispersive region to another (i.e. anomalous/normal dispersion). When 
dealing with wavelengths close to the ZDW of a fiber, it also becomes necessary to consider 
TOD and higher-order dispersion terms in the Taylor expansion of (Eq. I.19). 

By convention, it is usual to express the GVD using the dispersion parameter 𝐷𝐷 which 
quantifies the dispersion of the material and is expressed as: 
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𝐷𝐷 =  −  
𝜆𝜆02

2𝜋𝜋𝜔𝜔
𝛽𝛽2 (Eq. I.20) 

2- Waveguide dispersion: 

The material of the fiber is not the only factor affecting the dispersion, as the waveguide 
structure itself further contributes to the overall dispersion: The refractive index profile, the core 
size, and the geometry of the fiber can indeed also affect the chromatic dispersion. This type 
of dispersion arises from the differences in the propagation constant experienced by the 
different frequency-dependent wave vector of a given spatial mode within the fiber.  

The total dispersion of the fiber can be expressed as: 𝐷𝐷𝑖𝑖𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐 = 𝐷𝐷𝑚𝑚𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐷𝐷𝑤𝑤𝑐𝑐𝑣𝑣𝑐𝑐𝑐𝑐𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐 

 
Figure I.6 Representation of the dispersion of a homemade highly-nonlinear fiber (HNLF), both 

designed and fabricated at XLIM. The GVD parameter 𝛽𝛽2 is represented in red and follows an opposite 
direction to the dispersion 𝐷𝐷. The ZDW is marked by an arrow at 1525 𝑛𝑛𝑛𝑛, where 𝛽𝛽2 changes sign. 

 
For certain fiber designs, the waveguide dispersion can be predominant over the material 
dispersion itself, leading to a significant shift in the zero-dispersion wavelength. This shift, 
owing to different values and strength of these two dispersive contributions, allows precisely 
controlling and manipulating the dispersion properties of the fibers by engineering different 
types of fibers for specific applications. 
 
As illustrated in Figure I.4, there is nowadays a large variety of fibers available, including 
dispersion-shifted fibers (with a ZDW around 1.5 µm) and photonic crystal fibers (with finely-
tuned dispersion properties) within the most commonly encountered types taking advantage 
of adjusted waveguides. 
 
Later on, during our studies (see Chapter III and Chapter IV), we will work with a single-mode, 
highly nonlinear Germanium-doped silica fiber with a core diameter of 5.6 µm exhibiting a 
parabolic gradient-index profile. In Figure I.6, we show the overall dispersion curve of this fiber 



Lynn SADER | Ph.D. Thesis | University of Limoges | 2023 35 
License CC BY-NC-ND 4.0 

in the near infrared region. For completeness, we also calculate the corresponding 𝛽𝛽2 and 
observe that it starts with positive values for shorter wavelengths (i.e. normal dispersion), and 
becomes negative for longer wavelengths (i.e. anomalous dispersion) at 
approximately 1525 𝑛𝑛𝑛𝑛, which corresponds to the zero-dispersion wavelength of this fiber.  

I.2.1.2. Attenuation and losses 

Attenuation and losses in fiber optics refer to the decrease in signal strength as light 
propagates through an optical fiber. The attenuation 𝛼𝛼 represents the decrease between the 
input optical power 𝜙𝜙𝑐𝑐𝑐𝑐 and the output power 𝜙𝜙𝑐𝑐𝑤𝑤𝑖𝑖, assuming the losses are uniformly 
distributed all along the fiber of length 𝐿𝐿 through the relation: 

𝛼𝛼 =
−10
𝐿𝐿

log10 �
𝜙𝜙𝑐𝑐𝑐𝑐
𝜙𝜙𝑐𝑐𝑤𝑤𝑖𝑖

� (Eq. I.21) 

The attenuation 𝛼𝛼 is here defined in a logarithmic scale and expressed in dB/km. 

One of the most likely occurrences that can lead to increased losses in optical fibers is the 
minor bends in the fiber's geometry, whether introduced during manufacturing or due to 
external factors. Bending can cause light to hit the core-cladding interface at angles below the 
critical angle. This results in light escaping into the cladding material, leading to losses. Bend 
sensitivity is typically expressed as the attenuation, in dB/km, and given for a specific bend 
radius and wavelength. 

Another important source of losses can be readily attributed by raw material absorption. 
Materials used in fiber optics (specifically silica), can absorb specific wavelengths of light, 
which can lead to notable energy loss. Silica-based fibers exhibit significant absorption in the 
ultraviolet (UV) and infrared (IR) regions. Additionally, impurities in the fiber (e.g. water and 
OH- absorption peak around 1.4 µm) or dopants added to modify the refractive index can 
contribute to absorption losses.  Overall, absorption losses in fiber optics occur due to the 
selective absorption of light by the materials used in the fiber, including both intrinsic absorption 
of silica and absorption caused by impurities or intentional doping. Minimizing these losses 
thus requires the use of high-purity materials and careful control of the fabrication process. 

 
Figure I.7 Illustration of the intrinsic losses in the fiber: Rayleigh scattering (red arrows) where the light 

is scattered due to impurities in the fiber, and the absorption losses (in yellow), where a part of the 
light is absorbed by the fiber’s material. 
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Another factor contributing to the attenuation of light is the Rayleigh scattering process. It 
occurs when light interacts with microscopic variations in the refractive index of the fiber core, 
which are much smaller than the wavelength of the incident light, leading to scattering light in 
various directions. This scattering process results in the loss of optical power as the light 
propagates through the fiber. When light propagates within the fiber, it interacts with the 
electron cloud of the molecules in the core, causing polarization. This leads to the absorption 
of some fraction of the energy by the molecules. The absorbed energy is then re-emitted in the 
form of scattered light, which is emitted in all directions, resulting in a random distribution of 
photons (see Figure I.7). The amount of scattering depends on the size and concentration of 
microscopic refractive index variations in the fiber core.  

This scattering process thus induces losses during fiber propagation, as some of the scattered 
light can escape from the core-cladding interface, reducing the overall intensity of the 
transmitted light: some of the re-emitted light may have angles larger than the critical angle, 
leading to its loss from the core. To mitigate Rayleigh scattering, optical fiber designs target 
highly homogeneous refractive indices in the core, minimizing the microscopic index variations 
and reducing the scattering, thereby minimizing losses. It is worth mentioning that, as the 
extent of the Rayleigh scattering depends on the wavelength of the incident light, shorter 
wavelengths experience stronger scattering because the scattering centers that divert the light 
(i.e. scattering particles or refractive index variations) become relatively larger compared to the 
wavelength.  

In recent years, there has been significant progress in reducing losses and attenuations in 
optical fibers, driven by advancements in fiber designs and fabrication technologies. These 
developments have paved the way for enhanced performance and increased efficiency in 
various optical communication and sensing applications. Here we can cite for example, refined 
and utra low-loss telecom fibers deployed worldwide for long-haul communications, or PCFs 
which have revolutionized the field of fiber optics by their unique microstructured designs, 
allowing for tight confinement and guidance of light. Noteworthy, while PCFs or other 
analogous specialty fibers may exhibit higher losses compared to traditional fibers, their design 
enables greatly enhanced nonlinear effects, such as increased nonlinearity and broader 
transparency bandwidths. In addition, the development of integrated photonic waveguides, 
often referred to as photonic chips or integrated optics, provided excellent control over light 
propagation, enabling efficient and relatively low-loss guiding of optical signals at the chip level.  

I.2.2. Nonlinear propagation 

In this section, we consider the case where the light intensity is strong enough so that nonlinear 
effects cannot be neglected anymore in the polarization of the electric field of (Eq. I.11). In this 
framework, rewriting the wave propagation equation without a linear case approximation 
yields: 

∇ × ∇ × 𝐸𝐸�⃗ (𝜈𝜈, 𝑎𝑎) = −
1
𝜔𝜔2
𝜕𝜕2𝐸𝐸�⃗ (𝜈𝜈, 𝑎𝑎)
𝜕𝜕𝑎𝑎2

−  𝜇𝜇0𝜀𝜀0 𝜒𝜒(1)𝐸𝐸�⃗ (𝜈𝜈, 𝑎𝑎) −  𝜇𝜇0𝜀𝜀0 𝜒𝜒(3)𝐸𝐸�⃗ (𝜈𝜈, 𝑎𝑎)3 (Eq. I.22) 

As we are working with single-mode fibers, the wave equation of second order can be reduced 
to a first-order equation by considering the slowly varying envelop approximation (SVEA) [24] 
of an electric field propagating along the longitudinal z-axis of the SMF with a linear polarization 
along the x-axis. In this case, the SVEA allows for redefining the field as: 
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𝐸𝐸(𝜈𝜈, 𝑎𝑎) =
1
2
�⃗�𝜔 �𝐷𝐷(𝜔𝜔,𝑦𝑦)𝑁𝑁(𝑧𝑧, 𝑎𝑎)𝑛𝑛𝑐𝑐(𝑖𝑖0𝑖𝑖−𝛽𝛽0𝑧𝑧)� (Eq. I.23) 

Here 𝛽𝛽0 is the constant of propagation, 𝜔𝜔0 the central frequency, and 𝐷𝐷(𝜔𝜔,𝑦𝑦) represents the 
transverse spatial distribution of the electric field, which is related to the mode profile in the 
waveguide. The slowly varying envelope function 𝑁𝑁(𝑧𝑧, 𝑎𝑎) captures the temporal and longitudinal 
variations of the field envelope, and the term 𝑛𝑛𝑐𝑐(𝑖𝑖0𝑖𝑖−𝛽𝛽0𝑧𝑧) represents the phase of the electric 
field. The slowly varying envelope approximation is obtained by assuming that the spatial 
variation of the electric field 𝐷𝐷(𝜔𝜔,𝑦𝑦) is much slower compared to the rapidly oscillating temporal 
variation of the electric field 𝑁𝑁(𝑧𝑧, 𝑎𝑎). During this approximation, we can also consider the 
simplification used in (Eq. I.13) because the term  ∇(∇.E) is much smaller than -∇2E. 

With this separation, we can thus write:  

      𝜙𝜙�⃗ (𝜈𝜈, 𝑎𝑎) = 1
2
�⃗�𝜔 �𝐷𝐷(𝜔𝜔,𝑦𝑦)𝜙𝜙(𝑧𝑧, 𝑎𝑎)𝑛𝑛𝑐𝑐(𝑖𝑖0𝑖𝑖−𝛽𝛽0𝑧𝑧)� = 𝜙𝜙�⃗𝐿𝐿(𝜈𝜈, 𝑎𝑎) + 𝜙𝜙�⃗𝑁𝑁𝐿𝐿(𝜈𝜈, 𝑎𝑎) 

=  𝜀𝜀0𝜒𝜒(1)𝑁𝑁(𝑧𝑧, 𝑎𝑎) +  
3
4
𝜀𝜀0𝜒𝜒(3)|𝑁𝑁(𝑧𝑧, 𝑎𝑎)|2 𝑁𝑁(𝑧𝑧, 𝑎𝑎) 

and we then obtain: 

𝜙𝜙�⃗ (𝜈𝜈, 𝑎𝑎) = �𝜀𝜀0𝜒𝜒(1) +
3
4
𝜀𝜀0𝜒𝜒(3)|𝑁𝑁(𝑧𝑧, 𝑎𝑎)|2� 𝑁𝑁(𝑧𝑧, 𝑎𝑎) (Eq. I.24) 

where |𝑁𝑁(𝑧𝑧, 𝑎𝑎)|2 represents the squared magnitude of the envelope function which is 
proportional to the instantaneous power of the optical field. Here, we observe that the nonlinear 
polarization 𝜙𝜙𝑁𝑁𝐿𝐿  captures the interplay between the power and the envelope of the optical field 
within a nonlinear interaction with the medium. 

In an analogous way as in section I.2.1, we can find in this case the nonlinear dielectric 
constant: 

𝜀𝜀𝑁𝑁𝐿𝐿 =
3
4
𝜒𝜒(3) |𝑁𝑁(𝑧𝑧, 𝑎𝑎)|2 (Eq. I.25) 

and identify the total permittivity as [45]: 

𝜀𝜀 =  𝜀𝜀𝐿𝐿 + 𝜀𝜀𝑁𝑁𝐿𝐿 = 1 + 𝜒𝜒(1) +
3
4
𝜒𝜒(3)|𝑁𝑁(𝑧𝑧, 𝑎𝑎)| (Eq. I.26) 

By considering again the complexity of 𝜀𝜀 and 𝜒𝜒, we can find the nonlinear refractive index 𝑛𝑛𝑁𝑁𝐿𝐿 
noted as 𝑛𝑛2 and the nonlinear losses 𝛼𝛼𝑁𝑁𝐿𝐿 as: 

𝑛𝑛2 = 𝑛𝑛𝑁𝑁𝐿𝐿 =
3

8𝑛𝑛𝐿𝐿
𝑅𝑅𝑛𝑛{𝜒𝜒(3)}  (Eq. I.27) 

𝛼𝛼𝑁𝑁𝐿𝐿 =
3𝜔𝜔0

4𝑛𝑛𝐿𝐿𝜔𝜔
𝐼𝐼𝑛𝑛{𝜒𝜒(3)} (Eq. I.28) 

and the total refractive index and losses as: 

𝑛𝑛𝑖𝑖𝑐𝑐𝑖𝑖 = 𝑛𝑛𝐿𝐿 + 𝑛𝑛2|𝑁𝑁|2   (Eq. I.29) 
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𝛼𝛼𝑖𝑖𝑐𝑐𝑖𝑖 =  𝛼𝛼𝐿𝐿 + 𝛼𝛼𝑁𝑁𝐿𝐿|𝑁𝑁|2 (Eq. I.30) 

As we can see from (Eq. I.29), 𝑛𝑛𝑖𝑖𝑐𝑐𝑖𝑖 is dependent on the intensity of the incident light |𝑁𝑁|2, and 
proportional to 𝑛𝑛2. In silica-based fibers, the nonlinear absorption coefficient 𝛼𝛼𝑁𝑁𝐿𝐿 is relatively 
small and can be neglected. Researchers often seek out materials with high refractive indices, 
such as chalcogenides, particularly due to their high values of 𝑛𝑛2 within the telecommunication 
wavelength and their ability to offer excellent optical confinement, making them well-suited for 
nonlinear optical applications. Additionally, these materials generally possess a remarkably 
high nonlinear figure of merit, which determines the feasibility of achieving nonlinear optical 
effects based on a material's linear and nonlinear properties, including its refractive index and 
absorption characteristics. However, it is important to note that high-index materials, while 
powerful for nonlinear effects, can sometimes have limitations and may suffer from significant 
nonlinear losses. On the other hand, certain high-index glasses, like silicon oxynitride, have 
negligible nonlinear absorption, leading to very low figure of merit. 

In the following sections, we will describe the key nonlinear effects occurring in optical fibers 
pertinent to our current studies. It is worth noting that Brillouin scattering will not be the focus 
of our discussion, as we typically work with short laser pulses, (rather than CW lasers), 
operating at power levels significantly below the Brillouin threshold. However it is important to 
acknowledge that Brillouin scattering in optical fibers, based on the inelastic scattering of light 
and characterized by the interaction between the optical and acoustic fields, is an intriguing 
field of research in its own right [49] and has recently been observed in integrated photonics 
systems [50], including our integrated photonic chip [51]. 

I.2.2.1. Kerr effect 

The variation of the nonlinear refractive index 𝑛𝑛2 with the light intensity 𝐼𝐼 = |𝑁𝑁|2 is a well-known 
nonlinear process in fiber optics called Kerr effect.  

This effect occurs almost instantaneously, due to the quasi-instantaneous redistribution of the 
electronic dipole charges during light-matter interaction. This gives rise to a large variety of 
nonlinear phenomena, whose most commonly encountered in fiber optics is probably self-
phase modulation (SPM). 

In the context of SPM, the optical pulse experiences a progressive change of its spectral shape 
due to the intensity dependence of the temporal phase created via Kerr effect. As the intensity 
of the pulse increases, certain regions experience a higher nonlinear refractive index 
compared to regions with lower intensity. This leads to a phase shift, which is the difference 
between different parts of the propagating pulse (see Figure I.8).  

Mathematically, it can be expressed as: 

𝛥𝛥Ф𝑆𝑆𝑆𝑆𝑆𝑆  = 𝑛𝑛2𝑘𝑘0𝐼𝐼𝐿𝐿 (Eq. I.31) 

where 𝛥𝛥Ф𝑆𝑆𝑆𝑆𝑆𝑆 represents the phase shift, and 𝐿𝐿 is the fiber length. It determines the extent of 
phase modulation induced by the intensity of the optical field. Importantly, when considering 
fiber propagation, it is convenient to address the nonlinearity as a function of the instantaneous 
power 𝜙𝜙 in the mode rather than the transverse distribution of the light in the fiber. One can 
then readily define the parameter 𝛾𝛾 as the nonlinear coefficient: 
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𝛾𝛾 =  𝛾𝛾(𝜆𝜆0)  =  𝑛𝑛2
2𝜋𝜋

𝜆𝜆0𝑁𝑁𝑐𝑐𝑒𝑒𝑒𝑒
  (Eq. I.32) 

which represents the strength of the nonlinear optical response in the waveguide. In this case, 
the nonlinear coefficient 𝛾𝛾 does not only depend on the frequency and the nonlinear refractive 
index but also on the effective mode area 𝑁𝑁𝑐𝑐𝑒𝑒𝑒𝑒  which can be defined as: 

𝑁𝑁𝑐𝑐𝑒𝑒𝑒𝑒(𝜆𝜆) =
�∬ �𝐷𝐷�(𝜔𝜔,𝑦𝑦,𝜔𝜔)�2+∞

−∞ 𝑑𝑑𝜔𝜔 𝑑𝑑𝑦𝑦�
2

∬ �𝐷𝐷�(𝜔𝜔,𝑦𝑦,𝜔𝜔)�4𝑑𝑑𝜔𝜔 𝑑𝑑𝑦𝑦+∞
−∞

 (Eq. I.33) 

Following this change of variable, the phase shift induced by SPM can be then given by a 
simpler formula: 

𝛥𝛥Ф𝑆𝑆𝑆𝑆𝑆𝑆 = 𝛾𝛾𝜙𝜙0𝐿𝐿  (Eq. I.34) 

where 𝜙𝜙0 corresponds to the instantaneous optical power in the fiber mode, and the expression 
is conveniently used to define the magnitude of the nonlinear effects during propagation. 

 
Figure I.8 Representation of the evolution of a hyperbolic secant optical pulse with a temporal width of 
100 ps experiencing SPM at different nonlinear phase shifts, considering only Kerr effect in an SMF 

with 𝛽𝛽2 = 21.8 𝑝𝑝𝑝𝑝2. 𝑘𝑘𝑛𝑛−1 and 𝛾𝛾 = 3 𝑊𝑊−1.𝑘𝑘𝑛𝑛−1. In red, we show the normalized input pulse with 
Δ𝜙𝜙𝑆𝑆𝑆𝑆𝑆𝑆 = 0, and in black we can see the output spectrum when increasing the nonlinear phase shift to 

Δ𝜙𝜙𝑆𝑆𝑆𝑆𝑆𝑆 = 𝜋𝜋, 1.5𝜋𝜋, and 2.5𝜋𝜋.  

When the incident field consists of two different wavelengths (and/or different polarizations), 
experiencing SPM and interacting altogether, a new nonlinear phenomenon emerges from it, 
known as cross-phase modulation (XPM) [24]. XPM leads to a mutual influence between the 
components, causing a change in their phase relationship. This interaction can result in a more 
complex distortion of the signal's spectrum, causing an asymmetric broadening or narrowing 
of the individual components. 

I.2.2.2. Raman effect 

Another key nonlinear process that can occur during nonlinear propagation in optical fibers is 
Raman scattering which involves the inelastic scattering of photons by the vibrational modes 
of the molecules in the fiber material. 
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This interaction with the nuclei is in this case non-instantaneous (in contrast with the Kerr effect 
acting on the electrons of the material) and results in an inelastic exchange of energy. This 
interaction can lead to two outcomes: Stokes scattering, where the photon loses energy and 
emerges at a lower frequency, or anti-Stokes scattering, where the photon gains energy and 
emerges at a higher frequency (see Figure I.9). 

 
Figure I.9 Principle of the Raman effect and the energy transfer from E0 to create the Stokes 

components (in green) with an lower energy E0 - ΔE and anti-Stokes components (in red) with a higher 
energy E0 + ΔE, on both sides of the pump. 

An important aspect of the Raman effect in nonlinear optics is Stimulated Raman scattering 
(SRS), which is a specific type of Raman scattering that involves a pumping photon being 
down-converted to a lower frequency, generating a Stokes wave.  

The optical fibers we are using are made of silica which has broad vibrational spectra, whose 
peak gain occur at a frequency detuning of ~ 13.5 THz. It is important to note that the Raman 
gain can be calculated using analytical methods [24], [52] however, in our numerical work, we 
rely on the experimental measurements issued from [53], whose normalized gain profile is 
shown in Figure I.10. 

 
Figure I.10 Normalized Raman gain as a function of the frequency. Generated with data from [53]. 
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SRS mechanism can be stimulated by external optical pumping fields and constitute the 
operation principle of Raman amplifier. However, when an optical pulse is sufficiently short, its 
spectrum can broad enough to offer a non-negligible overlap with the Raman gain spectrum 
shown in Figure I.10, which can directly drive SRS.  

Along with Raman spontaneous emission, this phenomenon can lead to a variety of nonlinear 
effects as the optical pulse interacts with the fiber medium. Among others, spectral broadening 
can be obtained from Raman cascaded amplification. Similarly, ultrashort pulses known as 
solitons can also experience a Raman-induced frequency shift towards longer wavelengths, 
which constitute a key mechanism for the generation of a broadband supercontinuum (SC) – 
see further details about these phenomena in section I.6. 

Overall, it is important to note that the complete nonlinear response 𝑅𝑅(𝑎𝑎) of the material 
comprises two components: the instantaneous electronic response (associated with the Kerr 
effect) and the delayed Raman contributions, yielding: 

𝑅𝑅(𝑎𝑎)  =  (1 −  𝑓𝑓𝑅𝑅)δ𝑎𝑎 +  𝑓𝑓𝑅𝑅ℎ𝑅𝑅(𝑎𝑎) (Eq. I.35) 

Here, 𝑓𝑓𝑅𝑅 denotes the fractional Raman contribution, which corresponds to the ratio of delayed 
Raman effect within the complete nonlinear response. In this case, δ𝑎𝑎 is the instantaneous 
electronic response of the material while ℎ𝑅𝑅 corresponds to the vibration of the material 
molecules by the optical field as illustrated in Figure I.10). 

In silica, the Raman fraction is usually considered as 𝑓𝑓𝑅𝑅  = 0.18 making Kerr effect (i.e. 1-𝑓𝑓𝑅𝑅 = 
82%) predominant and about 5-fold stronger than Raman in optical fiber. 

I.3. Modeling of nonlinear pulse propagation 

As previously mentioned in section I.2.2, during nonlinear light propagation in optical fibers, 
the complex interplay between the electromagnetic fields and the polarization responses of the 
fiber medium leads to a wide range of intriguing phenomena.  

In order to analyze and model this propagation, various mathematical frameworks and 
numerical techniques have been developed over the years. In this section, we discuss two 
prominent models employed for resolving nonlinear wave propagation in optical fibers: the 
nonlinear Schrödinger equation (NLSE), which provides a powerful analytical framework for 
describing the evolution of the electric field in a nonlinear medium, and the generalized 
nonlinear Schrödinger equation (GNLSE) which constitutes an extension of the NLSE 
incorporating additional higher-order effects for more accurate numerical simulations. Finally, 
we discuss the numerical method used to solve both of these differential equations, the Fourier 
split-step algorithm, which combines discrete Fourier transform techniques with stepwise 
integration and thus allows for efficient and accurate simulations, facilitating the exploration of 
diverse nonlinear phenomena. 

Our focus here is primarily on scalar monomodal fiber propagation, where we consider the 
evolution of the linearly polarized optical waveform into a single-mode waveguide. While 
vectorial approaches [54] are also possible and valuable in some contexts, they are not 
considered in our current discussion, as they fall outside the scope of our studies. 

I.3.1. The nonlinear Schrödinger equation 

Starting from the approximations previously described in the section I.2.2, where an isotropic 
slowly varying envelope is assumed, we can now derivate the linearly polarized electric field 
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(Eq. I.23) and the polarization (Eq. I.24) and substitute their values into the wave equation (Eq. 
I.22). Considering only the instantaneous Kerr effect as the nonlinear term and the group 
velocity dispersion during propagation, we obtain what is commonly known as the “standard” 
nonlinear Schrödinger equation in the form of: 

𝜕𝜕𝑁𝑁(𝑧𝑧, 𝑎𝑎)
𝜕𝜕𝑧𝑧

  −  𝛽𝛽1
𝜕𝜕𝑁𝑁(𝑧𝑧, 𝑎𝑎)
𝜕𝜕𝑎𝑎

 + 𝑛𝑛
𝛽𝛽2
2

 
𝜕𝜕2𝑁𝑁(𝑧𝑧, 𝑎𝑎)
𝜕𝜕𝑎𝑎2

 =  𝑛𝑛𝛾𝛾 |𝑁𝑁(𝑧𝑧, 𝑎𝑎)|2𝑁𝑁(𝑧𝑧, 𝑎𝑎) (Eq. I.36) 

Here, the Kerr effect is included via the nonlinear parameter 𝛾𝛾 and the dispersion parameters 
are the results of Taylor’s expansion of the dispersion curve already developed in section 
I.2.1.1. Importantly, the NLSE can be further simplified by considering the temporal evolution 
of the field 𝑁𝑁 in a reference frame moving at the group velocity of the waveform: 𝑇𝑇 =  𝑎𝑎 − 𝑧𝑧

𝑣𝑣𝑐𝑐 
 .  

In this comoving frame, which can be expressed through the constant of propagation 𝛽𝛽1 =
1/𝑃𝑃𝑐𝑐, (Eq. I.37) becomes a simplified version of the NLSE, widely used in nonlinear fiber optics: 

𝑛𝑛
𝜕𝜕𝑁𝑁(𝑧𝑧,𝑇𝑇)
𝜕𝜕𝑧𝑧

−
𝛽𝛽2
2

 
𝜕𝜕2𝑁𝑁(𝑧𝑧,𝑇𝑇)
𝜕𝜕𝑇𝑇2

+ 𝛾𝛾 |𝑁𝑁(𝑧𝑧,𝑇𝑇)|2𝑁𝑁(𝑧𝑧,𝑇𝑇) = 0 (Eq. I.37) 

In this case, the pulse evolution is typically associated with two key parameters 𝛾𝛾 and 𝛽𝛽2, 
respectively accounting for strength of nonlinear and dispersive effects in the fiber (see section 
I.4 for further details).  

I.3.2. The generalized nonlinear Schrödinger equation 

In our work, we are interested in the nonlinear evolution and spectral broadening of ultrashort 
pulses during their propagation in optical fibers. The complex interplay of a variety of linear 
and nonlinear phenomena during pulse propagation requires a refined description of the 
evolution dynamics beyond the standard NLSE in order to ensure the most accurate prediction 
of the pulse evolution and associated nonlinear broadening.  

It is then important to consider attenuation, higher-order dispersive effects as well as both 
instantaneous (Kerr) and non-instantaneous (Raman) nonlinear effects to expand the NLSE 
into the generalized nonlinear Schrödinger equation for a better representation of pulse 
dynamics. The GNLSE equation can be described as: 

𝜕𝜕𝑁𝑁
𝜕𝜕𝑧𝑧

 +
𝛼𝛼
2
𝑁𝑁 −  �

𝑛𝑛𝑐𝑐+1

𝑛𝑛!
𝛽𝛽𝑐𝑐
𝜕𝜕𝑐𝑐𝑁𝑁
𝜕𝜕𝑇𝑇𝑐𝑐

 
∞

𝑐𝑐=2 

=   𝑛𝑛𝛾𝛾 �1 +
𝑛𝑛
𝜔𝜔0

𝜕𝜕
𝜕𝜕𝑇𝑇

 � �𝑁𝑁(𝑧𝑧, 𝑎𝑎)� 𝑅𝑅(𝑇𝑇′)|𝑁𝑁(𝑧𝑧,𝑇𝑇 − 𝑇𝑇′)|2 𝑑𝑑𝑇𝑇′
∞

−∞
� (Eq. I.38) 

The equation can be analyzed by first looking at the left-hand side. The linear propagation is 
described under the different derivation of the constant of propagation 𝛽𝛽𝑐𝑐 = 𝜕𝜕𝑐𝑐𝛽𝛽

𝜕𝜕𝑖𝑖𝑐𝑐, typically up 
to the third-order (or beyond, depending on pulse bandwidth and the required accuracy on the 
dispersion model), as well as the linear losses 𝛼𝛼.  

On the right-hand side of the equation, we can identify the nonlinear effects associated with 
the nonlinear coefficient   𝛾𝛾(𝜔𝜔0) = 𝑖𝑖0𝑐𝑐2

𝑐𝑐𝐴𝐴𝑐𝑐𝑒𝑒𝑒𝑒 
. 

To account for the dispersion of the nonlinearity 𝛾𝛾, the GNLSE also includes a corrective 
“optical shock term” that can take a simplified form as 1/𝜔𝜔0. Altogether, this corrected nonlinear 
coefficient acts on the total nonlinear response of the GNLSE, which not only include the 
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instantaneous Kerr effect, but also the delayed Raman contribution (Eq. I.39) in function of the 
time 𝑇𝑇′ as: 

� 𝑅𝑅(𝑇𝑇′)|𝑁𝑁(𝑧𝑧,𝑇𝑇 − 𝑇𝑇′)|2 𝑑𝑑𝑇𝑇′
∞

−∞
= (1 − 𝑓𝑓𝑅𝑅)|𝑁𝑁(𝑧𝑧,𝑇𝑇)|2 + 𝑓𝑓𝑅𝑅 � ℎ𝑅𝑅(𝑇𝑇′)|𝑁𝑁(𝑧𝑧,𝑇𝑇 − 𝑇𝑇′)|2𝑑𝑑𝑇𝑇′

+∞

−∞
 (Eq. I.39) 

I.3.3. Numerical propagation framework: The split-step Fourier method  

Although a pure one-dimensional NLSE (Eq. I.36) is integrable, the nonlinear propagation of 
optical pulses usually a numerical approach, especially when considering accurate modeling 
with the GNLSE. In our work, we use the split-step Fourier method. This technique takes into 
account that the GNLSE can be written as a combination of linear and nonlinear terms noted 
as 𝐷𝐷� and 𝑁𝑁�, respectively, such as  𝜕𝜕𝐴𝐴

𝜕𝜕𝑧𝑧
= �𝐷𝐷� + 𝑁𝑁��𝑁𝑁. It considers that while the pulse is 

propagating along a distance 𝑧𝑧 of the fiber, the two effects can act independently between two 
points for a sufficiently small distance ℎ. Successively, we consider firstly only the nonlinear 
effects (𝐷𝐷� = 0), and then the dispersive effects alone (𝑁𝑁� = 0).  

In our case, we adopt a symmetric split-step Fourier procedure for integrating (Eq. I.38), which 
enhances the accuracy of the numerical model without significantly increasing computational 
time. This approach involves introducing the dispersion operator at every half-step (ℎ/2) and 
solving it using the Runge-Kutta method  [55], [56]. 

To correctly model the propagation using the split-step method, we must determine the 
parameters that define the spectro-temporal window. These parameters include the temporal 
span (𝑇𝑇𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐), the spectral span (𝐷𝐷𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐), and the number of point  𝑛𝑛𝑠𝑠𝑖𝑖𝑠𝑠. It is also important to 
note that these parameters are inversely related, thus, finding the right balance between them 
is essential. We must consider also a sufficiently large number of integration steps 𝑛𝑛𝑠𝑠𝑖𝑖𝑐𝑐𝑠𝑠𝑠𝑠 
along 𝑧𝑧, which will define our step size ℎ = 𝐿𝐿/𝑛𝑛𝑠𝑠𝑖𝑖𝑐𝑐𝑠𝑠𝑠𝑠, where 𝐿𝐿 is the fiber length. In our numerical 
studies, we dedicate particular attention to optimize these parameters in order to achieve a 
temporal and spectral resolution, and ensure an accurate capture of the complete signal, while 
taking into consideration the computation time. 

I.4. Overview of different pulse propagation regimes 

To study the propagation of an optical pulse in the fiber, we must consider the evolution of both 
the temporal and spectral properties of the pulse. In the temporal domain, an optical pulse can 
be described as a slowly varying envelope 𝑁𝑁 with a corresponding phase 𝜙𝜙.  

To define an optical pulse with a known envelope shape, three main properties should be 
considered:  

• The peak power 𝜙𝜙0, measured in Watt. 

• The pulse duration 𝑇𝑇0, measured at  𝑆𝑆0
𝑐𝑐

 and proportional to the full width at half maximum 
(FWHM) duration of the pulse, 𝑇𝑇𝐹𝐹𝑍𝑍𝐹𝐹𝑆𝑆.  

• The chirp parameter 𝐶𝐶 which describes the phase modulation of the pulses. 

The chirp refers to the temporal dependence of the instantaneous frequency deviation from 
the carrier frequency 𝛿𝛿𝜔𝜔 = −𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
 . It represents the frequency drift of the optical pulse over time. 

This chirp 𝛿𝛿𝜔𝜔 can be caused by effects such as dispersion, nonlinear interactions, or intentional 
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shaping of the pulse, and it affects the pulse's temporal shape, duration, and spectral 
content [24].  

While the chirp can take complex forms depending on the exact dynamics at play, it is 
conveniently represented via a parameter 𝐶𝐶 describing the slope of a linear chirp typically 
observed when a pulse experience pure group velocity dispersion. In this case, a chirped pulse 
can be either positively (𝐶𝐶 > 0) or negatively (𝐶𝐶 < 0) chirped, which means that the 
higher/lower frequency components of the pulse arrive earlier than the lower/higher frequency 
components, respectively.  

There exist different types of pulse envelopes, however, in our studies, we will mainly focus on 
Gaussian pulses and hyperbolic secant pulses. 

If 𝐶𝐶 = 0, these two types of envelopes can be defined respectively by: 

𝑁𝑁𝐺𝐺𝑐𝑐𝑤𝑤𝑠𝑠𝑠𝑠 = �𝜙𝜙0 �−
𝜕𝜕2

2𝜕𝜕02
�, with 𝑇𝑇0 = 𝜕𝜕𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

2√2
 (Eq. I.40) 

𝑁𝑁𝑆𝑆𝑐𝑐𝑐𝑐ℎ = �𝜙𝜙0 sech �𝜕𝜕
𝜕𝜕0
�, with 𝑇𝑇0 = 𝜕𝜕𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

2𝑐𝑐𝑐𝑐(1+√2)
 (Eq. I.41) 

In this case, the pulse has a null temporal phase and is said to be transform limited, 
experiencing the lower time bandwidth product possible (TBP). It can be calculated by: 

𝑇𝑇𝐵𝐵𝜙𝜙 =  𝑇𝑇𝐹𝐹𝑍𝑍𝐹𝐹𝑆𝑆 × 𝛥𝛥𝐹𝐹𝑍𝑍𝐹𝐹𝑆𝑆 (Eq. I.42) 

with 𝛥𝛥𝐹𝐹𝑍𝑍𝐹𝐹𝑆𝑆 the corresponding spectral full width at half maximum. For Gaussian pulses, the 
TBP is around 0.44, and for hyperbolic secant pulses TBP ~ 0.315.  

 If 𝐶𝐶 ≠ 0, linear chirp term will be introduced, and we obtain:  

𝑁𝑁𝐺𝐺𝑐𝑐𝑤𝑤𝑠𝑠𝑠𝑠 = �𝜙𝜙0 �−
𝑇𝑇2

2𝑇𝑇02
� × 𝑛𝑛

−𝑐𝑐𝑖𝑖𝜕𝜕
2

2𝜕𝜕02  (Eq. I.43) 

𝑁𝑁𝑆𝑆𝑐𝑐𝑐𝑐ℎ = �𝜙𝜙0 sech �
𝑇𝑇
𝑇𝑇0
� × 𝑛𝑛

−𝑐𝑐𝑖𝑖𝜕𝜕
2

2𝜕𝜕02  (Eq. I.44) 

While complex dynamics are at play during nonlinear fiber propagation, these pulse 
parameters, along with the prior knowledge of the fiber properties, allows anticipating the 
predominant phenomena for selected initial conditions. Below, we provide an overview of such 
effects and their conditions of occurrence. 

I.4.1. Dispersion regimes 

As mentioned in section I.2.1.1, the group velocity dispersion, or GVD, corresponding to 
frequency dependence of the group velocity, resulting in different propagation speeds for 
different frequency components. In a pure dispersive regime, this leads to temporal 
modifications in the pulse shape, affecting both its width and the decrease of the initial peak 
power as it propagates along the fiber. In this case, we can distinguish two regimes of 
dispersion: 
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• Normal dispersion (𝛽𝛽2 > 0): In this regime, the dispersion parameter 𝐷𝐷 is negative, and the 
higher frequency components of the light propagate slower than the lower frequency 
components.  

• Anomalous dispersion (𝛽𝛽2 < 0): In the opposite way, here the dispersion parameter 𝐷𝐷 is 
positive, and the lower frequency components of the light propagate slower than the higher 
frequency components.  

Figure I.11 shows the temporal evolution, of both the pulse intensity and phase, between the 
normal and anomalous regimes: 

 
Figure I.11 Temporal evolution of the intensity profiles (top) and temporal phases (bottom) of a 

hyperbolic secant pulse with 𝑇𝑇0 = 1 𝑝𝑝𝑝𝑝 and 𝜙𝜙0 = 0.1 𝑊𝑊,  traveling within a 150 m - SMF with  
𝛾𝛾 = 3 𝑊𝑊−1.𝑘𝑘𝑛𝑛−1 and |𝛽𝛽2| = 21.8 𝑝𝑝𝑝𝑝2. 𝑘𝑘𝑛𝑛−1, considering only GVD dispersive effects, either in a 

normal dispersion regime (left) or in an anomalous dispersion regime (right). 

As we can see, in both cases, the pulse broadens temporally and thus experiences a decrease 
of peak power, yet the intensity envelope is equally distorted regardless of the sign of 𝛽𝛽2. 
However, the sign of the quadratic phase accumulated via GVD (and the corresponding linear 
chirp parameter 𝐶𝐶) is directly related to the sign of 𝛽𝛽2. 

Importantly, the impact of the GVD on the pulses depends on the sign of 𝛽𝛽2, and as a 
consequence, the interplay with nonlinear effects can exhibit very distinct behaviors during 
propagation. 

I.4.2. On the balance between nonlinearity and dispersion – The soliton order 

During nonlinear propagation, both nonlinear effects (due to SPM, and described by the 
nonlinear parameter 𝛾𝛾) and chromatic dispersion (mainly GVD, represented by 𝛽𝛽2), play a role 
in modifying the temporal and spectral shape of an optical pulse. Depending on the properties 
of the pulse (𝜙𝜙0 and 𝑇𝑇0), either the nonlinear effects or the dispersive effects will dominate 
during the propagation.  
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For simplicity in assessing the magnitude of these effects, it is convenient to neglect the higher-
order dispersion terms, attenuation and Raman scattering effects, so that to start with the 
standard NLSE (Eq. I.37). It is important to clarify that this simplified model does not fully 
describe the real case propagation scenarios such as the setup presented in the next chapters. 

For instance, in our case, the initial pulse wavelength (𝜆𝜆0 ~ 1550 𝑛𝑛𝑛𝑛) is very close to the ZDW 
of the optical fiber considered (𝜆𝜆𝑍𝑍𝑍𝑍𝑍𝑍 ~ 1525 𝑛𝑛𝑛𝑛 - see Figure I.6), and we thus have to take in 
consideration the dispersion introduced by 𝛽𝛽3, as well as the fiber loss, etc. However, using 
this simplified model allows reducing the NLSE in an adimensional form.  

For convenience, and to study the different propagation regimes, it is important to introduce 
two terms describing the magnitude of linear and nonlinear effects in the NLSE:  

The dispersive length: 𝐿𝐿𝑍𝑍 = 𝜕𝜕02

|𝛽𝛽2|
  (Eq. I.45) 

The nonlinear length: 𝐿𝐿𝑁𝑁𝐿𝐿 = 1
𝛾𝛾0𝑆𝑆0

  (Eq. I.46) 

Starting from (Eq. I.37), and replacing 𝑁𝑁(𝑧𝑧, 𝑎𝑎) with �𝜙𝜙0 𝜓𝜓(𝑧𝑧, 𝑎𝑎), where 𝜓𝜓(𝑧𝑧, 𝑎𝑎) corresponds to a 
dimensionless pulse envelope, and considering the dispersion and nonlinear coefficients in 

function of 𝐿𝐿𝑍𝑍 and 𝐿𝐿𝑁𝑁𝐿𝐿, respectively, as 𝛽𝛽2 = 𝜕𝜕02

𝐿𝐿𝐷𝐷
 and 𝛾𝛾0 = 1

𝐿𝐿𝑁𝑁𝑁𝑁𝑆𝑆0
, we can rewrite the NLSE as:  

�𝜙𝜙0𝐿𝐿𝑍𝑍
𝜕𝜕𝜓𝜓
𝜕𝜕𝑧𝑧

+
𝑛𝑛𝛽𝛽2
2
𝐿𝐿𝑍𝑍
𝑇𝑇02

�𝜙𝜙0
𝜕𝜕2𝜓𝜓

𝜕𝜕(𝑇𝑇2/𝑇𝑇02)
− 𝑛𝑛𝛾𝛾𝐿𝐿𝑍𝑍𝜙𝜙0�𝜙𝜙0|𝜓𝜓|2𝜓𝜓 = 0 (Eq. I.47) 

𝜕𝜕𝜓𝜓
𝜕𝜕(𝑧𝑧/𝐿𝐿𝑍𝑍)

+
𝑛𝑛𝛽𝛽2

2|𝛽𝛽2|
𝜕𝜕2𝜓𝜓

𝜕𝜕(𝑇𝑇2/𝑇𝑇02)
− 𝑛𝑛

𝐿𝐿𝑍𝑍
𝐿𝐿𝑁𝑁𝐿𝐿

|𝜓𝜓|2𝜓𝜓 = 0 (Eq. I.48) 

By normalizing the distance 𝜁𝜁 = 𝑧𝑧\𝐿𝐿𝑍𝑍, the time  𝜏𝜏 = 𝑇𝑇/𝑇𝑇0, and introducing 𝑁𝑁 = � 𝐿𝐿𝐷𝐷
𝐿𝐿𝑁𝑁𝑁𝑁

 , the NLSE 

then reduces to: 

𝜕𝜕𝜓𝜓
𝜕𝜕𝜁𝜁

+ 𝑛𝑛
𝑝𝑝𝑛𝑛𝑃𝑃𝑛𝑛(𝛽𝛽2)

2
 
𝜕𝜕2𝜓𝜓
𝜕𝜕𝜏𝜏2

− 𝑛𝑛𝑁𝑁2|𝜓𝜓|2𝜓𝜓 = 0  (Eq. I.49) 

Under some circumstances, the GVD and nonlinear effects can interact and give rise to 
different phenomena, depending on the sign of 𝛽𝛽2.  

In the normal dispersion regime, where 𝛽𝛽2 > 0, these nonlinear and dispersive effects have 
the same sign in (Eq. I.49) and can act together in a so-called self-defocusing NLSE regime. 
These effects can be used, among others, for pulse compression, optical wave breaking, shock 
formation or the formation of so-called dark solitons [57]. 

In the anomalous dispersion regime, where 𝛽𝛽2 < 0, these nonlinear and dispersive effects 
exhibit different signs in (Eq. I.49) can therefore act in an adversive manner and/or balance 
themselves in this a so-called self-focusing NLSE regime. These phenomena can include 
modulation instability (see section I.5.2) or the formation of bright solitons as discussed below. 

In particular, linear and dispersive effects can exactly balance each other in (Eq. I.49) when  
𝑁𝑁 = 1. In this case, a hyperbolic secant pulse, given in (Eq. I.41), will form a soliton pulse [58], 
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where the shape of the pulse remains unchanged in frequency and time domains over long 
distances (see section I.5.1). For this reason, 𝑁𝑁 is usually defined as a soliton number, where: 

 𝑁𝑁2 =
𝐿𝐿𝑍𝑍
𝐿𝐿𝑁𝑁𝐿𝐿

=
𝛾𝛾0𝜙𝜙0𝑇𝑇02

|𝛽𝛽2|  (Eq. I.50) 

This variable typically provides the number of solitons that can be ejected from a single pulse, 
but also yields a metric to assess the interplay between linear and nonlinear effects along an 
optical fiber of length 𝐿𝐿. 

For this specific case where a fundamental soliton is generated when 𝑁𝑁 = 1, we indeed have 
a perfect balance between these effects so that 𝐿𝐿𝑍𝑍 =  𝐿𝐿𝑁𝑁𝐿𝐿 . 

More generally these effects can have different roles in the propagation dynamics, and we can 
usually distinguish two regimes: 

• 𝑁𝑁 ≪ 1, in this case, we have 𝐿𝐿𝑍𝑍 ≪ 𝐿𝐿𝑁𝑁𝐿𝐿 and the nonlinear effects will be negligible 
compared to the dispersion. The pulse will mainly be distorted due to the GVD effect 
by experiencing a temporal broadening (see section I.4.1) when the propagation length 
𝐿𝐿 is equal or superior to 𝐿𝐿𝑍𝑍. 

• 𝑁𝑁 ≫ 1, in this case, we have 𝐿𝐿𝑁𝑁𝐿𝐿 ≪ 𝐿𝐿𝑍𝑍, and the dispersive effects will be negligible 
compared to the nonlinearity. The pulse will predominantly experience SPM (see 
section I.2.2.1), where the pulse nonlinear phase leads to spectral broadening when 
the propagation length 𝐿𝐿 is equal or superior to 𝐿𝐿𝑁𝑁𝐿𝐿. 

When the nonlinear and dispersive effects are such that 𝐿𝐿 ≪ 𝐿𝐿𝑍𝑍 and 𝐿𝐿 ≪ 𝐿𝐿𝑁𝑁𝐿𝐿, both effects can 
be ignored, and the pulse will eventually lose optical power and progressively vanish through 
attenuation (when considering a non-conservative NLSE). 

Conversely, if 𝐿𝐿 < 𝐿𝐿𝑍𝑍 and 𝐿𝐿 < 𝐿𝐿𝑁𝑁𝐿𝐿, both the nonlinear and dispersive effects need to be 
considered and can lead to a variety of nonlinear phenomena in fiber optics.  

I.5. Examples of nonlinear phenomena in a self-focusing NLSE regime 

In the anomalous dispersion regime (i.e. self-focusing NLSE), which will be the focus of this 
manuscript, modulation instability and the formation of optical solitons are of particular interest 
for our studies and we provide below a succinct overview of these phenomena and their 
principles.  

I.5.1. Optical solitons 

I.5.1.1. Fundamental solitons 

As briefly mentioned in section I.4.2, solitons (here implicitly referring to bright solitons) are a 
special type of nonlinear waves occurring in the anomalous dispersion regime. They exhibit a 
remarkable ability to propagate without any temporal or spectral deformation, maintaining their 
shape over long propagation distance [59]. Their resilience to temporal distortion due to 
dispersion or spectral reshaping via SPM arises from the delicate balance between these 
effects:  

When β2<0, the self-focusing nonlinearity counteracts the dispersion-induced spreading, 
resulting in a stable pulse which phase-induced chirp remains constant during propagation. 
The first-order soliton, also known as the fundamental soliton, corresponds to a hyperbolic 
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secant pulse (Eq. I.41) whose pulse power and duration satisfies the condition 𝑁𝑁 = 1 (so 
that 𝐿𝐿𝑍𝑍 = 𝐿𝐿𝑁𝑁𝐿𝐿). At the fiber propagation onset (𝜁𝜁 = 𝜁𝜁0  =  0), this yields the following initial 
conditions on the pulse envelope: 

𝑁𝑁 (0, 𝜏𝜏) = 𝑝𝑝𝑛𝑛𝜔𝜔ℎ(𝜏𝜏) (Eq. I.51) 

In Figure I.12, we can see the propagation of the fundamental soliton in both frequency and 
time domains along the length of a SMF with 𝛽𝛽2 =  −21.8 𝑝𝑝𝑝𝑝2. 𝑘𝑘𝑛𝑛−1,𝛽𝛽3 = 0.012 𝑝𝑝𝑝𝑝3. 𝑘𝑘𝑛𝑛−1,  and 𝛾𝛾 =
3 𝑊𝑊−1.𝑘𝑘𝑛𝑛−1 

 
Figure I.12 Temporal (bottom left) and spectral (bottom right) evolution of a fundamental soliton with a 

peak power 𝜙𝜙0 = 22.58 𝑊𝑊,𝑇𝑇0 = 1 𝑝𝑝𝑝𝑝, propagating along a SMF with  𝐿𝐿 = 1 𝑘𝑘𝑛𝑛. The normalized 
temporal and spectral intensity profiles are shown in the top panel indicating the superposition 

between the input (red) and output (dashed black). 

I.5.1.2. Higher-order solitons 

When the soliton number is larger so that 𝑁𝑁 > 1, we talk about high-order solitons. These 
complex pulse structures also exhibit a long-range propagation without strong deformation but 
rather evolve periodically in the temporal and spectral domains. In this case, the initial 
conditions for the generation of such higher-order solitons becomes: 

𝑁𝑁 (0, 𝜏𝜏) = 𝑁𝑁 𝑝𝑝𝑛𝑛𝜔𝜔ℎ(𝜏𝜏) (Eq. I.52) 

where 𝑁𝑁 is an integer and correspond to the order of the soliton. 

As can be seen in (Eq. I.50), the soliton number is dependent on the peak power 𝜙𝜙0, which 
means that for the same pulse duration 𝑇𝑇0, we can obtain higher soliton orders by merely 
increasing the input power. The dynamics of these solitons are associated with a variation of 
the phase term of the pulse depending on 𝜁𝜁, leading to a periodic behavior generated from the 
interplay between GVD and nonlinear effects. In normalized units, this interplay exhibits a 
period equal to ζ0 = 𝜋𝜋

2
, which yields, in real units: 
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𝑧𝑧0 = 𝜁𝜁0𝐿𝐿𝑍𝑍 =  
𝜋𝜋
2
𝑇𝑇02

|𝛽𝛽2| 
(Eq. I.53) 

This periodic behavior is clearly illustrated in Figure I.13, where we show the spectro-temporal 
evolution of a second-order soliton (𝑁𝑁 = 2) and a third order-soliton (𝑁𝑁 = 3) in function of the 
distance using a 100 m - SMF. 

 
Figure I.13 Temporal and spectral evolution (top) of a second-order soliton and (bottom) of a third-

order soliton with a temporal width 𝑇𝑇0 = 1 𝑝𝑝𝑝𝑝 and a peak power of 𝜙𝜙0 = 90.32 𝑊𝑊 and 𝜙𝜙0 = 203.22 𝑊𝑊, 
respectively. 

I.5.1.3. Soliton fission and self-frequency shift: 

So far, we have considered soliton dynamics in an ideal NLSE framework. However, for 
realistic experimental conditions, one need to consider a full GNLSE framework including 
higher-order dispersion terms and Raman scattering effect.  

These terms are known to “break” the symmetry of the NLSE and destroy the ideal periodic 
evolution of higher order solitons (see Figure I.14). In this case, when a high-order soliton is 
temporally compressed (so that the pulse is the broadest spectrally and more subject to higher 
order dispersion and Raman effects), it breaks into several fundamental solitons during a 
process  called soliton fission [60], [61]. The location of the breaking is directly related to the 
periodicity of higher-order solitons given in (Eq. I.54) and identified by the fission length: 
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𝐿𝐿𝑒𝑒𝑐𝑐𝑠𝑠𝑠𝑠~
𝐿𝐿𝑍𝑍
𝑁𝑁

 (Eq. I.54) 

 
Figure I.14 Soliton fission in the temporal and spectral domains for the same soliton illustrated in 

Figure I.13 (𝑁𝑁 = 3), using the GNLSE, and a fiber length 𝐿𝐿 = 200 𝑛𝑛. 

In this case, once ejected from the initial pulse, the fundamental solitons experience a spectral 
shift to higher wavelengths (see Figure I.15).  

This latter phenomenon is known as soliton self-frequency shift (SSFS) and arise when the 
spectral bandwidth of a soliton is sufficiently large to spectrally overlap (at least partially) with 
its own Raman gain region (see section I.2.2.2). 

 
Figure I.15 Soliton self-frequency shift process of the fundamental soliton represented in Figure I.12, 

using the GNLSE and a fiber length of 𝐿𝐿 = 1 𝑘𝑘𝑛𝑛. 

In this case, the soliton can sustain “self” stimulated Raman scattering leading to a progressive 
energy transfer to the lower wavelengths side of the spectrum (i.e. Stokes scattering) without 
destroying the soliton (that remains relatively robust to these perturbations). This length-
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dependent spectral shift is visible in Figure I.15, and associated with a progressive temporal 
delay gained by the red-shifted soliton as it propagates within the fiber at a lower speed (i.e. 
anomalous dispersion regime).   

Analytically, when considering fundamental solitons with different power-duration relations to 
fulfill the condition 𝑁𝑁 = 1, the spectral shift acquired as a function of distance for different 
soliton can be approximated by [62]:  

𝑑𝑑𝛥𝛥
𝑑𝑑𝑧𝑧

∝
|𝛽𝛽2|
𝑇𝑇04

 (Eq. I.55) 

Importantly, the different nonlinear and dispersive effects responsible for pulse broadening, in 
addition to soliton fission and SSFS, can collectively contribute to the generation of an 
exceptionally broad spectrum known as a supercontinuum, and further discussed in section 
I.6. In addition, it is worth noting that the formation of solitons not only can be obtained from 
the process described above but can also arise from both coherent and noise-driven processes 
yielding the temporal compression of a pulse or the formation of highly-localized structures 
(that may ultimately lead to soliton fission). A typical nonlinear process well-known in fiber 
optics to trigger this type of dynamics is the phenomenon of modulation instability (MI), which 
will constitute a key element of this manuscript and that we introduce succinctly below. 

I.5.2. Modulation instability (MI) 

To understand modulation instability, we first have to introduce the four-wave mixing process 
(FWM). When two waves with different frequencies 𝜔𝜔1 and 𝜔𝜔2, interact in a Kerr nonlinear 
medium, the intensity-dependent refractive index modulation leads to a periodic variation of 
this index. This modulation, combined with the dispersive effects of the material, can result in 
an energy transfer process between these frequencies, into the energy of two new waves at 𝜔𝜔3 
and 𝜔𝜔4. According to the conservation of energy, the total energy of the system before and 
after the interaction remains constant following the conditions: 

 𝜔𝜔1 + 𝜔𝜔2 = 𝜔𝜔3 + 𝜔𝜔4 (Eq. I.56) 

This condition describes a so-called non-degenerate FWM [45]. In fact, FWM is a crucial 
concept of nonlinear optics that not only depends on the frequencies but also the phase 
matching condition (associated with momentum conservation). This process refers to the 
condition where the relative phases of the interacting beams involved align in such a way that 
constructive interference occurs and the FWM remains efficient over longer distances. When 
the phase matching condition is satisfied, we get the following: 

𝜙𝜙1 + 𝜙𝜙2 = 𝜙𝜙3 + 𝜙𝜙4 (Eq. I.57) 

Similar to this, degenerate FWM can also occur. In this case, the first two propagating waves 
have the same frequency and are considered as the pump wave (𝜔𝜔1 =  𝜔𝜔2 = 𝜔𝜔𝑠𝑠). The pump 
interacts twice in the FWM process and creates two new frequencies on both sides of the pump 
(𝜔𝜔𝑠𝑠𝑐𝑐𝑠𝑠 and 𝜔𝜔𝑐𝑐𝑐𝑐𝑐𝑐), introducing the involvement of only three distinct frequencies following the 
condition. 

2𝜔𝜔𝑠𝑠 =  𝜔𝜔𝑠𝑠𝑐𝑐𝑠𝑠 +  𝜔𝜔𝑐𝑐𝑐𝑐𝑐𝑐 (Eq. I.58) 
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This phenomenon is also denominated three-wave mixing (TWM) in the literature [63], [64]. 
However, it should not be confused for a second-order nonlinear process only involving three 
waves and typically occurring in 𝜒𝜒(2) nonlinear crystals. 

In this framework, modulation instability can be described as a degenerate FWM occurring in 
the anomalous dispersion regime (𝛽𝛽2 < 0) of a fiber. Simply put, the conversion of the pump 
generates two symmetrical sidebands that will grow exponentially during propagation in the 
fiber.  

To gain insight in the underlying physics of MI, one can start by considering a small 
perturbation with an amplitude 𝜔𝜔𝑚𝑚𝑐𝑐𝑐𝑐 on an initial signal 𝑁𝑁(𝑧𝑧, 𝑎𝑎) = �𝜙𝜙0𝑛𝑛𝑐𝑐𝜕𝜕(𝑧𝑧,𝑖𝑖) and get a total 
signal 𝑁𝑁(𝑧𝑧, 𝑎𝑎) = ��𝜙𝜙0 + 𝜔𝜔𝑚𝑚𝑐𝑐𝑐𝑐(𝑧𝑧, 𝑎𝑎)�𝑛𝑛𝑐𝑐𝜕𝜕(𝑧𝑧,𝑖𝑖). By replacing with the NLSE equation we obtain: 

𝑛𝑛
𝜕𝜕
𝜕𝜕𝑧𝑧
𝜔𝜔𝑚𝑚𝑐𝑐𝑐𝑐(𝑧𝑧, 𝑎𝑎) −

𝛽𝛽2
2
𝜕𝜕2

𝜕𝜕𝑎𝑎2
𝜔𝜔𝑚𝑚𝑐𝑐𝑐𝑐(𝑧𝑧, 𝑎𝑎) + 𝛾𝛾𝜙𝜙0�𝜔𝜔𝑚𝑚𝑐𝑐𝑐𝑐(𝑧𝑧, 𝑎𝑎) + 𝜔𝜔𝑚𝑚𝑐𝑐𝑐𝑐∗ (𝑧𝑧, 𝑎𝑎)� = 0  (Eq. I.59) 

In the frequency domain by introducing the wave number 𝑘𝑘 and the frequency of the 
perturbation 𝜔𝜔𝑚𝑚𝑐𝑐𝑐𝑐, Eq I.59 can be resolved giving the dispersion relation [24]: 

𝑘𝑘2 =
𝜔𝜔𝑚𝑚𝑐𝑐𝑐𝑐
2 𝛽𝛽22

4
�𝜔𝜔𝑚𝑚𝑐𝑐𝑐𝑐

2 +
4𝛾𝛾𝜙𝜙0
𝛽𝛽2

�  (Eq. I.60) 

Which means that: 

𝑘𝑘 =
|𝛽𝛽2 𝑖𝑖𝑚𝑚𝑐𝑐𝑐𝑐|

2
 �𝜔𝜔𝑚𝑚𝑐𝑐𝑐𝑐

2 + 𝑝𝑝𝑛𝑛𝑃𝑃𝑛𝑛(𝛽𝛽2)
4𝛾𝛾𝜙𝜙0
|𝛽𝛽2| 

 (Eq. I.61) 

As we can see the Eq I.61 depends on the sign of 𝛽𝛽2. In the case of normal regime (𝛽𝛽2 > 0), 𝑘𝑘 
is real and the signal travelling through the fiber is stable against all perturbations and 
maintains its shape. On the other hand, when 𝛽𝛽2 < 0, we encounter the anomalous dispersion 
regime, and the wave number becomes imaginary for |𝜔𝜔𝑚𝑚𝑐𝑐𝑐𝑐| < 4𝛾𝛾𝑆𝑆0

𝛽𝛽2
 leading an unstable 

solution describing the modulation instability phenomenon and the perturbation can grow 
exponentially, leading to an unstable solution, which describes the modulation instability 
phenomenon where the perturbations grow exponentially during propagation.  

Typically, MI can be explained by considering the TWM truncation of a continuous 
wave 𝑁𝑁0(𝑧𝑧, 𝑎𝑎), interacting with a modulating wave (with a frequency 𝜔𝜔𝑚𝑚𝑐𝑐𝑐𝑐). In this case, the 
initial field can be defined as:  

𝑁𝑁(𝑧𝑧,𝑇𝑇) = 𝑁𝑁0(𝑧𝑧,𝑇𝑇) + 𝑁𝑁1(𝑧𝑧,𝑇𝑇)𝑛𝑛−𝑐𝑐𝑖𝑖𝑚𝑚𝑐𝑐𝑐𝑐𝜕𝜕 + 𝑁𝑁2(𝑧𝑧,𝑇𝑇)𝑛𝑛+𝑐𝑐𝑖𝑖𝑚𝑚𝑐𝑐𝑐𝑐𝜕𝜕 (Eq. I.62) 

This approximation is explained with the assumption that the modulation is very weak 
regarding the pump, so this latter can be considered as undepleted. In this case, one can find 
the gain of the MI resolving the degenerate FWM equations with |𝑁𝑁1|, |𝑁𝑁2| ≪ |𝑁𝑁0| (see section 
I.5.2.3). 

However, for a simple description of modulation instability, three main parameters should be 
introduced as illustrated in Figure I.16: 
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• The frequency cutoff  𝜔𝜔𝑐𝑐 = �4𝛾𝛾0𝑆𝑆0
|𝛽𝛽2| , refers to a critical frequency detuning below which 

modulation instability can occur, or in other words, it sets a threshold for the onset of 
MI, depending on the parameters of the fiber and the input power of the pump. 

• The MI gain  𝐺𝐺𝑆𝑆𝑀𝑀(𝜔𝜔𝑚𝑚𝑐𝑐𝑐𝑐) = |𝛽𝛽2𝜔𝜔𝑚𝑚𝑐𝑐𝑐𝑐|�𝜔𝜔𝑐𝑐2 − 𝜔𝜔𝑚𝑚𝑐𝑐𝑐𝑐
2 . When the modulation 

frequency 𝜔𝜔𝑚𝑚𝑐𝑐𝑐𝑐 < 𝜔𝜔𝑐𝑐, it experiences exponential growth as it propagates through the 
medium. The MI gain is a measure of how much the modulation's amplitude increases 
as it travels within the fiber and is given in 𝑘𝑘𝑛𝑛−1. 

• The maximum gain frequency 𝜔𝜔𝑚𝑚𝑐𝑐𝑚𝑚 = 𝑖𝑖𝑐𝑐

√2
, is the modulation frequency at which the 

highest gain of the instability is observed.  

 
Figure I.16 Modulation instability gain in the frequency domain, calculated for the HNLF fiber used in 
our studies with 𝛽𝛽2 = −1.78 𝑝𝑝𝑝𝑝2. 𝑘𝑘𝑛𝑛−1; 𝛾𝛾 = 8.4 𝑊𝑊−1.𝑘𝑘𝑛𝑛−1 with 𝜙𝜙0 = 30 𝑊𝑊. The frequency cutoff 𝜔𝜔𝑐𝑐 (in 

blue) and the maximum gain frequency 𝜔𝜔𝑚𝑚𝑐𝑐𝑚𝑚 (in red) are also presented. 

I.5.2.1. Induced MI regime 

In a regime of modulation instability, when adding a weak modulation into the pump (with a 
modulation frequency localized within the gain region of the MI), the modulation sidebands 
grow exponentially during the first stage of propagation to eventually lead to spectral 
broadening due to modulation instability [65].  

This process is called induced MI regime and is illustrated in Figure I.17. Starting with a weak 
modulation on a continuous wave (CW), we see how the weak discrete sidebands (symmetric 
around the pump) start to grow in the spectral domain along with the modulation of the CW in 
the temporal domain [66]. With enough power and sufficient propagation, the newly-created 
frequencies will, in turn, act like a pump within additional FWM conversion, thus generating a 
cascaded MI process [67]. As seen in Figure I.17, cascaded MI leads to the formation of a 
periodic train of highly localized pulses. 
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Figure I.17 Induced modulation instability process occurring due to the addition of a weak modulation 
on a CW pump as described in (Eq. I.58). The temporal intensities are illustrated after propagation in 
the HNLF in the top panels at different distances (𝑧𝑧 = 0, 𝑧𝑧 = 10 𝑛𝑛, 𝑧𝑧 = 15 𝑛𝑛) normalized with respect 
to the CW input power 𝜙𝜙0 = 20 𝑊𝑊, and the spectral intensities are shown in the bottom panels. The 2 

THz modulation here has a magnitude equal to 1% of the CW signal. 

I.5.2.2. Spontaneous MI regime 

Another important aspect of modulation instability is related to what is usually called 
spontaneous MI. Even without any external modulation, when a CW pump is slightly noisy, the 
frequency components of the noise already existing in the system (or even the vacuum noise) 
that overlap with the MI gain bandwidth can be amplified as they propagate through the 
fiber [68].  In this case, the amplification of the noise occurs spontaneously over the whole MI 
gain region, rather than being driven by a specific modulation, and leads to the formation of 
broadband MI sidebands.  

This noise-driven process is illustrated in Figure I.18, where we observe the formation of 
broadband MI sidebands in the spectrum, accompanied by weak random modulation of the 
CW signal in the temporal domain. Similar to the induced MI regime, when the noisy 
spontaneous MI sidebands become strong enough, a MI cascading process can occur, leading 
to the formation of localized structures in the time domain. 
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Figure I.18 Spontaneous modulation instability process occurring due to the MI amplification of a white 

noise of 3 photons per spectral mode 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐 = 3  [62] during the propagation of a CW pump in the 
HNLF fiber. The temporal intensities are illustrated after propagation in the HNLF in the top panels at 

different distances (𝑧𝑧 = 0, 𝑧𝑧 = 20 𝑛𝑛, 𝑧𝑧 = 25 𝑛𝑛) normalized with respect to the CW input power 
 𝜙𝜙0 = 30 𝑊𝑊, and the spectral intensities are shown in the bottom panels. 

I.5.2.3. Other frameworks for the description of MI 

Modulation instability extends its influence across various scientific domains, from optics to 
hydrodynamics and plasma physics. It showcases the universal applicability of common 
physical principles in understanding complex phenomena. In hydrodynamics, the Benjamin-
Feir instability is well-known mechanism that can explain the formation of rogue waves on deep 
water [69]. Such waves are characterized by their immense size and steepness; they appear 
instantly and disappear just as quickly. Modulation instability has also been demonstrated in 
plasma physics with the formation of Langmuir waves [70]. In such process, as in optics and 
hydrodynamics, the NLSE remains a fundamental tool for modeling the phenomenon of 
modulation instability.  

For example, in the case of degenerate four-wave mixing, we can use the NLSE to resolve the 
propagation of a signal 𝑁𝑁(𝑧𝑧,𝑇𝑇) with three fields and describe analytically the MI and degenerate 
FWM process obtained between a pump and generated sidebands. 

𝑁𝑁(𝑧𝑧,𝑇𝑇) = 𝑁𝑁0(𝑧𝑧)𝑛𝑛𝑐𝑐𝑘𝑘0𝑧𝑧 + 𝑁𝑁1(𝑧𝑧)𝑛𝑛𝑐𝑐𝑘𝑘1𝑧𝑧𝑛𝑛−𝑐𝑐𝑖𝑖𝑚𝑚𝑐𝑐𝑐𝑐𝜕𝜕 + 𝑁𝑁2(𝑧𝑧)𝑛𝑛𝑐𝑐𝑘𝑘2𝑧𝑧𝑛𝑛+𝑐𝑐𝑖𝑖𝑚𝑚𝑐𝑐𝑐𝑐𝜕𝜕 (Eq. I.63) 

With 𝑘𝑘0, 𝑘𝑘1, and 𝑘𝑘2 the corresponding propagation constants of the three complex fields 𝑁𝑁0,𝑁𝑁1 
and 𝑁𝑁2, respectively. By substituting (Eq. I.63) in the NLSE given in (Eq. I.37), we obtain the 
following set of equations [24],  [71]: 

 

 



Lynn SADER | Ph.D. Thesis | University of Limoges | 2023 56 
License CC BY-NC-ND 4.0 

⎩
⎪
⎨

⎪
⎧−𝑛𝑛

𝑑𝑑𝑁𝑁0
𝑑𝑑𝑧𝑧

= 𝛾𝛾(|𝑁𝑁0|2 + 2|𝑁𝑁1|2 + 2|𝑁𝑁2|2)𝑁𝑁0 + 2𝛾𝛾𝑁𝑁1𝑁𝑁2𝑁𝑁0∗𝑛𝑛𝑐𝑐Δ𝑘𝑘𝑧𝑧                        

−𝑛𝑛
𝑑𝑑𝑁𝑁1
𝑑𝑑𝑧𝑧

−
1
2
𝜔𝜔𝑚𝑚𝑐𝑐𝑐𝑐
2 𝛽𝛽2𝑁𝑁1 = 𝛾𝛾(|𝑁𝑁1|2 + 2|𝑁𝑁2|2 + 2|𝑁𝑁0|2)𝑁𝑁1 + 𝛾𝛾𝑁𝑁2∗𝑁𝑁02𝑛𝑛−𝑐𝑐Δ𝑘𝑘𝑧𝑧

−𝑛𝑛
𝑑𝑑𝑁𝑁2
𝑑𝑑𝑧𝑧

−
1
2
𝜔𝜔𝑚𝑚𝑐𝑐𝑐𝑐
2 𝛽𝛽2𝑁𝑁2 = 𝛾𝛾(|𝑁𝑁2|2 + 2|𝑁𝑁1|2 + 2|𝑁𝑁0|2)𝑁𝑁2 + 𝛾𝛾𝑁𝑁1∗𝑁𝑁02𝑛𝑛−𝑐𝑐Δ𝑘𝑘𝑧𝑧

 

 

(Eq. I.64) 

Where Δ𝑘𝑘 = 𝑘𝑘1 + 𝑘𝑘2 − 2𝑘𝑘0.  

By considering 𝑁𝑁𝑐𝑐 = 𝑏𝑏𝑐𝑐(𝑧𝑧)𝑛𝑛𝑐𝑐𝜕𝜕𝑐𝑐(𝑧𝑧) , with 𝑛𝑛 = {0,1,2}, we can obtain a general solution: 

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧
𝑑𝑑𝜙𝜙0
𝑑𝑑𝑧𝑧

= 𝛾𝛾(𝜙𝜙02 + 2𝜙𝜙12 + 2𝜙𝜙22) + 𝛾𝛾𝜙𝜙1𝜙𝜙2𝜔𝜔𝑛𝑛𝑝𝑝𝜙𝜙                        

𝑑𝑑𝜙𝜙1
𝑑𝑑𝑧𝑧

−
1
2
𝜔𝜔𝑚𝑚𝑐𝑐𝑐𝑐
2 𝛽𝛽2 = 𝛾𝛾(𝜙𝜙12 + 2𝜙𝜙22 + 2𝜙𝜙02) + 𝛾𝛾𝜙𝜙2𝜙𝜙02𝜔𝜔𝑛𝑛𝑝𝑝𝜙𝜙

𝑑𝑑𝜙𝜙2
𝑑𝑑𝑧𝑧

−
1
2
𝜔𝜔𝑚𝑚𝑐𝑐𝑐𝑐
2 𝛽𝛽2 = 𝛾𝛾(𝜙𝜙22 + 2𝜙𝜙12 + 2𝜙𝜙02) + 𝛾𝛾𝜙𝜙1𝜙𝜙02𝜔𝜔𝑛𝑛𝑝𝑝𝜙𝜙

𝑏𝑏0
𝑑𝑑𝜙𝜙0
𝑑𝑑𝑧𝑧

= −2𝛾𝛾𝑏𝑏1𝑏𝑏2𝑏𝑏02𝑝𝑝𝑛𝑛𝑛𝑛𝜙𝜙                                                     

𝑑𝑑𝑏𝑏1
𝑑𝑑𝑧𝑧

= 𝛾𝛾𝑏𝑏2𝑏𝑏02𝑝𝑝𝑛𝑛𝑛𝑛𝜙𝜙                                                                     

𝑑𝑑𝑏𝑏2
𝑑𝑑𝑧𝑧

= 𝛾𝛾𝑏𝑏1𝑏𝑏02𝑝𝑝𝑛𝑛𝑛𝑛𝜙𝜙                                                                     

 (Eq. I.65) 

where 𝜙𝜙 =  Δ𝑘𝑘𝑧𝑧 + 𝜙𝜙1 + 𝜙𝜙2 + 2𝜙𝜙0, is the phase mismatch between the initial signal and the 
sidebands generated by the added modulation. These equations allow us to study the energy 
exchange between the pump and the generated sidebands and achieve a phase matching 
depending on the initial phase.  

In the case of MI, we can also consider using these equations the approximation of the 
truncated TWM model (with the undepleted pump). In this case, the maximum growth rate of 
the sideband occurs when the nonlinear phase-matching condition is met. Such approximation, 
provide a simplified framework describing an ideal FWM model and it has been demonstrated 
and manipulated experimentally [72]. When pump depletion effects become non-negligible, 
the frequency detuning required for phase matching shifts towards lower values. When the 
pump depletes, its independence with the wave-vector matching increases. Consequently, 
what was initially a phase-matched interaction gradually becomes mismatched as power is 
transferred to the sidebands. This effect is particularly relevant in the strong-interaction 
regime [63], [73]. TWF truncation was also studied by considering different analytical 
approaches based on Floquet theory and compared with the NLSE [74] to study the behavior 
of a complex nonlinear system involving MI and Fermi-Pasta-Ulam (FPU) recurrence [75]. 

In addition, a powerful analytical framework based on Akhmediev breather theory [76] have 
been developed over the years to describe MI evolution in a realistic context beyond the ideal 
FWM approximation. The theory, introduced over 30 years ago, consider all the MI sidebands 
(without truncation) and describe a class of soliton on a finite background (SFB) providing 
perfect analytic solutions to the self-focusing NLSE in a regime associated with modulation 
instability [68], [77].  

In this case, three different types of SFBs with different behavior can be identified (i.e. 
Akhmediev breathers, Peregrine solitons, and Kuznetsov-Ma breathers) and their first 
experimental observations where reported over the last years in fiber optics [78]. 
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To describe these three dynamics, we can introduce two main parameters related to the gain 
properties of the previously explained MI:  

𝜔𝜔 =
1
2
�1 −

𝜔𝜔𝑚𝑚𝑐𝑐𝑐𝑐
2

𝜔𝜔𝑐𝑐2 
� (Eq. I.66) 

𝑏𝑏 = �8𝜔𝜔(1 − 2𝜔𝜔) (Eq. I.67) 

By using the simplified NLSE (Eq. I.37), a general solution to analytically describe these SFB 
can be introduced [78] as:  

𝜓𝜓(𝜁𝜁, 𝜏𝜏) = �1 +
2(1 − 2𝜔𝜔) cosh(𝑏𝑏𝜁𝜁) + 𝑛𝑛𝑏𝑏𝑝𝑝𝑛𝑛𝑛𝑛ℎ(𝑏𝑏𝜁𝜁)

√2𝜔𝜔 cos(𝜔𝜔𝜏𝜏) − cosh(b, ζ)
� 𝑛𝑛𝑐𝑐𝑖𝑖    (Eq. I.68) 

Depending on the value of the parameter 𝜔𝜔, different exact solutions can be obtained, and 
further illustrated in Figure I.19:  

• Akhmediev breathers: This type arises when the parameter 𝜔𝜔 falls within the range 
of 0 < 𝜔𝜔 <  0.5 (i.e. the MI gain region). It initiates with a continuous wave with a weak 
modulation that progressively amplifies during propagation to form a highly spatially 
localized but periodic temporal structure. Upon further propagation, the pulse train 
return to its initial state thus illustrating the FPU recurrence phenomenon associated 
with MI. 

• Peregrine soliton: This prediction describes a limit case of the Akhmediev breathers. 
When 𝜔𝜔 → 0.5, the solution evolves by taking energy from the background to generate 
form a peak with an intensity nine times higher than the background. In this scenario, 
the Peregrine soliton exhibit both temporal and spatial localization simultaneously. 

• Kuznetsov-Ma breathers: When 𝜔𝜔 > 0.5, the breathers evolve periodically along the 
fiber, and possess a localization in time (i.e. the opposite of Akhmediev breathers). This 
case corresponds to a modulation falling outside the MI gain region, and a limit case 
when the spatial period tends to infinity is equivalent to the fundamental soliton 
described above in section I.5.1.1.  

 
Figure I.19 Numerical simulation of the SBF: (a) Akhmediev breather; (b) Peregrine soliton; (c) 

Kuznetsov-Ma soliton. Reproduced from [78]. 

Although these SFB correspond to ideal solutions of the NLSE in the presence of a weak 
modulation (i.e. induced MI regime), this powerful analytical framework can also be used in a 
noise-driven MI regime. In particular, the propagation of CW or long pulses (i.e. quasi-CW 
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regime) is known to yield the formation and breathing of randomly localized pulses, as 
illustrated in Figure I.20: 

 
Figure I.20 Formation of randomly localized pulses during spontaneous MI (noise-driven) evolution of 
a CW signal of a 5 W peak power, within an 8 km-SMF in the temporal domain. The x-axis represents 

the time, and the y-axis represents the distance. 

The formation of such localized structures can also be analyzed as the spontaneous 
appearance of breathers and their collision [77], [79] and the appearance of extreme events 
formation, also termed optical rogue waves [80], [81]. 

Indeed, as they form randomly and temporally compress through propagation, these structures 
can break to form solitons and subsequently drive spectral broadening as discussed in section 
I.5.1.3.  

In case of extreme spectral broadening, we usually refer to the process of supercontinuum 
formation, which is briefly discussed in the next section. 

Interestingly, the stochastic appearance of these pulses during propagation and associated 
spectral broadening dynamics sensitive to initial noise conditions have been a field that 
received a considerable attention over the recent years [76], [82]. 

An in-depth analytic study of MI and associated dynamics falls outside the scope of the work 
reported in this manuscript. However, in this thesis, we will here use modulation instability as 
an experimental testbed for advanced characterization techniques of elusive spectral 
fluctuations in Chapter III as well as the control and optimization of MI fluctuating properties 
reported in Chapter IV. 

I.6. Supercontinuum (SC) generation 

As briefly mentioned above, we usually refer to supercontinuum generation (SCG) for 
describing the generation of an extremely broadband spectrum from nonlinear effects. 

Since the early observation of SCG in bulk media and liquids [5], [83], [84], supercontinuum in 
optical fibers was reported in 1976 by Lin & Stolen [6]. In fiber optics, this typically occurs when 
injecting an optical pulse with a sufficiently high pump power into the fiber where the dispersion 
and nonlinear effects create new frequencies to generate the supercontinuum, as illustrated in 
Figure I.21. 
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Figure I.21 Photography of a visible supercontinuum generated via nonlinear fiber propagation. We 

observe a progressive shift of pulse color towards the white as new frequencies are generated during 
propagation, which is dispersed at the fiber output to form a rainbow spectrum. Credits: B. Wetzel. 

However, SCG is a complex phenomenon, as it involves the interplay of complex nonlinear 
and dispersive phenomena. In fact, SCG is influenced by various factors, including the 
properties of the input pulse, the fiber structure, and the pumping conditions [62]. Over the 
years, researchers have explored different regimes of supercontinuum generation, ranging 
from ultrashort pulses [85], [86] to continuous wave sources [87], [88], and have investigated 
the effects of nonlinearity and dispersion in both normal and anomalous regimes. Clearly, the 
choice of the pumping wavelength (and associated pulse properties) plays a crucial role in 
determining both the temporal and spectral characteristics of the supercontinuum. Here, we 
provide a quick overview of the key aspects to consider for SC generation. 

I.6.1.1. Concept of spectral coherence 

The SC can exhibit noisy characteristics due to various phenomena such as stimulated Raman 
scattering and modulation instability. These effects introduce stochastic noise into the SC 
generation process that can be further amplified during nonlinear propagation.  

These noise effects can usually be modeled within the GNLSE framework by performing 
Monte-Carlo simulations and adding a random input noise seed that will slightly change the 
form of the SC in each simulation. This allows us to investigate how fluctuations in the input 
pulse and during propagation influence the intensity and phase stability of the output SC. 

To study the stability of the SC, one can introduce the concept of coherence that can be readily 
measured via a metric termed first order coherence (or mutual coherence) [62], [89]. This 
metric can be used to measure the pulse-to-pulse intensity and phase stability in the SC. From 
numerical simulations, it can be obtained from different Monte-Carlo supercontinuum output 
spectra, respectively generated from different input noise conditions. 

The equation for coherence 𝑃𝑃(1)(𝜆𝜆, 𝑎𝑎1 − 𝑎𝑎2) between two different fields is given by: 

�𝑃𝑃(1)(𝜆𝜆, 𝑎𝑎1 − 𝑎𝑎2)� =
〈𝐸𝐸1∗(𝜆𝜆, 𝑎𝑎1)𝐸𝐸2(𝜆𝜆, 𝑎𝑎2)〉

�〈|𝐸𝐸1(𝜆𝜆, 𝑎𝑎1)|2〉 〈|𝐸𝐸2(𝜆𝜆, 𝑎𝑎2)|2〉 
 (Eq. I.69) 

The angular brackets denote an ensemble average taken over a large number of simulations 
considering different combinations of supercontinuum with complex electric fields 𝐸𝐸1 and 𝐸𝐸2. 
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When measuring the spectral coherence, one typically considers 𝑃𝑃(1)(𝜆𝜆, 0) at zero delay so 
that: 

�𝑃𝑃(1)(𝜆𝜆, 0)� =
〈𝐸𝐸1∗(𝜆𝜆, 0)𝐸𝐸2(𝜆𝜆, 0)〉

�〈|𝐸𝐸1(𝜆𝜆, 0)|2〉 〈|𝐸𝐸2(𝜆𝜆, 0)|2〉 
 (Eq. I.70) 

In addition, averaging over the whole spectrum wavelengths can be performed to obtain a 
representative measure of the SC coherence and ensuring that the statistical variations are 
representative of the overall behavior of the supercontinuum generation process. In this case, 
when 𝑃𝑃(1) = 1 we have a perfect coherence, and when 𝑃𝑃(1) = 0, the spectrum is entirely 
incoherent. 

I.6.1.2. SC generation in the normal dispersion regime 

Supercontinuum generated in a normal dispersion regime, also called ANDi (All-Normal 
Dispersion) supercontinuum, typically lead to highly coherent SC but however features limited 
bandwidth (for a given power budget). It is important to note that the assumption that normal 
SC is inherently coherent is not entirely true and is subject to specific constraints on the input 
pulse parameters. The generation of normal SC involves the interaction of various nonlinear 
phenomena besides SPM. Particular care must be taken with the stimulated Raman scattering 
and four-wave mixing, due to their contributions to the incoherence of the SC [62].  

Optical wave breaking (OWB) occurs in the normal dispersion regime where the pulse is   
mainly distorted due to GVD. Additionally, due to SPM, the power dependence of the pulse’s 
phase, induces a non-monotonic instantaneous frequency, resulting in an oscillation during 
spectral broadening. In the distorted pulse resulting from these two phenomena, the 
instantaneous frequency maxima are at the pulse center, while the corresponding pulse tails 
possess lower instantaneous frequency-induced chirp. Due to the different propagating speeds 
at both tails, the pulse progressively overlaps with two components with different instantaneous 
frequencies in the temporal domain which is what is commonly defined as optical wave 
breaking [90]. 

To understand the generation of SC in the normal dispersion regime, we define the wave-
breaking length 𝐿𝐿𝑍𝑍𝑊𝑊 [90] which helps us understand the role of OWB in the formation of 
coherent SC and the length 𝐿𝐿𝑖𝑖  at which the coherence of the pulses exceeds 0.9: 

𝐿𝐿𝑍𝑍𝑊𝑊 = 1.1
𝐿𝐿𝑍𝑍
𝑁𝑁

 (Eq. I.71) 

𝐿𝐿𝑖𝑖 = 𝐿𝐿𝑅𝑅∗ /𝐿𝐿𝑍𝑍𝑊𝑊 (Eq. I.72) 

where 𝐿𝐿𝑅𝑅∗  is the characteristic length at which the parametric Raman gain becomes significant 
and induces a loss of coherence in the generated SC. 

Based on the values of N and the temporal duration of the pulse (FWHM), spanning from the 
femtosecond regime to longer pulses or even continuous waves (CW), one can characterize 
the generation of normal dispersion SC into three main regimes [91]: 

1- 𝑇𝑇𝐹𝐹𝑍𝑍𝐹𝐹𝑆𝑆 < 1 𝑝𝑝𝑝𝑝 (𝑁𝑁 < 400): In this regime, the SC is primarily generated by SPM and 
OWB. Here, 𝐿𝐿𝑍𝑍𝑍𝑍 is very small due to the short pulse width, resulting in high coherence. 
On the other hand, 𝐿𝐿𝑖𝑖 is very large, and the SC exhibits good coherence but a relatively 
narrow bandwidth. 
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2- 1 𝑝𝑝𝑝𝑝 < 𝑇𝑇𝐹𝐹𝑍𝑍𝐹𝐹𝑆𝑆 < 1.5 𝑝𝑝𝑝𝑝 (400 < 𝑁𝑁 <   600): In this regime, 𝐿𝐿𝑖𝑖 decreases rapidly and 
intersects with 𝐿𝐿𝑍𝑍𝑊𝑊. The intersection point corresponds to the maximum achievable 
coherent bandwidth in the SC, highlighting the significant role of the fiber length in 
designing the SC. 

3- 𝑇𝑇𝐹𝐹𝑍𝑍𝐹𝐹𝑆𝑆 > 1.5 𝑝𝑝𝑝𝑝 (𝑁𝑁 > 600): In this regime, the overall coherent bandwidth and the 
length at which coherence occurs decrease due to the presence of incoherent OWB. 
This occurs for long and CW pulses, where 𝐿𝐿𝑖𝑖 becomes larger than 𝐿𝐿𝑍𝑍𝑊𝑊. 

I.6.1.3. SC generation in the anomalous dispersion regime 

To obtain an optimal bandwidth, supercontinuum generation in the anomalous dispersion 
regime has been extensively studied over the years, particularly for ultrashort pulses 
(femtosecond regime) which can also provide good SC coherence properties. This regime is 
commonly achieved by operating at wavelengths close to or above the ZDW, as illustrated in 
Figure I.22.  

 
Figure I.22 Example of coherent supercontinuum generated in the anomalous dispersion from a 100 fs 

input pulse with 𝜙𝜙0  = 3 𝑘𝑘𝑊𝑊 propagating in our HNLF with 𝛽𝛽2 = −1.78 𝑝𝑝𝑝𝑝2. 𝑘𝑘𝑛𝑛−1,𝛽𝛽3 =
0.07𝑝𝑝𝑝𝑝3. 𝑘𝑘𝑛𝑛−1, 𝛾𝛾 = 0.008 𝑊𝑊−1.𝑘𝑘𝑛𝑛−1, and represented for a length 𝐿𝐿 = 2 𝑛𝑛. 

Firstly, to achieve the highest bandwidth SC, it is necessary to inject a short pulse close to the 
ZDW, so that the first phenomenon typically occurring is SPM. After initial spectral broadening, 
the pump propagating in the presence of perturbations (such as Raman effects and higher-
order dispersion) breaks apart, thus generating a soliton-fission process. In addition, when 
pumping close to the zero-dispersion wavelength, the soliton can transfer some of its energy 
resonantly to spectral components known as dispersive waves (DWs), located in the normal 
dispersion regime of the fiber [62]. Dispersive waves are here associated with the stabilization 
of the fundamental solitons that are ejected during the fission process.  

As the initial pulse breaks into multiple solitons, the energy distribution among them creates a 
spectral imbalance leading to the emission of DWs contributing to the overall spectral 
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broadening of the supercontinuum. In this regime, we can ensure a high degree of coherence 
when the pulse spectra broadens quickly enough to overlap with the modulation instability gain 
spectrum before significant noise amplification occurs, which corresponds to a case where 
𝑁𝑁 < 16. By limiting the soliton order (𝑁𝑁 < 10) deterministic soliton fission dominates the 
dynamics, leading to a controlled spectral evolution that can maintain coherence [62]. 

When considering longer pulses (so that 𝑁𝑁 > 16), SC generation is strongly affected by 
modulation instability. In this case, as explained in section I.5.2.2, the initial noise in the system 
will get amplified and generate spontaneous MI sidebands that drive the onset phase of SC 
spectral broadening. Contrary to the case of femtosecond pulses, where the pulse fission and 
dispersive waves occur in a predictable manner dictated by the GNLSE equations and the 
specific parameters of the system, here, the fission process is influenced by stochastic factors 
associated with the initial noise in the system. This introduces randomness and variability into 
the outcome of the pulse fission. Even for identical input pulses, different realizations 
considering different initial noise seeds can lead to variations in the resulting dynamics and 
output spectrum. The presence of noise leads to a variety of possible outcomes, resulting in a 
range of spectral features and intensity distributions in the supercontinuum. In this context, we 
talk about an incoherent (or quasi-coherent) SC. 

In this context, it is important to note that the stochastic spectral fluctuations obtained due to 
the existing noise in the system might not be easily observed in experiments using e.g. optical 
spectral analyzers with limited resolution and long integration times. To suitably analyze these 
fluctuations, we discuss in Chapter II and Chapter III, different approaches to detect shot-to-
shot fluctuations and perform real-time measurements of broadened output spectra after 
nonlinear propagation.  

In this chapter, we saw that spectral broadening and supercontinuum generation are highly 
influenced by the initial conditions of both the input pulse and the fiber properties, leading to 
different propagation regimes and nonlinear dynamics discussed above. Therefore, a thorough 
understanding and control of these initial properties are crucial in manipulating the nonlinear 
propagation dynamics efficiently. 

By studying and comprehending the interplay between initial conditions and noise-induced 
fluctuations, we can effectively harness and optimize nonlinear processes for various 
applications. These findings thus highlight the significance of precise control and thorough 
characterization in the generation and applications of supercontinuum sources. 
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Chapter II. Ultrafast pulse control and characterization 

Being able to study and manipulate the characteristics of an optical pulse, or even ultrashort 
laser pulses, is at the core of our studies. It allows generating and tailoring different nonlinear 
dynamics in fiber optics and therefore manipulate the resulting output waveform. In this 
chapter, we explore the behavior of optical pulses in both the time and frequency domains 
within the framework of the Fourier transform, particularly the principle of frequency-time 
duality which we briefly introduce in Section II.1.  

To control the pulse properties, we must understand their critical role in the nonlinear spectral 
broadening dynamics. Different techniques and approaches can be used to adjust the pulse’s 
width, shape, and phase. In Section II.2 we introduce the strong dependence of the spectral 
and temporal parameters of an input laser pulse on the spectral broadening after nonlinear 
propagation in optical fiber. We discuss different tools commonly used to mold the input pulse 
properties in both domains, and specifically focus on the instruments we will be using in this 
thesis for our experimental studies.  

To obtain finely tuned broadband spectra and adaptable nonlinear dynamics for optimal 
results, we dive into the realm of machine learning. Optimization algorithms and machine 
learning strategies complement the pulse control methods to predict the propagation behavior 
based on the chosen initial parameters and employ “smart” and optimized strategies to 
automatically select the correct pulse properties for a given objective. Section II.3, provides 
an overview of machine learning, encompassing learning methods, algorithms, applications, 
and their growing significance in ultrafast optics. Evolutionary algorithms, especially genetic 
algorithms, take a central stage in these discussions and are explained in further detail as they 
constitute the predominant algorithms used in our studies.  

However, to control these properties, we must first be able to accurately measure the pulses 
or the optical waveforms of interest. This procedure may not always be easy, especially for 
ultrafast pulses. Efficient characterization techniques then become indispensable in the pursuit 
of generating and monitoring pulses with tailored properties. In Section II.4., different methods 
for optical waveform measurements are introduced and detailed, such as autocorrelation and 
the Frequency-Resolved Optical Gating (FROG) technique. The latter can for instance provide 
a complete characterization of the pulse by retrieving both the intensity and phase profiles of 
the optical signal. In addition, for real-time detection, we introduce the dispersive Fourier- 
transform (DFT) technique which is of paramount importance for the characterization of 
fluctuating optical waveforms. Here, we describe its principle and ability to reveal hidden 
spectral features and patterns in incoherent signals, thus proving critical in e.g. noise analysis 
and supercontinuum generation stability monitoring. 

II.1. Time-frequency duality in the Fourier transform 

To study the properties of a pulse and gain insight into its behavior within a nonlinear medium, 
the Fourier transform is a fundamental tool, essential to understand and model optical fiber 
propagation (see section I.3.3). This concept revolves around comprehending the interplay 
between a pulse’s characteristics in the time and frequency domains, recognizing their dual 
nature and their intrinsic link. As succinctly described in Chapter I, any modification in one 
domain can drastically influence the pulse’s properties in the other domain (and thus impact 
its evolution dynamics). 
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The Fourier transform (FT)  [92] is a mathematical tool that allows us to analyze a function or 
a signal in both the time and frequency domains. It maps the signal from the time domain to 
the frequency domain, providing a representation of the signal in terms of its frequency 
components, and revealing valuable information about its spectral content [93]. In this case, 
the Fourier transform of a signal in the time domain is denoted as 𝐷𝐷, and defined as:  

𝐷𝐷𝑇𝑇(𝑓𝑓) = 𝐷𝐷(𝜔𝜔) = � 𝑓𝑓(𝑎𝑎)𝑛𝑛−𝑐𝑐𝑖𝑖𝑖𝑖𝑑𝑑𝑎𝑎
+∞

−∞
 (Eq. II.1) 

Where 𝑓𝑓(𝑎𝑎) represents the signal as a function of time 𝑎𝑎, and ω is the frequency variable (here 
displayed as a pulsation where ω =  2𝜋𝜋𝛥𝛥). 

Conversely, we call inverse Fourier transform, the relation that allows us to go from the 
frequency domain back to the time domain. The inverse Fourier transform of a signal 𝐷𝐷(𝜔𝜔) in 
the frequency domain, denoted as 𝑓𝑓(𝑎𝑎), is given by:  

𝐷𝐷𝑇𝑇−1(𝐷𝐷) = 𝑓𝑓(𝑎𝑎) =
1

2𝜋𝜋
� 𝐷𝐷(𝜔𝜔)𝑛𝑛𝑐𝑐𝑖𝑖𝑖𝑖𝑑𝑑𝜔𝜔
+∞

−∞
  (Eq. II.2) 

This equation demonstrates how the inverse Fourier transform reconstructs the original signal 
in the time domain from its frequency components. 

The symmetry between the time and frequency domains in the Fourier transform gives rise to 
a concept known as time-frequency duality. Mathematically, this duality property can be 
expressed as the following: 

𝑓𝑓(𝑎𝑎) ↔ 𝐷𝐷(𝜔𝜔) 

𝐷𝐷(𝑎𝑎) ↔ 2𝜋𝜋𝑓𝑓(−𝜔𝜔) 

Here, as 𝑓𝑓(𝑎𝑎) represents the temporal signal, 𝐷𝐷(𝜔𝜔) represents its Fourier transform in the 
frequency domain. If we form a new function of time that has the functional form of the 
transform 𝐷𝐷(𝑎𝑎), it will have a Fourier transform 𝑓𝑓(𝜔𝜔) that has the functional form of the original 
time function (function of frequency). The factor of 2𝜋𝜋 and the negative sign in the duality 
relationship arise from the mathematical properties of the Fourier transform. This duality is of 
great significance in signal analysis and processing, allowing us to gain insights into the 
spectral characteristics of the pulse by examining its time domain representation (and vice-
versa).  

Ultrafast optical pulses  are examples of signals that can be exploited to illustrate the concept 
of time-frequency duality [94], [95]. Similar to diffractive optics, in the spatial domain, where 
the far-field (Fraunhofer) diffraction pattern corresponds to the Fourier transform of the near-
field, this time-frequency duality can also be leveraged for advanced pulse processing and 
monitoring in ultrafast photonics. 

During my thesis, I essentially worked with ultrafast pulsed lasers, characterized by their 
extremely short duration ranging from a few picoseconds down to a few tens of femtoseconds. 

In this case, the Fourier transform provides a powerful tool for analyzing and understanding 
these pulses properties, allowing to obtain valuable information about their spectral content 
and temporal profile with the best possible measurement techniques.  



Lynn SADER | Ph.D. Thesis | University of Limoges | 2023 65 
License CC BY-NC-ND 4.0 

This time-frequency duality allows us to observe modifications in the pulse’s profile in both 
domains and enable to retrieve, study and modify its properties that can be otherwise difficult 
(e.g. limited resolution of detectors in the time or frequency domain, retrieval of the pulse phase 
based on dual intensity observables, etc.).  

For example, manipulating the pulse’s spectrum using techniques like spectral filtering, or 
modulations have a direct impact on the pulse temporal profile: In Figure II.1, we recall and 
represent different examples of how an optical pulse can be manipulated in both temporal and 
spectral domains. When working with a continuous wave (CW) signal, we obtain a Dirac in the 
spectral domain (see Figure II.1.a) centered at a desired frequency. If this initial signal is then 
affected by an external temporal modulation, it will generate new frequencies in the spectral 
domain such as the symmetric sidelobes shown in Figure II.1.b. The complex spectrum 
obtained this way can then be reshaped in amplitude and phase by spectral filtering as 
displayed in Figure II.1.c.  

This can be used to reshape the spectrum and obtain different spectral profiles (e.g. 
Lorentzian, Gaussian spectrum) but also to induce changes in the pulse’s shape (e.g. 
Gaussian or Sech pulses) or duration (i.e. decrease the pulse temporal width). While trivial, 
this property is particularly important in our work and will be used frequently in the next 
chapters as it allows controlling the initial pulse parameters before nonlinear propagation in 
optical fibers. 

 
Figure II.1 Representation in the temporal domain (top panel) and the spectral domain (bottom panel) 

of a (a) continuous wave; (b) continuous wave with a 2 THz modulation added to the initial pulse with a 
magnitude equal to 1% of the CW signal; (c) a 250 fs Gaussian pulse. 

 
It is important to note that the phase of a pulse plays an important role in its behavior in both 
the temporal and spectral domains. When we consider different spectral phases applied to the 
same pulse, we may find modifications in its temporal waveform. When the phase is constant 
across the pulse’s spectrum, the pulse experiences no change, maintaining its original 
characteristics and a stable intensity profile. However, when the phase is of first order (linear 
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spectral phase), it introduces a time-dependent phase shift across different frequencies. While 
in this case, the temporal and spectral widths of the pulse remain the same, we observe a 
translation of the pulse along the time axis (i.e. a temporal delay). When the spectral phase is 
quadratic the pulse is “chirped” and also yields to a quadratic temporal phase. As already 
mentioned in section I.4, the chirp can be either positive (leading edge with shorter wavelength) 
or negative (leading edge with longer wavelengths). The pulse will then experience a temporal 
broadening. Of course, other higher-order phase variations exist, such as the cubic phase, 
related to the third-order dispersion of the pulse (TOD). This type of phase causes variations 
in the pulse's intensity over time and leads to temporal distortions, resulting in oscillations or 
asymmetry in the pulse shape.  

Understanding the impact of the phase on the overall pulse properties is crucial in this research 
work. Being able to alter and adjust both the intensity and phase on the input pulse provides 
an additional degree of control to customize nonlinear fiber propagation dynamics, and thus 
tailor the output waveform characteristics [96], [97].   

In consideration of the above, we can deduce that while time-frequency duality provides a 
powerful tool for monitoring and understanding optical signal properties, it is important to take 
into account the technical constraints and compromises associated with controlling or 
characterizing the pulse properties in either the spectral or the temporal domain.  

For example, in the time domain, optical detectors and modulators often have finite 
bandwidths, which limit their ability to capture and manipulate ultrafast optical pulses. This 
limited speed in the time domain can lead to challenges in accurately characterizing or shaping 
pulses with extremely short durations. On the other hand, the limited spectral resolution of 
signal processing and characterization tools in the Fourier domain (i.e. frequency) make it 
difficult to monitor or modify long pulses with very narrow optical bandwidth. Thus, an inherent 
trade-off often arises, where the precision of time localization is balanced against the extent of 
frequency resolution, making it necessary to choose between the direct and indirect domains 
for optimal pulse processing and monitoring. 

II.2. On the control of optical wavepacket properties 

Supercontinuum generation and nonlinear spectral broadening dynamics are strongly 
dependent on the input parameters of the laser pulse, the fiber material, and the fiber structure. 
To adjust the properties of the output waveform, it is thus necessary to manipulate these initial 
system parameters. However, it appears clearly unpractical to change the fiber and/or modify 
the entire setup every time that the output spectrum/signal need to be tuned. Instead, we can 
manipulate the input pulse properties to achieve the desired spectral and temporal properties 
of the output optical signal.  

In this manuscript, we only consider single-mode fiber propagation and employ several 
techniques to adjust the spectro-temporal properties of the input pulse in order to regulate the 
various nonlinear processes and dynamics responsible for spectral broadening. However, to 
access even more degrees of freedom, one can also consider the spatial dimension by working 
with multimode optical fibers that allow manipulating and controlling complex multidimensional 
nonlinear dynamics [98], [99], [100], [101]. In MMFs, each spatial mode has distinct nonlinear 
and dispersive properties, and all modes are optically coupled, allowing for intricate various 
intermodal nonlinear interactions. This property can pave the way to fine-tuning the 
characteristics of the output beam and adjusting interdependent parameters for optimal beam 
shaping for target applications. This particular topic falls outside of the scope of this 
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manuscript. However, such an approach is currently being studied within our project team with 
the goal of generating complex pulses and adjust their temporal, spectral, and spatial 
characteristics (see Figure. 1 in the Introduction). In such a case, the methods detailed below 
and developed within this thesis are expected to be readily transposed to a MMF framework.  

Here, we work only in a single spatial mode context by exploring the frequency and time 
domains, directly related to each other through the Fourier transform. However, even in this 
case, the focus should take in consideration what we want to study, and which properties of 
the pulse and/or spectrum we would like to modify. Below, we provide an explanation of the 
importance of pulse shaping and the different techniques that can be applied in both spectral 
and temporal domains. 

II.2.1. Spectral control of optical pulse properties 

Being able to control the spectral properties of an ultrafast laser pulse allows us to manipulate 
light’s compositions and enhance functionalities and performances. Whether it is bandwidth 
control, frequency centering, or spectral shaping, mastering these parameters opens the door 
to innovation in numerous technological domains. For example, by tailoring the spectral 
properties, higher data transmission rates, and improved signal-to-noise ratio could be 
achieved for fiber optic telecommunication applications, accurate identification and analysis of 
various materials and compounds can be found in spectroscopy, and even in laser-based 
manufacturing processes, tailored spectral profiles drive advances in precise and adjustable 
machining [93], [102], [103]. Spectral shaping is thus one of the most used methods to exert 
control over a broadband output spectrum generated after nonlinear propagation  [104]. 
However, controlling the spectral properties of an input laser pulse before nonlinear 
propagation in an optical fiber allows for tailoring a wide variety of nonlinear processes, 
changing the dynamics of the propagation, and enabling the generation of distinct output 
waveforms with different spectral properties. This is due to the intricate interplay between the 
dispersion, nonlinearity, and attenuation that exists within the fiber. For instance, in the case 
of modulation instability, the peak power of the input pulse has a direct effect on the gain 

spectrum of the MI following the relation 𝜔𝜔𝑐𝑐 = �4𝛾𝛾0𝑆𝑆0
|𝛽𝛽2| , where 𝜔𝜔𝑐𝑐 is the cut-off frequency of the 

MI gain spectrum [24] – see Chapter I.  

From this equation, increasing the peak power of the initial pulse leads to a spectral broadening 
of the MI gain region, but also a shift of the location of maximal MI gain (and thus an overall 
change of the MI sidebands growth). In this case, the creation of significant sidebands can 
occur to yield the formation of a highly unstable spectrum – see Chapter I. One of the simplest 
ways to adjust the power of a pulse without affecting its other properties is to use an optical 
attenuator that introduces optical loss into the signal path, thus reducing the pulse's power 
level. Alternatively, one can boost the pulse's power by passing it through an amplifier. 
However, the latter may induce nonlinear and dispersive pulse distortion and further subject 
the pulse to amplified spontaneous emission (ASE) [24], [105], [18]. Such a broadband ASE 
noise is generated by the amplifier, and can significantly influence the nonlinear propagation 
dynamics, especially at high amplification powers. 

To illustrate this property, we represent in Figure II.2 the spectrum of a 30 ps Gaussian laser 
pulse centered at 1550.65 nm (in red). When launched with a peak power of 2.5 W into 485 m 
of HNLF (with 𝛽𝛽2 = 1.78 𝑝𝑝𝑝𝑝2.𝑘𝑘𝑛𝑛−1 and 𝛾𝛾0 = 8.4 𝑊𝑊−1. 𝑘𝑘𝑛𝑛−1), we can see how the nonlinearity 
and dispersion drive a MI process within the fiber, leading to a broadened output spectrum 
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with cascaded sidebands formation on both sides of the pump (in blue). When decreasing the 
input peak power to 2 W and 1.5 W, the MI gain decreases resulting in a less significant 
spectral broadening. Furthermore, as we saw in (Eq. I.43) and (Eq. I.44), we also consider 
different laser pulse profiles. Gaussian pulses are commonly used for theoretical modeling (as 
generated from active mode-locking and electro-optic modulators – see below). However, if 
one for instance uses a hyperbolic secant pulse with the same bandwidth and power as the 
Gaussian pulse, a slightly broader MI spectrum will be obtained.  

 
Figure II.2 Comparison between an input Gaussian pulse (in red) with the corresponding output 

spectra after traveling in the HNLF with different input peak powers decreasing from 𝜙𝜙0 = 2.5 W to 
 𝜙𝜙0 = 2 W and 𝜙𝜙0 =1.5 W. 

There already exist numerous approaches for modifying the properties of laser pulses, each 
with their own advantages and limitations. In the spectral domain, these methods modify the 
frequency components and are typically pre-set and do not involve extensive tunability once 
the pulse parameters are defined. 

Such a technique involves the use of a fiber Bragg grating (FBG). This method can be 
accomplished by sending the pulse into an optical fiber constructed in a periodic structure that 
allows specific wavelengths to be reflected and transmit all the others. These FBG filters can 
be used to reshape the pulse spectrum and tune the spectral properties of the pulse. A shift in 
the FBG central wavelength can be obtained by selecting the desired periodicity of the gratings.  

In addition, it can be set up to obtain a desired laser pulse shape and width by pulse stretching 
or/and compression using a chirped fiber Bragg grating, or can be combined with other 
techniques to modulate the spectral phase and the chirp of the pulse [106], [107], [108], [109]. 

Similar to FBG, we can also add interferometer filters in this section. Such optical filters exploit 
several types of interference effects, such as Fabry-Perot interferometers, Mach-Zehnder 
interferometers, and Sagnac interferometers [110], [111], [112]. These filters work by creating 
an interference pattern of reflections between two reflected surfaces, a waveguide with two 
parallel arms, and a single-lopped fiber optic structure, respectively.  

The interference pattern can be used to selectively attenuate particular wavelengths, thereby 
filtering the spectrum of the input laser pulse and thus adjusting the pulse temporal shape, 
depending on the function of the interference filter such as bandpass filters, notch filters, or 
high-pass or low-pass filters. However, these filtering approaches present a very limited 
tunability (e.g. Fabry-Perot filters can be slightly tilted to adjust the resonance wavelength) and 
can hardly be stacked without significant attenuation, thus hindering their scalability. 
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In a similar framework, liquid crystal (LC) optical filters have been used over the years for 
various applications and integrated into a wide range of photonic components. These filters 
can function as light transmission modulators, allowing specific wavelengths to pass through 
while blocking others [113], [114]. They typically consist of a stack of liquid crystals 
sandwiched between two polarizers. By applying a different voltage to the LC cells, we can 
tune the transmitted wavelength by changing their orientation and alter the transmission of the 
light passing through the filter at different wavelengths, allowing the filter to transmit the 
selected wavelength and blocking the others. However, these filters can suffer from high 
transmission loss due to the series of polarizers. Other approach includes, optical stretchers 
and compressors based on dispersion gratings to adjust the chirp of the pulse [115] as well as 
4-F systems paired with a spatial light modulator (SLM) placed in the Fourier plane to 
selectively filter and/or modify the phase of selected spectral components [93]. 

While there are various techniques to adjust the properties of a pulse (and only a limited part 
is described above), each method has its limitations, hindering the tunable adjustment of 
multiple properties simultaneously. For instance, incorporating more than one device may be 
necessary to adjust the frequency, power, and phase of the pulse at the same time, leading to 
a more complex setup and potential signal losses. Furthermore, adjusting any of these 
properties requires constant modifications and replacement of the components, resulting in a 
time-consuming and impractical approach. 

In order to gain access to a higher spectral bandwidth, improved resolution, but also the 
capability to modulate the phase of light, a convenient approach relies on using liquid crystal 
on silicon (LCoS) devices. LCoS technology combines the reflective properties of a silicon chip 
with the light modulation capabilities of liquid crystals [116], [117] , where in this case the liquid 
crystals layers are between a glass substrate and a highly reflective silicon backplane. 

In our experimental setups, we implemented and used a programmable Fourier spectral filter 
made by Finisar and commonly known as a Waveshaper (WS) (Model 4000A – both version 
C and C+L available in the lab). This spectral shaping device is based on LCoS technology, 
and its operation principle is illustrated in Figure II.3. 

 
Figure II.3 (a) Finisar Waveshaper 4000A model with four output ports. (b) Schematic illustrating the 

principle of operation of a Waveshaper: An input signal is reflected by a cylindrical mirror to a 
conventional grating, where its spectral components are dispersed. These components then pass 

through an LCoS optical processor, allowing for precise manipulation of the spectrum. Afterward, they 
are sent back to the conventional grating to get recombined and exit through the output port, resulting 

in a modified output signal with controlled spectral characteristics. – Reproduced from [118] 



Lynn SADER | Ph.D. Thesis | University of Limoges | 2023 70 
License CC BY-NC-ND 4.0 

When an input signal is fed into the Waveshaper device, it first passes through a grating that 
disperses it into its spectral components. These components then hit the LCoS processor 
made up of a matrix of reflective liquid crystal elements. By applying specific voltages to each 
of these elements, the processor can add individual phase shifts to the reflected signals, which 
allows for the steering of the signal components. Because the wavelengths are separated on 
the LCoS chip, each wavelength can be controlled independently without significantly affecting 
the others. We initially used this device because it can replace all the filters cited above.  

One of the unique features of Waveshaper is that it is highly configurable and can be rapidly 
reprogrammed (~Hz refresh rate), allowing for fast signal adjustment, with a wide range of 
options, for customizing the spectral shape of the output signal by modifying the spectral filter 
shape, the attenuation, the dispersion, and phase of the input pulse at each 
wavelength [96], [77], [65].  

Specifically, in our experiments, we essentially use the Waveshaper Model 4000A (in the C 
version) that possesses 4 reconfigurable output ports and a spectral coverage of 5 THz in the 
C-band, from 1527.4 to 1567.5 nm. Each LCoS pixel exhibit a 12.5 GHz linewidth and the 
system is optimized to provide arbitrary spectral shaping with an attenuation range between 0 
and 35 dB (with a resolution of 0.01 dB) and 2𝜋𝜋 phase (with a resolution 0.01 rad). 

This device therefore provides a complex and powerful tool to alter the signal with minimal 
insertion losses (< 3 dB) and make it possible to e.g. shape multiple peaks at once, seed 
multiple ports simultaneously or suppress unwanted spectral components. An example of such 
signal spectral shaping is shown in Figure II.4 and illustrate the versatility of the pulse 
preparation as long as several constraints are respected. For instance, the maximal average 
input power has to remain below 27 dBm, and while a spectral mask can be set with a 1 GHz 
resolution, one has to ensure that no significant phase wrapping, or abrupt phase jump is 
implemented for an optimal quality of the Waveshaper signal processing.  

 
Figure II.4 (a) Input signal generated from a femtosecond laser (C-fiber) with an average power 
𝜙𝜙𝑐𝑐𝑣𝑣𝑐𝑐 = 60 𝑛𝑛𝑊𝑊. (b) Spectral filtering obtained using the Waveshaper to apply a Gaussian filter, 

centered at 1560 nm with a spectral bandwidth ~ 0.1 nm. 
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Within the framework of my PhD studies, I interfaced, developed, and validated a MATLAB 
code allowing the upload of arbitrary spectral masks for the experimental study conducted in 
Chapter III and Chapter IV. 

II.2.2. Temporal control of optical pulse properties 

To access finer adjustments and achieve further tuning of pulse propagation dynamics, one 
can also implement control of the pulse properties in the temporal domain.  

In the time domain, one can directly generate optical pulses and/or manipulate their temporal 
characteristics in an active way, through modulation of the pulse's temporal shape, phase 
duration, and timing. 

For instance, laser pulse shaping can be achieved by using acousto-optic pulse shapers  [119]. 
This includes the use an acousto-optic modulator (AOM), a device that excites a sound wave 
obtained from a strong oscillating electrical signal creating a variation of the material's 
refractive index. Additionally, acousto-optic tunable filters can be implemented to change the 
polarization mode and, overall, gain control on the amplitude and phase of our 
pulse [120], [121], [122]. Nevertheless, AOM systems are usually relatively slow (typically with 
bandwidth in the tens of MHz range and below few GHz at best). 

For faster modulation, one can usually rely on electro-optics modulators (EOMs). These 
devices can typically induce active phase modulation that enables the control of various related 
properties of light, such as intensity or polarization, using an electrical control 
signal [123], [124], [125], [126]. They typically employ Pockels cells and operate based on the 
principle of the linear electro-optic effect, commonly known as the Pockels effect. By applying 
an electric field to the Pockels cells, the refractive index of the crystal is modified, leading to 
alterations in the transmitted light's properties (typically the optical phase by inducing a 
modulation on the optical path length). The extent of these changes is directly proportional to 
the strength of the applied electric field and the electro-optic coefficient of the nonlinear crystal 
used (e.g. LiNbO3 crystals are widely used at telecom wavelengths in either a Z-cut or X-cut 
configuration). For intensity modulation, EOMs are typically based on interferometric scheme, 
where the phase modulation yields a phase dependent interference pattern between the arms 
of the interferometer to indirectly encode an amplitude modulation of the input signal. The most 
common implementation of such intensity. EOM is based on a Mach Zehnder configuration, 
relying on two balanced interferometers arms and a 50% output coupler, with insertion loss in 
the order of ~ 4 dBs. These are widespread and formed the backbone of the telecom 
infrastructure, while other more complex interferometric schemes are nowadays implemented 
to accommodate advanced and faster telecom modulation formats [127], [128], [129].   

When dealing with broadband pulses, AOMs face a particular challenge related to chromatic 
dispersion, where different wavelengths of light are deflected at slightly different angles by the 
AOM. Although it is theoretically possible to compensate for this dispersion, it is challenging to 
do so without introducing additional distortions. While AOMs are commonly used for 
modulation up to the MHz range, EOMs are known for their ability to modulate laser pulses 
over a broad range of frequencies, including the GHz range, and can be designed specifically 
for high-speed modulation applications up to ~ 50 GHz. 

As mentioned above, the temporal properties of a pulse can be controlled by employing active 
phase and intensity modulation provided by EOMs. Those active modulations are however 
limited by the bandwidth of these electronic systems that usually remain below 100 GHz, and 
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thus corresponds to rise/fall time of 10 ps in the best cases. In this case, the processing of 
ultrashort pulses (sub-ps regime) cannot be properly implemented with such system. To 
mitigate this issue, we rely on the used Mach-Zehnder interferometers systems integrated in a 
photonic chip. In this case, the interferometers rely on the same physical mechanisms as the 
intensity EOM described above but are here arranged in a cascaded and unbalanced 
configuration that allows for a static processing of the signal (thus allowing both ultrashort-
pulse processing and advanced signal tunability).  

In our studies, we specifically focus on controlling a pulse’s properties by splitting it into multiple 
different replicas with adjustable power and relative delay. For this purpose, we use the 
integrated photonic pulse processor (IPPP) mentioned in section I.1.3, consisting of several 
Mach-Zehnder interferometers (MZIs) and optical waveguides with 𝛾𝛾 =  3.5 𝑊𝑊−1. 𝑘𝑘𝑛𝑛−1, 𝛽𝛽2 =
 −2.15 𝑝𝑝𝑝𝑝2. 𝑘𝑘𝑛𝑛−1, and 𝛽𝛽3 = 0.0693 𝑝𝑝𝑝𝑝3. 𝑘𝑘𝑛𝑛−1, operating as integrated delay lines (see Figure 
I.5 and Figure II.5) [43], [130]. The waveguides are arranged in a cascaded configuration, 
where the time delay on each one of them increases gradually according to the relation Δ𝑆𝑆 =
 2Δ𝑆𝑆−1, where 𝜙𝜙 represents the number of the delay lines.  

 
Figure II.5 Schematic diagram of the IPPP chip constituted of various Mach-Zehnder interferometers 

with two electrodes on each to control, by tuning the phase difference Δ𝜕𝜕, the splitting of optical pulses 
into different paths and the output train of pulses. Adapted from [43]. 

The schematic of the IPPP is represented in Figure II.5. The MZIs have electrodes on each 
arm that can be controlled via thermal effects to adjust the splitting ratio of the pulse entering 
the IPPP chip. When sending an input laser pulse into the chip and applying a different voltage 
on each arm of the MZIs, we induce a phase difference Δ𝜙𝜙𝑁𝑁, with 𝑁𝑁 being the MZI index, which 
determines the optical path followed by the pulse into either of the two following arms. By 
adjusting the splitting ratio between this unbalanced waveguide structure, the power of each 
generated pulse can be modified, and the total train of delayed pulses will be recombined 
through the last interferometer to generate a pattern of temporally interleaved pulses as 
illustrated in Figure II.6. 



Lynn SADER | Ph.D. Thesis | University of Limoges | 2023 73 
License CC BY-NC-ND 4.0 

 
Figure II.6 Temporal (top) and spectral (bottom) output profiles of a 100 fs laser pulse (with 𝜙𝜙0 = kW) 

after propagating within the IPPP with different splitting ratios. Reproduced from [44]. 

In the previously implemented IPPP architectures, the pulse separation(s) could be arbitrarily 
tuned with a temporal delay between them up to 256 pulse replicas ranging from 1 ps to 255 
ps. In related studies [43], [130], this system was experimentally demonstrated as a suitable 
way to tailor a train of ultrashort pulses (< 200 fs) through each one of the MZIs and control 
the properties of this pattern before nonlinear propagation in an optical fiber. In particular, this 
approach was used to shape and customize the spectral contents of coherent supercontinuum.   

Similarly, in a linear regime and using longer picosecond pulses (i.e. with a duration potentially 
longer than the temporal separation provided by the IPPP), this system was leveraged to 
achieve autonomous and arbitrary pulse shaping via coherent pulse synthesis (i.e. optimized 
temporal superposition and interference).  

In the context of this thesis, I have contributed to the numerical studies on the implementation 
of this IPPP system for the generation of supercontinuum with spectro-temporal properties 
specifically tailored for multiphoton microscopy [44]. 

Within the team, we have also experimentally implemented and deployed a new set of IPPP 
architectures with longer unit delay, so that the overall pulse pattern can span over more than 
4 ns. For this, I also provided a significant contribution by assembling an optical FROG setup 
(see section II.4.1) allowing to characterize these optical signals with a large temporal span  
(> 4 ns) and an excellent resolution (< 1 fs).  

Importantly, this IPPP shaping has been numerically and experimentally studied during my 
doctoral work but not directly included in the core of this manuscript. We kindly refer the reader 
to the Appendix 1 where we provide more details on the work done in this area. 

However, it is worth noting that combining spectral waveshaping and IPPP temporal shaping 
is expected to effectively provide access a wide range of parameters that could be further 
leveraged for controlling nonlinear propagation in optical fibers (see also the Conclusion 
section). However, as we employ all these tools, the propagation dynamics become 
challenging to understand and regulate. To overcome these limitations, my thesis work also 
aims at studying and implementing a “smart control” of nonlinear effects using machine 
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learning strategies [122], [124], [130], that could be transferred to other domains of 
wavepacket control currently being investigated in the lab (e.g. spatial control and beam 
shaping in multimode fibers).  

II.3. Machine learning control 

As we mentioned before, various methods can be applied to control the spectral and temporal 
properties of laser pulses for generating the desired output spectra. However, these pulse 
control methods and numerical modeling have limitations in predicting the propagation 
behavior depending on the chosen parameters. For this reason, we aim at implementing 
optimization algorithms to these methods, and therefore control and/or predict the desired 
output signal properties. In recent years, machine learning strategies have increasingly been 
used in different fields and applications such as ultrafast photonics to smartly enhance and 
optimize the desired dynamics or optical functionalities. For instance, in our case, we can use 
machine learning to automatically select the best initial parameters to study targeted nonlinear 
dynamics during fiber propagation and control the properties of spectral broadening.  

II.3.1. Introduction to machine learning 

Machine learning is a branch of artificial intelligence. This concept is associated in creating 
intelligent machines that can learn from data inputs and automatically improve their 
performances without being programmed explicitly. Machine learning lies at the interference 
between algorithms and statistics; We use computational tools and techniques to execute and 
implement efficiently these algorithms, while the statistical methods provide the theoretical 
concepts and principles to understand and analyze the probability, inference, and variability 
present in data [131]. In other words, the goal of machine learning is to train models on a set 
of data, experiences, or patterns, where the results are already known. Then, the model can 
be used to predict the value or category of something new, where one does know the answer 
yet.  

Machine learning can be classified into three main types: Supervised learning, unsupervised 
learning, and reinforcement learning (see Figure II.7). 

• Supervised learning: For this type of learning, we must supervise machine learning by 
providing labeled training data. It requires training the model with input-output label 
examples until it learns to map the input features to output labels on its own. With direct 
feedback, the system tends to remember the results and use them in the next 
operation.  

• Unsupervised learning: In this case, the algorithm learns from unlabeled data. It 
focuses on searching for patterns, relationships, and hidden structures within the data 
until it identifies similarities and differences among the different input or classify them 
into different groups based on their properties.  

• Reinforcement learning: It differentiates from supervised and unsupervised learning by 
using training data that only indicates whether an action is correct or not, without 
explicitly stating the correct output. Reinforcement learning problems are characterized 
by closed-loop dynamics, the absence of direct instructions, and the influence of 
actions on subsequent rewards. It involves an “agent” exploring its environment, 
learning from experiences, and improving performance based on rewards and 
punishments through a feedback-based process. 
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Given its ability to improve performances and solve problems, machine learning has 
experienced rapid growth and become nowadays a powerful tool in numerous fields. 
Specifically, in the fields of optics and photonics [132], [133], machine learning enabled 
advances in optical characterization and microscopy [44], [134], imaging [135], [136], optical 
communication [137], [138], signal processing and optical performance monitoring [139], 
sensing and metrology applications [140], [141], optimal design and optical device 
optimization [142], or in nanophotonic for designing new devices [143], [144] .  

 
Figure II.7 Diagrams of machine learning types. Supervised learning: classifying labeled data; 

Unsupervised learning: Discovering patterns in unlabeled data; Reinforcement learning: Learning 
actions to maximize rewards. 

In the domain of ultrafast nonlinear optics, numerous machine learning approaches, 
specifically customized to address the unique challenges and requirements of this field, have 
been subject to rigorous scrutiny, showcasing remarkable success  [145]. Various machine 
learning approaches, specifically implemented to address the challenges and advancements 
of this field have been studied and proved successful.  

A typical and widespread example consists in feed-forward neural networks (FFNN). This 
model is illustrated in Figure II.8, where the learning starts with input data to get an output, 
passing by hidden layers that can perform nonlinear operations. In each layer, individual 
neurons employ activation functions, which depend on weighted summations derived from the 
outputs of neurons in the preceding layer. These activation functions undergo adjustments 
during the learning process, contributing to the network's adaptability and effectiveness.  In our 
field of studies, this network can be employed for analyzing and classifying experimental data, 
such as pulse shapes or broadened spectra [146]. This can also be used to learn the 
differential propagation dynamics of the GNLSE, by understanding how the intensity and phase 
of an electric field change during propagation at elementary points of the 
fiber [147], [148], [149], and thus finally replace the GNLSE numerical integration. This 
knowledge enables the neural network to predict how the light behaves over a long propagation 
distance based on its initial conditions and help the study of nonlinear dynamics and light 
evolution in optical fibers without having to perform time-consuming calculations. In addition, 
they also allow to compute and analyze the spectral and temporal intensity properties in the 
broadened output spectrum and find, for example, the correlation between various direct and 
indirect components in the Fourier space [150].  

One can also implement, for different applications, convolutional neural networks (CNNs), 
which are structured to automatically learn and extract hierarchical patterns and features from 
the input data through multiple interconnected layers, including convolutional layers, pooling 
layers, and fully connected layers. They can be used to process and analyze spatially resolved 
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data, such as images or videos of laser beam profiles or spatially varying pulse characteristics. 
For example, by training deep CNNs on extensive datasets, one can efficiently predict the 
phase of ultrashort pulses from dispersion scan traces eliminating the need for time-consuming 
conventional methods [151]; or use programmable phase-change metasurfaces with 
waveguides, to create multimode photonic CNNs allowing programmability and 
reconfigurability in advanced photonic systems [152]. Furthermore, CNNs have been 
employed to extract characteristic features and analyze soliton dynamics, providing valuable 
insights into the behavior of these optical phenomena [153].  

Recurrent neural networks (RNN), designed to handle sequential data by incorporating 
feedback connections, can also be implemented in the context of ultrafast optics. This type of 
artificial network has been especially important in offering valuable insights into nonlinear 
dynamics [154]. It can capture temporal dependencies and feedback connections, allowing 
them to model the evolution of nonlinear effects over time, optimize and control these effects 
in real-time, and provide a deeper understanding of complex spatiotemporal nonlinear 
dynamics in single-mode and multimode fiber systems [155].  

Noteworthy, unsupervised learning, and especially clustering analysis that aims to group 
similar data points based on their inherent characteristics has been employed in this field to 
optimize and understand chaotic data and unstable nonlinear dynamics [156].  

In the context of ultrafast photonics, reinforcement learning algorithms can help optimizing the 
performance of complex photonic systems by enabling the system to adapt and learn optimal 
strategies for various tasks [157], [158]. For example, recurrent neural networks can also be 
implemented in reinforcement learning as a large-scale photonic network [159]. In this case, 
the photonic RNN could optimize its internal dynamics and improve its prediction capabilities.  

By providing rewards based on desired performance metrics, such as higher efficiency, faster 
switching times, or better signal quality, reinforcement learning algorithms can guide the 
exploration of parameter spaces and discover novel configurations or operating conditions that 
maximize the desired objectives. 

 
Figure II.8 Representation of a feed-forward neural network architecture, with 𝜔𝜔𝑐𝑐+𝑐𝑐 the input data 𝑤𝑤𝑗𝑗,𝑐𝑐+𝑐𝑐 

are the weights associated with the connections between neurons in different layers,  
𝑦𝑦𝑗𝑗 =  Σ𝑐𝑐=1𝑁𝑁 (𝜔𝜔𝑐𝑐𝑤𝑤𝑐𝑐 + 𝑏𝑏𝑐𝑐) is the weighted sum of inputs with the bias term 𝑏𝑏𝑗𝑗 and 𝜔𝜔𝜔𝜔𝑎𝑎() is the activation 

function, with 𝑛𝑛, 𝑤𝑤 ∈ ℕ,𝑛𝑛 ∈ ℤ+. 

Search algorithms are another type of machine learning that is widely used and has 
demonstrated strong potential and recent improvements in an ultrafast optics 
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context [160], [161], [162]. These are optimization algorithms, that explore a range of possible 
solutions by evaluating their suitability based on specific criteria and progressively refine the 
search to converge towards the best or the most optimal solution or parameter values for a 
given problem. In our studies, these algorithms are the ones that we will mostly use and focus 
on. Different implementations can be cited in this type of learning.  

Genetic algorithms (GA) are one of the most used and effective methodologies and have thus 
been employed for different optical applications. For example, GAs can be used in the 
optimization of cavity parameters of mode-locked fiber lasers to achieve autonomous 
wavelength tuning and the generation of pulses with desired characteristics [163], or to 
develop automatic mode-locked fiber lasers [164], [165], [166] that can automatically lock onto 
different operating regimes, such as fundamental mode-locking, second-order harmonic mode-
locking, and Q-switching [167], [168]. Moreover, GAs can be used in the context of pulse 
propagation modeling, to design optical fibers capable of enhancing particular processes or 
dynamics such as highly-coherent or large bandwidth supercontinuum generation, and 
therefore opening new possibilities for tailoring fiber properties for specific 
applications [169], [170]. Overall, genetic algorithms offer powerful means of optimizing and 
controlling ultrafast photonics systems, enabling for instance laser operation with desired 
properties, and efficient pulse shaping [130].  

An alternative to GA can be particle swarm optimization (PSO). Despite the success of GAs, 
PSOs can outperform them in certain tasks and converge faster for some problems. As GAs, 
PSO can among other be used to enable on-the-fly reconfigurability of broadened output 
spectra by controlling the input pulse parameters and or even more complex optical waveforms 
generated through optical pulse-shapers (e.g. MZI on-chip cascade). These techniques can 
be used for different applications, such as the realization of autonomous on-chip waveform 
generators [130], or multiphoton microscopy optimization via the enhancement of multiphoton 
absorption [44]. PSO was also applied to the inverse design problem of a fiber 8-figure laser 
cavity [171], which involved finding the system architecture and design of pulses with specific 
parameters, such as pulse duration and spectral width, providing the generation of desired 
laser outputs. Other methodologies can also be cited like the Rosenbrock search [162], [172], 
and the Toroidal search [160], which have been demonstrated in the context of ultrafast 
photonics for tasks such as automatic mode-locking in fiber lasers and pulse characterization 
in mode-locked lasers. 

In this thesis work, our approach to machine learning involves the rather straightforward use 
of search algorithms where we extensively accumulate experimental data by iteratively 
optimizing the system parameters towards a specific target.  

In particular, we relied on algorithms such as GA and PSO to progressively converge towards 
the best parameters until finding the optimal solution. From a practical viewpoint, this approach 
consists in heuristic search allowing the exploration of a large parameter space in a limited 
time. However, in our team, we are also exploring the implementation of artificial neural 
networks (ANN) for the experimental works presented in Chapter IV. 

Our approach involves training such ANNs by provide the systems with a large amount of input 
and output data obtained respectively before and after nonlinear fiber pulse propagation. In 
this case, we train the network to mimic the nonlinear transfer function and thus predict the 
signal output properties from selected input conditions.  On the other hand, we can also provide 
the ANN with output information and train it so it can effectively reverse engineer the input 
parameters to be used in order to achieve the desired outputs. 
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While being currently implemented experimentally, this thesis does not explicitly deal with ANN 
training but rather focus on heuristic search algorithms. This method was deemed effective to 
eliminate the need for extensive parameters sweep and mitigate long measurements during 
experimental setups. This attribute offers a remarkable advantage by substantially accelerating 
the experimentation process and ensuring reasonably good convergence towards the desired 
target function, especially for the optimization of incoherent MI processes discussed in Chapter 
IV. Bellow, we succinctly discuss the optimizations algorithms used in our experiments.  

II.3.2. Evolutionary algorithms 

Evolutionary algorithms are a class of optimization algorithms that are inspired by the process 
of natural evolution. GA and PSO are examples of evolutionary algorithms [173], [174]. 

1- Genetic Algorithms (GA): 

Genetic algorithms are generally used to optimize solutions for complex problems that have a 
large search space. GAs mimic the principles of Darwinian evolution by employing a population 
of candidate solutions and iteratively applying selection, crossover, and mutation operators to 
evolve the population over multiple generations. The concept of genetic algorithms and the 
foundation of this problem-solving technique was first introduced by J.H. Holland in 1975 [175].  

The algorithm starts with a population of potential solutions, often represented as a set of 
properties (chromosomes or strings of genetic information). Each set of chromosomes (forming 
the individual) represents a candidate solution to the problem. The algorithm then evaluates 
the fitness (or quality) of each individual based on an objective function that quantifies how 
well it solves the problem. The genetic algorithm iteratively modifies the population by applying 
genetic operators. Selection is used to favor individuals with higher fitness for reproduction, 
mimicking the survival of the fittest. Through successive generations, the genetic algorithm 
explores different combinations of genetic information and gradually converges toward better 
solutions. The algorithm continues until a stopping condition is met, such as reaching a 
maximum number of generations or achieving a satisfactory solution. So, we can say the GA 
models follow the steps [176]: Initialization, selection, genetic operators, and termination (see 
Figure II.9). 

 
Figure II.9 Schematic representation of a genetic algorithm reproductive cycle. 
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• Initialization: The initial part begins by creating a set of chromosomes, usually randomly 
generated, to form the initial population. It is worth mentioning that the quality of the initial 
population (and its size in term of individuals) can have an impact on the algorithm's 
performance. If the initial population consists of individuals who are far from the optimal 
solution, it may take longer for the algorithm to converge. On the other hand, if the initial 
population is already close to the optimal solution, the algorithm may converge more 
quickly. 

• Selection: The selection step in a genetic algorithm is the process of choosing individuals 
from the current population to serve as parents for the creation of the next generation. This 
step is inspired by the natural selection process in evolution, where individuals with 
favorable traits are more likely to survive and reproduce and it typically follows a 
probabilistic approach, where individuals with higher fitness have a greater chance of being 
selected (individuals are selected by filtering solutions using a fitness function). Fitness is 
a measure of how well an individual solves the problem at hand and is determined by an 
evaluation metric. There are several selection techniques, including a selection based on 
an individual’s fitness proportion, where a random spin of a roulette wheel determines the 
chosen individuals (roulette wheel selection), or simultaneous selection by dividing the 
roulette wheel into slots (stochastic universal sampling). The filtering can also be done by 
selecting the fittest individual from random subsets (tournament selection) or using a 
selection based on individual ranks rather than fitness values (rank selection), or even by 
using a selection based on entropy and sampling methods by selecting individuals based 
on their probabilities calculated using the Boltzmann distribution. 

• Genetic operators: In this step, two main operators can be performed: Crossover and 
mutation. Both contribute to the exploration and exploitation of the search space. 
Crossover combines the desirable characteristics of different individuals, potentially 
creating better solutions. It involves combining the genetic information between two parent 
individuals to create offspring. Various crossover operators can be used in this step such 
as single-point crossover, multi-point crossover, uniform crossover, shuffle crossover, 
order crossover, or partially mapped crossover, … On the other hand, mutation introduces 
random changes and new variations in the population, allowing the search algorithm to 
explore new regions of the parameter space. It helps maintain genetic diversity within the 
population and prevents settling for suboptimal solutions. The mutation can be a 
displacement mutation which will move part of the solution randomly for a valid and random 
mutation, it can be an exchange mutation which will swap parts of the solution, or an 
insertion mutation which consists of adding a part of the solution to a different location. 

• Termination: The termination criterion should be carefully chosen. It can be based on 
reaching a certain fitness threshold, stagnation of the population, or a predefined maximum 
number of generations. The termination criterion ensures that the algorithm stops when it 
has achieved a satisfactory solution or when further iterations are unlikely to yield 
significant improvements. 

2- Particle swarm optimization (PSO): 

PSO is another evolutionary algorithm inspired by the behavior of social organisms like birds 
flocking or fish schooling [173], [177]. In PSO, an initial swarm of particles moves through a 
multidimensional search space to find the optimal solution as illustrated in Figure II.10. Each 
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particle's movement is influenced by its own experience and the experience of its neighboring 
particles. 

 
Figure II.10 Schematic representation of PSO evolution within the parameter space.  

PSO is a computational optimization technique inspired by the collective behavior of animal 
swarms. It begins with an initial swarm of particles, each representing a potential solution, 
dispersed across a multi-dimensional search space. In each iteration, the position of the 
particles is determined by “swarm intelligence”, based on their current position, their best-
known position (personal best), and the best-known position of their neighbors (global best). 
The velocity of the 𝑛𝑛-th particle and the 𝑘𝑘-th iteration can be expressed as  [178]: 

𝑃𝑃𝑐𝑐𝑘𝑘+1 = 𝑤𝑤𝑃𝑃𝑐𝑐𝑘𝑘 + 𝜔𝜔1𝜈𝜈1�𝑝𝑝𝑏𝑏𝑐𝑐𝑠𝑠𝑖𝑖𝑐𝑐
𝑘𝑘 − 𝜔𝜔𝑐𝑐𝑘𝑘� + 𝜔𝜔2𝜈𝜈2�𝑃𝑃𝑏𝑏𝑐𝑐𝑠𝑠𝑖𝑖𝑘𝑘  − 𝜔𝜔𝑐𝑐𝑘𝑘� (Eq. II.3) 

Where 𝑤𝑤 is the inertia weight, 𝜈𝜈1, 𝜈𝜈2 are random numbers between [0,1], and 𝜔𝜔1, 𝜔𝜔2 are positive 
constants regulating the respective strength of personal and social influence in the PSO 
process. 𝜔𝜔𝑐𝑐𝑘𝑘 is the current position of the particle, 𝑝𝑝𝑏𝑏𝑐𝑐𝑠𝑠𝑖𝑖 and 𝑃𝑃𝑏𝑏𝑐𝑐𝑠𝑠𝑖𝑖 are the personal and global 
bests, respectively. The first term of the equation (𝑤𝑤𝑃𝑃𝑐𝑐𝑘𝑘) searches new solutions and explore 
regions with potentially the best solutions. The second term of the equation explores the 
previous solutions and find the best solution of a given region by personal influence 
(𝜔𝜔1𝜈𝜈1�𝑝𝑝𝑏𝑏𝑐𝑐𝑠𝑠𝑖𝑖𝑐𝑐

𝑘𝑘 − 𝜔𝜔𝑐𝑐𝑘𝑘�) where the particle returns to a previous position if it proves better than the 
current one. The third term takes into account the social influence (𝜔𝜔2𝜈𝜈2�𝑃𝑃𝑏𝑏𝑐𝑐𝑠𝑠𝑖𝑖𝑘𝑘 − 𝜔𝜔𝑐𝑐𝑘𝑘�) of the 
swarm where the particle follows the direction of the best neighbors. These factors are 
considered to adjust the particle's trajectory in subsequent iterations where this adaptive 
movement strategy guides particles towards promising regions of the search space. Similar to 
GAs, PSO iteratively updates particle positions until a termination condition is met, such as 
reaching a maximum number of iterations or achieving a satisfactory solution. 

One key difference between PSO and GA lies in how they determine the next set of individuals 
or particles. While GA generates new individuals solely from the selected current individuals, 
PSO constructs the trajectory of each particle based not only on the current particles' positions 
but also by considering their individual best positions and the overall best position in their 
neighborhood. This characteristic gives PSO a higher degree of freedom compared to GA by 
offering greater diversity in particle trajectories and exploration of the parameter space. This 
broader exploration capability contributes to its potential effectiveness in finding optimal 
solutions to complex optimization problems. 

Both GA and PSO are powerful optimization techniques. The two methods have their strengths 
and can be fine-tuned for improved performance [130], [44], [179]. The choice between them 
depends on the specific problem and the desired balance between exploration and exploitation 
in the search space. 
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II.4. Characterization techniques 

As we explored in section II.2, pulse control methods provide valuable means to manipulate 
the properties of ultrafast pulses before their propagation. These techniques allow to tailor and 
optimize in a smart way the characteristics of the desired output after nonlinear propagation. 
However, while pulse control methods offer significant flexibility, it is equally important to have 
reliable techniques for accurately measuring and characterizing the resulting pulses. Over the 
years, many characterization techniques have played a crucial role in analyzing and 
understanding the fundamental properties of light and proved particularly useful in the 
measurements of ultra-short pulses associated with extreme and broadband spectral signals.  

In the spectral domain, one of the most used characterization devices is the optical spectrum 
analyzer (OSA). This device relies on spectrally sweeping a monochromator and therefore 
integrating the spectral intensity at a given wavelengths over multiple pulse periods. While this 
method enhances the sensitivity, accuracy and stability of the measured spectrum, giving us 
a smoother and more reliable representation of the signal, averaging multiple successive 
spectra imposes limitations. OSA measurements washes out the noise components in each 
individual spectrum, preventing us from performing real-time measurements and detecting the 
rapid changes and instabilities from shot-to-shot spectra. 

In contrast, for direct detection in the temporal domain, one may simply rely on optoelectronic 
characterization using fast photodiodes associated with an oscilloscope. As these photodiodes 
have a fast response time, they can capture (in real-time) the rapid variation in intensities of 
the light signal and send it to the oscilloscope that samples the corresponding electrical signal 
(at high frequencies) allowing the reconstruction and visualization of the temporal waveform.  

However, these techniques still have limitations and prevent us from knowing all the pulse’s 
properties. For example, being able to accurately measure and extract the signal's phase is a 
crucial aspect for understanding the pulse properties, studying their impact on e.g. phase-
matching effects or even analyzing the variations of propagation dynamics due to the pulse 
chirp. While the previously cited techniques provide a good understanding of the shape, 
duration, and peak power of the pulse, they do not provide the ability to accede to the pulse’s 
phase. Moreover, the direct real-time characterization techniques are intrinsically bandwidth-
limited and thus prevent measuring pulses in the picosecond regime (or below). 

II.4.1. Complete pulse properties characterization 

Measuring ultra-short pulses has always been a challenging subject, and the time-dependent 
intensity and phase monitoring of such pulses was hardly solved until 1991. As we know, a 
pulse is characterized by its electric field 𝐸𝐸, dependent on the intensity 𝐼𝐼, the phase 𝜙𝜙 of the 
pulse in the time domain 𝑎𝑎 and the phase 𝜑𝜑 in the frequency domain 𝜔𝜔: 

𝐸𝐸(𝑎𝑎) = �𝐼𝐼(𝜔𝜔) 𝑛𝑛−𝑐𝑐𝜕𝜕(𝑖𝑖)  (Eq. II.4) 

𝐸𝐸�(𝜔𝜔) =  �𝜙𝜙(𝜔𝜔) 𝑛𝑛−𝑐𝑐𝑖𝑖(𝑖𝑖) (Eq. II.5) 

To measure such a pulse, all we need is to find both its intensity and phase in either the spectral 
or temporal domain. In the spectral domain, we can easily use a spectrometer to measure the 
spectra intensity 𝜙𝜙(𝜔𝜔). However, being able to measure and study the phase is very important 
and allows to fine-tune the pulse spectral broadening during nonlinear propagation.  
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Yet, the spectrum alone is not enough to retrieve the pulse profile without ambiguity, as 
different complex fields, with different phases, can yield the same spectrum 𝜙𝜙(𝜔𝜔). This problem 
is called a “one-dimension phase-retrieval problem” [180], [181]. 

In the time domain, researchers commonly rely on the autocorrelation technique. Normally, to 
measure a pulse, one needs a shorter event with can be used as a reference to resolve the 
pulse under test (PUT). However, the difficulty arises from the fact that to measure ultra-short 
pulses, the user does not have direct access to any event or optical reference shorter than the 
pulse. An alternative approach thus consists in using the PUT to measure and resolve the 
pulse itself. This idea constitutes the basis of autocorrelation techniques where the 
measurement is intrinsically self-referenced by the PUT.  

 
Figure II.11 Setup of an ultrashort pulse measurement via intensity autocorrelation/FROG: The initial 
pulse 𝐸𝐸(𝑎𝑎) is split and recombined in a SHG crystal with a delayed pulse replica 𝐸𝐸(𝑎𝑎 − 𝜏𝜏). The SHG 

signal can be measured either by a photodiode (to find the autocorrelation trace), or by a spectrometer 
(for a complete characterization of the pulse and the measurement of the FROG spectrogram).  

Specifically, autocorrelation consists in splitting the pulse 𝐸𝐸(𝑎𝑎) into identical copies that follow 
two different optical paths (see Figure II.11). One of them is called the “gate function” 𝐺𝐺(𝑎𝑎 − 𝜏𝜏), 
which be delayed in time, with a time delay 𝜏𝜏 using a variable delay line. The two pulses 𝐸𝐸(𝑎𝑎) 
and 𝐺𝐺(𝑎𝑎 − 𝜏𝜏), will then be combined to create an interference pattern that depends on the time 
delay. The resulting signal can be measured directly using a photodiode (i.e. field 
autocorrelation), or can for instance be mixed  𝐸𝐸𝐴𝐴𝑖𝑖(𝑎𝑎, 𝜏𝜏)~𝐸𝐸(𝑎𝑎)𝐺𝐺(𝑎𝑎 − 𝜏𝜏) in a nonlinear medium 
or via two-photon absorption processes prior to detection (i.e. intensity autocorrelation).  

This latter case is usually referred as intensity autocorrelation because both signal intensities 
are multiplied in the nonlinear crystal via a second harmonic generation (SHG) process 
(typically implemented in a non-colinear setup as illustrated in Figure II.11). SHG is a second-
order nonlinear process in which two photon of a specific frequency interacts with a nonlinear 
material, leading to the generation of a new photon at precisely twice the frequency. In this 
context, if we use an SHG crystal, we obtain the autocorrelated signal 
𝐸𝐸𝐴𝐴𝑖𝑖(𝑎𝑎, 𝜏𝜏) ~ 𝐸𝐸(𝑎𝑎)𝐸𝐸(𝑎𝑎 − 𝜏𝜏), where 𝐺𝐺(𝑎𝑎, 𝜏𝜏) = 𝐸𝐸(𝑎𝑎, 𝜏𝜏). In this case, the autocorrelation intensity is a 
representation of the resulting SHG signal intensity  𝐼𝐼  as a function of the delay: 
𝐼𝐼𝐴𝐴𝑖𝑖(𝜏𝜏) ~∫ 𝐼𝐼(𝑎𝑎)𝐼𝐼(𝑎𝑎 − 𝜏𝜏)𝑑𝑑𝑎𝑎+∞

−∞ . The autocorrelation functions can also provide spectral information 
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through the Wiener-Kinchin theorem [182], which indicates that the Fourier transform of the 
autocorrelation is the magnitude square of the Fourier transform of the intensity in the 
frequency domain, i.e. 𝐼𝐼𝐴𝐴𝑖𝑖� (𝜔𝜔) = |𝐼𝐼(𝜔𝜔)|2. 

Even if the autocorrelation function 𝐼𝐼𝐴𝐴𝑖𝑖(𝜏𝜏) does not directly provide the exact pulse duration, it 
provides valuable information about the pulse shape and the autocorrelation duration Δ𝜏𝜏. 
Knowing these two parameters we can then infer the pulse duration Δ𝑎𝑎. For example, in the 
case of a Gaussian pulse, Δ𝜏𝜏/Δ𝑎𝑎 = 1.414, and for a hyperbolic secant pulse, Δ𝜏𝜏/Δ𝑎𝑎 = 
1.543 [183]. 

However, autocorrelation still does not provide any information about the phase, which 
ultimately lead to another one-dimensional phase retrieval problem. Over the years, many 
techniques tried to overcome these problems by combining both the autocorrelation and the 
spectral information (e.g. temporal information via intensity (TIVI), fringe-resolved 
autocorrelation (FRAC), and cross-correlation…), however, they still encounter several 
limitations, work only for some conditions, and may not be suitable for pulses with more 
complex temporal profiles especially when complex noise features interfere with the pulse.  

To overcome these limitations and obtain more detailed information for a successful pulse 
retrieval, one must measure the corresponding pulse spectrogram, that provide both spectral 
and temporal information on the SHG signal measured by autocorrelation [180]. Its 
representation takes the form of a three-dimensional intensity plot that simultaneously shows 
the time and frequency projection of the generated SHG signal. This tool allows us to 
understand how the signal's spectral components are changing over different time convolution 
intervals (when considering intensity autocorrelation). Indirectly, it can also reveal changes in 
the pulse spectral content, such as frequency shifts, modulations, or the presence of transient 
events. Using different existing algorithms, one may also retrieve the temporal field 𝐸𝐸(𝑎𝑎) from 
the spectrogram and thus determine the waveform intensity 𝐼𝐼(𝑎𝑎) and the phase 𝜙𝜙(𝑎𝑎) in the 
temporal domain, or equivalently, its counterpart in the spectral domain 𝐸𝐸(𝜔𝜔), 𝜙𝜙(𝜔𝜔) and 𝜑𝜑(𝜔𝜔).  

To measure an intensity spectrogram (based on SHG), one can use the frequency-resolved 
optical gating technique (FROG). In simple words, FROG is an autocorrelation followed by a 
spectrometer that allows spectral analysis (Figure II.11). The pulse is gated by itself (so the 
gate is unknown) so that 𝐸𝐸𝐴𝐴𝑖𝑖(𝑎𝑎, 𝜏𝜏)~𝐸𝐸(𝑎𝑎)𝐺𝐺(𝑎𝑎 − 𝜏𝜏), where 𝐺𝐺(𝑎𝑎 − 𝜏𝜏) is the delayed gate function. 
Using a suitable nonlinear-optical medium, the optical pulse will then interact with the medium 
to generate the SHG spectrogram signal that carries information about the pulse’s temporal 
and spectral characteristics.  

Unlike autocorrelation that measures the temporal intensity of the intensity autocorrelation 
signal as a function of the delay between pulses, in FROG, we take it a step further by 
measuring the spectrum of the autocorrelation signal as a function of the delay  
(𝐼𝐼𝐹𝐹𝑅𝑅𝐹𝐹𝐺𝐺 = |𝐸𝐸𝐴𝐴𝑖𝑖(𝜔𝜔, 𝜏𝜏) |2), and with this new information, we obtain a two-dimensional phase-
retrieval problem that can be solved once one applies suitable deconvolution 
algorithms [184], [185], [186].  
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Figure II.12 Experimental FROG trace of a laser pulse centered at 1550 nm with an average input 

power 𝜙𝜙𝑐𝑐𝑣𝑣𝑐𝑐= 40 mW. The experimental trace is represented along the reconstructed FROG trace and 
the corresponding retrieved intensity and phase (in both time and frequency domains). 

 
FROG algorithms: FROG deconvolution algorithms aim at retrieving both the intensity and 
phase information of a pulse from its spectrogram (which is also called the FROG trace).  

Most of the used algorithms that enable this deconvolution are based on iterative Fourier-
transform phase-retrieval techniques, such as alternate projection methods. The objective is 
to iteratively refine the retrieved pulse until a satisfactory solution is achieved [186].  

A generic FROG algorithm consists of starting with an initial guess for the electric field 𝐸𝐸(𝑎𝑎) of 
the pulse. Using this initial guess, a signal field 𝐸𝐸𝐴𝐴𝑖𝑖(𝑎𝑎, 𝜏𝜏) is generated from the convoluted gate 
function [184], [187] and represents the interaction between different components of the 
pulse's electric field. It is then transformed into the frequency domain via a Fourier transform 
resulting in the signal field 𝐸𝐸�𝐴𝐴𝑖𝑖(𝜔𝜔, 𝜏𝜏). To evaluate the accuracy of the guess, the measured 
trace 𝐼𝐼𝐹𝐹𝑅𝑅𝐹𝐹𝐺𝐺(𝜔𝜔, 𝜏𝜏) is compared to �𝐸𝐸�𝐴𝐴𝑖𝑖(𝜔𝜔, 𝜏𝜏)�2 to determine the mean square deviation between 
the traces (i.e. the so-called FROG error). These should ideally be equal and the FROG error 
is null. However, there will likely be discrepancies between the measured trace and the 
calculated magnitude.  

In order to improve the signal field, a newly updated signal field 𝐸𝐸�𝐴𝐴𝑖𝑖′ (𝜔𝜔, 𝜏𝜏) is generated, 
following an adjustment of �𝐸𝐸�𝐴𝐴𝑖𝑖(𝜔𝜔, 𝜏𝜏)� ~ �𝐼𝐼𝐹𝐹𝑅𝑅𝐹𝐹𝐺𝐺(𝜔𝜔, 𝜏𝜏). This adjustment aims to bring the 
calculated magnitude closer to the measured values. Next, the updated signal field is 
transformed back into the time domain by applying an inverse Fourier transform, to 
get 𝐸𝐸𝐴𝐴𝑖𝑖′ (𝑎𝑎, 𝜏𝜏). Using this latter quantity, a new guess for the electric field 𝐸𝐸(𝑎𝑎) is generated, 
which takes into account the refined information obtained from the previous iterations. The 
process described above is repeated iteratively, where at each iteration, the algorithm 
generates a better guess that gets closer to the true complex electric field of the pulse. This 
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iterative process (and several other variations) aims to retrieve the accurate intensity and 
phase information of the pulse, ultimately providing a comprehensive characterization of the 
pulse's temporal and spectral properties.  

In Figure II.12, using a homemade MATLAB retrieval algorithm based on an alternate 
projection method, we present an experimental FROG trace and the retrieved intensity and 
phase of the pulse in both temporal and frequency domains, with a corresponding FROG error 
of 1.98%. These traces allowed us to verify the pulse duration (FWHM) as Δ𝜏𝜏 ~ 180 fs and the 
time-bandwidth-product was TBP ~ 0.99 so that the pulse appears close enough from being 
transform-limited.   

While the quality of this pulse retrieval is up for debate, Figure II.12 is provided for illustrative 
purposes and several refined signal preprocessing/deconvolution techniques can be employed 
along with alternative commercial solutions for pulse retrieval (e.g. Femtosoft FROG [188]). In 
our case, for the generation of several hundreds of highly separated femtosecond pulse 
patterns (see Appendix 2) having a clear FROG trace as a qualitative measurement of the 
pattern spectrogram is usually sufficient to assess the signal key properties.  

However, from a general viewpoint, FROG offers a range of useful properties and 
advantages [180] that make it an excellent tool for accurately characterizing ultrashort laser 
pulses. One notable advantage is its high accuracy, as it makes minimal assumptions about 
the pulse and allows for precise estimation of pulse intensity and phase. As the FROG trace is 
measured by removing the noise background, the retrieved pulse may be rigorously 
determined. The off-scale delays and frequency offsets have negligible impact on the retrieved 
pulse and FROG can account for known systematic errors in the measurement through the 
pulse-retrieval algorithm. Preprocessing techniques can also be employed to remove 
systematic errors, enhancing the accuracy of the measurement.  

Unlike most ultrashort pulse measurement methods, FROG provides means to assess the 
reliability and accuracy of the obtained results. FROG provides the presence of two feedbacks, 
which can be divided into two types: The first type is probabilistic and results from the over-
determination of pulse intensity and phase. The FROG trace contains more information than 
what is needed to determine the pulse, allowing for a check on the reliability of the results. The 
second type is deterministic and helps identify systematic errors. In this case the technique not 
only provides information about the pulse shape but also can detect and potentially rectify 
errors or inconsistencies in the measurements caused by various factors, including instrument 
calibration issues or environmental conditions. Another FROG feature is that it ensures infinite 
temporal resolution by combining information from both the time and frequency domains and 
determining the pulse characteristics with high precision. As the short-time information is 
extracted from large frequency-offset measurements, we can use delay increments that can 
be as large as the time scale of the pulse structure and thus indirectly obtain a high temporal 
resolution. This however requires a careful selection between spectral resolution/temporal 
span and spectral bandwidth/temporal resolution that should be balanced adequately 
depending on the experimental constraints and the properties of the PUT (see below). 

As we noted before, during a FROG measurement, different nonlinear processes can occur 
depending on the type and experimental configuration of the nonlinear medium. SHG, based 
on 𝜒𝜒(2) nonlinearity, is one of the most used autocorrelation processes. However, we can also 
rely on other configurations or third-order autocorrelation based on 𝜒𝜒(3). In this case, we can 
mostly cite the polarization gate beam geometry (PG), self-diffraction autocorrelation (SD), or 
third harmonic generation FROG (THG), where each one of them has a slightly different FROG 
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setup and results in a different electric field equals to 𝐸𝐸(𝑎𝑎)|𝐸𝐸(𝑎𝑎 − 𝜏𝜏)|2, 𝐸𝐸2 (𝑎𝑎)𝐸𝐸∗(𝑎𝑎 − 𝜏𝜏), 
and 𝐸𝐸2(𝑎𝑎)𝐸𝐸(𝑎𝑎 − 𝜏𝜏), respectively.  

Among these various correlation processes available, the non-colinear SHG-FROG is still one 
of the simplest methods to set, and, at the same time, presents advantages in terms of 
sensitivity and excellent signal-to-noise ratio. It is therefore the implementation I have installed 
and worked with in the laboratory. 

 
Figure II.13 ‘Home-made’ FROG, set in our laboratory, constituted from a collimator to focus a 1550 

nm laser pulse into a beam splitter, where it is divided into two optical paths: The first beam (in green) 
passes through a reflectometer and arrives into a D-mirror where it reflects towards an elliptical mirror. 
The second beam (in orange) is reflected by 4 different mirrors before arriving at the elliptical mirror. 

Both beams are focused into the BBO and their SHG signal is measured with a spectrometer. 

For our studies, in order to measure the initial pulse properties before nonlinear propagation, 
we built up a “home-made” FROG system represented in Figure II.13.  

Starting with a fiber collimator (Thorlabs - F260APC-1550) that converts the fibered pulse 
centered around 1550 nm into a free space beam of 3 mm diameter with minimal diffraction, 
the laser beam is then divided into two different paths using a thin film non-polarizing beam 
splitter (BS – Thorlabs - BP545B3). The first beam is reflected through four 6 mm silver mirrors 
(M1, M2, M3, and M4) before hitting a 90°off-axis parabolic mirror (Thorlabs - MPD239-P01). 
The second beam is the delayed one. After the beam splitter, it passes through a silver 
retroreflector used to reflect the incident beam back to its source at the same angle but with a 
spatial offset. The retroreflector is here mounted on a 600 mm linear translation stage 
(Thorlabs - DDS600), monitored by a channel controller (Thorlabs - BBD201 benchtop 
controller) that allows adjusting the delay over a span of 4 ns with a 0.6 fs resolution (i.e. 50 
nm minimal step size). After reflecting from the mirror, the beam continues its path and hits a 
D-mirror where it gets directed towards the parabolic mirror.  

We should note that for the point where the optical path lengths are the same (i.e. zero delay 
so that 𝜏𝜏 = 0) so that the SHG signal power is at its maximum (in our case, where the delay 
line is centered at 𝑧𝑧0 = 300 mm), we obtain the same optical power for both beams paths.  

After being reflected by the mirror with a focal length 38.1 mm, the two beams are focused 
onto a BBO crystal (Beta-Barium Borate), whose thickness is 2 mm (but can be lowered down 
to 100 µm to improve the bandwidth acceptance of the PUT required for very short pulses). 
This 𝜒𝜒(2) nonlinear medium enables the SHG and convert the two (non-colinear) incoming 
beams into a new beam with twice the frequency (at ~775 nm). At the exit of the BBO, we use 
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a spectrometer (Ocean Insight - HR4 Pro Custom) to collect the generated signal along the 
optical axis (and filter out the non-colinear SHG signals generated from independent paths) 
and thus record the FROG spectrum with a resolution of < 0.7 nm.  

By successively changing the delay and recording the information from the spectrometer, we 
can then create the spectrogram constituted from the different recorded spectra as a function 
of the delay. With suitable algorithms, we can then retrieve the needed information from the 
spectrogram and access the phase and intensity of the initial pulse.  

In this setup, we use fibered injection, and the polarization state of the PUT is adjusted by a 
fibered polarization controller (FPC) to maximize the SHG signal peak power and temporal 
symmetry for our measurements. The intensity autocorrelation can be also directly extracted 
via a foldaway photodiode (Thorlabs - DET10A2) where the signal can be detected with 
synchronous detection using a lock-in amplification to gain temporal information (only) on the 
weakest/longest pulse that can be hard to resolve with the sensitivity of the FROG 
spectrometer. 

Importantly, while we here focus on FROG due to its relative simplicity and versatility in terms 
of pulse properties, we note that other alternative methods for short pulses characterization 
have been implemented. One such method, known as "GRENOUILLE," is a simplified and 
compact variant of SHG-FROG [189]. It replaces multiple components with a single Fresnel 
biprism, offering cost-effective implementation and improved sensitivity by using thicker 
crystals. Additionally, we can cite the spectral phase interferometry for direct electric-field 
reconstruction (SPIDER) that is widely used to complete characterization of short pulses 
without iterative reconstruction algorithms [190], [191], or an alternative for SPIDER, SPIRIT 
(spectral interferometry resolved in time) [192] which has the potential for improved 
performance compared to SPIDER in terms of flexibility, adaptability, and the ability to 
characterize a wide range of pulses. 

As we saw, FROG is one of the most successful methods for pulse characterization. It allows 
for the complete temporal and spectral characterization of ultrashort laser pulses. It provides 
detailed information about pulse duration, phase, chirp, and spectral content, enabling precise 
monitoring of pulse properties in different areas such as laser pulse compression, where FROG 
was widely implemented for the optimization of compressor setups [193], or for ultrafast 
spectroscopy applications [180], by accurately measuring the temporal and spectral 
characteristics of ultrafast laser pulses and assisting in understanding ultrafast dynamics in 
various systems, including molecular dynamics, chemical reactions, and material 
characterization. In fiber optics, FROG is a crucial tool used in the characterization of ultrashort 
pulses. It helps analyze the effects of dispersion and nonlinearity on pulse propagation [194], 
but also facilitates the design and optimization of fiber-based devices and systems for 
applications such as telecommunications, nonlinear optics, and optical fiber 
sensing [195], [196]. 

II.4.2. Real-time temporal characterization techniques 

While the optical interferometry techniques cited above can provide a complete measurement 
of ultrashort pulses in phase and intensity, they have certain limitations. As FROG works by 
scanning or measuring pulses over multiple laser periods, the measurements are integrated 
over time, and does not provide a real-time measurement of the pulse properties. Although 
other FROG derivatives methods were developed to capture measurements in a single shot 
regime, such as cross-correlation FROG (X-FROG) [195], they require extremely high power 
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and are typically less practical for sup-picosecond pulses. SPIDER and SPIRIT can also 
access single-shot pulse properties, but they are usually more complex to put in place, 
especially in terms of alignment, pulse synchronization, and signal retrieval, thus hampering 
their applicability to versatile and/or continuous signal monitoring. 

Other techniques for real-time measurement have been implemented and developed over the 
years in both the temporal and frequency domains. In the time domain, we can introduce the 
so-called “time-lens” technique, which leverages the concept of space-time, based on the 
principle of temporal magnification and reshaping of optical pulses using a time-lens 
device [197], [198]. Just as a lens helps us see things more clearly in space, a time lens can 
magnify the temporal waveform making it easier to study and measure light over very short 
timescales. 

It consists in sending the signal into a dispersive optical element followed by a time-modulating 
element imposing a quadratic phase shift (often generated by a phase modulator or a nonlinear 
effect used to impart a temporal phase shift onto the dispersed signal) before propagation into 
another dispersive optical element. This phase modulation, analogous to the spatial phase 
imprinted by a lens on a light beam, is key to achieving the magnification effect of the time lens 
𝜙𝜙 = 𝐷𝐷𝑐𝑐𝑤𝑤𝑖𝑖/𝐷𝐷𝑐𝑐𝑐𝑐 (Figure II.14.a), where 𝐷𝐷𝑐𝑐𝑐𝑐 and 𝐷𝐷𝑐𝑐𝑤𝑤𝑖𝑖 are the fibers corresponding dispersion 
factors [197], [199], [200], [201]. The time-lens method is particularly useful for the 
characterization of short laser pulses, typically in the femtosecond or picosecond range. It 
enables the real-time measurement of non-repetitive waveforms or the monitoring of 
fluctuating pulse temporal profile or duration, providing valuable insights into the temporal 
behavior of ultrafast optical signals [200], [201], [202].  

On the other side, a well-known technique in the frequency domain is the dispersive Fourier-
transform (DFT) illustrated in Figure II.14.b. Drawing an analogy to the diffraction of light 
through a circular aperture, we can understand that similar to how a circular aperture causes 
the spreading of light waves and generates a spatial diffraction pattern, DFT exploits pure 
linear dispersive effects, typically through a dispersion compensating fiber (DCF), to transform 
the spectral information of an optical signal into a corresponding temporal waveform. This 
transformation allows for a detailed analysis and characterization of the signal spectrum in the 
time domain [199]. DFT achieves frequency-to-time mapping by time-stretching broadband 
pulses through group-velocity dispersion: When an optical waveform propagates through a 
DCF, different spectral components experience different delays due to dispersion.  

 
Figure II.14 Principle of (a) the time-lens technique and (b) the DFT technique. 

By analyzing these delays, under suitable conditions, it becomes possible to reconstruct the 
original spectrum of the waveform in the time domain. DFT is mostly used in the far-field region, 
where the length/dispersion of the DCF is long enough and the conditions of the spatial 
Fraunhofer dispersion are met [203], [204].  In this case, after propagating through the DCF 
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with a length 𝐿𝐿 and a dispersion of 𝛽𝛽2, the resulting temporal waveform can then be 
represented as: 

|𝑈𝑈𝑍𝑍𝐹𝐹𝜕𝜕(𝑎𝑎)|2 =  �𝑈𝑈�(𝑎𝑎/𝛽𝛽2𝐿𝐿)�2 (Eq. II.6) 

where 𝜔𝜔 represents the frequency and 𝑎𝑎 denotes the time. The dispersed output pulse yields 
the pulse spectrum subject to the mapping of the time coordinate, so that:  

𝜔𝜔 = 2𝜋𝜋𝛥𝛥 =
𝑎𝑎
𝛽𝛽2𝐿𝐿

 (Eq. II.7) 

The principle of DFT is described in Figure II.15, where a laser pulse entering a HNLF and 
experiencing spectral broadening is then sent into a DCF. Due to purely linear dispersive 
effects, the optical signal is stretched into an exact waveform replica in the temporal 
domain [199], [205], [206], [207]. 

 
Figure II.15 (Top) Principle of DFT: A broadband optical signal is temporally stretched after linear 
propagation in a highly dispersive fiber. The various spectral components of the optical signal are 

directly mapped in the temporal domain. (Bottom) Real-time spectra acquired from PD measurements 
by readily analyzing shot-to-shot fluctuations from successive traces. 

This mapping of the spectrum into a time-domain waveform replica indeed allows for the direct 
real-time measurement of the temporal intensity profiles. The standard optoelectronic 
detection process, which can be seen in Figure II.15, involves using high-speed photodiodes 
and ultrafast oscilloscopes to capture shot-to-shot fluctuations of the spectrum and perform 
real-time acquisition of successive temporal traces, to directly measure the variation of the 
signal’s intensity profile as a function of time [199], [205], [208]. 

The DFT technique plays a crucial role in this thesis to study and characterize nonlinear 
dynamics phenomena, such as modulation instability and four-wave mixing processes, in 
ultrafast optical systems [207], [209], [210]. These processes generate new frequencies and 
complex spectral patterns and are often accompanied by fluctuations and intricate behaviors 
that are essential to understand the underlying physics [211], [212]. They are incoherent, 
noise-driven, and fluctuate between two time-events (i.e. from one pulse to another) which 
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makes it necessary to apply real-time characterization techniques to suitably measure these 
dynamics [205], [207], [208].  

To illustrate this point, in Figure II.16, we show numerical results obtained by considering a 34 
ps Gaussian pulse propagating into a HNLF and experiencing spontaneous modulation 
instability. The four output spectra presented are obtained from Monte-Carlo simulations where 
each numerical realization is simulated with the same exact input parameters, apart from 
different noise seeds (i.e. 1 photon per spectral mode with random phase). The incoherent 
nature of such noise-driven spectral broadening can be seen when comparing the different 
output profiles from each realization. In contrast, the mean output spectrum (red line), 
averaged from 1000 different realizations, displays an artificially smooth shape as one would 
observe experimentally from “slow” OSA measurements (typically integrating the spectrum 
from several millions of subsequent optical waveforms). Experimentally, to measure these 
fluctuations without losing information (besides the phase), we need to perform shot-to-shot 
detection, which can be provided by the DFT technique. 

 
Figure II.16 Stochastic simulations of a 30 ps Gaussian pulse with 𝜙𝜙0 = 2.5 W propagating in 485 m of 

HNLF (𝛽𝛽2 = −1.78 𝑝𝑝𝑝𝑝2. 𝑘𝑘𝑛𝑛−1 , 𝛽𝛽3 = 0.07 𝑝𝑝𝑝𝑝3. 𝑘𝑘𝑛𝑛−1, 𝛾𝛾 = 8.4 𝑊𝑊−1.𝑘𝑘𝑛𝑛−1). The figure shows the four 
fluctuating MI output spectra simulated with the same parameters apart from a different initial noise 

seed. These spectra can be measured using real-time detection with the DFT technique. The average 
spectrum of 1000 realizations is shown in red, as a smooth artificial spectrum, preventing us from 

accessing to the incoherent shot-to-shot fluctuations of the noise-driven nonlinear dynamics. 
 

To be fully leveraged, DFT is often followed by a statistical analysis, such as the retrieval of 
correlation between different spectral components. These correlations are usually represented 
by spectral correlation maps, calculated using Pearson’s correlation coefficient. Defined as 
𝜌𝜌(𝜆𝜆1,𝜆𝜆2), it quantifies the linear dependencies between two wavelengths (𝜆𝜆1, 𝜆𝜆2) based on the 
fluctuation of their respective spectral intensity 𝐼𝐼. This calculation is given by:  

𝜌𝜌(𝜆𝜆1,𝜆𝜆2) =
 〈𝐼𝐼(𝜆𝜆1) 𝐼𝐼(𝜆𝜆2)〉 − 〈𝐼𝐼(𝜆𝜆1)〉〈𝐼𝐼(𝜆𝜆2)〉

� 〈𝐼𝐼2(𝜆𝜆1)〉 − 〈𝐼𝐼(𝜆𝜆1)〉2  � 〈𝐼𝐼2(𝜆𝜆2)〉 − 〈𝐼𝐼(𝜆𝜆2)〉2  
 (Eq. II.8) 

The resulting values of 𝜌𝜌(𝜆𝜆1,𝜆𝜆2) lying between -1 and 1, allow us to determine the correlation 
status between the corresponding wavelengths and understand their behavior relative to each 
other. A correlation value of 𝜌𝜌(𝜆𝜆1,𝜆𝜆2) = 0  indicates that there is no correlation between the two 
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wavelengths. As the value approaches 1 or -1, the correlation gradually increases or 
decreases, respectively, indicating a positive or negative correlation between the 
corresponding wavelengths. 

The simplicity and ease of DFT implementation, and its ability to provide valuable information 
have led to its widespread use in numerous studies and applications over the 
years [213], [214], [215]. Specifically, in the understanding of nonlinear processes such as 
FWM and MI, DFT techniques can reveal hidden features and patterns in the spectral domain 
that may not be apparent in ensemble measurements or averaged data. DFT has nowadays 
become a standard approach for detailed real-time measurements of noise across a full 
spectral range such as supercontinua, providing insight into fluctuation 
statistics [205], [208], [216]. It offered a significant advancement in this field of ultrafast 
photonics, and the extraction of correlation metrics made it a valuable tool for analyzing noise-
driven processes in nonlinear fiber propagation.  

To summarize, we emphasize that pulse properties control and characterization is a complex 
subject. It necessitates an understanding not only of the interplay between temporal and 
spectral parameters but also of their distinct influences on nonlinear dynamics propagation and 
the generation of new frequency components during spectral broadening. A wide array of tools 
and combinations of approaches exist for managing these properties or even controlling them 
using machine learning techniques. The more comprehensive our access and manipulation of 
pulse properties, the greater our degree of control and precision in fine-tuning nonlinear 
dynamics and output waveform properties.  

Various methods exist to study and understand the behavior of both the input output optical 
signals, each associated with unique advantages and limitations. Among these, the DFT 
technique is a well-known method enabling real-time characterization and comprehensive 
access to spectral attributes. DFT has been extensively studied over the years for different 
applications and has been refined through diverse approaches, which will be thoroughly 
examined in Chapter III. However, depending on our specific objectives and applications, each 
technique might carry some limitations, thus making important the exploration of new 
characterization approaches. 

 



Lynn SADER | Ph.D. Thesis | University of Limoges | 2023 92 
License CC BY-NC-ND 4.0 

Chapter III.  Ultrasensitive DFT-based characterization technique 

The dispersive Fourier-transform is a well-known characterization technique used in various 
applications due to its potential in studying complex nonlinear phenomena within the field of 
photonics and nonlinear optics. To explore this technique and understand its various 
implementations, we propose in Section III.1 an overview explaining the advantages and 
limitations of this technique. Over the years, several DFT-based characterization approaches 
have been implemented to overcome these limitations and answer particular application 
requirements. We delve into its multifaceted applications, showing how it has become a 
cornerstone in diverse fields such as laser development, ultrafast optics, and imaging 
applications. Specifically, the section explains how DFT has been used to characterize 
incoherent nonlinear processes such as modulation instability and frequency conversion 
phenomena, enabling a deeper understanding of complex noise-driven dynamics during 
nonlinear propagation. In Section III.2, we focus on the employment of such frequency-to-time 
techniques in the world of quantum science. Combined with single-photon detectors (SPDs), 
these techniques play an important role in characterizing non-classical states of light through 
the measurement of joint spectral intensity or second-order autocorrelation functions. Taking 
advantage of the frequency-to-time mapping DFT technique by leveraging multiple single 
photon detectors, we present in Section III.3 a new DFT-based approach at the boundary 
between nonlinear and quantum optics to characterize complex nonlinear phenomena, 
specifically modulation instability, with unprecedented sensitivity, dynamic range, and 
resolution. In this section, we explain the methodology of our approach, describing the 
developed experimental setup and how it allows for a direct access to inter- and intra-pulse 
dynamics during MI measurements. Such technique provides an ultrasensitive 
characterization using mutual information analysis to reconstruct the correlation maps and 
study different behaviors of nonlinear instabilities. In this framework, a comparative study of 
different DFT implementations and statistical analysis methods is presented in this section, 
allowing to highlight the improvements of our new approach regarding “standard” DFT 
detection. The section highlights the advantages of our approach, showing experimental 
results that demonstrate the efficacy of our technique in detecting and characterizing 
modulation instability observed under challenging experimental conditions. 

III.1. The dispersive Fourier-transform technique: Overview & applications 

As already briefly discussed in section II.4.2, DFT is a widely used technique that allows us to 
perform real-time detection of temporal spectra and has become a standard characterization 
tool in a wide range of applications [199], [217]. It has been extensively used in laser 
development, allowing for precise characterization of laser pulses and their spectral 
properties [213]. DFT has also found applications in ultrafast microscopy and contributed to 
the development of better resolution, broadband, and real-time spectroscopy 
techniques [218], [219]. Additionally, DFT can be employed for velocimetry applications by 
enabling high-speed imaging, tracking, and measurement of vibrations and shockwaves, 
providing real-time analysis and characterization of their dynamics and 
interactions [220], [221]. In nonlinear fiber optics, the deployment of DFT has brought about 
significant advancements in the measurement and analysis of diverse 
phenomena [80], [208], [222].  

One notable application lies in the characterization of supercontinuum generation and the 
formation of optical rogue waves [80]. By directly accessing single-shot fluctuations across the 
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full spectrum (see section II.4.2), DFT allows for the identification of the optical process 
statistics and the detection of outliers within the broadband spectrum. Furthermore, DFT plays 
a pivotal role in studying complex fluctuating noise-driven dynamics during nonlinear 
propagation processes, such as broadband incoherent supercontinua, or modulation instability 
dynamics [223]. The technique enables the monitoring of the spectral fluctuations and the 
quantification of correlation functions (such as Pearson’s Correlation) which offers insights into 
spectral stability and the impact of external factors on the process dynamics [210], [205].  

 
Figure III.1 (a) Average OSA spectrum and Pearson’s correlation map extracted from a DFT 

measurement using a DCF with a dispersion 𝐷𝐷𝑍𝑍𝐹𝐹𝜕𝜕 = 478 𝑝𝑝𝑝𝑝/𝑛𝑛𝑛𝑛, of 500 fluctuating spectra in a 
spontaneous MI regime. (b) Corresponding numerical results using GNLSE simulations with 2000 
random Monte Carlo realizations with different noise seeds. (c) Same numerical results as (b) but 
adding an incoherent weak seed (-35 dB) to the pump before nonlinear propagation (seed with a 

frequency detuning of 800 GHz and a relative spectral phase ϕ=0). 

For example, in Figure III.1.a, we show the statistical analysis of a DFT measurement of a 60 
ps Gaussian pulse propagating in a 500 m - HNLF. The DFT spectra were recorded 
experimentally with a photodiode and an oscilloscope with pump filtering to gain a better 
dynamic range on the spectral fluctuations of the MI sidebands. The correlation maps are 
extracted using Pearson’s correlation equation (Eq. II.8). For comparison, the same conditions 
were simulated numerically using the GNLSE equation (section I.3.2and section I.3.3) with 
2000 realizations, each with a different input noise seed (Figure III.1.b). The averaged output 
spectrum is displayed for both cases, and the fluctuating spectra are used to construct the 
corresponding correlation maps.  

The correlation maps offer detailed statistical insights into the links and relationships among 
various spectral components within the analyzed incoherent spectrum. In this instance, they 
facilitate the examination of the effects of noise on the MI dynamics, the FWM cascades, and 
nonlinear broadening characteristics. Moreover, they have broader application in identifying 
significant attributes in nonlinear optics, encompassing phenomena like soliton spectral 
variations, pulse interactions, localized energy depletion, and spontaneous/stimulated 
conversion processes [208], [210], [205], [207], [224]. 

Additionally, DFT can serve as a means to quantify the impact of external factors on the 
spectral stability of nonlinear fiber systems. For example, by assessing variables such optical 
seeding (Figure III.1.c), DFT-based monitoring offers a quantitative approach to understand 
how these factors influence the spectral behavior [225], [226], [227]. Here, we added an 
extremely weak optical seed (35 dB spectra attenuation compared to the pump) with an 800 
GHz frequency detuning from the pump. As we can see, even though the seed has a very low 
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intensity regarding the pump, the correlation maps were modified due to the effect of the added 
signal on the nonlinear propagation dynamics in the fiber and thus, on the resulting spectral 
broadening.  

In this example, the impact of such an extremely weak optical seed is fairly moderate, and the 
spectral correlation signatures remain qualitatively similar. Still, this effect is noticeable (at least 
from a numerical viewpoint) and understanding how the parameters of these factors can 
change the output spectrum and the correlations between the spectral components is a key to 
enable fine control and tailor the dynamics towards the desired properties. DFT is, in this 
context, an excellent experimental tool to assess the impact of optical pulse shaping and 
control methods described in Chapter II on adjusting relevant spectral broadening dynamics. 

However, as all other techniques, DFT has some limitations, mainly related to the 
optoelectronic devices used for detection. Despite important technological advancements, 
ultrafast photodiodes and high-speed oscilloscopes are typically limited to a few tens of GHz 
in terms of their detection bandwidth, which imposes a constraint on the overall system, 
impacting the maximum spectral resolution achievable with respect to the signal bandwidth 
and repetition rate. Additionally, photodiodes exhibit limited sensitivity with poor noise figures, 
and high-speed oscilloscopes, typically equipped with 8-12 bits digitalization, suffer from a 
reduced dynamic range [197]. The combination of limited sensitivity and dynamic range leads 
to restricted real-time spectra with typically less than 30 dB contrast, which falls short of the 
requirements for characterizing incoherent broadband pulses in demanding signal processing 
applications [147], [228].  

Several improvements in DFT techniques have been implemented over the years to address 
these challenges (see Figure III.2). For example, in order to adjust the spectral resolution, the 
amount of dispersion can be adjusted before measuring the temporal profile of the optical 
signal. This can be achieved by using different fiber dispersions/lengths or employing 
(switchable) recirculating fiber cavity loops, as illustrated in Figure III.2.b. By adjusting the 
amount of dispersion, one can effectively control the extent of temporal broadening and, 
consequently, the equivalent spectral resolution of the DFT measurements. Additionally, 
advanced processing techniques and the use of more sophisticated algorithms can help 
extract more information from the measured data, enhancing the accuracy and resolution of 
DFT measurements [222], [224]. However, even with these adjustments, DFT still encounters 
limitations imposed by the spectral bandwidth of the optical signal and its repetition rate (that 
may lead to temporal overlap between successive DFT signals). 

In this context, one can also rely on pulse picking and/or selective spectral filtering to avoid the 
overlap of successive time-stretched waveforms and achieve extremely high spectral 
resolution (see Figure III.2.c). With such approaches, extreme DFT temporal stretching leads 
to a drastic decrease of the “power temporal density” of the stretched pulse (i.e. the "local" 
temporal intensity of the DFT stretched spectrum): the energy of the pulse is further spread 
temporally, making it necessary to have an improved detection sensitivity to accurately 
measure the weakest pulses or spectral components. It is important to acknowledge that DFT 
relies on a linear dispersive process. This means that the achievable detection quality is 
inherently limited by the available power (to avoid undesirable nonlinear effects). Therefore, 
there exists a tradeoff between the limited spectral power density and sensitivity versus the 
bandwidth and spectral resolution in DFT measurement schemes.  

To address the decreased measurable power levels resulting from the substantial spectral 
time-stretching, amplified DFT approaches have emerged as an alternative. This involves 
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integrating an active amplification scheme into the DFT setup, effectively amplifying the optical 
signal conjointly with the time-stretching process [229]. These schemes mitigate power 
reduction and compensate for the overall system losses caused by temporal elongation. This 
is accomplished by enhancing the signal strength, therefore enabling more robust spectral 
analysis. 

 

Figure III.2 Example of DFT schemes and mitigation techniques for achieving enhanced spectral 
resolutions (a) Schematic of the DFT of a pulse train broadened after propagation in an HNLF. (b) 
Enhancement of the equivalent spectral resolution of DFT measurements by tuning the amount of 
dispersion. This can lead to a temporal overlap between successive time-stretched waveforms. (c) 

Pulse picking can be employed on the initial pulse train, to mitigate pulse temporal overlap and enable 
extremely high resolution. This comes at the expense of reducing temporal intensity of the DFT 

stretched waveform. 

In addition, the inherent repetition rate limitation of DFT poses challenges when studying high-
repetition laser sources due to the temporal overlap of stretched pulses in dispersive fibers. 
Although methods like compressive sensing have been used to address this, they can be 
complex and require extensive post-processing [230]. Consequently, DFT has found its 
primary use in sources with lower repetition rates, typically in the MHz range. However, 
emerging laser cavity solitons in microcavities provide a new approach for generating high 
repetition-rate frequency combs [231]. These microcombs offer distinct advantages such as 
broad spectral ranges and enhanced mode efficiency. Their setup involves nonlinear Kerr 
micro-cavities seeded externally or typically integrated within fiber loops. Yet, the intrinsic 
repetition rate of these microcombs is often incompatible with DFT. To bridge this gap, optical 
sampling via an electro-optical modulator and a pulse generator may be used to decimate (i.e. 
lower) the repetition rate of the signal, creating manageable temporal stretches that avoid 
overlap [232], [233]. This modulation strategy generates groups of pulse(s), each treated as a 
single unit for temporal analysis. A DFT diagnostic is then applied to these modulated pulse 
groups, providing insight into the system's dynamic behavior. 

Despite the limitations and challenges associated with DFT, it has still been found to be 
beneficial in various applications. For example, laser systems, particularly mode-locked lasers, 
exhibit intricate dynamics like chaotic behaviors and nonlinear effects. DFT, along with high-
speed digitizers, has enabled a detailed exploration of these dynamics in mode-locked lasers, 



Lynn SADER | Ph.D. Thesis | University of Limoges | 2023 96 
License CC BY-NC-ND 4.0 

which have significant roles in optical technologies. It offers insights into the instabilities and 
interactions of dissipative solitons [214], and allows in-depth analysis of pulse evolution, 
contributing to applications like multiphoton microscopy and frequency combs [217], [234]. 
DFT helps track the transition from noisy to steady-state regimes and even retrieves field 
autocorrelation information [213], [235]. This technique has revealed intricate behaviors like 
soliton explosion and bound state formation, where multiple solitons create a “soliton 
molecule” [236]. DFT-based spectral interferometry can be used to characterize these 
molecules, their binding properties, and complex dynamics like break-up and collisions. 
Beyond solitons, DFT has allowed broader studies of nonlinear phenomena like extreme 
events formation in fiber optics and the optical Sagnac effect in laser oscillators [236]. 

DFT-based techniques were also leveraged in imaging applications as they enable capturing 
ultrafast phenomena [237], [238]. Serial time-encoded amplified microscopy (STEAM), which 
is an amplified time-stretch imaging technique, that has been developed to replace 
convolutional imaging methods which fall short of capturing such events [220], [229]. STEAM 
is a real-time imaging technique that encodes temporal information onto ultrashort pulses' 
spectral profiles, and then maps this information into the time domain using DFT. The resulting 
data is recorded using high-speed digitizers and relies on substantial signal amplification to 
compensate for losses due to time-stretching. A specific application of this technique was for 
instance demonstrated to track laser-induced supersonic shock waves (SWs). Time-stretch 
imaging was used to capture the entire dynamics of individual SWs and gather statistical 
insights into their fluctuations [239]. This study for instance provided a deep understanding of 
these dynamics and how they change over a short period of time.  

While not exhaustively listed here, these demonstrations highlighted that, with different 
implementations of DFT tailored to specific needs, DFT has proved useful in providing valuable 
insights and monitoring capabilities in multiple are area of physics and beyond. Despite its 
limitations, DFT continues to find relevance and offers potential for improvement to further 
enhance monitoring capabilities and overcome the next challenges in demanding optical 
characterization. 

III.2. Frequency-to-time mapping in quantum science 

The importance of frequency-to-time mapping techniques, harnessing the concept of mapping 
frequency information onto the time domain, has emerged as a powerful tool in the field of 
quantum applications. Among others, it allows for the detailed analysis of quantum states and 
spectral properties and enables the precise measurement and characterization of specific 
quantum phenomena. 

In this context, researchers have combined frequency-to-time mapping techniques with 
quantum technology to perform extremely sensitive measurements at the level of individual 
photons [199]. This involves sending a quantum optical signal, such as a single photon or 
photon pairs, into optical fibers using chromatic group velocity dispersion to associate spectral 
information with the arrival time of a photon at a detector. By measuring the photon's arrival 
time with high temporal resolution, it becomes possible to extract the photon spectral properties 
in a simple and straightforward manner [238]. This was applied, for example, in the analysis of 
spectral features of non-classical light sources, such as those generated through parametric 
down-conversion processes [240]. Moreover, this approach has overcome the traditional 
single photon coincidence into measuring high-resolution spectral characterization of two-
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photon states [241], offering improved accuracy and resolution in characterizing photon pairs 
emitted from spontaneous parametric processes.  

For instance, in many quantum applications, the joint spectral intensity (JSI) is a valuable 
property that provides insights into the quantification of probability distributions for photon pairs 
and the spectral correlations between photons in quantum systems. Such information can be 
measured indirectly using Fourier-transform spectroscopy, recording interference patterns 
between photon pairs as a function of an adjustable optical delay. This approach enables 
extracting valuable information about the spectral correlations between photons [242] but 
however experimentally requires sweeping the optical delay within impractical setup. 

In contrast, direct measurements of this metric can be achieved by pairing frequency-to-time 
techniques with single photon detectors in order to study non-classical states of light in a time-
of-flight (TOF) spectrometer configuration. This approach can not only enhance the 
precision and repeatability of spectral correlation measurements, but also allows for tailoring 
spectral properties of photon pairs to suit diverse quantum applications in experimental 
configurations like Hong-Ou-Mandel interference and two-photon spectral 
interferometry [243], [244]. Other frequency-to-time mapping techniques such as electro-optic 
time lenses [245] have enabled the manipulation of quantum light's spectral-temporal 
waveform. This manipulation has for instance implications for enhancing single-photon flux 
into spectrally narrowband absorbers and enables spectral-temporal photonic quantum 
information processing.  

From a technical viewpoint, we note that avalanche photodetectors (APD) are the most 
widespread systems to detect individual photons in quantum experiments, and are usually 
complemented by time correlated single photon counting (TCSPD) module to measure 
coincidences between detectors — when e.g. two photons arrive at the same time. Importantly, 
over the last decades, APDs typically offering 100-200 ps resolution have been supplanted by 
superconducting nanowire single-photon detectors (SNSPD) providing excellent detection 
efficiency and temporal resolutions reaching below 50 ps. 

Recently, we have leveraged this technological advantage with our collaborators at the Leibniz 
University of Hannover [246] and employed the dispersive Fourier-transform technique to 
directly map the spectral information of non-classical states of light.  

Specifically, the joint spectral intensity of a biphoton state, generated through pulsed 
spontaneous parametric down-conversion (SPDC) within a periodically-poled lithium niobate 
(PPLN) waveguide, was directly characterize by means of the DFT technique. In this scanless 
delay configuration, time-resolved intra- and inter-pulse coincidence detections were achieved 
using low-jitter SNSPDs (25 ps) (see Figure III.3.a).  
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Figure III.3 (a) Experimental setup for SPDC spectral properties characterization in the temporal 

domain using the DFT technique and multiple single-photon detection (D1-D4):  A 10 µW laser pulse 
centered at 778.8 nm with 50 MHz repetition rate, enters a PPLN waveguide. After down-conversion, 
the SPDC spectrum is time-stretched and converted in the temporal domain using the DFT technique 

via a DCF with a dispersion of 𝐷𝐷𝑍𝑍𝐹𝐹𝜕𝜕 = 960 𝑝𝑝𝑝𝑝/𝑛𝑛𝑛𝑛. Using a Waveshaper, the SPDC spectrum was then 
filtered within an 800 GHz bandwidth window (400 GHz for the signal, and 400 GHz for the idler 
regarding the degeneracy wavelength 1557.6 nm). Each 400 GHz- spectrum is then divided by a 

50:50 splitter and respectively sent into two single photon detectors (D1-D2, and D3-D4).  
(b) Reconstructed second-order autocorrelation function 𝑃𝑃(2) , experimentally measured between the 

frequency offsets 𝛥𝛥1, 𝛥𝛥2, with respect to the degeneracy wavelength (1557.6 nm), starting from 
𝛥𝛥1 = 𝛥𝛥2 = 50 𝐺𝐺𝐺𝐺𝑧𝑧. 

The setup was implemented through a Hanbury-Brown and Twiss (HBT) interferometry 
technique [247], [248] and resolved via the frequency-to-time mapping framework as 
described in Figure III.3. This setup allowed us to directly characterize the single frequency-
mode bandwidth and for the first time, to show a direct measurement of the spectral second-
order autocorrelation function 𝑃𝑃(2)(see Figure III.3.b) [246].  

This concept is essential for studying the degree of quantum correlations, characterizing the 
quality of the generated quantum states, and ensuring their suitability for a variety of quantum 
applications. More importantly, such approach allowed to determine the single frequency-
mode bandwidth δν =  57.18 ±  0.94 𝐺𝐺𝐺𝐺𝑧𝑧 through the collected intra-pulse events, as well as 
the direct measurement of the JSI and the coincidence to accidental ratio (CAR) of the photon-
pair source by collecting the time-resolved coincidence events corresponding to high-purity 
signal-idler photon pairs. This frequency-to-time mapping approach was demonstrated as an 
efficient and reliable method for the direct spectral characterization of biphoton states with high 
frequency resolution of 𝛥𝛥𝑐𝑐 = 3.03 𝐺𝐺𝐺𝐺𝑧𝑧, which is at least 10 times higher than those reported in 
previous studies (see for e.g. [240], [241]). 

In summary, the combination of both frequency-to-time mapping techniques and advances in 
single photon detector performances has paved the way for new studies and development in 
the field of quantum science, enabling the measurement and characterization of non-classical 
states of light with novel and potentially simplified/scalable experimental configurations. 

It is worth noting that this experiment was performed at Leibniz University and that my 
contribution mostly remained on the study of the DFT signal processing and conversion rather 
than the quantum state characterization part of this study. However, this work was performed 
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hand-to-hand with the experimental study presented in the next section, and thus provided the 
theoretical foundation for the quantum-inspired DFT characterization of incoherent processes.  

In this manuscript, I indeed focus on transposing this DFT approach for the analysis of 
nonlinear instabilities, which explores novel applications of these measurement techniques 
beyond fundamental research in quantum optics. 

III.3. Ultra-sensitive DFT: Case study of MI in nonlinear fiber optics 

In ultrafast optics, real-time characterization techniques have been widely used to study 
complex dynamics and phenomena with applications spanning diverse fields. In the preceding 
sections, we explored the importance of these techniques, especially the DFT technique, and 
the role they play in our understanding of nonlinear optical dynamics, via e.g. the analysis of 
spectral correlation features. We have also acknowledged the limitations inherent to traditional 
DFT implementations, stemming from the sensitivity cutoff and dynamic range constraints of 
the optoelectronic devices used for detection.  

In this section, we present a novel approach that exploits the power of frequency-to-time 
mapping and the advantages of single-photon detection introduced in section III.2. Specifically, 
we implement a DFT-based technique through the use of low-jitter single-photon detectors for 
ultrasensitive characterization of nonlinear instabilities [222]. We delve into one specific 
phenomenon that has garnered considerable attention in nonlinear optics over the last 
decades: modulation instability, a complex noise-driven process that can significantly impact 
the behavior of optical pulses during propagation (see section I.5.2). In section II.4.2, we 
showed the need to accurately characterize such noise-driven dynamics using real-time 
characterization techniques. By combining the well-established concepts of DFT and single-
photon detection (SPD-DFT) within the study of nonlinear optical processes, we stand at the 
boundary between nonlinear and quantum optics. Unlike traditional DFT implementations, this 
approach enables measurements at the single-photon level without the sensitivity and dynamic 
range limitations. Through experimental analysis, we highlight the advantages of this technique 
for the characterization of nonlinear noise-driven dynamics with ultra-high sensibility, 
resolution, and a theoretically unlimited dynamic range. 

As discussed earlier, DFT-based techniques provide the capability for real-time spectral 
fluctuation measurements, usually followed by a comprehensive statistical analysis that 
involves the examination of correlation among distinct spectral components using Pearson's 
correlation coefficient (Eq. II.8).  

Here, the SPD-DFT-based method brings forth a different but advanced capability for 
correlation measurements: Employing a pair of single photon detectors (SPDs) enables the 
investigation of both inter and intra-pulse dynamics as required for incoherent optical signal 
analysis. With an associated timing module (time-tagger), we can perform a time stamp 
acquisition of each detected photon by recording the precise arrival time of each photo-event 
registered by the time-tagger. Combined with DFT, the SPD detection is analogous to an ultra-
sensitive spectrometer, where the probability of detecting a photon within a specific time 
interval, known as a time-bin, is directly connected to the spectral intensity 𝐼𝐼(𝜆𝜆) of the signal 
being studied. In this context, after applying the time-to-frequency conversion provided by DFT 
(Eq. II.7), the probability of detecting a photon at a particular wavelength 𝜆𝜆𝑐𝑐 can be deduced 
from the analysis of these recorded time stamps (𝑎𝑎𝑘𝑘). This allows to construct a probability 
density function for the overall 𝑁𝑁 detected photons, given by: 



Lynn SADER | Ph.D. Thesis | University of Limoges | 2023 100 
License CC BY-NC-ND 4.0 

𝜙𝜙𝜆𝜆𝑐𝑐 ≡  𝜙𝜙
𝑖𝑖𝑐𝑐±

∆𝜏𝜏
2  

=
 1
𝑁𝑁
�  𝑎𝑎𝑘𝑘

𝑁𝑁

𝑘𝑘=1

∈  �𝑎𝑎𝑐𝑐 −
∆𝜏𝜏
2

 ;  𝑎𝑎𝑐𝑐 +
∆𝜏𝜏
2
� (Eq. III.1) 

(Eq. III.1) introduces Δ𝜏𝜏 as the width of the time interval in the time-tagger analysis. The time-
stamp 𝑎𝑎𝑘𝑘 corresponds to the timing of the 𝑘𝑘-th event relative to the laser period 𝑎𝑎𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐, within 
an integration time, spanning multiple laser pulses with indices 𝑛𝑛𝑘𝑘. The absolute event time, 
 𝑎𝑎 =   𝑛𝑛𝑘𝑘𝑎𝑎𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐 + 𝑎𝑎𝑘𝑘, is influenced by the joint timing jitter [222] of the SPD and time-tagger, 
which is here approximate to 𝜎𝜎𝑖𝑖 = 25 𝑝𝑝𝑝𝑝. To rigorously account for timing uncertainty, the 
actual probability distribution 𝜙𝜙𝑖𝑖𝑐𝑐 is convolved with a Gaussian distribution of standard deviation 
𝜎𝜎𝑖𝑖. This analysis yields to the spectral resolution 𝜎𝜎𝜆𝜆 of the quantum-inspired DFT 
measurement, linked to the dispersion 𝐷𝐷𝑍𝑍𝐹𝐹𝜕𝜕 of the dispersive fiber by the relation 𝐷𝐷𝑍𝑍𝐹𝐹𝜕𝜕 =
 𝜎𝜎𝑖𝑖/𝜎𝜎𝜆𝜆, and guides the choice of the minimum time-bin width Δ𝜏𝜏 achievable for the DFT signal 
analysis. 

To demonstrate how our proposed approach works, we illustrate in Figure III.4, the photon 
detection process recorded from each single photon detector to calculate the joint probability 
denoted as 𝜙𝜙𝜆𝜆1,𝜆𝜆2 = 𝜙𝜙(𝜆𝜆1, 𝜆𝜆2) = 𝜙𝜙({𝜆𝜆𝑆𝑆𝑆𝑆𝑍𝑍1 = 𝜆𝜆1} ∩ {𝜆𝜆𝑆𝑆𝑆𝑆𝑍𝑍2 = 𝜆𝜆2}), which represents the 
possibility of detecting at the same time a photon with a wavelength 𝜆𝜆1 by the first detector 
(SPD1) and a photon with a wavelength 𝜆𝜆2 by the second detector (SPD2). The coincidence 
detection can be selectively applied to analyze two types of photon events: Intra-pulse events 
(blue arrows), where the detected photons originated from the same laser pulse (𝑛𝑛𝑘𝑘,𝜆𝜆1 = 𝑛𝑛𝑘𝑘,𝜆𝜆2); 
or inter-pulse events (red arrows), where the detected photons come from different laser pulses 
so that 𝑛𝑛𝑘𝑘,𝜆𝜆1 ≠ 𝑛𝑛𝑘𝑘,𝜆𝜆2.  

 
Figure III.4 Principle of DFT detection via two single photon detectors (SPD-DFT):  The intra-pulse and 
inter-pulse dynamics are differentiated by blue and red arrows, respectively. The corresponding joint 
and independent probabilities between the detected photo-events in the spectral domain (𝜆𝜆1 and 𝜆𝜆2), 

represented with 2D maps allow for the reconstruction of mutual information correlation maps. 

To extract spectral correlation features with this approach, and access to both inter- and intra-
pulse dynamics, we use a statistical tool called mutual information analysis (MIA) [224]. Here, 
the MIA allows us to statistically quantify the relationships between the spectral components, 
considering both linear and nonlinear dependencies. This approach has proven valuable in 
understanding various complex processes such as parametric phenomena in laser physics (as 
already explained in section III.2). In our system, by employing the MIA (i.e. a differential/ 
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relative metric), we can overcome potential biases and uncertainties present in (Eq. III.1), 
arising from factors like the SPD deadtime, quantum efficiency, and wavelength dependence. 
The combination of SPD-DFT and MIA provides highly-sensitive measurements while ensuring 
unbiased statistical analysis of conditional probabilities and spectral correlations of incoherent 
nonlinear dynamics. To calculate the MIA between two wavelengths 𝜆𝜆1 and 𝜆𝜆2 we rely on both 
the joint and marginal probabilities following the equation: 

𝜇𝜇(𝜆𝜆1,𝜆𝜆2) = 𝜙𝜙𝜆𝜆1,𝜆𝜆2 𝑙𝑙𝑛𝑛𝑃𝑃 (
𝜙𝜙𝜆𝜆1,𝜆𝜆2
𝜙𝜙𝜆𝜆1 𝜙𝜙𝜆𝜆2

)   (Eq. III.2) 

To validate our approach, we developed at Leibniz University Hanover (group of Prof. Kues at 
the Institute of Photonics), the experimental setup illustrated in Figure III.5. A 50 MHz laser 
(Menlo Systems – C-fiber) emitting 80 femtosecond hyperbolic secant pulses at 1550.65 nm 
is sent into a spectral programmable filter (Finisar, Waveshaper 4000A). The broadband signal 
is filtered -with a 15 GHz bandpass filter (FWHM ~ 0.12 nm)- into a 55 ps pump with adjustable 
peak power values ranging from 0.8 to 2 mW (via controlled Waveshaper attenuation), ie, an 
average power ranging from 2.4 µW to 5.7 µW. After spectral filtering, this picosecond pulse 
is then amplified using an EDFA with a constant laser pump current of 880 mA to attain up to 
~ 25 mW average power (~ 2.7 W peak power), while the intrinsic ASE noise of the EDFA is 
filtered via a bandpass filter of ~ 0.8 nm bandwidth (Newport TBF-1550-1.0). The signal is then 
sent into a 485 m HNLF where it experiences a nonlinear spectral broadening typically 
associated with spontaneous MI dynamics (see section I.5.2.2).  
 

 
Figure III.5 Experimental setup showing the comparison between standard DFT with fast photodiode 

(PD) and our novel approach using ultra-sensitive single photon detectors (SPDs) for the spectral 
characterization of incoherent MI dynamics. 

After fiber propagation, the incoherent broadband signal was analyzed by either an averaged 
OSA measurement, or a DFT characterization using a DCF fiber of a dispersion 
𝐷𝐷𝑍𝑍𝐹𝐹𝜕𝜕 = 468 𝑝𝑝𝑝𝑝/𝑛𝑛𝑛𝑛. Here we note that, to get a better dynamic range, we employ a notch filter 
to remove most of the pump before injection in the DCF. After DCF propagation, the temporally 
stretched spectrum extends over a temporal span of almost 19 ps, which corresponds to a 
spectral bandwidth at 35 dB ranging between 1530 nm and 1570 nm.  

To demonstrate the improvement of this DFT-based approach, we here perform an 
experimental comparison between the standard DFT using a fast photodiode and an 
oscilloscope featuring a 6 GHz detection bandwidth (PD-DFT), and our new approach through 
the use of two single photon detectors (Single Quantum, Multi-channel SNSPD) and 
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associated with a time tagger (Swabian Instruments, Time Tagger Ultra) with 25 ps jitter, which 
would correspond to a 40 GHz bandwidth (SPD-DFT). In this case, both DFT implementations 
were synchronized with the 50 MHz laser to facilitate a direct comparison between the two 
measurement techniques. An additional programmable filter (Finisar, Waveshaper 4000A/X) 
is also placed after the DCF, having the capability to selectively filter specific sections of the 
output spectrum (see Figure III.7), or equalize different spectral components of the DFT 
detected signal (see Figure III.13). 

As in this work, our goal is to study the nonlinear dynamics of modulation instability, it is 
important to understand the behavior of MI in our experimental configuration. In our 
experiment, a 55 ps laser pulse propagates in the anomalous regime of a custom-designed 
HNLF (Germanium-doped silica fiber). In such conditions, the pulse will experience a nonlinear 
spectral broadening, governed by the self-focusing nonlinear Schrödinger equation 
(NLSE) [212] and typically lead to the generation of incoherent supercontinuum [249]. 
Modulation instability is here considered as the initial stage of such SCG, which will occupy 
our main studies for now. 
To visualize the realistic pulse evolution and associated MI formation, the pulse propagation 
within our experimental conditions is modeled using the generalized nonlinear Schrödinger 
equation (GNLSE), numerically solved with a split-step Fourier method [249] (see Figure III.6).  
The 55 ps pulse centered at 𝜆𝜆0 = 1550.65 nm and with a peak power 𝜙𝜙0 = 2.7 W propagates 
within a 485 m of HNLF with dispersion parameters 𝛽𝛽2  =  −1.78 𝑝𝑝𝑝𝑝2. 𝑘𝑘𝑛𝑛−1, and 
𝛽𝛽3  =  0.07 𝑝𝑝𝑝𝑝3.𝑘𝑘𝑛𝑛−1 and a nonlinear parameter is 𝛾𝛾 =  8.4 𝑊𝑊−1. 𝑘𝑘𝑛𝑛−1. 
 

 
Figure III.6 Pulse spectrum broadening through noise-driven MI in both (a) spectral and (b) temporal 

domains. Top panels: Results of Monte-Carlo simulations with 2000 different noise seeds (i.e. vacuum 
noise with one photon with random phase per spectral bin) showing spectral and temporal fluctuations 

for 10 realizations (grey traces), and one randomly selected realization (black trace), compared to 
averaged spectra (red) representative of an OSA measurement. Bottom panels: Corresponding 

spectral and temporal pulse evolutions of a randomly selected realization (i.e. black traces on the top 
panel). 
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The figure above shows the numerically computed evolution of the pulse in both the spectral 
domain (Figure III.6.a) and the temporal domain (Figure III.6.b), with a spectral broadening 
mediated by spontaneous MI. Initially, at around ~120 m of propagation, the first sidebands of 
the MI start to appear. These sidebands originate due to noise amplification within the MI gain 
region, symmetrically surrounding the pump frequency. Progressing through propagation, the 
pump pulse undergoes self-phase modulation effects [24]. Beyond approximately ~ 310 m of 
propagation, cascaded four-wave mixing (FWM) takes place, leading to the development of 
higher-order MI sidebands (which can act as secondary pump sources for FWM 
conversion [212], [250], [66]). Temporally, this cascaded MI process triggers the growth of 
localized femtosecond structures onto the envelope of the initial picosecond pulse [200]. This 
behavior corresponds to the onset of soliton fission phenomenon, which precedes and 
condition incoherent supercontinuum formation in a regime characterized by weakly 
anomalous dispersion [249].  

In the top panels of Figure III.6, numerical Monte-Carlo simulations stemming from 2000 
different initial noise seeds capture the shot-to-shot spectral and temporal fluctuations 
associated with the pulse incoherent propagation.  These fluctuations are illustrated by the 
grey traces for 10 realizations and, in black, for one randomly selected realization, which 
propagation dynamics corresponds to the one shown in the MI evolution maps. In red, we 
added the averaged spectrum and temporal intensity profiles which highlight the limitations of 
practical experimental methods, such as optical spectrum analyzers, with extended integration 
times that intrinsically smooth out output fluctuations over numerous pulse periods. 

III.3.1. Comparison of DFT characterization techniques and statistical analysis  

To compare the outcomes from different approaches and embark on a comprehensive 
examination of spectral variations tied to modulation instability (MI), we rely on three distinct 
methods: OSA, PD-DFT, and our proposed SPD-DFT, as illustrated in Figure III.7.  

 
Figure III.7 Output MI spectrum detected by various detection methods: (a) OSA spectrum with the 

first MI sidebands highlighted in grey, (b) 500 fluctuating spectra (light dotted lines) obtained from PD-
DFT detection and the resulting average spectrum (thick solid blue line), achieved by filtering the first 

MI sidebands (grey-shaded), (c) Comparison between the average SPD-DFT (dashed red), the 
average PD-DFT (solid blue) and an OSA (dotted grey) measurement of the  1st sidebands MI output 

spectrum. The figure underscores a good agreement between these methods within a limited dynamic 
range above the detection noise floor. 

In particular, we focus on a specific spectral region: the initial MI sidebands adjacent to the 
pump (see section I.5.2 – the MI gain 𝐺𝐺𝑆𝑆𝑀𝑀(𝜔𝜔𝑚𝑚𝑐𝑐𝑐𝑐)). The symmetrical 1st MI sidebands, centered 
at 1545 nm and 1557 nm, and highlighted in grey on the obtained OSA spectrum (Figure 
III.7.a), lie within an intensity range of approximately 13 dB. When applying the PD-DFT 
technique, as illustrated in Figure III.7.b, and by filtering only these sidebands for the analysis, 
we exploit the optimal dynamic range provided by our 8-bit optoelectronic detection system. 
This ensures that the captured fluctuations (light dotted lines) remain within a non-saturating 
range, reaching up to 24 dB in an ideal 8-bit digitization scenario. However, the most significant 
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aspect here comes from the agreement between the average spectrum obtained from the 
SPD-DFT measurements with the spectra obtained through experimental OSA and PD-DFT 
measurements as can be seen in Figure III.7.c. This compelling agreement underlines the 
validity of our SPD-DFT technique and showcases its ability to accurately capture the 
fluctuations associated with the MI spectral broadening phenomenon. 

To further investigate the performances of our approach, we rely on the analysis of the spectral 
correlation maps. Overlong this chapter, we mentioned different statistical analysis methods 
that allow us to extract the correlation maps and understand the relation between the spectral 
components of the MI spectra and their different behavior during propagation. 

In particular, we explained how, by performing a real-time DFT detection, we can detect the 
nonlinearly induced spectral fluctuations using fast optoelectronic devices and extract the 
correlation maps using Pearson’s correlation method (see section II.4.2). For quantum 
applications (section III.2), we saw how the second-order correlation function 𝑃𝑃(2) is widely 
used to study the statistical properties of light [251] (indicating e.g. photon bunching (𝑃𝑃(2) > 1) 
or anti-bunching (𝑃𝑃(2) < 1) behavior) and to provide insight into the coherence properties of 
non-classical states of light [248]. Finally, for the DFT detection via SPDs, leveraging two 
single-photon detectors allowed for direct access between both inter- and intra-pulse 
dynamics, which further requires mutual information computing to obtain analogous correlation 
maps (see Figure III.4). Here, we extract the correlation maps corresponding to the first MI 
sidebands using different statistical methods:  

 
Figure III.8 Correlation analysis of the first MI sidebands. (a) Pearson’s correlation map of the MI 

sidebands obtained from PD-DFT analysis. (b) Mutual information map of the MI sidebands obtained 
from SPD-DFT analysis (when considering intra-pulse events). (c) Mutual information map of the MI 

sidebands from SPD-DFT analysis (when considering inter-pulse events). 

Starting with the standard DFT approach, we measure 500 shot-to-shot traces captured with 
PD-DFT using the 6 GHz photodiode and oscilloscope detection. The statistical analysis of the 
spectral correlation between the 1st MI sidebands was performed using the Pearson formula 
given in (Eq. II.8). As illustrated in Figure III.8.a, the reconstructed correlation map 
demonstrates characteristics of spontaneous MI phenomena [208], [205]. Within this map, we 
can analyze the effects of nonlinear spectral reshaping of the pump caused by SPM and the 
formation of cascaded sidelobes.  

In Figure III.8.b, we show the SPD-DFT results, detected with the two SPDS via mutual 
information processing as provided in (Eq. III.2). Here, we can notice similar qualitative 
features between the two approaches, but with finer structures only visible with the SPD 
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detection and significantly enhanced spectral resolution. While with the PD-DFT we can get a 
0.25 nm spectral resolution, the value is reduced to ~ 53 pm with the SPD-DFT technique.  

In fact, for the MIA measurements, we calculated the joint probability 𝜙𝜙𝜆𝜆1,𝜆𝜆2, by examining 8.5 
million coincident photon detections between the two detectors within specific wavelength bins. 
This calculation was carried out while selecting photo events originating from the same input 
laser pulse. To obtain the independent probabilities 𝜙𝜙𝜆𝜆1 and  𝜙𝜙𝜆𝜆2 we computed the marginal of 
this joint probability distribution 𝜙𝜙𝜆𝜆1,𝜆𝜆2�𝑛𝑛𝑘𝑘,𝜆𝜆1 = 𝑛𝑛𝑘𝑘,𝜆𝜆2�. Importantly, we ensured the unbiased 
nature of this approach by calculating 𝜙𝜙𝜆𝜆1,𝜆𝜆2 based on the post-selection of coincident photo-
events originating from inter-pulse events, where 𝑛𝑛𝑘𝑘,𝜆𝜆1 ≠ 𝑛𝑛𝑘𝑘,𝜆𝜆2. This study revealed that the 
corresponding mutual information was essentially negligible across the entire spectral map in 
this case, as shown in Figure III.8.c. Thus, we can confirm the absence of mutual information 
between inter-pulse events, ensuring that 𝜙𝜙𝜆𝜆1,𝜆𝜆2�𝑛𝑛𝑘𝑘,𝜆𝜆1 ≠ 𝑛𝑛𝑘𝑘,𝜆𝜆2� ~ 𝜙𝜙𝜆𝜆1𝜙𝜙𝜆𝜆2. 

In addition to its comparability with linear Pearson correlations, the MIA presents similarities 
with the second-order correlation function 𝑃𝑃(2), which serves as the intensity equivalent of the 
first-order correlation function, consisting in a standard tool for quantifying the coherence of 
classical optical signals [89]. Both SPD and PD-based DFT measurements enable the 
computation of the 𝑃𝑃(2) function and can be defined as follows: 

𝑃𝑃𝑆𝑆𝑍𝑍−𝑍𝑍𝐹𝐹𝜕𝜕
(2) (𝜆𝜆1, 𝜆𝜆2) =  

〈𝐼𝐼𝑛𝑛(𝜆𝜆1, 𝜆𝜆2)𝐼𝐼𝑤𝑤(𝜆𝜆1, 𝜆𝜆2)〉𝑛𝑛≠𝑤𝑤
〈|𝐼𝐼(𝜆𝜆1, 𝜆𝜆2)|2〉  (Eq. III.3) 

𝑃𝑃𝑆𝑆𝑆𝑆𝑍𝑍−𝑍𝑍𝐹𝐹𝜕𝜕
(2) (𝜆𝜆1, 𝜆𝜆2) =

𝜙𝜙𝜆𝜆1,𝜆𝜆2�𝑛𝑛𝑘𝑘,𝜆𝜆1 = 𝑛𝑛𝑘𝑘,𝜆𝜆2�
𝜙𝜙𝜆𝜆1,𝜆𝜆2�𝑛𝑛𝑘𝑘,𝜆𝜆1 ≠ 𝑛𝑛𝑘𝑘,𝜆𝜆2�

 (Eq. III.4) 

Figure III.9 shows the results of the 𝑃𝑃(2) measurements for both cases, accompanied by a map 
representing the relative error computed between each DFT approach. This direct comparison 
between the two DFT techniques allows us to validate that not only do we have a qualitative 
similarity between the two, but also a quantitative agreement: The average root-mean-square 
error (RMSE) between the maps is 3.2%. This methodology proves valuable for examining 
linear and nonlinear correlations within broadband FWM, enabling to explore spectral bunching 
and anti-bunching within frequency conversion processes.  

 
Figure III.9 Second-order correlation map 𝑃𝑃(2) derived from both (a) PD-DFT and (b) SPD-DFT 

measurements, along with (c) the relative error comparison. 
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Our SPD-DFT technique paired via mutual information analysis, enhances insights into noise-
driven frequency conversion processes of nonlinear physics, leveraging quantum-inspired 
measurement techniques for improved sensitivity and spectral resolution beyond standard 
DFT approaches. In addition, it provides a valuable means to measure and understand intricate 
nonlinear correlation features within the incoherent broadband signal. For example, in Figure 
III.10, we represent the changes in the mutual information within the MI sidebands in response 
to varying optical pump power. When increasing the input pump power, we can see a shift in 
the spectral domain of the MI sidebands, accompanied by a nonlinear transformation of the 
pump pulse's shape during its propagation through the HNLF, which is a phenomenon 
attributed to the SPM effect. These alterations induced by the optical power change cause the 
spectral mutual information maps from featuring a single sideband to displaying complex 
correlation features and subsequent cascaded FWM processes in the higher-order MI 
sidebands.  

 
Figure III.10 Evolution of mutual information spectral maps within the MI sidebands with different input 
pump power adjusted by attenuating the input pump signal using the Waveshaper from -4 to -1.5 dB. 
The transition from a single sideband to more intricate correlation patterns reflects the emergence of 

nonlinear processes and cascaded FWM. 

To thoroughly examine the differences and illustrate the potential limitations among various 
DFT architectures, we conducted a detailed experimental analysis shown in Figure III.11. In 
order to have a fair comparison between the two DFT approaches, we implemented a new 
setup by increasing the detection bandwidth of the PD-DFT system from ~ 5 GHz to 45 GHz. 
This bandwidth enhancement naturally improves the ability to resolve finer spectral details, but 
also simultaneously impacts the sensitivity, the signal-to-noise ratio (SNR), and the overall 
quality of the PD-DFT measurements.  

It is important to note that these effects are of course more noticeable when dealing with the 
less prominent components of the MI spectrum. To examine this potential impact, we carefully 
set-up a new experiment with similar conditions to the ones described in Figure III.5. While we 
made several changes in terms of the laser source and EDFA amplification for the 
spontaneous MI spectral broadening, we made sure that the resulting output spectrum after 
nonlinear propagation matched qualitatively with the results of the initial setup, as seen in 
Figure III.7.a (here, achieved with a 21 mW input power).  

In this case, our approach for the DFT time stretch involved using two different lengths of DCF, 
which provided distinct stretching factors: 403 ps/nm and 565 ps/nm, respectively. After 
temporal stretching and pump filtering, we achieved average powers of 320 μW and 150 μW, 
associated to the respective stretching factors (and linear attenuation) of the two different 
DCFs. In addition, an important aspect of our study was the PD-DFT detection using two 
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different experimental setups, each with a unique detection bandwidth. These setups were 
based on real-time oscilloscopes paired with photodetectors with specific characteristics 
outlined in Table III.1 Specifications of PDs, oscilloscopes, and total spectral resolution for 
different detection setups.. By considering these different detection conditions, we could 
determine the DFT spectral resolution based on the detection bandwidth and the chosen 
stretching factor. 

 PD-DFT setup characteristics 
Detection #1 

(low bandwidth) 
Detection #2 

(high bandwidth) 

PD
 S

pe
ci

fic
at

io
ns

 PD model Thorlabs 
(DET08CFC/M) 

Newport  
(1014 InGaAs) 

PD detection bandwidth 5 GHz 45 GHz 

PD peak responsivity 0.9 A/W 0.45 A/W 

Noise equivalent power (NEP) 2 fW/√Hz 45 fW/√Hz 

Sc
op

e 
sp

ec
ifi

ca
tio

ns
 Associated oscilloscope model Rhode & Schwarz 

(RTO2064) 
Tektronix 

(DPO77002SX) 

Oscilloscope detection bandwidth 6 GHz 70 GHz 

Oscilloscope ENOB 7.6 (for 22 dB  
dynamic range) 

4.7 (for 14 dB  
dynamic range) 

Equivalent temporal resolution 200 ps 22 ps 

To
ta

l 
sp

ec
tr

al
 

re
so

lu
tio

n Spectral resolution with stretching factor 
𝐷𝐷𝑍𝑍𝐹𝐹𝜕𝜕  =  403 ps/nm   0.496 nm 0.055 nm 

Spectral resolution with stretching factor 
𝐷𝐷𝑍𝑍𝐹𝐹𝜕𝜕 = 565 ps/nm 0.354 nm 0.039 nm 

Table III.1 Specifications of PDs, oscilloscopes, and total spectral resolution for different detection 
setups. 

In each situation, we measured 500 fluctuating MI spectra and then used the data to create 
Pearson spectral correlation maps. We first only filter the pump signal and show the results in 
Figure III.11.a-b. These figures clearly demonstrate how the quality of the signal changes for 
the different setup conditions. For a meaningful comparison with Figure III.8.a, we also looked 
into measuring correlation maps after filtering only the first symmetrical MI sidebands, as 
shown in Figure III.11.c-d. 
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Figure III.11 Comparison of Pearson's correlation for MI spectrum measurements with different PD-
DFT detection schemes: Top panels: Average spectra of 500 traces collected via PD-DFT detection 

using two different DCFs with a dispersive factor of respectively 403 ps/nm (solid red) and 565 ps/nm 
(dashed black). In (a) and (b), we represent the average spectra as well as Pearson’s correlation 

maps of the DFT measurements with both DCFs, obtained from the MI spectrum with pump filtering, 
using a 5 GHz PD and a 45 GHz PD, respectively. In (c) and (d), we represent the average spectra 

and the zoomed-in correlation maps of the DFT measurements with both DCFs, obtained for filtering 
the 1st MI sidebands only, using a 5 GHz PD and a 45 GHz PD, respectively. 

Through a careful comparison, a clear picture of the differences among the PD-DFT detections 
emerged. Notably, when we look at the average DFT output spectra, we deduced that the 
lower sensitivity of ultrafast photodiodes (45 GHz), resulted in a nearly fourfold decrease in the 
detected signal compared to the 5 GHz PD detection. The 45 GHz photodiode, while offering 
a wider bandwidth for improved temporal resolution, also yield a significantly higher noise 
equivalent power (NEP) compared to the 5 GHz photodiode, with the difference exceeding one 
order of magnitude. Additionally, the dynamic range of the 70 GHz oscilloscope experienced 
an approximately 8 dB reduction compared to its 6 GHz counterpart. This reduction was due 
to limitations related to the equivalent number of bits (ENOB) during high-speed analog-to-
digital conversion. As a result, the 45 GHz detection approach faced a substantial challenge 
in obtaining sufficient signal magnitudes for effective analysis. This challenge led to a reduced 
SNR for signals with the lower intensity, thereby impacting the quality of analysis of such 
signals. 

These limitations become particularly noticeable within the correlation maps displayed in 
Figure III.11.a-b. The 45 GHz detection setup demonstrates an admirable capability to reduce 
artifacts linked to the relatively slower impulse response of the 5 GHz photodiode. However, 
the compromises made in terms of sensitivity, responsivity, and dynamic range within our 45 
GHz detection approach hindered the clear visualization of the MI patterns when examining 
the reconstructed correlation maps. When only focusing on the first sidebands (Figure III.11.c-
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d), we observe traces of MI patterns with the 45 GHz detection, nevertheless, the signal 
intensity and the resulting SNR remain less than optimal for extracting correlation patterns 
related to the 1st MI sidebands. 

In addition, the reduced sensitivity becomes quite evident when we compare different DFT 
stretching factors. Notably, with the increase in the temporal stretching, along with the 
associated losses that come with longer DCF there is a noticeable drop in peak power for PD-
DFT signal detection (here, by a factor ~ 3). While this decrease has relatively minor 
consequences for the 5 GHz PD-DFT detection, it becomes much more significant for its 45 
GHz counterpart. In fact, in the case of 45 GHz detection, it approaches the sensitivity 
threshold (i.e. noise floor) of such detection methods. 

The limitations relevant to higher-speed PD-DFT, are also visible in the correlation maps, 
obtained when filtering only the first MI sidebands (Figure III.11.c-d). Despite the 45 GHz 
bandwidth offering improved DFT spectral resolution, the intricate correlation patterns of MI 
are somewhat washed out within the noise, due to the compromised overall SNR within the 
detection process. 

From this analysis, we can deduce that the choice of an optimal bandwidth for PD-DFT requires 
a delicate balance between DFT spectral resolution and signal quality. While a wider bandwidth 
enhances temporal resolution, it inevitably brings about a decrease in sensitivity and dynamic 
range.  

In addition, when we compare the maps obtained through PD-DFT and SPD-DFT, both 
carefully collected under identical conditions of detection bandwidth and spectral resolution 
(see Figure III.8.b and Figure III.11.d), the advantages of our approach over traditional DFT 
methods remain evident. This contrast emphasizes the benefits provided by SPD-DFT: an 
impressive combination of a high spectral resolution, sensitivity, and dynamic range. Notably, 
increasing the PD-DFT detection bandwidth with the 45 GHz bandwidth to align with our SPD-
DFT configuration resulted in only marginal enhancements, and did not significantly improve 
the detection efficiency of the PD-DFT. 

III.3.2. Analysis and control of cascaded FWM processes in noise-driven MI 

To go further in the study of MI dynamics using DFT, we also investigated the mutual 
information maps obtained as a result of nonlinear broadening under two different input power 
conditions (i.e. at the maximum input power of the pump, and by attenuating the pump power 
using the Waveshaper with -2 dB). These mutual information maps, illustrated in Figure III.12, 
were acquired using the SPD-DFT technique and involved filtering different sideband 
combinations, thus providing insights into the correlation dynamics (within higher-order 
sidebands) resulting from cascaded FWM processes. The figure presents three different 
regions of interest, highlighted (in grey) on the OSA spectra, and selectively chosen for 
examination at different input power, i.e. with pump attenuation of 0 dB (solid red line) and -2 
dB (dashed black line). In the first highlighted region (Figure III.12.a), we present a combination 
of the first and second MI sidebands on the long-wavelength edge of the spectrum. Here, the 
interaction strength between adjacent sidebands decreases as the input power increases, 
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potentially due to the influence of cascaded FWM process [207], [212], [250]. Despite this, the 
overall mutual information map experiences only marginal qualitative changes.  

 
Figure III.12 (a) First and second MI sidebands located at the long wavelength edge of the spectrum, 

(b) symmetrical second MI sidebands, (c) and symmetrical third MI sidebands, are represented by 
their spectral mutual information correlation maps, derived from experimental SPD-DFT 

measurements (selectively filtered and transmitted to each SPD). The corresponding OSA spectra for 
each sidebands’ combination are captured for two different input power levels before HNLF 

propagation and represented in the top panel: 0 dB attenuation are solid red lines, -2 dB attenuation 
are dashed black lines, while the sideband locations are highlighted in grey. 

If we focus on the symmetrical second MI sidebands (located at 1539 nm and 1562 nm), as in 
Figure III.12.b, the mutual information maps exhibit distinct reshaping patterns as the input 
power increases. The SPM-like shape in these spectral maps likely arises from more complex 
phenomena such as non-degenerated FWM interactions involving the first sidebands or even 
reverse energy flow towards the pump, as there is no straightforward direct FWM process 
anticipated in this scenario. For higher-order sidebands (third MI sidebands located at 1533.5 
nm and 1569 nm), resulting from multiple cascaded FWM conversions, the mutual information 
correlations in this case are surprisingly more pronounced (Figure III.12.c), despite the very 
low intensity of these sidebands (see MIA scale of the maps). Even though the reshaping of 
the correlations is not clear in this case, the map mostly retains a diagonal pattern. This 
symmetry in correlation features can be associated with spontaneous processes, indicating 
that energy conservation signatures are statistically preserved despite the multi-step FWM 
interactions. 

With this analysis, we demonstrate that for the complex interplay of spectral correlations within 
MI sidebands, the SPD-DFT technique offers a window into the intricate dynamics of these 
nonlinear processes, shedding light on various mechanisms such as cascaded FWM and SPM 
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effects that shape the observed mutual information patterns (and into the statistical distribution 
of energy transfer occurring between weak spectral components). In contradiction with PD-
DFT measurements which face inherent constraints to detect information at low intensities, 
SPD-DFT proved useful to overcome these limitations and allow for high-sensitivity correlation 
measurements with low-noise figures between weak spectral components.  

In addition, considering the high sensitivity (and resolution) that we presented in the previous 
analysis, the SPD-DFT approach stands out for its capability to feature a dynamic range well 
above 70 dB (depending on the count rate saturation characteristics of the detectors in use). 
As long as the signal is above the noise floor of the SPDs (typically around -130 dBm), it is 
possible to accumulate instances of photon events over an extended timeframe. The main 
concept here is to integrate instances of photon detection over a duration that is sufficient to 
capture useful coincidental detections spanning all frequency components (further explained 
in Figure III.15). To empirically confirm the agreement and versatility of the two DFT detection 
methods across the complete spectrum of MI, we conducted further measurements which 
results are summarized in Figure III.13.  

 
Figure III.13 Comparison of the averaged OSA spectra (top panels) and correlation maps (bottom 
panels) of the complete MI spectrum over a spectral range between 1532 nm and 1568 nm, using 
distinct approaches: (a) PD-DFT measurements after pump filtering based on 500 experimental 

measurements. (b) SPD-DFT measurements via spectral signal equalization. (c) GNLSE simulations 
with 2000 numerical realizations. The green shadings in the average spectra highlight the signal's 

dynamic range after processing, respectively indicating 16 dB, 6 dB, and 38 dB, for each case. 

We first present, in Figure III.13.a, the Pearson’s correlation map of a PD-DFT measurement 
capturing 500 distinct shot-to-shot traces. To effectively identify the MI sidebands and maintain 
a favorable dynamic range of about 16 dB in the average spectrum, the pump signal (centered 
at 1550.65 nm) is carefully filtered out. However, as we can see here, the statistical analysis 
is susceptible to certain factors. Firstly, the notable impulse response of the photodiode 
significantly influences the results. This leads to visible artifacts, including noticeable dips in 
the average DFT spectrum and diagonal correlation patterns clearly observed within the 
correlation map. Additionally, a notable limitation arises from the detection sensitivity, 
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especially when dealing with higher-order MI sidebands whose correlation features are hardly 
resolved. This constraint emphasizes the nuanced challenges linked to identifying and 
accurately characterizing components further away in the spectrum. 

When using the SPD-DFT detection, it is important to note that the dynamic range can exceed 
70 dB, and it is only limited by the detectors’ count rate saturation. As long as the signal is 
above the noise floor (around -130 dBm), we can accumulate coincident detections across 
various frequency components by registering photo-events for a longer integration time. 
However, the quadratic nature of 2-photon coincidence, makes that, for a signal with spectral 
components with different intensities, we need longer integration times to accumulate the same 
number of coincidence counts (for example, 100 times longer if we have spectral components 
with a 10 dB lower intensity, and 10 000 times longer if we have 20 dB lower intensity). This 
makes SPD-DFT less practical for high-resolution analysis of broadband spectral fluctuations 
with significant intensity contrast. 

Nonetheless, the use of mutual information analysis provides a relative measurement of the 
correlation between two wavelengths, independent of the absolute photon detection 
probability, which means that we can assess the relationship between spectral components 
without being highly dependent on the absolute intensity levels. 

For this reason, to study the whole MI spectrum using SPD-DFT measurements, spectral 
equalization was employed. Using the second Waveshaper (in Figure III.5), we apply an 
inverse attenuation profile to the DFT signal before the SPD detection, aligning it with the 
intensity level of the lowest spectral components within the MI spectrum (-35 dB with respect 
to the maximal spectral intensity), to limit the overall measurement time. Even though this 
approach led to a significant reduction in the spectral intensity contrast of the spectrum (below 
6 dB), it still provided the necessary coincident detections for a successful analysis of the 
mutual information features over the full 35 nm spectral bandwidth, and within a relatively short 
integration time (see below). What differentiates these results, is that the detections occurred 
without encountering neither the impact of impulse response nor a sensitivity cutoff as 
observed for the standard DFT detection. The maps illustrated in Figure III.13.b, retrieved with 
an integration time of 300 mins, confirm the effectiveness of the SPD-DFT methodology across 
the whole spectral frequencies and the maximum needed dynamic range. 
Spectral equalization, as employed in the SPD-DFT technique, cannot be applied to the PD-
DFT technique. This is primarily due to the fact that equalizing the spectral components for 
PD-DFT would lead to signal levels falling below the detection noise floor and becoming too 
weak to be reliably detected. In addition, this analysis demonstrates that when using SPD-DFT 
with spectral equalization, we can reduce the measurement time without significant 
deterioration of the mutual information maps. In addition, the mutual information maps in this 
case show a symmetry along their diagonals, meaning that the correlation between 𝜇𝜇(𝜆𝜆1,𝜆𝜆2) and 
𝜇𝜇(𝜆𝜆2,𝜆𝜆1) is the same. By using this expected symmetry, when measuring across the entire 
spectrum with both SPDs, we can directly calculate a compound (symmetric) value for the 
mutual information map. This helps reduce measurement noise and statistical biases in our 
analysis. 
 
Both Pearson’s correlation and the mutual information allow to study and measure the 
fluctuations of noise-driven MI dynamics after nonlinear propagation. However, the mutual 
information offers a clearer representation of the dynamics of this frequency conversion 
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process. To further validate this result, we numerically generate using GNLSE simulations, 
Pearson’s correlation maps, created from 2000 Monte Carlo realizations based on random 
input noise (corresponding to the method used for Figure III.6). Compared with the mutual 
information analysis, the results of Figure III.13.c show similar patterns and features. While the 
contrast is different, the overall agreement between the two statistical approaches illustrates 
the usefulness of MIA via SPD detection, making it an important tool in analyzing the spectral 
fluctuations with good fidelity, while identifying key dynamics and physical processes during 
nonlinear propagation. 

A more powerful application of our new approach is its role in helping to control and tune the 
correlations between different spectral components of the MI spectrum. To investigate this 
property, we consider a more complex frequency conversion process associated with 
modulation instability. Specifically, using the Waveshaper for the initial pulse preparation (see 
Figure III.5), we filter the femtosecond pulse into a 55 ps pump centered at 1550.65 nm, and 
two additional weak 55 ps seeds (i.e. 28 dB attenuation regarding the pump), each with and 
adjustable phase and frequency detuning. In this case, the pump and the seeds will propagate 
together in the HNLF and generate new nonlinear frequency conversion processes and yield 
more propagation dynamics.  

It is important to note that here, the spectral intensities of the seeds are intentionally set at a 
level comparable to the ASE of the EDFA. This balance sets the stage for direct competition 
between a noise-driven spontaneous MI process and a (weakly) induced MI process. 

 

Figure III.14 (a) Output MI spectra with controlled seeding:  MI spectra resulting from spontaneous MI 
(in black dashes) and the introduction of two coherent input seeds at frequency detuning of 400 GHz 

and 800 GHz (green arrows). These input seeds have distinct spectral phase differences: 𝛥𝛥𝜕𝜕 = 0 
(blue) and 𝛥𝛥𝜕𝜕  =  𝜋𝜋 (red). (b) Spectral mutual information maps with seeded MI: Correlation maps 

obtained from SPD-DFT measurements with two weak coherent seeds added to the pump for three 
different selected spectral regions. Inversing the phases of the seeds can modify the sign (and shape) 

of the mutual information map highlighted in the white-circled areas within the maps. 

In Figure III.14, we consider the case where the frequency detuning of the two seeds is 
respectively equal to Δ𝛥𝛥1 = 400 𝐺𝐺𝐺𝐺𝑧𝑧 and Δ𝛥𝛥2 = 800 𝐺𝐺𝐺𝐺𝑧𝑧, corresponding to the wavelengths of 
1547.4 nm and 1544.3 nm, respectively. This configuration places both seeds within the MI 
gain region and employs harmonic detuning (𝛥𝛥𝛥𝛥₂ =  2𝛥𝛥𝛥𝛥₁), indicating intricate degenerate and 
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cascaded FWM processes. In this case, the relative spectral phase between the seeds is a 
critical parameter. For this reason, we choose the relative phases of the seeds regarding the 
phase matching defined by  𝛥𝛥𝜙𝜙 =  2𝜙𝜙₀ +  𝜙𝜙₁ +  𝜙𝜙₂ (see (Eq. I.57)) with 𝜙𝜙₀ = 0 being the 
phase of the pump. Two cases were studied: When 𝛥𝛥𝜙𝜙 = 0 (with 𝜙𝜙1 =  𝜙𝜙2 = 0 ) and when 
𝛥𝛥𝜙𝜙 =  𝜋𝜋 (by choosing 𝜙𝜙1 = 0 ,𝜙𝜙2 = 𝜋𝜋).  

As we can see from Figure III.14.a, optical seeding can drastically impact the MI broadening 
dynamics after nonlinear propagation (blue and red traces). Even when the seeds are weak 
with respect to the pump, these modulations can still significantly reshape the frequency 
conversion dynamics. In addition, these changes are evident when extracting the mutual 
information correlation maps between spectral component combinations close to the pump 
(i.e. 1547 and 1554 nm), or further away (e.g. 1542 and 1560 nm) as arising from cascaded 
FWM processes (Figure III.14.b). The analysis in Figure III.14 reveals that the input phase of 
optical seeds can indeed alter both the spectrum and the features of mutual information maps 
at specific wavelengths. This is particularly visible in the white-circled areas in the maps. These 
results highlight the capability of SPD-DFT and mutual information analysis in gaining insight 
into complex incoherent dynamics and cascaded frequency conversion processes that are 
challenging to explore using traditional methods. 

The overall results presented in this chapter have validated a new quantum-inspired technique 
to understand the instabilities of nonlinear processes in fiber optics such as modulation 
instability. Taking advantage of the concept of dispersive Fourier-transform through the use of 
multiple single-photon detectors, we were able to achieve a high resolution of around 53 pm, 
a sensitivity reaching below the femtowatt, and a high dynamic range of over 80 dB.  

Compared with other real-time technique, such as PD-DFT, which also allow to measure shot-
to-shot fluctuations and conduct statistical analysis to extract relevant spectral correlation 
signatures, this SPD-DFT technique provides similar analysis of these instabilities without any 
sensitivity cutoff or dynamic range limitations, allowing to understand the behavior of the 
nonlinear processes of interest even at very low intensities. The main limitation that our 
approach can however face is measurement integration time.  

In this work, for the measurements of the PD-DFT correlation maps, we combined data from 
500 shot-to-shot spectra from the oscilloscope. Such analysis required a total measurement 
time of ~ 5 minutes, with each spectrum being measured in about ~ 600 ms. However, this 
measurement time can be improved with faster data transfer rates.  

On the other hand, for the SPD-DFT, we generated mutual information maps obtained by 
concatenating 100 dataset files. Each of the dataset file contains 25 million time tags, including 
both SPD1 and SPD2 time tags, as well as the 50 MHz laser trigger time tags. Here, collecting 
each dataset took about 18 seconds, which led to a 30-minutes measurement.  In the specific 
case where we focused on the broadband mutual information map (see Figure III.13.b - using 
SPD-DFT detection after spectral equalization), we combined data from 1000 time-tag dataset 
files. This increased the integration time to ~ 5 hours (i.e. 300 mins).  
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Figure III.15 Mutual information correlation maps of the first symmetrical MI sidebands acquired 
through SPD detection for different measurement integration times: 3, 15, and 30 minutes. 

It is important to note that the total integration time used for such detection was chosen to 
ensure a sufficiently large number of detected photon-events for a meaningful statistical 
analysis, without refining the setups towards optimal measurement time. However, clear 
mutual information signatures can be readily observed with fewer detected photon events and 
shorter integration times. For example, in Figure III.15, we show the evolution of the mutual 
information map (for the first MI sidebands) over various integration times of SPD-DFT 
measurement. Within 3 minutes, the initial correlation features begin to emerge, until becoming 
clearly defined within only 15 minutes of integration. Additional integration time (up to a total 
of 30 minutes) only slightly improved the correlation features.  

As writing the datafiles occupies most of the measurement time, it results in a significant 
reduction in the acquisition data rate due to the time-consuming nature of off-line data handling. 
We then anticipate that implementing online photon-event detection, along with appropriate 
selection rules and signal processing, can lead to an improvement in the data collection rate 
of the SPD-DFT measurements. Additionally, in this framework, the use of multiple SPDs 
(more than two) in the detection scheme is expected to yield improved integration time in the 
SPD-DFT while at the same time opening the path towards the measurement of both higher-
order and multidimensional (e.g. spectro-temporal) metrics and correlation functions, allowing 
to explore the formation mechanisms of more complex waveforms. 

 

In conclusion, these research findings show that our novel DFT-based approach allows for 
statistical analysis of fundamentally complex ultrafast optical phenomena, and for extracting 
correlation signatures between weak spectral components at very low intensities (e.g. between 
MI cascading processes up to the third sidebands). We envision significant improvements in 
the realm of advanced all-optical signal processing, holding potential for applications ranging 
from phase-sensitive amplification to quantum state manipulation. Furthermore, the potential 
of our DFT technique extends to imaging and microscopy applications that demand both high 
sensitivity and powerful spectral detection capabilities. The fields of computational imaging, 
correlated microscopy, and multiphoton spectroscopy stand to gain direct benefits from the 
SPD-DFT tool.  
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In the context of this thesis, these results have demonstrated the ability to finely adjust 
correlations between specific wavelengths by the addition of weak optical seeds to the initial 
pulse before propagation. We expect this method to pave the way toward controlling noise-
driven processes at the boundary between quantum and nonlinear optics and tailoring 
nonlinear interactions in fiber optics. This technique should also enable machine learning 
strategies towards controlling multidimensional optical properties via dedicated optimization 
algorithms. These particular aspects are key components of this PhD work, and will be detailed 
and experimentally demonstrated in Chapter IV, proving our ability to apply a ‘smart’ control to 
tune and optimize the spectral properties of broadband spectra obtained from nonlinear 
processes during fiber optics propagation. 
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Chapter IV. Smart control of modulation instability 

The exploration of the nonlinear dynamics and real-time characterization techniques discussed 
in the first three chapters of this thesis, allowed us to better understand the unstable behavior 
and fluctuating processes generated from the complex interplay between the dispersion and 
nonlinear effects in optical fibers. While these fluctuations present challenges in terms of 
characterization, they also provide an essential understanding of the principles of incoherent 
supercontinuum generation [62]. In fact, in addition to underlying physical mechanisms driving 
spectral broadening in supercontinuum generation, studies have also investigated the 
instability properties inherent to this phenomenon. This examination has established 
interesting connections between supercontinuum noise and extreme instabilities observed in 
other physical domains usually referred as extreme events and rogue waves [252], [80], [78]. 
One such manifestation of noise's influence is modulation instability, which we will focus on in 
this chapter with the target to understand and control such noise-driven and fluctuating 
spectra [253].  

Over the years, several approaches were set in place to control nonlinear effects in optical 
fibers (section II.2 and section II.3). For example, control of the dynamics of optical rogue wave 
formation have been reported by applying modifications to the input pulse. By adding a small 
modulation across the pulse envelope, one could enhance the generation of rogue waves and 
observe significant spectral broadening [68], [254]. In contrast, extreme frequency shifts 
associated with rogue wave generation were suppressed by attenuating such spectral 
components using a sliding frequency filter (while minimizing the overall bandwidth and power 
reduction during spectral broadening) [82]. Programmable spectral filters (like Waveshapers) 
were applied in such MI-associated studies to generate specific nonlinear phenomena. For 
example, Frisquet et al., have demonstrated that, by generating two additional signals to the 
initial pulse, they can create Akhmediev breathers when these two modulations superpose. By 
carefully controlling the signal's spectral intensity and phase characteristics, they created 
specific conditions where the two ABs would collide efficiently [77] to generate highly localized 
temporal structures.  

In fact, relying on optical seeding to tune the conditions of the input pulse and control the 
subsequent dynamics in nonlinearly broadened spectra has been studied and employed in a 
variety of scenarios [254], [82]. By carefully adjusting the various parameters of the input signal 
(frequency, phase, amplitude, bandwidth, …), we are able to create or suppress new 
frequencies, enhance specific phenomena, and ultimately achieve personalized output 
spectra [82], [255], [256]. Coherent and incoherent seeding were explored in the context of 
induced modulation instability, allowing to enhance the resulting MI spectrum in terms of 
spectral bandwidth, signal-to-noise ratio, and degree of coherence [253], [225] – to only name 
a few examples. However, as already mentioned in section II.3, as these dynamics are often 
complex, unpredictable and sensitive to the initial conditions, it can be beneficial to leverage 
machine learning strategies [8], [147], allowing for smarter, and faster control and optimization 
(especially in an experimental context). 

In this chapter, we demonstrate and apply a control strategy using both tailored optical seeding 
and machine learning algorithms to finely-tune the properties of different spectral components 
in the output spectrum and optimize their correlations.  

To delve into such a study, we start in Section IV.1 with a brief reminder of the impact of the 
input parameters on nonlinear instabilities in both the spontaneous and induced MI regimes. 
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In our studies, however, we explore a regime situated at the boundary between these two 
purely coherent and incoherent processes, respectively. In Section IV.2, we therefore present 
a numerical study showing the impact of optical seeding on the generation of MI in this hybrid 
regime. Our investigation covers a range of scenarios using both coherent and quasi-coherent 
seeds, with a comparison between the different initial parameters and their impact. To precisely 
tune the broadening dynamics, we introduce and implement experimental MI control using 
reconfigurable optical seeding iteratively tuned by machine learning strategies, especially 
genetic algorithms. Section IV.3, presents the results of this research, highlighting the 
effectiveness of our algorithm in enhancing the correlation between various spectral 
components and correspondingly altering the MI spectrum. We also present some 
complementary studies that can be accomplished in this context.  As we go further in our 
analysis, we discuss potential relationships between the optimal seeds’ parameters and the 
nonlinear processes involved during fiber propagation, which will be detailed in Section IV.4. 

IV.1. Influential factors in MI spectral broadening 

As seen in the previous sections, MI spectral broadening can occur from noise without adding 
any modulation to the pulse (spontaneous MI). In this case, the properties of both the pump 
laser and the fiber [257] can have a significant impact on the waveguide propagation within the 
waveguide, where the dispersion and the nonlinear effects interact to create new frequencies 
and generate a broader spectrum. Increasing the input power before entering the HNLF is an 
effective and easy way that allows tuning the MI gain region and the equivalent nonlinear 
propagation length to thus modify the output spectrum. In this context, we show in Figure IV.1 
an example, using numerical simulations and Pearson’s correlation maps, to illustrate how the 
increase of the input average power 𝜙𝜙𝑐𝑐𝑐𝑐 can modify the nonlinear dynamics in a spontaneous 
MI regime, and results in different correlation features.  

 
Figure IV.1 Numerical simulations showing the average spectra (top panels) and Pearson’s correlation 
maps (bottom panels) of a 30 ps laser pulse centered a 1550.65 nm propagating into 385 m of HLNF, 
whose parameters are 𝛽𝛽2 =  −2.15 𝑝𝑝𝑝𝑝2. 𝑘𝑘𝑛𝑛−1; 𝛽𝛽3 = 0.07 𝑝𝑝𝑝𝑝3. 𝑘𝑘𝑛𝑛−1; and 𝛾𝛾 =  3.5 𝑊𝑊−1.𝑘𝑘𝑛𝑛−1. The figure 
illustrates the evolution of the MI process with various input peak powers with (a) 10 mW, (b) 13 mW, 

and (c) 14 mW.  
 

When the input power is 𝜙𝜙𝑐𝑐𝑐𝑐 = 10.5 mW (Figure IV.1.a), corresponding to the onset of MI 
broadening, we can see that the correlations between the different components have mostly 
positive values, as the energy is simply transferred from the pump to the sidebands. However, 
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when we increase the power, we obtain complex interactions between the various and 
competing frequency conversion effects in Figure IV.1.b. For 𝜙𝜙𝑐𝑐𝑐𝑐= 14 mW, for a fully extended 
MI spectrum, multiple cascaded process and reverse energy flows appears and yields anti-
correlation features seen in the map in Figure IV.1.c. 

However, spectral broadening dynamics are not only governed by the input power. While 
increasing the power can indeed intensify nonlinear effects, other critical factors play significant 
roles. The characteristics of the fiber, mainly the dispersion parameter 𝛽𝛽2 and the nonlinear 
coefficient 𝛾𝛾 can largely affect the nonlinear behaviors (and depending on the sign of 𝛽𝛽2, the 
overall interaction between these two parameters will lead to very different broadening regimes 
and dynamics – see section I.5). Higher-order dispersion and scattering effects can also play 
a role in the shaping dynamics (via e.g. NLSE symmetry breaking terms) and the 
corresponding output spectrum [62], [258], [259]. The introduction of these additional 
nonlinear effects can affect the recurrence behavior observed in the system, specifically the 
FPU recurrence in MI, which may be compromised or lost in the presence of these terms, and 
which reinforces the need for idealized FWM experiments to comprehensively study and 
control nonlinear optical dynamics [71], [260], [261]. 

If dispersion parameters are carefully controlled, their manipulation [262], [263], in conjunction 
with power adjustment, allows for the precise engineering of nonlinear effects. Understanding 
the resulting processes, such as modulation instability or subsequent supercontinuum 
generation, is therefore crucial for enabling advance spectral tailoring in various applications. 

 
Figure IV.2 Visual representation in both the temporal (top panels) and spectral (bottom panels) 
domains of (a) a Gaussian 30 ps laser pump centered at 1550.6 nm, (b) the pump signal with an 

added weak modulation at 1555 nm (in red) with 10 dB attenuation (𝜔𝜔1  =  10%) and a phase 𝜙𝜙1 = 0, 
(c) the signal with an additional modulation (in blue) centered at 1560 nm, with 𝜔𝜔2  =  10% and  

𝜙𝜙2  =  0, (d) Total signal achieved by adjusting the phase 𝜙𝜙2 = 𝜋𝜋. 
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On the other hand, we have discussed in section I.5.2.1 how the addition of modulations to the 
pump pulse can profoundly alter the behavior of nonlinear broadening effects [74], [67]. In 
Figure IV.2.a, we provide a visual representation, in both the temporal and spectral domains, 
of an initial Gaussian 30 ps laser pulse centered at 1550.6 nm. When a weak modulation (in 
red) at 1555 nm is introduced with an attenuation of 10 dB (𝜔𝜔1 = 10% of the intensity), notable 
changes emerge. In the spectral domain (Figure IV.2.b), the modulation appears as a peak 
alongside the pump, while in the temporal domain, the previously uniform pulse envelope now 
exhibits a clear modulation (see also Figure I.17). Figure IV.2.c extends this exploration by 
incorporating an additional modulation (shown in blue) centered at 1560 nm, featuring 𝜔𝜔2 =
10% and a phase 𝜙𝜙2 = 0. This introduces a transformation of the input pulse by changing its 
temporal form and resulting in the generation of a new signal seen with a dual modulation in 
the spectral domain.  

An important aspect to consider here is the modulation's parameters. In a trivial fashion, 
increasing the seed signals (i.e. decreasing the attenuation), amplifies the modulation on the 
input pulse.  

More importantly, the input pulse changes of shape and characteristics are largely dependent 
on the frequency and phase values of the modulations that can lead to more complex 
interference patterns. To illustrate this point further, in Figure IV.2.d, we provide an example 
where the phase of the second modulation is tuned to a value of 𝜋𝜋. This adjustment 
demonstrates how altering a single phase parameter can impact the symmetry of the pulse 
temporal profile. In the following sections, we analyze of how such modulations applied to the 
input pulse can significantly impact nonlinear propagation and influence the resulting MI output 
spectrum. 

IV.2. Numerical study: Modulation instability control via optical seeding 

Spontaneous and induced MI regimes have been studied for different applications and in 
different scenarios [253], [68], [225], [74]. Here, we work at the frontier between these two 
regimes. The objective is to study the competition between weak optical seeds (added to the 
initial pulse) and broadband ASE noise (occurring from amplification) through their contribution 
to the MI broadening process, in order to gain insight on the impact of the seeds’ parameters 
during nonlinear propagation.  

First, we report a numerical study using GNLSE simulations (section I.3.3) based on a realistic 
experimental setup. We used the 80 fs pulsed laser, with a 50 MHz repetition rate and centered 
at 1550.65 nm (see Figure III.5), and we applied a spectral filter (Waveshaper) on the 
broadband signal to transform the initial fs pulse into a ~ 30 ps Gaussian pump.  

The noise-driven MI regime (spontaneous MI) can be simply excited by sufficiently amplifying 
the pump signal (through an EDFA) and employing a super-Gaussian bandpass filter (BPF) of 
~ 1 nm to strongly limit the ASE noise in the system (see Figure IV.3.a).  

In this section, the nonlinear dynamics are studied during the propagation in a 385 m-long 
HNLF with 𝛽𝛽2 =  −2.15 𝑝𝑝𝑝𝑝2.𝑘𝑘𝑛𝑛−1; 𝛽𝛽3 = 0.07 𝑝𝑝𝑝𝑝3. 𝑘𝑘𝑛𝑛−1; and 𝛾𝛾 =  3.5 𝑊𝑊−1. 𝑘𝑘𝑛𝑛−1. The 
conditions were selected so that typical spontaneous MI spectral broadening could be excited, 
along with a cascaded process depending on the input power (typically up to the distance of 
maximal spectral expansion (i.e. first FPU compression before recurrence [264], [265]). 
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Figure IV.3 Illustration of the experimental setups and numerical scenarios studied in this chapter 

within the framework of MI control. (a) Noise-driven MI regime (spontaneous MI) achieved by 
amplifying a filtered 30 ps pump with an EDFA and applying a bandpass filter (BPF) to limit the impact 

of ASE noise before propagation in a HNLF. (b) MI regime with coherent optical seeding, using a 
single output of a Waveshaper to filter additional weak signals combined with the pump. (c) Quasi-
coherent optical seeded MI regime, using two distinct Waveshaper outputs: one for the pump which 

will be amplified, and the other for the generation of the seeds. The three signals are in this case 
combined before nonlinear propagation but experience partial propagation along different optical 

paths. 
 

In parallel, two scenarios were studied: The first setup, illustrated in Figure IV.3.b, describes 
an MI regime using coherent optical seeding. In addition to the pump, we use the same 
Waveshaper to filter one or two weak seeds with the same bandwidth as the pump, but with 
adjustable attenuation, frequency detuning, and an adjustable spectral phase between 0 and 
2π. All the signals are then combined, and jointly amplified, before propagating in the HNLF. 

The second setup, illustrated in Figure IV.3.c, describes a quasi-coherent optical seeded MI 
regime. In fact, the Waveshapers we experimentally use possess multiple output ports, which 
provide the ability to split an input signal with an equivalent (or differential) power across all 
frequencies and ports (see section II.2.1). For each signal, we are able to define a filtering 
profile with adjustable power, attenuation, and phase. This interesting property allows us to 
generate “quasi-coherent” seeds. Instead of filtering the pump and the seeds and sending the 
combined signal into the EDFA (so that all optical signals follow the same optical path), the 
pump is here filtered through one output of the Waveshaper where it will be amplified. 
Conversely, the seeds (one or more) will exit from another output of the Waveshaper. After 
adjusting the delay between the pump and the seeds, these optical pump and seed signals 
are sent into the HNLF where they jointly experience MI spectral broadening. In this case, 
however, the seeds are very weak compared to the pump, at a level similar to the ASE noise 
generated from amplification.  
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In this study, we will explore how these weak optical seeds can affect noise-driven MI dynamics 
depending on their input parameters and the decoherence level. In the next section, we first 
present the numerical results for both cases presented above and analyze the spectral 
fluctuations of these hybrid MI regimes through Pearson’s correlation maps.  

IV.2.1. Coherent optical seeding 

The introduction of coherent seeds into the MI process presents a simple way to control 
incoherent MI dynamics. By precisely tuning the properties of the seed, such as its frequency, 
phase, and amplitude, we obtain a unique tool for adjusting desired spectral features and 
correlations within the spectrum, especially when compared to classical modulation 
techniques [68], [266] that can be limited in terms of coherence and/or potential for scalability. 

Figure IV.4, presents an illustrative view of this effect, by showing the average spectra and the 
spectral correlations resulting from the propagation of a coherent seed added to the pump with 
22 dB relative attenuation (i.e. less than 1% modulation) using 500 simulations with random 
initial noise seeds. Comparing with the MI regimes (illustrated in Figure I.17 and Figure I.18), 
we observe that the output spectra present behaviors that place them between induced and 
spontaneous MI regimes. However, in this context, the seed exhibits a more pronounced 
influence on the nonlinear dynamics than does the noise, which makes the characteristics of 
the propagation closer to the induced regime. It is important to note, that as explained 
previously, the parameters of the seed play an important role in shaping the propagation 
dynamics.  

 
Figure IV.4 Average spectra (top panels) and Pearson’s correlation maps (bottom panels) obtained 

after HNLF propagation and resulting from a coherent seed added to the pump with 22 dB attenuation 
and adjustable parameters by (a) detuning the seed by 𝛥𝛥𝛥𝛥1 =  200 𝐺𝐺𝐺𝐺𝑧𝑧, (b) varying its phase from 0 to 

𝜙𝜙2 = 𝜋𝜋, (c) increasing the frequency detuning to Δ𝛥𝛥1 = 400 𝐺𝐺𝐺𝐺𝑧𝑧 with 𝜙𝜙1 = 0. 
  

As demonstrated in Figure IV.4.a-b, when the seed is detuned from the pump by Δ𝛥𝛥1= 200 
GHz, varying its phase from 0 to 𝜋𝜋, leads to a marginal change in the output spectra. This 
variation however drives slightly different propagation dynamics and results in modified 
correlation features between the MI spectral components. Yet, a noteworthy observation here 
is the significant impact of the frequency detuning on the MI spectrum, as expected from the 



Lynn SADER | Ph.D. Thesis | University of Limoges | 2023 123 
License CC BY-NC-ND 4.0 

excitation of different MI gain from different seed frequency. In Figure IV.4.c, when we increase 
the frequency detuning of the seed (to reach the region close to the maximal MI gain ~ 475 
GHz – see 𝐺𝐺𝜔𝜔𝑛𝑛𝑛𝑛𝑆𝑆𝑀𝑀 in section I.5.2), the optical seed grows faster during propagation and lead 
to a cascaded MI process appearing on both sides of the pump. This yields in a drastically 
broadened MI spectrum and the generation of new correlation features among these spectral 
components emerging from the noise.  

To go further in this study, we extended our analysis by considering the case where an 
additional seed is introduced into the MI process. The interaction between multiple seeds adds 
another layer of complexity and thus leads to nonlinear dynamics that depend on a broader 
range of parameters [74]. Nonetheless, with such an environment, the ability to tune the seed 
parameters provides us with a larger degree of control to stabilize the MI spectrum and achieve 
desired correlations between various spectral components. In fact, dual-seed interactions can 
lead to the formation of intricate spectral patterns, often characterized by additional sidebands 
and unique correlation features. Figure IV.5, illustrates the impact of both the frequency and 
phase of the input coherent seeds on the output spectral correlations. 

 
Figure IV.5 Influence of dual seed parameters on the MI output spectrum (top panels) and the 

correlation maps (bottom panels) obtained from 200 simulations with random initial noise seeds. The 
figure explores the effects of varying the frequency and phase of coherent seeds (𝛥𝛥1,𝜙𝜙1) and (𝛥𝛥2,𝜙𝜙2), 
with a 22 dB attenuation, on the resulting MI dynamics: (a) for a frequency detuning 𝛥𝛥𝛥𝛥2 = 2𝛥𝛥𝛥𝛥1 with 
𝜙𝜙1 =  𝜋𝜋/2 and 𝜙𝜙2 = 0 ; (b) by varying the phase to 𝜙𝜙2 =  𝜋𝜋/2 ; (c) by shifting the frequency of the 

second seed by 𝛥𝛥𝛥𝛥2 = 3𝛥𝛥𝛥𝛥1, with 𝜙𝜙1 =  𝜋𝜋/2 and 𝜙𝜙2 =  𝜋𝜋/2. 

In Figure IV.5.a, we first study the impact of the interaction between two coherent seeds (𝛥𝛥1,𝜙𝜙1) 
and (𝛥𝛥2,𝜙𝜙2) with the pump, introduced with a 22 dB attenuation and a frequency detuning 
Δ𝛥𝛥2 = 2Δ𝛥𝛥1. The output spectrum in this case experiences a complex degenerate FWM 
process and the generation of additional sidebands, due to the increased number of seeds. In 
addition, in Figure IV.5.b, we demonstrate that simply changing the phase of one seed (𝜙𝜙2), 
while maintaining the other parameters exactly the same, yields new dynamics and substantial 
modifications in the correlation map. This can be explained by different and competing phase-
matching conditions in the FWM processes as introduced in (Eq. I.58). In Figure IV.5.c, we 
also show the significance of altering only the frequency of one of the seeds in order to change 
the spectrum. However, depending on the relation between the seeds (as seen here between 
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Δ𝛥𝛥2 = 2Δ𝛥𝛥1 and Δ𝛥𝛥2 = 3Δ𝛥𝛥1) and the FWM processes involved during the MI, we can 
significantly modify (increase or decrease) these correlations, enabling us to both control the 
relation between selected spectral components and reach a desired output spectrum shape. 

IV.2.2. Quasi-coherent optical seeding 

Our exploration of the influence of optical seeds on MI dynamics led us to also investigate the 
scenario where nonlinear effects are primarily driven by noise, and the seeds are very weak 
compared to the pump. In this case, the pump and the seeds follow two different optical paths, 
where the seeds have a random phase fluctuation that we assume to follow a normal 
distribution 𝒩𝒩(𝜙𝜙,𝑃𝑃𝜋𝜋) centered on a phase 𝜙𝜙 and with a standard deviation 𝑃𝑃𝜋𝜋, where 𝑃𝑃 defines 
the degree of decoherence of affecting the seed. We can then rewrite the spectral seed formula 
used for each Monte-Carlo simulation as: 

�̃�𝑁(𝜆𝜆𝑐𝑐 ,𝜙𝜙𝑐𝑐) = ��̃�𝑁(𝜆𝜆𝑐𝑐)�𝑛𝑛𝑐𝑐𝑁𝑁(𝜕𝜕𝑐𝑐,𝑐𝑐𝜋𝜋)  (Eq. IV.1) 

Where 𝑛𝑛 = {1,2} is the index of the seeds. 

After amplifying the pump signal, we add the seed and study its influence during nonlinear 
propagation when modifying its attenuation, phase and decoherence. In this scenario, we first 
employ numerical simulations describing the realistic experimental setup depicted in Figure 
IV.3.c, where a single seed with an attenuation of 35 dB (in comparison to the pump) was 
added at the fiber input, considering 𝑃𝑃 = 0.3 to match experimental observations (see section 
IV.3.5 for details).  

 
Figure IV.6 Average spectra (top panel) and correlation maps (bottom panel) obtained from 1500 

simulations with random initial seeds, demonstrating the effect of a quasi-coherent single seeds added 
to the pump when considering 𝑃𝑃 = 0.3. The results are primarily driven by noise, with slight variations 

based on the weak seed parameters: (a) 35 dB attenuation and a frequency detuning of 𝛥𝛥𝛥𝛥1= 600 
GHz, (b) 35 dB attenuation and a frequency detuning of 𝛥𝛥𝛥𝛥1= 800 GHz, and (c) lower attenuation at 29 

dB with a frequency detuning of 𝛥𝛥𝛥𝛥1= 800 GHz. 
 
In Figure IV.6.a, which represents the dynamics of a seed detuned from the pump by 𝛥𝛥𝛥𝛥1 = 
600 GHz and with a spectral phase 𝜙𝜙1 = 0, the correlation map exhibits remarkable similarities 
to the one obtained from the spontaneous MI regime, as demonstrated in Figure IV.1.c. This 
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resemblance can be primarily attributed to the weak power and decoherence of the additional 
seed, which can essentially be considered as a noise component. However, even though the 
impact of the seed on the final output is relatively minor, it still possesses the capacity to alter 
the MI fluctuations and the resulting correlation signatures. This can be seen in Figure IV.6.b, 
where the seed is shifted to 𝛥𝛥𝛥𝛥1= 800 GHz from the pump and the spectral phase remains the 
same. While the overall dynamics may appear similar, there are observable changes in the 
features of the correlation maps. Yet, in this case, the seed spectral phase has a relatively low 
effect on the output spectral properties, and as the distinctions between the correlations are 
hardly noticeable, the results are not presented in this thesis. 

In Figure IV.6.c, we repeated the simulations by using a slightly stronger seeds (i.e. reducing 
its attenuation to 29 dB). It is worth noting that despite the 6 dB seed intensity increase, the 
results do not display drastic changes. In both cases, MI predominantly arises from the noise 
inherent in the system and the key correlation signature remain similar. However, some 
differences between the two figures can still be noticeable, indicating the relative impact of the 
seed strength on the correlation maps. 

 
Figure IV.7 Average spectra (top panel) and correlation maps (bottom panel) obtained from 500 

simulations with random initial seeds, demonstrating the effect of a weak quasi-coherent single seed 
with 29 dB attenuation added to the pump when considering a frequency detuning 𝛥𝛥𝛥𝛥1= 800 GHz. The 
results are shown for 3 different decoherence parameters (a) for 𝑃𝑃 =0.1, (b) 𝑃𝑃 = 0.3 and (c)  𝑃𝑃 = 0.6. 

 
To understand the effects of the seed(s) coherence during nonlinear propagation, we present 
in Figure IV.7 a comparison between the average spectra and the correlation maps obtained 
using different decoherence degree 𝑃𝑃 (see (Eq. IV.1)) for a single quasi-coherent seed with a 
frequency detuning 𝛥𝛥𝛥𝛥1= 800 GHz, and an attenuation of 29 dB regarding the pump. As we 
can see, when the degree of decoherence increases, we tend to obtain “square” correlation 
patterns owing to the growing impact of spontaneous noise being broadly amplified in the 
whole MI sidebands. 
 
For this regime, we also conducted additional studies by analyzing the MI fluctuations observed 
when adding two weak quasi-coherent seeds (𝛥𝛥1,𝜙𝜙1) and (𝛥𝛥2,𝜙𝜙2) to the pump using (Eq. IV.1) 
with a decoherence degree 𝑃𝑃 = 0.3. The seeds were added with 32 dB attenuation, so that the 
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induced modulation power remain the same as the single seed case. We then varied their 
frequency detuning and phase so that Δ𝛥𝛥2 = 2Δ𝛥𝛥1. As illustrated in Figure IV.8.a, such 
conditions lead to more complex dynamics and the emergence of distinct correlation features. 
Following the same analysis as the previous regimes to manipulate the seed parameters, we 
started by shifting the detuning of the seeds. In Figure IV.8.b we show the results obtained for 
Δ𝛥𝛥1= 600 GHz and Δ𝛥𝛥2= 1200 GHz with 𝜙𝜙1 = 0 and 𝜙𝜙2 =  𝜋𝜋/2, respectively. As expected, this 
modification may not induce as many changes as observed in the case of coherent dual 
seeding in Figure IV.5.c. Nevertheless, it does tweak the associated propagation dynamics 
that can be seen in the output correlation maps and cause slight alterations in the average 
spectrum. However, in comparison to the quasi-coherent single-seed scenario, the impact of 
the seed phase phases is in this case slightly more significant, especially as it influences SPM 
pump reshaping and therefore, the MI broadening dynamics. In summary, even in this quasi 
coherent regime, the seeded FWM process plays an important role in the generation of the MI 
output spectrum depending on both the frequency and phase of the seeding signals.  

 
Figure IV.8 Illustration of the effect of introducing two weak quasi-coherent seeds to copropagate with 
the pump. Both the average spectrum (top panels) and the correlations (bottom panels) obtained from 

500 simulations with random initial noise, are represented for 32 dB attenuated input seeds with 
frequency detunings Δ𝛥𝛥2 = 2Δ𝛥𝛥1,, and a decoherence degree 𝑃𝑃 =  0.3. The results are shown for three 
different cases: (a) Δ𝛥𝛥1= 400 GHz with 𝜙𝜙1 = 0 and 𝜙𝜙2 =  𝜋𝜋/2, (b) a shift in the frequency by Δ𝛥𝛥1= 600 

GHz, and (c) a variation of the phase using (Δ𝛥𝛥1= 600 GHz, 𝜙𝜙1= 0), and (Δ𝛥𝛥2= 1200 GHz, 𝜙𝜙2 = 𝜋𝜋). 

IV.3. Experimental demonstration: Optimization of noise-driven MI dynamics 

In the previous section, we have seen that optical seeding with different regimes and 
parameters allows us to modify and adjust the MI broadened spectra properties depending on 
the potential user requirements. However, from an experimental viewpoint, this analysis lacks 
fine-tuning and necessitates a large amount of time to probe the parameter space and find the 
optimal input seed(s) properties. To overcome these limitations, we here propose an 
experimental MI control using both optical seeding and machine learning strategies to 
iteratively adjust the initial conditions.  
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IV.3.1. Experimental setup 

The overall setup used for this MI optimization study is depicted in Figure IV.9 and based on 
DFT measurements for experimentally assessing MI spectral fluctuations depending on the 
seed parameters. 

Using the Waveshaper (Finisar, Waveshaper 4000A), we first filter a 80 fs laser pulse (60 mW 
input power) with a 12 GHz Gaussian filter centered at 1560 nm. We then add two coherent 
optical seeds to the pump with controllable central wavelengths and phase ((𝜆𝜆1,𝜙𝜙1) and 
(𝜆𝜆2,𝜙𝜙2)). In this experiment, the seeds have the same FWHM as the pump (34 ps Gaussian 
pulse) but with a 35 dB power reduction (as set in the Waveshaper filtering). The three signals 
are then amplified using an EDFA. To reduce the impact of the ASE generated during the 
amplification process (and suitably analyze the effects of the two weak seeds on the output 
spectrum), we only keep the signal between 1559.42 nm and 1564.63 nm using a bandpass 
filter (which corresponds to ~ 5 nm spectral span covering the first MI gain sideband on the 
long wavelength edge of the pump).  

For nonlinear propagation, we use the same 485 m - HNLF as in section III.3. The average 
spectrum is collected with an OSA, and real-time fluctuations are analyzed using the DFT 
technique implemented via a DCF of a dispersion factor 𝐷𝐷𝑍𝑍𝐹𝐹𝜕𝜕 = 407 𝑝𝑝𝑝𝑝/𝑛𝑛𝑛𝑛. After the DCF a 
second Waveshaper is used (Finisar, Waveshaper 4000A/X), to filter out the pump and get a 
better dynamic range on a 20 GHz photodiode (Thorlabs – DXM20AF) and a 6 GHz real-time 
oscilloscope (Rhode & Schwarz - RTO2064). 

 
Figure IV.9 An 80 fs laser pulse centered at 1560 nm is reshaped using a programmable spectral filter 

(Waveshaper) into a picosecond pump and two seeds with adjustable spectral detuning and phase. 
The signals are then amplified using an EDFA and filtered between 1559.42 nm and 1564.63 nm to 

reduce the ASE. After propagation in a HNLF, we can either visualize the output with an OSA or 
perform a real-time detection using the DFT technique. A genetic algorithm is used to optimize the 

correlation between two specific wavelengths in the output spectrum by iteratively adjusting the input 
seed parameters. 

Our study aims at trying to find the best seeds parameters to either maximize or minimize the 
correlation coefficient 𝜌𝜌 between two frequency targets (𝛥𝛥𝑐𝑐 and 𝛥𝛥𝑏𝑏) located in the MI gain region 
on the short wavelength side of the pump (see Figure IV.10.a-b). On the other side of the pump, 
the seeds were configured to have a variable wavelength from 1560.5 nm to 1564.6 nm 
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corresponding to the first sideband of the MI spectrum, as shown in Figure IV.10.c, and a 
spectral phase continuously varying from 0 to 2π.  

 
Figure IV.10 Representation of the experimental principles for MI optimization and varying parameters: 
(a) In the frequency domain, we select two targets 𝛥𝛥𝑐𝑐 and 𝛥𝛥𝑏𝑏, positioned at higher frequencies than the 

pump. With the GA, we iteratively optimize the correlation between these two target wavelengths by 
adding coherent dual seeds ((𝛥𝛥1,𝜙𝜙1) and (𝛥𝛥2,𝜙𝜙2)) on the other side of the pump where the seed will 
experience MI gain. The seeds are intentionally weak, approximately matching the level of the ASE 

noise. (b) Spectral representation of the target wavelength on a seeded but fluctuating MI output 
spectrum. Note that here only the average spectrum is represented for clarity. (c) Representation of 

the location of both the targets and the seeds in the spectrum. In the case presented here, the seeds 
have variable central wavelengths that are tunable over only the first MI sideband located across the 

pump (compared to the target wavelengths). 
 

Here we note that to be able to incorporate automated optimization strategies into this setup, 
I fully interfaced the instruments of the setup (i.e. two Waveshapers, an OSA, and a real-time 
oscilloscope) into a MATLAB program jointly driving all the apparatus and the optimization 
algorithm. Specifically, the real-time spectra of fluctuating MI are sequentially collected with 
the oscilloscope and processed to derive DFT time-frequency mapping and retrieve the 
relevant correlation maps from 500 successive DFT traces.  

Based on this statistical analysis, we implemented a genetic algorithm to perform a seed 
parameter search for 30 successive generations of 50 individuals each, thus intending to find 
the minimum or maximum value of 𝜌𝜌(𝜆𝜆𝑐𝑐 , 𝜆𝜆𝑏𝑏). Practically, the program will connect to the 
Waveshaper and change, for each iteration, the wavelength and phase of the pair of seeds, 
collect the DFT spectra, and repeat the process until finding the best parameters for an optimal 
result.  

IV.3.2. Experimental results: First MI sideband optimization 

For our first experimental campaign, the measurements were done for five different pairs of 
frequency targets, where the relation between their frequency detuning with respect to the 
pump varied was defined based on commensurate relationships such as: 

• Δ𝛥𝛥𝑏𝑏 = 1.5Δ𝛥𝛥𝑐𝑐, with the two cases of [Δ𝛥𝛥𝑐𝑐 = 0.3 THz; Δ𝛥𝛥𝑏𝑏 = 0.45 THz] and [Δ𝛥𝛥𝑐𝑐 = 0.225 
THz; Δ𝛥𝛥𝑏𝑏 = 0.3375 THz] 

• Δ𝛥𝛥𝑏𝑏 = 2Δ𝛥𝛥𝑐𝑐, with the case of [Δ𝛥𝛥𝑐𝑐 = 0.225 THz; Δ𝛥𝛥𝑏𝑏 = 0.45 THz]  

• Δ𝛥𝛥𝑏𝑏 = 3Δ𝛥𝛥𝑐𝑐, with the case of [Δ𝛥𝛥𝑐𝑐 = 0.2 THz; Δ𝛥𝛥𝑏𝑏 = 0.6 THz]  

• Δ𝛥𝛥𝑏𝑏 = −Δ𝛥𝛥𝑐𝑐, with the case of [Δ𝛥𝛥𝑐𝑐 = 0.45 THz; Δ𝛥𝛥𝑏𝑏 =  −0.45 THz]  
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The results indicating the best seeds parameters and the optimal correlation value for the 
maximization and minimization of each pair of targets wavelengths are shown in Table IV.1.  

 
Table IV.1 Quantitative analysis of the experimental results obtained for seeded MI optimization. The 

table indicates the optimal seeds parameters and correlation coefficients obtained after GA 
optimization, when either maximizing or minimizing the correlation coefficient 𝜌𝜌(𝜆𝜆1, 𝜆𝜆2) between the 

five different pairs of target wavelengths. Note that the phases are here given in units of 𝜋𝜋. 
 

As an example, we analyze in more details two specific cases: When the frequency detuning 
of 𝛥𝛥𝑐𝑐 and 𝛥𝛥𝑏𝑏 are directly proportional to each other (Δ𝛥𝛥𝑐𝑐 = 0.225 THz; Δ𝛥𝛥𝑏𝑏= 0.45 THz) and on 
the other hand, when Δ𝛥𝛥𝑐𝑐 = 0.3 THz; Δ𝛥𝛥𝑏𝑏= 0.45 THz. The experimental results displayed in 
Figure IV.10, show that the GA can effectively optimize the correlation between the chosen 
spectral components in the output spectrum.  

For instance, as we can see in Figure IV.11.a-b for the case of Δ𝛥𝛥𝑏𝑏 = 2Δ𝛥𝛥𝑐𝑐, our algorithm 
achieved a maximum correlation of 𝜌𝜌(𝜆𝜆𝑐𝑐, 𝜆𝜆𝑏𝑏) = 0.73 and, interestingly, managed to quickly 
converge and recognized the best seeds parameters within the first generations. Similarly, for 
the minimization case, even though the correlation evolution was not as stable along the 
optimization process, it still attained a minimal correlation of 𝜌𝜌(𝜆𝜆𝑐𝑐, 𝜆𝜆𝑏𝑏) ~ - 0.7.  

For the case of Δ𝛥𝛥𝑏𝑏 = 1.5Δ𝛥𝛥𝑐𝑐, shown in Figure IV.11.d-e, the optimization is not so obvious (at 
least from a physical viewpoint). As the frequency detuning of the spectral targets are not 
explicitly linked by a direct (or cascaded) FWM process, the relationship between these 
spectral components is more complicated and harder to optimize. Even then, our GA algorithm 
achieved a well-optimized correlation coefficient, however, it is clear that maximizing the 
correlations in such a regime proved to be easier than minimizing them.  

To assess the efficiency of our optimization, we also performed correlation measurements 
using the Monte Carlo (MC) method, where at each iteration, the seeds' wavelength and 
phase, �𝜆𝜆1,𝜙𝜙1,� and (𝜆𝜆2,𝜙𝜙2) are randomly modified. For both the cases discussed above, the 
comparison with GA optimization is provided in Figure IV.11.c-d.  We clearly see that the GA’s 
approach provided better results, allowing for a more efficient probing of the parameter space 
and an optimization robust to experimental perturbation.  
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Figure IV.11 GA optimization of the correlation between two frequency targets 𝛥𝛥𝑐𝑐 and 𝛥𝛥𝑏𝑏, when (a-c) 
Δ𝛥𝛥𝑏𝑏 = 2Δ𝛥𝛥𝑐𝑐 and (d-f) Δ𝛥𝛥𝑏𝑏 = 1.5Δ𝛥𝛥𝑐𝑐. For both cases, we present the GA evolution of the best and 

average values obtained in each generation when (a,d) maximizing the correlation and  (b,e) 
minimizing the correlation. (c,f) Comparison of the distribution of the GA results with the ones obtained 

from Monte-Carlo measurements for iteratively generating random seed parameters.  
 

For a better visualization of these achievable incoherent MI spectral adjustments, we also 
computed the Pearson’s correlation maps (Eq. II.8) obtained after GA optimization for both of 
cases (see Figure IV.11). 
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Figure IV.12 GA-optimized spectrum (a) and correlation maps (b,c) with the seed parameters (𝜆𝜆1,𝜙𝜙1) 

and (𝜆𝜆2,𝜙𝜙2) obtained for a maximal correlation between two frequency targets 𝛥𝛥𝑐𝑐 and 𝛥𝛥𝑏𝑏 with  
Δ𝛥𝛥𝑐𝑐= 0.225 THz and Δ𝛥𝛥𝑏𝑏= 0.45 THz. The targets wavelengths are shown with white circles on the 
correlation maps indicating a positive correlation. (d-f) The same results for a minimal correlation 

between 𝛥𝛥𝑐𝑐 and 𝛥𝛥𝑏𝑏. In the output spectra of (a) and (d), the frequency targets 𝛥𝛥𝑐𝑐 and 𝛥𝛥𝑏𝑏  are shown 
with purple arrows and the optimized seed parameters (and spectral locations) are shown, for each 
case, with blue and red dots. In the correlation maps (b) and (e), the seed locations are shown with 

green circles. 
 
In the case of Δ𝛥𝛥𝑏𝑏 = 2Δ𝛥𝛥𝑐𝑐, we found the best seeds parameters with (𝜆𝜆1,𝜙𝜙1) = (1562.5 𝑛𝑛𝑛𝑛,𝜋𝜋 ) 
and (𝜆𝜆2,𝜙𝜙2) = (1563 𝑛𝑛𝑛𝑛,𝜋𝜋/2), yielding a maximal correlation of 𝜌𝜌(𝜆𝜆𝑐𝑐, 𝜆𝜆𝑏𝑏) ~  0.7, as indicated 
in Figure IV.12.a. When looking at Figure IV.12.b-c, we can clearly see how the correlation 
between the two wavelength targets (𝜆𝜆𝑐𝑐, 𝜆𝜆𝑏𝑏), indicated in white circles is drastically increased 
(red colors of the map). In contrast, when looking at Figure IV.12.d-f, we can see how the 
correlation features in the map gain an opposite sign, and the correlation between the target 
wavelengths becomes minimal.  
 
For comparison, in Figure IV.13, we also show the results of GA optimization for the case Δ𝛥𝛥𝑏𝑏 =
1.5Δ𝛥𝛥𝑐𝑐. As above, we can prove the validity of our GA optimization by analyzing the correlations 
at the locations of the target wavelength. This value goes from 𝜌𝜌(𝜆𝜆𝑐𝑐, 𝜆𝜆𝑏𝑏) ~ 0.8 for the 
maximization, to 𝜌𝜌(𝜆𝜆𝑐𝑐, 𝜆𝜆𝑏𝑏) ~ - 0.6 for the minimization.  
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Figure IV.13 GA-optimized spectrum (a) and correlation maps (b,c) with the seed parameters (𝜆𝜆1,𝜙𝜙1) 
and (𝜆𝜆2,𝜙𝜙2) obtained for a maximal correlation between two frequency targets 𝛥𝛥𝑐𝑐 and 𝛥𝛥𝑏𝑏 with Δ𝛥𝛥𝑐𝑐= 0.3 

THz and Δ𝛥𝛥𝑏𝑏= 0.45 THz. The targets wavelengths are shown with white circles on the correlation 
maps indicating a positive correlation. (d-f) The same results for a minimal correlation between 𝛥𝛥𝑐𝑐 and 
𝛥𝛥𝑏𝑏. In the output spectra of (a) and (d), the frequency targets 𝛥𝛥𝑐𝑐 and 𝛥𝛥𝑏𝑏  are shown with purple arrows 
and the optimized seed parameters (and spectral locations) are shown, for each case, with blue and 

red dots. In the correlation maps (b) and (e), the seed locations are shown with green circles.  
 
As we can notice from Figure IV.12 and Figure IV.13, the wavelength and phase of the 
optimized seeds (for either maximum or minimum target correlations) are obtained at relatively 
well-defined values. However, looking closely at the seeds’ parameters, we observe a great 
variability depending on the optimization target, and can also deduce that we have more 
complex dynamics involving both seed wavelength and phase adjustments to suitably tailor 
incoherent nonlinear effects during fiber propagation. In this case, the achieved optimization 
may help gaining insight into these noise-driven MI dynamics in realistic experimental regimes. 
While a complete analysis falls outside the scope of this thesis, in section IV.4, we also discuss 
the physical FWM mechanisms at play, and that can potentially underly the control of MI 
spectral broadening. 
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IV.3.3. Complementary studies: MI optimization extended to the second sideband 

The optimization of the correlation using the experimental setup shown in Figure IV.9, proved 
successful all along the study, for a variety of experimental conditions. However additional 
analysis can be considered, for example by configuring the seeds to be selected on a range 
covering only the first MI sideband, but the target frequency for optimization located in the 
second sidebands of the MI spectrum. As an example, we present a result where the GA is 
limited to choosing the seeds between 1560.5 nm and 1564.6 nm (i.e. �Δ𝛥𝛥1,2� < 0.5 THz) and 
analyzing frequency targets with Δ𝛥𝛥𝑏𝑏 =  − Δ𝛥𝛥𝑐𝑐 =  0.9 THz.  

Figure IV.14.a illustrates the evolution of the correlation algorithm for such optimization aiming 
at maximizing the correlation between on the second MI sidebands (via cascaded MI 
processes). The GA shows a stable increase towards a maximal correlation 𝜌𝜌(𝜆𝜆𝑐𝑐, 𝜆𝜆𝑏𝑏) ~ 0.6, 
however, the GA seems to still evolve and may need a higher number of generations to fully 
converge and achieve better results in this particular case. The correlation map corresponding 
to the MI fluctuations generated from the optimal seeds (for a maximal correlation between 𝛥𝛥𝑐𝑐 
and 𝛥𝛥2) is shown in Figure IV.14.b. The targets' positions are indicated in white circles and the 
seeds’ locations are shown with the green circles.  

 
Figure IV.14 (a) GA evolution of the correlation between Δ𝛥𝛥𝑐𝑐 = - 0.9 THz and Δ𝛥𝛥𝑏𝑏 = 0.9 THz along 30 
generations with 50 individuals each. (b) MI average spectrum and the correlation map obtained after 

nonlinear propagation with the best seeds’ parameters. 

IV.3.4. Complementary studies: MI control in a high noise level regime 

To study the impact of the weak coherent seeds in a chaotic noise-driven regime, we 
reconfigured the experimental setup by removing the filter after the EDFA, allowing the ASE 
noise to gain prominence in the dynamics and interact significantly with the seeds during HNLF 
propagation. A filter was instead added after the DCF, to study the spectral region between 
1559.42 nm and 1564.63 nm with the best possible dynamic range during DFT measurements. 
In this case, the seeds were selected over a range covering the first MI sideband ranging 
between 1551 nm and 1556 nm (on the blue side of the pump).  
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Figure IV.15 (a) GA evolution of the correlation between Δ𝛥𝛥𝑐𝑐 = - 0.225 THz and Δ𝛥𝛥𝑏𝑏 = - 0.45 THz 

obtained from the new setup configuration for noisy MI optimization. (b) MI average spectrum and the 
correlation map obtained after nonlinear propagation with the best seeds’ parameters. 

The results, displayed in Figure IV.15, show that in such regime, the correlations are harder to 
optimize due to the highly-fluctuating output spectrum (whose MI dynamics are relatively less 
impacted by optical seeds compared to the previous case). Figure IV.15.a shows the GA 
evolution of the correlation coefficient between Δ𝛥𝛥𝑐𝑐 = - 0.225 THz and Δ𝛥𝛥𝑏𝑏= - 0.45 THz with a 
maximal value of only 𝜌𝜌(𝜆𝜆𝑐𝑐, 𝜆𝜆𝑏𝑏) ~ 0.52 reached after optimization. This optimization result is 
illustrated in Figure IV.15.b, where we can see the positive correlation features appearing in 
the white circles, which represent the location of the targets. These results demonstrate the 
strong impact of the noise dynamics, the stability of the seeds and of the overall measurements 
to properly optimize MI correlation features. In this sense, investigating the stability and 
coherence of the seed signals may be of particular interest for finely-tuning incoherent 
dynamics with realistic numerical and experimental parameters.  

IV.3.5. Complementary studies: On the coherence of optical seeds in experiments 

The experimental results presented in section IV.3.2 considered purely coherent seeds, as the 
pump and the seed(s) follow the same optical path and all signals are combined and amplified 
together before nonlinear propagation.  
However, for many practical applications, multiple signals are required to follow different path 
to enable suitable signal processing (filtering, amplification, etc.). This corresponds to the case 
of quasi-coherent seeding described in section IV.2.2. In such case, the impact of phase 
stability is important in the MI regime, as seen in Figure IV.7. 
Currently, we are conducting ongoing experimental studies in a quasi-coherent regime, 
considering signals from the same laser source but practically experiencing decoherence.  
Using the same setup configurations illustrated in Figure IV.3.c and Figure IV.9, we generate 
in our experimental studies optical seeds exiting from another port of the Waveshaper before 
EDFA amplification and joint nonlinear propagation in the 385 m-long HNLF. 
 
For suitable processing of the input signal, one may require assessing the decoherence 
imprinted by these experimental systems. Experimentally, it is possible to assess decoherence 
through interferometric measurements at the fiber input. However, obtaining high fringe 
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visibility can be challenging when the seeds have over > 20 dB attenuation (resulting in a 
visibility of 1% at best) and impaired by broadband ASE noise (potentially leading to large 
experimental uncertainties). 
Instead, in our case, we have tried to leverage the DFT technique (Figure IV.9) to detect 
fluctuating spectra and to indirectly assess this decoherence. To complement our experimental 
observations, we have thus performed a comparison with numerical simulations. These 
simulations allow us to empirically fit the decoherence degree of the seeds based on the MI 
fluctuations obtained at the fiber output, providing valuable insights into the dynamics of our 
quasi-coherent propagation. Comparing numerical results using different degrees of 
decoherence (see Figure IV.7), with the spectral correlation map extracted from an 
experimental measurement, we have identified that a degree of decoherence of 𝑃𝑃 = 0.3 
exhibits the best fit to our experimental results, and aligns well with the modulation instability 
dynamics observed in our experiments: 

 
Figure IV.16 Comparison of the average spectra (top panel) and correlation maps (bottom panel) of a 

quasi-coherent single seed added to the pump with 35 dB attenuation and a frequency detuning of 
𝛥𝛥𝛥𝛥1= 800 GHz, and 𝜙𝜙1 = 0.25𝜋𝜋, obtained (a) numerically from 500 GNLSE simulations with random 
initial seeds and considering 𝑃𝑃 = 0.3, and (b) from 500 fluctuating spectra measurements collected 

experimentally using the DFT technique. 
 

Figure IV.16, illustrates the comparison between the numerical and the experimental results 
using a decoherence of 0.3. In this case, we display a particular example obtained using a 
single quasi-coherent seed with 35 dB attenuation, a frequency detuning of Δ𝛥𝛥1 = 800 GHz, 
and a phase 𝜙𝜙1 =  𝜋𝜋/4. The results obtained here allow us to inform numerical simulations but 
will also be paramount for assessing the validity of experimental implementations and practical 
applications of MI-based signal processing and optimization techniques in the near future. 
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IV.4. Discussion on the MI optimization results 

As we saw in the previous sections, MI optimization can be studied in different regimes. In this 
section, we discuss the experimental results obtained in section IV.3.2, trying to understand 
the impact of optimization on the underlying the FWM processes that can be excited under 
these conditions. 

IV.4.1. Comparison of optimization algorithms 

In section IV.3.2, we presented experimental results showing the optimization of the correlation 
coefficient between two defined targets via genetic algorithms. However, the choice to apply 
GA for such optimization was based on a comparison with PSO efficiency.  

 
Figure IV.17 Comparison of optimization algorithms: GA (in green) and PSO (in yellow), for a (a) 
maximal correlation or (b) a minimal correlation between the frequency targets with a detuning of 

Δ𝛥𝛥𝑐𝑐 = - 0.45 THz and Δ𝛥𝛥𝑏𝑏= 0.45 THz. 
 

In Figure IV.17, we show the evolution of the correlation between the two targets (𝛥𝛥𝑐𝑐 , 𝛥𝛥𝑏𝑏), when 
Δ𝛥𝛥𝑐𝑐 = - 0.45 THz and Δ𝛥𝛥𝑏𝑏= 0.45 THz. In both the maximization and minimization cases, the 
GA demonstrates a slightly faster convergence, finding optimal values early in the optimization 
process. Conversely, the PSO exhibits variable behavior along all the generations, eventually 
converging to similar values as the GA. However, due to this variation and the longer time 
required for stabilization, PSO may not be the best choice for this study. Obviously, this 
empirical observation may be put in perspective and further refined by the adjustment of the 
GA and PSO parameters for the heuristic search performed by the algorithms. Yet, comparing 
these results with randomly probing the parameter space with a Monte-Carlo approach (see 
Figure IV.11), it appears that the GA implemented provide a good baseline for an efficient 
optimization without being stuck with local extrema in the parameters space. 

IV.4.2. Insight into the underlying MI conversion processes  

In this study, the main crucial parameters are the frequencies and the phases of the seeds. 
Understanding the evolution and relation between these two parameters during the 
optimization allows us to discover interesting and important behaviors related to nonlinear 
processes arising during the HNLF propagation. For this reason, we studied the evolution of 
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the ratio between the frequency detuning of the two seeds Δ𝛥𝛥𝑐𝑐 = Δ𝛥𝛥2/Δ𝛥𝛥1 and the 
corresponding phase difference Δ𝜙𝜙 = 𝜙𝜙2 − 𝜙𝜙1. 

 
Figure IV.18 Evolution of (a) the frequency detuning ratio Δ𝛥𝛥𝑐𝑐 between 𝛥𝛥1 and 𝛥𝛥2, and (b) the phase 

difference between 𝜙𝜙1 and 𝜙𝜙2, during GA correlation maximization between Δ𝛥𝛥𝑐𝑐 = 0.225 THz; 
Δ𝛥𝛥𝑏𝑏= 0.45 THz. (c) A 3D representation of both the frequency detuning ratio and the phase difference 

as a function of the GA generation.   
 

In Figure IV.18, we show for Δ𝛥𝛥𝑐𝑐 = 0.225 THz and Δ𝛥𝛥𝑏𝑏= 0.45 THz, the evolution of these two 
frequency detuning and phase variables over the 30 generations used in our GA algorithm. In 
Figure IV.18.a, we can see a clear convergence of the frequency detuning ratio towards the 
best result obtained from the first few generations of the GA. In this case, the optimization 
yields a case where Δ𝛥𝛥𝑐𝑐~ 1 which is not unexpected as it corresponds approximately to the 
same frequency detuning ratio of the target frequency (i.e. Δ𝛥𝛥𝑐𝑐~ Δ𝛥𝛥𝑏𝑏/Δ𝛥𝛥𝑐𝑐= 1).  

In contrast, in Figure IV.18.b, the evolution of the phase difference is less obvious and starts 
to converge towards the optimal solution, only after 15 generations. Even though it appears 
that the difference between the two phases is about −𝜋𝜋

2
, the phase optimization remains 

unstable along the generations. This can also be seen in Figure IV.18.c, which shows how the 
evolution of both the phase difference and frequency detuning ratio converges with the GA, 
starting from a random exploration of the seed parameter space towards well-defined 
parameter values. 

While fairly trivial, this analysis is in fact important to understand more complex spontaneous 
MI mechanisms from simple FWM approaches. For instance, for the case where Δ𝛥𝛥𝑏𝑏 = 1.5Δ𝛥𝛥𝑐𝑐 
presented in Figure IV.19, the convergence is not straightforward:  
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Figure IV.19 Evolution of (a) the frequency detuning ratio between 𝛥𝛥1 and 𝛥𝛥2, and (b) the phase 

difference between 𝜙𝜙1 and 𝜙𝜙2, during GA correlation maximization between Δ𝛥𝛥𝑐𝑐 = 0.3 THz; Δ𝛥𝛥𝑏𝑏= 0.45 
THz. (c) A 3D representation of both the frequency detuning ratio and the phase difference as a 

function of the GA generation.   
 

We can see that for the frequency detuning ratio of the seeds (Figure IV.19.a), does not fully 
converge before at least 20 generations, eventually reaching a value Δ𝛥𝛥𝑐𝑐~ 3. In addition, the 
phase difference optimization is very chaotic as illustrated in Figure IV.19.b, and the algorithm 
needs at least 27 generations to eventually reach optimal values so that Δ𝜙𝜙 = 𝜙𝜙2 − 𝜙𝜙1~  
−1.5 𝜋𝜋. The 3D representation of both the frequency ratio and the phase difference of the seed 
parameters (Figure IV.19.c) shows how this relation varies along the GA generations, hardly 
achieve optimal values for over 20 generations. 

The two illustrated results presented here are only shown for the maximization case. However, 
we have observed that for the all the 5 combinations of target frequencies (and for both 
correlation maximization and minimization), the frequency detuning ratio of the seeds 
converged quickly over the first tens of GA generations, but the evolution of the seed phase 
difference demonstrates a more complex optimization. 

The reason behind these dependencies, which involve optimizing the seeds’ parameters in 
both frequency and phase towards two defined targets, take obvious roots in the process of 
four-wave mixing. As we discussed in section I.5.2, modulation instability is a degenerated 
FWM process, resulting from an energy transfer from the pump, into unstable frequency 
components, satisfying the energy conservation  specified in (Eq. I.58): 2𝛥𝛥𝑠𝑠 −  𝛥𝛥𝑠𝑠𝑐𝑐𝑠𝑠 −  𝛥𝛥𝑐𝑐𝑐𝑐𝑐𝑐 = 0 
(and eventually a reversed energy from the modulation frequency components into the pump 
when the adequate phase matching conditions are met).  

To leverage this extremely simple but powerful property, we offer below a qualitative 
interpretation of potential cascaded FWM processes than can occur during nonlinear 
propagation to shed light in the GA results obtained for two cases of optimized MI optical 
seeding (as reported in Figure IV.11). 
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Figure IV.20 Illustration of the FWM processes potentially occurring during MI evolution and resulting 

from the interaction between the pump and the optimal coherent seeds (𝛥𝛥1, 𝛥𝛥2), obtained for a maximal 
correlation between (a) Δ𝛥𝛥𝑐𝑐= 0.225 THz; Δ𝛥𝛥𝑏𝑏= 0.45 THz, and (b) Δ𝛥𝛥𝑐𝑐= 0.3 THz; Δ𝛥𝛥𝑏𝑏= 0.45 THz. 

Parameters: For (a), the optimized seeds have a detuning Δ𝛥𝛥1 = -0.36 THz and Δ𝛥𝛥2 = -0.32 THz. For 
(b), the optimized seed detuning’s are respectively Δ𝛥𝛥1 = -0.12 THz and Δ𝛥𝛥2 = -0.35 THz. 

 

In Figure IV.20, the pump is represented in dark grey, and the two seeds in dashed red and 
blue, respectively. We then calculate the new frequencies that may emerge from direct FWM 
based on energy conservation conditions: 

First, we compute the two symmetrical frequencies (in solid red and blue lines) resulting from 
the interaction between the pump and the seeds, using the relation 𝛥𝛥𝑐𝑐𝑘𝑘 = 2𝛥𝛥𝑠𝑠 − 𝛥𝛥𝑐𝑐, with 𝑛𝑛 =
{1,2} representing the seed index and where 𝑘𝑘 refers to the FWM process index (here, this 
direct FWM process is noted 𝑘𝑘 = 1).  

However, it is important to note that FWM it can arise from the mixing between the seeds and 
either or both of the pump frequency and/or the small pump sidelobes generated by self-phase 
modulation (SPM), which are here considered to be at a detuning of ±0.9 THz. In this case, 
we obtain 2𝛥𝛥𝑠𝑠 =  𝛥𝛥𝑆𝑆𝑆𝑆𝑆𝑆− + 𝛥𝛥𝑆𝑆𝑆𝑆𝑆𝑆+ and FWM symmetrically distributed around the pump can be 
attributed to either a degenerate process (with 𝛥𝛥𝑐𝑐1 = 2𝛥𝛥𝑠𝑠 − 𝛥𝛥𝑐𝑐) or a non-degenerate process 
(with 𝛥𝛥𝑐𝑐1 = 𝛥𝛥𝑆𝑆𝑆𝑆𝑆𝑆− + 𝛥𝛥𝑆𝑆𝑆𝑆𝑆𝑆+ − 𝛥𝛥𝑐𝑐).  

More importantly, in this regime where SPM is non-negligible (and where ~2-3 sidelobes are 
generated via a nonlinear phase shift 𝜋𝜋 < 𝛥𝛥Ф𝑆𝑆𝑆𝑆𝑆𝑆 < 2.5𝜋𝜋, see (Eq. I.34) and Figure I.8), FWM 
can emerge from a pump combination of different SPM lobe components: 

In the first non-degenerate case, a new frequency can appear from the interaction with one 
photon from the central pump and one photon of the pump SPM sidelobe so that  𝛥𝛥𝑐𝑐2+ = 𝛥𝛥𝑠𝑠 +
𝛥𝛥𝑆𝑆𝑆𝑆𝑆𝑆+ − 𝛥𝛥𝑐𝑐 and  𝛥𝛥𝑐𝑐2− = 𝛥𝛥𝑠𝑠 + 𝛥𝛥𝑆𝑆𝑆𝑆𝑆𝑆− − 𝛥𝛥𝑐𝑐 depending if we consider the negative or positive SPM 
sidelobes. These FWM frequencies are illustrated with orange arrows for 𝑛𝑛 = 1 and dark blue 
arrows for 𝑛𝑛 = 2 in Figure IV.20.  

Similarly, in a degenerate case, the 3rd FWM can yield a new frequency can appear from the 
interaction with two photons of either pump SPM sidelobe so that  𝛥𝛥𝑐𝑐3+ = 2𝛥𝛥𝑆𝑆𝑆𝑆𝑆𝑆+ − 𝛥𝛥𝑐𝑐 and  
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𝛥𝛥𝑐𝑐3− = 2𝛥𝛥𝑆𝑆𝑆𝑆𝑆𝑆− − 𝛥𝛥𝑐𝑐, depending on the SPM sidelobe considered. These FWM processes are 
represented in yellow for 𝑛𝑛 = 1 and in green for 𝑛𝑛 = 2 in Figure IV.20. 

A particular interest here is the fact that, in Figure IV.20.a, we added the location of the two 
targets 𝛥𝛥𝑐𝑐 and 𝛥𝛥𝑏𝑏 to the diagram when Δ𝛥𝛥𝑐𝑐= 0.225 THz and Δ𝛥𝛥𝑏𝑏= 0.45 THz. One can observe 
that the two targets correspond to a direct FWM combination between the pump, an SPM 
sidelobe, and the seeds. As the frequencies detuning of the targets are directly proportional to 
each other, their correlation are expected to be readily by the optimized seed from a similar 
FWM process. As a comparison, we also show in Figure IV.20.b the case for Δ𝛥𝛥𝑏𝑏 = 1.5Δ𝛥𝛥𝑐𝑐. 
Here, however, the targets seem to correspond to two different FWM process: between the 
positive SPM sidelobe and the 1st seed (in one case), and between the pump, the positive SPM 
sidelobe, and the 2nd seed (in one case).  

It is important to notice that the seeds chosen by the GA seem to in fact originate from a rather 
simple FWM process, but here provided by realistic experimental conditions beyond the tree 
wave mixing approximation. This simple approach thus needs to be taken inconsideration even 
when dealing with highly incoherent MI dynamics. Whether the targets are directly related to 
each other or not (and depending on a targeted increase or decrease of the desired spectral 
correlation), these effects will vary, and the GA will explore more complex combinations to find 
the optimal parameters for the specified desired tuning of MI spectral fluctuations for the 
precise experimental settings of the system.  

Of course, these nonlinear effects are more complex than simple SPM degenerate/non-
degenerate FWM, that and cannot be only explained with such analysis. First, in this regime 
defined by broadband noise and seed amplification, one may need to consider more complex 
and cascade FWM process that might excite the same frequency components in a non-trivial 
manner. Moreover, in addition to the seed frequency (for energy conservation), we must also 
take into consideration the phase matching explained by (Eq. I.57) that favor specific FWM 
processes and allow for fine-tuning the statistical energy allocation in a noise-driven MI. 
However, measuring this parameter experimentally and predicting/forecasting suitable FWM 
phase matching for adjusting incoherent frequency conversion is expected to be challenging 
from a theoretical and numerical viewpoint. Yet, the GA seems to empirically converge to 
specific phase relationship between the seeds are definitely of interest.  

Further studies may be used here to gain insight into the behavior of the phase and better 
understand the relation between the seeds’ parameters and the targets. Numerically modeling 
this experiment may indeed enable a more in-depth analysis of the phase, but it would be 
difficult to replicate the same initial conditions due to the noise-dependency of our 
measurements and potential instruments instability (especially the EDFA), preventing us from 
achieving a good agreement between the numerical and experimental approaches.  

The impact of the phase of the seed (and the seed intrinsic coherence with respect to the pump 
signals) is an aspect that is currently being investigated from both an experimental and 
numerical point of view (see also Figure IV.6 and Figure IV.8) but falls outside of the scope of 
the study reported in this manuscript. 

 

In this chapter, we showed the impact of the seeds' chosen parameters on incoherent 
nonlinear processes and demonstrated that carefully optimizing these parameters allows for 
interesting insights into the MI phenomena unfolding during nonlinear guided propagation. Our 
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exploration revealed that the evolution of these parameters during optimization is not 
straightforward but was however empirically successful.  

As we look ahead, the path to deeper understanding and control of noise-driven MI dynamics 
becomes even more intriguing. The application of machine learning allowed for a fine-tuning 
optical seed parameters in real-time, enabling us to significantly reduce the time and effort 
required for manual adjustment while simultaneously improving the precision of our results in 
realistic experimental environments.  Next, an important aspect of MI control will arise from 
using quasi-coherent signal for optimization in experimental frameworks more adapted to a 
large variety of experimental conditions for numerous applications involving optical seeding 
(e.g. study the impact of seed coherence in the overall MI processes, but also leverage 
spontaneous MI to assess and measure signal coherence via nonlinear amplification).  

Similarly, an in-depth study of the phase-dependent incoherent process and their impact in 
cascaded and complex FWM dynamics will be particularly interesting, especially for regimes 
at the boundary between nonlinear and quantum signal processing (see also Chapter III). 

Another avenue of exploration lies in the use of deep learning and neural networks for the 
study of incoherent MI process, along with their prediction and advanced control beyond simple 
iterative optimization algorithms (an approach currently implemented and undergoing 
development in our lab in the framework of MI processes). These powerful computational tools 
have the potential to predict the optimal input parameters to achieve a desired output, whether 
in numerical simulations or experimental studies, paving the way for more efficient and 
impactful investigations in various research domains [148], [267], [268]. Finally, we note that 
these studies, although oriented on nonlinear dynamics, possess applications that extend far 
beyond the realm of MI control. The ability to finely tailor fluctuating nonlinear dynamics has 
profound implications for fields such as imaging and nonlinear microscopy/spectroscopy 
techniques (see e.g. Appendix 1).  
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Conclusion 

The main objectives of this thesis were to develop fundamentally novel approaches for tailoring 
the spectral and temporal properties of ultrafast optical laser pulses. Leveraging machine 
learning, we have demonstrated the ability to adapt the pulse’s characteristics and optimize 
multidimensional nonlinear propagation in selected optical waveguides. The fast and practical 
adjustment of output wave packets paves the way towards various applications, notably for 
adaptable multiphoton microscopy techniques with enhanced computational imaging 
capabilities. 
 
Chapters I and II were dedicated to reviewing nonlinear effects in optical fibers and presenting 
the various numerical and experimental methodologies employed throughout this manuscript, 
ranging from optical pulse processing and characterization techniques to optimization 
approaches using machine learning strategies. 
 
The key results of this work (Chapter III) were centered on the development of a novel 
dispersive Fourier-transform-based characterization technique (DFT), using multiple single-
photon detectors (SPD). This innovative approach enabled us to analyze spectral instabilities 
with high resolution, sensitivity, and an enhanced dynamic range. By studying the dynamics of 
modulation instability (MI) within a highly nonlinear fiber, we have experimentally 
demonstrated, using this quantum-inspired method, the capability to perform spectral 
correlation measurements across broadband (40 nm bandwidth) fluctuating MI spectra by 
means of coincident photo-events acquired by the single-photon detectors. By employing 
statistical mutual information analysis (MIA) and computing the spectral correlation maps 
corresponding to these measurements, we conducted a thorough comparison with the 
“standard” DFT technique. Remarkably, we showed that the low temporal jitter provided by 
these detectors (25 ps) and their exceptional quantum efficiency (exceeding 90%) allowed our 
DFT approach to offer significantly superior performances in terms of signal sensitivity 
(detection below the femtowatt level) and spectral resolution (reaching approximately 53 pm), 
which proved helpful in measuring high dynamic range (over 80 dB) and detecting very low-
intensity signals that can merely be resolved by commercial instruments such as optical 
spectral analyzers, and out of the reach of standard real-time characterization techniques. We 
anticipate that this SPD-DFT technique will hold a strong potential for various applications. 
This includes, among other, the fields of imaging and multiphoton spectroscopy/microscopy, 
where high sensitivity and advanced spectral detection are essential for non-repetitive 
multidimensional signal analysis. This also covers diverse aspects of optical metrology (e.g. 
frequency comb stability monitoring) and quantum photonics (e.g. quantum state manipulation, 
squeezing and phase-sensitive amplification, to only name a few examples).  
 
In Chapter IV, building on the experimental observations of Chapter III, we conducted an in-
depth exploration of the significance of introducing optical seeding into an initial pulse to 
spectrally shape the input signal and study its impact on incoherent nonlinear dynamics. In this 
case, we specifically focused our work in the context of modulation instability occurring during 
optical fiber propagation. We first performed a numerical study using GNLSE simulations to 
investigate MI instabilities within a regime situated between spontaneous and induced MI. Our 
results were obtained for two distinct scenarios, which we examined through statistical 
Pearson's correlation analysis. In the first scenario, we combined the initial pump with coherent 
optical seeds, carefully considering various parameters such as the seeds' frequency detuning 
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and phase, and we demonstrated the influence of the initial conditions on the resulting output 
spectrum. In the second scenario, we introduced quasi-coherent seeds to an amplified pump, 
leading to a competition between induced modulation and noise-driven dynamics during 
nonlinear propagation, which also impacted MI dynamics, thus affecting the correlation 
features between the spectral components. We noticed that in both cases, the addition of 
extremely weak optical seeds can drastically modify even highly incoherent fiber propagation 
regimes, including noise-driven and cascaded FWM processes excited by MI. Our 
investigation extended to an experimental setup involving coherent optical seeds, where we 
tried to optimize the correlation between two frequency targets selected from the output MI 
spectrum (after nonlinear propagation). Leveraging evolutionary algorithms, we adjusted the 
seeds’ parameters to optimize the correlation coefficient between selected target wavelengths. 
Among others, genetic algorithm optimization demonstrated excellent results to effectively 
maximize or minimize the correlation between different pairs of frequency targets. This 
approach allowed for analyzing the statistical relationships and correlations among particular 
spectral components. For instance, we successfully characterized noise-driven MI dynamics 
and their incoherent cascaded four-wave mixing processes. Clear changes in the correlation 
maps within the output spectrum were identified when slightly adjusting the initial conditions. 
Interestingly, we were able to illustrate the relationship between the chosen seeds and the 
target wavelengths via simple FWM processes. These results, although promising, now require 
further analysis in a more fundamental framework and to address in more details the impact 
of the phase and coherence of the seeds in the adjustment of complex incoherent MI dynamics.  
 
It is worth mentioning that the points addressed over this thesis within this research subject 
paves the way towards deeper studies of MI dynamics, investigating e.g. different regimes with 
a larger set of seed parameters using other evolutionary algorithms, or artificial neural network 
strategies. In particular, the use of neural networks is expected to allow for a predictive 
behavior of incoherent nonlinear processes, which could prove significant for e.g. forecasting 
extreme event formation [269], [270].  More importantly, such ANN approaches are expected 
to learn and predict optimal seed or input conditions from experimental output spectra and 
correlation maps (when trained in an inverse problem configuration). This ANN prospect 
should enable gaining further insights in the underlying physical process and complexity of the 
system, which is an approach currently being studied in our team from both a numerical and 
experimental viewpoint [271].  
 
In this thesis, we mainly presented results leveraging spectral control of ultrafast optical laser 
pulses for tailoring nonlinear propagation dynamics. As described in Chapter II, my research 
work also involved significant contributions in temporal pulse shaping, and the preparation of 
the numerical and experimental framework for coherent pulse preparation with an integrated 
photonics system (IPPP). While these studies are not explicitly presented in the core of this 
manuscript, I also included numerical results and preliminary experiments involving IPPP 
processing for which I contributed in the Appendices section. 
 
Based on this work, the exploration can now continue towards harnessing control of signal 
temporal processing within the IPPP and characterize tailored nonlinear dynamics with newly 
developed characterization tools (i.e. the DFT techniques [272], [222] presented in Chapter II 
and III, but also the home-made FROG system described in Chapter II and characterized in 
the Appendix 2, as well as an asynchronous X-FROG system recently developed in the lab for 
fast and iterative spectro-temporal characterization of broadband optical signals [273]). 
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Extending the control of nonlinear dynamics towards the generation of supercontinuum, we 
were for instance able to demonstrate, in a numerical study, the ability to manipulate 
broadband optical sources with important implications for shaping the signal for selective multi-
photon imaging applications [274] (see Appendix 1). Exploiting the concepts of selective dual 
pumping at different wavelengths, with direct synchronization from tailored supercontinuum, 
we expect to reach selective two-photon excitations and generate CARS signals with spectrally 
and temporally selective responses. Importantly, with the appropriate multidimensional 
(spectro-temporal) signal enhancement and filtering, a completely new, autonomous, versatile, 
and self-optimized fibered architecture suitable for advanced multimodal imaging capabilities 
may be envisioned in the future. 
 
In this framework, we also plan to manipulate the above-studied nonlinear effects in the context 
of multidimensional interactions within a multimode fiber. Exploiting the complex system 
inherent to variable dispersion and nonlinearity between modes, we aim at strategically 
adjusting the initial conditions of each spatial mode to control 3+1D nonlinear propagation and 
shape the output wavepacket effectively. Multiple spatial modes can be coherently (or 
incoherently) seeded using a fibered spatial mode multiplexer (SMUX) to ideally create specific 
interference patterns at the fiber output after suitable adjustment of the initial conditions. The 
work reported in this thesis thus constitutes a strong basis for such spatial, temporal, and 
spectral wavepacket control that should provide optimal point spread functions, limited beam 
diffraction, adjustable nonlinear focusing, and controlled polarization/OAM states. Such 
innovations can open exciting possibilities in imaging, spectroscopy, and tailored light 
generation, offering numerous and promising avenues for future research and development. 
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Appendix 1. Numerical study: Supercontinuum optimization towards multiphoton 
microscopy 
 

As we already mentioned in Chapter II.2, several tools can be applied to adjust the spectral, 
but also the temporal properties of an input pulse. In this context, we performed extensive 
numerical studies on the potential of using the IPPP chip (described in Chapter II.2.2) in order 
to control and optimize the spectro-temporal content of supercontinuum generation, for 
multiphoton microscopy purposes [275], specifically multi-photon excitation (MPE) 
microscopy. 

MPE is a fundamental aspect of multi-photon microscopy, crucial for various imaging 
modalities, allowing for selective imaging and examination of biological living tissues in four 
dimensions (x-y-z-t) [276]. It provides excellent sectioning effects, ensuring sufficient spatial 
resolution. In addition, due to its large wavelength range of potential excitations (visible and 
near-IR) [277], [278], this technique possesses the ability to mitigate both scattering loss and 
photodamage of the tissue sample, typically enabling imaging with further penetration 
depth [279], [280].  However, MPE faces limitations associated to conventional laser sources 
arising from factors such as the narrow bandwidth of typical laser gain media and the 
constraints of wavelength conversion techniques for selective and efficient MPE. As an 
alternative solution, this study explores the concept of supercontinuum generation for 
reconfigurable and selective MPE microscopy.  

Broad supercontinuum spectra encompass numerous absorption peaks of different 
fluorophores, making it suitable for various imaging techniques and potential multiplexed 
spectroscopy [281].  In this study, we employ machine learning techniques such as GA and 
PSO to enhance the spectro-temporal properties of supercontinuum generation. This 
optimization process aims to selectively enhance multi-photon absorption (MPA) signals 
compatible with various fluorophores or imaging modalities.  The numerical modeling is based 
on a realistic experimental setup shown in Figure A.1 and uses the split-step Fourier method 
to solve the GNLSE in an on-chip programmable delay line (PDL), with adjustable splitting ratio 
(see Figure II.6), before propagation in HNLF [282].  

 
Figure A.1 Schematic representation of the proposed system, showing how reconfigurable temporal 

pulse patterns, generated by the PDL, drive nonlinear propagation in a HNLF, thus resulting in 
reconfigurable spectral broadening. The PDL's interferometer settings can be optimized using 

machine learning methods to selectively enhance MPA signals at wavelengths of interest (see right 
panel). 
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The PDL (also termed IPPP for its processing capabilities beyond simple delay adjustment)  is 
constituted from 5 cm waveguide structures with a high nonlinear parameter  
𝛾𝛾 = 233 𝑊𝑊−1.𝑘𝑘𝑛𝑛−1, a GVD parameter 𝛽𝛽2 = −2.87 𝑝𝑝𝑝𝑝2.𝑘𝑘𝑛𝑛−1, and a TOD parameter  
𝛽𝛽3 = −0.0224 𝑝𝑝𝑝𝑝3.𝑘𝑘𝑛𝑛−1, with relatively low losses (0.06 dB/cm), as described in section II.2.2 
of the main manuscript and in [282], [283], [275]. The HNLF is a 10 m-long Ge-doped 
homemade fiber, and its characteristic are: 𝛾𝛾 =  3.5 𝑊𝑊−1. 𝑘𝑘𝑛𝑛−1, 𝛽𝛽2 =  −2.15 𝑝𝑝𝑝𝑝2.𝑘𝑘𝑛𝑛−1, and 
𝛽𝛽3 =  0.0693 𝑝𝑝𝑝𝑝3. 𝑘𝑘𝑛𝑛−1.   

A Gaussian laser pulse with adjustable power, temporal width, and chirp, centered at 1560 nm 
travels within the PDL to generate a single pulse seed (when the splitting ratios on all the MZI 
are equal to zero), or reconfigurable pulse patterns (when the splitting ratios are adjusted).  

The obtained signal is then amplified by an EDFA before entering the HNLF. We then consider 
two spectral regions with wavelengths suitable for MPA excitation, specifically two-photon 
absorption (2PA) excitation such as 𝜆𝜆1=1133 nm (2PA centered at 566 nm) and 𝜆𝜆2=1200 nm 
(2PA at 600 nm), or three-photon absorption (3PA) excitation such as 𝜆𝜆3=1700 nm (with a 3PA 
at 566 nm) and 𝜆𝜆4=1800 nm (3PA at 600 nm). 

We illustrate the temporal and spectral evolution (Figure A.2.a–b) of a 100 fs Gaussian input 
pulse (with a peak power of 12 kW and a negative chirp 𝐶𝐶 = −5) during HNLF propagation, 
and we highlight the four chosen wavelengths at the output (Figure A.2.c) in the spectral and 
temporal domains.  

 
Figure A.2 Temporal (a) and spectral (b) evolution of a SC generation in a 10 m-long HNLF, obtained 

from numerical simulations using a single pulse with a peak power 𝜙𝜙0= 12 kW and 100 fs temporal 
width, with a negative chirp 𝐶𝐶 = -5. (c) The corresponding output spectrum (top panel) and temporal 

waveforms (bottom panel) filtered at selected wavelengths. 

For the optimization, we try to maximize, using evolutionary algorithms (specifically GA and 
PSO), the corresponding 2PA and 3PA intensities: 

𝐼𝐼2𝑆𝑆𝐴𝐴,𝜆𝜆1,2 = ∫�𝐼𝐼𝜆𝜆1,2�
2𝑑𝑑𝑎𝑎      and    𝐼𝐼3𝑆𝑆𝐴𝐴,𝜆𝜆3,4 = ∫�𝐼𝐼𝜆𝜆3,4�

3𝑑𝑑𝑎𝑎 

The first results are shown in Figure A.3, obtained by varying the input parameters of a single 
input pulse: the peak power from 5 to 20 kW, the temporal width between 50-200 fs, and the 
chirp parameter between -10 and +10. The GA optimization is compared with random Monte-
Carlo (MC) simulations using 105 sets of different initial parameters. As we can see for the four 
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wavelengths of interests, the GA optimization yields higher MPE signals than random probing 
of the parameter space, with a number of simulations required typically one order of magnitude 
lower than the MC approaches.  

 
Figure A.3 Comparison between GA and random Monte Carlo method, for MPA signals optimization 

for the four wavelengths of interest, using a single input pulse seed with tunable parameters. 

These results, providing up to a 3-fold MPA signal enhancement, may be put in perspective 
with the use of multiple input pulse generated from the PDL system. For the case of 
reconfigurable pulse patterns, we define a constant peak power 𝜙𝜙0 = 1 kW for the input pulse, 
with a temporal width of 100 fs, and consider optical processing with the PDL using adjustable 
splitting ratios to generate reconfigurable pulse patterns.  

For example, in Figure A.4.a–b we show the propagation in HNLF of an input pulse pattern 
obtained via PDL processing, and suitable to excite conjoint 3PA signals at the wavelengths 
of 1700 m and 1800 nm. The obtained temporal and spectral signals are shown in Figure A.4.c. 
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Figure A.4 Temporal (a) and spectral (b) evolution of a SC generation in a 10 m-long HNLF, obtained 
from numerical simulations using an adaptable input pulse pattern employed to excite conjoint 3PA 
processes of various fluorophores at wavelengths of 1700 nm and 1800 nm. (c) The corresponding 

output spectrum (top panel) and temporal waveforms (bottom panel) filtered at selected wavelengths. 

In Figure A.5, we show different examples of reconfigurable pulse patterns obtained from 
random MC simulations. In Figure A.5.a–c we can see that for different wavelength, we can 
obtain with the single-pulse, a single-pulse like output pattern, or a more complex pattern.  

In addition, for an improved control and characterization of various MPA processes and 
fluorophore combinations, we can also enhance conjoint MPA processes as seen in Figure 
A.5.d–e. Different temporal waveforms can be obtained by adjusting the input signal 
parameters, allowing to obtain different temporal delays between the filtered signals (Figure 
A.5.d(1-3) – e(1-3)), but also temporally-interleaved MPA signals (Figure A.5.d(4-6) – e(4-6)). 
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Figure A.5 Examples of filtered output waveforms generated from single pulses and reconfigurable 

pulse patterns when filtered at (a1-a3) 1133 nm, (b1-b3) 1200 nm, and (c1-c3) 1800 nm, and for 
conjoint (d1-d6) 2PA-2PA with 1133 nm -1200 nm, and (e1-e6) 2PA-3PA with 1200 nm -1800 nm. 

By changing the splitting ratios in the PDL, we can therefore tailor the intensity and delay of 
the individual pulses depending on the desired properties of the excitation pulse used for MPE 
microscopy. The intensities of such excitation pulses can be maximized using optimization 
algorithms such as GA and PSO, yielding over 5-fold MPE signal enhancement as displayed 
in Figure A.6.  
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Figure A.6 Comparison between GA, PSO and random Monte Carlo method, for MPA signals 
optimization for the four wavelengths of interest, using reconfigurable input pulse patterns as 

processed by the PDL system. 

The results of the study demonstrate a promising and practical approach for controlling the 
spectro-temporal properties of excitation lasers for multiphoton microscopy. Our approach 
leverages the temporal dimension as an extended degree of freedom, enabling the 
optimization of multiphoton excitations at specific wavelengths, but also introduces a versatile 
and adaptable method for imaging applications. 

We anticipate that our results will pave the way for real-time supercontinuum shaping, 
promising significant improvements in multi-photon microscopy. These advancements could 
for instance lead to enhanced spatial 3D resolution, reduced optical toxicity, and improved 
wavelength selectivity. 
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Appendix 2. Characterization of ultrashort pulse patterns generated by an integrated 
photonic chip: Experimental implementation of advanced FROG system 
 

In this section we show a study that was conducted with the aim of experimentally validating 
the numerical results presented in Appendix 1. A single input pulse signal is directed into the 
PDL, which can be reshaped into various pulse pattern configurations. To characterize the 
patterns obtained, we have developed a custom FROG technique as described in Chapter 
II.4.1.  

 
Figure A.7 Experimental setup: A femtosecond laser pulse is transformed into an adjustable train of 
pulses within the PDL, before being amplified with an EDFA and characterized by the home-made 

FROG. 

For this study we used an 80 fs laser (Menlo, C-fiber) entering the PDL with an average power 
𝜙𝜙𝑐𝑐𝑣𝑣𝑐𝑐 = 4.5 mW. The PDL consisting of 8 MZI interferometers enabling to split a single pulse 
into 256 pulses (28 pulses) with a minimum of 1 ps separation between each two adjacent 
pulses, encounters a loss of approximately -7 dB. For power recovery and amplification, we 
use an EDFA and enter the FROG setup with an average power of 18.3 mW (see Figure A.7). 
In the PDL, we can adjust the splitting ratio between each interferometer arms between 0 and 
1, where 0 indicates that the light is following the “short arm” of the MZI, and 1 indicates the 
light is following the “long arm” of the MZI, thus a 0.5 ratio infers a 50% split-and-delay 
operation of each individual pulse(s), separated by the delay related to the long arm 
subsequent to the MZI interferometer [275], [282]. 

For example, in Figure A.8, we show the FROG traces experimentally recorded of the 
generated pulse patterns obtained by adjusting the splitting ratio of the PDL: Here, we show 
the cases where (i) the pulse passes by one interferometer into 2 pulses, (ii) by two 
interferometers into 22 = 4 pulses, or (iii) by three interferometers into 23 = 8 pulses.  

 
Figure A.8 Examples of FROG traces obtained experimentally by different configurations of the MZI 

splitting ratios within the PDL to obtain 2,4 or 8 pulses equally spaced in time. Here we used 
picosecond pulse duration and separation for illustrative purposes. 
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This approach allows us to get reconfigurable pulse train with defined temporal separation 
between each pulse than can be easily adjusted. For example in Figure A.8, we show for the 
case of 2 pulses, a separation of 16 ps, but also 4 pulses with a 64 ps separation, and 8 pulses 
with 32 ps separation. These results clearly illustrate both the versatility of this approach for 
temporal pulse shaping, as well as the quality of the home-made FROG setup for measuring 
extremely long pulse patterns with good temporal resolution. The study can be further 
expanded up until generating 256 pulses with 1 ps separation.  

In our setup, the FROG traces are measured using a spectrometer (see Chapter II.4.1), and 
the temporal resolution of the setup (down to 0.6 fs) depends on the number of steps chosen 
along the temporal scan with our translation stage. The autocorrelation signal, as well as 
spectral marginal can be extracted directly and showing the shape of the pulse patterns after 
propagation in the PDL.  

In Figure A.9, we show the characterization of a signals constituted from 24=16 pulses. The 
autocorrelation trace indicating a 16 ps temporal delay between each pulse (in accordance 
with the 256/24 ps pulse delay imposed by the PDL). The FROG trace allows us to analyze 
the properties of the obtained signal, such as its temporal width (~ 240 ps pattern), its spectral 
bandwidth and the intensity of each generated pulse. The presence of an interferometric figure 
on the spectrogram, infers a mutual coherence between the subsequent pulses, a 
consequence of the phase information carried by the spectrogram, retrievable by an 
appropriate algorithm [180].   

 
Figure A.9 FROG trace, obtained by sending an 80 fs laser into the PDL configured to generate 16 

pulses with a separation of 16 ps. The signal is then amplified by an EDFA before FROG 
characterization. 

Further investigation of such experiment will involve the propagation of the train pulse within a 
nonlinear waveguide to achieve reconfigurable spectral broadening. Such broadening may be 
obtained by coherent nonlinear effects to generate e.g. broadband supercontinuum or to study 
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fundamental effects associated with incoherent nonlinear dynamics (e.g. noise-driven MI, as 
discussed in Chapter IV). 

Having access to a coherent and scalable pulse processing tool, as well as to the intensity and 
phase properties of the signal obtained from the PDL (that can be retrieved from FROG 
characterization) is of tremendous importance for the follow up of the studies reported in this 
thesis. It will allow for a finer adjustment of the pulse properties before propagation, enabling 
a smart tuning of different configurations in the PDL and an optimization towards different 
applications such as imaging techniques and multiphoton microscopy. This will also allow for 
gaining insight into the impact of the phase and coherence within complex and incoherent 
nonlinear dynamics found in many guided light propagation regimes. 
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Appendix 3. Acronym list 
 

MI: Modulation Instability 

EDFA: Erbium-Doped Fiber Amplifier 

SMF: Single-Mode Fibers 

MMF: Multi-Mode fibers 

GRIN: Graded-index 

HNLF: Highly Nonlinear Fiber 

PCF: Photonic Crystal fibers 

PM: Polarization Maintaining 

PIC: Photonic Integrated Circuit 

GVD: Group Velocity Dispersion 

TOD: Third-Order Dispersion 

ZDW: Zero Dispersion Wavelength 

SVEA: Slowly Varying Envelop Approximation 

SPM: Self-Phase Modulation 

XPM: Cross Phase Modulation 

SC: Supercontinuum 

SCG: Supercontinuum Generation 

NLSE: Nonlinear Schrödinger Equation 

GNLSE: Generalized Nonlinear Schrödinger Equation 

FWHM: Full Width at Half Maximum 

TBP: Time-Bandwidth Product 

FWM: Four-Wave Mixing 

TWM: Three-Wave Mixing 

AB: Akhmediev Breathers 

CW: Continuous Wave 

DW: Dispersive Wave 

FROG: Frequency-Resolved Optical Gating 

DFT: Dispersive-Fourier Transform 

FT: Fourier Transform 

ASE: Amplification Spontaneous Emission 

WS: Waveshaper 

IPPP: Integrated Photonic Pulse Processor 
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MZI: Mach-Zehnder Interferometer 

AOM: Acousto-Optic Modulator 

EOM: Electro-Optic Modulator 

NN: Neural Network 

GA: Genetic Algorithm 

PSO: Particle Swarm Optimization 

OSA: Optical Spectrum Analyzer 

PUT: Pulse Under Test 

SHG: Second Harmonic Generation 

XFROG: Cross-Correlation Frequency-Resolved Optical Gating 

DCF: Dispersion Compensating Fiber 

SPD: Single-Photon Detector 

STEAM: Serial Time-Encoded Amplification Microscopy 

JSI: Joint Spectral Intensity 

SNSPD: Superconducting Nanowire Single-Photon Detector 

HBT: Hanbury-Brown and Twiss 

MIA: Mutual Information Analysis 

PD: Photodiode 

SNR: Signal-to-Noise Ratio 

MC: Monte Carlo 

PDL: Programmable Delay Line 
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Résumé 

Les effets non linéaires ont pris de l'importance dans la photonique moderne en offrant de 
nouveaux moyens de générer de la lumière avec des propriétés accordables. Au fil des 
années, des travaux importants ont été consacrés à la compréhension et à la manipulation de 
ces phénomènes non linéaires, avec un regain d'intérêt récent dans le domaine avec l'essor 
de l'intelligence artificielle. Cette thèse vise à développer de nouvelles approches pour 
contrôler les impulsions ultracourtes et optimiser leurs dynamiques de propagation non linéaire 
dans les fibres optiques. Dans ces travaux, nous concentrons nos études sur le processus 
d'instabilité de modulation, que nous considérons comme un cas particulier d'élargissement 
spectral non linéaire incohérent, un phénomène induit par le bruit qui se traduit par des 
caractéristiques spectrales fluctuantes. Nous abordons ici la mesure et l'analyse statistique de 
ces fluctuations par le biais de techniques de caractérisation en temps réel. Nous présentons 
le développement d'une approche de caractérisation ultrasensible permettant de détecter, de 
caractériser et d'étudier ces instabilités non linéaires avec des performances améliorées. Nous 
examinons également comment ces dynamiques de propagation incohérente peuvent être 
contrôlées par des techniques d'optimisation et d'apprentissage automatique. Ce travail 
couvre à la fois des études numériques et expérimentales examinant l'impact d’un contrôle 
optique sur la formation de l'instabilité de modulation et l'optimisation de ses propriétés à l'aide 
d'algorithmes évolutionnaires. Enfin, nous discutons brièvement des perspectives du contrôle 
temporel avancé de l'élargissement non linéaire fibré via des systèmes photoniques intégrés 
programmables. Dans l'ensemble, ces études ouvrent la voie au développement de sources 
photoniques intelligentes pour des applications couvrant la microscopie avancée, de nouvelles 
techniques d'imagerie et la métrologie, avec un potentiel dans divers domaines scientifiques. 

Mots-clés : Optique non linéaire, photonique ultra-rapide, fibre optique, instabilité de 
modulation, techniques de caractérisation optique, apprentissage automatique 

Abstract 

Nonlinear effects have gained importance in modern photonics as they provide new means for 
the generation of light with tunable properties. Over the years, important work has been 
dedicated to understanding and manipulating these nonlinear phenomena, with a recently 
renewed interest in the field with the rise of artificial intelligence. This thesis aims at the 
development of novel approaches for controlling ultrashort pulses and optimizing their 
propagation dynamics in nonlinear fiber optics. In this work, we focus our studies on the 
process of modulation instability, which we consider a case study of incoherent nonlinear 
spectral broadening, a noise-driven phenomenon resulting in fluctuating output spectral 
characteristics. Here, we discuss the measurement and statistical analysis of these 
fluctuations via real-time characterization techniques. We report on the development of an 
ultra-sensitive characterization approach allowing to detect, characterize and study these 
nonlinear instabilities with improved performances. We further examine how such incoherent 
propagation dynamics can be controlled via optimization and machine learning techniques. 
This work covers both numerical and experimental studies investigating the impact of optical 
seeding on the formation of modulation instability and the optimization of its properties using 
evolutionary algorithms. Finally, we briefly discuss perspectives towards advanced temporal 
control of nonlinear fiber broadening via programmable integrated photonics systems. Overall, 
these studies pave the way towards the development of smart photonic sources for 
applications spanning advanced microscopy, novel imaging techniques, and metrology, with a 
strong potential across various scientific domains. 

Keywords: Nonlinear optics, ultrafast photonics, fiber optics, modulation instability, optical 
characterization techniques, machine learning 
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