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Abstract

Air transportation network has been developed and optimised for years in order to
provide passengers with a high level of service. However, the growing increase in envi-
ronmental awareness and airport congestion make trains a relevant alternative to replace
short-haul flights. If trains have to complement flights, collaboration between both ope-
rators will be required to maintain attractiveness and limit passengers’ discomfort during
transfers between modes. In this thesis, we propose synchronising air and rail timetables
to enhance the quality of air-rail transfers for passengers at hub airports. As the transfer
demand between rail and air is not publicly available, we first introduce a methodology
to generate realistic air-rail transferring passenger demand using open-source data, using
constraint programming. Then, we propose two mixed integer linear programmes to address
this air-rail synchronisation issue, that modify flight and train initial schedules in order to
offer passengers seamless connections between the two modes. The first model, well-suited
for long-term planning, allows transportation schedulers to include seamless connections
with other modes in their operations. The second formulation aims at rescheduling trains
and flights at a tactical level to minimise the overall passenger delay across a multimodal
transportation network. Both models take into account operational constraints, and are
tested on the Western Europe transportation network. In a final step, we propose to re-
think the scheduling process from scratch, and jointly develop an air-rail transportation
network : an integrated service network design process between rail and air is proposed,
considering passengers’ travel option preferences and CO2 emissions. A mixed-integer li-
near programming formulation of the problem is proposed. The methodology is tested on
the Spanish transportation case study, using mobile phone network data as the passenger
demand input.
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Résumé

Le transport aérien a été développé et optimisé depuis de nombreuses années afin de
proposer aux passagers un service de qualité. Cependant, la prise de conscience écologique
et la congestion croissante des aéroports amènent à repenser le transport aérien. Aujour-
d’hui, les trains apparaissent comme une alternative pertinente aux vols de courte distance.
Si les trains doivent remplacer les vols, une collaboration entre les acteurs du transport
aérien et ferroviaire sera nécessaire afin de maintenir un niveau de service élevé pour les
passagers. À travers cette thèse, des mécanismes de coordination entre le transport aérien et
ferroviaire sont proposés afin d’améliorer la qualité des transferts entre les deux modes. La
demande passager entre les avions et les trains étant aujourd’hui peu connue, et non acces-
sible de manière publique, une première étape de simulation, basée sur de la programmation
par contraintes, est tout d’abord proposée. Ensuite, deux modèles de synchronisation des
horaires, utilisant les plannings existants, sont développés afin de proposer aux passagers
des connexions train-vol plus fluides. Le premier, adapté pour une utilisation à l’échelle
stratégique (plusieurs semaines avant les opérations), permet aux compagnies aériennes et
ferroviaires de proposer aux passagers des connexions plus confortables, en termes de temps
de transfert, entre les deux modes. Le second modèle a pour objectif de re-planifier les vols
et les trains en temps réel, afin d’attendre les passagers impactés par un retard, minimisant
ainsi le risque de connexion manquées. Les deux problèmes sont modélisés sous forme de
problèmes linéaires mixtes en nombres entiers, et testés à l’échelle d’un réseau de transport
européen. Enfin, nous proposons dans une dernière partie, un modèle de synchronisation
plus en amont des deux précédentes méthodes : une estimation jointe des fréquences jour-
nalières des vols et des trains. Le point de vue passager est adopté, avec pour objectif
principal de minimiser le temps de trajet porte-à-porte, incluant des trajets multimodaux.
Le coût CO2 du réseau de transport est également pris en compte. La méthodologie est
testée sur un cas d’étude réel : le réseau de transport espagnol. Une demande réaliste est
obtenue à partir de l’exploitation de données des opérateurs de téléphonie mobile.
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Merci à tous mes amis d’avoir été là le 18 avril, que ce soit en désormais en ≪ présentiel ≫ ou
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Introduction

This introduction provides the context in which the thesis is developed. First, the
motivation to develop coordination mechanisms between air and rail transportation modes
is presented. Second, the emerging cooperation initiatives are exposed. Finally, the last
subsection presents an overview of the thesis.

Motivation

The decades of steady growth in air traffic demand was interrupted by the COVID-19
outbreak. Nevertheless, recent measures show that the air passenger volume is now retur-
ning to its pre-pandemic level. One of the most widely used metrics for assessing the uti-
lisation of a transportation mode is the Revenue-Passenger Kilometre (RPK). This metric
accounts for the total number of kilometres travelled by passengers paying for transpor-
tation (i.e., excluding infants not using a seat, airline agents, passengers travelling freely,
etc.). Figures 1a and 1b present the total air RPK per month from January 2017 to July
2023, and its variation compared to 2019, from 2020 to 2023. In Figure 1b, a distinction is
made between domestic (both origin and destination are in the country of the air carrier
business headquarter) and international (origin or destination is out of the air carrier busi-
ness state) markets. Air RPK volume in August 2023 reached 95% of the value of 2019. The
share of domestic market overtook that of 2019. Pre-pandemic air transportation concerns
are therefore coming back to the point, and the air transportation system is facing again
capacity issues, leading to congestion and delays. Simultaneously, the growth of environ-
mental awareness underscores the need to reconsider air travel. The transportation sector
is responsible for 23% of the energy-related CO2 emission (Figure 2). According to the
International Energy Agency (IEA), in 2022 aviation accounted for 2% of the global CO2
emission worldwide, with a release of 800Mt of CO2, compared with less than 100Mt for
the rail transportation system (International Energy Agency (IEA), 2023). The reduction
of the environmental impact of the air transportation sector is therefore one of the main
objectives of many countries in the coming years. Particularly, the European Commission
set the objective that trips under 500 km should be carbon neutral in 2050 (European
Commission, Directorate-General for Mobility and Transport, 2020). To facilitate the de-
carbonisation of the air transportation system, various policies have already been enacted.
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(a) Revenue-Passenger Kilometre per
month.

(b) Domestic and international RPK varia-
tion compared with 2019.

Figure 1 – Air passenger traffic analysis International Air Transport Association (IATA)
(2023a).

For instance, in 2021, the French government banned short-haul flights if they could be
replaced by a rail alternative in less than 2h30. During the summer 2023, the Dutch go-
vernment decided to limit the annual flight volume in 2024 at Amsterdam Schiphol airport
to 440,000 movements. This corresponds to a reduction of 12% compared to 2023, in or-
der to decrease noise inconvenience and greenhouse emissions. The multiplication of such
measures will force air transportation stakeholders to revise and adapt their operations.
In such a context, rail transportation appears as a relevant alternative and collaborative
transportation mode.

A review of air-rail collaboration initiave

Historically, air and rail transportation providers were competitors on the middle-
distance market. Many studies focus on the potential competition between the two modes
on several routes, and both airlines and railway operators used to consider the other mode
in their operations to maintain attractiveness and their competitiveness. For instance,
Behrens and Pels (2012) study the competition between high-speed rail and flights on
the Paris-London market. Park and Ha (2006) analyse the impact of the development of
highways and high-speed train on the air transport demand in Korea. Monmousseau et al.
(2019) compare air and rail door-to-door travel times from Paris to London. Another im-
portant factor that limited the collaboration between air and ground transportation modes
is airport locations. Generally, airports are located outside of the cities, mainly to miti-
gate noise disturbances and as a safety measure. They are consequently mainly accessed
via private cars (Vespermann and Wald (2011)), reducing the potential for collaboration
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Figure 2 – Global energy-related CO2 emissions by sector International Energy Agency
(IEA) (2020).

with public transportation modes. These factors contributed to limit the development of
cooperation between these two actors of long-distance transportation.

Nevertheless, the current perspective is shifting towards greater cooperation and colla-
boration. Indeed, Givoni and Banister (2006) are among the first authors to study collabo-
ration instead of competition between air and rail, suggesting to replace some feeder flights
by train to relieve airport congestion. Feeder flights, in this context, refer to short-distance
flights strategically scheduled by airlines to route passengers through their hubs to connect
with long-distance flights, when direct connections are not available. The multiplication
of research initiatives aiming at strengthening cooperation between air and ground trans-
portation modes underscores the evident potential for enhancing multimodal operations.
In 2004, the Single European Sky ATM Research (SESAR) programme was initiated in
Europe with the objective of modernising the management of the air traffic system across
the continent (European Commission (2023b)). Through this program, several research
projects have been conducted to develop coordination mechanisms between air and ground
transportation modes. For instance, MODUS (SESAR Joint Undertaking, 2020) aimed
to measure the performance of the transportation system considering the entire passenger
door-to-door journey. IMHOTEP (Mota et al., 2020) proposed to extend airport operations
management, including collaboration with ground transportation modes. More recently, the
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MultiModX project (SESAR Joint Undertaking, 2023a) was launched with the objective
of designing air-rail operations considering passengers’ perspective. In particular, this PhD
dissertation is funded by the TRANSIT project (Bueno et al., 2022). The main purpose
of this European project is to develop coordination mechanisms between air and ground
transportation modes both at the strategic (long-term planning) and tactical (real time)
levels, to improve the passenger door-to-door journey. Finally, in October 2023, the Eu-
ropean Commission initiated a call for proposals entitled “Integrated air and rail network
backbone for a sustainable and energy-efficient multimodal transport system”. This call is
jointly initiated by SESAR and Europe’s Rail Europe’s Rail (2023), each recognised for
their expertise in enhancing air and rail operations in Europe. This call underscores the
readiness of both entities to collaborate closely.

In parallel to research projects, various collaboration initiatives are currently ongoing :
— Rail&Fly : An agreement between an airline (Lufthansa) and a railway operator

(Deutsche Bahn) that allows air travellers to benefit from the rail network to reach
or leave Frankfurt airport. More than 5600 train stations are accessible within this
collaboration. However, passengers are not covered in case of missed connection due
to late arrivals at the airport ;

— Lufthansa Express Rail : Trains and flights are coordinated, only one single ticket is
necessary, and a guarantee of correspondence is provided. Hence, if a delay occurs,
passengers are automatically registered for the next train or flight ;

— AIRail : Right after arriving at the long-distance train station at Frankfurt Airport,
Lufthansa Express Rail customers can quickly and conveniently drop off their baggage
and also check in for their flight in the nearby AiRail Terminal ;

— Train+Air : Integrated service ticketing between Parisian airports (Roissy and Orly)
and 19 train stations in France. Passengers can purchase their tickets on the SNCF
website, in travel agencies or airline partners, and use it along their whole trip as a
unique ticket. Within this system, multimodal trips are proposed if the connection
times between the train and the flights are sufficiently long to allow passenger transfer.
These trips are proposed using the flight and train schedules defined by each supplier,
but no additional schedule coordination is implemented ;

— City Airport Train in Vienna : Passengers can check-in their luggage in the city centre
of Vienna. This service allows passengers to transfer easily between the city and the
airport without carrying their luggage, encouraging them to use public transport
instead of taxis or private cars.

These soft measures pave the way towards seamless multimodal journey ; however today,
except for Lufthansa Express Rail, no schedule synchronisation is implemented. If airlines
have to replace feeder flights by trains, coordination is required to maintain attractive-
ness and to guarantee a high-level of service to passengers. Indeed, using a combination of
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transportation modes to reach one’s destination is feasible only when schedules allow it. In
particular, the connection time between two segments of the journey is critical for passen-
gers. Air passengers are today protected by the European regulation 261/2004 (European
Commission, 2004), which guarantee passengers compensation in case of flight delays and
cancellation. However, no guarantee exists today regarding multimodal trips.

Thesis overview

In this dissertation, we consider the setting in which a passenger wants to travel from
an origin to a destination, using either rail, air or a combination of both modes, with a
unique ticket, in a limited amount of time and with a targeted arrival time window. The
question we address is : would it be possible to design a transportation supply that could
satisfy these expectations ? In particular, air and rail schedules must be synchronised to
monitor transfer times and CO2 emissions.

The first mechanism proposed in this dissertation, well-suited for medium-term plan-
ning, builds upon existing schedules developed by transportation providers. It involves
marginal adjustments to these schedules, taking into account the constraints of the opera-
tors, with the ultimate aim of enhancing the seamless transfer of passengers. The second
mechanism, inspired from the first one developed, has the objective to minimise the impact
of delay on multimodal passenger journeys. Similarly, we propose to change slightly train
and flight schedules, in order to wait for delayed passengers and reduce the number of
missed connections. The third mechanism operates on a long-term scheduling horizon. It
proposes to go a step further in air-rail planning integration, and to design jointly flight and
train frequencies. Passengers’ travel preferences are taken into account as well as the en-
vironmental cost of the transportation network. All synchronisation mechanisms proposed
are based on the existing infrastructure, and no additional infrastructure cost is required.

The dissertation is organised as follows. The scheduling process employed by transpor-
tation service providers for flights and trains is initially discussed in Chapter 1. Achieving
synchronisation between these two transportation modes necessitates the acquisition of
data from both sides to account for operational constraints. Furthermore, since our primary
goal is to enhance the passenger experience, it is imperative to estimate air-rail passenger
demand, which will serve as a critical input for the synchronisation algorithms we shall
introduce. The collection of data and the estimation of multimodal demand are addressed
in Chapter 2. In Chapter 3, we present the two first proposed synchronisation mechanisms,
which entails making minimal adjustments to existing schedules. This approach allows one
to improve transfer convenience for passengers. Finally, Chapter 4 outlines the process of
jointly planning the frequencies of both flights and trains, a further step in air-rail colla-
boration.

The publications stemmed from this dissertation and the data set generated are listed
in Appendix C.
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Chapitre 1

A review of transport scheduling
for timetable optimisation

This chapter reviews the different steps followed by transportation operators to design
their schedules. The hierarchical scheduling process is first presented with an emphasis
on two particular steps : the line planning problem and the timetable generation pro-
blem. Then, schedule coordination mechanisms developed within and across transportation
modes, to improve passengers transfers, are discussed.

1.1 Design of transportation schedules

This section first presents the general process of transportation network construction,
followed by a detailed description of the route planning problem and the timetable gene-
ration process.

1.1.1 The overall design process

The objective of transportation operators is to provide passengers with an efficient and
attractive service in order to maximise their profits. The offer directly corresponds to the
schedule of flights and trains that are proposed by transportation planners. In order to
align with passengers’ expectations and provide an efficient transportation system, opera-
tors follow a several-year process to build their final timetables. The design of a feasible
and optimal schedule is a complex task due to the high number of parameters to take into
account. For instance, as depicted in Figure 1.1, Grosche (2009) presented an overview
of all the information and constraints that airlines should consider while designing their
schedules. Passenger demand, operational cost but also airport constraints, competition
between airlines or with other modes, and working hour regulation, for instance, must be
considered by operators to design the most profitable network. For that reason, transporta-
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OPTIMISATION

Figure 1.1 – Airline constraints to be taken into account for the construction of an optimal
schedule (Grosche, 2009).

tion suppliers generally construct their timetables following an iterative procedure, referred
to as the hierarchical process (Ghoseiri et al. (2004); Belobaba et al. (2009)). The main
steps of such a process are presented in Figure 1.2. Long before the day of operations, trans-
portation planners decide to build transportation infrastructures : train stations, airports,
railway tracks, etc. These decisions are generally made by local or national authorities,
considering many factors such as the potential market, accessibility for passengers, noise,
weather or environmental impact (see Kazda and Caves (2007)). The facility location pro-
blem will not be detailed here, as it is not at the core of the dissertation, but some authors
such as Phang (2003); Keeney (1973); Banister and Berechman (2003) deal with that to-
pic. In a second step, once the infrastructure is established, transportation operators must
decide on which route to operate and with what frequency. This step is referred in the lite-
rature to as the Route Planning Problem (RPP) for airline, or the Line Planning Problem
(LPP) for railway operators. These decisions depend on several factors such as the poten-
tial market but also competition with other transportation suppliers. They are generally
made a year or several months in advance (strategic planning horizon). Then, suppliers
set the exact departure time and arrival time of each trip. This step corresponds to the
Timetable generation Problem (TTP) and occurs months in advance. The TTP is decisive
for transportation suppliers as the scheduled time of a trip directly impact the expected
revenue. Finally, vehicles (aircraft or train-vehicle) and crews (pilots, train drivers, etc.)
are assigned to each scheduled leg to ensure that each journey can be operated. These
last steps are planned several weeks before the day of operations and are submitted to
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Day of
operation

Several
years 1 year 6 months 3 months 1 week

Infrastructure
design

Route/line
planning

Timetable
generation

Vehicle assi-
gnment, crew

scheduling

Pre-tactical
adjustment

Figure 1.2 – The overall scheduling process.

pre-tactical (a few days before operations) or tactical (the day of operations) adjustments
in case of problems. The complexity of the overall scheduling process is likely to lead to
computational issues when solving real case problems. Consequently, each stage of the ti-
metabling process is solved individually, using the result of the previous step as an input.
Unfortunately, this is likely to lead to sub-optimal solutions, and some studies propose to
integrate several steps at once to obtain better results (Grosche (2009); Schiewe (2020)).

In this thesis, we aim at developing synchronisation mechanisms between flights and
trains in terms of timetable. We thus focus on two specific stages of the timetabling process,
the RPP/LPP and the TTP. A description of these two sub-problems is presented in the
next two subsections.

1.1.2 Line and frequency planning

The route or line planning problem consists in selecting at what frequency transporta-
tion suppliers will operate on each route. In other words, it amounts to deciding the daily
number of flight or train journeys planned between two airports or train stations. Based
on the long-term forecast of passenger demand, the decisions are made to maximise sup-
pliers’ expected profit. Bussieck et al. (1997) proposed a basic passenger-centric approach
to reduce passenger travel time by maximising the number of direct travellers in a rail
transportation network, i.e. travellers that can reach their destination station from their
origin station without intermediate transfer. Their formulation of the LPP goes as follows.
A transportation network is given under the form of a directed graph G = {V, E}, whose
vertex set, V, represents the set of stations, and the edge set, E , gives the links between
the stations. For railway operators, a line corresponds to a simple path in the network,
from an Origin station O ∈ V to a Destination station, D ∈ V. In other words, a line is
a set of edges of the form {(O, v1), (v1, v2), . . . , (vk−1, vk), (vk, D)}, for some integer k. Let
L denote the set of lines, and let T be the set of Origin-Destination (OD) pairs for which
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the travel demand is not null. Let pt be a shortest path for the OD pair t = (O, D) ∈ T
in the graph G. For each edge e ∈ E , we define Te = {t ∈ T |e ∈ pt}, the set of OD pairs
t having edge e in is associated shortest path pt. Similarly, for each line l ∈ L, we define
Tl = {t ∈ T |pt ⊆ l}, the set of OD pairs t whose associated shortest path pt is included
in line l, and conversely, and we also define El, the set of edges included in line l ; i.e.,
El = {e ∈ E|e ∈ l}. For each OD pair t ∈ T , we define Lt = {l ∈ L|pt ⊆ l} the set of lines
including the associated shortest path pt, and we are given nt, the volume of passengers
who plan to travel from station O to station D. Let C denote the maximal train capacity,
i.e., the maximum number of passengers who can be carried in a single train (C is a given
input data).

This formulation uses, for each t ∈ T , and each l ∈ Lt, an integer decision variable,
noted dtl, that counts the number of travellers one assigns to the OD pair t on line l. It
also uses an integer decision variable, noted fl, that sets the frequency of line l, l ∈ L. The
objective of this formulation of the LPP is to maximise the number of direct travellers, and
is formulated as follows :

max
d,f

∑
l∈L

∑
t∈Tl

dtl (1.1)

subject to : ∑
l∈Lt

dtl ≤ nt t ∈ T (1.1a)

∑
t∈Te

dtl ≤ C.fl e ∈ El, l ∈ L, (1.1b)

dtl, fl ∈ Z+ t ∈ T , l ∈ L, (1.1c)

where d is a matrix whose (t, l) component is dtl, and f is a vector whose lth component is
fl. Equation (1.1) counts the total number of passengers who are able to travel without any
transfer within the transportation network. Constraints (1.1a) guarantee that the number
of direct travellers is lower than the total number of travellers on each OD pair, and
constraints (1.1b) ensure that the number of travellers do not overtake the maximum
capacity constraints. Claessens et al. (1998) suggested a model and an algorithm to select
lines for the Dutch Railways that also takes into account the operational cost. Similarly,
Goossens et al. (2006) proposed a solution to the line planning problem that minimises
the operational cost. Regarding public transportation, Ceder and Wilson (1986) proposed
a methodology to design a bus network from scratch, van Nes et al. (1988) developed an
algorithm to select routes to be included in the public transport network, and to assign
frequencies to each trip.

Regarding airline operators, the route planning problem is linked to the global structure
of their network. Especially, airlines have to decide the structure of the network on which
they want to operate. Lederer and Nambimadom (1998) describe several possible network
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structures in use, among which are the direct network, the tour network, the hub-and-spoke
network, and the subtour network, illustrated respectively in Figure 1.3 (a), (b), (c) and
(d). Depending on the particular airline strategy, one network can be more profitable than

Figure 1.3 – Major network structures : direct network (a), tour network (b), hub-and-
spoke network (c), and subtour network (d) (Lederer and Nambimadom, 1998).

another. Also, as explained by Lederer and Nambimadom (1998), the distance between
cities, the number of cities served, and the demand rate have a direct impact on the choice
of a particular network structure. The objective of airlines is therefore to determine the
flight frequency on each OD pair that minimises their operational cost. Generally, the
network design problem consists in routing a set of commodities, K, at the lowest cost for
transportation service providers. In case of long-distance transportation, either freight or
passenger, a commodity correspond to a group of goods travelling between an OD pair.
For instance, in the case of passenger transportation, a first commodity may correspond to
passengers travelling from Marseille airport to London airport, another one is representing
passengers travelling from Marseille airport to Toulouse airport. For each commodity k ∈ K,
ok and dk denote the origin and the destination of commodity k, respectively, and Rk, the
associated traveller volume. Let G = {V,A} denote the air transportation network, with
the vertex index set, V, representing the set of airports, and the arc index set, A, the set
of flight routes. For each route (i, j) ∈ A, the maximum flight frequency and the fixed
route design cost are denoted by Kij and Fi,j , respectively. For each route (i, j) ∈ A, ck

ij

corresponds to the unit cost of routing commodity k on (i, j). For each commodity k ∈ K,
and each route (i, j) ∈ A, we define fk

ij the continuous decision variable, indicating the flow
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of k on route (i, j). For each route (i, j) ∈ A, yij denotes the binary decision variable that
indicates whether route (i, j) is selected or not. The network design problem formulation,
inspired from Magnanti and Wong (1984), is the following :

min
f,y

∑
k∈K

∑
(i,j)∈A

ck
ijfk

ij +
∑

(i,j)∈A
Fijyij , (1.2)

subject to : ∑
j∈V

fk
okj −

∑
l∈V

fk
lok

= Rk k ∈ K, (1.2a)

∑
j∈V

fk
idk
−

∑
l∈V

fk
ldk

= −Rk k ∈ K, (1.2b)

∑
j∈V

fk
idk
−

∑
l∈V

fk
ldk

= 0 i ∈ V\{ok, dk}, k ∈ K, (1.2c)

∑
k∈K

fk
ij ≤ Kijyij (i, j) ∈ A (1.2d)

fk
ij ≥ 0 (i, j) ∈ A, k ∈ K (1.2e)

yij ∈ {0, 1} (i, j) ∈ A (1.2f)

The first term of Equation (1.2) counts the cost of routing each commodity on selected
arcs, while the second term counts the fixed cost of opening the routes. Constraints (1.2a)-
(1.2c) are flow conservation constraints, and constraints (1.2d) ensure that the flow on
route (i, j) does not exceed the maximum capacity. Nowadays, the hub-and-spoke network
is the most widely used structure since it allows airlines to operate an higher frequency
between city-pairs with a lower number of aircraft compared to a direct network (Belobaba
et al., 2009). However, the hub-and-spoke structure has a cost for passengers who have
to connect at the hub to reach their final destination. Consequently, this configuration,
is often less comfortable and efficient for passengers. Furthermore, an additional problem
must be addressed by airlines which consists in deciding where to implement their hub,
referred to as the Hub Location Problem (see Alumur and Kara (2008); Campbell (1994)).

According to Belobaba et al. (2009), airlines establish route profitability models to
support their planning decisions. These models contain accurate information on airline
expenditures for each route. Based on these estimations, airlines then decide which route
to integrate in their network. Finally, airlines establish the frequency planning. Frequency is
intrinsically related to competitiveness on a market. Indeed, as exposed by Simpson (1969),
a higher frequency will increase the market share of an airline. Simpson (1969) proposed
several models for airlines to construct their frequency planning in order to minimise their
operational cost. Ghobrial et al. (1992) developed a heuristic to determine flight frequencies
and aircraft routing for small-size airlines. Teodorović and Krčmar-Nožić (1989) developed a
method to determine flight frequencies on routes subject to competition. After the selection
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of routes and frequencies, transportation suppliers must fix the departure and arrival times
of each trip. This step corresponds to the timetable planning development, presented in
the next section.

1.1.3 Timetable development

The timetable development step corresponds to the selection of the departure time and
arrival time of each leg operated by transportation suppliers. Generally, for all transporta-
tion suppliers, the timetable is repeated daily or weekly. Hence, the timetabling problem
needs to be solved only for one period of time. Furthermore, an operator can consider
several objectives when building its timetable, such as minimising cost operation while
maximising passengers satisfaction (minimise total travel time) and robustness (resilience
to disruptions). Each transportation mode has its own process to determine the final time-
table. The process for airlines and railway operators are presented below.

1.1.3.1 Flight timetabling process

Historically, computational limitations did not allow airlines to consider all the ope-
rational constraints when building their timetables. The schedule design was manually
handled based on an iterative process : schedule construction and schedule evaluation (Et-
schmaier and Mathaisel, 1985). A feasible schedule that satisfies operational constraints
was established (schedule construction step), then a set of experts evaluated this schedule
and suggested changes to improve it. The process was repeated until no more change was
required. Heuristics were also employed to design the schedule and to speed up the process
(Gopalan and Talluri, 1998). With the progress in operations research algorithms and com-
putational power, more and more airlines use optimisation models to solve the scheduling
problem. However, these methods do not build schedules from scratch. As explained by
Belobaba et al. (2009), the construction of an entirely new timetable has some drawbacks :

— it requires recent and accurate data ;
— it is computationally costly to handle all the operational constraints ;
— it can result in hard changes compared to the original timetable, which are not desired

by airlines looking for regularity valued by passengers.
Hence, most of the optimisation procedures only allow limited changes on a given

schedule. They are generally coupled with a resolution of the Fleet Assignment Problem
(FAP) that corresponds to assigning a fleet type to each flight. A mathematical formulation
of the problem, inspired from Hane et al. (1995) and Belobaba et al. (2009), is proposed
as follows.

First, here is the given input data. Let L be the set of scheduled flights, F be the set
of aircraft fleet types, and, for each fleet type f ∈ F , let nf be the available number of
aircraft of that fleet type. The model is based on a time-space network representation.
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More precisely, a node in the graph corresponds to an event, either departure or arrival,
at a given airport, as illustrated in Figure 1.4. Arcs correspond either to flights, or ground

Airport 1

Airport 2

Airport 3

Time

Flight arc

Ground arc

tc

A

B

C E

D
F

G

Figure 1.4 – Example of the time expanded network, with nodes corresponding to the
arrival or departure of a flight, and edges correspond to flight arcs (black) or ground arcs
(gray). The count time line is represented by the blue dashed line.

times at the airport between two consecutive flights. For each fleet type f ∈ F , such a
time-space network is defined. Indeed, depending on the fleet type, the flight time and the
turnaround time between two flights (i.e., time between two consecutive flights operated
by a same aircraft) can vary. Therefore, a given scheduled flight l ∈ L can have a slightly
different departure time or arrival time from one fleet-type network to another. Let N f

denote the set of nodes and Gf the set of ground arcs of fleet type f . We are given a time
of the day, called the count time, and that we note tc, a user-defined fixed parameter. Let
Cf

L denote the set of flight arcs of f ∈ F whose departure times are before tc and the
arrival times are after tc (e.g., flight arc A in Figure 1.4). Similarly, let Cf

G denote the set
of ground arcs of fleet type f whose starting node time is before tc and ending node time
is after tc. For each fleet type f , and each node n ∈ N f , we further define Of

n and Df
n,

the sets of flight arcs whose origin is node n and destination is node n, respectively. Let
g+

n denote the unique ground arc terminating at n, and g−
n denote the unique ground arc

starting from n, n ∈ N f .
Based on these notations and input data, we define xf

l , the binary decision variable
indicating whether flight l ∈ L is flown by fleet f ∈ F . Then, for each fleet type f ∈ F ,
and each ground arc g ∈ Gf , we define an integer decision variable, yf

g , that counts the
number of aircraft of type f on the ground arc g.

The mathematical formulation of the optimisation problem therefore reads :

min
x,y

∑
l∈L

∑
f∈F

cf
l xf

l , (1.3)

14



CHAPITRE 1. A REVIEW OF TRANSPORT SCHEDULING FOR TIMETABLE
OPTIMISATION

subject to : ∑
f∈F

xf
l = 1 l ∈ L (1.3a)

∑
l∈Of

n

xf
l + yf

g+
n
−

∑
l∈Df

n

xf
l − yf

g−
n

= 0 n ∈ N f , f ∈ F , (1.3b)

∑
l∈Cf

L

xf
l +

∑
g∈Cf

G

yf
g ≤ nf f ∈ F , l ∈ L (1.3c)

yf
g ∈ N g ∈ Gf , f ∈ F , (1.3d)

xf
l ∈ {0, 1} l ∈ L, f ∈ F , (1.3e)

where x is the vector of optimisation whose (f, l) component is xf
l , y is the vector of

optimisation whose (f, g) component is yf
g , and cf

l is the cost of assigning fleet type f to
flight l, f ∈ F , l ∈ L. Remark that one can easily provide an upper bound on each of the
integer variables yf

g . Equation (1.3) is therefore the sum of the cost of the assignment of a
fleet type to each flight. Constraints (1.3a) ensure that each flight is covered by one fleet type
and consequently linking the individual fleet-time-expanded graph together. Constraints
(1.3b) are flow conservation constraints. Constraints (1.3c) ensure that no more aircraft
than available on each fleet can be assigned.

Each fleet type has its own characteristics, such as a maximum capacity and minimum
turnaround time. Hence, the schedule directly affects the fleeting decision. For instance, a
specific departure time can be more attractive for passengers and assigning a long-range
aircraft is likely to be more profitable for airlines than a smaller one that could induce spill
cost (loss in revenue since some passengers are not accommodated due to a demand higher
than the capacity). Also, changing the schedule modifies the available turnaround time
between two consecutive flights and questions the initial fleeting decision. Levin (1969)
was one of the first authors to propose to solve the fleet assignment problem allowing
changes in the schedule if this could reduce the fleeting size. Rexing et al. (2000) noticed
that small changes in the initial schedule could reduce the cost of the fleet assignment.
This resulted in a reduction of two in the number of aircraft needed in a real-life instance
he addressed, and in a cost saving of $50 million. Desaulniers et al. (1997) presented two
formulations of the the Daily Aircraft Routing and Scheduling Problem (DARSP) and
solved instances of these formulations using branch-and-bound techniques.

1.1.3.2 Train timetabling generation

Regarding the train timetable problem, two approaches exist in the literature : the
cyclic scheduling and the acyclic scheduling. The cyclic scheduling consists in designing a
timetable for a given period of time T , and repeating it for each following period. One of
the main advantages of such an approach is that it is easy for passengers to remember the
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schedule, as it is repeated every T period of time. This approach has been introduced by
Serafini and Ukovich (1989) and is referred to as the Periodic Event Scheduling Problem
(PESP).

An event i corresponds to an arrival or a departure of a train at/from the train sta-
tion. Let E denote the set of events. Train scheduling requires the satisfaction of several
constraints such as :

— dwell time at stations : train should stop a minimal amount of time at each train
station for dropping and picking up passengers ;

— turnaround time at terminus : when a train reaches its destination station, a certain
amount of time should be planned to ensure the cleaning of the train, the rotation
of the crew, etc. ;

— headway constraint : a minimum time interval between two trains running on the
same track should be guaranteed for safety ;

— trip time : the duration of a train trip should not exceed a certain limit.
A constraint links two events (i, j) ∈ E ×E, i ̸= j. For instance, let i denote the event

representing the arrival of a train at a given train station, and j the departure of the same
train from the train station. It must be ensured that the departure of the train occurs after
its arrival. Similarly, the time the train spends at a station is limited. The departure time
from the station cannot be later than a certain time after the arrival time of the train. For
each event (i, j) ∈ E ×E, i ̸= j, let uij and lij be the upper bound and lower bound of the
duration between events i and j, respectively. These bounds are given as input data. For
each event i ∈ E, let ti be the integer decision variable representing the scheduled time of
event i. As proposed by Peeters (2003), a generic formulation of the optimisation problem
is :

min
t

∑
i∈E

F (ti) (1.4)

subject to :

(ti − tj)mod(T ) ≤ uij (i, j) ∈ E × E, i ̸= j, (1.4a)
lij ≤ (ti − tj)mod(T ) (i, j) ∈ E × E, i ̸= j (1.4b)

where lij and uij represent respectively the minimal and maximal durations between events
i and j, and F is a completely general objective function that computes the cost of timetable
t. Several authors focus on this model such as Nachtigall and Voget (1996) or Odijk (1996).

The second approach, the acyclic scheduling, schedules trains for the total running
period rather than following a periodic scheme. Indeed, cyclic timetabling implies that
the schedule remains the same during peak hours and off-peak hours. A trade-off should
therefore be found to limit congestion during peak hour while limiting the operational
cost during low-demand periods (Caprara et al., 2002). The acyclic timetabling has been
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developed to address this issue. A mathematical formulation of the acyclic train timetabling
problem is proposed by Caprara et al. (2002) and is presented here. Let N denote the set of
train stations. The train timetable is represented by an acyclic graph G = (V, A), where the

σ

w1 w2

u3

w3

u4

w4

τ

Figure 1.5 – Railway network modelling example, where σ and τ represent artificial source
and sink nodes, respectively, and ui and wi the set of departing and arriving instants,
respectively (Caprara et al., 2002).

vertex set, V , corresponds to the set of possible arrival times and departure times of trains
at/from train stations, and the set of arcs, A, represents either train stops at stations or
train trips between two stations (see Figure 1.5). Therefore, the set of vertices is partitioned
into the set of arriving instants, U , and the set of departing instants, W , an artificial source
node σ, and an artificial sink node τ . The set of arriving instants U is further partitioned
into subsets U s, for each train station s ∈ N , and similarly for departing-instant subset
W . For each vertex v ∈ V , and each train t ∈ T , let δ+

t (v) and δ−
t (v) denote the set of

arcs in At respectively leaving and entering vertex v. The set of trains to be scheduled is
denoted T and for each train t ∈ T , At ∈ A denotes the set of arcs that can be used by t.
In order to satisfy the constraints previously introduced, we define C a subset of pairwise
incompatible arcs. For instance, arc a1 corresponds to the trip of train t ∈ T departing at
12 :00 from station s ∈ N and arriving at station s + 1 at 13 :00. Arc a2 represents the
trip of the same train t departing from station s + 1 at 12 :50 and arriving at station s + 2.
These two arcs are incompatible since t could not depart from s + 1 before arriving at it.
The set C corresponds to the set of all subsets of incompatible arcs. For each arc a ∈ A,
the binary decision variable xa indicate whether arc a is selected or not. The objective
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consists in determining, in the network, the subset of arcs together with the train assigned
to each selected arc that will maximise the operator profit. The optimisation problem is
formulated as follows :

max
x

∑
t∈T

∑
a∈At

paxa (1.5)

subject to : ∑
a∈δ+

t (σ)

xa ≤ 1 t ∈ T (1.5a)

∑
a∈δ+

t (v)

xa =
∑

a∈δ−
t (v)

xa t ∈ T , v ∈ V \{σ, τ} (1.5b)

∑
a∈C

xa ≤ 1 C ∈ C (1.5c)

xa ∈ {0, 1} a ∈ A (1.5d)

where pa is the profit associated for arc a ∈ At for a train t ∈ T , and x is a vector whose
the ath component is xa. Constraints (1.5a) ensure that at most one arc is selected for train
t to leave the source node σ. Constraints (1.5b) are flow conservation constraints. Finally,
constraints (1.5c) impose that no incompatible arcs are selected. Brännlund et al. (1998)
proposed an optimisation technique based on Lagrangian relaxation to solve the single
track time-tabling problem. Wong et al. (2008) proposed a mixed-integer programming
formulation for the timetable synchronisation problem that satisfies track constraints. Their
objective is to minimise the total passenger transfer wait times by adjusting the departure
and arrival times, the run time on the track and the dwell time at each station for each
train.

1.2 Timetable synchronisation

As direct travels can not always be offered to passengers, some journeys require transfers
between flights or trains. Indeed, the hub-and-spoke network structure generally used by
airlines to reduce their operating cost involves that passengers transfer between two flights if
their OD pair is not served by a direct flight. To improve the quality of such transfers and to
remain attractive for passengers, transportation suppliers must synchronise their schedules.
These mechanisms have mostly been developed for each individual network : airlines focus
on the coordination of their flights, and railway operators concentrate on coordinating
their trains. Nevertheless, multimodal timetable synchronisation models are developed,
especially in the case of short distance public transport or for freight transportation. Some
initiatives are now flourishing to synchronise air and rail timetables.
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The next subsection presents, synchronisation mechanisms within the same transporta-
tion mode, either air or rail. Then, subsection 1.2.2 introduces intermodal synchronisation
techniques.

1.2.1 Intramodal timetable synchronisation

Regarding airlines operations, hub-and-spoke networks have been developed because
they allow operators to serve a large number of destination with a lower number of air-
craft, compared to point-to-point network (Belobaba et al., 2009). However, as mentioned
above, this structure has some drawbacks for passengers who have to shift between two
flights when their OD pair is not served by a direct flight. Generally, airlines operate in
connecting bank structure at airports : a group of arriving flights is followed by a group of
departing flights in order to maximise connection opportunities for passengers. The quality
of connections at hub airports is therefore a factor of competitiveness for operators. This
quality, referred to as temporal connectivity, is bounded due to airport capacities ; indeed,
the number of aircraft movements per time interval is limited for safety purpose. Seve-
ral studies focus on quantifying flight connectivity at airports. Burghouwt and Redondi
(2013) summarise and compare different connectivity metrics used in air transportation to
assess the quality of schedule coordination at hub airports. Many of these metrics consider
connections involving a transfer time that ranges within predefined minimal and maxi-
mal connection times. Veldhuis (1997) defines a connectivity unit value that measures the
quality of the indirect connection compared with a direct connection. Transfer times are pe-
nalised as being perceived three times longer than in-vehicle time. Dennis (1994) proposes a
connectivity ratio index that compares the number feasible connections within a 90-minute
range of a given schedule with a schedule of flights randomly distributed across the day. A
connection is considered to be feasible if it respects a so called Minimum Connection Time
(MCT). Burghouwt and de Wit (2005) define the weighted indirect connection index. They
consider both the connection time quality and the detour generated by stopping at the hub
airport. The connection time quality is a linear function decreasing from 1 to 0 for times
between MCT and a so called Maximum Acceptable Connection Time (MACT). Budde
et al. (2008) propose to measure the quality of connectivity at hub airports by taking into
account the weekly frequency of flights. The authors assume that a low weekly frequency
should be counterbalanced by a short connecting time. However, even if short connections
are favoured by passengers to limit the total travel time, short connections are not robust
in case of delay. It is a source of stress for passengers who prefer longer connection times
to be more conservative. In that sense, Danesi (2006) defines an intermediate connection
time that lies between short and long connections, where short and long connections are
those with a connection time under and above the intermediate connection time, respecti-
vely. Theis et al. (2006) study passenger itinerary choice according to the connecting time
between two flights. These authors assume that the utility function of the connecting time
is an n-shape curve : short-connection time are not desired due to a feeling of rush and risk
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of missed connection, long-connecting time are perceived as a loss of time for passengers.
They test their hypothesis by analysing results of a survey led on approximately 5000 ob-
servations. Their results show that indeed, passengers do not attempt to minimise simply
the connection time but are rather looking for a “reasonable” connection time.

Regarding railway operators, the LPP aims at designing rail lines in order to maximise
the number of direct travellers. For travellers that cannot benefit from a direct connec-
tion, timetable synchronisation is required when timetables are designed. Generally, the
objective of railway operators is to minimise passenger wait times at transfer stations. This
mechanism is mainly developed in most of ground public transport systems (bus, subway,
rail, urban rail transit, etc.). Nachtigall and Voget (1996) present a genetic algorithm to
minimise passenger wait times at transfer stations in a periodic schedule. Wong et al.
(2008) propose a method that minimises transfer times within a rail mass transit network.
Jansen et al. (2002) propose a tabu search algorithm to minimise passenger transfer times
in a public transport network. Another synchronisation approach is that of Ceder et al.
(2001) who propose to maximise the number of simultaneous bus arrivals at stations. They
formulate this problem as a Mixed-Integer Linear Programming (MILP) problem and pro-
pose a heuristic to solve it approximately in polynomial time. Similarly, Cao et al. (2019)
develop a methodology to maximise the number of transfers at railway station, considering
passenger transfer times to switch between lines. They test their methodology on the Bei-
jing subway network, increasing by 67% the number of synchronisations compared with a
basic planning (constant headway and same initial departure times at 00 :00 for all train
lines). Vansteenwegen and Van Oudheusden (2006) propose to compute ideal buffer times
of trains to minimise passenger wait times due to missed connections in case of delays.
More precisely, the authors estimate the distribution of train actual arrival times (with
potential delays), to include an additional buffer times in the train schedule so as to allow
passengers to make the connection, even in case of delays.

As observed, most transportation service providers manage schedule synchronisation
within their own network. There are several reasons for this. First, the lack of data sharing
and of standardisation between transportation modes limits the potential for coordina-
tion. Second, there are few incentives for transportation suppliers to alter their network
performance in order to synchronise with other modes (Xia and Zhang, 2017). Without a
bilateral agreement, the multimodal synchronisation can be improved but at the expense of
one transportation network only. Finally, transportation suppliers cannot act on the other
transportation modes ; each transportation supplier manages solely its own network. All
these reasons are limitations to multimodal synchronisation. However, the trend and policy
support to provide passengers with smooth transfers between modes push transportation
providers to initiate collaboration.
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1.2.2 Intermodal synchronisation

In this dissertation, the emphasis is put on long-distance travels, which include air
transportation. However, urban and freight mobility received higher attention than long-
distance multimodality in the literature.

SteadieSeifi et al. (2014) lead a survey on multimodal freight transportation planning.
As detailed in SteadieSeifi et al. (2014), the planning decision refers to the service network
design : a process that gathers the frequency planning step, the capacity allocation, the
equipment planning, and the routing of commodities. Andersen et al. (2009) develop a
model to coordinate departure times of a transportation service (rail) with external service
(ship) to minimise the delivery time of goods. Puettmann and Stadtler (2010) propose a
methodology to synchronise the schedules of two carriers that interact through a long-haul
transportation network. They aim at building a long-haul line schedule that minimises the
operational cost, based on the shipment demand from the two carriers.

Regarding urban mobility, coordination between public and private transits has been
extensively investigated. For instance, Tirachini et al. (2014) try to find the best bus fre-
quency, size and fares that maximise passenger welfare. They build a trade-off between
crowded buses and congestion at bus stations. Hence, they both take into account pas-
senger travel time (frequency) but also try to mitigate road congestion caused by public
transport. Castelli et al. (2004) propose a model and an algorithm to build a multimodal
schedule that minimises passenger transfer times and the operational cost. While freight
and urban multimodality have been widely studied in the literature, research studies ad-
dressing both air transportation system and ground transportation are only recently begun.

The first coordination mechanism with another transportation operator appears within
the air transportation system through the airline alliance system. An alliance refers to a
consortium of airlines that enter into a collaborative agreement. One of the most widely
adopted coordination mechanisms within these alliances is the code-sharing system : airlines
within the same alliance can offer passengers flights operated by another airline, with the
same flight code. This agreement enables airlines to expand their offerings by introducing
destinations not originally served, or by providing additional flight combinations, in terms
of schedules. In that sense, Yan and Chen (2007) propose a model to solve the fleet routing
and flight scheduling problems jointly for two airlines. Two types of collaboration are
modelled : parallel alliance, in which one flight of each alliance can be planned at the same
time for the same OD pair, and complementary alliance, in which a first flight is scheduled
by one airline from a first station to an intermediate one, and another flight is scheduled by
another airline from the intermediate station to the destination station. Results show that
a combination of these two models significantly reduces the operational costs of airlines.

Regarding air-rail timetable synchronisation, at the moment, most of the studies ana-
lyse the effect of such a collaboration on passengers, or the passenger willingness to pay for
such mechanisms. For instance, Román and Mart́ın (2014) study passenger preferences in
the case of air-rail integration. They define several characteristics of coordination, such as
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the connecting time, travel cost, travel time, fare integration, or luggage handling. Results
show that passengers value total travel times, connecting times and airport access times.
Li and Sheng (2016) study passenger travel demand for air-rail integration in China. Re-
sults show that a large connection time between air and rail (above 120 minutes) is not
attractive for passengers, reducing thereby the demand for air-rail service. Chiambaretto
et al. (2013) study the passenger willingness to pay for intermodal service. They show that
“short” connection times (around 90 minutes) are valued by business travellers while longer
connection time (e.g., 210 minutes) are preferred by leisure travellers.

Despite the challenges, synchronising solutions between ground and transportation
modes have emerged. Huang et al. (2021) aim at solving the last train timetabling pro-
blem in urban rail transit network by incorporating synchronisation with other modes such
as trains and flights and not only within the rail transit network. The purpose is to gua-
rantee passengers who have a train or a flight late at night, to transfer within the urban
transit network. Marzuoli et al. (2016) study the benefit of coordination between air and
ground transportation systems in case of a major disruption. They develop an optimisation
process to mitigate disruptions on passengers in case of failure of the air transportation
system. They propose to accommodate stranded passengers with ground transportation
modes to reach their final destination. The methodology is tested on the case of the Asiana
crash, and successfully results in relocating all passengers within six hours of delay, com-
pared to several days without considering buses. More recently, Ke et al. (2020) aim at
synchronising trains and flights at a specific airport. The objective is to maximise the
number of feasible connections between trains and flights, by changing the rail schedule.
They also consider maximising the number of synchronised flights and passenger satisfac-
tion regarding transfer times. Since these three objectives do not have the same priority, an
a priori method is employed to solve this multi-objective optimisation problem. The above
approaches propose tactical and strategic adjustments of air and rail schedules to improve
passengers experience. A step further in collaboration can be reached by synchronising air
and rail at the frequency planning-level. For instance, Allard and Moura (2014) introduce
a model to design an hub-an-spoke structure, combining trains and flights. Okumura and
Tsukai (2007) propose to determine the optimal flight frequencies and train speeds under
various airport capacities and rail-line length constraints in Japan, while keeping the initial
schedule train frequencies.

1.3 Conclusion

This literature review aims at giving an overview of the scheduling process that air-
lines and railway operators follow. This process is sequential, decomposed into several
subproblems : the infrastructure design and building, the route planning, the timetable
development, the vehicle scheduling, and the crew scheduling. These sub-problems are ge-
nerally solved independently and without taking the other modes of transportation into
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consideration. In addition, according to the literature, schedules are never designed from
scratch. Flight schedules are adjusted seasonally to adapt to the demand, and train ti-
metables are adjusted to ensure feasibility and track-constraint satisfaction. Nevertheless,
the literature shows that some recent initiatives to coordinate transportation modes have
emerged, with the purpose of improving the passenger door-to-door journeys. Initially de-
veloped for freight and urban transit, synchronisation models between flight and train are
appearing. However, several limitations remain. First, a large part of the studies focus on
the effect of potential synchronisation mechanisms on passengers (e.g., several values of
transfer time, luggage handling, attractive costs, etc.), but few authors actually develo-
ped synchronisation models that yield timetables that can be implemented in operational
contexts. They are generally limited to consider the other modes as a constraint (Ke et al.,
2020), leading to unilateral changes in the schedule and potentially unfair solutions. Fi-
nally, synchronisation mechanisms are generally applied at one airport or at the national
scale.

This dissertation tackles the following problem : can synchronisation models at a large
scale (covering several airports/train stations or countries) improve operations for transpor-
tation suppliers, passengers and the environment ? The next chapter consists in gathering
both supply and demand data as to build realistic instances as inputs for new synchroni-
sation models.
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Chapitre 2

Data collection and intermodal
passenger demand simulation

In order to build their timetables, transportation operators rely on two separate data
sources : supply and demand. Supply data correspond to the number of vehicles available
(aircraft and trains), crews, pilots, etc. Demand data correspond to the expected number
of passengers who travel on the transportation network considered.

Long-distance transportation suppliers, such as airlines or railway operators, manage
only one mode of transportation, with information related to their network, exclusively.
Such data is usually private and not publicly accessible since it might ensure a high-
level of competitiveness. As observed in the previous chapter, the first challenge when
synchronising air and rail schedules is to collect suppliers’ data to have accurate knowledge
about their resources. In addition, timetable generation is intrinsically related to passenger
demand. Indeed, operators tend to maximise their profit when satisfying the transportation
demand. This demand is estimated by suppliers using forecast models (generally relying on
historical data and exogenous information) that are also private. Moreover, such predictions
are usually limited to one transportation mode, and suppliers have no information on the
passengers’ itineraries when they exit their own network. Consequently, one of the main
challenges when building an integrated timetable between air and rail is to estimate the
transfer demand between these two modes.

This chapter deals with the data collection of transportation suppliers and the inter-
modal passenger demand simulation. First, the data sets used in the remainder of this
dissertation are presented. The first section describes their collection from several sources,
fusion and standardisation. Then, a data-driven intermodal passenger demand is proposed
in the second section. Instances are generated using real transportation data and Constraint
Programming (CP). The overall data processing scheme followed in this chapter is sum-
marised in Figure 2.1. In the remainder of the manuscript, the term leg will refer either to
a train journey or to a flight.
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Figure 2.1 – Overall data processing scheme. The output data column presents the realis-
tic data sets that have been simulated in Chapter 2 via the simulation processes developed
in this thesis : the flight passenger volume estimation and the vehicle journey simula-
tion, both based on heuristics, and the intermodal passenger demand simulation, obtained
through a constraint-programming resolution approach applied to the optimisation model
we introduced.
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2.1 Data collection and standardisation

One challenge in this work was to gather accurate supply data to later propose realistic
synchronisation mechanisms. In this dissertation, the first mechanism proposed relies on
the existing timetables. Consequently, flight and train schedules are required input data.
In this section, the collection of these inputs, from several sources, is presented. Up to
date, there is no regulation regarding the sharing of transportation data and their format.
Indeed, transportation suppliers are not obliged to share their data, and if they decided
to do so, the format is not imposed. Therefore, as the format may differ depending on
the transportation mode or even on the source, and as some essential information may be
missing, we propose heuristics to realistically simulate missing data.

2.1.1 Data sources

When a passenger plans a flight trip, he or she can obtain information on flight sche-
dules directly on airlines’ websites or from an external one such as Google Flight, Kayak,
etc. These platforms propose to manage passenger reservations using Global Distribution
Systems. In few words, these systems are connected to several databases to provide passen-
gers with flight information such as price, schedules or availability. The best-known data
bases are Sabre (2023) and OAG (2023). In this dissertation, we aim at synchronising trains
with flights considering a large number of itineraries all at once. Therefore, acquiring, in
this way, flight information across various airports at national or European levels can be
laborious, particularly when examining each individual origin-destination pairing. Other
data sources must therefore be explored.

Daily flight schedules at large scale are usually published on airports’ website or on
flight tracking platform such as Flightradar24 (2023) or FlightStats (2023). These open-
access tools allow one to obtain real-time information on flight status, combining several
data sources (Automatic Dependent Surveillance-Broadcast (ADS-B), Multilateration, ra-
dar data, etc.) to capture the real-time position of each aircraft. However, gathering large
scale information (covering several airports or countries) is a difficult task as these websites
only allow information retrieval on a per-itinerary or per-airport basis. In addition, histo-
rical schedules are generally not accessible without subscription. Another accessible source
of flight data is OpenSky Network (2023). This platform collects huge amounts of ADS-B
data each day, storing aircraft trajectories for each recorded day. However, in our case,
such data is not accurate enough. Indeed, as depicted in Figure 2.2, a flight is composed
of several phases :

1. the aircraft is at the gate, pilots and crews prepare the flight, passengers board and
the aircraft is filled with luggage and fuelled ;

2. when it is ready to go, the aircraft leave the gate (off-block time) and head towards
the runway, this steps is referred to as taxi ;

3. when the runway is clear, the aircraft can take off (take-off time) ;
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4. the flying phase ;
5. the aircraft lands at the destination airport (landing time) then proceeds (taxi) to

the arriving gate, where it stops (in-block time) ;
6. the aircraft is at the gate, passengers can leave the aircraft and it is prepared for

the next flight.

Figure 2.2 – Flight phases from origin airport to destination airport.

The departure time can either corresponds to the off-block time or to the take-off time.
Similarly for the arrival time : it may correspond to the landing time or to the in-block
time. To avoid confusion, in the remainder of this dissertation, departure and arrival times
will refer to the off-block time and to the in-block time, respectively. Indeed, these times
are the one shared by airlines with passengers when they book a flight. In addition, there
might be significant differences between the off-block and departures times, or between the
landing and in-block times at large airports : the taxi may last several minutes if the gate
is located far from the runway or in the case of an aircraft queuing at congested hours.
Therefore, it is more robust for passengers to have an idea of the time at which the aircraft
will leave the gate or at what time they can disembark : they can plan their itineraries
according to this information. Therefore, it is essential for us to work rather with off-block
and in-block times. With Opensky data, the first and last time stamps recorded correspond
to the first and last transponder emissions from the aircraft. Generally, these events occur
during the taxi phase, and there is not guarantee that the first and last times recorded are
the time scheduled by airlines, especially in the case of a delay. To overcome that issue, we
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use another database : Eurocontrol R&D data (Eurocontrol, 2023). In Europe, Eurocontrol
publishes historical flight data over Europe on a quarterly basis. Such data corresponds to
flight records with either the origin and/or the destination within Europe. However, due
to privacy restrictions, data is released with a two-year delay. For more recent and future
schedules, data from OAG Schedule Analyzer (OAG, 2023) is used. Note however that data
is only accessible through commercial subscription.

It is therefore noteworthy that currently, there is no open data repository of future
flight schedules or historical ones dating back less than two years. Accessing such data
proves to be resource-intensive, requiring either significant time or financial investment.
An alternative approach might involve automated web scraping from individual websites ;
however, this method can encounter access denial after an excessive number of requests
and may be prohibited.

Regarding train schedules, most of railway operators now share their schedules under
the General Transit Feed Specification (GTFS) format (MobilityData, 2023). This format
provides a standardisation norm for the release of public transportation data. Historically,
this system was developed in Portland, Oregon, for the release of public transportation
data under an easily accessible format. Information such as stations served, stop times at
the station, and stop durations are provided for the upcoming month. In Europe, national
railway operators such as Société Nationale des Chemins de Fer français (SNCF) in France,
Red Nacional de los Ferrocarriles Españoles (RENFE) in Spain or Deutsche Bahn (DB) in
Germany now publicly share their train timetables under that format. Note, however, that
historical data is not always accessible. For instance, SNCF only shares the historical data
of up to 6 months, and DB only for the upcoming month. Some third-part actors now offer
to store historical data. For instance, Interline, through the Transitland product Interline
(2022) collects GTFS data released since 2014, and share it without fee. The International
Union or Railway (UIC) developed a database gathering all rail schedules of European
countries on a data base named MERITS (UIC-International Union of Railways, 2023a).
However, access to this data base costs several thousands of euros per year. As this cost may
be handled by private companies, it is generally not suitable for academic endeavours. To
freely obtain access to the railway schedule data in Europe, one must extract the GTFS data
from each operator. This could imply visiting several websites if more than one suppliers
operates in a given country. In addition, railway operators generally work on a national
market. The language is therefore another barrier to overcome when gathering railway data.
For these reasons, we limit the scope of our study to three European countries : France,
Spain and Germany.

In addition, synchronisation is relevant if there is a sufficient demand to coordinate
flight and rail schedules. Consequently, we therefore focus on three hubs across each coun-
try : Paris-Charles de Gaulle (CDG), Frankfurt (FRA) and Madrid-Barajas (MAD) air-
ports. CDG and FRA airports have a direct access to one High-Speed Rail (HSR) station
directly located at the airport. Conversely, MAD airport is not equipped with a train sta-
tion, passengers using train as feeder flights should therefore stop at Madrid-Chamartin or
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Figure 2.3 – Data sources and availability on March 2023. Blue lines correspond to dates
when the data is accessible.

Madrid-Puerta de Atocha, the two main train stations of Madrid, and then transfer to the
airport. For simplicity we limit the analysis to the Madrid-Puerta de Atocha train station.
Rail data for these three train stations : CDG-HSR, FRA-HSR and Madrid-Puerta de
Atocha are therefore collected. In the following, we focus on two periods : 2019 and 2021,
to compare changes due to the COVID-19 outbreak. When historical data is available, the
schedules of HSR across the three countries are collected on each website. Data from 2021
was collected at the time on the operator website. To retrieve data from 2019, French HSR
schedules are downloaded from Transitland (Interline, 2022), and German HSR schedules
are obtained from a git repository (Lockheed, 2021). Data temporal availability, according
to each source, is summarised in Figure 2.3. In addition to schedule data, remark that
transportation operators now propose API to access real-time schedule, denoted by GTFS-
RT. In addition to schedule information, this data contains actual arrival and departure
times for each train.

Data from December 2019 and September 2021 was extracted for each mode. These
months are chosen since data on that period have been retrieved for the two transportation
modes. In addition, gathering data from pre- and post-pandemic periods will allow us to
compare the transportation system evolution after the COVID-19 outbreak.

2.1.2 Comparison and overview

Several features are essential to build timetables. In particular, we are interested in :

— Carrier : airline or railway operator in charge of the transportation. In case of airline
alliance, there can be two carriers, the publish carrier, which sales the ticket, and the
operating carrier, which effectively operates the flight ;

— Origin and Destination : origin and destination airports or train stations ;

— Scheduled departure and arrival times : off-block and in-block times ;
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— Actual departure and arrival times : if the schedule corresponds to a past event, the
flight or rail legs have been operated, and the true departure and arrival times are
given. They may be different from the scheduled times in case of delay ;

— Callsign/Tail number : the aircraft or train identification. This number is unique
and assigned to each vehicle (for instance aircraft “FHLVM”). This information is
important because, if two successive flights are operated by the same aircraft, a
sufficient time between the two flights should be planned in the timetable to ensure
the unboarding of passengers, refuel, clean and boarding of new passengers. This
minimum required time is referred to as the Minimum Turnaround Time (MTT) ;

— Equipment : it corresponds to the vehicle type (e.g. Airbus A320, Boeing 777, etc).
This information is useful to determine the MTT between two flights since the tur-
naround time of a large aircraft is generally larger than for a smaller aircraft ;

— Available seats : number of passenger seats available ;
— Passenger carried : volume of passenger carried if the flight or the rail-leg already

run (i.e., historical schedule).
Subsequently, a processing step is initiated to extract and format the necessary features
from each data source. The availability of each feature from raw data is presented in
Table 2.1. For both air and rail data collected, the carrier, origin station (i.e., airport or
train station), destination station, scheduled departure time and scheduled arrival time
information are available. In addition, Eurocontrol Data (ECL) for flight, and GTFS-RT
for trains, provide actual departure and arrival times. Regarding vehicle information, only

Table 2.1 – Features availability for air and rail data sources

Air Rail

Features ECL OAG GTFS GTFS-RT
Carrier Yes Yes Yes Yes
Origin Yes Yes Yes Yes
Destination Yes Yes Yes Yes
Scheduled departure time Yes Yes Yes Yes
Scheduled arrival time Yes Yes Yes Yes
Actual departure time Yes No No Yes
Actual arrival time Yes No No Yes
Vehicle callsign Yes No No No
Equipment No Yes No No
Available seats No Yes No No
Passenger carried No No No No

ECL share the aircraft callsign, and information on the equipment and seats are only
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accessible using OAG Schedule Analyzer (OAG, 2023) data. Finally, no source provides
the passenger volume carried in historical schedules.

As a summary, data from a week of September 2021 and a month of December 2019 are
collected for trains in France, Germany and Spain. Note that flight schedules are shared
in UTC time, whereas GTFS data is provided at the local time of the country. Figure 2.4
presents the number of high-speed trains scheduled for these countries for December 2019
and September 2021. These volumes are obtained after processing the GTFS files collected
for these periods.

Figure 2.4 – Volume of long-distance trains scheduled in France, Germany and Spain in
December 2019 and September 2021, according to GTFS data.

First, note that for Germany, as historical data is not available, there is no guarantee
on the correctness of the data. An increase in the number of scheduled trains for Germany
can be observed in 2021 compared with 2019, but this difference can be explained by the
lack of information in the data of 2019. On the contrary, the number of scheduled long-
distance trains in France and Spain reduced in 2021. Regarding absolute volumes, GTFS
data from Spain includes HSR as in the French GTFS data, but also long and medium
distance trains.

Regarding flight volumes, several thousands of flights are operated each day across Eu-
rope. The monthly volume of operated flights from June 2019 to September 2021, computed
from Eurocontrol data, is presented in Figure 2.5. The COVID-19 outbreak significantly
impacted the air transportation system. However, the year 2021 shows an increase in air
traffic towards the pre-pandemic level. In September 2021, more than 600,000 flights were
operated in Europe. Several thousands of flights and hundred of trains scheduled will the-
refore be handled in the dissertation.
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Figure 2.5 – Volume of commercial (passenger) flights operated over Europe for months
of March, June, September and December from June 2019 to September 2021. Data is
extracted from ECL.

2.1.3 Dealing with missing information

The previous sections highlight that important information is missing for timetable
generation. Specifically, in Chapter 3, the developed synchronisation mechanism suggests
making minor adjustments to existing schedules, assuming that aircraft and trains are
already assigned to legs. Furthermore, it is more rational to synchronise train and flight
schedules when they affect a significant number of passengers. For instance, coordinating
a train with a specific flight is not relevant if no passenger transfer between the two.
The objective of the multimodal demand simulation problem we are about to address is
therefore to estimate such transfer volumes. This estimation relies on the passenger volume
carried on each leg ; however, this information is never accessible from schedule data. In
this section, two heuristics are proposed to retrieve both the vehicle assignment and the
passenger volume carried in historical data.

2.1.3.1 Vehicle assignment

The train or aircraft assignment is an important information since operational constraints
such as the minimum turnaround times will be considered afterwards. In order to simulate
this information realistically, we propose a heuristic to assign a vehicle to each flight or
train journey. To do so, two assumptions are made :

— each vehicle is owned by exactly one carrier,
— the number of available aircraft/train is not limited.

Figure 2.6 displays the distribution of the average turnaround time for each aircraft in June
2019 as a function of the in-flight time. One can observe that, generally, the turnaround
time is above 30 minutes, and ranges between 100 and 150 minutes most of the time. In
the following, we set the value of MTT to 30 minutes.
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Figure 2.6 – Distribution of actual aircraft turnaround times for each day of June 2019
at CDG, FRA and MAD airports. A darker colour corresponds to a higher density.

Let L denote the index set of legs ordered by departure times and n denotes the number
of legs (n = |L|). For each leg l ∈ L, Ll denotes the index set of legs that can be operated
consecutively by the same vehicle of l, ordered by departure times. For instance, for a given
flight l scheduled to arrive at CDG airport at 10am, the set Ll contains all flights scheduled
to depart from CDG after 10am+MTT. Finally, for each leg l ∈ L, vl denotes the vehicle
ID that we are trying to determine, that operates leg l. As explained above, we assume that
the number of vehicles available is not limited, but one can easily show that the number
of legs is an upper bound for the number of vehicles required.

The principle of the heuristic we are proposing is presented by Algorithm 1 and is as
follows. Its kth iteration goes as follows. While there are legs without a vehicle assigned,
the first element of L (i.e., the earliest scheduled leg, denoted by i) is selected. The kth

vehicle is then assigned to operate leg i, and i is removed from L. If another leg can be
operated after i by the same vehicle k, we assign k to this next leg, denoted by j. The
same process is repeated for leg j and so on, until no more leg can be operated by vehicle
k. A new iteration then starts and, again, the earliest remaining leg of L is selected, and a
new vehicle k + 1 is assigned to it. The process is repeated until all legs are covered by a
vehicle.

If additional flight information is available, the algorithm can be extended to improve
the quality of the simulation. For instance, the airline information is accessible through
OAG or ECL data. In addition, OAG data provides for each scheduled flight, the vehicle
type and its seat configuration (for a same vehicle type, there are generally several possible
seat configurations). For instance, an airline can have two aircraft of the same type, but
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Algorithm 1 Vehicle assignment heuristic
Inputs :

L : Set of legs ordered by departure time
k0 : First available aircraft ID
Li : Set of legs that can be operated after leg i ∈ L, by a same vehicle

procedure vehicleAssignment(L, k0, L0, L1, . . ., Ln−1)
A = [ ] ▷ Index list of legs with a vehicle assigned
V = [ ] ▷ List of vehicle identification assigned to each leg
k ← k0 ▷ Aircraft ID initialisation, k ∈ {0, 1, . . . , |L|}
while L ̸= ∅ do

i← min{l : l ∈ L} ▷ Earliest departure flight
vi ← k ▷ Vehicle k is assigned to leg i
A.append(vi)
V.append(k)
L← L\{i}
while Li ̸= ∅ do ▷ While legs can be operated by the same vehicle n

j ← min{l : l ∈ Li}
vj ← k
A.append(vj)
V.append(k)
L← L\{j}
i← j

end while
k ← k + 1 ▷ New vehicle

end while
return V, A, k

end procedure

the number of economic-class seats in one aircraft can be higher than in the other aircraft.
Depending on the OD pair served and the distance travelled, some airlines can also adapt
the seat configuration of their aircraft to maximise profit. The vehicle assignment procedure
can therefore be applied to each subset of legs operated by the same airline, with the same
vehicle type and seat configuration.

In order to assess the heuristic performance, a validation phase is made on flights of
June 2019 at Madrid airport. For each day, Algorithm 1 is applied to OAG schedules, and
as output the number of required aircraft to operate all flights is computed. This value is
compared to the actual number of aircraft, obtained from Eurocontrol data. Results are
presented in Figure 2.7. First, note that there is a difference between the number of flight
schedules in ECL and OAG databases. The difference is on average of 0.8%. This can be
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Figure 2.7 – The number of flights operated for each day of June 2019 at Madrid Barajas
airport from Eurocontrol (green) and OAG (blue). Actual (green) and predicted (blue)
number of aircraft required to operate these flights are displayed.

attributed to last-minute adjustments. Indeed, scheduled flights can be cancelled in practice
or new ones can be added to accommodate disrupted passengers. Regarding the number
of aircraft required, an average error of 2.6% is obtained for June 2019 at Madrid airport.
The heuristic generally underestimates the number of aircraft. There are several reasons
that can explain this underestimation. First, a low value of MTT is likely to reduce the
number of aircraft required to operate a given number of flights. Indeed, with a large MTT,
two flights scheduled at a reduced interval time cannot be operated by the same aircraft,
an additional aircraft is therefore required. The value chosen of 30 minutes for MTT can
thereby contribute to underestimate the number of aircraft. Including the flying time of
flights operated (long/short range), or the airline type (regular/low cost) in the model could
enhance the estimation of MTT and improve the results obtained. Another reason that can
explain the underestimation of the number of aircraft is the fact that no information on
the crew assignment and vehicle maintenance is available. Indeed, airlines should regularly
schedule aircraft controls for safety purpose, increasing the number of required aircraft for
the same number of scheduled flights. Finally, more aircraft than necessary may be planned
to increase robustness, in case of disruptive events (aircraft breakdown, additional flight
to schedule, etc.). These constraints, that we could not take into account here, certainly
increase the number of aircraft required ; however, for simplicity, they will not be considered
here.

Regarding train schedules, GTFS data does not provide vehicle assignment information.
The same heuristic (Algorithm 1) is then employed to obtain a feasible timetable together
with a vehicle assignment. Unfortunately, no database is accessible to validate our model
on trains.
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2.1.3.2 Volume of passenger carried

The historical volume of passenger carried on each flight is not accessible. Therefore,
in this section, an estimation is proposed. Air passenger traffic volume to/from European
airports are recorded in the Eurostat database (Eurostat, 2019). Values for the years 2019,
2020 and 2021 are collected. For each airport pair, with either the origin or destination
(or both) within Europe, the monthly volume of passengers travelling between the two
airports is given. Figure 2.8 displays the monthly volume of passengers carried within
Europe from January 2019 to December 2021, recorded by Eurostat. Note that some values

Figure 2.8 – Monthly volume of passengers carried within Europe from January 2019 to
December 2021.

are equal to zero in the data, due either to missing information or to the fact that no
passenger travelled on that route (especially during the COVID-19 outbreak). Table 2.2
summarises the characteristic of the data gathered. According to the International Civil
Aviation Organization (2023), the volume of passengers carried in Europe in 2019 was
above 1,171 millions, while according to Eurostat data, the volume of passengers recorded
for 2019 was rather 504 millions. Such a difference can be explained by the lack of available
data, putting light on the difficulty to find reliable and accurate data. For years 2020

Table 2.2 – Number of zeros and total number of passengers carried.

2019 2020 2021
Zero values (%) 5.2 23.0 13.1

Total volume (millions of passenger) 504 116 151

and 2021, a higher share of zero values is observed. As explained above, this may be
due to the COVID-19 lockdowns. Table 2.3 summarises the number of routes (OD pairs)
served for several months from June 2019 to September 2021. These values are computed
using ECL database. In September 2019, 40,152 OD pairs were served compared with
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38,565 in September 2021. The pandemic reduces the number of route served, leading to
no passengers on these historical routes in the Eurostat database. In addition, some of
these zero values can be explained by the lack of available data.

Table 2.3 – Number of flight routes (OD pairs) served on the entire month, from June
2019 to September 2021. Values are computed from ECL.

Month Number of OD pairs served

06/2019 41,299
09/2019 10,152
12/2019 30,582
03/2020 27,695
06/2020 19,173
09/2020 28,866
12/2020 22,933
03/2021 21,039
06/2021 33,302
09/2021 38,565

As no other passenger data is available, we choose to use these data as a basis to es-
timate the volume of passengers carried per flight, despite the above-mentioned missing
information.

The procedure estimation we are proposing for a given day goes as follows :
1. for each OD airport pair, the daily passenger volume carried is estimated by dividing

the monthly volume carried by the number of days ;
2. for each OD pair served on the day, the flight required frequency is then computed ;
3. finally, the volume of passengers carried per flight is estimated as the daily volume

of passengers on a given OD pair, divided by the flight frequency.
If, for an OD pair, the volume of passengers carried is missing in the Eurostat data, we
arbitrarily set the passenger volume to the average passenger volume per flight for the day,
to avoid exogenous noise in the data.

This methodology is a simple approach to obtain a realistic estimation of the passenger
volume carried. However, it has some drawbacks. First, the number of passengers per OD
pair is estimated to be the same for each flight, which is probably not the case in practice.
Indeed, the specific weekday and time of the day may influence the passenger demand.
In addition, setting missing information to the average value of flying passengers does not
change the macroscopic analysis, but this averaging may lead to large underestimations
or overestimations of the number of passengers on some flights. In order to assess the
quality of this primary approach, as no validation data is accessible, we used OAG flight
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schedule data. Indeed, these data provides the number of seats available ; this information
can therefore be compared to our estimation of the volume of passengers carried. Data
from December 2019 is used since the average passenger load factors (i.e., share of seats
occupied) for 2020 and 2021 were lower than usual, due to the pandemic. For each flight f
scheduled, the estimated number of passengers carried, denoted ṽf , is compared with the
available number of seats, sf : for each flight, the difference sf − ṽf is computed, and the
distribution is displayed in Figure 2.9. One remarks that most of the volume estimated is
lower than the number of available seats. Indeed, for some OD pairs, the monthly volume
remains unknown. Setting the number of carried passengers to the average number of
passengers carried per flight then underestimates the number of passengers, especially on
long-distance flight (involving generally large numbers of passengers). This underestimation
leads to differences sometimes larger than 400 passengers ! On the contrary, it appears that
the number of passengers carried may be overestimated. In particular, on the OD pair Paris-
Charles de Gaulle airport - Istanbul Sabiha Gokcen airport, the daily volume of passengers
is estimated to more than 1400, while only two flights of 159 seats each are scheduled,
leading to a very large difference value. Figure 2.10 displays the average difference between
the number of seats available and the estimated volume. On average, the estimation is lower
than the number of available seat by 43 passengers. If we compare with the average number
of seats, this value corresponds to an average load factor of 75%. This value is only 6%
under the load factor measured by IATA for December 2019 (International Air Transport
Association, 2020). Finally, thanks to a collaboration with Aéroport de Paris (ADP), we
had access to several months of traffic data collected at CDG airport. This data records

Figure 2.9 – Daily distribution of the difference between the available number of seats
and the passenger volume estimated, for December 2019.
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Figure 2.10 – Available number of seats (blue) and the passenger volume estimated
(orange), for December 2019.

information on flights operated at CDG airport for several days of 2019. For each flight, the
number of passengers carried is available. We therefore compare the number of passengers
carried estimated with the actual volume of passengers carried for a week of December
2019. The distribution of absolute difference between the actual and estimated volumes of
passengers carried, for each day, is displayed in Figure 2.11. The average difference in the

Figure 2.11 – Absolute difference (actual - estimated) volume of passengers carried, for
flights arriving at and departing from CDG airport, for a week of December 2019. The
daily average absolute difference is represented by a white circle.

number of passengers estimated ranges between 31 and 39 passengers for December 2, 3, 4
and 6. This value rises to 92 for December 5 due to a massive Air Traffic Controllers (ATC)
strike that occurred that day in France, leading to flight cancellations, delays, re-booked
passengers, etc. As we use monthly passenger volumes in our demand, the granularity
of data does not allow us to capture such disruptive events, leading to worse results on
these day. On average, over the six days tested, the absolute error in our estimation of the
passenger volume carried is 35%.

Regarding train data, no information on passengers is available, in the remainder of the
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thesis, an average value of 600 passengers is thereby considered (UIC-International Union
of Railways, 2023b).

2.1.4 Data collection and standardisation conclusion

This section highlights one of the first challenges one faces when dealing with time-
table coordination between multiple operators : data collection and standardisation. The
existence of numerous data repository location, data prices, or diversity in data formatting
make their re-use and integration a difficult task ; although they are necessary for further
collaboration. The development of the GTFS format is a significant step towards unifying
transportation data. While it is now widely adopted by ground transportation operators,
its use remains limited for air transportation suppliers. Recently, the Spanish government
pushed for transportation data accessibility through the MITMA project (Ministerio de
Transportes, Movilidad y Agenda Urbana - NAP, 2023), and flight schedules within Spain
are now published regularly under the GTFS format. This contributes to simplify the fusion
of transportation data, paving the way towards large transportation data sharing.

Another issue that one must consider related to data is the lack of accurate available
information, either due to privacy concerns or to lack of knowledge from transportation
service providers. Therefore, this first section introduced two basic methodologies to re-
trieve vehicle assignment and the volume of passengers carried. These mechanisms rely on
available data, and allows one to obtain realistic input for further optimisation processes.

The last missing information is the transferring demand between flights and trains.
As it could not be obtained from any data at the moment, a data-driven methodology to
simulate realistic instances is presented in the following section.

2.2 Air-Rail transfer demand estimation

One key information in transportation scheduling is the expected demand for a flight or
a train. Indeed, as shown in Chapter 1, timetable generation and route planning rely on the
expected revenue, which is based on the estimated number of passengers who will be carried.
To date, no data measuring accurately the multimodal demand between trains and flights
are freely accessible. To palliate this gap, this section introduces a data-driven passenger
multimodal flow estimation. A brief literature review on passenger demand forecast is first
presented. Then, the air-rail passenger flow simulation, based on constraint-programming,
is proposed. Finally, the instances generated are presented and publicly released.

2.2.1 Literature review on passenger demand forecast

As transportation providers plan their service in order to maximise profit, having an
accurate knowledge of future potential passengers’ expectation is crucial to ensure pro-
fitability. Generally, the passenger demand is estimated by OD pairs. The OD demand
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corresponds to the number of passengers who wish to travel from an origin O to destina-
tion D, in a given time period. Each step of the scheduling process is therefore guided by the
expected profit, estimated according to the volume of passengers carried. Different levels of
granularity are required depending on the scheduling step. As detailed by Banerjee et al.
(2020), transportation demand estimation can therefore be divided into two categories :

— macro forecast, for strategic planning, such as network building or new infrastructure
development ;

— micro forecast, related to day-to-day or within-day prediction, required for revenue
management, schedule design or the management of real-time (tactical) operations.

In this dissertation, we shall focus on micro forecast, as our interest lies in building a daily
timetable. Micro forecasting models can be divided into three main categories :

— time series models : predictions are based on historical observations (Wickham, 1995;
Adrangi et al., 2001; Dutta and Ghosh, 2012) ;

— causal models : explanatory variables, such as Gross Domestic Product (GDP), po-
pulation size, distance between cities or travel time, are used to predict the passenger
demand (Leng et al., 2015; Ashiabor et al., 2007; Cipriani et al., 2014; Aston and
Koopman, 2006) ;

— machine learning models (Tsai et al., 2009; Srisaeng et al., 2015).
Most transportation providers develop models that consider only one mean of trans-

portation, including potential competition with other modes. A large number of studies
analyse the impact of HSR on air travel demand and vice versa (Yang et al., 2018; Clewlow
et al., 2014; Park and Ha, 2006). As for mono-modal travel, accurate multi-modal demand
forecast is mandatory to capture which connections are the most important for passengers.
Some studies have been carried out to estimate this demand in an urban area. For ins-
tance, Toqué et al. (2017) process smart card data to estimate the multimodal demand in
Paris-La-Défense district area. The same technique is employed by Seaborn et al. (2009)
and applied to London city. However, there is a noticeable gap in research addressing the
estimation of air-rail transfer demand. Lewe et al. (2012) implement a dynamic system
model to forecast the multimodal demand on the US transportation network. Their model
is able to estimate the travel demand on air and ground transportation modes simulta-
neously as a function of exogenous parameters such as fuel price, population growth, or
GDP. However, the ground transportation modes are aggregated under a general “ground
mode” without distinction between car, rail or public transport. Li and Sheng (2016) ana-
lyse the passenger demand for air-rail integration. They attempt to measure the market
share of three levels of integrated air-rail service, using passenger discrete choice model.
More recently, Tan et al. (2022) propose a deep-learning approach to forecast rail-to-air
transferring passengers. While these models can give insight on a global demand between
air and rail, the exact number of passengers who transfer from a scheduled train to a
scheduled flight, and vice versa, is not provided. Up to date, no passenger ground truth
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data is available, that would allow transportation operators to follow passengers while they
are not in a vehicle. Such information could be obtained through external sources, such
as passenger-generated data. Indeed, these new data sources, generated by mobile phones,
show a high potential to understand passengers behaviour. For instance, Marzuoli et al.
(2019) use mobile network data of air passengers to measure US airports’ catchment area.
Crossing airport access and egress travels with ground transportation supply could bring
new information of the transport modes used to access/egress the airport. Garćıa et al.
(2016) also use mobile network data in Spain to infer the transport mode used for Madrid-
Barcelona journeys. Lythgoe and Wardman (2002) estimate the demand for rail to/from
British airports using such kind of data. Mobile phone data is also exploited to determine
OD matrices. Alexander et al. (2015) leverage mobile phone data to extract the daily OD
matrix within Boston area. Montero et al. (2019) process mobile phone data to retrieve the
OD matrix and modal split in Barcelona. Burrieza-Galán et al. (2022) use mobile phone
data to analyse passenger travel behaviour at Madrid-Barajas airport. Their methodology
allows them to compare passenger travel patterns before and after the COVID-19 outbreak.
Marzuoli et al. (2018) and Monmousseau et al. (2020) show that social network data such
as Twitter data can provide accurate insight on the health of the air transportation sys-
tem, especially under disruptive events. Another mobile data sources that may be used to
trace passengers journey are wifi and bluetooth connection data (see for instance Aliari
and Haghani (2012); Nikoue et al. (2015); Huang et al. (2019); Barcelö et al. (2010)).

Note that these data sets may have some limitations. First, not all passengers connect
to the mobile network data (phone call, wifi hotspots or bluetooth) during their trips,
and foreign travellers are generally not registered on local mobile phone networks. The
volume of tracked passengers may therefore be underestimated. In addition, the connec-
tion to the network may be sparse, leading sometimes to large amount of time without
information on the passenger location. The reconstruction of the trips should therefore
include assumptions, generally resulting in estimations that can significantly differ from
the actual passenger journeys. Finally, there are generally several mobile network service
providers that operate on the same territory. Data from several operators should there-
fore be collected to capture information about all passengers. However, these data sources
might be the only way to follow passengers during their door-to-door journey, and to esti-
mate the passenger flow between scheduled trains and flights. Consequently, the demand
for mobile phone data persists. Nevertheless, the acquisition and management of such data
are frequently complex due to various factors, including cost, privacy concerns, and the
infrastructure required to process this typically voluminous data.

As we do not have access to such data, we introduce here a data-driven methodology
to model passenger flows between trains and flights at airports.
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2.2.2 Constraint-programming approach

In this section, we propose a data-driven method to estimate passenger air-rail flows
between airports and associated train stations. The problem to be addressed is first presen-
ted, followed by a proposition of a mathematical model. Then, the resolution approach is
presented. In addition, a methodology to generate diverse solutions is detailed. Numerical
results and real-case applications are finally presented in the last section.

2.2.2.1 Problem statement

In order to propose multimodal schedule synchronisation to passengers, it is crucial
to understand passenger flows between modes. More precisely, we aim at estimating the
volume of passengers who want to transfer from a train to a flight, at a given airport or
within the same city area, and vice versa. We propose to address this problem by solving a
routing problem on a transportation network graph. We set the spatial scope of the problem
to a city area, composed of at least one airport and one train station, in which passenger
transfers between trains and flights can occur. If the train station is located at the airport,
the spatial scope corresponds to the airport. Figure 2.12 illustrates the possible passenger
transfers considered. In this figure, each arrow represents a particular type of transfers
that passengers can make within the area : travel directly from their home location to the
train station or the airport, connect with a train or a flight from another leg, or exit the
transportation system (airport or train station) to reach their final destination.

Figure 2.12 – Passenger transfers within a city area.

The objective consists in estimating how many passengers transfer between each leg-
pairs.
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2.2.2.2 Mathematical formulation

We propose to model the problem as an Integer Linear Programming (ILP) problem.
The required sets, input data, decision variables and constraints are presented in this
section.

2.2.2.2.1 Set definitions The transportation network is represented by a graph G =
{V, E}, where the vertex set, V , is partitioned into the arriving-leg vertex set, V A, and the
departing-leg vertex set, V D, and where the set of arcs, E, corresponds to feasible transfers
between legs. A transfer is considered as feasible if the departure time of the second leg
is after the arrival time of the first leg. In this sense, we impose a lower temporal limit,
denoted Minimum Connection Time (MCT), to allow passengers to have sufficient time
to transfer. Similarly, we assume that above a duration threshold, the connection time
(time difference between the departure time of the second leg and the arrival time of
the first leg) is too long for passengers to consider the connection. Therefore, we define a
Maximum Acceptable Connection Time (MACT), above which the transfer is considered as
“unfeasible”. These values differ depending on the connection type considered. For instance,
for passengers transferring from a flight to a train, the MCT is lower than for passengers
transferring from a train to a flight, since there is no train station security screening process.
In addition to temporal feasibility, for realism purpose, we limit the set of connecting legs
to relevant ones. More precisely, we assume that passengers connect with a leg that is
not returning to the passenger origin city. Additionally, we assume that if there exists a
direct flight or train between two cities, passengers will choose the direct connection. For
instance, when travelling from Lille to Marseille, we assume passengers will either use a
high-speed train directly from Lille to Marseille or take a direct flight between the two
cities. Rail-air connections for that OD pair at CDG airport are then not considered, as
they would substantially increase the total travel time. A pre-processing step is therefore
run to filter out relevant connections.

Let m denote the number of arrivals and n the number of departures. We assume that
the station is served by a set of transportation modes (e.g., air, rail, bus, car, subway)
represented by the index set K. The set of arrival vertices is further partitioned as V A =⋃
k∈K

V A
k , where V A

k is the index set of arriving legs of mode k, k ∈ K. The set of departing

legs is similarly defined : V D = ⋃
k∈K

V d
k , where V D

k is the index set of departing legs of mode

k, k ∈ K. The vertex set also includes ground nodes, v0 and vm+1, to represent outbound
passengers, i.e., passengers arriving from the city, and inbound passengers, departing to the
city, respectively. Similarly, the edge set includes transfer edges from each arriving train
and flight to the ground node vm+1, and transfer edges from the ground node v0 to each
departing train and flight. Figure 2.13 illustrates the notations introduced.

45



CHAPITRE 2. DATA COLLECTION AND INTERMODAL PASSENGER DEMAND
SIMULATION

v0
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1
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Figure 2.13 – Graph representing a transportation station. Nodes corresponds to arriving
and departing legs, arcs to feasible transfers between them. Nodes are aggregated per means
of transportation.

2.2.2.2.2 Input data For each leg node vi, i ∈ V , the volume of passenger carried is
denoted wi. At the station, arriving passengers have two options. They can either transfer
to another leg, that could be within the same mode or not, or leave the station. Similarly
for departing passengers : they can either arrive from another mode or directly arrive from
the ground. The total volume of departing passengers can be computed as W out = ∑

i∈V D

wi.

In particular, we can compute the total passenger volume leaving the station with mode
k as W out

k = ∑
i∈V D

k

wi. Consider a pair of modes (k, k′) ∈ K ×K, let pkk′ be the share of

passenger volume that transfers from mode k to k′ at the station. We compute the total
volume of passengers transferring from mode k to k′ at the station, (k, k′) ∈ K × K, as
follows : Wkk′ = pkk′W out

k′ . For each arriving or departing leg node vi, i ∈ V , the maximum
volume of transferring passengers, to or from mode k ∈ K, depends on the number of
feasible connections. For instance, for the last arriving flight of the day, passengers have
no transferring option. We consider then that they all leave the station and the maximum
passenger volume that transfers to a flight is zero. In practice, passengers may connect
with a flight or a train the following day, but this is not considered in the present study.
For each arriving leg node vi, i ∈ V A, we define V D

ki to be the set of departing-leg nodes
of mode k with which passengers can make a connection. Similarly, for each departing-leg
node vi, i ∈ V D, we define V A

ki to be the set of arriving-leg nodes of mode k from which
passengers of vi can arrive. For each leg node vi, i ∈ V , yik denotes the maximum volume
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of passengers who can transfer with a leg of mode k ∈ K. It is computed as follows :

yik =


min(wi,

∑
j∈V D

ki

wj), if i ∈ V A,

min(wi,
∑

j∈V A
ki

wj), if i ∈ V D.

2.2.2.2.3 Decision variables The objective consists in determining the volume of
transferring passengers between each legs. For each i ∈ V A and j ∈ V D, we define the
primary integer decision variable xij to be the volume of passengers who transfer between
leg vi and vj . For the sake of clarity, we also introduce for each leg vi, i ∈ V , and for each
transportation mode k ∈ K, the auxiliary integer decision variable yik that corresponds to
the volume of passengers transferring from leg vi to/from a leg of mode k.

2.2.2.2.4 Constraints An acceptable solution must satisfy the following constraints :

∑
j∈V D

k

xij = yik k ∈ K, i ∈ V A, (2.1a)

∑
i∈V A

k

xij = yjk k ∈ K, j ∈ V D, (2.1b)

∑
k∈K

yik = wi i ∈ V, (2.1c)

yik ≤ yik k ∈ K, i ∈ V, (2.1d)∑
i∈V A

k

yik′ = Wkk′ (k, k′) ∈ K ×K, (2.1e)

∑
j∈V D

k′

yjk = Wkk′ (k, k′) ∈ K ×K, (2.1f)

xij ∈ {0, 1, . . . , min(wi, wj)} i ∈ V A, j ∈ V D, (2.1g)
yik ∈ {0, 1, . . . , yik} i ∈ V, k ∈ K. (2.1h)

Constraints (2.1a) and (2.1b) correspond to classical flow constraints. Constraints (2.1c)
ensure that the number of passengers assigned to each leg equals the passenger volume car-
ried. Constraints (2.1d) stipulate that the share of transferring passengers per leg to/from
each mode does not exceed the maximum authorised limit. Constraints (2.1e) and (2.1f)
ensure that all passengers are assigned. Finally, constraints (2.1g) and (2.1h) specify the
definition domain of the decision variables. A particularity of this optimisation model is
that there is no objective function. It is a feasibility model : any feasible solution provides
one possible passenger transfer flow within this spatial area.
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2.2.2.3 Resolution approach

Since no objective function is defined, one can easily solve the optimisation problem
by minimising any constant objective function : a linear-programming solver will return
the first feasible solution found. However, in our application context, one issue remains
with solutions obtained via a state-of-the-art linear programming solver : it will return
a solution with saturated constraints (the simplex method restricts its search to extreme
points of the feasible-domain polyhedron). For instance, if 100 passengers arrive by a train
at 1pm and a flight is scheduled to depart at 4pm, the linear solver is likely to return
a solution with the 100 passengers transferring to the same flight if the number of seats
is sufficiently large. The probability that such an event occurs in practice is really low.
Therefore, in order to simulate more realistic passenger flows, we rather choose to solve
our feasibility problem with Constraint-Programming (CP) (Rossi et al., 2006). CP is based
on the following backtracking principle :

— at each iteration, a decision variable is selected and assigned to a value of its definition
domain ;

— the definition domains of associated variables are reduced (constraint propagation),
resulting from this assignment ;

— while no inconsistency is found (i.e., constraint violation) the tree search continues.

To speed up the resolution, we set the choice of the decision variable at each iteration based
on the so-called weighted constraint algorithm (Boussemart et al., 2004). The objective of
this algorithm is to detect the hard parts of the problem by finding the constraints that are
the most often violated during the tree search process : each time a constraint is violated,
its weight is increased. The algorithm then proposes to assign in priority variables that are
involved in the large-weight (hard) constraints, in order to concentrate first on the hard
parts of the problem. Finally, in order to avoid obtaining solutions involving too numerous
saturated constraints, the value assignment is randomly (following a uniform probability
law) made among what remains of the definition domain of the decision variables.

2.2.2.3.1 Diverse solution set generation In order to simulate a sufficiently-diverse
instance set representing several different days, we aim at increasing the diversity of the
generated solutions. In the following, let Xj denote the jth solution vector obtained, and xj

i

the value of variable i in solution Xj . Several studies propose to generate diverse solution by
maximising a distance from each of the solutions previously found. This problem is known
as the DIVERSEkSET problem. Its objective consists in finding k solutions as diverse as
possible. For this, several distance metrics can be used :

1. The Hamming distance : ∑
i

1
xj

i ̸=xj′
i

computes the number of differences in the va-

riables of two solutions (Hebrard et al., 2005; Nadel, 2011; Nguyen et al., 2012) ;
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2. The Manhattan distance : ∑
i
|xj

i − xj′

i | computes the sum of absolute difference in
the variables of two solutions ;

3. The Euclidean distance : ∑
i

(xj
i − xj′

i )2 computes the l2 norm of the vector Xj −Xj′ .

However, in our application context, maximising any of these metrics leads to major is-
sues. First, the use of the Hamming distance would be relevant for dealing with a vector X
composed of binary variables, but in our case, the variables are integers. For instance, chan-
ging all variable values by only one passenger maximises the Hamming distance, although
the solution obtained would then not be significantly different from the original solution.
Second, maximising the Euclidean distance is likely to lead to solutions with numerous sa-
turated constraints (some connections completely filled with passengers, and no passenger,
or very few, on the remaining ones). This would generate passenger flow scenarios that are
not representative. We therefore decide to use the Manhattan distance for our application.
However, maximising a convex piecewise linear function requires extra binary variables
resulting thereby in an Integer Linear Programming problem, known to be difficult.

We therefore propose the following methodology :
— let K be the number of solutions searched, and let M0 be some-threshold Manhattan

distance set by the user ;
— for each step k, k = 1, 2, . . . , K, we add to the feasibility problem a constraint stipu-

lating that the new solution should lie at least at a Manhattan distance M0 of each
of the previous solutions found (X1, X2, . . . , Xk−1) ;

— if no such solution can be found, the value M0 is iteratively decreased by a constant
C such as

Mn = M0 − nC, (2.2)

n = 1, 2, 3, . . . until a solution is found or Mn ≤ 0.
Numerical results are presented in the following section.

2.2.3 Numerical results

The methodology proposed to generate a diverse instance set is tested on the three hubs
already mentioned : CDG, FRA and MAD airports. Subsection 2.2.3.1 details the collec-
tion of airport modal shares and the estimation of global transferring passenger volume.
Subsection 2.2.3.2 presents the generated instance set.

2.2.3.1 Modal shares and transferring passenger volumes

For Frankfurt airport, the rail and air transfer shares, for years 2019 and 2021, are both
obtained from the airport website Fraport (2021). Regarding Madrid-Barajas and Paris-
Charles de Gaulle airports, the air transfer rates of 2019 are obtained using the values
computed by Maertens et al. (2020). Since no data is available for 2019, values of 2018
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are used. The air transfer share value for CDG airport for 2021 is collected from Aéroport
de Paris financial report (Groupe ADP, 2021). For MAD airport, data from the study of
Burrieza-Galán et al. (2022) is used for both air and rail transfer rates of 2021. The values
estimated for 2020 are used since no information for 2021 is available. Finally, the rail share
at CDG airport is estimated using SNCF open data (SNCF, 2023a), as the annual number
of passengers stopping at each train station is available. This value has been recorded
for the CDG-HSR train station. For instance, in 2019, it corresponds to 20% of the total
passenger volume departing from CDG. Values for 2019 and 2021 are therefore used as
rail share estimators for the airport. All these values are summarised in Figure 2.14. One

(a) December 2nd, 2019

(b) September 22nd, 2021

Figure 2.14 – Modal share of CDG, FRA and MAD airports on December 2nd, 2019
(top) and September 22nd, 2021 (bottom).

observes that the three hubs have different characteristics. FRA is the airport with the
highest air passenger transfer rate. In 2019, on average, 54% of passengers departing from
FRA airport arrive from a connecting flight. Regarding air-rail connections, CDG is the
one with the highest multimodal transfer rate (20% for CDG, 5% for FRA and 16% for
MAD in 2019). From these values, the input data Wk,k′ is estimated for each mode pair
(k, k′) at these airports by multiplying the total departing air passenger volume with the
corresponding modal share.
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2.2.3.2 Instance set generated

Computations are performed on a laptop equipped with an AMD Ryzen 5 4500U CPU
and 16 GB RAM. The feasibility problems are solved with the open-access CP solver
Choco-solver (Prud’homme and Fages, 2022). For each iteration, we set a time limit of
60 seconds. An iteration n corresponds to the search of a solution that is at least at
Manhattan distance Mn from the previous solution (see Equation 2.2). The multimodal
passenger flow simulation is tested on the three hubs : Paris-Charles de Gaulle airport
(CDG), Frankfurt airport (FRA) and Madrid-Barajas airport (MAD). For each airport,
K=10 solutions are computed. The initial Manhattan distance M0 is arbitrarily set to
five times the number of decision variables. This corresponds to an average difference
of five passengers per connection between each solution. The multiplying factor C used
to reduce the required Manhattan distance is set to 10,000. Finally, in order to obtain
realistic solutions, we limit the maximum number of transferring passengers between two
given legs. Preliminary results suggest to set to 30 the maximum number of passengers
allowed to transfer from a flight to another flight, and to fix to 60 the maximum number
of passengers transferring from a flight to a train (and vice-versa). Using lower values for
these parameters generally yields unfeasible problems. Table 2.4 summarises the number
of primary decision variables (xij), and the computation times for each airport and each
day considered in 2019.

The number of primary decision variables is higher for FRA airport, since the air
transfer rate is the highest one. This explains computation times that are on average larger
than for the other two airports. The large computation times for instance 2 corresponds
to the iterative decrease of the prescribed Manhattan distance M0. Indeed, at the second
step, no solution that satisfies the diversity constraint is found in less than one minute,
yielding sometimes several successive decreases of the value of M .

Figure 2.15 displays a representation of two instances of CDG airport. Nodes correspond
to arriving or departing flights and trains. An arc is drawn when there are passengers
transferring between the two legs, and the arc width is related to the passenger volume.

All these instances and the associated schedules computed in this section are relea-
sed and available from Buire (2023). This simulated passenger demand data can serve as
realistic inputs to test or compare synchronisation mechanisms between air and rail.
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Table 2.4 – Number of decision variables and computation time (in seconds) of the
passenger demand simulation for a week of December 2019.

Date

# variables

Instance
1
2
3
4
5
6
7
8
9

10
Average

02-12-2019 03-12-2019 04-12-2019

CDG FRA MAD CDG FRA MAD CDG FRA MAD
27,495 40,335 23,670 25,674 40,151 21,833 27,358 39,288 21,510

4.28 7.84 4.98 4.18 7.16 4.39 4.24 6.60 4.17
248.21 919.37 307.39 185.17 919.25 246.65 247.81 855.46 246.46

5.84 13.74 6.46 4.76 12.19 5.63 6.21 9.19 4.64
5.84 11.7 5.41 5.54 12.05 5.71 5.83 8.99 4.10
6.46 9.09 6.46 4.55 13.25 7.41 5.89 9.29 5.27
5.62 10.15 6.83 4.65 10.80 5.38 6.13 7.61 4.91
6.54 11.32 6.10 5.06 11.05 6.33 6.78 8.23 5.05
6.27 11.61 5.80 5.12 11.67 6.00 6.34 8.87 5.08
7.3 12.8 5.56 5.67 11.59 6.61 7.83 9.33 5.34

8.46 13.67 6.57 5.95 13.82 7.41 8.95 10.65 5.64
30.482 102.129 36.156 23.065 102.283 30.152 30.601 93.422 29.066

Date

# variables

Instance
1
2
3
4
5
6
7
8
9

10
Average

05-12-2019 06-12-2019 07-12-2019

CDG FRA MAD CDG FRA MAD CDG FRA MAD
14,450 34,230 17,127 23,195 39,136 10,005 24,628 37,228 9,882

1.89 6.31 3.32 4.08 6.95 1.33 4.25 6.35 1.3
2.08 672.44 64.85 64.51 855.09 1.32 124.89 796.65 1.41
2.48 10.6 4.69 65.06 8.06 1.48 5.38 11.51 1.13
2.18 11.83 4.18 6.15 9.47 1.4 4.88 11.05 1.58
2.83 9.71 64.48 5.71 10.57 1.35 5.3 9.09 1.34
2.26 8.58 4.42 5.8 9.19 1.79 65.14 9.05 1.91
3.26 9.34 4.5 5.56 9.79 1.91 5.1 10.45 1.77
3.72 9.84 4.39 5.99 10.74 1.55 5.46 10.45 2.39
3.53 10.3 4.09 6.7 10.66 2.12 5.42 11.21 2.46
3.36 11.95 4.73 6.14 12.36 2.16 7.23 12.7 2.61

2.759 76.09 16.365 17.57 94.288 1.641 23.305 88.851 1.79
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(a1) Flight-to-flight (a2) Train-to-flight (a3) Flight-to-train

(a) Instance 1

(b1) Flight-to-flight (b2) Train-to-flight (b3) Flight-to-train

(b) Instance 5

Figure 2.15 – Two passenger flow simulations between flights obtained with CP, at CDG
airport. The width of the arc is related to the number of passengers making that connection.
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2.3 Conclusion

This chapter summarises the data processing steps that we proposed to gather, clean
and standardise transportation supply data. The overall process is depicted in Figure 2.1.
Gathering recent data, at a the European scale, and under a standard format remains a
challenge. This section highlights the difficult and laborious task to collect recent data.
Historical schedules are not always stored, and if so they are only accessible at a large
monetary cost. To overcome this issue, rail schedules should be collected from each operator
website, often in the national language. In addition to temporal discrepancies, there is
no standard format to publicly share the air transportation data. Progresses have been
achieved regarding ground public transportation data with the creation of the GTFS format
and the recent incentive to publicly share ground transportation data, but airlines remain
reluctant to publish largely their data.

In addition, this chapter proposes and validates heuristics allowing users to retrieve
callsign information and passenger volume carried. Finally, a data-driven multimodal pas-
senger flow simulation is introduced. Instances are generated on three major European
hubs : Paris-Charles de Gaulle, Frankfurt and Madrid-Barajas airports. Theses instances
are publicly released, allowing transportation schedulers to test further and compare sche-
dule synchronisation algorithms on realistic instances.

In this thesis, estimation is performed on historical schedules, since they allow us to
validate our methodologies. However, the estimation methodologies we introduced can also
be applied to address missing information issues for future schedules (vehicle assignment
and passenger transfer volume). Indeed, airlines and railway operators can accurately es-
timate the number of passengers who will be carried in flights and trains several days or
weeks before operations, through ticket sale information. In the case of longer term plan-
ning, airlines and railway operators forecast can also bring insight on the expected demand
for each flight or train. Our multimodal passenger demand estimation model can therefore
be applied to the forecasted volume of passengers and not only to historical data. While
this information is not publicly accessible, one can assume that in the case of collaboration,
each transportation stakeholder would benefit from sharing information with others.
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Chapitre 3

Air-rail timetable synchronisation
minimising the impact on existing
schedules

In this chapter, two mathematical optimisation models are introduced for timetable
synchronisation and resolution tools are developed to improve air and rail connectivity at
airports, in terms of connection time. As illustrated in the literature, one of the key chal-
lenges in air-rail synchronisation is managing the duration of the passenger connections.
This chapter, divided into two sections, aims at proposing small schedule adjustments for
both air and rail transportation service providers, that are beneficial for passengers. Section
3.1 introduces schedule synchronisation model at a strategic level, based on a connectivity
metric. The methodology is applied to an air-rail transportation network across three Eu-
ropean countries : France, Spain and Germany, and the potential benefits for passengers
are assessed. Section 3.2 presents an adaptation of the proposed model to real-time situa-
tions application. The methodology aims at rescheduling trains and flights to mitigate the
impact of a disruption on the air or the rail transportation networks, leading to signifi-
cant delays and inducing potential missed connections for passengers. The objective of our
model is therefore to reschedule flights and trains so as to wait for the delayed passengers.

3.1 Strategic planning horizon

The objective of this section is to propose a model that encourages passengers to use
a combination of trains and flights in their trip. To this end, we introduce a methodology
to “improve” passenger multimodal transfers at the expense of a limited cost for trans-
portation service providers. The methodology is assumed to be applied several weeks in
advance, in order to encourage passengers to book multimodal connections. Before diving
into optimisation and synchronisation, it is first necessary to define what is meant for a
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train and a flight to be “synchronised”. To that aim, a first synchronisation metric is intro-
duced and used as a basis for the optimisation model that we shall introduce. Then, the
mathematical optimisation model for timetable synchronisation is proposed.

The methodology is then tested on the Western European transport network, using the
simulated passenger-flow instances computed in the previous chapter.

3.1.1 Assessing passenger multimodal connection comfort

When passengers travel, they can make direct connections between their origin and
destination if there is a direct flight or train. Otherwise, they have to transfer between two
legs within the same network (intramodal connection), or they can shift to another mode
(intermodal connection). In both cases, a sufficient amount of time must be planned to
let passengers transfer from one leg to the next one. In the following, we call connection
time between a first leg l1 and a second leg l2, the time difference between the scheduled
departure time of leg l2 and the scheduled arrival time of leg l1. Intramodal connections are
generally made within the same station. This is particularly true for the air transportation
system where transfers take place at hub airports. In this case, the connecting time mainly
consists of wait time at the station. However, sometimes, passengers may have to transfer
between two different stations. Some air or rail connections involve changing stations and
for intermodal connections, the train station may not be located at the airport. In this
case, passengers have to follow several steps :

— Leave the first station : passengers get off the first vehicle and collect their luggage.
This time is referred to as the arriving processing time.

— Transfer to the next station : passengers use a third means of transport to reach the
next airport or railway station. This time is denoted transfer time.

— When passengers arrive at the next station, if it is an airport, they must check in,
drop off their luggage, and go through the airport security process. This time is called
departure processing time.

— Finally, they wait for the next leg of the journey. This corresponds to the wait time.
In order to make a connection feasible, passengers need a minimum amount of time

between legs. This time should include the transfer time between the two stations in the
case of multimodal connections (if the airport is not directly linked with an HSR station
for instance), and possibly a station processing time (check-in, security screening at air-
port, border control, baggage collection after a flight, etc.). Recall that we call Minimum
Connection Time (MCT) this minimum connection time, i.e., the minimum time required
to connect between two legs if there is no interruption during the connection process. More
precisely, the MCT value corresponds to an optimistic situation in which the entire station
process is seamless. For instance, abnormally-long queuing at check-in counters, security
checks and border controls, or random searches at the security screening are considered as
disruptions. Similarly, the Maximum Acceptable Connection Time (MACT) denotes the
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connection duration above which the connection is considered as too long for passengers
(such a connection is unlikely to be booked by passengers due to excessive wait time).

We propose to evaluate the quality of a connection time with a piecewise-linear cost
function c, representing the passenger connecting disutility as a function of the connection
time t between a flight and a train. Figure 3.1 illustrates such a cost function. More preci-
sely, t corresponds to the duration between the departure time of the second leg, and the
arrival time of the first leg. We define a connection time interval [t,t] that contains transfer
durations that are considered as suitable for passengers. This assumption is similar to that
of Theis et al. (2006) who show that passengers do not necessarily try to minimise their
connection time but they rather look for a suitable connection time. In the remainder of
this dissertation, a short connection refers to a connection whose duration lasts between
MCT and t. Similarly, connections with a duration between t and MACT are referred to
as long connections.

In practice, the bound values chosen, MCT, MACT, t and t, depend on the connection
type considered. This allows one to take into account a longer connection time, for example,
for passengers catching a flight with an international destination, or when the train station
is not located at the airport. In the sequel, let Θ denote the index set of the possible
connection types (from a train to a domestic flight, from a train to a non-domestic flight,
from a flight to another flight, or from a flight to another train), and MCTθ, MACTθ, tθ

and tθ denote the parameters defined for connection type θ, θ ∈ Θ. For simplification, we
consider in this study a cost function involving only two breakpoints, tθ and tθ. However,
the model can easily be adapted to several breakpoints, increasing the unit cost of very
short and very long connections. One can easily adapt such a model featuring additional

short suitable long
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Figure 3.1 – Passenger disutility cθ for a connection type θ as a function of the connection
time t.

breakpoints as this does not affect the computational complexity of our model (minimising
convex piecewise linear functions boils down to linear programming). It is reasonable to
assume that short connection times are less desirable than long connection times. Indeed,
short connections are not robust for passengers in case of delay : passengers are likely to
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prefer connections with an additional buffer time to limit the risk of missed connections.
Consequently, the unit cost of short connection times is assumed to be higher than long
ones. The explicit formula for the passenger disutility function, as illustrated on Figure 3.1,
is the following one :

cθ(t) =


cθ,1(t− tθ) MCTθ ≤ t ≤ tθ

cθ,2(t− tθ) tθ ≤ t ≤ MACTθ

0 otherwise.
(3.1)

As the connection time between two legs gets closer to the suitable interval [tθ, tθ], the
cost of the connection decreases linearly towards zero. Remark that this value zero is an
arbitrary constant. Since connection time is to be optimised in the next sections, this value
zero can be set to any other constant C, defined by the user. Indeed, minimising f(x) and
minimising f(x) + nt.C (where nt is the total number of transferring passengers, which is
another constant) will both lead to the same optimal solution. The objective of the air-
rail strategic timetable synchronisation problem is to adjust timetables in order to ensure
smooth passenger transfers. In other words, the aim is to create an integrated timetable
with connection times ranging between MCTθ and MACTθ, and a cost, cθ, that is as low
as possible for each passenger having a connection of type θ ∈ Θ.

A timetable synchronisation model at the strategic planning horizon (several weeks
before operation) is proposed in the following section.

3.1.2 Problem definition and mathematical formulation

When passengers want to use a train to reach the airport, for instance, they look for
a train that is scheduled to arrive well before the departure time of their flight, so that
they can transfer comfortably. Today, flight and train schedules are not designed to pro-
vide passengers with these smooth options. The question is therefore the following one :
is it possible, with limited changes to established schedules, to improve passenger multimo-
dal connections, without impacting intramodal connections ? A first model was proposed
by Buire et al. (2022) to synchronise train and flight schedules at a single airport level.
However, this model has two major drawbacks. First, air connecting passengers are not
considered, while they are the priority for airlines. Second, network effects are not taken
into account. Indeed, changing the departure time of a train or an aircraft at a station will
automatically change its arrival time at the next station served.

Here, we propose a model that addresses these two previous limitations. Subsections
3.1.2.1 and 3.1.2.2 introduce the multimodal transportation network model and the passen-
ger connection model. Subsection 3.1.2.3 presents the operational constraints considered in
this thesis and how they are integrated in our optimisation problem. Finally, Subsections
3.1.2.4 and 3.1.2.5 present the mathematical formulation of the optimisation problem and
the resolution approach chosen.
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3.1.2.1 Multimodal transportation network model

In the following, index sets related to the air transportation network and index sets
related to the rail transportation network will be super-scripted by “air” and “rail”, res-
pectively. The index set of stations (nodes) of the considered network, noted N , is par-
titioned into the airport index set, N air, and the train station index set, N rail. During a
day of operations, flights are operated by aircraft, and rail legs by trains. Let L denote the
index set of legs partitioned into the flight index set, Lair, and the rail-leg index set, Lrail.
An operational day can be represented by a time-expanded network, as illustrated for one
train and one aircraft in Figure 3.2. Each train and each aircraft operate a sequence of
legs from L. Between each operated leg, the aircraft (respectively train) stops at an airport
(respectively train station), to disembark arriving passengers and embark departing pas-
sengers for the next flight (respectively rail-leg). This duration is called turnaround time
(TAT) for flight, and dwell time (DW) for trains. Let Pair and Prail be the index sets of
flight pairs and rail-leg pairs operated consecutively by the same vehicle. For each station
n ∈ N , we define LA

n and LD
n the index sets of the legs arriving at station n and departing

from station n, respectively.

n6
n5
n4

n3
n2
n1

Time

lj

li

lj+1

li−1

TATlj ,lj+1

DWli−1,li

Air Transportation Network
Rail Transportation Network

Passenger
connection e

Figure 3.2 – Time-expanded flight and rail-leg networks of one train and one aircraft.
The dashed line illustrates a passenger connection from a rail leg, li, to a flight, lj .

3.1.2.2 Modelling passenger connections

Travellers can use one or more legs (rail or flight) to reach their final destination. If
there is no direct leg, they have to connect between two legs. For instance, a passenger
connection between a train and a flight is represented by the dashed line in Figure 3.2.
A passenger connection corresponds to a link between two legs li and lj , (li, lj) ∈ L × L.
Let E denote the index set of passenger connections. A passenger connection e ∈ E is
represented by a tuple e = (l, l′, de, θe) ∈ L × L × N × Θ, where l and l′ are the first leg
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and second leg, respectively ; de is the passenger volume demand for that connection, and
θe is the connection type. The connection type corresponds to the type of legs involved in
the connection and must be taken into account when determining the optimal connection
time. In fact, depending on the transportation modes used, additional station processing
times must be included in the connection time. For instance, passengers connecting from a
train to a flight should allow enough time for check-in, border controls and airport security
process. On the other hand, passengers connecting between two flights usually complete
these steps at the same airport, reducing the required connection time. Therefore, it is
important to consider the type of connection in order to provide passengers with a smooth
transfer between legs.

In our study, we aim at improving connections for passengers transferring between rail
and air, while maintaining connectivity for air transferring passengers. Indeed, air connec-
ting passengers at hub airports are a priority for airlines, and flight schedules are commonly
designed to facilitate these transfers. We therefore propose a model that guarantees these
connections for air transferring passengers, even after the rescheduling process. Thus, the
index set of passenger connections, E , is partitioned into the index sets Erail,air, which refers
to multimodal passenger connections, and Eair,air for air-air passenger connections. Multi-
modal connections correspond to passengers transferring from a train to a flight and vice
versa.

Finally, as explained above, in the case of a multimodal transfer, the train station is not
necessarily located at the airport. Consequently, we consider also the transfer time between
stations in the model. Let πl,l′ denote the transfer time between the arrival station of leg
l and the departure station of leg l′, (l, l′) ∈ L × L. If the transfer occurs within the same
station, or if the train station is located at the airport, the transfer time between the
airport and the train station is assumed to be zero. Note that in practice, depending on
the airport configuration, it may in fact require some times for passengers to reach their
departure terminal from the train station, even if it is directly located at the airport. This
parameter can easily be set by the final user to a value different from zero. For a train
station that is not located at the airport, the transfer time is obtained using the public
transport schedule between the airport and the train station.

3.1.2.3 Operational constraints

In order to propose a realistic model, several operational constraints are considered in
this thesis.

3.1.2.3.1 Airport slot allocation A full day (consisting of 1440 minutes) is divided
into h-minute intervals, where h is a divider of 1440. In the following, we shall use h = 5.
Let T = {0, 1, . . . , 1440

h } denote the index set of time steps. In order to ensure safety,
airports limit the number of aircraft movements (takeoffs and landings) per time intervals,
which are commonly referred to as slots. A slot corresponds to a period of time at which an
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aircraft is authorised to use the full airport infrastructure to depart or arrive (International
Air Transport Association (IATA), 2023b). Indeed, depending on the demand, the airport
capacity can be regulated for safety purposes. Airports are therefore partitioned into three
categories according to the following IATA definition :

— Level 1 airport : “A Level 1 airport is one where the capacity of the airport infra-
structure is generally adequate to meet the demands of airport users at all times” ;

— Level 2 airport : “A Level 2 airport is one where there is potential for congestion
during some periods of the day, week, or season, which can be resolved by schedule
adjustments mutually agreed between the airlines and facilitator” ;

— Level 3 airport : “A Level 3 airport is one where :
— Demand for airport infrastructure significantly exceeds the airport’s capacity du-

ring the relevant period ;
— Expansion of airport infrastructure to meet demand is not possible in the short

term ;
— Attempts to resolve the problem through voluntary schedule adjustments have

failed or are ineffective ; and as a result, a process of slot allocation is required
whereby it is necessary for all airlines and other aircraft operators to have a slot
allocated by a coordinator in order to arrive or depart at the airport during the
periods when slot allocation occurs”.

Airlines are allocated these slots months in advance, based on their requested departure
and arrival times. Generally, slots correspond to 10- and 60-minute interval times (COHOR
- Association pour la coordination des horaires, 2023; Fluko - Flughafenkoordination Deut-
schland GmbH, 2023). Consequently, for level-3 airports, the number of movements will be
limited to avoid congestion. The airport movement capacities are collected on the national
authorities’ websites (AECFA, 2023; COHOR - Association pour la coordination des ho-
raires, 2023; Fluko - Flughafenkoordination Deutschland GmbH, 2023). The most recent
values available for each airport considered here are summarised in Tables Appendix B. If
the values for 2019 and 2021 are available, these values are retained. If not, we used the
data of 2023. The values for CDG, FRA and MAD airports are represented in Figure 3.3.
In the following, W denotes the set of slot durations expressed in number of time steps.
Note that each element w ∈W must be defined so that |T |−1

w is integer. In our application
context, the slots considered are 10- and 60-minute interval times. Therefore, W = {10

h , 60
h },

where h is the discretisation time-step. In order to ensure these slot capacity constraints
at airports, for each w ∈W , we define Tw = {1, w + 1, 2w + 1, . . . , |T |−w} the set of time-
step indices corresponding to the beginning each slot. For instance, with a discretisation
time-step h = 5 minutes, if we want to count the number of aircraft that are scheduled to
take-off per 10-minute intervals between 1pm and 2pm, 1pm corresponds to time step 156,
2pm corresponds to time-step 168 and W = {2} (10

5 ). Then, we must ensure that the slot
capacity constraints are satisfied for every time slot in T2 = {156, 158, 160, 162, 164, 166}.
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Figure 3.3 – Maximal number of movements (arrivals, departures and total) authorised
per hour at the three considered hubs : CDG, FRA and MAD.

3.1.2.3.2 Track capacity at train stations Similarly, train stations have a limited
capacity. For simplicity, we only assume here that the number of trains stopped at the
station cannot exceed the number of platforms. We do not consider headway between
trains, but they could be included by adding a minimum separation constraint between two
consecutive departure times. For each train station n ∈ N rail, Omax

n denotes the maximum
number of trains that can be stopped at the station at the same time. More precisely, this
value corresponds to the number of tracks that can be directly accessed from a platform,
at the station. At each time step, the number of trains stopped at the station must be
less than or equal to this value. Note that for trains that spend the night at the train
station, we assume that they are not stored on the track during the night until their
scheduled departure times. In general, trains are routed to the platform a few minutes
before departure. In the following, we assume that trains stored at the train station will
arrive on the track r minutes before the scheduled departure time, where r is chosen so
that h is a divider of r (recall that h is the discretisation time step). Similarly, for trains
whose train station n is the last served of the day and which will then spend the night
at n, we assume that they will leave the track r minutes after their arrival time at the
station. These particular trains are included, after a pre-processing step, in the departing
and arriving set of train stations, LD

n and LA
n , n ∈ N rail, to account for the train station

occupancy at each time step. Figure 3.4 illustrates, through an example with two trains
and three train stations, the computation of the train station occupancy. In this example,
the time is divided into 5-minute intervals (i.e., h = 5), and r is set to 20 minutes. Trains
therefore arrive on the track four time steps before their first departure time of the day,
and leave the track four time steps after their last arrival time of the day.

3.1.2.3.3 Air connectivity constraints and limited timetable adjustments As
mentioned above, the model must preserve passenger air-air connections. Hence, in addi-
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Figure 3.4 – Illustration of the train station occupancy, for three train stations, n0, n1
and n2 served by two trains.

tion to guarantee that their duration is within the interval [MCT,MACT], we limit the
connection time deviation, that are to be decided, to ∆ minutes, where ∆ is a user-defined
parameter. For instance, for passengers initially having a flight-flight connection of 120 mi-
nutes, their new connection time is constrained to be within the interval [120−∆, 120+∆]
minutes. Finally, as presented in Chapter 1, transportation operators are generally reluc-
tant to alter their operations in order to synchronise with other transportation modes. To
palliate this issue, we set an upper bound of δmax minutes on each of the schedule deviations
to be applied to flights and trains.

3.1.2.4 Optimisation problem formulation

This subsection presents the input data, the decision variables, the objective function
and the constraints of the problem. In the following, this problem is referred to as the
Air-Rail Strategic Timetable Synchronisation (ARSTS) problem. The notations are sum-
marised in Table 3.1.

3.1.2.4.1 Input data For each airport n ∈ N air, the arrival and departure slot capa-
cities per slot-window w ∈ W are known (given input data). As these values depend on
the hour of the day, for each w ∈W , and each time step i ∈ Tw, Y A,w,i

n and Y D,w,i
n denote

the maximum number of airport arrivals and departures that could be scheduled during
the time interval [i, i + w− 1], respectively. For each train station n ∈ N rail, the number of
available tracks Omax

n is also given.
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For each leg l ∈ L, T A
l denotes the initial scheduled arrival time of l. Similarly, T D

l

corresponds to the initial scheduled departure time of leg l, l ∈ L. For each l ∈ L, IV Tl

denotes the in-vehicle time of leg l. For each pair of consecutive flights (l, l′) ∈ Pair ope-
rated by a same aircraft, we set MTATl,l′ the minimum turnaround time at the airport
between the two flights (the initial turnaround time planned by airlines). Similarly, for each
consecutive rail-leg pair (l, l′) ∈ Prail operated by a same train, let DWl,l′ denote the dwell
time at the train station between leg l and l′.

3.1.2.4.2 Decision variables Decision variables of the ARSTS problem are defined
as follows. For each leg l ∈ L, we define the discrete decision variable, kD

l , to be the index
of time step at which l is scheduled to depart. From this primary decision variable, several
auxiliary optimisation variables are defined. First, for each l ∈ L, we set kA

l the index of
time step at which l is scheduled to arrive. The decision variables tA

l and tD
l are the new

scheduled arrival time and departure time of l, l ∈ L. From these variables, we further
define the decision variable δl, the schedule deviation from the initial departure time of l,
l ∈ L. For each time step i ∈ T , and each leg l, l ∈ L, xD

l,i and xA
l,i denote binary decision

variables indicating whether leg l is scheduled to depart after time step i, and scheduled to
arrive after time step i, respectively. For each train station n ∈ N rail, and at each time step
i ∈ T , we define a discrete decision variable on,i that counts the number of trains stopped at
n at time step i. Finally, for each passenger connection e ∈ Erail,air, the continuous decision
variable ce denotes the passenger connection cost.

Table 3.1 – Notations of the air-rail strategic timetable synchronisation problem.

Sets and Parameters

N = N air ∪N rail index set of stations partitioned into the airport index set (N air)
and the train station index set (N rail)

L = Lair ∪ Lrail index set of legs partitioned into the flight index set (Lair) and the
rail-leg index set (Lrail)

LA
n index set of legs scheduled to arrive at station n, n ∈ N
LD

n index set of legs scheduled to depart from station n, n ∈ N
Pair index set of flight pairs operated consecutively by a same aircraft
Prail index set of rail-leg pairs operated consecutively by a same train
E = Erail,air ∪ Eair,air index set of passenger connections partitioned into the set of passen-

gers connecting from a train to a flight and vice versa (Erail,air) and
the set of passengers connecting from a flight to a flight (Eair,air)

h discretisation time step (must be a divider of 1440)
T index set of time steps
W set of airport slot window durations
Tw set of time-step indices recording the beginning of an airport slot of

a duration w, w ∈W

64



CHAPITRE 3. AIR-RAIL TIMETABLE SYNCHRONISATION MINIMISING THE
IMPACT ON EXISTING SCHEDULES

∆ maximum connection time deviation authorised for air-air connec-
tions (in minutes)

δmax maximum leg schedule deviation (in minutes)
M large-enough constant (big M )
r number of minutes ahead their first departure time of the day at

which trains are routed on the track / number of minutes after their
last arrival time of the day at which trains are removed from the
track

Input data

Y A,w,i
n maximum number of flights that could arrive at airport n, during a

time window of width w starting at time step i, n ∈ N air, w ∈W, i ∈
Tw

Y D,w,i
n maximum number of flights that could depart from airport n, during

a time window of width w starting at time step i, n ∈ N air, w ∈
W, i ∈ Tw

Omax
n maximum number of trains that can stop simultaneously at train

station n, n ∈ N rail

T A
l initial-schedule arrival time of leg l, l ∈ L

T D
l initial-schedule departure time of leg l, l ∈ L

πl,l′ transfer time between the arrival station of leg l and the departure
station of leg l′, (l, l′) ∈ L × L

IV Tl in-vehicle time of leg l, l ∈ L
MTATl,l′ minimum turnaround time between flight l and l′, (l, l′) ∈ Pair

DWl,l′ dwell time at station between rail-legs l and l′, (l, l′) ∈ Prail

de number of passengers involved in connection e, e ∈ E
θe connection type of connection e, e ∈ E

Decision variables

kA
l integer, index of the time step at which l is scheduled to arrive, l ∈ L

kD
l integer, index of the time step at which l is scheduled to depart,

l ∈ L
tA
l new scheduled arrival time of l ∈ L

tD
l new scheduled departure time of l ∈ L

tl,l′,1, tl,l′,2, tl,l′,3 auxiliary decision variables defined to measure the transfer disutility
between legs l and l′, e = (l, l′, de, θe) ∈ Erail,air

δl schedule deviation from the initial departure time, l ∈ L
xA

l,i binary, indicate whether leg l is scheduled to arrive after time step
i, l ∈ L, i ∈ T

xD
l,i binary, indicate whether leg l is scheduled to depart after time step

i, l ∈ L, i ∈ T
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ce continuous, passenger connection cost, e ∈ E

3.1.2.4.3 Objective function and constraints The objective is to generate a time-
table between air and rail that minimises the total multimodal passengers’ transferring
disutility, while, as a secondary objective, keeping schedule deviation low.

The optimisation proposed is :

min
k,t,x,c,δ

∑
e∈Erail,air

dece,
∑
l∈L

δl, (3.2)

subject to :

kA
l = kD

l + IV Tl

h
l ∈ L (3.2a)

tD
l = h(kD

l − 1) l ∈ L (3.2b)
tA
l = h(kA

l − 1) l ∈ L (3.2c)
tD
l ≤ T D

l + δmax l ∈ L (3.2d)
T D

l − δmax ≤ tD
l l ∈ L (3.2e)

tD
l − T D

l ≤ δl l ∈ L (3.2f)
T D

l − tD
l ≤ δl l ∈ L (3.2g)

MTATl,l′ ≤ tD
l′ − tA

l (l, l′) ∈ Pair (3.2h)
DWl,l′ = tD

l′ − tA
l (l, l′) ∈ Prail (3.2i)

kD
l ≤ i + MxD

l,i l ∈ L, i ∈ T , (3.2j)
|T |−1∑
i=0

xD
l,i = kD

l l ∈ L, (3.2k)

kA
l ≤ i + MxA

l,i l ∈ L, i ∈ T , (3.2l)
|T |−1∑
i=0

xA
l,i = kA

l l ∈ L, (3.2m)

i+w−1∑
τ=i

∑
l∈LA

n

xA
l,τ−1 − xA

l,τ ≤ Y A,w,i
n n ∈ N air, w ∈W, i ∈ Tw, (3.2n)

i+w−1∑
τ=i

∑
l∈LD

n

xD
l,τ−1 − xD

l,τ ≤ Y D,w,i
n n ∈ N air, w ∈W, i ∈ Tw, (3.2o)

∑
l∈LD

n ∩LA
n

(xD
l,i − xA

l,i) ≤ Omax
n n ∈ N rail, i ∈ T \{0}, (3.2p)

tD
l′ − tA

l − πl,l′ = tl,l′,1 + tl,l′,2 + tl,l′,3 e ∈ Erail,air, (3.2q)

66



CHAPITRE 3. AIR-RAIL TIMETABLE SYNCHRONISATION MINIMISING THE
IMPACT ON EXISTING SCHEDULES

cθe,1tl,l′,1 − cθe,1tθ + cθe,2tl,l′,3 ≤ ce e ∈ Erail,air, (3.2r)
MCTθe ≤ tl,l′,1 ≤ tθe e ∈ Erail,air, (3.2s)
0 ≤ tl,l′,2 ≤ tθe − tθe e ∈ Erail,air, (3.2t)
0 ≤ tl,l′,3 ≤ MACTθe − tθe e ∈ Erail,air, (3.2u)
tD
l′ − tA

l ≤ T D
l′ − T A

l + ∆ e ∈ Eair,air, (3.2v)
tD
l′ − tA

l ≥ T D
l′ − T A

l −∆ e ∈ Eair,air, (3.2w)
tD
l′ − tA

l ≤ MACTθe e ∈ E , (3.2x)
tD
l′ − tA

l ≥ MCTθe e ∈ E , (3.2y)
kD

l , kA
l ∈ T \{0} l ∈ L, (3.2z)

tA
l , tD

l ∈ {0, h, . . . , h(|T | − 2)} l ∈ L, (3.2aa)
δl ∈ {0, 1, . . . , δmax} l ∈ L, (3.2ab)
xD

l,i, xA
l,i ∈ {0, 1} l ∈ L, i ∈ T , (3.2ac)

0 ≤ cθ ≤ 1 e ∈ Erail,air, (3.2ad)

where M is some large-enough big-M, constant to be set by the user. One can show that
it is sufficient to set M = |T |. We set M to this value in our numerical experiments. The
objective function is a bi-objective optimisation function. The first objective sums up the
intermodal passenger costs, while the second objective measures for each leg its deviation
from the initial scheduled departure time. Constraints (3.2a)-(3.2e) refer to the new sche-
dule assignment and to the maximum schedule deviation limit. Constraints (3.2f) and (3.2g)
measure the timetable deviation for each leg (classical linearisation of the objective-function
term δl (= |tD

l − T D
l |)), to be minimised. Constraints (3.2h) and (3.2i) stipulate that the

aircraft minimum turnaround time and the train constant dwell time constraints at station
are satisfied, respectively. Constraints (3.2j) to (3.2p) ensure that the number of scheduled
flights per time interval does not exceed the airport capacity, and that the number of trains
scheduled to stop at a station does not exceed the number of tracks. For instance, equation
(3.2n) sums the number of flights scheduled to arrive over the time intervals of the day. If,
for instance, the number of arrival is measured per 60-minute interval, as h is then set to 5
minutes, we fix w = 12. Thus, the number of arrivals is counted between time steps 1 and
12, then between time steps 13 and 24 and so on. Remark that the summation counter τ is
always a valid index since w is defined so that |T |−1

w is integer. Constraints (3.2o) are simi-
larly defined for the airport departure throughput evaluation. Constraints (3.2q) to (3.2u)
are classical linearisation constraints to account for the convex piecewise-linear cost func-
tion cθ. Constraints (3.2v) and (3.2w) guarantee air-air connections for passengers, while
constraints (3.2x) to (3.2y) ensure the passenger transfer feasibility. Finally, constraints
(3.2z) and (3.2ad) specify the definition domain of the decision variables. Remark that,
in the formulation, for each leg l ∈ L, we do not constrain decision variables kD

l and kA
l
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to be integer since constraints (3.2j)-(3.2m) ensure that kD
l and kA

l will automatically be
integers (sum of binary decision variables).

3.1.2.5 Bi-criterion resolution approach

As a reminder, the problem involves a bi-criterion objective function. The first criterion
is the passenger disutility, defined in terms of multimodal transfer times, while the second
criterion is the total changes in the schedule of airlines and railway operators (in minutes),
both to be minimised. As it is common in practical multicriterion optimisation, these two
objectives are competing. Here, we prioritise the passenger criterion, and the schedule
deviation is considered as a secondary objective. In order to solve such lexicographic-order
optimisation problems, two strategies are generally proposed in the literature (Chankong
and Haimes, 1983). The first method consists in scalarising the problem, through the
consideration of a weighted sum of the criteria. The second strategy is referred to as the
ϵ-constraint method. It involves successively minimising one criterion, with the additional
constraint that the value of the other criterion is not greater than ϵ. The advantage of
such a sequential optimisation process is that no weighting parameter has to be managed
by the user, facilitating its application. This is the method chosen here. Let P0 and P1
denote the mono-criterion problems of minimising criteria f0 and f1, respectively (with all
the constraints seen before). In the following, let fP

0 = ∑
e∈Erail,air

dece denote the optimal

value of the total passenger disutility for problem P. Similarly, we define fP
1 = ∑

l∈L
δl,

the optimal schedule deviation of the solution for P. As explained earlier, the passenger
criterion is prioritised. Hence, we propose solving P0 first, and the solution value fP0

0 is
obtained. Then, P1 is solved with the additional constraint that the passenger criterion
value is not degraded. In our test we shall add constraint fP1

0 ≤ fP0
0 + 10−2 to P1.

Numerical results are presented in the following section.

3.1.3 Application to the Western Europe transportation network

In this section, the synchronisation methodology presented above is tested on the case
study of Western Europe. The framework of the study is first detailed, then the ARSTS
problem is solved on passenger instances generated in Chapter 2. Numerical results and
analyses of the obtained solutions are presented in Subsections 3.1.3.3 to 3.1.3.6. All the
computations are performed on a laptop equipped with an AMD Ryzen 5 4500U CPU and
16 GB RAM.

3.1.3.1 Case study presentation

The multimodal network studied is composed of 18 airports : the six largest airports
of each of the three countries France, Germany and Spain. We consider for each day bet-
ween December 2nd, 2019 and December 7th, 2019, and on September 22nd, 2021, all flights
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operated by an aircraft that stops in one of these 18 airports. Eurocontrol historical flight
schedules are used for the study (Eurocontrol, 2023). On average, 10,153 flights per day
are considered in 2019, compared with 6,783 on September 22nd, 2021. A particular fo-
cus is made on three airports : Paris-Charles de Gaulle airport (CDG), Frankfurt airport
(FRA) and Madrid-Barajas airport (MAD). These are hub airports with several thousands
of connecting passengers each day. In addition, CDG and FRA have a direct access to
an HSR station : Aéroport-Charles de Gaulle 2 TGV station and Frankfurt Flughhafen
Fernbahnhof. Hence, passengers arriving from a train can directly connect with a flight.
On the contrary, MAD airport is not equipped with a direct HSR station. In the following,
we consider connections with trains arriving at Madrid-Atocha train station. For each of
these three above-mentioned train stations, trains scheduled to stop during the day are in-
cluded in the study. For passengers arriving at Madrid-Atocha, an additional transfer time
of 45 minutes to reach the airport from the train station is added (RENFE, 2022). Train
schedules are obtained from GTFS data, as detailed in Chapter 2. This leads to consider
561 rail legs per day on average in 2019, and 473 in 2021. The air transportation network
and the rail transportation network of December 2019 are presented in Figure 3.5.

(a) Air transportation network (b) Rail transportation network

Figure 3.5 – Transportation networks considered for December 2019. Airports and train
stations are represented by black points, rail legs and flights by red lines. The width of the
red lines increases with the frequency of legs operated between each OD pair per day.

The timetable synchronisation problem is then tested to coordinate flights at these
three hubs with their associated train stations. Note that airport capacity constraints are
only evaluated on the 18 airports. Similarly, train station capacity constraints are evaluated
on the three train stations presented in the case study. However, aircraft turnaround times
and train stop duration constraints are taken into account at every airport and train station
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visited by an aircraft or a train. As an example, on December 2nd, 2019, this involves a total
of 496 airports and 72 train stations. If we compare the maximum hourly capacity declared
for each airport with the actual number of movements, the actual volume is generally lower
than declared. However, it may happen that the hourly volume of operated flights was
higher than the declared one. In order to obtain a feasible solution, the hourly capacity
limits are therefore set to the maximum between the number of movements historically
observed and the capacity declared for airports.

In this section, the ARSTS problem is solved for each of the 60 generated passenger
demand instances of 2019, and the 10 instances generated for 2021. In Europe, there is
an agreement between 26 countries to abolish border controls. These countries constitute
the Schengen area, reducing thereby the airport processing time for flights operated within
these countries. Such flights are referred to as Schengen flights, and flights with a destination
outside the Schengen area are referred to as non-Schengen flights. Hence, we define Θ =
{TSF, TNSF, FT, FF} the connection type sets considered, where “T-SF” correspond to
train-flight connections with a flight destination within the Schengen area, “T-NSF” to
train-flight connections with a flight destination outside the Schengen area, “FT” to flight-
train connections and “F-F” to air connecting passengers. For each day considered in the
study, the number of passengers making each connection type is given in Table 3.2.

Day TSF TNSF FT FF Total

02-12-2019 13,388 18,302 32,000 89,915 153,605
03-12-2019 14,660 16,720 31,269 88,782 151,431
04-12-2019 13,796 17,955 31,774 89,775 153,300
05-12-2019 10,949 20,059 31,148 88,850 151,006
06-12-2019 13,609 18,115 31,692 90,205 153,621
07-12-2019 12,910 19,071 31,928 90,416 154,325
22-09-2021 6,716 4,890 11,487 31,646 54,739

Table 3.2 – Volume of connecting passengers per day.

The values of each parameter defined in Section 3.1.1 are presented in Table 3.3. For
each connection type θ ∈ Θ, we make the assumption that the passenger disutility function
is normalised to the value 1 when the transfer time is equal to either the lower-bound
value MCTθ, or to the upper-bound value MACTθ, (see Figure 3.1). Values of MCTθ,
MACTθ, tmin and tmax are chosen according to several studies (Dennis, 1994; Burghouwt
and de Wit, 2005; Danesi, 2006), but they can be tuned by the final user depending on the
airport considered.

In addition to the initial train and flight schedules, three scenarios are tested. The
first scenario, S1, assumes that railway operators adapt their schedules to fixed, given
flight schedules, only changes to the train schedules are authorised in the optimisation
process. Similarly, scenario S2 corresponds to the case of airlines adapting their schedules
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Table 3.3 – Parameters values (input data) used in the instances ; r, δmax, ∆, MCTθ, tθ,
tθ and MACTθ are in minutes.

Passenger cost-function parameters δmax ∆ r

θ MCTθ tθ tθ MACTθ cθ,1 cθ,2

30 15 20
T-SF 45 80 100 270

1
MCTθ−tθ

1
MACTθ−tθ

T-NSF 60 110 130 300
FT 30 50 70 180

to fixed, given train schedules, only changes in the flight schedules are authorised. Finally,
scenario S3 allows one to apply changes in both train and flight schedules. This last scenario
corresponds to the existence of some bilateral agreement between rail and air operators to
improve the passenger connection quality.

3.1.3.2 Numerical results

For each of the subproblems P0 and P1, the average number of decision variables (and
among which the number of binary variables), and constraints per instances, for either
2019 or 2021, and per scenario, are listed in Table 3.4.

Table 3.4 – Average number of decision variables and constraints for the 60 instances
considered in December 2019, and the 10 instances in September 2021.

Year # variables (# binary) # constraints

2019 293,473 (245,692) 433,065
2021 230,375 (196,814) 317,076

Our optimisation problem is solved using the MIP solver Gurobi, version 9.1.2 (Gurobi
Optimization, LLC, 2023). A time limit of 30 minutes is set for the resolution of each
monocriterion subproblem P0 (passenger disutility) and P1 (schedule deviation). Compu-
tation times for each scenario are presented in Table 3.5. For the instances of 2019, the
total computation time is around 2 seconds, 2 minutes and 6 minutes on average for scena-
rios S1, S2 and S3, respectively. In 2021, airport and train station capacities were largely
greater than the actual number of flights and trains operated. In addition, the number
of connections has decreased by over two third, compared with 2019. The computation
time is therefore lower, with a solution found within 1 minute and 2 seconds on average
for scenario S3. Recall that the tool is assumed to be run several weeks in advance, the
computation time is thereby acceptable for practitioners. Detailed results obtained on the
instances of 2019, for each individual scenario, are presented and discussed in the next two
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Table 3.5 – Average computation time, µ, in seconds, and the associated standard de-
viation, σ, for the 60 instances considered in December 2019, for the two monocriterion
subproblems P0 and P1.

P0 (passenger disutility) P1 (schedule deviation) Total

Year Scenario µ (s) σ (s) MIPGap (%) µ (s) σ (s) MIPGap (%) µ (s)

2019
S1 0.7 0.1 0.0 0.9 0.2 0.0 1.6
S2 23.4 10.4 0.4 79.5 26.1 0.8 102.9
S3 103.4 67.4 0.8 255.5 167.8 0.8 358.9

2021
S1 0.8 0.1 0.0 1.0 0.2 0.4 1.8
S2 12.5 1.9 0.0 25.2 13.3 0.6 25.8
S3 26.8 19.9 0.3 60.4 35.2 0.4 62.0

subsections. Then, a comparative analysis between the results of 2019 and 2021 is proposed
in Subsection 3.1.3.5. Finally, a sensitivity analysis of the maximum leg schedule deviation
parameter δmax, is presented in the last subsection.

3.1.3.3 Benefits of air-rail collaboration

Figure 3.6a presents the average number of minutes gained per connection in scenarios
S1, S2 and S3. For passengers initially having a short connection time (t < tθ), these
minutes correspond to additional minutes in the new schedule. Conversely, for passengers
with initially a long connection time (t > tθ), these minutes correspond to a reduction in
their connection time. More precisely, for each passenger connection e ∈ Erail,air, let tinit

e

denote the initial duration of the connection, and toptim
e , the connection duration with the

new schedule. Let ge denote the number of minutes gained for connection e, e ∈ Erail,air ; it
is computed as follows :

ge =
{

toptim
e − tinit

e , if tinit
e ∈ [MCTθe, tθe ]

tinit
e − toptim

e , if tinit
e ∈ [tθe , MACTθe]. (3.3)

On average, 5.6 minutes per connection are thereby gained when both airlines and rail-
way operators cooperate to change their schedules. If only the train schedule is modified,
1.8 minutes could be gained on average per connection, compared with 3.0 minutes if only
the flight schedule is changed. As expected, changing both rail and air schedules allows
one to obtain a higher benefit for passengers, since this improves (reduces or increases) the
connection time by up to one hour, compared with only 30 minutes if we authorise changes
in only one mode. Moreover, 50% of transferring passengers gain more than 5 minutes
per connection in scenario S3. Figure 3.6b displays the total number of minutes gained
per day, per scenario. Scenarios S1 and S2 already improve the passenger experience by
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(a) Total number of minutes
gained per connection, per si-
mulation.

(b) Total (in 105 minutes) mi-
nutes gained per day, on ave-
rage.

(c) Average connection time
per simulation.

Figure 3.6 – Distribution of minutes gained per connection in each scenario (a), total
passenger minutes gained (b) on average, and average connection time (c) for scenario S1,
S2 and S3.

gaining around 1,800 and 3,200 hours for passengers, respectively. These hours correspond
to initial extra wait time or stressful tight connections for passengers. However, if both air-
lines and railway operators collaborate, it is more than 5,800 hours that could be thereby
gained for passengers. This value is even larger than the sum obtained with the two uni-
lateral scenarios. This shows that collaboration between modes brings a substantial added
value for passengers. For each considered scenario, the average connection time per simu-
lation is displayed in Figure 3.6c. A distinction is made between connections from a train
to a Schengen-destination flight (TSF), from a train to a non-Schengen-destination flight
(TNSF), and from a flight to a train (FT). In the initial planning, the average connection
times in the three considered hubs, for TSF, TNSF and FT connections are 152 minutes,
170 minutes, and 102 minutes, respectively. For TSF and TNSF connections, all scenarios
increase the average transfer time. Indeed, as the time-unit cost (cθ,1) of short connec-
tions is set higher than the time-unit cost of long connections (cθ,2), short connections
are lengthened in priority, increasing thereby the average connection time. Regarding FT
connections, the average connection time is decreased in all scenarios. Table 3.2 shows that
a larger number of passengers have this type of connections. Consequently, in addition to
lengthen short connection times for FT connecting passengers, initially long connection
times are also reduced.

Figure 3.7a displays the changes in minutes per connection, for each scenario, based on
the initial category of the connection : short (t < tmin) or long (t > tmax). One observes that
for scenarios S1 and S2, short connections are lengthened, but limited changes are applied
to long connections, at the benefit of passengers having short connections. In addition,
scenario S2 reduces the number of short connections more than S1 does (the median value
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(a) Shift in minutes per connec-
tion.

(b) Passenger volume. Horizon-
tal lines correspond to the ini-
tial planning.

(c) Average passenger wait
time.

Figure 3.7 – Shift in connection time (a) as a function of the initial connection category
(short and long), passenger volume per connection category for each scenario (b), and
average wait time for passengers initially experiencing long connection time at the three
hub airports (c).

is higher), since the number of flights is significantly higher than the number of trains,
increasing thereby the magnitude of the change. Regarding scenario S3, in which both flight
and train schedules are optimised, short connections are lengthened, while long connections
are shortened. Figure 3.7b displays the average volume of passenger experiencing short,
suitable and long connections, for each tested scenario. Scenario S3 accommodates more
than 25% of intermodal passengers with a suitable connection time, compared with 14% in
the initial planning. In the initial planning, most connections are generally long ones (more
than 68%). This value is reduced to 65% after optimisation. Regarding the share of short
connections, they represented more than 17% in the initial planning, on average. After
optimisation, in S3, this value is reduced to 8.7%. Figure 3.7c presents the average wait
time in minutes for passengers with long connections at the three considered hubs. More
precisely, these minutes correspond to extra minutes (above the suitable connection time,
tmax). On average, intermodal passengers wait more than one hour for their second leg.
Scenario S3 reduces the average wait time of passengers by 3, 8 and 5 minutes at CDG,
FRA and MAD, respectively. These values are obtained considering passengers having
initially long connection times. Figures 3.7b and 3.7c show that, even if long connections
are not prioritised by the algorithm (due to the lower time-unit cost compared with short
ones), both the number of long connections and their duration are reduced, by 4% and 5.2
minutes, on average.

Figure 3.8 displays the volume of passengers experiencing short, suitable and long
connections across the day. At each hour, the share of suitable connections (green) has
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Figure 3.8 – Distribution of connection time per category (short, suitable or long) across
the day, for each hour of the day. Transparent bars (on the left) correspond to the initial
planning, opaque bars (on the right), to the optimised planning with scenario S3.

been increased. In addition the average connection time per hour, for passengers having
initially short and long connection times, are displayed in Figures 3.9 and 3.10, respecti-
vely. Regarding short connections (Figure 3.9), as desired the average connection time is
generally increased at each airport, and each hour, for each connection type considered.
There are however a few exceptions for FRA airport : at 4am and 5am, where the average
connection time of short connections was reduced on average. However, 56 passengers were
initially experiencing short FT connections for flights arriving between 4am and 5am at
FRA airport, and in the integrated planning, this number is reduced to 23. Similarly, 295
passengers had a short TNSF connections in the initial planning, against 13 in the S3
scenario. Regarding initially long connections, FT connections are shortened at each consi-
dered hub. However, the average connection time of long connections is stable for TSF and
TNSF connections. Nevertheless, as shown by Figure 3.8, the number of long connections
generally decreased at each hour.

Figures 3.8, 3.9 and 3.10 highlight two main points. First, the number of short connec-
tions is significantly reduced in the collaborative scenario (S3), limiting the risk of missed
connections for passengers. Second, for remaining short and long connections, connection
times are lengthened and shortened, respectively, as desired.
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(a) FT

(b) TSF

(c) TNSF

Figure 3.9 – Average connection time for passenger initially experiencing short connec-
tions, for FT (a), TSF (b) and TNSF (c) connection types, per hour, for the 6 days of 2019
considered.
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(a) FT

(b) TSF

(c) TNSF

Figure 3.10 – Average connection time for passenger initially experiencing long connec-
tions, for FT (a), TSF (b) and TNSF (c) connection types, per hour, for the 6 days of 2019
considered.
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Figure 3.11 presents the connection time distribution for passengers, for each connection
type considered, at each hub airport, in 2019, before and after optimisation of the S3
scenario.

Figure 3.11 – Connection time distribution, in minutes, before (blue) and after (orange)
optimisation of the S3 scenario ((brown corresponds to the superposition of blue and
orange).

This figure confirms the results previously observed. Short connections are removed in
priority, and for FT connections, long connection times are also reduced at the three hubs,
decreasing the average connection time observed in Figure 3.6c. These FT connections are
prioritised by the algorithm since, in the simulated instances, the number of passengers
making FT connections is larger.

The following section presents the impact of optimising air-rail timetables on transpor-
tation schedules.

3.1.3.4 Operator costs

The average share of legs shifted, over all 60 instances, for each scenario S1, S2 and
S3, is presented in Figure 3.12a. A distinction is made between trains and flights. One first
observes that while more than 62% of trains are deviated from their initial schedules in the
unilateral scenario S1, and 74% in the bilateral scenario S3, only 12.6% of the flights are
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(a) Average share of legs (trains
and flights) shifted.

(b) Average deviation (in mi-
nutes) per leg.

(c) Aircraft volume deviation
and initial slot satisfaction.

Figure 3.12 – Deviation from initial schedule analysis for all 60 instances of December
2019.

impacted by a change in the unilateral scenario S2 and 15.4% in the bilateral scenario S3.
In fact, only the trains stopping at the three train stations considered are counted, while
all aircraft stopping at the 18 considered airports are taken into account. Thus, in reality,
the proportion of trains shifted is smaller. A second observation is that a higher number
of trains are deviated from their initial schedules in scenario S3 when compared with S1.
One could have expected that allowing changes in both flight and train schedules would
reduce the number of legs impacted by a schedule deviation. One hypothesis to explain
this is that the change in flight schedule opens a wider range of possibility (the state space
is larger). Hence, in scenario S1, changes in train schedule are determined by the initial
flight schedule and airport congestion. Wide changes in the train schedule are not needed
since connection quality improvement is limited, and similarly for flights in scenario S2.
However, in scenario S3, the flight schedule can be changed as well. Suitable connection
time can be reached, maybe at the cost of moving more trains than in scenario S1 and more
flights than in S2. The average deviation (in minutes) per leg for each scenario is presented
in Figure 3.12b. Note that the average deviation is computed only among deviated legs.
In S2 and S3 scenarios, flights are shifted by 11.0 and 11.5 minutes from their initial
schedule, on average. This value falls to 1.4 and 1.8 minutes if all aircraft (deviated or not)
are considered. Regarding trains, they are modified from 15.3 to 14.7 minutes between
scenarios S1 and S3, on average. Hence, although the number of deviated legs is increased,
on average the range of the deviation decreases when both air and rail operators agree
to change their schedules. Finally, Figure 3.12c displays the number of aircraft that are
still assigned to their initial 10-minute airport slots. In scenario S2, 21.1% of deviated
flights still satisfy their initial slot departure time, against 19.5% in scenario S3. Results
presented in Buire et al. (2024) show that the average flight deviation was reduced in
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(a) Flights (b) Trains

Figure 3.13 – Average train and flight schedule deviations per OD pair, for scenario S3,
over the 60 instances.

S3. However, the airport capacity constraint was based the initial flight schedule. After a
further analysis, it has been shown that they under-evaluate airport capacities. Hence, by
setting the airport slot capacities to the ones that have been declared (Appendix B), we
obtain a larger deviation of the flight schedule in S3 than in S2, for the reason cited above.

Figure 3.13 displays the average deviation over the 60 instances per OD pairs for both
flights and trains for scenario S3. For the sake of clarity, only flights between the 18 airports
considered are displayed. Within the considered airport network, changes in schedule are,
on average, below 15 minutes. The most impacted OD flight pairs are CDG - Gran Canaria
Tenerife Sur airports and MAD - Gran Canaria Tenerife Sur airport airports. Regarding
train schedules, the less coordinated legs are MAD - Murcia for Spain, FRA - Innsbruck
Hbf for Germany and CDG - Montpellier in France.

3.1.3.5 Comparison between 2019 and 2021

The previous subsections highlighted the potential gain of schedule synchronisation for
passengers in terms of connection comfort, in 2019. This subsection provides a comparative
analysis with the results obtained for 2021. As detailed above, the COVID-19 crisis deeply
changed transportation network structures. Train and flight frequencies were reduced, as
depicted in Figure 3.14. The flight density has decreased, with an average volume of 10,153
flights per day in December 2019, to 6783 for September 22, 2021. Recall that only flights
operated by an aircraft stopping at least once at one of the 18 considered airports, during
the day, are considered. Table 3.2 and results of Chapter 2, also show a significant decrease
in the volume of intermodal connecting passengers, in particular in Madrid.
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(a1) Air transportation network (a2) Rail transportation network

(a) December 2019

(b1) Air transportation network (b2) Rail transportation network

(b) September 2021

Figure 3.14 – Transportation networks considered for December 2, 2019 (top) and for
September 22, 2021 (bottom). Airports and train stations are represented by black points,
rail legs and flights by red lines. The width increases with the frequency of legs operated
between each OD pair per day.

The connection time distributions, for the 10 instances of 2021 tested, before and after
optimisation, are presented in Figure 3.15. On average, in scenario S3, 5.55 minutes are
saved for passengers in 2019, against 9.1 minutes in 2021. As airports and train stations are
less congested, there are more opportunities for rescheduling and improving the passenger
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Figure 3.15 – Connection time distribution, in minutes, before (blue) and after (orange)
optimisation for the S3 scenario (brown corresponds to the superposition of blue and
orange).

experience. At the same time, since the number of passenger connections was reduced in
2021, the share of passenger connections that might be competing decreased. A pairwise
competing connection corresponds to a connection pair that shares a common leg, where
rescheduling the common leg increases the quality of one link and decreases the quality of
the other. For instance, suppose a first train arrives at 10am and a second train arrives
at 12am, and both trains have connecting passengers with a flight departing at 13am.
If the flight is rescheduled earlier, the connection for passengers of the second train will
be shortened, while being already short. On the other hand, if the flight is postponed
after 13am, passengers arriving from the 10am train will have an even longer connection.
Figure 3.16 presents the number of pairwise-competing connections for each leg on the
(simulated) passenger demand on December 2, 2019 and September 22, 2021. In 2021, as the
volume of connecting passengers decreases, the number of pairwise-competing connections
also decreases. Consequently, the optimisation succeeds in saving more minutes on average
per passenger in 2021 than in 2019. This results in a higher share of suitable connections
in the optimised planning in 2021, compared with 2019. Table 3.6 summarises the share
of each connection category (short, suitable and long) for the initial planning and for
the optimal planning obtained for the S3 scenario, for 2019 and 2021. On average, for
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Figure 3.16 – Distribution of pairwise-competing connections per leg, for December 2,
2019 and September 22, 2021. Only values above 0 are displayed.

each instance, the share of suitable connections after optimisation is of 29.7% in 2021 and
14.1% in the initial planning, compared with 25.6% in 2019 after optimisation and 14.3%
before. The increase in suitable connections is therefore higher for 2021. Regarding short
connections, their proportion was lower in 2021, at the benefit of long ones. Indeed, the
initial number of suitable connections is stable between 2019 and 2021, but the share of
short ones decreases while the share of long ones increases. In 2021, the optimisation process
succeeds in reducing by 56% the number of short connections for passengers, compared with
49% in 2019. Similarly, the number of long connections was reduced by 10% in 2021 and
by 4% in 2019.

2019 2021

Initial S3 Initial S3
Long 68.6 65.7 70.6 63.6
Short 17.2 8.7 15.3 6.7
Suitable 14.3 25.6 14.1 29.7

Table 3.6 – Share (%) of suitable, long and short connections in the initial planning and
the S3-scenario optimal solution, for 2019 and 2021.

Regarding the operator cost, the share of trains and flights deviated is lower compared
with 2019, as it can be observed in Table 3.7. However, the average deviation is higher.
Indeed, as explained above, the over-capacited stations allow one to shift trains and flights
more easily than in 2019.
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2019 2021

Average share of trains deviated (%) 74 56.1
Average share of flights deviated (%) 15.4 10.3
Train average deviation (minutes) 14.7 20.9
Flight average deviation (minutes) 11.5 12.9

Table 3.7 – Comparative analysis between 2019 and 2021, for scenario S3. The average
deviation is computed among the legs deviated from their initial scheduled departure time.

3.1.3.6 Sensitivity analysis of the maximum schedule deviation parameter δmax

This subsection analysis the sensitivity of the synchronisation tool with respect to
the value of the parameter δmax. For the day of December 2nd, 2019, our optimisation
methodology is tested on the 10 passenger demand instances, by setting δmax to the four
possible values : 0 (initial planning), 30 (proposed default value), 45, and 60 minutes.

Figure 3.17 displays the value of the two optimisation criteria (passenger disutility
and schedule deviation) as a function of δmax, for each instance. One observes that as the

Figure 3.17 – Passenger transfer disutility criterion and schedule deviation criterion as
a function of the δmax parameter, for the 10 passenger demand instances of December 2,
2019.
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value of δmax increases, the passenger transferring disutility value decreases. Conversely,
as expected, the value of the deviation criterion increases, since larger changes are now
authorised. However, for instances 0, 2 and 4, setting the value of δmax to 45 minutes
succeeds in improving both criteria, compared with δmax = 30. This observation remains
true for instance 2 when increasing δmax further to 60 minutes : both criteria values are
lower than when δmax is set to 30 and 45 minutes, although one could have expected that
increasing the magnitude of change will increase the total schedule deviation.

Table 3.8 presents the average leg deviation, in minutes, and the share of legs deviated
from their initial schedule when δmax is set to 30 and 45 minutes for a typical instance :
instance 1. If the parameter is set to 45 minutes, there are fewer legs deviated, compared
with δmax = 30, but with a larger average deviation. This shows that authorising a larger
schedule deviation (larger value of δmax) may allow an even larger improvement for some
passengers, at a global lower cost for the operators. Nevertheless, this solution is less
fair among legs, since although a lower number of legs are impacted by a change, their
magnitude of change is higher. The choice of the value of δmax should therefore be designed
by the final user, depending on the type of solution searched for.

δmax (minutes) 30 45

Share of trains deviated (%) 73.7 69.4
Share of flights deviated (%) 15.04 13.3
Train average deviation (minutes) 15.2 16.5
Flight average deviation (minutes) 12.3 13.3

Table 3.8 – Average leg deviation, and share of legs deviated, for the resolution of the
ARSTS on the passenger demand instance 1 of December 2, 2019 for scenario S3, for two
values of the parameter δmax. The average deviation is computed among the legs deviated
from their initial scheduled departure time.

As a general observation, as the value of δmax increases, the increase in total schedule
deviation reduces. This is explained by the presence of the station capacity constraints.
Indeed, our model implies that the ideal situation for passengers would be that all trains
arrive at the same time at the train station, and that all flights depart between tθ and tθ

minutes later. However, train stations and airports cannot schedule all trains and flights
at the same time. Therefore, even if the value of δmax gets very large, the transfer quality
remains limited by the station capacities. In addition, one can assume that the specific
time of the day has an impact on the passenger travel demand : some passengers wish to
arrive in the morning while others prefer to reach their destination in the evening, etc. It
is therefore preferable for transportation providers to schedule several services at different
times of the day in order to satisfy a higher number of passengers.
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3.1.4 Strategic timetable synchronisation problem conclusion

A metric has been proposed to measure the level of synchronisation between air and rail
timetables. The function allows one to provide a score, depending on the connecting time
between trains and flights, that takes into account station processing time, and eventual
transfer time between legs. Based on this metric, a MILP formulation of the strategic
air-rail timetable synchronisation problem at the network scale was introduced, with the
purpose of providing smooth connections for passengers transferring between trains and
flights, at a limited cost for transportation service providers. This optimisation considers
operational constraints such as airport and train station capacities, and the guarantee of
air-air connections for airlines. In order to assess the benefit of air-rail collaboration, the
model was solved at the European scale across three countries on three European airport
hubs : Paris-Charles de Gaulle, Frankfurt and Madrid-Barajas airports. Three scenarios
were proposed, in which each operator (airlines and railway companies) agrees to change
its schedule or not. Results show first that a collaboration between rail and air can yield
a gain of 5.5 minutes and 9.1 minutes per connection for passengers, in 2019 and 2021, on
average. In addition, the number of short connections is decreased by 46% and 56% in 2019
and 2021, respectively, reducing thereby the risk of missed connections for passengers. At
the same time, initially long connections are shortened, reducing the wait time of passengers
at airports. These results were obtained by changing the schedule of less than 16% of the
flights operated over Europe, and 74% of the trains, in 2019. Remember that only a subset
of operating trains (the ones stopping at one of the three considered trains stations) were
considered here, reducing the actual share of trains deviated.

Several avenues for future work are under consideration. First, the robustness of the
new schedule could be assessed against several delay patterns. Indeed, delays may severely
impact the smoothness of a door-to-door journey, especially in case of missed connec-
tions. On the studied period, the week of December 2019, the average delay observed in
the historical data is 10 minutes. This information could be included in the optimisation
process to ensure smooth connections, even in case of disruptive events. Then, the set of
re-accommodation options for passengers in case of missed connections could be included in
the optimisation model. Indeed, missing a connection with a flight operated several times
a day is less critical than with a daily flight. A further sensitivity analysis could be lead
to assess the impact of the model parameters (MCTθ, MACTθ, tθ, tθ, ∆, r, cθ,1, cθ,2) on
both the resolution performances and the solutions obtained. Moreover, piecewise linear
functions with additional breakpoints, or even quadratic cost functions should be tested.
Indeed, the disutility of really short connections (whose connection time is close to MCTθ)
is in practice higher than that of connections whose the connection time is close to tθ.
Therefore, it may be relevant to improve these connections in priority. Finally, schedule
elasticity should be considered since changing train or flight departure times is likely to
affect the demand.
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3.2 Tactical planning horizon

In the previous sections, an air-rail schedule synchronisation methodology was develo-
ped to provide passengers with smooth transfers between legs. The main objective was to
create an integrated planning between trains and flights that both let a sufficient amount
of time for passengers to transfer between legs, even in the case of delays, and reduces
additional wait time at stations. Unfortunately, it may happen that delays on the first leg
are too large and that passengers still miss their connection. In addition, such integrated
timetables are not established today. In this section, we propose to adapt our optimisation
model in order to create a synchronisation framework at the tactical planning horizon.
When passengers travel, delays may occur on one leg of their journey, threatening connec-
tions with the next ones. For example, if a train or a plane is delayed, passengers connecting
with a flight may hope that the latter is also delayed in order to maintain their connection.
In practice, depending on airline strategies, some airlines may wait for delayed passengers
travelling within the same airline. However, such a mechanism is not always proposed, es-
pecially for ground transportation modes. In this section, we propose to assess the benefit
of such an air-rail collaboration in presence of delays, both for passengers and transporta-
tion service providers. The model developed at the strategic level is adapted, and a new
passenger-oriented metric, focusing on the tactical level is proposed. More precisely, the
objective of the study is to delay targeted trains or flights in order to wait for delayed pas-
sengers and avoid missed connections. This work was made in collaboration with Geoffrey
Scozzaro, also PhD student at ENAC, and was published in Scozzaro et al. (2023).

Previous works have studied the Delay Management (DM) problem on the ground
side. Schöbel (2001) is the first author to formulate the problem of deciding whether or
not to delay a vehicle in a public transport system to wait for transferring passengers.
She proposes a mixed-integer formulation to minimise the total delay of passengers at
their final destination. She assumes that the passenger’s delay is equal to the delay of his
train, if he catches it, or to some predefined constant otherwise. Later, Schöbel (2009)
considers track capacity constraints for a railway system. Dollevoet et al. (2012) propose
integrating passenger rerouting into the DM process. The same authors consider station
capacity constraints and track re-allocation in Dollevoet et al. (2015). For a review of DM
problem handling, the reader can refer to König (2020).

On the airside, Santos et al. (2017) are the first to propose a version of the delay
management problem applied to the airline. Montlaur and Delgado (2017) consider the
problem of balancing airport capacity at a hub airport by assigning delays to departing
flights at a pre-tactical level (a few days before operations) and to arriving flights at a
tactical level (the day of operations). They test different strategies to minimise either
flight or passenger delays, considering connecting passengers and turnaround constraints.
Delgado et al. (2016) propose a delay recovery strategy at a hub airport through gate delays
to wait for delayed connecting passengers and a dynamic cost index to recover from such
delays. Delgado et al. (2021) propose an agent-based model for handling air traffic delays
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through 4D trajectory adjustment to reduce costs and delays for connecting passengers.
Collaboration between air and ground transportation systems received a growing in-

terest over the past few years. Li et al. (2018) present an overview of actual collaboration
between airlines and train service providers to create an integrated air-rail service for pas-
sengers. Laplace et al. (2014) present the META-CDM project, which aims at involving
ground transport stakeholders into the airport Collaborative Decision Making (CDM) sys-
tem to improve passenger door-to-door journeys. In this context, studies on multimodal
recovery solutions in case of massive disruptions show promising results in mitigating the
impact of such events on passengers (see for instance Dray et al. (2015); Marzuoli et al.
(2016, 2015)). Scozzaro et al. (2022) propose flight rescheduling at the tactical level to
mitigate the impact of airport access mode disruptions on passengers. They consider air-
side constraints such as terminal capacity, maximum runway throughput, or minimum
passenger connecting time. Their work focuses on a single airport and does not consider
reactionary delay.

Here, we propose a tactical delay management strategy at the network level, combining
the works of Buire et al. (2022) and Scozzaro et al. (2022). This study is the first to address
the delay management problem in a long-haul multimodal network, combining constraints
on the air and ground sides. We extend the original version of the problem developed by
Schöbel (2001). We take into account real operational constraints, such as airport and
railway station capacities, Air Traffic Flow Management (ATFM) slot adherence, or even
minimum aircraft turnaround time. We also consider the reallocation time for passengers
who miss their connections.

3.2.1 Total passenger delay metric

As explained by Cook et al. (2012), flight delays do not necessarily capture the actual
delays experienced by passengers. The situation is similar for train delays, which can lead
to missed connections, and potentially late arrivals at the final destination. We therefore
introduce the total passenger delay metric, as the sum of the delays experienced by pas-
sengers when arriving at their final destination. To compute passenger delays, we propose
to partition passengers into three different groups :

— on-time passengers : passengers who catch their flight/train ; their delay is equal to
the delay of the flight/train ;

— reallocated passengers : passengers who miss their connections due to a delay on the
first leg, they are consequently reallocated to another flight/train going to the same
destination within the same day ;

— stranded passengers : passengers who miss their connections and remain without real-
location option (no seat available or no more flight/train going to the same destination
within the day).
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The delay of reallocated passengers is computed as follows. For each flight and train, we
consider the direct alternative, enabling the passengers to arrive at their destination with
the smallest possible delay. This alternative can be either a train or a flight. In this study,
we only consider direct alternatives for the sake of simplicity. The delay of reallocated
passengers corresponds to the difference between the arrival time of the new flight/train at
the destination and that of the initial one. Regarding stranded passengers, remark that in
practice, the reallocation process is a complex task, depending on airline seat availability
and strategy. Passengers may be reallocated to the first flight to the same destination in
the next morning or be re-routed via another airport to reach their final destination within
the day. For simplicity, these options are not considered here and we simply assume that
stranded passengers will be re-accommodated to the same flight on the next day at the
same departure time, thereby experiencing a 24-hour delay.

The objective of the problem is therefore to reschedule flights and trains at the tactical
level to minimise the total passenger delay.

3.2.2 Problem description and mathematical formulation

In the event of disruptions on the ground or on the air sides leading to train or flight
delays, we assume that service providers are notified ahead of time about the affected
vehicles and their expected delays for the remainder of the day. For instance, consider a
power outage on a railway network between 6am and 8am, causing delays for several trains
throughout the day due to a domino effect. We assume that the rescheduling of trains and
flights can occur once operators anticipate delays caused by the incident, such as when
power is restored at 8am. The key challenge is deciding whether a vehicle should wait for
connecting delayed passengers. For example, consider a flight of 100 passengers scheduled
to leave at 9am, with 10 passengers connecting from a previous train. Due to the disruption,
these passengers arrive at the boarding gate 10 minutes after the scheduled boarding time.
There are two options : depart on time or delay the flight. On the one hand, if there is
another flight to the same destination in three hours, departing on time will result in a
total passenger delay of 3× 60× 10 = 1, 800 minutes. On the other hand, if the flight waits
for the delayed passengers, the total passenger delay will only be 100×10 = 1, 000 minutes.
In this situation, the aircraft should wait for the connecting passengers. However, if only
five passengers were connecting, it would be better to depart on time.

Assuming that delays arise on several trains or flights during the day, the problem
consists in assigning tactical delays to other trains and flights so as to minimise the total
passenger delay.

3.2.2.1 Modelling network and passenger itineraries

In the following, the network model and the notations introduced in Section 3.1 are
used. In addition, several operational constraints previously defined are also considered
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here :
— the number of trains scheduled to stop at each train station cannot exceed the number

of tracks at this station (train-station capacity constraint) ;
— the number of airport departure and arrival movements, operated every 10-minute

and 60-minute intervals is limited (airport capacity constraint),
— a minimum turnaround time between two flights operated by the same aircraft is

considered ;
— the train dwell time at the station must remain the same as in the initial schedule ;
— the train and flight travel times remain unchanged ; (each vehicle maintains its sche-

duled speed).
In this study, we also assume that the passenger demand (previously denoted E) is known.

Here, we will better refer to this demand as passenger itineraries, since it is a real-
time operation and passengers are already travelling. In addition, these itineraries will be
modelled differently from the previous section.

The total delay is computed among all passengers, either direct or connecting passen-
gers. A direct passenger makes a point-to-point trip, without connecting between two legs
at an intermediate station. A connecting passenger uses at least two different legs to tra-
vel, and connects at an intermediate station. We therefore introduce, for each leg l ∈ L,
vdirect

l to denote the passenger volume of direct travellers of leg l, and vconnect
l to denote

the passenger volume that connects to/from leg l. In addition, for two legs l, l′ ∈ L × L,
let vl,l′ denote the passenger volume transferring from leg l to leg l′. Figure 3.18 illustrates
these notations.

A

B

C

C

D

vdirect
1

vconnect
1

vdirect
2

vconnect
2

vdirect
3

vconnect
3 =

v1,3 + v2,3

Figure 3.18 – Illustration of direct (plain arc) and connecting (dashed arc) passengers of
three legs (blue, red and green) between stations A, B, C, and D. Circle nodes correspond
to artificial departure or arrival stations, and rectangle nodes to artificial transfer areas at
the station.

For each leg l ∈ L, let Cl denote the set of legs whose at least one passenger connects
with leg l. For example, suppose two passengers arrive at the airport with a flight l1, and
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another one with a flight l2, and that these three passengers connect with the flight l3, then
Cl3 = {l1, l2}.

3.2.2.2 Real-time operational constraints

Several additional constraints related to our real-time context are considered. First, the
model we are about to propose should mitigate the impact of a disruption on passengers
affected by such an event, but such a mitigation should not be made at the expense of other
passengers. Therefore, our model should ensure that passenger having a connection whose
first leg was initially on time still have their connection. More precisely, the model should
ensure that these passengers benefit from a MCT to connect. Second, in order to manage
the airspace capacity, the departure time of aircraft may be regulated through so-called Air
Traffic Flow Management (ATFM) departure slots. These slots are allocated by a central
unit, the European Network Manager, upon the request of the local Flow Management
Position (FMP), when an imbalance between demand and capacity is foreseen at airports
and/or en-route. Aircraft subject to the ATFM slot management should therefore depart
between [-5,10] minutes around their scheduled departure time. The model must therefore
constrain the departure time of regulated aircraft to be lower than ∆ATFM minutes after
the initial scheduled departure time. In the sequel, we call this constraint is referred to
as the ATFM slot adherence constraint. Finally, in order to mitigate the impact on the
transportation network, we limit the delay that could be assigned to flights and trains to
wait for disrupted passengers to ∆ minutes.

3.2.2.3 Optimisation problem formulation

This subsection details the input data, the decision variables, the objective function,
and the constraints of the optimisation problem.

3.2.2.3.1 Input data Similarly to Section 3.1.2.4.1, the airport and train station ca-
pacities are known, as well as the initial scheduled arrival time, T A

l , and departure time,
T D

l , of each leg l ∈ L. For each leg l ∈ L, the number of direct passengers vdirect
l , and the

set of legs with connecting passengers Cl, are known. In addition, for each leg l ∈ L, for
each leg l′ ∈ Cl with connecting passenger, the volume of connecting passenger vl′,l is given
as input data. For these passengers, the reallocation delay estimator is known and denoted
rl. As detailed above, some passenger connections must be maintained as they are not
directly impacted by the disruption. Let Cp denote these priority connections, which are
assumed to be known. Finally, let LATFM denote the set of aircraft subject to the ATFM
slot adherence.

3.2.2.3.2 Decision variables For each leg l ∈ L, we define the integer decision variable
dl, the delay assigned to leg l. We further define the auxiliary integer decision variables kD

l
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and kA
l , the new index departure time step and arrival time step of leg l, and the discrete

variables tA
l and tD

l , the new scheduled arrival time and departure time of l, l ∈ L. For
each passenger connection, l ∈ L, l′ ∈ Cl, let yl′,l be the binary decision variable indicating
whether the connection is still feasible or not. The decision variable δl′,l measures the delay
experienced by passengers connecting from leg l′ to leg l, for l ∈ L, l′ ∈ Cl. Finally, similarly
to Section 3.1.2.4.2, for each time step i ∈ T , and each leg l ∈ L, let xD

l,i and xA
l,i be binary

decision variables indicating whether leg l is scheduled to depart after time step i, and
scheduled to arrive after time step i, respectively.

Notations newly introduced for the tactical synchronisation problem are summarised
in Table 3.9.

Table 3.9 – Notations of the air-rail tactical timetable synchronisation problem

Sets

LATFM index set of flights subject to the ATFM slot adherence constraint
Cp index set of priority leg pairs (for which passenger connections must be

maintained).
Cl index set of legs with passengers connecting to leg l, l ∈ L

Input data

∆ maximum pushback parameter, multiple of h
∆ATFM maximum pushback parameter for flights subject to the AFTM slot adhe-

rence constraint, multiple of h
MCTl′,l minimum connection time to connect from leg l′ to leg l, l ∈ L, l′ ∈ Cl

vdirect
l volume of passengers using l as a direct connection, l ∈ L

vl′,l volume of passengers transferring from leg l′ to leg l, l ∈ L, l′ ∈ Cl

rl reallocation delay for passengers missing their connection with leg l, l ∈ L

Decision variables

dl tactical delay assigned to leg l, l ∈ L (in minutes)
δl′,l delay experienced by passenger connecting from leg l′ to leg l, l ∈ L, l′ ∈

Cl (in minutes)
yl′,l binary, indicates whether the connection from leg l′ to leg l is still feasible

or not, l ∈ L, l′ ∈ Cl

3.2.2.3.3 Objective function and constraints The proposed model reads as fol-
lows :

min
k,t,x,d,δ,y

∑
l∈L

vdirect
l dl +

∑
l′∈Cl

vl′,lδl′,l

 (3.4)
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subject to :

tD
l = h(kD

l − 1) l ∈ L (3.4a)
tA
l = tD

l + IV Tl l ∈ L (3.4b)

kA
l = kD

l + IV Tl

h
l ∈ L (3.4c)

kD
l ≤ i + MxD

l,i l ∈ L, i ∈ T (3.4d)
|T |−1∑
i=0

xD
l,i = kD

l l ∈ L (3.4e)

kA
l ≤ i + MxA

l,i l ∈ L, i ∈ T (3.4f)
|T |−1∑
i=0

xA
l,i = kA

l l ∈ L (3.4g)

tD
l ≤ tD,0

l + ∆ l ∈ L (3.4h)
tD
l ≤ tD,0

l + ∆ATFM l ∈ LATFM (3.4i)
tD
l − tD,0

l = dl l ∈ L (3.4j)
tD
l2 − tA

l1 ≥MTATl1,l2 (l1, l2) ∈ Pair (3.4k)
tD
l2 − tA

l1 = DWl1,l2 (l1, l2) ∈ Prail (3.4l)∑
l∈LD

n ∩LA
n

(xD
l,i − xA

l,i) ≤ Omax
n n ∈ N rail, i ∈ T \{0}, (3.4m)

i+w−1∑
τ=i

∑
l∈LA

n

xA
l,τ − xA

l,τ+1 ≤ Y A,w,i
n n ∈ N air, w ∈W, i ∈ Tw (3.4n)

i+w−1∑
τ=i

∑
l∈LD

n

xD
l,τ − xD

l,τ+1 ≤ Y D,w,i
n n ∈ N air, w ∈W, i ∈ Tw (3.4o)

tD
l′ − tA

l ≥ MCTl′,l (l, l′) ∈ Cp
l (3.4p)

tD
l′ − tA

l + Myl′,l ≥ MCTl′,l l ∈ L, l′ ∈ Cl (3.4q)
δl′,l ≥ yl′,lrl l ∈ L, l′ ∈ Cl (3.4r)
δl′,l ≥ dl l ∈ L, l′ ∈ Cl (3.4s)
yl′,l ∈ {0, 1} l ∈ L, l ∈ Cl (3.4t)
xA

l,i, xD
l,i ∈ {0, 1} l ∈ L, i ∈ T (3.4u)

where d is a vector whose lth component is dl, and y and δ are matrices whose (l′, l) compo-
nents are yl′,l and δl′,l, respectively. The model aims at minimising passenger delay across
the air and rail networks. Constraints (3.4a) and (3.4b) link the new departure time step to
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the departure-time and arrival-time variables of leg l. Constraints (3.4c) link the arrival time
step of leg l with its departure time step. Constraints (3.4d) and (3.4e) link the values of the
binary decision variables xD

l,i witht the values of variables kD
l . Similarly, constraints (3.4f)

and (3.4g) link the values of the binary decision variables xA
l,i with the values of variables kA

l .
Constraints (3.4h) limit the delay assigned to each leg l. Constraints (3.4i) ensure ATFM
slot adherence. The delay assigned to each leg is linked to variables tD

l via constraints (3.4j).
The minimum turnaround time constraints and the constant train dwell time constraints
are given by equations (3.4k) and (3.4l), respectively. Constraints (3.4m) stipulate that
the number of trains scheduled to stop at a station does not exceed the number of tracks.
Constraints (3.4n) and (3.4o) enforce upper bounds on arrival and departure flight move-
ments per time window, respectively. Constraints (3.4p) ensure that passenger minimum
connecting times for priority connections are maintained. Constraints (3.4q) link the value
of variables yl′,l that characterise if passengers connecting between legs l′ and l miss their
connection or not, with variables tD

l and tA
l . Constraints (3.4r) and (3.4s) fix the reallo-

cation delay between flights l′ and l to dl if passengers have their connection, and to the
reallocation delay rl, otherwise. Finally, constraints (3.4t) and (3.4u) define the definition
domain of the decision variables. Remark that, similarly to Problem (3.2), for each leg
l ∈ L, decision variables kD

l and kD
l are automatically integer variables since they are the

sum of binary decision variables.

3.2.3 Computational experiments on the Western Europe case study

This section focuses on the Western Europe case study. It first outlines the data used
and the assumptions made. It then describes in detail the post-processing procedure for
reallocating passengers, which is crucial for accurately assessing the total passenger delay.
Finally, numerical results are presented and discussed.

3.2.3.1 Western Europe case study

This case study focuses on the historical day of December 4, 2019 when the French
National Railway Providers (SNCF) went on strike. We gather initial flight schedules (Eu-
rocontrol, 2023) from the 18 largest airports in France, Germany, and Spain, including
three major hub airports : Frankfurt airport (FRA), Madrid-Barajas airport (MAD), and
Paris-Charles de Gaulle airport (CDG). Throughout this day, 10,407 flights were opera-
ted, with 593 departures scheduled at CDG. It is important to note that we could not
access either the actual train delay data nor the number of train cancellations. According
to SNCF (2023b), accross December 2019, the high-speed-rail punctuality in France was
around 85%. Therefore, we simulate the disruption by arbitrarily delaying 30% of trains
arriving at CDG high speed rail train station, twice the average delay for the month. The
delay times are randomly selected using a uniform distribution ranging from a minimum
delay, denoted as tmin, to a maximum delay, denoted as tmax.
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Table 3.10 – Case study characteristics.

Case study description
Case Study Western Europe Transport Network
Number of airports 496
Number of train stations 72
Number of flights 10407 (593 from CDG)
Number of trains 646 (66 to CDG station)
Airports with limited capacity 18 largest airports in France, Germany, and

Spain
Airport with connecting passengers CDG, FRA, MAD
Train stations with limited capacity 3 stations, each associated with a hub
Train schedule data source GTFS data
Flight schedule data source OAG
Minimum aircraft turnaround time
(TAT)

45 min

Disruption scenario characteristics
Date 4 December 2019
Considered events French railway company on strike
Disruption duration From 00 :00 to 23 :59
Train delay percentage 30% of trains are late at CDG
Train delay duration (min) X ∼ U(30, 90), (i.e., tmin = 30 min and

tmax = 90 min)
Train cancellation Not considered
Flight/Train travel time Constant
Priority flights 25% of flights need to comply with their

ATFM slots at main airport hubs
ATFM delays Not considered
Maximum priority-flight delay (∆ATFM) 10 min
Maximum flight delay (∆) 30 min

ATFM delays are not considered here. Therefore, delayed flights are only those impacted
by the rescheduling methodology that we introduced in this chapter. The maximum delay
assignable to a flight, ∆, is set to 30 minutes, and we assume that 25% of flights at each
main hub airport were subject to ATFM slot adherence. This percentage is arbitrarily fixed
and can be tuned by a final user, depending on the specific airport characteristics. The
maximum assignable delay for flights subject to ATFM slot adherence, ∆ATFM, is set to
10 minutes.

Additionally, we allow train tactical rescheduling to ensure compliance with the maxi-
mum train station capacity, which may have been compromised due to the initial train
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Table 3.11 – Number of connecting passengers per airport. A distinction is made between
train-air connections and air-air connections.

Connection type CDG FRA MAD
Air-Air 30,638 41,599 22,277

Train-Air 18,022 12,101 8,168

delays and disruptions caused by the strike. Lastly, we assume that all information regar-
ding train delays and connecting passengers is fully known before running our rescheduling
method. Therefore, we employ a one-iteration process to reschedule all legs operated from
the morning until the end of the day. Table 3.10 summarises the characteristics of the case
study considered.

The number of connecting passengers is simulated after following the methodology
developed in Section 2.2 of Chapter 2, and the values are presented in Table 3.11.

Similarly to the rebooking procedure introduced by Ball et al. (2010), we propose the
following passenger reallocation procedure. Recall that our mathematical model assumes
that passengers will be accommodated on the next flight to the same destination if they miss
their scheduled flights, although each aircraft has a finite capacity, defined by the number
of seats it can offer. To overcome this limitation, we present a post-processing method that
effectively reallocates stranded passengers to other flights, taking into account aircraft
capacity. Since we do not know the actual number of seats available, we simply assume
an 80% load factor for each aircraft. For example, if the historical data recorder that a
flight carried 50 passengers, we assume that it had 50× 100

80 − 50 ≈ 12 available seats. We
extend this reallocation approach also to direct trains as an alternative re-accomodation
option for passengers, again assuming an 80% load factor for each train, as no information
is available.

The reallocation process follows a systematic sequence. We consider the chronological
list of passengers who have missed their flights and a corresponding set of feasible direct
alternatives for each individual. These alternatives are ranked according to the delay they
cause at the passenger final destination. For each passenger, we offer the best available
re-routing option (in terms of delay). In the case where a passenger’s best alternative
flight/train is full, we select its second best option, and so on. When no re-accommodation
option is available, the passenger is stranded, and he is subject to the (arbitrary) 24-hour
delay. Note that this post-processing reallocation procedure is operated after the resche-
duling (optimisation methodology), i.e., assigned flight and train delays are considered in
the re-allocation procedure.
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3.2.3.2 Numerical results

Again, computations are performed using an AMD Ryzen 5 4500U CPU and 16 GB
RAM laptop. The resolution of the optimisation problem formulation is made with the MIP
solver Gurobi, version 9.1.2 (Gurobi Optimization, LLC, 2023). The computation time is
23 seconds.

Figure 3.19 – Distribution of passenger transfer buffer times before and after reschedu-
ling. Buffer times are calculated by subtracting the minimum connecting time from the
actual passenger transfer time. A negative buffer time indicates that passengers do not
have enough time to transfer, caused by a delay on their first leg. This graph only shows
passengers who could recover their initial flights thanks to the rescheduling (i.e., missing
their flights by 30 minutes or less before rescheduling).

We call transfer buffer time the difference between the actual passenger transfer time
and the minimum required connection time. Figure 3.19 displays the distribution of buffer
time for passengers transferring from a train to a flight at CDG airport. Only buffer times
of passengers who would have missed their flight based on the original schedule but can still
make it on time if the flight is delayed, are displayed. Passengers who arrive before the initial
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departure time or who arrive more than 30 minutes after the initial departure time are not
presented in the figure. The figure shows a significant increase in passenger connections
with a 0-minute buffer time after rescheduling. A 0-minute buffer time corresponds to a
transfer time equal to the minimum connection time required for passengers to catch their
flight. Consequently, the delay management strategy allows 484 of the 1,221 passengers
who initially missed their flights to arrive on time for boarding. The rescheduling does not
induce buffer time strictly larger than 0 minutes for these passengers as this would delay
the on-time passengers and, therefore, increase the total passenger delay.

Figure 3.20 – Total passenger delays before and after rescheduling, stacked by passenger
types (on-time passengers, reallocated passengers and stranded passengers).

Figure 3.20 depicts the total delay experienced by passengers before and after opti-
misation. The main difference between the initial and the optimised schedule lies in the
number of stranded passengers. Indeed, 614 passengers have no reallocation option before
optimisation and would have to wait until the next day to reach their final destination.
After optimisation, the number of stranded passengers is reduced by 71%, and the total
passenger delay by 55%. Indeed, the algorithm prioritises these passengers if the flight can
wait since the cost of a missed connection is high. However, the maximum flight delay au-
thorised to wait for passengers is 30 minutes (or 10 minutes for priority flights that need to
respect their departure slots). Hence, some passengers might not have their connections if
the required time to make the connection is above that limit. Therefore, several passengers
remain stranded even after the rescheduling. Finally, the total delay experienced by direct
passengers departing from CDG is 12,810 minutes, resulting in an average passenger delay
of 0.3 minutes. As a result, the rescheduling has a marginal impact on passengers whose
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train or flight arrived on time.

Figure 3.21 – Distribution of total vehicle delays, after optimisation, per hour. Flight
and train delays are displayed in blue and orange, respectively. The hatched bars represent
propagated delays.

Regarding operator delays, Figure 3.21 displays the total vehicle (train or aircraft)
delay per hour. Orange plain bars represent the total train delay, including the delay due
to the strike and the one assigned during rescheduling due to train station constraints. One
observes that most of the delayed trains are in the morning. The hatched bars correspond
to flights not departing from CDG and trains not arriving at CDG, i.e., the reactionary
delay on the network. Reactionary delays may occur for several reasons. A tight initial
turnaround time cannot absorb the delay of an arriving flight. Limited airport and train
station capacities can also lead to rescheduling other flights and trains to avoid congestion.
Finally, delayed flights or trains with connecting passengers can also create reactionary
delays at their arrival station to maintain passenger connections. After rescheduling, seven
trains are delayed, including four at stations other than CDG. 35 flights are also delayed,
among which eight are not from CDG. Significant flight delays are observed during the
morning rush hour (9am and 10am) and the evening (7pm and 8pm). The morning hours
see a surge in missed passenger connections due to significant train delays in the previous
hour. The second peak of flight delays is either due to reactionary delays from previous
flights (displayed by hatch bars) or fewer flight reallocation options. Indeed, passengers
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who miss their connections at the end of the day are more likely to be stranded without
reallocation options until the next day. As the cost of these missed connections is high, the
rescheduling algorithm delays these flights in priority so as to wait for passengers.

On average, due to the rescheduling, all flights across Europe experience a delay of
2.4 seconds, while the departing flights at CDG experience a delay of 50 seconds. The
proposed rescheduling plan delays 5% of the departing flights at Paris-CDG airport by 13
minutes on average. To put this into perspective, Table 3.12 shows the characteristics of
the actual delays experienced by flights during the historical operating day in question. As

Table 3.12 – Actual flight delay on December 4th 2019 (in minutes) (source : Eurocontrol).

CDG ALL
Average actual flight delay 11.0 6.1

Maximum actual flight delay 120 140

per the table, departing flights at CDG were operated with an average delay of 11 minutes.
Therefore, our proposed rescheduling approach seems reasonable when compared to the
actual delays the airport must face with during a typical operating day.

Figure 3.22 – Visualisation of post-rescheduling flight delays. The linewidth and the
colour-coding system indicate the delay magnitude and the departure time of the day,
respectively. Dotted-line arcs correspond to flights departing from CDG airport, plain-line
arvs to other flights.

Figure 3.22 shows a map of delayed flights and the magnitude of these delays. The colour
and the width of the arcs correspond to the departure time and the delay assigned to the
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flight, respectively. More specifically, a darker colour indicates that the flight’s departure
time is later in the day, and the wider the arc is, the greater the delay is. Note that long-haul
flights are generally assigned the highest delays. The colour of the arcs representing these
flights also indicates that they are scheduled in the morning. In fact, these long-haul flights
tend to be planned at a daily frequency contrary to short-haul flights. As a consequence, the
re-routing time for passengers who miss their connections is 24 hours. On the other hand,
delays on short-haul flights are generally assigned in the evening, when passengers have
no more opportunities for re-routing. One also observes that a few flights are delayed due
to network propagation. These delays occur because the turnaround time initially planned
by the airlines between a delayed flight at CDG and the following flight is small. Remark
that the rescheduling delays one evening flight departing from the US, by 30 minutes due
to the minimum turnaround time constraint and to the assumption of constant in-vehicle
time : we assume that airlines do not speed up the flight to recover from delays. However,
in practice, the operator would then rather have speeded up the previous flight operated
by the aircraft to recover from its departing delay, reducing thereby the impact of the
proposed delay management strategy. Taking into account the possibility of such actions is
especially relevant for long-distance flights, and could be included in future work. Finally,
as mentioned above, exogenous ATFM delays were not considered in this study. However,
the proposed rescheduling strategy could deal with these delays by rescheduling flights to
wait for connecting passengers while limiting station congestion. Taking these exogenous
delays into account will have an impact on the rescheduling solution, as ATFM delays of
departing flights reduce the number of passengers missing their rail/air connections.

3.2.4 Conclusion on the tactical timetable synchronisation problem conclu-
sion

Europe’s investment in different multimodal research projects underlines the need for
collaboration between air and ground transport stakeholders, to provide passengers with
reliable journeys. Such air-rail integration would not only improve passenger experience but
also allow airlines and airports to have accurate information about passenger connections.
This could create a win-win situation for all stakeholders, by boosting passenger demand
while limiting extra expenses for the service providers. In this context, we presented a
delay management strategy tailored to a large integrated air-rail network. We simulated
a disruption occurring on the French railway network that led to passengers missing their
connections at CDG airport. The experimental results highlight the effectiveness of our
mitigation strategy, demonstrating its ability to reduce passenger delays by 55%, while only
delaying 5% of departure flights at CDG airport. By considering the entire network, our
delay management strategy creates new flight and train schedules that satisfy operational
constraints such as station capacities and minimum aircraft turnaround times at other
airports throughout the day. This rescheduling methodology limits the delays spread by
identifying which flights are likely to propagate delays.
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The research conducted in this section contributes to enhancing the experience of pas-
senger travelling across a multimodal long-distance network. Further research on the ope-
rator rescheduling cost and passenger preferences should be conducted to implement the
proposed delay management strategy. This extension would ultimately lead to better ac-
ceptance among transportation stakeholders, and an improved passenger travel experience.
Analysing a potential airside disruption would provide valuable insights into how the com-
puted rescheduling differs. Another interesting extension would be to consider dynamic
cost indexing, as proposed by Delgado et al. (2016), which relaxes the constant travel-time
assumption and allows aircraft and trains to speed up to recover from delays. Finally,
the rescheduling process should consider ATFM constraints such as en-route capacity and
delays assigned by air traffic controllers to smooth the aircraft flow.
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3.3 Conclusion

As previously demonstrated in Chapter 1, transportation stakeholders are reluctant to
change their operations, especially to synchronise with other transportation modes. The
objective of this chapter was therefore to propose to transportation service providers, syn-
chronisation tools that consider individual operational constraints, and do not significantly
impact their operations. Two new optimisation models are proposed to facilitate passenger
connections between air and rail. The first method, which relies on a connectivity metric,
proposes to alter slightly train and flight schedules, in order to create suitable connections
between modes for passengers, at a strategic level. The second method aims at mitigating
the impact of a disruption on passengers making intermodal connections. The synchronisa-
tion tool proposes to assign tactical delay to trains and flights, so as to wait for passengers
impacted by a disruption on their first leg. Both tools have been tested at the level of
the Western Europe transport network on realistic instances handling more than 10,000
flights and 400 trains per day, leading to consider more than 100,000 passenger connec-
tions. Computational results highlight the potential benefit for passengers, at a limited
cost for transportation service providers. Additional features could be included in these
two optimisation models and tools. For instance, the daily leg frequency and the time at
which passenger connections occur should be included in the strategic synchronisation tool.
Indeed, one can assume that it is more important to synchronise connections when passen-
gers have only one choice (no alternative) within the day. Similarly, evening connections
should be prioritised as they could lead to missed connections and stranded passengers in
case of delays on the first leg. Regarding the tactical synchronisation, ATFM delays should
also be included.

These models offer flexibility, enabling individual operators to utilise it independently,
possibly taking the other mode into account as a constraint. Alternatively, it can be em-
ployed by an external coordinator who centralises data from both operators, suggesting
new schedules, as demonstrated in scenarios S1, S2, or S3 for the strategic synchronisation
tool. Benefits for passengers can already be demonstrated if only one mode of transport
adapts its timetable to the other. Such mechanisms pave the way toward full collabora-
tion between stakeholders as they could already improve the passenger experience, at the
expense of a small commitment from transportation service providers. This concept aligns
with the newly initiated SESAR project SIGN-AIR (SESAR Joint Undertaking, 2023b).
The primary objective of this research initiative is to introduce a coordination platform
connecting multiple transportation providers. Each provider decides what data it wishes
to share and what contract to be established with other transport providers.
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Chapitre 4

Redesigning an air-rail timetable
depending on a dynamic demand

In the previous chapter, we propose to improve air-rail passenger transfers by consi-
dering marginal adjustments to existing timetables. This chapter goes toward a stronger
collaboration, and addresses simultaneously the classical frequency planning problems of
both airlines and railway operators. Both the flight and rail frequencies are computed. In
addition, we do not assume a hub-and-spoke network topology and we allow direct services
when relevant. Passengers’ preferences are extracted from the analysis of mobile phone
data, and the environmental cost of the transportation network is also taken into account
in the objective function. In the following, we will refer to this problem as the Air-Rail
Service Network Design (ARSND) problem. The work presented in this chapter results
from a two-month internship at NOMMON, a Spanish company specialised in Big-Data
applied to mobility.

4.1 Graph model

The transportation network is represented by an oriented graph, G = (V, A), where the
vertex set V is the set of nodes, and the arc set A is the set of connections between nodes.
The set V is further partitioned into the set of airports, V air, the set of train stations, V rail,
and the set of city centres, V city. Similarly, the set A is partitioned into five subsets : Aair

represents flight routes between airports, Arail corresponds to rail tracks, Atransfer models
transfers between stations, and Aaccess and Aegress, arcs modelling passenger transfers from
city centre nodes to transportation stations and passenger transfers from transportation
stations to city centre nodes, respectively. In addition, each airport node is duplicated into
one arrival node and one departure node, so as to model transfers between two consecutive
flights at a same airport. Similarly, a subset of train station nodes (those corresponding to
the biggest cities) are also duplicated into one arrival node and one departure node, so as
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to model transfers between two consecutive trains at a same train station. An illustration
of the considered network is presented in Figure 4.1.

City centre
Airport
Train station
Departure station
Arrival station

Flight route
Rail track
Transfer
Transportation network access
Transportation network egress

Figure 4.1 – Illustration of air-rail multimodal network : a 4-city example.

For each arc a ∈ A, several costs are defined : the travel time, the price, and the CO2
emission. They are detailed in the next three subsections.

4.1.1 Travel time cost

For flight-route and rail-track arcs, the travel time is estimated as the average travel
time by flight and train initially scheduled by the transportation suppliers. Regarding
transfer arcs, an average transfer time, noted ttransfer, is considered. If passengers must
shift between two stations, the travel time between the two stations is taken into account
in the average transfer time. This travel time is computed by dividing the distance between
the two stations by an average speed of 90km/h. If the stations are located at the same
place (e.g., if the train station is located at the airport), then this transfer time is zero. The
travel time from/to the city centre to/from the station is similarly computed for access arcs
and egress arcs. Finally, in order to account for the total door-to-door journey duration,
station processing times are taken into account within the total travel time. It has been
found that airport processing time and passengers conservative behaviour may significantly
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increase the door-to-door journey (Innaxis, 2023). We therefore add an average outbound
processing time (tdep), to the access arc travel time, and an average inbound processing
time (tarr) to the egress arc travel time.

4.1.2 CO2 cost

The CO2 cost of travelling by air or by rail is different. Regarding flights, fuel consump-
tion directly depends on the aircraft type, weather conditions, airline strategies, payload
(weight of passengers and cargo carried), etc. It is therefore difficult to obtain an accurate
measure of the CO2 emission at such an early stage of the frequency planning process. To
overcome this issue, we proceed with the following simplifying assumptions :

— We consider only one possible aircraft type, which can cover all routes in the domestic
market.

— We assume that a scheduled flight has all available seats filled or the remaining
available payload, else, is filled with freight. Aircraft indeed generally take off at a
weight close to its maximal authorised weight according to Sun et al. (2018). Thus,
we consider an average value of 80% of the maximum take-off weight for each flight.

— According to the aircraft characteristics such as the payload over range mapping, the
fuel consumption per kilometre can be estimated as follows : the total amount of fuel
(in kg) for a scheduled flight is the product of the consumption per kilometre and
the total distance flown.

— Finally, the CO2 emission equivalent is obtained using the International Air Trans-
port Association (IATA) conversion table (International Air Transport Association,
2022).

The CO2 emission of trains per kilometre is provided by the Office of Rail and Road
(Office of Rail and Road, 2022). Therefore, the CO2 emission of a scheduled train is es-
timated as the product of the emission per kilometre and the distance travelled by train.
For transfers (access and egress arcs), the CO2 emission is assumed to be null.

4.1.3 Price

The monetary cost of travelling by air or by rail for passengers is estimated as the
product of the unit cost of a kilometre and the total distance travelled. Values of unit cost
per kilometre for flights and trains are obtained from Livingston et al. (2022) and Tauler
and Martin (2021), respectively.

4.2 Passenger demand model

The passenger demand corresponds to the number of passengers who want to travel
between each Origin-Destination (OD) pair. The OD demand is represented by a set of
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commodities represented by an index set C. A commodity c ∈ C is a tuple (Oc, Dc, dc),
where Oc is the origin node, Dc is the destination node and dc is the number of passengers
for the OD pair (Oc, Dc). For each OD pair, passengers may use several paths to travel.
For instance, if two cities are connected by rail and have airports, passengers may use a
direct flight or a direct train. For each commodity c ∈ C, let Pc denote the set of paths that
connect Oc to Dc. A path p is a sequence of arcs in the transportation graph. Passengers
may have various travel preference criteria : the business travellers are likely to be more
concerned about the travel duration than leisure travellers are (Pels et al., 2003). Similarly,
passengers more concerned about the CO2 emissions prefer to travel by train. We therefore
define a set of cost : I = {Travel time, Price, CO2}. The set of passengers involved in each
commodity c ∈ C has additional attributes, αc,i, representing the sensitivity of that group
of passengers to the criteria i, i ∈ I. Thus, for each commodity c ∈ C and for each path
p ∈ Pc, we define τcp the cost of path p for commodity c as the weighted sum of three
costs :

τcp =
∑
i∈I

αciτpi, (4.1)

where τpi corresponds to the cost i of path p (e.g., travel time, price and CO2 emission of
p). The cost of a path p ∈ P is computed as follows :

τpi =
∑
a∈p

cai, (4.2)

where cai is the cost i of arc a ∈ A, as described above (thus, each arc has three cost).

4.3 Mathematical formulation

The objective of this problem is to determine the daily flight and train frequencies in
a domestic market that minimise the passengers’ generalised cost and CO2 emission. This
section presents the given input data, the decision variables, the objective function, and
the constraints. The resolution approach is detailed in the last subsection.

4.3.1 Input data

Recall that, for each commodity c ∈ C, the demand dc is known, and Pc is the set of
paths to reach Dc from Oc. For each path p ∈ Pc, the generalised cost of travelling by p is
given by τcp, and Pc,a denotes the set of paths using arc a, a ∈ A. A train line is a sequence
of stations served by a same train. Let L be an index set representing the set of all train
lines. We assume that a train should provide service to the entire line. We further define
for each arc a ∈ A, the set of train lines using a, noted La, (with La ∈ L). For the sake
of simplicity, this preliminary study assumes that the air and rail fleets are composed of
exactly one aircraft type and one train type. For any arc a ∈ Aair ∪ Arail, the capacity of
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a vehicle (aircraft of train) is known and denoted by κa and the cost cai is given for each
criterion i ∈ I.

In order to take into account operational constraints, air and rail frequencies are limited.
For instance, headway separation between two consecutive trains and the number of tracks
limit the number of rail trips that can be scheduled on each track. Similarly, for flights,
minimum separation constraints or airport and sector maximum capacities limit the number
of flights that can be scheduled each day. As the frequency planning is done several months
before operations, we do not model this level of detail in our constraints. However, we
limit the flight frequency on each route in order to ensure that a feasible solution can be
built. In the following, fair and f rail denote the maximum flight and train frequencies, per
flight route and rail track, to take into account capacity constraints. In addition, F and R
denote the maximum number of flights and trains that can be scheduled for the whole day,
respectively.

4.3.2 Decision variables

For each commodity c ∈ C, for each path p ∈ Pc, we define a continuous decision
variable xcp that corresponds to the share of passengers of commodity c assigned to path p.
We then define for each arc a ∈ A, an auxiliary continuous decision variables va, giving the
number of passengers assigned to travel through arc a. We also define an integer decision
variable, ya, that counts the number of services (flight or train frequency) to schedule on
arc a ∈ A. Finally, for each train line l ∈ L, we define an integer decision variable fl that
assigns the frequency on l.

4.3.3 Objective function and constraints

The aim is to route passengers on the network according to their preferences (repre-
sented by costs) while minimising the CO2 emissions of the transportation network. The
problem is formulated as a bi-criterion optimisation problem where the criteria to be mi-
nimised are the total passenger generalised cost :

F1(x, v, y, f) =
∑
c∈C

dc

∑
p∈Pc

xcpτcp, (4.3)

and the global CO2 emission :

F2(x, v, y, f) =
∑
a∈A

yaca,CO2 . (4.4)

We propose the following Mixed-Integer Linear Programming (MILP) formulation :

min
x,v,y,f

(F1, F2) (4.5)

109



CHAPITRE 4. REDESIGNING AN AIR-RAIL TIMETABLE DEPENDING ON A
DYNAMIC DEMAND

subject to : ∑
p∈Pc

xcp = 1 c ∈ C, (4.5a)

∑
c∈C

∑
p∈Pc,a

xcpdc = va a ∈ A, (4.5b)

va ≤ κaya a ∈ A, (4.5c)∑
a∈Aair

ya ≤ F, (4.5d)

∑
l∈L

fl ≤ R, (4.5e)

ya =
∑
l∈La

fl a ∈ Arail, (4.5f)

0 ≤ xcp ≤ 1 c ∈ C, p ∈ Pc, (4.5g)

ya ∈
{

0, 1, . . . , fair
}

a ∈ Aair, (4.5h)

ya ∈
{

0, 1, . . . , f rail
}

a ∈ Arail, (4.5i)

fl ∈
{

1, . . . , f rail
}

l ∈ L. (4.5j)

Constraints (4.5a) implement the definition of share of passengers and ensure that all
passengers are routed in the network. Constraints (4.5b) link the share of passengers routed
on each path with the total number of passenger travelling through arc a. Constraints (4.5c)
implement the capacity bound on each arc. Constraints (4.5d) and (4.5e) ensure that the
total number of flights scheduled and the total number of trains scheduled do not exceed the
maximal total flight frequency and maximal total train frequency, respectively. Constraint
(4.5f) ensure that a train is scheduled for an entire line. Finally, constraints (4.5g)-(4.5j)
specify the definition domain of the decision variables.

4.3.4 Resolution approach

To obtain a realistic solution and reduce the computation time, we propose the follo-
wing pre-processing. For each commodity c, there are generally several possible paths to
travel from Oc to Dc. However, one can assume that passengers prefer to travel through
shortest paths, according to the passenger generalised cost defined above. Therefore, for
each commodity c ∈ C, a subset of k shortest paths from Oc to Dc is computed, where
the shortest path is defined in terms of lowest generalised cost (equation 4.2). This com-
putation is made using Yen algorithm (Yen, 1971), and the number k, of shortest paths
computed is set by the user.

The bi-criterion optimisation problem introduced in Subsection 4.3.3 is addressed via
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a weighted sum of the two criteria and reads as follows :

min
x,v,y,f

λF1 + (1− λ)F2 (4.6)

where λ is a user-defined parameter. The resolution of the optimisation problem is made
using the MILP solver Gurobi (Gurobi Optimization, LLC, 2023), version 9.1.2. The global
resolution framework is presented in Figure 4.2. Note that if λ parameter is set to 1, the

Transportation
graph G

Set of com-
modities C

k-shortest
paths Pc

Passenger
routing
problem

resolution

Flight and
train fre-

quencies (ya)

Figure 4.2 – Resolution framework of the ARSND problem.

CO2 global criterion is not considered in the objective function. In this case, there may
be multiple solutions minimising the total passenger cost, some of which are undesirable.
The solver may plan more trains than necessary to accommodate all passengers since the
CO2 cost of these additional trains is not counted. To palliate this problem, we propose
the following simple post-processing : launch the solver to minimise the total frequency,
constraining the value of F1 to be as good as previously found.

4.4 Spanish transportation network case study

The methodology is tested on the case study of the Spanish long-distance transportation
network. Data and hypotheses are detailed, followed by a description and an analysis of
the results obtained.

4.4.1 Spanish transportation network

Train and flight schedule data is collected for January 20, 2023 from the website of
RENFE (RENFE, 2023a), the most important rail operator in Spain, and from OAG (OAG,
2023), respectively. Processing flight data reveals that the most used aircraft type for that
day is a Boeing 737-800, which is used for 31% of the flights. The aircraft characteristics
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(Boeing, 2023) of the B737-800 are therefore used to model CO2 emission. Regarding rail
CO2 emission, rail services are operated by electric trains in Spain (RENFE, 2023b). The
value of 358g CO2/km for an electric train, computed by the Office of Rail and Road
(Office of Rail and Road, 2022), is used for the study. For that day, 1,033 flights and
1,584 long-distance train trips were scheduled in Spain. These values are used for the daily
maximum number, F , of flights, and the daily maximum number, R, of train trips, that
can be scheduled. The train capacity on each arc a ∈ Arail is set to κa = 500 passengers,
and the average flight capacity on each flight route a ∈ Aair to κa = 189 passengers, as this
is the value found from OAG for the Boeing 737-800 on that day. A load factor of 100% is
assumed on each mode.

For simplicity, this study restricts the node set to 48 cities of Spain, that include the
largest ones and at least one city per island. These cities are represented on Figure 4.3.
The values of the parameters set for the study are defined according to the initial schedules
and are presented in Table 4.1.

Table 4.1 – Parameters of the case study : average transfer and processing times at
stations (minutes), maximum frequencies, and the number of shortest paths k computed.
A distinction is made between the air transportation network : airports and flight routes
(top line), and the rail transportation network : train stations and rail tracks (bottom line).

tdep tarr ttransfer Maximum
route

frequency

Maximum
total

frequency

k

Air network 90 20 60 25 1033 20Rail network 10 0 15 50 1584

4.4.2 Travel demand from mobile phone data

Passenger demand flows are measured by analysing anonymised Mobile Network Data
(MND) collected by one of the main Mobile Network Operators (MNOs) in Spain. The
MND consists of all the interactions between mobile devices and the antennas of the MNOs.
The data is analysed using a processing pipeline for reconstructing door-to-door passenger
journeys as in Burrieza-Galán et al. (2022). This method analyses the sequences of mobile
phone records generated by anonymous mobile device users over a large period of time
(several weeks) to infer their home location. It focuses on the activities and trips that
can be detected from the daily sequences of records, in order to determine users’ mobility
patterns during a defined study period. The resulting activity-trip diaries are expanded to
the total population based on home location, by comparing the available sample of residents
in each census unit with the population figures. These diaries are aggregated in space and
time to produce daily or hourly trip counts between the defined zones. For this study, data
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from January 26, 2022 are collected. Schedules of January 2022 were not available, but it
is reasonable to assume that schedules of January 2023 are sensibly the same as those of
January 2022, due to the seasonality of schedules. The pipeline is configured to retrieve
OD matrices at the district level between the 48 cities selected, covering only trips longer
than 50 km, given the focus of this study on long-distance travel. The OD matrices include
a segmentation by transport modes (road, rail, air, and rail-air multimodal trips), derived
from map-matching techniques that compare the sequence of mobile phone records with
the supply of each mode (e.g., network, schedules, etc.). The OD matrices also include
segmentation by travel time, using 1-hour windows. Figure 4.3 displays the travel demand
between the 48 cities. In total, more than 97,000 people travel on that day, with a majority

Figure 4.3 – OD matrix demand and the 48 cities considered. Bolder arcs correspond to
higher number of passengers.

of trips between Madrid and Barcelona. Less than 1% of trips combines air and rail modes,
and most of air-rail transfers take place in Madrid, as presented in Table 4.2. In order
to consider these transfers, associated train stations are duplicated in the transportation
network graph model. This demand serves as an input for the optimisation problem.
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Table 4.2 – Multimodal passengers volume per city.

City Number of transferring passengers

Madrid 453
Barcelona 92

Santiago de Compostela 56
Sevilla 45
Málaga 23
Bilbao 12

Zaragoza 6
Murcia 5

Valencia 4
Alicante 4

4.4.3 Optimisation results

Computations are performed on a laptop equipped with an AMD Ryzen 5 4500U CPU
and 16 GB RAM. In a first step, only travel time is considered in the passengers’ generalised
cost function (I = {Travel time}). The time limit is set to two hours, and the gap limit
is set to 0.5%. Computation information for several values of λ are summarised in Table
4.3. As the value of parameter λ increases (i.e. the weight of the travel time increases),

Table 4.3 – CPU times and optimality gaps according to the weighting parameter (λ = 0
corresponds to CO2 emissions criterion, no consideration of the passenger cost criterion).

λ Time (s) MIP gap(%)

0 7200.0 1.03
0.1 7200.0 0.95
0.2 7200.0 0.77
0.3 7200.0 0.68
0.4 7200.0 0.53
0.5 7200.0 0.59
0.6 5923.8 0.50
0.7 585.7 0.49
0.8 94.8 0.34
0.9 10.8 0.33
1.0 0.4 0.00

the computation time decreases. Indeed, a further analysis reveals that the solver assigns
each commodity to its shortest path. This solution is feasible since the capacity of the
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transportation network is higher than required, showing thereby that the demand might
have been underestimated. Conversely, as the value of parameter λ decreases, the solver
tends to reach the computation time limit. Indeed, the shortest path generally uses a flight
as the main transportation mode. Therefore, the solver searches among all feasible paths
of each commodity to obtain the solution with the lowest CO2 emission, increasing thereby
the computation time.

4.4.4 Pool of solutions

Figure 4.4 displays the values of passenger and CO2 emission criteria as a function
of the weighting parameter λ (as the value of parameter λ decreases, the weight of the
environmental cost in the objective function increases (Equation 4.6)). The sensitivity
analysis shows that slightly considering the environmental cost (λ = 0.9) has a limited
impact on passengers travel time for a significant saving of CO2 emission. According to
the model, for an increase in total passenger door-to-door travel time of around 200 hours,
more than 500 tonnes of CO2 can be saved. This is equivalent to an increase of 20 minutes

Figure 4.4 – Objective function criteria as a function of λ parameter.

per passenger of the average door-to-door travel time (215 minutes on average with λ = 1,
for 235 minutes on average for λ = 0.9). Note that, road paths are not considered here. In
practice, the door-to-door travel time by road could be lower and passengers may choose
to travel by road when possible. The total travel time criterion would then be reduced,
but remark that the CO2 cost for travelling by road (which is not taken into consideration
here) is not equal to zero.

In the following computational results, we therefore choose to set the λ parameter to
0.9.
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4.4.5 Passenger trips

In the remaining of the study, results are compared with the initial supply and demand
data. Table 4.4 summarises the number of passengers per mode. In the initial planning, only

Table 4.4 – Passenger volume per travel mode.

Initial schedule Optimised schedule
Air only 46,898 40,059
Rail only 50,148 45,357
Air-Rail 700 12,329

700 passengers use a combination of air and rail to travel. In the optimised planning, this
number raises to more than 12,000 passengers. Consequently, the number of passengers
using only rail on their journey is reduced by 10%. The number of trips using flights
exclusively is reduced by 13%. Rail trips are less impacted by the solution as the CO2
cost for travelling by air is higher than the one by train. Note that some journeys will not
be affected by the synchronisation. In fact, some trips can only be made with one mean
of transportation. This is particularly true for trips to/from islands, which can only be
reached by air (boats are not considered here). Similarly, nearby cities are connected by
train, and scheduling a flight on these routes is not relevant. In total, 57% of the passengers
are not affected by the synchronisation.

Figure 4.5 presents the distribution of the total travel times for both the initial and
the optimised plannings. Note that for the initial schedule, travel times are obtained with
mobile phone data. For January 26, 2022, most of trips above 50 km using public trans-
portation last between four and six hours. This observation still stands with the optimised
air-rail frequency planning. For passengers using only one leg on their journey, the average
door-to-door travel time is 190 minutes, compared with 350 minutes for passengers with
at least two legs. In addition, only 856 passengers have a door-to-door travel time above
eight hours in the optimised schedule compared with 8,500 in the initial one. One there-
fore observes that multimodal solutions result in a significant reduction in CO2 emissions
with minimal impact on passengers’ door-to-door travel times, leading to an increase in
multimodal demand, as shown in Table 4.4.

4.4.6 Integrated transportation network

Figure 4.6 displays the difference between the flight frequency before and after opti-
misation for each OD pair. Note that this schedule depends on the actual demand for
that specific day. The results show a significant reduction in the number of daily flights
between Barcelona (BCN) and Madrid (MAD). Actually, there are 30 fewer flights on this
OD segment (considering both directions) after optimisation. By minimising travel times,
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Figure 4.5 – Passenger volume per travel time window.

all passengers are routed by train, with an average travel time of 170 minutes, compared
with 205 minutes by air, and producing 10 times less CO2. This observed phenomenon is
due to the inclusion of station processing time in the optimisation process. This highlights
that the door-to-door journey time can be significantly different from the in-vehicle journey
time.

One can also observe a large reduction in the number of flights between Spanish islands
airports (LPA, ACE, IBZ, PMI, TNF, FUE). Figure 4.3 reveals that a small number
of passengers travelled between Spanish islands on that day, probably due to the winter
season. In addition, direct flights from mainland to islands are scheduled only from a small
number of cities in the optimised schedule. In particular, Figure 4.7 displays the scheduled
train and flight frequencies before and after optimisation. In the optimised planning, flights
between mainland and the Canary islands are departing from Madrid, and flights to the
Balearic islands are departing from Barcelona. As the CO2 model favours short distance
flights when no train options are available, travelling from Madrid to the Balearic islands
costs less CO2 if passengers use a train from Madrid to Barcelona first, then catch a flight
to Balearic islands. The same phenomenon is observed in the opposite direction for the
Canary islands.

Table 4.5 – Total flight and train frequencies.

Initial schedule Optimised schedule
Flights 1033 498
Trains 1584 619

The total train and flight frequencies for the initial and optimised planning are sum-

117



CHAPITRE 4. REDESIGNING AN AIR-RAIL TIMETABLE DEPENDING ON A
DYNAMIC DEMAND

Figure 4.6 – Reduction in the number of daily flights per OD pair.

marised in Table 4.5. Both the total number of scheduled flights and trains are reduced
in the optimised planning, compared with the initial schedule of January 2023. Regarding
flights, the reduction can be explained by the fact that, as CO2 is taken into account in
the objective function, the algorithm reduces the number of flights whenever possible. The
total train frequency is also reduced compared with the initial schedule. One of the main
reasons is, as only trips among the 48 largest cities are studied, short distance trips are
left out. For instance, in the initial schedule, 57 trains are scheduled between Segovia and
Madrid. However, Segovia is not among the 48 largest cities of Spain ; Thus, passengers
travelling to/from Segovia are therefore accounted in our data as passengers travelling
to/from Madrid area. Therefore, these originally planned trains are no longer included in
the new schedule. By considering the same CO2 model as an estimator for the transpor-
tation network of January 2023, the CO2 cost reduction is evaluated to 1,800 tonnes. As
explained earlier, this value is probably overestimated as the volume of travelling passen-
gers might be higher. However, results from the previous section reveals that CO2 savings
can be made by replacing short-haul flights by trains, with a limited impact on passenger
door-to-door journey duration, as demonstrated on the Madrid-Barcelona segment.

Figure 4.8 displays the volume of trips starting within each region of Spain. One can
observe that multimodality (a transfer between a train and a flight) occurs most of the time
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(a) Flight frequencies - Initial schedule (b) Flight frequencies - Integrated schedule

(c) Train frequencies - Initial schedule (d) Train frequencies - Integrated schedule

Figure 4.7 – Flights (top line) and train (bottom line) frequencies of the initial (left
column) and optimised (right column) plannings.

in Barcelona, while before optimisation the multimodality was mainly represented in the
Madrid area. This figure corroborates the results obtained. Indeed, passengers who want
to travel to the Balearic islands take a flight from Barcelona in the optimised schedule.
However, as no more flights are scheduled between Barcelona and Madrid in the integra-
ted planning, passengers arriving from the Madrid area must first take a train to reach
Barcelona, then connect with a flight.
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Figure 4.8 – Volume of multimodal trips starting within each NUTS-3 (Nomenclature of
Territorial Units for Statistics-Level 3) region after optimisation.

4.5 Conclusion

In this chapter, we introduced a mixed-integer linear formulation of the air-rail inte-
grated frequency planning problem that considers both the passenger perspective and CO2
emissions. The frequency planning model proposed is able to consider a large range of
possible passenger preferences in terms of travel time, price and environmental awareness.
Furthermore, travel time is estimated door-to-door, and not solely from one station to
another, including thereby potential transfers and station processing times. The model is
implemented and tested on the case study of the Spanish transportation network. Insights
on passenger demand are obtained through the analysis of mobile phone data, used as
input data for the optimisation model. Results show that considering CO2 emission while
designing long-distance schedules succeeds in reducing by several tonnes the carbon foot-
print of the transportation system, at the expense of a moderate increase of the average
door-to-door travel time of passengers : only 20 minutes per passenger on average. In par-
ticular, short-distance flights such as Barcelona-Madrid are no longer planned, as there is
a relevant alternative by train. In addition, the number of trips combining air and rail is
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increased.
Numerous future tracks of research are envisaged. First, note that the scope of the

study is limited to Spain due to data availability. If an integrated air-rail network should
be developed at the European scale, large-scale demand data is required. Second, the study
is limited to air and rail modes, but one can easily include other transportation means in
the model, such as road. Then, we propose a simple CO2 emission model as a first estimator
for this preliminary study but it could be improved by including fleet scheduling issues in
the optimisation process. Furthermore, the global warming potential could be an alterna-
tive metric to capture better the environmental effect of transportation, including non-CO2
effects. In addition, this chapter only considers CO2 emissions in short-term planning, but
a full life cycle analysis should be further developed, especially in the case of infrastructure
construction, as the long-term impact of a new line can be environmentally profitable. Fi-
nally, the main future work foreseen is the refinement of the frequency calculation per time
window. While our current analysis focuses on the daily frequency, there is still uncertainty
regarding the synchronisation of air and rail services. Therefore, a future step is to divide
the day into time window intervals and calculate the required air and rail frequencies to sa-
tisfy the demand. In addition, the expected arrival time preferences of passengers can also
be included in the model. The output of such a model will also facilitate the timetabling
process, as an hourly frequency will already be determined.
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Conclusion

Outcomes and discussion

Airport capacity issues, growing environmental awareness, and the COVID-19 outbreak
are leading to a rethink of the air transportation system, and in particular, its relationship
with rail. Collaboration is replacing competition, and incentives to develop coordination
mechanisms have been introduced. The objective of this dissertation was therefore to in-
troduce mathematical models and to develop synchronisation tools between air and rail,
to the benefit of passengers.

First of all, we have highlighted several challenges that operators may face on their way
towards a strong collaboration, especially regarding data availability. Indeed, Chapter 1
showed that the timetable generation process relies on accurate data, both from the supply
and the demand sides. The availability of reliable and accurate data is a basis for the
further development of coordination mechanisms.

Chapter 2 emphasised the difficulty of finding recent and accurate supply data at a li-
mited monetary cost. In addition, in Europe, the multimodal demand between air and rail
remains today largely unknown. To address these issues, we developed several simulation
techniques to simulate realistically missing information such as the ID of vehicles operating
flights and trains, or the multimodal passenger demand. We made publicly available the
data set obtained for the operations research community to contribute on these challen-
ging issues, and to allow transportation planners to test further air-rail synchronisation
mechanisms on realistic instances.

In Chapter 3, we proposed two models for timetable synchronisation, with the constraint
of limited changes to existing train and flight schedules. The first introduced mechanism,
suitable for long-term or medium-term planning, aims at improving the quality of a passen-
ger connection, based on the available connection time. The second proposed mechanism
is a tactical tool : it aims at determining in real time the new departure time of trains
and flights so as to wait for delayed passengers, and to reduce the overall passenger de-
lay. These two mechanisms take into account operational constraints such as : airport and
train station capacities, vehicle turnaround times, or the guarantee of intramodal passen-
ger connections. We tested our methodologies on the Western Europe case study, covering
three countries, more than 10,000 flights and 500 trains, 496 airports and 72 train stations.
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The results showed that large benefit can already be achieved for passengers at limited
costs for transportation service providers.

Finally, in Chapter 4, we went further in air-rail synchronisation by solving the line
planning problem of airline and railway operators in a joint way. We proposed to minimise
a novel metric, the generalised passenger travel cost, which can include a broad spectrum
of passengers’ preferences in terms of door-to-door travel time, monetary cost, number
of transfers, CO2 awareness, etc. In addition, we took into account the total CO2 cost
in the objective function. Results highlighted that considering the passenger door-to-door
travel time, and not only the in-vehicle time, can significantly change the transportation
network. Short-haul flights are replaced by trains, and flights are maintained where no
feasible (overseas) or reasonable (in terms of door-to-door travel time) train service can be
offered to passengers.

Discussion and future work

This dissertation highlighted several challenges that need to be addressed in order to
efficiently synchronise air and rail schedules. First, the need for up-to-date (near real-time)
data on passenger demand is crucial. The COVID-19 crisis shows the change in passenger
travel patterns : the hypothesis stating that the demand steadily increases has been inva-
lidated. An accurate estimate of the demand can allow transportation providers to adapt
their services. Second, as shown in Chapter 2, a standardised repository of transportation
data, from several operators and countries, will greatly facilitate the implementation of
coordination mechanisms. Finally, the size of the optimisation problems to be addressed
requires resolution algorithms able to handle such a large amount of data. The results
of the dissertation highlighted the difficulty of classical techniques to scale up to real-life
instances and the implementation of an adaptive system implies scheduling operations in
a limited amount of time (less than a day).

Beyond this dissertation, there are several avenues for future work.
First, the application of robust optimisation to some of the problems addressed may

be relevant. Indeed, the results obtained in this thesis are intrinsically linked to the input
data. Ben-Tal et al. (2009) insist on how a small change in the data can lead to signifi-
cantly different solutions. A sensitivity analysis should be carried out to analyse its impact
of changes in the data on the solutions found, so as to propose a more robust solution in
the case of anticipated variations of the demand. In addition, our models rely on train and
flight schedules, but observed delays have not been taken into account. For example, Sec-
tion 3.1 of Chapter 3 suggests making small schedule adjustments to improve multimodal
passenger connections at a strategic level. However, including historical delay patterns in
the optimisation process can improve the robustness of the schedule. Therefore, investiga-
ting the benefits of robust optimisation could be relevant to address the Air-Rail Strategic
Timetable Synchronisation (ARSTS) problem. Similarly, including observed Air Traffic
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Flow Management (ATFM) delay in the optimisation problem of Section 3.2 of Chapter 3
will improve the quality of the tool, and enhance its potential for practical implementation
in real-world scenarios.

Second, we focused mainly on the airline and air-passenger perspectives, although we
tried to include rail constraints as much as possible. However, rail-rail connections are
obviously also of primary interest for railway operators. Our models and methods could
therefore be improved by taking also into consideration rail passenger connections at major
train stations. In addition, some operational constraint such as the minimum headway
constraint on tracks could be included in our optimisation models.

Finally, Chapter 4 is based on several simplifying assumptions, such as the average
connection time between trains and flights, constant passenger travel time and processing
time at stations, unique type of aircraft, etc. These assumptions need to be gradually
removed in favour of more realistic estimates. A possible solution to address this issue is to
refine the model per time-window interval, i.e., to calculate the train and flight frequencies
per time window within a day. By reducing the time-window duration, the output of such
a model could then also lead to a final integrated air-rail timetable.
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based on cost optimisation-Dynamic cost indexing and waiting for passengers strategies.
In Sixth SESAR Innovation Days, Delft, Netherlands.

Dennis, N. (1994). Airline hub operations in Europe. Journal of Transport Geography,
2(4) :219–233.

130

https://www.cohor.org/aeroport-paris-charles-de-gaulle-cdg/ 
https://data4pt-project.eu/data-models/


BIBLIOGRAPHIE

Desaulniers, G., Desrosiers, J., Dumas, Y., Solomon, M. M., and Soumis, F. (1997). Daily
aircraft routing and scheduling. Management Science, 43(6) :841–855.

Dollevoet, T., Huisman, D., Kroon, L., Schmidt, M., and Schöbel, A. (2015). Delay mana-
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Appendices

A Advancing transport data standardisation and harmoni-
sation : Challenges and opportunities, report from SIGN-
AIR workshop

SIGN-AIR is a SESAR project that was launched in the beginning of 2023. The topic
of the project is the following one : “The project will develop and pilot a new platform for
the sharing of data in multimodal travel. The platform will provide the means for trans-
port service providers (TSPs) to register, reach data sharing agreements with other TSPs
and manage their contractual relationships. The project will address contract templates to
simplify the legal management, the electronic management and information provision about
each specific contract, routing information for travel companions (TCs) with enriched in-
formation about the specific contracts for their customers. The ultimate aim is to facilitate
single ticketing through a comprehensive understanding of the contracts and the data ma-
naged, among others.” On November 27th, 2023, the consortium of the SIGN-AIR project
organised a workshop, with the objectives of collecting feedback from experts on transpor-
tation data, in particular, on the standardisation and harmonisation of TSPs data. This
section therefore summarises the information that was shared during this workshop. As an
introduction, it has been noticed that data sharing is of major importance for air trans-
portation. Operating a safe flight rely on the exchange of massive data between aircraft,
airport, air traffic control systems, etc. The Airport Collaborative Decision Making (CDM)
effort demonstrates the potential of data sharing to improve the operation by accelerating
processes. The CDM concept relies on information exchange between air transportation
stakeholders (airport, airlines, air traffic controllers), to improve the efficiency of airport
operations, such as more accurate prediction of aircraft turnaround times and aircraft de-
parture time. It is now implemented in 32 airports in Europe including the largest ones
such as Amsterdam-Schiphol, Paris-CDG, and Frankfurt. In 2014, Laplace et al. (2014)
proposed to extend the concept of CDM by including a passenger perspective and ground
transportation modes in the decision process.

In that context, a review of transportation data was conducted during the workshop.
According to the Directive 2010/40 of the European Commission on Intelligent Transpor-
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tation System, data standards must be defined to ensure interoperability. To achieve that,
the European Commission developed several data standard that can be used by public
transport operators, in order to share their data. The main standards are described in Fi-
gure 9. Transmodel provides accurate definitions of public transportation elements (what

Figure 9 – European data standards.

is a stop point, a vehicle journey, a route, etc.) to help public transportation providers to
harmonise their data and facilitate further data exchanges. From these definitions, several
data exchange standards were developed such as NeTex, for schedule data, SIRI, for real-
time data, and OpRa, for operational reports. A detailed explanation of each format can
be found on the Data4PT project website (Data4PT, 2023). In addition, to the data stan-
dard, the directive 2010/40 stipulates that each member state of the European Union must
establish a National Access Point (NAP) allowing to organise and access transportation
data. The list of NAPs can be found in European Commission (2023a).

Despite these initiatives and regulation from the European Commission, TSPs do not
share their data easily. Several possible reasons for that were highlighted in the discussion :

— The cost of standardisation : data management has a cost, big data infrastructure
must be deployed such as work force to process, and be responsible of the data.

— Heavy standardisation procedure : if the company has the infrastructure and the
resources to manage data, it might use data under its own specification and format.
It therefore requires to change the way it used to work for years, and some companies
may not be ready for this change.

— Cost to share the data without any expected benefit. TSP may not seen a personal
interest in gathering data, and are scared about missing a market opportunity.

For these reasons, there is still a gap in finding usable data. While regulations exist, their
implementation remains challenging. For instance, the NAP in France for air transportation
only provides data of the national airline AirFrance and TUI Fly Belgium, despite many
other companies operating in France.
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Above data standardisation, the next stage of the discussion was to analyse challenges
and opportunities in data sharing. Indeed, assuming that data is harmonised and easily
accessible, several challenges remain. First validation phases must be conducted to assess
data relevance. If future cooperation should arise, one must ensure that data is not outdated
and valid. Regulation must also be provided to TSPs in case of several data sources, to know
which data should be included in their operations. A participant of the workshop mentioned
the Überlingen crash : two aircraft collapse because they followed different instructions,
one from the air traffic controller and another from the TCAS, to avoid the collision.
This example highlights the need when cooperating to have the same information between
partners. Another challenge that was highlighted is the international coordination. Today,
NAPs are individual to each country, and it remains a laborious work to obtain data at the
European level all at once. Cross-border coordination is also relevant in Europe, country
sizes are small and using a combination of air and rail to travel only makes sense when
travelling across several countries. Finally, the SIGN-AIR platform proposes to establish
smart contract between TSP, such as single ticket for instance. One of the main challenges in
such circumstances, is the clearing. Clearing in finance is defined as the correct and timely
transfer of funds to the seller, and securities to the buyer. In context of multimodality,
financial agreements between partners should be found, either to assure TSP revenue but
also to protect passengers in case of disruptive event.

Finally, opportunities for data sharing and harmonisation were discussed. First, the
potential to detect sticking point, especially in terms of timetable synchronisation. Indeed,
public transport services generally stops during the night, passengers may therefore use
their own car or a taxi to reach or leave the airport in the early morning or in the late
evening. In addition, a platform such as SIGN-AIR could benefit transportation suppliers to
analyse the demand. If multimodal trips are offered to passengers, some legs will become
unprofitable for TSP. Moreover, removing these unused legs could allow TSP to create
additional service and offer them to passenger, with the cost saved by deleting the previous
one.

This workshop highlighted the valuable initiative of the European Commission to de-
velop regulations and standards regarding public transportation data. These standards
should facilitate data sharing and collaboration between transportation stakeholders, re-
sulting in improvement of the passenger door-to-door travel. Unfortunately, the cost of
standardisation and the uncertain benefit for transportation operators are a barrier of
data sharing, especially for the air transportation sector where competition between air-
lines remains strong. Assuming that data was easily accessible, several challenges in terms
of financial agreement and data validation should also be overcome. However, as illustrated
with the CDM concept, data sharing has a large potential in enhancing TSP operations,
and improving the passenger door-to-door experience.
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B Maximum number of movements per airport

In this section, Tables 6 and 7 respectively present the maximum number of flight
departures and flight arrivals, that can scheduled per hour at the 18 airports considered in
the thesis. Table 8 present the total number of movements (either departures or arrivals),
that can be scheduled per hour at the 18 airports considered (represented here with there
ICAO identification code).

Table 6 – Maximum number of departures (flights) that can be scheduled per hour, at
the 18 airports considered.

Hour 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
LFPG 25 25 20 20 20 25 38 66 62 64 67 63 65 70 63 65 63 62 62 62 64 53 41 30
LFMN 12 12 12 12 12 12 12 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 12
LFLL 12 12 12 12 12 12 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 12
LFML 7 7 7 7 7 7 15 15 22 22 22 22 22 22 22 22 22 15 15 15 15 15 15 15
LFPO 0 0 0 0 0 0 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 6
LFBO 12 12 12 12 12 12 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 12
EDDF 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60
EDDM 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58
EDDT 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
EDDL 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36
EDDH 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31
EDDS 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35
LEMD 20 20 20 20 20 29 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 22 20
LEBL 24 24 24 24 24 30 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 22 22
LEMG 24 24 24 24 24 24 24 24 25 25 25 25 25 25 25 25 25 25 25 25 24 24 24 24
LEPA 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34
GCLP 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24
GCTS 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21
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Table 7 – Maximum number of arrivals (flights) that can be scheduled per hour, at the
18 airports considered.

Hour 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
LFPG 30 20 20 20 20 30 41 50 62 62 60 61 54 55 58 56 56 61 60 63 56 53 46 40
LFMN 12 12 12 12 12 12 12 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 12
LFLL 12 12 12 12 12 12 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 12
LFML 5 5 5 5 5 5 9 9 22 22 22 22 22 22 22 22 22 22 18 18 18 18 9 9
LFPO 0 0 0 0 0 0 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 3
LFBO 12 12 12 12 12 12 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 12
EDDF 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60
EDDM 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58
EDDT 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
EDDL 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33
EDDH 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31
EDDS 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35
LEMD 20 20 20 20 20 19 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 28 20
LEBL 24 24 24 24 24 18 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 26 26
LEMG 24 24 24 24 24 24 24 24 25 25 25 25 25 25 25 25 25 25 25 25 24 24 24 24
LEPA 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33
GCLP 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24
GCTS 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21

Table 8 – Maximum number of departures and arrivals (flights) that can be scheduled
per hour, at the 18 airports considered.

Hour 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
LFPG 40 40 32 32 32 40 67 103 109 120 111 112 111 110 105 108 107 107 111 109 108 97 80 62
LFMN 22 22 22 22 22 22 22 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 22
LFLL 24 24 24 24 24 24 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 24
LFML 9 9 9 9 9 9 15 15 44 44 44 44 44 44 44 44 44 44 26 26 26 26 15 15
LFPO 0 0 0 0 0 0 30 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 45 6
LFBO 12 12 12 12 12 12 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 12
EDDF 106 106 106 106 106 106 106 106 106 106 106 106 106 106 106 106 106 106 106 106 106 106 106 106
EDDM 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
EDDT 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78
EDDL 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47
EDDH 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48
EDDS 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48
LEMD 38 38 38 38 38 48 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 38
LEBL 48 48 48 48 48 48 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 48 48
LEMG 37 37 37 37 37 37 37 37 46 46 46 46 46 46 46 46 46 46 46 46 37 37 37 37
LEPA 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66
GCLP 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36
GCTS 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33
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Peer-reviewed conference papers :
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airport. In 2021 IEEE International Conference on Big Data, pages 2925–2935. IEEE

— Buire, C., Delahaye, D., Marzuoli, A., Feron, E., and Mongeau, M. (2022). Air-
rail timetable synchronization for a seamless passenger journey. In Proceedings of
International Workshop on ATM/CNS, pages 79–86, Tokyo, Japan

— Buire, C., Delahaye, D., Mongeau, M., Marzuoli, A., Bueno-Gonzalez, J., Artime,
R., G. Cantú Ros, O., and Burrieza-Galán, J. (2023). Leveraging passengers’ mobile
network data for an integrated air-rail frequency planning in Spain. In 13th SESAR
Innovation Days, Sevilla, Spain

— Scozzaro, G., Buire, C., Delahaye, D., and Marzuoli, A. (2023). Optimizing air-rail
travel connections : A data-driven delay management strategy for seamless passenger
journeys. In 13th SESAR Innovation Days, Sevilla, Spain

Journal paper :
— Buire, C., Marzuoli, A., Delahaye, D., and Mongeau, M. (2024). Air–rail timetable

synchronisation : Improving passenger connections in Europe within and across trans-
portation modes. Journal of Air Transport Management, 115 :102526

Data set :
— Buire, C. (2023). Air-Rail Passenger Demand Instances. https://doi.org/10.

57745/5WB9KG
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D Data sources used

Mode Features Year Airport

CDG FRA MAD

A
ir

Schedule
2019 and 2021

OAG,
Eurocontrol
R&D data

OAG,
Eurocontrol
R&D data

OAG,
Eurocontrol
R&D data

Passenger
volume Eurostat Eurostat Eurostat

R
ai

l Schedule 2019 and 2021
SNCF open
data

Deutsche
Bahn,
Lockheed
(2021)

Renfe

Passenger
volume × × ×

M
ul

ti
m

od
al

Air-air
transfer

share

2019
Maertens
et al. (2020)
(value of 2018)

Fraport 2019
Maertens
et al. (2020)
(value of 2018)

2021
Aéroport de
Paris financial
report

Fraport 2021

Burrieza-
Galán et al.
(2022) (value
of 2020)

Air-rail
transfer

share

2019 SNCF open
data Fraport 2019

Burrieza-
Galán et al.
(2022) (value
of 2018)

2021 SNCF open
data Fraport 2021

Burrieza-
Galán et al.
(2022) (value
of 2020)

Table 9 – Raw data sources (green) and data used to estimate (blue) input parameters
of the models presented in the thesis.
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