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Résumé

Le déploiement des trains autonomes soulève de nombreuses questions et défis, notam-
ment ceux liés au niveau de sécurité visé, qui doit être globalement au moins équivalent
à celui du système existant, ainsi que les moyens à mettre en œuvre pour l’atteindre.
Conventionnellement, la mise en sécurité d’un système ferroviaire global ou d’un sous-
système défini comprend une phase d’analyse des risques et une phase de maîtrise des
situations dangereuses. Ainsi, pour tout système technique ferroviaire, qu’il soit classique,
automatique ou autonome, un niveau de sécurité acceptable doit être assuré. Dans le
contexte des trains autonomes, les défis liés à leur sécurité incluent les aspects émergents
de l’intelligence artificielle, le transfert de tâches et de responsabilités du conducteur vers
des systèmes décisionnels automatiques, ainsi que les aspects liés à l’autonomisation, tels
que la transition entre les modes et la gestion des modes dégradés. La méthodologie de
démonstration de sécurité des trains autonomes, doit ainsi prendre en compte les risques
engendrés par l’ensemble de ces aspects. Autrement dit, elle doit définir l’ensemble les
activités de sécurité (liées à l’introduction de l’autonomie et des Systèmes d’Intelligence
Artificielle), complémentaires à la démonstration de sécurité conventionnelle.

Dans ce cadre, l’objectif de cette thèse est de contribuer à l’élaboration d’une démarche
d’assurance de sécurité pour les trains autonomes. Concrètement, cette thèse propose
trois contributions principales. Premièrement, nous proposons une méthodologie globale
de haut niveau pour la structuration et la présentation de l’argumentation de sécurité pour
les trains autonomes. La méthodologie est basée sur une approche orientée objectifs de
sécurité (goal-based safety) en utilisant le formalisme graphique GSN (Goal Structuring
Notation). Ensuite, nous proposons une modélisation de la conscience de situation (situ-
ational awareness) d’un système de conduite autonome d’un train, intégrant le processus
de l’analyse dynamique des risques ferroviaires. Ce modèle permettra au système de con-
duite autonome de percevoir, de comprendre, d’anticiper et de s’adapter à des situations
inconnues dans son environnement tout en prenant des décisions sûres. Le modèle est
illustré à travers un cas d’étude concernant la détection et l’évitement d’obstacles sur la
voie ferroviaire. Dernièrement, nous élaborons une approche de prise de décision basée
sur l’évaluation dynamique des risques. L’approche utilise le Processus Décisionnel de
Markov Partiellement Observable (POMDP) et vise à assurer une surveillance continue de
l’environnement pour garantir la sécurité opérationnelle, en particulier la prévention des
collisions. L’approche repose sur le maintien d’un niveau de risque acceptable grâce à une
estimation et une actualisation continues de l’état opérationnel du train et des données de
perception de l’environnement.

Mots clés: Assurance de sécurité des trains autonomes, Analyse dynamique des
risques, Prise de décision basée sur le risque, Argumentaire de sécurité, Conscience de
la situation des trains autonomes.
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Abstract

The deployment of autonomous trains raises many questions and challenges, particularly
concerning the required safety level, which must be globally at least equivalent to that of
the existing systems, along with how to achieve it. Conventionally, ensuring the safety
of a global railway system or a defined subsystem includes analyzing risks and effectively
handling dangerous situations. Therefore, for any technical railway system, whether it is
conventional, automatic, or autonomous, an acceptable level of safety must be ensured. In
the context of autonomous trains, safety challenges include aspects related to the use of
artificial intelligence models, the transfer of tasks and responsibilities from the driver to
automatic decision-making systems, and issues related to autonomy, such as mode transi-
tions and management of degraded modes. Thus, the safety demonstration methodology
for autonomous trains must take into account the risks generated by all these aspects. In
other words, it must define all the safety activities (related to the introduction of autonomy
and artificial intelligence systems), complementary to conventional safety demonstration.

In this context, this dissertation proposes three main contributions towards the devel-
opment of a safety assurance methodology for autonomous trains. Firstly, we establish
a high-level framework for structuring and presenting safety arguments for autonomous
trains. This framework is based on a goal-based approach represented by the graphical
modeling Goal Structuring Notation (GSN). Then, we propose a model for the situational
awareness of the automated driving system of an autonomous train, that integrating the
process of dynamic risk assessment. This model enables the automated driving system
to perceive, understand, anticipate and adapt its behavior to unknown situations while
making safe decisions. This model is illustrated through a case study related to the ob-
stacle detection and avoidance. Finally, we develop a decision-making approach based
on dynamic risk assessment. The approach is based on Partially Observable Markov De-
cision Processes (POMDP) and aims to ensure continuous environmental monitoring to
guarantee operational safety, particularly collision prevention. The approach is based on
maintaining an acceptable level of risk through continuous estimation and updating of the
train’s operational state and environmental perception data.

Keywords: Safety of autonomous trains, Dynamic risk assessment, Risk-based decision-
making, Safety argumentation, Situational awareness of autonomous trains.

3



Acknowledgements

The successful completion of this thesis would not have been possible without the support,
guidance, and encouragement of many individuals to whom I am deeply grateful.

I would like to express my deepest gratitude to the chair of my thesis committee, Dr
Paola PELLEGRINI, for her invaluable support and leadership throughout this process.
Her guidance and encouragement have been essential to the completion of this work.

I extend my heartfelt thanks to the reviewers and thesis referees: Dr Philippe WEBER,
Dr Jérémie GUIOCHET, Dr Sana JABRI and Dr Insaf SASSI. Their insightful feedback
and constructive comments have greatly improved the quality of this thesis.

I am profoundly grateful to my thesis director, Dr El-Miloudi EL KOURSI, for his
unwavering support, guidance, and encouragement throughout this journey. His expertise
and advice have been instrumental in shaping this research.

I would also like to express my sincere thanks to my supervisors. To Dr Julie BEUGIN,
thank you for your availability, valuable advices, and the human touch you brought to this
journey. Your support has been immensely appreciated. To Dr Abderraouf BOUSSIF,
I am especially indebted for your unwavering availability from day one to the last, your
rigor and guidance, and the high standards you set. Your advice, both as a supervisor
and a friend, has been crucial to the success of this work.

My heartfelt appreciation goes to my mother and my father, whose belief in me has
been a constant source of motivation. Their unconditional support has been the founda-
tion of my achievements.

Finally, I am deeply thankful to my wife for her ongoing support and encouragement.
Her patience, understanding, and love have been my strength throughout this journey.

I would also like to extend my gratitude to my colleagues at IRT Railenium and Uni-
versity Gustave Eiffel for their camaraderie, assistance, and valuable discussions. Their
support has made this journey much more enriching and enjoyable.

Thank you all for making this work possible!
Mohammed CHELOUATI

Lille - June 2024

4



Contents

1 Introduction 12
1.1 General context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2 Industrial context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3 Scientific context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.4 Problem formalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.6 Manuscript organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Safety assurance of autonomous systems 21
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 The autonomous driving system . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3 Risk assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.1 Risk assessment for conventional vehicles . . . . . . . . . . . . . . . 26
2.3.2 Dynamic risk assessment for autonomous transportation systems . . 26

2.4 Risk models for autonomous vehicles . . . . . . . . . . . . . . . . . . . . . . 28
2.5 Decision-making for autonomous vehicles . . . . . . . . . . . . . . . . . . . 32

2.5.1 Deterministic approaches . . . . . . . . . . . . . . . . . . . . . . . . 32
2.5.2 Non-deterministic approaches . . . . . . . . . . . . . . . . . . . . . . 33

2.6 Risk assessment in railways . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.6.1 Risk assessment for conventional trains . . . . . . . . . . . . . . . . 40
2.6.2 Risk assessment methods . . . . . . . . . . . . . . . . . . . . . . . . 40
2.6.3 Dynamic risk assessment for the autonomous train . . . . . . . . . . 42

2.7 Safety assurance of the autonomous train . . . . . . . . . . . . . . . . . . . 43
2.7.1 Safety cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.7.2 Graphical safety argumentation . . . . . . . . . . . . . . . . . . . . . 45
2.7.3 Goal Structuring Notation (GSN) application examples . . . . . . . 47

2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3 Graphical argumentation using GSN for autonomous trains 50
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2 GSN for graphical safety argumentation . . . . . . . . . . . . . . . . . . . . 51

3.2.1 Key concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2.2 Development processes . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2.3 Issues resolved with GSN . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 GSN-based safety cases in transportation systems . . . . . . . . . . . . . . . 55
3.3.1 GSN in the automotive domain . . . . . . . . . . . . . . . . . . . . . 55
3.3.2 GSN in the aviation domain . . . . . . . . . . . . . . . . . . . . . . . 56
3.3.3 GSN in the railway domain . . . . . . . . . . . . . . . . . . . . . . . 56
3.3.4 Toward using GSN for autonomous systems . . . . . . . . . . . . . . 58

3.4 Safety assurance approach of autonomous train . . . . . . . . . . . . . . . . 58
3.4.1 Overall system level . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5



Contents

3.4.2 AI-based component level . . . . . . . . . . . . . . . . . . . . . . . . 60
3.4.3 AI techniques level . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5 Use case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.5.1 Anti-collision function . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.5.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4 SA & DRA framework for autonomous trains 69
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2 Context and concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.1 Autonomous Driving System (ADS) . . . . . . . . . . . . . . . . . . 70
4.2.2 Situation Awareness (SA) . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2.3 Complementarity between SA and DRA concepts . . . . . . . . . . . 75

4.3 A DRA and SA framework for autonomous trains . . . . . . . . . . . . . . . 76
4.3.1 Perception module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3.2 Understanding & prediction module . . . . . . . . . . . . . . . . . . 78
4.3.3 Decision-making module . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4 Illustrative case: anti-collision function . . . . . . . . . . . . . . . . . . . . . 79
4.4.1 Perception module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.4.2 Understanding & prediction module . . . . . . . . . . . . . . . . . . 82
4.4.3 Decision-making module . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5 POMDP-based decision-making process of autonomous trains 85
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.2 Toward the use of POMDPs in ADS . . . . . . . . . . . . . . . . . . . . . . 86

5.2.1 Handling uncertainties in decision-making processes . . . . . . . . . 86
5.2.2 Benefits of POMDP in decision-making processes . . . . . . . . . . . 87

5.3 Decision-making related to the train’s anti-collision function . . . . . . . . . 88
5.3.1 DRA of the anti-collision function . . . . . . . . . . . . . . . . . . . 89
5.3.2 Structuring risk profiles with the DRA framework . . . . . . . . . . 91

5.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.4.1 POMDP definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.4.2 POMDP modeling of the train anti-collision system . . . . . . . . . 93

5.5 Simulation and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.5.1 Perceived state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.5.2 Obstacle generation function . . . . . . . . . . . . . . . . . . . . . . 100
5.5.3 Belief updater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.5.4 Solver choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.5.5 Variables initialization . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.5.6 Risk formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.5.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6 Conclusion and perspectives 109
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6



List of Figures

1.1 Railway grades of automation and basic functions . . . . . . . . . . . . . . . 14
1.2 Levels of driving automation by SAE International’s new standard J3016 (SAE,

2016) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1 A simplified illustration of the Autonomous Driving System (ADS) in au-
tomotive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 On-board Autonomous Driving System (ADS) components and interactions 25
2.3 Illustration of the Markov Decision Process (MDP) . . . . . . . . . . . . . . 34
2.4 Illustration of Partially Observable Markov Decision Process (POMDP) . . 35
2.5 Process of risk assessment related to phases 3 and 4 of the life-cycle (EN-

50126, 2017) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1 Six-step process for top-down developing goal structure . . . . . . . . . . . 52
3.2 Bottom-up process for developing goal structure . . . . . . . . . . . . . . . 54
3.3 The three hierarchical system levels . . . . . . . . . . . . . . . . . . . . . . . 59
3.4 A system-level argument pattern for the autonomous train safety assurance 61
3.5 Main steps for building GSN safety argument patterns for autonomous trains 62
3.6 Decomposition of high-level goal: Ensure safety of the on-board ADS . . . . 64
3.7 Safety argumentation structure for addressing static obstacles . . . . . . . . 66
3.8 Safety argumentation structure for addressing dynamic obstacles . . . . . . 67

4.1 A high-level architecture of the on-board ADS of the autonomous train with
a main focus on the decision-making process . . . . . . . . . . . . . . . . . . 71

4.2 Three-level model of Situation Awareness Endsley (1995) . . . . . . . . . . 74
4.3 The autonomous train situational awareness framework . . . . . . . . . . . 77
4.4 Decision-making flowchart of the anti-collision function for autonomous trains 80
4.5 Framework for obstacle detection and avoidance (anti-collision) of autonomous

trains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.1 A simplified architecture of the ADS with a main focus on the DRA layer,
strengthening the decision-making task . . . . . . . . . . . . . . . . . . . . . 87

5.2 Generic illustration of the anti-collision function . . . . . . . . . . . . . . . 89
5.3 Illustrative representation of the anti-collision function . . . . . . . . . . . . 90
5.4 The autonomous train dynamic risk assessment framework . . . . . . . . . . 91
5.5 A generic illustration of the POMDP model. . . . . . . . . . . . . . . . . . . 93
5.6 A generic spatial discretization of Cartesian plan into adaptive grid map

for autonomous train navigation . . . . . . . . . . . . . . . . . . . . . . . . 94
5.7 The evolution of the actual state, perceived state, and the chosen action

(setup 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.8 The evolution of the actual state, perceived state, and the chosen action

(setup 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.9 The evolution of rewards over time (setup 1) . . . . . . . . . . . . . . . . . 105

7



List of Figures

5.10 The evolution of rewards over time (setup 2) . . . . . . . . . . . . . . . . . 105
5.11 The risk estimation over time (setup 1) . . . . . . . . . . . . . . . . . . . . 106
5.12 The risk estimation over time (setup 2) . . . . . . . . . . . . . . . . . . . . 107
5.13 The evolution of the observed distance to obstacle over time (setup 1) . . . 107
5.14 The evolution of the observed distance to obstacle over time (setup 2) . . . 108

8



List of Tables

2.1 An overview of risk models used for autonomous transportation systems . . 30
2.2 Summary of non-deterministic methods for Autonomous decision-making . 39
2.3 Graphical safety argumentation methods . . . . . . . . . . . . . . . . . . . . 46

3.1 The main GSN elements. (GSN-WG, 2021) . . . . . . . . . . . . . . . . . . 53
3.2 The use of the GSN method in automotive, aviation, and railway domains . 57

4.1 Comparison of Various ADS Architectures . . . . . . . . . . . . . . . . . . . 72

5.1 POMDP solvers choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.2 Variables initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

9



List of Acronyms

ADS Autonomous Driving System. 7, 14, 19, 22–25, 58, 59, 62–64, 70, 71, 73–76, 79, 85,
88–90, 99

AI Artificial Intelligence. 6, 17, 22, 23, 27, 33, 50, 59, 60, 71, 75, 85

AVs Autonomous Vehicles. 21–24, 26–29, 32–35, 37, 38, 75

CAE Claims Argument Evidence. 46

CSM-RA Common Safety Method-Risk Assessment. 59

DRA Dynamic Risk Assessment. 20, 26, 27, 42, 69, 70, 75, 76, 78, 79, 84, 90, 91, 93

GoA Grade of Automation. 14, 15, 22, 58

GSN Goal Structuring Notation. 7, 9, 19, 20, 45–48, 51–56, 58–60, 62, 63, 65, 68, 109

KAOS Knowledge Acquisition in Automated Specification. 45, 46

MDP Markov Decision Process. 33, 34, 36, 38

ML Machine Learning. 17, 23, 26, 27, 33, 40, 60, 74, 75

ODD Operational Domain Design. 22, 32, 59, 60, 79

POMDP Partially Observable Markov Decision Process. 20, 34–36, 38, 78, 86–88, 92–96,
99–101, 103, 108, 109

RL Reinforcement Learning. 36, 37, 74

SA Situational Awareness. 69, 70, 73–76, 78, 84

SACM Structured Assurance Case Metamodel. 45, 46

SNCF Société Nationale des Chemins de Fer Français. 16

SOTIF Safety Of The Intended Functionality. 60

SSG Safety Specification Graph. 45, 46

TASV Train Autonome Service Voyageurs. 16

10



List of Acronyms

List of author’s publications

Journal articles

1. Mohammed Chelouati, Abderraouf Boussif, Julie Beugin, El-Miloudi El Koursi.
Graphical safety assurance case using Goal Structuring Notation (GSN)
— challenges, opportunities and a framework for autonomous trains. Re-
liability Engineering & System Safety, vol. 230, 108933, 2023. https://doi.org/
10.1016/j.ress.2022.108933

2. Mohammed Chelouati, Abderraouf Boussif, Julie Beugin, El-Miloudi El Koursi.
A Risk-Based Decision-Making Process for Autonomous Trains Using
POMDP: Case of the Anti-Collision Function. IEEE Access, vol. 12, pp.
1-18, 2024. https://doi.org/10.1109/ACCESS.2023.3347500

Conference proceedings

1. Mohammed Chelouati, Abderraouf Boussif, Julie Beugin, El-Miloudi El Koursi.
A framework for risk-awareness and dynamic risk assessment for au-
tonomous trains. In 32nd European Safety And Reliability (ESREL) Conference,
2022.

2. Mohammed Chelouati, Abderraouf Boussif, Julie Beugin, et al. Argumentaire de
sécurité graphique pour l’assurance de sécurité des trains autonomes. In
Congrès Lambda Mu 23 “Innovations et maîtrise des risques pour un avenir durable”-
23e Congrès de Maîtrise des Risques et de Sûreté de Fonctionnement, 2022.

3. Abhimanyu Tonk, Mohammed Chelouati, Abderraouf Boussif, Julie Beugin, Miloudi
El Koursi. A safety assurance methodology for autonomous trains. Trans-
portation Research Procedia, vol. 72, pp. 3016-3023, 2023. https://doi.org/10.
1016/j.trpro.2023.11.849

4. Mohammed Chelouati, Abderraouf Boussif, Julie Beugin, El-Miloudi El Koursi.
Une approche orientée risques pour la prise de décision dans les trains
autonomes : Cas de la fonction anti-collision. In Congrès Lambda Mu 24
“Innovations et maîtrise des risques pour un avenir durable” - Congrès de Maîtrise
des Risques et de Sûreté de Fonctionnement, 2024. (abstract accepted)

11

https://doi.org/10.1016/j.ress.2022.108933
https://doi.org/10.1016/j.ress.2022.108933
https://doi.org/10.1109/ACCESS.2023.3347500
https://doi.org/10.1016/j.trpro.2023.11.849
https://doi.org/10.1016/j.trpro.2023.11.849


Chapter 1

Introduction

Contents
1.1 General context . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2 Industrial context . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3 Scientific context . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.4 Problem formalization . . . . . . . . . . . . . . . . . . . . . . . . 18
1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.6 Manuscript organization . . . . . . . . . . . . . . . . . . . . . . . 19

1.1 General context

Throughout history, the railway system has significantly contributed to the transformation
of modern transportation. With the establishment of the Stockton and Darlington Rail-
way in 1825 (Smiles, 1904), often regarded as the world’s first passenger railway, railroads
played an important role in revolutionizing the efficient movement of passengers and goods
over wide geographical areas. Their reputation for resilience, reliability, and environmen-
tally responsible operations has made them an integral part of the global transportation
network. However, along with the outstanding efficiency of railway systems, they also
present a unique set of challenges, the first of which is safety. Over the years, railways
have had accidents, some attributed to human errors, while others are due to environmen-
tal factors or aging infrastructure (Liu et al., 2021a). Ensuring the safety of passengers,
goods and the environment is essential in this domain.

In recent years, there has been a growing interest in the potential for technological-
driven solutions aimed to improve various aspects of railway operations. For instance,
automated/autonomous railway systems are mainly designed to operate with minimal
human intervention, with a primary focus on reducing operational costs, increasing avail-
ability, optimizing railway traffic, and minimizing energy consumption. While enhancing
safety can be an inherent advantage of autonomous systems due to the potential risk mit-
igations associated with human errors and other safety-related challenges, the primary
goals remain cost reduction and improved operational efficiency.

The desire to reduce costs, energy consumption, and obviously accidents are the driv-
ing forces behind this pursuit of automation and autonomy. In fact, some researches have
shown that accidents are often related to human factors (National Transportation Safety
Board, 2002), including misinterpretation of risks (Khurana and Das, 2009), slow or incor-
rect responses, and lapses in attentions (Khurshid and Faisal, 2012). Merging from that,
the railway industry is acutely aware of the need to address these challenges.
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In the European context, two programs stand out in advancing autonomous railway
systems. “Horizon 2020” (2014-2020)1, the EU’s primary funding program for research
and innovation, emphasizes the development of smart and sustainable transport technolo-
gies. Shift2Rail2 is an initiative under Horizon 2020 that specifically focuses on railway
improvements through automation (Ristić-Durrant et al., 2018) and digitalization (Steele
and Roberts, 2022). Europe’s rail initiative under the “Horizon Europe” program (2021-
2030) now succeeds the Shift2Rail initiative, aiming at advancing the efficiency, sustain-
ability, and safety of European railways. These initiatives lay the foundation for various
European projects that aim to integrate autonomous technologies into the railway sector.
As part of these projects, we can list :

• X2RAIL-2/43, dedicated to advancing railway signalling and automation by re-
searching and developing key technologies critical for the next generation of rail
management systems. The project’s aspirations include enhancing communication
systems to support advanced automation, increasing track capacity with the in-
tegration of Automatic Train Operation (ATO) and Moving Block systems, and
updating signalling infrastructure towards a decentralized model. All these com-
ponents are planned to be integrated within the European Train Control System
(ETCS)/ERTMS (European Rail Traffic Management). Furthermore, X2Rail seeks
to improve energy efficiency and punctuality using ATO systems, foster innovation
in laboratory testing environments, and reinforce the security of railway signalling
and communication networks against cyber threats (Stickel et al., 2022);

• SMART-1/24, primarily focused on increasing the efficiency, capacity, and safety of
rail freight services on European railways through automation. This project has set
two key objectives: the first is the development of a prototype autonomous obstacle
detection system for improved safety in rail transport. The second objective is to
create a real-time management system for marshalling yards, aimed at optimizing
the assembly and disassembly of freight trains to enhance the overall effectiveness of
rail freight operations (Ristić-Durrant et al., 2020);

• TAURO5, focused on identifying and analyzing foundational technologies for the
future European automated and autonomous rail transport, to be further devel-
oped, certified and deployed through the activities planned for Europe’s Rail. The
project encompasses several key areas: environment perception for automation, re-
mote driving and command systems, automatic status monitoring and diagnostics
for autonomous trains, and the development of technologies that support the migra-
tion to Automatic Train Operation (ATO) over the European Train Control System
(ETCS) (Chouchani and Zinkunegi, 2022);

• R2DATO6, aims to take advantage of digitalization and automation to develop
the next generation of Automatic Train Control (ATC). The project is dedicated to
delivering scalable solutions for Digital and Automatic Train Operation (DATO) ca-
pabilities, extending up to fully autonomous operations. The objective is to enhance
the capacity and efficiency of existing rail networks, paving the way for smarter,
more reliable rail services that cater to increasing transport demands.

1https://research-and-innovation.ec.europa.eu/funding/funding-opportunities/
funding-programmes-and-open-calls/horizon-2020_en

2https://rail-research.europa.eu/about-shift2rail/
3https://projects.shift2rail.org/s2r_ip2_n.aspx?p=X2RAIL-1
4https://projects.shift2rail.org/s2r_ip5_n.aspx?p=SMART
5https://projects.shift2rail.org/s2r_ipx_n.aspx?p=tauro
6https://projects.rail-research.europa.eu/eurail-fp2/
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Figure 1.1: Railway grades of automation and basic functions

At the national level (in France), Tech4Rail7 represents a pivotal initiative in the coun-
try’s strategic engagement with the railway sector. The primary objective of Tech4Rail
is to develop cutting-edge technological solutions to increase the capacity and reliability
of the French railway network (Trentesaux et al., 2018). This includes the integration
of advanced digital systems for improved traffic management and predictive maintenance
of infrastructure and rolling stock. Furthermore, Tech4Rail is committed to promoting
sustainable mobility by reducing the carbon footprint of rail transport, notably through
the electrification of small lines (very low-density lines) and the use of renewable energy
sources.

Additionally, the focus has been oriented towards the Innovative Light Train program8,
which has been the foundation for the TELLi9 and Draisy10 projects. These initiatives
collectively underscore the national ambition to unlocking the potential of advanced rail
infrastructure and logistics through the development of intelligent systems that can antic-
ipate maintenance needs, automated traffic flows, and dynamically adjust to the real-time
demands of rail traffic management. TELLi, focusing on telecommunication innovations,
seeks to augment rail network connectivity, while Draisy aims to revolutionize rail yard
operations with a digitally-integrated approach to cargo handling.

Ensuring the safety of these autonomous systems requires a particular attention, specif-
ically ensuring the transfer of operational responsibility from human operators to an Au-
tonomous/Automatic Driving System (ADS) with various Grades of Automation (GoA)
(Niestadt et al., 2019a). Standard IEC 62267 (IEC-62267, 2009) has defined four grades
of automation for guided transportation systems (see Figure 1.1). Similarly, the Society
of Automotive Engineers11 (SAE) defines six levels of driving automation ranging from 0
(fully manual) to 5 (fully autonomous) in the context of motor vehicles and their operation

7https://www.sncf.fr
8https://www.sncf.com/fr/innovation-developpement/innovation-recherche/

mobilite-pour-tous-dans-les-territoires
9https://www.sncf.com/fr/innovation-developpement/innovation-recherche/

train-leger-innovant
10https://www.sncf.com/fr/innovation-developpement/innovation-recherche/draisy
11https://www.sae.org

14

https://www.sncf.fr
https://www.sncf.com/fr/innovation-developpement/innovation-recherche/mobilite-pour-tous-dans-les-territoires
https://www.sncf.com/fr/innovation-developpement/innovation-recherche/mobilite-pour-tous-dans-les-territoires
https://www.sncf.com/fr/innovation-developpement/innovation-recherche/train-leger-innovant
https://www.sncf.com/fr/innovation-developpement/innovation-recherche/train-leger-innovant
https://www.sncf.com/fr/innovation-developpement/innovation-recherche/draisy
https://www.sae.org


Chapter 1. Introduction

on roadways, as presented in Figure 1.2.

The GoA provides a standardized framework for classifying the level of automation in a
railway system. This classification allows a clear understanding of the roles and responsibil-
ities of automation systems and human operators in various railway operations (Lemonnier
et al., 2023). As railway systems advance towards higher levels of automation, establish-
ing a clear GoA becomes essential for assessing risk, determining safety measures, and
ensuring a reliable transition from manned to unmanned operations (Brandenburger and
Naumann, 2019; Brandenburger et al., 2021). By clearly defining the extent of automa-
tion, stakeholders can establish a safety assurance process that is consistent throughout
the entire life-cycle of the railway system, from the initial design phase to the full oper-
ational phase (Tonk et al., 2022). Consequently, the clear categorization of automation
levels informs and directs the systematic verification and validation activities required to
maintain operational safety in autonomous railway systems. In this way, the GoA is not
merely a technical specification but a fundamental component of the safety architecture
within the rail industry, guiding the rigorous evaluation and management of automated
rail operations.

The development of railway systems is driven by the needs of a growing economy and
the pursuit of improved transport efficiency. At an industrial level, this development is
leading to concrete measures to improve railway operations. Companies are now focused on
bringing advanced technologies into real-world environments and highlighting the practical
benefits of these innovations in everyday rail transportation. The next section will delve
into these industrial developments, highlighting specific advancements and their impacts
on the operations and management of railway systems.

Figure 1.2: Levels of driving automation by SAE International’s new standard J3016 (SAE,
2016)
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1.2 Industrial context

This PhD thesis is a part of the research project TASV (Autonomous Train Passenger
Service, 2018-2023), more specifically the safety demonstration Working Package, led by
SNCF. TASV project is part of a larger constellation of research initiatives at the rail-
way research and technological institute (IRT Railenium). As the core of French railway
research and development, Railenium embodies a strategic partnership among academia,
industry, and public stakeholders, fostering collaborative projects to improve and digital-
ize the railway systems both nationally and internationally. It is within this direction that
the TASV project has been established, representing a cutting-edge endeavor within Raile-
nium’s ambitious Autonomous Train program12. The TASV project, alongside the comple-
mentary TFA (Autonomous Freight Train) and TCRail (for remote train control) projects
aim to define and validate new paradigms for automated train operations by addressing
a spectrum of objectives from enhancing onboard system intelligence to ensuring inter-
operability across diverse rail networks. In the context of TASV, several research studies
have been initiated to explore the advantages of digitalization and automation (Gadmer
et al., 2022). For example, there is ongoing research works to contribute to the safety
demonstration process (Boussif et al., 2023), signal and track obstacle detection (Jourdan
et al., 2022), operational risk assessment (Boussif et al., 2023), combining sophisticated al-
gorithms with real-time data analytics to predict and prevent potential incidents (Hathat
et al., 2022). Additionally, the qualification, verification and validation, and certification
of AI systems are also aspects of interest in the TASV project (Boudardara et al., 2023,
2022). In parallel, the TFA project undertakes rigorous simulation-based assessments to
evaluate the robustness of autonomous train operations under varied scenarios (Collart-
Dutilleul et al., 2019; Plissonneau Duquene, 2023), while TCRail investigates the challenge
behind the remote train control connectivity of freight trains (Masson et al., 2019).

The pursuit of an autonomous railway system encompasses not only the design and im-
plementation of advanced control technologies but also an encompassing view of the safety
regulations and standardization imperatives to the rail industry. Within this context, the
dissertation addresses critical safety challenges, building on the foundational work estab-
lished by TASV to advance the safe automation of train control. The goal is to ensure
that the progressive steps towards automation do not merely end with technical capability
but extend to establish robust and safe operations within the rail sector. By focusing on
decision-making in safety-critical situations and safety argumentation during the design
and the operation phases, this dissertation aims to support the potential of automation
and autonomy in improving rail safety. Indeed, ensuring adequate decisions in hazardous
operational contexts and enhancing the traditional approaches to safety assurance, i.e.,
activities and processes in place to assess, ensure, and justify safety, are pivotal challenges
for autonomous trains to guarantee their seamless and safe integration into the current
railway overall system. The contributions herein align with these safety challenges, which
were also highlighted in the TASV project.

1.3 Scientific context
Ensuring the overall safety is a fundamental objective of the railway industry. In fact, be-
fore and during the deployment of any railway system, a comprehensive safety assessment
should be carried out through a structured safety demonstration process. This assess-
ment usually leads to the use of technical and functional safety measures like Automated
Train Protection (ATP) and operational measures such as rules and procedures. Together,
these measures are essential for assuring the safe operations of the railway system. Safety

12https://railenium.eu/train-autonome/
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assurance in autonomous railway systems deals with challenges in both design and op-
erations. In Europe, railway safety has been traditionally justified by following safety
argumentation, in line with European standards CENELEC EN 50126 (EN-50126, 2017),
EN 50128 (EN-50128, 2011), and EN 50129 (EN-50126, 2017). However, this approach
faces challenges in fully addressing the safety demonstration needs of systems that use
AI and complex Machine Learning (ML) algorithms (De la Vara and Panesar-Walawege,
2013). These algorithms focus on recognizing patterns and making decisions based on
data (Bishop, 2006), while including a broader range of computational methods that give
systems the ability to reason and solve problems (Russell et al., 2016).

The railway systems using AI and ML technologies operate in dynamic railway envi-
ronments, characterized by intrinsic uncertainties in train states and surroundings (Shafaei
et al., 2018). Ensuring their safety demands a paradigm shift in safety assurance method-
ologies. Moreover, proving compliance with such systems, which inherently adapt and
learn, poses safety challenges. Consequently, new approaches are needed to handle these
complexities, ensuring safety assurance throughout both the design and operational phases.
Safety assurance within the context of autonomous railways can be divided into two pri-
mary phases: design-time and run-time. Each of these phases presents its own set of
challenges and considerations.

Safety assurance during design-time

The safety assurance of railway systems during the overall lifecycle in general, and par-
ticularly, the design-time is guided by the standard EN 50126. In addition, the railway
sector has relied upon textual argumentation as a written evidence for safety assurance.
Rooted in European standard EN 50129, this approach entails presenting safety cases
that methodically demonstrate compliance with safety requirements and standards. How-
ever, with the advent of autonomous train systems, incorporating comprehensive decision-
making processes and dynamic risk assessments, this method grapples with limitations in
effectively tackling these complex aspects. Indeed, autonomous systems introduce a level
of complexity and dynamics not previously encountered in rail transportation. With the
integration of sophisticated decision-making algorithms and the necessity for continuous
risk evaluation, the textual methods of safety argumentation struggle to encapsulate the
unpredictable scenarios presented by these autonomous systems. The limitations become
clear as one considers the nature of autonomous trains, which require a proactive and
predictive safety approach, contrasting with the preventive and reactive ones of current
standards.

Safety assurance during run-time

Ensuring the safety of autonomous trains during their current operations is a critical
concern. This encompasses the need for dependable run-time safety measures and the
application of real-time safety assurance techniques. Importantly, the inherent possibility
of safety incidents during autonomous train operations requires a highly sophisticated and
reliable set of safety measures. The proactive aspect of such safety measures involves not
only anticipating and preventing possible faults and failures, but also ensuring swift and
effective action in response to unexpected hazardous events and situations. Furthermore,
the continuous monitoring and dynamic response capabilities of these safety measures are
essential. They must be designed to adapt quickly to changing conditions and operational
demands, ensuring that the highest level of safety is maintained at all times. This means
that the safety systems not only react to current conditions but also adapt their strategies
proactively, staying aware of potential risks and ensuring uninterrupted, safe operation of
autonomous trains.
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Finally, it is worth stressing that the safety assurance at both the design and run-time
phases for autonomous railway systems is imperative to deal with the challenges identified.
On the one hand, design-time safety assurance, traditionally anchored to standards such
as EN 50126/28/29, has to adapt to the complexity of autonomous technologies. This
adaptation involves not only reinterpreting existing standards, but also developing new
approaches to address the unpredictability of autonomous operations. On the other hand,
for run-time safety, the focus shifts to dynamic risk assessment and the need for continuous
monitoring and responsive safety management systems. Here, the real-time operational
context demands that safety measures are proactive, flexible, and able to mitigate risks
as they occur. Both phases are crucial in maintaining the integrity of autonomous rail
systems.

1.4 Problem formalization
To develop contributions to help the safety demonstration process of the autonomous train
during the design time, as well as its safe operation during run-time, the focus is oriented
primarily on three key facets:

1. Safety argumentation: In the safety assurance process of a system, justifying how
the system complies with safety requirements, consists in creating a safety case. This
is a structured document that presents safety claims, supported by arguments and
evidence, to justify the safety of this system. In the traditional approach, a tex-
tual safety argumentation is employed. For autonomous trains, the safety require-
ments’ compliance also needs to address dynamic risk assessments and risk-based
decision-making processes. Therefore, the key is to develop a clear and effective
safety argumentation through innovative methodologies and approaches;

2. Situational awareness and dynamic risk assessment: Autonomous trains have
to operate in dynamic and unpredictable railway environments, requiring real-time
risk assessment capabilities. For a train driver, such capabilities refer to as situa-
tional awareness. This involves continuously monitoring the surroundings, identify-
ing potential hazards, and executing timely actions to prevent accidents. For the
autonomous train to continuously assess its environment for potential hazards, the
key is to establish a dynamic risk assessment framework able to structure the archi-
tecture and the data organization in the decision-making process of the autonomous
driving system. The aim is to ensure that the onboard system will be designed to
effectively identify and evaluate risk in real-time.

3. Risk-based decision-making process: The key approach is then to develop the
risk-based decision-making process. This involves defining an approach that can
effectively interpret the risk data provided by the dynamic risk assessment while
helping the autonomous train in making safe decisions. Addressing this challenge
is essential for enabling the train to adapt its actions in response to varying risk
levels, thereby maintaining safety during its operation. Furthermore, the risk-based
decision-making process should consider the risk level based on the current opera-
tional conditions. This ongoing assessment is essential for identifying and avoiding
potential hazards in the train’s surrounding environment.

1.5 Contributions
Having identified the safety challenges associated with autonomous trains, the next step is
to define the research questions to be addressed, and the intended objectives. The problem
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formalization discussed previously underscores the safety assurance challenges posed by
autonomous trains from their initial design to their operational phases.

• Research question 1: How can safety argumentation in autonomous train systems
be structured effectively to accommodate their complexities while complying with
existing safety standards?

• Research question 2: What approaches, and real-time risk assessment models, are
needed to enhance the efficiency and effectiveness of safety assurance and decision-
making for autonomous trains operating in dynamic environments?

• Research question 3: What strategies and functions can be developed to ensure
timely preventive actions are taken to maintain safety during autonomous train
operations?

Based on the previous research questions, we fixed the following corresponding objec-
tives :

• Objective 1: Develop a comprehensive safety argumentation approach to address
the complexities involved in constructing the safety case of autonomous trains. This
approach focuses on safety considerations at the design phase, ensuring that a com-
prehensive safety argumentation is integrated from the beginning of the autonomous
train’s development;

• Objective 2: Propose a situational awareness process integrating a dynamic risk as-
sessment framework for autonomous trains. This framework allows the autonomous
driving system to continuously and effectively monitor the environment, accurately
identify potential hazards, and takes decisions while assessing the associated risk in
real-time;

• Objective 3: Develop a risk-based decision-making model for autonomous trains.
This process should be capable of understanding and interpreting the dynamic risk
assessment information to continuously provide the level of risk under varying opera-
tional conditions. The objective is to enable the autonomous train to make informed
and safe decisions that effectively prevent hazards and ensure safe operation through
the surrounding environment.

In conclusion, these objectives contribute to an integrated and comprehensive safety
demonstration process for autonomous trains. By addressing both design-time safety
argumentation and run-time dynamic risk assessment, autonomous trains are equipped to
operate safely and efficiently within the dynamic and unpredictable railway environment.

1.6 Manuscript organization
This dissertation is organized as follows:

• Chapter 2 - Safety assurance of autonomous systems. This chapter provides
an extensive literature review essential to our research. It encompasses various criti-
cal aspects, including an examination of the Autonomous Driving System (ADS), risk
assessment methodologies for both conventional and autonomous vehicles, risk mod-
els and decision-making approaches, and a detailed exploration of risk assessment
within the railway context. Additionally, the chapter investigates safety assurance
methods, such as safety case elaboration with graphical safety argumentation meth-
ods, and the significance of Goal Structuring Notation (GSN). This comprehensive
review forms a solid foundation for our subsequent research contributions.
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• Chapter 3 - Graphical safety argumentation for autonomous trains. This
chapter provides a comprehensive review of safety cases, highlighting their role in
the assurance of safety. Additionally, it investigates the practical implementation
of graphical safety argumentation, specifically within the framework of the Goal
Structuring Notation (GSN). This examination includes various transportation do-
mains, such as automotive, aviation, and railways, showing the versatility of these
approaches. Moreover, we establish an application of the GSN method for structur-
ing the argumentation of safety functions, such as the anti-collision function and the
safe train stopping function, offering practical insights into the real-world application
of these graphical approaches.

• Chapter 4 - Dynamic risk assessment and situational awareness of the
autonomous train. This chapter reviews Dynamic Risk Assessment (DRA) specif-
ically for autonomous trains and introduces a new framework for situational aware-
ness and dynamic risk assessment. The chapter starts with explanations of DRA
and situational awareness and their importance for autonomous train operations. It
then presents a new safety framework allowing the ADS to continuously monitoring
the environment, accurately identifying hazards, and making decisions while assess-
ing risks in real-time. A key feature of this chapter is a use case illustrating the
application of the DRA framework to the obstacle detection function in autonomous
trains, showing how it helps in making safe decisions by anticipating and adapting to
changing conditions. This chapter provides a practical look at how DRA can ensure
safety in autonomous train operations and sets the stage for further research in this
area.

• Chapter 5 - Risk-based decision-making process for autonomous trains
using POMDPs. This chapter develops a risk-based decision-making process em-
ploying Partially Observable Markov Decision Processes (POMDPs) for continuous
environmental monitoring in autonomous train systems. The primary objective of
this chapter is to ensure the safe operation of autonomous trains by consistently
assessing and adapting to risk levels associated with the surrounding environment.
This approach involves the estimation and update of risk, considering all the uncer-
tainties inherent in the perceived environment. The chapter provides a comprehen-
sive review of how POMDPs can be effectively used to make informed decisions that
prioritize safety. Particular attention is given to the application of this process in
the context of preventing collisions in autonomous trains.

• Chapter 6 - Conclusion. This chapter provides conclusion remarks regarding the
dissertation and draws future research directions.

20



Chapter 2

Safety assurance of autonomous
systems

Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 The autonomous driving system . . . . . . . . . . . . . . . . . . 22
2.3 Risk assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.1 Risk assessment for conventional vehicles . . . . . . . . . . . . . 26
2.3.2 Dynamic risk assessment for autonomous transportation systems 26

2.4 Risk models for autonomous vehicles . . . . . . . . . . . . . . . 28
2.5 Decision-making for autonomous vehicles . . . . . . . . . . . . . 32

2.5.1 Deterministic approaches . . . . . . . . . . . . . . . . . . . . . . 32
2.5.2 Non-deterministic approaches . . . . . . . . . . . . . . . . . . . . 33

2.6 Risk assessment in railways . . . . . . . . . . . . . . . . . . . . . 40
2.6.1 Risk assessment for conventional trains . . . . . . . . . . . . . . 40
2.6.2 Risk assessment methods . . . . . . . . . . . . . . . . . . . . . . 40
2.6.3 Dynamic risk assessment for the autonomous train . . . . . . . . 42

2.7 Safety assurance of the autonomous train . . . . . . . . . . . . . 43
2.7.1 Safety cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.7.2 Graphical safety argumentation . . . . . . . . . . . . . . . . . . . 45
2.7.3 Goal Structuring Notation (GSN) application examples . . . . . 47

2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.1 Introduction

The development of Autonomous Vehicles (AVs) is an ambition that arose a few years ago
in the road sector and is now growing in the same way in the rail sector due to the ex-
pected benefits (Fagnant and Kockelman, 2015; Bagloee et al., 2016). Indeed, autonomous
transportation creates completely new possibilities for optimizing the railway network ca-
pacity, expanding mobility, creating new economic opportunities for jobs and investment,
and increasing environmental benefits (Wang et al., 2016b; Martínez-Díaz and Soriguera,
2018; Yin et al., 2017; Read et al., 2019; Singh et al., 2021). Efficient management of
energy consumption is another significant additional benefit. Such advantages contribute
to reduce transport costs but also show the important role that autonomous trains can
play in achieving EU policy objectives of sustainable development (EU-Commission, 2017;
Niestadt et al., 2019b).
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A central challenge is confronted in the pursuit of autonomous rail systems, which
is ensuring their safety. The process of ensuring the safety of autonomous trains in-
cludes tasks such as defining autonomy levels (GoA) (Ramos et al., 2019a), specifying
the Operational Design Domain (ODD) (Torens et al., 2023; Tonk and Boussif, 2022),
identifying hazards related to autonomy (Ventikos et al., 2020), implementing fail-safe
mechanisms (Pek and Althoff, 2019), qualifying AI systems, rigorous testing, verification,
and validation, (Corso and Kochenderfer, 2020), using dynamic risk analysis (Reich and
Trapp, 2020), and real-time monitoring (Machin et al., 2016). Equally significant is the
systematic documentation, substantiation, and structured organization of safety-related
results, established in the autonomous train safety case. This rigorous process is vital for
demonstrating compliance with the associated railway safety standards, building a body
of evidence that supports established safety requirements and criteria.

In this chapter, we provide a review of the autonomous transportation systems, starting
with an examination of existing autonomous driving systems used for AVs. We also present
the essential aspects of risk assessment, risk models, and decision-making processes, fo-
cusing on the challenges and potential solutions in the context of AVs. Subsequently, we
transition the discussion to the equally important aspects of autonomous trains. In con-
clusion, we provide a general overview of AVs before shifting focus towards railways, with
a particular attention on autonomous trains.

2.2 The autonomous driving system

The effort to enhance transportation efficiency and safety has positioned ADSs as a key
area of innovation. These systems are essential for new developments in transportation,
significantly affecting both the operation and safety of AVs (Frigerio et al., 2021).

The autonomous driving system or automated driving system is defined, according
to ISO 34501 standard (ISO-34501, 2022), as a “hardware and software that are collec-
tively capable of performing the entire Dynamic Driving Task (DDT) on a sustained basis,
regardless of whether it is limited to a specific Operational Design Domain (ODD)”. Sim-
ilarly, it is defined according to the Society of Automotive Engineers (SAE) as a “type
of motor vehicle equipment that is capable of performing some or all aspects of the Dy-
namic Driving Task (DDT) without human intervention” (SAE, 2016). Notice that, in
this context, the DDT is referred to as: “all the real-time functions required to operate a
vehicle in on-road traffic, excluding election of final and intermediate destinations” (SAE,
2016). Indeed, the two definitions signify the evolution of transportation technology, where
ADS plays a central role in augmenting vehicle autonomy and diminishing dependency on
human drivers.

In fact, to understand the function of ADS, a look into its foundational principles and
architectural components is necessary. These core aspects, which include sensor fusion,
perception, control and decision-making, and mapping and localization, collectively shape
the capabilities of ADSs. Figure 2.1 represents a simplified illustration of the ADS for
AVs, divided into three primary functional layers: Perception, Planning, and Control. In
the perception layer, the vehicle uses an array of sensors (e.g., GPS, cameras, LiDAR,
etc.) to gather data about its surroundings. This information is crucial for detecting and
interpreting the environment, which includes other vehicles, pedestrians, road signs, and
lane markings. Moreover, the planning layer is subdivided into three main components:
behavior planning, motion planning, and route planning. Behavior planning determines
how the vehicle should behave in response to specific situations, such as when to give
way or pass. In addition, motion planning calculates the vehicle’s trajectory based on the
desired behavior, ensuring safe and efficient operation around obstacles. Route planning
involves mapping out a path to the destination, guided by the localization of the vehicle
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and its task objectives. Finally, the control layer is where the vehicle’s actuators (i.g.,
acceleration, braking and steering mechanisms) are managed. This layer translates the
planned trajectories into actionable commands, executing the driving maneuvers necessary
to follow the planned route while maintaining safety and comfort.

Figure 2.1: A simplified illustration of the Autonomous Driving System (ADS) in auto-
motive

One of the basic components of the ADS is perception. In fact, perception is the abil-
ity of autonomous systems to interpret sensory data and extract meaningful insights (Bog-
doll et al., 2023). In this context, advanced ML and computer vision algorithms plays a
pivotal role. This role is to provide to AVs the ability to recognize objects, pedestrians,
traffic signs, and other elements of the environment (Chen et al., 2015). Through AI tech-
niques, AVs become able to identify patterns, predict the behavior of surrounding entities,
and adapt its behavior to dynamic scenarios (Hou et al., 2023).

Another main component in ADS is sensor fusion, which is a process that combines
data/information from multiple sensors, each with a specific purpose (Kocić et al., 2018).
Sensors, such as LiDAR, radar, cameras, and GPS, serve as the sensory organs of AVs,
capturing a wide array of information from their surroundings. Furthermore, sensor fusion
techniques enable these systems to synthesize this data into a cohesive situational aware-
ness (Reich and Trapp, 2020). By combining the strengths of various sensors, autonomous
systems gain a comprehensive understanding of their environment, a vital capability for
safe navigation.

Moreover, mapping and localization are also essential for the accurate positioning
of AVs within their environment (Zheng et al., 2023). Through high-definition maps
and advanced localization techniques, vehicles can be informed about their location with
a certain level of accuracy. Simultaneously, they can update these maps in real-time,
adapting to changes in the environment and ensuring optimal route planning (Chalvatzaras
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et al., 2022).
Finally, control and decision-making algorithms are the brain behind the opera-

tion of autonomous systems. These algorithms receive processed sensory data and create
a plan for action (Li et al., 2018). Whether it’s steering, accelerating, braking, or execut-
ing complex maneuvers, control and decision-making algorithms ensure that AVs respond
effectively and safely to the information gathered from their sensors. By continuously eval-
uating data and predicting potential outcomes, these algorithms enable safe and efficient
navigation (Schwarting et al., 2018).

After discussing the essential components of ADS for AVs, which are crucial for their
operation and safety, we now focus on the proposed architecture of the on-board ADS for
autonomous trains. The proposed architecture is designed to respond to the challenges
faced by autonomous trains, including environment detection, accurate positioning, and
effective decision-making in various railway scenarios. This architecture aims to integrate
ADS technologies into the railway domain, outlining the adjustments needed to meet the
high safety and reliability requirements of rail transport.

The fundamental architecture of the ADS used in AVs globally remains unchanged
when adapted to autonomous trains. Although the operating environment shifts from
roadways to railways, the key components of the ADS, include perception, mapping and
localization, decision-making, and control. Figure 2.2 illustrates the comprehensive archi-
tecture (in left) and the main functions (in right) of the on-board ADS for autonomous
trains. Central to the system are the autonomous driving tasks, which are primarily com-
posed of perception, sensor fusion, control and decision-making, mapping and localization,
and other critical functions such as obstacle avoidance. These tasks are interconnected
with various aspects of the train’s operation and management systems. For instance, the
ADS is responsible for motion planning, fault diagnosis, and ensuring vehicle cybersecu-
rity, all of which are crucial for the safe and efficient functioning of autonomous trains.
Additionally, the ADS interfaces with external elements like trackside ADS, infrastructure,
the remote control center, and the train attendant, demonstrating the system’s integra-
tion with the larger operational environment. Moreover, maintenance management is
an integral part of this architecture, ensuring the reliability of the ADS. The figure also
acknowledges the influence of surrounding environment on the system, highlighting the
adaptive nature of the ADS to real-world conditions. Other elements, which may in-
clude Automated Train Operation (ATO) and European Rail Traffic Management System
(ERTMS) standards, provide an additional layer of operational parameters that the AADS
must comply with, ensuring both regional and international interoperability.

From the foundational elements of autonomous vehicle technology presented in the
previous section, the importance of understanding its foundation becomes clear. To un-
derstand how these vehicles might safely integrate the railway overall environment, a
review of risk assessment is required. The focus now shifts from the general functioning
of the autonomous driving system to a detailed examination of how potential risks are
assessed by these vehicles.

2.3 Risk assessment

The promise of AVs in reducing traffic, lowering accident rates, and improving driving
experience relies on their ability to make efficient and safe decisions without human inter-
vention (Costantini et al., 2020). Central to this capability is the process of risk assessment.
A clear understanding of how risk is perceived and evaluated by AVs is crucial to ensur-
ing their safe deployment. This section outlines risk assessment for AVs, focusing on its
significance, methodologies, and dynamic aspects.
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Figure 2.2: On-board Autonomous Driving System (ADS) components and interactions
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2.3.1 Risk assessment for conventional vehicles

In the context of automotive engineering, risk is defined as “a combination of the proba-
bility of occurrence of harm and the severity of that harm”, according to the ISO 26262
standard (ISO-26262, 2018). Based on this definition, the risk often pertains to the prob-
ability of an adverse event occurring due to the vehicle’s operation, such as a system
malfunction, accident, or any event that compromises safety.

According to the ISO 31000 standard, which provides guidelines on risk management,
risk assessment is defined as the “overall process of risk identification, risk analysis, and
risk evaluation” (ISO-31000, 2018). In the automotive domain, this includes a structured
approach to identify potential hazards, determine the likelihood of those hazards occurring,
assess the severity of their consequences, and decide on appropriate mitigation measures.

For conventional vehicles (with drivers), the risk assessment process is mainly fo-
cused on three aspects: the vehicle’s mechanical and electronic integrity (Agrawal et al.,
2021), the environment in which it operates (Islam et al., 2016), and the driver’s ca-
pabilities (Macher et al., 2016). Standards and regulations typically emphasize vehicle
maintenance, roadworthiness tests, and driver training as key components to mitigate
risk (European-Commission, 2014). Additionally, passive and active safety systems, such
as airbags and anti-lock braking systems, respectively, play a role in risk reduction.

In fact, while risk assessment principles guide conventional vehicles’ (with human
drivers) safety assurance, they become more complicated when applied to AVs. In reality,
AVs introduce new dimensions of complexity, especially when it comes to interpreting and
predicting human behavior, managing, in real-time, large amounts of data from all sensors,
and ensuring the reliability of complex algorithms and software. This complexity is likely
to exceed the risks for conventional vehicles. Transitioning from risk assessment methods
for conventional vehicles, the discussion advances to DRA for AVs.

2.3.2 Dynamic risk assessment for autonomous transportation systems

The approach of assessing risk while taking into account time-varying and/or environmen-
tal changes is known as Dynamic Risk Assessment (DRA), which is generally based on
probabilistic methods. The DRA is a proactive risk assessment method that integrates
real-time data, adapts to current situational changes, and updates risk estimations ac-
cordingly (Zio, 2018). Unlike traditional risk assessment methods, which often rely on
historical data and predefined scenarios, DRA is structured to accommodate the evolv-
ing and unpredictable nature of operational conditions (Feth et al., 2018). In fact, DRA
provides a continuous, iterative process of risk evaluation that is especially pertinent in
high-speed, complex, or rapidly changing contexts where the static models of yesteryears
may no longer be efficient.

While the concept of DRA is recognized for its adaptability and real-time response,
methodologies can differ based on the specific application, technological tools available,
and the nature of risks involved. Nevertheless, the core principle remains consistent: a
continuous, real-time evaluation of risks with an adaptive response strategy (Aven, 2016).
Hereafter, we present a survey of DRA used in transportation systems, highlighting the
diversity and innovation in risk assessment approaches that are essential for managing
complexities of modern mobility systems.

Indeed, AVs requires robust decision-making capabilities and rigorous risk assessment
procedures to ensure safety and reliability. In their study, Liu et al. (2021b) explored
advanced technologies for making decisions in AVs by focusing on ML and data-driven
algorithms. By emphasizing learning-based methods, they not only explored current ap-
plications but also suggested the future directions of these methodologies. This shift to-
wards ML and data-driven techniques is becoming increasingly central in the automotive
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domain. The need for efficient data use became more evident through the work of Yu et al.
(2021). Their research combined data-driven risk assessment with graphical augmenta-
tion, presenting an innovative approach to gauge and predict autonomous vehicle decisions
in diverse scenarios. Such integrative methods shed light on the potential intersections
of technology and real-world environments. Shifting focus towards software components,
Reich and Trapp (2020) proposed a dynamic risk assessment module that focuses on sit-
uation awareness. As vehicles become more autonomous, understanding and adapting to
immediate surroundings becomes paramount, making such innovations a necessity. Ex-
tending the discussion to autonomous mobile robots, Müller et al. (2022) underscored the
importance of situational risk assessments. These robotic platforms, though distinct from
conventional vehicles, share the overarching need for safety protocols, hinting at the ex-
pansive nature of automotive safety. Feth et al. (2018) then conducted a comprehensive
analysis of the potential of deep learning, developing a dynamic risk assessment framework
for higher-level AVs. Their focus on ML once again emphasizes the automotive industry’s
move towards cutting-edge computational techniques. Lastly, Chia et al. (2022) conducted
a comprehensive survey on the methodologies that drive risk assessment in autonomous
driving. Their insights offer a summary of the safety practices that support the future of
transportation.

Railway systems, being essential for mass transportation, have incorporated a set of
processes and procedures aimed at ensuring the safety of their passengers. In recent years,
the railway domain has seen a surge in implementing advanced methodologies for real-
time risk assessment, especially in the light of high-speed train projects. For instance, a
study by Xue et al. (2020) proposed a risk coupling model based on system dynamics,
emphasizing high-speed rail systems and their complex factors. This model helps explain
how different risk factors in high-speed train projects are interconnected. Urban railway
networks, including metro systems, are now focusing on assessing overcrowding risks. One
significant contribution in this area is the work of Alawad et al. (2020b), who highlighted
the potential of the Adaptive Neuro-Fuzzy Inference System (ANFIS) to estimate the risk
levels of overcrowding in railway stations. This study outlines how using AI can improve
safety at busy and crowded train stations. Furthermore, Alawad et al. (2020a) made
significant progress by incorporating deep learning into evaluating railway risks. Their
method shows how complex ML models can play a crucial role in analyzing detailed data,
helping railways to make informed and safe decisions. Derailment risks are also critical
in the railway domain. Appoh and Yunusa-Kaltungo (2022) introduced a dynamic hybrid
model focusing on comprehensive risk assessment. Their case study focused on train
derailment caused by coupler failures, showing how using different methods together can
give a better understanding. Moreover, rail transport of hazardous materials is another
segment requiring detailed risk analysis. For example, Zarei et al. (2022) presented a
dynamic domino effect risk analysis model in this regard. This research underscores the
critical impact of risks in rail transport, especially when hazardous materials are involved.

The research and techniques reviewed across various fields highlight a unified pro-
gression towards predictive, proactive, and data-centric strategies. As we advance into a
future where human and algorithmic decision-making increasingly converge, DRA become
essential in establishing safe and efficient outcomes for every industry.

After discussing the methods and considerations of risk assessment and dynamic risk
assessment for AVs, the next step is to summarize these processes within specific ap-
proaches. These are represented by risk models designed for AVs. These models offer
a systematic method to identify potential hazards, establish safety measures, and define
decision-making processes. In the following section, we examine these risk models, under-
standing their fundamental principles and importance to autonomous driving.
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2.4 Risk models for autonomous vehicles

Risk models are key tools in risk assessment and management, enabling a systematic and
analytical framework for quantifying risks. They integrate various variables and scenarios
to predict potential outcomes, thus facilitating the development of strategic responses (Ka-
trakazas et al., 2019). For autonomous vehicles, the application of risk models is critical.
Indeed, the operation of AVs involves complex decision-making processes, interaction with
unpredictable environments, and compliance with safety standards, which necessitates the
use of advanced risk models. These models assess a wide range of factors affecting AVs,
from software algorithms to sensor reliability, ensuring all potential risks are thoroughly
identified and mitigated.

Table 2.1 provides a comprehensive overview of a variety of risk assessment models ap-
plied across diverse domains, predominantly in automotive, aviation, and railway systems.
Chronologically arranged, the table illustrates the evolution of risk models emphasizing
dynamic risk management and real-time risk assessment. Feth et al. (2018) is notable
for introducing a method designed for the automotive sector, using Convolutional Neural
Networks (CNN) and relying on data-driven inputs like the current driving situation and
various obstacle parameters, with applications centered on collision risk metrics. In con-
trast, Ma et al. (2019) explored risk models in the railway domain, employing a Bayesian
network to assess high-speed catenary risks under varying conditions, aiming to predict
catenary flashovers during adverse weather. Subsequent models, such as those proposed by
Cheng et al. (2021), focused on Unattended Train Operation, incorporating elements such
as Probabilistic Hybrid Automata (PHA) and Model Predictive Control (MPC). Maritime
and autonomous surface vehicles have also been explored, with Hagen et al. (2022) em-
ploying Model Predictive Control (MPC) for collision avoidance and Hartsell et al. (2021)
applying risk management principles to autonomous systems, utilizing Bow Tie Diagrams
(BTD) and incorporating sensor observations and fault diagnosis. Similarly, Kufoalor et al.
(2020) employed MPC for collision avoidance in Unmanned Surface Vehicles, integrating
sensor observations and runtime monitoring. Chia et al. (2021) developed a Recursive Risk
Assessment Framework for the automotive sector, combining safety levels with predictive
risk numbers and employing both Physics-based and Data-based methods. Reich’s works
in Reich and Trapp (2020) and Reich et al. (2021) focused on automotive applications, em-
ploying Bayesian networks for dynamic risk assessment and collision avoidance, utilizing
perception information to influence vehicle behavior maneuvers. Katrakazas et al. (2019)
integrated Interaction-aware motion models and Dynamic Bayesian Networks (DBNs) for
real-time risk assessment in AVs, utilizing sensor measurements and vehicle kinematics.
Eggert (2018) contributed by developing a dynamic risk map for the automotive domain,
focusing on predictive driving and utilizing situation classification and trajectory predic-
tions. Lastly, Li et al. (2022) explored decision-making in AVs through a probabilistic
model and Deep Q-network (DQN), applying this in scenarios with static and dynamic
obstacles.

In conclusion, risk models are crucial for enhancing risk management strategies, provid-
ing a methodical way to quantify and analyze risks. The variety of models listed in Table
2.1, from CNNs (Convolutional Neural Networks) to BNs (Bayesian Networks), demon-
strates the comprehensive nature of risk modeling. In the context of AVs, the complexity
of autonomous decision-making, interactions with dynamic and changing environments,
and the need for safety compliance require the use of sophisticated and adapted risk mod-
els. The development and variety of these models, as indicated in the table, shows ongoing
progress in the domain, highlighting the continuous efforts to improve safety and mitigate
risks across various sectors.

Examining the diverse characteristics of risk models reveals the nature of assessing and
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managing uncertainties in autonomous transport systems. These models provide crucial
insights into real-time risk assessment, forming a foundation for developing and enhancing
safety requirements. However, while risk models are key in identifying and quantifying
potential hazards, it is important to examine the decision-making processes addressing
these risks more closely. Therefore, we move from the theoretical frameworks of risk models
to practical decision-making strategies for AVs. In the following sections describe how
AVs, guided by risk models, prioritize safety when making decisions under uncertain and
changing conditions. This study aims to demonstrate the way risk assessment is integrated
in the process of decision-making to ensure safety of AVs. Notice that, the ‘P-based’
and ‘D-based’ terms used in the table denote probabilistic-based and deterministic-based
models, highlighting the distinction between approaches that use statistical probabilities
and those that apply physical models and fixed variables to assess risks.
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2.5 Decision-making for autonomous vehicles

The development of Decision-Making Systems (DMS) in Autonomous Vehicles (AVs) rep-
resents significant progress and knowledge, built on past developments and driven by
constant innovation. Starting with early efforts in the 1990s, such as Autonomous Land
Vehicle in a Neural Network (ALVINN) system by Pomerleau (1988) and the rule-based
frameworks by Dickmanns et al. (1994), the field has seen rapid growth. Notably, the
series of the Defense Advanced Research Projects Agency (DARPA), especially Grand
Challenges (Buehler et al., 2009), has been crucial in promoting significant contributions
and defining the current research and applications.

The effectiveness of a DMS relies on the integrated functioning of various interrelated
components. These include precise localization and perception, understanding of opera-
tional parameters, and recognition of changing environment. The coordinated interaction
of these elements is critical of making informed and reliable decisions, an essential require-
ment for the safe operation of AVs in complex environments.

Following the decision-formulation phase, attention moves to implementation, involv-
ing methods like motion planning and lower-level control mechanisms. These approaches
are important for transforming formulated decisions into practical actions, thus ensuring
that the vehicle functions effectively in its specified ODD.

Furthermore, Ulbrich et al. (2015) outline the following essential requirements for the
operationalization of a DMS :

• Rapidity: swift decision-making is crucial for timely driving maneuvers;

• Coherency: the decision-making module should maintain consistency, avoiding un-
necessary shifts in planning;

• Providentness: the system should foresee potential future scenarios and incorpo-
rate this foresight into decision-making;

• Predictability: decision-making should conform to human driver perception of
safety and judgment.

In the subsequent subsections, we examine the historical developments, necessary com-
ponents and execution strategies, along with a detailed review of the different natures of
decision-making approaches (deterministic and non-deterministic) found in the literature.
This analysis aims to provide understanding into the aspects of decision-making in AVs
for future research and technological progress.

2.5.1 Deterministic approaches

During the initial phases of AVs development, classical approaches, particularly rule-based
systems, were a key strategy. These systems relied on a set of predefined rules and logic
to dictate the vehicles’ reaction to certain scenarios and inputs (Ferber and Weiss, 1999).
The central idea was that a well-developed and extensive rules could enable the vehicle to
effectively and safely operate through a variety of operational conditions.

Exploring the history of rule-based systems reveals early efforts like ALVINN (Au-
tonomous Land Vehicle In a Neural Network) (Pomerleau, 1988) and the models intro-
duced by Dickmanns et al. (1994). These initiatives demonstrated the potential of using
rule-based frameworks for AVs, with vehicles competently performing actions based on vi-
sual cues and events. The predictability and determinism of these early models mirrored
the technological limitations and the emerging understanding of the field at that time.

Though rule-based systems initiated progress in autonomous vehicle technology, they
had notable limitations. Their main objective was the inability to manage or adapt to
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unknown situations or uncertainties. Limited by programmed (predefined) scenarios, these
systems had difficulties with unpredictable events or changing environments (Zadeh et al.,
1996). The adaptability and capacity of traditional methods were also questioned as
driving conditions became more complex and varied.

In response to these limitations, the field shifted towards alternative strategies. In fact,
the objective was to create decision-making frameworks that could adapt and respond to
challenges. Advances in AVs technologies brought forward probabilistic models, strategies
based on ML, and hybrid approaches. This aimed at addressing the complexities and
uncertainties of operating in real-world scenarios. Furthermore, while traditional methods
established the initial framework for AVs development, their limitations led a continuous
search for more adaptable solutions. Insights from early models have significantly influ-
enced research and development, leading to the complex decision-making systems in the
current AVs.

2.5.2 Non-deterministic approaches

Shifting from deterministic methods that depend on rule-based systems, inadequate for
unknown scenarios or uncertainties, led the research community to pursue alternative ap-
proaches. This shift resulted in the adoption of probabilistic methods, essential for dealing
with the uncertainties related to changing environments and for the safe operation of AVs.
The adoption of probabilistic or non-deterministic methods represents a significant change
in AVs. These methods, based on probabilities, are designed to manage the uncertainties,
support reasoning, and help the decision-making process. This allows AVs to adjust and
react to new and changing situations (Kaelbling et al., 1998; Murphy, 2012). Some po-
tential methods for the probabilistic approach can be given by :

1. Markov Decision Processes (MDPs): Markov Decision Processes (MDPs) are
mathematical frameworks that capture the dynamic decision-making scenarios in
environments with stochastic outcomes (Bellman, 1957; Puterman, 1990). Funda-
mentally, a MDP includes a collection of states, a series of actions, transition proba-
bilities that outline the system dynamics, and a reward function. Within autonomous
driving, states could indicate various scenarios on the road, actions could refer to po-
tential maneuvers a car can perform, and the transition probabilities would account
for the uncertainties in the environment’s reaction to these actions White (1993).
Formally, a MDP is described by a tuple < S, A, T, R > where S is the set of states,
A is the set of actions; T is transition probability of the system to a state s′ from
state s taking action a, R is the reward that the agent will receive depending on the
state of the system and the action chosen. Figure 2.3 shows the main functioning of
an MDP and its interaction with its environment. It states that executing an action
a ∈ A, given the system defined by a state s ∈ S,is what will be called a policy
π : s → a. The goal of such a problem is to find an optimal policy (sequence of
actions) π∗ that maximizes the expected reward over the time horizon T (Howard,
1960).
The field of autonomous driving has seen a significant increase in research utiliz-
ing MDP to develop optimal and safe driving policies. Wu et al. (2022)) explored
the development of a hybrid driving decision-making system by combining Markov
logic networks with AI based on neural networks, aiming to improve safety in AVs
operations. Avilés et al. (2022) and collaborators provides a probabilistic logical
description of an MDP to steer decisions in autonomous driving, especially targeting
collision avoidance with other vehicles. In another insightful study, Ramanathan
and Kartik (2021) discussed the potential of hidden Markov models and partially
observable MDPs for intention-aware decision-making in self-driven vehicles.
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Figure 2.3: Illustration of the Markov Decision Process (MDP)

Adding a game-theoretic perspective, Coskun and Langari (2018) introduced a new
decision-making method for autonomous driving by combining Markov games and
MDPs. Addressing traffic scenarios, Palanisamy et al. (2020) examined the use of
hierarchical structures within the MDP framework to facilitate autonomous driving
decisions at intersections. In a related approach, but with a focus on highway sce-
narios, Guan et al. (2018) proposed a MDP-based method that sidesteps the reliance
on human driving data or predefined rules.
Furhtermore, MDPs are adaptable, and their adaptability and flexibility was demon-
strated by Coskun et al. (2019), who combined the ideas of Fuzzy logic and MDPs
to develop a predictive Fuzzy Markov Decision Process (FMDP) model suited for
autonomous driving scenarios. In a collaborative project with Toyota and Renault,
Laugier (2019) highlighted how Bayesian and Machine Learning approaches enhance
motion autonomy and safety in AVs. Driving decision-making, especially in situ-
ations like unmanned vehicle crossings, can be significantly augmented using the
Markov model as outlined by Feng et al. (2014). Lastly, acknowledging the cooper-
ative and competitive nature of traffic, Cheng et al. (2021) explored how AVs can
learn policies and establish social norms in traffic through the lens of Markov games
and deep reinforcement learning.

2. Partially Observable Markov Decision Processes (POMDPs): extend the
MDPs to scenarios where the environment is dynamic and complete information
about the current state is not always available (Monahan, 1982). Given the sce-
narios faced by AVs, where sensors might not always provide accurate information
about the surroundings due to occlusions, malfunctions, or challenging environmen-
tal conditions, the use of POMDPs can be crucial. POMDPs offer a methodological
approach to weigh the available information and help the autonomous driving sys-
tems take optimal decisions in real-world scenarios (Silver and Veness, 2010).
Examining its mathematical foundation, a POMDP is represented using a tuple
< S, A, O, T, Z, R >. Here, S encompasses a set of states and A represents a set
of actions. Concurrently, the set O designates the possible observations. Transition
probabilities, denoted by T , provide the probability of state transitions upon the
execution of an action. Meanwhile, observation probabilities, described by Z, give
insights into the likelihood of receiving a certain observation following an action,
leading to a specific state. Lastly, the function R is an indicator of the anticipated
reward for executing a particular action within a given state. Given the inherent un-
predictability, agents operate with a ‘belief state’, a probability distribution spanning
states. This belief state is updated with every action and subsequent observation,
relying on the principles of Bayes’ rule (Schulman, 1984).
The illustration presented in Figure 2.4 captures the essence of POMDPs when ap-
plied to scenarios typical of autonomous driving. The figure underscores states,
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Figure 2.4: Illustration of Partially Observable Markov Decision Process (POMDP)

potential actions, and consequential probabilistic observations, highlighting the un-
certainties pivotal to decision-making within a POMDP framework.
In the domain of autonomous driving, vehicles frequently navigate through dynamic
environments, where the complexities are intensified by limited visibility and unpre-
dictable changes. It is in these challenging terrains that POMDPs have demonstrated
their advantages and benefits, providing an effective method to manage uncertain-
ties.
Haklidir and Temeltaş (2022) examined autonomous driving by defining it as a
POMDP problem, focusing on decisions in uncertain conditions. Their approach,
termed the Guided Soft Actor-Critic (Guided SAC), demonstrated efficacy, espe-
cially in pedestrian crossing scenarios. The results closely matched those expected
in environments with complete state knowledge, highlighting its effectiveness. Pouya
and Madni (2020) extended the research horizon by crafting a probabilistic model
aimed at decoding the behaviors of AVs. Their Expandable-POMDP models were
notable for establishing a strong basis for strategic planning in environments with
limited observability.
The complexity significantly increases at non-signalized intersections. Acknowledg-
ing this,Quaglietta et al. (2013) introduced a POMDP model based on the concept
of Responsibility-Sensitive Safety (RSS). Their research showed positive outcomes,
indicating improvements in traffic safety and driving smoothness.
Moreover, the application of POMDPs in the domain of robotics and autonomous
systems has been explored extensively, with Lauri et al. (2022) survey outlining the
integration of POMDP frameworks in various robot decision tasks. Lauri’s work pro-
vides an exhaustive overview, emphasizing the efficacy of the POMDP framework
in modeling and solving robot decision challenges under the issues of uncertainty.
Further examining into algorithms based on POMDPs, Lin et al. (2019) categorizes
these into approximate and exact algorithms. The study underscores the founda-
tional role of exact algorithms, which subsequently inform and refine approximate
methods.
Turning attention to autonomous systems dealing with non-Gaussian correlated un-
certainty, Chen and Zhang (2019) introduced a new framework for chance-constrained
stochastic model predictive control. The introduction of this method (Cockburn
et al., 2012), established to manage non-Gaussian correlated uncertainties, is espe-
cially pertinent to autonomous vehicle control.
Fundamentally, the extensive research covering methods, applications, and chal-
lenges related to POMDPs, highlights their adaptability and effectiveness. In fields
like robotics, autonomous driving, or any area dealing with uncertainty and limited
observability, POMDPs have become a key methodology.
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In conclusion, POMDPs is advantageous in decision-making under uncertainty, pro-
viding a comprehensive approach in environments where state observability remains
uncertain. Their structure, which combines state transitions with probabilistic obser-
vations, makes them effective at investigating scenarios where applying other meth-
ods might be more complicated. For instance, while traditional MDPs requires
an accurate view of the state space, POMDPs handle scenarios characterized by
noisy, incomplete, or otherwise imperfect information. This capability is a signifi-
cant benefit, particularly in real-world applications like autonomous driving, where
environmental complexities and uncertainties are common.

3. Kalman Filters : Kalman Filters (KFs) are advanced mathematical algorithms
developed to offer accurate estimations of dynamic systems, even when faced with
noisy measurements (Kalman, 1960). Historically used in aerospace applications,
KFs have proven invaluable in a wide range of fields, including autonomous driving.
At their foundation, KFs combine predictions from a system’s model with actual
measurements to enhance state estimates. Conceptually, a KF relies on a two-
step process: initially predicting the next state based on the system’s model and
subsequently refining this prediction using the newest available measurements. By
relying on Gaussian statistics, KFs effectively handle uncertainties both from system
dynamics and sensor noise, optimizing accuracy in state estimations (Welch et al.,
1995).
Autonomous driving has benefited from the integration of Kalman Filters. Man-
junatha et al. (2023)’s work outlines this integration, where KFs are merged with
neural structures, achieving improved performance when enriched with explicit ve-
hicle models. The resilience of autonomous systems against security threats, as
discussed by Yi and Chen (2023), underscores the potential of KFs.
Further extending the utility of KFs, Griebel et al. (2020) proposes a self-assessment
strategy employing subjective logic. This strategy helps in gauging statistical un-
certainties inherent in KFs, especially within the domain of autonomous driving.
Taking a different approach, Nasir et al. (2017)’s research uses KFs for robot lo-
calization. This results in reduced errors, showing the advantages of KFs. In the
same context, Khan et al. (2016) introduced a dynamic version of the KF, effective
at predicting vehicle positions and velocities with precision. Finally, highlighting
sensor fusion, Farag (2021)’s innovative approach combines LiDAR and Radar data,
all coordinated by a KF, setting the stage for advancements in object detection and
tracking.
To conclude, KFs have become essential tools in autonomous driving, bridging the
gap between predictive models and real-world measurements. Their wide range of
uses, from advanced neural networks to accurate localization and tracking, highlights
their critical importance. Yet, recognizing their underlying assumptions and possible
limitations is vital.

4. Reinforcement Learning (RL): is an approach in which an agent learns to make
decisions by interacting with its environment and receiving feedback in the form of
rewards or penalties (Kaelbling et al., 1996). In fact, RL is a field that lies at the
crossroads of computer science, intelligence, and control theory. Its main purpose
is to develop algorithms that enable agents to make decisions by interacting with
their environment to achieve goals. This approach has been extensively explained
by Sutton and Barto (2018) who describe it as a process where agents adapt their
actions based on feedback, in the form of rewards or penalties, to maximize long-term
benefits. The essence of RL revolves around three primary entities: states, actions,
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and rewards. As agents interact with the environment, they transition between
different states, undertake actions, and accordingly receive rewards. The principal
objective for an RL-based approach is to provide optimal policies, which is a defined
mapping from states to actions, intending to maximize the expected rewards over
time.
Over the years, RL has become increasingly popular in decision-making applications,
especially for autonomous systems. In the automotive industry, there has been a
significant increase in using RL to develop advanced driving strategies.
In the context of autonomous driving, Hu et al. (2022) thoroughly examined the
complexities of motion planning in decision-making. Through their work, they pro-
posed a novel deep Reinforcement Learning (RL) model that focuses on three key
aspects: safety, efficiency, and smoothness. By integrating these factors, their ap-
proach provided a model for current research in developing reliable and safe AVs.
In a concurrent vein, Yang et al. (2022) introduced the SMART (deciSion-Making
frAmework based on ReinforcemenT learning) decision-making framework that pri-
oritizes the robustness of RL. Their emphasis was on optimizing two crucial vehicular
attributes: velocity and steering angle decisions. The SMART framework, by assimi-
lating these parameters, aimed for a more dynamic and adaptive autonomous driving
experience.
Notably, the SMART framework also caught the attention of Xia et al. (2023), who
advanced this approach further. Expanding on the foundational principles set by
Yang, Xia’s version of the SMART framework used RL, specifically focusing on
velocity and steering angle decisions, thus emphasizing the increasing recognition
and potential of the SMART approach in the automotive domain. Overtaking, a
complex vehicular maneuver filled with dynamics and potential hazards, became the
focal point of research for Zhang et al. (2023a). In their work, a deep RL model
was developed specifically for these overtaking scenarios in autonomous driving. By
understanding the myriad challenges posed by overtaking, Zhang’s model stood out
as a pioneering solution to a long-standing vehicular challenge.
Another contribution came from Cui et al. (2023), who started the process of com-
bining various aspects of decision-making for autonomous driving. Their proposition
was a comprehensive model built on the tenets of deep RL. Examining specifics, they
used the Deep Q Network (DQN) and its subsequent variants to create an integrated
solution, catering to a spectrum of driving scenarios and challenges.

5. Particle Filters : also known as Sequential Monte Carlo (SMC) methods, have
emerged as an influential tool in the domain of nonlinear and non-Gaussian esti-
mation problems (Del Moral, 1997). Originating from the Monte Carlo methods,
particle filters employ a set of random samples or ‘particles’ to represent the poste-
rior distribution of some stochastic process.
In conceptualizing particle filters, the process starts with the initial phase, known
as Initialization. Here, particles are typically generated from a known distribution
or are spread evenly across the state space. The objective is to cover the space
adequately and anticipate where relevant observations might appear.After initializa-
tion, each particle begins by receiving a weight in the Weighting phase. This weight
is directly associated with the probability that the observed data aligns with the
particle’s state. As the system progresses over time, the particles are selected in the
Resampling phase. Those with higher weights continue, sometimes reproducing to
replace those with lower weights, while those with very low weights are removed.
Finally, in the Propagation phase, the particles move through the state space in a
way determined by the system’s dynamics (Djuric et al., 2003).
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The field of autonomous systems has seen significant advancements in the application
and optimization of particle filters, evidenced by various contributions in the litera-
ture. Wu and Li (2020) outlined the parameter estimation complexities of particle
filters as applied to decision-making in autonomous driving, while works by Song
et al. (2022) stufies the topic from a quantum decision theory perspective, testing it
against the Cumulative Prospect Theory model. In the domain of localization, an
indispensable function in autonomous navigation, Jonchery et al. (2021) employed a
particle filter approach using diverse landmark types and various sensor data fusion.
Moreover, the relevance of particle filters in automotive applications goes beyond just
theoretical frameworks; it extends to practical real-world applications, as reviewed
by Berntorp and Di Cairano (2019). Notably, while Iyer et al. (2021) and Katwe et al.
(2021) focuses on using particle filters for accurate localization of AVs, especially in
GPS-compromised environments, Yang et al. (2022) pivot to proposing an adaptive
self-driving tracking algorithm based on particle filter techniques.
The scope of research also covers freeway driving scenarios, wherein Guan et al.
(2022) introduced a discrete decision-making strategy to improve efficiency and
safety, leveraging the discrete Soft Actor-Critic (CAC) with a sample filter algo-
rithm. Finally, in the context of autonomous robotics, Ueda and Arai (2007) use
a particle filter combined with a real-time Quantitative Markov Decision Process
(Q-MDP) value method, for refined state estimation and decision-making processes.

In the field of autonomous decision-making, many computational methods have been
developed to assist systems in making informed decisions, especially in situations marked
by uncertainty and constant changes. As outlined in Table 2.2, these methods are estab-
lished to specific applications, making them effective for distinct scenarios. For instance,
Markov Decision Processes (MDPs) are effective in environments with predictable state
transitions, allowing for the creation of optimal strategies and policies for such conditions.
On the other hand, Partially Observable MDPs (POMDPs) are designed for situations
where complete state visibility is rare. Reinforcement Learning (RL) is notable for its
flexibility, permitting agents to learn through interaction without a pre-established model.
The Kalman Filter (KF) and Particle Filter (PF) focus on state estimation, with KF be-
ing preferred for its accuracy in environments with Gaussian noise, and PF valued for its
ability to manage non-linear dynamics and non-Gaussian noises. Together, these methods
represent a comprehensive set of tools for researchers and practitioners in the field of au-
tonomous decision-making, with each technique offering distinct advantages for different
scenarios and challenges.
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2.6 Risk assessment in railways

2.6.1 Risk assessment for conventional trains

Safety and risk assessment in railways is an essential process, ensuring that the operations
and functionalities of rail systems remain within an acceptable safety level. This assess-
ment is ongoing processes that extend from the design stage to the operational stages,
ensuring that the railways function efficiently without compromising safety.

The EN 50126, EN 50128 and EN 50129 series of European standards, for instance,
provides a framework for the specification and demonstration of the Reliability, Avail-
ability, Maintainability, and Safety (RAMS) of railway systems. The suite, comprising
various parts, delineates the requirements concerning system safety (EN 50126), software
(EN 50128), and safety cases (EN 50129) aspects. Among the basic principles behind these
standards is to enable a structured approach to risk assessment, making sure that poten-
tial hazards are identified, assessed, and appropriately addressed throughout the entire
life-cycle of the rail system.

Parallelly, and in line with these standards, the Common Safety Method for Risk Eval-
uation and Assessment (CSM-RA), mandated by the European Union, provides a harmo-
nized approach to evaluating and ensuring the safety of rail operations. This method
underscores the significance of a rigorous risk assessment and management process, pro-
moting a holistic view of the rail system. It necessitates the identification of all possible
hazards and the quantification of associated risks. Subsequently, the CSM-RA establishes
requirements for demonstrating that these risks have been reduced to a tolerable level,
given the current state of the art and societal expectations.

Throughout the life-cycle (see Figure 2.5), these standards and methodologies advocate
for:

1. Hazard identification : recognizing potential sources of harm or adverse events;

2. Risk analysis: estimating the risks, considering the frequency and severity of po-
tential consequences;

3. Risk evaluation: (which include risk analysis) determining whether the identified
risks are acceptable or require mitigation;

4. Risk mitigation: implementing measures to eliminate or reduce the severity and
likelihood of the risk to an acceptable level;

5. Continuous monitoring and review: to ensure that risk controls remain effective
during operations and in light of new information or changing conditions.

Fundamentally, the risk assessment of traditional railway systems is an iterative and
thorough process that requires the systematic application of standardized methods through-
out the life-cycle of the system. These methods are driven by a focus on safety, while taking
into account the complex connections between different elements of the rail system.

As railway technology advances towards increased autonomy (GoA4), the approaches
of risk assessment and safety must be adapted to address the complexities of autonomous
functions. This includes the integration of comprehensive algorithms, sophisticated sen-
sors, and ML components. The following section represents the challenges and methods
for ensuring the safety and risk mitigation of autonomous trains.

2.6.2 Risk assessment methods

Risk assessment is an essential process in any safety-critical domain, providing a system-
atic approach to identify, evaluate, and mitigate potential hazards. Over the years, many
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Figure 2.5: Process of risk assessment related to phases 3 and 4 of the life-cycle (EN-50126,
2017)

different methods have been developed to adapt to the changing challenges of different
industries, including railways. These methods, when applied properly, not only ensure op-
erational safety but also ensure system efficiency and reliability. Selecting an appropriate
assessment technique often revolves around the specifics of the system in focus. Here, we
categorize prominent risk assessment methods into static and dynamic approaches:

1. Static approaches

• Fault Tree Analysis (FTA): using a top-down approach, FTA provides a
graphical representation of events leading to a failure, enabling a clear identifi-
cation of system vulnerabilities (Vesely et al., 1981);

• Event Tree Analysis (ETA): as a complementary bottom-up method, ETA
starts with an initial event and traces its potential subsequent outcomes, aiding
in the visualization of the repercussions of a system disruption (Kenarangui,
1991);

• Hazard and Operability Study (HAZOP): a systematic tool that delves
into existing or proposed processes to spot and evaluate potential risks, ensuring
that industries remain cognizant of and equipped to tackle threats (Dunjó et al.,
2010);

• Failure Mode and Effects Analysis (FMEA): a systematic method used
to identify potential failure modes within a system, product, or process, FMEA
also evaluates the associated consequences of these failures. By ranking the
severity of the effects and their likelihood of occurrence, FMEA assists engineers
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and designers in prioritizing the most critical failures so that mitigation actions
can be implemented (Gilchrist, 1993).

2. Dynamic approaches

• Monte Carlo simulation: using randomness to solve problems that might
be deterministic in principle, this method is widely adopted in risk analysis to
model the probability of different outcomes in processes that cannot easily be
predicted due to the intervention of random variables (Mooney, 1997);

• Bayesian Networks: this graphical model represents variables and their con-
ditional dependencies. It is a flexible tool for modeling complex dependencies
in risk assessment, and especially effective when dealing with uncertainty and
when updating risks based on new information Friedman et al. (1997);

• Markov chains: mathematical models employed to represent systems that
transition from one state to another over time. Characterized by the “memo-
ryless” Markov Property, the probability of the system transitioning to a sub-
sequent state is dependent only on its current state, not on the sequence that
preceded it. In the context of risk assessment, Markov Chains are used to model
and predict system behaviors, particularly in scenarios with probabilistic tran-
sitions and uncertainties (Norris, 1998).

While traditional risk assessment methods, both deterministic and probabilistic, have
provided essential knowledge into the potential risks and failures of railway systems, the
emergence of autonomous trains and real-time operations necessitates a shift in perspec-
tive. In fact, static risk models, which mainly depend on predefined scenarios and historical
data, may not fully understand the changing environment and dynamic interactions. Con-
sequently, as railway systems advance technologically, and as the demand for immediate
responsiveness to unexpected situations increases, the need for dynamic risk assessment
becomes crucial. Such assessment consider real-time data and situational changes, ensur-
ing that safety evaluations remain relevant and adaptive to current conditions.

2.6.3 Dynamic risk assessment for the autonomous train

In the context of railways, especially with the introduction of autonomous trains, DRA
becomes particularly essential. Here, the system would need to assess risks continuously,
updating its operational strategy based on factors like track conditions, weather condi-
tions, equipment’s state of health, obstacles, and other trains’ presence and movements.
Such a continuous and adaptive approach ensures that the system is always operating
within respect to safety requirements, and any potential risks are identified and addressed
appropriately (Park, 2014).

In railway operations, risk assessment is essential, comprising various methodologies
and approaches. For instance, deterministic risk models use specific parameters and sce-
narios to forecast outcomes, focusing on consistency. On the other hand, probabilistic
risk models consider the uncertainties and variations that naturally occur in railway op-
erations. Among these models, evaluating the risk of collisions is particularly important,
underlining the need to prevent collisions in railway systems. The following discussions
explore these methods, highlighting their characteristics, uses, and the challenges they
introduce.

In order to adequately address these complexities, a focused approach to safety and
risk assessment is necessary. This method goes further than traditional frameworks to
address the unique challenges of autonomous operations.
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1. Perception: At the core of autonomous train operation lies the crucial process
of perception, which is the system’s ability to accurately detect, recognize, and
interpret its environment. This includes identifying obstacles, comprehensive track
conditions, and even interpreting signals (Wall et al., 2014). Ensuring the reliability
of perception systems, which often rely on a fusion of sensors like LIDAR, radar,
and cameras, becomes a cornerstone of safety assessment;

2. Dynamic environment interaction: Autonomous trains continuously engage
with dynamic environments, utilizing sophisticated sensor systems and decision-
making algorithms (Quaglietta et al., 2013). The constant validation and monitoring
of these algorithms and sensors ensure that emerging risks are promptly identified
and addressed;

3. Advanced computational elements: Leveraging contemporary computational
methodologies, such as machine learning and artificial intelligence, autonomous
trains can make decisions in real-time (Tazoniero et al., 2007). Validating these
non-deterministic algorithms’ safety and reliability is imperative, requiring innova-
tive techniques that factor in the probabilistic nature of their outputs;

4. Risk-based approaches: Due to the dynamic nature of autonomous operations,
conventional deterministic safety assessments may have limitations. Probabilistic
risk-based approaches that concentrate on recognizing potential hazardous scenarios
while assessing their likelihood and severity provide a more comprehensive perspec-
tive (Johnsen et al., 2018). This transition from a strictly reactive standpoint to a
proactive, scenario-driven evaluation amplifies the system’s capacity to foresee and
mitigate potential safety issues;

5. Decision-making: Integral to autonomous train operations is the decision-making
process—how the system reacts to perceived inputs. The transparency and pre-
dictability of this process are paramount (Stopka et al., 2020). Ensuring that
decision-making pathways are robust, logical, and free from unforeseen biases or
errors becomes a core component of safety assessments.

Existing standards and regulations, such as the EN5012x series and the CSM-RA, may
require enhancements and improvements or supplementary directives to fully address the
nuances of autonomous systems and ensure their holistic risk evaluation remains relevant.

In conclusion, safety and risk assessment for autonomous trains demand sophisticated
strategies that integrate traditional principles with the unique challenges of autonomy.
This ensures the continued effectiveness of safety requirements in the context of au-
tonomous transportation.

2.7 Safety assurance of the autonomous train
Ensuring adherence to railway safety standards requires the collation of evidence support-
ing established safety requirements and objectives (Council et al., 2007). While standards
provide guidelines for demonstrating safety, their practical application is critical because
their descriptive nature leaves gaps for various interpretations (Nair et al., 2014). Typi-
cally, a Safety Case includes evidence and arguments demonstrating the safety of a system
in specific operational contexts. However, as system complexity increases, establishing co-
herent and credible safety arguments becomes challenging for designers and developers.

In the next sections, we examine the importance of safety cases in ensuring safety
and the argumentation process in railway systems. Then, we review various graphical
argumentation methods used in the literature.
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2.7.1 Safety cases

Safety cases have played an increasingly critical role in the railway industry’s evolution to-
wards a safer and more reliable mode of transportation (Leveson, 2011). These structured
arguments have provided the approach for assessing, documenting, and ensuring safety
measures are in place, significantly reducing the risk of accidents and incidents (Graydon,
2013). The history of safety cases in railways is marked by milestones that reflect the
industry’s commitment to safety assurance. In the pre-modern era of the rail domain,
safety was a substantial concern. However, formal safety cases, as they are known today,
did not exist. Safety measures were often developed in response to specific accidents and
incidents (Rolt). For example, the boiler explosions that plagued early steam locomotives
led to the creation of the Boiler Explosions Act of 1882 in the United Kingdom (Bartrip,
1980), which mandated boiler inspections and maintenance (Parliament of the United
Kingdom, 1882). The end of World War II marked a significant turning point for rail-
way safety (Divall, 2016). The increasing complexity of railway systems, the advent of
electric and diesel locomotives, and the growing speed and density of rail traffic neces-
sitated more formalized safety approaches. It was during this period that the British
Railways Board1 (BRB) introduced Safety Management Systems (SMS) to improve safety
and reduce risks (U.K. Health and Safety Executive, 1999).

The introduction of safety cases in the railway industry can be traced back to the
1970s. The Haddon-Cave Report of 1971 (Haddon-Cave, 1971) is often cited as one of the
earliest safety cases in railways, primarily focusing on safety analysis for rail equipment.
The concept of the ‘safety case’ gained attention in the United Kingdom in the 1990s,
thanks to the Health and Safety Executive2 (HSE) and the U.K. Railway Inspectorate3.
The idea of structured safety arguments, formally documented in safety cases, began to
take hold.

The railway industry recognized the importance of formalized safety arguments and
began standardizing safety practices. The introduction of ISO 9000 (ISO-9000, 2015) and
IEC 61508 (IEC-61508, 2010) standards set the stage for international safety management
practices in the industry. The systematic approach to safety, grounded in formal safety
cases and safety arguments, became a cornerstone of railway safety assurance.

In recent years, the railway domain has seen a significant shift towards the develop-
ment of safety cases that comply with international standards, such as CENELEC EN
50126 (EN-50126, 2017), EN 50129 (EN-50129, 2018), and ISO 15026 (ISO-15026, 2020).
These standards require railways to develop comprehensive safety cases that demonstrate
the achievement of safety goals and compliance with safety requirements. Modern railway
safety management systems are increasingly dependent on structured safety argumenta-
tion to ensure the safety and reliability of railway systems, especially with the introduction
of autonomous train operations and innovative technologies.

This brief history reflects the ongoing transformation of the railway industry in its
relentless pursuit of safety and reliability. Today, structured safety argumentation, in
combination with international safety standards, is instrumental in meeting the challenges
of modern railway systems.

In examining textual safety argumentation within railway systems, it becomes clear
that the complexities of autonomous trains often surpass the capabilities of textual repre-
sentation alone. This highlights the need for a more comprehensive and graphical approach
to manage the complexity of safety cases. Consequently, the focus now is shifted towards
graphical safety argumentation, which uses graphical tools and techniques to complement
textual argumentation.

1https://discovery.nationalarchives.gov.uk
2https://www.hse.gov.uk/
3https://www.orr.gov.uk
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2.7.2 Graphical safety argumentation

As mentioned before, safety argumentation plays a pivotal role in ensuring safe operation
of complex systems, particularly in safety-critical industries such as railways. Here, we
provide a comprehensive overview of safety argumentation frameworks, with a specific
focus on their applications in the railway industry. These frameworks assist in systemat-
ically developing structured safety arguments, which are essential for demonstrating the
satisfaction of safety goals and requirements, thereby ensuring safe railway operations.

1. Goal Structuring Notation (GSN): a graphical notation, is a cornerstone of
structured safety argumentation in railways (Kelly and Weaver, 2004). This frame-
work provides a systematic approach for structuring safety arguments, arranging
them hierarchically with goals, sub-goals, strategies, and evidence. The GSN method-
ology simplifies complex arguments by breaking them down into comprehensible
components, facilitating communication and understanding within the railway safety
domain;

2. Claims-Argument-Evidence (CAE): The CAE framework focuses on creating
structured arguments with clear connections between claims and supporting evi-
dence. While it may not provide the same hierarchical structure as GSN, CAE
simplifies argument structure by emphasizing the relationship between claims and
their justifications. This makes it suitable for applications that require clarity and
direct links between evidence and safety claims (Bishop and Bloomfield, 2000a);

3. Structured Assurance Case Metamodel (SACM): SACM, an Object Man-
agement Group standard, is an increasingly adopted framework that defines a meta-
model for structuring safety cases and assurance arguments (Wei et al., 2019). Its
primary advantage lies in the standardization of information exchange within safety-
critical railway systems. SACM helps in maintaining a systematic approach to de-
veloping and sharing safety cases across different stakeholders;

4. Knowledge Acquisition in Automated Specification (KAOS): is a graphi-
cal method used for goal-oriented requirement engineering, often applied in safety-
critical systems to model system goals, agents, and their relationships. It revolves
around modeling requirements as goals and agent commitments, where goals repre-
sent desired system behavior. These goals can be organized hierarchically, providing
a structured way to represent system requirements. Agents and actors are introduced
to assign responsibilities in the system, while obstacles represent conditions hinder-
ing goal achievement. The refinement process breaks down high-level goals into
subgoals, helping create a goal hierarchy for thorough requirement analysis (Gruber,
1990).

5. Safety Specification Graph (SSG) : is a graphical representation used for safety
analysis in complex systems, particularly in safety assurance and risk assessment (Boulin-
ier et al., 2004). It is structured as a directed graph where nodes represent compo-
nents, requirements, and constraints. Edges between nodes signify various safety-
related relationships, such as dependencies, hierarchies, and constraints. SSGs play
an important role in visualizing and specifying safety requirements, facilitating haz-
ard analysis and risk assessment. They include traceability links for connecting safety
requirements to design elements, ensuring a systematic and transparent approach to
safety assurance.

Table 2.3 provides a comprehensive overview of each graphical safety argumentation
method along with their advantages, limitations and real-life applications in different in-
dustries :
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Table 2.3: Graphical safety argumentation methods

Method Advantages Limitations Applications
SSG Clear representation

and systematic hazard
identification.

Complexity for simple
systems; might not cap-
ture all aspects. • Aerospace

• Automotive

CAE Clear distinction and
easy communication.

Over-simplification
for complex systems;
blurred distinctions. • Nuclear

• Railway

• Aerospace

KAOS Detailed representation
and traceability.

Modeling complexity;
might be excessive for
small projects. • Software en-

gineering for
complex projects.

GSN Intuitive visual rep-
resentation; widely
adopted.

Requires training; chal-
lenging for large-scale
systems. • Automotive

• Aerospace

• Nuclear

• Railway

SACM Standardization of
information exchange
and systematic safety
case development.

May require extensive
training and familiarity
with the metamodel. • Safety-critical

railway systems

In the domain of safety argumentation, GSN presents an array of features that dif-
ferentiate it from other graphical methods. At its core, GSN is structured to delineate
safety goals, the strategies to achieve them, and the evidence that underscores their real-
ization (Kelly, 1999b). Unlike the SSG, which is narrowly centered on specification-based
safety criteria (Heimdahl and Leveson, 1996), or KAOS, anchored primarily in knowl-
edge acquisition protocols (Van Lamsweerde, 2001), GSN offers a more expansive canvas,
emphasizing the logical articulation of safety arguments.

When compared with the Claims Argument Evidence framework, Goal Structuring
Notation demonstrates a more dynamic approach (Bishop and Bloomfield, 2000b). The
Claims Argument Evidence framework follows a direct route from formulating claims to
collecting evidence. In contrast, Goal Structuring Notation allows for the representation
of various strategies aimed at achieving a single goal (Kelly and Weaver, 2004). This
adaptability is important, especially in situations where safety concerns are complex and
require a comprehensive perspective.
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The industry’s shift towards Goal Structuring Notation is highlighted by its practical
use, shown through its adoption in various fields, from aerospace engineering to automotive
systems (Hawkins et al., 2011). Additionally, the specialized toolsets developed for Goal
Structuring Notation improve its effectiveness in practice, establishing it as a strong option
for creating safety cases (Denney et al., 2019). Essentially, while each graphical safety
argumentation approach offers unique benefits, Goal Structuring Notation’s structured
design and proven effectiveness emphasize its leading role in safety argumentation.

Considering the methodological strength and empirical evidence supporting Goal Struc-
turing Notation, it is important to assess its practical application in real-world situations.
The effectiveness of a safety argumentation framework depends not only on its theoret-
ical basis but also on its usability in different operational environments. Therefore, the
upcoming section will present real-life examples and case studies illustrating how Goal
Structuring Notation is used in various industries. This will highlight its practical rele-
vance and versatility. Furthermore, the methodology will be elaborated upon in Chapter 3.

2.7.3 Goal Structuring Notation (GSN) application examples

Since the introduction of GSN at York University, several safety-critical industries have
begun to use it and explore it, particularly defense, transport, nuclear, and medical devices.
Earlier industrial use of GSN was limited to trial and pilot projects and then, the use has
been broadened to concrete industrial use. Hereafter, we provide a non-exhaustive list of
some relevant uses:

• QinetiQ and BAE Systems have collaborated with York University to extend GSN
to support the management of “modular" and compositional safety cases to support
the cost-effective certification of modular avionics systems Bate and Kelly (2003);

• GSN is considered to be used for representing safety arguments within safety cases
for the European Air Traffic Management Eurocontrol;

• U.K. NATS (National Air Transportation System) have used GSN for representing
their safety management system (as mentioned in Leveson’s white paper).

• GSN was chosen as a method for representing arguments and evidence in the Prelim-
inary Safety Case development process for the flight control system of a helicopter
with a fly-by-wire system. This application for Western Helicopters Ltd4 was made
in the frame of HEAT/ACT Chinneck et al. (2004) project 5;

• GSN was used in the safety case of Nimrod MR2 XV230 Aircraft. A review report6

mentioned that GSN was used as technique allowing to structure and present com-
plex safety arguments in order to demonstrate the fulfillment of main safety goals
supported by strategies and evidence.

• Safety case patterns have been generated using GSN in order to help clinicians
study problems in e-therapy for children Attention Deficit Hyperactivity Disorder
(ADHD). The project was a contribution between Ge et al. (2012) and the Hospital
of St. Andrew, Portugal.

• Extensions of GSN were used to generate safety case patterns and to build high-level
safety arguments for a Patient Controlled Analgesic (PCA) infusion pump7 Ayoub
et al. (2012),Feng et al. (2014);

4https://westernhelicopters.com/
5https://www.icc.illinois.gov
6https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_

data/file/229037/1025.pdf
7https://www.ncbi.nlm.nih.gov/books/NBK551610/
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• The GSN was cited by the international automotive safety standard ISO 26262
published in 2012. Additionally, a work of the members of the Motor Industry
Software Reliability Association (MISRA) shows the use of GSN in automotive safety
arguments in compliance with the ISO 26262 standard Birch et al. (2013). An
industrial case study based on a typical electric vehicle architecture was presented
as well in this work (specific details have been abstracted from the paper for reasons
of commercial sensitivity);

• The International Rail Industry Engineering Safety Management Handbook IN-
TESM (2013) mentioned that GSN is an useful technique for structuring and il-
lustrating safety cases;

• NASA developed GSN-based toolset called AdvoCATE8 to help assurance cases
development Denney et al. (2012);

• Recently, Aurora9 - an American self-driving vehicle technology company, has made
public its GSN-based safety case framework to assure that Aurora’s self-driving ve-
hicles are acceptably safe to operate on public roads (see https:// safetycaseframe-
work.aurora.tech/gsn). The framework combines guidance from United States gov-
ernment organizations, practices from safety-critical industries, voluntary industry
standards and consortia, and academic research.

To sum up, an interesting work published by REF 201410 (Research Excellence Frame-
work 2014 - Impact case studies) has gathered references and resources showing the impact
and use of GSN in safety-critical industrial domains.

Within the scope of autonomous train operation, the safety assurance and argumenta-
tion frameworks act as essential components for validating predefined safety requirements.
However, it is essential to acknowledge that inherent risks persist regardless of the system’s
technical sophistication. These risks, primarily due to operational uncertainties, varia-
tions in system behaviors, or unpredictable external influences, necessitate a methodical
approach towards their recognition, quantification, and subsequent mitigation.

2.8 Conclusion

In conclusion, our review of the latest developments in autonomous vehicles and au-
tonomous trains has identified various important aspects. We started by reviewing the key
components of the autonomous driving systems for autonomous transportation systems.
Furthermore, we focused on the process of risk assessment for conventional vehicles (with
driver) and dynamic risk assessment for autonomous vehicles. Moreover, we review the
use of risk models and their important role in ensuring safety for autonomous vehicles.
Subsequently, we examined the decision-making process for autonomous vehicles, by inves-
tigating both deterministic and non-deterministic approaches. This discussion extended
to railway systems, comparing risk assessment methods for conventional and autonomous
trains. Finally, we provide an examination of the safety assurance process for autonomous
trains, starting with safety cases, the use of graphical safety argumentation methods, and
some examples of some GSN(Goal Structuring Notation)-based applications.

This detailed examination of recent advancements underscores key challenges in au-
tonomous train development, emphasizing the essential need for a rigorous safety assurance

8https://www.nasa.gov/collection-asset
9www.aurora.tech

10https://impact.ref.ac.uk/casestudies/CaseStudy.aspx?Id=43445
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process, thorough safety argumentation, risk assessment, and robust decision-making. Col-
laboratively, these aspects establish the basis for the safe and efficient autonomous train
operations.
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3.1 Introduction

As explained and discussed in Chapter 2, the Goal Structuring Notation (GSN) presents
several of advantages, such as interconnected sources of evidence and pragmatic applica-
bility in different domains.

In Chapter 3, we focus on using GSN for building credible and efficient safety argu-
mentation for autonomous train safety demonstration. We chose GSN for this purpose due
to its graphical notation to present safety arguments, growing interest in applications in
different domains, and the ability to efficiently and clearly link evidence and arguments.
Therefore, this method represents the first pillar of the framework that we propose for
the safety assurance of the autonomous train. As will be explained during this chapter,
it makes it possible to resolve issues related to traceability, complexity, and efficiency of
evidence and arguments in safety cases.

Notice that the main results of this chapter have been published in the Reliability
Engineering & Systems Safety (RESS) journal (Chelouati et al., 2023a).

The remainder of this chapter is structured as follows. In Section 3.2, we discuss the
key concepts and development processes of GSN, along with issues that can be resolved
using GSN. In Section 3.3, we review the use of GSN-based safety cases in the transporta-
tion domains (automotive, aviation, and railways) and then we discuss its investigation
for autonomous systems and vehicles. In section 3.4, we address the opportunities and
challenges of using the GSN approach for presenting and structuring safety cases for au-
tonomous trains. Furthermore, we propose a graphical safety argumentation using GSN.
Additionally, in Section 3.5, we present the creation of GSN structures for a safety func-
tion: the anti-collision function. Finally, we provide some concluded remarks and point
out some future research directions in Section 3.6.

3.2 GSN for graphical safety argumentation

In this section, we present the safety argumentation through the GSN framework, espe-
cially the two options for developing the arguments.

3.2.1 Key concepts

A safety argument is a logical representation of a set of safety claims, goals, assumptions,
justifications, and evidence. Contrarily to the textual representation, such as Trust case1

(Cyra and Górski, 2007; Falessi et al., 2011), structured HTML (Brown, 1998) or free-
text, graphical representations are a suitable tool to capture these elements in a graphical
notation and provide a clear representation of complex arguments with their supporting
evidence. Indeed, the graphic notations have been designed to facilitate the description
of assurance cases in a manner that is easy for humans to understand and for machines
to manipulate (Armstrong and Paynter, 2004; Graydon et al., 2007). As presented in
Chapter 2, the main graphical approaches are GSN, CAE, SACM, KAOS, and SSG.

The use of GSN for safety argumentation has received a lot of attention in both in-
dustry and academia during the last two decades. Indeed, GSN has been adopted by a
growing number of companies within safety-critical industries and is now recommended
by many safety standards (GSN-WG, 2021). According to the Goal Structuring Notation
Community Standard, the GSN is given as “a graphical argument notation that may be
used to formally describe the contents and structure of any argument, as well as the link

1Trust case evokes a structured textual form of safety claims, arguments, and evidence, presented as
assumptions with references to documentation.
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Figure 3.1: Six-step process for top-down developing goal structure

between the argument and evidence”. Furthermore, the GSN explicitly represents the indi-
vidual elements of any safety argument (safety objectives or claims, evidence, and context)
and the relationships that exist between these elements.

The key elements of the GSN are (1) the assurance goal or the claim, (2) the evidence
that the goal has been satisfied, and (3) an argument linking the evidence to the goal in a
way that leads one to believe that the evidence justifies the goal. When these elements of
GSN are linked together in a network they are described as a ‘goal structure’. This basic
structure is applied recursively to produce, for systems, a hierarchic structure with the
overall goal for the system at the root (Graydon et al., 2007). Other (graphical) elements
that can be used in GSN are strategies, assumptions, justifications, and context. The
principal symbols of the notation are shown in Table 3.1.

3.2.2 Development processes

In GSN, goal structures are commonly implemented in a top-down manner (i.e., each claim
is decomposed into sub-claims and so on). According to GSN Community Standard, the
development of the arguments can be elaborated even in the bottom-up process (GSN-WG,
2021).

1. The top-down development of goal structures: To establish a top-down GSN
structure, six steps should be followed (GSN-WG, 2021). The recursive process starts
with the identification of a claim (step 1) and an explicit statement of the context
in which the claim is valid (step 2). Then, a strategy to support it is identified
(step 3) and justified (step 4). In particular cases, a claim needs to be supported
immediately through reference to the associated evidence (step 6). Moreover, it is
common to identify sub-claims to refine the argument to the needed level of detail
at which the evidence used to argue the claim is considered sufficient (step 5). This
process recursive process is illustrated in Figure 3.1.

2. The bottom-up development of goal structures: In some cases, it is useful or
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GSN elements Definition
A goal, rendered as a rectangle, presents a claim
forming part of the argument.

A solution, rendered as a circle, presents a ref-
erence to an evidence item.

A strategy, rendered as a parallelogram, de-
scribes the inference that exists between a goal
and its supporting goal(s).

A context, rendered as shown left, presents a
contextual artifact. This can be a reference to
contextual information, or a statement.

An assumption, rendered as an oval with the
letter ‘A’ at the top- or bottom-right, presents
an intentionally unsubstantiated statement.

Undeveloped element decorator, rendered as a
hollow diamond applied to the bottom center
of an element, indicates that a line of argument
has not been developed. It can apply to goals
and strategies. For example, an undeveloped
goal, rendered as a rectangle with the hollow-
diamond undeveloped element decorator at the
center-bottom, presents a claim that is inten-
tionally left undeveloped in the argument.
A justification, rendered as an oval with the let-
ter ‘J ’ at the top- or bottom-right, presents a
statement of rationale.

Table 3.1: The main GSN elements. (GSN-WG, 2021)

necessary to establish a GSN bottom-up argument, beginning with the available ev-
idence. In line with Kelly’s prescribed methodology for top-down Goal Structuring
Notation (GSN) development (Kelly, 1999a), the process of building a goal structure
with a bottom-up process can be articulated as follows: Firstly, the identification
of pertinent evidence to be presented as GSN solutions is necessary. Subsequently,
‘evidence assertion’ claims are inferred to serve as direct underpinnings for these
solutions, with each one serving as distinct GSN goals. Moving up the hierarchy,
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Figure 3.2: Bottom-up process for developing goal structure

higher-level goals are then derived, those which are substantiated by the initial evi-
dence assertions. Furthermore, elucidation of how each stratum of goals aligns with
their parent goal, essentially delineating the strategic relationship, is imperative.
This is further underscored by the necessity to ensure the inclusion of all pertinent
contextual information. An additional critical step involves comprehensive verifi-
cation, by descending through the structure to ascertain completeness. Finally, the
resulting goal structure is to be conjoined with an established top-level goal or an ar-
ray of goals, thereby creating a coherent, hierarchically structured GSN framework.
The seven steps of the recursive process are illustrated in Figure 3.2.

3.2.3 Issues resolved with GSN

A main advantage of the GSN is its contribution to the enhancement of traceability. This
is particularly due to: (i) its directed/oriented structure (goal, argument, evidence) which
allows to graphically explore the branches in up-down and bottom-up ways, (ii) the de-
composition and refinement of high-level objectives until they meet the low-level evidence,
and (iii) the modularity of the graphs, which offers several abilities, such as, partitioning
the goal structures and having historical vision on the development of arguments.

The simplification of complexity through GSN is achieved by providing a clear, graph-
ical representation that shows the direct relationships between safety goals, the arguments
that support these goals, and the evidence that substantiates the arguments. This visual
method transforms complex safety claims into more straightforward sections, enhancing
stakeholders’ ability to understand and evaluate the safety case effectively. In fact, GSN
facilitates this by organizing safety information into a hierarchy that begins with high-
level safety objectives and breaks these down into specific pieces of evidence. Each piece of
evidence is linked to the associated safety objectives, ensuring a transparent and traceable
path from general safety requirements to the detailed evidence that supports them.
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Furthermore, GSN utilizes a set of standardized symbols (Table 3.1) to represent dif-
ferent elements of the safety argument, such as goals (what we aim to achieve for safety),
strategies (how we plan to meet these goals), and evidence (the data or information that
supports our claims). This structured approach allows for a systematic examination and
validation of each safety claim, improving the safety argumentation process. The use of
GSN ensures that all aspects of the safety case are thoroughly documented and easily
accessible, making the overall argumentation not only more comprehensible but also sim-
pler to manage and update as needed. Through the explicit connections made by GSN,
stakeholders can efficiently manage the safety argumentation, ensuring that every claim is
appropriately supported by appropriate evidence.

Finally, GSN enhances the efficiency of evidences and arguments by adopting the mod-
ular approach within the safety case development. This modularity allows for the decom-
position of the argumentation into smaller sections, making it easier to update and refine
individual parts without affecting the whole. The ability to track the development and
modifications of arguments over time ensures that the safety case remains comprehensive
and adaptable, capable of adding new evidence or responding to changes in system design
or operational context. By enabling a more structured and coherent assembly of evidence,
GSN not only improve the developement of safety arguments, but also improves their cred-
ibility and comprehensibility, ensuring that safety claims are thoroughly substantiated and
clearly communicated.

Finally, it is worth noticing that while the benefits of GSN in terms of expressive-
ness, clarity, and traceability are effective, its efficiency and added value to the quality
of safety argumentation remain to be proved. Accordingly, several works and research
have raised and discussed these claims of efficiency and added value (see (Leveson, 2020)).
Interestingly, a NASA report (Rinehart et al., 2017) has provided a noteworthy overview
of the safety assurance cases and GSN, and examined several claimed benefits of safety
assurance, while considering the opinions and views of academic researchers and industrial
practitioners.

3.3 GSN-based safety cases in transportation systems

In this section, we present a succinct survey regarding the use of GSN-based safety cases
in transportation domains, and then, looking ahead, we discuss the research advances on
the GSN use for safety cases of autonomous systems.

3.3.1 GSN in the automotive domain

Recently, GSN method has been incorporated into ISO 26262 to satisfy the critical safety
assurance of automotive systems (Yang et al., 2017). From the literature review, the GSN
approach has been used in the automotive domain mainly (i) to structure the content of
safety cases (Luo et al., 2015; Martin et al., 2016) (ii) to establish reusable patterns and
modules (particularly for software safety cases) (Wagner et al., 2010; Palin et al., 2011;
Ruiz et al., 2017; Martin et al., 2020), and (iii) to automate the generation process of
GSN modules with respect to the model-driven development and assessment (SysML for
example) (Habli et al., 2010; Luo et al., 2019). Moreover, both process-based (Gallina,
2014; Martin et al., 2016) and product-based (Luo et al., 2015; Dardar et al., 2012) safety
cases have been discussed, while focusing more on software and subsystems safety cases.
Surprisingly, most of the research works sought compliance with the functional safety
standard ISO 26262. Thus, various patterns and modular (process and product-based)
extensions have been elaborated to cover all parts of the standard.
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3.3.2 GSN in the aviation domain

In the aviation domain, the standard DO-178B requires documentation of safety cases.
The GSN safety cases have been used to deal with some particular safety assurance issues,
broadly related to critical software components, such as Verification & Validation pro-
cess (Guarro et al., 2017), improving confidence (Clothier et al., 2017; Nešić et al., 2021),
safety architecture (Denney et al., 2015), etc. While the GSN is mainly used in automotive
for functional safety cases, in aviation, more “system” safety aspects have been investi-
gated (Farnell et al., 2019); for instance, the operational safety (Williams et al., 2014),
the Informed Risk (and Safety) (Guarro et al., 2017; Clothier et al., 2017), dynamic and
real-time safety cases (Kurd et al., 2009; Denney et al., 2019; Asaadi et al., 2020; Javed
et al., 2021). It is worth mentioning here that the latter is capturing increased atten-
tion when it comes to autonomous systems. Moreover, some papers were more concerned
with the safety argument and its validity in the safety case. Indeed, Belle et al. (2019)
addressed the uncertainties’ propagation through GSN-based safety argumentation, while
Witulski et al. (2016) applied GSN to construct a radiation assurance case for spacecraft,
highlighting its effectiveness in complex safety argumentation.

3.3.3 GSN in the railway domain

The investigation on GSN started later in the railway as compared to the automotive and
aviation domains. One of the pioneer works, in European railway, was the INESS project2

(for Integrated European Signalling System (Müller et al., 2009)), which aimed to reduce
the time and the cost for the safety case process building by avoiding unnecessary and
redundant procedures. Hence, a formal safety case process model was proposed follow-
ing standard EN 50129, and a dedicated GSN-based tool was developed. Taguchi et al.
(2014) have proposed a GSN-based reusable module in compliance with the railway safety
standards to improve the traceability and thus the quality of the safety case. Interesting
works have been developed in (Wang et al., 2018, 2019, 2016a; Idmessaoud et al., 2021),
to assess the confidence level in the attributed arguments of a railway safety case. The
main idea consists in investigating the Dempster-Shafer theory (Dempster, 2008; Sentz
and Ferson, 2002).

Finally, it is worth noticing from the succinct survey above, that the adoption of GSN
is not yet prevalent in the railways compared to the other transportation domains. This
may be justified by the fact that railway standard EN 50129, which establishes the safety
case guidance process, appeared early (first draft in 1998, first update in 2003, and last
update in 2018) before the emergence of GSN framework; hence, the railway specialists
and experts had already developed and adopted textual argumentation for safety cases.
Contrarily, the automotive ISO 26262 standard appeared (first version in 2005, and then
updated in 2011 and 2018) in the period where GSN-based safety cases began receiving
attention and acceptance by the industries.

In Table 3.2, we provide a non-extensive summary of some relevant works in the au-
tomotive, aviation, and railway, while pointing out some features of the works.

2http://www.iness.eu/
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3.3.4 Toward using GSN for autonomous systems

In the last few years, the GSN-based argumentation has received particular attention
for guiding and structuring the safety assurance cases for autonomous systems. Indeed,
in (Wardziński, 2008), the author has used the GSN to argue about the safety assurance
of autonomous vehicles while investigating both traditional static (i.e., during the devel-
opment phases) and dynamic (i.e., during the operation phase) risk assessment. Thus,
two GSN safety argument patterns have been proposed. In (Alexander et al., 2009), the
GSN is used to tackle a key safety activity for autonomous systems, which is the deriving
and traceability of safety requirements. The work consists of specifying top-level require-
ments that are progressively decomposed until the lowest level of requirements is reached.
The process is in fact an argument for the completeness and adequacy of requirements
that can be expressed efficiently using GSN. The authors in (Heikkilä et al., 2017) have
proposed a safety qualification process using goal-based safety case for an autonomous
vessel prototype. They used a GSN pattern to instantiate the elaborated process with
an illustration for the situational awareness system. The authors in (Cheng et al., 2020)
have used GSN patterns to fill gaps at run-time phases to manage the self-adaptive oper-
ation of a robot operating system. Vierhauser et al. (2019) have discussed the concept of
pluggable GSN-based safety cases to demonstrate compliance of unmanned aerial vehicles.
More recently, (Schwalbe and Schels, 2020) have been interested in ensuring the safety
of neural networks, and generic and modular GSN patterns have been proposed to build
safety argumentation templates for safety cases of neural network software systems.

The Assuring Autonomy International Program (AAIP)3 provided a body of knowledge
to support the development of safe autonomous systems by providing practical guidance
on assurance and regulation. To illustrate how the proposed framework can be achieved,
a structure for the assurance argument in the form of a safety assurance case pattern
represented using GSN is proposed. By the same program, guidance on the Assurance
of Machine Learning components used in Autonomous Systems (called AMLAS) is pro-
posed (Hawkins et al., 2021; Picardi et al., 2020). In AMLAS, a set of GSN safety argument
patterns and instances are used to illustrate and justify the safe design and deployment
of machine learning components integrated into autonomous systems.

3.4 Safety assurance approach of autonomous train

The introduction of autonomy to railways requires a review of the previously established
safety studies, safety cases, and their underlying safety principles/processes. The case
of autonomous trains raises a fundamental issue regarding their definition, concept, and
integration with the railway system; particularly due to the withdrawal of the human op-
erators from the train control loop. With regard to the European railway safety standards,
two methods can be considered when performing the autonomous train safety demonstra-
tion. The first one is to consider the autonomous train as an entirely new system that
implies a from-scratch overall safety demonstration. Thus, the safety objectives (in terms
of Safety Integrity Levels - SILs) already allocated to the safety functions (and their sub-
systems) need to be reviewed and reapportioned. In contrast, the second manner consists
in considering that the autonomous train only brings a significant change to the conven-
tional trains, and thus the safety activities have to focus in autonomous/automated driving
system (ADS) and its interaction with the existing systems (human agents or technical
systems) and surroundings. This is mainly due to the fact that the ADS performs some
safety and safety-related functions when it comes to operate in GoA 3/4.

3https://www.york.ac.uk/assuring-autonomy
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The European railway regulation (CSM-RA, 2017) is applied to any significant (tech-
nical, operational, or organizational) change that may impact the railway system safety.
Thus, considering the autonomous train as a modification (with a significant change) of
conventional trains is more convenient to comply with the CSM-RA process. In this re-
gard, the GSN is a suitable framework for building safety argumentation modules for the
modified part of the train (i.e., the ADS) and efficiently incorporating it within the overall
safety case of the autonomous train.

The safety assurance of autonomous trains requires a set of safety activities and pro-
cesses at three (hierarchical) system levels (see Figure 3.3): (i) overall system level (i.e.,
train), (ii) AI-based component level (i.e., perception and decision-making components)
and (iii) AI techniques and technologies (i.g., obstacle detection software) (Tonk et al.,
2022). These safety activities have to be performed in parallel to the development life-
cycle process of the overall system. Notice that several initiatives and white papers for
safety assurance of autonomous systems have recommended and adopted such a hierar-
chical framework (Wozniak et al., 2021; Alexander et al., 2020).

Figure 3.3: The three hierarchical system levels

3.4.1 Overall system level

At this level, the safety goal is to “assure that the autonomous train remains safe when
operating under its specified environment". Such an objective shall be achieved by as-
suring that all the hazards have been identified, assessed and controlled or reduced to an
acceptable level. At this level, the railway standard EN 50126 specifies the safety activities
and processes to be performed and evidence to be produced, starting from the definition
of the system, the definition of its operational context, the risk analysis and evaluation,
and finally the specification of the system safety requirements. However, in the case of
autonomous train, these safety activities are not sufficient and thus need to be achieved
by three activities: (1) specification of the autonomy aspects, (2) specification of the in-
teractions between human operators and the autonomous train, and (3) definition of the
operational design domain (ODD). Notice that the ODD should be specified starting from
the detailed description of the operational context and the concept of operation (ConOps)
of the system. This permits to take into account all the operational conditions related
to the operational scenarios of the system. The European Union Aviation Safety Agency
roadmap in (EASA, 2021) can be an interesting starting point for achieving this task.
Moreover, the work of Hawkins (2019) provides relevant insights and guidance to achieve
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these activities. Figure 3.4 proposes a high-level GSN argument pattern for the system
level of the autonomous train. Notice that the same issues related to the overall system
safety and risks have risen in the maritime domain with autonomous ships (Fan et al.,
2022; Chang et al., 2021; Ramos et al., 2019b; Chen et al., 2021) and the provided studies
can be helpful for the railway domain.

3.4.2 AI-based component level

At this level, the main safety goal is to "assure that the AI-based component satisfies
the allocated system safety requirements in its defined sub-ODD". The safety activities
at this stage concern (1) the specification of the (safety) architecture of the component
(sensors, hardware, and software computing unit), and (2) the functional hazard analysis
at the component level, i.e., identify the contribution of the component failures to the
(potential) overall system hazards.

An additional safety activity to be considered in the case of autonomous trains is
the analysis of safety of the intended functionality (known as SOTIF in the automotive
domain (ISO-21448, 2022)). The SOTIF is concerned with managing risks due to inherent
design limitations that are present even when the system is functioning as intended (e.g.,
the sensors’ insufficiency due to the technological limitations and the severe environmental
conditions). Another safety activity, to be handled at this stage, is the refinement of the
safety requirements that shall be allocated to the AI/ML models. This activity is crucial
in the sense that starting from this point, there is a switch from the textual requirements
to data requirements, i.e., each requirement shall be implicitly represented by sets of data
to be provided to AI model to learn.

3.4.3 AI techniques level

The output of this level is an AI/ML model to be deployed within an AI-based component.
Similarly to the previous levels, the safety goal is to "assure that the implemented AI model
satisfies the allocated safety requirements". Such a safety objective is a crucial challenge
since the existing safety standards and safety engineering methods are no longer suitable
for adaptive and learning software. Moreover, it is not only the safety activities that need
to be carefully conducted but also the development process. Thus, the safety argumen-
tation needs to argue the rigorous development process (i.e., data management, model
learning, model verification and validation) and the associated safety activities. Besides
the (quantitative) performance evaluation of the developed model, particular attention
needs to be paid to AI/ML-specific activities, such as sufficiency of training and learn-
ing process, robustness and adversarial attacks verification, interpretability evaluation the
completeness of the test with respect to the specified ODD. Notice that some standards
and technical reports have been recently issued (or are under development) to deal with
various aspects of AI development and assessment processes. For instance, ISO/IEC TR
29119-11 (ISO/IEC29119, 2020) presents some guidelines on the testing of AI systems,
ISO/IEC TR 24028 (ISO/IEC24028, 2020) surveys topics related to trustworthiness in AI
systems and approaches to assess its attributes, and ISO/IEC TR 54694 which deals the
functional safety related to AI systems.

Finally, in order to produce an efficient structured safety assurance case for the au-
tonomous train, GSN-based safety argument patterns shall be established for the afore-
mentioned safety activities and processes. Figure 3.5 depicts the main steps to establish
the GSN patterns.

4ISO/IEC CD TR 5469 (2024) Artificial Intelligence — Functional Safety and AI systems.
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(Step 1) Firstly, it is obvious that the autonomous train necessarily includes some system
modules and components which have been already used for conventional trains and
which are in interaction with the ADS system. Thus, safety argument patterns
for these modules need to be firstly generated (from previous existing safety case
documents) and transformed to GSN models;

(Step 2) It involves building a reusable template for the safety case using the modular GSN
argument patterns introduced in Step 1. This template should be created using
GSN to justify the overall level of safety and should clearly argue the safe usage of
components existing in conventional trains;

(Step 3) It incorporates creating a GSN module to present the safety argument for the ADS
system. To build the overall safety case of an autonomous train, the GSN module
for the ADS must be established and incorporated into the template given in Step 2;

(Step 4) This step aims to determine and evaluate the confidence level of the arguments to be
used in safety assurance case. In fact, it allows modeling uncertainty and weighting
the interrelationships between the various arguments and pieces of evidence pre-
sented in GSN structures.

Figure 3.5: Main steps for building GSN safety argument patterns for autonomous trains

Finally, we notice that the safety assurance framework we present here is based on
the assumption that all the identified hazards and their associated mitigation measures
were identified during the system development phases. However, due to the transition of
safety responsibility from human drivers to ADS, the autonomous train (and autonomous
systems in general) shall be able to dynamically examine the risk associated with each
control action performed by its ADS (as it is the case with human driver).
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3.5 Use case

To illustrate the use of GSN-based safety argumentation within autonomous trains com-
ponents, we take the anti-collision function as an example in this section.

3.5.1 Anti-collision function

The anti-collision function in autonomous train systems is engineered to proactively pre-
vent collisions. This system integrates various sensors like LIDAR, radar, and cameras
(Chouhan et al., 2014), which are essential in monitoring the train’s environment and sur-
rounding (Abdazimov and Zuhriddinov, 2023). These devices detect potential obstacles,
ranging from static objects to moving entities. After the detection, advanced algorithms
assess the collision risk based on the train’s speed, trajectory, braking capabilities, and
distance to the obstacle. Depending on the assessed risk, the system autonomously imple-
ments appropriate measures, varying from minor speed adjustments to a full stop, thereby
enhancing safety and reducing dependence on human operators.

GSN enables a precise decomposition of safety requirements (i.e., safety goals/objectives)
into targeted sub-goals. These sub-goals are created to address the specific risks of rail-
way operations, ensuring that each aspect of the system’s safety is defined and managed
according to the associated standards.

The depicted GSN structure in Figure 3.6 provides a structured pattern for articulating
the safety arguments of the autonomous train’s on-board ADS. For instance, the GSN
structure starts with the top-level goal G.1, which asserts the necessity to ensure the
ADS safety. Strategically, S.1 underpins G.1 by prescribing the implementation of integral
safety functions. This strategy branches into specific objectives. For example, G.2 focuses
on mitigating collision risks, emphasizing the criticality of proactive safety measures within
the system’s operation.

Context elements, such as C.1, specify the operational environment, including the
railway track and weather conditions, which are essential factors for the ADS’s safety
performance. Similarly, C.3 encompasses the broader operational dynamics, such as the
movements of other trains and dynamic obstacles, indicating the complex interplay of
factors the ADS must operate.

Subsequent sub-goals, G.3 to G.8, delineate the detailed safety targets that contribute
to achieving G.1. Furthermore, G.3 is tasked with the detection of light signals, while G.4
is concerned with monitoring the train’s environment, ensuring that the system remains
aware of its surroundings. Moreover, G.5 ensures safe and effective stopping, while G.6
introduce system redundancies and locational accuracy, which are crucial for maintaining
operational safety under various conditions.

In addition, G.7 and G.8 address the train’s interaction with stationary and moving
objects, respectively, underscoring the importance of the train’s ability to discern and react
to both static and dynamic obstacles within its path. The inclusion of strategies, such
as S.3, which details the detection and avoidance measures for static obstacles, further
refines the safety argument by specifying the actions taken to prevent collisions. The
contexts, C.2 and C.3, lie in the GSN structure to detail the fixed infrastructure and the
dynamic nature of the operational conditions. These elements frame the ADS’s functional
requirements within the real-world context of the railway system.

Transitioning from the initial GSN structure, Figure 3.7 illustrates the system’s ap-
proach to address static obstacles. To achieve G.7, strategy S.3 is supported by goal
G.9, which aims to enhance sensor accuracy for static obstacle detection. Indeed, ac-
curate sensor data is essential for reliable static obstacle detection and interpretation.
Additionally, context C.5 provides the basis for this goal, pointing to the need for precise
sensor calibration to ensure the accuracy required for reliable detection.
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Figure 3.6: Decomposition of high-level goal: Ensure safety of the on-board ADS
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Furthermore, the strategy S.5 associated with goal G.9 delves into the technical as-
pects of improving sensor data interpretation. This advancement is necessary to filter
out noise and irrelevant information, ensuring that the sensors can reliably identify static
obstacles. Another branch developed from S.3 leads to goal G.11 that aims to develop
signal noise reduction algorithms. Here, context C.7 provides noise sources and sensor
calibration. Finally, following strategy S.7 that consists of algorithms development and
testing, solutions s.1 and s.2 respond to goal G.11 with the design of signal noise reduc-
tion algorithms, and testing of these algorithms to evaluate the associated results.

In parallel, goal G.12 addresses the need for systems robustness, implementing sensor
redundancy and fail-safe mechanisms. Then, strategy S.8 ensures that the system has
multiple layers of safety (i.e., redundancy configuration and failure scenarios). Finally,
solutions s.3 and s.4 outlines the actions to be taken in the case of failures. In this
decomposition, context C.8 highlights the importance of considering various redundancy
configurations and potential failure scenarios to maintain safety integrity.

On the other hand, goal G.10 aims to validate sensors’ performances for static obstacle
recognition, while strategy S.6 is aimed at assessing the practical effectiveness of sensors
and algorithms in real-world conditions. This process is guided by the considerations in
context C.6, which specifies the test scenarios and assessment criteria.

Having established the GSN structures for static obstacles, the focus now shifts to
dynamic obstacles. The next GSN, illustrated in Figure 3.8, extends the argumentation
to include the detection and avoidance of moving hazards, a critical aspect of maintaining
continuous operational safety. The central element of this structure is goal G.8, sup-
ported by strategy S.4 detailing the system’s approach to continuously monitor and react
to moving obstacles. This strategy encompasses the development and refinement of sensor
fusion techniques, as specified in goal G.13. The accurate tracking of dynamic obstacles
is essential for real-time response, and context C.10 emphasizes the need for precise sen-
sor calibration and appropriate prediction models to achieve the goal. Furthermore, the
prediction models, as highlighted in strategy S.9, are crucial for anticipating the orienta-
tions and trajectories of moving obstacles. In fact, solution s.7 focuses on the prediction
model design and parameters, laying the foundation for these predictive algorithms, while
solution s.8 ensures the model’s accuracy and reliability through validation processes.

In the same manner, goal G.14 reinforces the necessity of empirical evidence to support
the system’s capabilities. Additionally, solutions s.9 and s.10, which provide the necessary
testing and evaluation, along with the test scenarios and evaluation criteria defined in
context C.11, provide a structured approach to testing the system’s performance under
a variety of conditions. This ensures that the autonomous train can safely operate in
dynamic, changing, and unpredictable environments.

Collectively, the previous GSN diagrams present a structured safety argumentation
for the anti-collision function of the autonomous train. The decomposition highlighted in
each structure is essential in ensuring the reliable implementation of safety measures, par-
ticularly within the dynamic and unpredictable operational conditions of the autonomous
train. In conclusion, through the application of GSN, the anti-collision function has been
analyzed, showcasing the method’s ability to structure and clarify the safety argument ef-
fectively. The GSN has demonstrated the different aspects of the function and highlighted
its utility in the safety assurance process for autonomous trains.

3.5.2 Discussion

In the context of autonomous train systems, the role and significance of structured safety
argumentation are carried out in this study through the use cases of the ‘Anti-Collision
Function’. This function is essential in ensuring the safety and reliability of autonomous
train operations, addressing safety-critical aspects such as collision risk mitigation, train
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Figure 3.7: Safety argumentation structure for addressing static obstacles
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Figure 3.8: Safety argumentation structure for addressing dynamic obstacles
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stopping capabilities, and the safety of railway crossings. Through the application of the
GSN this use case have been systematically decomposed, allowing for a comprehensive
approach to safety assurance.

The advantages of using GSN in this use case are highlighted. GSN provides a clearly
defined framework to structure safety arguments, enabling the systematic breakdown and
decomposition of complex safety claims/goals into more manageable sub-goals, contexts,
strategies, and solutions. This decomposition enhances both the clarity and traceability of
safety requirements, ensuring that each element within the safety argumentation is coher-
ently justified and linked to the overall operational objectives. In addition, this structured
approach offers a clear and rigorous method for justifying the safety of autonomous train
systems, providing assurance to stakeholders and regulatory bodies.

Furthermore, the modular nature of GSN serves as a significant advantage in the con-
text of autonomous train safety. This modularity allows for the development of distinct
safety argument structures established for various functions of subsystems with the au-
tonomous train overall system. For instance, creating separate GSN structures for ‘Sensor
Redundancy’ and ‘anti-collision’ enables detailed and specific safety analyses for each area.
The strength of this approach lies also in its ability to address the requirements and chal-
lenges of each subsystem while maintaining a coherent overall safety argumentation pro-
cess. The development of these individual modules forms a collective and comprehensive
safety argumentation while ensuring traceability throughout the process. Consequently,
the modular approach of GSN is instrumental in building a detailed and integrated safety
case for the overall autonomous train system, effectively validating its reliability and en-
suring its safety at every level.

In conclusion, the use cases of the anti-collision function outline the significance of
structured safety argumentation in autonomous train systems. GSN offers a robust and
methodical approach to addressing safety argumentation challenges, ensuring that safety
requirements are comprehensively justified and validated.

3.6 Conclusion
In this chapter, we discussed the use of graphical safety argumentation to build a safety
assurance case for autonomous systems. Firstly, we presented a survey on the use of
Goal Structuring Notation (GSN) for building safety cases in conventional transportation
systems and then in automated and autonomous ones. Then, we elaborated an overall
GSN-based framework for building a safety assurance argumentation for the autonomous
trains. Finally, we provided GSN structures for a use case: the anti-collision function.

68



Chapter 4

SA & DRA framework for
autonomous trains

Contents
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2 Context and concepts . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.1 Autonomous Driving System (ADS) . . . . . . . . . . . . . . . . 70
4.2.2 Situation Awareness (SA) . . . . . . . . . . . . . . . . . . . . . . 73
4.2.3 Complementarity between SA and DRA concepts . . . . . . . . . 75

4.3 A DRA and SA framework for autonomous trains . . . . . . . 76
4.3.1 Perception module . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3.2 Understanding & prediction module . . . . . . . . . . . . . . . . 78
4.3.3 Decision-making module . . . . . . . . . . . . . . . . . . . . . . . 79

4.4 Illustrative case: anti-collision function . . . . . . . . . . . . . . 79
4.4.1 Perception module . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.4.2 Understanding & prediction module . . . . . . . . . . . . . . . . 82
4.4.3 Decision-making module . . . . . . . . . . . . . . . . . . . . . . . 84

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.1 Introduction

To ensure the operational safety of conventional trains, drivers carry out a real-time as-
sessment of the risk associated with the operational environment. This task relies on the
driver’s SA to perform his/her driving task safely and enables him/her to manage poten-
tial risks dynamically according to the current operational conditions. The concept of SA
is central to risk assessment in operations. In this chapter, its underlying principles will
be adapted to the context of autonomous trains, to enable them to operate efficiently and
safely in dynamic and unpredictable environments.

In autonomous systems, the situational awareness (SA) involves the perception, un-
derstanding, and projection of environmental elements, with a particular focus on the
understanding of the current situation, interpreting its significance, and anticipating fu-
ture scenarios (Chauvin et al., 2008). This concept is distinct from and complementary to
the dynamic risk assessment (DRA) discussed in Chapter 2 (Conges et al., 2023). DRA is
a proactive, adaptive process focused on identifying, assessing, and mitigating risks, par-
ticularly in environments prone to change or uncertainty (Patel and Liggesmeyer, 2021).
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Whereas DRA is concentrated towards ongoing real-time risk management, SA empha-
sizes environmental awareness and projection. This makes both concepts essential to the
decision-making of autonomous systems in dynamic environments.

In the context of the autonomous train (with a high level of autonomy - GoA3 and
GoA4), the SA and the DRA processes will have to be integrated within the on-board ADS.
Indeed, the on-board ADS should be able to perform its functions safely in all predictable
and unpredictable situations/operational conditions. In order to achieve this goal, the
ADS must integrate a DRA layer in its high-level control/decision-making architecture
(Parhizkar et al., 2022). In fact, with strong interactions with the perception, planning,
and control units, such a layer can continuously update the probability estimations for the
occurrence of (hazardous) events.

In this chapter, we propose a framework allowing the on-board ADS to continuously
perform the situational awareness process and provide run-time probability estimations for
the occurrence of railway hazards while accounting for (internal and external) environment
perception.

In this chapter, we firstly review the dynamic risk assessment and situational awareness
key aspects for autonomous train operations. Then, we propose a framework allowing the
on-board ADS to continuously perform the situational awareness process and provide
run-time probability estimations for the occurrence of railway hazards while accounting
for (internal and external) environment perception. The research work of this chapter has
been published in the European Safety and Reliability Conference (ESREL) (Chelouati
et al., 2022).

The remainder of this chapter is organized as follows. We first detail, in Section 4.2
the concept of SA and its complementarity with the concept of DRA after having high-
lighted how such concepts can intervene in a high-level architecture of the on-board ADS
embedded in autonomous trains. Then, in Section 4.3 we present the situation-awareness
and dynamic risk assessment framework as part of the ADS decision-making architecture.
Finally, in Section 4.4, we illustrate it through an operational safety function (anti-collision
function).

4.2 Context and concepts

Given the introduction of the autonomous driving systems in Chapter 2, this section con-
centrates on analyzing ADS’s architectures within autonomous vehicles. Additionally, a
high-level architecture of the on-board ADS is presented, outlining its design and opera-
tional features. In addition, concepts of situational awareness and dynamic risk assessment
are discussed with a focus on the dynamic risk assessment components. Finally, we pro-
pose a dynamic risk assessment framework for the anti-collision function in the context of
the autonomous train.

4.2.1 Autonomous Driving System (ADS)

This subsection examines detailed aspects of Autonomous Driving Systems (ADS) in the
railway context. It discusses the main components of ADS, including sensor technologies,
data processing algorithms, along with command and control systems. Particular focus is
given to the aspects of autonomous railway systems compared to other ADS applications,
highlighting the challenges in track management, signaling, and interaction with existing
railway infrastructure.

In the rapidly evolving domain of autonomous transportation, various ADSs have been
developed, each established to specific operational needs and technological capabilities.
The variety in these systems reflects the broad spectrum of applications they serve, from
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Figure 4.1: A high-level architecture of the on-board ADS of the autonomous train with
a main focus on the decision-making process

automotive to aerial and maritime domains. To understand the extensive range and
comprehensive details of ADS architectures, Table 4.1 provides a comparative overview
of several key systems. This comparison includes well-known automotive ADS like the
Audi zFAS System (Jung et al., 2018). This system integrates sensors, communication
technologies, and AI to achieve SAE Level 3 Traffic Jam Pilot capabilities. It excels in
providing high self-awareness in different traffic conditions but is constrained to specific
scenarios like traffic jams and faces challenges in sensor fusion integration. Notice that
the SAE levels of driving automation are presented in Chapter 1.

Moreover, Tesla’s Full Self Driving (FSD) Arbiter (Talpes et al., 2020) prioritizes sen-
sors, cameras, and AI, the FSD Arbiter offers comprehensive environmental awareness
and the ability to make sophisticated autonomous decisions. However, its performance
may be affected in adverse weather due to a heavy reliance on camera systems, and it is
still undergoing development and regulatory review. Furthermore, other notable systems
such as Waymo’s ADS (Grigorescu et al., 2020), Mobileye’s EyeQ Chip (Ingle and Phute,
2016), and NVIDIA DRIVE Platform (Jagannadha et al., 2019) are featuring advanced
LiDAR, radar, and camera systems to achieve high level of autonomy (SAE level 4 and 5).
Additionally, architectures are included from other domains like Autonomous Aerial Vehi-
cles (AAV) Systems (Koh and Wich, 2012), Maritime Autonomous Surface Ships (MASS)
Systems, and Autonomous Train Operation Systems. Each system is evaluated in terms
of its primary advantages and limitations, offering a comprehensive view of the current
landscape in autonomous system architectures. Finally, each architecture addresses differ-
ent aspects of autonomous operation, from obstacle detection and avoidance to navigation
and safety management, highlighting the multiple aspects of the ADS development and
the ongoing evolution of autonomous transportation technologies.
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Based on the general architectural concepts of ADS in autonomous vehicles presented
in Chapter 2 (cf. Figure 2.2), a specific architecture of the on-board ADS is proposed
for autonomous trains. Figure 4.1 illustrates the proposed high-level architecture with
a main focus on the decision-making process. This architecture is designed to allow the
flow of information going from the environment through the system (from left to right in
Figure 4.1), ensuring real-time responsiveness and safe operations.

In details, the perception unit is the initial layer, where an array of active and pas-
sive sensors, including radar/LIDAR and camera-based technologies, collect environmental
data. This unit functions as the empirical foundation, gathering crucial real-time inputs
about the train’s external conditions. Furthermore, the decision/planning unit is the brain
of the system, where it processes the sensory data into meaningful information. It uses
advanced algorithms to detect obstacles and understand traffic signals, effectively con-
verting raw data into a structured format for decision-making. Moreover, the control unit
receives the intelligence from the decision/planning unit and acts on the decisions. It
coordinates the collision avoidance unit to prevent possible dangers, and it controls the
automatic driving unit to change the train’s speed based on the situation. In conclusion,
this architecture represents a layered approach to autonomous operation, where the com-
bination of data collection, analytical processing, and reactive action is essential for the
safe movement of an autonomous train through its operational environment.

4.2.2 Situation Awareness (SA)

The concept of Situational Awareness (SA) was initially introduced in the aviation domain
for the research in the human factors field (for aircraft pilots). The following definition has
been formulated in (Endsley, 1988): “the perception of the elements in the environment
within a volume of time and space, the comprehension of their meaning and the projection
of their status in the near future”. Then, this concept has been extended to almost all
of the safety-critical domains that involve human operation, such as the nuclear power
industry, automobile, air traffic control, medical systems, and railways. Achieving SA is
one of the concerns of these communities for assuring relevant and efficient decision-making
(Garland et al., 1996).

For conventional vehicles (with drivers), operators need to recognize, understand, and
predict relevant information (for the system and its operational environment) to know
what is happening and what is going to happen in the near future. This three-level model
established by Endsley (1995) to characterize SA is the most widely used. Individual
factors such as experience, bias and goals, as well as system factors such as interface
design, complexity, and automation strongly influence the capacity of the SA. Figure 4.2
illustrates the three-level model of SA and its role in the decision-making process for
human operators.

The SA has already been adopted to both manual and automated railway operations,
such as train driving (Brandenburger and Naumann, 2019; Rose et al., 2018), rail mainte-
nance (Golightly et al., 2013), or comprehending signalling and control in rail operations
(Sharples et al., 2011). From the standpoint of human information processing, a con-
siderable number of automated systems and procedures currently exist in the railway
domain. Moreover, depending on the degree of automation, the range of tasks changes,
and SA changes accordingly (ERA, 2021)1. In railway, automation can be categorized
into different levels, from manual operation by the human to self-driving without human
intervention (GoA1 to GoA4). With the increasing level of automation, the SA responsi-
bility is gradually transferred from the human driver to the ADS. For example, in GoA2,
obstacle detection is a part of the driver functions, while in GoA3 or 4, it becomes a part

1Automation Myth Busting Paper #1 (https://www.era.europa.eu/content/
automation-myth-busting-paper-1-situation-awareness-remains-same_en)
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Figure 4.2: Three-level model of Situation Awareness Endsley (1995)

of the ADS functionalities. When the system is fully automated, i.e. GoA4, issues regard-
ing the impact of automation on SA become increasingly challenging to address. In this
case, the system should be self-aware and capable of making safe decisions in its dynamic
operational conditions.

In autonomous systems, the convergence of SA and automation represents a signifi-
cant research focus. For instance, Vallikannu et al. (2023) highlights the significance of
SA within military contexts, suggesting the integration of AutoML (Automatic Machine
Learning) systems to enhance situational prediction and risks mitigation. This aspect
is carried out in other safety-critical domains, where SA’s role in healthcare is also high-
lighted as a fundamental element for patient safety (Parush et al., 2011). Furthermore, the
complexity of incorporating SA in vehicle automation is analyzed by Salmon et al. (2020),
who presents a distributed situational model as essential for the design and safety of au-
tomated vehicles. This concept is further examined in the context of autonomous driving
by Laugier (2019), who uses a combination of Bayesian methods and ML techniques to
advance the understanding of SA in autonomous navigation systems.

In the domain of robotics, more specifically, robotic surgery, Ginesi et al. (2020) pro-
posed a framework that establishes a SA module to ensure safety in surgical automation.
Additionally, in the maritime domain, Zhou et al. (2019) proposed a quantitative SA model
specifically designed for autonomous ship navigation, addressing the complexities of SA
in such dynamic environments.

Moreover, the development and integration of SA in various systems have led to sig-
nificant advancements in decision-making processes. In the context of human-machine
interactions, a recent paper (D’Aniello and Gaeta, 2023) highlights the necessity of SA for
making accurate and timely decisions. Meanwhile, a comparative study by (Costa et al.,
2023) evaluates the applications of RL for adaptive automation under evolving conditions,
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demonstrating the effectiveness of SA-based decision-making models. Srivastava et al.
(2022) focuses on shared SA in AI-advised decision-making, leading to enhanced team
performance. In the other hand, (Insaurralde and Blasch, 2022) introduces a decision sup-
port system for air traffic management, showing the benefits of ontological reasoning. This
review outlines the evolution of SA techniques, from traditional applications to their inte-
gration with AI and ML in enhancing the efficacy of autonomous systems across diverse
domains.

4.2.3 Complementarity between SA and DRA concepts

For autonomous railway systems, a main challenge is transitioning the human driver’s intu-
itive capability (i.e., Situational Awareness) to dynamically assess risks to an Autonomous
Driving System (ADS). A human driver, leveraging years of experience and training, natu-
rally adapts to the changing railway environment, quickly making decisions using a variety
of sensory information. In turn, the ADS must perform this complex (human) function
to ensure that the overarching safety level does not decrease. The concept of Dynamic
Risk Assessment (DRA) emerged from this imperative, highlighting the need for real-time,
responsive, and adaptive risk analysis in autonomous train systems.

The complementarity between SA and DRA is essential for the development and oper-
ation of autonomous systems, playing a crucial role in ensuring their safety and reliability.
SA involves the perception of environmental elements within a volume of time and space,
the comprehension of their meaning, and the projection of their status in the near future.
It provides the foundational layer for DRA by ensuring that the system has a continu-
ous, updated understanding of its operating environment. DRA, on the other hand, is
the process of analyzing and evaluating potential risks in real-time, adapting to changes
in the environment, and implementing strategies to mitigate identified risks. It relies on
SA to provide the necessary context for risk identification and analysis, making these two
concepts interlinked and complementary. Together, they form an integrated approach that
enables autonomous systems to operate safely within their dynamic and potentially unpre-
dictable environments. In the context of autonomous systems, such as autonomous cars or
autonomous trains, SA ensures that the system maintains an accurate understanding of its
surroundings, including other vehicles, pedestrians, and changing road or track conditions.
This awareness is critical for identifying potential hazards that might not have been antic-
ipated during the planning or programming phases. DRA builds on this awareness, using
algorithms and models to evaluate the risk associated with these hazards in real-time and
to determine the most appropriate set of action to mitigate the risk. This might involve
adjusting the vehicle’s speed, changing its route, or taking evasive maneuvers to avoid an
obstacle. The complementarity between these aspects is not just beneficial but essential
for the successful operation of autonomous systems. SA provides the data and context
needed for DRA, while DRA offers the mechanisms to use this information effectively to
ensure safety. This complementarity enables autonomous systems to operate in complex
environments, make safe decisions, and respond adequately to unpredictable challenges,
thereby enhancing their overall safety and effectiveness.

The review concerning use of DRA for autonomous vehicles and systems is presented in
Chapter 3. It explains how these systems identify and manage risks in changing conditions.
Moving forward, in this chapter, we cover the SA aspect. This part shows how SA helps
autonomous systems understand and react to their surroundings. Moreover, it links SA’s
role to the safety and effectiveness of AVs, showing how it supports DRA in making safe
decisions in complex environments.

Recent advancements in SA for AVs highlight a variety of methodologies and technolo-
gies aimed at ensuring safety and operational efficiency. Examining Vehicle-to-Vehicle
communications, Metzner and Wickramarathne (2019) explores improving SA through
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additional sensor information in Vehicle-to-Vehicle communications. Moreover, Hu (2023)
introduces the Doppler principle SA supplementing on-board radar for autonomous driv-
ing. In addition, Nine (2020) focuses on automating the process for SA, as a crucial process
for autonomous vehicle operation. On the other hand, Islam et al. (2016) implemented a
system-on-chip concept of the comprehension level of SA using an expert system, while
Nine et al. (2021) proposed frameworks aimed at data fusion and decision-making based
on sensing data. Lastly, Dahn et al. (2018) offers an application-agnostic definition of SA,
integrating it into the perception component. Together, these studies illustrate diverse ap-
proaches to enhance SA in autonomous systems, from Vehicle-to-Vehicle communications
and Doppler principles to System-on-chip implementations and expert systems, aiming to
improve the ability of autonomous systems in dynamic changing environments.

Moving forward, the focus shifts to the application of these principles within the au-
tonomous train. The next subsection examine how these advanced DRA and SA ap-
proaches are adapted and implemented in the context of railway operations, particularly
in autonomous train systems, where safety and reliability are crucial.

4.3 A DRA and SA framework for autonomous trains

In this section, we describe how the DRA process need to be considered and handled by
the on-board ADS to assess the risks of autonomous trains.

In fact, the on-board ADS should be able to perform its functions safely, in run-time
and in all operational conditions. For this purpose, the on-board ADS have to consider
an online DRA layer with a high-level decision-making architecture. Consequently, we
propose a framework allowing the ADS to continuously manage the SA process and provide
a run-time evaluation and prediction of the potential railway hazard risks (particularly,
the estimation of occurrence probabilities). A high-level presentation of the framework is
depicted in Figure 4.3.

This framework is applied at run-time while using environment perceived sensor data
(in addition to historical data) as input. Thus, a risk-based approach is required to
process and understand relevant information from the perception module such that the
decision-making module efficiently takes the adequate and safe actions to avoid or reduced
that impact of hazards. The modules involve on the DRA process are briefly discussed
hereafter.

4.3.1 Perception module

The perception function is responsible for interpreting sensory data, comprehending its
essential meaning, resolving uncertainty and imprecision from complex inputs, and produc-
ing relevant information. In fact, environmental perception is the ability of an autonomous
system to acquire, analyze and interpret the raw data from its surroundings, such as im-
ages, sounds, or signals. By doing so, the autonomous system extracts meaningful useful
information from the data, such as the location, shape, motion, or identity of objects or
agents in the environment. Environmental perception is essential for an autonomous sys-
tem to perform tasks that require interaction, navigation, or decision-making in complex
and dynamic scenarios.

The objective of the perception is to establish a sufficiently accurate view of the real
world appropriate to the function of the autonomous train (e.g., discern the difference
between an animal and a person, discern the difference between a track worker and a
trespasser etc.). Generally, this task consists of environment perception and localiza-
tion/positioning.

In fact, the perception module is mainly composed of the sensor unit, which contains
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Figure 4.3: The autonomous train situational awareness framework
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all the physical sensor devices that are used to capture and collect information and signals
from the external or internal environment, and the processing and monitoring units, which
contains the set of perception functions (and associated processing algorithms) that are
used to perform the perception tasks, i.g., detection, recognition, classification, etc. (See
Figure 4.1)

4.3.2 Understanding & prediction module

This module is the foundation of the SA process, since it uses the information provided
by the perception module to create and constantly update an integrated run-time model
representing the system’s environment and its states. This model is then used for ongoing
decision-making. From the DRA perspective, the module permits to compute an estima-
tion of the current level of risk and to predict the potential railways hazards. Such a task
is performed through the combination/fusion of all the information provided by the per-
ception module with the historical data about the system and its operational conditions.

Within the Understanding & Prediction module, the fusion model plays an important
role. This model integrates all sensor data collected by the perception module, using
advanced algorithms to create a comprehensive view of the train’s state and surround-
ing. By combining data from various sources like radar, LIDAR, and cameras, the fusion
model compensates for the limitations of individual sensors, enhancing the accuracy and
reliability of environmental perception. The basis of this process is algorithms such as the
Kalman Filters or Particle Filters, which combines data but also filter noises associated
to sensors’ information, leading to a more precise understanding of the environment.

Furthermore, the evaluation of risk within the understanding & prediction module is
conducted through a risk model. Initially established offline, this model integrates histori-
cal data and qualitative insights, such as expert judgements, to establish a risk assessment
framework. Once operational, the risk model incorporates, dynamically, real-time data and
observed risk factors from the train’s surroundings, enabling the system to quantify and
infer potential risks effectively. In fact, the selection of risk model should be established
based on multiple factors, including the nature and volume of incoming data streams,
computational demands, and the inherent uncertainties present in the autonomous train’s
environment. Among the model employed in autonomous systems are Partially Observable
Markov Decision Processes (POMDPs) (Spaan, 2012) and Dynamic Bayesian Networks
(DBN) (Junyung et al., 2021). These models provide robust frameworks for managing the
complexities of risk assessment in dynamic and partially observable scenarios.

Ultimately, the prediction aspect of the understanding & prediction module is per-
formed by the predictive analytics unit. This unit enhances the train’s ability to estimate
and predict future conditions and potential obstacles on its path. Using advanced algo-
rithms, this unit interprets patterns and trends from historical and real-time data provided
by the perception module. Moreover, it effectively predicts the behavior of other entities,
estimates changes in environmental conditions, and anticipates potential system states. By
doing so, it offers insight into the immediate future, enabling the decision-making module
to proactively adjust operational parameters. This capability is crucial for mitigating risks
that are not yet apparent but could result in hazardous events if not addressed.

Finally, the estimation process must comprehensively consider the associated uncer-
tainties within each module, providing the decision-making module with three critical
pieces of information: (i) estimation of current residual risk, (ii) prediction of future level
of risk, and (iii) the level of confidence assigned to these estimations. These elements
are essential for a robust decision-making framework that ensures informed and reliable
autonomous operation.
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4.3.3 Decision-making module

The decision-making module stands as the final brick in the autonomous train’s DRA
framework, synthesizing information from the perception and understanding & prediction
modules to formulate actionable policies.

In addition, the decision-making module reflects the ability of the ADS to apply poli-
cies and make decisions to achieve higher order goals in response to the current operational
conditions. This is achieved by combining the processed information about the environ-
ment (perceived view of the real world) with established policies, domain knowledge and
learning regarding how to respond to the presented environment. In fact, the decision-
making module is segmented into several integral units, each with a defined purpose in
the module.

First, the priorities & constraints unit is tasked with defining the operational envelope
(i.e., ODD of the autonomous train). It assimilates regulatory standards, safety require-
ments and guidelines, and operational objectives to establish the criteria against which
decisions are evaluated. This unit ensures that all decisions align with the predefined
safety requirements, regulatory compliance, and operational efficiency while considering
the constraints of the train’s current state and environmental conditions.

Secondly, the computing unit employs algorithms that interpret the information re-
ceived from the estimation of residual risk and predictive analytics units. It processes the
estimation of the current risk level, projections of future risk levels, and the associated
confidence levels. By prioritizing the safe decisions and advanced computational models,
this unit quantitatively assesses potential actions and their outcomes.

Finally, the decision unit integrates the insights provided by the computing unit to
deliver final decisions. This unit is responsible for selecting the most appropriate course
of action from a range of possible responses, from initiating collision avoidance maneuvers
to maintaining current operational parameters. The decisions made are contingent upon
achieving an optimal balance between risk mitigation and operational progress, guided by
the defined priorities and constraints.

Once a decision has been reached, the information is conveyed to the execution mod-
ule, which acts upon the directives with precision and timeliness. The execution module
comprises units such as collision avoidance, automatic driving, and internal and external
controls, each executing the necessary adjustments to the train’s behavior in response to
the decision-making module’s outputs.

4.4 Illustrative case: anti-collision function

In railway, any external object on the track that can result in a collision with the train is
considered as an obstacle. The obstacle detection function shall then detect and locate all
elements that may represent a risk (of collision) for the train, and identify all parameters
associated with these elements, such as distance, dimensions of the object, and velocity.
The identification of these parameters allows for characterizing and estimating the objects
that may represent a danger for the train movement or not. The anti-collision function in
the autonomous train is performed by the perception module. In such systems, advanced
sensor technologies, such as 2D cameras, 3D cameras and/or Radar and LiDAR are used
to perceive the environment (Ristić-Durrant et al., 2020; Pavlović et al., 2018).

This function operates by employing a combination of advanced onboard sensors and
complex processing algorithms to accurately detect and assess any potential obstacles that
may block the train’s path. Figure 4.4 serves as an illustration of the decision-making
behavior diagram of obstacle detection and avoidance system (i.e., the anti-collision func-
tion) integrated to autonomous train operation. It represents a systematic and iterative
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Figure 4.4: Decision-making flowchart of the anti-collision function for autonomous trains
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approach where the train continuously monitors its environment through an array of sen-
sors. Upon detection of an obstacle, the system initiates a series of steps to determine
the appropriate set of actions (i.e., policies). This process is both essential and critical
for ensuring the safety of the autonomous train as it operates through varying operational
conditions. The figure breaks down this process into logical steps, from initial detection
to the final decision-making, highlighting the train’s ability to respond to obstacles au-
tonomously. The following description offers a clear and simplified overview of each step
within this crucial safety system.

Starting with the initial data acquisition, the train’s sensors collect environmental in-
formation, a process depicted by the ‘Get information from sensors’ unit. This data is then
scrutinized for potential hazards within the train’s operational envelope at the ‘Obstacle
detected?’ decision node. After identifying a potential hazard, the process advances to the
‘Get information from processing’ unit, where the data is analyzed further. This stage is
crucial for determining the obstacle’s dimensions and velocity (i.e., key factors that influ-
ence the train’s response policy). When the obstacle’s size surpasses predetermined safety
parameters, the system evaluates its proximity to the train. When the obstacle is situated
within the nominal braking range, a controlled deceleration is initiated, as depicted by
the ‘Nominal braking’ route. However, if the obstacle presents an immediate danger, the
‘Emergency braking’ pathway is triggered, implementing rapid deceleration measures to
mitigate a potential collision. Traction control may be disengaged during this phase to
maximize braking effectiveness.

Moreover, the flowchart node ‘Distance to obstacle is available?’ assesses the prox-
imity of an identified obstacle relative to the autonomous train. At this decision point,
if the distance to the obstacle (do) is greater than the train’s braking distance (dbraking),
nominal braking is initiated, allowing the train to decelerate under regular conditions.
Conversely, if do < dbraking, the situation necessities an emergency braking, leading the
train to apply maximal braking forces in order to stop as quickly as possible, aiming to
prevent a collision. Following each action, the process checks if the obstacle has been
successfully avoided, thus determining the next steps in the operational procedure. After
executing the braking maneuver, the system assesses the outcome. If the obstacle has
been successfully performed, normal operations are resumed. In the event of a collision,
the system transitions into an emergency state, activating additional safety measures.

The next sections detail the process of the obstacle detection and avoidance within the
SA & DRA framework (which is also depicted in Figure 4.5, providing an understanding
of each component’s role in identifying and responding to obstacles to maintain seamless
and safe train operation. This examination clarifies how the system’s various elements
function collectively to ensure the autonomous train’s continual safety and efficiency.

4.4.1 Perception module

In fact, environmental perception is the core of the perception module, allowing the au-
tonomous train to identify and classify the critical elements of its surrounding. This
process involves the detection and analysis of various signals, whether visual, auditory, or
otherwise, to discern the dimensions and dynamics of objects or entities around the train.
For example, the module should differentiate between static and dynamic obstacles, such
as distinguishing a stationary platform from a moving vehicle.

The system’s ability to manage uncertainties and imprecision from multiple complex
sensors inputs is crucial for establishing a reliable informational picture. The position
tuple Pi (Equation 4.1) represent the distance to each obstacle i (di

o), its dimensions (Di
o),

velocity of each obstacle (vi
o), and its orientation (θi

o).

P i =< di
o, Di

o, vi
o, θi

o > (4.1)
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The position tuple ensures that the perception module provides a robust and accurate
representation of the real world that is essential for the autonomous train’s functions.

For each obstacle i detected at the time t, the perception module at least provides
the following information: the kind of the obstacle (human, animal, etc.), the size of the
obstacle, its position with respect to the train (coordinates) or the distance to the train di

o

and the speed vi
o of the obstacle (if it is in motion). Based on the distance to the obstacle

i, the Time To Collision (see Equation 4.2) can be then estimated.

TTCi(t) = di
o(t)

vT (t) (4.2)

Where vT (t) is the train speed, and di
o(t) is the distance to obstacle i at time t.

The information and parameters related to the obstacle will be then shared with un-
derstanding & prediction module. Notice that these information are provided with some
uncertainties due to the performance limitations of the sensors and the processing algo-
rithm. Based on these data flows (with their corresponding uncertainties), the risk model
determines and estimate (and predict) the current (and the future) level (or probability)
of the collision risk.

4.4.2 Understanding & prediction module

In the understanding & prediction module, the system uses the processed sensory informa-
tion to predict the future state of the environment. This involves estimating the current
and future probability of hazardous events, such as potential collisions. This module cal-
culates the predicted position vector P̂ i of an obstacle i (Equation 4.3), which consists of
its distance to the train (d̂i

o), the obstacle’s dimensions (D̂i
o), the obstacle’s velocity (v̂i

o),
and its orientation (θ̂i

o).

P̂ i =< d̂i
o, D̂i

o, v̂i
o, θ̂i

o > (4.3)

The system also computes an uncertainty vector δP i (Equation 4.4, which accounts
for measurement errors or uncertainties in the obstacle’s position (δdi

o), the obstacle’s
dimensions (δDi

o), the obstacle’s speed (δvi
o), and its orientation (δθi

o). The prediction is
based on whether the obstacle is moving in the direction of the rails and its orientation,
which could influence the decision-making process. This vector enables the system to
consider and reduce the natural variations and errors in sensor data, like the possible
inaccuracy in an object’s position or the speed at which it moves.

δP i =< δdi
o, δDi

o, δvi
o, δθi

o > (4.4)

Furthermore, the fusion model within this module integrates the diverse data flow to
ensure a unified and consistent interpretation of the train’s surroundings. Moreover, the
module reconciles the inputs from various sensors to provide a reliable representation of
the environment, which is essential for accurate risk assessment. Following data fusion, the
risk model is the next unit in the process. The risk model employs algorithms to analyze
the current surrounding and predict potential hazards. This proactive approach leverages
the processed data to anticipate the trajectory of moving objects and the emergence of
new obstacles, assessing how these elements may affect the train’s path and safety.

Together, these components of the understanding & prediction module work to support
the decision-making module. They provide a comprehensive risk profile that is instrumen-
tal in guiding the autonomous train’s responses to a complex and dynamic operational
conditions, ensuring that every decision is informed by a thorough understanding and
anticipation of potential risks.
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Figure 4.5: Framework for obstacle detection and avoidance (anti-collision) of autonomous
trains
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4.4.3 Decision-making module

The decision module is the executive function of the system. Based on the input from the
understanding & prediction module, it decides whether to execute a braking maneuver,
accelerate or to maintain speed. This decision is informed by various priorities, constraints,
and what is considered an acceptable level of risk. The decision-making process is likely
managed by algorithms designed to optimize safety and efficiency. The decision module
receives the current and the future level/probability of collision with the obstacle. Taking
into consideration the train braking capability, the module decides the kind of brake to
be applied (Emergency brake, full service brake or holding brake).

In addition, the decision module leverages the braking capabilities vector Pb (see Equa-
tion 4.5). Here, ν stands for the train’s velocity, η is the deceleration rate available, ∆ is
the brake delay time, τ indicates the braking state, and m represents the mass distribution
of the train. These variables are crucial for determining the train’s braking strategy in
response to assessed risks

Pb =< ν, η, ∆, τ, m > (4.5)

The final step within this module is the decision unit, which synthesizes all the pro-
cessed data and prioritization to conclude the most appropriate action. It takes the output
from the Computing Unit (i.e., the calculated risk levels and operational constraints) and
determines whether to initiate a braking maneuver, accelerate or to continue at the current
speed.

4.5 Conclusion
The responses of autonomous trains towards dynamic uncertainties in their external envi-
ronment, that have not been anticipated during design time, shall be safe. In this chapter,
we have proposed a Dynamic Risk Assessment (DRA) framework based on the Situa-
tion Awareness (SA). The proposed framework allows the on-board Autonomous Driving
System to stay aware of its surrounding environment and entities, intending to provide
run-time probability estimations for the occurrence of railway hazards while accounting
for (internal and external) environment perception. In this chapter, we outline a strategy
for testing the decision-making proposed framework for autonomous trains, as an essential
step in assessing its practical applicability and effectiveness. However, it is important to
note that, within the scope of this chapter, the framework has not yet been subjected to
empirical testing or simulation. In fact, the focus here is on highlighting a prospective
approach for future testing and validation of the framework. Nevertheless, this study lays
the foundation for the model proposed in the next chapter, as well as the simulations and
testing associated with it.
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POMDP-based decision-making
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5.1 Introduction

One of the challenges for the ADS to effectively implement safety functions lies in the ex-
istence of potential uncertainties associated with the perception system (including sensors
and AI algorithms) and environmental conditions (Rosique et al., 2019; Nair and Bhat,
2021). Indeed, the unreliable received information could lead to missed detections and, at
worst, to catastrophic consequences. Arising from this challenge is the need for a compre-
hensive and robust decision-making process capable of taking into account and handling
uncertainties. This process should be designed to examine sensors’ information, taking
into account the potential for inaccuracies, and react accordingly.
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In this chapter, we propose a risk-based decision-making framework using Partially
Observable Markov Decision Processes (POMDPs) for run-time monitoring of the envi-
ronment during the train operations. This approach aims to assure the safe operation
of the train with regard to collision hazards. Concretely, this consists of maintaining an
acceptable risk level by estimating and updating the risk associated with the surroundings.
The run-time risk estimation allows the system to make safe decisions while considering the
inherent uncertainties in the train’s state and the perceived environment. The approach
is established and illustrated for the anti-collision function of the autonomous train.

Notice that the main research results of this chapter have been published in IEEE
Access journal (Chelouati et al., 2023b).

The remainder of this chapter is organized as follows. Section 5.2 presents the re-
lated works addressing uncertainties in decision-making processes of autonomous systems.
Additionally, the benefits of integrating POMDPs in such processes for risk control are
discussed. In Section 5.3, the problem statement related to the anti-collision function for
the autonomous train is detailed, along with the way to structure the associated risk data
needed to complete the DRA task. Furthermore, the methodology of the proposed solu-
tion is described in Section 5.4, including the definition of the POMDP model, POMDP
solvers, and the proposed risk model. The simulation results are presented in Section 5.5.
Finally, Section 5.6 provides some concluding remarks and highlights some perspectives
for future research.

5.2 Toward the use of POMDPs in ADS

Figure 5.1 recalls the essential components of the ADS in an autonomous train. In fact,
the decision-making unit receives all the necessary information from the perception unit,
computes main (operational and safety) indicators, and takes the adequate actions The
dynamic risk assessment task has to form the safety basis (via risk model) of the train
decision-making process. Depending on the evaluated risk level, the ADS should then
decide on an action plan. It could choose, for example, to accelerate or maintain speed to
meet the speed profile of the train when no obstacle is present on the horizon, decelerate
if a potential obstacle is detected at a safe distance, or initiate an emergency braking
procedure if an immediate collision risk is identified.

Notice that, in railway standards, particularly as outlined in EN 50126, a ‘risk model’,
as discussed in Chapter 2, is the comprehensive framework designed for the system-
atic identification, assessment, and management of risks in railway operations. The risk
model’s main objective is quantifying the likelihood and severity of potential hazardous
events, evaluating the effectiveness of existing safety measures, and determining the need
for additional risk mitigations. The model typically (for conventional railway systems)
encompasses the identification of hazards, the risk analysis (including frequency and con-
sequences of hazardous events), and the evaluation of risk against predefined acceptability
criteria. On the other hand, risk models for autonomous trains should incorporate real-
time information. This allows for an adaptive response to changing environmental con-
ditions and operational scenarios. Using advanced algorithms, the model evaluates risk
levels continuously, considering both historical data and real-time sensory inputs.

5.2.1 Handling uncertainties in decision-making processes

Addressing uncertainties in decision-making for autonomous systems had emerged as a cen-
tral research focus, identifying key problematic such as sensor fusion (Gupta and Snigdh,
2022; Shao et al., 2023), perception under varying environmental conditions (Molloy and
McDermid, 2022; Gu et al., 2023), and dynamic system state evaluation (Yang et al.,
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Figure 5.1: A simplified architecture of the ADS with a main focus on the DRA layer,
strengthening the decision-making task

2023a,b). These challenges are critical as they directly impact the safety and reliability of
autonomous operations. Sensor fusion is particularly essential for ensuring comprehensive
perception (Zhang et al., 2023b), as it integrates data from multiple sensors to form a
coherent understanding of the environment, compensating for the limitations of individ-
ual sensors (Lobato et al., 2023). The literature reveals that environmental conditions
significantly affect the perception accuracy (Johansen et al., 2023), where factors such as
lighting, weather, and obstructions can lead to uncertainties in detecting and classifying
objects (Bolbot et al., 2023). Moreover, maintaining an accurate system state is impera-
tive, as it forms the basis for all subsequent decisions (Sarker et al., 2023). Variability in
operational conditions and the need for real-time responsiveness necessitate robust frame-
works and methodologies capable of adapting to sudden changes and predicting future
states.

In fact, several research works in the literature focus on robust decision-making method-
ologies capable of taking into account various types of uncertainties. For instance, Bayesian
Networks (BN) provides a graphical model to comprehend the probabilistic relationship
among a set of variables and manage uncertain information (Hegde et al., 2018; Junyung
et al., 2021), while Dynamic Bayesian Networks (DBN) extend this capability by handling
temporal dependencies between variables (Weber et al., 2012; Weber and Simon, 2016).
Moreover, decision trees offer a simple and intuitive method to model decisions and their
possible consequences, including outcomes, resource costs, and utility (Abaei et al., 2021).
Lastly, Reinforcement Learning (RL) offers an interactive approach to learning an opti-
mal policy for direct trial-and-error interaction with a dynamic environment (Kiran et al.,
2021; Morato et al., 2023; Plissonneau et al., 2021). However, among these methodolo-
gies, Partially Observable Markov Decision Processes (POMDPs) have gained significant
attention in the context of autonomous systems as described below.

5.2.2 Benefits of POMDP in decision-making processes

POMDPs have proven several advantages when dealing with the decision-making process.
Firstly, POMDPs explicitly account for the uncertainty in both the system’s state and
the observations. This feature is essential in autonomous systems where sensor readings
may not always be reliable or complete, and the actual state of the environment is hard-
to-specify and hard-to-predict. Secondly, unlike methodologies such as decision trees that
operate on discrete models, POMDPs can handle continuous states, actions, and observa-
tion spaces. This is particularly useful for autonomous systems where the environment is
often better represented as a continuous space, such as the relative positions and speeds of
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vehicles (Tran and Bae, 2021). Finally, while the RL is also a powerful tool for decision-
making under uncertainty, it typically requires a large number of trials to learn the optimal
policy, which may not always be feasible or safe in critical applications like autonomous
trains. On the other hand, POMDPs offer a model-based approach that allows efficient
policy computation based on the system’s model.

In addition to their capability to address uncertainty, POMDPs can also model both
the stochasticity in environment transitions and imperfect sensory information (Pouya and
Madni, 2020). This dual capability becomes vital when dealing with real-time sensor data
that inherently contains observational noise and varying environmental states.

A number of studies have focused on the use of POMDPs for various tasks related
to the decision-making process, including dynamic probabilistic risk assessment (Maidana
et al., 2022), cruise control of high-speed trains (Xu et al., 2019), collision avoidance in
uncertain environments (Ragi and Chong, 2013), and behavior planning for autonomous
vehicles (Pouya and Madni, 2020). In the field of robotics, POMDPs have also been
applied for fault management in autonomous underwater vehicles (Svendsen and Seto,
2020). A survey by Lauri et al. (2022) provided a comprehensive overview of the use of
POMDPs in robotics.

The literature also provides a range of algorithms and techniques for solving POMDPs,
including online solvers (Ross et al., 2008), Monte-Carlo planning (Silver and Veness,
2010), and regularization methods (Somani et al., 2013). In addition, various tools and
frameworks have been developed to aid in the modeling and analysis of autonomous sys-
tem behavior using POMDPs, such as TAPIR (Klimenko et al., 2014), an online ap-
proximating and adapting software toolkit (Sunberg and Kochenderfer, 2017), and the
Expandable-Partially Observable Markov Decision-Process Framework (Pouya and Madni,
2020). Equivalently, the use of Deep Reinforcement Learning (DRL) in combination with
POMDPs has been gaining popularity in recent years. For example, Xiang and Foo (2021)
explored the recent advances in DRL applications for solving POMDP problems in various
fields, including transportation, industries, communication, and networking.

The above-mentioned papers highlight the various methods and techniques that have
been developed to solve POMDPs in real-time and address the challenges of uncertain
environments and dynamic parameters. Therefore, by using POMDPs, autonomous sys-
tems can make informed decisions that balance the trade-off between safety and efficiency
(or even comfort), providing an important step toward the widespread adoption of au-
tonomous systems.

5.3 Decision-making related to the train’s anti-collision func-
tion

The anti-collision function represents the train capacity to detect and react appropriately
and safely to any potential obstacles that could instigate a collision. Notice that the
obstacles to be considered are physical entities, such as other trains, vehicles, individuals,
trees, and so on. It is essential for an autonomous train to be outfitted with the necessary
sensors and algorithms to accurately identify the nature of an obstacle, and estimate its
distance from the train and its trajectory, in order to compute and evaluate the associated
risk. To realize the anti-collision function, the ADS monitors the operational state of the
train and its surrounding environment, constantly scanning for potential obstacles.

Figure 5.21 illustrates a scenario where an autonomous train, depicted in green, is
approaching an intersection point in its track where the rail of another train merges. This
is a potential area of conflict that the train’s ADS recognizes and reacts to in a safer

1This figure was generated using an AI-based image generation tool
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manner. Furthermore, on the horizon, a car intersects the railway track, indicating a
level-crossing scenario. A few individuals, along with their animals, are seen near the
crossing, preparing to cross or possibly cross the railway track. This adds another layer of
complexity to the scene, and the train’s ADS must be capable of reacting to any potential
obstacle and making decisions ensuring an acceptable safety level.

Moreover, the presence of trees alongside the rails is not merely an environmental
feature in the figure. It signifies another set of potential risks, such as the danger of a
fire, or the possibility of animals wandering onto the tracks from the forested areas. In
such complex and unpredictable scenarios, the train’s anti-collision function serves as the
backbone, ensuring the safety of the autonomous train. It needs to efficiently process the
potential risks arising from different aspects of the scenario (e.g., another train, humans
and animals near the level crossing, cars, potential forest threats; etc.). The anti-collision
function objective is not just to detect and identify these threats but also to measure the
level of risk associated with each one so that the decision can be made based on the most
updated and accurate risk information.

Figure 5.2 serves as a reminder of the vast array of potential risks that an autonomous
train might face, and how a robust, dynamic, and real-time risk assessment based on the
anti-collision function can play a critical role in ensuring the safe operation of the train.

Figure 5.2: Generic illustration of the anti-collision function

5.3.1 DRA of the anti-collision function

Given the uncertainties associated with real-world environments and sensor information,
the observations help to form an uncertainty estimation. This estimation is a probabilistic
representation of the current situation of the train, summarizing possible states of the train
and its surroundings. Once the uncertainty estimation is established, the risk assessment
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inherent to the anti-collision function should be carried out. This refers to the DRA task,
which has to be performed by the ADS to evaluate and update the level of risks associated
with the current state of the train, the environment, and the available actions the train
might take. This assessment is based on uncertainty estimation, considering both the
likelihood and potential consequences of a collision. In addition, the uncertainty estimation
plays an important role in establishing the risk profile, as it provides the probabilistic
basis from which potential hazardous scenarios and their associated risks are assessed,
and classified within the risk profile.

Figure 5.3: Illustrative representation of the anti-collision function

Figure 5.3 shows an illustrative scenario involving an autonomous train and a potential
obstacle in its track. Different control actions are available for the train, in response to the
surroundings and with respect to the criticality of the evaluated risks, namely, accelerating,
maintaining the current speed, and various types of braking. In Figure 5.3, the obstacle
is located at a certain distance on the track of the train. With respect to the distance
from the train, three zones are considered: warning, emergency, and critical zones. The
warning zone (in yellow color) indicates a distance from where no immediate action is
needed (i.e., the obstacle is so far or not detected yet). The emergency zone (in orange
color) signifies a cautionary distance from where the train may need to adjust its speed or
brake in order to avoid a collision. Finally, the critical zone (in red color) signifies that the
presence of an obstacle can lead to a collision (i.e., in this zone, the obstacle is considered
close to the train, and even with an emergency braking the risk of collision is high). The
associated risk level, represented on the vertical axis with a scale between 0 and 1, is
estimated according to the distance to the obstacle. Obviously, the closer the obstacle is
to the train, the higher the risk level is. The threshold to reach the unacceptable risk level
(visualized in the figure by the intersection between the blue dashed line with the vertical
axis) is crossed when the train crosses the critical zone.

Note that, the DRA task must not only lead to a safe reaction of the ADS when a
collision risk is identified, but also learn from every decision made. The consequences of
each decision have to be monitored and analyzed to understand the effectiveness of the
actions taken. This feedback loop allows the system to continuously adapt and evolve,
improving its performance over time. Therefore, the anti-collision function, performed by
the DRA, acts as a dynamic learning and protection layer, ensuring a higher level of safety
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in the operation of autonomous trains.

5.3.2 Structuring risk profiles with the DRA framework

The proposed framework, presented in the previous chapter, provides a structured ap-
proach to decision-making, taking into account the train state uncertainty and the per-
ception of the environment. The DRA framework is designed to take into account the
various factors that influence the decision-making process (cf. Figure 5.4). This includes
the train’s speed, the distance to the obstacle, and the perception of the environment,
among other internal and external factors.

This framework enables the ADS to perform a real-time evaluation and prediction of
potentially hazardous situations by estimating their occurrence probabilities and sever-
ity. It exploits not only the information collected from the perception module but also
translates this information into an actionable risk profile2. This profile then guides the
decision-making process to efficiently determine the appropriate and safe actions neces-
sary to avoid or mitigate the impact of hazards. Therefore, the integration of risk profiles
into a DRA framework for autonomous trains allows for the real-time management and
mitigation of risks, thereby improving overall safety in autonomous train operations.

Figure 5.4: The autonomous train dynamic risk assessment framework

In the present chapter, our focus is on the Understanding & Prediction and Decision-
making modules in the case of the anti-collision function. The Understanding & Prediction
module utilizes the information provided by the Perception module to create and contin-
ually update an integrated real-time model that represents the system environment and
its states. This model is subsequently utilized for run-time decision-making. From the
perspective of DRA, this module enables the computation of a current risk estimate and

2According to (Kumamoto and Henley, 1996), a risk profile is defined as an“outcome, likelihood, signif-
icance, causal scenario, and population affected [are factors that] determine the risk profile”. The purpose
of the risk profiles is to understand better which scenarios are relatively riskier (i.e., how the risks are
compare to each other.)
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the prediction of potential railway hazards. Subsequently, this risk estimate is evalu-
ated through the risk model. This risk model for anti-collision purposes integrates both
historical data, which reflects past system performance and incidents, with real-time sen-
sor information to enhance the accuracy of potential collision predictions. Moreover, it
evaluates several parameters, such as the train’s current speed, position, and braking ca-
pabilities as well as the positions and velocities of detected obstacles. By continuously
updating these parameters in real-time the model is able to adjust and update the risk
estimates associated with each potential action and thus assists in selecting the safest
action for the autonomous train.

5.4 Methodology
In this section, we first recall the preliminary definitions and notions of POMDP, and then,
we describe the different components of the POMDP model for the train’s anti-collision
decision-making process.

5.4.1 POMDP definition

A POMDP is a probabilistic method that models the sequential process of a system under
uncertainty. It is a generalization of Markov Decision Process to situations where the
system state is partially unknown. Formally, a POMDP is a tuple ⟨S, A, O, T, Z, R, γ⟩,
where S and A are the sets of states and actions, T is the transition function that defines
the conditional probability P of moving from one state s ∈ S to another state s′ ∈ S as
a result of executing an action a ∈ A, i.e., T (s, a, s′) = P (s′ | s, a). O is the observation
space that defines the information received (from sensors) after the execution of an action.
Z is the corresponding observation function that defines the conditional probability of
observing a particular outcome o ∈ O after executing an action a ∈ A to reach to state
s′ ∈ S, i.e., Z(o, a, s′) = P (o | s′, a). R is the reward function R(s, a) that defines the
immediate reward received for being in a particular state s ∈ S and taking a particular
action a ∈ A. Finally, γ ∈ [0, 1] is the discount factor that determines the relevance (or
not) of future rewards.

In a POMDP, only partial and noisy knowledge of the system and its environment is
considered; thus, a belief about the model states, known as a belief state b(s), is continually
inferred. The belief state is a probability distribution over the state space that reflects
the degree of certainty maintained by the POMDP model about the current state of the
system. Accordingly, a policy π : B → A is used as a mapping from the set of possible
belief states to the set of actions, in order to determine the adequate action that should
be taken.

Solving a POMDP involves finding the optimal policy π∗ in terms of current action or
finite sequence of actions to be executed in order to maximize (or optimize) the expected
cumulative reward over time, taking into account the belief state. Formally,

π∗(b) = argmaxa∈A{
∑
s′

P (s′ | b, a)[R(b, a, s′) + γ.E[V ∗(b′)]]} (5.1)

To evaluate the potential reward of taking an action a and transitioning to state s′,
equation 5.1 considers the probability P (s′ | b, a) of transitioning to state s′ given the
current belief state b and the action a taken. It also accounts for the immediate reward
R(b, a, s′) obtained from the action a in the belief state b and transitioning to state s′.
Moreover, the equation considers the expected value (i.e., expected reward) of the optimal
value function, E[V ∗(b′)] for the next belief state b′ resulting from the transition to state
s′. This component accounts for the potential future rewards and outcomes taking action
a.
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The optimal policy in a POMDP can be computed using two main categories of solvers:
online and offline solvers. These solvers differ in the way they find the optimal policy and
the computational resources they require. Online solvers are designed to run in real-time
and make decisions based on the current state of the system, while offline solvers are
designed to run offline and make decisions based on historical data. The choice of the
solver depends on the specific use case and the computational resources available.

5.4.2 POMDP modeling of the train anti-collision system

Train anti-collision system modeling

The anti-collision system takes as input internal information regarding the train state, and
external information about the environment. As explained in subsection 5.3.2 presenting
the DRA framework, the internal inputs encompass sensor information about the train
position and velocity (generally, provided by the localization and the speed measuring
modules), as well as nominal and emergency braking (i.e., deceleration) capabilities, which
can be transformed into the nominal and emergency distances to stop the train. On the
other hand, external inputs refer to information about the surrounding obstacles (coming
from the perception module), including their positions, dimensions, velocity, and intentions
(for moving obstacles). The output of the system is the adequate control action (or
sequence of actions) to be taken in order to avoid (when possible) any collision with
the detected obstacle. Figure 5.5 presents a general view of the POMDP input-output
structure used to implement the anti-collision function.

Figure 5.5: A generic illustration of the POMDP model.

The continuous state-space of the POMDP model includes the state of the train and
the states of the (possibly) surrounding obstacles. The state of the train sT contains
its position (xT , yT ), its velocity vT , and its orientation θT . Similarly, the state of each
obstacle si is composed of its position (xi, yi), its dimension Di, its instantaneous speed
(vxi, vyi), and its orientation θi. It is worth noticing that such a formulation of the state
space is performed on a global (or earth) coordinate system. An arbitrary point on the
track is chosen as the origin of the coordinate system. Notice that several coordinate
systems can be considered, as local and relative systems (See Temizer et al. (2010); Leurent
(2018) for more details).

While the continuous formulation of the state space is a faithful representation of the
real system, it remains a very high-dimensional continuous space, which requires significant
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Figure 5.6: A generic spatial discretization of Cartesian plan into adaptive grid map for
autonomous train navigation

computation time and space to solve the model and find the adequate policy. Moreover,
the existing algorithms to solve the continuous POMDP do not scale well when it comes
to high-dimension continuous models. In order to remedy this issue, we consider a discrete
POMDP with a discrete representation of state space, action space, and observation space.

Modeling the discrete state space

The discretization of the state space is performed using a two-dimensional adaptive grid
fixed to the head of the train. Thus, a local coordinate (egocentric) system with the head of
the train as system origin is considered. This means that instead of explicitly representing
the positions of the obstacles as continuous variables within the model states, they are
represented implicitly through several variables indicating the occupancy or not of the
grid cells. The positive x-axis is in the direction of train driving, and the positive y-axis is
directed to the left of the train head. Notice that the adaptive grid cell size is dependent
on the tangible braking capabilities of the train, the presence of obstacles in (or alongside)
the track, and the gauge of the train.

Figure 5.6 presents a two-part illustration from a real-world scenario of the adaptive
grid map. The first part (on the left of the figure) shows a train moving along its track
with an obstacle appearing in its path, visualized using a global coordinate system. The
second part of the illustration (on the right of the figure) depicts the adaptive grid map
resulting from this discretization process. Furthermore, On the right side, the concept
of discretization is shown. This is represented by a grid overlay on the track, with the
grid cells numbered in parentheses. The cells are color-coded consistent with the zones
described on the left: green for the free zone, yellow for the warning zone, orange for
the emergency zone, and red for the critical zone. This grid represents a method for
discretizing the continuous space around the train into manageable sections for the anti-
collision system to evaluate risk more effectively. This discretization allows the transfer
from the global coordinate system to an adaptive grid map. The lengths of each zone in this
adaptive grid map are indicated on the right side of the grid as lengthfree , lengthwarning,
lengthemergnecy, and lengthcritical. The train’s gauge, which is the width of the train or
the tracks, is also noted at the bottom of the grid. In fact, figure 5.6 illustrates our
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approach to risk quantification, which, at first glance, emphasizes proximity and braking
distances. However, the model’s architecture inherently accommodates additional critical
parameters. Lateral position is factored into the discretized grid map, where each cell
corresponds to a specific lateral and longitudinal zone relative to the train, allowing us to
account for the lateral positioning of obstacles. Moreover, obstacle velocity is incorporated
into the risk assessment though dynamic cell updates that reflect the changing positions of
obstacles over time. This enables the system to anticipate and react to moving obstacles,
with a higher risk attribution for those with significant relative velocity towards the train.

The adaptive grid map is structured as a 12-cells grid, where each cell is defined based
on the relative position of the obstacle (gx, gy), and its relative discrete orientation θd.
Notice that the orientation of the obstacle is determined based on its velocity projections
(vx, vy) (or its angular velocity ωo), and represents the possible transitions to the eight
surrounding grid cells, i.e., θd ∈ {0, 2π

8 , 4π
8 , 6π

8 , π, 10π
8 , 12π

8 , 14π
8 }.

Thus, the state set S can be expressed as follows:

S =


gx, with gx ∈ {1, 2, 3, 4}
gy, with gy ∈ {1, 2, 3}
θd, with θd ∈ {0, 2π

8 , 4π
8 , 6π

8 , π, 10π
8 , 12π

8 , 14π
8 }

(5.2)

The variable gx represents the discretization of the obstacle’s position in the x-axis
and can take four values {1, 2, 3, 4}, corresponding to the number of lines in the grid. The
variable gy represents the discretization of the obstacle’s position in the y-axis and can take
three values {1, 2, 3}, corresponding to the number of columns in the grid. Additionally, the
variable θd represents the orientation of the obstacle and is discritized from a continuous
space (from 0 to 2π) to eight discrete values {0, 2π

8 , 4π
8 , 6π

8 , π, 10π
8 , 12π

8 , 14π
8 }, representing

the possible transitions to the eight surrounding cells. In fact, each unique combination
of gx, gy, and θd represents a distinct state in the adaptive grid map, indicating the
position and orientation of the obstacle (see Figure 5.6). With four possible values for gx,
three possible values for gy, and nine possible values for θd, the total number of possible
states in the adaptive grid map is NS = 4 × 3 × 8 = 96. These 96 states capture all the
possible configurations of an obstacle within the adaptive grid map, enabling the POMDP
model to effectively reason about its movement and potential interactions with the train
in real-world scenarios.

In order to establish the sizes of each cell in the adaptive grid map, the next step of
the discretization process is the definition of different zones (Free, Warning, Emergency
and Critical zones). The boundaries of each zone are determined as functions of the
nominal and emergency braking distances α1 and α2. In fact, the length of the cells in
Critical, Emergency, and Warning zones are respectively equal to the emergency braking
distance (lengthcritical = α2), the nominal braking distance (lengthemergency = α1 − α2),
the distance to the obstacle (lengthwarning = do − α1) with do equivalent to gx

o (i.e.,
do = xo − xT in the global coordinate system). Additionally, the length of the free zone
cells is determined by the maximal perception distance (or the perception range) dp of
the autonomous train (lengthfree = dp − (α1 + dm)). On the other hand, the width of all
cells in the adaptive grid map is equal to the gauge of the train. Equation 5.3 shows the
boundaries of each zone :

Freezone = {(gx, gy, θd) ∈ S | for gx = 4; gy = 1, 2, 3}
Warningzone = {(gx, gy, θd) ∈ S | for gx = 3; gy = 1, 2, 3}
Emergencyzone = {(gx, gy, θd) ∈ S | for gx = 2; gy = 1, 2, 3}
Criticalzone = {(gx, gy, θd) ∈ S | for gx = 1; gy = 1, 2, 3}

(5.3)

These zones include the Free zone where no obstacle is detected, the Warning zone
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where an obstacle is present but can be avoided by a nominal braking, the Emergency zone
where an obstacle can only be avoided by an emergency braking, and the Critical zone
where an obstacle cannot be avoided and a collision is imminent. In fact, in the adaptive
grid map, each zone consists of three cells, resulting in a total of 12 cells.

From a safety perspective, if an obstacle is in one of the three cells within each zone,
whatever the speed of the obstacle compared to the speed of the train, and knowing that
its orientation is toward a lateral direction (i.e., θd = 0 or π, meaning that the next ob-
stacle state will remain in the same zone), the associated level of risks can be considered
to be similar for the autonomous operation. If the obstacle orientation is forward (i.e.,
θd = 2π

8 or 4π
8 or 6π

8 ) or backward (i.e., θd = 10π
8 or 12π

8 or 14π
8 ), the risk will respectively

decreases (only if vo ≥ vT ) or increases (only if vo > 0). In order to define POMDP states
with comprehensible risk levels, we adopt the following assumptions.

Assumptions for defining risk levels

It can be observed that most of the 96 states from the adaptive grid map can exhibit
similar safety implications. In particular, the three cells within each zone can be related
to a similar level of risk. In other words, multiple states might present an analogous level
of risk for autonomous train operations. Such similarities across various states can be
attributed to factors such as the immediate threat an obstacle can raise, the available
reaction time for the train, and the potential consequences of inaction. Rather than
distinguishing among these numerous states, which might only offer marginal differences
in the actual risk, it appears to be more pragmatic and efficient to aggregate them based
on their overall risk level. This not only streamlines the decision-making process but also
ensures clarity in defining distinct risk levels.

Moreover, in the initial simulation setup described herein, it is assumed that obstacles
detected by the autonomous train’s perception unit are static (i.e., vo = 0) in the immedi-
ate environment. This assumption simplifies the predictive aspect of obstacle movement
and trajectory, allowing the decision-making process to forgo consideration of these dy-
namics. Consequently, the orientation (θd) of the obstacles is not taken into account when
transitioning to discrete safety states. The focus is primarily on identifying obstacles and
gauging their proximity to the train (i.e., the distance to obstacle do). In contrast, the
second simulation setup advances this model by integrating the velocity of obstacles and
their nature (i.e., static or dynamic). This not only reflects a more realistic operational
scenario but also challenges the system to account for the additional complexity in its
risk assessment and decision-making algorithms. Furthermore, developing two simulation
setups highlights the adaptability of the approach, showcasing its capacity to integrate
multiple factors, whether they are external factors related to obstacles or internal factors
associated with the train itself.

Based on the outlined considerations, we have identified four discrete states. This
delineation is not just a reduction, but a methodical classification and categorization based
on the risk levels that several states in the adaptive grid map might be associated with.
This structured approach provides a clear representation of collision risks, facilitating
an efficient response by the autonomous train system to safety-critical situations. The
specifics of these four states are detailed in Equation 5.4.

Finally, the state Safe indicates that no obstacle is detected in the train’s surround-
ings. This situation applies to the Free zone, where the distance to obstacle dO → ∞.
Conversely, the ObstacleDetected state signifies that an obstacle is located in the Warn-
ing zone. In this zone, the obstacle can be avoided by nominal braking. However, if the
obstacle breaches the Emergency zone, the state switches to AboutToCrash. This state rep-
resents a significant risk that necessitates the immediate application of emergency braking
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S =


s1
s2
s3
s4

 =


Safe = {(gx, gy, θd) | gx = 4, ∀ gy, θd},

ObstacleDetected = {(gx, gy, θd) | gx = 3, ∀ gy, θd},

AboutToCrash = {(gx, gy, θd) | gx = 2, ∀ gy, θd},

Crash = {(gx, gy, θd) | gx = 1, ∀ gy, θd}

(5.4)

to prevent a collision. Finally, the Crash state denotes the situation where the obstacle is
located in the Critical zone, and a collision is inevitable despite any measures.

Modeling the action space

The dynamic behavior of the train is mainly controlled by the continuous action of ac-
celeration (and intrinsic deceleration and braking). To simplify the model, we consider a
discretization of the acceleration space into three discrete values A = {a1, a2, a3}, which
represent respectively: maintaining the speed, nominal braking, and emergency braking.

It is worthwhile noticing that, in the context of obstacle avoidance, the (positive)
acceleration action can also be considered. This action is generally taken in the case of
hazardous situations related to fires in the track or the presence of smoke in tunnels. In
this study, such a kind of situation is not considered.

Modeling the observation space

The observation space, denoted O, is defined as the set of possible observations that the
autonomous train can make at each time step. In fact, all observable variables constructing
the observation space, such as train position and velocity, can be updated directly from
sensor measurements. Noise in these sensor measurements can also be taken into account
during observation and belief updates. In our case, the observation space comprises the
obstacle’s position in the adaptive grid map, represented by the variables gx and gy. This
representation captures the relative location of the obstacle with respect to the train’s
position and enables the assessment of potential collision risks. Thus, two observations
are defined in the following set :

O =
{

gx, with gx ∈ {1, 2, 3, 4}
gy, with gy ∈ {1, 2, 3}

(5.5)

Modeling the transition function

Based on the probability distribution of the initial (or current) state of the model, at
each step time δt, an action is taken and probability distribution over the state space
is updated according to the transition function model T (s, a, s′) = P (s′ | s, a). The
transition function depicts the dynamic behavior of the train and obstacles after each step
time δt. We consider vT , xT , and aT

cc being the train velocity, position, and acceleration
respectively, with the time sample δt. The following equation shows the train’s transition
model (i.e., train’s dynamics) in the global (or earth) coordinate system:[

vT (t + δt)
xT (t + δt)

]
=

[
1 0
δt 1

]
.

[
vT (t)
xT (t)

]
+

[
δt
δt2

2

]
.aT

cc(t) (5.6)

Similarly, the obstacle’s transition model (i.e., obstacle’s dynamics) in the global co-
ordinate system is described as follows:
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[
vo(t + δt)
xo(t + δt)

]
=

[
1 0
δt 1

]
.

[
vo(t)
xo(t)

]
(5.7)

Notice that in the case of the obstacle’s transition model, the acceleration is not con-
sidered. In addition, we assume that the transitions are deterministic and the obstacle
remains static in time. The new distance to obstacle do after a time step (i.e., the ob-
stacle’s transition model) in the global coordinate system is represented by the following
equation:

do(t + δt) = do(t) − vT (t).δt − aT
cc(t).

δt2

2 (5.8)

However, the distance to the obstacle in the local coordinate system (adaptive grid
map) is defined as follows:

do(t) ≈ gx
o (t) (5.9)

Modeling Observation function

The main objective of the observation function Z(o|s, a), in this case, is to calculate the
distance traveled by the train after a time step, in the global coordinate system. This
distance allows keeping track of the new distance to the obstacle in each action selected
from the action space.

dtraveled
T (t + δt) = vT (t).δt + aT

cc(t).
δt2

2 (5.10)

The new distance to the obstacle, after a time step, becomes :

d0(t + δt) = d0(t) − (vT (t).δt + aT
cc(t).

δt2

2 ) (5.11)

Similarly, the orientation of the obstacle can be updated, at each time step δt, based
on the obstacle’s orientation at the previous time step and the obstacle’s angular velocity
ωo. Thus:

θd
t+δt = θd(t) + ωo.δt (5.12)

Notice that equation 5.12 assumes that the obstacle’s angular velocity (ωo) remains
constant over the time step δt. This fits the assumption made previously that the obstacle
remains static in the global coordinate system. In fact, the static obstacle’s position in
the global coordinate system corresponds to a constant angular velocity in the local (or
relative) coordinate system (i.e., adaptive grid map).

Reward function

The reward function is in the form of costs (or negative rewards), assigned to each decision
(action) made by the model within a specified state (Temizer et al., 2010). The role of the
reward function is to encourage decisions that advance the system’s goals while imposing
penalties on those that do not. Whilst the primary objective of the anti-collision system
is to prevent train collisions, it remains desirable to consider other secondary objectives,
such as respecting the timetable schedule, maintaining a smooth velocity, etc.

For the primary objective, negative rewards (i.e., penalties) are assigned to states that
are considered unsafe, such as those that have a high probability of collision with an ob-
stacle (e.g., the Crash state). By assigning higher negative rewards to riskier states, the
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ADS can be incentivized to take safer actions and avoid collisions. This reward adaptation
according to risk embodies the risk model mentioned in section 5.3. It can be updated
in real-time as new information about the environment becomes available, allowing the
system to continuously adapt to changing conditions and maintain a safe operation. More-
over, the reward function assigns numerical values to each state-action pair to simulate the
desired behavior. In our case, the main objective of the system is to avoid when possible
(i.e., minimize the risk of) the train collisions. Hence, we define an important penalty
to the train to be in the Crash state (s4), another penalty for the AboutToCrash state
(s3), and a reward for being in the Safe state (s1). The reward function is represented by
equation 5.13 :

R(s) =


10, if state s = s1 (Positive Reward)
−10, if state s = s2 (Minor Penalty)
−100, if state s = s3 (Moderate Penalty)
−1000, if state s = s4 (Severe Penalty)

(5.13)

One important consideration when designing the risk model for the ADS is the trade-
off between safety and efficiency. In particular, for states such as ObstacleDetected and
AboutToCrash (i.e., s2 and s3), the reward function should balance the desire to avoid
collisions with the need to maintain efficient driving behavior. Assigning overly negative
rewards/penalties to these states may cause the system to become overly cautious and
overly slow, which can lead to inefficient or impractical driving behavior. On the other
hand, assigning insufficiently negative rewards (i.e., penalties) may lead to unsafe driving
behavior, where the system takes risky actions in order to maintain high efficiency. Finding
the right balance between safety and efficiency is a key challenge in designing the risk model
for the autonomous driving system. For instance, we established the reward function as
follows:

The method described in this section serves as the basic framework for conducting
simulations and presenting the results in Section 5.5.

Choice of POMDP solver

The POMDP problem can be implemented using a dynamic programming algorithm, such
as value iteration (Zhang and Zhang, 2001). The algorithm takes into account, as discussed
above, the current state of the train and the observed distance to the obstacle, and gen-
erates outputs as optimal action to take. The algorithm operates by updating a value
function that represents the expected long-term reward from each state. At each itera-
tion, the value function is updated using a Bellman equation (Jaakkola et al., 1994) (see
equation 5.14) that takes into account the transition probabilities, rewards, and discount
factor.

V ∗(s) = R(s) + γ
∑
s′∈S

P (s′ |, a)
∑

O∈O

P (o | a, s′)V ∗(s′) (5.14)

where V ∗ is the value function of the selected policy.
In order to effectively solve the anti-collision problem for the autonomous train, it is

necessary to select a suitable POMDP solver. In this study, we provide a comprehensive
overview of the most commonly used POMDP solvers. We characterize each solver in
terms of the nature of its state space, action space, and observation space, as well as
whether the solvers operate in an online or offline manner. These key characteristics are
presented in Table 5.1.

In this application, the state space, action space, and observation space are discrete.
Moreover, an online approach is needed to evaluate the train environment in real-time to
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solver abbreviation offline online state space action space observation space
Q-Markov Decision Process QMDP x - Discrete Discrete Discrete
Fast Informed Bound FIB x - Discrete Discrete Discrete
Belief Grid Value Iteration BGVI x - Discrete Discrete Discrete
Successive Approximations of the
Reachable Space under Optimal
Policies

SARSOP x - Discrete Discrete Discrete

Basic Partially Observable Monte
Carlo Planning Basic POMCP x x Continuous Discrete Discrete

Point Based Value Iteration PBVI - x Discrete Discrete Discrete
Anytime Error Minimization Search AEMS - x Discrete Discrete Discrete
Anytime Regularized-DEterminized
Space Partially Observable Tree AR-DESPOT x x Continuous Discrete Discrete

Partially Observable Monte Carlo
Planning
with Observation Widening

POMCPOW - x Continuous Continuous Continuous

Monte Carlo Value Iteration MCVI x - Continuous Discrete Continuous

Table 5.1: POMDP solvers choice

avoid collisions with obstacles. After evaluating the various POMDP solvers in terms of
their state space, action space, and observation space, as well as their online/offline nature,
the study found that Anytime Error Minimization Search (AEMS) and Point-Based Value
Iteration (PBVI) solvers are the most suitable options for the obstacle detection and
avoidance problem (Pineau et al., 2003). Of these, PBVI was selected as the solver of
choice for the simulation in this study due to its efficient and effective representation of
the POMDP model.

5.5 Simulation and results

In this section, we provide a detailed description of the experimental set-up, elaborate on
the process of variable initialization, and present the simulation results.

The simulations established in this chapter provide insights into the decision-making
processes of the autonomous train, with a particular emphasis on ensuring safety and
an effective anti-collision function. We present two simulation scenarios: the original,
based on the POMDP model that takes only the distance to an obstacle as input, and
an advanced setup that integrates the velocities and the nature of obstacles (i.e., static
or dynamic obstacles). These simulations collectively offer a way to evaluate the system’s
performance under controlled yet realistic conditions, negating the risk and financial im-
plications associated with real-world testing. This process’ practical use includes essential
components each with an important role in the simulation process:

5.5.1 Perceived state

The perceived state is crucial for connecting the real and simulated environments. In
fact, observed distance and perceived obstacles in this simulation are subject to Gaussian
noise, emulating uncertainties inherent to real-world sensing. The train’s next action is
decided based on the perceived state, derived from these noisy observations and not from
the actual state.

5.5.2 Obstacle generation function

In the simulation model used in this chapter, obstacles are generated stochastically in the
train’s path. The appearance of an obstacle is determined by a random function, occurring
approximately 20% of the time, with the distance to a new obstacle drawn from a uniform
distribution. This obstacle-generation process introduces diversity into the simulation
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and allows testing of the reliability of the train’s decision-making in various situations.
Moreover, obstacles are generated, following a uniform distribution, between the mean of
the nominal and emergency braking distances (α1 and α2) and 50 meters beyond this mean
respectively. This ensures that the obstacles are generated within a reasonable range of
distances where the autonomous train could have a fair chance to detect them and react
appropriately.

This choice of obstacle generation provides a balance between the extremes of having
all obstacles too close, which might not provide sufficient reaction time for the train, and
having them too far, which might not pose any real danger or challenge to the train’s
ADS.

5.5.3 Belief updater

The belief updater is a critical component of the model. It retains a distribution over
potential states the autonomous train may occupy, integrating the actual state, perceived
state, and actions taken. The belief state is generated for each time step, playing an
essential role in handling uncertainties in the system and enabling more robust decision-
making. The belief update equation is given by:

b′(s′) = η · P (o|s′, a) ·
∑
s∈S

P (s′|s, a) · b(s) (5.15)

In equation 5.15, η is the normalization constant to ensure that the updated belief
state b′ is a valid probability distribution (i.e., sums to 1 over all states). b(s) and b′(s) are
the probability of being, respectively, in the current state belief state s and the updated
belief state s′.

This equation updates the belief about the current state after taking an action a and
observing an outcome o. The new belief b′(s′) is proportional to the likelihood of the
observation o given that we end up in state s′, times the sum of the probabilities of
reaching s′ from all possible states s under an action a, weighted by the current belief
about being in the state s.

5.5.4 Solver choice

For this problem, a Point-Based Value Iteration (PBVI) algorithm (Pineau et al., 2003;
Spaan and Vlassis, 2005) is employed as the solver due to its efficiency and compatibility
with problems possessing small, finite discrete state and action spaces. The PBVI solver
iteratively optimizes the value function, updating the maximum expected reward for each
state-action pair over a number of iterations. The resulting policy, which assigns actions
to states, is extracted from this optimal value function. Equation 5.16 shows how the
PBVI works:

Vn+1(b) = max
a∈A

[
R(s) + γ

∑
o∈O

P (o|b, a) max
α∈Γn

∑
s∈S

α(s)b′(s)
]

(5.16)

In this equation, Vn+1(b) represents the value of belief state b at the n + 1 iteration.
R(b, a) is the expected immediate reward for taking an action a in belief state b. In
addition, α(s) represents the value of state s for α-vector (defined below). Finally, the
maxα∈Γn operation selects the α-vector that yields the highest value for the updated belief
state b′.

The aim of PBVI is to find an approximate solution of the POMDP by computing a set
of α-vectors. Each α-vector corresponds to a specific action and provides a mapping from
the state space to real numbers. In each iteration, the α-vectors are updated according to
the equation 5.16 to improve the value function approximation. The algorithm continues
until a termination condition is met, such as a maximum number of iterations or a minimal
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improvement threshold. In the simulation established in this chapter, the condition is
related to the maximum number of iterations.

5.5.5 Variables initialization

Before the simulation is run, all necessary variables associated with the states, actions,
and policy are initialized. Initial settings for the train’s position, speed, and distance from
the obstacle are also established. As the simulation progresses, the position and speed are
continuously updated according to the chosen action and the train’s current state. These
initial values provide a baseline from which the train learns to make optimal decisions (see
Table 5.2).

Variable Initial Value Unit
Initial train speed 40 m.s−1

Initial train position 0 m
Nominal braking distance (α1) 300 m
Emergency braking distance (α2) 100 m
Time sample 0.1 s
Rewards [rs1 , rs2 , rs3 , rs4 ] [10, −10, −100, −1000] -
Actions forces [a1, a2, a3] [0, −1, −3] m.s−2

Discount factor (γ) 0.95 -

Table 5.2: Variables initialization

5.5.6 Risk formulation

Once the environment is perceived, the next step is the risk estimation. Here, possible
scenarios that can lead to unsafe conditions/collisions are identified and their probability
is estimated based on current and predicted states. This involves the identification of
potential hazards, assessment of their possible impact, and the calculation of the risk as-
sociated with each hazard. To this end, the risk is calculated in two manners, as described
in the following equations :

R1 = 1 − 1
1 + exp(−5. do

α1
)

(5.17)

R2 = α1 − do

α1 − α2
(5.18)

Equation 5.17 utilizes a logistic function to present the scenario where risk is relatively
low when the train is far from the obstacle (do > α1). The use of the logistic function
offers a smooth and sigmoidal transition from a low-risk state to a high-risk state. This
feature is ideal for representing scenarios where risk is initially low but increases as the
train approaches the obstacle, and eventually saturates as the obstacle gets very close.
Additionally, this characteristic caters to the fact that when the obstacle is far enough, the
train has enough time to react, and the risk is low. On the other hand, when the obstacle is
very close (do < α2) the train could have already engaged its emergency braking, implying
that it has already acknowledged the risk and is attempting to mitigate it.

Equation 5.18 linearly increases the risk as the train gets closer to the obstacle, from
the nominal braking distance (α1) to the emergency braking distance (α2). This is logical
as when the train is within its nominal braking distance, it should ideally start decelerating
to avoid a collision, and failure to do so progressively increases the risk. The risk reaches
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its peak when the train is at its emergency braking distance, signifying that if the train
does not stop immediately, the collision is inevitable.

In summary, both equations are established as a probability (R1, R2 ∈ [0, 1]2) to
collectively encapsulate the two critical regions of autonomous train operations from a
safety perspective: the proactive safety measures (equation 5.17) and the reactive safety
measures (equation 5.18).

5.5.7 Results

The following figures illustrate the system’s performance in a dynamic railway environ-
ment, providing valuable insights into its ability to detect and respond to obstacles, esti-
mate risk levels, and ensure safe and efficient operations. In concluding our discussion on
the simulation setups, it is important to note that by presenting two distinct scenarios, we
demonstrate the inherent advantages of our approach in terms of adaptability and the ease
with which new elements or factors can be integrated. The original scenario establishes
a baseline, while the enhanced simulation scenario takes a leap forward by incorporating
dynamic elements such as obstacle velocities and behaviors.

Actual state, perceived state, and chosen action

Figure 5.7 shows the evolution of the actual state (in blue color), perceived state (in red
color), and the chosen action (in green color) over time. The actual state represents the
ground truth state of the train, while the perceived state is based on the observations made
by the train’s sensors. The chosen action is the decision made by the POMDP model based
on the perceived state. The plot provides valuable insights into how the perception process
impacts decision-making, and it showcases the effectiveness of the model in adapting to
the dynamic environment. Moreover, the x-axis in the figure represents the different time
steps during the simulation, capturing the sequential evolution of the system’s decision-
making process. On the y-axis (on the left), the values s1, s2, s3, and s4 correspond to
the different states the system can be in. On the other hand, the y-axis (on the right)
represents also the available actions that the system can take in response to its perceived
state. These actions are depicted as a1, a2, and a3.

Figure 5.7: The evolution of the actual state, perceived state, and the chosen action (setup
1)
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The perceived state follows the trajectory of the actual state, underscoring the system’s
ability to accurately perceive its environment. However, some occasional divergences be-
tween the two trajectories (perceived and actual state) are present at specific time steps.
These divergences are interpreted as false positives (perceiving an obstacle that is not
present/false alert) and false negatives (falling to detect an obstacle/missed detection).

Similarly, Figure 5.8 provides a visualization of the autonomous train’s state transitions
alongside the corresponding actions taken over the simulation period. The graph displays
perceived states in red, actual states in blue, and chosen actions are highlighted in green
for clear differentiation and easy interpretation. The plot shows the model’s responsiveness
to changes in risk levels, transitioning to more conservative actions as the perceived risk
increases (i.e., state s4). Notably, the shift from s1 to s4 prompts an immediate action
change to a3, demonstrating the system’s capacity for rapid reaction to imminent collision
risks.

Figure 5.8: The evolution of the actual state, perceived state, and the chosen action (setup
2)

Rewards over time

Figure 5.9 displays the immediate rewards (and penalties) obtained by the system over
time. The rewards are directly linked to the perceived state and the chosen action. Posi-
tive rewards indicate safety (Safe state), while negative rewards represent potential risks
(ObstacleDetected, AboutToCrash, and Crash states). The scatter plots in the figure also
highlight false positives (in green points) and false negatives (in red points) in the decision-
making process, showing instances where the model’s perception deviates from the actual
state. Notable false positives occur at times 40, 101, 134, 135, 145, 169, 190, 191, while false
negatives occur at times 20, 30, 119, 149.
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Figure 5.9: The evolution of rewards over time (setup 1)

Correspondingly, Figure 5.10 shows the dynamics of the rewards function for the sec-
ond setup of simulation. The figure clearly denotes the penalty incurred as the system
approaches a high-risk state, highlighting the impact of strategic decision-making on the
train’s overall safety. In the rewards function of the second simulation setup, the concen-
tration is oriented towards the model’s ability to integrate dynamic properties of obstacles,
such as their velocities and nature. As such, the delineation of false positives and negatives
was deemed less pertinent for this particular analysis, given that the primary interest was
to observe how the integration of obstacle dynamics affects the overall reward structure
and safety performance of the autonomous system.

Figure 5.10: The evolution of rewards over time (setup 2)
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Risk estimation over time

Figure 5.11 illustrates two risk estimation methods: risk estimation 1 (equation 5.17) and
risk estimation 2 (equation 5.18) employed in the model. These estimations assess the risk
level associated with the observed distance to the obstacle. Higher risk values indicate a
higher likelihood of collision. The plot enables a comprehensive understanding of the risk
assessment process and its role in determining appropriate actions.

Figure 5.11: The risk estimation over time (setup 1)

Risk estimation 1 (depicted in magenta color) mainly describes low-risk scenarios
across most states (i.e., states s1, s2 and s3, except for the Crash state (i.e., state s4),
where risk is high. This approach seems cautious, as it maintains a conservative risk
assessment. In contrast, risk estimation 2 (illustrated in cyan color) describes a more
dynamic risk evaluation. As the model navigates from the Safe state to AboutToCrash
state, risk steadily increases, reaching approximately 0.5, indicating a heightened state of
caution. However, once the model enters the Crash state, risk reaches its maximum value
of 1, underscoring the severe consequences of this state. These differing risk estimation
strategies shed light on the adaptability of the model, reveal the ability to respond to
different levels of risk, and provide valuable insights into decision-making process.

Equally, Figure 5.12 illustrates the fluctuating risk levels as perceived by each method
over time, with Risk Estimation 1 and Risk Estimation 2 plotted on the same graph
for direct comparison. The divergence of two methods underscores the variability in risk
perception and the importance of selecting a robust model that accurately reflects the
operational condition’s inherent uncertainties.
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Figure 5.12: The risk estimation over time (setup 2)

Observed distance to obstacle

Figure 5.13 depicts the observed distance to the obstacle over time. It tracks how the per-
ceived distance fluctuates as the train’s sensors detect and interact with the environment.
The red and blue dashed lines represent the thresholds for the nominal and emergency
braking distances (α1 and α2, respectively). When the observed distance crosses these
thresholds, the model may initiate braking actions accordingly to prevent potential col-
lisions. On the other hand, Figure 5.14 showcases the observed distance to the nearest
obstacle throughout the simulation timeline. In this second simulation setup, the model
considers multiple obstacles, both static and dynamic, and calculates the distance to the
nearest obstacle (i.e., the distance to obstacle variable). The plot is a testament to the sys-
tem’s ability to maintain situational awareness and adapt its responses based on real-time
assessments.

Figure 5.13: The evolution of the observed distance to obstacle over time (setup 1)
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The results of the simulation demonstrate the effectiveness of the proposed risk-based
POMDP process for the autonomous train anti-collision function. The results show that
the proposed model is able to provide a safe and efficient solution for the anti-collision
function, which takes into account the uncertainties related to the train’s state and its
perception of the environment. Moreover, this highlights the potential of the proposed
process to be applied to real-world scenarios and provides a basis for further research to
improve and extend the process to handle more complex environments. Finally, the dual-
scenario structure not only showcases the robustness of our model but also represents the
initial steps towards a more generic and comprehensive approach. In future iterations, the
model could evolve to include additional complexities such as the precise dimensions of
obstacles, their predicted trajectories, and other environmental factors. These advance-
ments will allow for a more detailed and far-reaching application of the POMDP model,
pushing the boundaries of autonomous train safety and operational efficiency.

Figure 5.14: The evolution of the observed distance to obstacle over time (setup 2)

5.6 Conclusion
In this chapter, we proposed a risk-based decision-making approach for autonomous trains,
leveraging the capabilities of Partially Observable Markov Decision Processes (POMDPs)
to facilitate effective and real-time environmental monitoring of trains. The core contribu-
tion of this study lies in the ongoing monitoring and risk estimation, which is crucial for
ensuring the safe operation of autonomous trains. This approach integrates dynamic risk
assessment into the process of decision-making, enabling the train to proactively manage
potential collision hazards. It effectively addresses uncertainties in both the train’s opera-
tional state and its interaction with the environment. By doing so, the approach enhances
the autonomous train’s ability to make informed and safe decisions.

108



Chapter 6

Conclusion and perspectives

Contents
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.1 Conclusions

This dissertation has dealt with several challenges related to the safety assurance of au-
tonomous trains, namely the safety argumentation, the situational awareness and dynamic
risk assessment aspects, and the decision-making process for the autonomous driving sys-
tem. The main contributions of this PhD thesis are presented in Chapters 3, 4, and 5.

In Chapter 3, we have proposed a high-level safety argumentation framework for the
autonomous driving system of the autonomous train. The main objective of this framework
is to show how to present and structure safety arguments for autonomous trains by using
Goal Structuring Notation (GSN) graphical models. The proposed framework is illustrated
through the use case of a safety function (anti-collision function).

In Chapter 4, we have proposed a framework allowing the autonomous train to con-
tinuously perform a situational awareness of its surrounding environment and provide a
run-time probability estimation for the occurrence of railway hazards. To achieve this,
the framework integrates a dynamic risk assessment layer in its high-level decision-making
architecture. Furthermore, we illustrated the proposed framework through an operational
safety function: collision detection and avoidance.

Finally, in Chapter 5, we have established a risk-based decision-making approach using
Partially Observable Markov Decision Processes (POMDPs) for run-time monitoring of the
autonomous train’s environment during its operation. The main objective of the approach
is to ensure the safe operations of the train, with respect to the collision hazards, by
maintaining an acceptable risk level. Indeed, this level should be maintained by estimating
and updating the risk associated with the operational and environmental conditions of the
train. Moreover, this approach allows the system to make safe and informed decisions
while considering the inherent uncertainties related to the train’s state and its perceived
environment. The approach is established and illustrated for the anti-collision function of
the autonomous train.

These approaches collectively contribute to advancing the safety assurance of au-
tonomous trains by addressing the complexities of autonomous systems, enhancing situa-
tional awareness, and establishing a robust decision-making framework based on dynamic
risk assessment.
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6.2 Perspectives
While this dissertation provides substantial contributions to the field of autonomous train
safety assurance, it also opens several directions for future research :

1. Integration of confidence assessment in safety arguments: Future research
can further examine integrating confidence aspects into safety argumentation for
autonomous trains. This involves using approaches such as belief functions to quan-
titatively and qualitatively assess the confidence in safety claims and the evidence
supporting them. Such an approach would allow for a more comprehensive under-
standing of the reliability of different components of the autonomous train system
and their impact on overall safety. By systematically evaluating the confidence level
of each safety argument, researchers can identify areas requiring additional evidence
or more robust safety measures (i.e., dynamic safety cases). This methodology not
only improves the explainability and traceability of safety cases but also contributes
to a deeper trust in autonomous train technologies among stakeholders and the
public. Finally, as autonomous trains move closer to widespread implementation,
research into regulatory frameworks and standards will be essential to ensure safety,
interoperability, and public acceptance.

2. Enhancement of situational awareness models: Advancing situational aware-
ness models to account for a wider array of environmental variables (i.e., weather
conditions, obstacle trajectory prediction, signalling, etc.) and operational scenar-
ios is another important area for future investigation. This improvement requires
enhancing models to better understand and adapt to changing complex environ-
ments. By using sophisticated sensors and data analysis methods, future models
could significantly improve the autonomous driving system’s ability to anticipate
and respond to unexpected events, thereby maintaining an acceptable level of safety
for autonomous trains.

3. Empirical validation and testing: To confirm the real-world applicability and
effectiveness of the proposed models and approaches, conducting thorough field tests
and simulations with real data is essential. This empirical validation involves assess-
ing the models under real conditions to evaluate their performance and identify any
necessary adjustments. Such detailed testing is critical to ensure the reliability of
safety assurance methods for autonomous trains, aiming for the highest standards
of safety and operational performance.
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