N

N

Numerical methods for Gaussian discretizations in
electronic structure theory problems

[oanna-Maria Lygatsika

» To cite this version:

Ioanna-Maria Lygatsika. Numerical methods for Gaussian discretizations in electronic structure the-
ory problems. Theoretical and/or physical chemistry. Sorbonne Université, 2024. English. NNT:
2024SORUS149 . tel-04693444

HAL Id: tel-04693444
https://theses.hal.science/tel-04693444v1

Submitted on 10 Sep 2024

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://theses.hal.science/tel-04693444v1
https://hal.archives-ouvertes.fr

th) 5
S s Jiil

Sorbonne Université

Méthodes numériques pour les
discrétisations Gaussiennes des
problémes en structure électronique

par loanna-Maria Lygatsika

These de doctorat de Mathématiques appliquées
dirigée par Yvon Maday et Jean-Philip Piquemal

Ecole Doctorale de Sciences Mathématiques de Paris Centre (ED386)

Laboratoire Jacques-Louis Lions

Présentée et soutenue publiquement le 20 mars 2024
devant le jury composé de

Rapporteurs Virginie Ehrlacher Professeure, Ecole des Ponts & Inria
Filippo Lipparini Professeur adjoint, University of Pisa

Présidente du jury  Julia Contreras-Garcia Directrice de recherche, CNRS & Sorbonne Université

Examinateurs Geneviéve Dusson Chargée de recherche, CNRS & Université Bourgogne
Franche-Comté
Antoine Levitt Professeur junior, Université Paris-Saclay
Marc Torrent Ingénieur-chercheur, CEA Bruyéres-le-Chéatel
Directeurs de thése Yvon Maday Professeur, Sorbonne Université

Jean-Philip Piquemal Professeur, Sorbonne Université






th) 5
S s Jiil

Sorbonne Université

Numerical methods for Gaussian
discretizations in electronic structure
theory problems

by Ioanna-Maria Lygatsika

Ph.D thesis in Applied Mathematics
supervised by Yvon Maday and Jean-Philip Piquemal

Doctoral School of Mathematical Sciences of Central Paris (ED386)

Laboratoire Jacques-Louis Lions

Publicly defended on March 20th 2024
with a jury composed of

Reviewers Virginie Ehrlacher Professor, Ecole des Ponts & Inria
Filippo Lipparini Associate Professor, University of Pisa

President of jury  Julia Contreras-Garcia Director of Research, CNRS & Sorbonne Université

Ezxaminers Geneviéve Dusson Research Fellow, CNRS & Université Bourgogne Franche-Comté
Antoine Levitt Junior Professor, Université Paris-Saclay
Marc Torrent Research Engineer, CEA Bruyéres-le-Chétel

Ph.D Advisors Yvon Maday Professor, Sorbonne Université

Jean-Philip Piquemal = Professor, Sorbonne Université






Résumé

La simulation moléculaire est I'un des outils les plus courants de la chimie moderne. Les calculs
réalisés au cours de ces simulations présentent souvent des difficultés, qui conduisent & une
réduction de leurs performances lorsque les systémes simulés sont des larges molécules com-
posées de plusieurs atomes. Cette thése se focalise sur les limitations liées & 'utilisation de
fonctions de base centrées sur les atomes des molécules pour la discrétisation des équations de
type Schrodinger, qui est un type de discrétisation trés populaire en chimie quantique. Nous
adoptons une approche d’analyse numérique pour formuler et traiter ces limitations. Le présent
travail aborde deux questions fondamentales liées aux éléments de base de type gaussien centrés
sur les atomes, & savoir I’évaluation des intégrales moléculaires sur les fonctions de base et la
génération des éléments de cette base. Ces deux points ont un impact sur le coiit de calcul et les
exigences en mémoire des simulations moléculaires. Notre objectif principal est de concevoir des
nouvelles méthodes mathématiques ainsi que des nouveaux algorithmes efficaces qui améliorent
les simulations moléculaires modernes. Les principales contributions de cette thése sont les
deux suivantes : premiérement, 'accélération de 1’évaluation des intégrales moléculaires sur les
fonctions de base centrées sur les atomes et, deuxiémement, la proposition d’estimateurs d’erreur
a posteriori pour les discrétisations centrées sur les atomes des problémes linéaires a valeurs
propres. Pour le premier objectif, nous avons développé une nouvelle méthode d’ajustement de
densité ("Density Fitting" en anglais) pour 'approximation de la densité électronique, complétant
les méthodes existantes dans la littérature, qui vise a réduire le cotit de calcul en utilisant des
approximations de rang faible et creuses, basées sur ’élimination des dépendances linéaires et
la décomposition de Cholesky avec pivot. Notre schéma est présenté en utilisant un nouveau
formalisme d’optimisation discréte et de recherche du plus court chemin sur les graphes. En
outre, nous avons généralisé nos techniques en développant un nouveau schéma d’ajustement
de densité indépendant des positions atomiques, en utilisant la méthode des bases réduites. La
performance numérique de nos méthodes est démontrée par les résultats numériques des calculs
d’énergie d’interaction intermoléculaire basée sur les densités en chimie. Pour le second objectif,
notre travail constitue une extension de la théorie de ’estimation de I’erreur a posteriori basée
sur les résidus des discrétisations gaussiennes sur des domaines non bornés. Un tel cadre, qui est
couramment utilisé en chimie, n’a pas fait 'objet d’études théoriques dans la littérature mathé-
matique jusqu’a présent. Notre contribution dans ce domaine permet la génération adaptative
et automatique des bases centrées sur les atomes. Nous présentons des résultats numériques
préliminaires des calculs en structure électronique afin d’illustrer un exemple d’application de
nos estimateurs d’erreur a posteriori. En résumé, les bases de discrétisation centrées sur les
atomes sont largement utilisées dans les simulations moléculaires. Les conclusions de cette thése
contribuent & la compréhension de telles bases du point de vue numérique, tout en proposant des
solutions qui permettent ’amélioration des simulations moléculaires en chimie.

Mots clés : analyse numérique, structure électronique, orbitales gaussiennes atomiques, intégrales
moléculaires, ajustement de densité, estimateurs d’erreur a posteriori






Abstract

Molecular simulation is among the most common tools in modern chemistry. Such simulations
often suffer from several computational bottlenecks that reduce their performance when applied
to large systems of molecules or atoms. This thesis primarily focuses on the limitations arising
from the use of atom-centered basis functions for the discretization of Schrédinger-type equations
for molecules, which is a popular type of discretization in quantum chemistry applications. We
adopt a numerical analysis approach to formulate and tackle such limitations. The present work
addresses two of the most impactful issues related to Gaussian-type atom-centered basis sets,
namely, the evaluation of integrals on the basis functions and the generation of such basis sets.
Both issues significantly affect the computational cost and memory requirements of molecular
simulations. Our main goal is to design novel mathematical methods as well as new efficient
low-complexity algorithms improving modern molecular simulations. The main contributions
of this thesis are twofold: first, accelerating the evaluation of high-dimensional integrals on
atom-centered basis functions, and, second, establishing a posteriori error estimators for atom-
centered discretizations of linear eigenvalue problems. For the first purpose, we developed a
new density fitting method for approximating the one-electron density, beyond the existing
classical and robust density fitting methods of the literature, achieving tunable cost reduction via
sparse low-rank approximation based on linear dependency elimination and the pivoted Cholesky
decomposition. Our scheme is presented using a novel formalism of discrete optimization and
shortest path search on graphs. In addition, we generalized our main techniques by developing a
new atomic-position-independent density fitting scheme using the reduced basis method. The
numerical performance of our methods is demonstrated by numerical results of an application to
density-based intermolecular electrostatic interaction energy calculations in chemistry. For the
second purpose, our work constitutes an extension of residual-based a posteriori error estimation
theory to Gaussian discretizations over unbounded domains. Such a setting, which is routinely
used in chemistry, was lacking theoretical investigation in the mathematical literature up to now.
Our contribution on this domain paves the way towards adaptive and automatic generation of
atom-centered basis sets. As numerical evidence, we present preliminary numerical results of an
application to electronic structure theory calculations. To sum up, atom-centered Gaussian basis
sets are widely used in molecular simulations. The conclusions of this thesis provide insights to
the numerical analysis as well as to the computational aspects of the use of such basis sets in
practice, while numerically demonstrating the ability of our methodologies to improve realistic
simulations in chemistry.

Keywords: numerical analysis, electronic structure theory, gaussian-type atomic orbitals,
molecular integrals, density fitting, a posteriori error estimators
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Introduction

Context

The present thesis focuses on numerical problems arising in the context of molecular systems
modeling. Molecular systems consist of atoms held together by chemical bonds. Since Dalton’s
discovery of the atom in 1808 [92], followed by Thomson’s discovery of the electron in 1897 [31§],
these systems are the object of extensive study towards the understanding of matter.

During the early 20th century, the theoretical study of molecular systems, primarily the
contributions of Bohr [46, 48, 47] and Rutherford’s discovery of the atomic nucleus in 1911
[286], paved the way for understanding atoms and chemical bonds. The early models were
based on concepts from atomic and nuclear physics as well as classical mechanics, and were only
attempting to study small atoms, for example Hydrogen. The understanding of spectroscopy only
became possible with the advent of quantum mechanics. Following the postulates proposed by
Planck, Pauli and de Broglie on the quantum state of matter, Schrédinger proposed the equation
that carries his name in 1925. This equation describes the physical properties of matter at the
atomic and subatomic scale, and is the basis of modern quantum mechanics. The mathematical
formulation of quantum mechanics was developed about one century ago, by Dirac, von Neumann
[329], Hilbert and Weyl. Since then, new problems and concepts that lie at the intersection of
mathematics and physics have been revealed on the topic of quantum mechanics, attracting great
interest in the mathematical community to this day.

Computer simulations applied to condensed matter systems (typically, systems in solid or
liquid phase) began in the 1950’s [6]. Their aim is to help computing system properties that are
predicted by numerical models, validating or sometimes replacing time-consuming and expensive
experimental methods altogether. This active field of research is at the intersection of various
disciplines, including chemistry, physics, biology, mathematics and computer science. The study
of molecular systems contributes to the understanding of properties of materials, climate systems,
planet formation, biochemical processes such as photosynthesis [216], biotechnological processes
such bioenergy and biofuels [254], and biophysical processes such as protein folding and RNA
structure [98]. It lies at the core of knowledge about living organisms and biophysical systems,
discovery of new materials and drugs.

The 1950’s development of numerical simulation tools inspired new research in applied
mathematics, including the study of numerical models for quantum mechanical systems. The
mathematical tools that were developed for the analysis of such models, specifically the Hartree-
Fock model [147, 116], led to remarkable mathematical concepts that find applications in other
areas of mathematics as well, notably the concentration-compactness theory of P.L. Lions
[205, 204], who received the Fields Medal for his work in 1994.

The evolution of molecular simulations is marked by numerical methods that allowed to
extend the size of the molecular system under study, starting from the first molecular dynamics
simulation on an idealized atomic system of 32 hard spheres in 1957 [5]. It was not until 1977
when the first molecular dynamics simulation of a small protein (882 atoms [224]) appeared
[227]. Since the 1980’s, the rapid advance of computer technology has gradually lead to a
shift from conventional research to computed assisted research, namely computer aided drug
design for drug discovery [15, 111, 209]. The modern advances on hardware architecture (parallel
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computing, graphics processing units) is fully exploited by molecular simulation software packages
[4, 140, 291], in order to perform high-performance scalable simulations on supercomputers and
carry out breakthrough discoveries, as the multiscale simulation of SARS-CoV-2 virus’ main
protease (10° atoms including solvation) in 2021 [167]. Extreme-scale molecular dynamics is able
to model systems of millions and even billions of atoms [176, 244, 254].

For practical application purposes, new kinds of models have been developed for different
modeling scales, striking a balance between accuracy and computational efficiency. At the level
of electrons, during the mid-50’s has emerged a family of methods for numerically approximating
solutions to electronic structure theory problems, namely the Hartree-Fock problem, based
on Gaussian functions, suggested by Boys [54]. This greatly improved quantum mechanics
simulations applied to molecular systems. However, biomolecular systems, made up of millions
of atoms, still remain too large to be efficiently simulated at the quantum mechanics level
using today’s available computational resources. Besides, processes of interest in biomolecular
systems often take place in multiple timescales [98, 75]. In this respect, force field models [80] are
designed to break computational barriers and manage to compute the forces between atoms in
biomolecular systems, leading to the computation of positions of interacting atoms with respect
to time using molecular dynamics [6].

Present work

One of the main challenges in force fields is the computational workload required for evaluating
quantities of interest, at any given timestep, which scale non-linearly with respect to system
size [121]. This complexity can be a bottleneck for large systems or for processes requiring
multiple simulation timesteps. An example is the design of computationally efficient algorithms
for forces computation, that is still nowadays a hard task. Indeed, it has been reported using the
high-performance Tinker-HP package [4] that it takes more than 95% of a timestep to evaluate
forces when running a molecular dynamics simulation sequentially. In particular, 90% of this
portion is the intermolecular forces between molecules.

In the present work, we focus on one of the existing methods to compute intermolecular
interactions. During the mid-2000’s has emerged a method known as the Gaussian Electrostatic
Model (GEM) [257], aiming at computationally efficient intermolecular interaction evaluation
without sacrificing the accuracy of electronic structure methods. The use of GEM presents
various advantages in force field applications [320], which is the reason why it has gathered
increasing interest during recent years. Among other features, GEM proposes to reduce the
complexity of intermolecular forces, in particular their so-called frozen core energy part, by
employing the Density Fitting method [340], designed to provide fast evaluation of pairwise
interactions. In this respect, GEM relies upon Gaussian or Hermite-Gaussian discretizations
for approximating atomic orbitals of isolated fragments at their ground state. However, the
accuracy of density fitting using such discretizations for calculating frozen core energies in GEM
is neither yet fully controlled nor previously studied in the mathematical literature. Systematic
methods that allow to tune density fitting in order to reach a target level of accuracy will extend
the applicability of GEM to larger systems. Figure 1 shows an example of a target system of
application of GEM, that is a water solvent. Liquid water was first simulated using molecular
dynamics in 1971 [275], but remains a challenge until today.

Contributions

To address such problems, the present thesis introduces various contributions.

Pairwise interaction problem formulation. We introduce a new general framework for
treating frozen core energy computation problems in the context of GEM using finite discretization

basis sets. This framework allows us to carry out a detailed comparison and numerical analysis
of existing and new methods.
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Figure 1: Visualization of interacting water fragments (H,O) of an explicit water solvent system
in three-dimensional space. Any given fragment is interacting pairwise with all other fragments.
All pairwise interactions are summed at every timestep ¢ > 0 of a molecular dynamics simulation,
to obtain the intermolecular forces of the system. Such energy computation has quadratic
complexity in the total number of fragments, creating a bottleneck.

Fast frozen core energy for rigid fragments. We reduce the complexity of pairwise
interaction calculations using density fitting methods and extensions, suitable for rigid fragments
(i.e. subunits of a given molecular system with fixed bond lengths and angles during the course
of a molecular dynamics simulation). In practice, overlap matrices over Gaussian discretization
bases underlying interactions of interest have certain properties, such as low-rank or block
structure. We exploit these properties as well as basis-specific aspects. Our main contributions
include, first, a new Auxiliary Basis Set (ABS) generation method for use in density fitting,
and, second, a new class of sparse summation methods based on density fitting, named SDF, for
Sparse Density Fitting, designed to precalculate the sparse structure of interactions, extending
the capabilities of standard density fitting. SDF introduces several novel optimizations to further
reduce the number of pairwise interactions.

Fast frozen core energy for flexible fragments. We reduce the cost of frozen core energy
calculations on flexible fragments (intramolecular bond lengths and angles change during molecular
dynamics) by introducing novel precomputation steps that can be used in simulations. Our main
contribution is a new Density Fitting scheme coupled with Reduced Basis methods [270], named
DF-RB. Our method employs a greedy auxiliary basis construction for use in density fitting, as
well as multivariate interpolation for auxiliary coefficient computation.

A new library for computing frozen core energies. We identified the need to develop an
easy-to-use library for computing frozen core energies between molecules for prototyping purposes.
The aim of this library is validating a set of density fit algorithms on water clusters in particular,
while exploring the full capabilities of our methods. Existing codes, namely GEM_fit [138], may
lack this feature for two reasons. First, the Gaussian bases implemented in GEM_fit are limited
to orbital spd-type for efficiency in the molecular integral evaluation [84]. Second, only two-center
molecular integrals were implemented, not allowing to have access to the four-center reference
ones for true error assessement. To deal with these issues, we implemented a new library for
numerical testing purposes, named dfwpy for Density Fitting methods for Water molecules in
Python. Our library interfaces with PySCF [312] to access all basis types. We also reimplemented
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Figure 2: Flowchart describing the main framework for computing a single frozen core interaction
energy using contributions of this thesis.

the intermolecular interaction calculation based on integration routines of Libcint [310] library,
developed and optimized for Gaussian integrals. Our library thus provides numerical results
on frozen core energies, both reference and density-fitted ones. A careful numerical comparison
between our density fit methods and the state-of-the-art ones, using dfwpy, allows to discuss the
different methodological choices.

A posteriori error estimators for atom-centered discretizations. During this thesis,
we also became interested in atomic orbital bases as an object of study on their own. This led us
to the following work, that is not related to the frozen core energies of the remaining thesis, but
rather focuses on discretizations from a mathematical perspective. One of the main practical
results of this work consists of adaptive strategies, that help to choose on which atomic center
one should add more basis functions, for a given molecule, in order to reduce the discretization
error during an electronic structure calculation. To this end, we study linear Schrédinger-type
eigenvalue problems in electronic structure theory. Our main contribution is a new residual-based
practically computable a posteriori estimator for atom-centered discretization errors.

Overview

The present manuscript is organised as follows. Chapter 1 is dedicated to state-of-the-art
numerical methods of the thesis, issued from electronic structure theory. Chapter 2 focuses
on the formulation of the pairwise interaction problem, arising in the GEM frozen core energy
computation. Figure 2 schematically presents the link between Chapters 3 to 5 in the goal of
solving this problem. The remaining Chapter 6 deals with a posteriori error estimation. The
conclusion and perspectives for future work are presented in Chapter 7. Implementation details
on our dfwpy library are gathered in Appendix A. As a supplementing material, Appendix B
contains our proof on Cartesian multipole expansions, used in applications of GEM to force
fields, Appendix C summarizes practical details on Gaussian molecular integral evaluation and
Appendix D introduces preliminary notions on model error estimation for equilibrium geometries.
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The present chapter introduces several methods to compute interaction energies between
atoms or molecules of large systems in chemistry. Among the various existing methods for
evaluating interaction energies, we will focus on the Gaussian Electrostatic Model (GEM) in
particular, designed to use Gaussian-type orbital basis sets. Unfortunately, the use of such basis
sets can cause a computational bottleneck when it comes to interaction computations. In order
to motivate this problem, we review basic notions and concepts related to it. In Section 1.1,
we first present the chemistry context and our understanding in this domain, as an attempt to
illustrate the range of applications of the problems studied in this thesis. In Section 1.2, we
describe how the problem of calculating intermolecular interactions using Gaussian-type orbitals
leads to a computationally intensive summation and discuss existing solutions, as well as related
well-studied problems, namely the Coulomb matrix assembly. Finally, in Section 1.3, we provide

useful background on test case data and computer software used throughout the thesis.



1.1 Numerical methods in computational chemistry

The present section introduces numerical methods to solve problems in chemistry. The concept
of molecular dynamics is presented (see Section 1.1.1), that involves methods to compute forces
between atoms, followed by a formulation of electronic structure theory for describing the behavior
of electrons (see Section 1.1.2). We address a popular discretization family used for electronic
problems, which is the linear combination of atomic orbitals (see Section 1.1.4). The section
ends with the definition of the frozen density approximation for calculating interaction energies
between molecules (see Section 1.1.6), motivating one of the main approaches used in this thesis
for improving molecular simulations.

1.1.1 Molecular dynamics

We focus on one of the two cornerstones of molecular simulation methods, that is Molecular
Dynamics (MD) [80], allowing to simulate the movement of molecular systems evolving in time,
the other one, not considered in this thesis, being Monte Carlo sampling [231].

Suppose that we have a molecular system, consisting of nuclei and electrons. Fundamental to
our study is the separation of electronic and nuclear motion provided by the Born-Oppenheimer
(BO) approximation [19]. It allows to assume that nuclei are moving within a potential created
by electrons confined to a specific electronic state. This assumption is supported by the physical
observation that electrons (m, = 5 x 1073! kg) are much lighter than nuclei, made up of protons
and neutrons (m, = m,, = 10727 kg). As a result, electrons react instantaneously to the motion
of nuclei. A second level of approximation consists of treating nuclei as classical point particles
that follow classical dynamics. This leads to the following equations of motion.

Consider a molecular system of N, atoms. For any atom indexed by ¢, for all 1 <¢ < N, we
denote by R, € R? its position in Cartesian coordinates, v; € R? its velocity and m, its mass. In
MD, the positions and velocities are evolved according to the Newton’s equation of motion, that
writes as a system of first order differential equations (ODEs): for all 1 <14 < N,,

dv;,
F, = m;— 1.1
K3 ml dt ) ( )
dR;
e v 1.2
vi= 8 (12)
where F; € R? is the force acting on atom 4, that is a vector given by

F,=-V,URy,...,Ry,). (1.3)

Eq. (1.3) derives from classical mechanics, according to which the conservative force on atom %
can be written as the negative gradient in the i-th coordinate of a function of all atomic positions,
called potential energy, denoted by U. It is assumed that a potential energy model provides this
quantity in the form of a well-defined function

U:R*Na 5 R. (1.4)

The system of Eq. (1.1) and Eq. (1.2) is solved using time discretization schemes. The
computation of atomic positions and velocities can be decomposed into two main stages. One
is the update of atomic positions and velocities at each time step, using Verlet or multiple
time-scale symplectic integrators [26] or their extensions [192]. The other stage is the calculation
of forces on each atom at each timestep. For this, energy gradients must be evaluated. Both
computational steps rely on the potential energy model that assigns an expression to U and
captures the effect of electrons. Yet, the construction of energy models is a nontrivial task. The
model influences directly the accuracy of the dynamics, as it gives the interaction between all
atoms of the system. This work focuses on potential energy models designed for MD simulations
of large systems, consisting of thousands of atoms, for timescales of the order of nanoseconds



(1079 s) [75]. Note that this timescale is still too short to capture several processes, including
folding of proteins or RNAs [75], taking place on the longer scale of microseconds (107° s) [98].
Lastly, a typical MD timestep is of the order of femtoseconds (1071° s). Since many steps are
required to cover the simulation time, the cost of evaluating the potential energy at each timestep
highly affects the total computational cost of MD. The computationally low-cost potential energy
models is the topic this work.

Note that, the assumption that nuclei can be treated as classical particles has certain
limitations [67, 304], which may have an impact on biomolecular simulations [252]. Alternative
approaches that account for quantum mechanical description of nuclear coordinates include path
integral molecular dynamics (PIMD) [222] under the BO approximation. Such approaches can
be computationally much more expensive than classical MD.

Potential energy surface

The potential energy has an interest within MD, as well as an object of study on its own.

In general, useful insight on properties of a system can be obtained by studying the graph
of its potential energy function in Eq. (1.4), known as Potential Energy Surface (PES). PES
is a 3N, -dimensional object. It provides information on dynamics, as well as structure and
thermodynamics. In particular, the local minima of U correspond to mechanically stable
configurations, where the forces of the system vanish. Elsewhere, the non-vanishing forces
determine all the classical dynamical properties. The thermodynamical properties depend upon
U via ensemble averages [330]. Lastly, PES can be used for describing how the chemical reactivity
of a system varies with structural changes. Recall that PES is defined within BO approximation.
Cases where the BO approximation breaks down can be studied using a variation known as exact
time-dependent PES [2, 1, 191].

PES is a high-dimensional object whose number of stationary points varies with system size
and also depends on the system, for instance on its underlying interactions that may be weak or
strong. As an example, ten stationary points have been identified in the PES of the water dimer
(6 atoms) [300, 163]. For proteins (> 103 atoms), the number of stationary points may increase
exponentially with system size [306, 330]. Among them, several local minima provide useful
information as they are associated with intermediate conformations of protein folding [287].

1.1.2 Electronic structure theory

Electronic structure models the behavior of electrons in atoms and molecules. After defining the
main objects of this theory, we discuss its application to computing potential energies.

Consider a molecular system of N, electrons and N, nuclei. Atomic units are assumed, in
which the electronic charge and mass are equal to one. Within the previously introduced notion of
BO approximation, nuclei are treated as classical particles, with positions (R;);<;,<n, € R3Ne and
nuclear charges (2;)1<;< N, € RNa. The electrons are treated as quantum particles. The electronic
state is described by a function of the electronic coordinates (r;);<;<n_ € R3Ne | denoted by
U, : R3Ne - R, called electronic wave function. Such level of description of the system derives
from first principles (ab initio). The N -electron wave function ¥, belongs to the so-called Fock
space, denoted by Fy_, which is defined as the subspace of the tensor product ®ZN;IH1(R3 ) of N,
single-particle Hilbert spaces, whose elements satisfy the antisymmetry property with respect
to the exchange of electronic coordinates. This antisymmetry property for electrons, known as
Pauli exclusion principle, reads, for any two distinct indices 1 <1 # j < N, as

L 2NCSTRIS SN STRRIN S5 At 2 ( STRRIES STOUINS S S (1.5)

We write

Ne
U, € Fy, = /\ H'(R?),
=1
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where A denotes the antisymmetric tensor product of vector spaces. The electronic Hamiltonian
specifying the electronic energy of the system is an operator acting on the Fock space, defined as

(Ri)_i_lA _ge:ga:i_k Z _ (1.6)
© _i:1 27" Ir; — R, - '

i=1 j=1 1<i<j<N, [t — 1

where the first term is the electronic kinetic energy, the second term is the Coulomb attraction
between electron and nuclei, and the third term is the Coulomb repulsion between electrons.

1.1.2.1 Minimization problem

For fixed nuclear configuration, the electronic structure of the system is described by the stationary
Schrédinger equation

HB)y, = By,

that is an eigenvalue problem. The eigenvalue F is the electronic potential energy of the system
and the corresponding eigenfunction W, is the electronic state. Note that, typically, the wave
function is normalized, because the probability of finding an electron in the entire space is one.
From a mathematical point of view, the eigenvalue F € R is the Lagrange multiplier associated
to the normalization constraint in the minimization of the energy, that we recall: the energy is
a measurable quantity expressed as the expectation value of the Hamiltonian operator, that is
equal to the Rayleigh quotient

(o, 1 o) 2 (moMe)
(Wo, ‘1’0>L2(R3Ne)

= min (L, HgRi)\I}E>L2(R3N€)

\I/EE}—NC <\Pe7\IJ€>L2(R3Nc)
v, #0

Ey = E(‘I’05R1,~~~3RNQ) =

, (1.7)

where (-,-) 2gsn,.) denotes the standard L?-inner product for real-valued square-integrable

functions defined over R3e. The smallest signed eigenvalue of the electronic Hamiltonian
corresponds to the electronic ground state energy of the system (more details can be found in
[60, §1.2]).

This is a constraint optimization problem on the infinite-dimensional Fock space. The
quantity Fy as a function of the nuclear configuration corresponds to the nuclear potential energy
contribution due to the presence of the negatively charged electron cloud, assuming that electrons
are confined to their ground state. One can then define the total potential energy of the system
as

URy,...,Ry,) = Ep(Wo: Ry, Ry )+ S =2 (1.8)
1<i<j<N, Ri — R

where the last term is the classical Coulomb repulsion between nuclei contributing to the nuclear
potential energy.

1.1.2.2 Potential energy model from first principles

The evaluation of potential energies from true first principles is still computationally unfeasible
using modern computers, even for small systems. Such limitation is related to dimensionality,
discussed here.

The potential energy model of Eq. (1.8), obtained from first principles, indeed depends
explicitely on the result of the minimization problem of Eq. (1.7). It is known that the latter
suffers from the curse of dimensionality, which is described as follows. Suppose we apply a
spatial discretization for the space of electronic coordinates using a grid of d points per Cartesian
direction. Since we have three directions and N, electronic coordinates, the total number of
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degrees of freedom, i.e. the number of possible values that ¥, can take on the grid, is d3Ne. The
exponential scaling with respect to the electron number N, is computationally prohibitive even
for small-sized systems with more than one electron [14]. An an example of small system, water
H,0 (3 atoms) has N, = 10 electrons. One of the smallest proteins, Deca-alaline C3yHgoN;70 (93
atoms) has N, = 310 electrons. Lastly, one of the realistic biomolecular systems, the CD2-CD58
protein (97.594 atoms), has a number of electrons of the order of 10*. For such reasons, in this
work we work with simplifications of the ground state problem of Eq. (1.7) that allow to compute
approximate potential energies from first principles for large systems.

1.1.3 The Hartree-Fock model

After introducing one of the most popular approximations for breaking the curse of dimensionality
of the electronic ground state problem, namely the Hartree-Fock approximation, we describe how
to compute ground state energies numerically. Note that the Hartree-Fock model also serves as a
toy problem for introducing general electronic structure theory notions, useful for the rest of the
thesis, two of the most important ones being molecular orbitals and the Coulomb matrix.

In order to treat the curse of dimensionality, Hartree-Fock theory [147, 116] replaces the Fock
space with a subspace achieving separation in N, variables, IV, being the number of electrons.
This idea is based on introducing a special type of wave function called Slater determinant,

defined as )
Ue(ry,...,ry,) = NI det (¢i(rj))1§i7j§]vc )

where each ¢; is a normalized one-electron function of H!(R3) referred to as Molecular Orbital
(MO). A Slater determinant is an antisymmetric function that belongs to the Fock space. The
space of Slater determinants is denoted by

SNE = {\I/e(rl7~ .. 7rNe) = (Ng') 1/2 det (¢1( ))1<ZJ<N : (¢7«)1§1§Ne S WNe}’ (19)

and the space of configurations of N, molecular orbitals by

Wi = {(I) = @ih<icn, s 4 € H' (R?), /Rs i = 0,5, 1<14,5< Ne}.

Evaluation of the electronic potential energy for a Slater determinant ¥, € Sy_ associated to
the molecular orbital configuration ® € Wy _ yields that the Hartree-Fock electronic energy is
given by

E" = E"(&;R,,...,Ry)
= <\1167H£Ri)\1/ >L2(R3Ne)

3 [ ar- X3 [

=1 j=1

2
RN 0B, SX meen|
+§ZZ// ﬁdrdr_§//mxﬂ@ T dr’ dr’,

i=1 j=17 /R xR?

where the first term of the sum is the kinetic energy of molecular orbitals, the second term
is the electrostatic interaction between nuclei and electrons, the third term is the Coulomb
repulsion between electrons, that can be interpreted as the classical Coulomb energy of electrons,
and the last term is the exchange term coming from the antisymmetry property of the wave
function. Finding the electronic ground state energy then comes down to solving the electronic
Hartree-Fock ground state problem

Y (Ry,...,Ry,) = (DIEnViVI}V E"F(®;R,,...,Ry). (1.10)



The Hartree-Fock energy is a non-linear and non-convex functional with respect to ®. The
existence of a minimiser on Wy_ was demonstrated by P.L. Lions [206], and Lieb and Simon [202],
to which the following result is attributed (see [60, Proposition 5.1]), leading to the mathematical
foundations of Hartree-Fock theory.

Theorem 1.1.1 (Compactness of the Hartree-Fock model). Let us suppose that the total nuclear
charge Z = Zf\i’l z; satisfies Z > N, —1. All minimising sequences of the Hartree-Fock problem of
Eq. (1.10) are relatively compact in (H*(R3))Ne and converge up to the extraction of a subsequence,
i particular there exists a minimum.

To summarize, the Hartree-Fock model breaks the curse of dimensionality. In particular, the
number of degrees of freedom of Slater determinants scales linearly with the number of electrons.
For example, using d number of points in each Cartesian direction of electronic coordinates, the
total number of degrees of freedom is 3dN,. Using the Hartree-Fock approximation, we are able to
compute ground state energies of systems containing hundreds and even thousands of atoms [346].
Note that, still, such computations remain too expensive in terms of computing time for many
purposes. In this thesis, we will use the Hartree-Fock model for small systems with few atoms,
such as water, for which it provides a computationally accessible ground state approximation.
A weakness of the Hartree-Fock model, for systems of any size, is the approximation accuracy.
Fortunately, this can improved using post-Hartree-Fock techniques, such as Coupled Cluster [37]
and Configuration Interaction [193] methods. The idea of these techniques is to write the wave
function as a sum of Slater determinants.

The mathematical foundations of Hartree-Fock theory have led to the development of several
numerical approximation schemes, discussed in the following section.

1.1.3.1 Discretization of the Hartree-Fock problem

The basic step for solving the Hartree-Fock problem using a computer is to approximate molecular
orbitals in a finite basis set, presented as follows.

The Hartree-Fock problem of Eq. (1.10) is solved numerically using a Galerkin approximation.
The main idea is to constrain the one-electron molecular orbitals

VI<i< N, ¢ €H(RY

to a finite-dimensional subspace of H!(R?), denoted by V. Then, we introduce the discretized
problem

min  EY(®:R,,...,Ry ), 1.11

sl B @Ry R (111)

where Wy (V) is the subspace of Wy defined as

WNC(V)_{(I)_(Qbi)lgiSNE: ¢; €V, /}Rséﬁid’j:@j, 1§i7j§Ne}'

Problem of Eq. (1.11) is solved using a variational method. Let {X,}1<,<n, be a finite basis
set of V of size N,. To every MO configuration ® = (¢;) € Wy (V) we associate the matrix
C € RYo*Ne gathering the coefficients of ¢; in the basis {x,,}:

Nb
VI<i< N, ¢ =Y Cuxu€V. (1.12)
p=1

Let us write down the Hartree-Fock problem of Eq. (1.11) in matrix form. First, the density
matriz, denoted by D, is defined as
D:=CC'. (1.13)



The Fock matriz, denoted by F, is defined as

F(D) =T +V + LJ(D) - [K(D), (1.14)

where T is the kinetic energy matrix, V is the external potential, J(D) is the Coulomb matrix
and K(D) is the exchange matrix. The explicit definition of such matrices can be obtained by
writing the Hartree-Fock energy in the finite basis of molecular orbitals (more details can be
found in [60, §6.2.3]). In Section 1.1.4.4 we provide the explicit definition of the Coulomb matrix
in particular. The total Hartree-Fock energy then writes in matrix form as

E" (D) = Tr (F(D)D)
= Tr(TD) + Tr(VD) + % Tr (J(D)D) — % Tr (K(D)D). (1.15)

The computation cost required to evaluate this energy expression is discussed in later sections.

1.1.3.2 Roothaan equations

The coefficients C in the approximation of Eq. (1.12) can be computed as follows. The Euler-
Lagrange method for the minimization problem of Eq. (1.11), for the energy expressed in matrix
form as Eq. (1.15), lead to a generalized eigenvalue problem, reading

F(D)C = SCE,

where S is the overlap matrix of the basis set, with entries

V1< v <Ny Sp= / X (0)x () dr, (1.16)
]Rfi

and E is a diagonal matrix of eigenenergies. Here, E plays the role of the Lagrange multiplier
associated to the orthonormality condition of the molecular orbitals, writing as the constraint

c’'sc=1,

with I the N.-by-N, identity matrix. Notice that the basis functions x, do not have to be
orthonormal. One method for finding the coefficients C comes down to solving the so-called
Roothan equations, reading

F(D)C = SCE
c’sc=1 (1.17)
D=cCcC’.

An overview of existing methods for finding the coefficients C can be found in [61].

1.1.4 Linear combination of atomic orbitals

In the previous section, we used the Hartree-Fock problem as a toy example for introducing a
discretization of MOs of the form of Eq. (1.12). This type of discretization appears in more
accurate models as well, including the Kohn-Sham model [21, 200]. In all such models, the most
commonly used method for approximating MOs is the Linear Combination of Atomic Orbitals
(LCAO), according to which MOs are expanded on basis sets of Atomic Orbitals (AOs). Even
though AO bases have various advantages, such as that their form is motivated by chemistry,
alternatives include fully numerical approaches, e.g. finite element shape functions [248]. We
refer to [197] for a useful review on various choices for the basis sets, as well as their advantages
and disadvantages.

Here, we define atomic orbital basis sets, focusing on Gaussian-type ones, and discuss their
properties as well as their advantages concerning molecular integration.
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1.1.4.1 Atomic orbital basis sets

The AO basis sets are defined as follows [62]. To every chemical element of the periodic table,
we associate a finite collection of functions of H!(R?), that define the atomic orbitals associated
with the particular chemical type. To construct the AO basis for a given molecule, we consider
the union of all AOs associated to the chemical types of the atoms of the molecule. AOs are
centered on atomic positions, yielding the general basis form:

Db = {€a 0 =R, €, (= R, 1 (0= Ry )y, (= Ry )}

where each ¢, ; € H!(R3) is centered at zero. As an example, the AO basis associated to the
anion OH , which is used as a test case in Figure 1.2, is obtained as the union of the basis sets
that are associated with the element O and the element H.

Due to physical prerequisites, AOs are exponentially decaying functions [185]. Existing
explicit forms include Gaussian-type orbitals [53], Slater-type orbitals [347, 299] and numerical
atomic orbitals [16], In the present thesis, we use Gaussian-type orbitals due to their advantages
in molecular integration, presented in Section 1.1.4.4.

1.1.4.2 Gaussian-type orbitals

We define Gaussian-type orbitals in two different forms, namely Cartesian and spherical ones,
and then discuss the classification of orbitals regarding rotational symmetries.

Cartesian form. A Cartesian Gaussian-Type Orbital (GTO) [150] centered on the origin is
defined as the function

Vr € R3, Gppn(r,a) = a'y™2" exp(—alr?), (1.18)

where [, m,n are positive integers and « is a positive orbital exponent empirically defined. The
value £ := |+ m + n is the angular momentum quantum number (or angular degree, in short) of
the orbital. Note that a Cartesian GTO essentially consists of a monomial times a radial part. It
is often useful to choose each AO to be a contracted GTO, defined as a finite linear combination

of GTOs called primitives:
d

"
X,u(r> = chlemknk(r7 ak)? (1'19)
k=1
where d, is the contraction degree equal to the number of primitives, «y, is a fixed empirical
parameter, [, +m;+ny, is a fixed angular degree and ¢, are the contraction coefficients. Contracted
GTOs generally allow to reduce the number of degrees of freedom in the AO basis. Existing
methods for defining GTO bases include empirical methods, collected in the Basis Set Exchange
database [267], and the even-tempered ansatz [18].
Further notice that Cartesian GTOs are separable in the space variable r = (z,y, z) € R?,
yielding the convenient tensorized expression

Glmn(r’a) = Gl(x’a)Gm(y7a)Gn<Z7a)? (1'20)

where for example G;(z,a) = ! exp(—axQ). This property is extensively used for computing
integrals of GTOs (we refer to Appendix C for more details).

Spherical form. The angular-radial decomposition [113] of a Gaussian-type orbital in spherical
form, for a given angular degree ¢ and orbital exponent «, reads as

Vr e R3  G(r;a) =Y/ (0, )R,(r), (1.21)

where ;™ : S — R is a real spherical harmonic [122] of fixed degree ¢ and order m, with
—¢ <m < /land S?:= {r € R3: |r| = 1} being the unit 2-sphere, the two symbols § and ¢ are
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Figure 1.1: Radial part of Gaussian-type orbitals, normalized to one, for fixed obital exponent
a =1 and varying angular degrees. Normalization factor closed-form formulas can be found in
[293]. Notice that higher angular degrees lead to more spatially diffuse functions.

used to denote angular spherical coordinates, r := |r| and R, is the radial part, given for any
r € RT as Ry(r) := B({,a)r" exp(—ar?) where B({,a) € R is a scaling factor. Representations
of the radial part are given in Figure 1.1.

Orbital types. The angular degree determines the orbital type. In particular, an orbital of
angular degree ¢ = 0 is called s-type for sharp, { = 1 is p-type for principal, £ = 2 is d-type for
diffuse and ¢ = 3 is f-type for fundamental. Each class has a different type of symmetry: s-type
has spherical symmetry, p-type has axial symmetry along an axis, etc. The number of Cartesian
GTO components of angular degree £ is equal to (€4 1)(¢+ 2)/2. Tt is useful to mention that, for
spherical GTOs, however, the number of components is smaller and equal to 2¢ + 1. Increasing
the size of the basis typically implies including GTOs of higher orbital type. Generally, increasing
the angular degree £ also increases symmetries and captures angular information more accurately,
as the set of real spherical harmonics is complete. In particular, it is well-known [122, §7.3] that
for every function f belonging to the space L?(S?) of square-integrable functions on the 2-sphere,
there is a unique sequence of spherical harmonics so that

S J4
f:Z Z améyrém'

=0 m=—¢

where a,,, := (f,Y;]") 12(s2) and (-, -) 12(g2) refers to the natural inner product in L?(S?%). More-
over, (Y™, 1’1}7L/>Lz(52) = o0y, for £ > 0,—0 < m < L and ¢/ > 0,—¢' < m' < ¢ [60,
§6.1.2].

This is why GTOs come in inseparable blocks regrouping orbital components belonging to
the same type. For example, all d-type components of a given radial part will be included in the
basis as individual AOs. In most empirical basis sets, ¢ varies between zero and three, while in
some cases it can reach ¢ = 4 (g-type). Note that individual angular components do not need
to be stored explicitely. They are typically recovered on-the-fly, for example during molecular
integration, which is the topic of the upcoming paragraph.

1.1.4.3 Properties of atomic GTO basis sets

Polynomial times Gaussian basis functions generally offer better accuracy for fewer degrees
of freedom compared to polynomial spaces, e.g. finite elements [55], making them a suitable
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Figure 1.2: Condition number of the GTO basis overlap matrix for the anion OH , at varying
atomic separations and contracted Gaussian-type empirical bases, in spherical (sph) and Cartesian
(cart) form. Note that, in the water molecule, the bond O —H has length equal to 0.9584A. The
overlap matrix has been calculated using PySCF [312].

discretization for larger molecules. Unfortunately, atomic orbital bases also come with properties
that may cause numerical issues, as we describe in the present section.

First of all, atomic orbital functions are typically normalized, i.e. the overlap matrix S defined
in Eq. (1.16) is filled with ones on the diagonal. However, GTO basis sets over unbounded
domains, used in quantum chemistry, are generally not orthogonal [200]:

Vi<pu#v <Ny, S #0.

Another characteristic of GTO basis sets is redundancy. GTOs, defined in Eq. (1.18) are
expressed in terms of a Gaussian 6’0”2, where « is a fixed empirical parameter that generally
differs from one AO to another. Linear dependencies typically come from this Gaussian radial
part of the basis function. The numerical linear dependence may be stronger or weaker depending
on the coordinate system on which the basis set is expressed, namely the Cartesian or the
spherical one. In the latter, AOs, defined in Eq. (1.21), are given in terms spherical harmonics,
which have convenient orthogonality properties. As a result, the spherical form has less linear
dependencies than the Cartesian one. Numerically, linear dependencies are manifested through
overlap matrices that have poor conditioning, as presented in Figure 1.2 for the case of contracted
bases. As expected, for uncontracted bases, the condition is even worse. Note that, even in
the case of spherical coordinates, the radial part of functions centered on different atoms may
generate linear dependencies in the basis. Results show that these dependencies become stronger
when the overlap of the radial parts increases, which is when nuclei are close to each other.

The source of ill-conditioning of GTO overlap matrices is the so-called overcompleteness
property of GTO discretizations. This property occurs when adding new basis functions that are
numerically linearly dependent to the ones already belonging to the basis, i.e. GTOs centered
on a nearby atom. Poorly conditioned basis sets may influence [312] the convergence of the
generalized eigenvalue solver used to solve the Roothaan equations of Eq. (1.17). This is why, in
practice, it is preferable to remove linear dependencies and treat overcompleteness by applying
either an orthonormalization procedure designed for ill-conditioned matrices [200], or a pivoted
Cholesky decomposition to the overlap matrix [196], before solving the Roothaan equations. At
this point, it may be useful to illustrate that, generally adding more GTOs into the basis tends
to better reproduce the nuclear cusp, the inner nuclear region, as well as the decay behaviour far
from the nuclei, compared to the exact solution. Doing so, one can achieve improvements to the
approximate solution defined over unbounded domains, as shown in Figure 1.3, using only few
basis functions. Concurrently, however, the GTO basis acquires redundancies, which inevitably
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Figure 1.3: Wave functions reproducing the nuclear cusp for a one-electron diatomic molecule
with Dirac nuclear potential in 1D. Approximate wave functions are discretized on s-type GTO
nested sets of varying size N. Nuclear positions are x = £1.1. The orbital exponent takes
values (in this order) (0.5,0.88, 3, 10, 20, 102, 10%,0.02,0.6). The overlap matrix condition number
explodes from 10% (N = 1) to 10 (N = 9).

arise from the linear dependence of Gaussians with similar orbital exponents, i.e. spatial widths.
To summarize, fast GTO discretization error convergence comes at the price of overcompleteness.

1.1.4.4 Molecular integrals

The main advantage of GTOs concerning this thesis is integration. A necessary step in the
resolution of the Roothaan equations of Eq. (1.17) is the Fock matrix assembly, that requires the
evaluation of molecular integrals, i.e. high-dimensional integrals evaluated on atomic orbital basis
functions. An example is the overlap integral introduced in Eq. (1.16). Let us introduce some
notation for a specific integral of increased interest, that will be further discussed in the following
sections. Let u, v, k, A denote indices of elements of the AO basis y, referred to as centers of the
integral. The Electron Repulsion Integral (ERI), also known as bielectronic integral, is defined
as the four-center two-electron integral, given by the formula

(hv|iA) = //RSXRS XD XD g (1.22)

v —r'|

The Coulomb-type singularity of the above integral can make conventional integration schemes
especially difficult to apply. The main reason that Cartesian GTOs are easy to handle is the
tensorization property of Eq. (1.20) and the Gaussian product rule (see Theorem C.1.1), that
states that the product of two Cartesian GTOs can be expressed in terms of a single Gaussian
function. Deriving integration schemes for this type of basis becomes possible using these
two properties. Note that spherical GTOs can be converted to Cartesian ones using available
transformations [293]. For this reason, GTO basis sets have become very popular in electronic
structure calculations [119].

Molecular integrals appear in the Fock matrix assembly as follows. The entries of the Fock
matrix of Eq. (1.14), as well as of the overlap matrix of Eq. (1.16), are given as molecular
integrals. In particular, the Coulomb matrix, that will be an object of study in the following
section due to its computationally expensive evaluation, is defined for any matrix D € RVo*Ne g

Ny,
V1< v <Ny, [ID) = Y (uv|sA)Dyy. (1.23)

nv
K,A=1
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In the present thesis, we focus on the evaluation of an energy of interest related to the bielectronic
integral, involving density functions discretized on atomic orbital bases. In the next section we
introduce the notion of an electronic density.

1.1.5 The electronic density function

In quantum mechanics, the charge distribution of electrons in space is described by the electronic
density function. We define this object, that will be abundantly used throughout the document.

1.1.5.1 Electronic density from first principles

Within the Born-Oppenheimer approximation, consider an electronic wave function denoted by
VU, € Fy,, as introduced in Section 1.1.2. The electronic density function associated to ¥, refers
to the real-valued function defined as

Vr € R, pw, (r) = N, |\I/e(r,r2,...,rNe)|2 dry---dry . (1.24)
R3(N.—1)
Contrary to other objects defined up to now in electronic structure (wave function, Hamiltonian
operators), the electronic density py_ has the property of being measurable experimentally,
for example using X-ray diffraction techniques [60]. Notice that py, is non-negative and if
[Well2geney =1, then [lpg [|lL1(rs) = Ne.

1.1.5.2 Electronic density from molecular orbitals

Given a Slater determinant ¥, € Sy associated to a molecular orbital configuration ® € Wy ,
the electronic density function 1ntroduced in Eq. (1.24) admits the simple expression in terms of
molecular orbitals

VreR?  py (r) = pa(r ZW ~ (1.25)

LCAO approximation. In LCAO discretization methods for solving the electronic structure
problem of Eq. (1.11), MOs are expanded in a basis set {x,, }1<,<n, of AOs, yielding the following
expression of the electronic density in terms of AOs:

Po = NZ (gb: C,wm) (i mey>

i=1 \p=1

2 (e

Nb

> DuXpXus (1.26)
=1

where D is the density matrix defined previously in Eq. (1.13). In the following, we will use the
notation p = pg when this does not lead to a confusion.

MO to AO transformation. The last important notion of this section is the so-called
molecular orbital (MO) to atomic orbital (AO) transformation, which is a relation that expresses
the bielectronic integral on MOs in terms of ERIs on AOs, introduced previously in Eq. (1.22),

reading
N
ZZ// [94(r)0; ()" drdr’ = Zb: (uv|kA\)D,, D, . (1.27)
RS xR3 |r*rl| e

=1 j=1 vk, A=1
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The right-hand side is equal to the scalar quantity Tr (J(D)D) which is one of the energy terms
in the Hartree-Fock energy in matrix form of Eq. (1.15). Note that we may additionally use
the expansion of the electronic density in terms of MOs, given by Eq. (1.25), to obtain the
bielectronic integral of a given electronic density in terms of ERI tensor entries, reading

Ny,

// W drdr’ = Z (1w [EA) D4y, Doy (1.28)
R3xR3 [T —T

Vs, A=1

A formula of similar type, involving densities of different molecules, will be the object of study
in the following section.

1.1.6 The theory of intermolecular interactions

The intermolecular interaction energy is a quantity of interest in chemistry. The aim of the
present section is to provide a presentation of the Gaussian Electrostatic Model (GEM), which is
a method for computing intermolecular interactions with priority to computational efficiency.
Our interest is to address the frozen core intermolecular interaction in particular, which is one
of the interaction components. For the sake of generality, we first introduce the theoretical
context for computing the frozen core energy, namely perturbation theory, in Section 1.1.6.2,
before explicitely defining this quantity in Section 1.1.6.3 and, finally, addressing the techniques
employed by GEM for accelerating its computation in Section 1.1.6.4. A very useful introduction
to intermolecular forces can be found in [306].

1.1.6.1 The supermolecule approach

Let us begin by defining the intermolecular interaction. Suppose that we are given a molecular
system, referred to as supermolecule, made up of two subsystems, referred to as fragments,
denoted by A and B. It is further assumed that fragments are closed-shell systems, meaning
that they have an even number of electrons. According to the supermolecule method [306, §5.6],
the intermolecular interaction of a pair of molecules AB can be defined as the difference between
the ground state energy of the supermolecule and that of the isolated molecules:

Eister = Eap — (B4 + Ep).

Direct evaluation of this scalar quantity can lead to numerical difficulties (we refer to [306,
§5.6.2] for more details). The topic that concerns this work is alternative models for approximating
this quantity. We will explain how electronic density functions are computed in these models.
Note that, for obtaining the total energy, we still have to add the intramolecular energy part in
E, and Ep, obtained for example using the force field method (see Appendix B).

1.1.6.2 Perturbation theory

The present section contains preliminary theory that enables to define tools for computing
intermolecular interactions.

A traditional method for computing intermolecular interactions is perturbation theory [277, 11].
The idea is to obtain parts of the intermolecular interaction by gradually perturbing the system
of isolated fragments. These perturbations can be either explicitely defined in terms of perturbed
operators or can be induced by relaxing the interacting molecular orbital groups, depending on the
level of theory in question. To name a few, the Energy Decomposition Analysis (EDA) [237, 90]
family of methods, including Kitaura-Morokuma (KM) EDA [187] and Constrained Space Orbital
Variation (CSOV) [258, 22], is based on gradually mixing different groups of molecular orbitals,
associated to core or valence electrons, during a self-consistent field procedure for minimizing
the total energy. On the other hand, in Symmetry-Adapted Perturbation Theory (SAPT) [171],
corrections are explicitely defined in terms of interaction operators and antisymmetrization
operators. In the following, we focus on defining the operators that enable us to obtain a
perturbation expansion.
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Unperturbed operator. The first step in discussing the interaction between two systems is
to set up wave functions in the case where there is no interaction [211]. If the molecules are far
enough apart that the overlap between their wavefunctions can be ignored, the theory becomes
relatively simple and dates back to the 1930’s [210]. Let us identify a set of N2 electrons and
NA nuclei, as belonging to molecule A, and define an electronic Hamiltonian # 4 for molecule A
in terms of these electrons and nuclei, of the form of Eq. (1.6). Similarly, the Hamiltonian H g
for molecule B is defined in terms of the set of N2 electrons and N2 nuclei of B. The number
of fragment electrons and nuclei sum to those of the supermolecule, that is N, = N4 + N2 and
N, = N2 + NB. The unpertubed Hamiltonian for the combined system is then

HO = HA+HB. (129)

Due to the fact that electrons and nuclei of A do not see those of B in the definition of the
unperturbed Hamiltonian, ordinary Rayleigh-Schrédinger perturbation theory [179] gives the
ground state energy E; € R of the total unperturbed system as the sum of the ground state
energies of fragments A and B:

Ey=E s+ Ep, Ejp:= Vs, HaVy)

Ep:=(VYp, HpVp) (1.30)

L2(R3Né4)’ LQ(R3N(3B)’

where W, € Fya and Wp € Fyp are the electronic wave functions of fragments, defined as
solutions to two separate electronic structure problems, reading

HA\I’A:EA\IJA7 HB\IIB:EB\I/B (131)

As a consequence, one may obtain the electronic density function of the supermolecule, denoted
by p, as the sum of the two fragment densities, using a so-called affine decomposition:

PR pa+pp, (1.32)

where py := py , and pp = py, are the electronic densities of the two isolated fragments, referred
to as frozen densities. The equation Eq. (1.32) is referred to as frozen density approzimation |23].

Note that the unperturbed operator H, of Eq. (1.29) cannot describe strong chemical bond
forms between open-shell atoms or covalent chemical bonds [133]. However, between closed-
shell atoms or ions when strong covalent bonds do not happen, it provides a good enough
approximation. Otherwise, we need to include corrective terms obtained by a perturbation
expansion. The operator that then describes the interaction between system entities is described
below.

Interaction operator. Interaction energy terms are obtained as higher-order corrections to
the ground state given by Eq. (1.30) of the unperturbed system of Hamiltonian #,. Recall that
both A and B are closed-shell molecules in their ground state. The total Hamiltonian of the
supermolecule AB is given as

H:HA+HB+W,

where H 4 and H g are the Hamiltonians for the isolated molecules and W is the interaction term.
The interaction operator is explicitly defined as follows. The Rayleigh-Schrédinger perturbation
applied to H, is the electrostatic interaction between electrons and nuclei of fragment A and
those of B:

NA NB
W= ZZ (1.33)
i=1 j=1 1
NA NB NE NA NA NB LALB
— e
ZZ RB| ZZ RAW;E\R;*—RJBV
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where rf,2 and R denote the electronic coordinates, the nuclear charges and the nuclear

coordinates of A, respectively, similarly for B. Eq. (1.33) is made up of four terms in total. The
first term is the Coulomb repulsion between electrons of A and those of B, the second term is
the Coulomb attraction between electrons of A and nuclei of B, similarly for the third term.
Lastly, the fourth term is a constant representing the nuclear repulsion between A and B.

Antisymmetrization operator. Notice that the unperturbed operator H, of Eq. (1.29) does
not include all electrons in a fully symmetric way, thus does not preserve the antisymmetry
property of wave functions. The role of the antisymmetrization operator is to properly impose
the correct permutational symmetry, namely the Pauli exclusion principle of Eq. (1.5), to the
wave function of the supermolecule. The expicit definition of this operator is specific to the
theory, e.g. we refer to [172, 171, 247] for SAPT.

1.1.6.3 The frozen core energy

The present paragraph focuses on the definition of the intermolecular interaction up to first order,
known as frozen core energy, using the previously introduced operators of Section 1.1.6.2. The
idea is to derive this energy by freezing the wave functions of the isolated interacting entities.

The concept of intermolecular interaction up to first order is described as follows. At the
unperturbed stage, fragments are supposed to be far apart, no interaction takes place. The first-
order correction is then obtained by asking what the energy could be if two infinitely separated
molecules are brought together without relaxing their electronic wave functions, i.e. without
mixing their electrons. This correction [159] corresponds to translating the electron densities of
the subsystems along with their respective nuclei from infinitely far away to the supersystem
geometry, resulting in a supersystem electron density, that is the sum of subsystem densities
confined to the ground state of their fragments, as in Eq. (1.32). According to [343], the Frozen
Core Energy (FCE) refers to the energy change associated with bringing the fragments from
infinitely apart to their positions in the supermolecule, without relaxing the electron densities of
fragments. At this point it is useful to mention that the computation of higher-order terms is
obtained by separating the energy change from the frozen density to the fully relaxed density
into polarization, charge transfer and induction, which will not further concern this thesis (we
refer to [306, 171] for definition of these terms).

The frozen core energy is made up of the following two components. Due to the antisymmetry
property of the supermolecule wave function, the frozen core energy is decomposed into a
long-range contribution, where electrons are far apart, and a short-range one, where electronic
clouds overlap. Each separation is treated using a different perturbation operator, namely the
interaction operator of Eq. (1.33) treats the long-range, while the antisymmetrization operator
treats the short-range. This leads to the definition of the frozen core energy (Epcg) as the sum of
the electrostatic (V) and the exchange-repulsion (X 4p), also known as Pauli repulsion, terms:

Eiter = Epcg ++ 5, FEpcp :=Vap + Xap.

Before providing the explicit definition of the frozen core energy, we quickly summarize the
physical description of each of the terms:

e Coulomb electrostatic energy: it accounts for Coulomb forces at long-range separations,
where penetration between electronic charge distributions is negligible.

e Exchange-repulsion energy: it accounts for quantum mechanical corrections of the error
of classical electrostatics theory in short-range separations, where the electron exchange
between molecules becomes possible [306, 290].

Note that we restrict our presentation to two-fragment systems for simplicity. For an arbitrary
number of fragments, the computation is performed on pairs, by summing pairwise fragment
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interactions

1 1
Ercg = 5 Z Vas + 5 Z Xap, (1.34)
A#B A#B

where we used the fact that the electrostatics and exchange-repulsion terms are symmetric up to
permutation of A and B.

In the following, we explicitely define the frozen core energy accounting for the interaction W
of Eq. (1.33) up to first order, while respecting the antisymmetry property of wave functions.

Long-range separation: Electrostatics. A two-fold assumption is made for this first-order
term, namely that the interaction is purely electrostatic, meaning that it results from the
attraction between positive or negative charges as given by the operator W of Eq. (1.33), and
that the two subsystems are sufficiently widely separated for electron exchange to be neglibigle
[211]. This implies that each molecule’s wave function distorts under the influence of the other’s
electrostatic field, but with no mixing of the orbitals of one molecule into the orbitals of the
other. For this reason, the supermolecular electronic wave function is a simple Hartree product
defined as

T =,V € Fy, (1.35)

where W 4 is the unperturbed electronic wavefunction of electrons and nuclei of A, similarly for
U of B, given as solutions to the system of electronic structure problems of Eq. (1.31). Note
that () does not satisfy the Pauli exclusion principle of Eq. (1.5). As a result, this correction
appears classical because it discounts electronic wave function antisymmetry. We obtain the
electrostatic interaction energy as a first-order long-range approximation to the interaction energy,
defined as

Vap == (T WIW) 1, pan . (1.36)

Let us rigorously derive a closed-form expression of this term in terms of frozen densities. We
focus on the electron-electron term. Then the electron-nuclei terms are treated similarly. For
any 1 <i < NA and 1 < j < NB| the interaction between the ith and jth electrons is defined as

1

Vi = <\I/(1)7 \I/(l)>L2 R3Ne
! i — rf| ( )
For convenience, let us change the indices and set j' := j + N2 the index of the electron of B
in the electrons of the complex AB, with N4 < j/ < N,. Recall that N, = N + NB. For any

given 1 < i < j' < N, there holds

1
|r; — rj’|
1

v, — 1|

Uy =/3N \\IIA(rl,...,ri,...,rNeA)\Q |‘~I/B(rNeA+1,...,rj/,...7rNe)|2 dry---dry,
R

e

:/SN \\IIA(ri,...,rl,...,rNéq)\g |\I/B(rj/,...7rNeA+1,...71‘N5)|2 dry---dry,
R3Ne

1
= W, (r; 2dry ---dr;_,dri,q---d -
//}szRa [/Rs(zvg‘l>| ATy Ty, m Ty ey Ti—1Alp1 I'NEA] r; — 1|

2
X |:/3(NB Y |‘IIB(rj’7rNeA+27"'7rN€A+17"'7rNe)| dI'Né4+1"'dI'j/_1 drj/_H---drNe] dridrj/
R e

1 . .,
_ // pA(rl)pB(r] ) dI‘Z— dI’j/ )
NANE [ Jrayrs  |r; — 1y

J

Note that the Pauli exclusion principle of Eq. (1.5) for the fragment wave functions has been
evoked in the above calculations. Finally, the total electron-electron interaction between electrons
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of A and those of B admits the expression

NA NB

33w = NANBZZ JIL ) ar,

=1 j=1 =1 j=1 J|

’
:// pA( )pB(r) dI‘dI‘/.
R3xgs [T —T|

To summarize, the electronic electrostatic interaction is represented as a Coulomb interaction
between two unperturbed monomer charge distributions [83]. The classical Coulomb electrostatic
interaction energy Vg between molecules A and B may be expressed as

o pa(r)pp(r’)
Vap = //RBX]RS v (1.37)

Na ZZAZJB
_Z /Rs|r—RA 2 /Rsr—RB|+ZZ|RA—R§3|’

i=1 j=1

Note that this is the exact classical interaction energy of the two molecular charge distributions in
a form that does not depend on the multipole expansion, typically employed in applications, see
for example [84]. For this reason, the exact Coulomb energy is well-defined for all intermolecular
distances.

Short-range separation: Exchange-repulsion. This second term corrects the short-range,
where electrons of the same spin cannot be at the same place. This is achieved by forming
a properly antisymmetrized supermolecule wave function from the unrelaxed wave functions
of each fragment. To get the exchange-repulsion, one writes the wave function as an antisym-
metrized Hartree product AV ¥ of the isolated monomer wave functions, where A is the
antisymmetrization operator. Applying this operator to the dimer wave function ¥(*) given by
Eq. (1.35) will force the correct permutational symmetry to U The exchange-repulsion energy
is obtained as a first-order short-range approximation to the interaction energy when perturbing
Hy of Eq. (1.33) by the antisymmetrization operator [145]. A closed-form expression for the
exchange-repulsion can then be derived, that we do not explicitely provide here but we refer to
[171, Eq. 112].

We are concerned by exchange-repulsion approximations. An empirical model for computing
exchange-repulsion is the density overlap model of Wheatly and Price [338, 272]. According to
this empirical model, the exchange-repulsion interaction energy between two molecules A and B,
with frozen electronic density functions p, and pg, is defined as

XN = KapQap, Qup = / pal)pp(r) dr. (1.38)

The constant K 45 is an empirical parameter and 45 is the density overlap. This model
is supported with experimental evidence [186, 165] and has been parametrized for various
applications [103, 94, 246].

Frozen core energy from LCAO approximations. We use a numerical method for com-
puting frozen densities, namely the LCAQO approximation previously presented in Section 1.1.4.
Thanks to the affine decomposition of Eq. (1.32), electronic structure calculations can now be
performed separately on each isolated fragment. Let us denote by {Xu },. and {x[F}, the basis
of Gaussian orbitals centered on atoms of A and atoms of B, respectively, and D 4, Dp the
corresponding density matrices. The density matrix D 4 is obtained by numerically solving the
electronic ground state problem of Eq. (1.11) for the operator H 4, discretized on the atomic
Gaussian orbitals associated to A. Similarly for B. Note that we can use the Hartree-Fock model
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or any other model, such as the Kohn-Sham model [21], to obtain the density matrices. Using
the discretized frozen densities over atomic orbitals, of the form of Eq. (1.26), the computation
of electron-electron term in the electrostatics model of Eq. (1.37) and the exchange-repulsion
term in the density overlap model of Eq. (1.38) leads to the following integrals over Gaussian
functions:

, A A B (2 \~,B
// M dr dr/ _ Z DFA;VDE)\ // XIL (r)Xl/ (I')XK (I‘ )X}\ (r ) dr dr/ (139)
R3xms | — T R3 xR3

LV Ky A |I‘ o r"
Qap= Y DD g X ()X (0)x 2 (r)x X (r) dr. (1.40)
[V Ky A

These two quantities yield the most computationally expensive integrals one needs to evaluate
during a frozen core energy computation. The first quantity is a sum of two-electron four-center
integrals, with the first electron belonging to A and the second to B. The second quantity is a
sum of one-electron four-center integrals, again expressed on crossed orbitals centered at A and
B. These four-center integrals lead to a quartic complexity with regard to the number of atomic
orbital basis functions and will be one of the main topics of the present thesis. Note that the
electron-nuclei term of the electrostatics admits an expansion similar to the one of Eq. (1.39),
but involving one-electron two-center integrals, it is therefore less expensive. Lastly, we precise
that all such quantities admit integral evaluation schemes over Gaussian orbitals, similar to the
ones of the molecular integrals (we refer to Appendix C for more details).

1.1.6.4 The Gaussian electrostatic model

The Gaussian Electrostatic Model (GEM) [257, 83, 84, 2506] belongs to the energy decomposition
analysis family of methods for computing intermolecular interactions between molecules. Due to
its computational efficiency, it finds applications to molecular dynamics [105]. One of the main
ideas in GEM is to accelerate the computation of frozen core energy integrals, namely those of
the form of Eq. (1.39) and Eq. (1.40), using a method known as Density Fitting (DF) [108]. Here
we quickly mention how DF is used within GEM, postponing the description of the general DF
method to Section 1.2.3 for the sake of clarity. We will provide a definition of the approximated
frozen core energy part of GEM. The definition of remaining components of GEM can be found
n [256] and will not be further discussed in this thesis.

GEM uses the reference analytical expression of the interaction operator W of Eq. (1.33)
for computing electrostatics. It employs the density overlap model of Eq. (1.38) for computing
the exchange-repulsion, in favour of computational cost [302]. A differentiating feature of GEM,
with respect to other methods, is that it employs a simplified representation of the frozen
densities. In particular, the reference frozen densities p4 and pg of Eq. (1.32) are obtained by
quantum mechanics (QM) calculations and are referred to as QM densities. GEM introduces
approximations p4 and pp to fragment QM densities, referred to as fitted densities, obtained by
DF, namely the variational Coulomb fitting method [106]. The general form of fitted densities
can be considered as

My Mp
~ . _ AeA  ~ B¢B
PA~—§C¢§', PB~—§Ci§ia
i=1 i=1

where ¢! and ¢? are real expansion coefficients. The functions & and ¢2 are Hermite-Gaussian
orbitals (defined in Appendix C.1.0.2). Note that GEM does not restrict to positive expansion
coeflicients [257, §A.1]. An additional constant charge constraint is enforced, according to which
Jgs Pa = NA and Jgs P = NZ. The exact electrostatics V5 of Eq. (1.37) is then approximated
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VEEM . // Palr)pp(r’) (1.41)
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The exchange-repulsion X }\# of Eq. (1.38) is approximated as

XGEM = K pQup, Qap= /3 pa(r)pp(r) dr.
”

The parameter K 45 is obtained by linear regression using as reference the exchange-repulsion
value obtained by the CSOV method [86]. Each GEM term tries to reproduce its SAPT (see
[242]) or CSOV (see [84]) counterpart.

Using DF, the evaluation of four-center integrals over Gaussians is reduced to a two-center
integral evaluation over Hermite-Gaussian orbitals:

//R3><]R5 |(r)—r’| dedr’ = Z //Rsxms §A|r — r,(| r) drdr’ (1.42)

Sup= Y clel [ el ar. (1.43)
1,J

The two-center expansions in the evaluation of the reduced integrals break the computational
complexity of the initial expansions of Eq. (1.39) and of Eq. (1.40), namely from quartic to
quadratic with regard to the number of atomic orbital basis functions. Let us further comment
that Gaussian-type orbitals can be transformed to Hermite-Gaussians, using a mapping defined
in Appendix C.1.0.3. Molecular integrals over orbitals of these two types admit the same
integration schemes up to this transformation. GEM employs reciprocal space methods [384] for
approximating the above Coulomb-type integral, as an additional approximation method on top
of DF, to gain further computational efficiency. As a result, there is an accumulation of DF
errors and integral evaluation errors in GEM.

1.2 Large-scale problems for molecular integrals

In the present section, we review algorithmic aspects that commonly create a bottleneck in
molecular simulations, from a computational point of view, and come down to the problem
of storing a large matrix entry-wise. This problem occurs in the molecular integration over
atom-centered Gaussian basis with various applications, including electronic structure theory and
intermolecular interaction theory (the frozen core energy computation in particular). Different
areas of application often employ different tools to solve this problem. In this respect, we
adopt a unified approach and first present the mathematically better-studied problem of the
Coulomb matrix assembly in conventional electronic structure problems in Section 1.2.1. We
then introduce our newly studied application context, namely the density-based frozen core
energy computation, that also leads to this kind of problems, as presented in Section 1.2.2. We
then highlight general acceleration methods for integrals over atom-centered Gaussian basis sets
in Section 1.2.3, independently of the application context. The aim of our high-level approach
is to enable the frozen core energy methods to take advantage of existing electronic structure
methods.
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1.2.1 The Coulomb matrix assembly

Ground state calculations in electronic structure theory (e.g. using Hartree-Fock or Kohn-Sham
density functional theory) generally come down to the resolution of a problem whose matrix form
is not very far from the one of Roothan equations in Eq. (1.17). In practice the Roothaan equations
are solved using a method known as Self-Consistent Field (SCF) [200]. This is an iterative
procedure for approximating the density matrix D by a sequence of approximations (D,,),, until
a self-consistent convergence criterion is reached. At each iteration n of SCF, the matrix terms
J(D,,) and K(D,,) of the Fock matrix in Eq. (1.14) must be assembled. Unfortunately, this
assembly is the bottleneck of the entire energy minimization process, explained as follows.

The computation of the Fock matrix in Eq. (1.14) is dominated by the non-linear terms with
respect to the density matrix, namely the Coulomb and exchange matrices. The entries of the
linear terms can be precomputed. On the contrary, at any given SCF iteration n, one needs to
reassemble the Coulomb and exchange matrices, i.e. J(D,,_;) and K(D,,_;), given the already
computed density matrix D,,_;. Let us focus on the first term involving the Coulomb matrix
and illustrate the main difficulty of assembling it, by counting the computational complexity cost.
Each entry of the Coulomb matrix, defined in Eq. (1.23), is expressed in terms of a sum of ERIs
on Gaussian-type orbitals. ERIs can be precomputed and stored entry-wise in a fourth-order
tensor of dimension N, x N, x N, x N,, with entries given as bielectronic integrals (uv|sA),
forming the ERI tensor. Then, every entry of the Coulomb matrix is evaluated by accessing
the ERI tensor entry-wise. Due to this inevitable entry-wise data access, the assembly of the
Coulomb matrix J(D) scales as

O(Ny}) flops. (1.44)

This is the bottleneck of the entire Hartree-Fock computation [51] and is one of the major
bottlenecks of computational quantum chemistry [31]. Note that the prefactor of the scaling
depends among other things on the implementation of the tensor entry-wise assembly. A naive
four-order loop of full size N, assembles the ERI tensor with a worst case loop count, analogous

to the following nested sum:
Ny Ny, Ny Ny

2.2 D> (k).

p=1v=1k=1A=1

A smarter assembly implementation utilizes the 8-fold permutational symmetry of the bielectronic
integral with respect to the indices of basis functions, that is the property

(Lv|KA) = (uv|AR) = (vplrA) = (vp|AR) = (kA|pr) = (kAlvp) = (Aklur) = (Ak[vp).

Unfortunately, this optimization only decreases the loop count by a small factor, without
drastically reducing the complexity of the problem. As a result, accelerating the ERI assembly is
a non-trivial task that requires more sophisticated techniques, exploiting the ERI tensor structure
(see Section 1.2.3 for discussion). Note that storing ERIs can require a significant amount of
memory, for instance of the order of a gigabyte for a system of 100 electrons [348]. It is therefore
important to avoid explicitely constructing and storing ERIs.

1.2.2 The frozen core energy

This relevant topic concerns the repeated entry-wise assembly of Coulomb-like matrices, arising
in the context of intermolecular interaction theory. What follows is a high-level description
of a density-based family of methods for computing the frozen core energy (FCE) part of
intermolecular interactions, which include the Gaussian electrostatic model (see Section 1.1.6.4),
the effective fragment potential [39], energy decomposition analysis [76] and symmetry-adapted
perturbation theory [172, 232, 171].

Suppose that we are given a molecular system decomposed into subsystems, referred to as
fragments, denoted by {A, B,C,...}. Our goal is to evaluate the total frozen core energy of
interacting fragments, defined by Eq. (1.34). In this respect, we first solve the discrete ground
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state problem of Eq. (1.11) separately for any given fragment A, to obtain its frozen electronic
density, denoted by p,4. From the frozen core approximation of Eq. (1.32) follows that the total
density p of the system can be approximated by an affine decomposition, i.e.

P> pas (1.45)
A

where the sum runs over the set of all fragments, of total number N;. The computation of the
total frozen core intermolecular interaction energy consists in summing all pairwise frozen density
interactions. In this respect, a single pairwise interaction between any two given densities p 4
and pp, with regard to a given interaction kernel function K : R3 x R? — R3, describing the
interaction between two points in space, is given by the intermolecular integral, defined as

EX = //RS - pa(r)K(r,x")pp(r') drdr’. (1.46)

We recover the electron-electron term of Eq. (1.39) for the Coulomb kernel K (r,r’) = |r — r/| 7!
and the exchange-repulsion term of Eq. (1.40) for the Dirac kernel K (r,r’) = §(r — r’), where §
is the Dirac delta function. A kernel explicit frozen core energy component is defined as

1
EFKCE Y Z Elp, (1.47)
A#B

where the double sum runs over fragment pairs. There exist two computational difficulties related
to this quantity. The first is the quadratic scaling with respect to fragment number. Large-scale
fast summation methods (we refer to the following Section 1.2.3) can improve this scaling to
linear or sublinear, by exploiting range-separation of interactions and accelerating the long-range
ones. The second issue, primarily concerning this thesis, is the cost of computing a single pairwise
interaction EX,. Recalling Eq. (1.46), this term is given as a high-dimensional kernel explicit
integral, that can be computed by following the principle of the transformation of Eq. (1.28)
under the LCAO approximation, i.e. by expanding the molecular density into a given atomic
orbital basis. In particular, let us denote by {Xﬁl}lg u<n, the atomic orbital basis set centered
on atoms of the fragment A and D4 = (Dﬁ‘u)lgu,ugm the density matrix obtained by an ab
initio calculation on the isolated fragment A. The electronic density being expanded in terms of
the AO basis, as in Eq. (1.26), finally yields an orbital-wise evaluation of the interaction energy,
reading

Blo= Y [ ddoREoEEE) dra, (1.45)
R3 xXR?

KA

where the fourth-order sum runs over indices of atomic orbital basis functions, of total number
N,,. Now, the summation of Eq. (1.48) needs to be evaluated, stored and accessed entry-wise.
Unfortunately, the fourth-order sum on the approximation basis size IV, leads to a scaling O(Nf)
for a single pairwise interaction, similar to the one reported in the Coulomb matrix assembly
earlier in Section 1.2.1. Summing up, the total operation count for computing the total frozen
core energy of Eq. (1.47) is

O(NglN?) flops.

Typically in biomolecular systems, the fragment number varies between 102 and 10, while the
number of basis functions per fragment is about 102. This leads to a computational effort that
can be a limitation in various applications, including molecular dynamics simulations, where
the quantity Ef., needs to be evaluated at every timestep. The calculation of EX g is the
bottleneck that concerns the present thesis. Efficient methods should focus on improving both
the quartic and the quadratic scaling with respect to problem parameters, as discussed further
in Section 1.2.3.
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1.2.2.1 Comparison with the Coulomb matrix assembly

It is useful to identify two differences between the calculation of Eq. (1.47) and the one of the
Coulomb matrix from Section 1.2.1. In order to establish a link between the two, let us denote
the underlying interaction matrix, in the evaluation of a single pairwise frozen core intermolecular
interaction between two given fragments A and B, by G 4. This interaction matrix is defined
as the Gram matrix under the prescribed kernel K, with entries given as

V1<i,j <N}, GiP = // Xixir (r)K(r,r’)Xijf (r') drdr, (1.49)
R3xR? !

essentially obtained by folding the first two and the last two dimensions of a four-index tensor
between different fragments. The four-center integral of the right-hand side of Eq. (1.49) is
the so-called intermolecular integral, mentioned earlier in Eq. (1.46). In matrix form, the main
calculation of Eq. (1.48) writes as a bilinear form, i.e.

Efp = d)Gapdp.

Here d 4 is obtained by reshaping the density matrix D 4 of fragment A to a vector of size NZ,
similarly for B.

A first difference to notice is that, in the present setting, the interaction matrix G 4p is used
only for energy calculation, where the density matrix, consequently d 4, is a priori available.
On the contrary, in the electronic structure theory setting, the Coulomb interaction matrix
is used both in the ground state energy calculation of Eq. (1.15), as well as in matrix-matrix
products during SCF iterations, where essentially the density matrix is updated on-the-fly. Let us
mention a second difference between the quantities of interest in the aforementioned settings, i.e.
ground state energy minimization and and frozen core energy computations. The first context
targets the approximation of a matrix, while the second targets the approximation of a scalar
quantity (the energy). In the first case, the matrix approximation accuracy is assessed using a
matrix norm, so that the matrix product between J(D) and D is well-approximated. On the
contrary, the scalar value evaluation can be subject to error cancellation. In particular, this
effect occurs when numerical errors of opposite signs cancel each other, during summation of
different energy components, eventually lowering the approximation error on the total energy.
This can be further exploited by approximation methods. For instance, the density fitting
method (see Section 1.2.3.1) is known to produce significant cancellation errors in the electronic
structure setting, reported to cause around two digits of accuracy improvements on ground state
energy approximations [345, Table III]. The error cancellation could be expected to appear when
summing different components to obtain the approximated Coulomb electrostatics of Eq. (1.41).

In the following section, we present a short overview on molecular integral evaluation
algorithms applied to ERI matrices. The techniques proposed in this thesis, targeting arbitrary
kernel-explicit intermolecular interaction matrices, make heavy use of ideas proposed in existing
acceleration techniques for ERI matrix assembly.

1.2.3 Acceleration methods

Related acceleration techniques for solving large-scale molecular integral computation problems
may be regrouped and summarized as follows. A helfpul review of existing methods may also be
found in [278, 71]. Without being exhaustive, we may list two classes of acceleration methods, in
order of execution during the course of a simulation:

e Stage I - Simplifying the electronic density function: density fitting [106, 335, 340],
real-space partitioning [203, 34, 19], integral screening [148, 264, 316].

e Stage II - Evaluating the interaction: direct computation [228, 110], cut-off method
[316, 317], reciprocal space method [84, 221, 96], continuous fast multipole method [339, 70,
69, 253, 309], hierarchical matrix representation [344, 345], pivoted Cholesky decomposition
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[31, 8, 146], grid-based compression [183, 185], Chebyshev interpolation [20], particle mesh
Ewald [93, 288] and variations [79].

The main difference between the two stages is the acquired input data. In particular, the first
one requires knowledge on quantities associated to isolated parts of the system, such as fragment
or atom densities, i.e. a priori known quantities before the start of an electronic structure
or molecular dynamics simulation. Note that no knowledge on molecular pairs is required at
this level. Quantities approximated at this stage can be, for example, the isolated fragment
electronic density function or fragment geometry parameters. On the contrary, the second class
of methods requires access to pairwise fragment interactions, available on-the-fly, and includes
evaluations that must be launched at each given timestep. The main purpose then is to compress
the interaction data at a given MD timestep or at a given SCF iteration. The output of this
process is an approximated interaction matrix (or energy).

1.2.3.1 Existing work

The following is a succinct presentation of some of the existing methods belonging to the two
aforementioned groups.

Direct computation. The most naive way for evaluating molecular integrals is direct com-
putation. Note that the bielectronic integral cannot be evaluated analytically. Nevertheless,
it admits closed-form expressions that reduce to one-dimensional integrals, whose numerical
evaluation is straightforward [149]. One of the most common methods over Cartesian Gaus-
sian functions is the McMurchie-Davidson recursions [150, 228]. Recurrence relations can be
accelerated with either the use of L-tree codes, as it has been done for example in [173, 70], or
high-performance implementations on Graphical Processing Units (GPUs) [13]. Alternative Rys
quadrature algorithms are available [110] and implemented on GPUs [12]. When no other method
is available, the direct computation still remains an option for numerically evaluating molecular
integrals. Note that, the theoretical complexity of a direct computation remains (’)(Ng*), where
N, is the size of the Gaussian basis.

Density fitting. Given an electronic density p expanded on an atomic orbital basis of size Ny,
the Density Fitting (DF) method refers to the approximation of p by the function

M
ﬁ = Z Cigiv
i=1

where ¢ = (¢;)1<;<ar € RM is a vector of auziliary coefficients and € = {£;}1<;<a 1S a given
auziliary basis of prescribed size M. Typically, the target size verifies M < Nb2_. The auxiliary
basis type is restricted most often to Gaussian orbitals and sometimes to Hermite-Gaussian ones
[84]. For fixed &, the vector c is defined as solution to the least-squares problem

2

Cc := arg min

b)
x€RM

M
pP— Z ;&
i=1

for a prescribed error norm || - || on a function space. The DF method, originally introduced for
the Coulomb integral [340] and the exchange integral [21], can be used to approximate various
molecular integrals. A DF method is built upon a target integral in mind. Specific molecular
integrals lead to particular auxiliary basis choices and error norms. This makes the DF method
a good candidate for arbitrary kernel-based intermolecular integrals of the form of Eq. (1.46).
A commonly treated case is the Coulomb integral in Hartree-Fock calculations [335]. Then DF
schemes lead to a fast approximated ERI matrix assembly that scales as O(N?) or O(Ng) [108].
It also exists a family of linear scaling density fitting methods [289, 51|, including the following
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two strategies. One of them is to fit the density using an appropriate metric that achieves sparsity
in the interactions [106, 177]. Alternatively, the density is partitioned into spatially localized
parts, that are fitted separately [120, 117, 301], introducing the concept of local fitting [262],
with applications to post-Hartree-Fock methods [295].

Real-space partitioning. The goal of real-space partition methods is to spatially redistribute
a given electronic density function into a small number of a priori fixed sites, which may be
atomic or non-atomic. This is achieved by introducing a spatial weight. In particular, given a
molecular fragment of M fixed sites and electronic density p, the real-space family of methods
constructs a distributed density p from p, defined in terms of a spatial partition {w; };<;<as, with

w; :R? 5 Rand 0 <w; <1, forall 1 <i< M, and 21, w; =1, as

M
Ve e R, ) = 3 wit)plr).

Each weight function is associated to a site and its role is to spatially localize the density on
a significant region of that site [19]. In practice, the weight function approximately sums to
the identity, hence p approximates p. There is a variety of methods for constructing weight
functions, namely fuzzy functions proposed by Becke [30] using Voronoi cells centered on sites,
or Hirshfeld-like partitioning schemes [157], including Iterative Stockholder Atoms (ISA) [203],
which employ an iterative procedure for constructing site-densities by minimizing an information-
theoretic entropy error functional [34]. An advantage of this method is that it provides physically
meaningful charge densities, distributed and spatially localized on sites [235, 234]. By doing so,
the expansion of the density scales as O(M), instead of the ab initio scaling O(N?). However,
in the present thesis, we may not use real-space partition schemes due to the following reasons.
First, the error functional used in the minimization procedure is generally less flexible than the
one used in DF methods, hence making the procedure less suitable for kernel-driven optimization.
Moreover, the optimization procedure for allocating contributions to non-atomic sites often
admits multiple local minima or gives rise to weight functions for which there is an increased
difficulty in evaluating the molecular integrals [314]. Besides, there is no restriction on the type
of basis functions because quadrature rules are typically used in such cases. Note that the atomic
decomposition has applications to the Coulomb electrostatics evaluation using the multipole
expansion [234].

Integral screening. The idea is to use easy-to-check numerical thresholding criteria for
discarding unsignificant molecular integral contributions. The screening may be based on a
priori estimators for pairwise primitive interactions given by Cauchy-Schwartz bounds on the

2

bielectronic integral [148, 264, 340, 344]. In its more simple form, this bound reads:
(| RN < (| )2 (RA[RA) 2. (1.50)

Orbital tuples are then skipped if the bound calculated from orbital pairs is below a prescribed
threshold value. Note that the bound does not depend on the distance between molecules,
but simply on the magnitude of integrals centered on a single molecule. Other criteria use
simplifications that arise from Hermite-Gaussian orbitals [70, 84, (9], in order to prescreen
small-valued interactions of primitive orbitals. Screening methods can also be utilized in high-
performance optimizations of molecular integral evaluations, such as vectorization [161].

Cut-off methods. Another type of thresholding uses locality of Gaussians and spatial cut-offs,
for exploiting separation and small overlap of distributions based on the distance between atomic
centers [316, 317]. The idea is to deduce a decay behaviour of integral values, with respect
to the distance between centers, from the multipole expansion, due to the asymptotic decay
of the Coulomb kernel (i.e. 1/r). This family of methods then simply consists of neglecting
contributions using distance criteria.
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Reciprocal space methods. The reciprocal space approach performs numerical integration in
the Fourier space using the Fast Fourier Transform [221, 84], for treating long-range interactions.
This method can be incorporated into Particle Mesh Ewald methods for periodic systems. Such
combined techniques are used in GEM [84, 257].

Continuous fast multipole multipole method. The Continuous Fast Multipole Method
(CFMM) separates the interaction contributions in the ERI matrix into direct and well-separated
ones, using a locality criterion. Well-separated ones are computed relying on multipole expansions,
which is an analytic tool for approximations of interaction kernels (see Appendix B for more
details). The remaining interactions are evaluated directly through explicit integration of orbitals.
Such separation techniques exploit the fast decay of the Coulomb potential. Range-separation
approaches may be combined with other analytic methods, such as Particle Mesh Ewald (PME)
for periodic systems [104, 20, 84, 4, 79]. Overall, such methods can achieve linear scaling
[79, 236, 51, 239, 176] with respect to the number of atoms. This is due to the use of multipole
expansions to represent interactions between well-separated distributions into compressed form.
However, notice that the prefactor of this method will be analogous to the number of distributions
that are not well-separated, i.e. direct interactions. It has been reported [344] that CFMM is
not as efficient because in practice a large number of distributions overlap, thus the number of
interactions that must be evaluated directly is large [309]. Apparently, a weakness is that, direct
computations, that scale in a quartic manner, dominate the computational cost of CFMM.

Pivoted Cholesky decomposition. Pivoted Cholesky Decomposition (PCD) is a matrix
factorization technique [130] useful in solving rank deficient systems of equations. A related fact
is that the ERI matrix has numerical linear dependence among its columns [31]. PCD can be
used to construct low-rank representations of the ERI matrix [146]. The Cholesky decomposition
without pivoting of the ERI matrix was first studied in 1977 [31]. The pivoted version has become
quite a standard tool since [8, 43]. An advantage of PCD is that it naturally relates to density
fitting as well as the auxiliary basis generation procedure, as we discuss in Chapter 3.

Tensor methods. It can be numerically justified that the ERI matrix has numerical rank
O(N,) [345]. The main goal of algebraic tensor methods is to exploit the low-rank structure of
the ERI tensor for calculating low-rank approximations. On a purely algebraic level, one may use
tensor format compression techniques [183, 185, 184], or hierarchical low-rank representations
[345]. An advantage of the tensor-based approach is that it offers systematic on-the-fly methods.
In tensor-based schemes, the analytical integration of densities may be replaced by a tensor-
structure numerical quadrature [182], which makes such methods mostly suitable for numerical
densities evaluated on tensor-grids. It has been reported [135] that such algebraic techniques for
compressing interactions between point charges can be more efficient (in terms of the rank of the
approximation and the range of applicability) than analytic techniques like multipole expansions.

Hybrid techniques. A direct compression technique has been reported in [344], based on
low-rank approximations in the form of a block density fitting, that allows to compress far
more interactions than could be compressed using multipole expansions, resulting in far fewer
interactions that must be computed directly. The interesting point of this method, concerning
the present thesis, is that it successefully combines a form of density fitting and hierarchical
matrix compression techniques. It does so by combining a range-separation criterion and a
matrix compression, that takes the algebraic form of a density fitting technique. The overall
procedure can be interpreted as selectively applying density fitting to interactions using the
range-separation criterion. According to this approach, density fitting is applied to small blocks
of the interaction matrix. As it has been pointed out by the authors [344], the forementioned
point is the main difference compared with classical DF, which applies to the full ERI matrix.
This block-DF is computed using rank-revealing QR. Such hierarchical representation of the ERI
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matrixs has been interpreted as a generalization of DF, that locally and hierarchically applies
DF to certain pairs of subsets of basis function products.

1.2.3.2 Motivations of present work

The work presented in this manuscript focuses on density fitting and integral screening methods
and the reason can be motivated as follows. Recall that existing techniques fall into two
categories. On the one category, interaction evaluation acceleration methods have already been
widely studied in the mathematical literature, as they are related to well-known problems solved
by a variety of approaches. These are traditionally based on ideas of the fast multipole method
for breaking the quadratic scaling with respect to the interacting particle number. On the other
category, density function simplification methods target scaling improvements on the explicit
formula of the electronic density with respect to the basis function size. To our knowledge, these
methods are significantly less documented in the mathematical literature, with the exception of
the recent mathematical analysis of the ISA method [34]. Nevertheless, the major advantage of
density-based methods is that they can precede any existing interaction evaluation, substantially
improving its prefactor.

Numerical results are presumably in favour of this direction. Focusing on the density fitting
(DF) method, it has been numerically reported that large-scale molecular simulations can greatly
benefit, in terms of computational cost as well as storage requirements, by combining DF with
fast summation techniques. In particular, the Gaussian electrostatic model couples DF with
PME fast summation [33]. Using DF+PME, a Coulomb energy calculation on a cluster of 103
water molecules requires a CPU time of 40 seconds [84, 105]. However, based on available results
[344], we may estimate that CFMM could require more than 103 seconds in an analogous energy
calculation, even for systems smaller than the previous one, i.e. with fewer atoms by a factor
of 1.5. Based on these encouraging numerical results, we believe that density-based methods
merit further investigation. In this respect, the present thesis aims at filling this gap in the
mathematical literature, by conducting a numerical study of density fitting and integral screening
techniques in particular and trying to improve or couple them. The main objective is to design
algorithms for solving the kernel-explicit frozen core energy computation problem of Section 1.2.2.

1.3 Molecular systems

In the present section, we provide a presentation of molecular systems under study, generally
divided into two families according to their conformation geometry features. Although we use
water models as concrete examples for introducing notions, note that our framework is not
limited to water molecules and generally holds for any molecule. Motivation and background
from chemistry is presented with a focus on polar molecules and their role in biochemistry.

1.3.1 Explicit water models

A polar molecule is a chemical species in which the spatial distribution of electrons between the
covalently bonded atoms is not uniform. Many biomolecular processes and reactions take place in
solution. Solvated biosystems remain a challenge due to computational efforts required to model
multi-million atom systems. The solvent typically consists of polar molecules, that significantly
contribute to polarization of biomolecules. Polarization, induced either by water solution, or
by ions, such as magnesium or potassium ions, has been found to be critical to model various
systems in the condensed phase [36], in folded RNA molecular structure [269], as well as ligand
binding to proteins for drug design [276, 342, 95]. Since 1933, an extensively studied solvent is
liquid water [37], the solution in which all biomolecular processes take place. Besides, HyO is
polar, i.e. has non-uniform electron distribution, because oxygen has eight electrons, while each
of the two hydrogens has one. Due to its importance in biomolecular simulations, water will be
used as a test case for numerical simulations in this thesis.
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We focus on explicit water solvation models, based on individual solvent molecule description.
Explicit water models are essentially force fields and can be regrouped into two categories, based
on the way they assign atomic charges:

e Rigid water models assign fixed point charges at atomic or non-atomic sites. The geo-
metric configuration of each water molecule is kept rigid during simulation, equal to the
experimental equilibrium geometry of H,O at gas phase. Due to its rigidity, the fixed point
charge model fails to accurately capture some part of polarization [153]. An example is the
rigid water model TIP3P (transferable intermolecular potential with three points) [174].

e Flexible water models assign flexible charges, moving along with atoms. An example is the
AMOEBA polarizable force field for water [281, 283]. The AMOEBA water model assigns
polarizable higher order atomic charges of multiple moment type (see Appendix B.2.3) to
each one of the three atoms of water. Most importantly, charge centers are flexible, i.e. they
move along the current atomic configuration, according to local coordinate frames assigned
to atoms [263]. The AMOEBA water has been successfully used to study solvation dynamics
in proteins and other complex systems [298, 137, 208]. The AMOEBA parameters for
water are fitted to reproduce liquid properties, most often at room temperature. Different
parametrizations of water are being developed over time, starting with AMOEBAO3 [281],
its improvement AMOEBA14 [195] and the latest Q-AMOEBA [225], that reproduces
nuclear quantum effects.

A challenge for explicit water models is that the particle number can increase fast, as water
makes up a big part of the system. As a typical example, SARS-COV-2 virus has 10* atoms
alone, while, after inclusion of water as well as ions, which act as neutralizers, the total number
of atoms grows to 10° [167]. Note that alternatives, generally yielding a less accurate solvent
description in favour of computational efficiency, include continuous models, based on treating
the solvent as a continuous medium [188, 230].

1.3.2 Case study: water clusters

In the present thesis, we assess the numerical performance of our methods on water clusters, i.e.
explicit water solvents. We consider clusters made up of rigid or flexible water fragments. We are
particularly concerned by studying how the intramolecular geometry class, i.e. rigid or flexible,
affects the performance of numerical methods. Our goal is to design methods that efficiently
handle both geometry classes. In this respect, we first describe the two classes here.

Consider a cluster consisting of water fragments and suppose we perform a molecular dynamics
(MD) simulation. The following two fragment conformation geometry classes are treated separately
in our study:

e Clusters of rigid fragments: Intramolecular bond angles and bond lengths of each fragment
stay fized during all timesteps of MD simulation. This type of cluster is studied in Chapters
3 and 4. TIP3P water intramolecular geometry has been utilized in numerical experiments.

e Clusters of flexible fragments: Intramolecular bond angles and bond lengths of each
fragment are a prior: different at any timestep. This type of geometry is treated using
local atomic frames throughout Chapter 5. AMOEBAO3 parametrization has been used in
numerical experiments.

Figure 1.4 illustrates the two geometry types, where the rigid cluster also consists of identical
fragments. Note that we study clusters comprising of water molecules for simplicity, but this
framework could be generalized to clusters comprised of many different molecules.

1.3.2.1 Acquired data

Throughout the present thesis, we used or generated the following data on water molecules. All
water test cases fall into one of the two categories of Figure 1.4.
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Figure 1.4: Simplified representation of water clusters: non-polarizable/rigid (left panel) and
polarizable/flexible (right panel). The superposition of polarizable fragments at the current
timestep and the previous one (in green) shows that bond lengths and angles change.

name size | geometry data
dimerx 2 [273]
dimerx_rigid 2 [325]
watertiny 27
waterdot 365
waterbox 500 MD [274]
waterbig 1600
waterglobe 6400

Table 1.1: Summary of water clusters used as test cases. The size is equal to the total number of
water fragments. For dimers, the symbol x=01,02,...,10 corresponds to the ten Smith dimers.

We use empirical atomic Gaussian-type basis parameter data optimized for water, with
polarization functions on heavy atoms, such as 6-31gs [100] and Dunning-type basis sets [109], i.e.
aug-cc-pvdz and aug-cc-pvtz, as the basis types used in the Gaussian electrostatic model [84].

In chemistry literature [279], it is common to use as test case the water dimers, for evaluating
the accuracy of existing force fields and their ability to accurately reproduce the different
components of the interaction energy. Available data has been used when possible. Concerning
the rigid geometry configuration data, we use the ten standarized Smith water dimers, taken
by the supplementary information of [325]. Data is given as a list of Cartesian coordinates in
Angstrom, for the ten stationary point geometries of the water dimer as determined by the
PES of Smith et al. [300]. In particular, the monomer geometries have been standarized at
equilibrium geometries, namely HOH bond angle equal to 104.52 degrees and OH bond length
equal to 0.957 Angstrom. TIP3P rigid water model uses exactly the same geometry parameters.
For polarizable dimers, the ten Smith water dimers data have been used, found in the supporting
information in [273]. For water clusters of flexible fragments, we use AMOEBAO3 water model
parametrization with bond length 0.9572 Angstrom and bond angle 108.50 degrees. Notice that
the angle is slightly larger than the equilibrium one. All water clusters (rigid or flexible) with
more than two molecules have been equilibrated using molecular dynamics, ran in Tinker [274].
The simulation setting used is 300 K temperature, 1 femtoseconds, sampling from the NVT
(constant number of particles, velocity and temperature) thermodynamic ensemble [126]. We
performed 100 timesteps for AMOEBAO3 and 1000 timesteps for TIP3P. Table 1.1 summarizes
the data used as molecular geometries, some of them taken from the Tinker test cases.
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1.4 Computational chemistry software

The numerical results presented in Chapters 1, 3, 4 and 5 are obtained with Python programming
language (version 3.10.12) [326]. Results of Chapter 6 are obtained with Julia programming
language (version 1.8.3) [411]. The chemistry software used to perform numerical experiments
throughout the present thesis consists of four open-source codes, for the following purposes:

e PySCF, Python-based Simulations of Chemistry Framework [312]: ab initio calculations,
treatment of atomic Gaussian-type orbital basis sets, Wigner D-matrices [292].

e Libcint, general Gaussian-type orbital integrals for quantum chemistry [310]: molecular
integral evaluation.

e Tinker molecular modeling package [274]: molecular dynamics simulations.

e vmd, visual molecular dynamics [164]: molecular visualization.

1.5 Summary

Among the families of methods for computing intermolecular interactions, energy decomposition
analysis methods aim at describing the frozen core energy part of interactions using the frozen
density approximation. The Gaussian electrostatic model is an energy decomposition method
designed to use atom-centered Gaussian orbital basis sets for discretizing frozen electronic
density functions of fragments. The computation of a single pairwise interaction among electronic
densities discretized using IV, orbitals leads to a O(Ngl) operation count for a naive implementation.
This prohibitive numerical cost quickly becomes a bottleneck in many applications, including
calculations of the frozen core energy part of the Gaussian electrostatic model on large biomolecular
systems or water solvents. The aim of interaction acceleration methods is to break this complexity.
There exist a lot of methods to reduce the number of interactions in large systems and we
are particularly concerned by the ones applying to frozen fragment electronic densities. As
opposed to the pairwise interaction compression methods, the studied ones are based on function
approximations, namely density fitting. Systems under study are molecular clusters whose
fragments fall into two categories, treated separately: rigid and flexible ones.

The next chapter aims at presenting the density fitting method, through the prism of solving
fast summation problems for interacting densities.

29






Chapter 2

The pairwise interaction problem
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The computation of all pairwise interactions among N functions with regard to a specific
inner product is a computationally intensive task leading to a O(N?) operation count for a
naive implementation. This prohibitive numerical cost quickly becomes a limitation in many
applications such as in frozen core energy calculations. We are particularly concerned by breaking
this complexity using a family of projection methods known as density fitting.

The present chapter is dedicated to the presentation of the density fitting method arising in
the context of interacting densities. We first define in Section 2.1 the general summation problem
under study and describe how the frozen core part of the Gaussian electrostatic model leads to
this kind of problems. The Gaussian electrostatic model can benefit from improvements that
may be generalized to other density-based problems (e.g. calculation of multipole moments [32],
real-space partitioning methods [34], continuous fast summation [339]). However, the lack of a
rigorous framework allowing to describe densities of rigid molecules makes these generalizations
sometimes non-trivial. We want to handle all common aspects of density functions using a
general theoretical framework, independently of the explicit function approximation method or
the inner product used for interactions. The theoretical framework we describe uses a high-level
approach and applies to various density-based methods.

A careful comparison between families of density fitting methods is presented in Section 2.2,
that enables us to discuss the behavior of these methods according to the fragment molecular
conformation. Then, in Section 2.3 we define the density fitting method with several advantages
in our application context. We also present a set of general a priori error estimation results on
existing density fit methods.
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2.1 Problem formulation

Among the families of numerical methods for calculating frozen core energies in molecular
dynamics applications, the Gaussian electrostatic model (see Section 1.1.6.4), designed to
systematically approximate ab initio electronic density functions, has various applications to
biomolecular simulations. Recall that this family of methods uses frozen fragment densities to
represent the electronic charge distribution of large clusters. Hence, the cluster being fragmented
into frozen fragments, its numerical treatment requires performing electronic structure calculations
to smaller systems separately. However, as opposed to convenional electrostatics that employ
point charges or multipoles, in density-based electrostatics a single pairwise intermolecular
interaction is expensive to compute, as it is given as a high-dimensional molecular integral on an
atomic orbital basis set (see Section 1.2.2). Fortunately, there exists a relation between interaction
energy errors and best approximation errors on densities, as explained in Section 2.3. Before
describing this link, we formulate in Section 2.1.1 the definition of a general pairwise molecular
interaction summation problem and a set of kernels involved in common interactions. For the sake
of clarity, we first announce the general summation problem and we specify details later, when
treating aspects regarding electronic density functions and atomic orbitals in Section 2.1.2.2.

2.1.1 The pairwise interaction problem

Let H be a real Hilbert space, which is by definition a complete normed vector space, defined
over the real numbers, whose norm is induced by an inner product, denoted by (-, ). Let us fix
N € N* the size of the problem we are looking at. Given two finite sets of N functions, denoted
by f ={f;}i<i<ny CHand g ={g;}1<i<ny C H, the pairwise interaction problem between f and
g (with the inner product (-,-) describing the interaction between any two functions) refers to
the problem of computing the scalar quantity E € R defined by:

N N
E.= Z;Z;<fiagj>~ (2.1)

It is assumed that evaluating a single pairwise interaction between any two functions f; and g;
has an operation count equal to a constant number £ € N* expressed in flops and defined as

V1<i,j <N, k:=cost({f;,g;)) (2.2)

Note that « is not necessarily O(1), as it depends both on the expression of the inner product
and the analytical form of functions in the sets f and g. For example, the inner product might be
defined in terms of a high-dimensional integral and functions should have an analytic form that
admits integration schemes. The cost x then actually counts the cost of applying the integration
scheme. Finally, the computation of E has a total operation count given by

O(kN?) flops,

for a naive implementation.

Particular inner products and analytical forms of families f and g, have features that allow a
fast approximated evaluation of Eq. (2.1). We mainly restrict ourselves to the context of interest,
which is the Gaussian electrostatic model.

2.1.2 From the Gaussian electrostatic model to interaction problems

The pairwise interaction problem arises during the calculation of quantities of interest in the
Gaussian electrostatic model (GEM). In this model, one of the important quantities of interest is
the frozen core energy part of the intermolecular interaction of a given set of fragments defined
in Eq. (1.47), obtained by summing pairwise interacting frozen electronic density functions. The
aim is to explicitely define the summation problem of Eq. (2.2) in the context of this model,
starting from a given molecular system.
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2.1.2.1 From molecules to density functions

Suppose that we want to perform a frozen core energy calculation on a given molecular system.
First, GEM uses a specific type of function to describe the electronic structure of individual
fragments and a set of operators to process them. We introduce these tools here.

Rigid and flexible fragments. The starting point are two important notions, that we will
define following [91]: isometry and congruence. We focus on real coordinate spaces of dimension
three, where atomic positions live. Let us consider the three-dimensional Euclidean metric space,
defined as the vector space R? equipped with the Euclidean distance between any two points,
defining the metric

Y(r,r') e R* xR® d(r,r'):=|r—1|.

Definition 2.1.1 (Isometry in R3). A map f: R® — R3 is called an isometry if for any two
points r,r’ € R3, there holds

d(r,x') = d(f(r), f(x')).

Definition 2.1.2 (Congruence). Any two sets of points X, Y C R3 are called congruent if there
exists an isometry f:R3 — R? with f(X) =Y.

As an example, two triangles are congruent if one triangle can be repositioned by rotation,
translation and reflection (but not resized) so as to coincide with the other triangle. According to
the classification of isometries over R? [66, 219], any isometry is either a rigid motion (translation
or rotation), or a composition of a rigid motion and a reflection. Note that rotations are
orientation-preserving transformations, while reflections are orientation-reversing ones, i.e. they
can mirror an object.

Since the conformation of any molecular fragment is determined by the set of points corre-
sponding to its atomic positions, these notions can be used for fragments. Now, in a molecular
dynamics simulation, the atomic positions of any fragment are constantly updated. The set of
atomic positions of a fragment at given time ¢ > 0 is denoted by

Xo(t) = {Ry(t),..., Ry, (1)} SR,

where N, is the atom number. A rigid fragment refers to a fragment for which, at any two
timesteps ¢1,ty > 0 of a molecular dynamics simulation, X, (¢;) and X,(¢,) are congruent point
sets through translation or rotation. Notice that reflecting a fragment is not physically possible
during the evolution of molecular dynamics, for this reason we restrict to orientation-preserving
isometries. An example of a rigid fragment is provided in Figure 2.1. In this setting, a flexible
fragment refers to a fragment that is not rigid.

(3] to t3

Figure 2.1: Snapshots of a rigid H,O fragment at three timesteps t¢;, t,, t3 of a molecular dynamics
simulation, expressed in a global reference frame. Identical markers indicate equality of segments
or angles. Note that all three conformations are congruent through orientation-preserving
isometries.
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Reference frames. For any given fragment, rigid or flexible, we can construct a (non-unique)
reference coordinate system, referred to as local reference frame, that is typically centered on
the fragment. To distinguish between frames, the common coordinate system used to calculate
forces in Eq. (1.2) is referred to as global reference frame. From now on, the notation A refers to
a fragment expressed in the global frame and A’ refers to the same fragment, expressed in the
local one. Given a fragment, rigid or flexible, its local and global frame expressions are assumed
to be congruent through either a translation and rotation, or a translation and symmetry. A
feature of any given rigid fragment is that at any timestep, we can find a local frame in which
the fragment coordinates, given by its atomic positions, stay fixed during the time of simulation.

Frozen fragment library. The electronic density function of a molecular system is calculated
using the method of frozen densities defined in Eq. (1.45). According to this method, given
any rigid fragment A, we first define an atomic Gaussian-type orbital basis set {Xﬁv}lg U< Ny s
centered on atomic coordinates of the fragment A’ expressed in its local reference frame. Then
the discretized electronic ground state problem of Eq. (1.11) is solved on this basis set, for the
system of interacting electrons and nuclei belonging to the fragment A only. The solution of this
problem yields the density matrix D 4, = (DZ‘;,)W, € RV >Ny defined in Eq. (1.13). This leads
to a discretized electronic density function admitting the expansion

Ny N,

R pu() =3 3 DA ) (v). (2.3)
p=1v=1

Notice that, for rigid fragments, this function is independent of the simulation time, as it is
expressed on the local reference frame, where atomic positions of the rigid fragment stay fixed.
The function p 4, refers to an arbitrary approximation of p 4., also expressed in the local reference
frame of A. The frozen fragment library refers to a set of molecules expressed in their local
reference frames, along with their electronic densities and their approximations.

Operators. Before describing the frozen core energy calculation in the Gaussian electrostatic
model, we quickly provide the general terminology for the molecular coordinate transformations.
The explicit definitions of these operators are given in Section 2.1.2.3.

1. F2L (Fragment-to-Local): takes a molecular fragment expressed in a global reference
frame and expresses it in its local reference frame.

2. L2G (Local-to-Global): converts the frozen density expression of Eq. (2.3) from the local
reference frame to the global reference frame.

Note that these two operators are of different nature. The first one is a simple change of
coordinate frames, whereas the second one acts on functions, namely the densities.

During a molecular dynamics simulation, the F2L operator allows to visit the frozen fragment
library where frozen densities are stored. Then approximated frozen densities are mapped back
to the global reference frame, using the L2G operator, where they eventually interact. The
operators F2L/L2G essentially allow to circulate information to/from the frozen fragment library
and between reference frames. A schematic representation of the action of these operators is
provided in Figure 2.2. Concerning computational complexity, the cost of computing the operator
F2L scales as the number of atoms in the fragment. For the operator L2G, the cost depends on
the maximal angular degree of the atomic orbital basis used in Eq. (2.3) [84].

2.1.2.2 The interaction problem in the Gaussian electrostatic model

We show how the computation of the frozen core intermolecular interaction between any two
given rigid fragments, using the Gaussian electrostatic model, leads to a summation problem,
belonging to the general family of summation problems of Eq. (2.1).
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Figure 2.2: Execution of a molecular dynamics (MD) simulation using GEM. In order of
application: for a given time ¢, recovery of fragment coordinates in global reference frame,
application of F2L operator, application of L2G operator to obtain approximated density p,
GEM interaction computation in global reference frame, launch MD, update timestep.

In the Gaussian electrostatic model, interacting function sets are defined as follows. For any
given rigid fragment A expressed in a global reference frame, we can find a congruent fragment A’
(i.e. the set of atomic positions of A is congruent to that of A’) belonging to the frozen fragment
library. It is additionally assumed that A and A’ are linked through either a translation and
rotation, or a translation and symmetry. We will denote by T4 the L2G operator converting A’
to A and by py4/ the frozen density of A’ expressed in its local reference frame. Then the frozen
density of A expressed in the global frame is defined as

pai=Tapar (2.4)

Let us define a finite set of functions, denoted by p4 := {p{'};<;<n, With elements
VI<i<N, pf:=TaDixi xo .

with (u,v) := 7(i) for m an enumeration of pairs 1 < p,v < N, and N := NZ. Assuming for the
moment that T4 is an affine mapping (this will be proved for specific cases in Section 2.1.2.3),
there holds

N
pa=y_pi (2.5)
=1

Let us consider a cluster of rigid fragments expressed in a fixed global reference frame, denoted
by {A,B,C,...}. The computation of the frozen core intermolecular interaction between any
two fragments A and B, under an arbitrary kernel function K, as defined by Eq. (1.46), leads to
the summation problem of pairwise interaction between sets p4 and pg:

B, = / / pa(0)E(r,r)pp(r’) drdr’
R3xR3

N N
=S [ AR ) arar (2.6)

i=1 j=1

The integral takes two densities and computes the interaction between them. This computation
is done directly (i.e. using direct kernel evaluations on elements of the sets p, and pg). Note
that this step is an intermediary calculation, since the main calculation is the total frozen core
energy, obtained by summing pairwise fragments as defined by Eq. (1.48). Also note that the
cost of a single interaction defined in Eq. (2.2) is equal to the cost of computing a molecular
integral over atomic Gaussian-type basis functions. It should be noted that this problem does
not assume rigid fragments. It holds for any type of fragments.
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It remains to introduce Hilbert spaces and their corresponding inner products. The definitions
of these Hilbert spaces are specific to each interaction kernel. Explicit definitions for the Dirac
and Coulomb kernels are given in Section 2.1.2.3.

2.1.2.3 Mathematical foundations of kernel explicit Hilbert spaces

An explicit form of inner products is introduced. Then we look for a characterization of the
Hilbert spaces equipped with given kernel explicit inner products of interest, being the Dirac and
Coulomb kernels in particular. We refer to [24, 57, 243] for more details on functional analysis of
Hilbert spaces.

Let us begin by defining the following main notion.

Definition 2.1.3 (Kernel explicit Hilbert space). To any given kernel function K : R3 x R3 — R3,
we associate the so-called kernel explicit Hilbert space, denoted by Hy-, defined as the Hilbert
space of functions over R? equipped with the inner product associated to the bilinear form
(-, Vi : Hx X Hg — R defined as

V() €M <l (o= [ fR(er)g) dra’. (2.7

It is thus assumed that the kernel K is such that the bilinear form is positive definite: (f, f)x > 0
for every f € H, f # 0.

The form (-, -) i is referred to as K-explicit inner product over Hy and the induced norm is
denoted by || - || x :== (-, )}(/2 Notice that the operator induced by the bilinear form of Eq. (2.7)
is a generalization to Hilbert-Schmidt operators (see [60, Eq. B.8|) for which the kernel must
belong to L?(R? x R?). Here we do not impose any regularity constraint on the kernel. This
allows for instance to consider K (r,r’) = §(r — r’), where § denotes the Dirac delta distribution.
This is a valid choice as it is easy to see that the kernel explicit Hilbert space associated to the

Dirac kernel is Hy = L?(R3?).

Kernel examples. Throughout this work, we will focus on concrete kernel examples, that we
define here explicitely. Typically in chemistry, one considers an interaction kernel induced by

K(r,x')=W(r—r'),

with W appropriate weight function. We focus on two common kernels:
e Coulomb kernel: induced by the Coulomb operator W (r) = |r|~!. It gives the Coulomb
energy [340] or generally the electron-electron interaction of Eq. (1.39).

e Dirac kernel: induced by the Dirac delta function W (r) = §(r). It gives the overlap energy
[21], or generally the exchange-repulsion interaction of Eq. (1.38).

As opposed to smooth kernels, such as the Gaussian one induced, for fixed parameter o, by
W(r) = exp(f%\r|2 / 02), the Coulomb and Dirac kernels are singular around points satisfying
r = r’, meaning that their expression tends to +oo around this singularity. Moreover, note that
the Coulomb kernel is radial, as the Dirac one is not. Other choices of weights, not studied in the
present work, are the attenuated Coulomb operator W (r) = erfc(w|r|)/|r| [177] and the Yukawa
fitting W(r) = exp(—~|r|)/|r|, for which by varying the shielding parameter v, one can move
smoothly from the Coulomb potential (v = 0) to a tall spike potential (y > 1) [127].

Hilbert space for the Coulomb kernel. Identifying the explicit Hilbert space for the
Coulomb kernel, i.e. for K(r,r’) = |[r — r'| 71, requires a bit more work. As it have been pointed
out by previous works, the Coulomb operator defines an inner product [128]. Here we introduce
the homogeneous Sobolev space of order one and show that the Coulomb inner product coincides
with the norm of the dual of this space.

Let d € N* be the dimension of the problem we are looking at.
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Definition 2.1.4. The Schwartz space S(R?) is the set of smooth functions u on R such that
for any k£ € N we have

lullps = sup (14 [x])*|0%u(x)| < oo.
o] <k,c€Rd

We remind that the space of smooth compactly supported functions on R is dense in S(R?).
Note that the Schwartz space of rapidly decaying functions is a natural space for Gaussian-type
orbitals, that decay exponentially at infinity.

Definition 2.1.5. A tempered distribution u on R? is any continuous linear functional on S(R?),
such that there exist a constant C' and an integer k for which there holds

[, @) < Clléllys Yo € SRY).

Definition 2.1.6. Let s be in R. The homogeneous Sobolev space H*(R%) is the space of
tempered distributions u over R, the Fourier transform of which belongs to L}, .(R%) and
satisfies

e ey = [ €O dé < oc.

We may now prove the following known identity [32], relating the bielectronic integral and
the norm of the space H~1(RY) for d = 3.

2 _ |u(r)u(r’)| /
Hu||H,1(R3) = 7r//R3X]R{3 7‘1. v drdr’.

Proof. See proof in Section 2.4. O

Proposition 2.1.1.

The following result shows that the function space equipped with the Coulomb kernel explicit
inner product is a Hilbert space.

Proposition 2.1.2. HS(R3) is a Hilbert space for s = —1.
Proof. See proof Section 2.4. O
Summary of kernel explicit Hilbert spaces. Recalling the Gaussian electrostatic en-

ergy terms from Section 1.1.6.4, we have established the following correspondance between
intermolecular interaction energies of interest and kernel explicit Hilbert spaces.

GEM term Kernel Hilbert space
1 .
electron-electron K(r,r') = Ty HY(R?)
—-r
exchange-repulsion K(r,v')=6(r—71) L?(R?)

Operators. The explicit definition of operators used in the frozen core part of the Gaussian
electrostatic model for rigid fragments is provided. First, the F2L operator is an isometry,
acting as a change of basis between coordinate frames defined over R3. Matrices of rotations or
reflections are elements of the orthogonal group, defined for any dimension n € N* as the group
of n-by-n orthogonal matrices:

O(n):={QeR™":QQ"=Q'Q=1}.

This group, along with translations that are arbitrary vectors, can be used to characterize any
isometry over R"™. We focus here on the case n = 3.
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Figure 2.3: Snapshots of a rigid fragment in a global reference frame at timesteps t;, ¢y and t5.
Given the set of points X; := X, (t;) for i = 1,2, 3, the global frame is mapped to the local one
using the F2L operator (an isometry), inducing the L2G operator T} for i = 1,2, 3 acting on
Hilbert spaces, that is undoing the change of basis and mapping back to the global frame.

Definition 2.1.7. (3D F2L) Given any matrix Q € O(3) and vector t € R3, the F2L operator
is the mapping F2L[Q, t] : R* — R3 such that

vr e R®,  (F2L[Q,t])(r) := Q(r —t).

Definition 2.1.8. (3D L2G) Let H be a real Hilbert space of functions defined over R3. Given
any matrix Q € O(3) and vector t € R3, the L2G operator is the mapping L2G[Q,t] : H — H
such that

vfeH, (L2G[Q,t] f)(r):= f(Q(r —t)). (2.8)

Note that a F2L operator maps vectors to vectors, while a L2G operator maps functions to
functions. The operator F2L, acting as a change of basis between coordinate systems, and the
operator L2G, undoing the action of F2L and mapping back to the global frame, are represented
in Figure 2.3. We notice that a L2G operator is linear.

Isometries over Hilbert spaces. Definition 2.1.1 concerns isometries on metric spaces. Now
we define isometries on Hilbert spaces.

Definition 2.1.9 (Isometry). Given a real Hilbert space H equipped with the inner product
(+,-), an endomorphism T : H — H is said to be an isometry if it satisfies the property

V(fig) e HxH, (Tf,Tg)=(f9)- (2.9)

An isometry is a distance-preserving transformation, since a direct consequence of its definition
is that there holds
vieH, |Tfl=IfI (2.10)

where || - || := (-,-)!/2. We now connect kernel explicit Hilbert spaces and isometries. To begin
with, a kernel is said to be isometry invariant, i.e. the following two properties hold:

o K(r—t,r' —t) = K(r,r’) for every t € R3,
e K(Qr,Qr') = K(r,r’) for every Q € O(3).

Notice that the first property is satisfied by Coulomb and Dirac kernels, and more generally
by all kernels of the form K(r,r') = W(r —r’), for W a weight function. The second property
is also satisfied by the Coulomb kernel, due to the invariance of the Euclidean distance under
orthogonal matrices, and by the Dirac kernel, due to the homogeneity of the Dirac delta function.

The following result shows that the L2G operator is an isometry in kernel explicit Hilbert
spaces for isometry invariant kernels.
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Lemma 2.1.1. Let K be an isometry invariant kernel. Consider the kernel explicit Hilbert space
Hy equipped with the K -explicit inner product (-,-) . For any L2G operator over Hy, denoted
by T, there holds

v(fag)EHKXHKv <TfaTg>K:<fag>K
Proof. See proof in Section 2.4. O

This simple but convenient property of the L2G operator is widely used in approximation
methods for rigid fragments, as further detailed in Section 2.3.3.2.

2.2 Method overview

We are concerned by the density fitting (DF) [257] method for solving the summation problem
of the Gaussian electrostatic model, defined in Eq. (2.6). The idea of the DF method is to
approximate each of the interacting densities using a projection technique. There are various
strategies for applying density fitting in the Gaussian electrostatic model, that we review here.
Their main difference is the way they handle precomputation.

2.2.1 Existing work

We present here a set of conventional methods based on density fitting. One of their differences
lies in their online interaction evaluation. According to the type of density used, i.e. the exact
one or its DF approximation, we distinguish three types: QM-QM for interacting QM densities
(exact interaction); DF-DF for interacting DF densities; QM-DF for hybrid interacting densities.
Existing strategies for performing the intermolecular interaction approximation based on offline
density fitting can be summarized as follows.

2.2.1.1 Direct application of density fitting

Rigid fragments. Density fitting with given empirical basis sets. Fit is performed by solving
the normal equations of a least-squares problem, that is generally well-conditioned in practice.
Robust DF [108] is an extension of density fitting including QM-DF corrective terms. This
method will be explicitely defined later in Eq. (2.30). Notice that the form of QM-DF terms is
more expensive to compute than conventional DF-DF. Moreover, the main limitation of RDF is
that it requires to have access to QM densities during the online phase, which is prohibitive in
terms of storage cost in the context of GEM.

Flexible fragments. The most naive way is to directly apply density fitting. Generally, the
most naive and most accurate way for performing density fitting consists in computing the QM
and DF densities online. This results in ab initio complexity at the level of fragment during
the molecular dynamics simulation, which quickly becomes prohibitive when trying to deal with
large systems. When no other method is available, the online QM and DF density computation
remains an option that we consider in this work for the purpose of numerical validation only.

2.2.1.2 Gaussian electrostatic model
GEM divides the simulation time into two phases and employs density fitting to one of the two.
Splitting simulation time. Suppose the following simulation time division, employed by

molecular dynamics applications, illustrated in Figure 2.4. Two distinct phases make up the
simulation time, in order of execution:

1. Offfine phase: electronic densities are evaluated on the local reference frame of each
fragment belonging to the frozen fragment library. An unlimited number of computational
resources is available.
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Figure 2.4: Simulation time of a frozen core GEM calculation on a water cluster. The 3D
coordinate systems are the local reference frame (offline phase) and the global reference frame
(online phase). The mapping corresponds to the L2G operator.

2. Online phase: Fragment atomic positions are updated at every timestep of molecular
dynamics, in a global reference frame. The computation of the intermolecular interaction
given by Eq. (1.46) is performed at each timestep, using electronic densities expressed on
the global frame.

As an example, the frozen fragment library of a rigid water cluster, comprised of identical
and congruent molecules through translation and rotation or symmetry, as the one of Figure 1.4a,
contains a single element.

Rigid fragments. The Gaussian electrostatic model is essentially coupled to density fitting, in
a method that we refer to as GEM-DF. GEM applies density fitting using a post-processed given
empirical auxiliary basis set [34]. First, it discards orbitals of angular degree higher than two
from a given empirical auxiliary basis set. Then, the basis is converted to spd-type, by adding
orbitals, if needed, to form orbitals of one s, one p, and one d-type Gaussian with the same radial
parts, centered on atoms. The main purpose of spd auxiliary basis is to reproduce the multipoles
of the QM density (see Appendix B.2.4). Due to this post-processing, the resulting least-squares
fit is often ill-conditioned. For this reason, normal equations are performed using truncated SVD,
also using the additional electron charge constraint (see Section 2.3.1.3). Different choices of
error metrics can be used to fit separate energy terms [242]. Interaction is evaluated in DF-DF
form using DF scheme (2.29).

Flexible fragments. They are treated by averaging densities. GEM-DF extends the notion
of local reference frames to flexible fragments and defines an approximate L2G operator. As
an example, GEM-DF uses a frozen fragment library containing a single molecule to describe
flexible water clusters, such as the one of Figure 1.4b. Then the operator F2L is obviously not
an isometry.

2.2.2 Present work

The common framework of all DF-based methods applied to the Gaussian electrostatic model
includes, first, the DF method itself and then the access to the frozen fragment library for
precalculating a large part of the expensive operations.

The idea is to solve the summation problem of computing the quantity of interest F, defined
in Eq. (2.1), by constructing two finite sets of functions, denoted by f = {f;}1<;<)»s € H and
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g = {9i}1<i<m € H. Then the quantity E' can be approximately computed as
E::Zz<fia§j>‘ (2.11)

i=1 j=1

Assuming that the pairwise interaction between any two functions f; and g; has an operation
count equal to a constant number k¥ € N*, defined as

V1<ij<M, &:=cost((fi,q;)), (2.12)
the computation of E has a total operation count given by
O(kM?) flops.

This complexity can be used to improved the one for computing the reference quantity F.

2.2.2.1 Density fitting

Recalling Section 1.2.3.1, given a density p, the density fitting method constructs the approxima-
tion

M
prp= Zczfi- (2.13)
i=1

Using notation from (2.11), density fitting allows to construct the family of functions p :=
{Pi}1<i<m, with p; := ¢;§; for any 1 <4 < M. There are two main subproblems related to this
approximation, handled in this order:

P.1 Awaxiliary basis generation: given p, construct the set of functions & := {&; }1<;<nm-
P.2 Auxiliary coefficient computation: given p and &, compute coefficients ¢ = (¢;)1<;<n-

The criteria that € and c should satisfy in order to provide a good approximation will be further
studied in Section 2.3. Existing methods differ as to their actual criteria. Recalling the Gaussian
electrostatics model terminology of Section 1.1.6.4, electronic density functions, obtained by
quantum mechanics (QM), are referred to as QM densities, and fitted densities, obtained by
density fitting (DF), are referred to as DF densities.

Focusing on the specific form of the summation problem in the context of the frozen core
energy part of the Gaussian electrostatic model (GEM) (see Section 2.1.2.2), one of the simplest
ways one can benefit from precomputation is by solving Problems P.1 or P.2 (or both) at the
level of the frozen fragment library.

2.2.2.2 Integral screening

We add an additional improvement by solving the following problem.

P.3 Integral screening: for any two given functions f and g, find an explicit criterion for
discarding the interaction (f,g).

2.2.2.3 Precomputation

We are concerned by methods that efficiently exploit the offline-online simulation framework. In
this respect, in the context of the frozen core part of GEM, we introduce precomputation steps
suitable to the fragment type.
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Rigid fragments. The framework of this thesis for applying density fitting to rigid fragments
can be described as follows. Intermolecular interactions between any two given rigid fragments
can be approximated, for any two given isometries T, 7’ : H — H, as

E(Tf,T'g) ~ E(Tf,T'g), (2.14)

with E(f,g) := Zi\il Z;V:l(fi, g;). This will allow us to compute E for rigid fragments using

offline schemes for precomputing f and g using density fitting.

Flexible fragments. The precomputation is much more complicated for flexible fragments.
The issue is that for flexible fragments, however, the library depends on the definition of
F2L/L2G operators. The definition of these operators is not straightforward and is the topic of
Chapter 5. The approximation Eq. (2.14) is not well-defined in this context. We also considered
the same problem, under flexible fragments. We distinguish two difficulties when treating flexible
fragments. A first issue is that the explicit definition of operators F2L/L2G cannot be based on
the notion of isometry, since bond angles and bond lengths are free to change. Second, in the
rigid fragment case, the size of the frozen fragment library is finite, since for any given fragment
at all timesteps, there exists exactly one congruent representative in the library. In the flexible
case, however, if we add in the library all online fragments expressed in their local reference
frames, we end up with an infinite library size. Overall, flexible fragments can be treated within
the offline-online framework, either by relaxing the notion of F2L/L2G beyond isometries, or
by allowing an infinite size of frozen fragment library. The first strategy captures the flexibility
in bond angles and bond lengths, by allowing scaling of distance by a factor. However, there
is no clear strategy that allows to define a computable closed-form expression of the operator
L2G in that case. While the second naive strategy attempts to precompute all possible flexible
fragment conformations, it quickly becomes prohibitive in practice.

2.2.3 Contributions

The work presented in this manuscript focuses on acceleration methods for pairwise intermolecular
interaction computations based on electronic density functions discretized over Gaussian bases.
The aim is to bridge the gap between density fitting methods in the frozen core part of GEM and
numerical methods in mathematics. Hence, we explored the state-of-the-art methods and tried
to improve them. There are various features to take into account in order to efficiently compute
interactions: integral evaluation schemes, orbital symmetries, molecular conformation types,
ability of precomputation etc. One of the main objectives of this thesis is to finely tune all aspects
and end up with methods able to systematically handle any type of rigid or flexible molecular
fragment geometry. To address such problems, the present thesis introduces various contributions.
We give here a quick review of these, as well as of the challenges that have motivated our methods.
Difficulties are specific to molecular conformation classes, treated separately.

Concerning rigid fragments, the goal of this work is to improve the direct application of density
fitting, by constructing new auxiliary basis sets. The limitation of existing empirical auxiliary
basis sets is that they are already reduced and do not allow further accuracy improvements.
Our main contribution for rigid fragments consists in improving existing methods, by proposing,
first, an auxiliary basis construction method with tunable accuracy and, second, an interaction
sparsification method based on densities, where a large part of the interaction computation is
omitted. Figure 2.5 summarizes the main differences regarding existing and new methods. Our
methods for rigid fragments can be summarized as follows.

Auxiliary basis generation. We tackle the Problem P.1 for rigid fragments. Our method is
pivoted Cholesky decomposition coupled to DF (PCD-DF). The idea is to apply classical density
fitting with new auxiliary basis sets generated with out method, presented in Chapter 3.
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Figure 2.5: Simulation time and accuracy for rigid fragments (diagram inspired by [141]).
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Figure 2.6: Simulation time and accuracy for flexible fragments (diagram inspired by [141]).

Reducing the number of pairwise interactions. We tackle the Problem P.3 for rigid
fragments. Our novel method for computing interaction energies exploiting sparsity of interactions,
presented in Chapter 4, is referred to as Sparse Density Fitting (SDF).

Building frozen fragment libraries for flexible fragments. We tackle Problems P.1 and
P.2 for flexible fragments. Our method performs a novel coupling between the Reduced Basis
(RB) method [270] and the density fitting method, to define a new method known as RB-DF. In
Chapter 5, we develop a strategy that allows to select a finite number of fragments for composing
the frozen fragment library, and define local reference frames, for flexible fragments.

Figure 2.6 schematically summarizes the comparison between new and existing methods.
Note that the main difference between existing methods is the phase chosen for performing DF.
In practice, GEM beats the computational cost issue by introducing an error and placing the
entire DF and QM computations in the offline phase. The advantage is the speed up, however
the limitation is the systematically uncontrollable error due to flexible atomic positions. We
consider that DF and RDF do not suffer from this error and compute DF and QM online at
every timestep instead, that of course comes at a prohibitive cost price. To tackle this issue, we
propose a new strategy based on reduced basis methods.

Our contribution is based on computing auxiliary coefficients online and precomputing auxil-
iary functions offline, as presented in Chapter 5. Our method performs offline precomputations
that allow to construct suitable auxiliary basis sets offline and auxiliary coefficients at small cost
online. Note that our method has a relatively expensive precomputation step with respect to
other methods.
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2.3 The density fitting method

In the present section, we first introduce the density fitting method, which is a projection
technique. Finally, we focus on applications of density fitting for evaluating interaction energies
and solving the general summation problem of Eq. (2.1).

2.3.1 Preliminaries

Before defining density fitting, we first quickly introduce the mathematical background and basic
concepts on orthogonal projections in finite-dimensional vector spaces, best approximations and
underlying least-squares problems. We adopt the bra-ket notation (see Section 2.3.1.1), offering
a concise way of expressing orthogonal projections over finite basis sets in an abstract operator
theory setting. The use of bra-kets for the purpose of density fitting in chemistry has been
initiated in 1970 by Lowdin [212], see also [215, 213].

2.3.1.1 Bra-ket notation

The bra-ket notation consists of defining for any element f of H, the ket, denoted by |f), as
being the element f itself,

[f) = [ €H,
and the bra, denoted by (f], as being the element of the dual space H*, i.e. the linear functional
which maps H to the real space of scalars, acting as

(fl:H=R, (fl:=(f,")

The existence and uniqueness of such linear functional (f| is a consequence of the Riesz represen-
tation theorem [57]. As an example for vectors, if H = R? then |u) is a column vector and (u| is
a row vector, while there holds |u) = (u| . To summarize, kets are elements and bras are linear
forms.

For all (f,g) € H x H, the product of a bra and a ket is a real scalar, written as (f|g) and
equal to the inner product (f, g), and the product of a ket and a bra is an operator mapping
elements of H to H, written as |f) (g|. Notice that (f|f) = ||f||*>. For any operator T": H — H,
the quantity

(FIT1f) = A7)

essentially acts as a quadratic form.

Let us introduce the bra-ket notation for direct products of (possibly infinite-dimensional)
vector spaces. Let n € N and H" := []!"_, H denote the direct product of n copies of H. An
element f € H" can be interpreted as a finite collection of n elements of H, i.e. f = (fy, fa,..., fn)
with f; € H for all 1 < ¢ < n. Adopting quasi-matrix notation [154], the bra of f is a functional
acting on H", i.e. a column quasi-matrix, while the ket of f is an element of the same space, i.e.
a row quasi-matrix:

= [A ol Gl B =[0A) ) - )]

Note that each row of (f] is a function in H, and thus, whereas (f| is discrete as usual in the
vertical direction, it is continuous in the horizontal direction [322]. Now, applying |f) to (f]
yields a real matrix. This allows to express Gram matrices in a compact way. Indeed, for any
pair (f,g) € H" x H", the cross-Gram matrix, with (4, j)-th entry equal to (f;, g;), is defined as

/ o
(flg) = :2 [|91> PR \9n>] _ 2:91 2:9n RPX

It is easy to see that the Gram matrix (f|f) is symmetric and positive definite, due to the positive
definiteness of the inner product.
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2.3.1.2 Best approximation

We refer to [97] for more details on best approximations. Let us introduce the orthogonal
projection operator. Let X be a closed subspace of a real Hilbert space H. The orthogonal
projection operator on X, denoted by Px, is defined as the operator mapping H to X, satisfying
the following property, for all p € H,

Vo eX, (o,p— Pxp)=0. (2.15)

In particular, Px maps any p € H to an element of X called the best approximation of p on X,
defined as the solution to the least-squares problem

~ . 2
= - . 2.1
pi=argmin [p— o] (2.16)
Notice that the minimum is indeed attained due to X being closed. In other words, p = Pxp.

2.3.1.3 Resolution of least-squares problem

Let H be a real Hilbert space and X C H a finite-dimensional subspace, of dimension M.
Consider a basis & = {§;}1<j<ar of X, i.e. a linearly independent set of functions spanning X, not
necessarily orthonormal. Finding the best approximation of any element of the Hilbert space on
& breaks down to solving the least-squares problem of Eq. (2.16), as we describe in the following.
For any p € H, there exists a vector of coefficients ¢ = (¢;)1<;<p € RM | satisfying

M

Pxp = ZCifia (2.17)

i=1

where Px denotes the orthogonal projection operator on the subspace X. The vector c is obtained
by minimizing a least-squares error functional, defined as

M
pP— Z ;&
i=1

2
vx e RM £(x) =

)

i.e. by solving the problem

c:=arg min &£(x). (2.18)
xERM

Using the Euler method, the minimizer c is obtained as solution to the equations

o€

Vi<i< M, —
='= ’ 6.%‘1

(c) = 0. (2.19)

The error functional admits the closed-form expression

M M M
E(x) = (plp) — ZZ%‘ (pl&;) + Z szl"g <§z|§g> .

Evaluating partial derivatives of this expression, one finds that the zeros c of the gradient in
Eq. (2.19) satisfy the linear system of equations

M
VI<i<M, Y (&]¢) e = (&lo),
j=1

or, equivalently, in matrix form, the normal equations, i.e.

(£1&) c = (&lp) , (2.20)
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where (£|€) is the Gram matrix of the family £ and the right-hand side is given by the vector

(€lo) = ((Ealp) -+ (Eulp)) " €RM.

Note that the normal equations is indeed a well-posed system of equations, because, by the linear
independence of €, the Gram matrix is invertible. It may be relevant to mention at this point
that, in density fitting methods where p is an electronic density function, additional constraints
may be imposed using the Euler-Lagrange multipliers, such as the constant electron charge
constraint, reading ng Pyxp = N,. This constraint may increase the least-squares error but it
will make the fit variational, since any electronic density function p satisfies this constraint (see
Section 1.1.5.1).

Summing up, by solving the normal system of equations (2.20) to find ¢ by inverting the
Gram matrix, then substituting to (2.17) and using that kets commute with scalars, i.e. writing

VpeH, Pxlp)=cle) =€) (€]€)" (€lp),

one finds that the orthogonal projection operator on the space spanned by & admits the decom-
position

Py = [€) (€]€) " (&l (2.21)
Notice that Px is orthogonal, i.e. P§ = Px.

2.3.2 Definition of fitted density

Essentially, density fitting is an orthogonal projection method. The projection is obtained
by solving a least-squares fitting problem (see Section 2.3.1.2). This fitting finds numerous
applications to electronic density functions in chemistry, hence the term density fitting for this
kind of application. Before proceeding to the use of density fitting in chemistry, let us announce
the general definition and terminology of this method.

Given a function p € H, consider a finite set of M linearly independent elements of H, denoted
by & = {&;}1<i<m C H, that is referred to as auziliary basis set. Let us denote by X := Span(&)
the vector space spanned by the auxiliary basis. Density Fitting (DF) proposes to approximate
the function p by the element of X given by orthogonally projecting p on the auxiliary basis, i.e.

M
prpi=Pxp= Zcifz’, (2.22)

=1

where ¢ = (¢;)1<i<p € RM and the orthogonal projection operator Px has been previously
defined in Section 2.3.1.2. Finding the coefficients of the vector ¢, known as auziliary coefficients,
breaks down to solving a least-squares problem (see Section 2.3.1.3). The function p, called fitted
density, is essentially the best approximation of p on the space spanned by the auxiliary basis set.

Remark. In chemistry literature, density fitting is also known as the resolution of identity
approzimation. In operator theory, this method consists of decomposing the identity operator on
a finite or infinite sequence of operators. We refer to [2/3, Definition 6.8.1] for mathematical
background. If H is a separable Hilbert space admitting a countable orthonormal basis, i.e. there
exists a complete orthonormal system of elements of H, denoted by e = {e;};en C H, then the
Resolution of Identity (RI) reads

Id = Z le:) (el ,

ieN
where Id denotes the identity operator over H. This means that every element of H admits an
exact representation on the basis €. Note that, if the set e is not complete in H, then we obtain
an RI approximation, equivalent to DF. Thus, in operator formulation, we may explain that

DF proposes to approximately factorize the identity operator using an auxiliary set &, typically
incomplete, by the decomposition of Eq. (2.21), i.e. Id ~ |&) (€]€)~" (¢].
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2.3.3 Application to the pairwise interaction problem

One of the main chemistry applications of density fitting concerns energy calculations. Here
we present approximate solutions to the pairwise interaction summation problem defined in
Eq. (2.1) using density fitting. The results are organized per interacting densities type. We
first present the special case of self-interacting density, before proceeding to the general case of
distinct interacting densities and concluding with the case of isometries. Each case will be studied
in terms of a priori error bounds on interactions. The main idea of this kind of application is to
use fitted densities, instead of exact ones, to approximate density-based interactions.

In a general form, we study density-based interactions, for molecular systems whose charge
distributions are described by functions. An intermolecular interaction is defined as the scalar
value equal to the inner product between any two functions, denoted by

V(f,g)GHXH, E(fvg) = <fag>~

2.3.3.1 Self-interaction approximation

The self-interaction energy of a molecular system described by a density p € H refers to the
scalar quantity

E(p,p) = {plp) = llp|l>. (2.23)

Assume that p is given as a finite expansion over a set of N basis functions, denoted by
P ={pi}1<i<ny € H, reading

N
pP=> p; (2.24)
=1

Such general form includes as a special case the frozen electronic density functions in the
Gaussian electrostatic model, defined in Eq. (2.5). Recall that, in that case, the basis functions
are products of atomic orbital products weighted by the density matrix. In a general setting, the
self-interaction computation based on the following summation

= Z Z {pilps) (2.25)

i=1 j=1

scales as O(N?), assuming that the sum is evaluated entry-wise and that a single pairwise
interaction <pi’p]-> can be evaluated in O(1).

Note that the problem of computing the self-interaction using Eq. (2.25) falls into the general
family of summation problems of Eq. (2.1). We propose to use density fitting to solve the
self-interaction computation problem. In this respect, we expand the density p in terms of a
smaller auxiliary basis £ using the density fitting approximation of Eq. (2.22), defined as p := Pxp
with X = Span(€), to obtain the self-interaction approximation reading

E(p.p) = E(5.7)
= (Pxp|Pxp)
= (| Px |p)
= (pl€) (€1&) " (€lp)
where the orthogonal property of the projection operator Px, i.e. P2 = Px, and the factorization

of Px given by Eq. (2.21) have been evoked. Further using the expansion of the fitted density p
on the auxiliary basis, given by Eq. (2.22), the approximate self-energy can be evaluated using

the reduced sum
E(p,p) = Z Z (&65) ¢ (2.26)

=1 j=1
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which scales as O(M?). By choosing M = O(v/N), one can calculate a self-interaction approxi-
mation in linear cost, i.e. O(N), hence improving the scaling of self-interaction by one order of
magnitude.

The error on self-interaction approximation due to density fitting can be quantified as follows,
using properties of the orthogonal projection operator. To this respect, the following statement
links the self-interaction energy error to the best approximation error due to density fitting.

Theorem 2.3.1 (Density fit error — self-interaction). Consider a real Hilbert space (H, (-, "))
with induced norm || - || := (-,-)1/2. Let &€ be a finite family of functions in H and X = Span(§).
For any p € H, let p = Pxp € X be the density fitting approximation of p. The self-interaction
approximation based on density fitting satisfies

Blp,p) ~ B(p,7) = min llp ~ ol
Proof. See proof in Section 2.4. O

According to this result, the convergence of the self-interaction error is quadratic in terms
of the best approximation error on densities. Moreover, the sign of the self-interaction error is
positive. To summarize, such statement shows that the self-interaction energy error caused by
density fitting is entirely controlled by the best approximation accuracy of the density on the
given subspace X.

Remark. Computation time can be gained by performing the fit once, with a given error metric,
and reusing the obtained fitted density for calculating interactions given by other inner products.
This reduces the storage requirements, as a single fitted density is stored per molecule, instead
of storing as many fitted densities as the number of target interaction kernels. This is possible
thanks to norm equivalence. The key is that a density p given by Eq. (2.24) belongs to the finite-
dimensional vector space V := Span(p;)1<i<n- It is known the all norms on finite-dimensional
vector spaces are equivalent [57]. It is hence straightforward to obtain the desired density fit
transferability from the norm equivalence between the Dirac and Coulomb metrics:

VpeV, Cilpllrzgs) < llpllg-1(rsy < Callpllzrs),

where the positive constants C; and Cy depend on the dimension of V.

2.3.3.2 Intermolecular interaction approximation

The general family of summation problems of Eq. (2.1) occurs when computing intermolecular
pairwise interactions, between any two distinct densities. In the present section, we apply density
fitting separately to each of the two densities, to solve this problem.
The intermolecular interaction energy between any two given functions p4, pg € H is given
as the scalar quantity
E(pa,pB) = {palps) - (2.27)

We further assume that densities p4 and pg are given as finite expansions over sets of N4 and
Np basis functions, respectively, reading:

Ny Np
A
pa=>_p' pe=>_p"
=1 =1

where p 4 := {pf}lﬁiSNA CHand pg := {piB}lﬁiSNB C H are two given finite sets of functions.
For simplicity in the notation, we consider that N, and Ng have the same order of magnitude,
i.e. there exist N such that O(N) = O(N4) = O(Np). The computation of intermolecular
interaction of Eq. (2.27) by direct summation of pairwise interactions, i.e.

Na Np

E(pa,p) =YY {pitlo}), (2.28)

i=1 j=1
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Figure 2.7: Basis set size diagram. Partition I corresponds to classical DF summation domain.
The union of partitions I, IT and IV corresponds to robust DF method. The union of all four
partitions corresponds to the exact evaluation of {p|p).

scales as O(N?).

We plan to reduce the quadratic cost using density fitting. In this respect, we introduce
two auxiliary basis sets £ 4,£5 € H, whose sizes are equal to fixed positive integers M, and
Mg, respectively, assuming there exist M such that O(M) = O(M,4) = O(Mp) for simplicity.
Now, applying the density fitting approximation of Eq. (2.22) separately on the density pp, for
any F' € {A, B}, yields the fitted density py, defined as the best approximation of pr on the
space Xy := Span(€p). There exist two available schemes for defining intermolecular interaction
approximations based on fitted densities:

e Density Fitting. Directly generalizing the self-interaction case, one approximates the
reference quantity of Eq. (2.27) by

EDF(ﬁA7ﬁB> = E(ﬁAaﬁB)' (229)

The computational complexity of this evaluation is O(M?). By building auxiliary bases for
small targeted sizes M, namely M = O(+v/N), one can achieve linear cost O(N) in practice.

e Robust density fitting. The Robust Density Fitting (RDF) [108, 107, 106, 229, 115]
method is designed to include corrections to DF, by proposing to evaluate the intermolecular
interaction as

E™PY (o4, pp.0app) = (palpp) + (Palps) — (Palpp) - (2.30)

The computational complexity of this quantity is O(MN) or O(N?3/?), by appropriately
choosing M = O(V/N).

In the above energy definitions, arguments will be omitted when this does not lead to a confusion.

Note that the complexity of RDF is worse that the one of DF, due to cross-terms between
reference densities and fitted ones, that are unfortunately dominating the computational and
storage cost. Figure 2.7 schematically represents the basis set interaction sizes on the same
diagram for comparison. Nevertheless, the gain of RDF lies in its accuracy. To see this, first
notice that RDF is obtained by adding corrective terms to DF:

E"PY = EPY 4 (py — palps) + (Palps — PB) - (2.31)

The purpose of corrective terms can be explained as follows. To begin with, it is easy to observe
that the following identity holds:

(palp) —(PalpB) = (pa — Palps — PB) + (Pa — PalpB) + (Palps — PB)
— (pa — Palps — ) + ERPF — EPF. (2.32)
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In the case where £, = £, then corrective terms in (2.31) vanish, since fitted densities belong to
the same subspace, i.e. p4 € X4 and pp € X with X4 = X, and orthogonal projection errors
vanish on subspaces, as given by property (2.15). Therefore, in this case, RDF and DF coincide.
By using this observation within identity (2.32) and applying Cauchy-Schwartz inequality to
remaining terms, one obtains that the intermolecular interaction error scales quadratically in
terms of best approximation errors. However, in the general case where £ 4 # £z, RDF and DF
do not coincide. In particular, non-vanishing terms in equation (2.32) result in linear scaling
of the intermolecular interaction error due to DF with respect to best approximation errors,
as seen again by application of the Cauchy-Scwhartz inequality. The role of RDF is then to
recover quadratic error convergence, which is achieved by adding appropriate corrective terms to
DF. For this reason, RDF can be used in applications where accuracy is a priority, despite of
computational cost.

The following two results are generalizations to Whitten’s a priori error estimators, established
for the special case of electron repulsion interactions in [168, 169], here extended to interactions
induced by any given inner product.

Theorem 2.3.2 (Density fit error). Consider a real Hilbert space (H, (-,)) with induced norm
|-l :== (-, -)"/2. For F € {A, B}, let &5 be a finite family of functions in H and Xy = Span(€p).
For any pp € H, let pp := Px,_pp € Xp be the density fitting approzimation of pp. The
intermolecular interaction approximation of Eq. (2.29) based on density fitting satisfies

|E(pasp) — E(Pa;pp)l < llpsll min [[pg —oall +lpall min [pp —op].
gaE€EXy op€EXp

Proof. See proof in Section 2.4. O

Theorem 2.3.3 (Robust density fit error). Under the same assumptions as in Theorem 2.3.2,
the intermolecular interaction approximation of Eq. (2.30) based on robust density fitting satisfies

|E(paspp) — E¥PF (pa, pp: Pas pp)| < min |pg — o4l min |pp —opll.
oAEX 4 ocp€EXp
Proof. See proof in Section 2.4. O

Note that DF error converges linearly, while RDF recovers quadratic convergence thanks
to corrective terms. Another remark is that, contrary to the positive self-interaction error of
Theorem 2.3.1, now the error on energies can have any sign. This may lead to error cancellation
when summing different energy terms (we refer to discussion of Section 1.2.2.1). To summarize,
estimators show that the intermolecular interaction error is entirely controlled by the best
approximation error on densities, due to the use of auxiliary basis sets.

Densities under the action of isometries. In the present section, we study density fitting
under the action of isometries. This context has applications to the Gaussian electrostatic model
for rigid fragments (see Section 2.1.2.2). Our results show that error estimators on energies,
which are calculated from interacting densities transformed by isometries, remain unchanged by
the action of isometries.

As a follow-up to Section 2.3.3.2; the problem of calculating Eq. (2.28) is now studied in the
special case where densities undergo the action of isometries. The following two statements show
that intermolecular interaction error estimators of Theorems 2.3.2 and 2.3.3 are preserved, under
the action of isometries on both reference and fitted densities. The main reason behind is that
the best approximation error is isometry-independent. Before stating the results, it is important
to clarify that they can be easily adjusted to the frozen densities of Eq. (2.4) by applying them
using local frames for functions, namely pp/, pp and €5, for any F' € {A, B}. Since the local
frame is the global frame up to isometry for rigid fragments, the heavy notation, i.e. primes for
local frames, will be omitted without this affecting the generality of the results.
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Corollary 2.3.3.1 (Density fit error — rigid fragments). Under the same assumptions as in
Theorem 2.3.2, let Tp : H — H be an isometry for any given F € {A, B}. The intermolecular
interaction approximation based on density fitting, introduced in Eq. (2.29), satisfies

|E(Tapa; Tppp) = E(Tapa, Tepp)l < lpsl min |lpa —oall + [[pall min |lpp —opl|.
gaEX Y ocp€EXp

Proof. See proof in Section 2.4. O

Corollary 2.3.3.2 (Robust density fit error — rigid fragments). Under the same assumptions as
in Corollary 2.3.5.1, the intermolecular interaction approrimation based on robust density fitting,
introduced in Eq. (2.30), can be decomposed as

\E(Tapa:Tepp) — EXPY(Tapa, Tppp. Tapa. Tppp)l < min |pa — o4l min |pg —opl.
0AEX Y op€Xp

Proof. See proof in Section 2.4. O

Note that the above estimators show that the intermolecular interaction error may be
minimized by optimizing isometry-independent best approximation errors. It thus suffices to
calculate fitted densities once for a single density pair and then simply transform them by
an isometry, in order to generate fitted densities for density pairs at different orientations.
Additionally, if each fragment density needs to be fitted separately from others, it is suitable to
consider X4 and X independent of each other. Then best approximation errors can also be
optimized separately on different isolated fragments.

The following statement shows that the intermolecular interaction based on density fitting
can be decomposed into isometry-independent and -dependent components. Such decomposi-
tion is useful since it allows to detect quantities that can be precomputed in advance for all
isometries. Moreover, the result provides an approximated solution to the summation problem of
Section 2.1.2.2 and justifies the offline precomputation (see Section 2.2.1.2) of fitted densities in
the Gaussian electrostatic model for rigid fragments.

Theorem 2.3.4. Under the same assumptions as in Corollary 2.3.3.1, let us further consider,
for any given F € {A, B}, the family of functions {Tr&f }i<i<nr, C H, denoted by an abuse of
notation by Trp€ . Then the intermolecular energy of Eq. (2.29) based on density fitting satisfies
the formula

E(Tapa. Tppp) = (pal€a) (€al€s) ™ (TabalTuép) Epl€s) " (Eslpn) - (2.33)
Proof. See proof in Section 2.4. O

Figure 2.8 represents a dimension diagram for the matrix decomposition of Eq. (2.33). Note
that the only isometry-dependent quantity is the cross-Gram matrix (T4&€ 4|Tp€ ). All remaining
quantities are isometry-independent, they can therefore be precalculated. Note that some of
these quantities have in fact a much larger dimension that the small red matrix, since they
depend on reference densities. Others involve a matrix inversion that requires computational
effort. Hence the precomputation gain is significant.

2.4 Proofs

Proof of Proposition 2.1.1. The following calculation on the inverse Laplacian operator A~! for
the case d = 3 is originally due to [313]. When f is a plane wave such as f(r) = e?™™¢, then
there is a relationship

AeQm'rf _ _47T2‘£|2€27rir-§

that we can multiply by A~! to obtain

—1, 2mir-€ __|§\72 omir-£
A7 (e )= e .
I8

o1



O8O0

Figure 2.8: Matrix decomposition of intermolecular interaction. The isometry-dependent compo-
nent (in red) is a small M 4-by-Mp matrix, evaluated entry-wise, whose dimension depends on
the auxiliary basis sizes M 4 and Mp.

We thus have a formula involving the Fourier transform for the inverse Laplacian of a general
function:

ATHf)(r) = A7 f(£) e dg
/ f 27mr £) d€
- / el (e de.
Now, we can write the H~! norm of u as
sy = [ (O g
— [ [ Jera@e ) ar ag

R3 JR3

= —4r? A Lw) (r)u(r) dr

R3 xR3 |r—r’|

and this last quantity is called Coulomb metric of u (up to a constant ), induced by the Coulomb
kernel. We deduced the last equality from the fact that the Coulomb potential satisfies the

Poisson equation
- |u(r’)]
—(4m)'A (/R ) () = (o)

or by inverting,

/
A—l = —(4 —1/ |’LL(I')‘ d/.
(w)(x) = ~tam) ™ [
This concludes the proof of Proposition 2.1.1.
Proof of Proposition 2.1.2. See [24, Proposition 1.34]. O

Proof of Lemma 2.1.1. By definition of the given L2G operator T', one may write

(Tf,Tg)k = —1)),9(Q( —t)))x
//f Q(r —t))K(r,r")g(Q(r' —t))drdr’.

By employing the change of variables r — Q~'r and r’ — Q™ !r’ the above integral becomes
/ fr=t)K (Q_lr, Q_lr')) g(r’ —t)| det (Q_l) |>drdr’. (2.34)
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The matrix Q! belongs to O(3), thus its determinant in absolute value is equal to one. The
isometry invariance property of kernel K yields K (Q_lr, Q_lr’) = K (r —t,r’ — t). Finally a
change of variable in Eq. (2.34) by the affine transformations r — r — t and r — r’ — t yields the
result. This completes the proof of Lemma 2.1.1. O

Proof of Theorem 2.3.1. One evaluates the orthogonal projection error for p = Pxp as

lp = Pxpll”> = (p = Pxp, p = Pxp)
= (p.p — Pxp) — (Pxp,p — Pxp)
=0
= (p.p — Pxp) + (Pxp, p — Pxp)
= (p,p) — (p, Pxp) + (Pxp, p) — (Pxp, Pxp),
where the term vanished due to the orthogonal projection definition of Eq. (2.15). Lastly,

evoking the symmetry of the inner product, symmetric terms vanish and one obtains the desired
expression of Theorem 2.3.1. O

Proof of Theorem 2.3.2. By adding and subtracting terms, one evaluates the intermolecular
interaction error as

(paspB) —(Pa,PB) = (Pa,PB) — (Pa,PB) + (Pa,PB) — (P4, PB)
={pa,pp —PB) +{Pa—DPa:PB)-

First employing Cauchy-Schwartz inequality, then using that pp is equal to the orthogonal
projection, hence ||pg|| < |lpzll, lastly majorizing with the best approximation error, we obtain
the bound

[(pasp) = (Pa, PB)| < llpallles — pBll + 65 NllpA — Pall
< i — i — o4l
< llpall min llos —osl +llpsll min lloa = oall
This concludes the proof of Theorem 2.3.2. O

Proof of Theorem 2.5.3. The interaction error expression for RDF approximation is equal to

_ ERDF

<PA,PB> ={(pa — DA PB — ﬁB>~

Employing Cauchy-Schwartz inequality, we obtain the bound

[{paspp) — ERDF\ <llpa—palllles — pall-

Lastly, by majorizing errors by best approximation errors, similarly to the proof of Theorem 2.3.2,
one obtains the desired result of Theorem 2.3.3. O

Proof of Corollary 2.53.53.1. We employ Theorem 2.3.2 and the distance-preserving property of
Eq. (2.10). O

Proof of Corollary 2.5.5.2. We employ Theorem 2.3.3 and the distance-preserving property of
Eq. (2.10). O

Proof of Theorem 2.3.4. We first perform single-fragment density fitting, as given by Eq. (2.22),
to obtain a fitted density for any given F' € {A, B}, defined as

MF
~ F¢F
PF—E ¢ &,
i=1
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where cp = (cf J1<i< My € RMr is the vector of orthogonal projection coefficients, obtained by
solving the normal equations, as explained in Section 2.3.1.3, reading

Cp = <‘£F|£F>71 &rlorp) - (2.35)

Using that any isometry that is an endomorphism over a real Hilbert space is affine, that is a
consequence of the Mazur-Ulam theorem [226], we have that for any given F' € {A, B} and the
isometry T in particular there holds

Mp
Trpr = ZCfTFQF-
i=1

The intermolecular interaction based on density fitting then reads, in matrix form, as

My Mp

(Palpp) = ZZQA (Ta&lM|Tpef)

i=1 j=1
= CX (Ty€A|TEER) cp-

Substituting the vector ¢y using Eq. (2.35), one obtains the desired result of Theorem 2.3.4. [

2.5 Conclusion

In the present document, we revisit the density fitting method, also known as resolution of
identity. Compared with conventional applications of density fitting in electronic structure theory,
the major difficulty in carrying out the formulation of density fitting in molecular dynamics
context is inscribing the constantly changing molecular fragment orientation. In order to proceed,
we introduce a formulation that allows to track coordinate systems and operations between them,
in the case of rigid fragments. The result is a complete mathematical framework for describing
the Gaussian electrostatic model frozen core intermolecular interaction computation for rigid
fragments, under the Dirac and Coulomb kernels.

Our analysis focuses on the frozen core of the Gaussian Electrostatic Model coupled with
density fitting. In order to describe this coupling in more detail, we split the computation
time into offline-online phases. From a theoretical point of view, our analysis contributes in
mathematically validating the foundations of this density fitting application for calculating
arbitrary kenrel explicit frozen core intermolecular interactions between rigid fragments pairs.
By demonstrating a priori convergence properties, we justify the use of density fitting on each
fragment separately, during the offline frozen fragment phase, and its online reutilization for
rigid fragments. In general, based on our results, we can conclude that the rigid fragment case
generally mimics the standard single-fragment one.

We plan to carry out our analysis on flexible fragments. One difficulty to consider while testing
fragments of flexible intramolecular geometry is that the offline density fit should somehow take
into account electronic densities at all possible molecular geometries. The hope is that significant
information on electronic densities at arbitrary geometry can be detected and precomputed
offline. Another difficulty lies in the fact that the coordinate transformation mapping offline
fragments to flexible ones is no longer an isometry, and in general little is known about its
closed-form expression. This case should then be handled carefully, since transforming density
approximations using shape-non-preserving mappings has the risk of introducing untractable
errors. In order to tackle such problems and extract as much information as possible during the
offline phase, Chapter 5 employs a reduced basis approach.
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Chapter 3

Auxiliary basis generation
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In the present chapter, we formulate the problem of generating optimal auxiliary basis sets
for density fitting. We plan to design a novel auxiliary basis generation algorithm that will
automatically provide arbitrary precision basis sets, made up of atomic Gaussian-type orbitals,
from a required accuracy on the density fit quality. We define a new auxiliary basis from any
given electronic density function discretized over atomic orbital basis sets. Our tools are based
on Gram matrix row and column selection, using a greedy selection procedure starting from the
full Gram matrix of orbital products. Particular attention is paid to meeting the requirements
of atomic Gaussian-type orbital basis sets. In this respect, we introduce a block treatment of
the Gram matrix. Generated basis sets are numerically tested in self-interaction and frozen
core intermolecular interaction computations. Comparisons with other state-of-the-art empirical
auxiliary basis sets are provided.
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3.1 Introduction

The problem of auxiliary basis construction exists since the beginnings of density fitting. Existing
auxiliary basis sets include most often Gaussian-type orbitals and in some cases (in the Gaussian
electrostatic model in particular, defined in Section 1.1.6.4) Hermite-Gaussian type orbitals [84].
Orbital centers are typically restricted to atomic positions [158]. Additional sites are sometimes
placed on midbond centers for more accurate representation of the density [257, 233].

There exist two principal strategies for generating auxiliary basis parameters in the literature.
One is empirically precalculating auxiliary basis sets for every atom chemical type, creating a
library of atomic basis sets. This parameter tuning is usually application-specific and is carried
out for approximating various molecular integrals. Commonly used families of this kind are
the JKFIT family [335], optimized for Coulomb and Hartree-Fock exchange integrals, and the
RI family [337], with applications, among others, to second-order Mgller-Plesset perturbation
theory integrals [38, 151]. The difficulties of using empirical rules for auxiliary basis generation
have been discussed in chemistry literature [324, 336]. The main drawback of empirical basis
sets is that they often provide functions that do not accurately span the desired space. Another
limitation is that they can neither be tuned to achieve lower or higher accuracy, nor be optimized
for new energy terms.

Alternatives include systematic strategies based on matrix approximations. Much attention
has been paid to auxiliary basis sets systematically resulting from atomic orbital product basis
sets. A relevant class of methods exploits the linear dependencies of rows (and columns) of
Gram matrices on Gaussian orbitals. The goal is to remove linear dependencies of the atomic
orbital product space [8], by creating redundancy-free product-basis sets. This is achieved by
re-expanding atomic orbital products in an auxiliary basis set [324]. It has been numerically
observed that the full space may be accurately approximated using only a linearly scaling number
of auxiliary functions with respect to the number of atomic orbital basis functions [198, 31].
Several methods have been employed for selecting such auxiliary functions. A popular family is
based on a pivoted Cholesky-selected auxiliary functions [10, 9, 198], known as unbiased auxiliary
sets, generated on-the-fly for a given molecular system. Such methods use the pivots of the
Cholesky decomposition to discard rows and columns under a prescribed tolerance criterion.
This method can be combined with other low-rank procedures, for instance in [178] the authors
perform a Lowdin approximation (truncated eigendecomposition) on the Cholesky factors and
select auxiliary basis functions using a singular value criterion. This post-processing allows to
systematically further reduce the size of a given auxiliary basis. One of the main drawbacks of
current methods is that the product selection procedure is performed starting from the orbital
basis specified for an atom. In this work we present a method to generate more accurate auxiliary
basis sets using fewer auxiliary functions, starting from the orbital basis specified for an entire
molecule and exploiting additional knowledge on the available density matrix. This method finds
application to pairwise intermolecular interactions for frozen densities in particular.

In the present work, we focus on building auxiliary basis sets that achieve low computational
complexity, in a constraint optimization point of view. To achieve this, we employ a matrix row
and column selection method using greedy criteria. Moreover, we analyze the density fit errors
induced by our generated auxiliary basis sets and discuss the computational cost of an auxiliary
basis in computing molecular integrals. The remaining sections are organized as follows. The
auxiliary basis contruction problem is introduced in Section 3.2.1, followed by its formulation in
the case of density functions. Density fit error analysis caused by our generated auxiliary basis
sets is presented in Section 3.2.2. New approximation schemes are first presented in Section 3.2.4
and then numerically tested in Section 3.3. All proofs of mathematical results are postponed to
Section 3.4.
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3.2 Theory

In the present chapter, we focus on methods for generating auxiliary basis sets of target size
respecting a prescribed level of accuracy. An accuracy criterion is the error of projecting a
given density on a given auxiliary basis set, which governs the interaction energy error caused
by density fitting, as shown in Section 2.3.3. As a consequence of the underlying least-squares
problem of density fitting, the auxiliary basis accuracy can be assessed in matrix form. For the
sake of clarity, we first announce the overall targeted problem in Section 3.2.1 and we specify
details later, when treating specific aspects regarding electronic density functions and atomic
orbitals in Section 3.2.3.

3.2.1 Problem formulation

We tackle Problem P.1, which is a preliminary step of the density fitting method and is recalled
here: given a density p, construct the Auxiliary Basis Set (ABS) € = {&;}1<i<am used in the
density fitting approximation of Eq. (2.13). To this end, we first introduce our notion of optimal
ABS and then formulate the problem in question using a novel constraint optimization framework.
The idea is to minimize the accuracy under a complexity constraint. Before giving the definition
of this minimization problem, let us quickly mention the underlying notions. First, the accuracy
of a given auxiliary basis set can be assessed in terms of the best approximation error on the
density, defined by Eq. (2.16). Second, the complexity of an auxiliary basis set is measured in
terms of the total number of pairwise interactions in the summation of Eq. (2.26), that scales as
O(M?), where M is the auxiliary basis set size. We also take into account the operation count
for computing a single pairwise interaction, that is related to the analytic form of admissible
auxiliary functions.

The problem formulation starts from the most general case to end up with a restricted one
that is easier to solve in practice. In particular, Section 3.2.1.1 describes the optimization problem
in its more general form. In Section 3.2.1.2, we then focus on a heuristic optimization suitable
for the special case of electronic density functions, that leads to the problem that we solve in our
work.

3.2.1.1 The full ABS generation problem

Let H be a Hilbert space endowed with the inner product (-, -) and the induced norm ||-|| := (-, -)*/2.

Let G denote a given admissible set of auxiliary basis functions that are elements of H. The
operation count for computing a single interaction between any two elements in G is assumed to
be a fixed number, denoted by xg € N* and satisfying

V(&) e G xG, kg =cost((£E)). (3.1)

Assuming this fixed cost, our strategy consists of minimizing the size of the ABS, which is made
up of elements in G. The problem of achieving accurate interaction approximation with few
auxiliary functions belonging to G may be formulated as an optimization problem. Given any
p € H and a target size M, the ABS generation problem refers to the problem of finding a finite
family & C G of size at most M, such that the best approximation error of p on the space spanned
by £ is minimized, i.e.

. . 2
min min -0 3.2
min min o= ol (32)
subject to card(&) < M, (3.3)

where card(-) denotes the size of a given set. A solution to ABS generation then attains the
smallest best approximation error on p over approximation spaces spanned by at most M
admissible functions.
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Concerning the nature of our proposed problem, let us emphasize that our target size M
concerns the number of admissible elements. In other words, our problem is picking individual
functions in G whose total number is equal to M, rather than finding a basis of M elements in
Span(G). The main reason is the complexity of computing a single interaction. The point to be
handled carefully can be highlighted as follows. Let {£;},<;<as be a given basis of a subspace of
Span(G). Then performing density fitting using this basis yields the approximation p ~ Zf\il ci&;.
For two given fragments A and B and corresponding isometries T4 (resp. Tg) sending A’ to
A (resp. B’ to B), the pairwise interaction is given by {(p4, pg) ~ 2%21 cf/cf/ <TA§;4/,TB§JB/>.
Each one of the interactions <TA§{4, Tg¢ jB ) cannot be precomputed and costs 77,2I€g, if 5;4 and & JB
are assumed to be expressed as linear combinations of n € N* elements in G. However, this online
cost can become untractable if n is arbitrarily large. For this reason, we impose n = 1. Hence,
by picking individual functions in G instead of basis elements, we assure that the complexity of a
single interaction computed online is equal to kg and remains controlled.

A difficulty in solving the minimization problem of Eq. (3.2) under the constraint of Eq. (3.3)
may be identified. The simple example where the set G is equal to the set of primitive Cartesian
Gaussian-type orbitals (GTOs), of the form of Eq. (1.18), allows to illustrate this. One may
think of GTO parameters as continuous variables to be optimized. Unfortunately, optimizing
GTOs with respect to their four parameters, i.e. orbital exponent and monomial degrees, can be
a hard combinatorial problem, connected to NP-hard selection problems in optimization [52].
Second, the best approximation problem over arbitrary GTO sets can be highly ill-conditioned
(see discussion in Section 1.1.4.3). Best approximation methods [154] on spaces spanned by
ill-conditioned basis sets might become necessary.

3.2.1.2 The restricted problem

Our approach is to avoid difficulties caused by the search over the space G in Eq. (3.2) and
propose a restricted search, based on heuristics defined for a specific form of p, allowing to
significantly narrow down the search space. In the present paragraph, our special ABS choice is
proposed for simplifying the problem.

Consider a given function p € H defined as

N
p=> pi (3.4)
=1

where p := {p;};<i<y € H is a given finite set of functions. Recall that this is the function form
of interest that arises in our main problem previously introduced in Section 2.1.1. We propose to
carry out the ABS construction by looking at subsets of p of the form

VS C{l,....N}, &s:={pi}ics. (3.5)

This consideration leads to the following naive but convenient technique. Assuming that p
contains admissible ABS elements (e.g. p C G), our goal is to find an optimal selection of indices
S C{1,...,N}, such that the following density fitting approximation

prps =Y cipi, (3.6)
€S

has an accuracy that is assessed as ||p — pg| and is smaller than a prescribed tolerance value.
Here, the vector ¢ := (¢;);cg is defined as the solution to the least-squares problem of Eq. (2.18),
for orthogonally projecting p on the space Span(p;);cg. This allows to restrict the full space
search from the admissible set G to discrete subsets of indices.

For the special case of a function p € H defined as Eq. (3.4), the ABS generation problem for
bases of the form Eq. (3.5) can be formulated as follows. We can obtain an auxiliary basis set
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by solving the following discrete optimization problem, of finding subsets S C {1,..., N} that
minimize the associated best approximation error, subject to a user-defined size constraint, i.e.

. : 2

min min —ol®. 3.7
SC{l,..,.N} ocSpan(és) lo=ol (3.7)
subject to card(S) < M. (3.8)

Note that the first minimization in problem (3.7) is performed over discrete sets, contrary to the
continuous one in the full problem (3.2). Hence, we now look for subsets of a finite set of size
N, instead of a possibly uncountable set G. For these reasons, the restricted ABS problem is
expected to be algorithmically easier to solve than the full one.

3.2.2 From basis generation to submatrix selection

In the present paragraph, we focus on deriving a matrix expression of the best approximation
error for a given index selection. The main idea is to exploit the underlying least-squares problem
of density fitting and use the normal equations of Eq. (2.20). Let G denote the Gram matrix of
the finite set of functions p, defined as

G = (plp). (3.9)
Note that there holds

<,07 P> = ZZGU'

i=1 j=1
For any subset S C {1,...,N} of M indices, we denote by G(S,S) the associated M x M
submatrix of G with indices in S. Similarly, G(S,:) and G(:,S) are submatrices of dimension
M x N and N x M, respectively. The best approximation error on the density p admits a matrix
expression, in terms of submatrices of the Gram matrix, given by the following statement.

Corollary 3.2.0.1 (Error in matrix form). Let S C {1,..., N} and assume that the submatriz
G(S,S) is invertible. The following expression holds

min : lp—oll>=1"T [G - G(:,S)G!(S,8)G(S,:)] 1, (3.10)

o€Span(€g
where 1 € RY is the vector of entries 1, =1 for all 1 <i < N.
Proof. See proof in Section 3.4. O

This statement connects the best approximation error to a Gram submatrix expression. Note
that if S is the full set of indices, then the matrix difference on the right-hand side of Eq. (3.10)
is equal to zero.

3.2.2.1 The Gram matrix row and column selection problem

We deduce from Corollary 3.2.0.1 that the restricted problem of Eq. (3.7) under the constraint
of Eq. (3.8) can be equivalently written as follows:

' 17 [G -G -1 )1 11
s fm [G—G(;,9)G'(5,9)G(S,1)] 1, (3.11)
subject to card(S) < M. (3.12)

Note that this is not a matrix approximation problem. It is simply a row and column selection
problem under an error functional. The matrix error functional gives the quadratic form
realization for the vector consisting of ones, i.e. it is defined as the mapping

N N

i=1 j=1
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Let us emphasize that this mapping does not define a matrix norm. The objective error
functional is less general than a matrix norm, which aims at optimizing the algebraic error of the
matrix when applied to an arbitrary vector. In our case, however, we only look at the output of
the matrix realization measured for a single vector, i.e. 1. As a result, matrix approximations
being optimal for matrix norms may not necessarily be suitable for the error functional of
Eq. (3.13). Inversely, when selecting the subset S C {1,..., N}, we have the freedom to commit
algebraic errors as long as the error realization on the vector 1 remains small.

3.2.2.2 Related methods

We review related methods for selecting row and column indices in Gram matrices. Let n € N*.

Adaptive cross approximation. Given a square matrix A of dimension n-by-n, existing
numerical algebra methods construct cross approximations [27, 28] of the form

A~A(;LC)A YR, C)A(R,:), (3.14)

where C' is a subset of column indices and R is a subset of row indices, with card(C) = card(R).
The Adaptive Cross Approximation (ACA) [35] proposes to construct sets C and R in (3.14),
yielding submatrices of approximately maximal volume, i.e. maximal determinant in absolute
value. ACA serves as an alternative to truncated singular value decomposition for obtaining
low-rank matrix approximations, in favour of computational complexity cost. Standard ACA
algorithms [349] follow a process analogous to Gaussian elimination with complete pivoting, for
greedy selection of row and column indices [223]. Note that the selection of rows and columns is
not necessarily symmetric. For symmetric positive semidefinite matrices, however, it is known
that the submatrix of maximum volume is attained for a principal submatrix [223, 89], therefore
the constraint R = C' can be added.

Nystrom approximation. The Nystrom approximation [220] is based on performing a
submatrix eigendecomposition for approximating a given matrix A. It finds applications to
discrete data kernel matrices, i.e. Gram matrices with (i, j)-entry equal to K(x;,x;), for
{x;}1<i<n € R? data points living in dimension d € N* and K : R? x R? — R a kernel function.
For this type of Gram matrix, the Nystrém method yields a cross approximation of Eq. (3.14), for
S := R = C. Existing methods for selecting the index set S are based on the so-called landmark
points, i.e. subsets of the discrete dataset, that employ randomized or geometric criteria for point
sampling [341, 350].

Pivoted Cholesky decomposition. The Pivoted Cholesky Decomposition (PCD) is a method
that allows to construct low-rank approximations based on greedy row and column selection.
We refer to [156, 214, 143] for more information on this method. If A € R™*" is a symmetric
positive semi-definite matrix, Cholesky factorization with complete pivoting consists of finding a
permutation matrix P € R"*™ such that

PTAP~LL', (3.15)

where L € R™"*" is lower triangular with positive diagonal elements and r < rank(A) a rank
estimation under a given tolerance value. Note that [207] PCD yields the exact decomposition

P/AP, =L,LS, (3.16)

where P, (resp. L,) is a matrix of dimension n-by-r (resp. r-by-r) resulting from discarding
the columns (resp. rows) of P (resp. L) indexed by r + 1,...,n. PCD determines numerical
estimates r for the rank of A using a stopping criterion. At the jth iteration of PCD, let A7)
denote the computed matrix, with initialization A(®) = A. Pivoting is introduced by finding the
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largest possible entry from the remaining n — j + 1 diagonal elements of AG-1D and using it as
the pivot in A . At jth iteration, if the pivot satisfies an appropriate condition, then we set
the trailing matrix to zero and the computed rank is 7 = j — 1. In particular, the algorithm we
consider (see [214, Algorithm 5.1]) is stopped on the jth step if the following stopping criterion
on the pivot is satisfied
max AY Y <e, (3.17)
j<i<n
where ¢ is a prescribed zero-threshold. The standard form of pivoting is defined as the largest
diagonal entry of the current trailing matrix:

Vi<j<r s;:=argmax {Agg_l): Jj<i<n}. (3.18)

Note that this is a greedy pivot selection. In particular, the diagonal elements of the matrix L
are the pivot values. Due to the stopping criterion (3.17), all pivot values are greater than e.
The non-zero elements of the permutation matrix corresponding to pivot indices are such that

Vi<j<r, P, .=1.

3J
Truncated singular value decomposition. The Truncated Singular Value Decomposition
(TSVD) [144] is a low-rank approximation method. It does not allow to select row and column
indices, it can however construct optimal subspaces of given dimension approximating a given
space. We mention TSVD as it can be used for comparison to our methods, regarding the
projection accuracy using a given number of functions. TSVD consists of first calculating a full
Singular Value Decomposition (SVD) for a given matrix A € R"*" as

A=UxXV',

with 3 = diag(o;)1<;<, diagonal matrix, o; > 05 > --- > o, singular values of A and U,V
orthogonal matrices. Then, truncating ¥ yields low-rank approximations of A that are known to
be optimal in Frobenius and spectral norms, as stated by the Eckart-Young theorem [156, 130].
TSVD can also be used to approximately solve a possibly ill-posed given linear system Ax =b
(e.g. ill-posed normal equations of a least-square problem). The idea is to discard singular values
that are numerically zero and define the pseudoinverse of the matrix 3, for a fixed rank r < n,
denoted by > as

-1<
Vi<i<n, xi.={% > '=" (3.19)
0, otherwise.

An approximate solution x ~ x, using TSVD can then be obtained by letting
x, := VXU b. (3.20)

This method can be interpreted as a regularization, where singular values of the Moore-Penrose
pseudoinverse AT of A are truncated if they are below a threshold [154, 88]. The low-rank
solution x, to Ax = b < x = A'b obtained by TSVD is optimal [50], since VETUT is the best
rank-r approximation of Af.

3.2.3 The case of electronic density functions

We are particularly concerned by the application context of the Gaussian electrostatic model
presented in Section 2.1.2.2. In this context, reference functions are electronic densities, interac-
tions are given by intermolecular integrals and the convention is to use Gaussian-type orbital
auxiliary basis sets, due to molecular integration schemes (see Section 1.1.4.4). For simplicity,
we plan to construct ABSs made of orbitals centered on atoms. Our methodology then directly
generalizes to more general center choices, including midbonds. The context of interest can thus
be summarized as follows:
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e pis an electronic density function discretized using a linear combination of atomic Gaussian-
type orbitals, in the form of Eq. (1.26).

e £ is an atomic Gaussian-type orbital (GTO) basis set, which is a family of discretizations
defined in Section 1.1.4.

Our schemes will be proposed in this specific setting. First, we explain in more detail the
important points to take into account in this application context. We begin by discussing in
Section 3.2.3.1 how to define the admissible set of ABS elements, such that the cost of evaluating
a single interaction, defined by Eq. (3.1), is fixed. We then explain in Section 3.2.3.2 how to
derive an initial auxiliary basis set of desired form from a given electronic density function. This
is a starting point for obtaining ABSs of desired form when solving the restricted ABS generation
problem of Eq. (3.7) under the constraint of Eq. (3.8).

3.2.3.1 Basis set requirements

We are particularly concerned by minimizing the cost of a single pairwise interaction defined in
Eq. (2.2). In this respect, we focus on interactions given as intermolecular integrals. We mention
aspects relative to Gaussian-type orbitals and molecular integration. Our constructed auxiliary
basis sets will respect the following properties, regarding their analytic form.

Atom-wise consistency. The entire concept of atomic Gaussian-type orbital basis sets is
built upon assigning basis sets per atom type. In particular, recalling how atomic basis sets have
been defined in Section 1.1.4, to every chemical type we associate a set of orbitals centered at
zero. Orbital centers are assigned at a second level, given the nuclear coordinates of an atom in
a molecule. Assigning an atomic center to an orbital x,,, centered at the origin, is performed by
translation in the Euclidean space, i.e. by translating the origin to a given coordinate R € R? as
X, (- —R). All atoms of the same chemical type, independently of their position, will have the
same orbital types and exponents, which is a property that we refer to as atom-wise consistency.
This property assures compatibility with available formats in data bases, as well as efficient
storage and processing of orbital bases in quantum chemistry codes.

Symmetry. A property closely related to atom-wise consistency is orbital symmetry with
respect to the atomic conformation. The starting point is the angular-radial decomposition
of a Gaussian-type orbital, given by Eq. (1.21). Essentially the angular part, given by the
spherical harmonic, is independent of the atomic position and acquires spherical symmetries.
Figure 3.1a shows the angular part of p-type orbitals (¢ = 1). Notice the rotational symmetry
of orbital components with respect to the real axes. The angular part is expected to point
to the appropriate direction, according to neighbour atoms and bond directions. This can be
achieved by rotating or reflecting orbitals. Figure 3.1b shows an example of six fluorine atoms
in the SFg molecule, for which atomic orbitals of p-type have six different axes of symmetry,
each one obtained by rotation around the sulfur atom. Yet, the reason why a p-type orbital
family is actually rotated "naturally", i.e. by taking linear combinations of atomic orbitals, is
the following. Consider a rotation R € R?*? around the origin in the Euclidean space, sending
the unit vector r € S? to r’ € S2. The following decomposition holds [113, Equation 4.1.4]:

14
nm(rl): Z bmm’}/fml(r)’ (3'21)

m'=—/(

where b,,,,,, is a coefficient that depends on the rotation R, admitting an expression in terms
of Wigner D-matrices [292]. Moreover, for a given degree ¢, all m = —¢, ..., ¢ components are
linearly independent. In other words, rotated spherical harmonics write as an expansion of 2¢ + 1
spherical harmonics of the same degree. Lastly, spherical harmonics remain the same up to a
sign under the action of reflections. For these reasons, the set of p-type orbitals in Figure 3.1b,
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(a) p-type orbital components centered at the origin. § %

(b) Translated and rotated p-type orbitals.

Figure 3.1: Sulfur hexafluoride, with formula SFg, is a compound with six fluorine atoms
symmetrically arranged around a central sulfur atom. Sulfur shares two electrons with each
fluorine. Orbitals of sulfur have been omitted.

translated to coordinates of fluorine atoms, can capture all bond directions when used as a
discretization basis for calculating the electronic ground state. To summarize, an orbital basis
can be rotated in any direction or reflected only if all components of a given angular degree ¢ are
included.

Orbital type. The orbital type affects the computational cost of direct molecular integral
computations. In Cartesian coordinates, for instance, the higher the orbital type, the deeper the
recurence relations used in the McMurchie-Davidson scheme for Gaussian-type orbitals [228].
These methods are based on Hermite-Gaussian intermediary conversion of GTOs. In this case,
we should also take into account the cost of converting an auxiliary basis function from Gaussian
to Hermite-Gaussian form. This cost depends on the angular momentum of the Gaussian. From
the McMurchie-Davidson recursion, the number of Hermite coefficients, denoted by H{,, € R,
we need to generate given a GTO of angular momentum ¢ in spherical form, must be such that
0<n+t+u+v <20+ 1. This number can be explicitely computed as [288]

z‘f <j§3> _ ((2€+41)+4)'

Jj=0

From this point of view, spd orbitals, used in the Gaussian electrostatic model [34] are optimal
since thanks to the inclusion of all lower types of the same orbital exponent, the McMurchie-
Davidson recursion is greatly simplified, helping to reduce the time spent on direct integration
(see Appendix C.2.0.3 for more details). For these reasons, a reasonable requirements is to impose
a given maximal orbital degree on the ABS, so as to narrow down these recursions.

3.2.3.2 Decomposing electronic density functions

We propose a method to define an initial set of admissible auxiliary basis functions, given an
electronic density function p, discretized over a set of atomic Gaussian-type orbitals {x,}1<.<n,
as in Eq. (1.26), that we recall here:

Ny Ny

VreR?, p(r) =YY D, (r)x.(r), (3.22)

p=1v=1
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with D = CCT and C"SC = I. This electronic density is a special case of the general finite
sum decomposition of Eq. (3.4), reading

N
p=>p (3.23)
=1

for N := (jgb) + N, the number of orbital pairs up to permutational symmetry, i.e. using

XXy = XuXpus and p := {p;}1<;<n the family of functions defined as
VI<i<N, p;=2"2%D,x,.xX0 (3.24)
with (u,v) := (i) for 7 an enumeration of indices, i.e. a bijective map between index sets
m:{l,...,N} = {(g,v): 1 <pu<v <N} (3.25)

Note that any element of the family p is a product of atomic orbitals, multiplied by some scaling
coefficient. The scaling depends on the density matrix, it also treats the permutational symmetry
of pairwise products. The finite sum decomposition of the electronic density given by Eq. (3.23)
allows to apply the restricted search strategy and look for auxiliary basis sets as defined in
Eq. (3.5).

Atomic and non-atomic products. Orbital products can be used as auxiliary basis [324].
Indeed, among orbital products, atomic orbitals can be extracted directly from the definition of
Eq. (3.22), as follows. The electronic density admits a decomposition consisting of two parts:

Ny, Ny,

p=| > Duxux |+ D Duwxuxs | (3.26)
w,r=1 w,r=1
ru=ry r, #r,

where r,, € R3 denotes the atomic center of the orbital Xu- The first part contains orbital
products centered on the same atom, while in the second one, product components are centered
on different atoms. The Gaussian product theorem (see Theorem C.1.1) states that a GTO
product can be written as a Gaussian overlap distribution with a composite center. If r, =r,,
we find that the product x,x, is an atomic GTO, centered on the common center. On the
other hand, if r, # r,, then the product x,x, can be written in terms of a Gaussian, whose
center lies on the segment joining the atomic centers r,, and r,, times a polynomial that is not a
monomial, however. Such products, not respecting the GTO definition, are thus non-admissible
ABS elements. This simple observation shows that admissible ABS elements can be found among
orbital products, precisely in the first part of the decomposition of Eq. (3.26).

Picking atomic orbital products in order to reach a target ABS size lies at the core of our
methodology. Atom-centered GTOs in the finite set p, with elements defined as in Eq. (3.24),
are precisely indexed by the set

Lpm = {n " (,v) i1, =1, 1<pu<v <N}, (3.27)

with 7 an enumeration defined as in Eq. (3.25). Note that elements in I, are not necessarily
consecutive indices, as we made an index selection that essentially discards off-atom products.
We propose to discard the second part of the decomposition of Eq. (3.26) altogether and narrow
down the ABS search by looking for subsets S C I, that solve problem of Eq. (3.7) under
the constraint of Eq. (3.8). We use this idea as a starting point for building ABS generation
schemes, presented in the following.
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3.2.4 Auxiliary basis generation schemes

The selection of the index set S C I,;,,, yielding the solution to the restricted ABS generation
problem of Eq. (3.7) under the constraint of Eq. (3.8), respecting the additional basis set
requirements of Section 3.2.3.1, can be carried out using the scheme proposed in the present
section.

Our method consists of a series of matrix operations that allows to obtain auxiliary basis
sets systematically. The calculation of the auxiliary functions hinges upon the selection of GTO
products in the decomposition of Eq. (3.26), for a prescribed level of accuracy on the error
of Eq. (3.10). This can be translated into a selection procedure in matrix form thanks to our
method. The requirements on the auxiliary basis form, previously presented in Section 3.2.3.1,
first lead us to a new method for defining a suitable type of Gram matrix. Then, we apply a
greedy procedure for selecting Gram matrix rows and columns based on the pivoted Cholesky
decomposition. Before describing our algorithm, we first provide a quick overview of its main
steps:

1. Initialization of a matrix, denoted by A, representing the overlap of admissible orbitals
under a given inner product. It is obtained by block treatment of an appropriate matrix
built from a given electronic density function.

2. Row (and column) selection for the matrix A.
3. Post-treatment of selected orbitals.

The series of preparatory operations of Step 1, allowing to assemble the matrix on which
we perform row and column selection at the later stage of Section 3.2.4.2, is first described in
Section 3.2.4.1. The goal of this preparation, as well as of the post-processing in Step 3, is to
assure that selected functions will respect a desired analytical form. At the end of Section 3.2.4.3,
the result of our algorithm is an auxiliary basis made up of primitive atomic Gaussian-type
orbitals, respecting the atom-wise consistency and the orbital type symmetry requirements.

Note that the use of pivoted Cholesky decomposition for constructing auxiliary basis sets is
not a new idea [251]. However, compared to existing methods, the originality of our method is
that, first, the Gram matrix on which we apply this selection is systematically defined from a
given electronic density and second, we use the density matrix that is available due to the specific
context of the Gaussian electrostatic model (see Section 2.1.2.2). Overall, we avoid empirical
rules in the creation of admissible auxiliary basis sets, such as the high angular momentum
pruning [199] and the effective Gaussian exponent [196].

3.2.4.1 Block treatment of Gram matrix

Let us consider as input an AO basis set {x,}1<,<n, and a density matrix D € RNe XNy

The following treatment allows to initialize a Gram matrix containing orbital product data in
admissible form. Before detailing the steps, let us briefly state that the first step weights the AO
Gram matrix by the density matrix and expands the possibly contracted AO basis to primitives.
The second and third steps perform post-processing of matrix blocks based on angular degrees
and atomic centers. The goal is to end up with a matrix for which any selection of rows and
columns yields admissible auxiliary basis functions of desired form.

Step I - Basis decontraction and precondition. If the given AO basis consists of contracted
GTOs, as it is commonly the case, then we propose to additionally expand the contractions before
proceeding. This allows to gain systematic control over primitives. Note that most conventional
auxiliary basis sets existing in the literature are made up of primitive orbitals. In the present
step, we illustrate how to decontract the product basis set in matrix form. Simultaneously, we
weight primitives using the density matrix, initially given on the contracted basis. Note that such
step assumes that the density matrix has been evaluated by solving the ground state problem of
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Eq. (1.17). This is the case for example in the Gaussian electrostatic model (see Section 2.1.2.2).
Otherwise, if this is not the case and the density matrix is not available, weighting by the density
matrix should be omitted altogether.

Let N, denote the contracted AO basis size and N,, the primitive (uncontracted) one. There
holds N, < N, since the primitive basis consists of individual components in AO contractions,
obtained by decontracting summations of the form of Eq. (1.19). For example, the contracted
basis set {2s,p} uncontracts to {s,s,p}. We can find a change of basis matrix, denoted by
B € RV»*Ms | that allows to pass from the contracted basis, made up of functions X', to the

primitive basis. The Gram tensor of weighted primitive AO pairwise products, denoted by
G € RNpXNpXNpX Ny has entries defined as

Ny
qurs = Z Bp,quVD,u,V<X,uXV7XHX)\>DH>\B7‘HBS)\‘ (328)

vk, A=1

Every dimension of G corresponds to a set of primitive GTOs.

Step II - Orbital type block contraction. This step concerns the block contraction of the
primitive Gram tensor defined in Eq. (3.28), for blocks defined by orbital types.

To begin with, we consider that any two given AOs of the same atomic center and orbital
exponent belong to the same orbital type if they have the same angular degree. For Cartesian
GTOs of Eq. (1.18), components of an angular degree ¢ are obtained by varying (I, m,n) € N*
such that [ +m+n = £. For spherical GTOs of Eq. (1.21), this is achieved by varying the angular
order —¢ < m < /. Recalling Section 1.1.4.2, the component number for a given angular number
Cis (€ +1)(¢+2)/2 for the Cartesian form and 2¢ + 1 for the spherical one. By convention, any
given atomic orbital basis contains all components of a given orbital type. We want to ensure
that the same property holds for auxiliary basis sets. This allows to achieve the desired rotational
symmetry, as given by Eq. (3.21).

The idea is to contract atomic orbitals belonging to the same orbital type at this stage. This
ensures that all components of an orbital type are treated as inseperable blocks during the
selection procedure that comes later on. A block contraction, applied to the tensor G, that
allows to achieve this goal can be introduced as follows. Let B={B,,...,B N;} be a partition
of the set of indices {1,...,N,}, representing a grouping of the family of N, primitive AOs
into blocks of fixed total number N € N* with Ny < N,. In our case, each block is defined
as a set of primitive AOs belonging to the same orbital type. For example, if the given orbital
basis in primitive form is {s,p,,p,,p.} centered on an atom, then the same basis regrouped by
orbital type is {s,p}. The set of primitive indices is {1,2,3,4} and the orbital group partition is
B ={B;, By} with B; = {1} and B, = {2, 3,4}.

Define the contraction matrix, denoted by M, that contracts blocks of primitive orbitals
belonging to the same partition, as the N;-by-NN,, matrix with entries

and zero otherwise. In practice, this matrix M is a block diagonal matrix, with each i-block
being a row matrix of dimension 1-by-card(B;). Applying this block contraction to the tensor G
yields a new tensor, denoted by T € RNo *Np XN XNy with entries defined as

Ny,
Tiw = Y, MyM;Go My, M. (3.29)
p.q,r,s=1

Indeed, by considering each partition in B to be an orbital type, we manage to consider the
corresponding primitive atomic orbitals as inseperable blocks, as shown in the example of
Figure 3.2a. This example concerns the simpler but similar case of Gram matrix of a given
atomic orbital basis, with two-center integrals for simplicity in the representation. For the case
of four-center integrals, which is the one of interest appearing in the tensor T, one needs to add
two extra dimensions to this example.
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Figure 3.2: Left: Block structure of Gram matrix of atomic orbital basis for a diatomic system
with identical orbitals {s,s,p} centered on each atom. Each block within panel (a) contains
orbitals of the same angular type. Right: Block structure of Gram matrix of atomic orbital
products, with entries of the form (x,X,,Xx,xx) (with pairwise folded dimensions) for a given
atomic orbital basis {x,},. The block label corresponds to the four atoms on which each of

the four orbitals is centered. Blocks coloured green are atomic blocks, the remaining ones are
discarded.

Step III - Atomic block partition. The operation described in the present paragraph
concerns discarding non-atomic orbital products. To achieve this, we first fold pairwise the
dimensions of the tensor T defined in Eq. (3.29), in order to recover orbital products. Let
7 :a > (i,7) be an enumeration, i.e. a bijective function mapping indices 1 < a < N;Q to pairs
of indices 1 <,j < N,. Then we introduce the N, 2-by—NI’,k 2 matrix G with entries defined as

Gap = Tijr,  (i,5) =m(a), (k1) :=n(b). (3.30)

Every row (and column) of G corresponds to a product between two orbital types. The full set of
product indices {1, ..., N;2} can be partitioned into blocks according to the orbital center, that
is atomic or off-atomic, of the associated product. The atomic center associated to a primitive
belonging to a block B, in the partition B should be denoted by r;. Given the set of atomic
product indices, belonging to

aom i ={a1,..ay }={r"'(i,j):r;=1;, 1<i<j<N,} (3.31)

of total number N, < N;‘2, we may associate a restriction matrix, denoted by R, defined as the
matrix of dimension N, C—by—]\f;2 with non-zero entries

VI<i< N, R, =1 (3.32)

Note that the above definition of I}, in Eq. (3.31) is an alternative to Eq. (3.27), that consists
of further taking into account orbital type symmetry. The aim of the restriction matrix R is to
discard blocks centered on midbonds. An example of such restriction is shown in Figure 3.2b.
The Gram matrix of N, atom-centered products can then be recovered as

A :=RGR'. (3.33)

Every row (or column) of A corresponds to a group of primitives belonging to a given orbital
type, centered on an atom.
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3.2.4.2 A new selection procedure

After the initialization and preliminary block treatment of the Gram matrix of orbital products,
resulting in the final matrix A, defined in Eq. (3.33) the last step is a symmetric row and column
selection that allows to give rise to auxiliary basis sets in a systematic way. Here, we present
our method to construct the index set S C {1,..., N,} for solving the minimization problem of
Eq. (3.11) under the constraint of Eq. (3.12).

It is crucial to select products in a way such that the spanned space accerately reproduces
the full space of products, under the error functional of Eq. (3.10). To this end, our main idea
lies in exploiting that the full set of GTO products suffers from strong linear dependencies, as
numerically observed in the literature [62, 196, 198]. Due to this property, the underlying Gram
matrix can have a low-rank structure, that we exploit to extract auxiliary basis subsets. Note
that such methods also apply to any kernel matrix, measuring the similarity between pairs of
discrete or continuous data. Just as in the discrete data case [154, 77], in the continuous case we
have that if a given basis set &€ contains reduncancy in the form of linear dependence, then the
Gram matrix (£|€) is ill-conditioned.

Remark. Let us make a point on auziliary basis sizes for the sake of clarity. The number N, of
rows and columns of A counts the number of admissible auziliary functions regrouped by orbital
type. Given a target k € N*, our algorithm provides a selection of k rows (and columns). The
point is that k is smaller or equal to the total number of individual components of selected orbitals,
up to now denoted M, obtained by expanding orbital types. For example, a selected p-type orbital
needs to be expanded in individual components p,,p,, P, to obtain the auziliary basis of size M.
Hence, we shall keep in mind that our proposed algorithm directly controls only the number k.

Step IV - Greedy row and column selection. Our auxiliary basis generation is based
on a greedy procedure, for symmetrically selecting row and column indices, i.e. submatrices,
from the matrix A defined in Eq. (3.33). This will allow us to construct subsets of the index set
{1,..., N_} of target size. Our idea is to use low-rank approximations of A. Algebraic motivation
lies in numerical evidence demonstrating the low-rank structure of the electron repulsion integral
matrix [31], that is the Gram matrix of orbital products for the Coulomb kernel, as well as of
the overlap matrix, see Section 1.1.4.3, related to the Dirac interaction kernel.

Our method to construct index sets S is based on the pivoted Cholesky decomposition.
Employing notation from Section 3.2.4, let us fix a tolerance value € > 0 and compute PCD
for the matrix A, obtaining the decomposition of Eq. (3.15), with estimated rank denoted by
r € N*. Given a target number M, € N* of auxiliary functions grouped by orbital type and
assuming that M, < r, our selection procedure consists of defining the index set S, solution to
the restricted ABS generation problem, as the set consisting of the M, -first pivots obtained by
PCD, denoted by s; and defined in Eq. (3.18), i.e.

S::SM* :{51,...,5M*}g{l,...,NC}.

Recall that indices s;’s are obtained by looking at M, -first rows and columns of the PCD matrix
L while inverting the index permutation P to recover initial rows and columns of A. This way,
the index set Sy, is a collection of row indices of A sorted in pivot decreasing order, according to
the stopping criterion in Eq. (3.17). Hence, the set Sy, can be interpreted as the set containing
the most linearly independent set of M, rows and columns of A. Such selection then allows to
recover auxiliary functions by looking at partitions B of orbital types, defined during the Step II.
In particular, the retained auxiliary function set, solution to the restricted ABS problem, is the
set of primitive atomic orbital products, defined, for any fixed 1 < M, < r, as

£M* = {X\pyq: (p7 q) € Bz X ij (Zm]) = Tr(as)v ERS S]M*}a (334)

where {X},}1<p<n, denotes the primitive AO basis, obtained from the given (possibly contracted)
AO basis {x,}1<u< ~,- Note that, at this stage, the recovered basis contains primitives that
respect the orbital type symmetry. Finally, M := card(€,, ). Note that M, > M,.
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3.2.4.3 Post-treatment

A post-processing step must be taken into account, described as follows. For physical reasons
we should consider the same auxiliary basis for all atoms of the same chemical type, a property
described as atom-wise consistency in previous Section 3.2.3.1. A result of this requirement is
the following. If during the selection procedure of Step IV, a function is discarded on one atom
but included on another atom with the same chemical type, then this function will be included
back again in the final auxiliary basis to make the basis set atom-wise consistent.

This procedure can be formally described as follows. Let us consider a molecule of N, atoms,
with atomic positions {R;};<;<y, and atomic charges {z;};<;<n, . Let &, denote the ABS
obtained by the Step IV of our algorithm applied to the given molecule, of the form of Eq. (3.34).
It is assumed that the ABS is of Cartesian GTO form and contains all components of a given
orbital type defined as follows. The set of Cartesian GTOs of the same orbital type is defined,
given an orbital exponent «, center R € R? and angular degree ¢, as

Gla, R, 0] == {Gn(r —R,a): (I,m,n) €N?> [ +m+n=1"}, (3.35)

where G,,,,, is a GTO in Cartesian form, centered at the origin, defined by Eq. (1.18), of angular
degree | + m + n. Now, we may regroup orbital types belonging to §,, by atomic centers.
For every nucleus, uniquely defined by its position R; and atomic type z;, we define the ABS
associated to this nucleus, but centered at an arbitrary point, as the set of size IV;, with elements
the orbital types

VR e R’ &[R]:={G[a),R,(]:1<j <N},

where a;'- denotes the orbital exponent of the j-orbital type centered on the i-atom obtained
from the given ABS &, , similarly for é; The above definition allows to center a GTO basis on
arbitrary point R.

The final ABSs will be assigned by chemical type. In this respect, atomic charges can be
used to identify elements in the periodic tables, e.g. z = 1 corresponds to H, z = 2 to He, etc.
The final ABS can be obtained by taking the union of for all chemical types.

N(l NO/
&= U &R
i=1 j=1
z.

N,

A small example of dihydrogen molecule. Suppose that the ABS for the first atom is G(a, Ry, ;)
and for the second atom is G(ay, Ry, ¢y), with a; # ay and ¢; # ¢y. Since z; = z,, the final
ABS of the molecule will be {G(a1,Rq,41),G(as, Ry, 4y),G (a1, Ry, €1),G(aa, Ry, £5)}. Notice
that in the final ABS, both nuclei are assigned to the same basis function parameters, i.e.
{(aq, %), (g, €5)}. Lastly, note that the final number of auxiliary basis functions, denoted by
M := card(§), can be (slightly) larger than M, = card(€,, ) constructed during the previous
Step IV. Recall that our method has direct control only on M,,.

3.2.5 Summary of Auxiliary Basis Set (ABS) generation scheme

The present section summarizes the overall procedure for generating auxiliary basis sets for
density fitting using our method.

Algorithm 1 summarizes the main result of the present work, which as a new ABS generation
scheme. Recall that, our algorithm essentially controls the number of auxiliary functions
regrouped by orbital type, denoted by M,. The auxiliary basis set generated with our method
will be denoted by PCD-M, and corresponds to an ABS of rank M., containing the best M,
atomic orbital products from a given primitive atomic orbital basis set, grouped by orbital type.
From M, given functions grouped by orbital type, one then obtains the M auxiliary functions by
counting individual components included in each orbital type. The M selected functions respect
orbital symmetry and atom-wise consistency.
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Lastly, let us make a comment on angular degrees and introduce a related modification
to our method. In previous Section 3.2.3.1, we saw that high orbital types are related to less
cost-efficient molecular integral computations. At the same time, the angular degree of product
bases is expected to be higher than the one of standard orbital bases. In order to lower the
angular degree within our method, we may include an additional step during the block-treatment
of the Gram matrix, consisting of discarding rows and columns corresponding to orbitals with
higher type than the desired one. Alternatively, one could manually modify the orbital type of
products, to lower it if needed. This idea could allow to create for example bases respecting a
given maximal angular degree.

Algorithm 1: Auxiliary Basis Set (ABS) generation yielding the ABS PCD-M,.

Input: AO basis set {x,}1<u<n,, D € RN XNy - M€ N*| inner product (-, -)
Output: AO ABS of target size M, (by orbital type) optimized for best approximations
of the density p = Zf:’,by=1 D, XX, under the norm || - || := (-, N1/2
1: Compute uncontraction matrix B € R¥»*™o with N,, the number of AO primitives.
2: Weight by D and uncontract by B the AO product four-index tensor with entries
(XuXvs Xk X)), to obtain the weighted primitive four-index tensor G.
3: Assembly the orbital type block contraction matrix M and contract orbital types in
each dimension of G to form the tensor T.
4: Fold pairwise dimensions of T to form the overlap matrix G of products.
5: Assembly the atomic restriction matrix R and discard off-atom orbital products to
form the matrix A = RGRT.
6: Perform PCD to A with tolerance value € = 107! to obtain r-rank estimation and
pivot indices sorted in pivot decreasing order, denoted by {s;: 1 <i < r}.
7. If M, > r then return error.
8: Recover AOs associated to rows indexed by {s;: 1 <i < M.} in A.
9: Post-process recovered AOs to force atom-wise consistency.
10: return ABS.

3.3 Numerical results

In the present section, we show how our auxiliary basis generation method numerically compares
to conventional ones. All results presented in this section are generated using our dfwpy code in
Python (see Appendix A for implementation details). Target molecular systems used for testing
are rigid water fragments.

Before discussing results, let us quickly mention the methods under comparison. In particular,
our generated ABSs obtained by Algorithm 1 are compared to existing empirical ones, found in
the literature, namely the RI [337] and JKFIT [335] auxiliary basis sets. Table 3.1 shows the sizes
of state-of-the-art auxiliary basis sets, counted by orbital type and by individual components.
Recall that the number of individual components in spherical form is obtained by counting all
orders —¢ < m < /¢ for a given ¢. Results show that the auxiliary size M is roughly between
2N, and 5Ny, where N, is the AO basis size. Note that all compared auxiliary bases are made
up of primitive orbitals. The aim of our numerical study, presented in this section, is to see if
our method can achieve fewer auxiliary basis functions than state-of-the-art methods with low
accuracy loss on frozen core energies.

Lastly, let us mention that all ab initio density matrices of water fragments used in experiments
are obtained by solving a Restricted Kohn-Sham problem using the B3LYP hybrid exchange-
correlation functional [303], that breaks down to the use of a self-consistent field algorithm for
finding the ground state solution [200].
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basis AO RI JKFIT

Ny Ny | M, M | M, M
aug-cc-pvdz | 18 41 | 40 118 | 52 150
aug-cc-pvtz | 31 92 | 56 198 | 58 196

Table 3.1: H,O molecule. Spherical basis size given by orbital type (starred) and by individual
components (N, and M), for AO bases and state-of-the-art auxiliary bases.

3.3.1 Frozen core energy of rigid fragments

The performance of methods is assessed in terms of frozen core energy errors as well as of
timings, throughout this section. We use three test systems, for evaluating pairwise rigid
fragment interactions: (i) ten standarized Smith dimers, (ii) a small water cluster of 27 molecules,
(iii) large-scale water clusters up to 10* molecules. For a summary of test cases, we refer to
Table 1.1. Let us recall that in all such systems, all fragments are identical. This means that the
frozen library contains a single water fragment, whose ab initio density is computed offline.
Frozen core energies are electron-electron (denoted by EE), whose exact formula is defined in
Eq. (1.39) and its approximation in Eq. (1.42), and exchange-repulsion (denoted by XR), whose
exact formula is defined in Eq. (1.40) and its approximation in Eq. (1.43). For each energy term,
we used a kernel explicit metric to perform the density fit on a single water fragment belonging to
the frozen library. Namely, the approximate density for the EE energy has been fitted using the
Coulomb metric while for the XR energy using the Dirac one. Recall from Section 2.1.2.3 that
these metrics are optimal for their respective choices of energy terms. The frozen core energies
computed from auxiliary bases using density fitting are given by the formula of Theorem 2.3.4.
Frozen core energy errors are assessed using the following metric. Consider a cluster of
N; € N* fragments, denoted by Ay, Ay, ... ,ANf. Let j be an index used to enumerate a given

fragment pair (4; ,A4;,) with 1 <i; #iy <Ny, 1 <j<nandn:= (A;f) the number of pairs

of distinct fragments. If E; € R is the intermolecular interaction energy of the j-th fragment
pair computed using reference ab initio fragment densities and F; € R the same energy term
computed using approximated densities, then the total error of the cluster is measured as the
root mean square error (RMSE) of all errors of its fragment pairs, defined as

(3.36)

Note that this is an absolute error measure, used throughout the present work.

3.3.1.1 Ten Smith dimers

We first assess our auxiliary basis set performance for the ten standarized Smith dimers. More
information on the exact energies used as reference measured on this cluster can be found in
Table 3.2. Note that, results show that the order of magnitude of the exchange-repulsion is very
small and is generally comparable to the target chemical accuracy, that is equal to 10~2 Hartree.
For this reason, relative errors would not be suitable for assessing the density fit accuracy on
energies. Taking this consideration into account, we prefer the use of the absolute root mean
square error of Eq. (3.36), that does not have this issue.

Figure 3.3 shows the absolute root mean square errors on frozen core energies for ten Smith
dimers, using optimal choices of kernel explicit metrics to perform the density fit. Obtained results
allow to compare our auxiliary basis generation method (PCD-M,) with the state-of-the-art
ones (JKFIT and RI). Results on XR energy demonstrate that our method can perform roughly
the same or better than conventional auxiliary basis sets in terms of accuracy, while using less
auxiliary functions. In particular, the maximal size gain due to our method is the reduction of
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energy min. max. | mean std
EE 16.002 | 19.111 | 18.133 | 0.926
XR 23E-4 | 16E-3 | 83E-4 | 47E-4

Table 3.2: Statistics of reference frozen core interaction energies (in Hartree) of ten standarized
Smith dimers, using the AO basis set aug-cc-pvdz of H,O.
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Figure 3.3: Ten standarized Smith dimers. Errors on exchange-repulsion (XR) and electron-
electron (EE) energies using DF densities on various auxiliary basis sets (x-axis) of H,O, which
appear in order of increasing basis size and are generated from two different AO basis sets, shown
in panel (a) and (b). On the z-axis, the auxiliary basis size is M, in the label PCD-M,, counted
by orbital type in spherical form. The root mean square error has been obtained from Eq. (3.36)
with n = 10 for each one of the frozen core energy terms.

52 (JKFIT, see Table 3.1) auxiliary functions to 22 (PCD-22), for the aug-cc-pvdz AO basis.
For this case, our auxiliary basis is slightly less precise than JKFIT, with a loss of accuracy
less than a factor of 2 measured on the XR RMSE, which can be interpreted as negligible loss.
On the other hand, results on EE energy do not show an advantage of our method for reaching
a target accuracy. They show, however, that our method allows to systematically increase or
decrease the accuracy by tuning the number of auxiliary basis functions. This can be interesting
for applications where speed is a priority over accuracy. The most accurate auxiliary bases
obtained with our method can achieve up to one order of magnitude smaller errors than existing
methods. Lastly, note that a given ABS PCD-M, is theoretically included in the PCD-(M, + 1)
one. However, we observe a non-monotonous decay behaviour of errors. This may be attributed
to error cancellation, appearing when summing errors of opposite sign associated to a given
fragment pair. Recall that the measured error is on energies, which are scalar quantities given as
a sum of terms, possibly subject to this kind of numerical phenomenon.

At this point we should recall that the requested accuracy in molecular simulation applications
is 1 kcal/mol, equal to 10~3 Hartree. We may note that our method allows to generate auxiliary
basis sets with errors that are below this threshold.

3.3.1.2 A small water cluster

Table 3.3 recapitulates the exact energies used as reference for our second test case, which is a
cluster of 27 rigid water molecules. Results on errors due to density fitting are summarized in
Figure 3.4a. Results show that the EE error of our auxiliary basis PCD-M,, decreases when adding
more basis functions. The same tendency is observed for the XR errors, with two exceptions at
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energy min. max. | mean std time
EE 4.147 | 19.955 | 9.561 | 3.873 | 69.192
XR 3E-18 4E-3 | 1E-4 | 6E-4 | 54.464

Table 3.3: Statistics of reference frozen core interaction energies (in Hartree) of a cluster of 27
water fragments, using the aug-cc-pvdz AO basis of HyO. Timings (in seconds) are averaged
over two executions for calculating the total energy.
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(b) Elapsed time in seconds (not averaged). The
quantum mechanics (QM) time is obtained from
Table 3.3.

(a) Root mean square error of DF with respect
to the energies obtained from ab initio densities.

Figure 3.4: Cluster of 27 water fragments. Evaluation of total exchange-repulsion (XR) and
electron-electron (EE) frozen core energy parts using the aug-cc-pvdz AO basis set of H,O and
auxiliary bases. Same z-axis as in Figure 3.3.

PCD-48 and PCD-54. Similarly to the ten Smith dimers, we may attribute the non-monotonous
error decay behaviour to error cancellation. Concerning the XR, error, we can achieve roughly
the same accuracy with the state-of-the-art RI method (40 basis functions by orbital type, see
Table 3.1), using almost half the number of auxiliary functions with our method PCD-22.

Next, results on the execution time spent on the total frozen core interaction of the 27
fragments are shown in Figure 3.4b. Note that we used the default OpenMP [414] parallelism
implemented in PySCF for assembling molecular integrals when obtaining these timings, while
the loop on fragment pairs is a sequential naive loop. These algorithms were launched on a
home machine of 4 cores with 2 threads each. DF timings are compared to the exact reference
computation obtained using electronic densities from ab initio methods. Results show that our
schemes enable to reduce the execution time in comparison with state-of-the-art auxiliary basis
sets. With roughly no accuracy loss, our PCD-22 method has a speed gain over the existing RI
method, reducing the DF execution time approximately by a factor 1/3. Lastly, the speed of our
larger generated auxiliary basis is comparable to that of JKFIT method. Overall, we reported
that the use of DF method achieves a gain of at least 4/7 for EE and 2/5 for XR energies, with
respect to the use of ab initio methods. This shows the important impact of DF schemes in the
efficient evaluation of frozen core energies.

3.3.1.3 Large water clusters

The test cases that lastly concern us is a range of rigid clusters of varying size with minimum
27 water molecules, namely the water complexes given in Table 1.1. These are larger systems
that are closer to real-world cases appearing in chemistry simulations. The aim of our present
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nb. jkfit pcd-22 | speedup

27 4.996 1.775 2.814
365 57.169 53.420 1.070
500 126.662 102.707 1.233

1600 | 1,005.946 1,023.038 0.983
6400 | 16,266.771 | 16,102.587 1.010

(a) The speedup factor is obtained as the ratio
of timing of jkfit divided by timing of pcd-22.

SR D
fragment number

(b) Time with respect to fragment number
for each of the five test cases.

Figure 3.5: Large water clusters. Timings (in seconds) of EE frozen core energy total computation,
using DF densities on two different auxiliary bases generated from the aug-cc-pvdz AO basis
for H,O, namely jkfit (52 basis functions by orbital type, see Table 3.1) and pcd-22 (22 basis
functions by orbital type).

study is to put our method to a test with respect to timings when it comes to large systems.
Note that we did not attempt the calculation of the exact energy for assessing DF errors. The
exact energy calculation based on ab initio densities is expected to be too expensive to compute.
Besides, conclusions on the frozen core energy errors can be drawn by studying smaller systems.

Concerning simulation details, the fit has been performed using the Coulomb kernel explicit
inner product. Timings where obtained by averaging two executions for each cluster, on a 256
CPU machine (2 sockets, 64 cores each, 2 threads per core), with 3.30 Ghz CPU frequency.
The loop of fragment pairs has been parallelized as a naive attempt to gain efficiency. We refer
to Appendix A.6.2.2 for more details on our employed parallelization strategy. In Figure 3.5,
we compare the time performance of our smaller basis set obtained from aug-cc-pvdz, namely
PCD-22, and the JKFIT state-of-the-art auxiliary basis set. Results show that our ABS has a
better time performance with respect to the existing ABS. Obtained results of panel (a) show
that our ABS enables computational gain, as the speedup factor is overall larger than one. The
speedup is reported to be larger for the smallest cluster. In particular, for 27 fragments, we
can gain roughly 30% of execution time by using our smaller auxiliary basis, compared to the
state-of-the-art one. However, for larger clusters, the gain is smaller. Our interpretation is
that this may be caused by the loop on fragment pairs, that eventually dominates the entire
computation for larger numbers of fragments. Due to this loop, the gain obtained by DF is
less noticeable. Recall that the speedup obtained by DF is a prefactor to the entire calculation,
as discussed in previous Section 1.2.2. Indeed, our naive loop parallelization is not enough to
break the quadratic complexity in terms of fragment number. Note that our naive parallel loop
achieves a speedup by a numerical factor of 26 in this machine, equal to the ratio of timing
without parallelization divided by timing with parallelization, measured for the cluster of 27
fragments. However, this might not be enough speedup in practice. This demonstrates the need
to employ more sophisticated methods to accelerate the frozen core computation on large water
clusters, which is typically the case for practical codes dealing with such systems [34].

3.3.2 Low-rank structure of Gram matrices

In this section, we present a study that enables to numerically describe the low-rank structure
of the Gram matrix obtained by pairwise products of a given set of atomic orbitals. We first
study the exact Gram matrix in Section 3.3.2.1 and then its restriction to atomic products in
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cond(G) = O(10%) rank(G)

AO basis Ny | L N, 2 | unweight. weight. | unweight. weight. lell<
J S J S |J S J S J S
6-31g** 12 | 2 625 | 36 39 40 40 | 389 379 224 243| 93.850 81.131

aug-cc-pvdz 18 961 | 37 39 39 41 | 595 548 337 360| 93.279 81.261
aug-cc-pvtz 31 311936 | 37 39 40 41 | 1,276 1,189 551 592| 93.416 81.143

[\

Table 3.4: Full Gram matrix G of Eq. (3.30) from GTO basis sets of H,O, for the K-explicit
inner product. K = J is the Coulomb kernel and K = S is the Dirac one. The basis size N}
is given by spherical orbital type. The maximal angular degree of the basis is denoted by L.
Scaling by the density matrix in Eq. (3.28) has been either used (weight.) or omitted (unweight.).
The rank of G is approximated as the number of singular values greater than 10716.

Section 3.3.2.2. The latter matrix is the starting point for constructing auxiliary basis functions
using our method.

3.3.2.1 Full Gram matrix

Given an interaction kernel K and an electronic density p, the full Gram matrix is the N, 2

by—N];‘2 matrix defined in Eq. (3.30) and denoted by G, built from p and the K-explicit inner
product. The K-explicit norm of p is then equal to

*2 *2
NP NP

ol = Z Z Gij.

i=1 j=1

Analyzing the rank of the matrix G can give insights on the structure we approximate.
First, we demonstrate the numerical advantage of preconditioning with the density matrix from
Eq. (3.28). Table 3.4 shows information about the full Gram matrices. Two types of Gram
matrices have been considered, the first being weighted by the density matrix and the second
is not weighted. Results show that it is preferable to weight the Gram matrix by the density
matrix, in order to reduce its rank. Lower rank means that a smaller number of rows spans the
full row space, therefore smaller auxiliary bases can be created. In the same table, the condition
number of the weighted Gram matrix is also higher. This means that rows of weighted Gram
have stronger linear dependencies, that we shall take them into account.

3.3.2.2 Atomic Gram matrix

The atomic Gram matrix of dimension N, -by-N, is defined in Eq. (3.33) and is denoted by A.
We recall that it was obtained by restricting the full Gram matrix to atomic products only. Note
that our ABS method, described in Algorithm 1, selects rows and columns of A.

A method to assess the low-rank structure of a matrix is to study the decay behaviour of its
singular values. Figure 3.6 shows the singular values obtained by singular value decomposition
(SVD) and the pivot values obtained by pivoted Cholesky decomposition (PCD) for the matrix A.
PCD has been launched with a tolerance equal to 10715, Results show a fast singular value decay
around chemical accuracy, equal to 10~3, demonstrating the low-rank structure of the matrix
that we wish to approximate. In particular, for an accuracy equal to 1073, the approximate
rank of the matrix in question is at least 10 times smaller than its maximal approximate rank,
obtained by counting the number of singular values greater than 10~2. The obtained results
further show that the decay of Cholesky pivots follows the decay behaviour of SVD, that is
the optimal low-rank approximation method. This means that Cholesky pivots provide a good
indicator of the approximate rank for the cases of the tested matrices.
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(a) aug-cc-pvdz. N, = 387. Maximal numerical (b) aug-cc-pvtz. N, = 726. Maximal numerical
rank is 127 for J-Gram and 132 for S-Gram. rank is 197 for J-Gram and 200 for S-Gram.

Figure 3.6: Singular values of SVD and pivot values of PCD for atomic Gram matrix A of
Eq. (3.33), for the K-explicit inner product. K = J is the Coulomb kernel and K = S is the
Dirac one. PCD pivots are equal to diag(L)?, where L is the matrix in Eq. (3.15). All values are
truncated to the maximal numerical rank of the matrix, equal to the number of singular values
greater than 10712,

3.3.2.3 Quality of the approximation space

In the present section, we use various approximation methods to construct bases of the space
spanned by the rows (and columns) of the atomic Gram matrix A, previously defined in Eq. (3.33).
Recall that constructing a basis of target size in not a goal in our ABS method, for the reason
discussed previously in Section 3.2.1.1. However, the present study enables to compare our ABS
with optimal bases of the same size, in terms of approximation accuracy in spanning the full
space. The idea is to use our study to numerically examine if our ABS method leads to optimal
best approximation errors for a given rank.

In particular, we numerically compare our method with the optimal method to generate basis
sets, which is the Truncated Singular Value Decomposition (TSVD) (see Section 3.2.2.2). Our
interest is to assess the accuracy of the space spanned by the PCD truncated at rank k and that
of TSVD, truncated at the same rank. Our comparison is organized as follows. Three different
methods are employed to measure the accuracy of the spanned space. First, we assess the ability
of a low-rank approximation scheme to approximate the atomic restricted Gram matrix A from
Eq. (3.33). To this end, we use the spectral matrix norm, denoted by || - ||,. Second, we examine
the orthogonal projection error caused by the use of the basis of rank %k in the density fit. Finally,
we consider the system underlying density fit, that reads Gx = b, where b = G1, 1 is the vector
filled with ones of dimension N; 2 and G is the full Gram matrix from Eq. (3.30). Notice that
this linear system is generally ill-posed, due to the ill-conditioning of the matrix G, observed
previously in Table 3.4. An approximate solution x ~ x;, for a given rank k£ will be obtained
using one of the two low-rank methods under comparison applied to A, summarized as follows.
Based on the TSVD scheme of Eq. (3.20), we derive, for any k := M, < N,

A~US V', x=zxx,:=VEUb, (3.37)

where EL is the pseudoinverse of the 3 matrix for a rank k, previously defined in Eq. (3.19).
This scheme corresponds to approximating the full space of orbital products by a space generated
by linear combinations of rows and columns generated by SVD. Next, based on PCD scheme of
Eq. (3.16) of rank r (obtained for a tolerance value equal to 1071° in experiments) we study the
following approximations, for any k& := M, <r

P/AP, ~L,L,, PJ/AP,X,=P/b, x=ax,:=P,%,, (3.38)
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Figure 3.7: Hy0 molecule. Comparison of TSVD (dashed lines) and PCD (solid lines) in
constructing approximation spaces. The value k := M, < r approximates the rank of the atomic
Gram matrix A of Eq. (3.33). All Gram matrices are built for the Coulomb metric. Relative
errors are ||b— Gx;||y|[bll5 " (in blue) and ||p— p /|l 7' (in orange) for p, obtained by density
fitting on the subspace of rank k, [|A — A,|[s]|Allz* (in red). Explicit definitions are given for
TSVD in Eq. (3.37) and for PCD in Eq. (3.38). Clarification: the reference matrix of PCD is
P AP, but we write A in plots for convenience.

where L  is the r-by-r matrix obtained from L, by filling the rows and columns indexed by
k+1,...,r with zeros. Notice that, we don’t approximate the matrix A but rather its symmetric
permutation associated to P,.. This scheme corresponds to approximating the full space of orbital
products by a subspace generated by a selection of rows and columns indexed by PCD pivots.
Lastly, we are concerned by the evaluation of the orthogonal projection error. This is a quantity
of interest appearing in the minimization of the ABS problem in Eq. (3.7). To evaluate this
quantity, we employ the formula of Theorem 2.3.1, according to which the orthogonal projection
error is equal to the energy difference. The exact energy is equal to ||p||% while the approximate
energy is equal to x;—Axk.

Figure 3.7 summarizes the results of our comparison between PCD and TSVD on the approx-
imation space accuracy. TSVD is expected to provide the best low-rank matrix approximation,
due to the Eckart-Young theorem. Results verify this fact, as the dashed red line of TSVD is
far below the solid one of PCD. The interesting point to mention is that the lack of optimality
of PCD in terms of low-rank errors does not appear to affect the numerical precision in other
types of errors. Indeed, concerning the approximation of the solution to the ill-posed problem
Gx = b, we see that the two methods perform equally well in terms of numerical precision. This
is also true for the orthogonal projection error on the electronic densities. We interpret this
as an encouraging result that demonstrates the capabilities of the PCD method in providing
quasi-optimal approximation spaces for the specific setting we considered (i.e. specific choice of
b and G). For instance, we may attribute this quasi-optimality to an artefact caused by the
right-hand side b of the problem. Note that this does not mean that our method is better than
TSVD, but only that its numerical precision is comparable to that of TSVD. To summarize, the
presented results tend to validate the theoretical error estimates and explicit comparison with
TSVD leads to measured practical quasi-optimality on the target quantities for our problem
setting.

Finally, we tested the stability of our least-squares fit by assessing the Euclidean norm of the
approximate solution x; to normal equations Gx = b. We do not report complete results here,
but we briefly outline that for both methods, i.e. PCD and TSVD, obtained results vary between
10" and 102 for different values of k. Additionally, the Euclidean norm of x;, increases with the
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rank. This means that adding more basis functions makes the linear system more unstable.

3.3.3 Auxiliary basis set detailed comparison

The present section contains a detailed side-by-side comparison of auxiliary basis sets generated by
Algorithm 1 and conventional ones, namely RI and JKFIT. We focus on the methods’ performance
on a single molecule of fixed geometry. Various aspects are discussed, such as projection errors,
ABS sizes, maximal angular degrees and indicative generation timings. We are also interested in
testing the ability of our ABS, generated for a given kernel metric, in approximating densities
under other kernel metrics, which is a property referred to as transferability of ABS.

In this numerical experiment, the error is measured in terms of the orthogonal projection
error under a given kernel-explicit norm. Table 3.5 presents the results on ABSs generated from
AOQO bases for the H,O molecule at equilibrium geometry. Results of our method are obtained
for varying the input parameter, which is the target size of the ABS counted by orbital type.
A first observation is that, for the AO basis aug-cc-pvdz, we attain the projection error values
of state-of-the-art methods while using about half their number of basis functions. For the AO
basis aug-cc-pvtz, this gap between the two compared methods is smaller. Additionally, for a
target fixed size equal to 150, we achieve orthogonal projection errors that are 17.5% smaller
than those of state-of-the-art methods. Overall, we believe that the main advantage of our
method lies in the efficient reduction of ABS sizes, to obtain smaller or equal ones to those of
state-of-the-art methods. Indeed, results on projection errors, as well as on frozen core errors
in Section 3.3.1, demonstrate that one can achieve a balance between accuracy and complexity
by using our ABSs belonging to such size range. However, our method generally lowers the
projection error by adding orbitals of higher angular momentum to the ABS. This may have
computational limitations due to the fact that the number of primitives increases and molecular
integration of higher orbital types takes more time. Further reducing our ABS orbital types at
the lowest accuracy level on projection errors (e.g. 10~* and below) could improve the balance
between accuracy and complexity.

Further discussing Table 3.5, the next observation concerns the control of ABS sizes. Note
that, the number of ABS elements is counted either by orbital type or by primitives. The
fact that the ABS size by orbital type is almost identical, up to a difference smaller than 3
elements, to the input parameter used as a target, demonstrates that the post-processing step of
Section 3.2.4.3, responsible for forcing atom-wise consistency, does not significantly add more
functions to the ABS. We conclude that our method attains efficient control over the number of
ABS elements counted by orbital type.

Concerning the transferability of our ABS, results show that changing the kernel metric, used
withing the ABS generation, causes a minor loss on errors, that is less than 10% error increase.
This means that we could interchange fit metrics and metrics used in the generation of ABSs
when computing EE or XR energies. This has the advantage of requiring to only store ABS data
and fit densities once for one metric, to obtain an approximate density that can be reused for all
energies. We may notice in our results, however, that ABSs optimized for the Coulomb metric
overall induce a larger loss on orthogonal projection errors when used for the XR energy, than
the ones induced by ABSs optimized for Dirac when used for the EE energy. Hence, it might
be preferable, in terms of orthogonal projection errors, to use ABSs generated from the Dirac
metric to compute EE and XR energies.

Up next, let us discuss execution time and memory requirements. Timings are obtained only
for the selection procedure of our method that depends on the target input parameter, that is
Step IV of Section 3.2.4.2. Results show that the ABS selection time remains small, slightly
increasing as the ABS size increases. As a supplementary result, we report that the total memory
allocated during the generation of our ABSs from aug-cc-pvdz is 317 MB and from aug-cc-pvtz
is 4685 MB. These values are dominated by the storage of the full Gram matrix G of Eq. (3.30)
and are thus constant for all ABS input parameters. Moreover, the assembly of the atomic Gram
matrix A of Eq. (3.33) and the ab initio computation are estimated to have a total execution
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Figure 3.8: H,O molecule. Orthogonal projection errors on electronic density function for
different choice of centers of the approximation basis. atom: atomic centers, atom+m: atomic
centers and midbonds, all: unrestricted, all centers of the original orbital products are retained.
Normal equations of the least-squares problem underlying the orthogonal projection have been
solved using PCD with a tolerance equal to 10714,

time of about 3 seconds for aug-cc-pvdz and 10 seconds for aug-cc-pvtz. Note that this time
should be added to the individual time of ABS generation, to obtain the total execution time of
our method. Recall that, in frozen core energy computations, our method is executed offline.

Lastly, a numerical remark is that the projection error is generally decreasing, however is not
strictly monotonous, even though the basis of size M, is theoretically included to the one of size
M, + 1. This is caused by numerical instabilities of the PCD selection procedure, that make the
pivot order slightly different along different executions (up to 10 entries difference). As a result,
a given basis is not always included in bigger ones in practice. The impact on the projection
errors is manifested with a small error difference, that is less than 10, hence we consider this
effect as a minor numerical instability.

In the general case, the main reasons of our gains on the accuracy are both the weight by
the density matrix and the ABS optimization based on molecules, i.e. from a given molecular
geometry, instead of atoms as it is the case for state-of-the-art methods.

3.3.3.1 Selecting orbital centers

The present section is concerned by methods to attain projection error values beyond the ones
reported in Table 3.5. The maximal accuracy of our ABS method (i.e. 107°) is attributed to
discarding off-atom GTO products during Step III of our algorithm. Relaxing the restriction on
orbital centers leads to higher precision.

Indeed, Figure 3.8 shows the density fit accuracy for different choices of centers in the
approximation basis, obtained from the full Gram matrix G of orbital products defined in
Eq. (3.30). Three different methods are compared. Note that, we forced the midbond center to
products localized in-between atoms. To achieve this, off-atom-centered products are replaced
with a midbond-centered product of the same orbital parameters. Results show that adding
midbond products can improve the accuracy of density fitting. Overall, results show that
atomic-based density fitting is limited due to discarding non-atomic contributions.

Figure 3.9 shows the absolute value of pointwise errors due to density fitting, for the electronic
density projected in the two-dimensional plane defined by three atoms of water molecule. Results
show that the pointwise errors are larger on the heaviest atom, which is water. It is interesting to
see larger errors on the bond segments OH as well, which may come from the fact that we used
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Auxiliary | Input | M, | M | L | Jfit | S-fit | Time

basis error | error | (sec)
AO basis set: aug-cc-pvdz, N = 18, N, =41
RI - 40 118 | 3 | 9E-2 | 7E-3 -
JKFIT - 52 150 | 3 | 4E-3 | 7TE-4 -

16 16 38 | 2 | 1E-2 | TE-2 | 6E-3

22 22 52 | 2 | 8E-3 | 6E-2 | 3E-3

29 29 7 | 3 | 5E-3 | 1E-2 | 5E-3

41 41 109 | 3 | 2E-3 | 1E-2 | 7E-3

PCD(J) 48 49 135 | 3 | 9E4 | 3E-3 | 7E-3
54 54 150 | 3 | 7TE-4 | 3E-3 | 8E-3

60 60 | 172 | 3 | 5E4 | 3E-3 | 6E-3

67 68 | 214 | 4 | 3E4 | 3E-3 | 1E-2

118 118 | 372 | 4 | 2E4 | 4E-4 | 1E-2

16 17 37 | 2 | 6E-2 | 4E-2 | 6E-3

29 29 65 | 2 | 7TE-3 | 8E-3 | 8E-3

35 35 77 | 3 | 4E-3 | 5E-3 | 8E-3

PCD(S) 41 42 9% | 3 | 3E-3 | 2E-3 | 1E-2
48 49 | 133 | 3 | 1E-3 | 1E-3 | 7E-3

67 67 | 185 | 3 | 6E-4 | 9E-4 | 6E-3

73 74 218 | 4 | 4E-4 | 6E-4 | 1E-2

118 119 | 373 | 4 | 2E4 | 4E-4 | 1E-2

AO basis set: aug-cc-pvtz, Ny =31, N, =92

RI - 56 | 198 1E-3 | 2E-2 -
JKFIT - 58 | 196 4F-4 | 4E-3 -
40 41 105 2E-3 | 1E-2 | 6E-3
52 52 142 1E-3 | 3E-3 | 1E-2
PCD(J) 64 65 189 3E-4 | 2E-3 | 9E-3
7 7| 231 2E-4 | 2E-3 | 1E-2
126 | 129 | 509 8E-5 | 2E-4 | 1E-2
40 40 96 3E-3 | 3E-3 | 7TE-3
52 52 128 1E-3 | 2E-3 | 1E-2
64 64 172 TE-4 | TE-4 | 9E-3
7 7| 227 4F-4 | 4F-4 | 8E-3
114 | 116 | 396 9E-5 | 2E-4 | 2E-2
126 | 129 | 465 8E-5 | 2E-4 | 1E-2

PCD(S)

R R R W W R R R W N

Table 3.5: Comparison of auxiliary basis sets generated from given AO bases in spherical form
for H,O molecule. Our method PCD(K) is obtained using the kernel K during the generation
procedure, for K € {J,S}. The K-fit error is equal to the orthogonal projection relative error
lp = pllkllpll %", with 7 fitted to p using the K-norm. The ABS size is M, by orbital type and
M by primitives. M is lower (in green) or higher (in orange) than state-of-the-art values. L
denotes the maximal angular degree in the ABS. Timings are averaged over 30 executions.
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Figure 3.9: Electronic density function pointwise errors for water molecule. AO basis is aug-cc-
pvdz. Isosurfaces in two-dimensional plane, coplanar with three atoms. Auxiliary basis sets are
obtained with Algorithm 1 and are optimized for the Coulomb metric.

auxiliary GTOs centered on atomic positions only, neglecting off-atom centered orbital products.
Moreover, we note that, increasing the auxiliary basis angular degree, i.e. from 2 to 3, improves
the midbond errors by one order. This may be relevant to the numerical observation [198] that
diffuse higher angular momentum orbitals improve the accuracy by better representing midbond
orbital products.

3.4 Proofs

Proof of Corollary 3.2.0.1. We will use Theorem 2.3.1 and then solve the normal equations
underlying density fitting on the auxiliary basis £ to derive the desired error expression in terms
of Gram matrices. In particular, in Theorem 2.3.1, we have derived an expression of the best

approximation error on the density p in terms of self-interaction energies, according to which
there holds

min_|p—ol* = (plp) — (Pslps) , (3.39)
o€Span(§s)

with pg defined as the best approximation of p on Span(€g). Energies on the right-hand side of
Eq. (3.39) can be expressed in terms of Gram matrices, as follows. First, the coefficients ¢ of
pg on &g can be found by solving a least-squares problem defined in Eq. (2.18). The normal
equations for finding the coefficients ¢ read

(€sl€s) e = (&slp)
< G(S,S)c = G(S5,:)1. (3.40)

Problem (3.40) is well-posed due to the assumption of G(5,.S) being non-singular. Its solution
can be obtained by inverting the matrix, as

c=G1(S,9)G(S,:)1. (3.41)
Now, using the expression of Eq. (3.41) for ¢, we find
(Pslps) = c' (&slés) e
=c'G(S,S)c
=1"G(;,5)G7(S,5)G(S,8)G (S, 5)G(S,:)1
=1TG(;,8)G71(S,8)G(S,:)1.
Finally, we employ Eq. (3.39) and the simple relation
(plp) =17G1
to conclude the proof of Corollary 3.2.0.1. O
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3.5 Conclusion and perspectives

In the present work, we construct auxiliary basis sets for use in density fitting problems in
chemistry. Compared with empirical precomputed auxiliary basis sets of fixed size, the major
difficulty in carrying out the auxiliary basis construction is guaranteeing that a prescribed basis
size is attained. In order to proceed, we develop systematic tools for regrouping atomic orbitals
and exploiting the low-rank structure of the orbital product Gram matrix. The result is a greedy
algorithm for generating atomic orbital auxiliary basis sets of prescribed size. As a perspective,
we plan to carry out numerical evaluation of the electron-nuclei interaction term of the frozen
core electrostatics of Eq. (1.37) using our auxiliary basis set. Moreover, we will set up efficient
parameter tuning strategies for using a single fitted density, optimized for one energy term, to
different energy terms.

Besides solving the restricted ABS problem, it could be interesting to explore solutions to full
auxiliary basis generation problems obtained by optimizing the spatial width of Gaussians, i.e.
the orbital exponent. Such optimization could be based on sampling exponents over a bounded
continuous interval, using random pointwise sampling techniques [102]. This direction could lead
to generating optimal auxiliary basis sets. Relevant work on constructive schemes for selecting
the propagating direction of plane wave basis can be found in [125]. One could also investigate
the inclusion of additional non-atomic sites as Gaussian centers, using a relevant approach on
enriched approximation spaces [154].

The numerical application of interest is the frozen core energy computation based on density
fitting using our basis sets. From a practical point of view, results on density fitting errors
using our auxiliary bases offer a greater range of accuracy than the ones obtained with fixed
size state-of-the-art auxiliary bases. We demonstrate the practical use of our auxiliary basis
set for water dimers and clusters of rigid fragments, in calculating frozen core intermolecular
electron-electron and exchange-repulsion interaction energies. We also plan to apply our auxiliary
basis generation strategy to other molecules. In addition to standard density fitting, we plan to
investigate the performance of our auxiliary basis sets in the use of density fitting with additional
constant electron charge constraints. The main difficulty is that we expect the least-squares
error to increase when taking into account this constraint. A strategy that balances accuracy
and complexity may become necessary in this case. Another possible direction to investigate
is the link between orbital type, projection errors and size of the ABS. This could lead to
new techniques designed to generate ABSs of low orbital type without sacrificing accuracy, by
balancing all parameters.

Besides frozen core energies, another possible application of our auxiliary basis sets is the
multipole moment generation. Such moments can then be used to calculate multipole expansions
for electrostatics calculations in polarizable force fields (we refer to Appendix B for more details
and discussion on the possible issues). The difficulty in such case is that often fitted densities
are very diffuse, i.e. contain orbitals of high angular momentum, posing issues in the multipole
expansion convergence. As a preliminary remark towards this direction, our generated bases
contain only s and p orbitals at low prescribed accuracy, making them suitable for multipole
moment calculations. For instance, the AMOEBA polarizable force field [263] uses up to dipole
moments, that are generated from p-type orbitals. A second attempt, that we may interpret as
promising, is that we may easily impose an additional constraint on maximum angular momentum
within our auxiliary basis construction, in order to discard orbitals of high angular momentum.
The effect of maximal orbital type constraints to the ABS size and accuracy is a topic left for
future investigation. Note that the available GEM_fit implementation [138] allows the calculation
of multipoles from our auxiliary basis input and could be used to conduct numerical testing.
However, this objective requires performing numerical tests on geometry-specific water cases and
carefuly studying the effect of the atomic configuration to the result of the ABS generation, that
could be studied in the future.
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Chapter 4

The sparse density fitting method
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In the present chapter, we formulate our main contributions to density fitting methods for
approximating frozen core intermolecular energies of large systems of rigid monomers. Our
approach combines density fitting and integral screening techniques. First, we set up a Cholesky-
based auxiliary basis set generation strategy performed entirely at the monomer level. Second,
we derive a new density fitting scheme that decreases the number of effective interactions by
exploiting the low-rank structure of interactions as well as their numerical sparsity. We present a
discrete optimization perspective to the integral prescreening problem and then propose new
tools to solve this problem. To achieve this, we employ a novel heuristic for threshold-based
sparsification of the interaction matrix of the monomer under an arbitrary metric, that is
numerically observed to achieve an optimal sparsity pattern in this setting. Our perspective
specifically targets applications in the context of pairwise frozen core interaction energies of a large
number of identical molecular fragments in arbitrary position in space, where precomputation
of quantities presents computational advantages. The numerical performance of our schemes
is compared to conventional density fitting schemes. Results show that our strategy is able to
accelerate molecular simulations up to two orders of magnitude, with respect to system size,
while respecting chemical accuracy.
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4.1 Introduction

As we saw in the previous chapter, there is a need for accelerating the intermolecular interaction
energy computation for large systems. The systems of rigid monomers, whose interatomic
angles and distances remain unchanged between monomers, is the subject of the present chapter.
Existing methods in the literature directly apply state-of-the-art density fitting schemes to the
context of rigid monomers. Such state-of-the-art schemes use empirically optimized auxiliary
basis sets associated to atoms. An advantage of such methods is that the auxiliary basis set is
precomputed entirely for every atom. On the other hand, a limitation is that the accuracy of the
auxiliary basis set is not tunable neither to a target fit metric nor to a target auxiliary basis size.

Basic integral screening methods rely on the Cauchy-Schwartz inequality (see Corollary 4.2.0.1).
Sparsification methods for ERI matrices, based on entry-wise truncation, have been explored
in [334]. This work used algebraic criteria for truncating matrices. In the present work, we
focus on energy criteria, which are related to truncation of sums of entries instead of individual
entries. This approach is targeting intermolecular interaction energy calculation applications.
Sorting methods have been useful before applying integral screening [161], based on the order
of magnitude. Alternatives to element dropping include the fast multiplication technique of
matrices with decay [68], for the treatment of matrices whose elements decay exponentially.

In the present manuscript, we propose to revisit the existing methods and further adapt
them to our context of application, under a greedy optimization point of view. We have devised
algorithms that perform the density fitting computation offline at the monomer level, without
any a priori knowledge of the positions of monomers inside the cluster. We have reduced the
computational cost of existing density fitting schemes in two main ways. The first improvement
allows the user to tune the size of the auxiliary basis during the auxiliary basis generation step,
while the second one uses the sparsity of the interactions to further reduce the time spent on the
interaction calculation. We also note that our algorithm allows for the treatment of all forms of
pairwise interactions, including electron-electron, electron-nuclei and exchange-repulsion terms.
Our first result is a new application of the Cholesky-based auxiliary basis generation method
particularly adapted to the creation of orthonormal basis sets. The second result is a new sparse
density fitting scheme based on the sparsification of the interaction matrix using a prescribed
tolerance value. For the first method, we employ ideas based on low-rank approximation of the
space spanned by Gaussian-type orbital products introduced in [198, 196]. For the second method,
we use ideas of standard integral screening based on Cauchy-Schwartz bounds [317, 316, 264, 148]
and combine them with a novel selection heuristic for maximal sparsification. Relevant topics on
the sparsity of the interaction matrix have been previously discussed in [334].

The remaining sections are organized as follows. The theory of the main methods is formulated
in an abstract setting in Section 4.2.1. Section 4.2.1.3 focuses on the new auxiliary basis
construction as well as the sparsification of the Gram matrix, based on coupling density fitting
and integral screening. Error bounds for density fitting schemes are formulated in this section.
Section 4.2.1.4 introduces a computational complexity model to estimate the theoretical cost in
terms of number of operations of a density fitting scheme. Our main contributions are presented
in algorithms of Section 4.2.3. Lastly, Section 4.3 presents a numerical comparison of our methods
with alternative state-of-the-art methods, in terms of accuracy, theoretical complexity as well as
execution time.

4.2 Theory

We first announce the general problem of accelerating the evaluation of intermolecular interaction
energies. Our approximation scheme is presented and analysed as for a priori errors, before
focusing on ABS construction. In Section 4.2.1, we first formulate the summation problem under
study and introduce sparse summations. Then in Section 4.2.1.3, we analyze a priori errors
on interactions, that leads us to a thresholding strategy. In this respect, in Section 4.2.1.4 we
present a contraint optimization problem that allows us to obtain solutions to the initial sparse
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summation problem in a heuristic way. This problem is then solved using novel schemes in
Section 4.2.2.

4.2.1 Problem formulation

The computation of intermolecular interactions in the Gaussian electrostatic model breaks down
to solving a new summation problem defined in Eq. (2.1). Among the families of numerical
methods solving this problem, density fitting allows to reduce the number of interactions by
introducing a double summation over a approximation basis (see Section 2.3.3.2). However,
among all interactions, not all of them contribute equally to the energy. Skipping sum terms can
have great benefit in order to spend less computation time on entry-wise evaluation of molecular
integrals. While density fitting construct fast summations by reducing the approximation basis
size, we now propose a new family of methods, referred to as sparse density fitting, that achieve
fast summation by reducing the actual summation domain geometrically. Using this strategy,
we hope to beat the quadratic and cubic scaling on the number of interactions, obtained by
state-of-the-art density fitting methods. In this respect, we define sparse density fitting schemes
as solutions to the problem of selecting a minimal number of pairwise interactions given a
summation and a prescribed level of accuracy.

4.2.1.1 The sparse summation problem

Let (H, (-,-)) denote a real Hilbert space. Suppose that we want to solve the summation problem
of Eq. (2.1), that consisted of computing the scalar quantity

N N
E(f?.g) = Zz<fmgj>7

i=1 j=1

for any two given functions f := Zfil fi and g := Zfil g; expanded on finite basis sets of
functions f = {f;}1<;<y € H and g = {g;}1<;<n € H, respectively. In this respect, we first

propose to employ the summation scheme of Eq. (2.11) to obtain two finite families of functions,
denoted by f= {ﬁ}1<z‘<M CH and g = {g;}1<i<m € H, of fixed size M € N*. Now, given a
tolerance value & > 0, the sparse summation problem refers to the problem of constructing the
set of indices Is C {1,...,M} x {1,..., M} such that the scalar quantity E5 € R, defined as

B3 = Y (Fud) (4.1)

(i,5)€1;5
with f = Zi\il fand § = Zf\il 7., satisfies
|E — E5| <.

Recalling that the cost of computing a single pairwise interaction between any two functions ﬁ
and g; is given by £, defined in Eq. (2.12), the computation of Ejs has a total operation count

O(k card(Iy)) flops.

This is the expected theoretical complexity for evaluating a sparse summation, but we will show
that it can be reduced in practice. The idea is to use Fj to obtain fast summations of E.

From the Gaussian electrostatic model to sparse summations. The particular context of
rigid fragments (recall Section 2.2.2.3) suggests to introduce the general problem of constructing
Is such that for any two given isometries 7,7’ : H — H there holds

|E(Tf,T'g) — E5(Tf, T'g)| < 6.

This is the problem of finding a single pair of (f, 9) and a single I that works for all isometries.
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Figure 4.1: Comparison of different fast summation sizes, for the double summation of Eq. (2.1).
The energy approximation is obtained by summing over retained indices marked in blue. Density
fitting constructs square or rectangular domains given a size M.

4.2.1.2 Existing methods

Density fitting. This constructs squared domains. Conventional density fitting scales as
O(M?) while robust density fitting scales as O(M N). The limitation is that these methods
impose a restriction on the domain pattern, i.e. either squared or rectangular, as seen in
Figure 4.1.

Entry-wise screening. The most naive method to solve this problem is to directly use the
Cauchy-Schwartz bound. This method, known as entry-wise screening [148], discards the sum
entry indexed by (i, j) is discarded if || f;|| < ¢’ and ||g;|| < &', for some empirical value §" > 0
typically smaller than the target § > 0. The limitation is that the final error is not rigorously
bounded by the target value 6.

Maximum norm screening. This consists of constructing the entire matrix with entries
A;; = (fi»g;) and then sparsifying it. Matrix norms may be used for truncating sum entries,
such as the maximum norm truncation [334], which consist of skipping entries indexed by J if
max; j)es |A;;| < e. Although easy to apply in practice, since it suggests discarding all entries
smaller than a threshold, this criterion overestimates the error of discarding a single entry.

4.2.1.3 The sparse density fitting method

We propose to solve the sparse summation problem using density fitting. In this respect, we will
construct an auxiliary basis set and projection coefficients on this set.

A priori error analysis. Our scheme is obtained by coupling density fitting and sum
truncation. The coupling is explained as follows. First, we prove an a priori error bound that
theoretically shows the error relation between two methods. We show that the intermolecular
interaction approximation error can be decomposed into two parts, that are not independent.
Then, we focus on each of the two parts and propose a method to balance errors.

Another interaction acceleration technique that can be studied under the prism of isometries
is integral screening (see Section 1.2.3.1). We discuss screening techniques based on discarding
isometry-independent quantities. First, notice that the isometry definition of Eq. (2.9) relates
pairwise density interactions at different orientations. This has an application to screening based
on spatial overlap, according to which one discards spatial distributions whose support overlap
only on a small region. Applying an isometry will preserve the spatial overlap. The following
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statement concerns another type of screening, based on discarding small contributions. It shows
that small contributions can be discarded independently of density pairs and density orientations.

Corollary 4.2.0.1 (Integral screening). Consider a real Hilbert space (H, (-,-)) with induced

norm || - || :== (-,-)*/? and isometries T; : H — H for i = 1,2. There holds
V(fi, fo) € HxH, [Tif1,Tafo)l < [ fillllf2ll-
Proof. See proof in Section 4.4. O

Note that the upper bound is isometry-independent. Moreover, the bound can be computed
using isolated densities, independently of their relative orientation.

The following statement yields an a priori error bound for sparse density fit methods, obtained
by coupling a density fitting method with a sparse summation, based on discarding summation
terms using integral screening.

Theorem 4.2.1 (Sparse density fit error). Consider a real Hilbert space (H, (-,-)) with induced
norm || - || := (-,-)*/2. For any fragment F € {A, B} of a given dimer AB, let T : H — H be an
isometry. Given two electronic densities p4, pg € H assume we perform the following density
fitting scheme for each one of them (omitting the index):

M
pRp= Zﬁm pi = ci&;. (4.2)
i=1

Let us fir § > 0. Given an index set Iy C {1,..., My} x {1,..., Mg}, the intermolecular
interaction approzimation defined in equation (4.1) satisfies

|E(Tapa:Tpps) = Es(Tapa, Tepp)| < llpsllloa = pall + lloalllios = o5l + D 1511571,

(i,5)€l§
with I§ == ({1,...,Ma} x {1,..., Mp}) \ I;.
Proof. See proof in Section 4.4. O
Remark. The error bound decomposes into two terms, reading
|E - E| < |E— E°F| + |E™ — E| (4.3)

with EPY denoting an intermediary Density Fitting (DF) approzimation, defined as
EPY = (Tpa, Tpp)- (4.4)

This bound is made up of two contributions. The first is the best approzimation error due to
density fitting and the second one is the sparse summation error, related to discarding interactions.
The two errors are not independent of each other. Assuming that the best approximation errors
are small, approzimating E by EPY induces an error smaller than the truncation threshold §.
The errors should be balanced. To this end, M4 and Mg should be small otherwise the retained
summation terms have a larger number than the ones obtained for smaller M 4 and Mpg. A last
remark is that the error bound is independent of the local to global transformations T4 and Tg.
This means that we can construct a scheme completely offline, that guarantees convergence in
intermolecular interactions for any orientation.

Given a tolerance § > 0, we define this index set, denoted by I, as follows. The summation
uses a truncation criterion of the following form. The set of retained indices I is characterized
by the set satisfying

Find I5 such that Z 1 1BT | < 6. (4.5)
(ig)els
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(a) Density fitting of size M. (b) Sparse density fitting based on M.

Figure 4.2: Sparse density fitting is obtained as a two-step procedure. First, we perform
conventional density fitting with larger auxiliary bases than usual, i.e. M’ with M < M’. Second,
we truncate the square domain to achieve the desired complexity reduction. Extracted indices
are marked in blue.

This truncation criterion is an alternative to the conventional truncation method, according to
which a single function p# is skipped if ||p:|| is smaller than a prescribed threshold.

Our error balancing technique, between the two error components of Eq. (4.3), can be
described as follows. Compared to conventional density fitting, our method consists of first fixing
the auxiliary basis sizes M4 and Mp and then truncating the M 4-by-Mp square. Note that
our strategy first fixes the density fit error, that shall be small enough so that one can afford
a truncation error on top of it, without exceeding the target tolerance value overall. To this
end, our auxiliary basis sizes are typically larger than conventional ones, namely the ones of
Chapter 3. However, the complexity of the summation is then reduced by truncating the square,
namely by solving the problem of Eq. (4.5). Figure 4.2 schematically illustrates the main idea of
our method.

4.2.1.4 From density fitting to sparse density fitting

Let us begin by density fitting. If we further assume that the auxiliary functions, ¢;’s, used in
density fitting of Eq. (4.2) are normalized, then the truncation criterion of Eq. (4.5) reads as

> Jeitel| <6 (4.6)

(t.5)el§

Our goal is to construct an auxiliary basis that minimizes the cardinal of the retained index set
Is. First, there are various ways to obtain the retained indices.

Truncation methods. If the auxiliary coefficients ¢! and cf are arbitrary, then a naive

method to truncate the full sum
My Mp

DD lelef, (4.7)

i=1 j=1

under the given tolerance value equal to 9, is to form all possible partial sums and find the one

with the largest number of terms whose sum is smaller than §. A smarter way to accelerate the
B

search is to sort coefficients |cfcj | in decreasing order and create partial sums incrementally.

Hence, an alternative method is to set up an auxiliary basis such that the coefficients ¢ and
cf are bounded in absolute value by a decreasing sequence that tends to zero. This enables to

deduce that if a given |cg4039| is small, then all couples greater than (7, j), i.e. couples (k,[) with

k> and [ > j, will contribute to the sum even less than the couple (i, 7), they therefore have
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more chances to be truncated. This observation is helpful for reducing the number of retained
entries. However, in order to improve the decay behaviour of auxiliary coefficients, one should
allow mixing of orbitals, contrary to the spirit of Chapter 3, increasing the complexity of the
computation. A naive mixing makes the complexity of a single interaction equal to

= NoNgk, (4.8)

where N, and Np are the finite basis sizes of the reference densities p4 and pp, used for mixing.
Our mixing technique will propose alternative complexity costs based on mixing fewer functions.

Density fitting with mixed orbitals. We first describe the general framework that allows
to construct auxiliary basis sets for which the auxiliary coefficients have a decay behaviour. Our
motivation lies in the known fact that orthonormalizing before least-square fitting can improve
the approximation error decay [3]. To achieve this, we assume that a reference density is given
in a finite approximation basis of N functions, denoted by (the fragment index is omitted for

simplicity)
p=> p (4.9)

The functions p;’s will be referred to as primitive orbitals (or pure ones), because they determine
the complexity cost k in Eq. (4.8). The mixing that precisely allows us to reduce the cost of
Eq. (4.8) is the one obtained by the following Gram-Schmidt procedure applied to functions
{ps, }1<i<m, with M < N and {sy,...,s)/} an appropriate permutation of a selection of M
indices in {1,..., N}, whose construction is discussed later, as it affects the decay behaviour of
the auxiliary coefficients. The entire process is referred to as modified Gram-Schmidt (MGS), due
to the preliminary preordering step for functions to be orthonormalized. In this framework, the
aim is to construct a permutation of primitive orbital indices that improves the decay behaviour
of auxiliary coeflicients.

The resulting mixed orbitals from MGS are the auxiliary basis functions, defined as follows.
Let us fix M € N* with M < N. Given indices {sq,...,s} € {1,..., N} and a lower triangular
matrix of coefficients Y = (Yy;)1<ri<nr € RMXM ' referred to as mizing matrix, we define the
auxiliary basis set § = {§;}1<;<n consisting of functions

VI<i<M, &= Yips, (4.10)
k=1

We then deduce that Span(§;)1<i<p = Span(ps, )i<i<m. The coefficients Y are precisely
orthonormalization coefficients, i.e. there holds

V1<ij<M, (&,&)=70;.

Applying density fitting to p using & we obtain the approximation p, defined as p = Zi\il Di
with p; := ¢;§; and ¢ being the auxiliary coeflicients found by solving a set of normal equations
(see Section 2.3.1.3). Note that if Y is diagonal, then we end up with conventional truncation
schemes without mixing orbitals, since auxiliary functions are primitive orbitals.

Cost of mixed interactions. The mixing matrix Y of Eq. (4.10) being lower triangular in
particular, conveniently enables precomputation in the case of auxiliary coefficients with decay
behaviour. The main observation is that if a single mixed interaction, denoted by ( ZA, ng ), is
precomputed, then the computation of mixed interactions for couples (k,1) with k <i and [ < j
has zero additional cost. Moreover, the computation of the couple (k’,1'), with &’ > ¢ and I’ > j,
has an additional cost of computing (pfé,psBE> withi+1<a <k and j+1<b<1I'. At the same

time, as coefficients in the summation of Eq. (4.7) have decay behaviour, if (i, j) is retained, then
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Figure 4.3: Primitive interactions involved in the computation of single mixed interactions in
4.3a, with precomputed couples (in gray) and additional couples (in yellow). In panel 4.3b, we
shade couples (in gray) whose complexity is zero under the assumption that the starred couples
have been precomputed. In panel 4.3¢, boundary (three colored nodes) of a summation domain.
The horizontal boundary points are obtained as the upper right corners of rectangles covering
the domain.

it makes sense to retain all (k,!) with k <14 and [ < j as well, since their coefficients are likely
larger than the one of the couple (4, ). Indeed, retaining them will improve accuracy without
cost, since all scalar products of associated primitive orbitals have been precomputed already.
The other couple (k',1’), requiring additional computation, has less chance of being retained, as
it corresponds to smaller coefficients. Such sets can be interpreted as two-dimensional patterns.
Examples are provided in Figures 4.3a and 4.3b. This justifies how the lower triangular structure
of the mixing matrix naturally relates to decaying coefficients.

With the forementioned consideration in mind, we can explicitely compute the cost of
summation over mixed interactions. Given a summation denoted by (isometries are omitted for
simplicity)

My Mp
s 303 B (A €P), (@11
i=1j=1

let us denote by k,(I) the number of primitive interactions, i.e. <p?A,pr>’s, required to obtain
i J

the value s when skipping interactions indexed by I¢, for any I C {1,..., M4} x {1,..., Mp}.
This cost allows to count the complexity in terms of primitive interactions using an alternative
formula to that of Eq. (4.8). The starting point is the following related notion.

Definition 4.2.1. The horizontal boundary of any set I C {1,..., M4} x {1,..., Mg} is the
index set consisting of maximal row and column entries, i.e.

oI ={(i,j)eI: (k,j)gI, Vk>i, (i,1)¢gI, VI>j}.

An example is provided in Figure 4.3c. Using this horizontal boundary we can count the
number of entries. For the following, we assume for the sake of simplicity that fragments A
and B are identical up to an isometry. This enables the use of the same auxiliary coefficients
for both A and B, i.e. ¢ := ¢4 = cp, since the auxiliary basis of A is simply the image of B
under an isometry. We then end up with symmetric summation domains. Otherwise, for the
non-symmetric case, the corresponding formula can be derived in an analogous manner.

Theorem 4.2.2 (A priori complexity bound). Consider the summation of Eq. (4.11), for £’s
and 5;3 s defined by the MGS of Eq. (4.10) on two fragments A and B, respectively. We further
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assume that A and B are congruent, M := M4 = Mg and c := c4 = cg in. For any symmetric
index set I C {1,...,M} x {1,..., M}, let us denote by "1 := {(iy,jr)}1<n<ri the set of
horizontal boundary points, sorted in increasing order with respect to the first coordinate, i.e.
i <igyq foralll <k < K —1. There holds

K
ke(I) = Z (i, — i) U — ix + 1),
v
with i == 0.
Proof. See proof in Section 4.4. O

The sparse summation problem as an optimization problem. For a given tolerance value
d >0, let us fix M = M(§) € N*. We assume that one has constructed a desired permutation
of indices {sq,..., sy} that allows to perform density fitting with auxiliary basis set defined as
Eq. (4.10) and auxiliary coefficients denoted by ¢y, ...,c); € R. Up next, we propose to solve
the following problem:

i I 4.12
1g{1,,..,ﬁ1}»1£{1,...,M} ris(D) (4.12)
subject to Z |cic;| < 0. (4.13)

(i,5)€I*°

The solution to this problem, denoted by I5 = Is(M), will provide solutions to Eq. (4.5). Note
that M depends on § and I5 on both M and §. The geometrical pattern of I that is beneficial
to respect when solving such optimization problem will be discussed in the following section.
Optimal patterns are considered in the sense that adding more couples does not increase the
complexity but improves the accuracy.

Equivalent matrix sparsification problem. In matrix form, our problem is also equivalent
to a sparse approximation problem. Let us define the matrix S € RM*M with entries

S’L' = |Cicj|7 (414)

referred to as screening matriz. We sparsify this matrix using the 1, 1-norm, defined as

M M

1,1 = ZZ |Sij"

i=1 j=1

S|

Since S has positive entries, this matrix norm is related to sum truncation as follows. To any
summation index set I C {1,..., M} x {1,..., M} we may associate a sparse matrix S € RM*M
with non-zero entries indexed by I, obtained by skipping entries of the screening matrix S. The
truncation of Eq. (4.5) can then be reformulated as

)

IS =S|y, <4

4.2.2 Sparse density fitting schemes

In the present section, we present a two-step construction of sparse density fitting scheme. First,
we build an auxiliary basis set based on mixed orbitals, then we specify how to select auxiliary
function indices by solving a constraint optimisation problem. In the previous section we saw
how to couple density fitting and sum truncation schemes. Here we propose methods to perform
density fitting and sum truncation in practice. Before describing the algorithm, let us quickly
introduce the main steps. For a given tolerance value ¢ > 0, let us fix M = M (0) € N*. Then, in
order of execution:
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1. Construct index permutation {sq,..., s}

2. Construct mixing matrix Y € RM*M,

3. Construct screening matrix S € RM*M

4. Truncate screening matrix following appropriate geometric patterns.

4.2.2.1 Step I - Density fitting scheme

Modified Gram-Schmidt orthonormalization. This paragraph treats the first error compo-
nent of Theorem 4.2.1 concerning density fitting. The goal is to end up performing density fitting
using an orthonormal auxiliary basis set, for every fragment, with improved decay behaviour on
auxiliary coefficients.

For simplicity we omit the fragment index to add it later. Consider a given finite family of
functions p = {p; }1<;<n such that p := p; + py + - - -+ px defines a reference function to approx-
imate, as in Eq. (4.§>TFOI the sake of generality, we assume that the set p yields an admissible
auxiliary basis set. Further basis set requirements, such as atomic center restrictions, orbital
symmetries, etc., will be addressed later in Section 4.2.3, as they only affect the initialization of
the admissible auxiliary basis set.

We compute the number M € N*, the set of indices {s1, ..., sy} and the matrix Y, for use
in Eq. (4.10), as follows. A Gram-Schmidt process [322] is a systematic method for orthonor-
malizing a set of vectors or functions in a space equipped with an inner product. Our proposed
Modified Gram-Schmidt (MGS) orthonormalization procedure is based on the Pivoted Cholesky
Decomposition (PCD), previously introduced in Section 3.2.4.2. Let us define the Gram matrix
G := (p|p) of the family p. PCD yields a decomposition of a permuted submatrix of G, that
reads

PGP}, =L,L},, (4.15)

with P, € RM*" a row permutation matrix, Lj, € RM*M Jower triangular and M < N the
estimated rank of G, for a given prescribed tolerance threshold. The resulting selection and
permutation of indices is obtained by the first M pivots, defined in Eq. (3.18) and denoted by
{s1,...,8p} Let us assume that L,, is invertible. The first M PCD-selected rows and columns
of G can be orthonormalized using the following matrix, denoted by Y and referred to as mixing
matriz, defined as

Y =L, (4.16)
Notice that this matrix verifies the property
Y(P,GP;,)Y" =1,

with T the M-by-M identity matrix, meaning that it orthonormalizes the set {p;, }1<;<n Where
notice that functions are sorted in pivot order. Now, the coefficient matrix Y being lower
triangular, this orthonormalization defines a modified Gram-Schmidt scheme for the function set
{psi}1§i§M~

In analytic form, our MGS scheme corresponds to constructing an orthonormal basis of the
space Span(p,.)i1<i<ar, by defining the set of functions & of the form Eq. (4.10) for the choice of
Y given by Eq. (71.1_6). Recall that the orthonormalization order is entirely determined by PCD,
which is greedy in terms of linear dependence. To summarize, our MGS scheme can be interpreted
as a Gram-Schmidt procedure applied to a Cholesky pivot preordered function set, truncated
to rank M for avoiding common numerical instabilities caused by the standard Gram-Schmidt
procedure. Let us recall that PCD yields the M most linearly independent functions that span
the full space. Intuitively, this is expected (we do not provide theoretical evidence) to enable a
decay behaviour on the absolute value of the auxiliary coefficients.
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Figure 4.4: An example of L-shaped pattern 4.4a and a counter-example 4.4b. Schematically,
a domain should fill lower left blocks of the first quadrant of the lattice incrementally without
gaps. In 4.4c, a given horizontal boundary (three colored points) uniquely defines an L-pattern.

Lastly, the auxiliary coefficients on the orthonormalized basis can be found as follows.
According to Eq. (2.18), least-squares normal equations simplify to

c=YP,G1, 1:=(1,1,...,1) eRM, (4.17)

since the Gram matrix of orthonormal basis is the identity. Note this vector can be obtained by
backward substitution, i.e.
LMC = PMG]_,

for avoiding the explicit matrix inversion in favour of numerical stability. Let us emphasize that
the vector ¢ may be evaluated entirely offline.

4.2.2.2 Step II - Sum truncation scheme

Once the auxiliary basis set has been constructed, we can compute the screening matrix S defined
in Eq. (4.14). Then, we may solve the optimization problem of Eq. (4.12) under the constraint
Eq. (4.13). Here, we will propose an equivalent formulation based on graph theory notions. First,
we introduce the target pattern that we choose to construct.

Target pattern. A pattern adapted to our problem should include as many terms as possible,
in order to improve accuracy, while exploiting precomputations due to the lower triangular
structure of our mixing matrix. This pattern may be formally defined as follows.

Definition 4.2.2 (L-pattern). Subsets of the integer lattice are said to have the L-shaped pattern
(or L-pattern) if they belong to the following family

L:={ICZ:{j:1<j<i}CI, Viel},

where i, j are multi-indices and the order relation < is defined component-wise, namely (7, j) <
(k,0) if and only if i < k and j <.

Sets satisfying this property are connected in the topological sense, as the examples illustrated
in Figure 4.4. Note that a horizontal boundary uniquely defines an L-pattern, obtained by taking
the union of points i such that i < j for j boundary point. An illustration can be found in
Figure 4.4c. Moreover, for any index set I, we can find an L-shaped domain L € £ such that
ks(I) = k(L) and I C L. An example is provided in Figure 4.3c. In that sense, L-shaped
domains achieve better accuracy than their subsets, since they contain more elements, while
achieving the same complexity. For this reason, we seek to construct index sets that belong to
the family £, for maximizing accuracy for fixed operation count. This is actually an optimal
sparsity pattern for our problem and we derived it a priori, based on the known structure of Y.
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Graph formulation. In the present paragraph, we construct sparse density fitting schemes
from L-shaped patterns. Our main construction of L-patterns is based on graphs associated to
summation domains. Using graphs, we introduce a novel discrete optimization strategy for sparse
pattern construction. We define the main objects in the following. For the remaining chapter,
fragments A and B are congruent, thus ¢ := ¢4 = cp are the auxiliary coefficients defined in
Eq. (4.17).

The case of distinct fragments can be deduced in a similar manner. The graph building
procedure is based on summation graphs. Consider an arbitrary number n € N*. Let us motivate
the summation graph construction. Before defining the directed graph, let us quickly summarize
our terminology.

e Vertices are elements of the integer lattice A(n,n) := {1,...,n} x{1,...,n}, corresponding
to double summation index sets, or, in other words, to orbital pair indices. Note that, by
the screening matrix S symmetry, it suffices to restrict vertices to the integer lattice upper
left corner.

e Arcs (south or east) are directed edges of unit length. Traversing a south arc means
by convention skipping its starting node (i, j) from the summation. On the other hand,
traversing an east arc means including its starting node in the summation. A cost has
to be paid for traversing an arc and a resource has to be used along the arc. The cost
corresponds to the computational complexity contribution to the summation, while the
resource corresponds to the truncation entry error.

e Paths are ordered sequences of south or east arcs, with a source and a destination node.

The question one may ask is how to choose a minimal number of indices of the matrix S under
the constraint of Eq. (4.13). Such a choice of set of indices over the two-dimensional integer
lattice can quickly become a tricky decision problem, due to the large number of combinations
of indices one is allowed to consider. In order to deal with this issue, our method proposes to
first construct horizontal boundaries and then recover L-shaped patterns defined from these
boundaries. An elementary but useful remark is that, by Definition 4.2.1, any two given horizontal
boundary points (i1,7;) and (is,jo) with i; < iy necessarily satisfy j; > j,. This allows to
recover horizontal boundaries from consecutive south or east steps. Here, we define the notion of
appropriate paths consisting of this kind of steps, referred to as truncation path. Then the main
idea of our construction scheme is that any given truncation path on a summation graph defines
a horizontal boundary of some domain. Since a given horizontal boundary uniquely defines an
L-shaped domain, constructing truncation paths could lead to a solution for problem of Eq. (4.12)
under the constraint Eq. (4.13). Before presenting the decision procedure for constructing such
paths, let us first introduce graph notions that allow us to formulate the problem in this context.
Let us quickly emphasize that our goal is to end up with a graph on which we may search for
shortest paths under resource constraints.

Let us first define the summation graph on which we will solve an optimization problem,
defined later on.

Definition 4.2.3 (Summation graph). Let n € N* and S = (S;;) € R"*" a symmetric matrix.
The summation graph, denoted by G(S), is defined as the directed graph (V, A) with set of
vertices

V={(4):0<j<n, 1<i<j+1}

and set of arcs (directed edges) A = Aqusr U Agouth U Adiag, Where each set contains the following
ordered pairs of vertices:

Acast = 1((4,9), (1 + 1,4)): I<i<y, 1<j<n}
Asouth = {((Z,]),(Z,] - 1)) 1 S { S.ja 1 SJS n}
Aging = {((1+1,0), (i +2,i+1)): 0<i<n—1}.
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Figure 4.5: Steps of Algorithm 3 applied to an index set (in gray) of size 4-by-4. Note that
vertices of the summation graph include the first sub-diagonal.

A cost k, is associated with each arc a = ((i1, 1), (i2,72)) € A, defined as

Jj1— 11+ 1 a east,
Kq i=
“ 0 a south or diagonal,

together with a quantity of resource r, associated to each arc a,

J
- 2> 32, Sk, — Sj,.4, @ south, '
0 a east or diagonal.

Note that the factor 2 in the resource for south steps comes from the symmetry of S. It is
not necessary to include this factor 2 in the cost, however, evoking symmetry of S that allows
reusing computations.

Definition 4.2.4 (Truncation path). Let G(S) = (V, A) be a summation graph. A truncation
path on G(8) is defined as an ordered sequence of [ arcs, p = (a4, ...,q;) such that a, € A for all
q=1,...,1. Arcs are further assumed to be consecutive, meaning that the end of a, is the start
of a,q forall 1 < ¢ <1—1. The family of truncation paths on the graph G(S) with source node

o and destination node d is denoted by Pg~9.

The resource constrained shortest path problem. The following provides a presentation
of our strategy for constructing truncation paths. We propose a sparse pattern construction
based on finding shortest paths under resource constraints. To quickly highlight the link between
paths on graphs and retained summation indices, adding arcs to a path corresponds to deciding
whether the arc starting node is skipped from the summation or not.

The underlying optimization problem is introduced as follows. The Resource Constrained
Shortest Path Problem (RCSPP) [268, 166] in operational research and in discrete optimization,
is widely studied in a variety of settings, such as the truck driver scheduling problem, the vehicle
routing problem, etc, in transportation systems. It is defined over a directed graph G(V, E),
where V' is the set of n vertices and F is the set of m directed edges. A path with source vertex O
and destination D is defined as an ordered sequence of [ edges, i.e. p = ((Ag, A1), ..., (A1_1, 4}))
with Ay = O, A; = D and (A;, A;) € E. The aim of RCSPP is to find a path p with the smallest
cost, such that w(p) < W, where w(p) is the total resource of p obtained by summing resources
associated to its arcs and W is a prescribed maximum amount of available resource.

We propose to apply this technique for solving problem of Eq. (4.12) under the constraint
Eq. (4.13). The decision problem of constructing L-shaped patterns can be mapped to a well-
defined discrete optimization problem, as described in the following. In this respect, optimized
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summation domains can be obtained by solving the following problem. Given a maximum
amount of available resource W (with W = § in our application), our heuristic L-shaped domain
construction is based on solving the following RCSSP

min Y "k, (4.18)

pePg—d =
subject to Zra <W. (4.19)
acp

We want to define a symmetric summation domain with the L-shaped sparsity pattern, such
that the condition Eq. (4.13) is satisfied. This may be obtained by using our following heuristic.
Let S € R"*™ symmetric and 6 > 0. Let p, be the solution to RCSSP (4.18) — (4.19) for resource
capacity W = ¢, source node o = (1,n) and destination node d = (n,n+ 1). Define the index set

Loo={(i,j): (i,§) S vy, (v1,09) € Py N Auaet}- (4.20)

Notice that the horizontal boundary of I, is obtained from the starting points of east steps
in the path p,. Let us denote by I, the set obtained by symmetrizing I,, i.e. by adding the
corresponding symmetric indices such that (i, j) € I, if and only if (j,7) € I,. Then I, has the

following properties:
i. I, e,
i > )er. Sij <0

Notice that since I, is L-shaped, it is optimal for this é-sparsity. Figure 4.5 illustrates the
main steps of our L-pattern construction. Another remark is that, since the cost and resource of
diagonal arcs, i.e. arcs in Ag,g, is equal to zero, by Definition 4.2.3, we know that diagonal arcs
are always chosen when possible. This is made possible precisely when the previous arc is either
a diagonal one or it starts from a point belonging to the diagonal. Then the truncation path will
always connect this point and the destination node d through diagonal arcs. At the same time,
diagonal arcs do not add points to the index set I,.. Diagonal arcs can hence be interpreted as
fictitious arcs that simply allow to terminate the path once the diagonal has been reached.

4.2.3 Summary of sparse density fitting schemes

In the present section, we summarize sparse approximation methods for frozen core intermolecular
interaction energy calculations based on density fitting. The entire process is presented within the
offline-online simulation framework of Section 2.2.1.2. The core of our method is the sparsification
strategy. Prior to that, we discuss various choices of Gram matrices one may use to apply such
sparsification schemes.

4.2.3.1 Choice of admissible primitive ABS (offline)

During the Step I of density fitting, presented in Section 4.2.2.1, one has the option of initializing
an admissible primitive auxiliary basis set (ABS) satisfying desired assumptions. The explicit
definition of the matrix G, used thoughout Step I, starting from Eq. (4.15), is obtained from
this primitive ABS. Here, we present and motivate possible choices of G.

First, an intuitive choice of admissible auxiliary basis set is obtained by restricting the full
set of orbital products, appearing in the density decomposition of Eq. (3.26), to orbital products
centered on atoms, using methods proposed in Chapter 3. We recall from Section 3.2.3.1 that an
important auxiliary basis set requirement is orbital symmetry with respect to angular degree.
According to this property, all primitives associated to a given angular degree must be included
in an auxiliary basis set. In order to impose this requirement during our sparse density fitting,
we choose to contract primitives belonging to the same angular group, defined in Eq. (3.35),
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before truncating orbital pairs. This allows to assure that all primitives of a given angular degree
will be retained after the truncation step of sparse density fitting. Let us emphasize that a
consequence of this contraction is that all primitives of a given angular degree will then have the
same auxiliary coefficient. This is a difference that should be kept in mind, when comparing
our sparse method with conventional density fitting, where all primitives had different auxiliary
coefficients. The requirement is imposed by using the full matrix G defined in Eq. (3.30), instead
of the matrix A defined in Eq. (3.33), for performing the density fitting in Section 4.2.2.1.

An alternative choice of admissible ABS can be obtained as follows. Recalling our MGS
procedure of Section 4.2.2.1, the mixing matrix is computed from the pivoted Cholesky decom-
position of the matrix G, as in Eq. (4.16). A feature that plays an important role in the present
study is the preconditioner applied to G before performing the pivoted Cholesky decomposition.
The preconditioner affects the permutation of indices {s, ..., sp}, used in Eq. (4.10), as well as
the magnitude of auxiliary coefficients of mixed orbitals. In particular, the decay of the absolute
value of the auxiliary coefficients is expected to be affected. We then recall that the screening
matrix under sparsification is defined in terms of the auxiliary coefficients, as in Eq. (4.14). Our
interest is thus to numerically assess the influence of the preconditioner of G on the number of
retained entries, obtained from sparsifying the screening matrix. In order to analyze the impact
of the weights during sparsification, we also consider the case where the admissible primitive
orbitals are normalized. The motivation behind studying this case lies in the fact that, our MGS
procedure may be in practice applied either for a given reference density p, or for an approximate
density p obtained by density fitting. Let us emphasize that these two distinct cases lead to
different scaling coefficients on the admissible auxiliary basis set. In particular, in the first
case, the auxiliary basis functions used to build the Gram matrix, on which we apply pivoted
Cholesky decomposition, will be weighted by the density matrix associated to the given p. In
the second case, however, the Gram matrix is built from auxiliary functions associated to p, that
are normalized by convention. Note that the density matrix is not used in this case. We expect
that normalizing the functions used for building the Gram matrix will affect the decay behaviour
of the auxiliary coefficients. Since, in quantum chemistry codes, the auxiliary basis is commonly
normalized, assessing the sensitivity of our MGS procedure to this normalization is one of the
purposes of the present study. This will enable us to investigate the applicability of our method
to a fitted density p, for sparsifying auxiliary interactions between fitted densities.

A last choice of auxiliary basis set, considered in the present work, is the unrestricted one,
obtained by the full set of atomic orbital products (i.e. including those centered on atoms,
off-atoms or midbonds). Note that this last choice is considered in this work only to illustrate the
influence of adding more centers to the auxiliary basis set. Althought accuracy can be improved
by adding more centers, recall that adding all centers without any restrictions is prohibitive for
physical reasons in chemistry applications.

Let us briefly summarize the explicit definition of various Gram matrices for use in Eq. (4.15),
employed in this work throughout our MGS procedure:

A. The atomic Gram matrix of orbital products, scaled by the density matrix. The explicit
definition of this matrix is given by Eq. (3.33). Recall that admissible auxiliary functions
are formed by orbital type and are restricted to atomic centers. However, the resulting
ABS does not respect atom-wise consistency.

B. The preconditioned atomic Gram matrix of orbital products. Given the matrix A defined
in Eq. (3.33), the idea is to write A = DAD where D := diag(A)'/2. The result is that A
has unit diagonal, i.e. orbitals associated to rows and columns of A are normalized. This
matrix A is known to have nearly optimal minimal condition number [156, Corollary 7.6].

C. The full Gram matrix based on primitives. This can be obtained by folding dimensions of
the matrix defined by Eq. (3.28) to obtain a Ng—by—Ng matrix. Note that this admissible
ABS does not respect neither the orbital symmetry of Eq. (3.21) nor the atomic center
restriction, as all centers are allowed.
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4.2.3.2 Sparsification (offline)

Before presenting the explicit description of algorithms for sparsifying frozen core interaction
matrices on finite basis sets, we quickly highlight the main features of each algorithm. Let us fix
a target tolerance value § > 0 and assume we are given a finite basis of M primitive orbitals,
selected among the admissible orbitals. Our goal is then to solve the problem of Eq. (4.1). We
consider two different methods to achieve this:

e Sparsification of Primitive Orbitals Pairs (SPOP). This algorithm decides if individual
primitive orbital pairs must be retained or discarded. A direct sparsification technique is
employed for solving problem of Eq. (4.5) for generating summation domains of arbitrary
shape. Note that the MGS procedure is omitted altogether.

e Sparsification of Mixed Orbital Pairs from Modified Gram-Schmidt (SMOP-MGS).
This algorithm decides if individual mixed orbital pairs must be retained or discarded.
Primitive orbitals are orthonormalized using our modified Gram-Schmidt procedure to
obtain mixed orbitals (see Section 4.2.2.1). Our novel graph-based sparsification technique
(see Section 4.2.2.2) is employed for solving problem of Eq. (4.12) under the constraint of
Eq. (4.13) for generating L-shaped summation domains.

Let us clarify that a density fitting intermediate step is incorporated on each one of the two
algorithms. The finite basis of M primitive or mixed orbitals is used as an auxiliary basis. The
M-by-M matrix to be sparsified is obtained from the fitted coefficients. Before describing the
explicit forms of the sparsification, we first introduce the algorithms for any given auxiliary basis
set, for the sake of clarity. Then, we discuss sparsifications obtained from specific auxiliary basis
set generation methods of interest.

Any given pure auxiliary basis set. For a given tolerance value 4 > 0, auxiliary basis
set {&;}1<i<ar (consisting of pure orbitals) and density p, we construct schemes such that the
following self-interaction energy approximation

(p.p) = Z (& &) (4.21)

(i,5)€ls

has an absolute error smaller than §, where p is obtained by density fitting p on an appropriate
basis, made up of (mixed or pure) orbitals obtained from the auxiliary basis, with x the projection
coefficients. Our schemes then provide I5 and x. Recall that the error é comes on top of density
fitting, as discussed in Remark 4.2.1.3. First, Algorithm 2 summarizes our scheme SPOP. The
vector x contains the auxiliary coefficients, since we consider pure orbitals in this scheme. Note
that the sparsification, employed in Steps 3-7 of this algorithm, has an operation count given by
O(M?). Next, Algorithm 3 summarizes our scheme SMOP-MGS. The vector x now contains the
projection coefficients on the orthonormalized MGS basis of mixed orbitals. The sparsification
is performed in Steps 5-7 of this algorithm. Notice that the graph assembly, as well as the
graph problem of Eq. (4.18) and Eq. (4.19), underlying this sparsification, is much more complex
than the one employed in SPOP and the complexity of its solution depends on the explicit
implementation. Fortunately, this cost does not affect the online operation count, since we recall
that all sparsifications are computed offline.

Specific choices of auxiliary basis sets. Explicit formulas of the sparsification algorithms
can be provided for the ABSs of interest, presented in Section 4.2.3.1. In the present section, we
describe how to generate auxiliary basis sets and then apply sparse density fitting.

Let us focus on Options A. and B.. Table 4.1 recapitulates formulas used for each method
under study. Note that all quantities listed in the table are evaluated offline. The starting
point is the matrix G of dimension N;Z X N;Q7 obtained from a given AO basis set, as defined
in Eq. (3.30). From the set of orbitals corresponding to rows and columns of G, we obtain
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Algorithm 2: Sparsify Primitive Orbital Pairs (SPOP).

Input: reference density p, auxiliary basis set & = {{;}1<;<nr, kernel K, § > 0.
Output: summation domain I5 and coefficients x in Eq. (4.21).

1: Assembly auxiliary Gram matrix Gy, = (§|€) -

2: Perform density fitting by solving G ;¢ = b, with b := (p|£) .
3:
4

Build screening matrix S € RM*M with entries S;; := [c;c;| 1€ ||k 1€/ x¢-

: Change the dimension of the screening matrix by flattening to a vector v € RM 2, with

entries defined as
VI<k<M? w,:=S85

koJk?

for k — (iy,Ji) a given enumeration of index pairs.
Sort entries of v in increasing order, by constructing a permutation 7 of indices in

{1,..., M?} such that
V1 S k S M2, ’Uﬂ.(k) S Uﬂ(k+1).

Compute the cumulative sum of v, i.e. the vector ¢ € RM * with entries defined as

VI<k<M? c¢:= Zvﬂ(l).

Find the maximal index 1 < k, < M? such that ¢, < 0.
return I := {(iy, j): k:==7"1(), V1<I<k,} and x:=c.

Algorithm 3: Sparsify Mixed Orbital Pairs from Modified Gram-Schmidt
(SMOP-MGS).

Input: reference density p, auxiliary basis set & = {{;}1<;<nr, kernel K, § > 0.
Output: summation domain I5 and coefficients x in Eq. (4.21).

=

Assembly auxiliary Gram matrix G, = (§|€) -

Perform Cholesky decomposition G,; = LLT.

Density fit on basis orthonormalized by MGS, by solving Lc = b, with b := (p|§) .
Build screening matrix S € RM*M with entries S;; := |c;c;].

Assembly the summation graph associated to S.

Solve RCSSP of Eq. (4.18) under the constraint of Eq. (4.19) for given ¢ to obtain the
solution path p;s.

Define I; from p; as in Eq. (4.20).

return symmetrized I; and x := L™ !c.
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orbital pure mixed
step
full Gram A =DR'TGRD
PCD P, AP, =LyL},
aux. Gram Gy =P}, APy,
RHS b=DR'G1
DF Gcy =Pb Lycy =Pib
screen S = leyei ] © (ww') S = |eaeyyl
coef. x = DP ¢y X:DPMLX/}CM
energy (p,p) =x"RTGRx

Table 4.1: Explicit matrix formulas of various sparse DF methods, from a given matrix G defined
in Eq. (3.30). PCD of fixed rank M is given by Eq. (3.16). R is the atomic restriction matix

defined in Eq. (3.32), w is the vector of size M with entries w; := [PLAPM]%2 (note that
w; = 1 for Option B.). D is a N_-by-N, diagonal matrix, defined as the identity for Option A.
and D = diag(A)~!/? for Option B.. The operation ® denotes the entry-wise Hadamard product

between same-sized matrices.

the set of admissible primitive orbitals by restricting to atomic centers. The selected primitive
auxiliary basis set has size M < N_, for N, the number of atomic products for contracted AOs
by orbital type and M a fixed rank used in PCD. The auxiliary Gram matrix, of dimension
M-by-M, corresponds either to P]TWAP u for pure orbitals, or to the identity for mixed orbitals.
Notice that, in the case of pure orbitals, we obtain M auxiliary coefficients, which have the
following feature. The Gram matrix used in density fitting is a submatrix of G. Hence each
row (and column) corresponds to a pairwise product of contracted AOs. Each contraction
contains primitives belonging to an orbital type and having identical center and exponent. Hence,
auxiliary functions are essentially contracted orbitals. This point affects the auxiliary coeflicient
computation during density fitting. This feature, also mentioned in previous Section 4.2.3.1,
distinguishes the present methods, when compared with conventional density fitting schemes of
Chapter 2, where auxiliary functions are primitive orbitals.

Lastly, one applies sparsification to the screening matrix S, using Algorithms 2 and 3, namely
SPOP for pure orbitals and SMOP-MGS for mixed orbitals. To this end, the auxiliary basis set
of primitives, obtained by PCD of rank M given by Table 4.1, is the input to such algorithms.
Note that auxiliary functions must be ordered according to PCD pivots.

4.2.3.3 Pairwise intermolecular interaction (online)

Our sparse density fitting scheme allows to construct solutions to the pairwise interaction problem
for computing frozen core energies, of the form of Eq. (2.1). In the present section, we formulate
the final scheme in matrix form that allows us to obtain fast summations as solutions to this
problem, computed online. Throughout this section, we are placed in the Gaussian electrostatic
model framework for computing frozen core energies, previously presented in Section 2.1.2.2.

Let us consider a dimer made up of two rigid identical congruent molecular fragments, denoted
by A and B. Recalling notions from Section 2.1.2.1, the frozen fragment library then consists of
a single fragment, congruent to A and B, whose frozen electronic density, denoted p, is given in
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the form of
N, Ny

=3 DuXuXo

i=1 j=1
where D is a Ny-by-IN, density matrix obtained by solving an ab initio ground state problem, of
the form of Eq. (1.11), discretized over the atomic orbital basis {x, }1<,<n,, centered on atomic
positions of the frozen fragment expressed in the local frame. Note that the decomposition of
Eq. (4.9), reading p = p; + po + - - - + py then corresponds to taking N = N? and each p; is a
function obtained as the pairwise product of two AQOs, weighted by the density matrix.

For any two given positions of fragments A and B in the global fragment frame, we may find
two isometries, denoted by Ty and Tz, which map the frozen density to its expression in the
global frame. The exact cross-Gram matrix underlying the interaction between ab initio frozen
densities of fragments A and B can be defined as the four-index tensor G 45, with entries

V1 < s Vs Ky A< Nba [GAB]MW;/\ = <TA(XHXV)7TB(X,»;X/\)>K' (422)

Notice that each entry corresponds to a (possibly) contracted atomic orbital.

Let us begin by Options A. and B.. The vector x, obtained by Table 4.1, is then left and right
multiplied with the matrix A 45, of dimension N, -by-N,, that is obtained from the tensor G 4p
defined in Eq. (4.22), by applying the block treatment given by Steps I - III of Section 3.2.4.1.
We recall that such steps perform primitive uncontraction, weight by the density matrix, contract
by orbital type and restrict products to atomic centers. The frozen core energy approximation,
given by the intermediary DF approximation of Eq. (4.4), is given by

(Tap, Tpp)k = E”" = x" A gpx.

For fixed sparsity tolerance value § > 0, the final sparse approximation is obtained as

EP" ~Es= > ax;[Aapli,
(1,5) €15

where I; is obtained by sparsifying the screening matrix S under the tolerance value §, using
either Algorithm 2 for primitive orbitals or Algorithm 3 for mixed orbitals.

Lastly, for Option C., our density fitting scheme has the following matrix form, that we
explicitely write down here since it presents a particular interest. Let us use the hat notation over
matrices to denote that they are obtained from the given AO basis, by uncontracting primitives,
weighting by the density matrix and then folding dimensions of products, i.e. by turning the
tensor of Eq. (3.28) into a square matrix. Let G be the Gram matrix on the local frame and G 4
the cross-Gram matrix on the global frame in which A and B live. Assume that S denotes the
index set selected by PCD under a given tolerance value. In the SPOP method, the cross-Gram
matrix between A and B is approximated, due to conventional density fitting, as

Gap ~ G(:,9)G(S, ) G 4p5(S, S)G(S,S)TLG(S, ), (4.23)

It may be interesting to comment that our matrix decomposition of Eq. (4.23) is known as a
nested adaptive cross-approximation [29, 139]. The SMOP-MGS method, applied to this kind of
Gram matrix, uses the screening matrix

~

4.3 Numerical results
The present section concerns numerical results and is organized as follows. We first compare

two methods of Gram matrix scaling and two methods of sparsification, for each scaling. The
total of four methods is summarized in Table 4.1. The results of this comparsion enable us to
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deduce the best strategy of sparse density fitting, among the compared ones. For this chosen
strategy, we then compare it with various methods for computing frozen core energies existing in
the literature, namely conventional density fitting and robust density fitting.

Concerning sumulation details, all results presented in this section are generated using our
dfwpy code in Python (see Appendix A for implementation details). The discrete optimization
problem in SMOP-MGS scheme of Algorithm 3 is solved using an exact method, presented in
Appendix A.5. Target molecular systems used for testing are rigid water fragments.

4.3.1 Comparison of sparsification methods

The present section concerns quantifying the impact of the sparsification on the number of orbital
pairs, using different scaling methods. Before presenting the comparison, we first introduce a
notion that enables us to assess the efficiency of each algorithm, measured in terms of discarded
orbitals pairs. Then, the comparison is conducted based on various methods, including the
sparsification effectiveness, frozen core energy errors and timings.

4.3.1.1 Sparsity index

The comparison of sparsification schemes is carried out based on a quantitative indicator of the
sparsification effectiveness, inspired by [334]. Given a threshold value § > 0 and a matrix M of
dimension n-by-n, the sparsity index of M is defined as the fraction of non-zero elements:

1{(i,7): | My;] < 0}
n2 ’

Zero sparsity index means that the matrix is numerically dense, while index equal to one means
that the matrix is numerically zero. The sparsity index basically indicates how fast we can
evaluate the matrix M entry-wise, under the assumption that entries below § are numerically
zero. Larger sparsity index means that the underlying sparsification scheme is more effective.

In order to compare sparsification methods, the idea is to first fix an admissible Gram matrix
A of dimension N, -by-N,, defined in Table 4.1, and a fixed rank M < N,.. Recall that A is
scaled accordingly, depending on either Option A. or Option B.. For the auxiliary Gram matrix
of size M-by-M obtained by PCD for M, denoted by G,;, one then applies the scheme SPOP,
given by Algorithm 2, and the scheme SMOP-MGS, given by Algorithm 3, to obtain the retained
entries of G, under a tolerance §. Notice that, by fixing the auxiliary Gram matrix G,;, we
assure that all algorithms are applied to the same auxiliary basis, up to the scaling coefficients.
In this numerical experiment, we compute the sparsity index for the sparse approximation of
G s obtained for various tolerance values 0 given as input in either SPOP or SMOP-MGS. We
thus obtain four methods under comparison.

Figure 4.6 presents the results of this comparison. Results show that for small target threshold
values, all sparsification methods perform equally. However, for larger threshold values, including
the target chemical accuracy at 1073, it is observed that SMOP-MGS is more effective, especially
when applied to the scaling of Option A., corresponding to density matrix coefficients. Another
observation is that the sparsity index of a given scheme seems to decrease, as we increase the
AO basis size. This can be seen by comparing any given curve point in panels (a) and (b).

4.3.1.2 Frozen core energy

Up next, we assess the effective sparsification error on frozen core energies. For each sparsification
method under comparison, we vary the rank of the PCD used to obtain the auxiliary basis of
density fitting. The goal is to find the sparsification method that achieves greater accuracy on
frozen core using the smallest number of orbital pairs, for fixed rank.

Table 4.2 illustrates the results obtained for ten standarized Smith dimers, using the root
mean square error (RMSE) metric of Eq. (3.36). This table shows the approximation errors and
the number of entries that each sparsification scheme considers as nonzero, for varying Gram
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Figure 4.6: Fixed M = 120. Sparsity index of sparsification methods applied to auxiliary Gram
matrix Gy, of dimension M-by-M, given by Table 4.1, for H,O and the Coulomb kernel. SPOP
(pure) and SMOP-MGS (mixed) sparsifications, for varying zero-threshold 0, are applied to G,
scaled either as Option A. or as Option B. (precond.).

matrices on different AO bases. The auxiliary bases used in density fit are truncated to several
lower ranks using PCD. We observe that each sparsification method yields a different number of
retained entries. In particular, results show that, by using SMOP-MGS and the density matrix
scaling on the auxiliary Gram matrix, i.e. Option A., we achieve better overall accuracy on
frozen core energies using fewer orbital pairs that other schemes. This holds true for various
ranks M used in PCD. From the obtained results on nonzero entries, we may also conclude that
the minimal condition number of the auxiliary Gram matrix G,;, achieved for the Option B. as
expected from theory [156], does not seem to improve the sparsification efficiency. Regarding
RMSE errors, it is often observed that the effective error on frozen core energies is lower than
the sparsification tolerance. This may indicate that error cancellation effects might be taking
place when summing orbital pairs, but these effects are much harder to master.

On the same experiment, the varying rank M used in PCD allows to study the balance
between density fitting and sparsification, as addressed in Remark 4.2.1.3 following our main
error estimator of Theorem 4.2.1. Recall that, for every M, we sparsify the screening matrix
of size M-by-M, with an increasing number of entries as M increases. Hence, the number of
retained entries is expected to increase with M, for fixed tolerance value used in the sparsification,
as results show. A parameter tuning strategy may become necessary in order to determine the
best size M one should use in order to achieve a target RMSE value on energies.

Lastly, concerning computational complexity, the exact frozen core energy computation used
as a reference involves the summation of O(N;}) orbital pairs, while sparsification methods only
involve the number of nonzero entries. Further commenting on results of Table 4.2, we can see
that the number of nonzero entries of the Gram matrix, precisely after applying the best overall
sparsification scheme SMOP-MGS, is linear in the total number of rows, which is equal to N?.
The prefactor of the linear scaling is estimated to be roughly equal to 10. Such observation
holds true for various rank values and AO basis sets. Hence, overall, it may be interpreted as an
indicator showing that linear-time (i.e. quadratic in N,) G, assembly schemes are possible for
the specific matrices of our problem setting.
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G, nonzero entries (6 = 107°) RMSE on EE (Hartree)

AO basis NZ| M Option B. Option A. Option B. Option A.
prim. mix. prim. mix. | prim. mix. prim. mix.
25 608 625 580 624 | 8E-1 8E-1 1E-2  1E-2
6-31g** 625 40 1,550 1,600 1,580 1,521 3E-1 3E-1 3E-3 3E-3

60 | 3,211 3,560 3,400 3,198 | 4E-3 4BE-3 4BE-3 4E-3
50 | 2,143 2,500 2,435 2,415 | 5B-1 HE-1 4E-3 4BE-3
80 | 5971 6,396 6,216 5524 | 2E-2 2B-2 1E-3 1E-3
100 | 8,925 9,850 9,359 7,324 | 3E-3 3E3 1E-3 1E-3
120 | 12,184 13,950 13,400 9,610 | 2E-4 2E4 3E4 3E4
90 | 7,611 8,096 8,100 6,929 | 2B-1 2E1 4E4 4E4
aug-cc-pvtz | 1,936 | 120 | 13,755 14,395 14,400 11,033 | 8E-2 8E-2 3E4 3EA4
150 | 21,199 22,486 20,526 16,250 | 1E-2 1E-2 1E4 1BE-4

aug-cc-pvdz 961

Table 4.2: Ten standarized Smith dimers. Sparsification methods SPOP (prim.) and SMOP-MGS
(mix.) for fixed § = 1073, applied to M-by-M Gram matrices defined in Table 4.1, using different
scaling options. The Gram matrix is obtained for H,O under the Coulomb kernel. RMSE is
given for the electron-electron (EE) frozen core energy.

6 —2 -3 —4 d -2 -3 —4
M 10 10 10 M 10 10 10
80 0.0632 | 0.0624 | 0.0630 80 20.30 1.85 0.31
100 0.0676 | 0.0662 | 0.0662 100 164.00 30.51 2.05
120 0.0682 | 0.0653 | 0.0658 120 502.07 | 132.38 | 12.29
(a) SPOP (primitive) of Algorithm 2. (b) SMOP-MGS (mixed) of Algorithm 3.

Figure 4.7: Timings (in seconds) for sparsifying M-by-M Gram matrix G,; (Option A.) obtained
from aug-cc-pvdz for H,O, using a tolerance value §. We averaged execution time of 3 runs.

4.3.1.3 Timings

We compare timings of different sparsification methods. Table 4.7 presents execution times for
the two sparsification schemes under study, applied to matrices of several rank values. Results
clearly show that the sparsification of SMOP-MGS is much more expensive than SPOP, by a
factor of 1000 on average. This is expected, because SMOP-MGS solves a discrete optimization
problem. Moreover, the larger the target tolerance, the longer it takes to run, since the search
depends on the path size. Note that the high time cost is not prohibitive in applications where
the sparsification can be performed entirely offline, which is the case for rigid fragments.

4.3.1.4 Auxiliary coefficient decay

In the present section, we propose a sparsity analysis attempting to explain the reason behind
the better sparsification performance of the SMOP-MGS scheme. We focus on the auxiliary
coeflicient decay, which we recall, from Section 4.2.3.1, that affects the magnitude of entries in
the screening matrix.

To this end, we plot the vector of coefficients v for which there holds S = vv ', for S the
screening matrix defined in four methods under comparison, we refer to Table 4.1 for definitions.
Figure 4.8 presents the results on the magnitude of entries in v. Results show that, the SMOP-
MGS algorithm based on orthonormalization, applied to both types of scalings, generally creates
entries that are more structured than SPOP obtained ones. In particular, the points marked
with blue crosses and the ones marked with purple circles, corresponding to mixed orbitals,
present a characteristic decay behaviour. This behaviour may be interpreted as encouraging, as
it provides numerical evidence that our MGS scheme, which orthonormalizes orbitals preordered
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Figure 4.8: aug-cc-pvdz AO basis of HyO, Gram matrix under the Coulomb metric. Fixed
M = 120. Entry-wise plot of the vector v, for the four methods (same labels as in Figure 4.6).
The screening matrix S admits the decomposition S = vv ', with v; := |[c;s];w;| (see Table 4.1
for definitions), where any 1 < i < M corresponds to a (mixed or pure) auxiliary basis function.

by PCD pivots, ensures the desired decay on coefficients. This demonstrates the effectiveness of
our greedy orthonormalization procedure based on PCD.

4.3.2 Comparison of density fitting methods

The present section is dedicated to the comparison of existing and new methods for the compu-
tation of frozen core energies. Namely, our sparse density fitting (SDF) method of Algorithm 3
is compared with conventional (DF) as well as robust (RDF) density fitting. We refer to Sec-
tion 2.3.3.2 for a definition of state-of-the-art methods. The goal is to present how our sparse
density fitting method allows to improve existing methods. Two different admissible auxiliary
basis sets have been studied, with different requirements, notably concerning the orbital center
restrictions.

4.3.2.1 Atomic auxiliary basis set

In the present experiment, we consider the sparse density fitting scheme SMOP-MGS obtained
for the scaling of Option A., which concerned scaling with the density matrix. Recall from
Section 4.3.1 that this scheme has provided the best results overall, among the schemes under
comparison, in terms of sparsification effectiveness. Let us note that the resulting auxiliary basis
set exclusively uses atomic positions as centers, thus this method has physical applications.
Figure 4.9 presents a plot of the RMSE (see Eq. (3.36)) on electron-electron frozen core energy
as a function of the number of orbital pairs used in the summation that allows to obtain the
energy. Each compared method leads to a different number of retained orbital pairs, obtained by
varying input parameters of the given method. For example, for DF and RDF, we vary the target
auxiliary basis size M, while for SDF, we vary both M and the sparsity tolerance value §. Recall
that the exact energy used as a reference uses O(N;}) orbital pairs, with N, = 18 (counting by
orbital type, see Table 3.1) using the AO basis aug-cc-pvdz for H,O in the present numerical
experiment. Overall, density fitting allows to reduce the number of orbital pairs, as shown by
results. In particular, results verify that robust density fitting achieves the lowest errors, that is
theoretically expected due to the corrective terms, previously introduced in Eq. (2.31). The cost
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however increases significantly, as shown by the high number of orbital pairs. As a result, RDF
improves the initial number of orbital pairs only by a factor varying from 5 to 10.

On the other hand, conventional and sparse density fitting methods allow to reach chemical
accuracy, i.e. 1073 Hartree, with a low number of orbital pairs than that of robust density
fitting. In particular, the use of sparse DF allows to reduce the number of orbital pairs of
DF by a numerical factor roughly equal to 10, while reaching the same accuracy as DF, and
the total number of orbital pairs used in the exact calculation by a factor varying from 100 to
1000. We may interpret this feature as an encouraging result in favour of sparse density fitting,
demonstrating the capabilities of our new method. Comparing ranks used in SDF, the choices
M = 40 and M = 80 present a monotonous decay on orbital pairs with decreasing . The choice
M = 120, however, is shown to give results without significant improvements for lower values of
§. This may mean that we need to further lower values of § below 1073 to see an improvement.

Up next, more details are provided on the sparsification of a given Gram matrix of dimension
M-by-M, by explicitely illustrating its retained and discarded entries. We focus again on
SMOP-MGS for scaling Option A.. Figure 4.10 shows entry-wise sparsification results, for
varying sizes M and sparsification tolerance values §. Moreover, it displays the magnitude of
the screening matrix entries used in the sparsification. One may first observe an accumulation
of large entries on the lower left block of the screening matrix. Such structure is geometrically
compatible with the L-shaped sparse pattern, given by Definition 4.2.2. Indeed, the decrease of
the sparsification tolerance value causes to expand the boundary of the L-shaped pattern, in a
gradual and incremental fashion. We may interpret this geometrical observation as a numerical
demonstration of the convergence of our sparsification scheme, introduced in Section 4.2.2.2
with respect to §, for constructing L-shaped patterns for a fixed M. As a last remark, note that
effective range of § depends on the size M of the screening matrix. For instance, results show
that for M = 40 the sparsification parameter cannot be set below § = 1073, without causing to
retain all entries. However, for M = 120 one notices that lower values of § can be possible. This
may be a consideration one needs to take into account when performing parameter tuning, for
achieving a desired balance between values of M and 6.

4.3.2.2 Auxiliary basis including off-atom centers

The admissible auxiliary basis sets, studied in the present section, concern an unrestricted choice
of orbital centers. Note that such consideration may have computational limitations due to the
large number of centers, however we consider it here only for testing purposes.

Before discussing results, let us provide the simulation details. In this numerical experiment,
we used the SMOP-MGS method with Option C. to perform the sparse density fitting. Recall
that, in this setting of the Gram matrix, auxiliary functions are primitives obtained by orbital
products, centered on atom or off-atom centers. Moreover, sparsification is applied without any
pre-processing of orbital products, thus orbital types may have missing components, resulting in
a violation of the orbital symmetry of Eq. (3.21). Note that this setting may have computational
limitations when used along with molecular integration schemes applying operations on orbital
types. At the same time, due to the fact that orbitals are primitives, the size M of the screening
matrix can quickly increase. Hence, we are limited to smaller AO basis sets, than the ones used
in Section 4.3.2.1, due to the time consuming execution of SMOP-MGS algorithm for high values
of M. We used the 6-31Gs AO basis set for water, with N, = 36. According to Option C., M is
the approximate rank obtained by PCD to a N2-by-N2 Gram matrix (here with tolerance value
fixed to 10714), where N, > N, is the number of primitives in the AO basis. Our test system is
a cluster of 27 rigid water molecules (watertiny test in Table 1.1).

Figure 4.11 shows density fitting results, using different methods, on the frozen core RMSE
errors (see Eq. (3.36)), for varying number of summed entries used to compute the energy. The
sparse summation domain of SDF is obtained for varying tolerance values. Results show that
the sparsification allows to reach the accuracy levels of robust DF, while using only the number
of orbital pairs of DF. In particular, the binary plots of panel (a) show that the sparsification
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Figure 4.9: RMSE on electron-electron (EE) interaction due to density fitting schemes, for ten
standarized Smith dimers, using the aug-cc-pvdz AO basis set and the Coulomb kernel metric.
The z-axis gives the number of retained orbital pairs used in the EE summation, for a single
fragment pair, that is N;} for the exact method, M? for DF and NZM for RDF. Each point
on DF and RDF curves corresponds to an auxiliary basis set, in this order: PCD-22, PCD-29,
PCD-41, RI, PCD-48, JKFIT, PCD-54, PCD-60, PCD-67. SDF correponds to SMOP-MGS with
scaling Option A., for varying M ranks. Each point on the SDF curves is obtained by varying
sparsification tolerance values ¢, in this order: 10!, 1, 10~!, 1072, 1073.

may be interpreted as a reduction of corrective terms of RDF that do not contribute to the total
energy. Results of panel (b) then verify that the sparsification does not significantly degrade the
accuracy of RDF. This shows the effectiveness of the sparsification. We may conclude that SDF
significantly improves state-of-the-art methods in this setting. Lastly, contrary to the setting of
Section 4.3.2.1, where we recall that SDF mainly improved DF without reaching the accuracy
levels of RDF, now in the present setting, SDF actually improves RDF, by achieving a number
of retained orbital pairs roughly 10 times smaller than that of RDF, without accuracy loss.

4.4 Proofs

Proof of Corollary 4.2.0.1. A direct consequence of Cauchy-Schwartz inequality and the distance-
preserving property of Eq. (2.10). O

Proof of Theorem 4.2.1. One regroups terms, then applies the triangle inequality, to write

\E(Tapa;Tppp) — Bs(Tapa: Tepp)|l = |(Tapa: Tepp) — >, (Tapi, Tp})
(i,9)€ls

< [Tapa,Tppp) — (Tapa,Tppp)|+

(Tapa,Topp) — > (Tapi' Tep})|-
(i,5)€l5

This bound decomposes into two terms. The first term can be estimated using Corollary 2.3.3.1
as

KTapa, Tepp) — (Tapa;Tppp)| < llppll min [[ps —oal +[lpall min |[pp—opl.
oAEX 4 ocp€EXp
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Figure 4.10: aug-cc-pvdz AO basis set for water molecule. M-by-M screening matrix sparsification
using SMOP-MGS algorithm with Option A., for varying tolerance threshold ¢ values. Each
binary plot corresponds to a point in the SDF curve of Figure 4.9.

For the second term, we let

C = [(Tapa:Tepp) — Y (Tapi Tp?)|.

(6.3)€ls
By introducing summations, we may write
My Mg
C =D (Tup Tep?) — Y (Tapi, Tp?)
=1 j=1 (i,5)€ls

> (Tup? Tsp?)
(3,9)€l§

< > IsteR

(i.g)€l§

where we applied Cauchy-Schwartz inequality and employed the integral screening result of
Lemma 2.1.1 based on isometries. This concludes the proof of Theorem 4.2.1. O
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Figure 4.11: RMSE on electron-electron (EE) and exchange-repulsion (XR) frozen core interac-
tions due to density fitting schemes, for 27 water cluster. Methods are tuned in this order: SDF
(DF+P) first generates an L-pattern from a M-by-M screening matrix, using the SMOP-MGS
method with Option C. (M = 175 for EE, M = 192 for XR); DF (DF) then uses the maximal
M'-by-M’ square included in the L-pattern; RDF (DF+L) uses same as DF plus additional
corrective terms. Each point of the SDF curve corresponds to a binary plot with tolerance
0 = 107*. The density fit for each energy is obtained using the optimal kernel (Coulomb for EE
and Dirac for XR).

Proof of Theorem 4.2.2. We propose a proof by induction. The main enumeration argument of
the proof is illustrated in Figure 4.12. If I is a given summation domain, then we start counting
from the first column indexed by 4;. The number of elements in this column is exactly j;. By
symmetry, we do not need to count elements of the row i;. At the next iteration, we move to
column 5. There are j; row elements in this column. By symmetry, we have already computed
the first row and column indexed by i; and j; respectively. In order to not double count elements,
all elements of the i5 column below the diagonal will not be counted. The number of entries of
the i, column that are above the diagonal, including the diagonal entry, is equal to jy — iy + 1.
We stop counting when we hit the diagonal since all terms will have been enumerated by then.
Note that the j, — i, + 1 entries must be computed i5 — 7; times, one time for each vertical
column indexed by the integer k for all ¢; < k < i5. Such an example is provided in Figure 4.3c.
Focusing on the green rectangle associated to the second boundary point in this example, one
has ¢; = 1 and 75 = 3, hence we must take into account the two columns indexed by k = 2,3
when counting terms associated to i5. This argument yields the desired closed-form expression
of Theorem 4.2.2. O
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Figure 4.12: Cost enumeration pattern at iteration k, for dotted symmetric domain. Nodes are
marked in blue: leading node of the current iteration belonging to the horizontal boundary; red:
nodes enumerated in current iteration; gray: already counted nodes. For k = 4 the diagonal
leading node has zero contribution.

4.5 Conclusion and perspectives

In this work, we develop sparse factorizations of atomic orbital Gram matrices, for use in frozen
core interaction energy calculations. Compared with standard entry-wise truncation methods, the
major characteristic of this specific use is allowing to sparsify based on sum of entries truncation.
In order to proceed, we develop heuristic techniques for increasing sparsity of matrices based
on a modified Gram-Schmidt orthonormalization procedure and a Cauchy-Schwartz bound for
prescreening sums of entries. We also construct sparsity patterns that minimize the number of
retained entries. The result of this sparsification procedure is a sparse intermolecular interaction
matrix. We plan to carry out a numerical verification of the complexity gain of this sparse
interaction assembly in practice. One difficulty to consider while implementing sparse interaction
matrix assembly is that the sparsification might not be compatible with caching, i.e. reusing
computed quantities, during integration. Lastly, notice that we didn’t respect all atomic orbital
requirements in this section for convenience, namely our auxiliary basis stored does not respect
atom-wise consistency. This point is left to be handled for future practical implementations.

The entry-wise assembly of the Gram matrix based on orbital products is then studied. From
a practical point of view, the results on sparsification of interaction matrices show that linear-time
assembly schemes are possible, in terms of the total number of orbital products, using orbital
bases obtained by our modified Gram-Schmidt technique. We interpret this as a promising result
for constructing orbital bases of maximal sparsity. We demonstrate the practical use of such
interaction sparsification for the ten standarized Smith dimers. Besides the standard interaction
assembly, we plan to explore sparse assembly techniques for future implementations. Careful
implementations may lead to further computational efficiency. Lastly, it could be interesting to
investigate if our proposed framework enables to choose admissible auxiliary basis functions that
lead to a sparse structure of the Gram matrix underlying the interaction.
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Chapter 5

Reduced basis methods for density
fitting
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The present chapter deals with the topic of applying density fitting methods to a given ab
initio electronic density, expanded on an atomic orbital basis of a priori unknown centers. Such
centers are assumed to take arbitrary values during the course of a molecular dynamics simulation.
The main difficulty in this case is that interatomic distances and angles within a molecular
fragment take a priori unknown values. We are interested in methods that allow to reduce this
new complexity, which is the intramolecular geometric conformation space, and still provide fitted
densities at a low computational cost. We explore reduced basis approaches for constructing
auxiliary basis sets, as well as associated coefficients. Within the offline-online simulation
framework, our auxiliary basis is precomputed entirely offline, while auxiliary coefficients are
recovered online by performing Lagrange interpolation on a small number of snapshots. The
performance of our method is illustrated by running tests on ten Smith dimers, with novel
promising results, showing that, thanks to the reduced basis approach, one can successfully
extend density fitting methods to non-rigid fragments.
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5.1 Introduction

Molecular simulations using polarizable force fields update geometrical conformation of fragments
at every timestep, according to the evolution of dynamics (see Appendix B.2). This creates
a difficulty in density fitting, since the fragment ab initio density is expressed on basis sets
centered on atomic positions. By updating conformations, interatomic distances become a priori
unkown during the offline stage, where density fitting is typically computed (we refer to Section 2
for the standard density fitting procedure). In other words, the local to global transformation,
introduced in Section 2.1.2.3, is not an isometry, as it was the case in the previous Chapters 3
and 4.

Thus density fitting needs to be recalculated online for every updated fragment geometry.
This is computationally prohibitive since it would require knowledge of the ab initio density
function. In the present chapter, our goal is to extend density fitting methods to treat non-rigid
fragments of flexible geometry, such as AMOEBA water clusters (see Section 1.3.1).

Existing methods are based on empirical considerations. In practical molecular simulations
within the Gaussian electrostatic model framework (we refer to Section 1.1.6.4 for more details),
auxiliary densities are averaged over a large number of fragment geometrical conformations, before
being used on AMOEBA fragments of different interatomic geometries at every MD timestep. In
particular, in [241, Section II], the fitted densities are obtained by averaging molecular densities
of 500 water monomers extracted by dimers PES. A similar strategy has been employed in [84,
Section G|, where coefficients calculated from ab initio density matrices of the same fragments
in 99 random conformations were averaged, before performing density fitting. Note that such
approaches attempt to achieve transferability of density fitting for force field applications (see
Section B.2.2). The limitation of this approach is that in reality not all conformations have
equal significance as representative samples. A more suitable technique would be to account
for a weighted average, where the weights depend on the importance of the configuration. A
systematic method to achieve such technique is the reduced basis method.

The Reduced Basis (RB) method [270, 155] has been introduced in the context of partial
differential equations (PDE). It applies to linear or non-linear PDEs that depend on several
parameters, such as physical constants. RB accounts as a model order reduction technique
for lowering the computational cost of repeated resolution of PDEs. In particular, let . be
the solution manifold consisting of all PDE solutions associated to all parameter values. The
idea is to select few parameters puq, ..., i, and approximate any other solution u(u) in . by a
linear combination of functions in the set {u(u;)}1<i<n, which forms a so-called reduced basis
of the solution space. This approach greatly reduces the computational cost of repeated PDE
resolutions, as the calculation of the solution for arbitrary parameter is obtained at very low
computational cost from the reduced basis, avoiding the expensive full resolution of the PDE for
the given parameter.

In the present work, the reduced basis method is applied to the repeated calculations of density
fitting. A relative work on the reduced basis approach applied to chemistry is [260, 261], that
uses empirical interpolation for improving the density matrix initial guess in self-consistent field
calculations to accelerate ab initio molecular dynamics simulations, based on reusing converged
density matrices at different geometries of several PES points.

The remaining content of the present chapter is organized as follows. After introducing the
problem setting in Section 5.2.1, the framework of reduced-auxiliary basis set is presented in
Section 5.2.2. Our main contribution is an extension of our standard auxiliary basis generation
method, presented in Chapter 3, to the context of flexible fragments. This contribution is
completed with the Lagrange interpolation strategy for reusing auxiliary coefficients at low
computational cost, introduced in Section 5.2.3. The summary of our main result, which is a new
Reduced Basis Density Fitting (RB-DF) scheme, is given in Section 5.2.4 The computational
complexity model of our scheme is deduced is Section 5.2.5. Section 5.3 is dedicated to numerical
experiments, showing the capabilities of the RB-DF method applied to the ten Smith dimers.
The last part of this chapter contains conclusions and perspectives for future use of our methods,
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dy do

H;y H,

Figure 5.1: Intramolecular coordinates u = (d;, ds, 6) of water molecule.

included in Section 5.4.

5.2 Theory

5.2.1 Setting

Consider a cluster consisting of molecular fragments. It is assumed for simplicity that the atom
number in fragments is constant. At every timestep of a molecular dynamics (MD) simulation, a
fragment’s geometrical configuration can be assessed using an inner coordinate parametrization.
Let us denote an arbitrary intramolecular geometry parametrization by a real vector of size d,
for some d € N*, i.e.

u= (p’lvu%"'vud) eRd =M.

The set M is called parameter space and contains all admissible intramolecular atomic con-
formations, that, for this work, there is no need to further restrict with additional structural
assumptions. Figure 5.1 shows an inner coordinate example for the case of water molecule.

In the context of Gaussian electrostatic model for arbitrary fragments (see Section 2.1.2.1 for
more details), the ab initio electronic density of a fragment at conformation p is computed by
solving the discretized electronic ground state problem for the Hamiltonian H(p), depending
only on the atomic positions of the fragment configuration u. The electronic density function is
written in the atomic orbital discretization basis as

Ny
p) = > D (w)x,()x, (W),

por=1

where {x,(1)}1<,<n, are Gaussian atomic orbitals centered on atomic configuration u (repre-
sented in the global frame) and D(pn) € RV > is the density matrix obtained by an ab initio
calculation on the AO basis associated to p. For simplicity, it is assumed that all fragments have
the same type of atomic orbital basis sets of constant size IN.

We are interested in the problem of calculating fitted densities approximating the ab initio ones,
i.e. finding auxiliary basis functions & (1), ..., &y (1) and auxiliary coefficients ¢; (1), . . ., cpr (W)
for a prescribed M < NZ, such that the following approximation holds:

M

VueM, p(u) o) => c(w)é(w.

i=1

The question that concerns us is, how can we calculate as much information on the auxiliary
functions and coefficients as possible, without using a priori knowledge of the parameter value p.
Such calculation can thus be performed during an offline simulation phase. The goal is then to
use this precalculation in order to perform only few additional computationally non-expensive
steps to recover the fitted density p(u) online. Note that our auxiliary basis set is assumed to
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have a fixed size M for all geometries u. To summarize, our main interest is the dimensionality
reduction of the set

= {p(n): p € M},

called the solution space.

5.2.2 Reduced-auxiliary basis generation

Let us focus on the dependence of the atomic orbital basis with respect to the parameter p € M.
A Gaussian AO depends explicitely on u, in terms of the Gaussian center. This dependence is
highly non-linear and known a priori, i.e.

XH(IV H) = Xu(r - R(u))v (51)

for some atomic center R(p) € R®. The same holds for the atomic Gaussian auxiliary basis.
An affine decomposition of the fitted density is introduced on such a basis, as follows. The
auxiliary basis generation problem in the context of Section 5.2.1 consists of defining, given a
target M, a finite parameter set M,. = {u,,...,1,.} C M such that the following approximation
is well-defined:

M
Ve M, ()~ (1) =Y cilbiby, )& (M 1y 1), (5.2)

i=1

with c(u;pny,...,1,.) € RM a coefficient vector and {&(u;1y,..., 1) <j<nr the reduced-
auxiliary basis, which is the reduced basis of the solution space. Note that the reduced basis
depends on the arbitrary parameter p through the a priori determined explicit formula of
Eq. (5.1) and on the finite parameter set M,. in a manner left to be determined.

A heuristic method for constructing such approximation of Eq. (5.2) consists of the following
main stages. First, we a priori fix a finite number of points in the parameter space M, denoted
by M, ={uq,...,n,}. Note that, in the present work, the construction of the finite parameter
space M, is based on naive preliminary methods, detailed in the following Section 5.3. Then,
we construct the reduced basis using the finite subset M., based on the methods detailed in the
present section. At a later stage, auxiliary coefficients on this reduced basis are computed by
employing the methodologies given in Section 5.2.3.

Let us focus on the reduced-auxiliary basis construction. Before describing our algorithm
in detail, let us quickly outline its motivation. The main idea of our method is to use a greedy
technique to construct an auxiliary basis set that reproduces the span of the set of ab initio
densities p(u) associated to all parameter values p under some given tolerance value. The main
tool to achieve this is the incomplete pivoted Cholesky decomposition (PCD), as formulated in
[146]. PCD can be interpreted as a modified Gram-Schmidt orthonormalization that first treats
functions that are more linearly dependent. In that sense, it is a greedy method. Our idea is to
apply PCD to all Gram matrices associated to parameters belonging to M,.. Let us emphasize
that PCD is hence repeated multiple times, in this setting. The Gram matrices evaluated for all
points of the finite parameter set M, are called snapshots.

In the present work, the reduced basis construction given by Algorithm 4 is essentially
obtained as a variation to [146, Algorithm 1], by including an additional minimization step
(see step 4). This step performs the greedy selection, which is repeated for each reduced basis
function, while taking into account all snapshots of the finite family M,.. The greedy selection is
essentially the repeated Cholesky pivot selection, based on the maximal diagonal term of the
residual matrix. However, instead of having a single residual matrix to manipulate, now we have
r matrices, one for every point of the finite parameter subset M,.. At the pivot selection step,
the pivot is made significant for all » matrices. This is achieved by the minimization step of step
4. The minimization assures that there is no point p, for which the selected pivot is unsignificant.
It also prevents adding pivots that correspond to zero diagonal entries, if another choice is
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possible. This way, at every iteration, we assure that the function added into the reduced basis
is the most significant possible for all ». Moreover, we imposed a target size criterion instead
of a tolerance threshold, because the tolerance is sensitive to the Gram matrix coefficient scale,
which may slightly vary along snapshots. An advantage of the minimization of step 4 is that it is
independent of the Gram matrix scale. Note that, in the input of Algorithm 4, it is assumed
that GTO-products have the same row (and column) index in all Gram snapshots, so that the
operation of step 6 is well-defined.

Algorithm 4: Reduced-auxiliary basis greedy construction (RB-AUX).

Input: Finite parameter set M, = {p, }1<y<r, GTO-product Gram matrix snapshots
G(u,) € R™ " for all 1 <u <7, and target reduced basis size M < n.
Output: Reduced-auxiliary basis {&;,...,&}-
1: Set d(p,) := diag(G(p,)), 1<u<r.

2: Initialize 7 := (1,2,...,n).
3. for 1 <m < M do
4: Set

ig = arg max min d._. .
0 gmgvgn 1<u<r wl(uu)

5 Swap 7, and 7 .
6:  Set &, equal to the GTO-orbital function corresponding to the m,,-row index.
7 Set Ly, o (W) = 4/dr (1), 1<u<r.
8 form+1<i<ndo
9: Compute
-1

Ly (1) = (G () = 5275 Ly ()L, (80)) /Lo, (), 1w
10: Update d, (u,) :=d, (1,) — L3, - (1,), 1<u<r.
11:  end for
12: end for

13: return functions {{,,: 1 <m < M}.

5.2.3 Auxiliary coefficient interpolation

In the present section, we focus on the dependence of the auxiliary coefficients with respect to the
parameter p € M. Once the reduced-auxiliary basis is available, by applying methods described
in Section 5.2.2, one can solve a least-squares problem for every parameter p for finding the
auxiliary coefficients, i.e.

2
M
VueM, c(p):=arg min |p(p) - Z;Cifi(u) (5.3)
1=
with || - || being a user-defined error norm. Then the fitted density is recovered using the

expansion of Eq. (5.2). The resolution of this minimization problem is prohibitive during the
online stage, because knowledge of the ab initio electronic density at conformation p is not
available without paying the cost of solving a full electronic structure problem, at O(N, f). For
this reason, alternative methods are considered. The main approach of the present work is to
introduce an intermediary decomposition of auxiliary coefficients, reading

Vl—l € Ma vl <1< M7 ci(”) ~ Zau<p)ci<pu)7 (54)
u=1

with a(pn) = (a1 (p),...,a,.(n)) € R” depending on arbitrary p and ¢; (p,), ..., cpr(n,.), depending
only on the finite parameter set M,., under the assumption that a(p) is computationally much
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cheaper to compute than the true auxiliary coefficients ¢(p). Approximation of Eq. (5.4) can be
interpreted as an interpolation on auxiliary coefficient snapshots. Its main purpose is to allow
precomputing the finite number of snapshots entirely offline.

Let us introduce a strategy for computing this approximation. We propose to represent each
coefficient ¢; of the auxiliary vector c(p) as a real multivariate continuous function in d variables,
ie.

YueM, VI<i<M, c¢;(n)=cilp, ..., ug): R =R, (5.5)

A convenient approach for solving the interpolation problem of Eq. (5.4), provided that the
interpolation domain is the tensorization of intervals (that is a cuboid), consists in using a
tensorized grid formed by 1D interpolation grids along each interval (see [123]). Let C C R% be
a cuboid such that

C= [al7bl] X X [ad7bd]7

with a;, < by, for all 1 < k < d. The tensorized rule is composed of nodes for any multi-index
1=(l,...,1l), defined by
1 d
= ().
Assuming that the admissible geometry parameters are cuboids, these tensorized interpolation
rules can be used for each parameter of the chemical space.

Now, for the sake of simplicity, we may use multivariate Lagrange interpolation to approximate
the number of M functions in Eq. (5.5). For fixed d € N*, let us first consider a given grid of the
d-dimensional cuboid C, of size ny X ny X - -+ X ny, with n;, € N* a given number of nodes in the
interval [ay, by] for all 1 < k < d. The grid is defined as the tensorized set of points

{(ul(ll),/zl(j),...,u(d)) eR: 1<, <ny, 1 §k‘§d} cC.

lg

The multivariate Lagrange interpolation of any given function f:R? — R on the grid points is
defined as

ny  ng ng d
1 2 d
v(lulv v 7p“d) € Rd7 I[f(,u‘h o a,ud)} = Z Z e Z H le(ﬂk)f(ul(l)7ﬂl(2)7 oo 7:ul(d))a
Li=1ly=1 l;=1k=1
(5.6)
where L; : R — R is the Lagrange polynomial of degree /;; in one dimension, given by
o =
_ l
VueR, L (n)= H NOENCE (5.7)
1=0 Hi, l
1y,

satisfying the property le(ul(k)) = 0;,4, with d; ; the Kronecker delta. Due to this last property
of Lagrange polynomials, there holds

Z[f ()] = f(m),

in other words, the approximation of f by its interpolant Z[f] is exact on the grid points p,.
Note that more efficient approaches are given by the magic points of the Empirical Interpolation
Method (EIM) [217]. The latter are more natural in the context of reduced basis methods but
require more investigation.

Applying the above interpolation to every single ¢; coefficient of the auxiliary vector, one
obtains the following approximation. We propose to use the same finite parameter space for
interpolating and for sampling snapshots. Given a finite family M,. of size r € N*, the tensorized
interpolation grid, of given degree n; € N* at the k-th component, can be defined by the full
finite parameter space of dimension n; X ny X -+« X ng, given by

{hom, = @ p, ) eM,, 1<usn 1w <, 1<k<d). (58)
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The approximation of Eq. (5.5) of the auxiliary coefficient vector then takes the form of an
interpolation on snapshots, where the cheaper-to-compute coefficients a,(p) are given as a
tensorized Lagrange polynomial, i.e.

VueM, VI<i<M, c¢u)~Zlew)] =Y a,(wew,), (5.9)
u=1
with

ni N2 ng d
SN Y T L ()ea) 2, k)

u;=1wuy=1 ug=1k=1

i}

I3

E
[

r d
Z au(p)ci(pu)7 au(p) = H Luk (/’Lk)v
u=1 k=1

by flattening the multiple summation into a single sum of degree r = nyngy---nyz. Such an
approximation suggests that it suffices to precompute auxiliary coefficient snapshots ¢;(u,,), for
all 1 <i< M and 1 < u < r, by solving the least-squares problem of Eq. (5.10) only on the
small a priori known parameter space M,., i.e.

M

p(uy) — Z ci&i(1y)

=1

Vi<u<r, c(m,) =a i
<usr e(p,) = arg min

, (5.10)

during the offline stage. Then, for arbitrary parameter u, the approximate auxiliary coefficient
can be recovered using Eq. (5.9). Moreover, note that the intermediary coefficient a,,(pt) in this
approximation only depends on the grid and on the parameter u, being independent of the
auxiliary basis size M. It therefore needs to be calculated once and then reused for all 1 < i < M.
The computational cost of the offline precomputation is further discussed in the following section.

5.2.4 Summary of Reduced Basis Density Fitting (RB-DF) scheme

In the present section, we summarize our main contribution, which is a new Reduced Basis
Density fitting scheme, with applications to polarizable molecular fragments.

Given an ab initio electronic density function p associated to a molecular fragment chemical
type, our scheme constructs the approximation

M

p(w) ~ o) = > Zle; ()& (w). (5.11)

i=1

Let us assume that the target interpolation degree in the auxiliary coefficient generation is n
for each parameter dimension. The interpolation grid, given as Eq. (5.8), then has n grid points
in each dimension, with a total number of = n? grid points, the same as the finite parameter
samples in the sample space M,.. The following Algorithm 5 provides offline precomputations,
while Algorithm 6 provides the online approximate density computation for arbitrary parameter
value.

5.2.5 Computational complexity

The computational complexity cost of the density fitting scheme, based on the reduced-auxiliary
basis generation of Section 5.2.2 and the auxiliary coefficient generation of Section 5.2.3, may be
theoretically estimated as follows. For each one of the point samples in M,. constructed in step
2 of Algorithm 5, a Gram matrix snapshot is required as input in Algorithm 4 and an auxiliary
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Algorithm 5: Reduced basis density fitting scheme (RB-DF — OFFLINE PHASE).

Input: Ab initio electronic density p of fragment chemical type, n target sample size, d
intramolecular parametrization size, {[ay, b]}1<r<q admissible geometry intervals,
target auxiliary basis size M. o

Output: Finite sample space, auxiliary basis set, auxiliary coefficient snapshots.

1: Construct uniform grid (:ul(f))lglkgn of size n on the interval [ay, by], for all 1 < k < d.

2: Define finite parameter set M, = {p,: 1 <u <r}, with p, = (,ul(ll),,ul(:), e ,ul(:)) and

1<, <nforall 1<Ek<d,of total size r := n?.

3: Compute Gram matrix snapshots G, = {G(u,): 1 < u < r} given by Eq. (3.33).

4: Call RB-AUX(M,., G,, M) of Algorithm 4, to obtain the reduced-auxiliary basis set
£ = {glv"‘vgN[}'

5: Compute ab initio electronic density snapshots {p(u,): 1 <u < r}.

6: Compute auxiliary coefficient snapshots C, = {c(p,): 1 < u < r} by solving the
least-squares problem

M 2
V1 < < S Ma w) = i u) 151 u
<u<r o(m,) = arg min |p(k,) ;c &(n,)

7: return parameter samples M,., & and auxiliary coefficient snapshots C,..

Algorithm 6: Reduced basis density fitting scheme (RB-DF — ONLINE PHASE).

Input: Arbitrary parameter p = (uq,..., tg) € M, precomputed auxiliary basis € and
coefficients C, = {(c;(Hy,), .-, () 1 <u <r}.
Output: Approximate density p(p) on auxiliary basis.
1: Compute a, (1) = szl Ly, (pg), 1<u<r.
2: Interpolate

VI<i<M, EGu) =) a,(w)e(m,).

3 return () = Y2 & () ().
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coefficient snapshot for the interpolation 5.9. Such a computation cost requirement may be
summarized as follows:

): O(n’Ny)

): O(n*MN})
auxiliary coefficient snapshots (offline): O(ndNb + ndMNl7 + ndMQ)

) (n

O(nM +n + d).

AO Gram matrix snapshots (offline):

(

RB construction (offline):
(
(

auxiliary coeflicients (online):

Note that, as it is expected in reduced basis approaches [141], the offline cost is a lot more
expensive than several full simulations.

Let us further comment on the source of the estimated cost. First, the AO Gram matrix
snapshot cost is dominated by Nf, the number of all four-center interactions. Next, the reduced-
auxiliary basis is generated using Algorithm 4. This algorithm cost is dominated by a nested
looponl<m<Mandm+1<1:< Nbg, inside which we perform operations that scale as n?,
yielding the total cost. As for the auxiliary coeflicient snapshots, the cost is dominated by the
resolution of a least-squares problem. In particular, for each point among the n? samples, we
must solve the least-squares problem of Eq. (5.10). For this, we need to compute the ab initio
electronic density function, again at a cost of NgL (see Section 1.2.1). Regarding the assembly
of the least-squares normal equations, the auxiliary basis Gram matrix of dimension M by M
needs to be evaluated entry-wise, as well as the right-hand side term, at a cost of M NZ. To
summarize, the total estimated cost is computed as n?(N;! + MNZ + M?).

Concerning the online computation, it is reduced to the interpolation formula evaluation of
Eq. (5.9). This formula requires n¢ additions for all M. Summation weighting coefficients are
obtained by multiplying d values. Such d vales are given as Lagrange polynomial evaluations.
Due to the factorized form of Lagrange polynomials of Eq. (5.7), a single Lagrange polynomial of
degree n can be evaluated at the cost of performing 2n additions, n divisions and n multiplications.
This is linear cost in the polynomial degree. Moreover, Lagrange polynomial factors may be stored
in memory and used recursively for evaluting Lagrange polynomials of any degree 1 < m < n.
Summing up, the total online cost may be modelled as n*M + n + d, using the fact that the
summation weighting coefficients are independent of M, they can thus be computed once and
for all.

To conclude, the main advantage of the reduced basis approach is that, the online cost has
been reduced from the initial O(N}) to O(n?M). For efficient system fragmentation, the number
of intermolecular parameters d stays small. For example, for the water molecule in Figure 5.1, it
is d = 3. Now, the online cost is linear on the auxiliary basis set size, with a prefactor depending
on the parameter space samples. Note also that this may be further reduced by the use of EIM
that could lead to a O(nM) where 7 is the number of local EIM points.

5.3 Numerical results

The present section concerns numerical results. We focus on results obtained using our method
RB-DF, defined in Algorithm 6. Errors due to the use of our auxiliary-reduced basis generation
of Algorithm 4 and of interpolation of Eq. (5.9) are studied separately. The goal is to present
how our method enables to improve existing density fitting schemes for computing frozen core
energies between flexible fragments, at low computational cost. To this end, various metrics are
assessed, including orthogonal projection errors on densities, electron-electron frozen core energy
errors, interpolation errors on coeflicients, online timings.

Our test case is the ten true Smith water dimers (see Table 1.1). We refer to Section 1.3.1
for more details on the flexible clusters used as test cases. Results presented in this section are
obtained using our dfwpy code for flexible fragments, we refer to Appendix A.
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coord. min. | max. | mean std
dy 0.932 | 0.998 | 0.961 | 0.019
dy 0.928 | 1.008 | 0.967 | 0.023
0 1.697 | 2.012 | 1.875 0.08

Table 5.1: Intramolecular water fragment geometry statistical analysis obtained for the equili-
brated cluster of 27 AMOEBA polarizable water fragments (watertiny test case). Lengths are
in Angstrom and angles in radians.

5.3.1 Flexible water clusters

The present section presents simulation details, concerning the set up of a water parametrization
strategy that allows to apply reduced basis methods. We focus on defining the internal parameters
used to sample water conformations. Overall, efficient sampling is crucial since it allows us to
create snapshots used in the learning part of reduced basis methods. Note that the conformation
sampling is relatively simple for the water molecule, since it is a planar object. More elaborate
methods may become necessary when studying more complex molecules.

Sampling conformation space. We employ a simple sampling strategy for the conformation
space of water molecules in three-dimensional space, using local water frames. The used frame is
shown in Figure 5.1. The motivation for this choice of intramolecular parameter space of the
water molecule H,O is based on the three normal modes, which consist of symmetric stretching,
asymmetric stretching and bending. These modes can be described by inner parameters, denoted
by d, for the OH; bond length, d, for OH, bond length and 6 for the angle H;OH,. Hence,
three degrees of freedom are used to generate configuration space samples of H,O.

Up next, we propose a method to estimate parameter intervals, based on the statistical study
of available clusters. Table 5.1 presents a statistical analysis of the parameter space of a small
polarizable AMOEBA water cluster consisting of 27 fragments, after geometry equilibration
using molecular dynamics. Recall that each water fragment in this cluster has a different
conformation at the end of the geometry equilibration. We refer to Section 1.3.2.1 for practical
details concerning such cluster. Obtained results show that the parameters values do not vary
a lot with respect to the equilibrium water geometry, which is d; = d, = 0.957 Angstrom and
0 = 1.82 rad. We consider that such parameter values are representative of the general image of
intramolecular water conformations, attained during the course of a typical molecular dynamics
simulation with flexible fragments. Based on this sample, we chose the intervals of the finite
parameter space as follows:

[dmins dmax) = [0.9,1.0],  [Ormin, Omax) = [1.5,2.2].
The finite set of sample points M, = {(dgll), délz), 9(13))}11,12,l3 of size » € N* is then a subset of
Mr C [dminadmax] X [dminadmax] X [aminaamax]v

obtained by discretizing the parameter space using a multivariate uniform grid of constant size
n € N* on each dimension, with a total size of » = n3. Note that our tensorized strategy,
concerning the grid nodes, induces a cubic scaling of the number of snapshots with respect to
the number of nodes used in 1D. This scaling may become prohibitive for large values of n.

5.3.2 Reduced-auxiliary basis accuracy

The present section contains results on the orthogonal projection errors due to the use of our
reduced-auxiliary basis, generated by our method RB-AUX given by Algorithm 4), within density
fitting. The ab initio electronic densities are used as a reference. Additionally, we measure the
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errors on self-interaction electron-electron energies. Let us emphasize that all experiments of the
present section are performed offline in the frozen fragment library, i.e. on the frozen fragment
level using a local coordinate system. We refer to Section A.7.1 for implementation details.
Let us begin by presenting simulation details. Given a cluster of N; € N* fragments, the
metric used to assess various errors, computed at the level of each fragment of the cluster,
is defined as follows. Let us assume that a given error is obtained, in the form of a vector
(@1,...,2N,) € RMs . where each z; is the error under study, i.e. x; = ||p(w;) — p(w) ||/ Ilo(;)|]

for the case of orthogonal projection and z; = |Eyr (1) — Faerr(1;)|/| Fsere(1;)| for the case of
self-interaction Ey ¢ = (p, p), with p; being the vector of intramolecular parameters of the i-th
AMOEBA fragment. All errors presented in this section are equal to the root mean square errors
of the set of Ny fragments, defined as

Note that this is a relative error measure. The Coulomb norm (H~'(R3) inner product) is used
for calculating orthogonal projections. Our reduced basis method uses the finite chemical space
of the water fragment, defined in Section 5.3.1. The finite parameter space sample, on which
snapshots are generated, has a fixed size r = 32 for n = 3.

Concerning admissible auxiliary basis sets, the snapshot Gram matrices are defined using
Eq. (3.33), for contracted orbitals by orbital type and using the Coulomb metric. As a result, we
directly control the size M, of auxiliary basis functions by orbital type, measured for spherical
GTOs, using our reduced-auxiliary basis generation procedure, just as in our standard ABS
generation scheme (see Algorithm 1). Let us recall that the number M, is smaller or equal to
the total number of primitives in the basis, denoted by M. Lastly, atom-wise consistency is
forced to all of our auxiliary basis sets, using the post-processing step previously described in
Section 3.2.4.3.

5.3.2.1 Offline error assessment

In the present section, we assess conventional density fit errors due to the use of our reduced-
auxiliary basis sets. Let us emphasize that the auxiliary basis coefficients are computed by
orthogonally projecting a given density on an auxiliary basis set by solving the problem of
Eq. (5.10). Hence, no interpolation strategy is employed in this numerical experiment.

Figure 5.2 presents reduced-auxiliary basis errors, for two different AO basis sets given as
input to our generation algorithm RB-AUX of Algorithm 4. The cluster used for testing is the
AMOEBA flexible water cluster of N; = 27 fragments equilibrated using molecular dynamics
(parameter information can be found in Table 5.1). The target reduced-auxiliary basis sizes have
been selected as follows. Standard auxiliary basis sets used in chemistry typically contain about
3Ny to 5Ny auxiliary functions, where IV} is the number of AO basis functions by orbital type.
For cc-pvdz, Ny = 11, therefore suitable auxiliary basis sizes M, vary in the range of 30 to 60.
For aug-cc-pvdz, one has Ny = 18, therefore M, takes values in the range of 50 to 90. For each
value of M, , we plot the projection errors on the density and the energy errors. Results show
that the error due to our reduced basis, both on the self-energy and on the ab initio density
function, converges with respect to the reduced basis size, to a value that is lower than the
chemical accuracy. Let us emphasize that we used only a few sample points, three per dimension.
The fact that few sample points reproduce the ab initio electronic density function with such
accuracy means that the solution space of auxiliary basis sets has a small Kolmogorov n-width
[255]. This is a major argument in favor of the use of reduced basis methods.

Further commenting on results of Figure 5.2, for the moment, it is not clear to us how to
further improve the reduced basis accuracy below the current errors. We tested a bigger sample
size n = 5 for cc-pvdz AO basis, obtaining identical errors as the n = 3 case. Therefore increasing
the sample size may not always help. Furthermore, we cannot choose, for example for the case
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Figure 5.2: Fixed n = 3. RMS errors for 27 AMOEBA water fragments, for varying auxiliary
basis sizes M,. Measured errors are relative errors obtained for: the orthogonal projection
llo = pllx, with K the Coulomb kernel, and the electron-electron self-interaction |{p, p) — (p, p)|,
where p is obtained by density fitting on our basis of size M, obtained with Algorithm 4. All
basis sizes are measured by orbital type in spherical form.

of cc-pvdz basis sets, basis sizes larger than 110, because then our RB-AUX algorithm fails to
choose the pivot. In particular, the issue is that remainder matrix diagonal elements in the PCD
procedure become numerically zero, so the pivot selection cannot converge to add new pivots.
Precisely, the maximization of step 5 in Algorithm 4, responsible for finding the m-pivot, yields
inadmissible pivots with 7 < m. However, this is an issue concerning incomplete PCD algorithms
in general. It may occur for any choice of finite sample parameter space snapshots.

5.3.2.2 Offline timings

Up next, we assessed computation timings for the offline reduced-auxiliary basis generation of
Algorithm 4. Table 5.2 presents execution times for the RB-AUX generation, as well as for the
precalculation of Gram matrix snapshots of the form of Eq. (3.33), for every point of the finite
parameter space fixed to a total of r = 3% points. Results show that the offline calculation time
is dominated by the Gram matrix snapshot calculation. In this case of n = 3, r = 27 Gram
matrices must be calculated and stored. For cc-pvdz basis, this precomputation takes about
62 seconds. The reduced basis generation using Algorithm 4 takes significantly less than the
snapshot computation, about a factor of 200 to 3, depending on the target reduced-auxiliary basis
size. It is expected that the Gram matrix snapshot time calculation will grow with the number
of snapshots. For example, for n = 5 yielding r = 3125 sample points, the Gram snapshot takes
290 seconds. The Gram snapshot calculation is by far the most expensive step of the entire
reduced-auxiliary basis generation procedure. Recall that this computation is performed entirely
offline.

Additionally, we assessed condition numbers of obtained auxiliary Gram matrices. Results
give that condition number that is of the order of O(10%). We generally observed that a limitation
of the RB-based auxiliary basis is that the condition number of its Gram matrix explodes faster
that classical auxiliary basis sets. This is expected because there is no explicit criterion for
testing linear dependence of the selected reduced basis set in the Algorithm 4, as it was the case
in Algorithm 1.

5.3.3 Interpolation error

The present section concerns the assessement of offline errors, measured on the level of individual
fragments, due to the use of our interpolation strategy on coefficients, presented in Section 5.2.3.
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RB size | Time | Cond. 107 RB size | Time | Cond. 107
10 0.29 3 10 0.44 3
30 2.26 7 30 6.22 7
50 7.45 10 50 9.47 9
72 11.66 12 60 12.10 9
97 16.86 16 70 16.32 10
110 20.13 21 80 20.50 11
(a) cc-pvdz. Gram precomputation: 62 seconds. (b) aug-cc-pvdz. Gram precomputation: 85
AO orbital number 11, spherical component seconds. AO orbital number 18, spherical com-
number 24. ponent number 41.

Table 5.2: Fixed n = 3. Reduced basis generation timing (in seconds) for various sizes M, and
condition number of M,-by-M, auxiliary Gram matrices, with Coulomb metric.
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Figure 5.4: Fixed n = 3. One curve (entries) is the relative error in L, vector norm on the
approximation of c(p) by (Zci(p)], ..., Zlcar(pn)]), for p of each fragment. The second curve
(fit) is the relative error in Coulomb norm due to the density approximation of Eq. (5.11).

We used the same simulation setting as the one of Section 5.3.2.

Before discussing the results, let us quickly recall the explicit definition of our interpolation,
for the sake of clarity. We consider a uniform 3D grid of n € N* nodes in each dimension. The
interpolation scheme reads, for every u = (d;,ds,0), as

VI<i<M, Tlewl= Y Ly(d)Ly(do)Ly, (@) (d,dS?,00)).  (5.12)

ly,la,l3=1

Figure 5.4 presents the interpolation error, measured in two different ways, namely, first,
the L, vector norm on interpolation coefficients written as a vector of size M and, second, the
density error in the Coulomb metric. Notice that as more basis functions are added in the basis,
the error in the entries in L, norm tends to increase. This may be due to the fact that added
elements in the reduced basis are more and more linearly independent, causing more numerical
instabilities. Generally, the interpolation error stays small.

Number of interpolation nodes. Lastly, we assessed the impact of adding more points to
the sample. Results show that the accuracy of the reduced basis is independent of the number of
sample points. This may indicate that the choice of the sample points is not suitable. However,
the interpolation accuracy can be significantly improved by adding more points, as seen in
Figure 5.5, where we increased the sample size to » = 52. Note that the interpolation degree
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Figure 5.5: Fixed n = 5. We refer to Figure 5.2 and Figure 5.4a for the label description.

being equal to the sample size in each dimension, increasing the sample size also increased the
interpolation degree.

5.3.4 Pairwise interaction errors

The present section provides results on the online frozen core energy computation, using our
offline-online reduced basis scheme of Algorithm 5 and Algorithm 6, abbreviated here RB-INT, for
Reduced Basis with Interpolation, in order to distinguish from RB, which consists of Algorithm 4
used in conventional density fitting. A detailed comparison between our method and state-
of-the-art methods for flexible fragments is presented. Lastly, timings demonstrate the low
computational cost of our method.

Before providing the results, let us quickly present simulation details and summarize the
methods under study. We have evaluated the pairwise intermolecular electron-electron interaction
for the ten Smith dimers obtained by [300], using four different computation methods for
comparison. First, the exact method, used as a reference, is obtained by calculating the ab initio
electronic density function online and then using such density to compute intermolecular integrals,
namely Eq. (1.39) for the electron-electron term under study. Second, the RB approximation
method is obtained by online fitting of the ab initio electronic density, computed online, using
the reduced-auxiliary basis set, computed offline using Algorithm 4. Third, the RB-INT method
replaces both the ab initio density computation and the online fit by our interpolation strategy
of Section 5.2.3, with explicit definition given by Eq. (5.12). Lastly, the state-of-the-art GEM-DF
method (recall Section 2.2.1.2) uses a given empirical auxiliary basis, namely RI or JKFIT, to
fit once the ab initio electronic density offline for the water conformation at equilibrium, with
inner parameters d; = dy, = 0.9572 A and € = 1.8242 rad. The recovered auxiliary coefficients
are then reused online for other conformations, using the same empirical basis, repositioned at
different atomic centers. Concerning our test case, the ten dimers’ geometry is given by the
inner parameters of Table 5.3. When comparing to the results of Table 5.1 used to define the
parameter intervals, we see that the bond lengths of ten Smith dimers are within the limits.
However, the bond angle takes values that are below the minimum considered in the sample size.
As we will soon discuss, this doesn’t seem to be a major problem.

5.3.4.1 Online frozen core energies

Table 5.4 provides a detailed comparison of the performance of RB-INT (our reduced basis
including interpolation) and GEM-DF methods, with respect to the exact one used as a reference.
Recall that the GEM-DF method has zero elapsed time for online density fitting, since density
fitting is performed entirely offline, i.e. auxiliary coefficients are precomputed. Table columns
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quantity min. max. mean std

dq 0.9554 | 0.9576 | 0.9566 | 0.0007
ds 0.9564 | 0.9644 | 0.9589 | 0.0023
0 17775 | 1.8403 | 1.8228 | 0.0201

EE 16.1823 | 19.0915 | 18.0111 | 0.9151

Table 5.3: Inner coordinates of the ten Smith dimers. Exact EE (in Hartree) obtained for AO
basis set cc-pvdz on HyO.

%,
02@6 S 01 02 03 04 05 06 o7 08 09 10
O
RI 18.3674| 18.2125| 18.1186| 18.9327| 19.0178| 19.1060| 17.9922| 16.1945| 17.5684| 16.7308

JKFIT 18.3594| 18.2034| 18.1080| 18.9223| 19.0054| 19.0921| 17.9812| 16.1838| 17.5602| 16.7224
RBI-10 21.0102| 20.6693| 20.4546| 20.9492| 20.7950| 20.6868| 19.8904| 18.2046| 19.5819| 18.6179
RBI-28 18.3175| 18.1678| 18.0768| 18.8950| 18.9859| 19.0778| 17.9558| 16.1499| 17.5332| 16.6962
RBI-46 18.3629| 18.3629| 18.1090| 18.9178| 18.9972| 19.0813| 17.9753| 16.1858| 17.5539| 16.7166
RBI-64 18.3544| 18.1972| 18.1016| 18.9191| 18.9990| 19.0832| 17.9747| 16.1844| 17.5540| 16.7163
RBI-82 18.3570| 18.2002| 18.1048| 18.9201| 19.0008| 19.0855| 17.9762| 16.1829| 17.5559| 16.7180
RBI-100 | 18.3578| 18.2011| 18.1057| 18.9204| 19.0013| 19.0862| 17.9765| 16.1825| 17.5562| 16.7184
exact 18.3558| 18.2005| 18.1062| 18.9213| 19.0047| 19.0915| 17.9771| 16.1823| 17.5546| 16.7172

Table 5.4: Ten Smith dimers using AO basis cc-pvdz (N} = 11) on HyO. Electron-electron frozen
core energy (in Hartree) computed using RB-INT-M,, for M, target size, and GEM-DF-z where
x € {RI,JKFIT} is the given empirical auxiliary basis. The auxiliary basis size is M, = 30 for
RI and M, = 42 for JKFIT. We mark the most precise energy approximation (in blue) and our
RBI-46 energies that are more precise than JKFIT ones (in green).

correspond to dimers and rows to different methods. For each method and dimer, we provide the
electron-electron interaction value computed online. Results show the lower errors on electron-
electron interactions with our method, marked in blue. The lowest achieved absolute error on
electron-electron energy is of the order of 1072, One may further notice that, for target size
M, = 46, our method RBI-46 reaches lower frozen core accuracies than JKFIT (M, = 42),
in 30% of the dimer cases, marked in green. Therefore, our RB-INT method improves the
accuracy of state-of-the-art methods by adding more functions, which can be seen by the overall
higher precision (in 80% of dimers) of our method with M, greater than state-of-the-art ones.
Nevertheless, results show that state-of-the-art methods perform not so bad after all. This may
be interpreted as an indicator verifying the chemistry intuition, according to which changes on
water conformation geometry do not induce significant changes on the densities. As a result,
we may conclude that conformational changes of water do not make significant difference to
density fit. Our method captures those changes efficiently, since results show that increasing the
reduced-auxiliary basis size overall lowers the error on electron-electron energy, for all dimers.

Up next, the following results show that our reduced basis method efficiently learns confor-
mation changes when approximating a given density. Figure 5.6b shows the absolute root mean
square error of Eq. (3.36) on electron-electron intermolecular interaction. Results show that
interpolating does not introduce an error, as the two error curves coincide. We may interpret this
as an encouraging result in favour of the interpolation. Moreover, results numerically demonstrate
systematic error convergence on frozen core energies with respect to the reduced-auxiliary basis
size.

5.3.4.2 Timings

In the present section we numerically demonstrate the advantage of using interpolation for
reducing the computational cost of least-squares fitting, by employing precomputation steps.

125



- 10%F T RB4Nt
RBsize | QM | RB | RB-INT &
10 1.216 0.016 & 1
28 4.250 0.022 ;10 3
46 419 | 4539 0.060 2
64 ' 4.624 0.075 =
82 4.679 | 0.078 a 107 .
100 4.687 0.100 i
L 1 1 1 I
(a) Online time (seconds). 25 50 75 100

reduced basis size

(b) cc-pvdz

Figure 5.6: Fixed n = 3. For the timings (in seconds) we averaged a single run of all ten dimers.
AO cc-pvdz has 11 orbitals with 24 spherical components. For comparison with state-of-the-art
methods, namely GEM-DF, with RI basis we had an error 1E-2 and for JKFIT basis 3E-3.

Timings of our method RB-INT are given in Figure 5.6a. Results contain the time elapsed
for the true density calculation (reference QM), the true coefficients on the reduced basis (RB)
as well as the interpolated coefficients (RB-INT). Results show that the time spent on online
density fitting is significantly reduced thanks to the interpolation. Notably, the interpolation
speeds up the time of RB and QM calculations by a factor varying from 40 to 250, depending
on the reduced-auxiliary basis size. This is an encouraging result in favour of RB-INT, that
is expected since evaluating the auxiliary coefficients only requires a multivariate Lagrange
polynomial evaluation in 3D. The 1D Lagrange polynomial has only degree n = 3 three, that is
computationally not expensive. Note that the RB and QM methods have comparable timings. In
particular, the RB online phase is more expensive than the reference QM one because it requires
to calculate the density matrix, just as QM, and perform an additional least-squares fit. The
density matrix computation dominates and there is zero effective acceleration gain by the use of
auxiliary integrals. For this reason, the RB method does not present practical interest.

5.4 Conclusion and perspectives

In this work, we develop density fitting schemes for flexible fragments with applications to
polarizable force field simulations. Compared with rigid fragments, the major difficulty in
carrying out the fitted density approximation is that the fit cannot be precomputed offline, due
to the reference fragment density and intramolecular geometry being updated at every timestep.
In order to proceed, we set up tools for exploring the dimension of the solution space and
constructing a reduced basis of the problem, able to reproduce all admissible densities. The result
of this reduced basis approach is an offline-online greedy procedure for cost-efficient recovery of
fitted densities, at linear time online. We plan to investigate and propose methods to decrease
the intramolecular geometry sample number, based on greedy techniques such as the Empirical
Interpolation Method (EIM) [25, 217], that allows to define proper interpolation points better
suited than tensor ones. One difficulty to consider in sampling intramolecular geometries, during
the reduced basis construction, is taking into account symmetries of molecules and assuring that
the snapshots produce a physically meaningful continuous potential energy surface, i.e. without
singularities.

From a numerical point of view, the results on the reduced basis size and accuracy on frozen
core energies confirm the chemistry intuition for averaging fitted densities over a large sample
of intramolecular geometries. We interpret this as a promising result in generating a priori
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geometry-flexible auxiliary basis sets, with tunable accuracy. We demonstrate the practical use
of the reduced basis on ten Smith dimers. Besides the diatomic water molecules, we also plan to
use our reduced basis on larger molecules with richer symmetries. One difficulty in such case
is that the intramolecular geometry space requires a large number of parameters to carry out
parametrization. The hope is that by appropriate encoding of symmetries, the parameter space
size can be decreased.

Besides intramolecular geometries, another possible application of reduced basis is the
generation of multipole moments for polarizable force fields. We plan to numerically investigate
the correlation of atomic moments for different intramolecular geometries. The hope is that the
solution space of atomic moments has small n-width, admitting a reduced basis. Such investigation
could lead to the mathematical foundation of permanent electrostatics parametrization for
polarizable force fields (we refer to Appendix B for more details).
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Chapter 6

Adaptive methods for atomic basis
sets

This chapter includes joint work with Mi-Song Dupuy (Laboratoire Jacques-Louis Lions, Sorbonne
Université) and Genevieve Dusson (Laboratoire de Mathématiques de Besangon, Université Bourgogne
Franche-Comté).
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In the present chapter, we focus on atomic orbital basis sets from a mathematical perspective.
Let us recall that this work is not related to the frozen core energy computation treated in the
remaining parts of the thesis. We establish guaranteed and practically computable a posteriori
error estimators for source problems and linear eigenvalue problems, involving linear Schrédinger
operators discretized with linear combinations of atomic orbitals. Such problems, arising in
electronic structure theory of molecular systems, are indeed commonly discretized using linear
combinations of atomic Gaussian-type orbitals. Our main contribution shows that the energy
norm of the discretization error can be estimated by the dual energy norm of the residual,
that further decomposes into atomic contributions, characterizing the error localized on atoms.
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Moreover, we establish a method for practically computing the dual norms of atomic residuals
by inverting radial Schrodinger operators associated to atoms. As an application of our result,
we formulate a new adaptive refinement strategy for atomic orbital basis sets. Our strategy is
adaptive in the sense that it indicates the atom on which one should add more atomic basis
functions. Let us clarify that this does not provide the explicit basis functions one has to add.
The practical use of such strategy is demonstrated on one-dimensional toy system models and
numerical results are further discussed.
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6.1 Introduction

We address the problem of bounding the errors in the approximated solution of linear Schrédinger-
type problems, using atom-centered discretization basis sets.

Two discretization methods have been mainly studied in the literature. First, problems
with periodic boundary conditions are discretized in the periodic space using an orthonormal
plane-wave basis. Relevant estimators have been proposed, for the linear Kohn-Sham equations
[152] and the nonlinear elliptic problem of Gross-Pitaevskii eigenvalue problem [112]. Existing
work on the augmented plane wave method has been reported as well, for linear and nonlinear
Kohn-Sham equations [73]. Second, problems posed over bounded domains have been discretized
using a discontinuous Galerkin elements, studied for the linear Kohn-Sham equation [63, 180], or
using conforming finite elements [64]. In this work, we focus on a different type of basis that is
popular in molecular simulations, namely atom-centered discretizations over unbounded domains.
Relevant a priori estimators on Gaussian atomic orbital discretizations have been investigated
in [18]. To our knowledge, one of the few existing a posteriori analysis of the Hartree-Fock
problem over unbounded domains for generic discretizations is proposed in [218], using invariance
properties of the Hartree-Fock energy.

In the present work, we derive error bounds for atom-centered basis sets. From a theoretical
point of view, we use the same strategy as that of [74], for constructing a partition of unity
that spatially localizes contributions on atomic regions, and that of [64], for bounding the error
using the dual norm of the residual. From a numerical point of view, the atomic basis sets we
tested are Hermite basis sets, in the one-dimensional setting previously introduced in [62]. The
main limitation of our approach is that the quality of the estimator depends on the values of
the atomic potential on the region in between atoms. An advantage of our method is that the
estimator is localized on atoms and the evaluation of the a posteriori bound can be performed in
linear time with respect to the number of atoms.

The contribution of this work is two-fold: first, we illustrate the theory of residual-based
estimators over unbounded domains and second, we present numerical results as a first attempt to
generate adaptive atomic orbital basis sets. As an application of our estimator, we introduce novel
atomic error indicators and propose an adaptive refinement strategy for increasing the basis size
of each atom iteratively. From a numerical point of view, the results are encouraging. Preliminary
results in 1D indicate that the a posteriori error estimator captures the inhomogeneity with
respect to atoms of the system and therefore gives a promising approach to improving the
accuracy of solutions to linear eigenvalue problems using atom-centered basis sets.

We distinguish the following practical limitation, concerning the evaluation of dual norms
of residual terms over unbounded domains. Note that, in the case of bounded domains, such
evaluation is straightforward using a finite spectral approximation in practice. However, operators
defined over unbounded domains possibly have an non-empty essential spectrum. This makes
the computation of norms of residual terms less straightforward and in the following paragraphs
we address the issue of practically computing the dual norms in this case.

The rest of the chapter is organized as follows. In Section 6.2, we introduce the variational
framework for solving linear problems and the construction of the atom-centered basis sets.
Section 6.3 is devoted to the derivation of practical residual-based a posteriori estimators for
atom-centered bases, as well an explanation of the refinement strategy. The effectiveness of the
refinement strategy is verified in Section 6.4 by applying the refinement strategy to the solution
of the 1D Hartree-Fock problem for the diatomic one-electron LiH*" molecule. The conclusion
and discussion of future work on applications of the a posteriori error estimator are given in
Section 6.6. The details of the proofs used in Section 6.3 are provided in Section 6.5.
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6.2 Theory

6.2.1 Setting

For d € {1,2,3}, let
HY(RY) = {v € L*(R?): Vv € L*(RY)}

be the Sobolev space endowed with the usual inner product on L?(R%), denoted by (-, -)ge and
defined as

(v, w)ga = /Rd v(r)w(r)dr, (6.1)

with the induced norm, denoted by || - ||ge and defined as
1/2
Iollze = (v, 0) g7
Given atomic positions Ry, ..., R,; € R?, consider the linear Hamiltonian operator of Schrédinger
type defined by
M
H=-A+> "V, +o, (6.2)
k=1

where o € R is a shift factor and V;,(r) = V(|r—Ry]) is a radial atomic potential with V : RT — R
continuous in (0,00). No additional regularity is imposed on V, allowing for common singular
potentials such as the Coulomb potential V (r) = —|r|!.

Two problems on unbounded domains will be of interest in this work: first, the source problem

Find u € H'(R?Y) solution to Hu = f in R, (6.3)
and second, the eigenvalue problem

Find (\,u) € R x H(R?) solution to Hu = Au, ||u||ge = 1. (6.4)

6.2.2 Variational approximation

Problems (6.3) and (6.6) are solved using a Galerkin method with the atomic orbital (AO) basis
set {Xu}lg u<n of size N, composed of functions centered on atomic positions:

{X}L} = {5171(1' -Ry),... 751,n1(f -Ry);... §€M,1(1" -~ Ry), .- 75M,nM(r - RM)} )

with §; ; € H'(RY) a fast decaying function centered at the origin, called atomic orbital, previously
introduced in Chapter 1.1.4. Defining the Hamiltonian matrix

H= (<X,u.7 HXV>Rd>1§;L,U§N
and the overlap matrix
S= (<X;u XV>Rd)1§M,V§N s
the discretisation of the source problem (6.3) in the AO basis set x writes as the linear system

Ha = Sf, (6.5)

with solution the vector of coefficients a € RY, where f = (f);<,<x denotes the vector of
orthogonal projection coefficients of the source term f on the AO basis set x for the natural L?
inner product. The approximation uy of u in the AO basis set x can then be recovered as a
Linear Combination of Atomic Orbitals (LCAO), i.e.

N
VreR?, uy(r)=> a,x,(r).
p=1
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The solution of the eigenvalue problem (6.4) is approximated using the Galerkin variational
method as

(v, Hu)ga = Mv,u)ps Vv € HY(R?),

(6.6)
[ullge = 1.

Find (\,u) € R x H'(R?) solution to {

Using the AO basis set x as a discretization basis, the variational problem (6.6) writes as the
following generalized eigenvalue problem: find (u;,a;) € R x RV such that

V1<i<N, Ha;=p;Sa;, aSa;=1I, (6.7)

where I denotes the N-by-N identity matrix. Similarly to the source problem, eigenfunctions
can be recovered as

N
VI<i<N, VreR? wuy(r)= Zawxu(r), [winllra = 1.
p=1

The associated eigenvalues are computed using the Rayleigh quotient

VI<i<N, My = (un, Hu;n)ga.

6.2.3 Preliminaries

The Hamiltonian operator H acts on L?(R?) with domain H?(R?). We define the residuals for
the linear and eigenvalue problems as follows:

e for the linear problem (6.3)
Res(uy) = f — Huy (6.8)
e for the eigenvalue problem (6.6)
Res(Ain, uin) = Ainuin — Hu;y. (6.9)

Usual a posteriori estimates rely on the computation of dual norms. To reduce the computa-
tional cost of these quantites, the main idea is to take advantage of the radial symmetry of the
potentials V.. For k =1,..., M, let H, be defined by

Hy = -A+ Vi + oy,

for o}, € R shift factors. Notice that each operator Hj, is radially symmetric with respect to R;.
Associated to these operators, we introduce a cover (£2;);<p<pr41 of R¢

{Uhicremsr, W CRYL k=1, M+1,

with the property
M+1

UQk:Rd7 Qk:B(Rkark)a kzla"'7M7
k=1

where r;, > 0 and B(Ry,7) is the closed ball centered at Ry, of radius 7.
We consider a nonnegative partition of unity subordinate to the finite cover, denoted by

{Peti<k<m+1, Pr € C*(RY), supp(p) =, pp >0, k=1,...,M+1,

with the property
M+1

vreRY, > p(r) =1 (6.10)
k=1

Note that neighboring subdomains may intersect, i.e. Q;, N Q. # 0 when k # k', as illustrated in
the example of Figure 6.1.

We will make the following assumption on the operators H and (H})<p<ar41, such that
they define natural energy norms. -
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Figure 6.1: Finite covering of R? for d = 2 using the closed balls 4, ...,Q,,, for M = 6 with
fixed radius r € R (in blue). Their unbounded complement is defined by Q,,,, = R? \ UM, Q,
(in red).

Assumption 1. The shifts o and o4, ..., 0,1 are such that the operators H and Hy, ..., Hyryq
are positive definite.

Assumption 2. The shift ¢ is such that
Vv e H'(RY), cullvllg@ay > Jv]lge-
The corresponding energy norm for H is defined by

Voe HIRY), |o]lgge = (v, Ho)l. (6.11)

The associated dual norm is given by

VUV, W)Rd
Voe P®RY, |ollgorge = sup B
weH! (R) ||w||H(1Rd)

Likewise, for H;,; under Assumption 1, we can define the energy and the dual norms associated
to HM+1

2
Vv e H'(RY), Hv||HM+1(Rd) = <’U7HM+1U>]]1§{1 ;

6.12
= L2(Rd), HU”H_l ) = sup <'U;'IU>]Rd , ( )
M1 wen (&4) |0l (re)

For 1 < k < M, the operators Hj, are acting on L?(€2;) with domain
HY () = {v € H(Q4): u =0 on 99}
The corresponding energy norm is given by
Vo e H)(Q). el = (0 Hiv)g, (6.13)
where (-, -)q, is the usual L? inner product of L*(€;). The associated dual norms are

v, W
Yo e L3(Q), HU”Hk—l(Qk): sup &, k=1,...,M. (6.14)

weny(9,) 1wl @)
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6.3 Results

6.3.1 Guaranteed a posterior: error estimates

Let us define the positive constant C' by

M+1 2 +
1 \Y
C:=1+c% sﬂl{ldp ( E _iApk + ( 4};1;) +Vilpr, — 1) + (op — U)pk> . (6.15)
k=1

Theorem 6.3.1 (H-error estimation for source problem). Let u be a solution to the source
problem (6.3) and uy be an approximate solution. There holds

M+1 1/2
HU*’U,N”H(Rd) S 01/2 Z H /DPk RGS(UN)||fv_I]€_1(Qk)‘| . (616)
k=1

Let us define the gap constants associated to the i-th eigenvalue, for 1 < i < N by

~ Aon ) 2
C; == min (1— A’N) , (6.17)

J

~ Aon ) 2
C; := min (1— AN) A (6.18)

J

Theorem 6.3.2 (H-error estimation for eigenvalue problem - single eigenvalue). Let 1 <i < N,
(A\i, ;) be a solution to (6.6) and (N\;n,u;n) be an approzimate solution. Under the assumption
(us, u;n)rae > 0, there holds

~ ~ 1/2
s = winllmqeey < (CCT '+ A €272 ) (6.19)
where
M+1
Ty = 1; Iv/Pr Res<>‘iN>uiN)||i[;1(Qk)'
Moreover,

6.3.2 Practical estimates

The main interest of Theorem 6.3.1 and Theorem 6.3.2 is that the dual norms appearing in the
upper bound are easily computable, either by taking advantage of the radial symmetry or the
explicit formula of the Green’s function of the free Laplacian on the whole space.

For 1 <k < M, since €2, is compact, the spectrum of H}, is purely discrete. We denote by
(eg-k), w§k)) € R x H}(Q), j € N, the eigenpairs of Hj, defined by

(6.21)

For any v € H}(£},), we have

Hyv = Z Egk)¢§k) (v, wj(-k)>nk,

j=1

hence a direct consequence is the following proposition.
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Proposition 6.3.1 (Dual norm decomposition for compact operators). Let 1 < k < M and
(Eg-k), w](-k)) € R x H{(Q,) be solutions to (6.21) for j > 1. There holds

o0

1 k
Vo € L2, ol = 2 a7 |00 ),
J

j=1

2

For all 1 < k < M, let us fix a natural number n = n(k) € N and introduce the partial
expansion of the dual norm on the first n eigenpairs, denoted by Z,,(-), obtained by truncating
the infinite expansion of Proposition 6.3.1 at order n, i.e.

2

1
Vo e L3(R), T,(0) =Y 4 |06,
j=1%j

This quantity appears in the bound of the dual norm as given in the following lemma and is
fully computable.

Lemma 6.3.3 (Practical estimate). Under the same assumptions as Proposition 6.5.1, fix
n =n(k) € N. There holds

2

1 = k
Yo € L), Za(v) < ol s,y < Za) + - | 0l =32 [, )0,
n+1 j=1

Lastly, for the dual norm associated to the operator H; for k = M + 1, one may use that
the operator Hy;,; = —A + o1 is invertible using the explicit Green’s function stated in the
following lemma.

Lemma 6.3.4. The Green’s function of the linear differential operator —A + a? is

exp(—alr —1'|)

y d= ]-7
2a
/ 1 /
G(r,r') = %Ko(ah‘—r\), d=2,
exp(—alr —r'|) d—3

4r|r —r/|
where K is a modified Bessel function of the second kind.
Our final estimates are guaranteed and practically computable.

Theorem 6.3.5 (Practical estimation for source problem). Under the same assumptions as
Theorem 6.5.1, let us fix a sequence of natural numbers n = (ny)1<k<nr- There holds

lu = unll ey < CH27(n)'2, (6.22)
where
M 1 N X 9
() =Y | T, (vEr Res(un)) + —5— | IVBr Res(un)llf, =D |(vBr Res(un ). v5)o,

k=1 Enp+l j=1

+ (vPu1 Res(un), gnri1)a,y 40

In1(r) := /Rd GM+1(1“71“/)\/I71L1+1(T/)ReS(UN)(r/) dr’,

Gy being the Green’s function of operator —A 4+ oy 4.

with
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Theorem 6.3.6 (Practical estimation for eigenvalue problem - single eigenvalue). Under the
same assumptions as Theorem 6.3.2, let us fir a sequence of natural numbers n = (ny)1<p<pr-
There holds

- ~ 1/2
lots = i sy < (COT'Tim) + M2 (m)?) (6.23)
where
M
1) =D \Zo, (VP Res(ir i)
=1
1 9 Lk (k) 2
+ ||\/1TkReS()\iN»UiN)||Q,€*Z (VPr Res(Ain, uin ), ;7 )a,
Enp+l j=1
+ (VParr1 Res(Ain, win), 9nr 1) Q40
with

9M+1 / GM+1(r r) pM+1( r’) Res(A\; v, uin) (T )dr’,

Gy being the Green’s function of operator —A 4 oy, 1. Moreover,
0< Ay — A < CCTF(m). (6.24)

Note that, the computational cost of evaluating the bound of Theorem 6.3.6 scales linearly in
the number of atoms M, as any two residual terms associated to different atoms are independent.

6.3.3 Adaptive refinement strategy

For any atom indexed by 1 < k < M, let us define the error indicator

Mk =1, (\/7RGS( iNs U ))

1 2
+ o | IVPr ResQuns win) I, — [/ ResCuns 1), 000, ]

€nk+1 Jj=1

using the same notation as Theorem 6.3.6. Finally, for any sequence of natural numbers
n = (ny)1<k<n» We obtain the total atomic discretization error indicator decomposed on atoms,
defined as

ni(n) = > n.

M=

k=1

The refinement is based on atoms, using the k-atom indicator 7, > 0. Let us emphasize that,
the eigenpairs of the restricted operators H; on subdomains for 1 < k < M, given as solutions

o (6.21), may be precomputed before the start of simulation. Lastly, note that obtaining the
value of the error indicator 7, essentially requires evaluating several L? inner products. The
total number of inner products for each 1 < k < M could be estimated as

le + 2
To summarize, algorithm 7 presents a method to generate adaptive atom-centered basis sets.
Theorem 6.3.6 guarantees that the sequence of approximate solutions (u;y)yen Obtained with

such refinement strategy will converge to the exact u; at the limit N — co. The evaluation of
error indicators in steps 1-3 of Algorithm 7 may be performed in parallel.
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Algorithm 7: Adaptive refinement strategy for atom-centered basis sets.

Input: system of M atoms, atomic basis of size IV}, centered on atom k, for 1 < k < M
Output: refined atomic basis of size N}, with N} > N, forall 1 <k < M
:fork=1,...,M do

Evaluate error indicator 7.
end for
Set ko = argmaxy<p<ns M-
return N,QO = N, +1and N = Ny for all 1 <k < M,k # k.

—0 —p i -R ¢ 0 ¢ R & i oo

Figure 6.2: Partition of unity for two atoms at =R in one dimension. Partition function associated
to atom (z;, —R) (in blue), partition function associated to atom (zy, R) (in red), remaining
partition function associated to the complementary domain 25 (in green).

6.4 Numerical results

6.4.1 1D diatomic molecules

Preliminary results are obtained for diatomic molecules with one electron in one dimension. Let
us denote by z; and z, the nuclear charges of two atoms positioned at —R and R in the real line,
respectively, for R > 0. The computational domain R is decomposed into partitions 4, €2y, 3,
defined symmetrically for the two atoms as

Q1 = [_,U’a ﬂ
QQ = [_Kvl’d
Q3 = (—OO, _/ﬂ U [ﬂa OO)? = 2R ¢

Note that the overlap of any two partition domains has length 2¢. Let us consider partition of
unity functions that decay or grow on the overlap of domains based on the function

h(z — a)
z—a)+hb—2z)’

Ve eR, p(x)= i h(z) = exp(—1/z).
This function is increasing on [a, b], equal to zero at x = a and equal to one at z = b. Moreover,
it is smooth on the closed interval [a, b]. It can therefore be extended smoothly to a constant
function outside [a, b]. Such partition of unity based on p is illustrated in Figure 6.2.

The atomic orbital basis set studied is the Hermite basis set (HBS) introduced in [62], defined

for any n € N as
Ve e R, h,(z)=c,p,() e)<p(—172/2)7

where p,, is the Hermite polynomial of degree n and ¢, a normalization constant such that
Jg hia = 1. Note that {h,},cy is an orthonormal basis of L*(R).

We use the soft-core Coulomb potential in 1D [323], obtained by avoiding the singularity of
the Coulomb potential by adding a soft parameter a so that the potential becomes

1
VaZ 22

Throughout our simulations, we fixed a = 0.5 and set V' = V,,. The potential for this choice
of soft parameter is illustrated in Figure 6.3a. A practical limitation is the lack of analytical

Va(z) =
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(b) Reference solution of source problem (in
pink) and first eigenfunction of the eigenvalue
problem (in blue).

(a) Smeared Coulomb z +— V,, for a = 0.5.

Figure 6.3: Fixed z; = 2o =1, R = 1. Atoms are fixed at positions +R.

expressions for the exact solution. To overcome this issue, we use a finite difference scheme over a
bounded computational domain in 1D as a reference [62]. The code that allowed to calculate such
finite difference solution on Hermite basis sets can be found in [181]. We consider a large enough
computational domain, i.e. Q2 = [-5R,5R]. If the Laplacian is discretized using a first-order
finite difference scheme on a uniform grid (z;);<;< N, of step d and N, points on €2, the discrete
Hamiltonian matrix is written as

H=--—5 : : . + diag(V(z;) + 0)1<i<n, ; (6.25)
1 -2

where the missing matrix entries are equal to zero. All integrals are computed exactly on the
finite difference grid using the quadrature rule

N,

1 g
b% Xu:/X Xo = 53 ) Xu(®i)xu (7).
L= [ 7

In all simulations we fixed a finite difference grid of Ny, = 2001 points. Lastly, the right-hand
side of the source problem we considered is

f(z) = Hihy(z + R) + Hyhy (2 — R),

where Hj denotes the atomic Hamiltonian on atom k. For this choice of source we obtain
the following reference finite difference solution illustrated in Figure 6.3b. Note that the exact
inverse norms of atomic residuals in Theorem 6.3.2 may be computed in this setting by solving
problems How = Res(A\;n,u;n) on the finite difference grid, then evaluating the quantity
(Res(A\in, uin), w)q, - Instead of performing the exact computation, we use the practical error
bounds of Theorem 6.3.6 in the following numerical simulations.

6.4.2 Quality of the error estimator

We fixed a sequence of natural numbers n = (K, K), K € N, for evaluating the practical bound of
Lemma 6.3.3. The eigenpairs (6.21) of the restricted operators are computed using the Lanczos
eigensolver from KrylovKit module in Julia language, using a tolerance threshold equal to
10712, Note that we set K = 17 equal to the maximal number of converged eigenpairs. As
it has been observed in [62, Fig. 2|, the condition number of HBS blows up for large basis

139



lur —win|l o
20=0.2

10t

discr. error
=
o
O

discr. error
=
o
%

-
=
&

10
10°
20 40 60 80 100 120 20 40 60 80 100 120
N basis functions N basis functions
(a) Estimation of |ju — uy|| g for u solution of (b) Estimation of ||u; — u; ||z for first eigen-
Hu=f. function u; of Hu = Au.
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(c) Practical estimator (see Theorem 6.3.6) of
the exact discretization error on first eigenvalue.

Figure 6.4: Practical estimators (see Theorems 6.3.5 and 6.3.6) of the exact discretization error
and influence of the overlap parameter ¢ on the estimator. Fixed z; = 2z, =1, R=1, 0 = 4,
01 =09 =3, 03 =1, K =17. On the z-axis is the number of AO basis functions equal to
N = N; + N, with N; = N, = N/2 per atom.

sets. This creates a numerical stability issue, that we partially reduced by applying a low-rank
approximation to the overlap matrix of the basis using pivoted Cholesky decomposition with a
tolerance threshold equal to 1078,

Figure 6.4 presents the numerical performance of the practical error estimators given by
Theorems 6.3.5 and 6.3.6. The estimator is evaluated for several sizes of the partition overlap
between 0.2 < 2¢ < 1.8 < 2R, for fixed R. Results show that estimators become tighter for larger
overlap sizes. Figure 6.4c presents the estimator on a single eigenvalue, given by Theorem 6.3.6.
Results show that the quality of the eigenvalue error estimator is consinstent with the one of the
eigenvector error.

6.4.3 Influence of numerical parameters

In Table 6.1 we summarize the parameters of the model.

Spectral basis size. Figure 6.5 shows the influence of the spectral basis size n, = K in
Lemma 6.3.3 on the estimation of the dual norm. Results show that the upper and lower bounds

become tighter for increasing truncation degree, which is expected as the spectral approximation
improves.
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o | shift factor for Hamiltonian H

oy | shift factor for Hamiltonian H,

0o | shift factor for Hamiltonian H,

og | shift factor for Hamiltonian Hj

z; | atomic charge of atom 1

Z5 | atomic charge of atom 2

2R | interatomic distance

N; | AO basis set size on atom (z;, —R)
N, | AO basis set size on atom (zy, R)
K | size of spectral basis in (6.3.3) for all atoms
2( | size of partition overlap

Table 6.1: Summary of parameters for diatomic molecule with atoms at —R and R.

10

107

10°

error

10—11

1013

10 20 30 40 50 60
N basis functions
Figure 6.5: Fixed R =1, 2y = 2o = 1,0 =4, 0y = 09 = 3, 03 = 1, £ = 0.8. Upper and
lower bound of Lemma 6.3.3 on the dual norm of the residual error on the first eigenpair of the
eigenvalue problem.

Overlap size. The influence of the size of the overlap given by 2¢ is shown in Figure 6.4. The
reason due to which the estimator is tighter for larger overlaps can be explained as follows. The
constant C (6.15) of the practical estimator depends on ¢ and on the shift factors. For fixed
shifted factors, the constant C' tends to explode as the overlap size decreases, as seen in Table 6.2.
Notice that the decay of C with respect to £ is exponential. Large C' values result in less tight
estimators.

Choice of shifts. In Table 6.2 we may also study how to optimize the constant C' by appropriate
choice of parameters. Notice that the atomic shift value 0; = 0, may not be decreased further
without breaking the Assumption 1 on positive-definiteness of atomic operators. The last entry
on this matrix could not be obtained for this reason. It is observed that small values of atomic
shift factors yield optimal constants C' > 1.

Gap constants. Lastly, we study the gap constants defined in equations (6.17) and (6.18). In
practice the magnitude of the two constants for the case of the first eigenvalue depends on the
ratio ) N

<N <,

Ay T A T
where we used the variational property \;ny > A;. If the ratio is close to one, then the constants
will be small. Ratios close to one can be obtained by selecting large values of the shift factor, as
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Ua
’ 5.0 3.0 2.0 1.0
0.1 421.38 | 421.052 | 420.884 | 420.716
0.3 6.49 6.155 5.987 5.819
0.5 2.11 1.780 1.612 1.478
0.8 1.68 1.344 1.176 1.000
0.9 1.63 1.298 1.130 -

Table 6.2: Values (up to three decimal digits) of the constant C' defined in (6.15) for varying
overlap size 2¢ and atomic shift 0, = 0y = 0y. Fixed 2 =20 =1, R=1,0 =4, 03 = 1.

g A1/ Ao CH
3.0 | 0.746 | 0.694
4.0 | 0.833 | 0.409
5.0 | 0.875 | 0.290
6.0 | 0.900 | 0.225
7.0 | 0917 | 0.183
8.0 | 0.929 | 0.155

Table 6.3: Values (up to three decimal digits) of the gap ratio A;/A\y as well as the positive-
definiteness constant ¢y of Assumption 2, for varying shift factor . Fixed z; = 25 =1, R =1,
0'1:02:1,0'3:1.

seen in Table 6.3. At the same time, however, large values of o lead to sub-optimal values of
the constant ¢y in Assumption 2 therefore in larger values of the constant C' of (6.15). Notice
that we cannot go lower on values of o otherwise the positive-definiteness Assumption 1 on H is
violated.

6.4.4 Adaptive basis sets

In Figure 6.6 we tested the performance of the adaptive basis generation of Algorithm 7 for two
particles of different nuclear charge. The tested diatomic molecule is LiH*" with one-electron.
The adaptive refinement fixes N; = 5 and varies Ny only, from 5 to 53. On the contrary, the
non-adaptive case varies N; = N, uniformly, from 5 to 29. Figure 6.6. The slopes of the two
lines are very close, namely —95 x 10=* (in green) —97 x 10~* (in orange). For small basis sizes
below N = 20, the adaptive basis strategy has no effect. However, it is observed that for a large
basis size as N = 60, we gain one order of magnitude by using our refinement strategy.

Finally, in Figure 6.7 we test the performance of the refinement strategy for particles of
identical charges, for the molecule H, ". The refinement strategy globally reproduces the behaviour
of the optimal symmetric case N; = N, for identical charges. Note that the green line in the
same figure is obtained by increasing by two both N; and N, at each refinement iteration.

6.5 Proofs

6.5.1 Preliminaries

Lemma 6.5.1. There holds

M+1 1/2
vv € H'(RY), (Z |\/ITkU||?{k(Qk)> < CY2||v|| gr(ray (6.26)
=1
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with C' being the positive constant defined in (6.15).

Proof. By definition of the energy norm restricted on the subdomain €, for k=1,... M + 1,
one has the equality

IVPRv 1, () = VPRV Hi(VPRv))o, = (VPkv, Hy(VPRv))za, (6.27)

recalling that the support of p;, is ;. Evaluating this inner product for H, = —A + V), + o},
and integrating by parts, yields

(Vprv, H(v/Prv))re = (V(VPe0), V(VPR0)) e + (VPe0, (Vi + 01) (VPi0)) et (6.28)

Expanding the differential operator V gives

(VI T (o = [ (VEve s 2%)

= /Rd pe(Vv)? +/Rd(vpk)vw+/w (Vpk)sz

4py,

1 (Vpk)2
= V)2 — f/ App)v? —l—/ v?,
/Rd pr(Vv) 3 Rd( D) 0 dp,
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where in the last line we integrated by parts. Using this expression within (6.28) and (6.27), then
summing on k for (6.27) and evoking the property (6.10) of the partition of unity, we obtain

M+1 M+1 1 (Vpp)?
> Imeel o = IVel2e+ Y [ (<3am+ C2E 4 s o) o 629
k=1 k=1 )

Integrating by parts while using the regularity assumption on v, the energy norm of v squared
admits the expression

M+1
[0l3(gay = (v, (=A +V + 0)v)ga = | Vollga + D (v, Viv)pa + al|v]Za.
k=1
Adding and subtracting this quantity to (6.29), then majorizing the integral over the whole space,
one obtains the estimate
M+1 M+1

1 (Vpk)2
Z ||\/ka||%rk(szk) = HU”%I(Rd) + Z / (_2Apk T +Vilpe = 1) + (03, — o)py | 0°
k=1 h—1 JR? Pr
M+1 9 +
1 Vp
< ol + ol sup (Z ~58m+ S v - 1)+ (o a)pk> ,
k=1

where f(z)" := max,cra{f(x),0}. Lastly evoking ||[v|lge < cgllv[|p(ray of Assumption 2, we
prove the desired result. O

Lemma 6.5.2. There holds

M+1 1/2
wo e 2R, ||v||H1<Rd>scl/2<2||mvzklmk)> . (6:30)

k=1
Proof. By definition of the dual norm and Lemma 6.5.1,
(v, WYRa
HUHH*(R‘!) = sup T
weH! (R4) HU’HH(W)

< /2 sup (v, W)ga

1/2°
weH! (R4 M+1
SHED (D el o))

Moreover,
M+1
(v, W)ga Z (Hy ()2 /Do, Hy(4)'? \/prw)pa
k=1
M+1 12 /i 1/2
< (z ||rpkvn§{,mk)) (z mpkwuzkmk)) ,
k=1 k=1
hence the result. O

6.5.2 Source problem

Proof of Theorem 6.3.1. Since u satisfies Hu = f, there holds Res(uy) = H(u — uy). Decom-
posing u — uyy using the partition of unity, one obtains the expression

lu — UN”?L[(Rd) = (u—un, H(u— uy))ga

M+1
= Z <\/ZTk(U - uN)v \/]TkReS(UN»]Rd.
k=1
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Since the support of p, is Q, for every k, we may restrict the inner products on the subdomains

1/2Hk_1/2

and multiply by the identity operator H , hence the equality

M+1

llu— uNH?{(Rd) = Z <H11/2\/?Tk(u —uy), Hk_l/zx/ﬂReS(UN)>Qk~
k=1

By the Cauchy—Schwarz inequality on 2, applied to the above right-hand side, one obtains the

bound
M+1

e = unll ey < D IvPe( = uw) 0,0 VPE Res(un) | 51, )
k=1

that can be further estimated, using the discrete Cauchy—Schwarz inequality, as

M1 12 rarg 1/2
2
HU_UN”H(Rd) < Z ||vpk(u_UN)%1k(Qk)] [Z /P ReS(UN)||§I;1(Qk) .
k=1 k=1
Evoking Lemma 6.5.1 yields the result. O

6.5.3 Eigenvalue problem - any single eigenvalue

Proposition 6.5.1 (L2-error estimation). Let (\;,u;) be solution to (6.6) associated to the i-th
eigenvalue and (A;n,u;n) be the approximate solution. There holds

lJu; — uz’N||]12{d = 2w — uz‘NHﬁ’i{d < Cflﬂ RGS()\iNvuiN)\ﬁrl(Rd)a

4
where C; is the positive constant defined in (6.18).

Proof. By definition of the residual, one has the equality
I Res()‘iNvuiN)Hzfl(]Rd) = <H_1/2(H = AiN)Uin H_1/2(H — AiN)UiN)Ra- (6.31)

By the spectral decomposition using the orthonormal eigenvectors {u;} ;> associated to the j-th
eigenvalue \; — A,y of the shifted operator H — \;y, where u; is the eigenvector associated to
the j-th eigenvalue \; of H, one has

(H = X\in)uin = Z(/\j = Ain)uj (Ui, Uj)rd, (6.32)
i>1

while for the inverse operator H /2, the spectral decomposition yields

1
Yw € LQ(Rd)7 H_1/2u} = Z WU‘]‘<U)7U]'>]R:1. (6.33)

jz1 7
Combining (6.32) and (6.33) in (6.31), while using the orthonormality of the eigenvectors u;,
one obtains the bound

2
H RGS()\iMUiN)H%{—l(Rd) = Z()‘j - )‘iN)Q ’<H_1/2UiN’ H_l/Quj>]Rd

Jjz1

A 2 2
iN
j>1

2

v )
7>1
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We show that the following inequality is satisfied with the constant @ defined in (6.18):

~ 2
l ReS(AiNanN)H%rl(Rd) >C; E [y — g, ug)gal” (6.35)
j=>1
J#i

2
Indeed, observe that the function RT > z <1 — ’\;N ) x reaches its minimum at x = A,y
and is decreasing on (0, \;] and increasing on [A;y,00). Thus the constant must be equal to
. A\, ~
manZL]?g,L (1 — )ijv) Aj or C?,
Moreover, employing the scalings ||u;||ge = ||u;n||ge = 1, there holds

(u; — Ui, Ui = 1 — (Un, U )Ra

luillre | lluwin||ra
= 12 + 12 — (Ui Ui pe
1
= 5”% — Uiy [[fa- (6.36)
Hence
2 2
Z |<uzN - uiauj>]Rd} = |lu;n — ui”]?{d — [{u;n — w5 u;) Ral
i>1
J#i
= fluin — ui”]?{d = iy — UiH]?{d'
4
Plugging this expression within (6.35) yields the result. O

Lemma 6.5.3. Under the assumption (u;,u;n)ge > 0, there holds

llu; — uin|lre < (26{1)1/2“ Res(A;ns win )| -1 (ray-

Proof. Using assumption (u;,u;x)re > 0 and employing the scaling ||u;||ge = ||u;n||re = 1, one
obtains the inequality
i = win e = 2 = 2(uz, usn)pa < 2. (6.37)
Writing
1
[[u; — uiN”]%gd - ZHUz‘ - uiN||]14£d = lu; — uiNH]%Qd - Z”Ui - UiNH%wHUi - uiNH]%{d

> flui — uiNH]lzw - 5”% - uiN”]%W

= §||Ui — N |
and evoking Proposition 6.5.1 yields the result. O

Proposition 6.5.2 (H-error estimation). Under the same assumptions as Proposition 6.5.1,
there holds

)\i ~—
[lus — uiNH%I(]Rd) - z”%’ - uiN||H4£d <q 1” ReS()\iN,um)Hirl(Rd)’
where C; is the constant defined in (6.18).

Proof. We show that the right-hand side of the inequality (6.34) may be bounded as follows,
where the bound is satisfied for Cj:

~ 2
| Res()\iN,u,»N)||§{,1(Rd) > C; E )‘j |<uuv - uivuj>]Rd| . (6.38)
j=>1
J#i
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2
Indeed, observe that the function Rt > z (1 — ATN) reaches its minimum at x = \;n

and is decreasing on (0, \; ] and increasing on [A;y,00). Thus the constant must be equal to
2
mlanLj?gi (1 — )tjv) or CZ
Moreover, employing (6.36), one obtains the expression

2
Z/\ | UiN — Uy, Uy RC’| = |lu;n *%‘H?[(Rd) — N [{uin — g, ) gal
j>1
J#i
A

= [luin — ui”%{(Rd) - ZHuzN - UiH]?{d'
Using this equality within (6.38) yields the result. O
Proposition 6.5.3 (Eigenvalue estimation).
Aiv = A < C7 M Res(Nin i) | Fr-1 ma-
Proof. Evoking (6.36), there holds
lJui = UiN”%{(Rd) =X+ Ainv — 220 (uy, Ui )ra

= AN — A+ 201 = (uy, Uiy )ra)
= NN — A+ A lu; — UiN”]lQ@d' (6.39)

Hence
Ain — A = |Ju— U‘ZNH%‘I - )‘zHuz - uiN”Z

Since )
[|lu; — UzNH <1,

there holds
Ain = Ai < lu—win|l7r — ZZHUZ — un|*.
Using Proposition 6.5.2 ends the proof. O

Proof of Theorem 6.5.2. Employing Lemma 6.5.3 within Proposition 6.5.2 yields

~ A
[Ju; = uiN”?{(Rd) <G i Res(%m“m)”ipl(ﬂ&d) + ZHUz‘ - UiNHﬁ‘%d
< CNTIH ReS(AiNfuiN)H%{*l(Rd) + X077 Res()‘iN7uz’N)H}1{*1(]Rd)‘
Evoking Lemma 6.5.2 yields the result. O

Proof of Proposition 6.3.1. We apply the spectral theorem to the operator H !, whose eigenval-

(k)

ues are 1/¢ ;- Then we use the orthonormality of the eigenvectors to compute the norm. [

Proof of Lemma 6.3.3. We decompose the dual Hp-norm of an arbitrary v as

o121y = @) + D2 5 [ 6, (6.40)
j=n+1&;

Assuming without loss of generality that the eigenvalues are sorted in increasing order, i.e.
E;-k) < 55-?1 for all 7 > 1, there holds

oo

1 (k)
S Z ‘<U71/Jj >Qk

Ent1 j=n+1

(6.41)
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By the spectral theorem, the infinite family {1/Jj(-k)}j21 of eigenvectors is a Schauder basis of
H(Q;,), therefore

(oo}
k) k)
v=3" (o, 6®)g 0" = Jloll3, = Z! o,

j=1 Jj=1

Decomposing the sum over j into two parts, we obtain the expression
- DN - (k)
> e, | = ol =D |6,
j=1

j=n-+1
Substituting this formula into the bound (6.41), we obtain the final upper estimator for the dual
Hj,-norm of v,

2

1 " AN
ol s,y S Tul) g | el = o]0, 0 e,
Ent1 Jj=1

The lower estimator is obtain by noticing that in expression (6.40), all eigenvalues 55@ are

positive due to Assumption 1 on positive-definiteness of H,. O

Proof of Theorem 6.3.5. Let wy, = /py Res(uy) for k = 1,...,M + 1. Applying Proposi-
tion 6.3.3 to wy, for 1 < k < M yields the upper bound

2
k
okl g < Tulwy) + (k) e, — ijk,w“
n+1

Lastly, for K = M + 1, we use the Green’s function of the operator —A + o), in order to invert
the operator H),,, directly on the whole space R?. Notice that since the support of pj, is €,

ol = Il gy
for any k£ and in particular for kK = M + 1. As a consequence, we compute for k = M + 1,
k ?{*1 Q) = (wk,Hk—lwk)Qk = <wkvvk>ﬂk = (wg, Vg )R,
[wllE-1(0y)

with vy, 1= Hk_lwl€7 equal to

Ve R () = [ Gl () e,
]Rd

obtained using the Green function of the operator Hy; . O

Proof of Theorem 6.3.6. Similarly as proof of Theorem 6.3.5. O

6.6 Conclusion

In this work, we develop residual-based a posteriori estimators for solving linear Schrédinger-type
problems in an atom-centered orbital basis framework. Compared with standard estimators over
bounded domains, the major difficulty in carrying out the analysis is that the dual norm of the
residual term cannot be directly calculated due to the lack of compactness of the unbounded
operator. In order to proceed, we develop tools for practically computing this dual norm based
on restricting the unbounded Hamiltonian using a partition of unity defined over compact
subdomains. The result of this a posteriori error analysis is a practical adaptive refinement
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strategy for atom-centered basis sets. We plan to carry out a numerical verification of the validity
of the adaptive refinement strategy for realistic three-dimensional systems, Coulomb potentials
and Gaussian-type orbital bases commonly used in chemistry. Moreover, we plan to investigate
methods of decomposing the physical space into atomic regions and define partitions of unity
satisfying smoothness assumptions in 3D. One difficulty to consider while testing realistic models
is the Coulomb potential singularity. The hope is that such numerical experiments show that,
the singularity of the Coulomb potential can be controlled by appropriate partitions of unity so
that the prefactors of the estimators remain small.

From a practical point of view, the results of the adaptive refinement strategy for atom-centered
basis sets mimic the chemistry intuition for placing more basis function on the heavier atom. As
a first attempt, we interpret this as a promising result in GTO basis optimization studies. We
demonstrate the practical use of the estimator for one-dimensional diatomic molecules. Besides
the diatomic molecules, we also plan to use the non-uniform refinement to study many-atom
systems. One difficulty in that case is to define the overlap regions in 3D and to calculate the dual
norms over such regions. In these cases, several atomic domains may overlap at the same time,
yielding highly non-uniform overlap regions that we hope can still capture the inhomogeneity of
atomic residuals.

Besides the adaptive atom-centered basis sets, another possible application of a posteriori
error estimation is the construction of error bars for equilibrium geometries given by the geometry
optimization problem for molecular geometries (see [60, Equation 1.1]). Such error bars could
allow to predict confidence intervals for equilibrium geometries of a given energy model, such
as Hartree-Fock (HF), or Local Density Approximation (LDA). The hope is to construct a
proof entirely based on a posteriori error estimators in order to demonstrate theoretically the
experimental observation according to which the LDA underestimates equilibrium geometries
while HF overestimates them [250], as discussed in Appendix D. However, this objective requires,
first, a much more precise error estimator than the one used in the current setting, and, second,
combining the self-consistent field errors and discretization errors, and this could be studied in
the future.
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Chapter 7

Conclusion and perspectives

The contributions of this thesis are divided into two parts, regarding numerical methods for
atomic Gaussian-type orbital basis sets. The first part was dedicated to a high-level approach for
the density fit method, with applications to frozen core intermolecular interaction computations
for rigid and flexible fragments, and extensions to sparse approximations. In a second part, we
described an a posteriori analysis to estimate atom-centered Gaussian discretization errors on
linear eigenvalue problems of Schrédinger type, with applications to adaptive Gaussian basis set
refinement.

High-level approach for frozen core interactions. We developed a general framework,
based on the concept of pairwise interaction summations, allowing to represent the frozen core
intermolecular interaction computation problem in an abstract way. We came up with novel
fast summation solutions to this problem. Because we are mainly interested in density fitting
methods, we proposed a high-level presentation of solutions based on projection methods. Our
work also introduces the splitting between offline and online simulation time, applied to our
problem setting, and motivates the interest in performing offline precalculations. In this respect,
we formulate a novel analysis of the density fitting method within the offline-online framework.
The main application of this presentation is the general treatment of molecular conformation
geometries appearing in molecular clusters, which is widely applied to other parts of this thesis.
While the density fitting method is not a new concept, we believe that our contribution made
it not kernel specific anymore, allowing to rely directly on assumptions on the Hilbert space
rather than on the explicit form of the interaction kernel. It has also made it possible to provide
rigorous justification for the possible offline precalculation of density fitting.

Among the perspectives associated to this work, the implementation of a general unified
framework for the design of density approximation methods, with extensions to multipole moment
generation, based on the tools we presented would be a challenging task.

Rigid fragments in frozen core interactions. To minimize the number of pairwise orbital
interactions of a single frozen core intermolecular interaction computation and in order to cover
the case of fragments of rigid intramolecular geometry, we proposed to use a new systematically
generated auxiliary basis set computed once on the local frame, instead of the state-of-the-art
empirical bases, for density fitting. Our method reduces the auxiliary basis size to reach a target
size but requires additional treatment to respect the admissible format of orbitals. To tackle this
issue, we developed a purely algebraic approach for the block treatment of the matrix form of the
set of pairwise products of atomic orbitals. We presented the applications of our method to water
clusters. Using an efficient strategy for the approximation of Gram matrices, we significantly
reduced the complexity of frozen core interaction summations. We provided several ideas to
futher improve our method, such as including midbond centers and imposing maximal orbital
type constraints.
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The basis generation and size reduction approaches are based on quite general ideas and
can be applied to other problems. However, the theoretical scaling of our method is the same
as conventional density fitting. In order to deal with this issue, we proposed a sparsification
technique that is able to further reduce the number of retained orbital pairs within a given
pairwise interaction summation. Our method generalizes the ideas of integral screening for
discarding small integral contributions. Although selecting significant sum contributions under
a prescribed tolerance is not a new idea, our method introduces a novel discrete optimization
framework to construct sparse summations. Concerning the applications of our method, it could
be interesting to investigate efficient sparse integral assembly implementations, in order to benefit
from the gain our method in practice.

The coupling of density fitting with numerical integration methods can become critical to
apply the Gaussian electrostatic model to larger systems. With our results we showed that
our existing implementation, based on direct integral evaluation, is not enough to reduce the
computation time for reasonably large systems of interest. Indeed, the computational and storage
of integrals and intermediary integral computation in recursion formulas become prohibitive.
The use of numerical integral methods may at least limit the impact of intermediary operations
on these two points. Moreover, the loop on fragment pairs plays an important role and density
fitting should be coupled to fast summation methods for practical uses. A future plan is to
incorporate our methods into the GEM_fit code [138], that employs efficient numerical integration
methods enabling the frozen core calculation for large-scale molecular clusters.

Flexible fragments in frozen core interactions. To face up the problem of evaluating
intermolecular interactions in the flexible intramolecular geometry case, we proposed our own
flexible fragment strategy, based on the reduced basis method. We finally proposed a numerical
comparison between our strategy and the two most well-known variants of empirical basis sets and
density fitting methods, exhibiting important performance gains, especially using precalculations.
Moreover, perspectives concerning our work include the further improvement of the reduced
basis method, in order to identify more quantities that admit precalculation or attempt more
efficient snapshot sampling methods, such as the empirical interpolation method [217].

Application of density fitting in force fields. It is interesting to see our frozen core
interaction calculation incorporated into force fields. See Appendix B for more details. To achieve
this, we need to compute electrostatics using multipole expansions or other acceleration methods
based on range separation [84]. We identify several steps that must be studied to this goal. First,
the comparison of existing multipole moment generation methods with the ones based on density
fitting. Then, the accuracy of multipoles needs to be assessed up to quadrupoles. To this end,
one can first obtain auxiliary basis sets using our Algorithm 1 imposing an additional maximal
orbital type restriction. Aspects to be investigated include the convergence of the multipole
expansion, the radius of convergence and the impact of the choice of centers.

In order to realize this perspective, one needs to implement our density fitting scheme, or
couple our existing dfwpy code, within the GEM_fit code [138] for generating multipole moments
and interfacing with polarizable force fields, namely AMOEBA [320]. This will allow to compute
frozen core interactions based on multipoles, as an alternative to the exact evaluation employed
in the present thesis.

The contributions of the present thesis can be inscribed into a more general framework. In
particular, concerning molecular dynamics simulations, if we wish to use our work to develop
new methods within Tinker-HP [4], one should implement a code for multipole moments (or use
the existing implementation of GEM_fit) and test the applications of our methods for large-scale
molecules.

A posteriori error estimation of atom-centered discretizations. The problem of for-
mulating an a posteriori discretization error analysis for atomic orbital basis sets has been
tackled. This led us to new adaptive refinement strategies that allow to systematically choose
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the atom on which one should add more orbitals, in order to improve the discretization error
of a given atomic orbital basis set. We obtained early promising results in the one-dimensional
case using small systems. These results only concern Hermite basis sets. We thus plan to
investigate the Gaussian-type orbital basis sets, that represent the chemistry setting in real-world
simulations. The difficulty when doing so concerns the recovery of the exact solution to validate
our experiments, taking into consideration that a finite element library for three-dimensional
molecules with more than three atoms is to available, to our knowledge.
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Appendix A

dfwpy: Density Fitting for Water
molecules in Python

The present chapter contains implementation details on our code, named dfwpy, realizing the
density fitting methods proposed in this thesis.

A.1 Algorithmic design

Our code is based on a minimal implementation calling PySCF [312] routines for water dimers
when needed. Although density fitting implementations is not a new thing [138], the novelty of
our code consists in providing routines for the computation of exact frozen core energies obtained
by ab initio densities, for the purpose of error validation of density fitting.

A precomputation strategy is used in our code, in order to reduce simulation time, following
Section 2.2.1.2. In this respect, the computation is divided into two stages: the offline and the
online one. The offline one consists in defining the molecules on which one can obtain the density
matrix (using DFT/B3LYP) and the auxiliary coefficients. The online stage includes frozen core
energy computations.

Frozen core energy computation optimization was not a priority at this stage, as most of our
test cases are small- to medium-size molecules (less than 100 atoms) used for testing purposes.
Note that further optimizations need to be taken into account, in order to use our code for larger
systems in practical applications. Overall, it is important to note that no optimization of the
code was performed at this time and that the density fitting core program was initially designed
for energy decomposition and not for force field calculations [83]. An alternative is GEM_fit
which targets larger systems, by improving the complexity based on multipole expansions for the
Coulomb term, in addition to density fitting.

A.2 Linear algebra

The reference implementation is the dpstrf pivoted Cholesky factorization routine [214] im-
plemented in LAPACK [7] using level 3 BLAS. The default threshold used in pivoted Cholesky
decomposition is 10714, The singular value decomposition (SVD) of matrices is taken from
numpy package.

A.3 Water fragments

For any fragment, we read the coordinates, then we define the local frame. By convention,
we chose the frame presented in Figure A.1. Then between two local frames we can find
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Figure A.1: Local 3D coordinate system defined on water. The z-axis passes from the center of
the bond H;H,. The y-axis is co-planar to the molecule and perperdicular to the first axis. The
z-axis is perpendicular to the other two.

the rotation matrix around the origin that aligns the three vectors defining the axis, using
scipy.spatial.transform.Rotation.align_vectors. This gives us a rotation matrix between
the local frame and the position of the fragment in the global frame.

A.3.1 Local to global transformation

We implemented the L2G transformation using the Wigner matrices [292] obtained from PySCF.
In practice, any coefficient computed in the frozen library should be expressed in the global frame
using Wigner matrices. PySCF allows to generate the Wigner matrix associated to a given AO
basis from a rotation matrix applied to the atomic positions of its centers. This rotation matrix
in particular maps the local frame to the global one. Let us denote the Wigner transformation
by U. Then the global density matrix can be written as D = UTDU, where D is the density
matrix belonging to the frozen library expressed in the local frame. The auxiliary coeflicients
on the global frame are similarly expressed as ¢ = cU, where c are the auxiliary coefficients on
the local frame. Note that the Euclidean rotation, mapping the local to the global frame and
denoted by Q, is theoretically an orthogonal matrix. In practice, however, round-off errors are
observed, of the order of 1079, on individual entries of QT Q — I. This numerical error comes
from computing the transformations that align vectors in R3.

A.4 Molecular integrals

The results are obtained with our implementation in Python. Our code interfaces with PySCF
for QM calculations and molecular integrals. PySCF integrals and Wigner are on AQO basis sets
in spherical form. AIl AO basis sets are contracted when computing the density matrix. All
auxiliary basis sets contain primitive functions only.

All molecular integrals are evaluated using Libcint [310]. We used the latest versi