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Résumé
Les systèmes hamiltoniens stochastiques ont été introduit par J-M. Bismut en

1981 dans son livre "mécanique aléatoire". Il pose les fondements de la mécanique
stochastique telle qu'initiée par E. Nelson en 1966. Par ailleurs, le problème fondamental
de la dynamique de H. Poincaré est celui de l'étude des perturbations déterministes
des systèmes hamiltoniens intégrable. En suivant les idées de D. Mumford, on étudie
les perturbations stochastiques des systèmes hamiltoniens intégrables. Le problème
est de préciser les di�érences au niveau dynamique entre une perturbation de nature
déterministe et une autre de nature stochastique. Un exemple est donné par le
phénomène dit de la di�usion d'Arnold initiée par V.I. Arnold en 1964. Il conjecture
qu'une instabilité globale doit se développer sur un temps exponentiellement long le long
du réseau de résonnances. Le mécanisme initial introduit par V.I. Arnold se heurte à des
di�cultés majeures. Dans cette thèse, nous étudions numériquement le comportement
de la di�usion d'Arnold dans le cadre stochastique pour la famille des hamiltoniens
dits "squelettes" introduits par G. Zaslavski dans son livre "Hamiltonian Chaos and
fractional dynamics" en 2005. Nous donnons à cette occasion une construction nouvelle
des intégrateurs variationnels tels qu'introduits par J.E. Marsden et ses collaborateurs
pour les systèmes hamiltoniens déterministes ou stochastiques.

La thèse se compose de trois parties.

La première donne une présentation alternative des intégrateurs variationnels tels
qu'introduits par J.E. Marsden et M. West pour les systèmes hamiltoniens détermin-
istes. Elle est basée sur les théories de plongement discrets. Ces théories reposent sur
la mise en place de calcul di�érentiels et intégrales discrets d'un ordre d'approximation
donné ainsi que sur l'extension du calcul des variations pour les fonctionnelles discrètes
associées dé�nis dans cette thèse. Nous donnons une comparaison complète entre les
résultats obtenus par cette approche et la formulation classique de Marsden-West et
Wendlandt dans le cas des intégrateurs variationnels déterministes d'ordre 1 et 2.

La seconde partie développe des intégrateurs variationnels stochastiques. Deux ap-
proches sont proposées. La première repose sur une approximation de type Wong-Zakai
des di�usions stochastiques et les intégrateurs variationnels construits dans la partie
précédente. On obtient ainsi une formulation rigoureuse des intégrateurs discutés par L.
Wang, J. Hong, R. Scherer et F. Bai en 2009. Une seconde approche repose sur une dis-
crétisation directe du principe variationnel stochastique obtenu par J-M. Bismut pour les
di�usions hamiltoniennes en utilisant une discrétisation des intégrales de Stratonovich.
On généralise ainsi un premier travail dû à N. Bou-Rabee et H. Owhadi en 2008 lorsque
les perturbations stochastiques dépendent seulement de l'espace des con�gurations.

Dans la dernière partie, on étudie analytiquement et numériquement la structure des
réseaux d'Arnold pour les systèmes hamiltoniens "squelettes". On démontre que le réseau
d'Arnold couvre l'espace des phases et est connexe seulement pour les hamiltoniens
squelettes d'ordre 3,4 et 6 et possède une symétrie cristallographique. On compare en-
suite numériquement la di�usion d'Arnold lorsqu'une perturbation est considérée comme
déterministe ou stochastique. Dans le cas déterministe, on observe que la di�usion est
limitée en espace et très lente en temps comme attendu par le théorème de N. Nekhoro-
shev. Dans le cas stochastique, la di�usion couvre un domaine beaucoup plus large de
l'espace des phases et se développe plus rapidement.
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Abstract
Dynamics of stochastic Hamiltonian systems, variational integrators and

Arnold di�usion

Stochastic Hamiltonian systems were introduced by J-M. Bismut in 1981 in his book
"Random Mechanics." He laid the foundations for stochastic mechanics as initiated by E.
Nelson in 1966. Additionally, the fundamental problem in the dynamics of H. Poincaré
is the study of deterministic perturbations of integrable Hamiltonian systems. Following
the ideas of D. Mumford, stochastic perturbations of integrable Hamiltonian systems
are studied. The problem is to specify the dynamical di�erences between a deterministic
perturbation and a stochastic one. An example is provided by the phenomenon known as
Arnold di�usion initiated by V.I. Arnold in 1964. He conjectured that global instability
should develop over an exponentially long time along the resonance web. The initial
mechanism introduced by V.I. Arnold encountered major di�culties. In this thesis, we
numerically study the behavior of Arnold di�usion in the stochastic framework for the
family of Hamiltonians known as "skeletons," introduced by G. Zaslavski in his book
"Hamiltonian Chaos and Fractional Dynamics" in 2005. On this occasion, we provide
a new construction of variational integrators as introduced by J.E. Marsden and his
collaborators for deterministic or stochastic Hamiltonian systems.

The thesis consists of three parts.

The �rst part o�ers an alternative presentation of variational integrators as intro-
duced by J.E. Marsden and M. West for deterministic Hamiltonian systems. It is based
on discrete embedding theories, relying on the establishment of discrete di�erential and
integral calculus of a given approximation order, as well as the extension of the calculus
of variations to discrete functionals de�ned in this thesis. We provide a comprehensive
comparison between the results obtained through this approach and the classical formula-
tion by Marsden-West and Wendlandt for �rst and second-order deterministic variational
integrators.

The second part develops stochastic variational integrators. Two approaches are pro-
posed. The �rst is based on a Wong-Zakai type approximation of stochastic di�usions
and the variational integrators constructed in the previous part. This provides a rigorous
formulation of the integrators discussed by L. Wang, J. Hong, R. Scherer, and F. Bai in
2009. The second approach is based on a direct discretization of the stochastic variational
principle obtained by J-M. Bismut for Hamiltonian di�usions using a discretization of
Stratonovich integrals. This generalizes previous work by N. Bou-Rabee and H. Owhadi
in 2008 when stochastic perturbations depend only on the con�guration space.

In the �nal part, we analytically and numerically study the structure of Arnold web
for "skeleton" Hamiltonian systems. We demonstrate that the Arnold web covers the
phase space and is connected only for skeleton Hamiltonian of order 3, 4, and 6 and
possesses a crystallographic symmetry. We then numerically compare Arnold di�usion
when a perturbation is considered deterministic or stochastic. In the deterministic case,
we observe that di�usion is con�ned in space and very slow in time, as expected by N.
Nekhoroshev's theorem. In the stochastic case, di�usion covers a much larger domain in
phase space and develops more rapidly.
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Chapter I

General Introduction

Toward the stochastic fundamental problem of dynamics

Mumford's paradigm: necessity of stochastic perturbations

In many real-world systems, factors such as external perturbations, inherent uncertain-
ties, and microscopic �uctuations can lead to deviations from purely deterministic behavior.
While Hamiltonian systems excel at describing conservative dynamics and energy conser-
vation, they might struggle to account for the inherent randomness and unpredictability
observed in various natural processes. Hence, an increasing necessity has arisen to incorpo-
rate stochastic processes into numerous academic domains, and particularly in physics. In [1],
David Mumford discuss a very fundamental point which argue that a paradigm shift toward
embracing stochastic approaches is needed as a way to better models and explain real-world
phenomena. Stochastic models and statistical reasoning exhibit greater pertinence not only
in the context of the real world at large but also within the domains of science and various
branches of mathematics. Moreover, they hold a particular signi�cance in unraveling the
complexities of cognitive computations within our own minds, surpassing the relevance of
exact models and purely logical reasoning.

As we know, in classical mechanics, di�erential equations were developed to model nature
with the full understanding that every speci�c equation was a partial representation of real-
ity that modeled some e�ects but not others. The original case was, of course, the 2-body
problem and Newton's laws of motion. At more complicated settings (for example the 3-body
problem), there are factors and interactions that classical deterministic models fail to fully
express. These unmodelled e�ects, over time, accumulate and give rise to deviations between
the predicted outcomes of the classical approximation and the actual observed behavior of
the system. In other words, in complex real-world systems, classical deterministic analysis its
limitations as the e�ects that were not initially considered begin to add up, rendering classical
approximation useless. In response to this challenge, a signi�cant advancement is achieved by
introducing a small stochastic term into the equation. By incorporating a stochastic term,
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General Introduction

which represents inherent randomness or uncertainty in the system, the model gains the
ability to better capture the real behaviours that arise due to the interplay of unaccounted
in�uences.

As Mumford wrote [1] "It seems fair to say that all di�erential equations are better models
of the world when a stochastic term is added and that their classical analysis is useful only if
it is stable in an appropriate sense to such perturbations".

An example: the Sharma-Parthasarathy stochastic two-body prob-
lem

An example of such approach was made in [2], [3] to study the dynamical e�ect induced
by a deterministic or stochastic perturbation of the two-body problem, i.e. two masses under
gravitational in�uence. The perturbation was supposed to model the force induced by a dust
sphere.

Figure I.1: The dust sphere.

The force was �rst considered as deterministic and no deviation of the standard elliptic
dynamics was observed. In the contrary, interpreting the force as a stochastic term using the
classical theory of stochastic di�erential equations, a fast divergence of the trajectory with
respect to the elliptic one was obtained. As a consequence, the fact to consider a perturbation
as stochastic instead of deterministic has led to:

- An increasing of instabilities.

- An acceleration of the development of these instabilities.

2



General Introduction

Instabilities of perturbed Hamiltonian systems: Arnold di�usion

Instabilities in the context of deterministic Hamiltonian perturbations are well known. In
particular, considering the fundamental problem of dynamics as raised by H. Poincaré
in his seminal serie of books "Méthodes nouvelles de la mécanique céleste" (see [4], Section
13, Chap. I and A. Chenciner [5] for an historical account), one has to consider Hamiltonian
systems de�ned for X = (I, θ) ∈ Rd × Td called action-angle variables by

dX

dt
= J∇H0 + ϵJ∇H1, (I.0.1)

where ϵ is a small parameter, J =

(
0 −Id
Id 0

)
and ∇H =

(
∂IH
∂θH

)
.

When H0 is completely integrable i.e. H0 := H0(I), the action is �xed and all the trajectories
evolve on d-dimensional torus. When ϵ ̸= 0 but su�ciently small, the Kolmogorov-Arnold-
Moser (KAM) theorem states that most of the unperturbed torus are preserved although
they undergo a small deformation. This implies stability when d = 2 as invariant tori dis-
connect the energy surface. For an arbitrary d this is no longer true, but a theorem due
to Nekhoroshev states that under exponentially long time in ϵ the action only change by a
polynomial factor in ϵ.

What about long term stability of the perturbed Hamiltonian system ?

According to a conjecture by V.I. Arnold, for any arbitrarily small ϵ, it is possible to
�nd an open set of initial conditions whose trajectories become dense in the energy surface.
This example of instability was called Arnold di�usion after he gave a �rst example of an
explicit mechanism leading to an open set of unstable trajectories, meaning inducing a drift
in the action greater than a given constant.

The mechanism of Arnold is based on two results:

- For d ≥ 3, the complementary of the set of KAM tori is connected generically. It
contains the perturbation of what is called the Arnold's web, i.e. the set of frequency
called resonant which precisely induce a destruction of the d-dimensional tori. The
Arnold's web is dense and connected in a given energy surface. Along a resonance,
resonant tori give rise to whiskered or partially hyperbolic tori.

- The stable and unstable manifolds of whiskered tori intersect generically transversely
and as a consequence two whiskered tori su�ciently close will have heteroclinic con-
nection.

The idea of Arnold is then to construct along the Arnold's web, chain of whiskered tori,
i.e. family of whiskered tori with heteroclinic connection. He proves that as long as such a
chain can be constructed, one obtain an open set of trajectories surrounding the chain, i.e.
trajectories exploring the whole energy surface densely (see also [6], [7]).
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General Introduction

However, such a construction faces many di�culties. In particular, one can prove that
generically, around a given whiskered tori, one observe a "gap", i.e. an absence of other
whiskered tori in the connection zone of the given tori. As a consequence, chain of whiskered
tori are generically impossible to construct. This is due to the fact that under a deterministic
perturbation, one can not expect a connection zone which is greater that the gap zone (see
[8]).

We refer to [9], [10] for some recent advances on the subject.

The gap problem is a priori not valid when dealing with a stochastic perturbation. In or-
der to formulate this problem rigorously, we have to de�ne the analogue of the fundamental
problem of the dynamics of H. Poincaré in a stochastic setting.

A �rst step is to de�ne the notion of stochastic Hamiltonian systems.

Stochastic Hamiltonian systems

This question can be rigorously formulated in the framework of stochastic Hamiltonian
systems as developed by J-M. Bismut [11] in the framework of Stratonovich stochastic dif-
ferential equations. Precisely, we consider systems of the form

dp =− ∂H0

∂q
dt− ∂H1

∂q
dWt, (I.0.2)

dq =
∂H0

∂p
dt+

∂H1

∂p
dWt. (I.0.3)

where classical fundamental properties of Hamiltonian systems are preserved in the stochastic
setting. In particular, we have:

- Variational structure: Classical Hamiltonian systems exhibit a remarkable variational
structure meaning that their solutions correspond to critical points of a functional
known as Hamilton's principle. This principle outlines that the actual path taken by
a system between two points in its phase space is the one that minimizes the action
integral. This principle's conservation within Hamiltonian systems is preserved for
stochastic Hamiltonian systems [11].

- Symplectic geometry: A notable geometric feature inherent in Hamiltonian systems lies
in their symplectic nature. The �ow associated with Hamiltonian dynamics adheres to
symplectic geometry, a property that preserves the canonical 2-form ω = dp∧ dq. This
property persists for stochastic Hamiltonian systems [12].

A reformulation of question Q1 is then:

Q2: Stochastic fundamental problem of dynamics: Let H0 be an integrable Hamilto-
nian and H1 an arbitrary Hamiltonian perturbation. What can be said about Arnold di�usion
for the stochastic Hamiltonian system

dX = J∇H0dt+ ϵJ∇H1dWt. (I.0.4)
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In order to progress in this problem, one can follow two complementary directions:

- Try to generalize as much as possible classical theorem like the KAM theorem or the
Nekhoroshev theorem.

- Explore numerically examples of stochastically perturbed integrable Hamiltonian sys-
tems in order to obtain a better understanding of possible behaviors.

We have chosen to follow the second path �rst in order to recover some knowl-
edge of the di�erence between a deterministic and a stochastic Hamiltonian dy-
namics.

However, similarly to stochastic di�erential equations, the majority of Hamiltonian stochas-
tic di�erential equations do not have explicit solutions. In order to explore numerically the
behaviour of action variables when perturbing stochastically an integrable Hamiltonian sys-
tem one needs to develop e�cient numerical scheme with very good stability properties.

Stochastic variational integrators

In practice, general-purpose numerical schemes developed for SDEs can be employed to
simulate stochastic Hamiltonian systems. While these schemes are not speci�cally tailored
for Hamiltonian dynamics, they can still be applied to capture the stochastic behavior and
evolution of such systems. However, it is important to note that applying general numerical
schemes to stochastic Hamiltonian systems may not always yield accurate or e�cient results
especially in long term behaviour. This remark is not speci�c to the stochastic case and is
also true for their deterministic analogues.

Stochastic Hamiltonian systems, like their deterministic counterparts, exhibit signi�cant
geometric features that should be considered when numerically simulating them. For exam-
ple, the symplectic structure, which is preserved by the phase space �ows of these systems,
plays a crucial role in their dynamics.

Symplectic numerical scheme

To address this issue, extensive research have focused on developing numerical schemes
known as symplectic integrators speci�cally tailored for Hamiltonian systems (see [13], [14]
and the references therein). These integrators preserve both the geometric properties and the
symplectic structure of the system during the simulation and have consistently demonstrated
superior performance in simulating Hamiltonian systems over long time interval compared
to non-symplectic methods.

A non exhaustive list of works dealing with stochastic symplectic integrators are given
below:

- Milstein and co. in [12], [15] have written pioneering papers in numerical simulations
of stochastic Hamiltonian systems.
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- In [16], a generalization of stochastic symplectic partitioned Runge-Kutta methods for
stochastic Hamiltonian systems with additive noise is given.

- In [17], [18] symplectic conditions and stochastic generating functions for stochastic
Runge-Kutta methods are derived for stochastic Hamiltonian systems with multiplica-
tive noise.

- In [19], [20] researchers have introduced higher-order strong and weak symplectic par-
titioned Runge-Kutta methods. Wang [21], [22] demonstrates that the dynamics of
stochastic Hamiltonian systems can be fully characterized through a stochastic gen-
erating function. This function serves as the solution to Hamilton-Jacobi equations
incorporating noise. Furthermore, several symplectic integrators are suggested by ap-
proximating the solution to the Hamilton-Jacobi equations with noise. In addition,
[23] provides also an approximation of generating function for the stochastic �ow of
the Hamiltonian system. but unlike the previous approach, the approximation is made
by using a variational characterization rather than solving the corresponding Hamil-
ton�Jacobi equation.

- �Composition methods� are used by Misawa in [24] and Padé approximations for linear
stochastic Hamiltonian systems are proposed in [25].

- A methodology for constructing high weak-order conformal symplectic and ergodic
schemes is introduced in [26]. This methodology involves converting the stochastic
Langevin equation into an equivalent autonomous stochastic Hamiltonian system and
subsequently modifying the associated generating function.

In this Thesis we focus on a special class of stochastic symplectic integrators called
stochastic variational integrators.

Variational integrators

An important approach to symplectic integrators for Hamiltonian system is known as
Variational integrators. This approach derives integrators for mechanical systems from
discrete variational principle which states that the true path of a system between two time
points is the one that minimizes the action integral (Hamilton's principle). A comprehensive
overview is given by J.E. Marsden and M. West and can be found in reference [27]. This type
of numerical schemes provides a natural framework for the discretization of Lagrangian sys-
tems, the Euler-Lagrange equations and the Legendre transform. As a consequence of their
variational construction, Variational integrators are symplectic and by a backward error anal-
ysis, they exhibit bounded energy errors for exponentially long time [13]. These integrators
incorporate the intrinsic structure of Hamiltonian dynamics and can achieve more depend-
able and precise approximations for Hamiltonian systems in contrast to generic numerical
methods.

However, the construction of these integrators and the relation between the classical ob-
jects and their discrete counterpart is far from being trivial. In particular, the connection
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between the discrete Euler-Lagrange equation and the classical Euler-Lagrange equation is
not transparent and the same is true for the de�nition of the discrete momentum which is
a fundamental ingredient when one deals with Hamiltonian systems and the correspondance
between Lagrangian and Hamiltonian via the Legendre transform.

Given that stochastic Hamiltonian systems also preserve variational structure, it is logical
and appropriate to pursue a similar approach for simulating and analyzing these systems.
This idea motivates the extension of variational integrators into the stochastic framework.
First work in this direction were made by N. Bou Rabee and co-authors in [28], [29] but
restricted to a particular class of stochastic Hamiltonian systems. A heuristic derivation of
stochastic variational integrators is made by Wang and al. in [30] in the general case but no
rigorous proofs are given.

As we have to use stochastic variational integrators to study the dynamics of
stochastic Hamiltonian systems, we have decide to return to the foundations of
the approach of J-E. Marsden and co authors.

It is important to stress that we are not intended �rst to construct new varia-
tional integrators, but to develop a new point of view on the classical construction
as derived by J-E. Marsden and al. In particular, we will not focus on conver-
gence problem which was already studied in the literature [31]. Our interest
focus on the structure of the theory of variational integrators.

New approach to the construction of variational integra-
tors

What is the fundamental di�erence between the classical derivation of the Euler-Lagrange
equation in classical mechanics and the derivation of the discrete Euler-Lagrange equation in
discrete mechanics leading to a variational integrator ?

In classical mechanics, one considers functional of the form

L (q) =

∫ b

a

L(t, q(t), q̇(t))dt, (I.0.5)

and with the help of the calculus of variations, one obtain the Euler-Lagrange equation

d

dt

(
∂L

∂v

)
=
∂L

∂q
. (I.0.6)

The approach followed by J-E. Marsden and al. in for example [27] is to use classical
approximation theory to give a meaning to a discrete analogue of the functional equation.
The discretisation is based on given approximation points q0, . . . , qn of the trajectory q(t) on a
time-scale T of [a, b], an approximation formula for the derivative q̇(t) on T and a quadrature
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formula for the integral. The formula depends of course on the order of approximation. The
discrete functional is then seen as a quantity

S(q0, . . . , qn). (I.0.7)

Doing so, the integral nature of the functional is lost as well as its functional nature. Indeed,
no de�nition of the underlying functional framework on which the functional acts is de�ned.

The previous remark is already su�cient to open questions:

- Can we de�ne a convenient "discrete" functional framework ?

- Can we de�ne as well a discrete theory of integration and derivation ?

Answering these questions will automatically lead to a close connection between the clas-
sical functional and its discrete analogue.

In this Thesis, we develop discrete theories of integration and derivation fol-
lowing the general framework of discrete embedding proposed in [32]. We also
explicit how the order of approximation impacts the de�nition of these objects
and the corresponding functional framework.

Discrete di�erential and integral calculus

We follow in particular a previous of F. Pierret and al. in [33], [34] covering approximation
of order 1. We extend this work in the order 2 case using mid-point approximation. The
corresponding theory is called the mid-point embedding.

Formally, we have discrete functions de�ned over a time-scale T. We denote by C(T,Rd)
the associated functional space. We de�ne a discrete derivation ∆ and a discrete integration∫ b

a

∆t over such space keeping some useful properties of the classical di�erential and integral

calculus:

- The operators ∆ and

∫ b

a

˙∆t are linear.

- They satisfy analogue of the fundamental theorem of di�erential calculus meaning that
for all f ∈ C(T,Rd) we have

∆

[∫ t

a

f(s)∆s

]
= f(t), (I.0.8)

and ∫ b

a

∆[f ](t)∆t = f(b)− f(a). (I.0.9)

In other words, the discrete operators mimic the classical relationship between di�er-
ential and integral calculus.
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Other choices are, of course, possible, but the previous choice o�ers a coherent framework
for di�erential and integral calculus as long as one of them is de�ned.

The previous work can be related to the time scale calculus developped by S. Hilger
in 1988 [35] and intended to provide a uni�ed theory covering the classical di�erential and
integral calculus and order one �nite di�erences/Riemann sums. A comprehensive presenta-
tion is given by M. Bohner and A. Peterson in [36]. However, limiting time scale calculus
to a discrete time-scale which is the standard assumption in a discretisation procedure, the
resulting calculus cover only �nite di�erences of order one and does not extend to arbitrary
order. Our mid-point di�erential and integral calculus can then be considered as an extension
of this formalism.

The main point is now to derive the discrete Euler-Lagrange equation associated to our
discrete functional.

Discrete calculus of variations

Marsden and al. [27] are making a discrete calculus of variation by considering small
variations of the elements (q0, . . . , qn) ∈ Rd(n+1). They develop each expression by simple
computations and obtain an expression that they call the discrete Euler-Lagrange equation.
Doing so, we lose, as for their de�nition of the discrete functional, a close connection to the
classical calculus of variations which makes use of the classical property of the di�erential
and integral calculus, in particular of the integration by part formula.

In this Thesis, we explicit the discrete calculus of variations for order 1 and
order 2 approximations.

The order 1 was already discussed in [33] but we give a more precise comparison with
Marsden work in this Thesis. The order 2 is new.

The main ingredient is the derivation of the discrete analogue of the integration by parts
formula for a choice of discrete di�erential and integral calculus. The formula then looks like∫ b

a

f∆[g]∆t =

∫ b

a

∆⋆[f ]g∆t, (I.0.10)

up to terms which are zero in the context of the discrete calculus of variations. The main
point is that we have to deal with the formal adjoint of the operator ∆ that we denote by ∆⋆.

The resulting discrete Euler-Lagrange equation is then given by

−∆⋆

[
∂L

∂v

]
=
∂L

∂q
. (I.0.11)

The previous formula has exactly the same algebraic form as the classical Euler-Lagrange
formula. However, it o�ers a special insight even at the classical continuous Euler-Lagrange
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formula. Indeed, for the classical forward derivative denoted by ∆+, the formal adjoint is
given by −∆− where ∆− is the backward derivative. From the point of view of the modeling,
it means that the Euler-Lagrange equation is mixing information between the past and the
future, the distinction between the two disappearing when passing to the continuous limit.
In other words, the discrete case shows how complicated is the principle of least action in it's
formulation.

From the formal point of view, an important complication comes from the passage from
order 1 to an order 2 di�erential and integral calculus. The main point is that the discrete
functional is always based on a discrete function in C(T,Rd) but the quadrature formula for
integrals make use of an extension of this function over a richer time-scale denoted by T◦
including the quadrature point used to de�ne the discrete integral. As a consequence, the
new ingredient is that we have during the computation in and out between the function on
C(T,Rd) and the associated function on C(T◦,Rd). This technical issues cause unavoidable
di�culties and lead to more complex expression without changing the previous discussion on
the derivation of the discrete Euler-Lagrange equation.

Discrete Hamiltonian systems

The previous work is done in the context of Lagrangian functional. As Hamiltonian system
possess a variational formulation, a natural demand is to de�ne a natural discrete analogue
of Hamiltonian systems. This problem has a long history. It was explicitly discussed by J.
Moser and A. Veselov in [37] in the context of the dynamics of the rigid body. This can be
done following two distinct approaches:

- As we have a discrete di�erential calculus, one can directly generalize the algebraic
form of the equations.

- In the continuous case, Hamiltonian systems are obtained from the Euler-Lagrange
equation by de�ning, when it is possible, a new variable called the momentum. A
possible idea is then to de�ne the discrete analogue of the momentum and to take as a
de�nition of discrete Hamiltonian systems the resulting discrete system.

In this Thesis we have followed the second path. Indeed, in the �rst case, one is not sure
that the resulting discrete system can be related to the discrete Euler-Lagrange equation
using a discrete version of the so called Legendre transform.

In the second case, our formulation of the discrete Euler-Lagrange equation lead to a
natural de�nition of the momentum as being the quantity

p =
∂L

∂v
. (I.0.12)

This construction is fundamental and allows us to de�ne the analogue of the phase space for
discrete systems which de�nitely go away from the approach followed by J-E. Marsden an
coworkers [27].
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In this work, we obtain a coherent de�nition of discrete Hamiltonian systems
meaning that we have a complete discrete correspondance between the continu-
ous construction and the discrete one. In particular, for the mid-point embed-
ding, we are able to give an alternative presentation of the work of J-E. Marsden
and N. Wendlandt [38] on order two variational integrators for Hamiltonian sys-
tems.

Of course, all the previous constructions are limited to the deterministic case and more
work have to be done to deal with the stochastic framework.

Stochastic variational integrators

In order to derive stochastic variational integrators we have followed two paths:

- The �rst one use a Wong-Zakai approximation of the stochastic Hamiltonian systems
in order to recover a random Hamiltonian systems. In this context, we can apply the
discrete method of the previous part.

- Extending our discrete framework in order to cover Stratonovich stochastic integral, we
explicit a discrete stochastic functional and derive the corresponding discrete stochastic
Euler-Lagrange equation.

As reminded previously, these two approaches have been followed using the Marsden point
of view by Wang and al. [30] and N. Bou Rabee and al. [28], [29] respectively.

In this Thesis, we give rigorous foundations to the computations presented
by Wang and al. in [30] and we generalize the work of N. Bou Rabee and al.
in [28], [29]. We also show that the Wong-Zakai variational integrator coincide
under some assumptions with the stochastic variational integrator. Moreover, as
expected, we prove that the Wong-Zakai variational integrator is signi�cant only
when an order two quadrature formula is used for the random quantity associ-
ated to the stochastic integral under the Wong-Zakai approximation.

All the previous results are then used to study the dynamics of particular stochastic
Hamiltonian systems called skeleton Hamiltonian systems.

Dynamics of skeleton Hamiltonian systems

In order to study the e�ect of stochastic perturbation on Hamiltonian systems we have
focused on Skeleton Hamiltonian systems which were introduced by G. Zaslavsky in [39].
Formally, they are de�ned for all q ∈ N∗ and for all (u, v) ∈ R2 by

Hq(u, v) = −K
q

q∑
j=1

cos (v cos(jθq)− u sin(jθq)) , (I.0.13)
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where

θq =
2π

q
. (I.0.14)

Why do we choose this class of Hamiltonian systems ?

As reminded previously, Arnold di�usion takes place along a structure called the Arnold's
web. This web is in general di�cult to describe explicitly. The main characteristic of skele-
ton Hamiltonian systems is that the Arnold's web possesses a rich geometrical structure with
complex symmetries. As an example, for q = 3, 4, 6 we obtain an Arnold's web which has a
crystallographic symmetry.

We then consider a particular perturbation introduced by G. Zaslavsky [39] and de�ned
by

Vq = −2

q
K

q∑
j=1

cos (v cos (jθq)− u sin (jθq))

q∑
m=1

cos (mθq(t− j)) . (I.0.15)

We then study numerically the di�erence between the deterministic and stochas-
tic perturbation with respect to the di�usion behaviour. We observe as expected,
that the di�usion is stronger, i.e. takes place on a larger domain and faster in
the stochastic case than in the deterministic case.

Of course, these results are preliminary and more study are needed but these simulations
encourage us to consider a stochastic version of the Arnold's conjecture than its deterministic
original formulation.

Plan of the manuscript

An introduction to stochastic di�erential equations and a short overview of their numerical
approximations are given as a basic knowledge in Chapter II. We then focus our attention
on three related problems.

In Part A, after some reminder on Lagrangian and Hamiltonian systems in the determin-
istic case, we develop a discrete di�erential and integral calculus of order one and two. We
also explicit the corresponding calculus of variations and the resulting variational integrators
corresponding to the associated discrete Euler-Lagrange equation.

Part B extends the previous construction to cover stochastic Hamiltonian systems. We
remind the de�nition of stochastic Hamiltonian systems and give their main properties. We
then use the Wong-Zakai approximation theorem and the theory of Part A to de�ne stochas-
tic variational integrators. A comparison is made with the variational integrator obatined
by a direct discretisation of the stochastic functional. We prove that the two coincide under
some assumptions.

In Part C, we give a short panorama of the Arnold di�usion phenomenon and explain the
Arnold mechanism of di�usion. We then study skeleton Hamiltonian and precise the structure

12



General Introduction

of their Arnold's web. Finally, we study numerically perturbation of skeleton Hamiltonian in
the deterministic and stochastic case.

Finally, we give some perspectives coming from this work.

The following articles have been extracted of this manuscript:

- J. Cresson, R. Sa�, Discrete embedding of Lagrangian/Hamiltonian systems and the
Marsden-West approach to variational integrators - the order one case, Monogra�as
Matematicas Garcia de Galdeano, 10.p, (2022)

- J. Cresson, R. Sa�, Mid-point embedding of Hamiltonian systems and variational inte-
grators, arXiv:2211.16144, (2022), 25.p

- J. Cresson, R. Sa�, Dynamics of stochastic Hamiltonian systems - Wong-Zakai varia-
tional integrators, 19.p (2023)

Due to the COVID period during which I was obliged to stay in Lebanon without e�cient
possibilities to work on my Thesis project, the essential of this work has been done between
March 2022 and September 2023 mainly at the LMAP, UMR CNRS 5142 at the University
of Pau and Pays de l'Adour-E2S.
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Chapter II

A short reminder on stochastic calculus and

stochastic di�erential equations

In this chapter we recall some basic de�nitions related to stochastic di�erential equations
(SDEs), such as stochastic process, Wiener process, and Itô's integral. A brief overview of
the concepts of convergence, consistence, and stability of a numerical method for SDEs is
also provided. For more details, we refer to the classical textbooks of B. Oksendal [40] and
P. Kloeden and E. Platen [41].

II.1 Stochastic process

Let (Ω,F ,P) be a probability space, where Ω is a measurable space (the events space), F
is a σ-�eld on Ω and P is the probability measure on (Ω, F). In case where Ω = Rd , F is
an open set of Rd.

A stochastic process Xt corresponds to a parameterized collection of random variables
{ω → Xt(ω)}t∈R and can be de�ned by the following map:

Xt : R× Ω → Rd (II.1.1)

(t, ω) 7→ Xt(ω). (II.1.2)

Assuming that the parameter 't' is the time, a stochastic process is therefore a process
involving both time and a random variable, so it gives information on the dynamics and on
the random character.

� For a given t, the map ω → Xt(ω) is a random variable.

� For a give ω, the map t→ Xt(ω) is called the path of Xt.
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II.2 Wiener process

Norbert Wiener proposed the Wiener process as a mathematical representation of Brown-
ian motion, a phenomenon observed in the erratic movement of a grain of pollen on a water
surface. This erratic motion arises from the continuous bombardment of the pollen grain
by water molecules. As the Brownian motion refers to a real physical process, we keep the
terminology of Wiener process in the following.

In this Section, we follow the presentation of P. Kloeden [41]. The Wiener process is a
continuous-time stochastic process. it is de�ned by

W = {Wt := W (t), t ≥ 0}, (II.2.1)

and it satis�es the following properties:

W (0) = 0, w.p.1, E(W (t)) = 0, V ar(W (t)−W (s)) = t− s, (II.2.2)

for all 0 ≤ s ≤ t. According to this de�nition, We have

- W (t)−W (s) ∼ N(0, t− s), for 0 ≤ s < t.

- W (t)−W (s) and W (τ)−W (γ) are independent, for all t0 ≤ γ < τ < s < t ≤ t1.

The Wiener processes can be approximated in distribution on any �nite time interval by
means of a scaled random walk.

For example, let us consider the interval [0, 1] and a family of random variables Xi taking
values ±1 with equal probability. Let N ∈ N∗, we donate by tNi , i = 0, . . . , N , the partition
of [0, 1] in N equal subintervals of length ∆t = 1/N . We introduce the following sum:

SN(t
(N)
i ) = (X1 +X2 + ...+Xi)

√
∆t. (II.2.3)

Let SN be the linear interpolation de�ned by

SN(t) = SN(t
(N)
i ) +

t− t
(N)
i

t
(N)
i+1 − t

(N)
i

(
SN(t

(N)
i+1)− SN(t

(N)
i )

)
. (II.2.4)

for t ∈ [t
(N)
i , t

(N)
i+1[, (i = 0, . . . , N − 1), where SN(0) = 0.

The Central limit theorem tells us that SN converges in distribution as N → ∞ to a pro-
cess with independent increments satisfying conditions (II.2.2), that is to standard Wienner
process.

II.3 Stochastic di�erential equations

In this Section, we kept the necessary minimum from the theory of stochastic di�erential
equations to follow our discussions and computations. More details can be found in the
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classical textbooks of B. Oksendal [40] and P. Kloeden [41].

A stochastic di�erential equations give a sense to a di�erential equation with an additional
noise :

dX(t)

dt
= b(t,X(t)) + σ(t,X(t))”noise”, (II.3.1)

where b and σ are given functions. The basic idea is to model the noise as coming from an
increment of the classical Brownian motion. Using this tools a stochastic di�erential equation
is given by

dX(t) = b(t,X(t))dt+ σ(t,X(t))dW (t), (II.3.2)

where X(t) is the realization of a stochastic process, b(t,X(t)) is called the drift coe�cient
and σ(t,X(t)) denotes the di�usion coe�cient, witch in�uences the average size of the �uc-
tuations of the stochastic process X(t).

More generally, a d-dimensional stochastic di�erential equation system expressed as (II.3.2)
is usually written as

dXi(t) = bi(t,X(t))dt+
m∑
k=1

σi,k(t,X(t))dWk(t), i = 1, . . . , d, (II.3.3)

or equivalently

Xi(t) = Xi(0) +

∫ t

t0

bi(s,X(s))ds+
m∑
k=1

”

∫ t

t0

σi,k(s,X(s))dWk(s)”, i = 1, . . . , d, (II.3.4)

where b : [0,+∞[×Rd → Rd is a d-dimensional vector, σ : [0,+∞[×Rd → Rd×m a d × m-
matrix and W (t) is m-dimensional Wiener process. Equation (II.3.3) is called a stochastic
di�erential equation system with m noises.

It must be noted that since t 7→ W (t, ω) is of in�nite variation for almost every ω ∈ Ω, the
expression

”

∫ t

t0

σ(s,Xs)dW (s)”, (II.3.5)

can not be understood as an ordinary integral, it is called a stochastic integral de�ned as
follows.

Let L2
t be the linear space which consists of functions f : [0, t]× Ω → R satisfying

1. f is jointly L × F -measurable.

2.

∫ t

0

E
(
f(s, .)2

)
ds <∞.

3. E (f(s, .)2) <∞ for each 0 ≤ s ≤ t .

4. f(s, .) is Fs-measurable for each 0 ≤ s ≤ t .
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With L being the σ-algebra of Lebesgue subsets on [0, t]. The norm on L2
t is the mean-square

norm de�ned by

∥f∥2,t :=
(∫ t

0

E
(
f(s, .)2

)
ds

)1/2

. (II.3.6)

Considering a wide class of function f(t, ω) ∈ L2
t , the stochastic integral∫ t

0

f(s, ω)dW (s, ω), (II.3.7)

is de�ned as the mean square limit of the sums [41]

Sn(ω) =
n−1∑
j=0

f(t
∗(n)
j , ω)

(
W (t

(n)
j+1, ω)−W (t

(n)
j , ω)

)
, (II.3.8)

where t
∗(n)
j ∈ [t

(n)
j , t

(n)
j+1] for partitions t0 = t

(n)
0 < t

(n)
1 < t

(n)
2 < · · · < t

(n)
n = t on [0, t] such that

δ(n) = max
0≤j≤n−1

(t
(n)
j+1 − t

(n)
j ) → 0, as n→ ∞. (II.3.9)

L2
t is a Banach space if functions di�ering on sets of zero measure are identi�ed [41].

Considering as a simple example when choosing f(t, w) = W (t, ω), it is proved in [42],[41]
that ∫ T

0

W (t, ω)dW (t, ω) =
1

2
W (T, ω)2 + (λ− 1

2
)T, (II.3.10)

where t
∗(n)
j = (1− λ)t

(n)
j + λt

(n)
j+1, 0 ≤ λ ≤ 1. This means that the integral depends on the

choice of λ, i.e. on the quadrature rule used for the approximation of the integral, contrarily
to the classic Riemann integral.

Indeed, there are two remarkable choices:

- λ = 0 i.e. t
∗(n)
j = t

(n)
j (the left-point rule), this will be the convention when considering

the so-called Itô stochastic integral.

- λ =
1

2
i.e. t

∗(n)
j =

t
(n)
j + t

(n)
j+1

2
(the midpoint rule), this leads to the Stratonovich integral.

De�nition II.1. Let n ∈ N∗, P n = {0 = t
(n)
0 < t

(n)
1 < t

(n)
2 < · · · < t

(n)
n = T} be a partition

on [0, T ] and f ∈ L2
T

(i) The Itô integral
∫ T

0
f(t, ω)dW (t, ω) is de�ned as the mean-square limit of the sums

Sn(ω) =
n−1∑
j=0

f
(
t
(n)
j , ω

)(
W (t

(n)
j+1, ω)−W (t

(n)
j , ω)

)
. (II.3.11)
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Chapter II. Stochastic di�erential equations

(ii) The Stratonovich integral denoted by
∫ T

0
f(t, ω) ◦ dW (t, ω) is equal to the mean-square

limit of the sums

Sn(ω) =
n−1∑
j=0

f

(
t
(n)
j + t

(n)
j+1

2
, ω

)(
W (t

(n)
j+1, ω)−W (t

(n)
j , ω)

)
. (II.3.12)

The small circle ◦ before dW conventionally denotes a stochastic integral in Stratonovich
sense. Indeed, the stochastic di�erential equation (II.3.2) is said to be of Itô sense, if the
stochastic integrals appearing in its integral form are Itô integrals. For a stochastic die�rential
equation in the sense of Stratonovich we write

dX(t) = b(t,X(t))dt+ σ(t,X(t)) ◦ dW (t), (II.3.13)

which means that the stochastic integrals involved are Stratonovich integrals.

Under appropriate regularity conditions, any SDE interpreted in the Stratonovich sense
can be transformed into a SDE interpreted in the Itô sense, with a modi�ed drift coe�cient.
For simplicity, let us assume that d = m = 1, we have the following theorem

Theorem II.1. The stochastic di�erential equation in the sense of Stratonovich

dX(t) = b(t,X(t))dt+ σ(t,X(t)) ◦ dW (t), (II.3.14)

with b(t, x) and σ(t, x) being smooth functions, is equivalent to the Itô stochastic di�erential
equation

dX(t) =

(
b(t,X(t)) +

1

2
σ′(t,X(t))σ(t,X(t))

)
dt+ σ(t,X(t))dW (t). (II.3.15)

Where σ′ is the derivative of σ(t, x) with respect to x. The term
1

2
σ′(t,X(t))σ(t,X(t))

is called the Wong-Zakai correction. The modi�cation of the drift is due to the rela-
tion between Itô and Stratonovich integrals, the proof is based on the Taylor expansion

of σ

(
tj + tj+1

2
, X

(
tj + tj+1

2

))
at the point tj in the sum Sn(ω) de�ned in (II.3.12).

For more details see [42].

Note that it is necessary to assume that σ is of class C1 to perform the transformation between
Itô and Stratonovich SDEs. The two interpretations coincide when σ(t, x) does not depend
on x, the noise is then said to be additive. Otherwise the noise is said to be multiplicative.
Depending on the objectives, the Itô or the Stratonovich formulation is more suitable than
the other.

Theorem II.2 (Itô's formula). Let X(t) be an Itô process

dX(t) = b(t,X(t))dt+ σ(t,X(t))dW (t). (II.3.16)
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Assume that h : [0, T ]×R → R , h is continuous and that its partial derivatives
∂h

∂t
,
∂h

∂x
and

∂2h

∂x2
exist and are continuous. Let

Y (t) = h(t,X(t)), (II.3.17)

then Y (t) is an Itô process that satis�es

dY (t) =

(
∂h

∂t
(t,X(t)) + b(t,X(t))

∂h

∂x
(t,X(t)) +

1

2
σ2(t,X(t))

∂2h

∂x2
(t,X(t))

)
dt

+σ(t,X(t))
∂h

∂x
(t,X(t))dW (t).

(II.3.18)

An additional term 1
2
σ2 ∂2h

∂x2 becomes evident, which is absent in the classical chain rule. In
their work [41], Kloeden and Platen o�er the following straightforward explanation. Indeed,
the Taylor expansion for h gives

∆Y (t) = h(t+∆t,X(t) + ∆X)− h(t,X(t))

=

(
∂h

∂t
∆t+

∂h

∂x
∆X

)
+

1

2

(
∂2h

∂t2
(∆t)2 + 2

∂2h

∂t∂x
∆t∆X +

∂2h

∂x2
(∆X)2

)
+ . . . .

(II.3.19)
According to the rules

dt.dt = 0, dt.dWt = 0, dWt.dt = 0, dWt.dWt = dt, (II.3.20)

the term (∆X)2 = ∆X.∆X contains the term (∆W )2 wich is equivalent to ∆t due to the
fact that E(∆W 2) = ∆t. Generalized Itô's formula with dimension d is derived in the same
way, based on Taylor expansion of functions with more independent variables. In the case of
m noises, its derivation is more complicated. Details can be found in [42],[40].

Remark II.1. Itô's formula, as expressed in equation (II.3.18), explains the presence of the
additional term −1/2T , in equation (II.3.10) when λ = 0. Conversely, when λ = 1/2, the
extra term (λ−1/2)T disappears, leading to the classical chain rule. This highlights a signi�-
cant advantage of selecting the Stratonovich presentation (λ = 1/2) witch follows the rules as
classical calculus, including integration by parts formulas and variable transformations. This
means there are no second order terms involved, unlike the Itô case, which is a consequence
of Itô's formula. The behavior of the Stratonovich integral is naturally applied in di�erent
problems such as the development of a stochastic Hamiltonian framework.

II.4 Numerical integration for SDEs

Let us consider an Itô di�erential equation

dX(t) = b(t,X(t))dt+ σ(t,X(t))dW (t), X(0) = X0, (II.4.1)

with t ∈ [0, T ]. Let N ∈ N∗, we consider a uniform partition of the interval [0, T ] with a
time step h = T/N , where for all n = 0, . . . , N , we denote tn as the discrete time de�ned by
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Chapter II. Stochastic di�erential equations

tn = nh.

First, let us introduce one of the most simple numerical approximation for the scalar Itô
stochastic di�erential equation (II.4.1): the Euler-Maruyama method. This approximation
is a continuous time stochastic process that satis�es the iterative scheme

Xn+1 = Xn + b(tn, Xn)h+ σ(tn, Xn)∆Wn, (II.4.2)

where ∆Wn = W (tn+1)−W (tn) ∼
√
hN (0, 1) and the initial value of iteration is X0.

For Stratonovich interpretation, one can use the Euler-Heun method

Xn+1 = Xn + b(tn, Xn)h+
1

2

[
σ(tn, Xn) + σ(tn, X̄n)

]
∆Wn (II.4.3)

X̄n = Xn + σ(tn, Xn)∆Wn (II.4.4)

An important class of approximations of stochastic di�erential equation is known as Milstein
schema witch is slightly di�erent whether it is in Itô or Stratonovich representation that is
used. The Milstein scheme represents the order 1.0 strong Taylor scheme

Xn+1 = Xn + b(tn, Xn)h+ σ(tn, Xn)∆Wn +
1

2
σ(tn, Xn)σ

′(tn, Xn) [(∆Wn)
2 − h] (II.4.5)

Xn+1 = Xn + b(tn, Xn)h+ σ(tn, Xn)∆Wn +
1

2
σ(tn, Xn)σ

′(tn, Xn)(∆Wn)
2 (II.4.6)

The iterative method de�ned by (II.4.5) must be used with Itô SDEs whether (II.4.6) has to
be applied to Stratonovich SDEs. Note that when additive noise is used, then both Itô and
Stratonovich interpretations are equivalent.

In stochastic context, two fundamental types of tasks are associated with the stimulation
of solutions for stochastic di�erential equations (SDEs). The �rst involves simulating the
trajectories or paths of these solutions, while the second approximates expectation of func-
tionals of the solution, such as its probability distribution and moments. Consequently, two
distinct sets of criteria emerge for evaluating the accuracy of these simulations: the strong
and weak convergence criteria.

De�nition II.2. A general time discrete approximation X̄ with maximum step size h is
called to converge strongly to X if

E
(
|X(T )− X̄N |

)
= 0 (II.4.7)

where X̄N is the value of approximation X̄ at time T = tN .

To compare the e�ectiveness of various numerical approximations in a strong convergence
context, the concept of strong convergence order is de�ned as follows.
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II.4. Numerical integration for SDEs

De�nition II.3. A discrete approximation X̄ is said to converge strongly with order γ at
time T , if there exists a constant C > 0 independent of h, and a h0 > 0 such that

E
(
|X(T )− X̄N |

)
≤ Chγ (II.4.8)

for all h ∈ (0, h0).

Note that it becomes evident that when the di�usion coe�cient σ is zero, and the initial
value X0 of the stochastic di�erential equation (SDE) in equation (II.4.1) remains constant,
both de�nitions II.2 and II.3 simplify to the deterministic convergence criteria for ordinary
di�erential equations (ODEs).

Strong convergence necessitates a high degree of closeness between individual sample paths
of the theoretical and numerical solutions, as indicated by its de�nition. Nevertheless, in
many practical situations, the emphasis lies in ensuring that the probability distributions
of the stochastic process X and its numerical approximation, denoted as X̄, are su�ciently
close. To address this less rigorous requirement of stochastic approximation, the concept of
weak convergence is introduced.

De�nition II.4. A time discrete approximation Ȳ with maximum step size h is said to
converge weakly with order β > 0 to X at time T as h → 0, if for each polynomial g, there
exists a constant C > 0 independent of h, and a �nite h0 > 0 such that

|E (g (X(T )))− E
(
g
(
ȲN
))

| ≤ Chβ (II.4.9)

for all h ∈ (0, h0).

In case when σ ≡ 0, X0 being constant, and g(x) ≡ x, the de�nition above reduces to the
deterministic convergence criterion of ODEs.

An additional criterion for assessing strong convergence is known as mean-square conver-
gence, a concept commonly employed in the literature on stochastic approximation.

De�nition II.5 (Mean-Square Convergence Order). A time discrete approximation X̄ with
maximum step size h is said to converge strongly with mean-square order γ to X at time T
as h→ 0, if there exists a constant C > 0 independent of h, and a h0 > 0 such that(

E
(
X(T )− X̄N

)2) 1
2 ≤ Chγ (II.4.10)

for all h ∈ (0, h0).

The Euler-Maruyama method (II.4.2) represents a logical extension of the well-known Eu-
ler method used in ordinary di�erential equations (ODEs) to the numerical integration for
stochastic di�erential equations (SDEs). This generalization is valid because the increment
functions b and σ in the Euler-Maruyama scheme are computed at the starting point of the
time interval [tn, tn+1], which is consistent with the de�nition of the Itô's integral. How-
ever, traditional numerical methods are not usually suitable for solving stochastic di�erential
equations (SDEs) due to their inconsistent with Itô calculus.

The concept of strong consistency in numerical approximation of stochastic di�erential equa-
tions is de�ned as follows.
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Chapter II. Stochastic di�erential equations

De�nition II.6. A discrete time approximation X̄ of the solution X of equation (II.4.1)
corresponding to a time discritization {tn, n = 0, 1, . . . } with maximum step size h is said to
be strongly consistent, if there exists a nonnegative function c = c(h) with

lim
h→0

c(h) = 0 (II.4.11)

such that

E

(∣∣∣∣E(X̄n+1 − X̄n

∆n

|Atn

)
− b(tn, X̄n)

∣∣∣∣2
)

≤ c(h) (II.4.12)

and

E
(

1

∆n

∣∣X̄n+1 − X̄n − E
(
X̄n+1 − X̄n|Atn

)
− σ(tn, X̄n)∆Wn

∣∣2) ≤ c(h) (II.4.13)

for all �xed values X̄n = x and n = 0, 1, . . . , where ∆n = tn+1 − tn and ∆Wn = W (tn+1) −
W (tn).

Equation (II.4.12) necessitates that the increment in the drift part of the approximation
converges in mean-square sense to the drift coe�cient b of the SDE, while equation (II.4.13)
expresses that the increment in the di�usion part of the approximation converges to the dif-
fusion coe�cient σ of the solution in mean-square sense. This concept can be viewed as an
extension of the consistency condition for ordinary di�erential equations (ODEs), and it sim-
pli�es to that condition when there is no stochastic noise present. Additionally, the de�nition
of strong consistency signi�es the close correspondence between the approximation and the
solution along individual sample paths. Notably, strong consistency implies strong conver-
gence, analogous to the relation between consistency and convergence in the context of ODEs.

Another crucial characteristic of an e�ective numerical method is its stability. Similar to
the case of ordinary di�erential equations (ODEs), it is essential to perform stability analysis
for numerical methods applied to stochastic di�erential equations (SDEs). The notion of
stability in this context signi�es that the error propagation within a computational scheme
is well-regulated, just as it is in deterministic systems. However, it is de�ned within the
framework of the probability measure P .

De�nition II.7. A time discrete approximation X̄ to the solution X of SDE (II.4.1) with
maximum step size h is stochastically numerically stable, if for any �nite interval [t0, T ] there
exists a constant h0 > 0 such that for each ϵ > 0 and each h ∈ (0, h0)

lim
|X(t0)−X̄0|→0

sup
t0≤t≤T

P
(
|X(T )− X̄N | ≥ ϵ

)
= 0 (II.4.14)

where X̄0 is the value of the approximation X̄ at time t0 and X̄N is the value of the approxi-
mation X̄ at time T .

For more details, one can refer to [41]
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Chapter III

Deterministic Hamiltonian systems

This chapter provides an introduction to deterministic Hamiltonian systems, It covers
various aspects, including the derivation of its formalism through the variational principle,
Lagrangian formalism, Legendre transformation, and its properties, notably symplecticity.
Symplectic numerical methods as well as some known results about symplectic integrators are
introduced. For more details, we refer to the classical textbook E. Hairer, C. Lubich and G.
Wanner [13].

III.1 De�nition

De�nition III.1. A Hamiltonian system is characterized by a coordinate vector q ∈ Rd, a
momentum vector p ∈ Rd, and a Hamiltonian H = H(p, q) such that the equations of motions
are given by

dp

dt
= −∂H

∂q
(p, q),

dq

dt
=
∂H

∂p
(p, q). (III.1.1)

The space (p, q) is 2-d dimensional phase space and H represents the total energy of the
system. A vector notation is obtained by setting X = (p, q)T and grad H = (∂H

∂p
, ∂H

∂q
)T,

where V T denotes the transpose of the vector V , the Hamiltonian equations (III.1.1) are
written as

dX

dt
= J · ∇H, (III.1.2)

where J =

(
0 −Idd
Idd 0

)
with Id being the identity matrix in Rd.

In the following we donate by SH the Hamiltonian system de�ned in (III.1.1).
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III.2. Lagrangian Versus Hamiltonian formalism

Theorem III.1. The Hamiltonian H of SH with initial conditions p(0) = p0 and q(0) = q0
satis�es

H(p(t), q(t)) = H(p0, q0), (III.1.3)

for all t > 0.

Proof. This follows directly from (III.1.1), we have

d

dt
H(p(t), q(t)) =

∂H

∂p
(p(t), q(t))ṗ(t) +

∂H

∂q
(p(t), q(t))q̇(t)

= −∂H
∂p

(p(t), q(t))
∂H

∂q
(p(t), q(t)) +

∂H

∂q
(p(t), q(t))

∂H

∂p
(p(t), q(t))

= 0.
(III.1.4)

Theorem III.1 proves that the total energy of SH represented by H is conserved.

It must be noted that the Hamiltonian H can depend explicitly on time t, i.e. H = H(p, q, t).
Then, the system can be extended to include 2(d+1) variables (p, pd+1, q, qd+1) according to
the following de�nitions:

pd+1 = −H(p, q, t), qd+1 = t. (III.1.5)

By introducing these additional variables, the new Hamiltonian H is de�ned as:

H = H(p, q, qd+1) + pd+1. (III.1.6)

The equations of motion associated to H coincide with (III.1.1) and satisfy (III.1.5). Since
H = 0 and the equation pd+1 = −H does not provide any new information, the system with
Hamiltonian H(p, q, t) is said to have (d+ 1/2) degrees of freedom.

III.2 Lagrangian Versus Hamiltonian formalism

The challenge of computing the dynamics of general mechanical systems traces back to
the contributions of Galileo (1638) and Newton (1687). Newton's work provided a means
to describe the motion of free mass points through the solution of di�erential equations.
However, addressing the dynamics of more complex systems, such as rigid bodies, proved to
be a prolonged and challenging endeavor until Lagrange discovered an elegant approach to
dealing with such problems in a general manner.

Let q = (q1, . . . , qd) ∈ Rd denotes the position of mechanical system with d degrees of
freedom. Assume that T = T (q, q̇) and U = U(q) represent the kinetic and potential energy
of the system, respectively. The Lagrangian of the system is de�ned as follows:

L(q, q̇) = T (q, q̇)− U(q), (III.2.1)
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Chapter III. Deterministic Hamiltonian systems

Then, the di�erential equation satis�ed by the position q of the system is called the Euler-
Lagrange equation and it is given by:

d

dt

(
∂L

∂v
(q, q̇)

)
=
∂L

∂q
(q, q̇). (III.2.2)

Assuming that the Lagrangian is admissible, we can introduce the conjugate momentum p
using the Legendre transform

p =
∂L

∂v
(q, q̇). (III.2.3)

For each q ∈ Rd, we denote by g(p, q) the inverse of the invertible mapping v 7→ ∂L

∂v
.

Considering the Hamiltonian H as a function of (p, q) as follows

H(p, q) = pg(p, q)− L(q, g(p, q)). (III.2.4)

Using this Hamiltonian, one can rewrite the Euler-Lagrange equation (III.2.2) as a di�erential
system of order one.

Theorem III.2. The Euler-Lagrange equation (III.2.2) is equivalent to the Hamiltonian
system SH .

Proof. We have

g(p, q) = q̇, (III.2.5)

H(p, q) = pg(p, q)− L(q, g(p, q)), (III.2.6)

Thus

∂H

∂p
= g + p

∂g

∂p
− ∂L

∂v

∂g

∂p
= g =

dq

dt
, (III.2.7)

∂H

∂q
= p

∂g

∂q
− ∂L

∂q
− ∂L

∂v

∂g

∂q
= −∂L

∂q
= −dp

dt
. (III.2.8)

Indeed, the Euler-Lagrange equation of motion (III.2.2) describes the variational problem
where q(t) represents the function that extremizes the following action integral

S(q) =
∫ t1

t0

L(q(t), q̇(t))dt, (III.2.9)

along all curves q(t) that connect two �xed points q0 and q1 satis�ed q(t0) = q0 and q(t1) = q1.
In fact, the Euler-Lagrange equations of motion (III.2.2) can be viewed as the Euler-Lagrange
equations for the variational problem of extremizing the functional S.

Theorem III.3 (Hamilton's principle). The Euler-Lagrange equation of motion (III.2.2) of
mechanical system minimizes the action integral (III.2.9) among all curves q(t) that connect
q(t0) = q0 and q(t1) = q1 with δq(t0) = δq(t1) = 0.

Proof can be found in [13].
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III.3. Symplecticity

III.3 Symplecticity

An important geometric property of Hamiltonian system is that the associated �ow is
symplectic. In other words, as the system evolves in time, the Hamiltonian �ow (p(t), q(t)),
also known as the phase �ow, generated by the Hamiltonian equations of motion (III.1.1),
preserves the symplectic 2-form denoted ω2 de�ned as follows

ω2 = dp(t) ∧ dq(t) =
d∑

i=1

dpi(t) ∧ dqi(t). (III.3.1)

To avoid confusion, we note that di�erentials in (III.1.1) and (III.3.1) have di�erent mean-
ings. In Fact, in (III.1.1) p and q are function of time, while di�erentiation in (III.3.1) is
made with respect to the initial data p0 and q0.

Geometrically, symplecticity means that the sum of the oriented areas of the projection
onto (pi, qi) plane of a two-dimensional parallelogram lying in R2d generated by two vectors

ξ =

(
ξp

ξq

)
and µ =

(
µp

µq

)
is preserved.

Theorem III.4 (Poincaré 1899). Let the Hamiltonian H(p, q) be a twice di�erentiable func-
tion on U ⊂ R2d. Then, for each �xed t, the �ow ϕt is a symplectic transformation whenever
it is de�ned.

Note that the �ow ϕt : U → R2d of the Hamiltonian system SH is the mapping de�ned by

ϕt(p0, q0) = (p(t, p0, q0), q(t, p0, q0)), (III.3.2)

where (p(t, p0, q0), q(t, p0, q0)) is the solution of the system SH with initial conditions p(0) = p0
and q(0) = q0.

For more details, we can refer to [13].

III.4 Numerical geometric integration

As well as in the case of ordinary di�erential equations, in general, it is very hard to
compute the explicit solutions of Hamiltonian systems, Thus the necessity to develop numer-
ical integration to approach the solutions. Since the phase �ows of Hamiltonian systems is
symplectic, it is logical and appropriate to construct numerical schemes which inherit this
property. These methods are called symplectic integrators and belong to the class of geo-
metric numerical integrators. They have consistently demonstrated superior performance in
simulating Hamiltonian systems over long time interval compared to non-symplectic methods
[13].

De�nition III.2. A numerical method (pn, qn) 7→ (pn+1, qn+1)(n ≥ 1) for the Hamiltonian
system (III.1.1) with initial conditions p(0) = p0 and q(0) = q0 is called a symplectic if it
preserves the symplectic structure, i.e. if

dpn+1 ∧ dqn+1 = dpn ∧ dqn, (III.4.1)
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Chapter III. Deterministic Hamiltonian systems

for all n ≥ 1.

A simple example of symplectic numerical methods is the implicit midpoint rule [13]

pn+1 = pn − h
∂H

∂q
(
pn+1 + pn

2
,
qn+1 + qn

2
), (III.4.2)

qn+1 = qn + h
∂H

∂p
(
pn+1 + pn

2
,
qn+1 + qn

2
). (III.4.3)

Its symplecticity can be checked in a straightforward way. The di�erentiation of equations
(III.4.2)-(III.4.3) yields to(

1 +
h

2

∂2H

∂q∂p

)
dpn+1 +

h

2

∂2H

∂q2
dqn+1 =

(
1− h

2

∂2H

∂q∂p

)
dpn −

h

2

∂2H

∂q2
dqn, (III.4.4)(

1− h

2

∂2H

∂p∂q

)
dqn+1 −

h

2

∂2H

∂p2
dqn+1 =

(
1 +

h

2

∂2H

∂p∂q

)
dqn +

h

2

∂2H

∂p2
dpn, (III.4.5)

where all the functions are evaluated at (
pn+1 + pn

2
,
qn+1 + qn

2
). The wedge product of the

left side of the two equations (III.4.4)-(III.4.5) should equal that of the right side, which gives

dpn+1 ∧ dqn+1 = dpn ∧ dqn, (III.4.6)

since we have
∂2H

∂q∂p
=
∂2H

∂p∂q
.

An important example of numerical techniques that preserve the symplectic structure
is the class of symplectic Runge-Kutta methods. The concept underlying a Runge-Kutta
method involves substituting higher order derivatives in a Taylor expansion with data from
the increment function at intermediate points within each subinterval of time discretiza-
tion. This substitution enables the derivation of derivative-free methods of higher order.The
Runge-Kutta methods are usually characterized by their stage s and their coe�cients aij ,
bj and cj , i, j = 1, . . . , s.

For the Hamiltonian system SH , a general s-stage Runge-Kutta method can be expressed in
the following form

pn+1 = pn − h
s∑

i=1

bi
∂H

∂q

T

(Pni,Qni), Pni = pn − h

s∑
j=1

aij
∂H

∂q

T

(Pnj,Qnj), (III.4.7)

qn+1 = qn + h

s∑
i=1

bi
∂H

∂p

T

(Pni,Qni), Qni = qn + h

s∑
j=1

aij
∂H

∂p

T

(Pnj,Qnj), (III.4.8)

In general, Runge-Kutta methods are not symplectic.However, the following theorem provides
the criteria for a general s-stage Runge-Kutta method to qualify as a symplectic method.
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III.4. Numerical geometric integration

Theorem III.5. If the coe�cients of the Runge-Kutta method (III.4.7)-(III.4.8) satisfy

biaij + bjaji = bibj, (III.4.9)

for all i, j = 1, . . . , s, then it is symplectic.

Proof can be found in [13].

In Hamiltonian mechanics, a crucial property of the Hamiltonian system is the existence
of a special function S called generating function. This function, is remarkable as it allows us
to describe the complete motion of the system and it is the solution of a partial di�erential
equation called Hamiltonian-Jacobi di�erential equation.

It was demonstrated using the following theorem that generating function S is directly con-
nected to any symplectic map [13]

Theorem III.6. A mapping ϕ : (p, q) 7→ (P,Q) is symplectic if and only if there exists locally
a function S(p, q) such that

PTdQ− pTdq = dS. (III.4.10)

This means that PTdQ− pTdq is a total di�erential.
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Chapter IV

Variational integrators -Order 1

In this chapter we give a self-contained introduction to the discrete embedding of La-
grangian and Hamiltonian systems using a discrete di�erential and integral calculus of order
one. This theory is compared with the seminal work of J-E. Marsden and M. West [27] on
variational integrators.

IV.1 Introduction

In recent years, many e�orts have been devoted to construct numerical algorithms for
the simulation of Lagrangian and Hamiltonian systems respecting the variational structure
underlying these systems. These algorithms are called variational integrators and belongs
to the more general class of geometric numerical integrators (see [13] for a review).

The most well-known and systematic approach to the construction of variational integrators
is due to J.E. Marsden and M. West and a review of this approach can be founded in [27].

Brie�y, a Lagrangian system is determined by critical points of a functional

L (q) =

∫ b

a

L(q(s), q̇(s)) ds, (IV.1.1)

where L(q, v) is called the Lagrangian and can be interpreted as the di�erence between ki-
netic and potential energy of dynamic systems.

The critical points of the functional L are the solutions of the Euler-Lagrange equation given
by

d

dt

(
∂L

∂v
(q(t), q̇(t)

)
=
∂L

∂q
(q(t), q̇(t)), (IV.1.2)

where q : R → Rd.

30



IV.2. Discrete embedding of order 1

The Marsden-West approach to variational integrators consists in the most simple case in
replacing the functional (IV.1.1) by an approximation of order one which depends on (qi+1, qi)
by introducing a discrete functional denoted by L and de�ned by

L(qi+1, qi) ≈
∫ ti+1

ti

L(q(t), q̇(t)) dt = hL

(
qi,
qi+1 − qi

h

)
, (IV.1.3)

where qi = q(ti), ti ∈ T, and T is a discrete time scale on [a, b] with a uniform time step h.

The discrete Euler-Lagrange equation is then characterized by extremizing the following
quantity

S(q0, . . . , qN) =
N−1∑
i=0

L(qi+1, qi). (IV.1.4)

Regarding L as a function of (y, x), the resulting discrete Euler-Lagrange equation is
given by

∂L
∂x

(qi+1, qi) +
∂L
∂y

(qi, qi−1) = 0, i = 1, . . . , N − 1. (IV.1.5)

Indeed, the Marsden-West approach has the following drawbacks:

- The algebraic structure of the classical Euler-Lagrange equation is lost.

- The dichotomy between position q and speed q̇ is not preserved because the discrete
Lagrangian L depends on (qi+1, qi) which means that they replace the tangent space
by doubling the con�guration space.

- The functional framework underlying the de�nition of the discrete functional is not
explicit, in particular, the integral nature of the discrete functional is not clear.

In order to solve these di�culties, we introduce, following the discrete embedding for-
malism [32]�[34], [43], [44], the functional space of discrete functions on which we de�ne a
discrete extension of the di�erential and integral calculus. This framework allows
us to reformulate the construction of variational integrators and to obtain a complete corre-
spondence with the continuous setting. Moreover, it gives new insight into the de�nition of
discrete momentum and the property of symplecticity of variational integrators.

IV.2 Discrete embedding of order 1

In this section, we remind how to de�ne a discrete di�erential and integral calculus on
discrete functions following [32]�[34], [43], [44].

IV.2.1 Discrete functional space and functional

Let [a, b] ⊂ R and N ∈ N∗. We consider a discrete �nite subset denoted by T and de�ned
by T = {ti}i=0,...,N . T is called a discrete time scale in the literature (see [36]).
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Chapter IV. Variational integrators -Order 1

For simplicity, in all that follows, we consider a uniform time scale, meaning that points
ti are uniformly distributed with a constant time step h = (b − a)/N , i.e. T is de�ned as
follows

T = {ti = a+ ih; h = (b− a)/N, i = 0, . . . , N}. (IV.2.1)

All the computations and arguments can be extended without di�culties to an arbitrary
discrete time scale.

We denote by T+ = [a, b[∩T = T \ {tN}, T− =]a, b] ∩ T = T \ {t0} and C(T,Rd) the set of
functions de�ned on T with values in Rd. A discrete functional on C(T,Rd) is a mapping
from C(T,Rd) with values in R.

IV.2.2 Discrete di�erential and integral calculus- General strategy

In order to construct a discrete version of the classical di�erential and integral calculus,
we consider the following strategy:

- Embed the set of discrete functions C(T,Rd) into piecewise continuous or di�erentiable
functions.

- De�ne the derivative of a discrete function q as the restriction of the action of the
classical derivative on the appropriate embedded version of q.

- Construct a discrete integral theory using embedding such that a discrete version of
the fundamental theorem of the di�erential calculus is satis�ed.

Of course, one can reverse the previous construction by beginning with a discrete integral
calculus and constructing the corresponding discrete di�erential calculus.

IV.2.3 Continuous/Di�erentiable embedding of discrete functions

Let T be a given discrete time scale. For a given operator A acting in a continuous setting
(for example integral or derivative), the construction of its discrete analogue is done by in-
troducing a mapping eA from C(T,Rd) intoD(A) whereD(A) is the domain of de�nition of A.

As we are interested in the construction of discrete analogues of integral and derivative, we
then are lead to introduce the following sets and mappings:

- P 0,+
T ([a, b[,Rd) (resp. P 0,−

T (]a, b],Rd)) the set of piece wise left (resp. right) continuous
constant functions on [a, b] with discontinuities on T.

- P 1
T([a, b],Rd) the set of piecewise continuous linear functions on [a, b], non di�erentiable

on T.

We denote by e0,+ (resp. e0,−) and e1 the mappings de�ned for all q ∈ C(T,Rd) by

e0,+(q) =
N−1∑
k=0

q(tk)1[tk,tk+1[,

(
resp. e0,−(q) =

N∑
k=1

q(tk)1]tk−1,tk]

)
(IV.2.2)
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IV.2. Discrete embedding of order 1

and

e1(q) =
N−1∑
k=0

[
q(tk) +

q(tk+1)− q(tk)

h
(t− tk)

]
1[tk,tk+1], (IV.2.3)

where 1I is the indicator function of the set I. A natural way to recover a discrete function
from a function f de�ned on an interval I ⊂ [a, b] is to take its restriction on T ∩ I. This
mapping is denoted by π. It must be noted that for f ∈ C(I,Rd), its image π(f) belongs to
C(TI ,Rd) where TI = T ∩ I.

IV.2.4 Discrete derivatives

In this section, we de�ne discrete analogues of the classical right derivative d+/dt and left
derivative d−/dt using the mapping e1.

De�nition IV.1. The forward (resp. backward) discrete derivative ∆+ (resp. ∆−) is de�ned
over C(T,Rd) by

∆+ = π ◦ d
+

dt
◦ e1

(
resp. ∆− = π ◦ d

−

dt
◦ e1
)
. (IV.2.4)

The operator ∆+ (resp. ∆−) goes from C(T,Rd) in C(T+,Rd) (resp. C(T−,Rd)). This
de�nition corresponds to the following commutative diagrams:

P 1([a, b],Rd)
d+/dt

// P 0,+([a, b[,Rd)

π
��

C(T,Rd)

e1

OO

∆+
// C(T+,Rd)

, P 1([a, b],Rd)
d−/dt

// P 0,−(]a, b],Rd)

π
��

C(T,Rd)

e1

OO

∆−
// C(T−,Rd)

A simple computation leads to the following explicit form for these two discrete derivatives:

Lemma IV.1. Let q ∈ C(T,Rd), we have

∆+[q](ti) =
q(ti+1)− q(ti)

h
, for i = 0, . . . , N − 1,

and

∆−[q](ti) =
q(ti)− q(ti−1)

h
for i = 1, . . . , N.

We recover the classical forward and backward derivatives used in numerical analysis.

IV.2.5 Discrete antiderivative

Following the general strategy, we want to de�ne a discrete integral such that the funda-
mental theorem of di�erential calculus is preserved.

Using e0,+, we de�ne a discrete analogue of the classical integral denoted

∫ t

a

∆+s as follows.
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Chapter IV. Variational integrators -Order 1

De�nition IV.2. The discrete antiderivative denoted by

∫ t

a

∆+s is de�ned over C(T,Rd)

by ∫ t

a

∆+s = π ◦
∫ t

a

ds ◦ e0,+, (IV.2.5)

This corresponding to the following comutative diagram:

P 0,+([a, b[,Rd)

∫ t
a ds
// P 1([a, b],Rd)

π
��

C(T,Rd)

e0,+

OO

∫ t
a ∆+s

// C(T,Rd)

An explicit computation gives

Lemma IV.2. For all q ∈ C(T,Rd) and all ti, tj ∈ T, j > i that

∫ tj

ti

q(s)∆+s =

j−1∑
k=i

q(tk)h. (IV.2.6)

IV.2.6 Proprieties of discrete derivatives and antiderivative

A discrete analogue of classical formulas and results in Analysis can be obtained using the
previous de�nitions of discrete derivatives and antiderivative.

Discrete integration by parts formula. A discrete analogue of the classical integration
by part is obtained using the previous de�nitions of the derivative and antiderivative.

Theorem IV.1 (discrete integration by parts formula). Let q, g ∈ C(T,Rd), we have∫ b

a

q(t)∆+[g](t)∆+t = −
∫ b

a

∆−[q](t)g(t)∆+t+ q(tN)g(tN)− q(t0)g(t0). (IV.2.7)

The fundamental theorem of di�erential calculus. One can verify that a discrete
analogue of the fundamental theorem of the discrete di�erential calculus is provided.

Theorem IV.2. For all q ∈ C(T,Rd), we have∫ b

a

∆+[q](s)∆+s = q(b)− q(a), (IV.2.8)

and

∆+

[∫ t

a

q(s)∆+s

]
= q(t), ∀ t ∈ T. (IV.2.9)
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IV.3. Discrete Lagrangian formalism

Dubois-Reymond lemma. A discrete version of the Dubois-Reymond lemma is valid.
We �rst introduce the set C0(T,Rd) ⊂ C(T,Rd) de�ned by

C0(T,Rd) = {q ∈ C(T,Rd), q(t0) = q(tN) = 0}. (IV.2.10)

Lemma IV.3 (Dubois-Reymond lemma). Let f ∈ C(T,Rd) such that

∫ b

a

f(t)g(t)∆+t = 0

for all g ∈ C0(T,Rd) then f(t) = 0 for t ∈ T± = T+ ∩ T−.

We refer to [33], [34] for more details.

IV.2.7 Why order 1 ?

Let q be a continuous function on [a, b] and T be a discrete time scale with time step h.
The order of the discrete embedding is the order of approximation in the parameter h of the

classical integral

∫ b

a

q(s) ds by

∫ b

a

q(s)∆+s. In the same way, if q is of class C1 then ∆+[q]

is an approximation of order one of dq/dt at each point t ∈ T.

As a consequence, a discrete embedding theory can be seen as a reformulation of the classical
theory of approximation in a functional point of view.

IV.3 Discrete Lagrangian formalism

We follow the embedding formalism approach to de�ne a discrete analogue of Lagrangian
systems. Our de�nition is compared with the notion of discrete functional introduced by J-E.
Marsden and M. West in [27].

IV.3.1 Discrete Lagrangian functional - Embedding case

Using the previous discrete di�erential and integral calculus, we de�ne the discrete La-
grangian functional denoted by Lh over C(T,Rd) as follows

De�nition IV.3. Let T a discrete time scale with uniform time step h. The discrete
Lagrangian functional associated to the classical one given in (IV.1.1) is de�ned for all
q ∈ C(T,Rd) by

Lh(q) =

∫ b

a

L(q(s),∆+[q](s))∆+s. (IV.3.1)

We can notice that using this approach, we preserve the algebraic structure of the classical
integral.
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Chapter IV. Variational integrators -Order 1

IV.3.2 Discrete Lagrangian functional - Marsden-West case

The discrete Lagrangian functional Lh given in (IV.3.1) coincides with the one de�ned by
Marsden-West denoted S(q0, . . . , qN) given in (IV.1.4) where (q0, . . . , qN) = (q(t0), . . . , q(tN)) ∈
Rd(N+1).

However, it must be noted that the Lagrangian L de�ned in (IV.1.3) has an integral nature.
Indeed, denoting by Ψ the mapping de�ned by

Ψ(qi, vi) = (hvi + qi, qi), (IV.3.2)

with vi = (qi+1 − qi)/h. we deduce that

L(q(ti+1), q(ti)) =

∫ ti+1

ti

L(Ψ−1(q(t+ h), q(t)))∆+t. (IV.3.3)

This hidden integral nature of L makes the computations more cumbersome in the Marsden-
West approach than using the function L(q,∆+[q])(t) = L(Ψ−1(q(t+h), q(t))) in the discrete
embedding framework.

IV.4 Discrete calculus of variations

A classical ingredient of the study of Lagrangian functional is the calculus of variations.
As we will see, the use of a discrete version of the calculus of variations is precisely the place
where the functional setting of our discrete formulation will be the most e�cient and will
alight some classical computations used in [27].

IV.4.1 Discrete Euler-Lagrange equation - Embedding case

Let us consider a discrete Lagrangian functional Lh(q) of the form (IV.3.1).

We denote by V the set of variations de�ned by

V = {v ∈ C(T,Rd) , v(a) = v(b) = 0}. (IV.4.1)

The Frechet derivative DLh(q) of Lh at point q ∈ C(T,Rd) in the direction v ∈ V is

DLh(q)(v) = lim
ϵ→0

Lh(q + ϵv)− Lh(q)

ϵ
. (IV.4.2)

The corresponding notion of critical points is given by

De�nition IV.4. A discrete critical point q ∈ C(T,Rd) veri�es DLh(q)(v) = 0 for all
v ∈ V .

We obtain the following discrete Euler-Lagrange equation
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IV.4. Discrete calculus of variations

Theorem IV.3 (Discrete Euler-Lagrange equation). Let L be an admissible Lagrangian
function. A discrete function q ∈ C(T,R) is a critical point of the discrete Lagrangian
functional Lh associated to L if and only if it satis�es

∂L

∂q
(q(s),∆+[q](s))−∆−

(
∂L

∂v
(q(s),∆+[q](s))

)
= 0, s ∈ T±. (IV.4.3)

Proof. Let v ∈ V . Assuming that L is su�ciently smooth, a simple Taylor expansion leads
to

DLh(q)(v) =

∫ b

a

(
v(s)

∂L

∂q
(q(s),∆+[q](s)) + ∆+[v](s)

∂L

∂v
(q(s),∆+[q](s))

)
∆+s. (IV.4.4)

As v ∈ V , the discrete integration by parts formula (IV.2.7) gives

DLh(q)(v) =

∫ b

a

[
∂L

∂q
(q(s),∆+[q](s))−∆−

[
∂L

∂v
(q(s),∆+[q](s))

]]
v(s)∆+s. (IV.4.5)

Using the discrete Dubois-Reymond lemma, we deduce

∂L

∂q
(q(s),∆+[q](s))−∆−

[
∂L

∂v
(q(s),∆+[q](s))

]
= 0, s ∈ T±. (IV.4.6)

This conclude the proof.

The previous formulation keeps the classical algebraic form of the Euler-Lagrange equation,
moreover it shows that a mixing between the backward and forward derivative is unavoidable
due to the duality between these operators with respect to the discrete integration.

IV.4.2 Discrete Euler-Lagrange equation - Marsden-West case

A discrete Euler-Lagrange equation was derived in [27] and must of course coincides with
our equation (IV.4.3). However, as we will see, this is not transparent due to the introduc-
tion of the function L and the fact that they do not use discrete operators to formulate the
equation.

For all x, y ∈ Rd, let

L(y, x) = hL
(
x,
y − x

h

)
,

J-E. Marsden and M. West de�ne a variation of S given in equation (IV.1.4), as a family
vi, i = 0, . . . , N , such that v0 = vN = 0, corresponding to the choice of a function v ∈ V .

They consider the quantity denoted δS(q0, . . . , qN , h) as follows

δS(q0, . . . , qN , h) = lim
ϵ→0

S(q0 + ϵv0, . . . , qN + ϵvN)− S(q0, . . . , qN)
ϵ

, (IV.4.7)

by a Taylor expansion, they obtain

δS(q0, . . . , qN , h) =
N−1∑
i=0

(
∂L
∂x

(qk+1, qk)vk +
∂L
∂y

(qk+1, qk)vk+1

)
, (IV.4.8)
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Chapter IV. Variational integrators -Order 1

then, they use a rearrangement of the sum that they call discrete integration by part (see
[27],p.363)

δS(q0, . . . , qN , h) =
N−1∑
i=1

(
∂L
∂x

(qk+1, qk) +
∂L
∂y

(qk, qk−1)

)
vk, (IV.4.9)

using the fact that v0 = vN = 0. As all vi, for i = 1, . . . , N − 1, are arbitrary, they deduce
that the equation δS(q0, . . . , qN , h) = 0 is equivalent to the discrete Euler-Lagrange equation

∂L
∂x

(qi+1, qi) +
∂L
∂y

(qi, qi−1) = 0, (IV.4.10)

for i = 1, . . . , N − 1.

Computing explicitly each of the previous quantities, we obtain

∂xL(qi+1, qi) = h

[
∂L

∂q
(qi,

qi+1 − qi
h

)− 1

h

∂L

∂v
(qi,

qi+1 − qi
h

)

]
. (IV.4.11)

∂yL(qi, qi−1) = h

[
1

h

∂L

∂v
(qi−1,

qi − qi−1

h
)

]
. (IV.4.12)

Replacing ∂xL(qi+1, qi) and ∂yL(qi, qi−1) by their quantities in (IV.4.10), we recover our Euler-
Lagrange equation (IV.4.3) evaluated on a time ti ∈ T±.

IV.5 Discrete Hamiltonian systems

IV.5.1 Discrete Hamiltonian systems - Embedding case

Following the discrete embedding formalism, a natural choice for the discrete momentum
is given by:

De�nition IV.5. (Discrete momentum) Let L a given Lagrangian function. Assume that
the Lagrangian is admissible. The discrete momentum is de�ned for all t ∈ T+ by

p(t) =
∂L

∂v
(q(t),∆+q(t)). (IV.5.1)

Using the inverse of the invertible mapping v 7→ ∂L

∂v
denoted by g(p, q), we have

∆+[q] = g(p, q) (IV.5.2)

Then, the discrete Euler-Lagrange equation (IV.4.3) can be reformulate using the following
discrete system

∆−[p](t) =
∂L

∂q
(p(t), q(t)), for all t ∈ T±.

∆+[q](t) = g(p(t), q(t)), for all t ∈ T±.
(IV.5.3)
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IV.5. Discrete Hamiltonian systems

Using the classical Hamiltonian function de�ned in the continuous case de�ned byH(p, q) =
pg(p, q)−L(q, g(p, q)), we obtain the discrete Hamiltonian form of the discrete Euler-Lagrange
equation 

∆−[p](t) = −∂H
∂q

(p(t), q(t)), for all t ∈ T±,

∆+[q](t) =
∂H

∂p
(p(t), q(t)), for all t ∈ T±.

(IV.5.4)

Here again, we recover the algebraic form of classical Hamiltonian systems. Indeed, the
structure of these equations can be written in the classical case as follows

−
(
d

dt

)
∗
(p) = −∂qH(p, q),

d

dt
(q) = ∂pH(p, q),

(IV.5.5)

where

(
d

dt

)
∗
= − d

dt
stands for the adjoint di�erential operator associated to

d

dt
for the

usual scalar product ⟨f, g⟩ =
∫
R
fgdt.

In the discrete case, the adjoint of ∆+ with respect to the discrete scalar product (f, g) =∫ b

a

f◦∆+(g)∆t is given by −∆− so that if O stands for the di�erential operator

O

(
d

dt

)
=

 −
(
d

dt

)
∗

d

dt

 (IV.5.6)

acting on vector of functions (p, q), the classical Hamiltonian system can be written as

O

(
d

dt

)[
p
q

]
= J∇H(p, q), (IV.5.7)

we see directly that the discrete equations (IV.5.4) can be written as

O(∆+)

[
p
q

]
= J∇H(p, q) (IV.5.8)

which possesses the same algebraic form as (IV.5.7).

A natural demand in order to justify the terminology of discrete Hamiltonian system is to
show that solutions of (IV.5.4) correspond to critical points of a functional. Following our
strategy, we introduce the discrete Hamiltonian functional

LH,h(p, q) =

∫ b

a

(p∆+[q]−H(p, q)) ∆+t. (IV.5.9)

It can be proved that (see [34]):
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Chapter IV. Variational integrators -Order 1

Theorem IV.4. The critical points of the discrete Hamiltonian functional (IV.5.9) corre-
sponds to the solutions of the discrete system (IV.5.4).

As a consequence, all relations and structures of the continuous case are preserved in the
discrete case thanks to the discrete embedding procedure.

IV.5.2 Discrete Hamiltonian systems - Marsden-West case

The discrete analogue of the Legendre transform is de�ned inductively by J-E. Marsden
and M. West as follows: we denote by PM,0 the quantity de�ned by

PM,0 = −∂L
∂x

(q1, q0). (IV.5.10)

The connection between our de�nition of the discrete momentum p in (IV.5.1) and the one
de�ned by Marsden-West is given by

PM,0 = −h∂L
∂q

(q0, v0) + p0, (IV.5.11)

where v0 = ∆+[q](t0) = (q1 − q0)/h, which can be summarized by the diagram

(q0, v0)
P // (q0, p0)

Θ
��

(q1, q0)

Ψ−1

OO

PM // (q0,PM,0)

with Θ: (q0, p0) → (q0, p0 − h
∂L

∂q
(q0, v0)).

We then observe that the Marsden-West de�nition of the discrete momemtum introduces a
distortion between the de�nition in the continuous case and the discrete one encoded by the
mapping Θ which is corrected in the discrete embedding formalism.

IV.6 Variational integrators and symplecticity

An important property of variational integrators is that they are symplectic, meaning that
the corresponding mapping preserve the symplectic structure. We show how these results
are related in the two formalism.

IV.6.1 Discrete �ows: embedding and Marsden-West case

Lagrangian systems induce an algorithm which can be initialized by the data of q0 and v0 in
the discrete embedding case and q0 and q1 in the Marsden-West case, the two representations
are connected by the mapping Ψ de�ned in (IV.3.2). Denoting by ΦM the induced �ow in
the Marsden-West case de�ned by ΦM(q1, q0) = (q2, q1) and by Φ the one induced by the
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IV.6. Variational integrators and symplecticity

discrete embedding approach and de�ned by Φ(q0, v0) = (q1, v1), we easily prove that these
two maps are conjugated, meaning that we have the following diagram:

(q0, v0)
Φ // (q1, v1)

Ψ
��

(q1, q0)

Ψ−1

OO

ΦM

// (q2, q1)

we deduce that ΦM = Ψ ◦Φ ◦Ψ−1. It is well known that the mapping ΦM is symplectic. By
conjugacy, we conclude that the mapping Φ is also symplectic. However, one can go further
and try to reproduce the variational proof of the symplecticity given by J-E. Marsden and
T. Ratiu in [45] for the discrete �ow Φ directly.

IV.6.2 Symplecticity

We denote by S the functional de�ned on C(T,Rd) by

S(q) =

∫ t1

t0

L(q(t),∆+q(t))∆+t. (IV.6.1)

Let CL denotes the set of solutions of the discrete Euler-Lagrange equations (IV.4.3). For
each q0 ∈ Rd and v0 ∈ Rd, there exists a unique solution over {t0, t1} of the discrete Euler-
Lagrange equation denoted by ψt(q0, v0) such that q(0) = q0 and ∆+[q](0) = v0. We denote
by S the action integral de�ned on Rd × Rd by S(q0, v0) = S(ψt(q0, v0)).

Considering a variation such that q + u is a again in CL, a simple computation leads to

dS(q0, v0)(u0, w0) = θL(ψ(q0, v0))w1 − θL(q0, v0)w0 (IV.6.2)

where (u1, w1) = ψ(u0, w0) and θL is the classical Lagrange 1-form de�ned for all q0 ∈ Rd

and w0 ∈ Rd by

θL(q0, v0).w0 =
∂L

∂v
(q0, v0)w0. (IV.6.3)

The quantity (IV.6.2) can be rewritten as

dS(q0, v0)(u0, w0) = ψ∗(θL)(q0, v0)w1 − θL(q0, v0)w0 (IV.6.4)

Taking the exterior derivative of this quantity, we obtain

0 = d2S = ψ∗(dθL)− dθL = −ψ∗(ωL) + ωL. (IV.6.5)

As a consequence, the mapping ψ preserves the two form ωL = −dθL. It is then a symplectic
map.
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Chapter V

Variational Integrators- Order 2

Following the discrete embedding formalism, we give a new derivation of the mid-point
variational integrators as developed by J.M. Wendlandt and J.E. Marsden [38] by de�ning an
adapted order two discrete di�erential and integral calculus. This allows us to obtain a clearer
correspondence between the discrete and continuous case. We also discuss the corresponding
de�nition of a discrete Hamiltonian system. A complete comparaison with the results of J.M.
Wendlandt and J.E. Marsden is provided.

V.1 Introduction

In this chapter, we develop second-order discrete di�erential and integral calculus. This,
combined with discrete embedding formalism, leads to a new formulation of the mid-point
variational integrator, �rst de�ned by J.E. Marsden and J.M. Wendlandt in [38], as a �rst
step toward the de�nition of a high-order di�erential and integral formalism.

Several problems arise when dealing speci�cally with the de�nition of what can be called
a discrete Hamiltonian system. Formally, we must answer the two following questions:

- What is the discrete analogue of the phase space for Hamiltonian systems ?

- What is the discrete de�nition of the Legendre transform ?

In the following, we extend the previous construction and de�nition of order one discrete
Hamiltonian systems given in Chapter IV to the case of order two using an order two discrete
di�erential and integral calculus.

42



V.2. Discrete mid-point di�erential and integral calculus

V.2 Discrete mid-point di�erential and integral calculus

V.2.1 De�nitions of di�erent time scales

Let us �rst set the de�nition of our di�erent discrete time scales on [a, b].

De�nition V.1. Let I = [a, b] ⊂ R, N ∈ N∗ and let h = (b− a)/N , we de�ne the following
time scales

- T = {ti = a+ ih, i = 0, 1, ..., N}.

- T+ = T \ {b} and T− = T \ {a}.

- T 1
2
= {ti+ 1

2
=

1

2
(ti+1 + ti), i = 0, . . . , N − 1}.

- T◦ = T ∪ T 1
2
.

De�nition V.2. Let T a discrete time scale de�ned on [a, b]. π is a projection map on T 1
2

de�ned by
π : T+ → T 1

2

ti 7→ π(ti) = ti+ 1
2
= 1

2
(ti+1 + ti) .

De�nition V.3. let T̃ a discrete time scale on [a, b], with a step h̃, we donate by σT̃ and ρT̃
two maps de�ned by

σT̃ : T̃+ → T̃−

t 7→ σT̃(t) = t+ h̃,

and
ρT̃ : T̃− → T̃+

t 7→ ρT̃(t) = t− h̃.

In the following, we use the simpli�ed notations:

σ = σT (resp. ρ = ρT), σ 1
2
= σT 1

2

(resp.ρ 1
2
= ρT 1

2

), σ◦ = σT◦ (resp. ρ◦ = ρT◦). (V.2.1)

T
ti−1 ti ti+1

T 1
2

t(i−1)+ 1
2

ti+ 1
2

t(i+1)+ 1
2

π π π

ρ

ρ 1
2

Figure V.1: Connection between di�erent time scales.
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Chapter V. Variational Integrators- Order 2

V.2.2 Di�erent functional spaces

In the following, our basic objects are functions in C(T,Rd). However, the construction
of the mid-point embedding uses functions over C(T◦,Rd). These two functional spaces are
connected via the following extension mapping:

De�nition V.4. For all f ∈ C(T,Rd) we de�ne f◦ ∈ C(T◦,Rd) as an extension of f on T◦
as follows

f◦(t) =


f(ti), t = ti.

f(ti) + f(ti+1)

2
, t = ti+ 1

2
.

(V.2.2)

Another way to see the extension mapping f◦ is to introduce the interpolation map de-
noted by e1 over the set of piecewise continuous linear functions denoted by P 1 of functions
in C(T,Rd). Then, the mid-point extension f◦ of a given function f is the projection on T◦
of e1(f).

To proceed, we need to de�ne the following operators.

De�nition V.5. Let f ∈ C(T 1
2
,Rd). We denote by [f ] 1

2
,− the function de�ned on T−

1
2

by

[f ] 1
2
,−(t) =

1

2

(
f(t) + f(ρ 1

2
(t))
)
, for all t ∈ T−

1
2

. (V.2.3)

Equivalently, for f ∈ C(T◦,Rd), we denote by [f ]◦ the function de�ned on C(T±,Rd) by

[f ]◦(t) =
1

2
(f(σ◦(t)) + f(ρ◦(t))) , for all t ∈ T±. (V.2.4)

These manipulations will be useful when we will compute discrete integrals over T 1
2
and in-

terpreting them as discrete integrals over T.

We introduce also the following notation:

For an arbitrary time scale T̃ and a function f of C([a, b],Rd) we denote by πT̃ the map from
C([a, b],Rd) into C(T̃,Rd) obtained by taking the restriction of f over T̃.

V.2.3 Discrete derivative and anti-derivative

V.2.3.1 Discrete derivatives

Following the classical de�nition of derivatives on time scales as discussed in [36], discrete
derivatives over an arbitrary discrete time scale are de�ned as follows:

De�nition V.6. Let T̃ be an arbitrary time scale. We denote by ∆T̃,+ and ∆T̃,− the operators

de�ned for all f ∈ (T̃,Rd) by

∆T̃,+[f ](t) =
fσT̃(t)− f(t)

σT̃(t)− t
, (V.2.5)
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V.2. Discrete mid-point di�erential and integral calculus

and

∆T̃,−[f ](t) =
f(t)− fρT̃(t)

t− ρT̃(t)
, (V.2.6)

with fσT̃ := f ◦ σT̃ and fρT̃ := f ◦ ρT̃.

It must be noted that the previous de�nition can be seen for T̃ ∈ {T,T 1
2
,T◦} as follow:

P 1
T̃([a, b],R

d)
d+/dt

// P 0,+

T̃ ([a, b[,Rd)

πT̃
��

C(T̃,Rd)

e1

OO

∆T̃,+
// C(T̃+,Rd)

. (V.2.7)

Where P 0,+

T̃ is the set of constant piecewise functions on intervals of the form [t̃i, t̃i+1[ for

i = 0, . . . , Ñ − 1 with t̃i, t̃i+1 in T̃.

According to the time scale used, we simplify our notations as follows:

∆+ = ∆T,+ (resp. ∆− = ∆T,−).
∆◦,+ = ∆T◦,+ (resp. ∆◦,− = ∆T◦,−).
∆ 1

2
,+ = ∆T 1

2
,+ (resp. ∆ 1

2
,− = ∆T 1

2
,−).

(V.2.8)

V.2.3.2 Discrete anti-derivative

In the same way, one can de�ne a discrete anti-derivative over an arbitrary discrete time
scale (see [36]):

De�nition V.7. Let λ ∈ [0, 1[ and T = {ti}0,...,N be a discrete time scale on [a, b]. We denote
by ti,λ = (1− λ)ti + λti+1, i = 0, . . . , N − 1. We denote by Tλ the set of ti,λ, i = 0, . . . , N − 1
and T◦,λ = T ∪ Tλ. The λ-anti-derivative over T is de�ned for all function f ∈ C(T◦,λ,Rd)
by ∫ ti+1

ti

f(t)∆λ,Tt = f(ti,λ)(ti+1 − ti). (V.2.9)

It must be noted that despite the fact that we need the information about T◦,λ, the discrete
anti-derivative is only de�ned on T, meaning that we consider only integrals whose bounds
of integration belong to T.

We denote by e0,λ,T,+ the mapping from C(Tλ,Rd) into P 0,+
λ,T ([a, b[,Rd) de�ned by

e0,λ,T,+[f ](t) = f(ti,λ), for all t ∈ [ti, ti+1[, i = 0, . . . , N − 1. (V.2.10)

The discrete anti-derivative is then obtained as follows:
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Chapter V. Variational Integrators- Order 2

P 0,+
λ,T ([a, b[,Rd)

∫ t

a

˙ds
// P 1,+

T ([a, b],Rd)

πT
��

C(Tλ,Rd)

e0,λ,T,+

OO ∫ t

a

˙∆λ,Ts
// C(T,Rd)

. (V.2.11)

We simplify our notations according to the time scales used. Precisely, we denote by∫ b

a

f(t)∆t =

∫ b

a

f(t)∆0,Tt,

∫ b

a

f(t)∆ 1
2
t =

∫ b

a

f(t)∆ 1
2
,Tt. (V.2.12)

Using these notations, the classical mid-point quadrature formula (see for example [13])
for an integral of a function f on [a, b] over a discrete time scale T corresponds to the 1/2-
integral of the extension f◦ of f/T over T 1

2
, i.e.

∫ b

a

f(s) ds
mid−point

≃
∫ b

a

f◦(t)∆ 1
2
,Tt =

N−1∑
i=0

f◦(ti+ 1
2
)(ti+1 − ti) =

N−1∑
i=0

f(ti+1) + f(ti)

2
(ti+1 − ti).

(V.2.13)

V.2.4 Proprieties of discrete derivative and anti-derivative

During the derivation of the mid-point Euler-Lagrange equation in Section V.3, the com-
putations mix objects coming from di�erent time scales. As a consequence, we need to precise
the connection between all these quantities.

Lemma V.1. For all f ∈ C(T,Rd), we have

∆◦,+[f◦](ti+ 1
2
) = ∆+[f ](ti), for all i = 0, ..., N − 1. (V.2.14)

Proof. Let f ∈ C(T,Rd), then

∆◦,+[f◦](ti+ 1
2
) =

f◦(ti+1)− f◦(ti+ 1
2
)

h/2

=
f(ti+1)− 1

2
[f(ti) + f(ti+1)]

h/2

=
f(ti+1)− f(ti)

h
= ∆+[f ](ti),

for all i = 0, ..., N − 1.

Mixing of terms will naturally occur in the discrete integration by parts formula. Precisely,
we have
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V.2. Discrete mid-point di�erential and integral calculus

Lemma V.2 (Discrete integration by part formula). let f ∈ C(T◦,Rd) and v ∈ C(T,Rd),
we have∫ b

a

f(t)∆◦,+[v◦](t)∆ 1
2
t = −

∫ b

a

∆ 1
2
,−[f ](σ◦(t))v(t)∆t+ f(tN− 1

2
)v(tN)− f(t 1

2
)v(t0). (V.2.15)

Proof. For all f ∈ C(T◦,Rd) and v ∈ C(T,Rd) we have∫ b

a

f(t)∆◦,+[v◦](t)∆ 1
2
t = h

N−1∑
i=0

f(ti+ 1
2
)∆◦,+[v◦](ti+ 1

2
)

= h
N−1∑
i=0

f(ti+ 1
2
)

[
v(ti+1)− v(ti)

h

]
=

N∑
i=1

f(t(i−1)+ 1
2
)v(ti)−

N−1∑
i=0

f(ti+ 1
2
)v(ti)

= h
N−1∑
i=1

[
f(t(i−1)+ 1

2
)− f(ti+ 1

2
)

h

]
v(ti) + f(t(N−1)+ 1

2
)v(tN)− f(t 1

2
)v(t0)

= −
∫ b

a

∆ 1
2
,−[f ](σ◦(t))v(t)∆t+ f(tN− 1

2
)v(tN)− f(t 1

2
)v(t0).

Two technical lemmas will be useful.

Lemma V.3. For all f ∈ C(T 1
2
,Rd), v ∈ C(T,Rd) we have∫ b

a

f(t)v◦(t)∆ 1
2
t =

∫ b

a

[f ]◦ (t)v(t)∆t+
h

2

(
f(tN− 1

2
)v(tN) + f(t 1

2
)v(t0)

)
, (V.2.16)

or equivalently∫ b

a

f(t) v◦(t)∆ 1
2
t =

∫ b

a

[f ] 1
2
,−(σ◦(t))v(t)∆t+

h

2

(
f(tN− 1

2
)v(tN) + f(t 1

2
)v(t0)

)
. (V.2.17)

Note that for v ∈ C0(T,Rd), the last term vanishes.

Proof. Let f ∈ C(T 1
2
,Rd) and v ∈ C(T,Rd). By de�nition of ∆ 1

2
-integral, we have

∫ b

a

f(t)v◦(t)∆ 1
2
t = h

N−1∑
i=0

f(ti+ 1
2
)v◦(ti+ 1

2
), (V.2.18)

As v◦(ti+ 1
2
) = (v(ti+1) + v(ti))/2, we obtain, regrouping the terms

∫ b

a

f(t)v◦(t)∆ 1
2
t = h

N−1∑
i=1

(
f(ti+ 1

2
) + f(ti− 1

2
)

2

)
v(ti) +

h

2

(
f(t(N−1)+ 1

2
)v(tN) + f(t 1

2
)v(t0)

)
.

(V.2.19)
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By de�nition, we have for i = 1, . . . , N − 1

[f ]◦ (ti) =
1

2

[
f(ti+ 1

2
) + f(ti− 1

2
)
]
, (V.2.20)

so that the �rst sum can be written as a classical discrete integral∫ b

a

f(t)v◦(t)∆ 1
2
t =

∫ b

a

[f ]◦ (t)v(t)∆t+
h

2

(
f(tN− 1

2
)v(tN) + f(t 1

2
)v(t0)

)
. (V.2.21)

This concludes the proof.

As usual, an argument similar to the Dubois-Raymond lemma is needed. We remind the
following result of the classical discrete calculus of variations:

Lemma V.4 (Discrete Dubois-Raymond lemma). Let f ∈ C(T,Rd) be a function such that∫ b

a

f(t)v(t)∆t = 0, for all v ∈ C0(T,Rd), (V.2.22)

then f(t) = 0 for all t ∈ T±.

V.3 Discrete mid-point Lagrangian systems

In this section, we use the discrete mid-point di�erential and integral calculus in order
to associate to a given Lagrangian functional a discrete analogue. We follow the strategy of
discrete embedding formalism as exposed in [32], [43], [44]. We then develop the correspond-
ing discrete calculus of variations and obtain a discrete mid-point Euler-Lagrange equation.
Our result is compared with the work of J.M. Wendlandt and J.E. Marsden in [38] about the
same problem.

V.3.1 Mid-point Lagrangian functional

A discrete functional is a mapping from C(T,Rd) in R."A particular class of discrete
functionals is obtained through the mid-point embedding of classical Lagrangian functionals.

De�nition V.8 (Mid-point Lagrangian functional). Let T be a discrete time-scale on [a, b].
A discrete functional is called a Lagrangian functional if it exists a real valued function L
de�ned on R× Rd × Rd called the Lagrangian function such that

LT(q) =

∫ b

a

L(t, q◦(t),∆◦,+[q◦](t))∆ 1
2
t, (V.3.1)

for all q ∈ C(T,Rd).

In the following, we restrict our attention to Lagrangian functions which do not depend on
time and we denote the variables by (q, v) ∈ Rd × Rd.
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V.3. Discrete mid-point Lagrangian systems

The previous de�nition of a mid-point Lagrangian functional is �xed as long as the mid-
point embedding is given. Formula (V.3.1) gives the following explicit form for the mid-point
Lagrangian functional:

LT(q) =

∫ b

a

L

(
q◦(t),∆◦,+[q◦](t)

)
∆ 1

2
t (V.3.2)

=
N−1∑
i=0

L

(
q◦(ti+ 1

2
),∆◦,+[q◦](ti+ 1

2
)

)
h (V.3.3)

=
N−1∑
i=0

L

(
q(ti+1) + q(ti)

2
,
q(ti+1)− q(ti)

h

)
h. (V.3.4)

V.3.2 Comparaison with theWendlandt-Marsden discrete Lagrangian
functional

Our discrete Lagrangian functional (V.3.1) coincides with the mid-point Lagrangian func-
tional de�ned by Wendlandt and Marsden in [38]. However, in their case, they do not
introduce discrete analogues of the derivative and anti-derivative so that the complete anal-
ogy with the classical form of a Lagrangian functional is lost. Indeed, they introduce a new
Lagrangian function Lh de�ned on Rd × Rd by

Lh(qi+1, qi) = hL(
qi+1 + qi

2
,
qi+1 − qi

h
). (V.3.5)

It must be noted that this discrete Lagrangian corresponds in our setting to a discrete integral,
namely for q ∈ C(T,Rd) we have

Lh(qi+1, qi) =

∫ ti+1

ti

L(q◦(t),∆◦,+[q◦](t))∆ 1
2
t. (V.3.6)

As a consequence, the Wendlandt-Marsden discrete Lagrangian lead to the discrete function

T+ → R,

t 7→ Lh(q
σ(t), q(t)) =

∫ σ(t)

t

L(q◦(t),∆◦,+[q◦](t))∆ 1
2
t.

(V.3.7)

The Wendlandt-Marsden discrete Lagrangian functional is then given by

S(q0, . . . , qN) =
N−1∑
i=0

Lh(qi+1, qi). (V.3.8)

The term "functional" is not clear as S is a mapping from Rd(N+1) to R. However, thanks to
the one-to-one correspondence between the data of a (q0, . . . , qN) ∈ Rd(N+1) and q ∈ C(T,Rd)
satisfying q(t0) = q0, . . . , q(tN) = qN , we can introduce a discrete functional over C(T,Rd)
denoted by LWM(q) de�ned by

LWM(q) = S(q0, . . . , qN). (V.3.9)
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A direct computation shows that, for all q ∈ C(T,Rd)

LWM(q) = LT(q). (V.3.10)

In the continuous case, the classical Lagrangian is obtained as follows

q

(q, q̇) L(q, q̇)

L (q) =

∫ t

0

L(q, q̇)dt

L

∫ t

0
· dt

L

Using our discrete di�erential and integral calculus, the discrete Lagrangian is given by

q

(q◦,∆◦,+[q◦]) L(q◦,∆◦,+[q◦])

LT(q) =

∫ t

0

L(q◦,∆◦,+[q◦])∆ 1
2
t

L

∫ t

0
·∆ 1

2
t

LT

We then recover a complete analogy between the continuous and the discrete case.

This correspondence is lost in the Wendlandt-Marsden case, precisely due to the fact that the
understanding of the mapping S as a functional over discrete functions of C(T,Rd) is not used.

Another consequence, is the fact that there is no analogue of the mapping q 7→ (q, q̇) in
Wendlandt-Marsden contrary to the previous presentation, i.e. that classical Lagrangian
function depends on two objects of di�erent nature; namely position and speed. Here again,
this is due to the fact that, as no discrete functions are used, no analogue of the derivative is
described. This di�erence of point of views induces di�erent conception of the phase space.
Indeed, if q has some unit u then q̇ has u.t−1 as unit. However, in the Wendlandt-Marsden
case, S is de�ned over quantities with the same unit, namely (qi, qi+1) breaking the signi�ca-
tion of the mapping q 7→ (q, q̇). In our case, due to the mapping q 7→ (q◦,∆◦,+[q◦]) we obtain
quantities with unit u and u.t−1 as in the classical case.

The same phenomenon explain why the Wendlandt-Marsden discrete functional is not ex-
pressed explicitly as an integral over a discrete function.

V.3.3 Discrete mid-point calculus of variations

The discrete mid-point calculus of variations follows the usual construction of a discrete
calculus of variations. We �rst specify the space of variations, i.e. the set of functions allowed
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during the deformation of the discrete Lagrangian functional.

We denote by V the set of variations de�ned by

V = {v ∈ C(T,Rd), v(a) = v(b) = 0}. (V.3.11)

We recover the usual set of variations for the order one discrete calculus of variations.

The discrete Frechet derivative of a discrete functional LT at point q in the direction v ∈ V
is given by :

DLT(q)(v) = lim
ϵ→0

LT(q + ϵv)− LT(q)

ϵ
. (V.3.12)

De�nition V.9. Let LT a discrete Lagrangian functional. A critical point of LT is a
discrete-time function q ∈ C(T,Rd), such that

DLT(q)(v) = 0, (V.3.13)

for all v ∈ V , where DLT(q) denotes the Frechet derivative of LT at q.

Our main result in this chapter is the following Theorem:

Theorem V.1 (Discrete mid-point Euler-Lagrange equation). The discrete Euler-Lagrange
equation associated to the mid-point Lagrangian functional LT (V.3.1) is given by

[
∂L

∂q
(q◦(t),∆◦,+[q◦](t))

]
1
2
,−

= ∆ 1
2
,−

[
∂L

∂v
(q◦(t),∆◦,+[q◦](t))

]
, for all t ∈ T±

1
2

. (V.3.14)

For simplicity, we denote by ⋆◦(t) the vector

⋆◦(t) = (q◦(t),∆◦,+[q◦](t)). (V.3.15)

The proof of Theorem V.1 follows the continuous strategy: We �rst compute the Frechet
derivative of LT(q).

Theorem V.2. Let v ∈ V . For all q ∈ C(T,Rd), the Frechet derivative of LT(q) is given by

DLT(q)(v) =

∫ b

a

([
∂L

∂q
(⋆◦(σ◦(t)))

]
1
2
,−

−∆ 1
2
,−

[
∂L

∂v
(⋆◦(σ◦(t)))

])
v(t)∆t. (V.3.16)

Proof. Let v ∈ V ,

LT(q + ϵv) =

∫ b

a

L

(
(q + ϵv)◦(t),∆◦,+[(q + ϵv)◦](t)

)
∆ 1

2
t. (V.3.17)

According to the linearity of the extension map given in De�nition V.4 and the linearity of
the discrete derivative ∆◦,+, we have

LT(q + ϵv) =

∫ b

a

L

(
q◦(t) + ϵv◦(t),∆◦,+[q◦](t) + ϵ∆◦,+[v◦](t)

)
∆ 1

2
t. (V.3.18)
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Denoting ⋆◦ = (q◦,∆◦,+[q◦]). A Taylor expansion of L around ⋆◦(t), gives

DLT(q)(v) =

∫ b

a

∂L

∂q
(⋆◦(t)) v◦(t) +

∂L

∂v
(⋆◦(t))∆◦,+[v◦](t)∆ 1

2
t. (V.3.19)

Using the discrete integration by part formula for v ∈ V and Lemma V.3,

DLT(q)(v) =

∫ b

a

([
∂L

∂q
(⋆◦)

]
1
2
,−
(σ◦(t))−∆ 1

2
,−

[
∂L

∂v
(⋆◦)

]
(σ◦(t))

)
v(t)∆t. (V.3.20)

A critical point of LT satis�es DLT(v) = 0 for all v ∈ V . As a consequence, we have for all
v ∈ V ∫ b

a

([
∂L

∂q
(⋆◦(σ◦(t)))

]
1
2
,−

−∆ 1
2
,−

[
∂L

∂v
(⋆◦(σ◦(t)))

])
v(t)∆t = 0. (V.3.21)

Using the discrete Dubois-Raymond lemma V.4, we conclude the proof of Theorem V.1

The discrete mid-point Euler-Lagrange equation (V.3.14) induces a numerical scheme
which enable us to determine ⋆◦(ti+1+ 1

2
) from the data of ⋆◦(ti+ 1

2
) for all i = 0, . . . , N − 2.

Indeed, from the de�nition of ∆◦,+, we have

∆◦,+[q0](ti+1+ 1
2
)) =

2

h
q0(ti+1+ 1

2
)− 2

h
q0(ti+ 1

2
)−∆◦,+[q0](ti+ 1

2
), (V.3.22)

then the de�nition of ∆ 1
2
,− and the discrete mid-point Euler-Lagrange equation V.3.14 give[

∂L

∂q
(⋆◦(ti+1+ 1

2
))

]
1
2
,−

=
1

h

(
∂L

∂v
(⋆◦(ti+1+ 1

2
))− ∂L

∂v
(⋆◦(ti+ 1

2
))

)
, (V.3.23)

as by de�nition V.5, we have[
∂L

∂q
(⋆◦(ti+1+ 1

2
))

]
1
2
,−

=
1

2

(
∂L

∂q
(⋆◦(ti+1+ 1

2
)) +

∂L

∂q
(⋆◦(ti+ 1

2
))

)
. (V.3.24)

We obtain �nally, replacing the quantity ∆◦,+[q0](ti+1+ 1
2
) by (V.3.22) in the mid-point Euler-

Lagrange equation for all i = 0, . . . , N − 2, an implicit numerical scheme allowing us to
determine q◦(ti+1+ 1

2
). Using again formula (V.3.22), we then compute ∆◦,+[q0](ti+1+ 1

2
).

Of course, one is not interested in q◦ but in q. Using the quantities q◦(ti+ 1
2
) and∆◦,+[q◦](ti+ 1

2
),

one can reconstruct q as follows:(
q◦(ti+ 1

2
)

∆◦,+[q◦](ti+ 1
2
)

)
=

(
1
2

1
2

− 1
h

1
h

)(
q(ti)
q(ti+1)

)
. (V.3.25)

As a consequence, the numerical scheme can be implemented as long as initial conditions
q◦(t 1

2
) and ∆◦,+[q◦](t 1

2
) are given, or equivalently, by �xing the values of q0 and q1.
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V.3. Discrete mid-point Lagrangian systems

V.3.4 Comparison with theWendlandt-Marsden Euler-Lagrange equa-
tion

The previous form of the discrete mid-point Euler-Lagrange equation (V.3.14) must be
compared with the one obtained by Wendlandt and Marsden in [38].

For all x, y ∈ Rd, let us denote by ⋆x,y the quantity

⋆x,y =
( x+ y

2
,
y − x

h

)
. (V.3.26)

We have
⋆qi,qi+1

= (q◦,i+ 1
2
, v◦,i+ 1

2
), (V.3.27)

where q◦,i+ 1
2
= q◦(ti+ 1

2
) and v◦,i+ 1

2
= ∆◦,+[q◦](ti+ 1

2
).

Using the discrete Lagrangian Lh de�ned in equation (V.3.5), Wendlandt and Marsden derive
the following form for the discrete Euler-Lagrange equation:

∂xLh(qi, qi+1) + ∂yLh(qi−1, qi) = 0. (V.3.28)

The previous form of the discrete Euler-Lagrange equation destroys the usual algebraic form
of the classical Euler-Lagrange equation in contrary to our presentation.

However, from a formal point of view, equation (V.3.28) coincides with our discrete mid-point
Euler-Lagrange equation (V.3.14).

Indeed, simple computations give

∂xLh(qi, qi+1) = h

[
1

2

∂L

∂q
(⋆qi,qi+1

)− 1

h

∂L

∂v
(⋆qi,qi+1

)

]
.

∂yLh(qi−1, qi) = h

[
1

2

∂L

∂q
(⋆qi−1,qi) +

1

h

∂L

∂v
(⋆qi−1,qi)

]
.

(V.3.29)

Using (V.3.27) and replacing ∂xLh(qi, qi+1) and ∂yLh(qi−1, qi) by their expressions in (V.3.28),
we obtain

[
∂L

∂q
(q◦(ti+ 1

2
),∆◦,+[q◦](ti+ 1

2
))

]
1
2
,−

−∆−, 1
2

[
∂L

∂v
(q◦(ti+ 1

2
),∆◦,+[q◦](ti+ 1

2
))

]
= 0. (V.3.30)

V.3.5 Example: mid-point discretization for Lagrangian from me-
chanics

We consider the classical class of Lagrangian from Mechanics which are of the form

L(q, v) =
1

2
v2 − V (q), (V.3.31)
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where (q, v) ∈ Rd × Rd and the potential V : Rd → R is a C1-function.

As
∂L

∂v
(q, v) = v, we have

∂L

∂v
(q◦,∆◦,+[q◦]) = ∆◦,+[q◦]. (V.3.32)

As a consequence, the mid-point Euler-Lagrange equation (V.3.14) reads for t = ti+ 1
2
∈ T±

1
2

as

q(ti+1)− 2q(ti) + q(ti−1)

h2
=

1

2

[
∂L

∂q

(
q◦(ti+ 1

2
),∆◦,+[q◦](ti+ 1

2
)
)
+
∂L

∂q

(
q◦(t(i−1)+ 1

2
),∆◦,+[q◦](t(i−1)+ 1

2
)
)]

,

(V.3.33)
which is equivalent to

q(ti+1)− 2q(ti) + q(ti−1)

h2
= −1

2

[
∂V

∂q

(
q(ti+1) + q(ti)

2

)
+
∂V

∂q

(
q(ti) + q(ti−1)

2

)]
(V.3.34)

This last equation is the one obtained by Wendlandt and Marsden in [38].

V.4 Discrete mid-point Hamiltonian systems

Having a de�nition of discrete mid-point Lagrangian systems, a natural question is to
de�ne the corresponding notion of discrete mid-point Hamiltonian systems. Following the
discrete embedding strategy, we de�ne discrete mid-point momentum as the mid-point em-
bedding of the classical continuous de�nition for momentum. However, contrary to the case
of order one, this procedure is not trivial. This is due to the fact that the Legendre condition
relates p◦ to (q0,∆◦,+[q◦]) and not directly to p as a function of C(T+,Rd). Consequently,
we have a choice to make for the de�nition of p to ensure it is coherent with the mid-point
embedding of the Legendre transform. This work leads us to a de�nition of discrete mid-
point Hamiltonian systems that is very close to the continuous de�nition. We prove that it
coincides with the de�nition proposed by Wendlandt and Marsden in [38].

V.4.1 Toward discrete Hamiltonian systems

In the classical discrete (order one) case, the natural de�nition of a discrete Hamiltonian
system associated to a given discrete Euler-Lagrange equation is coherent, meaning that the
critical point of the discrete embedding of the classical action functional corresponds to the
writing of the discrete Euler-Lagrange equation using the Legendre transform.

V.4.1.1 Discrete momentum and discrete Legendre transform

Let L a Lagrangian functional and let LT the discrete Lagrangian functional associated
to L de�ned in (V.3.1). Regarding to the discrete mid-point Euler-Lagrange equation and
following the usual way to derive Hamiltonian system in the continuous case, it is natural to
introduce the following de�nition of a discrete momentum:
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V.4. Discrete mid-point Hamiltonian systems

De�nition V.10 (Discrete momentum constraint). Let L be a Lagrangian system. We call
discrete momentum a function p ∈ C(T+,R) such that

p◦ =
∂L

∂v
(q◦,∆◦,+[q◦]). (V.4.1)

As a consequence, assuming that the function L is admissible, i.e. that for all q ∈ Rd the

mapping v 7→ ∂L

∂v
(q, v) is invertible, and denoting by g the inverse, we obtain

∆◦,+[q◦] = g(p◦, q◦). (V.4.2)

A main question is to be able to construct a function p satisfying condition (V.4.1). The
speci�c form of this relation implies that we must have a relation of the form

p(ti+1) = ∂vL(⋆◦(ti+ 1
2
)) +

h

2
w(⋆◦(ti+ 1

2
)),

p(ti) = ∂vL(⋆◦(ti+ 1
2
))− h

2
w(⋆◦(ti+ 1

2
)),

(V.4.3)

where w is a function to be determined.

In order that the previous relations induce a coherent de�nition for the function p, we must
have

p(ti) = ∂vL(⋆◦(ti− 1
2
)) +

h

2
w(⋆◦(ti− 1

2
)). (V.4.4)

The discrete mid-point Euler-Lagrange equation (V.3.14) can be used to precise a suitable
function w. Indeed, we must have

∂vL(⋆◦(ti+ 1
2
))− ∂vL(⋆◦(ti− 1

2
)) =

h

2

[
∂qL(⋆◦(ti+ 1

2
)) + ∂qL(⋆◦(ti− 1

2
))
]
. (V.4.5)

As by de�nition of p we have

∂vL(⋆◦(ti+ 1
2
))− ∂vL(⋆◦(ti− 1

2
)) =

h

2

[
w(⋆◦(ti+ 1

2
)) + w(⋆◦(ti− 1

2
))
]
, (V.4.6)

we deduce that a suitable choice for w is

w(⋆◦(ti+ 1
2
)) = ∂qL(⋆◦(ti+ 1

2
)). (V.4.7)

We then are leaded to the following de�nition of the discrete momentum:

De�nition V.11 (Discrete momentum). We call discrete momentum associated to L the
discrete function p ∈ C(T+,Rd) de�ned by

p(ti) = ∂vL(⋆◦(ti− 1
2
)) +

h

2
∂qL(⋆◦(ti− 1

2
)), (V.4.8)

for all ti ∈ T± and

p(t0) = ∂vL(⋆◦(t 1
2
))− h

2
∂qL(⋆◦(t 1

2
)). (V.4.9)
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V.4.1.2 Comparaison with Wendlandt and Marsden

In [38], Wendlandt and Marsden take as a de�nition for the discrete momentum the
quantities

p(ti) = −∂xLh(⋆qi,qi+1
) and p(ti+1) = ∂yLh(⋆qi−1,qi). (V.4.10)

Of course, the previous de�nition is not usual and far from the standard de�nition of the
momentum in the continuous case. The choice of the minus sign is also not explained. The
main remark is of course that in order that the previous equalities make sense, then we must
be sure that taking as a de�nition for all ti ∈ T+ the de�nition of p(ti) we must have

p(ti+1) = −∂xLh(⋆qi+1,qi+2
), (V.4.11)

ensuring the coherence of the de�nition of p. This is of course the case using the fact that
we are looking for discrete functions q which are solutions of the mid-point Euler-Lagrange
equation.

Expliciting the Lagrangian Lh, we recover the formula given in de�nition V.11.

We can notice that p◦ can also be computed directly in the Wendlandt and Marsden case and
coincide with our choice of a discrete function p satisfying the discrete momentum constraint.

V.4.2 Discrete Hamiltonian function and discrete Hamiltonian sys-
tems

Following the usual strategy, we consider discrete Hamiltonian function associated to L:

De�nition V.12. The discrete mid-point Hamiltonian function associated to the Lagrangian
L is the mid-point embedding of the classical continuous Hamiltonian function, i.e. for all
(p◦, q◦), we consider the discrete function

H(p◦, q◦) = −L(q◦, g(p◦, q◦)) + p◦g(p◦, q◦). (V.4.12)

Here again, as for the de�nition of the discrete mid-point momentum, the discrete analogue is
obtained directly just taking the de�nition of the classical continuous function in the discrete
framework.

Using this function, the discrete mid-point Euler-Lagrange equation (V.3.14) can be rewritten
as the following discrete system:

De�nition V.13 (Discrete mid-point Hamiltonian system). Let L be an admissible La-
grangian, then the discrete mid-point Euler-Lagrange equation (V.3.14) can be written as

(SH◦)


∆ 1

2
,−[p◦] (t) = −

[
∂H

∂q
(p◦, q◦)

]
1
2
,−
(t), for all t ∈ T+,−

1
2

.

∆◦,+[q◦] (t) =
∂H

∂p
(p◦, q◦)(t), for all t ∈ T+,−

1
2

.

(V.4.13)

56



V.4. Discrete mid-point Hamiltonian systems

Where (p, q) ∈ C(T+,Rd)×C(T,Rd), the discrete momentum p satis�es (V.4.8) and (V.4.9)
and H is de�ned by (V.4.12).

A discrete system of the form (SH◦) is called a discrete mid-point Hamiltonian system.

The implementation of the algorithm goes as follows. Choose an initial condition (p0, q0).
Then, by assumption on the form of p we have

p1 = p0 + h∂qL

(
q0 + q1

2
,
q1 − q0
h

)
, (V.4.14)

and by the Legendre relation

q1 = q0 + hg

(
p1 + p0

2
,
q0 + q1

2

)
. (V.4.15)

As a consequence, knowing (p0, q0) we can determine (p1, q1) and then (q◦(t 1
2
), p◦(t 1

2
)).

The discrete mid-point Hamiltonian system then determines the quantities (q◦(ti+ 1
2
) and

p◦(ti+ 1
2
)) recursively and as a consequence, the quantities qi+1 and pi+1 for i ≥ 1.

It seems reasonable to take the previous system as a de�nition for a discrete Hamiltonian
system. However, in order that this de�nition mimics the continuous case, it is suitable that
the solutions of this discrete system are in correspondence with critical points of a suitable
discrete action functional, the most natural choice being the discrete mid-point embedding
of the classical continuous action functional. We discuss this problem in details in the next
Section.

V.4.3 A variational approach to discrete Hamiltonian systems

As for the discrete mid-point Lagrangian functional, we de�ne the discrete mid-point
action functional using the discrete embedding strategy. Precisely, we have:

De�nition V.14 (Discrete mid-point action functional). The discrete mid-point action func-
tional associated to the given discrete Hamiltonian system is de�ned by

LH,T(p, q) =

∫ b

a

(p◦∆◦,+[q◦]−H(p◦, q◦)) ∆ 1
2
t. (V.4.16)

A natural question is whether the solutions of the discrete mid-point Hamiltonian system
coincides with the critical point of LH,T.

De�nition V.15. A couple of functions (p, q) ∈ C(T+,Rd)× C(T,Rd) is a critical point of
the discrete action functional LH,T if and only if for all variations (v, w) ∈ V × C(T,Rd),
we have

DLH,T(p, q)(v, w) = 0, (V.4.17)

where V is the set of variations de�ned in (V.3.11).

57



Chapter V. Variational Integrators- Order 2

Note that there is no constraints on the variations associated to p. As a consequence, we can
not apply directly the mid-point Euler-Lagrange equation which was derived for variations
in V . However, simple computations lead to:

Theorem V.3. Critical points of the discrete mid-point action functional (V.4.16) corre-
spond to solutions of the discrete mid-point Hamiltonian system (SH◦).

We then obtain a global coherent picture using the discrete mid-point embedding of the rela-
tion between discrete Lagrangian, discrete Hamiltonian, discrete Legendre transform under
the mid-point discretization.

Proof. By de�nition of LH,T, we consider the discrete mid-point Lagrangian functional

LH,T(p, q) =

∫ b

a

L (p◦, q◦,∆◦,+[p◦],∆◦,+[q◦])∆ 1
2
t, (V.4.18)

where
L(p, q, w, v) = pv −H(p, q). (V.4.19)

Computing the Frechet derivative of LH,T in the direction (p̃, q̃), we obtain

DLH,T(p, q)(p̃, q̃) =

∫ b

a

(
∂L
∂q

(⋆◦(t))q̃◦(t) +
∂L
∂v

(⋆◦(t))∆◦,+[q̃◦](t)

)
∆ 1

2
t

+

∫ b

a

(
∂L
∂p

(⋆◦(t))p̃◦(t) +
∂L
∂w

(⋆◦(t))∆◦,+ [p̃◦] (t)

)
∆ 1

2
t,

(V.4.20)

where ⋆◦ = (p◦, q◦,∆◦,+[p◦],∆◦,+[q◦]).

As the variation p̃ has no constraints, it remains a constant term when applying the discrete
integration by part formula V.2 and lemma V.3. Precisely, we obtain:

DLH,T(p, q)(p̃, q̃) =

∫ b

a

([
∂L
∂q

(⋆◦)

]
1
2
,−

−∆1/2,−

[
∂L
∂v

(⋆◦)

])
(σ◦(t))q̃(t)∆t

+

∫ b

a

([
∂L
∂p

(⋆◦)

]
1
2
,−

−∆1/2,−

[
∂L
∂w

(⋆◦)

])
(σ◦(t))p̃(t)∆t

+

(
∂L
∂w

(⋆◦(t 1
2
))p̃(tN)−

∂L
∂w

(⋆◦(t 1
2
))p̃(t0)

)
+
h

2

(
∂L
∂p

(⋆◦(t 1
2
))p̃(tN) +

∂L
∂p

(⋆◦(t 1
2
))p̃(t0)

)
.

(V.4.21)

The discrete Dubois-Raymond lemma gives:[
∂L
∂p

(⋆◦(t))

]
1
2
,−
(⋆◦(t))−∆ 1

2
,−

[
∂L
∂w

]
(⋆◦(t)) = 0,[

∂L
∂q

(⋆◦(t))

]
1
2
,−
(⋆◦(t))−∆ 1

2
,−

[
∂L
∂v

]
(⋆◦(t)) = 0,

(V.4.22)
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for all t ∈ T±
1
2

. Due to the fact that p̃ is free, we have

h

2

∂L
∂p

(⋆◦(tN− 1
2
)) +

∂L
∂w

(⋆◦(tN− 1
2
)) = 0,

h

2

∂L
∂p

(⋆◦(t 1
2
))− ∂L

∂w
(⋆◦(t 1

2
)) = 0.

(V.4.23)

As we have
∂L
∂p

= v − ∂H

∂p
,
∂L
∂q

= −∂H
∂q

,
∂L
∂w

= 0,
∂L
∂v

= p, (V.4.24)

equations (V.4.22) can be rewritten as[
∆◦,+[q◦]−

∂H

∂p
(p◦, q◦)

]
1
2
,−
(t) = 0,[

−∂H
∂q
(p◦, q◦)

]
1
2
,−
(t)−∆ 1

2
,−[p◦](t) = 0.

(V.4.25)

for all t ∈ T±
1
2

and same for equations (V.4.23), we have

∆◦,+[q◦](tN− 1
2
)− ∂H

∂p
(q◦(tN− 1

2
), p◦(tN− 1

2
)) = 0,

∆◦,+[q◦](t 1
2
)− ∂H

∂p
(q◦(t 1

2
), p◦(t 1

2
)) = 0.

(V.4.26)

Equations (V.4.26) can be used to simplify inductively the �rst equation of (V.4.25). Indeed,
it follows that for all t ∈ T 1

2
, we have

∆◦,+[q◦]−
∂H

∂p
(p◦, q◦) = 0. (V.4.27)

This conclude the proof.
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Variational integrators for stochastic
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Chapter VI

Stochastic Hamiltonian systems

In this chapter, we de�ne stochastic Hamiltonian systems as they were introduced by J-
M. Bismut in his seminal book "Mécanique aléatoire" in 1981 [11]. We discuss a possible
meaning of these systems from the modeling point of view as alternative to model non conser-
vative Hamiltonian systems. We then gives their main properties (variational formulation,
symplecticity, �rst integrals).

VI.1 De�nitions and examples

In 1981, J.M. Bismut de�ne in his seminal book "mécanique aléatoire" [11] a notion of
stochastic Hamiltonian systems using the theory of stochastic di�erential equations in the
sense of Stratonovich. His aim is to provide mathematical foundations for ideas of E. Nelson
[46] on stochastic mechanics as a framework to deal with quantum mechanics. The choice
of the Stratonovich framework allows him to preserve many important properties of classical
Hamiltonian systems.

De�nition VI.1 (Stochastic Hamiltonian systems). Consider the following 2d-dimensional
stochastic di�erential equation in Stratonovich sense

dp = f(t, p, q)dt+
m∑
k=1

σk(t, p, q) ◦ dWk(t), p(t0) = p0 (VI.1.1)

dq = g(t, p, q)dt+
m∑
k=1

γk(t, p, q) ◦ dWk(t), q(t0) = q0 (VI.1.2)

where Wk, (k = 1, . . . ,m), are independent standard Wiener process.
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If there exist functions H(t, p, q) and Hk(t, p, q) su�ciently smooth such that

f(t, p, q) = −∂H
∂q

(t, p, q)T, σk = −∂Hk

∂q
(t, p, q)T, (VI.1.3)

g(t, p, q) =
∂H

∂p
(t, p, q)T, γk =

∂Hk

∂p
(t, p, q)T, (VI.1.4)

for k = 1, . . . ,m, then it is a stochastic Hamiltonian system.

The solution of equations (VI.1.1)-(VI.1.2) is a phase �ow for almost every elementary
event ω ∈ Ω.

For more details, see its properties in, e.g., [11], [47].

As usual, we speak of additive noise when the di�usion coe�cients σ and γ do not depend
on (p, q), i.e. σ = σ(t) and γ = γ(t) and multiplicative noise otherwise.

Let H be a given Hamiltonian function and let us denote by H a �nite family H =
{H1, . . . , Hm} of Hamiltonian functions. We denote by S◦

H;H the stochastic Hamiltonian
system de�ned by 

dp = −∂H
∂q

dt−
m∑
k=1

∂Hk

∂q
◦ dWk, p(0) = p0,

dq =
∂H

∂p
dt+

m∑
k=1

∂Hk

∂p
◦ dWk, q(0) = q0.

(VI.1.5)

Example VI.1 (Kubo Oscillator). Kubo oscillator can be seen as a linear oscillator with
a �uctuating frequency. The stochastic di�erential equations corresponding to this system
have been de�ned by

dp = −aqdt− σq ◦ dW (t), p(0) = p0, (VI.1.6)

dq = apdt+ σp ◦ dW (t), q(0) = q0, (VI.1.7)

where a and σ are constants, p, q are of one dimension andW (t) is one-dimensional standard
Wiener process. Kubo oscillator is a stochastic Hamiltonian system with

H(p, q) =
a

2
(p2 + q2), H1(p, q) =

σ

2
(p2 + q2). (VI.1.8)

Indeed, we have

−aq = −∂H
∂q

, −σq = −∂H1

∂q
, (VI.1.9)

ap =
∂H

∂p
, σp =

∂H1

∂p
. (VI.1.10)
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VI.2. Properties of stochastic Hamiltonian systems

Example VI.2 (A Linear stochastic oscillator). A linear stochastic oscillator with additive
noise is de�ned by

dp = −qdt+ σdWt, p(0) = p0,
dq = pdt, q(0) = q0,

(VI.1.11)

where σ is constant.

Note that for additive noise, Itô and Stratonovich stochastic di�erential equations are iden-

tical, wherefore the small ◦ before dWt is omitted. Let H(p, q) =
1

2
(p2 + q2) and H1 = −σq,

the linear oscillator (VI.1.11) can be rewritten as

dp = −∂H
∂q

dt− ∂H1

∂q
dWt, p(0) = p0,

dq =
∂H

∂p
dt+

∂H1

∂p
dWt, q(0) = q0.

(VI.1.12)

Thus it is a stochastic Hamiltonian system.

Moreover, it is easy to point out that a Hamiltonian system with additive noise is a stochastic
Hamiltonian System (see [12]) seeing the fact that noise parts are only functions of t, thus
the corresponding Hk must exist.

VI.2 Properties of stochastic Hamiltonian systems

VI.2.1 Variational principle

In his fundamental work, Bismut [11] showed that the �ow of the stochastic Hamiltonian
system S◦

H;H extremises a stochastic action. Thus, stochastic version of the Hamiltonian
principle for classical Hamiltonian systems is provided. In the next, we give the formulation
of the stochastic action integral.

Let LH,H be a stochastic functional de�ned as

LH,H(p, q) =

∫ b

a

−H(p, q)dt−
m∑
k=1

∫ b

a

Hk(p, q) ◦ dWk +

∫ b

a

pdq, (VI.2.1)

where p and q are two stochastic processes.

The stochastic action integral (VI.2.1) is random, i.e. for every sample point ω ∈ Ω, a
di�erent time independent Lagrangian system is obtained.

Theorem VI.1. The solutions of the stochastic Hamiltonian system S◦
H;H are the critical

points of the action integral (VI.2.1).

Proof. Taking a variation of the functional (VI.2.1) by introducing δq and δp such that
δq(a) = δq(b) = 0 as follows

δp = ϵp̃, δq = ϵq̃ (VI.2.2)

63



Chapter VI. Stochastic Hamiltonian systems

where ϵ << 1.

LH,H(p+ ϵp̃, q + ϵq̃) =

∫ b

a

−H(p+ ϵp̃, q + ϵq̃)dt−
m∑
k=1

∫ b

a

Hk(p+ ϵp̃, q + ϵq̃) ◦ dWk

+

∫ b

a

(p+ ϵp̃)d(q + ϵq̃)

=

∫ b

a

−
(
H(p, q) + ϵ

∂H

∂p
(p, q)p̃+ ϵ

∂H

∂q
(p, q)q̃ + θ(ϵ)

)
dt

−
m∑
k=1

∫ b

a

(
Hk(p, q) + ϵ

∂Hk

∂p
(p, q)p̃+ ϵ

∂Hk

∂q
(p, q)q̃ + θ(ϵ)

)
◦ dWk

+

∫ b

a

pdq + ϵ

∫ b

a

p̃dq + ϵ

∫ b

a

pdq̃ + ϵ2
∫ b

a

p̃dq̃

= LH,H(p, q) + ϵ

∫ b

a

(
−∂H
∂p

(p, q)p̃− ∂H

∂q
(p, q)q̃

)
dt

−ϵ
m∑
k=1

∫ b

a

(
∂Hk

∂p
(p, q)p̃+

∂Hk

∂q
(p, q)q̃

)
◦ dWk

+ϵ

(∫ b

a

p̃dq +

∫ b

a

pdq̃

)
+ θ(ϵ)

(VI.2.3)

As Stratonovich integral follows the usual rules of di�erential calculus, thus the term

∫ b

a

pdq̃

can be rewritten using the integration by part as:∫ b

a

pdq̃ = −
∫ b

a

q̃dp+

[
pq̃

]b
a︸ ︷︷ ︸

=0

. (VI.2.4)

As a consequence we obtain

DLH,H(p, q) =

∫ b

a

p̃

(
−∂H
∂p

(p, q)dt−
m∑
k=1

∂Hk

∂p
(p, q) ◦ dWk + dq

)

+

∫ b

a

q̃

(
−∂H
∂q

(p, q)dt−
m∑
k=1

∂Hk

∂q
(p, q) ◦ dWk − dp

)
.

(VI.2.5)

It is easy to see that a solutions (p, q) of the stochastic Hamiltonian system S◦
H;H veri�es

DLH,H(p, q) = 0 then it is a critical point of LH,H.

VI.2.2 Symplecticity

Recall the di�erential 2-form ω2 de�ned by

ω2 = dp(t) ∧ dq(t) =
d∑

i=1

dpi ∧ dqi. (VI.2.6)
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As for deterministic Hamiltonian systems, It was demonstrated that the phase �ow of the
stochastic Hamiltonian system S◦

H;H preserves symplectic structure meaning that the trans-
formation (p0, q0) → (p, q) satis�es

dp ∧ dq = dp0 ∧ dq0. (VI.2.7)

Indeed, we have the following theorem

Theorem VI.2. The phase �ow of the stochastic Hamiltonian system S◦
H;H preserves sym-

plectic structure.

Proof can be found in [12]. As a consequence, External powers of the 2-form ω2 remain
invariant under the transformation of S◦

H;H and when considering the nth external power, it
results in the preservation of phase volume.

VI.2.3 First integrals of stochastic Hamiltonian systems

An important notion in dynamical systems is the notion of �rst integrals, which are func-
tions which are constant on the solutions of the system. For classical di�erential equations
of the form

dx

dt
= f(t, x), x ∈ Rd, (VI.2.8)

a function I : Rn → R is a �rst integral if I(x(t)) is a constant on each solution of (VI.2.8).
When I is su�ciently regular, this is equivalent to

d(I(x(t))

dt
= 0, (VI.2.9)

over the set of solutions of (VI.2.8).

This de�nition can be generalized in at least two di�erent ways in the stochastic case that
we call weak and strong.

Let us consider a stochastic di�erential equation of the form

dXt = b(t,Xt)dt+ σ(t,Xt) ◦ dWt. (VI.2.10)

A function I : Rd → R is a weak �rst integral of (VI.2.10) if E(I(Xt)) is constant over the
solutions of (VI.2.10).

A more stringent notion called strong �rst integral is obtain by imposing that I satis�es

d(I(Xt)) = 0. (VI.2.11)

In the Hamiltonian case, a characterization of strong �rst integrals can be obtained. We have
([11]):
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Chapter VI. Stochastic Hamiltonian systems

Lemma VI.1. A function I : R2d → R is a strong �rst integral of the stochastic Hamiltonian
system S◦

H,H with H = {H1, . . . , Hm} if and only if

{I,H} = 0 and {I,Hi} = 0, i = 1, . . . ,m, (VI.2.12)

where {., .} denotes the Poisson bracket de�ned for two functions by

{f, g} =
∂f

∂p

∂g

∂q
− ∂f

∂q

∂g

∂p
. (VI.2.13)

As an example, for the Kubo oscillator (VI.1.6)-(VI.1.7) we have:

Theorem VI.3. The Hamiltonian H0 = (1/2)(p2 + q2) is a strong �rst integral of Kubo
oscillator S◦

H;H with H = aH0 and H = {σH0} where a and σ are constants.

Proof. We have by the properties of the Poisson bracket that {H0, H0} so that the conditions
of Lemma (VI.1) are trivially satis�ed.

As a consequence, all the solutions of the Kubo oscilator are on concentric circles with radius√
a

2
(p20 + q20). This property will be used to test the accuracy of a given numerical scheme.

VI.3 Stochastic Hamiltonian system as non-conservative
systems

When dealing with stochastic dynamics, it becomes apparent that certain information or
properties may be susceptible to loss or may distort. In the context of stochastic Hamiltonian
systems, the initial challenge lies in interpreting the concept of total energy. This distinction
arises from the fact that the terminology used to describe total energy in these systems is
less straightforward compared to the deterministic counterparts.

In deterministic Hamiltonian systems, the function denoted as H represents the total energy
of the system. Moreover, it possesses a crucial property of being a �rst integral (only if
H does not depends explicitly on time t) , meaning that the total energy remains constant
throughout the system's evolution, i.e the funtion H satis�es

dH(p(t), q(t)) = 0. (VI.3.1)

However, in stochastic Hamiltonian systems, this clarity is elusive, neither the function H nor
Hk directly corresponds to the total energy. The absence of a clear-cut total energy function
complicates our understanding of energy conservation in these systems. Indeed, by Lemma
VI.1, the unperturbed energy H remains �rst integral for stochastic Hamiltonian system only
if

{H,Hk} = 0, (VI.3.2)

for all k = 1, . . . ,m, where {·, ·} is the classical Poisson bracket.
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VI.3. Stochastic Hamiltonian system as non-conservative systems

In most cases, these commutation properties are not satis�ed, and as a result, the unper-
turbed energy H is typically not conserved. As for the linear oscillator example (VI.1.11),
the second moment of the solution of the linear oscillator (VI.1.11) with initial conditions
p0 = 0, q0 = 1, satis�es

E[p(t)2 + q(t)2] = 1 + σ2t. (VI.3.3)

Sine H(p, q) =
1

2
(p2 + q2), we can deduce that

E[H] =
1

2
(1 + σ2t), (VI.3.4)

which implies the linear growth of the HamiltonianH with respect to time t (see [48]), i.e., the
Hamiltonian H is not conserved contrarily to the case of deterministic Hamiltonian systems
where the Hamiltonian is preserved for all time t unless it depends explicitly on t. this
observation suggests that stochastic Hamiltonian systems can be regarded as Hamiltonian
systems disturbed by certain nonconservative force. Unlike conventional nonconservative
forces that dissipate energy from the system, this force has the ability to both dissipate or
�add� energy to the system, as demonstrated by the behavior of the linear stochastic oscillator.
Hence stochastic Hamiltonian systems are considered as Hamiltonian system disturbed by
certain nonconservative force as represented by L.Wang and al. in [30]. This point of view
will be discussed in details later.
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Chapter VII

Variational integrators- Wong Zakai

In this chapter, we construct variational integrators to study the dynamics of stochastic
Hamiltonian systems using their Wong-Zakai approximation. This approach can be used to
interpret and justify previous work of Wang et al [30] on stochastic variational integrators.
A comparison with the work of N. Bou-Rabee et al. [28] is also given. The problem of the
convergence of discrete scheme for a Wong-Zakai approximation to a discrete scheme for
stochastic Hamiltonian system is discussed.

VII.1 Introduction

In the stochastic case, symplectic integrators were constructed in particular by G.N. Mil-
stein in a series of papers (for example [12], [15]) using a direct methods meaning that
he �rst derives conditions under which a general numerical scheme preserves symplecticity
and then he constructs integrators. Using the Marsden's approach, two a priori di�erent
constructions of variational integrators were constructed by N. Bou-Rabee in [28] and by L.
Wang and co-workers in [30]):

- The construction of L. Wang and al. [30] is di�cult to follow because it identi�es
two classes of objects of di�erent nature. In particular, they identify the Stratonovich

integral

∫ b

a

f(t)◦dWt with

∫ b

a

f(t)Ẇ (t)dt althoughW is nowhere di�erentiable so that

all the computations and integrators developed in [30] need to be discussed more closely
or amended. This is in particular the case for the variational formulation and proof
proposed in [30] (see Section VII.2).

- In [28], the method follows Marsden's approach to variational integrators by using
classical approximation of the Stratonovich integral. However, they consider a special
class of stochastic Hamiltonian systems where the con�guration variable q of every
solutions is di�erentiable with respect to t, or equivalently that all the Hk does not
depend on p.
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VII.1. Introduction

In this chapter, we compare the two constructions.

First, we give a meaning to the idea of L. Wang et al. [30] using the classical notion of
Wong-Zakai di�usion approximation [49], [50]. Formally, a smooth approximation Wϵ

of the Wiener process W is constructed so that lim
ϵ→0

Wϵ = W .

As an example, one can use the classical averaging

Wϵ(t) =
1

ϵ

∫ t+ϵ

t

Wsds.

Using this approximation, a Stratonovich di�erential equations

dX = b(t,X)dt+ σ(t,X) ◦ dWt,

is obtained as the limit when ϵ goes to zero of the family of random di�erential equations

dXϵ

dt
= b(t,Xϵ) + σ(t,X)Ẇϵ,

the randomness comes from the term Ẇϵ.

Applying this method to stochastic Hamiltonian system S◦
H;H, we obtain a one parameter

family of non-autonomous (random) Hamiltonian systems de�ned by the Hamiltonian Hϵ

given by

HWZ,ϵ = H +
m∑
k=1

HkẆϵ,k,

converging to the stochastic Hamiltonian system S◦
H;H. It must be noted that Wong-Zakai

approximation for stochastic Hamiltonian systems has already been used at the beginning by
J-M. Bismut in his study of the properties of Hamiltonian di�usions (see [11], Chapter 1 p.36
and Chapter 5, Section 2 p.224). Of course, one has to be careful because, as already noted by
J-M. Bismut ([11],p.26-27) not all the properties of classical Hamiltonian can pass to the limit.

These Hamiltonian systems can of course be obtained via the Hamilton principle by min-
imising the random functional

LHWZ,ϵ
(p, q) =

∫ b

a

(pq̇ −HWZ,ϵ(p, q, t))dt

The idea is then to use well-known techniques for the construction of variational integra-
tors of deterministic Hamiltonian systems to construct variational integrators for stochastic
Hamiltonian systems.
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Chapter VII. Variational integrators- Wong Zakai

We then have the following diagram:

X

v.p

��

Xϵϵ→0
oo

v.p.

��

LH,H LHWZ,ϵϵ→0
oo

LH,H,h

h→0

OO

d.v.p.

��

LHWZ,ϵ,h

h→0

OO

d.v.p.

��

Xn Xϵ,n?ϵ→0
oo

where v.p. and d.v.p. stand for the Hamilton principle and discrete Hamilton principle re-
spectively. Xn and Xϵ,n represent the variational integrators obtained from LH,H and LHWZ,ϵ

respectively.

Of course, the convergence of Xϵ,n to Xn is not trivial. The result depends drastically on
the quadrature used in the Wong-Zakai approximation.

As an example, let us consider the linear Stratonovich stochastic di�erential equation

dXt = aXtdt+ bXt ◦ dWt. (VII.1.1)

For X0 ∈ R, the solution is given by Xt = X0 exp(at+ bWt). The Wong-Zakai approximation
leads to the one parameter family of random di�erential equations

dx

dt
= ax+ bxẆt,ϵ. (VII.1.2)

As we have an ordinary di�erential equation, one can use all the classical tools to discretize
it.

In �gure VII.1, we present the simulationsX1 obtained using the Euler scheme, X21 mixing
a quadrature formula of order 2 for the deterministic part and Euler schema for the random
part, X12 mixing a Euler scheme for the deterministic part and an mid-point approximation
for bx, X2 is obtained using the mid-point approximation and �nally the exact solution de-
noted XE. We have taken a = 1.5 and b = 1, N = 100 and the increement h = 0.01.

We observe in �gure VII.1 a good agreement between the exact solution and simulations as
long as a quadrature of order 2 is used for the random part. This phenomenon is ultimately
related to the de�nition of the Stratonovich integral which use a mid-point quadrature formula
in its de�nition via Riemann sums which is of order 2.

Due to the non regularity of Ẇt,ϵ, the order of the numerical scheme is not given by the
order of the qudrature formula. For a discussion of the order of a numerical scheme using
classical quadrature formula, we refer to the book [51].
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VII.2. Wong-Zakai approximation Hamiltonian

Figure VII.1: Di�erent discretizations of the Wong-Zakai approximation.

VII.2 Wong-Zakai approximation Hamiltonian

Let S◦
H;H be a stochastic Hamiltonian system. We denote by Wk,ϵ, k = 1, . . . ,m, a smooth

approximation of the k independent Wiener processes Wk, k = 1, . . . ,m.

Let us de�ne the Wong-Zakai approximation Hamiltonian (or simply Wong-Zakai
Hamiltonian) of the stochastic Hamiltonian system S◦

H;H by:

HWZ,ϵ(p, q, t) = H(p, q) +
m∑
k=1

Hk(p, q)Ẇϵ,k(t, ω), (VII.2.1)

for all ϵ > 0 and ω ∈ Ω.

Two remarks about the Wong-Zakai Hamiltonian:

- The Wong-Zakai Hamiltonian de�ne a random Hamiltonian systems. The random-
ness comes from the approximation of the stochastic part.

- Even if we begin with a family autonomous Hamiltonian system (H,Hk, k = 1, . . . ,m)
the resulting Wong-Zakai Hamiltonian is non-autonomous. As a consequence, these
Hamiltonians generally represent nonconservative dynamics.
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Chapter VII. Variational integrators- Wong Zakai

The previous remarks allows us to interpret which kind of dynamics stochastic Hamiltonian
systems model: Taking H as an initial Hamiltonian dynamics which is conservative, one con-
sider non-autonomous Hamiltonian random perturbations of H leading to non-conservative
random Hamiltonian dynamics. The stochastic Hamiltonian dynamics corresponds to the
asymptotic dynamics generated by these non-conservative random Hamiltonian dynamics.
The randomness implies that we can have dissipation or increasing of energy. This point
of view can be compared with the one presented in Wang et al. in [30] which takes a re-
verse presentation: They begin by modeling nonconservative forces and state that stochastic
Hamiltonian systems can be viewed as "Hamiltonian systems.... disturbed by certain non-
conservative force" called "random force" in ([30], p.589).

A natural question with respect to stochastic Hamiltonian systems and their Wong-Zakai
approximations is related to the behaviour of the energy. Indeed, when no stochastic pertur-
bation is present, we have

d

dt
(H(pt, qt, t)) =

∂H

∂t
(pt, qt, t), (VII.2.2)

which implies for autonomous Hamiltonian systems H(p, q) the conservation of energy rep-
resented by H.

In the stochastic case, even the formulation of such conservation property is di�cult be-
cause we have not a single function representing the energy for such systems. contrarily to
the case of the Wong-Zakai approximations where HWZ,ϵ stands for the energy of the system.

Several questions can be studied:

- The only object having some intrinsic meaning of energy in the stochastic case is the
unperturbed energy H. As a consequence, we can look for the preservation of H under
the dynamics of the stochastic Hamiltonian system.

- Does the behaviour of the energy HWZ,ϵ say something about the dynamics of the
stochastic Hamiltonian system ?

- Do we have connection between the �rst integrals of the stochastic Hamiltonian system
and its Wong-Zakai approximations ?

The answer is not so simple.

As an example, if one consider the Kubo stochastic Hamiltonian system (VI.1.6)-(VI.1.7),
we can prove the following simple result:

Lemma VII.1. For the stochastic Kubo oscillator we have:

- The unperturbed energy H is preserved under the stochastic perturbation.

- All the Wong-Zakai Hamiltonians HWZ ,ϵ are nonconservative.
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VII.2. Wong-Zakai approximation Hamiltonian

- The unperturbed energy H is preserved under all the dynamics of the Wong-Zakai ap-
proximations.

Indeed, for all ϵ > 0, we have as usual

d

dt
(HWZ,ϵ(pt, qt, t)) =

∂HWZ,ϵ

∂t
(pt, qt, t) =

m∑
k=1

Hk(pt, qt)
..
Wϵ,k(t, ω), (VII.2.3)

if each Wϵ,k is a su�ciently smooth approximation of the Wiener process Wk. As
..
Wϵ,k will

take arbitrary positive or negative values, we will obtain a nonconservative system.

However, looking for the behaviour of H(pt, qt) over the solution of the Wong-Zakai Hamil-
tonian, we obtain

d

dt
(H(pt, qt)) = −

m∑
k=1

(
∂H

∂p

∂Hk

∂q
− ∂H

∂q

∂Hk

∂p

)
Ẇϵ,k = −

m∑
k=1

{H,Hk}Ẇϵ,k (VII.2.4)

where {·, ·} is the classical Poisson bracket de�ned for two functions by {f, g} =
∂f

∂p

∂g

∂q
−

∂f

∂q

∂g

∂p
.

In the Kubo case, we have H1 = (σ/a)H so that {H,H1} = 0 and H is a �rst integral of
the Wong-Zakai dynamics.

This property goes to the limit. Indeed, using the Stratonovich di�erential calculus, one
have

d (H(pt, qt)) = −
m∑
k=1

(
∂H

∂p

∂Hk

∂q
− ∂H

∂q

∂Hk

∂p

)
dWk = −

m∑
k=1

{H,Hk}dWk (VII.2.5)

so that dH = 0 for the stochastic Kubo oscillator meaning that the stochastic Hamiltonian
preserve the unperturbed energy H of the system.

This simple example shows that the behaviour of the Wong-Zakai energy HWZ,ϵ does not
give signi�cant information about the dynamics of the stochastic Hamiltonian systems in the
contrary to the unperturbed energy H.

Moreover, the use of stochastic Hamiltonian systems as model for "nonconservative" forces
acting on the unperturbed Hamiltonian H seems not so clear. Indeed, in the Kubo case, as
proved, the unperturbed energy is preserved. However, the Kubo example is highly non
generic. Indeed, using (VII.2.5), it is easy to see that in order to ensure the preservation of
the energy H for the stochastic Hamiltonian system, one needs to have {H,Hk} = 0 for all
k = 1, . . . ,m (see [11], Theorem 4.2 p.230). These commutation properties are in general
not satis�ed so that the unperturbed energy is usually not preserved. As a consequence,
stochastic Hamiltonian systems are generically associated to "nonconservative" behaviours.

The computations made previously shows that:
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Lemma VII.2. If I is a �rst integral of the stochastic Hamiltonian system then I is a �rst
integral of each Wong-Zakai Hamiltonian.

As a consequence, Wong-Zakai Hamiltonians preserve many qualitative properties of the
stochastic Hamiltonian system and are then good candidates for the construction of numer-
ical integrator.

We denote by SHWZ,ϵ
the associated Hamiltonian system de�ned by:

dp

dt
= −∂H

∂q
−

m∑
k=1

∂Hk

∂q
Ẇϵ,k,

dq

dt
=

∂H

∂p
+

m∑
k=1

∂Hk

∂p
Ẇϵ,k,

(VII.2.6)

By classical result on Hamiltonian systems, we have:

Theorem VII.1. Solutions of SHWZ,ϵ
correspond to the critical points of the random func-

tional

LHWZ,ϵ
(p, q) =

∫ b

a

(pq̇ −HWZ,ϵ(p, q, t))dt. (VII.2.7)

Theorem VII.1 is a simple consequence of the classical Hamilton's principle for each Wong-
Zakai Hamiltonians. It must be noted that the corresponding result in Wang et al. [30] is
what they call the stochastic Hamilton's principle (see [30], Theorem 2.3 p. 591) as long as
what they call stochastic Hamiltonian system written as (see [30], equations (18)-(19)):

dp

dt
= −∂H

∂q
−

m∑
k=1

∂Hk

∂q
◦ Ẇk,

dq

dt
=

∂H

∂p
+

m∑
k=1

∂Hk

∂p
◦ Ẇk,

(VII.2.8)

where Wk (k = 1, . . . ,m) is assumed to be independent Wiener processes. However, the
previous system has no meaning from the mathematical point of view unless we interpret it
as (VII.2.6). Indeed, if (VII.2.8) is to be interpreted as a Stratonovich saying ◦Ẇt stands for
the notation ◦dWk then the left hand side must be dp or dq and a dt must appear after the
deterministic part. Moreover, as already pointed out by the authors (see [30], after equation
(17)) a Wiener process is nowhere di�erentiable so that the notation Ẇ is subject to caution.
The main point is that the Lagrangian functional used by Wang et al. [30] whose critical
points correspond to solutions of (VII.2.8) is given by

L (p, q) =

∫ b

a

(pq̇ −H(p, q))dt−
m∑
k=1

∫ b

a

Hk(p, q) ◦ dWk,t. (VII.2.9)

However, this functional has no meaning if (VII.2.8) is interpreted as a Stratonovich
equation unless q is di�erentiable with respect to t meaning that all the Hk depend only on
q. It must be noted that this assumption is precisely the one made by N. Bou-Rabee et al.
in [28]. However, such assumption is not made in [30] so that (VII.2.9) must be interpreted
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as (VII.2.7). This point of view on [30] is reinforced by the fact that only the classical
Dubois-Raymond theorem is used (see [30],Lemma 2.2 p.590) in the proof of ([30], Theorem
2.3 p.591) using the fact that we have a term Ẇtdt in the functional and not a ◦dWt.

VII.3 Wong-Zakai variational integrators

In this section, we derive variational integrators obtained using Wong-Zakai Hamiltonians
and their variational formulations. As already reminded in the introduction, one can not
use arbitrary quadrature formula for the discretization of the random part as it impacts the
convergence of the resulting scheme to the solutions of the underlying stochastic Hamilto-
nian system. In order to illustrate this phenomenon, we compare two variational integrators
obtained from the Wong-Zakai Hamiltonians using the strategy of discrete embedding ex-
posed in the previous part: an order one scheme and an order two which uses the mid-point
embedding developed in Chapter V. We show that, as expected, the order one variational
integrator does not reproduce the correct dynamics of the stochastic Hamiltonian system
contrary to the mid-point scheme. This Section must be compared with the results exposed
in ([30], Section 2 p. 592-595).

VII.3.1 Construction of discrete Lagrangian functional: principles

The construction of the discrete functional is done using the discrete embedding formal-
ism, i.e. thinking all the written objects using integrals and derivatives as certain integro-
di�erential operators and constructing their discrete analogue using a given discrete di�er-
ential and integral calculus.

The Hamiltonian functional for example can be understood as follows:

Let us denoted by O(

∫ b

a

·dt, d
dt
,H) the integro-di�erential operator acting on couple (p, q)

of C0 × C1 functions by

O(

∫ b

a

·dt, d
dt
,H)(p, q) :=

∫ b

a

(pq̇ −H(p, q, t))dt. (VII.3.1)

By de�nition, the classical Hamiltonian functional LH(p, q) is then de�ned by

LH(p, q) = O(

∫ b

a

·dt, d
dt
,H)(p, q), (VII.3.2)

which indicates the speci�c role of the classical di�erential and integral calculus.

Let T be a given discrete time-scale with increment h and let us denote formally by ∆

and

∫ b

a

·∆t the discrete di�erential and integral calculus de�ned over the functional space

C(T,Rd) which is �xed.
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Chapter VII. Variational integrators- Wong Zakai

The discrete functional Lh is then de�ned for couple of functions (p, q) ∈ C(T+,Rd) ×
C(T,Rd) by

Lh(p, q) := O(

∫ b

a

·∆t,∆, H)(p, q). (VII.3.3)

The algebraic form of the integro-di�erential operator O is exactly the same in the continuous
and discrete case. The only di�erence is that the underlying integral and di�erential calculus
is adapted to the functional context here to consider discrete functions.

Di�erent choices in the discrete di�erential and integral calculus will lead to di�erent dis-
crete functional and naturally to di�erent numerical scheme. It must be noted that some
discrete operators need an extension of the functional space C(T,Rd) in order for example
to obtain better quadrature formulas. An example of such phenomenon is given by the mid-
point di�erential and integral calculus de�ned in the previous section.

This way to construct discrete analogue of functional can be compared with the one used
by Wang et al. in ([30], Section 2, p. 593). They �x �rst a set of time ti on a given
interval [a, b]. This corresponds to the choice of a given discrete time-scale T. The discrete
functional, denoted by S h, h = ti+1 − ti, is de�ned on a �nite family of couples {(pn, qn}N0
by choosing di�erent quadrature formula for q̇ and the integral of a function over [ti, ti+1].
The family {(pn, qn}N0 is the analogue of looking for two functions in C(T,Rd). The choice
of the quadrature formula for q̇ corresponds to the de�nition of a speci�c discrete di�erential
calculus. A quadrature formula for a given integral over [ti, ti+1] corresponds to a speci�c
discrete integral calculus. The basic ingredients can then be compared between the two
approach. But, the discrete embedding point of view tells exactly how the integro-di�erential
structure of the functional is changed by passing from a continuous setting to a discrete one.
This property is completely lost in the usual construction proposed by Wang et al. in ([30],
(46) p.593).

VII.3.2 Examples of discrete functional

Using the discrete embedding associated to the choice (∆+,

∫ b

a

·∆t) we obtain the follow-

ing order one discrete random functional:

LHWZ,ϵ,h,1(p, q) := O(

∫ b

a

·∆t,∆+, HWZ,ϵ)(p, q), (VII.3.4)

or more explicitly

LHWZ,ϵ,h,1(p, q) := h
n−1∑
i=0

[
pi

(
qi+1 − qi

h

)
−HWZ,ϵ(pi, qi, ti)

]
. (VII.3.5)

In the Kubo case, we obtain:

LHWZ,ϵ,h,1(p, q) := h
n−1∑
i=0

[
pi

(
qi+1 − qi

h

)
− a

2

(
p2i + q2i

)
− σ

2

(
p2i + q2i

)
∆Wi

]
, (VII.3.6)
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VII.3. Wong-Zakai variational integrators

where ∆Wi := W (ti+1)−W (ti).

Using the mid-point embedding of the Hamiltonian functional we then obtain the discrete
random functional LHWZ,ϵ,h,2 de�ned by

LHWZ,ϵ,h,2(p, q) := O(

∫ b

a

·∆1/2t,∆◦,+, HWZ,ϵ)(p◦, q◦), (VII.3.7)

for all (p, q) in C(T+,Rd)× C(T,Rd).

This case illustrates the fact that in order to obtain quadrature formula of higher order,
one must enrich the discrete functional space C(T,Rd). Indeed if one want to de�ne the
mid-point quadrature formula from a given discrete function in f ∈ C(T,Rd), we have to
consider an extension of f to a function in C(T◦,Rd).

The mid-point discrete random functional is explicitly given by

LHWZ,ϵ,h,2(p, q) := h
n−1∑
i=1

[(
pi + pi+1

2

)(
qi+1 − qi

h

)
−HWZ,ϵ

(
pi + pi+1

2
,
qi + qi+1

2
,
ti + ti+1

2

)]
.

(VII.3.8)
In the Kubo case, we obtain:

LHWZ,ϵ,h,2(p, q) = h
n−1∑
i=1

[(
pi + pi+1

2

)(
qi+1 − qi

h

)
− a

2

((
pi + pi+1

2

)2

+

(
qi + qi+1

2

)2
)

−σ
2

((
pi + pi+1

2

)2

+

(
qi + qi+1

2

)2
)
∆Wi

]
.

(VII.3.9)
which is exactly the same as the one presented by Wang et al. in ([30], Example 4.1, equations
(61)-(62)).

VII.3.3 Variational integrators

Classical results on order one embedding ensures that critical points of the discrete func-
tional LHWZ,ϵ,h,1 are given by:

∆−[p] = −∂HWZ,ϵ

∂q
(p, q, t), (VII.3.10)

∆+[q] =
∂HWZ,ϵ

∂p
(p, q, t), (VII.3.11)

for all t ∈ T±.
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Chapter VII. Variational integrators- Wong Zakai

For order two, we have proved in Chapter V that critical points of the Wong-Zakai discrete
functional LHWZ,ϵ,h,2 corresponds to solutions of the discrete Hamiltonian system

∆ 1
2
,−[p◦] =

[
−∂HWZ,ϵ

∂q
(p◦, q◦)

]
1
2
,−
, (VII.3.12)

∆◦,+[q◦] =
∂HWZ,ϵ

∂p
(p◦, q◦), (VII.3.13)

for all t ∈ T±
1/2.

VII.4 Numerical examples

VII.4.1 The Kubo oscillator

The problem of convergence of Wong-Zakai variational integrators to the solutions of the
stochastic Hamiltonian system can be illustrated in the Kubo case. As we have said, the fact
that Stratonovich stochastic integrals are de�ned using mid-point quadrature formula implies
that using only order one quadrature for the Wong-Zalai approximation will lead to wrong
simulations. As an example, taking as initial conditions p0 = 1, q0 = 0 and h = ϵ = 0.02, for
a = 1.5 and b = 1, we obtain

Figure VII.2: Order 1 (left) and order 2 (right) Wong-Zakai variational integrators

As expected the case of order 1 does not give a satisfying result instead of the mid-point
one.

We can also look for the behaviour of the Wong-Zakai energy and of the unperturbed
energy over Wong-Zakai simulations with the two variational integrators.

In Figure VII.3, we see that the unperturbed energy is not preserved indicating that the
order one Wong-Zakai integrator is not appropriate.
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VII.4. Numerical examples

Figure VII.3: Wong-Zakai energy HWZ,ϵ (left) and unperturbed energy H (right) with an
order 1 Wong-Zakai variational integrators

Figure VII.4: Wong-Zakai energy HWZ,ϵ (left) and unperturbed energy H (right) with an
order 2 Wong-Zakai variational integrators

Figure VII.4 shows that the mid-point variational integrator very well behaves with respect
to the preservation of the unperturbed energy. We see also that the behavior of the Wong-
Zakai energy does not give many insights on the dynamics of the stochastic Hamiltonian
system.

VII.4.2 Hamiltonian systems with two additive noises

Let us consider the stochastic Hamiltonian system with two additive noises de�ned by

dp = −qdt+ γ ◦ dW2(t), (VII.4.1)

dq = pdt+ σ ◦ dW1(t), (VII.4.2)
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Chapter VII. Variational integrators- Wong Zakai

with

H(p, q) =
1

2
(p2 + q2), H1(p, q) = σp, H2(p, q) = −γq. (VII.4.3)

Note that for systems with additive noise, Itô and stratonovich are equivalent due to the fact
that the Wang-Zakai correction vanishes when the drift coe�cients are constant.

The Wong-Zakai variational integrators of order one for the system (VII.4.1)-(VII.4.2) are
given by

pi = pi−1 − hqi + hγẆϵ,2,i, (VII.4.4)

qi+1 = qi + hpi + hσẆϵ,1,i, (VII.4.5)

where Ẇϵ,k,i =
1

ϵ
∆Wϵ,k,i =

1

ϵ
(Wk(ti+1 + ϵ)−Wk(ti + ϵ)) ∼ 1√

ϵ
N (0, 1), for k = 1, 2.

We consider the following reference solution for the system (VII.4.1)-(VII.4.2) de�ned by
(see [12])

X̃i+1 = H̃X̃i + ṽk

=

[
cos h sin h
−sin h cos h

]
X̃i +

1

h

 σsin h∆W1,i + 2γsin2h

2
∆W2,i

−2σsin2h

2
∆W1,i + γsin h∆W2,i

 , (VII.4.6)

where X̃i = (p̃i, q̃i).
In Figure VII.5, we present the simulations for the reference solution and the numerical

integrators obtained using the Wong-Zakai variational integrators (VII.4.4)-(VII.4.5), with
initial conditions p0 = 0 and q0 = 0 for σ = 0, γ = 1, h = 0.02, ϵ = 0.02 and t ≤ 200.

As we see, the two paths coincide visually. We can deduce that in the case of systems
with additive noise, an order 1 quadrature formula for both deterministic and random part
provides a good approximation for the exact solution seeing the fact that the Stratonovich
setting is not important anymore meaning that a quadrature of order 2 for the random part
is not a necessary conditions to have convergence.
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Figure VII.5: Order 1 Wong-Zakai variational integrators (red) and the reference solution
(blue).
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Chapter VIII

Stochastic Variational integrators

In this chapter, we construct variational integrators by discretizing the stochastic varia-
tional principle directly, rather than its Wong-Zakai approximation. We prove that as long
as the mid-point embedding is used for the deterministic part, one obtains the same result as
for the order two mid-point Wong-Zakai variational integrator.

VIII.1 Introduction

In Chapter VII, we have obtained variational integrators for stochastic Hamiltonian taken
a Wong-Zakai approximation of order ϵ = h where h is the time increment associated to a
given uniform time-scale T and using the mid-point embedding of Part A.
A natural problem is then:

can we construct variational integrators directly from the stochastic functional (VI.2.1) ?

This problem has been studied N. Bou-Rabee and co-authors in [28], [29]. However,
they restrict there attention to stochastic Hamiltonian of the form SH,H1(p) meaning that a
stochastic (p(t), q(t)) satis�es

dq = −∂H
∂p

(p(t), q(t))dt, (VIII.1.1)

or equivalently

q̇(t) = −∂H
∂p

(p(t), q(t)). (VIII.1.2)

The function q being di�erentiable, one can prove that the solution of the stochastic Hamil-
tonian system correspond to critical points of the stochastic functional

L (p, q) =

∫ b

a

(pq̇ −H(p, q))dt−
∫ b

a

H1(p, q) ◦ dWt. (VIII.1.3)
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However, this framework does not even cover the classical stochastic Kubo oscillator and is
de�nitely too restrictive.

As already reminded in Chapter VI, solutions of stochastic Hamiltonian systems corre-
spond to critical points of the stochastic functional (VI.2.1) given by

LH,H(p, q) =

∫ b

a

−H(p, q)dt−
m∑
k=1

∫ b

a

Hk(p, q) ◦ dWk +

∫ b

a

p ◦ dq,

The mid-point discrete embedding was de�ned for classical integral and di�erential expres-
sions. However, using the classical Riemann approximation formula for the Stratonovich
integral, we obtain an extension to cover stochastic integral. This is done in the next Sec-
tion.

VIII.2 Discrete mid-point stochastic functional

In order to discretize the stochastic functional (VI.2.1), we use the classical Riemann
approximation of the Stratonovich integral remind in Chapter II. As a consequence a given
Stratonovich integral ∫ b

a

f(t) ◦ dWt (VIII.2.1)

is discretized over a time-scale T de�ned by T = {ti = a+ih, i = 0, . . . , n} with h = (b−a)/n
as

n−1∑
i=0

f(ti+1/2)(Wti+1
−Wti). (VIII.2.2)

Using the mid-point embedding formalism, this integral can be rewritten as

h
n−1∑
i=0

f(ti+1/2)∆◦,+[W◦](ti+1/2) (VIII.2.3)

for f ∈ C(T◦,R) and W ∈ C(T,R) or equivalently∫ b

a

f(t)∆◦,+[W◦](t)∆1/2t, (VIII.2.4)

for f ∈ C(T◦,R). The same approximation procedure leads to a discretized version of the
integral ∫ b

a

p ◦ dq (VIII.2.5)

by ∫ b

a

p◦(t)∆◦,+[q◦](t)∆1/2t (VIII.2.6)

with p ∈ C(T+,Rd) and q ∈ C(T,Rd).

Using the previous discretization, we then obtain the following discrete stochastic func-
tional:
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De�nition VIII.1 (Mid-point stochastic functional). let T be a discrete time-scale on [a, b].
We de�ne for all (p, q) ∈ C(T+,Rd) × C(T,Rd) the discrete stochastic functional associated
to the classical one given in (VI.2.1) using mid-point di�erential and integral calculus by

L ◦
H,H,T(p, q) =

∫ b

a

LH (p◦(t), q◦(t),∆◦,+[p◦](t),∆◦,+[q◦](t))∆ 1
2
t−

m∑
k=1

∫ b

a

Hk(p◦(t), q◦(t))∆◦,+[W◦](t)∆ 1
2
t,

(VIII.2.7)
where

LH(x, y, w, v) = x · v −H(x, y). (VIII.2.8)

We then obtain the following result:

Theorem VIII.1. For all time-scale T, we have

L ◦
H,H,T(p, q) = LHWZ,ϵ=h,h,2(p, q) (VIII.2.9)

where LHWZ,ϵ=h,h,2 denotes the discrete mid-point random functional LHWZ,ϵ,h,2 de�ned in
(VII.3.8) for Wong-Zakai approximation when ϵ = h and using the classical average of the
Wiener process.

As a consequence, the Wong-Zakai variational integrator for ϵ = h coincides exactly
with the stochastic variational integrator directly constructed from the discretization of the
stochastic functional.
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Part C

Dynamics of stochastic Hamiltonian

systems and Arnold di�usion
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Chapter IX

Instabilities of Hamiltonian systems-Arnold

di�usion

In this chapter, we give an overview of instabilities of perturbed integrable Hamiltonian
systems in the deterministic case. We recall the notion of integrable Hamiltonian and their
main dynamical properties. Following H. Poincaré, we state the fundamental problem of
dynamics and the two main theorems in Hamiltonian dynamics in this direction known as
the Kolmogorov-Arnold-Moser (KAM) theorem and the Nekhoroshev theorem. We discuss
the dynamical consequences of these theorems. The dynamics outside of what are called
the KAM tori is then explored introducing the notions of Arnold's web and whiskered tori.
Finally, using these notions we explain V.I. Arnold's approach to the Hamiltonian chaos
conjecture or Arnold's conjecture which states that perturbed integrable Hamiltonian systems
display global instability. We �nish with a stochastic version of the fundamental problem of
dynamics.

IX.1 Integrable Hamiltonian systems

A completely integrable Hamiltonian system can be written as

H(I, θ) = H0(I) (IX.1.1)

where I = (I1, . . . , Id) ∈ Rd are the actions, θ = (θ1, . . . , θd) ∈ Td are the angles and Td is a
d-dimensional torus. The terminology of "integrable" comes from the fact that the equations
of motion which are given by

İ = −∂H0(I)

∂θ
= 0,

θ̇ =
∂H0(I)

∂I
= ω(I),

(IX.1.2)

where ω represents the frequency of non-linear oscillations, can be solved explicitly.
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Indeed, the solutions of system (IX.1.2) can be written as

I = I0,
θ = ω(I)t+ θ0.

(IX.1.3)

A trajectory (I(t), θ(t)) with initial condition (I0, θ0) when t = 0 belongs to the d-dimensional
torus TI0 de�ned by

TI0 = {(I, θ) ∈ Rd × Td; I = I0}. (IX.1.4)

As a consequence, the phase space is foliated by invariant tori.

Figure IX.1: Phase space.

The dynamics on a torus TI0 depends on the properties of the frequency ω(I0).

A frequency ω = (ω1, . . . , ωd) ∈ Rd is called resonant if there exists k = (k1, . . . , kd) ∈ Zd\{0}
such that

k.ω = k1ω1 + · · ·+ kdωd = 0. (IX.1.5)

Let I0 ∈ Rd and ω(I0) ∈ Rd be a non resonant frequency then each trajectories with initial
conditions on TI0 is dense on TI0 .

On the contrary, when ω(I0) is resonant, each trajectory with initial condition on TI0 is a
periodic orbit.

IX.2 Poincaré fundamental problem of dynamics

H. Poincaré [4] has introduced what he calls the fundamental problem of dynamics which
consists in studying the dynamics of perturbed integrable Hamiltonian systems. Precisely, let
H0 be an integrable Hamiltonian system and V (I, θ) an arbitrary function. A perturbation
of H0 is then de�ned by

Hϵ(I, θ) = H0(I) + ϵV (I, θ) (IX.2.1)

where ϵ is a dimensionless perturbation parameter that is assumed to be very small (0 < ϵ≪
1).
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For ϵ = 0, we have the initial integrable system whose dynamics stay on tori. When ϵ ̸= 0,
natural questions are then:

- Let I0 ∈ Rd and TI0 the unperturbed associated torus. Under which conditions TI0 is
preserved under the perturbation ?

- If the torus TI0 is preserved, what is the dynamics on it ?

- If the torus TI0 is not preserved, what can be said about the dynamics ?

The �rst two questions are solved by the well knownKolmogorov-Arnold-Moser (KAM)
theorem due to A. Kolmogorov, V.I. Arnold and J. Moser in the sixties. We refer to classical
textbook for precise statements and proofs (see for example [52],[53],[54],[55],[56]).

The main result is that under some technical condition on the unperturbed Hamiltonian
(non degeneracy condition), a torus TI0 is preserved if its frequency ω(I0) is su�ciently non
resonant (diophantine condition). As this condition is open and generic, one can prove that
the set of preserved torus tends to full measure when ϵ goes to zero, meaning that "many"
tori are preserved [8]. Moreover, one can prove that the preserved torus is ϵ-close to the
initial torus and that the dynamics on it is conjugated to a rotation.

For torus with a resonant frequency, one can proved that they give rise to what is called
partially hyperbolic tori of dimension less than d with stable and unstable manifold (see D.
Treshev [57]).

We call KAM tori the set of preserved tori given by the KAM theorem. For trajectories on
KAM tori, we have no instability as the action stays close to the initial torus.

What can be said in the complementary set of the KAM tori ?

The answer depends drastically on the number of degrees of freedom of the Hamiltonian
system. Precisely, we have:

- If d ≤ 2, the phase space is disconnected by the set of KAM tori. As a consequence,
the action variable is stable.

- if d > 2, the complementary of KAM torus is connected and a conjecture due to V.I.
Arnold [58] called Hamiltonian chaos [59] or the ergodic hypothesis states that there
exists trajectories connecting two arbitrary neighborhood of the energy surface.

However, the instability in the action variables is controlled by the Nekhoroshev theorem
[60], [61] which provides the stability of action variables over an exponentially large time.
Precisely, there exist positive constants a, b and ϵ0 such that for all 0 < ϵ < ϵ0, any solution
(I(t), θ(t)) satis�es

| I(t)− I(0) |< ϵb (IX.2.2)

for all t ∈ [0, T (ϵ)] where T (ϵ) = 1
ϵ
exp( 1

ϵa
).
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In order to understand the dynamics outside the KAM tori and over in�nite time, one
needs more informations on the structure of resonant tori and then to understand what is
the structure of resonances in the initial integrable system.

IX.3 Arnold's web

Let H be a given Hamiltonian system and h ∈ R a real value. The energy manifold of
H associated to the value h is denoted by Hh and is de�ned by

Hh = {(I, θ) ∈ Rd × Td, H(I) = h}. (IX.3.1)

For a non singular Hamiltonian H the manifold Hh is a submanifold of Rd×Td of dimension
2d− 1.

We denote by π : Rd × Td → Rd the projection in the action space de�ned by π(I, θ) = I.

An invariant torus T of H of dimension d is then of co-dimension (2d− 1)− d = d− 1 in the
energy manifold. When d ≥ 3 the co-dimension is greater than 2 permitting a priori di�usion
of trajectories in the complementary set of KAM tori.

Let H be an integrable Hamiltonian system and Sh = π(Hh). The resonance set of H,
denoted by Rh, is de�ned by

Rh = {I ∈ Sh, ∃k ∈ Zd \ {0}, ω(I).k = 0} (IX.3.2)

and represents the set of actions values leading to resonant frequencies of H.

The structure of this set depends drastically on the value on the number d of degrees of
freedom.

- When d ≤ 2, the set Rh is discrete and dense in the energy manifold.

- When d ≥ 3, the set Rh is a connected set which is dense in the energy manifold.

An illustration of this phenomenon can be given by choosing the quadratic integrable Hamil-
tonian system de�ned by

H0(I, θ) =
1

2
(I21 + I22 + · · ·+ I2d). (IX.3.3)

Let h > 0, the projection of the energy manifold Hh in the action space Sh is de�ned by

1

2
(I21 + I22 + · · ·+ I2d) = h, (IX.3.4)

which gives a d− 1 dimensional sphere centered at the origin of radius
√
2h.

The resonance set is easily described for H. Indeed, frequencies are given by

ω(I) = (I1, . . . , Id), (IX.3.5)
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and the resonance set is

Rh = {I ∈ Sh, ∃k = (k1, . . . , kd) ∈ Zd \ {0}, k1I1 + · · ·+ kdId = 0}. (IX.3.6)

A possible way to understand geometrically this set is the following:

For each k ∈ Zd \ {0}, the set I1k1 + · · · + Idkd = 0 is an hyperplane of dimension d − 1 in
Rd perpendicular to the vector k = (k1, . . . , kd) whose coordinates are integers. The set of
resonant actions is then obtain by taking the intersection of this hyperplane and the sphere
Sh. The intersection of an hyperplane passing trough the origin and the sphere gives what
is called a great circle as longs as d ≥ 3.

Precisely, for d = 2, the hyperplane are reduced to rational slope line in the plane passing
through the origin and de�ned by k1I1 + k2I2 = 0. The resonant set is then obtained by
taking the intersection of all these lines with a circle of radius

√
2h.

Figure IX.2: n = 2

The intersection of lines with rational slopes leads to a dense subset of the circle which is
however disconnected.

For d = 3, the structure changes. We again observe the density of the resonant points in Sh.
Furthermore, given that two great circles on a sphere always intersect in two points, we can
also deduce that Rh is connected.
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Figure IX.3: Arnold web for n = 3 .

For d ≥ 3, the set Rd is called the Arnold's web due to the seminal work of V.I. Arnold [58]
on the instability of Hamiltonian systems for d ≥ 3 and the fact that this set forms indeed a
"web" in Sh.

An interesting consequence of the connectedness and the density of the Arnold's web is that
taking two arbitrary points A = I1 and B = I2 in the action space Sh and two arbitrary
open neighborhoods W1 and W2, one can �nd a path on Rh going from W1 to W2.

Another way to say that is the following: taking two arbitrary point in neighborhood of KAM
tori, one can �nd a path along the Arnold web connecting this two neighborhoods.

Figure IX.4: Action space covered by Arnold web

The fundamental idea of V.I. Arnold in [58] was to use this set as a support for creating
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trajectories that explore the entire energy surface as long as one can construct trajectories
di�using along the resonant set.

In order to explicit more clearly this strategy, one needs to understand the dynamics in the
neighborhood of the Arnold's web. This is done in the next Section.

IX.4 Dynamics along the Arnold's web: whiskered tori

Let us consider a perturbed integrable Hamiltonian system

Hϵ(I, θ) = H0(I) + ϵV (I, θ) (IX.4.1)

and a resonant torus for H0 meaning that its frequency ω(I) satis�es k.ω(I) = 0 for a given
k ∈ Zd \ {0}. D. Treshev [57] has proved that such torus will break in sub tori with stable
and unstable manifolds called partially hyperbolic tori or whiskered tori.

The dimension of the underlying whiskered tori depends on the dimension of the web gener-
ated by the k ∈ Zd \ {0} satisfying the resonance condition. If this web is of dimension l, we
say that the resonance is of order l.

For a resonance of order 1 the dynamics of the perturbed Hamiltonian along the resonance
can be modeled by a Hamiltonian system of the form

Hϵ(Ĩ , p, θ̃, q) = H0(Ĩ , θ̃) + Pϵ(p, q) + o(ϵ), (IX.4.2)

where Ĩ ∈ Rd−1, θ̃ ∈ Td−1, (p, q) ∈ R × T and Pϵ(p, q) is the pendulum Hamiltonian
de�ned by

Pϵ(p, q) =
1

2
p2 + ϵ(cosq − 1). (IX.4.3)

The dynamics of the pendulum Hamiltonian Pϵ is given by
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Figure IX.5: Phase portrait of the Hamiltonian IX.4.3.

This system is 2π-periodic in q. For q ∈ [0, 2π[ we have only one hyperbolic (saddle) equi-
librium point at the origin O = (0, 0) with stable and unstable manifolds denoted by W s(O)
and W u(O) respectively also called the separatrices of the �xed point. This terminology
comes from the fact that separatrices separate in two di�erent zones the dynamics:

- one which is enclosed, consisting of one centre equilibrium surrounded by regular dy-
namics which corresponds to small oscillations around the stable equilibrium position
of the pendulum.

- A zone outside the separatrices which corresponds to oscillations which are making a
complete round inde�nitely.

Forgetting in a �rst approximation the o(ϵ) terms, one can understand the local geometry
near a simple resonance as follows:

The topological product of the saddle point O with a (d − 1)-dimensional torus de�ned by
Ĩ = Ĩ0 in Sh leads to a whiskered tori whose stable and unstable manifold are given by the
topological product of the separatrices with Td−1.

We then have a (d− 2)-parameters family of whiskered tori de�ned by

H0(Ĩ , 0) = h. (IX.4.4)

The (d− 2)-parameter family of whiskered tori form what is called a normally hyperbolic
manifold (see [62]) denoted by T in the following.

93



Chapter IX. Instabilities of Hamiltonian systems-Arnold di�usion

Figure IX.6: dynamic along the resonance when ϵ ̸= 0.

As an example, when H0(I) =
1

2
(I21 + I22 + I23 ) and taking the simple resonance associ-

ated to k = (0, 0, 1) one obtain all the frequencies of the form ω(I) = (I1, I2, 0) and the
great circle associated to this resonance in a �xed energy surface is then de�ne by the in-
tersection between the plane I3 = 0 and the sphere of radius

√
2h with h > 0. The simple

resonance is parametrized by
1

2
(I21 + I22 ) = h. The set T is then obtain as the topological

product between this circle and T2. Each point along the circle corresponds to a saddle point.

Normally hyperbolic manifolds have the property of being stable under small perturba-
tion. As a consequence, T is preserved under perturbation. On T the dynamic is those of a
perturbation of an integrable Hamiltonian system, meaning that the (d− 1)-dimensional tori
on T are preserved as long as there frequency satis�es the conditions of the KAM theorem.
We then obtain by perturbation a (a priori discrete) set of whiskered tori.

In the pendulum, the stable and unstable manifold coincide, i.e. are homoclinic. Generi-
cally, a small perturbation due to the o(ϵ) term will produce a transversal intersection of the
stable and unstable manifold then inducing a zone called a stochastic layer as proved in
[63]�[65]. However, as proved in [66], [67] the intersection of stable and unstable manifolds
of a given whiskered torus is exponentially small.

We have now all the ingredient to discuss the Arnold's mechanism for di�usion.
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IX.5 Arnold di�usion

The existence of a connected and dense Arnold's web for d ≥ 3 and the fact that along
resonances we have family of whiskered tori which have generically transversal intersection of
the stable and unstable manifold has leaded V.I. Arnold to formulate the following conjecture
called Arnold's conjecture of Hamiltonian chaos:

Arnold's conjecture of Hamiltonian Chaos: "for a generic perturbation V , there
exist ϵ0 > 0 such that, for all points I ′ and I ′′ belonging to the projection in actions space of
energy Hh = H−1(h), there exist orbits connecting an arbitrarily small neighborhood of the
torus I = I ′ and an arbitrarily small neighborhood of the torus I = I ′′ ."

It means that despite the KAM tori we will have asymptotically in ϵ a global instability
in the energy manifold no matter the smallness of ϵ as long as ϵ ̸= 0.

To support his conjecture, V.I. Arnold has constructed an explicit example of a perturba-
tion of a three degree of freedom integrable Hamiltonian systems displaying a di�usion in the
action space [58]. He starts with a Hamiltonian representing the dynamics along a simple
resonance of the form

Hϵ,µ(I, ϕ) = H0(I) + ϵH1(I, ϕ) + ϵµH2(I, ϕ, t), (IX.5.1)

with I = (I1, I2) ∈ R2, ϕ = (ϕ1, ϕ2) ∈ T2, t ∈ R and

H0 = I21 + I22 , (IX.5.2)

H1 = (cosϕ1 − 1), (IX.5.3)

H2 = (cosϕ1 − 1)(sinϕ2 + cost). (IX.5.4)

where ϵ > 0 and µ > 0 are dimensionless small parameters.

It must be noted that instead of considering directly a three degree of freedom Hamiltonian
system, V.I. Arnold takes a two degree of freedom integrable Hamiltonian system H0 per-
turbed by a time dependent perturbation which is 2π-periodic.

Moreover, we have two parameters which play di�erent roles.

- When ϵ = µ = 0, we have a two degree of freedom integrable Hamiltonian system.

- When ϵ ̸= 0 and µ = 0, hyperbolicity is "tuned on" but integrability is retained. It
corresponds in D. Treschev [57] to the pendulum term Pϵ(I1, ϕ1). In particular, we have
a one parameter family of whiskered tori which appears together with their homoclinic
stable and unstable manifolds.

- When ϵ ̸= 0 and µ ̸= 0 and assuming that µ is much smaller than ϵ, integrability is
destroyed and an instability is expected due to the transversal intersection of the stable
and unstable manifolds of the whiskered tori along the family.
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A main property of the perturbation choosen by V.I. Arnold is that H2 is equal to zero on
the family of whiskered tori. As a consequence, the complete continuous family of whiskered
tori is preserved under perturbation.

A standard argument proves that if a given whiskered torus T1 has stable and unstable
manifold which intersect transversally then, for T2 su�ciently close to T1, we have also a
transversal intersection between the unstable manifold of T1 and the stable manifold of T2,
i.e. an heteroclinic connection.

As a consequence, in the Arnold's example, one can construct easily a family T1, . . . , Tk of
whiskered tori such that the unstable manifold W u(Ti) of Ti intersect the stable manifold
W s(Ti+1) of Ti+1 for i = 1, . . . , k − 1. Such a family is called a chain of whiskered tori.

Figure IX.7: Dynamic along the resonance when ϵ ̸= 0, µ ̸= 0.

It can be proved ([6], [7]) that there exists an open set of trajectories connecting an arbitrary
small neighborhood of T1 to an arbitrary small neighborhood of Tk.
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Figure IX.8: Dynamic along the resonance when ϵ ̸= 0, µ ̸= 0.

However, two di�culties appear when one want to adapt the construction of V.I. Arnold for
a generic perturbation :

- In general, not all the family of whiskered tori is preserved by a perturbation. We have
"gaps" around preserved whiskered torus in the one parameter family of size

√
ϵ.

- For generic perturbation, the splitting of the sepatrices is exponentially small (see [67])
which means that only tori in an exponentially small neighborhood of a given whiskered
torus can be connected. However, due to the gap between two successive whiskered
tori, no connection can be obtained. This is the gap problem which has been studied
by numerous authors.
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Figure IX.9: Gap problem.

Of course, all the previous di�culties arise only if we restrict the set of perturbation to deter-
ministic perturbations. A natural idea is to see if by considering a stochastic perturbations
one observe new possibilities.

IX.6 A stochastic fundamental problem of dynamics

Let H0 be a given integrable Hamiltonian system and V a perturbation. We denote by
Sϵ
H0,V

the Hamiltonian system associated to the Hamiltonian

Hϵ(I, ϕ) = H0(I) + ϵV (I, ϕ). (IX.6.1)

We also denote by S◦,ϵ
H0,V

the stochastic Hamiltonian system de�ned by

dI = −∂V
∂ϕ

◦ dWt,

dϕ =
∂H0

∂I
dt+ ϵ

∂V

∂I
◦ dWt.

(IX.6.2)

The stochastic fundamental problem of dynamics is to study stochastic Hamiltonian systems
of the form S◦,ϵ

H0,V
.

Our aim is, speci�cally in the context of Arnold di�usion, to �x a given integrable Hamiltonian
H0, a perturbation V and to study numerically the dynamical e�ect induced by considering
S◦,ϵ
H0,V

instead of Sϵ
H0,V

. In particular, we are interested in the strength and speed of Arnold
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di�usion in the stochastic case with respect to the deterministic one.

This is done in the next chapter focusing on a very particular class of integrable Hamiltonian
systems called the skeleton Hamiltonian.
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Chapter X

Skeleton Hamiltonian

We give a self contain presentation of skeleton Hamiltonian as de�ned by G. Zaslavski in
his seminal book "Hamiltonian chaos and fractional dynamics" [39]. We describe in particular
the associated Arnold web and give full proof for results announced in [39] dealing with the
group of symmetries of these set and the classi�cation of skeleton Hamiltonian admitting
a connected in�nite Arnold web. We then study numerically a particular perturbation of
skeleton Hamiltonian leading to di�usion along the Arnold web in the deterministic and
stochastic framework. We show that the stochastic character of the perturbation induces an
increase of the domain of di�usion and moreover an acceleration of the di�usion along the
Arnold web.

X.1 Introduction

As reminded in the previous Chapter, the idea of V.I. Arnold for constructing di�usion
orbits has two folds [58]:

- First, a rich structure made of whiskered torus appears along the resonance web. The
main point is that the resonance web is dense in a given energy surface as long as we
have three or more degrees of freedom.

- The stable and unstable manifold of each of these tori can intersect for su�ciently
small perturbations. We then obtain a connected set of stable and unstable manifolds
connecting invariant tori. This set is called a stochastic web. The idea is then to
construct an open set of di�usion orbits along this structure, with the hope of being
able to travel across the entire energy surface.

Many di�culties arise, but one can greatly simplify the previous construction by consid-
ering a Hamiltonian for which the stochastic web is easily described, which is, in general, not
possible. Usually, one has access to the resonance web, but the perturbation of it leading to
the stochastic web is, in general, not known.
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In [39], G. Zaslavsky introduce what he called skeleton Hamiltonians which are precisely
Hamiltonian systems for which the stochastic web can be easily described as a lattice.

Precisely, let q ∈ N∗, we denote by θq the angles

θq =
2π

q
. (X.1.1)

Following G. Zaslavsky ([39],(7.23) p.104), a skeleton Hamiltonian is de�ned for all (u, v) ∈
R2 by

Hq(u, v) = −K
q

q∑
j=1

cos (v cos(jθq)− u sin(jθq)) . (X.1.2)

These Hamiltonian display for certain values of q a rich web of separatrices called a stochas-
tic web in ([39],p.97) or Arnold web. The dynamics of these Hamiltonian is called weakly
chaotic by G. Zaslavsky (see [39],p.97). The chaotic dynamics taking place in a tiny area
along the stochastic web separating domains of regular integrable dynamics.

In [39], G. Zaslavsky concentrates on the symmetry satis�ed by the skeleton Hamiltonian
and very few numerical simulation of the behaviour of the dynamics along the stochastic web
are given and proof of various statements are missing, in particular concerning the structure
of the stochastic web.

In this chapter, we completely characterize the geometrical structure of the stochastic web. In
particular, we provide full proofs concerning the skeleton Hamiltonian possessing a "lattice"
stochastic web as well as their symmetry properties. We then study numerically the di�usion
along the Arnold web in the deterministic or stochastic case.

X.2 Structure of Arnold web for skeleton Hamiltonian

X.2.1 Crystallographic Arnold web

Skeleton Hamiltonian possesses a special kind of Arnold web which are supported by
lattices. Precisely:

De�nition X.1. A lattice Arnold web for a two degree of freedom Hamiltonian system is a
lattice graph made of separatrices and saddle points.

The existence of an invariant structure supported by a lattice is very restrictive because
it means that the Hamiltonian system must be invariant by the translation and rotation
associated to the description of the lattice. For skeleton Hamiltonian systems, we have the
following result:

Theorem X.1. For all q ∈ N∗, the skeleton Hamiltonian Hq is invariant under the action
of the rotation Rq of angle θq = 2π/q.
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Proof. Let Rq : R2 → R2 be the rotation of angle θq = 2π/q de�ned by

Rq(u, v) =

(
cos θq −sin θq
sin θq cos θq

)(
u
v

)
=

(
u′

v′

)
, (X.2.1)

we have
u′ = cos θqu− sin θqv.
v′ = sin θqu+ cos θqv.

(X.2.2)

Hq (Rq(u, v)) = Hq (u
′, v′)

= −K
q

q∑
j=1

cos (v′ cos(jθq)− u′ sin(jθq))

= −K
q

q∑
j=1

cos (v cos(jθq − θq) + u sin(θq − jθq))

= −K
q

q∑
j=1

cos (v cos((j − 1)θq)− u sin((j − 1)θq)u)

= −K
q

q−1∑
j=0

cos (v cos(jθq)− u sin(jθq)) ,

(X.2.3)

since qθq = 0 (mod 2π), we conclude that

Hq (Rq(u, v)) = Hq(u, v). (X.2.4)

Assume that a skeleton Hamiltonian Hq possesses a lattice Arnold web. Then, from
Theorem X.1, this lattice must be invariant by the rotation Rq. However, this is not always
possible. Indeed, for a given lattice, we have restriction on possible allowed rotations in order
to be compatible with translations: this is the content of the crystallographic restriction
theorem [68] which asserts that for two dimensional lattices, the only rotational symmetries
compatible with translation are the ones with an angle given by θq where q = 2, 3, 4, 6. We
then speak of crystallographic Arnold web.

Theorem X.2. If an Arnold's crystallographic web exists for a skeleton Hamiltonian Hq

then q ∈ {2, 3, 4, 6}.

For q = 2, we have
H2(u, v) = −K cos(v), (X.2.5)

which leads to one dimensional disconnected Arnold web. Indeed, the dynamics in R2 is
simply given by straight lines parallel to the u-axes (Figure X.1).

Indeed, a two dimensional lattice Arnold web can only occur for q ∈ {3, 4, 6}, then we
have the following result:

Theorem X.3. A skeleton Hamiltonian system admits a crystallographic Arnold web if and
only if q ∈ {3, 4, 6}.

In order to prove that H3, H4 and H6 possess e�ectively a crystallographic Arnold web, we
must study the set of equilibrium points. As we have H6 = H3, we can restrict our attention
to H3 and H4.
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Figure X.1: Isolines for H2.

X.2.2 Equilibrium points of the three- and four-fold skeleton Hamil-
tonian

For a given q ∈ N, we denote by Eq the set of equilibrium points of Hq.

X.2.2.1 Equilibrium points of the four-fold symmetric skeleton Hamiltonian

The skeleton Hamiltonian for q = 4 is given by

H4 = −K
2
(cos v + cos u). (X.2.6)

The equations of motion are

u̇ =
K

2
sin v,

v̇ = −K
2
sin u.

(X.2.7)

The equilibrium points E4 are the solutions of the system

u̇ = 0,
v̇ = 0.

(X.2.8)

Equivalently,
sin v = 0,
sin u = 0.

(X.2.9)

Which leads to
E4 = {pk,k′ = (kπ, k′π), k, k′ ∈ Z}. (X.2.10)

The eigenvalues at a given equilibrium point pk,k′ are λ = ±1 if k + k′ is odd and λ = ±i if
k+ k′ is even. Only equilibrium points pk,k′ with k+ k′ is odd can belong to the Arnold web
as there are saddle points. A main result is:

103



Chapter X. Skeleton Hamiltonian

Lemma X.1. All the saddle equilibirum points of E4 have energy Ec
4 = 0.

Proof. Let k, k′ ∈ Z such that k + k′ = 2m+ 1 for m ∈ Z. We have

H4(pk,k′) = −K
2

(
(−1)k + cos((2m+ 1− k)π)

)
= −K

2
((−1)k + cos(kπ − π)) = 0. (X.2.11)

X.2.2.2 Equilibrium points of three-fold symmetric skeleton Hamiltonian (q=3)

The skeleton Hamiltonian for q = 3 is given by

H3 = −K
3

(
cos v + 2 cos(

√
3

2
u) cos(

v

2
)

)
. (X.2.12)

The set of equilibirum points E3 is given by:

Lemma X.2. The set of equilibrium points E3 of the three-fold symmetric skeleton Hamilto-
nian system is described by the following families

p1k,k′ = ( π√
3
+ 2√

3
k′π, π + 2kπ),

p2k,k′ = ( 2√
3
kπ, 2k′π),

p3k,m = ( 2√
3
kπ, 2(π ± π

3
) + 4m′π),

p4k,m = ( 2√
3
kπ,±2π

3
+ 4m′π),

(X.2.13)

for all (k, k′,m,m′) ∈ Z4.

Proof. The equations of motion are given by

u̇ =
K

3
sin(

v

2
)

(
2 cos

v

2
+ cos(

√
3

2
u)

)
,

v̇ = − K√
3
cos

v

2
sin(

√
3

2
u).

(X.2.14)

The equilibrium points E3 are the solutions of the system
K

3
sin

v

2
(2 cos

v

2
+ cos(

√
3

2
u)) = 0,

− K√
3
cos(

v

2
) sin(

√
3

2
u) = 0.

(X.2.15)

The second equation leads to v = π + 2kπ or u = 2√
3
kπ.

Let v = π + 2kπ, then the �rst equation gives
√
3
2
u = π

2
+ k′π with k′ ∈ Z. The �rst family

of equilibrium points p1k,k′ , (k, k
′) ∈ Z2 is then de�ned by

p1k,k′ = (
π√
3
+

2√
3
k′π, π + 2kπ). (X.2.16)
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Let u = 2√
3
kπ, then in the �rst equation gives v

2
(2 cos(v

2
) + (−1)k) = 0. We then have

v = 2k′π or cos(v
2
) = −(−1)k

2
.

The �rst condition leads to the family p2k,k′ of equilibrium points de�ned for all (k, k′) ∈ Z2

by

p2k,k′ = (
2√
3
kπ, 2k′π). (X.2.17)

The second condition is more complicated. If k′ = 2m, then we obtain v = 2(π ± π
3
) + 4m′π

and if k′ = 2m+ 1 then v = ±2π
3
+ 4m′π.

We then have two new families of equilibrium points p3k,m et p4k,m′ de�ned for all (k,m,m′) ∈
Z3 by

p3k,m = (
2√
3
kπ, 2(π ± π

3
) + 4m′π) and p4k,m = (

2√
3
kπ,±2

π

3
+ 4m′π). (X.2.18)

This concludes the proof.

In the following, We precise the nature of each equilibrium points of the family pi, i =
1, . . . , 4.

Lemma X.3. All equilibrium point of the family p1 are hyperbolic and of energy Ec
3 = K/3.

This is a simple computation.

The second family p2 mixes two kind of equilibrium points.

Lemma X.4. Let us denote by p2even the set of equilibirum points p2k,k′ such that k + k′ is
even and by p2odd otherwise. All the equilibirum points of p2even (resp. p2odd) are elliptic (resp.
hyperbolic) with energy −K (resp. K/3 = Ec

3).

We leave the details to the reader.

Lemma X.5. All the equilibrium points of the p3 family are elliptic. The energy of a given
equilibrium point p2k,m is −K/6 if k is even and K/2 when k is odd.

For the last family, we obtain:

Lemma X.6. All the equilibrium points of the p4 family are elliptic.

Using this result, we can precise the dynamics on the crystallographic Arnold web when
q = 3 and q = 4.

X.2.3 Crystallographic Arnold web for q = 3 and q = 4

Using the previous results, we have the following structural theorem for q = 3.

Theorem X.4. For q = 3 (or q = 6), there exists a crystallographic Arnold web of energy
Ec

3 = K/3.
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Figure X.2: Crystallographic Arnold web for q = 3.

The main feature of a crystallographic Arnold web is to form an in�nite connected web made
of separatrices and saddle points. For q = 3, it is presented in Figure X.2.

Proof. Indeed, let us look for the surface of the energy level Ec
3 denoted by HEc

3
. It is de�ned

by
HEc

3
= {(u, v) ∈ R2, H3(u, v) = Ec

3}
=
{
(u, v) ∈ R2, −K

3

(
cos v + 2 cos(

√
3
2
u) cos(v

2
)
)
= K

3

}
.

(X.2.19)

Using standard trigonometric relations, the previous equation can be written as

cos(v/2) cos

(
v +

√
3u

4

)
cos

(
v −

√
3u

4

)
= 0. (X.2.20)

The �rst condition cos(v/2) = 0 leads to an in�nite set of parallel lines to the u axes de�ned
by v = π+2kπ, k ∈ Z. The previous equation generates also two in�nite parallel set of lines
which are transverse to the previous set and given by v = ±

√
3u+ 2π + 4k′π, k′ ∈ Z.

As a consequence, we have a connected set of lines. Moreover, this set tiles the entire
plane. We have two families of tiles: hexagons and equilateral triangles, leading to the
so-called kagome lattice. At each intersection of lines, we have hyperbolic points whose
separatrices are supported by the lines.

A similar result can be proved for q = 4.

Theorem X.5. For q = 4, there exists a crystallographic Arnold web of energy Ec
4 = 0.

Proof. The proof is easier. The energy surface HEc
4
is de�ned by

HEc
4

= {(u, v) ∈ R2, H4(u, v) = Ec
4}

= {(u, v) ∈ R2, cos(u) + cos(v) = 0} , (X.2.21)

which is equivalent to solve

2 cos

(
u+ v

2

)
cos

(
u− v

2

)
= 0. (X.2.22)
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We then have two in�nite transverse families of parallel lines, which are de�ned by u =
±v + π + 2kπ, k ∈ Z. This set forms a classical lattice with four-fold symmetry generated
by the two basis vectors e1 = (1, 1) and e2 = (1,−1) from a given point (π, 0) or (0, π). Here
again, this set tiles the entire plane with squares.

The crystallographic Arnold web looks as follows

Figure X.3: Crystallographic Arnold web for q = 4.

X.2.4 Quasi-crystallographic Arnold webs

We can weaken the previous assumption on the discrete lattice, cancelling the condition of
invariance under translation. Such a lattice Arnold web will be called a quasi-cristallographic
Arnold web by reference to quasi-crystals of which Penrose tillings are an example. In that
case, no restrictions are made on the rotations and we can consider the invariant structures
generated by separatrices for other values of q.

For q = 3, 4 and 6, a crystallographic Arnold web is obtained for a �xed energy. For
other values of q, like q = 5 for example, we have not been able to prove the existence of a
quasi-crystallographic Arnold web. Indeed, if we �x a given energy, we can not have all the
hyperbolic equilibrium point of the Hamiltonian system, meaning that some area can not be
covered by a net formed using saddle points and separatrices.

As an example, for q = 5, we have the following energy level set (Isolines) for H5 given in
Figure X.4.

However, following a remark by G. Zaslavsky ([39],p.107), considering a thin layer of en-
ergy of size ∆E ≥ ∆Ec, we observe a connected "thick" net made of structures of di�erent
energy as in Figure X.5.

In fact, one can prove that all the hyperbolic points belong to a given range of energy so
that there exist a given critical mesch ∆EC which creates a connected "thick" net of saddles
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Figure X.4: Some isolines for H5.

Figure X.5: Some "thick" isolines for H5.

and separatrices.

As an example, one has the following quasi-crystallographic "thick" nets for q = 5 and
q = 12 (see Figure X.6).

Moreover, the distribution of saddle points in the entire plane is far from being trivial and
no rigorous results have been obtained up to now.
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Figure X.6: Quasi-Crystallographic "thick" Arnold web q = 5 (left) and q = 12 (right).

X.3 Global dynamics of skeleton Hamiltonian systems

The global dynamics of skeleton Hamiltonian systems for q = 3, 4, 6 is easily described.
Indeed, outside of the crystallographic Arnold web, we have in each tile only regular dynamics
around an elliptic point (Figure X.7 and Figure X.8).

Figure X.7: Crystallographic Arnold web dynamics for q = 3.

Following V.I. Arnold's idea, we want to use a given crystallographic web in order to
produce di�usion orbits by considering a perturbation of a skeleton Hamiltonian system for
q = 3, 4 or 6. .
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Figure X.8: Crystallographic Arnold web dynamics for q = 4.

X.4 Perturbations of skeleton Hamiltonian systems: de-
terministic versus stochastic

In this Section, we follow the study of G. Zaslavsky in ([39],Chap.7) where he studies weak
chaos in Hamiltonian systems. In particular, he considers a particular perturbation de�ned
by

Vq = −2

q
K

q∑
j=1

cos (v cos (jθq)− u sin (jθq))

q∑
m=1

cos (mθq(t− j)) . (X.4.1)

We refer to ([39], Chap. 7, Section 7.3) for more details about the origin of this perturbation
term.

In the following, we study two kind of perturbation:

- Deterministic perturbation: we study the system SHq+ϵVq .

- Stochastic perturbation: we study the system S◦
Hq ;ϵVq

.

Where ϵ is a dimensionless perturbation parameter that assumed to be small (0 < ϵ ≪ 1).
In the two cases, we are waiting for di�usive orbits along the Arnold web. But, our main
concern is to observe the impact of passing from a deterministic to a stochastic interpretation
of the perturbation of the properties of the set of di�usive orbits. In particular, if we have
an acceleration of the speed of di�usion and an increasing of the di�usion set.

In order to compare the two behaviours, we select a given set of initial conditions in the
phase space (u, v) and we simulate the orbits for a given time using the mid-point variational
integrators obtained in the previous chapters.
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X.4. Perturbations of skeleton Hamiltonian systems: deterministic versus
stochastic

X.4.1 Arnold's di�usion for skeleton Hamiltonian/ Crystallographic
case

We take ϵ = 0.5, K = 1.2, a time step h = 0.1 and 2000 iterations. Using the mid point
integrators developed in Part B we obtain the following simulations:

Figure X.9: Perturbations of skeleton Hamiltonian q = 3.

The set of initial condition generates the �rst Figure on the top left. As expected, a de-
terministic perturbation leads to a small di�usion around the crystallographic Arnold web.
In the stochastic case, we give two di�erent realization of solutions. We observe that the
domain of di�usion is strongly enlarged with respect to the deterministic case, passing from
a domain going from −15 to 15 in each variables to −50 to 50 in the same simulation time.

The same is true for perturbations of four-fold symmetric skeleton Hamiltonian. Indeed,
we obtain:

As already stated in the discussion about Arnold's di�usion, the speed and intensity of
di�usion is mainly controlled �rst by the size of the perturbation but also by the possibility
to connect di�erent regions along the Arnold web. The intensity is in general weak due to
the fact that perturbations in the deterministic case induce very small chaotic zone along the
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Figure X.10: Perturbations of skeleton Hamiltonian q = 4.

Arnold web. Moreover, this has a consequence on the speed of di�usion as the di�usive orbits
are very close to the separatrices. In the contrary, in the stochastic case, all these limitations
are cancelled. In particular, the stochasticity induces jump in the phase space which allows
to connect very quickly along the web.

X.4.2 Arnold's di�usion for skeleton Hamiltonian/ Quasi-crystallographic
case

As discussed in the previous Section, when q is di�erent from {3, 4, 6} we have not an
in�nite connected Arnold web covering the entire plane. However, we know that we recover
a connected net with a quasi-crystallographic symmetry if we consider all the saddle and
separatrices for energy values in a given critical interval Ic. As a consequence, using a
perturbation for initial conditions having a given energy E ∈ Ic, we can expect to use the
underlying "thick" Arnold web.

We observe the same phenomenon as in the crystallographic case. The domain of di�u-
sion is wider than in the deterministic case and as a consequence, the speed of di�usion arises.
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X.4. Perturbations of skeleton Hamiltonian systems: deterministic versus
stochastic

Figure X.11: Perturbations of skeleton Hamiltonian q = 5.

No signi�cant di�erences can be observed for other values of q.
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Chapter XI

Conclusion and perspectives

In Part A, we have shown that the classical approach derived by J-E. Marsden and M.
West in [27] for the construction of variational integrators can be made more transparent
from the point of view of the connection with the continuous Lagrangian/Hamiltonian for-
malism as well as from the point of view of the calculus of variations by introducing a suitable
discrete di�erential and integral calculus. Moreover, in the discrete embedding framework,
the de�nition of the discrete momentum cancel the distortions with respect to the continu-
ous geometrical framework induced by the encoding of the discrete Lagrangian on a doubled
con�guration space instead of a tangent bundle. Although the present presentation is limited
to variational integrators of order one and two, all the constructions can be extended to vari-
ational integrators of an arbitrary order. Variational integrators of arbitrary high order have
already been de�ned by M. Leok [69] (see also C.N. Campo et al. in [70]) using the approach
of J.E. Marsden and M. West. Following the discrete embedding strategy, a �rst step was
made in [71], where discrete di�erential and integral calculus of arbitrary order is de�ned.
A natural extension of our work will be to construct variational integrators for Hamiltonian
systems of arbitrary high order using this framework.

In Part B, we have obtained Variational integrators for stochastic Hamiltonian systems
using two distinct ways:

- First, using a Wong-Zakai approximation and then a variational integrator of order two
or of mixed type, we have given a rigorous foundations to computations made by Wang
and co-authors in [30].

- Second, by de�ning directly a discretization of the stochastic functional, we have ex-
tended previous works of N. Bou Rabbe and al. [28], [29] for general stochastic Hamil-
tonian systems.

These two approaches coincide when the Wong-Zakai approximation is of order the time-step
increment of the discrete time-scale and the order of the discretization is at least of order
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two on the stochastic part.

A natural extension of this work would be to cover more general framework than classi-
cal Hamiltonian systems and to discuss system admitting a Poisson structures [72] or Dirac
structures [73].

In Part C, we have studied the behaviour of the Arnold di�usion phenomenon on a special
class of Hamiltonian systems called the skeleton Hamiltonian. Our results are preliminary
and can be improved in several ways:

- A natural demand will be to consider a stochastic version of the original system studied
by Arnold for di�usion.

- We need a more careful study of the speed of di�usion when a stochastic perturbation
is turned on.

From the mathematical view point, a natural question is the following:

Can we prove the Arnold's conjecture in the stochastic setting ?

As we have suggested, the di�culties in the classical deterministic approach to Arnold's
di�usion using the Arnold's mechanism based on connection of whiskered tori is due to the
fact that whiskered tori do not appear generically in continuous family but instead gaps
between them do not allow to construct a chain of whiskered tori on which di�usion takes
place. Our hope will be to be able to prove that generic stochastic perturbations cancel this
problem and gives naturally access to a stochastic proof of the Arnold's conjecture.

115



Bibliography

[1] D. Mumford, �The dawning of the age of stochasticity,� Atti - Accademia Nazionale
dei Lincei Rendiconti Lincei Classe di Scienze Fisiche Matematiche e Naturali Serie 9
Matematica e Applicazioni, vol. 11, pp. 107�126, 2000.

[2] J. Cresson, F. Pierret, and B. Puig, �Stochastic perturbation of the two-body problem,�
in SF2A, 2013.

[3] J. Cresson, F. Pierret, and B. Puig, �The sharma-parthasarathy stochastic two-body
problem,� Journal of Mathematical Physics, vol. 56, no. 3, 2015.

[4] H. Poincaré, New Methods of Celestial Mechanics. American Institute of Physics, 1992,
English translation with commentaries by D. Goro�.

[5] A. Chenciner, �Poincaré and the three-body problem,� Poincaré, 1912-2012, Séminaire
Poincaré XVI, pp. 45�133, 2012.

[6] J.-P. Marco, �Transition le long des chaînes de tores invariants pour les systèmes hamil-
toniens analytiques,� in Annales de l'IHP Physique théorique, vol. 64, 1996, pp. 205�
252.

[7] J. Cresson, �Propriétés d'instabilité des systèmes hamiltoniens proches de systèmes
intégrables,� Ph.D. dissertation, Dec. 1997.

[8] P. Lochak, �Arnold di�usion; a compendium of remarks and questions,� in Hamiltonian
systems with three or more degrees of freedom, Springer, 1999, pp. 168�183.

[9] A. Delshams, R. De la Llave, and T. M-Seara, �A geometric mechanism for di�usion
in hamiltonian systems overcoming the large gap problem: Heuristics and rigorous
veri�cation on a model,� Memoirs of the American Mathematical Society, vol. 179,
2006. doi: 10.1090/memo/0844.

[10] M. Gidea, R. de la Llave, and T. M. Seara, A general mechanism of instability in
hamiltonian systems: Skipping along a normally hyperbolic invariant manifold, 2020.
doi: 10.3934/dcds.2020166. [Online]. Available: https://www.aimsciences.org/
article/id/0003ace1-8a66-4d47-a0cd-1aedf3409b58.

[11] J.-M. Bismut, Mécanique aléatoire. Springer, 1981.

116

https://doi.org/10.1090/memo/0844
https://doi.org/10.3934/dcds.2020166
https://www.aimsciences.org/article/id/0003ace1-8a66-4d47-a0cd-1aedf3409b58
https://www.aimsciences.org/article/id/0003ace1-8a66-4d47-a0cd-1aedf3409b58


Bibliography

[12] G. N. Milstein, Y. M. Repin, and M. V. Tretyakov, �Symplectic integration of hamilto-
nian systems with additive noise,� SIAM Journal on Numerical Analysis, vol. 39, no. 6,
pp. 2066�2088, 2002.

[13] E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration. Springer,
Berlin, 2006, vol. 31.

[14] R. I. McLachlan and G. R. W. Quispel, �Geometric integrators for odes,� Journal of
Physics A: Mathematical and General, vol. 39, no. 19, p. 5251, 2006.

[15] G. N. Milstein, Y. M. Repin, and M. V. Tretyakov, �Numerical methods for stochas-
tic systems preserving symplectic structure,� SIAM Journal on Numerical Analysis,
vol. 40, no. 4, pp. 1583�1604, 2002.

[16] K. Burrage and P. M. Burrage, �Low rank runge�kutta methods, symplecticity and
stochastic hamiltonian problems with additive noise,� Journal of Computational and
Applied Mathematics, vol. 236, no. 16, pp. 3920�3930, 2012.

[17] Q. Ma, D. Ding, and X. Ding, �Symplectic conditions and stochastic generating func-
tions of stochastic runge�kutta methods for stochastic hamiltonian systems with mul-
tiplicative noise,� Applied Mathematics and Computation, vol. 219, no. 2, pp. 635�643,
2012.

[18] Q. Ma and X. Ding, �Stochastic symplectic partitioned runge�kutta methods for stochas-
tic hamiltonian systems with multiplicative noise,� Applied Mathematics and Compu-
tation, vol. 252, pp. 520�534, 2015.

[19] P. Wang, J. Hong, and D. Xu, �Construction of symplectic runge-kutta methods for
stochastic hamiltonian systems,� Communications in Computational Physics, vol. 21,
no. 1, pp. 237�270, 2017.

[20] W. Zhou, J. Zhang, J. Hong, and S. Song, �Stochastic symplectic runge�kutta methods
for the strong approximation of hamiltonian systems with additive noise,� Journal of
Computational and Applied Mathematics, vol. 325, pp. 134�148, 2017.

[21] L. Wang, �Variational integrators and generating functions for stochastic hamilto-
nian systems,� Ph.D. dissertation, Karlsruhe, Univ., Diss., 2007. doi: 10.5445/KSP/
1000007007.

[22] L. Wang and J. Hong, �Generating functions for stochastic symplectic methods,� Dis-
crete and Continuous Dynamical Systems - Series A, vol. 34, no. 3, pp. 1211�1228,
2014. doi: 10.3934/dcds.2014.34.1211.

[23] D. D. Holm and T. M. Tyranowski, �Stochastic discrete hamiltonian variational inte-
grators,� BIT Numerical Mathematics, vol. 58, pp. 1009�1048, 2018.

[24] T. Misawa et al., �Symplectic integrators to stochastic hamiltonian dynamical systems
derived from composition methods,� Mathematical Problems in Engineering, vol. 2010,
2010. doi: 10.1155/2010/384937.

[25] L. Sun and L. Wang, �Stochastic symplectic methods based on the padé approxima-
tions for linear stochastic hamiltonian systems,� Journal of Computational and Applied
Mathematics, vol. 311, pp. 439�456, 2017. doi: 10.1016/j.cam.2016.08.011.

117

https://doi.org/10.5445/KSP/1000007007
https://doi.org/10.5445/KSP/1000007007
https://doi.org/10.3934/dcds.2014.34.1211
https://doi.org/10.1155/2010/384937
https://doi.org/10.1016/j.cam.2016.08.011


Bibliography

[26] J. Hong, L. Sun, and X. Wang, �High order conformal symplectic and ergodic schemes
for the stochastic langevin equation via generating functions,� SIAM Journal on Nu-
merical Analysis, vol. 55, no. 6, pp. 3006�3029, 2017.

[27] J. Marsden and M. West, �Discrete mechanics and variational integrators,� Acta Nu-
merica, vol. 10, Oct. 2001. doi: 10.1017/S096249290100006X.

[28] N. Bou-Rabee and H. Owhadi, �Stochastic variational integrators,� IMA Journal of
Numerical Analysis, vol. 29, Sep. 2009. doi: 10.1093/imanum/drn018.

[29] N. Bou-Rabee and H. Owhadi, �Stochastic variational partitioned runge-kutta inte-
grators for constrained systems,� arXiv: Numerical Analysis, 2007. [Online]. Available:
https://api.semanticscholar.org/CorpusID:7316883.

[30] L. Wang, J. Hong, R. Scherer, and F. Bai, �Dynamics and variational integrators of
stochastic hamiltonian systems.,� International Journal of Numerical Analysis & Mod-
eling, vol. 6, no. 4, 2009.

[31] S. Ober-Blöbaum and M. Vermeeren, �Superconvergence of galerkin variational integra-
tors**mv is supported by the dfg research fellowship (ve 1211/1-1),� IFAC-PapersOnLine,
vol. 54, no. 19, pp. 327�333, 2021, 7th IFAC Workshop on Lagrangian and Hamil-
tonian Methods for Nonlinear Control LHMNC 2021, issn: 2405-8963. doi: https:
//doi.org/10.1016/j.ifacol.2021.11.098. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S2405896321021224.

[32] J. Cresson, �Théorie de plongement des systèmes dynamiques,� programme de recherche,
p. 21, 2005. [Online]. Available: https://jcresson.perso.univ-pau.fr/prog.pdf.

[33] J. Cresson and F. Pierret, �Continuous versus discrete structures i�discrete embeddings
and ordinary di�erential equations,� arXiv preprint arXiv:1411.7117, 2014.

[34] J. Cresson and F. Pierret, �Continuous versus discrete structures ii�discrete hamiltonian
systems and helmholtz conditions,� arXiv preprint arXiv:1501.03203, 2015.

[35] S. Hilger, �Ein masskettenkalkül mit anwendung auf zentrumsmannigfaltigkeiten,� Ph.D.
dissertation, Univ. Würzburg, 1988.

[36] M. Bohner and A. Peterson, Dynamic equations on time scales: An introduction with
applications. Springer Science & Business Media, 2001.

[37] J. Moser and A. P. Veselov, �Discrete versions of some classical integrable systems
and factorization of matrix polynomials,� Communications in Mathematical Physics,
vol. 139, pp. 217�243, 1991.

[38] J. Wendlandt and J. Marsden, �Mechanical integrators derived from a discrete varia-
tional principle,� Physica D: Nonlinear Phenomena, vol. 106, pp. 223�246, 1997. doi:
10.1016/S0167-2789(97)00051-1.

[39] G. M. Zaslavsky, Hamiltonian chaos and fractional dynamics. Oxford University Press,
USA, 2005.

[40] B. Øksendal, Stochastic di�erential equations. Springer, 2003.

[41] P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Di�erential Equations.
Springer, 1992.

118

https://doi.org/10.1017/S096249290100006X
https://doi.org/10.1093/imanum/drn018
https://api.semanticscholar.org/CorpusID:7316883
https://doi.org/https://doi.org/10.1016/j.ifacol.2021.11.098
https://doi.org/https://doi.org/10.1016/j.ifacol.2021.11.098
https://www.sciencedirect.com/science/article/pii/S2405896321021224
https://www.sciencedirect.com/science/article/pii/S2405896321021224
https://jcresson.perso.univ-pau.fr/prog.pdf
https://doi.org/10.1016/S0167-2789(97)00051-1


Bibliography

[42] L. C. Evans, �An introduction to stochastic di�erential equations,� Lecture Notes, UC
Berkeley, 2006.

[43] J. Cresson, �Introduction to embedding of lagrangian systems,� International Journal
of Biomathematics and Biostatistics, vol. 1, no. 1, pp. 23�31, 2010.

[44] J. Cresson, I. Gre�, and C. Pierre, �Discrete embeddings for lagrangian and hamiltonian
systems,� Acta Mathematica Vietnamica, vol. 43, pp. 391�413, 2018.

[45] J. E. Marsden and T. S. Ratiu, Introduction to mechanics and symmetry: a basic expo-
sition of classical mechanical systems. Springer Science & Business Media, 2013, vol. 17.

[46] E. Nelson, �Derivation of the schrödinger equation from newtonian mechanics,� Physical
review, vol. 150, no. 4, p. 1079, 1966.

[47] H. Kunita, Stochastic �ows and stochastic di�erential equations. Cambridge university
press, 1997, vol. 24.

[48] A. H. S. Melbø and D. J. Higham, �Numerical simulation of a linear stochastic oscillator
with additive noise,� Applied numerical mathematics, vol. 51, no. 1, pp. 89�99, 2004.

[49] E. Wong and M. Zakai, �Riemann-stieltjes approximations of stochastic integrals,�
Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, vol. 12, no. 2, pp. 87�
97, 1969.

[50] D. W. Stroock and S. R. Varadhan, �On the support of di�usion processes with appli-
cations to the strong maximum principle,� in Proceedings of the Sixth Berkeley Sym-
posium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif.,
1970/1971), vol. 3, 1972, pp. 333�359.

[51] X. Han and P. E. Kloeden, Random ordinary di�erential equations and their numerical
solution. Springer, 2017.

[52] A. Giorgilli and U. Locatelli, �Kolmogorov theorem and classical perturbation theory,�
Zeitschrift für angewandte Mathematik und Physik ZAMP, vol. 48, pp. 220�261, 1997.

[53] J. K. Moser, �Stable and random motions in dynamical systems: With special emphasis
on celestial mechanics.,� 1973. [Online]. Available: https://api.semanticscholar.
org/CorpusID:117858529.

[54] J. Moser, �Old and new applications of kam theory,� in Hamiltonian Systems with
Three or More Degrees of Freedom, C. Simó, Ed. Dordrecht: Springer Netherlands,
1999, pp. 184�192. doi: 10 . 1007 / 978 - 94 - 011 - 4673 - 9 _ 16. [Online]. Available:
https://doi.org/10.1007/978-94-011-4673-9_16.

[55] V. Arnold, A. Givental, B. Khesin, et al., �Small denominators and problems of stability
of motion in classical and celestial mechanics,� in Jan. 2009, isbn: 978-3-642-01741-4.
doi: 10.1007/978-3-642-01742-1_23.

[56] J.-B. Bost, �Tores invariants des systèmes dynamiques hamiltoniens,� fr, in Séminaire
Bourbaki : volume 1984/85, exposés 633-650, ser. Astérisque 133-134, talk:639, Société
mathématique de France, 1986. [Online]. Available: http://www.numdam.org/item/
SB_1984-1985__27__113_0/.

119

https://api.semanticscholar.org/CorpusID:117858529
https://api.semanticscholar.org/CorpusID:117858529
https://doi.org/10.1007/978-94-011-4673-9_16
https://doi.org/10.1007/978-94-011-4673-9_16
https://doi.org/10.1007/978-3-642-01742-1_23
http://www.numdam.org/item/SB_1984-1985__27__113_0/
http://www.numdam.org/item/SB_1984-1985__27__113_0/


Bibliography

[57] D. Treshchev, �The mechanism of destruction of resonance tori of hamiltonian systems,�
Mathematics of the USSR-Sbornik, vol. 68, no. 1, p. 181, 1991.

[58] V. I. Arnol'd, �Instability of dynamical systems with several degrees of freedom,� in
Hamiltonian Dynamical Systems, CRC Press, 2020, pp. 633�637.

[59] V. I. Arnold, �Mathematical problems in classical physics,� in Trends and perspectives
in applied mathematics, Springer, 1994, pp. 1�20.

[60] N. N. Nekhoroshev, �An exponential estimate of the time of stability of nearly-integrable
hamiltonian systems,� Russian Mathematical Surveys, vol. 32, no. 6, p. 1, 1977.

[61] P. Lochak, �Canonical perturbation theory via simultaneous approximation,� Russian
Mathematical Surveys, vol. 47, no. 6, p. 57, 1992.

[62] S. Wiggins, Normally Hyperbolic Invariant Manifolds in Dynamical Systems. Springer
New York, NY, 1994.

[63] S. Wiggins, Global Bifurcations and Chaos-Analytical Methods. Jan. 1988, vol. 73, isbn:
978-1-4612-1041-2. doi: 10.1007/978-1-4612-1042-9.

[64] J. Cresson, �Symbolic dynamics and arnold di�usion,� Journal of Di�erential Equa-
tions, vol. 187, no. 2, pp. 269�292, 2003, issn: 0022-0396. doi: https://doi.org/10.
1016/S0022-0396(02)00053-0. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0022039602000530.

[65] J. Cresson and S. Wiggins, �A λ-lemma for normally hyperbolic invariant manifolds,�
Regular and Chaotic Dynamics, vol. 20, Jan. 2015. doi: 10.1134/S1560354715010074.

[66] M. Rudnev and S. Wiggins, �Existence of exponentially small separatrix splittings and
homoclinic connections between whiskered tori in weakly hyperbolic near-integrable
hamiltonian systems,� Physica D: Nonlinear Phenomena, vol. 114, no. 1, pp. 3�80,
1998, issn: 0167-2789. doi: https://doi.org/10.1016/S0167-2789(97)00173-5.
[Online]. Available: https : / / www . sciencedirect . com / science / article / pii /
S0167278997001735.

[67] P. Lochak, J.-P. Marco, and D. Sauzin, �On the splitting of invariant manifolds in mul-
tidimensional near-integrable hamiltonian systems,� Memoirs of the American Mathe-
matical Society, vol. 775, May 2003. doi: 10.1090/memo/0775.

[68] J. Bamberg, G. Cairns, and D. Kilminster, �The crystallographic restriction, permuta-
tions, and goldbach's conjecture,� The American mathematical monthly, vol. 110, no. 3,
pp. 202�209, 2003.

[69] M. Leok, �Generalized galerkin variational integrators,� arXiv: Numerical Analysis,
2005. [Online]. Available: https://api.semanticscholar.org/CorpusID:10410903.

[70] C. M. Campos, S. Ober-Blöbaum, and E. Trélat, �High order variational integrators
in the optimal control of mechanical systems,� American Institute of Mathematical
Sciences, pp. 4193�4223, 2015.

[71] K. Hariz Belgacem, �Higher-order Embedding Formalism, Noether's Theorem on Time
Scales and Eringen's Nonlocal Elastica,� Ph.D. dissertation, Université de Pau et des
Pays de l'Adour ; Ecole normale supérieure de Kouba (Alger), 2022. [Online]. Available:
https://theses.hal.science/tel-03981833.

120

https://doi.org/10.1007/978-1-4612-1042-9
https://doi.org/https://doi.org/10.1016/S0022-0396(02)00053-0
https://doi.org/https://doi.org/10.1016/S0022-0396(02)00053-0
https://www.sciencedirect.com/science/article/pii/S0022039602000530
https://www.sciencedirect.com/science/article/pii/S0022039602000530
https://doi.org/10.1134/S1560354715010074
https://doi.org/https://doi.org/10.1016/S0167-2789(97)00173-5
https://www.sciencedirect.com/science/article/pii/S0167278997001735
https://www.sciencedirect.com/science/article/pii/S0167278997001735
https://doi.org/10.1090/memo/0775
https://api.semanticscholar.org/CorpusID:10410903
https://theses.hal.science/tel-03981833


Bibliography

[72] O. Cosserat, V. Salnikov, and C. Laurent-Gengoux, �Intégrateurs géométriques en
géométrie de poisson,� 25ème Congrès Français de Mécaniqu, Nantes, France, 2022.
[Online]. Available: https://hal.science/hal-03782503.

[73] O. Cosserat, C. Laurent-Gengoux, A. Kotov, L. Ryvkin, and V. Salnikov, �On dirac
structures admitting a variational approach,� Mathematics and Mechanics of Complex
Systems, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2109.00313.

121

https://hal.science/hal-03782503
https://doi.org/10.48550/arXiv.2109.00313

	General Introduction
	Stochastic differential equations
	Stochastic process
	Wiener process
	Stochastic differential equations
	Numerical integration for SDEs

	A Variational integrators for Hamiltonian systems
	Deterministic Hamiltonian systems
	Definition
	Lagrangian Versus Hamiltonian formalism 
	Symplecticity
	Numerical geometric integration

	Variational integrators -Order 1 
	Introduction
	Discrete embedding of order 1
	Discrete functional space and functional
	Discrete differential and integral calculus- General strategy
	Continuous/Differentiable embedding of discrete functions
	Discrete derivatives
	Discrete antiderivative
	Proprieties of discrete derivatives and antiderivative
	Why order 1 ?

	Discrete Lagrangian formalism
	Discrete Lagrangian functional - Embedding case
	Discrete Lagrangian functional - Marsden-West case

	Discrete calculus of variations
	Discrete Euler-Lagrange equation - Embedding case
	Discrete Euler-Lagrange equation - Marsden-West case

	Discrete Hamiltonian systems
	Discrete Hamiltonian systems - Embedding case
	Discrete Hamiltonian systems - Marsden-West case

	Variational integrators and symplecticity
	Discrete flows: embedding and Marsden-West case
	Symplecticity


	Variational Integrators- Order 2
	Introduction
	Discrete mid-point differential and integral calculus
	Definitions of different time scales
	Different functional spaces
	Discrete derivative and anti-derivative
	Proprieties of discrete derivative and anti-derivative

	Discrete mid-point Lagrangian systems
	Mid-point Lagrangian functional
	Comparaison with the Wendlandt-Marsden discrete Lagrangian functional
	Discrete mid-point calculus of variations
	Comparison with the Wendlandt-Marsden Euler-Lagrange equation
	Example: mid-point discretization for Lagrangian from mechanics

	Discrete mid-point Hamiltonian systems
	Toward discrete Hamiltonian systems
	Discrete Hamiltonian function and discrete Hamiltonian systems
	A variational approach to discrete Hamiltonian systems



	B Variational integrators for stochastic Hamiltonian systems
	Stochastic Hamiltonian systems
	Definitions and examples
	Properties of stochastic Hamiltonian systems
	Variational principle
	Symplecticity
	First integrals of stochastic Hamiltonian systems

	Stochastic Hamiltonian system as non-conservative systems

	Variational integrators- Wong Zakai
	Introduction
	Wong-Zakai approximation Hamiltonian
	Wong-Zakai variational integrators
	Construction of discrete Lagrangian functional: principles
	Examples of discrete functional
	Variational integrators

	Numerical examples
	The Kubo oscillator
	Hamiltonian systems with two additive noises


	 Stochastic Variational integrators 
	Introduction
	Discrete mid-point stochastic functional


	C Dynamics of stochastic Hamiltonian systems and Arnold diffusion
	Instabilities of Hamiltonian systems-Arnold diffusion
	Integrable Hamiltonian systems
	Poincaré fundamental problem of dynamics
	Arnold's web
	Dynamics along the Arnold's web: whiskered tori
	Arnold diffusion
	A stochastic fundamental problem of dynamics

	Skeleton Hamiltonian
	Introduction
	Structure of Arnold web for skeleton Hamiltonian
	Crystallographic Arnold web
	Equilibrium points of the three- and four-fold skeleton Hamiltonian
	Crystallographic Arnold web for q=3 and q=4
	Quasi-crystallographic Arnold webs

	Global dynamics of skeleton Hamiltonian systems
	Perturbations of skeleton Hamiltonian systems: deterministic versus stochastic
	Arnold's diffusion for skeleton Hamiltonian/ Crystallographic case
	Arnold's diffusion for skeleton Hamiltonian/ Quasi-crystallographic case


	Conclusion and perspectives


