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RÉSUMÉ EN FRANÇAIS

Contexte

Depuis les années 1990, les études sur le comportement des foules se sont multipliées.
Représentées par les premiers travaux de Helbing and Molnar [1995], ces études sur les
foules tentent de comprendre les comportements des foules et de modéliser leurs mouve-
ments. Ces efforts ont permis de simuler les mouvements de foule sur ordinateur, et donc
de prédire le comportement des foules. Aujourd’hui, les résultats de ces études sur les
foules sont étroitement liés à notre vie : dans les domaines de la conception architecturale
et de la sécurité publique, les concepteurs utilisent des données empiriques pour évaluer
la capacité d’évacuation des bâtiments où les flux humains sont importants, et utilisent
la simulation de foule pour simuler le flux de personnes lors de grands événements (tels
que les événements sportifs, les concerts et les rassemblements) ainsi que pour prédire
les risques ; dans le domaine de la vie numérique et des loisirs, les personnages virtuels
et les foules simulées sont couramment vus sur les écrans de télévision et de cinéma, et
jouent également un rôle important dans les jeux vidéo en interagissant avec les joueurs ;
d’autre part, dans le domaine universitaire, la recherche et la simulation du comporte-
ment des foules sont en constante évolution pour mieux comprendre le comportement des
foules et les causes de ces comportements, et pour essayer continuellement de construire
des simulations de foules plus réalistes, au service des deux domaines précédents. Il n’est
pas difficile de voir que la simulation de foule joue un rôle crucial dans ces scénarios, et
rendre les foules virtuelles générées aussi réalistes que possible est l’objectif le plus impor-
tant de la simulation de foule. Dans ce contexte, les données relatives au comportement
des foules ont joué un rôle de plus en plus important : des années 1990 à 2015 environ,
les méthodes courantes ont recueilli des données sur le comportement des foules et ont
procédé à une modélisation mathématique, formant des modèles qui couvrent les carac-
téristiques dynamiques des mouvements de foule, les comportements de choix des foules
dans les évacuations d’urgence, etc. et les ont utilisés pour simuler le comportement des
foules virtuelles. D’autre part, ces méthodes fondées sur la connaissance évaluent souvent
le réalisme des simulations en les comparant à des données de foules réelles lors de la
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simulation du comportement des foules dans différents scénarios. Depuis le milieu des
années 2010, des méthodes de simulation visant à reproduire les caractéristiques des don-
nées réelles sont apparues, notamment des méthodes qui recherchent et comparent des
ensembles de données réelles pour générer le comportement de foules virtuelles, ainsi que
des méthodes plus populaires de réseaux neuronaux profonds basées sur l’apprentissage
statistique. Bien que ces méthodes ne s’efforcent plus d’acquérir des connaissances à partir
des données de la foule, elles dépendent tout autant des données de la foule, en particulier
des données de haute qualité.

Jusqu’à présent, la plupart des données sur les foules proviennent d’expériences con-
trôlées ou d’observations sur le terrain. Toutefois, ces méthodes se heurtent à des limites
importantes, notamment les défis techniques liés à la collecte de données de haute qualité,
mais également les contraintes éthiques telles que l’obligation de ne pas blesser les sujets.
Ces difficultés se traduisent par une couverture limitée des scénarios par les données et
un manque de compréhension des détails du comportement individuel. D’un point de vue
microscopique, les mouvements de foule sont une combinaison de multiples mouvements
individuels, où les membres de la foule interagissent localement avec les autres. Ces inter-
actions locales sont riches en comportements de bas niveau tels que l’observation (regard
ou dévisagement), la communication (verbale ou non verbale) et l’évitement (mouvement
de tout le corps ou d’une partie du corps). Ces comportements de bas niveau sont pré-
cieux pour comprendre les mouvements de foule et peuvent être des éléments importants
pour la perception du réalisme des foules. Cependant, la plupart des ensembles de don-
nées existants ne couvrent que les informations relatives à la trajectoire des piétons et ne
sont pas en mesure de refléter les détails des comportements complexes au niveau indi-
viduel. Dans le parcours des chercheurs qui cherchent continuellement à simuler des foules
de haute fidélité, l’absence de telles données signifie qu’il est impossible de simuler des
comportements similaires.

Récemment, avec la mise en œuvre de la technologie de la réalité virtuelle, de plus en
plus d’études sur les foules ont choisi de mener des expériences dans des environnements
virtuels pour étudier le comportement des piétons. De plus, avec la maturation continue
des dispositifs de capture du comportement accompagnant la Réalité Virtuelle (RV) – y
compris le suivi du regard, du corps, des mains et des expressions faciales – il est devenu
possible de collecter les comportements d’interaction des utilisateurs réels et de la foule
dans des environnements virtuels. Les plateformes d’expérience sociale de la RV, telles
que VR chat et Ubiq [Friston et al. 2021], permettent idéalement à plusieurs utilisateurs
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réels de participer simultanément à une scène de RV pour des expériences, ce qui permet
d’obtenir des données comportementales de haute qualité pour chaque utilisateur. Cepen-
dant, la participation de plusieurs sujets implique la nécessité de disposer de plusieurs
ensembles d’équipements de réalité virtuelle, ainsi que de relever des défis techniques tels
que la synchronisation des données multi-terminales à faible latence. Par conséquent, les
recherches sur les foules basées sur la RV conçoivent toujours des expériences impliquant
un seul utilisateur en même temps. Par conséquent, pour créer un environnement de foule
dans le monde virtuel, la plupart des études s’appuient généralement sur la simulation
de foule pour construire des foules virtuelles. Cependant, comme nous l’avons mentionné
précédemment, la technologie actuelle de simulation de foule n’est toujours pas en mesure
de simuler un comportement complexe et réaliste de piétons semblables à des humains
dans des foules virtuelles, et ce qui limite le développement de méthodes de simulation
dans cette direction est précisément le manque de données. Il n’est pas difficile d’imaginer
le dilemme que pose ce problème de l’œuf ou de la poule : si le comportement de la
foule virtuelle simulée est trop irréaliste, l’interaction entre l’utilisateur humain et la foule
virtuelle le sera également. Ainsi, si les données collectées ne sont pas suffisamment réal-
istes, comment construire une simulation réaliste sur la base de ces données ?

Objectifs & Défis

Compte tenu de ces circonstances, nous pensons qu’il est crucial de proposer une
méthode rapide et efficace pour capturer des données sur les mouvements de foule. Cette
méthode devrait enregistrer finement la dynamique et les comportements de chaque pié-
ton pendant qu’il se déplace dans une foule et être facilement évolutive pour répondre
à d’éventuelles exigences futures en matière de capture de données. D’autre part, nous
espérons que les données collectées avec cette méthode proviennent toutes d’actions et
de comportements réels d’utilisateurs humains. À cette fin, nous envisageons d’utiliser la
réalité virtuelle pour intégrer les utilisateurs humains dans un environnement virtuel, puis
de collecter les comportements des utilisateurs humains dans le monde réel à l’aide de dis-
positifs portables de capture des mouvements. Il est vrai qu’il existe des solutions similaires
dans la réalité qui utilisent simplement des dispositifs portables de capture de mouvement
pour suivre et enregistrer le comportement des utilisateurs. Cependant, la RV a progres-
sivement montré trois avantages majeurs par rapport aux recherches antérieures : Pre-
mièrement, les expérimentateurs ont un contrôle élevé sur l’environnement virtuel, ce qui
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permet de modifier facilement les conditions expérimentales dans l’environnement virtuel,
et donc de compléter efficacement les préparations expérimentales. En même temps, avec
l’aide de la technologie de simulation et d’infographie, il est facile de construire des scé-
narios dans l’environnement virtuel qui sont difficiles à créer dans les expériences de foule
dans le monde réel (comme les flammes) sans causer de dommages physiques directs aux
sujets et aux expérimentateurs. Deuxièmement, les scénarios expérimentaux de la RV ont
un degré élevé de répétabilité, ce qui permet aux expérimentateurs de présenter des situ-
ations expérimentales totalement cohérentes à différents sujets, par exemple en faisant en
sorte que les foules virtuelles se comportent de manière identique devant différents sujets,
ou en simulant précisément les mêmes flammes au même moment et au même endroit.
En revanche, en raison de la grande complexité des mouvements de foule, même avec les
mêmes conditions initiales, il n’y a aucun moyen de garantir qu’une foule réelle effectuerait
exactement les mêmes actions dans deux expériences. Troisièmement, les scénarios de RV
permettent une collecte et un traitement plus efficaces des données. Les expérimentateurs
disposent d’informations complètes sur la scène virtuelle et peuvent calculer les objets
des comportements d’interaction de l’utilisateur en temps réel grâce à la technologie de
capture de mouvement qui complète les dispositifs de RV. Par exemple, si le suivi des
yeux est effectué dans un environnement virtuel, les expérimentateurs peuvent non seule-
ment savoir quel type de regard l’utilisateur a effectué, mais aussi calculer quels objets ou
personnages virtuels l’utilisateur a regardés.

Cependant, l’utilisation de la RV pour la capture des mouvements de foule se heurte
à des difficultés. Tout d’abord, des recherches antérieures ont révélé que, sous l’influence
des dispositifs de RV, le comportement et la perception de l’utilisateur dans les envi-
ronnements virtuels ne sont pas les mêmes que dans le monde réel [Feng et al. 2021].
Deuxièmement, la capture de mouvement de foules dans la RV ne signifie pas simplement
l’application de la solution de capture de mouvement de la RV pour un seul utilisateur à
plusieurs utilisateurs : cela nécessite d’abord l’achat d’une grande quantité d’équipement
matériel pour la capture de mouvement de plusieurs utilisateurs, et signifie également la
reconstruction de l’état réel de chaque utilisateur dans l’environnement virtuel en temps
réel, ce qui pose des défis pour la stabilité de la transmission des données. De plus,
pour éviter les collisions dans le monde réel pour les utilisateurs portant des HMD (Head-
Mounted Display, signifiant affichage tête haute en français) et pour éviter les interférences
de signaux complexes causées par un équipement excessif, des sites expérimentaux plus
grands ou même plusieurs dispersés sont nécessaires pour accueillir ces utilisateurs, ce qui
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nécessite ensuite une équipe technique plus importante pour assurer la maintenance et
le bon déroulement des expériences, ce qui conduit finalement à une escalade des coûts
expérimentaux.

Compte tenu des possibilités et des défis qu’offre la RV, cette thèse tente d’explorer
une méthode qui nous permet de collecter des données sur les mouvements de foule tout
en veillant à ce que cette méthode soit rentable. Étant donné que les expériences de
RV courantes n’impliquent qu’un seul utilisateur, nous espérons réaliser la capture de
mouvement d’une foule avec un seul utilisateur. De cette manière, les recherches futures
auront la possibilité d’utiliser l’équipement existant de l’expérimentateur pour constituer
l’ensemble de données de foule requis à l’aide de ce paradigme de capture de mouvement
de foule. En même temps, sur la base de la mise en œuvre d’une telle méthode, nous devons
également vérifier que l’ensemble des données collectées par cette méthode est valable :
évidemment, les données individuelles issues de cette méthode doivent être semblables
à celles d’un être humain, car les données de chaque piéton proviennent de la capture
du mouvement d’un véritable être humain. Cependant, au niveau collectif, nous devons
nous assurer que les données obtenues par cette méthode présentent une similitude avec
les données du monde réel. À notre connaissance, il n’existe pas à ce jour de données de
foule similaires basées sur la capture de mouvements VR, ni de méthodes d’évaluation
correspondantes. Cela pose le deuxième défi de notre travail, qui consiste à valider notre
méthode par des moyens appropriés.

Approche

Pour atteindre l’objectif de capturer des données sur les mouvements de foule avec un
seul utilisateur, nous restructurons l’objectif de « capturer plusieurs piétons simultané-
ment » en « capturer un seul piéton plusieurs fois », puis nous fusionnons les données
de chaque piéton individuel pour former un ensemble complet de données sur les mouve-
ments de foule. Pour mettre en œuvre ce processus, nous nous appuyons sur une approche
d’enregistrement et de relecture. Cette approche est similaire à celle d’un acteur jouant
plusieurs rôles au cinéma et à la télévision, où un acteur enregistre d’abord le comporte-
ment d’un personnage, puis recharge les données enregistrées dans la scène virtuelle, et
joue un autre personnage dans le monde virtuel pour interagir avec le comportement
précédemment enregistré, construisant ainsi l’interaction entre les deux personnages. Les
caractéristiques techniques de la réalité virtuelle rendent ce processus d’enregistrement et
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de relecture facile à mettre en œuvre, et il a été envisagé et appliqué dans des recherches
antérieures [Slater et al. 1995; Osimo et al. 2015]. Dans cette thèse, nous incarnons un
utilisateur dans un avatar virtuel dans une scène virtuelle à l’aide d’un HMD et d’un
système de capture des mouvements du corps et nous laissons l’utilisateur générer le
mouvement d’un piéton dans une foule virtuelle en marchant dans le monde réel. Au
cours de ce processus, nous enregistrons le comportement de l’utilisateur. Une fois ce
processus terminé, nous réinitialisons le temps dans la scène virtuelle et utilisons un per-
sonnage virtuel pour afficher le mouvement récemment enregistré de l’utilisateur. Pendant
ce temps, l’utilisateur est incarné dans un autre avatar virtuel pour jouer un autre piéton
virtuel. Ce processus est répété de manière à ce que l’utilisateur puisse agir de manière
itérative et générer des comportements de marche pour différents personnages virtuels
jusqu’à ce qu’une foule complète soit capturée. Nous appelons ce paradigme le paradigme
de la foule-homme (One-Man-Crowd, OMC).

À ce stade, le paradigme de l’OMC se distingue par le fait qu’il évite toute technique
de simulation pendant le processus de génération des données de la foule. Cette approche
permet principalement d’éliminer les artefacts qui pourraient résulter du manque de réal-
isme des méthodes de simulation. Cependant, cette exclusion totale de la simulation limite
notre capacité à utiliser pleinement les avantages généralement tirés des environnements
de réalité virtuelle dans d’autres études de foules basées sur la RV.

Pour y remédier, nous avons exploré plusieurs variantes du paradigme de l’OMC.
Dans ces variantes, nous utilisons des techniques de simulation de foule pour construire
des foules virtuelles réactives, fournissant des scénarios contextuels pour la génération de
données par l’utilisateur. Il est important de noter que ces mouvements de foule simulés
sont utilisés uniquement pour la création de situations et ne sont pas conservés dans
l’ensemble de données final. En incorporant ces méthodes, nous étudions les performances
de l’approche OMC dans des scénarios de foule multidirectionnelle, en équilibrant le besoin
de réalisme contextuel avec les principes fondamentaux du paradigme.

Pour évaluer le réalisme des données générées par notre méthode, nous adoptons des
techniques d’évaluation couramment utilisées dans d’autres études de foules basées sur la
RV. Une partie essentielle de notre évaluation consiste à comparer les données produites
par notre approche avec les données de foule obtenues à partir d’expériences réelles. Étant
donné la rareté des ensembles de données de foule existants qui incluent des mouvements
détaillés de piétons, nous nous concentrons principalement sur l’évaluation des trajectoires
de piétons.
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Contributions

Cette thèse propose deux contributions principales basées sur deux études expérimen-
tales axées sur l’exploration de notre nouveau paradigme de capture de mouvements de
foule en tirant parti de la réalité virtuelle pour fournir des données de foule de haute
qualité.

Dans la première contribution, nous avons proposé un nouveau paradigme de capture
de mouvements de foule basé sur la réalité virtuelle pour permettre de générer un ensemble
de mouvements de foule avec un seul utilisateur. Nous appelons ce concept le paradigme
de l’homme-foule, ou the One-Man-Crowd (OMC) en anglais. Sur la base d’une approche
d’enregistrement et de relecture, nous avons subdivisé la capture de plusieurs piétons dans
une foule en plusieurs itérations ultérieures de capture d’un seul piéton. En utilisant la
capacité d’enregistrement de données et de visualisation d’animation de la réalité virtuelle,
nous avons immergé un utilisateur dans le monde virtuel, puis enregistré le mouvement de
l’utilisateur au cours d’une itération de la capture, et animé le mouvement capturé dans
la même scène virtuelle lorsque l’utilisateur a effectué les captures suivantes. Ce processus
a finalement abouti à un ensemble de données sur la foule. Nous avons testé le paradigme
à l’aide de trois expériences qui reproduisaient trois expériences de contrôle de la foule
menées dans des conditions de laboratoire réelles. En comparant nos données avec celles
du monde réel, nous avons observé des similitudes qualitatives prometteuses en termes
de modèles émergents. Malgré la présence de différences quantitatives, nos résultats ont
validé l’utilisation du paradigme homme-foule pour capturer des données de foule qui
présentent des comportements individuels et collectifs réalistes. Ce travail a été présenté
à la conférence IEEE VR 2022 et a été accepté en tant qu’article de revue TVCG (nominé
pour le meilleur article de revue), et est présenté dans le chapitre 3.

Puisque le paradigme homme-foule implique la génération de mouvements de différents
piétons par un seul utilisateur, sa nature basée sur l’enregistrement et la relecture en-
traîne deux problèmes qui peuvent biaiser le comportement de l’utilisateur. Tout d’abord,
l’utilisateur doit lancer le processus de capture dans une scène virtuelle vide et effectuera
probablement des mouvements qui ne présentent aucune interaction avec les autres per-
sonnages générés. Deuxièmement, comme les personnages générés sont programmés pour
n’afficher que les mouvements enregistrés au lieu d’être interactifs pendant leurs mouve-
ments, le paradigme impose à l’utilisateur d’exécuter et d’augmenter progressivement la
difficulté d’éviter les collisions, ce qui conduit à des interpénétrations inévitables entre
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l’utilisateur (l’avatar virtuel de l’utilisateur) et les personnages. Pour remédier à ces deux
limitations, nous avons proposé deux paradigmes améliorés qui introduisent respective-
ment une foule contextuelle au début du processus de capture pour déclencher un com-
portement d’interaction, et améliorent l’interactivité des personnages générés en utilisant
des méthodes de simulation de foule. Nous avons mené deux expériences qui reproduisent
des expériences de foule multidirectionnelle dans le monde réel en laboratoire. Nos résul-
tats suggèrent que les comportements observés chez les utilisateurs de RV avec les agents
environnants dès le début du processus d’enregistrement sont rendus beaucoup plus na-
turels, ce qui permet aux paradigmes 3R ou 4R d’améliorer la cohérence des ensembles
de données de foule capturées. Ce travail a été présenté à IEEE VR 2024 et a été accepté
comme article de revue TVCG (mention honorable pour les meilleurs articles). Ce travail
est détaillé dans le chapitre 4.

Aperçu

Cette thèse est structurée comme suit : Le chapitre 1 présente l’introduction générale
de cette thèse. Le chapitre 2 fait le point sur l’état de l’art en matière d’étude des foules,
en discutant de la collecte de données réelles et virtuelles et des méthodes de simulation.
Le chapitre 3 présente notre première contribution, le paradigme de l’homme-foule. Le
chapitre 4 présente notre deuxième contribution, où nous avons utilisé et examiné l’effet
des foules contextuelles et réactives pour améliorer la capture des foules basée sur la RV.
La thèse se termine par le chapitre 5, qui résume les résultats et suggère des orientations
pour les recherches futures.
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Chapter 1

INTRODUCTION

1.1 Context

Since the 1990s, there has been an increasing number of studies on crowd behavior.
Represented by the early work of Helbing and Molnar [1995], these studies on crowds
attempt to understand the behaviors of crowds and to model their movement. These efforts
have made it possible to simulate crowd movements in computers, thereby predicting
crowd behavior. Today, the results of these crowd studies are closely related to our lives:
in the fields of architectural design and public safety, designers use empirical data to assess
the evacuation capacity of buildings with large human flows, and use crowd simulation to
simulate the flow of people in large events (such as sports events, concerts, and rallies)
as well as conduct risk prediction; in the field of digital life and leisure entertainment,
virtual characters and simulated crowds are commonly seen on TV and movie screens,
and also play an important role in video games interacting with players; on the other
hand, in the academic field, research and simulation of crowd behavior are constantly
iterating to better understand the behavior of crowds and the causes of these behaviors,
and to continuously try to construct more realistic crowd simulations, further serving the
previous two areas. It is not difficult to see that crowd simulation plays a crucial role in
these scenarios, and making the generated virtual crowds as realistic as possible is the
most important goal of crowd simulation. Against this background, crowd behavior data
has played an increasingly important role: from the 1990s to around 2015, mainstream
methods collected crowd behavior and conducted mathematical modeling, forming models
that cover dynamic characteristics of crowd movements, choice behaviors of crowds in
emergency evacuations, etc., and used them to simulate the behavior of virtual crowds. On
the other hand, these knowledge-based methods often evaluate the realism of simulations
by comparing them with real crowd data when simulating crowd behavior in different
scenarios. Since the mid-2010s, simulation methods aimed at replicating the characteristics
of real data have emerged, including methods that search and match from real datasets
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in generating virtual crowd behavior, as well as later more popular statistical learning-
based deep neural network methods. Although these methods no longer strive to acquire
knowledge from crowd data, they are equally dependent on crowd data, especially high-
quality data.

So far, most of the crowd data either comes from controlled experiments or field
observations. However, these methods face significant limitations, including not only the
technical challenges of collecting high-quality data but also ethical constraints such as
not harming the subjects. These difficulties result in limited coverage of scenarios by
the data and a lack of understanding of individual behavior details. From a microscopic
perspective, crowd movement is a combination of multiple individual movements, where
the crowd members interact locally with the others. These local interactions are rich in
low-level behaviors such as observing (eye gaze or stare), communicating (verbal or non-
verbal), and avoiding (full-body motion or partial-body motion). Such low-level behaviors
are valuable to understanding crowd movements, and can be important elements regarding
the perceived realism of crowds. However, most existing datasets only cover pedestrian
trajectory information, and are unable to reflect the details of the complex behaviors
at the individual level. In the journey of researchers continuously pursuing high-fidelity
crowd simulation, the lack of such data means that it is impossible to simulate similar
behaviors.

Recently, with the implementation of virtual reality technology, more and more crowd
studies have chosen to conduct experiments in virtual environments to study pedestrian
behavior. Moreover, with the continuous maturation of behavior capture devices accompa-
nying VR (including gaze, body, hand, facial expression tracking), it has become possible
to collect real user and crowd interaction behaviors in virtual environments. VR social
experience platforms, such as VR chat and Ubiq [Friston et al. 2021], ideally allow multi-
ple real users to participate in a VR scene simultaneously for experiments, thus obtaining
high-quality behavior data for each user. However, the participation of multiple subjects
implies the need for multiple sets of virtual reality equipment, as well as overcoming
technical challenges such as low-latency multi-terminal data synchronization. Therefore,
mainstream VR-based crowd research still designs experiments to involve only one user
at a time. As a result, to build a crowd environment in the virtual world, most studies
usually rely on crowd simulation to construct virtual crowds. However, as we mentioned
earlier, current crowd simulation technology is still unable to simulate complex and real-
istic human-like pedestrian behavior in virtual crowds, and what limits the development
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of simulation methods in this direction is precisely the lack of data. It is not difficult to
imagine the dilemma brought about by this chicken-or-egg problem: if the behavior of
the simulated virtual crowd is too unrealistic, then the interaction between the human
user and the virtual crowd will also become unrealistic. And if the data collected is not
realistic enough, how can we build a realistic simulation based on these data?

1.2 Objective & Challenges

Considering these circumstances, we believe it is crucial to propose a quick and efficient
method for capturing crowd motion data. This method should finely record the dynamics
and behaviors of each pedestrian while moving in a crowd and be easily upgradeable to
accommodate potential future data capture requirements. On the other hand, we hope
that the data collected with this method all comes from real actions and behaviors of hu-
man users. For this purpose, we consider using virtual reality to embed human users in a
virtual environment and then collect the behaviors of human users in the real world using
wearable motion capture devices. Admittedly, similar solutions exist in reality that simply
use wearable motion capture devices to track and record user behavior. However, VR has
gradually shown three major advantages from past research: First, experimenters have
high control over the virtual environment, allowing for easy modification of experimental
conditions in the virtual environment, thus efficiently completing experimental prepara-
tions. At the same time, with the help of simulation and computer graphics technology,
it is easy to construct scenarios in the virtual environment that are difficult to create
in real-world crowd experiments (such as flames) without causing direct physical harm
to subjects and experimenters. Second, VR experimental scenarios have a high degree of
repeatability, allowing experimenters to present completely consistent experimental situ-
ations to different subjects, such as having virtual crowds behave identically in front of
different subjects, or precisely simulating the same flames at the same time and location.
In contrast, due to the high complexity of crowd movement, even given the same initial
conditions, there is no way to ensure that a real crowd would precisely perform the same
actions in two experiments. Third, VR scenarios allow for more efficient data collection
and processing. Experimenters have complete information about the virtual scene and can
calculate the objects of the user’s interaction behaviors in real-time with motion capture
technology complementing VR devices. For example, if eye tracking is done in a virtual
environment, experimenters can not only know what kind of gaze the user has performed
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but can also calculate what virtual objects or characters the user looked at.
However, using VR for crowd motion capture faces challenges. First, past research has

revealed that, influenced by VR devices, user behavior and perception in virtual environ-
ments are not the same than in the real world [Feng et al. 2021]. Secondly, conducting
motion capture of crowds in VR does not mean simply applying the VR motion capture
solution for a single user to multiple users: doing so first requires the purchase of a large
amount of hardware equipment for motion capturing multiple users, and also means re-
constructing each user’s real state in the virtual environment in real-time, which poses
challenges for data transmission stability. Not only that, but to avoid collisions in the
real world for users wearing HMDs and to avoid complex signal interference caused by
excessive equipment, larger or even multiple dispersed experimental venues are needed to
accommodate these users, subsequently requiring a larger technical team to maintain and
ensure the smooth conduct of experiments, ultimately leading to escalating experimental
costs.

Considering the opportunities and challenges brought by VR, this thesis attempts to
explore a method that allows us to collect crowd motion data while ensuring that this
method is cost-efficient. Given that mainstream VR experiments only involve a single
user, we hope to complete the motion capture of a crowd with just one user. In this way,
future research will have the opportunity to use the experimenter’s existing equipment
to build the required crowd dataset using this crowd motion capture paradigm. At the
same time, based on the implementation of such a method, we also need to verify that the
dataset collected through this method is valuable: obviously, the individual data from this
method must be human-like because the data of each pedestrian comes from real human
motion capture. However, at the collective level, we need to ensure that the data obtained
from this method shows similarity to real-world data. To our knowledge, so far, there is no
similar VR motion-capture-based crowd data, nor any corresponding evaluation methods.
This brings the second challenge to our work, which is to validate our method through
appropriate means.

1.3 Approach

To achieve the goal of capturing crowd motion data with a single user, we restructure
the objective of “capturing multiple pedestrians simultaneously” into “capturing a single
pedestrian multiple times” and then merge the data of each individual pedestrian together
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to form a complete crowd motion dataset. To implement this process, we draw on a record
and replay approach. This approach is similar to one actor playing multiple roles in film
and television, where an actor first records the behavior of one character, then reloads
the recorded data into the virtual scene, and acts out another character in the virtual
world to interact with the previously recorded behavior, thus constructing the interaction
between the two characters. The technical characteristics of virtual reality make this
record and replay process easy to implement, and it has been envisioned and applied in
past research [Slater et al. 1995; Osimo et al. 2015]. In this thesis, we embody a user in a
virtual avatar in a virtual scene using an HMD and body motion capture system and let
the user generate the movement of a pedestrian in a virtual crowd by walking in the real
world. During this process, we record the user’s behavior. After this process is completed,
we reset the time in the virtual scene and use a virtual character to display the user’s
recently recorded motion. Meanwhile, the user is embodied in another virtual avatar to
act out another virtual pedestrian. This process is repeated so that the user can iteratively
act and generate walking behaviors for different virtual characters until a complete crowd
is captured. We refer to this paradigm as the One-Man-Crowd (OMC) paradigm.

At this stage, a distinctive feature of the OMC paradigm is its avoidance of any
simulation techniques during the crowd data generation process. This approach primarily
benefits from eliminating artifacts that might arise from the lower realism of simulation
methods. However, this complete exclusion of simulation limits our ability to fully utilize
the advantages typically gleaned from virtual reality environments in other VR-based
crowd studies.

To address this, we have explored several variants of the OMC paradigm. In these
variants, we employ crowd simulation techniques to construct reactive virtual crowds,
providing contextual scenarios for the user’s data generation. It is important to note
that these simulated crowd motions are used solely for situational creation and are not
preserved in the final dataset. By incorporating these methods, we investigate the perfor-
mance of the OMC approach in multidirectional crowd scenarios, balancing the need for
contextual realism with the paradigm’s core principles.

To evaluate the realism of the data generated by our method, we adopt evaluation
techniques commonly used in other VR-based crowd studies. A key part of our assessment
involves comparing the data produced by our approach with crowd data obtained from
real-world experiments. Given the scarcity of existing crowd datasets that include detailed
pedestrian motion, our focus primarily centers on evaluating pedestrian trajectories.
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1.4 Contributions

This thesis proposed two main contributions based on two experimental studies focus-
ing on exploring our novel crowd motion capture paradigm by leveraging virtual reality
to provide high-quality crowd data.

In the first contribution, we proposed a novel VR-based crowd motion capture paradigm
to allow generating a set of crowd motions with only one single user. We refer to this con-
cept as the One-Man-Crowd paradigm. Based on a Record-and-Replay approach, we sub-
divided the capture of multiple pedestrians in a crowd into multiple subsequent iterations
of capturing a single pedestrian. Using the ability of data recording and animation visu-
alization of Virtual Reality, we immersed a user into the virtual world, and subsequently
recorded the user’s motion during one iteration of the capture, and animated the cap-
tured motion in the same virtual scene when the user performed the subsequent captures.
This process finally resulted in a set of crowd data. We tested the paradigm with three
experiments that replicated three crowd controlled experiments conducted in real-world
laboratory conditions. Through comparisons between our data and the real-world data, we
observed promising qualitative similarities in terms of the emergent patterns. Despite the
presence of quantitative differences, our results validated the use of the One-Man-Crowd
paradigm to capture crowd data that presents realistic individual and collective behaviors.
This work was presented at IEEE VR 2022 conference and has been accepted as a TVCG
journal article (nominee of the best journal paper), and is presented in Chapter 3.

Since the One-Man-Crowd paradigm involves generating motion of different pedes-
trians by a single user, its Record-and-Replay based nature leads to two concerns that
can bias the user’s behavior. First, the user has to initiate the capture process in an
empty virtual scene, and will probably perform movements that present no interaction
with the further generated characters. Second, because the generated characters are pro-
grammed to display only the recorded movements instead of being interactive during their
movements, the paradigm imposes the user to perform and will also gradually increase
the difficulty of collision avoidance, leading to unavoidable interpenetrations between the
(virtual avatar of) user and the characters. To address these two limitations, we proposed
two improved paradigms that respectively introduce a contextual crowd at the beginning
of the capture process to trigger interaction behavior, and enhance the interactivity of
generated characters by using crowd simulation methods. We conducted two experiments
that replicated real-world multidirectional crowd experiments in a laboratory condition.
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Our results suggest that the behaviors observed in VR users with surrounding agents
from the beginning of the recording process are made much more natural, enabling 3R
or 4R paradigms to improve the consistency of captured crowd datasets. This work was
presented at IEEE VR 2024 and has been accepted as a TVCG journal paper (honorable
mentioned for the best papers). This work is detailed in Chapter 4.

1.5 Overview

This thesis is structured as follows: Chapter 2 surveys the state of the art in crowd
study, discussing real-world and virtual data collection and simulation methods. Chapter 3
introduces our first contribution, the One-Man-Crowd paradigm. Chapter 4 introduces our
second contribution, where we used and examined the effect of contextual and respon-
sive crowds to improve VR-based crowd capture. The thesis concludes with Chapter 5,
summarizing the insights and suggesting directions for future research.
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Chapter 2

STATE OF THE ARTS

In this chapter, we first review the current state of crowd studies in the real world,
followed by an exploration of crowd studies in virtual environments. The study of crowd
behavior data primarily relies on data obtained from the real world. However, whether
through controlled experiments or field observations, the collection and reconstruction of
crowd data face various challenges. In recent years, an increasing number of studies have
begun using virtual reality technology to investigate human behavior in different crowd
settings. To construct crowds in virtual environments, these studies heavily depend on
crowd simulation methods. This chapter will also discuss the interrelationship between
crowd simulation and crowd data.

2.1 Crowd Study & Data Collection In Real World

The study of crowds is fundamentally dependent on observing and collecting data rel-
ative to crowd behavior. Recently, many studies have been conducted on different research
topics, observing and collecting motion data of crowds in different contexts in order to
understand and investigate crowd behavior. Broadly speaking, research on crowds can be
divided into two main areas: crowd behavior in normal situations and crowd behavior in
abnormal or emergency situations [Feng et al. 2021; Haghani and Sarvi 2018]. The latter
includes primarily the study of crowd behavior during evacuations, and also includes some
research focused on crowd disasters that have resulted in significant casualties.

The studies that focused on crowd behavior under normal situations cover numerous
aspects of crowd motion concerning different scales of crowd movements. This includes: 1)
individual pedestrian behavior such as collision avoidance [Paris et al. 2007], 2) behavior
of small groups and the influence of group on pedestrian behavior [Moussaïd et al. 2010],
3) statistical characteristics featured by a moving crowd (also known as macroscopic and
microscopic characteristics of a crowd) [Seyfried et al. 2005b; Seyfried et al. 2009; Seyfried
et al. 2010a], 4) the collective patterns resulting from the combination of the local behavior
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of pedestrians (as known as emergent patterns) [Shi et al. 2018]. Apart from these scale-
dependent crowd studies, other studies have addressed how social experience influences
pedestrian behavior[Nilsson and Johansson 2009; Sieben et al. 2017]. In general, studies
focusing on crowds in normal situations are dedicated to obtaining knowledge about crowd
movement and to better describing crowd movements through models.

Meanwhile, the studies that focused on crowd behavior under abnormal situations are
usually directly linked to public safety and thus have different concerns. By abnormal
situations, an important part of research has focused on different scenarios of crowd evac-
uation. While some review articles [Haghani and Sarvi 2018; Feng et al. 2021] provide
fine-grained categorizations based on the measured variables, we, for the sake of simplic-
ity, distinguish only 2 broad types of studies based on their high-level research focuses,
that is, choice behavior during evacuation [Haghani and Sarvi 2016; Fang et al. 2010]
and evacuation efficiency [Ding et al. 2020; Daamen and Hoogendoorn 2010]. Another
important research topic is to revise and understand crowd behavior during crowd dis-
asters [Helbing et al. 2007; Helbing and Mukerji 2012; Wang et al. 2019]. These research
are highly related to fire safety, building design and safety control during massive events.

To acquire data and enable these studies, different approaches have been adopted,
involving experiments with either human or animals, and other methods such as inter-
view [Haghani and Sarvi 2018]. In the context of this thesis, we focus only on data directly
reflecting human behavior. In this regard, numerous review articles [Haghani and Sarvi
2018; Haghani 2020; Feng et al. 2021] have proposed to categorize the nature of the stud-
ies and have distinguished 1) studies with a laboratory nature, also known as controlled
experiments, and 2) studies with a field nature, also known as field observations. How-
ever, from a technical perspective, such a binary categorization is not sufficient to define
the limits between experiments with a more complex nature, neither enough to reflect
the paramount difference of the challenges the researchers had to face. Thus, we extend
this categorization into a continuum from controlled experiments to field observations,
notably involving laboratory experiments (see Section 2.1.1), controlled field ex-
periments (see Section 2.1.2), uncontrolled field experiments (see Section 2.1.3),
and field recording (see Section 2.1.4). In the following sections, we review the research
outcomes and technical challenges of each category, and provide a summary of the advan-
tages and disadvantages of each 2.1.5.
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2.1.1 Laboratory Experiment

2.1.1.1 Research Topics

Laboratory experiments take place in temporary setups and under the influence of the
experimenters’ manipulation of certain design factors [Haghani and Sarvi 2018]. The lab-
oratory environment, although not always strictly located inside a laboratory [Moussaïd
et al. 2009], gives the experimenters the highest controllability not only on the design fac-
tors, but also on the data collection system (e.g., optimizing the installation of recording
devices, equipping the subjects with necessary devices, etc.). This allows for high-precision
data capture as well as the possibility of individual-level analyses. On the other hand, the
experimental spaces are usually limited, which restricts the investigation of large-scale
crowd movements. Therefore, research using laboratory-controlled experiments often aims
to replicate basic and critical crowd scenarios that reflect real-world collective movements.
These basic scenarios typically mimic real-world architectural elements (such as doorways,
corridors, and bottlenecks) by employing simple artificial physical barriers [Seyfried et al.
2010b]. These barriers are arranged to create scenarios with specific geometric configura-
tions. In Figure 2.1, we leverage Duives et al. [2013] and Shi et al. [2018]’s classification
based on the geometric configuration and designed crowd movement features (such as
the number of flows, the walking directions) to illustrate the elemental scenarios that are
frequently studied. In laboratory controlled experiments, studies utilizing these scenarios
have covered scales from the collective level to the individual level. In the field of collective-
level crowd behavior research, much emphasis has been placed on emergent patterns –
those collective behaviors that emerge from the aggregation of the local interactions of in-
dividuals. This phenomenon of emergent patterns has received considerable attention and
has been a central focus of this area of study. Interestingly, emergent patterns are usually
highly context-dependent. Some emergent patterns have been frequently investigated by
researchers using similar scenarios. For instance, the studies investigating lane and stripe
formation phenomena have shown a special attention to corridor [Kretz et al. 2006] and
bottleneck [Helbing et al. 2005; Seyfried et al. 2009; Seyfried et al. 2010b] scenarios. Sim-
ilarly, the stop-and-go phenomenon is usually studied in a single-file scenario [Lemercier
et al. 2012], which allows reducing the design factors and provides a clearer measure of the
variables of interests. The doorway scenario [Garcimartín et al. 2014], and other scenarios
with similar geometric shapes, are often used to study the faster-is-slower phenomenon
for the understanding of stressful crowd evacuation.
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Figure 2.1 – The two different classifications of crowd movements provided by Duives
et al. [2013](top) and Shi et al. [2018](bottom)
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Another class of studies has focused on investigating the statistical characteristics of
crowd movements. This involves both the macroscopic characteristics of a crowd, such as
the density and flow speed, and the microscopic characteristics featuring the behavior of
pedestrians, such as velocity and walking direction. Among these studies, we highlight
two concepts that have been specifically emphasized: 1) the fundamental diagram, which
reflects the relationship between the speed and density of a crowd, and 2) the pedestrian
flow, which is often used to describe the evacuation efficiency of bottlenecks and narrow
exits. Regarding different research context, the literature presented a 1D fundamental
diagram used for the single-file and unidirectional crowd movement [Ziemer et al. 2016;
Lemercier et al. 2012; Cao et al. 2016; Zhang and Seyfried 2012; Paetzke et al. 2023],
and a 2D fundamental diagram used for crowd scenarios that involve both forward and
lateral movements such as corridor, T-junction, merging flows with different merging
angles [Seyfried et al. 2005a; Ren et al. 2019; Zhang et al. 2011; Shiwakoti et al. 2015;
Shahhoseini et al. 2017]. Regarding the pedestrian flow, past studies have investigated the
influence of different variables (e.g., the width of the corridor and door [Kretz et al. 2006;
Tian et al. 2012], stress level [Daamen and Hoogendoorn 2010], selfish behavior [Nicolas
et al. 2016]) on the flow speed.

TODO: add a figure to illustrate the 1D and 2D fundamental diagram

Some studies also focus on examining the connection between individual behavior and
collective behavior, leading to the investigation of the way-finding behavior and naviga-
tional decision behavior [Haghani and Sarvi 2018]. These studies implicitly or explicitly
consider psychological effects in crowd movement [Bode et al. 2015a; Konya and Sieben
2023]. Recent research pays more attention to the integration of these behaviors with
crowd evacuation, exploring how a crowd’s exit choice during the evacuation process is
influenced by various factors. These factors include herding effects [Haghani and Sarvi
2017b], queuing behaviors [Wagoum et al. 2017], and the trade-offs made by pedestrians
during exit decisions [Liao et al. 2017].

On a smaller scale, some attempts to capture and model collision avoidance behav-
iors have been done. This class of studies focuses on the individual level behavior and
seeks to explain how pedestrians adjust their velocity to avoid potential collisions with
other participants. The experiments usually rely on multidirectional crowd scenarios, and
are designed to create unavoidable interactions between pedestrians [Paris et al. 2007;
Moussaïd et al. 2009; Huber et al. 2014; Parisi et al. 2016]. These studies addressed vari-
ous aspects of the collision avoidance behavior, including side preference [Moussaïd et al.
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2009], crossing angle [Asano et al. 2010; Daamen et al. 2014]. The experimental outcomes
are frequently linked to the validation or calibration of relative crowd simulation (see
developed discussion in Section 2.3).

2.1.1.2 Data Collection Methods

Most of the aforementioned studies go through data recording, data extraction, and
data analysis.

— Data recording: This process requires experimenters to set up or install data cap-
ture equipment according to the site and purpose of the experiment. The vast
majority of studies use video cameras to capture experimental procedures, which
means that experimenters need to choose where to mount the cameras in advance
(i.e., mounting the cameras on the ceiling to acquire an aerial view, or setting
up cameras on the side of the crowds to acquire a horizontal view) Many exper-
iments used multiple cameras to capture crowd movements from different view-
points [Seyfried et al. 2010b; Liao et al. 2014], which meant that synchronization
of the different cameras needed to be done prior to the experiment. Other ex-
periments utilize motion capture devices to achieve a more accurate capture of
pedestrian motion, and motion capture devices are generally able to record data
at a higher frame rate than video recording-type methods [Paris et al. 2007; Huber
et al. 2014].

— Data extraction: For all studies that use video camera to record experimental
procedures, crowd motion data is stored as image frames in the video, so it is in-
dispensable to recover high-quality crowd motion data from the video. Some early
experiments were conducted by manually analyzing the video and extracting the
relevant features of the crowd, including density, flow, velocity, etc., through image
overlay and other methods with the help of image processing tools empty citation
Due to the low efficiency of manual labor, these methods cannot provide lower level
crowd motion data like trajectory. To automate the extraction of data, part of the
research thus adopts automated image processing methods (which can automati-
cally extract crowd features from video data, but still cannot provide individual
trajectory information). The recent mainstream data extraction method is the
pedestrian trajectory extraction based on color recognition. in the context of lab-
oratory experiment, the experimenter has a high degree of controllability for both
the experimental process and the subjects. In the context of laboratory experi-
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ments, experimenters have higher controllability on both the experiment process
and the subjects, who can be asked to wear a hat or marker with a special color
before the experiment starts, used to detect each pedestrian by color detection in
the recorded video, so as to achieve the recovery of the subject’s trajectory with a
high precision. Early experiments using this method usually required the develop-
ment of specialized software to realize tracking [Daamen and Hoogendoorn 2003b].
Later, Boltes et al. [2010] proposed PeTrack, a software for automated pedestrian
detection widely used in subsequent studies [Zhang and Seyfried 2012; Liao et al.
2014; Ma et al. 2020; Konya and Sieben 2023]. In some studies focusing on individ-
ual behavior [Lemercier et al. 2012], experimenters also used additional markers
(usually located on the shoulder) to further improve the accuracy of tracking and
data extraction. For data obtained from motion capture systems, the data extrac-
tion solution is usually pre-implemented by the manufacturer of the equipment,
thus eliminating the need for the researcher to perform data extraction on their
own, even though the process might require intensive manual pre-precessing of the
data (e.g., cleaning, labeling).

2.1.2 Controlled Field Experiments

Despite the large number of studies and data captured in pure laboratory conditions,
studied walking scenarios are usually limited to the standardized and simplified situa-
tions, and sometimes are not sufficient to simulate or get close to real-world situations.
One important reason for this is that the real-world crowd movements usually happen
within specific scenes involving unique parameters, that are difficult, sometimes infea-
sible, to replicate within the laboratory conditions. To overcome this limitation, some
research conducted experiments as well as crowd motion capture in special scenes such
as classrooms [Guo et al. 2012; Zhu and Shi 2016], stadiums [Burghardt et al. 2013],
supermarkets [Cao et al. 2018], and theaters [D’Orazio et al. 2016] to collect more au-
thentic data of crowd movements, while still keeping these experiments under the control
of experimenters.

2.1.2.1 Research Topics

Controlled field experiments usually involve scenes on a larger scale than laboratory
experiments. Both the factor design and data recording are thus restricted by the physical

32



2.1. Crowd Study & Data Collection In Real World

condition of the experimental scenes. As a result, the studies involving controlled field
experiments focus less on the inter-individual interaction. On the other hand, since the
experiments are conducted in real-life buildings, these studies inherently possess a nature
of crowd evacuation.

Some experiments continued the idea of the laboratory experiment, focusing on the
collective level of crowd behavior, especially the macro- and microscopic characteristics of
crowds. For example, Huo et al. [2016] investigated how pedestrian flow is influenced in
the case of staircases, and Burghardt et al. [2013] investigated the effect of bottleneck on
crowd flow by using the stadium grandstand structure, and compared the data collected
in experimental conditions with those of crowd in real life-situation by using the results
of field observation in the same venue.

The majority of the experiments utilized real-world sites to study and test the per-
formance of the pedestrians in the evacuation, and the effects of different factors on the
pedestrians’ decision. An important class of studies also focused on simulating different
visibility conditions during evacuation to address crowd evacuation performance during
emergencies like fire. These studies so far investigated macroscopic characteristics related
to pedestrian flow (e.g., flow speed, evacuation time) [Cao et al. 2018; Guo et al. 2012;
Zhu and Shi 2016], pedestrian way-finding and exit choice [Guo et al. 2012; Jeon et al.
2011; Porzycki et al. 2018; Ronchi et al. 2017]. Other studies examined how external fac-
tors influence the evacuation efficiency of the crowds. By external factors, we refer to the
information that the pedestrians can perceive from either the environment or the oth-
ers. For the former case, a main research direction focuses on how pedestrians perform
way-finding based on the evacuation installation that provides instructive information
(e.g., signs, sounds, lights) to assist the evacuation [Fridolf et al. 2013; Galea et al. 2017;
D’Orazio et al. 2016; Jeon et al. 2011]. For the latter case, studies have focused on how
social behavior can influence pedestrian decisions [Heliövaara et al. 2012; Kruchten and
Schadschneider 2017; Haghani and Sarvi 2017a]

2.1.2.2 Data Collection Methods

In controlled field experiments, experimenters still have high controllability of the
experimental scenario and subjects, although less than in the pure laboratory condition.
In some cases, it is still possible to use the commonly used tracking methods described in
the previous section, i.e., based on automated color recognition [Burghardt et al. 2013].
Again, this means that the experimenter needs to take the subjects through a lot of
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preparation. However, in the bulk of scenarios, such experiments usually have to face
three main challenges.

First, the design factor of the experiment and the means of recording the experiment
are both physically limited by the experimental site, and most of the experiments are
recorded by borrowing video surveillance equipment from the experimental site. Due to
the location and viewing angle of these devices, it is often not possible to cover the full
range of action of the subjects in larger scenarios. Some of the evacuation experiments
were conducted to simulate the restricted visibility by turning off the site lighting [Jeon
et al. 2011] or using artificial smoke [Fridolf et al. 2013], which limited the visibility of the
pedestrians as well as the visibility of the normal video camera, and thus the experimental
process and the path of the pedestrians could not be recorded using conventional methods.
With the site lighting turned off, Jeon et al. [2011] equipped each subject with a GPS
tracker to record their walking paths during the experiment. In contrast, in scenarios where
artificial smoke is used, a common practice is to use a thermal imager to videotape subjects
in the smoke. For example, Ronchi et al. [2017] arranged for a professional firefighter to
follow the subjects with a thermal imager outside their field of view in an experiment
using artificial smoke, which meant that the experimental recording process had a higher
degree of complexity

Second, more constraints on the time of day to conduct experiments, especially those
conducted in commercial buildings, can lead to experiments being scheduled at extreme
times. For example, in the work of Jeon et al. [2011] a three-day experiment was scheduled
between 00:00 and 05:30, which increased costs for both the experimenter and the subjects,
and posed a higher degree of difficulty for the organization of the experiment.

Finally, compared to the experiments conducted in a pure laboratory condition, the
controlled field experiments have a higher risk of personal injury compared to experiments
conducted under purely laboratory conditions. This risk further limits the scope of ex-
periment selection. In particular, experiments that alter visibility conditions (i.e., turning
off lighting and artificial smoke) are typically more focused on the behavior of a single
pedestrian. It is not difficult to envision that increasing the number of subjects simulta-
neously present in the scenario would further raise the risk factor of the experiment, and
become the ethically more complex. While this limits the scope of research topics, it also
limits the ability of such experiments to simulate more realistically real-life conditions
in emergency evacuation scenarios, and the results obtained may systematically deviate
from real situations.
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For the above reasons, controlled filed experiments usually do not focus on high-
precision pedestrian behavior such as individual trajectories, let alone lower-level individ-
ual behavior. The scope of studying and describing crowd behavior is usually limited to
some high-level metrics such as flow rate, flow speed and evacuation time (in the con-
text of studying evacuation efficiency), or tabular statistics of path and exit choices. (in
the context of choice behavior study). Due to potential security risks, it is difficult for
emergency and evacuation studies to simulate real-world situations with a high degree of
realism.

2.1.3 Uncontrolled Field Experiment

The uncontrolled field experiment corresponds to the class of crowd related experi-
ments that are not in the control of experimenters. In this thesis, we follow one criterion
to distinguish the uncontrolled experiment from the controlled experiment: whether the
subjects were aware that they were going through an experiment and their behavior would
be recorded for one or multiple analyses in a specific context of crowd study. If not, then
the experiment is categorized as an uncontrolled experiment. Since the participants are
not aware they of the experiment, their behaviors are more natural, leading to crowd
data of higher realism. As a trade-off, researchers cannot accurately obtain the subjects’
demographic information, nor can they precisely identify or isolate all the factors that
influence pedestrian behavior.

2.1.3.1 Research Topics

Under the subcategory of uncontrolled field experiments, the vast majority of studies
are based on analyses related to the recordings of evacuation drills, particularly unan-
nounced evacuation drills in crowded buildings or facilities. In this regard, the uncon-
trolled field experiments have addressed similar research topics as the controlled field ex-
periments, particularly, the pre-evacuation time, evacuation time, evacuation speed, route
choice, and exit choice. The investigated scenarios have covered retail store [Shields and
Boyce 2000], cinema theater [Nilsson and Johansson 2009; Lovreglio et al. 2015], teaching
building [Fang et al. 2010], hotel [Kobes et al. 2010b], underground metro train [Fridolf
et al. 2016].

As the evacuation drills were unannounced and were conducted in crowded places,
the evacuations inherently involved high density crowds and the analyses are usually
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performed on the collective level. Although rare, we remark a specific type of uncontrolled
experiment, where the experimenter recruited participants for a decoy research topic while
hiding the real experimental motivation. In an example study,Kobes et al. [2010b] settled
participants in a hotel by convincing them that staying overnight was necessary to finish
the decoy experiment. During the night, the experimenter informed the participants that
a fire was going on, and they were required to evacuate from their room. One participant
was informed at a time to observe the single participant’s way-finding behavior during
the evacuation.

2.1.3.2 Data Collection Methods

Similar to our discussion in Section 2.1.2.2, the methods for observing and recording
crowd behavior are limited by site conditions. Unlike controlled experiments, in the con-
text of uncontrolled field experiments, experimenters cannot use any auxiliary tools (such
as markers or trackers) to assist data recording. The data recording methods available to
experimenters are largely limited to using video cameras at the experimental site to record
parts of the experiment. Therefore, as with most experiments in Section 2.1.2, the data
analysis of these uncontrolled field experiments also mostly remains at the level of statis-
tical data analysis. At the same time, the observed pedestrians are in a non-experimental
behavior mode, so the recorded data shows richer patterns and behaviors, such as groups
of friends, groups of couples, etc. Although this enhances the realism level of the recorded
data, it also poses more challenges for data analysis and processing. In addition, since the
subjects are not in an experimental state, they may exhibit behaviors beyond the expec-
tations of the experimenters, thereby affecting data collection. For example, in the work
of Kobes et al. [2010b], the authors had to exclude some participants’ results due to unex-
pected circumstances. For instance, when one participant received a fake fire alert, three
other participants were in the same room. Also, several other participants informed nearby
people after receiving the fake fire alert. It is not difficult to imagine that this method
of disguising the true purpose of the research may face more uncontrollable factors when
organizing larger-scale experiments.

To supplement the analysis of experiments based on video data, some studies con-
ducted interviews with participants after evacuation experiments to gather their psycho-
logical experiences. This approach aligns more closely with the research methods based
on surveys or interviews as categorized by Haghani and Sarvi [2018], as well as Fang et
al. [Feng et al. 2021] in their reviews. Considering our focus is elsewhere, we will not delve
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deeply into these methodologies.

2.1.4 Field Recording

2.1.4.1 Research Topics

In the field nature of crowd data collection, an essential data resource is the crowd
behavior recorded directly from everyday life. This data collection process does not involve
any form of experimentation, and thus, we categorize this method of directly observing and
gathering data from daily life as field recording, distinguishing it from other experimental
methods that also possess a field nature. Numerous studies have utilized these captured
data to explore crowd behavior in the real world’s daily life. These studies encompass
various scales of crowds, ranging from small groups of two to three people, everyday scenes
with medium to low-density crowds, high-density crowd scenes, and massive events, up
to the crowd movement on the scale of streets or even entire cities.

One class of studies has focused on social group behavior containing 2-5 people. These
studies have investigated the walking behavior (involving speed, step frequency, group
component) [Feng and Li 2016; « Improved Social Force Models Considering Heterogenous
Characteristics among Social Groups » 2018] and shape patterns [Moussaïd et al. 2010],
group splitting [Do et al. 2016], and the influence of group size [Duives et al. 2014]

Another class of studies has focused on estimating statistical characteristics of crowd,
especially the pedestrian flow behavior in the real-world situation, involving variables such
as density-speed and density-flow volumes [Fruin 1971b]. Numerous studies have covered
different pedestrian walking dynamics on walkways [Virkler and Elayadath 1994; Lam
et al. 1995; Corbetta et al. 2016], sidewalks [Tanaboriboon et al. 1986; Al-Azzawi and
Raeside 2007], and stairways [Shah et al. 2013; Tanaboriboon and Guyano 1991].

Another main research interest in the context of field study is observing and analyzing
dense crowd behavior during mass events such as festivals [Zhang et al. 2013; Ma et al.
2013; Larsson et al. 2021]. The observation of mass events can lead to various research
topics, involving both statistical characteristics for crowds with a high density level [Jo-
hansson et al. 2008], and the collective emergent pattern such as stop-and-go waves [Zhang
et al. 2012], lane formation [Zeng et al. 2014].

A set of research has also addressed crowd disasters, a research topic that cannot
be simulated through human experiment, using video recordings from the surveillance
cameras during the disasters. Such studies, although not exhaustive, revised disasters
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related to high crowd density, have recovered crowd the collective patterns during the
disasters [Helbing et al. 2007; Krausz and Bauckhage 2012] as well as the causality of
crowd disasters [Helbing and Mukerji 2012]. Some other studies focused on the emergent
crowd evacuation performance during natural disasters, such as earthquake [Yang et al.
2011b; D’Orazio et al. 2014; Bernardini et al. 2016; Shiwakoti 2016]. Similarly, crowd
evacuation behavior under terrorist attack has also been revised [Wang et al. 2019].

2.1.4.2 Data Collection Methods

Field recordings have collected a wealth of valuable crowd behavior data from daily
life, most of which is obtained in the form of video recordings. Early studies analyzed
crowd behavior in video recordings through manual analysis [Virkler and Elayadath 1994;
Lam et al. 1995]. Subsequently, some research began to use image processing technology
to directly calculate the macroscopic characteristics of crowds from video data, such as
density and flow speed [Zhang et al. 2013]. Numerous studies have been dedicated to
exploring computer vision techniques to achieve automated detection and tracking of
pedestrians, a task also known as Multiple Pedestrian Tracking (MPT) [Sun et al. 2021].
This has evolved into two different technological paths: Model-free Tracking (MFT) and
Tracking-by-Detection (TBD). MFT requires manually marking the tracking targets in
the initial frame of the video [Feng and Li 2016], i.e., manually performing pedestrian
detection, while TBD further achieves the automation of pedestrian detection. Recently,
TBD has made several milestone developments in research [Singh et al. 2008; Zhang et al.
2008; Shafique et al. 2008; Yang et al. 2011a; Andriyenko and Schindler 2011]. With the
rise of deep learning methods, the latest research attempts to use deep neural networks
to achieve more efficient detection and tracking [Kim et al. 2015; Tang et al. 2017; Xu
et al. 2017].

However, due to limitations in video camera imaging quality and occlusions in high-
density crowd scenarios, achieving high-quality pedestrian detection and stable tracking
remains a significant challenge in the field of crowd data reconstruction. To overcome
these challenges, some researchers have turned to other types of image acquisition devices,
such as infrared counters [Zhang et al. 2013] and depth cameras [Corbetta et al. 2016],
to simplify subsequent analysis work. Moreover, other studies have utilized multimodal
signal data (such as WiFi and Bluetooth signal transmission devices, GPS trackers, and
even GSM network base stations) to track and reconstruct crowd movement, thereby
achieving crowd data collection on a larger scale (up to the city level).
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2.1.5 Summary

In this section, we review how past studies have captured real-world crowd movement
data. These research efforts have obtained valuable data for understanding and mod-
eling crowd behavior through two distinct approaches: controlled experiments and field
observations. However, constructing these datasets often entails considerable costs. In con-
trolled experiments, researchers typically invest significant time and effort in organizing
participants and conducting experiments. This includes submitting applications to ethics
committees for experimental permission, recruiting numerous participants (some studies
even involved up to 1,000 participants [Ziemer et al. 2016]), equipping these participants
with tracking garments or devices, and involving professionals and specialized equipment
in constructing certain scenarios. Some experiments even pose risks of physical harm to
participants. Consequently, the duration of data capture and post-processing in controlled
experiments usually spans years.

In field observations, past research has explored various methods for extracting pedes-
trian dynamics data from video footage. However, the quality of data retrievable from field
video is limited due to challenges like lighting conditions, camera angles, and obstruction
among pedestrians. As a result, high-quality crowd motion data remains scarce. With the
recent surge in deep learning and generative models, an increasing number of studies have
started to focus on human body motion [Feldmann and Adrian 2023a; Boomers et al.
2023]. Among existing crowd data, few datasets provide data beyond trajectories, such as
eye gaze data and body motion data of pedestrians. Overall, the current crowd datasets
are still very limited and struggle to meet the growing demand for richer data in related
research fields.

2.2 Crowd Study & Data Collection In Virtual En-
vironment

In the field of crowd studies, with the proliferation of Virtual Reality (VR) technology,
virtual experimental environments constructed using VR devices are increasingly favored
by researchers due to their low-cost and high flexibility. These environments not only allow
for the free setup of virtual objects and characters to interact with human users, but also
provide immersive experiences while reducing the risk of physical harm associated with
real-world experiments. However, the physical limitations of VR technology may lead to
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differences in the behavior of human users in virtual environments compared to the real
world. This section will focus on VR-based crowd experiments and their impact on human
user behavior.

2.2.1 Crowd Related Research Topics

Similar to crowd studies in the real world, the VR-based studies mainly focus on the
human user’s dynamic and choice behavior. However, a remarkable difference is that most
of the VR-based studies only capture a single user’s behavior due to equipment limitations.
Despite the limitation on the number of simultaneous participation, VR provides rich data
capture solutions covering the user’s trajectory, body motion, gaze, facial expression,
voice, and sometimes interaction with the virtual environment. As a result, the VR-
based crowd research tends and is able to pay more attention to the user’s low-level
behavior. Thus, in addition to the three-level categorization (operational level, tactical
level, and strategical level) of crowd studies proposed by [Hoogendoorn and Bovy 2004],
the VR-based research has also addressed a sub-operational level concerning those low-
level behaviors of human behavior under various situations. Another important difference
is that, because of the high controllability in the experimental design, numerous VR-based
experiences have created rich plots to both enhance the immersion and create unexpected
situations for the participants during the experiences.

The tactical and strategical level of pedestrian behavior, has been subjected to many
research interests. Multiple experiments have been conducted to study behavior during
evacuation, covering how the pedestrian behavior can be influenced by different factors.
One important research focus is the social influence [Kinateder et al. 2014a; Kinateder
et al. 2014b; Kinateder and Warren 2016; Ríos et al. 2018] on the pedestrian choice
behavior. These studies usually created virtual confederates by using crowd simulation.
The confederates repeated the same movement or strategy in front of different partici-
pants during the experiments. These studies have led to observations that the subjects’
choices can be influenced by the virtual agents, and that the emergence of herd behav-
ior is linked to both environmental and personal factors [Lovreglio et al. 2016], as well
as the uncertainty in the escape environment [Haghani and Sarvi 2017a]. Some other
studies took advantage of the Virtual Environment’s high controllability to investigate
the influences of environmental factors. Many studies leveraged fire simulation to create
emergency stimuli [Kinateder and Warren 2016; Cao et al. 2019a] and to control the visi-
bility during emergency [Kinateder et al. 2014a], while some other studies chose to set up
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different experimental conditions. For instance, Tang et al. [2009] investigated the impact
of mistaken signage on the way-finding tasks, and Kinateder et al. [2019] revised the color
design of emergency exit. Another class of studies investigated how the level of familiarity
with the virtual environment can influence the choice behavior [Lin et al. 2020]. To let
the participants get familiar with the virtual scene, a common method is to assign them
some plot-based tasks (which also hide the real purposes of experiments), and trigger an
emergency in the virtual world once certain conditions are fulfilled.

Research at the operational level of pedestrian behavior focuses on the interaction
behaviors among pedestrians. This primarily includes collision avoidance behavior with
obstacles and other virtual pedestrians, as well as following behavior. This covers top-
ics similar to those found in real-world studies, such as inter-individual level interaction,
where the captured user interacts with only one obstacle or one virtual character [Arge-
laguet et al. 2015; Nelson et al. 2023]. Due to the limitation of having only a single user
in experiments, scenarios involving multidirectional flows are rare. However, by reducing
the focused flow to just one pedestrian, some studies have utilized crowd simulation to
conduct research on individual-crowd level interactions, which are less common in real-
world experiments. For example, Bruneau et al. [2015] investigated whether the subject
would choose to go through or go around a virtual crowd under different conditions, Nel-
son et al.; Koilias et al. [2019; 2020b] examined how the subject’s walking speed can be
influenced by the virtual crowd’s speed, density, and direction.

With the maturation of capture technology accompanying virtual reality (VR), some
recent studies have started using VR to delve deeper into the behavioral details of individ-
uals within virtual crowds. Berton et al. [2020b] studied pedestrian gaze behavior during
walking in the Virtual Environment, and compared with the real-world results. Raimbaud
et al.; Raimbaud et al. [2022; 2023] investigated the stare interaction between a human
subject and virtual crowds. Jovane et al. [2022] addressed the question of how can virtual
characters attract the subjects’ attention. Some other studies involved the capture of the
subjects’ full-body motion [Berton et al. 2020a; Koilias et al. 2020a]. These studies can be
viewed as an extension of research on operational level behavior, forming a new category,
namely the sub-operational level, which was absent in previous real-world experiments,
constrained by the challenges of capture technology and unable to cover such detailed
levels. Although such studies are still relatively few, they reflect a trend in future research
developments.

Apart from the above-mentioned studies involving only a single subject at a time, we
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highlight that, although rare, some studies have conducted multi-user VR experiments to
further investigate the herd behavior [Berg 2016; Moussaïd et al. 2016]. The multi-user
approach allows all pedestrians in a virtual scene to be controlled by real people, thus ex-
hibiting more realistic behavior than a simulated crowd. However, this method, requiring
the simultaneous participation of multiple users, complicates the design and organization
of experiments. Technologically, this approach necessitates the interconnection of multiple
virtual reality input devices over a network, facing additional challenges in engineering
implementation and stable data transmission.

2.2.2 Creating Immersive Experiences

To accurately gather user behavior data, VR-based studies require participants to
immerse themselves in the experimental scenarios, making decisions and choices. For
instance, in researching stressful evacuation situations, researchers expect participants’
behaviors to closely mirror real-life responses under escape pressure, rather than being
indifferent or inappropriate due to the virtual setting. To achieve this, past VR experi-
ments focused on enhancing immersion through measures in rendering, stimuli, and social
presence. However, some experiments classified as VR-based studies in review articles
such as Haghani and Sarvi; Haghani; Feng et al. [2018; 2020; 2021] do not involve Virtual
Reality in the sense commonly understood today. This section will discuss previous efforts
to build immersive experiences and the various forms of data collected through different
technical means.

2.2.2.1 Immersive Rendering

Rendering of the Virtual Environment is crucial in VR-based crowd studies. Initially,
this involved visualizing the virtual environment and crowd, with subjects viewing the
virtual crowd behavior under different conditions on a screen and answering questions,
like what choices they would make assuming they were in the depicted scenario [Lovreglio
et al. 2014; Li et al. 2019; Bode et al. 2015b]. Some methods also present virtual en-
vironments on screens, allowing users to interact with the environment through input
devices [Tang et al. 2009; Kobes et al. 2010a]. Recent mainstream approaches typically
immerse subjects directly into a 3D virtual environment, employing two primary display
technologies: 1) Cave Automatic Virtual Environment (CAVE), an experimental space
defined by three walls, floor, and ceiling, offering immersive environments through mul-
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tiple projectors. Users wear special goggles, with the system tracking these goggles and
adjusting the jointly projected images to create a stereoscopic view. CAVE allows physical
walking in the virtual environment but can host only one user at a time due to perspective
dependency. 2) Head-Mounted Display (HMD), which creates a three-dimensional percep-
tion of the virtual scene in the user’s brain by rendering images for each eye on separate
screens. Thanks to built-in tracking and input solutions, HMD enables physical walking
or controller-based movement. To enhance the similarity between virtual and real scenes,
audio rendering, like simulating fire alarm sounds, is introduced [Kinateder and Warren
2016; Kinateder et al. 2018]. In VR environments, objects and virtual characters usually
lack a physical entity, preventing tactile perception by human subjects. To address this,
some studies have introduced haptic rendering, embedding subjects in a virtual avatar
and creating artificial tactile feedback on the subject using wearable haptic devices, based
on the avatar’s collisions with other objects [Berton et al. 2020a; Koilias et al. 2020a].

2.2.2.2 Navigation

In VR-based experiments, navigation is a crucial way for participants to explore and
understand the virtual environment and characters, with trajectory data being one of the
most important and common types of data collected. Research literature mainly presents
two methods: virtual and physical navigation. In virtual navigation, participants use a
joystick or VR controller to move in virtual space while remaining stationary in the
real world. This method typically sets a uniform speed for all participants, maintaining
a constant pace. Its advantage lies in allowing movement in large-scale [Natapov and
Fisher-Gewirtzman 2016; Lin et al. 2020; Zhu et al. 2020] or non-flat virtual scenes [Feng
et al. 2020; Lin et al. 2020; Zhu et al. 2020], but it cannot intuitively reflect the unique dy-
namic characteristics of participants and may lead to cyber sickness. In contrast, physical
navigation requires participants to move in the real world, using tracking technology to
ensure the virtual camera follows their position changes in real-time. This method records
real path data, reflecting different speed preferences of participants, and reduces cyber
sickness since the observed motion in the virtual world matches their physical movement.
However, unlike virtual navigation, the range of movement in virtual space is identical
to that in the real world, limited by the coverage of the tracking technology. Early ex-
periments used a combination of inertial measurement units and ultrasonic ranging for
positioning and tracking [Fink et al. 2007b; Kinateder et al. 2018], while recent experi-
ments typically utilize the tracking solutions built into commercial HMDs [Nelson et al.
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2019; Berton et al. 2019; Kinateder et al. 2019], covering an area of about 10; m × 10; m.

2.2.2.3 Stimuli & Rewards

In most studies researching evacuation behavior, experimenters need to create different
experimental conditions within the virtual environment to compare subjects’ behaviors in
normal and emergency states. However, since disasters in the virtual environment don’t
cause physical harm to subjects, they might behave differently due to perceived lower risk.
To help subjects emulate real-world sensations, a common approach is to simulate fire and
smoke in virtual fire scenarios [Kinateder et al. 2014a; Lin et al. 2020; Kobes et al. 2010a;
Cao et al. 2019a; Zhu et al. 2020]. Questionnaire results from these studies commonly
indicate that participants felt anxiety or stress in the face of virtual fires, confirming that
stimuli like virtual flames or fire alarms can effectively alter emotions. Another method
involves using alternative forms of reward to induce stress in participants. For example,
in the study by [Moussaïd et al. 2016], the researchers incentivized participants in virtual
emergency evacuations by promising monetary rewards to those who reach the exit first,
thereby simulating the competitive nature of real-life emergency evacuations.

2.2.2.4 Virtual Crowds

In VR-based studies, as they typically accommodate only one user at a time, virtual
characters are created in the virtual environment to interact with human subjects. The
behavior of these virtual characters varies according to the purpose of the study. Some re-
search employs static virtual characters [Berton et al. 2020a; Raimbaud et al. 2022], while
others use dynamic, yet non-responsive characters to construct crowd dynamics in the
virtual scene [Raimbaud et al. 2023]. In studies examining the influence of social factors
on crowd evacuation behavior, virtual crowds are often used to simulate herd behavior to
impact the subjects’ decisions and actions. For research on operational-level pedestrian
behavior, simulation-driven autonomous agents are commonly used, allowing virtual char-
acters to interact bidirectionally with human subjects. For instance, Bruneau et al. [2015]
utilized a modified RVO2 method, and [Koilias et al. 2020b] employed Unity’s navigation
mesh. Unfortunately, many studies provide insufficient details about the behavior patterns
and driving methods of virtual characters. Moreover, few studies explore the quality of
animation used for these simulated characters. In psychology-related studies[Patotskaya
et al. 2023] and those focusing on attention[Jovane et al. 2022], researchers directly use
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virtual characters to display motion capture animations to ensure the authenticity of
character animations.

2.2.3 Validating Data From VR Experiments

The method of using VR to study crowd behavior always faces this question: Does
the behavioral data recorded in VR experiments align with people’s behavior in the real
world? This question stems from two main concerns. One major concern is that the visu-
alization of VR restricts how participants perceive others (usually simulated characters)
in experiments, which can, sometimes, significantly differ from real-world crowd behav-
ior. Another major concern is whether subjects are sufficiently engaged and motivated to
perform tasks in VR as realistically and earnestly as they would in real-world scenarios.
To ensure comparability between crowd behavior data collected in VR and the real world,
a common approach is to conduct the same experiments in the real world as a control. If
real-world experiments are not feasible, comparing and analyzing the differences between
existing real-world data and data obtained from VR experiments can be considered. By
following this idea, a number of different studies have examined and provided positive
answers to these two concerns.

2.2.3.1 VR Effect on User Behavior

When using VR to generate crowd datasets, it is of paramount importance to eval-
uate the similarity between user behaviors in real and virtual situations. Unfortunately,
VR-based experiments have been shown to introduce a number of perceptual and be-
havioral biases, such as affected depth perception [Armbrüster et al. 2008; Renner et al.
2013], reduced walking speed [Banton et al. 2005; Fink et al. 2007a], increased social dis-
tance [Bailenson et al. 2001; Gérin-Lajoie et al. 2008; Bruneau et al. 2015; Llobera et al.
2010; Sanz et al. 2015], and increased eye gaze and head movements [Berton et al. 2019;
Berton et al. 2020b]. Due to this, considerable work has been done to assess how these
biases affect behavior in VR. The general finding is that VR motion capture leads to
measurable changes in a majority of spatial variables, although the qualitative nature of
participant behavior may remain consistent.
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2.2.3.2 Interpreting Results from VR Experiments

In VR-based crowd studies, the objectives of these research efforts exhibit subtle nu-
ances. One category of research is dedicated to replicating and studying human behavior
in the real world by leveraging the advantages provided by VR, aiming to obtain as real-
istic data as possible. These methods face the challenge of the impact of VR equipment
on human behavior, which may reduce the authenticity of the data. Therefore, the first
question these studies need to address is whether the data collected still accurately reflects
pedestrian behavior in the real world. An intuitive way to answer this question is to repli-
cate experiments from the real world and compare them with the results of experiments
conducted in virtual environments. For example, Kobes et al. [2010a] conducted one of
the earliest validation studies to compare pedestrian evacuation behavior in a real-life
hotel and a virtual hotel. Cirio et al. [2013] examined the similarity between the tra-
jectories collected from virtual navigation and real navigation. These explorations have
resulted in promising evidence suggesting the comparability between data from real-world
experiment and from VR-based experiments [Haghani et al. 2017; Moussaïd et al. 2016].

Depending on the experimental method, especially in cases where some experiments
are based on 2D display methods and cannot directly collect pedestrian behavior, an-
other category of research chooses to acknowledge that the results obtained from study-
ing crowds using VR will inevitably differ from real-world situations. Consequently, these
studies propose that the data collected in experiments should be interpreted in a relative
manner[Kinateder et al. 2014a], believing that these results still reflect real human be-
havior to some extent. In other words, researchers believe that valuable knowledge about
crowd behavior can still be gleaned from these experiments.

However, a different strand of research chooses an alternative path, distinguishing the
behavior exhibited by humans in virtual environments from that in the real world. These
studies focus directly on how the behavior of virtual crowds affects human users, without
seeking direct comparisons with real-world scenarios. Instead, this type of research is
more inclined to focus on how to present crowd behavior in virtual environments that
users perceive as ’believable’. Examples of such studies include [Nelson et al. 2019; Koilias
et al. 2020b; Nelson et al. 2022; Trivedi and Mousas 2023]. Nevertheless, the findings
from these studies can still provide insights and inspirations for the first two research
approaches.
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2.2.4 Summary

In this section, we review a series of studies focused on crowds within virtual re-
ality environments. Recent research has employed CAVE-like devices or Head-Mounted
Displays to provide participants with immersive experiences. It has been observed that al-
though there are quantitative differences in participants’ behavior in virtual environments
compared to real-world settings, the experimental results obtained in virtual reality are
qualitatively similar to those in real-world experiments. Conducting experiments in vir-
tual environments reduces the need for physical space and environmental setup, allowing
researchers to freely construct virtual experimental sites and scenarios. For high-risk sit-
uations in reality, such as emergency evacuation in a fire, replicating these scenarios in
virtual environments and recording participant behavior is almost risk-free. Moreover,
virtual reality-based experimental systems are inherently more suited for data collection.
For instance, while studying gaze behavior in virtual crowds, it is possible to compute
in real time the virtual characters or objects that participants focus on, significantly
easing the burden of data post-processing. Additionally, due to the high controllability
of virtual environments, researchers can present identical scenes and crowd movements
to different participants, facilitating further precise control of experimental variables. In
contrast, replicating the exact crowd movements and behaviors in real-world controlled
experiments, even with confederates, is as impossible as stepping into the same river twice.

Nevertheless, virtual reality-based crowd studies face several limitations. First, dis-
crepancies between VR display technology and human visual perception can lead to dif-
ferent participant behaviors in virtual environments compared to the real world. Second,
the lack of physical constraints and collision feedback in virtual worlds can result in
unnatural interactions between users and the virtual scenes. Third, most studies are con-
fined to single-user experiments. Theoretically, multi-user experiments based on HMDs
are feasible, but they pose higher requirements for experimental equipment, venues, and
software development, significantly increasing the cost of multi-user experiments. Single-
user experiments force researchers to use pre-designed virtual crowds as the interactive
counterparts for human users. These pre-designed virtual characters either employ pre-
recorded motion capture animations, sacrificing the characters’ interactive abilities for
authenticity, or rely on crowd simulation for real-time responsive virtual crowds. How-
ever, as mentioned in the section on crowd simulation, current crowd simulation realism
is still limited. Consequently, virtual reality-based crowd studies urgently require more
advanced crowd simulation and animation technologies to expand their application scope.
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2.3 Crowd Simulation & Crowd Data

From the perspective of crowd study, crowd simulation has two primary application
scenarios. Firstly, it is used to create or reproduce the normal behavior of real-world
crowds in virtual environments; secondly, in architectural design and safety management of
high-traffic scenarios, crowd simulation is utilized to simulate the behavior of evacuation.
Crowd simulation can be broadly divided into two sub-categories: macroscopic simulation
and microscopic simulation. Since macroscopic simulation involves modeling the crowd
as a singular entity, it is beyond the scope of this thesis. We only focus on microscopic
simulation, which models each individual as a separate unit [Toll and Pettré 2021].

In recent research, crowd simulation and crowd data have always maintained a closely
complementary relationship. For instance, many calibration and validation methods of
crowd simulation rely on data obtained from the real world. Moreover, numerous crowd
data extraction methods based on computer vision have borrowed the prior knowledge
embedded in crowd simulation models to enhance the quality of data extracted from video
recordings. Additionally, in VR-based crowd experiments, the creation of virtual agents
that interact with users is inseparable from the use of crowd simulation. In this section,
we will review the main methods of crowd simulation and how crowd data is used to
improve the quality of crowd simulation.

2.3.1 Knowledge-Based Approach

This simulation process involves moving from a predetermined starting point to a
destination, ensuring no collisions with other agents in the vicinity. According to the
research of Toll and Pettré [2021], microscopic simulation typically involves discrete and
iterative computations of each agent’s movement (speed and position). This process can
be decomposed into four steps: 1) searching for neighbors, 2) computing preferred velocity,
3) local navigation, and 4) movement. Most microscopic simulation algorithms focus on
achieving collision avoidance while assigning a reasonable speed to each agent.

Early methods employed a force-based model for collision avoidance in simulation
processes. Helbing and Molnár [1995] proposed the first force-based model for collision
avoidance. This approach analogized crowd collision avoidance behavior using a physical
force model and introduced a virtual force, known as the social force, to control the actions
of each agent. In the simulation, each agent is initially influenced by an attractive force
directed towards their destination, followed by a repulsive force emanating from other
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agents or obstacles, which intensifies as their mutual distance decreases. The resultant
force of these influences ultimately changes the agent’s velocity in the form of acceleration,
thereby altering their trajectory. Karamouzas et al. [2009] improved upon this model
by predicting the relative positions of agents in potential future collisions, defining the
direction of the repulsive force to achieve more realistic collision avoidance. Similarly,
subsequent studies explored different methods to define the repulsive force, enhancing the
realism of agent behaviors [Zanlungo et al. 2011; Karamouzas et al. 2014].

Besides the force-based model, the velocity-based model is also an important method.
This approach is characterized by allowing each agent to actively choose its next velocity
after considering various possible velocities [Toll and Pettré 2021]. The basic idea is that,
at each step of the simulation, an appropriate velocity is selected for the agent based on
the information it can observe, aiming to make its behavior as realistic as possible. These
methods typically evaluate an agent’s velocity through a score function. For instance,
this score function could be a cost function that describes the energy expenditure of the
agent [Guy et al. 2010] or other types of functions [Guy et al. 2011; Narang et al. 2017].
To find a velocity that makes the agent’s score as satisfactory as possible, velocity-based
methods can be further divided into sampling-based [Berg et al. 2008] and optimization-
based strategies [Van Den Berg et al. 2011].

Another type of simulation is vision-based approach. The approaches of this kind “at-
tempt to replicate how human navigate literally based on what they see” [Toll and Pettré
2021]. the essence of vision-based methods involves rendering virtual visual information
for each agent to simulate their observation of the virtual environment. Contrasting with
previously mentioned methods, a distinctive feature of this approach is that agents cannot
access the global information of the virtual scene. Instead, they rely solely on the informa-
tion acquired through their virtual vision (typically stored in pixels) for anticipating and
avoiding collisions. Additionally, due to the necessity of rendering virtual vision for agents,
these methods also pay special attention to the agents’ speed and direction. This applica-
tion requires agents to base their movement calculations more on visual information than
on global data.

Ondřej et al. [2010] proposed one of the first vision-based crowd simulation approach.
Based on the information lied in each pixel, this algorithm adjusts the agent’s speed and
direction to avoid future or imminent collisions, while trying to keep the agent’s speed as
constant as possible. Dutra et al. [2017] defined a cost function that involves the agent’s
speed and angle. The cost function is computed using the rendered synthetic vision. At
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each simulation step, the algorithm uses the gradient of the cost function to update the
agent’s state. Other studies such as López et al. [2019]’s work leveraged optical flow as an
alternative approach to extract inter-frame information from each pixel of the synthetic
vision. Again, the authors defined a cost function based on the agent’s synthetic vision
and computed the agent’s future movement through optimization.

2.3.2 Data-Driven and Deep Learning approaches

2.3.2.1 Searching From Database

The knowledge-based methods model pedestrian behaviors through manually designed
rules or functions. In contrast, a more intuitive approach is to use data from datasets to
generate individual behavior in crowds. To ensure the realism of the generated data, the
most straightforward method is to directly reuse behaviors from the crowd dataset. For
an agent in a certain state at a given moment, if we can find a pedestrian in the dataset
with the same state, we can naturally copy the pedestrian’s next action to the agent’s
subsequent moment, thus ensuring the realism of the agent’s behavior. However, finding
an identical state in the dataset is rare. Therefore, it is worth considering searching for
sufficiently similar data in the dataset and then transferring the corresponding subse-
quent action to the agent in the simulation. This approach requires clustering the existing
crowd datasets and an efficient querying method [Lerner et al. 2007; Charalambous and
Chrysanthou 2014]. Although this method demands a high level of data richness, the
primary interest in current research is in finding the most appropriate match between
the agent state used for querying and the data obtained. Illustrating this point, Zhao
et al. [2013] employed a neural network classifier to establish an implicit criterion for
such matching. Similarly, Boatright et al. [2015] contributed to this line of research by
introducing macroscopic characteristics, like local density and crowd flow, as additional
parameters to refine the query process. Further, Ren et al. [2018] developed a set of ob-
jective functions based on the action state of the agent and utilized optimization methods
to retrieve the most suitable real data, thereby enhancing the match’s accuracy between
the agent state and the data.

2.3.2.2 Trajectory Prediction Using Deep Learning

With the widespread application of deep learning across various research fields, new
methods based on deep learning have emerged in the field of crowd simulation. Unlike
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traditional data query methods, these approaches directly use crowd data as training data
for neural networks, aiming to fit an abstract mathematical model through the nonlinear
computational process of deep neural networks. The primary goal of these methods is
to predict the future trajectory of an agent based on past trajectory, thus termed Hu-
man Trajectory Prediction (HTP). In this field, network structures like Recurrent Neural
Networks and Long Short-Term Memory are particularly emphasized [Alahi et al. 2016].
Some studies view HTP as a problem of generating future trajectories based on past tra-
jectories and states, exploring the application of GAN [Gupta et al. 2018; Amirian et al.
2019], VAE, and Conditional VAE [Salzmann et al. 2020], as well as diffusion models [Gu
et al. 2022; Rempe et al. 2023] for generating and predicting pedestrian trajectories to
achieve crowd simulation. Other research focuses on generating trajectories in a broader
sense, not limited to pedestrian trajectories, showing good applicability on human crowd
datasets [Zhao et al. 2019; Ivanovic and Pavone 2018].

2.3.2.3 Reinforcement Learning

Reinforcement learning (RL) enables systems to learn through trial and error, focusing
on optimizing state descriptions and reward functions. While traditional RL has clear,
well-defined goals, it’s not inherently data-driven unless input data similarity is integrated
into its objectives. Notably, RL models prioritize optimizing objectives over mimicking
input data, contrasting with approaches like generative models.

Recent advancements apply RL to local navigation and agent interaction, acknowl-
edging the complexity of designing optimal problem setups and the potential benefits
of automating this process. For instance, deep reinforcement learning leverages deep
neural networks to process raw data, simplifying state descriptions and enhancing ac-
tion decision-making. Pioneering implementations in agent navigation by Casadiego and
Pelechano [2015], and robot navigation by Chen et al. [2017b], highlight RL’s ability to
surpass traditional methods.

Furthermore, applications in crowd simulation and footstep-based navigation, explored
by Lee et al. [2018] and Haworth et al. [2020], respectively, demonstrate RL’s adaptability
and superiority in various domains. These findings emphasize deep RL’s potential, par-
ticularly when coupled with straightforward reward functions, to outshine conventional
approaches.
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2.3.3 Evaluation Methods

The evaluation of a crowd simulation algorithm can concern different aspects such as
the real-time performance, the ability to compute energy-efficient motion of agents, or the
level of realism [Toll and Pettré 2021]. In this thesis, however, our review only focuses on
the evaluation methods that concern the level of realism (the authenticity of the simulated
results.)

In evaluating the level of realism in simulation results, one approach involves focus-
ing on the trajectory’s displayed features, either partially or entirely, and assessing these
features to gauge simulation quality. Daniel et al. [2021], after discussions with experts in
crowd-related fields, identified features as illustrated in their publication. These features
encompass both microscopic characteristics, such as average walking speed and angular
velocity, and macroscopic characteristics like local density and the fundamental diagram.
Based on these features, Daniel et al. [2021] proposed the concept of a quality function,
which is a weighted sum of multiple feature scores, providing a comprehensive assessment.
This score’s correlation with realism was validated through perceptual experiments. An-
other intuitive approach is to compare simulation results with real-world crowd data. If
the simulation closely resembles actual crowd data, it is naturally presumed to possess
a degree of realism. Multiple studies have followed this method to evaluate their simula-
tion algorithms. As traditional simulation approaches often involve numerous parameters,
real-world data are also utilized for parameter calibration, enhancing the quality of the
simulation.Furthering this exploration, the challenge of accurately mirroring real-world
crowd dynamics in simulations is underscored by the inherent variability and complexity
of human and collective behavior. Despite this, innovative methodologies have emerged,
seeking to refine the authenticity of simulation results. Fundamental diagrams serve as an
initial benchmark, yet they capture only a fraction of the intricate dynamics present in
dense crowd scenarios. More nuanced approaches involve matching simulated trajectories
with actual human movements, acknowledging the unpredictable nature of individual and
collective behaviors.

Pioneers in this field have ventured beyond rudimentary comparisons, employing a
variety of techniques to bridge the gap between simulated and real-world crowd behav-
iors. From Pettré et al. [2009] focusing on velocity-based steering algorithms to Lerner
et al. [2009] leveraging data-driven methods for a more granular comparison, the evo-
lution of evaluation methodologies is evident. Charalambous et al. [2014] introduced an
outlier detection mechanism, providing a unique lens to identify discrepancies in agent
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trajectories, while Guy et al. [2012] proposed a comprehensive metric based on entropy
to capture the nuances of crowd interactions and movements.

Furthermore, the work of Wang et al. [2017] and He et al. [2020] sheds light on the
importance of understanding crowd behavior at both the micro and macro levels. By
clustering paths and analyzing patterns based on shape, speed, and time, their research
underscores the multifaceted nature of crowd simulations, highlighting the need for com-
prehensive and adaptable evaluation metrics to truly capture the essence of realism in
crowd simulations.

Complementing these methodologies, the optimization of input parameters emerges
as a pivotal aspect in enhancing the quality and realism of crowd simulations. Recent
studies [Wolinski et al. 2014b; Berseth et al. 2014] have transitioned from manual to
automated methods for parameter tuning, framing it as an optimization challenge with
the aim of refining simulation outcomes.

Berseth et al. [2014] conceptualized a framework tailored to SteerBench metrics [Singh
et al. 2009], delineating calibration methodologies and embracing metrics that mirror real-
world trajectory data, thus enriching the fidelity of simulations.

Simultaneously, Wolinski et al. [2014b] accentuated the importance of congruence be-
tween simulations and actual datasets, dissecting both the individual and collective be-
haviors through a myriad of behavioral metrics. Their exploration of diverse algorithms
for parameter optimization underlines the profound impact of fine-tuning multiple metrics
concurrently, paving the way for simulations that not only mimic but resonate with the
complex dynamics of real-world crowds.

2.3.4 Summary

In this section, we review research related to crowd simulation and how crowd data
collected from the real world facilitates crowd simulation. Several conclusions can be
summarized as follows:

First, crowd data plays a pivotal role in crowd simulation. In traditional approaches,
crowd data is utilized to validate and calibrate simulation algorithms. This validation
encompasses various aspects of crowd data, including microscopic characteristics such
as individual acceleration and speed, as well as macroscopic elements like local density
and flow speed. It even involves specific local interaction behaviors, including collision
avoidance, group behavior, and following behavior. In the recent surge of machine learning
methods, crowd data is directly employed in training neural network models.
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Second, the efficacy of traditional crowd simulation is often influenced by multiple
parameters, and the choice of these parameters is typically dependent on the simulation
scenario. This implies that simulation methods are usually scenario-specific and lack uni-
versality, with no single method performing optimally across all scenarios. While some
efforts have been made to enhance simulation quality by combining various simulation
algorithms, the need for scenario-specific parameter settings is unavoidable. Incorrect pa-
rameter settings can lead to unrealistic local or even collective behavior. Calibration of
the simulation process using real-world crowd data is possible, but the scenarios covered
by crowd data are limited, necessitating the availability of targeted real data for effective
calibration.

Third, data-driven simulation methods require real-world datasets for supervising the
training process. When existing crowd data is insufficient, some studies opt to use simu-
lation methods to generate synthetic data.

Last, most current crowd simulation methods focus primarily on determining the accel-
eration, velocity, and position of agents. Although a few simulation methods also consider
agent body motion, in most simulations, agents are represented as discs or some variant
thereof in a three-dimensional world. Typically, when visualization is required, a com-
mon approach is to first complete the simulation and then match each agent with a body
animation based on their velocity state at each moment using a certain strategy. How-
ever, when constructing virtual environments in a three-dimensional world, our aim is
to simulate both trajectory and body motion as realistically as possible. If any step in
the aforementioned processes yields unrealistic results, it is foreseeable that the overall
simulation outcome will also be unrealistic.

2.4 Conclusion

In this chapter, we have seen the importance of crowd data for both understanding
and modeling crowd behaviors. Given the complexity of recording crowds in real life
(Section 2.1) as well as the current limitations of VR-based crowd data collection (e.g.,
typically limited to single user – Section 2.2), there is a need for novel approaches for
capturing complex crowd data, which is the focus of the next chapters.
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Chapter 3

THE ONE-MAN-CROWD: SINGLE USER

GENERATION OF CROWD MOTIONS

USING VIRTUAL REALITY

3.1 Introduction

In this chapter, we present the first contribution of this thesis: the One-Man-Crowd
paradigm, a novel approach for capturing crowd motion dataset based on immersing a
single user in Virtual Reality with a single user.

Figure 3.1 – Snapshot of crowd motions generated using the one-man-crowd approach.
A single user successively embodies each displayed virtual agent in the order indicated
by the highlighting color (from blue to yellow). We studied 3 scenarios that replicated
existing experiments from left to right: circular unidirectional flow, bottleneck situation,
inflow behavior (entering a lift).

Our review of the state-of-the-arts in Chapter 2 has revealed that VR has the potential
to capture the user’s behavior in a very detailed level, including the user’s motion, and
with what object or which character the user is interacting. VR’s potential for capturing
single user’s behavior inspires us to explore crowd motion capture in the virtual world.

Our first contribution in this thesis is dedicated to proposing and validating a VR-
based crowd motion capture paradigm, Moreover, this study offers the possibility of cap-
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turing crowd motion datasets with a single human user. To present this new paradigm, we
first define key concepts and notations in Section 3.2, followed by the general hypotheses in
Section 3.3 Then, we design and realize the technical procedure that concerns some hard-
ware and software in Section 3.4. Our system enables to capture not only the trajectories
of the user acting virtual pedestrians, but also his or her body motion. Research questions
emerged naturally along with the realization of our crowd motion capture paradigm: can
we use it to effectively collect a valuable crowd dataset? How can we validate the paradigm
for the use of crowd motion capture? We chose to validate our method by demonstrating
the similarity between our results and the real-world data which has been acquired in
previous research. To this end, we adopted 3 classical unidirectional crowd motion sce-
narios that are of great interest of study in the crowd-controlled experiment literature,
and replicated them using our OMC paradigm, to capture crowd data and compare the
results with our references (Section 3.4). Our results showed positive outcomes on the
three chosen scenarios (Section 3.5). However, a number of limitations and biases were
observed, which we further explored as future work in this chapter, leading to a small fur-
ther step towards the understanding of the paradigm’s performance on multidirectional
crowd movement (Section 3.7).

In summary, the contributions of this chapter are threefold: (i) We introduce the one-
man-crowd, a new paradigm for using VR to record crowd datasets. (ii) We Propose and
evaluate two versions of this paradigm to observe behavioral variety in data. (iii) We
evaluate this paradigm in three well-known real-world experiments, demonstrating that
OMC preserves some emerging large-scale crowd motion patterns, despite the lack of
variety and unilateral interaction bias.

3.2 Key Concepts & Notations

3.2.1 Notations

To ensure a clear explanation of our methodology, we define the following concepts to
avoid nuances that might make our technical description difficult to understand.

— Crowd: In this thesis, we precisely define a crowd as a group of pedestrians
moving in a shared space during the same period of time.

— Agent and Characters: We define bothagents and characters as the animated
virtual humans used to populate a virtual scene. In the context of using agents
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to describe virtual humans, our focus is more on the nature of virtual humans
being driven by algorithms, whereas the term character better captures the user’s
perception of the virtual person in a virtual environment. Despite this nuance,
Despite this nuance, these two terms might be used interchangeably in some parts
of this thesis.

3.2.2 Formulating the One-Man-Crowd Paradigm

The crowd motion capture paradigm that we proposed in this chapter, i.e., the One-
Man-Crowd paradigm, can be viewed as a decomposition of regular crowd motion capture
in the real world. We may conceptualize the process of recording a crowd’s movements as
a series of individual captures, each corresponding to a single person within the crowd.
To facilitate description, let’s define the capture of an individual as a unit capture.
Assuming a crowd of N pedestrians is to be captured, then N unit captures await to
be (ideally) simultaneously executed. As such captures in the real-world face multiple
challenges, Virtual Reality provides the possibility to remotely and distributively capture
N users in parallel, and to visualize them together in a common virtual scene. Indeed,
while this VR solution allows focusing on only one pedestrian in each unit capture, it
would require N independent VR capture systems to work simultaneously, which, again,
incurs costs and logistical challenges. To simplify such processes, we consider separating
the N unit captures in time, by transforming “executing N unit captures in one time” into
“executing one unit capture in N times”. Thus, the capture process can be restructured
into N iterations, with each iteration involving a single unit capture of a different VR
user. In the following of this thesis, we refer to this idea as a procedure of N-users-to-
capture-N-characters (N2N):

N2N. For a given iteration Ti, a different user Ui is immersed in
the virtual environment in one specific character ci, displaying the
user’s co-located motions in real-time. Every character cj∈[1..i−1] is
displaying global and body motions recorded during previous itera-
tions Tj of each corresponding user Uj∈[1..i−1]. Again, characters
ck∈[i+1..N ] are handled differently depending on the specific crowd
scenario to be captured.

Assuming the practicality of this subdivision, we can extend this concept to a more
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innovative approach: allowing a single user to sequentially perform these iterations and
individually complete the N unit captures. Similarly, we refer to this idea as a procedure
of Single-user-to-capture-N-characters (S2N):

S2N. For a given iteration Ti, a single user is immersed in the vir-
tual environment in one specific character ci, displaying the user’s
co-located motions in real-time. Every character cj∈[1..i−1] is display-
ing global and body motions recorded during previous iterations Tj

of this specific user. Characters ck∈[i+1..N ] are handled differently
depending on the specific crowd scenario to be captured.

Thus, the readers would easily understand that the name One-Man-Crowd stands for the
S2N procedure in principle. However, for the simplicity of text organization, we consider
both N2N and S2N procedures as different realizations of the One-Man-Crowd paradigm.
Note that, from the procedural perspective, the OMC paradigm can be as a repetitive
process of recording human motion and then replaying the recorded motion through a
virtual character. For this reason, in the following chapter where several variations of the
OMC paradigm are presented and explored, we will further refer to this original approach
as the One-Man-Crowd paradigm.

3.3 General Hypotheses

We seek to validate the idea of creating human crowd datasets using the One-Man-
Crowd capture paradigm. From a technical perspective, the capture process is indeed
feasible. We need, however, to prove that the captured datasets are valuable, i.e., compa-
rable with the real-world crowd datasets. To this end, we set up several general hypotheses
that are related to the performance of the OMC paradigm, and further accept or reject
them through an experiment presented in Section 3.4.

Our general hypotheses are related to the possible effects of all the perceptual biases
(e.g., distance or self-motion perception), behavioral biases (e.g., slower walking speeds),
variety biases (e.g., single user in the S2N case) and asynchrony biases (e.g., unilateral
interactions) on the data generated by the OMC approach.

— H1: At the individual level, quantitative differences are expected between real and
OMC virtual data. Aside from this, we expect a high similarity with real data, and
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to preserve existing relations between analyzed variables.
— H2: On the collective scale, the OMC paradigm will lead to a lack of variety in

data, meaning that S2N data could be considered as a subset of real or N2N data
(e.g., S2N data distributions included in real data distributions). Moreover, N2N
data will be more similar to real data than S2N data.

— H3: We expect that both N2N and S2N conditions will enable us to observe the
emergence of crowd motion patterns, as the scenarios that we replicate involve
mostly unilateral interactions.

As an important note, we explore those hypotheses in the light of qualitative analyses
described in the following sections. As we replicate experiments designed by the crowd
modelling community, we also replicate the analysis framework that was performed, and
discuss the most striking effects we can observe. This choice is discussed in Section 3.6.

3.4 Experiment

To investigate whether the OMC paradigm can be used to create valuable crowd motion
datasets, we replicated three real crowd experiments using the OMC paradigm: 1D-flow,
bottleneck, and inflow experiments (elaborated in subsequent sections). These scenarios
are of great interest in the field of crowd modeling. As we advance the concept of leveraging
VR to collect crowd data beyond previous research, we inherit the knowledge and findings
from these studies. With such information, we assume that while the use of VR may
introduce behavioral and perceptual biases, it does not fundamentally affect the capture
process. Thus, by replicating these experiments, we do not seek quantitative accuracy, but
rather a qualitative similarity that aligns with real-world situations. We hypothesize that
the OMC paradigm may introduce two additional main biases: (i) Asynchrony biases due
to unilateral interactions, where only the immersed participant can respond to virtual
agents, and (ii) Variety biases arising from limited behavioral diversity, as the paradigm
involves a single participant repeatedly walking. We utilized both the S2N procedure and
the N2N procedure of OMC to investigate these potential biases.

3.4.1 Experimental Design

Upon their arrival, participants read and signed the experiment consent form, during
which they were presented the task to perform. They were then equipped with a Xsens
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Figure 3.2 – Illustration of the first 3 iterations of the One-Man-Crowd motion capture
paradigm. Each figure provides 4 different perspectives: 1) The user’s movement in the
real world (top left). 2) The user’s avatar in the virtual scene, highlighted by red outline
(top right). 3) The user’s trajectory from the beginning of each iteration to his current
position, the trajectory is projected onto a 2D plan (bottom left). 4) The user’s first person
view while walking during each iteration (bottom right).
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motion capture system, a VR backpack, as well as a Pimax 5K HMD. Calibration of the
motion capture system was then performed to ensure motion capture quality, as well as
to resize the avatar to the participants’ dimensions.

Participants were then immersed into the virtual world, and were instructed to ac-
complish numerous iterations of capture. During each iteration, participants started the
iteration on a red spot (located at a fixed position during the entire experiment), then
walked towards another spot located on the ground among a group of virtual characters
(initial position of the character ci). Each scenario had a specific ending condition, which
would terminate the iteration once activated. Participants would then be guided back to
the initial red spot (not displayed during the actual iteration) so that they would always
start new iterations from the same location. Figure 3.2 provides an illustration of the 3
initial iterations of such a procedure.

Participants first performed one iteration of each scenario presented in Section 3.4.2,
contributing to the creation of the N2N baseline described below, after which they per-
formed a full S2N process. The specialty of these two tasks are listed below.

N2N baseline: trajectories and motions of the N characters in the crowd were created
successively by N different participants. For each scenario, a participant i only took the
role of the i-th character ci, while the cj∈[1..i−1] previous characters were animated based
on recorded animations and trajectories of the previous i − 1 participants. Participants
always performed an iteration of the 1D-flow scenario first, then the bottleneck scenario,
and finally the inflow scenario.

S2N procedure: a single participant created successively the trajectories and motions
of all the N characters in the crowd, by taking the role of one character at a time. Each
participant took part in a single scenario, comprised of 24 or 25 iterations (depending on
the number of characters to act). It is also important to point out that participants were
never told during the experiment that they would be interacting with previous versions
of themselves (see Section 3.6 for further discussion).

3.4.2 Scenarios & Tasks

The 3 scenarios that we chose to replicate are of great interest in the understanding of
crowd behaviors and have been studied by multiple past research. Those research explored
and established frameworks to evaluate human behaviors in the relevant crowd scenarios
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a) b) c)

Figure 3.3 – Configuration of the three virtual experiments. Black squares delimit the
10 m × 10 m experimental ground. Blue lines and circles represent walls defining the
virtual room of each scene. Red dots represent the initial position and ending position of
each iteration. The other dots indicate the starting positions of each virtual character,
colored from dark blue (first to move) to bright yellow (last to move). For each iteration,
participants walked from the red dot to the position of one colored dot to trigger the
experience. a) Characters are uniformly spaced out along the circular path. b) The initial
positions of characters are generated by a Poisson distribution, and ordered based on their
distance to the entrance of the bottleneck. c) The queue of characters waiting to enter
the virtual lift was adapted to our experimental space.

from both individual and collective level. We hereby describe each scenario in detail and
provide the references that we used to evaluate the performance of the OMC paradigm,
then, we explain the exact task that participants needed to accomplish in each scenario

3.4.2.1 1D-flow

Context. Unidirectional (1D-)flows are composed of pedestrians moving in the same di-
rection [Yamori 1998; Daamen and Hoogendoorn 2003a], and are interesting to study
because they are frequent in real environments (e.g., queues or traffic in narrow corri-
dors) with applications to safety (e.g., prediction of the evacuation time through a set
of security exits). Experimentally, they are often reduced to a single lane of participants
following one another [Seyfried et al. 2005b; Seyfried et al. 2010a]. 1D-flow experiments
have often been replicated to understand the effect of various independent variables: cul-
tural parameters [Chattaraj et al. 2009; Gulhare et al. 2018], age [Cao et al. 2016; Ren
et al. 2019; Fang et al. 2019], lighting conditions [Cao et al. 2019b], environment com-
plexity [Chen et al. 2017a; Huang et al. 2018; Sun et al. 2018], sound [Zeng et al. 2019;
D. Yanagisawa et al. 2012], etc. 1D-flow data are analyzed in different ways. Individual
variables explore relations between speed and headway. Their aggregation leads to rela-
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tions between flow and density that are captured by fundamental diagrams. Finally, the
emergence of stop-and-go waves (similar to the ones emerging in car traffic jams) was also
investigated [Lemercier et al. 2012; Jelić et al. 2012a].

Task. In our experiment, the 1D-flow scenario was designed to replicate a real-world
experimental condition used by Lemercier et al. [2012], where 24 real participants walked
behind each other in a circular space. As in the real-world experiment, our participants
were instructed to walk along a circular path (radius: 2.4 m, i.e., trajectory length of
15.1 m) delimited by two circular walls (inner radius: 2 m, outer radius: 4.5 m – see
Figure 3.3-a). The inner wall was 2 m height, to prevent participants from anticipating
their future movement based on characters too far down the line. During the experiment,
participants were instructed to follow the character in front of them from the beginning
of each iteration, while avoiding collisions. They were also not allowed to overtake the
character in front of them. The following characters were animated using a pre-recorded
motion capture animation (see below). They did not react to participants’ motions, but
became transparent if they overtook or went through the participant’s avatar. For the
first iteration, all the characters (except the participant’s avatar) were animated with
a pre-recorded motion capture animation so that participants could continuously adjust
their speed depending on a previous character as in the real-world experiment, and would
not walk alone. This pre-recorded animation was motion captured on a male confederate
prior to the experiments. The confederate was instructed to follow a virtual object in
the same virtual scene, animated using the real trajectory of one experimental condition
of Lemercier et al. [2012] so that participants would respond according to acceleration and
deceleration observed in a previous real situation. Using the same pre-recorded trajectory
and animation for each participant to initially follow also helped to ensure comparable
situations in the following analyses. In each iteration, participants walked for a duration
of 60s, after which they were instructed to return to the initial location indicated by the
red spot.

3.4.2.2 Bottleneck

Context. In crowd study, Bottleneck stands for a flow captured in an environment whose
capacity locally decreases (typically a corridor that narrows). As for 1D-flow, the situa-
tion is of great interest because it corresponds to daily situations and is used to predict
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environment flow capacities and jams as well as evacuation times where the environment
imposes the presence of bottlenecks [Fruin 1971a; Helbing et al. 2006]. Such situations
are analyzed first by calculating flows of people before and after the bottleneck, i.e., the
number of pedestrians passing through the bottleneck per unit of time in relation with the
corridor widths [Carstens and Ring 1970; Navin and Wheeler 1969; Older 1968; Liao et al.
2014]. It was proved that only the smaller width determines the output flow [Adrian et al.
2018], and that personal motivation has a large effect on the flow [Adrian et al. 2020].
Finally note that the number of lanes participants can form in the narrow part of the
corridor is important to study because it determines the flow. Humans may create lanes
with little separation by walking in a staggered pattern, called the zipper effect [Seyfried
et al. 2010a; Seyfried et al. 2009].

Task. We designed our Bottleneck scenario to replicate the real-world experimental con-
dition used by Liddle et al. [2009], where a group of 24 participants were asked to walk
through a real corridor (bottleneck). As in the real-world experiment, our participants
were instructed to walk through a virtual bottleneck (1.2 m wide, 2 m long – see Fig-
ure 3.3-b), while avoiding collisions with virtual characters and attempting to exit the
bottleneck quickly. Before starting a iteration, participants joined the other virtual char-
acters in a 7 m × 2 m waiting zone, located 2 m from the entrance of bottleneck. Unlike
in the previous situation, only the first cj∈[1..i−1] virtual characters were animated during
iteration Ti. The other characters ck∈[i+1..N ] remained idle in the waiting zone, but were
presented to participants at the beginning of the iteration so that they had a sense of the
number of characters involved in the scenario. The iteration ended when the participant
went beyond a red line on the ground, indicating that they had exited the bottleneck.
Moreover, the order of acting the virtual characters was based on their initial distance to
the entrance of the bottleneck (from minimum to maximum), so that participants would
first act virtual characters closest to the entrance.

3.4.2.3 Inflow

Context. Inflow stands for successive entry of pedestrians into a closed area [Ezaki et
al. 2015]. Understanding this process helps modelling traffic in public transport systems
(e.g., entering buses, trains, elevators) [Ezaki et al. 2015; Ezaki et al. 2012; Liu et al.
2016a]. At the individual level, existing analyses focus on the decision-making process by
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participants to pick a final position in the confined space. To this end, different calculations
have been adopted such as Nearest Neighbour Distance [Liu et al. 2016a], Proxemic Floor
Field [Ezaki et al. 2012] and more frequently, Voronoï Diagram [Ezaki et al. 2015; Liu
et al. 2016a]. As shown by these studies, the search for a personal comfort zone plays
a dominant role in the decision-making process [Evans and Howard 1973; Sommer 1959;
Wąs et al. 2006], and locations near the walls of the vehicle are preferred [Liu et al. 2016b].

Task. This scenario was designed to replicate the real-world experimental condition used
by Ezaki et al. [2015], where a group of 25 participants were asked to enter one after
another into a lift. As in the real-world experiment, our participants were instructed to
stand in a line of virtual characters, then to enter a virtual lift of 3.6 m × 3.6 m (see
Figure 3.3-c) and to choose a place to stay once they entered it. The entry of the lift
was 60 cm wide to limit participants’ view so that they could not perceive the position
of the virtual characters that had already entered the lift. As for the bottleneck scenario,
only the first cj∈[1..i−1] virtual characters in front of participants were animated during
iteration Ti, using participants’ recorded animations from previous iterations. The other
characters ck∈[i+1..N ] remained in their original position, but were presented standing in
line with an idle motion to participants at the beginning of the iteration so that they had
a sense of the number of characters that should enter the lift. At the beginning of this
scenario, we insisted that participants should take into account that all the 25 virtual
characters should be able to enter the lift, and therefore that they should choose their
position during each iteration to enable the remaining characters to enter the lift as well.
The iteration ended when the participant considered that he had reached his wanted
position and was facing the entrance, which was indicated by participants pressing the
trigger on the HTC Vive controller that they were holding in this scenario.

3.4.3 Apparatus

We immersed the participants in a Virtual Environment (designed in Unity 2019.4)
using a Pimax 5K Head-Mounted Display (specifications: 90 Hz, 200◦ fov, 2560×1440
resolution), which provides a wide field of view beneficial for such situations involving close
proximity with other characters. The HMD was used with 4 SteamVR 2.0 base stations,
yielding a tracking area of approximately 10 m × 10 m. We also used one HTC Vive
controller in the Inflow scenario (details below), which was held by the participants and
used to trigger the end of each iteration. During the experiment, we recorded participants’
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Figure 3.4 – An illustrative photo of the devices that used to conduct the experiment.

body motions using a Xsens motion capture system, which was used both to display the
participants’ motions in real-time on their avatar, as well as to animate the motions of
the corresponding character in successive iterations. To enable participants to move freely
in the environment, they were equipped with an HP Z VR G2 backpack (specifications:
NVidia RTX 2080, Intel Core i7-8850H processor, 32GB RAM) running the experiment,
on which were physically connected all the devices. This whole setup enabled participants
to physically walk in the real space, while interacting with the other characters of the
virtual crowd and seeing their own motions displayed on a co-localized avatar.
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3.4.4 Participants

We recruited 25 participants for our experiment (age min=22, max=32, avg=26.8±3.1),
which is the minimum number of participants required for the creation of our virtual base-
line data. To avoid biases caused by motion characteristics coming from different genders,
as well as to embody participants in gender-matched avatars, we recruited only male
participants. Participants were recruited through internal emailing lists among students
and staff, were all naive to the purpose of the experiment, had normal or corrected-to-
normal vision, and gave written and informed consent before the experiment. The study
conformed to the declaration of Helsinki.

For simplicity, as participants took part both in the N2N and S2N procedures, we
attribute an ID from #1 to #25 to each participant, with respect to their participation
order in our experiment. This means that participant #i took the role of the i-th character
in the N2N baseline scenarios. Participants #1 to #8 then performed the 1D-flow S2N
scenario, participants #9 to #16 the bottleneck S2N scenario, and participants #17 to
#25 the inflow S2N scenario.

3.5 Evaluation

We separately analyze and discuss the three different scenarios. As introduced in Sec-
tion 3.4.2, for each scenario, previous research has proposed established evaluation frame-
works, and each has different research focuses at both the individual and collective level.
In each scenario evaluation, we explained in details our focuses and the corresponding
results.

3.5.1 Scenario I - Unidirectional Flow

By virtually replicating Lemercier et al.’s experiment [2012], we expect to also replicate
a number of real-world observations they made: the emergence of stop-and-go-waves,
specific relations between individual speed and headway, as well as resulting fundamental
diagrams. We also wonder whether the absence of physical constraints in VR will lead to
unrealistic situations, such as overlaps between agent positions.
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3.5.1.1 Analysis & Results

Data processing. For this scenario, participants’ positions pi are computed according to
a polar coordinate system centered on the circle path they follow: ppolar

i (t) = [θi(t); ri(t)].
We are only interested in the evolution of θ, as ri(t) is almost constant since participants
walk along a circle. We approximate r by its mean value rmean. The position, speed, and
acceleration can thus be reduced to:

pi(t) ≈ θi(t)rmean

vi(t) ≈ θ̇i(t)rmean

ai(t) ≈ θ̈i(t)rmean

(3.1)

Stop-and-go waves. For each S2N dataset, as well as the N2N dataset and our reference
real-world result, we respectively plot the trajectories of all the virtual characters or real
pedestrians in Figure 3.5. (Todo: the blue dashed line is missing in all of these results
-> see the camera ready version article.) The upper blue dashed curve corresponds to
the first agent moving in the circle, i.e., the pre-recorded confederate reference trajectory.
As we said in Section 3.4.2, this trajectory reproduces a real case (center plot) and is
made of periods where the confederate walks, stops, and walks again, etc. The plot makes
evident that the stops of the confederate propagated backward in the 1D-flow, with a
certain propagation speed. Jelić et al. [2012a] proposed a method to compute the speed
of counter flow propagation, by computing the local extrema of vi(t), and by performing
a linear regression on the obtained points, as illustrated in Figure 3.5. Figure 3.6 shows
the distribution of the obtained speed values for all the iterations of each participant, as
well as for the example from Lemercier et al.’s real experiment. This figure shows that
S2N experiments resulted in both faster and slower waves propagation speeds, depending
on participants, and that N2N resulted in in-between values, close to real ones.

Reaction time and following distance. Lemercier et al. [2012] found that partici-
pants in a 1D-flow were mainly matching the speed of their predecessor, trying to cancel
∆vi(t) = vi(t) − vi−1(t). They also found that the propagation speed of waves was proba-
bly determined by participants’ reaction time τ when matching speed, and that the wave
could be damped or resurge depending on the following distance between individuals
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a) S2N #1 b) S2N #2 c) S2N #3

d) S2N #4 e) S2N #5 f) S2N #6

g) S2N #7 h) S2N #8 i) N2N

j) Real data

Figure 3.5 – Unidirectional flow scenario: evolution of pedestrians’ position and the results
of linear regression. Our real data refers to Lemercier et al.’s work [2012].

pi(t) − pi−1(t).
τ ∗

i (t) = arg max
τ

(ai(t) ⋆ ∆vi(t + τ)) (3.2)

where ai(t) is the participant’s acceleration and ⋆ the cross-correlation. Figure 3.7 plots
the obtained distributions for reaction time as well as following distances for each dataset
(S2N and N2N) in comparison to values obtained for Lemercier et al.’s experiments [2012].
This figure shows that the range of observed reaction times is very close between OMC-
S2N or N2N and real. On average, participants matched the speed of their predecessors
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Figure 3.6 – Average and SDM results of all S2N (#1 to #8), N2N and real-world data
(R).

with a delay of 0.5 s.

Fundamental Diagram. We computed the fundamental diagram that captures rela-
tions between speed and density. As in [Jelić et al. 2012a], we considered local density
and speed, i.e., where ρi(t) = (pi(t) − pi−1(t))−1. We smoothed values by adopting the
following binning procedure. First, we calculated the density-speed pair (ρi(t), vi(t)) for
each character i at each time step t. Then, we sorted all the density-speed pairs from
the minimum density to the maximum, and separated them into 960 bins of K elements
each (K = 180 in our experimentation). Afterward, we computed the average density and
speed per bin as:

ρ̄ = 1
K

K∑
n=1

ρn v̄ = 1
K

K∑
n=1

vn (3.3)

Figure 3.8 plots the resulting pairs, for all S2N, N2N as well as the real example from Lemercier
et al. [2012].
Global density. In real 1D-flow experiments, participants’ positions are restricted by
the circle they follow, which gives a global density. In OMC virtual replications, since
participants only see characters in front of them and cannot feel the physical constraints
imposed by participants behind them, nothing prevents them from forming circles where
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Figure 3.7 – a) Reaction time. b) Following distance. c) Total length of the circle formed
by characters (the red dashed line indicates the physical length of the path). #1-#8: S2N
results. R: Real-world data [Lemercier et al. 2012].

the positions of the first characters overlap with the positions of the lasts. This explains
why we gave an initial position to the participants out of the circle and asked them to
get to their position in the queue: doing this allowed them to get an estimate of the
global density, and we here check whether this global density was matched all along the
iteration and whether character positions overlapped. To this end we compute the total
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Figure 3.8 – Fundamental Diagrams showing the velocity-density relationship. Left: Re-
sults of the S2N procedure separately plotted. Right: Compared to real-world results, data
generated by our method seems to be translated towards higher density level.

length L(t) of the circle formed by characters as the sum of the distance between each
pair of predecessor-follower as follows:

L(t) =
N∑

i=2
pi(t) − pi−1(t) (3.4)

As can be seen in Figure 3.7-c, the length of the 1-D queue exceeds the perimeter of
the circle for a few participants, indicating the emergence of overlapping: the expected
global density is not matched.

3.5.1.2 Discussion

We here discuss the comparison between the OMC 1D-flow and the real-world one,
and justify our validation of the general hypotheses. Generally speaking, we observed
the expected results in this scenario, i.e., similarities between the OMC results and the
real-world reference.

First, Figure 3.5 illustrates the striking similarity in data we could obtain between
Lemercier et al.’s real experiment and their OMC replication. Especially, we were able
to observe as expected the propagation of stop-and-go waves for all participants, which
validates H3 (emergence of collective phenomena) for this scenario. The further analysis
of wave characteristics, however, reveals quantitative differences, as expected by H1. Real
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experiments resulted in wave propagation speeds limited to 0.57 ± 0.09 m.s−1, while a
larger range could be observed in S2N datasets (0.69 ± 0.24 m.s−1). Moreover, due to
a lack of variety (i.e., the same participant acting all the characters in the crowd), the
S2N procedure resulted in participant-specific values. On the contrary, N2N results mixed
and averaged these participant-specific behaviours. For instance, the propagation speed of
waves in N2N results (0.66±0.03 m.s−1) is close to the average of all our S2N datasets. As
stated in H2, N2N lowers the effect of lack of variety, even though N2N wave propagation
speeds remain different from real values. However, as real and OMC values were obtained
over two different sets of participants, a more strict OMC-real comparison would need
additional experiments, which is discussed in Section 3.6.

Then, according to their 1D-flow model, Lemercier et al. found that wave propagation
speeds mainly depend on participants’ reaction time to match the speed of their prede-
cessor. This is consistent with our analysis of reaction time. For instance, participants
#7 and #8 displayed both the lowest reaction times and the fastest wave propagation.
As a result, when different participants mix in the N2N procedure, the resulting wave
speed gets averaged as a result of individual differences in reaction times. We can however
observe that participants with the lowest reaction times are the ones with the highest
following distances. This suggests that they might simply be more careful and attentive,
and that this individuality gets amplified by making them interacting with themselves.
However, it is also possible that differences in reaction times in VR could be related
to biases in the perception of distances, as objects typically look closer in VR than in
real life [Loomis and Knapp 2003]. Exploring whether perceived proximity to predeces-
sors could make participants more reactive would however need to be explored in future
experiments.

Next, the analysis of fundamental diagrams leads us to similar conclusions. From
Figure 3.8 we can see the speed-density pairs of each S2N result locate around the ones of
real cases, with a distorted shape caused by the personal preference of each S2N participant
and the lack of variety (H1). Thus, we could think that the real or N2N fundamental
diagrams could result from the combination of the obtained S2N diagrams. Again, the N2N
condition partly solves issues related to lack of variety, and the corresponding fundamental
diagram has a more similar coverage compared to the real one (H2). However, note that
fundamental diagrams of both the S2N and N2N procedure are also shifted compared to
real data. This result indicates that participants tended to walk faster than in real life
with the same local density. While this contradicts previous studies which found slower
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speeds in VR [Fink et al. 2007a], one possible cause of this phenomenon is the absence
of contact rendering combined with HMDs’ reduced field of vision: participants may not
be able to see the entire body (of themselves and of their predecessor), especially the
lower part. The physical space to perform walking motion was also not constrained by
the presence of the physical legs of a real predecessor, resulting in larger steps and faster
walking speed. Note that in real experiments, these physical constraints result in step
locking behaviors as studied by Jelić et al. [2012b].

Moreover, we feared that the absence of physical constraints would lead to overlaps
between agents’ position. For example, the beginning of the queue of agents may overlap its
end. During the experiment, we did not render agents in this situation to avoid disturbing
participants, as these agents would otherwise block their vision and traverse their avatar.
We however compared the length of virtual queues against real ones (which are obviously
bounded by the physical length of the circular path), as displayed in Figure 3.7-c. Our
results provide mixed conclusions. Some participants clearly adopted following distances
which, accumulated, violated the limit of the path length (e.g., #6 and #7), whereas
most participants finally adopted distances that matched the expected global density.
This suggests that our choice of making participants able to observe the global density
by giving them a starting position out of the circle, then joining in the space allocated to
them in the circle, somehow enabled most participants to be aware of the global density
to be matched. This result also suggests that this choice might have had a persistent effect
through the experiment, and that physical differences from real situations inherent to this
virtual setup might be in some ways attenuated with careful organization.

As a final point, we discuss the choice to animate the first agent in the circle using
motions pre-recorded by a confederate. It was motivated by two reasons. First, in real
experiments, stop waves are initiated by the first participant in the circle being blocked
by the presence of the last one. This would have raised a problem in the OMC replication,
since the last agent motion is recorded last. Furthermore, as the confederate replicates
the motion of the first participant in Lemercier et al.’s experiment, doing this enabled us
to perform a strict comparison between real and virtual data as illustrated in Figure 3.5,
as well as to ensure that all participants were presented with the same initial condition.
While requiring to record specific animations prior to an experiment might be limiting
in some situations, we believe that approaches replicating characteristics of an observed
iteration could be also used, e.g., from recorded videos.
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3.5.2 Scenario II - Bottleneck

In this replication of a bottleneck experiment [Liddle et al. 2009] we explore the biases
introduced by the unilateral interactions, as participants need to negotiate with people
coming from their side to enter the bottleneck. We evaluate the resulting number of lanes
in the bottleneck as well as fundamental diagrams, since they are useful outcomes of such
an experiment.

3.5.2.1 Analysis & Results

Lane formation. To count the number of lanes, we reproduced the method described
by Seyfried et al. [2009] to estimate the probability to finding a pedestrian at a certain
lateral position px inside a measurement zone (a corridor section along the y axis) with
−0.6 m ≤ x ≤ 0.6 m and 0.5 m ≤ y ≤ 1.5 m (see Fig. 3.3). In Figure 3.9, we present all
the S2N results as well as the N2N result, and the real one. The distribution of lateral
positions (binned) is presented in Figure 3.10. Real data corresponds to the results of
the experiment performed by Liddle et al. [2009]. The number of formed lanes can be
easily observed by counting the number of peaks in the distribution. For the real data, we
can see that 2 lanes emerge. More difficult to appreciate from static plots only, the little
distance separating the lanes results from the zipper effect (staggered walking pattern, see
the companion video for illustration). Interestingly, OMC led to two extreme kinds of lane
formation: a queue neatly lined up and a perfect formation of 2 lanes going through the
bottleneck (as it can be seen in Figure 3.9-a and -h respectively). Meanwhile, most of our
results present a mixed pattern between these two extreme results, resembling the N2N
result presented in Figure 3.9-i which exhibits a normal distribution of lateral positions.
Figure 3.9-a displays what can happen in the case of a single lane, where participants lined
up by first walking directly towards the end of the queue, instead of gathering around the
entrance (as observed in most other iterations, e.g., the N2N one).
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a) S2N #9 b) S2N #10 c) S2N #11

d) S2N #12 e) S2N #13 f) S2N #14

g) S2N #15 h) S2N #16 i) N2N

j) Real data

Figure 3.9 – Bottleneck scenario: Comparisons of lane formations in different conditions.
Trajectories are colored by the order in which participants acted as virtual pedestrians
(see Figure 3.3). We remark that the result #9 illustrates a typical situation where the
lane formation can be clearly observed, whereas #16 illustrates another specific pattern
where all the virtual characters converged on a single lane. The real data refers to the
work of Liddle et al. [2009].
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Bottleneck fundamental diagram. Fundamental diagrams capture relations between
density and flow, but flow in a bottleneck linearly depends on its width [Seyfried et al.
2009]. To make the diagram independent to the bottleneck width, we study the specific
flow Js (as defined by Seyfried et al. [2009]) which represents the flow per unit of space,
computed as the product of density ρ and the flow speed v:

Js = ρv (3.5)

The estimation of ρ and v is performed on a section of the corridor (y ⊂ [0.5 m, 1.5 m]).
ρ is computed according to the method proposed by Steffen and Seyfried [2010] (that
guaranties continuity with respect to time):

ρ(t) =
∫

A P (x, t)dx
|A|

=
∑

i

∫
A Pi(x, t)dx

|A|
(3.6)

where A represents the measurement area, P (x, t) is the probability density of having a
pedestrian at the position x at the time t, Pi(x, t) is the corresponding probability density
for a pedestrian i at the time t, and is supposed to be uniform on the Voronoï cell of the
pedestrian. With this definition, N(t) = ρ(t)|A| denotes the number of pedestrians in the
considered section of the corridor and is continuous even when an agent enters in or exits
the section. We then compute the flow speed by a weighted averaging method as follows:

f(t) =
∑

i

∫
A Pi(x, t)dx

N(t) vi(t) (3.7)

where the speed vi of the pedestrian i is numerically derived from its position. We present
the fundamental diagram resulting from specific flow against local density in Figure 3.11.
This figure shows that the range of speeds participants walked at are similar between
S2N and N2N. The specific flow values are also clearly lower for OMC than real data,
confirming the effect of a 1-lane traffic where a 2-lane one was expected, resulting into a
loss of flow. We also consider that walking speed, known to be slower in VR, may have
accentuated this loss of flow.
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Figure 3.10 – Probability to finding a pedestrian at position x inside the exit measurement
zone −0.6 m ≤ x ≤ 0.6 m, 0.5 m ≤ y ≤ 1.5 m.

3.5.2.2 Discussion

In this second experiment, we attempt to validate the idea of generating a crowd
walking through a bottleneck with the OMC paradigm. We selected a bottleneck width
where, in real experiments, a 2-lane traffic starts emerging (the full real experiment stud-
ied corridor width as a dependent variable). Our attempt was not always successful: few
participants formed 2 lanes, most only 1 lane, and we could observe specific queuing up
behaviors. We believe that the non-emergence of a 2-lane traffic can be explained by per-
ceptual and variety biases: i) some participants may have perceived the corridor to be
smaller and considered that only a 1-lane traffic would fit, and ii) the S2N procedure
resulted in the same decision made by the participant iteration after iteration, and some-
times resulted in specific trajectories like the one showed in Figure 3.9-a. This validates
hypothesis H1, showing quantitative differences between real and OMC virtual data at
the individual level. However, we believe that this effect could be further studied based
on previous work on passability judgement tasks in VR [Geuss et al. 2010]. Indeed, the
question of the number of lanes fitting a given corridor width could be turned into one of
passability into a gap. It might therefore be relevant to replicate the full experiment of Lid-
dle et al. [2009] with corridor width as a dependent variable, so as to observe transition
width (from 1 lane to 2 lanes for example) in a VR context. As expected from H2, N2N
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Figure 3.11 – Estimated specific flow with respect to instantaneous local density.

prevents this individual-specific decision on the number of lanes to form to be repeated
iteration after iteration. Our interpretation is that, all together, participants varied the
decision to form a 1-lane or a 2-lane traffic, which resulted in a uniform distribution of
lateral positions. H3 is therefore only partly validated, as the expected pattern could be
observed in some iterations, but this was not always the case.

Additionally, it is quite clear that the fundamental diagram analysis enables observing
the large quantitative differences in the measured flows: the absence of emergence of a
second lane in most cases completely offsets flow values in similar densities. This high-
lights the need for awareness of quantitative differences of experiments performed in VR.
Nevertheless, we also observed a consistency between the S2N and N2N results, as well
as that the relation between specific flow and density is preserved compared to real world
results (flow decreases when density increases, with similar slopes).

79



Chapter 3 – The One-Man-Crowd: Single User Generation of Crowd Motions Using Virtual
Reality

3.5.3 Scenario III - Inflow

Different from the two previous experiments where we study moving crowds, we here fo-
cus on entering into a virtual confined space by replicating Ezaki et al.’s experiment [2015]
and investigate how participants decide which position to occupy. While previous experi-
ments explored motion interactions with predecessors, here we explore more how people
interact with their environment and the whole crowd: people pick the position they would
prefer, also being conscious that a number of people have to fit. We here present the
corresponding analysis in terms of participants’ final positions and personal space.

3.5.3.1 Analysis & Results

Final positions. Final positions picked by participants are illustrated in Figure 3.12,
along the corresponding Voronoï diagram, for the 9 S2N examples (from #17-#25), the
N2N and a real data example from [Ezaki et al. 2015]. The figures show both the order
in which the positions were picked, and the personal space participants preserved around
them. The personal zones are colored by their area.

Following the analysis performed by Ezaki et al. [2015], we can further analyze the po-
sition picking strategy by representing positions according to the polar coordinate system
(ri, θi) centred at the entrance. For each direction θi, we calculate the distance rmax(θi)
between the pole and the wall in the corresponding direction. As the maximum distance
is different in each direction, we compare the normalized distance rni

= ri/rmax(θi), to
figure out how far, between the entrance and the wall, participants went. Figure 3.13
shows the normalized distance to the walls regarding the order of entrance. In comparison
to OMC, the real results show a higher preference towards positions close to the wall. The
more noisy N2N plot (but with no repetition) exhibits more varied strategies, and little
influence of the walls.

Personal space. To further explore individual behaviors, we computed the final personal
space for each agent, which is here defined as the area of each agent Voronoï cell (see
Figure 3.12). The result is presented in Figure 3.13-b, with personal space presented with
respect to the order of entering.
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a) S2N #17 b) S2N #18 c) S2N #19

d) S2N #20 e) S2N #21 f) S2N #22

g) S2N #23 h) S2N #24 i) S2N #25

j) N2N k) Real data color bar

Figure 3.12 – Inflow behavior scenario: final positions of each pedestrian and personal
space. Final position for different experiences. The entrance of the lift is located on top-
middle. Each cell is colored by the local density of each position, truncated at 3 ped.m−2.
The real data refers to the work of Ezaki et al. [2015].
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Figure 3.13 – Evolution of a) how far pedestrians walked along the direction of their final
position and b) personal space area, with respect to the order of entering, for S2N, N2N
and real-world results, respectively averaged over 8, 1 and 9 experiences.

3.5.3.2 Discussion

In this experiment, we explored the strategy of picking a position in a virtual room
when being filled by a crowd. By analyzing the position picking order, it is clear that
emergent patterns appear, but differ between real and virtual ones. Pedestrians in the
real-world experiment chose their position in a sequence of U-shape formations with outer,
middle and inner layers (Figure 3.12-k). In contrast, pedestrians in our OMC experiment
would rather fill the room from the back to the front in a succession of flat rows, more
or less organized depending on participants (e.g., Figure 3.12-e and -g). Looking at all
OMC results, the corner area near the entrance seems to be rarely used, which differs
from real-life scenarios. This difference can be explained by hypothesis H1. We have
two possible reasons in mind. First, real and virtual walls play different roles: real walls
can for example be used to lean on, which is obviously not the case of virtual ones.
This can explain the preference to stand close to them first in real experiments (U-shape
formations). Moreover, in the OMC procedure, participants do not have to exit the room
at the end of the iteration: the VE disappears, and they move back to the initial position.
This might decrease the importance of standing close to the entrance (that a U-shape
formation will give). We also observed that OMC participants stood further from walls
than in reality, suggesting that the perception of the distance to objects in VR might have
had quite an important effect on final positions, at least those close to walls.

More generally, the evolution of the virtual pedestrians’ personal space (Figure 3.13-b)
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indicates that during each S2N experience, participants usually left themselves a larger
personal space than in real-life. Furthermore, once they found out that the first virtual
agents had occupied a too large space for everyone to fit comfortably, they would overreact
by enormously sacrificing their personal space. This is responsible for the fast dropping
of personal area in the S2N results, and the relatively large personal space in the N2N
result, which is not observed in real experiments.

The lack of variety also led to specific emergent patterns, validating H2. This can be
seen in Figure 3.12-e and -g, where the participant clearly applied a strict strategy to fill
the room, ending up in a very regular squared pattern. The N2N procedure successfully
breaks this regularity (Figure 3.12-j), and we can see some irregular strategies, such as
participant #24 picking the corner position in the back of the room whereas other last
participants more preferably picked positions next to the door. Nevertheless, emergent
patterns resulted from the OMC procedure, validating H3.

3.6 General Discussion

Combining the results and analyses from three experimental scenarios, we provide a
general discussion of several important aspects. First, we evaluate the research method-
ology employed in this chapter. Then, we discuss the similarities and differences between
S2N and N2N. Finally, we present our thoughts and deliberations on topics beyond the
primary focus of this chapter, including animation, interaction, and scenario choice.

3.6.1 Methodology

In this chapter, our methodological approach consisted in replicating several existing
experiments in VR with our OMC paradigm. We relied on existing analysis frameworks
typically used in the crowd modelling community to evaluate our results according to
common practice from this community. While this involved relying on qualitative eval-
uations, we believe this approach was more relevant to provide a first evaluation of the
OMC paradigm. Apart from some limitations discussed below, our conclusion is that
we successfully replicated three experiments that involve, mostly, unilateral interactions.
Successfully, because we were able to replicate the observation of some existing, already
known and observed, emergent phenomena. This is a major difference with previous stud-
ies in VR on collective behaviors that focused on individual analyses of local variables
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(e.g., [Bruneau et al. 2015; Rio et al. 2018; Ríos and Pelechano 2020]). It is also clear
that the biases we expected influenced to some extent the observed emergent phenomena.
However, they mostly affected the characteristics of those phenomena without preventing
their natural emergence. We were also able to observe which characteristics were affected
and how, and could provide interpretations based on some formulated hypotheses.

While our analyses relied on qualitative analyses, we also believe that quantitative
analyses will be important to explore in the future. For instance, a quantitative analy-
sis would ideally require to perform again the real experiments with the same group of
participants experimenting OMC. Given that our goal was to evaluate the potentialities
of the OMC paradigm, the effort required to conduct such a real experiment would have
prevented us from exploring the variety of scenarios we could cover here. At this stage, it
would also be relevant to quantitatively evaluate the effect of several specific biases on our
results. One interesting direction would be for instance to replicate studies on the effect of
known dependent variables (e.g., age, density, corridor width). E.g., does the effect of age
on 1D-flow can be reproduced using OMC? While characteristics of emergent phenomena
are biased, would the effect of dependent variables still be observed and exploitable?

3.6.2 S2N vs. N2N

Our results suggest that the variety bias seemed to have influenced the most the
characteristics of emergent collective phenomena. More specifically, the S2N procedure
led in some cases to a replication across all agents of some specific individual behavior,
that could be observed as a sort of pattern exaggeration. Such extreme observations, which
were reported in the discussion of each experiment, included the formation of single or
extremely distinct lanes (Figure 3.9-a and -h), or entering the virtual room in an overly-
organized manner (Figure 3.12-e and -g). Since N2N solves the effect of this bias efficiently,
we could claim that OMC-N2N is the only viable solution here. However, S2N is more
convenient in practice because N2N still requires involving many participants to create
new crowd motion datasets. Therefore, to further explore the potentialities of OMC-S2N,
we still have two main questions opened to be addressed in the future. First, would the
average of data resulting from multiple S2N datasets be equivalent to a N2N dataset?
In other words, could we deduce the characteristics of a phenomenon emerging from
interactions between various people given multiple ones emerging from interactions with
oneself? The second is about possibilities for a M2N procedure, where M participants
would control N agents, while keeping M as small as possible compared to N in order to
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keep the advantage of recruiting few participants to generate large datasets. Future work
would then investigate what would be the required M value to cancel the effect of the
variety bias.

3.6.3 Character Animation Details

OMC agents replicate participants’ behaviors in a limited way. E.g., we captured their
full-body motions using a motion capture suit, but neglected their gaze activity, which is
known to play a great role in human interactions, while difficult to study in practice. Other
modalities, like sound, were not recorded. Therefore, we would like to explore the possible
benefit of capturing more detailed behaviors and incorporating them in the VE, as well as
to explore novel ways of making participants aware of the physical presence of characters
(e.g., evaluating the benefits of rendering contacts using haptics [Berton et al. 2020a]).
Another option would be to edit recorded behaviors, for example to change agents’ motion
style, which may provide another solution to lower the effect of variety bias. This would
also raise novel questions, e.g., would that prevent participants to understand that they
are interacting with themselves? Would a single participant behave in a more varied way
given that he/she visualizes more varied motions?

3.6.4 Generalizing Interactions

Did participants realize they were interacting with themselves? The gross answer is
that half of them reported yes, while this proportion depended on scenarios (all partici-
pants for 1D-flow, 2 for bottleneck, and 3 for inflow). For them, it was clear that inter-
actions would be limited to unilateral ones, and that visible agents would never respond
to their actions. While this is a limitation of OMC that will be difficult to overcome, we
believe a number of solutions can be explored in the future to generalize the type of inter-
actions that can be performed with OMC. The first one is to decompose interactions into
multiple sections of time where participants control alternatively agents, similar to what
Osimo et al. [2015] did for building conversations with one-self (which was one source
of inspiration for OMC). The second solution would be to perform the S2N procedure
multiple times. For example, in a dual interaction between agents A and B, let the partic-
ipant controlling A, then B to unilaterally interact with A, and then A again to interact
unilaterally with B, etc. This raises new important questions, such as whether multiple
unilateral interactions can converge (or not) toward the result of a bidirectional interac-
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tion. The third solution is to use a collision avoidance techniques to override previously
recorded trajectories when a character is on a short-term collision course with the user.
This consists in making a local and interactive adaptation of the trajectory, only when
necessary, to avoid unrealistic situations. This solution has however a clear drawback:
as mentioned in the beginning of this paper, modifying trajectories in such a procedural
manner might reduce the realism of the generated dataset. With three possible choices,
we believe that those solutions will enable us to generalize the use of OMC for other types
of scenarios, e.g., studying collision avoidance strategies, large-crowd interactions, etc.

3.6.5 Generalizing Scenarios.

As previously mentioned, our study prioritized the replication of crowd scenarios
mainly involving unilateral interactions. However, daily situations would include mul-
tidirectional interactions as well, which makes scenarios extending beyond unilateral in-
teractions our next target. Intuitively, we anticipate new artifacts can result from those
scenarios. Thus, we have conducted a preliminary experiment exploring them to gain in-
sights about their real nature and importance. We present a detailed description of these
preliminary attempts in the following section (3.7).

3.7 Beyond OMC: A First Step Towards Multidirec-
tional Interactions

So far, our study in this chapter has validated the utility of the OMC method by
replicating three real-world experiments and comparing the results, thereby demonstrat-
ing its capability to construct valuable datasets. Following the confirmation of OMC’s
performance in the three unidirectional crowd scenarios discussed earlier, it was a natural
progression to explore its efficacy in more complex scenarios, specifically within multidi-
rectional crowd movement contexts. This endeavor aims to investigate the performance
and limitations of the OMC method in multidirectional crowd movement contexts, thereby
providing insights that will form the rationale for the more complete approach to be pre-
sented in the next chapter. We employ the same experimental approach as outlined in
Section 3.2.2, attempting to construct three multidirectional crowd movements.

To this end, we set up and explored the 3 following preliminary research questions:
— Q1: In multidirectional crowd scenarios, a participant needs not only to react to
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the virtual characters in the front, but also to pay attention that virtual characters
may come from his lateral direction, and even from behind. In this case, can the
participant generally complete the creation of a crowd scenario without colliding
with virtual characters?

— Q2: During the experiment, as the participant successively embodies different char-
acters, he/she will have to interact with more and more moving characters. Will
this continuously increase the difficulty for the participant to perform collision
avoidance? Will the participant have to gradually increase the complexity of his
movements?

— Q3: The difficulty of generating multidirectional crowds can be influenced by both
the number of interactions and their directions. Do these two factors have an equal
level of impact on the generating procedure?

3.7.1 Experiment

a) b) c)

Figure 3.14 – Configuration of the preliminary experiments. Black squares delimit the
10 m × 10 m experimental ground. Each dot represents the initial position of a character,
indicating the starting order. The first to start is colored by dark blue, while bright yellow
colors the last. The arrows indicate the direction of each character. a) Configuration
of Circle-24 and b) Circle-12, where participants are instructed to walk to the position
diagonally opposite in the circle. c) Configuration of the crossing flow virtual experiment,
the initial positions in each starting zone are generated by a Poisson distribution.

Following the same experimental framework, we designed a preliminary experiment to
replicate three multidirectional crowd motion scenarios listed below. As we were interested
in preliminary insights about how OMC would behave with multidirectional interactions,
and also due to the time constraint, only one naive participant participated in this prelimi-
nary study, and performed the three scenarios. Our main focus is to explore the nature and
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importance of artifacts we may encounter in multidirectional interactions, in preparation
for larger scale experiments. For the same reason, our analyses are not statistical.

The 3 virtual scenarios that we designed to explore multidirectional crowd movements
are: one crossing flow situation and two circle crossing movements with different numbers
of characters but 1 participant.

Circle-24. This scenario was designed to study multidirectional interactions. In this sce-
nario, 24 characters are uniformly spaced out on a circle (radius: 4 m – see Figure 3.14-a).
The goal of the participant is to reach the opposite side of the circle, without colliding
with any other character. Participants are asked to act all the 24 characters present in
the circle, starting from the one on the position (−4, 0). Then, the participant always acts
the 6th neighbor on their right-hand side, skipping it if it was already embodied.

Circle-12. This scenario was designed as a controlled experiment for Circle-24, to study
the effect of density. The task is the same as in the Circle-24 scenario, except that the
number of virtual characters is reduced to 12 so that each virtual character can have more
space for its movements (see Figure 3.14-b). The starting order is decided in the same
way as Circle-24.

Crossing Flow. This scenario was designed to study the performance of OMC during
crossing flows. In this scenario, 24 virtual characters are equally divided into 2 groups.
The two flows cross around the center of the virtual scene at a 90-degree angle (see Fig-
ure 3.14-c). The participant is asked to act alternatively one character of each group,
until he has acted all 24 characters. The participant is instructed to traverse the virtual
room and to reach the ending position, while avoiding any collision with the other vir-
tual characters. The participant alternates iterations involving characters starting from a
different starting region (i.e., from one of the two groups of characters). For each group,
the starting positions were randomly generated by a Poisson distribution, and the virtual
characters are acted by participants in the order of increasing initial distance towards the
center of the scene.

3.7.2 Test Scenario A: Circle (Circle-24 & Circle-12)

To maximize the use of collected data, we adopted a cross-comparison method to
extract as much information as possible from the experimental results. As Circle-12 is a
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simplification of Circle-24, we present their results together.

3.7.2.1 Trajectories
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Figure 3.15 – The generated trajectories, colored regarding the starting order, from dark
blue (first to move) to bright yellow (last to move).

In Figure 3.15 we compare two sets of trajectories generated with OMC (Circle-12 and
Circle-24), with data from real experiments.

Circle-24. From the trajectories displayed in Figure 3.15-b, it appears that the partic-
ipant adopted two entire different strategies. More specifically, we can see that in early
iterations he used a strategy going through the center of the circle, while in later iterations
he adopted longer trajectories, enabling him to circle around the center and therefore to
limit the quantity of interactions in this area. We hypothesize that the difference in strate-
gies is due to the increase in collisions happening with the increase in characters moving
in the scene in such a complex situation. However, it is also important to mention that
both types of strategies were also observed in real experiments (Figure 3.15-c), where we
can see that some agents (possibly moving faster) went almost directly to their destina-
tion through the center of the circle, while others (possibly starting later) displayed more
indirect trajectories.

Circle-12 vs. Circle-24. The Circle-24 scenario was supposed to be more difficult than
the Circle-12 scenario with doubled density. We can see that the participant adopted
similar trajectories for both scenarios, even though with fewer trajectories going around
the center in the Circle-12 situation, as can be observed from Figures 3.15-a & -b.
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Figure 3.16 – The behavioral complexity of the user when acting as different characters,
illustrated by the ratio between the distance that the participants walked and the distance
between the starting and ending positions, depending on the iteration number, compared
to real-world result. The real-world result is averaged over 21 data. Note that in the
real-world case, the pedestrians walked simultaneously, and their number are not order-
dependent. In our experiment, on the contrary, the pedestrian number the same as the
iteration number.

3.7.2.2 Behavioral Complexity

As shown in Figure 3.16, the behavioral complexity continued to increase during the
experiment. An important common phenomenon of the three experimental results is that
the first pedestrian always walked directly towards his goal, leading to an almost straight
first trajectory (dark blue horizontal trajectories). As the number of iterations increases,
the global shape of trajectories becomes more and more complex. We can estimate be-
havioral complexity of each iteration i, through the distance ratio ri:

ri = di/||pi|| (3.8)

where di is the distance that the participant walked through during the iteration i, and pi

is the vector from the starting position and the ending position. We present the evolution
of behavioral complexity in Figure 3.16. As the number of moving virtual pedestrians
increases, the behavioral complexity presents a clear tendency of increase, both for the
Circle-12 and Circle-24 scenarios.
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Figure 3.17 – The shortest distance between the user and any pedestrian for each iteration
of the experiment. The real-world results are averaged over 21 data. The dashed lines
highlight 3 important levels of distance. The blue dashed line indicates the distance where
2 pedestrians are very close. The magenta dashed line indicates the emergence of a slight
touch. For the real-world condition, the red dashed line indicates collision, whereas in the
virtual environment, this would indicate severe interpenetration between the participant’s
avatar and a virtual character

3.7.2.3 Collisions

We detected collisions between the participant and the virtual characters through
post-processing of the generated data. Specifically, we calculated the shortest distance
between the participant and every moving characters during the iteration time. As shown
in Figure 3.17, the participant was generally successful in keeping a relative large distance
to all the moving characters and only had slight touch with them during the iteration
20, where he needed to react to 19 moving characters. Severe interpenetration was not
observed (geometries did not fully interpenetrate).

3.7.2.4 Discussion

Through this exploratory experiment of potentially going beyond the limitations of
OMC, our goal was to further explore 1) if participants can successfully complete the
task without colliding with characters, 2) how increasing complexity of the scene might
influence the participant’s strategies, and 3) how the complexity of the scenario might
influence the participant’s behavior as well. Even though we cannot draw any decisive
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conclusion due to the preliminary nature of the experiment, the trajectories captured
with OMC highlight interesting features and tendencies which are consistent with real
observations. We observed that the participant adopted both direct (i.e., going through
the center) and indirect (larger curved trajectories, avoiding the center) for both Circle-
12 and Circle-24. Of course, this choice of strategies might be relative to participants’
individual preferences.

In terms of the behavioral complexity, we observe that the participant made more
and more complex behaviors during the procedure. A naive explanation of the situation
is that, as more and more virtual pedestrians moved in the scene, he needed to make
more and more effort to avoid colliding with pedestrians from each direction. Meanwhile,
the occlusion among the characters made it more difficult to predict which character was
going to be where. Surprisingly, even with such difficulties, the participant accomplished
the experiment without barely colliding with any virtual character. Although more par-
ticipants would be required to conclude whether the answer to Q1 can be positive, this
preliminary result suggests that the OMC paradigm can handle scenarios of multidirec-
tional movement, including complex ones (Q3). The observation of Figure 3.16 is likely
to lead us to a confirmatory response of Q2.

3.7.3 Test Scenario B: Crossing Flow

Similarly to the Circle-12 and Circle-24 scenarios, we analyze the trajectories and
behavioral complexity.

3.7.3.1 Trajectories

Figure 3.18 shows the trajectories generated by the participant. Different from real-
world situation, the participant has shown a strong preference for the strategy of detouring
the center of the virtual scene (i.e., the friction zone) by adopting large curved trajectories
going through the edges of the scene. We can observe that in the real-world experiment, the
shapes of the two flows were basically consistent during the whole crossing. Although the
large motion strategy in our result can also be observed in the real case, its emergence is
less frequent and the motion is less amplified. We believe this was because the participant
had prioritized the task of collision avoidance, and thus adopted strategies which granted
him more time to predict the agents’ trajectories and more space to act in avoidance
movements.
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a) OMC Crossing Flow b) Real data

Figure 3.18 – Generated trajectories for the Crossing Flow scenario, colored with respect
to the starting order, from dark blue (first to move) to bright yellow (last to move).
a) Results generated by the participant using OMC. b) Real-world result.

3.7.3.2 Behavioral Complexity

As previously, we estimated the participant’s behavioral complexity during each it-
eration using Equation 3.8. The results are presented in Figure 3.19, and show that the
behavioral complexity stayed at a low level for the first four iterations. Afterwards, it
evolved in a peak-valley manner, while slowly increasing on average.

3.7.3.3 Collision

Again, we calculated the shortest distance between the participant and any moving
character during each iteration. A close touch was detected during iteration 16 (Fig-
ure 3.20) where the participant needed to react to 15 characters (8 characters coming
from the lateral side, as well as 7 characters moving in the front). This might be a chained
reaction after what happened during iteration 15, where we observe a peak of behavioral
complexity (Figure 3.19). Interestingly, no other collision happened during the following
iterations.
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Figure 3.19 – The behavioral complexity of the user when acting as different characters,
illustrated by the ratio between the distance that the participants walked and the distance
between the starting and ending positions, depending on the iteration number, for the
Crossing Flow scenario.
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Figure 3.20 – The shortest distance between the user and any pedestrian for each iteration
of the experiment. The dashed lines highlight 3 important levels of distance. The blue
dashed line (50 cm) indicates the approximate shoulder distance. The magenta dashed
line indicates the emergence of a slight touch. For the real-world condition, the red dashed
line indicates collision, whereas in the virtual environment, this would indicate severe
interpenetration between the participant’s avatar and a virtual character
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3.7.3.4 Discussion

In the crossing flow scenario, multiple agents walk through the center of a virtual scene
from two fixed directions, at a 90◦ angle. The participant therefore needs to react to the
movement of the agents in front of them, as well as to those coming from their lateral
side. As the participant’s moving speeds are limited by the agents in front of him, different
agents will arrive at the crossing zone at different time and will there need to perform
local collision avoidance. This might explain the shape of the participant’s behavioral
complexity plot shown in Figure 3.19. Meanwhile, the difficulty of collision avoidance
increased during the generation of more agents’ movements. However, the participant
only experienced one light collision during the experiment, and its influence remained to
be local. One possible explanation for this small number of collisions is that the participant
chose the strategy of large movements and detouring the friction zone through the edge of
the virtual room. The participant’s performance gave out a positive response for Q1. For
Q2, the difficulty of collision avoidance did increase, but the participant still managed to
finish the experiment with barely any collision. The complexity of his behavior, however,
did not continuously increase.

3.7.4 Exploratory Insights

In this section, we designed 2 different scenarios which involved multi-directional in-
teractions, using the same OMC-S2N setup. The first scenario consists of a Circle, where
participants stand on the perimeter of a circle and are asked to reach the antipodal po-
sition on the circle. We performed this scenario under two different density levels (12 or
24 characters around the circle). The second scenario consists of a 90◦ Crossing Flow,
where two groups of 12 characters each cross at a 90◦ angle. We compared both the OMC
results to real-world recordings of similar situations. Our preliminary observations are the
following. In multidirectional interaction OMC scenarios, we observed that the partici-
pant displayed strategies that are visually similar to real-world ones. For example, users
chose to cross the circle either by going straight through the circle center, or by going
around the center, avoiding this area of higher friction between people. In other words,
they used strategy consisting in playing on speed or curvature of their trajectory to avoid
collisions. We also observed some specific behaviors. For instance, in the Crossing Flow
scenario, we observed that the participant often passed through the scene’s edge to avoid
interactions with other characters. This was not observed in real situations. Considering
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that the results were generated by only one participant, we still need to conduct further
formal experiments to investigate whether such observations are systematically related to
the OMC paradigm and the scenarios.

Noticeably however, our experimental results suggest that even though introducing
multidirectional interactions makes the participant’s task more difficult, it is still possible
to create such crowd movements using the One-Man-Crowd paradigm. In both cases,
the participant finished the scenario without interpenetrating (or in a very light way)
with virtual agents. Knowing collision avoidance was a prioritized task, the participant
put great effort in observing and predicting the agents’ movement. This leads us to a
positive answer to question Q1, but with a condition, that the participant was instructed
to prioritize the collision avoidance. In addition, in both of the scenarios, we observed
that the difficulty of keeping large distance to all the moving characters continuously
increased. In terms of the behavioral complexity, we have, however, observed that, in
the scenario of Crossing Flows, the behavioral complexity of the participant seems to be
limited in a specific region. This resulted in a positive answer to Q2, with a nuance about
the progressive increasing of behavioral complexity. Meanwhile, this might imply that the
number of directions and the number of interactions do not have the same impact on the
generating procedure, with the number of directions seemingly having a greater impact
(Q3).

In terms of behavioral variety, which has been a major focus of the principal study of
this chapter, we made different observations between the Crossing Circle and the Cross-
ing Flow scenarios. In the Crossing Circle scenario, the participant generated a set of
trajectories with various movements, which can also be observed in real cases. In the
Crossing Flow scenario, the lack of behavioral variety has led to an individual-specific
result, which is unrealistic. It is thus interesting to evaluate the use of local adjustments
for the movements that have already been recorded, to improve the interactivity of the
generated crowds, and reduce the frequency of generating individual-specific trajectories.
More explorations need to be conducted in this direction.

3.8 Conclusion

In this chapter, we introduced and rigorously tested a groundbreaking crowd mo-
tion capture paradigm. This approach requires a user to sequentially impersonate various
virtual characters across different iterations. Subsequently, a virtual reality platform is
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utilized to display these characters simultaneously, all successively enacted by the user,
within the same scene.

In the first place, to assess the viability of this novel method, and as a first investi-
gation in this area, we selected three typical unidirectional motion scenarios from crowd-
controlled experiments as benchmarks for comparison. Our experimental findings and
analytical review affirm the utility of this technique. Significantly, we established that the
crowd motion data generated through this paradigm bears a qualitative resemblance to
real-world environments, both at the individual and collective levels.

Nonetheless, our observations revealed that some participants produced unique S2N
patterns, particularly in bottleneck and inflow scenarios. Unlike the simpler 1D flow, these
scenarios entail a greater degree of interactions. However, in our setup, each character only
replays pre-recorded movements, which hinders any real-time interaction with the partic-
ipants. After the generation of certain characters in the environment, the participants are
unable to engage with the existing virtual crowd and are merely integrated passively into
it. Furthermore, at the beginning of this process, when participants navigate through an
empty experimental space, they tend to move directly towards their target. This behavior
contrasts with real-life situations, where an individual’s path is often influenced by the
movements of surrounding people. Given these considerations, we posit that it is crucial
to significantly enhance the interactive aspects of the One-Man-Crowd paradigm for a
more authentic and dynamic representation of crowd movements.

After the first study, we conducted an exploratory experiment to gain insights about
the ability of OMC to handle complex situations that involve dense, multidirectional, in-
teractions. This exploratory experiment involved one participant generating crowd move-
ments in three scenarios (Circle-12, Circle-24, and Crossing Flow).

Although the exploratory analysis was not conclusive due to the minimal participation
in the exploratory experiment, we observed that it was possible for one human user
to generate datasets covering multidirectional crowd movements without generating too
many collisions. However, similar to our observation in the inflow scenario, our strong
instruction on collision avoidance had again driven the participant to adopt unnatural
strategies (i.e., always detouring to the center of the crossing area) and behaviors (i.e.,
frequent head rotation to watch pedestrians from all directions) to over compensate the
non-responsiveness of the agents when generating trajectories. This implies that to acquire
natural behavior, it would be necessary to alleviate the firmness of our instruction as
well as addressing the non-responsiveness of the agents. We also observed specific initial
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behaviors (e.g., participants walking directly to the goal during the first trial), which,
despite being relevant since they were alone in the scene, would need to be mitigated to
increase the naturalities of the final crowd animations.

All these results therefore suggest that OMC is a novel, relevant paradigm for simpli-
fying the process of capturing crowd animations in VR. The following chapter will then
focus on exploring potential improving of the method, by exploring the value of providing
contextual crowds (i.e., providing to the user a crowd context during the initial iterations
of the capture) and reactive crowds (i.e., providing the virtual crowds with the ability to
respond to the user) during the crowd motion capture process.
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Chapter 4

EFFECT OF CONTEXTUAL AND

RESPONSIVE CROWDS ON VR-BASED

CROWD MOTION CAPTURE

4.1 Introduction

In the previous chapter, we proposed the One-Man-Crowd paradigm as a novel ap-
proach to capturing human crowd motion datasets. We noticed that the paradigm suffers
from the lack of interactivity in two main aspects. (1) At the beginning of the generation
process, the users walk alone in an empty virtual scene, and tend to walk straight towards
their destinations. Such behaviors are unrealistic in the real-world situation, especially
in multidirectional crowd movements. In the real world, pedestrians predict each other’s
future path and may take action in advance (such as adapting their speed or direction)
to avoid any potential collision and are not likely to walk straight (See Figure 4.2). (2)
During the experience, more and more characters are added into the virtual scene, and
will make it more and more difficult for the users to plan their path (See Figure 4.3). This
is because the virtual characters only replay recorded motion and cannot interact with
the users. When generating multidirectional crowd motion within the One-Man-Crowd
paradigm, the users may get trapped by numerous surrounding characters and will expe-
rience unavoidable inter-penetration with several of them. Such phenomena may lead to
an unpleasant user experience and force the users to adopt a passive strategy where they
always keep large distance with the characters, and finally result in specific crowd motion
patterns.

In this chapter, we seek to tackle these two limitations by further exploiting VR’s
capability of creating immersive virtual experience. To this end, we reconsider the idea of
taking advantage of crowd simulation to increase interactivity. As mentioned in Chapter
2, numerous studies have deployed simulated crowds to conduct immersive experiments
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Figure 4.1 – Illustration of our proposed 3R paradigm (Replace-Record-Replay), where
a single user (red outline) is initially immersed into a simulated contextual crowd whose
autonomous agents (green outline) are successively replaced by the user’s captured data
(blue outline). The consistency of the user’s behavior in this 3R scenario is compared
with 4R (Replace-Record-Replay-Responsive), where the blue agents are made locally
responsive.

involving a single user. This type of experiment immerses the recorded participant within
a simulated, virtual crowd, consisting of autonomous – and therefore reactive – agents
(e.g., [Olivier et al. 2014; Bruneau et al. 2015]), and has been proved to be very appropriate
for closely observing the reaction of one (at a time) individual to a given situation within
a crowd. This approach is, however, irrelevant for recording full crowd datasets, since it
focuses on recording the behavior of several participants at once, and everything but the
VR-user is simulated. Meanwhile, the One-Man-Crowd paradigm does not involve any
simulation. We believe that such simulated interactions can be valuable in the pursuit of
improving interactivity to the One-Man-Crowd paradigm

To this end, we build on and extend the One-Man-Crowd paradigm – which can be
categorized as a process of Record-and-Replay (2R) – by immersing participants into
contextual crowds, defined as a number of characters (agents) providing participants with
realistic surroundings from the beginning.

Specifically, we propose two versions of this new paradigm: Replace-Record-Replay
(3R), where, instead of an empty scene as in 2R, users move among a contextual crowd
and progressively replace, one at a time, each of its virtual agent; Replace-Record-
Replay-Responsive (4R) where, extending 3R, a motion correction strategy is added
to agents by locally editing their motion when the user is close. This makes user-recorded
characters responsive, e.g. by enabling them to show collision avoidance behaviors. Our
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Figure 4.2 – During the first 3 iterations of the 2R procedure, the virtual scene is nearly
empty, and thus the user tends to walk straight towards his/her goal. This phenomenon
is not realistic.

exploration of these two paradigms leads to the understanding of: (1) the effect of be-
ing immersed in a contextual crowd on the users’ behavior during the crowd generation
process, and (2) the effect of having responsive characters departing from their original
trajectories on the user’s behavior, which indeed impacts the quality of the generated
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Figure 4.3 – As the generated agents are not responsive in the 2R condition, these agents’
movements might constrain the user’s path planing and lead to unavoidable collision
between the user and the other agents.
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crowd data. The exploration of these effects relies on behavioral metrics to compare the
properties of trajectories recorded using various paradigms, or with real data.

The contributions of this chapter are threefold:

1. We introduce the concept of contextual crowds to combine the benefits of im-
mersion into a simulated crowd with those of Record-and-Replay methods, towards
consistent crowd motion capture in VR. We propose two alternative setups (3R
and 4R), and compare their results on two well-studied crowd scenarios.

2. Using the 3R paradigm, we validate the use of contextual crowds to induce in-
teractions during the crowd generation procedure. We further demonstrate that
simulated contexts have similar effects than reusing real ones.

3. Using the 4R paradigm, we demonstrate that the use of locally responsive agents
improves the quality of user’s collision avoidance, at the cost of locally departing
from user-captured-only data.

We introduce the key concepts in Section 4.2, the general hypotheses in Section 4.3,and
detail our experiments in Section 4.4. In Section 4.5 we present our analysis methodology
and the corresponding results. We finally discuss our method and the main findings in
Section 4.6, before concluding.

4.2 Key Concepts & Notations

This chapter aims at proposing a novel approach for VR-based crowd motion capture,
which further exploits the potential of simulation in Virtual Environment, and goes beyond
the limitations of our work in the past chapter. To this end, we explore the benefits of using
contextual and responsive crowds to improve the consistency of users’ behavior, towards
the generation of more realistic crowd datasets. With this novel approach, we introduce
multiple new concepts that refine or extand those of the previous chapter. Thus, a clear
revision of the concepts and notations is required first. The remainder of this section
defines the fundamental concepts underlying our study, i.e., the different models we use
for virtual agents, the alternative VR motion-capture processes, and the experimental
scenarios we chose for validation.
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4.2.1 Agents

To populate a virtual scene, we use several types of agents, which differ by the method
that drives their motion, by their role in the data collection process or finally by their
interaction capabilities.

Motion. Agents can be animated using different methods:
— OMC agents refer to agents whose movement was recorded by the participant at

a previous iteration. In other words, they refer to the agents that are created by
following the paradigm introduced in the previous chapter.

— Captured agents also move from pre-existing motion data (e.g. crowd dataset),
but not recorded by the participant. When 2D only crowd datasets are used, 2D
trajectories are augmented into 3D full-body animations using animation tech-
niques.

— Simulated agents refer to agents whose motion is fully computed using a real-
time simulator (e.g. some microscopic crowd simulation method), enabling them
to make real-time decisions in order to reach a predefined destination in the scene
while avoiding collisions. As for captured agents, the computed trajectory is to
be combined on the fly with other animation techniques to produce 3D full-body
animated agents.

Role. Our goal remains to enable a single user to create new crowd motion datasets. For
such datasets to originate from participants’ motion, OMC agents data are stored (and
can then be edited by the 4R mechanism, as explained below). The two other types of
agents (captured or simulated) may be used as Contextual agents, i.e., agents intended
to provide users with contextual information, while they successively act to capture motion
for the OMC agents. Given our new concept of contextual crowds, Contextual agents are
to be present in the virtual scene from the first motion capture iteration.

Interaction Capabilities. From the agent descriptions given above, we understand that,
at any given moment, we may immerse the participant among agents whose movements are
pre-recorded and who ignore the participant’s actions. Collision avoidance behaviors being
expected to be reciprocal, this may cause the user to fail avoiding collisions. Therefore,
we investigate the possibility of providing both OMC and Captured agents with collision
avoidance capabilities. Therefore, we define:
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— Non-responsive agents as Captured or OMC Agents, non-responsive as they
only move by following pre-recorded data and cannot interact with the user.

— Responsive agents as either Simulated (i.e., responsive by nature), or modified
Captured or OMC agents that locally adjust their motion upon the detection of a
risk of collision with the user.

Agents implementation details. In our experimental set-up, the ORCA crowd simu-
lation technique [Van Den Berg et al. 2011] is used to generate the global trajectory for
Simulated agents as well as the reactive portions of trajectory for the Responsive agents,
using the implementation provided by Toll et al. [2020]. ORCA is always activated for
Simulated agents, but needs to be activated and deactivated for the other kinds of Re-
sponsive agents according to the risk of collision with the participant. To this end, we
simply check the distance d between any agent and the participant, and trigger activation
when d < 1m. ORCA is active for a minimum of 0.2s to avoid any flickering effects due to
frequent activation and deactivation. The preferred velocity of Simulated agents is com-
puted to steer them towards their final goal (see Section 4.4.1). The preferred velocity of
the other categories of reactive agents is computed as to recover their pre-recorded trajec-
tory when ORCA is further deactivated. 2D trajectories are augmented to 3D animated
characters using a Unity animator module driven by walking speed, in combination with
a set of motion-captured walking animations.

4.2.2 Crowd-motion-capture Paradigm

4.2.2.1 Process

The main purpose of our work is to evaluate the importance of adding contextual
agents when a single user records a crowd dataset. To this end, we propose and compare
a number of variations of the OMC paradigm that was presented and evaluated in the
previous chapter (illustrated in Figure 4.4):

— 2R stands for “Record and Replay”. We hereby use this term to represent the
process described in the previous chapter, to better distinguish with the following
variations of the OMC paradigm. In this version, the user is initially alone in the
virtual scene, which is iteratively populated with OMC agents (see Figure 4.4).

— 3R stands for “Replace, Record and Replay”. In this version, the virtual scene
is initially populated with non-responsive contextual agents. The participant
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Figure 4.4 – Illustration of the different paradigms in an example with 4 agents. The figure
illustrates each agent’s behavior before and after being acted out by the user, which leads
to a total of 4 trials to record the exemplar scenario. Since Simulated agents are always
responsive, they come in a single version (disc shape).

iteratively embodies each contextual agent, to record a new motion and replace it
with an OMC agent. We distinguish 2 versions of the 3R paradigm: i) 3R-C where
contextual agents are captured agents, and ii) 3R-S where contextual agents are
simulated agents.

— 4R stands for “Replace, Record, Replay and Responsive”. In this version, the
virtual scene is initially populated with responsive contextual agents. The
participant iteratively embodies each contextual agent, to replace it with an OMC
agent. We distinguish 2 versions of the 4R paradigm: i) 4R-C where contextual
agents are captured agents, and ii) 4R-S where contextual agents are simulated
agents.

In summary, the 2R condition is our baseline. Since one of its flaws is the lack of con-
textual information, the 3R condition enables us to evaluate the importance of adding
contextual agents. In addition, the 4R condition enables us to evaluate the importance of
also preventing collisions between agents and participants. Lastly, the XR-S conditions
enable us to evaluate the use of simulation-based contextual or reactive agents instead of
those based on captured data (XR-C). We refer the readers to Figure 4.5 and Figure 4.6
for more concrete illustrations about the 3R and 4R process.
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a) b)

c) d)

Figure 4.5 – We illustrate the 3R process through an example of the simulated context
(i.e., 3R-S). From a) to d), the subfigures depict the evolution of the user’s (red outline)
and the simulated agents’ (green outline) position during the first iteration of capture.
The red curves on the ground show the user’s future trajectory. To capture a virtual
crowd with 18 crowd members, the user will first walk and interact with 17 simulated
contextual agents (i.e., from the character c2 to c18) , whose movement are computed in
real-time by a simulator. While acting out the character c1, the user’s motions and paths
will thus reflect his/her interaction with those agents. Then, during each iteration, the
user will replace the corresponding simulated agent. Afterward, we keep the captured user
motion to animate that virtual character and remove the former simulated agent. By the
end of the capture, all the simulated agents will be removed, and only user-generated
data will be kept. The 3R-C process follows the same process, and the only difference is
that the contextual agents are reanimating real-world captured trajectories, and are thus
non-responsive.
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a) b)

c) d)

e) f)

Figure 4.6 – Illustration of the 4R process with an example of the captured contextual
agents. a) An user first acts out the concerned character of this illustration during a given
iteration. b) During the following iteration, we use an OMC agent to display the recorded
movement, while the user embodies another character. c) The OMC replays the recorded
movement until it encounters the user, when we make the agent responsive by activating a
simulator. d) Driven by the simulator, the OMC agent avoids collision with both the user
and the other agents around, by mainly yielding the way to them. Meanwhile, the collision
avoidance causes delay compared to the agent’s original movement e) When the user goes
away from the agent, we deactivate the simulation, making the agent non-responsive and
let it catch up the delay. f) If the OMC agent manages to catch up the delay, it will once
again replay the original recorded movement.
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4.2.2.2 Apparatus

For the experimentation, we reused the hardware system that has been deployed in the
previous chapter (see Section 3.4.3), except that their drivers were updated to the latest
version before the experimentation (at the beginning of 2023). Regarding the virtual
environment creation, we updated to Unity 2021.3 instead of 2019.4.

4.3 General Hypotheses

Our experiment was designed to assess whether these two novel VR crowd motion-
capture methods can address the limitations of the 2R method, where users 1) freely walk
in an empty scene during the first trials instead of walking among a moving crowd, and 2)
are struggling to avoid collisions as more and more non-reactive agents are progressively
added to the scene. This was shown to create biased behavior from participants, as they are
1) unlikely to initiate interactions when faced with an empty experimental environment,
and 2) likely to experience unavoidable collisions when faced with a dense non-responsive
crowd.

Our general hypotheses are
— H1: By initializing scenarios with contextual crowds, we can mitigate the bias

caused by the fact that users initially walk alone in an empty scene.
— H2: In the 3R paradigm, the type of contextual crowd, whether it is created

through simulation or reanimation from previously captured data, does not sig-
nificantly impact the results.

— H3: The local responsiveness of surrounding agents can reduce the number of
collisions experienced by users and thus improve the consistency of the dataset.
However, frequent alterations of the trajectories already recorded by the participant
may gradually decrease its similarity to human behavior.

4.4 Experiment

4.4.1 Experimental Design

Participants first read and signed the experiment consent form, and were presented
the task to perform. They were then equipped with the Xsens motion capture system,
VR backpack, and Pimax 5K HMD. The motion capture system was then calibrated
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with the guidance of the experimenter to guarantee the quality of motion capture and to
ensure that avatar size corresponded to the participants’ dimensions. Participants were
then immersed in an empty tutorial room and asked to walk six times back and forth from
one side of the room to the other, in order to become familiar with walking in a virtual
environment. Meanwhile, the participants’ comfort walking speed was measured during
this process, and used to adapt the preferred walking speed of simulated characters (see
details below).

During the experiment, participants went through the 5 experimental conditions: 2R,
3R-S, 3R-C, 4R-S, 4R-C. The order in which each participant completed these 5 blocks was
randomly generated. In each condition, participants were always immersed successively
into all the different virtual characters of the sequence in a fixed order. To ensure a smooth
and realistic experience, we adjusted the speed of the contextual agents, which prevented
participants from falling behind and losing contact with the contextual crowd due to a
reduced walking speed. For captured agents, we adjusted the speed of real trajectories using
the factor f = VU/VR, where VU represents the participants’ comfort speed, measured
during the tutorial and unique to each individual, and VR = 1.4 m/s represents the
empirical pedestrian comfort walking speed in real-life [Berton et al. 2019]. Similarly,
we randomly generated a preferred walking speed for each simulated agent within 1.4 ±
0.2 m/s as a constant default speed for each experience, and then changed their preferred
walking speed by the factor f .

4.4.2 Scenarios & Tasks

The 2 scenarios that we chose to replicate are similar to those used in the previously
mentioned exploratory experiment (Section 3.7), which are indeed of great interest in
the understanding of multidirectional crowd movements. They involve however numerous
difference, such as character numbers, starting positions, etc. Those details are described
below, where we first introduce references to relevant existing research, then present the
tasks that the participants accomplished in each scenario.

4.4.2.1 Circle

Context. The Circle scenario corresponds to a scenario where a group of pedestrians
walks from a different point on the circle to the antipodal position of the circle. Before
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a) b)

Figure 4.7 – Illustration of the two experimental scenarios, showing each agent’s initial
position and direction to go. For each scenario, we use equidistant 1 m guidelines to
visualize the crossing area. a) Circle. b) Crossing Flow.

walking, the pedestrians’ starting positions are uniformly distributed around the circle.
Thus, the distance to the closest neighbor is equal to every pedestrian. This scenario is
not regular in daily routine. It is, however, a scenario of great interest in crowd study as it
maximizes the number of interactions [Ondřej et al. 2010]. Such a scenario is challenging
to crowd simulation, as congestion may arise from the agents converging to the center.
Previous research leveraged this scenario to validate simulation algorithms [Kwiatkowski
et al. 2023; Karamouzas et al. 2017] and calibrate simulation parameters [Wolinski et al.
2014a; Daniel et al. 2021].

Task. In our experiments, we replicated the setup presented by Wolinski et al. [2014a],
using a set of captured data with 18 pedestrians as depicted in Figure 4.7-a. Our partic-
ipants were instructed to walk from one side to the antipodal position of a 4 m radius
circle. To make the initial condition of our experiment as close as possible to the real-
world experiment, we selected a set of recorded data and precisely replicated the initial
positions, which explains why those initial positions were not homogeneously distributed,
and the circle is not strictly of 4 m radius. To help the participants localize the antipodal
position of each starting position, we constantly visualized the end position with a green
spot on the ground. Then, the participants were instructed to walk and reach the green
spot without colliding with any other agents. Let us remind the readers that too strong

111



Chapter 4 – Effect of Contextual and Responsive Crowds on VR-based Crowd Motion Capture

a demand on collision avoidance may induce the participants to behave unnaturally (see
Section 3.7.3.1). To minimize the influence of our experimental instruction, we instructed
the participants to prioritize behaving normally instead of committing unnatural behav-
iors, if the situation was too complicated for them to avoid collision. Namely, it involves
two specific situations: 1) a non-responsive agent approaching the participants from an
unperceivable direction, and 2) a group of non-responsive agents walking in conflicted
directions surrounding the participants. For all the capture conditions (i.e., 2R, 3R-X,
4R-X), the participants received the same instruction. In addition, the participants were
informed that, in general, the agents’ behaviors differed during the experiment, that some
agents would actively avoid the participants and some agents would not. But we did not
provide any specific agent behavior information linked to each condition. The participants
ended each iteration when they came within 0.5 meters of the green spot.

4.4.2.2 Crossing Flow

Context. This scenario, representative of regular daily crowd movements, corresponds to
a flow of pedestrians walking in two orthogonal directions and sharing a crossing area. In
crowd study, it plays a vital role in understanding both collective emergent behavior (such
as lane and stripe formations [Mullick et al. 2022]), and individual motion characteristics
(such as fundamental diagram [Cao et al. 2017]). This scenario is complementary to the
Circle scenario, as it involves a continuous human flow in each direction, and therefore
continuous interactions.

Task. We designed our virtual Crossing Flow scenario to replicate the experiment in-
troduced by Mullick et al. [2022]. This replication, however, faced multiple physical con-
straints. Controlled experiments of crossing flow scenarios usually involve large-scale move-
ments, where the distance between the start region and the end region can be up to 30 m.
In our research facility, it was impossible to find an experimental area of such size, not to
mention that our VR capture solution did not have the capability to track the participant
in such an area. Considering the importance and the research interest of the Crossing
Flow scenario, we decided to realize several adaptations when replicating the scenario
presented by [Mullick et al. 2022]. We first needed to limit the character number in the
scene. To this end, we retained the first 9 pedestrians of each group, and selected the
moment when the first pedestrian enters the crossing area, along with the positions of
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these 18 individuals at this stage, as the starting point of our experiment (as depicted
in Figure 4.7-b.). The participants were instructed to start each iteration from the corre-
sponding character’s start position, and to walk across the virtual scene until they passed
an indication line on the ground. The line was located at 8 m in front of the participants
to visually indicate the general walking direction. The participants were free to pass over
any point of the line as they wished. Similar to the Circle scenario, we instructed the
participants to avoid collision with the agents, while prioritizing normal behaviors. The
participants were equally informed that the agents’ behavior could be different. For all
the five experimental conditions (2R, 3R-X, 4R-X), the experimental instructions were
the same. Each capture iteration ended when the participants walked over the indication
line.

4.4.3 Participants

Thirty participants took part in our experiment (average age of 31.6 ± 8.4 y.o., ranging
from 22 to 51 y.o.). They were recruited through internal emailing lists among students
and staffs. All participants had normal or corrected-to-normal vision and gave written
informed consent. The study followed the declaration of Helsinki, and was approved by
our local ethical committee. Each participant only performed one scenario (but all five
conditions for this scenario). In total, 15×5×2 = 150 sets of crowd motion were generated,
containing 2700 individual trajectories, with an average duration of 14.8 s.

Among the 15 participants who participated in the Circle scenario, the estimated com-
fort walking speed varied from 0.74 m.s−1 to 1.28 m.s−1 with a mean value of 1.04 m.s−1

and a standard deviation of 0.17 m.s−1. Among the 15 participants who participated in
the Crossing Flow scenario, it varied from 0.82 m.s−1 to 1.17 m.s−1 with a mean value of
0.96 m.s−1 and a standard deviation of 0.10 m.s−1.

4.5 Evaluation

In this section, we present the analysis and results of the experiment. The two ex-
perimental scenarios shared the same analysis while presenting similar results but with
difference. Thus, we first introduce the shared analysis framework, then separately provide
each scenario’s results.
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4.5.1 Analysis Framework

We divide our analysis of the experiment into two parts. The first analysis focuses on
the effect of contextual crowds, which corresponds to the Replace component in both
paradigms. The second analysis focuses on the effect of the local correction of user-
generated trajectories, corresponding to the additional Responsive component of the 4R
paradigm.

4.5.1.1 Contextual Crowds

To compare trajectories of various lengths and durations across participants, we nor-
malize the captured trajectories over the distance covered. This normalization leads to
relative walking progress from 0% (beginning) to 100% (end) of each trajectory. For trajec-
tories with different shapes and lengths, the relative progress provides us with a universal
“semantic” reference. These normalized trajectories are used to compute the following
characteristics.

We then leverage Statistical Parametric Mapping (SPM) [Friston et al. 2007] to study
the differences and similarities of these characteristics under different conditions.

Average Trajectories. As participants act and replace the contextual agents in a fixed
order, we conduct statistical analysis on the generated movements regarding each agent.
This is done by overlapping the same agent’s relative walking trajectories of different
participants (see above). For each condition c and each agent a, we compute the mean
trajectory x̄∗

c,a of all the participants:

x̄∗
c,a = 1

M

M∑
j=1

x∗
c,a,j (4.1)

where M is the number of participants, and x∗
c,a,j is the trajectory of participant j for

agent a in condition c. The average trajectory reveals the mean behavior of participants
when acting out each specific agent.

Trajectory Variation. In addition to the computation of average trajectories, we visu-
alize the variances on each trial to show to which level participants’ behaviors differed
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from each other under these conditions. The variance is defined as follows:

s∗
c,a = 1

M

M∑
j=1

(x∗
c,a,j − x̄∗

c,a)2, (4.2)

where M is the number of participants, and x∗
c,a,j is the trajectory of participant j for

agent a in condition c, and x̄∗
c,a is the mean trajectory.

Normalized Speed. Generally speaking, participants experience three distinct phases
during walking: an initial acceleration phase from the starting point to just before entering
the crossing area, a deceleration phase upon entering the crossing area due to interactions
and avoidance maneuvers with other agents, and a re-acceleration phase after disengaging
from the agents. We thus study the velocity profiles under each condition. As each set
of crowd motions was generated by a single participant, the crowd’s moving speed was
dependent on the participant’s preferred walking speed. This speed is unique to each
participant. Thus, we normalized each participant’s data by their comfort walking speed
vp before conducting statistical analysis.

With a similar idea, we normalized real data’s speed when making comparisons be-
tween the real data and our results. The real data, being a set of trajectories of different
individuals, cannot be normalized by one specific person’s preferred speed. We therefore
use an average speed value v∗

p = 1.4 m/s provided by previous research [Berton et al.
2019] to compute the normalized speed vn = vr/vp, where vr is the speed from the real
data.

Lateral Movement. To estimate the level of effort put by participants to avoid collisions,
we compute their lateral movement for each trial. In an empty scene, participants would
ideally walk straight from their starting point to their destination; we thus assume that
lateral movement is the result of avoidance behaviors. It is calculated by projecting the
participants’ positions to the line segment between their starting point and destination,
and computing the distance to the projected points.

Local Density. The local density describes the participant’s surrounding density, and
relates to the number of agents who are in their proximity at each given time. This metric
reveals both the difficulty of collision avoidance and the size of the personal zone that
participants are comfortable with. To compute the local density around each character at

115



Chapter 4 – Effect of Contextual and Responsive Crowds on VR-based Crowd Motion Capture

each time frame, it is common to perform a Voronoi tessellation of the space, and then
compute the density as the inverse of the character’s Voronoi cell’s area. To avoid artifacts
caused by edge effects, we adopted a modified Voronoi tessellation [Nicolas et al. 2019],
in which an agent is considered on the edge if its Voronoi cell shares an intersection with
the convex hull of all the agents’ positions. Nicolas et al. [2019] define the angle θ that
describes the proportion of the non-empty space in each cell, such that the local density
can be computed as:

ρi = θ

2π

1
Ai

, (4.3)

where Ai is the area of the Voronoi cell intersecting with the agents’ convex hull. For
agents that are not on the edge, θ = 2π and thus the local density is the inverse of the
area of the Voronoi cell.

Distance to Nearest Neighbor. We aim to study participants’ tolerance to proximity
with other agents while they are walking within virtual crowds. By assuming that they
do not allow any virtual agent to enter their minimal personal zone, we only focus on the
positional relationship between the participants and the virtual agent closest to them. To
this end, we compute the distance to the participants’ nearest neighbor at each frame.

First vs. Last Trajectories. We further investigate whether participants behaved dif-
ferently between the beginning and the end of the experiment. To do so, we analyze the
aforementioned normalized walking speed and lateral movement. These two metrics fo-
cus on the individual characteristics demonstrated by each crowd member, and thus can
separately reflect the participants’ behavior during each trial. For each trial, we compute
a single mean value of both the normalized walking speed and lateral movement, then
aggregate all the participants’ results.

4.5.1.2 Local Corrections due to Reactive Agents

To evaluate the effect of local corrections of the user-captured-trajectories due to re-
active agents, we adopt a multi-faceted approach. Given the novel nature of the problem
(i.e. ideally, evaluating the decrease in realism due to these local corrections), there is no
established analysis framework to rely on. To offer a comprehensive understanding, we
therefore selected multiple metrics for our analysis. Initially, we investigate the effective-
ness of local corrections in reducing collisions between the user and agents. Subsequently,
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we delve into its impact on previously generated trajectories. Specifically, we seek to
answer the following questions: How frequently is the local correction invoked? In which
parts of the agent trajectories do local corrections occur? How do the adjusted trajectories
differ from the original user-generated ones?

User Collision. We examine the average number of collisions between the participant
and OMC agents in each condition. Collisions are determined based on interpersonal
distance (0.5 m threshold).

Correction Frequency. To examine the frequency of changes in OMC agents’ trajecto-
ries, we count the number of responsive OMC agents altered in each trial. As the agent
count increases with each trial, so does the likelihood of local correction. This makes each
trial individually valuable for analysis, leading us to conduct evaluations on a per-trial
basis instead of aggregating all trials.

Correction Location. We investigate trajectory modifications of all OMC agents within
each trial to understand local correction occurrences. To this end, we measure the position
along the agent’s original trajectory – expressed as the relative walking progress – where
the local correction occurs. To discern overarching patterns, we aggregate data from all
participants and calculate the average local correction occurrence position for each OMC
agent in every trial. This approach allows us to scrutinize the relationship between trial
number, agent index, and the triggering of local correction.

Trajectory Dissimilarities. We further shift our focus to quantifying the dissimilar-
ities between the OMC agents’ modified trajectories and the original ones within each
individual trial. To accomplish this, we use Dynamic Time Warping (DTW) as a metric
for gauging these differences. DTW offers the advantage of nonlinear matching capabil-
ities, enabling us to align sequences that may differ in time but share similar shapes. It
also provides a balanced integration of both local and global information, enhancing the
robustness of our analysis. Again, we aggregate the data by taking the average results
across all participants to identify possible systematical effects related to scenarios, trial
number, and agent index.
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4.5.2 Scenario IV - Circle

4.5.2.1 Results on Contextual Crowds

To isolate the effects of contextual crowds, our analysis in this section only focuses
on the comparisons between the 2R and 3R-X (X represents either S or C) conditions,
as well as the real data. Additional comparisons to the 4R-X conditions are provided in
parallel for completeness, but is not our main focus.

Average trajectories. We start by reporting average trajectories in each of these condi-
tions, displayed in Figure 4.8. This figure is useful for visual inspection and understanding.
For instance, we see that the 2R and 3R-X conditions present each unique features, with,
for 3R-X, lower speeds and more gradual speed changes within the crossing area (central
area of each scenario). Further quantitative comparisons are delivered through Figure
4.10. Note that the figure reports quantities as a function of the progression on the tra-
jectory normalized by its length. Thus, 0% is the starting position, 100% corresponds to
the end position, and the 40% to 60% portion of the trajectory is where interactions are
the most intense.

Trajectory Variation. In addition to the average trajectories, we further display the
trajectory variation for the Circle scenario, depicted in Figure 4.9. In these two figures,
we separately display the mean trajectory and the variation of each iteration to ease the
readers’ lecture. Meanwhile, exhaustively exhibiting each iteration would be pointless and
complicate the reading. Thus, we selected several iterations of interests out of all the 18
iterations.

Normalized Speed. Figure 4.10-a illustrates the average evolution of the normalized
speed in each condition. In the Circle scenario, we observe that all results follow an
accelerate-decelerate-re-accelerate pattern, but the location of the deceleration phase dif-
fers: 3R-X results are closer to real data, while the 2R results significantly differ from real
data and 3R-X. SPM analysis corroborates these observations by detecting significant
differences between the 2R and the real data (47% - 100%), and between the 2R and
3R-X conditions (2R/3R-S: 44% - 88% and 2R/3R-C: 45% - 80%). In comparison, the
3R results only significantly differ from the real data at the end of the trajectory, which
suggests that participants did not come to a complete stop upon reaching the endpoint.
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a) 2R (OMC) b) 3R-S c) 3R-C m/s

d) 4R-S e) 4R-C f) Real m/s

Figure 4.8 – a)-e) Mean trajectories generated under different conditions with all par-
ticipants aggregated, and colored with the averaged speed. Blue and red discs indicate
respectively starting and ending locations. f) The real results from which we replicated
the experiment. Equidistant 1 m guidelines (concentric) provide visual information about
the areas of crossing.

Lateral Movement. Figure 4.10-b depicts the average lateral movement in each condi-
tion. 3R-X results present higher lateral movement nearby the crossing area compared to
both 2R and real results. For the Circle scenario, while SPM analysis revealed a 100%
significant difference of 2R when compared with 3R-X, it did not reveal any significant
difference with the real data.

Density. While we can observe in Figure 4.10-c that the local density is slightly higher for
the real data than for any other condition, SPM analysis only shows significant differences
in extremely small areas. In this Circle scenario, these differences occurred around 50%
of the walking progress for all 2R and 3R-X conditions.

Distance to nearest agent. Figure 4.10-d shows that the analysis of distance to the
nearest neighbor did not reveal any meaningful significant difference between the various
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a)

b)

c)

d)

e)
2R 3R-C 3R-S 4R-S 4R-C

Figure 4.9 – From top to bottom: mean trajectory and variance of iterations a) 1, b) 2, c)
3, d) 10 and e) 18 (last) for the Circle scenario. From left to right: 2R, 3R-S, 3R-C, 4R-S,
and 4R-C paradigms. The color bar reveals the average speed (m/s) along the trajectories.

experimental conditions.

First vs. Last Trajectories. The iterative process set by 2R or 3R-X paradigms re-
sults in an order for each recorded trajectories. Figure 4.11 shows that the 2R paradigm
introduces more differences between first and last recorded trajectories, both on normal-
ized speed and lateral movement. In particular, the Circle scenario exhibits a noticeable
trend of higher speed during the first 6 iterations and lower lateral movement during the
first 4 iterations, indicating that participants tended to walk straight forward across the
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a) Normalized Speed (m/s) b) Lateral Movement (m)

c) Local Density (m−2) d) Distance to Nearest Character (m)

Figure 4.10 – Evolution along the distance that participants walked (in percentage) of
participants’ a) normalized speed, b) lateral movement, c) local density, and d) distance
to the nearest character. SPM significant differences are displayed above the figure using
thick black bars.

scene, as the scene was not very populated in the beginning. The 3R-X results, on the
other hand, present consistency among different iterations. This implies that participants
tended to make more similar efforts across iteration.
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Figure 4.11 – Mean normalized speed and lateral movement over all participants when
acting different characters under different conditions in the Circle scenario, sorted by
number of the iteration. While participants were walking together in the real scenarios,
and therefore the real data did not have any order, it is overlapped on the figure for
illustrative purposes.Change Figure->Include the 4R results, and remove the flow results

4.5.2.2 Results on Local Corrections

User Collision. As shown in Table 4.1, the local correction strategy effectively reduced
the number of collisions between participants and OMC agents. Although there are still
some collisions, our method generally reduced the number by half in both scenarios. This
observation suggests that participants experienced less avoidance difficulties in the 4R
conditions than the 3R ones. However, because of implementation limitations the final
generated crowd presents more collisions (4R-S vs. 3R-S, 4R-C vs. 3R-C). This suggests
the presence of irregular trajectories in 4R-X results, which is discussed in Section 4.6.2.

Table 4.1 – Average number of collisions between participants and OMC agents across
trials and participants (top), and total number of collisions between all individuals in the
final generated crowd, averaged over participants (bottom). The values are presented in
the format mean ± SD.

2R (OMC) 3R-S 3R-C 4R-S 4R-C

Number of collisions with OMC agents

1.10 ± 0.85 1.30 ± 1.07 1.10 ± 0.96 0.50 ± 0.47 0.47 ± 0.43

Number of collisions in the final generated crowd

13.2 ± 11.9 14.5 ± 14.9 11.5 ± 11.2 16.6 ± 10.1 12.7 ± 9.2
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Figure 4.12 – Number of OMC agents whose trajectories are modified regarding the trial
number, in the Circle scenario, given that i−1 OMC agents are present in trial i, separated
for the 4R-S and 4R-C conditions. Linear regressions show that participants triggered local
corrections on approximately 30% of the OMC agents in each trial, in both scenarios and
conditions.

Correction Frequency. Figure 4.12 shows the number of OMC agents whose trajec-
tories were modified, regarding the number of iteration, during the 4R process. As the
recording process advances, participants encounter more OMC agents, leading to a rise
in the number of OMC agents triggering local corrections. However, it is important to
note that participants did not trigger local corrections in all OMC agents in every trial.
Through a linear regression, we found that on average 30% of OMC agents experienced
local corrections in each iteration, a finding that holds true across both 4R-S and 4R-C
conditions.

Correction Location. Figure 4.13 displays the local correction occurrence position
across responsive OMC agents, depending on their relative walking progress, for the circle
scenario. Most local corrections occur around the middle of the trajectory (30 to 50%),
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Figure 4.13 – Histograms of local correction occurrence position of responsive OMC agents,
for the 4R-S (left) and 4R-C (right) conditions. For both conditions, most local corrections
happen around 30% to 50% of the agents’ trajectories in the Circle scenario, suggesting
that most local corrections happen in the crossing area.

suggesting that encounters with users happen mostly near the center of the interaction
area. We observed similar results between the 4R-S and 4R-C conditions.

Trajectory Dissimilarities. As OMC agents become responsive when upcoming colli-
sions with users are detected, we measured after each trial the difference between each
OMC agent and its original user-recorded trajectory using DTW. Figure 4.14 shows these
differences averaged over participants for each OMC agent and trial, using a matrix-based
visualization, which reveals a gradual amplification of this difference as the recording pro-
cess advances.
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Figure 4.14 – Average trajectory differences (computed using DTW) compared to each
OMC agent’s original trajectory for the Circle scenario, for both 4R-S (left) and 4R-C
(right) conditions. The color scale represents the error in meters.

4.5.3 Scenario V - Crossing Flow

In this section, we present the results of the Crossing Flow scenario. The analysis of
the Crossing Flow scenario shared the same framework with the Circle scenario. To avoid
redundancy, we highlight the specific results of this scenario without repeating the general
interpretation of each analysis.

4.5.3.1 Results on Contextual Crowds

Following the analysis framework (Section 4.5.1), in the study of the contextual crowd
results, we focus our illustrations and interpretations on the 2R and 3R-X conditions.
Similar to Section 4.5.2.1, the 4R-X results are once again presented in parallel for com-
pleteness.

Average trajectories. The averaged trajectories obtained in the Crossing Flow scenario
are displayed in Figure 4.15. Overall speaking, one can observe that the 2R results present
higher walking speed than the 3R-S and 3R-C conditions. The 3R-X conditions, in com-
parison, present lower speed, especially in the crossing area ((x, y) ∈ [−2, 2]2). Specifically,
the 3R-S average trajectories show higher curvature than the 3R-C condition. This ob-
servation is further confirmed by quantitative comparisons that are delivered through
Figure 4.17. We remark that the real data presents higher walking speed than our results
in all the conditions, being coherent with previous research observations [Banton et al.
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a) 2R (OMC) b) 3R-S c) 3R-C m/s

d) 4R-S e) 4R-C f) Real m/s

Figure 4.15 – a)-e) Mean trajectories generated under different conditions with all par-
ticipants aggregated, and colored with the averaged speed. Blue and red discs indicate
respectively starting and ending locations. f) The real results from which we replicated
the experiment. Equidistant 1 m guidelines (horizontal and vertical) provide visual infor-
mation about the areas of crossing.

2005; Fink et al. 2007a] on the reduced walking speed in VR environment. We remind our
reader that the Figure reports quantities as a function of the progression on the trajectory,
normalized by its length. One can consider 0% as the starting position, and 100% as the
end position. For most of the agents, 40% to 60% portion of the trajectory can be roughly
considered the region where interactions are the most intense. However, this rule does not
fit for the agents indexed 2 and 3, as can be seen in Figure 4.7-b, the agents indexed 2
and 3 started walking from a position very close to the area of interaction, indicating an
earlier interaction in their walking progress.

Trajectory Variation. Figure 4.16 displays the trajectory variation in several milestone
iterations during the capture process under each condition. During the first 3 iterations,
the 2R results show lower variation compared to the 3R-X conditions. In the 2R results,
specifically, we observe extreme convergence in the 2nd and 3rd iterations’ results. This
implies that all of our participants have chosen very similar paths when playing these two
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iterations during the 2R experience.

a)

b)

c)

d)

e)
2R 3R-C 3R-S 4R-C 4R-S

Figure 4.16 – From top to bottom: mean trajectory and variance of iterations a) 1, b) 2,
c) 3, d) 10 and e) 18 (last) for the Crossing Flow scenario. From left to right: 2R, 3R-S,
3R-C, 4R-C, and 4R-S paradigms. The color bar reveals the average speed (m/s) along
the trajectories.

Normalized Speed. Figure 4.17-a illustrates the average evolution of the normalized
speed in each condition. The curve of our real data reference presents the baseline speed
characteristics in this Crossing Flow scenario: the overall pedestrian walking speed con-
tinuously increased before arriving in the interaction area, at approximately 20% of the
walking progress. Then, we observe speed variation inside the crossing area due to the
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a) Normalized Speed (m/s) b) Lateral Movement (m)

c) Local Density (m−2) d) Distance to Nearest Character (m)

Figure 4.17 – Evolution along the distance that participants walked (in percentage) of
participants’ a) normalized speed, b) lateral movement, c) local density, and d) distance
to the nearest character. SPM significant differences are displayed above the figure using
thick black bars.

interactions with several pedestrians from the other group, resulting in a slightly lower
speed in the middle (approximately 45%) of the interaction area. In the 3R-X conditions,
despite the quantitative differences in the absolute speed value, the speed variation ten-
dency remains similar to the real data. The 2R results, on the contrary, present a relatively
irregular speed evolution curve, where the acceleration phase appears to end around the
70% position. SPM analysis also reveals significant differences between the 2R condition
and the real data (51% - 84%), and between the 2R and 3R-X conditions (2R/3R-S: 34%
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- 87% and 2R/3R-C: 36% - 100%). Few significant differences were detected between the
real and 3R-X results.

Lateral Movement. In Figure 4.17-b, where the average lateral movement in each con-
dition is depicted, we observe that while the real data presents extremely low lateral
movements, both the 2R and 3R-X results present visibly higher lateral movements. In
addition, the 3R-X results are higher than the 2R condition. The SPM analysis indicates
that 3R-X results exhibit a 100% significant difference from the real data, while the 2R
condition is only significantly different in the 0%-70% range. Other partial differences were
observed between the 2R and 3R-X conditions. We highlight that 3R-S shows greater lat-
eral movement compared to 3R-C in the 63% to 100% phase, suggesting that participants
tend to make larger lateral movements, and to more significantly deviate from their goal,
when faced with simulated contextual crowds.

Density. In the Crossing Flow scenario (Figure 4.17-c), the overall density is centered
around 1 ped/m2. The real data shows a slightly higher density in the interaction area
when compared to both the 2R and 3R-X conditions (2R/Real: 25%-48%; 3R-C/Real:
40%-45%). SPM analysis also showed some significant differences between the 2R and
3R-X conditions (2R/3R-S: 83%-97%; 2R/3R-C: 12%-30% and 64%-98%).

Distance to nearest agent. Figure 4.17-d indicates that the investigation into the
nearest neighbor distance did not yield any substantial significant differences among the
diverse experimental conditions.

First vs. Last Trajectories. Similar to our observation in Section 4.5.2.1, the 2R con-
dition leads to greater disparities between the initial and final recorded trajectories in
terms of normalized speed and lateral movement. Specifically, we observe in Figure 4.18,
that the 2R results exhibit higher but decreasing average speed than the 3R-X results
during the first 5 iterations, and stays in the same speed range of the 3R-X conditions
starting from the 6th iteration. In terms of the lateral movement, although the overall
lateral movements were restricted to a low level (approximately 0.3 m), the 2R results
present remarkably lower lateral movements in the first 4 iterations.
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Figure 4.18 – Mean normalized speed and lateral movement over all participants when
acting different characters under different conditions in the Crossing Flow scenario, sorted
by trial number. Similar to Figure 4.11, the real data is overlapped on the figure for
illustrative purposes.

4.5.3.2 Results on Local Correction

User Collision. In this Crossing Flow scenario, agents entered the interaction area in
a sequential order, meaning that the collision avoidance that participants needed to face
was simpler than the Circle scenario. Thus, in Table 4.2, we observed that the number
of collisions between participants and OMC agents are lower than in the Circle scenario
even for the 2R and 3R-X conditions. Still, we observed reduced numbers of collisions
between participants and OMC agents in the 4R-X results compared to the 2R and 3R-X
conditions.

Regarding the total collision number at the end of the capture procedure, however,
notable higher collision numbers are observed in the 4R-X conditions than in the Cir-
cle scenarios. While such phenomena were similarly caused by irregular trajectories, our
observations implied the irregular trajectories had more impact on the Crossing Flow
scenario than on the Circle scenario.

Correction Frequency. Similar to Section 4.5.2.2, we observe in Figure 4.19 that ap-
proximately 30% of OMC agents experienced local corrections in each trial.

Correction Location. For the scenario of Crossing Flow, although we expected to see
the majority of local corrections happening in the middle (40%-60%) of the agents’ walking
progress (Figure 4.20), we observed that many local corrections happened very close to
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Figure 4.19 – Number of OMC agents whose trajectories are modified regarding the it-
eration number, in the Crossing Flow scenario, given that i − 1 OMC agents are present
in iterationi, separated for the 4R-S and 4R-C conditions. Linear regressions show that
participants triggered local corrections on approximately 30% of the OMC agents in each
trial, in both scenarios and conditions.
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Table 4.2 – Average number of collisions between participants and OMC agents across
trials and participants (top), and total number of collisions between all individuals in the
final generated crowd, averaged over participants (bottom).The values are presented in
the format mean ± SD.

2R (OMC) 3R-S 3R-C 4R-S 4R-C

Number of collisions with OMC agents

0.23 ± 0.19 0.37 ± 0.30 0.30 ± 0.19 0.18 ± 0.15 0.17 ± 0.17

Number of collisions in the final generated crowd

1.9 ± 1.7 3.6 ± 3.8 2.7 ± 2.5 6.5 ± 3.1 10.1 ± 4.2

the trajectory’s starting point. This suggests that numerous OMC agents trigger local
corrections almost immediately as the trial begins (approximately 40% of OMC agents
become reactive in the first 10% of their performed trajectory). This is potentially caused
by the close initial proximity of characters in the Crossing Flow scenario, which is further
discussed in Section 4.6.2.

Figure 4.20 – Histograms of local correction occurrence position of responsive OMC agents,
in the Crossing Flow scenario, for the 4R-S (left) and 4R-C (right) conditions. Contrary to
the Section 4.5.2.2, nearly half of local corrections happen at the beginning of the agents’
trajectories (first 10%) in the Crossing Flow scenario for both 4R-S and 4R-C, suggesting
that local corrections happen largely with the agents of the same flow of the participants.

Trajectory Dissimilarities. Figure 4.21 shows the differences averaged over participants
for each OMC agent and iteration, in the Crossing Flow scenario. The visualization is again
based on a matrix representation. We observe a similar evolution in both 4R-S and 4R-C
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results. The OMC agents’ original trajectories are, in general, gradually degraded by the
local correction. However, we remark that, for the agent No.6, the averaged difference
between its original and final modified trajectories is tiny compared to the other agents.
As this situation can be observed in both of the 4R-X conditions, we believe it is related to
the experimental configuration (including the capture order and the condition of triggering
local corrections).

Figure 4.21 – Average trajectory differences (computed using DTW) compared to each
OMC agent’s original trajectory in the Crossing Flow scenario, for both 4R-S (left) and
4R-C (right) conditions. Although the error is lower than the Circle (see Figure 4.14), we
keep the same color scale here for the consistency. The errors are represented in meters.

4.6 General Discussion

In this section, we discuss the results of the analyses presented in the previous section.
We obtained similar results in both the 4R-S and 4R-C conditions, as well as comparable
observations in both the Circle and Crossing Flow scenarios. Thus, our general discussion
jointly covers both the two conditions and the two scenarios. The discussion is separated
into two parts. In the first part, we discuss the effects of contextual crowd. In the second
part, we discuss the local correction strategies.

4.6.1 Effect of Contextual Crowds

We first hypothesized (H1) that we could mitigate the bias caused by the sequential
generation of trajectories inherent to the Record-and-Replace (2R) paradigm by initial-
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izing scenarios with contextual crowds, while simultaneously generating trajectories ex-
hibiting characteristics more similar to real data. The results presented in Section 4.5.2.1
and 4.5.3.1 validate H1, despite some differences. Results demonstrated that trajectories
generated with our Replace-Record-Replace (3R) paradigm are more similar to real tra-
jectories in terms of speed (both scenarios) and lateral deviations (Circle scenario) than
those generated using a simpler 2R paradigm. Other characteristics, such as local density
and distance to nearest character, were however similar between all the tested conditions.

While some characteristics are seemingly more similar to real data for the 2R con-
ditions, in particular for lateral movements in the Crossing Flow scenario, our results
suggest that these similarities might be caused by biases typically observed when rely-
ing on the 2R paradigm. Figure 4.11 and 4.18 both illustrate such biases: in the early
iterations, where few characters are present in the scene, walking speed is typically high
and lateral movement is low, as users rarely interact with other characters. Figure 4.9
and Figure 4.16 provide more concrete illustration of such phenomenon: under the 2R
condition, the trajectories generated for the first iteration have extremely low variance
and tend to converge on a straight line between the start and end position. As the process
unfolds, the walking speed of generated characters drops, while lateral movement signif-
icantly increases. While average lateral movement in the 2R paradigm is visually more
similar to real data, this higher similarity appears to be due to extremely low deviations
in initial trials, biasing the results. In comparison, both walking speed and lateral move-
ment are more consistent throughout the generation process using 3R paradigms. These
results suggest that contextual crowds enable us to maintain constant user interactions
through the generation process, therefore ensuring that participants undergo pedestrian
interactions more similar to those experienced in real-life.

Let us also stress that previous research already demonstrated an increase in users’
avoidance distance in Virtual Reality [Gérin-Lajoie et al. 2008; Sanz et al. 2015], compared
to real situations. This raises the question of the evaluation of the characteristics of crowd
datasets generated in VR. Ideally, evaluations should be based on a comparison of our
3R/4R approaches against n participants immersed simultaneously to record together a
n-trajectory dataset, which is technically difficult. Nevertheless, a very interesting related
question is to search for the number m of simultaneously immersed participants to record
such a n-trajectory dataset in a 3R fashion that maximizes the dataset quality tradeoff
between efficiency (m << n) and realism (m ≈ n).

Second, we hypothesized that the type of contextual crowd, whether it is created
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through simulation or reanimation from existing data, does not significantly impact the
results (H2). This is important, because the scarcity of crowd datasets would make diffi-
cult the use of XR-C paradigms in practice, and defeat the purpose of capturing complex
crowd datasets using only a limited number of persons. Our results indeed show that
similar results are obtained between the 3R-C and 3R-S versions we studied, as well as
between 4R-C and 4R-S: no significant difference was found between those pairs in the Cir-
cle scenario, and only slight ones in the Crossing Flow scenario; where participants showed
smaller lateral movements and slower speeds among captured than simulated agents. Our
explanation is that participants took advantage of larger adaptations capabilities of sim-
ulated agents to adjust their strategy accordingly. These differences, however, remain
subtle. Our general conclusion about H2 is that, since simulated contextual crowds offer
a larger flexibility, XR-S paradigms are more relevant in practice. An interesting direction
for future work would be to explore more deeply how simulation parameters can actually
affect participants self behaviors. For instance a contextual crowd of hurried agents would
probably influence a participant differently compared to a crowd of lazy wandering agents.

4.6.2 Effects of Local Corrections

As participants are likely to experience unavoidable collisions when faced with non-
responsive crowds generated using 2R, our last hypothesis was that providing recorded
agents with responsive capabilities would reduce the number of collisions experienced by
users, while introducing some differences in the recorded trajectories (H3).

First, the results presented in Table 4.1 and 4.2 demonstrate that using responsive
agents indeed reduces the number of collisions experienced by users by approximately 50%,
which partially validates H3. Interestingly, through the comparison between Figure 4.13
and 4.19, we can see the location of these collisions in time is influenced by the scenario.
In the Circle scenario, most of the collisions occurred around the middle of the trajectory,
i.e., the virtual agents started to avoid users more towards the center of the interaction
area where they all converged. In comparison, most of the collisions in the Crossing Flow
scenario occurred early while recording new movements, which suggests that responsive
capacities were activated for agents initially close to the user, and probably among the
same walking group. Our explanation is that, as characters started very close in the
Crossing Flow scenario, collision avoidance was activated from the start of the trial. This
suggests that the parameters chosen for local corrections (distance of 1 m to activate the
Responsive component), might have been too conservative for this scenario. This raises
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the question whether responsive simulation should be tailored to each scenario, vs. using
fixed parameters, which is a question left open for future studies.

In addition, the DTW analysis illustrated in Figure 4.14 and 4.21 shows increasing dif-
ferences between user-recorded and responsive-agent trajectories in both scenarios. This
indicates that local corrections degrade progressively the similarity to the original user-
generated trajectories, which fully validates H3. At the moment, our understanding of
what actually happens when local corrections are triggered is still limited, which is some-
thing that we plan to further study in the future. In particular, it would be interesting
to more finely quantify such differences, potentially relying on existing trajectory metrics
(e.g. [Daniel et al. 2021]), or by including more body-movement characteristics, which are,
to our knowledge, currently rarely accounted for in the literature for such questions.

As combining collision avoidance approaches with recorded agent trajectories is still
a challenging problem, responsive agents sometimes displayed unrealistic behaviors com-
pared to what we would expect from a real person, such as sudden stops instead of more
natural reactions (e.g., slight detours or side-steps). Such behaviors impacted the final
trajectories, as well as the studied characteristics. For instance, as responsive agents came
to a halt to give priority to participants, thereby reducing the number of potential colli-
sions, this resulted in delays relative to the agents’ original trajectory. While the agents
proceeded to catch up with their recorded trajectory at their maximum permitted speed,
this led to increased average speed in the 4R-X. Simultaneously, only the vicinity of par-
ticipants activated local corrections (towards both participants and other agents), which
were deactivated when agents were catching-up with the recording trajectory (if partic-
ipants were sufficiently far). This led to an increased number of collisions in the final
dataset, as can be seen in Table 4.1 and 4.2. However, as we believe that solving such
local collisions is important for interactivity in such a VR-based crowd motion capture
context, it would be interesting to explore whether more complex simulation models would
provide better local corrections in responsive OMC agents, or to explore the benefits of
using post-processing local corrections. Overall, such observations raise novel challenging
questions about the general evaluation of VR-based crowd motion capture datasets, their
comparison to baseline examples, and how to most appropriately use or adapt to their
corresponding real contexts.
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4.7 Limitations

As a further step of the One-Man-Crowd paradigm, our study still has limitations.
First, as the behaviors of the simulation-based autonomous agents are highly related to
the simulation algorithm and the parameter configuration, we still lack tools and prelimi-
nary knowledge to find the contextual crowds’ optimal configuration, not even to conclude
whether such an optimal configuration exists for every participant. Although previous re-
search has explored human-agent interaction in VR from several perspectives, and has
examined how a human user would perceive simulated virtual agents, universal and ade-
quate metrics still need to be defined to measure the quality of those interactions, as well
as to evaluate the performance of a virtual crowd.

Second, our study is also limited by the physical constraints from the hardware side.
Our tracking system is built using SteamVR-based HMD and base stations. According to
our practical experience, this system only allows stable tracking within a 10 m × 10 m

area. Thus, we were obliged to adjust the real-world Crossing Flow scenario regarding
the physical constraints. As a result, in our experiment, the participants only walked for
approximately 8 m while starting from a position very close to the crossing area. Thus,
when acting out some virtual characters, the participants had no time to observe the
other group’s movement, and tended to let the other group pass first. In comparison, in
our real-world reference, the participants walked through approximately 30 m, starting
at 10 m from the crossing area. Those pedestrians could easily accelerate to their comfort
walking speed within such a distance, and had enough time to gather the other group’s
motion information, to predict the other group’s movement, and to plan their path. We
believe that this difference is one important reason that led to higher lateral movement
in our results than in the real-world results.

4.8 Future Work

Regarding our analysis and discovery in this chapter, we identify several possible di-
rections for further exploration or improvements. As mentioned in 4.6, a first interesting
direction for future work would be to explore how the participants’ behaviors can be in-
fluenced by the simulations, and what’s the link between the participants’ behaviors and
the quality of a simulated crowd. For this, one may consider creating an evaluation system
of crowd simulation (e.g. Quality function). Although ORCA has a deep influence in the
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research society and has been widely used to simulate crowd motion and even to synthe-
ses crowd dataset, previous research has demonstrated numerous simulation algorithms
perform better in certain crowd scenarios. A second direction would be to evaluate how
the participants’ movements retrospectively influence the quality of simulation. During
our experiences, we observed that when a human participant walked along the simulated
agents, sometimes the simulation performs worse than a pure simulation without human
participation. In fact, during the experiment, the captured human trajectories usually
present more noise and more irregularity compared to the simulated trajectories. While
the human participant makes his/her own decision in real time, he/she is considered a
non-responsive obstacle by the simulator. The participants’ irregular trajectories make
it difficult for the simulator to predict their motion, which possibly influence the entire
simulation.

4.9 Conclusion

In this chapter, we proposed and compared several new variations for the One-Man-
Crowd paradigm for recording increasingly complex and realistic crowd dataset. By lever-
aging a contextual crowd, we enable human users to evolve among a virtual crowd of
autonomous agents at the beginning of the crowd motion capture, and gradually replace
each of them to build a complete dataset from his/her own locomotion data. We evaluated
these different variations (3R-C, 3R-S, 4R-C, 4R-S), and our results imply that 3R-S is,
for the moment, the recommended version in the regard of both the fidelity and flexibility.

Despite the limitations that have been discussed in Section 4.6, our results are promis-
ing, and already enable us to recommend the use of the 3R-S paradigm in practice, which
opens up novel research directions (Section 4.8).

138



Chapter 5

GENERAL CONCLUSION & FUTURE

WORKS

In this thesis, we first reviewed the existing approaches of crowd motion capture, and
observed that capturing crowd motion data in the real world still faces multiple technical
and ethical challenges. Meanwhile, although VR has exhibited its potential in capturing
human behavior, especially when focusing on capturing only one single user’s behaviors. To
further explore the potential of VR in crowd motion capture, and to avoid the challenges
of crowd motion capture in the real world, we proposed the One-Man-Crowd paradigm.
This paradigm enables to capture crowd motion in VR with a single user, by iteratively
capturing the user’s motion and displaying different captured motions in the same vir-
tual scene. Furthermore, we gradually extended the paradigm’s usage to more and more
complex crowd scenarios. Our research introduces a paradigm capable of meticulously cap-
turing the behavior of every individual in a crowd, a pioneering achievement in the realm
of crowd capture techniques. To ascertain the high authenticity of the crowd behavior our
method constructs, we employed a validation approach that compares with real experi-
mental data. The findings reveal that the One-Man-Crowd paradigm, despite generating
specific crowd behaviors seldom seen in reality under certain circumstances, can replicate
crowd behaviors akin to those in the real world using a single user. To further enhance the
quality of pedestrian behavior captured by the One-Man-Crowd method, we attempted
to introduce contextual crowds and responsive crowds into the original OMC process, en-
couraging users to exhibit more interactive behaviors. The experimental results indicate
that employing contextual crowds indeed elevates the realism of user behaviors. However,
our attempt to augment the virtual crowd’s interactivity and reduce collisions by locally
adjusting the generated trajectories did not yield the anticipated success. This suggests
that local modifications of human trajectories within the existing simulation framework
remain challenging. Our experimentation and analyses have not only deepened the under-
standing of this paradigm but also provided valuable insights for its further enhancement.
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Our approach proposed in this thesis is, however, only a small step towards a promising
solution to high-quality crowd motion capture solution. One can easily see the potential
in this approach: the capture of high-quality human interaction motion data in a crowded
scene, despite heavy occlusion between agents (from a computer vision perspective). At
the time of writing this thesis, mature solutions for human behavior capture, including
body motion, hand motion, (HMD-based) eye gaze and (HMD-based) facial expression
capture, were already available in the market. Combining all these capture solutions, it
is not difficult to imagine that the One-Man-Crowd method and its variants can easily
create highly realistic virtual crowd animations, imbuing each virtual pedestrian with a
sense of life, and further utilizing such data to study the interaction between subjects
and the virtual crowd. Gibson [1958] and Warren [2006] have proposed the concept of the
perception-action loop, and in VR-based crowd studies, the behavior of subjects depends
on their perception of virtual characters. To our knowledge, existing crowd simulation
methods still have not reached the capability of generating highly realistic paths, body
movements, eye contacts, and facial expressions simultaneously. Therefore, the behavior
of subjects facing unnatural virtual characters is inevitably affected. In contrast, the One-
Man-Crowd method allows experimenters to construct a virtual crowd that is close to a
real crowd, as its data is directly collected from real human behavior. However, within
the scope of this thesis, the crowds’ responsiveness of the OMC paradigm is still limited,
and its current application scenarios are still limited by this flaw. On the other hand, we
note that crowd data constructed by a single user usually shows homogenized behavior
characteristics, such as a general tendency to jaywalk or yield. We have tested involving
multiple users in the same crowd capture process one by one, successfully obtaining more
diverse behaviors, but this also increased the burden of capture operations. Therefore,
whether generating crowd data by a single user is the optimal solution remains a question.
If multiple users are needed to complete the capture together, how many users are the
most appropriate number is also a question that needs further experimental exploration.

5.1 Technical Limitations

In this thesis, our research primarily focuses on validating the effectiveness and appli-
cability of the One-Man-Crowd (OMC) paradigm in generating unidirectional and mul-
tidirectional motion datasets for crowd simulation. To this end, we replicated several
classic controlled experiments within a ten by ten meter space. For certain scenarios,
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due to physical constraints of the experimental venues available to us, we had to adjust
related experimental parameters to carry out and complete these studies. This implies
that further development of the OMC method necessitates overcoming several technical
challenges:

1. Higher Motion Capture Accuracy: In our experiments, we employed a tracking solu-
tion combining Head-Mounted Displays (HMDs) with a motion capture system. Although
Xsens motion capture equipment provides native positioning capabilities, its inertia-based
positioning mode can drift in scenarios where the user moves frequently. To ensure the
quality of tracking in our experiments, we utilized the optical tracking solution of the HMD
to determine the user’s location, and we manually coupled full-body skeletal motion in-
formation from Xsens with positional data from the HMD in the virtual environment,
achieving acceptable capture results. However, this combined positioning solution has
limited accuracy, thus restricting the quality of the animations we could capture. Despite
being barely perceptible to participants, the recorded character animations inevitably ex-
hibited feet sliding on the ground, which decreases the realism of the recorded motion
data. We believe the use of optical motion tracking system such as Vicon can lead to a
better body motion capture results.

2. Large-Scale Motion Capture: Due to our reliance on the SteamVR tracking solution
for HMD positioning, our experimental space could not exceed ten by ten meters. Our
practical experience indicates that HMD tracking is not effective beyond a 10-meter range.
However, controlled experiments in the real world are often conducted on a larger scale,
and bigger experimental spaces can accommodate more participants or allow subjects to
perform longer, accelerated movements over greater distances, providing them with ex-
tended observation times to anticipate virtual crowds from various directions. We believe
that improvement of VR systems not relying on external tracking devices will enable to
study new and more complex scenarios in the future.

3. Multi-User Experiments: As discussed in Chapter 3, we envisage the M2N concept,
where M (M << N) users are simultaneously embedded in a virtual environment. This
allows for the capture of local real-time interactions, thereby enhancing interactivity dur-
ing the capture process. We hypothesize that by simultaneously immersing multiple users
into the same virtual environment, natural real-time interaction behaviors will emerge
during the experience, which will contribute to improving the captured data by reducing
the behavioral biases. Indeed, this hypothesis needs to be validated by further exper-
iments. In addition, it would be valuable to explore what value of M corresponds to
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the best compromise between the quality of captured data and the efforts needed in the
preparation of the experiment.

4. Impact of Autonomous Agents’ Animation Quality on User Experience and Behav-
ior: In this thesis, we assigned a very basic, motion-capture-based animation system to
autonomous agents. This system tends to produce non-human-like behaviors in scenar-
ios involving low-speed movements, hesitation, and sudden change of direction. During
the experiments, the participants might exhibit defensive strategies and behaviors when
they cannot clearly predict the movements of the autonomous agents. According to our
empirical observation, the participants broadly behaved more relaxed when facing the
non-responsive OMC. Even though the non-responsive OMC agents did not answer to
the participants’ movements, their human-like behaviors seemed to make it easy for the
participants to make their own decisions. Thus, studying how the autonomous agents’
motion influences the participants’ behavior, as well as in which condition will the par-
ticipants behave more naturally, will bring valuable insights to improve the human-agent
interaction experiences. Indeed, some studies have already started to explore similar direc-
tions [Koilias et al. 2020a; Trivedi and Mousas 2023]. Nevertheless, in addition to simply
studying the effects of the autonomous agents’ behavior, we believe it is necessary to ex-
plore how we can improve the agents’ behavior to make the human participants’ behave
more naturally.

5.2 Discussion

In this thesis, we highlight an innovative method for data acquisition, which holds the
potential to advance research in related fields significantly. Traditionally, many studies
have been constrained by the lack of specific data, limiting the breadth and depth of
scientific inquiry. This is particularly true in the domain of crowd interaction behavior
simulation, where the absence of a deep understanding of actual behavior patterns often
leads to research outcomes that do not accurately reflect reality. Previous studies on the
data extraction from video recordings have demonstrated that in the absence of high-
quality data, inferring pedestrian behavior using prior knowledge from simulations is an
effective method for reconstructing complex pedestrian dynamics. However, this approach
also relies on the interpretation of existing data.

The data acquisition method proposed in this research not only opens up new av-
enues for collecting highly realistic crowd behavior data but also paves the way for new
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possibilities in simulation studies. The application of this method has the potential to
significantly enhance the realism and predictive capacity of models, thereby advancing
the fields of crowd simulation, virtual reality, computer animation, and human-computer
interaction. For instance, human pedestrians typically negotiate their paths nonverbally
through subtle body language interactions during collision avoidance behavior. However,
few studies have delved deeply into this phenomenon. The OMC paradigm makes it pos-
sible to collect data on these interaction processes, shedding light on the nuanced commu-
nications that govern pedestrian dynamics. By providing researchers with unprecedented
quality and richness of data, our method enables a deeper exploration of the complexities
of crowd behavior, marking the beginning of a new chapter in research in these domains.

Readers may have noticed that while the research conducted in this thesis has yielded
experimental data containing participants’ body motion data, we have not delved into the
study and analysis of the collected motion data. This constitutes one of our limitations.
At the same time, it is important to note that our primary research objective was to
validate the comparability of crowd data generated by the OMC paradigm at both the
collective and individual levels with real-world experimental outcomes. However, to date,
the majority of related research has been predominantly focused on the analysis of tra-
jectories, and even the data we attempted to compare did not include body motion data.
This absence of data again limits our ability to further evaluate and analyze individual
motion data within crowds, which we hope to explore in the future

Even so, we believe that the research work in this thesis, as well as the proposed crowd
motion paradigm, is at the forefront of a new phase in crowd motion studies. Recently,
with the rapid development of human body motion analysis, a vast amount of research
has utilized extensive human motion datasets to achieve remarkable advancements in the
fields of individual motion reconstruction and generation. However, the reconstruction and
generation of human-human interactions have received relatively less attention, a major
reason being the lack of relevant data. In contrast, crowd movement encompasses a wealth
of interaction data, but as previously mentioned, recovering this data still poses significant
challenges with existing methods. Recent research in crowds has increasingly focused on
detailed individual body motion data [Feldmann and Adrian 2023b; Boomers et al. 2023].
Our method fills this critical gap by introducing an innovative framework that enables the
extraction and analysis of intricate body motions within crowds. This not only paves the
way for a deeper understanding of individual behaviors within a collective context but also
enhances the realism and accuracy of crowd simulation models, significantly contributing
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to fields such as virtual reality, urban planning, and emergency evacuation procedures.

5.3 Future Works

The One-Man-Crowd (OMC) paradigm represents a significant step forward in cap-
turing and analyzing crowd motion. As we consider the future of OMC, it is crucial to
delineate our research into short-term and long-term perspectives.

5.3.1 Short-Term Perspectives

From the short-term perspective, the One-Man-Crowd (OMC) paradigm opens up av-
enues for innovative experimental designs and data enhancement methodologies, fostering
a deeper understanding of human-crowd interactions and enriching the quality of crowd
motion data.

Firstly, leveraging the OMC framework to design novel experiments provides an intu-
itive application of this research. A pertinent research topic is the investigation of user
responses to virtual crowds with varying levels of realism. The OMC method facilitates the
rapid construction of moving virtual crowds as ground truth. Subsequently, simulations
with different levels of realism can replicate this ground truth, enabling a comparative
analysis of user reactions. Moreover, the OMC approach can swiftly generate specific vir-
tual pedestrian motions in designated scenarios, offering contextual depth to studies such
as VR-based investigations of single-user responses in crowd evacuation situations. Essen-
tially, employing the OMC paradigm in experimental setups replaces the labor-intensive
process of manually crafting virtual character animations, thereby streamlining research
workflows and enhancing experimental fidelity.

Secondly, the data captured via the OMC method holds untapped potential for en-
hancing the quality of crowd motion data. In our initial contribution, we observed a
tendency for a single user to repeat strategies while generating an entire crowd motion,
leading to a lack of behavioral diversity in the generated data. If we consider the differ-
ent crowd datasets produced by various participants, this observation implies that each
dataset exhibits a high level of consistency at strategic, tactical, and operational levels,
likely rooted in individual personality traits. This leads to an intriguing question: can we
extract these personality-based characteristics from each dataset and integrate them into
other crowd datasets? Such a fusion could synthesize data with heightened behavioral
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diversity, thereby more closely mirroring the nuances of real crowd dynamics. In other
words, can we harness the data already collected to perform style transfer across differ-
ent OMC crowd datasets, enriching the datasets with a broader spectrum of behavioral
patterns and interactions?

In conclusion, the short-term research horizons facilitated by the OMC paradigm are
twofold: enriching the realm of experimental design in human-virtual crowd interactions
and harnessing the potential of existing datasets to foster a richer, more diverse represen-
tation of crowd motion. These pursuits not only align with the core objectives of the OMC
paradigm but also contribute significantly to the broader field of human-crowd interaction
research.

5.3.2 Long-Term Perspectives

In the long-term vision for the One-Man-Crowd (OMC) paradigm, a critical goal is
to address the current limitations in the realism of simulated agents used as contextual
crowds. Notably, these agents exhibit shortcomings in both path planning and behavior
dynamics. To surmount these challenges and progressively enhance the verisimilitude of
crowd simulations, a multi-faceted approach is essential.

One promising direction involves refining the quality of simulations by leveraging ad-
vanced techniques such as motion matching [Holden et al. 2020]. However, it is crucial to
recognize that motion matching, like many other cutting-edge methods, is data-driven.
Similarly, generative models, which hold the potential to simultaneously generate paths
and animations, are also rooted in data-driven methodologies. The scarcity of data per-
taining to multi-person interactions in academic settings poses a significant hurdle, as the
effectiveness of these data-driven approaches is inherently tied to the richness and rele-
vance of the underlying data. If the available data lacks granular details about individual-
level interactions within crowds, the resulting simulations will inevitably fall short of
capturing the intricacies of real-world crowd dynamics.

Drawing parallels from the evolution of human motion reconstruction and generation,
we can envisage a similar trajectory for crowd motion reconstruction and generation.
Central to this vision is the utilization of the authentic user data captured via the OMC
paradigm. Despite the current limitations in the simulated agents’ behavior and motion
quality, the user data remains a trove of real, actionable insights. The contrast between
the users’ authentic motions and the agents’ simulated behaviors presents a unique oppor-
tunity. By treating the users’ observational data and behavioral patterns as foundational
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inputs, we can employ data-driven approaches, especially deep learning, to craft new
simulated agents that exhibit markedly improved realism.

These enhanced agents, when deployed as contextual crowds in subsequent experi-
ments, are expected to elicit more genuine and nuanced interactions from users. This, in
turn, enriches the user data collected, creating a virtuous cycle. Each iteration of this pro-
cess not only refines the simulated agents but also brings user behaviors closer to how they
would naturally unfold in real-world crowd scenarios. Envisioning this iterative cycle of
improvement, we foresee a future where the virtual realm is populated by highly realistic
virtual pedestrians, thereby elevating the fidelity of crowd simulations to unprecedented
levels.
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Titre : l’Homme-Foule : Vers des captures de mouvements de foules basées sur un seul utilisateur
immergé en réalité virtuelle

Mot clés : Simulation de foule, interaction humaine, réalité virtuelle, capture de mouvement

Résumé : Les données de mouvements de
foule sont essentielles pour comprendre et si-
muler leurs comportements. Ces données sont
toutefois rares en raison des multiples difficul-
tés liées à leur collecte. Récemment, la réa-
lité virtuelle (RV) a commencé à être utilisée
pour étudier le comportement individuel dans les
foules, généralement en immergeant les utilisa-
teurs dans des foules virtuelles et en capturant
leur comportement. Dans cette thèse, nous pro-
posons et évaluons une nouvelle approche utili-
sant la RV, qui lève les limites des expériences
réelles pour l’acquisition de données de mouve-
ments de foules. Nous appelons cenouveau pa-
radigme « One-Man-Crowd ». Nous proposons
tout d’abord de capturer les mouvements de la
foule avec un seul utilisateur. En enregistrant les
trajectoires passées et les mouvements du corps

de l’utilisateur, et en les affichant sur des person-
nages virtuels, ceux-ci construisent progressive-
ment le comportement global de la foule. Nous
proposons ensuite un nouveau concept de foule
contextuelle qui s’appuie sur l’utilisation de la si-
mulation de foule pour atténuer les biais compor-
tementaux des utilisateurs lors de la procédure
de capture. Nous mettons en œuvre deux straté-
gies différentes, à savoir un processus Replace-
Record-Replay (3R) et un processus Replace-
Record-Replay-Responsive (4R). Nous évaluons
et validons l’approche proposée en reproduisant
et en comparant au total cinq expériences de
foules réelles. Nos résultats suggèrent que le pa-
radigme One-Man-Crowd est une approche pro-
metteuse pour l’acquisition de données réalistes
de mouvements de foule dans des environne-
ments virtuels.

Title: The One-Man-Crowd: Towards Single-User Capture of Collective Motions using Virtual Reality

Keywords: Crowd Simulation, Human Interaction, Virtual Reality, Motion Capture

Abstract: Crowd motion data is fundamental for
understanding and simulating realistic crowd be-
haviors. Such data is, however, scarce because
of multiple challenges and difficulties involved in
its gathering. Virtual Reality (VR) has been lever-
aged to study individual behavior in crowds, typ-
ically by immersing users into simulated virtual
crowds and capturing their behavior. In this the-
sis, we propose and evaluate a novel VR-based
approach, lifting the limitations of real-world ex-
periments for the acquisition of crowd motion
data. We refer to this approach as the One-Man-
Crowd paradigm. In this thesis, we first propose
to capture crowd motion with a single user. By
recording the past trajectories and body move-

ments of the user, and displaying them on vir-
tual characters, the users progressively build the
overall crowd behavior by themselves. Then, we
propose the new concept of contextual crowds
that leverage crowd simulation to mitigate the
users’ behavioral bias during the capture pro-
cedure. We implement two different strategies,
namely a Replace-Record-Replay (3R) process
and a Replace-Record-Replay-Responsive (4R)
process. We evaluate and validate the proposed
approach by replicating and comparing with in to-
tal five real crowd experiments. Our results sug-
gest that the One-Man-Crowd paradigm offers a
promising approach for acquiring realistic crowd
motion data in virtual environments.
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