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Adieu, Pannychis;
mais ne crois pas que nous échapperons l’un à l’autre. J’ai vou-
lu asservir le monde à ma raison et, dans cet antre humide, je
me suis heurté a toi. Toi, le monde, tu essayais de le soumettre
à l’empire de ton immagination. Et ainsi en ira-t-il pour tous les
temps à venir; deux camps adverses se feront face. Les uns verront
dans le monde un système, un ordre, alors qu’aux autres, il appa-
raîtra comme un monstre. Les premiers diront qu’il faut remettre
le monde en cause et affirmeront qu’il est possible de le modeler
comme une pierre en la taillant. Quant aux seconds, convaincus
que le monde se modifie de lui-même dans toute son opacité, tel un
monstre changeant sans cesse d’allure, ils l’accepteront tel quel :
pour eux, on ne peut remettre le monde en cause que dans l’infime
mesure où la couche extrêmement fine de l’entendement a un pou-
voir sur les prodigieuses forces tectoniques des instincts humains.
Alors que le camp des uns se verra reprocher son pessimisme par
les autres, ceux-là passeront pour se nourrir d’utopies aux yeux
de ceux-ci. L’Histoire obéit à certaines lois, affirmera-t-on ici, à
quoi d’autres répondront que ces lois ne sont que les produits de
l’esprit des hommes. Notre conflit, Pannychis, celui qui oppose le
devin à la Pythie, s’enflammera dans tous les domaines, mais il
est encore chargé d’émotions et peu réfléchi; pourtant, voilà déjà
que l’on construit un théâtre et qu’à Athènes, un écrivain inconnu
compose une tragédie d’Œdipe. Cependant, Athènes est une ville
de province et Sophocle tombera dans l’oubli, alors que l’histoire
d’Œdipe subsistera et nous posera des énigmes.
Maintenant, à quelle force Œdipe doit-il son sort ? Aux dieux? Ou
bien lui a-t-il été infligé pour avoir transgressé certaines lois qui
constituaient le socle de la société d’alors — ce que j’ai voulu l’em-
pêcher de faire en dictant mon oracle? Ou Œdipe aurait-il encore
été victime d’un hasard conjuré par les caprices de tes vaticina-
tions?

Friederich Dürrenmatt
La mort de la Pythie, 1976

iii





TABLE OF CONTENTS

Introduction (Français) 1

Introduction (English) 7

1 Ocean General Circulation Models 13
1.1 Fundamental equations of fluid mechanics . . . . . . . . . . . . . . . . . . 13
1.2 Oceanic General Circulation Models . . . . . . . . . . . . . . . . . . . . . . 20
1.3 Density variation and Boussinesq approximation . . . . . . . . . . . . . . . 24
1.4 Sub-Grid Scales modelling (SGS) . . . . . . . . . . . . . . . . . . . . . . . 26
1.5 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.6 Surface pressure and external gravity waves . . . . . . . . . . . . . . . . . 29

2 Location uncertainty principle 35
2.1 Location uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2 Stochastic transport theorem . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.3 Stochastic transport operator . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3.1 Relation with the material derivative . . . . . . . . . . . . . . . . . 43
2.3.2 Distributivity of the stochastic transport operator . . . . . . . . . . 44
2.3.3 Non-dimensional transport operator . . . . . . . . . . . . . . . . . . 44

2.4 Conservation statements under location uncertainty . . . . . . . . . . . . . 47
2.4.1 Conservation of mass . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.4.2 Conservation of extensive tracers . . . . . . . . . . . . . . . . . . . 48
2.4.3 Conservation of momentum . . . . . . . . . . . . . . . . . . . . . . 49
2.4.4 Conservation of energy . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.5 Stochastic Navier-Stokes equations (SNS) . . . . . . . . . . . . . . . . . . . 52
2.6 Stochastic Boussinesq equations . . . . . . . . . . . . . . . . . . . . . . . . 55
2.7 Stochastic geophysical flows . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.7.1 Stochastic hydrostatic primitive equations . . . . . . . . . . . . . . 62
2.8 Stochastic shallow water equations . . . . . . . . . . . . . . . . . . . . . . 64
2.9 Detailed proofs of the previous statements . . . . . . . . . . . . . . . . . . 69

v



TABLE OF CONTENTS

2.9.1 Proof of stochastic transport theorem . . . . . . . . . . . . . . . . . 72
2.9.2 Transport of the Jacobian . . . . . . . . . . . . . . . . . . . . . . . 76
2.9.3 Proof of distributivity of the stochastic transport operator . . . . . 77
2.9.4 Stochastic transport theorem in advection form for an extensive tracer 78
2.9.5 Quadratic variation of pressure gradient . . . . . . . . . . . . . . . 81
2.9.6 Stochastic non inertial acceleration . . . . . . . . . . . . . . . . . . 81

3 Noise modelling 83
3.1 Data filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.2 On the vertical structure of the noise . . . . . . . . . . . . . . . . . . . . . 85
3.3 Offline data filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.4 Data decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.5 Proper orthogonal decomposition (POD) . . . . . . . . . . . . . . . . . . . 89

3.5.1 Mathematical formulation . . . . . . . . . . . . . . . . . . . . . . . 90
3.5.2 Properties of the decomposition . . . . . . . . . . . . . . . . . . . . 91
3.5.3 Algorithmic approach . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.5.4 Noise ansatz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.6 Dynamical mode decomposition (DMD) . . . . . . . . . . . . . . . . . . . 94
3.6.1 Algorithmic approach . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.6.2 Modes splitting (correlated vs. uncorrelated) . . . . . . . . . . . . . 96
3.6.3 Oblique projection onto of the modes . . . . . . . . . . . . . . . . . 98
3.6.4 Noise ansatz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.7 Pseudo-observations POD noise (PSO) . . . . . . . . . . . . . . . . . . . . 99
3.7.1 Noise ansatz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.8 Wavelet based noise (WLT) . . . . . . . . . . . . . . . . . . . . . . . . . . 101
3.8.1 Mathematical formulation of discrete wavelet transform (Multires-

olution analysis) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
3.8.2 Algorithmic approach . . . . . . . . . . . . . . . . . . . . . . . . . . 106
3.8.3 Noise ansatz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3.9 Vertical profile prescription noise (VPP) . . . . . . . . . . . . . . . . . . . 110
3.10 Isopycnal projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4 L’ocean de bon secours 113
4.1 Analysis of the deterministic experiments . . . . . . . . . . . . . . . . . . . 117
4.2 Stochastic modelling of the eddy-permitting resolution double gyre . . . . 119

vi



TABLE OF CONTENTS

4.2.1 Averaged total and turbulent kinetic energy . . . . . . . . . . . . . 121
4.2.2 Energy spatial power spectrum density . . . . . . . . . . . . . . . . 123
4.2.3 Energy vs time behaviour . . . . . . . . . . . . . . . . . . . . . . . 127
4.2.4 Temporal power spectrum density . . . . . . . . . . . . . . . . . . . 129
4.2.5 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.3 Stochastic modelling of the eddy-resolving resolution double gyre . . . . . 133
4.3.1 Energy temporal power spectrum density . . . . . . . . . . . . . . . 135

4.4 Stress testing: extreme noise . . . . . . . . . . . . . . . . . . . . . . . . . . 136

A Nucleus for European Modelling of the Ocean 146
A.1 “Blue ocean” engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
A.2 NEMO LU implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 149
A.3 Stochastic advection discretization . . . . . . . . . . . . . . . . . . . . . . 152
A.4 Stochastic diffusion discretization . . . . . . . . . . . . . . . . . . . . . . . 153
A.5 Projection on isopycnals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
A.6 Stochastic pressure discretization . . . . . . . . . . . . . . . . . . . . . . . 156
A.7 Coriolis contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
A.8 Timestepping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Bibliography 159

vii





GENERAL INTRODUCTION

Context and motivation

The global climate strongly depends on the Ocean’s state. The interaction with the
Atmosphere, in the form of mutual energy fluxes exchanges and heat redistribution, plays
a crucial role in the climate regulation. The understanding of the current state of the
global Ocean has greatly increased with the aid of observations and measurements, but
numerical simulations remain the only way to forecast the system and assess future states.
This is fundamental for predicting meteorological or climatological related hazards. The
primary tool for the investigation of the Ocean and the Atmosphere are large-scale simula-
tions, while high resolution simulations remains confined to small geographical domains or
short integration periods. The complex interdependence of mesoscale and sub-mesoscale
dynamics is, however, lost in simulations that do not resolve scales below the Rossby
radius of deformation, and thus must be parametrised. Most of the challenges of fluid
dynamics (in all its connotations) arise from the representation of these effects with an
efficient closure scheme. A novel research trend involves incorporating perturbations and
noise components into the dynamics. The goal is to enrich the variability and parametrise
sub-grid processes, turbulence, boundary value uncertainty and account for numerical and
discretization errors.

Aim and objectives

This work addresses the benefits of a stochastic framework where the Lagrangian
trajectory is decomposed into a smooth-in-time large scale velocity and a random, fast-
evolving uncorrelated part. This approach, named Location Uncertainty (LU), is built
upon a stochastic version of the Reynolds’ transport theorem that allows to cast the clas-
sical physical conservation and balance statements into a framework handling a scale sep-
aration between fast and slow scales. Ideally, the separation of scales enhances the repre-
sentation of the subgrid processes. This framework has already been tested and was proven
successful in several configurations with different underlying geophysical models. The hy-
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drostatic primitive equations are the main target of this manuscript. Their importance
in the representation fo the ocean is discussed and the application of the LU framework
to these equations is assessed within the community model NEMO (https://www.nemo-
ocean.eu).

Structure of the manuscript

Chapter 1 provides a primer in fluid mechanics, describing the fundamental equations
of mechanics and thermodynamics of a flow. These general equations are then specialised
to the case of an environmental flow and simplified enough to allow the building of an
Oceanic General Circulation Model, aiming at simulating the large scale circulation. The
main equations, variables of interest and critical points of an OGCM are presented to
provide an overview of the complexity of such tools. Chapter 2 introduces the main frame-
work of this thesis, the Location Uncertainty principle. This framework has been proposed
by Etienne Mémin in 2014 and has already been tested in several reduced model, such
as Surface Quasi-Geostrophic equations (SQG), Quasi-Geostrophic equations (QG) and
Rotating Shallow-Waters (RSW). The development followed in the exposition aims at
introducing all the models that must be considered in the development of a stochastic
ocean general circulation model. Chapter 3 describes the different models that have been
adopted to generate the noise for the stochastic parametrization proposed in the Location
Uncertainty framework. Finally, chapter 4 summarizes the numerical results obtained with
the location uncertainty framework implemented in the state of the art OGCM NEMO.

x



INTRODUCTION (FRANÇAIS)

Le climat, la météo et l’océan (avec ses mers marginales) sont les trois acteurs qui ont
joué le plus grand rôle dans l’évolution de l’humanité telle que nous la connaissons. Les
établissements humains, migrations et les découvertes ont souvent été motivées par un fac-
teur climatique ou météorologique. Les événements cataclysmiques et leurs conséquences
sur les mers ont façonné les récits épiques et les croyances religieuses. Les interactions avec
la mer et l’océan ont caractérisé la société, à tel point que les rituels apotropaïques im-
pliquant la mer sont encore présents dans de nombreuses cultures. En outre, l’importance
de l’océan a été légalement reconnue par la Convention des Nations Unies sur le droit
de la mer de 1982, qui établit que la gestion rationnelle des ressources marines et leur
conservation pour les générations futures sont primordiales. Dans l’ombre du changement
climatique, les sciences de l’atmosphère, du climat et de l’océan sont fondamentales pour
donner un aperçu de ce que l’avenir peut nous réserver, les prévisions météorologiques,
océaniques et climatiques numériques constituant une base solide pour l’évaluation des
risques à court et moyen terme et la discussion sur les politiques d’atténuation.

Les prévisions météorologiques ont longtemps été basées sur les connaissances et
l’expérience des prévisionnistes plutôt que sur une application rigoureuse de la théorie des
systèmes dynamiques (voir par exemple Smagorjnsky, 1983). Selon Kalnay (2012), la pre-
mière intuition dans le développement de la prévision météorologique numérique fut celle
du physicien norvégien V. Bjerknes en 1904, qui reconnut que l’état futur de l’atmosphère
est, en principe, complètement déterminé par son état initial précis et les conditions aux
limites connues, ainsi que par les équations du mouvement de Newton, l’équation d’état
de Boyle-Charles-Dalton, l’équation de continuité de la masse et l’équation de l’énergie
thermodynamique. La première tentative d’évaluation de l’évolution météorologique fut
réalisée par Lewis Fry Richardson en 1922, en intégrant manuellement les équations
d’évolution avec un pas de temps de 6 heures. L’échec de ce projet est lié à l’état de
l’art qui prévalait à l’époque : c’est-à-dire, d’une part, il était impossible ou improb-
able de recruter les 64 000 personnes estimées nécessaires pour atteindre les résultats
souhaités. D’autre part, la condition de Courant-Lewy-Friedrich pour la stabilité des sys-
tèmes hyperboliques n’avait pas encore fait son apparition. En fait, ce n’est qu’en 1928
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Introduction

que Courant-Lewy-Friedrich proposeront cette théorie (Lewy et al., 1928). Alors que les
tentatives de prévisions météorologiques numériques ont repris à la fin des années 40 et
au début des années 50 avec les travaux fondamentaux de von Neumann et de G. Charney
(voir, par exemple, Charney, 1951). Ces intuitions réussies sur la possibilité de prévoir le
temps ont ensuite été appliquées à d’autres fluides géophysiques, tels que l’océan. Dans ce
contexte, les travaux de Bryan (Bryan, 1967) apparaissent comme la première tentative
de simulation de l’état de l’océan. Le premier modèle de circulation générale de l’océan
avec des géométries réalistes fut proposé par Bryan and Cox en 1968 (Bryan and Cox,
1968). Ce travail a ouvert la voie à ce qui est aujourd’hui l’un des principaux paradigmes
en océanographie, le modèle Bryan-Cox-Semtner (Semtner et al., 1988; Dukowicz et al.,
1994; S. M. Griffies, Böning, et al., 2000; Murray et al., 2001). Les premières tentatives
de couplage des modèles atmosphériques et océaniques furent entreprises par Manabe
et al. (1969) établissant le paradigme des modèles de systèmes terrestres couplés. Malgré
cet intérêt soutenu et toujours croissant pour le développement d’outils de modélisation
des océans et du climat, ainsi que l’augmentation des capacités de calcul, un problème
fondamental demeure : les équations fondamentales de la mécanique des fluides présentent
un vaste ensemble d’interactions qui sont par nature impossibles à capturer complètement
avec des simulations. Les équations de mouvement d’un fluide (voir le Chapitre 1 de cette
thèse) suivent une structure non-linéaire qui peut être étudiée dans un premier temps à
travers une simple équation d’advection:

∂u

∂t
+ u

∂u

∂x
= 0. (1)

Si l’on attribue à cette équation une condition initiale analytique telle que u (x, t0) =
A cos (kx), on peut déduire, par expansion de Taylor, l’état du système proche de l’état
initial t = t0. Ou bien,

u (x, t) = u (x, t0) + (t− t0)
∂u (x, t0)

∂t
+ O (∆t)

= A cos (kx) − (t− t0)u
∂u (x, t0)

∂x
+ O (∆t)

= A cos (kx) − (t− t0)
A2k

2 sin (2kx) + O (∆t) .

Dans la dernière ligne, on remarque que la solution a une fréquence harmonique de 2k,
deux fois plus élevée que celle de la condition initiale. Un mécanisme de transfert de la
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grande échelle à la petite échelle est donc encodé dans le terme non linéaire, qui créera des
échelles de plus en plus petites à mesure que le mouvement persiste. Des résultats sim-
ilaires s’appliquent aux mouvements bidimensionnels ou tridimensionnels (Bailly et al.,
2015). Cette cascade d’énergie et d’échelle se termine à une échelle spécifique, l’échelle de
dissipation de Kolmogorov (Kolmogorov, 1941), où la friction moléculaire arrête le mou-
vement, convertissant l’énergie cinétique en énergie thermique par le biais de la chaleur de
Joule. Toute résolution numérique visant à être pleinement représentative de l’écoulement
doit être effectuée jusqu’à l’échelle de Kolmogorov, de l’ordre de 10−6m. La réalisation de
cette tâche pour un écoulement fluide avec un nombre de Reynolds Re donné nécessite
(dans un cadre très optimisé) la capacité de gérer N3 > Re9/4 points de collocation spati-
aux (Bailly et al., 2015). En plus de cette limitation inhérente de la résolution, une autre
limitation “structurelle” est présente dans les modèles de circulation générale océanique
(en anglais, ocean general circulation model ou OGCM). La résolution numérique d’une
équation aux dérivées partielles commence toujours par la discrétisation des fonctions
inconnues, la discrétisation de l’opérateur différentiel ou une combinaison des deux. Les
méthodes spatiales de Galerkine sont un exemple de la première approche, où la fonc-
tion inconnue est représentée comme une combinaison de fonctions continues par parties
d’un certain ordre (Zienkiewicz et al., 2013). Les méthodes des différences finies sont un
exemple de la seconde approche, où l’opérateur différentiel continu est remplacé par un
opérateur discret opérant sur un ensemble de points discrets. Les deux approches sont sou-
vent combinées, par exemple la progression temporelle d’une méthode Galerkine spatiale
avec un schéma de différence finie dans le temps. Les approximations par différences finies
des opérateurs différentiels continus sont généralement basées sur l’expansion de Taylor et
leur degré de précision dépend de la troncature adoptée. Il s’ensuit qu’une augmentation
de la résolution du modèle discret augmente également la fidélité de l’opérateur discret.
Une tentative naïve de s’attaquer au problème consisterait à d’espérer l’augmentation des
ressources informatiques, afin de permettre des calculs de plus en plus importants. Cette
tâche n’est toutefois pas envisageable dans un avenir proche : la plus petite échelle de
temps dans l’océan peut être considérée comme 1s, tandis que les plus petites échelles
spatiales peuvent être considérées comme 10−3m. Une simulation climatique (d’une durée
∼ 1000y) de l’océan nécessiterait ∼ 1027 cellules de grille (S. M. Griffies and Treguier,
2013). De plus, même si la troncature est adoptée à une certaine échelle, comme celle
donnée par le rayon de déformation de Rossby (aussi appelée méso-échelle), la prise de
conscience de l’importance de la dynamique sous-méso-échelle pour les flux océaniques
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Introduction

est bien documentée par une série de publications récentes (Capet et al., 2008; Callies
et al., 2015; Lévy, Klein, et al., 2010; McWilliams, 2016). Ces tourbillon des sous-méso-
échelles, typiquement de l’ordre de O(1) à O(10) kms, ont été observgiés comme jouant un
rôle vital dans le soutien des courants énergétiques à méso-échelle qui sont d’un ordre de
grandeur plus grand à l’échelle – O(100) km. Ils jouent également un rôle essentiel dans la
caractérisation de la circulation océanique à grande échelle, le mélange des traceurs dans
les couches supérieures de l’océan et la cascade énergétique (Capet et al., 2008). Leur
présence est observée par des mesures de terrain satellitaires (Durand et al., 2010) et leur
importance est soulignée par des études numériques (Callies et al., 2015; Della Penna
et al., 2019). Leur contribution aux échanges biogéochimiques de matière dans l’océan est
mise en avant dans les travaux de Capet et al. (2008) et Lévy, Iovino, et al. (2012). La
résolution explicite de ces courants à sous-méso-échelle dans les simulations numériques
est un défi informatique qui nécessite des résolutions plus petites que le plus petit tour-
billons à résoudre (B. Fox-Kemper et al., 2019). Cela nécessite des dimensions de grille
inférieures à 1 km, par rapport aux dimensions de grille de 10 à 100 km généralement
utilisées dans les modèles de circulation générale des océans. Il est intéressant de noter
que la résolution explicite des tourbillons à sous-méso-échelle est possible dans des scé-
narios limités dans lesquels il a été démontré qu’ils avaient un impact significatif sur les
caractéristiques de l’écoulement (Lévy, Klein, et al., 2010; Hurlburt et al., 2000; Siegel
et al., 2001). La modélisation à haute résolution nécessite cependant des considérations
plus fines pour les méthodes numériques employées, posant de nouveaux défis aux mod-
èles océaniques. L’extension du spectre d’application de ce type de modèle, initialement
développé pour des configurations basse résolution à grande échelle, pose de nouveaux
défis de nature numérique et physique (S. M. Griffies and Treguier, 2013) et nécessite la
représentation précise d’un spectre d’énergie plus large (Lemarié et al., 2015). Une façon
de résoudre ce problème est de recourir à des techniques d’imbrication, où une grille à
résolution relativement grossière couvre l’ensemble du domaine de calcul et est affinée
localement dans les zones d’intérêt telles que les côtes, les détroits ou les zones d’activité
intense connues. Cette approche multi-résolution est suffisamment avancée/solide (Debreu
and Blayo, 2008; Debreu, Marchesiello, et al., 2012) pour être utilisée afin d’atteindre lo-
calement des résolutions raffiné qui résolvent les sous-méso-échelles (Marchesiello et al.,
2011). Des stratégies multi-résolution et multi-grille sont employées pour comprendre la
dynamique des traceurs passifs (Jouini et al., 2013; Bricaud et al., 2020). Plusieurs mod-
èles de circulation générale mettent aujourd’hui en œuvre la stratégie bien connue de
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raffinement adaptatif des grilles de l’AGRIF (Debreu and Blayo, 2002) (voir par exemple
Madec et al., 2019; Auclair et al., 2022). Lorsque la résolution augmente, un traitement
plus adéquat du transfert d’énergie entre les échelles résolues et non résolues est néces-
saire (Sanderson, 1998; Thuburn et al., 2014), tandis que le mélange dianeutre fallacieux
reste un aspect complexe en présence de tourbillons à méso-échelle (Ilıcak et al., 2012).
Malgré les nouveaux défis posés par une numérisation plus sophistiquée pour un modèle à
haute résolution, les modèles côtiers sont des outils de recherche très répandus. Ces codes
diffèrent si fortement des modèles à grande échelle que leur mise en œuvre est souvent une
variante autonome d’un modèle de circulation générale (voir par exemple les différences
entre CROCO et ROMS) soit un projet complètement indépendant (voir par exemple
Delft3D, MARS Lazure et al., 2008) avec des approches éventuellement complètement
différentes (Defina, 2007). Le développement de ces outils est principalement motivé par la
nécessité de préserver les communautés côtières. Il n’est donc pas rare de voir ces modèles
employés dans des études d’influence de la marée pour évaluer l’éventuel risque combiné
de marée et de surcote (Dumas et al., 2012; Idier et al., 2012) là où les marées jouent un
rôle important (par exemple dans la Manche) ou là où les ondes de tempête sont parti-
culièrement fréquentes (par exemple dans le nord de l’Adriatique 1 , cf. Mel et al., 2013;
De Zolt et al., 2006). L’introduction d’un forçage stochastique constitue une alternative
intéressante pour modéliser les contributions des tourbillons. Par exemple, Porta Mana
et al. (2014) ont appliqué une paramétrisation stochastique des tourbillons à méso-échelle
basé sur des variables résolues pour une configuration quasi-géostrophique de double-gyre
avec des résultats encourageants. Franzke et al. (2005) proposent un cadre stochastique
différent pour un modèle barotrope réaliste en définissant des modèles d’ordre réduit.
Un modèle de fermeture stochastique non linéaire et semi-analytique a été proposé par
Grooms and A. J. Majda (2013) dans le cadre de la super paramétrisation de Grabowski
et al. (1999). Cependant, les travaux de Berloff (2005) suggèrent qu’un forçage aléatoire
ne rend pas toujours compte de toutes les interactions non linéaires fondamentalement
importantes aux échelles résolues. En outre, ces forçages aléatoires ne sont pas contraints
par des invariants physiques et ne sont par conséquent pas toujours physiquement perti-
nents. Dans cette optique, deux méthodologies complémentaires ont été introduites par
Mémin (2014) et Holm (2015), fournissant une méthodologie rigoureusement justifiée pour
définir des représentations stochastiques à grande échelle des équations de Navier-Stokes

1. Le lecteur à l’aise avec un livre en italien pourrait être intéressé par “Un giorno, ospite inatteso,
arrivò l’alluvione” du professeur émérite Luigi D’Alpaos, qui décrit deux inondations extrêmes dans le
nord de l’Adriatique et leur impact sur les communautés.
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(Debussche et al., 2023) conservant l’énergie et la circulation, respectivement. Ces deux
modèles reposent sur une décomposition stochastique de la trajectoire lagrangienne en une
composante lisse dans le temps induite par la vitesse à grande échelle et un bruit aléatoire
de déplacement en évolution rapide non corrélé. Le contexte théorique solide permet de
définir une représentation à grande échelle avec une composante stochastique représentant
la contribution sous-grille, introduisant des degrés de liberté supplémentaires à exploiter
dans la modélisation de phénomènes spécifiques, tels que les composantes à grande échelle
(Tucciarone et al., 2022; Tucciarone et al., 2023), la turbulence à petite échelle (Harouna
et al., 2017; Chandramouli, Mémin, and Heitz, 2020), les effets de couche limite (Pinier
et al., 2019), les processus de convection (Jamet et al., 2023) ou pour concevoir des mod-
èles intermédiaires (Harouna et al., 2017; Chapron et al., 2018; Pinier et al., 2019; Bauer
et al., 2020a; Cintolesi et al., 2020a). Le modèle Location Uncertainty (LU) (Mémin,
2014) a été appliqué au modèle quasi-géostrophique barotrope (Bauer et al., 2020a; Bauer
et al., 2020b), au modèle quasi-géostrophique barocline (Li, Deremble, et al., 2023) au
modèle d’eau peu profonde (Brecht et al., 2021), au modèle quasi-géostrophique de sur-
face (Resseguier, Li, et al., 2021), aux équations primitives hydrostatiques (Tucciarone
et al., 2022; Tucciarone et al., 2023) et a récemment été formulé pour les équations de
Boussinesq non hydrostatiques (Tissot, Mémin, et al., 2023), prouvant son efficacité pour
structurer l’écoulement à grande échelle (Bauer et al., 2020a), reproduire les statistiques à
long terme (Bauer et al., 2020b) et pour fournir un bon compromis entre la représentation
de l’erreur du modèle et la propagation de l’ensemble (Resseguier, Li, et al., 2021; Brecht
et al., 2021). Dans ce travail, le cadre stochastique physiquement cohérent de Location
Uncertainty (Mémin, 2014; Resseguier, Mémin, and Chapron, 2017a) est appliqué à une
configuration idéalisée/optimisée de double-gyre en 3D en utilisant un modèle piloté par
les données pour le bruit afin de caractériser les contributions tourbillonnaires non ré-
solues. Le double-gyre est une configuration idéale pour cette étude car elle montre des
variations significatives dans les statistiques d’écoulement, même dans les champs moyens,
lorsque la résolution horizontale passe d’une résolution tourbillonnaire à une résolution
sous-méso-échelle (Lévy, Klein, et al., 2010).
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INTRODUCTION (ENGLISH)

The Climate, the Weather and the Ocean (with its marginal seas) are the three players
that have taken the biggest role in shaping human evolution as we know it. Human settle-
ments, migrations and discoveries have often been driven by a climatic or meteorological
forcing. Cataclysmic events and their consequences on the seas shaped epic narrations and
religious faiths. The interaction with the sea and the ocean has been characterising the
society so much so that apotropaic rituals involving the sea are still present in many cul-
tures. Moreover, the importance of the ocean was legally recognised with the 1982 United
Nations Convention on the Law of the Sea, establishing that the rational management
of marine resources and their conservation for future generations is paramount. In the
shadow cast by climate change, atmospheric, climate and ocean sciences are fundamen-
tal to offer insights into what the future may awaits us, with numerical weather, ocean
and climate prediction as solid basis for short and medium term risk assessment and for
discussions on mitigation policies discussion.

Weather prediction has been for a long time based on the knowledge and experience
of the forecaster rather than a rigorous application of dynamical system theory (see e.g.
Smagorjnsky, 1983). According to Kalnay (2012), the first intuition in the development of
numerical weather prediction was by Norwegian physicist V. Bjerknes in 1904, who recog-
nized that the future state of the atmosphere is, in principle, completely determined by its
detailed initial state and known boundary conditions, together with Newton’s equations
of motion, the Boyle–Charles–Dalton equation of state, the equation of mass continuity,
and the thermodynamic energy equation. The first attempt at evaluating the weather
evolution was performed by Lewis Fry Richardson in 1922, integrating by hand the evo-
lution equations with a time step of 6-hours. The failure of this project was related to the
state of the art prevalent in those years: that is, on the one hand, the estimated 64000
workforce people anticipated to achieve the desired results were impossible/unlikely to
be recruited. On the other hand, Courant-Levy-Friedrich’s condition for stability of hy-
perbolic systems had yet to make an appearance. In fact, it was not before 1928 that
Courant-Lewy-Friedrich would propose the theory (Lewy et al., 1928). Whereas attempts
in numerical weather predictions would restart in the late 40s and early 50s with the sem-
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inal work of von Neumann and G. Charney (see e.g. Charney, 1951). Subsequently, these
successful intuitions about the possibility of forecasting the Weather were applied to other
geophysical fluids, such as the Ocean. In this context, the work of Bryan (Bryan, 1967)
emerges as the first attempt at simulating the ocean state. The first ocean general circu-
lation model with realistic geometries was proposed by Bryan and Cox in 1968 (Bryan
and Cox, 1968). This work paved the way for what is today one of the main paradigms
in oceanography, the Bryan-Cox-Semtner model (Semtner et al., 1988; Dukowicz et al.,
1994; S. M. Griffies, Böning, et al., 2000; Murray et al., 2001). The first attempts at
coupling atmosphere and ocean models were undertaken by Manabe et al. (1969), whose
work established the paradigm of coupled Earth systems model. Despite this long last-
ing and continuously growing interest in developing ocean and climate modelling tools,
combined with the growing computing capabilities, one fundamental problem remains:
the fundamental equations of fluid mechanics present a vast set of interactions that are
inherently impossible to fully capture with simulations. A simple mathematical argument
is here proposed to describe this problem, and can be summarised with Carl Wunsch’s
statement “no model has a perfect resolution” (Wunsch, 2015). The equations of motion
of a fluid (see Chapter 1 of this thesis) follow a non-linear structure that can be at first
studied through a simple advection equation:

∂u

∂t
+ u

∂u

∂x
= 0. (2)

If this equation is assigned an analytical initial condition such as u (x, t0) = A cos (kx),
then by Taylor expansion one can infer the state of the system close to the initial state
t = t0, that is

u (x, t) = u (x, t0) + (t− t0)
∂u (x, t0)

∂t
+ O (∆t)

= A cos (kx) − (t− t0)u
∂u (x, t0)

∂x
+ O (∆t)

= A cos (kx) − (t− t0)
A2k

2 sin (2kx) + O (∆t) .

In the last line is noticeable that the solution has a harmonic frequency 2k, twice that of
the initial condition. A transfer mechanism from large scale to small scale is thus encoded
in the nonlinear term, that will create smaller and smaller scales as the motion persists.
Similar results hold for two or three dimensional motion (Bailly et al., 2015). This energy
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and scale cascade ends at a specific scale, the Kolmogorov dissipation scale (Kolmogorov,
1941), where molecular friction stops the motion, converting kinetic energy into thermal
energy through Joule’s heating. Any numerical resolution that aims at being fully rep-
resentative of the flow has to be performed up to the Kolmogorov scale, on the order of
10−6m. Achieving this task for a fluid flow with a given Reynolds number Re requires (in
very idealised setting) the capability of handling N3 > Re9/4 spatial collocation points
(Bailly et al., 2015). In addition to this intrinsic limitation on the resolution, another
"structural" limitation is present in OGCMs. Numerical resolution of a partial differential
equations always starts with the discretization of the unknwown functions, the discretiza-
tion of the differential operator or a combination of the two. Spatial Galerkin methods are
an example of the former approach, where the unknown function is represented as a com-
bination of piecewise continuous functions of some order (Zienkiewicz et al., 2013). Finite
differences methods are instead an example of the latter, where the continuous differential
operator is replaced by a discrete operator operating on a set of discrete points. The two
approaches are often combined, e.g. the temporal advance of a spatial Galerkin method
with a finite difference scheme in time. Finite differences approximations of continuous
differential operators are usually based on Taylor expansion and their order of accuracy
depends on the truncation that is adopted. Taking the limit for the discretization step
towards zero, the discrete operator should ideally converge to the continuous one. It is
a natural conclusion that increasing the resolution of the discrete model should increase
the fidelity of the discrete operator. A naive attempt to tackle the problem would be that
of hoping in the increase of computational resources, to afford larger and larger com-
putations. This task is however not possible in the next foreseeable future: the smallest
time scale in the Ocean can be regarded as 1s, while the smallest spatial scales can be
considered as 10−3m. A climatic simulation (of duration ∼ 1000y) of the ocean would
require ∼ 1027 grid cells (S. M. Griffies and Treguier, 2013). Moreover, even if truncation
is adopted at a certain scale, such as that given by the Rossby radius of deformation (also
called mesoscale), realisation of the importance of sub-mesoscale dynamics for oceanic
flows is well documented by a series of recent publications (Capet et al., 2008; Callies
et al., 2015; Lévy, Klein, et al., 2010; McWilliams, 2016). These sub-mesoscale eddies,
typically of the order of O(1) to O(10) kms, have been observed to play a vital role in
sustaining the energetic mesoscale eddies which are an order of magnitude larger in scale
– O(100) km. They also play a vital role in characterising large-scale oceanic circulation,
tracer mixing in the upper oceans, and in the energy cascade (Capet et al., 2008). Their
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presence is observed through satellite field measurements (Durand et al., 2010) and their
importance highlighted by numerical studies (Callies et al., 2015; Della Penna et al., 2019).
Their contribution to biogeochemical material exchange in the ocean is put forward in the
work of Capet et al. (2008) and Lévy, Iovino, et al. (2012). The explicit resolution of these
sub-mesoscale eddies in numerical simulation is a computational challenge that requires
resolutions smaller than the smallest to-be-resolved eddy (B. Fox-Kemper et al., 2019).
This requires grid-sizes smaller than 1km as compared to the 10-100km grid-size generally
employed in oceanic general circulation models. It is interesting to note that the explicit
resolution of the sub-mesoscale eddies are possible in limited scenarios within which they
were shown to have a significant impact on the flow characteristics (Lévy, Klein, et al.,
2010; Hurlburt et al., 2000; Siegel et al., 2001). High-resolution modelling requires how-
ever finer considerations for the numerical methods employed, posing new challenges to
ocean models. The extension of the range of application of this type of model, originally
developed for low-resolution large-scale configurations, raises some new challenges of nu-
merical and physical nature (S. M. Griffies and Treguier, 2013) and requires the accurate
representation of a wider energy spectrum (Lemarié et al., 2015). One way to address
this conundrum is to provided by nesting techniques, where a relatively coarse resolution
grid covers the entire domain of computation and is locally refined in areas of interest
such as coastlines, straits or areas of known intense activity. This multi-resolution ap-
proach is mature enough (Debreu and Blayo, 2008; Debreu, Marchesiello, et al., 2012) to
be used to locally reach marginal submesoscales resolving resolutions (Marchesiello et al.,
2011). Multiresolution and multigrid strategies are employed to understand the dynam-
ics of passive tracers as well (Jouini et al., 2013; Bricaud et al., 2020). Several general
circulation models today implement the well known adaptive grid refinement strategy of
AGRIF (Debreu and Blayo, 2002) (see e.g. Madec et al., 2019; Auclair et al., 2022). As the
resolution increases, a more adequate treatment of the energy transfer between resolved
and unresolved scales is required (Sanderson, 1998; Thuburn et al., 2014), while spurious
dianeutral mixing remains a challenging aspect in the presence of mesoscale eddies (Ilıcak
et al., 2012). Despite the new challenges of a more sophisticated numerics for a high reso-
lution model, coastal models are widespread tools for research. These codes often differ so
much from large scale models that their implementation is often either a standalone vari-
ant of a general circulation model (see e.g. the differences between CROCO and ROMS)
or a completely independent project (see e.g. Delft3D, MARS Lazure et al., 2008) with
possibly completely different approaches (Defina, 2007). The development of these tools
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is driven primarily by the necessities of preservation of coastal communities. It is thus not
rare to see these models employed in tidal influence studies to assess the possible combined
tidal-surge risk (Dumas et al., 2012; Idier et al., 2012) where tides play an important role
(e.g. in the English Channel) or where storm surge is particularly frequent (e.g. the north-
ern Adriatic 2, cfr Mel et al., 2013; De Zolt et al., 2006). An attractive alternative option
for modelling eddy contributions is through the introduction of stochastic forcing. For in-
stance, Porta Mana et al. (2014) applied a stochastic parametrisation of mesoscale eddies
based on resolved variables for a quasi-geostrophic double-gyre configuration with encour-
aging results. A different stochastic framework for a realistic barotropic model is given by
Franzke et al. (2005) through the definition of reduced order models. A semi-analytical,
non-linear stochastic closure model was proposed by Grooms and A. J. Majda (2013)
under the super parametrisation framework of Grabowski et al. (1999). However, the
work of Berloff (2005) suggests that a random forcing does not always account for all
fundamentally important non-linear interactions at the resolved scales. In addition, these
random forcings are not constrained by physical invariants and thus, may not always be
physically relevant. Along this path, two companion methodologies have been introduced
by Mémin (2014) and Holm (2015), providing rigorously justified methodology to define
stochastic large scales representations of the Navier-Stokes equations (Debussche et al.,
2023) conserving energy and circulation, respectively. These two models rely on a stochas-
tic decomposition of the Lagrangian trajectory into a smooth-in-time component induced
by the large-scale velocity and a random fast-evolving uncorrelated displacement noise.
The solid theoretical background allows the definition of a large-scale representation with
a stochastic component representing the subgrid contribution, introducing additional de-
grees of freedom to be exploited in the modelling of specific phenomena, such as large
scale components (Tucciarone et al., 2022; Tucciarone et al., 2023), small-scale turbulence
(Harouna et al., 2017; Chandramouli, Mémin, and Heitz, 2020), boundary layer effects
(Pinier et al., 2019), convection processes (Jamet et al., 2023) or to devise intermedi-
ate models (Harouna et al., 2017; Chapron et al., 2018; Pinier et al., 2019; Bauer et al.,
2020a; Cintolesi et al., 2020a). The Location Uncertainty (LU) model (Mémin, 2014) has
been applied to the barotropic quasi-geostrophic model (Bauer et al., 2020a; Bauer et al.,
2020b), the baroclinic quasi-geostrophic model (Li, Deremble, et al., 2023), the rotat-
ing shallow water model (Brecht et al., 2021), the surface quasi-geostrophic (Resseguier,

2. The reader comfortable with engaging with a book in Italian might be interested in "Un giorno,
ospite inatteso, arrivò l’alluvione" by Emeritus Professor Luigi D’Alpaos, describing two extreme flooding
events in the Northern Adriatic and their impact on the communities.
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Li, et al., 2021), hydrostatic primitive equations (Tucciarone et al., 2022; Tucciarone et
al., 2023) and recently was formulated for non hydrostatic Boussinesq equations (Tis-
sot, Mémin, et al., 2023), proving its efficacy in structuring the large-scale flow (Bauer
et al., 2020a), reproducing long-term statistics (Bauer et al., 2020b) and providing a good
trade-off between model error representation and ensemble spread (Resseguier, Li, et al.,
2021; Brecht et al., 2021) In this work, the physically consistent stochastic framework of
Location Uncertainty (Mémin, 2014; Resseguier, Mémin, and Chapron, 2017a) is applied
to an idealised 3D double-gyre configuration using a data-driven model for the noise to
characterise unresolved eddy contributions. The double-gyre is an ideal configuration for
this study as it shows significant variation in the flow statistics, even in the mean fields,
when the horizontal resolution is increased from eddy-resolving to sub-mesoscale resolving
(Lévy, Klein, et al., 2010).
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Chapter 1

OCEAN GENERAL CIRCULATION

MODELS

This chapter reviews the fundamental equations of fluid mechanics,
specialised for the case of geophysical flows. The dynamics and
thermodynamics of these flows are not discussed in full details,
as it would go beyond the scope of this introduction, instead the
aspects connected to the design of the so called Oceanic General
Circulation Models (OGCMs) are highlighted. The characteristics
of such models go beyond the sole physics necessary to describe
the processes of ocean circulation, as they are tied to the method
of representing the continuum equation into a discretized set of
equations evolving on a computer model. The intent is to present
the fundamental equations that are solved in a general circulation
model to motivate the exposition of the set of equations presented
in Chapter 2.

Abstract

1.1 Fundamental equations of fluid mechanics

Fluid mechanics, as a branch of continuum mechanics, extends the results of classical
point mechanics to parcels of fluid. These parcel have integral properties expressed in
terms of a density (i.e. the property per unit mass) to be integrated over the volume of
the fluid parcels themselves. This volume of fluid, Vt, is not fixed in space and evolves in
time. Among the most fundamental results of continuum mechanics, Reynolds’ transport
theorem (Batchelor, 2000) provides an explicit formula for the temporal variation of the
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volume Vt
D
Dt

∫
Vt

dx =
∫

Vt

∇ · v dx, (1.1)

with v the vector velocity at which the volume Vt moves, and by extension of the integrated
density

D
Dt

∫
Vt

ϕ dx =
∫

Vt

Dϕ
Dt + ϕ∇ · v dx, (1.2)

with ϕ a general property of the flow per unit mass. It is important to notice that equation
(1.1) is the particular case of the second when the function ϕ is chosen to be the indicator
function. These two equations constitute the grounding of every balance and conserva-
tion statement in fluid mechanics (and continuum mechanics). A conservation statement
imposes that the variation in time of the integrated quantity is zero, such as

∫
Vt

Dϕ
Dt + ϕ∇ · v dx = 0, (1.3)

while a balance statement equates the variation in time of a given integrated quantity to
the external processes that can modify its temporal evolution, namely a flux through the
boundary or a source within the boundary, as

∫
Vt

Dϕ
Dt + ϕ∇ · v dx =

∫
Vt

F ϕ dx. (1.4)

Since the volume Vt can be any generic volume contained in the fluid domain, the localiza-
tion theorem (Kolmogorov et al., 1975) states that the balance must hold for each point
of the domain, hence rendering the local (in an almost everywhere sense) conservation
statement balance as

Dϕ
Dt + ϕ∇ · v = 0, (1.5)

and balance statement as
Dϕ
Dt + ϕ∇ · v = F ϕ. (1.6)

In the previous equation, the temporal variation is

Dϕ
Dt = ∂ϕ

∂t
+ v · ∇ϕ, (1.7)

that is the material derivative, accounting both for local rate of temporal change of the
property ϕ, plus a contribution arising from the spatial variation as experienced as the
parcel of fluid moves with velocity v. The right-hand side is often referred to as the
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1.1. Fundamental equations of fluid mechanics

Eulerian representation of the rate of change, in contrast with the left hand side that is
termed Lagrangian representation.

The fundamental statement of fluid mechanics is conservation 1 of mass. Defining mass
as dM = ρ dV with ρ density of the fluid, one finds

∂ρ

∂t
+ ∇ · (ρv) = 0. (1.8)

In cases where the density is not varying in time nor space, the previous equation becomes
simply ∇·u = 0, which is a statement about the conservation of the volume (isochoricity)
within the flow. This statement could also have been found by defining a conservation
statement starting from the evolution of the volume, equation (1.1). Moreover, conserva-
tion of mass can be used to derive an important variant of Reynolds’ transport theorem
for an extensive quantity ϕ

D
Dt

∫
Vt

ρϕ dx =
∫

Vt

Dρϕ
Dt + ρϕ∇ · v dx

=
∫

Vt

ρ
Dϕ
Dt + ϕ

[
Dρ
Dt + ρ∇ · v

]
dx =

∫
Vt

ρ
Dϕ
Dt dx,

where the interior of the square bracket is equal to zero when mass is conserved.
Newton’s second law of motion states that the momentum of a body changes under

the influence of forces acting on it. For a fluid parcel, these forces can be external (i.e.
body forces) or internal (i.e. surface). The former act through the whole media and in
the specific case of the ocean, they are of gravitational and non-inertial nature. The latter
contact forces, act on the medium through the boundaries of the parcel itself, and in the
context of fluid mechanics these forces are pressure and friction.

The gravitational field is an effective, conservative field that accounts for both the
gravitational attraction and centrifugal effects due to Earth’s rotation (Batchelor, 2000;
Kundu et al., 2015; Vallis, 2017), denoted as Φ. The choice of the form of this gravita-
tional potential, that is often taken as Φ ∼ gz with g constant acceleration of gravity, is
important within the aims of tide modelling (Bennett, 2002). Non inertial forces account
for the effects of the Earth’s rotation, as the observers of the ocean are most likely to be
in this rotating frame. The momentum balance is thus written in the non-inertial frame
and accounts for the Coriolis acceleration that is felt by the water mass, F c = −2Ω × v.

1. Classical mechanics does not involve processes capable of generating or destroying mass, such as in
general relativity.
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The Earth’s rotation vector Ω is directed South to North and the rotation is anticlockwise
when looking towards the North Pole from a higher point of view (with respect to the
direction of Ω). Contact forces are given in their most general formulation as

F s =
∫

∂V
[T (r) − pI] · n dς, (1.9)

where p is the pressure acting on the boundary ∂V of the fluid parcel V in an isotropic
way, while T is the deviatoric stress tensor, the existence of which is postulated and whose
properties (symmetry, trace free, ...) stem from Cauchy’s tetrahedron theorem (Landau
et al., 1987; Batchelor, 2000; Olivella et al., 2000; Cardin et al., 2013). The choice of the
tensor T is fundamental, as it is often the only component of the equation of motion
that accounts for the properties of the fluid considered, as highlighted by the dependence
from a rheologic property r. Eventually, the most fundamental equation, which is the
conservation of linear momentum, can thus be written as

ρ
Dv
Dt − 2Ω × ρv = −ρ∇Φ + ∇ · [T (r) − pI] , (1.10)

where the stress forces F s were manipulated through Green-Gauss theorem to obtain a
volume description. This Euler-Cauchy’s equation of motion, becomes the Navier-Stokes
equation when the stress tensor reflects the behaviour of a Newtonian fluid

T (µ) = −
(2

3µ∇ · v
)

I + µ [∇v + (∇v)T ] , (1.11)

where µ is the dynamic viscosity. The dependence of the momentum tendency on the
pressure carries information on the thermodynamics of the fluid, thus requiring the def-
inition of mechanical energy (as the sum of kinetic and potential) and internal energy,
building up the notion of total energy. The specific kinetic energy (i.e. per unit mass,
K = v2/2) budget can be obtained starting from the momentum equation by taking the
inner product with the velocity itself, so that it reads

ρ
DK
Dt = −ρv · ∇Φ − v · ∇p+ v · ∇ · T (r) , (1.12)

that in his Eulerian form is:

∂ρK

∂t
+ ∇ · (ρvK + vp) = −ρv · ∇Φ + p∇ · v + v · ∇ · T (r) . (1.13)
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1.1. Fundamental equations of fluid mechanics

On the right hand-side there are conversion processes between kinetic energy and other
forms of energy: the first term, −ρv · ∇Φ represents the conversion of kinetic energy into
potential energy, described by a decreasing kinetic energy when the fluid particles moves
to a larger potential state (ρv · ∇Φ > 0); the second term, p∇ · v represents the work
of pressure forces. The potential energy Φ budget can be obtained in its general form by
definition of temporal variation as

DρΦ
Dt = Φ

Dρ
Dt + ρ

DΦ
Dt , (1.14)

leading, after application of conservation of mass, to the gravitational potential energy
budget equation as

∂ρΦ
∂t

+ ∇ · (ρΦ) = ρ
∂Φ
∂t

+ ρv · ∇Φ, (1.15)

where the last term +ρv · ∇Φ represents an increasing gravitational potential energy
when the fluid particle moves up the gradient and constitutes the most important mean
of energy exchange between the two mechanical energy components: kinetic and potential.
The first term, the variation in time of gravitational potential energy, is of paramount
importance in tidal modelling.

Introducing the mechanical energy as the sum of kinetic K and potential Φ one has
the balance of mechanical energy by summing the previous two results:

∂

∂t
[ρ (K + Φ)] + ∇ · [ρv (K + Φ) + vp] = ρ

∂Φ
∂t

+ p∇ · v + v · ∇ · T (r) (1.16)

The specific total energy E is defined as the sum of the contributions of specific kinetic
energy K = v2/2, the specific potential gravitational potential Φ and the specific internal
energy I, that is

E = K + Φ + I, (1.17)

with this last embodying the energy of molecular thermal agitation, averaged over the
number of molecules to yield a continuous quantity. It is a usual assumption that the en-
ergy of a fluid parcel is conserved, meaning that the specific total energy evolves according
to the conservation law

∂ρE

∂t
+ ∇ · J

E
= ρ

∂Φ
∂t
, (1.18)

for some flux of energy J
E

. The previous equation is forced by the temporal variation
of the geopotential, ρ∂tΦ. The flux of energy accounts not only for the aforementioned
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Partie , Chapter 1 – Ocean General Circulation Models

fluxes of mechanical energy JkΦ = ρv (K + Φ) +vp, but also for a heat flux Jq thermally
forcing the system.

The internal energy 2 budget, I, is thus recovered by removing the mechanical energy
budget from the conservation of total energy, yielding

ρ
DI
Dt = −∇ · Jq − p∇ · v − v · ∇ · T (r) . (1.19)

This equation links the variation of internal energy to the heat fluxes Jq forcing the
system, the work of pressure forces associated with compression/dilatation −p∇ · v and
dissipated by frictional stresses. It constitutes the First principle of thermodynamics for
a fluid parcel. Finally, the allowed thermodynamic transformations must be only those
respecting the second principle of thermodynamics. Thus, internal energy must be related
to entropy, and entropy itself must be related to some physically measurable quantity.
Internal energy is thought to be a function of entropy per unit mass ζ, density ρ and
salinity S (more generally, chemical potentials), so that I = I (ζ, ρ, S) and its infinitesimal
variation is

dI = T dζ − p dρ−1 + µs dS (1.20)

with T is the in situ temperature, p pressure and µs the relative chemical potential. If
the process is quasistatic, the previous equation can be written as a time evolution (in
conjunction with mass conservation) as

ρ
DI
Dt = ρT

Dζ
Dt − p∇ · v + µs

DS
Dt , (1.21)

thus connecting internal energy, entropy, pressure and salinity. The evolution of entropy
can be obtained from this equation removing the dependence from internal energy

ρT
Dζ
Dt = −∇ · Jq − v · ∇ · T (r) − ρµs

DS
Dt , (1.22)

exposing the evolution of entropy in the fluid by heat forcing, frictional dissipation that
increases the heat content of the parcel by Joule’s heating and salinity mixing. Moreover,
the isoentropic motion of a water parcel is identified as the adiabatic, frictionless and
isohaline motion. Since entropy is difficult to measure in practice, an evolution equation
for temperature is developed as a useful thermodynamic quantity. Starting from the as-

2. The adjective specific has been discarded from this point on, for the sake of notation.
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1.1. Fundamental equations of fluid mechanics

sumption that entropy depends on pressure, temperature and salinity ζ = ζ (p, T, S), its
infinitesimal variation is

dζ = −α
T

ρ
dp+ CpS

T
dT − ∂µs

∂T
dS, (1.23)

where classical Maxwell’s relations where used to define the thermal expansion coefficient
α

T
, the specific heat at constant pressure and salinity CpS and equivalence between vari-

ation of entropy with respect to salinity and variation of chemical potential with respect
to temperature. Multiplying by ρT and taking the temporal variation leads to

ρCpS
DT
Dt = ρT

Dζ
Dt + Tα

T

Dp
Dt − ρT

∂µs

∂T

DS
Dt . (1.24)

Removing the dependence from the entropy one finalizes the temporal evolution of (in
situ) temperature:

ρCpS
DT
Dt = Tα

T

Dp
Dt + ρ

(
µs − T

∂µs

∂T

)
DS
Dt − ∇ · Jq + v · ∇ · T (r) . (1.25)

This equation exposes that the temperature of the fluid parcel depends on the adiabatic
pressure effects that alters the parcel temperature by expanding or compressing the parcel
itself, material changes in the salinity, heat fluxes through the boundaries and frictional
dissipation causing Joule’s heating.

In addition to this fundamental set of equation, information on the behaviour of the
active chemical species involved in the changes of density are needed. They are usually
modelled with a transport equation with dissipation. Taking Salinity S as a prototype
tracer the equation reads

∂S

∂t
+ ∇ · (ρSv + ρJ

S
) = ρR

S
(1.26)

where J
S

summarizes the diffusive fluxes of molecular nature and R
S

represents the
reaction term, to be interpreted as a source or sink term for the species S. This equation
can be applied as well to all the inactive components mixed in the fluid parcel, that do
not take an active part in the thermodynamics of the system but for which transport and
dispersion is of interest for the modelling of the system. This can include pollutants and
contaminants but as well biological species or biologically impacting chemical species.

19



Partie , Chapter 1 – Ocean General Circulation Models

Conservation of mass: (1.27)
∂ρ

∂t
+ ∇ · (ρv) = 0

Momentum balance: (1.28)

ρ
Dv
Dt − 2Ω × ρv = −ρ∇Φ + ∇ · [T (r) − pI]

Mechanical energy budget: (1.29)
∂

∂t
[ρ (K + Φ)] + ∇ · [ρv (K + Φ) + vp] = ρ

∂Φ
∂t

+ p∇ · v + v · ∇ · T (r)

Internal energy budget (First law of thermodynamics): (1.30)

ρ
DI
Dt = −∇ · Jq − p∇ · v − v · ∇ · T (r)

Conservation of total energy: (1.31)
∂ρE

∂t
+ ∇ · [ρv (K + Φ) + vp+ Jq] = ρ

∂Φ
∂t

Entropy budget (Second law of thermodynamics): (1.32)

ρT
Dζ
Dt = −∇ · Jq − v · ∇ · T (r) − ρµs

DS
Dt

Temperature budget: (1.33)

ρCpS
DT
Dt = Tα

T

Dp
Dt + ρ

(
µs − T

∂µs

∂T

)
DS
Dt − ∇ · Jq + v · ∇ · T (r)

Temperature budget: (1.34)
∂S

∂t
+ ∇ · (ρSv + ρJ

S
) = ρR

S

Equation of state: (1.35)
ρ = ρ (T, S, p) .

Thermo-mechanics of a fluid flow

1.2 Oceanic General Circulation Models

So far the equation that has been presented are approximated only in a minimal sense:
the continuum hypothesis is employed and can be viewed as an approximation of the
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1.2. Oceanic General Circulation Models

discrete matter, the rotation of the Earth is assumed constant and the geometry is assumed
spherical without considering deviations of the geoid from the sphere. These equations
describe the full motion of a thermodynamically active fluid, with temporal scales ranging
from seconds to millennia and spatial scales from the molecular scale (smaller than a
millimetre) to the domain scale. As stated in the introduction of this thesis, this range
is far from approachable with modern day technology or technology in the foreseeable
future. The processes of interest must thus be defined, targeted, and a various techniques
to filter out the non-relevant processes must be adopted. The oceanic general circulation
is defined (see McWilliams, 1996) as the currents on horizontal space scale and time scale
greater than the mesoscale, which for the ocean is of the order of 100km and three months,
with the associated fields of pressure, density, temperature and salinity, plus all the other
elements needed to establish balances between these fields. Ocean modelling (Baylor Fox-
Kemper et al., 2019) is a branch of numerical modeling that focuses on the representation
of the physical mechanisms governing the evolution of ocean physical properties, namely
T , S, u, v, and w, where T is the temperature, S the salinity, and u, v, and w, the
horizontal and vertical components of the velocity u. The pioneering work of Bryan and
Cox (1968) led to the first global solutions obtained by Cox (1975), establishing the
fundamental paradigm for General Circulation Models of the ocean.

The inviscid Navier-Stokes equation, or Euler equation, is obtained from the Navier-
Stokes equation by neglecting the effects of molecular viscosity, thus setting T (µ) = 0,
that is

ρ
Dv
Dt − 2Ω × ρv = −∇p− ρ∇Φ. (1.36)

This latter constitutes the principal model for the motion of a fluid for which viscous
effects can be neglected, that is the case of the Ocean and the Atmosphere. This first
important simplification is motivated by experimental results (Vallis, 2017), as the mag-
nitude of dynamical viscosity of water or air is orders of magnitude smaller than other
players in the equation (such as advection, Coriolis acceleration and pressure gradients).
The fundamental fluid dynamics of the Ocean circulation is thus described by the Eu-
ler equation on the rotating Earth for a compressible fluid, namely seawater, which is
composed of water plus a suite of dissolved salts that occur in nearly constant ratio
but variable amount (Teramoto, 1992), with an empirically determined equation of state
(McDougall et al., 2011). The dominant forces in the ocean are associated with pressure,
Coriolis force and gravity. The thermodynamic of oceanic water is simplified in such a
way that it only accounts for two tracers, which are temperature and salinity, affected
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by circulation, internal sources and sinks but no molecular mixing. These two tracers are
assumed to be conservative (S. Griffies et al., 2008).

Horizontal momentum: (1.37a,b)
Du
Dt −

(
2Ω + u

r cos θ

)
(v sin θ − w cos θ) = − 1

ρr cos θ
∂p

∂λ
Dv
Dt + wv

r
+
(

2Ω + u

r cos θ

)
u sin θ = − 1

ρr

∂p

∂θ

Vertical momentum: (1.38)
Dw
Dt − 2Ωu cos θ − u2 + v2

r
= 1
ρ

∂p

∂r
− g

Temperature and salinity: (1.39a,b)
∂T

∂t
+ 1
r cos θ

∂ (uT )
∂λ

+ 1
r cos θ

∂

∂θ
(vT cos θ) + 1

r2
∂

∂r

(
r2wT

)
= R

T

∂S

∂t
+ 1
r cos θ

∂ (uS)
∂λ

+ 1
r cos θ

∂

∂θ
(vS cos θ) + 1

r2
∂

∂r

(
r2wS

)
= R

S

Mass conservation: (1.40)
∂ρ

∂t
+ 1
r cos θ

∂ (uρ)
∂λ

+ 1
r cos θ

∂

∂θ
(vρ cos θ) + 1

r2
∂

∂r

(
r2wρ

)
= 0

Equation of state: (1.41)
ρ = ρ (T, S, p) .

Euler equations on the sphere

The material derivative in spherical coordinates (and flux form) is given by

Dϕ
Dt = ∂ϕ

∂t
+ 1
r cos θ

∂ (uϕ)
∂λ

+ 1
r cos θ

∂

∂θ
(vϕ cos θ) + 1

r2
∂

∂r

(
r2wϕ

)
. (1.42)

A general circulation model derives from these equations with several further simplifica-
tions. When considering large scale dynamics, the ocean horizontal length scale is much
larger than the vertical length scale 3. Quoting Prof. Robert Higdon: The ocean is shallow,

3. The ISO 216 international standard paper size A4 has dimension of L297 =297mm height
times L210 =210mm width, with a thickness of H =0.065mm (standard 80g/m2), with aspect
ratios L297/H ∼4570 and L210/H ∼3230. The Ocean, with its average depth H =3.7km has
an equator-wise aspect ratio of Leq/H =40075km/3.7km∼10831 and a North-South aspect ratio
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1.2. Oceanic General Circulation Models

your coffee mug is deep. This consideration about the smallness of the aspect ration H/L
is known as the shallow water condition. It has important consequences and it is accurate
in the case of small Rossby and Froude numbers (the former is the ratio between nonlinear
advection and rotation, the latter is a measure of the importance of stratification). For
this reason it is useful to introduce a horizontal-vertical splitting notation. Let e1, e2, e3

be the chosen reference and let’s define ∇H = [∂e1 , ∂e2 , 0] so that ∇ = ∇H + ∂ze3. This
splitting holds for Cartesian references but holds as well for spherical coordinate, and it
will be used extensively in the following. The first fundamental consequence is that the
vertical acceleration can be neglected and thus the ocean can be regarded as hydrostatic.
From volume conservation one can infer that W ∼ H

L
U , thus the vertical velocity has

a much smaller magnitude than the horizontal velocity, w ≪ u. Moreover, the vertical
momentum equation can be scaled as

W

T
+ UW

H
+ W 2

H
+ ΩU ∼

∣∣∣∣∣1ρ ∂p∂r
∣∣∣∣∣− g (1.43)

where all the first three terms scale as (H/L)(U/L) and thus they are small with respect
to all the other terms. The Coriolis term can be considered small as well, leading to hy-
drostatic balance: pressure vertical gradients and gravity are in balance. Furthermore, the
shallow fluid approximation can be taken, defining r = a+ z with a ≫ z distance to the
centre of the earth, that can be assumed constant, hence replacing r with a and ∂/∂r with
∂/∂z. Finally, the traditional approximation is used to neglect all non-horizontal compo-
nents of the Coriolis term. The resulting equations are so–called Primitive Equations. The
term "primitive" refers to the fact that the momentum equations are expressed in terms of
velocity, or momentum, in contrast with other simplified models that use prognostic equa-
tions for derived quantities such as vorticity, streamfunction and divergence (S. Griffies
et al., 2008). These equations are summarised below.

LNS/H =20000km/3.7km∼5405. Roughly speaking, printing out the map of the ocean on an A4 sheet
of paper will render a picture of the ocean with a thickness twice that the original.
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Horizontal momentum: (1.44a,b)
Du
Dt − 2Ωv sin θ + uv tan θ

a
= − 1

ρr cos θ
∂p

∂λ

Dv
Dt + 2Ωu sin θ + u2 tan θ

a
= − 1

ρr

∂p

∂θ

Vertical momentum: (1.45)
∂p

∂z
= gρ

ρ0

Temperature and salinity: (1.46a,b)
∂T

∂t
+ 1
a cos θ

∂ (uT )
∂λ

+ 1
a cos θ

∂

∂θ
(vT cos θ) + ∂

∂z
(wT ) = 0

∂S

∂t
+ 1
a cos θ

∂ (uS)
∂λ

+ 1
a cos θ

∂

∂θ
(vS cos θ) + ∂

∂z
(wS) = 0

Incompressibility: (1.47)
1

a cos θ
∂ (u)
∂λ

+ 1
a cos θ

∂

∂θ
(v cos θ) + ∂

∂z
(w) = 0

Equation of state: (1.48)
ρ = ρ (T, S, z) .

Primitive Equations

1.3 Density variation and Boussinesq approximation

Under conditions typically satisfied by the Ocean or the Atmosphere (see Spiegel et al.,
1960 for a review), the Boussinesq hypothesis (Boussinesq, 1903; Zeytounian, 2003; Vallis,
2017) suggests that the importance of density variations can be neglected everywhere
except when it directly causes buoyant forces, that means acting in conjunction with
gravity g. The fundamental statement is that in the conservation of mass (1.27) written in
material form (that is, using (1.7) instead of the conservative form) the relative variations
of density ρ−1 Dρ

Dt
are much smaller than the effects of the converging or diverging flow

velocity ∇ · v. This stems from a decomposition of the density

ρ (x, t) = ρ0 + δρ (x, t) , (1.49)
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1.3. Density variation and Boussinesq approximation

where the deviation δρ (x, t) is supposed to be much smaller than the reference density,
i.e. δρ ≪ ρ0. In the Ocean, variations of the density of seawater are of the order of 1%
(Gray et al., 1976), thus validating this assumption. The mass conservation equation is
replaced by volume conservation, with consequent exclusion of acoustic waves from the
model, consistent with the low Mach number of the ocean. In the momentum equations,
the reference density ρ0 can be used in all terms, with exception to the gravity term where
the ratio between the fluctuation and the reference density is used, introducing thus the
buoyancy

b = g
ρ (x, t) − ρ0

ρ0
. (1.50)

Despite support arbitrary non-linear equations of state in a fully energetically and thermo-
dynamically consistent manner, while retaining the inherent simplicity of a divergent-free
velocity (Tailleux, 2010), simple Boussinesq thermodynamics can be defined (as shown in
Kundu et al., 2015 and Vallis, 2017) as

ρCp
DΘ
Dt = −∇ · Jq, (1.51)

where Θ is some conservative temperature. Since active tracers modify the density of
the fluid, the fluid dynamics is influenced by density gradients through the hydrostatic
relation, with the equation of state providing the fundamental bridge between dynamics
and thermodynamics. The Equation of Seawater (EoS) is an empirical non-linear ther-
modynamic relationship linking seawater density, ρ, to a number of state variables, most
typically temperature, salinity and pressure. The full description of the EoS is quite com-
plex (McDougall et al., 2011) and its implementation in general circulation models is
challenging (Roquet et al., 2015). A simplified EoS inspired by Vallis (2017) is often cho-
sen, and it provides simplistic linear representation of many processes, such as cabbeling
and thermobaricity (Roquet et al., 2015). With such an equation of state there is no
longer a distinction between conservative and potential temperature, as well as between
absolute and practical salinity. S-EoS takes the following expression:

da (T, S, Z) = 1
ρ0

[−a0 (1 + 0.5λ1Ta + µ1z) · Ta + b0 (1 − 0.5λ2Sa + µ2z) · Sa

−νTaSa + βp (p− p0)]
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with Ta = T − 10, Sa = S − 35, ρ0 = 1026Kg/m3 and where da is the thermodynamic
potential obtained by differentiation of the Gibbs function of Seawater with respect to
pressure (see Vallis, 2017, equation 1.146). Various approximation of EoS can be specified
simply by changing the associated coefficients by changing the thermobaric coefficients
(µ1, µ2) or by changing the cabbeling coefficients (λ1, λ2, ν). Keeping non-zero value to a0

and b0 provides a simple and linear EoS function of T and S:

ρ = ρ0 [1 − βT (T − T0) + βS (S − S0) + βp (p− p0)] , (1.52)

with βT ≈ 2 × 10−4K−1, βS ≈ 10−3g/kg and βp ≈ 4.4 × 10−10m s−2kg−1. This linear
equation retails the three main drivers of density variation: compression of seawater by
the action of pressure, thermal expansion due to increase of temperature and, if salinity
increase, haline contraction.

1.4 Sub-Grid Scales modelling (SGS)

The primitive equations are typically run with resolution that can spam from ∼ 100km
(very large scale) to ∼ 1km (fine scale). In both cases, several processes are left behind
in the model, while the ocean dynamics is affected by the cumulative effect of turbulent
processes occurring at all scales. For these reason, truncation of the representable scales
must be performed for practical simulation, and the inclusion of the effects of the unre-
solved scales is of paramount importance. Standard practice is to approach the task with a
Reynolds Averaged Navier Stokes (Reynolds, 1883; Batchelor, 2000) approach, by substi-
tuting the model variables u, v, w, T , S with their mean components plus the fluctuation,
that is

u = u+ u′, T = T + T ′, S = S + S ′. (1.53)

Nonlinearity of the advection term introduces a turbulent stress tensor in each prognostic
equation

SGSu = ∇ · u′
ju

′
i, SGST = ∇ · u′

jT
′, SGSS = ∇ · u′

jS
′. (1.54)

The choice for the representation of the eddy quantities, i.e u′
ju

′
i, u′

jT
′ and u′

jS
′, is a

crucial part of the modeller task, and usually means parametrizing these turbulent effects
without resolving them. Among all the debated choices for this closure term, that must be
specified by the modeller, the simplest one is Prandtl’s K-closure model (also referred to as
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Boussinesq eddy viscosity model, cfr Oertel, 2010), that prescribes direct proportionality
between the eddy quantity and the shear:

u′
ju

′
i = Am

ij

∂ui

∂xj

, u′
jT

′ = AT
ij

∂T

∂xj

, u′
jS

′ = AS
ij

∂S

∂xj

. (1.55)

On the scales of interest for large scale modelling of the Ocean, the mixing occurs along
directions that are approximately horizontal, decorrelated from the vertical direction. If
isotropic turbulence is assumed in the horizontal, usual forms of the sub-grid scale models
are

SGSu = Am∆u+ ∂

∂z

(
Am

33
∂u

∂z

)
,

SGST = AT ∆u+ ∂

∂z

(
AT

33
∂T

∂z

)
,

SGSS = AS∆u+ ∂

∂z

(
AS

33
∂S

∂z

)
.

Empirical observations indicate that in the interior of the ocean, the rate of transport
along principal directions of mixing can be as much as 108 times the rate of transport in
the orthogonal direction. This phenomenon was linked to direction of neutral buoyancy,
that are direction lying to the tangent plane of the isopycnal surfaces. If a parcel of water
moves across this surface, then the density contrast with the surrounding environment
will act as a restoring force toward its original position (assuming that molecular mixing
is not acting at this scale). On the other hand, any adiabatic motion that occur along
neutral surfaces encounters no such impediment, resulting thus in a preferred direction of
motion. This is often expressed by introducing a diffusion tensor that is locally aligned to
the isopycnal surfaces (Redi, 1982)

KR = A
H

ρ2
x + ρ2

y + ρ2
z


ρ2

x + ρ2
y + ϵρ2

z (1 − ϵ) ρxρy (1 − ϵ) ρxρz

(1 − ϵ) ρxρy ρ2
x + ρ2

y + ϵρ2
z (1 − ϵ) ρyρz

(1 − ϵ) ρxρz (1 − ϵ) ρyρz ρ2
x + ρ2

y + ϵρ2
z

 (1.56)

where A
H

is the horizontal diffusion coefficient, the smallness parameter ϵ is defined
as Az = ϵA

H
and the notation ρi = ∂iρ for each axis was introduced for notational

convenience. In the same spirit, irreversible mixing processes are usually modelled with
a downgradient diffusion that tends to flatten isopycnal surfaces thus transferring the
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energy from potential to kinetic (P. R. Gent et al., 1990; Peter R. Gent, 2011).
These observations hold for the interior of the ocean. The surface layer present exclu-

sive characteristics and it is usually termed mixed layer to describe this characteristic.
The surface of the ocean is the most energy-dense turbulent zone, with turbulence driven
by wind, waves and buoyancy forcing, resulting at the end in creation of potential en-
ergy through mixing and entrainment, viscous dissipation or energy loss through internal
waves.

1.5 Boundary conditions

Equations (1.44a,b) to (1.47) are valid in the interior of the ocean, that means for
ηb (x, y) ≤ z ≤ η (x, y, t), where ηb is the bottom coordinate and η is the surface elevation.
At these two boundaries, exchanges with the solid earth or with the atmosphere happen
and must be prescribed. The momentum equations have dynamic boundary conditions,
relating the momentum stress at the surface with the wind stress, that is

Am
33
∂ui

∂z

∣∣∣∣∣
z=η

= 1
ρ
τw

j . (1.57)

In a similar fashion, at the bottom the momentum stress must be equal to the bottom
friction:

Am
33
∂ui

∂z

∣∣∣∣∣
z=ηb

= f (ui) , (1.58)

where the functional for of f depends from the specific friction parametrization. Similarly,
temperature is forced at the surface as

AT
ij

∂T

∂xj

∣∣∣∣∣
z=η

= Qs +Ql +Qb

Cpρ0
, (1.59)

with the sensible heat flux Qs (due to the air-sea temperature difference), the latent heat
flux Ql (due to evaporation), and the long-wave back radiation Qb. Note that upward
(positive) fluxes of temperature lead to cooling at the surface. For rigid lid models, salinity
has the same structure with the effects of evaporation E and precipitation P on the vertical
diffusive flux

AS
ij

∂S

∂xj

∣∣∣∣∣
z=η

= − (E − P)S. (1.60)
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Bottom forcing for temperature can be taken into account for long-term climatic simula-
tions.

1.6 Surface pressure and external gravity waves

Total pressure at a given depth z is composed of a surface pressure ps at a reference
geopotential surface (that is z = 0) and a hydrostatic pressure ph, in such a way that

p (x, y, z, t) = ps (x, y, t) + ph (x, y, z, t) , (1.61)

with the hydrostatic term computed as

ph (x, y, z, t) =
∫ ς=0

ς=z
gρ (T, S, ς) dς. (1.62)

The surface pressure can be computed in different ways. The first method, historically
referred to as rigid-lid approximation, consists in keeping the surface of the ocean still
at a geopotential reference and solving an equation for pressure. As introduced in Bryan
and Cox (1968), it sets the time tendency of the sea surface to zero, thus implying a non-
divergent barotropic velocity and so allowing the construction of a streamfunction for the
vertically integrated velocity. If on the one hand this approximation facilitates efficient
time stepping by introducing an elliptic equation, on the other hand it introduces an ellip-
tic equation which is difficult to solve in complex geometries and removes the possibility to
model tides or direct freshwater forcing (Huang, 1993). The second method, employed in
almost all current general circulation models, consist in integrating a prognostic equation
for the sea surface elevation, namely

∂η

∂t
= −∇ ·

[
(η − ηb)U

]
+ P − E, (1.63)

describing the evolution of external gravity waves, propagating at a speed of roughly
√
gH.

This last equation is not enough to describe the dynamic of external gravity waves (EGW)
and a prognostic equation for U must be provided as well. To prescribe this additional
dynamical equation the linear stratified primitive equation can be projected onto a set
of orthogonal normal modes, under several assumptions, highlighting a fast barotropic
mode and a slower baroclinic mode (Demange et al., 2019). A classical time-stepping
method consists then to introduce a splitting procedure to advance the barotropic and
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h = η − ηb

z = η(x, y, t)

z = ηb(x, y)

Figure 1.1 – Single layer shallow water model. The bottom topography is a time inde-
pendent spatially varying surface designated with z = ηb(x, y), while the free surface is
a material surface defined as z = η(x, y, t). The total thickness of the layer is simply
h = η − ηb. The level z = 0 is intended as the rest position of the free surface, and is
represented with the horizontal dashed line.

the baroclinic parts differently. A usual assumption, detailed in Killworth et al. (1991)
consists in assuming that the external mode is vertically constant. Following Demange
et al. (2019) the system of equations describing the depth-averaged motion is:

∂U

∂t
+ g∇η = − 1

ρ0
∇ph +G (u)

∂η

∂t
= −∇ ·

[
(η − ηb)U

]
,

where G (u) is the vertical average of the advective, diffusive terms of the baroclinic
momentum equations, and ph is the vertical average of the internal pressure gradient.
The right hand side of the momentum equations is usually kept constant during the short
time-step time evolution, while the integral of ph depends on the sea surface elevation η

itself, making the convergence of this integral problematic. In the following, the depth-
integrated equations of motion are derived following Blumberg et al. (1987) and Killworth
et al. (1991) to show the terms taken into consideration. A Barotropic-Baroclinic splitting
is defined as

u = 1
η − ηb

∫ η

ηb

u dζ + u′, v = 1
η − ηb

∫ η

ηb

v dζ + v′, (1.64)

where the vertically integrated velocities (from bottom to top) will be denoted with over-
lined capital letters U and V and denoted barotropic velocities, while the residual com-
ponents u′ and v′ will be denoted as baroclinic velocities.
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1.6. Surface pressure and external gravity waves

The first step is integrating from bottom to top the continuity equation

∇H · uH + ∂w

∂z
= 0 (1.65)

using the kinematic boundary conditions

w|η = ∂η

∂t
+ uH (xH , η, t) · ∇Hη

w|ηb
= ∂ηb

∂t
+ uH (xH , ηb, t) · ∇Hηb,

that leads to
∫ η

ηb

∇H · uH dζ + ∂η

∂t
+ u (xH , η, t) · ∇Hη − ∂ηb

∂t
− u (xH , ηb, t) · ∇Hηb = 0.

Using Leibnitz integration rule

∇H ·
∫ η

ηb

u (xH , z, t) dζ = u (xH , η, t) · ∇Hη − u (xH , ηb, t) · ∇Hηb

+
∫ η

ηb

∇H · u (xH , z, t) dζ

one finally arrives to
∂η

∂t
+ ∇ ·

[
(η − ηb)U

]
= 0. (1.66)

This equation is the familiar linear gravity wave equation and provides a prognostic equa-
tion for η. Integrating from bottom to top the momentum equation

∂ui

∂t
+ u · ∇Hui + w

∂ui

∂z
+ ϵjkifjuk = − ∂

∂xi

p′

ρ0
+ F i (1.67)

one obtains
∫ η

ηb

∂ui

∂t
dζ +

∫ η

ηb

∇H · (uui) dζ +
∫ η

ηb

∂wui

∂z
dζ

= −ϵjkifj

∫ η

ηb

uk dζ +
∫ η

ηb

[
− ∂

∂xi

p′

ρ0
+ F i

]
dζ.

The terms in the left hand side can be modified using Leibniz integral rule, with temporal
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tendency reading
∫ η

ηb

∂

∂t
u (xH , z, t) dζ = ∂

∂t

∫ η

ηb

u (xH , z, t) dζ − u (xH , η, t) · ∇Hη + u (xH , ηb, t) · ∇Hηb,

and momentum transport reading
∫ η

ηb

∇H · (uui) dζ = ∇H ·
∫ η

ηb

uui dζ − (uui) · ∇Hη + (uui) · ∇Hηb∫ η

ηb

∂wui

∂z
dζ = w (η)ui (η) + w (ηb)ui (ηb)

= ui (η)
[
∂η

∂t
+ u (xH , η, t) · ∇Hη

]
− ui (ηb) [u (xH , ηb, t) · ∇Hηb] .

Summing them one finds

∂U i

∂t
+ ∇H ·

∫ η

ηb

uui dζ + ϵjkifjUk =
∫ η

ηb

[
− ∂

∂xi

p′

ρ0
+ F i

]
dζ. (1.68)

To complete the system, one adds and subtract a shallow water-like pressure gradient
g∇η, so the resulting equations are

∂U i

∂t
+ ϵjkifjUk + g∇η = F (p′, η)
∂η

∂t
+ ∇ ·

[
(η − ηb)U

]
= 0,

with
F (p′, η) = g∇η + ∇H ·

∫ η

ηb

uui dζ +
∫ η

ηb

[
− ∂

∂xi

p′

ρ0
+ F i

]
dζ. (1.69)

These equations associated with the fast barotropic mode are usually handled with a
sub-stepping procedure (Shchepetkin et al., 2005; Shchepetkin et al., 2009), where an
internal procedure solves this set of equation with a time step much smaller than that of
the full model. The term F (p′, η) is a coupling operator between the baroclinic and the
barotropic mode, it contains the slow dynamics of the model and it is used as a constant
forcing during the sub-cycling. It is important to notice that this last term contains the
divergence of the momentum transport, rendering the barotropic equations linear in their
momentum. This choice is common in several ocean models (e.g. Madec et al., 2019), but
not strictly necessary as several other models implement non-linear barotropic equations
(e.g. Auclair et al., 2022). For this reason, in the next chapter a stochastic variant of the

32



1.6. Surface pressure and external gravity waves

shallow water equations is introduced following the same procedure.

Conclusions

This chapter provided a brief and overly simplified description of geophysical fluid
mechanics equations and related modelling. The complexity of the subject is such that for
each one of the topics here introduced a vast literature is present, and many other were
not introduced. The choice of the topics here introduced reflects the main challenges that
a modeller has to tackle when embarking into the development of a stochastic general
circulation model.
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Chapter 2

LOCATION UNCERTAINTY PRINCIPLE

This chapter aims to introduce the stochastic framework of Loca-
tion Uncertainty. The presentation is detailed while being free of
stochastic calculus as much as possible, with only physical argu-
ments and procedures that are well established in the fluid me-
chanics practice. The interested reader is however invited to refer
to the last section of this chapter to find the mathematical proof of
every important formula.

Abstract

2.1 Location uncertainty

In the Location Uncertainty (LU) formalism, the Lagrangian displacement Xt associ-
ated to a fluid particle is described by a stochastic differential equation of the type:

dXi
t (x0) = vi (Xt, t) dt+ σtdBi

t (Xt) , i = 1, 2, 3 (2.1)

where Xt : Ω × R+ → Ω is the fluid flow map, that is the trajectory followed by a fluid
particle starting at point X|t=0 (x) = x0 of the bounded domain Ω and the index i =
1, . . . , 3 indicates the spatial coordinates x, y, z. The first component, v in vector form,
represents the smooth, resolved velocity field of the flow. This term is the response of the
equations of motions, solved on a grid of a given resolution, and so it is supposed to be
both spatially and temporally correlated. Its integral in time is assumed to be of bounded
variation. The second term, that we will indicate as σtdBt in vector form, is a stochastic
process that assembles the unresolved component, turbulent effects and the uncertainties
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of the flow. This stochastic contribution is referred to as noise and defined as

σtdBi
t (Xt) =

∫
Ω
σ̆ik (Xt,y, t) dBk

t (y) dy, i = 1, 2, 3 (2.2)

that is the application of an integration kernel σ̆ to an I3 cylindrical Wiener process Bt,
combination of independent one-dimensional cylindrical Wiener processes, not differen-
tiable in time. In the previous equation, Einstein’s summation notation was adopted.
The result of such operation is a centred Gaussian process with two-points, two-times
covariance tensor defined as

Q (x,y, t, s) = E [(σtdBt (x)) (σsdBs (y))T ]

= δ (t− s) δ (x− y) dt
∫

Ω
σ̆ik (x, z, t) σ̆kj (y, z, s) dz,

meaning that σtdBt ∼ N (0,Q). Further details on the properties of the noise are given
in chapter 3. The strength of the noise is measured by its one-point, one-time covariance,
denoted as a, given by the diagonal components of the covariance tensor per unit of time,
that is

a (x, t) := Q (x,x, t, t)
dt = σt (x)σT

t (x) , (2.3)

leading to the explicit relation:

aij (x, t) =
∫

Ω
σ̆ik (x,y, t) σ̆kj (x,y, t) dy. (2.4)

From the relation a (x, t) = σt (x)σT
t (x) it is important to recognize that the variance

tensor is symmetric and positive semi-definite at any point x of the domain, property that
will be employed in the construction of the stochastic Reynolds transport theorem. From
this construction it emerges the fact that the displacement is an Itô diffusion process, and
in the following it will be intensively used in its vector form:

dXt (X0) = v (Xt, t) dt+ σtdBt (Xt) . (2.5)
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It is important to state that the expressions contained in (2.1) and (2.5) are shortcut
notations for the integral relations:

Xi
t = Xi

0 +
∫ t

0
vi (Xs, s) ds+

∫ t

0

∫
Ω
σ̆ik (Xs,y, t) dBk

s (y) dy, i = 1, 2, 3,

Xt = X0 +
∫ t

0
v (Xs, s) ds+

∫ t

0
σs (Xs) dBs,

(2.6)

with X0 initial condition for the flow. These equations constitute the real mathematical
description of the stochastic process as a semi-martingale (Kunita, 1997; Da Prato et al.,
2014; Brémaud, 2020), defined for each point of x ∈ Ω and each time t ∈ T ⊆ R+. A total
velocity can then be formally defined as

V (x, t) = v (x, t) + σtḂt (x) ,

V i (x, t) = vi (x, t) + σtḂi
t (x) , i = 1, 2, 3

(2.7)

where the uncertainty term dBt is not differentiable in time in the classical sense and so
its derivative Ḃt must be thought in terms of weak derivatives, that is

∫
T
φ (t) Ḃt (x) dt = −

∫
T
φ′ (t) Bt (x) dt ∀φ ∈ C∞

0 (T ) . (2.8)

From the physical point of view, v is a smooth-in-time random velocity, while σtḂt

represents the noise: a generalized stochastic process that has to be defined in the space
of tempered distributions. As introduced, the noise term σtdBt is defined as centred, that
means σtdBt ∼ N (0,Q), with B an I3−Wiener process defined on a filtered probability
space {Ω,F ,P, (Ft)t} and where (Ft)t is the filtration associated with Bt. However, the
following argument opens to a useful generalisation of non-centred noises, used extensively
in Chapter 3. Let (Ft)t be the filtration associated with (Bt)t. A non centred Wiener
process shifted by a random process (Yt)t can be defined as:

B̃t = Bt +
∫ t

0
Ys ds. (2.9)

Under good properties of (Yt)t ( Ft-measurability, almost sure L2−integrability and
Novikov condition) there exists a measure Q such that:

— (B̃t)t is a Q−Wiener process;
— the Radon-Nikodym derivative (which is well defined due to Novikov condition
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(Brémaud, 2020; Da Prato et al., 2014) writes:

d Q
d P = exp

[
−1

2

(∫ t

0
Ys dBs +

∫ t

0
Y2

s ds
)]
. (2.10)

With the non centred (under P) random process B̃t, we can rewrite the equations with
respect to B̃t as

σtdBt = σtdB̃t − σtYt dt. (2.11)

Denoting σtYt as µt one can write the Lagrangian displacement under LU as

dXt = [v (Xt, t) − µt (Xt)] dt+ σtdB̃t (Xt) . (2.12)

Under Q the Wiener process dB̃t is centred thus the writing of dXt has the same form as
(2.5) but under a new measure. All the arguments provided in the following will hold for
this process under Q.

2.2 Stochastic transport theorem

This section highlights the effects of the scale separation introduced in the previous
section. In particular, the Stochastic Reynolds Transport Theorem (SRTT), that provides
an Eulerian representation to the Lagrangian flow described, is introduced without proof
(that is provided in Section 2.9). With respect to the classical Reynolds Transport The-
orem, the additional complexity is inherited by the one-dimensional cylindrical Wiener
processes Bk

t (x), used to separate the scales of motion, that is not differentiable in time,
and so it requires special care when left evolving in time. Let’s consider a semi-martingale
θ (x, t) of the type

θ (x, t) = θ (x, 0) +
∫ t

0
g (x, s) ds+

∫ t

0

∫
Ω
fk (x,y, s) dBk

s (y) dy (2.13)

where g, f are processes that, when integrated in time, are of bounded variation. The
process θ (x, t) is supposed to be regular, that means to have bounded spatial gradients
and to be twice differentiable in space. Moreover, the process θ (x, t), when transported
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by a flow as (2.6), that means the mapping x → Xt, has a total differential of the form

dθ (Xt, t) = dtθ (Xt, t) +∂θ (Xt, t)
∂xi

dXi
t + 1

2aij (Xt, t)
∂2θ (Xt, t)
∂xi∂xj

dt

+
∫

Ω
σ̆ij (Xt,y, t)

∂

∂xi

fj (Xt,y, t) dy dt,
(2.14)

where dtθ = θ (Xt, t+ dt)−θ (Xt, t) is the temporal increment at a fixed location, while aij

is the variance tensor introduced in (2.4). This statement is the result of the application
of Itô-Wentzell formula (see Kunita, 1997, theorem 3.8) applied to the semi-martingale
θ (x, t), represented in Equation (2.13), composed with the Lagrangian stochastic flow
Xt of Equation (2.6). The last formula has inside the term fj (Xt,y, t) which is still not
related to any physical process of interest. To establish this relation, a study of the process
θ (x, t) while transported by an Itô diffusion process as (2.6) and conserved, that means
dθ (Xt, t) = 0, has to be performed. In this case, the increment in time of θ (x, t) takes
the form of

dtθ = −
[(
vi − 1

2
∂aki

∂xk

+
∫

Ω
σ̆ji
∂σ̆kj

∂xk

dy
)

dt

+
∫

Ω
σ̆ikdBk

t dy
]
∂θ

∂xi

+ 1
2
∂

∂xi

(
aik

∂θ

∂xk

)
dt,

(2.15)

that can be written in vector notation as

dtθ = − [(v − vs + σT
t (∇ · σt)) dt+ σt dBt] · ∇θ + 1

2∇ · (a∇θ) dt, (2.16)

with the introduction of the notation vs = 1
2∇ · a. All the unknown components of the

semi-martingale (2.13) are now directly linked to the motion of the fluid, as this formula
expresses the time variation along a fluid particle trajectory. Finally, the main results of
Mémin (2014) can be presented.

Theorem 1 (Stochastic Reynolds transport theorem). Consider a physical quantity θ (x, t)
within a material volume Vt ⊂ R3, transported by a stochastic flow as (2.6) and such that
it can be written in the semi-martingale form

θ (x, t) = θ (x, 0) +
∫ t

0
g (x, s) ds+

∫ t

0

∫
Ω
fk (x,y, s) dBk

s (y) dy ds, (2.17)

where f, g are locally bounded processes. Then, the stochastic Reynolds transport theorem
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(SRTT) reads:

d
∫

Vt

θ dx =
∫

Vt

{
dtθ + ∂

∂xk

[
θ

(
uk − 1

2
∂aik

∂xi

)
dt+ θ

∫
Ω
σ̆kjdBj

t dy
]

− 1
2

∫
Vt

∂

∂xi

(
aik

∂θ

∂xk

)
dt
}

dx,
(2.18)

or in vector formulation as:

d
∫

Vt

θ dx =
∫

Vt

{
dtθ + ∇ · [θ (v − vs) dt+ θσt dBt] − 1

2∇ · (a∇θ) dt
}

dx. (2.19)

This theorem lays the foundations of the LU formalism, and it has been used ex-
tensively since its appearance in Mémin (2014) to develop a family of models of various
physical phenomena. The assumption behind the derivation of these models is that the
forcing applied to the system is of bounded variation. An extension to stochastic forc-
ing can be defined, as examined and formalised rigorously in Resseguier, Mémin, and
Chapron (2017a) and Tissot, Mémin, et al. (2023), where the final result is presented as
follows.

Theorem 2 (Extended stochastic Reynolds transport theorem). Within the assumptions
of Theorem 1 and in the presence of a stochastic balance such as

d
∫

Vt

θ dx =
∫

Vt

(Θt dt+ Θσ · dBt) dx, (2.20)

the stochastic Reynolds’ transport theorem reads
∫

Vt

dtθ + ∇ · [θ (v − vs) dt+ θσt dBt] − 1
2∇ · (a∇θ) dt+ ∇ · (σtΘσ) dt dx

=
∫

Vt

Θt dt+ Θσ · dBt dx.

Dropping the volume integral, one has

dtθ+∇·[θ (v − vs) dt+ θσtdBt]−
1
2∇·(a∇θ) dt+∇·(σtΘσ) dt = Θt dt+Θσ ·dBt. (2.21)

In the previous equation, the stochastic component of the forcing is defined as

Θσ · dBt =
∫

Ω
Θ̆k

σ (Xs,y, t) dBk
t (y) dy, (2.22)
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where is of paramount importance to state that the Brownian term defining this stochastic
forcing is the same that drives the motion. The full proof of this theorem is given in section
2.9. It is worth noticing that the term ∇ · (σtΘσ) is just a compact notation for

∇ · (σtΘσ) = ∂

∂xj

∫
Ω
σ̆jk (Xt,y, t) Θ̆k

σ (Xt,y, t) dy, (2.23)

and it must be evaluated differently for each observable it is applied to. A remarkable
example of application of this theorem can be found in Tissot, Mémin, et al. (2023).

2.3 Stochastic transport operator

In the previous sections the characteristics of a transported semi-martingale were
discussed. It is worth noticing that these characteristics can be encoded in a spatio-
temporal operator Dt that can be linked to the usual deterministic material derivative.

Definition 1 (Stochastic transport operator). If θ (x, t) is a semi-martingale of type
(2.13), that is transported by a flow as (2.6) and is conserved, then the stochastic material
derivative is defined as:

Dtθ = dtθ +
[(
vk − 1

2
∂aik

∂xi

+
∫

Ω
σ̆jk

∂σ̆ij

∂xi

dy
)

dt +
∫

Ω
σ̆kjdBj

t (y) dy
]
∂θ

∂xk

− 1
2
∂

∂xi

(
aik

∂θ

∂xk

)
dt,

in vector notation as

Dtθ = dtθ + [(v − vs + σT
t (∇ · σt)) dt+ σt dBt] · ∇θ − 1

2∇ · (a∇θ) dt,

The terms appearing in this operator can be physically interpreted. The first term is the
increment in time at a fixed location of the process θ, that is dθ = θ (Xt, t+ ∆t)−θ (Xt, t).
This contribution plays the role of the partial time derivative for a process that is not
time differentiable. The term enclosed in the square brackets is a stochastic advection
displacement, and is induced by a slowly varying, time correlated process named modified
drift velocity and defined as

v⋆ = v − vs + σT
t (∇ · σt) (2.24)
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and by a fast evolving, time uncorrelated noise σt dBt. This term involves the multiplica-
tion of the noise with the solution gradient, that is itself dependent on the noise: it is thus
an advective generalized multiplicative noise, therefore non Gaussian. This type of noise
is often denoted as transport noise (Flandoli et al., 2023). The component vs = 1

2∇ · a is
a statistically induced velocity that in the following will be referred to as Itô-Stokes drift
as it can be shown that an analogy exists between this term and the Stokes drift of de-
terministic interaction between waves and the mean flows (Bauer et al., 2020a; Li, 2021).
It is worth noticing that ∇ · a is dimensionally consistent with a velocity, as a ∼ L2/T .
The variance tensor a, which is positive definite, can be interpreted as a diffusion tensor.
Indeed, it can be observed that the last term in the transport operator is a divergence of
a gradient, that is ∇ · (a∇θ), that is exactly the form of a diffusion term in the standard
deterministic PDE setting. Giving a less heuristic explanation, this term can be seen to
be a dissipation term under suitable boundary conditions, that means

∫
Ω
θ∇ · (a∇θ) dx = −

∫
Ω

∇θTa∇θ dx ≤ 0 (2.25)

after application of Gauss theorem and noticing that a is positive semi-definite. In the end,
this mechanism is physically identified as an eddy diffusion due to the unresolved scales,
the greater the noise variance, the more intense the mixing. The stochastic advective
velocity is important because it represents the transport velocity for a stochastic process.
It is important to outline that this eddy diffusion is not artificially introduced but comes
rigorously from the scale separation performed in (2.1). Following Resseguier, Mémin,
and Chapron (2017a) one can consider the transport of a characteristic function, i.e.
using (2.19) with θ = 1, to introduce an evolution equation for the Jacobian determinant
J of the flow:

DtJ − J∇ · [v⋆ dt+ σtdBt] = 0. (2.26)

The Jacobian of the flow represents the change in the integral measure. The previous
equation provides then a condition for a stochastic flow to not change the integral measure
during the flow, that is to be isochoric, and which yields

∇ · [v⋆ dt+ σtdBt] = 0. (2.27)

For a transported scalar and isochoric flow, it can be demonstrated that the transport
operator conserves energy (Resseguier, Mémin, and Chapron, 2017a).
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2.3.1 Relation with the material derivative

A relation between the classical material derivative and the transport operator can be
set from theorem 1, enabling a better interpretation of what has been presented so far. In
the deterministic setting the material or substantial derivative is usually defined as the
variation in time of a given property F along time following a specific particle (material
point, identified with its trajectory r) of the continuous medium. Introducing the notation
Dt for the material derivative one can write

DtF [r (r0, t0; t) , t] = d
dtF [r (r0, t0; t) , t] . (2.28)

In particular, applying the chain rule one has

DtF [r (r0, t0; t) , t] = ∂F

∂t
+ ∂F

∂r1

dr1

dt + ∂F

∂r2

dr2

dt + ∂F

∂r3

dr3

dt . (2.29)

If r and x define the same point in space, that is x = r (r0, t0; t), then the classical bridge
between the Lagrangian and the Eulerian representation is found as

DtF (x, t) = ∂F

∂t
+ ∂F

∂x1
u+ ∂F

∂x2
v + ∂F

∂x3
w. (2.30)

The quantity DtF is the total differential in time of F , in the stochastic case the resulting
formula is functionally different but the meaning remains the same. Equation (2.14) defines
the total differential in time of a random process θ along the stochastic flow Xt as

dθ (Xt, t) = dtθ + [(v − vs + σT
t (∇ · σt)) dt+ σt dBt] · ∇θ − 1

2∇ · (a∇θ) dt

:= Dtθ

This equation is valid when there is no stochastic forcing inducing changes in the transport
of θ. Conversely, when the transport is forced by a stochastic process one finds that the
total differential in time is given by

dθ (Xt, t) = dtθ + ∇ · [θ (v − vs) dt+ θσtdBt] − 1
2∇ · (a∇θ) dt+ ∇ · (σtΘσ) dt

= Dtθ + Tr (σT
t ∇Θσ) dt.
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The last term, Tr (σT
t ∇Θσ) is present whenever there is a correlation between the stochas-

tic forcing and the stochastic transport, i.e. if the two terms depend on the same Brownian
motion. In the case the forcing depends on a Brownian motion that is independent from
the Brownian motion of the transport, the correlation cancels. Finally, one can state

Dtθ = dθ = Dtθ + Tr (σT
t ∇Θσ) dt. (2.31)

2.3.2 Distributivity of the stochastic transport operator

The distributivty of the operator Dt is a fundamental inquiry to proceed deriving
conservation statements and balance equations. Considering two variables f and g, the
evolution of which is given by

Dtf = Ft dt+ F σ · dBt

Dtg = Gt dt+Gσ · dBt

the evolution of the product of f and g is then

Dt (fg) = gDtf + fDtg + F σ ·Gσ dt− σtF σ · ∇g dt− σtGσ · ∇f dt, (2.32)

with proof and detailed description of the right hand side given in section 2.9. It is
important to notice that the classical product rule holds when F σ = Gσ = 0.

2.3.3 Non-dimensional transport operator

Following a classical procedure, the stochastic Navier-Stokes equations are now written
in dimensionless form. Introducing the characteristic scales L and U , respectively for the
length and the velocity of the fluid motion, T , a typical time scale of the motion (that
can be expressed in terms of other scales), one can write each variable as

x = Lx̂, v = U v̂, t = T t̂. (2.33)

Similarly for these widely used normalizations (Batchelor, 2000), in this stochastic settings
one needs to define characteristic scales also for the stochastic variables. From Equation
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(2.2) it is clear that σtdBt must be dimensionally consistent with dXt, thus

σtdBt = Lσσ̂tdB̂t, (2.34)

with Lσ characteristic scale of the stochastic displacement. The Brownian motion by itself
scales as Bt ∼

√
TσB̂t, where Tσ is the temporal scale of the stochastic motion. These

two scales are a priori not the same scales as the deterministic one introduced in (2.33).
Introducing A as the characteristic scale for the variance tensor a = Aâ, one can then
define the scaling of the kernel as σt =

√
Aσ̂t by definition in comparison with (2.4).

The scaling of the variance tensor (and thus of the kernel σ) can be related recalling the
definition of noise

σdBi
t (x) =

∫
Ω
σ̆ik (x,y, t) dBk

t (y) dy, (2.35)

so that both σtdBt = Lσσ̂tdB̂t and σtdBt =
√
ATσσ̂tdB̂t must hold, providing A ∼ L2

σ

Tσ
.

Finally, the stochastic scaling reads

σtdBt = Lσσ̂tdB̂t, σt = Lσ√
Tσ

σ̂t, Bt ∼
√
TσB̂t, a ∼ L2

σ

Tσ

â. (2.36)

To simplify the calculations that are going to be carried out in the next sections, the non-
dimensional form of the stochastic transport operator and of the impulse are introduced
separately for typographical convenience. The procedure shown is applied only to the
variables defining the transport, not to the quantity that is actually transported. It is
important to remark that in the previous equation θ is kept with its dimensions. If θ
scales as θ = Qθ̂ one can write D̂tθ = ΘD̂tθ̂. This will be helpful in simplifying the
non-dimensional Navier-Stokes equations. Substituting these variables in the transport
operator one finds:

D̂tθ = dtθ +
{[
UT

L
v̂ − AT

L2
1
2∇̂ · â+ AT

L2 σ̂
T
t

(
∇̂ · σ̂t

)]
dt̂

+ Lσ

L
σ̂tdB̂t

}
· ∇̂θ − AT

L2
1
2∇̂ ·

(
â∇̂θ

)
dt̂.

In fluid mechanics a usual choice for the temporal scale is the so called advective time
scale, defined as T = L/U , measuring the time needed to transport a particle with the
characteristic velocity of the fluid for the characteristic length scale. With this choice one
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has
D̂tθ = dtθ +

{[
v̂ − AT

L2
1
2∇̂ · â+ AT

L2 σ̂
T
t

(
∇̂ · σ̂t

)]
dt̂

+ Lσ

L
σ̂tdB̂t

}
· ∇̂θ − AT

L2
1
2∇̂ ·

(
â∇̂θ

)
dt̂.

In this novel framework a non-dimensional parameter is introduced,

Υ = UL

A
= L2/T

A
, (2.37)

to compare advection and stochastic diffusion terms in the momentum equation, and will
be referred as the stochastic Peclet number, in perfect similarity with the determinis-
tic advection-diffusion problem (Quarteroni et al., 1994; Heinrich et al., 1977). The non
dimensional stochastic transport operator is finally:

D̂tθ = dtθ +
{[
v̂ − 1

Υvs + 1
Υσ̂

T
t

(
∇̂ · σ̂t

)]
dt̂+ ϵ

Υσ̂tdB̂t

}
· ∇̂θ − 1

Υ
1
2∇̂ ·

(
â∇̂θ

)
dt̂.

In the noise term, the scaling parameter Υ has been related to the ratio between the large
scale and the small scales of the motion, that is ϵ = Tσ/T , by using the definition of A as

Υ = L2/T

A
= L2/T

L2
σ/Tσ

= ϵ−1Lσ

L
. (2.38)

Notice that, introducing a uniform scaling parameter ε such that all the stochastic scales
follow the same behaviour as

ε = Lσ

L
= Uσ

U
= Tσ

T
(2.39)

one finds the scaling

D̂tθ = dtθ +
{[
v̂ − 1

Υvs + 1
Υσ̂

T
t

(
∇̂ · σ̂t

)]
dt̂+ 1

Υ1/2 σ̂tdB̂t

}
· ∇̂θ − 1

Υ
1
2∇̂ ·

(
â∇̂θ

)
dt̂.

already described in the literature (Bauer et al., 2020b; Resseguier, Mémin, and Chapron,
2017b).
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2.4 Conservation statements under location uncer-
tainty

In this section, the expression of the volumetric rate given by Theorem 1 is used
to establish balances and conservation statements to represent the conservation laws of
fluid mechanics under LU, while the expression of the volumetric rate of change when
stochastically forced provided by the Extended stochastic Reynolds transport of theorem
2 is also used to further generalise the results.

2.4.1 Conservation of mass

In this initial exploration of stochastic modelling, the conservation of mass is expressed
within the stochastic setting. In the case of fluid mechanics, relativistic effects that can
result in creation or destruction of mass can be neglected, so the conservation of mass
inside a time-dependent volume Vt can be stated as

d
∫

Vt

ρ (x, t) dx = 0. (2.40)

Considering the arbitrariness of the control volume Vt and using the localization theorem,
mass conservation in differential form is

dtρ+ ∇ · [ρ (v − vs) dt+ ρσtdBt] − 1
2∇ · (a∇ρ) dt = 0 (2.41)

Alternatively, conservation of mass can be written in terms of the stochastic transport
operator as:

dtρ+ [(v − vs) dt+ σtdBt] · ∇ρ− 1
2∇ · (a∇ρ) dt+ ρ∇ · [(v − vs) dt+ σtdBt] = 0

Dtρ+ ρ∇ · [(v − vs) dt+ σtdBt] − σT
t (∇ · σt) · ∇ρ = 0.

(2.42)
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Incompressible fluids

In the case of an incompressible fluid the mass conservation simplifies drastically.
Imposing ρ (x, t) =const, all the derivatives of ρ disappear, hence

∂

∂xk

(
vk − 1

2
∂aik

∂xi

)
dt+ ∂

∂xk

∫
Ω
σ̆kjdBj

t dy = 0. (2.43)

Using the uniqueness of the semi-martingale decomposition Protter, 2004 one finds, setting
the martingale contribution to zero:

∂

∂xk

∫
Ω
σ̆kjdBj

t dy = 0 ⇔ ∂

∂xk

σ̆kj = 0, ∇ · σt = 0. (2.44)

With this condition one can rearrange the integral term in the bounded variation term
(alongside the symmetry of σ̆) to get a modified incompressibility condition:

∂

∂xk

(
vk − 1

2
∂

∂xi

aik

)
= 0, ∇ · (v − vs) = 0. (2.45)

Equation (2.44) provides a great insight to further modelling. When the fluid is assumed to
be incompressible, the stochastic noise is itself incompressible, as it has a zero divergence.

2.4.2 Conservation of extensive tracers

The conservation of a scalar tracer is a generalization of the reasoning introduced in
the previous section for conservation of mass. The starting balance is in the general case
composed of a bounded variation and a martingale forcing,

d
∫

Vt

ρθ dx =
∫

Vt

(ρΘt dt+ ρΘσ · dBt) dx, (2.46)

so that the conservation of the scalar tracer is defined through Theorem 2. The balance
in differential form reads thus:

dt (ρθ) + ∇ · [ρθ (v − vs) dt+ ρθσtdBt] − 1
2∇ · [a∇( ρθ )] dt+ ∇ · (σtρΘσ) dt

= ρΘt dt+ ρΘσ · dBt.
(2.47)
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Applying conservation of mass, it is possible to write the previous conservation statement
for ρθ as a conservation statement for θ only, as

dtθ + [(v − vs + σT
t (∇ · σt)) dt+ σt dBt] · ∇θ − 1

2∇ · (a∇θ) dt+ ∇ · (σtΘσ) dt
= ρΘt dt+ ρΘσ · dBt.

(2.48)
or employing the stochastic transport operator, this reads

Dtθ + Tr (σT
t ∇Θσ) dt = Θt dt+ Θσ · dBt. (2.49)

It is worth remarking that in the previous equation the term Tr (σT
t ∇Θσ) is a compact

notation for the integral

Tr (σT
t ∇Θσ) =

∫
Ω
σ̆ik (Xt,y, t)

∂

∂xi

Θ̆k
σ (Xt,y, t) dy (2.50)

and it must be adapted case by case with the true definition of the martingale forcing
Θσ.

2.4.3 Conservation of momentum

Conservation of momentum is stated as usual. Starting from Newton’s second law for
a volume Vt of fluid

d
∫

Vt

ρV dx =
∫

Vt

ρF dx, (2.51)

where ρF represents the ensemble of the forces acting on the fluid volume Vt. The total
velocity V is given in Equation (2.7), so by applying this definition it is clear that two
different temporal scales exists. Considering Equation (2.51) integrated in time against a
test function φ one has

∫
T
φ (t)

[
d
∫

Vt

ρv dx+ d
∫

Vt

ρσḂt dx
]

dt =
∫

T
φ (t)

∫
Vt

ρF dx dt. (2.52)

Ḃ is expressed in the sense of distributions, that means
∫

T
φ (t)

[
d
∫

Vt

ρσḂt dx
]

dt = −
∫

T
φ′ (t)

[∫
Vt

ρσdBt dx
]
,
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so that
∫

T
φ (t)

[
d
∫

Vt

ρv dx
]

dt−
∫

T
φ′ (t)

[∫
Vt

ρσdBt dx
]

=
∫

T
φ (t)

∫
Vt

ρF dx dt. (2.53)

In this equation, the first term is a semi-martingale (Kunita, 1997) term (loosely speak-
ing, it contains both bounded variation terms and martingale terms) while the second
is a Brownian acceleration expressed in weak sense, showing the existence of an extreme
velocity scale. As justified rigorously by the pioneering work of Mikulevicius et al. (2004),
the two sides of the previous equation must be consistent within their temporal scales.
This means that F , which remains thus far unspecified, must have different temporal
scales
∫

T
φ (t)

∫
Vt

ρF dx dt =
∫

T
φ (t)

[∫
Vt

ρ (F t dt+ FσdBt) dx
]

dt−
∫

T
φ′ (t)

[∫
Vt

ρF̈dBt dx
]
.

The last term F̈dBt, associated with the Brownian acceleration, has to be considered as
a balancing term for the very-fast scale introduced in (2.51) by the temporal derivative of
the velocity V = v+σḂt, that already contains a white noise term. For its interpretation
as a Brownian acceleration, double dot notation has been chosen (However, it does not
correspond to a double differentiation of F , it is only a notation). Assuming that the
balance between the very fast scales associated to the Brownian acceleration and the
corresponding very fast forces holds, the final momentum balance reads

d
∫

Vt

ρv dx =
∫

Vt

ρ (F t dt+ ρFσdBt) dx, (2.54)

where the first term is a bounded variation forcing term, the second can be defined in
general as a martingale forcing term:

FσdBi
t =

∫
Ω
F̆ ik

σ (Xs,y, s) dBk
s (y) dy, i = 1, 2, 3. (2.55)

Applying the extended Reynolds’ transport theorem one finds
∫

Vt

ρ
[
dt (ρv) + ∇ · [ρv ⊗ (v − vs) dt+ ρv ⊗ σtdBt] − 1

2∇ · [a∇ (ρv)] dt

+ ∇ · (ρσtFσ) dt] dx =
∫

Vt

ρ (F t dt+ FσdBt) dx,
(2.56)
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where ⊗ denotes the outer product. Moreover, the previous balance can be written using
the distributivity as

∫
Vt

ρ
[
dtθ + [v⋆ dt+ σt dBt] · ∇v − 1

2∇ · (a∇v) dt

+ Tr (σT∇Fσ) dt− F t dt− FσdBt] dx = 0

with v⋆ = v − vs + σT
t (∇ · σt). Using the definition of the stochastic transport operator

one can rearrange the terms as
∫

Vt

ρ [Dtv + Tr (σT∇Fσ) dt− F t dt− FσdBt] dx = 0.

Finally, the differential form of momentum balance reads

ρDtv + ρTr (σT∇Fσ) dt = ρ (F t dt+ FσdBt) .

Note that in many situations the correlation term ρTr (σT∇Fσ) is neglected ant the form

ρDtv = ρ (F t dt+ FσdBt) .

is obtained.

2.4.4 Conservation of energy

The conservation of energy is a generalization of the reasoning introduced in the
previous section for conservation of extensive tracer. Defining with dWt and W σ · dBt

the bounded variation and the martingale part of the work exerced on the system, the
starting balance is, in the general case of a finite variation and a martingale forcing,

d
∫

Vt

ρE dx =
∫

Vt

ρ (dWt +W σ · dBt) dx, (2.57)

so that the conservation of the scalar tracer is defined through Theorem 2, and the balance
in differential reads:

dt (ρE) + ∇ · [ρE (v − vs) dt+ ρEσtdBt] − 1
2∇ · (a∇ρE) dt+ ∇ · (σtρW σ) dt

= ρdWt + ρW σ · dBt.

(2.58)
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Applying conservation of mass, in the same way it was done for momentum, it is possible
to write the previous conservation statement for ρE as a conservation statement for E
only, as

dtE + [(v − vs + σT
t (∇ · σt)) dt+ σt dBt] · ∇E − 1

2∇ · (a∇E) dt+ ∇ · (σtW σ) dt
= ρdWt + ρW σ · dBt,

(2.59)
which can be compactly expressed using the stochastic transport operator as

DtE + Tr (σT∇W σ) dt = ρ (dWt +W σ · dBt) . (2.60)

2.5 Stochastic Navier-Stokes equations (SNS)

Navier-Stokes equations represent the conservation of mass and of momentum for a
Newtonian fluid. The stress tensor for a Newtonian fluid is thus

T ij = −
(
p+ 2

3µ
∂vk

∂xk

)
δij + µ

(
∂vi

∂xj

+ ∂vj

∂xi

)
, (2.61)

where p = −1
3T ii is the dynamical pressure, defining the isotropic component of the

stress tensor, while the remaining terms (usually grouped into a τij term) correspond to
the deviatoric stress tensor, that is entirely determined by the motion of the fluid itself, as
it describes entirely the difference with respect to the equilibrium state. Cauchy’s equation
of motions relates the variation of momentum to the divergence of the stress tensor, so
the impulse is given by

∂

∂xj

T ij = − ∂p

∂xi

+ µ
∂2vi

∂xj∂xj

+ µ

3
∂

∂xi

∂vk

∂xk

. (2.62)

In the stochastic setting, the velocity v is no more deterministic. Hence the stress tensor
T must be adapted to the new formulation. The divergence of the stress tensor, i.e. the
impulse of the forces acting on the fluid (without considering body forces such as gravity)
is :

dJi = − ∂

∂xi

(p dt+ dpσ
t ) + µ

∂2

∂xj∂xj

(
vidt+ σdBi

t

)
+ µ

3
∂

∂xi

∂

∂xk

(
vkdt+ σdBk

t

)
(2.63)

=
[
− ∂p

∂xi

+ µ
∂2vi

∂xj∂xj

+ µ

3
∂

∂xi

∂vk

∂xk

]
dt− ∂

∂xi

dpσ
t + µ

∂2

∂xj∂xj

σdBi
t (2.64)
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+ µ

3
∂

∂xi

(
∂

∂xk

σdBk
t

)
,

where (2.7) was employed and where the unique decomposition of semi-martingale prop-
erty was used in the last equality. In vector notation one can write

dJ = (−∇p+ ρF t) dt+ (−dpσ
t + ρFσdBt) , (2.65)

where the following notation was introduced to simplify the exposition:

F t = ∇
(
µ

3 ∇ · v
)

+ µ∆v,

FσdBt = ∇
(
µ

3 ∇ · σtdBt

)
+ µ∆σtdBt.

Stochastic Navier-Stokes equations can finally be formulated as the combination of the
conservation of momentum

Dtv − ∇ · [(∇ϑ)σt] dt+ Tr (σT∇Fσ) dt =1
ρ

[
∇
(

−p+ µ

3 ∇ · v
)

+ µ∆v
]

dt

+ 1
ρ

∇
(

−dpσ
t + µ

3 ∇ · σtdBt

)
+ µ∆σtdBt,

and conservation of mass

dtρ+ ∇ · [ρ (v − vs) dt+ ρσtdBt] − 1
2∇ · (a∇ρ) dt = 0,

usually complemented with an equation of state. The meaning of the term ∇· [(∇ϑ)σt] dt
is detailed in the next Section.
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Momentum equation: (2.66)

Dtv − ∇ · [(∇ϑ)σt] dt+ Tr (σT∇Fσ) dt =
[

1
ρ

∇
(

−p+ µ

3 ∇ · v
)

+ ν∆v
]

dt

+ 1
ρ

∇
(

−dpσ
t + µ

3 ∇ · σtdBt

)
+ ν∆σtdBt,

Mass transport: (2.67)

dtρ+ ∇ · [ρ (v − vs) dt+ ρσtdBt] − 1
2∇ · (a∇ρ) dt = 0,

Equation of state: (2.68)
ρ = ρ (T, p) .

Stochastic Navier-Stokes equations

Stochastic pressure

Equation (2.65) gives an important formulation for the impulse acting on a flow in the
stochastic setting. However, the term dpσ

t does not seem to appear naturally but rather
through a modelling choice. This term is the stochastic pressure, defined as

dpσ
t (x) =

∫
Ω
ϑi (x,y, t) dBi

t (y) dy, (2.69)

and is a zero-mean turbulent pressure related to the small scale velocity component. The
motivating argument behind the introduction of this term is that equations should be
consistent in their time-scale separation. Consider the stochastic Euler equations, that
is the inviscid version of the previously introduced Navier-Stokes equations, forced by a
generic pressure dPt. Applying the divergence operator to the momentum equation one
finds

Dt

(
∂v

∂xk

)
+ ∂

∂xk

[v⋆ dt+ σtdBt]j
(
∂v

∂xj

)
− 1

2
∂

∂xi

(
∂aij

∂xk

∂v

∂xj

)
= ∆dPt. (2.70)

As the right and left hand sides must match in both slow scale terms and fast scale terms,
the right hand side must have both a bounded variation and a purely stochastic term.
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Hence, the total pressure dPt is split into two components

dPt = p dt+ dpσ
t . (2.71)

The second term, the martingale component of the pressure, has been split in Equation
(2.65) and it is responsible for the term ∇ · [(∇ϑ)σt] dt in Equation (2.66), as detailed in
Section 2.9.5. In practice, both terms ∇·[(∇ϑ)σt] dt and Tr (σT∇Fσ) are often neglected,
recovering the models described in Resseguier, Mémin, Heitz, et al. (2017).

2.6 Stochastic Boussinesq equations

Density variations are often induced by temperature or chemicals (as salinity), but
these effects can be often regarded as small. To deal with the results of these changes
without using the compressible Navier-Stokes equations, the so called Boussinesq approx-
imation is employed. This approximation assumes that the density field involves just small
changes around a reference ρ0, so that the density field can be written as

ρ (x, t) = ρ0 + δρ (x, t)
= ρ0 (1 + ϵ δρ̂ (x, t)) ,

(2.72)

where δρ̂ (x, t) is a non-dimensional variable and ϵ ≪ 1 is a constant small parameter. In
the deterministic case, starting from the continuity equation

Dρ
Dt + ρ∇ · v = 0 (2.73)

and applying Equation (2.72) one has

∇ · v + ϵ

[
Dδρ̂
Dt + δρ̂∇ · v

]
= 0. (2.74)

It is clear that the first order term in this equation involves just the isochoric constraint.
If ϵ is small, the incompressibility condition is sufficient. This of course does not imply
that the fluid is itself incompressible, but rather that mathematically at the limit the flow
can be considered as isochoric. In the LU model the modification of the conservation of
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mass follows the same path and the result is

∇·[(v − vs) dt+ σtdBt]+ϵ
[
dtδρ̂+ ∇ · [δρ̂ (v − vs) dt+ δρ̂σtdBt] − 1

2∇ · (a∇ δρ̂) dt
]

= 0.
(2.75)

At first order, the divergence-free condition

∇ · [(v − vs) dt+ σtdBt] = 0 (2.76)

is found. This implies, separating the scales of motion, that the noise term is incompress-
ible by itself, with

∇ · σtdBt = 0 (2.77)

implying that ∇·σt = 0, so that the modified advection reduces to v⋆ = v−vs. This result
is analogous to what obtained for incompressible fluids in Section 2.4.1. The advective
form can be derived directly from the stochastic Reynolds transport theorem where the
term σT (∇ · σt) cancels, meaning that the two forms

dtθ + ∇ · [θ (v − vs) dt+ θσtdBt] − 1
2∇ · (a∇θ) dt+ ∇ · (σtΘσ) dt = Θt dt+ Θσ · dBt,

dtθ + [(v − vs) dt+ σtdBt] · ∇θ − 1
2∇ · (a∇θ) dt+ ∇ · (σtΘσ) dt = Θt dt+ Θσ · dBt,

are interchangeable. Moreover, the continuity equation states that at lowest order there
is no dynamics for the density. Conservation of momentum can be derived starting from
an integral balance between the variation of momentum, the gravitational field acting on
the fluid and the divergence of the stress tensor for a Newtonian fluid, neglecting terms
involving molecular diffusion (as a standard practice in large scale dynamics) and noise
compressibility, resulting in:

d
∫

Vt

ρv dx = −
∫

Vt

[(∇p+ ρgez) dt+ ∇dpσ
t ] dx. (2.78)

Inserting (2.72) one finds

d
∫

Vt

(ρ0 + δρ)v dx = −
∫

Vt

[(∇p+ (ρ0 + δρ) gez) dt+ ∇dpσ
t ] dx, (2.79)
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that can be rearranged conveniently as

d
∫

Vt

ρ0v dx+ d
∫

Vt

δρv dx =
∫

Vt

−∇ [p dt+ dpσ
t ] dt dx−

∫
Vt

ρ0gez dt dx−
∫

Vt

δρgez dt dx

d
∫

Vt

v dx+ d
∫

Vt

δρ

ρ0
v dx =

∫
Vt

− 1
ρ0

∇ [p dt+ dpσ
t ] dx−

∫
Vt

gez dt dx−
∫

Vt

δρ

ρ0
gez dt dx.

To understand the leading orders of the momentum equation one must employ an asymp-
totic analysis, so the non-dimensional variables

x = Lx̂, v = U v̂, t = L

U
t̂, p = P p̂, g = P

ρ0L
ĝ. (2.80)

are introduced, with the definition δρ
ρ0

= ϵρ̂1, so that the non dimensional integral momen-
tum balance reads

d
∫

V̂t

v̂ dx̂+ϵd
∫

V̂t

ρ̂1 v̂ dx̂ = − 1
ρ0UL

∫
V̂t

∇̂
[
PL

U
p̂ dt̂+ P σdp̂σ

t

]
+PL
U
ĝe3 dt̂+ϵPL

U
ρ̂1ĝe3 dt̂ dx̂.

The scaling P σ for the martingale part of the pressure was also introduced. Expanding
each variable 1 as an asymptotic with ϵ taken as a smallness parameter, that is

ϕ = ϕ0 + ϵϕ1 + ϵ2ϕ2 + ϵ3ϕ3 + . . . (2.81)

with ϕ representing either the pressure, velocity or variation of density, one has

d
∫

V̂t

v̂0 dx̂+ ϵd
∫

V̂t

ρ̂1 v̂0 dx̂ = − 1
ρ0UL

∫
V̂t

[
PL

U

[
∇̂ (p̂0 + ϵp̂1) + ĝ

]
dt̂

+ ∇̂P σ
0 dp̂σ

t + ϵ
PL

U
ρ̂1ĝe3 dt̂

]
dx̂

defining P = ρ⋆U2 with ρ⋆ such that ρ⋆ = ρ0

ϵ
provides

d
∫

V̂t

v̂ dx̂+ ϵd
∫

V̂t

ρ̂1 v̂ dx̂ = 1
ϵ

∫
V̂t

[
∇̂p̂0 + ĝe3

]
dx̂−

∫
V̂t

[
∇̂p̂1 + ρ̂1ĝe3

]
dt̂ dx̂

− 1
ρ0UL

∫
V̂t

∇̂P σdp̂σ
t dx̂.

1. Theoretically, one should expand each variable, v̂, â, σ̂t, p̂, δρ̂. In practice, the main result of this
section can be achieved by expanding the pressure to first order as p = p0 + ϵp1 + O

(
ϵ2) while all the

remaining terms can be taken as zero-th order ϕ = ϕ0 + O (ϵ)
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This choice, that might seem ad hoc at first glimpse, is stating that the dynamics is driven
by density variations rather than the mean state, thus the reference density is defined as
the mean state density ρ0 amplified by the ratio between the mean state and the variation,
ρ0

δρ
= 1
ϵ
. In this equation, the leading order is O (1/ϵ) and is described by a hydrostatic

distribution of the pressure
∫

V̂t

∇p̂0 dx̂ = −
∫

V̂t

ĝe3 dx̂. (2.82)

Once dimensional variables are replaced to non-dimensional variables into equation (2.82),
the hydrostatic balance reads

∇p0 = −ρ0ge3 (2.83)

and so pressure has a zero-th order component that is only depending on the vertical
coordinate and on the mean state density:

p0 (z) = −ρ0gz. (2.84)

The separation of the density into two components, the background constant density and
the deviation from it, corresponds thus to a division of the pressure between hydrostatic
and the fluctuation from this reference,

ρ (x, t) = ρ0 + δρ (x, t) , p (x, t) = −ρ0gz + p′ (x, t) (2.85)

with this latter fluctuation that can be identified with the first order component of the
pressure

p′ (x, t) = p (x, t) + ρ0gz. (2.86)

The following order, O (ϵ), reads

d
∫

V̂t

v̂ dx̂ = −
∫

V̂t

[
∇̂p̂1 + ρ̂1ĝe3

]
dt̂ dx̂− 1

ρ0UL

∫
V̂t

∇̂P σdp̂σ
t , (2.87)

so the stochastic Reynolds transport theorem can be applied to this equation, providing

dtv + ∇ · [v ⊗ (v − vs) dt+ v ⊗ σtdBt] − 1
2∇ · (a∇v) dt (2.88)

−∇ · [(∇ϑ)σt] dt = − 1
ρ0

∇ [p′ dt+ dpσ
t ] − δρ

ρ0
ge3 dt.
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The last term is the buoyancy and depends on the density fluctuations, as indeed

b (x, t) = −g δρ (x, t)
ρ0

e3, (2.89)

representing the upward (or downward) force associated with the density anomaly δρ. In
terms of buoyancy the Stochastic Boussinesq equations can be written as

Dtv − ∇ · [(∇ϑ)σt] dt = − 1
ρ0

∇ [p′ dt+ dpσ
t ] − b dt, (2.90)

where the stochastic transport operator has no σT
t (∇ · σt) term due to incompressibility

of the noise (at first order). Considering now the density variation δ ρ, order O (ϵ) of the
conservation of mass statement provides

dtδρ̂+ ∇ · [δρ̂ (v − vs) dt+ δρ̂σtdBt] − 1
2∇ · (a∇ δρ̂) dt = 0, (2.91)

that after multiplication by g
ρ0

provides an equation for transport of buoyancy:

Dt b = 0. (2.92)

A usual form of the buoyancy equation is retrieved straightforwardly when considering
the effect of the mean stratification. In this case the density fluctuation δρ is split into a
reference stratification ρ̃ (z) and its deviation from it, ρ′ (x, y, z, t), in such a way that

ρ (x, t) = ρ0 + ρ̃ (z) + ρ′ (x, y, z, t) , (2.93)

so that the buoyancy effects are now identified with ρ′, meaning that buoyancy is defined
as

b (x, t) = −gρ
′ (x, t)
ρ0

e3. (2.94)

The resulting equation is

dtρ
′ + ∇ · [ρ′ (v − vs) dt+ ρ′σtdBt] − 1

2∇ · (a∇ ρ′) dt

+∇ · [ρ̃ (v − vs) dt+ ρ̃σtdBt] − 1
2∇ · (a∇ ρ̃) dt = 0,

that can be written as
Dt

(
b+N2z

)
= 0, (2.95)
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where the buoyancy frequency (or Brunt-Väisälä frequency) N2 = − g
ρ0

dρ̃
dz

was introduced.

Momentum equation: (2.96)

Dtv − ∇ · [(∇ϑ)σt] dt = − 1
ρ0

∇ [p′ dt+ dpσ
t ] − b dt,

Buoyancy transport: (2.97)
Dt

(
b+N2z

)
= 0,

Incompressibility: (2.98)
∇ · [v − vs] = 0, ∇ · σtdBt = 0.

Stochastic Boussinesq equations

2.7 Stochastic geophysical flows

Dealing with geophysical problems adds complexity even in the standard determinis-
tic setting. These complexities arise from considering a spherical coordinate system, the
geographical coordinate system composed of Longitude λ (the eastward rotation with re-
spect to the conventional zero-meridian), Latitude θ (the northward rotation from the
conventional equatorial plane) and the distance from the centre r, and considering the
fictitious forces that appear when using this non-inertial system. In the stochastic setting
the major issue presented is the definition of a temporal variation of a vector rotating
around a given axis, but the increment of the vector can still be represented in terms of
Frenet–Serret formulas:

dC = |C| |Ω dt| (sin θ) m (2.99)

where m is direction of the circular motion of the point C connected with the centre
by the vector C. This formula can be written in vector notation as dC = Ω dt × C.
In spherical coordinates the unit vectors are i, j and k, corresponding to the eastward,
northward and the radially outward vectors, as illustrated in Figure 2.1. The directions of
these vectors change with position, and thus their derivatives are not zero. In the classical
deterministic setting this rotation induces some modifications in the equation of motions,
usually referred as metric terms. To compute these terms one proceeds computing Ωf ,
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Figure 2.1 – Representation of the geographical coordinate system and associated tangent
coordinate system.

the rotation with respect to the earth induced by the motion of the flow and use this
rotation to define the metric terms, as done in Vallis, 2017. The usual procedure is that of
using the flow v = (u, v, w) to compute the displacements induced in a time interval δt.
In the LU framework however, the displacements are already defined explicitly as (2.1),
thus considering the displacements along i and j (the only two displacements that cause
a change in the frame) one has

r dθ = dXj (2.100)
dλ r cos θ = dXi (2.101)

where the first, inducing a variation in latitude dθ, is a negative rotation around the i
axis, while the second is a rotation around the axis of the earth, as it induces a variation
in in longitude dλ. This rotation around earth axis can be written as

Ω dt = Ω dt (j cos θ + k sin θ) (2.102)

since the rotation vector Ω completely lies in the (i,k) plane. The infinitesimal dis-
placement Ω dt can be regarded as the rotation induced by the zonal motion, hence
Ω dt = dXi/r cos θ, i.e.

Ωf dt = −dXj

r
i + dXi

r
j + dXi tan θ

r
k (2.103)

61



Partie , Chapter 2 – Location uncertainty principle

where for the rotation around i the rotation induced by the meridional motion dθ = dXj/r

was used. The variations of the vectors i, j and k can then be defined as

di = Ωfdt× i = dXi tan θ
r

j + dXi

r
k, (2.104)

dj = Ωfdt× j = −dXi tan θ
r

i − dXj

r
k, (2.105)

dk = Ωfdt× k = dXi

r
i + dXj

r
j. (2.106)

Considering the variation of velocity v = (u, v, w) one can finally write:

dv = d (ui) + d (vj) + d (wk)
= du i + dv j + dw k + u di + v dj + w dk

=
[
du+ dXi

r
(w − v tan θ)

]
i +

(
dv + u

dXi tan θ
r

+ w
dXj

r

)
j

+
(

dw + u
dXi

r
− v

dXj

r

)
k

The previous equations concerns the effects of a steady spherical reference frame. In the
following, the effects of rotating frame will be discussed. Within the LU model, it is
important to understand that t 7→ ei (t) is a bounded variation process. The procedure
mimics the deterministic one almost verbatim, showing however some differences. For
convenience, the translation of the non-inertial system is a priori neglected and the same
considerations for the deterministic case hold in this case too. The acceleration term can
thus be written in its relevant terms as:

DI
tv = DR

t v
′ + 2Ω × (v′dt+ σtdB′

t) + Ω × Ω dt× X′
t. (2.107)

where DR
t v

′ accounts also for the metric terms introduced in the initial part of this section.
Proof of this statement is given in Section 2.9.

2.7.1 Stochastic hydrostatic primitive equations

Primitive equations of motion correspond to a simplification of the equations of motion
for a geophysical fluid that is commonly used in ocean science. They are derived from
Boussinesq equations (2.96) to (2.98) after the application of three approximations:

— The traditional approximation. All the Coriolis terms that, in the horizontal mo-
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2.7. Stochastic geophysical flows

mentum equations, involve the vertical velocity are neglected, as well as the metric
terms concerning vertical velocities;

— The shallow-fluid approximation. The fluid field has a thickness that is far smaller
than the radius of the earth;

— Hydrostatic balance. The vertical acceleration is negligible, and in the vertical
momentum equation it can be omitted.

As presented, these three conditions are the same as in the deterministic case. However,
the third one must be analysed to understand its meaning under the LU framework.
While the first two approximations can be applied verbatim to the stochastic setting,
neglecting thus random Coriolis and random metric terms, the application of the third
leaves room for a relaxation. Indeed, the vertical momentum equation, after neglecting
the acceleration, is

[σtdBt − vs dt] · ∇w − 1
2∇ · (a∇w) dt− ∇ ·

[
∂ϑ

∂z
σt

]
dt = −∂p

∂z
dt− ∂dpσ

t

∂z
+ b (2.108)

and thus the pressure and the stochastic pressure can be defined as:

p′ =
∫ z

ηb

{
b+ vs · ∇w + 1

2∇ · (a∇w) + ∇ ·
[
∂ϑ

∂z
σt

]}
dζ, (2.109)

dpσ
t =

∫ z

ηb

σtdBt · ∇w dζ, (2.110)

where w is obtained as usual by integration of the continuity equation

w (z) = w (ηb) −
∫ z

ηb

(∇H · uH − ∇ · vs) dζ (2.111)

and ηb is the bottom of the ocean. This type of relaxed hydrostatic balance has been
considered in Jamet et al. (2023). The stochastic primitive equations constitute the main
focus of this thesis, and they are gathered below.
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Horizontal momentum: (2.112)
Dtu− ∇H · [(∇ϑ)σt] dt+ fe3 × (u dt+ σtdBH

t ) = −∇H (p′ dt+ dpσ
t )

Vertical momentum: (2.113)

w (z) = w (ηb) −
∫ z

ηb

(∇H · uH − ∇ · vs) dζ,

Hydrostatic pressure and stochastic pressure: (2.114a,b)

p′ (x) =
∫ z

ηb

b+ vs · ∇w + 1
2∇ · (a∇w) + ∇ ·

[
∂ϑ

∂z
σt

]
dζ,

dpσ
t (x) =

∫ z

ηb

σtdBt · ∇w dζ,

Buoyancy transport: (2.115)
Dt

(
b+N2z

)
= 0 (2.116)

Incompressibility: (2.117a,b)
∇ · [v − vs] = 0, ∇ · σtdBt = 0,

Stochastic hydrostatic primitive equations

2.8 Stochastic shallow water equations

The shallow water model conventionally describes the motion of a shallow layer of
constant density fluid in hydrostatic balance, bounded from above by a fluid of negligible
inertia and from below by a rigid surface (in the single layer model) or a moving free sur-
face of a denser fluid (in the multi-layer model). It is here introduced for its importance
in describing the free surface dynamics. From this definition Vallis (2017) one can already
infer some properties of the forthcoming Rotating Shallow Water system under Location
Uncertainty (RSWLU). First of all, assuming a constant density modifies the stochas-
tic transport operator as explained in Section 2.4.1, thus prescribing the two continuity
conditions

∇ · (v − vs) = 0, ∇ · σtdBt = 0. (2.118)

In particular, this assumption states that the transport velocity in the problem is V =
(v − vs)+σtḂt. Assuming that the layer of fluid is shallow means that it exists a difference
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of scales between horizontal and vertical components of the velocity, so a splitting of the
two is possible. Let e1, e2, e3 be the cartesian reference and let’s define ∇H = [∂x, ∂y, 0] so
that ∇ = ∇H +∂ze3. Considering the usual scaling x = Lx̂ for the horizontal length scale
and z = Hẑ for the vertical one, one has from incompressibility

U∇̂H ·
(
û− 1

Υûs

)
= W

L

H
∂̂z

(
ŵ − 1

Υŵs

)
, ∇̂H · σ̂tdB̂H

t = L

H
∂̂zσ̂tdB̂z

t , (2.119)

with vs = (us, w), meaning that the vertical velocity scales as W = H
L
U . The three

dimensional momentum equations can thus be simplified and a horizontal two-dimensional
system can be derived. To completely remove the dependence from vertical velocity the
continuity condition is integrated from the bottom to the free surface of the fluid layer so
that:

∫ η

ηb

∇ · v⋆ dz =
∫ η

ηb

∂w⋆

∂z
dz +

∫ η

ηb

∇H · u⋆ dz

= w⋆|ηηb
+ ∇H ·

∫ η

ηb

u⋆ dz − u⋆|η · ∇Hη + u⋆|ηb
· ∇Hηb

= [w⋆ − u⋆ · ∇Hz]
η
ηb

+ ∇H ·
∫ η

ηb

u⋆ dz (2.120)

and for the noise
∫ η

ηb

∇ · σtdBt dz =
∫ η

ηb

∂σtdBz
t

∂z
dz +

∫ η

ηb

∇H · σtdBH
t dz

= [σtdBz
t − σtdBH

t · ∇Hz]
η
ηb

+ ∇H ·
∫ η

ηb

σtdBH
t dz (2.121)

Summing the two conditions one has
∫ η

ηb

∇ · (v⋆ dt+ σtdBt) dz = [w⋆ dt+ σtdBz
t − (u⋆ dt+ σtdBH

t ) · ∇ (η − ηb)]ηηb

+ ∇H ·
∫ η

ηb

(u⋆ dt+ σtdBH
t ) dz

In the LU formalism the vertical velocity of the two material surfaces z = η and z = ηb

are

Dtη = [(w − ws) dt+ σtdBz
t ]η (2.122)

Dtηb = [(w − ws) dt+ σtdBz
t ]ηb

(2.123)
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so that
∫ η

ηb

∇ · (v⋆ dt+ σtdBt) dz = DH

t η − DH

t ηb − (u⋆ dt+ σtdBH
t ) · ∇η|ηηb

+ ∇H ·
∫ η

ηb

(u⋆ dt+ σtdBH
t ) dz (2.124)

where DH
t is the horizontal stochastic transport operator

DH

t θ = dtθ + [u⋆ dt+ σt dBH
t ] · ∇Hθ − 1

2∇H · (aH∇Hθ) dt. (2.125)

The vertically integrated divergence thus reads
∫ η

ηb

∇ · (v⋆ dt+ σtdBt) dz = dt (η − ηb) + ∇H ·
∫ η

ηb

(u⋆ dt+ σtdBH
t ) dz

− 1
2∇ · [aH∇H (η − ηb)] dt. (2.126)

Since the continuity equation was set to zero, one finds by setting h = η − ηb,

dth+ ∇H ·
∫ η

ηb

(u⋆ dt+ σtdBH
t ) dz − 1

2∇H · (aH∇Hh) dt = 0 (2.127)

The LU model has two additional terms with respect to the original model, which are
the horizontal noise, σtdBH

t , and the horizontal diffusion 1
2∇ · (a∇h). The hydrostatic

distribution of pressure presents, in this context reads

1
ρ0

∂

∂z
(p dt+ dpσ

t ) = −g dt, (2.128)

and it can be decoupled into two equations, the usual relation for hydrostasy and a
barotropic characterization of the stochastic pressure, i.e.

∂p

∂z
= −gρ0, (2.129)

∂dpσ
t

∂z
= 0. (2.130)

Integrating the previous relations from a generic depth z to the sea surface height one has

p (x, y, z, t) = p (x, y, η, t) +
∫ η

z
ρg dς (2.131)
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and
dpσ

t (x, y, z, t) = dpσ
t (x, y, η, t) . (2.132)

Neglecting the influence of atmospheric pressure, that is setting p (x, y, η, t) = 0, and split-
ting the pressure into a surface deviation component, ps, and a hydrostatic component,
ph, one has

p =
∫ η

0
ρg dς +

∫ 0

z
ρg dς = ρgη − ρgz. (2.133)

In the horizontal momentum equations pressure acts in terms of its horizontal gradient,
so it comes without saying that the only component of interest is ρgη, as it is the only
one depending on the two coordinates x and y. This leads to the horizontal momentum
equation, after the substitution of the material derivative with its stochastic counterpart,

DH

t u+ fe3 × (u dt+ σtdBH
t ) − ∇H · [(∇ϑ)σt] dt = − 1

ρ0
ρg∇Hη dt− 1

ρ0
∇Hdpσ

t . (2.134)

The stochastic rotating shallow water equations are summarized in the box below.

Horizontal momentum: (2.135)

DH

t u+ fe3 × (u dt+ σtdBH
t ) − ∇H · [(∇ϑ)σt] dt = − 1

ρ0
ρg∇Hη dt− 1

ρ0
∇Hdpσ

t

Mass conservation: (2.136)

dth+ ∇H ·
∫ η

ηb

(u⋆ dt+ σtdBH
t ) dz − 1

2∇H · (aH∇Hh) dt = 0

Stochastic rotating shallow water equations

In particular, this version includes the covariation effects of the random pressure on the
smooth-in-time component of the flow. In other works, such as Brecht et al., 2021, this
term was neglected and so is done in the rest of this document.

Barotropic flows

Shallow water equations are usually simpler than the one previously introduced, be-
cause they rely on a barotropic assumption, that is assuming ∂zu = 0. This assumption
can be made also for the RSWLU system. Considering the stochastic pressure terms, it
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is clear that
∂2p

∂x∂z
= 0, ∂2 (dpσ

t )
∂x∂z

= 0,

so taking the vertical derivative of the horizontal momentum equations

∂

∂z

(
DH

t u
)

+ fe3 × (∂zu dt+ ∂zσtdBH
t ) = 0 (2.137)

and reversing the order of differentiation

Dt (∂zu) + [∂zu dt+ ∂zσtdBH
t ] · ∇Hu+ fe3 × (∂zu dt+ ∂zσtdBH

t ) = 0 (2.138)

it follows that if ∂zu = 0 and ∂zσtdBH
t = 0 at any time, then this property is conserved

and it makes sense to assume that the horizontal velocity has no vertical variation with
respect to the LU transport operator. Having established that the two conditions ∂zu = 0
and ∂zσtdBH

t = 0 are reasonable, one can write a modified continuity equation and
represent the RSWLU as

Dtu+ fe3 × (u dt+ σtdBH
t ) = − 1

ρ0
ρg∇Hη dt− 1

ρ0
∇Hdpσ

t (2.139)

dth+ ∇H · [h (u⋆ dt+ σtdBH
t )] − 1

2∇H · (aH∇Hh) dt = 0. (2.140)

Conclusion

In this chapter, the fundamental models for geophysical fluid mechanics under location
uncertainty were derived. All the covariation terms between the stochastic forcing and
the stochastic transport were retained, contrarily to other presentation in the literature.
Some of terms can be assumed to be negligible on the base of magnitude analysis such
as in Tissot, Mémin, et al. (2023). It is fundamental to remark that these terms appear
because the underlying Brownian term is the same for both the stochastic transport and
the stochastic forcing, thus describing the effects of the forcing on the non resolved scales.
In case two different Brownian motions are chosen for the stochastic transport and the
stochastic forcing, all the covariation terms would disappear due to the independence of
the two Brownian terms.
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2.9 Detailed proofs of the previous statements

The path followed is the one outlined in Cintolesi et al. (2020b), that carries out the
original derivation of Mémin (2014), made explicit with some of the calculations from
Bauer et al. (2020b).

Proof of validity of Equation 2.14. The transported process θ (Xt, t) is a composi-
tion of two processes, as it is the semi-martingale θ (x, t) represented in Equation (2.13),
composed with the Lagrangian stochastic flow Xt of Equation (2.6). To differentiate in
time the total process, the Itô-Wentzell formula (see Kunita, 1997, Theorem 3.8) is needed:

dθ (Xt, t) = dtθ (Xt, t) + ∂θ (Xt, t)
∂xi

dXi
t + 1

2
∂2θ (Xt, t)
∂xi∂xj

d
〈
Xi,Xj

〉
t
+ d

〈
∂θ (X, ·)
∂xi

,Xi

〉
t

.

(2.141)
Since that

∫ t
0 g (x, s) ds is a bounded variation process then the brackets (i.e. the quadratic

variation) can be computed as

〈
Xi,Xj

〉
t

=
〈∫ ·

0

∫
Ω
σ̆ik (Xs,y, s) dBk

s (y) dy,
∫ ·

0

∫
Ω
σ̆jℓ (Xs, z, s) dBℓ

s (z) dz
〉

t

=
∫ t

0

∫
Ω×Ω

σ̆ik (Xs,y, s) σ̆jℓ (Xs, z, s) d
〈
Bk (y) ,Bℓ (z)

〉
s︸ ︷︷ ︸

δkℓδ(y−z) ds

dydz

=
∫ t

0

∫
Ω
σ̆ik (Xs,y, s) σ̆kj (Xs,y, s) dy ds ∀i, j = 1, . . . , d.

Concluding this calculation, we can state

d ⟨Xi, Xj⟩t

dt =
∫

Ω
σ̆ik (Xt,y, t) σ̆kj (Xt,y, t) dy = aij (Xt, t) , ∀i, j = 1, . . . , d. (2.142)

Then
1
2
∂2 θ (Xt, t)
∂xi∂xj

d
〈
Xi,Xj

〉
t

= 1
2aij (Xt, t)

∂2 θ (Xt, t)
∂xi∂xj

dt. (2.143)

The fourth term in (2.141) can be obtained first differentiating (2.13) in xi and later on
computing the quadratic variation.

∂θ (x, t)
∂xi

= ∂θ (x, 0)
∂xi

+
∫ t

0

∂g (x, s)
∂xi

ds+
∫ t

0

∫
Ω

∂fk (x,y, s)
∂xi

dBk
s (y) dy ds, (2.144)
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resulting in

d
〈
∂θ

∂xi

,Xi

〉
t

=
∫

Ω
σ̆ij (Xt,y, t)

∂fj

∂xi

(Xt,y, t) dy dt. (2.145)

The equation for the differential of a transported process (2.14) is thus proved. ■

Proof of validity of equations 2.15 and 2.16. Starting from the differential of the
transported process, that is Equation (2.14), expressing the path of the stochastic flow as
an Itô diffusion process (2.5), the following formula is obtained:

dθ = dtθ + ∂θ

∂xi

(
vi dt+

∫
Ω
σ̆ikdBk

t dy
)

+ 1
2aij

∂2θ

∂xi∂xj

dt+
∫

Ω
σ̆ij

∂

∂xi

fj dy dt, (2.146)

Expanding the terms in the round brackets,

dθ = dtθ + ∂θ

∂xi

vi dt+
∫

Ω

∂θ

∂xi

σ̆ikdBk
t dy + 1

2aij
∂2θ

∂xi∂xj

dt+
∫

Ω
σ̆ij

∂

∂xi

fj dy dt. (2.147)

Imposing conservation of the quantity θ (Xt, t), that is dθ (Xt, t) != 0, one finds

dtθ = − ∂θ

∂xi

vi dt− 1
2aij

∂2θ

∂xi∂xj

dt−
∫

Ω
σ̆ij

∂

∂xi

fj dy dt−
∫

Ω

∂θ

∂xi

σ̆ikdBk
t dy (2.148)

thus one can identify g and f in Equation (2.13) (as this decomposition is proved to be
unique) as

g (Xt, t) = −∂θ (Xt, t)
∂xi

vi (Xt, t) − 1
2aij (Xt, t)

∂2θ (Xt, t)
∂xi∂xj

−
∫

Ω
σ̆ij (Xt,y, t)

∂

∂xi

fj (Xt,y, t) dy

fj (Xt,y, t) = −∂θ (Xt, t)
∂xk

σ̆kj (Xt,y, t) .

The last equality is recovered through the relation

∫
Ω

[
fk (Xt,y, t) + ∂θ (Xt, t)

∂xi

σ̆ik (Xt,y, t)
]

dBk
t (y) dy = 0 (2.149)

that is valid for every choice of the Brownian motion dBk
t . Inserting the expression for f
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in the last integral in g, one can carry out

∫
Ω
σ̆ij
∂fj

∂xi

dy = − ∂2θ

∂xi∂xk

∫
Ω
σ̆ijσ̆jk dy︸ ︷︷ ︸
aik(Xt,t)

− ∂θ

∂xk

∫
Ω
σ̆ij
∂σ̆jk

∂xi

dy

= −aik
∂2θ

∂xi∂xk

− ∂θ

∂xk

∫
Ω

[
∂

∂xi

(σ̆ijσ̆jk) − ∂σ̆ij

∂xi

σ̆jk

]
dy

= −aik
∂2θ

∂xi∂xk

− ∂θ

∂xk

∂aik

∂xi

+ ∂θ

∂xk

∫
Ω
σ̆jk

∂σ̆ij

∂xi

dy

= −aik
∂2θ

∂xi∂xk

− 1
2
∂θ

∂xk

∂aik

∂xi

− 1
2
∂θ

∂xk

∂aik

∂xi

+ ∂θ

∂xk

∫
Ω
σ̆jk

∂σ̆ij

∂xi

dy

= −aik
∂2θ

∂xi∂xk

− 1
2
∂

∂xi

(
aik

∂θ

∂xk

)
+ 1

2aik
∂2θ

∂xi∂xk

− 1
2
∂θ

∂xk

∂aik

∂xi

+ ∂θ

∂xk

∫
Ω
σ̆jk

∂σ̆ij

∂xi

dy

= −1
2aik

∂2θ

∂xi∂xk

− 1
2
∂

∂xi

(
aik

∂θ

∂xk

)
− 1

2
∂aik

∂xi

∂θ

∂xk

+ ∂θ

∂xk

∫
Ω
σ̆jk

∂σ̆ij

∂xi

dy.

The final equation, inserting the previous calculation into (2.148), reads

dtθ = −
[(
vk − 1

2
∂aik

∂xi

+
∫

Ω
σ̆jk

∂σ̆ij

∂xi

dy
)

dt+
∫

Ω
σ̆kjdBj

t dy
]
∂θ

∂xk

+ 1
2
∂

∂xi

(
aik

∂θ

∂xk

)
dt.

■

In the previous proof, all the dependencies were kept to illustrate how the process is
characterized. In the following, unless differently specified, every component has to be
intended as θ = θ (x, t), vi = vi (x, t), aij = aij (x, t), while the integration kernel reads
σ̆ij = σ̆ij (x,y, t) and fj = fj (x,y, t). Whenever the process is said to be transported,
the mapping x → Xt is assumed.
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2.9.1 Proof of stochastic transport theorem

Let Vt be an arbitrary control volume contained in Ω, and let φ (x, t) be a test function
defined over Ω such that it has a representation as a semi-martingale that reads

φ (x, t) = φ (x, 0) +
∫ t

0
g (x, s) ds+

∫ t

0

∫
Ω
fj (x,y, s) dBj

s (y) dy ds. (2.150)

Assume furthermore that the function φ has a compact support over Vt and vanishing
normal derivative on the boundary ∂Vt (this corresponds to the assumption of φ not
diffusing outside of Vt). The process φ is transported by the stochastic flow x0 7→ x =
Xt (x0), with

Xt (x) = X0 +
∫ t

0
v (Xs, s) ds+

∫ t

0
σs (Xs) dBs, (2.151)

starting from an initial condition g

φ (Xt (x0) , t) = g (x0) . (2.152)

Under these conditions, as proven for Equations 2.15 and 2.16, φ has a time increment
defined as

dtφ = − [(v − vs + σT
t (∇ · σt)) dt+ σt dBt] · ∇φ+ 1

2∇ · (a∇φ) dt, (2.153)

that in indexes notation reads

dtφ = −
[(
vk − 1

2
∂aik

∂xi

+
∫

Ω
σ̆jk

∂σ̆ij

∂xi

dy
)

dt+
∫

Ω
σ̆kjdBj

t dy
]
∂φ

∂xk

+ 1
2
∂

∂xi

(
aik

∂φ

∂xk

)
dt.

This setting corresponds to stating that the the material derivative of φ along the flow is

(Dtφ) (Xt (x0) , t) = dt (φ (Xt (x0) , t)) = dtg (x0) . (2.154)

The temporal increment of φ is split into its two main components, the bounded variation
and the martingale term, as

dtφ = −Lφ dt− σt dBt · ∇φ. (2.155)

with
Lφ = v⋆ · ∇φ− 1

2∇ · (a∇φ) . (2.156)
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At this point, it is worth introducing the adjoint operator L∗ of L, that is the operator
such that (Lφ, ψ) = (φ,L∗ψ), where (f, g) denotes the inner product between f and g.
The full definition is

∫
Ω

[
v⋆ · ∇φ− 1

2∇ · (a∇φ)
]
ψ dx =

∫
Ω
φ
[
−∇ · (v⋆ψ) − 1

2∇ · (a∇ψ)
]

dx, (2.157)

as a result of Green’s lemma on the first term
∫

Ω
v⋆

kψ
∂φ

∂xk

dx = −
∫

Ω
φ
∂ (v⋆

kψ)
∂xk

dx+
∫

∂Ω
φ (v⋆

kψ)nk dς︸ ︷︷ ︸
φ|∂Ω=0

, (2.158)

and repeated application of Green’s lemma and exploitation of the symmetry of a in the
second term
∫

Ω

∂

∂xi

(
aij

∂φ

∂xj

)
ψ dx =

∫
∂Ω
ψaij

∂φ

∂xj

ni dς −
∫

Ω
aij

∂φ

∂xj

∂ψ

∂xi

dx

=
∫

∂Ω
ψaij

∂φ

∂xj

ni dς︸ ︷︷ ︸
a∇φ·n|∂Ω=0

−
∫

∂Ω
φaji

∂ψ

∂xi

nj dς︸ ︷︷ ︸
φ|∂Ω=0

+
∫

Ω

∂

∂xj

(
aji

∂ψ

∂xi

)
φ dx.

Introduce now the process q that follows a weak balance equation defined as

d
∫

Vt

φq dx =
∫

Vt

φ (Qt dt+Qσ · dBt) dx, (2.159)

with Qt dt the bounded variation component of the forcing of q andQσ ·dBt the martingale
term of q. The left-hand side can be developed following the product rule and Itô’s formula
as

d
∫

Vt

φq dx = d
∫

Ω
φq dx

=
∫

Ω
[q dtφ+ φ dtq + d ⟨φ, q⟩t] dx

=
∫

Ω
[q (−Lφ dt− σt dBt · ∇φ) + φ dtq + d ⟨φ, q⟩t] dx

=
∫

Ω
{φ [dtq − L∗q dt+ ∇ · (qσt dBt)] + d ⟨φ, q⟩t} dx

=
∫

Ω

{
φ
[
dtq + ∇ · (v⋆q) dt+ 1

2∇ · (a∇q) dt+ ∇ · (qσt dBt)
]

+ d ⟨φ, q⟩t

}
dx,
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so that the balance of processes acting reads thus
∫

Ω

{
φ
[
dtq + ∇ · (v⋆q) dt+ 1

2∇ · (a∇q) dt+ ∇ · (qσt dBt)

−Qt dt−Qσ · dBt

]
+ d ⟨φ, q⟩t

}
dx = 0.

At this stage, the quadratic covariation d ⟨φ, q⟩t has to be defined. The dynamics of the
process q is not yet fully defined, as the term d ⟨φ, q⟩t is missing, but its martingale part
is already completely defined as the quadratic covariation is going to provide a bounded
variation term. The dynamics of q can thus be defined as

dtq = f dt+ (Qσ · dBt − σt dBt · ∇q − q∇ · σt dBt) , (2.160)

where f encloses all the bounded variation terms of dtq, still to be completely defined but
that will not play a role in the definition of d ⟨φ, q⟩t. The quadratic covariation can then
be computed and the result is:

∫
Ω

d⟨q, φ⟩t dx = −
∫

Ω
d⟨Qσ · dBt,σt dBt · ∇φ⟩t dx (2.161)

+
∫

Ω
d⟨σt dBt · ∇q,σt dBt · ∇φ⟩t dx (2.162)

+
∫

Ω
d⟨q∇ · σt dBt,σt dBt · ∇φ⟩t dx (2.163)

= +
∫

Ω
φ [∇ · σtQσ] dx dt (2.164)

−
∫

Ω
φ [∇ · (a∇q)] dx dt (2.165)

−
∫

Ω
φ [∇ · (qσT

t (∇ · σt))] dx dt. (2.166)

The balance equation becomes
∫

Ω
φ
[
dtq + ∇ · [q (v − vs) dt+ qσt dBt] − 1

2∇ · (a∇q) dt

+ ∇ · σtQσ dt−Qt dt−Qσ · dBt

]
dx = 0.

Identifying φ as the characteristic function of the volume Vt, that is φ = 1 (Vt), one
reaches the final result:

∫
Vt

[
dtq + ∇ · [q (v − vs) dt+ qσt dBt] − 1

2∇ · (a∇q) dt
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+ ∇ · σtQσ dt
]

dx =
∫

Vt

[Qt dt+Qσ · dBt] dx.

Proof of equivalence between integral 2.161 and 2.164.

⟨Qσ · dBt,σt dBt · ∇φ⟩ def= d
〈∫ ·

0

∫
Ω

Q̆k
σ (Xs,y, s) dBk

s (y) dy,

∫ ·

0

∫
Ω

∂φ

∂xj
σ̆jℓ (Xs, z, s) dBℓ

s (z) dz
〉

t

= d
∫ t

0

∫
Ω×Ω

Q̆k
σ (Xs,y, s) ∂φ

∂xj
σ̆jℓ (Xs, z, s) d

〈
Bk (y) , Bℓ (z)

〉
s︸ ︷︷ ︸

δkℓδ(y−z) ds

dydz

= d
∫ t

0

∫
Ω

Q̆k
σ (Xs,y, s) ∂φ

∂xj
σ̆jk (Xs,y, s) dyds

=
∫

Ω
Q̆k

σ (Xt,y, t) ∂φ

∂xj
σ̆jk (Xt,y, t) dydt

Integrating by parts

−
∫

Ω
⟨Qσ · dBt,σt dBt · ∇φ⟩ dx = −

∫
Ω

∫
Ω

Q̆k
σ (Xt,y, t) ∂φ

∂xj
σ̆jk (Xt,y, t) dydt dx

= −
∫

Ω

∂φ

∂xj

∫
Ω

Q̆k
σ (Xt,y, t) σ̆jk (Xt,y, t) dydt dx

=
∫

Ω
φ

∂

∂xj

∫
Ω

Q̆k
σ (Xt,y, t) σ̆jk (Xt,y, t) dydt dx

=
∫

Ω
φ [∇ · σtQσ] dt dx

■

Proof of equivalence between integral 2.162 and 2.165.

⟨σt dBt · ∇q,σt dBt · ∇φ⟩ def= d
〈∫ ·

0

∫
Ω

∂q

∂xi
σ̆ik (Xs,y, s) dBk

s (y) dy,

∫ ·

0

∫
Ω

∂φ

∂xj
σ̆jℓ (Xs, z, s) dBℓ

s (z) dz
〉

t

= d
∫ t

0

∫
Ω×Ω

∂q

∂xi
σ̆ik (Xs,y, s) ∂φ

∂xj
σ̆jℓ (Xs, z, s) d

〈
Bk (y) , Bℓ (z)

〉
s︸ ︷︷ ︸

δkℓδ(y−z) ds

dydz

= d
∫ t

0

∫
Ω

∂q

∂xi
σ̆ik (Xs,y, s) ∂φ

∂xj
σ̆jk (Xs,y, s) dy ds

= ∂q

∂xi

∂φ

∂xj

∫
Ω

σ̆ik (Xt,y, t) σ̆jk (Xt,y, t) dy dt

Integrating by parts one has∫
Ω

⟨σt dBt · ∇q,σt dBt · ∇φ⟩ dx =
∫

Ω

∂q

∂xi

∂φ

∂xj

∫
Ω

σ̆ik (Xt,y, t) σ̆jk (Xt,y, t) dy dt dx

= −
∫

Ω
φ

∂

∂xj

[
∂q

∂xi

∫
Ω

σ̆ik (Xt,y, t) σ̆jk (Xt,y, t) dy
]

dt dx

= −
∫

Ω
φ

∂

∂xj

[
∂q

∂xi

∫
Ω

σ̆ik (Xt,y, t) σ̆jk (Xt,y, t) dy
]

dt dx
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= −
∫

Ω
φ∇ · [a∇q] dt dx

■

Proof of equivalence between integral 2.163 and 2.166.

⟨q∇ · σt dBt,σt dBt · ∇φ⟩ def= d
〈∫ ·

0

∫
Ω

q
∂

∂xi
σ̆ik (Xs,y, s) dBk

s (y) dy,

∫ ·

0

∫
Ω

∂φ

∂xj
σ̆jℓ (Xs, z, s) dBℓ

s (z) dz
〉

t

= d
∫ t

0

∫
Ω×Ω

q
∂

∂xi
σ̆ik (Xs,y, s) ∂φ

∂xj
σ̆jℓ (Xs, z, s) d

〈
Bk (y) , Bℓ (z)

〉
s︸ ︷︷ ︸

δkℓδ(y−z) ds

dydz

= d
∫ t

0

∫
Ω

q
∂

∂xi
σ̆ik (Xs,y, s) ∂φ

∂xj
σ̆jk (Xs,y, s) dy ds

= q
∂

∂xi

∂φ

∂xj

∫
Ω

σ̆ik (Xt,y, t) σ̆jk (Xt,y, t) dy dt

Integrating by parts one has∫
Ω

⟨q∇ · σt dBt,σt dBt · ∇φ⟩ dx =
∫

Ω
q

∂

∂xi

∂φ

∂xj

∫
Ω

σ̆ik (Xt,y, t) σ̆jk (Xt,y, t) dy dt dx

= −
∫

Ω
φ

∂

∂xj

[
q

∂

∂xi

∫
Ω

σ̆ik (Xt,y, t) σ̆jk (Xt,y, t) dy dt

]
dx

= −
∫

Ω
φ∇ · [qσT

t (∇ · σt)] dx.

■

2.9.2 Transport of the Jacobian

Consider the usual change of reference from a moving volume to a reference one, that
is

d
∫

Vt

dx = d
∫

V0
J (Xt, t) dy (2.167)

where J is the Jacobian determinant of the change of variable. However, employing the
SRTT on the left hand side

d
∫

V0
J (Xt, t) dy =

∫
Vt

∇ · [(v − vs + σT (∇ · σ)) dt+ σdBt] dx

=
∫

V0
J∇ · [(v − vs + σT (∇ · σ)) dt+ σdBt] dy

and thus thanks to the arbitrariness of the control volume Vt one has

DtJ − J∇ · [(v − vs + σT (∇ · σ)) dt+ σdBt] = 0. (2.168)
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2.9.3 Proof of distributivity of the stochastic transport operator

Starting from the application of the operator Dt to the product fg one has

Dt (fg) = dt (fg) + [(v − vs + σT
t (∇ · σt)) dt+ σtdBt] · ∇ (fg) − 1

2∇ · [a∇ (fg)] dt
(2.169)

that can be expanded trivially as

Dt (fg) =g
[
dtf + [(v − vs + σT

t (∇ · σt)) dt+ σtdBt] · ∇f − 1
2∇ · (a∇f) dt

]
+ f

[
dtg + [(v − vs + σT

t (∇ · σt)) dt+ σtdBt] · ∇g − 1
2∇ · (a∇g) dt

]
− (∇f)T a (∇g) dt+ d⟨f, g⟩t

where the last term stems from the application of Itô’s integration by parts formula
Kunita, 1997. This last term can be computed as

d⟨f, g⟩t =⟨σtdBt · ∇f,σtdBt · ∇g⟩ (2.170)
− ⟨σtdBt · ∇f,Gσ · dBt⟩ (2.171)
− ⟨F σ · dBt,σtdBt · ∇g⟩ (2.172)
+ ⟨F σ · dBt,Gσ · dBt⟩ (2.173)

= (∇f)T a (∇g) dt (2.174)
− σtGσ · ∇f dt (2.175)
− σtF σ · ∇g dt (2.176)
+ F σ ·Gσ dt, (2.177)

that finally proves Equation (2.32).

Proof of equivalence between 2.170 and 2.174.

⟨σtdBt · ∇f,σtdBt · ∇g⟩ def= d
〈∫ ·

0

∫
Ω

∂f

∂xi
σ̆ik (Xs,y, s) dBk

s (y) dy,

∫ ·

0

∫
Ω

∂g

∂xj
σ̆jℓ (Xs, z, s) dBℓ

s (z) dz
〉

t

= d
∫ t

0

∫
Ω×Ω

∂f

∂xi
σ̆ik (Xs,y, s) ∂θ

∂xj
σ̆jℓ (Xs, z, s) d

〈
Bk (y) , Bℓ (z)

〉
s︸ ︷︷ ︸

δkℓδ(y−z) ds

dydz

= d
∫ t

0

∫
Ω

∂f

∂xi
σ̆ik (Xs,y, s) ∂θ

∂xj
σ̆jk (Xs,y, s) dy ds

= (∇f)T a (∇g) dt
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■

Proof of equivalence between 2.171 and 2.175, and between 2.172 and 2.176.

⟨σtdBt · ∇f,Gσ · dBt⟩
def= d

〈∫ ·

0

∫
Ω

∂f

∂xi
σ̆ik (Xs,y, s) dBk

s (y) dy,

∫ ·

0

∫
Ω

Ğℓ
σ (Xs, z, s) dBℓ

s (z) dz
〉

t

= d
∫ t

0

∫
Ω×Ω

∂f

∂xi
σ̆ik (Xs,y, s) Ğℓ

σ (Xs, z, s) d
〈
Bk (y) , Bℓ (z)

〉
s︸ ︷︷ ︸

δkℓδ(y−z) ds

dydz

= d
∫ t

0

∫
Ω

∂f

∂xi
σ̆ik (Xs,y, s) Ğk

σ (Xs,y, s) dy ds

= σtGσ · ∇f dt

■

Proof of equivalence between 2.173 and 2.177.

⟨F σ · dBt,Gσ · dBt⟩
def= d

〈∫ ·

0

∫
Ω

F̆ k
σ (Xs,y, s) dBk

s (y) dy,

∫ ·

0

∫
Ω

Ğℓ
σ (Xs, z, s) dBℓ

s (z) dz
〉

= d
∫ t

0

∫
Ω×Ω

F̆ k
σ (Xs,y, s) Ğℓ

σ (Xs, z, s) d
〈
Bk (y) , Bℓ (z)

〉
s︸ ︷︷ ︸

δkℓδ(y−z) ds

dydz

= d
∫ t

0

∫
Ω

F̆ k
σ (Xs,y, s) Ğk

σ (Xs,y, s) dy ds

= F σ ·Gσ dt

■

2.9.4 Stochastic transport theorem in advection form for an ex-
tensive tracer

Starting from Equation (2.47), that is

dt (ρθ) + ∇ · [ρθ (v − vs) dt+ ρθσtdBt] − 1
2∇ · [a∇ (ρθ)] dt+ ∇ · (ρσtΘσ) dt

= ρΘt dt+ ρΘσ · dBt,

one has to develop every term in order to split the two variables ρ and θ. The divergence
of the flux can be split as

∇ · [ρθ (v − vs) dt+ ρθσtdBt] = θ (∇ · [ρ (v − vs) dt+ ρσtdBt])
+ ρ ([(v − vs) dt+ σtdBt] · ∇θ) , (2.178)
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while the stochastic diffusion is unpacked as

1
2∇ · (a∇ρθ) dt = ρ

1
2∇ · (a∇θ) dt+ (∇ρ)T a (∇θ) + θ

1
2∇ · (a∇ρ) dt. (2.179)

The temporal evolution of ρθ is split considering Itô integration by parts formula Kunita,
1997 as

dt (ρθ) = θdtρ+ ρdtθ + d⟨ρ, θ⟩t. (2.180)

The original Equation (2.47) can thus be rewritten as:

dt

∫
Ω
ρθ dx =

∫
Ω
θ
[
dtρ+ ∇ · [ρ (v − vs) dt+ ρσtdBt] − 1

2∇ · (a∇ρ) dt
]

dx

+
∫

Ω
ρ
[
dtθ + [(v − vs) dt+ σt dBt] · ∇θ − 1

2∇ · (a∇θ) dt
]

dx

−
∫

Ω
ρ [Θt dt+ Θσ · dBt] dx

+
∫

Ω
[d⟨ρ, θ⟩t − (∇ρ)T a (∇θ) dt+ ∇ · (ρσtΘσ) dt] dx.

Thanks to the (assumed) conservation of the density ρ, the first integral vanishes as the
content of the square bracket is identically zero. The quadratic covariation term can be
shown to proved four terms, as

d⟨ρ, θ⟩t =⟨−∇ · (ρσt dBt) ,−σt dBt · ∇θ⟩

+ ⟨Θσ · dBt,−∇ · (ρσt dBt)⟩
=⟨∇ · (ρσt dBt) ,σt dBt · ∇θ⟩ (2.181)

− ⟨Θσ · dBt,∇ · (ρσt dBt)⟩ (2.182)
=ρ [σT

t (∇ · σt) · ∇θ] dt+ (∇ρ)T a (∇θ) dt (2.183)
− [∇ · (ρσtΘσ) − ρTr (σT∇Θσ)] dt, (2.184)

so that after cancellation one finds
∫

Ω
ρ
[
dtθ + [v⋆ dt+ σt dBt] · ∇θ − 1

2∇ · (a∇θ) dt+ Tr (σT∇Θσ) dt− Θt dt− Θσ · dBt

]
dx = 0
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with v⋆ = v − vs + σT
t (∇ · σt). Using the definition of the stochastic transport operator

one can rearrange the terms as
∫

Ω
ρ [Dtθ + Tr (σT∇Θσ) dt− Θt dt− Θσ · dBt] dx = 0,

which provides (2.49) straightforwardly.

Proof of equivalence between 2.181 and 2.183.

⟨∇ · (ρσt dBt) ,σt dBt · ∇θ⟩ def= d
〈∫ ·

0

∫
Ω

∂

∂xi
ρσ̆ik (Xs,y, s) dBk

s (y) dy,

∫ ·

0

∫
Ω

∂θ

∂xj
σ̆jℓ (Xs, z, s) dBℓ

s (z) dz
〉

t

= d
∫ t

0

∫
Ω×Ω

∂

∂xi
ρσ̆ik (Xs,y, s) ∂θ

∂xj
σ̆jℓ (Xs, z, s) d

〈
Bk (y) , Bℓ (z)

〉
s︸ ︷︷ ︸

δkℓδ(y−z) ds

dydz

= d
∫ t

0

∫
Ω

∂

∂xi
ρσ̆ik (Xs,y, s) ∂θ

∂xj
σ̆jk (Xs,y, s) dy ds

=
∫

Ω

[
∂ρ

∂xi
σ̆ik (Xt,y, t) + ρ

∂

∂xi
σ̆ik (Xt,y, t)

]
∂θ

∂xj
σ̆jk (Xt,y, t) dy dt

=
∫

Ω

∂ρ

∂xi
σ̆ik (Xt,y, t) ∂θ

∂xj
σ̆jk (Xt,y, t) dy dt

+
∫

Ω
ρ

∂

∂xi
σ̆ik (Xt,y, t) ∂θ

∂xj
σ̆jk (Xt,y, t) dy dt

= ρ [σT
t (∇ · σt) · ∇θ] dt + (∇ρ)T a (∇θ) dt

■

Proof of equivalence between 2.182 and 2.184.

⟨Θσ · dBt, ∇ · (ρσt dBt)⟩
def= d

〈∫ ·

0

∫
Ω

Θ̆k
σ (Xs,y, s) dBk

s (y) dy,

∫ ·

0

∫
Ω

∂

∂xi
ρσ̆iℓ (Xs,y, s) dBℓ

s (y) dy
〉

t

= d
∫ t

0

∫
Ω×Ω

Θ̆k
σ (Xs,y, s) ∂

∂xi
ρσ̆iℓ (Xs,y, s) d

〈
Bk (y) , Bℓ (z)

〉
s︸ ︷︷ ︸

δkℓδ(y−z) ds

dydz

= d
∫ t

0

∫
Ω

Θ̆k
σ (Xs,y, s) ∂

∂xi
ρσ̆ik (Xs,y, s) dyds

=
∫

Ω
Θ̆k

σ (Xt,y, t) ∂

∂xi
ρσ̆ik (Xt,y, t) dydt

=
∫

Ω

∂

∂xi

(
ρσ̆ik (Xt,y, t) Θ̆k

σ (Xt,y, t)
)

dy dt

−
∫

Ω
ρσ̆ik (Xt,y, t) ∂Θ̆k

σ

∂xi
(Xt,y, t) dydt

= [∇ · (ρσtΘσ) − ρTr (σT∇Θσ)] dt

■
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2.9.5 Quadratic variation of pressure gradient

⟨∇dpσ
t ,σt dBt · ∇φ⟩ def= d

〈∫ ·

0

∂

∂xd

∫
Ω

ϑk (Xs,y, t) dBk
s (y) dy,

∫ ·

0

∫
Ω

∂φ

∂xj
σ̆jℓ (Xs, z, s) dBℓ

s (z) dz
〉

t

= d
∫ t

0

∫
Ω×Ω

∂ϑk (Xs,y, s)
∂xd

∂φ

∂xj
σ̆jℓ (Xs, z, s) d

〈
Bk (y) , Bℓ (z)

〉
s︸ ︷︷ ︸

δkℓδ(y−z) ds

dydz

= d
∫ t

0

∫
Ω

∂φ

∂xj
σ̆jk (Xs,y, s) ∂ϑk (Xs,y, s)

∂xd
dyds

=
∫

Ω

∂φ

∂xj
σ̆jk (Xt,y, t) ∂ϑk (Xs,y, t)

∂xd
dydt

Integrating by parts

−
∫

Ω
⟨∇dpσ

t ,σt dBt · ∇φ⟩ dx = −
∫

Ω

∫
Ω

∂φ

∂xj
σ̆jk (Xt,y, t) ∂ϑk (Xt,y, t)

∂xd
dydt dx

= −
∫

Ω

∂φ

∂xj

∫
Ω

σ̆jk (Xt,y, t) ∂ϑk (Xt,y, t)
∂xd

dydt dx

=
∫

Ω
φ

∂

∂xj

∫
Ω

σ̆jk (Xt,y, t) ∂ϑk (Xt,y, t)
∂xd

dydt dx

=
∫

Ω
φ∇ · [(∇ϑ)σt] dt dx

where in the last line symmetry of the kernel σ̆ was used.

2.9.6 Stochastic non inertial acceleration

Applying Frenet-Serret formula (2.99) to the velocity Equation (2.7) one has

d
I
v = d

I
v′ = d

I
(v′

1e
′
1 + v′

2e
′
2 + v′

3e
′
3)

= (d
I
v′

i) e′
i + v′

idI
e′

i + 1
2 ⟨v′

i, e
′
i⟩

= (d
R
v′

i) e′
i + Ω dt× (v′

ie
′
i)

= d
R
v′ + (Ω dt× v′) .

Applying again the definition (2.7) to the momentum variation

d
I

∫
Vt

ρV dx = d
R

∫
Vt

ρV ′ dx+ Ω dt×
(∫

Vt

ρV ′ dx
)

d
I

∫
Vt

ρ
(
v + σḂt

)
dx = d

R

∫
Vt

ρ
(
v′ + σ′Ḃt

)
dx+ Ω dt×

∫
Vt

ρ
(
v′ + σ′Ḃt

)
dx
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and interpreting the derivatives in distributional senses one finds the relation
∫

T
φ (s)

[
d

I

∫
Vs

ρv dx
]

ds =
∫

T
φ (s)

[
d

R

∫
Vs

ρv′ dx+ Ωdt×
∫

Vs

ρ (v′ ds+ σ′dBs) dx
]

ds

−
∫

T
φ′ (s)

∫
Vs

ρσdBs dx.

that can be equated to the source of momentum variations as in sections 2.4.3 and 2.5.
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Chapter 3

NOISE MODELLING

This chapter reviews the main techniques that has been used to
construct the noise models employed in this study. The theoretical
properties of each model are presented in a light-weight manner, as
most of them are classical techniques well documented in the liter-
ature. Where the particular model was not suited to be applied to
this study or it required further, non-classical modifications, those
are exposed and explained.

Abstract

The noise σtdBt is defined through the action of an integration kernel σ̆ik (x,y, t)
on a 3D functional Brownian motion dBt. The integration kernel encodes the desired
properties that must be satisfied by the small scale stochastic contribution. In particular,
σ̆ is required to encode the spatial correlation of the small scale turbulent motions, so the
operator

σt : [L2 (Ω)]d → [L2 (Ω)]d

g 7→
∫

Ω
σ̆ik (x,y, t) gk (y) dy

(3.1)

is defined as a symmetric operator having a bounded kernel (Hilbert-Schmidt operator).
The application of such a kernel to a cylindrical Wiener process Bk

t results in a centered
Gaussian process with one-point, one-time covariance, denoted as a, given by the diagonal
components of the two-point, two-time covariance tensor per unit of time as introduced
in Chapter 2, that is

aij (x, t) =
∫

Ω
σ̆ik (x,y, t) σ̆kj (x,y, t) dy. (3.2)

This variance tensor is symmetric. The choice of having a bounded integration kernel,
thus being a Hilbert-Schmidt operator, allow us to define the noise and variance term as
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the expansions

σt (x) dBt =
∑
n∈N

√
λnϕn (x) dβn

t , a (x, t) =
∑
n∈N

λnϕn (x)ϕT
n (x) , (3.3)

where {βn
t , n ∈ N} is a set of 1D standard (scalar) Brownian motions. This representa-

tion corresponds to the Karhunen-Loeve decomposition (Loeve, 1978). In the following,
operatives approaches to define the noise are going to be presented. In particular, as the
kernel σ̆ is wanted to encode spatial characteristics of the flow, different techniques will be
introduced from the general framework of approximation theory in order to build a set of
basis functions and amplitudes {ϕn (x) , λn}n∈N to produce a physically meaningful noise.
Suppose that a real valued function f (x, t) taking values over a domain D = Ω × [0, T ]
has to be approximated. The classical starting point is to define an approximation fK

such that
fK (x, t) ≃

K∑
k=1

ak (t)ϕk (x) (3.4)

with the expectation that
lim

K→∞
|f − fK | = 0. (3.5)

On one hand, if the function f is unknown, the set of basis functions {ϕk (x)}N
k=1 is speci-

fied up to a given degree N and the approximated solution fN is used to replace the target
function in the equations describing the process, generally resulting in a linear system in
the unknowns ak that, once solved, is used to define completely the approximation fN of
f . Depending on choice of {ϕk (x)}N

k=1 one can define different methods and applications:
locally supported polynomials are used in Finite Element Analysis (Zienkiewicz et al.,
2013), Legendre or Chebyshev polynomials are employed for Spectral Methods (Canuto
et al., 1988), Radial Basis functions and Reproducing Kernel Hilbert spaces for Meshless
methods (Fasshauer, 2007). On the other hand, when the function f is somehow known
then the set of basis functions {ϕk (x)}N

k=1 can be built taking into account the intrinsic
nature of the function f . This class of approaches includes proper orthogonal decompo-
sition (POD), dynamic mode decomposition (DMD), wavelet transform (WLT) and is
generally referred to as feature extraction, or a posteriori methods. The operative proce-
dure chosen is thus the latter, assuming that a function f is known and it is representative
of the flow. The choice of the function f is however non-trivial, as if it is asked to encode
and represent all the processes that cannot be simulated then it must be a function of the
state variables of interest (e.g. velocity and active tracers like temperature and salinity, in
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3.1. Data filtering

the case of geophysical fluid mechanics) and must reflect the kind of processes that must
be stochastically modelled.

3.1 Data filtering

If the aim is that of improving a fine resolution simulation to enhance its representation
capabilities in a statistical sense, then the target function f might come from the current
state of the simulation. In this case, temporal averaging is not always convenient, as the
time average is only capturing the past states as

uT (x, t) = 1
T

∫ t

t−T
u (x, τ) dτ. (3.6)

A spatial filtering is thus applied instead, defined as

u ν (x, t) =
∫

ν(x)
u (ξ, t)ϖ (ξ, t) dξ, (3.7)

where ν (x) is a neighbourhood of the point x and ϖ (ξ, t) is a weighting function. The
weighting function can be chosen in such a way that the resulting integral corresponds to
a classical average in space or to a Gaussian filtering.

3.2 On the vertical structure of the noise

Before embarking in the description of each noise model, it is worth remarking one
fundamental aspect common to all the models. Equations (2.117a,b) prescribe incom-
pressibility of both the large scale velocity and noise field. The noise to be inserted into
the model must thus be incompressible. This can be done straightforwardly by construct-
ing the noise in the horizontal direction only and then defining its vertical component by
integrating from bottom to the free surface its horizontal divergence, so that

σtdBz
t (x, z) = −

∫ z

ηb

∇H · σtdBH
t (x, ζ) dζ. (3.8)

For this reason, in the following the velocity fields will be denoted by u, indicating the
horizontal velocity in accordance to the splitting v = (u, w). The focus on this chapter is
on the procedure to create the different noise models, it is thus implied in the description
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of the noise ansatz that the vertical component is constructed starting from the horizontal
one in accordance with Equation (3.8).

3.3 Offline data filtering

If the aim is that of improving a coarse resolution simulation with respect to a higher
resolution, the target function f can be chosen as the residual between a coarse resolution
simulation and a fine resolution one. The high resolution data used to force the low
resolution stochastic model need to be filtered before being used, in order to avoid the
injection of energy scales that can jeopardise the stability of the simulation. The low
resolution velocity fluctuations are obtained through spatial filtering of high resolution
temporal fluctuations. First, a time average of type (3.6) is applied on the high resolution
fields as

uT
HR

(x, t) = 1
T

∫ t

t−T
uHR (x, s) ds, (3.9)

so to obtain with Reynolds decomposition the high resolution fluctuations:

u′
HR

(x, t) = uHR (x, t) − uT
HR

(x, t) . (3.10)

The corresponding low resolution fluctuations are obtained through a band-pass filter
B1,2 that is defined through a combination of two a Gaussian filters of type (3.7) (with
ϖ Gaussian weights) and a successive down-sampling to the low resolution grid as BLR

1,2 =
(GLR

1 − GLR
2 ), so that the fluctuations read

u′
LR

= (GLR
1 − GLR

2 )u′
HR
. (3.11)

This filtered and coarse grained field has a smaller amount of energy compared to the
original. In the case the energy level of the initial field has to be retained, a scaling can
be applied as

u′
LR

=

∥∥∥u′
HR

∥∥∥
2∥∥∥BLR

1,2u
′
HR

∥∥∥
2

BLR
1,2u

′
HR
, (3.12)

The result of this procedure sees the velocity fluctuations have the same spatial structure
as before but enhanced level of energy.
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3.4. Data decomposition

3.4 Data decomposition

The general formalism that will be adopted in the following sections is here introduced.
Let the time domain R+ be sampled with a uniform time discretization {tk = (k − 1) ∆t}nt

k=1.
The spatial domain Ω ⊂ Rd is sampled on a Cartesian grid xi ∈ Rn1×...×nd , with i ∈
(1, . . . , ns) a matrix linear index, such that ns = ncn1 · · ·nd and nc the number of
components of the system (nc = 1 for a scalar quantity, nc = 2 for a horizontal ve-
locity or nc = 3 for a three dimensional velocity). Observations of a random process
{d (x, t) , x ∈ Ω, t ∈ R+} over the Cartesian grid xi at times tk are collected into the
matrix D ∈ Rns×nt in such a way that the matrix reads

D =


d1 (x1) d2 (x1) . . . dnt (x1)

... ... ...
d1 (xns) d2 (xns) . . . dnt (xns)

 =


| | |
d1 d2 . . . dnt

| | |

 . (3.13)

Any decomposition aims at describing the process d as in separated variable form, that
means as the result of a spatial contribution ϕ, a temporal contribution ψ and an ampli-
tude σ, that is

D (x, t) =
rk(D)∑
r=1

σrϕr (x)ψr (t) , (3.14)

that in matrix notation becomes

D =
rk(D)∑
r=1

σrϕrψ
T
r = ΦΣΨT , (3.15)

where Σ = diag
(
σ1, . . . , σrk(D)

)
is the diagonal matrix containing the energy contribution

of each mode, while Φ =
[
ϕ1 (x) , . . . ,ϕrk(D) (x)

]
∈ Rns×rk(D) and Ψ =

[
ψ1 (t) , . . . ,ψrk(D) (t)

]
∈

Rnt×rk(D). Equation (3.15) shows that the operation that is performed is a projection of
the dataset onto the spatial basis Φ and a temporal basis Ψ, the former for the columns
of D, the latter for its rows. These temporal structures Ψ are prescribed, so to focus on
the time projection of the dataset and define Φ as

Φ =
(
D (ΨT)−1

)
Σ−1. (3.16)
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The energy content can be computed as

∥D∥2
F

= Tr (K) = Tr (C) =
rk(D)∑
r=1

λr (3.17)

where K = D†D ∈ Rnt×nt and C = DD† ∈ Rns×ns are finite dimensional estimators
of the two point temporal and spatial correlation tensors, with A† being the Hermitian
adjoint of A. In the previous equation, ∥D∥2

F
is the Frobenius norm of D, while λr is the

r−th eigenvalue of K and C. Inserting equation (3.15) in the previous, one obtains a
relation between the energy of the data and the spatial and temporal structures, that is

∥D∥2
F

= Tr
(
ΨΣΦ†ΦΣΨ†

)
= Tr

(
ΦΣΨ†ΨΣΦ†

)
=

rk(D)∑
r=1

λr (3.18)

that states that the matrix Σ provides an estimate of the energy of the data if and only
if the temporal and spatial structures are both orthogonal, that is Φ†Φ = Ψ†Ψ = I. To
enforce this property the spatial and temporal structures must have unitary energy. On
the assumed Cartesian grid and uniform temporal sampling the average energy of the
the spatial and temporal structures can be computed with discretized version of classical
norms as

∥ϕr∥2
2=

∫
Ω
ϕr (x)ϕr (x) dx, (3.19)

∥ψr∥2
2=

∫
T
ψr (t)ψr (t) dt, (3.20)

and thus the spatial and temporal structures should be scaled by respectively 1/
√

Ω and
1/

√
T to ensure ∥ϕr∥2= ∥ψr∥2= 1 in an domain-averaged sense. It follows that amplitudes

σr must be scaled by
√

ΩT in order to provide a decomposition that is independent from
the spatio-temporal domain of work. From Equations (3.14) and (3.15) it is clear that
taking the time average of the dataset corresponds to define one of the temporal structures
as ψ t = 1/√nt ∈ Rnt×1 so that one can write

D (x, t) = 1
nt

D (x, t) + D̆ (x, t) = σ tϕ
t (x)ψ t +

rk(D)−1∑
r=1

σ̆rϕ̆r (x) ψ̆r (t) , (3.21)

with D̆ de-trended dataset (i.e. D̆+D− 1
nt

D) and ϕ̆r and ψ̆r corresponding spatial and

temporal structures. ϕ t and σ t represent the spatial scale and energy of the time average.
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It is important to state that, even though in this dissertation a Cartesian grid and a
uniform sampling are used, thus justifying the framework introduced, a generalization to
non Cartesian grids or non uniform samplings is possible by adapting the discrete inner
products to include metric terms, or pre-scaling the data with metric terms.

3.5 Proper orthogonal decomposition (POD)

The proper orthogonal decomposition is introduced here in the general context of ap-
proximation theory following Chatterjee (2000), Rivlin (1969) and Cordier et al. (2003).
Obtaining a compact representation of data may be pursued with the multi-variate statis-
tical method known as proper orthogonal decomposition (POD). The target of the proce-
dure is to reduce the number of intercorrelated variables to a smaller set of uncorrelated
variables while retaining as much of the variation in the initial variables, that is finding a
representing subspace of fixed dimension which is optimal in the sense that the error in the
projection onto this subspace is minimized. This serves the twofold cause of order reduction
and feature extraction of the so called coherent structures. Let {d (x, t) , x ∈ Ω, t ∈ R+}
be a set of observations of a random process over a spatial domain Ω. A coherent struc-
ture, as defined by Lumley (1970), is a deterministic function ϕ which is best correlated,
on average, with the realizations of d. In other words, the functions ϕ are those functions
that possess the largest mean-square projection on the observations d, that is |⟨d,ϕ⟩|2.
The interest on the functions ϕ is in their spatial structures, so the amplitude of these
functions should not be of impact on the choice, hence they are chosen to be normalised
as ∥ϕ∥2 = 1 and the projection itself must be normalised by the norm of the the function.
One can define a subspace S spanned by a set of coherent structures ϕj, with j = 1, . . . , n
and thus defining the projection of d onto S as

P
S
d =

n∑
j=1

⟨d,ϕj⟩
∥ϕj∥2 ϕj (3.22)

and thus the minimization of the mean square projection of d onto S can be stated as

min
ϕ

∥d− P
S
d∥2 X

, (3.23)

where the overbar means averaging in some sense. In particular, proper orthogonal de-
composition is designed to minimize the number n of basis functions needed in equation
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(3.22).

3.5.1 Mathematical formulation

In this section, the development of Holmes, L., et al. (1996), C. W. Rowley (2002)
and C. Rowley (2005) is followed, describing the POD procedure in the context of general
Hilbert spaces. Let H be ah Hilbert space with inner product ⟨·, ·⟩H and induced norm
∥·∥H . The set of functions

{
ϕj (x) ∈ H : j = 1, . . . , n

}
is defined as the one that maximise

the X−averaged projection of d onto ϕ, that is

max
ϕ∈H

|⟨d,ϕ⟩H |2 X

∥ϕ∥2
H

, (3.24)

subject to the constraint ∥ϕ∥2= 1, to close the problem. A functional J [ϕ] can be defined
as

J [ϕ] = |⟨d,ϕ⟩H|2 X − λ
(
∥ϕ∥2

H
− 1

)
, (3.25)

including the constraint through a Lagrange multiplier. A Gateaux derivative is performed
to set to zero the infinitesimal variations ϕ+ ϵψ ∈ H, with ϵ ∈ R, that means

d
dϵJ [ϕ+ ϵψ] = d

dϵ
[

⟨d,ϕ+ ϵψ⟩H⟨d,ϕ+ ϵψ⟩H
X − λ⟨ϕ+ ϵψ,ϕ+ ϵψ⟩H

]∣∣∣∣∣
ϵ=0

= 2 ⟨d,ϕ⟩H⟨d,ψ⟩H
X − 2λ⟨ϕ,ψ⟩H = 0.

Assuming commutation is possible between the averaging · X and the inner product ⟨·, ·⟩H

one has 〈
⟨d,ϕ⟩Hd

X − λϕ,ψ
〉

H
= 0 (3.26)

corresponding to the eigenproblem
Rϕ = λϕ (3.27)

where Rϕ = ⟨d,ϕ⟩Hd
X . Considering the case where the Hilbert space H is L2, a natural

case in fluid mechanics as it represents functions with finite kinetic energy, the linear
operator Rϕ is

Rϕ = ⟨d,ϕ⟩
L2d

X =
∫

Ω
d (ξ, t)ϕ (ξ) dξ d (x, t)

X

=
∫

Ω
d (ξ, t)d (x, t) X

ϕ (ξ) dξ.
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that is the X−averaged two points autocorrelation function of d. The functions are or-
thogonal in the sense that ∫

Ω
ϕj (x)ϕk (x) dx = δjk, (3.28)

It is crucial to notice that the temporally averaged quantity corresponds to the two
points auto-correlation function of the signal. An orthogonal transformation is performed
to project the data onto the subspace generated by the eigenvectors of the sample covari-
ance matrix. This gives the optimal linear manifold approximating the data, in the sense
that it minimizes the average squared distance between the original signal and its reduced
linear representation.

3.5.2 Properties of the decomposition

In the following, properties of the proper orthogonal decomposition are listed. The
proves of these statements are now classical and can be found in the literature.

— For a given a bounded domain, Hilbert-Schmidt theory applies and states that the
eigenproblem has a denumerable set of solutions satisfying

d∑
j=1

∫
Ω
Rij (x,x′)ϕ(n)

j (x′) dx′ = λ(n)ϕ
(n)
i (x) (3.29)

where λ(n) and ϕ(n)
i represent respectively the eigenvalue and eigenfunction of order

n ≥ 1. Each eigenfunction is solution of the maximization problem (3.24) with the
additional constraint of being orthogonal to all previous eigenfunctions.

— R can be shown to be self-adjoint and non negative, so that all eigenvalues are
positive, real and converging, that is

λ(1) ≥ λ(2) ≥ λ(3) ≥ . . . ≥ 0, with
∞∑

n=1
λ(n) < +∞. (3.30)

— The set of eigenfunction ϕ(n) form a complete orthogonal set, meaning that almost
every member of the set {d (x, t) , x ∈ Ω, t ∈ R+} can be reconstructed as

d (x, t) =
∞∑

n=1
α(n) (t)ϕ(n) (x) (3.31)

where α(n), projections of d onto ϕ, can be computed through the orthogonality
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of the eigenfunctions ϕ as

α(n) (t) = ⟨d,ϕ⟩H =
d∑

i=1

∫
Ω
ui (x, t)ϕ†(n)

i (x) dx. (3.32)

— Mercer’s theorem: the two points correlation tensor Rij can be written as a uni-
formly convergent series

Rij(x,x′) =
∞∑

n=1
λ(n)ϕ

(n)
i (x)ϕ†(n)

j (x′) . (3.33)

— Stemming from the diagonal representation of Rij, the decomposition of d on the
eigenfunctions ϕ and their orthogonality, one has that

α(n)α†(m)X = δnmλ
(n), (3.34)

that means that the coefficients α(n) are mutually uncorrelated and their mean
square value are the eignevalues themselves.

— From Mercer’s theorem and orthonormality of ϕ(n) one can write

d∑
i=1

∫
Ω
Rij (x,x′) dx =

∞∑
n=1

λ(n) = E, (3.35)

where E represents in the case of fluids with velocity field d, the Turbulent Kinetic
Energy (TKE) integrated over the domain Ω.

3.5.3 Algorithmic approach

Starting from the the formalism introduced in section 3.4, the experimental data is
organized into a matrix Di,k as explained in equation (3.13). The temporal correlation
matrix K = D†D ∈ Rnt×nt is then computed as

Kij =
∫

Ω
d† (x, ti)d (x, tj) dx. (3.36)

The eigen-problem
KΨ = ΨΣ (3.37)
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3.5. Proper orthogonal decomposition (POD)

Figure 3.1 – Outline of the POD noise generation procedure

is then solved in order to define the temporal structures ψ (t). The corresponding spatial
structures are then computed by projection of the data on these temporal structures, that
means

ϕi (x) = 1
T

∫
T
d (x, t)ψi (t) dt (3.38)

3.5.4 Noise ansatz

Employing POD on a set of velocity fluctuations of type (3.11) or (3.12) produces a set
of velocity modes {ϕj (x) , λj, j = 1, . . . , N} that can be used to define the noise ansatz
as

σ (x) dBt =
√
τ

N∑
k=1

λ
1/2
k ϕk (x) dβk

t (3.39)

with associated variance tensor computed as

a (x) = τ
N∑

k=1
λkϕk (x)ϕT

k (x) . (3.40)

If a non centred noise of type (2.11) is considered favourable, the time average u t that was
removed from the initial data can be re-inserted in the simulation through the Girsanov
correction, defining thus the noise as

σ (x) dBt = −u t (x) dt+
√
τ

N∑
k=0

λ
1/2
k ϕk (x) dβk

t , (3.41)
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where σtYt in (2.11) is defined as u t.

3.6 Dynamical mode decomposition (DMD)

Dynamical Mode Decomposition is a technique that aims at providing informations
about the dynamics of a flow. Assuming that a non-linear dynamical system of the kind

dx (x0, t)
dt = f (x (x0, t)) , (3.42)

this methodology, introduced by Schmid et al., 2008, constructs a proxy linear dynamical
system

dx
dt = Ax (3.43)

with initial condition x (0) to describe the unknown non-linear dynamics. This linear
system has a known analytical solution

x (t) =
N∑

k=1
ϕk exp (µkt) bk = Φ exp (M t) b, (3.44)

with ϕk ∈ Cd and µk ∈ C the eigenvectors and eigenvalues (with corresponding matrices
Φ and M ) of the matrix A, and bk ∈ C the projection of the initial state x0 on the eigen-
vector basis (Sacco et al., 2020; Wu et al., 2021). The method identifies spatio-temporal
coherent structures in high dimensional data, and it combines the favourable features of
proper orthogonal decomposition in space and Fourier transform in time. The underlying
mathematical formulation of this mode extraction from the time-resolved snapshots is
closely related to the Arnoldi’s algorithm (C. W. Rowley et al., 2009), with the advantage
of being an equation-free procedure. In practice, DMD is based on a set of snapshots or
measurements of a system in time, and it is completely data driven, with no additional
assumptions on the underlying dynamics. Moreover, the DMD algorithm is tightly related
to the spectral analysis of the Koopman operator, that is defined for every linear system
(C. W. Rowley et al., 2009). Given Equation (3.44) it is possible to describe an analogous
discrete-time system sampled at every ∆t such as

xk+1 = Axk (3.45)
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with A = exp (A∆t), discrete map analogous to the continuous flow A. The solution of
this system may be expressed as

xk =
r∑

j=1
ϕjλ

k
j bj = ΦΛkb, (3.46)

where bk is again the projection of the initial state on the eigenvector basis, x1 = Φb, with
λj = exp (µjt). The DMD involves approximating the eigendecomposition of the best-fit
linear operator A that relates a state xj at time tj to the state xj+1 at the next timestep:
The DMD algorithm is designed to produce a low-rank eigenvalue decomposition (3.46)
of the matrix A that optimally fits the measured trajectory xk for every k = 1, 2, . . . ,m
in a least square sense, so that

∥xk+1 − Axk∥2 (3.47)

is minimized across all points for k = 1, 2, . . . ,m− 1.

3.6.1 Algorithmic approach

Algorithmically speaking, two matrices are defined as

D =


| | |
d1 d2 . . . dm−1

| | |

 , D′ =


| | |
d′

1 d′
2 . . . d′

m−1

| | |

 , (3.48)

where d′
k = F (dk). Thanks to the local linear approximation one has that D′ ≈ AD. The

best linear fit to A is given by
A = D′D‡ (3.49)

where D‡ is the Moore-Penrose pseudo-inverse. This solution minimizes the error defined
as

∥D′ − AD∥
F
, (3.50)

∥·∥
F

being the Frobenius norm. DMD circumvents the eigendecomposition of A by con-
sidering a rank-reduced representation in terms of a POD-projected matrix Ã.

— Take the singular value decomposition (SVD) of D

D ≈ UΣV†, (3.51)
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where † denotes the complex conjugate transpose, U ∈ Cn×r, Σ ∈ Cr×r, V ∈ Cm×r

and r is the rank of the reduced SVD approximation to D. The SVD reduction
is exploited at this stage to perform a low-rank truncation of the data, meaning
that if a low-dimensional structure is present in the data the singular values Σ will
decrease sharply showing a limited number of dominant modes.

— The matrix A may be obtained by using the pseudoinverse of D obtained via SVD
as

A = D′VΣ−1U†, (3.52)

but it is preferred to project the matrix A onto POD modes as

Ã = U†AU = U†D′VΣ−1. (3.53)

— Compute the eigendecomposition of Ã as

ÃW = WΛ, (3.54)

where columns of W are eigenvectors and Λ is the diagonal matrix containing the
eigenvalues λk.

— The eigendecomposition of A is reconstructed from W and Λ. In particular, the
eigenvalues of A are given by Λ and the eigenvectors of A are given by the columns
of Φ:

Φ = D′VΣ−1W. (3.55)

— The values bk can be computed as

b = Φ‡x1. (3.56)

The modes defined in (3.55) are called exact DMD modes, as it was proven in Tu et
al. (2014) that these are the exact eigenvectors of the matrix A.

3.6.2 Modes splitting (correlated vs. uncorrelated)

When the initial data are real valued fields, the eigenvectors, eigenvalues and ampli-
tudes will be real or two-by-two complex conjugate, that is ϕ2p = ϕ2p+1. Following the
successful proposition of Li, Mémin, et al. (2022), we split the DMD modes into correlated
and uncorrelated modes in order to define the Girsanov drift through the slow component
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Figure 3.2 – Illustration of the selection of the DMD modes. On the left, frequencies
of the modes are plotted on the unitary circle; they are coloured differently to represent
their characteristic physical time scale. At this point, a threshold τc = 25d is chosen
to differentiate the correlated from the uncorrelated modes. On the right, over violet
background are plotted the correlated modes, over orange background the uncorrelated
modes. The amplitude threshold for the correlated mode Cc is set to zero, while for
uncorrelated modes Cu is set to 2. The grey dots represent the set of uncorrelated modes
below this threshold, that are thus discarded.

of the dynamics and the random noise through the fast component. The eigenvalue µm

of Equation (3.44) can be split as µm = σm + iωm, where the real part σm is the growth
rate of the mode and ωm is the periodic frequency of the mode m. The two sets of modes,
Mu for the uncorrelated noise and Mc for the correlated part are defined as

Mu =
{
m ∈ [1, N ] : |µm| ∼ 1, |ωm| > π

τc

, |bm| ≥ Cu
}
, (3.57)

Mc =
{
m ∈ [1, N ] : |µm| ∼ 1, |ωm| ≤ π

τc

, |bm| ≥ Cc
}
, (3.58)

where τc is a temporal separation scale between correlated and uncorrelated (usually set to
a value for which a spectral gap is observed and fixed here to two months) and Cu, Cc are
empirical cut-off of amplitudes. A visual representation of the aforementioned procedure
is given in Figure 3.2.
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Figure 3.3 – Outline of the DMD noise generation procedure

3.6.3 Oblique projection onto of the modes

As the DMD modes are not orthogonal, a scaling is applied to avoid spurious effects
and to make sure that the reconstructed data corresponds to an orthogonal projection
onto the subspaces spanned by the set of modes contained in Mu and Mc. The procedure
reads as follow:

— Construct the Gramian matrix G of components gm,n = ⟨ϕm,ϕn⟩H , with m,n ∈
M;

— Invert the Gramian matrix and compute the dual set of modes Φ∗ = G−1Φ;
— Define the amplitudes as the initial state data on the dual set of modes: φm =

⟨d (x, t0) ,ϕ∗
m⟩Hϕm.

Such procedure is applied for M = Mu and M = Mc separately.

3.6.4 Noise ansatz

The dynamical mode decomposition is applied on a set of velocity fluctuations of type
(3.11) or (3.12), so that a discrete-time proxy linear system is defined as

u′ (x, ti+1) ≈ Au′ (x, ti) . (3.59)
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Such (finite dimensional) linear dynamical system is known to have a general solution:

u′ (x, t) =
N∑

m=1
bm exp (µmt)ϕm (x) , (3.60)

where ϕm (x) ∈ Cd are the eigenvectors of A associated to the eigenvalues µm ∈ C and
bm ∈ C are amplitudes. In particular µm = σm + iωm, the real part σm is the growth rate
of the mode and ωm is the periodic frequency of the mode m. The noise ansatz is thus

σtdBt (x) =
√
τ
∑

m∈Mu

exp (iωmt)φm (x) dβm, (3.61)

with associated stationary variance tensor

a (x) = τ
∑

m∈Mu

φm (x)φ†
m (x) . (3.62)

In Equations (3.61) and (3.62) τ is the process decorrelation time. Moreover, through the
mode splitting procedure exposed in Section 3.6.2 the Girsanov drift can be naturally in-
troduced in terms of the correlated, slowly varying component of the velocity fluctuations
and time average as

σtYt (x) = u t (x) +
∑

m∈Mc

exp (iωmt)φm (x) , (3.63)

so that the Girsanov noise is defined as

σtdBt (x) = −
[
u t (x) +

∑
m∈Mc

exp (iωmt)φm (x)
]

dt+
√
τ
∑

m∈Mu

exp (iωmt)φm (x) dβm.

(3.64)
Each (eigen) frequency ωn comes in pairs and each pair of complex Brownian motion are
conjugates. The real and imaginary parts of the Brownian motion are independent. As
such, both the noise and Girsanov drift are real-valued fields.

3.7 Pseudo-observations POD noise (PSO)

When dealing with eddy-resolving resolution simulation, a data driven approach might
increase dramatically the memory footprint of the method, even if relying on order reduc-
tion procedures. For this reason, a data-free approach is worth exploring. The proposed
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methodology relies on the application of a proper orthogonal decomposition to a set of
pseudo-observations constructed from the current time velocity. A pseudo-observation of
a given field at the point x is defined as the observation of that field in a second point
y lying in a neighbourhood of x. More formally, given two points, x and y such that
|x − y| < δ, one can assume that the observation of the field u at the two different
points, u (x, t) and u (y, t), will be close in their statistics. A set of observations over a
set of points {yi}

N
i=1 can therefore be considered as an ensemble of possible observations

carrying the statistics of the point x. This assumption can be considered as a form of
self-similarity in space. We define the neighbourhood x as the set of points such that
|x − y| < δ and denote it with ν (x), in this way the pseudo-observation of the velocity
fluctuations can be constructed as

ũ′ (x, z, t) = u (y, z, t) − 1
|ν (x)|

∫
ν(x)

u (ξ − y, z, t) dξ (3.65)

where y ∈ ν (x) is chosen uniformly in the neighbourhood, i.e. y ∼ U [ν (x)]. A set of
N pseudo-observations for the velocity fluctuation is thus defined as {ũ′

i (x, z, t)}N
i=1 over

the set of points {yi}
N
i=1. This procedure can be applied to all points of the domain being

wary of sampling different of yi at every x, meaning that given two points, x(1) and x(2),
y

(1)
i and y(2)

i are independent random variables. In the discrete case, given a field u (x, t),
one constructs a set of pseudo-observations of the fluctuations {ũ′

i (x, t)}N
i=1 at each point

x as illustrated before, where ν (x) is now the set of neighbouring points of x, the integral
is replaced with summation and the measure of ν is the integer measure.

3.7.1 Noise ansatz

The application of a proper orthogonal decomposition to the set of pseudo-observations
{ũ′

i (x, t)}N
i=1 provides a set of orthogonal modes {ϕi}

N
i=1 that can be used to construct

the noise as
σtdBt (x) =

√
τ

N∑
k=1

λ
1/2
k (t)ϕk (x, t) dβk (3.66)

and variance tensor defined as

a (x, t) = τ
N∑

k=1
λkϕk (x, t)ϕT

k (x, t) . (3.67)
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Figure 3.4 – Outline of the pseudo-observation noise generation procedure

The pseudo-observations generated with the aforementioned practice can be thought as
corresponding to a virtual observation at a scale L, characteristic of the neighbourhood
ν (x), and must be related to the simulation length scale ℓ. Harouna et al., 2017 proposes
the scaling

aℓ =
(
ℓ

L

)2/3

aL, (3.68)

based on the Kolmogorov-Richardson cascade assumption. A further manipulation leads
to the definition of the scaling in terms of the integer patch size (i.e. the value N such
that L2 = Nℓ2) so to find

aℓ =
(√

N
)2/3

aL. (3.69)

Finally, the noise ansatz reads

σtdBt (x) =
√
τ
(√

N
)1/3 N∑

k=1
λ

1/2
k (t)ϕk (x, t) dβk (3.70)

and variance tensor is defined as

a (x, t) = τ
(√

N
)2/3 N∑

k=1
λkϕk (x, t)ϕT

k (x, t) . (3.71)

3.8 Wavelet based noise (WLT)

A wavelet is a short-lived wave-like oscillation that is localized in time (or space).
Wavelet processing has the characteristic of combining data processing in the time (or
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space) domain and in the frequency domain, with a reasonable trade-off. The forward
wavelet transform decompose the signal from the time (or space) domain to its represen-
tation in the wavelet basis, an oscillatory waveforms that reveal many signal properties
and provide a sparse representation (Daubechies, 1992). Conversely, the inverse transform
reconstruct the signal from its wavelet representation back to the time (spatial) domain.
This operation is done through a function Φ (t), called mother wavelet, such that it is of
zero mean (admissibility condition) and finite energy (localization condition), i.e.

∫
R

Φ (t) dt = 0 and
∫
R
|Φ (t)|2 dt < +∞. (3.72)

This function is characterized further by two parameters, the shifting parameter s that
translates the wavelet along the input signal and the scale parameter c that compresses
or dilates the mother wavelet, so that the general form of Φ is:

Φs,c (t) = 1
|s|1/2 Φ

(
t− τ

s

)
. (3.73)

Chosen a scale s and a shifting τ , the value of the wavelet coefficient provides a quantifi-
cation of the goodness of fit of the wavelet to the original signal, that is the scalar product
between the original signal f and the scaled and translated wavelet

⟨f,Φs,c⟩ (s, t) =
∫
R
f (τ) 1

|s|1/2 Φ
(
t− τ

s

)
dτ. (3.74)

The set of wavelet coefficients is thus indexed by position in time (or space) and by the
scale coefficient chosen. The inverse wavelet transform is defined as

f (t) =
∫
R

∫ ∞

0
⟨f,Φs,c⟩ (s, τ) 1

|s|1/2 Φ
(
t− τ

s

) ds
s2 dτ, (3.75)

that requires an integration on all the scales, expressing a zero information loss. Further-
more, in Fourier space the wavelet transform can be written as

⟨f,Φs,c⟩ (s, t) =
√
s
∫
R

[
e2iπωtΦ̂ (sω) f̂ (ω)

]
dω (3.76)

which characterizes the wavelet transform as a bandpass filter, with Φ̂ (sω) characterizing
the shape of the filter. This formula also provides a mean of implementing the continuous
wavelet transform.
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3.8.1 Mathematical formulation of discrete wavelet transform
(Multiresolution analysis)

Of all the possible implementations of the wavelet transform, the fast wavelet transform
introduced by Mallat (1999) was chosen for its ease of implementation through filter banks
and multiresolution analysis. The underlying idea is that of constructing approximations
fj of the function f (t) at different scales j. The amount of information needed to go
from a coarse approximation fj to a finer approximation fj+1 is then described using
orthogonal wavelets. Define Vj as the space of scale 2j, meaning that it contains samples
at a frequency 2j. In other words, Vj ⊂ L2 (R) is the set of functions fj in L2 (R) whose
details are well represented at the scale 2j. Assume then that there exists a function
ϕ ∈ L2 (R) such that the family of scaled and shifted functions

ϕj,k (t) = 2−j/2ϕ
(
2−jt− k

)
, j, k ∈ Z (3.77)

is an orthonormal basis of Vj. This equation is the discretization of equation (3.73) with
s = 2j, for j ∈ Z. The function ϕ is called the scale function of the multiresolution
representation. A multiresolution representation in L2 (R) is a sequence of closed subspaces
Vj, j ∈ Z, of L2 (R), satisfying the following properties:

— Vj ⊂ Vj−1;
— f ∈ Vj if and only if f (2t) ∈ Vj−1;
— ⋂

j∈Z Vj = ∅;
— ⋃

j∈Z Vj = L2 (R);
— there exists a function ϕ ∈ V0 such that the subspace V0 is spanned by the or-

thonormal basis of the shifting {ϕ (t− k) ; k ∈ Z} of ϕ.

The first two conditions are of simple explanation, as increasing the j the sampling rate
increases and the functions that were representable in the space scale Vj−1 will also be
representable in the scale space Vj, and this can be expressed also by the second condition,
since scaling f of a factor of two will reduce the detail width of 1/2, thus moving f to a
finer subspace. This also means that all subspaces are scaled version of space V0, of which
ϕ and its shiftings are an orthonormal basis. Finally, the ambient set L2 (R) contains
all the possible scales, and the only function representable at all scales is a constant
function, provided that this constant is zero due to the need of being square integrable.
The representation operator for each scale space Vj is given by the orthogonal projection
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over Vj, that is

ΠVj
: L2 (R) → Vj

f → Π
Vj

(f) =
∑
n∈Z

⟨f, ϕj,n⟩ϕj,n

that has also good convergence properties. From this definition it follows the characteri-
zation of the detail space Wj as the orthogonal complement of Vj, that is Vj−1 = Vj ⊕Wj.
Moreover, for every j ̸= k the two spaces Wj and Wk are orthogonal, so fixed an arbitrary
index J0 and for every j < J0 one has

Vj = VJ0 ⊕
J0−j⊕
k=0

WJ0−k (3.78)

and consequently L2 (R) = ⊕
j∈ZWj, i.e. the whole space can be spanned with the orthog-

onal basis of Wjs. Here, we assume that a wavelet function ψ is contained in W0 and that
the set of shifted wavelets {ψ (t− k) , k ∈ Z} spans W0. It follows that the set of wavelets

ψj,k (t) = 2−j/2ψ
(
2−jt− k

)
, j, k ∈ Z (3.79)

is an orthonormal basis of Wj, since every Wj inherits the scaling properties of Vj. The
representation operator of a given function f ∈ L2 (R) is given again by Galerkin projec-
tion

ΠWj
: L2 (R) → Wj

f → Π
Wj

(f) =
∑
n∈Z

⟨f, ψj,n⟩ψj,n.

It follows from (3.78) that the representation of a given function f on Vj can be written
as

Π
Vj−J0

(f) = Π
Vj

(f) + Π
Wj−1

(f) + . . .+ Π
Wj−J0

(f) (3.80)

that means that the projection over Vj−J0 is obtained summing the projections over the
spaces Wj−1 . . . Wj−J0 and the projection over Vj, that can be thought as a repeated
projection over the spaces Vj−1, . . . , Vj−J0 . The two functions ϕ and ψ can be related
together through the so called two-scale relation. Considering ϕ the scale function of the
multiresolution representation, one has that ϕ ∈ V0 ⊂ V−1, so one can write ϕ as spanned
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by the orthonormal basis ϕ−1 of V−1, that is

ϕ (t) =
∑
k∈Z

hkϕ−1,k =
√

2
∑
k∈Z

hkϕ (2x− k) (3.81)

with hk = ⟨ϕ, ϕ−1,k⟩ = ⟨ϕ (t) , 2ϕ (2t− k)⟩. Similarly, the wavelet ψ belongs to W0 and,
since V−1 = V1 ⊕W0, ψ ∈ V−1, therefore

ψ (t) =
∑
k∈Z

gkϕ−1,k =
√

2
∑
k∈Z

gkϕ (2x− k) (3.82)

where gk = ⟨ψ, ϕ−1,k⟩ = ⟨ψ (t) , 2ϕ (2t− k)⟩. Functions ϕ and ψ verify the following rela-
tion where sequences hk = ⟨ϕ (t) , 2ϕ (2t− k)⟩ and gk = ⟨ψ (t) , 2ϕ (2t− k)⟩ are called
conjugate mirror filters. Consider a subspace V0 and the ladder of nested subspaces
. . . ⊂ V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ . . ., with all Vj scaled version of the V0. One can de-
fine the difference subspace Wj as the orthogonal complement of Vj and Vj−1, that is
Vj = Vj+1 ⊕ Wj+1. With this one can also represent the space of square integrable func-
tions over the real line as

L2 (R) =
⊕
j∈Z

Wj (3.83)

and thus represent any function f ∈ L2 (R) as the sum of its projections over each Wj,
that is

f =
∑
j∈Z

Π
Wj

(f) (3.84)

where Π
Wj

(·) is the orthogonal projection over the space Wj. From the definition of the
space Wj one can however express every function fj ∈ Vj as

fj = Π
Vj+1

(f) + Π
Wj+1

(f) . (3.85)

Define {ϕj,n; n ∈ Z} as the set of basis functions for Vj and {ψj,n; n ∈ Z} as the set of
basis functions for Wj, then the projection operators can be represented as

Π
Vj

(f) =
∑
n∈Z

⟨f, ϕj,n⟩ϕj,n =
∑

n

(∫
R
f (t)ϕj,n (t) dt

)
ϕj,n (3.86)

Π
Wj

(f) =
∑
n∈Z

⟨f, ψj,n⟩ψj,n =
∑

n

(∫
R
f (t)ψj,n (t) dt

)
ψj,n (3.87)
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Wavelet analysis is now provided by the recursive application of this multiresolution
concept as a function fj is represented as the sum of the projections over the spaces
Wj+1, . . . ,Wj+N and a residual given by Vj+N as

fj = Π
Vj+N

(f) + Π
Wj+N

(f) + . . .+ Π
Wj+2

(f) + Π
Wj+1

(f) . (3.88)

Wavelet synthesis can be also deduced from this formula, as Wj ⊂ Vj−1 and Vj ⊂ Vj−1 and
thus one can reconstruct the function by proceeding backwards with no loss of information.

w (t) =
2C−1∑
k=0

⟨w, ϕC,k⟩
L2ϕC,k (t) +

F∑
j=C

2j−1∑
k=0

⟨w,ψj,k⟩
L2ϕj,k (t) (3.89)

In the previous equation {ϕC,k}k and {ψj,k}k are orthonormal bases of VC and Wj respec-
tively and they are defined by dilatations and translations of the so called scale function
ϕ and corresponding wavelet function ψ.

3.8.2 Algorithmic approach

Algorithmically speaking, the application of the direct wavelet transform boils down
to a matrix vector product with the matrix W defined as

W =



hd hd−1 . . . h2 h1 0 . . . 0 0
gd gd−1 . . . g2 g1 0 . . . 0 0
0 0 hd hd−1 . . . h2 h1 0 . . . 0 0
0 0 gd gd−1 . . . g2 g1 0 . . . 0 0
... ... ...

hd−2 . . . h1 0 . . . hd hd−1

gd−2 . . . g1 0 . . . gd gd−1


, (3.90)

and the input vector x. The application of the inverse wavelet transform is the matrix-
vector product of the transformed vector y and the inverse of W, that is W−1 = WT,
being the wavelet family orthogonal and so the matrix W. Two aspects of the construction
of the matrix W must be looked up closely: the row-wise alternation between high-pass
and low pass filtering and the circulant nature of W in the last two rows. This latter aspect
can be avoided by extending the matrix instead of wrapping it. Regarding the former
aspect, care is usually put to separate the result of the two filters in two different parts
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of the output vector, introducing a complexity in the algorithm given by the necessity
of storing the data in the correct place and in the selection of the correct data in the
reconstruction. These two aspects are crucial when designing a wavelet filter operating
on spatial data that cannot be accessed completely but are split into sub-domains in a
domain decomposition approach. In particular, if physically meaningful, wrapping of data
is allowed only on global boundaries, meaning that interior subdomains should access
their neighbouring domains data rather than wrapping the data that they can locally
access. Furthermore the filtering and decimation strategy of the multi-resolution analysis
is difficult to port to data that do not come in power-of-2 length. These aspects where
closely studied in order to implement correctly the wavelet filter bank.

Algorithm 1 Multilevel wavelet algorithm
procedure wavelet(x,y,n,l)

s = 0
if direct transform then ▷ Direct wavelet transform

m = n
while s < l do

y(1:m) = single_level_wavelet(x, W, "dir")
m = m/2
s = s+ 1

end while
else if Inverse transform then ▷ Inverse wavelet transform

m = n/2l

while s < l do
x(1:m) = single_level_wavelet(y, W, "inv")
m = m ∗ 2
s = s+ 1

end while
end if

end procedure

3.8.3 Noise ansatz

The wavelet analysis is applied to a snapshot of the velocity fluctuations, u′, computed
with respect to a local average of type (3.7). The result of this operation is a set of details
⟨u′,ψC,k⟩

L2 and a large scale component ⟨u′,ϕC,k⟩
L2 . These fields are then randomised

with a set of Brownian motions βt defined on the wavelet coefficients grid, so that the
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Algorithm 2 Single level wavelet algorithm
function single_level_wavelet(sig,W,direction)

m = len(sig)
p = len(W) - 1
q = ( p - 1 ) / 2
if direction = dir then ▷ Direct wavelet transform

i = 1 ▷ Position in the output vector
initialize working array z up to m
for j = 1, m - 1, 2 do ▷ Loop on the input vector

for k = 0, p - 1, 2 do ▷ Loop on convolution filter weights
j0 = i4_wrap ( j + k, 1, m )
j1 = i4_wrap ( j + k + 1, 1, m )
z(i) = z(i) + W( k) * sig(j0) + W( k+1) * sig(j1)
z(i+m/2) = z(i+m/2) + W(p-k) * sig(j0) - W(p-k-1) * sig(j1)

end for
i = i + 1 ▷ Advance in the output vector

end for
return y = z

else if direction = inv then ▷ Inverse wavelet transform
j = 1 ▷ Position in the output vector
initialize working array z up to m
for i = - q + 1, m / 2 - q do ▷ Loop on the input vector

for k = 0, p - 1, 2 do ▷ Loop on convolution filter weights
i0 = i4_wrap ( i + k / 2, 1, m / 2 )
i1 = i4_wrap ( i + m / 2 + k / 2, m / 2 + 1, m )
z(j) = z(j) + W(p-k-1) * sig(i0) + W(k+1) * sig(i1)
z(j+1) = z(j+1) + W(p-k) * sig(i0) - W(k) * sig(i1)

end for
j = j + 1 ▷ Advance in the output vector

end for
return x = z

end if
end function
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Figure 3.5 – Outline of the wavelet noise generation procedure

noise wavelet ansatz can be defined as

σtdBt (x) =
2C−1∑
k=0

⟨u′
(t),ϕC,k⟩

L2 dβC,k
t ϕC,k (x)

+
F∑

j=C

2j−1∑
k=0

⟨u′
(t),ψj,k⟩

L2 dβj,k
t ϕj,k (x) . (3.91)

The subscript (t) emphasizes that the wavelet processing is applied to the current-state
n of the simulation. The first component of the noise represents the randomised large
scale dynamics, and is set to zero to represent the small scale features only and perform
a spatial Reynolds-like decomposition. The definition of the variance tensor can then be
based on the definition of the details. Such type of noise terms can easily be shown to be
well defined. It is spatially regular and its regularity is given by the choice of the wavelet
basis. The wavelet transform conveys a natural multi-resolution structure to the noise as
well as a natural notion of spatial scale at each level of the multi-resolution hierarchy.
Alternatively, the wavelet analysis is applied to a snapshot of the velocity u and then
synthesis is applied only to the set of details, randomized with the set of Brownian motions
βt, that is

σtdBt (x) =
F∑

j=C

2j−1∑
k=0

⟨u(t),ψj,k⟩
L2 dβj,k

t ϕj,k (x) . (3.92)
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as in this case the spatial filtering is done by removing the large scale component recog-
nised by the wavelet analysis instead that with a filtering of type (3.7). The definition of
the variance tensor in this case remains open to discussion.

3.9 Vertical profile prescription noise (VPP)

An efficient way to construct a noise that does not rely on data is that of applying
directly the definition of the noise as given in Equation (3.1),

σtdBi
t (x, z) = c (x, z)

∫
Ω
σ̆ik (x,y, t) dBk

t (y) dy, i, k = 1, 2. (3.93)

In the previous equation, it has to be remarked that x and y are only horizontal. The
function c (x, z) is a vertical profile that is imposed on the noise to provide to it a connec-
tion with the current state of the flow. The integral kernel σ̆ is chosen to have a simple
Gaussian structure on the horizontal, such as

σ̆ik (x,y, t) = 1√
2πd

exp
[
−|x− y|2

2d2

]
:= σ̆d (x,y) , ∀i, k = 1, 2, (3.94)

of a given width d. This filter is applied to a set of Brownian motions dBt defined on the
computational grid. The associated variance tensor a is diagonal and defined as

a (x, z) =


α (x, z) 0 0

0 α (x, z) 0
0 0 β (x, z)

 , (3.95)

where

α (x, z) = c2 (x, z) δijdt
∫

Ω
σ̆2

d (x,y) dy,

β (x, z) =
k∑

n=1
hnc

2 (x, n) dt
∫

Ω
(∂iσ̆d (x,y))2 dy.

The vertical profile can follow any shape. In particular, the chosen approach is that of
computing a normalised profile for the vertical kinetic energy as

c (x, z) = 1
∥c (x, z)∥

1
η − ηb

∫ z

ηb

[
1

|ν (x)|

∫
ν(x)

w (ξ, t) dξ
]2

dζ, (3.96)
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Figure 3.6 – Outline of the VPP noise generation procedure

where the spatial average increases the stability of the method by removing too small
variations.

Explicit definition of the quadratic variation

In this section the explicit computation of the quadratic covariation terms is performed. The term
σdBi,k

t will represent the i−th component of the noise at level k. In the following, the system has been
discretized in the vertical for convenience, substituting the continuous formulation (3.8) with its discrete
counterpart. The purely horizontal terms read:

⟨σdBi,k,σdBj,k⟩t = c2 (x, z) ⟨
∫

Ω
σ̆d (x,y) dBi,k (y) dy,

∫
Ω

σ̆d (x,y′) dBj,k (y′) dy′⟩t

= c2 (x, z)
∫

Ω

∫
Ω

σ̆d (x,y) σ̆d (x,y′) d⟨Bi,k (y) , Bj,k (y′)⟩t︸ ︷︷ ︸
δ(y−y′)δijdt

dydy′

= c2 (x, z) δijdt

∫
Ω

σ̆2
d (x,y) dy := α (x, z) dt.

Mixed horizontal-vertical terms read:

⟨σdBi,k,σdBz,k⟩t = ⟨c (x, k)
∫

Ω
σ̆d (x,y) dBi,k (y) dy, −

k∑
ℓ=1

hℓc (x, ℓ) ∂j

∫
Ω

σ̆d (x,y′) dBj,k (y′) dy′⟩t

= −
k∑

ℓ=1
hℓc

2 (x, ℓ)
∫

Ω

∫
Ω

σ̆d (x,y) ∂j σ̆d (x,y′) d⟨Bi,k (y) , Bj,ℓ (y′)⟩t︸ ︷︷ ︸
δ(y−y′)δijδkℓdt

dydy′

= −hkc2 (x, k) dt

∫
Ω

σ̆d (x,y) ∂iσ̆d (x,y) dy = 0,
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where the last result stems from the fact that integrating a symmetric function as σ̆d (x,y) against an
antisymmetric function as ∂iσ̆d (x,y) should give zero as a result. Finally, the last term reads

⟨σdBz,k,σdBz,k⟩t = ⟨−
k∑

n=1
hnc (x, n) ∂i

∫
Ω

σ̆d (x,y) dBi,n (y) dy, −
k∑

m=1
hmc (x, m) ∂j

∫
Ω

σ̆d (x,y′) dBj,m (y′) dy′⟩t

= −
k∑

n=1

k∑
m=1

hnhmc (x, n) c (x, m)
∫

Ω

∫
Ω

∂iσ̆d (x,y) ∂j σ̆d (x,y′) d⟨Bi,n (y) , Bj,m (y′)⟩t︸ ︷︷ ︸
δ(y−y′)δijδnmdt

dydy′

=
k∑

n=1
hnc2 (x, n) dt

∫
Ω

(∂iσ̆d (x,y))2 dy := β (x, z) dt.

3.10 Isopycnal projection

The noise models presented so far can be classified in two main classes: offline data
models and online data models. The latter use available data from the current simulation
to tie the noise to the solution itself. The former, offline data models, are suitable for
introducing an external information in a simulation, but this information is not tied to
the current state and thus it is poses a risk and a challenge. To provide a link between the
external data and the current simulation the idea of constraining the noise to live onto
isopycnal surfaces is borrowed from classical approaches (see the short discussion given in
Section 1.4). After construction with the offline data through Equations (3.39) or (3.64),
the noise σt,θdBt is constrained to live on the tangent space of the isopycnal surfaces.
This procedure is operationally implemented as the application of an isopycnal projection
operator Pρ

Pρ = I − ∇ρ (∇ρ)T

|∇ρ|2
(3.97)

to the noise. Being the density function of temperature and salinity, ρ = ρ (T, S, z), the
isopycnal projection operator carries information about the current state of the simulation.
The projected noise σtdBρ

t (x) = Pρ σtdBt (x) is thus strongly tied to the evolution of the
flow density. This technique has also the strong benefit of stabilising the noise, so that a
higher noise level and thus a higher energy level can be used in the simulation.
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Chapter 4

L’OCEAN DE BON SECOURS

This chapter presents the results obtained from the implementa-
tion of the previously discussed methods in the ocean dynamics
core NEMO. The name of this set of experiments has been jovially
inspired by Saint-Malo’s attraction, la piscine de bon secours.

Abstract

The experiments are performed using the state-of-the-art modelling framework for oceanog-
raphy and climatology, NEMO, that stands for “Nucleus for European Modelling of the
Ocean” (Madec et al., 2019). The “blue ocean” engine of NEMO solves the primitive equa-
tions of ocean thermodynamics on a curvilinear orthogonal Arakawa C-grid with full or
partial step s-coordinate, allowing the usage of z- or σ- coordinates. Prognostic variables
are the horizontal velocity field, a linear or non-linear sea surface height, the conserva-
tive temperature and the absolute salinity. Non-linear sea surface height is discretized in
time with a three-step Generalized Forward Backward algorithm based on third order
Adams-Bashford and fourth order Adams-Moulton schemes, as proposed by Shchepetkin
et al. (2009).

The domain configuration is a rectangular basin on the β-plane centred at ∼ 30◦N,
rotated by 45◦ degrees, 3180 km long, 2120 km wide and 4 km deep, bounded by vertical
walls and by a flat bottom. Seasonal winds (surface wind stress τ) and buoyancy changes
(freshwater flux F , restoring towards an apparent air temperature T ⋆ and penetrative heat
Q) are imposed as external forcings to induce the creation of a strong jet that separates
a cold sub-polar gyre from a warm sub-tropical gyre. This jet starts at the most east-
ward point of the domain and moves towards the interior of the domain. A recirculation
gyre is as well visible in the southern corner. The complete details of this configuration
are given in Lévy, Klein, et al. (2010) and Lévy, Resplandy, et al. (2012), while Figure
4.1 shows the geographical collocation of the basin, the applied forcings and provides a
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Figure 4.1 – Geographical collocation of the domain with its external forcings: surface
wind stress τ imposed in the momentum equations, freshwater flux F imposed in the sea
surface equation, restoring towards an apparent air temperature T ⋆ and penetrative heat
Q in the temperature equation. Inside the domain, sea surface height is plotted, showing
the anomaly caused by the jet stream and thus providing its localization.

first glimpse of the jet stream in terms of sea surface height. The vertical domain, for
all experiments, is discretised into 30 levels of increasing thickness with depth. Close to
the ocean surface, the thickness is ∼10m and it increases to ∼500m at the ocean floor.
The vertical discretization is kept constant as an increase was observed to have minimal
effect by Lévy, Klein, et al. (2010). Experiments at varying horizontal resolutions (R27,
R9, R3) are performed. The R3 is a coarse simulation with a horizontal resolution of 35.3
km (1/3◦) which corresponds roughly to a central value of mesoscale eddy-permitting
resolution. The finer resolution at R9 of 11.8 km (1/9◦) is approaching realistic eddy-
resolving ocean models (Sasaki et al., 2008; Maltrud et al., 2005). The finest resolution
at R27 with 3.9 km (1/27◦) is at a resolution where a significant portion of sub-mesoscale
eddies would be resolved. The choice of resolutions correspond to configurations that are
well documented in literature (Lévy, Klein, et al., 2010; Lévy, Resplandy, et al., 2012)
and for which values of the dissipation coefficient have been established. Additionally, the
choice of resolutions was dictated by major differences observed in the classical determin-
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Table 4.1 – Model parameters for different horizontal resolutions
R3 R9 R27

Horizontal resolution (in ◦) 1/3◦ 1/9◦ 1/27◦

Horizontal resolution (in km) 35.3 km 11.8 km 3.9 km
Mesh grid (Nx × Ny) 90 × 60 270 × 180 820 × 540
Vertical levels (Nz) 30 30 30

Time step (in s) 3600 1200 300
Eddy Viscosity (κM) −1012m4s−1 −5 × 1010m4s−1 −5 × 109m4s−1

Eddy diffusivity (κT) 300 m2s−1 −5 × 1010m4s−1 −109m4s−1

istic simulation when the resolution is coarsened from R9 to R3 (Lévy, Resplandy, et al.,
2012). A fourth high resolution experiment is performed, R54, with a resolution of 1.85
km (1/54◦). This simulation has been set up following Lévy, Klein, et al. (2010) and Lévy,
Resplandy, et al. (2012). It is only used in the next section for a qualitative description
of the deterministic scenarios and not for direct comparison nor to provide synthetic data
for data-driven noise models. For this reason no details about this simulation are pro-
vided in this work. The first run is initialized with a 1/3◦ resolution simulation, spun up
for 1000 years. The resulting state is then interpolated on the 1/9◦ and 1/27◦ grids to
initialize the runs. The R27d simulation has been spun-up for 100 years before collecting
data for the LU framework. Similarly, an additional 1/9◦ deterministic simulation has
been spun up for 100 years in similar conditions in order to construct an initial state
for the deterministic and stochastic 1/3◦ simulations. Three different initial conditions
are then obtained, corresponding to a 1100 years spin up, and used for the operational
runs discussed in the following. In order to assess the benefits brought by this stochastic
approach, each stochastic simulation is compared to its deterministic counterpart at the
same resolution and at highest resolution (1/27◦). The model parameters for the three
resolutions are given in Table 4.1. A bi-harmonic horizontal momentum diffusion (charac-
terised by κM) is implemented for all the resolutions. For the tracers, i.e. temperature and
salinity, diffusion is implemented along isopycnal surfaces without horizontal background
for R3 while for the finer resolution a bi-harmonic horizontal diffusion (characterised by
κT) is implemented. The values for the diffusion/friction coefficients are obtained from
Lévy, Klein, et al. (2010) and Lévy, Resplandy, et al. (2012). Vertical diffusion for all
resolutions are implemented via the turbulent closure model developed by Bougeault et
al. (1989). The model is implemented with a background value of 10−5m2s−1. Partial slip
boundary conditions are implemented in all the experiments.
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Figure 4.2 – Comparison of the four resolutions: from left to right 1/3◦, 1/9◦, 1/27◦

and 1/54◦. From top to bottom: (a) snapshot of vorticity, (b) 10-years averaged relative
vorticity ζ10Y = (∂xv − ∂yu) /f 10Y , (c) 10-years averaged mean kinetic energy MKE 10Y and
(d) (c) 10-years averaged turbulent kinetic energy TKE 10Y (with fluctuations computed
with respect to the 10-years average).
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4.1 Analysis of the deterministic experiments

Figure 4.2a shows a snapshot in time of the four different resolution deterministic sim-
ulations. The difference between the four cases is striking. The R3 simulation (first picture
from the left) presents high activity only on the left border, where viscosity prevents the
separation of the energetic structures from the boundary (Paiva et al., 2000). Proceeding
to the right, the R9 simulation has a resolution that allows the formation of the jet cur-
rent. However, the influence of the western boundary is still strong and the jet stream is
found to interact with the boundary much more than in the high resolution simulations.
Conversely, the two high resolution simulations, R27 and R54, present a well formed jet
current detaching from the border at the same location (or with very small variation
around this point). Concerning the smaller structures, high resolutions simulations such
as R27 and R54 are rich of small scale eddies, fronts and filaments. At the beginning of
eddying regime, such as the R9 simulation, these small structures are less prominent and
their appearance is limited for brief periods of time. As expected, the coarse simulation
R3 is completely incapable of producing these structures. These speculation about the
time persistency of these structures can be assessed from Figure 4.2b, depicting the 10-
years average relative vorticity ζ10Y = (∂xv − ∂yu) /f 10Y . It shows primarily the difference
between a high resolution simulation and a coarse resolution simulation. In the left panel,
the R3 low resolution (35.3 km) simulation presents the aforementioned strong influence
of the boundaries in the circulation patterns, while the interior of the domain has a low
activity. Activity in the interior of the domain is present in all other regimes, represented
by the R9, R27 and R54 simulations. However it is noticeable that the scales of eddies is
larger in the R9 simulation, and becomes smaller and smaller with increasing resolutions.
It is clear that, while R9 can sustain small eddies, these structures are not persistent for
long enough times to be captured by the time average.

Figures 4.2c and 4.2d confirm what explained above, in terms of mean kinetic energy
(c) and turbulent kinetic energy (d). The R3 simulation shows almost no activity in the
interior of the domain in both figures, while highly energetic activity is present in the
left border. Conversely, the R9 simulation shows that both mean and turbulent kinetic
energy have increased and that the jet stream is present in the bottom left corner even
though its behaviour is not stable, its meandering is strong and irregular and thus its
average length is short. Moreover, close to the detachment area the average is faded and
the turbulent kinetic energy is strong close to the western boundary, showing that its
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Figure 4.3 – Comparison of the 10-years averaged mean kinetic energy (top) and turbulent
kinetic energy power spectral density (PSD). Each color represent a different resolution.
The effects of grid coarsening is shown in the same color.
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4.2. Stochastic modelling of the eddy-permitting resolution double gyre

influence is not completely dissipated. In particular, a secondary jet is sometimes present
in this configuration, not as stable as the primary, and well represented only at R27
and R54 resolutions (see the snapshots in Lévy, Resplandy, et al., 2012, for comparison),
while the R9 shows interaction between the primary and secondary jet again through
the boundary. Fine resolutions simulations such as R27 and R54 present instead a stable
jet stream with average intensity well localized in space, signature of a long lasting and
slowly evolving jet stream. Moreover, the turbulent kinetic energy is located around the
jet stream , with a persistent turbulent activity near the secondary jet stream.

Figure 4.3 shows the mean (top) and turbulent (bottom) kinetic energy power spectral
density. From this plot it is striking the difference between the low resolution model R3
and the rest of the simulations, as both the mean and turbulent kinetic energy spectrums
are one order of magnitude less intense than the others, perfectly showing the reduced
capabilities of this kind of model. Considering finer resolutions, it is systematic that the
energy content of a simulation is smaller than that of a higher resolution simulation, even
though the difference is not as large as when switching from a non-eddying regime such
as R3 to an eddying regime such as R9 or more.

4.2 Stochastic modelling of the eddy-permitting res-
olution double gyre

The first target of the stochastic modelling is that of reproducing large scale features
in coarse resolution models. As shown in the previous section the simulation lacks large
scale features like the wind-driven jet stream. For this reason, the aim of the following
experiments is that of enriching the behaviour of the flow with large scale characteris-
tics hoping to enrich the fine scales as well. The choice of the noise model must thus be
calibrated to reflect this application. On-line data models are unsuitable for this scope,
as the simulation is not rich enough to self-sustain itself: off-line data models are thus to
be preferred. Four experiments with different noises are presented. Two of these experi-
ments are performed with a purely data-driven approach, namely the Proper Orthogonal
Decomposition noise (from now on R3pod) defined as in Equation (3.41), the Dynamical
Mode Decomposition noise (R3dmd) defined as in Equation (3.64). A third experiment
is performed with a purely on-line data approach, the Vertical Profile Prescription noise
(R3vpp) as defined in Equation (3.93). The last experiment merges the two approaches,
with a dynamical mode decomposition based on sea surface elevation η to define the
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Figure 4.4 – Comparison of the 10-years averaged total kinetic energy KE 10Y (top) and turbulent kinetic energy TKE 10Y

(bottom) for the different noise models employed at 1/3◦ resolution.
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4.2. Stochastic modelling of the eddy-permitting resolution double gyre

Girsanov drift, combined with a vertical profile noise. This last noise model (R3ssh) is
constructed on the basis of the geostrophic velocity uη reconstructed from the sea surface
elevation η as

uη = − g

f

∂η

∂y
, vη = g

f

∂η

∂x
. (4.1)

The dynamical mode decomposition can be run on this temporal field in order to capture
the slow, correlated dynamics of η, so that a Girsanov drift can be defined and used to
enrich of large scale behaviour while the previously described vertical profile noise can be
used to enrich le small scale variability. In this case, the noise reads:

σtdBt = −
[
u t

η +
∑

m∈Mc

exp (iωη
mt)φη

m (x)
]

dt+ c (x, z) G ∗ dBt (x) . (4.2)

The initial data η considered for this procedure is the synthetic data provided by the R27
simulation. To minimize the losses due to the interpolation of η on the grid of the velocity,
the computation of the geostrophic velocity is performed on the R27 grid and subsequently
filtered and downsampled to apply the DMD procedure. In real-life applications, the sea
surface heigh observation data is commonly used in data assimilation procedures due to
its availability with modern satellites. This noise constitutes thus an optimal candidate
for further implementations in realistic configuration with access to real observations, not
considered in this initial work. For all these noises, with only exception of R3vpp and
the VPP component in R3ssh, both Girsanov and noise components are projected onto
isopycnal surfaces.

4.2.1 Averaged total and turbulent kinetic energy

Qualitative analysis can be performed by discussing the 10-years temporal average of
total and turbulent kinetic energy. For each performed simulation these maps are shown
in Figure 4.4. The difference between the methods is striking, and one can conclude that
for a task such as representing a large scale feature in coarse resolution simulations the
off-line data driven methods are to be preferred over a purely on-line data driven method
such as VPP. This latter method is beneficial to enhance the small scale turbulence in the
interior domain, but it is not capable of self-aggregation to create larger structures, it only
introduces more variability where the vertical velocity varies the most. Off-line data driven
methods such as POD and DMD on the other hand show a remarkable imprinting of the
data in the long term statistics of the simulation. A systematic bias in the positioning of
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Figure 4.5 – Comparison of the 10-years averaged kinetic energy power spectral density for (a) R3pod, (b) R3dmd, (c)
R3vpp and (d) R3ssh. The solid line shows the behaviour of total kinetic energy, the dashed line shows the turbulent
kinetic energy. In all the plots, the green curves (solid and dashed) represent the reference R3 deterministic simulation.
The solid blue line shows the reference R27 total kinetic energy spectrum.
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4.2. Stochastic modelling of the eddy-permitting resolution double gyre

the jet-stream detachment is visible: techniques to reduce this bias are being studied (see
e.g. what discussed in Section 4.4).

4.2.2 Energy spatial power spectrum density

The power spectrum density for kinetic energy and turbulent kinetic energy are anal-
ysed. All cases presents substantial difference with respect to the reference. The R3pod
case shown in Figure 4.5a shows that the method is beneficial in increasing both the global
kinetic energy content and the turbulent kinetic energy content. The Girsanov drift, or
bias, is in this case a time stationary field corresponding to the time average of the ref-
erence data, appropriately filtered and downsampled. Its energy content is mostly in the
large scales, while at small scale only some residual is present. The noise field has its pre-
dominant energy content laying in the intermediate range of scales, possibly as a result of
the bandpass filtering described in Section 3.3. A similar result is obtained with the DMD
noise in the study case R3dmd. In this case, the Girsanov drift is no more stationary
and it improves the large scale representation of the flow. The same benefits can be seen
for the R3ssh model, where the bias term highly enhances the large scale energy content
while the small scale, vertical profile noise increases the turbulent spectrum consistently
at all scales. As shown in Figure 4.5c, both KE and TKE in this case are augmented.

The vertical profile noise R3vpp is shown in Figure 4.5d. It is noticeable that the
turbulent kinetic energy is increased, while kinetic energy is not substantially improved.
Moreover, this vertical profile noise introduces energy in almost the same amount for
scales larger than 100 km, while sensibly dropping at scales below 100 km, due to the
intrinsic nature of this noise as it is based on a Gaussian convolution filter spanning 3
grid cells of 35.3 km width. At this scale the shape of the spectrum differs from classical
references and suggests that the additional energy that has been introduced does not
act in synergy with the system but rather simply superimpose its effects through linear
terms. The averaged fields in Figure 4.4 show that, if off-line data driven noises show
good agreement with the targeted process, for the case of vertical profile noise there
is no agglomeration of the small scales towards a larger coherent structure, hence the
turbulence injected is directly dissipated. For this reason, a pure vertical profile noise is
not envisageable at this low resolution, if not paired with some data driven approach or if
not coupled with some external process. Finally, from the intercomparison of the different
noise models, as shown in Figure 4.6, it can be established that the off-line data driven
methods such as R3pod, R3dmd and R3ssh increase the energy content at large scale as
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Figure 4.6 – Comparison of the 10-years averaged total kinetic energy KE 10Y (top) and
turbulent kinetic energy TKE 10Y (bottom) power spectral density for the different noises
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Figure 4.7 – Comparison of the 10-years averaged kinetic energy power spectral density
for the different noises and corresponding Girsanov drifts.

intended, greatly enhancing both total and turbulent kinetic energy. At almost all scales
and particularly over 100 km, the energy content is increased. As argued before, the purely
data driven method of R3vpp simply superimposes its energy content to the spectrum. It
is interesting to notice that similar behaviour of R3pod and R3vpp in the turbulent kinetic
energy spectrum, suggesting the validity of POD for small scale turbulence. Figure 4.7
shows a comparison between the spectrums of the noise an bias term for each noise choice
described so far. In particular, the two noise models relying on vertical profile noise follow
the same construction and provide a very similar spectrum. R3pod and R3dmd noise
terms have completely different structures, with the former targeting inertial scales and
the latter having a profile closer to classical turbulent spectrums. This difference is most
likely to be induced by the minimization problem defined in terms of energy of POD: it
shows clearly that the POD is not extracting the largest scales of the flow but rather the
most energetic scales that lie between 100 and 200 km. Concerning the Girsanov drifts, it
is interesting to notice that R3ssh and R3dmd have different spectrums and that R3dmd
introduced much more energy at large scales.
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Figure 4.8 – Area-integrated total and turbulent kinetic energy in time, from top to bottom: (a) total kinetic energy
fluctuations in time and (b) in perspective with the high resolution; (c) turbulent kinetic energy fluctuations in time and
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4.2. Stochastic modelling of the eddy-permitting resolution double gyre

Nevertheless, at small scales the R3dmd introduces too much energy, while R3ssh
maintains a good slope. This behaviour can be noticed also in Figure 4.6 as indeed the
kinetic energy of R3ssh is less dissipated at small scales. The difference in energy content
is attributed to the distinct nature of the data: fully barotropic-baroclinic in the case of
R3dmd and solely geostrophic-barotropic for R3ssh.

4.2.3 Energy vs time behaviour

In this section the behaviour in time of the integrated kinetic energy is considered.
Without loss of generality, the surface layer is taken as representative of the full basin
behaviour. The integrated kinetic energy in time is defined as

KE (z = η, t) = 1
2

1
Ω

∫
Ω
u2 (x, z = η, t) + v2 (x, z = η, t) dx, (4.3)

where the vertical component is not considered for simplicity. Consequently, the integrated
turbulent kinetic energy in time is

TKE (z = η, t) = 1
2

1
Ω

∫
Ω
u′ 2 (x, z = η, t) + v′ 2 (x, z = η, t) dx. (4.4)

Figures 4.8a,b show the temporal behaviour of the integrated kinetic energy (4.3),
while figures 4.8c,d show that of turbulent kinetic energy (4.4). The reference determin-
istic simulation R3det and the four stochastic simulations are run for a total of 15 years,
where the stochastic components are switched on after 5 years of adjustment from the
initial condition. For consistency, the fluctuations of the first 5 years are computed with
respect of the average of the first 5 years only, while after the introduction of the stochas-
tic parametrization the fluctuations are computed with respect to the average of the
stochastic period alone, hence from year 5 to year 15. The energy of the high resolution
R27 velocity data is shown in figures 4.8b,d, it corresponds to the first 10 years but it
has been shifted for visualization purposes. A first trivial observation is that during the
adjustment, the five low resolution models provide the same integrated KE and TKE, as
expected. During this period, KE remains of the same magnitude, while TKE suffers a
steep decay in the initial 6 months, due to the dissipation of the higher energy of the
initial condition. After this highly dissipative period, TKE stabilizes around a much lower
energy level than the initial condition. Considering the deterministic case R3det, both the
levels of KE and TKE persist until the end of the simulation almost unvaried. This is not
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Figure 4.9 – Comparison of the 10-years averaged turbulent kinetic energy TKE 10Y (top)
and enstrophy ζ2 10Y temporal power spectral density for the different noises
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4.2. Stochastic modelling of the eddy-permitting resolution double gyre

the case of the four stochastic simulations. Around year 5 an increase of total and turbu-
lent kinetic energy is present, although depending on the noise model chosen. Data driven
models such as R3pod, R3dmd and R3ssh show a rapid increase of KE after the stochastic
parametrization starts, while the R3vpp model performs better than deterministic but can
be considered on below average for the KE. As expected, DMD-based methods strongly
increase the kinetic energy. The TKE shows however a different behaviour, since the DMD
data do not provide for fast fluctuating energy scales but rather slow components, thus
R3dmd shows a low level of fluctuations and R3pod is the only data-based model that
enhances fluctuations, advocating again for its use in fast stacle turbulence. The verti-
cal profile noise model R3vpp enhances the simulation in fluctuations in a blind fashion
and while enriching this statistics, it cannot be regarded as useful alone, in this context.
Finally, the combined sea surface heigh DMD with vertical profile noise outperforms all
the previously mentioned techniques. It is also interesting to notice that seasonality is
present in the behaviour of all models, provided by the isopycnal projection and the ver-
tical profile assignment. Finally, on the right of the plots the average level of energy is
shown, with time average computed on the period from 5 to 15 years only, to leave aside
the common deterministic initial period. As expected, R3dmd and R3ssh performs better
that all other methods in terms of averaged KE, and it is significant that the improvement
in averaged KE is comparable to that of R3dmd while using two-dimensional surface ve-
locity data rather than three dimensional velocity data. R3pod is found to have a lower
kinetic energy than these two simulations. R3gss enhances the kinetic energy on average,
but the lack of scale aggregation shown by Figure 4.9 demonstrates that this enhancement
is far from being useful. Concerning turbulent kinetic energy, as expected all methods are
outperformed by R3ssh, that combines the benefits of a data driven model with that of a
data-agnostic method.

4.2.4 Temporal power spectrum density

In Figure 4.9 the temporal spectra of the coarse resolution simulations are shown,
in comparison to the fine resolution simulation. The first observable feature is that the
low resolution deterministic simulation shows a shape that does not resemble the high
resolution behaviour. At temporal scales smaller than 100 days the spectrum shows a
steep decrease in kinetic energy intensity and a similar decay is shown for scales smaller
than 50 days for the enstrophy, contrarily to what exhibited by the high resolution, that
is a good energetic content at all scales above 20 days. This shows the low capability of
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the coarse resolution simulation at resolving the ocean mesoscale. The second prominent
feature is that R3vpp, the only on-line data based method, performs differently from all
other methods: it increases the energy at the fastest scales, and gradually enhances slower
scales. However, the lack of dynamics and self-aggregation capabilities jeopardise the effect
of this increase of energy content. Conversely, off-line data driven methods show a greater
effect in the mesoscale range, from 10 to 100 days. In particular, R3dmd shows peaks in
the 20 to 40 days range, suggesting that the most energetic dmd modes are lying within
this range. Moreover, it is interesting to notice such a sharp behaviour in this range, lies
the time separation parameter τc presented in Section 3.6.2. R3ssh shows a remarkable
resemblance with R3dmd, highlighting that simple sea surface elevation data can provide
huge benefits at a reduced cost. The only energy based noise, R3pod, shows generalised
good properties, especially at fast scales.

In conclusion, the off-line data based stochastic parametrization does not serve as a
simple energetic offset towards a more rich state, but rather corrects the global shape of the
energetic spectra. This property is not shared with the on-line data based parametrization,
that at this resolution is not effective. This latter is just serving as a generalised energy
and enstrophy content increase.

4.2.5 Metrics

From a quantitative point of view, the simulations are compared with different statis-
tical metrics, computed for three model variables, namely the vorticity ζ, the horizontal
kinetic energy 1

2∥u∥2 and temperature T . Root Mean Square (RMS) is defined for the
time average of the variable fM of the noise model M as

RMS(f t

M
) =

√
1
V

∫
V

f
t 2
M

dV , (4.5)

providing a measure of the energy content for the variable fM . This metric first shows the
difference in energy content of the high resolution and the low resolutions models. The
improvement of the RMS can be evaluated using a simple linear function as

I(S, f t

M
) =

S(f t

M
) − S(f t

R3d
)

S(f t

R27d
) − S(f t

R3d
)
, (4.6)
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Table 4.2 – Comparison of the values obtained with the diagnostic metrics: boldface values
represent the best scenarios.

ζ 1
2 (u2 + v2) T

RMS(f t)
R27d 9.27e-06 0.118 19.1
R3det 1.63e-06 0.025 18.62
R3pod 1.82e-06 0.031 18.82
R3dmd 2.18e-06 0.040 18.81
R3vpp 1.54e-06 0.025 18.68
R3ssh 2.30e-06 0.052 18.70

I(RMS, f t

M
)

R3pod 2% 6% 41%
R3dmd 7% 16% 39%
R3vpp -1% 0% 12%
R3ssh 8% 29% 17%

RMSE(f t)
R3det 5.14e-06 0.101 0.83
R3pod 5.07e-06 0.097 0.92
R3dmd 5.18e-06 0.089 0.94
R3vpp 5.09e-06 0.100 0.85
R3ssh 5.12e-06 0.109 0.84

RMSE(σ)
R3det 8.07e-06 0.108 0.32
R3pod 7.44e-06 0.105 0.38
R3dmd 7.50e-06 0.101 0.39
R3vpp 7.51e-06 0.107 0.32
R3ssh 7.31e-06 0.106 0.33

PCC(f)
R3det 0.48 0.53 0.99
R3pod 0.42 0.59 0.99
R3dmd 0.59 0.70 0.99
R3vpp 0.50 0.56 0.99
R3ssh 0.49 0.29 0.99

GRE(f)
R3det 68.16 2225 0.27
R3pod 10.69 91 0.19
R3dmd 12.01 76 0.20
R3vpp 14.94 325 0.25
R3ssh 9.37 77 0.29
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so that it takes value 1 when the stochastic simulation reaches values comparable to those
of the R27 simulation or 0 when it does not perform better than the R3 deterministic
simulation. A direct comparison between R27 and the stochastic and deterministic R3
models is provided by the Root Mean Square Error (RMSE). The time average of the
high resolution data is downsampled without filtering on the low resolution grid (as it is
supposed to be smooth enough), where it is compared to the low resolution time average
as

RMSE(f t

M
) =

√
1
V

∫
V

([
f

t

R27

]↓
M

− f
t

M

)2
dV . (4.7)

Defining f t = 1
T

∫
T f dt the time average and σ2

f = 1
T

∫
T (f − f

t)2 dt the time variance, the
pattern correlation (PC, Grooms, A. Majda, et al., 2014)

PC (f) =

∫
V
σ2

f,R27
σ2

f,M
dV(∫

V
σ4

f,R27
dV

∫
V
σ4

f,M
dV

)1/2 (4.8)

and the Gaussian Relative Entropy (GRE, Grooms, A. Majda, et al., 2014) at a single
point

GRE = 1
2

1
V

∫
V

(f t

R27 − f
t

M)2

σ2
f,M

+
σ2

f,R27

σ2
f,M

− 1 − ln
(
σ2

f,R27

σ2
f,M

) dV, (4.9)

can be computed, this latter measuring with a single criterion both the mean and variance
reconstructions. The first term on the right-hand side of GRE represents the error in the
mean weighted by the variance of the model. The remaining terms measure the error in
model variability and is referred to as “dispersion”. The lower this criterion the better the
reconstruction. It can be observed from (4.9) that this criterion is minimal if, for all points,
the mean is perfectly reconstructed and if the variance of the reference equals the one of
the coarse model tested. Table 4.2 summarises the results obtained. Overall, these values
confirm what has been presented so far. There is no metric that is sensibly improved for
the on-line data based model R3vpp at this resolution, while R3dmd and R3ssh are the
two models that perform the best. On average, both vorticity and kinetic energy contents
are increased for every off-line data driven model, with the best performance provided
by DMD-based models. If on the one hand the error in the time average might suffer
from the incorrect positioning of the jet stream, as for the R3dmd, on the other hand
different metrics to assess the benefit of the presence of the jet stream itself, such as heat
transport evaluation, should be considered to better evaluate the validity of the method.
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The same observation applies for the Patter Correlation PC, for which the incorrect jet
stream positioning may exacerbate the differences with the high resolution model more
than a deterministic model with no jet stream at all. Finally, Gaussian Relative Entropy,
or GRE, balances the effects of mean and variance estimation, and show remarkable
improvements for all stochastic parametrizations.

Conclusion

This chapter has illustrated the main benefits of LU for a coarse resolution simulation.
In particular, all metrics chosen demonstrate a remarkable increase of the quality of the
large scale features representation and furthermore an enhancement of the variability.
Clearly, the choice of the noise model plays the most important role in the play: off-line
data driven models are to be preferred to on-line data driven models, since the base state of
the simulation does not contains enough energetic structures and so they must be induced
from higher resolution simulations or other source of data, such as satellite observations.
In this sense, using satellite altimeter data is prototyped in the R3ssh test case, where the
sea surface elevation η provided by a higher resolution simulations constitutes a proxy for
real altimetry data.

4.3 Stochastic modelling of the eddy-resolving reso-
lution double gyre

In the eddy-resolving regime simulation, at a resolution of 11.8 km (1/9◦) the tar-
geted process is no more a large scale feature such as the wind driven jet current. This
resolution already resolves this process with a grade of accuracy that, while leaving room
for improvement, already allows for the targeting of smaller scales. The focus of these
experiments is thus that of testing if the stochastic modelling at this resolution provides
for a greater degree of variability than a deterministic simulation. For this reason, only
on-line data based noises are chosen: the vertical profile prescription noise (R9vpp, see
Section 3.9), the pseudo-observation POD (R9pso, see Section 3.7) and the wavelet-based
noise (R9wlt, see Section 3.8). Figure 4.10 displays the behaviour of the three different
stochastic models in terms of mean kinetic energy and turbulent kinetic energy averaged
over a period of 5 years. The main features of the stochastic parametrization at this reso-
lution are already present in this analysis: all the methods considered increase the kinetic
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Figure 4.10 – Comparison of the 5-years averaged mean kinetic energy MKE 5Y (top) and turbulent kinetic energy TKE 5Y

(bottom) for the different noise models employed at 1/9◦ resolution.
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energy away from the jet stream in both mean and turbulent sense. However, R9wlt and
R9pso show a tendency of destabilisation of the jet stream that corresponds to a reduction
in terms of average length and, in the R9pso, in terms of intensity. Conversely, R9vpp
outperforms the former two in both terms of average length and detachment position.
The jet stream in this case is indeed interacting less with the western boundary, resulting
in a more stable behaviour. This constitutes a key difference between the wavelet based
method, the pseudo-observations method and the VPP method: the first two methods
both rely on the current state velocity and they both extract features from this field.
These procedure will create thus a noise well tied to the spatial structures of the resolved
field, hence enhancing destabilisation around them. Conversely, VPP noise is tied to a
proxy profile of the vertical kinetic energy, governing its amplitude, and it is more evenly
applied over the domain. This drawback of the pseudo-observation noise model is well
shown in Figure 4.12, where the energy content at large scale is not increased but rather
diminished. A possible mitigation of this aspect might be the joint use of the structure fol-
lowing destabilization provided by pseudo-observation models and a more evenly spread
vertical profile prescription models. From Figures 4.12 and 4.11 it is possible to assess
that all the models work at small scales in both mean an turbulent kinetic energy. In
this latter case, while at large scale the stochastic parametrisation only provides a slight
increase in energy content, at smaller scale all the models are highly energetic, with the
pseudo-observation model introducing much more turbulence at small scales than the
other models. Such a conclusion holds as well in terms of relative enstrophy, e.g. Figure
4.11, where the drawback of R9pso is clearly visible. Concerning VPP noise, both Figures
4.11 and 4.12 show that its peak action is around scales of 30 km, which is approximately
the width of the horizontal Gaussian filter employed.

4.3.1 Energy temporal power spectrum density

Figure 4.15 represents the temporal spectra for turbulent kinetic energy and relative
enstrophy. The stochastic parametrisation provided by wavelet and VPP noise prove effi-
cacy in enhancing both the energy and enstrophy content, with VPP outperforming the
on-line velocity based noises at almost all scales, with an emphasis on the fastest scales.
In agreement with the previous exposition, pseudo-observation noise is the least efficient
amongst the novel parametrizations, with results comparable to those of the deterministic
experiment.
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Figure 4.11 – Comparison of the 5-years averaged enstrophy spatial power spectral density
for the noise models employed, with comparison to the 1/27◦ reference spectrum.

4.4 Stress testing: extreme noise

In this section a particular experiment involving the Vertical Profile Prescription noise
is going to be described. As introduced in the previous sections, VPP noise possesses one
striking difference with respect to the other on-line procedures: the amplitude of the noise
is quasi-homogeneous in space. Others techniques presented, such as wavelet analysis or
pseudo-observation POD are capable of localizing large energetic structures and thus the
noise is stronger around these structures. While this property can be used actively to
enhance the variance around high energy flows, it poses a challenge in the calibration of
the noise term, since high amplitude is expected near large structures and a low amplitude
is expected everywhere else. Moreover, computational bounds are implemented in the
standard core of NEMO to stop the model when non-physical values are reached (these
bounds are S < 0, S > 100psu, |v| > 10m/s and η > 20m). These two aspects combined
do not allow to arbitrarily increase the noise level for any given model: around highly
energetic structures a high value of the noise will be attained and it might trigger the
computational bounds, while the rest of the domain might not be affected by the noise.
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4.4. Stress testing: extreme noise
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Figure 4.12 – Comparison of the 5-years averaged total (top) and turbulent (bottom)
kinetic energy power spectral density for the noise models employed, with comparison to
the 1/27◦ reference spectrum.
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Figure 4.13 – Comparison of the 5-years averaged turbulent kinetic energy TKE 5Y (top)
and enstrophy ζ2 5Y temporal power spectral density for the different noises
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4.4. Stress testing: extreme noise

Conversely, the VPP noise introduced in Section 3.9 is completely blind with respect to
the horizontal structure of the mean flow, it only knows its vertical structure through the
term c (x, z) of Equation 3.93. The consequence is that VPP noise is applied with the
same structure and a slowly varying spatial amplitude over the whole domain. In other
words, VPP noise can be set to high values without breaking the stability of the model.
For this reason, it is interesting to perform simulations with a high amplitude VPP noise
to test the model’s stability and the model’s reaction to such noise. It is paramount to
stress that the amplitude of the noise here employed largely exceeds the amplitudes of the
noises used in the previous sections. This is thus not intended as a physically meaningful
test, but rather a computational stress test. First of all, from the snapshots analysis the
large scale structures are found to be consistently reduced in their elongation and general
coherence along the jet stream. However, large structures are not completely destroyed
and a distinction between the northern and southern gyres is clear. If on the one hand
this was quite expected, as the increase in small scale turbulence is known to be a trigger
for an increase in dissipation, on the other hand the presence of the jet is a remarkable
outcome. The spectrum shows an unrealistic response to the noise forcing and a high level
of turbulence in both mean kinetic energy and eddy kinetic energy. All of these aspects
are showing that the noise is poorly calibrated. Nevertheless, on a 1 year average the
detachment of the jet stream is better located than the deterministic counterpart, with
respect to the R27 detachment point. From a purely computational point, the simulation
remains stable up to completion after 10 years, even though a trend of salinity decrease
is visible. This trend can be estimated in less than 0.15 g/year and would cause the
model to stop if the simulation is run long enough. This phenomenon is attributed to
the strength of the noise and is an indicator of bad calibration. Summarising, despite
providing non-physical results, this test shows that the method and its implementation
work on a wide range of scenarios, from low to high noise amplitudes and from small to
large scale noises and do not trigger computational instabilities that break the simulation.
This strategy is however non advisable and the noise should be tuned to have a balanced
effect. Moreover, VPP noise should not be used alone but in conjunction with other
parametrization aiming at interacting with large scale features, such as a Girsanov drift
or a current time velocity based noise model. Localising the VPP noise to some particular
areas of the computational domain, such as the western boundary, potentially with an
ad-hoc physical modelling choice for the vertical profile to be imposed, will be investigated
as a strategy to help the large scale jet-stream to maintain a more regular path.
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Figure 4.14 – Comparison of the 10 years averaged kinetic energy KE 10Y (first from the
top), averaged turbulent kinetic energy TKE 10Y (second from the top), 10-years averaged
relative vorticity ζ10Y = (∂xv − ∂yu) /f 10Y (third from top) and a snapshot in time of
relative vorticity (bottom).
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4.4. Stress testing: extreme noise

Conclusion

Looking at time averages of the vorticity it is possible to observe that the main problem
of the R9 deterministic simulation is the interaction with the western boundary, caused
by the strong and unstable meandering of the jet stream. This problem, at this specific
resolution, is of very difficult solution. On-line data driven noises such as wavelet and
pseudo-observation may alleviate this condition but they cannot solve it efficiently, as
they intrinsically depend on large scale structures in their construction. Moreover, they
suffer the same drawback of off-line data driven models for coarse resolution simulations:
they condense high noise in particular areas of the domain while leaving most of the
domain almost unaffected. If one the one hand this is extremely valuable to augment
the variability around highly energetic structures, on the other hand the noise is tied
to follow large structures and will not improve the simulation away from these. For this
reason, a more data-agnostic method such as the vertical profile prescription noise might
be beneficial coupled to on-line data driven methods, to balance a more widespread vari-
ability with a more process-targeted variability. This approach is not presented in this
thesis but its experimentation is undergoing. Moreover, the usage of external data to
introduce a restoring tendency towards the more steady position of the higher resolu-
tion jet-stream is undergoing consideration. This approach can follow that presented for
coarse resolution simulations in the R3ssh case, introducing a restoring tendency towards
the slow geostrophic dynamics through the Girsanov drift while introducing an enhanced
variability through on-line data driven noises.
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CONCLUSION

In this thesis, a stochastic representation of the small-scales of a fluid flow was dis-
cussed. This separation of scales, reminiscent in spirit of Reynolds splitting, constitutes
the basis of the so-called Location Uncertainty framework: the Lagrangian displacement
is split into a smooth-in-time component and a highly oscillating random term. From this
ansatz, with extensive application of stochastic calculus, a stochastic partial differential
equation (SPDE) is found to control the evolution in time of a process. In particular,
a stochastic transport operator and a stochastic version of Reynolds Transport Theorem
(RTT) can be introduced. The former can be identified as the equivalent of the material (or
substantial) derivative of deterministic modelling in the novel stochastic framework: the
underlying assumptions, those of describing the transport of a stochastic property along a
path-line that is itself a stochastic process, correspond to the assumptions of the substan-
tial derivative to describe the transport of a property while moving along a Lagrangian
path-line. The differences in the two operators are induced by the effects of the newly
introduced fast scales. These scales transport the stochastic property directly and indi-
rectly, that is by means of statistically induced velocities as the Itô-Stokes drift, and have
a fast-scale diffusion effect. From the principles established by the stochastic transport an
extension to parcels of fluid can be found in the Stochastic Reynolds Transport Theorem
(SRTT). This theorem establishes the fundamental behaviour of the temporal variation
of a volume-integrated stochastic property when the volume itself is transported by a
stochastic flow. This fundamental theorem provides means of interpreting the transport
of measure, transport of stochastic quantities, conservation laws and balance equations
in the stochastic framework. It is worth noticing that when the stochastic operators and
theorems are applied to deterministic quantities, the description falls back to the classical
deterministic description.

The stochastic transport principles established by SRTT were applied to describe the
main equations describing a fluid flow and its fundamental processes, such as conservation
of mass, conservation of momentum (intended as a balance between internal and external
actions), conservation of energy and the generic conservation of an extensive property
of the flow. With these ingredients, a stochastic Navier-Stokes equations can be derived.
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Moreover, applying classical procedure such as asymptotic analysis, the Boussinesq system
was introduced, allowing a simple description for flows characterised by a slowly varying
density. In the deterministic framework this system constitutes the basis for most Ocean
and Atmosphere dynamics modelling, and thus its stochastic development constitutes the
grounding for the application of the LU principles to ocean and atmospheric prediction.
Within this context, different simplification are applied in real-world studies, and this
thesis aimed at gathering the most important models and their theoretical background.
Amongst them, Primitive Equations (PE) and the Rotating Shallow Water system (RSW)
are two key component of almost every Ocean or Atmosphere numerical core.

The implementation of the stochastic framework in the NEMO model was performed
and tested in an idealised test case where the influence of the resolution is known to play a
dominant role. The results obtained are promising. They first show that the mathematical
framework of LU can be applied in its general terms to different problems with different
objectives. This thesis considered two possible applications of LU to ocean modelling: that
of completing large-scale simulation with highly energetic features that are normally not
present in the state-of-the-art modelling and that of enriching a simulation of a greater
degree of variability. These two tasks have different applications, as the former can be
used in coupled Ocean-Atmosphere large scale models or long-term climate prediction,
the latter might be exploited in short or medium term ensemble simulations to enrich
the variability and increase the accuracy of the forecast. The choice of the noise model
has proven to be critical, especially in relation with the scale of the simulation. The
same noise might perform well at a given resolution and have little influence at another.
For coarse resolution simulation, noise models that are physics informed are more suited
to inform the simulation about unresolved scales from external data. The choice of the
particular feature extraction procedure that is employed to generate the noise is open
to be debated, as each technique has advantages and drawbacks. Nevertheless, this work
show that relatively simple procedures such as POD or DMD can be applied to relatively
small datasets, such as sea surface height, can have a performance comparable to that
of the same techniques applied to larger datasets, such as baroclinic velocity. Moreover,
noise models are not necessarily mutually exclusive, and optimal performance might be
found balancing different techniques. At higher resolution, simple noises can increase the
energy content and the variability. For these resolution a more thorough approach to noise
modelling has to be established to understand better which processes to target.

Concluding, the LU framework introduces new degrees of freedom in the system that
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can be exploited in different ways. The versatility of the method is such that its im-
plementation does not require additional knowledge as compared to the maintenance or
development of a general circulation model. Moreover, LU follows the specifics of the
model in a natural way, such as following localised refinements. In addition, transport
noise is a concept general enough to allow the description of the noise to be completely
specified by the modeller. This freedom allows for targeting different objectives with ease
within the same simulation, allowing potentially for different noise models complement-
ing each other at different scales, different geographical position and tailored for different
physical processes.

This thesis leaves open for multiple research paths in the future. The implementation
of Location Uncertainty in different general circulation models will cast new light in the
interaction between numerics and stochasticity. New techniques for feature extraction from
external data can be pursued to efficiently inform the noise with physics in an inexpensive
and efficient manner. Machine learning could be exploited as well inside the dynamical
core to minimize the memory footprint of the noise model. From a less technical point
of view, applications of the LU framework to less idealised configurations, such as the
Mediterranean basin, are undergoing development.
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Appendix A

NUCLEUS FOR EUROPEAN MODELLING

OF THE OCEAN

“Nucleus for European Modelling of the Ocean”, NEMO, is a state-
of-the-art modelling framework for ocean investigation and weather
and climate forecasting, It is primarily developed and sustained
by 5 European institutes: Centre national de la recherche scien-
tifique (CNRS, France), Centro Euro-Mediterraneo sui Cambia-
menti Climatici (CMCC, Italy), Mercator Océan (France), Met
Office (United Kingdom), National Oceanography Centre (NOC,
United Kingdom). It is intended to be a flexible tool for studying
the Earth climate system. In this chapter, the structure of the code
is quickly reviewed and the main modifications implemented are
detailed.

Abstract

A.1 “Blue ocean” engine

NEMO, in its “blue ocean” dynamical core, solves the primitive equations of ocean
thermodynamics. These equations set constraints on the dynamics of five prognostic vari-
ables, the three dimensional velocity field v = (u, w), conservative temperature T and
absolute salinity S. In the horizontal direction, the model is discretized on a curvilinear
orthogonal grid and several options for the vertical grid are possible. The geographical co-
ordinate system (λ, φ, z) used to introduce the primitive equations on a sphere in Chapter
1 has a singularity point at the North Pole that cannot be treated easily without requiring
additional filtering. NEMO thus adopts a tripolar grid by merging the latitude-longitude
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Figure A.1 – On the left, the tripolar grid introduced to solve for the polar singularity.
On the right, the geographical coordinate system (λ, φ, z) as compared to the curvilinear
coordinate system (i, j, k) implemented in NEMO. (Images taken from official NEMO
documentation)

coordinates below 20◦N with a custom, non-singular grid for higher latitudes. The stan-
dard ORCA grid built upon this procedure is shown in Figure A.1. As a consequence, an
appropriate coordinate transformation must be introduced to handle in a uniform way
the operations over any point of the grid. Let (λ, φ, z) be the geographical coordinate
system in which a position is defined by the latitude φ(i, j), the longitude λ(i, j) and
the distance from the centre of the Earth a + z(k) where a is the Earth’s radius and z

the altitude above a reference sea level (A.1). The local deformation of the curvilinear
coordinate system is given by e1, e2 and e3, the three scale factors:

e1 = (a+ z)
(∂λ

∂i
cosφ

)2

+
(
∂φ

∂i

)2
1/2

,

e2 = (a+ z)
(∂λ

∂j
cosφ

)2

+
(
∂φ

∂j

)2
1/2

,

e3 =
(
∂z

∂k

)
.

(A.1)
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In the following, all partial derivatives and partial differential operators will be expressed
in this model coordinate system using the two fundamental operators defined as:

∇q = 1
e1

∂q

∂i
i + 1

e2

∂q

∂j
j + 1

e3

∂q

∂k
k,

∇ · a = 1
e1 e2

[
∂(e2 a1)
∂i

+ ∂(e1 a2)
∂j

]
+ 1
e3

[
∂a3

∂k

]
.

(A.2)

The finite difference grid is defined in accordance to the Arakawa C-grid staggering, for
which velocities u, v and w are located at the centre of the faces of a finite volume box,
pressure and traces located at the centre of the box and finally vorticity at the box vertical
edges. Considering a general variable q at adjacent points, the discrete differencing and
averaging operators at the midpoint between them are:

δi [q] = q(i+ 1/2) − q(i− 1/2), (A.3)

q i+1 =
(
q(i+ 1/2) + q(i− 1/2)

)
/2. (A.4)

Similar operators are defined with respect to i+ 1/2, j, j + 1/2, k, and k + 1/2.

The goal of this study is that of embedding the Location Uncertainty formalism in the
NEMO core in order to approach simulations in less idealised configurations than those
performed up to this day. The complete implementation, based upon the discussion of the
previous chapters, reads

Horizontal momentum:

DtuH + fk × (uH dt+ σdBt) = − 1
ρ0

∇H

(
p− ν

3∇ · vs

)
dt− ∇H (dpσ

t ) +Du dt+ F u dt

(A.5a)

Sea surface evolution:

dtη + ∇ ·
[
(H + η)

(
UH −U s

H
+ ΣdBH

t

)]
− 1

2∇ · (a∇η) dt = emp
ρ0

dt (A.5b)

Hydrostatic balance:

p′ (x, y, z) = ν

3∇ · vs

∣∣∣∣z
ηb

+
∫ z

ηb

b+ vs · ∇w + 1
2∇ · (a∇w) dζ, (A.5c)

dpσ
t (x, y, z) =

∫ z

ηb

σdBt · ∇w dζ, (A.5d)

Temperature and salinity:

148



DtT = DT + F T (A.5e)
DtS = DS + F S (A.5f)
Incompressibility:
∇ · [v − vs] = 0, ∇ · σdBt = 0, (A.5g)
Equation of state:
ρ = ρ (T, S, p) . (A.5h)

The stochastic transport operator is written in flux form as

Dtθ = dtθ + 1
e1e2e3

[
∂ (e2e3u

⋆θ)
∂i

+ ∂ (e1e3v
⋆θ)

∂j

]
+ 1
e3

∂ (w⋆θ)
∂k

−1
2

1
e1e2e3

∂
(
e2e3F

θ
1

)
∂i

+
∂
(
e1e3F

θ
2

)
∂j

 dt− 1
2

1
e3

∂
(
F θ

3

)
∂k

dt
(A.6)

where v⋆ = (v − vs) dt+σtdBt and the stochastic diffusion flux can be written in general
form as

F θ
i = ai1

1
e1

∂θ

∂i
+ ai2

1
e2

∂θ

∂j
+ ai3

1
e3

∂θ

∂k
. (A.7)

Expressions of DU
u , DU

v , FUu , FUv , DT , DS, F T , F S will be depending on the parametriza-
tion of the sub-grid diffusion and of the forcing.

A.2 NEMO LU implementation

The work of introducing LU in NEMO can be generally split in three macro-areas:
the noise (and derived fields) definition and construction, the tailored implementation of
the new differential operators needed by the method and the adaptation of the existing
code to work within the new framework. This section attempts ad describing the details
of all three aspects of the implementation. The implementation of the Location Uncer-
tainty framework in NEMO requires the introduction of new fields in the dynamical core.
These fields are namely the noise σtdBt, the Itô-Stokes drift vs, the variance tensor a and
if required the Girsanov drift µt. In particular, the noise, Itô-Stokes drift and Girsanov
drift are three dimensional fields (thus requiring three components, each one depending
on the three spatial coordinates), while the variance tensor is a symmetric 3 × 3 tensor
thus representable with six fields (each of which depends from the three spatial coordi-
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Figure A.2 – Schematic of the Arakawa C-Grid for the Location Uncertainty model. Left
picture: at T−point, where the scalars are defined, the variance tensor a is also defined
(and identified with the downward triangle). At u, v and w−points the corresponding
noises are defined and identified with the squiggle arrow. Right picture: planar view of a
discretization made with C-grid.

nates). The simplest case sees then the introduction of 15 new three dimensional arrays.
When isopycnal projection is employed in conjuntion to a stationary assumption for the
variance tensor, the memory cost is increased by 3 fields due to the necessity to store an
initial Itô-Stokes drift that changes in time only with the application of the projection
operator. If the Girsanov drift is subjected to a stationary assumption as well (such as
in POD-based methods), then the same considerations are needed and the memory foot-
print is increased by 3 fields. An important preliminary aspect is the collocation of the
new variables on the Arakawa C-grid. The positioning must be both consistent with the
legacy code and be physically justified. The collocation of the noise σtdBt is the same
as the velocity components of NEMO: σtdB(x)

t is located on the u−grid, σtdB(y)
t on the

y−grid and σtdB(z)
t on the w−grid. Things get more cumbersome when dealing with the

variance tensor a, where the choice is not well covered in ocean modelling literature. The
choice made is to pose the diagonal components on the T−grid and the extra-diagonal
components on the correspondent mixed points:

a =


aT

11 af
12 auw

13

af
21 aT

22 avw
23

auw
31 avw

32 aT
33

 . (A.8)
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This choice is motivated by the fact that the divergence of the stochastic diffusion is the
Itô-Stokes drift, vs = 1

2∇ · a. When computing the discrete divergence of the diffusion
tensor with this choice, the result is a velocity field naturally lying on the correct grid.
Moreover, the sequence of operations needed to perform a double divergence leads to a
quantity located on the T−grid. This is consistent with the definition of the compress-
ibility effects

∇H

(
ν

6∇ · ∇ · a
)
, (A.9)

since if the quantity inside the parenthesis is located on the T−grid, then its gradient is
correctly located on the u and v−grid. This choice is common in other research fields,
such as porous media mechanics and seismology (cfr. Carcione, 1999). Equations (3.3) are
chosen as templates for the noise construction, with a set of spatially depending modes
ϕ(x), ϕ(y) and ϕ(z) used to construct all related fields. Given that the the expansion is
truncated at a level N , this adds 3N fields to the global memory footprint. With these
considerations one can build each component of the noise ansatz efficiently as

σt (x, y, z) dB(x)
t =

N∑
n=1

ϕ(x)
n (x, y, z) ξn (t) ,

σt (x, y, z) dB(y)
t =

N∑
n=1

ϕ(y)
n (x, y, z) ξn (t) ,

σt (x, y, z) dB(z)
t =

N∑
n=1

ϕ(z)
n (x, y, z) ξn (t) ,

while the variance tensor requires interpolation of the original velocity fields to be located
on the prescribed locations:

axx (x, y, z) =
M∑

n=1
ϕ

(x)
n (x, y, z)ϕ(x)

n (x, y, z)
i

, axy (x, y, z) =
M∑

n=1
ϕ

(x)
n (x, y, z)

j

ϕ
(y)
n (x, y, z)

i

ayy (x, y, z) =
M∑

n=1
ϕ

(y)
n (x, y, z)ϕ(y)

n (x, y, z)
j

, axz (x, y, z) =
M∑

n=1
ϕ

(x)
n (x, y, z)

k

ϕ
(z)
n (x, y, z)

i

azz (x, y, z) =
M∑

n=1
ϕ

(z)
n (x, y, z)ϕ(z)

n (x, y, z)
k
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M∑
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ϕ
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The Itô-Stokes drift us can be computed seamlessly by applying the divergence operator
by column

us = 1
e1e2e3

{
δi+1/2 [e2e3a11] + δj [e1e3a21]

}
+ 1
e3
δk [a31] ,

vs = 1
e1e2e3

{
δi [e2e3a12] + δj+1/2 [e1e3a22]

}
+ 1
e3
δk [a32] ,

ws = 1
e1e2e3

{δi [e2e3a13] + δj [e1e3a23]} + 1
e3
δk+1/2 [a33] .

Each of the noise models described in Chapter 3 can be described as a summation of
modes ϕn (x), appropriately multiplied by a temporal coefficient ξn (t). The global memory
footprint is thus 15 + 3N new fields. It is clear that using methods that allow for a
better representation with a small N (such as DMD) is fundamental and that operating
with these fields becomes more cumbersome increasing the resolution of the model (thus
justifying the usage of on-line data models). From the pure implementation point of view,
a module containing the fields definition and their initialization is introduced to interface
the legacy code of NEMO in its initialization. The operations thus far described, that
are common to all methods, are contained in a second module that is called in the time
stepping routine, where conditional constructs switch on or off the stochastic routines to
compute and apply the noise fields. Each one of the methods exposed in chapter 3 is self-
contained in a dedicated module that construct the noise fields. The original routines of
NEMO that are affected are thus nemogcm.F90 for the initialization (uses 3 new modules
and conditionally calls 3 new routines), step_oce.F90 for the inclusion of the necessary
modules (7 new modules) and step.F90 for the calls of the stochastic routines (1 call to
noise generation, 4 conditional calls to the noise application and 1 diagnostic routine call).
In the following, the new routines that has been implemented from scratch are described.

A.3 Stochastic advection discretization

Among all the procedures, horizontal advection is one of the most fundamental in
the current implementation of the LU framework within NEMO. The advection of the
horizontal velocity reads

Au = −σtdBt · ∇uH = −
[

1
e1
σtdB(x)

t

∂uH

∂x
+ 1
e2
σtdB(y)

t

∂uH

∂y
+ 1
e3
σtdB(z)

t

∂uH

∂z

]
(A.10)
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For simplicity of notation, and due to the generality of the procedure to be described, the
advective velocity will be denoted with uadv and the advected velocity will be denoted
with uin. Due to the configuration of the standard Arakawa C-grid, the procedure needs a
sequence of interpolation as the noise velocity and the gradient of the horizontal velocity
are not located at the same point. The correct operational definition for the horizontal
velocity is thus

Au = −

 1
e1t

uadv
i+1/2δi+1/2[uin]

i

+ 1
e2f

vadv
i+1/2δj+1/2[uin]

j

+ 1
e3uw

wadv
i+1/2δk+1/2[uin]

k
 ,

Av = −

 1
e1f

uadv
j+1/2δi+1/2[vin]

i

+ 1
e2t

vadv
j+1/2δj+1/2[vin]

j

+ 1
e3vw

wadv
i+1/2δk+1/2[vin]

k
 .

The analogous procedure for tracers T, S is

AT,S = −

 1
e1f

uadvδi+1/2[T in]
i

+ 1
e2t

vadvδj+1/2[T in]
j

+ 1
e3vw

wadvδk+1/2[T in]
k
 .

The aforementioned implementation of the advection procedure is employed when the
equations of motion are written in energy-vorticity form. Whenever the flux form is pre-
ferred (as in the current version of the code), the original procedure to advect velocity
and tracer is (duplicated and) modified in order to receive the advective velocity as an
input field. This allows to compute the modified advection as

v⋆ = v − vs + σtdBt (A.11)

and to provide it to the original routines to perform the operations.

A.4 Stochastic diffusion discretization

The second important operation to be performed is the diffusion of velocity and tracer
due to the noise. This diffusion, being anisotropic, is not implemented in NEMO and so
it has to be coded from scratch. Given a diffusive flux F , the diffusion is implemented by
means of Gauss divergence theorem.

∫
V

∇ · F dV =
∫

∂V
F · n ds →

∫
V

∇ · (a∇θ) dV =
∫

∂V
(a∇θ) · n ds (A.12)
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The positioning of the fluxes on the Arakawa C-grid is chosen in such a way that the
divergence operation provides the result correctly located on the target grid. With this
idea in mind, the fluxes of stochastic diffusion for velocity are

Fu,x = aT
11∂xu e2te

n
3t + af

12∂yu e2fen
3f

i,j

+ auw
13 ∂zu e2uen

3uw

i,k
,

Fu,y = af
21∂xu e1ten

3t

i,j
+ aT

22
i,j

∂yu e1fe
n
3f + avw

23
i,k
∂zu e1uen

3uw

j,k
,

Fu,z = auw
31 ∂xu e1te2t

i,k
+ avw

32
i,j
∂yu e1fe2f

j,k
,

Fv,x = aT
11

i,j

∂xv e2fe
n
3f + af

12∂yv e2ten
3t

i,j
+ auw

13
j,k
∂zv e2ven

3vw

i,k
,

Fv,y = af
21∂xv e1fen

3f

i,j

+ aT
22∂yv e1te

n
3t + avw

23 ∂zv e1ven
3vw

j,k
,

Fv,z = auw
31

i,j
∂xv e1fe2f

i,k
+ avw

32 ∂yv e1te2t

j,k
,

Fw,x = aT
11

i,k

∂xw e2ue
n
3u + af

12

j,k

∂yw e2ven
3v

i,j
+ auw

13 ∂zw e2ten
3w

i,k
,

Fw,y = af
21

i,k

∂xw e1uen
3u

i,j
+ aT

22
j,k

∂yw e1ve
n
3v + avw

23 ∂zw e1uen
3uw

j,k
,

Fw,z = auw
31 ∂xw e1te2t

i,k
+ avw

32 ∂yw e1fe2f

j,k
+ aT

33∂zw e1T e2T ,

while the fluxes of stochastic tracer diffusion are

FT,x = aT
11

i
∂xT e2ue

n
3u + af

12∂yT e2ven
3v

i
j

+ auw
13 ∂zT e2ten

3w
i

k

,

FT,y = af
21∂xT e1uen

3u
j

i

+ aT
22

j
∂yT e1ve

n
3v + avw

23 ∂zT e1uen
3uw

j
k

,

FT,z = auw
31 ∂xT e1te2t

k
i

+ avw
32 ∂yT e1fe2f

k
j

.

The first implementation of Location uncertainty made use of this discretization. The cur-
rent version leverages what introduced in Fiorini et al. (2022) and Boulvard et al. (2023), it
approximates the diffusion with a double application of the advection (in non-conservative
form)

1
2∇ · (a∇θ) ∼ 1

2σtdBt · ∇ (σtdBt · ∇θ) . (A.13)
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A.5 Projection on isopycnals

The isopycnal projector is defined as

P = δij − (∂iρ) (∂jρ)
∥∇ρ∥2 = 1

∥∇ρ∥2


(∂yρ)2 + (∂zρ)2 − (∂xρ) (∂yρ) − (∂xρ) (∂zρ)
− (∂xρ) (∂yρ) (∂xρ)2 + (∂zρ)2 − (∂yρ) (∂zρ)
− (∂xρ) (∂zρ) − (∂yρ) (∂zρ) (∂xρ)2 + (∂yρ)2

 ,
(A.14)

with the aid of the small slope assumption, that means that the horizontal gradients are
much smaller than vertical

√
(∂xρ)2 + (∂yρ)2 ≪ ∂zρ, the operator P becomes

P =


1 0 −r1

0 1 −r2

−r1 −r2 (r2
1 + r2

2)

 , (A.15)

with r1 = ∂xρ/∂zρ and r2 = ∂yρ/∂zρ. These components are already available in NEMO.
The projection Pu of the velocity reads:

Pu =


1 0 −r1

0 1 −r2

−r1 −r2 (r2
1 + r2

2)



u

v

w

 =


u− r1w

ik

v − r2w
jk

−r1u
ik − r2v

jk + (r2
1 + r2

2)w

 . (A.16)

The projection PaPT of the symmetric variance tensor a is composed of:

(PaPT)11 =a11 + a33r2
1

k − 2 a13
ikr1

k

(PaPT)12 =a12 − a23
ikr1

j − a13
jkr2

i + a33
ijr1

jr2
i

(PaPT)13 =a13(2r2
1 + r2

2) i + a23
ijr1r2

i − a12
jkr2

i − a11
ikr1

i − a33
ikr1 (r2

1 + r2
2) i

(PaPT)22 =a22 + a33r2
2

k − 2 a23
jkr2

k

(PaPT)23 =a23(r2
1 + 2r2

2) j + a13
ijr1r2

j − a12
ikr1

j − a22
jkr2

j − a33
jkr1 (r2

1 + r2
2) j

(PaPT)33 =a33(r2
1 + r2

2)2 k

− 2 a13
ik r1 (r2

1 + r2
2) k − 2 a23

jk r2 (r2
1 + r2

2) k + 2a12
ijr1r2

k

An alternative to this formulation, which is quite heavy and cumbersome to compute,
is that of projecting the modes ϕ(x), ϕ(y) and ϕ(z) and then compute noise, variance and
Itô-Stokes drift. Alternatively, one can choose to project only the noise and the Itô-Stokes
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drift after its computation, and computing the projected diffusion implicitly applying the
double advection procedure to the projected noise.

A.6 Stochastic pressure discretization

The stochastic pressure is defined as

Hydrostatic balance:

p′ (x, y, z) = ν

3∇ · vs

∣∣∣∣z
ηb

+
∫ z

ηb

b+ vs · ∇w + 1
2∇ · (a∇w) dζ, (A.17)

dpσ
t (x, y, z) =

∫ z

ηb

σdBt · ∇w dζ. (A.18)

All these terms (except for the divergence of the Itô-Stokes drift and buoyancy) are
computed starting from the advection of the vertical velocity w:

Aw = −

 1
e1f

uadv
k+1/2δi+1/2[win]

k

+ 1
e2t

vadv
k+1/2δj+1/2[win]

k

+ 1
e3vw

wadvδk+1/2[win]
k
 .

A.7 Coriolis contribution

In the NEMO framework, the Coriolis noise contribution is

Cu = −f × σtdBt =
 +f σtdB(y)

t

−f σtdB(x)
t

 =


+ 1

e1u

(
f

e3f
e1ve3vσtdB(y)

t

i+1/2
)j

− 1
e2v

(
f

e3f
e1ue3uσtdB(x)

t

j+1/2
)i

 (A.19)

A.8 Timestepping

The following diagram represents the state of the implementation of Location Uncer-
tainty in NEMO. At the two extremes of the time marching arrow the two time steps tn
and tn+1 are present. All the ticks with dark end are computations within NEMO that
are left unchanged. The blue appendices are computations that are introduced by the
author to implement the method: the diagram represents their algorithmic positioning
with respect to the standard operations. The orange appendix describes the barotropic
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σdB
t ,
a,
v

s ,
µ

t
∫

z

−
η

b ∇
· (u

−
u

s ) dζ

RHS u
+
σdB

t · ∇
u

− 12 ∇
· (a∇

u) dt

∂ tη
+

∇
· [(
H

+
η)

(u
−

u +
σ
dB

t)]
−

1
2

∇
· (a

∇η
) d
t

p
=

∫ z

−η b
b

−
v s

· ∇
w

−
1

2
∇

· (a
∇w

) d
tdζ

dp
σ

t
=

∫ z

−η b
σ
dB

t
· ∇
w
dζ

RHS θ
+
σdB

t · ∇
θ − 12 ∇

· (a∇
θ) dt

tn

η
(n+

1)
e (n+

1)
3 w
(n)

RH
S
u

η
(n+

1)

u
(n+

1)

e (n+
1)

3 w
(n)

RH
S
θ

θ (n+
1)

tn+
1

sub-stepping to compute the sea surface height. It is of a different color as it is not im-
plemented in the current version of the code. However, stochasticity still influences this
routine through the baroclinic forcing of the shallow water momentum equations.
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Résumé : Le climat dépend fortement de
l’état global de l’océan. La simulation nu-
mérique reste le seul moyen de prévoir le
système océan-atmosphère et d’évaluer ses
états futurs afin d’établir des prévisions fiables
des évolutions météorologiques et climato-
logiques. Les simulations à grande échelle
constituent le principaux outils d’étude de
l’océan et de l’atmosphère, dans mesure
où les simulations à haute résolution res-
tent confinées à de petits domaines géogra-
phiques ou à de courtes périodes d’intégra-
tion. L’interdépendance complexe des dyna-
miques à méso-échelle et sous-méso-échelle
est cependant perdue dans les simulations
qui ne résolvent pas les échelles inférieures

au rayon de déformation de Rossby ; celles-
ci doivent donc être paramétrées. La plupart
des défis associés à la dynamique des fluides
(dans toutes ses connotations) découlent de
la représentation de ces effets à l’aide d’un
schéma de fermeture efficace. Une nouvelle
famille d’approches consiste à incorporer des
perturbations et des composantes de bruit
dans la dynamique. L’objectif est d’enrichir
la variabilité et de paramétrer les processus
sous-maille, la turbulence, l’incertitude des va-
leurs limites et de tenir compte des erreurs nu-
mériques et de discrétisation, tout en respec-
tant les principes physiques de la dynamique
des fluides.

Title: Stochastic parametrization of ocean models through high resolution observations

Keywords: Stochastic parametrization, Ocean modelling, Primitive Equations, Fluid Mechan-

ics, NEMO

Abstract: The global climate is strongly de-
pendent on the global Ocean state. Numeri-
cal simulation remains the only way to fore-
cast the Ocean-Atmosphere system and as-
sess future states to make reliable meteo-
rological and climatological hazard forecasts.
The primary tool for the investigation of the
Ocean and the Atmosphere are large-scale
simulations, while high resolution simulations
remains confined to small geographical do-
mains or short integration periods. The com-
plex interdependence of mesoscale and sub-
mesoscale dynamics is, however, lost in sim-

ulations that do not resolve scales below the
Rossby radius of deformation, and thus must
be parametrized. Most of the challenges of
fluid dynamics (in all its connotations) arise
from the representation of these effects with
an efficient closure scheme. A novel research
trend involves incorporating perturbations and
noise components into the dynamics. The goal
is to enrich the variability and parametrize sub-
grid processes, turbulence, boundary value
uncertainty and account for numerical and dis-
cretization errors.
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