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THÈSE DE DOCTORAT DE
SORBONNE UNIVERSITÉ

Spécialité
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téléphoniques et de son message poétique sur “le point final qui cherchait sa route” envoyé en fin de
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Introduction

Quantum physics is the branch of physics based on unintuitive mathematical concepts introduced
at the beginning of the XX-th century, and later verified by experiments, to explain observations
contradicting the predictions of classical physics. It is particularly well-suited to the study of very
small objects, such as atoms, photons and electrons. The rise of this new theory had many impor-
tant applications, including the development of transistors (thus making possible the construction of
classical computers and smartphones for instance) and lasers. Today, the possibility of controlling
individual particles enables for a so-called second quantum revolution. This expression refers to the
development of all the technologies brought by the resulting deeper understanding of quantum theory.
It encompasses many applications, including quantum sensing and metrology (making profit of quan-
tum physics to develop more accurate measurement methods), quantum communication and quantum
computing. In this thesis, we will focus on the last two of these applications.

Quantum key distribution The field of quantum communication gathers all the attempts at
exploiting the laws of quantum physics to enable for a secure and reliable communication of classical
and quantum information between different parties. Quantum key distribution (QKD) is the simplest
task of all quantum communication protocols. It is a cryptographic primitive permitting two distant
protagonists, traditionally called Alice and Bob, to establish a shared uniformly random secret key,
which they can then use to exchange a secret message.

Quantum error correction Quantum computing aims at making profit of quantum physics to
fasten computations or solve computing problems inaccessible to current computers. However, this
goal is still far from being reached, mostly because quantum information is very fragile. Indeed, small
particles tend to interact in an uncontrolled-way with their environment, which makes them lose their
quantum properties. This is of course also a problem for quantum communications. To try and protect
quantum information, one can encode it into a bigger system to introduce redundancy which is then
used to correct the errors. This is the topic of quantum error correction.

Bosonic systems The basic unit of quantum information is a two-dimensional system, the qubit
(quantum bit). It is therefore only natural that the first implementations considered for the manip-
ulation of quantum information consisted of systems that are intrinsically small-dimensional or that
can be approximated as such. However, it is also possible to encode the information into certain
infinite-dimensional spaces, called bosonic modes. The main interest in doing so is that the relevant
quantum states can be produced and measured more easily in an experimental setting.

This thesis concerns the theoretical study of quantum key distribution and quantum error correc-
tion implemented with bosonic systems. The former is referred to as continuous-variable quantum
key distribution while the latter is called bosonic error correction, or sometimes continuous-variable
quantum error correction.

Outline of the thesis

Summaries

Two popular summaries, one in French and one in English, relate the course of my doctoral studies.
They give a first overview of the context of the thesis, its relevance and its main contributions. They
are mostly non-technical and as such are intended for non-specialists. Of course, they can also serve
as a smooth introduction to the thesis for experts.

Chapter 0: Preliminaries

Chapter 0 reviews the relevant background necessary to understand the rest of the thesis. It assumes a
minimal knowledge of quantum mechanics. It first introduces the formalism to study bosonic systems.
It particularly focuses on coherent states, which idealise the light of lasers and are the states most



9

employed in this thesis. The way quantum operations and measurements are performed on bosonic
systems are also presented in this chapter, together with the main sources of noise which may degrade
the bosonic states.

Chapter 1: Explicit asymptotic secret key rate of discretely modulated continuous-
variable quantum key distribution protocols

Chapter 1 focuses on continuous-variable quantum key distribution. The goal here is to derive an
analytical lower bound on the asymptotic secret key rate of such protocols, a quantity that broadly
quantifies the security of a protocol. This is a significant contribution as it helps to compare the
security of different instances of a protocol and to make an informed choice.

Chapters 2 and 3 then deal with quantum error correction.

Chapter 2: The 2T -qutrit, a two-mode bosonic qutrit

In Chapter 2 a new bosonic code, the 2T -qutrit, is introduced and studied. This encoding has the
particularity of using two bosonic modes, which means the space in which the information is encoded
is even bigger than when only a single mode is used. This work then inspired the construction of
important families of multi-mode codes, the quantum spherical codes [Jai+23] as well as some of the
codes introduced in Chapter 3.

Chapter 3: Codes with an easily-implementable gate set

Chapter 3 presents a general construction of codes such that the encoded information can then be
manipulated in an easy way to carry out the desired computations.

Chapters 1, 2, and 3 all use the preliminary content introduced in Chapter 0, but are independent
on one another. More precisely, the concepts explained in Sections 0.1 and 0.4.1 of the preliminary
chapter are used in all subsequent three chapters, Section 0.2 is used in Chapter 1, Sections 0.3, 0.4.2
and 0.4.3 in Chapters 2 and 3.
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Summary in English

Introduction

This thesis discusses two applications of quantum technologies: secure quantum communication and
quantum computing. More precisely, it focuses on quantum key distribution and quantum error
correction. Quantum key distribution takes advantage of the properties of quantum physics to create
a secure key shared between two persons. It is one of the earliest applications of quantum information
theory. In the case of quantum computing, quantum physics is exploited, this time, to build machines
performing certain tasks faster than conventional computers. In practice, however, the capabilities
of quantum computers are currently very limited. One of the main reasons for this, is that quantum
information is very fragile, which leads to many errors in the computations. It is therefore necessary
to correct these errors. This is why the field of quantum error correction has been created.

Several physical systems can be used to implement quantum communications and quantum com-
putations. Because of their practical potential, we consider here bosonic systems, also known as
“continuous-variable systems”.

Continuous-variable quantum key distribution (CV QKD)

The one time-pad is an encryption method which allows two individuals, Alice and Bob, to exchange
a secret message without leaking any information to a potential adversary. To guarantee the security,
the private key used in the protocol must be distributed randomly according to a uniform distribution.
It must be used only once and known only to Alice and Bob. Quantum key distribution allows Alice
and Bob to agree on such a key even when they are physically far apart. To perform this task, they
have access to an authenticated classical channel and a quantum channel with no security guarantees.
The term “authenticated” means that a potential adversary, Eve, can listen to everything that is
said on the classical channel but cannot pretend to be Alice nor Bob. On the other hand, in the
case of the quantum channel, Eve’s actions are restricted only by quantum physics. She is therefore
free, for example, to intercept, modify or send quantum states on the channel. The general idea of
quantum key distribution is to encode random bits in quantum states sent by Alice to Bob. Bob then
measures these states to reconstruct the key. Intuitively, the security of the protocol comes from the
property that have quantum states of modifying themselves when they are observed. Thus, the more
information Eve obtains about the states exchanged, the more she modifies the results measured by
Bob. By analysing the correlations between the key obtained by Bob and the one initially encoded
by Alice, we can then estimate the amount of information that an adversary could have obtained and
deduce what fraction of the key can be extracted to obtain a shorter key on which the adversary has
no information.

There are two types of quantum key distribution protocols. The first are known as “discrete-
variable” protocols because they involve the exchange of discrete variables encoded, for example,
in the polarisation of photons. They can be used to distribute keys over long distances, but are
very expensive because they require the use of advanced technologies such as single-photon detectors.
Moreover, these detectors are also subject to certain imperfections. In continuous-variable protocols,
however, the results of the measurements performed are of a continuous nature. These protocols
are easier to implement experimentally because the equipment required is similar to that used for
conventional communications. Proofs of security, however, are more complicated to establish. Until
recently, satisfactory proofs only existed for idealised protocols, known as Gaussian protocols. In this
case, we assume that Alice sends to Bob coherent states (typically states produced by good lasers),
each of which being parameterised by a complex number α that she chooses randomly according to
a Gaussian probability distribution. It is possible to use this parametrisation to represent coherent
states by a point in the complex plane. A constellation of points is then associated with the set of
states that can potentially be chosen by Alice, and this is referred to as a constellation of coherent
states. In practice, it is not possible to have access to a continuum of states and it is thus necessary
to consider a finite constellation of coherent states. An appropriate figure of merit to quantify the
security of a protocol is the secret key rate. It corresponds to the fraction of secure key that can
be extracted from an imperfect key generated by a key distribution protocol. Calculating this rate
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in the general case is very difficult. It is nonetheless possible, as a first step, to restrict ourselves to
the asymptotic case, corresponding to the case where the number of states exchanged is infinite. It
is also usual to consider only a certain type of attacks, called “collective attacks”, before trying to
show that this type of attacks is in fact optimal and that the secret rate is therefore the same in the
general case. The year preceding the start of my thesis saw the first contributions to the calculation
of the asymptotic secret rate of protocols using a finite constellation, for collective attacks. Numerical
methods were used to calculate a lower bound on the asymptotic secret rate for QPSK (quadrature
phase-shift keying), a constellation of four coherent states [Gho+19; LUL19]. Originally, the main goal
of this thesis was therefore to generalise these results to more complex constellations containing more
states. In this case, it is still possible to write a convex optimisation problem whose numerical solution
provides a lower bound on the secret rate, as in [Gho+19], but the size of the problem becomes too
large for it to be solved numerically. We thus established an explicit analytical formula bounding the
solution of the optimisation problem, thus providing a lower bound on the asymptotic secret key rate
of any quantum key distribution protocol based on the exchange of coherent states. This very general
result enables to compare the theoretical performances of different continuous-variable quantum key
distribution protocols. We have applied our formula to two particularly important types of modulation:
phase-shift keying (PSK), which generalises QPSK, and quadrature amplitude modulation (QAM).
In the case of phase-shift keying, the constellation of coherent states forms a regular polygon in the
complex plane and all the states have the same probability of being drawn by Alice (Fig. 1a). For the
quadrature amplitude modulation the states form a grid in the complex plane and different choices can
be made for the probability distribution. For example, we can opt for a discretised Gaussian or, more
simply, for a binomial distribution (Figs. 1b and 1c). In practice, the differences observed between the
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Figure 1: Examples of constellations. Each coherent state |α⟩ that can be sent by Alice to Bob is
represented as a point with coordinates (ℜ(α),ℑ(α)). The colours indicate the probability with which
Alice chooses the state. In 1a is shown the 8-PSK constellation: a PSK constellation with 8 coherent
states. The other two constellations shown are QAM, with 16 coherent states in 1b and 64 coherent
states in 1c.

keys obtained by Alice and Bob are generally due to noise on the quantum channel. However, as it is
not possible to distinguish the effect of this noise from the errors induced by Eve, for security reasons,
all errors must be attributed to Eve. Noise therefore limits the performance of the protocols and it
is useful to estimate the secret rate in the absence of an adversary but in the presence of realistic
noise, typically Gaussian noise. Our formula can be used to simulate this situation. The advantage
of PSK constellations is that they are easy to study and implement. However, our calculations do
not show a significant increase in performance by increasing the number of coherent states in the
constellation. The study of QAMs is of greater practical interest since these are the constellations
used in experiments to approximate Gaussian modulations, which are known to be optimal. We show
that 64-state QAMs are in fact sufficient to obtain good performance, very close to what is obtained
with a Gaussian modulation (Fig. 2). The former are therefore suitable for the large-scale deployment
of continuous-variable quantum key distribution. Our results are also useful for experimentalists in
determining the secret rate of their practical implementations of the protocols. In addition, having an
analytical bound and not just a numerical one means that it is now possible to optimise the variables
parameterising families of constellations. Finally, this result paves the way for a complete security
proof taking into account finite size effects and the most general attacks. We have also computed a
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Figure 2: The secret rate obtained for a quantum distribution protocol in which Alice sends Bob
coherent states from a QAM constellation, where the probabilities associated to each state follow a bi-
nomial distribution. The distance between Alice and Bob is 50 km. The x-axis represents the variance
of the modulation, which is equal to twice the expected number of photons of the modulation. From
top to bottom, we consider QAMs of sizes 16, 64, 256, and 1024. The results obtained with a Gaussian
modulation are also shown, for comparison. For an optimum variance, we can see that a constellation
of just 64 states already achieves a secret rate very close to that obtained with the Gaussian modula-
tion. The parameters used here are chosen to be realistic in relation to the experiments (noise excess
ξ = 0.02 and reconciliation rate β = 0.95). With these parameters and for this choice of distance, our
bound does not allow us to obtain a positive secret rate in the case of QPSK (= 4-QAM).

lower bound on the asymptotic secret key rate for protocols using arbitrary states instead of coherent
states, thus generalising our result to essentially all existing continuous variable protocols. This is
useful both to study a wider class of protocols, but also to take into account imperfections in the state
preparation since Alice can never prepare the desired states with infinite precision.

This work was published in the journal Quantum [DBL21]. This publication essentially fulfilled
the initial objective of my thesis. Moreover, since taking finite-size effects into account requires
completely different proof techniques, I then turned my attention to another subject on which some
of the techniques previously developed can be reused: that of bosonic codes.

From quantum key distribution to bosonic codes

In a quantum computer, the elementary unit of information is the qubit, a two-level quantum system.
Current physical qubits are very sensitive to their environment, which leads to a large number of
calculation errors. While technological advances will probably significantly improve the situation, it is
expected that these advances alone will not be enough to completely solve the problem. It is therefore
necessary to develop error correction techniques. The main idea behind any error-correcting code is to
introduce redundancy by encoding the information in a higher-dimensional space. This redundancy is
then exploited to recover the initial information degraded by noise. In order to clarify the concept of
error-correcting code, let us first consider the classical case. Classically, the information is represented
by strings of bits that can take the value 0 or 1. The only possible error is the transformation of a
0 bit into a 1 bit and vice versa. This is known as a bit flip. The simplest code for correcting such
an error is the 3-bit repetition code. Each bit is copied three times: a 0 is encoded by a string of
three 0s and a 1 is represented by a string of three 1s. Denoting the encoded 0 bit as 0̄ and the
encoded 1 as 1̄, this is 0̄ = 000, 1̄ = 111. If the logical bit is a 0 and a bit flip occurs on one of
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the three physical bits, the initial value can be recovered by choosing the bit that appears the most
times in the encoding chain. Note, however, that if two bit inversions occur, the decoding will be
erroneous. But, assuming that the error rate is less than 1/2, the encoding results on average in a
reduced logical error rate. It is also possible to design codes that have a certain intrinsic resistance
to bit inversions. For example, a 0 can be represented by an electrical signal of 0 volt and a 1 by an
electrical signal of 10 volts. If the signal undergoes variations, the value observed for a bit will not
be exactly 0 volt nor 10 volts. However, assuming that the noise is not too strong, any voltage value
below 5 volts can be interpreted as a 0 and any value above 5 volts as a 1. In this case, we can speak
of continuous encoding, since a whole continuous interval of values is now decoded as a 0 or a 1. The
situation is similar in the quantum case. One way of creating redundancy is to encode a so-called
logical qubit (on which the quantum calculation will be performed) in several physical qubits. Another
possibility is to encode the qubit in a single entity of infinite dimension, called a mode of a harmonic
oscillator. The second technique defines bosonic codes. The advantage of this technique over the
previous one is that it creates redundancy without introducing new error channels. This reduces the
amount of resources used compared with multi-qubit correction. This strategy is therefore considered
to be very promising, and is the one being pursued by Amazon and the French start-up Alice & Bob,
for example. Ultimately, bosonic error correction is generally combined with multi-qubit correction,
with the bosonic qubits serving as physical qubits out of which the multi-qubit code is built. It is also
possible to encode a qubit in not one but several bosonic modes. The qubit thus obtained then lives
in the tensor product of several infinite-dimensional spaces. We are particularly interested in the case
where two modes are used.

Although bosonic error correction and continuous-variable quantum key distribution are very dif-
ferent applications, the mathematical concepts employed are in fact very similar. In both cases, the
physical systems involved are bosonic systems. In particular, many bosonic codes are naturally writ-
ten as superpositions of coherent states. Furthermore, the main tool used for our secret key rate
calculation was positive semidefinite optimisation. It turns out that the figure of merit quantifying
the performance of a bosonic code is also given by the result of a semi-definite program (SDP). These
similarities in the tools used justify that I turned to the study of bosonic codes.

Optimising the entanglement fidelity of bosonic codes

Encoding a qubit in a bosonic code consists in finding a good subspace of dimension 2 of the phys-
ical space corresponding to the number of modes studied. The noise channel then deteriorates the
information. The recovery operation then aims to recover the original state of the system. Quantum
fidelity can be used to quantify the extent to which two quantum states are similar. It can also be
used to define another quantity, the entanglement fidelity, which indicates whether the states output
by a channel are similar to those introduced as inputs. Our aim will therefore be to find an encoding
that maximises the entanglement fidelity obtained after successive application of an encoding, a noise
channel and an optimal recovery operation. To do this, we can iteratively solve two SDPs (Fig. 3).
One is used to optimise the recovery for a fixed encoding, in order to test the performance of the
code using the best possible recovery operation. The other SDP is used to optimise the encoding, for
a fixed recovery operation. Once an optimal final encoding has been obtained numerically, the idea
is to try and determine whether there are any symmetries or a remarkable underlying structure that
could be responsible for the code’s good performance. Another strategy goes the other way around:
first define a code that is interesting because of its symmetries and then use the biconvex optimi-
sation to compare the performance of this code with an optimal encoding. In our case, this second
strategy proved to be the most effective. In the single-mode case, some results are already known:
Noh et al. have shown that for a realistic noise regime, starting from random initial codes and then
applying a biconvex optimisation similar to that described above, the optimal encoding obtained is
a hexagonal GKP code [NAJ19]. We are therefore interested in the two-mode case. Since the space
to be considered is much larger in this case, the situation is more delicate. It is therefore necessary
to restrict ourselves to a subspace of the two-mode space. We have chosen to study bosonic qubits
defined by finite superpositions of coherent states. In other words, we restrict ourselves to the sub-
space H spanned by a given finite set of two-mode coherent states. We then want to find a qubit, i.e.
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Figure 3: Explanatory diagram of the biconvex optimisation used to optimise entanglement fidelity:
starting with a given encoding (chosen randomly, for example), the decoding is optimised by solving
an SDP. Then we fix the optimal decoding found to optimise the encoding, again by solving an SDP,
and we iterate by successively optimising the encoding and decoding. Finally, the optimal encoding
found and the corresponding entanglement fidelity are returned.

a two-dimensional space, within H, that is resistant against noise. We are mainly interested in the
pure-loss channel, which is the main source of noise in optical bosonic systems. One of the advantages
of restricting ourselves to a space spanned by a finite family of coherent states is that, as the pure-loss
channel transforms one coherent state into another coherent state, the calculations are simplified and
we can write everything in a finite-dimensional space, thus avoiding having to perform truncations in
numerical simulations. We also carried out a few simulations for a second noise channel, the bosonic
dephasing channel, without being able to avoid truncation in this case. Although qubits are most
commonly studied because they are the quantum analogue of the bits used in classical physics, there
is no fundamental reason to restrict ourselves to subspaces of H of dimension 2. It is indeed possible to
encode information on spaces of dimension d ∈ N, thus obtaining qudits. We have therefore considered
several possible dimensions to encode the information.

The 2T qutrit: a two-mode bosonic code

To construct a two-mode code, we took inspiration from a certain family of single-mode bosonic codes,
known as a cat codes. The latter can be written as the superposition of coherent states forming a
regular polygon in phase space. The constellation of states considered is again phase-shift keying,
which we have already looked at in our work on key distribution (see Fig.1a). This constellation is
associated to a mathematical group structure. This is a very useful property because, ultimately, the
aim is to perform logical operations on the bosonic qubits and some of these operations may correspond
to group operations on the constellation. For this reason, we have chosen to focus on a constellation of
24 two-mode coherent states that is also associated to a multiplicative group structure. In this case,
it is the binary tetrahedral group 2T whose elements form the vertices of the 24-cell, one of the rare
polytopes in dimension 4. As two-mode coherent states are described by pairs of complex numbers,
the geometrical figures representing the constellations of two-mode coherent states now belong to a
space of dimension 4. Our next objective was to define a qudit in the span of this constellation
of states. The polytope in question naturally decomposes into three smaller, identical polytopes
(Fig. 4c). Mathematically, the vertices of these three polytopes correspond to the cosets of the group
of quaternions in the 2T group. Intuitively, these three cosets can be understood as three copies of
the group of quaternions. In the same way the three polytopes are identical up to rotation, the three
cosets are identical up to multiplication by an element of the group 2T . The situation is similar in the
case of cat codes (Figs. 4a and 4b). We therefore used this tripartite structure to define a qutrit, i.e.
a qudit of dimension 3, within the space of dimension 24 generated by the 24 coherent states defining
our constellation. More precisely, each of the three basic states of the qutrit is defined as the uniform
superposition of the coherent states corresponding to one of the cosets of the group of quaternions Q
in 2T . Alternatively, they can also be described as the uniform superposition of the states associated
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with the vertices of the three small polytopes making up the 24-cell. We have named the resulting
qutrit the “2T -qutrit”.

(a) 6-legged cat qutrit
constellation

(b) 9-legged cat qutrit
constellation

(c) projection of the 24-
cell constellation

Figure 4: The PSK constellations in 4a and 4b with 6 (resp. 9) states can be partitioned into three
sub-constellations, identical up to a rotation, of 2 (resp. 3) states, represented in red, yellow and
blue. A 6-component (resp. 9) cat qutrit can then be defined as the space generated by three basis
states, each given by the uniform superposition of coherent states of a given colour. Algebraically,
these subconstellations are associated with subgroups of the cyclic group. Similarly, the 24-cell, a
projection of which is shown in 4c, is partitioned into three sub-constellations associated with the
cosets of Q in 2T , which define the basic states of the 2T qutrit.
The 24-cell figure is from Wikipedia Commons (licence CC-BY-SA-4.0) and is by UserTheon.

We then study the performance of the 2T qutrit against photon losses, calculating its entanglement
fidelity and comparing it with those obtained by performing a biconvex optimisation within the 24-
dimensional space defined by our choice of constellation, following the strategy described in (Figs. 5).
We also compare the performances obtained to that of single-mode cat qutrits (Fig. 6).
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Figure 5: Comparison of the entanglement fidelity obtained for 2T -qutrit and by an iterative optimi-
sation of encoding and decoding operations. Optimisations are performed by starting with random
encoding within the 24-dimensional space, and then iteratively optimising the decoding and encoding
by solving one SDP each time. The x-axis indicates the number of SDPs solved. Each of the 5 simula-
tions corresponds to a different initial encoding. Two loss regimes are considered, one with low losses
(5b) and the other with higher losses (5a). The α parameter characterising the 24-cell size is chosen
equal to 1.5, an approximately optimal value for the 2T -qutrit.

In the low-loss regime, the optimisation procedure does not find a better encoding than the 2T -
qutrit when starting with a random initial encoding. This suggests that the 2T -qutrit is close to
optimal for loss protection in this regime. On the other hand, when losses are higher, better codes are
obtained by optimisation.
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Figure 6: Comparison of the entanglement fidelity obtained with an encoding corresponding to the 2T -
qutrit or cat qutrits and an optimal decoding. In 6a the entanglement fidelity is plotted as a function
of the amplitude of the constellations, which is related to their energy. The parameter quantifying
the losses is fixed at a low value (γ = 0.01) in this case. In 6b, the plot is made as a function of the
importance of the losses (the higher γ is, the greater they are) while the value of the α parameter
is optimised within a reasonable range, from 0.25 to 2. In this second case, it is the entanglement
infidelity (= 1−the entanglement fidelity) that is plotted.

We observe that for reasonable values of the 24-cell size and therefore for reasonable energies,
the 2T -qutrit compares favourably with the cat codes, as soon as the losses are sufficiently low. We
also looked at the bosonic dephasing channel. In this case, contrary to what is observed for losses,
the greater the number of coherent states in the PSK constellation, the poorer the performance of
the resulting cat qutrit. Nevertheless, although the 2T -qutrit contains 24 two-mode coherent states,
for well-chosen parameters its performance is better than that of a cat qutrit with 9 coherent states.
Beyond these performances, which are encouraging without being exceptional, the 2T -qutrit has the
advantage of inheriting certain algebraic properties of the 2T group, which can be used to perform
logical operations on the qutrit. The main interest of the work on this qutrit is in fact to have opened up
a new avenue for exploring multimode bosonic codes that generalise cat codes. The ideas introduced
have also inspired a subsequent work defining spherical quantum codes [Jai+23], constructed from
arbitrary polytopes. Moreover, beyond the theoretical appeal of these generalisations, we expect that
many of the experimental techniques developed for single-mode cat codes can be exploited to prepare
and manipulate multi-mode bosonic codes, such as the 2T -qutrit.

Bosonic codes with easily realised logical gates

As mentioned in the case of the 2T -qutrit, in addition to the error correction capabilities of the codes,
it is important to be able to perform logical operations on the encoded qubits in order to perform
quantum computation. In the case of bosonic systems, the operations that are easy to perform
experimentally are called Gaussian unitary operations. We are therefore interested in bosonic codes
such that certain sets of interesting logical gates can be implemented by Gaussian unitaries. More
precisely, given a group of logical operators, we use group representation theory to construct a bosonic
code, such that these logical operators are implemented on this code by Gaussian unitaries. The result
we demonstrate is in fact more general and also applies to multi-qubit codes, for example. In this case,
the logical gates considered are transversal gates. These have the much sought-after characteristic of
preventing errors from propagating during a calculation.

In the case of bosonic codes, we use our approach to define multimode generalisations of cat codes.
We first focus on the Pauli group. This is an important group for quantum computation, since it is
possible to decompose any operation on a qubit into sums of Pauli matrices. There are several versions
of this group. We are considering two of them, denoted ⟨X,Z⟩ and ⟨i,X, Z⟩. They respectively contain
8 and 16 matrices. The difference between the two groups is that in the second one, more phases are
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Figure 7: The entanglement infidelity (=1− entanglement fidelity) of codes obtained from different
versions of the Pauli group, plotted as a function of the amplitude α, for a pure loss channel charac-
terised by a loss coefficient γ = 0.01. From top to bottom: the code obtained for the group ⟨X,Z⟩
and an initial state |α⟩|α⟩, the code obtained for this same group but with a state |α⟩|iα⟩ and finally

the code obtained for the group ⟨i,X, Z⟩ and the state |α⟩|e
iπ
4 α⟩.

included. In addition to the group chosen, our encoding formula also depends on a two-mode state
that can be chosen arbitrarily. We therefore consider different choices of coherent states for this two-
mode state. It is not necessary to restrict ourselves to coherent states in this way, but this has the
advantage that the encoding is then written as a superposition of coherent states and, as mentioned
in the paragraph on the 2T -qutrit, this simplifies the numerical simulations for the loss channel. By
construction, Pauli operators can be implemented by Gaussian unitaries. Furthermore, in the case of
⟨i,X, Z⟩ other additional gates can be obtained relatively easily. We can also study the performance
of the encodings against the loss channel by calculating their entanglement fidelity (Fig. 7), in the
same way as what was done for the 2T -qutrit. We observe that the inclusion of phases in the group
and the choice of initial state strongly affect the performance of the code.

We then turn our attention to the Clifford group. We define a code whose logical states are given
by superpositions of 48 coherent states and such that all one-qubit Clifford gates are implementable
by Gaussian unitaries. If a quartic Hamiltonian is also available, it can be used to complete the set
of available operations, thus providing a so-called universal gate set. “Universal” means that it is
then possible to perform any quantum operation by successively applying gates from this set. While
a quartic Hamiltonian is harder to implement than a Gaussian unitary, it is not impossible to realise,
depending on the quantum platform used.

Publications

The work carried out in continuous-variable quantum key distribution lead to a publication in the
journal Quantum: Quantum 5, 540 (2021) doi:10.22331/q-2021-09-13-540

The projects conducted on bosonic codes lead to a publication in Quantum and a preprint:
Aurélie Denys, and Anthony Leverrier. The 2T -qutrit, a two-mode bosonic qutrit. Quantum 7, 1032
(2023) doi:10.22331/q-2023-06-05-1032
Aurélie Denys, and Anthony Leverrier. Multimode bosonic cat codes with an easily implementable
universal gate set. ArXiv preprint arXiv:2306.11621v3 (2023)

https://doi.org/10.22331/q-2021-09-13-540
https://doi.org/10.22331/q-2023-06-05-1032
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Résumé en français

Introduction

Cette thèse s’intéresse à deux applications des technologies quantiques : les communications sécurisées
et le calcul quantique. Plus précisément, elle porte sur la distribution quantique de clef et les codes
correcteurs utilisant des systèmes bosoniques. La distribution quantique utilise les propriétés de la
physique quantique afin de permettre l’élaboration d’une clef commune et sécurisée entre deux per-
sonnes. Il s’agit d’une des toutes premières applications de la théorie de l’information quantique. Une
seconde application est le calcul quantique, avec l’élaboration d’algorithmes quantiques visant à être
employés sur des ordinateurs mettant à profit les propriétés quantiques de leurs composants pour
réaliser certaines opérations beaucoup plus rapidement que les ordinateurs classiques. En pratique, à
l’heure actuelle, les capacités des ordinateurs quantiques sont très limitées. L’une des raisons prin-
cipales de ce problème est que l’information quantique est très fragile, ce qui induit de nombreuses
erreurs. Il est donc nécessaire de les corriger et c’est tout l’intérêt des codes correcteurs quantiques.
Plusieurs systèmes physiques peuvent servir à la mise en oeuvre des communications et du calcul
quantique. Du fait de leur fort potentiel pratique, nous nous intéressons ici aux systèmes bosoniques,
aussi connus sous le nom de “systèmes à variables continues”.

Distribution quantique de clef à variables continues (CV QKD)

Le chiffrement de Vernam permet à deux individus, Alice et Bob, d’échanger un message secret sans
que des adversaires puissent y avoir accès. Pour que la sécurité soit garantie, il est nécessaire que la
clef privée utilisée dans le protocole soit aléatoire, de distribution uniforme, qu’elle soit utilisée une
unique fois et qu’elle soit connue exclusivement d’Alice et Bob. La distribution quantique de clef
permet à Alice et Bob de se mettre d’accord sur une telle clef même lorsqu’ils sont physiquement
éloignés. Pour ce faire, ils ont accès à un canal classique authentifié et un canal quantique sans aucune
garantie de sécurité. Le terme “authentifié” indique qu’un potentiel adversaire, Eve, peut écouter tout
ce qui se dit sur le canal mais ne peut pas prétendre être Alice ni Bob. En revanche, dans le cas du
canal quantique, les actions d’Eve ne sont restreintes que par la physique quantique. Elle est donc
libre, par exemple, d’intercepter, modifier ou envoyer des états quantiques sur ce canal. Le principe
général de la distribution quantique de clef est l’encodage de bits aléatoires dans des états quantiques
envoyés par Alice à Bob. La mesure de ces états par Bob permet ensuite à ce dernier de reconstruire la
clef. Intuitivement, la sécurité du protocole provient de la propriété qu’ont les états quantiques de se
modifier sous l’effet de leur observation. Ainsi, plus Eve obtient d’informations sur les états échangés,
plus elle modifie les résultats mesurés par Bob. L’étude des corrélations de la clef obtenue par Bob
et de celle initialement encodée par Alice permettent alors d’estimer la quantité d’informations qu’un
adversaire pourrait avoir obtenue et d’en déduire quelle fraction de clef sécurisée peut être extraite.

Il existe deux types de protocoles de distribution quantique de clef. Les premiers sont dits “à
variables discrètes” car ils mettent en oeuvre des échanges de variables discrètes encodées par exemple
dans la polarisation de photons. Ils permettent de réaliser la distribution de clef sur de grandes
distances mais sont très coûteux car ils nécessitent l’emploi de technologies de pointe telles que les
détecteurs de photons uniques. Ces détecteurs sont de plus encore sujets à certaines imperfections. Les
seconds sont dits “à variables continues”. Ils sont plus faciles à mettre en oeuvre expérimentalement
car le matériel nécessaire est similaire à celui utilisé pour les communications classiques. Les preuves de
sécurité sont néanmoins plus compliquées. Jusqu’à récemment, des preuves satisfaisantes n’existaient
que pour des protocoles idéalisés, dits Gaussiens. On suppose dans ce cas qu’Alice envoie à Bob des
états cohérents (typiquement des états produits par de bons lasers) qui sont chacun paramétrés par un
nombre complexe α qu’elle choisit aléatoirement suivant une distribution de probabilité Gaussienne.
Il est possible d’utiliser ce paramétrage pour représenter les états cohérents par un point dans le plan
complexe. À l’ensemble des états pouvant potentiellement être choisis par Alice est alors associée une
constellation de points et on parlera donc de constellation d’états cohérents. En pratique, il n’est pas
envisageable d’avoir accès à un continuum d’états et il est plus réaliste de considérer une constellation
finie d’états.
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Le facteur de mérite adéquat pour quantifier la sécurité d’un protocole est le taux secret. Il
correspond à la fraction de clef sécurisée pouvant être extraite d’une clef imparfaite générée par un
protocole de distribution de clef. Calculer ce taux dans le cas général est très difficile mais il est
possible dans un premier temps de se restreindre au cas asymptotique, correspondant au cas où le
nombre d’états échangés est infini. Il est aussi usuel de ne considérer qu’un certain type d’attaques,
dites “collectives”, avant de chercher à montrer que ce type d’attaques est en fait optimal et que le
taux secret est donc le même dans le cas général. L’année précédant le début de ma thèse a vu les
premières contributions au calcul du taux secret asymptotique de protocoles à constellations finies,
pour les attaques collectives. L’utilisation de méthodes numériques ont en effet permis de calculer une
borne du taux secret asymptotique pour QPSK (quadrature phase-shift keying), une constellation de
quatre états cohérents [Gho+19; LUL19]. L’objectif premier de ma thèse était donc de généraliser
ces résultats à des constellations plus compliquées, contenant plus d’états. Dans ce cas, il est possible
d’écrire un problème d’optimisation convexe dont la résolution numérique fournit une borne sur le
taux secret, comme dans [Gho+19], mais la taille du problème devient trop importante pour qu’il soit
résolu numériquement. Nous avons alors établi une formule analytique explicite bornant la solution du
problème et permettant ainsi d’obtenir une borne pour le taux de clé secret asymptotique de n’importe
quel protocole de distribution de clef quantique reposant sur l’échange d’états cohérents. Ce résultat
très général permet de comparer les performances théoriques de différents protocoles de distribution
quantique de clef à variables continues. Nous avons appliqué notre formule pour deux types de
modulations particulièrement importantes : le phase-shift keying (PSK) qui généralise QPSK et la
quadrature amplitude modulation (QAM). Dans le cas du phase-shift keying, la constellation d’états
cohérents forme un polygone régulier dans le plan complexe et tous les états ont la même probabilité
d’être tirés par Alice (Fig. 8a). Pour le quadrature amplitude modulation les états forment une grille et
différents choix peuvent être faits pour la distribution de probabilité. On peut par exemple opter pour
une gaussienne discrétisée ou plus simplement pour une loi binomiale (figs. 8b et 8c). En pratique, les
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Figure 8: Exemples de constellations. Chaque état cohérent |α⟩ pouvant être envoyé par Alice à
Bob est représenté comme un point de coordonnées (ℜ(α),ℑ(α)). Les couleurs indiquent avec quelle
probabilité Alice choisit l’état. En 8a est présentée la constellation 8-PSK : une constellation PSK
avec 8 états cohérents. Les deux autres constellations montrées sont des QAM, avec 16 états cohérents
en 8b et 64 états cohérents en 8c.

différences observées entre les clefs obtenues par Alice et par Bob sont généralement dues à du bruit sur
le canal quantique. Néanmoins, comme il n’est pas possible de distinguer l’effet de ce bruit des erreurs
induites par Eve, par sécurité, il faut attribuer toutes les erreurs à cette dernière. Le bruit limite
donc les performances des protocoles et il est utile d’estimer le taux secret en l’absence d’adversaire
mais en présence d’un bruit réaliste, typiquement un bruit Gaussien. Notre formule permet de simuler
cette situation. L’avantage des constellations PSK est qu’elles sont faciles à étudier et à mettre en
oeuvre, dans un premier temps. Néanmoins, nos calculs ne montrent pas d’augmentation significative
de la performance en augmentant le nombre d’états cohérents employés. L’étude des QAM a un plus
grand intérêt pratique puisqu’il s’agit des constellations mises en oeuvre dans les expériences, afin
d’approximer les modulations gaussiennes, que l’on sait optimales. Nous montrons que des QAM de
64 états sont en fait suffisantes pour obtenir une bonne performance, très proche de celles obtenues
avec des modulations gaussiennes (Fig. 9), et sont donc adaptées au déploiement à large échelle de la
distribution quantique de clef à variables continues.
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Figure 9: Taux secret obtenu pour un protocole de distribution quantique dans lequel Alice envoie à
Bob des états cohérents d’une constellation QAM, choisis suivant une loi binomiale. La distance entre
Alice et Bob est de 50 km. L’axe des abscisses représente la variance de la modulation. De haut en
bas, on considère des QAM de taille 16, 64, 256, et1024. Les résultats obtenus avec une modulation
Gaussienne sont aussi affichés, pour comparaison. Pour une variance optimale, on observe qu’une
constellation de seulement 64 états permet déjà d’atteindre un taux secret très proche de celui obtenu
pour une modulation Gaussienne.
Les paramètres utilisés ici sont choisis pour être réalistes par rapport aux expériences (excès de bruit
ξ = 0.02 et taux de réconciliation β = 0.95). Avec ces paramètres et pour ce choix de distance notre
borne ne permet pas d’obtenir un taux secret positif dans le cas de QPSK (= 4-QAM).

Nos résultats sont également utiles aux expérimentateurs pour déterminer le taux secret de leurs
implémentations pratiques des protocoles. De plus, avoir une borne analytique et non pas unique-
ment numérique signifie qu’il est désormais possible d’optimiser les paramètres dont dépendraient des
familles de constellations. Enfin, ce résultat ouvre la voie à l’établissement d’une preuve de sécurité
complète prenant en compte les effets de taille finie et les attaques les plus générales. Nous avons
également calculé une borne du taux secret asymptotique pour les protocoles utilisant des états quel-
conques à la place des états cohérents, généralisant ainsi notre résultat à essentiellement tous les
protocoles à variables continues existants. Cela est utile à la fois pour étudier une plus large classe
de protocoles, mais aussi pour pouvoir prendre en compte des imperfections dans la préparation des
états puisque Alice ne peut jamais préparer les états voulus avec une précision infinie.

Le travail effectué a été publié dans le journal Quantum [DBL21]. Cette publication répond
essentiellement à l’objectif initial de ma thèse. De plus, la prise en compte des effets de taille finie
utilisant des techniques de preuves complètement différentes, je me suis ensuite intéressée à un autre
sujet sur lequel on peut réutiliser une partie des techniques développées précédemment : celui des
codes bosoniques.

De la distribution de clef aux codes bosoniques

Dans un ordinateur quantique, l’unité élémentaire d’information est le qubit, un système quantique
à deux niveaux. Les qubits physiques actuels sont très sensibles à l’environnement, ce qui induit de
très nombreuses erreurs de calculs. Si des progrès technologiques amélioreront probablement significa-
tivement la situation, il est attendu que ces progrès seuls ne suffisent pas à résoudre complètement le
problème. Il est donc nécessaire de développer des techniques de correction d’erreurs. L’idée principale
de tout code correcteur est d’introduire de la redondance en encodant l’information dans un espace
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de plus grande dimension. On exploite ensuite cette redondance pour retrouver l’information initiale
dégradée par le bruit. Afin de rendre le concept de code correcteur plus clair, considérons d’abord le
cas classique. Classiquement, l’information est représentée par des châınes de bits qui peuvent prendre
la valeur 0 ou 1. La seule erreur possible est la transformation d’un bit 0 en un bit 1 et vice-versa.
C’est ce qu’on appelle une inversion de bit. Le code le plus simple pour corriger une telle erreur est
le code de répétition à 3 bits. Chaque bit est copié trois fois : un 0 est encodé par une châıne de
trois 0 et un 1 est représenté par une châıne de trois 1 (0̄ = 000, 1̄ = 111). Si le bit logique est un
0 et qu’une inversion de bit se produit sur l’un des trois bits physiques, la valeur initiale peut être
retrouvée en choisissant le bit qui apparâıt le plus de fois dans la châıne d’encodage. Notons cepen-
dant que si deux inversions de bits se produisent, le décodage sera erroné. Mais, en supposant que
le taux d’erreur soit inférieur à 1/2, le codage aboutit en moyenne à un taux d’erreur logique réduit.
Il est également possible de concevoir des bits qui présentent une certaine résistance intrinsèque aux
inversions de bits. Par exemple, on peut représenter un 0 par un signal électrique de 0 volt et un 1 par
un signal électrique de 10 volts. Si le signal subit des variations, la valeur observée pour un bit ne sera
pas exactement 0 volt ni 10 volts. Cependant, en supposant que le bruit ne soit pas trop important,
on peut interpréter toute valeur de tension inférieure à 5 volts comme un 0 et toute valeur supérieure
à 5 volts comme un 1. On peut parler dans ce cas d’encodage continu puisque c’est désormais tout
un intervalle continu de valeurs qui est décodé comme étant un 0 ou un 1. La situation est similaire
en quantique. Une façon de créer de la redondance est d’encoder un qubit dit logique (sur lequel sera
effectué le calcul quantique) dans plusieurs qubits physiques. Une autre possibilité est d’encoder le
qubit dans une seule entité de dimension infinie, appelée mode d’un oscillateur harmonique. On parle
alors de codes bosoniques. L’avantage de cette technique par rapport à la précédente est qu’elle crée
une redondance sans introduire de nouveaux canaux de pertes. Cela permet de réduire la quantité
de ressources employée par rapport à la correction multi-qubits. Cette stratégie est donc jugée très
prometteuse et c’est celle poursuivie par Amazon ou la start-up française Alice & Bob par exemple.
In fine, la correction bosonique est généralement combinée à celle multi-qubits, les qubits bosoniques
servant alors de qubits physiques à partir desquels construire le code multi-qubits. Il est également
envisageable d’encoder un qubit dans non plus un mais plusieurs modes bosoniques. Le qubit ainsi
obtenu vit alors dans le produit tensoriel de plusieurs espaces de dimension infinie. Nous nous sommes
tout particulièrement intéressés au cas où deux modes sont employés.

Bien que la correction bosonique d’erreurs et la distribution de clef soient des applications très
différentes, les concepts mathématiques employés sont en fait très similaires. En effet, dans les deux
cas, les systèmes physiques mis en jeu sont des systèmes bosoniques. En particulier, de nombreux
codes bosoniques s’écrivent naturellement comme des superpositions d’états cohérents. De plus, l’outil
principal employé pour notre calcul de taux secret était l’optimisation semi-définie positive (SDP). Or,
il se trouve que le facteur de mérite quantifiant les performances d’un code bosonique est également
donné par le résultat d’un problème d’optimisation SDP. Ce sont ces similitudes dans les outils utilisés
qui justifient que je me sois ensuite tournée vers l’étude des codes bosoniques.

Optimiser la fidélité des codes bosoniques

L’encodage consiste à trouver un bon sous-espace de dimension 2 de l’espace correspondant au nombre
de modes étudiés. Le canal de bruit détériore ensuite l’information. L’opération de restauration vise
alors à retrouver l’état original du système. La fidélité quantique permet de quantifier à quel point deux
états quantiques sont similaires. On peut aussi l’utiliser pour définir une autre grandeur, la fidélité
d’intrication, qui indique si les états obtenus en sortie d’un canal sont similaires à ceux introduits en
entrée. Notre but sera donc de trouver un encodage qui maximise la fidélité d’intrication obtenue après
application successive d’un encodage, un canal de bruit et une opération de restauration optimale. Pour
ce faire, on peut itérativement résoudre deux SDP (Fig. 10). L’un permet, à encodage fixé, d’optimiser
la restauration, pour tester les performances du code en utilisant la meilleure restauration possible.
L’autre SDP permet d’optimiser l’encodage, pour une restauration fixée. Une fois un encodage final
optimal obtenu numériquement, l’idée est d’essayer de déterminer si il y a des symétries ou une
structure sous-jacente remarquable pouvant être à l’origine des bonnes performances de ce code. Une
autre stratégie peut être de procéder de la manière inverse : en définissant d’abord un code intéressant
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de par ses symétries et en utilisant ensuite l’optimisation biconvexe pour comparer les performances
de ce code à un encodage optimal obtenu numériquement. C’est finalement cette deuxième stratégie
qui s’est révélée la plus efficace.

Figure 10: Schéma explicatif de l’optimisation biconvexe employée pour optimiser la fidélité
d’intrication : partant d’un encodage donné (par exemple choisi aléatoirement), on optimise le
décodage en résolvant un SDP. Puis, on fixe le décodage optimal trouvé pour optimiser l’encodage, là
encore en résolvant un SDP et on itère en optimisant successivement l’encodage et le décodage. Enfin,
on retourne l’encodage optimal trouvé et la fidélité d’intrication correspondante.

Dans le cas à un mode, des résultats sont déjà connus : Noh et al ont montré que pour un
régime de bruit réaliste, en partant de codes initiaux aléatoires puis en appliquant une optimisation
biconvexe similaire à celle décrite ci-dessus, l’encodage optimal obtenu est un code GKP hexagonal
[NAJ19]. Nous nous intéressons donc au cas à deux modes. L’espace à considérer étant beaucoup
plus vaste dans ce cas, la situation est plus délicate. Il est donc nécessaire de se restreindre à un
sous-ensemble de l’espace des deux modes. Nous avons choisi d’étudier les qubits bosoniques définis
par des superpositions finies d’états cohérents. En ce qui concerne le bruit, nous nous intéressons
principalement au canal pure-perte qui est la source de bruit principale dans les systèmes bosoniques
optiques. L’un des avantages de se restreindre à une famille finie d’états cohérents est que, comme le
canal pure-perte transforme un état cohérent en un autre état cohérent, les calculs sont simplifiés et
on peut tout écrire dans un espace de dimension finie, évitant ainsi d’avoir à effectuer des troncations
pour les simulations numériques. Nous réalisons aussi quelques simulations pour un deuxième canal
de bruit, le déphasage bosonique, sans pouvoir éviter une troncation dans ce cas. Si les qubits sont
les plus couramment étudiés car ils sont l’analogue quantique des bits utilisés en classique, il n’y a
pas de raison fondamentale de se restreindre à des espaces de dimension 2. Il est en effet possible
d’encoder l’information sur des espaces de dimension d ∈ N, obtenant ainsi des qudits. Nous avons
donc envisagé plusieurs dimensions.

Le qutrit 2T : un code bosonique à deux modes

Pour construire un code à deux modes, nous nous sommes inspirés d’un certain type de codes
bosoniques à un mode, nommés codes de chat. Ces derniers peuvent s’écrire comme la superposi-
tion d’états cohérents formant un polygone régulier dans l’espace des phases. La constellation d’états
considérée est donc à nouveau le phase-shift keying que nous avions déjà regardé pour la distribution
de clef. Cette constellation a une structure de groupe mathématique. Il s’agit là d’une propriété très
utile car, in fine, le but est d’effectuer des opérations logiques sur les qubits bosoniques et certaines
de ces opérations peuvent correspondre à des opérations de groupe sur la constellation. Pour cette
raison, nous avons choisi de nous intéresser à une constellation de 24 états cohérents à deux modes
également associée à un groupe multiplicatif. Il s’agit dans ce cas du groupe 2T dont les éléments
forment les sommets du 24-cell, l’un des rares polytopes en dimension 4. Notons en effet que les
états cohérents à deux modes étant décrits par des couples de complexes, les figures géométriques
représentant les constellations d’états cohérents appartiennent désormais à un espace de dimension 4.
Notre objectif a ensuite été de définir un qudit à partir de cette constellation d’états. Il se trouve que le
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polytope en question se décompose naturellement en trois plus petits polytopes identiques (Fig. 11c).
Mathématiquement, les sommets de ces trois “copies” correspondent à des cosets du groupe 2T . La
situation est similaire dans le cas des codes de chat (Figs. 11a et 11b). Nous avons donc utilisé cette
structure tripartite pour définir un qutrit, c’est-à-dire un qudit de dimension 3, au sein de l’espace
de dimension 24 engendré par les 24 états cohérents définissant notre constellation. Plus précisément,
chacun des trois états de base du qutrit est défini comme étant la superposition uniforme des états
cohérents correspondant à l’un des cosets du groupe des quaternions Q8 dans 2T . Alternativement, ils
peuvent aussi être décrits comme étant la superposition uniforme des états associés aux sommets des
trois petits polytopes constituant le 24-cell. Nous avons nommé le qutrit ainsi obtenu “qutrit 2T”.

(a) 6-legged cat qutrit (b) 9-legged cat qutrit (c) 24-cell

Figure 11: Les constellations PSK en 11a et 11b à 6 (resp. 9) états peuvent être partitionnées en
trois sous-constellations identiques à rotation près de 2 (resp. 3) états, représentées en rouge, jaune et
bleu. Un qutrit de chat à 6 composants (resp. 9) peut alors être défini comme l’espace engendré par
trois états de base, chacun d’entre eux étant donné par la superposition uniforme des états cohérents
d’une couleur donnée. Algébriquement, ces sous-constellations sont associées à des sous-groupes du
groupe cyclique. De même, le 24-cell dont une projection est représentée en 11c est partitionné en
trois sous-constellations associées aux cosets de Q8 dans 2T qui permettent de définir les états de base
du qutrit 2T .
La figure du 24-cell est issue de Wikipédia Commons (license CC-BY-SA-4.0) et a pour auteur UtilisateurTheon.

Nous avons ensuite étudié les performances du qutrit 2T contre les pertes, en calculant sa fidélité
d’intrication et en la comparant à celles obtenues par optimisation biconvexe au sein de l’espace de
dimension 24 défini par notre choix de constellation, suivant la stratégie décrite en (Figs. 12) ou pour
les qutrits de chat à un mode (Fig. 13).

Dans le régime à faibles pertes, la procédure d’optimisation ne trouve pas de meilleurs encodages
que le qutrit 2T lorsqu’on commence avec un encodage initial aléatoire. Cela suggère donc que le
qutrit 2T est proche d’être optimal pour la protection contre les pertes dans ce régime. En revanche,
lorsque les pertes sont plus importantes, de meilleurs codes sont obtenus par optimisation.

Nous observons que pour des valeurs raisonnables pour la taille du 24-cell et donc d’énergie, le
qutrit 2T se compare favorablement aux codes chat, dès que les pertes sont suffisamment faibles. Nous
nous sommes aussi intéressés au canal de déphasage. Dans ce cas, contrairement à ce qui est observé
pour les pertes, plus le nombre d’états cohérents dans la constellation PSK est important, moins les
performances du qutrit de chat résultant sont bonnes. Néanmoins, bien que le qutrit 2T contiennent
24 états cohérents à deux modes, pour des paramètres bien choisis ses performances sont meilleures
que celles d’un qutrit de chat à 9 états cohérents.

Au-delà de ces performances, qui sont encourageantes sans être exceptionnelles, le qutrit 2T a
l’avantage d’hériter de certaines propriétés algébriques du groupe 2T , ce qui peut être utilisé pour
réaliser des opérations logiques sur le qutrit. L’intérêt principal du travail sur ce qutrit est en fait
d’avoir ouvert une nouvelle voie pour l’exploration de codes bosoniques multimodes qui généralisent
les codes de chat. Les idées introduites ont d’ailleurs inspiré un travail ultérieur définissant des
codes sphériques quantiques, construits à partir de polytopes arbitraires. De plus, au-delà de l’attrait
théorique de ces généralisations, nous nous attendons à ce que de nombreuses techniques expérimentales
développées pour les codes de chat à un mode puissent être exploitées pour préparer et manipuler des
codes bosoniques multimodes, tels que les états du qutrit 2T .



CONTENTS 27

0 20 40 60 80 100 120 140 160 180 200
nb of SDPs

0.94

0.95

0.96

0.97

0.98

0.99

1.00
en

ta
ng

le
m

en
t f

id
el

ity

2T-qutrit
run 0
run 1
run 2
run 3
run 4

(a) γ = 0.1

0 20 40 60 80 100 120 140 160 180 200
nb of SDPs

0.995

0.996

0.997

0.998

0.999

1.000

en
ta

ng
le

m
en

t f
id

el
ity

2T-qutrit
run 0
run 1
run 2
run 3
run 4

(b) γ = 0.01

Figure 12: Comparaison de la fidélité d’intrication obtenue pour le qutrit 2T et par optimisation
itérative de l’encodage et du décodage. Les optimisations sont réalisées en commençant avec un
encodage aléatoire au sein de l’espace de dimension 24 puis en optimisant itérativement le décodage et
l’encodage en résolvant un SDP à chaque fois. L’axe des abscisses indique le nombre de SDP résolus.
Chacune des 5 simulations correspond à un encodage initial différent. Deux régimes de pertes sont
considérés, l’un avec de faibles pertes (12b) et l’autre avec des pertes plus importantes (12a). Le
paramètre α qui caractérise la taille du 24-cell est choisi égal à 1.5, une valeur approximativement
optimale pour le qutrit 2T .
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Figure 13: Comparaison de la fidélité d’intrication obtenue avec un encodage correspondant au qutrit
2T ou aux qutrits de chat et un décodage optimal. En 13a la fidélité d’intrication est tracée en fonction
de l’amplitude des constellations qui est reliée à leur énergie. Le paramètre quantifiant les pertes est
fixé à une valeur faible (γ = 0.01) dans ce cas. En 13b, le tracé est fait en fonction de l’importance des
pertes (plus γ est élevé, plus elles sont importantes) tandis que la valeur du paramètre α est optimisée
dans un intervalle raisonnable, allant de 0.25 à 2. Dans ce deuxième cas, c’est l’infidélité d’intrication
(= 1−la fidélité d’intrication) qui est tracée.

Des codes bosoniques dont les portes logiques sont facilement réalisables

Comme mentionné dans le cas du qutrit 2T, au-delà des capacités de correction d’erreurs des codes,
il est important de pouvoir effectuer des opérations logiques sur les qubits encodés afin de réaliser du
calcul quantique. Dans le cas des systèmes bosoniques les opérations les plus facilement réalisables
expérimentalement sont appelées des unitaires gaussiennes. Nous nous sommes donc intéressés aux
codes bosoniques tels que certains ensembles de portes logiques intéressantes puissent être réalisés par
des unitaires gaussiennes. Plus précisément, nous utilisons des éléments de la théorie des représentations
de groupes pour, étant donné un groupe d’opérateurs logiques respectant quelques conditions, constru-
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ire un code bosonique tel que ces opérateurs logiques soient implémentés sur ce code par des unitaires
gaussiennes. Le résultat que nous démontrons est en fait plus général et s’applique aussi aux codes
multi-qubits par exemple. Dans ce cas, les portes logiques considérées sont des portes transversales.
Ces dernières ont la caractéristique très recherchée d’éviter que les erreurs se propagent au cours d’un
calcul.

Dans le cas des codes bosoniques, nous exploitons cette approche pour définir des généralisations
multimodes des codes de chat. Nous nous intéressons dans un premier temps au groupe de Pauli.
Il existe plusieurs versions de ce groupe et nous en envisageons deux, ⟨X,Z⟩ et ⟨i,X, Z⟩, contenant
respectivement 8 et 16 matrices. Outre le groupe choisi, notre formule d’encodage dépend également
d’un état à deux modes qui peut être choisi de façon arbitraire. Nous envisageons donc différents
choix d’états cohérents. Il n’est pas nécessaire de se restreindre ainsi à des états cohérents, mais cela a
l’avantage que l’encodage s’écrit alors comme une superposition d’états cohérents et, comme mentionné
en , cela simplifie les simulations numériques pour le canal des pertes. Par construction, les opérateurs
de Pauli peuvent être implémentés par des unitaires gaussiennes. De plus, dans le cas de ⟨i,X, Z⟩
d’autres portes supplémentaires peuvent être obtenues relativement facilement. Nous pouvons aussi
étudier les performances des encodages contre le canal de pertes en calculant leur fidélité d’intrication
(Fig. 14), de la même façon que ce qui avait été fait pour le qutrit 2T .

0.0 0.5 1.0 1.5 2.0 2.5

10 3

10 2

en
ta

ng
le

m
en

t i
nf

id
el

ity

X, Z , | |
X, Z , | |i
i, X, Z , | |e i

4

Figure 14: Infidélité d’intrication (=1− fidélité d’intrication) de codes obtenus à partir de différentes
versions du groupe de Pauli, tracée en fonction de l’amplitude α, pour un canal pure perte caractérisé
par un coefficient de pertes γ = 0.01. On a, de haut en bas : le code obtenu pour le groupe ⟨X,Z⟩ et
un état initial |α⟩|α⟩, le code obtenu pour ce même groupe mais avec un état |α⟩|iα⟩ et enfin le code

obtenu pour le groupe ⟨i,X, Z⟩ et l’état |α⟩|e
iπ
4 α⟩.

Nous observons que l’inclusion de phases dans le groupe et le choix de l’état initial affectent
fortement les performances du code.

Nous nous intéressons ensuite au groupe de Clifford. Nous définissons alors un code dont les
états logiques sont donnés par des superpositions de 48 états cohérents et tel que toutes les portes de
Clifford à un qubit soient implémentables par des unitaires gaussiennes. Si un hamiltonien quartique
est également disponible, il peut être utilisé pour compléter l’ensemble des opérations disponibles,
fournissant ainsi un ensemble de portes dit universel. Le qualificatif d’universel signifie qu’il est
ensuite possible de réaliser n’importe quelle opération quantique en appliquant successivement des
portes de cet ensemble. Si un hamiltonien quartique est un peu plus difficile à implémenter que les
unitaires gaussiennes, sa réalisation n’est pas inaccessible non plus, suivant la plateforme quantique
utilisée.
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0.1 Bosonic systems

0.1.1 Bosonic modes and states

Bosonic modes are systems governed by the same physics as a collection of independent quantum
mechanical harmonic oscillators. They can be realised in different ways. Electromagnetic modes
describe the behaviour of an electromagnetic wave in a cavity or in free space. Mechanical modes, on
the other hand, correspond to the motional or phononic degrees of freedom, for instance of vibrating
molecules.

This thesis focuses on continuous-variable quantum key distribution and bosonic quantum error
correction. In both cases, the most commonly used modes are electromagnetic modes (which include
optical and microwave modes). To make them less mysterious, we will thus start with a brief review
of the quantisation of the electromagnetic field. A more detailed treatment of this concept can be
found in [Nav22].

0.1.1.1 Quantisation of the electromagnetic field

Field quantisation Light can be described as an electromagnetic wave whose dynamics is governed
by Maxwell’s equations. In the absence of sources, they are given by

div(B⃗(r⃗, t)) = 0 (1)

div(E⃗(r⃗, t)) = 0 (2)

⃗curl(B⃗(r⃗, t)) =
1

c2
∂tE⃗(r⃗, t) (3)

⃗curl(E⃗(r⃗, t)) = −∂tB⃗(r⃗, t) (4)

where E⃗(r⃗, t) and B⃗(r⃗, t) respectively denote the electric and magnetic fields, at position r⃗ and time t,
and c is the speed of light in the vacuum. In that case, the electric and magnetic fields can be derived
from a scalar potential ϕ(r⃗, t) and a vector potential A(r⃗, t). After making a choice that has no impact
on the physics described but simplifies the mathematics at hands (exploiting what is known as “gauge
invariance”), the different equations can be combined to obtain the wave equation

(c2∇2 − ∂t
2)(A⃗(r⃗, t)) = 0⃗. (5)

In general, there are more than one solution to the equation and the set of all solutions forms a
Hilbert space. Such solutions are called “modes” of the electromagnetic field and any solution can be
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expressed as a superposition of modes forming a basis of the Hilbert space. When the field is confined
inside a cavity, the coefficients uℓ of a solution expanded in a mode basis satisfy equations of the form

d2uℓ
dt2

+ ωℓ
2uℓ = 0 (6)

for certain ωℓ > 0. This second-order partial differential equation is the same as that describing the
dynamics of a mechanical oscillator. The quantisation of the electromagnetic field then consists in
adopting the quantum mechanical description of the harmonic oscillator to study the electromagnetic
field.

Recall that the (classical) Hamiltonian of a collection of harmonic oscillators is

H = T + V =
∑
ℓ

pℓ
2

2m
+
kxℓ

2

2
(7)

where T is the kinetic energy, V is the potential energy, pℓ = mẋℓ is the momentum, xℓ is the position,
m is the mass and k is a force constant. In the case of the electromagnetic field, the variables xℓ and
pℓ no longer correspond to position and momentum. Instead, x corresponds to the mode coefficient
uℓ appearing in Eq. 6 and p is the conjugate variable. However, it is common to nonetheless refer to
them as “position” and “momentum” in analogy to the mechanical case. In the quantum treatment
of the harmonic oscillator, these variables are replaced by operators X̂ℓ and P̂ℓ satisfying, in the case
of bosons (for instance, photons), the commutation rules

[X̂ℓ, P̂k] := X̂ℓP̂k − P̂kX̂ℓ = ih̄δkℓ, (8)

where h̄ is Planck’s constant. The quantum Hamiltonian for a single mode is thus

Ĥℓ =
P̂ 2
ℓ

2mℓ
+
mℓωℓ

2X̂ℓ
2

2
, (9)

where ωℓ has been decomposed into a positive constant kℓ and a mass mℓ (arbitrarily chosen in the
electromagnetic case).

Let us look at the eigenenergies and corresponding eigenvectors of the harmonic oscillator. It

is more common to use the dimensionless counterparts x̂ℓ =
√

2mℓωℓ
h̄ X̂ℓ and p̂ℓ =

√
2

mℓh̄ωℓ
P̂ℓ of the

quadratures X̂ℓ and P̂ℓ
1, whose commutator is

[x̂ℓ, p̂ℓ] =
2

h̄
[X̂ℓ, P̂ℓ] = 2i. (10)

It is also useful to introduce the annihilation and creation operators âℓ = x̂ℓ+ip̂ℓ
2 and â†ℓ = x̂ℓ−ip̂ℓ

2
satisfying

[âℓ, â
†
ℓ] =

1

4
(−i[x̂ℓ, p̂ℓ] + i[p̂ℓ, x̂ℓ]) = 1. (11)

The Hamiltonian can then be rewritten

Ĥℓ =
h̄ωℓ
4

(p̂2ℓ + x̂2ℓ ) = h̄ωℓ(â
†
ℓâℓ +

1

2
). (12)

The operator n̂ℓ = â†ℓâℓ is positive semi-definite. Its eigenvalues are therefore non-negative. Let
|ϕ⟩ be a normalised eigenvector of n̂ℓ with eigenvalue λ. Note that

n̂ℓ(âℓ |ϕ⟩) = â†ℓâℓâℓ |ϕ⟩ = [âℓâ
†
ℓ − 1]âℓ |ϕ⟩ = (λ− 1)âℓ |ϕ⟩ , (13)

where we used the commutation relation (Eq. 11). The state âℓ |ϕ⟩ is thus an eigenvector with
eigenvalue λ − 1, unless âℓ |ϕ⟩ = 0. Since all the eigenvalues are non-negative, there must exist
a normalised eigenvector |0⟩ℓ such that âℓ |0⟩ℓ = 0. The corresponding eigenvalue necessarily is

1Other conventions exist in the litterature.



34 CHAPTER 0. PRELIMINARIES

ℓ⟨0| â†ℓâℓ |0⟩ℓ = 0. A computation similar to Eq. 13 shows that, â†ℓ |ϕ⟩ is an eigenvector with eigenvalue

λ+ 1, unless â†ℓ |ϕ⟩ = 0. Among these two options, only the former is possible, since

∥â†ℓ |ϕ⟩ ∥
2= ⟨ϕ| âℓâ†ℓ |ϕ⟩ = ⟨ϕ| n̂ℓ + 1 |ϕ⟩ = λ+ 1 > 0. (14)

By induction, the set of eigenvalues of n̂ℓ, and thus of Ĥℓ as well, contains all natural numbers. It is in
fact exactly N. Indeed, if one assumes by contradiction that µ is outside N, then for all m ∈ N, µ−m
will be an eigenvalue as well (µ − m would never be equal to 0, so we wouldn’t hit the case where
âℓ |ϕ⟩ = 0), which contradicts the fact that all eigenvalues are non-negative. Moreover, going back
to the wave-function representation and solving the corresponding differential equation, one can show
that there exists a unique normalised eigenvector with eigenvalue 0. Therefore, by induction again,
all the eigenvalues are non-degenerate.

Fock states It is usual to denote the normalised eigenvector 1√
n!
(â†ℓ)

n |0⟩ℓ, associated to the eigen-

value n ∈ N, by |n⟩ℓ. Such a state is called a number state or a Fock state. It is also the normalised

eigenstate of Ĥℓ with eigenvalue En = h̄ω(n + 1
2). The set of all eigenvalues {En : n ∈ N} defines

the only possible energies of the harmonic oscillator that can be measured, showing that its energy
spectrum is discretised. The parameter n indicates the number of excitations, also known as photons
in the case of an electromagnetic mode, of the state. Since n̂ℓ counts the number of photons in the
mode ℓ it is called the number operator. The creation operator â†ℓ adds an excitation in the mode ℓ
whereas the annihilation operator âℓ removes one, thus explaining their names. Indeed, they act on
the number states as

â†ℓ |n⟩ℓ =
1√
n!
(â†ℓ)

n+1 |0⟩ℓ =
√
n+ 1 |n+ 1⟩ℓ ∀n ∈ N (15)

âℓ |n⟩ℓ =
1√
n!
âℓ(â

†
ℓ)
n |0⟩ℓ =

1√
n!
((â†ℓ)

nâℓ + n(â†ℓ)
n−1) |0⟩ℓ (16)

=
n√
n!
(â†ℓ)

n−1 |0⟩ℓ =
√
n |n− 1⟩ℓ ∀n ∈ N∗ (17)

To write the second case we used that âℓ(â
†
ℓ)
n = (â†ℓ)

nâℓ+n(â
†
ℓ)
n−1, which can be proven by induction,

using the commutation relation (Eq. 11).

The eigenvectors of the hamiltonian Ĥℓ form an infinite dimensional Hilbert space Span({|n⟩ℓ :
n ∈ N}) called a Fock space. The commutation rules (Eq. 8) ensure that the bosonic Fock states wave
functions have a symmetric behaviour under particle exchange. They are what distinguish bosonic
modes from fermionic ones.

The number states, or Fock states, |n⟩ℓ are orthogonal, i.e.

ℓ⟨n|m⟩ℓ = δnm (18)

since they are eigenstates of a Hermitian operator associated to different eigenvalues. They thus form
an orthonormal basis of the Fock space. In particular, they satisfy the resolution of the identity,∑

n∈N
|n⟩ℓℓ⟨n|= Iℓ, (19)

where Iℓ is the identity on the Fock space.

A general quantum state on the m modes {ân : n ∈ J0,mK} can be written as

|ψ⟩ =
∑
n1

. . .
∑
nm

Cn1,...,nN |n1 : u1⟩ . . . |nm : um⟩ , (20)

where |nℓ : uℓ⟩ := 1√
n!
(â†ℓ)

n |0⟩ℓ is the state with nℓ photons in the mode uℓ, associated to âℓ [FT20].

The Fock states do not behave like classical light. Classically, light is considered as an electromag-
netic wave. The most stable type of light possible is then realised by a monochromatic light beam



0.1. BOSONIC SYSTEMS 35

with constant intensity [MS97]. Such a light exhibits Poissonian photon statistics: the mean pho-
ton number is equal to its standard deviation. Because this is the most-stable form of light possible
classically, this means that classical light can only have a photon variance equal (when the intensity
is constant) or larger (when the intensity fluctuates) than its mean photon number. Any light with
sub-Poissonian statistics, that is, whose variance ∆n is strictly smaller than the square root of the
mean

√
n̄, is non-classical. It cannot be described by a classical wave theory of light. This is the case

of Fock states with non-zero excitation. Indeed, the variance of the photon number states vanishes
∆n = ℓ⟨n|n̂2|n⟩ℓ − ℓ⟨n|n̂|n⟩2ℓ = n2 − n2 = 0 whereas their average photon number ℓ⟨n|n̂|n⟩ℓ = n is
positive for all non-zero excitation numbers n ∈ N.

Quadratures of the field The quadrature operators p̂ and q̂ have a continuous eigenspectra. Their
eigenvalues consist of all real numbers and their eigenstates are generally denoted by |p⟩ and |q⟩ for
the position and momentum quadratures, respectively:

p̂ |p⟩ = p |p⟩ ∀p ∈ R, (21)

q̂ |q⟩ = q |q⟩ ∀q ∈ R. (22)

The quadrature eigenvalues span a real vector space known as phase-space [Wee+12]. Bosonic systems
can be fully characterised within this space, thanks to representations such as the Wigner distribution.
The latter provide alternative descriptions of quantum states, which are equivalent to the density
operator formalism. Phase-space is particularly well-suited to study certain states, known as Gaussian
states, among which the coherent states. We discuss Wigner distributions and Gaussian states in the
next section. It is the continuous nature of phase-space that explains why bosonic systems are often
termed “continuous”. In a typical phase-space plot, the x-axis corresponds to the position and the
y-axis to the momentum. More generally, if there are several modes, phase-space becomes higher
dimensional. For N modes, phase-space would be 2N -dimensional.

0.1.1.2 Gaussian states

Wigner function A classical particle has a well-defined position and momentum. For any given
time, it is thus represented by a point in phase-space. In the case where noise introduces some
uncertainty, the point can be replaced by a probability distribution indicating the probability for
the particle to be found in a given region and with a certain momentum. The idea of the Wigner
function is to generalise this to the quantum setting. Since a quantum system obeys the Heisenberg
uncertainty principle its trajectory in phase-space is not well-defined. Nonetheless, as we will see, the
Wigner function enables to compute probabilities and visualise states in phase space.

For simplicity, let us first consider the case of a single mode. The characteristic function χ of a
state ρ is defined as the trace of the displaced state,

χρ(ξ) = Tr[ρD(ξ)] = Tr
[
ρe(ξâ

†−ξ∗â)
]

(23)

and the Wigner function is

Wρ(ξ) =
1

4π2

∫
λ∈C

χρ(λ)e
λ∗ξ−λξ∗dλ. (24)

The main property of the Wigner function is that it can be partially integrated over one variable
to find the probability density functions corresponding to measuring the state with a certain position
or momentum,

⟨x|ρ|x⟩ =
∫
R

Wρ(x, p)dp (25)

⟨p|ρ|p⟩ =
∫
R

Wρ(x, p)dx. (26)

More generally, the probability density function for the measure of a rotated quadrature is also
found by integration,∫

R

Wρ(v cos θ − w sin θ, v sin θ + w cos θ)dw = ⟨x = v|U †(θ)ρU(θ)|x = v⟩, (27)
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where U(θ) = eiθâ
†â. Equation 27 in fact uniquely defines the Wigner function [Leo97].

Since the physically relevant quantities are the expectation values only, Eq. 27 shows that the
Wigner function fully describes a quantum state and it is thus a representation equivalent to the more
common density operator formalism. Because of these properties, the Wigner function is called a
quasi-probability distribution. However, it differs from a true probability distribution as it can for
instance take negative values. The observation of such negative values is considered to be a witness
of the quantum nature of a state.

In the more general case of N modes, for N ∈ N∗, the Wigner function formula is

Wρ(X) =
1

(2π)2N

∫
X′∈R2N

e−iX
TΩX′

χρ(X
′)dX ′ (28)

where X and N ′ now are 2N -dimensional real column vectors representing the displacements along
the various quadratures, Ω is a block-diagonal matrix

Ω =

N⊕
k=1

ω, ω =

(
0 1
−1 0

)
, (29)

χρ is the N -mode characteristic function,

χρ(X
′) = Tr

(
ρD(X ′)

)
(30)

and D̂ is the displacement operator,

D̂(X ′) = exp
(
ir̂TΩX ′) (31)

written in terms of the quadrature operators

r̂T =
(
x̂1 p̂1 x̂2 . . . p̂N

)
. (32)

The probability distribution function of measuring one quadrature is then obtained as the marginal
integral of the Wigner function over the other variables, generalising Eq. 27.

Statistical moments The statistical moments of the quadrature operators are defined, in the single-
mode case and for any integers m and n by

Gm,n := ⟨(p̂− p)m(q̂ − q)n⟩Weyl (33)

where the subscript “Weyl” indicates that one takes the average of all possible orderings of products
of the quadrature operators with m factors of position and n factors of momentum [Bri14]. The sum
of the two integers n and m is called the order of the moment. It is usual to gather the moments of
same orders into a matrix. The moment matrices of order 1 and 2 convey a particular meaning. The
first moment of a state ρ is the displacement vector, which is defined as the expectation value of the
quadrature vector,

x̄ := ⟨x̂⟩ = Tr(x̂ρ). (34)

The second moment is called the covariance matrix. It is a matrix with entries Γij =
1
2⟨{∆x̂i,∆x̂j},

where ∆x̂i = x̂i − ⟨x̂i⟩ and {Â, B̂} := ÂB̂ + B̂Â denotes the anticommutator of two operators. In the
single-mode case, the formula becomes

Γ :=

[
⟨x̂2⟩ρ 1

2⟨{x̂, p̂}⟩ρ
1
2⟨{p̂, x̂}⟩ρ ⟨p̂2⟩ρ

]
,

where we assumed without loss of generality that the first moment of the displacement operator
vanishes (this can always be enforced by a suitable translation in phase-space).
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Gaussian states The Wigner function is characterised by the moments of the quadrature operators.
Indeed, the expectation value of ⟨pmqn⟩Weyl for any integers n,m is determined by the Wigner function
W and vice versa, since it is related to its derivatives evaluated at (p, q) = (0, 0) [Dod07],

⟨pmqn⟩Weyl =
in−m

2n+m
1

W

∂n+mW

∂qm∂pn

∣∣∣
q=p=0

. (35)

Gaussian states are states whose Wigner function is Gaussian, that is whose Wigner function is of
the form

W (x) =
exp
(
−1

2(x− x̄)TΓ−1(x− x̄)
)

(2π)N
√

det(Γ)
(36)

where Γ is the covariance matrix of the state [Wee+12]. Gaussian states are thus fully characterised
by their first two moments.

The primary example of Gaussian state is the vacuum state |0⟩. It displacement vanishes and its
covariance matrix is equal to the identity. Another example of Gaussian states are thermal states. The
latter are states that, for a fixed energy, maximise the von Neuman entropy, a quantity that measures
the amount of information present in a system and which is rigorously defined in 0.2.2.3). Like the
vacuum state their displacement vector vanishes, but their covariance matrix is equal to (2n̄ + 1)I,
where n̄ is the average photon number of the state considered [Wee+12].

The most important example of Gaussian states for this thesis are the coherent states, to which
the next subsection is dedicated. A single-mode coherent state is parameterised by a complex number
α and denoted |α⟩. In that case, the first two moments are Γ = I and x̄ = (2ℜα, 2ℑα) as is shown
later on by Eq. 54.

0.1.2 Coherent states

In the previous section we saw that the Fock states with non-zero excitations do not approximate
well classical light. Here we will introduce another type of states which behave as is expected by the
classical theory. These states are called coherent states. We will see that they correspond to the light
produced by lasers and can thus be generated easily. Since most of the resource states considered in
this thesis are either coherent states or superpositions of a relatively small number of coherent states,
we dedicate this section to explaining what coherent states are, why they are relevant to quantum
optics and what their main properties are. While most of the physical concepts described here will
not be directly useful for the development of the subsequent chapters, they help connect the latter to
the physical reality. We first describe coherent stats as displaced vacuum states and eigenstates of the
annihilation operator. Subsection 0.1.2.2 then gathers all the formulas that will be repeatedly used
throughout the thesis and subsection 0.1.2.3 focuses on the classical-like features of coherent states.

0.1.2.1 Displaced vacuum states

Eigenstates of the annihilation operator Coherent states of a certain mode whose annihilation
operator is âℓ are the eigenstates of âℓ. The ground state |0⟩ℓ of the Harmonic oscillator is one of
them since âℓ |0⟩ℓ = 0 |0⟩ℓ .

To find others, it is useful to introduce the displacement operators. Let us choose a complex
parameter α ∈ C. The displacement operator with displacement α is

D̂ℓ(α) = eαâ
†
ℓ−α

∗âℓ . (37)

It can also be rewritten as

D̂ℓ(α) = e−
|α|2
2 eαâ

†
ℓeα

∗âℓ . (38)

To see this, one makes use of the Baker-Campbell-Hausdorff formula,

eXeY = eZ (39)
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where

Z = X + Y +
1

2
[X,Y ] +

1

12
[X, [X,Y ]]− 1

12
[Y, [X,Y ]] + . . . (40)

where the dots indicate higher-order commutators of X and Y. Since [â†ℓ, âℓ] = −1, applying the

formula to X = αâ†ℓ and Y = α∗âℓ indeed gives eαâ
†
ℓe−α

∗âℓ = eαâ
†
ℓ−α

∗âℓ+
|α|2
2 . The displacement

operator is therefore unitary and it satisfies

D̂†
ℓ(α) = D̂−1

ℓ (α) = D̂ℓ(−α). (41)

If |ψ⟩ is an eigenstate of âℓ with eigenvalue λ, then

âℓD̂ℓ(α) |ψ⟩ = D̂ℓ(α)(âℓ + α) |ψ⟩ (42)

= D̂ℓ(α)(λ+ α) |ψ⟩ (43)

= (λ+ α)D̂ℓ(α) |ψ⟩ , (44)

which shows that D̂ℓ(α) |ψ⟩ is also an eigenstate of âℓ with eigenvalue λ+α. Likewise, D̂
(−1)
ℓ (α) |ψ⟩ is

an eigenstate with eigenvalue λ−α. The coherent states are thus displaced vacuum states. It is usual
to write them |α⟩ℓ := D̂ℓ(α) |0⟩ℓ where α indicates the eigenvalue. Note that this notation clashes with
that of Fock states when α is a natural number. In general we will thus only use |α⟩ℓ for a generic
coherent state, and we might then specify the value of alpha, writing for instance “|α⟩ℓ, with α = 1”.

Multi-mode coherent states Let us consider a mode basis with annihilation operators â0, . . . âm.
An m-mode coherent state of this mode basis is an eigenstate of â1 ⊗ . . .⊗ ân. They can be expressed
as a tensor product of single-mode coherent states. Let α1, . . . αm ∈ C. The state |α1, . . . , αm⟩ :=
|α1⟩ ⊗ . . .⊗ |αm⟩ is for instance an m-mode coherent state associated to the eigenvalue

∏m
i=1 αi.

Wigner function of coherent states Phase-space gives a very natural way of describing coherent
states. Computing the expectation values of the quadrature operators x̂ and p̂, for a coherent state
|α⟩,

⟨α|x̂|α⟩ = ⟨α|â|α⟩+ ⟨α|â†|α⟩ = α+ α∗ = 2ℜ(α), (45)

⟨α|p̂|α⟩ = i(⟨α|â†|α⟩ − ⟨α|â|α⟩) = i(α∗ − α) = 2ℑ(α), (46)

shows that these expectation values are proportional to its real and imaginary parts. It is thus possible
to identify phase-space with the complex plane.

The Wigner function of a coherent state |α⟩, for α ∈ C is

W|α⟩(ξ) =
1

4π2

∫
λ∈C

⟨α|e(λâ†−λ∗â)|α⟩eλ∗ξ−λξ∗dλ (47)

=
1

4π2

∫
λ∈C

e−
|λ|2
2 ⟨α|eλâ†e−λ∗â|α⟩eλ∗ξ−λξ∗dλ (48)

=
1

4π2

∫
λ∈C

e−
|λ|2
2 eλα

∗
e−λ

∗αeλ
∗ξ−λξ∗dλ (49)

=
1

4π2

∫
λ1∈R

e
−λ21
2 eλ1(α

∗−α+ξ−ξ∗)dλ1

∫
λ2∈R

e
−λ22
2 eiλ2(α

∗+α−ξ−ξ∗)dλ2 (50)

=
1

4π2

∫
λ1∈R

e
−λ21
2 eλ1(2iI(ξ−α))dλ1

∫
λ2∈R

e
−λ22
2 e2iλ2(R(α−ξ))dλ2 (51)

=
1

4π2

√
2πe

−(I(α−ξ))2

2

√
2πe

−(R(ξ−α))2

2 (52)

=
1

2π
e−

|ξ−α|2
2 (53)

=
1

2π
e−

(ℜ(α)−ℜ(ξ))2+(ℑ(α)−ℑ(ξ))2

2 (54)
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Figure 1: Wigner function of a coherent state |α⟩, for α = 1 + 0.5i.

where we have used in Eq. 52 that the Fourier transform of a Gaussian function f : x ∈ R 7→ e−αx
2
,

for α > 0 is

F (t) =

∫ ∞

−∞
f(x)e−itxdx =

√
π

α
e−

t2

4α . (55)

Equation 54 shows that the Wigner function of a coherent state |α⟩, plotted in the complex plane,
is a Gaussian centred on α (Fig. 1), thus confirming that coherent states are Gaussian states. In
particular, the Wigner function of the vacuum is a Gaussian centred on 0 and the Wigner function
of any other coherent state is a displaced version of that of a vacuum state. This also shows that, as
was to be expected from their quasi-classical nature (see 0.1.2.3), the Wigner functions of coherent
states do not take any negative values. Note, however, that the Wigner function of a superposition of
coherent states may take negative values. This is for instance the case of the cat state N (|α⟩+ |−α⟩)
where N is a normalisation coefficient.

Constellation of coherent states A coherent state of a certain mode is parameterised by a complex
number and corresponds to a point in the complex plane. A set of coherent states is thus associated
to a constellation of points, where the term “constellation” is chosen in analogy to constellations of
stars forming patterns in the sky. More generally, multimode coherent states will also be associated
to points in higher-dimensional Euclidean spaces. For this reason, we will refer to a set of (possibly
multimode) coherent states as a constellation of coherent states. Note that we do not impose the set
to be a countable one. We will indeed present some results for continuous constellations, although
most of the work done deals with finite constellations of coherent states.

0.1.2.2 Mathematical properties

We gather here some mathematical properties of coherent states. Some of this properties will be
interpreted physically in the next section. To simplify notations, we focus on the single-mode case.
When there is no ambiguity on the mode considered, it is usual to drop the index ℓ, writing for instance
â instead of âℓ, and |α⟩ instead of |α⟩ℓ. This is what we do here and in the rest of this thesis.

We have already seen two important properties of coherent states.

• Coherent states are displaced vacuum states, ∀α ∈ C, |α⟩ = D̂(α)|0⟩.

• They are eigenstates of the annihilation operator: ∀α ∈ C, â|α⟩ = α|α⟩

Let us now derive other useful properties.
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Figure 2: Examples of finite constellations of coherent states shown as dots on the complex plane

Expansion in the Fock basis The coherent state α can be expanded into the Fock basis. Indeed,

|α⟩ = eαâ
†−α∗â |0⟩ = e−

1
2
|α|2eαâ

†
e−α

∗â |0⟩ . (56)

Since â |0⟩ = 0, using the series expansion of the exponential,

e−α
∗â =

∑
n∈N

(−α∗)n

n!
ân (57)

one obtains e−α
∗â |0⟩ = |0⟩. Hence,

|α⟩ = e−
1
2
|α|2eαâ

†
ℓ |0⟩ (58)

= e−
1
2
|α|2

∑
n∈N

αn

n!
(â†)n |0⟩ (59)

= e−
1
2
|α|2

∑
n∈N

αn

n!

√
n! |n⟩ (60)

= e−
1
2
|α|2

∑
n∈N

αn√
n!

|n⟩ . (61)

Overlap of two coherent states and completeness relation Two coherent states |α⟩, and |β⟩
will never be exactly orthogonal. Instead, their overlap is

⟨β|α⟩ = e−
|α|2+|β|2

2

∑
n,m∈N

αn(β∗)m√
n!m!

⟨n|m⟩ (62)

= e−
|α|2+|β|2

2

∑
n∈N

(αβ∗)n

n!
(63)

= e−
|α|2+|β|2

2 eαβ
∗
. (64)

The squared modulus of the overlap thus is

|⟨β|α⟩|2= e−(|α|2+|β|2)eαβ
∗+α∗β. (65)

This value is non-zero, but we nonetheless see that in the limit where the coherent states amplitudes
increase to infinity, the overlap vanishes. Therefore, whenever |α|≫ 1, |β|≫ 1, the coherent states are
approximately orthogonal.

Any state can be expanded into coherent states because the latter form a resolution of the identity,

1

π

∫
α∈C

|α⟩⟨α|dα = I. (66)
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Proof. Let us indeed compute
∫
α∈C|α⟩⟨α|dα. We follow the proof done in [Nav22].∫

α∈C
|α⟩⟨α|dα =

∫
r∈R

∫ 2π

θ=0
|reiθ⟩⟨reiθ|dθrdr (67)

=
∑

n,m∈N

∫
r∈R

∫ 2π

θ=0
e−r

2 r(n+m)ei(n−m)θ

√
n!m!

dθrdr|n⟩⟨m| (68)

= 2π
∑
n∈N

∫
r∈R

e−r
2 r2n

n!
rdr|n⟩⟨n| (69)

= π
∑
n∈N

|n⟩⟨n| (70)

= πI, (71)

where the first step is obtained by going to polar coordinates and using∫
x,y∈R

f(x, y)dxdy =

∫
r∈R

∫ 2π

θ=0
f(reiθ)dθrdr, (72)

the second step comes from the expansion of coherent states into the Fock basis (Eq. 61), the third
step follows from ∫ 2π

θ=0
eiθ(n−m)dθ = 2πδnm, (73)

the fourth step makes use of the result ∫
r∈R

e−r
2
r2n+1dr =

n!

2
(74)

and the final step is the resolution of the identity by Fock states (Eq. 19).

Equation 71 shows that the coherent states are complete since any state |ψ⟩ of the Fock space can
be expressed as

|ψ⟩ = 1

π

∫
α∈C

|α⟩ ⟨α|ψ⟩dα. (75)

However, the coherent states are not linearly independent and instead form an over-complete family
of states. Indeed, since they are not orthogonal the expansion of a coherent state |β⟩ as

|β⟩ = 1

π

∫
α∈C

|α⟩ ⟨α|β⟩dα (76)

shows that the expansion of a state into coherent states is not unique.

Other properties The average photon number of a coherent state |α⟩ is

⟨α|n̂|α⟩ = ⟨α|â†â|α⟩ = α∗α⟨α|α⟩ = |α|2. (77)

The action of eiθn̂, where θ ∈ R, on a coherent state |α⟩ is

eiθn̂|α⟩ = e−
|α|2
2

∑
n∈N

αn√
n!
eiθn̂ |n⟩ (78)

= e−
|α|2
2

∑
n∈N

αn√
n!
eiθn |n⟩ (79)

= e−
|eiθα|2

2

∑
n∈N

(αeiθ)n√
n!

|n⟩ (80)

= |eiθα⟩. (81)
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This shows that eiθn̂ transforms a coherent state into another coherent state, which has the same
amplitude |α| but a phase rotated by angle θ. Note that the value of θ only matters modulo 2π, which
justifies calling it an “angle”.

The displacement operator also sends a coherent state onto another coherent state. Indeed, for all
α, β ∈ C,

D̂(β)D̂(α) = eβâ
†−β∗âeαâ

†−α∗â (82)

= e
[βâ†−β∗â,αâ†−α∗â]

2 e(β+α)â
†−(β∗+α∗)â (83)

= e
βα∗−β∗α

2 D̂(α+ β) (84)

where we used the Baker-Campbell-Hausdorff formula (Eq. 39) in the special case where the second-
order commutators (and thus subsequent commutators as well) vanish, and we computed the commu-
tator,

[βâ† − β∗â, αâ† − α∗â] = −βα∗[â†, â]− β∗α[â, â†] (85)

= βα∗ − β∗α (86)

in the last step. Note that βα∗ and β∗α have the same real part, so the number βα∗ − β∗α is purely

imaginary and e
βα∗−β∗α

2 corresponds to a phase. Therefore, up to this irrelevant global phase,

D̂(β) |α⟩ = D̂(β)D̂(α) |0⟩ = D̂(β + α) |0⟩ = |β + α⟩ . (87)

0.1.2.3 Quasi-classical states

Now that we have derived several important mathematical properties of coherent states, we are ready
to study their physical behaviour and in particular show that they most closely resemble classical light
and more precisely the light coming out of a laser.

Classical dynamics Coherent states are the states that approximate best the classical description
of light. Let us indeed look at how a coherent state |α⟩ evolves under the action of the harmonic
oscillator Hamiltonian ĥ = ω(n̂+ 1

2). At time t ∈ R+ the resulting state is

e−iĥt|α⟩ = e−iωt/2e−iωtn̂|α⟩ = e−iωt/2|e−iωtα⟩, (88)

where we have used Eq. 81, for θ = ωt. The state thus remains in a coherent state |α(t)⟩ (up
to an irrelevant phase). The expectation value of the annihilation operator is equal to its amplitude
α(t) = e−iωt which oscillates as a function of time. This is exactly the solution of the classical harmonic
oscillator (written in complex notations), showing that, on average, the coherent state realises the
classical case [Nav22]. Equation 88 can be interpreted as saying that on average, a coherent state has
an oscillating trajectory in phase-space. Moreover, since the uncertainty is independent of the |α|,
this means that when |α|≫ 1 this uncertainty will become negligible compared to the radius of the
amplitude of the oscillations. It is therefore in phase-space representation that the classical-like nature
of such coherent states is most obvious: coherent states realise the same trajectory in phase-space as
a mechanical harmonic oscillator, with a negligible uncertainty.

The intuition behind this is that to go from the classical case to the quantum one, we replace the
scalar variables x and p by operators x̂ and p̂, which is equivalent to introducing the annihilation and
creation operators â and â†. However, when |α| is large, in addition to being an exact eigenstate of
â, |α⟩ is an approximate eigenstate of the creation operator2. Therefore, when working with such a
coherent state, â |α⟩ = α |α⟩, and â† reduces to α∗ |α⟩, so it is possible to go back to the scalar case

2Indeed, for α ̸= 0, ei arg(α) ⟨α|â†|α⟩√
1+|α|2

= ei arg(α)α∗√
1+|α|2

= |α|√
1+|α|2

= 1√
1+ 1

|α|2

−→
|α|→+∞

1, i.e. when α ≫ 1, ⟨ψ|ϕ⟩ ≈ 1 where

|ψ⟩ and |ϕ⟩ are the normalised states e−i arg(α) |α⟩ and â†|α⟩√
1+|α|2

. In that case, one thus has, |ψ⟩ ≈ |ϕ⟩, which gives

â† |α⟩ ≈
√

1 + |α|2e−i arg(α) |α⟩ ≈ α∗ |α⟩.
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by replacing â by α and â† by α∗. In particular, the interaction with a classical light field emerges
this way from the quantum hamiltonian describing the interaction of a system with a mode of the
electromagnetic field. Moreover, this shows that the radiation emitted by a current described by a
scalar (not an operator) is a coherent state [MS97].

Minimal uncertainty One of the differences between the classical case and the quantum case is
that while a classical particle has definite position and momentum, the conjugate properties of a
quantum particle cannot be simultaneously known with infinite precision. Recall that the uncertainty
of an operator M for a state |ψ⟩ is computed as

∆m :=
√
⟨ψ|M2|ψ⟩ − (⟨ψ|M2|ψ⟩)2. (89)

The uncertainties on two conjugate variables, for instance x̂ and p̂ need to satisfy the Heisenberg
inequality

∆x∆p ≥ 1. (90)

It is thus natural to expect that any “quasi-classical” states will saturate this inequality. Let us show
that coherent states indeed have minimal uncertainty.

Recall that,

x̂ = â+ â†, (91)

x̂2 = â2 + â†2 + 2â†â+ 1, (92)

p̂ = i(â† − â) (93)

p̂2 = −â2 − â†2 + 2â†â+ 1, (94)

hence,

⟨α|x̂|α⟩ = α+ α∗, (95)

⟨α|x̂2|α⟩ = α2 + α∗2 + 2|α|2+1, (96)

⟨α|p̂|α⟩ = −α2 − α∗2 + 2|α|2+1, (97)

⟨α|p̂2|α⟩ = i(α∗ − α), (98)

and,

∆x =
√
(α2 + α∗2 + 2|α|2+1)− (α+ α∗)2 = 1, (99)

∆p =
√
(−α2 − α∗2 + 2|α|2+1) + (α∗ − α)2 = 1. (100)

The product of the two quadratures is thus ∆x∆p = 1, which is the minimal uncertainty allowed.
Moreover, Equation 88 showed that the state obtained by evolving a state which initially is a coherent
state, with the quantum harmonic oscillator, is still a coherent state. this means that the variance of
the evolving state is maintained to the minimum at all times.

It is possible to find other states of minimal uncertainty but with different uncertainty values
for the two quadratures. The uncertainty can indeed be reduced in one quadrature at the cost of
increasing it in the conjugate quadrature. This process is known as “squeezing” and the resulting
states are thus called “squeezed coherent states”.

Coherent light Coherent states took their names from their coherent properties, following the work
of Glauber which aimed at providing a quantum theory of coherence [Gla63b; Gla63a]. In order to
describe the light produced by masers and lasers, he introduced a series of correlation functions. The
n-th order correlation function describes how correlated the n-th power of the field amplitude is. Ideal
lasers have all their correlation functions equal to one. In practise, however, lasers will only satisfy this
property over a specific range of values. Glauber shows that the correlation functions of the eigenstates
of the annihilation operator are constant functions equal to 1. Coherent states are therefore the states
that idealise laser light and the concept of full coherence. He notes however that they are not the
only states with such properties and that certain well-chosen superposition of coherent states will also
retain them.
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0.1.3 Operations and measures

0.1.3.1 Gaussian unitaries

Gaussian unitaries are unitaries that map Gaussian states to Gaussian states. They are gates of the

form eiĤ , where Ĥ is a Hamiltonian quadratic in the annihilation and creation operators.

Examples Thus far, we have already come across many examples of Gaussian gates. The displace-
ment operator is one of them since it maps the vacuum state to a coherent state. The squeezing
operator maps a coherent state to a squeezed coherent state, both of which are Gaussian states.
Therefore, it is another example of Gaussian unitary. Likewise, Equation 81 shows that for any value
of θ ∈ [0, 2π) the unitary eiθn̂ maps a coherent state onto another coherent state. Gaussian gates of
this form are known as phase-shifters. Another important type of Gaussian gates are beam-splitters.
In fact, it is possible to decompose any multimode Gaussian unitary into a squeezing operation, a
phase-shift and a beam-splitter [Wee+12]. Importantly, these three types of operations are realisable
with simple experimental components. This make Gaussian states and Gaussian unitaries extremely
important in quantum optics since they correspond to the states that are easy to prepare and the
operations that are easy to realise experimentally. Let us now look in more details at beam splitters,
which we will see play an important role in measuring the quadratures of the fields.

Beam splitters Beam splitter transformations are defined by

B(θ) = exp
{
θ(â†b̂− âb̂†)

}
, (101)

where â and b̂ are the annihilation operators of, respectively, the first and second mode, and θ ∈ [−π
2 ,

π
2 [

is an angle controlling the transmissivity τ = cos2(θ) of the beam splitter. But it is perhaps more
enlightening to go to the Heisenberg picture and see how beam splitters transform the two annihilation
operators â and b̂. The operator â evolves into

f(θ) := B†(θ)âB(θ) = exp
(
−θÂ

)
â exp

(
θÂ
)

(102)

where we have introduced the notation Â := â†b̂− âb̂†.
The derivative of this function is

f ′(θ) = − exp
(
−θÂ

)
Ââ exp

(
θÂ
)
+ exp

(
−θÂ

)
âÂ exp

(
θÂ
)

(103)

= exp
(
−θÂ

)
[â, Â] exp

(
θÂ
)

(104)

= exp
(
−θÂ

)
b̂ exp

(
θÂ
)
. (105)

To get the final step we computed the commutator of Â and â,

[â, Â] = [â, â†b̂] (106)

= [â, â†]b̂ because b̂ commutes with â (107)

= b̂. (108)

Similarly, the second-derivative is

f ′′(θ) = − exp
(
−θÂ

)
â exp

(
θÂ
)

(109)

since [b̂, Â] = −â. Therefore, f ′′(θ) + f(θ) = 0 and there thus exist two operators ĉ1 and ĉ2 such that

f(θ) = cos θĉ1 + sin θĉ2. (110)

Using that f(0) = â and f ′(0) = b̂, one finds, that â is transformed into

f(θ) = cos θâ+ sin θb̂ (111)
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under the action of the beam splitter. The operator b̂ becomes

B(−θÂ)b̂B(θÂ) = f ′(θ) = − sin θâ+ cos θb̂. (112)

Beam splitters can thus equivalently be defined as operations that take for input two modes â, b̂
and combine them into two output modes â′, b̂′ such that(

â′

b̂′

)
=

(
cos θ sin θ
− sin θ cos θ

)(
â

b̂

)
. (113)

Our goal is to show that beam splitters send a two-mode coherent state |α⟩ |β⟩ onto another two-mode
coherent state.

After the transformation Eq. 113, the state

|α⟩ |β⟩ = exp
(
αâ† − α∗â

)
exp
(
βb̂† − β∗b̂

)
|0⟩ |0⟩

becomes

|ψout⟩ = exp
(
αâ′

† − α∗â′
)
exp
(
βb̂′

† − β∗b̂′
)
|0⟩ (114)

= eα sin θâ†−α∗â sin θeα cos θb̂†−α∗b̂ cos θe−β cos θâ†+β∗â cos θeβ sin θb̂†+β∗b̂ sin θ |0⟩ |0⟩ (115)

= D̂1(α cos θ)D̂2(α sin θ)D̂1(−β sin θ)D̂2(β cos θ) |0⟩ |0⟩ (116)

where D̂1 indicates displacements on the first mode and D̂2 displacements on the second mode. Using
equation which is true up to an insignificant global phase, this shows that the resulting state |ψout⟩ is
the two-mode coherent state

|ψout⟩ = |α cos θ − β sin θ⟩ |α sin θ + β cos θ⟩ . (117)

Note that the amplitudes of the output coherent state are in fact the same as what would have been
obtained by applying the beam-splitter matrix (from Eq. 113) directly to the two input amplitudes,(

α cos θ − β sin θ
α sin θ + β cos θ

)
=

(
cos θ sin θ
− sin θ cos θ

)(
α
β

)
. (118)

No-go theorems While Gaussian states and gates have very attractive features since they are easy
to realise experimentally, it is impossible to correct Gaussian noise, such as photon loss, by using
only Gaussian states and performing only Gaussian operations [NFC09]. Implementing a device-
independent quantum key distribution protocol with these restrictions is also hopeless, as it is impos-
sible to violate Bell inequality with such limited resources.

0.1.3.2 General operations and noise

Quantum channels In quantum mechanics, the evolution of an isolated system is always unitary.
However, often, one is interested in the evolution of only a subsystem of the full system. This is
typically the case when studying one system of interest which cannot be completely isolated from its
environment. Such evolutions are described by quantum channels and can be obtained by considering
the unitary operation applied on the composite system and tracing out the irrelevant sub-systems.
Since quantum channels send density matrices onto density matrices, they are thus linear operations
preserving hermiticity and the trace. Moreover, they are completely positive, meaning that if C is a
quantum channel on mapping A to A′, B is any other subsystem, and ρ is a positive operator on A⊗B,
then I ⊗ C(ρ) is also positive. For this reason, quantum channels are often called completely-positive
trace-preserving (CPTP) maps. Any quantum channel can be expressed in terms of Kraus operators
Mk as

C : ρ 7→
∑
k

MkρMk
† (119)

where the Kraus operators satisfy the completeness relation∑
k

Mk
†Mk = 1. (120)
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Sources of errors in bosonic systems The dominant error source in electromagnetic modes is
pure-loss, a.k.a. excitation loss. It describes the leakage of photons out of the mode. It can be caused
by fibre attenuation, for instance. It is characterised by an infinite set of Kraus operators Kk,

{Kk = ckâ
kµn̂ : k ∈ N } (121)

where µ =
√
1− γ, ck =

1√
k!
( γ
1−γ )

k
2 , and γ ∈ [0, 1[ is the loss parameter, measuring the strength of the

loss noise. The loss channel has the particularity of being a Gaussian channel, meaning that it sends
any Gaussian state on a Gaussian state. In particular, it sends coherent states onto coherent states.
To see this, let us consider two coherent states |α⟩, |β⟩. First, note that,

µn̂ |α⟩ = e−
|α|2
2

∑
n∈N

αn√
n!
µn̂|n⟩ (122)

= e−
|α|2
2

∑
n∈N

(µα)n√
n!

|n⟩ (123)

= e−
|α|2
2

(1−|µ|2) |µα⟩ . (124)

We then compute∑
k∈N

Kk|α⟩⟨β|K†
k =

∑
k∈N

|ck|2âkµn̂|α⟩⟨β|µn̂â†k (125)

=
∑
k∈N

|ck|2e−(1−|µ|2) |α|2+|β|2
2 âk |µα⟩ ⟨µβ| â†k (126)

=
∑
k∈N

|ck|2e−(1−|µ|2) |α|2+|β|2
2 |µ|2kαkβ∗k |µα⟩ ⟨µβ| (127)

=
∑
k∈N

1

k!
(

γ

1− γ
)k(1− γ)kαkβ∗ke−γ

|α|2+|β|2
2 |µα⟩ ⟨µβ| (128)

= eγαβ
∗
e−γ

|α|2+|β|2
2 |µα⟩ ⟨µβ| (129)

= ⟨√γβ|√γα⟩ |µα⟩ ⟨µβ| (130)

where we used Eq.124 to write Eq.126 and Eq.64 to write Eq.130. In particular, for |α⟩ = |β⟩, one
gets ∑

k∈N
Kk|α⟩⟨α|K†

k = |µα⟩ ⟨µα| (131)

showing that the loss channel sends the coherent state |α⟩ onto the coherent state |µα⟩.
In addition to pure-loss, bosonic channels may also be subject to bosonic dephasing errors. This

noise is less important than loss in optical modes, but methods to compensate for loss already exist
and it is thus expected that it will be necessary to correct both loss and dephasing [Lev+22]. The
bosonic dephasing noise describes the fluctuations of the oscillator phase. The single-mode bosonic
pure-dephasing channel is defined as

ND,γ(ρ) :=

∞∑
m,n=0

e−
1
2
γ(m−n)2⟨m|ρ|n⟩|m⟩⟨n|, (132)

where γ now characterises the dephasing strength. In mechanical modes, the situation is reversed and
bosonic dephasing is the main source of noise.

Another noise model is Gaussian random shift errors in the phase-space (a.k.a. Gaussian dis-
placement error or additive Gaussian noise error). It describes a random Gaussian displacement in
phase-space. This model is not a realistic description of errors in bosonic systems but it is useful to
understand the error correcting properties of the GKP codes, as we will see in Section 0.3.2.1.

It is also useful to go to the Heisenberg picture and see how the different types of noise act on the
position and momentum operators to understand their actions in phase-space (see Fig.3).
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Figure 3: Figure 3 of [Alb22]
The effect of loss (a), dephasing (b) and displacement noise (c) channels on a coherent state (blue
circle) in (x, p)-phase space is sketched using red arrows. Loss contracts the states towards the origin,
dephasing results in an angular spread of the state in phase-space and, as indicated by its name,
displacement noise displaces the states in any direction.

0.1.3.3 Measurements in phase space

Counting the number of photons of a state is extremely challenging. Single photon detectors often
register a large number of false-positive: the detector “clicks” whereas there is in fact no photon.
This is known as “dark noise”. Moreover, although some experimental progress has been achieved
throughout the years, the quantum efficiency of photon detectors remains low. On the other hand,
measuring the quadratures of a field can be done efficiently and with standard optical equipment.

Homodyne detection Homodyne detection enables to measure the expectation value, ⟨x̂⟩ or ⟨p̂⟩ of
a single quadrature, or even of a rotated quadrature x̂θ = ⟨cos θx̂+sin θp̂⟩. The experimental setup is
shown on Figure 4. The basic idea is to make the mode whose quadrature is to be measured interfere
with a coherent state |αLO⟩ of very large amplitude, known as a “local oscillator”. The difference of
intensities i− in the two output modes of the beam-splitter is proportional to the rotated quadrature
operator θ̂:

i− ∝ |αLO|x̂θ (133)

where θ is the phase difference of the two modes. This phase difference can be adjusted, for instance
with a piezoelectric transducer, to measure the desired quadrature.

Figure 4: Figure 2 from [Bar+13]. Schematic view of the balanced homodyne detection.

Indeed, the modes are transformed by the balanced beam splitter (Eq. 113, with θ = π
4 ) into

â′ =
1√
2
(â+ b̂) (134)

b̂′ =
1√
2
(b̂− â). (135)
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The difference of intensity is

i− ∝ â′†â′ − b̂′†b̂′ =
1

2
(â† + b̂†)(â+ b̂)− (â† − b̂†)(â− b̂) (136)

= â†b̂+ b̂†â. (137)

Since the input mode b is assumed to be a local oscillator, one can replace b̂ by |αLO|eiθ, thus
obtaining,

i− ∝ |αLO|(â†eiθ + âe−iθ). (138)

Heterodyne detection It is also possible to measure both quadratures at the same time. This is
done, however, at the expense of precision since the Heisenberg uncertainty prevents us from knowing
the position and momentum at the same time with exact precision. Two different setups are considered
in the literature. The first one is extremely similar to the one for homodyne detection; the only
difference being that the phase of the local oscillator is now quickly evolving as a function of time.
In other words, the detectors are making measurements of a different rotated quadrature at all times.
When the frequency of such measurements is much larger than that of any other dynamics of interest
in the signal field a this is equivalent to performing a simultaneous measurement of the X and P
quadratures. The other option is to have two balanced-homodyne detectors in parallel, one of which
measures the X quadrature and the other the P quadrature. In this thesis, when referring to a
heterodyne detection, this is the setup we have in mind.
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0.2 Quantum key distribution

0.2.1 Quantum key distribution

0.2.1.1 The key distribution problem

Cryptography Cryptography is the field of sciences that deals with the protection of messages.
In this thesis, we will focus on the subfield of secure communication. The situation studied is the
following: one party wants to send a secret message to one or several other designated distant parties.
The goal is twofold:

1. Authentication: The recipients should be able to verify that the message comes from the person
claimed.

2. Confidentiality: No one other than the sender and receivers should be able to obtain information
about the message sent.

In this thesis, we will take authentication for granted and will focus on achieving confidentiality. This
is justified by the fact that confidentiality requires stronger resources than authentication [PR22].

Exchanging a message The goal is to develop a protocol enabling two distant parties to securely
communicate private information. This can be achieved through the one-time pad. Suppose the
sender, traditionally called Alice, wants to send an N -bit long secret message to Bob. If Alice and
Bob share an N -bit uniformly random key known only to them, Alice can perform the bit-wise addition
modulo 2 of her secret message and the shared key and send the resulting string to Bob. Bob then
recovers the message by subtracting modulo two (or equivalently by adding modulo two) the key to
the result. In contrast, if anyone else intercepts the message, they will not be able to decode it since
they do not know the secret key. If the key is used only once, it has been shown that the one-time
pad operation achieves information-theoretic security. This means that the system is secure against
adversaries with unlimited computing resources and time. It is sometimes also called “unconditional
security”. Other encryption methods which use a key that is shorter than the message to encode
or that repeatedly use the same key to encrypt different messages are widely employed but at most
guarantee computational security, i.e. a security that is only valid if the computational resources of the
adversary are assumed to be limited (typically to anything that appears “reasonable” given current
technological hardware).

Exchanging a key Securely distributing a message is possible, using the one-time pad, if the sender
and recipient initially share a random uniform key. Yet to share such a key the two parties must have
been able, at some point prior to the execution of the one-time pad protocol, to agree on what
that key is. One option is that they previously met and exchanged the key in prevision of a future
communication. However, this is not always possible and we are thus back to the original problem
of exchanging a secret string between two distant parties. The difference, however, is that contrary
to the secret message, the key does not contain any critical information in itself: it is thus sufficient
to simply be able to detect any eavesdropping. Indeed, if it is found that a key or part of a key has
leaked towards the adversary, Alice and Bob just need to exchange a new key.

Classically, the problem of key exchange is solved using public-key protocols, such as the Diffie-
Hellman key exchange. In that case, a pair of keys generated by the recipient of the message are used.
One of the keys is public and it is used by the sender to encode their message. The receiver keeps
the second key private and uses it to decode the message. In general, public key cryptosystems are
only used as a primitive to first deliver a shared key (hence the name “key exchange protocols”) used
to encode subsequent messages since symmetric protocols (with a shared key) are often more efficient
than asymmetric ones (with a pair of private and public keys).

0.2.1.2 Quantum Cryptography

Cryptography in a quantum world Classically, the protection of information relies on the use of
very hard mathematical problems. Indeed, to get access to the private key of an asymmetric protocol
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and hence get access to the message, one has to solve a problem whose solution is believed to be out
of reach unless some prior information is known. In practice, “out of reach” means that the problem
cannot be solved by a computer in a non-prohibitive time which depends on the desired level of security.
However, the emergence of a new technology that reshuffles the deck cannot be completely ruled out.
In particular, the advent of quantum computers would threaten the security of current cryptosystems.
Indeed, Shor showed how a quantum computer could factorise any integer in a time that is only
polynomial in its numbers of digits [Sho94; Sho97]. This is problematic since the most widely used
cryptographic protocol, RSA, is based on the difficulty of factoring large integers. Other classical
cryptographic protocols, such as Diffie-Hellman [DH76; Mer78] and Buchmann-Williams [BW88] key
exchanges or elliptic-curve cryptosystems are also broken by quantum algorithms. Today, the number
of qubits needed to run algorithms is orders of magnitudes away from what is achievable with current
technology. For applications requiring long-lasting security this may already pose a problem since
data encrypted today with classical cryptosystems and recorded by an eavesdropper may no longer be
safe when a large quantum computer becomes accessible.

Quantum cryptography and post-quantum cryptography Interestingly, while the advent of
quantum computers threatens the security of encoded information via classical cryptosystems, quan-
tum physics may also provide a solution to securely encrypt data. The idea of quantum cryptography
is indeed to create new cryptosystems whose security relies on the laws of quantum physics instead
of mathematical assumptions. The intuition behind quantum cryptography comes from a general
principle in quantum physics, the observer effect, which states that it is not possible to observe the
state of an unknown quantum system without modifying it. This can be used to create cryptographic
protocols such that any eavesdropping will be noticeable.

Achieving such a level of security, however, represents an important cost and is not necessary for all
applications. An alternative strategy is given by post-quantum cryptography which aims at improving
existing classical protocols or establishing new ones to make them secure against attacks performed
with quantum computers. Moreover, while in theory, quantum cryptography achieves perfect security,
in practice, current implementations suffer from various imperfections that make them vulnerable to
attacks. This is what has led official organisations, including the French and the American national
security agencies, ANSSI3, and NSA4, to advocate against the use of quantum key distribution while
these limitations remain unsatisfactorily addressed. It is thus important to design more practical
secure protocols and address the security of current implementations to narrow the gap between the
theoretical and practical levels of security achieved by quantum cryptography.

The task of quantum key distribution The goal of quantum key distribution is therefore to
enable two distant parties, Alice and Bob, to exchange a uniform random secret key, in an information-
theoretically secure way. The protocol should either result in the successful distribution of a secure
shared key, or abort if too much information has leaked towards the adversary. To achieve this goal,
Alice and Bob have access to an authenticated classical channel and a potentially insecure quantum
channel. The term “authenticated” means that Eve has access to all the information sent over the
classical channel but she cannot pretend to be Alice nor Bob. On the other hand, she has full control
over the quantum channel and can, at any time, capture states, modify them, send them back, perform
measurements, send other states that she prepared herself, etc. Combining quantum key distribution
with the one-time pad then enables to construct a secure classical channel from an authenticated one.
The catch, however, is that the use of a secret key is necessary to obtain an authenticated channel.
It thus seems as if things go round and round in circles. Note, in particular, that this means that
authentication, which is one of the assumptions for QKD, requires computational assumptions. It
may thus seem pointless to then want to achieve information-theoretic security for the rest of the
protocol. However, the requirement for authentication is only that it should not be broken during

3https://www.ssi.gouv.fr/publication/should-quantum-key-distribution-be-used-for-secure-communications/, visited
on 29/09/2023.

4https://www.nsa.gov/Cybersecurity/Quantum-Key-Distribution-QKD-and-Quantum-Cryptography-QC/, visited
on 29/09/2023

https://www.ssi.gouv.fr/publication/should-quantum-key-distribution-be-used-for-secure-communications/
https://www.nsa.gov/Cybersecurity/Quantum-Key-Distribution-QKD-and-Quantum-Cryptography-QC/
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the key exchange. If the eavesdropper is not able to do that in this limited amount of time, then
the final protocol will be secure. In comparison, in the classical case, the attacker may break the
cryptosystem 20 years after the encoding was done and access all the information. Quantum key
distribution is therefore well suited for applications where a long-lasting security, over several decades,
is required. On the other hand, it will not be useful when only short-term guarantees are needed.
Since authentication already necessitates the use of a (smaller) key, quantum key distribution may
be regarded as constructing a long secure key from a shorter one. This is best explained in terms
of resources: cryptographic protocols, such as quantum key distribution, use resources to construct
new resources offering stronger security guarantees. This idea is summarised in figure 3 of reference
[PR22], reproduced here (Fig.5). Quantum key distribution may also be regarded as a primitive to
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Figure 5: Figure 3 from [PR22]: A cryptographic protocol uses (weak) resources to construct other
(stronger) resources. These resources are depicted in the boxes, and the arrows are protocols. Each
box is a one-time-use resource, so the same resource appears in multiple boxes if different protocols
require it. The long secret key resource in the centre of the figure is split in three shorter keys, each
of which is used by a separate protocol.

construct a key and use it in other symmetric cryptosystems than the one-time pad, but the combined
protocol will lack the information-theoretic guarantees in that case.

0.2.1.3 Quantum key distribution (QKD) protocols

Any quantum key distribution is made of two parts. In the quantum transmission phase, quantum
states are prepared and possibly exchanged between Alice and Bob, and some quantum measurements
are performed. Alice and Bob (separately) use the information they have to convert it into bits. At



52 CHAPTER 0. PRELIMINARIES

the end, they each obtain a string of bits, called a raw key. The second phase of the protocol then
consists in classical post-processing of these two raw keys to construct a (shorter) shared secure key.
We dedicate this section to the description of these two parts, as well as that of the assumptions
behind quantum key distribution.

Quantum transmission phase Quantum key distribution protocols can be divided into two cat-
egories, prepare-and-measure (PM) protocols and entanglement-based (EB) protocols, depending on
the nature of the quantum transmission part.

In a prepare-and-measure protocol, Alice draws her raw key at random and sends quantum states
encoding information on the key to Bob. She will typically choose the states among a given set, with a
certain probability. The set should contain some non-orthogonal states to ensure that no measurement
can perfectly distinguish them. In this way, any action of Eve probabilistically modifies the states and
her presence can be detected. Bob then measures certain properties of the states he receives and uses
his measurement results to construct his own raw key.

In an entanglement-based protocol, Alice and Bob each own one share of two entangled systems.
They perform measurements on their share which they use to construct their raw keys. Because the
two systems are entangled, their measurement results are correlated and so are their keys.

PM and EB protocols are in fact equivalent, in the sense that for any given PM protocol, it is pos-
sible to derive an EB protocol that is identical to the PM protocol from Bob’s and Eve’s perspective,
and vice versa. Assume for instance that a PM protocol requires Alice to choose a state |aj⟩ from a
set {|aj⟩ : j ∈ J} with probability pj and send it to Bob. If Alice instead prepares the bipartite state∑

j∈J
√
pj |aj⟩ |bj⟩ and measures her share, with probability pj , her resulting state is |aj⟩. In such a

case, the joint state collapses to |aj⟩ ⊗ |bj⟩ and so Bob has the state |bj⟩. In both the PM and the
EB protocols, the state |bj⟩ is thus “sent” to Bob with probability pj . Since the only difference in the
two versions is what takes place in Alice’s lab, which by assumption is inaccessible to Eve, the PM
and EB versions share the same security. This is particularly useful when deriving security proofs.
Indeed, PM protocols are more practical to conduct so they are generally the ones implemented in
practice. However, the security of EB protocols is often easier to analyse. As a result, the first step
of a security proof generally consists in replacing the PM protocol by an equivalent EB version. Note
nonetheless that this equivalence only applies to the security of the ideal theoretical protocols and not
to their physical (imperfect) implementations.

Classical post-processing Once the raw keys have been established, classical post-processing is
used to distil a shared secure key from these. This process can be divided into several steps.

1. Reconciliation step. In practice, quantum noise will unavoidably introduce errors in the raw key
shared by Alice and Bob. Since it is essential that the latter obtain identical keys, they need
to correct those errors. One of the raw keys is thus chosen as the reference keys. The person
owning the reference key then sends some information to the other one to correct the second
key. In case the reference key is Alice’s the reconciliation is said to be “direct”. When it is
Bob’s, this is termed “reverse reconciliation”. What determines whether a direct or a reverse
reconciliation should be performed is which of the two keys is the one on which Eve’s holds the
least information.

2. Parameter estimation. The goal of parameter estimation is to obtain a bound on how much
information Eve has on the key. This information will come from both Eve’s actions during the
quantum distribution phase of the protocol and what she may have overheard from Alice and
Bob’s discussions during the error-correction step. Since the errors resulting from interactions
with the environment (noise) cannot be distinguished from the errors coming from Eve’s eaves-
dropping, the safest option is to assume all of them are due to Eve. Noise therefore strongly
degrades the performance of a protocol and it is important to consider this limit when designing
a QKD protocol.
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3. Privacy amplification. Finally, the goal of privacy amplification is to extract a smaller, secure,
key on which Eve has no information (or less information than a specified value), from Alice and
Bob’s common reconciled key. Let us consider a very simple example for illustration. Assume
Alice and Bob have established a two-bit key. Assume further that they are aware that Eve
eavesdropped exactly one out of the two bits but they do not know which. Adding a known
bit to a fully random bit, modulo 2, gives a fully random bit. They can thus add the two bits
modulo 2 and they will obtain a one-bit long key completely uncorrelated to the information
Eve has. More generally, the number of bits by which the key should be shortened to ensure its
secrecy is deduced from the parameter estimation and a hash function is applied to shrink the
key.

Assumptions The assumptions for QKD are reviewed in many references, including [PR22]. We list
them here. The main assumption for quantum key distribution to be secure is that quantum mechanics
is both correct and complete. The correctness assumption means that any observed statistics must
be accurately predicted by the laws of quantum mechanics. The completeness property is a bit more
demanding. It means that quantum mechanics provides the most-complete description possible of all
the information and that no other theory can give better predictions. In particular, we are assuming
that the probabilistic nature of quantum mechanics is unavoidable, that it is a fundamental property
of nature and cannot be explained by a lack of maturity of the theory. This may sound like a strong
requirement but the completeness of quantum mechanics can in fact be derived from the free-will
postulate, the ability one has to make free choices [CR11].

The other two assumptions for QKD are that the classical channel over which Alice and Bob
communicate is authenticated and that the devices they use locally behave exactly as instructed by
them. We have already discussed in the previous section that constructing an authenticated channel
requires computational assumptions but this does not strongly affect the long-term security of QKD if
the authentication is not broken during the protocol. The third assumption, that of trusted devices is
more problematic. It means that we are assuming, for instance, that the eavesdropper did not corrupt
the devices before the protocol starts, that he does not have access to Alice’s or Bob’s labs and that he
cannot control their instruments distantly. Experiments have shown that achieving such guarantees
in practice is very challenging.

Reference [PR22] briefly reviews some of the proposed and sometimes successfully implemented
attacks exploiting physical imperfections. For instance, in protocols involving the exchange of photons,
Eve may exploit the imperfections of single-photon sources. When the source sends two photons
instead of one, she can use one of them to make any measurements she likes without disturbing the
state of the other photon which will be used by Alice and Bob. Another attack consists in exploiting
the inefficiencies of the photon-detectors to control Bob’s measurements. While countermeasures for
these attacks and many other ones have been developed, it is very hard to predict all possible attacks.
It places quantum cryptography in a similar position as classical cryptography where cryptanalysts
trying to break protocols and cryptographers improving protocols and designing countermeasures to
ensure protection against these attacks fight in a constant race. This is not satisfactory for a field
which aims at guaranteeing (almost) perfect security. Fortunately, device-independent quantum key
distribution provides an adequate solution to this problem. Indeed, it replaces the third assumption
by a weaker one. It no longer demands that the devices used are perfect but instead simply requires
that they cannot communicate with one another during the protocol execution.

The exact assumptions of device-independent QKD varies according to the protocols. A very
complete review on the security of these can be found in [Pri+23]. Device-independent QKD uses
the non-local nature of quantum mechanics and typically relies on the violation of Bell inequalities
that serves as a witness for quantum entanglement. In practice, however, such protocols are extremely
challenging to implement today. Reference [Zap+23] reviews some of the recent experimental proof-of-
principle implementations that have nonetheless been achieved. An intermediate ground is provided
by semi-device independent QKD.



54 CHAPTER 0. PRELIMINARIES

0.2.2 Security of quantum-key distribution

As mentioned, the interest for quantum key distribution lies in the information-theoretic guarantees
that it can provide. In this section, we thus show how to analyse the security of QKD protocols.

0.2.2.1 Security proofs

Quantitative assessment of security Intuitively, the security of quantum key distribution proto-
cols comes from the fact that Eve’s actions necessarily alter the quantum states used in the protocol,
on average, and therefore her presence is noticeable. Fundamentally, for prepare-and-measure proto-
cols, this comes from the no-cloning theorem that asserts that it is not possible to perfectly copy an
unknown quantum state. More precisely, there is a trade-off between how much information Eve may
obtain and how much the transmitted information is disturbed. In the case of entanglement-based
protocols, this can be seen as a consequence of the monogamy of entanglement which asserts that a
system strongly entangled with a second system cannot have a large degree of entanglement with any
third system. Therefore, the stronger the correlations between Alice and Bob are, the smaller they
will be with Eve. In practice, no system can achieve absolute security. The goal of security proofs is
therefore to quantify the level of security guaranteed by a cryptographic protocol. Reference [PR22]
gives a thorough review of the development of security proofs for quantum cryptography. In the next
paragraphs, we highlight the main ideas with the aim of motivating the computation of key rates. The
basic idea of security proofs if to use the observed perturbations on the results to bound the amount
of information that may have been obtained by Eve. A small positive parameter ϵ then quantifies
how close from perfect a system is: the smaller ϵ is, the stronger the security achieved is. One major
desideratum of any quantitative definition of security is that of composability: if a protocol achieving
a security quantified by ϵ1 is composed with one whose security parameter is ϵ2, then the combination
of the two protocols should have a security parameter at most equal to ϵ1 + ϵ2. This is to ensure that
a given protocol retains its security guarantees no matter what it is used for. Many of the security
definitions first developed for quantum cryptography were in fact found to be non-composable but
subsequent definitions solved this issue [PR22].

Real-world ideal-world paradigm One important paradigm that does qualify as ensuring com-
posability is the real-world ideal-world paradigm. The idea is to consider an ideal system performing
the desired task perfectly and ask how close the real system is from the ideal one. Because the in-
terfaces (the inputs and outputs type and number) of the ideal and real systems may differ, it is
sometimes necessary to add a “simulator” to the ideal system to account for this difference. This does
not affect the security since the action of the simulator could already be performed by the eavesdrop-
per himself. The ideal system together with a simulator is called a relaxation of the ideal system. The
problem is then formulated as a game: a distinguisher is given black-box access to either the real or
a relaxation of the ideal system. It can input any states (possibly entangled to other states) to the
system and perform any measurements allowed by quantum physics. In particular, the distinguisher
can use all the input interfaces that models how the players (Alice, Bob and Eve in the QKD case)
access the system. It is then asked with which protocol it interacted with. Ideally, the real and ideal
systems should be perfectly indistinguishable, in which case there is no better strategy than making
a random guess, leading to a probability of success of one half. In practice, the real system will have
some “faults” and will not always behave like the ideal system, leading to a higher success probability.
The level of security is then quantified by the distinguishing advantage,

Dadv = 2psuccess − 1 (139)

which is equal to the difference of the probability that the distinguisher succeeds in guessing which of
the two systems it has been interacting with and the probability that it fails to do so,

Dadv = 2psuccess − 1 = 2psucceeds − (psuccess + pfails) = psucceeds − pfails. (140)

Note that despite being called “real”, the real protocol is still a theoretical protocol describing the
actions of Alice and Bob. In particular, any deviation from this protocol in the experimental imple-
mentations will not be taken into account by the ideal-world real-world paradigm.
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The goal of quantum key distribution is two-fold. When Alice and Bob are not spied upon by any
eavesdropper Eve, the protocol should, with high probability (accounting for the noise), generate a
shared uniform random key. In the presence of Eve, either a secure key should be extracted or no key
at all should be generated, depending on how much information Eve has obtained on the key. The
ideal system will thus precisely be a system achieving these two requirements. The first situation, in
the absence of Eve, is there to assess the robustness (in particular, against noise) of the protocol. A
protocol that never outputs a key would indeed be perfectly secure but also completely useless.

Trace-distance criterion The requirement of distinguishing the real and ideal protocols can be
translated into a requirement on distinguishing the states output by these systems. This in turn
reduces to a trace distance criterion. Indeed, if a distinguisher is provided with equal probability with
one of two quantum states ρ and σ, the maximal possible advantage it has in guessing which of the
two it is equal to the trace distance

D(ρ, σ) :=
1

2
Tr(|ρ− σ|) (141)

of the two states:

pdistinguish(ρ, σ) =
1

2
+

1

2
D(ρ, σ). (142)

Using this, one can show that the requirement is that the quantum states, ρABE , and ρ̃ABE , gathered
by the distinguisher performing the optimal distinguishing strategy when interacting with the ideal
system or the real systems satisfy

D(ρABE , ρ̃ABE) ≤ ϵ (143)

in the case simulating the presence of an eavesdropper. This condition can be further broken down
into two requirements [PR22],

(1− p⊥)Pr(KA ̸= KB) ≤ ϵcorr, (144)

and

(1− p⊥)D(ρ⊤AE , τA ⊗ ρ⊤E) ≤ ϵsec, (145)

where p⊥ is the probability that the protocol aborts, KA and KB are Alice and Bob’s keys, τA is the
maximally mixed state (corresponding to a perfect uniform key) and ρ⊤AE and ρ⊤E are the resulting state
of the AE subsystems and the E subsystem alone, conditioned on not aborting [PR22]. Equation 144
captures the correctness of the protocol. The positive number ϵcorr > 0 which measures how likely it
is that Alice and Bob hold different keys at the end of the protocol. Equation 145 is known as the
“trace-distance criterion” and captures what is referred to as the secrecy of the protocol, quantified
by ϵsec > 0. It measures the distance of the final key with that of a uniform key and quantifies Eve’s
knowledge on the key. In the ideal case, Alice holds a uniform key τA which has no correlation with
the adversary’s state and is thus in a tensor product with it. This is described by ρ⊤AE being equal to
τA ⊗ ρ⊤E .

In the absence of Eve, the requirement simply is that the distance between the probability distri-
bution PAB of the final key output by the real system and a uniform distribution P̃AB is smaller than
the security parameter ϵ,

D(PAB, P̃AB) ≤ ϵ. (146)

0.2.2.2 Secret key rate

Asymptotic secret key rate Once the quantum distribution phase is determined, the various
instances of a QKD protocol P(N, fextrac) are parameterised by the number of rounds N performed
and the key extraction procedure fextrac used. The secret key rate (SKR) of a given instance of the
QKD protocol is defined as the ratio of the length of the secure key that can be extracted and the
number of rounds N ,

SKR(N, fextrac) =
ℓ

N
. (147)
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One often considers its asymptotic value (ASKR),

ASKR(fextrac) = lim
N→+∞

ℓ

N
. (148)

A number R > 0 is said to be an achievable rate if there exists a key extraction procedure fextrac such
that ASKR(fextrac) = R and the family of protocol instances P(N, fextrac) is asymptotically secure.
Specifically, the following two equations

D(ρN,fextracABE , ρ̃ABE) −→
N→+∞

0 (149)

and

D(PN,fextracAB , P̃AB) −→
N→+∞

0 (150)

where ρN,fextracABE and PN,fextracAB are the state and probability distributions appearing in Eqs. 143 and
146 obtained for the specific instance P(N, fextrac) of the protocol, while ρ̃ABE and P̃AB still represent
those for the ideal system. The interesting quantity then is the maximum achievable asymptotic secret
key rate [DW05],

K = sup{R : R achievable}. (151)

It corresponds to the secure fraction of the key that can be extracted from the raw key. It is
equal to the classical mutual information (whose definition is made rigorous in 0.2.2.3) between Alice
and Bob’s keys, which measures the amount of information obtained on one variable by observing the
other, to which is subtracted the information that Eve has on the reference key. Remembering that
the latter corresponds to the raw key on which Eve has the least information, this is

K = I(A : B)−min(IEA, IEB) (eq.21 from [Sca+09]) (152)

where I(A : B) is the mutual information between Alice and Bob’s keys and IEA (resp. IEB) is
Eve’s information on the raw key of Alice (resp. of Bob). More precisely, IEA is the quantum mutual
information.

Adversarial models While we have so far focused on the security against all the attacks allowed by
quantum mechanics, it is also possible to study weaker security criteria by restricting the set of possible
attacks one can perform. This corresponds to only considering a subset of the possible distinguishers.
In particular, three main adversarial models have been considered in the literature. In individual
and collective attacks, Eve performs the same procedure at each round of the quantum part of the
protocol independently of the others. This means that the state of Alice and Bob obtained after N
rounds has a tensor product form. The two types of attacks differ on the time when Eve measures her
ancillae. In the case of individual attacks she has to do so before the classical post-processing phase,
whereas in collective attacks she may wait and use any information acquired during that phase to
optimise her measurements. General attacks where Eve’s actions are only limited by quantum physics
are called coherent attacks. Although collective attacks may seem overly restrictive, they are often
optimal among all possible attacks in the asymptotic regime [Ren07].

Finite-size effects In practice, the number of quantum signals exchanged by Alice and Bob in a
protocol is always finite. The key extracted is ϵ-secure with a security parameter ϵ that no longer
vanishes. The goal of the security proofs are then to relate the length of the key extracted with the
value of ϵ. Moreover, the parameters needed to quantify the security are no longer known exactly and
instead need to be estimated. One thus has to take into account statistical fluctuations and consider
the worst case compatible with the observations made.
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0.2.2.3 Computing the Devetak-Winter bound

The Devetak-Winter bound [DW05] is a lower bound on the achievable asymptotic secret key rate
per channel use, when the adversary is restricted to performing collective attacks. It relates several
quantities measuring the amount of information shared by the protagonists, Alice, Bob and Eve.
Let us therefore first review the definitions of the relevant quantities used to quantify the classical
and quantum information contained in systems as well as the correlations between different systems.
Proofs of the results stated here and more details on the notions can be found in the book [Wil13].

Classical and quantum entropies Let X be a random variable over a space of possible outcomes
X . The information content of a realisation of an outcome x ∈ X is defined as

i(x) := − log2(pX(x)). (153)

Let us see the intuition behind this. Note first that this function is non-negative as it should be
expected. Second, the information content is a decreasing function of the probability. If an event is
very likely, its realisation is not surprising so its realisation does not bring much new information.
The extreme case is that of an event with probability 1. The realisation of an event known to be
certain does not bring any new information. In that case, i(x) = − log2(1) = 0. On the other hand,
the realisation of an event that has small probability gives more information. When the probability of
a realisation x is 1/2, the information content i(x) = − log2(1/2) = 1 corresponds to one bit. Finally,
the information content is additive: the information content of two independent events x1, x2 is equal
to the sum of their respective information contents,

i(x1, x2) = − log2(pX(x1)pX(x2)) = − log2(pX(x1))− log2(pX(x2)) = i(x1) + i(x2). (154)

The Shannon entropy is then defined as the expected value of the information content random
variable i : x ∈ X 7→ i(x).

Definition 0.1. (Classical entropy) Let X be a random variable whose realisations x belong to a
finite alphabet X . The Shannon entropy of X, expressed in bits and denoted by H(X), is

H(X) = −
∑
x∈X

pX(x) log2(pX(x)), (155)

where pX is the probability density function of X.

The quantum entropy, or von-Neumann entropy, similarly measures the information of a quantum
system.

Definition 0.2. (Quantum entropy) The von-Neumann entropy of a quantum system S in a state ρS
is

H(S) = −Tr(ρS log2(ρS)), (156)

where log2(ρS) is defined from the spectral decomposition of the density matrix ρS =
∑

k λk |ek⟩ ⟨ek|
as

log2(ρS) =
∑
k

log2(λk) |ek⟩ ⟨ek| . (157)

The von-Neumann entropy is equal to the Shannon entropy associated to the probabilistic state
ensemble {(λk, |ek⟩)}k,

H(S) = −
∑
k

λk log2(λk). (158)
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Mutual information and Holevo information

Definition 0.3. (Classical conditional entropy) LetX and Y be two random variables with probability
distributions pX and pY . The conditional entropy H(X|Y ) of X with respect to Y is the expectation
value of the entropy of the conditional probability distribution

H(X|Y ) =
∑
y

pY (y)H(X|Y = y) (159)

= −
∑
y

pY (y)
∑
x

pX|Y (x|y) log2(pX|Y (x|y)) (160)

= −
∑
x,y

pX,Y (x, y) log2(pX|Y (x|y))), (161)

where pX,Y is the joint probability distribution of X and Y .

If Alice holds variableX and Bob holds variable Y , then the conditional entropyH(X|Y ) represents
the uncertainty Bob has on X given the knowledge he has of Y .

Definition 0.4. (Classical mutual information) Let X and Y be two random variables. The mutual
information I(X : Y ) of X and Y is the difference of the marginal entropy and the conditional entropy,

I(X : Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X). (162)

The mutual information measures by how much the uncertainty on one variable is reduced by
knowing the other variable. It can thus be interpreted as the common information of the two variables.

Definition 0.5. (Quantum conditional entropy) Let ρAB be a bipartite state. The conditional quan-
tum entropy H(A|B)ρ is the difference of the joint quantum entropy H(AB) = −Tr(ρAB log2(ρAB))
and the marginal entropy H(B) = −Tr(ρB log2(ρB)) of the reduced density matrix ρB = TrA(ρAB),

H(A|B)ρ = H(AB)−H(B). (163)

Definition 0.6. (Quantum mutual information) The quantum mutual information I(A;B) of a bi-
partite state ρAB is the difference of the quantum marginal entropy and the quantum conditional
entropy,

I(A : B) = H(A)−H(A|B) = H(B)−H(B|A). (164)

Definition 0.7. (Holevo information) The Holevo information of the ensemble E = {px(x), ρx} is the
quantity

χ(E) = H(ρ)−
∑
x

pX(x)H(ρx), (165)

where ρ is the averaged state

ρ =
∑
x

pX(x)ρx. (166)

Devetak-Winter bound In general, the Holevo information is not a tight bound for the mutual
information. However, in the special case where one considers the asymptotic regime and collective
attacks only, the mutual information between Alice and Eve is equal to the supremum of the Holevo
quantity,

IAE = sup
NEve

χ(A : E) (167)

where the supremum is taken over all the CPTP maps NEve representing Eve’s possible actions.
Likewise, the mutual information between Bob and Eve is

IBE = sup
NEve

χ(B : E). (168)
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In the case of direct reconciliation, the asymptotic secret key rate in the context of collective attacks
is thus given by

K = I(A : B)− sup
NEve

χ(A : E) (169)

while it is

K = I(A : B)− sup
NEve

χ(B : E) (170)

in the case of reverse reconciliation. Equations 169 and 170 are known as the Devetak-Winter bounds
since they were first introduced in a paper [DW05] by Devetak and Winter.

0.2.3 Continuous-variable quantum key distribution

In this thesis, we will focus on a particular type of protocols using continuous-variables degrees of
encoding and thus referred to as continuous-variable quantum key distribution (CV QKD).

0.2.3.1 Continuous-variable quantum key distribution protocols

Discrete-variable and continuous-variable QKD Historically, QKD protocols all relied on the
exchange of discrete-variables. For instance, in BB84 [BB84], the first QKD protocol invented, the
information was encoded on discretely polarised photons. A horizontal or 45-degree photon would
stand for a 0, and a vertical or 135-degree photon would correspond to a 1. The problem of such
discrete-variable QKD (DV QKD) protocols, however, is that they require Bob to use single photon
detectors, which are very expensive. More recent protocols increasingly rely on a continuous-variable
(CV) encoding in the quadratures of the quantified electromagnetic field, that benefits from state-of-
the-art techniques in coherent optical telecommunication. The first example of such encodings was
introduced by Ralph [Ral99] in 1999. These protocols are designed to use resources and techniques
widely available and are therefore more suitable for a large scale deployment of QKD. This is partic-
ularly interesting since we are still at the early stages of a possible large-scale deployment of QKD, a
deployment that would be greatly facilitated if the required technologies for QKD were fully compati-
ble with standard Telecom equipment. One can argue that CV QKD satisfies this description since the
quantum part of the protocol consists in the exchange of quantum states of light, typically coherent
states, followed by measurements with coherent detection. The main difference with classical coherent
optical communication is that CV QKD works in the quantum regime with attenuated coherent states
and low-noise detectors. The coherent detection can be either a homodyne or a heterodyne one. In the
case of a homodyne detection Bob measures one quadrature and gets a real number while in the case
of a heterodyne detection he measures both quadratures and gets a complex number. These numbers
then need to be discretised at some later stage in the protocol, to get actual bits.

CV QKD comes with some difficulties, however. In particular, security proofs for CV QKD are
more complex since one cannot avoid a description in the full infinite-dimensional Fock space. DV
QKD protocols can, on the other hand, be described with Hilbert spaces of small dimension, making
their theoretical analysis simpler. The crux of the problem is that one needs to be able to gather
some statistics in the protocol (typically characterising the level of correlations between the states
sent by the first party, Alice, and the data obtained by the second party, Bob) and to infer how much
information was obtained by a potential adversary controlling the quantum channel. In a DV protocol,
the quantum channel acts on a low-dimensional quantum system and can therefore be relatively well
constrained by measuring simple quantities like the quantum bit error rate. Yet for a CV protocol the
quantum channel acts on the full Fock space and is usually more difficult to characterise from easily
accessible statistics.

A general prepare-and-measure CV QKD protocol. Any prepare-and-measure QKD protocol
consists of two main parts: a quantum part where Alice and Bob exchange quantum states and obtain
correlated variables, and a classical post-processing procedure aiming at extracting two identical secret
keys out of the correlated data. In general, the states exchanged are coherent states, drawn at random
from a given (finite, discrete or continuous) constellation of coherent states. Alice and Bob repeat
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a large number of times the following: Alice chooses an index k with probability pk and sends the
corresponding coherent state |αk⟩ to Bob through an untrusted quantum channel. Bob then measures
both quadratures of the incoming state with heterodyne detection. Alternatively, he can also measure
only one random quadrature with homodyne detection and afterwards inform Alice of his choice. At
the end of this first phase, Alice and Bob both hold a string of numbers (complex numbers in the case
of heterodyne detection and real ones if using homodyne detection). The goal of the second phase
of the protocol is to use classical post-processing to transform these two strings into identical secret
keys. To do so, Bob discretises his variables by choosing an appropriate binning of the real line or of
the complex plane. This is followed by the usual error correction, parameter estimation and privacy
amplification steps to obtain a shared bit string completely unknown to the adversary. In CV QKD,
the reconciliation procedure chosen is a reverse reconciliation [GG02a] since it always outperforms
protocols where Alice’s string is used as a raw key.

Modulation schemes The modulation scheme is defined by a constellation, the set of coherent
states {|αk⟩}, and a probability distribution: each state |αk⟩ is chosen with probability pk. The
indices k appearing in the definition of the modulation may belong to a finite, discrete, or continuous
set, depending on the nature of the constellation. The information can be summarised by a density
matrix τ given by the weighted mixture of coherent states, and corresponding to the average state
sent by Alice:

τ :=
∑
k

pk|αk⟩⟨αk|. (171)

Note that for any finite constellation, this state faithfully describes the modulation scheme since the
coherent states |αk⟩ are linearly independent (this will no longer be the case in general if Alice sends
mixed states, e.g. thermal states).

There are three main modulation schemes usually discussed in the literature: the Gaussian mod-
ulation, the M -phase-shift keying (M-PSK) modulation and the quadrature amplitude modulation
(QAM). In a protocol with a Gaussian modulation, for each use of the channel, Alice draws a random
complex variable α from a Gaussian distribution and sends the coherent state |α⟩ = e−|α|2/2∑∞

n=0
αn
√
n!
|n⟩

to Bob. If Bob’s measurement is a heterodyne detection, this corresponds to the no-switching protocol
[Wee+04]. A Gaussian modulation is parameterised by its variance 1

2(⟨x̂
2⟩τG + ⟨p̂2⟩τG) = 1 + 2⟨n⟩,

where ⟨n⟩ is the averaged photon number. In the case of a Gaussian modulation of variance 1 + 2⟨n⟩,
the value of α is an arbitrary complex number chosen according to a Gaussian probability distribution,
and the associated density matrix τG is a thermal state:

τG =
1

π⟨n⟩

∫
C

exp

(
− 1

⟨n⟩
|α|2

)
|α⟩⟨α|dα =

1

1 + ⟨n⟩

∞∑
m=0

(
⟨n⟩

1 + ⟨n⟩

)m
|m⟩⟨m|.

In the M -PSK modulation case, Alice chooses uniformly at random a coherent state from the set
{|αe2πik/M ⟩}0≤k≤M−1 where the modulation variance corresponds to VA = 2α2. The corresponding
mixture is

τM -PSK =
1

M

M−1∑
k=0

|αe2πik/M ⟩⟨αe2πik/M |.

Note that the case M = 4, also referred to as quadrature phase-shift keying (QPSK), has been widely
studied in the context of CV QKD. In coherent optical communications, it is known that increasing the
value ofM beyond 10, say, is not beneficial and that it is more efficient to switch instead to a different
modulation scheme altogether. One such example is quadrature amplitude modulation (QAM) where
the constellation typically consists of M points distributed over a square grid in phase-space (see
Figure 6). More complex constellations are also possible.

0.2.3.2 Security of continuous-variable protocols

Devetak-Winter bound and extremality of Gaussian states The Devetak-Winter bound gives
the asymptotic achievable secret key rate K (per channel use) when the attacks are restricted to
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Figure 6: Constellations corresponding to a 16-QAM and a 64-QAM. Colours indicate the probabilities
corresponding to each coherent state, following here a binomial distribution with VA = 5.

collective attacks [DW05]. Recall that when a reverse reconciliation is chosen the formula is (Eq. 170):

K = I(A : B)− sup
NEve

χ(B : E). (172)

While the mutual information I(A : B) between Alice and Bob’s classical variables can be estimated
from the correlations of Alice and Bob’s keys, bounding the value of supNEve

χ(B;E) is more compli-
cated, since it involves an optimisation over a family of infinite-dimensional quantum channels. A very
useful tool in this setting is the extremality property of Gaussian states, which essentially asserts that
the supremum of χ(B;E) in Eqn. (1.1) is upper bounded by the value of χ(B;E) computed for the
Gaussian state ρGABE with the same covariance matrix as ρABE , the tripartite state shared by Alice,
Bob and Eve[GC06; NGA06]. In other words, it is bounded by a function that only depends on the
covariance matrix of ρABE , and even on the covariance matrix of ρAB since the map MB→Y is fixed
by the protocol and ρABE is an arbitrary purification of ρAB. The covariance matrix of ρAB is defined
as

Γ :=


⟨x̂2A⟩ρ

1
2⟨{x̂A, p̂A}⟩ρ

1
2⟨{x̂A, x̂B}⟩ρ

1
2⟨{x̂A, p̂B}⟩ρ

1
2⟨{p̂A, x̂A}⟩ρ ⟨p̂2A⟩ρ

1
2⟨{p̂A, x̂B}⟩ρ

1
2⟨{p̂A, p̂B}⟩ρ

1
2⟨{x̂A, x̂B}⟩ρ

1
2⟨{x̂B, p̂A}⟩ρ ⟨x̂2B⟩ρ

1
2⟨{x̂B, p̂B}⟩ρ

1
2⟨{p̂B, x̂A}⟩ρ

1
2⟨{p̂B, p̂A}⟩ρ

1
2⟨{p̂B, x̂B}⟩ρ ⟨p̂2B}⟩ρ


where we assume again without loss of generality that the first moment of the displacement operator
vanishes.

Symmetry arguments (see e.g. Appendix D of Ref. [Lev15]) show that Γ can be safely replaced by
Γ′ when computing the secret key rate, with

Γ′ :=

[
V 12 ZσZ
ZσZ W12

]
where the real numbers V,W,Z are given by

V :=
1

2
(⟨x̂2A⟩ρ + ⟨p̂2A⟩ρ) = 1 + 2 tr

(
ρâ†â

)
,

W :=
1

2
(⟨x̂2B⟩ρ + ⟨p̂2B⟩ρ) = 1 + 2 tr

(
ρb̂†b̂

)
,

Z :=
1

4

(
⟨{x̂A, x̂B}⟩ρ − ⟨{p̂A, p̂B}⟩ρ

)
= tr

(
ρ(âb̂+ â†b̂†)

)
,

and σZ is the Pauli matrix diag(1,−1). The Holevo information χ(Y ;E) computed for the Gaussian
state with covariance matrix Γ′ is given by

χ(B;E) = g

(
ν1 − 1

2

)
+ g

(
ν2 − 1

2

)
− g

(
ν3 − 1

2

)
, (173)
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where g(x) := (x + 1) log2(x + 1) − x log2(x), ν1 and ν2 are the symplectic eigenvalues of Γ′ and ν3
depends on the choice of measurement setting (homodyne or heterodyne). The value of ν3 is given by

ν3 = V − Z2

W+1 in the heterodyne case and ν3 =
√
V (V − Z2

W ) in the homodyne case [Wee+12].

Security of Gaussian protocols The first CV QKD protocols for which a security proof was
elaborated are those where Alice prepares coherent states with a Gaussian modulation5. In that case,
the measurement performed by Alice in the EB protocol is a Gaussian measurement, and the observed
statistics are therefore sufficient to infer the covariance matrix. The Devetak-Winter bound can thus
be computed exactly. Moreover, the phase-space symmetries of this protocol allow one to apply the
Gaussian de Finetti theorem which asserts that Gaussian attacks are asymptotically optimal [Lev17;
Lev18]. In other words, forgetting for the moment about finite-size effects, one can simply assume that
the unknown channel between Alice and Bob is the Gaussian channel compatible with the statistics
observed by Alice and Bob.

Other protocols Unfortunately, a Gaussian modulation is merely a theoretical idealisation since in
practice modulators have a finite range and precision, meaning that the true number of states possibly
available is finite. For instance, if the modulator has 8 bits of precision, we get 28 = 256 values per
quadrature and 216 = 65 536 possible coherent states. While this number certainly looks large, is it
really the case that a CV QKD protocol with this many states automatically inherits the security
guarantees derived for a Gaussian modulation? Ref. [KGW21] looked at this specific question and
found that, modulo some mild additional assumptions, it seems likely that the asymptotic secret key
rate would be close to that of the Gaussian modulation for constellations of size greater than 5000.
The approach there is to show that if the constellation is sufficiently close to the Gaussian one, then
it is possible to exploit continuity bounds on the secret key rate together with the established security
proofs for the Gaussian modulation in order to get reasonable numerical bounds for the secret key
rate, when the constellation is large enough. This method, however, does not seem well-suited to
address the case of significantly smaller constellation sizes.

At the other end of the spectrum, it is tempting to drastically reduce the number of coherent
states in the constellation to simplify as much as possible the hardware requirements of the protocols
as well as the reconciliation procedure (where Alice and Bob extract a common raw key from their
correlated data). Protocols with 2, 3 or 4 coherent states have been considered in the literature and
are part of the general class ofM -PSK (phase-shift keying) protocols where Alice sends coherent states
of the form |αk⟩ = |αe2πik/M ⟩ for some α > 0 [Hir+03; LKL04; HL07; LG09; Zha+09; SL10; BW18;
Mat+21; PP21]. While M = 2 or 3 appear to be too small to yield good performance, the 4-PSK
(also known as quadrature phase-shift keying, QPSK) modulation scheme has attracted some interest
since it performs reasonably well, although quite far from a Gaussian modulation.

In Chapter 1, we will derive analytical bounds on the asymptotic secret key rate of continuous-
variable quantum key distribution with an arbitrary modulation of states.

0.3 Quantum error correction

Since Chapters 2 and 3 of this thesis deal with bosonic error correction, let us now turn to presenting
the basics of quantum error correction. While continuous-variable quantum key distribution and
bosonic error correction are rather distant fields, they both rely on the use of bosonic systems. As
a result, the mathematical and physical notions at hand are very similar. In particular, most of the
material presented in this section heavily uses the properties of bosonic systems introduced in Sec. 0.1,
as was true for Sec. 0.2.

5Another CV QKD protocol with a full security proof relies on the exchange of squeezed states, combined with a
homodyne measurement for Bob (that is, Bob measures only one of the two quadrature operators). This protocol is
however significantly less practical than protocols with coherent states [CLV01; Fur+12].
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0.3.1 Quantum error correction and fault tolerance

0.3.1.1 Errors in quantum computers

The need for error correction To perform a quantum computation successfully, it is necessary
to have access to

• quantum systems on which the data can be encoded, for instance two-level systems (qubits) or,
more generally, d-dimensional systems (qudits),

• quantum gates to perform operations on the quantum systems,

• measurements to recover some information about the result of the computation at the end.

However, in practice all of these elements will be imperfect. Quantum systems are very sensitive to
interactions with the environment. These unwanted interactions are referred to as “noise”. They phys-
ically modify the state of the system which, at the logical level, results in errors in the computations.
This limits the number of operations that can be performed on quantum computers. For instance, if
gates are correctly applied 99% of the time, this means that, on average, an error will be introduced
after the application of 100 gates. This is far from enough if one wants to perform useful quantum
computations. For instance, reference [Yam+23] estimated that about 1011 gates would be necessary
to factor a 1024-bit integer using Shor’s algorithm. Taking the problem at its roots, the goal is to
try and isolate the system as much as possible from the environment. However, in general, there is a
trade-off between the stability (avoiding noise), and the controllability (being able to perform logical
operations) of the system. It is indeed hard to have a system that can easily be made to interact
with another system to perform a logical operation but that otherwise does not interact with the
environment. It is thus expected that errors will remain a problem even when the hardware improves.

Encoding and decoding maps The general idea to correct errors in a system S is to introduce
redundancy. The state of S is thus encoded into another, bigger system C, called a code, that contains
more information than what is strictly necessary to describe the state of S. We will denote this
encoding operation as E . When a noise channel N affects the code C this extra information can be
used to recover the original state of C. A recovery operation R is then added to try and suppress the
errors introduced. Finally, a decoding operation D, inverse to the encoding one is applied. With a
little word abuse, it is common to call either “recovery” or “decoding” the composition of the recovery
and the decoding channels. Ideally, the composition channel D ◦ R ◦ N ◦ E should be equal to the
identity so that one exactly recovers the original state of the system. Let us now see the conditions
for the existence of a recovery operation such that this is the case.

Error-correction criterion Let C be a quantum error-correcting code and let PC be the projector
onto this code-space. The Knill-Laflamme conditions [KLV00] state that there exists a recovery
operation that exactly corrects for the set of errors {Ek}, on the code space if and only if there exists
a Hermitian matrix with entries αi,j such that for all i, j

PCEi
†EjPC = αi,jPC . (174)

Introducing an orthonormal basis {|µℓ⟩} of the code space, Eq. 174 can be rewritten

⟨µℓ|Ei†Ej |µm⟩ = αi,jδℓm. (175)

To better see the intuition behind this criterion, it is useful to break it down into two conditions.
When the two basis states are different, the theorem imposes that,

⟨µℓ|Ei†Ej |µm⟩ = 0 (if ℓ ̸= m), (176)

i.e., that for the error states Ei |µℓ⟩ and Ej |µm⟩ are orthogonal. This is the condition for two states
to be perfectly distinguishable. So Eq. 176 means that one should always be able to distinguish two
different basis states even when they are affected by the errors.
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The second condition is that

⟨µℓ|Ei†Ej |µℓ⟩ = αi,j (177)

is independent of the code-word |µℓ⟩. If αij = 0 a measurement will allow to perfectly distinguish the
two errors Ei and Ej . However, it is not always necessary to distinguish all the possible errors as some
of them may be equivalent in the sense that they transform the codewords in the same way. In other
words, two different errors may still be identical when restricted to the code space. The condition
Eq. 177 leaves room for this option.

Moreover, one can use the Knill-Laflamme conditions to show that if a set of errors is correctable,
then any linear combination of these will also be correctable. This is an extremely important result
as contrary to the classical case, a qubit may be affected by a continuum of logical errors. The Knill-
Laflamme conditions show that it is nonetheless sufficient to correct for a basis of error gates to correct
for all possible errors. In particular, since any unitary operator on a qubit can be expanded into the
Pauli basis it means that to correct an arbitrary unitary error on a single qubit one only needs to
correct for the Pauli errors X, Y and Z. In fact, it is even only necessary to correct for the X and
Z-type errors because a Y = −iXZ error corresponds to the simultaneous occurrence of a Z and an
X error.

0.3.1.2 Quantum fault-tolerance

Noisy recovery operations and logical gates In practice, the operations involved in the coding
and the decoding processes are also affected by noise and are thus imperfect. This means that when
trying to correct for errors, one is in fact also adding more errors. For this reason, the errors need to
be corrected faster than they appear. To do so, it is important to design fast decoding strategies and
to design gates that do not spread too much the errors onto multiple qudits. Moreover, the quantum
gates now need to be performed at the level of the logical qudits to perform computations. The goal
of quantum fault-tolerance is thus two-folded: one needs to find a way to perform error correction
with noisy recovery operations and to perform logical operations on the encoded state without losing
the protection against errors. An accessible introduction to this topic can be found in [Got09].

Transversal gates are central to the topic of fault-tolerant gates for multi-qudit codes. By definition,
these gates can be written as a tensor product of ⊗iUi unitaries, each of which acts on one or two
physical qudits. In other words, the transformation on the logical qudit is achieved by applying a
gate on each of the physical qudit in the code. Since any of the Ui can propagate an error to at most
one qudit (the one it is acting on) such gates are naturally fault-tolerant. But is it possible at all to
achieve fault-tolerance? The answer is yes and it is provided by the threshold theorem. A not so good
news, however, is that the operations that can be performed transversally are limited. This no-go is
known as the Eastin-Knill theorem.

The Eastin-Knill theorem The Eastin-Knill theorem forbids the existence of a quantum code
that can correct errors and for which a universal gate set can be implemented transversally [EK09].
Fortunately, transversal gates are not the only possible way to achieve fault-tolerance. One may for
instance use magic state distillation to achieve universality. Another possibility is to switch between
two or more quantum codes depending on the operation that needs to be applied. This method is
known as code-switching.

The threshold theorem The threshold theorem [AB97] states that if the noise level is below some
constant threshold, the logical error rate can be suppressed to an arbitrarily low value. More precisely,
a circuit with perfect qubits and gates can be replaced by a fault-tolerant circuit performing the same
operations but with imperfect qubits. The number of noisy qubits necessary is poly-logarithmic in the
number of perfect qubits. The time overhead is also polylogarithmic. In practice, the spatial resource
overhead is very large. For instance, Shor’s algorithm implemented with perfect hardware could break
current RSA keys using a few thousands qubits, but millions or even thousands of physically-realistic
qubits may be needed to perform the same task. The constant threshold under which it is possible
to achieve fault-tolerant quantum computing depends on the specific code used. It is thus important
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to look for codes with high thresholds to make error correction more practical. Likewise, the spatial
polylogarithmic overhead may also be reduced by using suitable codes.

0.3.1.3 Multi-qudit codes and bosonic codes

The fight against errors One can tackle the noise and its effects at different levels. To ease the
explanation, let us first focus on the classical case. Classically, the information is encoded into strings
of bits that can either take the value 0 or 1. The only error that can occur is that a bit 0 is transformed
into a bit 1 and vice versa. This is called a bit flip. The simplest code to correct for such an error is
the repetition code. Each bit is copied three times: a zero is encoded into a string of three zeros and a
one into a string of three ones (0̄ = 000, 1̄ = 111). If the logical bit is a 0 and a bit flip occurs on one
of the three physical bits, the initial value can be recovered by a majority vote. Note however that if
two bit flips happen, the majority vote will decode the bit as a 1̄ instead of a 0̄, leading to a logical
error. But, assuming that the bit flip error rate is lower than 1/2, on average the encoding results in
a reduced logical error rate. It is also possible to design bits that have some intrinsic resistance to bit
flips. For instance, one may represent a 0 by an electric signal of 0 volt and a 1 by an electric signal
of 10 volts. If the signal suffers from variations the value observed for a bit will not precisely be 0 volt
nor 10 volts. However, assuming the noise is not too important, one can always interpret any value of
intensity smaller than 5 volts as a 0 and any value larger than 5 volts as a 1. This second situation
deals with continuous errors and can thus be called a continuous encoding. Any number from the
interval [0V, 5V ] will for instance be decoded as a 0. This contrasts with the three-bit repetition code,
where only a finite number of options (000, 001, 100, 010) would be decoded as a 0.

The situation is similar in the quantum case. One can try to detect and correct the logical errors
once they have occurred. Similarly to the classical repetition code example, this is often done by
encoding each data qubit into several “physical” qubits. More generally, it is also possible to encode a
group of k logical qubits into n physical qubits, with n > k. Such codes are called multi-qubit codes.
The advantage of this technique is that it is quite general and can be used on different quantum
computing devices. However, one can also try to exploit the distinctive features of the hardware at
hand to design error-correcting codes specifically suited for a certain type of platform. In that case,
one studies the main physical sources of noise and the way they modify the system to define qubits that
are intrinsically resilient to their effects. Bosonic qubits, which are codes encoding the information
into bosonic modes (see Sec. 0.1.1) are examples of this type. Of course, the different quantum error
correcting techniques can be combined: one can encode a qubit into several bosonic qubits. The
bosonic code first projects the continuous errors onto no-error or onto discrete errors these remaining
discrete errors are then corrected by the multi-qubit code.

The Knill-Laflamme conditions (Eq. 174) hold for both the multi-qudit codes and the bosonic
codes. What will differ however is the type of errors considered. In the multi-qubit case, one typically
look at Pauli errors, such as X or Z gates, that may unintentionally affect a qubit in the code. In the
bosonic case, one usually considers loss and dephasing errors, âℓ and n̂ℓ. It is also possible to consider
quantum channels. The error set examined then consist of the Kraus-operators of the channel. In
the multi-qudit case, one may for instance consider the depolarising channel corresponding to the
probabilistic occurrence of Pauli errors, amplitude damping which models the decay of an excited
state, or phase damping describing the environment scattering off of the qubit. In the bosonic case,
one usually looks at the loss and dephasing channels, which are the two most prevalent sources of
noise in bosonic systems. We will see that it is also useful to consider the Gaussian-random-shifts
channel when studying a certain type of bosonic codes known as GKP codes.

Multi-qubit codes Multi-qubit codes encode k logical qubits (forming a 2k-dimensional Hilbert
space) into a n physical qubits (forming a 2n-dimensional Hilbert space). A Pauli error is an error
P1 ⊗ . . . ⊗ Pn where each Pi is either an I, an X, a Y or a Z Pauli gate applied on the i-th qubit
of the code. The weight of such an error is its number of non-identity Pauli elements of Pi ̸= I. An
important feature of the code is its distance. It is defined as the minimum weight of the Pauli errors
that will go undetected. A code encoding k logical qubits into n physical qubits with distance d is
generally called an Jn, k, dK-code.
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So far, two multi-qubit codes have attracted a lot of attention from the experimental point of
view. The first and probably most studied one is the planar surface code [BK98]. The latter encodes
one logical qubit into L2 physical qubits and achieves a distance L. A distance-5 surface code has
been implemented in 2022 by Google [AI23]. Another family of codes of current experimental interest
is the colour codes [Kub18]. Its smallest instance (in terms of the number of physical qubits used),
Steane code [Ste96], has been implemented by Honeywell in 2021 [Rya+21]. With just 7 physical
qubits used to encode one logical qubit Steane’s code is among the smallest code correcting arbitrary
single-qubit Pauli errors, the minimum being 5 physical qubits. It is clear that the number of qubits
necessary to encode the information and protect it from the noise effects results in a large resource-
overhead compared to performing the computation with ideal qubits. This is even more true because
in addition to the qubits used in the multi-qubit codes, ancillary qubits are also needed. Indeed, since
measurements destroy the information, it is not possible to observe the encoded quantum state to
decide which decoding procedure should be adopted. Instead, ancillary qubits are entangled to the
data qubits and measured to get a “syndrome” from which the most likely error is inferred. Planar
surface codes are examples of quantum low-density parity check (QLDPC) codes [MMM04], a class
of codes for which the syndrome extraction can be done efficiently. However, the ratio n

k of physical
qubits used per logical qubit in the surface code rapidly increases with the size of the code. It is easy
to find QLDPC codes that have better rates, however, ideally, one is interested in families of codes
with a good scaling for both the rate and the distance. There currently are three known families
[PK22; LZ22; Din+22] of asymptotically good QLDPC codes Jni, ki, diK, satisfying

lim
i→+∞

ki
ni
> 0, (178)

lim
i→+∞

di
ni
> 0. (179)

However, such codes are very non-local, in the sense that they require a large number of distant qubits
to interact, which is an extremely challenging task to perform experimentally. Moreover, the results
are only asymptotic and one still lacks a practical QLDPC code with a reasonable size.

Bosonic codes As already mentioned, the main idea of any error-correcting code is to build re-
dundancy by encoding the information into a larger Hilbert space and then using this redundancy to
recover the information that has been corrupted by noise. In multi-qubit codes, the redundancy comes
from the use of several finite-dimensional spaces. Another proposal is to encode the logical qubit in
a single infinite-dimensional physical system, corresponding to one or several bosonic modes. This is
the idea of bosonic codes. Pedagogical introductions on the topic of bosonic coding can for instance
be found in [Alb22], [Noh20], and [Alb+18].

One of the advantages of this technique over multi-qubit codes is that it creates redundancy without
introducing additional decay channels. The use of bosonic platforms is therefore hardware-efficient for
certain tasks and the resource-overhead of error correction is reduced [Alb22]. Moreover, even though
the study of bosonic codes is more recent than that of multi-qubit codes, the former have rapidly
made important experimental progress. The break-even point is the point where the lifetime of the
logical error-corrected qubit becomes larger than that of the best physical qubit of the system. In
other words, it is the point where the use of the error-correcting code starts improving the lifetime
of the qubit. Cat codes, a type of bosonic error correcting codes, were the first among all quantum-
error-correction codes to achieve break even. So far, three types of bosonic codes have exceeded the
break-even point: cat codes in 2016 [Ofe+16] and GKP [Siv+23] and binomial codes [Ni+23] in 2022
with a quantum-error-correcting gain

G =
lifetime of the error corrected logical qubit

lifetime of the best physical qubit
(180)

of, respectively 1.1, 2.2 and 1.16. For a single-mode bosonic encoding, the best uncorrected physical
qubit is the span of the two first Fock states as this qubit is the most resilient against photon loss.
This is known as the single-rail encoding and it serves as a comparison point for all error-correcting
bosonic codes.
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One of the interests of bosonic codes lies in their use in concatenated schemes. As already men-
tioned, bosonic codes can serve as good physical inner qubits in multi-qubit codes. Since the probability
that each specific qubit has undergone an error is known, this analogue information can be wisely used
to improve the decoding performances of the outer code [Alb22]. The use of bosonic qubits biased
towards a certain type of noise (X errors or Z errors) in concatenated schemes may also prove to
be particularly helpful in achieving fault-tolerance. While there exist both bosonic and multi-qubit
biased codes, for multi-qubit codes certain logical gates are impossible to construct in a way that the
noise bias is preserved after applying these gates. On the other hand, bosonic codes can circumvent
this no-go theorem. More precisely, it is impossible to construct a CNOT gate using a Hamiltonian-
based bias-preserving rotation for qubit codes [AP08], whereas such bias-preserving CNOT gates can
be obtained for certain bosonic codes, such as the two-component cat code [Pur+20]. Regarding code
concatenation, it is also possible to perform a mode-into-mode encoding [NGJ20; Xu+23b]. Another
example of no-go theorem that is circumvented by the use of oscillators has to do with the Eastin-Knill
theorem which states that a finite-dimensional multi-qubit code detecting few-qubit errors cannot have
a continuous-parameter set of transversal gates. On the other hand, bosonic codes can have arbitrarily
large transversal-gate families [Fai+20].

Several bosonic codes have been studied in the literature. They are generally tailored towards the
prevailing sources of noise in bosonic systems. The next section is dedicated to a presentation of some
of the most famous examples of bosonic codes, including the GKP, cat and binomial codes. Reference
[Alb22] highlights many more codes and the error-correcting zoo [AF23] lists all of them.

0.3.2 Examples of bosonic codes

Bosonic encodings use either one or several bosonic modes. So far, single-mode codes have been the
most studied. They can broadly be divided into two non-exclusive categories: the GKP codes are
based on discrete-translation symmetry and the rotation-symmetric codes are based, as their name
indicates, on discrete-rotation symmetry. Let us first focus on these two categories, before mentioning
some multimode generalisations.

0.3.2.1 Single-mode GKP codes

GKP codes [GKP01], named after their three authors, Gottesman, Kitaev and Preskill, were the first
bosonic codes to be introduced. Although originally introduced for the protection against Gaussian
random-shift displacements, they also offer a remarkable protection against bosonic loss.

Construction of ideal GKP states While the quadrature operators q̂ and p̂ do not commute
because of Heisenberg uncertainty principle,

Ŝq := ei
√
2πq̂ and Ŝp := e−i

√
2πp̂ (181)

do. The quadrature operators can thus be perfectly measured simultaneously modulo
√
2π. Since Ŝq

and Ŝp commute they can be simultaneously diagonalised. Their +1 eigenspace is two-dimensional
and defines the square-GKP qubit [Noh20]. More generally, reference [GP21] shows that from any two
complex numbers α, β ∈ C such that

βα∗ − β∗α = iπ, (182)

one can define the generalised quadrature operators,

Q̂ = −i
√

2

π
(βâ† − β∗â), P̂ = i

√
2

π
(αâ† − α∗â), (183)

satisfying [Q̂, P̂ ] = 2i and define a GKP-qubit as the two-dimensional space stabilised by

ŜQ := D̂(2β) = ei
√
2πQ̂ and ŜP := D̂(2α) = e−i

√
2πP̂ . (184)
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A basis for this qubit is given by

|0L⟩ =
+∞∑
j=−∞

|2j
√
2π⟩Q̂ , (185)

|1L⟩ =
+∞∑
j=−∞

|(2j + 1)
√
2π⟩Q̂ , (186)

and the states defining the dual basis are

|+L⟩ =
|0L⟩+ |1L⟩√

2
=

+∞∑
j=−∞

|2j
√
2π⟩P̂ , (187)

|−L⟩ =
|0L⟩+ |1L⟩√

2
=

+∞∑
j=−∞

|(2j + 1)
√
2π⟩P̂ , (188)

where |x⟩Ô is an eigenstate of Ô with eigenvalue x. It is easy to see from Eqs. 185 and 186 that the

qubit is indeed stabilised by ŜQ and from Eqs. 187 and 188 that it is also stabilised by ŜP . There is
an alternative expression for these states. Note first, that the displacement operators

X̄ = D̂(α) = e−i
√

π
2
P̂ , Z̄ = D̂(β) = ei

√
π
2
Q̂ (189)

act as a logical X and a logical Z on the qubit. Observe further that the vacuum state |0⟩ has non-zero
overlap with |0L⟩ therefore the state

∑+∞
k,ℓ=−∞ ŜkP Z̄

ℓ |0⟩ is stabilised by ŜQ = D̂(2β), ŜP = D̂(2α) and

Z̄ = D̂(β) and hence is proportional to |0L⟩, with non-zero proportionality coefficient. The states of
Eq. 185 can therefore be re-expressed as a weighted superposition of coherent states forming on the
complex plane a lattice generated by α and β:

|0L⟩ ∝
+∞∑

k,ℓ=−∞
ŜkP Z̄

ℓ |0⟩ (190)

=

+∞∑
k,ℓ=−∞

D̂k(2α)D̂ℓ(β) |0⟩ (191)

=
+∞∑

k,ℓ=−∞
D̂(2kα)D̂(ℓβ) |0⟩ (192)

=
+∞∑

k,ℓ=−∞
ekαℓβ

∗−kα∗ℓβD̂(2kα+ ℓβ) |0⟩ (193)

=

+∞∑
k,ℓ=−∞

e−iπkℓ |2kα+ ℓβ⟩ , (194)

|1L⟩ = X̄ |0L⟩ (195)

= D̂(α) |0L⟩ (196)

∝
+∞∑

k,ℓ=−∞
e−iπ(kℓ+

ℓ
2
) |(2k + 1)α+ ℓβ⟩ (197)

Both logical states live on a sub-lattice. Two choices for (α, β) have received particular attention:

α =

√
π

2
, β = i

√
π

2
(198)
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corresponds to the usual quadrature operators Q̂ = q̂, P̂ = p̂ and yields a square lattice, while

α =

√
π√
3
, β = e2iπ/3

√
π√
3

(199)

yields an hexagonal lattice.
The GKP states defined so far have infinite energy and as such are not physical. They are indeed

superpositions of infinitely many infinitely squeezed states. In practice, one needs to consider some
approximate versions of the ideal GKP states. This is typically done by introducing a Gaussian
envelope to make the states normalisable [GP21],

|µ̃L⟩ ∝ e−∆2â†â |µL⟩ , (200)

where µ ∈ {0, 1}, and the ideal limit corresponds to ∆ → 0.
GKP qudits can also be constructed in a similar way as GKP qubits by considering generalised

stabilisers [Noh20].

Protection against noise The protection achieved against Gaussian random-shifts with GKP
qubits is very intuitive. Measuring the position and momentum modulo

√
2π enables to detect a

potential erroneous shift in the position and momentum. Assuming this shift is smaller than the
lattice step, it can be corrected by applying the counter displacement operation. In that case, each
coherent state in the sub-constellations are shifted back to the closest points in the original sub-lattice.
If, however, the shift error is bigger than the step in P̂ quadrature (resp. in the Q̂ quadrature), the
decoding will result in a logical X error (resp. a logical Z error). In the square lattice case, assum-
ing erroneous shifts are as likely in any direction of phase-space, the robustness against Y errors is
stronger than that against X or Y errors since the diagonal of a square is larger than its side. For an
hexagonal lattice, on the other hand, the logical X, Y and Z error rates are identical. A more careful
analysis of the error-correcting properties of GKP codes is presented in reference [Noh20]. The previ-
ous arguments explain why GKP codes are so resistant against additive Gaussian noise errors. While
we have seen that this error model is not realistic, it can be decomposed into loss and amplification
[Noh20]. As a result, GKP codes are also very robust against loss. In fact, there are strong arguments
suggesting that the hexagonal GKP code is the single-mode code that achieves the highest protection
against loss, as we will see in Sec. 0.3.3.

The concatenation of GKP qubit with multimode codes is also a topic attracting a lot of attention.
For instance, the GKP code has been used as an inner code for concatenation with a surface code.
More recently, a theoretical proposal also showed that the concatenation of GKP code with generic
quantum-low-density-parity-check can significantly increase the performance [Rav+22] of the decoding.

Gates, measurements and state preparation As already mentioned, the logical Pauli operators
can be implemented with Gaussian unitaries,

X = D̂(α), Z = D̂(β), Y = iXZ = iD̂(α)D̂(β) (201)

More generally, all one and two-qubit gates from the Clifford group ⟨H,S,CNOT ⟩ can be implemented
with Gaussian unitaries [GP21],

H = ei
π
4
(Q̂2+P̂ 2), S = e(i/2)Q̂

2
, CNOT = eiQ̂⊗P̂ . (202)

However, for approximate GKP codes, all these gates are only approximate logical gates. To get a
universal set, one needs in addition to be able to perform a non-Clifford gate, such as the T gate. This
is generally done through magic state distillation [GP21].

Pauli measurements can be performed (destructively) by measuring the quadratures: a measure-
ment in the canonical basis (|0L⟩ , |1L⟩) is done by measuring P̂ and a measurement in the dual basis
(|+L⟩ , |−L⟩) by measuring Q̂, for instance using homodyne detection (see Sec. 0.1.3). Alternatively,
phase estimation can be used to perform the measurements in a non-destructive way [GP21].
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The task of state preparation, however, is more complex. It has nonetheless been demonstrated
experimentally. It can be done by non-destructively measuring the stabilisers and a logical Pauli (for
a +1 outcome for both ŜP and Z̄ yields a |0L⟩ state) with techniques inspired from phase estimation
[GP21].

In summary, single-mode GKP qubits are very good at correcting loss, their entangling Clifford gate
(the CNOT ) is Gaussian and hence easy to realise and their Pauli measurements are also Gaussian.
Remarkably, assuming one can prepare GKP-encoded Pauli states, Gaussian operations are enough to
achieve fault-tolerant, universal quantum computing [Bar+19]. However, the hard part remains the
very first one, that of state preparation.

0.3.2.2 Rotation-symmetric codes

General construction and gates The class of rotation-symmetric codes was introduced in [GCB20]
and encompasses several important bosonic codes. An order-N rotation-symmetric code is a single-
mode bosonic code such that the operator

ẐN := e
iπn̂
N (203)

which performs a rotation of angle θ = in phase-space, performs a logical Pauli operation on the code.
Without loss of generality, we assume this Pauli operation to be a Z-operation since one can always
go back to that case through a suitable basis choice. Any code of that type can be constructed from
superpositions of a normalised primitive state |Θ⟩ rotated in phase-space,

|0N,Θ⟩ =
1

N0

2N−1∑
m=0

ei
mπn̂
N |Θ⟩ (204)

|1N,Θ⟩ =
1

N1

2N−1∑
m=0

(−1)mei
mπn̂
N |Θ⟩ , (205)

where N0 and N1 are normalisation factors. To be well-defined, the primitive state |Θ⟩ must have
support on at least one number state |2kN⟩ for a certain integer k and at least one number state
|2(ℓ+ 1)N⟩ for a certain integer ℓ.

The discrete rotational symmetry of these codes also implies a particular structure in the Fock
basis. Indeed, a state |ψ⟩ =

∑
n∈N an |n⟩ is a +1 eigenstate of ẐN if and only if an = 0 for all n that is

not an even multiple of N (n ̸= 2kN for an integer k). Similarly, |ψ⟩ =
∑

n∈N an |n⟩ is a -1 eigenstate

of ẐN if and only if an = 0 for all n that is not an odd multiple of 2N (n ̸= (2k + 1)N for an integer
k). The basis states thus have the general form

|0N ⟩ =
∑
k∈N

a2kN |2kN⟩ , (206)

|1N ⟩ =
∑
k∈N

a(2k+1)N |(2k + 1)N⟩ . (207)

The structure of bosonic codes in phase-space and in Fock space gives good hints on the errors
that are detectable by the code, although it is not sufficient by itself to guarantee that the errors will
be correctable. This will depend on the specific primitive |Θ⟩ considered [GCB20]. Intuitively, the
argument for the protection against bosonic dephasing is the following. The effect of dephasing noise
is to randomly rotate the states in phase-space. But if the rotation shift is small compared to the
rotation spacing of the two basis states |0L⟩ and |1L⟩, the erroneous states will remain distinguishable.
Similarly, loss results in a number-shift but, if this shift is small compared to the code number spacing,
the error is detectable. There is, however, a trade-off between the correction of these two error channels
since whenever the number-phase spacing N increases, the spacing dθ =

θ
N in rotation decreases.

By definition of the rotational symmetric codes, their logical operator Z̄ = ZN = e
iπn̂
N is imple-

mented by a Gaussian unitary. Moreover, the controlled rotation

CROT = ei
π

N2 n̂1⊗n̂2 (208)
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implements a logical controlled-Z operation C̄Z . Indeed, for all k, ℓ ∈ N,

CROT |2kN⟩ |2ℓN⟩ = eiπ(4kℓ) |2kN⟩ |2ℓN⟩ = |2kN⟩ |2ℓN⟩ ,

CROT |2kN⟩ |(2ℓ+ 1)N⟩ = eiπ(2k(2ℓ+1)) |2kN⟩ |2ℓN⟩ = |2kN⟩ |(2ℓ+ 1)N⟩ ,

CROT |2(k + 1)N⟩ |2ℓN⟩ = eiπ((2k+1)2ℓ) |2kN⟩ |2ℓN⟩ = |2(k + 1)N⟩ |2ℓN⟩ ,

CROT |2(k + 1)N⟩ |(2ℓ+ 1)N⟩ = eiπ((2k+1)(2ℓ+1)) |2kN⟩ |2ℓN⟩
= − |2(k + 1)N⟩ |(2ℓ+ 1)N⟩ .

Hence equations 206 and 207 give

CROT |iN ⟩ |jN ⟩ = (−1)ij |iN ⟩ |jN ⟩ = C̄Z |iN ⟩ |jN ⟩ . (209)

Similarly, the logical S = diag(1, i) gate can also be implemented with a Hamiltonian quartic in the
annihilation and creation operators,

S̄ = SN := ei
π

2N2 n̂
2

(210)

since for all k ∈ N,

ei
π

2N2 n̂
2

|2kN⟩ = ei2k
2π |2kN⟩ = |2kN⟩ (211)

ei
π

2N2 n̂
2

|2(k + 1)N⟩ = ei
π
2
(2k+1)2 |2(k + 1)N⟩ = i |2(k + 1)N⟩ . (212)

Assuming a |+N ⟩ = |0N ⟩+|1N ⟩√
2

can be prepared and together with magic state distillation of a |TN ⟩ =
|0N ⟩+ei

π
4 |1N ⟩√
2

and measurement in the (|+N ⟩ , |−N ⟩) basis, this leads to a universal set of operations

[GP21].

Cat codes Cat codes are rotational bosonic codes constructed from a primitive state which is a
coherent state |α⟩. For N = 1, this yields a code with an underlying constellation of two coherent
state, |α⟩ and |−α⟩. The code is called a two-component cat qubit (or two-legged cat) and a basis is

|0kitten⟩ ∝ |α⟩+ |−α⟩ , (213)

|1kitten⟩ ∝ |α⟩ − |−α⟩ . (214)

This code is very resistant against dephasing. However, the code cannot correct loss errors. The
spacing between |0kitten⟩ and |1kitten⟩in the number basis is indeed of only 1 and a single loss error
causes a bit flip. At the logical level, the resistance against dephasing translates into a resistance
against phase-flips.6 In fact, the phase-flip is exponentially suppressed as α increases, while bit-flips
only increases linearly with α. As a result, the code exhibits a strong bias towards bit-flip errors. An
attractive feature of the code is that the error correction can be performed in an autonomous way, by
stabilising the space spanned by the underlying constellation of coherent states, with an engineered
dissipation, instead of performing active measurements [Noh20]. With the autonomous quantum-error
correction, ways of performing a universal set of operations in a bias-preserving manner are known.
Two-legged cat qubits can then be concatenated with a multi-qubit code specifically designed to correct
bit-flip errors. This is the idea behind the repetition-cat [GM19]. Such a technique significantly reduces
the amount of resources needed.

Squeezed-cat qubits, relying on a constellation of squeezed coherent states instead of coherent states
have also been considered [HQ23; Xu+23a]. The authors of both papers found that the squeezing
results in an enhanced noise-bias and faster and higher-fidelity gates.

A four-component cat qubit, corresponding to N = 2 admits for basis

|0cat⟩ ∝ (|α⟩+ |iα⟩+ |−α⟩+ |−iα⟩), (215)

|1cat⟩ ∝ (|α⟩ − |iα⟩+ |−α⟩ − |−iα⟩). (216)

6Depending on the convention used for the choice of canonical basis, the role of phase-flips and bit-flips may be
interchanged.
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In that case, both logical states have even excitation numbers. A single-loss excitation event transforms
them into states with odd excitation numbers. Such an error can thus be detected by measuring the
excitation number parity. Autonomous error correcting schemes also exist for the four-component cat
code [Noh20].

The four-component cat code cannot correct multi-photon loss events but generalisations of it can:
a 2d-component cat code using 2d coherent states is robust against excitation loss events involving at
most d photons [Noh20].

Overall, despite their lower efficiency, compared to GKP codes, at correcting loss, cat codes are
a promising option to achieving fault-tolerance. They are indeed very good at correcting dephasing,
which gives them the very desirable feature of being noise biased, and they are also much easier to
implement in practice than GKP states.

Binomial codes Binomial codes [Mic+16] are another example of rotation symmetric codes. They
share many similarities with cat codes but, contrary to the latter, they only occupy a finite number
of the number states. This is relevant for experiments since in practice one only has access to the
space spanned by a limited number of the lowest Fock states [Noh20]. Binomial codes are designed to
provide an approximate protection against errors consisting of powers of the annihilation and creation
operators, up to some maximum power. The binomial states are parameterised by two integers M
and S. The (M,S)-binomial logical codewords are given by

|0(M,S)
bin⟩ =

1√
2M

∑
p even∈J0,M+1K

√(
M + 1

p

)
|p(S + 1)⟩ (217)

|1(M,S)
bin⟩ =

1√
2M

∑
p odd∈J0,M+1K

√(
M + 1

p

)
|p(S + 1)⟩ (218)

and an (L,L)-binomial code can correct any ℓ-excitation loss errors for ℓ ≤ L.

0.3.2.3 Multimode bosonic codes

A natural improvement over concatenated schemes would be to rely directly on multimode bosonic
codes. Such multimode codes are expected to give better performances than their single-mode coun-
terparts, at the price of being more complicated to implement.

Multi-mode GKP So far, the most studied multimode code family is certainly that of multimode
GKP. GKP codes are generalised to multimode codes by considering higher dimensional lattices. The
original GKP paper [GKP01] already mentions this and Harrington’s PhD [Har04] thesis describes
several such codes. Recently, Royer et al. also showed how to perform a universal set of logical
operations for two-mode GKP codes based on the hypercubic and the D4 lattices [RSG22].

Multimode generalisations of cat codes Generalisations of the rotation-symmetric codes to
the multimode case is less straightforward. One notable exception, however, is the pair-cat code
[Alb+19]. This is a two-mode code whose codewords are superpositions of pair-coherent states. It is
robust against dephasing and it also protects the information against arbitrary photon loss in either
(but not simultaneously both) of the modes. The code can also be generalised to a larger number of
modes. Moreover, a universal set of bias-preserving operations developed for the two-component cat
qubit can also be constructed with the pair-cat code [YXJ22].

In Chapter 2 we will introduce and study another two-mode generalisation of cat codes: the 2T -
qutrit, a qutrit whose codewords are superpositions of 24 two-mode coherent states and which inherits
symmetry properties of the group 2T (see section 0.4.2.2 to learn about this group). This code has
been further generalised in a paper by Jain et al. [Jai+23] where quantum spherical codes, bosonic
codes whose codewords are superpositions of states labelled by points on a multidimensional dimen-
sional sphere, are introduced. Finally, in Chapter 3 we present yet another construction of multimode
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cat codes such that a specific group of logical operations is implemented using Gaussian unitaries.

Other multimode codes have also been considered in the literature [BL16; NCS18; OC20].

0.3.3 Benchmarking bosonic codes

0.3.3.1 Entanglement fidelity

In general, bosonic codes are only approximate error-correcting codes for the relevant noise channels.
The Knill-Laflamme conditions are not exactly satisfied. One then needs to assess how close from
ideal the error correction can be. One possible figure of merit that quantifies this is the entanglement
fidelity, a.k.a. the channel fidelity, which is the subject of this section.

The quantum fidelity measures how close two quantum states ρ and σ are. It is defined by

F (ρ, σ) =

(
Tr

(√√
ρσ

√
ρ

))2

(219)

and although not obvious from this definition, it is symmetric. In the special case where ρ = |ϕ⟩ ⟨ϕ| is
a pure state, the fidelity simplifies to

F (|ϕ⟩ , σ) = ⟨ϕ|σ|ϕ⟩. (220)

Since the goal of error correction is to measure how “close” the recovered state is from the original
one, it is natural to choose a metric based on the fidelity. In particular, [FSW07] considers three
common options and argues that the entanglement fidelity is a convenient choice as it can be effi-
ciently computed numerically. The entanglement fidelity measures how well a channel preserves the
entanglement. Consider the following steps:

1. Alice prepares an EPR state

|EPR⟩ = 1√
2
(|0⟩ |0⟩+ |1⟩ |1⟩), (221)

2. Alice keeps one share of the state and she sends the other share to Bob, through a channel C.

The entanglement fidelity of the channel C is defined as fidelity between the final bipartite state
obtained I ⊗ C(|EPR⟩⟨EPR|) and the initial maximally-entangled state,

F (C) = ⟨EPR|I ⊗ C(|EPR⟩⟨EPR|)|EPR⟩. (222)

More generally, one may consider a d-dimensional maximally-entangled state

|ϕd⟩ =
1√
d

d−1∑
k=0

|k⟩ |k⟩ (223)

instead of the EPR state. The choice of a maximally-entangled state as the input state may at first sight
seem arbitrary. However, taking an entangled state is necessary to measure whether the entanglement
is preserved by the channel. Moreover, the entanglement fidelity is related to the averaged input-output
fidelity of a channel, ∫

dψ⟨ψ|C(|ψ⟩ ⟨ψ|)|ψ⟩ = d · F (C) + 1

d+ 1
, (224)

where dψ is a uniform distribution over all pure states. Other useful properties of F (C) are reviewed
in Appendix A of [Alb+18].

The aim of approximate error correction is to find encodings maps such that an encoded state
that undergoes some noisy evolution can get back to a state as close as possible to the original one
by applying a well-chosen recovery operation. The channel of interest is thus the composition of an
encoding channel E , a physically-relevant noise channel N and a recovery operation R. When testing
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the performances of a given encoding, any CPTP map is a valid choice for the recovery operation.
To take the code “at its best” it is natural to consider the recovery that maximises the entanglement
fidelity of the composite channel. The quantity

maxRFR◦N◦E (225)

thus measures how well the encoding E can protect against the noise N and as such it is a suitable
figure of merit to compare various bosonic codes. This was done for the pure-loss channel in [Alb+18].
The results they obtained are shown on Fig. 7. They indicate that for realistic levels of noise, the
GKP codes outperform the numerical and binomial codes.

Figure 7: Panel (c) of Figure 2 from [Alb+18]: Channel fidelity given an optimal recovery operation
and optimised over all instances of each code given under the constraint n̄ ≤ 10. The dotted diagonal
line, drawn for reference, is for the single-rail encoding (whose logical states are the Fock states |0⟩ , |1⟩).
The other code included are the classes of single-mode GKP codes (gkp), square GKP codes (gkps),
cat, binomial and some numericall-optimised (num) codes. While GKP codes perform worse than the
other codes for sufficiently small γ (see inset), they outperform all other codes as γ is increased.

0.3.3.2 Known-results for the single-mode case

To find the best possible encoding, we are interested in computing maxE,R F (R ◦ N ◦ E). This
optimisation problem is typically not amenable to efficient optimisation [Ber+22]. However, optimising
on either the encoding or the decoding map, while the other is maintained fixed, accounts to solving
a semi-definite program (SDP). Such convex optimisation problems, which we review in Section 0.4.1,
can efficiently be solved numerically. The two SDPs are explicitly derived in 2.3.1. This leads to a
natural heuristic where the encoding and decoding maps are iteratively optimised [RW05] (see Fig. 8).
While such an algorithm is not guaranteed to find the best solution, consistently finding the same
optimal result when starting from various initialisation points suggests that the code found is optimal.

Reference [NAJ19] followed this strategy for a pure-loss noise channel and reference [Lev+22]
generalised these results to the case of a joint loss-dephasing channel. In both cases, the search
was done on a truncated single-mode Fock space of the form Span({|n⟩ : n = 0, . . . , nmax}). A
constraint limiting the maximal energy of the codes was also added. The Wigner functions of the
optimal codes obtained using this method for the joint loss-dephasing channel are shown on Fig. 9.
The best-performing single-mode code against loss appears to be the hexagonal GKP code while the
codes achieving the higher level of protection against dephasing are the two-component cat and the
squeezed two component cat codes. These results are consistent with the error-correcting capabilities
of these codes, mentioned in Section 0.3.2.
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Figure 8: Biconvex optimisation procedure to find optimal bosonic codes

0.3.3.3 Other figures of merit

Importantly, the entanglement fidelity is not the only metric that measures the performances of bosonic
codes. While it gives a broad idea of which codes are resistant against a particular noise channel, it
suffers from some limitations. In particular, the optimal recovery may not be experimentally realisable.
Ideally, it would be better to consider the best recovery map that can be practically realised for each
encoding. However, the notion of “practically realisable operations” is not so well-defined and taking
the optimal map has the benefit of considerably simplifying the problem while retaining the advantage
of putting the encodings on an equal footing. Many other reasonable metrics may also be considered,
for instance the maximum number of photon losses or additions that can be corrected perfectly,
as is done in [Jai+23]. Moreover, besides the protection against noise, one also needs to take into
consideration how difficult the code is to realise, which gates can be implemented easily, whether the
code exhibits other interesting features such as noise-bias... which means that one figure of merit alone
is never enough to fairly compare different codes.

0.4 Mathematical tools

In this section, we review some of the mathematical tools that will be used in this thesis, namely
semi-definite programming, group theory and group representation theory.

0.4.1 Semi-definite programming

Semi-definite programs (SDP) are a type of convex optimisation problems that can efficiently be solved
numerically. They have many applications in quantum information. This section is dedicated to a
short presentation of semi-definite programming. We define SDPs and briefly review a few use cases
in quantum information.

0.4.1.1 SDPs in quantum information and in this thesis

Formulation A semi-definite program is a constrained optimisation problem that can be formulated
as

α = sup
X

Tr(CX)

s. t.

{
X ⪰ 0
Tr(AiX) = bi ∀i ∈ J1,mK

(226)

where “sup” stands for “supremum”. The latter turns into a maximum when it is reached. The
objective function X 7→ Tr(CX) is a linear function over the parameter of optimisation, X ≽ 0, which
is an n by n positive semi-definite matrix. The matrix C is a Hermitian matrix and, like the objective
function, the constraints are expressed as traces Tr(AiX), for certain n by n Hermitian matrices Ai.
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Figure 9: Figure 2 from [Lev+22]: Wigner plots of the maximally mixed states for optimal codes. The
codes are obtained using the biconvex optimisation procedure described above, for different rates γ
and γϕ of loss and dephasing, under the energy constraint n̄ ≤ 9. The plotted codes are consistently
obtained from various randomly chosen initial codes. The shaded region represents a low-error range
for which multiple local optima exist with entanglement fidelity approaching unity.

Uses in quantum information Semi-definite programs are ubiquitous in quantum information
[Sik17; SC23]. They can for instance be used to compute the maximal probability with which two
(or more) quantum states can be distinguished by performing some optimal measurements. They also
permit to assess how well a state can be copied (recall that the no-cloning theorem forbids the existence
of a general procedure that perfectly clones states but one may still make approximate copies). Other
applications include calculating the quantum fidelity, proving some properties about it or finding the
closest state to a target state, given certain observed statistics.

Let us now introduce what SDPs will be useful for in this thesis.

Uses in this thesis As seen in 0.2, an important quantity to assess the security of a quantum-key
distribution protocol is the asymptotic secret key rate. In a CV QKD protocol where Alice sends the

states τk with probability pk to Bob, estimating the value of Z := Tr
(
ρ(âb̂+ â†b̂†)

)
, where ρ is the

state shared by Alice and Bob after each use of the quantum channel and â, b̂ are the annihilation
operators, enables to get a bound on the asymptotic secret key rate. To achieve this goal, one can
derive a semidefinite program whose solution is a bound on the variable Z we are looking for. The
objective function gives the value of Z. Then, to get a bound as tight as possible, one needs to impose
some constraints on the possible state ρ. These can be derived from observations done by Alice and
Bob in the practical realisation of the protocol. This is the strategy that we will follow in Chap.1 to
obtain the SDPs 1.12 (when coherent states are exchanged) and 1.63 (in the general case).

As mentioned in 0.3.3, the entanglement fidelity of the channel composed of the encoding and the
noise channels followed by an optimal recovery operation, is an important figure of merit to assess
the performance of a bosonic code against the specified noise channel. To find optimal codes, one
can optimise this quantity over the encoding channel. A heuristic to solve this optimisation problem
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is to iteratively optimise the decoding and encoding maps, while the other map is fixed. It breaks
the problem down into two smaller optimisation problems which can be expressed as semi-definite
programs (Eqs. 2.120, 2.121). We will numerically solve these SDPs to assess the performances of the
bosonic codes we introduce in Chaps. 2 and 3.

0.4.1.2 Theoretical properties

Dual SDP Every SDP has a dual SDP. If the original, or primal SDP is given by Eq. 226, the dual
SDP is

inf
y

n∑
i=1

biyi

s. t.

{ ∑n
i=1 yiAi − C = Z

Z ≽ 0

(227)

where “inf” indicates an infimum. When the infimum is reached, this is a minimum. The optimisation
variable y ∈ Cn is a complex vector of dimension n and entries yi. The matrices C and Ai and the
numbers bi are the same as those appearing in 226. In the next paragraphs, we will see how the
solutions (if any) of the primal and the dual SDPs relate to one another.

Weak duality A semi-definite variable X that satisfies all the constraints of a primal SDP is said
to be a primal-feasible solution. Likewise, a vector satisfying the constraints of a dual SDP is called a
dual-feasible solution. The weak duality theorem states that any feasible solution to a primal problem
is equal or larger than any feasible solution of the dual problem.

Proof. Let X be a feasible solution of the primal problem Eq. 226, and let y be a feasible solution of
the corresponding dual, Eq. 227. Then,

n∑
ℓ=1

bℓyℓ − Tr(CX) =
n∑
ℓ=1

bℓyℓ −
n∑

i,k=1

cikxki (228)

=
n∑

ℓ,k,ℓ=1

aℓikxkiyℓ −
n∑

i,k=1

cikxki (229)

=

n∑
k,i=1

(

n∑
ℓ=1

aℓikyℓ − cik)xki (230)

=
n∑

k,i=1

zikxki (231)

= Tr(ZX) ≥ 0 (232)

where we have introduced cij , xij , a
ℓ
ij and zij the coefficients of the matrices C, X, Aℓ and Z. The

second step (Eq. 228) is obtained by plugging in the expression of bi from the dual problem. The
non-negativity of the trace in the final step (Eq. 232) comes from the positive semi-definiteness of X
and Z.

A direct consequence of the theorem is that the supremum value α of the primal problem Eq. 226
and the infimum value β of the dual problem Eq. 227 satisfy,

α ≤ β. (233)

The distance β − α between the two values is called the duality gap.
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Strong duality A solution X of the primal problem is said to be strictly feasible if in addition
to satisfying all the constraint of the primal SDP, it is positive definite (instead of simply positive
semi-definite). Strictly feasible solutions of the dual problem are defined in an analogous way. The
strong duality theorem states that whenever the primal and dual problems are both strictly feasible,
their optimal values are finite, they are reached (so they are a maximum and a minimum) and are
equal.

0.4.1.3 Solving SDPs

Analytical proofs and numerical solvers Most mathematical proofs involving semi-definite pro-
grams start by introducing an SDP, deriving its dual, exhibiting some feasible or strictly feasible
solutions and the making use of either the weak duality or the strong duality theorems. The weak
duality also implies that whenever a primal feasible value is a and a dual feasible value is b one has

a ≤ α ≤ β ≤ b. (234)

The values a and b thus provide a bound on the solutions of both the primal and dual SDPs. If the
distance between a and b is small, this thus gives accurate estimations of the optimal values. Numerical
solvers thus generally work by maximising the primal optimisation problem and minimising the dual
optimisation problem until the distance between the best values found for the two SDPs is smaller
than the desired precision. This works well when strong duality holds, which is often the case in
practice. When no feasible solution is found, the solvers look for so called “infeasibility certificates”
to prove that the SDP is infeasible. Yet another possibility is that the problem is unbounded, which
is also one of the results a solver may return.

In this thesis, the SCS solver [ODo+16; ODo+17] is used, through the python package cvxpy
[DB16; Agr+18].

Real and complex SDPs A real SDP is defined similarly as the complex case except that the
optimisation variable and other Hermitian matrices are replaced by symmetric matrices. Numerical
solvers can often handle real SDPs only. It is for instance the case of SCS. However, it is possible
to transform a complex SDP into a higher dimensional real SDP. Indeed, the hermiticity of the n by
n complex matrix H = ℜ(H) + ℑ(H), where ℜ and ℑ indicate the real and imaginary parts of the
matrix equivalent to the symmetry of the 2n by 2n real block matrix

S(H) :=

(
ℜ(H) ℑ(H)

−ℑ(H) ℜ(H)

)
. (235)

Indeed, H is Hermitian if and only if ℜ(H) = ℜ(H)T and ℑ(H) = −ℑ(H)T . Note that for any two
2n by 2n matrices A and X, one has

S(AX) = S(A)S(X). (236)

Therefore, if z = a+ bi is a complex number, the constraint Tr(AX) = z is equivalent to

Tr(S(A)S(X)) = 2ℜ(z) (237)

Tr(JS(A)S(X)) = 2ℑ(z), (238)

where we have introduced the block anti-diagonal matrix

J :=

(
0 −In
In 0

)
. (239)

This is because

Tr(S(A)S(X)) = Tr(S(AX)) = 2Tr(ℜ(AX)) = 2ℜ(Tr(AX), (240)

Tr(JS(A)S(X)) = Tr(JS(AX)) = 2Tr(ℑ(AX)) = 2ℑ(Tr(AX). (241)
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Therefore, the following two, n by n complex and 2n by 2n real SDPs, where X is a complex
positive semi-definite optimisation variable, the Ai and C are Hermitian matrices, the bi are complex
numbers, and X ′ is a real positive semi-definite optimisation variable are equivalent:

max
X

Tr(CX)

s.t.

{
X ⪰ 0
Tr(AiX) = bi ∀i ∈ J1,mK

⇐⇒

max
X′

Tr
(
S(C)X ′)

s.t.


X ′ ⪰ 0
Tr(S(Ai)X

′) = ℜ(bi) ∀i ∈ J1,mK
Tr(JS(Ai)X

′) = ℑ(bi) ∀i ∈ J1,mK

In Chapters 2 and 3, we construct codes and study their properties using group theory. Let us
thus recall the key definitions and concepts of group theory and group representation theory.

0.4.2 Group theory

0.4.2.1 Definitions and properties

Definition 0.8. (Group) A group is a set G with an operation ∗ : G×G→ G such that

• ∗ is associative: ∀g, h, k ∈ G, (g ∗ h) ∗ k = g ∗ (h ∗ k),

• G has an identity element: ∃e ∈ G,∀g ∈ G, g ∗ e = e ∗ g = g,

• every element has an inverse: ∀g ∈ G,∃h ∈ G, g ∗ h = h ∗ g = e.

If in addition, ∗ is commutative, meaning that ∀g, h ∈ G, g ∗ h = h ∗ g, then the group is said to be
commutative.
We will use multiplicative notations, calling the operation ∗ the multiplication of the group, leaving it
implicit (writing for instance ab instead of a∗b), denoting the inverse of g ∈ G as g−1, and the identity
element as 1. Moreover, g ∗ · · · ∗ g, where g appears n times in the equation, will be abbreviated as
gn. When several groups are involved, it should be clear from context which are the operation and
the identity elements referred to. In the rare case where we want to make this explicit, we write the
group as G, ∗G and the identity element 1G.

Definition 0.9. (Subgroup) A subgroup H of a group G is a subset of G such that

• H contains the identity element: 1G ∈ H,

• every element of H has an inverse in H: ∀h ∈ H,∃h̃ ∈ H,h ∗ h̃ = h̃ ∗ h = 1.

A subgroup of a group is thus a group contained in the first group and which has the same multipli-
cation and the same identity element. We use the notation H < G to indicate that H is a subgroup
of G.

Definition 0.10. (Normal subgroup) A subgroup H < G of a group G is said to be a normal subgroup
is

∀g ∈ G, gH = Hg, (242)

or equivalently if
∀g ∈ G,∀h ∈ H, ghg−1 ∈ H. (243)

To indicate that H is a normal subgroup of G, we note H ◁ G.

In particular, all subgroups of a commutative group are normal.

Definition 0.11. (Cosets) Let H < G be a subgroup of G. The left-cosets of H in G are the sets
gH for all g ∈ G. The right cosets are the sets Hg for all g ∈ G. The number of (non-identical) left
cosets, or equivalently of right cosets, is called the index of H in G.
Left cosets (or right cosets) of H in G form a partition of the group G. If H is a normal subgroup
then the right and left cosets are identical and we simply call them cosets.

One important property is that the left cosets (resp. right cosets) form a partition of the set
underlying the group G.
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1 i j k -1 -i -j -k

1 1 i j k -1 -i -j -k

i i -1 k -j -i 1 -k j

j j -k -1 i -j k 1 -i

k k j -i -1 -k -j i 1

-1 -1 -i -j -k 1 i j k

-i -i 1 -k j i -1 k -j

-j -j k 1 -i j -k -1 i

-k -k -j i 1 k j -i -1

Table 1: Multiplication table of the quaternion group Q. The first row and column show the elements
in Q. The other boxes indicate the result of the multiplication of the element of the corresponding
row by that of the corresponding column.

0.4.2.2 Examples

The cyclic group

Definition 0.12. (Finite cyclic group) The abstract cyclic group of order N is the group generated
by an abstract element g such that N is the smallest natural integer such that gN = 1. It is denoted
by CN :

CN = ⟨g : gN = 1⟩. (244)

Any group generated by a single element g such that gn = 1 is also said to be cyclic. In particular,
the group of n-th roots of unity,

UN = {e
2ikπ
N : k ∈ J0, N − 1K}, (245)

is a cyclic group of order N , generated by z = e
2iπ
N .

Moreover, for any divisor n of N, Un is a normal subgroup of UN . Indeed, let d ∈ N∗ be the integer

such that N = dn. The group generated by zd = (e
2iπ
N )d = e

2iπ
n is a subgroup of UN and it is itself a

cyclic group of order n since (zd)n = zN = 1. This group is normal since CN is commutative. The d
distinct cosets of Un in UN are the sets zrUn, for r ∈ J0, d − 1K. Indeed, any element z = zm in UN
can be written as zrh with 0 ≤ r ≤ n − 1 and h ∈ Un by writing the Euclidean division of m by d,
m = kd + r and setting h = zkd ∈ Un. Moreover, two cosets zr1Un and zr2Un are equal if and only
if zr1−r2 ∈ Un or equivalently r1 − r2 is a multiple of d. Since −d < r1 − r2 < d this is equivalent to
r1 = r2; hence for distinct r1, r2 the cosets r1Un and r2Un are distinct.

The 2T -qutrit we construct in Chapter 2 inherits properties from the group structures of the binary
tetrahedral group and the quaternion group. Let us thus introduce these groups here.

The quaternion group Quaternions extend complex numbers in the same way complex numbers
extend real numbers. This is known as the Cayley-Dickson construction. A complex number a+ bi is
constructed from two real numbers, a, b ∈ R , and the imaginary number i whose defining property
is i2 = −1. Likewise, a quaternion (a + bi)1 + (c + di)j is constructed from two complex numbers,
a + bi, c + di, with a, b, c, d ∈ R and the number j, which like i is a square root of unity. Imposing
further the multiplication rule ij = −ji = k, the quaternions are defined as expressions of the form

a1 + bi+ cj + dk (246)

where a,b,c, and d are real numbers. The numbers i,j, and k are the generators of the quaternionic
group, whose multiplication table is given by table1. We will denote the group of quaternions with 8
elements as Q.

The quaternions form an algebra, denotedH, whose multiplication extends by distributivity that of
the quaternionic group. Explicitly, the product of two quaternions a+bi+cj+dk and a′+b′i+c′j+d′k
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is

(a+ bi+ cj + dk)(a′ + b′i+ c′j + d′k) = aa′ − bb′ − cc′ − dd′

+ (a′b+ b′a+ cd′ − dc′)i

+ (a′c+ ac′ + db′ − bd′)j

+ (a′d+ ad′ + bc′ − cb′)k. (247)

The binary tetrahedral group The norm of a quaternion a+ bi+ cj + dk is
√
a2 + b2 + c2 + d2

and a quaternion of norm 1 is called a unit quaternion or versor. For instance, all the elements of Q
are unit quaternions. Since the norm of a product of quaternions is equal to the product of the norms,
versors form a group. The binary tetrahedral group, denoted 2T , is one of the subgroups of the unit
quaternions. Its 24 elements are

{±1,±i,±j,±k, 1
2
(±1± i± j ± k)} (248)

with all possible sign combinations.
Let us denote by ω the quaternion −1

2 (1 + i+ j + k) ∈ 2T . This element generates a cyclic group
of order 3,

C3 = ⟨ω⟩ = {1, ω, ω2} = {1, −1

2
(1 + i+ j + k),

1

2
(−1 + i+ j + k)}. (249)

Any element of 2T can be written as a product of an element of C and an element of Q. Indeed,

ωQ = { ± ω =
∓1

2
(1 + i+ j + k),±iω =

∓1

2
(−1 + i− j + k),

± jω =
∓1

2
(−1 + i+ j − k),±kω =

∓1

2
(−1− i+ j + k)} (250)

and

ω2Q = { ± ω2 =
±1

2
(−1 + i+ j + k),±iω =

±1

2
(−1− i− j + k),

± jω2 =
±1

2
(−1 + i− j − k),±kω2 =

±1

2
(−1− i+ j − k)}. (251)

Since the intersection of C and Q is equal to 1,

C3 ∩Q = {1}, (252)

this decomposition is unique. Indeed, assuming by contradiction that two such decompositions exist,
i.e.,

∃n1, n2 ∈ N := Q, h1, h2 ∈ H := C s.t. n1h1 = n2h2, (253)

then a multiplication by n−1
2 on the left and by h−1

1 on the right of the equality yields

n2
−1n1 = h2h1

−1. (254)

But n2
−1n1 ∈ N and h2h1

−1 ∈ H so

n2
−1n1 = h2h1

−1 = 1 (255)

and thus n1 = n2, h1 = h2. Moreover, one can check that Q verifies Eq. 243 so Q is a normal subgroup
of 2T . These properties make 2T what is called a semi-direct product of Q and C3,

2T = Q⋊ C3. (256)

We will make use of the partition of 2T into the three sets Q,ωQ, ω2Q to define an interesting qutrit
in Chapter 2.

Finally, let us introduce two important groups in quantum computing: the Pauli group and the
Clifford group.
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The single-qubit Pauli and Clifford groups The Pauli group on one qubit is generally defined
as

P1 := ⟨i,X, Z⟩ = {±I,±X,±Y,±Z,±iI,±iX,±iY,±iZ} (257)

where I is the 2 by 2 identity matrix and X, Y , and Z are the usual Pauli matrices,

X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
. (258)

Since in quantum mechanics global phases do not have any physical consequences, it is also possible
to consider a smaller version of the Pauli group, with 8 elements

P ′
1 = ⟨X,Z⟩ = {±I,±X,±Z,±iY }. (259)

The Clifford group is the group that normalises the Pauli group P1,

C1 = {U ∈ U(2) : ∀P ∈ P1, UPU
−1 ∈ P1} (260)

= {U ∈ U(2) : ∀P ∈ P ′
1, UPU

−1 ∈ P ′
1}. (261)

This group is generated by the Hadamard gate and the S gate,

C1 = ⟨H,S⟩, (262)

where

H =
1√
2

(
1 1
1 −1

)
, S =

(
1 0
0 i

)
. (263)

There exists another version of the Clifford group, which is a subgroup of SU(2) and contains only

48 elements. It is known as the binary octahedral group 2O and it is generated by H = 1√
2

[
η η

−η−1 η−1

]
and S =

[
η 0
0 η−1

]
, where η = eiπ/4.

0.4.3 Group representation theory

In Chapter 3 we will make use of certain results from group representation theory. Let us review these
here. We will only deal with group representations over the field of complex numbers C. Informally,
group representation theory over the complex field is a way of studying groups using linear algebra.
Some useful references on the topic are [Ser78] (in French), [Bou], [Sch], and the first chapter of
[Kna86] for compact groups.

0.4.3.1 Representations

Definition 0.13 (Representation). Let G be a group and let V be a complex vector-space. A repre-
sentation ρ : G→ GL(V ) of G is a group homomorphism. This means that ρ sends the product g1g2
of any two elements g1, g2 ∈ G, onto the product of their images: ρ(g1g2) = ρ(g1)ρ(g2).
The vector space V is called the representation space and its dimension is called the dimension of the
representation.

Definition 0.14 (Matrix representation). A matrix representation ρ : G → GL(Mnn) =: GLn(C)
of dimension n is a representation for which the representation space is the space of square n by n
complex matrices.

Any matrix representation is a representation over GL(Mnn) =: GLn(C) and one can always go
from a finite-dimensional representation over GL(V ) to a matrix representation by picking a basis B
of the vector-space V .

Definition 0.15 (Irreducible representation). Let ρ : G→ GL(V ) be a representation. If no subspace
W of V other than {0V } and V itself is left invariant under ρ, then ρ is said to be irreducible. More
formally, an irreducible representation ρ is a representation satisfying, for any sub-vector space W of
V,

ρ(W ) ⊆W =⇒ (W = {0} or W = V ).
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Definition 0.16 (Equivalent representations). Two representations ρ : G → GL(V ) and τ : G →
GL(V ′) are equivalent if there exists an isomorphism T : V → V ′ such that

∀g ∈ G, T ◦ ρ(g) = τ(g) ◦ T (264)

We now state the properties of the representation of groups that will be used in this thesis and
give references for their proofs.

Theorem 0.1. (Schur’s lemma) Let G be a group, V a finite-dimensional vector-space, and ρ an
irreducible representation of G on V . If a linear map T : V → V is G-linear, i.e. it satisfies

∀g ∈ G, T ◦ ρ(g) = ρ(g) ◦ T

then T is proportional to the identity:

∃λ ∈ C, s.t. T = λIV .

Proof. See the proof of Lemma 2.11.1 in [Sch].

Theorem 0.2. (Decomposition into irreducible representations) All finite-dimensional representations
of finite groups are either irreducible or equivalent to direct sums of irreducible representations.

Proof. See [Bou].

More explicitly, the theorem states that there exists a basis in which a representation ρ is expressed
as a block-diagonal matrix where each block matrix corresponds to an irreducible representation ρi.
Grouping together the irreducible representations that are isomorphic, this translates into the existence
of an invertible matrix P such that for all g ∈ G,

ρ(g) = P

(⊕
i

ρi(g)
⊕ dim(Mi)

)
P−1 (265)

= P

(⊕
i

ρi(g)⊗ 1Mi

)
P−1, (266)

where the Mi represent the multiplicity spaces of the representations ρi.

Theorem 0.3. (Great orthogonality theorem) Let G be a finite group. Let D(a) : G → GLa(C) and
D(b) : G → GLb(C) be two irreducible unitary matrix representations of G of dimensions da and db
respectively.
If D(a) and D(b) are inequivalent representations, then,

da
|G|

∑
g∈G

[D(a)(g−1)]ij [D
(b)(g)]kl = 0, (267)

where [A]ij denotes the element on the i-th row and j-th column of the matrix A.
If the two representations are equal, D(b) = D(a), then,

da
|G|

∑
g∈G

[D(a)(g−1)]ij [D
(a)(g)]kl = δilδjk. (268)

This can equivalently be rephrased as a statement on the matrices (instead of on their elements):

da
|G|

∑
g∈G

D(a)(g−1)⊗D(b)(g) = 0, (269)

when the representations are not equivalent, and,

da
|G|

∑
g∈G

D(a)(g−1)⊗D(a)(g) = δab
∑
i,j,k,ℓ

δilδjk|i⟩⟨j|⊗|k⟩⟨ℓ|=
∑
i,j

|i⟩⟨j|⊗|j⟩⟨i|, (270)

when the representations are equal. In the latter case, the averaged tensor product thus realises a swap.

Proof. See [Bou].
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0.4.3.2 Unitary representations

Since the evolutions in quantum physics are unitary, we will in fact mainly be dealing with unitary
representations.

Definition 0.17. (Unitary representation) A unitary representation of a group G is a matrix repre-
sentation of that group such that all the matrices ρ(g) are all unitary,

∀g ∈ G, (ρ(g))−1 = (ρ(g))†.

Lemma 0.1. (The isomorphism between isomorphic unitary representations can be chosen unitary)
Let π and σ be two equivalent unitary representations of a group G. Then there exists a unitary
intertwiner U such that

Uπ(g) = σ(g)U ∀g ∈ G.

Proof. Let T be an intertwiner for the two representations:

Tπ(g) = σ(g)T ∀g ∈ G.

Then using that π(g) and σ(g) are unitary, we get

T †(−1)π(g) = σ(g)T †(−1).

Define |T |=
√
T †T . The operator U = T |T |−1 is unitary since

UU † = T |T |−2T † = T (T †T )−1T † = TT−1T †(−1)T † = 1,

U †U = |T |−1T †T |T |−1= 1.

Note that T †T commutes with π(g):

T †Tπ(g) = T †σ(g)T = (σ(g−1)T )†T = (Tπ(g−1))†T = π(g)T †T.

This implies that all polynomials in T †T also commute with π(g), and also all continuous functions,
for instance the square-root function. Hence,

|T |π(g) = π(g)|T |.

Finally,

Uπ(g) = T |T |−1π(g) = Tπ(g)|T |−1= σ(g)T |T |−1= σ(g)U,

which is what we wanted.

0.4.3.3 Representations of compact groups

Definition 0.18. (Topological groups and Compact groups) A topological group is a group (G, ∗) with
a topology such that the product operation ∗ and the inverse operation g ∈ G 7→ g−1 are continuous.
A topological group is said to be compact if the underlying topological space is compact, i.e., if every
open cover of G has a finite subcover.

Finite groups, orthogonal groups O(n), special orthogonal groups SO(n), and special unitary
groups SU(n) for all n ∈ N are examples of compact groups.

Definition 0.19. (Representation of a topological group [Kna86]) A representation of a topological
group G on a complex Hilbert space V ̸= 0 is a homomorphism ρ of G into the group of bounded linear
operators on V with bounded inverses, such that the resulting map of G× V into V is continuous.
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Definition 0.20. (Haar measure) For any compact group G there exists a unique measure dt, called
the Haar measure satisfying ∫

ts∈G
f(t)dt =

∫
t∈G

f(t)dt, (271)

for all continuous function f over G and all s ∈ G, and,∫
G
dt = 1. (272)

The Haar measure generalises the measure defined on finite groups by affecting each element g ∈ G
of a mass 1

|G| . It is used to generalise the averaging operation 1
|G|
∑

t∈G f(t) of any function f over G

into
∫
t∈G f(t)dt.

Theorems 0.2 and 0.3 hold for compact groups, using the Haar measure instead of the sum average
and with the additional constraint that the representations now need to be unitary.

Theorem 0.4. (Schur’s orthogonality relations) Let G be a compact group. Let D(a) : G → GLa(C)
and D(b) : G → GLb(C) be two irreducible unitary representations of G of dimensions da and db
respectively. Then,

da

∫
g∈G

[D(a)(g)]†ij [D
(b)(g)]kldg = δabδilδjk

where [A]ij denotes the element on the i-th row and j-th column of the matrix A, and δab is equal to
1 if D(a) and D(b) are equivalent and 0 otherwise.

Proof. See the proof of Corollary 1.10 in [Kna86].

Theorem 0.5. (Peter-Weyl, Theorem 1.12, d) of [Kna86]) Let G be a compact topological group and
ρ : G→ GL(V ) a unitary representation of G on a Hilbert space V . Then V is the orthogonal sum of
finite-dimensional irreducible invariant subspaces.

Proof. See the proof of theorem 1.12 in [Kna86].

Note that this generalisation of Theorem 0.2 no longer requires the representation to be finite-
dimensional.
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This chapter reproduces almost exactly the content of the article [DBL21], published in Quantum,
with only very minor modifications. We establish an analytical lower bound on the asymptotic secret
key rate of continuous-variable quantum key distribution with an arbitrary modulation of coherent
states. Previously, such bounds were only available for protocols with a Gaussian modulation, and
numerical bounds existed in the case of simple phase-shift-keying modulations. The latter bounds
were obtained as a solution of convex optimisation problems and our new analytical bound matches
the results of Ghorai et al. (2019), up to numerical precision. The more relevant case of quadrature
amplitude modulation (QAM) could not be analysed with the previous techniques, due to their large
number of coherent states. Our bound shows that relatively small constellation sizes, with say 64
states, are essentially sufficient to obtain a performance close to a true Gaussian modulation and
are therefore an attractive solution for large-scale deployment of continuous-variable quantum key
distribution. We also derive similar bounds when the modulation consists of arbitrary states, not
necessarily pure.
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1.1 Key rate of a CV QKD protocol

1.1.1 Introduction and main results

As explained in the introduction (Sec. 0.2), continuous-variable quantum key distribution uses tech-
nologies compatible with standard Telecom equipment to allow two distant parties to establish a secret
key that can later encrypt classical messages. Protocols using a finite constellation of coherent states
are particularly appealing due to their experimental feasibility. Among the possible constellations is
the quadrature phase-shift keying (QPSK), a constellation of only 4 coherent states. Until recently, be-
fore the works of Refs [Gho+19; LUL19], all the security proofs for the QPSK protocol were restricted
to the class of Gaussian attacks (meaning that the quantum channel is assumed to be Gaussian1); yet
it is believed that such attacks are not optimal for these protocols. The strategy in both Refs [Gho+19;
LUL19] consists in expressing the asymptotic secret key rate as a convex optimisation problem, and
more precisely a semidefinite program (SDP). The main difference between the two papers is that
Ref. [Gho+19] considers a linear objective function, whereas Ref. [LUL19] relies on a tighter nonlinear
objective function. While the latter case is expected to give a better bound (at the price of being
much more computationally intensive), the results cannot be directly compared since the models and
assumptions for the error correction part of the protocol are very different (see Section 1.5.2.2 for a
discussion of this point). In both cases, a truncated version of the relevant SDP is solved numerically:
this means that the operators are described in a truncated Fock space, spanned by Fock states with
less than Nmax photons, typically between 10 and 20 photons. Reference [Upa+21] showed how to get
rid of this truncation by introducing extra constraints in the SDP, namely constraints on the fourth
moments of the data obtained by Alice and Bob. If the approaches of [Gho+19; LUL19; Upa+21]
can in principle be adapted to arbitrary modulation schemes, they are numerically intensive2 and it
is unlikely that they can indeed be easily applied beyond moderately small PSK modulations. In
fact, Ref. [PP21] which only looks at the simpler case of Gaussian (hence likely non-optimal) attacks
comments that several hours of CPU time are needed to get an accurate bound on the secret key rate.

Results and open questions. A pressing open question in the field is therefore to obtain reasonably
tight bounds for the asymptotic secret key rate of CV QKD with arbitrary modulation schemes, that
can be easily computed, without relying on intensive computational methods. Without this, it seems
rather hopeless to try to address the next important challenge which will concern the non-asymptotic
regime. We solve this problem here: we give an explicit analytical formula for the asymptotic secret
key rate of any CV QKD protocol. While we focus more on the case of heterodyne detection, our
bounds work just as well for protocols with homodyne detection [GG02b]. Our formula matches the
numerical bound from Ref. [Gho+19] in the case of M -PSK modulation of coherent states (except
in the regime of very low loss combined with high noise, which is not relevant for experiments) and
recovers the known values in the case of a Gaussian modulation. Our results show that relatively
small constellations of size 64, say, are essentially enough to get a performance close to the Gaussian
modulation scheme. A major advantage of the quadrature amplitude modulation such as 64-QAM over
QPSK (in addition to the much better secret key rate) is that it allows for implementations with large
modulation variance, and therefore bypasses the need to work with an extremely low signal-to-noise
ratio (SNR).

Another advantage of our method is that our analytical formula allows one to address the issue of
imperfect state preparation. More precisely, in a given protocol, Alice will never be able to prepare
the exact states from the theoretical constellation, and will inevitably make some preparation errors.
Quantifying their impact on the security is not trivial if one only has access to numerical bounds,
but this becomes possible with analytical bounds by analysing their dependence on the constellation.
We show in Section 1.5.1 how to modify our bound if Alice sends some (potentially mixed) state τk

1In fact, the proofs only assumed that the quantum channel acted linearly on the annihilation and creation operators,
possibly adding non-Gaussian noise.

2For instance, the size of the matrices involved in the SDP in [Gho+19] scales like MNmax, where M is the number
of states in the constellation and Nmax is the dimension of the truncated Fock space. Going beyond M = 10 seems very
challenging. The approach of [LUL19; Upa+21] is even more expensive since the objective functional is not linear.
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instead of |αk⟩. The same bounds also apply to the case of a modulation of single-mode squeezed
states, although such protocols are less appealing from a practical point of view.

Yet another advantage of easily computable bounds is that they will allow for a better optimisation
of the constellation. While the PSK modulation does not offer much freedom since the only parameters
are the number of states and the amplitude α of the coherent states, more complex constellations can
have many adjustable parameters: the coherent states can lie on a grid, but not necessarily, and
one can also freely choose the probabilities associated to each state. We focus on simple QAM with
equidistant coherent states, and only compare two possible choices for the probability distribution
(discrete Gaussian vs binomial). While the precise form of the constellation does not seem to impact
the performance too much for a 64-QAM or larger constellations, we expect that smaller constellations
will need to be more carefully designed in order to optimise the secret key rate. Such optimisations
should include considerations about error correction3, and are also beyond the scope of this chapter.

A natural open question concerns the case of the QPSK modulation. For this specific choice of
constellation, our results (which coincide with Ref. [Gho+19]) appear much more pessimistic than
those of Ref. [LUL19]. This is due in part to the different choice of objective function and it would be
very interesting to understand whether an analytical bound much tighter than ours could be derived
explicitly. For larger constellations, our bound is necessarily almost tight since it is very close to the
(tight) bound corresponding to a Gaussian modulation (see Section 1.6).

While we focus on one-way QKD protocols here for simplicity, we note that similar questions are
relevant for measurement-device-independent protocols [Pir+15]. In that case, both Alice and Bob are
expected to send states with a possibly very fine, but discrete, constellation approaching a Gaussian
modulation. It would be interesting to understand how to extend our results to this scenario.

The asymptotic secret key rate is an interesting figure of merit that is useful to easily compare
various protocols, either DV or CV, under some given experimental conditions. However, it is not
quite sufficient to assess the security of a given protocol. What is needed is in fact a composable
security proof valid against general attacks, in the finite-size regime. Obtaining such a security proof
has turned out to be quite challenging in the case of the Gaussian modulation with a proof based on
a Gaussian de Finetti theorem [Lev17] while the asymptotic secret key rate formula was established
more than 10 years earlier [GC06; NGA06]. Similarly, we do not give a full composable security
proof here, but show that probably the two most impacting finite-size effects (see discussion in Sec-
tion 1.5.2.1), namely the parameter estimation procedure and the error reconciliation procedure (see
discussion in Section 1.5.2.2), should not be significantly more difficult to handle than they are in the
case of Gaussian modulation.

Structure of the chapter. We describe the general form of CV QKD protocols with coherent states
in Section 1.1.2. We explain in Section 1.1.3 how to compute the asymptotic secret key rate given
by the Devetak-Winter bound thanks to an equivalent entanglement-based version of the protocol.
In Section 1.2.1, we define our main lower bound on the Devetak-Winter bound as the solution of a
semidefinite program. We study this SDP in Section 1.4 and establish an analytical lower bound on
its value. This bound is our main technical contribution. In Sections 1.3.1 and 1.3.2, we show how to
recover the known bound for protocols with a Gaussian modulation and the known numerical bound
for protocols with an M -PSK modulation. We discuss in Section 1.3.3 the choice of more complex
modulation schemes, namely QAM. We show in Section 1.5.1 how to generalise our bound for protocols
where Alice sends arbitrary states instead of coherent states. We address some important finite-size
effects in Section 1.5.2, notably parameter estimation and the reconciliation procedure. Finally, we
discuss some numerical results in Section 1.6.

1.1.2 CV QKD protocols with an arbitrary modulation of coherent states

We consider the general Prepare-and-Measure (PM) protocol described in Sec. 0.2.3.1 where Alice
sends coherent states chosen from a discrete modulation to Bob, who measures them with coherent

3A possibility would be to use a 32-QAM, but the reconciliation may be more complex since Alice does not choose
the values of Re(α) and Im(α) independently in that case.
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Figure 1.1: Examples of constellations. Colours indicate the probabilities corresponding to each state.

(heterodyne) detection4. A heterodyne detection refers here to a double-homodyne detection, where
Bob splits the signal on a balanced beam splitter and measures the x̂ quadrature of the first output
mode and the p̂ quadrature of the second output mode.

An important parameter is the variance of the modulation. Recall that in this thesis, the quadra-
ture operators are defined by x̂ := â + â† and p̂ := −i(â − â†), where â and â† (resp. b̂, b̂†) are the
annihilation and creation operators5 on Alice’s system (resp. Bob’s system), and get the commutation
relation [x̂, p̂] = 2i. We recall that the covariance matrix of the state τ is defined by

Γτ :=

[
⟨x̂2⟩τ 1

2⟨{x̂, p̂}⟩τ
1
2⟨{p̂, x̂}⟩τ ⟨p̂2⟩τ

]
,

where we assumed without loss of generality that the first moment of the displacement operator
vanishes (this can always be enforced by a suitable translation in phase-space). We have, for instance,
1
2(⟨x̂

2⟩τ + ⟨p̂2⟩τ ) = tr
(
τ(1 + 2â†â+ â2 + â†2)

)
= 1+2⟨n⟩, where the average photon number ⟨n⟩ in the

modulation is defined as
⟨n⟩ :=

∑
k

pk|αk|2.

It is also customary to refer to 2⟨n⟩ as the modulation variance VA so that 1
2(⟨x̂

2⟩τ + ⟨p̂2⟩τ ) = VA+1.
We study two examples of modulations (see 1.1): the phase-shift keying (PSK) modulations, includ-

ing the quadrature-phase shift keying (QPSK), and the quadrature amplitude modulations (QAM).
These modulations have been introduced in Sec. 0.2.3.1. It is typical to consider the number of states
M in a QAM constellation to be a power of 4, and we will indeed consider 4-QAM (which corresponds
to QPSK), 16-QAM, 64-QAM, 256-QAM and 1024-QAM. Given that our proof technique will work
better when a modulation scheme is closer to the Gaussian modulation, it is crucial that theM points
of the QAM are not chosen with a uniform probability distribution. Rather, we will consider prob-
abilistic constellation shaping [Gha+17; Jar+18] where each coordinate of the coherent state |αk⟩ is
chosen independently according to either a binomial or a Gaussian distribution (see Section 1.3.3 for
details).

Any QKD protocol consists of two main parts: a quantum part where Alice and Bob exchange
quantum states and obtain correlated variables, and a classical post-processing procedure aiming at
extracting two identical secret keys out of the correlated data. We have already described the first
part. Alice and Bob repeat a large number of times the following: Alice chooses an index k with
probability pk and sends the corresponding coherent state |αk⟩ to Bob through an untrusted quantum
channel; Bob measures each incoming state with heterodyne detection6 obtaining a complex number
β. At the end of this first phase, Alice and Bob both hold a string of complex numbers. The goal of
the second phase of the protocol is to use classical post-processing to transform these two strings into
identical secret keys. It requires four steps: (i) Bob discretizes his variables by choosing an appropriate
binning of the complex plane7; (ii) in the reconciliation step, he sends some side-information to Alice

4We could similarly focus on protocols with homodyne detection, but the advantage of heterodyne detection is that it
is more symmetric in phase-space and security against general attacks might therefore be easier to analyse in that case.

5When the context is clear, we will sometimes omit the hat on the operators and simply write a, a† instead of â, â†.
6In a protocol with homodyne detection, Bob would only measure a random quadrature and afterwards inform Alice

of his choice.
7The bins should be small enough to guarantee that the reconciliation efficiency is close to 1.
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via the classical authenticated channel in order to help her guess Bob’s string8, (exploiting the side
information together with her knowledge of the states she has sent); (iii) Alice and Bob perform
parameter estimation in order to bound how much information was possibly obtained by a malicious
eavesdropper; and (iv) they perform privacy amplification in order to obtain a shorter shared bit string
completely unknown to the adversary. All these steps must be carefully analysed for a full security
proof, but since our goal is the asymptotic regime, we will only mainly comment the reconciliation
procedure and the parameter estimation step in Section 1.5.2.

1.1.3 Entanglement-Based protocol and Devetak-Winter bound

In order to analyse the security of a PM protocol as defined in the previous section, we define an
equivalent entanglement-based (EB) version of the protocol, which only differs from the practical
protocol in Alice’s lab. We recall that since both protocols are indistinguishable from the perspective
of Bob and the adversary, they share the same security.

The EB version of the protocol is as follows: Alice prepares a bipartite state |Φ⟩AA′ , which is a
purification of τ , and measures the first mode in a basis that projects the second mode A′ onto the
coherent states corresponding to the modulation scheme of the PM protocol. In this version, the
second mode A′ is sent through the quantum channel NA′→B (controlled by the adversary), and Bob
obtains the output mode B. We denote by ρAB = (idA⊗NA′→B)(|Φ⟩⟨Φ|AA′) the state shared by Alice
and Bob after each use of the channel, where idA stands for the identity channel acting on system A.
In the present work, we study collective attacks in the asymptotic regime, and therefore assume that
the channel is always the same (but unknown) during the protocol, which means that Alice and Bob
share a large number of copies of the state ρAB. We note that collective attacks are usually optimal
among all possible attacks in the asymptotic limit [Ren07], and it therefore makes sense to consider
these attacks here.

The Devetak-Winter bound (see Sec. 0.2.2.3) gives the achievable secret key rate K (per channel
use) in this setup [DW05]:

K = I(X;Y )− sup
N :A′→B

χ(Y ;E), (1.1)

where I(X;Y ) is the mutual information between Alice and Bob’s classical variables X and Y (which
are complex variables in a protocol with heterodyne measurement, and real variables for homodyne
measurement) and χ(Y ;E) is the Holevo information between Y and the quantum register E of the
adversary, with the supremum computed over all choices of channels N : A′ → B compatible with the
statistics obtained by Alice and Bob during the parameter estimation phase of the PM protocol. The
register E of the adversary is introduced via the isometric representation of the quantum channel,
UA′→BE , which allows one to write a purification ρABE of ρAB:

ρABE = (idA ⊗ UA′→BE)(|Φ⟩⟨Φ|AA′),

and ρAY E = MB→Y (ρABE) where the mapM : B → Y describes the (trusted) Gaussian measurement
performed by Bob. In the case of a heterodyne measurement, it is given by

M(ρB) =
1

π

∫
C

⟨β|ρB|β⟩|βcl⟩⟨βcl|Y dβ,

where {|βcl⟩} is an infinite orthonormal family of states storing the value of the measurement outcome.
The Holevo information χ(Y ;E) is computed for the state ρAY E , and the supremum can also be
computed over such states that are compatible with the statistics obtained in the parameter estimation
step.

In the finite-size regime, it is not quite possible for Alice and Bob to perfectly extract all their
mutual information, and it is customary to replace I(X;Y ) by βI(X;Y ) where the reconciliation
efficiency β is a parameter that quantifies how much extra information Bob needs to send to Alice

8We consider here the case, known as reverse reconciliation [GG02a], where the raw key corresponds to Bob’s string
since it always outperforms protocols where Alice’s string is used as a raw key.
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through the authenticated classical channel for her to correctly infer the value of Y . Modern techniques
usually allow one to get β ≥ 0.95. In any case, the value of βI(X;Y ) can be observed during a given
protocol. To bound the value of supN :A′→B χ(Y ;E) we proceed as described in Sec. 0.2.2.3, using the
extremality of Gaussian states and show that supN :A′→B χ(Y ;E) is bounded by Eq. (173), reprinted
here for convenience

g

(
ν1 − 1

2

)
+ g

(
ν2 − 1

2

)
− g

(
ν3 − 1

2

)
. (1.2)

We also recall the definitions of the different quantities appearing in this equation:

g(x) := (x+ 1) log2(x+ 1)− x log2(x),

Γ′ :=

[
V 12 ZσZ
ZσZ W12

]
,

V :=
1

2
(⟨x̂2A⟩ρ + ⟨p̂2A⟩ρ) = 1 + 2 tr

(
ρâ†â

)
,

W :=
1

2
(⟨x̂2B⟩ρ + ⟨p̂2B⟩ρ) = 1 + 2 tr

(
ρb̂†b̂

)
,

Z :=
1

4

(
⟨{x̂A, x̂B}⟩ρ − ⟨{p̂A, p̂B}⟩ρ

)
= tr

(
ρ(âb̂+ â†b̂†)

)
.

Finally, the parameters ν1 and ν2 are the symplectic eigenvalues of Γ′, and ν3 is equal to V − Z2

W+1 in

the heterodyne case or
√
V (V − Z2

W ) in the homodyne case [Wee+12].

We note that both X and Y correspond to the expectations of local observables, namely 1 + 2â†â
and 1 + 2b̂†b̂. In particular, X is simply a parameter of the protocol, which is independent of the
quantum channel between Alice and Bob. It is customary in the literature to write it as

V = VA + 1,

where VA stands for the modulation variance. In general, this parameter can be optimised to maximise
the secret key rate in a given experiment. For protocols with a Gaussian modulation, it is known that
the optimal value of VA becomes larger and larger as the reconciliation efficiency β gets closer and
closer to 1. For discrete-modulation schemes, such as the QPSK modulation, the optimal value of VA
is much lower, and can even be significantly lower than the shot noise with current security proofs
[Gho+19; LUL19]. The expectation W is not fixed by the protocol, but can be measured locally by
Bob who performs a heterodyne detection. The remaining quantity, Z := tr(ρC) with

C := âb̂+ â†b̂†, (1.3)

will be the central object in the present work. If it could be measured directly in the protocol,
then Alice and Bob would know the covariance matrix Γ′ and immediately get a bound on Eve’s
information. In particular, in any EB protocol, it is sufficient for Alice and Bob to both perform
coherent measurements (homodyne or heterodyne) to obtain the covariance matrix. The security of
such protocols is therefore well understood. Unfortunately, these EB protocols are much less practical
than PM protocols with a discrete modulation of coherent states, since they require the preparation
of entangled states. For PM protocols, the state ρAB does not actually exist in the lab. It is simply
a convenient mathematical object, allowing us to discuss the security of the protocol. Consequently,
it is in general impossible to infer what value Z Alice and Bob would obtain if they really had access
to ρAB. It is therefore necessary to find some indirect approach in order to get some bounds on
Z = tr(ρC).

Protocols with a Gaussian modulation (of Gaussian states) are an exception: in this case, one
can easily compute this covariance matrix, and in particular the value of Z = tr(ρC) from the data
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observed in the PM protocol [Gro+03]. The reason for this is that the measurement performed by
Alice in the EB protocol is a Gaussian measurement, and therefore the observed statistics are sufficient
to infer the covariance matrix. This is no longer the case for schemes with a discrete modulation: in
that case, Alice performs a non-Gaussian measurement on the mode A of ρAB and this is in general
insufficient to deduce the value of tr(ρC), except by restricting the class of considered attacks [LG09;
LG11]. The main result of Ref. [Gho+19] was to show that even if the exact value of tr(ρC) cannot be
recovered, it is still possible to obtain some bounds on this quantity by expressing it as the objective
function of a semidefinite program.

1.2 Secret-key rate SDP

1.2.1 Definition of the SDP and explicit solution

Our first goal is to specify the SDP we want to solve. As mentioned, the objective function is simply
tr(ρC) where ρAB is the state shared by Alice and Bob, before they measure it, in the EB version of
the protocol. In order to get the tightest possible bounds on the value of tr(ρC), we need to impose
some constraints on the possible states ρAB that should be considered. These constraints have two
origins: a first constraint merely says that ρAB is obtained by applying some channel NA′→B to |Φ⟩AA′ ;
the other constraints come from observations made during the parameter estimation phase of the PM
protocol.

The first constraint turns out to be

trB(ρ) = τ̄ , (1.4)

which results from the fact that

trB(ρ) = trB((idA ⊗NA′→B)(|Φ⟩⟨Φ|)AA′) = trA′(|Φ⟩⟨Φ|) = τ̄ ,

where we define τ̄ to be the complex conjugate of τ in the Fock basis. The choice of τ̄ may appear
arbitrary at the moment, but will become clearer once we explain how to choose the purification |Φ⟩.
For the remaining constraints, we recall that Alice sends coherent states |αk⟩ to Bob, and that they
can gather information about the statistics corresponding to each such coherent state. Obviously,
these statistics will need to be estimated properly during the protocol and one should endeavour to
reduce the number of independent quantities that need to be estimated, since this number will greatly
impact the key rate when taking finite-size effects into account. The results that are readily available
in the PM protocol are the first and second moments of the state received by Bob when Alice has sent
|αk⟩:

βk := tr(ρkb) ∈ C,

where ρk := N (|αk⟩⟨αk|), as well as the second moment of Bob’s state

nB := tr
(
ρ b†b

)
.

Indeed, let us assume that a random sample of the measurement results of Bob when Alice sent the
state |αk⟩ are βk,1, . . . , βk,N , then we expect that

1

N

∑
i

βk,i −−−−→
N→∞

tr(ρkb),
1

N

∑
k,i

pk|βk,i|2−−−−→
N→∞

nB + 1.

Recall that we consider collective attacks here, which means that the state ρk is always the same
(but unknown). Bounding the speed of convergence of these empirical values is not completely trivial
since we do not want to assume anything about the distribution of the βk,i but techniques similar to
those developed in Ref. [Lev15] can probably solve this issue. In any case, we do not worry about this
specific difficulty here since we focus on asymptotic results and therefore assume that Alice and Bob
are able to perform the parameter estimation step.
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As mentioned, we ultimately wish to aggregate such values and only keep a few numbers, much
less than M . Let us first relate these values to the bipartite state ρAB. Without loss of generality, let
us write

|Φ⟩ =
M∑
k=1

√
pk|ψk⟩|αk⟩,

where the {|ψk⟩} form an orthonormal basis (that we will carefully choose later). With this notation,
we obtain

pkβk = tr
(
ρ(|ψk⟩⟨ψk|⊗b̂)

)
.

The second moment constraint is the easier one to deal with: we simply define the operator Π ⊗ b†b
where Π :=

∑
k|ψk⟩⟨ψk| is a projector and observe that

tr
(
ρ(Π⊗ b†b)

)
= nB, (1.5)

where the right-hand side can be measured in the protocol. In order to define the first moment
constraints, we need to introduce an operator that will play a central role in our analysis:

aτ := τ1/2aτ−1/2. (1.6)

We will rely on two first-moment constraints:

tr
(
ρC1

)
= 2c1, tr

(
ρC2

)
= 2c2, (1.7)

with operators C1 and C2 defined by

C1 :=
∑
k

⟨αk|aτ |αk⟩|ψk⟩⟨ψk|⊗b̂+ h.c., C2 :=
∑
k

ᾱk|ψk⟩⟨ψk|⊗b̂+ h.c. (1.8)

The correlation coefficients c1 and c2 can be estimated experimentally by

c1 = Re
(∑

k

pk⟨αk|aτ |αk⟩βk
)
, c2 = Re

(∑
k

pkᾱkβk

)
.

Here, h.c. stands for Hermitian conjugate, and we use ·̄ to denote the complex conjugation (with
respect to the Fock basis). If we introduce the vectors α := (αk)k∈K ,ατ := (⟨αk|aτ |αk⟩)k∈K and
β = (βk)k∈K , where K is the set indexing the coherent states in the constellation, then the values of
c1 and c2 are simply the following inner products:

c1 = Re(ατ |β), c2 = Re(α|β),

where we define the weighted inner product (x|y) :=
∑
pkx̄kyk. Of course, the specific form of

the operator C1 may look somewhat mysterious at this point since it is not clear why the operator
âτ = τ1/2âτ−1/2 should play any role at all in the problem, and why c1 should be a meaningful quantity
to estimate during the protocol. The story goes in the other direction: the constraints that should be
monitored during the PM protocol are clearly functions of the βk’s, since they are the only observable
values in the PM protocol. The simplest such constraints are linear functions in the moments of βk
and since our proofs will ultimately rely on the extremality properties of the Gaussian states, it makes
sense to focus on the first and second moments9. The relevant second moment is the variance of
βk, but there is no obvious candidate for the first moment conditions. Our strategy was therefore to
optimise the first moment conditions by leaving them as general as possible and only later pick the
relevant ones. This is exactly how we arrived at the definitions of C1 and C2.

9We also tried to add fourth moment constraints, similarly to Ref. [LUL19], for the QPSK modulation but this did
not significantly improve the performance. In addition, it is not clear how to obtain analytical bounds that exploit
such constraints, and it is important to recall that any such constraint leads to a quantity that needs to be estimated
experimentally, and that will contribute to finite-size effects. Overall, it thus seems much easier to focus exclusively on
the first two moments of the quantum state.
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The constraints of eq. (1.4), (1.5) and (1.7) are the only ones we will impose in addition to ρ ⪰ 0.
Since the secret key rate is minimised when the value of Z = tr(ρC) is minimal10, we finally state our
main SDP:

min tr(ρC) (1.9)

s.t.



trB(ρ) = τ̄

tr
(
ρ
(∑

k ⟨αk|aτ |αk⟩|ψk⟩⟨ψk|⊗b̂+ h.c.
))

= 2c1

tr
(
ρ
(∑

k ᾱk|ψk⟩⟨ψk|⊗b̂+ h.c.
))

= 2c2,

tr
(
ρ(Π⊗ b̂†b̂)

)
= nB,

ρ ⪰ 0.

Here, the term “min” indicates that we are performing a minimisation, but it does not mean that
a minimum provably exists. In fact, we are not really interested in this subtlety here since our goal is
just to derive a bound on the solution of the SDP. Note that this minimisation problem may be turned
into a maximisation problem, to respect the general form of an SDP given in Eq. 226, by considering
the opposite of the objective function and adapting the constraints adequately. Our main technical
contribution is to provide the following bounds for the interval of possible values for tr(ρC) under
these constraints:

tr(ρC) ∈

[
2c1 − 2

√
w
(
nB − c22

⟨n⟩

)
, 2c1 + 2

√
w
(
nB − c22

⟨n⟩

)]
, (1.10)

where we recall that ⟨n⟩ =
∑

k pk|αk|2 is the average photon number in the modulation and we define
the quantity

w :=
∑
k

pk

(
⟨αk|a†τaτ |αk⟩ − |⟨αk|aτ |αk⟩|2

)
. (1.11)

The Cauchy-Schwarz inequality, |(α|β)|2≤ (α|α)(β|β), implies that the term nB− c22
⟨n⟩ is non-negative

since ⟨n⟩ = (α|α), c2 = Re(α|β) and nB ≥ (β|β) (with equality when ρk = |βk⟩⟨βk|). The quantity

nB − c22
⟨n⟩ is (proportional to) the excess noise, corresponding to the noise added by the quantum

channel. Here, both ⟨n⟩ and χ are fixed by the choice of the constellation. In particular, inserting the
lower bound

Z∗ := 2c1 − 2

((
nB − c22

⟨n⟩

)
w

)1/2

(1.12)

of the interval in the covariance matrix Γ′ and computing the associated Holevo bound yields an
analytical lower bound on the asymptotic secret key rate of the CV QKD protocol11.

We note that an important feature of Z∗ is that it only involves 3 quantities that need to be
determined experimentally. In particular, there is no need for the precise knowledge of all the βk, which
would make any finite-size analysis very challenging. At the same time, c1 is an additional quantity
that was not present in previous works, for instance in the definition of the SDP in Ref. [Gho+19].
While this difference does not appear in simulations of a Gaussian quantum channel since the ratio
between c1 and c2 is fixed in that case, it does play a role in a real experiment, and will also impact
the finite-size secret key rate since an additional parameter needs to be estimated.

As we discuss in more details in Section 1.3.1, a simple calculation shows that aτG =
√

1+⟨n⟩
⟨n⟩ â and

therefore w = 0 in the Gaussian case, recovering the well-known result that the covariance term is
completely determined, and hence does not depend on the excess noise, for a Gaussian modulation.
In particular, there are only two independent experimental quantities to monitor in that case, c1 and
nB.

10We do not have a formal proof of this claim but have checked it numerically. In any case, for given parameters, one
should consider the maximum of χ(Y ;E) for Z in the interval given by eq. (1.10).

11Note that while the minimum value in the interval of eq. (1.10) yields the maximum value of the Holevo information
defined in eq. (173) in most cases, in all generality, one should simply consider the value of the interval that maximises
the Holevo information.
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Expected bound for a Gaussian quantum channel. The bound of eq. (1.10) can be readily
used in any experimental implementation of the protocol, but it is also useful to be able to get an
estimate of such a bound for a typical experimental setup. In particular, since most experiments are
implemented in fibre, it is typical to model the expected quantum channel between Alice and Bob as
a phase insensitive Gaussian channel characterised by a transmittance T and an excess noise ξ. This
means that if the input state is a coherent state |α⟩, then the output state is a displaced thermal
state centred at

√
Tα with a variance given by 1 + Tξ. In other words, the random variable βk can

be modelled as
βk =

√
Tαk + γk,

where γk is a Gaussian random variable corresponding to the shot noise (of variance 1 with our choice
of units) and to the excess noise (of variance Tξ). In this case, one can readily compute the expected
values of c1, c2 and nB (see Section 1.4 for details):

c1 =
√
T tr

(
τ̄1/2aτ̄1/2a†

)
c2 =

√
T ⟨n⟩,

nB = T ⟨n⟩+ T
ξ

2
,

which yields a minimum value Z∗(T, ξ) = min tr(ρC) equal to

Z∗(T, ξ) = 2
√
T tr

(
τ1/2aτ1/2a†

)
−
√
2Tξw. (1.13)

The linear dependence in
√
T is expected, and we note that the correction term, scaling like

√
ξ,

heavily impacts the value of the covariance, for non-zero excess noise, unless w is very small. As we
will later see, while W is rather large and leads to rather poor performance in the case of a QPSK
modulation with only four coherent states, this is no longer the case for larger constellations, for
instance with a 64-QAM of 64 coherent states. eq. (1.13) is generalised to the case of a modulation of
arbitrary states in Eqns (1.72) and (1.73).

Before proving this result, we will apply it to study some relevant constellations of states. This
will also help to build an intuition on what the various parameters appearing in our formula represent.

1.3 Analytical study of various modulations

1.3.1 The Gaussian modulation

In this section, we show that the formula from eq. (1.13) gives the standard value for a Gaussian
modulation [GC06]. Let us consider a modulation such that τG has ⟨n⟩ photons on average:

τG =
1

π⟨n⟩

∫
C

exp

(
− 1

⟨n⟩
|α|2

)
|α⟩⟨α|dα =

1

1 + ⟨n⟩

∞∑
m=0

(
⟨n⟩

1 + ⟨n⟩

)m
|m⟩⟨m|.

Computing aτG = τ
1/2
G aτ

−1/2
G is straightforward:

aτG =
∞∑

m,n=0

(
⟨n⟩

1 + ⟨n⟩

)(m−n)/2
|m⟩⟨m|a|n⟩⟨n|

=
∞∑

m,n=0

(
⟨n⟩

1 + ⟨n⟩

)(m−n)/2
|m⟩⟨n|

√
n⟨m|n− 1⟩

=

∞∑
n=1

(
⟨n⟩

1 + ⟨n⟩

)−1/2√
n|n− 1⟩⟨n|

=

(
1 +

1

⟨n⟩

)1/2

a
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and we observe that it is simply a rescaling of the original annihilation operator. In particular, coherent
states are eigenstates for aτG and we obtain

⟨α|a†τGaτG |α⟩ =
(
1 +

1

⟨n⟩

)
⟨α|a†a|α⟩ = |⟨α|aτG |α⟩|

2,

which shows that w vanishes for a Gaussian modulation. This shows that

tr(ρC) = 2c1

with

c1 = Re(ατ |β) =
(
1 +

1

⟨n⟩

)1/2

Re(α|β).

In particular, if the transmittance of the channel is T , meaning that β =
√
Tα, we get Re(α|β) =√

T ⟨n⟩ and recover the standard value for a Gaussian modulation

tr(ρC) = 2
√
T
√
⟨n⟩2 + ⟨n⟩.

Interpretation of w. What is remarkable in the case of a Gaussian modulation is that the quantity
w vanishes. Note that w is the expectation of

⟨αk|a†τaτ |αk⟩ − |⟨αk|aτ |αk⟩|2

and it vanishes here because each such term vanishes. This results from the fact that any coherent
state |α⟩ is an eigenstate of the operator âτ , which is simply a rescaled version of the annihilation
operator in the case of a Gaussian modulation. For other modulation schemes, the operator âτ will
be slightly different and therefore |αk⟩ will in general no longer be an eigenstate. Let us write without
loss of generality

âτ |αk⟩ = uk|αk⟩+ vk|α⊥
k ⟩,

where |α⊥
k ⟩ is orthogonal to |αk⟩ and uk, vk are complex numbers. We get

⟨αk|a†τaτ |αk⟩ − |⟨αk|aτ |αk⟩|2= |uk|2+|vk|2−|uk|2= |vk|2

and therefore

w =
∑
k

pk∥Π⊥
k âτ |αk⟩∥2

where Π⊥
k = 1 − |αk⟩⟨αk| is the projector onto the subspace orthogonal to |αk⟩. In other words, w

quantifies how much weight from a random input state is mapped by âτ to an orthogonal subspace.

1.3.2 The M-PSK modulation

The goal of this section is to provide an explicit expression for the value of Z∗ of eq. (1.13) corre-
sponding to the case of a lossy and noisy Gaussian channel:

Z∗(T, ξ) = 2
√
T tr

(
τ1/2aτ1/2a†

)
−
√

2Tξw.

The state τ takes the following form for an M -PSK modulation consisting of the states |αeikθ⟩ for
θ = 2π/M and α > 0:

τ =
1

M

M−1∑
k=0

|αeikθ⟩⟨αeikθ|= e−α
2
M−1∑
k=0

νk|ϕk⟩⟨ϕk|,

with

|ϕk⟩ =
1

√
νk

∞∑
n=0

αnM+k√
(nM + k)!

|nM + k⟩,
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and

νk =

∞∑
n=0

α2(nM+k)

(nM + k)!
.

This expression for νk involves an unnecessary infinite sum and can be simplified. Let us introduce
µj which is obtained by applying a discrete Fourier transform

µj :=

M−1∑
k=0

eijkθνk =

M−1∑
k=0

∞∑
n=0

eijkθ
α2(nM+k)

(nM + k)!
=

∞∑
m=0

eijmθ
α2m

m!
= exp

(
α2eijθ

)
,

where we used that eijnθ = eij(nmodM)θ. Applying an inverse Fourier transform gives:

νk =
1

M

M−1∑
j=0

e−ijkθ exp
(
α2eijθ

)
.

We now wish to compute tr
(
τ1/2aτ1/2a†

)
. It is straightforward to check that:

a|ϕk⟩ = α
ν
1/2
k−1

ν
1/2
k

|ϕk−1⟩,

where indices are taken modulo M . This gives

tr
(
τ1/2aτ1/2a†

)
= e−α

2
M−1∑
k,ℓ=0

√
νkνℓ⟨ϕk|a|ϕℓ⟩⟨ϕℓ|a†|ϕk⟩

= α2e−α
2
M−1∑
k,ℓ=0

√
νkνℓ

νℓ−1

νℓ
|⟨ϕk|ϕℓ−1⟩|2

= α2e−α
2
M−1∑
k=0

ν
3/2
k

ν
1/2
k+1

where the last equality results from the orthogonality of the {|ϕk⟩} family. Moreover,

⟨ϕj |αk⟩ =
e−α

2

√
νj

+∞∑
n=0

αnM+j

(nM + j)!
eik

2π
M

(nM+j) (1.14)

=
e−α

2

√
νj

(
+∞∑
n=0

αnM+j

(nM + j)!
)eik

2πj
M (1.15)

=
e−α

2

√
νj
νje

ikθj (1.16)

= e−α
2/2√νjeijkθ (1.17)

The operator aτ = τ1/2aτ−1/2 takes a simple form:

aτ =
M−1∑
k,ℓ=0

ν
1/2
k

ν
1/2
ℓ

|ϕk⟩⟨ϕk|a|ϕℓ⟩⟨ϕℓ|= α
M−1∑
k=0

νk
νk+1

|ϕk⟩⟨ϕk+1|.
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We can finally compute w:

w =
∑
k

pk

(
⟨αk|a†τaτ |αk⟩ − |⟨αk|aτ |αk⟩|2

)

=
1

M

M−1∑
k=0

⟨αk|α2

M−1∑
j=0

ν2j
ν2j+1

|ϕj+1⟩⟨ϕj+1|

 |αk⟩ −
α2

M

M−1∑
k=0

∣∣∣∣∣∣
M−1∑
j=0

νj
νj+1

⟨αk|ϕj⟩⟨ϕj+1|αk⟩

∣∣∣∣∣∣
2

=
α2

M

M−1∑
k=0

M−1∑
j=0

ν2j
ν2j+1

⟨αk|ϕj+1⟩⟨ϕj+1|αk⟩ −
α2

M
e−2α2

M−1∑
k=0

M−1∑
j=0

ν
3/2
j

ν
1/2
j+1

2

= α2e−α
2
M−1∑
j=0

ν2j
νj+1

− α2e−2α2

M−1∑
j=0

ν
3/2
j

ν
1/2
j+1

2

.

Putting these results together, we obtain the following value for Z∗(T, ξ) for a general M -PSK mod-
ulation:

Z∗(T, ξ) =
√
T

2α2e−α
2
M−1∑
k=0

ν
3/2
k

ν
1/2
k+1

−
√
2ξα2

√√√√√e−α2

M−1∑
j=0

ν2j
νj+1

− e−2α2

M−1∑
j=0

ν
3/2
j

ν
1/2
j+1

2
 . (1.18)

We compare in Fig. 1.2 our analytical bound with the numerical bound obtained in Ref. [Gho+19].
We observe that they match up to numerical precision, except in the regime of very low-loss and large
excess noise. While this regime is not very relevant for experiments, it would still be interesting to
understand how to improve our numerical bound in that case. The question is whether there exists a
better ansatz than that of eq. (1.28) more suited to this specific regime.

0.2 0.4 0.6 0.8 1.0√
T

0.2

0.4

0.6

Z*

4-PSK: analytical bound
4-PSK: numerical bound

Figure 1.2: Comparison between Z∗(T, ξ) computed with eq. (1.18) for the 4-PSK modulation, and
the numerical result obtained by solving our SDP (similar to that in Ref. [Gho+19] for that specific
case), for α = 0.35, ξ = 0.01, as a function of the transmittance T . They match up to numerical
precision, except for transmittances very close to 1, that are not relevant for experiments.

As we will see in Section 1.6, the performance of the M -PSK protocols when using the above
formula is essentially optimal for M = 4. In fact, the increase in performance when going to M = 5
is very small and M = 6 already reaches the asymptotic limit M → ∞. Of course, it is quite possible
that this is only an artefact of our reliance on the extremality of Gaussian states and that the approach
of [LUL19] may show that larger values of M are indeed useful.
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1.3.3 General constellations

The conclusion of these previous sections is that the bound we obtain for the SDP is indeed tight in
the two extreme cases where the constellation is either very small (as inM -PSK) or infinitely large (as
in the Gaussian case). For constellations that fall in between, such as the general QAM that we will
discuss now, it is not possible to compare our results to any numerical data (since none is available),
but it is tempting to conjecture that our bound will likely be close to optimal.

The main lesson one can draw from the formula obtained in eq. (1.13) for Z is that the key rate
will increase when the modulation scheme gets closer to a Gaussian distribution, and this is mainly
quantified by the value of

w =
∑
k

pk

(
⟨αk|a†τaτ |αk⟩ − |⟨αk|aτ |αk⟩|2

)
.

There exist many choices of constellations that can be used to approximate a Gaussian distribution.
For instance, the Gaussian quadrature rule is designed to match the first moments of the Gaussian
distribution and works well for large constellations. The binomial (or random walk distribution) works
much better for small constellations [WV10; LRS16] and provides a natural candidate for CV QKD
applications.

The normalized random walk distribution containsm points for each quadrature, which are equally
spaced between −

√
m− 1 and

√
m− 1, with associated probabilities corresponding to the binomial

distribution. We choose a variance per coordinate equal to α2/2, which translates into tr
(
τ x̂2
)
=

tr
(
τ p̂2
)
= 2α2 = VA with our convention that [x̂, p̂] = 2i. The M = m2 coherent states |αk,ℓ⟩ of the

modulation are of the form

αk,ℓ =
α
√
2√

m− 1

(
k − m− 1

2

)
+ i

α
√
2√

m− 1

(
ℓ− m− 1

2

)
, (1.19)

chosen with probability

pk,ℓ =
1

22(m−1)

(
m−1
k

)(
m−1
ℓ

)
. (1.20)

Another simple distribution is the discrete Gaussian distribution, where the coherent states are
centred at m2 possible equidistant points of the form α = x+ ip, with a respective probability given
by

px,p ∼ exp
(
− ν(x2 + p2)

)
. (1.21)

This distribution is characterised by ν > 0 and by the spacing between the possible values of x (or p).
This spacing is, however, constrained once we fix the overall variance to α2/2 per coordinate. We are
then left with a single parameter ν that can be optimised to maximise the secret key rate.

As we will discuss in more detail in Section 1.6, the two modulation schemes yield very close
performance for QAM of size 64 or above, once the parameters of the discrete Gaussian distribution
have been optimised. For simplicity, it is therefore more convenient to use the binomial distribution
which comes without extra-optimisation step. However, for smaller constellations, like 16-QAM, it
seems that the discrete Gaussian distribution gives better results, and it would be interesting to find
out whether other distributions are even better.

1.4 Proof of the secret-key rate bound formula

In this section, we detail how to obtain a lower bound on the value of the primal SDP of eq. (1.9).
In fact, although it is primarily the minimum of the objective function that is relevant for CV QKD,
we can more generally aim to find the whole interval of values for tr(ρC) compatible with the con-
straints. We start by explaining how to choose a convenient purification of τ and how to model Alice’s
measurement in the entanglement-based version of the protocol and then proceed to obtain our main
result.
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1.4.0.1 Purification of τ

Before proceeding with the change of variables, let us discuss the choice of the purification |Φ⟩ for the
modulation state τ . We choose

|Φ⟩ := (1⊗ τ1/2)
∞∑
n=0

|n⟩|n⟩. (1.22)

By writing the spectral decomposition of τ :

τ =

M∑
k=1

λk|ϕk⟩⟨ϕk|,

we immediately obtain

|Φ⟩ =
M∑
k=1

λ
1/2
k |ϕ̄k⟩|ϕk⟩,

where |ϕ̄k⟩ is obtained by conjugating the coefficients of |ϕk⟩ in the Fock basis. Note that we can
also write12 |Φ⟩ = (τ̄1/2 ⊗ 1)

∑∞
n=0|n⟩|n⟩. Considering τ̄−1/2 to be the square-root of the Moore-

Penrose pseudo-inverse of τ̄ , equal to the inverse of τ̄ on its support and to zero elsewhere (recall
that τ̄ =

∑M
k=1 pk|ᾱk⟩⟨ᾱk| is an operator of rank M since any finite set of coherent states forms an

independent family), we have that

(τ̄−1/2 ⊗ 1)|Φ⟩ = (Π⊗ 1)
∞∑
n=0

|n⟩|n⟩ =
M∑
k=1

|ϕ̄k⟩|ϕk⟩,

where Π =
∑M

k=1|ϕ̄k⟩⟨ϕ̄k| is the orthogonal projector onto theM -dimensional subspace spanned by the
(conjugated) coherent states |ᾱk⟩ of the modulation (equivalently, Π is the projector onto the support
of τ̄). Note indeed that the |ϕk⟩ (as well as the |ϕ̄k⟩) are orthogonal since they appear in the spectral
decomposition of τ . This means that (τ̄−1/2 ⊗ 1)|Φ⟩ is an M -dimensional maximally entangled state.
We define the state |ψk⟩ by13

|ψk⟩ :=
√
pkτ̄

−1/2|ᾱk⟩. (1.23)

Note that
M∑
k=1

|ψk⟩⟨ψk|=
M∑
k=1

pkτ̄
−1/2|ᾱk⟩⟨ᾱk|τ̄−1/2 = τ̄−1/2τ̄ τ̄−1/2 = Π.

From this, we conclude that the family {|ψk⟩} forms an orthonormal basis for the relevant subspace,
and moreover, we obtain14

|Φ⟩ =
M∑
k=1

√
pk|ψk⟩|αk⟩. (1.24)

12In an earlier version of this work, see [DBL21], we restricted the analysis to constellations which are symmetric under
complex conjugation, in the sense that the coherent states |αk⟩ and |ᾱk⟩ are sent with the same probability. This is
essentially without loss of generality since all reasonable constellations used in telecommunications satisfy this property.
The main advantage is some slight simplification of the formula since we could use τ̄ = τ everywhere. However, it is
useful to relax this constraint if one wants to study possible imperfections in the state preparation of the protocol for
instance.

13This definition should be modified for protocols relying on a modulation of thermal states τk, as mentioned in Section
1.5.1 for instance. In that case, one would define operators of the form pk τ̄

−1/2τ̄k τ̄
−1/2.

14To see this, we can simply compute the overlap between this state and the definition (τ̄1/2 ⊗ 1)
∑

n|n⟩|n⟩:∑
k

√
pk⟨ψk|⟨αk|(τ̄1/2 ⊗ 1)

∑
n

|n⟩|n⟩ =
∑
k

pk⟨ᾱk|⟨αk|(τ̄−1/2 ⊗ 1)(τ̄1/2 ⊗ 1))
∑
n

|n⟩|n⟩

=
∑
k

pk⟨ᾱk|Π|ᾱk⟩ = 1,

where we used that ⟨αk|
∑

n|n⟩|n⟩ = |ᾱk⟩ and τ̄−1/2τ̄1/2 = Π.
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An interpretation of the states |ψk⟩ is that they define the projective measurement that Alice should
perform in the entanglement-based version of the protocol in order to recover the Prepare-and-Measure
protocol: if Alice measures her state and obtains the result indexed by k, then the second mode of
|Φ⟩, the one which is sent through the quantum channel to Bob, collapses to |αk⟩.

1.4.0.2 The Sum-Of-Squares

Now that we have defined the states |ψk⟩, we are ready to analyse the SDP of eq. (1.9), which we
recall here for convenience:

min tr(ρC)

s.t.



trB(ρ) = τ̄

tr
(
ρC1

)
= 2c1

tr
(
ρC2

)
= 2c2,

tr
(
ρ(Π⊗ b†b)

)
= nB,

ρ ⪰ 0,

with C = ab+ a†b†, C1 =
∑

k ⟨αk|aτ |αk⟩|ψk⟩⟨ψk|⊗b̂+ h.c. and C2 =
∑

k ᾱk|ψk⟩⟨ψk|⊗b̂+ h.c.
In order to get explicit bounds on tr(ρC) for feasible points of this program, we exploit a standard

technique called sum-of-squares. It consists in exhibiting some clever non-negative operator (namely
KK† below) such that we can bound the value of tr (ρ(C−KK†)) from the constraints of the program.
In that case, we immediately get

tr(ρC) = tr
(
ρ(C −KK†)

)
+ tr

(
ρKK†

)
≥ tr

(
ρ(C −KK†)

)
,

where we used that tr
(
ρKK†) ≥ 0. Finding an operator K that will give a good bound on the value of

the SDP is non-trivial, and the problem is even more complicated here because the relevant operators
live in an infinite-dimensional Hilbert space. In a previous version of this work (Ref. [DBL21]), we
attacked the problem by first performing a change of variables consisting in displacing Bob’s system
by −tαk (for an optimised value of t) when the state prepared by Alice is |αk⟩. The advantage of this
procedure was that the new state held by Bob has a very low average photon number and is therefore
close to the vacuum state (and equal to it when there is no excess noise). It was then possible to
guess what would be a good parameterised sum-of-squares. In the present version, we bypass this
change-of-variable altogether and directly define the relevant operators:

A := ΠaΠ, (1.25)

B :=
∑
k

|ψk⟩⟨ψk|⊗(b− tαk) (1.26)

P :=
∑
k

yk|ψk⟩⟨ψk|, (1.27)

K± := z(A− P †)± 1

z
B†, (1.28)

where the scalars t, {yk}k and z will cleverly be chosen later. The proof ends up being much shorter,
involving fewer algebraic operations, but may seem a bit magical.

From KK† ⪰ 0, we infer that tr
(
ρKK†) ≥ 0. Expanding this expression, we find

K±K
†
± = ±(AB +B†A†) + z2(A− P †)(A† − P )∓ (P †B +B†P ) +

1

z2
B†B. (1.29)

The basic intuition for the choice of K is as follows. First, as mentioned, we want tr(ρC) to
naturally appear in tr

(
ρ(KK†)

)
. More precisely, it will appear in tr

(
ρ(AB +B†A†)

)
. Then, we also

want the quantity w (eq.1.11) to appear in our bound, as we argued that it quantifies how close to
the Gaussian a constellation is, and hence how close to optimal the secret key rate is. This is done
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by choosing the coefficients yk such that tr
(
ρ(A− P †)(A† − P )

)
= w. The operators C1 and C2 then

naturally appear as terms in the expressions for P †B+B†P and B†B, respectively, and we can use the
constraints of the SDP to get their values. This is no coincidence that we recover these operators here
as they were actually defined by looking at the remaining terms in KK† in the first place. Finally,
the coefficients t and z are optimised to get bounds as tight as possible.

To see this, let us consider each of the four terms AB + B†A†, (A− P †)(A† − P ), (P †B + B†P ),
and B†B individually and take their expectation with respect to the state ρ.

1. Let us first consider the term tr
(
ρ(AB +B†A†)

)
. By definition,

AB =
∑
k

Πa|ψk⟩⟨ψk|⊗(b− tαk),

and therefore

tr
(
ρ(AB +B†A†)

)
= tr

(
ρ(Ab+A†b†)

)
− t tr

(
ρ(
∑
k,ℓ

αk⟨ψℓ|a|ψk⟩|ψℓ⟩⟨ψk|+h.c.)
)
.

Recall that ρ = (idA ⊗ NA′→B)(|Φ⟩ ⟨Φ|), hence trA(ρΠaΠ) = trA(|Φ⟩ ⟨Φ|ΠaΠ). And since
|Φ⟩ =

∑M
k=1

√
pk |ψk⟩ |αk⟩, Π|Φ⟩⟨Φ|Π = |Φ⟩⟨Φ|. Therefore,

tr
(
ρ(Ab+A†b†)

)
= trB(trA(ρΠaΠ)b) + c.c.

= trB(trA(|Φ⟩⟨Φ|ΠaΠ)b)
= trB(trA(|Φ⟩⟨Φ|a)b) + c.c.

= trB(trA(ρa)b) + c.c.

= tr
(
ρ(ab+ a†b†)

)
= tr(ρC)

is equal to the objective function. We have used c.c. to denote the complex conjugate.

To continue the computation of tr
(
ρ(AB +B†A†)

)
, note that,

tr(ρ|ψℓ⟩⟨ψk|) = tr
(
(|Φ⟩⟨Φ|)(|ψℓ⟩⟨ψk|)

)
=

√
pℓpk tr(|αℓ⟩⟨αk|), (1.30)

and αk tr(|αℓ⟩⟨αk|) = ⟨αℓ|b|αk⟩. One thus obtains,

tr
(
ρ(AB +B†A†)

)
= tr(ρC)− t

(∑
k,ℓ

√
pkpℓ⟨ψℓ|a|ψk⟩⟨αℓ|b|αk⟩+ c.c.

)
= tr(ρC)− t ⟨Φ|ab+ a†b†|Φ⟩.

One can simplify the first term further and write it as a function of τ . From (1⊗ b̂)
∑∞

n=0|n⟩|n⟩ =
(â† ⊗ 1)

∑∞
n=0|n⟩|n⟩, we obtain

⟨Φ|ab|Φ⟩ =
∞∑

m,n=0

⟨m|⟨m|(τ̄1/2 ⊗ 1)ab(τ̄1/2 ⊗ 1)|n⟩|n⟩

=

∞∑
m,n=0

⟨m|τ̄1/2aτ̄1/2a†|n⟩⟨m|n⟩

= tr
(
τ̄1/2aτ̄1/2a†

)
.

This expression is real since it equals the trace of the Hermitian matrix τ̄1/4aτ̄1/2a†τ̄1/4. In
particular, it is invariant under complex conjugation, and we finally get the following expression
for the first term of eq. (1.29):

tr
(
ρ(AB +B†A†)

)
= tr(ρC)− 2t tr

(
τ̄1/2aτ̄1/2a†

)
. (1.31)
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2. We turn to the second term of eq. (1.29),

tr
(
ρ(A− P †)(A† − P )

)
.

The operator A only acts on the first subsystem, therefore,

tr
(
ρAA†

)
= trA(trB(ρ)AA

†) = tr
(
τ̄ aΠa†

)
(1.32)

where we exploited the constraint trB(ρ) = τ̄ . Recalling the definition of the operator aτ̄ :=
τ̄1/2aτ̄−1/2, one gets

tr
(
τ̄ aΠa†

)
= tr

(
τ̄ a†τ̄aτ̄

)
.

tr
(
ρ(AP + P †A†)

)
= 2ℜ(tr

(
ρΠ
∑
k

yka|ψk⟩⟨ψk|

)
) (1.33)

= 2ℜ(tr

(
τ̄Π
∑
k

yka|ψk⟩⟨ψk|

)
) (1.34)

= 2ℜ(
∑
k

yk⟨ψk|τ̄ a|ψk⟩) (1.35)

tr
(
ρPP †

)
= tr

(
τ̄PP †

)
=
∑
k

|yk|2⟨ψk|τ̄ |ψk⟩ (1.36)

Recalling that |ψk⟩ =
√
pkτ̄

−1/2 |ᾱk⟩, this gives

tr
(
ρ(AP + P †A†)

)
= 2ℜ(

∑
k

ykpk⟨ᾱk|τ̄1/2aτ̄−1/2|ᾱk⟩) = 2ℜ(
∑
k

ykpk⟨ᾱk|aτ̄ |ᾱk⟩) (1.37)

tr
(
ρPP †

)
=
∑
k

|yk|2pk⟨ᾱk|ᾱk⟩ =
∑
k

|yk|2pk (1.38)

Then choosing
yk = ⟨ᾱk|aτ̄ |ᾱk⟩∗ (1.39)

one gets

tr
(
ρ(AP + P †A†)

)
= 2

∑
k

pk|⟨ᾱk|aτ̄ |ᾱk⟩|2 (1.40)

tr
(
ρPP †

)
=
∑
k

pk|⟨ᾱk|aτ̄ |ᾱk⟩|2 (1.41)

We finally obtain for our choice of P that

z2 tr
(
ρ(A− P †)(A† − P )

)
= z2( tr

(
τa†τaτ

)
−
∑
k

pk|⟨αk|aτ |αk⟩|2). (1.42)

This equals z2w with w defined in eq. (1.11).

3. To compute the third term of eq. (1.29), first note that,

P †B +BP † =
(∑

k

y∗k|ψk⟩⟨ψk|⊗b+ h.c
)
− t
(∑

k

y∗kαk|ψk⟩⟨ψk|+h.c.
)

(1.43)

With our choice for yk = ⟨ᾱk|aτ̄ |ᾱk⟩∗, we recognise the first sum in this equation to be the
definition of C1 =

∑
k⟨ᾱk|aτ̄ |ᾱk⟩|ψk⟩⟨ψk|⊗b+ h.c. Exploiting the constraint tr(ρC1) = 2c1, this

gives,

tr
(
ρ(P †B +B†P )

)
) = 2c1 − t

(∑
k

y∗kαk tr(ρ|ψk⟩⟨ψk) + c.c
)
. (1.44)
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Noting that the y∗k are also equal to

y∗k = ⟨ᾱk|aτ̄ |ᾱk⟩ =
1

pk
⟨ψk|τ̄1/2τ̄1/2aτ̄−1/2τ̄1/2|ψ̄k⟩ =

⟨ψk|τ̄ a|ψk⟩
pk

, (1.45)

and that

tr(ρ|ψk⟩⟨ψk|) = trA(trB(ρ)|ψk⟩⟨ψk|) = tr(τ̄ |ψk⟩⟨ψk|) = pk, (1.46)

one gets, ∑
k

y∗kαk tr(ρ|ψk⟩⟨ψk|) =
∑
k

αk⟨ψk|τ̄ a|ψk⟩ (1.47)

=
∑
k,ℓ

αk⟨ψk|τ̄ |ψℓ⟩⟨ψℓ|a|ψk⟩ (1.48)

=
∑
k,ℓ

αk
√
pkpℓ⟨ᾱk|ᾱℓ⟩⟨ψℓ|a|ψk⟩ (1.49)

=
∑
k,ℓ

αk
√
pkpℓ⟨αℓ|αk⟩⟨ψℓ|a|ψk⟩ (1.50)

=
∑
k,ℓ

√
pkpℓ⟨αℓ|b|αk⟩⟨ψℓ|a|ψk⟩ (1.51)

= ⟨Φ|ab|Φ⟩. (1.52)

Therefore,

tr
(
ρ(P †B +BP †)

)
= 2c1 − t⟨Φ|ab+ a†b†|Φ⟩ = 2c1 − 2t tr

(
τ1/2aτ1/2a†

)
. (1.53)

4. The final term of eq. (1.29) is

1

z2
tr
(
ρB†B

)
=

1

z2
tr
(
ρ
∑
k

|ψk⟩⟨ψk|⊗(b†b− t(αkb
† + ᾱkb) + t2|αk|2)

)
.

The three subterms give, respectively, nB, 2tc2 and t2⟨n⟩ (where ⟨n⟩ is the average photon
number in the constellation). Overall, this term becomes

1

z2
tr
(
ρB†B

)
=

1

z2
(nB − 2tc2 + t2⟨n⟩). (1.54)

Putting eq. (1.42), (1.31), (1.53) and (1.54) together, we get that

z2w ±
(
tr(ρC)− 2t tr

(
τ̄1/2aτ̄1/2a†

))
∓
(
2c1 − 2t tr

(
τ1/2aτ1/2a†

))
+

1

z2
(nB − 2tc2 + t2⟨n⟩)

is non-negative, which is equivalent to

tr(ρC) ≥ 2c1 − z2w − 1

z2
(nB − 2tc2 + t2⟨n⟩),

tr(ρC) ≤ 2c1 + z2w +
1

z2
(nB − 2tc2 + t2⟨n⟩).

To get a bound as tight as possible we finally optimise over the variables t and z. The expression

nB−2tc2+ t
2⟨n⟩ = ⟨n⟩(t− c2

⟨n⟩)
2+nB− c22

⟨n⟩ is a second-order polynomial in t, whose minimum nB− c22
⟨n⟩

is obtained for

t =
c2
⟨n⟩

, (1.55)
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and this will thus be the value we pick for t. Likewise, 2c1∓z2w∓ 1
z2
(nB− c22

w ) is a function of z whose

extremum is obtained when its derivative ∓2zw ± 2
z3
(nB − c22

⟨n⟩) vanishes. We thus pick15

z4 =
nB − c22

⟨n⟩

w
. (1.56)

With these optimised parameters, we obtain

2c1 − 2

((
nB − c22

⟨n⟩

)
w

)1/2

≤ tr(ρC) ≤ 2c1 + 2

((
nB − c22

⟨n⟩

)
w

)1/2

.

This concludes our proof.

1.5 Generalisations

1.5.1 Modulation of arbitrary states

Our approach extends to the case where Alice sends arbitrary states τk, with probability pk, for
instance squeezed states [CLV01] or thermal states [Fil08; UF10]. Besides possible applications such
as the application of CV QKD to the microwave regime [Wee+10], it is important to be able to analyse
the security of the protocol when the state preparation is imperfect since Alice can never prepare the
intended states with infinite precision. As an example, a modulation of thermal states consists in
sending some displaced thermal state τk with ⟨n⟩th photons centred around αk with probability pk.
The state τk is given by

τk = Dαk
ρthD

†
αk

with ρth =
1

1 + ⟨n⟩th

∞∑
m=0

(
⟨n⟩th

1 + ⟨n⟩th

)m
|m⟩⟨m|,

where ρth is a thermal state centred in phase space and Dαk
:= exp

(
αk b̂

† − ᾱk b̂
)

is the operator

describing a displacement by αk.
In this section, we will therefore consider the most general setting where Alice picks some index

k with probability pk and sends some state τk, which is arbitrary. The security analysis relies on the
same idea as before, that is computing the covariance matrix of the state ρAB shared by Alice and
Bob in the entanglement-based (EB) version of the protocol, and the covariance term can again be
bounded with an SDP similar to eq. (1.9).

The modulation is still characterised by its average state

τ :=
∑
k

pkτk (1.57)

and we will keep the same purification as before to analyse the EB version of the protocol:

|Φ⟩AA′ := (1⊗ τ1/2)

∞∑
n=0

|n⟩A|n⟩A′ .

We need to replace the rank-one projector |ψk⟩⟨ψk| defined in eq. (1.23) by a positive semidefinite
operator

Pk := pkτ̄
−1/2τ̄kτ̄

−1/2. (1.58)

These operators yield a resolution of the identity on the support of τ̄ , the complex conjugate of τ (also
equal to the transpose τT with respect to the Fock basis):∑

k

Pk = Π,

15In some cases, for instance with a Gaussian modulation, the term w corresponding to z2 vanishes. One should then
consider the limit z → ∞ in the optimisation below.
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where Π is the projector onto the support of τ̄ . Since τ̄ = trA′(|Φ⟩⟨Φ|) corresponds to the reduced state
on the system A, we can interpret the family {Pk} as the POVM elements of a general measurement
performed by Alice on A: whenever she obtains the measurement outcome k, the state of system A′

collapses to τk.
Recall that the first-moment values that can be measured in the PM protocol are

c1 = Re(ατ |β), c2 = Re(α|β),

with ατ = (tr(τkaτ ))k. These can be expressed as the expectation values of ρ for the observables C1

and C2 defined by

C1 :=
∑
k

zkPk ⊗ b+ h.c. (1.59)

C2 :=
∑
k

ᾱkPk ⊗ b+ h.c. (1.60)

with

zk := tr(τ̄kaτ̄ ). (1.61)

We also introduce the operators G1, G2 acting on the system A:

G1 :=
∑
k

zkPk, G2 :=
∑
k

ᾱkPk (1.62)

and observe that
C1 = G1 ⊗ b+ h.c and C2 = G2 ⊗ b+ h.c.

We can now give the relevant SDP when we consider a modulation of arbitrary states:

min tr(ρC) (1.63)

s.t.



trB(ρ) = τ̄

tr
(
ρC1

)
= 2c1

tr
(
ρC2

)
= 2c2,

tr
(
ρ(Π⊗ b̂†b̂)

)
= nB,

ρ ⪰ 0.

Our goal is again to exhibit operators K± and exploit the operator inequalities K±K
†
± ⪰ 0 to

bound the value of the SDP. We need some additional notations:

A :=
∑
k

⟨k|⊗ΠaP
1/2
k ⊗Dtαk

(1.64)

B :=
∑
k,ℓ

|k⟩ ⊗ P
1/2
k Pℓ ⊗D†

tαk
(b− tαℓ) (1.65)

F :=
∑
k

zk⟨k|⊗P
1/2
k ⊗Dtαk

(1.66)

where {|k⟩} is an orthonormal basis of a reference system R, storing Alice’s measurement result. The
operators A and B should not be confused with the registers A and B. We recall that the operator
Dβ describes a displacement by β.

We then proceed exactly as in Section 1.4 and define

K± := z(A− F )± 1

z
B†.

Considering K±K
†
± ⪰ 0 results in the sum-of-squares inequality:

± (AB +B†A†)︸ ︷︷ ︸
(1)

+ z2(A− F )(A− F )†︸ ︷︷ ︸
(2)

∓ (FB +B†F †)︸ ︷︷ ︸
(3)

+
1

z2
B†B︸ ︷︷ ︸
(4)

⪰ 0. (1.67)

We take the expectation with respect to the state ρ and consider each term individually.
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1. For the first term, we have

AB =
∑
k

ΠaPk ⊗ (b− tαk)

and the expectation with respect to ρ gives

tr(ρAB) = tr(ρ(ΠaΠ⊗ b))− t
∑
k

αk tr(τ̄ aPk) = tr(ρ(ΠaΠ⊗ b))− t
∑
k

pkαkzk.

In particular, we can recognise the objective function of the SDP:

tr(ρ · (1)) = tr(ρC)− 2tRe
(∑

k

pkαkzk

)
. (1.68)

2. For the second term, we have

AA† = ΠaΠa†Π

AF † =
∑
k

z̄kΠaPk

FF † =
∑
k

|zk|2Pk.

Their expectation with respect to ρ gives

tr
(
ρAA†

)
= tr

(
τ̄ aΠa†

)
= tr

(
τa†τaτ

)
tr
(
ρAF †

)
=
∑
k

z̄k tr(τ̄ aPk) =
∑
k

pk|zk|2

tr
(
ρFF †

)
=
∑
k

|zk|2tr(τ̄Pk) =
∑
k

pk|zk|2.

Putting everything together, we get

tr(ρ · (2)) = z2w, (1.69)

where we define
w := tr

(
τa†τaτ

)
−
∑
k

pk|tr(τkaτ )|2.

3. For the third term of eq. (1.67), we note that

FB =
∑
k,ℓ

zkPkPℓ ⊗ (b− tαℓ)

= G1 ⊗ b− t
∑
k,ℓ

zkαℓPkPℓ

= G1 ⊗ b− tG1G
†
2.

The expectation with respect to ρ gives

tr(ρ · (3)) = 2c1 − 2tRe
(∑
k,ℓ

zkαℓ tr(τ̄PkPℓ)
)
. (1.70)

4. Finally, for the fourth term, we have

B†B =
∑
k,ℓ

PkPℓ ⊗ (b− tαk)
†(b− tαℓ)

= Π⊗ b†b− t
∑
k

Pk ⊗ (ᾱkb+ αkb
†) + t2

∑
k,ℓ

ᾱkαℓPkPℓ

= Π⊗ b†b− t(G2 ⊗ b+G†
2 ⊗ b†) + t2G†

2G2.
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The expectation with respect to ρ gives

tr(ρ · (4)) = 1

z2

(
nB − 2tc2 + t2 tr

(
τ̄G†

2G2

))
. (1.71)

By considering the four terms of eq. (1.67), we find that

0 ≤ z2w ±
(
tr(ρC)− 2tRe

(∑
k

pkαkzk

))
∓ 2
(
c1 − tRe

(∑
k,ℓ

zkαℓ tr(τ̄PkPℓ)
))

+
1

z2

(
nB − 2tc2 + t2 tr

(
τ̄G†

2G2

))
= z2w ±

(
tr(ρC)− 2tRe

(∑
k,ℓ

(αk − αℓ)zk tr(τ̄PkPℓ)
)
− 2c1

)
+

1

z2

(
nB − 2tc2 + t2 tr

(
τ̄G†

2G2

))
where we used the substitution pk =

∑
ℓ tr(τ̄PkPℓ) in the second equality. Overall, this implies the

two inequalities

tr(ρC) ≤ 2c1 + 2tRe
(∑
k,ℓ

(αk − αℓ)zk tr(τ̄PkPℓ)
)
+ 2

√
w
(
nB + t2 tr

(
τ̄G†

2G2

)
− 2tc2

)
tr(ρC) ≥ 2c1 + 2tRe

(∑
k,ℓ

(αk − αℓ)zk tr(τ̄PkPℓ)
)
− 2

√
w
(
nB + t2 tr

(
τ̄G†

2G2

)
− 2tc2

)
.

where we optimised the variable z exactly as in Section 1.4. We note a potential problem in the case
where w vanishes: it would then appear that by fixing t arbitrarily, we could obtain any bound about
on tr(ρC). This is not possible, however, since w only vanishes for a Gaussian modulation of coherent
states and in this case the second term of the right-hand side also vanishes. More generally, this term
vanishes whenever the measurement performed by Alice is projective, in the sense that PkPℓ = δk,ℓPk,
corresponding for instance to an arbitrary modulation of coherent states (or pure squeezed states).
Here, we simply choose the value of t that minimises the term under the square-root (but note that
this may be suboptimal in general), namely

t =
c2

tr
(
τ̄G†

2G2

) =
c2∑

k,ℓ ᾱkαℓ tr(τ̄PkPℓ)
.

This establishes our final bounds:

tr(ρC) ≥ 2c1 − 2c2
Re
(∑

k,ℓ(αℓ − αk)zk tr(τ̄PkPℓ)
)

tr
(
τ̄G†

2G2

) − 2

√√√√√w

nB − c22

tr
(
τ̄G†

2G2

)
, (1.72)

tr(ρC) ≤ 2c1 − 2c2
Re
(∑

k,ℓ(αℓ − αk)zk tr(τ̄PkPℓ)
)

tr
(
τ̄G†

2G2

) + 2

√√√√√w

nB − c22

tr
(
τ̄G†

2G2

)
. (1.73)

It would be interesting to understand whether this lower bound is tight for a Gaussian modulation of
thermal states.

1.5.2 Finite-size effects

In this section, we quickly discuss two of the main finite-size effects that will need to be included in a
future full composable security proof against general attacks. Another important effect concerns the
optimality of collective attacks among general attacks. At the moment, this point still needs to be
clarified, and we leave it for future work. Note, however, that the correction term due to this last effect
is typically dependent on the proof techniques and we have observed in the past that better techniques
can significantly reduce this term. For instance for DV QKD, the first techniques were based on the
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exponential de Finetti theorem [Ren07], then on a de Finetti reduction [CKR09], then on an entropic
uncertainty principle [TR11] and finally on the entropy accumulation theorem [DFR20]. It is therefore
tempting to believe that a similar phenomenon will occur with CV QKD, and this has indeed been
the case for protocols with a Gaussian modulation of coherent states where both an exponential de
Finetti theorem [RC09] and a Gaussian de Finetti reduction [Lev17] are known.

For these reasons, it makes sense to focus on the two finite-size effects that will likely remain the
dominating terms in any future full security proof of CV QKD, namely parameter estimation and
reconciliation efficiency.

1.5.2.1 Parameter estimation

One of the novelties of our proof, when compared to the case of a Gaussian modulation, is the need
for experimentally estimating 3 parameters, c1, c2 and nB, in order to get an upper bound on the
Holevo information χ(Y ;E)ρ appearing in the Devetak-Winter bound. Let us denote by f(c1, c2, nB)
this upper bound, which is given explicitly in eq. (173), where we compute the symplectic eigenvalues

for the covariance matrix Γ′ =
[
V 12 Z∗σZ
Z∗σZ W12

]
with V given by the modulation scheme, W computed

from the value of nB and Z∗ computed from the values of c1, c2, nB by the formula given in eq. (1.12).
We note that the function f depends implicitly on the modulation scheme, for example via the value
of w appearing in the expression of Z∗.

Since nB is the average photon number in Bob’s system, it corresponds to the variance (up to a
shift and a factor 2) of his quadrature measurements, when the distribution is centred:

1 + 2nB = 1 + 2 tr
(
ρb†b

)
=

1

2

(
⟨x̂2B⟩ρ + ⟨p̂2B⟩ρ

)
.

One can then compute an observed value nobsB corresponding to the empirical average of nB evaluated
on the samples that are used for parameter estimation. In order to estimate c1 and c2, one can for
instance form a vector of average observed values βobs = (βobsk )k where βobsk is the average observed

outcome for the observable b̂ = 1
2(x̂B + ip̂B) when Alice has sent the state |αk⟩, and then compute

cobs1 := Re(ατ |βobs), cobs2 := Re(α|βobs),

where the kth entry of the vectors ατ and α are given respectively by ⟨αk|aτ |αk⟩ and αk.
In the asymptotic setting, one can assume that the values of c1, c2 and nB are known exactly, and

therefore coincide with their observed values. This is not the case in the finite-size setting, and one
would in general compute a confidence region for the triple (c1, c2, nB) compatible with the observed
values (cobs1 , cobs2 , nobsB ). One can check numerically that the function f(c1, c2, nB) is increasing with
nB and decreasing with either c1 or c2, when the other 2 variables are fixed. This implies that there is
no need for computing the whole confidence region, but it is in fact sufficient to compute “worst-case
estimates” for c1, c2 and nB, in the sense that

Pr[c1 ≤ cmin
1 ] ≤ ϵPE

3
, Pr[c2 ≤ cmin

2 ] ≤ ϵPE
3
, Pr[nB ≥ nmax

B ] ≤ ϵPE
3
.

In these expressions, the variables c1, c2 and nB refer to their respective values for the modes that have
not been used for parameter estimation, and that will be exploited for key extraction. The numbers
cmin
1 , cmin

2 , nmax
B are computed with eq. (1.74) below from observations made during the parameter

estimation procedure and correspond to the worst-case estimators. The small parameter ϵPE is an
upper bound on the probability that the parameter estimation performed by Alice and Bob returns
cmin
1 for instance and that the value of c1 is less than cmin

1 for the remaining unobserved modes.
Once these numbers are known, one can simply use the following upper bound on χ(Y ;E) in the
Devetak-Winter bound:

χ(Y ;E) ≤ f(cmin
1 , cmin

2 , nmax
B ),

which holds, except with a small probability ϵPE.
It is well known that such a parameter estimation is more subtle in the case of CV QKD because

the random variables we aim at estimating are not trivially bounded by construction (contrary to
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the quantum bit error rate of BB84 for instance, which lies by definition between 0 and 1). This
difficulty can be addressed with the tools developed in Ref. [Lev15], but this is beyond the scope of
the present work. Here, we simply wish to give the expected asymptotic scaling of cmin

1 , cmin
2 and nmax

B ,
as a function of n, the number of quantum states exchanged on the quantum channel:

nmax
B = nobsB

(
1 +O

(√
log(1/ϵPE)

n

))
, (1.74)

cmin
i = cobsi −O

(
nobsB

√
log(1/ϵPE)

n

)
, (1.75)

for i ∈ {1, 2}. The precise value of the hidden positive constants in the O(·) notation are not known
at the moment, and will require a thorough analysis to determine.

1.5.2.2 Reconciliation efficiency

The information reconciliation step of the protocol is also more involved for CV QKD than for DV
QKD. Without this step, or assuming it is achieved perfectly, the asymptotic secret key rate would
read

K = I(X;Y )− sup
N
χ(Y ;E) = inf

N
H(Y |E)−H(Y |X), (1.76)

where X and Y denote the variables corresponding to Alice and Bob, and the raw key is given by Bob’s
variable (which is always the more favourable choice for CV QKD). Since the present work focuses on
the asymptotic regime, one could in principle ignore the reconciliation procedure, but this would lead
to incorrect predictions in the case of CV QKD because an imperfect reconciliation significantly affects
the performance: for instance, with perfect reconciliation and a Gaussian modulation, the secret key
rate is strictly increasing with the variance of the modulation, while this is no longer the case as soon
as the reconciliation is slightly imperfect.

In a typical DV protocol, Alice and Bob hold correlated bit-strings x⃗ = (x1, . . . , xn) and y⃗ =
(y1, . . . , yn) corresponding respectively to the input and output of n uses of a binary symmetric channel,
with crossing probability p. Bob then sends some side-information to Alice via the authenticated
classical channel to help him recover the value of y⃗. In the asymptotic limit where n tends to infinity,
the channel coding theorem ensures that Alice and Bob can succeed at this task with high probability
provided that Alice sends H(Y |X) = H(X|Y ) = nh(p) bits of side information, with the binary
entropy defined as h(p) := −p log2(p) − (1 − p) log2(1 − p). In practice, one cannot achieve this
perfectly, and Alice will need to send slightly more information, namely (1 + f(p))nh(p) bits, where
f(p) is typically a few percent.

For a CV QKD protocol, the relevant channel in practice16 is the additive Gaussian white-noise
(AWGN) channel: the strings held by Alice and Bob are (x1, . . . , xn) ∈ Cn and (y1, . . . , yn) ∈ Cn
where xi is chosen according to the modulation scheme: it is equal to αk with probability pk. For each
i, we expect

yi =

√
T

2
xi + zi,

where Re(zi), Im(zi) ∼ N (0, 1 + Tξ) is a Gaussian noise. The extra factor 1/2 in the square-root
comes from the heterodyne detection which requires first splitting the incoming signal on a balanced
beamsplitter before measuring each output mode with a homodyne detection. In the case of a Gaussian
modulation, with Re(xi), Im(xi) ∼ N (0, VA) two Gaussian random variables of variance VA, the mutual
information between the random variables X and Y takes a simple expression

I(X;Y ) = log2(1 + SNR) with SNR :=
TVA
2 + Tξ

.

16By relevant channel, we mean the channel that is typically observed in experimental implementations, and that
therefore corresponds to a transmission in an optical fiber.



112 CHAPTER 1. ASYMPTOTIC SKR OF DM CVQKD PROTOCOLS

Note that this is twice the standard formula 1
2 log2(1 + SNR) because we consider both the real and

imaginary parts.

For the modulation schemes we consider in this work, there is no closed-form expression for the
mutual information I(X;Y ), although it is typically very close to the Gaussian version, provided the
variance VA is small enough [WV10]. Note in particular, that for a 2k-QAM, it is necessarily upper
bounded by k, which is itself an upper bound on the entropy H(X), while log2(1 + SNR) grows to
infinity with the signal-to-noise ratio. Assuming therefore that the gap between the two quantities is
indeed negligible here, we still need to quantify how far we are from the key rate of eq. (1.76). There
are two natural ways to write a version of the key rate taking into account the imperfect reconciliation
efficiency:

K = βI(X;Y )− sup
N
χ(Y ;E) = inf

N
H(Y ′|E)− (1 + f)H(Y ′|X), (1.77)

where β < 1 is the so-called reconciliation efficiency generally used in CV QKD and f > 0 is more
relevant to DV QKD. In the second expression, we write Y ′ to denote a discretised version of Y , since
otherwise the conditional entropy is ill-defined.

Provided that the reconciliation protocol fully exploits soft-information, meaning that the discreti-
sation is sufficiently precise, then high values of β between 95 and 98% are achievable [JKL11; Mil+18;
Man+21] for a Gaussian modulation. Similarly, for a QPSK modulation, it is possible to easily reach
90% at arbitrarily low SNR. It is not clear, however, how to achieve similar numbers with a coarse
graining corresponding to Bob simply keeping the sign of his variable in the QPSK case, as done in
Ref. [LUL19].

The reconciliation problem has not yet been studied in detail in the case of larger QAMs. Nev-
ertheless, one can realistically assume that values around 95% can be achieved, given the closeness
between this problem and the Gaussian case. For this reason, we will assume β = 0.95 in the numerical
simulations of Section 1.6.

1.6 Numerical results

In this section, we perform some numerical simulations in the case of a typical Gaussian channel with
transmittance T and excess noise ξ. The covariance matrix Γ′ takes the form

Γ′ :=

[
(VA + 1)12 Z∗σZ
Z∗σZ (1 + TVA + Tξ)12

]
with

Z∗ = 2
√
T tr

(
τ1/2aτ1/2a†

)
−
√

2Tξw

and τ and W depend on the specific modulation scheme that is considered.

We first compare in Figure 1.3 the secret key rates obtained for various sizes of the M -PSK mod-
ulation. The upper panel shows that when the modulation variance (or equivalently, α) is optimised,
then going beyond M = 5 is essentially useless. On the right panel, we see that the only advantage of
increasing M is to allow for larger possible values of α. However, it is much better to consider QAM
instead of increasing the number of states in the PSK modulation.

In Figure 1.4, we compare the binomial and the discrete Gaussian distributions discussed in Sec-
tion 1.3.3 in the case of the 16-QAM and the 64-QAM. Note that the two distributions coincide by
construction for the 4-QAM (or QPSK modulation). It is clear that for a 64-QAM, both distributions
yield essentially the same performance, which is close to that of a Gaussian modulation with the same
variance. For the 16-QAM, however, the discrete Gaussian outperforms the binomial distribution,
when the value of the parameter ν in eq. (1.21) is optimised. This also suggests that there is still room
for further improvement in the case of the 16-QAM (or maybe of the 32-QAM which we have not
discussed here mostly because it would break the independence of the real and imaginary parts of Al-
ice’s variables, and therefore potentially complicate the reconciliation procedure), and that additional
work might lead to the discovery of better modulation schemes. Let us still insist on the fact that
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Figure 1.3: Asymptotic secret key rate for the M -PSK modulation schemes with M ∈ {4, 5, 6}, from
bottom to top. The other parameters are ξ = 0.01 and β = 0.95. Top panel: the modulation variance
is fixed, α = 0.4, the rates for M = 5 and M = 6 are indistinguishable; Bottom panel: secret key rate
as a function of α for d = 20 km.

here we assume that β is equal to 0.95, independently of the modulation scheme, but that reality is
probably more complex. In other words, it is important to also consider the reconciliation procedure
when optimising the modulation scheme.

0 20 40 60
distance (km)

10−3

10−2

10−1

100

se
cr

et
ke

y
ra

te

16-QAM (bin)
16-QAM (discr. Gauss.)
Gaussian modulation

0 100 200 300 400
distance (km)

10−8

10−6

10−4

10−2

100

se
cr

et
ke

y
ra

te

64-QAM (bin)
64-QAM (discr. Gauss.)
Gaussian modulation

Figure 1.4: Asymptotic secret key rate for the 16-QAM and 64-QAM, with two choices of distribution:
binomial vs discrete Gaussian. The fixed parameters are VA = 5, ξ = 0.02 and β = 0.95. Left panel:
16-QAM (ν = 0.085 for the discrete Gaussian distribution); right panel: 64-QAM (ν = 0.07 for the
discrete Gaussian distribution). In both cases, the discrete Gaussian distribution outperforms the
binomial distribution, but the difference is only significant for the 16-QAM.

Figure 1.5 shows the performance of the various QAM sizes as a function of the modulation
variance VA. Here we only plot the results for the binomial distribution, since this avoids an extra
optimisation on ν. The main observation is that increasing the size of the constellation brings the
performance close to that of the Gaussian modulation for larger and larger values of VA, allowing one
to work at higher SNR, and thus simplifies the experimental implementation as well, possibly, as the
reconciliation efficiency. At the same time, for a fixed reconciliation efficiency and a given distance
(50 km here), we see that the optimal modulation variance is VA ≈ 5 and that the 64-QAM is already
essentially indistinguishable from the Gaussian modulation.

Finally, we want to understand the performance of the various modulation schemes in terms of
tolerable excess noise: if the transmittance of the channel is fixed to T = 10−0.02d, what is the
maximum value of the excess noise ξ such that the secret key rate is positive? Figure 1.6 shows
the tolerable excess noise as a function of losses in the channel, when the modulation variance VA is
optimised for each point. Again, we see that a 64-QAM already provides a performance close to the
Gaussian modulation, and the 256-QAM is almost indistinguishable from the Gaussian modulation.
The figures also confirm that our bound is quite bad for the QPSK modulation since the tolerable
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Figure 1.5: Secret key rate at 50 km as a function of the modulation variance VA, for various modu-
lation schemes: from bottom to top: QAM of sizes 16, 64, 256, 1024 (with the binomial distribution of
eq. (1.19) and (1.20)) and Gaussian modulation. The other parameters are the excess noise ξ = 0.02
and the reconciliation efficiency β = 0.95. For this choice of distance and excess noise, our bound
gives a vanishing secret key rate for the QPSK (= 4-QAM).

excess noise is at least an order of magnitude below what is achieved for larger QAM.
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Figure 1.6: Maximum value ξmax of excess noise compatible with a positive key rate as a function of
distance d (upper panel) or transmittance T (bottom panel), for various QAM sizes (with binomial
distribution). From bottom to top: 4-QAM to 256-QAM, and Gaussian modulation. The 1024-QAM
(not displayed) is almost indistinguishable from the Gaussian modulation. Transmittance and distance
are related through T = 10−0.02d with d in km. Reconciliation efficiency is equal to 0.95. The value
of VA is optimised for each point.
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Quantum computers often manipulate physical qubits encoded on two-level quantum systems.
Bosonic qubit codes depart from this idea by encoding information in a well-chosen subspace of an
infinite-dimensional Fock space. This larger physical space provides a natural protection against
experimental imperfections.

A bosonic qubit is usually defined in a single bosonic mode but it makes sense to look for multimode
versions that could exhibit better performance. In this work, building on the observation that the
cat code lives in the span of coherent states indexed by a finite subgroup of the complex numbers,
we consider a two-mode generalisation living in the span of 24 coherent states indexed by the binary
tetrahedral group 2T of the quaternions. The resulting qutrit, which we call the 2T -qutrit, naturally
inherits the algebraic properties of the group 2T and appears to be quite robust in the low-loss regime.
We initiate its study and identify stabilisers as well as some logical operators for this bosonic code.

2.1 Cat qudits

2.1.1 Basis states

2.1.1.1 Cat qubits

As mentioned in the introductory chapter, cat qubits are a promising type of bosonic error-correcting
code. In the subsequent parts of this chapter a new two-mode code inspired from cat qudits is
introduced. To ease the transition we first review the construction of cat qudits using a formalism
that will make the analogy between the two codes obvious. Consequently, none of the results presented
here are new, but their presentation differs from the conventional one.

A 2n−component cat code is constructed from a constellation of coherent states {|αk⟩ = |αe2ik
π
2n ⟩ :

k ∈ J0, 2n−1K} lying on a circle in phase-space. More precisely, they form a regular polygon in phase-
space, with 2n vertices.

Let α > 0 be a positive real which will correspond to the amplitude of the constellation. The
code-space of a two-legged cat code is defined as the vector span of the two coherent states |α⟩ , |−α⟩.
The code-space of its four-legged counterpart is the vector span of |χ0⟩ := N (|α⟩+ |−α⟩) and |χ1⟩ =
N (|iα⟩+ |−iα⟩) where N is a normalisation coefficient. The term “legs” here refers to the number of

coherent states appearing in the constellation. Let us denote z = e
iπ
n . In general, the states

|χk⟩ := N
n−1∑
ℓ=0

|αz2ℓ+k⟩ (2.1)

for k ∈ {0, 1} form a basis of the code-space defining a 2n-legged (or 2n-component) cat, where N is
a normalisation coefficient.

Geometrically, the coherent states |αk⟩ appearing in the uniform superpositions (Eq. 2.1) realise
two interfolded copies of a regular polygon, each using half of the vertices (see Fig. 2.1). Moreover,
they have the additional property that, algebraically, they correspond to two cosets of a subgroup.
One can check Sec. 0.4.2 for a brief recap of group theory. In the case of cat qubits, the groups of
interest are cyclic groups. In particular, if N is even and N = 2n then the two cosets of Un = ⟨z2n⟩
in UN = ⟨z⟩ are the sets Un = ⟨z2⟩ and zUn. This exactly corresponds to the phases of the coherent
states appearing in the uniform superpositions defining |χ0⟩ and |χ1⟩. There is thus a one-to-one
correspondence between the cosets of Un in UN and the basis states |χ0⟩ and |χ1⟩.

2.1.1.2 Cat qudits

Using the above formalism, the generalisation to cat qudits is straightforward. To define a dn−component

cat qudit of dimension d, one considers the set { | αe
2ikπ
dn ⟩ } of dn coherent states forming a regular

polygon with dn vertices in phase-space (see Fig. 2.2 for examples in the case of cat qutrits (d=3)).
This constellation of states is in one-to-one correspondence with the cyclic group Udn. Moreover, the
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Figure 2.1: Constellations of coherent states used for the construction of the 2-legged cat qubit (on
the left) and the 4-legged cat qubit (on the right). Each colour indicates the sub-constellation of which
each basis state |χk⟩ is a superposition of: |χ0⟩ in blue, and |χ1⟩ in red.

(a) 3-legged cat qutrit (b) 6-legged cat qutrit (c) 9-legged cat qutrit

Figure 2.2: Constellations of coherent states used for the construction of the cat qutrits with 3, 6
and 9 components. Each colour indicates the sub-constellation of which each basis state |χk⟩ is a
superposition of: |χ0⟩ in blue, |χ1⟩ in red, and |χ2⟩ in yellow.

cat code corresponds to the span of the states

|χk⟩ ∝
n−1∑
ℓ=0

|zℓd+kα⟩ =
∑

u∈zkUn

|uα⟩, (2.2)

for k ∈ J0, d− 1K corresponding to the d cosets of Un in Udn. Here, z = e
2iπ
dn .

2.1.2 Pauli-Z logical operator

2.1.2.1 Sending |χk⟩ onto |χk+1⟩

Looking at the right panel of Fig. 2.1, it is clear that rotating the sub-constellation defining the state
|χ0⟩ of the four-legged cat by π

2 sends it onto the one defining |χ1⟩ and vice versa. More generally,
for a dn-component cat qudit, the rotation of angle θ = 2π

dn sends the polygon associated to |χk⟩ onto
|χk+1⟩, where k ∈ J0, d− 1K and indices should be understood modulo d. The physical operation that

implements such a rotation in phase-space is the phase-shift P := e2πâ
†â/(dn). It maps the coherent

state |αzj⟩ to |αzj+1⟩ and therefore |χk⟩ to |χk+1⟩. In the group-theoretic picture, this corresponds
to going from a coset zkUn to zk+1Un as this is similarly achieved with a multiplication by z. Note
in particular that zdUn = Un since zd = 1; hence a multiplication by z sends zd−1Un on Un, which
enables to complete a full circle.

2.1.2.2 Orthonormal basis

The states {|χk⟩ : k ∈ J0, d− 1K} form a basis of the code space of the nd-legged cat qudit. However,
they are not orthogonal since the overlap of two states |χk⟩ and |χℓ⟩ with k ̸= ℓ is non-zero. We
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therefore wish to construct an orthonormal basis. We define the states

|kL⟩ := Nk

d−1∑
ℓ=0

e
−2πikℓ

d |χℓ⟩ (2.3)

where Nk is a normalisation coefficient, for all k ∈ J0, n− 1K. We will prove that they are orthogonal
by showing that they are eigenstates of the unitary operator P with distinct eigenvalues. Indeed,

P |kL⟩ = Nk

d−1∑
ℓ=0

e
−2πikℓ

d P |χℓ⟩ (2.4)

= Nk

d−1∑
ℓ=0

e
−2πikℓ

d |χℓ+1⟩ (2.5)

= Nk

d−1∑
ℓ=0

e
−2πik(ℓ−1)

d |χℓ⟩ (2.6)

= Nke
2πik
d

d−1∑
ℓ=0

e
−2πikℓ

d |χℓ⟩ (2.7)

= e
2πik
d |kL⟩. (2.8)

For all k ∈ J0, d − 1K, |kL⟩ is thus an eigenvector of P with eigenvalue e
2πik
d . The states |kL⟩, for

k ∈ J0, d − 1K thus form an orthonormal basis of the cat-qudit code-space. Moreover, we see that P
acts as a qudit Pauli-Z operator on this basis.

2.1.3 Stabilisers

Since the states |χk⟩ are a uniform superposition of states associated to cosets, any operation that
leaves all the cosets invariant will correspond to a stabiliser. In particular, the physical operations
which correspond to a multiplication by an element h within the subgroup Un are stabilisers. More
formally, for any h ∈ Un the unitary operation Uh on the Fock space sending a coherent state |α⟩ onto
the coherent state |hα⟩ is a stabiliser of the dn-legged cat qudit. Indeed,

Uh |χk⟩ = N
∑
u∈Un

Uh |zku⟩ (2.9)

= N
∑
u∈Un

|zkhu⟩ (2.10)

= N
∑
ũ∈Un

|zkũ⟩ (2.11)

= |χk⟩ (2.12)

where in 2.11 we have performed the change of variable ũ = hu. For h = e
2ikπ
n , the operation Uh is

realised by Uh = e
2ikπn̂

n .
We remark that this method can be used to construct a qudit of dimension d from a group G

whenever there exists a subgroup H of G with cosets of the form gkH for one g ∈ G and gdH = H.
We will use this to define a two-mode qutrit in the next section.

2.2 Construction of the 2T -qutrit

2.2.1 Definition

In this section, the goal is to design a two-mode code generalising the single-mode cat codes. Our
strategy is to define such a code as the span of certain basis states which are superpositions of a finite
set of two-mode coherent states.
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2.2.1.1 Choice of the constellation

The first step is thus to choose a relevant constellation of points, from which we can define the set
of coherent states, through the obvious identification of phase-space with the complex plane. As
introduced in the above section, in the case of cat qudits, the underlying constellation is a finite
subgroup of the complex units. This is in fact the only option to get a multiplicative group structure
in the single-mode case.

When moving to 2 modes, phase space becomes 4-dimensional since there are two quadratures
per mode. It can thus be identified with the division algebra of quaternions H whose construction is
reviewed in Sec. 0.4.2.2.

A quaternion q = a+ib+jc+kd can be identified to the pair of complex numbers (z1 = a+ib, z2 =
c − id) to get z1 + jz2 = a + ib + jc − jid = a + ib + jc + kd = q.1 A further identification with
a two-mode coherent state is then natural: we associate a two-mode coherent state to a quaternion
through the identification:

a+ bi+ cj + dk ∈ H 7→ |(a+ bi)β⟩|(c− di)β⟩ ∈ Span({|n1, n2⟩ : n1, n2 ∈ N}), (2.13)

where a, b, c, d are arbitrary real numbers, i, j, k satisfy

i2 = j2 = k2 = ijk = −1, (2.14)

and the notation β = α(1+i) has been introduced only because it will somewhat simplify the notations
later on. Here |n1, n2⟩ denotes a Fock state with n1 photons in the first mode and n2 photons in the
second mode.

Inspired by the single-mode case, we want a constellation corresponding to a multiplicative sub-
group of the quaternions. The finite subgroups have been classified [Cox91]:

1. the cyclic groups of order m, for m ∈ N,

2. the dicyclic groups of order 4p, for p ∈ N,

3. the binary tetrahedral group, denoted 2T , of order 24,

4. the binary octahedral group, of order 48,

5. the binary icosahedral group, of order 120.

The cyclic groups simply give the single-mode cat states, so do not yield genuine 2-mode bosonic
codes. The dicyclic groups give coherent states constellations of the form {|eiπk/pα⟩|0⟩, |0⟩|eiπℓ/p⟩ :
0 ≤ k, ℓ ≤ 2p − 1}. The states then correspond to the superposition of a cat state in one mode and
the vacuum state in the second mode. The three remaining subgroups look more intriguing since
they cannot be directly obtained from subgroups of the unit complex numbers. Given that both
the binary octahedral and binary icosahedral groups are quite large, we choose to focus here on the
binary tetrahedral group, which already promises to pose significant challenges for implementation!
We also remark that the elements of the group 2T form the vertices of the 24-cell, one of the rare
regular polytopes in 4 dimensions. This generalises the single-mode case where 2-dimensional regular
polygons are naturally associated with the m-roots of unity.

The binary tetrahedral group 2T is presented in the preliminaries, in Sec. 0.4.2.2. It is the following
set of 24 quaternions:

{ ± 1,±i,±j,±k, 1
2
(±1± i± j ± k)}, (2.15)

with all possible sign combinations. The 24 coherent states in the corresponding constellation define
a 24-dimensional Hilbert space

H2T := Span({|ikβ⟩|0⟩, |0⟩|iℓβ⟩, |eikπ/2α⟩|eiℓπ/2α⟩ : 0 ≤ k, ℓ ≤ 3}) (2.16)

1Another option could be to write q = z̃1 + z̃2j and associate q to (z̃1, z̃2) = (a+ ib, c+ id).
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where α > 0 is arbitrary and we recall that β = α(1 + i). In practice, there will exist some optimal
values of α, known as sweet spots for cat codes [Alb+18], unless one is interested in biased-noise
qubits, in which case larger values of α are typically preferred [GM19; Pur+20; Cha+22].

This choice of constellation in phase space naturally defines a 24-dimensional space. Arguably,
this remains quite a large dimension, and our next goal will be to define a qudit of smaller dimension,
namely a qutrit, within this space.

2.2.1.2 Basis states and Z gate

As explained in 0.4.2.2, the binary tetrahedral group 2T (Eq. 2.15) can be obtained as the semi-direct
product of the quaternion group Q = {±1,±i,±j,±k} with the cyclic group C3 = {1, ω, ω2} generated
by the quaternion ω = −1

2(1 + i+ j + k):

2T = C3 ⋉Q. (2.17)

More explicitly, this means that any element of 2T can be uniquely obtained as the product of an
element of C3 by an element of the normal group Q,

∀g ∈ 2T, ∃!h ∈ Q,∃! k ∈ {0, 1, 2}, g = ωkh. (2.18)

The binary tetrahedral group thus satisfies the conditions that there exists a subgroup H of G with
cosets of the form gkH for one g ∈ G and gdH = H, for H = Q, g = ω, and d = 3. We exploit this
decomposition to define our qutrit. Let us therefore introduce the three states:

|ϕ0⟩ := ν
∑
q∈Q

|q⟩, |ϕ1⟩ := ν
∑
q∈ωQ

|q⟩, |ϕ2⟩ := ν
∑
q∈ω2Q

|q⟩, (2.19)

where ν is a normalisation coefficient and we recall that we write |a + bi + cj + dk⟩ to mean the
2-mode coherent state |(a+ bi)β⟩|(c−di)β⟩, where we set β := α(1+ i). It may not be obvious for the
moment why the three states have the same normalisation coefficient. This will become clear in the
next section, as we show that there is a unitary operation that sends |ϕ0⟩ on |ϕ1⟩, |ϕ1⟩ on |ϕ2⟩ and
|ϕ2⟩ on |ϕ0⟩. The sets ωQ := {ωq : q ∈ Q} and ω2Q := {ω2q : q ∈ Q} are given by

ωQ =

{
±1

2
(1+i+j+k),±1

2
(1+i−j−k),±1

2
(1−i−j+k),±1

2
(1−i+j−k)

}
,

ω2Q =

{
±1

2
(−1+i+j+k),±1

2
(1−i+j+k),±1

2
(1+i−j+k),±1

2
(1+i+j−k)

}
.

In particular, the set ωQ contains quaternions with an even number of minus signs, while ω2Q contains
those with an odd number of minus signs. We define the 2T -qutrit as Span({|ϕ0⟩, |ϕ1⟩, |ϕ2⟩}).

The states |ϕk⟩ can be conveniently expressed using single-mode cat states. If we denote these
single-mode cat states with 2 or 4 coherent states as

|α2⟩ := cα2 (|α⟩+ |−α⟩), (2.20)

|iα2⟩ := cα2 (|iα⟩+ |−iα⟩), (2.21)

|α4⟩ := cα4 (|α⟩+ |iα⟩+ |−α⟩+ |−iα⟩), (2.22)

with normalisation coefficients given by

cα2 =
1√

2(1 + e−2|α|2)
, cα4 =

1√
8e−|α|2(cosh|α|2+cos|α|2)

, (2.23)

then we obtain that

|ϕ0⟩ ∝ |β4⟩|0⟩+ |0⟩|β4⟩, (2.24)

|ϕ1⟩ ∝ |α2⟩|iα2⟩+ |iα2⟩|α2⟩, (2.25)

|ϕ2⟩ ∝ |α2⟩|α2⟩+ |iα2⟩|iα2⟩. (2.26)
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Indeed, |ϕ0⟩ is computed as

|ϕ0⟩ = ν
∑
q∈Q

|q⟩ (2.27)

= ν(|β⟩ |0⟩︸ ︷︷ ︸
|q=1⟩

+ |iβ⟩ |0⟩︸ ︷︷ ︸
|q=i⟩

+ |0⟩ |β⟩︸ ︷︷ ︸
|q=j⟩

+ |0⟩ |−iβ⟩︸ ︷︷ ︸
|q=k⟩

+ |−β⟩ |0⟩︸ ︷︷ ︸
|q=−1⟩

+ |−iβ⟩ |0⟩︸ ︷︷ ︸
|q=−i⟩

+ |0⟩ |−β⟩︸ ︷︷ ︸
|q=−j⟩

+ |0⟩ |iβ⟩︸ ︷︷ ︸
|q=−k⟩

) (2.28)

= ν(|β⟩+ |iβ⟩+ |−β⟩+ |−iβ⟩) |0⟩+ |0⟩ (|β⟩+ |−iβ⟩+ |−β⟩+ |iβ⟩) (2.29)

∝ |β4⟩ |0⟩+ |0⟩ |β4⟩ , (2.30)

the state |ϕ1⟩ is obtained from

|ϕ1⟩ = ν
∑
q∈Q

|ωq⟩ (2.31)

= ν(|β
2
(1 + i)⟩ |β

2
(1− i)⟩+ |β

2
(1 + i)⟩ |β

2
(−1 + i)⟩

+ |β
2
(1− i)⟩ |β

2
(−1− i)⟩+ |β

2
(1− i)⟩ |β

2
(1 + i)⟩

+ |β
2
(−1− i)⟩ |β

2
(−1 + i)⟩+ |β

2
(−1− i)⟩ |β

2
(1− i)⟩ (2.32)

+ |β
2
(−1 + i)⟩ |β

2
(1 + i)⟩+ |β

2
(−1 + i)⟩ |β

2
(−1− i)⟩)

= ν((|β
2
(1 + i)⟩+ |β

2
(−1− i)⟩)(|β

2
(1− i)⟩+ |β

2
(−1 + i)⟩)+

+ (|β
2
(1− i)⟩+ |β

2
(−1 + i)⟩)(|β

2
(1 + i)⟩+ |β

2
(−1− i)⟩)) (2.33)

= ν((|iα⟩+ |−iα⟩)(|α⟩+ |−α⟩) + (|α⟩+ |−α⟩)(|iα⟩+ |−iα⟩) (2.34)

∝ |α2⟩|iα2⟩+ |iα2⟩|α2⟩, (2.35)

and |ϕ2⟩ is computed in an analogous way.

While the three states above are not orthogonal, one finds an orthonormal basis of the qutrit by
defining:

|k̄⟩ := νk

2∑
ℓ=0

ζ−kℓ|ϕℓ⟩, for k ∈ {0, 1, 2} (2.36)

where ζ = e
2πi
3 is a cubic-root of unity, and where ν0 and ν1 = ν2 are normalisation coefficients. To

show that the basis {|k̄⟩} is indeed orthogonal, we will introduce a unitary operator that acts as the
logical Pauli-Z operator for the qutrit, namely Z̄|k̄⟩ = ζk|k̄⟩.

Let us first define the unitary matrix

U := −1

2

[
1 + i −1− i
1− i 1− i

]
=

1√
2

[
e−3iπ/4 eiπ/4

e3iπ/4 e3iπ/4

]
. (2.37)

It corresponds to the representation2 of the quaternion ω via the map

ρ : a+ bi+ cj + dk ∈ H 7→
[
a+ bi −c− di
c− di a− bi

]
∈ M2(C). (2.38)

This representation describes the action of the left-multiplication by a quaternion: it has been chosen
such that for any quaternion q ∈ H and any quaternion q′ = z1 + jz2 identified to the pair of complex

numbers (z1, z2) ∈ C2, ρ(q)

(
z1
z2

)
gives the pair of complex numbers identified to the product of q and

2The definition of a group representation is called in Sec. 0.4.3.
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q′3. Therefore, if we denote by U the operator acting on the two-mode Fock space by mapping the

two-mode coherent state |α1⟩|α2⟩ to |α′
1⟩|α′

2⟩ defined as
[
α′
1

α′
2

]
= U [ α1

α2 ], then we have U|q⟩ = |ωq⟩ for
any quaternion q ∈ 2T . Moreover, one can check that U3 = (ρ(ω))3 = 12 and thus

U|ϕℓ⟩ = |ϕℓ+1⟩ (2.39)

by definition of the sets Q, ωQ and ω2Q. Exploiting (2.36), we obtain

U|k̄⟩ = νk

2∑
ℓ=0

ζ−kℓ|ϕℓ+1⟩ = νkζ
k

2∑
ℓ=0

ζ−kℓ|ϕℓ⟩ = ζk|k̄⟩, (2.40)

where the indices are always understood modulo 3. This shows that U|k̄⟩ = ζk|k̄⟩, implying that
the three states are eigenstates of the unitary U = Z̄ with distinct eigenvalues, and are therefore
orthogonal. One can also write the expression of U as a Gaussian passive transformation [Leo03]:

Z̄ = exp
( 2π

3
√
3
i(−a†a+ (1− i)a†b+ (1 + i)ab† + b†b)

)
. (2.41)

Before studying the 2T -qutrit in more detail, it is instructive to compute the limit of the logical
states when α→ 0. We find that, up to unessential global phases,

|0̄⟩ −−−→
α→ 0

|00⟩, (2.42)

|1̄⟩ −−−→
α→ 0

1

2
(|40⟩+ |04⟩)− i√

2
|22⟩, (2.43)

|2̄⟩ −−−→
α→ 0

1

2
(|40⟩+ |04⟩) + i√

2
|22⟩. (2.44)

In this limit, the states 1√
2
(|1̄⟩±|2̄⟩) take the simple expressions 1√

2
(|40⟩+|04⟩) and |22⟩ which coincide

with an instance of the Chuang-Leung-Yamamoto code [CLY97]. We will discuss the bosonic qubit
Span({|1̄⟩, |2̄⟩}) in more detail in Section 2.2.2.3.

2.2.1.3 Normalisation coefficients

For completeness, we now compute the normalisation coefficients, ν of the states |ϕk⟩ appearing in
(2.19), and ν0 and ν1 = ν2 of the logical states |k̄⟩ appearing in 2.36.

Let us denote by |ϕ̃0⟩, |ϕ̃1⟩, and |ϕ̃2⟩ unnormalised versions of the states |ϕ0⟩, |ϕ1⟩ and |ϕ2⟩ defined
by (2.19),

|ϕ̃0⟩ =
1

cβ4
(|β4⟩|0⟩+ |0⟩|β4⟩), (2.45)

|ϕ̃1⟩ =
1

(cα2 )
2
(|α2⟩|iα2⟩+ |iα2⟩|α2⟩), (2.46)

|ϕ̃2⟩ =
1

(cα2 )
2
(|α2⟩|α2⟩+ |iα2⟩|iα2⟩), (2.47)

3If one where to identify a quaternion q=a+ib+jc+dk to (a+ib,c+id) instead of (a+ib, c-id) (see previous footnote),
the representation ρ would need to be modified to

ρ : a+ bi+ cj + dk ∈ H 7→
[
a+ bi c+ di
−c+ di a− bi

]
∈ M2(C).
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with β = α(1 + i). The overlap of |ϕ̃0⟩ with itself is

⟨ϕ̃0|ϕ̃0⟩ =
1

(cβ4 )
2
(2 + 2|⟨0|β4⟩|2) (2.48)

=
2

(cβ4 )
2
(1 + 16(cβ4 )

2e−|β|2) (2.49)

=
2

(cβ4 )
2
+ 32e−2|α|2 (2.50)

= 16e−2|α|2(2 + cosh 2|α|2+cos 2|α|2). (2.51)

We assume that the parameter α is real throughout, so we get the following expression for the nor-
malisation constant:

|ϕℓ⟩ = ν
∑
q∈ωℓQ

|q⟩, with ν =
eα

2

4
√
cosh(2α2) + 2 + cos(2α2)

. (2.52)

We note that the overlap ⟨ϕk|ϕℓ⟩ = ⟨ϕ0|U ℓ−k|ϕ0⟩ only depends on ℓ − k. Since ⟨ϕ0|ϕ0⟩ = 1, we only
need to compute one other overlap, say ⟨ϕ1|ϕ2⟩ (since ⟨ϕ2|ϕ1⟩ is its complex conjugate):

⟨ϕ1|ϕ2⟩ = ν2⟨ϕ̃1|ϕ̃2⟩ =
ν2

(cα2 )
4
(4Re(⟨iα2|α2⟩)). (2.53)

The overlap ⟨iα2|α2⟩ is easily computed:

⟨iα2|α2⟩ = (cα2 )
2(⟨iα|+⟨−iα|)(|α⟩+ |−α⟩) (2.54)

= (cα2 )
2(⟨iα|α⟩+ ⟨iα|−α⟩+ ⟨−iα|α⟩+ ⟨−iα|−α⟩) (2.55)

= 4(cα2 )
2e−α

2
cosα2. (2.56)

Injecting this in the previous expression, we obtain

⟨ϕ1|ϕ2⟩ = 16
ν2

(cα2 )
2
e−α

2
cosα2 (2.57)

=
2eα

2
cosα2(1 + e−2|α|2)

cosh(2α2) + 2 + cos(2α2)
(2.58)

and finally

⟨ϕℓ|ϕℓ+1⟩ =
4 coshα2 cosα2

2 + cos(2α2) + cosh(2α2)
. (2.59)

We are now ready to compute the normalisation coefficient νk of the states of (2.36), whose
definition, we recall, is

|k̄⟩ = νk

2∑
ℓ=0

ζ−kℓ|ϕℓ⟩. (2.60)

This gives

1

(νk)2
=

2∑
p,q=0

ζk(p−q)⟨ϕp|ϕq⟩ (2.61)

= 3(1 + (ζk + ζ2k)⟨ϕ1|ϕ2⟩) (2.62)
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and therefore

ν0 =
1√

3(1 + 2⟨ϕ1|ϕ2⟩)
, (2.63)

ν1 = ν2 =
1√

3(1− ⟨ϕ1|ϕ2⟩)
. (2.64)

We note that it is also easy to write |ϕk⟩ in the logical basis:

|ϕk⟩ =
1

3

2∑
ℓ=0

ζkℓ

νℓ
|ℓ̄⟩. (2.65)

2.2.2 Stabilisers and logical operators

2.2.2.1 Stabilisers

Let us denote by n̂1 = â†â and n̂2 = b̂†b̂ the photon number operators in the two modes and intro-

duce the phase operators R1 := ein̂1π/2, R2 := ein̂2π/2 and the SWAP operator ei(â
†−b̂†)(â−b̂)π/2 that

exchanges the two modes.
Recalling how the phase operators act on cat states,

ein̂π/2|α2⟩ = |iα2⟩, ein̂π/2|iα2⟩ = |α2⟩, ein̂π/2|β4⟩ = |β4⟩, (2.66)

it is immediate from (2.24), (2.25), (2.26) that R1R2 and R2
1 and the SWAP operator stabilise the

2T -qutrit since they leave the states |ϕk⟩ invariant. One can also check that the only states of H2T

stabilised by R1R2, R
2
1 and SWAP are states of the 2T -qutrit. The 2T -qutrit is thus exactly the

subspace of H2T stabilised by R1R2, R
2
1, and the SWAP:

Span({|0̄⟩, |1̄⟩, |2̄⟩}) =
{
|ψ⟩ ∈ H2T s.t. S|ψ⟩ = |ψ⟩ ∀S ∈ S

}
, (2.67)

where we define the set of stabilisers as

S = {ei(n̂1+n̂2)π/2, ein̂1π, ei(â
†−b̂†)(â−b̂)π/2}. (2.68)

A simple consequence is the existence of invariants for the states in the 2T -qutrit. In particular,
the photon numbers n1, n2 in both modes are restricted to specific values:

n1 + n2 ≡ 0 mod 4, n1 ≡ 0 mod 2, n2 ≡ 0 mod 2. (2.69)

There is another way of finding stabilisers of the 2T -qutrit, exploiting the definition of the basis
states (2.19) as uniform superposition of coherent states associated to the cosets of Q in 2T . Similarly
to what was explained in Sec. 2.1.3, for cat qudits, we can consider the physical operations corre-
sponding to the multiplication by a quaternion q from the group of quaternions Q. More explicitly,
the operations of interest are those sending any two-mode coherent state |q⟩ (for q ∈ H) on |hq⟩, where
h ∈ Q. Such operations are obtained from the representation defined in (2.38). The quaternions i and
j generate Q. Their representations are

ρ(i) =

(
1 0
0 −1

)
, (2.70)

ρ(j) =

(
0 −1
1 0

)
(2.71)

and the corresponding Gaussian unitaries are

S1 = (−1)n̂2 (2.72)

which sends a coherent state |α, β⟩ on |α,−β⟩ and

S2 = SWAP · (−1)n̂2 (2.73)

which sends a coherent state |α, β⟩ on |β,−α⟩. In fact, these two stabilisers are sufficient to stabilise
the 2T -qutrit within H2T .
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2.2.2.2 X12 gate

We observe that
R1|ϕ0⟩ = |ϕ0⟩, R1|ϕ1⟩ = |ϕ2⟩, R1|ϕ2⟩ = |ϕ1⟩, (2.74)

sinceR1 leaves the cat state |β4⟩ invariant and exchanges |α2⟩ and |iα2⟩. Said otherwise, R1|ϕℓ⟩ = |ϕ2ℓ⟩,
with the index understood modulo 3. The operator therefore acts as follows on the logical states,

R1|k̄⟩ = νk

2∑
ℓ=0

ζ−kℓR1|ϕℓ⟩ = νk

2∑
ℓ=0

ζ−kℓ|ϕ2ℓ⟩ = νk

2∑
ℓ=0

ζ−2kℓ|ϕℓ⟩ = |2k⟩, (2.75)

since νk = ν2k. The operator R2 satisfies the same equation (2.74) as R1 and hence one also has
R2 |k̄⟩ = |2k⟩. This means that both R1 and R2 act as a gate X12 on the 2T -qutrit, with

X12 =

1 0 0
0 0 1
0 1 0

 . (2.76)

2.2.2.3 A remarkable 2T -qubit within the 2T -qutrit

Interestingly, this means that if we restrict ourselves to the qubit space Span({|1⟩, |2⟩}), then there
exist two Gaussian passive transformations acting as

U = ζ

[
1 0
0 ζ

]
, and R1 =

[
0 1
1 0

]
. (2.77)

In other words, R1 acts on the qubit as a logical Pauli-X gate while U acts as a logical phase gate
P (2π/3) of angle 2π/3.

A state of the 2T -qubit takes a particularly simple form:

1√
2
(|1̄⟩ − |2̄⟩) = ν1√

2

2∑
ℓ=0

(ζ−ℓ − ζ−2ℓ)|ϕℓ⟩ (2.78)

∝ |ϕ1⟩ − |ϕ2⟩ (2.79)

∝ |α2⟩|iα2⟩+ |iα2⟩|α2⟩ − |α2⟩|α2⟩ − |iα2⟩|iα2⟩ (2.80)

∝ (|α2⟩ − |iα2⟩)⊗2, (2.81)

where (2.80) is obtained from (2.25) and (2.26). Equation (2.81) corresponds to a product state of
two four-component cat qubit states. Admittedly, recent experimental progress on the single-mode
cat qubits thus indicates that preparing the state 1√

2
(|1̄⟩− |2̄⟩) should not be completely out of reach.

2.2.3 The 2T -qutrit as a quantum spherical code

Quantum spherical codes (QSC) were introduced in [Jai+23], a few months after the preprint on the
2T -qutrit was released. They are a family of multimode codes whose codewords are superpositions of
states constructed out of points on a multi-dimensional sphere. The focus, here, is on QSCs constructed
out of coherent-state constellations since they generalise cat qudits and the 2T -qutrit. This section
is thus dedicated to explaining how the 2T -qutrit can be cast as a QSC and comparing it to another
similar QSC, the Mobius-Kantor qutrit.

2.2.3.1 Quantum spherical coherent-state constellation codes

To any point x := (α1, . . . , αn) in the complex n-dimensional spaceCn corresponds an n-mode coherent
state |x⟩ = |α1⟩ ⊗ . . .⊗ |αn⟩. Let us consider K points x(1), . . . ,x(n) lying on a sphere of radius 1 in
Cn. This set of points will be called the code constellation. It forms a complex polytope which can
be partitioned into compound polytopes, leading to a partition of the code-constellation into smaller
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constellations. Each of these smaller constellations Ck is called a codeword constellation and it is used
to define a codeword state basis

|Ck⟩ :=
1√
|Ck|

∑
x∈Ck

|
√
N̄x⟩ (2.82)

where
√
N̄ parameterises the energy of the constellation. In the case of the 2T -qutrit, the code

constellation is

{(ik, 0), (0, iℓ), (eikπ/2, eiℓπ/2) : 0 ≤ k, ℓ ≤ 3} (2.83)

and the three codeword constellations are

{(±1, 0), (±i, 0), (0,±1), (0,±i)}

{
±1

2
(1 + i, 1− i),±1

2
(1 + i,−1 + i),±1

2
(1− i,−1 + i),±1

2
(1− i, 1− i)

}
,

{
±1

2
(−1 + i, 1− i),±1

2
(1− i, 1− i),±1

2
(1 + i,−1− i),±1

2
(1 + i, 1 + i)

}
leading, respectively to the three states |ϕ0⟩, |ϕ1⟩ and |ϕ2⟩ defined in Eq. 2.15. In this formula, the

parameter
√
N̄ is equal to |α|.

Note that the states defined by Eq. 2.82 are not orthogonal in general (and this is the reason why
we derived an orthonormal basis for the 2T -qutrit in Eq. 2.36). However, in the limit of large energy
N̄ −→ +∞, the states do become orthogonal.

Reference [Jai+23] introduces different distances which quantifies the protection achieved by QSCs
against noise. The resolution of the code is defined as the minimum squared Euclidean distance
between any two points appearing in the sphere,

dE := min
x1,x2∈C

∥x1 − x2∥2 (2.84)

The authors of [Jai+23] also note that the physical operations corresponding to rotations on the sphere
of the points in the big constellation provide a group of logical gates. Among these, the operations
that permute points within each constellation, thus leaving codewords invariant, give stabilisers of the
code.

2.2.3.2 Comparison of the 2T -qutrit and the Möbius-Kantor qutrit

Similarly to the 2T -qutrit, the Möbius-Kantor qutrit is a QSC defined from three codeword constel-
lations of 8 points in C2. These three codeword constellations form the vertices of a Möbius-Kantor
polygon, hence the name “Möbius-Kantor qutrit”. Reference [CFW97] gives one possible set of coor-
dinates for the 24 points of the two-dimensional complex polytope defining the Möbius-Kantor,

{Ak := (aζk, bζ−5k)|k even} ∪ {Bk := (bζk, aζ−5k)|k odd} (2.85)

where

a =

√
1

2
(1 +

1√
3
), b =

√
1

2
(1− 1√

3
), ζ = e

iπ
12 . (2.86)

The smaller constellations then correspond to the points Ak or Bk associated, respectively, to the
indices k ≡ 0[3], k ≡ 1[3], or k ≡ 2[3]. The polytope compound is mapped to a real four-dimensional
polytope which is a 24-cell via

g : (a+ ib, c+ id) 7→ (a, b, c, d) ∈ R4 ∀a, b, c, d ∈ R (2.87)

exactly like in the case of the 2T -qutrit.
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In fact, a unitary change of coordinates

P =

(
az5 bz3

bz−3 az4

)
, where z = ei

π
4 (2.88)

shows that the small constellations defining the MK-qutrit are exactly the same as those defining
the 2T -qutrit, except that the second complex component yi of each point (xi, yi) is conjugated with
respect to the 2T -qutrit case. Indeed, it is first easy to see that since for all k ∈ {0, 1, 2, 3},(

az3 b
bz−5 −a

)(
ikei

π
4

0

)
=

(
az3 b
bz−5 −a

)(
z2k+1

0

)
(2.89)

=

(
az2k+4

bz2k−4

)
=

(
az2k+4

bz5(2k+4)

)
=

(
aζ6k+12

bζ5(6k+12)

)
(2.90)(

az3 b
bz−5 −a

)(
0

z2(k+1)

)
=

(
bz2k+1

az2k+5

)
=

(
bz2k+1

bz5(2k+1)

)
=

(
bζ6k+3

bζ5(6k+3)

)
, (2.91)

the matrix P sends

(
ike

iπ
4

0

)
onto Ã6k+12, and

(
0

ike
iπ
4

)
onto B̃k where we define Ãk := (aζk, bζ5k), B̃k :=

(bζk, aζ5k). To see on what the remaining 16 states of the type

(
ik

iℓ

)
for all k, ℓ ∈ {0, 1, 2, 3} are sent,

it is useful to split the cases according to the value of k − ℓ modulo 4. One can then make use of the

k − ℓ mod 4 2(k − ℓ) mod 4

0 3
1 5 ≡ −3
2 7 ≡ −1
3 9 ≡ 1

Table 2.1: Congruence table of 2(k − ℓ) modulo 4

identities

1 +
a

b
z±3 =

√
2ζ±7 (2.92)

1 +
b

a
z±1 =

√
2ζ±1 (2.93)

to show that (
az3 b
bz−5 −a

)(
z2k

z2ℓ

)
=

(
az2k+3 + bz2ℓ

b2k−5 + az2ℓ+4

)
. (2.94)

Surprisingly, despite being so closely related, the two codes differ in their properties, both in terms
of protection against noise and in terms of the gates that can be performed easily. The MK-qutrit
indeed corrects one more loss than the 2T -qutrit [Jai+23]. On the other hand, the strategy of looking
at the unitary permutations of the points in the constellation give two logical gates implemented as
Gaussian unitaries for the 2T -qutrit and only one for the MK-qutrit. Generators of all such unitary
operations [CFW97] are given by

U1 =
−ζ√
3

(
−
√
2 1

ω2 ω2
√
2

)
, (2.95)

U2 =
−ζ√
3

(
−
√
2 ω

ω ω2
√
2

)
, (2.96)

where ω = e
2iπ
3 , in the case of the 2T -qutrit. One can check which points are permuted by such

operations. One then finds that the operation U1 corresponds to the gate X12 we have introduced,
while U2U1 gives our logical Z. For the MK-qutrit, the group of unitary permutations leaving the
big constellation invariant also admit two generators [CFW97]. However, both of these operations
implement the same logical operation in the code as they both cyclically permute the three sub-
constellations defining the MK-qutrit.
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2.3 Numerical simulations

In this section, we study the performance of the 2T -qutrit and cat qudits against either pure loss or
dephasing. We note that some recent studies [Lev+22] consider both sources of noise at the same time,
but only for single-mode codes. Because the 2T -qutrit is a two-mode code, the relevant subspace of
the Fock space required to perform accurate simulations quickly becomes very large, even for moderate
values of α. For instance, truncating to Fock states |n1, n2⟩ with n1 + n2 ≤ N yields a Hilbert space
of dimension (N + 1)(N + 2)/2. On the other hand, the specific structure of the 2T -qutrit leads to
significant simplifications when the channel is either a pure-loss or a dephasing channel. In the first
case, we can exploit the fact that the 2T -qutrit is defined as a subspace of the 24-dimensional space
spanned by 2-mode coherent states. For the dephasing channel, we exploit the fact that the photon
number is invariant under dephasing, and therefore that it is possible to represent the relevant states
in a compact form since the Fock states |n1, n2⟩ necessarily satisfy n1 + n2 ≡ 0 mod 4 and n1 ≡ 0
mod 2.

Initially, we (naively) wanted to exploit the finite-dimensional representation of the pure-loss chan-
nel to find good bosonic codes, that is good subspaces of Span({|α1⟩, . . . , |αm⟩}). The idea is to com-
pute a figure of merit, for instance the entanglement fidelity as defined in section 2.3.1, and try to find
the qubit (or qudit) that maximises this quantity. While this makes sense in theory, it turns out to be
very difficult in practice, and the main issue is that the best qubit (according to this figure of merit)
will likely be very unstructured, and therefore pretty much useless for understanding how it can be
exploited for fault tolerance (which is the long-term objective). More realistically, the figure of merit
can be used to benchmark the quality of various encodings, by comparing it to the value obtained by
numerical optimisation. Moreover, checking that the value obtained for a given encoding corresponds
to a local optimum is also an indication that the encoding is not too bad.

Throughout this section, we assume that each mode of the 2T -qutrit is affected independently by
the same quantum channel. In particular, if the single-mode channel describing pure loss or dephas-
ing is denoted by N , then the overall two-mode quantum channel is given by N ⊗ N . While this
independence seems like a reasonable assumption for losses, it may be too pessimistic in the case of
dephasing.

The python files used to perform the numerical analysis are available on Gitlab.

2.3.1 Figure of merit: the entanglement fidelity

We have seen in the preliminaries (Sec. 0.3.3) that the entanglement fidelity was an important figure
of merit to compare various bosonic error correcting code.

We recall that it is defined as

F (C) := ⟨Φd|id⊗ C(|Φd⟩⟨Φd|)|Φd⟩, (2.97)

where |Φd⟩ := 1√
d

∑d−1
i=0 |i⟩|i⟩ ∈ Cd ⊗ Cd is the d-dimensional maximally entangled state, C is the

channel under consideration, and id denotes the identity channel on the first subsystem. A qudit code
of dimension d is defined by an encoding map

E :

{
B(Cd) → B(Span({|αk⟩}))
|k⟩ 7→ |k̄⟩ (2.98)

where B(H) denotes the set of bounded linear operators on the Hilbert space H, and the state |k̄⟩
represents the encoded version of the state |k⟩. The output of the channel N is a density matrix
defined on the two-mode Fock space F(C2) = Span(|n1, n2⟩ : n1, n2 ∈ N). We then consider possible
recovery maps

R : B(F(C2)) → B(Cd) (2.99)

that describe how the output of the channel is decoded.
We will thus consider F(E) := maxR F (R ◦ N ◦ E) where one maximises over all recovery maps,

similarly to what was done in Ref. [Alb+18] which benchmarked various single-mode bosonic codes.

https://gitlab.inria.fr/adenys/the-2t-qutrit


2.3. NUMERICAL SIMULATIONS 129

Maximising the entanglement fidelity To find the best possible encoding, we are interested in
computing maxE F(E) = maxE,R F (R ◦ N ◦ E). While the problem of maximising the entanglement
fidelity over the choice of E and R is typically not amenable to efficient optimisation [Ber+22], one
can proceed as in [RW05] to find a local optimum by iteratively maximising F while fixing one input
(either E or R) and then fixing the other operator until convergence. The advantage, as we will see,
is that both problems maxR F (R◦N ◦E) and maxE F (R◦N ◦E) are semi-definite programs that can
be solved efficiently.

Denoting by {Ej}, {Ck} and {Rℓ} the Kraus operators of the encoding map, noise channel and
recovery map, we find that the entanglement fidelity is given by

F (R ◦N ◦ E) =
∑
j,k,ℓ

⟨Φd|1⊗RℓCkEj |Φd⟩⟨Φd|1⊗ E†
jC

†
kR

†
ℓ|Φd⟩. (2.100)

Remark that the two channels E and R we want to optimise are also characterised by the positive
semi-definite operators

XE :=
∑
j

(1⊗ Ej)|Φd⟩⟨Φd|(1⊗ E†
j ), (2.101)

XR :=
∑
i

(1⊗R†
i )|Φd⟩⟨Φd|(1⊗Ri). (2.102)

With these notations, the objective function may be re-expressed as the trace of XRME or that of
XENR,

F (R ◦N ◦ E) = Tr(XRME) = Tr(XENR), (2.103)

where

ME : =
∑
k

(1⊗ Ck)XE(1⊗ C†
k), (2.104)

NR : =
∑
k

(1⊗ C†
k)XR(1⊗ Ck). (2.105)

Let us now see how the requirements that E and R are general quantum channels, that is completely-
positive trace preserving operators, can be re-expressed in terms of equivalent conditions on XE and
XR. The operator dXE = (I ⊗E)(|ϕd⟩ ⟨ϕd|) is known as the Choi matrix of E . Choi’s theorem implies
that the complete positivity of E is equivalent to XE being a positive semi-definite operator. Likewise,
R is completely positive if and only if XR is positive semi-definite.

The constraint that E and R are trace preserving translates into slightly different conditions on
XE and XR. Let us first prove that

TrB(XE) =
1

d
1A, (2.106)

where 1A is the identity on the first system. This is shown by a simple computation,

TrB(XE) = TrB(
∑
j

(1⊗ Ej)|Φd⟩⟨Φd|(1⊗ E†
j )) (2.107)

=
1

d
TrB(

∑
j

∑
k,ℓ

|k⟩ ⟨ℓ| ⊗ Ej |k⟩ ⟨ℓ|Ej†) (2.108)

=
1

d

∑
k,ℓ

⟨ℓ|
∑
j

Ej
†Ej |k⟩ |k⟩ ⟨ℓ|A (2.109)

=
1

d

∑
k

|k⟩ ⟨k|A (2.110)

=
1

d
1A, (2.111)

where we used the completeness relation of Kraus operators in (2.110). The converse, namely that
TrB(XE) =

1
d1A implies the trace-preserving property of E , is also true. Indeed, by definition of the
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Choi matrix, for any two elements of the canonical basis, |i⟩ and |j⟩, E sends the elementary matrix
|i⟩ ⟨j| on

E(|i⟩ ⟨j|) = d⟨i|A XE A|j⟩, (2.112)

therefore, the trace of the state output is

Tr(E(|i⟩ ⟨j|)) = dTr(⟨i|A XE A|j⟩) (2.113)

= dTrA(⟨i|A TrB(XE) A|j⟩), (2.114)

and when TrB(XE) =
1
d1A, this is

Tr(E(|i⟩ ⟨j|)) = ⟨i|j⟩ = δij . (2.115)

By linearity of E one concludes that the map is trace-preserving.
Let us now prove that R is trace preserving if and only if

TrA(XR) =
1

d
1B. (2.116)

This is because

TrA(XR) =
1

d
TrA(

∑
i

∑
k,ℓ

|k⟩ ⟨ℓ| ⊗Ri
† |k⟩ ⟨ℓ|Ri) (2.117)

=
1

d

∑
i

∑
k

Ri
† |k⟩ ⟨k|Ri (2.118)

=
1

d

∑
i

Ri
†Ri. (2.119)

Hence, TrA(XR) =
1
d1B if and only if

∑
iRi

†Ri = 1B. Moreover, for any basis states |k⟩ , |ℓ⟩,

Tr(R(|k⟩⟨ℓ|)) =
∑
i

Tr
(
Ri|k⟩⟨ℓ|Ri†

)
=
∑
i

⟨ℓ|Ri†Ri|k⟩.

so the trace is preserved when
∑

iRi
†Ri = 1B.

The iterative optimisation of maxR F (R ◦N ◦ E) and maxE F (R ◦N ◦ E) thus translates into the
iterative resolution of two semi-definite programs. For the initialisation, one can take either a specific
encoding (e.g. that of the 2T -qutrit) or a random encoding. Then we optimise successively:

• the recovery map:

max
XR

tr(XRM
∗
E) s.t. TrAXR =

1

d
1B, (2.120)

with M∗
E :=

∑
k(1⊗ Ck)X

∗
E(1⊗ C†

k),

• and the encoding map:

max
XE

tr(XEN
∗
R) s.t. TrBXE =

1

d
1A, (2.121)

with N∗
R :=

∑
k(1⊗ C†

k)X
∗
R(1⊗ Ck),

where X∗
E and X∗

R denote the values of XE and XR obtained at the previous step. The semi-definite
variables XR and XE characterise, respectively, the recovery and the encoding channels and the
constraints ensure that they are valid quantum channels. The notations TrA and TrB indicate traces
over the first and second systems. This process is not known to converge to the optimal solution in
general, but it performs reasonably well provided that the loss parameter γ is not too small. In that
case, the optimisation tends to consistently converge to an optimum independent of the starting point,
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suggesting that the corresponding value is in fact close to the global maximum. For instance, starting
from a truncated (single-mode) Fock space, this algorithm will converge to an encoding map close to
(a displaced version of) the hexagonal GKP code [NAJ19].

Note that, here, the constraints do not have the exact same form as those of the general SDP
presented in the preliminaries of the thesis Eq. 226. Indeed, we here have a partial trace instead of a
(full) trace. To solve the SDP numerically, we had to put them back into the form of Eq. 226. This is
easily done since, if the dimensions of the systems are finite (which is the case here since we focus on
finite-dimensional subspaces of the Fock space given by the Span of a finite number of coherent states)
a constraint expressed with a partial trace is equivalent to a finite set of constraints expressed with
a full trace. Indeed, introducing a basis of elements {|i⟩B : i ∈ {0, . . . d − 1}} of the second system,
whose dimension is here denoted as d, one has that for any square matrices M and N ,

TrA(M) = N ⇔ ∀i, j ∈ {0, . . . , d− 1}, ⟨i|BTrA(M)|j⟩B = ⟨i|BN |j⟩B (2.122)

⇔ ∀i, j ∈ {0, . . . , d− 1}, Tr(M(|i⟩⟨j|)B) = ⟨i|BN |j⟩B, (2.123)

and similarly for a trace over the second system.

Our numerical optimisations will be realised with the Splitting Conic Solver [ODo+16; ODo+17].

2.3.1.1 Action of the pure-loss channel on finite superpositions of coherent states

One of the advantages of a bosonic encoding is that it greatly simplifies the relevant error model that
should be addressed. In particular, as a first approximation, it can be modelled as a pure-loss channel,
which is described by an infinite set of Kraus operators

{Kk = ckâ
kµn̂ : k ∈ N } (2.124)

where µ =
√
1− γ, ck =

1√
k!
( γ
1−γ )

k
2 , and γ ∈ [0, 1[ is the loss parameter. The single-mode loss channel

NL,γ thus acts as follows [Alb+18]:

NL,γ : ρ 7→
∞∑
k=0

KkρK
†
k. (2.125)

When working with the whole Fock space, this representation contains an infinite number of opera-
tors and one has to resort to some approximations to perform numerical simulations, for instance a
truncation of the Fock space. We avoid this problem since we work instead with a finite-dimensional
subspace of the Fock space spanned by m coherent states.

The goal of this section is to find a more compact Kraus representation of the pure-loss channel
of (2.125) when the input state is restricted to the span of a finite number of (possibly multimode)
coherent states |α1⟩, . . . , |αm⟩. In this case, we will exhibit a representation of the channel with only
m Kraus operators.

As shown in the preliminaries (Eq.131), the pure-loss channel sends a coherent state |α⟩ onto a
coherent state |µα⟩ with µ =

√
1− γ and therefore the output space obtained after the channel is the

span of |µα1⟩, . . . , |µαm⟩. It is useful to consider orthonormal bases of both spaces. Let us denote by
τ and τ ′ the uniform mixtures of the coherent states in the input and output spaces:

τ :=
1

m

m∑
k=1

|αk⟩ ⟨αk| , τ ′ :=
1

m

m∑
k=1

|µαk⟩ ⟨µαk| . (2.126)

One can check that the sets {|ψk⟩}k∈[m] and {|ψ′
k⟩}k∈[m] form orthonormal bases of Span({|α1⟩, . . . , |αm⟩})

and Span({|α′
1⟩, . . . , |α′

m⟩}) respectively4, with

|ψk⟩ :=
1√
m
τ−1/2 |αk⟩ , |ψ′

k⟩ :=
1√
m
τ ′−1/2 |µαk⟩ . (2.127)

4Note that these are the same states as those introduced in Chapter 1, in Eq. 1.23
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To see this, observe that

m∑
k=1

|ψk⟩⟨ψk|=
1

m
τ−1/2

m∑
k=1

|αk⟩⟨αk|τ−1/2 = τ−1/2ττ−1/2 (2.128)

which is the projector onto Span({|α1⟩, . . . , |αm⟩}). Likewise,
∑m

k=1|ψ′
k⟩⟨ψ′

k| is the projector onto
Span({|µα1⟩, . . . , |µαm⟩}).

Let us define the operators

Ck :=

m∑
ℓ=1

⟨ψ′
k|
√
γαℓ⟩τ ′1/2|ψ′

ℓ⟩⟨ψℓ|τ−1/2 (2.129)

for k ∈ [m]. We claim that they form a set of Kraus operators for the pure-loss channel acting on
Span({|α1⟩, . . . , |αm⟩}). We check this by computing their action on |αi⟩⟨αj | for arbitrary i, j ∈ [m]:

m∑
k=1

Ck|αi⟩⟨αj |C†
k = m

m∑
k=1

Ckτ
1/2|ψi⟩⟨ψj |τ1/2C†

k (2.130)

= m

m∑
k=1

⟨ψ′
k|
√
γαi⟩τ ′1/2|ψ′

i⟩⟨ψ′
j |τ ′1/2⟨

√
γαj |ψ′

k⟩ (2.131)

= m⟨√γαj |
( m∑
k=1

|ψ′
k⟩⟨ψ′

k|
)
|√γαi⟩τ ′1/2|ψ′

i⟩⟨ψ′
j |τ ′1/2 (2.132)

= ⟨√γαj |
√
γαi⟩|µαi⟩⟨µαj | (2.133)

= NL,γ(|αi⟩⟨αj |), (2.134)

where the last equality is obtained from Eq.130. Moreover, the operators are correctly normalised
since

m∑
k=1

C†
kCk =

m∑
i,j,k=1

⟨√γαi|ψ′
k⟩⟨ψ′

k|
√
γαj⟩τ−1/2|ψi⟩⟨ψ′

i|τ ′1/2τ ′1/2|ψ′
j⟩⟨ψj |τ−1/2

=
1

m2

m∑
i,j=1

⟨√γαi|
√
γαj⟩τ−1|αi⟩⟨µαi|µαj⟩⟨αj |τ−1

= τ−1
( 1

m2

m∑
i,j=1

⟨αi|αj⟩|αi⟩⟨αj |
)
τ−1 (2.135)

= τ−1τ2τ−1 (2.136)

which is the projector onto the input space. To write Eq.2.135, we used that for any α, β ∈ C,

⟨β|α⟩ = ef(β,α) (2.137)

with

f(β, α) :=
|α|2+|β|2

2
+ αβ∗ (2.138)

a function such that for all z ∈ C,

f(zβ, zα) = |z|2f(β, α), (2.139)

and hence

⟨√γαi|
√
γαj⟩⟨µαi|µαj⟩ = eγf(αi,αj)e(1−γ)f(αi,αj) (2.140)

= ef(αi,αj) (2.141)

= ⟨αi|αj⟩. (2.142)
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The advantage of having a finite number of Kraus operators to describe the pure-loss channel is
that, consequently, the values of the operatorsME and NR can be computed exactly without resorting
to any truncation in the sum, contrary to what is done in [Alb+18] for instance. Another advantage of
not having to perform a truncation is that the study of performance is possible even for large values of
modulation amplitudes α. This is in contrast with standard methods where larger values of α require
to increase the level of truncation to get accurate results. This is extremely useful when considering
multimode bosonic codes since even truncated Fock spaces quickly become very large.

To numerically implement the iterative optimisation of eqs.2.120 and (2.121) in practice, it is useful
to further simplify the expressions for the matrices ME and NR. The matrix ME is given by

ME =
∑
k

(1⊗ Ck)X
∗
E(1⊗ C†

k) (2.143)

=
∑
k,ℓ,n

⟨√γαn|ψ′
k⟩⟨ψ′

k|
√
γαℓ⟩1⊗ τ ′1/2|ψ′

ℓ⟩⟨ψℓ|τ−1/2X∗
E1⊗ τ−1/2|ψn⟩⟨ψ′

n|τ ′1/2 (2.144)

=
∑
ℓ,n

⟨√γαn|
√
γαℓ⟩1⊗ τ ′1/2|ψ′

ℓ⟩⟨ψℓ|τ−1/2X∗
E1⊗ τ−1/2|ψn⟩⟨ψ′

n|τ ′1/2, (2.145)

and NR by

NR =
∑
k

(1⊗ C†
k)X

∗
R(1⊗ Ck) (2.146)

=
∑
ℓ,n

⟨√γαn|
√
γαℓ⟩1⊗ τ−1/2|ψn⟩⟨ψ′

n|τ ′1/2X∗
R1⊗ τ ′1/2|ψ′

ℓ⟩⟨ψℓ|τ−1/2 (2.147)

The numerical simulations will be done in the basis of |ψi⟩ and |ψ′
i⟩. Since,

⟨ψi| τ |ψj⟩ =
1

m
⟨αi|τ−1/2ττ−1/2 |αj⟩ =

1

m
⟨αi|αj⟩, (2.148)

the (i,j)-coefficient of τ in the ψk basis is given by 1
m⟨αi|αj⟩, and, likewise that of τ ′ in the |ψ′

k⟩ basis
is given by 1

m⟨µαi|µαj⟩.

2.3.2 Results of the biconvex optimisation: Best qudit against loss within the
24-cell constellation

We now apply the method described in Section 2.3.1 to the 2T -qutrit and compare its performance
to random encodings in the 2T -constellation. For the 2T -qutrit, the encoding map is simply |i⟩ 7→ |̄i⟩.
For each encoding, we then apply the iterative optimisation procedure described above. In Figure 2.3,
we plot the entanglement fidelity Fγ(E ,R) := F (E ◦NL,γ ◦R) as a function of the number of iteration
steps performed in the simulation. The comparison is done for α = 1.5, which turns out to be close
to the optimal value for the 2T -qutrit.

A first observation is that the 2T -qutrit is indeed a fixed point of the biconvex optimisation problem
and thus a local optimum. Moreover, in the low-loss regime, the iterative optimisation procedure does
not find much better encodings than the 2T -qutrit when starting with random initial encoding (see
right panel of Fig. 2.3). This gives evidence that the 2T -qutrit encoding may be close to optimal for
the protection against pure loss in that regime.

2.3.3 Comparison of the performances of the 2T -qutrit and cat qutrits

2.3.3.1 Performances of the 2T -qutrit and cat qutrits against loss

It is also instructive to compare the performances of the 2T -qutrit to that of single-mode bosonic
qutrits, such as the cat qutrits. For k ∈ {0, 1, 2}, we recall that the logical states of the cat qutrit of

order 3n, are defined as superpositions of the form
∑3n−1

ℓ=0 e
−2iπkℓ

d |αzℓ⟩, where z = e2πi/3n and α > 0 is
a free parameter. We call this code the 3n-PSK qutrit since its constellation is that of a Phase-Shift
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Figure 2.3: Entanglement fidelity as a function of the number of optimisation steps, for five runs with
random initial qutrit encodings in the 2T -constellation, for α = 1.5. The fidelity for the 2T -qutrit is
also shown for comparison. Top panel: γ = 0.1, Bottom panel: γ = 0.01.

Keying modulation. In Figure 2.4, we compare the performance of the 2T -qutrit to that of single-
mode cat PSK qutrits, as a function of α. We observe that for reasonable values of α, the 2T -qutrit
compares favourably to single-mode encodings. One also remarks that, similarly to cat encodings,
there exist optimal values (known as sweet spots) of α and that a larger value of α does not always
result in a better performance.
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Figure 2.4: Entanglement fidelity as a function of α, for the 2T -qutrit and cat-qutrits with 3, 6, 9 or
12 components. Top: γ = 0.1, bottom: γ = 0.01.

In Fig. 2.5, we compare the performance of the 2T -qutrit with that of single-mode cat qutrits as
a function of loss. Here the value of α is optimised for each bosonic code, for values in the range
[0.25, 2]. The range starts at 0.25 to avoid numerical issues that where happening when α was too
small. As already noted, we see that for reasonable values of α, the 2T -qutrit compares favourably to
single-mode codes as soon as the loss level is sufficiently small.

Finally, Fig. 2.6 shows the performance of the 2T -qubit defined in Section 2.2.2.3 compared to the
qubits Span({|c0⟩|c0⟩, |c2⟩|c2⟩}) and Span({|c1⟩|c1⟩, |c3⟩|c3⟩}), where

|c0⟩ ∝
3∑

k=0

|ikα⟩, |c1⟩ ∝
3∑

k=0

(−i)k|ikα⟩, |c2⟩ ∝
3∑

k=0

(−1)k|ikα⟩, |c3⟩ ∝
3∑

k=0

ik|ikα⟩, (2.149)

and to random qubit encodings in the 2T -qutrit space. Again, these three qubits correspond to local
optima of the entanglement fidelity and they compare well against numerically optimised encodings
in the low-loss regime.
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Figure 2.5: Smallest entanglement infidelity, 1 − Fγ , as a function of the loss parameter γ when α is
optimised in the range [0.25, 2].

2.3.3.2 Performances of the 2T -qutrit and cat qutrits against dephasing

While loss is certainly the major source of imperfection for many bosonic systems, it is also instructive
to consider other kinds of noise, such as dephasing [LW23]. The single-mode bosonic pure-dephasing
channel is defined as

ND,γ(ρ) :=
∞∑

m,n=0

e−
1
2
γ(m−n)2⟨m|ρ|n⟩|m⟩⟨n|, (2.150)

where γ now characterises the dephasing strength. As already mentioned, we will consider two inde-
pendent realisations of this channel, and therefore consider the two-mode pure-dephasing channel

ND,γ ⊗ND,γ(ρ) :=
∞∑

m1,m2,
n1,n2=0

e−
1
2
γ((m1−n1)2+(m2−n2)2)⟨m1, n1|ρ|m2, n2⟩|m1,m2⟩⟨n1, n2|. (2.151)

This channel admits an infinite number of Kraus operators, and it is not possible to exploit the
same trick as for the pure-loss channel since a coherent state is not mapped to a pure state via the
dephasing channel. It is therefore needed to truncate the Hilbert space by keeping only the Fock states
containing less than N photons in total. We can however observe that the dephasing channel leaves
invariant the photon number in each mode. This implies that to compute the entanglement fidelity of
the 2T -qutrit, it is sufficient to restrict the truncated Fock space to

F≤N = Span
(
|n1, n2⟩ : n1 + n2 ≤ N, n1 + n2 ≡ 0 mod 4, n1 ≡ 0 mod 2

)
, (2.152)

since the optimal recovery map will not change the photon numbers either. Taking N = 4p, we get
dimF≤N = 1

2(p+1)(p+2)+ 1
2p(p+1), where the first term counts the pairs with n1 ≡ 0 mod 4 and

the second term counts the pairs with n1 ≡ 2 mod 4. This gives

dimF≤4p = (p+ 1)2, (2.153)

which is a reduction by a factor of almost 8 compared to the naive (4p+ 1)(4p+ 2)/2.
We plot the results on Fig. 2.7. We first note that the tolerance to dephasing of the single-mode

qutrits deteriorates quickly with the number of states in the constellation, but generally improves with
increasing α. In the regime of moderate energy, corresponding to α ≤ 2.5 here, we observe that the
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Figure 2.6: Entanglement fidelity of various qubit encodings, for γ = 0.01 and α = 1.5.

performance of the 2T -qutrit presents a sweet spot, exactly as in the case of the pure-loss channel.
We suspect that better fidelities could be obtained with much larger values of α, but our simulations
cannot handle this regime at the moment. We note that the assumption that both modes suffer
independent phase noise might be too pessimistic, and that more realistic noise models are likely to
be correlated, which should improve the performance of the 2T -qutrit.
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Figure 2.7: Entanglement fidelity for the dephasing channel ND,γ with γ = 0.01, for the 2T -qutrit
and single-mode cat qutrits.
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Conclusion

In this chapter, we have considered a 2-mode generalisation of bosonic cat codes. By working with a
finite set of 24 coherent states corresponding to the finite multiplicative subgroup 2T of the quaternions,
we can search for interesting qudits within this 24-dimensional space. Exploiting the decomposition
of this group as the semi-direct product of the cyclic group C3 with the quaternion group Q, we have
defined the 2T -qutrit which corresponds to a three-dimensional subspace of the 2-mode Fock space.
Numerical simulations suggest that this bosonic qutrit may be particularly tolerant to photon-loss in
the regime of low loss, at least when coupled with an ideal recovery map. The tolerance to dephasing
is more limited, however, at least for reasonable energies.

More importantly, it is possible to leverage the group structure of the binary tetrahedral group 2T
to study the properties of the qutrit. In particular, we have identified a complete set of stabilisers for
the 2T -qutrit. It is also possible to define a logical Z-operator on the qutrit. Interestingly, we have
finally defined a 2T -qubit which admits a logical X-gate as well as a logical phase gate P (2π/3) that
can both be implemented by passive Gaussian transformations in phase space. In addition, a specific
state of this qubit corresponds to two copies of a logical cat qubit state with 4 components, and recent
progress in the implementation of cat qubits suggests that such states could be implemented in the
near future. It is reasonable to expect that many techniques relevant for the preparation, manipulation
and measurement of cat qubits can be ported to the setting of the 2T -qutrit.

We leave many open questions for future work. Probably the most intriguing one would be to
understand whether it is possible to devise a universal set of gates for the 2T -qutrit (or the 2T -qubit).
While experimental implementations will likely be very challenging, it is natural to look for multimode
bosonic codes generalising the cat qubit. We have focused here on the 2T subgroup of the quaternions
but the binary octahedral and binary icosahedral groups are other natural candidates, at least as a
purely theoretical endeavour.
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Chapter 3

Codes with an easily implementable
gate set

This chapter covers the contents of the preprint [DL23a] in a slightly more detailed way. We present a
method for designing quantum error-correcting codes such that a specific group of logical operations
is implemented using simple physical operations such as transversal gates for multi-qubit codes, or
Gaussian unitaries for bosonic codes. The approach we introduce is very general and we study a few
applications, mainly focusing on bosonic codes. In particular, we exploit our construction to define a
multimode extension of the cat qubit with logical states given by superpositions of 48 coherent states,
wherein all single-qubit Clifford logical gates are passive Gaussian unitaries. If a quartic Hamiltonian
is also available, then it can be used to implement the CZ and T gates hence providing a universal
gate set.

3.1 Constructing codes from groups

A main challenge in designing fault-tolerant approaches to quantum computing is the need to address
two seemingly conflicting requirements: protecting quantum information against various sources of
noise, and manipulating the same quantum information in order to perform a computation. Quantum
error-correcting codes offer a solution to the first problem, but good codes tend to protect information
so well that the set of logical gates that can be performed fault-tolerantly is often very limited. For
instance, the Eastin-Knill theorem puts severe restrictions on the set of transversal gates for a non-
trivial quantum code [EK09; Fai+20] (see Sec. 0.3.1.2). In the case of bosonic codes [TCV20; Alb22],
a number of single-mode encodings admit interesting logical gate sets that are easily implementable:
Clifford operations for the GKP code [GKP01] (see Sec. 0.3.2.1) for instance. Various additional
gadgets can then promote these to universal gate sets [GP21]. In both cases, the approach taken
consists in first finding a good error-correcting code and then looking at the gates that can be easily
implemented. It would also be interesting to be able to do the opposite: first choose a set of gates that
we want to be able to implement easily, find the encodings such that it is indeed the case, and then
study the error-correcting capabilities of these codes. To explore this alternative strategy, we make
use of representation theory, which is reviewed in the preliminaries of this thesis, in Section 0.4.3.

More precisely, given a subgroup G̃ of the group of d by d unitary matrices U(d) and a representa-
tion ρ̃ : G̃ → U(HP ) of that subgroup describing how the gates should be implemented on a physical
Hilbert space HP , we wish to find an encoding E : |ψ⟩ 7→ |ψ̄⟩ such that any logical gate g ∈ G can be
implemented as ρ(g). We note that a similar idea has already been investigated by Gross for encoding
a qubit in a spin [Gro21]. The representation chosen will depend on the type of codes (bosonic codes,
spin codes, multi-qudit codes...) considered. Interestingly, only very weak assumptions on the group
and the representation chosen are required for codes with that property to exist. Our main result
is Lemma 3.1 which gives a generic construction of such encodings. In section 3.3, we then study
examples of codes obtained using this construction, focusing for the most part on two-mode bosonic
qubits.

139
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3.1.1 Main Lemma

Lemma 3.1. Let HL := Cd (for d ∈ N∗) and HP be two Hilbert spaces corresponding to the logical
space and the physical space, respectively. Consider a finite or compact group G with a unitary d-
dimensional irreducible representation ρL on HL and another (physical) unitary representation ρ on
HP . Define the operator1

V :=
d

|G|
∑
g∈G

ρL(g)
† ⊗ ρ(g) (3.1)

on HL ⊗HP . Given two states |Σ⟩ ∈ HL and |Φ⟩ ∈ HP , the (unnormalised) encoding map

Ẽ = ẼG,ρL,ρ,|Σ⟩,|Φ⟩ : HL → HP

|ψ⟩ 7→ ⟨Σ|V |ψ⟩|Φ⟩ (3.2)

is covariant with respect to G, that is, for all g ∈ G and all |ψ⟩ ∈ HL, it holds that

Ẽ(ρL(g)|ψ⟩) = ρ(g)Ẽ(|ψ⟩). (3.3)

For the code to be well-defined and non-zero, that ⟨Σ|V |Φ⟩ ∈ C∗. In that case, the map E := NẼ,
where N is a normalisation coefficient, is an isometry, in addition to being G-covariant.

Most of the time, the group G will be a subgroup of U(d) corresponding to the logical operations
one wants to perform on a qudit of dimension d, and ρL(g) will simply be equal to the identity
map for all g ∈ G. In certain cases, however, it can be useful to consider other groups for G and
non-trivial representations for ρL. This will be the case for instance in Sec. 3.3.2.4, when we use
our construction to recover the rotation-symmetric codes. In the general case, it is G̃ := ρL(G)
that represents the logical operations of interest. Typical examples of these are the Pauli matrices

X =

(
1 0
0 1

)
and Z =

(
1 0
0 −1

)
, in the case of qubits. The physical space HP is the space on which

the qudit is physically implemented, and the physical representation ρ describes how the gates should
be implemented on the code-space. Indeed, a physical operation OP realises a logical gate U if and
only if its application on the encoding E(|ψ⟩) of any state |ψ⟩ ∈ HL, gives the encoding E(U |ψ⟩) of
U |ψ⟩, i.e. if and only if,

∀ |ψ⟩ ∈ HL, OPE(|ψ⟩) = E(U |ψ⟩). (3.4)

Equation 3.3 thus demands that the logical gates ρL(g) be physically realised2 by ρ(g) for all g ∈ G.
Note that, for a basis {|k⟩ : k = 0, . . . , d− 1} of Cd, the logical states |k̄⟩ = E(|k⟩) are of the form

|k̄⟩ =
∑
g∈G

λg,kρ(g)|Φ⟩ (3.5)

with λg,k ∝ ⟨Σ|ρL(g)†|k⟩. The codewords are thus expressed as a superposition of states which can all
be obtained by applying the physical gates ρ(g) onto some initial state |Φ⟩.

One necessary condition for the code to be non-zero is that ρ contains3 a copy of ρL, which is
implied by the condition ⟨Σ|V |ψ⟩ ∈ C∗. Indeed, in terms of representation theory, Equation 3.3 states
that the code space Span({|k̄⟩ : k = 0, . . . , d− 1}), if it is non-zero, is a copy of the representation ρL
in ρ. To see this, one can simply note that, for all g ∈ G, the matrix representation of the restriction
of ρL(g) to the code space is ρL(g). For instance, in the case of a qubit (|0̄⟩ , |1̄⟩), writing the matrix

ρL(g) =

(
ag bg
cg dg

)
, and applying Eq. 3.3 to the two basis states give

ρ(g) |0̄⟩ = E(ρL(g) |0⟩) = E(ag |0⟩+ cg |1⟩) = ag |0̄⟩+ cg |1̄⟩ (3.6)

ρ(g) |1̄⟩ = E(ρL(g) |1⟩) = E(bg |0⟩+ dg |1⟩) = bg |0̄⟩+ dg |1̄⟩ (3.7)

1For a compact group G, the sum should be replaced by an integral over the Haar measure, see 0.4.3.3.
2Recall, here, that the notation ρ is for the representations, as this is the most commonly used letter in representation

theory. As such, ρL(g) and ρ(g) should not be confused with quantum states.
3By “containing a copy of ρL” one means that at least one of the irreducible representations appearing in the

decomposition of ρ (Eq. 3.20) is isomorphic to ρL.
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and hence putting this in matrix form, the 2 by 2 matrix representation of ρ(g) in the basis (|0̄⟩ , |1̄⟩)

is ρL(g) =

(
ag bg
cg dg

)
.

While the strategy described in Lemma 3.1 might look quite specific, it is interesting to note that
it is fully general, and any encoding map that commutes with the action of a group G must be of the
form of (3.2).

Lemma 3.2. All codes that are covariant with respect to a group action in the sense of (3.3) are
instances of the construction (3.2).

The construction is most useful when the group G̃ considered is a group of single-qudit operations.
In that case, it yields one logical qudit of dimension d on which the single-qudit operations in G̃ are
physically implemented via ρ. It is also possible to include two-qudit gates but one then needs to work
on HL = (Cd)2 and hence the construction yields a code encoding two logical qudits. Lemma 3.1 then
says that the implementation of the two-qudit gates in G̃ between the two logical qudits of the code
is done via ρ but it says nothing about how to implement them between other encoded qudits. Such
a code is probably not very appealing. What would be more interesting, however, is to consider for
instance the n-qubit Clifford group for a large number of qubits n to be able to perform Clifford gates
between all these n qubits. Yet such a group is very big and our construction would yield something
completely unpractical. For this reason, we will focus on applications where HL = Cd. The gates
obtained with Lemma 3.1 are only single-qudit gates in that case but one can then look for other gates
to complete the gate set, or use other techniques to achieve universality.

It is also important to note that Lemma 3.1 does not say anything about the error-correcting
properties of the code found. These need to be assessed in a later stage.

Before proving the two lemmas, let us give several examples of physical representations ρ of the
group of single-qubit unitary matrices G = U(2) that are relevant to quantum error correction.

3.1.2 Physical representations

Spin codes This case has been studied by Jonathan Gross [Gro21]. The gates that are easy to
implement correspond to Hamiltonians linear in the angular momentum operators Ĵx, Ĵy and Ĵz. The
relevant representation ρ of any subgroup G of U(2) is thus given by (eq. 1 of [Gro21]),

ρ : exp

(
−iθ u⃗ · σ⃗

2

)
7→ exp

(
−iθu⃗ · J⃗

)
, (3.8)

where σ⃗ is the vector of Pauli matrices, J⃗ is the vector of the spin’s angular-momentum operators, and
u⃗ is a unit vector defining the axis of rotation. The author shows how to construct all possible codes
where a qubit is encoded in a large spin in which operations belonging to (a particular version of) the
single-qubit Clifford group can be performed with spatial rotations (via the representation ρ defined
in Eq. 3.8). He then provides universal-gate-set implementations for these codes, using quadratic
angular-momentum Hamiltonians. We will do something similar for bosonic codes, in Sec. 3.3.2.2.

Multi-qubit codes Let us consider a quantum error-correcting code Jn, 1K encoding 1 logical qubit
into n > 1 physical qubits. In this setting, the logical space is HL = C2 and the physical space is
HP = (C2)⊗n. The physical gates of interest are the transversal gates, since they are both easier to
implement as the operations are applied locally, and useful to achieve fault-tolerance (see Sec. 0.3.1.2).
We thus consider the tensor product representation of any subgroup G of U(2),

ρ(g) = ρL(g)
⊗n ∀g ∈ G, (3.9)

acting on n copies of the logical spaceHP
∼= H⊗n

L . This corresponds to locally performing the operation
ρL(g) on each physical qubit. The definition remains the same if one considers qudits of dimension
d, the only difference being that in that case the logical space is HL = Cd and the physical space
HP

∼= H⊗n
L . We also note that our definition of transversal gate can be relaxed by considering the
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representation ρ(g) =
⊗n

i=1 ρi(g) with arbitrary representations ρi. In that case, the operations are
still performed locally on each qubit (or qudit) but a different operation may be applied on different
qubits (or qudits).

Bosonic qubits Like in Chapter 2, we are interested in exploring multi-mode bosonic codes. The
setting we consider in the rest of the chapter is that where HL equals C2 and HP is a two-mode Fock
space with annihilation operators â, b̂. The reason for this is that there is a natural representation ρ of
U(2) in that case. This representation ρ maps the unitary U ∈ U(2) to the passive Gaussian unitary
acting on the creation operators in the following way [Wee+12]:

ρ(U) : (â†1, â
†
2) 7→ (â†1, â

†
2)U, (3.10)

and maps a two-mode coherent state |α⃗⟩ = |α1, α2⟩ to |Uα⃗⟩ = |u11α1 + u12α2⟩|u21α1 + u22α2⟩ for

U =

(
u11 u12
u21 u22

)
and α⃗ =

(
α1

α2

)
. Such a transformation is easy to realise in practice in optical setups

with beam-splitters and phase-shifters. More generally, one could encode a qudit by considering a
d-mode Fock space, and the corresponding map ρ.

Let us show that any transformation ρ(g) where ρ is defined in Eq. 3.10 is indeed a passive Gaussian
transformation, i.e. one that does not change the photon number of the states and that can be realised
using beam-splitters and phase-shifters only. The basic idea is that any unitary two-by-two matrix M
can be written

M = ei
ϕ
2

(
eiα cos θ eiβ sin θ

−e−iβ sin θ e−iα cos θ

)
(3.11)

which is the equal to the product

ei
ϕ
2

(
eiψ 0
0 e−iψ

)(
cos θ sin θ
− sin θ cos θ

)(
eiδ 0
0 e−iδ

)
(3.12)

for ψ = α+β
2 and δ = α−β

2 . Since the rotation matrix corresponds to the way a beam-splitter acts
on coherent states (see Eq. 118) and each diagonal unitary matrix can be seen as two phase-shifts
performed independently on each mode of a two-mode coherent state, this shows that a unitary action
on a two-mode coherent state can always be decomposed into a sequence of phase-shifters and beam-

splitters. Equation 3.11 can be shown by taking a general unitary matrix M =

(
a b
c d

)
, where

a, b, c, d ∈ C. Since |det(M)|2= det(M)(det(M))∗ = det(M)det(M †) = det(I) = 1 the determinant is

equal to a phase eit. Writing component-wise that M † = M−1 = 1
det(M)

(
d −b
−c a

)
then gives two

independent equations,

c = −eitb∗ (3.13)

d = eita∗. (3.14)

Moreover, MM † = 12 so |a|2+|b|2= 1, and there exist ϕa, ϕb, θ ∈ R such that a = eiϕa cos θ and
b = eiϕb sin θ. The unitary M can thus be re-written

M =

(
eiϕa cos θ eiϕb sin θ

−ei(t−ϕb) sin θ ei(t−ϕa) cos θ

)
. (3.15)

Finally, setting ϕ = t
2 , α = ϕa − t

2 and β = ϕb − t
2 gives Eq. 3.11.

Equation 3.5 shows that the code are constructed from an initial state |Φ⟩. When the physical
Hilbert space is a two-mode Fock space, a natural choice for this state |Φ⟩ is a two-mode coherent state.
If ρ is chosen as described in this section, all the gates ρ(g) are passive Gaussian unitaries sending
two-mode coherent states onto two-mode coherent states. The encoded states are then superpositions
of coherent states, similarly to cat qubit encodings for instance. More generally, they are instances of
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quantum spherical codes [Jai+23], since the coherent states appearing in the constellations all lie on
a sphere in phase-space. However, in general, the basis states are non-uniform superpositions of the
coherent states in the constellation, contrary to the codes studied in [Jai+23]. Choosing a squeezed
state instead of a coherent state for |Φ⟩ may improve the error-correction capabilities of the code, at
the price of an increased experimental complexity.

3.1.3 Stabilisers

The proof of Lemma 3.1, in Section 3.2.1, shows that the encoding 3.2 can alternatively be written

E : |ψ⟩ ∈ HL 7→ U |ψ⟩ |ϕ⟩ (3.16)

where |ϕ⟩ ∝ ⟨Σ|⊗1MU †|Φ⟩ ∈ M , and M is the multiplicity space of the copies of ρL contained in ρ,
and U is the unitary appearing in Eq. 3.20 that block-diagonalises the physical representation. If this
unitary happens to be a Clifford gate and the state |ϕ⟩M is a stabiliser state, then the encoding map
of (3.16) shows that the code is a stabiliser code. Otherwise, the code can still admit some stabilisers,
that is, non-trivial commuting (possibly non Pauli) operators that stabilise the code space. One first
type of possible stabilisers gathers those associated with the state |ϕ⟩M . Indeed, any operator S onM
that stabilises |ϕ⟩, i.e. such that S|ϕ⟩ = |ϕ⟩ gives rise to a stabiliser U(1L⊗SM )U † of the code. Some
other stabilisers do not depend on the choice of state in the multiplicity space, and are associated with
elements of the centre Z(G) of the group. For any element g ∈ Z(G), that is, one that commutes with
all group elements, Schur’s lemma, recalled in the preliminaries, implies that ρL(g) is a scalar since
ρL is an irreducible representation. One can therefore write ρL(g) = eiθg1L for some phase θg. It then
follows from (3.3) that ρ(g) = eiθg on the code space for any g ∈ Z(G), showing that e−iθgρ(g) is a
stabiliser.

3.2 Proofs of the lemmas

3.2.1 Proof of the main lemma

For simplicity, we consider here a finite group G. The proof also works for more general compact
groups, by replacing the average operation with the Haar measure and using the generalisations
(Theorems 0.5 and 0.4) of the decomposition of a representation into irreducible representations and
of the Schur orthogonality relations.

Let ρL be a d-dimensional irreducible representation of G on HL = Cd, the logical space, and ρ a
unitary representation on HP , the physical space. Let |Σ⟩ ∈ HL and |Φ⟩ ∈ HP . The G-covariance of
the map

Ẽ : |ψ⟩ 7→ ⟨Σ|V |ψ⟩|Φ⟩,

where we recall that

V =
d

|G|
∑
g∈G

ρL(g)
† ⊗ ρ(g),

is easily proven. It is indeed a standard fact in representation theory that averaging any linear map
over the group action consisting of a conjugation by the two representations gives rise to a covariant
map. Here in particular, for any g ∈ G and for any |ψ⟩ ∈ HL,

ρ(g)Ẽ(|ψ⟩) = d

|G|
∑
h∈G

⟨Σ|ρL(h)†|ψ⟩ρ(g)ρ(h)|Φ⟩ (3.17)

=
d

|G|
∑
h̃∈G

⟨Σ|ρL(h̃)†ρL(g̃)|ψ⟩ρ(h̃)|Φ⟩ (3.18)

= Ẽ(ρL(g)|ψ⟩) (3.19)

where Eq.3.18 is just a change of variable (h̃ = gh).
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It now remains to see that ⟨Σ|V |Φ⟩ ̸= 0, there exists a normalisation coefficient N such that the
map E := NẼ is an isometry. To see this, we will show that the map E can be rewritten as

E : |ψ⟩ 7→ U |ψ⟩ |ϕ⟩

where U is a unitary and |ϕ⟩ is a, in that case, non-zero state in the multiplicity space of ρL in the
physical representation ρ.

Theorem 0.2 states that the representation ρ on HP can be decomposed as a direct sum of irre-
ducible representations:

ρ(g) = U

(⊕
i

ρi(g)⊗ 1Mi

)
U †, ∀g ∈ G (3.20)

where U is a unitary operator, ρi label the irreducible representations of G with their respective
multiplicity spacesMi. Lemma 0.1, proven in the preliminaries of this thesis, shows that U can indeed
be assumed unitary. By the Schur orthogonality relations (Theorem 0.3), averaging over G in the
definition of V will only leave the irreducible representation corresponding to ρL:

V =
d

|G|
∑
g∈G

ρL(g)
† ⊗ U (ρL(g)⊗ 1M )U †

=

d−1∑
i,j=0

|i⟩⟨j|HL
⊗U

(
|j⟩⟨i|HL′⊗1M

)
U †

where we denote by HL′ the subspace isomorphic to HL and by M the multiplicity space of ρL in
ρ. Note that, in the case where ρ does not contain any copy of ρL, the Schur orthogonality relations
simply imply that V = 0 and so the “code” obtained is just the space {0}. For a bosonic code,
the multiplicity space M will be infinite-dimensional in general. The effect of V is more easily seen
in the eigenbasis of U . The operator V first projects onto the irreducible representation ρL in HP

(since the orthogonality relations imply that V vanishes on the other subspaces). We denote by
Π = U(IH′

L⊗1M )U † the corresponding projector onto this irreducible representation. V then leaves

the multiplicity subspace invariant and swaps (with
∑d−1

i,j=0|i⟩⟨j|HL
⊗|j⟩⟨i|HL′ ) the logical space HL

with its copy in HL′ . Denoting by N a normalisation constant, the encoding map E := NẼ becomes

E(|ψ⟩) = N
d−1∑
i,j=0

⟨Σ|i⟩⟨j|ψ⟩ ⊗ U
(
|j⟩⟨i|HL′⊗1M

)
U †|Φ⟩

= NU
(
|ψ⟩⟨Σ|HL′⊗1M

)
U †|Φ⟩. (3.21)

The value of N can be computed from

∥E(|ψ⟩)∥2= N 2∥⟨Σ|⊗1M |U †|Φ⟩∥2

so N = ∥⟨Σ|⊗1M |U †|Φ⟩∥−1, which is well-defined whenever ∥⟨Σ|⊗1M |U †|Φ⟩∥∈ R∗
+. When the overlap

vanishes or is infinite, the map Ẽ is not normalisable.
The encoding E is depicted on Fig. 3.1. One easily sees that the role of the states |Φ⟩ ∈ HP and

|Σ⟩ ∈ HL is to define some state |ϕ⟩ = N⟨Σ|⊗1MU †|Φ⟩ ∈ M of the multiplicity space of ρL in the
physical representation ρ. With this observation, we can alternatively define the encoding of (3.21) as

E : |ψ⟩ ∈ HL 7→ U |ψ⟩|ϕ⟩,

with U a unitary that diagonalises the representation ρ. This concludes the proof. Note in particular,
that if the dimension of the multiplicity spaceM is larger than 1 (dim(M) > 1), then there are several
options for the choice of |ϕ⟩ and it is possible to optimise this choice to improve the error correction
performances of the code.
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Figure 3.1: Encoding circuit of Lemma 3.1. The unitary operator U block-diagonalises the physical
representation ρ and Π projects on the irreducible representation of ρL in HP . After the gate U †, the
space is a tensor product HL ⊗HL′ ⊗M , with M the multiplicity space. Registers HL and HL′ are
swapped. The first register is projected onto the state |Σ⟩, while the remaining registers are embedded
back to the physical space thanks to U .

3.2.2 Another sufficient condition to get a covariant isometry

In this section, we are interested in the case where the logical representation ρL is not irreducible. It
turns out the irreducibility condition of ρL is not needed for the encoding to be covariant (the proof is
identical in that case). However, getting an isometric encoding is trickier. We will nonetheless show
that when the representation ρL is a sum of one-dimensional representations, it is also possible to
derive a G-covariant isometric encoding, as in Lemma 3.1.

Lemma 3.3. Let HL := Cd (for d ∈ N∗) and HP be two Hilbert spaces corresponding to the logical
space and the physical space, respectively. Consider a finite group G with a unitary representation
ρL on HL that decomposes as a direct sum of one-dimensional representations. In addition, consider
another (physical) unitary representation ρ on HP . Define the operator

V :=
1

|G|
∑
g∈G

ρL(g)
† ⊗ ρ(g) (3.22)

on HL ⊗HP . Given two states |Σ⟩ ∈ HL and |Φ⟩ ∈ HP , the (unnormalised) encoding map

Ẽ = ẼG,ρL,ρ,|Σ⟩,|Φ⟩ : HL → HP

|ψ⟩ 7→ ⟨Σ|V |ψ⟩|Φ⟩ (3.23)

is covariant with respect to G, that is, for all g ∈ G and all |ψ⟩ ∈ HL, it holds that

Ẽ(ρL(g)|ψ⟩) = ρ(g)Ẽ(|ψ⟩). (3.24)

Since ρL is a sum of one-dimensional representations, there exists a basis B = {|e1⟩ , . . . , |ed⟩} in which
for all g ∈ G, ρL(g) is diagonal. Whenever there exist non-zero coefficients λ1, . . . , λi ∈ R+ such that

∀i ∈ J1, dK, λiE(|ei⟩) (3.25)

has norm 1, the linear map defined by

E : |ei⟩ 7→ λiẼ(|ei⟩) (3.26)

is an isometric G-covariant encoding.

Proof. Let us first consider arbitrary unitary representations ρL and ρ. To ease the discussion, we
introduce some notations. Let {ρi : i = 1, . . . , N ∈ N} be a full set of independent irreducible matrix
representations of G. There exist a unitary UL such that, for all g ∈ G,

ρL(g) = UL
⊕

k=1,...N :nk ̸=0

nk⊕
p=1

ρk(g)UL
† ∀g ∈ G, (3.27)
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where nk is the multiplicity of ρk in ρL for all k ∈ J1, dK.
This means that there exist a basis B = {|e1⟩ , . . . , |ed⟩} in which the representations ρL(g) are all

block-diagonal,

MatB(ρL(g)) =
N⊕
i=1

ρi(g)⊗ 1dim(Mi). (3.28)

While it may not be the case, that the encoding map

Ẽ : |ψ⟩ 7→ 1

|G|
∑
g∈G

⟨Σ|ρL(g)†|ψ⟩ρ(g)|Φ⟩ (3.29)

will send two arbitrary orthogonal states onto orthogonal states, it is true that Ẽ(|ei⟩) and Ẽ(|ej⟩) will
be orthogonal as soon as i ̸= j. Indeed, denoting |ēi⟩ := Ẽ(|ei⟩) for all i = 1, . . . , d, one has

⟨ēi|ēj⟩ =
∑
g,h∈G

⟨Σ|ρL(g†)|ej⟩⟨ei|ρL(h)|Σ⟩⟨ϕ|ρ(h†)ρ(g)|ϕ⟩ (3.30)

=
∑
t∈G

∑
g∈G

⟨Σ|ρL(g†)|ej⟩⟨ei|ρL(g)ρL(t†)|Σ⟩⟨ϕ|ρ(t)|ϕ⟩ (3.31)

For any t ∈ G, let us first compute

St :=
∑
g∈G

⟨Σ|ρL(g†)|ej⟩⟨ei|ρL(g)ρL(t†)|Σ⟩. (3.32)

To do so, we perform a block-computation in the basis B. Let us denote by |Σk,p⟩ the blocks compo-
nents of MatB(|Σ)⟩ and by |ik,p⟩ those of MatB(|ei⟩).

St =
∑

k=1,...N :nk ̸=0

nk∑
p=1

∑
g∈G

⟨Σk,p|ρk(g†)|jk,p⟩⟨ik,p|ρk(g)ρk(t†)|Σk,p⟩ (3.33)

=
∑

k=1,...N :nk ̸=0

nk∑
p=1

|G|
dk

⟨Σk,p|ρk(t†)|Σk,p⟩⟨ik,p|jk,p⟩ (3.34)

=
|G|
dki

⟨Σki,pi |ρki(t
†)|Σki,pi⟩δij (3.35)

where (ki, pi) is defined as the block containing the i-th element.
Hence,

⟨̄i|j̄⟩ =
∑
t∈G

|G|
dki

⟨Σki,pi |ρki(t
†)|Σki,pi⟩⟨ϕ|ρ(t)|ϕ⟩δij (3.36)

= δij

mki∑
q=1

|⟨Σki,pi |ϕki,q⟩|
2 (3.37)

with

ρ(g) = U
⊕

k=1,...N :mk ̸=0

mk⊕
p=1

ρk(g)U
† ∀g ∈ G (3.38)

U †|ϕ⟩ =
⊕

k=1,...N :mk ̸=0

mk⊕
p=1

|ϕk,p⟩ (3.39)

The norm of Ẽ(|ei⟩) and Ẽ(|ej⟩) will however be different. It is thus tempting to define a map

E : |ei⟩ 7→ NiẼ(|ei⟩), (3.40)
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where the normalisation coefficients

Ni =
1√∑mki

q=1|⟨Σki,pi |ϕki,p⟩|2
∈ R+ (3.41)

now depend on the specific input state |ei⟩. The encoding of a general state |ψ⟩ ∈ HL is then obtained
by linearity. The map E thus defined is a valid isometry since it sends the orthonormal family B onto
the orthonormal family B′ := {E(|ei⟩) : i = 0, . . . , d− 1}. The problem, however, is that in the general
case, the G-covariance property may be lost. Yet, in the specific case where the logical representation
ρL is a direct sum of one-dimensional representations, E retains theG-covariance property of Ẽ . Indeed,
in that case, the representations ρL(g) are diagonal with respect to the basis B. And,

E = Ẽ ◦ Λ (3.42)

where

Λ := |ei⟩ 7→ Ni |ei⟩ (3.43)

is also diagonal with respect to the basis B and hence commutes with ρL(g) for all g ∈ G. Therefore,

ρ(g)E(|ψ⟩) = ρ(g)Ẽ ◦ Λ(|ψ⟩) (3.44)

= Ẽ(ρL(g)(Λ(|ψ⟩))) (3.45)

= Ẽ ◦ Λ ◦ ρL(g)(|ψ⟩) (3.46)

where the G-covariance of Ẽ was used in Eq.3.45 and the commutation of Λ with the ρL(g) in Eq.3.46.

3.2.3 Proof of Lemma 3.2

Take a code given by some encoding map F such that F(ρL(g)|ψ⟩) = ρ(g)F(|ψ⟩) for all |ψ⟩ ∈ Cd and
g ∈ G. We assume that ρL is an irreducible representation.

Let us consider the encoding of (3.2) with the choice |Φ⟩ = F(|Σ⟩): for any |ψ⟩ ∈ HL,

E(|ψ⟩) = d

|G|
∑
g∈G

⟨Σ|ρL(g)†|ψ⟩ρ(g)F(|Σ⟩)

=
d

|G|
∑
g∈G

⟨Σ|ρL(g)†|ψ⟩F(ρL(g)|Σ⟩) (3.47)

= F

 d

|G|
∑
g∈G

⟨Σ|ρL(g)†|ψ⟩ρL(g)|Σ⟩

 (3.48)

= F

 d−1∑
i,j=0

⟨Σ|i⟩⟨j|ψ⟩|j⟩⟨i|Σ⟩

 (3.49)

= F

⟨Σ|

(
d−1∑
i=0

|i⟩⟨i|

)
|Σ⟩

d−1∑
j=0

|j⟩⟨j|

 |ψ⟩

 (3.50)

= F(|ψ⟩) (3.51)

where (3.47) is by assumption, (3.48) follows from the linearity of F , (3.49) comes from the Schur’s or-
thogonality relations (see Theorems 0.3, and 0.4 in the compact case), and (3.50) is just a permutation
of scalar terms.
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3.3 Examples

3.3.1 Multi-qubit codes

We first give examples of multi-qubit codes that can be obtained with our construction. In all the
examples considered, G is a subgroup of the unitary matrices and the logical representation ρL : g 7→ g
is the identity.

3.3.1.1 Case G = SU(d)

A natural group to consider is the full special4 single-qudit unitary group SU(d) acting on HL = Cd.
It is possible to consider a transversal representation on n qudits, ρ(g) = g⊗n for any g ∈ SU(d). In
this case, however, the Eastin-Knill theorem states that the encoding E cannot correct any erasure.

3.3.1.2 Recovering known codes

Since Lemma 3.2 shows that all codes satisfying Eq. 3.3 must be of the form given by the construction
of Lemma 3.1, we can recover all known codes admitting transversal gates in this way. For instance,
by considering groups such as the Pauli and Clifford groups, one recovers the codes J5, 1, 3K for the
Pauli group or Steane’s J7, 1, 3K code for the single-qubit Clifford group. If the centre of the group
contains an element of order p, that is, if ρL(G) contains the p-root of unity ω, then we know that
ω−1ρ(ω1) = ωm−1 is a stabiliser. This implies that m−1 ∈ pZ. In general, the resulting codes will not
be stabiliser codes. For instance, a similar strategy was developed in [KT23] for the binary icosahedral
group, for which there does not exist any non-trivial stabiliser code with transversal gates.

It is important to note, however, that the error correction capabilities of the codes created with
our construction crucially depend on the choice of |Φ⟩, and it is not clear that finding an interesting
initial state is much easier than directly finding a good quantum code with transversal gates. While
it is easy to recover a given code, finding new codes therefore seems much more challenging since it
requires choosing the appropriate states |Σ⟩ ∈ HL and |Φ⟩ ∈ HP .

3.3.2 Bosonic codes

We now focus on bosonic codes.

3.3.2.1 The Pauli code

We first look at the Pauli group and study the code obtained in that case with our construction.
Several versions of the Pauli group exist, e.g, ⟨X,Z⟩, ⟨iX, iZ⟩ of order 8 and ⟨i,X, Z⟩ of order 16. We
consider

G = ⟨X,Z⟩ = {±I,±X,±Z,±XZ} (3.52)

where

X =

(
0 1
1 0

)
, Z =

(
1 0
0 −1

)
(3.53)

and take the identity representation for the logical representation,

ρL(g) = g ∀g ∈ G, (3.54)

which is irreducible for that group.

The physical representation ρ is the one already defined in Eq. 3.10, which is such that for any
unitary matrix U , ρ(U) sends a coherent state |α, β⟩ onto |γ, δ⟩,

ρ

((
a b
c d

))
: |α, β⟩ 7→ |γ, δ⟩ (3.55)

4Since global phases carry no physical meaning, it makes sense to consider the special unitary group instead of the
unitary group.
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with (
γ
δ

)
=

(
a b
c d

)(
α
β

)
. (3.56)

In particular, the logical X gate will be implemented by a swap of the two modes since this is the
operation that sends |α, β⟩ onto |β, α⟩. The physical realisation ρ(Z) of Z must transform |α1, α2⟩
into |α1,−α2⟩. Hence, it is given by ρ(Z) = (−1)n̂2 .

Logical states To define the code, we also need to choose an initial state. This choice affects the
code performance as well as the feasibility of the state preparation. For simplicity, we opt for a generic
choice of initial coherent state |α⟩|β⟩, and |Σ⟩ = |0⟩, the construction gives,

|0̄⟩ := E(|0⟩) ∝
∑
g∈G

⟨0|ρL(g)|0⟩∗ρ(g) |α, β⟩ (3.57)

= ⟨0|I|0⟩∗ρ(I) |α, β⟩+ ⟨0|−I|0⟩∗ρ(−I) |α, β⟩
+ ⟨0|Z|0⟩∗ρ(Z) |α, β⟩+ ⟨0|−Z|0⟩∗ρ(−Z) |α, β⟩ (3.58)

= |α, β⟩ − |−α,−β⟩+ |α,−β⟩ − |−α, β⟩ (3.59)

= |c1(α)⟩|c0(β)⟩, (3.60)

where in Eq. 3.58 we did not consider the antidiagonal matrices ±X,±XZ since their contribution
vanishes, and in 3.60 |ck(α)⟩ := |α⟩+(−1)k|−α⟩ denotes an unnormalised two-component single-mode
cat state.

The logical one state is obtained by applying X̄ = ρ(X) on |0̄⟩, which therefore corresponds to
swapping the two modes. This gives,

E(|1⟩) = |1̄⟩ ∝ |c0(β)⟩|c1(α)⟩. (3.61)

One recovers the dual-rail encoding in the limit α, β → 0, which suggests that the code is a finite-
energy generalisation of the dual-rail qubit. This code admits a stabiliser −ρ(−1) = (−1)n̂1+n̂2+1.

Gates. By construction, the Pauli operators can be implemented with Gaussian unitaries: the logical
X swaps the two modes, while the logical Z is obtained by applying a phase gate (−1)n̂2 on the second
mode. One can also obtain a logical S gate [ 1 0

0 i ] and a CZ gate by applying quartic Hamiltonians,

corresponding respectively to unitaries in̂
2
2 and (−1)n̂2⊗n̂4 , similarly to what is done for rotation-

symmetric bosonic codes [GCB20].

Lemma 3.4. For the Pauli code associated to the group ⟨X,Z⟩, the single-qubit logical phase gate
S = |0̄⟩⟨0̄|+i|1̄⟩⟨1̄| and the two-qubit logical controlled-Z gate CZ are obtained by quartic Hamiltonians:

in̂
2
2 = S, (−1)n̂2n̂4 = CZ. (3.62)

Proof. By construction of the code, the logical Z operator, denoted Z, is obtained as Z = ρ(Z) =
(−1)n̂2 , and therefore (−1)n̂2 |k̄⟩ = (−1)k|k̄⟩ for k ∈ {0, 1}.

Any integer n can be written as n = 2p + q where p is an integer and q ∈ {0, 1}. One then gets
n2 = 4(p2 + pq) + q2, hence in

2
= iq

2
= iq. Moreover, one also has ei

π
4
−iπ

4
(−1)n = ei

π
4
(1−(−1)q) = iq.

Therefore, for any integer n, it holds that

in
2
= ei

π
4 e−i

π
4
(−1)n , (3.63)

which immediately implies that

in̂
2
2 |k̄⟩ = ei

π
4 e−i

π
4
(−1)n̂2 |k̄⟩ = ei

π
4 e−i

π
4
(−1)k |k̄⟩ = ik

2 |k̄⟩ = ik|k̄⟩,

showing that in̂
2
2 implements a logical S gate.

Similarly, for any pair of integers m,n, one can check that

(−1)mn = ei
π
4
(1−(−1)m)(1−(−1)n),



150 CHAPTER 3. CODES WITH AN EASILY IMPLEMENTABLE GATE SET

0.0 0.5 1.0 1.5 2.0 2.5

10 3

10 2
en

ta
ng

le
m

en
t i

nf
id

el
ity

X, Z , | |
X, Z , | |i
i, X, Z , | |e i

4

Figure 3.2: Entanglement fidelity for the pure-loss channel with loss rate γ = 10−2 for 3 variants of
the Pauli code, depending on the choice of group ⟨X,Z⟩ or ⟨i,X, Z⟩ and initial state. The value at
α = 0 corresponds to the dual-rail encoding.

and therefore

(−1)n̂2n̂4 |k̄⟩|ℓ̄⟩ = ei
π
4
(1−(−1)n̂2 )(1−(−1)n̂4 )|k̄⟩|ℓ̄⟩

= ei
π
4
(1−(−1)k)(1−(−1)ℓ)|k̄⟩|ℓ̄⟩

= (−1)kℓ|k̄⟩|ℓ̄⟩

which concludes the proof.

Now that we have constructed this Pauli code and found some logical operators for it, we would
like to know if this code is good at correcting errors. In particular, we are interested in studying its
performances against loss. For this simple code, it is straightforward to simulate the performance for
a pure-loss channel, as was done in [Alb+18], and in Chapter 2 for the 2T -qutrit: we plot on Fig. 3.2
the entanglement infidelity for the pure-loss channel, after the optimal recovery operation. The loss
channel is described in (3.64). This figure of merit has the advantage of being efficiently computable
provided the constellation size is not too large, and provides some insight about the protection offered
by the encoding. If the group is ⟨X,Z⟩, then the initial state |α⟩|α⟩ for α > 0 has the advantage
of yielding a constellation of minimal size since the logical states |0̄⟩ and |1̄⟩ are superpositions of
the same 4 coherent states |α, α⟩ , |α,−α⟩ , |−α, α⟩ , |−α,−α⟩ in that case. The choice |α⟩|iα⟩ yields a
constellation that is twice bigger

(|α, iα⟩ , |α,−iα⟩ , |−α, iα⟩ , |−α,−iα⟩ , |iα, α⟩ , |iα,−α⟩ , |−iα, α⟩ , |−iα,−α⟩)

but provides a much better tolerance to loss, also compared to the dual-rail encoding. This is con-
sistent with an analysis of the Knill-Laflamme conditions for the Kraus operators of the pure-loss
channel, as discussed in the next paragraph. Taking the variant ⟨i,X, Z⟩ of the Pauli group leads to
more complicated states (with a larger constellation) and appears to degrade the protection against
loss, even for an optimised choice of initial coherent states satisfying β = eiπ/4α.

Unfortunately, the S gate and CZ-gate together with Pauli gates fall short of providing a universal
gate set. One could obtain other phase gates by increasing the degree of the Hamiltonian, but this
seems experimentally challenging, and finding a realistic implementation of a logical Hadamard gate
is also seems hard.
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Knill-Laflamme conditions for the pure-loss channel We study here the effect of the pure-loss
channel for the Pauli code of (3.60) defined from the group ⟨X,Z⟩, but similar considerations also
apply to other variants of the Pauli code.

The Kraus operators of the two-mode pure-loss channel Lγ with loss rate γ ∈ [0, 1) are given
by [Alb+18]:

Ep1,p2 =

(
γ

1− γ

)(p1+p2)/2 âp11 â
p2
2√

p1! p2!
(1− γ)(n̂1+n̂2)/2,

so that the action of the channel Lγ on an arbitrary two-mode state ρ is

Lγ(ρ) =
∞∑

p1,p2=0

Ep1,p2ρE
†
p1,p2 . (3.64)

A straightforward calculation shows that these Kraus operators attenuate coherent states: defining
µ :=

√
1− γ, we get

âp(1− γ)n̂/2|α⟩ = (µα)p e−γ|α|
2/2|µα⟩.

We can apply Ep1,p2 to a product of two cat states |cj(αj)⟩|c1−j(α1−j)⟩ for j ∈ {0, 1}, which gives

Ep1,p2 |cj(αj)⟩|cj−1(αj−1)⟩ =
(

γ

1− γ

)(p1+p2)/2 (µαj)
p1(µα1−j)

p2

√
p1! p2!

e−γ(|αj |2+|α1−j |2)/2|cj−p1(µαj)⟩|c1−j−p2(µα1−j)⟩

= e−γ(|αj |2+|α1−j |2)/2
γ(p1+p2)/2αp1j α

p2
1−j√

p1! p2!
|cj−p1(µαj)⟩|c1−j−p2(µα1−j)⟩

= f(αj , α1−j , p1, p2)|cj−p1(µαj)⟩|c1−j−p2(µα1−j)⟩

with indices taken modulo 2, and we defined the function

f(α, β, p, q) := e−γ(|α|
2+|β|2)/2(α

√
γ)p(β

√
γ)2/

√
p! q!.

Focusing on the Pauli code with initial state |α⟩|αeiθ⟩, one can check the Knill-Laflamme con-
ditions for the Kraus operators of the pure-loss channel by applying the previous expression for
α0 := αeiθ, α1 := α, one obtains that ⟨k̄|E†

p1,p2Eq1,q2 |ℓ̄⟩ is proportional to

f(αk, α1−k, p1, p2)f(αℓ, α1−ℓ, q1, q2)⟨ck−p1(µαk)|cℓ−q1(µαℓ)⟩⟨c1−k−p2(µα1−k)|c1−ℓ−q2(µα1−ℓ)⟩.

Diagonal terms of the form ⟨k̄|E†
p1,p2Eq1,q2 |k̄⟩ are non-zero only if p1 = q1 and p2 = q2 since the even

and odd cat states are orthogonal (they have support on the even and odd Fock states, respectively).
In that case, we have

⟨k̄|E†
p1,p2Ep1,p2 |k̄⟩ ∝ f(αk, α1−k, p1, p2)f(αk, α1−k, p1, p2)

= e−γ(|αk|2+|α1−k|2)γ
(p1+p2)|αk|2p1 |α1−k|2p2

p1! p2!

which is independent of k, provided that |α0|= |α1|.
Moreover, for non-diagonal terms, we observe that if θ is not a multiple of π, then the overlaps

between the cat states of amplitude µα0 and µα1 always vanish in the limit of large energy, α→ ∞,

lim
α→∞

⟨0̄|E†
p1,p2Eq1,q2 |1̄⟩ = 0.

This suggests optimising the choice of the phase θ to maximise the distance between the constella-
tions of coherent states for the encoded states |0̄⟩ and |1̄⟩. A similar observation was made in [Jai+23]
where this distance was computed explicitly for many families of quantum spherical codes. In the case
of the Pauli code of (3.60), we see that the choices θ = 0 and θ = π/2 are respectively the worst and
best choices with that respect. This is confirmed numerically, and can also be seen on Fig. 3.2.
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3.3.2.2 The Clifford code

The gates found for the Pauli code do not form a universel set for quantum computing. Let us now
apply the strategy to the single-qubit Clifford group. This yields a code which does have a universal
gate set where Hadamard and the phase gate are given by Gaussian unitaries. Lemma 3.5 below shows
how to implement the CZ and T gates with a quartic Hamiltonian. In order to simplify as much as
possible the formidable challenge raised by the implementation of such codes, we focus here on the
smallest variant of the Clifford group. It is known as the binary octahedral group 2O of order 48. It

is generated by H = 1√
2

[
η η

−η−1 η−1

]
and S =

[
η 0
0 η−1

]
. Here, η = eiπ/4. Note that the operators H and

S differ slightly from the standard form of the Hadamard and phase gates because we focus here on
operators in SU(2). This choice is similar to [KT23]. Again, we consider the identity representation
ρL(g) 7→ g for the logical representation and the map defined in (3.10) for the physical representation.
Applying the strategy of Lemma 3.1 to the initial state |α⟩|β⟩ with |Σ⟩ = |0⟩ gives logical states |0̄⟩
and |1̄⟩ which are superpositions of 40 coherent states.

Logical states One can readily check that (HS)2 = H3 = S4 = −12. The 48 matrices composing
the group consist of 8 diagonal matrices, 8 antidiagonal matrices and 32 Hadamard-like matrices:[

ηk 0
0 η−k

]
,

[
0 −ηk
η−k 0

]
, k ∈ {0, . . . , 7},

1√
2

[
η2ℓ η2m

−η−2m η−2ℓ

]
,

1√
2

[
η2ℓ+1 η2m+1

−η−2m−1 η−2ℓ−1

]
, ℓ,m ∈ {0, 1, 2, 3}.

One can apply the construction of Lemma 3.1 for an arbitrary initial coherent state |α⟩|β⟩ and |Σ⟩ =
|0⟩. This gives

|0̄⟩ ∝
7∑

k=0

η−k|ηkα⟩|η−kβ⟩+ 1√
2

3∑
ℓ,m=0

1∑
p=0

η−2ℓ−p|η2ℓ+pα+ η2m+pβ⟩|−η−2m−pα+ η−2ℓ−pβ⟩, (3.65)

and the state |1̄⟩ is obtained by swapping the two modes,

|1̄⟩ ∝
7∑

k=0

η−k|η−kβ⟩|ηkα⟩+ 1√
2

3∑
ℓ,m=0

1∑
p=0

η−2ℓ−p|−η−2m−pα+ η−2ℓ−pβ⟩|η2ℓ+pα+ η2m+pβ⟩. (3.66)

Gates By construction, all the logical gates from the single-qubit Clifford group ⟨H,S⟩ are imple-
mented with Gaussian unitaries. Additionally, the two-qubit CZ gate gives the multi-qubit Clifford
group, and one can finally achieve universality with the T gate

[
1 0
0 η

]
.

Lemma 3.5. For the Clifford code associated to the group ⟨H, S⟩, the single-qubit logical T -gate T =
|0̄⟩⟨0̄|+eiπ/4|1̄⟩⟨1̄| and the two-qubit logical controlled-Z gate CZ are obtained by the following unitaries:

ei
π
16

(n̂1−n̂2−1)2 = T , ei
π
4
(n̂1−n̂2−1)(n̂3−n̂4−1) = CZ. (3.67)

Proof. Note that for k ∈ {0, 1},
S |k⟩ = ei

π
4
(1−2k) |k⟩ . (3.68)

The property that the logical S operator can be implemented with the Gaussian unitary ρ(S) thus
gives,

ρ(S)E(|k⟩) = E(S |k⟩) ⇔ ei
π
4
(n̂1−n̂2)|k̄⟩ = ei

π
4
(1−2k)|k̄⟩ (3.69)

where we denote by |k̄⟩ the encoded state E(|k⟩). Therefore,

ei
π
4
(n̂1−n̂2−1)|k̄⟩ = (−i)k|k̄⟩ (3.70)

for k ∈ {0, 1}.
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We remark that the operator ei
π
4
(n̂1−n̂2−1) can be written as

ei
π
4
(n̂1−n̂2−1) =

7∑
ℓ=0

ei
π
4
ℓΠℓ, (3.71)

where

Πℓ =
∑

n1,n2 s.t.
n1−n2−1≡ℓ mod 8

|n1⟩⟨n1|⊗|n2⟩⟨n2|

is a projector on the space spanned by Fock states |n1⟩|n2⟩ satisfying n1 − n2 − 1 ≡ ℓ mod 8.

From (3.70), one can infer that

Π0|0̄⟩ = |0̄⟩, Π−2|1̄⟩ = |1̄⟩.

We want to understand how ei
π
16

(n̂1−n̂2−1)2 acts on the code space. In particular, it is immediate that
if n1 − n2 − 1 ≡ 0 mod 8, then (n1 − n2 − 1)2 ≡ 0 mod 64 and if n1 − n2 − 1 ≡ −2 mod 8, then

(n1 − n2 − 1)2 ≡ 4 mod 32. This shows that the operator ei
π
16

(n̂1−n̂2−1)2 acts trivially on the support
of Π0 and acts like ei

π
16

4 = ei
π
4 on the support of Π−2. In other words,

ei
π
16

(n̂1−n̂2−1)2 |k̄⟩ = ei
π
4
k|k̄⟩,

which shows that it implements a logical T gate.

Similarly, for k, ℓ ∈ {0, 1}, if n1 − n2 − 1 ≡ −2k mod 8 and n3 − n4 − 1 ≡ −2ℓ mod 8, then

(n1 − n2 − 1)(n3 − n4 − 1) ≡ 4kℓ mod 16

and therefore

ei
π
4
(n̂1−n̂2−1)(n̂3−n̂4−1)Π−2k ⊗Π−2ℓ = (−1)kℓΠ−2k ⊗Π−2ℓ,

which shows that

ei
π
4
(n̂1−n̂2−1)(n̂3−n̂4−1)|k̄⟩|ℓ̄⟩ = (−1)kℓ|k̄⟩|ℓ̄⟩.

3.3.2.3 State preparation and measurements

We have already pointed out that our codes are not stabiliser codes in general, which suggests that
state preparation may be complex. For the Pauli code of (3.60), we observe that the two basis states
are product states with a state of a two-component cat code in each mode. Given that such states are
routinely prepared and manipulated in the lab today, we expect the state preparation to be feasible
in the near term. On the other hand, the preparation of the state in (3.65) for the Clifford code seems
significantly more delicate.

Measuring the states in the (logical) computational basis can be done naively by counting the
photons in each of the modes. This is because the logical states are superpositions of Fock states of
the form |pm + 1⟩|pn⟩, where p = 2 for the Pauli code and p = 4 or 8 for the Clifford code. There
again, techniques developed for cat codes may prove useful since the objective is similar, namely
distinguishing logical cat states.

3.3.2.4 Recovering known codes

Case G = SU(d): Recovering the one-hot quantum code If we consider an encoding into a
d-mode Fock space where the physical representation ρ(U) of a unitary U ∈ SU(d) maps a coherent
state |α⃗⟩ to |Uα⃗⟩, then the d-dimensional defining representation of SU(d) appears with multiplicity 1
in the physical representation. One recovers the one-hot quantum code [KOZ23] where the unitary U
maps the d-dimensional logical space to the subspace of single-photon states in d modes. This is the
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d-dimensional generalisation of the dual-rail encoding, where the k-th logical state is the multi-mode
Fock state with one photon in mode k and zero photons in all the other modes,

|0̄⟩ = |1⟩ ⊗ |0⟩ ⊗ |0⟩ ⊗ . . .⊗ |0⟩ ,
|1̄⟩ = |0⟩ ⊗ |1⟩ ⊗ |0⟩ ⊗ . . .⊗ |0⟩ ,

. . .

|d− 1⟩ = |0⟩ ⊗ |0⟩ ⊗ |0⟩ ⊗ . . .⊗ |1⟩ .

This code can detect single-photon loss events.

Recovering all rotation-symmetric codes Rotation-symmetric codes are introduced in the pre-
liminaries of this thesis, in Sec. 0.3.2.2. Let us consider an order-N rotation symmetric code. Equations
204 and 205, which define the canonical basis states of the code from a state |Θ⟩ and which we repeat
here for convenience,

|0N,Θ⟩ =
1

N0

2N−1∑
m=0

ei
mπn̂
N |Θ⟩

|1N,Θ⟩ =
1

N1

2N−1∑
m=0

(−1)mei
mπn̂
N |Θ⟩ ,

are reminiscent of Equation 3.5, also repeated here,

|k̄⟩ =
∑
g∈G

λg,kρ(g)|Φ⟩.

It is tempting to think that the state |Θ⟩ plays the same role as |Φ⟩ in the equation above, and that

the gates ei
mπn̂
N come from the representation

ρ : gk 7→ ei
kπn̂
N (3.72)

of the cyclic group of order 2N , G = ⟨g|g2N = 1⟩, on the single-mode Fock space. To recast equations
204 and 205 into the form of 3.5, it then remains to find a logical representation yielding the correct
coefficients λgm,k ∝ ⟨Σ|ρL(gm)†|k⟩. This is achieved by defining the logical representation

ρL : gm 7→
(
1 0
0 (−1)m

)
(3.73)

and considering the state |+⟩ = 1√
2
(|0⟩+ |1⟩) ∈ HL for |Σ⟩ to get ⟨Σ|ρL(gm)†|0⟩ = 1 for the coefficients

of |0̄⟩ and ⟨Σ|ρL(gm)†|1⟩ = (−1)m for that of |1̄⟩.
Let us check that this indeed enables to recover rotation-symmetric codes. The unitary represen-

tation ρL is not irreducible but it is equal to the direct sum of two one-dimensional representations
(the trivial representation gn 7→ 1 and the representation gn 7→ (−1)n) hence it satisfies the condition
of the generalisation of Lemma 3.1 derived in Sec. 3.2.2.

One can thus apply the construction, which gives

E(|ψ⟩) ∝
2N−1∑
m=0

(
1 1

)(1 0
0 (−1)m

)
⊗ e

iπmn̂
N (|ψ⟩ ⊗ |Θ⟩) (3.74)

=

2N−1∑
m=0

(
1 (−1)m

)
⊗ e

iπmn̂
N (|ψ⟩ ⊗ |Θ⟩) (3.75)

and one recovers,

E(|0⟩) ∝
2N−1∑
m=0

e
iπmn̂
N |Θ⟩ (3.76)

E(|1⟩) ∝
2N−1∑
n=0

(−1)me
iπmn̂
N |Θ⟩ . (3.77)



3.3. EXAMPLES 155

Moreover, Lemma 3.1 shows that the gates e
iπmn̂
N implement the identity on the code when m is

even, and a logical Z gate when m is odd. In particular, one recovers that e
iπn̂
N acts as a logical Z,

which is the defining property of order-N rotational symmetric codes. We also note that in that case,
the lemma gives several physical implementations of the same logical gate. Moreover, since here non-
trivial physical gates implement the identity of the code, the lemma also enables to recover stabilisers

of the code, for instance e
2iπn̂
N .

Discussion

We have introduced a general methodology for designing quantum error correcting codes that admit
a specific logical group implementable with simple physical gates, either transversal gates for qubit
codes or Gaussian unitaries for bosonic codes. In the latter case, one can design a code with a
universal gate set consisting of such Gaussian unitaries together with some gates corresponding to
quartic Hamiltonians. While these gates are certainly more challenging to implement, they do not
seem out of reach for circuit QED [Bla+21]. On the other hand, such gates are much more difficult
for photonic implementations, and it would be interesting to understand whether other gadgets can
be used to obtain a universal gate set in that case.

A question that we have not addressed at all is how to perform error correction, in particular for
the bosonic case. More generally, the question of how to stabilise such states appears quite daunting
since they involve rather large constellations of coherent states. Our result answers the question of
how to get certain easily-implementable gates for the codes constructed, but it says nothing about the
state preparation, the error correction capabilities of the codes nor how to perform this correction. It
thus remains to know what the most interesting applications of this very general construction would
be, in particular in terms of experimental applications. The choices for the initial state |Φ⟩, the group
G and the representations considered will indeed affect how difficult the state preparation is. For
instance, one may want to considered squeezed coherent states instead of coherent states. Moreover,
in the case of bosonic codes, other physical representations, such as displacements could be relevant.
The experimental implementation can guide such choices. For instance, in the microwave regime,
displacements are considered to be the easiest operations. As for the optical case, squeezing and
quadratic operations are also manageable, but in addition to that certain non-Gaussian operations are
feasible, with examples including the SNAP gate [Kud+22] and the cubic phase gate [Eri+23].
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Chapter 4

Conclusion

In this thesis, we looked at two subfields of quantum information theory: continuous-variable quantum
key distribution and bosonic quantum error correction. Let us give a brief recap of the contributions
presented and mention some interesting possible directions for future work.

Continuous-variable quantum key distribution

Chapter 1 fulfils the initial goal of this thesis, which was to bound the asymptotic secret key rate of
discretely-modulated continuous-variable quantum key distribution protocols. In addition to provid-
ing a security proof in the asymptotic regime in the restricted setting of collective attacks, having
analytical bounds has a few more benefits. An open question so far regards the choice of optimal
discretely modulated constellations for CV QKD. Our bound shows that constellations of 64 states
are sufficient to get a good performance and are thus suitable for a large-scale deployment of CV
QKD. This is a very important result in terms of experimental implementations, as it justifies us-
ing only relatively small constellations of states to approximate a Gaussian modulation. Our results
for instance inspired a group of experimentalists to implement 64-QAM and 256-QAM in the lab,
and use our proof technique to assess the security of their setup [Rou+21; Rou+22]. Our bound
enables to study relevant constellations, and we here considered phase-shift-keying modulations and
quadrature-amplitude modulations. Other constellations are also relevant. For instance, in [Alm+21],
constellations forming multiple concentric circles in phase-space are studied using our results. The
analytical formula also allows one to optimise the various parameters on which a constellation may
depend. Indeed, two constellations with the same number of states may lead to different key rates.
This is likely to be especially important when the number of states used is small, as suggested by our
work, where we compared two different types of QAM (with respectively a binomial and a discretised
Gaussian distributions). As we showed, it is also possible to numerically compute the maximum toler-
able excess noise for which a positive secret key rate can be obtained. Finally, the analytical formula
permits to take into account an imperfect state preparation.

If we focus on one-way QKD protocols here for simplicity, we believe that our approach will extend
to essentially all protocols where the security is typically analysed by means of the covariance matrix
of the state shared by Alice and Bob in the entanglement-based version of the protocol. This includes
measurement-device-independent protocols [Pir+15] and two-way protocols [Pir+08; Zhu+16].

The asymptotic secret key rate is an interesting figure of merit that is useful to easily compare
various protocols. However, what is really needed is a composable security proof valid against general
attacks, in the finite-size regime. Although we do not give a full composable security proof here,
we nonetheless show that the two most impacting finite-size effects, parameter estimation and error
reconciliation, should not be significantly more difficult to handle than they are in the case of a
Gaussian modulation. The need in our proof for experimentally estimating three parameters (which
was not the case when using a Gaussian modulation) will not result in overwhelming difficulties. In the
finite-size regime, these values can no longer be known exactly, but one would compute a confidence
region compatible with the observed values and then use worst-case estimates of all three parameters
to compute the bound on the key rate. The impact of the finite-size setting on the reconciliation
procedure can be dealt with using a reconciliation efficiency parameter, similarly to what is done for
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a Gaussian modulation. We already include such a parameter in our simulations. These finite-size
effects have been addressed in some recent works [LO22; Kan+23] in the setting of collective attacks,
and for general attacks for a constellation of 4 coherent states [Bäu+23].

Bosonic quantum error correction

Chapters 2 and 3 explored multimode bosonic generalisations of cat qudits. These generalisations are
based on different constructions of the cat qudits.

In Chapter 2, cat qudits of dimension d are seen as the vector span of basis states obtained as the
uniform superposition of n coherent states parameterised by the elements of each coset of the cyclic
group H = Cn of order n in the cyclic group G = Cdn of order dn,

|ϕk⟩ ∝
∑
h∈H

|αgkh⟩ (4.1)

where gk is an element of the k-th coset of H in G. This enables to get stabilisers of the code for
free, as an operation sending each coherent state |αg⟩, parameterised by g ∈ G, on |αhg⟩, for a certain
h ∈ H, stabilises all the basis states. We then apply the same construction but for the groups H = Q8

and G = 2T to get a two-mode qutrit, which we call the 2T -qutrit. The construction enables us to
find the stabilisers of the code, as well as its logical Z operator. Moreover, we numerically assess
the performances of the code against noise and find that the 2T -qutrit is competitive against other
bosonic codes in the regime of low loss.

In Chapter 3 we present a second generalisation of cat qudits. In that case, cat qudits, as well as
other rotation-symmetric codes, are recovered by considering the group of logical operations GL = ⟨Z⟩
and the group of physical gate implementations GP = {e

2iπn̂k
dn : k ∈ {0, . . . d− 1}} which are obtained

from representations of Cdn. More generally, our construction enables to design quantum error cor-
recting codes such that a specific group of logical operations is implemented using simple physical
operations such as transversal gates for qubit codes, or Gaussian unitaries for bosonic codes. In par-
ticular, we introduce a two-mode qubit for which all single-qubit Clifford logical gates are implemented
with passive Gaussian unitaries. We also show that the CZ and T gates can be implemented on that
code with controlled-rotations, thus providing a universal gate set.

The work done on the 2T -qutrit inspired yet another generalisation of cat qudits, the coherent-state
quantum spherical codes of Jain et al. [Jai+23]. In that case, basis states are also obtained as a uniform
superposition of coherent states |α⃗i⟩ = |αxi1⟩ ⊗ . . . ⊗ |αxiK ⟩ associated with constellations of points
x⃗i = (xi1 , . . . , xiK ) for i ∈ {1, . . .K}, on a complex sphere. However, these sub-constellations and
the bigger constellation formed by the union of all the sub-constellations are no longer required to be
associated with a group structure. Yet the unitary transformations on the (possibly multidimensional)
complex space, that permute the points x⃗i, do form a group G′, and among these, the transformations
that leave invariant a sub-constellation Ck form a subgroup Hk of G′. The intersection of all the
Hk gives a set of stabilisers S of the code and G′/S gives logical operations which are physically
implemented by the Gaussian unitaries associated to their representatives in G′. For the nd-component
cat qudit, the big constellation is a regular polygon of nd points and the sub-constellations form
interfolded regular polygons of n points in the complex plane. In that case, the groups are G′ = Cdn,
Hk = Cn for all k and hence S = Cn as well. These groups happen to be the same as for the coset
construction of the cat qudits.

It would be very interesting to better understand the connections between these three different
constructions, what are their respective interest and how they compare to one another. In particular,
it is intriguing to see if, in the general case, the groups considered can be related in any way, when a
code can be obtained from more than one of the constructions. A point that certainly deserves more
attention is how to make use of the group structures to explain and quantify the codes resistance to
errors. The coset state construction is reminiscent of other codes, such as qubit CSS codes, molecular
codes or more generally group-GKP codes and the results obtained for these codes may thus apply in
our case as well. One advantage of the construction of Chapter 3 is that it does not depend on the
physical space considered, which could enable to design and study equivalent codes on different spaces.
We also note that in the case of spin-codes, [Gro21] is able to derive a criterion that determines when
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the codes obtained exactly correct physically relevant errors. Doing the same for our general case would
be really valuable. Another important open problem is to find explicit error correction procedures
for our codes. Moreover, for the codes obtained with the quantum-spherical code construction or our
constructions, there seems to exist a trade-off between the number of stabilisers and that of gates that
can be easily implemented. For instance, the Clifford code we consider is not a stabiliser code. It
would be interesting to determine whether or not such a trade-off does exist and if so, to quantify it.
Other unexplored directions of work are possible, for instance trying to see if the constructions can
give any insight regarding code-space stabilisation techniques or noise-bias.

In addition to pursuing further the analysis of the general constructions, it is also important to
study pertinent examples of these constructions. In particular, for the approach of Chapter 3, one
still needs to determine which other representations, corresponding to other easily implementable
operations (depending on the platforms considered), may be useful to consider, how the choice of
parameters in the construction affects the error-correcting properties of the code and the manageability
of state-preparation, and whether there are other physical spaces for which the approach is relevant.
Once an interesting code is found, one can also try to find gadgets to complete the gate set with other
techniques and achieve universality in a fault-tolerant way. Finally, while we have mainly focused on
bosonic error correction, it remains to see if and how it is possible to use the method of Chapter 3 to
find interesting new multi-qubit codes.
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