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RÉSUMÉ

Le monde du sport a toujours été un domaine d’étude fascinant en raison de sa nature
complexe, en particulier lorsqu’il s’agit des stratégies employées par les athlètes pendant
la compétition. Les stratégies sportives, en particulier celles exécutées dans les sports de
combat ou les arts martiaux, comme la boxe, impliquent des interactions complexes entre
les combattants qui nécessitent des capacités d’anticipation élevées et des mouvements
rapides.

La boxe exige la maîtrise de plusieurs compétences secondaires, ce qui rend diffi-
cile un entraînement efficace sans une orientation et une pratique appropriées. Ces sous-
compétences comprennent le jeu de jambes, l’équilibre, la vitesse, la puissance, la tech-
nique et la planification stratégique, qui doivent toutes être intégrées de manière trans-
parente pendant les combats [82]. Le perfectionnement de ces sous-compétences par des
séances d’entraînement et de sparring répétitives pour les athlètes d’élite les conduit sou-
vent à se blesser, ce qui réduit considérablement leurs performances lors des combats
officiels [82, 85, 32]. Ces questions ouvrent de nouvelles perspectives sur la création de
nouvelles modalités d’analyse et d’entraînement des athlètes.

Ces dernières années, le développement d’environnements virtuels à des fins d’entraî-
nement a suscité un intérêt croissant, notamment grâce à la technologie de la réalité
virtuelle (RV). La technologie de la réalité virtuelle offre une approche révolutionnaire de
l’entraînement sportif en fournissant un environnement contrôlé, où les stimuli peuvent
être standardisés, ajustés et même dépasser les conditions de la vie réelle. Cette caracté-
ristique unique permet aux entraîneurs et aux formateurs de concevoir des programmes
d’entraînement personnalisés qui complètent les méthodes conventionnelles. Par exemple,
les simulations de réalité virtuelle peuvent aider les athlètes à améliorer leurs compé-
tences défensives sans les exposer à des blessures potentielles dues à des coups ou des
impacts répétés [104]. Les avantages de l’utilisation de l’entraînement en réalité virtuelle
vont bien au-delà de la simple prévention des dommages physiques. Au fur et à mesure
que les athlètes progressent dans leur carrière, il arrive un moment où ils atteignent un
plateau et ont besoin d’une amélioration continue pour rester compétitifs. Cependant, dé-
passer leurs limites physiques devient de plus en plus difficile. Grâce à la réalité virtuelle,

2



les athlètes peuvent s’engager dans de nouvelles modalités d’entraînement qui mettent à
l’épreuve leurs capacités cognitives et leur perception, ce qui leur permet de conserver
leur avantage même s’ils ont atteint leur apogée physique [61].

Dans le contexte de la boxe, l’une des principales préoccupations des entraîneurs et des
officiels est le développement des capacités d’anticipation des boxeurs dans les situations
défensives. Les méthodes d’entraînement traditionnelles impliquent souvent d’encaisser de
nombreux coups de poing pour développer la résistance et les réflexes - une stratégie qui
présente des risques inhérents pour la santé et l’état de l’athlète. Les solutions de réalité
virtuelle répondent à ce problème en permettant aux boxeurs de se concentrer uniquement
sur le traitement des données critiques concernant leurs adversaires, telles que le langage
corporel, le jeu de jambes et les schémas d’attaque. Cette conscience accrue leur permettra
en fin de compte de prédire avec précision les assauts à venir et d’y répondre par des
contre-mesures efficaces. Ces objectifs constituent les fondements d’un certain nombre
de projets de recherche sur l’entraînement et le sport, tels que le projet REVEA [61],
mis en place dans la perspective des Jeux olympiques et paralympiques de Paris 2024,
et coparrainé par le ministère français de l’enseignement supérieur, de la recherche et de
l’innovation et le ministère de l’éducation nationale, de la jeunesse et des sports (appel à
propositions PPR « Sport Haute Performance » du financement France 2030). Ce projet
met en œuvre un système d’entraînement en réalité virtuelle pour aider les athlètes de
boxe à améliorer des compétences secondaires telles que la vitesse, la coordination motrice
et l’entraînement de la force. Ce paradigme implique principalement l’interaction avec un
adversaire virtuel pour s’entraîner. Le comportement de cet adversaire virtuel est dicté par
des scénarios fixes mis en œuvre à l’aide de moteurs de jeu commerciaux tels que Unity,
où les mouvements des humains virtuels sont stockés dans une base de données construite
à l’aide de la capture de mouvements, qui sont récupérés et joués selon le scénario choisi.
Cependant, ce comportement statique de l’adversaire virtuel peut affecter l’immersion de
l’athlète, car le mouvement rejoué non réactif peut souvent être perçu comme non réaliste.
De plus, la prévisibilité du comportement statique de l’adversaire virtuel peut réduire les
avantages de l’entraînement en réalité virtuelle, car l’athlète peut exploiter les faiblesses
de l’adversaire virtuel après quelques interactions. Néanmoins, la conception de scénarios
plus adaptatifs et diversifiés pour les interactions entre l’athlète et l’adversaire virtuel
représente un défi et prend du temps.

Nous émettons l’hypothèse que la simulation de comportements interactifs réalistes
peut grandement améliorer les performances et individualiser l’entraînement, en modé-
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lisant les interactions entre les boxeurs à l’aide de techniques basées sur les données, et
en tirant parti de l’animation de personnages basée sur la physique. Cela permettrait
d’avoir un adversaire virtuel qui reproduit le comportement réactif d’adversaires réels,
comme un futur adversaire, en utilisant des données antérieures le concernant, sous la
forme d’enregistrements vidéo de combats précédents. Cela permettrait également d’at-
ténuer les limites du système d’entraînement en réalité virtuelle évoqué plus haut, car les
mouvements de l’adversaire virtuel seraient plus réalistes et réagiraient mieux aux actions
de l’utilisateur. De plus, son comportement serait appris automatiquement à partir de
données au lieu de dépendre d’un travail manuel.

Les Objectifs

L’objectif de cette thèse est d’apprendre et de simuler des stratégies d’arts martiaux
et d’imiter les interactions de combat, afin d’entraîner les athlètes dans un environnement
d’entraînement en réalité virtuelle. En concevant un modèle de stratégie pour la boxe,
nous pouvons proposer un ensemble de réponses plausibles de la part d’un adversaire
virtuel en temps réel, en fonction de l’action actuelle de l’utilisateur et de l’historique
de ses mouvements. Il s’agit de modéliser les interactions entre les boxeurs sur la base
de sources de données annotées ou non, qui peuvent prendre la forme d’enregistrements
vidéo de combats antérieurs ou de données de capture de mouvement. Il s’agit également
d’animer l’adversaire pour qu’il effectue des mouvements réalistes dans l’environnement
virtuel. Par réaliste, on entend ici : « similaire à un mouvement et à une stratégie que
le boxeur réel ciblé aurait effectués dans les mêmes conditions ». L’adversaire virtuel
doit être intelligent dans ses décisions et contrôlable. Il permet donc aux utilisateurs
de faire l’expérience d’une simulation réaliste d’entraînement à la boxe et d’améliorer
leurs compétences, tout en les préparant à se défendre face à des stratégies et des styles
de boxe spécifiques. En effet, l’objectif de l’imitation d’interaction n’est pas d’avoir un
adversaire optimal dans le but de gagner contre l’utilisateur, mais un adversaire qui imite
un adversaire éventuel et reproduit son comportement. De tels adversaires devraient non
seulement imiter les actions humaines, mais aussi s’adapter dynamiquement aux données
de l’utilisateur, créant ainsi des rencontres plus nuancées et stochastiques qui reflètent
mieux les stratégies du monde réel induites par les vrais athlètes.
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Vue d’ensemble

Dans cette thèse, nous explorons l’extraction et la simulation du comportement in-
teractif des combattants à partir de données de mouvement. A cette fin, nous proposons
d’utiliser des méthodes d’estimation du mouvement humain à partir de vidéos, l’appren-
tissage par renforcement basé sur l’imitation, et la simulation de personnages basée sur
la physique. L’organisation de cette thèse est la suivante.

Tout d’abord, nous commençons par introduire plusieurs concepts utilisés dans cette
thèse au chapitre 1 : à savoir l’apprentissage par renforcement, l’apprentissage par imita-
tion et la simulation basée sur la physique.

Dans le chapitre 2, nous évaluons les capacités de différentes catégories de méthodes
actuelles de pose humaine en 2D, et leur précision dans l’extraction des informations de
pose à partir de vidéos RVB de boxeurs dans des conditions d’enregistrement difficiles, et
de mouvements de boxe rapides.

Dans le chapitre 3, nous abordons le problème de la simulation plausible du comporte-
ment interactif des combattants à partir de données de mouvement. Nous proposons une
approche pour imiter les interactions et les mouvements de plusieurs personnages basés
sur la physique, à partir de données de mouvement non structurées. Nous nous sommes
concentrés uniquement sur l’imitation de l’interaction à partir de données non structurées
de deux combattants pratiquant le light shadow boxing avec un minimum de contacts
physiques (présenté sous forme de poster à SIGGRAPH Asia 2022 [151]). Ensuite, nous
avons étendu l’approche à d’autres données d’interaction impliquant la boxe avec contact
physique, ainsi qu’à une autre activité de combat. Ce travail a été présenté au Symposium
on Computer Animation (SCA’23) et publié dans le journal Proceedings of the ACM in
Computer Graphics and Interactive Techniques (PACMCGIT) [152].

Enfin, nous concluons le chapitre 3.5 en rappelant les contributions et en identifiant
certaines limites. Ensuite, nous avons proposé quelques extensions et perspectives poten-
tielles à ce travail.

Analyse comparative des méthodes d’estimation de la
pose en 2D pour les sports de combat

Dans ce chapitre, nous avons analysé les performances des méthodes HPE (Human
Pose Estimation) dans un domaine sportif impliquant des mouvements spécifiques de boxe
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rapide et nous avons proposé un protocole d’évaluation pour ce benchmark. Les travaux
antérieurs ont évalué les HPE soit à l’aide de mesures globales, soit en les évaluant sur
des activités humaines générales. Dans ce travail, nous avons présenté des comparaisons
de performance plus fines appliquées aux sports de combat, et en particulier à la boxe.

L’un des aspects les plus pertinents de ce travail est l’évaluation complète du potentiel
des méthodes HPE qui peuvent être utiles dans l’analyse des sports à rythme rapide et
la reconnaissance des activités. Ce contexte a motivé notre choix d’analyser leurs per-
formances par rapport à différents mouvements propres à la boxe. L’une des conclusions
importantes est que certaines positions articulaires sont mieux estimées que d’autres, se-
lon qu’elles font face à la caméra, qu’elles sont occultées par le corps du boxeur ou qu’elles
sont impliquées dans des actions rapides.

La conclusion générale de ce travail est que les approches HPE descendantes (détection
des personnes puis estimation individuelle des articulations) sont plus performantes que les
approches HPE ascendantes (estimation globale des articulation puis association et iden-
tification des personnes), même en présence d’un arrière-plan complexe, d’auto-occlusions
et d’occlusions entre deux adversaires. Les méthodes qui affinent leurs estimations à l’aide
d’informations temporelles provenant d’images adjacentes sont les plus performantes dans
ces scénarios. Par conséquent, nous suggérons que les futurs travaux liés à l’analyse et
aux études sportives basées sur la vidéo utilisent des approches HPE descendantes pour
l’extraction de mouvement, en particulier celles qui utilisent des fenêtres temporelles pour
une estimation plus précise.

Imitation des interactions à partir de la capture de
mouvements

Dans cette thèse, nous nous intéressons à la génération de comportements réactifs
d’agents physiquement incarnés d’une manière guidée par les données en tirant parti de
techniques d’apprentissage automatique et de simulations basées sur la physique.

Étant donné les mouvements extraits de paires de combattants, notre objectif est
de simuler leur interaction d’une manière physiquement plausible, et de s’assurer que la
réaction de l’agent simulé face à un adversaire est similaire à la réaction du combat-
tant correspondant. Nous abordons ce problème comme un problème d’apprentissage par
imitation à partir de la démonstration de plusieurs experts en interaction. Alors que les
techniques d’apprentissage par imitation [95] ont été explorées pour imiter les mouvements
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et le comportement de personnages basés sur la physique en utilisant des données de cap-
ture de mouvement comme démonstrations, elles n’ont pas été explorées pour simuler le
comportement interactif de plusieurs personnages.

Dans ce chapitre, nous avons proposé un système antagoniste innovant conçu pour
imiter les interactions de combat complexes entre plusieurs personnages basés sur la phy-
sique, en utilisant des clips de mouvement non structurés. S’appuyant sur les fondements
du cadre d’apprentissage de l’imitation antagoniste générative multi-agents [120], notre
approche incorpore des adaptations cruciales pour simuler efficacement les comporte-
ments de plusieurs personnages basés sur la physique. La première amélioration signifi-
cative concerne la modélisation du comportement réactif, dans laquelle nous établissons
une transition entre l’observation complète actuelle, qui comprend l’auto-observation de
l’agent lui-même et l’observation actuelle de l’adversaire, et l’auto-observation suivante.
Cette transition permet de saisir la nature dynamique des réponses des personnages à leur
adversaire, ce qui se traduit par une simulation plus plausible. En outre, nous avons conçu
une stratégie d’entraînement qui englobe à la fois les mouvements simples et les priori-
tés d’interaction. Les séquences obtenues ne se contentent pas d’imiter les mouvements
de référence avec le même ordre de clip, mais présentent des comportements interactifs
similaires à ceux de l’ensemble des données d’interaction en maximisant les récompenses
attribuées par chaque composante. Notre approche nous a donc permis d’imiter la réaction
personnalisée de combattants aux styles spécifiques. Nous pouvons également donner aux
utilisateurs un certain contrôle sur la simulation, en ajoutant des récompenses spécifiques
à une tâche : suivre une direction donnée, minimiser les impacts reçus ou maximiser les
dommages causés aux adversaires lors de la recherche de l’action suivante, tout en conti-
nuant à imiter le style de l’ensemble de données d’interaction. Nous pourrions imaginer
d’autres récompenses, telles que viser des parties spécifiques du corps de l’adversaire. Les
résultats montrent que, bien que l’ensemble de données d’interaction puisse être suffisant
pour apprendre des politiques d’imitation de mouvement et d’interaction, l’association
d’un mouvement unique complémentaire permet de généraliser à un plus grand nombre
de situations avec des mouvements réalistes. D’autre part, notre méthode peut également
être utilisée pour simuler de nouveaux styles individuels ou de nouvelles activités à plu-
sieurs personnages (escrime, danse, travail collaboratif, etc.), en réentraînant le même
système mais avec de nouveaux ensembles de données à un ou plusieurs personnages.

Outre les applications susmentionnées dans le domaine de l’entraînement sportif,
l’approche proposée peut potentiellement être appliquée à divers autres domaines im-
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pliquant des interactions multi-agents, tels que les jeux de réalité virtuelle, la robotique
et l’animation. En simulant des interactions réalistes entre des personnages virtuels, notre
système peut contribuer à créer des expériences plus engageantes et immersives pour les
utilisateurs.
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INTRODUCTION

Figure 1 – Simulating interactive behavior of combat sports such as boxing (upper left)
requires: 1. extracting their motor behavior through motion estimation meth-
ods from data sources such as video recordings (bottom left) or motion capture data, 2.
modeling these interaction and teaching physically simulated agents how to per-
form the highly dynamic motor skills of fighters as well as their interactive
behavior in their decision learned making from demonstrations (middle), then
3. transferring these learned agents to the virtual environment training system in order
to 4. control personalised virtual opponents for realistic fighting against the user (right).

The world of sports has always been a fascinating field of study due to its complex
nature, particularly when it comes to strategies employed by athletes during competition.
Sports strategies, especially those executed in fighting sports or martial arts, such as
boxing, involve complex interactions between fighters that require high anticipation skills
and rapid movements.

Boxing requires mastery of various sub-skills, making it challenging to train effectively
without proper guidance and practice. These sub-skills include footwork, balance, speed,
power, technique, and strategic planning, all of which must be integrated seamlessly dur-
ing fights [82]. Honing those sub-skills through repetitive sparring and training sessions
for elite athlete often lead to them getting injured, therefore significantly reducing their
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performance in official fights [82, 85, 32]. These issues open new perspectives on creating
new modalities for analyzing and training athletes. In recent years, there has been growing
interest in developing virtual environments for training purposes, specifically through Vir-
tual Reality (VR) technology. Virtual Reality technology offers a revolutionary approach
to sports training by providing a controlled environment, where stimuli can be standard-
ized, adjusted, and even exceed real-life conditions. This unique feature enables coaches
and trainers to design customized training programs that supplement conventional meth-
ods. For instance, virtual reality simulations can help athletes enhance their defensive
skills without exposing them to potential injuries from repeated hits or impacts [104].
The advantages of utilizing virtual reality training extend far beyond just avoiding phys-
ical harm. As athletes progress in their careers, there comes a point when they hit a
plateau and require continuous improvement to stay competitive. However, pushing past
their physical limitations becomes increasingly challenging. With virtual reality, athletes
can engage in novel training modalities that challenge their cognitive abilities and percep-
tion, enabling them to maintain their edge despite reaching their physical peak [61]. In
the context of boxing, one major concern among trainers and officials is the development
of boxers’ anticipatory skills in defensive situations. Traditional training methods often
involve enduring numerous punches to build up resistance and reflexes – a strategy that
poses inherent risks to the athlete’s health and condition. Virtual reality solutions ad-
dress this issue by allowing boxers to concentrate solely on processing critical data about
their opponents, such as body language, footwork, and attack patterns. This heightened
awareness will ultimately empower them to accurately predict incoming assaults and re-
spond with effective countermeasures. These objectives constitute the foundations of a
number of training and sport research projects, such as the REVEA project [61], set up
in the run-up to the Paris 2024 Olympic and Paralympic Games, and co-sponsored by the
French Ministry of Higher Education, Research and Innovation and the Ministry of Na-
tional Education, Youth and Sport (PPR "Sport Haute Performance" call of France 2030
funding). This project implements a virtual reality training system for helping boxing
athletes to improve sub-skills such as speed, motor coordination and strength training.
This paradigm involves mainly interacting with a virtual opponent for practicing. The
behavior of this virtual opponent is dictated with fixed scenarios implemented using com-
mercial game engines such as Unity, where the movements of the virtual humans are
stored in a database constructed using motion capture, which are retrieved and played
back following the chosen scenario. However, this static behavior of the virtual opponent
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can affect the immersion of the athlete, as the non-responsive replayed motion can often
be perceived as non realistic. Moreover, the predictability of the static behavior of the
virtual opponent can reduce the benefits of the virtual reality training as the athlete can
exploit the weaknesses of the virtual opponent after few interactions. Nevertheless, it is
challenging and time-consuming to craft and design more adaptive and diverse scenarios
for the interactions between the athlete and the virtual opponent.

We hypothesize that simulating realistic interactive behaviors can greatly improve
performance and individualize training, by modeling the interactions between boxers using
data-driven techniques, and leveraging physics-based character animation. This would
allow having a virtual opponent that replicates the reactive behavior of real opponents,
such as a future adversary, by using prior data about him, in the form of video recordings
of previous fights. It would also mitigate the limitations of the virtual reality training
system discussed earlier, as the virtual opponent’s motion would be more realistic and
responsive to the user’s actions. Moreover, its behavior would be learned automatically
from data instead of relying on manual labour.

Thus, the objective of this thesis is to learn and simulate martial arts strategies and
imitate the fighting interactions, for training athletes in virtual reality training environ-
ment. By designing a strategy model for boxing, we can propose a set of plausible responses
from a virtual opponent in real-time, depending on the user’s current action and his moves
history. This involves modeling interactions between boxers based on annotated, or non
annotated data sources, that could take the form of prior fights video recordings or mo-
tion capture data. It also involves animating the opponent to perform realistic movements
inside the virtual environment. Here, realistic means: "similar to a movement and strategy
that the targeted real boxer would have done in the same condition". The virtual opponent
should be intelligent in its decisions, and controllable. Hence, it allows users to experience
a realistic boxing training simulation and improve their skills, while preparing them to
defend in front of specific boxing strategies and styles. Indeed, the goal of interaction im-
itation is not to have an optimal opponent with the purpose of winning against the user,
but an opponent that imitates an eventual opponent and replicates its behavior. Such
opponents should not only mimic human actions but also adapt dynamically according
to the user’s own inputs, creating more nuanced and stochastic encounters that better
mirror real-world strategies induced by real athletes.

When it comes to the use of virtual/augmented reality in assessing users in martial
arts training, the authors of [38], proposed a martial arts system that utilizes real-time
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image processing and computer vision to allow players to fight virtual enemies using kicks,
punches, and acrobatic moves. This system used a profile view and two displays to provide
an enhanced view of various martial arts techniques. The system however was limited in
terms of the realism in interactions as it was in the form of a 2D game, and only covered a
limited set of techniques. Therefore, it was limited in both the immersion and the behavior
of the virtual enemies.

Another work [57] proposed a martial arts training system utilizing motion capture
technology, allowing users to practice at home and receive feedback through a virtual
coach. The system was able to distinguish skill levels and enhance performance. However,
it was limited in implementing practical exercises like sparring that requires random
movement and strategy simulation. It also assumed perfect feedback from the virtual
coach. It also required that users are equipped with motion capture systems with multiple
cameras and markers. The feedback from the virtual coach was not physically driven as it
relies on replaying pre-recorded motion capture clips for generating the motions, therefore
sharing the same limitation as the REVEA project in terms of the opponent’s behavior.

The authors in [107] presented a framework for animating virtual humans that interact
with real users in virtual reality in a Kung-Fu fighting example, using a combination of
motion retrieval and motion adaptation techniques. Their system adapts a moderate-
sized database of motions to the situation, considering the current pose of the character,
the position of the target, and the type of motion ordered. They mainly addressed the
differences between the virtual humans and the constraints of motion capture data. The
behavioral model of this system however was also very limited as it relies on manually
designed finite state machines and the coverage of the motion capture database. The
work of [158] introduced an autonomous Karate Kumite character for VR-based training,
accepting input from a tracked human athlete. Its behavior relies on analyzed Karate
rules and motion capture data. Techniques like motion graphs, alignment, and blending
were employed with custom enhancements for higher requirements. It had limitations in
terms of the user action recognition and also relied on handcrafted rules for the reaction
generation for the opponent.
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Physics-Based Interaction Simulation with Deep Re-
inforcement Learning

In this thesis, differently from prior works, we are interested in generating reactive
behavior of physically embodied agents in a data-driven manner by leveraging machine
learning techniques and physics-based simulation. The benefits of this approach include:

— The physical correctness and validity of the generated motion, especially when using
motion capture data as reference [63, 22, 23, 148, 119, 1].

— The possibility to control the generated motions through external control signals,
therefore leveraging learned/designed controllers for generating the intended behav-
ior. This has been explored in various domains, such as controlling bipedal characters
for locomotion and other tasks [25, 74, 44, 73, 102].

— The possibility to generate dynamic interactions with direct feedback by apply-
ing external forces to physical entities. Therefore, it is possible to have real users
interacting with the physics simulation. This has been demonstrated on different
scenarios such as interacting with real users, objects in the simulation and with
other characters [75, 147, 97, 87, 40, 55, 48, 137].

However, most of these works deal with locomotive tasks, and do not necessarily handle
intricate and interactive motions involving physical contacts, such as in fighting between
multiple characters. Some of these work also assume having access to motion capture data
which is hard to obtain in competitive fighting sports. In our case, to analyse and simulate
the motor skills and interactive behaviour of boxers, it will be necessary to utilize the
available pre-recorded fighting videos of the fighters of interest, and integrate the behavior
into the physically embodied agents. The problem of extracting human motion information
from images/videos is referred to as Human motion Estimation [161, 156] where the goal
is to predict joint position in 3D space. It enables to track a skeleton belonging to a
person, and its temporal trajectory, given a video. There are many challenges related to
human motion extraction from video, such as depth ambiguities, dealing with different
types of occlusions, shadows, video stability and quality, physical realism of the extracted
motions, . . . [143, 128, 2, 71].

Some methods even attempted to directly imitate motions in videos to control physi-
cally simulated characters [135, 154, 103]. Most of these works are usually applied to simple
motions, such as locomotion, periodic motions, and most importantly motions that only
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involve one person. These works also use 2D human pose estimation as a backbone in
their initialization stage. While there has been major developments and improvements
on the accuracy of these 2D human pose estimators, it is not clear how they perform in
videos of competitive sports, such as boxing, which is a crucial step for extracting motions
and analyse the behavior of fighters from video recordings. To this end, the first step of
this thesis was to explore the capabilities of 2D pose estimators in estimating motions of
boxers from video recordings. It raises specific challenges related to fast paced nature of
competitive sport activities, and multiple people occlusions.

Given extracted motions of pairs of fighters, our next objective was to simulate their
interaction in a physically plausible manner, and to make sure that the reaction of the
simulated agent facing an opponent is similar to the reaction of the correspondent fighter.
We approach this as an imitation learning problem from demonstration of multiple experts
in interaction. While imitation learning techniques [95] have been explored to imitate
motions and behavior for simulating physics-based characters using motion capture data
as demonstrations, they have not been explored for simulating the interactive behavior of
multiple characters.

Thesis Overview

In this thesis, we explore the extraction and simulation of the interactive behaviour of
fighters from motion data. To this end, we propose to use methods of human motion es-
timation from videos, reinforcement-learning based imitation learning, and physics-based
character simulation. The organization of this thesis is as follows.

First, we start by introducing several concepts used in this thesis in chapter 1: namely
reinforcement learning, imitation learning and physics-based simulation.

In Chapter 2 we evaluate the capabilities of different categories of current 2D human
pose methods, and their accuracy in extracting pose information given RGB videos of
boxers under challenging recording conditions, and rapid boxing motions.

In Chapter 3 we address the problem of simulating interactive behavior of fighters given
motion data in a plausible manner. We propose an approach for imitating interactions
and motions of multiple physics-based characters, from unstructured motion data. We
focused solely on imitating interaction from unstructured data of two fighters performing
light shadow boxing with minimal physical contacts (presented as a poster in SIGGRAPH
Asia 2022 [151]). Then, we extended the approach to be applied on more interaction data

20



Introduction

involving boxing with physical contact, as well as another fighting activity. This work
was presented in The Symposium on Computer Animation (SCA’23) and published in
the journal Proceedings of the ACM in Computer Graphics and Interactive Techniques
(PACMCGIT) [152].

Lastly, we conclude in chapter 3.5 by recalling the contributions, and identifying some
limitations. Then, we proposed some potential extensions and perspectives to this work.
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Chapter 1

BACKGROUND

In the second part of this thesis, we utilize reinforcement learning to develop con-
trol policies that empower physically simulated agents to execute intricate motor skills in
interactive fighting situation from motion capture data. This section presents a compre-
hensive review of motor control in physics-based character simulation and fundamental
concepts in reinforcement learning. We also introduce the notation employed throughout
the document.

1.1 Physics-Based simulation

In this work, we simulate the interactive behavior of fighters in physics simulation. We
mainly use the physics simulator IsaacGym [80]. In this section, we will describe the char-
acters being controlled in the physics simulation: Physical properties, observation/state
description, action and motor definitions, ....

1.1.1 Fighter body model

We represent each fighter as a 3D humanoid character, modeled as a set of articulated
rigid bodies [33], where each rigid body link is attached to its parent link with spherical
joints (spanning 3 degrees of freedom), with the exception of elbows and knees being
attached with revolute joints (only 1 degree of freedom) and the hands being attached to
the arm with a 0 degree-of-freedom fixed joint. The body parts’ proportions are based on
a human actor, as can be seen in figure 1.1. We use a similar character model to previous
work [99, 100, 145] while adapting it to reflect a fighter by changing density and geometry
of hands as well as some physical properties. This model is based on a mathematical
representation of the character’s body configuration, which is characterized by its pose
and velocity:

— Pose (q): The pose of the character is represented by a vector q, which consists of
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Figure 1.1 – The 3D humanoid model used in the physics-based fighting simulation. The
humanoid is modeled as a set of articulated rigid bodies, where each rigid body link is
attached to its parent link with spherical joints (in red), with the exception of elbows and
knees being attached with revolute joints (in blue) and the hands being attached to the
arm with a fixed joint (in yellow).

multiple components. These components describe the global position and rotation
of the character’s root (xroot and qroot) and the local rotations of each joint (qj)
in the character’s local coordinate frame. The root refers to a reference point in
the character’s body, usually the pelvis or the hip joint. The joint rotations are
represented in their local coordinate frames to simplify the animation process and
ensure that the character’s movements remain consistent regardless of the global
position and orientation.

— Velocity (q̇): The velocity of the character is represented by a vector q̇, which
also consists of multiple components. These components describe the root’s linear
velocity (ẋroot), the root’s angular velocity (ωroot), and the local angular velocity of
each joint (ωj). The linear velocity refers to the rate of change of the root’s position,
while the angular velocity represents the rate of change of the root’s orientation.
The local angular velocities of the joints are essential for simulating realistic and
smooth character movements.

The character’s movements are controlled by applying torque actuation to each joint.
Torque, denoted by f , is a measure of the force applied to a joint, which causes it to
rotate.
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1.1.2 Actuation model

An actuation model plays a significant role in controlling the motion of a character’s
body model. At each timestep, a motion controller is responsible for specifying an ac-
tuation signal (action in the case of a policy controller) that influences the character’s
motion. This output signal is then utilized by an actuation model to calculate control
forces for each joint in the character’s body. Some works [126, 14, 11] simply use the
identity function for the actuation model and use the policy action a = (f0, f1, . . . , fn) as
the control torques applied to each joint. This approach has the advantage of simplicity
and flexibility, as it allows the policy to directly control the joint torques. However, it
can be challenging to stabilize the character’s motion, as the policy needs to explicitly
compensate for the character’s dynamics and interactions with the environment.

Another line of work [102, 99, 138] instead uses Proportional Derivative (PD) con-
trollers [125] for the actuation model where the policy controller’s output a = (q̂1, q̂2, . . . , q̂n)
specifies target rotations q̂j for each joints. Each has its own advantages and down-
sides [98]. This approach has the advantage of providing a more stable and robust control,
as the PD controller can automatically compensate for the character’s dynamics and inter-
actions with the environment. However, it requires careful tuning of the gain parameters
kp and kd for each joint, which can be time-consuming and require significant expertise.
Additionally, the policy is limited to specifying target joint angles rather than directly
controlling the joint torques, which can reduce flexibility; we use the latter in this work.
In the case of a 1D revolute joint for example, the torque applied to the joint is computed
as follows:

for a target rotation q̂ ∈ R, represented by a scalar rotation angle, the PD controller
is modeled as an angular spring and damper system. The torque f is calculated using the
following formula:

f = kp(q̂ − q)− kdq̇,

where q represents the current rotation of the joint, q̇ represents its angular velocity,
and kp and kd are manually specified gain parameters. This actuation model effectively
applies torques to move the joint towards the desired rotation while mitigating excessive
joint velocities through damping.

Similarly, torques applied to 3D spherical joints can be computed given the target
rotation q̂ represented by a quaternion:
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f = kp exp_map(q̂ − q)− kdq̇,

where q̇ ∈ R3 denotes the 3D angular velocity of the joint. The quaternion difference
between two rotations, q1− q2, can be computed using quaternion multiplication between
q1 and the conjugate qT2 , such that q1− q2 = qT2 q1. To derive the torque from the resulting
quaternion, the exponential map representation of the underlying rotation [36] is used by
utilizing the function exp_map(q) to convert a quaternion q into this format.

The exponential map of a rotation angle θ, expressed in radians, around axis v is
obtained by scaling the axis by the rotation angle, resulting in q = θv. The rotation angle
and rotation axis can be determined as follows:

v = q
∥q∥

, θ = ∥q∥.

1.2 Reinforcement Learning

Reinforcement Learning (RL) [123] is typically formalized as an entity, referred to as
an ’agent’, engaging in a series of interactions with an environment, which is represented
as a Markov Decision Process (MDP). The primary goal of the agent is to optimize its
anticipated cumulative reward, or ’return’.

For the sake of completeness, a Markov Decision Process (MDP) serves as a mathemat-
ical paradigm for representing decision-making processes characterized by uncertainties.
It consists of the following essential components:

— State Space S: A set comprising all attainable states that the system might inhabit
at any instance.

— Action Space A: A set describing every feasible operation the agent may perform
while being in a given state.

— Transition Probabilities p(s′|s, a): Quantify probabilities tied to transitioning to
succeeding states, provided the current state and the selected action. These capture
inherent dynamics of the environment.

— Reward Function r(s, a, s′): Describing a predefined function generating actual-
valued scalar gratification obtained after transitioning from one state s to another
s′ owing to action a.

— Discount Factor γ: Determines the importance of future rewards, impacting the
weight carried by eventual payoffs towards shaping the current actions. γ ∈ [0, 1]
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and it diminishes future rewards’ significance relative to immediate ones.

As the agent interacts with the environment during a single episode, it begins in an
initial state s0 ∈ S. At every discrete time step t, the agent receives the current state
st ∈ S and chooses an action at ∈ A based on its policy π(at|st). Subsequently, the
agent implements the chosen action, leading to a next state st+1 ∼ p(st+1|st, at) and a
scalar reward rt = r(st, at, st+1) that mirrors the desirability of the state transition. This
iterative process persists until reaching a finite time horizon T or continuing indefinitely.

Throughout an episode, the sequence of states, actions, rewards, and subsequent states
forms a trajectory denoted as τ = (s0, a0, r0, s1, ..., sT−1, aT−1, rT−1, sT ). The ultimate ob-
jective of the agent involves discovering an optimal policy π∗ that maximizes its antici-
pated discounted return J(π):

π∗ = argmax
π

J(π) (1.1)

J(π) = Eτ∼p(τ |π)

[
T−1∑
t=0

γtrt

]
(1.2)

Here, p(τ |π) = p(s0)
∏T−1
t=0 p(st+1|st, at)π(at|st) symbolizes the probability distribution

of trajectories induced by a policy π.

The Reinforcement Learning framework is depicted in Figure 1.2.

Figure 1.2 – Reinforcement Learning framework [96]
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1.2.1 Value Function

In reinforcement learning, an important concept is the notion of value function,
which serves to estimate the performance of a given policy. A value function provides
an assessment of a policy’s expected future returns, given a certain state or state-action
pair [123].

Formally, let π denote a policy, i.e., a mapping from states to actions. The state value
function of π, denoted as V π(s), offers an estimation of the expected return of an agent
adhering to π starting from a specific state s:

V π(s) = Eπ [Gt|St = s] ,

where Gt denotes the discounted sum of rewards obtained from time step t on-wards, i.e.,
Gt = rt+1 + γrt+2 + γ2rt+3 + . . . , where γ ∈ [0, 1] is a discount factor. Therefore, we can
interpret V π(s) as a measure of the desirability of the agent occupying a particular state
s at timestep t.

On the other hand, the state-action value function, also known as the Q-function,
represented as Qπ(s, a), estimates the expected future return of executing action a at state
s and subsequently following π for all remaining time steps:

Qπ(s, a) = Eπ [Gt|St = s, At = a]

=
∑
r,s′

p(r, s′|s, a)
[
r + γV π(s′)

]

p(r, s′|s, a) represents the probability of obtaining reward r and transitioning to state
s′ after taking action a at state s. Consequently, Qπ(s, a) captures the utility of performing
action a when occupying state s.

It is common practice to omit this symbol from the notation, writing V (s) instead of
V π(s), and Q(s, a) instead of Qπ(s, a), when the dependency of value functions on π is
clear from context.

The optimal policy’s value function and value-state function are expressed as V ∗(s) and
Q∗(s, a). Notably, Q∗ holds special significance since an optimal policy can be recovered
by selecting, at every state s, the action associated with the highest Q∗-value:

π∗(s) = argmax
a

Q∗(s, a).
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The value functions and Q-functions admit recursive definitions through the Bellman
optimality equation, facilitating efficient learning of these values for a specified policy π.

The Bellman equation for the state-action value function under policy π, Qπ, is given
by:

Qπ(s, a) = ES0∼p(·|s,a),A0∼π(·|S0) [R(s, a, S0) + γQπ(S0, A0)]

=
∑
s′,r

p(s′, r|s, a)
[
r + γ

∑
a′
π(a′|s′)Qπ(s′, a′)

]
.

Using the definition of the state value function, V π, as the expected return when
following policy π from some initial state s, we have:

V π(s) = EA∼π(·|s)Q
π(s, A)

=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)
[
r + γ

∑
a′
π(a′|s′)Qπ(s′, a′)

]

= ES0∼p(·|s,a),A0∼π(·|S0) [R(s, A0, S0) + γV π(S0)] .

(1.3)

1.2.2 Policy Evaluation

Reinforcement Learning (RL) frequently entails estimating the value function or Q-
function related to a specific policy π. An essential constituent in many RL algorithms
is policy evaluation [123]; a dynamic programming methodology used to approximate
a policy’s value function via its recurrent definition provided in Equation 1.3. Through
interaction with the environment, a dataset of trajectories D = {(si, ai, ri, s′

i)} is gathered
following the current policy π, enabling to learn an approximation of V π using an iterative
procedure starting with an arbitrary initial value function V0. Within the kth iteration,
an updated value function Vk may be deduced by minimizing the subsequent objective
function:

Vk = argmin
V

E(si,ri,s′
i) ∼D (yi − V (si))2, (1.4)

with the target value yi = ri+γVk−1(s′
i) serving as an estimated forecast of cumulative

rewards accumulated from state si, using a previous version of the value function from the
previous iteration Vk−1. The technique used for calculating the target can employ single-
step bootstrapping or multi-step bootstrapping such as temporal difference TD(λ) [123].
In tabular setting, it can be demonstrated mathematically that as k →∞, Vk eventually
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converges to V π. Nevertheless, practical implementations commonly generate acceptable
approximations within just a few iterations.

Akin to learning the value function, learning the Q-function also ensues via a similar
iterative scheme. During each iteration k, an estimate of Qπ is achieved by optimizing the
objective:

Qk = argmin
Q

E(si,ai,ri,s′
i,a

′
i)∼D(yi −Q(si, ai))2. (1.5)

In this case, a target value yi = ri +γQk−1(s′
i, a

′
i) represents the projected expectation

of potential return achievable from pair (si, ai), using the Q-function computed from the
prior iteration Qk−1.

Practical implementations of this procedure involves using a parametric function for
modeling the value function, such as neural networks. Therefore the optimization can be
done using gradient descent for a number of update steps.

1.2.3 Policy Gradient Methods

There exists a number of methods to optimize the objective in the RL frameworks [124,
157, 12]. Each applies to different situations depending on the characteristics of the given
problem like the dimensionality of the state/action space, the nature of action: continu-
ous or discrete, . . . . In the context of this thesis, describing human motion involves using
continuous state and action spaces. Therefore, policy gradient methods [124] are the ap-
propriate choice for this category of RL problems. Policy gradient methods are a suitable
class of algorithms for tasks with continuous actions, as well as being compatible with neu-
ral network function approximators for modelling the policy and value functions. These
algorithms iteratively update the policy parameters through gradient ascent using an em-
pirical estimate of the policy’s expected return gradient with respect to its parameters,
denoted as ∇πJ(π).

Deriving the policy gradient starts by reformulating the expected return of the policy
J(π) with respect to the policy’s marginal state distribution dπ(s) instead of its trajectory
distribution p(τ |π):

J(π) = Es∼dπ(s)Ea∼π(a|s)[Qπ(s, a)]

Where, dπ(s) = ∑∞
t=0 γ

tp(st = s|π) is defined as the unnormalized discounted state
distribution induced by π, where p(st = s|π) is the probability that the agent is in state s
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at timestep t when following the policy π [124]. The policy gradient can then be derived
by differentiating J with respect to its parameters:

∇πJ(π) = ∇πEs∼dπ(s)Ea∼π(a|s)[Qπ(s, a)] = Es∼dπ(s)

∫
a
∇ππ(a|s)Qπ(s, a)da.

Since the action space is large in most real application, the integral over actions is
usually intractable. Therefore, the integral is replaced by an expectation over actions
using the score function ∇π log π(a|s) so that it can transformed into a more tractable
formulation that allows for computing the policy gradient:

∇πJ(π) = Es∼dπ(s)

∫
a
∇ππ(a|s)Qπ(s, a)da

=
∫
a
∇ππ(a|s)Qπ(s, a)da, a ∈ A

= Es∼dπ(s)Ea∼π(a|s) [∇π log π(a|s)Qπ(s, a)]

= Es∼dπ(s)Ea∼π(a|s)

[
∇ππ(a|s)
π(a|s) Qπ(s, a)

]
= Es∼dπ(s)Ea∼π(a|s) [∇π log π(a|s)Qπ(s, a)] .

(1.6)

In practice, the procedure is initiated by first collecting trajectories induced by the
policy interacting with the environment. At timestep t, the gradient of the log-likelihood
of the action taken by the policy ∇π log π(a|s) is calculated and then scaled by the Q-
function. Finally, estimates of the policy gradient are computed by averaging the scaled
gradients across all timesteps of the collected trajectories.

A number of practical design choices is used to make this simple procedure effective in
real world applications. The most important ones are the use of baselines when estimating
the gradients and the estimation of the value function.

Variance reduction with baselines: When estimating the gradients in Equation 1.6,
the estimator often exhibits high variance, which can result in slow and unstable learning.
A prevalent variance reduction strategy involves introducing a baseline in the form of the
value function, as expressed in Equation 1.7:

∇πJ(π) = Es∼dπ(s)Ea∼π(a|s) [∇π log π(a|s)(Qπ(s, a)− Vπ(s))]

= Es∼dπ(s)Ea∼π(a|s) [∇π log π(a|s)Aπ(s, a)] .
(1.7)

In this equation, Aπ(s, a) = Qπ(s, a) − Vπ(s) denotes the advantage function, which
quantifies the extent to which a specific action surpasses the average return at a given
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state. The update described in Equation 1.7 can be understood as increasing the likelihood
of actions that outperform the average return at each state and decreasing the likelihood
of actions that fall short of the average. It has been demonstrated that the baseline does
not impact the policy gradient [124].

Value function estimation: To estimate the Q-function and value function, various
approximation techniques can be employed. One common approach involves utilizing data
from the policy π to fit function approximators to Qπ and Vπ: the value function Vπ

is approximated using a function approximator. The Q-function, Qπ(s, a), is directly
estimated by approximating the empirical returns Gπ(s, a), which represents the actual
rewards obtained when following policy π. The empirical return Gπ(s, a) for taking an
action at a given state can be calculated by summing the discounted rewards along a
trajectory that starts with state s and action a. This sum is typically represented as:
Gπ(s, a) = ∑∞

t=0(γt ∗rt), where γ is the discount factor, rt is the reward received at time t,
and the sum is taken over all time steps t in the trajectory, as depicted in Equation 1.2.1

1.2.4 Reinforcement Learning Training

For training policies in the work of this thesis, we use the Multi Agent Proximal Policy
Optimization algorithm, a variant of the Proximal Policy Optimization (PPO) [115] in
the multi-agent setting, which is a policy gradient algorithm with additional modifications
to enhance stability and sample efficiency. Algorithm 1 outlines the training procedure
that will be utilized for the RL part of this work. Both the policy and value function
will be modeled using neural networks. At each update iteration, a batch of trajectories
{τi}mi=1 is collected from the current policy π. The data is then used to update the value
function V (s) with target values yi computed using Temporal Difference TD(λ) [123]. The
advantage Ai ≈ Aπ(si, ai) for each timestep is then estimated using GAE [114], which are
subsequently employed to update the policy via PPO.

1.2.5 Stochastic Games and Multi-Agent Reinforcement Learn-
ing

Stochastic or Markov games [70] were proposed as the standard framework for mod-
eling multiple adaptive agents with interacting or competing goals. Markov games still
assume that state transitions are Markovian. However, the difference with the single-agent
MDP framework is that each agent has its own set of actions. For n agents, the joint-action
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Algorithm 1 RL Training Procedure
1: π ← Initialize policy
2: V ← Initialize value function
3: while not done do
4: D ← ∅ Initialize dataset buffer
5: for i = 1, . . . ,m do
6: τi ← (st, at, rt, . . . , sT ) Collect trajectory i with current policy π
7: for t = 0, . . . , T − 1 do
8: yt ← Calculate target value from τi with Temporal Difference TD(λ)
9: Record yt in τi

10: At ← Calculate advantage from τi with GAE(λ)
11: Record At in τi
12: end for
13: Store τi in D
14: end for
15: Update V using samples (si, yi) from D
16: Update π using samples (si, ai, Ai) from D with PPO
17: end while

space is A = A1 × A2 × · · · × An.
The state transition T : S×A1×· · ·×An → p(S) and reward functions Ri : S×R1×

· · · ×Rn → R now depend on the joint action of all agents.
Similar to the MDP objective, each agent i is trying to maximize its expected reward

under a joint policy π = (π1, . . . , πn), which assigns a policy πi to each agent i:

Vπi
(s) = E

 ∞∑
j=0

γjri,t+j

 (1.8)

Contrary to the MDP case, there may not exist an optimal stationary deterministic
policy, meaning that the optimal stationary policy is sometimes probabilistic; mapping
states to discrete probability distributions over actions π∗ : S → p(A). The best response
and Nash equilibrium concepts [59] can be extended to such games: a policy πi is the best
response if there is no other policy for agent i that gives higher expected future reward
when other agents keep their policies fixed.

If we assume only 1 agent, or the case where other agents play a fixed policy, the
Markov game reduces to an MDP.

In contrast to the general RL methods, assumptions regarding the observations that
agents make are made. Due to the dependency on other agents’ strategy, most Multi
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Agent Reinforcement Learning (MARL) methods assume that either actions of all par-
ticipating agents or rewards (or both) are observed from all agents. Although this helps
us to model opponents and learn over joint actions, it may be unrealistic to assume such
common knowledge, especially in distributed systems where such information is usually
not available.

A major division of algorithms for MARL is whether we are considering other agents
as part of the environment (Independent Learning) or we explicitly try to model other
agents (Joint Action Learning).

In this work, we use the former where each agent represents a specific fighter. Therefore,
we approach the problem of simulating interactions between fighters as a Markov Game
of two agents that are optimized with MARL Independent Learning.

1.3 Imitation Learning

Imitation learning [113, 7, 95] is a sub-field of machine learning concerned with en-
abling an autonomous agent to replicate the behaviors and skills exhibited by a proficient
(or "expert") entity through observational data. This methodology enables machines to ac-
quire new abilities without explicit programming or extensive trial-and-error interactions,
thus accelerating the learning process. The expert can be human or artificial; for instance,
it might involve watching videos of humans performing various tasks like driving a car
or playing chess. In contrast, the imitator is the learner who seeks to reproduce observed
actions based on these observations. A significant challenge in imitation learning lies in
accurately interpreting and generalizing patterns from limited samples provided by the
expert, as minor discrepancies between the expert and imitator could result in substantial
performance differences. Additionally, the complexity of the environment, variability of
the demonstrated skill, and availability of relevant information all impact the effectiveness
of imitation learning techniques.

When training an agent via imitation learning, we do not focus on maximizing explicit
task-related rewards as in conventional reinforcement learning methods. Instead, the ap-
proach relies solely on having access to expert demonstrations illustrating the desired way
to accomplish a given task. By examining these samples, agents strive to learn policies
that mimic the behavior exhibited in the showcased demonstration.

Demonstrations generally comprise records of the sequence of states visited along with
the corresponding actions executed by the demonstrator throughout the process. Conse-
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quently, such collections are referred to as expert demonstration trajectories, denoted as
τe = {(st, at)}, where st represents the state at time t, and at denotes the action chosen
by the expert at that same time step.

The field of imitation learning encompasses numerous areas of study, but broadly
speaking, it can be divided into two major branches: behavioral cloning (BC) [9, 111, 26]
and inverse reinforcement learning (IRL) [112, 90]. Here, behavioral cloning deals with
treating imitation learning as a supervised learning problem, striving to construct a rela-
tionship between input states and output actions guided by the available expert demon-
strations. On the other hand, inverse reinforcement learning concentrates on deducing
the latent reward function motivating the expert’s choices, allowing to utilize standard
reinforcement learning methodologies after obtaining said function estimate.

The imitation learning from observation [50, 10, 131] considers autonomous agent
attempting to learn how to perform tasks by observing state-only demonstrations τe = {ot}
generated by an expert as opposed to classical imitation learning paradigms that assumes
that experts’ actions are also provided, which is not usually the case for motion data.

In the second part of this thesis, we focus on a scenario where a fighter engages in a
martial arts fight with an opponent. Our goal is to develop a physically embodied agent
that can imitate the fighter’s motions and react to the opponent’s actions in a realistic
manner. To achieve this, we leverage expert demonstrations in the form of human pose
trajectories extracted from video or motion capture data. Specifically, we formulate this
problem as a multi-agent imitation learning from observation task, where the agent learns
to mimic the fighter’s actions and respond to the opponent’s movements based on the
provided demonstrations.

1.4 Physics-based character animation and Reinforce-
ment Learning

The physically simulated embodied agent described earlier is controlled by a policy
trained with reinforcement learning (RL). In this section we describe the observations and
actions definition for linking the RL agent and the physically simulated character.
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1.4.1 RL State representation

The motion of a character is described by a set of state features that capture the
configuration of the character’s body. These state features serve as input to the RL pol-
icy, which controls the character’s movements. The following state features are typically
considered:

— Height of the root off the ground h: This feature represents the height of the char-
acter’s root, which is usually the pelvis or hip joint, relative to the ground. It is a
1-dimensional (1D) scalar value.

— Position of each link p: This feature describes the position of each link (i.e., body
part) in the character’s local coordinate frame. Since the character’s local coordinate
frame is 3-dimensional (3D), each link’s position is represented by a 3D vector,
resulting in a total of 3D x N links dimensions.

— Linear velocity of each link ṗ: This feature represents the linear velocity of each link
in the character’s local coordinate frame. Similar to the position feature, each link’s
linear velocity is a 3D vector, resulting in a total of 3D x N links dimensions.

— Rotation of each link using a tangent-normal encoding (u, v): This feature encodes
the 3D rotation of each link in the character’s local coordinate frame using a tangent-
normal representation. The tangent u and normal v vectors are 3D vectors that
correspond to the tangent and normal of the link’s coordinate frame expressed in
the character’s local coordinate frame. This encoding provides a smooth and unique
representation of a given rotation and results in a total of 6D x N links dimensions
for both u and v vectors.

— Angular velocity of each link (ω): This feature describes the angular velocity of each
link in the character’s local coordinate frame. Each link’s angular velocity is a 3D
vector, resulting in a total of 3D x N links dimensions.

The character’s local coordinate frame is defined with the origin located at the root
(pelvis), the x-axis oriented along the root link’s facing direction, and the z-axis aligned
with the global up vector. This coordinate frame simplifies the animation process and
ensures consistent character movements.
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1.4.2 RL Action representation

One crucial aspect of controlling a character’s motion is the selection of action pa-
rameterizations, which determines how the output of the control policy is represented
and passed to the actuation model. Specifically, each action a generated by the policy
specifies target rotations for the character’s joints. However, the representation of these
rotations requires careful consideration, particularly when employing neural networks.

There are several options for representing rotations, each with its own trade-offs.
Quaternions, for example, provide a compact and singularity-free representation, but can
be computationally expensive to work with. Euler angles, on the other hand, are more
intuitive and easy to compute, but suffer from singularities and gimbal lock. Exponen-
tial maps offer a compromise between the two, providing a compact representation that
uses 3 parameters without singularities and gimbal lock. [36] provides a comprehensive
review of these and other rotation parameterizations, highlighting their advantages and
disadvantages.

In this work, we follow recent advances in physics-based character animation [99,
100] for representing joint rotations: For spherical joints, we use exponential maps as a
compact and singularity-free representation. For revolute joints, we represent the rotation
with a single angle value θ, which provides a simple and intuitive representation. This
choice of action parameterization allows us to effectively control the character’s motion
while avoiding the pitfalls of other representation methods.
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Chapter 2

BENCHMARKING 2D POSE ESTIMATION

METHODS FOR FIGHTING SPORTS

Machine learning and computer vision techniques in sports have emerged as valuable
tools for tailoring training regimens especially by evaluating the performance of sport
athletes and analysis of upcoming adversaries, in particular the use of human motion
estimation methods. For example, in team sports, this technique has been utilized to
track players trajectories on the playing surface/playground [42, 21, 13]. This allows for
the extraction of metrics like total running distance and average velocity, among others.

In combat sports, such as boxing, wrestling, and fencing however, monitoring an ath-
lete’s motion is crucial to evaluate their performance and identify areas for improve-
ment [19, 58]. Posture and body movements play a significant role in these sports, and
assessing them accurately can help coaches and athletes develop effective training strate-
gies. Unlike traditional motion monitoring in other sports, which often focuses on global
location and orientation across a terrain, combat sports require a more detailed analysis of
body movements throughout the contest. This approach enables a deeper understanding
of an athlete’s performance, allowing for targeted improvements and enhanced competitive
success.

In this type of sport, where athletes compete against each other, there are limitations
to using sensors for monitoring motion; Unlike motion capture in laboratory settings,
monitoring motion in real-world competitive conditions presents unique challenges. It is
impractical to mount sensors onto the bodies of opponents who do not wish to have their
movements captured for training purposes. Additionally, the use of sensors during com-
petitions is often forbidden. This emphasize the need for alternative methods of motion
analysis. As a result, analyzing prior contests without sensors becomes a crucial aspect
of understanding and improving athletes’ performance. This approach allows coaches and
athletes to study body movements and posture from previous matches, enabling them to
identify patterns, strengths, and weaknesses in their own performance and that of their
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opponents. By focusing on these critical factors, coaches and athletes can develop effec-
tive training strategies that lead to enhanced competitive success, all without the need
for invasive sensor technology.

Accessible resources comprise a compilation of videos, mostly acquired under chal-
lenging circumstances, such as television recordings, those supplied by event organizers,
or produced by coaching teams from difficult view points. Estimating the poses of both
rivals amidst the highly intricate and unregulated fighting situations presents significant
hurdles. One must consider moving cameras, multiple perspectives, varying angles, and
occasionally poor resolution and lighting.

Human pose estimation (HPE) constitutes an intensely researched area spanning nu-
merous fields, including entertainment [49], healthcare [93], ergonomics [106] and sports
[88, 134, 60]. HPE involves inferring the spatial configuration of major joints defining a
person’s posture using sensory inputs such as visual imagery or depth maps.

Recent advancements in deep-learning architectures have considerably improved 2D
HPE accuracy within RGB frames over the past years. Numerous sizable datasets fea-
turing annotated RGB photos have surfaced accordingly, offering network training and
testing opportunities — examples include "MPII Human Pose" [5] and "MS COCO"[69].
These collections incorporate diverse situations and actions.

Previous studies assessed the effectiveness of HPE approaches in sports settings, no-
tably regarding tennis serves [146], dance performances [5], and gymnastics routines [134].
In combative sports, primary obstacles consist of:

— Rapid body parts movements generating motion blur, which can hinder certain
temporal window-based techniques.

— Partial self-occlusions resulting from limited viewing angles, where cameras might
concentrate solely on particular sections of the athlete’s body.

— Intermittent full occlusions with competitors, officials, and environmental elements
obstructing direct lines of sight.

Gaining familiarity with limitations associated with different HPE strategies within
demanding scenarios such as boxing helps inform data scientist in sports. Such insights
could assist sport and data scientists in selecting optimal human action recognition tools.
Ultimately, this level of understanding should empower researchers and data science firms
to make informed decisions about human body pose tracking solutions.

In this chapter, we analyze the performance of state of the art body pose estimation
algorithms in the specific case of boxing. To this end, we collected a test dataset of
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professional boxing motions comprised of RGB videos and motion capture sequences to
simulate the possible self-occlusion and rapid motions that occur in real boxing video.
RGB videos were captured and synchronized with an opto-electronic commercial motion
capture system, used as a reference, Qualisys [108]. The RGB camera was calibrated to
find the correspondence between a pixel in the RGB image and in the 3D space in the
Qualisys system. Six state-of-the-art human pose tracking methods were applied to the
RGB video: OpenPose [16], Detectron2 [142], Cascaded pyramid network for multi-person
pose estimation [17], AlphaPose [30], Deep Dual Consecutive Network for Human Pose
Estimation [78] and SimCC [68].

In the following sections, we will first introduce related work on HPE and associated
benchmarks as well as relevant surveys for sports applications 2.1. Next, we describe
the publicly available datasets/benchmarks and evaluation metrics of HPE, highlighting
their strengths and limitations in the context of sports: section 2.2. We then introduce
the different HPE methods chosen for this study and their applicability to combat sports:
section 2.3. Then, we will describe the protocol used for video and motion capture sequence
acquisition, evaluate the different HPE methods and give a comparison and use-case
analysis in section 2.5. Finally we discuss and summarize our findings to draw conclusions
and insights about HPE in combat sports in section 2.6.

2.1 Related Work

In this section, we present the most popular and recent HPE and we address the
problem of its application to sports, in particular their relevance for fighting sports anal-
ysis. We then describe existing standard benchmarks, and how previous works designed
protocols to evaluate the accuracy of HPE in various application domains.

2.1.1 Human Pose Estimation and associated benchmarks

Following the development of camera-based 2D human-pose estimation, many survey
papers about this area have been published in the recent decades. Before the adoption
of deep neural network approaches in HPE, its framework was categorized into a pre-
possessing stage, which includes feature extraction, camera calibration, body detection
and foreground segmentation. Then a body parts’ parsing stage, that includes feature
extraction with handcrafted or learned features according to their representations: shape,
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contour, geometric and appearance features [77]. Another way of defining the HPE frame-
work is to break it down into three main components: feature description, human body
models, and modeling methods. Feature description involves the use of low-level and high-
level features, as well as motion features for motion-related methods. Human body models
encompass kinematic, planar, and volumetric models, and may incorporate human pose
priors. Modeling methods include discriminative and generative approaches, as well as
bottom-up, top-down, and motion-based techniques [34].

Classical methods for HPE have been outperformed by deep neural network methods
(DNN). DNN approaches, such as those using convolutional neural networks (CNN), offer
several advantages over traditional methods. Firstly, CNNs learn and extract features
from training on dataset images. This allows for combined part detection and accurate
localization of human body parts. Secondly, DNN methods enable learning features and
human body kinematics through graphical modeling. Lastly, these approaches can learn
both features and body part locations. Challenges related to deep learning-based 2D and
3D HPE methods are the influence of body part occlusion, crowded people, network
efficiency and adequate training data [18].

With the great progress of Deep Neural Networks and their application to HPE, new
2D HPE methods were proposed leading to a new families of approaches. Dang et al. cat-
egorized single person HPE into direct regression-based approaches and heatmap-based
approaches [27]. The first category uses the output feature maps to directly regress key-
points. DeepPose [132] and SimDR [67] belongs to this type of approach. They have
the advantage of being fast and direct and they can be applied to 3D data with slight
changes. However, they suffer from difficulties to learn the mapping between the features
and the regressed keypoints. The second category generates heatmaps focused on po-
tential locations first, then predict keypoints based on the heatmaps. HR-Net [121] and
DarkPose [155] applied this type of approach. They are easy to interpret by visualizing
where their model is looking in the images to regress the decision. There are also easy
to apply in complicated situations: lighting, occlusions, .... However, they require high
memory consumption for high resolution heatmaps and are difficult to be extended for
3D estimation.

Multiple person HPE can be categorized into Top-down or bottom-up approaches. Top-
down approaches have to detect all people from a given image, after which single-person
approaches are performed in each detected bounding box. Examples of HPE methods in
this category include AlphaPose [31], DCPose [78] and Cascaded Pyramid Network [17].
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It has been shown that the human detection phase has no impact on the pose estimation
performance, provided that it is accurate enough. Reversely, in the bottom-up approaches,
all body parts (keypoints) are detected in the first stage, then they are associated to
human instances, in the second stage. This approach is used in methods such as the
popular OpenPose [16] and SPM [92].

When it comes to benchmarks of HPE methods, Chen et Al. [18] listed the PCKh@0.5
scores on the Max Planck Institute for Informatics (MPII) human pose testing set for
regression and heatmap approaches before 2020, as well as the average precision score
COCO test-dev set for top-down and bottom-up approaches before 2020. Zheng et Al. [162]
also provided similar comparison including more recent approaches. These surveys however
do not provide any extensive performance comparisons for the different methods that they
evaluate and they are mainly based on public generic datasets that are not specialized in
sports.

2.1.2 Surveys of HPE for sports

Badiola-Bengoa et Al. [8], performed a systematic review in which the objective was to
provide an analysis of the application of HPE to the field of sport and physical exercise.
The authors discussed the most used metrics and datasets. They introduced few 2D
datasets for training HPE systems which were specialized for sports and physical exercise.
Examples of these datasets include Leeds Sports Pose, Penn Action, and PoseTrack. They
also introduced other datasets that are not specifically designed for this domain, but cover
some sports or physical activities, such as Common Objects in Context (COCO), and
(MPII). This survey however, did not provide numerical measurements.

2.2 Datasets and Benchmarks

In this section, we give details about a selection of the publicly available datasets
related to HPE task introduced in the previous section. We also present the different
benchmarks related to these datasets for evaluating the different HPE approaches.

2.2.1 Datasets

A number of researchers created datasets to evaluate their proposed HPE methods.
The variety of the datasets in terms of the scenes and application field makes the fair
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Dataset Size Images/
Videos #People #Annotated

joints Targeted for sports

LSP[51] 2k images 1 each 14 multiple
LSP Extended[52] 10k images 1 each 14 multiple
KTH Multiview
Football II[54] 6k images 2 14 football

Penn Action[160] 2.3k videos 1 each 13 multiple

MPII[5] 25K images 40k 16 with other
human activities

COCO[69] 200k images 250k 17 with other
human activities

PoseTrack[6] 514 videos multi 15 with other
human activities

Table 2.1 – Summary of public HPE Evaluation Datasets

comparison of the different algorithms more difficult.
We summarize the most important and high quality publicly available datasets related

to the application of HPE in the field of sport:

— LSP, Leeds Sports Pose [51]: This dataset contains 2000 annotated images from
Flickr of 2000 people doing sport activities. The activities include athletics, bad-
minton, baseball, gymnastics, parkour, soccer, tennis, or volleyball. The annotated
2D poses have 14 joints of the form (x, y, visibility) where (x, y) denote the pixel
coordinates of the joints in the image and visibility represents if the keypoint is
visible or not in the image. This dataset has been expanded to Leeds Sports Pose
Extended in [52] to contains 10,000 annotated images from Flickr as well.

— KTH Multiview Football dataset II [54]: contains 5907 images of 3 different players
during football match of the Allsvenskan league. The images are extracted from
video sequences shot at 25Hz with a 1920x1080 pixels resolution for each player.
Poses have 14 2D joints.

— Penn Action [160]: provided 2326 video sequences from a single view of different
people collected from various video platforms, including YouTube. In each sequence,
there is one person performing sport, including baseball swing, clean and jerk, jump-
ing jacks, push up, strum guitar, bench press, golf swing, baseball pitch, sit up, tennis
forehand, bowl, jump rope, pull up, squat and tennis serve. The poses have 13 2D
joints.
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In addition to these datasets in which the content is related to the field of sports, there
are other datasets which are not developed specifically for this task, but which motion
may be related to physical activity close to sports:

— MPII, Max Planck Institut Informatik dataset [5]: contains around 25,000 images
spanning 491 different activities from 3913 videos downloaded from YouTube show-
casing every day human activities. More than 40,000 individuals are presented in
this database, with 16 annotated 2D body joints. The dataset has been used for a
single person, multi-person pose estimation and action recognition models.

— COCO, Common Objects in Context [69]: commonly used for multi-person pose
estimation models. It is a collection of a very large dataset with different types of
annotations: object detection, keypoint detection, stuff segmentation, panoptic seg-
mentation, and image captioning. It contains various human poses used in different
body scales, including occlusion patterns. It contains a total of 200,000 images, with
250,000 people labeled with 17 2D joints.

— PoseTrack [6]: contains 514 videos including 66,374 frames: 300 videos training,
50 videos validation and 208 videos testing. These videos contain several people
performing various activities. The videos come from MPII Human Pose dataset.
This dataset is used for single-frame multi-person pose estimation, multi-person pose
estimation in videos and multi-person articulated tracking. The poses are labeled
with 15 2D joints.

These datasets do not include images or videos involving special fighting movements
and only provide generic class labels for the sport activities. For example, various upper
body attacks are labeled as punches or boxing.

In this work, we evaluate different state-of-the-art HPE methods on a collected dataset
specialized in boxing, involving various classes of movements. A description of the evalu-
ated methods is provided in 2.3 and the collected dataset is described in the section 2.4.1.

2.2.2 Metrics

Many evaluation metrics have been introduced in the literature to measure the per-
formance of 2D HPE. Many factors should be considered when evaluating these methods:
single/multi pose estimation, single images or video input, with/without camera motion.
In this work, we mention the most commonly used ones:
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— Percentage of Correct Parts (PCP): an evaluation metric that was introduced in
early works of 2D HPE. In PCP, a limb (or body part) is considered as detected
if the distance between the two predicted joint locations and the true limb joint
locations is less than a fraction of the limb length (usually between 0.1 to 0.5) [132].
Hence, the higher the PCP, the better performance for the HPE. Recently, PCP has
not been preferred as an evaluation metric because it penalizes shorter limbs [4].

— Percentage of Correct Keypoints (PCK): A detected joint is considered correct if
the distance between the predicted and the true joint is within a certain threshold.
A higher value of the PCK means a better model performance [129].

— Percentage of Detected Joints (PDJ): The percentage of predicted joint locations
which are within a fraction of the bounding box’s diagonal. It is similar to PCK
for measuring the accuracy of localization of the keypoints but, instead of a fixed
threshold, we use the diagonal of the bounding box of the person in each frame [132].

— Object Keypoint Similarity (OKS): A metric commonly used in the COCO Keypoint
Challenge defined by the following formula:

OKS =
∑
i exp (−d2

i /2s2k2
i )δ(vi > 0)∑

i δ(vi > 0) , (2.1)

where di is the Euclidean distance between the detected keypoint and the corre-
sponding ground truth, vi is the visibility flag of the ground truth, δ(vi > 0) is
referring to those samples that are labeled, s is the object’s scale (square root of
the object segment area), and ki is a per-keypoint constant that controls falloff that
was tuned such that the OKS is a perceptually meaningful and an easy to interpret
similarity measure [69]. This metric plays the same role as Intersection over Union
in object detection. It is calculated from the distance between predicted points and
ground truth points normalized by the scale of the person. Typically, standard av-
erage precision and recall scores are reported in papers: AP 50 (Average Precision
at OKS = 0.50) AP 75, AP (the mean of AP scores at 10 positions, OKS = 0.50,
0.55..., 0.90, 0.95), APM for medium objects, APL for large objects, and Average
recall (AR) at OKS = 0.50, 0.55..., 0.90, 0.95 [8].

— Mean Per Joint Position Error (MPJPE): the average Euclidean distance between
predicted and ground truth joint locations [66]. Root Mean Squared Error (RMSE)
can also be used in a similar way.
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2.3 Choice of Human pose estimation methods

The aim of this work is to challenge recent (ate the beginning of the PhD) and popular
HPE methods in the context of fighting sports. Among all the proposed methods, we
have selected the ones with the highest reported performance (either most recent or most
popular methods), among the main families of approaches. We also selected methods for
which a code is available, to ensure using these methods as defined and tuned by the
authors.

These methods all start from RGB images (either isolated images of sequences of im-
ages). For fast motion, such as boxing motion, it seems interesting to test the performance
of sequence-based approaches, that consider dynamic properties of the motion. In fact,
in fast and jerky motion, this type of approach may have some difficulties compared to
traditional per-frame tracking approaches.

Recent works generally consider that the image is pre-segmented to isolate each per-
son before pose estimation (named "top-down" approaches compared to "bottom-up" ap-
proaches which do not use this pre-segmentation). In the context of fighting sports, at
least two opponents are in the image, with potential occlusions from one character by
the other one. Hence, using or not pre-segmentation may have an influence on the HPE
results in this difficult context.

Cascaded pyramid based approaches [17] have been designed to handle difficult occlu-
sions, which occur frequently in fighting sports. It was consequently important to include
a recent and popular method based on this approach.

Several previous works adapted neural network architectures designed for image seg-
mentation, in order to track joints, such as Detectron2 [142]. Other methods replace the
traditional heat maps by regressions on the positions.

Many other methods could have been tested in this benchmark, but we tried to address
most of the main families of these methods, when this work was carried-out. A brief
introduction of each selected method is presented in the following subsections.

Table 2.2 summaries the 6 different models tested in this study.
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Method HPE Type Approach Input
OpenPose Bottom-Up Part Affinity Fields for part association

then confidence maps for part detection
Images

Detectron2 Top-Down Person detection then modeling key-
point location as a one-hot mask then
Mask R-CNN to predict K masks, one
for each of K keypoint types

Images

SimDR Top-Down Disentangles the x- and y- coordinate
of joint location into two independent
1D vectors, regarding the keypoint lo-
calization task as two sub-tasks of clas-
sification at horizontal and vertical di-
rections

Images

CPN Top-Down Includes a GlobalNet based on the fea-
ture pyramid structure and a RefineNet
which concatenates all the pyramid fea-
tures as a context information. Online
hard keypoint mining is integrated in
RefineNet for the “hard” keypoints

Images

AlphaPose Top-Down Consists of three components: Sym-
metric Spatial Transformer Network,
Parametric Pose Non-Maximum-
Suppression, and Pose-Guided Propos-
als Generator

Images

DCPose Top-Down Pose Temporal Merger and a Pose
Residual Fusion module allow abun-
dant auxiliary information to be drawn
from the adjacent frames, providing a
localized and pose residual corrected
search range for location keypoints.
Pose Correction Network employs mul-
tiple effective receptive fields to refine
pose estimation in this search range

Videos

Table 2.2 – Summary of the different HPE methods tested in this study.
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2.3.1 OpenPose

OpenPose [16] is one of the most popular bottom-up methods for multi-person human
pose estimation. It features real-time and multi-person pose estimation and uses multi-
stage convolutional neural network. It iteratively predicts affinity fields to encode part-
to-part association, while refining the predictions over successive stages. Then it predicts
confidence maps over another set of stages.

OpenPose use a multi-stage Convolutional Neural Network (CNN) architecture for
real-time articulated human pose and motion estimation. The system initializes the CNN
architecture with the initial 10 layers of the pre-trained VGG-19 model, followed by fine-
tuning to adapt the network to the specific task. The input image undergoes analysis
through this initialized CNN, resulting in a set of feature maps that serve as input to the
first stage.

The first stage of OpenPose’s pipeline focuses on estimating Part Affinity Fields
(PAFs). This stage adopts an iterative approach where the predicted PAFs are progres-
sively concatenated with the original image features. This strategy facilitates refining
the predictions throughout successive stages, enhancing overall accuracy and robustness.
Notably, PAFs prove instrumental in associating body parts across multiple frames or
individuals within complex scenes.

Following the first stage, the second stage enters the scene, dedicated to predicting
confidence maps — a crucial component responsible for detecting individual body parts.
Similar to the first stage, it embraces the same iterative methodology, continually integrat-
ing prior knowledge from preceding steps to generate increasingly accurate confidences
maps. These enhanced confidence maps facilitate precise localization and identification of
various body parts present in the input images.

Each stage comprises numerous convolution blocks, acting as building blocks for con-
structing these neural networks. In turn, each convolution block consists of three 3 x
3 convolutional kernels arranged in a sequential manner. By concatenating these filters,
computational overhead can be effectively reduced without compromising performance,
ultimately contributing to efficient processing and rapid inference times inherent to Open-
Pose.

This method was chosen for this study because of its popularity and as being the
default method for a lot of works that involves action recognition using skeleton data. It
is also used as a candidate for bottom-up approaches in multi-person HPE.
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2.3.2 Detectron2

Detectron2 [142] is a Meta AI Research’s library that provides state-of-the-art detec-
tion and segmentation algorithms. It allows to detect person keypoints (eyes, ears, and
main joints) for human pose estimation.

The person keypoints estimation is done on individual images. It gives the bounding
box of the human and their keypoint estimations using the available COCO Person Key-
point Detection model with Keypoint R-CNN. The model is based on Mask R-CNN [43],
which is flexible enough to extend it to human pose estimation. The keypoint’s location
is modelled as a one-hot mask, and Mask R-CNN is adopted to predict K masks, one
for each of K keypoint types (e.g., left shoulder, right elbow). It is a top-down method
where we first detect humans and then estimate keypoints within each bounding box
independently.

We chose this method because of its popularity as well as for evaluating the flexibility
of the Mask R-CNN model.

2.3.3 SimDR

The "SIMple yet promising Disentangled Representation" (SimDR) for keypoint coor-
dinate [67] tries to address the shortcomings of 2D heatmap representation used in the
majority of HPE methods. Their approach reformulates human keypoint localization as
a classification task.

They proposed to disentangle the representation of horizontal and vertical coordinates
for keypoint location, leading to a more efficient scheme without extra up-sampling and
refinement. This allows to directly remove the time-consuming up-sampling module of
some HPE methods, which may induce lightweight architectures for HPE.

This method was chosen for being recent and for the fact that it does not use heatmap
representation as the other methods.

2.3.4 Cascaded Pyramid Network

Cascaded Pyramid Network (CPN) [17] is a multi-person pose estimation model that
aims to tackle the problem of "hard" keypoints estimation in challenging cases, such as
occluded keypoints, invisible keypoints and complex background.

The approach consists of two stages: GlobalNet and RefineNet. The GlobalNet is a
feature pyramid network based on ResNet backbone that can successfully localize "simple"
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keypoints like eyes and hands, but may fail to precisely estimate the occluded or invis-
ible keypoints due to its reliance on context rather than the appearance feature nearby.
The RefineNet explicitly handles the "hard" keypoints by integrating all levels of feature
representations generated by GlobalNet, and tweaking the loss propagation in an online
manner to focus on hard keypoints [17].

The two stages process, together with the tackling of hard keypoints in occlusions and
complex background, were the two main motivations to consider this method in our study.

2.3.5 Alphapose

Alphapose [31] is a Regional Multi-Person Pose Estimation. It is a popular top-down
method for pose estimation. AlphaPose architecture is applicable for detecting both single
and multi-person poses in images or video fields. It consists of three components: Sym-
metric Spatial Transformer Network (SSTN) with parallel single-person pose estimator
(SPPE), Parametric Pose Non-Maximum-Suppression, and Pose-Guided Proposals Gen-
erator (PGPG). In particular, PGPG is a method used for data augmentation, so that
the SSTN+SPPE module adapts to the ’imperfect’ human proposals generated by the
human detector. The SPPE becomes able to handle human localization errors due to the
utilization of symmetric STN that selects region of interests automatically. Conversely,
parallel SPPE helps the STN to focus on the correct area and extract high quality human-
dominant regions. Finally, the parametric pose NMS can be used to reduce redundant
detections.

This method was chosen for its popularity and its unique way for handling person
detection issues in a top-down approach.

2.3.6 DCPose

Deep Dual Consecutive Network for Human Pose Estimation (DCPose) [78] is a
video-based human pose estimation framework, using temporal information from adja-
cent frames, after generating pose heatmaps to facilitate keypoint detection.

Three modular components are designed in the framework:

— A Pose Temporal Merger that encodes keypoint spatial context based on initial
estimation to generate effective searching scopes to correct pose prediction contained
in a specific range.
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— A Pose Temporal Merger that encodes keypoint spatial context based on initial
estimation. It aims to generate effective searching scopes to correct pose prediction
contained in a specific range.

— Pose Correction Network aims at refining efficiently the pose estimations.

We chose this method since it considers temporal dependencies of poses between ad-
jacent frames which is more practical for HPE from videos.

2.4 Comparative Methodology

In order to compare the different HPE methods, we collected sequences of boxing, as-
sociated with a ground truth skeleton. The sequences were acquired with a RGB camera
and an optical marker-based Qualisys motion capture system. The Qualisys system recon-
structs the 3D positions of the markers placed on a fighter. The ground truth 2D skeletons
used for the comparison to 2D HPE methods, is obtained by projecting the 3D skeleton
on the 2D image plane. To this end, we used the intrinsic and extrinsic parameters of the
cameras used to collect the 2D videos. Thus, it requires a calibration step between the
Qualisys 3D space and the RGB camera 2D space, as well as a synchronisation of the
sequences recorded by the two devices. Finally, as the Qualisys skeleton model is defined
differently from that used by the HPE methods, a mapping step between the two models
is necessary to obtain a representation against which to compare the methods’ results.

In this section, we describe the different steps used to prepare the boxing dataset.
Section 2.4.1 details the material, the different processing steps and the protocol used to
acquire the test sequences. Section 2.4.1 explains how the 2D skeleton data provided by
the HPE methods based, and the reference skeleton are compared.

2.4.1 Sequences’ acquisition

Different systems for recording motion capture are available. Inertial systems track
the acceleration and orientation of sensors attached to participants/objects in three di-
mensions, but the accuracy is lower than when using opto-electronic systems.Thus, we
preferred to use an optical marker-based system composed of reflective markers and in-
frared cameras. We used the Qualisys motion capture system as a reference system, which
is commonly used in clinical and sport movement analysis studies. Using linear transforma-
tion, the system acquires the exact position and orientation of each camera, with respect

52



2.4. Comparative Methodology

to the others, to be able to create the three-dimensional representation of the capture
space and triangulate the marker positions[109]. This system is capable of tracking indi-
vidual markers with sub-millimeter accuracy. The Qualisys system used was composed of
22 Oqus cameras with 200Hz sampling frequency. 46 markers were placed on the boxer’s
body according to the Qualisys animation marker set guidelines for motion capture as
shown in Fig. 2.1. The motion capture sequences were recorded using the Qualisys Track
Manager [108] (QTM) Software to reconstruct, label, and track a calibrated skeleton.
Motion capture skeleton data files were exported in TSV format (Qualisys) and we used
the resulted skeleton as a ground-truth for HPE methods.

(a) Qualisys animation
marker set

(b) Marker placement on the
boxer’s body from front

(c) Marker placement on the
boxer’s body from behind

Figure 2.1 – Marker placement on the boxer’s body according to Qualisys animation
marker set guidelines.

During the motion capture, an RGB camera was located to the right hand side of the
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boxer while making sure that they were completely in the field-of-view of the camera.
This way we simulated similar side viewing conditions found in television broadcasting of
boxing fights, as shown in Fig. 2.2. The used RGB camera was a Sony Exmor R HDR-
GW66, and the video footage of all sequences was taken in 1080p resolution at 25 Hz,
with low distortion.

Figure 2.2 – RGB camera recording located on the right side of the boxer.

Synchronization and system calibration

To compare the video (HPE) and motion capture outputs, we has to deal with tem-
poral and spatial alignment between both records. The two main ways of synchronizing
multiple cameras are 1) hardware synchronization (that requires particular equipment and
camera support) and 2) software synchronization (that involves manual video alignment
after recording). As the Qualisys System allows for hardware synchronization for up to 2
attached RGB cameras, we selected this option, for better accuracy.

Since the RGB and infra-red cameras are sampling at different rates, motion capture
data was down-sampled from 200 downto 25 Hz in order to match the frame rate of the
RGB camera.

For spatial calibration, we chose Zhang method [159]. This method is based on moving
a chessboard in the filed of the cameras. The details of the calibration process is found in
appendix 2.7.1.

After camera calibration, we get approximations for the camera intrinsic and extrinsic
parameters. We can then project the 3D skeleton that we get from Qualisys into the same

54



2.4. Comparative Methodology

image plane, for each camera. Hence, we can compare the joints locations (supposed to
be the ground truth) to those obtained with various HPE methods in the camera local
image frame (see Fig. 2.3).

Figure 2.3 – Right: projection of 3D skeleton to the RGB camera image plane, using the
camera parameters obtained after calibration. Left: an example of HPE result applied to
the same video.

Recording session protocol

The recording session was conducted according to the guidelines of the Declaration of
Helsinki, and approved by the Institutional Review Board (or Ethics Committee) of Inria
(protocol code 2021-17 May 21st 2021). The volunteer was a professional boxer (27 years
old, super bantamweight category, 57.2 kg, European Boxing Union, Pro Boxing Record:
16-0-0 (Win-Loss-Draw)) at the time. They were accompanied by their coach who played
the role of opponent and was equipped with protections, as depicted in Fig. 2.3.

After being equipped with the 46 reflective markers, the subject performed a warming-
up, which also enabled him to get used of wearing the markers. Then, the subject was
instructed to perform a series of boxing actions that involved offensive actions (Jab, Cross,
Hook, Uppercut), as well as defensive actions (external and chasing parry, retreat and
dodging). Each sequence contains a repetition of an action or a combination of actions
for a number of times. In total, the boxer performed 25 sequences, each sequence lasting
in average 23 seconds. The action sequences are detailed in Table 2.9 in appendix 2.7.2.
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Data processing

After the motion capture session, we get initial data from the Qualisys Motion Capture
system. The raw data consisted of markers relative positions to the stage’s origin. A
labeling process is then done by assigning each marker to a body part according to Qualisys
Animation Marker Set, and corresponding skeleton. Afterwards, Skeleton Solving is used
to calculate skeleton data, i.e. 3D joints locations, and joint angles. We exported skeleton
data in TSV format for each action sequence. Each file contains for each frame the 3D
position of 24 skeleton joints defined by Qualisys system in Cartesian coordinates.

All tested HPE methods were trained originally on the COCO dataset and offer pre-
trained models that use 17 COCO keypoints. Therefore, matching keypoints from COCO
and Qualisys skeletons is required in order to compare them respectively. Keypoints used
by COCO are shown in table 2.3

The skeleton data for all sequences were preprocessed to keep only 3D positions of
joints that are used in COCO skeleton keypoints. In fact, the definition of joints positions
between Qualisys and the COCO model are slightly different. Joint location is more
precise for Qualisys since it uses a well-admitted biomechanical model with accurate joint
center estimation based on external markers. The COCO model is less accurate, and some
keypoints may be located outside of the body. This is especially true for the root joint
that is considered to be on the middle of hips for COCO definition while being on the
pelvis for Qualisys. Therefore only keypoints that are similarly placed in the two models
were considered for the evaluation. Hence, we have excluded the head, the neck and the
root joints, which differ between the two systems. The number of skeleton keypoints was
reduced from 24 down to 15 as shown in Fig. 2.4.

When reducing skeleton keypoints, we kept the head, neck, and pelvis for the sake of
visualisation. They are not considered for the evaluation, as explained in a later section.
The COCO model also includes some keypoints that are not relevant for action analysis,
such as ears and eyes keypoints. Those were also not considered for the evaluation. Table
2.3 shows keypoint naming used by the two skeleton representations and their correspon-
dences: 2 keypoints on the same row are considered to be equivalent.

After down-sampling and reducing the number of keypoints, 3D skeleton data were
projected to 2D images for each point of view, using the corresponding camera projection
matrix. The resulting projected 2D points served as a ground truth to assess the quality
of 2D pose estimation. This comparison was carried-out on the 16,462 frames collected
along the motion capture session.
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COCO Qualisys
Nose - 0 Head - 5

Neck - 4
Right Shoulder - 1 RightShoulder - 11

RightArm - 12
Right Elbow - 2 RightForeArm - 13

RightForeArmRoll - 14
Right Wrist - 3 RightHand - 15
Left Shoulder - 4 LeftShoulder - 6

LeftArm - 7
Left Elbow - 5 LeftForeArm - 8

LeftForeArmRoll - 9
Left Wrist - 6 LeftHand - 10

Spine2 - 3
Spine1 - 2
Spine - 1
Hips - 0

Right Hip - 7 RightUpLeg - 20
Right Knee - 8 RightLeg - 21
Right Ankle - 9 RightFoot - 22

RightToeBase - 23
Left Hip - 10 LeftUpLeg - 16
Left Knee - 11 LeftLeg - 17
Left Ankle - 12 LeftFoot - 18

LeftToeBase - 19
Right Eye - 13
Left Eye - 14
Right Ear - 15
Left Ear - 16

Table 2.3 – Comparison of the different keypoints used in COCO and Qualisys skeleton
representations. COCO keypoints in italic are not considered for the evaluation.
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Figure 2.4 – Projection of Qualisys 3D Skeleton (left) to a 24-joint skeleton in the 2D image
(middle), and reduction to the 15 joints that match COCO keypoints model (right).

2.4.2 2D pose estimation using RGB data

The boxing video sequences are used as inputs to the 6 HPE methods described in
section 2.3. We give here some details about the configuration that we used for the infer-
ence for each of those methods. One has to notice that we used the same person detector
Mask-RCNN Resnet50 FPN for top-down methods, when generating bounding boxes.

— OpenPose: we used OpenPose version 1.7.0 [94]. We performed inference using two
of their pretrained models: COCO model and the body_25 model. The last one
covers COCO keypoints extended with foot keypoints, and gives better results than
COCO model [16].

— Detectron2: we used the Detectron2 pipeline [29], which is Modular image processing
pipeline using OpenCV and Python generators powered by Detectron2. We used
the COCO Person Keypoint Detection Baselines with Keypoint R-CNN R50-FPN
3x [142].

— SimDR: we used HRNet-W48 as a backbone for the SimDR representation [118].

— CPN: we used the Pytorch implementation of this method and the pretrained
COCO.res101.384x288.CPN model [24].

— AlphaPose: we used their model Fast Pose (DUC) with ResNet152 as a backbone [3].

— DCPose: we used their pretrained model on the COCO dataset [28].

The inference of these methods returned the estimation of 17 2D keypoint locations,
based on the COCO skeleton model, for each detected person in each video frame.
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Since we had multiple people on the stage, they were detected by all HPE methods.
Therefore, a tracking heuristic was applied in order to keep track of the subject of interest,
and we eliminated the other skeletons. The tracking method uses the position of the target
skeleton. Its position is calculated as the geometric center of all detected keypoints, or the
center of the bounding box of each skeleton. Then we computed the distance ds between
the target skeleton’s position at the current frame, and all skeleton’s positions in the next
frame. We assumed that the skeletons with the minimal distance between two successive
frames belong to the same target. In order to prevent tracking failure related to occlusions,
another distance dc based on dominant color of upper and lower body parts is linearly
combined with the skeleton’s position distance: αds + (1− α)dc. This ensures that given
two people wearing clothes with different colors, even if they occlude each other, the
tracking would still keep following the right skeleton. The heuristic was implemented in
a graphical user interface to allow human interaction while the tracking is done in real
time, in order to allow for manual re-targeting in exceptional miss-tracking cases.

2.4.3 Evaluation metrics

In this study, we consider three main metrics for comparing predicted and ground
truth joint locations:

— Percentage of Correct Keypoints with 150 mm as a threshold (PCK@150mm),

— Percentage of Detected Joints at 5% of the bounding box diagonal (PDJ@5%),

— and RMSE in mm between estimated and ground truth joint locations for every
frame.

The conversion from distances of frame pixels to millimeters (mm) was done using the
ratio of boxer’s torso real length (439.56 mm) and projected skeleton spine length in the
image. We did not consider the average precision of OKS because it uses per-keypoint
constants that were fine-tuned for COCO dataset, while we do not consider exactly the
same keypoints.

Each metric can be calculated with or without first aligning the predicted joints to
the ground truth by considering relative positions to pelvis joint or middle of the hips. As
mentioned before, since the obtained skeleton joint positions of Qualisys system differs
slightly from COCO skeleton model, the 12 joints that are considered for the evaluation
are: shoulders, elbows, wrists, hips, knees and ankles, right and left each. Figure 2.5 shows
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the COCO and Qualisys skeletons used in visualization. Keypoints in blue are considered
for evaluation.

Figure 2.5 – Qualisys Skeleton (right) after reducing the number of keypoints to 15 and
COCO skeleton (left). Keypoints in blue are considered for evaluation.

Since the 3D skeleton obtained from Qualysis can be ill-projected for some frames due
to numerical errors, we used an alignment where the median of hips is the origin of the
relative positions. Using alignment typically gives a better indication of the accuracy of
the local configuration of joints, eliminating errors related to translation.

2.5 Results

We ran the 6 selected HPE methods on our entire boxing dataset which represents
16,462 images in total. Global results as well as analysis per joint and per actions are
given in this section.

2.5.1 Global measures

As explained in the previous section, since skeleton definition between Qualisys and
COCO models are slightly different, estimation errors can be calculated in 3 different
ways: by considering absolute positions, relative positions to skeleton pelvis joint (root),
or relative positions to skeleton hips’s median.

We compute RMSE using these 3 different origins when applying OpenPose on each
frame of the first boxing sequence. In this first sequence, the boxer was instructed to
perform 5 jabs with the left hand. We can see in the Fig. 2.6 that there are spikes in RMSE
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occurring in 5 regions of the graph which shows how Openpose struggled to estimate pose
for this fast action.We can also see that the shape of the graph does not change much
between the 3 coordinate origins. However, the RMSE calculated by using joint positions
relative to Qualisys hips median is the lowest one. Similar results were obtained from the
other HPE methods on the rest of the sequences.

Figure 2.6 – RMSE in mm per frame computed on the sequence #1 for the OpenPose
method with 3 different coordinate origins: (top) absolute coordinates, (middle) relative
to skeleton root, (bottom) relative to hips median. Spikes in the graph correspond to fast
actions (jabs).

In the following, we thus calculate all metrics on the HPE results by considering joint
positions relative to skeleton hips’s median for COCO and Qualisys skeletons, so that we
get spatial alignment of the two skeletons.

Table 2.4 summarizes the global RMSE obtained on the results of HPE methods
applied to all the boxing sequences. When applying the bottom-up method OpenPose on
the boxing sequences, we notices that in some frames OpenPose returns zero predictions

61



Chapter 2 – Benchmarking 2D pose estimation methods for fighting sports

for joints that are hard to estimate. This leads to having larger errors for this method
compared to the other top-down methods, thus affecting the comparison. To show the
impact of miss-detections, we calculate RMSE for this method in two ways: by considering
miss-detected joint positions and by excluding them. By performing these two calculations,
we aim at assessing the impact of rejecting keypoints with low confidence scores, as done
by OpenPose. Table 2.4 provides the percentage of miss-detection in both models of
OpenPose.

Method
RMSE
Relative to hips
median (mm)

Missdetection
%

OpenPose
Body25 265.7 36.19 1.28

OpenPose
COCO 415.6 38.44 3.30

Detectron2 39.84 _
SimDR 41.58 _
CPN 36.87 _
AlphaPose 36.98 _
DCPose 33.03 _

Table 2.4 – Global RMSE in mm obtained from HPE methods applied to all sequences
including (right) and excluding (left) OpenPose miss-detections.

For the bottom-up method OpenPose, the pretrained COCO model performed way
worse than body_25, as reported by the authors in their work. However, when excluding
miss-detections, we noticed that results of the two models become very similar. This shows
that the body_25 model, in addition to using keypoints on the legs, also improves the
detection of joints compared to their pretrained COCO model. But it still performs worse
than the other top-down approaches, especially with 1.28% rate for joint miss-detection
for the body_25 model.

The top-down approaches Detectron2, Cascaded Pyramid Network and AlphaPose,
achieved closely similar results for the global RMSE. SimDR being a top-down approach
that does not use 2D heatmap representation, it had better results than OpenPose in
our testing, but had higher error than the other top-down methods. This implies that
heatmap-based approaches are more suitable in situations where accuracy matters, despite
higher execution time. DCPose achieved the lowest RMSE error in our dataset compared
to the rest of the methods. This clearly shows the impact of using auxiliary features from
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adjacent frames, which can help in refining the joints estimation.
Table 2.5 reports results based on the Percentage of Detected Joints (PDJ), at 5% of

the boxer bounding box’s diagonal. It also provides the Percentage of Correct Keypoints
(PCK) using 150 mm as a threshold. Results are similar to the RMSE: OpenPose has
the lowest detection rate for both their models. DCPose scores the highest results, and
the other top-down approaches competing with close results. It is worth noticing that
SimDR, an approach that does not use heatmaps, outperformed AlphaPose in PDJ@5%
and Detectron2 in PCK@150mm.

Method PDJ@5% # PCK@150mm #
OpenPose
Body25

0.82 6 0.90 6

OpenPose
COCO

0.80 7 0.88 7

Detectron2 0.839 2 0.910 5
SimDR 0.8315 4 0.911 4
CPN 0.832 3 0.9173 2
AlphaPose 0.8312 5 0.912 3
DCPose 0.864 1 0.9174 1

Table 2.5 – Global PDJ and PCK comparison

2.5.2 Per-joint analysis

In order to evaluate the impact of view point and occlusions on the estimation of
joint positions, we calculated the global RMSE in mm per joint. We especially focused
on joints that were mostly relevant for the evaluation of this type of boxing movements.
Results are given in Table 2.6. We found that the RMSE for joints that were facing the
camera across all sequences (joints on the right side of the boxer’s body) had lower errors
compared to the ones that were occluded. This result was expected, as the models had to
estimate joint positions based on their prior of the human skeleton model. The table 2.6
also shows the impact of joints involved in boxing actions on the errors: joints that are less
involved in boxing actions such as hips and knees have lower errors compared to others
that are actively involved such as wrists and elbows. This implies that the different HPE
methods struggle with estimating positions of joints in fast motion, especially captured at
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low refresh rate. The level of struggling depends on the used approach as well. Although,
some methods have similar results in global metrics, we can see some differences in the
results per joint. Hence, CPN scored the best for the left elbow that was completely
occluded in most of the sequences. This shows the impact of their RefineNet network for
tackling the hard keypoints. Detectron2 also had the lowest error for the knees. Methods
that interpolate joint positions and have components doing post-processing based on
adjacent frames, such as DCPose, achieved generally better results in this area than other
methods that uses no temporal dependencies.
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Mthd.
OpenPose
Body25

OpenPose
COCO

Detectron2 SimDR CPN AlphaPose DCPose

Right
Shlder

39.09 64.38 33.67 43.19 37.85 34.26 30.99

Left
Shlder

46.84 85.71 26.96 39.19 31.35 26.82 25.36

Right
Elbow

88.97 177.53 33.01 41 34.86 32.97 27.06

Left
Elbow

353.64 466.25 75.38 66.40 58.21 64.66 58.22

Right
Wrist

182.89 349.05 40.78 61.01 43.39 43.36 37.87

Left
Wrist

764.59 1220.87 73.59 84.32 71.99 70.80 58.55

Right
Hip

12.08 46.06 10.62 12.07 10.74 10.14 11.07

Left
Hip

18.54 46.06 10.62 12.07 10.74 10.14 11.07

Right
Knee

24.32 69.92 23.29 31.26 27.20 24.56 27.78

Left
Knee

46.85 68.94 25.43 39.87 29.32 28.90 25.85

Right
Ankle

71.23 90.72 36.64 51.09 39 34.81 28.73

Left
Ankle

74.31 89.65 44.23 55.34 44.11 40.66 34.46

Table 2.6 – RMSE in mm by joint obtained from HPE methods applied to all sequences.
Left joints are more likely to be occluded.

2.5.3 Per-action type analysis

Since our dataset consists of sequences of boxing actions performed by a professional
boxer, we segment and annotate boxing actions in each sequence. The classes that we
considered are: uppercut, engagement, hook, jab, parry/block, retreat/evade and cross.
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We calculated the RMSE in mm and PCK@50mm for frames involving these actions. The
results in tables 2.7 and 2.8 show how each HPE method performs for different actions.
Table 2.7 shows that actions performed at high speed (uppercut, hook, jab, cross, and
evade) mostly have the highest errors, for all methods, compared to boxer’s engagement
and parrying/blocking. The cross has the highest error, and it also corresponds to the
faster motion. Retreating and evading the opponent require from the boxer to move their
upper-body, or their whole body, to step back, or lean down/sideways. This type of motion
may lead to upper-body self-occlusions, which is a complex problem to solve for HPE. We
reported lower RMSE for CPN compared to DCPose for Retreat/Evade action.

Method Cross Hook Uppercut Jab
Retreat/
Evade

Parry/
Block

Engagement

OpenPose
Body 25

432.75 236.97 188.90 183.84 167.17 93.34 103.80

OpenPose
COCO

638.60 442.93 479.48 459.64 348.73 283.05 309.71

Detectron2 50.87 46.67 43.77 49.20 38.66 38.45 35.57
SimDR 55.28 46.11 45.98 41.22 44.69 35.48 30.15
CPN 50.84 42.49 40.10 40.66 36.57 34.85 29.09
AlphaPose 44.42086 46.35 40.28 35.80 41.10 34.19 32.80
DCPose 44.42087 42.40 39.61 35.00 37.16 32.00 27.88

Table 2.7 – Comparison of RMSE in mm for different boxing actions. Cross, hook, upper-
cut, jab and evade are fast actions.

Table 2.8 reports the PCK values (with a threshold of 50 mm) for the various HPE
methods, for each action class. We chose a smaller threshold than previous evaluations
to penalize more miss-detections. We especially noticed that OpenPose gets higher score
than most Top-down methods for most actions. When combining these results with RMSE
reported in table 2.7, we can conclude that bottom-up methods obtain low RMSE results,
mainly because of miss-detections. Detectron2 also scored the best for uppercut and re-
treat/evade categories.
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Method Cross Hook Uppercut Jab
Retreat/
Evade

Parry/
Block

Engagement

OpenPose
Body25

0.589 0.643 0.624 0.677 0.635 0.717 0.743

OpenPose
COCO

0.570 0.631 0.621 0.666 0.643 0.709 0.728

Detectron2 0.586 0.673 0.693 0.675 0.689 0.674 0.748
SimDR 0.588 0.647 0.659 0.686 0.634 0.690 0.752
CPN 0.622 0.665 0.648 0.698 0.657 0.682 0.735
AlphaPose 0.609 0.637 0.646 0.681 0.635 0.692 0.723
DCPose 0.642 0.677 0.687 0.722 0.672 0.757 0.788

Table 2.8 – Comparison of PCK at 50 mm for different boxing actions. cross, hook,
uppercut, jab and evade are considered as fast actions.

2.6 Conclusions

In this work, we analyzed how HPE methods perform in a sport domain involving
specific fast boxing motions and we proposed an evaluation protocol for this benchmark.
Previous works have evaluated HPE either through global metrics or by evaluating them
on general human activities. In this work, we presented a more fine-grained performance
comparisons applied to fighting sports, and especially to boxing.

One of the most relevant aspects of this work is to fully evaluate the potential of
HPE methods that can be useful in fast paced sport analysis, and activity recognition.
This context motivated our choice to analyze their performance with respect to different
boxing relevant motions. One important finding was that some joint locations were better
estimated than others based on whether they were facing the camera, occluded by the
boxer’s body, or involved in fast actions. All tested HPE methods were equally struggling
to estimate boxer’s elbows and wrist, even when facing the camera, as was shown in table
2.6. This shows the difficulty of estimating joints at high speed, and also those covered
under special clothing, such as the boxing gloves. A solution to this might be to fine-tune
the pre-trained models on small annotated dataset of the sport of interest or to up-sample
the video’s frame rate using advanced frame interpolation techniques before applying
HPE methods. This assumption is supported by current works, such as Kitamura et al.
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(2022) [56] who obtained significant improvement of OpenPose for acrobatic movements
estimation, after leveraging the training process with new gymnastics and simulated data.

The videos in our experiments included mostly 2 people, therefore the performance
of this category of methods might get even worse in real world situations where more
people are included (referee and spectators in boxing for example). All used Top-down
image-based approaches performed similarly in global results as well as per joint/ action
results.

We did not consider computation time in this study, since the application context is
offline sport analysis and activity recognition. In general, OpenPose was the fastest for
human poses estimation since it does not go through human detection process. SimDR
was the second fastest method because of the reduced complexity on the last layer of their
model, that does not use heatmaps.

The overall finding of this work was that top-down HPE approaches perform well
even with complex background, self-occlusions and occlusions between two opponents
compared to bottom-up HPE approaches. Methods that refine their estimations using
temporal information from adjacent frames perform the best in these scenarios. Therefore,
we suggest that future work related to video-based sport analysis and studies should utilize
top-down HPE approaches for motion extraction, especially ones that operate on temporal
windows for more accurate estimation.

2.7 Appendix

2.7.1 Camera Calibration

A calibration routine was used to estimate intrinsic and extrinsic parameters of the
camera. Intrinsic camera parameters describe internal properties of a camera (focal length
(fx, fy) and image center (xc0, yc0)). Extrinsic camera parameters describe its orientation
and position in world space (which we consider to be relative to Qualisys world space for
3D coordinates), in terms of rotation R and translation t. The mapping formula from 3D
world space points (Xw, Yw, Zw) to 2D image points (xc, yc) is given in Fig. 2.7.
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Figure 2.7 – Pinhole Camera Projection formula (from [105]): intrinsic and extrinsic pa-
rameters are used to project 3D points (Xw, Yw, Z, w) to 2D image points (xc, yc)

A chessboard was moved around the stage, including deliberate twisting and tilting
motions. The used chessboard had 18x12 internal corners. All squares have identical length
of 5 cm for good visibility from the cameras. The chessboard was printed on A0 format
then glued to a wooden board to ensure co-planarity. Care was taken to keep the front
of the calibration board within the field of view during the calibration of the camera
as shown in Fig. 2.8. Six markers were placed at different locations on the board to
make correspondences between 2D positions in images and 3D positions in the Qualisys
coordinate system; This help to estimate the extrinsic parameters with respect to the
motion capture reference system.

Figure 2.8 – The used calibration chessboard
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Figure 2.9 – Camera calibration process using OpenCV for intrinsic parameters: Red
points are chessboard corners detected by OpenCV in the pose image. Green points are
re-projection of the corners from camera reference to image reference using the resulting
intrinsic parameters.

For each frame of the calibration sequence, the internal corners of the calibration
pattern were detected using the OpenCV library. The detections were then processed by
OpenCV to approximate intrinsic matrices for the camera, then its distortion as indicated
in Fig. 2.9. The extrinsic parameters were estimated using EPNP (Efficient Perspective-
n-Point) [64] implementation of OpenCV.

The global re-projection error from intrinsic camera calibration with distortion was of
0.38 px using 17 different chessboard poses.

2.7.2 Boxing Sequences

Table 2.9 – Summary of the different boxing actions performed by the boxer in each
sequence.

Sequence Type Number of hits Repetition Actions
#1 Attack 1 5 Jab Left
#2 Attack 1 5 Cross Right

#3 Attack 2 5
Cross Right
Jab Left
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#4 Attack 3 5
Cross Right
Jab Left
Cross Right

#6 Attack 2 6
Jab Left
Jab Left

#7 Attack 3 6
Jab Left
Cross Right
Jab Left

#8 Attack 3 4
Jab Left
Jab Left
Cross Right

#9 Attack 2 4
Cross
Jab
Hook Left

#10 Attack 2 5
Cross
Jab
Hook Left

#11 Attack 3 5
Jab
Cross
Hook Left Body

#12 Attack 3 5
Jab Left
Hook Right Body
Hook Right

#13 Attack 3 5
Cross Right
Hook Left Body
Hook Left

#14 Attack 2 5
Hook Right
Hook Left Body

#15 Attack 2 6
Hook Right Body
Hook Left

#16 Attack 2 6
Uppercut Right
Hook Left
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#17 Attack 2 4
Uppercut Left
Hook Right

#18 Attack 3 5

Jab Left
Cross Right
DisplacementToRight
Hook Left

#19 Attack 2 9
Cross Right
Jab Left
DisplacementToLeft

#20x2 Defense 1 23 External Parry
#21 Defense 1 27 Chasing Parry
#22 Defense 1 15 Retreat
#23 Defense 1 17 Side Dodge
#24 Defense 1 20 Down Dodge

2.7.3 Video Tracking Tool for HPE

Figure 2.10 – The tool used for tracking keypoints of the subject in a video recording based
on distance through successive frames and upper/lower body color regions. Initially, all
skeletons detected by the HPE method are displayed. The user then choose the skeleton
of interest then the tracking starts for the rest of the video
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Figure 2.11 – The tool also allows for re-assigning the tracked skeleton by the user and
correcting tracking in previous frames.
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Chapter 3

INTERACTION IMITATION FROM MOTION

CAPTURE

In the previous chapter, we highlighted the challenges in extracting fast-paced motions
of interacting fighters from RGB videos. These challenges include occlusions, cumulative
errors, and hierarchical dependencies on extraction systems. Additionally, semantically
segmenting motions before modeling interactions between fighters is difficult.

To address these issues, we propose an alternative approach that leverages expert
demonstrations and physics-based simulations of motion. By treating the problem of sim-
ulating fighter interactions as an imitation learning problem, we aim to control physically
capable agents to generate interactions that resemble expert demonstrations captured in
motion capture data. This approach aims to guarantee a level of realism in the interaction
simulations. This approach also comes with its own set of challenges including the model-
ing of interaction of two fighters and the leveraging of the motion capture demonstrations
to train physically simulated agents to imitate reactive behavior and also adding control
to it.

Multiple physics-based character interactions can be simulated using space-time con-
straints and optimal control [72, 133]. These approaches can find an optimal solution given
a set of manually edited constraints, but may fail to imitate the style given in a small set
of examples. Data-driven approaches select the optimal actions available in a database of
examples, using game tree based methods [116, 117]. However, due to the simplicity of
the rules and the high computational complexity, the intelligence of rule-based simulated
characters is too limited to handle stylized interactions [65].

Physics-based character control is an active field of research, as it enables to gener-
ate physically valid animations in complex interactive environments. In applications with
multiple characters (simulated, or real-time avatars of users), these physics-based charac-
ters have to realistically interact with others in a large variety of situations. In the case
of Virtual Reality fighting training, the user is not necessarily expecting an optimal be-
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Figure 3.1
Two examples of imitation-based simulation with two different styles. Top: boxing scenario trained with
single-actor and multiple-actors motion capture boxing datasets. Bottom: Qwankido (martial art) sce-
nario based on the same approach, simply replacing the boxing datasets by Qwankido datasets. In these
examples, the sequences show the ability of the characters to avoid attacks and then to counter-attack.

havior for the virtual opponent, but may prefer to prepare fighting against an opponent
that imitates the behavior and the motions of a particular real boxer. Such simulation
should take the current state of the interaction into account, select the most relevant
action to perform and compute the physically-valid corresponding motion, as a specific
human would do, by imitating a small set of examples.

Reinforcement learning based Imitation Learning has been explored for designing
physics-based controllers capable of imitating motions given unstructured database of
examples while achieving different tasks [102, 138, 99, 139, 140]. Recently, Adversarial
Motion Priors (AMP) approach, based on the Generative Adversarial Imitation Learning
(GAIL) [46] framework has been proposed. It mainly uses an adversarial discriminator
output as a reward instead of manually designing an imitation reward opposite to tracking-
based prior work that rely on specifying step-based handcrafted imitation rewards [102,
138]. However, it has only been applied to control a single character to generate motions
similar to motion dataset while performing simple tasks such as locomotion, running and
hitting a target.

In this chapter, we seek to develop a system, Multi-Agents Adversarial Interaction Pri-
ors (MAAIP), for imitating interactions and motions of multiple physics-based characters
from unstructured motion clips. Our method is based on the Multi-Agent Generative Ad-
versarial Imitation Learning (MAGAIL) [120] framework, and aims at extending AMP to
deal with both the interaction and the motion of the controlled physics-based characters.
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Two unstructured datasets are used by the system: 1) a single-actor dataset containing
motions of single actors performing a set of motions linked to a specific application, and
2) an interaction dataset containing few examples of interactions between multiple actors.
Our system trains control policies allowing each character to imitate the interactive skills
associated with each actor from the demonstrations, while preserving the intrinsic style.
Similarly to AMP, the single-actor dataset is used to train a single motion prior, while the
interaction dataset offers a novel complementary interaction prior to train each agent on
how to behave in different interactive situations with other agents. The interaction prior
is therefore acting as a measure of similarity between the motions of the characters when
interacting with each other, and the interaction examples in the datasets. The single mo-
tion prior offers a complementary repertoire of individual possible motions that may not
appear, or not sufficiently, in the multiple-actors dataset, which is a flexible framework as
interaction data is harder to obtain than single actor data in practice.

In the following sections, we will present our approach for simulating interactions
between fighters using imitation learning and physics-based simulation. Our initial results
focused on imitating interactions from unstructured data of two fighters performing light
shadow-boxing with minimal physical contacts, presented as a poster at SIGGRAPH Asia
2022 [151].

We extended the method to handle boxing with physical contact, as well as another
fighting activity with full-body attacks. The approach was also applied to various ap-
plications beyond imitation, including user commands and interaction constraints. We
evaluated the method by simulating competitive interactions between two physics-based
characters with different styles: boxing (fists only) and Qwankido (a Sino-Vietnamese
martial art with full-body interactions).

We also showcase how to control the interaction by adding new rewards, such as inter-
actively controlling the direction of the simulated fight, making the fighter more aggres-
sive, or more defensive. These findings were presented at The Symposium on Computer
Animation (SCA’23) and published in the journal Proceedings of the ACM in Computer
Graphics and Interactive Techniques (PACMCGIT) [152].

3.1 Related Work

Physics-based simulation relies on the dynamic equation of motion to generate joint
angles trajectories for a character. However, the main challenge with these methods is to
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design a controller that generates realistic motions, with a desired style, and given a set
of goals to achieve. In the two next sections, we review relevant physics-based simulation
methods for a single (section 3.1.1) and multiple (section 3.1.3) characters. We then
introduce Imitation Learning techniques used for physics-based character simulation in
section 3.1.2.

3.1.1 Single Character physics-based character control

Physics-based character simulation has a long history in computer animation. Early
efforts focused on developing locomotion control using motion analysis and hand-crafted
controllers [47], abstract models [22], optimal control [86], model predictive control [37,
84] and reinforcement learning [144, 149]. These approaches typically require prior knowl-
edge and hand-tuned parameters, which can make them difficult to apply to complex
motions and scenarios. To address these difficulties, several physics-based controllers have
been supplemented with the motion capture data, using trajectory tracking to follow
motion clips and a balance controller to keep the character upright [164]. More recent
works tracked reference motions by learning policies that get feedback from the physics
simulation [63, 74]. With the development of deep reinforcement learning techniques, it
became possible to robustly track agile human motions [102] and to generalize to various
morphologies [141] and environments [144].

3.1.2 Imitation Learning for physics-based character simulation

Imitation learning in physics-based animation uses reference motion data to improve
the quality of the simulated motions. This is typically done by implementing a tracking
objective, where the goal is to minimize the error between the simulated poses and example
poses. This can be achieved through the use of a phase variable provided as an additional
input to the controller for synchronization, or by providing target poses from the reference
motion as inputs to the controller [75, 25, 62, 63, 74, 102]. However, using a single phase
variable may not allow scaling to datasets containing multiple disparate motions, and
using a reference pose as a target for the controller requires a high level controller to
select the motions to imitate from as well as the manual definition of the pose error
metrics [101].

Adversarial imitation learning [46, 163] is an alternative approach to avoid manually
designing and tuning specific pose error metrics. It showed promising results to imitate
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motions, given a database of examples [83, 136, 145]. This approach relies on an adver-
sarial discriminator, aiming to distinguish simulated motions from those depicted in the
demonstration data. The discriminator is then used as a reward function to train a control
policy to imitate the type of motion observed in the demonstration data. However, adver-
sarial learning algorithms can be unstable during training, and the quality of the resulting
motion can still be low compared to tracking-based methods. Adversarial Motion Priors
(AMP) [99] proposed a number of tweaks to address those issues, such as using gradient
penalty, but did not handle interaction imitation of multiple characters.

3.1.3 Multiple characters animation

Simulation of multiple characters interacting with each other involves defining properly
the interaction between characters: relative positions between body parts of the charac-
ters [45], but also more complex parameters, such as gaze, orientations or time coordi-
nation. Optimal control with space-time optimization has been used to solve complex
interaction problems involving multiple physics-based characters [72, 133]. It requires
careful design and tuning of the cost functions to obtain realistic simulations. Other
works proposed an offline game tree expansion to explore all the possible interactions
between characters to simulate multiple characters competing or collaborating in a given
scenario [116, 117]. All these approaches have been designed to find an optimal solution,
but cannot easily imitate realistic behaviors contained in example motion capture clips.
When a few examples of interactions are available, reinforcement learning is a promising
way to control physics-based characters. [41] proposed a hierarchical policy that incorpo-
rates navigation, footstep planning, and bipedal walking skills, for controlling navigation
of pedestrians. Unlike previous approaches, this method learns control policies that can
handle interactions between multiple simulated humanoids. [139] proposed a two-steps
approach that first learns an imitation policy from single-actor motion capture data,
then transfers it into competitive policies. The authors of [76] trained football teams of
physically simulated humanoids in a sequence of training stages using a combination of
imitation learning, single/multi-agent reinforcement learning and population-based meth-
ods. However, these approaches have not been designed to leverage available interaction
data of a few examples.

Multi-Agent Generative Adversarial Imitation Learning (MAGAIL) [120] is a promis-
ing framework to design controllers that imitate the interaction behavior of multiple char-
acters given a small set of unstructured motion capture examples. We explore the use of
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this framework to control multiple physics-based characters. This raises the question of
how to define the state representation to model the interaction of multiple characters, and
how to build a discriminator based on interactions instead of just the motion of a single
character.

3.2 Multi Agent Interaction Priors for Fighting Sport

Interaction imitation problem could be viewed as a Partially Observable Markov Game,
where the goal is to learn optimal policies of multiple agents interacting with each other
in the same environment [70, 15]. To produce realistic motions and interaction behaviors
between multiple characters, we use two main databases (also denoted demonstrations):

— a Multiple-actors motion capture dataset MI that includes interaction between mul-
tiple actors. For our application, we use a dataset of fighting motions between two
fighters of two different styles: Boxing (only the upper-body attacks) and QwanKiDo
(full-body movements)

— a Single-actor motion capture dataset MS that includes basic skills of the same
activity. It enables simulated physics-based characters to have access to a larger
repertoire of realistic motions than those included in the Multiple-actors dataset.

Figure 3.2 illustrates the overview of our approach. Each dataset MI and MS con-
tains motion clips {mi

S ∈ MS} and {mi
I ∈ MI}. The goal of the method is to simulate

interaction behaviors and motions that imitate the style contained in the Multiple-actors
interaction dataset MI . The Single Actor dataset MS is used to 1) offer a wide variety of
possible motions to the simulated characters, and 2) make the physics controller be more
robust in handling situations not present in the interaction demonstration.

Each motion clip can be seen as a sequence of character poses mi
S = {qit} for the

motion dataset MS, and as a sequence of two interacting characters poses mi
I = {qi,0t , qi,1t }

for the interaction dataset MI , with two fighters denoted 0 and 1 respectively. Based on
these poses mi

I , we propose to build an observation at time t, ot=[oselft , ooppt ], for each
character (self for the agent, and opp for the opponent). In Section 3.2.2, we give more
details about the agent’s observations.

We define the controller for each character using a policy:

π(at|oselft , ooppt ) (3.1)
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Figure 3.2 – Overview of the system. Multiple-actors motion capture clips are used to train
an interaction discriminator assigned to each agent, aiming at returning an interaction
reward rI . Single-actor motion clips are used to train a motion discriminator that returns
a motion reward rM . The rewards learned by the two discriminators are combined to train
each agent’s policy in order to imitate the interactive behavior depicted in the datasets.

where at is the action that specifies the set of target joint angles (target poses) used by
the PD controller [125]. Based on the physical model, the contact forces are computed
during the simulation, both during the training and simulation phases. Thus, they can
be used to simulate impacts, or design specific rewards minimizing self-damages or max-
imizing damages on the opponent. An adversarial discriminator is trained to compute a
reward rI([oselft , ooppt ], oselft+1 ). For each character, this discriminator is trained to distinguish
between interactions simulated by the simulated agent from those shown in the demon-
strations (Multiple-actors motion capture dataset). Hence, it is possible to train specific
discriminators for each character, with its specific style. This is a key idea here, as we
expect to be able to generate individual style for each character in the final multiple-
characters simulation.
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The observation’s transition (oselft , oselft+1 ) is also used to compute a motion reward
rM(oselft , oselft+1 ) that measures the naturalness of the simulated motion. Similarly, rM is the
output of an adversarial discriminator trained to differentiate between generated motions
and demonstrations stored in the Single-actor motion capture dataset.

The two learned rewards could be combined with other rewards rCt , to offer control
facilities, such as maximizing physical contact on a specific body part of the opponent, or
driving the interaction to a given direction.

In the following sections, we introduce the framework of Multi-Agent Generative Ad-
versarial Imitation Learning [120] in section 3.2.1. We then present our architecture
adapted from it, that we dub Adversarial Interaction Priors in section 3.2.3 with two
main contributions: modeling the interaction with an opponent: section 3.2.2, and new
objectives for training the system: section 3.2.3. Then, we provide additional details about
network architecture: section 3.2.4 and the algorithm for training the system: section 3.2.5.
Finally, we showcase different experiments: section 3.3 and ablation studies: section 3.4 for
validating the proposed system, then end the chapter with the limitations of the system
and the future directions: section 3.5

3.2.1 Preliminary on Multi-Agent Generative Adversarial Imi-
tation Learning

Multi-Agent Generative Adversarial Imitation Learning (MAGAIL) [120] is a variant
of the Generative Adversarial Imitation Learning (GAIL) [46] that is used to deal with
multi-agent interactions. In MAGAIL, multiple agents i (each with their own policy πθi

)
are trained to imitate the behavior of one or many expert policies πEi

, using a Generative
Adversarial Network framework [35]. For each agent i, a parameterized discriminator
Dωi

maps state-action pairs (st, at)i to scores that are optimized to discriminate expert
demonstrations generated by unknown expert policy πEi

from behaviors produced by
the agent’s policy πθi

. Dωi
plays the role of a reward function for the generator πθi

,
which in turn attempts to train the agent to maximize its reward, therefore fooling the
discriminator [120]. The objective to be optimized is the following:

min
θ

max
ω

EπE
[
N∑
i=1

logDωi
(s, ai)] + Eπθ

[
N∑
i=1

log(1−Dωi
(s, ai))] (3.2)

where πθ denotes the joint policy for N agents πθ = ∏N
i=1 πθi

and πE = ∏N
i=1 πEi

denotes
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the joint policy for N experts. The policies πθi
are updated through reinforcement learning

by using as a reward function for each agent i:

rit = − log(1−Dωi
(st, at)i) (3.3)

3.2.2 Modeling Self and opponent observations

The observation of each agent ot = [oselft , ooppt ] consists of a set of features describing
the proprioceptive configuration of its own body oselft at the current time t, as well as
features describing the current observation about the opponent. The features used to
model oselft are:

— Root’s height from the ground ∈ R

— All body parts’ positions in the character’s local coordinate frame ∈ R42

— All body parts’ local rotations ∈ R90

— All body parts’ local linear and angular velocities ∈ R45

We used a reduced set of features for observations about the opponent compared to the
one used in [139]. Each agent’s features about the opponent ooppt include:

— Opponent’s root position ∈ R3, orientation ∈ R6, linear and angular velocities ∈ R3

in the current character’s local coordinate frame

— Opponent’s head, torso, hands and feet positions and velocities in the current charac-
ter’s local coordinate frame ∈ R18

We used the linear and angular velocities as relevant information for deciding the ap-
propriate reaction to the opponent. In the context of physical interaction between two
characters, we assume that the controller should benefit from potential anticipation skills
thanks to this type of information. Indeed, in real competitive or collaborative interactions
between people, this anticipation skill is important.

Similarly to previous works [100, 99], the pelvis segment is assumed to be the root of the
character. The local coordinates are then expressed in this reference frame, with the x-axis
oriented along the root facing direction, and the z-axis is up. The body parts’ rotations
are encoded using two 3D vectors corresponding to the tangent and normal of its link
local coordinate frame, expressed in the link parent’s coordinate frame. The observation
space obtained from these features has a dimension of 274. The actions at correspond
to target poses used by the Proportional Derivative (PD) controller to compute joint
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torques for the character’s joints. The target pose for spherical joints is represented by
3D exponential map q ∈ R3 [36] such that the rotation axis v is computed by v = q

||q||2
and the rotation angle θ = ||q||2. This representation is more compact than 4D axis-angle
or quaternion representations, and also avoids the gimbal lock issue in Euler angles [99].
The target rotations for revolute joints are specified as 1D rotation angles q = θ. The
resulting action space has 28 dimensions.

3.2.3 Adversarial Motion and Interaction Priors

In order to imitate close interaction from motion capture demonstrations, we use
a learned reward function rM that takes into account the motions generated by each
simulated character i. We also use a learned interaction reward rI that takes into account
its behavior with respect to the opponent. We use a combination of these two rewards to
train each agent with RL:

r(ot, at, ot+1) = wMrM(oselft , oselft+1 ) + wIrI(ot, oselft+1 ) (3.4)

where wM and wI are weights associated with the two rewards functions rM and rI

respectively.

Following [99], the single motion prior DM is modeled by a learned discriminator
trained to predict whether an observation transition (oselft , oselft+1 ) is a real sample from
the dataset, or a sample simulated by the agent. We model the interaction reward by
learned discriminators, each one assigned to an agent. Given the interaction dataset MI

of multiple actors, each discriminator DI is trained to predict if the transition (ot, oselft+1 ),
i.e. the reaction of the agent with respect to the other one, is within the distribution of
the demonstrations.

Since we use demonstrations from unlabeled and unstructured motion capture clips, we
do not have access to actions needed by MAGAIL, as introduced in section 3.2.1. There-
fore, we train the motion discriminator DM with the observation transitions (oselft , oselft+1 ),
and the interaction discriminators DI with transitions (ot, oselft+1 ) as inputs, as suggested in
previous works [130]. In this case, the reward function based on the motion discriminator
is given by:

rMt = − log(1−DM(oselft , oselft+1 )) (3.5)
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while the reward based on the interaction discriminators is:

rIt = − log(1−DI(ot, oselft+1 )) (3.6)

We also use the gradient penalty regularization [99] in order to stabilize the training
of the discriminators and improve the quality of generated behaviors. Therefore, with
ϕ = (oselft , oselft+1 ), the objective for training the single motion prior DM is formulated by:

min
DM
−EπE

[logDM(ϕ)]− Eπi
[log(1−DM(ϕ))] + wgpEπE

[∣∣∣∣∣∣∇ϕD
M(ϕ)|ϕ

∣∣∣∣∣∣2]
(3.7)

where πE denotes an unknown expert policy that generated the demonstration transitions,
wgp is a manually specified coefficient. On the other hand, with ψ = (ot, oselft+1 ), the objective
for training each interaction prior DI is:

min
DI
−EπE

[logDI(ψ)]− Eπi
[log(1−DI(ψ))] + wgpEπE

[∣∣∣∣∣∣∇ψD
I(ψ)|ψ

∣∣∣∣∣∣2]
(3.8)

3.2.4 Network Architecture

We model the different components of the system (agents policies, single motion prior
and interaction priors) as neural networks whose parameters are optimized using the pre-
viously defined objectives. In this section, we present the different networks’ architectures.
Since the agents are homogeneous (i.e. they have the same observation and action spaces),
we used parameter sharing for their policies, so that all agents share the same network.
Previous works have shown that this makes the learning be more efficient [153, 127, 20].
Therefore, the policies π are modeled by a neural network for which the inputs are the
full observation ot of each agent i as well as an indicator of the identity of the agent i, and
outputs the mean µ(ot,i) of a Gaussian distribution over actions π(at|ot,i) = N(µ(ot,i); Σ)
where the covariance matrix Σ is fixed during training. It is a fully-connected network con-
sisting of 3 hidden layers of 1024, 1024, 512 units with ReLU activations [89], followed by a
linear output layer. We also use centralized training and decentralized execution (CTDE)
for training the agents [79]. Therefore, we use a centralized value function V (st = (o0

t , o
1
t ))

shared by the two agents during training that takes as input the concatenation of all
agents’ local observations to build a global state st [79]. The value function V (st), the
interaction discriminators DI and motion discriminator DM , are modeled as networks
with similar architecture.
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3.2.5 Training Algorithm

After defining the training objectives for the different components of the system mod-
eled using neural networks, we present in this section the training algorithm used for their
optimization. We use the framework of MAGAIL [120] with the multi-agent proximal pol-
icy optimization algorithm MAPPO [153, 115]: at each time step t, each agent receives a
local observation ot = [oselft , ooppt ] from the environment and decides an action at. Then, it
receives an interaction reward rIt and a motion reward rMt , computed from their respective
discriminators, and possibly a control reward rCt specified by the user, to add a level of
control to the interaction of the characters. Similar to [99], we use a combination of these
rewards to get the final imitation reward rt at time t according to Equation (3.4).

To stabilize the training in tasks where additional control rewards are used, we use
reward scheduling so that at the beginning of the training, agents learn first to imitate
motions from the single motion datasets then we introduce later the rewards for interaction
and then the control reward. We find that by using this strategy, the resulting interaction is
more convincing and does not collapse to unwanted behavior because of opposing rewards.
After collecting a batch of trajectories with the policies, we record them in buffers to
update the policy networks, the centralized value function V , and the discriminators DI

and DM , similarly to [99]. We also add replay buffers BI
i for each interaction discriminator

DI associated with each agent i.
We use Generalized Advantage Estimation GAE(λ) [114] to compute advantages for

updating the policies. The centralized value function is updated using TD(λ) [122]. We
follow the recommendations from [153] to choose the hyper-parameters of the multi-agent
PPO algorithm The training process is described in Algorithm 2.

3.3 Experiments and results

We carried out experiments on two scenarios: boxing, where the agents only used
displacements and upper-body actions, and QwanKiDo, a Sino-Vietnamese martial art
involving full-body actions.

We first evaluated the standard case, using the imitation reward only (section 3.4), in
an application where the two characters had to imitate interactions of the demonstrations.
Then, we showed that adding a task-specific reward for minimizing (resp. maximizing)
the damage received by (resp. given to) each character leaded to simulate more defensive
(resp. aggressive) behaviors. We also demonstrated an example of controlling the moving
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Algorithm 2 Training Algorithm for Multi-Agent Interaction policies
1: Require: Initialized policies π, interaction discriminators DI , motion discriminator
DM and value function V ; Single-Actor motion dataset MS; Multi-Actor interaction
dataset MI

2: Ensure: Learned policies π and reward functions DI and DM

3: while learning is not done do
4: Bπ, BM , BI ← ∅ initialize data buffers for each agent.
5: for trajectory k = 1, ...,m of length T do
6: τ k ← (ot, at)T−1

t=0 collect trajectory rolled out with policies π for all agents
7: for timestep t = 0, ..., T − 1 do
8: dMt ← DM(oselft , oselft+1 ) get score from the single motion prior for all agents
9: dIt ← DI(ot, oselft+1 ) get scores from interaction priors for all agents

10: rMt ← calculate motion reward according to formula 3.5. for all agents
11: rIt ← calculate interaction reward according to formula 3.6. for all agents
12: rt ← combine rMt and rIt according to formula 3.4.
13: record rt in the trajectory τ k for each agent.
14: store transitions (oselft , oselft+1 ) in BM for all agents.
15: store transitions (ot, oselft+1 ) in BI for each agent.
16: end for
17: store trajectory τ k in Bπ for each agent.
18: end for
19: for update steps i = 1, ..., n do
20: update DM using K transitions sampled from MS and from BM according to

formula 3.7.
21: update each DI using K transitions sampled from MI and from BI according

to formula 3.8.
22: end for
23: update π and V using samples from Bπ for all agents using MAPPO.
24: end while
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direction while keeping the interaction. Finally, we pushed the system to the limits by
simulating interaction between characters that were trained on different sets of demon-
strations.

3.3.1 Experimental setup

The unstructured dataset used for training agents on fighting interactions contains
motions of two different fighting styles: boxing and QwanKiDo. We used a Qualisys
opto-electronic motion capture system, composed of 22 Oqus 200Hz cameras, to track
46 anatomical landmarks placed according to the Qualisys animation marker set guide-
lines. When contact occurred, some markers may fly away, so that the corresponding
samples were eliminated. The data were down sampled to 30Hz and re-targeted to the
character’s skeleton used in the simulation. Some examples of motion capture sessions in
boxing and QwanKiDo are given in the supplementary video [150].

Isaac Gym [80] was used for the physics-based simulation engine for GPU-based accel-
erated training. We simulated 2048 environments in parallel on a single NVIDIA A6000
GPU, each with 2 agents. We ran the simulations at a frequency of 60Hz with 2 sub-
steps, while the policies were queried at 30Hz. All policies were trained for 2 billion steps,
which takes approximately 15 hours of training time. The algorithm’s hyper-parameters
are available in Table 3.1.

Boxing Scenario. The boxing scenario involves two characters who can displace and
use their upper-body to attack (with jabs, crosses, hooks and uppercuts), or defend (using
guard, slipping, swaying, parrying, blocking and clinching). For the Single-actor motion
dataset, 4 high-level volunteer boxers (1 professional and 3 regional-level competitors) par-
ticipated in a single full-body motion capture session. The resulting single-boxer dataset
contained approximately 15 minutes of boxing. For the Multiple-characters dataset, we
asked pairs of the above boxers to perform 30s to 90s rounds. For each trial, the opponents
started far away from each other, to capture some displacement toward a real opponent.
Two pairs of boxers participated in this experiment, with different personalized "specials"
(considered as styles). The total duration of multiple-actors dataset was 3 minutes.

QwanKiDo scenario. The QwanKiDo scenario also involves two characters, but the
repertoire of possible motions is larger, including kicks, elbow or knee strikes, and sweep-
ing. The protocol was similar to the one used for boxing, with 2 participants, single actor
and two-actors sessions. The total usable motion capture duration for the single-actor
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Parameter Value
T Episode length 1200

wgp Gradient Penalty Weight 5
Samples Per Update Iteration 131072

Horizon 32
PPO Mini Batch Number 2

PPO Learning Epoch Number 6
Adam Step size 2× 10−5

B Discriminators Replay Buffer Size 100000
K Discriminators Batch Size 4096

γ Discount 0.99
TD(λ) 0.95

GAE(λ) 0.95
Σπ Action Distribution Variance 0.0025

PPO Clip Threshold 0.02

Table 3.1 – Hyper-parameters used and implementation details for reproducibility. We followed the
recommendations from [153] for choosing the hyper-parameters of the multi-agent PPO algorithm.

dataset was 10 minutes. This scenario raises more challenges for the imitation approach,
as the quantity of available demonstrations is smaller, whereas the number of possible
actions is larger. Moreover, the "specials" for each fighter are visually more different than
those observed for the boxing scenario. The total duration for the multiple-actors dataset
was 3 minutes.

3.3.2 Fighting simulation using the priors only

In this first application, we only used the rewards computed from the discriminators’
outputs. We used the weighting values of wM = 0.2 for the motion reward and wI = 0.8
for the interaction reward in Equation 3.4. For the interaction, each agent was associated
with the same opponent in all the demonstrations, assuming that it should enable to
provide this specific opponent style of interaction to this agent.

Visual results are depicted in figures 3.3 and 3.4. In the resulting sequences, one can
see that the fighters learned basic fighting skills, such as getting closer to the opponent,
staying in guard stance when approaching, anticipating openings for attacks and evading
incoming attacks. They also learned footwork skills for fighting as they move around the
opponent and remain at a safe distance before switching to attack. The experts who
participated in the motion capture sessions were able to recognize the participant who
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Figure 3.3 – Simulation of boxing interaction between two agents. The boxers show agility
in the movements, interactive skills such as getting closer to the opponent, dodging and
blocking attacks as well as finding attack openings.

Figure 3.4 – Simulation of QwanKiDo interaction between two agents. The agents show
highly-dynamic motions, such as using full body for attacks, unique fighting styles similar
to the actor motions used for training them.

served as a demonstration for each avatar, in all the simulations. This is a promising
result, as they enabled to recognize the participants only looking at neutral synthetic
characters which policy was trained with this participant dataset. This result should of
course be confirmed by a scientific perceptual study.

We ran numerous simulations, with random initialization states (global position and
orientation) and obtained very convincing results, as shown in the supplementary video [150]
. In very few cases, we could obtain clearly unrealistic results, which demonstrates one
of the fundamental limits of imitation-based approaches: too few examples in the demon-
strations may lead to simulate unrealistic behaviors. These unrealistic behaviors could be
strange following behaviors, or repeating the same motion many times (due to mode col-

Figure 3.5 – An example of interaction simulation with heading controls. The fighters are
constrained to move towards a given target direction, represented by the red line.
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Figure 3.6 – An example of fighting simulation using additional control rewards, that
encourages the agents to minimize the damage dealt by the opponent to specific body
parts: head, torso and pelvis. Top: without control reward ; Bottom: with control reward.
The reward drives the agents into simulating interactive behavior where they act more
defensively, and they block attacks more often.

lapse of the discriminators). To partly mitigate this risk, the system could be trained with
more examples, and could also use additional rewards, such as minimizing or maximizing
impacts, which should provide a wider set of potential solutions.

3.3.3 Fighting simulation using additional task-dependent con-
trol rewards

To control the generated interaction and guide the selection of the motions the agents
should imitate from the dataset, we tested additional task rewards rC . Firstly, we intro-
duced a reward that encourages the agents to minimize the damage dealt by the opponent
to specific body parts. Secondly, we designed another reward that encourages maximizing
damages on the opponent. These task-specific rewards are reasonable choices for both
boxing and QwanKiDo.

The additional rewards could enable the system to find acceptable solutions when
facing a new situation that was not captured in the single motion and interaction priors.
Compared to previous works, the new behaviors are generated automatically, without the
need of designing a specific motion planner for motion selection.

Let |fopp→self | be the magnitude of external contact normal forces applied by an oppo-
nent (considered as "damages") to the head, torso and pelvis of a character. The damage
minimization reward is then given by:

rC = exp(−w · |fopp→self |). (3.9)
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Similarly, the damage maximization reward is expressed by:

rC = 1− exp(−w · |fself→opp|) (3.10)

The weighting for the different rewards becomes: wM = 0.1, wI = 0.4 and wC = 0.5. We
computed the "damages" applied to each character by averaging the total damage received
over 32 trials, with an episode length of 1200 frames, with and without using these task
rewards. The quantitative results (see Table 3.2) showed a significant decrease of the
"damages" with the damage minimization reward compared to using the imitation reward
only. Reversely, we noticed an increase in the received damage when using the damage
maximization reward. The top part of Figure 3.6 depicts a QwanKiDo sequence simulated

Scenario Imitation only Damage min. Damage max.
Boxing Duo 1 2210 3261 820 862 6759 6143
Boxing Duo 2 1135 2010 957 1393 9861 8146
Qwankido 4038 2216 123 215 8623 9435

Table 3.2 – Mean damage values (in Newton) for 32 randomly initialized episodes of length
1200 each, with imitation reward only, minimizing or maximizing damage additional re-
ward. The damages are cumulative contact forces applied to the head, the torso and the
pelvis, either of the controlled character (to minimize damages) or of the opponent (to
maximize damages).
without the damage minimization reward, leading to a series of attacks. The bottom part
of Figure 3.6 depicts the resulting sequence when adding the damage minimization reward,
which shows more defensive and less engaging behavior.

3.3.4 Target Heading Task

In this task, the objective for the characters is to move along an imposed target heading
direction d∗, while still fighting one against each other. We conditioned the policies of the
agents on the given target direction in the local coordinate frame for each character d∗

t at
time t, and we used a reward function similar to the one used in [99]:

rC = exp(−w · (d∗ · vroot)) (3.11)

where vroot is the root velocity for each character.
The weighting used for this task is wM = 0.1, wI = 0.4 and wC = 0.5. Figure 3.5

shows the interaction of two QwanKiDo fighters moving towards a given direction. The
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resulting task return of the heading control task for QwanKiDo and Boxing is reported
in Table 3.3. The resulting animation is shown in the supplementary video.

This task in particular illustrates the interest of the single motion prior. The results
show that characters trained with the single motion prior slightly better follow the head-
ing direction, with slightly better task return rC . Although the agents trained without the
single motion prior might obtain a good task return, they only can imitate the motions
included in the interaction dataset, which can lead to unnatural behavior. Indeed, some
selected displacements may exhibit hits or avoidance to satisfy the heading constraints,
while these actions are not appropriate in the current situation: avoidance without op-
ponent attack, or punches while the opponent is too far. This type of artifacts was not
observed when also using the single motion prior.

Let us notice that the training for this task is very sensitive to the weights associated
with each component. Indeed, when giving more importance to the single motion prior
with a high wM weight, the simulated agents follow the given direction without interacting
with each other, as some displacement without interaction are available in the single mo-
tion prior. Reversely, when giving more importance to the interaction prior wI , the agents
mainly use displacements based on hits and avoidance, as interaction-free displacements
are rare in the interaction prior (see the supplementary video for some examples [150]).

Scenario With Single MP Without Single MP
Boxing Duo1 0.86 0.82
Boxing Duo2 0.80 0.76
QwanKiDo 0.90 0.89

Table 3.3 – Performance of the trained agents in the heading control task when using or
not the single motion prior (MP). The performance is quantified by the average normalized
task return rC for 32 episodes of 500 length each.

3.3.5 Transfer to unseen fighting situations

In our approach, the main idea is to imitate an interaction given in a multiple-
characters motion capture dataset. To evaluate if our method could generalize to han-
dle novel and unseen fighting situations, we trained two agents with different interaction
datasets. Let us consider for example that the agent 0 is trained with the boxing dataset,
and another agent 1 with the QwanKiDo dataset. The agent 1 had seen some examples of
attacks performed with the arms, such as jabs or uppercuts, although they may have been
performed with a different style. However, agent 0 had never seen any kick or sweeping

92



3.4. Ablation Study

attacks. Again, it is hard to quantify the ability of the system to generalize, as there are
no real metrics to quantify the realism of the resulting simulation.

We found that the agents were able to keep the basic interactive skills, such as getting
closer to the opponent, facing him and staying on guard, even though they were not
trained against those specific opponents. However, we also noticed that they performed
fewer attacks and are less engaging, as attacks are conditioned by a given observation of
the opponent, and there is no such an attack signal for observations that have never been
seen during training. We believe that enhancing the datasets used for training and using
policy architectures that account for past observations should help to handle a larger
variety of fighting situations, but it may still suffer from distributional shift [110].

3.4 Ablation Study

In this section, we study the importance of the components of our method by ablating
the sensitivity to the weighting between the interaction prior and the single motion prior,
as well as the impact of the losses used for training the discriminators.

3.4.1 Single Motion Prior Impact

The single motion prior in our framework aims at providing single actor motion ex-
amples to generate natural behavior and account for unseen situations in the interaction
prior. We showed the importance of using it in the heading control task, introduced previ-
ously. In this task, we found that using only the interaction prior may lead to similar task
returns (see Table 3.3), but the resulting motions were less natural. Indeed, the agents
seem to exploit the motion included in the interaction dataset to achieve high reward at
the cost of motion naturalness, especially when the given direction changes. As the sin-
gle motion prior is trained with a larger variety of displacement motions compared to the
interaction prior, it enables to generate more natural foot work and displacements. There-
fore, it enables to create more natural transitions between interaction and displacement
motions (see supplementary video [150]). However, the weighting between the interaction
prior, the single motion prior and the task reward needs to be tuned. Hence, the agents
achieve the desirable behavior as a high weighting for the single motion prior might lead to
agents that completely ignore the interaction, and focus more on maximizing the heading
task relying only on the single motion prior.
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For the transfer to unseen fighting situations introduced in section 3.3.5, we found that
adding the single motion prior helps to generate behaviors in fighting situations which
are not present in the interaction dataset, and yields more plausible results in general,
compared to when using only the interaction prior. Indeed, the agents trained with only
the interaction prior struggle more to keep natural behavior in out-of-distribution states.
However, we found that the generated behavior is sensitive to the weighting assigned to
the single motion prior. By assigning more importance to the motion prior, the characters
are less interactive and focus more on maximizing the motion reward. Consequently,
they start punching/kicking far from each other (see the example of such case in the
supplementary video). We believe that better strategies for varying the weights assigned
to each term depending on the task could be beneficial to improve the quality of the
resulting interaction rather than having constant weights.

3.4.2 Discriminators Training Loss Impact

The objective used for training the single motion prior and each interaction prior in
our framework is the same one defined in the original GAIL [46], which uses a sigmoid
cross-entropy loss function. This loss function is known for training instability because of
saturation of the sigmoid function, leading to vanishing gradients. To counter this, the
authors of AMP proposed to use the loss function for least-squares GAN (LSGAN) [81]
that showed more training stability and better overall quality. The objective for optimizing
the discriminator is defined as:

min
DM

EπE

[(
DM(ϕ)− 1

)2
]

+ Eπ
[(
DM(ϕ) + 1

)2
]

(3.12)

with ϕ = (ot, ot+1). The policy π is then optimized using the following reward function:

r(ϕ) = max
[
0, u− v ·

(
DM(ϕ)− 1

)2
]

(3.13)

u and v are offset and scale to bound the reward between [0, 1].
We experimented with this objective function for training both the single motion

prior and the interaction priors in the imitation task. We found that the quality of the
generated interactive behavior is worse compared to what we get with the standard GAIL
objective, and that it is more prone to mode collapse by repeatedly generating the same
subset of motion sequences. Although the agents were able to perform the basic fighting
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motions included in the single motion dataset, their interactive capabilities were limited
even when assigning more importance to the interaction priors in the total reward. We
think that this degradation in interaction quality is due to the difficulty of solving the
least-squares regression by the interaction priors when the environment is non-stationary
in the setting of multiple characters’ interaction. We show examples of these behaviors in
the supplementary video.

3.5 Discussion and Limitations

We have introduced an innovative adversarial system designed to imitate the intricate
fighting interactions between multiple physics-based characters, utilizing unstructured
motion clips. Building upon the foundations of the MAGAIL framework, our approach
incorporates crucial adaptations to effectively simulate multiple physics-based characters’
behaviors. The first significant enhancement involves the modeling of reactive behavior,
wherein we establish a transition from the current full observation, that includes the
self-observation of the agent itself and the current observation about the opponent, to the
subsequent self-observation. This transition captures the dynamic nature of the characters’
responses to their opponent, resulting in a more plausible simulation. Additionally, we
devised a training strategy that encompasses both single motion and interaction priors.

The resulting sequences do not simply imitate the reference motions with the same
frame order, but exhibits similar interactive behaviors to the interaction dataset by max-
imizing the rewards assigned by each prior. Hence, our approach enabled us to imitate
the personalized reaction of fighters with specific styles. We can also provide the users
with some control of the simulation, by adding task-specific rewards: following a given
direction, minimizing the received impacts or maximizing damages to the opponents when
searching for the next action, while still imitating the style of the interaction dataset. We
could imagine other rewards, such as aiming specific parts on the opponent’s body. The
results show that although the interaction dataset could be enough to learn motion and
interaction imitation policies, associating a complementary single motion prior helps to
generalize to a wider range of situations with realistic motions.

However, like other Generative Adversarial Networks (GAN)-based methods, our ap-
proach can suffer from mode collapse: repeating the same interaction behavior and gener-
ating only a small subset of the interactions contained in the demonstrations, especially
because of the multi-modality of the interaction dataset. Recent work [53] tried to mit-
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igate this problem by conditioning the motion prior on latents that encode each motion
clip. Some other works [91, 39] propose to use multiple discriminators to handle the multi-
modality of the training distribution. Although these methods introduce new challenges
such as predefining the number of discriminators to be used, increasing the number of
trained parameters or the assumption of having a labeled reference motion dataset, we
believe that they can serve in reducing the effect of mode collapse and improving the
quality of the generated behavior. For example, if the motion clips are segmented and
labelled, we could imagine using a discriminator for attacks, another for defense, etc.

On the other hand, our method can also be used to simulate new individual styles, or
new multi-characters activities (fencing, dancing, collaborative work, etc.), by retraining
the same system but with new single-character and multiple-characters datasets. However,
this can also be a limitation, as it requires providing enough examples to make the physics-
based character correctly imitate the activity. Instead of fully retraining the policies, it
should be possible to use transfer learning: pretraining the system with basic skills, such as
moving around while maintaining balance, and then fine-tuning the resulting policies with
a few new specific examples. This is specifically true for simulating different individual
styles for the same activity, where the basic actions should be very similar.

For some activities, the effort required to capture interaction datasets of multiple
actors would be an important obstacle. For applications in the movie industry, we could
also imagine using animation sequences designed by animators to convey a specific style
for imaginary characters.

While the motion generated by our framework is qualitatively similar to the ones de-
picted in the clips examples, the resulting motion of some sequences may still appear
unnatural. As the method’s goal is to imitate the style of the interactions given as ex-
amples, for safety reasons, it was difficult to ask the subjects to exert high impacts on
the opponent, given that they were equipped with hard markers that could injure them.
Hence, we asked them to perform shadow style combat with low impacts, which is actu-
ally imitated by the system. We have shown that the same framework works for (shadow)
boxing and Qwankido by simply changing the input databases of examples, and in some
cases the additional attack reward can lead to combat engagement that was not present
in the original motions. We could expect that fighting motions with higher impacts would
help to imitate real fights.

In this work, we only tested activities involving two fighters. Future investigations
and tests are needed to check the capability of the system to scale to more characters
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and to adapt to different types of interaction such as dancing, where the choreography,
synchronization and long duration contacts of multiple dancers are important for gener-
ating plausible results. We note that with the current policies’ architecture, our system
can only imitate short term reactions, such as parrying a strike, or counter-attacking with
one strike. It cannot handle continuous physical interactions (such as continuous contacts
in dancing), middle or long-term strategies involving a sequence of actions. We would
like to explore techniques that incorporate high-level long term planning in the imitation
learning process so that fighters are equipped with strategic play that they can learn from
demonstrations while being able to use the same strategic reasoning in new fighting sit-
uations. Learning basic fighting skills with a low level controller, then learning strategic
play from demonstrations by a high level controller equipped with a long term memory
component would be an interesting future direction for this work.

In addition to the aforementioned applications in sports training, the proposed ap-
proach can potentially be applied in various other domains that involve multi-agent in-
teractions, such as virtual reality games, robotics, and animation. By simulating realistic
interactions between virtual characters, our system can contribute to creating more en-
gaging and immersive experiences for users.

To evaluate the effectiveness of the system in real-world scenarios, we could conduct
experiments involving human participants who engage in virtual sports training sessions.
By comparing their performance and reactions to both real opponents and simulated
opponents using our approach, we can assess whether people respond naturally to virtual
opponents and whether the system can provide a realistic and effective training experience.

However, one major challenge in scaling the system to more characters and different
types of interactions is the collection and processing of large amounts of data. As the
number of agents increases, the complexity of the interactions also grows, making it more
difficult to capture and model the dynamics of the system. In this context, computer vision
methods can play a crucial role in automating the data collection process and extracting
relevant features from videos of real-life interactions.

Furthermore, a key issue in the current approach is the assumption that opponents’
behaviors can be accurately modeled and predicted based on a finite set of demonstra-
tions. However, real-world opponents can exhibit unseen behaviors and strategies that the
system has not encountered before. To address this challenge, we could explore techniques
that enable the system to learn and adapt to new opponents by continuously updating
its models and policies based on the observed interactions.
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Lastly, we acknowledge the importance of the initial work introduced in the previous
chapter on fighter motion extraction from RGB videos. This work provides a foundation
for future research on imitation learning in multi-agent interactions from videos, as it
showcases a validated protocol for the motion extraction and also highlights the suitable
category of human pose estimators for this task in order to alleviate the reliance on
motion capture data. By combining high-quality interaction data with advanced imitation
learning techniques, we can develop more sophisticated models and policies that can
capture the nuances and complexities of human interactions in various domains.
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CONCLUSION

The goal of this research was to explore techniques for simulating realistic interactive
behaviors in the context of competitive sports and martial arts, such as boxing, with
the aim of enhancing training experiences in virtual reality training environments. By
modeling the complex interactions between fighters using data-driven approaches and
physics-based character simulation, we aimed to create a virtual opponent capable of
replicating the reactive behavior of real opponents. This opponent should provide realistic
motion and behavior, but also responsiveness.

Simulation of interactive behaviors through physics-based simulation, and imitation
learning techniques could help to design such simulated opponents for virtual reality
sport training. In this thesis, we have taken steps along this direction by analysing meth-
ods for extracting such interactive behaviours from sport videos. We have also proposed
a learning-based approach for imitating the intricate martial arts interactions between
multiple physics-based characters, utilizing unstructured motion clips as demonstrations.
Our first contribution (see Chapter 2) proposed a benchmark protocol for quantifying
and evaluating the performance of several state of the art human pose estimation (HPE)
methods for sport videos, involving fast and various boxing motions. This work targeted
the evaluation of HPE methods as they usually constitute the first step in the pipeline of
human motion extraction from video sources. We also highlighted the suitable category of
human pose estimators for competitive sport activities such as boxing. Our second con-
tribution (see Chapter 3) proposed an adversarial imitation learning system designed to
imitate the intricate fighting interactions between multiple physics-based characters, by
utilizing unstructured interaction clips. This approach led to learning interactive fighting
policies controlling physically simulated agents that capture the dynamic nature of agent’s
responses to their opponent. As a result the physically-based simulation is more plausible.
We applied this approach to two different kinds of fighting sports: boxing and Qwan Ki
Do. We showed how this approach can go beyond interaction imitation, by adding con-
straints to the interaction and even the potential of transferring the learned interactive
policies to handle unseen interactions.

The same techniques can be used for adding more realism and immersion in other
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domains such as video games and movie making. However, as pointed out in previous
chapters, there is still a number of challenges that need to be addressed in order to
reach a truly immersive and beneficial experience in the interactive behavior of a virtual
opponent. When interacting with an opponent in a real fighting situation, a fighter decides
their next move by analyzing and taking into account the history of their past moves as
well as those of their opponent. This history of past interactions can last from seconds to
minutes. We only handled immediate or short term reactive behavior in this work. Fighters
can also make decisions based on their own predictions and their opponent’s potential next
move, which is crucial to generate smart behavior. In addition, our approach builds on
imitation learning techniques for motor control imitation from motion capture data, which
is difficult to obtain in the context of intricate fighting interactions. All these challenges
highlight a number of exiting directions that could be explored as perspectives for the
presented work.

Long-Term Interaction Imitation The work in this thesis mainly focused on the
reactive behavior of fighters in the short term. This implies that the learned policy of
the simulated fighter essentially reacts to the current action of the opponent, without
taking into account the history of their interaction. To this end, architectural changes
need to be applied to the fighter’s decision modules. These changes should help the vir-
tual fighter to summarize previous states by leveraging sequential modeling, such as ones
used with Transformers. This direction introduces new challenges encountered in other
machine learning domains, such as training and inference efficiency, as well as computa-
tional complexity. More importantly, the training paradigm of the adversarial imitation
learning will have to consider the imitation of long horizon trajectories. This could be
achieved by considering a hierarchical approach that combines short term reactive behav-
ior imitation on a low level ones. Then, imitation of long trajectories of abstractions, or
compressed representations of these reactive behaviors on a semantically high level, will
be necessary to achieve this goal. This would enable virtual opponents to exhibit more
intelligence, adaptation skills, and more fighting sports expert-like behaviors. Let us note
that a new thesis project has been initiated to explore this direction in the context of
generic interaction between virtual agents.

Multi-Modal Interaction Imitation In the second part of this work, we utilized
motion capture data of fighters interactions to benefit from their high accuracy, when
building the interaction demonstration dataset. Evaluation performed in the first part
concluded that the quality of interaction data that would have been obtained from video
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demonstration through current methods of human motion estimation may have insuffi-
cient quality. However, even motion capture data comes with their own challenges, as
the morphology of the performer is usually different from the simulated agents. There-
fore, manual re-targeting techniques must be used to overcome this limitation. Another
challenge stems from the nature of fighting interactions that makes it challenging to have
fighters perform intense and rapid fight engagements while equipped with motion sen-
sors/markers for safety reasons. While several techniques have been developed recently
for physically based motion imitation from video sources and marker-less setups, they
mainly focus on single actor imitation. It would be of interest to extend this work for
multiple people interaction imitation, and also to develop systems that could benefit from
multiple sources of demonstrations, while accounting for the mismatch between demon-
strators and learners.

Latent Interaction Priors The proposed interaction prior presented in this work,
operates on the same low level as the motion prior, i.e. short time joint angle prediction.
Therefore, while being able to train fighting policies to generate plausible reactions to
the opponents moves on the short term, it requires training from scratch for each new
interaction demonstration, and can only handle immediate reactions. A more efficient
approach would be to train agents to simulate a wide range of motions, while encoding
them in a latent representation for re-usability by high level policies in downstream tasks.
This direction has been explored recently for single character control tasks. It would be
interesting to imitate interactions between agents on such latent representations, instead
of the low level representation of states and actions. For example, instead of having a
fighter that replicates the exact trajectory of a reactive motion of a blocking move, the
agent would simply attempt to generate any motion that has similar latent representation
of a blocking move. This would lead to more efficient training (compared to imitating
interaction from scratch), and higher Variability in the reaction generation.

We hope that the research and techniques explored in this thesis can serve as valu-
able foundations for creating physically-based simulated virtual opponents in martial arts
training applications. These applications should exhibit human-like skill and reactivity,
on a motion level, but also decision making level. As with the evolution of biological
organisms, the development of artificial agents capable of mastering intricate martial
arts techniques requires advanced physical capabilities and intelligent decision making.
By studying and reverse engineering these movements through imitation from expert
demonstrations, we aim to not only enhance the realism and challenge of virtual com-
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bat simulations, but also contribute to our overall understanding of intelligence and its
relationship to complex motor skills, and their use in interactive situations. The knowl-
edge gained from constructing such systems could potentially unlock new insights into
the neural mechanisms underlying expert performance.
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Titre : Apprentissage et Simulation des Stratégies de Sport (la Boxe) pour l’Entrainement en
Réalité Virtuelle

Mot clés : Simulation, Deep Reinforcement Learning, Sport

Résumé : Cette thèse étudie l’extraction et
la simulation des interactions entre combat-
tants, principalement pour la boxe, en utilisant
des techniques d’apprentissage profond : l’es-
timation du mouvement humain à partir de vi-
déos, l’apprentissage par imitation basé sur
l’apprentissage par renforcement, et la simu-
lation de personnages basée sur la physique.
Dans le contexte de l’analyse sportive à partir
de vidéos, un protocole de référence est pro-
posé dans lequel diverses méthodes contem-
poraines d’extraction de poses humaines en
2D sont évaluées pour leur précision à dériver
des informations positionnelles à partir d’en-
registrements vidéo RVB de boxeurs lors de
mouvements complexes et dans des circons-
tances de tournage défavorables.

Dans une deuxième partie, la thèse se
concentre sur la reproduction d’interactions
réalistes entre boxeurs à partir de données de
mouvement et d’interaction grâce à une mé-
thodologie innovante permettant d’imiter les
interactions et les mouvements de plusieurs
personnages simulés physiquement à partir
de données de capture de mouvement non or-
ganisées. Initialement, cette technique a été
démontrée pour simuler une boxe légère entre
deux combattants sans contact physique si-
gnificatif. Par la suite, elle a été étendue pour
prendre en compte des données d’interaction
supplémentaires concernant la boxe avec du
contact physique réel et d’autres activités de
combat, ainsi que pour gérer les instructions
de l’utilisateur et les restrictions d’interaction.

Title: Learning and Simulation of Sport Strategies (Boxing) for Virtual Reality Training

Keywords: Simulation, Deep Reinforcement Learning, Sport

Abstract: This thesis investigates the ex-
traction and simulation of fighter interactions,
mainly for boxing, by utilizing deep learning
techniques: human motion estimation from
videos, reinforcement learning-based imitation
learning, and physics-based character simu-
lation. In the context of sport analysis from
videos, a benchmark protocol is proposed
where various contemporary 2D human pose
extraction methods are evaluated for their pre-
cision in deriving positional information from
RGB video recordings of boxers during com-
plex movements and unfavorable filming cir-
cumstances.

In a second part, the thesis focuses on

replicating realistic fighter interactions given
motion and interaction data through an inno-
vative methodology for imitating interactions
and motions among multiple physically sim-
ulated characters derived from unorganized
motion capture data. Initially, this technique
was demonstrated for simulating light shadow
boxing between two fighters without signifi-
cant physical contact. Subsequently, it was ex-
panded to accommodate additional interaction
data featuring boxing with actual physical con-
tact and other combat activities, along with
handling user instructions and interaction re-
strictions.
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