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RÉSUMÉ

Contexte de l’étude

Le cancer reste une menace majeure pour la santé humaine mondiale, ayant un impact
significatif sur la qualité de vie des patients. Le cas de tumeurs thoraco-abdominales, ou
le cancer du poumon occupe la première place en termes de nouveaux cas diagnostiqués
et de décès en Chine, suivi par le cancer du foie. Avec les progrès de la technologie dans
la radiothérapie, son importance dans le traitement du cancer ne cesse d’accroître, avec
environ 70% des patients atteints de cancer nécessitant une radiothérapie, et 40% des
tumeurs pouvant être guéries par cette modalité [6][175].

Le traitement du cancer du foie implique une approche multidisciplinaire complexe,
où la chirurgie est une intervention primaire, mais le rôle de la radiothérapie devient de
plus en plus prépondérant. La radiothérapie stéréotaxique corporelle (SBRT) a montré
une efficacité significative chez les patients, dépassant les autres modalités de traitement
[160]. Cela souligne le rôle critique de la radiothérapie dans l’amélioration des résultats
thérapeutiques et dans le développement de nouvelles options thérapeutiques. Quant au
cancer du poumon non à petites cellules (NSCLC) représentant 80% des cas, les modalités
de traitement sont la chirurgie, la chimiothérapie et la radiothérapie, la dernière occupant
une part substantielle de 70% [175]. Malgré les progrès significatifs dans le traitement du
NSCLC avec l’évolution des techniques en radiothérapie, la résistance à la radiothérapie
reste un défi majeur, en particulier dans le NSCLC à un stade précoce.

La radiothérapie de précision vise à administrer une irradiation à haute dose ciblant
précisément les tumeurs, épargnant les tissus normaux environnants, améliorant ainsi
l’efficacité du traitement et réduisant les effets secondaires. Cependant, son application
dans les tumeurs thoraco-abdominales rencontrent des défis en raison des mouvements de
tumeurs induits par les activités respiratoires, entraînant des déplacements des tumeurs
allant jusqu’en dehors du champ de traitement tout en y laissant les tissus normaux.
La stratégie actuelle consiste à étendre le champ d’irradiation afin de garantir une dose
adéquate, mais cela a pour conséquences des dommages excessifs aux tissus sains environ-
nants. Par conséquent, la prise en compte des mouvements de tumeurs liés à la respiration
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est primordiale dans la radiothérapie de précision pour les tumeurs thoraco-abdominales.
Tout d’abord, la stratégie par synchronisation respiratoire est utilisée pour gérer le

mouvement respiratoire en milieu clinique. Contrairement aux techniques du blocage de
respiration, la synchronisation permettant la respiration libre du patient pendant le traite-
ment est plus populaire, ne nécessitant pas une grande capacité pulmonaire. La figure 1(a)
illustre le schéma de synchronisation, administrant sélectivement une irradiation lorsque
la tumeur rentre dans une zone cible plus restreinte et calculée en temps réel (comme
le montre la figure 1(b)). L’application de la synchronisation réduit considérablement la
marge du volume cible planifié, entraînant une diminution des doses nocives pour les or-
ganes critiques environnants (comme le montre la figure 1(c)). Actuellement, les systèmes
de radiothérapie en temps réel avec suivi de la tumeur (RTRT) sont largement utilisés
pour la synchronisation respiratoire[139][144]. Ces systèmes suivent le mouvement de la
tumeur pendant la respiration en surveillant en temps réel à l’aide de la fluoroscopie
X stéréoscopique avec des marqueurs métalliques implantés. Cependant, il convient de
noter que ce système est invasif, nécessitant l’implantation de marqueurs métalliques à
l’intérieur du patient pour le suivi. En revanche, la synchronisation non invasive repose
sur l’observation du mouvement de marqueurs externes en guise de signaux de déplace-
ments de tumeurs, certes corrélés mais considérés comme moins précis avec un déphasage
incertain.

L’introduction des systèmes accélérateurs linéaires guidés par IRM (MR-Linac), tels
que Elekta Unity, a ouvert de nouveaux horizons dans l’acquisition des signaux de synchro-
nisation de plus haute précision. Ces systèmes peuvent surveiller directement les tumeurs
et les organes à risque (OAR) sans marqueurs fiduciaires implantés ni ceux de substitu-
tion externes pour localiser la cible du traitement. Bien que les systèmes MR-Linac aient
progressé dans l’ajustement des cibles et des plans de traitement entre les fractions, ils ne
peuvent toujours pas répondre complètement aux défis des déplacements de tumeurs et
des OAR pendant la radiothérapie.

Pour parvenir à une adaptation en temps réel dans la radiothérapie guidée par IRM
(MRgRT), plusieurs défis scientifiques persistent :

1. Algorithme efficace de suivi des tumeurs : La détection rapide de la morphologie
et de la position de la tumeur à l’aide des images en mouvement (Cine-MRI) reste
un obstacle majeur. Dans la pratique clinique, les tâches telles que la segmenta-
tion manuelle par des experts comme les radio-oncologues, sont chronophages et
annuleraient l’intérêt de l’imagerie IRM de l’Unity pendant le processus de radio-
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Figure 1 – Schéma de synchronisation pour la compensation des mouvements respiratoires.

thérapie.

2. Prédiction des signaux de synchronisation basée sur les données de mouvement
acquises à basse fréquence : il y a un délai (latence) entre la détection du mouve-
ment de la cible et la délivrance de la dose à la cible, période pendant laquelle la
tumeur aurait pu bouger, entraînant potentiellement un décalage et une délivrance
de radiation inexacte. Dans le cas de Elekta Unity, le délai globale du système est
de l’ordre de 0,5 seconde, incluant le délai de l’acquisition par IRM, des traite-
ments (segmentation et prédiction de la trajectoire de cible), et du déclenchement
du faisceau d’irradiation. Pour compenser la latence du système d’Unity, il faut
prédire en temps réel les positions de la tumeur et des structures internes critiques,
posant ainsi un défi quant à l’efficacité des traitements de données sachant que la
période d’échantillonnage du système par Cine-MRI est de l’ordre de 0,2s (5Hz).

3. Validation cross-modalité : Des revues récentes suggèrent que les méthodes linéaires
montrent une efficacité suffisante dans la prédiction des signaux respiratoires sur la
base de données CyberKnife. Cependant, en raison des différences dans les modes
d’imagerie, les fréquences d’acquisition (30 Hz vs 5 Hz) et la latence du système
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entre les systèmes guidés par rayons X et ceux par IRM, l’application directe de
ces méthodes de prédiction peut ne pas reproduire les résultats escomptés. Par
conséquent, la validation des méthodes linéaires des trajectoires de mouvement de
la tumeur et des OAR obtenues à partir de données d’IRM ciné 2D est cruciale.

4. Évaluation complète dans le suivi et la prédiction des tumeurs, et validation dosi-
métrique : Les algorithmes de suivi des tumeurs visent à détecter précisément les
positions des tumeurs dans les images de Cine-MRI au fil du temps, tandis que les
algorithmes de prédiction estiment les positions futures pour la compensation de la
latence du matériel. Comme les deux tâches sont généralement indépendantes, cal-
culer les erreurs cumulées s’avère indispensable par une comparaison dosimétrique
pour évaluer sa fiabilité du système de synchronisation proposé.

Contenu de la Recherche

L’objectif ultime de thèse est de développer un système de synchronisation de bout en
bout pour la compensation en temps réel des mouvements lors du traitement du cancer du
poumon et du foie sur l’Elekta Unity. La figure 2 montre le flux de travail et le contenu de
la solution. Ce système surveillera et localisera automatiquement en temps réel la position
spatiale tridimensionnelle de la tumeur, et prédira sa trajectoire dans 0.5 secondes. Un
signal de synchronisation sera généré pour contrôler l’activation et la désactivation du
faisceau pendant la radiothérapie, réduisant ainsi l’inexactitude dans la délivrance de la
dose due au mouvement respiratoire. Pour atteindre cet objectif, les étapes suivantes ont
été réalisées :
Un Flux de Travail de Suivi de Tumeur Basé sur KCF Utilisant l’IRM Ciné
2D pour la Radiothérapie Guidée par IRM (MRgRT)

Dans le contexte de la radiothérapie, la localisation précise des tumeurs est un aspect
crucial appliqué avec succès dans la compensation des mouvements en temps réel pour
les patients atteints de cancer du poumon. Diverses méthodes ont été proposées par les
chercheurs pour le suivi des tumeurs dans les images IRM ciné 2D.

Le template matching (TM), qui cherche simplement la corrélation spatiale maximale
entre le template (la cible) et l’image courante s’est avéré efficace dans le suivi des tumeurs
et a été appliquée dans la radiothérapie de synchronisation MRIdian, bien que les coûts
computationnels seraient significatifs sur les images de grandes dimensions ou des modèles
complexes [149]. Pour contourner les calculs directs de la corrélation dans le domaine
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Figure 2 – Flux de travail du Schéma de Synchronisation en Ligne Spécifique au Patient.

spatial afin de réduire le temps de traitement, des filtres tels que le MOOSE [11] et le KCF
[58] sont introduits pour réduire la complexité computationnelle en calculant la corrélation
(proche de la convolution) dans le domaine fréquentiel par une transformation de Fourrier
associée d’une approche de noyau (kernel). Ces méthodes ont été particulièrement efficaces
dans le suivi de cibles dans des images naturelles. Les algorithmes MOOSE et KCF seront
validés dans le suivi des tumeurs avec l’IRM ciné 2D dans la thèse.

De plus, en ce qui concerne la localisation de tumeur dans la direction supérieure-
inférieure (SI), Seregni et al. [145] ont prouvé l’efficacité de l’approche avec deux directions
de coupe (sagittal et coronal) pour le traitement guidé par IRM ciné 2D. Ils ont montré
que les informations similaires sur la localisation sont obtenues à partir des deux plans.
Cependant, en raison de l’irrégularité des bords des tumeurs malignes, la forme de la
tumeur diffère généralement entre ces deux plans, introduisant ainsi de perturbations sur
les algorithmes de la localisation de la tumeur.

Pour surmonter ces limitations, nous proposons une méthode de suivi de tumeur basé
sur le KCF. Notre recherche vise à améliorer les performances de KCF grâce aux calculs
de centroïdes et à la sélection de plans pour la localisation dans la direction SI. Nous avons
cherché à remédier aux lacunes des méthodes existantes en fournissant une solution fiable
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par une approche patient-spécifique de compensation des mouvements en temps réel pour
la radiothérapie de cancer thoracique et abdominal.

Pour valider la méthode proposée, nous avons initialement rassemblé une base de
données comprenant des données de IRM ciné 2D de 10 patients atteints de cancer du
poumon et 10 patients atteints de cancer du foie, collectées par l’Elekta Unity. Le dernier
est composé d’un scanner IRM Achieva 1.5T et d’un accélérateur linéaire avec un faisceau
non filtré de 7 MV, utilisant une fréquence d’imagerie de 5 Hz.

Figure 3 – Calcul du Centre de Masse Améliore le Suivi de la Cible. La boîte jaune délimite la limite
de la tumeur dans la première image ou les images suivantes, tandis que le "+" vert représente le centre
de masse de la tumeur dans la première image ou les images suivantes.

Le schéma est illustré dans la Figure 3. Pour chaque patient, est segmentée manuel-
lement la tumeur sur la première image à l’aide de l’outil Labelme [138], générant un
masque binaire de la tumeur pour le suivi ultérieur. L’algorithme KCF a été choisi pour
le suivi, en déterminant la localisation par la réponse maximale. Le centre de masse des
pixels couverts par le modèle dans cette région est ensuite pris pour la cible. Quant à la
sélection entre le plan coronal et sagittal, la corrélation maximale entre le masque et les
20 images suivantes est utilisée comme critère de sélection.

Les résultats montrent que l’utilisation du centre de masse et la sélection de plans
améliorent significativement les performances de KCF. Chez les 10 patients de cancer
du poumon, les erreurs moyennes de suivi dans les directions Gauche-Droite (LR) et
Antérieure-Postérieure (AP) ont diminué respectivement à 0,32 (34,7%) et 0,30 pixels
(40%), grâce aux calculs de centroides. Pour la direction SI, en plus des calculs de cen-
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troïdes, la sélection de coupe a réduit davantage les erreurs de suivi de 24%. Chez les
10 patients de cancer du foie, la réduction des erreurs dans les directions LR et AP ont
été réduites respectivement à 0,47 (45,3%) et 0,53 pixels (38,4%). Dans la direction SI,
I’amélioraion par la sélection de coupe était de 15,3%.

Dans l’ensemble, notre méthode de suivi de tumeur basé sur KCF démontre une effi-
cacité et une précision dans la localisation de tumeur avec l’IRM ciné 2D, marquant une
étape importante dans la compensation des mouvements respiratoires en radiothérapie et
jettant la base nécessaire pour l’étape de prédiction.
Prédiction du mouvement des tumeurs à l’aide du transfert C-NLSTM

Les réseaux neuronaux récurrents (RNN) et leur variante améliorée, les réseaux neuro-
naux à mémoire à court et long terme (LSTM), présentent des avantages dans la modéli-
sation non linéaire pour la prédiction du mouvement respiratoire [7][110][92]. Les modèles
deep learning nécessitent généralement de grandes quantités de données annotées pour
l’entraînement. Cependant, l’obtention de telles quantités sur la plateforme Elekta Unity
sera irréaliste. Pour contourner le manque de données, on introduit le transfer learning
pour exploiter les modèles pré-entraînés et les connaissances des ensembles de données
existantes afin de résoudre efficacement des tâches connexes avec un ensembles de don-
nées plus restreint.

Plus spécifiquement, le modèle C-NLSTM spécifique au patient, exploitant les connais-
sances des modèles pré-entraînés et des ensembles de données existants, a été adopté .
Cette approche adresse efficacement le problème de la prédiction inexacte du mouvement
respiratoire pour un petit ensemble de données.

Ce modèle est d’abord évalué avec deux bases de données disponibles publiquement,
CyberKnife (137 patients, 25-132 min per recording)[36] et Fantasia (40 patients, 120
min per recording)[66], Les deux bases de données se composent de signaux respiratoires
venant du marqueur de surface sans information sur les trajectoires réelles de la tumeur.
Cependant, grâce au volume conséquent de données, elles évaluent adéquatement les ca-
pacités prédictives du modèle. Ensuite la validation du modèle de transfert C-NLSTM a
été effectuée sur les données IRM collectées par l’Elekta Unity.

Le modèle de transfert C-NLSTM spécifique au patient (illustré dans la Figure 4), se
compose d’un modèle C-NLSTM pré-entraîné et d’un modèle C-NLSTM cible, ce dernier
prédira en temps réel les trajectoires de tumeurs sur IRM ciné 2D. Tout d’abord, nous
avons pré-entraîné le modèle C-NLSTM sur les bases de données CyberKnife et Fantasia
pour évaluer sa stabilité et la robustesse. Cela permet d’extraire et de simuler des motifs et
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Figure 4 – Architecture du cadre de transfert C-NLSTM proposé.

des caractéristiques similaires au mouvement des tumeurs. Ensuite, nous avons initialisé
le modèle C-NLSTM cible en utilisant les paramètres, la structure et les hyperparamètres
du modèle pré-entraîné. Et enfin, le modèle cible a été optimisé sur les données Unity
avec seulement les deux premières minutes pour chaque patient, avant de balayer sur les
données restantes.

Les résultats montrent que cette approche par le C-NLSTM fonctionne bien sur les
bases de données CyberKnife et Fantasia, et l’apprentissage par transfert améliore signi-
ficativement les performances du modèle alors que les données pour optimiser le modèle
cible ne durent que de 2 minutes. Les erreurs moyennes normalisées (nRMSE) de la pré-
diction sont réduites de 54,3%, 42,0% et 30,6%, dans les trois directions (SI, LR, AP)
pour le cancer du poumon, et 48,4%, 41,0% et 43,9% pour le cancer du foie, en prenant la
base de Fantasia pour préapprentissage et celle de Unity pour cible, mettant en évidence
l’avantage significatif de transfer learning.

En conclusion, ce travail présente une solution innovante pour prédire les trajectoires
de mouvement des tumeurs, mettant en évidence le potentiel de l’apprentissage profond
et de l’apprentissage par transfert pour relever les défis des motifs d’imagerie complexes
et des données d’entraînement limitées.
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Gating en temps réel pour la compensation des mouvements respiratoires avec
prédiction

Le signal de gating permet d’émettre de l’irradiation uniquement lorsque la tumeur
rentre dans une région cible plus petite, connue sous le nom de "gating wondow" afin
de réduire les doses nocives aux organes critiques environnants grâce à la prédiction du
mouvement de la tumeur. Ce concept repose sur la surveillance des signaux respiratoires
du patient, généralement obtenue par le biais de marqueurs externes ou d’imagerie. Par
conséquent, la précision des signaux de gating joue un rôle crucial dans la compensation
du mouvement respiratoire lors de la radiothérapie.

Les trajectoires de centroïdes de tumeurs des trois plans sont délimités par des radio-
logues expérimentés pour référence. Ensuite les mouvements dans les trois directions sont
combinés en un seul vecteur 3D dans un espace euclidien. Les signaux de gating (binaires)
de référence seront donc déterminés en vérifiant à chaque instant si le vecteur se trouve à
l’intérieur de la région cible pour chaque patient.

Pour générer le gating en temps réel lors de la radiothérapie, la position future (de 0,4 s
et 0,6 s) de tumeur sera estimée de façon séquentielle pour prédire le temps de croisement
(dans un sens comme dans l’autre) de la région cible. Ce dernier avancé de 0,5 secondes
correspond au déclenchement du signal de gating (passage de 0 à 1 ou l’inverse) pour
compenser les retards du système. Dans la partie de prédiction, nous avons comparé de
manière exhaustive trois modèles linéaires de prédiction avec trois modèles RNN, évaluant
la précision du signal gating binaire généré avec des métriques temporelles. L’avantage
en complexité des modèles linéaires a permis également le développement d’une approche
patient-spécifique, dite la régression linéaire adaptative (ALR) qui s’initialise avec une
période d’amorçage de 30 secondes (150 échantillons) pour chaque patient, et s’optimise
au fil du temps pour mettre à jour ses paramètres.

La Figure 5 montre le schéma par seuillage de la trajectoire tumorale prédite pour
une fenêtre de prédiction de 0,6 s. Le délai du système était de 0,5 s dans cette étude,
donc les signaux de synchronisation idéaux devraient être avancés de 0,5 s par rapport au
temps de croisement réel. Les signaux de gating binaires noir et rouge ont été générés en
calculant le temps de croisement de référence et prédit, respectivement.

Pour l’application du modèle ALR sur des données cliniques réelles, nous avons observé
d’excellentes performances, avec une précision de gating atteignant 98,3% et 98,0% pour
le cancer du foie et du poumon, respectivement. Ces résultats montrent clairement la
faisabilité et pertinence du modèle proposé dans des applications pratiques. Bien que
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Figure 5 – Schéma de contrôle de la porte par seuillage de la trajectoire tumorale prédite pour une
fenêtre de prédiction de 0,6 s.

le mode adaptatif entraîne une légère augmentation du temps de calcul, principalement
concentrée sur la mise à jour des paramètres de régression linéaire (en moyenne de 1 ms),
le temps de calcul global reste raisonnable.

En conclusion, notre méthode de gating est efficace et précise au vu des spécificités du
système de l’imagerie et des retards associés, et constitue donc une solution viable pour
la radiothérapie de précision avec l’Unity.
Gating patient-spécifique avec IRM ciné orthogonale

L’idée de gating par IRM ciné orthogonale est une extension naturelle au 3D pour
planifier la radiothérapie. Seregni et al. [145] ont proposé une fenêtre sphérique comme
région cible en analysant la fonction de densité de probabilité de la localisation de tumeur
de chaque patient afin de déterminer le rayon du sphère, fixée à 30% de l’amplitude de
mouvement 3D de la tumeur. Ils ont cherché à maximiser le cycle de service (pourcentage
du temps d’irradiation effective sur la durée totale de radiothérapie) pour déterminer
le centre du sphère, ce qui implique une isotropie dans les trois directions. Cependant,
en analysant la courbe de mouvement respiratoire du patient, nous avons constaté que
le mouvement de la tumeur dans la direction Supéro-Inferieure (SI) est significativement
plus important que dans les deux autres directions (AP et LR). Par conséquent, le modèle
de région cible sphérique proposé par Seregni et al. ne tient pas compte des spécificités
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des mouvements de la tumeur.
Notre objectif est de déterminer les paramètres optimaux d’un modèle pavé, noté E,

pour représenter l’anisotropie des mouvements. Simultanément, nous visons à maximiser
le cycle de service (nombre d’occurences où le centroïde de tumeur rentre dans le pavé EΩ)
tout en minimisant son volume (vol(EΩ)) correspondant au volume cible de planification
(VCP).
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Figure 6 – Organigramme de la solution en ligne pour la gating 3D spécifique au patient en MRgRT.

Nous avons utilisé l’ensemble de données de IRM ciné 2D Le schéma de gating 3D
proposé est illustré dans la Figure 6. Les dimensions du pavé optimal a été déterminée
en fonction des amplitudes de mouvement des 150 premières images (30 s). À partir de
la 151ème image, les étapes suivantes seront itérées : 1) localiser le centroïde de tumeur
dans l’image courante, 2) prédire la position future de tumeur dans les 0,6 seconde , 3)
mettre à jour le prédicteur en temps réel, 4) vérifier si la tumeur franchira la région cible
et mettre à jour le signal de gating en fonction.

De plus, pour valider l’amélioration clinique avecle gating proposé pour les cancers du
foie et du poumon, nous avons calculé l’extention d’irradiation autour de tumeur par la
moyenne temporelle générés par le système proposé. Ces derniers permettent d’obtenir
un nouveau PTV (PTVnew) et un nouveau plan de traitement (Plan2). L’histogramme
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dose-volume (HDV) résultant du Plan2 a été comparé avec le plan de traitement d’origine
(Plan1).

Les résultats expérimentaux démontrent que le système gating proposé a atteint une
précision de porte optimale. En tenant compte du mouvement tridimensionnel, la pré-
cision moyenne du signal de gating pour les cancers du poumon et du foie a atteint
respectivement 93,6% et 91,3%. Il est à noter que le système a montré des améliorations
significatives dans la protection des organes à risque environnants. Les indicateurs cri-
tiques pour le poumon droit et le cœur pour le cancer du poumon, ainsi que pour le foie
normal et le rein droit chez pour le cancer du foie, ont montré des améliorations notables.

En résumé, nous avons introduit et validé avec succès une méthode d’optimisation du
gating avec un modèle de pavé. C’est une solution en ligne efficace grâce à l’intégration
de la localisation de tumeur et de la prédiction du mouvement. Cette recherche innovante
ouvre une nouvelle voie pour la technologie gating en radiothérapie thoraco-abdominale,
dans l’optimisation des plans de traitement.

Conclusion

Cette thèse présente un système de gating pour la compensation en temps réel des
mouvements par IRM cine, avec un accent sur les patients atteints de cancer du poumon
et du foie. Le système surveille en continu et localise automatiquement la position spatiale
en 3D des tumeurs, et prédit les trajectoires des tumeurs dans les trois directions. Le
système génère des signaux de gating pour contrôler précisément l’activation/désactivation
du faisceau pendant la MRgRT, compensant les inexactitudes dans la délivrance de dose
dues au mouvement respiratoire. Les contributions spécifiques sont les suivantes :

1. Validation de l’efficacité de KCF dans le suivi des tumeurs en 2D sur des images en
IRM cine, plus efficace et précise par rapport aux méthodes traditionnelles (TM).
La précision est améliorée en calculant le centroïde des pixels, et la sélection des
plans (coronales vs sagittales) pour localiser les tumeurs dans la direction SI.

2. Proposition d’un modèle C-NLSTM spécifique au patient qui combine la préforma-
tion du modèle C-NLSTM et l’optimisation de la cible pour obtenir une meilleure
prédiction du mouvement de tumeurs. Le transfer learning, en utilisant efficacement
le modèle préformé sur un ensemble de données limité, est une solution pertinente
face au manque de données de l’Elekta Unity. Le modèle montre une performance
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satisfaisante dans la prédiction en temps réel pour la compensation du mouvement
spécifique au patient.

3. Validation de la régression linéaire dans la prédiction du mouvement des organes
ou des tumeurs en utilisant des images MR ciné 2D et proposition d’un schéma de
prédiction en ligne pour les signaux de gating. Les signaux de gating sont déclenchés
à l’aide de modèles prédictifs, prouvant son efficacité dans la MRgRT en comparant
avec des modèles RNN.

4. Intégration des travaux susmentionnés, proposition d’une solution complète de
compensation des mouvements respiratoires basée sur la IRM cine orthogonale.
En optimisant un modèle de pavé et en explorant différents scénarios, des signaux
de gating sont générés pour répondre aux besoins de traitement des différents pa-
tients. La validation par étude dosimétrique confirme que l’efficacité de la solution
proposée dans la protection des organes environnants à risque.

En résumé, le système proposé est robuste et fiable, réalisant une adaptation en temps
réel au mouvement des tumeurs en MRgRT. Il fournit un solide soutien pour la compensa-
tion du mouvement respiratoire dans le traitement des cancers thoraciques et abdominaux,
servant d’outil essentiel pour la radiothérapie de précision.

Côté équipement, bien que les progrès technologiques de MR-Linac ait permis une
nette amélioration dans la localisation et la prédiction du mouvement, certains défis tech-
niques persistent dans la gestion du mouvement respiratoire pour les tumeurs thoraciques
et abdominales. Équilibrer la résolution spatiale et temporelle de l’IRM, augmenter le
contraste de tumeurs du foie en imagerie sont des défis actuels. Côté algorithmique, cer-
taines pistes de peaufinement ne sont pas prises en compte dans l’étude, comme la seg-
mentation de tumeur (au lieu de la localisation du centroïde) pour tenir compte de la
déformation morphologiques, des modèles elliptiques plus sophistiqués (au lieu de pavé)
et son optimisation pour davantage minimiser le volume sans réduire le cycle de service,
sans oublier la possibilité de définir une extension de contour de GTV plus flexible dans
la plannification.

En dehors des méthodes de gating, la technologie émergente par le suivi MLC [168]
montre aussi du potentiel malgré les complexités supplémentaire dans les flux de travail
cliniques. Cette approche MRgRT adaptative exige notamment une qualité et des tests et
pourrait jouer un rôle plus important dans la protonthérapie à l’avenir. En conclusion, la
gestion du mouvement respiratoire avec le MRI-Linac nécessite encore des développements
et, avec l’expérience accumulée, la MRgRT en fera des progrès significatifs.
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INTRODUCTION

Motivation

Cancer remains one of the major threats to human health worldwide, with its high
mortality rate severely reducing patients’ quality of life. Thoracic and abdominal tumors
have a high incidence. Lung cancer is the top malignant tumor in China in terms of
both incidence and mortality, follow by liver cancer closely behind in mortality rates.
Radiation therapy technology plays an increasingly important role in cancer treatment,
with approximately 70% of cancer patients requiring radiation therapy throughout their
treatment process [6][175].

The emergence of precision radiotherapy has enabled high-dose radiation to be accura-
tely focused on tumor sites, while better protecting surrounding normal tissue, improving
treatment effectiveness, and reducing side effects. However, in the radiotherapy process for
thoracic and abdominal tumors, due to close relationship the respiratory rhythm and the
vary inform in breathing patterns, it may result in tumor leaving irradiation target and
surrounding normal tissue entering the irradiation field, thereby affecting the accuracy of
radiation therapy. Special attention needs to be paid to various aspects from imaging and
treatment plan formulation to dose delivery, as respiratory motion needs to be taken into
consideration in each step.

The goal of precision radiotherapy for thoracic and abdominal tumors is to precisely
irradiate the tumor target while minimizing damage to organs at risk (OAR). However,
dealing with the continuous tumor motion due to respiratory activity is a major chal-
lenge. Currently, the clinical strategy is to expand the irradiation field to ensure that
sufficient therapeutic dose reach the target, but this inevitably causes excessive damage
to surrounding healthy tissues.

Gating schemes reduce harmful doses to surrounding critical organs by limiting ra-
diation delivery temporal periods of the tumor entering into a smaller target volume.
Currently, real-time tumor tracking radiotherapy (RTRT) systems have been applied in
respiratory gating. Its basic principle is to track the position changes of the tumor in real
time through stereoscopic X-ray fluorescence microscopy by implanting fiducial markers.
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It should be noted that this system is invasive as fiducial markers need to be implanted
into the patient’s body for tracking. Non-invasive gating mainly controls through external
surrogate monitoring, instead of direct tumor motion monitoring. It is generally believed
that external monitoring may not be accurate enough in comparison.

The emergence of MR-Linac systems such as the Elekta Unity (Elekta AB, Stockholm,
Sweden) has opened up new possibilities for providing higher precision gating signals.
These systems can directly observe tumors and internal structures, without relying on
implanted fiducial markers or external respiratory signals to locate the treatment target
area. However, clinical experiences have shown that quickly detecting the shape and po-
sition of the tumor on cine-MRI during MRI-guided radiotherapy (MRgRT) is still one of
the main bottlenecks[74][149]. Additionally, there is a certain system delay between de-
tecting the target movement and radiation being transmitted to the target, during which
time the tumor may have already moved, potentially leading to displacement and inaccu-
rate radiation delivery. Studies [85][169] have shown that the Elekta Unity can control the
system delay time to within 0.5 seconds, including image acquisition, trajectory extrac-
tion, and beam switch triggering processes. To compensate for its overall system delay,
it is necessary to predict in real-time the position of the tumor and important internal
structures, for which the prediction algorithm is another challenge in achieving precise
radiotherapy.

Objectives and Context

The ultimate aim of this paper is to develop an end-to-end gating system for real-time
motion compensation during lung cancer and liver cancer treatment on the Elekta Unity.
This system will monitor and automatically locate the three-dimensional spatial position
of the tumor in real-time, and predict the tumor’s motion trajectory in the Superior-
Inferior (SI), Left-Right (LR), and Anterior-Posterior (AP) directions in advance. Based
on the set gating rules, a unique gating signal will be generated to control the beam on
and off during radiotherapy, thereby compensating for the inaccuracy of dose delivery due
to respiratory motion. To achieve this goal, the following steps have been carried out :

1. Tumor Tracking Workflow Based on Kernel Correlation Filters
To address the issues of time consumption and accuracy in tumor tracking using Cine-

MRI, we proposed a tumor tracking workflow based on Kernelized Correlation Filter
(KCF). KCF [58] leverages Fourier transformation to enhance computational speed, ef-
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fectively solving the time-consuming problem associated with Template Matching (TM)
when dealing with large images or complex templates[149].

To address irregular tumor shapes and tracking errors caused by respiratory motion-
induced deformation, we innovatively introduced a method to calculate the centroid of
pixels covered by the template, significantly improving tracking accuracy. Additionally,
to determine the optimal position of tumors in the SI direction, we proposed a strategy
to select coronal or sagittal planes with stronger template correlation.

Results demonstrate that our proposed centroid calculation and SI direction optimi-
zations significantly enhance the performance of KCF. In 10 lung cancer patients, the
average tracking errors in the LR and AP directions decreased to 0.32 and 0.30 pixels,
respectively, with centroid calculations reducing errors by 34.7% and 40%. For the SI
direction, slice optimization further reduced tracking errors by 24%. In 10 liver cancer
patients, errors in the LR and AP directions were reduced to 0.47 and 0.53 pixels, respec-
tively, with centroid calculations decreasing errors by 45.3% and 38.4%. Slice optimization
in the SI direction further reduced errors by 15.3%.

Our proposed workflow for tumor tracking based on KCF demonstrates efficiency and
accuracy in 2D Cine-MRI, marking the first step in respiratory motion compensation for
thoracoabdominal cancer patients undergoing radiotherapy and laying the foundation for
subsequent work.

2. Transfer C-NLSTM Tumor Motion Prediction Algorithm Based on 2D Cine-MRI
Recurrent neural networks (RNNs) and their improved version, demonstrate advan-

tages in nonlinear modeling for respiratory motion prediction [7][110][92]. Deep learning
models typically require large amounts of annotated tumor motion data for training.
However, obtaining such data on the Elekta Unity platform often poses challenges and
is cost-intensive. To address this challenge, We proposed a patient-specific transfer C-
NLSTM model for real-time prediction of tumor motion trajectories on 2D Cine-MRI.

Firstly, we constructed a C-NLSTM model and train it extensively using historical data
to extract and simulate patterns and characteristics similar to tumor motion. We then
utilized the parameters, structure, and hyperparameters of this pre-trained C-NLSTM
model to initialize the Target C-NLSTM model. Subsequently, we further optimized the
model using the first 2 minutes of data from each patient in the Unity databases, followed
by a comprehensive evaluation of the proposed transfer model using the remaining data.

Results demonstrate that the C-NLSTM model performs well on the CyberKnife and
Fantasia databases, and transfer learning significantly enhances model performance on
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the Fantasia and the Unity databases when training data is only 2 minutes. Transfer C-
NLSTM reduced the average nRMSE of respiratory motion prediction by 54.3%, 42.0%,
and 30.6% for lung cancer patients, and 48.4%, 41.0%, and 43.9% for liver cancer patients.

Overall, this study provided an innovative solution for predicting tumor motion tra-
jectories, emphasizing the potential of deep learning and transfer learning in addressing
challenges posed by complex imaging patterns and limited data.

3. Gating Signal Prediction Algorithm Based on 2D Cine-MRI
Compared to complex methods, linear methods demonstrated sufficient effectiveness

in predicting respiratory signals collected during CyberKnife treatment [68]. However,
considering the differences in imaging modes, sampling periods, and system delays, di-
rectly transferring prediction methods developed for X-ray guidance to MRgRT might
have faced some challenges. This study aimed to validate the effectiveness of linear re-
gression (Linear) in predicting internal organ or tumor motion trajectories in 2D Cine-MRI
and proposed an online prediction scheme for gating signals to improve the accuracy of
MRgRT for liver and lung cancer.

This study first predicted the position of the tumor after 0.4 seconds and 0.6 seconds,
then updated the predicted threshold crossing time, triggered the gating signal 0.5 seconds
(system delay) in advance. The study emphasized the comparison of the linear model with
three latest RNN models (LSTM, Bi-LSTM, and GRU), and evaluated the accuracy of
the generated binary gating signal using temporal metrics. Additionally, the study also
proposed and evaluated an adaptive linear regression (ALR) model, which only used the
data from the first 30 seconds of each patient as the training set, and updated the model
parameters during online prediction.

Results demonstrate that when the system delay is 0.5 seconds, linear regression out-
performs RNN models in both accuracy and efficiency. When the system delay is not
a multiple of the MRI sampling period, overprediction (0.6 seconds) is a better choice
compared to underprediction (0.4 seconds). Moreover, our proposed adaptive gate control
signal prediction model exhibits outstanding performance on real clinical data, with ave-
rage gate control accuracies of 98.3% and 98.0% for liver and lung cancer patients, res-
pectively, strongly supporting the feasibility of the model in practical applications. Our
proposed gate control scheme effectively addresses challenges posed by imaging patterns
and system delays by predicting the gating signal in advance.

4. An efficient patient-specific gating scheme with 2D cine-MRI
Building upon previous work, this study proposes an end-to-end respiratory motion
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online solution based on 2D Cine-MRI, applied in the Elekta Unity’s MR-Linac gated
radiotherapy. This solution allows real-time monitoring and automatic localization of the
tumor’s three-dimensional spatial position, along with predicting its motion trajectory in
three directions. By fitting the optimal cuboid and exploring different strategies, three-
dimensional gating signals are generated to meet the treatment needs of various patients.
Furthermore, to validate the clinical applicability of this system, we conducted dosimetric
verification of the proposed gating system.

Results demonstrate that the proposed gating system achieves optimal gating accu-
racy. When considering motion in three dimensions, the average gate control accuracy for
lung and liver cancer patients reaches 93.6% and 91.3%, respectively. Additionally, from
the dosimetric results of 20 patients, the system significantly improves the protection of
surrounding critical organs. For example, in lung cancer patients, the V5 and V20 of the
right lung, as well as the V40 of the heart, in Plan2 increased by 22.2%, 25.9%, and 22.6%,
respectively. In liver cancer patients, the V30 and V40 of the normal liver in Plan2 increased
by 15.3% and 20%, respectively, and the V10, V15, and V20 of the right kidney in Plan2
increased by 21.3%, 26.9%, and 26.2%, respectively.

Overall, the proposed gating system is robust and reliable, achieving real-time adap-
tation to tumor motion during MRgRT, ensuring the accuracy of three-dimensional ga-
ting signals throughout the MRgRT process. This provides strong support for respiratory
motion-compensated radiation therapy for thoracoabdominal cancer patients and offers
valuable tools for precise radiotherapy.

Contributions

The main contributions of this thesis are summarized as follows :

1. We outlined existing respiratory motion control strategies, analyzed the advantages
of MRI-Linac, and identified challenges in compensating for respiratory motion.
Then we introduced the goal of developing a gating system for real-time motion
compensation during the MR-Linac treatment for lung and liver cancer patients.
The details are described in Chapter 1.

2. We proposed a tumor tracking workflow based on KCF, addressing the issues of
time consumption and accuracy in tumor tracking using 2D Cine-MRI. Firstly, we
verified the efficiency and accuracy of KCF in 2D Cine-MRI tumor tracking. By
calculating the centroid, we improved the situation where the fixed-size template

33



Introduction

generated errors when the tumor shape changed, thus enhancing the tracking ac-
curacy. In particular, we focused on the tracking in the SI direction by optimizing
the selection of coronal slices or sagittal slices to determine the optimal position
of the tumor in the SI direction. The details are described in Chapter 2.

3. We proposed a patient-specific transfer C-NLSTM model for real-time prediction
of tumor motion, addressing the issue of insufficient training data. We construc-
ted a C-NLSTM model, and introduced transfer learning to fully leverage the rich
knowledge and feature representation capabilities embedded in the pre-trained mo-
del, while fine-tuning is conducted based on specific patient data to achieve high-
precision prediction of tumor motion. Through this approach, the model can be
trained with only two minutes of patient-specific data, effectively overcoming the
challenge of data acquisition. The details are described in Chapter 3.

4. We proposed an efficient gating signal prediction method, overcoming the challenge
of precise predictions in 2D Cine-MRI with limited sampling frequencies. We vali-
dated the effectiveness of linear regression for predicting internal organ or tumor
motion in 2D MR cine. And we proposed an online gating signal prediction scheme
based on ALR to enhance the accuracy of gating radiotherapy for liver and lung
cancers. The details are described in Chapter 4.

5. We proposed an end-to-end gating system based on 2D Cine-MRI for the Elekta
Unity MRgRT. It enables real-time monitoring and automatic localization of the
tumor’s 3D spatial position, prediction of tumor motion in three directions, and
fitting an optimal cuboid (gating threshold) for each patient based on the tumor’s
motion range. Additionally, we explored various approaches to derive 3D gating
signals based on tumor motion in one, two, or three directions, aiming to cater
to different patient treatment needs. Finally, the results of dosimetric validation
demonstrate that the proposed system can effectively enhance the protection of
OAR. The detailed results are described in Chapter 5.
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Chapitre 1

RESPIRATORY MOTION MANAGEMENT IN

RADIOTHERAPY

This chapter presents the background of thoracic and abdominal radiotherapy and
the current status of respiratory motion compensation techniques. Firstly, it delves into
the background of thoracic and abdominal tumors, expounding the significance of radio-
therapy in the treatment of oncology patients, and highlights the challenges respiratory
motion poses to the accuracy of radiotherapy for these tumors. Secondly, various existing
strategies for respiratory motion management are introduced. Subsequently, it discusses
the advantages of MRI and the pressing issues to be addressed in radiotherapy. Finally,
it outlines the main research work of this paper and the organization of the full text.

1.1 External Beam Radiotherapy

1.1.1 Thoracic and Abdominal Tumors

Cancer remains one of the diseases that pose a serious threat to global human health
and quality of life, with high mortality rates. Among thoracic and abdominal tumors,
lung cancer, liver cancer, esophageal cancer, colorectal cancer, gastric cancer, cervical
cancer, and breast cancer have the highest incidence, accounting for 60% to 70% of all
cancer cases. Among them, lung cancer has the highest incidence and mortality in China,
with liver cancer mortality ranking second. According to global cancer epidemic statistics
(GLOBOCAN) [161], there were approximately 2.2 million new cases of lung cancer and
1.79 million deaths from lung cancer worldwide in 2020, accounting for 11.4% and 18.0%
of all new malignancies and deaths, respectively. In 2020, there were approximately 906
thousand new cases of liver cancer and 800 thousand deaths from liver cancer worldwide,
accounting for 4.7% and 8.3% of all new malignancies and deaths, respectively.

As the country with the largest population base globally, China is facing unprecedented
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challenges in the prevention and treatment of lung cancer and liver cancer. In the past
decade, with the aging of the population and the popularization of lung cancer screening
nationwide, the incidence of lung cancer and liver cancer in the Chinese population has
shown a slow but steady increase [161][194][19]. GLOBOCAN data show that [187], there
were approximately 871 thousand new cases of lung cancer and 767 thousand deaths
from lung cancer in China in 2022, accounting for 18.1% and 23.9% of all malignancies
and deaths worldwide, respectively. In 2022, there were approximately 431 thousand new
cases of liver cancer and 412 thousand deaths from liver cancer in China, accounting
for 8.9% and 12.8% of all malignancies and deaths worldwide, respectively. Therefore, the
treatment and prevention of lung and liver cancer play a crucial role and their importance
is obvious.

The treatment of liver cancer requires the participation of multiple disciplines and
multiple treatment modalities, including surgical resection, liver transplantation, radio-
frequency ablation, arterial embolization/chemoembolization, systemic chemotherapy, ra-
diotherapy, and molecular targeted therapy. Surgery remains the main curative treatment
for liver cancer. The classic molecular targeted drug for liver cancer is sorafenib, but its
use can only increase the median survival time of HCC patients by 3 months [97], and the
objective response rate is only 2%-3% [105]. Systemic chemotherapy is the most recom-
mended method for advanced and recurrent liver cancer [56], but liver cancer patients are
often insensitive to chemotherapy, and resistance and drug resistance to chemotherapy
drugs are one of the main reasons for treatment failure in patients. The overall efficacy of
liver cancer treatment is still unsatisfactory.

Radiotherapy plays an increasingly important role in cancer treatment, and about
70% of cancer patients require radiotherapy intervention throughout their treatment. In
recent years, clinical studies related to liver cancer SBRT have shown significant benefits
in survival. For example, a study by Su et al. [160] in 2017 compared the efficacy of SBRT
with surgical resection for stage 1a hepatocellular carcinoma and found no significant
difference in the 1-, 3-, and 5-year overall survival rates between SBRT and surgical resec-
tion patients. In addition, another study published in Hepatology in 2020 [54] compared
the survival difference between SBRT and radiofrequency ablation and found that SBRT
and radiofrequency ablation had similar 3-year overall survival rates, but SBRT showed
advantages over radiofrequency ablation in terms of 3-year local recurrence.

Non-small cell lung cancer (NSCLC) accounts for approximately 80% of the total
cases of lung cancer [96]. Its treatment involves multidisciplinary cooperation including
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surgery, radiotherapy, chemotherapy, targeted therapy, immunotherapy, and individuali-
zation [174]. 70% of all patients with lung cancer have an evidence-based indication for
radiotherapy, although it is often underutilized [175]. Radiotherapy can be used as cura-
tive or palliative treatment across all stages of disease. In recent years, radiation therapy
has made significant progress in the treatment of NSCLC, which has benefited from the
continuous development of radiation physics and radiation biology.

For early stage patients, large-fraction stereotactic radiotherapy can achieve even the
equivalent efficacy of surgery [21]. At the same time, conventional intensity-modulated ra-
diotherapy (IMRT) is not only equivalent to 3D-CRT in effectiveness, but also significantly
reduces the incidence of radiation pneumonia [26]. However, radiation resistance remains
a major cause of poor local control and recurrence in NSCLC, with the local recurrence
rate of even early stage NSCLC still being as high as 10-30% in large fractionation radio-
therapy (HFRT) [33]. In conventional fractionation radiotherapy, local recurrence remains
the main cause of treatment failure, accounting for over half. Therefore, it is urgent to
conduct in-depth research on the pathways and regulatory mechanisms involved in cell
death induced by radiotherapy, and to explore effective targets for enhancing radio sen-
sitizing, as well as developing targeted radiation therapies, which are crucial issues for
current researchers to address.

1.1.2 External Beam Radiotherapy and Its Procedure

External Beam Radiation Therapy (EBRT), also known as radiotherapy, is one of the
main treatment modalities in modern cancer therapy. It utilizes a linear accelerator to
precisely direct high-energy radiation to the tumor tissue to suppress or destroy cancer
cells (shown in figure 1.1). EBRT is used to kill cancer cells, reduce tumors, and alleviate
cancer symptoms, and can be the sole treatment or used before surgery to reduce tumors,
after surgery to eliminate residual cancer cells, and for managing symptoms of benign
tumors. In clinical practice, the following forms of external radiotherapy are commonly
used :

Two dimensional radiation therapy (2D-RT) uses hand-contact or 2D X-ray fluoro-
scopy/film imaging to determine the irradiation range, and then passes through a low-
melting-point lead baffle or tungsten gate to form a rectangular or combination of irre-
gularly shaped irradiation fields to irradiate tumors.The main modality of 2D-RT is deep
X-rays, The main modes of 2D-RT are deep X-rays, 60Co therapy, high-energy X-rays
and electron beam radiotherapy, which have the advantages of wide range of application
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Figure 1.1 – Schematic Diagram of External Beam Radiation Therapy.

and fast irradiation speed, and play a very important role in the early stage of tumor
radiotherapy. The main disadvantage of 2D-RT lies in the fact that the irradiation field
can not be shaped to match the shape of the tumor, which leads to the irradiation of
too many normal tissues and the probability of radioactive damage. At present, 2D-RT
is still used in some tumor radiotherapy, but it is gradually replaced by the precision
radiotherapy technology represented by conformal radiotherapy.

Stereotactic Body Radiation Therapy (SBRT) [16] is a kind of precise radiotherapy for
tumors by using stereotactic technology and X-ray knife as the carrier of linear accelerator.
It can complete a few (5-10 times) high-dose radiotherapy in a short time. Stereotactic
radiosurgery (SRS) [16] uses high-dose concentrated radiation to accurately destroy small
brain tumors, usually no more than 3 times of high-dose radiotherapy, to achieve the same
effect as surgical resection of the tumor. SRT and SRS are especially suitable for small
volume tumors. Through precise positioning and high-dose radiation, it can minimize the
damage to surrounding normal tissues, and provide personalized, non-invasive treatment
options.

Three-dimensional conformal radiation therapy (3D-CRT)[5] marks the transition from
two-dimensional radiotherapy to three-dimensional precision radiotherapy. It uses CT
scans and computer software to create a three-dimensional model of the tumor, and adjusts
the shape of the radiation field from a common square or rectangular shape to the shape of
the tumor using multileaf collimators (MLC) or conformal lead block technology. Through
isocenter technology, a dose distribution similar to the shape of the tumor is formed from

38



1.1. External Beam Radiotherapy

different angles in three dimensions. 3D-CRT is the starting point for precise radiotherapy
for tumors, with advantages such as dose distribution that fits the shape of the tumor, fast
radiotherapy speed, and low equipment requirements. However, 3D-CRT does not fully
consider the uniformity of dose within the tumor. It is undeniable that before the wide
application of inverse intensity modulated radiotherapy, 3D-CRT has been a representative
technology for precise radiotherapy for a long time.

Intensity-Modulated Radiation Therapy (IMRT) [13] is currently the most widely
used radiation therapy technique worldwide. It achieves precise control of dose intensity
distribution by segmenting the irradiation field from each angle in traditional 3D-CRT
into multiple small fields. This approach is more in line with the actual tumor burden,
considering factors such as the quantity and distribution density of tumor cells. IMRT
not only ensures that the shape of the irradiation field matches the target area but also
enables a uniform distribution of the dose within the target area. Its main drawbacks
include long irradiation time, multiple scattering beams, and low radiation utilization
efficiency.

Volumetric Intensity Modulated Arc Therapy (VMAT) [184] is a form of IMRT. During
the continuous rotation of a linear accelerator, VMAT dynamically adjusts the shape
of the multi-leaf collimator (MLC) and the dose rate. Compared to traditional IMRT,
VMAT can complete irradiation more quickly, with an irradiation speed comparable to
3D-CRT. Helical Tomotherapy (HT) [102] addresses the challenges of IMRT for tumors
with unusual shapes or lengths (≥ 40cm). HT utilizes an aerodynamic binary MLC and
combines continuous rotation of a helical CT-like tube with synchronous movement of the
treatment bed, delivering radiation in a manner similar to helical computed tomography
scans. The greatest advantage of HT lies in its optimal dose distribution, often considered
the "gold standard." However, its drawback is the long irradiation time, comparable to
traditional IMRT.

Image-Guided Radiation Therapy (IGRT) [30] is the primary method to ensure the
accurate positioning of tumors. IGRT can be broadly categorized into General IGRT and
Specific IGRT. General IGRT refers to all imaging modalities that can provide images of
tumors or surrounding normal tissues, including X-ray imaging, CT, Positron Emission
Tomography-CT (PET-CT), MRI, ultrasound, Electronic Portal Imaging Device (EPID),
and others. Specific IGRT specifically pertains to imaging methods within the treatment
room, such as kilovoltage cone-beam CT (CBCT), X-ray fluoroscopy, two-dimensional
radiography, CT-on-Rail, as well as megavoltage (MV) CBCT, MV EPID, and others.
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Specific IGRT places greater emphasis on real-time guidance of patients on the treatment
bed. Its main purpose is to correct positional errors, compensate for tumor position errors
caused by physiological motion, track changes in tumors and normal tissues, and assess
in real-time whether the dose distribution is reasonable. MRI, with its high soft tissue
resolution, absence of radiation, and multi-dimensional functional imaging advantages, is
destined to become the primary form of IGRT when combined with accelerators.

Proton therapy utilizes protons [39] rather than photons (X-rays) for radiation treat-
ment. For certain patients, proton therapy can achieve radiation doses similar to those
with photons while reducing radiation exposure to healthy tissues.

1. Immobilisation
and Imaging 

2. Tumor and organ 
segmentation

3. Image verification

4. Dosimetry 
planning

5. Radiotherapy 
treatment

Figure 1.2 – Common clinical workflow of EBRT.

The process of EBRT typically involves multiple key steps, as shown in figure 1.2, in-
cluding the following : after the doctor conducts a preliminary evaluation and determines
the radiotherapy plan, the first step is positioning, where precise positioning and good
reproducibility of the position are crucial for radiotherapy. In the case of simulated radio-
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therapy, X-ray and CT images are obtained to obtain tumor location information. Subse-
quently, the doctor delineates the target and critical organs based on the simulation data,
verifies and adjusts the accuracy of delineation through reconstructed three-dimensional
images. Then, the physicist designs the treatment plan based on the prescription doses
specified by the radiation oncologist. The radiotherapy can only be implemented after
the irradiation position and dose verification have passed. The radiotherapy technician
positions the patient to ensure that the patient is fixed in the same position as during the
simulated positioning. The radiotherapy process is carried out within the planned time
frame, typically lasting only a few minutes each time. Conditioned equipment can use
technology to monitor tumor location during radiotherapy to ensure the accuracy and
precision of treatment. Finally, after the treatment is completed, the treatment effective-
ness is evaluated and monitored.

1.1.3 Impact of Respiratory Motion on Radiotherapy

The goal of precision radiotherapy is to maximize treatment effectiveness while re-
ducing damage to healthy tissues. Although technologies such as 3D-CRT, IMRT, and
IGRT allow for the shape and dose distribution of the target volume to be conformal,
in the process of radiotherapy for thoracic and abdominal tumors, the position of these
tumors changes with the patient’s respiration, causing the tumor to overflow the irradia-
tion target and surrounding normal tissues to enter the irradiation field, which can affect
the accuracy of radiotherapy. Their position changes with the patient’s respiratory cycle,
leading to potential tumor escape from the irradiation target area and the inclusion of
surrounding normal tissues in the radiation field. This variability may affect the precision
of radiotherapy.

Due to the strong individual differences in respiratory motion and the apparent varia-
tions in a patient’s breathing at different times, it is challenging to describe respiratory
motion using a unified model. In recent decades, with the development of imaging techno-
logies, significant progress has been made in the use of images for diagnosis and treatment
planning. However, challenges persist in dealing with image artifacts caused by respiratory
motion and organ motion during the radiation process. These challenges remain a hurdle
in achieving precision radiotherapy for thoracoabdominal tumors, requiring consideration
of respiratory motion in various aspects from imaging and treatment planning to dose
delivery. Addressing the impact of respiratory motion on the accuracy of radiation the-
rapy has become a focal point in the research of thoracoabdominal tumor radiotherapy
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techniques.
Firstly, traditional static images may not accurately reflect the true position of the

tumor due to respiratory-induced tumor movement. To solve this problem, healthcare
professionals often use 4D CT scanning technology to obtain images at different res-
piratory stages, thereby more accurately describing the spatial location changes of the
tumor. These images help doctors better understand the characteristics of tumor move-
ment and provide reference for treatment planning. Secondly, respiratory motion needs
to be fully considered during treatment planning. Typically, radiotherapy plans are desi-
gned around a region called the planning target volume (PTV) to ensure that the tumor
receives appropriate irradiation throughout the treatment process [43]. However, due to
respiratory-induced tumor movement, the PTV may require a larger margin to cover the
changes in tumor position at different respiratory phases. This means that radiation needs
to cover a broader area, while also increasing the dosage to surrounding normal tissues.
Finally, respiratory motion may cause tumor positional shifts, thereby affecting radiothe-
rapy accuracy. Sufficient consideration should be given to this factor in dose delivery in
order to ensure the accuracy of radiotherapy.

With the development of Image-Guided Radiation Therapy (IGRT) technology, real-
time anatomical images of the tumor and organs at risk during treatment are incorporated,
allowing for the correction of treatment positioning. The application of IGRT technology
can, to some extent, reduce the need for extensive expansion margins beyond the PTV,
thereby minimizing radiation toxicity to normal tissues. However, it still cannot completely
eliminate the impact of issues such as respiratory motion on the initial treatment plan
during the radiation process.

1.2 Management of Respiratory Motion

In the process of thoracoabdominal tumor radiation therapy, respiratory motion stands
out as a critical factor affecting treatment precision. To address this challenge, a variety
of respiratory motion management strategies have emerged as focal points of research.
These encompass techniques such as abdominal compression, respiratory control, respira-
tory gating, and real-time tumor tracking. These strategies have demonstrated significant
advancements in improving the precision of thoracoabdominal tumor radiation therapy,
minimizing unnecessary radiation damage, and consequently enhancing treatment efficacy
and safety. However, it is essential to acknowledge that these strategies still face certain
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limitations and constraints. Further research and refinement are needed to provide a more
comprehensive and accurate foundation for clinical practice.

1.2.1 Abdominal Compression

Abdominal compression (AC) technology is a respiratory motion management method
used to alleviate the impact of abdominal organ movement on thoracic and abdominal
cancer radiotherapy. This technique limits abdominal movement by applying external
pressure, thereby reducing tumor positional changes and enhancing radiotherapy accu-
racy. AC technology is mainly applied to tumors located in the thoracic and abdominal
regions, such as lung cancer, liver cancer, pancreatic cancer, etc. In AC technology, pa-
tients typically need to wear a special device, such as an abdominal compression belt or
an abdominal compression pad. This device exerts a certain degree of pressure on the
patient’s abdominal area, reducing diaphragmatic deviation by stabilizing abdominal po-
sition and limiting organ movement while still allowing normal respiration. Therefore,
during radiotherapy treatment, tumor positional changes are reduced, thereby improving
treatment accuracy and effectiveness. Figure 1.3 shows the patient setting using Elekta’s
BodyFIX abdominal compression device in SBRT, and the accuracy and reproducibility
of this technology have been studied [121][98][10].

Figure 1.3 – Patient setup using Elekta BodyFIX abdominal compression device.

Negoro et al [121] found that using pressure plates can reduce tumor motion in 10
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out of 11 patients . Without abdominal compression, the range of tumor motion in these
patients was 8-20 mm (average 12.3 mm), while using pressure devices reduced the range of
tumor motion to 2-11 mm (average 7.0 mm). It should be noted that AC technology is not
applicable to all patients. For example, AC technology may worsen the condition or cause
other complications in patients with poor pulmonary function, dyspnea, or abdominal
surgical scars. Additionally, the effectiveness of AC technology may be influenced by
factors such as pressure level, pressure distribution, and patient compliance. If the pressure
level is too high or the pressure distribution is uneven, it may cause increased abdominal
compression sensation and affect patient respiration and comfort levels. At the same
time, if patients are unwilling to actively cooperate with using AC devices due to poor
compliance, it will also affect the effectiveness of this technology. Therefore, when selecting
AC technology for use, it is necessary to evaluate the specific situation of patients to ensure
its applicability and safety.

1.2.2 Respiratory Control

Active Breathing Control (ABC) is a technology that uses a ventilator to temporarily
limit the flow of air in patients. This technology monitors and controls the inhalation and
exhalation volume of patients digitally by calculating the respiratory cycle curve, making
it possible to monitor and control the respiratory cycle in real time [185][45]. By using
the ABC technology, the inhalation and exhalation paths of patients can be temporarily
closed at a predetermined flow rate and respiratory volume. Figure 1.4 demonstrates
active breathing control system of Elekta. The patient is placed in the supine position by
a fixation device and prevented from nasal breathing by a nose clip to ensure breathing
only through the mouth. Additionally, multimedia glasses serve as a display unit and
use a unique optical system to enlarge computer images generated on small liquid crystal
display screens, allowing the patient to visualize the flow time curve and display the states
of inhalation, exhalation, and apnea. During radiation therapy, the radiation beam is
synchronized with the patient’s actively paused breath time, which is typically comfortable
for the patient and lasts for 15 to 20 seconds. The advantage of ABC technology is that it
can reduce respiratory motion artifacts and tumor movement during treatment, thereby
reducing the treatment margin. However, one drawback of this technology is that patients
may feel discomfort, and it may not be suitable for patients with respiratory dysfunction.

Voluntary Breath-Hold (VBH) is a method similar to ABC technology that delivers
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（b）

Time

（a）

Figure 1.4 – Elekta’s Active Breathing Control system. (a) Patient is placed in the supine position
using a fixation device, and a multimedia glasses display unit shows the flow time curve. (b) Graphic
display of the respiratory cycle (blue curve = normal breathing, red curve = shallow breathing) ; breath-
holding preset. E = exhalation ; I = inhalation ; S.B. = shallow breathing.

radiation while the patient holds their breath to minimize the impact of breathing on treat-
ment. Unlike ABC, VBH allows patients to independently control their breath holding
without using a ventilator [77]. For all breath-holding techniques, patients are typically
trained before simulation and treatment. They hold their breath at a specific stage of
the respiratory cycle, and the therapist controls the radiation beam from the accelerator
based on the patient’s breathing pattern. If the patient is unable to continue holding their
breath, they can terminate the radiation treatment at any time. It should be noted that
this technique is based on the assumption that the patient’s breath-holding behavior and
related internal anatomical organs and structures are reproducible during each treatment
session. If this assumption is invalid, it may impact the treatment’s effectiveness.

Deep Inspiration Breath-Hold (DIBH) is a method similar to ABC that involves pa-
tients taking a deep inspiration and holding their breath while receiving treatment, which
fills their lungs with air and pushes the heart away from the chest wall, reducing the
risk of radiation exposure to the heart [53]. This technique is particularly useful in si-
tuations where radiation is needed for the chest region but avoidance of radiation to the
heart is necessary, such as for left breast cancer treatment. The ABC system adds pre-
cision and reproducibility to the DIBH concept, providing all the necessary functions for
implementing breath-holding techniques and offering more options and possibilities for
radiation therapy improvement. DIBH requires patients to maintain the same deep inspi-
ration breath-holding state during both CT simulation scanning and treatment, with lung
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Figure 1.5 – Example of a patient undergoing DIBH. The patient maintains the treatment position
on the accelerator, breathes through a spirometer mask, and the respiratory level is monitored. To prevent
nasal breathing, a nose clip is used. The right figure shows a screenshot of the ABC monitor during DIBH
treatment.

expansion levels monitored by a respiratory monitor. Patients breathe through a mask
connected to the respiratory monitor and typically use a nose clip to prevent nasal brea-
thing (shown in figure 1.5). Compared to voluntary breath-hold techniques, DIBH is more
accurate because it uses respiratory monitoring. Deep inspiration breath-hold techniques
have numerous advantages in radiation therapy, such as reducing radiation exposure to
the heart, but they also have some disadvantages. Patients need to actively cooperate by
holding their breath, which may be uncomfortable for some patients. Additionally, this
technique is not suitable for all treatment situations and is typically only used in specific
cases where radiation exposure to critical organs such as the heart needs to be avoided.
Potential psychological stress is also a consideration because some patients may feel an-
xious or burdened. Therefore, when applying deep inspiration breath-holding techniques,
it is necessary to comprehensively consider the patient’s condition to achieve the best
treatment outcome.

1.2.3 Gating

In 1987, a US research team observed that treating patients during a deep inspiration
can help protect specific areas of the lungs, and thus proposed the concept of "breath-
gated radiotherapy". Subsequently, the term "gating" was used to describe various practical
methods [48][180]. In 1989, Japan first developed breath-gating technology, which used a
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microwave oscillator to control the radiation ON/OFF based on the gating signal, and
measured the pressure of the patient’s thoracoabdominal region using a balloon sensor.
The results showed that this technique could achieve more accurate treatment for tumors
located near the diaphragm [123].

In the field of breath-gating, two main approaches are considered : managing the
patient’s breath-hold, which is referred to as respiratory control technology as mentioned
earlier ; and free breath-gating, which monitors the patient’s free breathing in real time
and controls the radiation beam ON/OFF based on the patient’s respiratory movement.
The radiation beam ON/OFF is based on predetermined standards or thresholds to ensure
that radiation treatment can accurately target the tumor and minimize the radiation dose
to surrounding normal tissues.

When developing a gating strategy, selecting a "gating window" or "threshold" is cru-
cial, requiring a trade-off between achieving complete target coverage with the necessary
treatment margin and overall treatment time, as reducing the margin will increase the
overall treatment time [172]. There are mainly two types of gating thresholds : phase-
based gating and amplitude-based gating. In phase-based gating, the radiation beam is
turned ON when the calculated respiratory cycle enters a predetermined phase ; while
in amplitude-based gating, the radiation beam is turned ON when the respiratory cycle
reaches a predetermined displacement position. In most cases, the gating window is pre-
ferably selected at the end of expiration in the respiratory cycle because this is where the
tumor is most stable during respiration, and airway volume may influence doses to organs
at risk during inspiration [48]. Figure 1.6 shows the basic process and principle of the
gating scheme. By monitoring tumor motion in real time and setting gating thresholds to
selectively irradiate, the PTV margin is reduced to decrease the OAR dose.

One of the most widely used breath-gating systems is the Real-time Position Manage-
ment (RPM) system. Taking this device as an example, we will introduce its preparation,
CT scan acquisition, and treatment delivery stages in detail. As shown in figure 1.7, the
RPM system tracks the patient’s respiratory cycle by placing a reflective plastic box on
the patient’s abdomen surface. This box must always be installed in the same position,
typically between the sternum and umbilicus, as this is usually the external region with
maximum respiratory movement [121][155][135]. The reflector reflects infrared light emit-
ted by an infrared illuminator onto a charge-coupled device (CCD), which is fixed relative
to the patient’s position and connected to a computer that is connected to a linear accele-
rator. The respiratory movement of the reflector will be analyzed in real time by software
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Figure 1.6 – Gating Scheme for Respiratory Motion Compensation. (a) Flowchart of gating scheme,
with real-time monitoring and prediction of tumor motion caused by respiration ; (b) Selective irradiation
when the tumor enters a smaller target area ; (c)PTV margin w/o gating.

that controls the trigger of the accelerator and controls the ON/OFF of the radiation
beam based on pre-defined gating windows. Therefore, radiation beam transmission will
be interrupted between each breath, and the total treatment dose will be delivered in
several smaller fractions. Additionally, the RPM system can also track the patient’s res-
piratory cycle during CT scanning and select pre-defined windows (prospective mode) or
perform retrospective reconstruction of respiratory phases (retrospective mode or 4D-CT)
[135][72].

The preparation work for treatment using the RPM respiratory gating device, such
as patient fixation and isocenter selection, is similar to that of conformal radiotherapy
(CRT) and does not require prior training. Although visual and/or audio guidance may
improve reproducibility of respiratory patterns [47][23][24]. As the system is based on
the patient’s free breathing, there is no need for special attention to skin markers. Un-
like breath-holding techniques, respiratory gating during free breathing requires speci-
fic adaptation of the equipment during image acquisition. A specific software interface
should be provided for communication with an external system responsible for acquiring
and analyzing respiratory signals (such as the RPM external box or belt). Whether the
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Figure 1.7 – Varian’s RPM system. An infrared camera (a) illuminates a marker with two reflectors
(b) placed on the patient’s abdomen.

mode chosen is retrospective or prospective, the external system records the exact time of
image acquisition, which allows for reconstruction of specific respiratory phases into full
three-dimensional (3D) CT scans in the case of 4DCT [155][135][23][24][42].

In respiratory gated radiotherapy, the free breathing technique requires dealing with
multiple short radiation exposures compared to breath-holding techniques, especially
when combined with intensity-modulated radiation therapy (IMRT)[32][73]. First, it is
necessary to ensure that the linear accelerator can switch between beam ON and OFF
quickly and maintain stable projection rates, energy, and uniformity. Second, treatment
delivery must be done under the same conditions as its preparation to ensure consistency.
Additionally, marking the position of the RPM box on the patient’s skin may seem simple,
but it must be ensured that the patient’s accessories or clothing do not hinder the mo-
vement of the external device [156]. To ensure treatment quality, it is also necessary to
ensure there is no phase shift during treatment delivery, which can lead to inconsistent
target location with respiratory monitoring [132]. These steps are key factors ensuring the
effectiveness and safety of respiratory gated radiotherapy.

The technology of respiration gating relies on information from the respiratory cycle
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(also known as the"gating signal") to control radiation transmission. Non-invasive respira-
tory movement substitutes are commonly used clinically. In order to ensure the accuracy
and reproducibility of the treatment, it is necessary to deeply understand the relationship
between tumor motion and corresponding respiratory motion surrogates, and this rela-
tionship should be reproducible over time [28][62]. In most gating techniques, the tumor
location is inferred from external surrogate respiratory signals, such as lung volume or
skin motion. When Mageras et al. [104] performed gating radiotherapy on six lung cancer
patients, they placed respiratory motion substitutes between the abdominal muscle tip
and the umbilical region based on the minimum amplitude observed, which was 5 milli-
meters. Patients were subjected to a fluoroscopy examination for about one minute while
breathing normally, and five of them were then instructed to inhale and exhale according
to audio instructions.

Their report states that in most cases, the external respiration motion surrogate is
able to accurately predict internal respiration motion. Research findings from Dick et al.
[31] and Ionascu et al. [65] suggest a strong correlation between the liver or inferior lung
lobe tumor and diaphragmatic muscle motion in the upper and lower direction. However,
Feng et al. [40] found that there was little correlation between the location of pancreatic
cancer and the external movements of the abdominal wall and diaphragm. Therefore, the
correlation and reproducibility between tumor motion and external respiration substitutes
are limited by tumor location and placement of substitutes. Keall et al. [73] clearly stated
that respiratory motion surrogates should be considered for determining the consistency
of the phase of respiratory motion, rather than predicting the absolute location of the
tumor. Therefore, displacement correlation is not the primary concern. For tumors in
certain locations, the short-term correlation between external surrogates and internal
target locations may be high ; However, due to the transient changes in breathing and
waveform drift, this correlation may be unstable during long-term treatment sessions
[24].

1.2.4 Real-time Tumor-Tracking

Real-time Tumor-Tracking Radiotherapy (RTRT) technology is another form of mo-
tion management that allows patients to breathe freely while compensating for respiration-
induced motion without patient intervention. RTRT includes two main aspects : real-time
positioning of the constantly moving tumor and real-time adjustment of the radiation
beam to adapt to its location. Compared to gating methods, tumor tracking technology
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may have additional advantages, such as higher delivery efficiency and less residual target
motion. These factors may be particularly important in the treatment of thoracic and
abdominal tumors that require the delivery of large doses during a single relatively long
treatment session. It is crucial to emphasize that true real-time beam adaptation can-
not be achieved without accurate real-time localization of the tumor in three-dimensional
space [48].

Synchrony ™ is a RTRT system integrated to CyberKnife ® (Accuray Inc., Sunnyvale,
CA), which uses external markers in conjunction with diagnostic x-ray imaging to com-
pensate for respiratory motion, to emphasize the synchronized delivery of the radiation
beam with respiratory cycle [139][144]. Figure 1.8 depicts the basic components of the Cy-
berKnife with Synchrony (CKS). The CKS works differently for radiotherapy on thoracic
and abdominal mobile organs compared to the head and neck region. In the head and
neck region, due to the relative static nature of the organs, the real-time X-ray tracking
system acquires image information every 10 seconds. However, this interval is too long
for organs such as the lungs, pancreas, and liver, which are constantly in motion with
respiration and heartbeat. To avoid overdosing the patient and overheating the diagnostic
X-ray transmitter, the interval cannot be too short or continuous. To achieve real-time
tracking of these moving organs, CyberKnife has introduced an infrared tracking system
based on the X-ray image tracking system, which combines the two to achieve real-time
tracking of the moving organs.

For thoracic and abdominal organs, since there is no fixed positional relationship
between them and the bony landmarks of the body, spherical or cylindrical high atomic
number (high-Z) metal fiducial markers (internal markers) (as shown in figure 1.9) is first
implanted in or around the tumour tissue, which should remain relatively fixed in position
with the tumour and serve as a detection marker for the X-ray tracking system [142][150].
In addition, three optical markers (external markers) (as shown in figure 1.10) that can
emit infrared rays are pasted and fixed on the skin of the patient’s chest and abdomen, and
the infrared camera receives the information of the change in the position of these diodes
and transmits it to the central processing system, and the infrared information receiving
process is continuous at a frequency of 25-40 Hz. Under the condition of calm breathing,
a correlation model that establishes a relationship between the external breathing signal
and the motion of internal markers offers the tumour position in real time specific to that
patient. The correlation model is built just before the start of each treatment fraction. It
is updated during the fraction by taking, every 1 to 6 min, an X-ray image pair and is
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rebuilt if necessary. In this way, during the treatment process, when the patient maintains
calm breathing, the robotic arm can always follow the movement of the tumour tissue
according to the information received by the continuous infrared tracking system, thus
real-time tracking irradiation can be achieved. At this time, the X-ray tracking system
is off. When the movement of the target area exceeds the range of infrared tracking
adjustment due to the patient’s deep breathing and other actions, the infrared tracking
system will order the linear accelerator to stop irradiation, and at the same time, start
the X-ray detection system to automatically reposition the target area, and then start
irradiation after confirmation. After confirming, the irradiation will start again. The whole
treatment process will be completed by repeating this process.

Figure 1.8 – Main components of the CyberKnife Robotic Radiosurgery System with the Synchrony
Respiratory Tracking System are : (1) compact 6-MV X-band LINAC mounted to robotic arm ; (2) two
orthogonal flat-panel x-ray detectors positioned perpendicular to diagnostic x-ray sources mounted to
ceiling ; (3) Synchrony tracking vest with LED markers attached ; (4) camera array that holds 3 CCD
cameras ; (5) Synchrony and Target Locating Computers. Image used with permission from Accuray
Incorporated.
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Figure 1.9 – Real-time tumor tracking radiotherapy console window displaying fluoroscopic images
in two directions. Two spiral reference markers (shown by the arrow) were implanted in this patient.

Figure 1.10 – Synchrony uses three optical markers to record the external breathing signal in real
time. Synchrony camera array has three 1-dimensional CCD cameras (1, 2, 3), which are capable of
determining the positions of LED markers attached to the patient’s vest at a rate of 25 to 40 Hz.
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The effectiveness of the RTRT system is influenced by multiple factors, including the
system’s identification time lag for the position of implanted fiducial markers, otherwise
known as the delay period, as well as beam shaping speed and linear accelerator beam
response time. The beam cannot be positioned instantaneously. Data processing, commu-
nication to the robotic controller, and the inertia of the robotic manipulator and the linear
accelerator causes a time delay of 192.5 ms in their version of the system [63]. The delay
period is one of the important factors, and if the delay period reaches 200 milliseconds,
it may introduce significant dosimetric errors. Especially when using tumor tracking and
prediction methods, some prediction algorithms do not consider the system’s delay, which
can lead to the system lagging behind the prediction of tumor position in practical si-
tuations, potentially leading to inaccuracies in radiation therapy [171]. Of course, there
are also prediction algorithms that take the system’s delay into account, which can more
accurately quantify the geometric error of tumor position. These algorithms are able to
better coordinate the system’s delay and improve treatment accuracy [136][144].

In addition, the RTRT system relies on multiple fiducial markers being implanted
within the tumor. The process of implanting these markers is sometimes likened to trans-
thoracic needle biopsy for pulmonary nodules, which may result in up to 38% of patients
requiring drainage for pneumothorax issues [178][65]. However, some viewpoints suggest
that although implanting these tracking markers may cause some adverse events, it is
worthwhile due to the increased treatment accuracy exceeding the potential morbidity
[88]. In addition, the position of the markers may migrate, especially as the radiotherapy
progresses and may be exacerbated by tumor shrinkage or changes in morphology. Al-
though there have been reports of certain fiducial marker positions remaining relatively
stable over time [154].

Among the disadvantages of implanted fiducial markers is the requirement for using io-
nizing radiation imaging equipment (such as kV or MV CT, or fluoroscopy) to view them.
For example, 4DCT and other techniques are increasingly being used to correlate respira-
tory motion with CT scanning and assist in planning motion management treatment. This
involves reconstructing multiple CT series images synchronized with the patient’s respira-
tory waveform, typically at different stages of inspiration and expiration [52]. However, the
radiation dose generated by these methods can accumulate to clinically significant levels,
especially to the patient’s skin dose [88][186]. As an example, 4DCT has been reported
to have radiation doses as high as 4 times that of spiral CT scanning [113]. It should be
noted that the Calypso system (Calypso Medical Technologies, Seattle, USA) is one of
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the few commercial devices that is unique in that it does not rely on ionizing radiation
to generate images. Instead, it uses 4D electromagnetic array technology to monitor and
track the position of implanted electromagnetic sensors in real-time. Although this system
was initially mainly applied for prostate motion management [182][84][93], recent research
has begun to explore its potential application in gated radiotherapy [157][158][118].

1.2.5 Optical surface guided radiotherapy technique

The Optical Surface Monitoring System (OSMS), also known as Surface Guided Ra-
diation Therapy (SGRT), is a non-invasive, radiation-free IGRT technique. It utilizes the
principles of three-dimensional surface imaging to acquire a three-dimensional point cloud
of the patient’s surface. This point cloud is then registered with a reference 3D image using
elastic or rigid algorithms. The calculated deviations are employed to correct the patient’s
positioning, guiding the radiation therapy.

The primary advantage of SGRT lies in its non-ionizing nature, allowing its use throu-
ghout the entire radiation therapy process. Although initially motivated to replace lasers
and skin markings for patient positioning [69], SGRT has found limited clinical appli-
cations. Its potential value has not been widely recognized in radiation therapy. SGRT
has the capability to gather extensive data on position, surface, and respiratory status.
This information can be utilized to predict patient conditions, guiding patient positioning,
providing real-time imaging, monitoring respiratory motion, reducing overall treatment
time, lowering doses to surrounding normal tissues, verifying the accuracy of generated
displacements, or implementing breath-hold techniques to achieve respiratory-correlated
treatment.

Generally, as illustrated in figure 1.11, surface-guided radiation therapy systems com-
bine a projector and one or more cameras to real-time record the patient’s three-dimensional
surface. After registering with a reference image (typically centered), the system calcu-
lates offsets in the translational and rotational directions, providing information on the
patient’s positioning. Examples of such devices in the market include AlignRT™ (Vision,
UK), Varian IDENTIFY™ (Palo Alto, CA, USA), and Sentinel™/Catalyst HD Monito-
ring and Position Verification System (C-RAD, Sweden).

One promising application of SGRT is in gated treatment, especially for tumors near
the skin surface (e.g., breast cancer) using Deep Inspiration Breath-Hold (DIBH) tech-
niques (see 1.2.2). DIBH requires patients to inhale to a specific threshold during each
treatment, followed by breath-hold for positioning and treatment (as shown in figure 1.12).
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Figure 1.11 – The OSMS utilizes the principles of three-dimensional surface imaging to capture a
patient’s three-dimensional surface point cloud. It registers this point cloud with a reference 3D image
using elastic or rigid algorithms, calculating deviations to correct the patient’s positioning and guide
radiation therapy.

When using optical surface systems for positioning, personalized gating window settings
can be specified for each patient, ensuring sufficient inhalation while maintaining high
comfort and repeatability. Patients can wear video training glasses, providing real-time
feedback on inhalation volume and the position of the gating window, actively maintaining
an accurate and stable breath-hold.

Throughout the DIBH treatment process guided by optical surface technology, respi-
ratory motion management is crucial. Patients need to adopt diaphragmatic breathing,
and practicing the technique at home before treatment is essential for better treatment
outcomes. Studies indicate that pre-training and practicing DIBH methods can further
reduce cardiac and pulmonary doses for breast cancer patients [76][70]. Additionally, ef-
fective communication between staff and patients during treatment is crucial to alleviate
psychological stress caused by factors such as movement of the treatment bed, rotation
of the gantry, extension of the imaging arm, and noise from air conditioning and dehu-
midifiers. Currently, the combination of optical surface guidance technology with DIBH
for left-sided breast cancer irradiation has been widely adopted in multiple institutions,
demonstrating significant reductions in doses to critical organs. It is recommended for
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Figure 1.12 – DIBH Monitoring. Top Image : Monitoring a respiratory point (in red) on the pa-
tient’s body surface (in green). Bottom : Respiratory curve with three breath-hold phases, covering
seven individual beams (indicated by gray bars). Image provided by LMU University Hospital Munich,
Germany.[freislederer2020recent]
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all left-sided breast cancer patients undergoing radiation therapy [141][41][128]. However,
caution should be exercised when using surface imaging for deeper tumors where there is
no direct correlation between surface deviations and target tumor movement [124].

1.3 MRI-guided adaptive radiotherapy

In traditional radiotherapy, whether introducing concepts like 4D-CT and Internal
Target Volume (ITV) or employing respiratory control techniques (ABC, DIBH), respi-
ratory gating techniques, or tumor tracking, the goal is to address the adverse effects of
tumor motion on treatment. However, the changes in the target area and surrounding
organs during the treatment process necessitate further adaptation through the use of
Adaptive Radiation Therapy (ART). With the emergence of onboard CT/CBCT with
4D imaging capabilities or real-time monitoring using MR-guided devices, online ART
has made significant progress in the clinical treatment of chest and upper abdominal tu-
mors such as lung and liver cancers. However, current research has mainly focused on
pre-fractionation repositioning scans, delineation of target areas and organs at risk, and
the redesigning or modification of ART plans. There is still a lack of comprehensive re-
search on real-time adaptive strategies for the motion of thoracoabdominal tumors during
fractionated treatments.

Magnetic Resonance Guided Radiation Therapy (MRgRT) has emerged as a focal
point in the field of radiation therapy in recent years. With the clinical deployment of
MRI-guided linear accelerators (MRI-Linac), there is widespread anticipation that MR-
gRT technology will usher in transformative changes in the realm of radiation therapy. In
contrast to traditional X-ray-based Image-Guided Radiation Therapy (IGRT) techniques,
MRI does not subject patients to additional imaging doses. Unlike CT, CBCT, and MV-
CT, where daily imaging doses must be factored into the patient’s total radiation dose,
MRI circumvents this issue. Furthermore, MRI addresses the challenge of poor soft tissue
resolution in kV X-ray imaging, offering outstanding soft tissue resolution and real-time
imaging capabilities. It eliminates the need for surface or internal markers to substitute
for tumor motion, thereby avoiding issues related to establishing marker-tumor correla-
tions. This allows for direct real-time monitoring of moving target areas and opens up
possibilities for real-time tracking during treatment.
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1.3.1 Basic Structure and Treatment Workflow of MRI-Linac

Existing MRI-Linac systems can be broadly categorized into two types : the 0.35T MRI
system combined with a cobalt-60 source or linear accelerator, exemplified by ViewRay,
and the 1.5T MRI system combined with a linear accelerator, represented by Elekta Unity.

ViewRay, as the pioneering company in the development of MR-guided radiation the-
rapy (MRgRT) in the United States, introduced the ViewRay MRIdian 60Co, the first
commercially available integrated MRgRT system fusing MRI with radiation therapy
equipment. It received FDA approval in 2012 and has been in clinical use [111][81]. The
system comprises a 0.35T MRI scanning system and three 60Co sources spaced at 120°
intervals. It features a maximum field of view scanning range of 27cm, extendable up to
50cm, with a source-axis distance of 105cm and a dose rate of up to 550 cGy/min. This
system allows real-time MR imaging tracking during the radiation therapy process. Re-
cently, ViewRay has designed the MRIdian Linac system, integrating a 0.345T dual-ring
wide-bore superconducting magnet with a 6 MV FFF (flattening filter-free) linear acce-
lerator. This system has a source-axis distance of 90cm and a dose rate of 600 cGy/min.
Equipped with 69 pairs of dual-layer dual-focusing MLC (34 pairs in the upper layer and
35 pairs in the lower layer), with a projection width of 0.415cm at the isocenter, the
system’s minimum field size is 0.2×0.4cm, and the maximum field size is expanded to
27.4×24.1cm, further expanding possibilities in the medical field [46].

Figure 1.13 – Elekta Unity : The first MRI-Linac system to provide high-field MRI.

A prominent representative of MR-Linac is the "Atlantic System" developed through
collaboration between Utrecht University in the Netherlands, Elekta, and Philips. Com-
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monly known as the Utrecht model [131], this system, illustrated in Figure 1.12, integrates
a 7MV FFF X-ray accelerator system from Elekta and a 1.5T MRI system from Philips
Healthcare. Both the X-ray and MRI systems have been modified to ensure simultaneous
and interference-free operation. The designers ingeniously mounted the accelerator’s head
on a 4-meter diameter, shielded slip ring gantry, rotating at a speed of six revolutions per
minute, meeting the requirements for rotational intensity-modulated radiation therapy. A
beam stopper is placed on the other side of the accelerator to prevent the primary radia-
tion beam from directly hitting the walls, ceiling, and floor of the shielding room, ensuring
radiation safety. It is essential to note that this system utilizes Monte Carlo simulation
algorithms for field optimization, dose calculations, and dose distribution reconstruction
inside the patient [79]. This system represents the first MR-Linac system to provide high-
field MRI, with image quality comparable to MRI scanners used in diagnostic imaging
[176]. Introduced at the 36th European Society for Radiotherapy and Oncology (ESTRO)
meeting, it was officially named "Elekta Unity" [82].

Based on the specific needs of different medical institutions and patients, as well as the
differences in MRgRT plans and treatment goals, the design of adaptive clinical processes
may vary. The clinical workflow for Elekta Unity is divided into offline and online pro-
cesses. The offline functionality allows physicians to prepare a plan template that complies
with prescription requirements, referred to as a reference plan, in advance. This reference
plan conveys the physician’s intent to the clinical team involved in treatment delivery.
This not only simplifies online decision-making but also facilitates the smooth progress of
the entire adaptive workflow. The online process involves three sequential steps for each
treatment fraction : Scan-Plan-Treat. The first step involves positioning the patient and
performing a three-dimensional magnetic resonance localization image scan. In the second
step, registration is completed between the magnetic resonance localization image and the
simulated localization image on the Monaco planning system. The treatment tumor tar-
get and OAR positions are determined based on the online images, and an adaptive plan
for the current treatment is formulated on the basis of the reference plan. Two adaptive
modes, "Positional Correction" or "Shape Correction," can be selected. The third step
involves executing the adaptive plan on the MR radiation therapy system. During treat-
ment, three 2D cine-MRI planes can be used for real-time monitoring of the position and
movement of the tumor and OAR, ensuring that there is no deviation of the target lesion
during treatment.

Elekta Unity possesses unique advantages that can overcome many challenges cur-
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rently limiting the continuous development of Image-Guided Radiation Therapy (IGRT).
In comparison to CBCT images in IGRT, the high-field strength MR-Linac not only elimi-
nates additional imaging doses, making in-room and real-time imaging more convenient,
but also achieves significant progress in enhancing MRI soft tissue contrast and maintai-
ning relatively low levels of artifacts[22][86][167][8][179][183]. Elekta Unity, with its high
field strength, enables visualization of soft tissues according to diagnostic standards during
treatment. It provides opportunities for direct motion monitoring and treatment adjust-
ments based on daily real-time anatomy and biological information[49]. Elekta Unity re-
duces treatment uncertainties associated with existing radiotherapy techniques, achieving
more precise Clinical Target Volume (CTV) coverage and better Organ at Risk (OAR)
protection. This is expected to lower treatment toxicity and improve clinical efficacy [168].

During radiation therapy, tumors may move due to factors like breathing, heartbeat,
and intestinal motion. Elekta Unity can monitor and track such movements in real-time,
allowing for timely adjustments to the treatment plan. This capability aims to truly
achieve the concept of "visible treated" [109][130]. Therefore, MRI-Linac is not only a new
Image-Guided Radiation Therapy machine but also a revolutionary radiation therapy
technology. It realizes genuine real-time MRI-guided radiation therapy, providing highly
personalized treatment plans for each patient.

1.3.2 Clinical Research Status of MRI-Linac in Respiratory Mo-
tion Management

Currently, while MRI-Linac systems can adjust the target area and treatment plans
between fractions to achieve precise radiation therapy, they still face challenges in ad-
dressing tumor and Organ at Risk (OAR) position changes caused by factors like respira-
tory motion during the radiation therapy process. Respiratory motion remains a primary
concern for adaptive radiation therapy at this stage.

One of the most noteworthy features of MR-guided Radiation Therapy (MRgRT) is
its radiation-free real-time imaging capability. This exceptional feature provides outstan-
ding visualization of internal organs, enabling clinicians to monitor and respond to the
movement of internal organs in real-time during the treatment process. This not only
reduces off-target probabilities but also theoretically increases the target area dose with
fewer radiation sessions, further protecting normal tissues. Elekta Unity, with its high-
resolution soft tissue imaging and real-time adaptive motion capabilities, has the potential
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to revolutionize certain adaptive radiation therapy approaches.
The gating technology stands out as the preferred approach for MRgRT systems to

adapt to real-time tumor motion. This technology involves capturing motion images (2D
Cine-MR) continuously in a single sagittal plane during treatment, ensuring high temporal
resolution [111]. This allows for precise tracking of the target area’s position. Treatment
is only initiated when the tumor reaches a specific position, ensuring both accuracy and
safety. A research team from the Amsterdam University Medical Center employed the
ViewRay MRIdian system in single-fractionated motion-gated lung stereotactic ablative
radiotherapy for 10 patients. The results were impressive, showcasing MRI’s capability in
real-time tumor tracking.

However, a current limitation of the ViewRay MRIdian system is its reliance solely
on the sagittal plane for real-time monitoring of tumors and OARs. Although most
respiratory-related motion occurs primarily in the craniocaudal direction, organ defor-
mation and other complex movements can mean that some targets may not follow a
straightforward trajectory. This necessitates a careful evaluation of existing clinical sys-
tems and the consideration of incorporating ITV based on additional motion research
results, depending on the circumstances[51].

Another consideration with gated radiotherapy using the MRIdian system is the si-
gnificant increase in overall treatment time. This is due to the fact that irradiation is only
performed during a specific portion of the entire motion cycle. For instance, the average
time for single-fractionated treatment of lung cancer is approximately two hours, which
is more than double the standard treatment time.

Another drawback of MRIdian system for gated therapy is a noticeable increase in
the overall treatment time. This is due to irradiation being conducted during a part of
the entire motion cycle, leading to a treatment time of over two hours on average for a
single-segment treatment of lung cancer – more than doubling the treatment duration.

At the beginning of 2023, Elekta Unity MR-Linac’s Comprehensive Motion Manage-
ment (CMM) received 510(k) certification from the US FDA, introducing True Tracking
and automatic gating capabilities, marking a significant advancement in radiation the-
rapy. Elekta Unity became the first in the United States to enable automatic calculation
and correction of continuous tumor motion, enabling clinicians to treat patients more
precisely, especially when dealing with moving organs.

CMM supports four workflows, allowing users to manage the treatment of targets
with periodic respiratory motion or random motion. A patient with pancreatic cancer
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was treated at the University Medical Center Utrecht (UMC) using Elekta Unity’s CMM,
which continuously calculates tumor motion and automatically corrects it. According to
Dr. Martijn Intven, a radiation oncologist at UMC Utrecht, the first treatment using CMM
proceeded smoothly. As the beam automatically turns on during the patient’s exhalation
phase, the patient doesn’t need to hold their breath for a prolonged period, and the
overall treatment time does not significantly increase. This breaks the traditional gating
paradigm where treatment time would be increased.

Currently, the CMM system remains in the early stages of clinical research and has
yet to be widely integrated into Elekta Unity systems across institutions. Consequently, a
comprehensive evaluation of its tumor tracking accuracy and motion prediction precision
in real-world clinical settings remains elusive. Despite theoretical advantages, the practical
performance and feasibility of the CMM system require further validation through broader
clinical trials.

An alternative solution that holds promising potential is MLC tracking. This tech-
nology offers the benefit of free breathing during treatment without prolonged beam-off
time (100% duty cycle), which is particularly crucial for patients with significant tumor
motion. Although MLC tracking and VMAT are not yet incorporated into current cli-
nical MR-linac versions, Prescilla Uijtewaal et al. [168] have demonstrated the technical
feasibility of implementing VMAT + MLC tracking on Elekta Unity. Notably, the delay
from Elekta Unity MLC is minimal at approximately 20ms, yet further development is
necessary to seamlessly integrate clinical workflows and hardware devices. Additionally,
clinical treatment planning systems must offer full support for VMAT on Elekta Unity,
particularly for daily plan adjustments.

1.4 Challenges

To improve the precision of treatment in thoracoabdominal tumor, dynamic dose de-
livery adjustments must be made based on real-time observations of respiratory motion.
However, from a technical perspective, achieving safe and reliable real-time adaptive MR-
gRT through CMM still presents some scientific challenges that we here delve into in
detail :

1. Fast and Accurate Tumor Tracking Algorithm : Rapid detection of tumor shape and
position on Cine-MRI remains a major bottleneck, as current clinical practices, such
as manual contouring by experts like radiation oncologists, are time-consuming
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and negate the advantage of Unity’s rapid MR imaging during the radiotherapy
process. Template matching (TM) has been proven effective in tumor tracking and
applied in the MRIdian gating treatment[149]. However, we have found that this
method has significant computational time issues when dealing with large images
or complex templates, thus deteriorating the overall delay. Therefore, a fast and
reliable algorithm for automatic tumor contouring or tumor tracking is one of the
necessary conditions for achieving precise CMM.

2. Prediction of Gating Signals Based on small dataset : There is a system latency
between detecting target motion and delivering the dose to the target, during which
the tumor might have moved, potentially causing misalignment and inaccurate ra-
diation delivery. Studies indicate that Elekta Unity can control the overall system
latency within 0.5 seconds [86], including processes like image acquisition, target
motion trajectory extraction, and beam-on trigger. To compensate for Unity’s sys-
tem latency, real-time prediction of tumor and critical internal structure positions
is necessary, posing a challenge in the accuracy of tumor motion prediction algo-
rithms.

In recent years, Recurrent Neural Networks (RNN) and their derivative versions
demonstrate strong adaptability and nonlinear modeling capabilities in predicting
patients’ respiratory motion [7][110]. Recurrent Neural Networks (RNN) and their
derivative versions demonstrate strong adaptability and nonlinear modeling capa-
bilities in predicting patients’ respiratory motion [92][99][177][190]. However, like
other deep network models, training models require a substantial amount of an-
notated tumor motion data, which is often challenging to obtain or costly on the
Unity. Additionally, the significant variability in respiratory motion patterns bet-
ween patients makes training a patient-specific RNN model highly challenging.

3. Prediction of Gating Signals Based on Low-Frequency Motion Data : Recent re-
views suggest that linear methods show sufficient effectiveness in predicting res-
piratory signals in CyberKnife treatment[68]. However, due to differences in ima-
ging modes, acquisition frequencies (30Hz vs. 5Hz), and system latency between
X-ray-guided and MRI-guided treatments, applying X-ray-guided prediction me-
thods directly to MRgRT may face challenges. Therefore, validation of predictors
for motion trajectories of tumor and OARs obtained from 2D cine MRI data is
crucial.

Obtaining accurate gating signals for MRgRT is challenging, primarily due
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to the following factors : 1) The sampling frequency of 2D cine-MRI is typically
between 4-8Hz[49], while the accuracy of gating signals relies on high-frequency
monitoring of respiratory motion. Constrained by the lower sampling frequency,
gating signals may not capture subtle variations in respiratory motion. 2) Pre-
dicting gating signals usually requires fixing a prediction window to determine
cross-timing. The prediction task is defined as 1) whether or not crossing will oc-
cur in the next X ms and 2) if yes, when. However, fixing the prediction window is
typically a trade-off between the prediction accuracy (the shorter the higher) and
enough action time to compensate for the overall system delay (late predictions
might reduce gating efficiencies). 3) Even at a 5Hz sampling frequency, predictive
errors in gating signals may still exist, with errors of up to 0.2 seconds (sampling
time), potentially reducing the accuracy of CMM in MRgRT.

Therefore, addressing these challenges and improving the accuracy of gating
signals to ensure effective compensation of respiratory motion during radiation
therapy is a critical topic in MRgRT research and practice.

4. Evaluation of Comprehensive Errors in Tumor Tracking and Prediction, and Dosi-
metric Validation : Tumor tracking algorithms aim to accurately detect and track
tumor positions in medical imaging, while tumor motion prediction algorithms
predict future positions and trajectories based on the tracked tumor position. As
these two tasks are typically independent, calculating the comprehensive errors
generated by them is a challenging task. Hence, establishing an end-to-end gating
system for real-time motion compensation during Unity treatment and assessing
its reliability holds practical significance.

1.5 Thesis aims

This thesis aims to develop an end-to-end gating system for real-time motion compen-
sation during the treatment of lung and liver cancer patients on the Elekta Unity. The
system will continuously monitor and automatically locate the 3D spatial positions of the
tumor while predicting its motion trajectory in advance in all three dimensions. Based on
predefined gating rules, a unique gating signal will be generated to control the beam-on
and beam-off during MRgRT, thereby compensating for the inaccuracies in dose delivery
caused by respiratory motion.

The specific objectives outlined in this paper to address the challenges mentioned in
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Section 1.4 are as follows :

1. Tumor tracking algorithm based on KCF : Construct the Unity database, achieve
rapid and accurate tracking of tumors in 2D cine-MR, and extract the tumor’s
motion trajectory in three dimensions. Further details will be provided in Chapter
2.

2. Transfer C-NLSTM tumor motion prediction algorithm : Validate the reliability
of deep learning methods for predicting tumor motion and address the issue of
insufficient Unity training data affecting prediction accuracy. Further details will
be provided in Chapter 3.

3. Real-time gating for breath motion compensation based on prediction : Validate the
effectiveness of linear regression for predicting internal organ or tumor motion in
2D cine-MRI. Propose an online gating signal prediction scheme to obtain real-time
gating signals for controlling beam switching to compensate for respiratory motion,
thereby improving the accuracy of MRgRT for liver and lung cancer. Further details
will be provided in Chapter 4.

4. Efficient personalized gating scheme based on orthogonal Cine-MRI : Establish an
end-to-end gating system for real-time motion compensation during Unity treat-
ment. This system should meet real-time speed requirements, generate accurate
gating signals, and minimize the volume of the PTV expansion while maximizing
the duty cycle. Further details will be provided in Chapter 5.
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Chapitre 2

TARGET TRACKING ALGORITHM BASED

ON KERNEL CORRELATION FILTER

2.1 Introduction

Accurate localization of the tumor during the radiotherapy process is a crucial aspect
of the successful application of real-time motion compensation in lung cancer patients.
This chapter will focus on introducing algorithms for tumor automatic localization or
tracking, and propose an online solution optimized for tumor tracking.

For tumor tracking, researchers have developed various methods to track structures of
interest in 2D Cine-MRI [146]. The widely used Scale-Invariant Feature Transform (SIFT)
method allows for the extraction and robust matching of corresponding points between two
images [100]. Among its numerous applications, SIFT is employed not only for assessing
the geometric accuracy of deformable image registration [125] but also for tracking liver
and lung tumors in Cine-MR images [126][145]. Additionally, Liu [94] and Mazur et al.
[106] proposed a "dense" variant of this method, which relies on pixel-based matching
rather than sparse feature matching. In the latter work, Dense SIFT was utilized to track
targets within regions of interest in sagittal Cine-MRI series acquired by the MRIdian®
system. While this method reportedly requires computation time per frame comparable
to the image acquisition time (approximately 250 ms), achieving true real-time capability
may be possible through algorithm optimization and parallelization.

Seregni et al. [145] utilized an offline method based on the SIFT algorithm to ex-
tract tumor motion features from Cine-MRI slices. Dhont et al. introduced the Tracking-
Learning-Detection (TLD) framework into the MRgRT workflow, evaluating and opti-
mizing the tracking performance of anatomical structures on 2D Cine-MR. Despite the
challenges of significant tumor deformation and periodic disappearance, this study achie-
ved sub-pixel-level tracking accuracy, ensuring an accuracy and recall rate of over 95%.
Seregni et al. [16] validated a hybrid tracking approach combining optical flow registra-
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tion techniques with optimization through similarity matching and motion field computed
during the initialization phase to enhance speed. In their analyzed trajectories, 64.3% of
tracking errors reached sub-pixel accuracy, but this optimization is applicable only when
the object’s appearance remains stable. Although similar accuracy was achieved, the au-
thors noted that out-of-plane motion might increase tracking errors. Bourque et al. [1]
proposed a particle filter-based optimization tracking algorithm for Cine-MR tracking,
also achieving sub-pixel-level tracking errors. However, accuracy degradation may occur,
especially when there is off-plane motion, and reference images must be acquired and out-
lined before each treatment, particularly when candidate images differ from the reference
images.

Cerviño et al.’s study [20] suggests that relatively simple techniques, such as template
matching (TM)and surrogate tracking, exhibit higher accuracy compared to Artificial
Neural Networks (ANN). Similarly, Shi et al. [149] employed template matching based
on standardized cross-correlation to locate lung tumors in 2D Cine-MRI. They achieved
results comparable to the errors introduced by manual tumor identification but found it
to be time-consuming when dealing with large images or complex templates. In contrast,
Bolme et al [11] introduced correlation filters, particularly the classic Minimum Output
Sum of Squares Error (MOSSE) algorithm, for object tracking. The MOSSE algorithm
leverages Fourier transforms to reduce computational complexity and improve speed. Ho-
wever, its performance is constrained by its reliance on grayscale features in different
contexts. To address this limitation, Henriques et al. [58] proposed the Kernelized Cor-
relation Filter (KCF) algorithm, which intelligently handles limited training samples by
exploiting a circulant matrix structure. The inclusion of Histogram of Oriented Gra-
dients (HOG) features enhanced accuracy and robustness. Furthermore, the use of kernel
functions and circulant matrix diagonalization significantly reduced the computational
complexity of object tracking. However, the effectiveness of MOSSE and KCF algorithms
in tumor tracking on 2D Cine-MRI remains to be validated.

To address the issues of tumor shape changes and computational efficiency mentioned
above, this chapter proposed a tumor tracking workflow based on KCF, as illustrated in
Figure 2.1. This workflow aims to achieve real-time and accurate tracking of lung and
liver tumors in MRgRT using 2D Cine-MRI. The innovations and main contributions of
this chapter are as follows :

1. We have constructed a Unity database, which includes 2D cine-MRI data from
a total of 20 cancer patients, comprising 10 liver cancer patients and 10 lung cancer
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patients. Experienced radiologists outlined the Gross Tumor Volume (GTV) and Organs
at Risk (OAR), allowing for the extraction of the tumor trajectories in the SI, AP, and
LR directions.

2. We assessed three tumor tracking algorithms (the TM, KCF, and MOSSE), taking
into consideration geometric accuracy and computational efficiency.

3. When the tracker returns the tracking target (a fixed-size rectangular box), we
proposed an optimization method for centroid calculation. This method further calculates
the centroids of lung and liver tumors, improving the accuracy of tracking by reducing
errors caused by changes in tumor shape when using fixed-size templates.

4. We pay particular attention to tumor tracking in the SI direction. By calculating
the correlation between templates and subsequent frames on coronal and sagittal planes,
we selected the slice with higher correlation (either coronal or sagittal) to determine the
motion in the SI direction. This approach enhances the accuracy of tumor localization in
the SI direction.

Figure 2.1 – KCF-based tumor tracking workflow proposed in this chapter.

2.2 Target tracking algorithms

Three correlation-based tracking algorithms are tested : TM in spatial domain, MOSSE
in Fourier domain and the KCF also in Fourier domain without linear constraints.
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2.2.1 Template Matching (TM)

TM is the process of sliding a template over the entire image and calculating the
similarity between the template and the covered window in the image [149]. It involves
a brute force search for a predefined template in a local region of the dynamic image by
maximising an objective function to determine a good match. The objective function used
in this study is the normalised cross-correlation, given by

γ(u, v) =
∑u+Nx

x=u+1 Σv+Ny

y=v+1(f(x, y)− f̄u,v)(t(x− u, y − v)− t̄)√∑u+Nx
x=u+1 Σv+Ny

y=v+1(f(x, y)− f̄u,v)2 ∑u+Nx
x=u+1

∑v+Ny

y=v+1(t(x− u, y − v)− t̄)2
(2.1)

where f(x, y) denotes the grayscale intensity value at the point (x, y) in the target image
f of size Mx×My, x ∈ 1, ..., Mx, y ∈ 1, ..., My, t(x, y) denotes the grayscale intensity value
at the point (x, y) in the template image t of size Nx × Ny ,x ∈ 1, ..., Nx, y ∈ 1, ..., Ny,
and (u, v) is the shift of the template in the x and y directions, respectively. f̄u,v denotes
the mean value of f(x, y) within the area of the template t when it is shifted to (u, v), t̄

is the mean value of the template t.
The normalization ensures that γ(u, v) is independent of changes in brightness or

contrast of the image. These changes are related to the mean and standard deviation of
the image intensity value. The maximization of γ(u, v) determines the localization of the
tumour given the fixed template by manual contouring.

2.2.2 Minimum Output Sum of Squared Error (MOSSE)

MOSSE was the first fast tracking algorithm to apply correlation filters to target
tracking in the Fourier domain. A detailed description of the MOSSE formulation was
given in [11]. Figure 2.2 shows its flowchart. The specific procedure in this experiment is
as follows :
1. Target Template Creation : In the first frame, first select the target to be tracked and
create a target template, typically a rectangular region containing the visual information
of the target. For example, pixels in the red box on the first frame in Figure 2.2 is the
target template.
2. Feature Extraction : Features are extracted from the target template. These features
typically include pixel values, color histograms, gradient information, and more and are
used to represent the target.
3. Correlation Filter : The MOSSE is then used as the Correlation Filter for producing
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ASEF-like filters from fewer training images. The filter is learned from a set of training
images fi and training outputs gi, the latter are 2D Gaussian functions (σ = 2.0) generated
from ground truth locations of the target in training image fi as the center. Training was
performed in the Fourier domain to take advantage of the simple element-wise relationship
between the input and the output as opposed to convolutions in the spatial domain. This
process is used to compute the target’s response map.
4. Target Location Determination : The location corresponding to the maximum value in
the response map indicates the new position of the target. The target template is then
updated to include the new set in the current frame.
5. Repeat Tracking : The above process was repeated to track the target in consecutive
frames. In each frame, update the target template and compute the target’s position.

Minimum Output Sum of Squared Error (MOSSE)

Filter
∗

Desired 

: target patch from 1st frame, 
: a Gaussian function, whose peak is the center of Training a filter

1st

frame Preprocessing

Candidate frames

⨀ ⨀FFT IFFT

Response

Cosine 
window

Tracked 

FFT

Filter ∗

Train 
&update
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s

FFT

Target 
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Figure 2.2 – Flowchart of tumour tracking using the MOSSE algorithm.

From the formula point of view, it is hoped to train a filter h that can satisfy :

g = f ⊗ h (2.2)
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By Fourier transform convert to frequency domain :

G = F
⊙

H∗ (2.3)

where ∗ stands for complex conjugation, ⊙ for element-wise multiplication and ⊗ for
spatial 2-D convolution. In order to increase the robustness of H∗, the target of the first
frame image was transformed several times to obtain multiple versions of fi by translation
and rotations together with the corresponding gi with ground truth locations, to constitute
a data set. The MOSSE aims to determine a filter H to minimize the sum of squared errors
between the actual output of the convolution and the desired output.

∑
i|Fi

⊙
H∗ −Gi|2 (2.4)

This minimization process determines the optimal filter that effectively maps the training
inputs to their corresponding desired outputs, with the analytic form :

H∗ =
∑

iGi
⊙

F ∗
i∑

iFi
⊙

F ∗
i

(2.5)

Note that the power of MOSSE lies in its simplicity of the analytic solution and its
complexity (O(N log N)) due to the Fourier transform instead of O(N2) with spatial
correlations. An online adaptive version also exists to update the templates :

H∗ = Ai

Bi

(2.6)

Ai = ηGi

⊙
F ∗

i + (1− η)Ai−1 (2.7)

Bi = ηFi

⊙
F ∗

i + (1− η)Bi−1 (2.8)

where η is the learning rate, and the larger η, the more information is retained for the
current frame and the less is retained for historical information. The optimal value given
in [149] is 0.125.

2.2.3 Kernel correlation filter (KCF)

The KCF was first proposed in [58] as a computationally efficient method used for
object tracking, particularly suitable for visual tracking tasks. A detailed description of
the KCF formulation was given in [58]. The KCF algorithm is similar to the MOSSE in
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terms of process, with the following improvements :
1. Ridge regression : The KCF adds a regularization term to the objective function

min
∑

i

(yi − ωT xi)2 + λ∥ω∥2
2 (2.9)

leading to an analytic regularized least-square solution :

ω = (XT X + λI)−1XT y, (2.10)

where X is the concatenated matrix formed by xi, the training samples, yi the response
values, ω the filter template, and the λ the regularization coefficient. Note that the spatial
convolution operation is replaced by the dot-product of vectors in this formulation.
2. Cyclic shifts and circulant matrices : The cyclic shift is used to produce a cyclic matrix
of the training sample, which can be diagonalized by the Fourier transform to further
reduce the amount of computation. The cyclic matrix approach expands the number
of negative samples to enhance the performance of the tracker. Cyclic shifts refer to
shifting the location of a sample within a track by a certain number of frames. Figure 2.3
shows examples of vertical cyclic shifts of a base sample. The image moves up or down
several different pixels to generate new sample images to effectively increase the number
of samples, which helps to improve the training accuracy of the classifier.

Figure 2.3 – Examples of vertical cyclic shifts of a base sample. Our Fourier domain formulation
allows us to train a tracker with all possible cyclic shifts of a base sample, both vertical and horizontal,
without iterating them explicitly. Artifacts from the wrapped-around edges can be seen (top of the left-
most image), but are mitigated by the cosine window and padding.

An illustration of the resulting pattern of a circulant matrix is given in Figure 2.4.
Notice that the pattern is deterministic, and fully specified by the generating vector x,
which is the first row. All circulant matrices are made diagonal by the Discrete Fourier
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Figure 2.4 – Illustration of a circulant matrix. The rows are cyclic shifts of a vector image, or its
translations in 1D. The same properties carry over to circulant matrices containing 2D images.

Transform (DFT), this can be expressed as

X = Fdiag(x̂)F H (2.11)

where F is a constant matrix that does not depend on x ,and x̂ denotes the DFT of the
generating vector, x̂ = F (x). From now on, we will always use a hatˆas shorthand for the
DFT of a vector. The constant matrix F is known as the DFT matrix, and is the unique
matrix that computes the DFT of any input vector, as F (z) =

√
nFz. This is possible

because the DFT is a linear operation. Eq.2.12 expresses the eigendecomposition of a
general circulant matrix. The shared, deterministic eigenvectors F lie at the root of many
uncommon features, such as commutativity or closed-form inversion. Diagonalization with
circulant matrices allows to simplify the linear regression in Eq.2.10, when the training
data is composed of cyclic shifts. Then the full expression for linear regression (Eq.2.10)
is given by,

ω̂ = x̂∗ ⊙
ŷ

x̂∗ ⊙
x̂ + λ

(2.12)

The fraction denotes element-wise division. We can easily recover ω in the spatial domain
with the Inverse DFT (O(N log N)).
3. Kernelized Filtering : The kernel trick φT (x)φ(x′) = k(x, x′) replaces further dot-
products with the kernel function k, such that any pair of dot-product are stored in a
n× n kernel matrix K, with elements Ki,j = k(xi, xj).

A Gaussian kernel was utilized to map the input from the linear space (the original
space) to the nonlinear feature-space φ(x) (the dual space), while the vector ω in the
original space is represented as a linear combination of the basis vectors in the dual
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space :
ω =

∑
i

αiφ(xi) (2.13)

The solution to the kernelized version of Ridge Regression is given by

α = (K + λI)−1y, (2.14)

where K is the kernel matrix, and α the vector containing coefficients αi as the solution
in the dual space. For the detection, a regression function is calculated for each image
patch (candidate) z in the frame as follows :

f̂(z) = (k̂xz)∗ ⊙
α̂ (2.15)

Here, k̂xz represents the kernel correlation between the target x and the candidate z.
Each f(z) is a linear combination of the neighboring kernel values from k̂xz, weighted
by the learned coefficients α in Fourier domain. The candidate with the highest response
(kernelilzed correlation) corresponds to the tracked location.

2.2.4 Centroid of the tracked tumor

Due to factors such as irregular tumor shapes and deformations during the respiratory
movement, the 2D cine-MRI over the time series are diverse, contain tumours of various
shapes, potentially resulting in inaccurate tracking by looking for the optimal location of
a bounding box of a fixed size. It is worth noting that the outputs of TM, MOSSE, and
KCF are typically pixel boxes I tracked

(J×K) containing the target position, but they may not
accurately localize the target itself. Note that the outputs of the TM, MOSSE, and KCF
are all matrices Itracked(J ×K) of either direct or kernelized correlation values calculated
around the real target locations.

To achieve more accurate tracking, as shown in Figure 2.5, we first outline the tumor’s
shape from the template in the first frame, resulting in a binary mask matrix called
Mask(J×K), where m represents each element with m ∈ 0, 1. Then, this mask is applied
to the subsequent tracked box, denoted as Imasked

(J×K) , which is obtained by performing a
bitwise AND operation between (Mask) and I tracked

(J×K) . The centroid of the masked region
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is calculated based on the grayscale values of the image using the following equation :

ci =
∑J

i=1
∑K

j=1 Imasked(i, j) · i∑J
i=1

∑K
j=1 Imasked(i, j)

cj =
∑J

i=1
∑K

j=1 Imasked(i, j) · j∑J
i=1

∑K
j=1 Imasked(i, j)

(2.16)

where Imasked(i, j) represents the pixel value at the coordinates (i, j).

Figure 2.5 – Diagram of improved target tracking by calculating the center of mass. The yellow box
represents the tumor boundary in the first or subsequent frames, and the green "+" indicates the centroid
of the tumor in the first or subsequent frames.

Figure 2.6 shows four consecutive sagittal slices of the liver in the first row. Figure
2.6(a) represents the template, where the yellow box manually annotates the liver edge,
and the red "+" indicates the centroid of the liver. Figures 2.6(b-d) represent the sub-
sequent three frames of MRI, with the yellow boxes indicating the results of boundary
tracking, and the red "+" indicating the results of liver centroid tracking. As shown in
Figures 2.6(c-d), due to liver deformation, there is a significant error in tracking the up-
per edge of the liver. However, after calculating the centroid, the position of the centroid
remains stable on the liver. Figures 2.6(e-f) show the motion curves of boundary tracking
and centroid tracking in the corresponding SI and AP directions. The respiratory curve
after centroid calculation exhibits better consistency in amplitude, especially in the AP
direction.
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Figure 2.6 – Improvements in target tracking by centre-of-mass computation. In the first row of the
cine-MRI sequence, the yellow box indicates the results of boundary tracking, and the red ’+’ indicates
the results of centre-of-mass tracking in the liver ; the curves in the second row indicate the motion profiles
of boundary and centre-of-mass tracking in the corresponding SI and AP directions.
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2.3 Materials and methods

2.3.1 Data acquisition

The study included a total of 20 patients, with 10 diagnosed with lung cancer and
10 with liver cancer. The average age of the patients was 64.6 years, ranging from 47
to 83 years. All patients underwent radiation therapy between October 2020 and May
2022. 2D cine-MR were collected at the beginning of each radiotherapy session, with an
acquisition duration ranging from 313 to 483 seconds and an average collection time of
414 seconds. Before participating in the study, all subjects provided informed consent and
were provided with a detailed description of the research protocol.

2D cine-MRI with 5Hz imaging frequency were acquired by the Unity comprising an
Achieva 1.5T MR scanner and a 7 MV flattening-filter-free linear accelerator. To strike
a balance between acquisition time, signal-to-noise ratio, and resolution, we opted for
an acquisition frequency of 5Hz, which is considered to be reasonable [74]. The spatial
resolution of 2D cine-MRI is 3 × 3 mm2. The MRI-Linac allows real-time acquisition of
three orthogonal planes (coronal, sagittal, and transverse), with motion in the Left-Right
(LR) and Superior-Inferior (SI) directions measured from coronal slices, and motion in
the Anterior-Posterior (AP) direction derived from sagittal slices.

2.3.2 Coronal or sigattal selection for SI direction

From a general perspective, during irradiation, tracking should refer to the isocentric
position defined in the treatment plan, ensuring consistent information regardless of the
orientation of the detected slices [145]. On the one hand, movement measurements of the
SI direction can be simultaneously obtained from both coronal and sagittal slices. On the
other hand, due to the irregularity of malignant tumor margins, the shape of the tumour
usually varies between these two slices, potentially leading to incoherent tracking results.
To address this issue, we proposed a preselection of either coronal or sagittal sequences
for the extraction of SI measurements by calculating the correlation between the template
of the first frame and the subsequent 20 frames for both coronal and sagittal slices. Slices
with higher spatial correlations were thus retained for the SI direction tracking for the
treatment (as shown in figure 2.7).

To verify the pertinence of using only the first 20 frames, we also calculated the
correlations between the template and all subsequent frames. Table 2.1 illustrates the
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consistance of spatial correlations for each patient in both coronal and sagittal slices : 1)
inter-patient discrepancies are observed for both lung and liver cancer patients (coronal
plans are preferred for 4 out of 10 for lung cancer, and 3 out of 10 for liver cancer) ; 2)
fortunately higher correlations with a substantial margin for the first 20 frames is a clear
sign of higher correlations all along the treatment. Figure 2.7 further demonstrated these
observations for liver patient 1 and 8, from which we also noticed the pseudo-periodic
nature of correlation coefficients in both plans suggesting the tumor shape deformation
during different phases in the respiration process due to the fixed template used to calcu-
late these coefficients. We could reasonably deduce that the minimum duration (number
of frames) for plan selection should be one respiration cycle, also a variable parameter
for different patients. Thus, this criterion can effectively help to select for each patient
between the coronal or sagittal plans to be used to capture motion in the SI direction.

Table 2.1 – Correlation (%) comparison for SI direction slice choices between coronal
and sagittal for 10 lung cancer patients and 10 liver cancer patients. Bold indicates the
slices selected as determining SI directional motion

Lung Liver
No. Cor(20)1 Cor(all)2 Sag(20) Sag(all) Cor(20) Cor(all) Sag(20) Sag(all)
1 95.5 94.7 97.097.097.0 96.696.696.6 91.9 91.3 95.095.095.0 94.494.494.4
2 96.196.196.1 95.995.995.9 94.8 94.3 91.7 91.3 94.594.594.5 93.993.993.9
3 92.2 91.3 97.797.797.7 97.597.597.5 94.2 93.2 97.697.697.6 97.697.697.6
4 91.2 90.8 97.797.797.7 97.597.597.5 95.095.095.0 94.194.194.1 92.9 91.7
5 96.0 95.4 96.196.196.1 96.196.196.1 94.3 92.7 95.095.095.0 95.295.295.2
6 96.396.396.3 96.296.296.2 91.2 90.6 92.2 89.2 95.895.895.8 93.393.393.3
7 93.5 93.3 97.197.197.1 97.297.297.2 93.593.593.5 92.592.592.5 92.0 89.7
8 97.4 97.3 97.697.697.6 97.597.597.5 95.395.395.3 95.095.095.0 91.0 89.7
9 97.797.797.7 97.597.597.5 92.4 92.2 94.7 93.9 97.997.997.9 97.997.997.9
10 98.498.498.4 98.098.098.0 94.6 93.8 94.4 93.9 97.397.397.3 97.297.297.2
1 20, correlation between template and the first 20 frames
2 all,correlation between template and all the rest frames

2.3.3 Performance evaluation

We proposed to evaluate both the static performance (tracking error) within each
frame and the dynamic performance (predicted gating) as compared with reference gating
derived from future measurements.
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Liver patient 1 Liver patient 8

Figure 2.7 – Correlation between template and the subsequent slices of two liver cancer patients.

Tracking error

Tracking errors for the trackers were estimated as the absolute difference between the
tumor position determined using the automated (auto) trackers and the ground truth
(man) established by the radiation oncologist for each frame, as shown by


∆SI = |SIauto − SIman|

∆AP = |APauto − APman|

∆LR = |LRauto − LRman|

(2.17)

Here, ∆SI, ∆AP , and ∆LR represent the tracking errors in the SI, AP, and LR directions,
respectively. The absolute difference between the automated and ground truth positions is
taken to quantify the accuracy of the automated trackers in predicting the tumor position.

2.4 Results and Discussion

2.4.1 Tracking error

Table2.2 presents the average tracking results (errors measured in pixels) for both
boundary and centroid (lung tumor and liver organ) using TM, KCF, and MOSSE al-
gorithms, compared to the ground truth, for 10 lung cancer patients and 10 liver cancer
patients. Across all 20 patients, when tracking the centroid of the target, the errors are
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significantly (p < 0.05) smaller compared to tracking the boundary of the tumor.
Among the 10 lung cancer patients, the KCF algorithm demonstrated the best per-

formance, with average tracking errors of 0.32 and 0.25 pixels in the LR and SI directions
for coronal slices, and 0.3 and 0.22 pixels in the AP and SI directions for sagittal slices.
For the 10 liver cancer patients, only the TM algorithm performed best in the SI direction
of coronal slices, achieving an average tracking error of 0.52 pixels. However, for all other
cases, the KCF algorithm outperformed the others, with mean tracking errors of 0.47,
0.53, and 0.55 pixels in the LR, AP, and SI directions, respectively, as obtained from the
sagittal plane.

Table 2.2 – Tracking results (errors measured in pixels) of both boundary and centroid
(lung tumor and liver organ) using TM, KCF and MOSSE algorithms for 10 lung cancer
patients and 10 liver cancer patients.

Orientation Boundary Centroid
TM KCF MOSSE TM KCF MOSSE

lung

LR(Cor) 0.52±0.25 0.49±0.14 0.54±0.18 0.38±0.24 0.32±0.140.32±0.140.32±0.14 0.39± 0.22
SI(Cor)1 0.52±0.18 0.48±0.12 0.47±0.14 0.28±0.08 0.25±0.07 0.31± 0.10
AP(Sag) 0.65±0.22 0.50±0.06 0.59±0.14 0.37±0.15 0.30±0.120.30±0.120.30±0.12 0.37± 0.14
SI(Sag)2 0.58±0.11 0.52±0.14 0.52±0.16 0.28±0.09 0.22±0.08 0.33± 0.21

SI(optimal)2 0.45±0.12 0.42±0.10 0.44±0.12 0.25±0.07 0.19±0.060.19±0.060.19±0.06 0.29± 0.09
Comp(ms)3 3.4±1.07 2.6±0.97 1.1±0.32 5.4±1.07 5.2±0.92 3.4±0.52

liver

LR(Cor) 1.10±0.3 0.86±0.19 1.17±0.6 0.52±0.18 0.47±0.160.47±0.160.47±0.16 0.60± 0.36
SI(Cor) 1.30±0.69 1.4±0.45 1.45±0.35 0.52±0.15 0.59±0.16 0.71± 0.19
AP(Sag) 1.11±0.89 0.86±0.29 0.91±0.27 0.58±0.35 0.53±0.280.53±0.280.53±0.28 0.61± 0.33
SI(Sag) 1.21±0.36 1.09±0.33 1.19±0.37 0.61±0.43 0.55±0.30 0.67± 0.37

SI(optimal)2 1.19±0.35 1.01±0.30 1.10±0.32 0.50±0.15 0.50±0.140.50±0.140.50±0.14 0.60± 0.16
Comp(ms) 13.9±5.67 4.3±1.25 1.8±0.63 16.0±5.66 6.50±1.43 4.6±0.84

1 SI(Cor), tumor motion in SI direction from coronal slice
2 SI(Sag), tumor motion in SI direction from sagittal slice
3 Com(ms), computational time.

Figure 2.8 illustrates the comparison between algorithm-based tracking trajectories
and real motion trajectories using a motion curve of lung cancer as an example. In figure
2.8(a), the tracking results in the superior-inferior (SI) direction are compared between
the real motion trajectory and three centroid-improved tracking algorithms. Figure 2.8(b)
compares the tracking trajectories in three-dimensional space using the improved KCF
algorithm with the real motion trajectory. It is evident from figure 2.8 that the improved
KCF algorithm significantly outperforms the MOSSE and TM algorithms in the SI direc-
tion. In terms of the overall 3D tracking trajectory, the improved KCF algorithm closely
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aligns with the real motion range, meeting the accuracy requirements for real-time tumor
tracking.

Figure 2.8 – Tracking trajectory of Patient 1 with lung cancer and comparison with the real mo-
tion trajectory. (a) Comparison of the real motion trajectory with the tracking results in the superior-
inferior (SI) direction using three centroid-improved tracking algorithms, (b) Tracking trajectories in
three-dimensional space using KCF with improvements and comparison with the real motion trajectory.

2.4.2 Complexity and computational time

All experiments were conducted using MATLAB (The MathWorks Inc, Natick, MA)
on a machine equipped with an Intel 4-core 2.4-GHz CPU, NVIDIA GeForce GTX 1660
Ti GPU, 512 GB SSD, and 20 GB RAM. The computation cost was measured by the
execution time required for tumor tracking, motion prediction, and generation of the 3D
gating signal. Specifically, this experiment focused solely on comparing tumor localization
among the three trackers, while other processes in the system remained unchanged. The-
refore, any differences in computation cost were observed exclusively in the three trackers.
As mentioned earlier, the primary goal of the trackers was to track the entire target region
(lung tumor or liver organ) on cine-MRI.

Henriques et al. [58] reported that the KCF tracker achieves O(n log n) complexity
by leveraging the fast Fourier transform, which reduces computing time compared to
more computationally expensive matrix algebra. The speed of the KCF tracker is directly
influenced by the size of the tracked region (M ×N).
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2.4.3 Discussion

In this chapter, we primarily focused on algorithms and related issues for tumor tra-
cking under 2D Cine-MRI guidance. Firstly, we introduced three main tracking algo-
rithms : TM, MOSSE, and KCF, utilized for real-time tumor tracking. The application
of these algorithms during 2D cine-MRI-guided therapy provides feasibility for compen-
sating respiratory motion and forms the basis for the implementation of patient-specific
gating schemes.

In the detailed discussion of the algorithms, we observed that the MOSSE algorithm
is a rapid method applying correlation filters to target tracking, establishing a target res-
ponse map through Fourier transform during the training process. In contrast, the KCF
algorithm introduces improvements such as ridge regression, cyclic shifting, and kerneli-
zed filtering on the basis of the MOSSE algorithm, enhancing the tracking performance
for tumor motion. Through comparisons of different algorithms in lung and liver cancer
patients, we found that the KCF algorithm exhibits the best performance in terms of time
cost and tracking accuracy, which is crucial for accurate monitoring of tumor position.

Additionally, we noted that the irregularity of tumor shape and respiratory motion
during irradiation may lead to variations in 2D Cine-MR slice. To address this issue, we
proposed a centroid-based method, outlining the tumor shape to obtain a binary mask
matrix applied to the tracking frame. The introduction of this step effectively improves
the accuracy of tumor position, especially in cases of deformation caused by respiratory
motion.

Regarding the positioning issue in the SI direction, et al. [145] suggested that SI mo-
tion trajectories could be obtained equally well from both slice directions during cine
MRI-guided therapy, and they demonstrated that the same information could be obtai-
ned regardless of which slice direction was detected. However, due to the irregularity of
malignant tumor margins, the shape of the tumor often differs between these two planes,
which can affect the accuracy of tumor localization.

To enhance the accuracy of tumor localization, we calculated the correlation between
the first template frame in the coronal plane and the subsequent 20 frames, as well as
the correlation in the sagittal plane, and selected the plane with the higher correlation
as the location of the SI direction.Geometric uncertainty and computational cost in the
prediction of automatic tumor tracking and gating signals were quantified by simulating
beam gating. Three correlation-based tracking algorithms were tested : TM, MOSSE,
and KCF. Based on these algorithms, we calculated the tumor center of mass to improve
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tracking accuracy. KCF performed best in terms of both time cost and tracking accuracy
for both liver and lung cancer patients. This confirms the superiority of the KCF algorithm
in patient-specific gating schemes for thoracoabdominal tumors.

2.5 Conclusion

This chapter first constructed a Unity database and evaluated the geometric accuracy
and computational efficiency of three tumor tracking algorithms (TM, KCF, and MOSSE)
using 2D cine-MRI data from 20 patients. The KCF algorithm was chosen as the tracker,
and the region returned by it with the maximum response is considered as the position of
the tracked target. The tracking accuracy is further improved by computing the centroid
of pixels covered by the template. To determine the optimal position of the tumor in the
superior-inferior (SI) direction, coronal or sagittal slices with stronger template correlation
were selected. In summary, the proposed workflow for tumor tracking based on KCF proves
to be efficient and accurate on 2D Cine-MRI, offering robust support for respiratory
motion compensation in radiotherapy for thoracic and abdominal cancer patients. This
experience contributes valuable insights for precise radiotherapy.
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Chapitre 3

TUMOR MOTION PREDICTION USING

TRANSFER C-NLSTM

3.1 Introduction

The emergence of MR-Linac systems such as the Elekta Unity has opened up new pos-
sibilities for providing higher-precision gating signals. These systems can directly visualize
tumors and internal structures without relying on implanted fiducial markers or external
respiratory signals to locate the treatment target. However, there exists always a certain
system delay between the tracking of target and delivery of radiation. Consequently the
tumor may have moved, potentially leading to misalignment and inaccurate radiation
delivery. Some studies [86][9] have revealed that the Unity system can limit the system
delay to within 0.5 seconds, including processes such as image acquisition, trajectory ex-
traction, and beam trigger activation. To compensate for the delay, real-time prediction
of the gating structure (either tumor or surrounding organs) is essential in assuring the
synchronization of dosage delivery.

We first investigated the problem from the respiration trace prediction point of view,
in the hope of benefiting from the massively available open-source databases of respira-
tion traces [36][66]. Various methods have been investigated for trajectory prediction with
respiration motions. One simple method was based on a sinusoidal model containing a
few sinusoidal components of different frequency and amplitudes. Fitting with the least
square criterium was applied to predict the future respiration motion traces. However, this
approach is not suitable for irregular respiratory trajectories [173]. Lee et al. [87] introdu-
ced a prediction algorithm based on the Extended Kalman Filter (EKF) for continuous
tracking and updating of the model’s frequency and amplitude, allowing for variations in
the frequency and amplitude of breathing patterns. Bukhari et al. [17] combined Kalman
filtering with Gaussian process regression for respiratory motion prediction. Ruan et al.
[137] used Kernel Density Estimation (KDE) for respiratory motion prediction, weighted
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and summed target samples from training data for prediction. Ernst et al. [37] propo-
sed a multiscale autoregressive approach, which is a self-regressive analysis-based method
for predicting respiratory motion. Ernst et al. [38] demonstrated the superior prediction
accuracy of adaptive Support Vector Regression (SVR) predictors over wavelet-based
linear prediction. Autoregressive Integrated Moving Average (ARIMA) is another com-
monly used time series analysis model, reported to have higher accuracy in respiratory
prediction [151][75][4]. These studies found that all methods could reduce position errors,
but these traditional methods have certain limitations. For instance, in case of signifi-
cant noise or jitter affecting the respiratory motion signal, traditional methods such as
sinusoidal-based and regression-based methods often struggle to provide effective predic-
tions. Furthermore, most traditional models are confined to predicting respiratory signals
in a single direction.

Compared to traditional methods, learning-based approaches employ more complex
neural networks or adaptive filters, thereby providing greater adaptability and non-linearity
in predicting a patient’s respiratory motion, especially in cases of irregular breathing pat-
terns. RNNs possess shared memory, parameters, and Turing completeness [7][110]. Two
variants of RNNs are Long Short-Term Memory (LSTM) [60][101] and Gated Recurrent
Unit (GRU) [165]. They inherit most of the characteristics of RNNs and address the
issues of gradient vanishing and exploding gradients that arise during training on long
sequences, overcoming the difficulties faced by RNNs in capturing long-distance depen-
dencies. Lin et al. [92] proposed a deep LSTM model for predicting external respiratory
signals during radiation therapy and demonstrated the potential of deep LSTM models
in respiratory motion prediction. Wang et al. [177] introduced a seven-layer bidirectional
LSTM and a deep neural network with a 0.4-second output layer, showing significantly
improved prediction accuracy over traditional autoregressive integrated moving average
models. Yu et al. [191] presented a rapid prediction model based on bidirectional GRU,
achieving fast network updates and completing prediction model updates within one cycle
of X-ray acquisition.

While the above-mentioned deep learning methods convincing predictive performances
in capturing surface respiratory signals during the CyberKnife treatments[92][177], it is
important to note that applying these methods directly to MRgRT may present some
difficulties, due to differences in imaging patterns.While merely 30 ms is required for X-
ray fluoroscopy, the 2D cine-MRI has acquisition cycles ranging from 150 to 380 ms, as
compared with the Elekta Unity’s overall gating system delay of up to 500 ms. Therefore,
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it is crucial to validate the effectiveness of prediction models in the context of 2D cine-
MRI with low sampling frequency and important system delays. Additionally, training
a robust deep learning model requires a substantial amount of annotated tumor motion
data, for example, Lin et al[92] used 1187 traces (more than 20 hours) for model develop-
ment. However, obtaining such data on the Unity is often challenging or costly. Moreover,
considering the significant inter-patient variabilities in respiratory motion patterns, trai-
ning a patient-specific RNN model would be a pertinent solution but faced with even less
available data.

To address the aforementioned challenges, this study proposes a transfer C-NLSTM
framework for real-time prediction of respiratory motion in tumors based on 2D cine-MRI.
The process is illustrated in figure 3.1. The main contributions are summarized as follows :

1. C-NLSTM model : The truncated respiratory signal was initially passed through
a Convolutional Neural Network (1D-CNN), which effectively extracts internal structu-
ral features of the respiratory signal. Subsequently, the output of the CNN model un-
derwent max-pooling to reduce parameter dimensions, and the features learned by the
CNN were used as inputs for the NLSTM. Next, a time-distributed fully connected (FC)
layer was employed to take the outputs from all time steps of the NLSTM as input, and
a one-dimensional average pooling layer, less prone to overfitting than traditional fully
connected layers, was applied. Finally, an FC layer was used to output the predicted res-
piratory signal. The C-NLSTM model was tested and pretrained on two publicly available
databases, CyberKnife and Fantasia.

2. Transfer C-NLSTM : This framework consisted of a pretrained C-NLSTM model
and a target C-NLSTM model. The former was trained using a large amount of historical
data to extract and simulate patterns and characteristics similar to tumor motion. The
parameters, structure, and hyperparameters of this pretrained model were then used to
initialize the target C-NLSTM model. The target model was further optimized using 2 mi-
nutes of the Unity data, and the remaining data was used to evaluate the proposed transfer
model. This approach effectively reduced training time and computational resources while
improving the model’s performance on new data. The effectiveness of transfer learning for
short-term training was also validated on the Fantasia database.
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Figure 3.1 – Workflow of proposed transfer C-NLSTM model for respiration motion prediction.

3.2 A transfer C-NLSTM framework

Due to the insufficient labeled data, transfer learning technology was applied in this
paper to improve the training accuracy of the C-NLSTM model with limited amount
of labeled data. It has been proven in several previous studies that 1) network-based
deep transfer learning, which always transfer the partial structure and parameters of a
pre-trained deep neural network in source domain to another network in target domain,
is effective with reduced size of labeled data in the target domain [162], 2) the tempo-
ral convolutional network is used as a feature extraction module is an effective method
for time series analysis [90][108] and 3) the LSTM model has the potential to predict
respiratory signals [92].

Drawing upon the aforementioned research, we have combined the full convolutio-
nal neural network with the nested LSTM model to develop the C-NLSTM model. Fur-
thermore, by incorporating transfer learning techniques, we have proposed the Transfer
C-NLSTM framework.

3.2.1 Fully Convolutional Network

1D-CNN can effectively extract features from temporal data and has been proven to
be an effective method for time series analysis [71]. To prevent overfitting to noise in
the training data, the simplicity and shallow structure of the CNN model are maintained
in this study, consisting of a convolutional block with a single convolutional layer and a
Rectified Linear Unit (ReLU) activation function. The convolutional layer in this block
has 32 convolutional kernels with a receptive field of 8 (i.e., 1 × 8). The lower layers of
the CNN model can capture numerous microstructure patterns in the respiratory signal,
which are then processed by higher-level layers into discriminative features relevant to
respiratory trajectories. The output of the CNN is fed to max pooling layer to reduce the
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number of model parameters.

3.2.2 Nested long short-term memory

In order to encode an additional implicit prior of temporal hierarchy, Moniz and Krue-
ger proposed a novel Nested LSTM architecture, which constructs temporal hierarchies in
memory by selectively accessing memory via nesting [90]. As shown in fig 3.2, the NLSTM
architecture increases depth to LSTMs via nesting rather than stacking. The operation
for calculating the value of a memory cell in NLSTM is replaced with an LSTM memory
cell. Also the longer-term information related to the current respiratory signals epoch can
be selected by the LSTM gates.

Figure 3.2 – Detailed schematic of the NLSTM architecture.

A common LSTM unit shown in fig 3.2(a) is composed of an input gate, an output
gate and a forget gate. The cell remembers values over arbitrary time intervals and the
three gates regulate the flow of information into and out of the cell. The compact forms
of the equations for the forward pass of an LSTM cell with a forget gate are :



ĩt = σ̃i(x̃tW̃x̃i + h̃t−1W̃h̃i + b̃i)

f̃t = σ̃f (x̃tW̃xf + h̃t−1W̃hf + b̃f )

g̃t = σ̃c(x̃cW̃xc + h̃t−1W̃hc + b̃c)

c̃t = f̃t
⊙

c̃t−1 + ĩt
⊙

g̃t

õt = σ̃o(x̃tW̃xo + h̃t−1W̃ho + b̃o)

h̃t = õt
⊙

σ̃h(c̃t)

(3.1)
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where x̃t and h̃t−1 denote the inputs of the inner LSTM unit and can be computed based
on the parameters of the outer unit :

x̃t = it
⊙

σc(xtWxc + ht−1Whc + bc)

h̃t−1 = ft
⊙

c̃t−1

(3.2)

where ĩt,f̃t, and õt represent the states of the three gates ; c̃t represents the cell input
state ; W̃xi, W̃xf , W̃xo, and W̃xc represent the weight vectors that connect x̃t, to the three
gates and cell input ; W̃hi, W̃hf , W̃ho, and W̃hc represent the weight vectors that connect
h̃t−1 to the three gates and cell input ; b̃i, b̃f , b̃o, and b̃c represent the biases of the three
gates and cell input ; σ denotes the sigmoid function, and ⊙ denotes the scalar product
of two vectors. The cell state of the outer LSTM changes with the output of the inner
LSTM unit, which is expressed as

ct = h̃t (3.3)

In this study, the NLSTM was used to extract the temporal dependencies in respiratory
signals in the output of the feature extraction module.
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Figure 3.3 – Architecture of proposed transfer C-NLSTM framework.
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3.2.3 Proposed transfer C-NLSTM framework

The architecture of our transfer C-NLSTM framework is shown in figure 3.3 containing
two parts : the pre-trained and target C-NLSTM. The Cyberknife and Fatasia databases
were used to evaluate the stability and robustness of the pre-trained C-NLSTM. Its struc-
ture and parameters were saved and transferred to the target C-NLSTM network for
real-time prediction of tumor movements. The detailed information about the pre-trained
C-NLSTM, the target C-NLSTM and the training procedure of the proposed framework
is as follows.

1) Pre-trained C-NLSTM : the detailed configurations of C-NLSTM were illustrated
in the red dotted box in figure 3.3. The pre-processed data was passed into a 1D-CNN,
which effectively extracted the internal structure features of respiration signals. Its output
was fed a max pooling to reduce the parameter dimensions and the features learned by
the CNN were used as input to the NLSTM. The time-distributed FC layer was connected
to the outputs of the NLSTM and a one-dimensional average pooling layer less prone to
overfitting than the traditional FC layers.

The detailed structure of C-NLSTM is outlined in Table 3.1. The convolutional layers
contain 32 convolution kernels and their receptive fields were 1×8. The NLSTM architec-
ture consisted of 100 cells and its parameter named ’return sequence’ was set to ’True’, to
allow the outputs of all timesteps to be passed into the time-distributed FC layer with 50
units. Lastly, an FC layer was used to predict the respiratory signal. Note that an inverse
normalization step was needed to reverse the effects from the aforementioned (figure 3.3)
normalization. The C-NLSTM model was pre-trained on the CyberKnife and Fantasia
databases.

2) Target C-LSTM : it had the same structure as the pre-trained C-NLSTM. The
hyper-parameters, parameters and structures of the pre-trained C-NLSTM model were
transferred to the target C-LSTM, whose parameters were then fine-tuned using the Unity
database for the specific tumor motion predictions without training the whole network
from scratch.

3.2.4 Training procedure

To monitor the risk of overfitting during the training phase, 20% of the training samples
were randomly selected from each class of training samples as a validation set. After each
training epoch, the accuracy and loss of the validation set were calculated to monitor if
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the model begins to overfit the training data.
During the training phase, the Adaptive Moment Estimation (Adam)[78] optimizer

was used to optimize the loss function due to its adaptability to varying learning rates,
effective handling of sparse gradients, robustness to noisy data, and efficient parameter
updates [177]. A validation set was used to cross validation to monitor the performance of
training and search the optimal hyper-parameters. The following hyperparameters were
chosen based on a search conducted by Lombardo et al. [99] : the number of layers from
1, 3, 5, 10, dropout rates from 0, 0.1, 0.2, learning rates from 0.0001, 0.0005, 0.001, 0.005,
0.01, and batch sizes from 16, 32, 64, 128. The optimal hyperparameter settings obtained
through cross-validation are presented in Table 3.2.

Table 3.1 – Model structure of FC-NLSTM

Name of the Layer Parameters

Conv1D

Filters number=32,
Kernel size =1×8,
Kernel initializer=“he uniform”,
Strides = 1

Maxpooling1D —

NLSTM Hidden unit=100,
return sequence=“True”

Time distributed fully connected Neurons number = 50
Global Average Pooling1D —

Fully connected Neurons number = 2 or 3,
Activation = “softmax”

3.2.5 RNN Models

RNNs capture temporal dependencies in data by processing sequences, making them
useful for predicting respiratory motion. Gradient vanishing and explosion caused RNNs
to lose their grasp on nonlinear relationships. Solutions include Long Short-Term Memory
(LSTM), Bidirectional LSTM (Bi-LSTM), and Gated Recurrent Unit Networks (GRUs).
A detailed description of the LSTM, Bi-LSTM and GRU and their performance for predic-
ting respiratory motion can be found elsewhere [92][177][190]. The training procedure and
hyperparameter selection for these three RNN models are consistent with the C-NLSTM
model, as described in Table 3.2.
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Table 3.2 – Hyper-parameter configuration

Configuration Value
Optimization function Adam
Epoch 100
Batch size 64
Learning rate 0.001
Loss function categorical crossentropy

ReduceLROnPlateau

monitor = “val loss”,
factor = 0.1,
patient = 3,
min delta = 0.0001

EarlyStopping monitor = “val loss”,
patient = 10

ModelCheckpoint monitor = “val loss”,
mode = “auto”, period = 1

3.3 Materials and methods

3.3.1 Public respiratory databases

The first public database used in the study was the CyberKnife at Georgetown Uni-
versity Hospital by Dr. Kevin Cleary and Dr. Sonja Dieterich [36]. It contained breathing
recordings of 103 patients with a total of 306 respiratory motion traces. All patients had
malignant tumor manifestations in the lung. Respiratory data for each patient were re-
corded with three fiducial markers (optical tracking devices with a 26Hz sampling rate)
to track chest movements. The recording time varied from 25 to 132 minutes. The data
used in this study were the selected 137 traces from the database (all patients were in-
cluded) with the best respiration patterns. This database was used to both verify the
prediction ability of the C-NLSTM model, and initialize the transfer-C-NLSTM model.
The CyberKnife database can be downloaded from the site 1.

The second database was the Fantasia database from the Hebrew Rehabilitation Cen-
ter for Aged (Boston 02131, USA) [66]. Twenty young (21-34 years old) and twenty el-
derly (68-85 years old) rigorously-screened healthy subjects underwent 120 minutes of
continuous supine resting while continuous electrocardiographic (ECG), and respiration
signals were collected. All subjects remained in a resting state in sinus rhythm while wat-

1. https://signals.rob.uni-luebeck.de/index.php/Signals_@_ROB
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ching the movie Fantasia (Disney, 1940) to help maintain wakefulness. The continuous
respiration signals were digitized at 250 Hz. This database was used to : 1) validate the
C-NLSTM model again (training and testing), 2) validate the Transfer-C-NLSTM model
initialized with the Cyber-Knife database, 3) initialize the Transfer-C-NLSTM model to
be tested on the Unity database. The Fantasia database can be downloaded from the
site 2.

3.3.2 Unity database

A Unity database was established in Section 2.3.1, which included the orthogonal 2D
cine-MRI with 5Hz sampling frequency of 10 lung cancer and 10 liver cancer patients
in both coronal and sagittal slices. The MRI-Linac allows real-time acquisition of three
orthogonal planes (coronal, sagittal, and transverse), with motion in the Left-Right (LR)
and Superior-Inferior (SI) directions measured from coronal slices, and motion in the
Anterior-Posterior (AP) direction derived from sagittal slices. Experienced radiologists
delineated the Gross Tumor Volume (GTV) and Organs at Risk (OAR), enabling the
extraction of tumor trajectories in the SI, AP, and LR directions.

Unlike for lung cancer patients, the movements of the liver centroid were used instead
of those of the tumor, since the liver is not highly compressible but a solid organ while the
tumor borders are extremely difficult to identify. The gross tumor volumes (GTVs) of lung
patients (Figure 3.4(a)) and liver organ of liver patients (Figure 3.4(c)) were outlined by
an experienced radiologist, and then their trajectories (Figure 3.4(b) and Figure 3.4(d))
in three directions of the tumor/liver boundary were extracted from the MRI cine.

3.3.3 Data interception

The data intercepting is outlined in figure 3.5. Raw respiratory signals and trajectories
of each patient were divided into training set (70%) and testing set (30%), and 20% of
training set were used as the validation set to cross validate and monitor the performance
of training and the optimization of the hyper-parameters for RNN models. The inputs
and outputs of the predictor were segmented with a sliding window consisting of one pair
of input and output data, which were denoted as xi and yi. The successive input x(i+1) was
generated by moving the sliding window by 1 sample forward, and the sliding window was
moved forward until the last available observation in the training part was hit. The length

2. https://physionet.org/content/fantasia/1.0.0/
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Figure 3.4 – (a) Labeled lung tumor in coronal and sagittal slices. (b) Tumor centroid trajectories
in three directions. (c) Labeled liver organ in coronal and sagittal slices. (d) Liver centroid trajectories
in three directions.
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of each xi represents the number of samples used to make prediction, this parameter may
lead to different prediction results. To match pre-training and target training data, traces
from the Cyberknife database and Fantasia database were down-sampled to 5Hz. For these
three database, we fixed m=15 samples (about 3 seconds) in this study. The length of yi

was determined by the prediction window. Since the sampling period was 0.2 s, each yi =
[y((i,1)), y((i,2)), y((i,3))] contained future samples of 0.2, 0.4 and 0.6 s respectively, and their
estimations were noted as ŷi = [ŷ(i,1), ŷ(i,2), ŷ(i,3)]. In this study, since the system delay
was 0.5 seconds while the MRI sampling period was 0.2 seconds, we fixed the prediction
window length to be 0.6 seconds.
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Figure 3.5 – Data intercepting of the respiratory signal. The breathing curves in the training.

3.3.4 Performance evaluation

The mean absolute error (MAE) [181] is the mean absolute difference between the
predicted and observed values defined by :

MAE = 1
N

N∑
i=1
|yi − ŷi|, (3.4)

where yi and ŷi are the actual and predicted respiration data respectively, and N the
number of total points.

The root mean square error (RMSE) [25] [64]is a measure of accuracy, to compare
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forecasting errors of different models for a particular dataset and not between datasets, as
it is scale-dependent. RMSE is the most commonly used accuracy measure and is defined
as :

RMSE =

√√√√ 1
N

N∑
i=1

(yi − ŷi)2 (3.5)

Normalizing the RMSE (nRMSE) [115] facilitates the comparison between datasets or
models with different scales. Though there are no consistent means of normalization in
the literature, common choices are the mean or the range (defined as the maximum value
minus the minimum value) of the measured data. This value is commonly referred to as
the nRMSE, and often expressed as a percentage, where lower values indicate less residual
variance. In many cases, especially for smaller samples, the sample range is likely to be
affected by the size of the sample which would hamper comparisons. nRMSE is defined
as :

nRMSE = RMSE
σ

= RMSE√
1
N

∑N
i=1(yi − y)2

, (3.6)

where the y is the mean of the actual data points.

3.3.5 Experiment

Firstly, the accuracy and robustness of the proposed C-NLSTM model was validated
with the CyberKnife database and Fantasia database, and compared with traditional me-
thods (ARIMA and RFR) as well as RNN models that without CNN. Then, the proposed
transfer C-NLSTM model was used to predict the tumor motion curves from the Unity
database. In addition, to compensate for the lack of patients in the Unity, we intercepted
the first two minutes of respiratory signals of each patient from Fantasia database as a
training set and the rest as a test set to verify the performance of Transfer C-NLSTM.
The MAE, RMSE, and nRMSE were the amplitude metrics used to evaluate and com-
pare the performance of models. All experiments were conducted using Keras API with
the TensorFlow backend and were executed on an Intel 4-core 2.4-GHz CPU, a NVIDIA
GeForce GTX1660 Ti GPU, 512 GB SSD and 20 GB RAM machine.

97



Partie , Chapitre 3 – Tumor motion prediction using transfer C-NLSTM

3.4 Results and Discussion

3.4.1 Results from CyberKnife and Fatasia

The average MAE, RMSE, and nRMSE results of 10 different models on the 137
traces from CyberKnife were shown in Table1 3.3 with the prediction window set to 0.6
seconds. In general, the performance of the RNN with CNN models were better than
those without. The C-NLSTM model achieved the best performances in predicting the
movement of external signals with an MAE of 0.178mm, an RMSE of 0.262mm, and an
nRMSE of 0.036 (no unit).

Table 3.3 – Comparison of various methods for 103 patients from CyberKnife

Model MAE(mm) RMSE(mm) nRMSE(no unit)
ARIMA 0.309 0.393 0.062

RFR 0.284 0.388 0.058
GRU 0.263 0.364 0.050

LSTM 0.266 0.366 0.050
Bi-LSTM 0.276 0.377 0.053
NLSTM 0.245 0.341 0.047
C-GRU 0.186 0.270 0.038

C-LSTM 0.191 0.280 0.039
C-Bi-LSTM 0.189 0.276 0.039
C-NLSTM 0.178 0.262 0.036

For the Fantasia database, we utilized 70% of the data for training and 30% for testing
to reconfirm the performance of the C-NLSTM model. When the prediction window was
set to 0.6 seconds, the average MAE, RMSE, and nRMSE results for 40 patients across
various models are presented in Table3.4. Consistent with our observations, the RNN
model with CNN outperformed those without CNN, and the C-LSTM model exhibited
the best performance in predicting respiratory motion. Specifically, its MAE, RMSE, and
nRMSE were 0.085 adu/mV, 0.233 adu/mV, and 0.024 (no units), respectively.

Again, using the Fantasia database, when only 2 minutes of data were used for trai-
ning, the Cyberknife-based Transfer-C-RNN model significantly outperformed the non-
transferred model, as shown in Table3.5. Compared to the C-NLSTM model, the Transfer-
C-NLSTM achieved average reductions of 22.1%, 21.9%, and 28.9% in MAE, RMSE, and
nRMSE, respectively.
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Table 3.4 – Comparison of various methods for 40 patients from Fantasia

Model MAE(adu/mV) RMSE(adu/mV) nRMSE(no unit)
ARIMA 0.159 0.419 0.059

RFR 0.120 0.324 0.032
GRU 0.109 0.217 0.029

LSTM 0.104 0.213 0.028
Bi-LSTM 0.109 0.222 0.029
NLSTM 0.105 0.249 0.029
C-GRU 0.087 0.234 0.025

C-LSTM 0.089 0.239 0.025
C-Bi-LSTM 0.090 0.235 0.025
C-NLSTM 0.085 0.233 0.024

Table 3.5 – Comparison of model w/o transfer learning for 40 patients from Fantasia

Model MAE(adu/mV) RMSE(adu/mV) nRMSE(no unit)
C-GRU 0.143 0.399 0.053

C-LSTM 0.131 0.352 0.045
C-Bi-LSTM 0.130 0.337 0.043
C-NLSTM 0.146 0.350 0.045

Transfer-C-GRU 0.105 0.274 0.032
Transfer-C-LSTM 0.110 0.308 0.039

Transfer-C-Bi-LSTM 0.107 0.292 0.036
Transfer-C-NLSTM 0.102 0.275 0.032
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3.4.2 Results from the Unity

Figure 3.6 shows the comparison of 4 RNN models w/o the transfer learning for the
Unity database. For the 10 lung cancer patients, the transfer-C-NLSTM based on trained
parameters from history database achieved the best performances, with average MAE,
RMSE, and nRMSE of 0.85mm, 1.18mm, and 0.21 (no unit) in the SI directions, with
average MAE, RMSE, and nRMSE of 0.45mm, 0.59mm, and 0.29 (no unit) in the AP
directions, with average MAE, RMSE, and nRMSE of 0.36mm, 0.48mm, and 0.34 (no
unit) in the LR directions, respectively. Comparing with the transfer-C-NLSTM and C-
NLSTM, the average nRMSE decreased by 54.3%, 42.0%, and 30.6% in the SI, AP and
LR direction, respectively. Those figures demonstrated the benefits of transfer learning
paradigm, particularly efficient with moderate target database volumes.

The same can be observed on the transfer-C-NLSTM for the 10 liver cancer patients,
with average MAE, RMSE, and nRMSE of 0.88mm, 1.22mm, and 0.16(no unit) in the
SI directions, with average MAE, RMSE, and nRMSE of 0.47mm, 0.66mm, and 0.23 (no
unit) in the AP directions, with average MAE, RMSE, and nRMSE of 0.54mm, 0.75mm,
and 0.23 (no unit) in the LR directions, respectively. Comparing the transfer-C-NLSTM to
C-NLSTM, the average nRMSE decreased by 48.4%, 41.0%, and 43.9% in the SI, AP and
LR direction, respectively. Those figures demonstrated the benefits of transfer learning
paradigm, particularly efficient with moderate target database volumes.

3.4.3 Discussion

This chapter introduces a Transfer-C-NLSTM framework designed for real-time pre-
diction of tumor respiratory motion trajectories based on 2D Cine-MRI. Experimental
results on the CyberKnife and Fantasia databases demonstrate that the C-NLSTM mo-
del excels in predicting the motion of external signals. Its relatively low average MAE,
RMSE, and nRMSE scores indicate high accuracy and robustness in handling respiratory
motion prediction. Furthermore, the RNN model with CNN consistently outperforms
other models, highlighting the advantage of convolutional neural networks in extracting
internal structural features from respiratory signals. This provides strong support for the
application of deep learning models in predicting tumor motion trajectories.

Additionally, the introduction of transfer learning techniques has played a crucial
role in enhancing the model’s performance. Experiments conducted on the Fantasia da-
tabase demonstrate that the Cyberknife-based transfer C-RNN model outperforms the
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Figure 3.6 – Comparison of model w/o transfer learning for 10 lung cancer patients and 10 liver
cancer patients.
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non-transfer model, reducing average MAE, RMSE, and nRMSE. This indicates that pre-
training on one database and then transferring the learned knowledge to another can
effectively shorten model training time, improve performance, and exhibit significant ad-
vantages when training data are limited.

The experimental results on the Unity database further validate the benefits of transfer
learning. Among the four RNN models compared w/o transfer learning, the transfer C-
NLSTM performs the best, enhancing predictive capability. For lung and liver cancer
patients, the average nRMSE of transfer C-NLSTM in the SI, AP, and LR directions
decreased by 54.3%, 42.0%, and 30.6%, as well as 48.4%, 41.0%, and 43.9%, respectively,
demonstrating the significant advantage of transfer learning in addressing limited target
data issues.

The ultimate goal of this paper is to real-time predict and compensate for motion
induced by respiratory activity during tumor radiotherapy to guide the implementation of
gating schemes. There are two limitations in this chapter’s research : 1) For deep learning
methods, the Unity database containing 2D cine-MRI with tumor motion trajectories still
lacks in terms of patient quantity and data collection duration. 2) This chapter aims to
evaluate the accuracy of Recurrent Neural Networks (RNN) and its extended models in
respiratory motion prediction tasks. However, the proposal of tumor motion trajectories
involves manual delineation and extraction based on manually outlined GTV and OARs.
Manual labeling of GTV and OAR on motion monitoring images is time-consuming and
only applicable for current concept validation studies, not suitable for real-time clinical
applications.

To address these issues, in Chapter 4, we will explore the predictive capabilities and
efficiency of linear regression, a simpler and more effective method than deep learning,
for predicting tumor motion based on specific patient data. We will propose a method
for precise prediction of gating signals. In Chapter 5, we will integrate tumor tracking
and prediction, constructing an end-to-end gating signal prediction system to enhance
the accuracy of MR-guided Radiotherapy (MRgRT) in liver and lung cancer.

3.5 Conclusion

This chapter proposed a transfer C-NLSTM framework for real-time prediction of tu-
mor respiratory motion in 2D cine-MRI. First, a novel C-NLSTM model was constructed,
utilizing convolutional neural networks to extract internal structural features of respi-
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ratory signals and exploring temporal dependencies within NLSTM. The effectiveness
of deep learning in predicting respiratory signals at a 5Hz sampling rate was assessed.
Secondly, we introduced the transfer C-NLSTM framework, training the pre-trained mo-
del using historical data and optimizing it with 2 minutes of the Unity data, confirming
the framework’s effectiveness. The study results demonstrated that transfer learning si-
gnificantly improves model performance when training data is limited. Therefore, our
approach offers a viable solution for real-time respiratory motion prediction in MRgRT,
crucial for achieving automatic gating, especially in the case of patient free-breathing,
which is essential for enhancing the accuracy of thoracoabdominal tumor treatment.
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Chapitre 4

REAL-TIME GATING CONTROL FOR

RESPIRATORY MOVEMENT

COMPENSATION WITH PREDICTION

4.1 Introduction

The gating signal is a binary control signal to allow radiation delivery only when
the target moves into a predefined range, known as the ’gating window’, specific to each
patient. The gating scheme is an algorithm that generates the gating signal and it relies ty-
pically on the monitoring of patients’ respiration, either with external markers or imaging
modalities. Therefore, the accuracy of gating signals plays a crucial role in compensating
for respiratory motion during radiotherapy [44][126]. The Elekta Unity provides an un-
precedented opportunity for the development of gating schemes with its direct imaging
of tumors and internal structures without the need for implanted fiducial markers and/or
external respiratory signals for target localization [129][49].

However, achieving real-time acquisition of the 3D target volume remains an unsolved
problem due to the balance spatial and temporal resolutions. Research reports indicated
[145] that by acquiring interleaved orthogonal slices (sagittal and coronal) at a sufficiently
high frequency (4-8 Hz), it becomes possible to reconstruct the 3D tumor trajectory. The
retrospective division of raw data according to a quasi-periodic respiratory signal can be
done in two fundamentally different ways : either based on the actual respiratory phase
(also known as time-based gating) or based on the actual amplitude. In the former, each
respiratory cycle is divided into a fixed number of gates from one inspiration maximum
to the next, while in the latter, the gates are defined by the absolute amplitude of the
respiration signal. It was shown that amplitude-based gating performed superior to phase-
based gating, as irregularities in breathing depth are better resolved when analyzing
amplitudes instead of phases [18]. In this study, we adopted an amplitude-based gating

105



Partie , Chapitre 4 – Real-time Gating control for respiratory movement compensation with
prediction

signals.
To compensate for the system latency in the Elekta Unity, real-time prediction of the

tumor’s position and critical internal structures is crucial [89]. Klüter et al. [80] reported
a latency range of 300 milliseconds to 436 milliseconds for the Co60 version of MRIdian
when using gating, while Uijtewaal et al. [169] reported a latency of 330 milliseconds for
MLC tracking on the Elekta Unity. However, Lamb et al. [86] reported an overall system
latency of within 0.5 seconds for gating, including image acquisition time, contour-based
target motion tracking highly variable, and beam on/off trigger time. In this study, we
have fixed the total system latency of the Unity gating scheme at 0.5 seconds, although
this may not necessarily represent the latest technological advancements in MRgRT under
ideal conditions.

There are a number of alternative methods for predicting the trajectory of respiratory
movements. Linear filters and their generalization have been largely used [83][116][134].
Probabilistic frameworks, including Bayesian inference [133], Kalman filters [148] and par-
ticle filters have also been widely proposed in several studies. More innovative and complex
techniques such as support vector regression [83][38], neural networks [116][117][103] and
Recurrent neural networks (RNN) [92][177] have been explored for respiratory motion
prediction and have demonstrated their effectiveness. In a recent review focusing on the
primary prediction filters mentioned above, linear approaches were found to be sufficiently
effective in prediction compared to more complex methods when using respiratory signals
collected during Cyber-knife treatment [68].

However, it should be noted that directly applying prediction methods developed for
respiratory signals to MRI-derived respiratory signals might have some pitfalls due to the
differences in imaging modalities (i.e., interleaved orthogonal slices instead of stereo X-
ray images) and longer acquisition periods (e.g., 150− 380 ms instead of 30 ms for X-ray
fluoroscopy [151]), as well as overall system latencies (up to 500 ms [86]) to compensate
for. Hence, it is crucial to validate the suitability of these prediction filters for internal
organ or tumor position obtained from the 2D MRI cine data, extending beyond just
abdominal or thoracic superficial amplitudes.

To address the aforementioned challenges, this study proposes an online gating signal
prediction scheme to enhance the accuracy of MRgRT for both liver and lung cancer.
Figure 4.1 illustrates the workflow for optimal gating signal prediction.

The key contributions can be summarized as follows :
1. We proposed an online gate signal prediction scheme and validated the effectiveness
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Figure 4.1 – Flow chart of gating signals prediction for radiotherapy.

of linear regression for predicting internal organ or tumor motions with 2D MR cine.
We compared the linear regression model to three state-of-the-art RNN models, using
temporal metrics to assess the accuracy of the generated binary gate signals.

2. We verified the ALR model for patient-specific model training, using the data from
the first 30 seconds of each patient as the training set, and updating the model parameters
during online prediction.

3. We proved that under the assumption of a 0.5-second system latency, a 0.6-second
prediction window (over-prediction) is more suitable than that of a 0.4-second (under-
prediction).

4.2 Proposed gating signals prediction algorithm

4.2.1 Linear predictors

The intercepted data is used to predict the motion trajectory of the tumour. The linear
regression (Linear) models assume the linear relationship between the future data (ŷ(i,j−1)

and ŷ(i,j)) and the past available data xi :
ŷ(i,j−1) = xT

i βj−1

ŷ(i,j) = xT
i βj

(4.1)

where T denotes the transpose, the coefficient vector defined as βj = (βj1, ..., βjm) for
m = 15 and j = 2 for prediction window of 0.4s or j = 3 for prediction window of 0.6s,
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note that this rule applies to all j in the following.
The loss function of linear regression is the sum of the squares residuals :

L(βj−1) = ∑N
i=1(y(i,j−1) − xT

i βj−1)2

L(βj) = ∑N
i=1(y(i,j) − xT

i βj)2
(4.2)

For RidgeCV regression, the loss function to be minimized is the penalized residual
sum of squares [61] :

L(βj−1) = ∑N
i=1(y(i,j−1) − xT

i βj−1)2 + λ∥βj−1∥2
2

L(βj) = ∑N
i=1(y(i,j) − xT

i βj)2 + λ∥βj∥2
2

(4.3)

where the optimal parameter λ is found by the Leave-One-Out cross-validation (LOOCV).
The regularization term shrinks the magnitude of the coefficient vector β, which leads to
a reduction of the noise level of the prediction signal [57]. L(β) is minimized by

βj−1 = (XT X + λI)−1XT Yj−1

βj = (XT X + λI)−1XT Yj

(4.4)

where X=[x1, ..., xN ]T , Yj = [y(1,j), ..., y(N,j)]T . Note that the calculations of these coeffi-
cients are straight forward without an iterative process and its convergence criterion to
fix.

For the L2-L1 regression, the L1-norm of the parameters is used as the penalty term
in the loss function [164] :

L(βj−1) = ∑N
i=1(y(i,j−1) − xT

i βj−1)2 + λ∥βj−1∥1

L(βj) = ∑N
i=1(y(i,j) − xT

i βj)2 + λ∥βj∥1

(4.5)

where the optimal λ is chosen by the generalized cross-validation (GCV) [50], and
the optimal solution β(λ) is obtained by the alternating direction method of multipliers
(ADMM) [14].

Due to the lower complexity of linear regression methods, we also implemented and eva-
luated the adaptive linear regression with a burn-in period of the first 30 s (150 samples)
for each patient. The minimization of L(β) is performed continuously to update the model
parameters (βj−1 and βj) with the incoming data of the same patient. Recursive update
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expressions for the inverse matrix [XT X]−1 are derived from Woodbury’s constant equa-
tion, eliminating the need to recompute existing information to improve the speed of the
algorithm [59]. The algorithm table 1 describes in detail the process of the adaptive linear
regression for the gating signal generation.

4.2.2 Crossing time

The “Crossing time” refers to the time instant (either by prediction or by interpolation)
that tumor crosses a predefined threshold. When the tumor crosses below the predefined
threshold, the radiation beam is activated and it is referred to as ’crossing-on’. Conversely,
when the tumor crosses above the threshold, the radiation beam is deactivated and it is
termed as ’crossing-off’.

Since the sampling frequency of MR images is 5Hz, it is reasonable to assume that the
shape of the respiratory curve can be restored by connecting each frame of the continuous
images. Therefore, we proposed a linear interpolation to predict the threshold crossing
time :

T̂cross = Th− ŷ(i,j)

ŷ(i,j) − ŷ(i,j−1)
×△T + Ti + j ×△T, (4.6)

where Ti is the current sample time, ŷ(i,j−1) and ŷ(i,j) the predictions by Eq.(4.1), △T =
0.2s the MRI sampling period, and Th the threshold, set as the average of the respiratory
trajectory in the SI direction during the burn-in period for simplicity. Note that a lower
threshold means beaming during the more stagnant phase of exhalation and thus ensures
better treatment margins while increasing the overall treatment time. The optimal trade-
off between radiation precision and efficiency is beyond the scope of the present study.
The reference crossing time (gold standard) could be calculated in a similar manner with
Eq.4.6, using y(i,j−1) and y(i,j) instead of their predictions.

4.2.3 Gating signals generation

Figure 4.2 shows the gating control scheme by thresholding the predicted tumor tra-
jectory for prediction window of 0.6 s. The black and red curves are true and predicted
breathing curves, respectively. The green line is threshold that was set according to the
range of tumor motion and dutycycle. The system latency was 0.5 s in this study, thus
ideal gating signal should be 0.5 s earlier than that the exact crossing time. In the expe-
riment, taking the 0.6 s prediction window (j = 3) as an example, there are two conditions
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Figure 4.2 – Gating control scheme by thresholding the predicted tumor trajectory for prediction
window of 0.6 s.

for triggering gating : 1) when the motion curve crosses the threshold between ŷ(i,2) and
ŷ(i,3) (point A in Figure 4.2), or 2) when the time difference (dt) between ŷ(i,3) and the
predicted cross time is less than 0.1s (point B in Figure 4.2). For the prediction window
of 0.4s (j = 2), the same decision rules apply except that ŷ(i,2) and ŷ(i,3) are replaced by
ŷ(i,1) and ŷ(i,2). The black and red binary control signals were generated by the reference
and predicted crossing time respectively, while the blue one can be generated without
prediction thus giving the worst-case scenario in gating schemes. The algorithm table 1
describes in detail the above gating signal generation rules as well as idea of adaptive
(and patient-specific) gating signal generation with an ever-increasing training data set.

Moreover, for the evaluation of gating schemes, we also studied some temporal metrics.
The best performance is reached when the predicted gating signal coincides perfectly with
the ideal one. Note that it is quite different from the amplitude measure for respiration
trace prediction errors. On the other hand, the worst performance is given by ideal gating
delayed by the latency (0.5 s), as can be determined after the exact crossing time without
the prediction at all. Figure 4.2 also illustrates the ideal (in black) and dummy (in blue)
gating signals, the former is generated by the exact threshold crossing instants less the
system delay (best scenario supposing perfect prediction of the future motions), while
the latter simply its delayed version (0.5s) and can be achieved without prediction in
practice. We thus considered any meaningful gating signal to be constrained within the
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0.5 s temporal interval.

4.3 Materials and methods

4.3.1 Data acquisition

We utilized the Unity database constructed in Section 2.3.1, collecting 2D cine-MRI
data from a total of 20 cancer patients, including 10 liver cancer patients and 10 lung
cancer patients. The GTVs of lung patients (Figure 4.3(a)) and liver organ of liver patients
(Figure 4.3(c)) were outlined by an experienced radiologist, and then their trajectories
(Figure 4.3(b) and Figure 4.3(d)) in three directions of the tumor/liver boundary were
extracted from the MRI cine. In amplitude-based gated radiotherapy, we combined the
motion from these three different directions into a 3D vector called "total motion". This
approach computed SI, AP, and LR displacements as the length of a 3D vector, ensuring a
holistic consideration of motion. And it allowed specific gating thresholds to be set based
on the amplitude of total tumor motion for each patient, helping to simplify treatment
planning and reduce motion-related complexity. Table 4.1 shows the mean amplitude of
motion and the min-max range (in millimeters), along with the mean respiratory cycle
and the min-max range (in seconds) for liver organ and lung tumors.

Table 4.1 – Movement characteristics of liver organs and lung tumors. Mean amplitude
of motion and (min-max) range in millimeters, and mean respiratory cycle and (min-max)
range in seconds.

SI (mm) AP (mm) LR (mm) 3D motion (mm) Period (s)
Liver organ 21.3 (5.6-40.1) 7.9 (3.2-13.1) 9.3 (4.3-15.9) 25.5 (14.5-43.2) 4.6 (2.9-7.4)
Lung tumor 16.2 (3.1-25.2) 4.2 (2.8-5.9) 2.8 (0.9-4.5) 17.2 (5.1-25.5) 3.4 (2.4-5.4)

4.3.2 Data interception

Trajectory of each patient was divided into training set (70%) and testing set (30%),
and 20% of training set was used as the validation set to cross-validate and monitor the
performance of training and the optimize of the hyper-parameters for Ridge regression, L2-
L1 regression and RNN models. The inputs and outputs of the predictor were segmented
with a sliding window consisting of one pair of input and output data, denoted as xi and
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Figure 4.3 – (a) Labeled lung tumor in coronal and sagittal slices. (b) Tumor centroid trajectories in
three directions and 3D motion. (c) Labeled liver organ in coronal and sagittal slices. (d) Liver centroid
trajectories in three directions and 3D motion.
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yi. The successive input x(i+1) was generated by moving the sliding window by 1 sample
forward, and the this was repeated until the last available sample in the training part. The
length of each xi represents the number of samples used to make prediction, we fixed m=15
(about 3 s) in this study. The length of yi was determined by the prediction window. Since
the sampling period was 0.2 s, each yi = [y(i,1), y(i,2), y(i,3)] contained future samples of 0.2,
0.4 and 0.6 s respectively, and their estimations were noted as ŷi = [ŷ(i,1), ŷ(i,2), ŷ(i,3)]. In
this study, since the system delay is 0.5 s while the MRI sampling period is 0.2 s, we are
confronted with the choice of either 0.4 s (under prediction) or 0.6 s (over prediction) for
the prediction window.

4.3.3 Performance evaluation

Amplitude metrics

Amplitude indicators (MAE, RMSE, NRMSE) are introduced in detail in section 2.3.4.

Temporal metrics

For gated radiotherapy, it is essential in predicting accurately the beam on/off control
when the target crosses threshold position rather than predicting the respiratory curve
itself. We thus propose in this paper two temporal metrics, namely the gating on/off error
and gating accuracy in comparison with the ideal gating signal.

We first defined the crossing on/off error as the temporal differences threshold-crossing
between the true and predicted curves in both directions. The gating on/off error, on the
other hand, denoted the temporal difference of beam-on/off control between the ideal
(0.5s in advance of the real threshold-crossing) and the predicted gating signals.

The gating accuracy is the ratio of overlapped duration (of the ideal and predicted
gating signal) over the entire therapy :

Gating accuracy =
[
1−

∑N
i=1(Tgaterr)

Total time of irradiation

]
× 100% (4.7)

where N is the number of breathing cycle during therapy of each patient and Tgaterr the
non-overlapping period of the ideal and predicted gating signal.
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4.4 Results and Discussion

4.4.1 Linear vs RNN regression

Predictive performance of linear regression and its regularized variants (Ridge and L2-
L1) were compared with three classical RNN models and the transferC-NLSTM model
proposed in Chapter Three (abbreviated as Ch3). Since RNN requires a large amount of
training data, we first use 70% of the data (more than 4 minutes) in these six models for
training and the rest for testing.

Table 4.2 shows the mean and standard deviation of amplitude errors (MAE, RMSE,
and nRMSE) for different methods with 0.4 s and 0.6 s prediction window for 10 liver can-
cer patients and 10 lung cancer patients. No matter the choice of prediction length, linear
regression without regularization performed the best, followed by the Ridge, and linear
methods have significantly smaller amplitude errors than those of the RNNs (P<0.05),
not to mention the unrealistic 70% − 30% data partition adopted in favor of the RNNs.
Overall, the magnitude-based results demonstrated the excellent predictive power of the
linear regression for motion prediction of both liver organ and lung tumors. Note also
that as expected in terms of amplitude metrics a shorter prediction window (0.4 s) yields
lower prediction errors (MAE, RMSE) and higher correlation (nRMSE) compared with
a longer prediction window (0.6 s). However, this phenomenon is not observed when it
comes to the temporal metrics for the gating signal errors.

Table 4.3 shows the mean and standard deviation of gating errors with prediction
length of 0.4 s and 0.6 s for the same liver cancer patients and lung cancer patients,
as well as the calculation time for each model. Indeed, we observed identical crossing
and gating errors in the case of over-prediction whereas in the case of under-prediction
crossing errors seem to be reduced thanks to its higher precision, gating errors are getting
worse since the gating decisions are made typically between 0.2 s and 0.4 s in advance
with a system delay of 0.5 s. We thus conclude that over-prediction is a preferable choice
compared to under-prediction when system delay is not a multiple of the MRI sampling
period.

For the gating accuracy, choosing over-prediction (0.6 s) is significantly better (P<0.05)
than under-prediction (0.4 s), all factors being equal otherwise. When the prediction win-
dow is 0.6 s, the linear regression achieved the best performance with an average gating
accuracy of 98.3% and 98.0%, a gating error of 56 ms and 45 ms, for liver cancer and
lung cancer patients respectively, as to measured by the dummy performer of 500 ms
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Table 4.2 – Mean and std deviation of amplitude errors with 0.4 s and 0.6 s prediction
window for 10 liver cancer patients and 10 lung cancer patients.

Liver organs Lung tumors

PW Model MAE
(mm)

RMSE
(mm)

nRMSE
(None)

MAE
(mm)

RMSE
(mm)

nRMSE
(None)

0.4 s

(j=2)

Linear 0.86±0.56 1.84±0.84 0.14±0.06 0.60±0.15 1.61±0.64 0.17±0.09
Ridge 0.90±0.60 1.87±0.87 0.14±0.06 0.60±0.15 1.61±0.64 0.17±0.09
L2-L1 1.41±0.38 2.35±0.66 0.17±0.05 1.26±0.33 2.16±0.54 0.22±0.09
LSTM 2.51±1.39 3.93±1.67 0.27±0.04 1.87±0.38 2.94±0.56 0.31±0.15

Bi-LSTM 2.26±0.99 3.57±1.09 0.25±0.05 1.70±0.63 2.85±0.75 0.30±0.14
GRU 2.18±0.92 3.46±1.04 0.24±0.04 1.58±0.46 2.69±0.60 0.28±0.12
Ch3 1.34±0.83 2.07±0.95 0.19±0.03 1.07±0.28 1.66±0.62 0.23±0.10

0.6 s

(j=3)

Linear 1.65±0.87 2.11±1.06 0.15±0.07 1.19±0.40 1.55±0.51 0.15±0.05
Ridge 1.69±0.92 2.16±1.12 0.15±0.07 1.20±0.39 1.56±0.50 0.15±0.06
L2-L1 2.52±0.71 3.29±0.96 0.24±0.05 2.23±0.71 2.85±0.90 0.27±0.09
LSTM 3.32±1.40 4.36±1.97 0.29±0.06 1.87±0.38 2.94±0.56 0.31±0.15

Bi-LSTM 3.39±1.64 4.56±2.27 0.31±0.10 1.70±0.63 2.85±0.75 0.30±0.14
GRU 3.50±1.48 4.62±1.98 0.32±0.09 1.58±0.46 2.69±0.60 0.28±0.12
Ch3 2.29±1.13 2.60±1.32 0.20±0.06 1.55±0.49 2.41±1.21 0.21±0.11

Table 4.3 – Mean and std deviation of gating errors with prediction length of 0.4 s and
0.6 s for 10 liver cancer patients and 10 lung cancer patients, as well as calculation time
for each model.

Liver organs Lung tumors

PW Model Crossing
(ms)

Gating
(ms)

Gat-acc
(%)

Crossing
(ms)

Gating
(ms)

Gat-acc
(%)

Time
(ms)

0.4 s

(j=2)

Linear 30±25 190±27 93.9±2.1 25±28 183±65 91.6±3.3 0.06
Ridge 32±27 190±30 93.8±2.1 25±29 184±66 91.4±3.3 0.07
L2-L1 58±24 184±46 93.3±2.3 44±29 191±76 90.1±3.9 0.03
LSTM 75±64 232±141 93.0±4.2 75±52 233±111 90.5±4.7 3.71

Bi-LSTM 73±53 285±261 90.6±9.9 70±52 267±101 90.0±4.8 5.43
GRU 71±69 283±250 90.5±6.1 47±44 249±107 90.2±4.7 3.36
Ch3 58±24 184±46 93.3±2.3 44±29 191±76 90.1±3.9 3.21

0.6 s

(j=3)

Linear 56±33 56±33 98.3±1.0 45±30 45±30 98.0±1.8 0.07
Ridge 58±33 58±33 98.2±1.1 47±31 47±31 97.8±2.5 0.06
L2-L1 80±50 80±50 97.2±1.2 80±47 80±47 96.4±2.5 0.02
LSTM 112±85 112±85 96.1±2.6 138±74 138±74 94.7±3.3 4.36

Bi-LSTM 130±101 130±101 96.0±2.7 131±73 131±73 94.7±4.0 7.25
GRU 112±72 112±72 96.5±2.3 125±80 125±80 95.1±3.4 4.32
Ch3 75±45 75±45 97.5±1.2 62±47 62±47 97.1±2.5 4.24

AL (30 s) 44±23 44±23 98.3±0.6 45±31 45±31 98.0±1.7 0.99
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Table 4.4 – P-values (Wilcoxon signed-rank test) for prediction window of 0.6 s between
different models. P<0.05 was considered significant.

Model 1 Model 2 nRMSE Gat-acc

Linear

Ridge 0.0001 0.0005
L2-L1 0.0001 0.0001
LSTM 0.0001 0.0001

Bi-LSTM 0.0001 0.0001
GRU 0.0001 0.0001

Adaptive Linear (30 s)

Linear 0.5663 0.5200
Ridge 0.0013 0.0580
L2-L1 0.0010 0.0009
LSTM 0.0010 0.0001

Bi-LSTM 0.0010 0.0001
GRU 0.0010 0.0001

without the prediction. Table 4.4 shows the p-values obtained from Wilcoxon signed-rank
test pairwise model comparisons with prediction length of 0.6 s.

Performances of the linear regression are significantly higher than those of RNNs in
both amplitude metrics (nRMSE) and temporal metrics (Gating accuracy) (P<0.05). To
address the potential for overfitting in linear regression and ridge regression, we performed
cross-validation on each respiratory curve. In cross-validation, the original dataset is di-
vided into two subsets, each of approximately the same size. The model was then trained
on one subset and validated on the remaining subset. This process was repeated 2 times,
with each subset being used as a validation set once. The performance metrics obtained
from each validation were eventually averaged to obtain a final performance evaluation.
Although the temporal correlations within the time series data could potentially affect
the cross-validation results, it is noteworthy that linear model achieved an average gating
accuracy of 98.2% and 97.7% for liver cancer and lung cancer patients, respectively.

4.4.2 Adaptive regression

Due to the lower complexity of linear regression methods, we also implemented and
evaluated the idea of training the model with the first 30 s (150 samples) for each patient
as the burn-in period and keep adapting the model parameters with the incoming data
during the prediction and gating signals generation process. As shown in Table 4.3, the
proposed framework with adaptive linear regression achieved convincing performances in
real clinical scenarios with an average gating accuracy of 98.3% and 98.0%, a gating error
of 44 ms and 45 ms, for liver cancer and lung cancer patients, respectively. The predictive

116



4.4. Results and Discussion

performance of adaptive linear regression is not significantly different from that of non-
adaptive linear regression using more than 4 minutes of training data (P>0.05, see in
Table 4.4).
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Figure 4.4 – Gating accuracy using adaptive/non-adaptive linear regression with different burn-in
period.

To verify the minimum number of training data required to train a stable linear re-
gression model, we tested the adaptive and non-adaptive versions with different lengths
of training data. The latter had simply fixed model parameters after the training per-
iod. Figure 4.4 shows both gating accuracy with different sizes of training data. At the
beginning, the gating accuracy increased with the increase of training data, the average
gating accuracy of the adaptive version reached 98% at 14 s and tended to increase slowly,
while the non-adaptive version reached the stable prediction ability at 32 s. When the
training data reached 80 s, the prediction ability of both methods become identical. Ac-
cording to the box plot, when the training data is less than 40 s, the adaptive version is
obviously better than the non-adaptive version. For the patient-specific prediction model,
the adaptive version can significantly reduce the burn-in time.
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4.4.3 Calculation time

All experiments were conducted using the Keras API with the TensorFlow backend and
were executed on an Intel 4-core 2.4-GHz CPU, a NVIDIA GeForce GTX1660 Ti GPU,
512 GB SSD and 20 GB RAM machine. The time required to predict the gating signals
was calculated for all methods mentioned above (see Table 4.3). For the non-adaptive
mode, the calculation time of linear models are less than 0.1 ms and the calculation time
of RNN models are between 3 ms and 8 ms. For the adaptive mode, the most time-
consuming part was the update of the linear regression predictor, requiring an average of
1 ms, the rest being identical to the non-adaptive mode, i.e. less than 0.1 ms.

Regarding the motion prediction using ALR, the most time-consuming step in Eq.
4.4 is the matrix inverse operation, with a time complexity of O(mN2). Consequently,
the computation time are increasing with the training samples m. To address this, this
study derived a recursive update expression for the inverse matrix [XT X]−1 of the matrix
XT X using Woodbury’s constant equation [59] without recomputing existing information,
significantly improving the speed of the algorithm. As a result, the calculation time for
motion prediction takes an average of 1 ms, and the remaining process of generating the
3D gating signal requires less than 1 ms.

4.4.4 Discussion

As observed in several studies [145][169][148][177], the predictive performance decrea-
sed with increasing forecasted time span. However, for the 0.4 s and 0.6 s prediction
windows, linear regression still achieved sub-resolution accuracy (RMSE < 2.5 mm). The
good performance of the linear regression for the 0.6 s prediction window shows that it
can successfully account for the system latency found by Glitzner et al. [2] when perfor-
ming MLC tracking on the Elekta Unity MR linac. As shown in Table 1, the range of
respiratory cycles for the 10 lung cancer patients was 2.4 − 5.4 s and the range of 3D
movement amplitudes was 5.1− 25.5 mm ; the range of respiratory cycles for the 21 liver
cancer patients was 2.9− 7.4 s and the range of 3D movement amplitudes was 14.5− 43
mm. These large ranges show that there are large differences in respiratory movements
between each patient and that respiratory movements are patient-specific. Therefore, we
proposed to use the first 30 s (burn-in period) of treatment for each patient to train a
patient-specific adaptive linear model, which is used for real-time prediction of tumor
location during subsequent radiotherapy for that patient and for gating signal generation.
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Based on the excellent experimental results, the patient-specific online gating signal pre-
diction scheme based on the linear regression model proposed in this study can be widely
applied in MRI-guided radiotherapy for lung and liver cancer.

A recent review study by Jöhl et al. [68] found that a continuously re-optimized (i.e.,
online) linear regression model performed best on average compared to other motion
predictors such as artificial neural networks or Kalman filters. Sharp et al. [148] note the
relatively worse performance of the Kalman filter predictor when compared with linear
and ANN predictors. In this study, we also compared the traditional methods represented
by Kalman filtering with linear regression. Interestingly, our findings consistently indicate
that linear regression outperforms Kalman filtering. This may reflect the difficulty in
estimating the state transition matrix from such a small amount of data.

Our experimental results on small sample sets verified the excellent performance of
linear regression, considerably superior to that of the RNN. The major drawback of classic
RNNs is that they are notoriously difficult to train. One important consideration that we
addressed within this study is the effect of the non-stationary nature of breathing. Anetai
et al. [188] clearly illustrated that the movement and pattern of breathing can easily
change individually various. They developed and verified novel respiratory criteria for
selecting optimal breathing for gating radiation treatment and defining numerical targets
for respiratory gating. For the adaptive linear regression in the study, the predictive
parameters were adjusted in real time based on the most recent tumor motion, which
may address the issue of respiratory pattern variability. In the current experiment, despite
the adaptive regression model continuously increasing its training samples, the average
calculation speed is still less than 1ms, as patients’ radiotherapy time on the Unity is
between 15− 20 minutes.

The study in this chapter has three limitations : 1) The analysis of liver tumor motion is
complex and diverse, involving challenges related to free-breathing, tissue compressibility,
and various types of motion. Currently, using liver centroid motion to represent tumor
motion is a challenge, and achieving more precise ROI selection and automatic tumor
tracking remain challenging ; 2) This chapter combines motion in the SI, AP, and LR
directions into a single Euclidean distance termed "3D total motion". While this approach
ensures a comprehensive consideration of motion, allowing the setting of specific gating
thresholds based on the amplitude of each patient’s 3D total tumor motion, it simplifies
treatment planning and reduces the complexity associated with motion. However, during
actual radiotherapy, it is essential to consider the motion amplitude separately in each
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direction rather than just the sum in three directions ; 3) The choice of gating windows
significantly impacts the duration and effectiveness of radiotherapy. Further research is
needed to develop optimal gating windows for each patient. To achieve effective motion-
compensated radiotherapy through gating strategies in Unity, striking a better balance
between protection of Organs at Risk (OAR) and dose coverage, Chapter Five will focus
on introducing an optimization algorithm for gating thresholds. It will also propose an
integrated online solution that combines tumor tracking and motion prediction.

4.5 Conclusion

This study proposed an online gating signal prediction scheme and verified the effec-
tiveness of LR for predicting internal organ or tumor motions derived from 2D cine-MR
data. The study introduced a linear interpolation for the prediction of the threshold-
crossing time and achieved better temporal accuracies for the subsequent gating signals.
The study compared linear models with three latest RNN models (LSTM, Bi-LSTM, and
GRU), and evaluated the accuracy of the generated binary gating signal using temporal
metrics. Additionally, the study also proposed and evaluated an ALR model, initialized
by the data of the first 30 seconds of each patient and updated sequentially during online
prediction.

In conclusion, the proposed online gating signal prediction scheme could offset the
system delays in beaming on/off switching and thus deliver the dose with better temporal
accuracy. The Elekta Unity is potentially capable of performing more accurate radiothe-
rapy procedures if coupled with the proposed gating scheme.
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Algorithm 1 Adaptive gating signal prediction
Training part (for burn-in) :
Get X,Y ∈ training data
Initialize βj−1, βj ▷ see in Eq.4.4

Testing part :
Require: tumor traces [x1, . . ., xN ]
Ensure: gating signal [Ton, Toff]

1: lookforbeamon ← 1
2: for i← 1 to N do
3: [ŷj−1, ŷj] ← pred(xi, βj−1, βj) ▷ see in Eq.4.1
4: dt← Tcross − (Ti + j ×△T ) ▷ Tcross see in Eq.??
5: if lookforbeamon=1 then
6: if condition 1 == true then
7: push (Tcross - latency) into Ton ▷ latency = 0.5sec

8: lookforbeamon ← 0
9: end if

10: else if lookforbeamon=0 then
11: if condition 2 == true then
12: push (Tcross - latency) into Toff

13: lookforbeamon ← 1
14: end if
15: end if
16: Update training data
17: Update βj−1, βj ▷ see in Eq.4.3
18: end for
19: return Ton, Toff

▷ condition 1 : (ŷj > Th and dt ≤ 0.5∆T ) or (ŷj−1 > Th ≥ ŷj)
▷ condition 2 : (ŷj <Th and dt ≤ 0.5∆T ) or (ŷj−1 < Th ≤ ŷj)
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Chapitre 5

AN EFFICIENT PATIENT-SPECIFIC GATING

SCHEME WITH ORTHOGONAL CINE-MRI

5.1 Introduction

Chapter 2 refined the KCF algorithm to enable real-time tracking of tumors, extrac-
ting their motion trajectories in three dimensions. Chapter 3 and Chapter 4 meticulously
elucidated and proposed effective algorithms for predicting tumor motion and forecasting
gating signals, specifically tailored for 2D cine-MRI. Building upon the groundwork laid
out earlier, this chapter introduces a comprehensive online solution that seamlessly inte-
grates tumor tracking and motion prediction. Furthermore, it presents an optimization
algorithm for 3D gating thresholds, with a keen focus on analyzing how the selection of
gating windows impacts both dose coverage and gating accuracy. To conclude, this chap-
ter conducts a thorough dosimetric validation of the proposed gating scheme within the
framework of this thesis.

Respiratory gating is one of the most effective methods to reduce radiation dose to
normal tissues and maximize the delivery of radiation dose to tumors, especially during
patient motion caused by breathing. In the planning of gating schemes, the selection of
gating windows is crucial, and the criteria for choosing gating windows should comprehen-
sively consider factors such as tumor motion amplitude, positional error, time intervals,
normal tissue protection, and the accuracy and stability of radiation therapy equipment.
This chapter primarily explores the balance between window size and duty cycle (the ratio
of beam-on time to overall treatment time). While maintaining a certain duty cycle, it is
still necessary to determine the optimal respiratory phase to obtain an appropriate gating
window. If the gating window is too short, the treatment time may be excessively long,
causing discomfort to patients ; conversely, if the gating window is too long, the gating
scheme may be ineffective. The optimal gating window depends on the respiratory motion
of the patient’s tumor and surrounding normal tissues.
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Currently, widely used in clinical practice is a phase-based respiratory gating techno-
logy called Real Position Management (RPM), which is based on surface signals [104][114].
This technique is applicable to respiratory-gated radiotherapy for lung and liver cancers.
In the workflow of the RPM system, window selection is based on the Respiratory Am-
plitude Distribution (RAD) tool embedded in the Eclipse treatment planning system.

However, to ensure the efficiency of gating plans, gating windows often include several
phases. In such cases, because RAD does not directly provide the respiratory motion sta-
bility for individual windows, the selection of windows based on the RAD tool inevitably
relies on the subjective experience and visual accuracy of decision-making physicians or
physicists. Se An Oh and colleagues [122] conducted an analysis of 52 liver cancer patients
who underwent real-time position management and respiratory guidance training. Their
research indicated that the patients exhibited the lowest respiratory variability during the
phases of 30-60% and 30-70%. Therefore, these two respiratory phases can be considered
suitable windows for liver cancer radiotherapy gating plans.

Due to the capability of 2D Cine-MRI to directly monitor and locate tumors without
relying on surrogates, employing a position-based gating strategy in MRgRT is more
precise. Seregni et al. [145] proposed a spherical window, determining the trade-off between
window size and duty cycle by analyzing the probability distribution functions of each
patient’s motion trajectory. The window size was set to 30% of the 3D motion range of
the tumor, and the optimal irradiation position was chosen by maximizing the duty cycle.
This implies that the gating window is of the same size in all three directions.

However, by analyzing the patients’ respiratory motion curves, we found that the
tumor’s motion in the SI direction is significantly larger than in the AP and LR directions.
Therefore, the spherical gating window proposed by Seregni et al. cannot fit the tumor’s
motion curve well. Consequently, the shape of the gating window is also one of the crucial
factors influencing the efficacy of radiotherapy. Different window shapes have certain
effects on radiation dose distribution and tumor control effectiveness.

Seregni et al. [145] developed a tumor motion prediction interpolation framework spe-
cifically designed for MRI guidance. However, they utilized an offline approach based on
the SIFT algorithm to extract tumor motion features from Cine-MRI slices. While their
study reported a prediction framework for generating three-dimensional gate signals, they
transformed tumor motion in three directions into Euclidean distance and did not indivi-
dually respond to gate switching based on motion in each direction.

To address the aforementioned challenges, this chapter proposes an integrated online
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solution that combines tumor tracking and motion prediction. The key contributions are
summarized as follows :

1. We consolidate previous work and introduce an end-to-end respiratory motion online
solution based on orthogonal Cine-MRI. This solution is designed for real-time monitoring
and automatic localization of the three-dimensional spatial position of tumors during
Elekta Unity MR-Linac and similar magnetic resonance imaging-guided radiotherapy. It
predicts the tumor’s motion trajectories in three directions.

2. We simultaneously consider the tumor’s motion in three directions and fit an optimal
rectangular cuboid based on the motion range of each patient’s tumor. The optimal gating
window for each patient is obtained by solving for this optimal cuboid.

3. We explore various schemes for deriving three-dimensional gating signals based on
the tumor’s motion in one, two, or three directions, catering to the treatment needs of
different patients.

4. We conduct dosimetric validation of the gating scheme proposed in this thesis.

5.2 Materials and methods

5.2.1 Optimization and Selection of Gating Windows

Considering gating technology, and given that 2D Cine-MRI can directly locate tu-
mors without relying on surrogates, we simulated a position-based gating approach. In
this approach, the beam is activated when the tumor is within a fixed range (gating win-
dow) around the planned irradiation position. Once the tumor motion exceeds the gating
window, the radiation beam is deactivated. The selection of the gating window is crucial,
as finding the optimal balance between protecting OARs and achieving the best duty
cycle for each patient is challenging and can be viewed as an optimization problem. Next,
we will introduce two models for fitting tumor motion and use them as gating windows,
evaluating them based on the comparison of duty cycle and gating window volume.

We first employed the spherical window proposed by Seregni et al. [145]. We collected
tumor motion data for each patient during the initial 30 seconds (150 frames) of radio-
therapy, representing the distribution of tumor centroids as the set . By analyzing the
probability distribution function of the dataset G for each patient, they determined the
trade-off between window size and duty cycle (the ratio of beam-on time to the overall
treatment time) to define the size of the irradiation position and gating window. Specifi-

125



Partie , Chapitre 5 – An efficient patient-specific Gating Scheme with orthogonal cine-MRI

cally, the window size (w) was set to 30% of the 3D motion range of the tumor and the
optimal irradiation position was selected by maximizing the duty cycle :

x̄opt = [L̄R, ĀP , S̄I] = arg max
x̄

(
#

√
∥x− x̄∥ ≤ w

#x
) (5.1)

Where x is the tumor position, x̄ is the irradiation position to be optimized, and #{.}
denotes the sample quantity. The volume of the spherical gating window is given by :

Vsphere = 4
3πw3 (5.2)

, where w is the radius of the sphere (see Tables 5.1 and 5.2 for details).
By analyzing the respiratory motion curves of patients, we observed that the tumor’s

motion in the SI direction is significantly greater than in the AP and LR directions. The-
refore, the spherical gating window proposed by Seregni et al. does not fit the tumor’s
motion curve well. Additionally, during treatment planning, the PTV can only be ex-
panded in fixed sizes in three directions based on CTV or GTV, resulting in the gating
window having a rectangular shape.

We set gating thresholds in each of the three directions based on the motion amplitudes
in the first 30 seconds for each patient, forming a rectangular window.The internal region
of this rectangular prism, denoted as EΩ, is defined as :

EΩ =


|x− x0| < a

|y − y0| < b

|z − z0| < c

 (5.3)

Our goal is to find the optimal parameters for the rectangular prism, minimizing the
volume of the prism (vol(EΩ)) as it expands outside the PTV, while maximizing the duty
cycle (the number of tumor centroids within EΩ). The duty cycle is defined as the ratio of
the time the beam is on during gated radiation therapy to the total treatment time. The
precise duty cycle for the rectangular prism window can be obtained from Eq.4.6 and is
expressed as :

Duty cycle = Time of beam on
Total time of therapy × 100% (5.4)

By traversing in search of the optimal solution, we have established the rule for setting
the gating thresholds as follows : the thresholds in the left-right and anterior-posterior
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directions are set at 95% of the maximum values, while the threshold in the superior-
inferior direction is set to the average of the motion amplitudes. The outward expansion
sizes in all three directions are approximated to integers (in mm) to meet the requirements
of the planning system. The volume of the rectangular gating window is given by : Vcuboid =
2a× 2b× 2c, where 2a, 2b, and 2c are the thresholds in the three directions, respectively
(details can be found in Table 5.1 and Table 5.2).

Figure 5.1 – Tumor Centroid Motion Trajectory and Gating Window Selection in 3D Space.(a)Motion
trajectory of the tumor centroid for a lung cancer patient.(b)Selection of a spherical gating window,
indicated by a red asterisk denoting the center of the sphere.(c)Selection of a cuboidal gating window,
indicated by a red asterisk denoting the center of the sphere.

Figure 5.1 illustrates the motion trajectory of the tumor centroid in 3D space for a lung
cancer patient, along with diagrams showing the selection of both spherical and cuboidal
gating windows. It can be observed from Figure 5.1 that the tumor centroid motion in the
SI direction is significantly greater than that in the AP and LR directions. Furthermore,
compared to the cuboidal optimization window proposed in our study, the volume of the
spherical gating window proposed is noticeably larger.

Table 5.1 and Table 5.2 respectively record the comparison of gating window size,
gating window volume, and duty cycle for spherical and cuboid gating windows for 10 lung
cancer and 10 liver cancer patients. Our proposed cuboidal gating window significantly
reduces the volume of the gating window while increasing the duty cycle. The volume
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Table 5.1 – comparison of gating window size, gating window volume, and duty cycle
for spherical and cuboid gating windows in 10 lung cancer patients
patient Cuboid Sphere

D(%) LR(a)
(mm)

AP(b)
(mm)

SI(c)
(mm)

Volue
(mm3)

D
(%)

Radius
(mm)

Volue
(mm3)

1 60.1 3 3 7 504 56.2 7 1436.8
2 51.4 3 3 6 432 43.1 5 523.6
3 64.4 3 4 6 576 64.5 6 904.8
4 52.0 3 4 4 384 47.0 5 523.6
5 55.9 3 3 7 504 54.4 7 1436.8
6 90.8 3 3 3 216 84.1 3 113.1
7 49.0 4 3 8 768 52.4 7 1436.8
8 73.8 3 3 8 576 60.4 6 904.8
9 87.1 3 3 8 576 84.1 7 1436.8
10 55.3 3 3 7 504 54.2 7 1436.8

mean 64.0 3.1 3.2 6.4 452.2 60.0 6.0 1117.2

of the spherical gating window is even twice the volume of the cuboidal gating window,
leading to a significant increase in the volume of the Planning Target Volume (PTV)
in radiotherapy plans. Consequently, this increases the radiation dose to Organs at Risk
(OARs), resulting in more severe side effects. Therefore, this study opts for the cuboidal
shape as the gating window. Specific gating thresholds for each direction can be found in
Table 5.1 and Table 5.2.

5.2.2 Workflow of the proposed online system

The proposed solution for patient-specific 3D gating follows a workflow illustrated in
figure 5.2. For each patient, the initial step involves manual outlining of the tumor on
the first frame using the Labelme tool [138], resulting in a binary mask of the tumor
and a template for subsequent tracking. The KCF algorithm is utilized as the tracker,
which returns the region of maximum response. To improve tracking accuracy, a center
of mass calculation is performed on the pixels covered by the mask within that region,
enabling the precise localization of the tumor centroid. The trajectory of the tumor in
the superior-inferior (SI) direction is determined by identifying the highly correlated slice,
which can be either the coronal or sagittal slice. The motion trajectories obtained from
the first 150 slices (equivalent to 30 seconds) are used to initialize the predictor for online
prediction of motion trajectories during subsequent radiotherapy sessions. Concurrently,
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Table 5.2 – comparison of gating window size, gating window volume, and duty cycle
for spherical and cuboid gating windows in 10 liver cancer patients

liver Cuboid Sphere

D(%) LR(a)
(mm)

AP(b)
(mm)

SI(c)
(mm)

Volue
(mm3)

D
(%)

Radius
(mm)

Volue
(mm3)

1 66.1 3 5 7 840 68.4 6 904.8
2 53.0 3 3 7 504 50.4 6 904.8
3 54.5 4 4 5 640 50.9 5 523.6
4 64.0 3 3 7 504 60.2 7 1436.8
5 48.0 3 3 8 576 50.4 6 904.8
6 50.1 3 3 6 432 49.5 7 1436.8
7 58.1 5 5 8 1600 45.5 8 2144.7
8 84.4 3 3 8 576 79.2 8 2144.7
9 42.4 5 3 8 960 37.0 7 1436.8
10 45.3 5 3 8 960 43.8 7 1436.8

mean 56.6 3.7 3.5 7.5 759 53.5 6.7 1327.5
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Figure 5.2 – Flow chart of the end-to-end online solution for patient-specific 3D gating in MRI-guided
radiotherapy.
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gating thresholds are specified based on the amplitude of motion in the three directions.
As the radiation treatment begins from the 151st frame, the following steps are cyclically
executed : 1) The tumor tracking is performed to obtain the current tumor position. 2) The
predictor estimates the tumor’s position after 0.6 seconds. 3) The tracked tumor position
is added to the training set, updating the predictor in real-time. 4) The system evaluates
whether the tumor is projected to cross the gating thresholds in three directions. 5) Based
on the evaluation, the corresponding gating signal is calculated. 6) A unique gating signal
is generated according to the set gating rules to control beam-on or beam-off during the
radiotherapy. This workflow enables real-time adaptation to the patient’s tumor motion
and ensures accurate 3D gating during MRI-guided radiotherapy sessions.

5.2.3 Performance evaluation for gating

The description of gating accuracy is given by Eq.4.7, and it is applied separately in
the SI, AP, and LR directions.

The ideal gating thresholds are set based on the amplitude of tumor motion in three
directions, i.e., the cuboid gating window. By comparing the gating signals obtained from
the proposed system with the true tumor motion trajectory, the corresponding true tumor
motion amplitude when triggering the gating switch can be calculated. This is defined as
the predicted threshold of the system, denoted as :

Th_pred =
∑N

i=1(Toff,i − Ton,i) ·
(

yon,i−yoff,i

2

)
∑N

i=1(Toff,i − Ton,i)
(5.5)

where Ton,i and Toff,i are the times of triggering on/off during the ith respiratory cycle,
and yon,i and yoff,i are the amplitudes at triggering on/off during the ith respiratory cycle.

Gating threshold error is a measure of uncertainty in the gating process and is defined
as the difference between the ideal threshold and the predicted threshold. This predicted
threshold can be used as an expansion criterion for the PTV in radiotherapy planning.
The proposed system is designed to obtain dose-volume histograms (DVH) for PTV and
OAR in the radiotherapy plan and is compared with the original plan without the gating
system to verify the improvement of the proposed system in clinical dosages.
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5.2.4 Dose Verification

To visually validate the clinical significance of the proposed gating system, in addition
to evaluating the accuracy of the gating signals (as detailed in Section 4.3.3), we simulated
the dose delivery treatment results using this gating system based on these predictions. A
dose comparison was made with treatments without the gating scheme. We simulated the
scenario of dose delivery under free-breathing conditions using a 7 MV linear accelerator
with Agility MLC configuration (Elekta AB, Stockholm, Sweden) and no flattening filter.
The gating threshold was set to the cuboid gating window proposed in this chapter. The
beam was open when the centroid of the tumor was within the threshold window, and
treatment stopped once the centroid of the tumor moved beyond the threshold window.

We also calculated the volume of the PTV used for radiotherapy based on the above
gating scheme and compared it with the PTV without the gating scheme. PTV8mm was
defined by expanding the GTV from the planning CT in various directions by 8 mm, a
common practice for setting PTV in lung cancer patients without further motion infor-
mation [170]. PTVindiv was individually defined as a personalized PTV, also expanded
from the planning CT’s GTV, with expansion sizes in each direction determined by the
predicted threshold (cuboid gating window), represented by the red dots in Figure 5.3 for
10 lung cancer and 10 liver cancer patients.

Taking the first lung cancer patient as an example, due to the constraints of the mo-
nacle planning system, the expansion edges could only be in integer millimeters. PTVindiv
was approximately expanded by 7 mm, 5 mm, and 3 mm in the SI, AP, and LR direc-
tions, respectively. Table 5.4 shows the volumes of GTV, PTV8mm, and PTVindiv for 10
lung cancer and 10 liver cancer patients, as well as the percentage reduction in volume
of PTVindiv compared to PTV8mm. On average across 10 lung cancer and 10 liver cancer
patients, PTVindiv reduced by 33.6% and 25%, respectively.

One of the main contributions of this chapter is the quantitative assessment of our
proposed tracking and prediction-based gating system in terms of dose delivery. Two
static (Step and Shoot) IMRT plans were created for each patient based on PTV8mm
and PTVindiv on the planning CT. The dose volume histograms (DVH) of the two sets
of plans were compared. IMRT plans were generated using the TPS (Monaco, v5.40.01,
Elekta AB, Stockholm, Sweden) with a 1.5 T transverse magnetic field. Beam angles were
manually selected, and the same angles were used for the same patient. The prescription
dose for lung cancer was set at 54 Gy in 30 fractions, and for liver cancer, it was set at
50 Gy in 25 fractions. The system utilized a GPU-based fast Monte Carlo (GPU-MC)
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Table 5.3 – Volumes of GTV, PTV8mm, and PTVindiv for 10 lung cancer and 10 liver
cancer patients, along with the percentage reduction in volume of PTVindiv compared to
PTV8mm.

Lung Liver
Patients GTV PTV8mm PTVindiv Reduce(%) GTV PTV8mm PTVindiv Reduce(%)

1 3.2 23.1 12.5 45.9 24.8 80.9 52.8 34.7
2 42.4 119.5 78.6 34.2 80.6 220.6 168.7 23.5
3 69.2 189.5 147.9 22.0 20.5 78.6 59.4 24.4
4 20.6 93.0 54.2 41.7 140.4 286.3 251.3 12.2
5 26.0 84.9 56.2 33.8 33.9 101.5 78.8 22.4
6 29.5 105.4 66.4 37.0 78.4 211.8 199.1 6.0
7 22.0 84.6 65.8 22.2 4.7 28.6 16.0 44.1
8 64.9 166.0 121.9 26.6 8.3 38.4 23.7 38.3
9 2.7 21.3 12.4 41.8 12.5 32.8 25.8 21.3
10 7.2 38.8 26.7 31.2 32.1 98.2 75.2 23.4

Mean 28.8 92.6 64.3 33.6 43.6 117.8 95.1 25.0

dose calculation platform, with uniform magnetic field input for strength and direction.
For effective plan comparison, all plans were normalized to the average dose of PTV (95%
isodose line set to the prescription dose). Plan results were compared based on target
coverage and OAR protection. Target coverage metrics included : (1) Homogeneity Index
(HI) calculated for PTV, where

HI = D2%−D98%
Dp× 100% (5.6)

with Dp being the prescription dose. Lower HI values indicate more uniform dose coverage
[165] ; (2) Conformity Index (CI) :

CI =
(V 2

(P T V,ref))
VP T V V̇ref

(5.7)

where V(P T V,ref) is the volume covered by the prescription dose, VP T V is the PTV volume,
and Vref is the volume of the prescription isodose. Higher CI values indicate better dose
coverage and consistency. Normal tissue protection for lung cancer was based on the
average doses received by OARs : whole lung (V5, V10, Dmean), left lung (V10, V20,
Dmean), right lung (V5, V10, Dmean), heart (V30, V40, Dmean), and spinal cord (Dmax).
Normal tissue protection for liver cancer was based on the average doses received by
OARs : normal liver (V30, V40, Dmean), right kidney (V5, V10, V15, Dmean), and
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Table 5.4 – Acceptable dose limits for PTV and OARs
Liver cancer Lung cancer
Structures Acceptable criteria Structures Acceptable criteria
PTV V95% >95% PTV V95% >95%

D98% >47.50 Gy D98% >51.30 Gy
D2% <55.02 Gy D2% <59.40 Gy
HI HI
CI CI

Normal liver Dmean <23 Gy Whole lung Dmean <17 Gy
V30Gy <28% V5Gy <70%
V40Gy <24% V10Gy <55%

Spinal cord Dmax <40 Gy V20Gy<30%
Right kidney Dmean <18 Gy Heart Dmean <20 Gy

V5Gy <70% V40Gy <70%
V10Gy <55% V30Gy <55%
V15Gy <35% Spinal cord Dmax <40 Gy

spinal cord (Dmax). Table 5.4 shows the acceptable dose limits for PTV and OARs.

5.3 Results and Discussion

5.3.1 Gating accuracy

According to the analysis of the tumor motion trajectory, the average movement am-
plitude and signal-to-noise ratio of the tumor in the SI direction are significantly higher
than those in the AP and LR directions. Therefore, the tumor exhibits dominant motion
in the SI direction, leading to better tracking and predictive performance. We have desi-
gned two decision mechanisms for gating signals : 1). The first mechanism focuses solely
on the motion in the SI direction, using the maximum values of motion in the AP and LR
directions as their respective thresholds. In this case, the 3D gating signal is equal to the
gating signal in the SI direction. 2). The second mechanism considers the comprehensive
motion of the tumor in all three directions. If the motion in any direction exceeds its thre-
shold, the beam is closed. In this case, the ideal 3D beam gating signal is the intersection
of the beam gating signals in all three directions.

Table 5.5 presents the gating accuracy of tracking with and without (w/o) prediction
for 10 lung cancer and 10 liver cancer patients. When considering motion in all three
directions simultaneously and using KCF and ALR together, the average gating accuracy
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reached 93.6% for lung patients and 91.3% for liver patients, respectively. However, when
considering motion only in the SI direction, the average gating accuracy improved to
97.4% for lung patients and 97.2% for liver patients.

When using only automatic tracking without prediction, the gating accuracy reported
in Table 5.5 varied between 77% and 85%. However, when applying linear regression
prediction, the gating accuracy increased to above 91%. This result demonstrates the
significant role of motion prediction in compensating for system latency and improving
the overall gating accuracy. Additionally, we assessed the impact of optimizing tumor
selection in the SI direction on gating accuracy. The results indicate that when utilizing
SI direction localization with optimized selection proposed in Chapter 1, gating accuracy
is superior to relying solely on the coronal or sagittal planes to determine SI direction
motion.

Table 5.5 – Gating accuracy of tracking w/o prediction for 10 lung cancer patients and
10 liver cancer patients.

Gating
methods

Ground truth
Dutycycle(%)

Accuracy without prediction Accuracy with prediction
TM(%) KCF(%) TM(%) KCF(%)

lung

SI(Cor)1 71.8±13.9 83.1±5.4 83.1±5.7 97.4±1.0 97.1±0.9
SI(Sag)1 70.9±14.5 81.2±6.8 81.5±6.8 96.5±1.9 96.8±1.7

SI(optimal)1 72.9±14.7 83.5±5.6 83.6±6.1 97.4±0.9 97.4±0.7
SI2

66.6±15.3
79.1±7.1 79.2±8.0 91.5±8.4 91.8±8.2

SI+AP2 78.8±7.6 79.4±6.7 93.3±4.2 93.6±4.1
SI+AP+LR2 78.8±7.6 79.2±7 93.4±3.8 93.5±4.4

liver

SI(Cor)1 69.8±17.8 84.7±6.4 84.0±6.4 96.7±1.7 96.1±2.4
SI(Sag)1 69.9±9.8 84.4±5.3 84.2±5.1 95.0±3.6 95.7±2.9

SI(optimal)1 69.1±13.5 84.9±6.3 85.1±6.1 96.6±2.8 97.2±1.5
SI2

56.1±12.4
76.9±6.6 77.7±6.8 84.8±8.5 85.5±8.0

SI+AP2 78.1±5.8 77.6±7.3 86.0±8.0 85.5±9.2
SI+AP+LR2 80.0±5.1 80.3±5.6 91.0±4.8 91.3±4.7

1 Ground truth of gating signal is obtained from SI direction only
2 Ground truth of 3D gating signal is obtained from the SI, AP and LR directions.

Figure 5.3 illustrates the ideal thresholds in three directions for specific patients, along
with the corresponding predicted thresholds obtained using KCF and TM trackers. As the
predicted thresholds approach the ideal thresholds, the gating threshold error becomes
smaller. It can be observed that the predicted thresholds achieved with the KCF tracker
outperform those obtained with the TM tracker.

Furthermore, for lung cancer cases, the average gating threshold errors based on KCF
are 0.54 mm, 0.21 mm, and 0.38 mm in the SI, LR, and AP directions, respectively.
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Similarly, for liver cancer, the averages are 0.65 mm, 0.5 mm, and 0.89 mm in the SI,
LR, and AP directions, respectively. These results indicate that the KCF tracker provides
more accurate predictions of the gating thresholds compared to the TM tracker.
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Figure 5.3 – Ideal and predicted thresholds in the case of radiotherapy guided by gated signals
generated by the proposed system.

5.3.2 Complexity and computational time

All experiments were conducted using MATLAB (The MathWorks Inc, Natick, MA)
on a machine equipped with an Intel 4-core 2.4-GHz CPU, NVIDIA GeForce GTX 1660
Ti GPU, 512 GB SSD, and 20 GB RAM. The computation cost was measured by the
execution time required for tumor tracking, motion prediction, and generation of the 3D
gating signal. Specifically, this experiment focused solely on comparing tumor localization
among the three trackers, while other processes in the system remained unchanged. The-
refore, any differences in computation cost were observed exclusively in the three trackers.
As mentioned earlier, the primary goal of the trackers was to track the entire target region
(lung tumor or liver organ) on cine-MRI.

Henriques et al. [58] reported that the KCF tracker achieves O(n log n) complexity
by leveraging the fast Fourier transform, which reduces computing time compared to
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more computationally expensive matrix algebra. The speed of the KCF tracker is directly
influenced by the size of the tracked region (M ×N).

Table 2.2 presents the time required to track either boundary or centroid (lung tumor
and liver organ) using TM, KCF, and MOSSE algorithms. For tracking lung tumor boun-
daries, TM takes 3.4 ± 1.07 ms, KCF takes 2.6 ± 0.97 ms, and MOSSE takes 1.1 ± 0.32
ms. For liver boundaries, TM takes 13.9±5.67 ms, KCF takes 4.3±1.25 ms, and MOSSE
takes 1.8± 0.63 ms. To improve tracking accuracy, the centroid of the target region was
calculated, resulting in an additional approximate 3 ms of computation time for centroid
calculation. Section 3.4.3 reports that the average computation time for motion prediction
using ALR is 1 ms, while the remaining process for generating the 3D gating signal takes
less than 1 ms.

Table 5.6 presents the system latency (ms) of the Unity for the gating scheme and the
delay (ms) of the proposed system. The online system combining KCF and ALR achieves
computation times within 10 ms. For our study, we set a fixed delay of 0.5 s to account
for the end-to-end system delay in the specific case of MRI-guided gating applications,
although this delay might not necessarily represent the state-of-the-art in MRI-guided
precision radiotherapy under ideal circumstances. As the MRI image sampling frequency
increases, the overall system latency decreases, which subsequently leads to higher accu-
racy in predicting gating signals using the proposed system.

Table 5.6 – The system latency (ms) of the Unity for gating scheme and the delay (ms)
of the proposed system.

MRI
acquisition

Tumor
tracking

Centroid
position

Motion
prediction

Gating
signal

Trigger
ON/OFF Total Prediction

window
Lung 250±100 2.6±0.9 2.6±0.9 1 1 10 <500 600
Liver 250±100 4.3±1.3 2.9±1.4 1 1 10 <500 600

5.3.3 Dose validation result

To validate the clinical improvements of the proposed system in gated radiotherapy
for liver and lung cancer, we calculated the actual gating window thresholds generated
by the proposed system. Based on these real gating window expansions, we generated
new Planning Target Volumes (PTVnew) and redesigned radiotherapy plans (Plan2) for
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Table 5.7 – Dosimetric comparison of 10 lung cancer patients (mean and std).
structure Plan1 Plan2 Improve [%] p-value

PTV D98% [cGy] 5366.6±54.5 5402.4±24.0 - NS
PTV D2% [cGy] 5802.4±15.5 5818.9±66.2 - NS

PTV CI 0.92±0.02 0.96±0.02 4.3 NS
PTV HI (%) 7.8±1.1 7.4±1.5 5.1 NS

Lung_All V5 [%] 19.4±5.9 17.1±5.8 12 <0.05
Lung_All V10 [%] 13.5±3.6 13.5±4 11.2 <0.05

Lung_All Dmean [cGy] 579.9±174.9 536.9±166.5 7.4 <0.05
LungL V10 [%] 28.5±6.5 26.8±6.6 5.7 <0.05
LungL V20 [%] 19±6.7 18.3±6.1 3.4 NS

LungL Dmean [cGy] 967.6±266.7 919.6±253.2 5 <0.05
LungR V5 [%] 4.9±3.7 3.8±3 22.2 <0.01
LungR V10 [%] 0.1±0.2 0.1±0.1 25.9 <0.01

LungR Dmean [cGy] 162.2±44.8 145.9±48.6 10.1 <0.05
Heart V30 [%] 7.4±6.6 6.2±5.8 15.6 <0.05
Heart V40 [%] 1.2±1.4 1±1 22.6 <0.01

Heart Dmean [cGy] 696.1±431.3 630.5±411.7 9.4 <0.05
Spinal cord Dmax [cGy] 1544.3±539.6 1550.4±667.1 -0.4 NS

PTVnew. The resulting DVHs from Plan2 were then compared to the original radiotherapy
plans (Plan1). Tables 5.7 and 5.8 present DVH comparisons for 10 cases each of lung cancer
and liver cancer patients.

On average, among the 10 lung cancer patients, there was little difference in target
coverage and spinal cord protection between the two plans. However, Plan2 exhibited
significant improvement over Plan1 in protecting the healthy lung and heart. For instance,
Plan2 showed a 22.2% increase in V5 and V20 for the right lung, and a 25.9% increase in
V40 for the heart.

For the 10 liver cancer patients, on average, Plan2 improved target coverage and spinal
cord protection (although not statistically significant). Notably, Plan2 demonstrated clear
superiority over Plan1 in protecting the normal liver and right kidney. For example, Plan2
increased V30 and V40 for the normal liver by 15.3% and 20%, respectively. Additionally,
Plan2 increased V10, V15, and V20 for the right kidney by 21.3%, 26.9%, and 26.2%,
respectively.
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Table 5.8 – Dosimetric comparison of 10 liver cancer patients (mean and std).
structure Plan1 Plan2 Improve [%] p-value

PTV D98% [cGy] 5005.4±50 5020.8±30 - NS
PTV D2% [cGy] 5480.3±30 5474.1±21 - NS

PTV CI 1.12±0.04 1.08±0.02 3.5 NS
PTV HI (%) 9.5±1.3 9.1±0.9 4.2 NS

Normal liver V30 [%] 10.4±6.5 8.8±5.8 15.3 <0.05
Normal liver V40 [%] 2.5±1.6 2.0±1.4 20.0 <0.05

Normal liver Dmean [cGy] 1114±145 1080±140 3.1 <0.05
Right kidney V5 [%] 22.5±20.4 21.2±18.6 5.3 <0.01
Right kidney V10 [%] 16.9±13.7 13.3±10 21.3 <0.05
Right kidnay V15 [%] 10.4±6.7 7.6±5.2 26.9 <0.05
Right kidney V20 [%] 6.1±4.2 4.5±4.0 26.2 NS

Right kidney Dmean [cGy] 454.2±44.8 382.9±48.6 15.6 <0.01
Spinal cord Dmax [cGy] 1964.3±839.6 1901.4±761.1 3.2 NS

Heart V30 [%] 7.4±6.6 6.2±5.8 15.6 <0.05
Heart V40 [%] 1.2±1.4 1±1 22.6 <0.01

Heart Dmean [cGy] 696.1±431.3 630.5±411.7 9.4 <0.05
Spinal cord Dmax [cGy] 1544.3±539.6 1550.4±667.1 -0.4 NS

5.3.4 Discussion

The Elekta Unity system allows real-time acquisition of orthogonal coronal and sa-
gittal MR cine, enabling the reconstruction of the tumor trajectory during radiotherapy
by measuring its three spatial components. This study has successfully verified the per-
formance of the proposed end-to-end online solution for patient-specific 3D gating signal
in MRI-guided radiotherapy. To the best of our knowledge, this is the first evaluation of
the time cost and accuracy of an end-to-end online MR cine-based 3D gating signal pre-
diction system. Furthermore, it is worth noting that the proposed solution is universally
applicable to all image acquisition modalities, such as X-ray, CBCT, and ultrasound, for
precision radiotherapy. Previous studies [148][67][196][55] have demonstrated the effecti-
veness of various image acquisition modalities in precision radiotherapy.

Efficiency in tumor localization and motion prediction is crucial for the success of
gating systems, especially in situations where inevitable system delays exist. In radiation
therapy, accurate and rapid tracking and prediction of tumor movement are vital to
ensure the effectiveness of treatment and minimize the potential impact of uncertainties.
The proposed online solution provides a fast and accurate method for patient-specific 3D
gating systems in MRgRT, contributing to improved treatment outcomes and reduced
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side effects on surrounding normal tissues.
This chapter discusses the selection and optimization of gating windows. Seregni et al.

[145] proposed a spherical window, determining the window size and duty cycle balance
by analyzing the probability density function (PDF) of each patient’s motion trajectory.
The window size (w) was set to 30% of the 3D motion range of the tumor, and the
optimal irradiation position was chosen by maximizing the duty cycle. This means that
the gating window is of equal size in all three directions. However, by analyzing the
patient’s respiratory motion curve, it was found that the tumor’s movement in the SI
direction is significantly greater than in the AP and LR directions.

Therefore, the spherical gating window proposed by Seregni et al. does not fit well
with the tumor’s motion curve. Additionally, in radiotherapy planning, the PTV can only
expand a fixed size in three directions based on the CTV or GTV. This constraint makes
the gating window have to be in the shape of a cuboid. The rectangular cuboid gating
window we proposed greatly reduces the volume of the gating window while increasing
the duty cycle. The volume of the spherical gating window is even approximately twice
that of the rectangular cuboid gating window, which will lead to a significant increase
in the volume of the PTV in the radiotherapy plan, thereby exposing the OAR to more
additional radiation doses and causing more severe side effects.

Theoretically, in the proposed framework, the predicted 3D gating signal should be
more accurate if the groundtruth gating signal considers the motion of the tumor in all
three directions simultaneously, i.e. if a threshold smaller than its motion amplitude is
set in each of the three directions. However, as shown in Table3, for the average results
of 10 lung cancers, the predicted 3D gating signal is more accurate when determined by
gating signals in both SI and AP directions, rather than considering all three directions
of SI, AP, and LR together. Analyzing the motion trajectories of the tumors in the SI,
AP and LR directions for the 10 lung cancer cases, their average motion amplitudes
were 12.8mm, 4.2mm and 2.8mm, respectively, and their average signal-to-noise ratios
were 4.3dB, 0.5dB and -1.4dB. Thus, the tumors showed dominant motion in the SI
direction, resulting in better tracking and prediction performance, while the LR direction
exhibited the least motion and worst signal-to-noise ratio, potentially introducing greater
prediction errors. Considering only SI motion or both SI and AP motion, rather than all
three directions simultaneously, is more reasonable in terms of prediction accuracy and
cycle time efficiency.

Geometric uncertainty and computational cost in the prediction of automatic tumor
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tracking and gating signals were quantified by simulating beam gating. Three correlation-
based tracking algorithms were tested : TM, MOSSE, and KCF. Based on these algo-
rithms, we calculated the tumor center of mass to improve tracking accuracy. KCF per-
formed best in terms of both time cost and tracking accuracy for both liver and lung
cancer patients. For gated radiotherapy, it is critical that the beam on/off control is accu-
rately predicted when the target crosses the threshold position. Therefore, we propose a
time-scale gating accuracy to compare it with the ideal gating signal. The gating accuracy
results show that the binary gating signal of the proposed framework achieves more than
90% temporal accuracy.

Furthermore, the corresponding true tumor motion amplitude, i.e. the predicted thre-
shold at the gating trigger, can be calculated from the timing of the beam switch triggered
by the gating signal predicted by the proposed system. By comparing the ideal threshold
with the predicted threshold, the gating threshold error measures the geometric uncer-
tainty of beam triggering during gating. In subsequent work, this predicted threshold can
be used as an extrapolation criterion for the PTV in the radiotherapy plan. Thus, the
DVH of the PTV and OAR in the proposed framework can be calculated and compared
with the original plan without this gating system, in order to obtain validation of the
dosimetric improvement.

5.4 Conclusion

In summary, the developed online system, combining KCF and ALR, offers a cost-
effective and efficient solution for accurate tumor motion tracking and prediction in
motion-compensated radiotherapy. The system’s performance demonstrates significant
improvements in tracking accuracy and gating efficiency. Leveraging cine-MRI guidance,
it provides real-time tumor motion prediction and gating decisions, enhancing the preci-
sion and efficacy of motion compensated treatments. The patient-specific approach allows
adaptation to individual characteristics, particularly crucial for lung and liver cancers
with varying inter-patient tumor motion. Additionally, the high gating accuracy achieved
in both lung and liver cancer patients highlights the system’s versatility and potential
application in diverse tumor types. Finally, dose verification demonstrates that the pro-
posed online gating system significantly improves the protection of surrounding critical
organs. Overall, the system’s robustness and reliability make it a valuable tool in motion-
compensated radiotherapy for thoracic and abdominal cancer patients. Accurate beam
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gating is essential to ensure precise delivery of radiation, and our proposed framework’s
high temporal accuracy provides confidence in its reliability for real-time radiotherapy.
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CONCLUSION AND PERSPECTIVES

Conclusion

Elekta Unity offers real-time high spatial resolution soft tissue imaging and holds the
potential to compensate for respiratory motion through gating schemes. To enhance the
precision of thoracoabdominal tumor radiotherapy, dynamic adjustment of dose delivery
based on real-time observation of respiratory motion is required. However, from a tech-
nical standpoint, achieving safe and reliable real-time adaptive MR-guided radiotherapy
(MRgRT) through Continuous Motion Management (CMM) still faces some challenging
hurdles. The accuracy and efficiency of real-time tracking algorithms and tumor motion
prediction algorithms in three-dimensional space determine the accuracy of implementing
gating schemes in Elekta Unity.

This paper developed an end-to-end gating system for real-time motion compensation
during lung cancer and liver cancer treatment on the Elekta Unity. This system can
monitor and automatically locate the 3D spatial position of the tumor in real-time, and
can predict the tumor’s motion trajectory in three directions in advance. Based on the
set gating rules, a unique gating signal can be generated to control the beam on and
off during radiotherapy, thereby compensating for the inaccuracy of dose delivery due to
respiratory motion.

The contributions of this thesis are as follows :
(1) Proposed a workflow for tumor tracking based on KCF
In this study, we first constructed a database of real patient MR motion monitoring

in Unity, and evaluated three major tumor tracking algorithms in detail using 2D Cine-
MRI data from 20 patients. We specifically highlighted the excellent performance of the
KCF algorithm in real-time tracking. To address issues such as irregular tumor shapes
and deformations caused by breathing, we introduced centroid calculation methods to im-
prove the accuracy of the KCF algorithm in determining tumor positions. For positioning
problems in the SI direction, we proposed a personalized slice selection scheme by calcu-
lating the correlation in different slice directions, effectively overcoming challenges posed
by tumor shape changes in different planes. Overall, our proposed workflow for tumor

143



tracking based on KCF is efficient and accurate on 2D Cine-MRI, providing a significant
first step towards patient-specific gating schemes for thoracoabdominal tumor MR-guided
radiotherapy in this thesis.

(2) Proposed a transfer C-NLSTM framework for tumor motion prediction
This study introduces a novel C-NLSTM model and validates its effectiveness in real-

time prediction of respiratory motion using publicly available databases. Additionally, to
address the challenge of insufficient patient 2D Cine-MRI data, transfer learning is intro-
duced. It leverages pre-trained models and knowledge from existing datasets to effectively
address related tasks with small datasets. In summary, this study presents a patient-
specific transfer C-NLSTM model, evaluates the predictive performance of C-NLSTM on
two large public databases, and then tests the transfer C-NLSTM on the Unity database
for real-time prediction of tumor motion in MRgRT.

(3) Proposed a gating signal prediction algorithm based on 2D Cine-MRI
This study validated the effectiveness of linear regression for predicting the movement

of internal organ or tumor in 2D Cine-MRI, and proposed an online gating signal predic-
tion scheme to enhance the accuracy of MRgRT for liver and lung cancer. Furthermore, to
address the issue of expensive training data, we proposed a patient-specific ALR model,
where online data training for each patient lasted only 30 seconds as a burn-in period,
and model parameters were updated during online prediction.Finally, we also validated
that a prediction window of 0.6 seconds is more suitable than a 0.4-second window under
the condition of a 0.5-second system delay.

(4) Proposed an efficient patient-specific gating scheme with orthogonal cine-MRI
This study combined previous work and presented an end-to-end online respiratory

motion solution based on 2D Cine-MRI, specifically designed for MRgRT. It involved real-
time monitoring and automatic localization of tumor spatial positions in three dimensions,
as well as prediction of tumor motion trajectories in three directions. Additionally, it fit-
ted an optimal cuboid to the motion range of each patient’s tumor, obtaining the optimal
gating window for each patient by solving for the optimal cuboid. Various schemes for
generating three-dimensional gating signals based on tumor motion in one, two, or three
directions were explored to adapt to the treatment needs of different patients. Finally, do-
simetric validation of the proposed gating scheme demonstrated significant improvements
in protecting surrounding critical organs.

The above three works introduced tumor tracking workflow, tumor motion prediction
algorithm, and gating signal prediction algorithm, individually. Ultimately, we proposed
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an online gating system that integrates KCF and ALR, providing high accuracy and
efficiency for motion compensation in liver and lung cancer radiotherapy. This system
demonstrates outstanding performance in tracking precision and gating efficiency. Due
to significant inter-patient variations in tumor motion, the patient-specific gating system
allows for dynamic adjustment of gating thresholds based on individual characteristics.
Furthermore, the high gating accuracy achieved in lung and liver cancer patients highlights
its versatility and potential application across different thoracoabdominal tumor types.
In summary, the robustness and reliability of this system make it an invaluable tool for
motion-compensated radiotherapy in thoracoabdominal cancer patients.

Prospects for future work

While this research has made progress in achieving real-time localization and motion
prediction of lung tumors and liver organs during the Elekta Unity radiotherapy, pro-
viding reasonably accurate three-dimensional gating signals for guiding gated radiation
therapy, it still faces numerous technical challenges and hurdles in the workflow for mana-
ging respiratory motion in thoracoabdominal tumors, necessitating further research and
exploration.

During the process of tumor tracking, while the centroid-based calculation method
can effectively improve the accuracy of tumor localization, especially showing significant
advantages in dealing with deformations caused by respiratory motion, we also recognize
that centroid motion may not fully reflect subtle changes in the tumor’s edge contour. This
limitation may restrict the precision of radiotherapy in some cases. Therefore, the future
work will mainly focus on how to more accurately track and describe the tumor’s edge
contour. Firstly, we will optimize the existing image segmentation techniques to improve
the accuracy and stability of tumor edge contour extraction through improved algorithms
and parameter settings. Secondly, we plan to explore new methods that combine centroid
motion and edge contour information to more comprehensively reflect the tumor’s motion
state, providing a more reliable basis for radiotherapy.

For patients with liver cancer who have not received contrast agents, the identification
of tumor boundaries is extremely difficult, making the quantification of liver tumor mo-
tion a challenging task. In this study, to overcome the inability to visualize liver tumors
without the use of contrast agents, we used the motion of the liver centroid as a proxy
for the motion of the tumor centroid. However, this remains an approximate method
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that cannot fully and accurately reflect the motion trajectory of the entire liver tumor
in three-dimensional space. Therefore, the outlook for liver tumor tracking work prima-
rily focuses on finding more suitable methods and structures to more precisely reflect the
motion trajectory of the entire liver tumor in three-dimensional space. Additionally, we
will investigate how to integrate individual patient differences and respiratory patterns to
further optimize the accuracy and stability of tumor motion tracking.

This study validates the effectiveness of ALR in predicting tumor motion. It demons-
trates higher prediction accuracy and efficiency on 2D Cine-MRI data compared to the
RNN model, and only requires 30 seconds of training data, overcoming the difficulty of
collecting individualized patient data on the Unity. Due to the limited number of Unity
databases in this study and the need to optimize the model in real-time to cope with
irregular patient respiratory motion, ALR is more suitable for the gating system propo-
sed in this study. With the gradual enrichment of the Unity database and continuous
advancements in software and hardware technology, we plan to train more robust RNN
models. RNN models have unique advantages in processing sequential data, capable of
capturing the time dependency and long-term dependency of tumor motion. Additionally,
we have demonstrated that the patient-specific transfer C-NLSTM method can effectively
improve the prediction performance of the RNN model. In future work, we will continue
to deepen research in this field, explore the potential of more patient-specific transfer
learning methods, and strive to better apply them to RNN models.

Compared to the gating technique applied in this study, the development of MLC
tracking technology holds greater potential. This is particularly crucial for patients with
significant tumor motion as it allows for free breathing during treatment without an exten-
ded beam-on time (100% duty cycle). While MLC tracking and VMAT are not currently
available in the current clinical MR-linac version, the feasibility of implementing VMAT +
MLC tracking on Elekta Unity has been demonstrated by Prescilla Uijtewaal and others
[168]. However, further work is required to develop an integrated clinical workflow. The
clinical treatment planning system needs to fully support VMAT on Elekta Unity, espe-
cially for daily plan adjustments. Additionally, imaging and motion estimation workflows
should be tailored to individual patients.

Clinical real-time adaptive MRgRT requires thorough quality assurance and testing.
Specialized end-to-end tests have been proposed to assess certain aspects of adaptive MR-
guided RT [86][159][112][35] thus far. Future developments in end-to-end testing may focus
on evaluating real-time imaging, dose calculations, and accumulation methods. Further-
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more, mechanisms ensuring robust and safe radiation delivery need to be implemented
within real-time MR-guided workflows.

Moreover, magnetic resonance-integrated proton therapy (MRiPT) is expected to be-
come an important development direction for clinical applications in the next 5-10 years.
Proton therapy, with its unique physical characteristics, can achieve high-precision irra-
diation of tumor tissues, thus imposing stricter requirements on the precision of proton
beams [95][193]. Against this backdrop, the patient-specific gating system proposed by us
is expected to play a greater role in the future. By combining the high-resolution imaging
of MRI and the precise control of gating technology, we can achieve accurate positioning
and delivery of proton beams, thereby further enhancing the effectiveness and safety of
radiotherapy. Therefore, future research efforts will be focused on further improving and
optimizing the patient-specific gating system to meet the needs of high-precision radio-
therapy, such as proton therapy.
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Titre : Schéma de Gating spécifique au patient pour la radiothérapie de tumeur thoracoabdo-
minale guidée par l’imagerie par résonance magnétique

Mot clés : MR-Linac ;Gating ;Suivi des tumeurs ;Prédiction du mouvement respiratoire

Résumé : L’objectif de cette thèse est de dé-
velopper un système de synchronisation pour
la compensation en temps réel des mouve-
ments lors du traitement du cancer du poumon
et du foie sur l’Elekta Unity. Ce système sur-
veillera et localisera automatiquement la posi-
tion tridimensionnelle de la tumeur en temps
réel, et prédira sa trajectoire à 0.5 seconde.
Un signal sera généré pour contrôler le fais-
ceau pendant la radiothérapie, réduisant ainsi
les inexactitudes dues au mouvement respira-
toire.

Validation de l’efficacité du KCF dans le
suivi des tumeurs en 2D sur des images IRM
ciné. Proposition d’un modèle C-NLSTM spé-
cifique au patient pour une meilleure prédic-
tion du mouvement des tumeurs. Validation
de la régression linéaire pour la prédiction du
mouvement en utilisant des images MR ciné
2D. Intégration des travaux pour une solution
complète de compensation des mouvements
respiratoires, validée par étude dosimétrique
pour protéger les organes à risque.

Title: Patient-specific gating scheme for thoracoabdominal tumor radiotherapy guided by mag-
netic resonance imaging

Keywords: MR-Linac; Gating; Tumor tracking; Respiratory motion prediction

Abstract: The aim of this thesis is to develop
an end-to-end gating system for real-time mo-
tion compensation during lung and liver can-
cer treatment on the Elekta Unity. This system
will monitor and automatically locate the three-
dimensional position of the tumor in real-time
and predict its trajectory within 0.5 seconds. A
gating signal will be generated to control the
beam on and off during radiotherapy, reducing
inaccuracies in dose delivery due to respira-
tory motion.

The effectiveness of KCF in tracking tu-
mors in 2D cine MRI images will be vali-
dated. A patient-specific C-NLSTM model is
proposed for better tumor motion prediction.
The effectiveness of linear regression for mo-
tion prediction using 2D cine MR images will
be validated. Integrating the above studies,
a complete respiratory motion compensation
solution is proposed, which is validated by
dosimetric studies to protect surrounding or-
gans at risk.


	Résumé
	Introduction
	Respiratory motion management in radiotherapy
	External Beam Radiotherapy
	Thoracic and Abdominal Tumors
	External Beam Radiotherapy and Its Procedure
	Impact of Respiratory Motion on Radiotherapy 

	Management of Respiratory Motion
	Abdominal Compression
	Respiratory Control
	Gating
	Real-time Tumor-Tracking
	Optical surface guided radiotherapy technique

	MRI-guided adaptive radiotherapy
	Basic Structure and Treatment Workflow of MRI-Linac
	Clinical Research Status of MRI-Linac in Respiratory Motion Management

	Challenges
	Thesis aims

	Target tracking algorithm based on kernel correlation filter 
	Introduction
	Target tracking algorithms
	Template Matching (TM)
	Minimum Output Sum of Squared Error (MOSSE)
	Kernel correlation filter (KCF)
	Centroid of the tracked tumor

	Materials and methods
	Data acquisition
	Coronal or sigattal selection for SI direction
	Performance evaluation

	Results and Discussion
	Tracking error
	Complexity and computational time
	Discussion

	Conclusion

	Tumor motion prediction using transfer C-NLSTM
	Introduction
	A transfer C-NLSTM framework
	Fully Convolutional Network
	Nested long short-term memory
	 Proposed transfer C-NLSTM framework
	Training procedure
	RNN Models

	Materials and methods
	Public respiratory databases
	Unity database
	Data interception
	 Performance evaluation
	Experiment

	Results and Discussion
	Results from CyberKnife and Fatasia
	Results from the Unity
	Discussion

	Conclusion

	Real-time Gating control for respiratory movement compensation with prediction
	Introduction
	Proposed gating signals prediction algorithm
	Linear predictors
	Crossing time
	Gating signals generation

	Materials and methods
	Data acquisition
	Data interception
	 Performance evaluation

	Results and Discussion
	 Linear vs RNN regression
	Adaptive regression
	Calculation time
	Discussion

	Conclusion

	An efficient patient-specific Gating Scheme with orthogonal cine-MRI 
	Introduction
	Materials and methods
	Optimization and Selection of Gating Windows
	Workflow of the proposed online system
	Performance evaluation for gating
	Dose Verification

	Results and Discussion
	Gating accuracy
	Complexity and computational time
	Dose validation result
	Discussion

	Conclusion

	Conclusion and perspectives
	Bibliography

