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Abstract
Ceramic materials are widely used in the industry owing to their countless advantages, such
as the resistance to corrosion or oxidation. However, they have a very low fracture tough-
ness, which is related to the spontaneous brittle failure of the component. In this context,
the main objective of this thesis is the consistent extension of numerical modelling tools in
fracture mechanics for predicting crack nucleation and growth in advanced ceramics, with a
special emphasis in the relationship between the micro and macro-scale characteristics within
these materials. Two approaches are followed: the Coupled Criterion (CC) within the Finite
Fracture Mechanics (FFM) framework and the Phase Field (PF) model for fracture.

Two parts are distinguished in this thesis. The first one is dedicated to the study of ceramics
fracture properties at the micro-scale. In the second part we focus on the fracture analysis
of brittle materials reinforced by a second constituent in the form of micro-platelets or short
fibers, a kind of structure of high technological interest for advanced ceramics.
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Résumé
Les matériaux céramiques sont largement utilisés dans l’industrie en raison de leurs innom-
brables avantages, tels que leur résistance à la corrosion ou à l’oxydation. Cependant, ils
ont une ténacité à la rupture très faible, ce qui est lié à la défaillance fragile spontanée du
composant. Dans ce contexte, l’objectif principal de cette thèse est l’extension cohérente des
outils de modélisation numérique en mécanique de la rupture pour prédire la formation et la
croissance des fissures dans les céramiques avancées, en mettant l’accent sur la relation entre
les caractéristiques micro et macroscales de ces matériaux. Deux approches sont suivies : le
critère couplé (CC) dans le cadre de la mécanique de la rupture finie (FFM) et le modèle du
champ de phase (PF) pour la rupture.

Deux parties sont distinguées dans cette thèse. La première est dédiée à l’étude des pro-
priétés de rupture des céramiques à l’échelle microscopique. Dans la deuxième partie, nous
nous concentrons sur l’analyse de la rupture des matériaux fragiles renforcés par un second
constituant sous forme de microplaquettes ou de fibres courtes, une structure d’un grand
intérêt technologique pour les céramiques avancées.
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Chapter 1
Introduction

Contents

1.1 Introduction to advanced ceramics . . . . . . . . . . . . . . . . . . 2
1.2 Numerical tools for predicting fracture . . . . . . . . . . . . . . . 7
1.3 Aims and objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 25

More than 15,000 years of history have demonstrated the industrial applicability of ceram-
ics, although their use has always been limited by their natural disadvantages, such as their
brittleness. For this reason, around 200 years ago, a great deal of research was undertaken
to improve them and further enhance their industrial applications. The concept of advanced
ceramics [1] was therefore introduced to designate new materials with ceramic components
that have been improved by various technologies to overcome the aforementioned disadvant-
ages. Since then, advanced ceramics are expected to be present in countless industries and
sectors ranging from biomedicine, automotive, aerospace, electronics and renewable energy
systems. In this chapter we describe the main characteristics of advanced ceramics, and we
carefully explain the objectives of this PhD thesis.

One of the most important goals in advanced ceramics is to avoid the inherent brittleness
commonly associated with classical ceramics. To that aim, the micro-scale structure of clas-
sical ceramics is modified through processing techniques or addition of additives. A fracture
analysis of these new materials is therefore an essential design component, combining ex-
perimental investigations with numerical studies. In this context, this thesis focuses on the
consistent extension of numerical modelling tools in fracture mechanics for the prediction of
crack nucleation and growth in advanced ceramics. Notably, a crucial aspect of the analysis
revolves around establishing the relationship between the micro and macro-scale character-
istics within these materials. To accomplish this, two approaches are followed: the Coupled
Criterion (CC) within the Finite Fracture Mechanics (FFM) framework and the Phase Field
(PF) model for fracture.

1



Chapter 1. Introduction 2

1.1 Introduction to advanced ceramics

Although the term ceramics is derived from the Greek word keramikos, which means, made
of clay [2], nowadays the concept of ceramics moves away from this initial definition. They
are inorganic and nonmetallic materials having high melting points [3], which are formed by
interconnected atoms, held together by ionic, covalent, and sometimes metallic bonds. Ex-
amples of ceramic materials are alumina, zirconia, mullite...

Ceramics have many advantages. They are in general chemically stable, which means that
their resistance to corrosion or oxidation is very high. They have high thermal conductivity,
due to the high presence of phonons, and can also have high electrical conductivity, depending
on the constituents. As shown in Table 1.1, they can have higher Young’s modulus (E) and
tensile strength (σc) than metals or polymers, whereas the thermal expansion coefficient (αT)
and the fracture toughness (Kc) are typically smaller.

Material E [GPa] σc [MPa] αT · 10−6 [K−1] Kc [MPa m1/2] Gc [MPa m]

Alumina 250-400 350-500 7-9 3.5-4 0.031-0.064

Zirconia 150-250 200-1400 6-12 4.5-5 0.081-0.167

Silicon carbide 410-450 410-650 4.95-5.8 4-4.7 0.036-0.054

Glasses 40-80 20-150 3-5 0.6-0.7 0.005-0.012

Aluminum 60-90 60-550 20-30 22-35 5.38-20.42

Steels 180-250 300-2000 3-4 > 50 > 10

Polyethylene 0.1-0.9 20-45 130-250 1.5 2.5-22.5

Epoxies 1-3 45-90 60-100 0.4-2 0.053-4

Table 1.1: Mechanical properties of some materials at room temperature [1, 4]. Materials are
classified by colours. Ceramic materials are highlighted in orange, glasses in green,
metals in yellow and finally polymers in red.

Another advantage of ceramics is their refractory behaviour, which means that their properties
do not degrade at high temperatures. Moreover, they have very good specific properties, as
shown in the Ashby’s diagrams1 in Fig. 1.1 and 1.2, which plots Young’s modulus and tensile

1Images obtained from https://www.grantadesign.com/education/students/charts/

https://www.grantadesign.com/education/students/charts/
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strength as a function of the material density [5]. It can be observed that ceramics are located
on the diagrams top right side, especially technical ceramic materials (also called advanced
ceramic materials) that can exhibit even better properties, as it is explained below. All these
characteristics make ceramics particularly suitable for high-technological purposes.

Figure 1.1: Ashby’s diagram representing Young’s modulus as a function of the material dens-
ity.

Fracture in ceramic materials is generally brittle, especially under tensile loading. In ceramics,
ionic/covalent bonds and electrons are immobile and plastic deformation caused by disloca-
tion movement requires too much energy. Table 1.1 shows the fracture properties typically
used to characterize a material, Kc and σc. The latter is very controversial in ceramics as it
is highly dependent on the number and size of defects in the microstructure. If we look at
Kc, we can see that it is much smaller than in metals. This is the main drawback of ceramics,
which severely limits their industrial applications.

The increasingly demanding technological requirements in many sectors (electronics, biomedi-
cine, chemical industries...) together with the remarkable advantages of ceramics, led science
to enhance them through technological advancements. The objective is to create novel mater-
ials that surpass the limitations associated with classical ceramics. These high-tech materials
were designated as advanced ceramics in the 70s [6].

Describing the properties of advanced ceramics is difficult, as it entirely depends on the
technological process and the design objectives. In general, advanced ceramics have high
temperature stability (up to 2500◦C), high hardness and corrosion resistance, and totally
variable electrical properties, ranging from insulators to highly conductive materials [4]. In
comparison to metals, fracture toughness is still low, but high-tech processes are now under
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development to achieve reinforced advanced ceramics with greater toughness.

Figure 1.2: Ashby’s diagram representing tensile strength as a function of the material density.

An example is shown in Table 1.2 where the alumina-zirconia composite is compared to its
constituents alumina (Al2O3) and zirconia (ZrO2) (previously shown in Table 1.1). Zirconia
and alumina are used as structural materials because they have good strength, moderate frac-
ture toughness and high corrosion resistance, among others [7]. Zirconia-based ceramics have
a higher fracture toughness than alumina-based ceramics, but they can suffer low-temperature
degradation. The Al2O3/ZrO2 composite combines the good properties of both components.
Notice that an intermediate density (d) is achieved in the composite.

Material d [g/cm3] E [GPa] Kc [MPa m1/2] σc [MPa]

Alumina-zirconia 4.28-5.46 205-370 3.72-6.39 277-888

Alumina (Al2O3) 3.95 250-400 3.5-4 350-500

Zirconia (ZrO2) 6.03 150-250 4.5-5 200-1400

Table 1.2: Mechanical properties at room temperature of alumina-zirconia composite [7] and
its constituents [1].

A classification of advanced ceramics was made in [4], depending on their applications:
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• Structural advanced ceramics: They are used in components of engineering systems that
are subject to high mechanical, tribological, thermal or chemical stresses. An example
is the alumina-zirconia composite shown above.

• Functional advanced ceramics: They are used to create microstructural effects to obtain
conductive or isolated materials, for example in fuel cells.

• Bioceramics: They are used to create biocompatible materials for biomedical purposes.

A large part of the improved properties of advanced ceramic materials can be explained
by their microstructure. For example, in advanced ceramics with a heterogeneous micro-
structure, where there is a mismatch in the thermal expansion coefficients αT of the con-
stituents, the change in temperature after manufacture generates residual stresses that can
contribute to improve the mechanical behaviour of the material. For such cases, a simple rule
of mixtures can correctly define the equivalent homogenized material, according to [1]. There-
fore, they might be studied at the micro-scale for their characterization, although standard
techniques at the macro-scale are still being used. The following section summarizes the most
common experimental techniques currently available for micro-scale testing.

1.1.1 Mechanical testing at the micro-scale

Advances in micro-technology over the past century have highlighted the need to understand
the mechanical behaviour of materials at the micro-scale. Among the latest developments is
the evolution of the microelectronics industry, with the manufacture of small size components
[8], such as inter-layer dielectric and chip passivation films [9]. Furthermore, the nuclear in-
dustry is also in demand for a better knowledge of the behaviour of fuels, such as the uranium
dioxide UO2 in pressurized water reactors [10, 11]. It is also important to highlight the tend-
ency to mimic natural materials, like mother-of-pearl to create nacre-like inorganic materials
[12, 13].

Experiments at the microscale were developed from advances in microscopy during the last
century. In 1937, Manfred von Ardenne [14] invented the Scanning Electron Microscope
(SEM), a type of electron microscope capable of producing high-resolution images of the sur-
face of a sample using electron-matter interactions. Then, in 1981 a new type of microscopy
appeared, based on the application of a probe that travels over the surface of the specimen
to capture images. It was called Scanning Probe Microscopy (SPM), and started with the
invention of the Scanning Tunneling Microscopy (STM) [15], which is a microscope able to
image surfaces at the atomic level, whose principle is based on the tunnel effect. Although
these techniques revolutionized the field of ceramics experimentation, some more traditional
techniques are still used today. One of these is reflected light microscopy, based on the optical
principles of light passing through the curved surface of a typically glass lens [16].

Another important development that appeared at that time was the nano-indentation, a
type of experiment in which an indenter (whose tip is typically made of diamond) applies
a prescribed force or displacement into the material surface. The output of the test is the
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load-displacement curve [17].

On the other hand, MEMS (Micro-Electro-Mechanical System) technology can be used to
fabricate, using lithography techniques, structures in which the sensors, the specimen and
sometimes the actuator are all integrated [18]. These structures are called lab on chip. Ac-
cording to [19], Kahn et al. [20] and Ballarini et al [21] were pioneers on the fracture mech-
anical analysis using a MEMS with sharp cracks to measure the fracture toughness. Both
performed the tests on polysilicon MEMS devices, using indentation to generate pre-existing
defects on the specimens and measure the fracture toughness. Another example considering
MEMS technology can be found in [22].

Furthermore, the FIB (Focused Ion Beam) [23] technique is used to fabricate micro-specimens.
Since the application of this technology on micro-compression testing by Uchic et al. [24],
it has been deeply applied in many studies, e.g. bending of notched and chevron notched
micro-cantilever beams in [25, 26, 27], and compression on micro-pillars in [18, 28].

From an experimental point of view, many things change when we move from the macro- to
the micro-scale. For example, tensile testing, so well-known in the scientific community at the
macro-scale due to the uniformity of stresses during its application, is a challenge at the micro-
scale. They are much more expensive and it is difficult to obtain reliable quantitative results
in terms of displacement force, since the load application point is too close to the measurement
regions [18]. On the contrary, micro-bending experiments are much more reliable, since the
application of a point load far away from the area where the damage occurs allows the Saint-
Venant principle to be taken into account.

1.1.2 Glass ceramics

Glass is increasingly used in structural applications, especially in architecture [29], owing
to its numerous advantages: oxidation and corrosion resistance, hardness, and wear resist-
ance. However, the main drawback of glass is its very low fracture toughness. New glass
ceramic composites have been developed to face this problem, adding a second constituent,
with either higher Young’s modulus, higher strength, or higher ductility, under the form of
platelets, powders, or whiskers. In this context, when the second constituent is a ceramic
material we name this kind of structures as glass ceramics.

In particular, ceramic platelets can be used as a reinforcing constituent in glass matrices [30].
One example is the borosilicate glass Al2O3 platelet composite, which can be really interesting
for industrial applications due to its low production cost and environmental safety [31]. It
was first introduced in 1996 by Boccaccini et al. [32]. Since then, multiple studies have been
made about this material to explore its capabilities, numerically and experimentally. First, in
[32] a characterization of the material was presented using SEM. The fracture surface of the
composite was investigated through reflected light microscopy, whereas a single-edge notched
beam (SENB) was used to measure the fracture toughness. On the other hand, in [30] and
[33] a characterization of the material by means of the roughness in the fracture surface was
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proposed. In particular, in [30] the fracture surface was correlated with the fracture toughness
applying SEM.

The borosilicate glass Al2O3 platelet composite is fabricated via powder technology, one of
the most used techniques to fabricate ceramics [34]. In [32] the composite is fabricated using
uniaxial hot-pressing, and therefore glass powders are uniaxially compacted with platelets at
high temperatures. However, in [35] and [36] a cold-pressing was proposed.

As it was mentioned above, the potential advantage of these composites is the enhancement
of fracture toughness with respect to the one in the matrix. The different ways by which
this fracture property is increased are called toughening mechanisms. Some of them were
experimentally observed in [30] and [33], such as the penetration of a crack into the platelet,
a crack deflection or a decohesion at the end of the platelet.

Furthermore, one of the most important characteristics of this composite is the thermal ex-
pansion mismatch between alumina and glass [37]. The thermal coefficient in alumina is
higher than the one in glass, and consequently, compressive residual stresses will appear in
the matrix after cooling, as well as tensile residual stresses in the platelet. This effect has been
studied experimentally and numerically. In 1999, Todd et al. [37] measured residual stresses
and their toughening effect in experiments using fluorescence microscopy to relate the change
in the luminiscence spectrum of alumina to stresses. They also justified the consideration of
isotropic thermal properties in the platelet, since results do not differ from the anisotropic
measurements. The results were compared to some theoretical models [38] and [39], based
on the aspect ratio of the platelet. Then, in 2001 Cannillo et al. [40] performed numerical
simulations using the finite element method (FEM) to quantify residual stresses. Calculations
were made using a map image micro-structure onto the finite element mesh.

1.2 Numerical tools for predicting fracture

In this section we describe the two numerical tools that have been applied in this thesis for
predicting crack nucleation and propagation: the Coupled Criterion (CC), in the framework
of Finite Fracture Mechanics (FFM), and the Phase Field (PF) model for brittle fracture.
Moreover, the Matched Asymptotics Expansion (MAE) is also explained, as a mathematical
theory used to predict the elastic solution in the neighbourhood of perturbations. It will be
applied in this thesis to reduce computational complexity in simulations when studying some
heterogeneous structures at the micro-scale of advanced ceramics.

1.2.1 The Coupled Criterion

The CC allows predicting crack nucleation in brittle materials. It has been successfully ap-
plied in several problems at the macroscale, such as notched specimens, laminates, adhesive
joints or embedded inclusions [41]. This criterion is corroborated by previous experiments on
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transverse cracking in cross-ply laminates [42].

According to the CC, two necessary conditions are together sufficient to predict crack nucle-
ation, since fracture occurs when both are simultaneously fulfilled: (i) an energy condition,
based on an energy balance, and (ii) a stress condition.

(i) The energy balance is obtained considering two states of the loaded structure, prior to and
following a crack onset. The potential and kinetic energy are characterized by Π

(i)
p and Π

(i)
k

respectively, where the superscript i = 0, 1 is related to the state we are referring to. The
initial one, i = 0, elasto-static, is characterized by a potential energy Π

(0)
p and a zero kinetic

energy Π
(0)
k , whereas the final state, i = 1 , is defined after the onset of a new crack or the

growth of a preexisting one. Hence, considering a homogeneous material in which an expected
crack path is predicted (see Fig. 1.3), we have

Π(0)
p = Π(1)

p +Π
(1)
k +GcδS, (1.1)

where Π(1)
p and Π

(1)
k are the potential and kinetic energy related to the final state, respectively,

Gc is the fracture energy per unit surface, and δS is the newly created crack surface. Both the
final potential and kinetic energy can be defined as Π(1)

p = Π
(0)
p + δΠp and Π

(1)
k = Π

(0)
k + δΠk.

Therefore,
δΠp + δΠk +GcδS = 0, (1.2)

Since δΠk ≥ 0, we have
δΠp +GcδS ≤ 0, (1.3)

which is a necessary energy condition for crack nucleation since it derives from the unques-
tionable energy balance (1.1).

Figure 1.3: Expected crack path in a specimen.

In the following, equations will be defined in the 2D domain. It means that the condition
can be rewritten considering the admissible crack extension δl (also called the newly created
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crack length)
δΠp +Gcδl ≤ 0, (1.4)

Being understood that δΠp is now defined per unit thickness of the specimen. This is com-
monly written, introducing the Incremental Energy Release Rate (IERR) [43], as

−δΠp

δl
= Ginc(δl) ≥ Gc, (1.5)

In this relationship, δl is unknown. Griffith (1921) [44] considered the limit δl → 0

−∂Πp

∂l
= G ≥ Gc, (1.6)

where G is the Energy Release Rate (ERR). However, it is well-known that if there is no
pre-existing crack G = 0, hence, the onset of a crack at a stress concentration point which is
not a crack tip cannot be predicted using (1.6).

(ii) On the other hand, the stress condition is based on a maximum tension that a material
can undergo, known as the tensile strength σc . According to the CC, the tensile stress in the
initial state must be higher than the tensile strength all along the presupposed crack path to
allow crack onset

σ(s) ≥ σc for 0 ≤ s ≤ δl, (1.7)

where s is the coordinate along the expected crack path (see Fig. 1.3). As a consequence of
the two inequalities (1.5) and (1.7), it can be shown that the crack nucleation occurs abruptly
from 0 to δl. It is important to highlight that this incremental form is the foundation of FFM,
since it assumes the instantaneous formation of cracks of finite size [41], [43],[45] and [46].
Moreover, in the case of the CC this instantaneous crack onset is not an assumption but a
consequence of the two inequalities (1.5) and (1.7), as shown in [43].

To sum up, the crack nucleation in a homogeneous structure is predicted by the CC using
two necessary and together sufficient conditions

Ḡinc =
Ginc(δl)

Gc
≥ 1, (1.8)

σ̄ =
σ(s)

σc
≥ 1, for 0 ≤ s ≤ δl, (1.9)

where the stress condition (1.9) is expressed as a non-local condition. Note that, in general,
σ(s) is a decreasing function of s and the second inequality reduces to

σ̄ =
σ(δl)

σc
≥ 1, (1.10)

which is called the Point Method, see [47] and [48]. According to [41], the stress condition
can also be defined following the so-called Line-Method, based on the average stress along the
prescribed crack path proposed by Cornetti et al. [49],

1

δl

∫ δl

0
σ(z)dz ≥ σc. (1.11)
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Both the Point Method and Line Method are good approximations to experiments, giving
very close results to each other. Note that when σ(s) is a decreasing function the non-local
condition is the Point Method.

Remark 1: We denote the crack initiation length as δlc. The crack initiation length corres-
ponds to the admissible crack extension δl associated with the minimum load applied in the
structure fulfilling the two conditions (1.8) and (1.9).

Remark 2: In this approach, the exact amount of kinetic energy that can be produced during
the initiation process is ignored. It is simply considered as positive (see (1.2) and (1.3)). Its
influence on the CC was studied by Laschuetza et al. [50], who explained that the load at
initiation is well captured by the CC (at least in the case they study). Only the transient
process following initiation is not described by the CC.

1.2.1.1 The CC in a heterogeneous structure

A special care must be brought when the crack is nucleated in a heterogeneous material.
Hence, considering a structure with N different materials, the stress condition is written as
a function of the tensile stress σ(s) along the expected crack path (i.e. prior to any crack
extension), using s as a coordinate,

σ̄ =
σ(s)

σc(s)
≥ 1, for 0 ≤ s ≤ δl. (1.12)

being δl the newly created crack length. The tensile strength σc(s) is defined as

σc(s) =

N∑
i=1

σic [H(s− δli−1)−H(s− δli)] , (1.13)

where H is the Heaviside function and δl0 = 0. In this PhD thesis we will work with two
different heterogeneous structures, one with N = 2 and another with N = 3. An example of
a heterogeneous structure with N = 2 is shown in Fig. 1.4.

In the energy condition the fracture energy is now considered for each material i, Gi
cSi,

∆Πp +∆Πk +
N∑
i=1

Gi
cSi = 0, (1.14)

where Si is the newly created crack surface and Gi
c is the critical energy release rate in each

material i. In a bidimensional case, this balance holds per unit thickness of the specimen,

∆Πp +∆Πk +

N∑
i=1

Gi
cδli = 0, (1.15)

and δli denotes the newly created crack length within each material i. Assuming the initial
state to be quasi-static, ∆Πk ≥ 0, the energy condition can be written as

Ḡinc = −∆Πp(δl)

δl
· 1

Gc(δl)
≥ 1, (1.16)
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where the parameter Gc(δl) is

Gc(δl) =

∑N
i=1G

i
cδli

δl
, (1.17)

in which δl =
∑N

i=1 δli.

Figure 1.4: Expected crack path in a specimen with a heterogeneous structure.

As an example, if N = 2 it means that the expected crack is formed by two segments (see
Fig. 1.4), one in material A and the other in material B, with different material properties.
Hence, the energy and stress condition are expressed as a function of the fracture properties
of the two materials GA, B

c and σ A, B
c . In that context, (1.9) is splitted into two conditions,

described as

σ(s) ≥ σA
c , for 0 ≤ s ≤ δlA, (1.18)

σ(s) ≥ σB
c , for δlA ≤ s ≤ δlA + δlB. (1.19)

On the other hand, the energy balance given in (1.4) is rewritten as

δΠp +GA
c δl

A +GB
c δl

B ≤ 0, (1.20)

where δlA and δlB are the newly created crack lengths in materials A and B. Then the energy
condition can be written

−∆Πp

δlA + δlB
= Ginc(δl

A, δlB) ≥ GA
c δl

A +GB
c δl

B

δlA + δlB
. (1.21)

1.2.1.2 Asymptotic approach

The Matched Asymptotics Expansion (MAE) procedure, is a quasi-analytical formulation that
allows to find the elastic solution for applying the CC with low computational complexity.
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It is particularly suitable to predict crack nucleation at the tip of sharp V-notches, under
the assumption that the admissible crack extension δl is small compared to any dimension
of the structure (in this case, δl is compared to the notch depth as a reference). It is based
on the Williams’ expansion [51], whose terms are described in the Annex 5.1. Before crack
nucleation, the tensile stress at a distance δl is described as

σ(δl) = Kδlλ−1 + ... (1.22)

where λ represents the singularity exponent and K the Generalized Stress Intensity Factor
(GSIF). The IERR (see (1.5)) at a distance δl can be expanded as

Ginc = AK2δl2λ−1 + ..., with A =
(1− ν2)A∗

E
(1.23)

with an appropiate normalization of sθθ = 1, see (5.6). The coefficient 1−ν2 relies on the plane
strain assumption. In (1.23), A is a scaling coefficient calculated through a path-independent
integral, see Annex 5.3, and A∗ is a dimensionless scaling coefficient depending only on the
opening angle ω.

Following [43], the energy condition provides a lower bound for δl while the stress condition
gives an upper bound. Then, using the Irwin length (lIrwin) [52], compatibility between the
two conditions provides the crack initiation length δlc

δlc =
lIrwin

A∗ , with lIrwin =
EGc

(1− ν2)σ2c
. (1.24)

To ensure the validity of the asymptotic expansions, its smallness is checked afterwards, i.e.,
we check that the initiation length is much smaller than the dimensions of the specimen.
Finally, the CC takes the following form, involving the critical value Kc of the GSIF

K ≥ Kc =

(
EGc

(1− ν2)A∗

)
σ2λ−1

c . (1.25)

This holds true disregarding the way of loading.

As an example, Table 1.3 reports the crack length at initiation δlc and the critical GSIF Kc
for various opening angles. Material data are for alumina-zirconia ceramic, in which Young’s
modulus, Poisson’s ratio, tensile strength and fracture energy are reported in [53] to be:
E = 380GPa, ν = 0.22, σc = 400MPa and Gc = 0.023MPa mm (23 J m−2).

Let us recall that for a crack (ω = 0◦) the parameter K is called Stress Intensity Factor (SIF)
and Kc = KIC = 38.23MPa mm1/2, derived from Gc using Irwin’s formula. Moreover, note
that no length is given for a crack (ω = 0◦), since Griffith’s criterion [44] (with which coincides
for a crack) does not involve any length. Indeed, observe that 2λ− 1 = 0 in (1.23) so that no
lower bound exists for admissible crack extension lengths. Thus, any infinitely small extension
can be considered, which justifies the use of derivative in (1.8) in case of a preexisting crack.
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ω 0◦ 30◦ 60◦ 90◦ 120◦ 150◦

λ 0.5 0.502 0.512 0.545 0.616 0.752

A∗ 6.28 6.16 5.82 5.18 4.25 3.03

δlc (µm) 9.3 9.7 11.1 13.5 18.9

Kc (MPa mm1−λ) 38.23 38.98 41.99 51.57 76.59 149.58

Table 1.3: CC parameters extracted from the asymptotic approach.

1.2.1.3 Full Finite Element approach

In some cases where the assumption of smallness of δlc may not be verified, the Full Finite
Element (FFE) approach [54] gets rid of this limitation. The whole structure under considera-
tion is modelled by FE either under a prescribed displacement (DC) or a prescribed force (FC).

In a first step an undamaged configuration is considered, i.e. with no new crack in the struc-
ture. The tensile stress σ(s) along the expected crack path is computed together with the
potential energy Πp(0). Then, nodes along the crack path are released one after the other,
generating a virtual crack with an increasing length δl, and therefore Πp(δl) is computed,
which allows to calculate Ginc(δl). Notice that several linear calculations are required to
build the function Ginc(δl) in the FFE approach. We look for the minimum load at which the
CC is fulfilled, where a crack with a length δlc is nucleated. Obviously, the computational
cost is higher than in the MAE approach. But, of course, this procedure is valid without
restrictions, whereas the MAE approach needs a smallness assumption. In any case, whatever
the approach, the numerical effort remains small compared to other approaches involving the
resolution of nonlinear problems like cohesive zone models [55] or phase field method [56] and
[57]. Notice that in the horizontal axis in Fig. 1.5 the coordinate s is normalized by the width
of the specimen W − a, as it will be explained later.

Different cases that could be met when implementing the CC are illustrated in Fig. 1.5 and
refer to coming examples in Section 2.2. The load is gradually increased so that a first point
fulfilling the two conditions of the CC appears (black cross). Fig. 1.5a is the classically
encountered situation where σ̄ is a decreasing function while Ḡinc is monotonically increasing.
In Fig. 1.5b, σ̄ is still decreasing but Ḡinc is no longer monotonically increasing, it goes
through a maximum and then decreases. On the contrary, in Fig. 1.5c, it is σ̄ which is
no longer monotonically decreasing while Ḡinc is increasing. These situations were already
discussed in [41] and [58].
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(a) The U-notched specimen at the micro-
scale under FC loading (Section 2.2.2.3)

(b) The U-notched specimen at the micro-
scale under DC loading (Section 2.2.2.3)

(c) The double edge notched specimen at
the nano-scale under DC loading (Section
2.2.3.2)

Figure 1.5: Examples of implementation of the CC. Stress condition (1.9): blue solid line,
energy condition (1.8): orange solid line. The cross shows the CC point, defined
by the minimum load that meets the two conditions.

1.2.2 Matched asymptotic expansions

The matched asymptotic expansion [59] can be used to predict the mechanical behaviour of
a structure in the vicinity of an inclusion, a crack, or a cavity, see Fig. 1.6. The size of
the perturbation, denoted as l in this PhD thesis, is assumed to be small compared to any
dimension of the structure.

Some numerical difficulties are found when solving an elasticity problem in the actual domain
Ωl, due to the small size of the perturbation. The use of very small elements in the vicinity
of the perturbation increases the computational complexity of the problem, and leads to
numerical errors that could be produced by strong gradients in the mesh size. For this reason,
the matched asymptotic expansion is proposed to approximate the actual solution Ul(x1, x2)
in the neighbourhood of the perturbation. To that aim, a twofold representation of Ul(x1, x2)
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is proposed, in the form of an outer and an inner expansion. The set of equations that defines
the actual problem is

−∇x · σl = 0 in Ωl, (1.26)

σl = C : ∇x Ul (1.27)

σl · n = h on ΓN (1.28)

σl · n = 0 on ΓV ∪ Γl (1.29)

Ul = Ū on ΓD (1.30)

Figure 1.6: Examples of cases that can be studied applying the MAE. For display purposes
in the representation l is not small compared to any dimension of the structure.

It is assumed that only homogeneous Neumann boundary conditions are set in the vicinity
of the perturbation, whose contour is denoted as Γl. This notation can be observed in the
example of a cavity that is shown in Fig. 1.7a, where h = 0.

(a) Actual problem (b) Outer problem

Figure 1.7: Examples of a cavity. Representation of the notation.

First, the actual solution Ul(x1, x2) can be approximated by an outer expansion, represented
as

Ul(x1, x2) = U0(x1, x2) + ... (1.31)



Chapter 1. Introduction 16

where U0(x1, x2) is the solution of the same elasticity problem considering that the perturba-
tion is not observable in the domain, i.e., solved in an unperturbed domain Ω0, see Fig. 1.7b
as an example for a cavity. The second term in (1.31) denoted with an ellipsis is a "small
correction" that decreases to 0 as l → 0. The solution U0(x1, x2) is a good approximation of
Ul(x1, x2) far away from the perturbation. For this reason, it is called the outer field. The
set of equations that defines the outer field is

−∇x · σ0 = 0 in Ω0, (1.32)

σ0 = C : ∇x U0 (1.33)

σ0 · n = h on ΓN (1.34)

σ0 · n = 0 on ΓV (1.35)

U0 = Ū on ΓD (1.36)

A second expansion can be used to approximate the actual solution by introducing the change
of variables yi = xi/l and ρ = r/l. In the limit when l → 0 we obtain an unbounded domain
Ωin in which the characteristic length of the perturbation is now equal to 1, see Fig. 1.8 as
an example, where the chosen characteristic length is the diameter of the cavity. The inner
expansion is therefore expressed as

Ul(x1, x2) = Ul(ly1, ly2) = F0(l)V0(y1, y2) + F1(l)V1(y1, y2) + ... (1.37)

The set of equations related to the two terms V0(y1, y2) and V1(y1, y2) are

−∇y · σ̃0 = 0 in Ωin, −∇y · σ̃1 = 0 in Ωin,

σ̃0 = C : ∇y V0 σ̃1 = C : ∇y V1

σ̃0 · n = 0 on ΓV ∪ Γl σ̃1 · n = 0 on ΓV ∪ Γl

The inner problem is well-posed when the so-called matching conditions are added to these sets
of equations. The inner expansion is a good approximation of the actual solution Ul(x1, x2) in
the neighbourhood of the perturbation, whereas the outer expansion properly approximates
Ul(x1, x2) far away from the perturbation. Hence, there must exist an intermediate region
where both expansions are valid. In that region the matching conditions are defined.

The behaviour of the far field near the origin can be described by an expansion in powers of
r, that can be the Taylor’s expansion in the case of a smooth stress field or the Williams’
expansion (see Annex 5.1) in case of a singularity. The latter can be expressed in polar
coordinates as

U(r, θ) = U(0, 0) +Krλu(θ) + ... (1.38)
assuming that the dominant term is real and have multiplicity one. The matching conditions
can be expressed as

F0(l)V0(y1, y2) ≈ U(0, 0), when ρ→ ∞ (1.39)

F1(l)V1(y1, y2) ≈ Klλρλu(θ), when ρ→ ∞ (1.40)
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where the term ≈ means "behaves like". It can be set

F0(l) = 1 and V 0(y1, y2) ≈ U(0, 0), when ρ→ ∞ (1.41)
F1(l) = Klλ and V 1(y1, y2) ≈ ρλu(θ). when ρ→ ∞ (1.42)

Figure 1.8: Scheme of the inner problem.

However, it can be shown that the matching condition over V1(y1, y2) does not fulfill the
Lax-Milgram theorem, since it has an infinite energy in the unbounded domain Ωin, while it
should decrease to 0 at infinity to have a finite energy. For this reason, the superposition
principle is applied,

V1(y1, y2) = ρλu(θ) + V̂1(y1, y2) (1.43)

where V̂1(y1, y2) is the solution to a well-posed problem. The set of equations that defines the
new term V̂1(y1, y2) is

−∇y · σ̂1 = 0 in Ωin,

σ̂1 = C : ∇y V̂1

σ̂1 · n = 0 on Γl

V̂1 ≈ 0 as ρ→ ∞
σ̂1 · n = −C : ∇y(ρu(θ)) · n on ΓV

where matching conditions have already been included in the formulation. Finally, it is
obtained that

Ul(x1, x2) = Ul(ly1, ly2) = F0(l)U(0, 0) +Klλ
[
ρλu(θ) + V̂1(y1, y2)

]
+ ... (1.44)

The solution V̂1(y1, y2) has finite energy at infinity.
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1.2.3 Phase Field model for brittle fracture

Initial Remark: although a variety of PF models can be found in the literature, the one
applied in this PhD thesis is also a gradient damage model, as explained below, and therefore
we will refer to it using both terms depending on the context.

Fracture in brittle materials can be modelled as the nucleation and propagation of cracks,
generating a decrease in the stiffness of the structure [60]. There are two methods for mod-
eling such phenomena: discrete and continuous models. In discrete models, such as the very
well-known Griffith model [44] or the Coupled Criterion [43], the crack is treated as a discon-
tinuity in the material. On the other hand, continuous models define the crack as a damaged
zone where the stiffness is degraded. Generally, discrete models are simpler than continuous
models, but they can not be applied when the crack path is unknown a priori.

Damage models [60] are a type of continuous models where an internal variable named as
damage variable is used to define the stiffness degradation. In standard damage models a
variational formulation is used, based on the local minimization of the total energy in the
system [61], that is defined as the sum of the elastic and dissipated energy. Moreover, in local
damage models the failure is primarily governed by local conditions, f.e., when the damage
variable reaches a certain value at a material point. These models are commonly applied to
stress hardening structures (after failure the stress is increased, a common phenomenon given
for example in plasticity), but their applicability is limited in case of stress softening systems,
since the evolution problem becomes ill-posed [60], and results obtained are very mesh de-
pendent. In such systems, gradient damage models, where a non-local term is included in
the formulation, are a good alternative. The non-local term depends on the gradient of the
damage variable, leading to the introduction of an internal length scale.

A gradient damage model for brittle fracture was introduced in [62], inspired by the variational
formulation for brittle fracture [56]. In this formulation the mechanical behaviour of a cracked
solid (Fig. 1.9) is defined using the minimization of the functional

Ψ(Γ, u) =

∫
Ω/Γ

ψel(u)dx+

∫
Γ
ψd(Γ, u)ds, (1.45)

where ψel(u) is the elastic energy density and ψd(Γ, u) is the fracture energy density dissip-
ated in the crack. The second term of (1.45) represents the total dissipated energy in the
solid, expressed as an integral in the crack surface Γ, see Fig. 1.9. An essential irreversibility
condition is included to avoid healing: at time step i Γi ⊃ Γi−1.

The numerical implementation of the problem was achieved approximating the functional
Ψ(Γ, u) by a regularized elliptical functional [63], named as ΨlPF(sd, u). This regularization
is based on the theory of image segmentation in [64] and the regularization made in [65]. In
this approximation, the dissipated energy is expressed as a domain integral, and therefore the
regularized functional is defined as

ΨlPF(sd, u) =

∫
Ω
ψel(sd, u)dx+

Gc

lPF

∫
Ω

(
1

4
(1− s2d) + l2PF|∇sd|2

)
dx. (1.46)
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The variable sd denotes if the material is completely
damaged sd = 0 or not damaged sd = 1. Moreover,
lPF is a length parameter obtained when including the
gradient in the integral, defined as the width of the reg-
ularized crack. Based on Γ−convergence [65], it can be
shown that the global minimizer of (1.46) tends to the
global minimizer of (1.45) when lPF → 0. This was also
explained using Matched Asymptotics Expansion in [66].

The damage variable sd used in [63] is frequently
substituted by α, where α = 0 means no damage and
α = 1 complete failure. Moreover, α is usually named
as the phase field parameter, since the formulation
introduced in [63] can be interpreted as a degenerated
Phase Field model. Using this notation, the regularized
version of the irreversibility condition is defined as
α̇ ≥ 0 [67].

Figure 1.9: Scheme of the
cracked solid

In the regularized model proposed in [63] there was no distinction between tension and com-
pression, which can lead to unrealistic crack patterns [68]. For this reason, a modified reg-
ularized formulation including a decomposition of the elastic energy is proposed in [67] (see
Section 1.2.3.2 for more details).

A thermodynamically consistent formulation of the Phase Field model for brittle fracture was
presented in [57]. In this formulation viscous effects were also considered, as well as a new
spectral decomposition of the elastic energy to include stress degradation only in tension,
slightly different from the one introduced in [67]. The irreversibility condition is included
using a history-field variable H(x, τ) [69] evaluated at each material point x and time τ ,

H(x, τ) = max
s∈τ

ψ+
el (x, τ). (1.47)

where ψ+
el (x, τ) is the elastic energy density related to tension. Therefore, the fracture phase

field model is presented as a set of two equations

∇ · σ + f = 0, (1.48)

Gc

lPF

(
α− l2PF∆α

)
− 2(1− α)H = 0, (1.49)

where f is the vector of volumetric forces. The proposed formulation allowed the numerical
implementation of the PF model in some commercial codes, such as ABAQUS [70].

When the parameter lPF is interpreted as an internal length of the material the model can be
considered as a gradient damage model [61, 62].

Remark: throughout this document α will be used to denote the damage variable.
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1.2.3.1 Definition of an isotropic gradient damage model for brittle fracture

The mechanical behaviour of a damaged solid made of a brittle material [60] is characterized
by:

• A damage variable α which fulfills 0 ≤ α ≤ 1 (α = 0 denotes no damage and α = 1
complete damage).

• A state:
(
α,∇α, ε(u)

)
.

• An energy density ψlPF(α,∇α, ε(u))

• The so-called dual quantities of ψlPF : σ (the stress tensor), Y (the energy release rate
density) and q (the damage vector flux):

σ =
∂ψlPF

∂ε
, Y = −∂ψlPF

∂α
, q =

∂ψlPF

∂∇α
, (1.50)

The total energy density in the system ψlPF is defined as

ψlPF(α,∇α, ε(u)) = ψel(α, ε(u)) + w(α) +
1

2
w1l

2
PF∇α · ∇α. (1.51)

The elastic energy density ψel(α, ε(u)) is:

ψel(α, ε(u)) =
1

2

(
A(α) : ε(u)

)
: ε(u), (1.52)

being the stiffness tensor A(α) characterized by A(0) = A0, the stiffness tensor of the pristine
material, and A(1) = 0. Moreover, the dissipated energy is made by a local term w(α) and
a non-local term depending on the damage gradient. Notice that w(1) = w1 corresponds to
the total energy dissipated in a damage process in a solid volume element. An internal length
parameter lPF appears in the formulation.

The total energy in the system can be defined as

Pτ (v, β) =

∫
Ω
ψlPF(β,∇β, ε(v)) dx−Ψf(v) v ∈ Wv and β ∈ Wβ (1.53)

where Ψf(v) is the work of external forces at a certain time τ ,

Ψf(v) =

∫
Ω
fτ · v dx+

∫
ΓN

Fτ · v ds, v ∈ Wv (1.54)

and

Wv = {v : v = U on ΓD}, (1.55)
Wβ = {β : 0 ≤ β ≤ 1 in Ω}, (1.56)

where ΓD and ΓN are the Dirichlet and Neumann boundaries of the solid, see Fig. 1.9. The
solution (uτ , ατ ) at a certain time τ fulfills the damage evolution law:
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• Principle of irreversibility α̇ ≥ 0 ∀τ ≥ 0

• Principle of stability: the solution (uτ , ατ ) must be stable ∀τ and therefore

∃h̄ > 0 : ∀h ∈ [0, h̄] Pτ (uτ , ατ ) ≤ Pτ (uτ + h(v − uτ ), ατ + h(β − ατ )), (1.57)

∀v ∈ Wv and β ∈ Wβ .

• Principle of balanced energy: the energy must always be conserved.

Pτ (uτ , ατ ) = P0(u0, α0) +

∫ τ

0

(∫
Ω
σs : εs dx−Ψf(u̇s)− Ψ̇f(us)

)
ds. (1.58)

According to [60], these conditions are fulfilled if the equilibrium equation of the elastic
problem and the Kuhn-Tucker conditions are simultaneously fulfilled. This is true only for
the first order of stability conditions, but it is not sufficient for the second order of stability.
The Kuhn-Tucker conditions applied on the solution (uτ , ατ ) at time τ are:

• Irreversibility: α̇τ ≥ 0

• Damage criterion: ∇ · qτ + Yτ ≤ 0 in Ω

• Energy balance:
(
∇ · qτ + Yτ

)
α̇τ = 0 in Ω

• Boundary conditions: qτ · nτ · α̇τ ≥ 0 and qτ · nτ ≥ 0 on ΓN ∪ ΓD, the outer contour of
the solid.

1.2.3.2 Implementation of the gradient damage model

In the previous section, the concept of a gradient damage model was introduced. However,
it was not specified for any particular damage law or stiffness evolution. In this section, the
previous model is specialized for numerical implementation, providing an expression for the
damage law as well as the evolution of stiffness, based on explanations found in [60] and [71].
At a certain time τ we can describe ψlPF(ατ , ε(uτ ),∇ατ ) as

ψlPF(ατ , ε(uτ ),∇ατ ) = ψel(ατ , ε(uτ )) +
Gc

lPFcw

(
w(ατ ) + l2PF||∇ατ ||2

)
. (1.59)

The function w(ατ ) and the coefficient cw can be defined

w(ατ ) = ατ and cw = 8/3, (1.60)

if an elastic phase with no damage (ατ = 0) is considered, after which there is a damaged
phase where the damage variable evolves until the complete damage ατ = 1. This model is
known as the AT1 model [71]. If, on the contrary, no elastic phase is included, the following
functions can be used

w(ατ ) = α2
τ and cw = 2, (1.61)

which is known as AT2 model [71].
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The elastic energy density given in (1.52) is split into ψ+
el(ατ , ε(uτ )) and ψ−

el(ατ , ε(uτ )), being
respectively related to traction and compression strain components:

ψel(ατ , ε(u)) =
(
(1− ατ )

2 + kres
)
ψ+
el(ατ , ε(uτ )) + ψ−

el(ε(uτ )), (1.62)

where kres is a residual parameter artificially included to prevent the stiffness from being
completely zero in numerical computations when the damage is complete in the structure.
This parameter is typically very small, around 10−6. In this work, the strain energy split is
based on the volumetric-deviatoric decomposition presented in [67].

ψ+
el(ατ , ε(uτ )) =

B

2
< tr(ε(uτ )) >2

+ +A0 : ε
′(uτ ) : ε

′(uτ ), (1.63)

ψ−
el(ε(uτ )) =

B

2
< tr(ε(uτ )) >2

−, (1.64)

being < tr(ε) >±=
tr(ε)±|tr(ε)|

2 and B the bulk modulus of the material.

For its application on 2D or 3D structures, the FEM is used, applying either a monolithic or a
staggered scheme. Monolithic schemes are more efficient, because the solution is obtained with
only one loop of iterations [68]. In this work, however, we use a staggered scheme, since they
have more robustness. For each time τ , an iterative process starts. First, the displacement
field uiτ at iteration i is obtained while keeping constant the damage variable αi

τ = αi−1
t .

Then, the damage variable at iteration i denoted as αi
τ is calculated keeping constant uiτ .

The process is iterated until the algorithm finds a convergence, based on |αi
τ − αi−1

τ | < Tol,
where Tol is a tolerance. Note that the first iteration i = 1 uses the damage variable from the
previous step αt−1. More information on this process can be found in Annex 5.4.2.

1.2.3.3 A simple case: 1D solution

Many authors have used the 1D solution of the PF model for brittle fracture to explain in a
simple way how this model work. The key advantage is that analytic developments can be
obtained. In [57] an infinite long bar with the following boundary conditions: α(0) = 1 and
α(±∞) = 0 is introduced, characterized by the damage evolution (represented in Fig. 1.10)

α(x) = e−|x|/lPF . (1.65)

The damage law in (1.65) is the Euler equation of the variational principle

α = Arg
{

inf
α∈Wα

ΓlPF(α)

}
. (1.66)

where Wα = {α|α(0) = 1, α(±∞) = 0} and the functional ΓlPF(α) is

ΓlPF(α) =
1

2lPF

∫
Ω

(
α2 + l2PFα

′2
)
dx. (1.67)

This analytical development was generalized for a 2D/3D model, defining the dissipated en-
ergy in the system in [69]. Moreover, it clearly illustrates the physical meaning of the phase
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field length scale, since it defines the width of the regularized damage region (Fig. 1.10).

Figure 1.10: Scheme of the infinite long bar and the damage evolution α(x). In (a) the discrete
evolution is represented, whereas in (b) the continuous evolution given by (1.65)
is shown.

In [60], the damage gradient model can be applied in the traction test of a one-dimensional
bar of length L made of homogeneous material with stress softening. This simple study is
the basis for the definition of the internal length lPF as a function of the Irwin length lIrwin.
Only the axial displacement is defined in the 1D problem, see Fig. 1.11, and therefore the
boundary conditions are written as

uτ (x = 0) = 0, uτ (x = L) = Uτ and U0 = 0. (1.68)

Figure 1.11: Scheme of the 1D tensile test

As it was mentioned above, the solution to this problem (uτ , ατ ) at a certain time τ is obtained
applying the equilibrium together with the Kuhn-Tucker conditions. In this case after the
equilibrium condition we obtain that the stress is constant along the bar

σ′τ = 0 → στ = A(ατ (x))ετ = A(ατ (x))u
′
τ , (1.69)

where (·)′ = ∂(·)/∂x. After applying the boundary conditions the tensile stress in the bar

στ = uτ

∫ L

0
A(ατ (x)) dx. (1.70)

The following conditions are obtained from the application of the Kuhn-Tucker conditions
using the energy density presented in (1.59),
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• Irreversibility: α̇τ ≥ 0. Initially there is no damage α0 = 0

• Damage criterion: −2lPFGc
cw

α
′′
τ −A0(1− ατ )u

′2
τ + Gc

lPFcw
∂w
∂ατ

≥ 0

• Energy balance: α̇τ

(
−2lPFGc

cw
α

′′
τ −A0(1− ατ )u

′2
τ + Gc

lPFcw
∂w
∂ατ

)
= 0

• Boundary conditions: α′
τ (0) ≤ 0 and α′

τ (L) ≥ 0.

We now assume that the damage variable at a certain time τ is constant along the bar
ατ (x) = ατ . The solution derived from this hypothesis is called homogeneous solution, and
it always fulfills the boundary conditions described in the last item of the list above. In the
homogeneous solution the tensile stress is also constant along the bar and therefore the dis-
placement is uτ (x) = τx.

Two models are defined. In the first one an initial elastic phase is considered, followed by a
damaged phase. In the elastic phase there is no damage in the bar, and therefore ατ = α̇τ = 0.
The solution corresponds to the one of the elastic problem. Notice that during the elastic
phase the irreversibility and the energy balance are verified, but not the damage criterion.

The last point of the elastic phase corresponds to the critical point where the damaged phase
is initiated. At that point, all the Kuhn-Tucker conditions are together fulfilled. Starting
from an undamaged configuration of the solid, ατ = 0, the damage starts growing only if
α̇τ > 0 at a certain time τ . Hence, the energy balance and the damage criterion are fulfilled
only if

A0(1− ατ )u
′2
τ − Gc

lPFcw

∂w

∂ατ
= 0. (1.71)

Notice that α′
τ = 0, since we are considering the homogeneous solution. Applying (1.60), the

damage evolution is now written as a function of the tensile strain as

ατ (t) = 1− 3Gc

8lPFA0τ2
, (1.72)

and therefore the tensile stress

στ = A0
τ4c
τ3

(1.73)

where τc = σc/A0 is the critical tensile strain. Notice that prior to the damaged phase the
stress increases with growing τ , whereas it decreases in the damaged phase. Hence, there is a
peak stress at the end of the elastic phase, where στ = σc, a critical value that is the tensile
strength. This model is called AT1 model [71], and the phase field length scale in (1.59) is
therefore described as

lPF =
3GcA0

8σ2c
=

3

8
lIrwin, (1.74)

On the other hand, a different model can be studied without the elastic phase. In that case,
α̇0 > 0 and the Kuhn-Tucker conditions must always be fulfilled from the beginning of the
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loading. From (1.71) the damage evolution is now written as a function of the tensile strain
as

ατ (τ) =
A0τ

2

A0τ2 +
Gc
lPF

(1.75)

and therefore the tensile stress
στ =

A0τ(
1 + t2

2τ2c

)2 . (1.76)

Again, it is a stress softening system after a certain peak stress, since the tensile stress is
reduced with growing τ for τ > τc. Notice that this critical value of the tensile strain is not
the same as in the AT1 model. This model is called AT2 model, and the phase field length
scale is written

lPF =
27GcA0

256σ2c
=

27

256
lIrwin. (1.77)

In Fig. 1.12 the evolution of σ/σc is represented as a function of τ/τc for the AT1 and the
AT2 model. The slope in the damage phase of the AT1 model is much higher than in the
AT2 model. It means that the damage evolves faster in the AT1.

Figure 1.12: Evolution of the tensile stress with respect to the tensile strain in the 1D test
according to the AT1 and the AT2 models.

1.3 Aims and objectives

As it was explained in previous sections, ceramic materials are widely used in the industry
owing to their countless advantages, such as the resistance to corrosion or oxidation. How-
ever, they have a very low fracture toughness, which is related to the spontaneous brittle
failure of the component. In this context, the main objective of this thesis is the consistent
extension of numerical modelling tools in fracture mechanics for predicting crack nucleation
and growth in advanced ceramics, with a special emphasis in the relationship between the
micro and macro-scale characteristics within these materials. Two approaches are followed:
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the Coupled Criterion (CC) within the Finite Fracture Mechanics (FFM) framework and the
Phase Field (PF) model for fracture.

An inherent property of materials is an internal length frequently named as the Irwin length,
that depends on the fracture properties. At the macro-scale, this length is small compared to
the dimensions of the specimen. However, at the micro-scale it is of the same order of mag-
nitude or even larger and can interact with the dimensions of the structure. In Chapter 2,
this phenomenon is studied considering two different numerical tools. First, in the framework
of FFM, a crack is assumed to jump a given finite length at onset, and the CC estimates that
this length is proportional to the internal length of the material. On the other hand, in the
PF model for brittle fracture there is a length related to the size of the damaged region, called
the phase field length scale, that is also proportional to the internal length of the material.

In Chapter 2 we study the answer brought by both the CC and the PF model when des-
cending the scales from the cm-scale to the µm-scale and even nm-scale. This would help
to better describe ceramic materials at the micro-scale, and therefore to enhance the design
of advanced ceramics, which is commonly based on changing the micro-structure of classical
ceramics to generate new materials with improved mechanical properties. One type of these
new structures is deeply studied in Chapter 3, made of brittle matrices reinforced by short
fibers or platelets. They are analyzed using numerical techniques that avoid the controversial
conclusions obtained about fracture properties when descending the scales in ceramics.

Thus, in Chapter 3 we develop a computational tool to study the fracture behaviour of such
composites, based on the connection between the micro- and the macro-scale. The aim of
this tool is to provide an insight into the changes generated in the crack propagation when
it encounters the reinforcing element, estimating the apparent fracture toughness of the com-
posite as a function of design parameters.

To sum up, two parts are distinguished in this thesis. The first one (Chapter 2) is dedicated
to the study of ceramics fracture properties at the micro-scale. In the second part (Chapter
3) we focus on the fracture analysis of brittle materials reinforced by a second constituent in
the form of micro-platelets or short fibers, a kind of structure of high technological interest
for advanced ceramics.
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At the macro-scale, the Irwin length is small compared to any dimension of the structure,
whereas at the micro-scale it is of the same order of magnitude or even larger and can interact
with the dimensions of the specimen. This could strongly affect two important methodologies
to predict crack nucleation in brittle materials, the Coupled Criterion (CC) and the Phase
Field (PF) model, that depends on a length parameter proportional to the Irwin length. Then,
the question that arises is: can fracture mechanics theories be extended to small scales? The
main objective of this chapter is to analyse the applicability of the CC and the PF at the
micro-scale through case studies and comparisons to experiments. In particular, it discusses
the reliability of experiments made at the micro- and nano-scale to obtain fracture properties,
since an apparent strengthening of the material due to its smallness is observed, disregarding
any statistical consideration on the presence and size of defects. It is important to highlight
that a part of the work presented in this chapter is published in [72] and [73] and the other
part will be sent to a journal in the following months.

27
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2.1 Introduction

One of the fundamental ingredients of the recent methodology FFM for the prediction of
crack events in materials and structures, is that a crack is assumed to jump a given finite
length at onset. This can be formulated through the invocation of the CC presented in [43],
stating that this length depends on the material toughness, the tensile strength but also the
geometry. Complying with a different vision, according to [67] and [63], in the PF model for
brittle fracture, there exists a material related length that describes the size of the damaged
region, called the phase field length scale. Both the PF length scale and the nucleation length
obtained by the CC are proportional to the Irwin length defined by the material toughness
and the tensile strength. At the macro-scale, they are small compared to any dimension of
the structure, whereas at the micro-scale both lengths have the same order of magnitude or
even larger and can interact with the dimensions of the structure.

In the first part of this chapter the issue is examined via the CC when descending the scales
from the macro-scale to the micro-scale. FFM [45, 46, 43, 41], and more precisely the CC
[43, 41] has been successfully used to predict the crack onset at the macro-scale. Attempts
to use the CC at the micro-scale have been made in [8, 10] and have brought into evidence
how important a good knowledge of the fracture parameters (strength and fracture energy or
toughness) is at this scale.

The analysis made with the CC is dedicated to case studies and comparison with experiments.
In particular, it starts by a preliminary remark in which a bar in tension is analysed to bring
into evidence the interpretation of the CC depending on the scale and to raise questions about
the tensile strength parameter. Then, three-point bending tests on V-notched, U-notched and
unnotched specimens are analyzed at different scales, enlightening the different influences of
the fracture energy and the tensile strength parameters according to the scale. They also
show that there is an increasing difference between force and displacement controlled loading
modes when descending the scales. Finally, comparisons with experiments found in the lit-
erature are carried out. They highlight again the need but also the difficulty to identify the
parameters of rupture and especially the tensile strength.

In the second part of the chapter, the same controversy is studied using the PF model, and
therefore the influence of the phase field length scale in the crack nucleation at the micro-scale
is examined. The PF model has been successfully applied in many applications, not only in
crack nucleation [71, 74], but also in other damage phenomena, such as corrosion [75]. In this
analysis we aim to demonstrate its applicability also when descending the scales, considering
the tests made in the first part of the chapter. Moreover, a reflective comparison is made with
the conclusions previously presented with the CC.

In the following mm−scale (resp. µm−scale) means that units for the dimensions of the
specimens are mm (resp. µm). These two scales are the most relevant to ceramic testing.
However, side studies to the cm− or nm−scale will also be made as well as to intermediate
scales.
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2.2 FFM of brittle materials at the micro-scale

2.2.1 A preliminary remark

An elastic bar in tension with length L and cross-section surface S is submitted to a tensile
load F , see Fig. 2.1a. The bar is made of alumina zirconia, whose mechanical properties [53]
were mentioned in Section 1.2.1, and are given in Table 2.1.

E [GPa] ν σc [MPa] Gc [MPa mm]

380 0.22 400 0.023

Table 2.1: Mechanical properties of the alumina zirconia [53].

Provided a brittle fracture of the bar, there is no longer any potential energy once the bar is
broken, and the change in potential energy Πp between the unbroken and the broken state is

Πp(0)−Πp(S) =
1

2

σ2LS

E
, (2.1)

where σ is the tensile stress. The energy dissipated during failure is GcS and the energy
condition (1.8) gives

1

2

σ2

E
LS ≥ GcS, → σ ≥

√
2
EGc

L
. (2.2)

According to the CC, the stress condition (1.9) must be added. The application of the two
conditions arises to the definition of a failure stress σfail, i.e., the minimum tensile stress σ
at which the failure occurs for a certain material according to the Coupled Criterion. A
governing parameter can be defined

Lc = 2
EGc

σ2c
, (2.3)

being Lc = 109µm with the material properties considered in Table 2.1. Based on the idea
that both conditions are together necessary and sufficient to predict fracture, if L > Lc, then
σfail = σc and it is the stress condition that governs failure. On the other hand, if L < Lc,
then σfail is determined by the energy condition. This is due to the lack of elastic energy in
the solid due to its small dimensions. In that case, the property σc does not play a role in
brittle failure. Note that the surface of the cross-section S plays no role in this calculation,
whereas the relation between the length of the bar and the Irwin length lIrwin does. As an
example, Fig. 2.1b shows σfail/σc with respect to L/Lc.
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For example, for a 500µm long bar, the coefficient L
Lc

= 4.58 and therefore σfail = σc. How-
ever, a small bar of 10µm will break in tension for σfail = 1322MPa > σc, which should not
be confused with the tensile strength set here at σc = 400MPa. Note that this result would
remain unchanged as long as σc ≤ 1322MPa.

In conclusion, this kind of experiments seems poorly appropiate to determine a tensile strength
(by the way, Dehm et al. [18] use the word strength in quotation marks) when L < Lc.
This reasoning is also valid for compression tests on micro-pillars [18], [28] although the
configuration is not in general used to test fracture properties.

(a)
(b)

Figure 2.1: Solution of the Coupled Criterion for a bar in tension.

2.2.2 Bending tests

From the CC perspective, bending tests, see Fig. 2.2, differ significantly from tensile tests
because a part of the specimen is under tension while the other one is in compression; thus,
the stress condition cannot be fulfilled throughout the specimen. Failure occurs in two stages:
crack initiation followed by crack growth, leading or not to the complete failure.

In this section, a possible size effect in bending tests is deeply studied from the point of view
of the Coupled Criterion. To that aim, a FEM computation is performed in 2D plane strain
elasticity, considering the material is alumina-zirconia ceramic, whose mechanical properties
are given in Table 2.1.

The dimensions of the specimen in Fig. 2.2 are L = 8, W = 2, t = 2, a = 0.4. Units are not
specified, they vary depending on the selected scale. To set the scale of the analysis (−µm or
−mm for example) the only change to bring during the post-processing is to modify the value
of Gc (e.g. 0.023MPa mm = 23MPaµm), which reduces significantly the numerical effort.
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Figure 2.2: 3-point bending tests. (a) V-notched specimen, (b) U-notched specimen, (c) plain
specimen

The analysis is made under displacement controlled loading mode (DC) for a unitary dis-
placement U = 1, from which we obtain Ginc(δl) and σ(s) along the expected crack path,
as explained in Section 1.2.1. The CC is applied to obtain the critical load, defined as the
minimum load for which the energy and the stress conditions are simultaneously fulfilled.
Under DC, the critical load is named as Ucrit, and the system of inequations we need to solve
is expressed as

Ḡinc = U2
crit

Ginc(δl)

Gc
≥ 1, (2.4)

σ̄ = Ucrit
σ(s)

σc
≥ 1, for 0 ≤ s ≤ δl. (2.5)

Under force controlled loading mode (FC) an additional post-processing after FEM computa-
tion is needed. Based on the idea that the stiffness of the structure is the same for both DC
and FC,

UFC

FFC =
UDC

FDC , (2.6)

where UFC, FFC and UDC, FDC are the displacement and the force under FC and DC re-
spectively. Assumming a constant unitary force for FC, and a constant unitary displacement
for DC, the elastic solution needed for the CC under FC is

ΠFC
p (δl) =

ΠDC
p (δl)

(FDC(δl))2
, (2.7)

σFC(s) =
σDC(s)

FDC(δl)
. (2.8)

The force under DC is calculated using the potential energy as

FDC(δl) = 2ΠDC
p (δl). (2.9)
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Notice that FDC(δl) has to be calculated at each FEM calculation that is made, i.e., in the
undamaged configuration for obtaining σFC(s) and each time one node is released for ΠFC

p (δl).

In addition, we introduce a physically significant parameter σf, baptized flexural stress, that
is the tensile stress in the middle of the bottom face of the unnotched specimen (Fig. 2.2c). In
order to compare between the various cases, we define the equivalent flexural stress σf when
the V-notched and the U-notched specimens are analyzed. It is defined as the flexural stress
in an equivalent unnotched specimen of the same width undergoing the same bending load.
At the moment of failure the flexural stress is denoted σfcrit.

2.2.2.1 Bending tests on an unnotched specimen

In Fig. 2.3, the schematic diagram of an unnotched specimen in a 3-point bending test spe-
cimen is shown, where the expected crack path is highlighted in red. Along this path, the
stress σ(s) changes from tension at the bottom to compression at the top.

Figure 2.3: Schematic view of the stress gradient in the bending test of an unnotched specimen.
The orange solid line is the tensile component of the stress tensor along the middle
axis. It is positive on the bottom face and negative above. The red solid line is
the expected crack path. The flexural stress is highlighted in blue.

The critical load (force or displacement) at which a crack appears in the specimen is determ-
ined applying the CC. An example is shown in Fig. 2.4 for DC, considering the specimen
has dimensions of µm, i.e., Gc = 23 MPa µm. It can be observed that the energy condition
represented by Ḡinc is an increasing function, while the stress condition σ̄ is a decreasing
function. At the CC point s = 0.9 µm, both conditions intersect and are equal to 1, that is,
σ(s = 0.9µm) = σc and Ginc(δl = 0.9µm) = Gc. This point defines the critical nucleation
length δlc = 0.9 µm. Looking at s = 0 µm, which corresponds to the point located the middle
of the lower part of the specimen, σ(s = 0) > σc. The tensile stress σ(s = 0) is denoted here



Chapter 2. Ceramic fracture properties at the micro-scale 33

as σf, the flexural stress. Notice that to move from one scale to other only Gc is changed, thus,
the stress field is unchanged whatever the units but the stress gradient through the specimen
increases drastically when descending the scales.

Figure 2.4: Example of the application of the CC in a bending test of an unnotched specimen
at the micro-scale, considering DC loading mode.

Therefore, without any statistical consideration on the presence and size of defects [76], we can
observe in Table 2.2 an apparent strengthening of the material when descending the scales.
Moreover, FC and DC loading modes differ more and more significantly. The strengthening
effect observed here is explained by the stress gradient of the bending test. Looking at Table
2.2, it is difficult to interpret these values as representative of a material bending strength, as
it was similarly concluded in Section 2.2.1.

It is important to highlight that this is the configuration where the effects of the stress
gradient are most noticeable, although in the other configurations important observations are
also made, as it is shown below.

Scale (mm) 10 1 0.1 0.01 0.001

σfcrit (MPa) FC 401.4 414.0 518.6 980.5 2375.1

σfcrit (MPa) DC 401.5 413.9 522.9 1122.7 3909.9

Table 2.2: The flexural stress that prevails at failure σfcrit of the plain specimen in the middle
of the bottom face.
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2.2.2.2 Bending tests on a V-notched specimen

The case of a V-notched specimen is represented in Fig. 2.5, where the angle ω is varied
to study its influence on crack nucleation, considering the values ω = 0◦ (the crack case)
30, 60, 90, 120 and 150◦.

Figure 2.5: Scheme of the 3-point bending tests in a V-notched specimen. The red solid line
represents the expected crack path.

As it is mentioned in Section 1.2.1, there are two approaches that can be used to predict the
crack onset in the case of a V-notched specimen: Matched Asymptotic Expansion (MAE) and
Full Finite Element (FFE) computations. Although the first one is related to less computa-
tional complexity, its application is limited to the fact that either a (the notch depth) or δl
(the nucleation length) must be much lower than the dimensions of the specimen. Clearly,
a = 0.4 does not fulfill this requirement and the nucleation length δl is the only characteristic
length that can be used to apply MAE (see Section 1.2.2). However, since the scale of the
specimen will be reduced until the micro- and the nano-scale, the nucleation length, unknown
a priori, could be of the order of the dimensions of the specimen as well, and therefore MAE
approach might not be applied. To illustrate this, both MAE and FFE are compared in
Fig. 2.6, where the ratio between the GSIF (K) at failure computed by FFE approach (FC
loading mode) and its critical value Kc derived from the asymptotic procedure, is represented.

The GSIF is calculated using the finite element solution obtained at the critical load, which
is derived from the CC. As shown in Annex 5.2, it is computed applying a path independent
integral. On the other hand, Kc was calculated in Table 1.3.

Not surprinsingly, in Fig. 2.6 the two curves ω = 0◦ and ω = 30◦ merge because the singular-
ity exponents are very close to each other (Table 1.3). Clearly, the asymptotic approach works
well for any opening angle ω at the cm- and mm-scale. This is because the crack increment
length at initiation δl remains smaller than 1% of the ligament width W −a and thus satisfies
the smallness condition which validates the asymptotic expansions, see Fig. 2.7. Notice that
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in the estimation of the nucleation length δl there can be an error related to the mesh size,
which is in this case of the order of 10−3 x selected units.

Figure 2.6: The ratio K/Kc between the GSIF at failure computed by FE (FC loading) and
its asymptotic value for various opening angles.

For scales below the mm-scale, K deviates more and more significantly from Kc, because the
ratio of the initiation length to the ligament width δl/(W − a) no longer meets the condition
of smallness. Indeed, the FFE approach considers the whole elastic solution, thus, higher
terms in Williams’ expansion (see Annex 5.1 ), ignored in the asymptotic approach which
retains only the leading term, become predominant as δl becomes bigger. This is also true
for a crack ω = 0◦, and, as as consequence, using formulas derived from Griffith’s criterion to
determine the material fracture toughness at the µm-scale risks to be unreliable, since only
the first term in the Williams’ expansion is used.

Figure 2.7: The ratio δl/(W − a) at various scales for ω = 90◦ (FC loading).

The previous study has been carried out under FC loading mode, but the same analysis can
be made for DC. In Fig. 2.8 K/Kc is represented for DC and FC for ω = 90◦. Notice that
not only in both cases K deviates more and more significantly from Kc when descending the
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scales, but also the results of DC and FC loading modes differ more and more one from each
other.

Figure 2.8: The ratio K/Kc for FC and DC loading, in the case of ω = 90◦.

Finally, two examples of the application of the CC are shown in Fig. 2.9, for FC and DC
controls, at the micro-scale and for ω = 90◦. In both cases the CC point (which designates
the newly created crack length δlc) corresponds to the point where σ = σc. Hence, for s < δlc
the tensile stress σ(s) > σc provided the stress gradient in the bending test, and the stress
singularity of the V-notch.

(a) (b)

Figure 2.9: Example of the application of the Coupled Criterion in the bending test of a V-
notched specimen under FC and DC at the micro-scale for ω = 90◦.

The strengthening effect is summarized in Table 2.3, where the results obtained with a sharp
V-notched specimen under FC loading mode are shown. The parameter used to represent
the strengthening effect is the equivalent flexural stress σf (defined at the beginning of this
section). As already observed in Fig. 2.6, the two cases 0◦ and 30◦ merge. Obviously, the
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smaller the scale the smaller the influence of the geometry (this is more and more true when
descending to the nm-scale although it is not shown here).

Scale (mm) 10 1 0.1 0.01 0.001

σfcrit (MPa)ω = 0◦ 26.6 83.5 252.3 675.5 1786.7

σfcrit (MPa)ω = 30◦ 26.6 83.7 252.3 675.5 1786.7

σfcrit (MPa)ω = 60◦ 28.1 85.3 253.4 675.5 1786.7

σfcrit (MPa)ω = 90◦ 32.7 92.4 258.2 677.7 1786.7

σfcrit (MPa)ω = 120◦ 46.8 111.3 272.4 675.5 1786.7

σfcrit (MPa)ω = 150◦ 82.6 145.6 283.3 675.5 1765.0

Table 2.3: The equivalent flexural stress at failure σfcrit for the V-notched specimen under FC
loading mode for different opening angles.

2.2.2.3 Bending of a U-notched specimen

We will now focus on U-notched specimens (Fig. 2.10) which is the geometrical configuration
closest to the fracture test conditions on ceramic specimens at both mm and µm scales.

Figure 2.10: Scheme of the 3-point bending tests in a U-notched specimen. The red solid line
represents the expected crack path.

Fig. 2.11 shows the equivalent flexural stress at the moment of failure σfcrit for U-notched
specimens with ρ = 0.02 (i.e. 0.02 mm at the mm-scale and 0.02 µm at the µm-scale). Results
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do not depend on how the load is applied at the cm- and mm-scale but the gap widens at
smaller scales as already observed in Table 2.2.

Figure 2.11: The equivalent flexural stress at failure σfcrit for the U-notched specimen with
ρ = 0.02 at different scales.

This result that could surprise can be explained by two different failure mechanisms. In the
DC case, as shown in Fig. 2.12a for the micro-scale, the energy curve grows slowly and even
pass through a maximum before decreasing. In that case, there is initiation followed by a pos-
sible crack arrest at a shorter and shorter distance when descending the scales because there
is less and less energy to be released. On the other hand, under FC loading mode, represented
in Fig. 2.12b at the micro-scale, the energy curve grows rapidly. There is initiation followed
by unstable crack growth until complete failure.

(a) DC (b) FC

Figure 2.12: Example of the application of the Coupled Criterion in the bending test of a
U-notched specimen under DC and DC at the micro-scale for ρ = 0.02µm.
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However, this is strongly related to the value of σc. If σc is higher, the energy curve moves to
the left in Fig. 2.12a, and the conventional configuration of the CC can be observed, in which
the CC point corresponds to the crossing point of an increasing energy curve and a decreasing
stress curve. In those cases, there is no difference between DC and FC. Let us add that this
difference between DC and FC loading modes is not only observed at the microscopic scale,
the same phenomenon can be observed at the macroscopic scale if σc is small and consequently
the initiation length is large.

Table 2.4 summarizes the results for two different notch blunting (ρ = 0.25 x a = 0.1 and
ρ = 0.05 x a = 0.02). Obviously, the influence of the blunting is more prominent at larger
scales. At the µm-scale the results almost merge with those of the V-notched specimens (see
Table 2.3).

One conclusion to be drawn from Table 2.4 is that at the µm-scale the exact shape of the
U-notch plays a minor role. Only its depth a or more precisely the width of the remaining
ligament W − a is decisive. This conclusion is reinforced by a computation on an unnotched
specimen whose width is W −a instead of W, under FC loading mode. After applying the CC
to obtain the critical load in such plain specimen, the comparative parameter σf is calculated
at the moment of failure in the thick unnotched specimen whose width is W , to be consistent.
We obtain σfcrit = 1660.4 MPa at the micro-scale, which is not far from the above values
(Table 2.4).

Scale (mm) 10 1 0.1 0.01 0.001

σfcrit (MPa) ρ = 0.1 88.6 122 268.0 675.5 1765.0

σfcrit (MPa) ρ = 0.02 49.9 97.0 257.1 679.8 1786.7

Table 2.4: The equivalent flexural stress at failure σfcrit for the U-notched specimen under FC
loading mode with ρ = 0.1 and ρ = 0.02 (units depend on the scale).

This remarkable feature is also visible in the followig section, where the influence of fracture
properties is analysed. Such a phenomenon was already observed in [77] where it is noted
that below a length scale the material (nacre) becomes insensitive to pre-existing flaws. It is
concluded that Griffith criterion becomes inoperative and failure is governed by the theoret-
ical strength. However, we disagree with this conclusion, the energy is still governing fracture
and it is the small available amount that forces to increase the load.
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2.2.2.4 Effect of fracture properties in the bending test

In this section we mainly focus on the U-notched specimen with ρ = 0.02 and the plain spe-
cimen because the next sections will be dedicated to comparison with experiments found in
the literature which refer to this type of samples. Fig. 2.13 compares the equivalent flexural
stress at failure σfcrit as a function of the fracture energy at the mm-scale and Fig. 2.14 at
the µm-scale. In case of plain specimens, we have considered two different widths. The first
one has the width W and the second one the width W − a. To be consistent, σfcrit in the
latter has been calculated using an equivalent plain specimen of width W .

Figure 2.13: The equivalent flexural stress at failure σfcrit as a function of the fracture energy
Gc at the mm-scale for the U-notched specimen with ρ = 0.02, and the plain
specimens with the width W = 2 and W − a = 1.6. Computations are carried
out under FC loading.

As already noticed, the influence of the fracture energy is more pronounced at the µm-scale.
However, at the mm-scale, the fracture energy still has some influence on the U-notched spe-
cimens while it is weaker for the plain specimens. Computations have been carried out under
FC loading, expecting similar conclusions in the DC loading mode. Moreover, σfcrit in the
U-notch is closer to the unnotch plain specimen of width W − a at the micro-scale, which
means that results when descending scales depend less and less on the notch shape.

With the data shown in Table 2.1, the fracture toughness obtained is

KIC =

√
GcE

1− ν2
= 3.03MPa m0.5. (2.10)

Usually, the notch is considered, whatever its acuity, as a crack and the toughness is derived
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from the load at failure Ucrit using the following analytical formulas [78]

KIC =
6UcritL

4W 2

√
πa f(a/W ), (2.11)

where

f(a/W ) =
1√
π

1.99− a/W (1− a/W )(2.15− 3.93a/W + 2.7(a/W )2)

(1 + 2a/W )(1− a/W )3/2
. (2.12)

Figure 2.14: The equivalent flexural stress at failure σfcrit as a function of the fracture energy
Gc at the µm-scale for the U-notched specimen with ρ = 0.02, and the plain
specimens with the width W = 2 and W − a = 1.6. Computations are carried
out under FC loading.

Table 2.5 shows the toughness KIC (MPa m0.5) calculated using (2.11) and the load at fail-
ure predicted by the CC for various specimens under FC loading mode. Obviously, at the
macro-scale (i.e. cm-scale and mm-scale), Tada’s formula and CC predictions of failure lead
to an error not exceeding 2% for sharp notches with ω ≤ 30◦. The result is getting worse
for larger opening angles and even becomes completely wrong for a strongly blunted U-notch
with ρ = 0.02 at the cm-scale (i.e. ρ = 0.02 cm).

At the macro-scale the calculation tends to overestimate the actual value. This trend is re-
versed at smaller scales, the actual value is now underestimated by 32% at the µm-scale.
Moreover, as already mentioned, the exact shape of the notch no longer plays any role, since
the difference between the different angles selected for the V-notch and the U-notch is less and
less noticeable, see the third and the fourth rows of Table 2.5. This conclusion is consistent
with that of Section 2.2.2.3.
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Scale (mm) ω = 0◦ ω = 30◦ ω = 60◦ ω = 90◦ ρ = 0.02 Actual value

10 3.08 3.08 3.26 3.79 5.78 3.03

1 3.06 3.07 3.13 3.39 3.55 3.03

0.1 2.92 2.92 2.94 2.99 2.98 3.03

0.01 2.48 2.48 2.48 2.48 2.49 3.03

0.001 2.07 2.07 2.07 2.07 2.07 3.03

Table 2.5: The equivalent flexural stress at failure σfcrit for the U-notch specimen under FC
loading mode with ρ = 0.1 and ρ = 0.02 (units depend on the scale).

Fig. 2.16 and 2.15 show the equivalent flexural stress at failure σfcrit as a function of the
tensile strength σc at the mm-scale and the µm-scale. It can be observed that the tensile
strength has a higher influence on the plain specimens, whereas it has a lower influence at
the micro-scale, specially for the U-notched specimen. The reason for that phenomenon is a
change in the governing condition of the CC. At the micro-scale, it is the energy condition
that governs the failure, and therefore Gc has greater influence than σc.

Figure 2.15: The equivalent flexural stress at failure σfcrit as a function of the tensile strength
σc at the µm-scale for the U-notched specimen with ρ = 0.02, and the plain
specimens with the width W = 2 and W − a = 1.6. Computations are carried
out under FC loading.



Chapter 2. Ceramic fracture properties at the micro-scale 43

The opposite situation is observed at the macro-scale. Moreover, σfcrit in the U-notched spe-
cimen and the unnotched specimen with a width W are very similar, as it was observed when
studying the influence of Gc, and therefore the shape of the notch has less and less influence
when descending the scales.

Furthermore, looking at the plain specimens at the mm-scale, σfcrit ≈ σc in the one with the
width W , whereas this is no longer true at the micro-scale, being σfcrit > σc.

Figure 2.16: The equivalent flexural stress at failure σfcrit as a function of the tensile strength
σc at the mm-scale for the U-notched specimen with ρ = 0.02, and the plain
specimens with the width W = 2 and W − a = 1.6. Computations are carried
out under FC loading.

2.2.3 Comparison with experiments found in the literature

2.2.3.1 Bending tests of micro-cantilever beams

Using a micro-indenter, Henry et al. [79] carried out bending tests on notched micro-cantilever
beams (Fig. 2.17) made of a ceramic material 8Y-FSZ cubic zirconia (E = 216 GPa, ν = 0.22).
Beams were milled with a FIB and remained clamped to a part of the bulk material. On mi-
crographs, the specimen appears smooth and free of surface defects.

In this section an equivalent 2D model, see Fig. 2.18, is deeply studied and compared with
experimental results. Some simplifications are made when the 3D model is transformed into
a 2D model. First, the geometry of the beam cross section has a pentagonal shape, since it
can be more easily milled, and such geometry cannot be reproduced in a 2D model. However,
according to [80] results are very similar to the ones obtained by a rectangular cross section,
that is the one assumed in the 2D simplification. Thus, the height of the specimen W in
the numerical simulations is set as W = Ŵ + C/2, see Fig. 2.17. Another important point
to consider is the presence or not of the bulk material. After having noted the very small
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difference between the case of a beam clamped at its end and a more complete simulation
including a part of the bulk material, the first case was retained in the computations for
simplicity.

Figure 2.17: Sketch of the micro-cantilever bending test with associated dimensions

Figure 2.18: The U-notched micro-cantilever beam

The U-notch radius in Fig. 2.18 is 0.01µm. Actual dimensions related to the 14 specimens are
given in Table 2.6. It can be noted that the difficulty of milling specimens leads to a certain
dispersion of the geometry.
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Index L W t n a Index L W t n a

1 9.20 4.34 5.98 0.920 1.32 8 8.76 4.30 4.99 0.876 0.50

2 9.97 4.04 4.99 0.997 0.64 9 8.13 4.57 5.34 0.813 0.42

3 9.74 5.01 6.27 0.974 0.70 10 7.19 4.12 3.45 0.719 0.84

4 9.10 4.66 6.21 0.910 0.61 11 7.33 4.60 4.18 0.733 0.56

5 8.03 4.20 4.57 0.803 0.56 12 9.40 4.13 4.56 0.940 0.70

6∗ 8.76 4.26 4.42 0.876 0.91 13 7.08 4.35 5.25 0.708 0.83

7∗ 12.11 3.32 4.40 1.211 0.64 14∗ 9.96 3.50 3.94 0.996 0.63

Table 2.6: Geometrical parameters of the 14 different specimens tested in [79]. All the para-
meters are in µm. Tests are carried out under FC loading mode except those with
a∗ done under DC loading mode.

A global least square method allows computing the best fit pair
(
G̃c, σ̃c

)

G̃c, σ̃c = argmin
14∑
i=1

(
F sim
i (σc, Gc)− F exp

i

)2 (2.13)

where F sim
i (σc, Gc) is the applied load at which the CC is fulfilled according to the simulations

and F exp
i is the measured fracture load, for the i-th specimen. The range for Gc is 2 to 20 J

m−2 (step 0.5) and for σc 0.4 to 8 GPa (step 0.2). It gives G̃c = 10.5 J m−2 and σ̃c = 5600
MPa under DC loading mode and G̃c = 9.5 J m−2 and σ̃c = 7400 MPa under FC loading
mode. Obviously, there is an important difference in the evaluation of σc and the search for
an optimal pair

(
G̃c, σ̃c

)
case by case can be carried out allowing a better perception of the

scattering
G̃ic, σ̃ic = argmin

(
F sim
i (σc, Gc)− F exp

i

)2 for i = 1, 14. (2.14)

Results are given in Table 2.7 under FC loading mode, except specimens 6, 7 and 14 (marked
with a∗) under DC loading mode like in experiments. Clearly, there is a wider scattering in
the determination of the tensile strength than in that of the fracture energy, leading to the
average values 10.3 J m−2 and 4000 MPa, excluding or not specimens 4 and 8 which does
not make a big difference. In this regard, a comparison between Henry et al. estimations
[79] of the material toughness KIC and the present analysis shows that, precisely as in our
identification of Gc, the minimum is found for sample 4 and the maximum for sample 8 (see
Fig. 2.19). Thus, these extreme values seems not to be an inconsistency of the CC.



Chapter 2. Ceramic fracture properties at the micro-scale 46

Index G̃ic σ̃ic Index G̃ic σ̃ic Index G̃ic σ̃ic Index G̃ic σ̃ic

1 8.5 5.0 5 12.0 4.0 9 13.5 4.4 13 8.5 1.6

2 11.0 3.8 6∗ 10.0 3.0 10 7.0 5.4 14∗ 7.5 4.4

3 11.5 4.6 7∗ 12.5 7.4 11 9.0 1.0

4 4.0 7.8 8 18.5 18.5 12 10.5 1.6

Table 2.7: Estimation of the fracture energy G̃ic and tensile strength σ̃ic for each specimen.
Specimens 4 and 8 seem to be a bit out of the general trend.

Figure 2.19: Comparison on the identification of the material toughness KIC between the
present analysis and Henry et al. [79] estimations for the 14 specimens.

Note that the minimization of the relative error

G̃c, σ̃c = argmin
14∑
i=1

(
F sim
i (σc, Gc)− F exp

i

F exp
i

)2

(2.15)

gives a close result to (2.13) in terms of fracture energy: G̃c = 9 J m−2, but a significant
difference in term of tensile strength: σ̃i = 7000 MPa, emphasizing the difficulty to determine
the tensile strength with this kind of experiment. Of course, in the local minimization (2.14),
the absolute and relative errors make no difference in terms of the optimized values (G̃ic, σ̃ic),
since they will look for the pair of values that gives a load F sim

i is closest to a certain experi-
mental value F exp

i , looking in a certain data base generated using the CC.
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(a) (b)

Figure 2.20: The critical applied force at failure on specimen 1 under FC loading mode using
the CC, (a): function of the tensile strength for various values of the fracture
energy from 2 to 15 J m−2 step 2.5 (bottom to top); (b): function of the fracture
energy for various tensile strength from 1 to 8 GPa step 1 (bottom to top).

To conclude, there is a good agreement with the global minimization on the fracture energy
but a poor one on the tensile strength. This can be explained, as already mentioned, by a
low sensitivity of the CC to σc at the micro-scale. This is visible in Fig. 2.20b (specimen 1
under FC loading mode) where the different fracture energies result in curves that are quite
distinct one from each other, while different tensile strengths give curves that have a clear
tendency to overlap, see Fig. 2.20a. This trend is even more pronounced in the case of DC
loading mode. On the contrary, a fracture energy around 10 J m−2 seems to be confirmed by
the different approaches.

2.2.3.2 Traction tests on double-notched nano-tablets

Even if they are invoked in [18], tests at the nano-scale are likely to be very difficult to perform.
Patil et al. [81] propose only simulations of traction tests on double-notched nano-tablets of
aragonite, as represented in Fig. 2.21, where a 2D scheme of the specimen is shown. Two
simulations techniques were applied in [81], PF and molecular dynamics (MD). The latter is
used in molecular systems, since they are based on numerical solutions of Newton’s equations
for an interacting set of particles.

The reported material properties for aragonite are E = 126 GPa, ν = 0.44, Gc = 2.091 J m−2.
In order to avoid non-linear elasticity and to carry out simplified linear elastic computations,
the Young’s modulus has been readjusted to E = 96 GPa to have a similar global stiffness, as
it is shown in Fig. 2.23, where a force-displacement diagram is represented, for DC and FC,
considering ud as the distributed displacement along Γ, see Fig. 2.21.

Moreover, this analysis is carried out in a different manner with respect to the ones in the
bending test, since symmetry conditions can be applied, solving the problem shown in Fig.
2.22. Instead of releasing the nodes one by one in the expected crack path, the symmetric
boundary condition on ΓH is changed when a new value of the newly created crack length is
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considered.

Figure 2.21: Double edge notched specimen of aragonite. L = 15.3 nm, W = 11.2 nm,
ah = 3.08 nm and a = 3.68 nm.

Figure 2.22: Double edge notched specimen of aragonite with symmetry conditions.

MD simulations tend to show that a crack initiates non-symmetrically at the tip of one of the
notches and grows toward the other notch. It is this mechanism that is reproduced in the PF
and CC simulations to obtain the critical failure load in Fig. 2.23. Notice that in this case
PF results were provided by [81].
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Figure 2.23: Simulation of failure of the nano-platelet of aragonite, using MD, PF and CC.
Results applying PF and CC are shown under DC (dashed line) and FC loading
(solid line). In this case σc = 5 GPa. For MD and PF simulations the tool
ORIGIN Pro (v0.8.0 OriginLab) has been used to obtain the values of the curves
from [81].

The resultant critical force under DC is obtained as Fcrit = 2Ψel/udc, where udc is the critical
distributed displacement predicted by the CC and Ψel is the elastic strain energy. In a similar
way, the critical distributed displacement under FC is calculated applying the postprocessing
explained in (2.6). As it is shown in Fig. 2.23, results exhibit a satisfying agreement between
MD, PF and CC simulations. For the CC, they are obtained after having adjusted σc = 5
GPa. The CC predictions under DC and FC loading modes differ because of different modes
of failure. This is due to the special shape of the stress curve, decreasing then increasing
because of the two symmetric notches, and to a slowly increasing energy curve in case of the
DC loading mode as shown in Fig. 2.24a. The energy condition is fulfilled for a crack jump
corresponding to the whole width of the ligament between the two notches and the stress
condition is then σ ≥ σc through the whole ligament. There is only an initiation stage and
the specimen is fully broken. In case of FC loading mode, the energy curve increases more
rapidly and the situation is that of Fig. 2.24b. There is a first stage of initiation where σ
is not needed to be larger than σc through the whole ligament but only along the initiation
length, followed by an unstable crack growth due to the FC loading mode.

In Fig. 2.25 the predicted failure force is represented, according to the CC, as a function of the
tensile strength, under DC and FC loading modes. Under DC loading mode, on the left side
of the grey zone is entirely governed by the energy, inside the grey zone it is stress driven and
on the right it is a mixed of the two conditions. Under FC loading mode the mixed conditions
govern for the whole range of the parameter σc. It clearly appears that, according to the CC,
in case of DC loading mode, the test is weakly sensitive to the tensile strength. It even be-
comes completely insensitive if σc < 5 GPa, while it remains sensitive under FC loading mode.
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(a) DC (b) FC

Figure 2.24: Application of the CC in the double-notched nano-tablets of aragonite, for σc = 5
GPa, under DC and FC.

Figure 2.25: Predicted failure load, according to the CC, as a function of the tensile strength.

An interesting point to emphasize is that, under DC loading mode, the CC moves from a
criterion entirely governed by the energy for σc < 5 GPa (Fig. 2.24a), to a stress driven
criterion for 5 GPa < σc < 6 GPa (Fig. 2.26a) and to a classical mixed stress and energy
condition for σc > 6 GPa (Fig. 2.26b). Notice that for σc = 6.5 GPa the initiation length is
lower than the width of the ligament, since δl = 1.65 nm. After the crack initiation, a stable
crack growth due to the DC loading mode is followed.
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(a) σc = 5.5 GPa (b) σc = 6.5 GPa

Figure 2.26: Two different applications of the CC under DC loading mode.

This test recalls the example of the bar in tension (Subsection 2.2.1) but with some differences
due to the presence of the two notches. As a consequence, this test, especially under DC
loading mode, seems again unsuitable for measuring any tensile strength.

2.3 PF model of brittle materials at the micro-scale

As it was mentioned at the beginning of this chapter both the CC and the PF model for
fracture have a length parameter that is proportional to the Irwin length, lIrwin. Hence, the
aim of this section is to analyse the answer brought by both methodologies when lIrwin is too
close to the dimensions of the specimen, a situation observed at the micro-scale in brittle
materials.

In the previous section the application of the CC at the micro-scale was deeply studied. In
this section, the PF model for brittle fracture is applied, comparing the conclusions obtained
with this methodology to the ones obtained with the CC. Note that the intention is not
to determine whether one methodology is correct or not, but to compare both in a reasoned
manner and explain the differences and similarities obtained. For the completion of this work,
in addition to the collaboration with their supervisors, the author conducted a secondment
during 5 months at University of Seville (Spain).

2.3.1 Preliminary remark

The previous section started with a preliminary remark where the case of a homogeneous bar
under uniform tension was studied. This simple example was analytically solved by introdu-
cing a critical length, Lc, whose value is proportional to lIrwin, Lc = 2lIrwin. When the length
of the bar is less than Lc, the failure stress is entirely governed by the energy condition and
its value is no longer dependent on the tensile strength, σc. An apparent strengthening effect
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for L < Lc is therefore observed due to the smallness of the bar at the micro-scale.

Figure 2.27: Evolution of the stress at failure σfail with respect to the length of the bar in the
tensile test of a homogeneous bar, according to the CC and the PF model.

In the PF model considered in this PhD thesis the tensile strength is not directly included in
the PF formulation. It is implicitly considered through the definition of the phase field length
scale lPF, that depends on σc, see (1.74) for the AT1 model. The definition of lPF is based
on the homogeneous solution of the 1D tensile test, where the peak stress at the end of the
elastic phase is set as the tensile strength, see Fig. 1.12 as an example. Interestingly, this
means that no strengthening effect would be observed in this problem regardless the length
of the bar, and the CC and the PF predictions would be different for L < Lc, as it is shown
in Fig. 2.27, where the tensile stress at failure σfail is represented as a function of the length
of the bar L, considering material properties in Table 2.1. This example illustrates a general
conclusion that will be observed throughout this section: different results are obtained in the
PF model and the CC when the characteristic length of the material is of the order of the
dimensions of the specimen.

2.3.2 Apparent strengthening effect in an unnotched specimen

When there is a stress gradient in the structure there is a strengthening effect, as it is men-
tioned in Section 2.2.2. One example is the bending test of an unnotched specimen, see
Fig. 2.28, where compression is located in the upper part and tension in the lower part of
the structure. The specimen has the following dimensions: L = 8 µm and W = 1 µm. A
brittle material alumina-zirconia is selected, being the mechanical properties E = 380 GPa
and ν = 0.22. The entire test is performed under displacement control.
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Figure 2.28: Schematic view of an unnotched specimen in a bending test. The orange solid
line is the tensile component of the stress tensor along the middle axis. It is
positive on the bottom face and negative above. In blue the flexural stress has
been highlighted.

As it is shown in Fig. 2.28, a pointwise displacement is applied in the bending test, a simpli-
fication that is theoretically forbidden in the FE simulation, since it leads to an infinite energy
that is incompatible with the Lax-Milgram theorem. In the PF model, this simplification can
lead to local damage nucleation near the pointwise boundary conditions. As a result, the
crack nucleation can deviate from the expected location (in the middle of the bottom part
of the specimen). To avoid this effect, two subdomains are defined, as shown in Fig. 2.28.
Subdomain 2 contains the pointwise boundary conditions, and α = 0 is imposed. In subdo-
main 1, the evolution of the damage variable is allowed. Notice that in the CC this problem
is overcome imposing the expected crack path in the structure.

The dimensions of subdomains 1 and 2 are highly sensitive to the choice of the phase field
length scale. For large values of lPF, a large value of R2 is required, since the width of the
damage region is greater (it is 2lPF), but at the same time, the maximum mesh size is not
extremely small. Notice that in subdomain 1 a maximum mesh size is imposed, considering
that lmesh = lPF/5 in the damaged initiation zone [70]. Hence, when lPF is very small, R2

is also small to reduce computational complexity. The other magnitude to determine is R1,
which is set here as R1 = 97%W .

The strengthening effect is studied as a function of a control parameter, that is

lPF

W
(2.16)

where W is a characteristic length of the specimen. When studying this problem considering
the CC, see Section 2.3.2, the scale of the problem (mm, µm...) was varied changing Gc.
However, in this analysis only lPF is varied to modify the control parameter and consequently,
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the scale of the problem is not relevant and Gc = 23 MPa µm is set in the whole analysis.
Moreover, in the PF model considered in this analysis, lPF is a characteristic length of the
material proportional to lIrwin and therefore to σc. The range of lPF studied is lPF = 0.005−1
µm, which means that the tensile strength varies as σc = 1845−26245 MPa, according to the
AT1 model.

Two quantities are determined: the critical displacement at which the structure fails Ucrit and
the critical flexural stress σfcrit, defined in Section 2.2.2 as the tensile stress at the moment of
failure located in the middle of the bottom part in the unnotched specimen.

Table 2.8 shows Ucrit according to the PF model and the CC. The nucleation length, the
phase field length scale, and the Irwin length are also given. A good agreement between the
two methods is observed, especially when reducing the ratio lIrwin/W . The biggest difference
(around 10%) is found when lPF = W and lIrwin ≈ 2W , where there is a change in the de-
creasing tendency of Ucrit with lIrwin according to the PF model, but not according to the CC.

The critical displacement Ucrit is determined when there is a significant force drop in the
force-displacement (F-U) diagram, as shown in Fig. 2.29 for lPF = 0.007 µm and lPF = 0.5
µm. It is worth noting that the drop in force is greater for the case of lPF = 0.007 µm, where
F ≈ 0 after crack nucleation, meaning that the specimen is almost split into two parts at
the critical load. On the contrary, for lPF = 0.5 µm a smaller crack is nucleated because F
is greater after the force drop. This means that our model is limited by lPF. For a certain
minimum value of lPF, it is expected to obtain a specimen divided into two parts after crack
nucleation, and this is not possible with our simplified model, where α grows only in a region
limited by R1 = 97%W . Convergence problems in the numerical simulations are obtained for
this kind of cases.

lPF/W 0.005 0.007 0.01 0.05 0.1 0.2 0.5 1

lirwin/W 0.0133 0.019 0.027 0.133 0.267 0.533 1.333 2.667

lnuc/W 0.008 0.01 0.017 0.058 0.1 0.156 0.242 0.304

Ucrit [µm] (CC) 0.775 0.662 0.557 0.276 0.217 0.179 0.151 0.14

Ucrit [µm] (PF) 0.799 0.67 0.575 0.278 0.218 0.17 0.148 0.16

Table 2.8: Critical displacement obtained in the bending test of an unnotched specimen ac-
cording to the CC and the PF model, as a function of lPF/W .
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(a) lPF = 0.007 µm (b) lPF = 0.5 µm

Figure 2.29: Force-Displacement curve in the bending test of an unnotched specimen for two
different values of the phase field length scale.

Fig. 2.30 shows the flexural stress σf/σc as a function of the displacement applied U for
lPF/W = 0.007 µm and lPF/W = 0.5 µm. If lPF/W = 0.007 a Griffith-like crack appears
(see Fig. 2.32), and the damage variable abruptly evolves from α = 0 to 1. In that case, σf
starts decreasing when it reaches the tensile strength σc. However, as lPF/W increases, the
damage variable does not abruptly change but evolves progressively. The damaged zone is
no longer a small region in the material, and therefore there is not a crack in the sense of
Griffith (see Fig. 2.33). The stress σf increases, surpassing σc, and this phenomenon is known
as structural stress hardening.

In Fig. 2.31 σfcrit/σc as a function of lPF/W is represented, the latter on a logarithmic scale,
according to the PF model and the CC. Notice that σfcrit considering the CC has been ob-
tained applying the corresponding σc, Gc for each value of lPF (assuming AT1 model). It can
be observed that σfcrit ≈ σc when lPF/W << 1 for both the CC and the PF model, whereas
as lPF increases, σfcrit > σc and the two curves diverge more and more. This is because the
strengthening effect represented by the PF model, generated by damage dissipation, is not
equal to the one predicted by the CC. First, in the CC a sharp crack (discontinuous model) is
studied, and no dissipation of damage is considered. Moreover, a non-local stress condition is
applied, which is highly affected by the stress gradient in the specimen. In conclusion, both
estimations would never coincide for high values of lPF/W , which is the common situation
when descending the scales.

Furthermore, as an example of the damage region, Fig. 2.32 - 2.34 shows the damage variable
for lPF = 0.007 , 0.05 and 1 µm when U = Ucrit. In the last case the width of the dam-
age region is, as mentioned before, much larger than in the first case. Clearly, the case of
lPF = 0.007 µm represents a narrow Griffith-like crack, whereas the case of lPF = 1 µm shows
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a damage dissipation model. The crack for lPF = 0.007 µm is also longer, since more energy
is dissipated as the moment of failure.

(a) lPF/W = 0.007 µm (b) lPF/W = 0.5 µm

Figure 2.30: Evolution of σf/σc with respect to U in the bending test of an unnotched speci-
men for two values of the phase field length scale.

Figure 2.31: Evolution of σfcrit/σc as a function of lPF/W in the bending test of an unnotched
specimen. Two methods have been applied: the CC and the PF model.
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Figure 2.32: Damage variable when U = Ucrit for lPF = 0.007 µm.

Figure 2.33: Damage variable when U = Ucrit for lPF = 0.5 µm.

Figure 2.34: Damage variable when U = Ucrit for lPF = 1 µm.

2.3.3 Scale effect in a V-notched specimen

A V-notched specimen with ω = 90◦ is considered in this section, represented in Fig. 2.35.
As it was explained in [71] we impose the damage notch conditions, i.e., the condition α = 1
at the free edges of the notch, since undamaged notch conditions tend to overestimate the
critical load. Moreover, two subdomains are defined in the specimen (see Fig. 2.35). Only
in subdomain 1 the evolution of damage is allowed, and therefore the condition α = 0 is
set out of subdomain 1. This is done to avoid local damage nucleation in the vicinity of
the point-wise boundary conditions. The mesh size in subdomain 1 is again defined consid-
ering that the maximum mesh size should be 5 times lower than lPF. The radius R is set
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as 97%W . The general dimensions of the specimen are L = 8 µm, W = 1 µm and a = 0.2 µm.

Figure 2.35: Scheme of a 3-point bending test in a V-notched specimen.

As in the previous section, Ucrit is obtained using the PF model. However, estimating Ucrit
in this problem is not an easy task and might be deeply analysed. When lPF/(W − a) → 0,
the force drop observed in the diagram F − U occurs for a critical displacement higher than
the drop in the diagram K − U , where K is the stiffness of the structure, defined as the de-
rivative of the force with respect to the displacement. One example is shown in Fig. 2.36 for
lPF/(W − a) = 0.0025. It is important to highlight that in the unnotched specimen analyzed
in the previous section it was verified that both criteria conducted to the same result in the
range of σc studied, and therefore only the F − U diagram was represented.

(a) F − U curve (b) K − U curve

Figure 2.36: Application of the PF model in the V-notched specimen for lPF/(W−a) = 0.0025.
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Fig. 2.37 shows the damage variable at the moment of failure according to these two different
criteria (the force and stiffness), for lPF/(W −a) = 0.0025. When there is a drop in the K−U
curve, a small crack is observed, whereas a much longer crack is shown when considering a
drop in the F-U curve, related to a higher critical displacement.

(a) Failure point according to the F −U curve (b) Failure point according to the K−U curve

Figure 2.37: Damage variable at the moment of failure for lPF/(W − a) = 0.0025 according
to different criteria.

Fig. 2.38 shows the critical displacement with respect to lPF/(W − a) in the V-notched
specimen, using the PF model with the two criteria (force and stiffness) and the CC. First,
although for small and high values of lPF/(W − a) there is a bias in the two PF predictions,
the difference is smaller for intermediate values of lPF/(W −a) in the range chosen. Moreover,
there is a clear agreement in the predictions of the CC and the PF with the stiffness criterion
for low values of lPF/(W − a), whereas the two curves diverge when increasing lPF/(W − a).
The latter is explained by the dissipation of damage. If lPF/(W − a) is high the PF model no
longer predicts a Griffith-like crack, but a damage region in the structure.

Moreover, a change in the tendency is observed for great values of the phase field length scale
with respect to the specimen. This is more clearly represented in Fig. 2.39, that represents
the evolution of the critical displacement with respect to lIrwin/(W − a) for the CC and the
PF model (considering the two criteria explained above). The tendency change in the PF
model is located at lIrwin =W − a.

Although there is not any FFM assumption in the PF model, at the failure moment (un-
derstanding the failure point as the point where there is a drop in the stiffness or in the
force), there is a certain crack of finite length, as it was shown in Fig. 2.37. This idea
is also illustrated in Fig. 2.40, where a new criterion has been used to predict the critical
displacement using the PF model. In this case, it is assumed that the critical displacement
occurs when the damage variable reaches to 1 at a certain distance from the singularity point,
equal to the nucleation length predicted by the Coupled Criterion. A good agreement of this
prediction with respect to the others (F − U and K − U) is observed for low values of the
Irwin length, since the nucleation length obtained by the Coupled Criterion is small. On
the contrary, a bigger bias is appreciated when increasing the Irwin length, since the nucle-
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ation length estimated by the CC is much higher than the damage evolution predicted by the
PF model. However, there is still a good agreement between this new criterion and the force
criterion. Notice that the stiffness always predicts the lowest value of the critical displacement.

Figure 2.38: Evolution of the critical displacement Ucrit with respect to lPF/(W − a) consid-
ering the stiffness and the force criteria.

Figure 2.39: Evolution of the critical displacement Ucrit with respect to lIrwin/(W − a) con-
sidering the stiffness and the force criteria.
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Figure 2.40: Evolution of the critical displacement Ucrit with respect to lirwin/(W − a) when
including the damage criterion.

2.3.4 Influence of the fracture properties

In this section, we study the influence of σc and Gc at the micro-scale considering the bend-
ing tests of micro-cantilever beams made by Henry et al [10] and the PF model for brittle
fracture. In particular, the first specimen whose dimensions where shown in Table 2.6 is
used. Several values of σc and Gc are considered, while keeping constant E and ν indicated
in Section 2.2.3.1. A scheme of the problem is represented in Fig. 2.41. Notice that in this
case a distributed displacement ud (Displacement control is assumed in this study) at the tip
of the micro-beam has been used to avoid nucleation of local damage in the vicinity of the
point load that was applied in the original test of Fig. 2.18. Moreover, the CC has been used
to determine a first estimation of the critical displacement in the simulations.

Figure 2.41: The U-notched micro-cantilever beam in the bending test analyzed using the PF
model.

The parameter calculated to compare among the different values of σc and Gc is the critical
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displacement Ucrit, defined as the displacement ud given when a crack is nucleated in the
structure. As it was explained in previous section, this parameter is quite tricky to obtain
when there is a notch in the specimen, since a conventional F − U curve might diverge from
the K − U curve when reducing the phase field length scale. As an example, the difference
between the force and the stiffness criterion is illustrated for the case of σc = 5 GPa and
Gc = 10 MPa µm. The force drop corresponds to a critical displacement Ucrit = 0.1343 µm,
whereas the stiffness drop is produced at Ucrit = 0.1286 µm (close to the estimation of the
CC, which gives Ucrit = 0.1301 µm).

(a) F-U curve (b) K-U curve

Figure 2.42: Result of the PF model. The example represented is for σc = 5000MPa and
Gc = 10MPaµm

As an example, in Fig. 2.42a the damage variable is represented at the moment of failure for
σc = 5GPa and Gc = 10MPaµm. A very small crack is generated, increasing when the load
is increased.

Figure 2.43: Damage variable at the moment of failure for σc = 5GPa and Gc = 10MPaµm.

In Fig. 2.44 the influence of σc is obtained when applying the PF model. It can be observed
that high values of σc has much more influence, which are related to lower values of the Irwin
length. In that situation, according to the CC, it is the stress condition that is governing the
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failure. On the other hand, when lower values of σc are considered the critical displacement
has a little dependance on the tensile strength. However, when σc is very small (σc = 1 GPa)
an increment of the critical displacement is observed. This was also shown in Fig. 2.40 in the
V-notched specimen, and it happens when the Irwin length is of the order of the dimensions
of the specimen.

Figure 2.44: Influence of the tensile strength σc for Gc = 10MPaµm when considering the
PF model.

Figure 2.45: Influence of the tensile strength σc in the specimen 1 considering the PF model
and the CC.

The CC and the PF model are compared in Fig. 2.45, where the value of the critical force
Fcrit is calculated for a certain range of σc. For the PF model, two criteria have been used, the
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F − U curve and the K − U curve, to obtain a value of the critical displacement. Then, the
corresponding critical force has been obtained. It can be observed that the stiffness criterion
agrees better with the Coupled Criterion. In general there are no big differences among the
three options, and clearly in this range there is a little influence of σc in the crack nucleation.

Finally, the influence of Gc is shown in Fig. 2.46 predicted by the CC and the PF model.
Notice that this fracture property has a bigger influence than σc in the range studied. When
comparing to the experimental value, Fcrit = 1.53 mN, in Fig. 2.45 there is a good agreement
between numerical results and this experimental measurement. However, only for Gc = 10
MPa µm numerical results are closed to the experiment in Fig. 2.46. It is important to
highlight that numerical results in this section are obtained under DC, but the real experiment
was carried out under FC for specimen 1.

Figure 2.46: Influence of the critical energy release rate Gc in the specimen 1 considering the
PF model and the CC.

2.4 Conclusions

From CC perspective there is a nucleation length proportional to the Irwin length. From
the point of view of the PF model for brittle fracture, there is a phase field length scale.
Both length parameters depend on the Irwin length, an intrinsic mechanical property of the
material. At the macro-scale, this length is small compared to any dimension of the structure
while at the micro-scale, it is of the same order of magnitude or even larger and can interact
with the dimensions of the structure. Therefore, it is the relation between the Irwin length
and the dimensions of the specimen that plays an important role in the predictions made by
both the CC and the PF model. Throughout this chapter, the answer brought by these two
methodologies widely well-known to predict fracture in brittle materials have been analysed
and reasonably compared in ceramics at the micro-scale, to determine their similarities and
differences.
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First, the Coupled Criterion at the micro-scale must be used in its FFE form because the
necessary condition of the asymptotic approach is no longer fulfilled. This prevents to use
analytical formulas based on Williams’ expansion. Moreover, the CC allows to show that the
apparent strengthening observed in experiments conducted at the micro-scale is due to a lack
of available energy as a consequence of the small size of the samples. In addition, in bend-
ing tests, the smaller the samples, the larger the stress gradient, leads to a similar apparent
strengthening. It is often misinterpreted as an actual strengthening, although it has been
shown in thin films, by varying the thickness of the film, that the tensile strength does not
reach such high values [82, 83]. Accordingly, tests are often weakly or even totally insensitive
to the tensile strength whereas they are sensitive to the fracture energy. Moreover, the smaller
the samples, the more insensitive they are to notches. It can be also noted that the effect of
force and displacement controlled loading modes differs more and more descending the scales.

On the other hand, using the PF model for brittle fracture it is possible to observe a strength-
ening effect in bending tests of ceramics at the micro-scale, explained by the dissipation of
damage when descending the scales. As it was mentioned above, the control parameter in
this study is the relation between the Irwin length and the dimensions of the specimen. To
reinforce this idea, the analysis was conducted changing the Irwin length and keeping constant
the scale of the specimen.

Differences and similarities were found when comparing the results obtained by the CC and
the PF model. When the Irwin length is much smaller than the dimensions of the specimen,
there is a good agreement between both methodologies. However, when the Irwin length can
interact with the dimensions of the specimen the PF model no longer predicts a Griffith-like
fracture, and the dissipation of damage increases the difference between results brought by
the CC and the PF model for brittle fracture. A particular case is the homogeneous solution
of the tensile test, where it is shown that both methodologies give different results when des-
cending the scales.

Although both methodologies can differ when increasing the Irwin length or descending the
scales in the specimen, the same qualitative conclusions can be obtained about the influence
of the fracture properties. At the micro-scale, i.e., when the Irwin length is of the order of
the dimensions of the specimen, the tensile strength has almost no influence on fracture and
the critical energy release rate is governing crack nucleation.
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One way of increasing the fracture toughness of brittle materials is to introduce a reinforcing
component in the form of platelets or short fibres. In this chapter, we develop a computa-
tional tool to study the fracture behaviour of such composites, considered a type of advanced
ceramics. The aim of this tool is to provide an insight into the changes generated in the
crack propagation when it encounters the reinforcing element, estimating the apparent frac-
ture toughness of the composite as a function of design parameters. Throughout this chapter,
two materials are studied. The first one is used to explain the calculation tool and the second
to illustrate its industrial applicability, since it was proposed by the company Safran.

The work presented in this chapter was published in [84] and [85].

67



Chapter 3. A design tool for advanced ceramics with reinforcements 68

3.1 Description of the computational tool

The computational tool developed is based on the numerical resolution of a reference problem,
under the assumption of plane strain 2D elasticity, applying the Coupled Criterion (CC)
together with the Matched Asymptotics (MA) approach.

3.1.1 Description of the reference problem

Assuming that the dimensions of the reinforcing component are much smaller than the di-
mensions of the specimen, a symmetric 3-point bending test, see Fig. 3.1, with a pre-existing
crack Γc under Mode I loading conditions, is considered as a reference problem to estimate
the apparent fracture toughness of the composite. At the tip of the pre-existing crack there
is a reinforcing element with a rectangular shape oriented a certain angle αr. This element is
immersed in a volume of matrix according to the volume fraction of the reinforcement Vr, the
whole being itself immersed in a homogenized material called in the following the composite.
The length and thickness of the matrix envelope are al and at and fulfill

al =
l√
Vr

and at =
t√
Vr
. (3.1)

The interface between the reinforcing element and the matrix can be weak or strong, depending
on the materials. Notice that the reinforcing element could have a different shape, although in
this chapter we assume that it is rectangular. In this reference problem we include a cooling
change in temperature ∆θ to take into account the effect of residual stresses generated due
to the mismatch between the matrix and the reinforcing element, a common phenomenon in
this kind of composites.

Figure 3.1: Scheme of a symmetric 3-point bending test on a cracked specimen after cooling.
A rectangular reinforcing element (blue) and its environment (matrix in yellow
and homogenized material in green) is located at the tip of the crack.

The problem illustrated in Fig. 3.1 is a thermomechanical one. A superposition principle can
be applied to describe the solution U(x1, x2) as the sum of the solution to a pure mechanical
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problem U cr and the solution to a thermoelastic problem U te

U(x1, x2) = U cr(x1, x2) + U te(x1, x2). (3.2)

The pure mechanical displacement, U cr is the solution to the following elastic problem

Find U cr ∈ Wcr such that
∫
Ωl

C : ∇U cr : ∇ϕdx1dx2 = 0, ∀ϕ ∈ Wcr
0 , (3.3)

in which ϕ and U cr are the test and trial functions, respectively. The functional spaces of
smooth functions Wcr and Wcr

0 are defined as

Wcr =
{
w, w = Ū on Γld

}
, Wcr

0 = {w, w = 0 on Γld} , (3.4)

where Γld is the contour where Dirichlet boundary conditions are sent. The variational for-
mulation of the thermoelastic problem is

Find U te ∈ Wte such that∫
Ωl

C : ∇U te : ∇ϕdx1dx2 =
∫
Ωl

C : εin : ∇ϕdx1dx2, ∀ϕ ∈ H1(Ωl),
(3.5)

where H1(Ωl) is the first Sobolev space in the domain Ωl. Note that only the smoothness
condition is required for the space of admissible solution since the cooling occurs without any
constraint on the boundaries of the specimen. The inelastic strain tensor appearing in (3.5)
is

εin = −αT∆θI, (3.6)

where I is the identity matrix and the temperature change during cooling ∆θ = θ0 − θf is the
difference between the initial temperature θ0, and the final one θf.

The analysis made in this chapter focuses on the role of the size effect due to the smallness of
the reinforcing element. To that aim, and for simplicity, the analysis is conducted under the
assumption of plane strain 2D elasticity. Moreover, due to the smallness of the reinforcing
element, the elastic solution in the vicinity of the crack tip is estimated using the Matched
Asymptotic approach, as explained in the following section.

3.1.2 Matched Asymptotic approach

The MA approach [86] provides a two-scale analysis of an elastic problem including a small
perturbation in the domain where the problem is posed. This method, as mentioned in Sec-
tion 1.2.2, can be applied if the size of the perturbation is much smaller than the specimen
dimensions. In the present case, see Fig. 3.1, where Ωl is the actual perturbed domain, the re-
inforcing component is assumed to be the perturbation, and therefore the initial hypothesis of
this methodology is fulfilled. The corresponding elastic displacement is denoted as U l(x1, x2).
The index l recalls the dependence of the solution to the perturbation. Following (3.2),

U l(x1, x2) = U cr
l (x1, x2) + U te

l (x1, x2) (3.7)
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In the framework of MA, U l(x1, x2) can be approximated by an outer and an inner expansions.
Starting by the pure mechanical solution U cr

l (x1, x2) the outer expansion can be written as

U cr
l (x1, x2) = U cr

0 (x1, x2) + ..., (3.8)

where the leading term U cr
0 (x1, x2) corresponds to the solution of the same elastic problem

settled in the so-called outer domain Ω0, i.e., assuming the perturbation (the reinforcing ele-
ment) is too small to be visible in the specimen, and thus, is neglected. This approximation
is expected to be relevant far away from the location of the perturbation, but becomes mean-
ingless close to it.

In the neighbourhood of the crack tip in Ω0, the behaviour of U cr
0 (x1, x2) is described by

Williams’ expansion [51], in this case for a crack under Mode I. It is expressed in the polar
coordinates system (r, θ) with origin at the crack tip as

U cr
0 (r, θ) = U0(0, 0) +KI

√
ru(θ) + ..., (3.9)

where KI is the stress intensity factor and u(θ) is the opening shape function.

On the other hand, the inner expansion is obtained by a change of variables xi = lyi (i = 1, 2)
and r = lρ. The assumption of smallness brings us to consider the limit as l → 0, it defines
an unbounded domain, called inner domain Ωin, represented in Fig. 3.2, where parameters
âl, ât, t̂ and l̂ are used to represent the dimensions of the heterogeneous region defined in Fig.
3.1 divided by the length of the reinforcing element, l. Obviously, l̂ = 1. The inner expansion
for the pure mechanical solution U cr

l (x1, x2) is written as

U cr
l (x1, x2) = U cr

l (ly1, ly2) = F cr
0 (l)V cr

0 (y1, y2) + F cr
1 (l)V cr

1 (y1, y2) + ... (3.10)

Contrary to the outer expansion, this expression approximates U cr
l (x1, x2) in the neighbour-

hood of the perturbation.

Since both the inner and the outer expansions are representations of U cr
l (x1, x2), there must

be an intermediate region where both solutions coexist, i.e., the solution close to the crack
tip in the outer domain must match with the solution far away from the reinforcing element
in the inner domain. These are the so-called matching conditions,

F cr
0 (l) = 1, V cr

0 (y1, y2) ∼ U0(0, 0) when ρ→ ∞, (3.11)
F cr
1 (l) = KI

√
l, V cr

1 (y1, y2) ∼
√
ρu(θ) when ρ→ ∞, (3.12)

where ∼ means "behaves like". From (3.11) it is easily seen that V cr
0 (y1, y2) = U0(0, 0).

On the other hand, the solution V cr
1 (y1, y2) must be numerically calculated in an artificially

bounded domain imposing the condition (3.12) at a very large distance from the perturbation.
To that aim, a Finite Element (FE) simulation is performed using the software FEniCS [87] to
numerically obtain the term V cr

1 (y1, y2) in the inner problem. Notice that, from the theoretical
point of view, V cr

1 (y1, y2) has not a finite energy when ρ→ ∞, which means that the solution
is not properly determined according to Lax-Milgram theorem. To establish the existence of
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Figure 3.2: Schematic view of the inner domain.

the solution, a superposition procedure can be followed [86], as it was explained in Section
1.2.2. The final expression of the inner solution after applying the matching conditions is

U cr
l (x1, x2) = U cr

0 (0, 0) +
√
lKI V

cr
1 (y1, y2) + ... (3.13)

In the thermoelastic problem, the outer expansion is written as

U te
l (x1, x2) = U te

0 (x1, x2) + ..., (3.14)

where U te
0 (x1, x2) is the solution of the same thermoelastic problem defined in the unperturbed

domain Ω0. The outer solution U te
0 (x1, x2) can be easily integrated from

ε0
te(x1, x2) = εin ; σ0te(x1, x2) = 0 (3.15)

obtaining that
U0

te(x1, x2) = U0
te(0, 0) + εin [x1, x2]

T . (3.16)

This approximation correctly represents U te
l (x1, x2) far away from the perturbation. Notice

that we should theoretically include the T-stress in the expansion (3.9) to be consistent with
(3.16), but, after trying, it turns out that its influence is negligible in all cases.

On the other hand, the inner expansion, defined in the unbounded domain Ωin, see Fig. 3.2,
is expressed as

U te
l (x1, x2) = U te

l (ly1, ly2) = F te
0 (l)V te

0 (y1, y2) + F te
1 (l)V te

1 (y1, y2) + ... (3.17)

Terms V te
0 (y1, y2) and V te

1 (y1, y2) are defined through the matching conditions, as it was
explained for the pure mechanical problem,

F0(l)V
te
0 (y1, y2) ≈ U te

0 (0, 0) when ρ→ ∞, (3.18)
F1(l)V

te
1 (y1, y2) ≈ l εin [y1, y2]

T when ρ→ ∞. (3.19)
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Then F0(l) = 1 and V te
0 (y1, y2) = U te

0 (0, 0), whereas F1(l) = l and the term V te
1 (y1, y2) is

numerically obtained in the same way as it was done for the pure mechanical problem, using
FEM on a very large but bounded domain with a traction free condition along the artificial
outer boundary, according to (3.15), then

U te
l (x1, x2) = U te

0 (0, 0) + l V te
1 (y1, y2) + ... (3.20)

The actual stress tensor σl is calculated applying the superposition principle,

σl(x1, x2) = σl
cr(x1, x2) + σl

te (x1, x2), (3.21)

where terms σlcr(x1, x2) and σl
te(x1, x2) are approximated in the vicinity of the reinforcing

element by the inner expansion. In the pure mechanical problem that means

σl
cr(x1, x2) =

1

l
C : ∇yU

cr
l (ly1, ly2) =

KI√
l
C : ∇yV1

cr(y1, y2) + ... (3.22)

where ∇y denotes the gradient operator with respect to the space variables y1 and y2. In the
thermoelastic problem,

σl
te(x1, x2) = σl

te(ly1, ly2) = C :
(
∇yV

te
1 (y1, y2)− εin

)
+ ... (3.23)

In addition, notice that the use of the MA approach allows only one calculation to be made
regardless the actual size of the reinforcing element. In this regard, the strong refinements
in the mesh size, necessary to solve directly the problem on the actual domain, are avoided,
which results in a more accurate solution in the neighbourhood of the perturbation, i.e. the
reinforcing element at the crack tip.

Notice that the characteristic length used to apply this analytical methodology is the length
of the reinforcing element, l. However, the same procedure could be followed using as a char-
acteristic length of the problem the thickness of the reinforcing element, t, as it will be shown
in Section 3.3.

The estimation of the elastic solution in the vicinity of the reinforcing element is used in the
Coupled Criterion.

3.1.3 The Coupled Criterion

The well-known theory of Griffith [44] can only be applied in a homogeneous (at least loc-
ally around the crack tip) material or along an interface between homogeneous materials.
Moreover, it is easily seen, in [88] for instance, that the CC, explained in Section 1.2.1, coin-
cides with Griffith’s criterion in these cases and that the stress condition plays no role. In the
inner problem, a heterogenous micro-structure is considered. Therefore, the theory of Griffith
may not be used in all the possible paths for crack propagation that will be studied in the
following sections.
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First, when considering the thermomechanical problem, the stress condition (see (1.12)) in
the actual domain represented in Fig. 3.1 is written as

σ̄ =
σcr(s) + σte(s)

σc(s)
≥ 1 for 0 ≤ s ≤ δl, (3.24)

In the energy condition according to (1.16), assuming displacement controlled loading mode,
the change in potential energy ∆Πp = ∆Ψel, being Ψel the total strain energy in the system
defined as

Ψel =
1

2

∫
Ω
C : (∇U − εin) : (∇U − εin) dx1dx2, (3.25)

Using the superposition principle of the thermomechanical problem as in (3.2) it comes out,

Ψel =
1

2

∫
Ω
C :

(
∇U cr +∇U te − εin

)
:
(
∇U cr +∇U te − εin

)
dx1dx2. (3.26)

Considering (3.5), the strain energy in the system is rewritten as

Ψel =
1

2

∫
Ω
C : ∇U cr : ∇U crdx1dx2 −

1

2

∫
Ω
C : ∇U te : ∇U te dx1dx2

+
1

2

∫
Ω
C : εin : εin dx1dx2 = Ψcr

el −Ψte
el +Ψin

el . (3.27)

Since we are interested in the increment in strain energy, ∆Ψel(δl) = Ψδl
el −Ψ0

el, the last term
Ψin

el in the previous expression does not play any role in the energy condition, then

Ḡinc = −∆Πp

δl
· 1

Gc(δl)
=

(
−
∆Ψcr

el
δl

+
∆Ψte

el
δl

)
· 1

Gc(δl)
≥ 1. (3.28)

Note that there is no coupling term in (3.27), this a consequence of the boundary conditions
and the variational formulation of the problems (3.3) and (3.5).

The elastic solution considered in these equations is in this case approximated using the MAE.
Hence, in the pure mechanical problem the actual strain energy Ψcr

el is defined as

Ψcr
el =

1

2

∫
Ωl

C : ∇xU
cr
l : ∇xU

cr
l dx1dx2, (3.29)

and therefore the increment ∆Ψcr
el can be calculated. In this problem, ∆Ψcr

el is approximated
by the inner expansion, ∆Ψcr

el = l∆Ψ̂cr
el , where

Ψ̂cr
el =

1

2

∫
Ωin

C : ∇yV
cr
1 : ∇yV

cr
1 dy1dy2. (3.30)

Notice that ∆Ψ̂cr
el depends on δlin = δl

l , the dimensionless newly created crack length in the
inner domain Ωin, i.e., the distance from that node to the origin expressed in the dimensionless
yi variables.
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On the other hand, in the thermoelastic problem

∆Ψte
el = l∆Ψ̂te

el . (3.31)

The CC is therefore expressed as

σ̄ =

KI√
l
σ̂cr(ŝ) + σ̂te(ŝ)

σc(ŝ)
≥ 1, for 0 ≤ ŝ ≤ δlin (3.32)

Ḡinc =
−(KI)

2 ∆Ψ̂cr
el

δlin
+ l

∆Ψ̂te
el

δlin

Gc(δlin)
≥ 1. (3.33)

The aim of applying the CC is to calculate the apparent fracture toughness of the composite
Kapp

IC , defined as the minimum value of KI for which both the stress (3.34) and the energy
(3.35) condition are fulfilled. In particular, Kapp

IC is compared toKm
IC, the fracture toughness of

the matrix, to study how matrix fracture properties are enhanced when a second constituent is
added. Moreover, the solution of the thermoelastic problem σ̂te(ŝ) and Ŵ te can be expressed
for a ∆θ = 1 and then with a simple change the solution can be obtained for any value of
∆θ = 1, which gives rise to the following formulation

σ̄ =

KI√
l
σ̂cr(ŝ) + ∆θσ̂te(ŝ)

σc(ŝ)
≥ 1, for 0 ≤ ŝ ≤ δlin (3.34)

Ḡinc =
−(KI)

2 ∆Ψ̂cr
el

δlin
+ l∆θ2

∆Ψ̂te
el

δlin

Gc(δlin)
≥ 1. (3.35)

At this stage, we must point out an important difficulty encountered by the numerical ap-
proach of the CC when considering the thermoelastic problem. There is a singularity at the
tip of the mother crack impinging the matrix/reinforcing element interface and, despite it is
located at the tip of a crack, it differs from the singularity for a crack in the classical theory
of Linear Elastic Fracture Mechanics λ = 0.5, because of the heterogeneous conditions [89].
The reinforcing element being stiffer than the matrix, it is a so-called weak singularity with
an exponent larger than that of a crack. If the mechanical loading (bending) leads to a posit-
ive generalized stress intensity factor (GSIF) of the singularity, on the contrary, the residual
stresses tend to close the mother crack and result in a negative GSIF. There is a competition
between them, if the GSIF related to a mechanical load is small, then residual stresses take
over and the mother crack remains closed.

A way to get rid of this difficulty is to compute the GSIF kcr, that can be calculated using
the path independent integral described in [86]

kcr =
Φ(Ul

cr, r−λ u−(θ))

Φ(rλ u(θ), r−λ u−(θ))
, (3.36)

where rλ u(θ) is the eigenfunction of the heterogeneous problem, being r−λ u−(θ) the dual
eigenfunction. The integral denoted as Ψ is defined in the Annex 5.2. The inner solution
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obtained using MAE can be used in this calculation. Hence, the GSIF κcr is extracted from
V cr

1 ,

κcr =
Φ(V1

cr, ρ−λ u−(θ))

Φ(ρλ u(θ), ρ−λ u−(θ))
, (3.37)

where V1te is the solution considering ∆θ = 1. For the GSIF referred to the thermoelastic
problem (kte) the righ-hand side member in (3.5) does not vanish in the vicinity of the
singular point, and consequently the integral Φ is no longer a path-independent integral. A
superposition principle might be used to separate the non-homogeneous part of V1te, and
therefore to calculate κkte. The corresponding changes, see (3.13) and (3.20), are applied to
obtain the GSIF’s of the actual problem,

kte = l1−λ∆θ κte (3.38)

kcr = KI l
1/2−λ κcr. (3.39)

Then, equality kcr = −kte provides the smaller value Kmin
I of KI such that the compressive

stress cancels and the mother crack opens.

Kmin
I =

√
l∆θ

κte

κcr . (3.40)

It is a lower bound of admissible KI.

3.2 Application example: borosilicate glass reinforced by
alumina platelets

The computational tool presented in the previous section is applied to analyse the borosilicate
glass reinforced by alumina (Al2O3) platelets. First, the role of only one platelet is studied in
the pure mechanical problem. Then, the effect of residual stresses as well as the effect of the
volume fraction are included in the problem. Finally, the numerical tool is verified through a
comparison to experiments.

3.2.1 Description of the material

In experiments made by [32] and [30] on the borosilicate glass/Al2O3 platelet composite, the
alumina platelets have hexagonal shape with the major axe measuring l = 5 − 25 µm and
the thickness is t = 0.2 l, which means that the dimensions of the platelets are much much
smaller than the tested specimens, whose standard cross-section of 12mm2 has a rectangular
shape. Moreover, the interface between the platelet and the matrix is assumed to be strong
as reported in [33].

Table 3.1 lists the mechanical properties of the constituents borosilicate glass and Al2O3. It
is important to emphasize the high variability of the fracture toughness Kc and the strength
σc of a ceramic material, since they are very dependant on the micro-structure [90]. In this
case, these parameters were experimentally obtained for glass in [32] and [30]. However, no
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experimental data were provided for alumina platelets, being these parameters even more
difficult to obtain, since they sometimes differ from the values measured in a bulk material.
In [91], a range for σc was estimated by the values given in the National Institute of Standards
and Technology 1. Furthermore, in [92] a parametric study is proposed, obtaining a possible
value for the fracture toughness based on a comparison with experimental observations, among
an initial range taken from the literature [88], [93].

Constituents E [GPa] ν αT [10−6/K] σc [MPa] Kc [MPa m1/2]

Borosilicate glass 60 0.23 3.3 56 0.735

Alumina (Al2O3) 402 0.22 8.9 300− 400 2− 5

Table 3.1: Mechanical properties of the constituents. The extreme values of the tensile
strength and toughness of alumina will be called respectively minor and major
in the following.

Notice that in Table 3.1 the thermal coefficients are given. They are used to obtain residual
stresses generated after manufacture. During the process, the temperature is reduced from
the glass transition temperature, θ0 ≈ 550◦C [37] to the room temperature.

All around the platelet/glass assembly, a homogeneous distribution of platelets is assumed
[32] and therefore the composite is represented through an equivalent homogenized material,
whose mechanical properties are function of Vp, the volume fraction of platelets, in Table 3.2.
Its Young’s modulus Eapp was measured in [30] and [32], whereas the Poisson’s ratio νapp

is assumed to be that of glass, since there is not a big difference between Poisson’s ratios of
alumina νa and glass νg, see Table 3.1.

The thermal expansion coefficient αapp
T for the composite was calculated using Voigt’s rule

of mixtures [94]. The tensile strength and σapp
c was also measured in [30] and [32]. Finally,

two experimental sets of data for the apparent fracture toughness Kapp
c in the composite were

included, denoted as [1] referring to [32] and [2] referring to [30], see Table 3.2.

As mentioned in Section 3.1.1, we focus on the role of the size effect due to the smallness of
the inclusion. To that aim, although in the experiments l = 5 − 25 µm, the range selected
here is l = 2− 300 µm.

1https://srdata.nist.gov/CeramicDataPortal/Pds/Scdaos

https://srdata.nist.gov/CeramicDataPortal/Pds/Scdaos
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Eapp [GPa] νapp αapp
T [10−6/K] σapp

c [MPa] Kapp
c [MPa m1/2]

Vp = 5% 63 0.22 3.58 67 0.981 0.92

Vp = 10% 70 0.22 3.86 84 1.031 0.952

Vp = 15% 79 0.22 4.14 104 1.281 1.12

Vp = 30% 102 0.22 4.98 150 1.921 1.52

Table 3.2: Mechanical properties of the equivalent homogenized material for several values of
the platelets volume fraction Vp.

It is important to highlight that the interface glass alumina is considered as strong [30], there-
fore its fracture properties are those of glass.

Remark: In this PhD thesis the CC point is located at a certain point s in the expected
crack path where s = δl, the newly created crack length.

3.2.2 The role of a single platelet

A simplified case is studied in this section, when considering only the role of a single platelet
embedded in a glass matrix, as shown in Fig. 3.3, and no residual stresses in the problem.
Results are compared to the ones obtained considering the effect of the volume fraction, to
understand the role of Vp in the fracture toughness of the composite.

Figure 3.3: Scheme of a symmetric 3-point bending test on a cracked specimen. A platelet
(blue) surrounded by its environment (glass in yellow) is located at the tip of the
crack.
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In the following sub-sections the equivalent 2D model presented in Section 3.1.1 considering
the role of a single platelet is applied to numerically determine the apparent fracture toughness
Kapp

IC of the composite, as a function of l and αp. Three different orientations are presented in
this section, αp = 0◦, 45◦, 90◦. For the sake of simplicity, the subscript l related to the actual
solution in Section 3.1.2, is omitted in the notation. Furthermore, Kg

IC denotes the fracture
toughness of glass.

3.2.2.1 Results for αp = 90◦

A possible relative position of the platelet is given when it is perpendicular to the pre-existing
crack, αp = 90◦. Since a priori the crack path is unknown, different options are investigated,
studied in the following subsections: a single deflection, a decohesion, a penetration and a
step over.

(a) Deflection (b) Decohesion

Figure 3.4: Scheme of the inner domain and the supposed crack path (red arrow) for αp = 90◦,
for different toughening mechanisms.

(c) Penetration (d) Step over

Figure 3.4: Scheme of the inner domain and the supposed crack path (red arrow) for αp = 90◦,
for different toughening mechanisms.
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Single deflection

A first option is given when the crack encounters the platelet and deflects along the interface,
as shown in Fig. 3.4a. It is called deflection. The evolution of Kapp

IC is represented in Fig.
3.5. First, it can be concluded that a deflection of the crack path when considering the role
of a single platelet is always a toughening mechanism, since the minimum enhancement of
Kapp

IC is 1.7Kg
IC and the maximum is ≈ 2.14Kg

IC, for the maximum value of the platelet size
considered in this study, l = 300µm.

Figure 3.5: Evolution of Kapp
IC /Kg

IC with respect to l, for αp = 90◦ in the deflection case.

Looking at Fig. 3.5 two changes in the evolution of Kapp
IC can be distinguished. First, for

very short platelets it is observed that Kapp
IC does not depend on l, which means that it is the

energy condition that governs the failure. An example is shown in Fig. 3.6 for l = 4µm, where
the CC point (highlighted in the image) is determined by the relative maximum in the energy
condition curve Ḡinc. Notice that a peak in the stress condition curve σ̄ can be observed at
the end of the interface glass alumina, due to the singularity that is generated because of
the rectangular shape of the platelet, see Fig. 3.6a. The crack opening after nucleation is
represented in Fig. 3.6b, where the adimensional coordinate ŝ = s/l is used to represent the
direction of the crack path.

At l ≈ 8µm the apparent fracture toughness abruptly starts increasing with the platelet size,
and therefore the energy condition is no longer governing the failure. An example is given for
l = 9µm in Fig. 3.7, where it is observed that the newly created crack length is still longer
than the length of the interface glass alumina. In this case, the CC point is determined by
the crossing point between the stress and the energy curve.
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(a) CC curves (b) Crack opening

Figure 3.6: Example of the application of the CC for αp = 90◦ and l = 4 µm, considering the
deflection case.

(a) CC curves (b) Crack opening

Figure 3.7: Example of the application of the CC for αp = 90◦ and l = 9 µm, considering the
deflection case.

Finally, the evolution of Kapp
IC changes at l ≈ 15µm. As shown in the example given in Fig.

3.8 for l = 50µm, when long platelets are considered the crack is arrested before reaching the
end of the interface glass alumina, at the moment of failure KI = Kapp

IC . In particular, for
l = 50µm the newly created crack length, represented in Fig. 3.8b, is δl = 15.8µm.

It is important to highlight that the case of a double symmetric deflection, see Fig. 3.9, can
also be studied even in a simpler way considering a half of the domain in the problem, and
applying the corresponding symmetry conditions, i.e., the horizontal displacement is nulled
at y2 = 0, y1 > 0.
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(a) CC curves
(b) Crack opening

Figure 3.8: Example of the application of the CC for αp = 90◦ and l = 50 µm, considering
the deflection case.

Figure 3.9: Scheme of the inner domain and the supposed crack path (red arrow) for αp = 90◦,
for the symmetric deflection.

Fig. 3.10 shows the comparison between the symmetric and the non-symmetric deflection.
No significant differences have been observed between the two cases, since the maximum dif-
ference is 6.9%. It is important to highlight that a similar conclusion was obtained in [95] for
a single fiber specimen.

Lateral decohesion

Another possible mechanism is a lateral decohesion of the interface, see Fig. 3.4b. In Fig.
3.11 the evolution of Kapp

IC in case of decohesion is shown. An enhancement of the apparent
fracture toughness with respect to the one of glass is observed over the whole range of the
platelet length studied. In fact, the maximum increase in Kapp

IC occurs when l = 300µm and
is approximately 2.26Kg

IC. Therefore, the lateral decohesion could be a toughening mechan-
ism of the problem, since the apparent fracture toughness is enhanced. This mechanism was
already studied in [92].
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Figure 3.10: Comparison of Kapp
IC /Kg

IC between the symmetric and the non-symmetric deflec-
tion, for αp = 90◦.

For short platelets, as observed in previous cases, Kapp
IC does not depend on the size of the

platelet, which indicates that the energy condition governs the propagation of the pre-existing
crack. An example is given in Fig. 3.12 for l = 4µm. It can be noted that the newly created
crack length is in this case much longer than the lateral interface glass alumina, and therefore
the crack is arrested inside the glass region at the moment of failure.

Figure 3.11: Evolution of Kapp
IC /Kg

IC with respect to l, for αp = 90◦ in the lateral decohesion
case.
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(a) CC curves

(b) Crack opening

Figure 3.12: Example of the application of the CC for αp = 90◦ and l = 4 µm, considering
the decohesion case.

Another example is represented in Fig. 3.13 for l = 200 µm. In this case the crack jump
is smaller, although the initiation length still ends in the glass region. Notice that in this
example a convex stress distribution along the lateral interface glass alumina can be observed.

(a) CC curves (b) Crack opening

Figure 3.13: Example of the application of the CC for αp = 90◦ and l = 200 µm, considering
the decohesion case.

Penetration

A separate case in which the crack penetrates in the platelet is presented in Fig. 3.4c, where
the fracture properties of Al2O3, defined through a range of possible values, determine the
evolution of the failure. In Fig. 3.14 the function Kapp

IC (l) is studied for the range of σa
c given

in Table 3.1. It is observed that the apparent fracture toughness is increased with the strength
of alumina and the size of the platelet.
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Figure 3.14: Evolution of Kapp
IC /Kg

IC with l for several values of σa
c in the case of a crack

penetration, considering an average value of the fracture toughness Ka
IC = 3.35

MPa · m1/2.

Figure 3.15: Evolution of Kapp
IC /Kg

IC with l for several values of Ka
IC in the case of a crack

penetration, considering an average value of the strength σa
c = 350 MPa.

As an example, a description of the CC for Ka
IC = 2 MPa · m1/2 and σa

c = 300 MPa is given
in Fig. 3.16a and 3.17a respectively. In Fig. 3.16a the crack propagates inside the alumina
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platelet, whereas in Fig. 3.17a a more standard fulfillment of the CC is represented, for a
longer platelet.

(a) CC curves (b) Crack opening

Figure 3.16: Example of the application of the CC for αp = 90◦ and l = 2 µm, considering
the penetration case. In this case Ka

IC = 2 MPa · m1/2 and σa
c = 300 MPa.

(a) CC curves (b) Crack opening

Figure 3.17: Example of the application of the CC for αp = 90◦ and l = 50 µm, considering
the penetration case. In this case Ka

IC = 2 MPa · m1/2 and σa
c = 300 MPa.

Step over

Finally, the situation in which the crack reinitiates on the opposite face of the platelet, lead-
ing to a nucleation in the glass region, has also been studied. It is called the step over case,
represented in Fig. 3.4d. This kind of mechanism can be met in rock mechanics for instance
[96]. Fig. 3.18 shows an example of the application of the CC for l = 25µm. Results show
that it is not a relevant mechanism in the present case, since there is a compression at the
origin of the new crack that closes the crack so that it would not be a possible mechanism in
this case. The same situation has been observed in the whole range studied in this section,
l = 2− 300µm.
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Figure 3.18: Example of the application of the CC for αp = 90◦ and l = 25 µm, considering
the step over case.

Comparison between mechanisms

Finally, in Fig. 3.19 the expected crack paths presented above are compared to determine the
predominant toughening mechanism, which is the one associated with the lowest Kapp

IC , i.e.
with the lowest critical load.

Figure 3.19: Evolution of Kapp
IC /Kg

IC with respect to the length of the platelet l, for a single
deflection, a decohesion and a penetration, when αp = 90◦.
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For the sake of simplicity, only two cases are chosen for penetration, corresponding to the
most extreme values of the Al2O3 fracture properties, given in Table 3.1. The minor case, in
which Ka

IC = 2 MPa · m1/2, σa
c = 300 MPa, and the major case, where Ka

IC = 5 MPa · m1/2,
σa

c = 400 MPa. Notice that they constitute an upper and a lower bound in the curves given in
Fig. 3.19 for the case of penetration. It is observed that the major case is never predominant.
Moreover, for very short platelets the predominant mechanism is the penetration. Then, if
l > 6 µm the predominant mechanism depends on the fracture properties of Al2O3, and it
can be either a decohesion, either a penetration. Finally, for long platelets l > 160 µm a
deflection through the interface glass/alumina or a penetration can occur, depending, again,
on the fracture properties of alumina.

In 1989, He and Hutchinson [97] explained the necessary condition for a crack to either
penetrate or deflect through the interface of a semi-infinite domain divided into two phases,
in this case, glass and alumina, with a pre-existing crack in glass. For a right angle, H&H’s
condition for a crack to be deviated is

Gg
c

Ga
c
<
Gd

Gp
, (3.41)

whereas it penetrates in the reverse situation. The energy release rate related to deflection
and penetration are denoted as Gd and Gp respectively. In [98] this ratio is expressed in terms
of the asymptotic solution as follows

Gd

Gp
=
Ad

Ap
, (3.42)

where the term Ad/Ap is a function dependant on the ratio Ea/Eg, obtained from [98]. In
the bi-material case studied this ratio Ea/Eg = 1.902. Hence, Gd/Gp = 0.68.

Two different values of Ga
c are considered, the upper and lower bound of the alumina frac-

ture toughness, see Table 3.1. Hence, according to H&H, for Ka
IC = 2 MPa m1/2 the ratio

Gg
c/Ga

c = 0.906 and the crack will penetrate, whereas for Ka
IC = 5 MPa m1/2 the ratio

Gg
c/Ga

c = 0.145 and it will deflect.

In Fig. 3.19, the numerical toughening mechanisms studied for αp = 90◦ were compared. If
Ka

IC = 2 MPa m1/2, the penetration clearly predomines. However, if Ka
IC = 5 MPa m1/2,

the predominant mechanism is deflection for l > 160 µm and decohesion if l < 160 µm. This
observation agrees with the theoretical results, since they refer to a semi-infinite domain,
which would correspond to the case of very large platelets.

3.2.2.2 Results for αp = 0◦

When αp = 0◦, the platelet is parallel to the pre-existing crack and we assume the crack to
impinge the platelet at its corner. In that case, only one crack path seems likely to occur, it
is the one located along the interface between glass and alumina, see Fig. 3.20.
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Figure 3.20: Schematic view of the inner domain for αp = 0◦. The supposed crack path starts
from the corner of the platelet (red arrow).

The dependence of Kapp
IC on the size of the platelet is represented in Fig 3.21, where it is

shown that Kg
IC is enhanced only if l > 50 µm. It can be explained by the stress singu-

larities located at the corners of the platelet. The effect of these singularities, i.e. very high
stresses that tend to infinity at the corners, is felt all along the face of the platelet if it is small.

Figure 3.21: Evolution of Kapp
IC /Kg

IC with respect to l, for αp = 0◦.

According to the CC, a finite crack increment develops in an unstable manner. For l = 16−33
µm this length is equal to the length of the glass/alumina interface (x1 = l), while for l > 33
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µm this finite jump becomes smaller than the interface length, and the presence of the stiff
material increasingly diminishes the ability of the crack to open. Moreover, it is observed that
if l < 16 µm, the apparent fracture toughness remains constant, since the evolution of the
failure is governed by the energy condition, and Ginc does not depend on l, see Section 3.1.3.

As an example, in Fig. 3.22 the CC is analysed for l = 10 µm. The stress and the energy
conditions are represented with respect to s, the coordinate used to denote the arc length
along the expected crack path. It should be noted that there is a small peak in the stress
condition at the end of the interface (s = 10 µm), due to the singularity at the corner
point. Furthermore, notice that this is a non standard result of the CC, which is baptized as
negative geometry [99], since the energy curve is not an increasing function in the glass region.

In this case the CC point is located out of the interface glass alumina at s ≈ 11µm, see
Fig. 3.22b for a representative scheme of the crack opening in the inner domain, where the
adimensional coordinate ŝ = s/l is used to represent the direction of the crack path. The
newly created crack length is determined by the maximum point of the curve Ḡinc, that rep-
resents the energy condition, as shown in Fig. 3.22a. Noteworthy, in this case the platelet
can not be considered a toughening mechanism, since the final value obtained for the appar-
ent fracture toughness of the composite is slightly less than the one in glass, Kapp

IC /Kg
IC ≈ 0.96.

Other example of the application of the CC is shown in Fig. 3.23 for l = 20 µm, where the
newly created crack is equal to the length of the interface glass alumina, i.e., the CC point is
located at s = 20µm, as represented in Fig. 3.23a. The deformed shape and a representative
scheme of the crack opening in the inner domain is shown in Fig. 3.23b. It is important to
highlight that in this case the platelet can not be considered a toughening mechanism, since
Kapp

IC /Kg
IC ≈ 0.97. Finally, the CC curves for a long platelet l = 100µm are represented in Fig.

3.24a. In this case, the newly created crack length is smaller than the interface glass alumina,
as shown in Fig. 3.24b. A small toughening effect can be observed, since Kapp

IC /Kg
IC ≈ 1.02.

(a) CC curves (b) Crack opening

Figure 3.22: Example of the application of the CC for αp = 0◦ and l = 10 µm.
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(a) CC curves (b) Crack opening

Figure 3.23: Example of the application of the CC for αp = 0◦ and l = 20 µm.

(a) CC curves (b) Crack opening

Figure 3.24: Example of the application of the CC for αp = 0◦ and l = 100 µm.

3.2.2.3 Results for αp = 45◦

In the case αp = 45◦ two more parameters are used to define the expected crack path,
as illustrated in Fig. 3.25. The angle β, the first deflection angle of the crack when it
penetrates in the alumina platelet, and the angle γ, a secondary deflection when the prescribed
crack penetrates from the alumina platelet to the glass matrix. To differentiate the possible
toughening mechanisms that can be given in this situation, three possible values for each
angle, β, γ = 0◦, 45◦ and 90◦, are studied.
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Figure 3.25: Scheme of the expected crack path in the inner problem for αp = 45◦. A new
local coordinates system is defined (z1, z2), so that z1 is always oriented with the
supposed crack path.

Toughening mechanisms: case β = 0◦

(a) γ = 0◦ (b) γ = 90◦

(c) γ = 45◦

Figure 3.26: Scheme of the inner domain for αp = 45◦ and β = 0◦ and the supposed crack
paths (red arrows).
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If β = 0◦ a deflection of the crack along the interface glass/alumina occurs. A second de-
flection defined by γ = 0◦, 45◦, 90◦, is shown in Fig. 3.26. The predominant crack path is
obtained by comparing the apparent fracture toughness of the three options, see Fig. 3.27.

Figure 3.27: Evolution of Kapp
IC /Kg

IC with l for several values of γ in the case of β = 0◦.

It should be noted that for short platelets Kapp
IC (l) remains constant, since it is the energy

condition the one that is governing the failure. Moreover, it is observed that for l > 47 µm
there is no difference among the three possibilities, since the crack increment is produced
along the glass/alumina interface. As an example, Fig. 3.28 shows the case of γ = 0◦ and
l = 75µm. A conventional fulfillment of the CC can be observed in this case, where the CC
point is located before the end of the interface glass alumina.

(a) CC curves (b) Deformed shape

Figure 3.28: Example of the application of the CC for γ = 0◦ and l = 75µm.

Furthermore, below l = 47 µm, γ = 45◦ predominates. It means that the crack would propag-
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ate out of the interface with the same orientation it had before impinging into the platelet. As
an example, the application of the CC is shown for l = 5µm and γ = 45◦. It can be observed
that CC point corresponds to the maximum point of the energy curve, which means that the
failure is completely governed by the energy condition.

(a) CC curves

(b) Deformed shape

Figure 3.29: Example of the application of the CC for γ = 45◦ and l = 5µm.

Toughening mechanisms: case of β = 90◦ and β = 45◦

(a) γ = 0◦ (b) γ = 45◦

(c) γ = 90◦

Figure 3.30: Scheme of the inner domain for αp = 45◦ and β = 90◦ and the supposed crack
paths (red arrows).
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In Fig. 3.30 the three expected paths analysed for β = 90◦ are presented. Once the crack
penetrates into the platelet it can be deflected through the interface glass alumina (γ = 0◦),
or it can be propagated in the glass region, following the same direction as the pre-existing
crack (γ = 45◦) or the same direction as it had when it entered in the alumina (γ = 90◦).

In Fig. 3.31 the three expected crack paths are compared, where the so-called major and
minor cases were described in Section 3.2.2.1. As it was observed for other cases, different
behaviours can be distinguished. They are related to the different results obtained using the
CC analysis. A zoom inside each graph highlights the region of short platelets. Clearly, when
the fracture properties of alumina are improving, Kapp

IC is increasing. In fact, for very short
platelets it is observed that the crack deflection for the minor case is not enough to increase
Kapp

IC with respect to Kg
IC for very low values of the alumina fracture properties.

(a) Minor case (b) Major case

Figure 3.31: Evolution of Kapp
IC /Kg

IC with l for several values of γ in the case of β = 90◦.

On the other hand, Fig. 3.32 shows the three possible crack paths analysed for the case of
β = 45◦, i.e. when the crack penetrates straight into the platelet.

(a) γ = 0◦ (b) γ = 90◦

Figure 3.32: Scheme of the inner domain for αp = 45◦ and β = 45◦ and the expected crack
paths (red arrows).
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(c) γ = 45◦

Figure 3.32: Scheme of the inner domain for αp = 45◦ and β = 45◦ and the expected crack
paths (red arrows).

In Fig. 3.33, conclusions are very similar to the two previous cases, where γ = 45◦ remains
the most probable case, i.e. the predominant mechanism, for both the minor and the major
examples. Again, there are only differences in the short platelets.

(a) Minor case (b) Major case

Figure 3.33: Evolution of Kapp
IC /Kg

IC with l for several values of γ in the case of β = 45◦.

Finally, a comparison is made for the minor and major case for the three β angles in Fig.
3.34. As it can be seen, the predominant path depends on the alumina fracture properties.
In the major case, in general, it is the deflection β = 0◦ across the interface glass alumina
that predominates, but not for very short platelets, where the crack is expected to penetrate
into the platelet, having a deflection with respect to its original orientation, case of β = 90◦.
On the other hand, in the minor case, the crack penetrates into the platelet without suffering
any change in its orientation, i.e., β = 45◦.
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(a) Kal
IC = 2 MPa · m1/2 and σal

c = 300
MPa

(b) Kal
IC = 5 MPa · m1/2 and σal

c = 400
MPa

Figure 3.34: Evolution of Kapp
IC /Kg

IC with l for several values of β.

3.2.3 Influence of residual stresses

In this section the influence of residual stresses is included in the problem solved in previous
section. Thus, considering the role of a single platelet, we study the complete thermomechan-
ical problem presented in Section 3.1.1, with a cooling down ∆θ = 500 K. Notice that here ∆θ
is expressed as a positive increment, although it is a negative increment in Section 3.1.1, for
the sake of simplicity in the graphics. Results are exhibited for different platelet sizes, at the
scale of experiments, i.e. l = 5− 25µm [30] and at an extended scale l = 3− 300µm used to
better capture the size effect on the apparent fracture toughness. Moreover, two orientations
of the platelet are studied, αp = 90◦ and αp = 0◦.

Therefore, in this section the influence of ∆θ is investigated in order to determine when it
contributes to enhance the apparent fracture toughness of the composite, Kapp

IC .

Noteworthy, it is important to highlight the difficulty mentioned in Section 3.1.3 when con-
sidering the thermomechanical problem. The fact that κcr outweighs κte, is tricky to detect,
and also difficult to estimate analytically, since in some cases, for example, in αp = 0◦, the
singularity exponent is complex. We have opted for a check of the convexity of σ̄(s) function
of s at the first computation points. Hence, the first and the second derivative of σ̄(s) have
been checked in the neighbourhood of the singularity (at s = 0). The first derivative must
be negative for a decreasing function and the second derivative must be positive to obtain a
convex evolution of σ̄(s). Unfortunately, all this happens in a very small neighborhood of the
crack tip, the stress variations are difficult to capture numerically and, due to the singularity,
the calculations are very mesh dependent.

3.2.3.1 Results for αp = 90◦

When the platelet is perpendicular to the pre-existing crack, the expected crack growth is
not known a priori and several possibilities might be analysed: penetration, decohesion and
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deflection, see Fig. 3.4.

For penetration (Fig. 3.4c) two scenarios are examined, called minor and major, correspond-
ing to the minor and major values of alumina strength and toughness in Table 3.1. As shown
in Fig. 3.35, both converge to the same values of Kapp

IC for l > 150 µm, which means that
alumina fracture properties play no longer a role in the damage propagation. The reason is
that for l > 150 µm it is the mother crack opening condition which prevails, while, for l < 150
µm they do play a role, the greater the alumina fracture properties, the higher Kapp

IC .

Moreover, for αp = 90◦ the singularity exponent in the heterogeneous problem is a real number
λ = 0.638, and therefore our numerical calculations can be compared to Kmin

I . As expected,
both curves are above.

The same comparison is carried out for the deflection mechanism (Fig. 3.4a) with similar
conclusions (Fig. 3.36). In the decohesion case (Fig. 3.4b), the situation is slightly different
because the crack does not initiate at the mother crack tip but at the corner of the platelet
(which undergoes also a singularity), then this mechanism can occur even if the mother crack
is closed. The only point to check is the opening or not of the pre-existing crack to be sure
that the appropriate boundary conditions prevail along the crack faces. It has been checked
that it is either opened or fully closed.

Figure 3.35: Comparison between the theoretical minimum Kmin
I and the apparent fracture

toughness Kapp
IC obtained for the major and the minor values of alumina strength

and toughness (see Table 3.1), for the penetration case.
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Figure 3.36: Comparison between the theoretical minimum Kmin
I and the apparent fracture

toughness Kapp
IC obtained for the deflection case.

The three cases are compared in Fig. 3.37. The actual apparent fracture toughness is the
minimum value of Kapp

IC among the three curves which corresponds to the predominant mech-
anism. It can be pointed out that Kapp

IC is lower than Kg
IC for long platelets l > 98 µm. In

fact, for l > 132 µm the CC predicts a breakage by a lateral decohesion during cooling, which
agrees with experimental observations [37].

Figure 3.37: Comparison between decohesion, deflection, penetration minor and major, for
αp = 90◦ and ∆θ = 500K. The diamond and the square correspond to the
optimal points in the minor and the major case respectively.
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For short platelets l < 98 µm the toughening effect depends on alumina fracture properties.
In the major case the predominant toughening mechanism is either decohesion or deflection,
and Kapp

IC > Kg
IC in the whole range. In the minor case, Kapp

IC > Kg
IC only for l = 51− 98 µm,

and the governing mechanism is either a penetration or a decohesion. In both the major and
the minor cases, there is an optimal platelet size that corresponds to the highest value of the
actual Kapp

IC for each case (Fig. 3.37).

The influence of residual stresses at the scale of experiments l = 5− 25 µm is studied in Fig.
3.38, where the apparent fracture toughness of the composite is compared for ∆θ = 0 K (no
residual stresses) and ∆θ = 500 K. In the major case a slight enhancement of Kapp

IC with
respect to Kg

IC is observed, whereas in the minor case it is shown that residual stresses do not
enhance the toughness, since Kapp

IC < Kg
IC in the whole range. The predominant mechanism

does not change with ∆θ, being a lateral decohesion in the major case, which agrees with
predictions made in [40], and a penetration for the minor case.

(a) Major case (b) Minor case

Figure 3.38: Influence of ∆θ on Kapp
IC for αp = 90◦ at the scale of experiments.

Furthermore, the influence of residual stresses is also analysed for an extended range of the
platelet size l = 3 − 300 µm in Fig. 3.39, where it is clearly observed that residual stresses
reduce the apparent fracture toughness when considering very long platelets. In both cases
residual stresses promote a lateral decohesion as the predominant mechanism, specially for
long platelets.
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(a) Major case (b) Minor case

Figure 3.39: Influence of ∆θ on Kapp
IC for αp = 90◦ in an extended range of l. The square,

circular and triangular symbols represent decohesion, deflection and penetration,
respectively.

3.2.3.2 Results for αp = 0◦

When the platelet is aligned with the pre-existing crack, αp = 0◦, a crack growth through the
interface glass alumina is expected, as shown in Fig. 3.20. The difficulty described in Section
3.1.3 about the negative GSIF in the thermoelastic problem is still present and even worsen
than the case of αp = 90◦, as the exponent of the crack tip singularity impinging the corner
of the platelet is a complex number, λ ± i ε = 0.535 ± i 0.054. The same complex character
holds for the GSIFs κte and κcr, and, contrary to the previous case, it is impossible to compare
them to know if the mechanical loading prevails on the residual stresses. However, it can be
noted that because of the smallness of the imaginary part ε of the singular exponent, the
oscillations inherent in this kind of solutions develop on such a small scale that they have no
physical significance. Then, (3.40) can be replaced by a condition of decrease and convexity
of the tensile stress associated with the singular terms to define Kmin

I .

The effect of residual stresses and the platelet size on Kapp
IC is studied in Fig. 3.40 for ∆θ = 0

K and ∆θ = 500 K, at the two families of scales described in previous section, l = 5 − 25
µm and l = 3 − 300 µm. Clearly, a toughening effect (Kapp

IC > Kg
IC) is never observed at

the experimental scale, with and without residual stresses, as shown in Fig. 3.40a. In fact,
residual stresses reduce the apparent fracture toughness in the composite. Interestingly, when
considering an extended scale, see Fig. 3.40b, Kapp

IC is higher than Kg
IC for l > 60µm, for both

∆θ = 0 K and 500 K. In the latter, two different evolution of Kapp
IC are observed. For l < 36

µm Kapp
IC is decreasing and the energy condition is governing the failure, otherwise Kapp

IC is
increasing and the stress condition is governing. In the latter the crack growth is determined
by the negative thermal GSIF in the thermoelastic problem.
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(a) Scale of experiments (b) Extented scale

Figure 3.40: Influence of ∆θ and l on Kapp
IC for αp = 0◦ and Vp = 0%.

3.2.4 Influence of the volume fraction

The mechanical properties of the equivalent homogenized material depend on the volume
fraction of platelets Vp. The values chosen for this study correspond to the ones found in
the literature [30], Vp = 0, 5, 10, 15 and 30% (note that 0% means a single platelet). As in
Section 3.2.3, two orientations of the platelet have been studied, α = 0◦ and α = 90◦.

3.2.4.1 Results for α = 90◦

The case of α = 90◦ requires the analysis of three different crack paths described in Fig. 3.4:
deflection, decohesion and penetration. First, Fig. 3.41 shows the influence of Vp and l on
Kapp

IC in the major case at scale of experiments for ∆θ = 0K and 500K. In general, a great
toughening effect is observed when increasing Vp, whereas little differences related to ∆θ are
noticed.

As shown in Fig. 3.41a, for ∆θ = 0K and Vp = 0% the predominant mechanism is a lat-
eral decohesion, except for l = 5µm, in which it is the penetration. On the other hand, for
Vp > 0%, the deflection mostly governs the failure. Only in case of Vp = 10% and l = 5µm
the governing mechanism changes to penetration. Interestingly, intermediate values of the
volume fraction Vp = 5% and 10%, show values of Kapp

IC closer to each other. For instance,
for l = 5 µm and Vp = 10% the predominant mechanism changes to penetration, and Kapp

IC is
very similar to the one for Vp = 5%. Moreover, for l > 18µm and Vp = 5% there is a jump
in Kapp

IC , and it becomes closer to the one obtained for Vp = 10%. The reason why this jump
occurs is a change in the crack increment predicted by the CC. For platelets larger than 18µm
the crack grows outside of the interface glass alumina, otherwise it grows inside. An example
is shown in Fig. 3.42, where the CC is applied for l = 25µm. The two adimensional curves σ̄
and Ḡinc are represented as well as the crack opening when KI = Kapp

IC in the inner domain.
It can be observed that in this case the crack grows inside the interface glass alumina until
s = 11.39µm. Notice that at the end of the interface glass alumina there is a stress peak due
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to the singularity at the corner point.

(a) ∆θ = 0K (b) ∆θ = 500K

Figure 3.41: Influence of Vp and ∆θ on Kapp
IC at the scale of experiments for α = 90◦, consid-

ering the major case of alumina fracture properties.

(a) CC curves (b) Crack opening

Figure 3.42: Example of the application of the Coupled Criterion for l = 25µm, ∆θ = 0K
and Vp = 5%

Fig. 3.41b shows the case of ∆θ = 500K, where it can be observed that penetration is no
longer a predominant mechanism at scale of experiments. Instead, the predominant mechan-
ism changes from the decohesion (Vp = 0%) to deflection (Vp > 0%). In this case there is
not a jump in Kapp

IC for Vp = 5%. As shown in Fig. 3.43 for l = 25µm, the crack increment
is always located at the end of the interface glass alumina (s = 12.5 µm) for the deflection
case, where there is a stress drop.
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(a) CC curves (b) Crack opening

Figure 3.43: Example of the application of the Coupled Criterion for l = 25µm, ∆θ = 500K
and Vp = 5%

Similar conclusions can be obtained in the minor case represented in Fig. 3.44. The volume
fraction has a greater influence on the apparent fracture toughness than residual stresses.
Indeed, in this case residual stresses are not a toughening mechanism, since they reduce the
value of Kapp

IC . Penetration is the predominant mechanism in both cases, with and without
thermal effects, i.e., if the alumina fracture properties are not high enough the pre-existing
crack always penetrates the platelet. Moreover, Kapp

IC in the minor case is lower than Kapp
IC in

the major case.

(a) ∆θ = 0K (b) ∆θ = 500K

Figure 3.44: Influence of Vp and ∆θ on Kapp
IC at the scale of experiments for α = 90◦, consid-

ering the minor case of alumina fracture properties.

It is worth mentioning the cases Vp = 0 % and 5% for ∆θ = 500K shown in Fig. 3.44b,
where there is a change in the tendency of Kapp

IC at l ≈ 22.5µm, explained by a change in the
crack opening. For platelets smaller than l = 22.5µm the crack penetrates into the alumina
at the moment of failure until it is arrested when it reaches the glass region, whereas for
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l > 22.5µm the crack growth stops before reaching the end of the platelet, explaining the
change in the behaviour of Kapp

IC (l). As an example, Fig. 3.45 and 3.46 show the application
of the CC for ∆θ = 500K and Vp = 5 % , at l = 15 and 25µm where the crack increment is
given by the CC point. Notice that a drop in the stress function is observed at s = 3µm, the
end of the platelet. Then, another change in the stress function is noticed at the end of the
heterogeneous microstructure, s = 8.2µm.

(a) CC curves
(b) Crack opening

Figure 3.45: Example of the application of the Coupled Criterion for l = 15µm, ∆θ = 500K
and Vp = 5%.

(a) CC curves

(b) Crack opening

Figure 3.46: Example of the application of the Coupled Criterion for l = 25µm, ∆θ = 500K
and Vp = 5%.

Fig. 3.47 shows the influence of Vp and the platelet size for an extended range l = 3 − 300
µm and the major case of alumina fracture properties, omitting the effect of residual stresses
(∆θ = 0K). Different shapes can be observed in the behaviour of Kapp

IC (l). For high con-
centrations of alumina Vp > 10%, where the predominant toughening mechanism is always
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deflection, the behaviour of the curves is related to a change in the crack opening, depending
on the platelet size. For short platelets (l < 40µm) the crack grows until the end of the
interface glass alumina at the moment of failure, whereas for longer platelets the crack incre-
ment is shorter than the length of the interface. For low concentrations of alumina Vp ≤ 10%
different toughening mechanisms are observed. First, for very short platelets (l < 5µm) the
penetration is governing the failure, whereas for very long platelets (l > 180µm) it is always
deflection. For an intermediate range (l = 5− 180µm) of the platelet size the concentration
of alumina highly promotes deflection as a toughening mechanism. Hence, for Vp = 0% it is
a lateral decohesion in the whole range, whereas this range is much smaller when increasing Vp.

Figure 3.47: Effect of Vp on Kapp
IC at the extended scale for ∆θ = 0K and α = 90◦, considering

the major case of alumina fracture properties.

The effect of residual stresses is analysed in Fig. 3.48. First, it is observed that for very long
platelets the crack grows through lateral decohesion after cooling without mechanical loads,
since Kapp

IC = 0, as shown in Fig. 3.49a for l = 250µm. This happens when the platelet size
is higher than a certain amount that increases with growing Vp. Indeed, the phenomenon is
no longer observed in the selected range of l for Vp = 30%, although a strong reduction of
Kapp

IC can be noticed.

In general, the combination of two effects is shown in Fig. 3.48. On the one side, the pres-
ence of residual stresses promotes decohesion as a predominant mechanism, as it was already
mentioned in Section 3.2.3. On the other hand, deflection is more likely to occur for a higher
concentration of platelets (i.e. a higher Vp). Moreover, for Vp ≥ 10% a jump in Kapp

IC is
observed, generated by a change in the crack opening. For instance, for Vp = 30% and
l < 202µm, governed by deflection, the crack grows until a point either outside of the inter-
face alumina glass if l < 4µm, or located at the end of the interface if l = 4 − 147µm, or
inside the interface l > 147µm.
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Figure 3.48: Effect of Vp on Kapp
IC at the extended scale for ∆θ = 500K and α = 90◦, consid-

ering the major case of alumina fracture properties.

(a) CC curves

(b) Crack opening

Figure 3.49: Example of the application of the Coupled Criterion for l = 250µm, ∆θ = 500K
and Vp = 15%.

Interestingly, when including residual stresses Kapp
IC is no longer increasing with the platelet

size, except for very short platelets or intermediate size and high concentration of alumina(Vp =
30%). For this reason, an optimal design point for each Vp can be defined, as it was done
in Fig. 3.37. For the sake of simplicity, they have not been highlighted in Fig. 3.48, but an
example of the optimal platelet size for Vp = 30% is l = 12µm, which gives Kapp

IC = 2.32Kg
IC.

A similar analysis can be made for the minor case. As shown in Fig. 3.50, when residual
stresses are not included the crack always penetrates the platelet when considering low values
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of the alumina fracture properties. In this case, Kapp
IC is an increasing with growing l and Vp.

Figure 3.50: Effect of Vp on Kapp
IC at the extended scale for ∆θ = 0K and α = 90◦, considering

the minor case of alumina fracture properties.

Figure 3.51: Effect of Vp on Kapp
IC at the extended scale for ∆θ = 500K and α = 90◦, consid-

ering the minor case of alumina fracture properties.

When including residual stresses in the minor case of alumina fracture properties a lateral de-
cohesion is again promoted for long platelets. Indeed, the phenomenon observed in Fig. 3.48
is exactly the same in Fig. 3.51, since decohesion does not depend on the alumina fracture
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properties (the interface is strong and therefore defined by the glass fracture properties). How-
ever, the optimal design point mentioned above is in this case noticed for longer platelets. For
instance, for Vp = 30% the optimal design point is l = 200µm, which gives Kapp

IC = 2.03Kg
IC.

Notice that the toughening effect in the minor case is lower than in the major case.

3.2.4.2 Results for α = 0◦

Fig. 3.52 shows the influence of Vp with and without residual stresses, when the platelet is
parallel to the pre-existing crack, see Fig. 3.20. It can be observed that Vp has a scaling effect
on Kapp

IC , increasing its value without changing its evolution with l.

A toughening effect (Kapp
IC > Kg

IC) is observed only for Vp > 5%, although for Vp = 10% the
apparent fracture toughness is not enhanced when l > 16µm. The maximum enhancement of
Kapp

IC with respect to Kg
IC is 1.3. Notice the toughening effect is generated by the improvement

of mechanical properties in the composite when increasing Vp, and not as a consequence of
including residual stresses. This conclusion seems to be very difficult to observe through
experiments. Moreover, in this case residual stresses always increase the apparent fracture
toughness of the composite.

Figure 3.52: Effect of Vp on Kapp
IC at the scale of experiments for ∆θ = 0K and 500K and

α = 0◦.

The same analysis can be made considering an extended range of l, as it is shown in Fig.
3.53. An unpredictable effect of Vp is observed for large values of l. An increase of Vp gen-
erates a higher thermal expansion coefficient in the equivalent homogenized material, which
reduces the compression residual stresses generated in the glass matrix during cooling, and
consequently the negative thermal GSIF in the thermoelastic problem. As explained before,
the negative GSIF led to an increase in Kapp

IC , and it would be lower when increasing Vp.
This effect is opposite to the one generated by the enhancement in the mechanical properties
of the homogenized material when Vp is increased, that generally leads to a higher apparent
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fracture toughness. As a consequence, results are very difficult to estimate a priori when long
platelets are considered, and residual stresses have a greater influence. A particular analysis
is necessary to determine an optimal design of the composite in such region.

Furthermore, a toughening effect due to the presence of residual stresses is observed for long
platelets, although this effect also strongly depends on Vp. For such platelets, Kapp

IC tends to
increase, which means that it is the stress condition that is governing the failure. In particular,
the value of Kapp

IC is determined by condition of the opening of the mother crack. Notice that
the existence of a decreasing and increasing region in the evolution of Kapp

IC allows us to
determine a certain size of the platelet for which a minimum value of the apparent fracture
toughness is obtained.

Figure 3.53: Effect of Vp on Kapp
IC at the extended scale for ∆θ = 0K and 500K and α = 0◦.

3.2.5 Comparison to experiments

Cannillo et al. [40] computed the residual stresses in the composite. Todd et al. [37] observed
them experimentally and measured the tensile stress in the platelet through electron micro-
scopy, they expressed the results in terms of the mean stress σ̄p = (σ11 + σ22) /2, whereas the
compressive residual stress in the matrix σ̄m was calculated applying the equilibrium condition.

A comparison between these results [37, 40] and the ones obtained using the design tool
presented in this work is made in Fig. 3.54. In order to obtain the mean stress, a numerical
simulation considering no mechanical loads and no pre-existing crack in the specimen was
performed. It is important to highlight that in experiments several measurements were made
at different points in the specimen, and that the only ones centered on the platelets were
selected to carry out the comparison. Therefore, we calculate the mean stress at the center
of the platelet.

The difference between simulations made in this paper and experiments is greater for higher
volume fractions. The reason could be that when a high concentration of alumina is con-
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sidered, some clusters of platelets appear in the specimen [30], and therefore the theory of
homogenization applied to calculate the mechanical properties of the composite in our model
could differ from reality. The highest differences between experiments and numerical results
are found in the platelet, where residual stresses calculated in this paper seem to be closer
to experiments than the numerical data found in [40]. Moreover, using our design tool with
one finite element calculation we are able to obtain the apparent fracture toughness for any
platelet size, since the calculation is made in the inner domain. This strongly reduce the
computational complexity of the analysis.

Figure 3.54: Residual stresses found in the literature [40] and [37] and residual stresses ob-
tained in the simulations (FEM platelet and FEM matrix).

As an example, Fig. 3.55 shows the two stress components in the inner domain σ̂11 and σ̂22
after cooling for Vp = 0% and α = 0◦. Notice that according to (3.23) residual stresses do not
depend on the platelet size, thus, σ(x1, x2) = σ̂(y1, y2). The thermal coefficient of alumina
is higher than the one of glass, and therefore tensile stresses in the platelet and compressive
stresses in the matrix appear after cooling. At the horizontal interfaces glass alumina y2 = 0
and y2 = −t (inner domain) the maximum value of σ11 is reached, being σ11 = σ̂11 = 720
MPa in the platelet and σ11 = σ̂11 = −280 MPa in the matrix region. On the other hand, the
maximum value of σ22 is found at the vertical interfaces glass alumina y2 = 0 and y1 = 0, l
(inner domain), being σ22 = σ̂22 = 350 MPa in the platelet and σ22 = σ̂22 = −210 MPa in
the matrix region.

In Fig. 3.56 a validation of the model by comparison of the apparent fracture toughness with
simulations is made. For each value of Vp two experimental measures of Kapp

IC are considered
together with the mean value, see Table 3.2. The two extreme orientations of the platelet
analyzed in this paper, α = 0◦ and α = 90◦ are used for the simulations, including the effect
of residual stresses. A good agreement with experiments is observed for low values of Vp, since
the average of the simulated values of Kapp

IC falls within the error bar of experiments. For high
values of Vp a greater difference is noticed, which can be explained by the inhomogeneities
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that appear due to the presence of clusters of platelets for high concentrations of alumina, as
it was mentioned above.

(a) σ11 (b) σ22

Figure 3.55: Stress component in the thermoelastic problem, with ∆θ = 500K.

Figure 3.56: Comparison between experiments and simulations

3.2.6 Conclusions

As a general conclusion, a size effect is observed. When the length of the platelet is very
small, it is the energy condition that is governing the failure, and consequently the apparent
fracture toughness remains constant. Notice that similar conclusions were also observed for
bending tests on microcantilever beams at the micro-scale in Chapter 2. The size of the
platelet plays also a role on the newly created crack length. If the platelet is short, the
crack evolves in an unstable manner joining the glass region beyond the platelet, whereas if
it is long, the crack increment remains inside the platelet, or along the interface glass/alumina.

Moreover, in some cases with very short platelets, as α = 0◦, a change in the crack path
is not enough to enhance the apparent fracture toughness. It means that other toughening
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mechanisms, such as the volume fraction of platelets, should be invoked for improving Kapp
IC .

The influence of the alumina fracture properties on the toughening mechanisms has been ana-
lysed. It can be concluded that both Ka

IC and σa
c have an impact on the composite fracture

properties. However, Ka
IC has a greater influence on Kapp

IC .

An important conclusion can be obtained from the analysis of residual stresses. It is not a gen-
eral rule that they are a toughening mechanism. It depends on the size of the platelet and the
change in temperature after cooling. The main parameter that explains why an enhancement
of the apparent fracture toughness of the composite can be observed is the negative GSIF (or
its counterpart in the complex case) related to the thermoelastic problem, since it is related
to a compression at the crack-tip, that must be overcome for crack propagation. Moreover,
residual stresses promote the lateral decohesion at the end of the platelet as a predominant
failure mechanism in the composite. The residual stresses effect is so high that the decohesion
mechansim at the end of very long platelets can occur during cooling prior to any mechanical
loading.

In general, the volume fraction has a positive scaling effect on the apparent fracture toughness
of the composite. When the concentration of alumina is increased the deflection mechanism
is promoted as a failure mechanism if the alumina fracture properties are great enough, oth-
erwise penetration is the governing mechanism.

At the scale of experiments the volume fraction has a bigger influence on the apparent frac-
ture toughness than residual stresses, whose effect is very weak. Using that scale, the model
proposed was verified by comparison with experimental results found in the literature.

To sum up, a complete design tool for platelets composites is presented, particularized for
the case of a glass matrix composite reinforced by alumina platelets. Two key novelties stand
out from this methodology. First, it is a design tool in which multiple combinations are
possible by modifying the input parameters of the composite, and therefore optimizing the
design of platelets composites. Second, it offers the possibility to carry out a separate study
of the different factors that are related to the fracture toughness: geometrical factors, such
as the volume fraction, the size and the orientation of the platelet, or environmental factors,
in particular the effect of residual stresses and the change in the pre-existing crack path.
Furthermore, this design tool seems to have an important reduction in the computational
complexity with respect to other analysis found in the literature.

Table 3.3 shows a summary of this section. The two main orientations studied, α = 0◦ and 90◦

(Minor and major) have been included, with and without residual stresses. Cells have color
orange when Kapp

IC is not enhanced with respect to Kg
IC, otherwise they have color green. For

α = 90◦ the predominant mechanism is also written in the Table as a function of the platelet
size, whereas for α = 0◦ the evolution of Kapp

IC has been commented. Notice that three sizes
have been defined in the table: small, medium and long platelets. However, the ranges of l
for each one are different.
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Interestingly, as represented in Table 3.3, when residual stresses are not included only the
case of α = 0◦ and very small platelets in the minor case of α = 90◦ are not increasing the
apparent fracture toughness with respect to Kg

IC. On the other hand, when including residual
stresses, long platelets are broken after cooling down, and therefore they do not increase Kg

IC
when α = 90◦.

It is important to highlight that, for the sake of simplicity, the effect of the volume fraction
has been omitted in this table, that only considers the role of a single platelet. As mentioned
above, the volume fraction has a positive scaling effect on the apparent fracture toughness,
but the main conclusions summarised in the table are not changed by this parameter.
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3.3 Industrial application: Ceramic matrix composites with
short fibers

This section describes the scientific collaboration between Safran Tech research centre and
Sorbonne University, to apply the numerical tool developed in this thesis to a material of
interest for Safran company. The work presented here was developed during the 4 months
that the author spent at Safran, as part of her PhD programme. The work has been super-
vised by Dr. Hyung-Jun Chang. This collaboration would not have been possible without all
the information and help provided by Dr. Yasmin Lergerstee Dr. Sébastien Dénneulin, from
Safran Ceramics. All the information about the material studied, as well as the objectives and
general knowledge of the industrial context and needs presented in this section is based on the
thesis of Dr. Yasmin Lergerstee [100]. Therefore, the properties included in this document
correspond to those published in [100], although some properties are omitted to preserve the
confidentiality of the work.

3.3.1 Introduction and general description

In 2019, the European Comission presented the European Green Deal. Among others, one of
the challenge proposed is the net-zero greenhouse gas emissions by 2050 [101]. Consequently,
the aerospace industry focuses its efforts mainly on reducing aircraft weight and improving
engine efficiency. For the latter, it is proposed to increase the current gas temperature from
around 1000◦C to a target temperature of 1300◦C.

In order to achieve this objective, it is necessary to change the metal alloys that are currently
used in aircraft engines, which would not be able to work properly at the proposed temper-
ature. The use of ceramic materials is therefore proposed, due to their many advantages,
such as their low density and their very good refractory qualities (their mechanical properties
do not degrade with temperature). However, the brittleness of classical ceramics due to the
presence of internal defects makes the application of advanced ceramics necessary. Among
others, a CMC (ceramic matrix composite) structure is proposed as a technological solution
to increase fracture toughness. In particular, Safran Ceramics proposes the use of short-fibre
CMC for high-pressure turbine blades, as these parts have very complex geometries and a
short-fibre material would be more easily adaptable.

A type of CMC with short fibers is numerically and experimentally characterized in [100].
Three batches made of different compositions are studied, although the first one is ultimately
discarded due to the high porosity and low Young modulus obtained in the experiments. In
the second batch specimens are composed by a matrix made of a composition of TiSi2 and
MoSi2 and silicon carbide (SiC) Hi-Nicalon fibers. The MoSi2 has a good advantage for the
application, since it changes from a brittle behavior at low temperatures to a ductile behavior
at high temperatures (around 900◦C). However, a MoSi2-TiSi2 composition is proposed to
prevent oxidation of MoSi2 in the presence of air, which is a common phenomenon in this
material referred to as "pest". On the other hand, the fibers are chosen due to their good
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properties at high temperatures. Although the SiC fibers have typically problems with oxid-
ation, the family of Nicalon fibers address this deficiency. In the third batch an interphase of
Pyrocarbone (PyC) is included.

The material was numerically characterized applying statistical methods and considering ex-
perimental results. Hence, the volume fraction of fibers is Vf ≈ 12%. The fibers have a
minimum length of lmin = 24.41µm and a maximum of lmax = 2271.6µm. The minimum
diameter is tmin = 8.5µm and the maximum tmax = 53.3µm. Average values obtained from
statistical distributions are: tavg = 16.67µm and lavg = 152µm. Additionally, in [100] a study
of fiber orientation is conducted, revealing that the majority of fibers are contained within
the same plane.

As it was done in previous section, a reference problem under the assumption of plane strain
elasticity is used to estimate the fracture toughness. This simplification of the problem might
not be representative at all of the real model, provided that fibers have a round cross section,
and therefore the thickness of the fiber in the perpendicular direction is smaller than the
length of the fiber. Consequently, our model is not able to represent some phenomena, such
as a crack growing around the fiber. However, a first estimation is expected to obtain using
this model, as a summary of the work done during the short industrial secondment (4 months)
of the author in the company.
In Table 3.4 the mechanical properties of the constituents obtained from [100] are shown. It
is important to highlight that in the case of the interphase σc and Kc are experimentally
estimated (and therefore considering the PyC material) but the Young modulus used in the
numerical calculations of [100] corresponds to the one of BN, and therefore it is the one used
in this analysis.

Constituents E [GPa] σc [MPa] Kc [MPa m1/2]

Fiber 420 1222 1.74

Interphase 20 107 0.35

Matrix 359 200 2.42

Table 3.4: Mechanical properties of the constituents of the composite material under study

Fracture toughness of the composite was estimated using an analytical approximation based
on Linear Elastic Fracture Mechanics (LEFM) [102] and experimentally using Digital Image
Correlation (DIC) in [100]. Table 3.5 shows the results.

Although other mechanical properties of the composite, such as the Young modulus, were
estimated in [100] there was no numerical method to calculate the fracture toughness. There-
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fore, the main objective of this work is to apply our computational tool to give numerical
estimations of the apparent fracture toughness of the composite Kapp

IC and the predominant
toughening mechanism, as a function of the length l and the diameter t of the fiber, as well
as the volume fraction of fibers, Vf .

Fracture toughness KLEFM
c [MPa m1/2] KDIC

c [MPa m1/2]

Without the interphase 2.8− 3.45 3.5− 4.40

With the interphase 3.87− 4.25 5.2− 6.32

Table 3.5: Fracture toughness obtained in the composite. Results obtained from [100]

3.3.2 Considerations in the problem

To properly adapt the application of the computational tool to the objectives of this study, it
will be necessary to take into account some considerations, which are discussed in this section,
before presenting the results of the study. First, notice that the inner domain shown in Fig.
3.2 should be modified to include the interphase, as shown in Fig. 3.57, where ê represents
the thickness of the interphase divided by a characteristic dimension of the fiber.

Figure 3.57: Scheme of the inner domain considering a single fiber.

Notice that for the sake of simplicity, only a perpendicular orientation of the fibers with re-
spect to the pre-existing crack is assumed.
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When we generate the innner domain, we consider a single fiber located at the crack tip.
In previous studies, the effect of the fibers was studied through the homogenized composite
material, whose properties were determined through Vf. With the proposed model, it is
assumed that around the reinforcing element (the fiber in this case), there is an area of certain
dimensions free of fibers and formed by the matrix. In this section, an additional model is
proposed, consisting of multiple fibers, represented in Fig. 3.58. Two new parameters appear,
hl and ht, which define the distance between fibers. This model allow us to consider the
effect of fibers close to the one intersecting the crack, which means that we can study possible
interactions between fibers modifying the separation distance, and, if the crack length is
large enough, study new paths that take into account the action of several fibers. The two
models, the single fiber model and the multi-fiber model, will be compared. The geometrical
parameters âl and ât are defined in the multi-fiber model as

âl = 3l̂ + 2ĥl + 6ê, (3.43)
ât = 3t̂+ 2ĥt + 6ê. (3.44)

Figure 3.58: Scheme of the inner domain considering multiple fibers.

Some restrictions are naturally deduced from the model

âl > 0 and ât > 0, (3.45)
if ĥlĥt > 0 then ĥl, ĥt > 0, (3.46)

5t̂l̂ = Vfâlât, (3.47)
âl − 2l̂ − 6ê > 0 and ât − 2t̂− 6ê > 0 (3.48)

The first restriction refers to the fact that the dimensions âl and ât are always positive. The
second restriction means that one fiber can not penetrate other fibers in the model. In the third
equation we just point out that the definition of the fibers volume fraction must be fulfilled.
Finally, the last condition is applied to prevent fibers from overlapping in the geometry. Notice
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that these restrictions are not enough to get a unique solution of the geometry of the problem,
since t̂ and l̂ are free parameters. For this reason, we choose these two parameters so that
they minimize the surface of the multi-fiber model, defined as

S(ĥl, ĥt) = âlât = (3l̂ + 2ĥl + 6ê) (3t̂+ 2ĥt + 6ê). (3.49)

Although we use this hypothesis, at the end of this section we will change it to study the
influence of ĥl and ĥt.

Another important comment is that the representation of the Coupled Criterion in this section
is slightly different to previous representations. In this case we represent the stress intensity
factor KI using Eq. (3.34) and Eq. (3.35).

KI(s) ≥
√
lσc(ŝ)

σ̂cr(ŝ)
, (3.50)

KI(s) ≥

√√√√Gc(δlin)

−∆Ŵ cr

δlin

, (3.51)

In this section, the thermoelastic problem is not considered and therefore σ̂te(ŝ) and Ŵ te have
been omitted from the formulation.

3.3.3 The influence of the size of the fiber

Safran requested the study of the influence of two variables, the length l and diameter t of
the fiber. In the analysis carried out in Section 3.2, when varying the length of the platelet,
it also proportionally changes the thickness, according to the shape factor, f = l/t. The big
advantage of that calculation is that with one FEM calculation and a postprocess we could
obtain Kapp

IC for any value of l. However, the individual effect of l and t are not observed.

The study of influence of t keeping l constant, can be done following the procedure explained
in Section 3.1.2, i.e., defining

t̂ = 1/f, l̂ = 1, ê = 1/f/fe (3.52)

in the inner domain. A change in the shape factor f would change the diameter of the fiber
t and the length of the microstructure ât, but would not change the length of the fiber l and
the corresponding dimension âl. On the other hand, influence of l is analysed using

t̂ = 1, l̂ = f, ê = f/fe. (3.53)

and therefore keeping constant t and ât when changing l. Moreover, it is important to high-
light that in this study the volume fraction is kept constant and the interphase is considered.
Only two toughening mechanisms are analysed in this case, penetration and deflection, and,
as it was done in Section 3.2, the predominant mechanism would correspond to the one that
is related to the lowest value of the apparent fracture toughness.



Chapter 3. A design tool for advanced ceramics with reinforcements 120

Fig.3.59 shows the evolution of the apparent fracture toughness Kapp
IC with respect t, where

chosen range t = 3 − 54µm is based on the provided data in Section 3.3.1. In this case, for
very thin fibers it can be observed that penetration governs the failure, whereas when the fiber
is thicker the predominant mechanism is deflection. It means that if the fiber is thicker the
interphase acts as a mechanical fuse, and the crack is deflected through the interphase. The
change from penetration to deflection is produced for t in the range [15− 25]µm. Moreover,
a higher diameter means a higher fracture toughness in the composite, being the maximum
enhancement obtained Kapp

IC = 1.38Km
IC for t = 54µm, and therefore Kapp

IC = 3.34MPa m0.5.
Notice that for intermediate values of t it would be difficult to determine a predominant
mechanism, and both a penetration and deflection could occur more or less randomly relying
small defects.

On the other hand, Fig. 3.60 shows the evolution of Kapp
IC with respect to the length of the

fiber, l, for two different diameters, t = tavg = 16.67µm and t = 25µm. The range selected
for l is based on the data provided in Section 3.3.1. First, it can be observed that l does not
change the predominant mechanism, which is penetration for t = tavg = 16.67µm and deflec-
tion for t = 25µm. Therefore, it can be concluded that the predominant mechanism mainly
depends on the diameter of the fiber. However, l does play a role in the value of the apparent
fracture toughness, being higher when l ≈ t, i.e., for a shape factor f = 1. Moreover, it can
be observed in Fig. 3.60 that for very long fibers the influence of l on Kapp

IC is highly reduced.
Interestingly, in the case of t = 25µm the apparent fracture toughness for penetration and
deflection are very similar when considering very short fibers.

Figure 3.59: Effect of t on Kapp
IC for Vf = 10% and l = 152µm.

As it was mentioned in previous sections, changing t or l in this analysis is equivalent to change
the shape factor f in the inner domain. The geometry of the multi-fiber model for a large
and a small shape factor (f = 50 and f = 1) is shown in Fig. 3.61 and Fig. 3.63b, respectively.
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(a) t = 16.67µm (b) t = 25µm

Figure 3.60: Effect of l on Kapp
IC for Vf = 10% and two different diameters.

As a conclusion, the diameter plays a major role in the predominant toughening mechanism
observed in the composite, although both l and t have an influence on Kapp

IC , which is increased
when l is close to t. For this reason, in Fig. 3.62 the evolution of Kapp

IC with respect to the size
of the fiber for f = 1 (t = l) is represented. First, it can be observed that Kapp

IC increases with
growing l. Moreover, for small fibers the predominant mechanism is a penetration, whereas
for bigger fibers the crack may deflect through the interphase.

Figure 3.61: Geometry of the inner domain in the multi-fiber model for a great shape factor,
f = 50.

In Fig. 3.62 it can be noted that Kapp
IC does not depend on t for very small fibers, an ob-

servation that was also made in Section 3.2. As it was explained before, this is because the
energy condition, which does not depend on the size of the fiber, is governing the failure. An
example is shown in Fig. 3.63, where the curves of the CC are represented, as well as the
deformed shape after the failure. Notice that the crack increment is shorter than the length
of the interphase.
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Figure 3.62: Effect of l = t on Kapp
IC for Vf = 10% and f = 1.

(a) CC curves
(b) Deformed shape

Figure 3.63: Application of the CC in the case of deflection, for Vf = 10%, f = 1 and t = l =
8µm.

When t > 25µm Kapp
IC starts increasing with growing t for deflection, as it can be observed

also for penetration. Both situations correspond to conventional cases, where the CC point
is the crossing point between the energy condition and the stress condition, as it is shown in
Fig. 3.64 and 3.65 for deflection and penetration, respectively. Notice that, due to the small
newly created crack length, we have represented only the vicinity of one fiber in the deformed
shape, although the multi-fiber model has been applied.

In the following subsections, the shape factor f = 1 will be used to study the influence of
other design parameters.
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Finally, it is important to highlight that our computational tool assumes plane strain con-
ditions. However, when the shape factor f is very high the hypothesis might not be true.
In this preliminary study we keep the hypothesis of plane strain, understanding that no big
differences would be observed if we change to plane stress.

(a) CC curves
(b) Deformed shape

Figure 3.64: Application of the CC in the case of deflection, for Vf = 10%, f = 1 and t = l =
100µm. Notice that only the vicinity of one single fiber has been shown for a
better representation.

(a) CC curves
(b) Deformed shape

Figure 3.65: Application of the CC in the case of penetration, for Vf = 10%, f = 1 and
t = l = 100µm. Notice that only the vicinity of one single fiber has been shown
for a better representation.
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3.3.4 Influence of other design parameters

In this section, the influence of other design parameters is studied, such as the fiber volume
fraction, the interface effect, and the distance between fibers. Throughout this section, a fiber
with f = 1 and t = l = 17µm is taken as the object of study. First, Fig. 3.66 shows the
influence of Vf on Kapp

IC . The values Vf = 5, 10, and 20% correspond to the range obtained
statistically in [100]. The value Vf = 40% has been proposed to study the effect of saturating
the composite with more fibers, although it is purely a numerical model, as it is unknown
whether it is feasible to add such a quantity of fibers to the matrix in practice.

Figure 3.66: Effect of Vf on Kapp
IC for t = tavg = 16.67µm and f = 1.

For Vf = 5−20%, there is not much variation in Kapp
IC , with a maximum increase of 0.77% for

penetration and 1.611% for deflection. However, when considering a higher volume fraction,
such as Vf = 40%, the fracture toughness of the composite increases 10 times more in penet-
ration and 3 times more in deflection, reaching 8.9% for penetration and 5.37% for deflection.
Fig. 3.67 shows the geometry of the multi-fiber model for different values of Vf. Note that as
the volume fraction increases, the distance between fibers decreases.

The influence of the interphase in the composite is studied in Figs. 3.68 and 3.69. Kapp
IC is

represented as a function of t for penetration and deflection when there is no interphase in the
composite, i.e. a strong interface between the matrix and the fiber is considered. It can be
observed that Kapp

IC in the case of deflection increases significantly compared to the case where
the interphase was included, making penetration the predominant mechanism, regardless of
the fiber diameter.
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(a) Vf = 5%
(b) Vf = 20%

(c) Vf = 40%

Figure 3.67: Geometries of the multi-fiber model for different volume fraction values.

Therefore, Fig.3.69 represents Kapp
IC for the cases with and without interphase. For small-

diameter fibers, where the predominant mechanism is penetration, there is no difference
between the interphase and non-interphase situations. However, for a larger diameter of
the fiber, Kapp

IC is greater in the non-interphase case. This observation seems to be contrary
to the ones experimentally measured in [100], as it is shown in Table 3.5. However, the meas-
urement of Kapp

IC in experiments is based on the total failure of the structure, which is related
to the crack propagation until the complete ruin. When the interphase between the fiber and
matrix is included, the crack meanders and delays the moment of total failure of the structure,
increasing the overall load. This effect can not be captured with our numerical tool, which
only measures the interaction between the crack and a single fiber.
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Figure 3.68: Effect of t on Kapp
IC for Vf = 10% and l = 152µm, considering no interphase.

Figure 3.69: Comparison of Kapp
IC with respect to t with and without the interphase for Vf =

10% and f = 1.

Finally, in Fig. 3.70 the influence of the distance hl is analysed. Previously, we have used the
minimization of the surface as a criterion to calculate hl and ht in the heterogeneous micro-
structure of the inner domain. However, this criterion does not have a physical explanation
and may not be representative. For this reason, the influence of the distance between fibers is
studied choosing a wide range of hl and defining ht so that the constraints Eqs. (3.45)-(3.48)
are fulfilled. It is observed that for negative values of this distance, which would mean that
fibers are interleaved in the microstructure, there is a jump in the fracture toughness.
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The fact that an interleaved fiber structure improves the fracture toughness is not a suprising
phenomenon. For example, in construction, brick structures often follow a technique called
"stretcher bond," where the bricks are interleaved so that the joints do not align, thus im-
proving the strength of the wall.

It is important to note that this effect can only be observed when considering a multi-fiber
model and not with the previously presented single fiber model.

Figure 3.70: Influence of hl K
app
IC with respect to hl for Vf = 10%, f = 1 and l = t = 17µm,

considering the interphase.

3.3.5 Mutiple fibers vs single fiber model

In Fig. 3.71, Kapp
IC is represented as a function of t for the multi-fiber model and the single

fiber model, for two different values of Vf = 10 and 40%, considering only the deflection case
(similar conclusions are obtained in the penetration case, but have been omitted for the sake of
simplicity). For Vf = 40%, the maximum difference reaches 4.15%, greater than for Vf = 10%,
where the maximum difference is 1.5%. In other words, the larger the volume fraction, the
greater the difference between the two models, although it is not a significant difference.

In general, the difference between the multi-fiber model and the single fiber model will be
greater when the neighboring fibers have a greater effect on the central fiber, which is the
one directly interacting with the crack. For the same Vf, a smaller distance between fibers
in the multi-fiber model (hl and ht) will increase the influence of the neighboring fibers, and
therefore the difference between the two models. The latter is clearly exemplified in Fig.
3.71a, Vf = 10% and l = 152µm, since hl and ht are reduced for lower values of t, where the
maximum difference between models is found, see Fig. 3.72a.

However, this is not observed in Fig. 3.71b, where it can be seen that the difference between
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the two models increases with growing t. Looking at Fig. 3.72b where hl and ht are repres-
ented, it is observed that although the distance hl increases as t increases, the distance ht
remains almost constant except for the last point where it is slightly higher. Additionally,
ht is zero. For this reason, the difference between the two models may be motivated by the
diameter of the fibers and their effect on the problem, which will be more pronounced if we
consider more fibers.

(a) Vf = 10% (b) Vf = 40%

Figure 3.71: Comparison between the single fiber and the multi-fiber model in the deflection
case, for l = lavg = 152µm.

(a) Vf = 10% (b) Vf = 40%

Figure 3.72: Evolution of the distances ht and hl in the multi-fiber model in the deflection
case, for l = lavg = 152µm.

3.3.6 Conclusions

To sum up, the design tool presented in Section 3.1 is applied in this section to an industrial
material proposed by Safran. The main objective is to estimate the apparent fracture tough-
ness of the composite and study the influence of various design parameters.
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It is difficult to validate this model making a precise comparison with experimental results
shown in Table 3.5, because specimens contain fibers of various sizes and aspect ratios. How-
ever, looking at Fig. 3.69, the range numerically estimated for Kapp

IC considering the average
lavg, Vf = 10% and t = 3− 54µm, is

Kapp
IC = [2.34− 4.5]MPa m0.5 with no interphase, (3.54)

Kapp
IC = [2.34− 3.34]MPa m0.5 with interphase, (3.55)

which is similar to the range obtained experimentally without an interphase Kapp
IC = [2.8 −

4.4]MPa m0.5, although it is more different to the range obtained in [100] with the interphase,
Kapp

IC = [3.87 − 6.32]MPa m0.5. The latter might be explained by several reasons, including
the fact that dynamic effects of the interface were not considered here, and some of the mech-
anical properties used in the interphase where the ones of BN instead of PyC, which is the
material used in the experiments.

However, qualitative conclusions obtained in experiments are also observed using this com-
putational tool. When considering the interphase, a very small diameter of the fiber results
in lower Kapp

IC , and the failure mechanism is penetration. However, when fibers have larger
t, they are more robust and difficult to penetrate, resulting in higher Kapp

IC , and the failure
mechanism is deflection, allowing the interface to act as a mechanical fuse. This would ex-
plain why experimental observations show fiber deflection when an interphase is present, since
the diameter used is sufficiently large to favor this mechanism, according to our numerical
estimations.

Moreover, Kapp
IC can be increased when l ≈ t, refered as short fibers. For a square fiber,

the highest values of Kapp
IC is obtained. This type of square fiber structure is found in the

Nickel-Based Superalloy, which commonly applied in advanced turbine engines [103].

The volume fraction of fibers does not have a significant influence within the studied range,
although it can considerably increase Kapp

IC when higher values, such as Vf = 40%, are con-
sidered. On the other hand, when the interphase is removed, penetration becomes the pre-
dominant damage mechanism, regardless the fiber size, as observed experimentally. Finally,
the intercalation of fibers also has an effect on Kapp

IC , which increases approximately 4% when
hl is negative.

There is not a significant difference between the multi-fiber and the single fiber model. That
is why, for general estimations, the use of the single fiber model is proposed as it has a lower
computational complexity. For the same level of refinement, it requires approximately half
of the number of elements. However, this model does not consider the influence of certain
phenomena such as the fiber intercalation. Therefore, the multi-fiber model could be used
when more specific studies are required.
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Chapter 4
Conclusions and further studies

In this PhD thesis numerical modelling tools in fracture mechanics have been applied for
predicting crack nucleation and growth in advanced ceramics, with a special emphasis in the
relationship between the micro and macro-scale characteristics within these materials. Two
approaches have been followed: the Coupled Criterion (CC) within the Finite Fracture Mech-
anics (FFM) framework and the Phase Field (PF) model for fracture.

From the CC perspective there is a nucleation length proportional to the Irwin length. From
the point of view of the PF model for brittle fracture, there is a phase field length scale.
Both length parameters depend on the Irwin length, an intrinsic mechanical property of the
material. At the macro-scale, this length is small compared to any dimension of the structure
while at the micro-scale, it is of the same order of magnitude or even larger and can interact
with the dimensions of the structure. Throughout Chapter 2, the answer brought by these two
methodologies has been analysed and reasonably compared in ceramics at the micro-scale, to
determine their similarities and differences.

First, the Coupled Criterion at the micro-scale must be used in its FFE form because the
necessary condition of the asymptotic approach is no longer fulfilled. This prevents to use
analytical formulas based on Williams’ expansion. Moreover, the CC allows to show that the
apparent strengthening observed in experiments conducted at the micro-scale is due to a lack
of available energy as a consequence of the small size of samples. Accordingly, tests are often
weakly or even totally insensitive to the tensile strength whereas they are sensitive to the
fracture energy. In addition, in bending tests, the smaller the samples, the larger the stress
gradient, leads to a similar apparent strengthening. The size of the specimen also modifies
the influence of other parameters, such as the notch blunting or the loading mode (DC or FC).

On the other hand, using the PF model for brittle fracture it is possible to observe a strength-
ening effect in bending tests of ceramics at the micro-scale, explained by the dissipation of
damage when descending the scales. As it was mentioned above, the control parameter in
this study is the relation between the Irwin length and the dimensions of the specimen (at the
micro-scale they are of the same order). To reinforce this idea, the analysis was conducted
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changing the Irwin length and keeping constant the scale of the specimen. When the Irwin
length is of the order of the dimensions of the specimen, the PF model no longer defines a
Griffith-like crack, but a damage region, and this leads to a strengthening effect.

Differences and similarities were found when comparing the results obtained by the CC and
the PF model. When the Irwin length is much smaller than the dimensions of the specimen,
there is a good agreement between both methodologies. However, when the Irwin length can
interact with the dimensions of the specimen the PF model no longer predicts a Griffith-like
fracture, and the dissipation of damage increases the difference between results brought by
the CC and the PF model for brittle fracture. Moreover, the same qualitative conclusions
about the influence of fracture properties have been found using the CC and the PF model.
When the Irwin length is of the order of the dimensions of the specimen, crack nucleation is
almost insensitive to the tensile strength.

The analysis made in Chapter 2 would help to better describe ceramic materials at the micro-
scale, and therefore to enhance the design of advanced ceramics, which is commonly based on
changing the micro-structure of classical ceramics to generate new materials with improved
mechanical properties. One type of these new structures was deeply studied in Chapter 3,
made of brittle matrices reinforced by short fibers or platelets. They were analysed using nu-
merical techniques that avoid the controversial conclusions obtained about fracture properties
when descending the scales in ceramics.

Two examples of application have been presented in Chapter 3, analysing the influence of
several design parameters. The study was complemented by a comparison with experiments
in each case. The first material considered is the borosilicate glass reinforced by alumina
platelets. The following list summarizes the main conclusions obtained:

• Size of the platelet: a size effect in the apparent fracture toughness is clearly ob-
served. When residual stresses are not considered, the longer the platelet, the greater
its toughness. However, when including the thermoelastic effect, longer platelets leads
to a breakage after cooling down.

The size of the platelet plays also a role on the newly created crack length (in the frame-
work of FFM). If the platelet is short, the crack evolves in an unstable manner joining
the glass region beyond the platelet, whereas if it is long, the crack increment remains
inside the platelet, or along the interface glass alumina.

• Alumina fracture properties: It can be concluded that the fracture toughness of
alumina has a greater influence on the apparent fracture toughness of the composite
than the tensile strength of alumina.

• Residual stresses: It is not a general rule that they are a toughening mechanism. It
depends on the size of the platelet and the change in temperature after cooling. The
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main parameter that explains why an enhancement of the apparent fracture toughness
of the composite can be observed is the negative GSIF (or its counterpart in the com-
plex case) related to the thermoelastic problem, since it is related to a compression at
the crack-tip, that must be overcome for crack propagation. Moreover, residual stresses
promote the lateral decohesion at the end of the platelet as a predominant failure mech-
anism in the composite. The effect of residual stresses is so high that the decohesion
mechanism at the end of very long platelets can occur during cooling prior to any mech-
anical loading.

• Volume fraction: it has a positive scaling effect on the apparent fracture toughness of
the composite. When the concentration of alumina is increased the deflection mechanism
is promoted as a failure mechanism if the alumina fracture properties are great enough,
otherwise penetration is the governing mechanism. At the scale of experiments the
volume fraction has a bigger influence on the apparent fracture toughness than residual
stresses, whose effect is very weak.

The same design tool was also applied to an industrial material proposed by Safran: a ceramic
matrix composite with short fibers. The material was studied with and without an interphase
between the fiber and matrix. The effect of geometrical parameters (the length and diameter
of the fiber, the distance between fibers...) were analysed using two different models: a multi-
fiber and a single-fiber model. As a general conclusion, a configuration with a shape factor
close to unity was proposed to optimize the apparent fracture toughness of the composite.

To sum up, a design tool for platelets and short fibers composites is presented in this PhD
thesis. Two key novelties stand out from this methodology. First, it is a design tool in which
multiple combinations are possible by modifying the input parameters of the composite, and
therefore optimizing the design. Second, it offers the possibility to carry out a separate study
of the different factors that are related to the fracture toughness: geometrical factors, such
as the volume fraction, the size and the orientation of the platelet, or environmental factors,
in particular the effect of residual stresses and the change in the pre-existing crack path.
Furthermore, this design tool seems to have an important reduction in the computational
complexity with respect to other analysis found in the literature.

Some studies are proposed for the future.

First, the CC is a simple formulation to get data. However, throughout this PhD thesis
countless cases have been analysed, and for some of them finding the solution can have an
excessive computational complexity. The application of some machine learning techniques
to reduce this computational complexity is proposed. Moreover, since the CC formulation is
easy to implement, this criterion could be use together with artificial intelligence to generate
data base that can be used for virtual certification. The latter has already been proposed by
Prof. Pedro Camanho in one of the plenary sessions of the European Conference on Fracture
[104], named as "Prediction of fracture of polymer composite materials across different length
scales".
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In Chapter 2 a reasoned comparison between CC and PF model has been made. For the
future, the consideration of more experiments and different problems to reinforce this com-
parison are proposed. In particular, it could be interesting to study how these models behave
when studying heterogeneous structure. This was already started in Chapter 3 with the CC,
but it is proposed to apply the PF model. The combination of Phase Field together with the
Matched Asymptotics Approach could be an interesting proposal to reduce the computational
complexity of the model.

All the models studied in this PhD thesis are limited by 2D elasticity. The correct extension
of these methodologies to 3D is also proposed. For example, in Chapter 3, when considering
composites with short fibers, the assumption of 2D elasticity might not be appropriated and
accuracy might be lost in the numerical estimations, although a first approximation can be
given applying our design tool.
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In this appendix, additional and complementary information to the previously described res-
ults is included. Furthermore, the main codes developed in this thesis are explained in detail.
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5.1 Terms in Williams’ expansion

Assuming that there are no volume forces in the do-
main, the Beltrami-Michell equation is σαα,ββ = 0. Con-
sequently, the displacement field U(r, θ) in the neighbor-
hood of the singularity generated by a re-entrant corner
is described through the so-called Williams’ expansion
[51],

U(r, θ) = U(0, 0) +Krλu(θ) + ... (5.1)

where K is the Generalized Stress Intensity Factor
(GSIF), U(0, 0) is the rigid displacement of the origin
set at the tip of the notch, (x1, x2) are the Cartesian
coordinates and (r, θ) the polar ones, see Fig. 5.1.

Figure 5.1: V-notch in the MA
approach.

The exponent λ and the associated shape function u(θ) form the par eigenvalue-eigenfunction
of a specific problem, and can be numerically obtained [86]. Noteworthy, for an isotropic
homogeneous material it is possible calculate the analytical expression of λ and u(θ) [105]
using the following eigenequation in the symmetric mode of the solution,

sin [(2π − ω)λ] + λ sin [2π − ω] = 0. (5.2)

The symmetric displacement mode rλu(θ) = rλ[ux(θ), uy(θ)] depends on the angle ω and
material properties. Assumming plane strain conditions, expressions are

ux(θ) =
1

2µ
[(C (3− 4ν + λ)− (λ+ 1)) cos (λθ)− 2λC cos θ cos [(λ− 1)θ]] , (5.3)

uy(θ) =
1

2µ
[(C (3− 4ν + λ) + (λ+ 1)) sin (λθ)− 2λC sin θ cos [(λ− 1)θ]] , (5.4)

where C = − (λ+1) sin [(λ+1)(π−ω
2 )]

(λ−1) sin [(λ−1)(π−ω
2 )]

. In the same way, symmetric stresses mode rλ−1s(θ) is

expressed in polar coordinates

srr(θ) = −λ(λ+ 1) cos [(λ+ 1)θ] + Cλ(3− λ) cos [(λ− 1)θ], (5.5)
sθθ(θ) = λ(λ+ 1) [cos [(λ+ 1)θ] + C cos [(λ− 1)θ]] , (5.6)
srθ(θ) = λ [(λ+ 1) sin [(λ+ 1)θ] + (λ− 1)C sin [(λ− 1)θ]] , (5.7)

5.2 Generalized stress intensity factors (GSIFs)

Generalized stress intensity factors (GSIFs) in the elastic solution of a re-entrant corner with
free boundaries are calculated using a non-independent path integral on an arbitrary contour
Γ (see Fig. 5.2 for an example), see [86]. Therefore, K is expressed as

K =
Φ(U, r−λu−(θ))

Φ(rλu(θ), r−λu−(θ))
(5.8)
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where r−λu−(θ) corresponds to the dual mode of rλu(θ) (see appendix 5.1 for expressions),
and U is the finite element approximation of the elastic solution. The integral Φ(A,B) is
defined as

Φ(A,B) =
1

2

∫
Γ

[
σ(A) · n ·B − σ(B) · n ·A

]
ds, (5.9)

Figure 5.2: Example of a closed path

5.3 Calculation of the dimensionless coefficient A∗

The coefficient A∗ is used in Section 1.2.1.2 to apply the CC together with the MAE in a
V-notched specimen of angle ω assuming that δl is small compared to the notch depth. This
coefficient is calculated in the inner problem, see Fig. 5.3, in which a huge external radius R
is set to represent an unbounded domain. At r = R the displacement field ρu(θ) defined in
Annex 5.1 is prescribed as a displacement boundary condition.

Notice that symmetry conditions have been applied in the V-notched specimen. The numerical
solution of this problem is names as V 1(y1, y2) Applying the path independent integral defined
in (5.9) along a close path ΓI the coefficient A is determined.

A = 2Φ(V 1(y1, y2), r
λu(θ)) (5.10)
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Figure 5.3: Scheme of the inner problem in a V-notched specimen when applying the CC
together with MAE. Symmetry conditions have been applied

5.4 Codes developed

5.4.1 Automatic algorithms for the application of the CC

When applying the CC, the main objective is to find the minimum load for which both the
stress (1.9) and the energy conditions (1.8) are fulfilled. In some cases, as the one presented
in Chapter 3 where MAE was applied, the result of the CC is not the load, but the apparent
fracture toughness of the composite, see (3.34) and (3.35).

Two algorithms are developed and compared in this section. The first algorithm, explained in
Section 5.4.1.1, is an iterative process based on the determination of critical points on curves σ̄
and Ḡinc that can potentially be the points where the CC is verified: the cross points between
the two curves, a relative minimum in σ̄ and a relative maximum in Ḡinc.

The main advantage of the first algorithm is the low computational complexity and the high
accuracy of results, with 5− 6 iterations the solution is found accounting for tolerances of the
order of 10−6. However, the main drawback is the fact that it is based on the existence of at
least one of these specific points. If such points are not identified, a different procedure might
be used. For this reason, a second algorithm, explained in Section 5.4.1.2, is developed. It has
higher a computational complexity and lower accuracy, but it is valid for any possible case of
the CC. We propose the use of both algorithms, the first one would be valid in most of the
cases studied, whereas the second one would be used when no critical points are identified or
the curves are too complex (several relative extremes or cross points...). It is important to
highlight that algorithm 1 is explained in this section for a pure mechanical problem whereas
algorithm 2 is prepared for a thermomechanical problem (see Chapter 3).

The inputs needed are:

• The arc length vector that defines the expected crack path s.

• The vector of tensile stress σ, evaluated at each point along the expected crack path,
s. Notice that if a thermomechanical problem is considered, it is necessary to introduce



Chapter 5. Appendices 139

σcr and σte for the mechanical and the thermoelastic solution, respectively.

• The vector of incremental energy release rate Ginc, evaluated at each point of s. As
mentioned above for the stress function, if a thermomechanical problem is considered,
it is necessary to introduce Gcr

inc and Gte
inc.

• Vector of fracture properties σc and Gc at each point of the expected crack path s.

In this PhD thesis, vectors σ and Ginc are obtained using FEM with FEniCS or FEniCSx
software [106]. The vectors are calculated for a unitary load under displacement control.
Then, if force control is being under study, the correct changes explained in Section 2.2.2 are
made before applying the CC algorithm.

Both algorithms are based on the same iterative process. At each iteration n+1, two vectors
are calculated using previous solution at iteration n

σ̄(n+1) =

(
∆(n)σcr + σte)

σc
, Ḡinc =

(
∆(n)2Gcr

inc +Gte
inc

)
Gc

(5.11)

where ∆(0) = 1. We look for the minimum value of ∆ for which the CC is fulfilled, named
here as ∆c. Thus, the outputs of these codes are ∆c and the newly created crack length δl,
highlighted in graphics using the CC point, i.e., when s = δl. Noteworthy, the difference
between algorithms 1 and 2 is how ∆(n) is calculated in the recursive process.

The codes are updated in the following webpage https://newfrac.github.io/fenicsx-fracture/
notebooks/coupled-criterion/Coupled_Criterion.html.

5.4.1.1 Algorithm 1: based on critical points

As it was mentioned before, this algorithm is an iterative process. At each iteration n we look
for the following critical points in vectors σ̄(n) and Ḡ(n)

inc : cross points between the two vectors,
a relative minimum point in σ̄(n) or a relative maximum point in Ḡ

(n)
inc . By analysing these

points, a certain scenario is identified, as it is explained in the following subsections, and the
fulfillment of the CC is verified under a certain tolerance, Tol = 10−6. If the CC conditions
are not verified, another iteration is added and the dimensionless vectors σ̄(n+1) and Ḡ

(n+1)
inc

are updated applying (5.12), that can be expressed for as

σ̄(n+1) = ∆(n)σ ⊘ σc, Ḡinc = ∆(n)2Ginc ⊘Gc, (5.12)

if a pure mechanical problem is considered. Moreover, it is important to highlight that if
several cross points or relative extremes are present in the input vectors, only the ones related
to the minimum s are considered.

Below the pseudocode of algorithm 1 is shown. A maximum number of 200 iterations is set
to avoid infinite calculations.

Define Niter,Tol

https://newfrac.github.io/fenicsx-fracture/notebooks/coupled-criterion/Coupled_Criterion.html
https://newfrac.github.io/fenicsx-fracture/notebooks/coupled-criterion/Coupled_Criterion.html
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Initiate variables Flag = 0, n = 0, σ̄0 = σ ⊘ σc, Ḡinc = Ginc0 ⊘Gc

While Flag == 0 and n < Niter

Update n = n+ 1

Update σ̄ = ∆ σ̄0, Ḡinc = ∆2 Ḡinc0

If there is a cross point scp
If σ̄|s ≥ σ̄|scp and Ḡinc|s ≤ Ḡinc|scp for s ∈ [0, scp]

(Scenario 1.A)

If | Ḡinc|scp − 1 |≤ Tol

∆c = ∆, Flag = 1

Else

∆ = 1√
| Ḡinc|scp |

EndIf

ElseIf ∃smin < scp in σ̄ and Ḡinc|smin < σ̄|smin

(Scenario 1.B.1)

If | σ̄|smin − 1 |≤ Tol

∆c = ∆, Flag = 1

Else

∆ = 1
| σ̄|smin | ,

EndIf

ElseIf ∃smax < scp in Ḡinc and σ̄|smax > Ḡinc|smax

(Scenario 1.B.2)

If | Ḡinc|smax − 1 |≤ Tol

∆c = ∆, Flag = 1

Else

∆ = 1√
| Ḡinc|smax |

EndIf

EndIf

ElseIf ∃smin in σ̄ and Ḡinc|smin < σ̄|smin

(Scenario 2.A)

If | σ̄|smin − 1 |≤ Tol

∆c = ∆, Flag = 1

Else

∆ = 1
| σ̄|smin | ,
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EndIf

ElseIf ∃smax in Ḡinc and σ̄|smax > Ḡinc|smax

(Scenario 2.B)

If | Ḡinc|smax − 1 |≤ Tol

∆c = ∆, Flag = 1

Else

∆ = 1√
| Ḡinc|smax |

EndIf
EndIf

EndWhile

Scenario 1: There is a cross point

The cross point scp between the two curves σ̄(n) and Ḡ(n)
inc is a critical point that might governs

crack nucleation. Different scenarios can be analysed if there is a cross point.

Scenario 1.A. : The cross point might governs crack nucleation

This is the simplest scenario of the CC, and is applied when

σ̄(n)|s ≥ σ̄(n)|scp , and Ḡ
(n)
inc |s ≤ Ḡ

(n)
inc |scp for 0 ≤ s ≤ scp, (5.13)

If this case is found at iteration n, a residual is compared to a certain tolerance

| Ḡ(n)
inc |scp − 1 |≤ Tol, (5.14)

to verify if the CC is fulfilled. If not, a new iteration n+1 is needed, and ∆(n+1) is calculated
as

∆(n+1) =
1√

| Ḡ(n)
inc |scp |

, (5.15)

Since σ̄(n) and Ḡ
(n)
inc are a set of discrete values that depends on the mesh used, it is more

than common that the cross point does not coincide with one of the elements in these vectors.
In that case, it is possible to find the interval [si, si+1] in which scp is located, and then to
determine through interpolation scp and the corresponding σ̄(n)|scp and Ḡ

(n)
inc |scp . Hence, an

accurate solution to the algorithm in this scenario is obtained.

An example can be observed in Fig. 5.4. One of the problems solved in Chapter 3 has been
selected, the case of α = 0◦, l = 100µm, ∆θ = 0◦ and Vp = 0%, where it is indicated the
number of iterations needed in the algorithm, n = 7. In this example, the CC is fulfilled
with a tolerance lower than 10−16. Notice that the CC point denotes the newly created crack
length, and in this case it is equal to the cross point.
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Figure 5.4: Example of the application of the algorithm 1, in the scenario 1.A. Case α = 0◦,
l = 100µm, ∆θ = 0K and Vp = 0%.

Scenario 1.B. : The cross point might not governs crack nucleation

If the cross point is not governing crack nucleation ((5.13) is not fulfilled), a relative minimum
in σ̄(n) and maximum in Ḡ(n)

inc must be analysed. Notice that here we are not considering re-
lative maximum points in σ̄(n) or minimum points in Ḡ

(n)
inc . This is a simplification, based

on the idea that normally there is only one relative extreme in these vectors, and the global
tendency of σ̄(n) and Ḡ

(n)
inc is generally decreasing and increasing, respectively. Moreover, if

there are several relative extremes in σ̄(n) or Ḡ(n)
inc we take the one related to the lowest value

of s.

Scenario 1.B.1. : There is a local minimum in σ̄(n) and it might governs crack
nucleation

If the condition over σ̄(n) in (5.13) is not fulfilled we look for the existence of relative minimum
points in σ̄(n) along the interval [0, scp], by checking if there is a point denoted as smin where
the derivative of σ̄(n) changes its sign from negative to positive. If so, the condition

Ḡ
(n)
inc |smin < σ̄(n)|smin (5.16)

is studied to assume that smin might be governing the CC. Remember that if several relative
extremes are present, only the one related to the smallest s is considered. In that case, the
following residual is compared to a certain tolerance to verify the CC conditions.

| σ̄(n)|smin − 1 |≤ Tol. (5.17)

If this is not verified, a new iteration n+ 1 is needed, and ∆(n+1) is calculated as

∆(n+1) =
1

| σ̄(n)|smin |
, (5.18)
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A more accurate calculation of smin would imply the interpolation in the interval where this
minimum point is located in the discrete vector s, as it was explained for the cross point.
However, for the calculation of smin, the interpolation is not necessary since the curves are
normally smooth, and the value estimated from the discrete vector provided as an input is a
good approximation. The same happens with the following scenario 1.B.2., and the maximum
point in the energy condition curve.

Scenario 1.B.2. : There is a local maximum in Ḡ
(n)
inc and it might governs crack

nucleation

If the condition over Ḡ(n)
inc in (5.13) is not fulfilled we look for the existence of a relative

maximum point in Ḡ
(n)
inc along the interval [0, scp], by checking if there is a point denoted

as smax where the derivative of Ḡ(n)
inc changes its sign from positive to negative. If so, the

condition
σ̄(n)|smax > Ḡ

(n)
inc |smax (5.19)

is necessary to consider that smax might be the CC point. In that case, the following residual
is compared to a certain tolerance to verify the CC conditions.

| Ḡ(n)
inc |smax − 1 |≤ Tol. (5.20)

If this is verified, the CC is fulfilled. If not, a new iteration n + 1 is needed, and ∆(n+1) is
calculated using (5.15).

An example can be observed in Fig. 5.5. The problem is selected from Chapter 3, the case
of α = 0◦, d = 10µm, ∆θ = 0◦ and Vp = 0%. In the graphic it is indicated the number of
iterations needed in the algorithm, n = 4. In this example, the CC is fulfilled with a tolerance
lower than 3 · 10−16.

Figure 5.5: Example of the application of the algorithm 1, in the scenario 1.B.2: the maximum
point in Ḡ(n)

inc is the CC point. Case α = 0◦, d = 10µm, ∆θ = 0K and Vp = 0%
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Scenario 2: There is not a cross point

If there is not a cross point, we look for a relative minimum point in σ̄(n) or a relative max-
imum point in Ḡ(n)

inc , and we apply the same reasoning studied in scenarios 1.B.1.

One example is shown in Fig. 5.6. The CC analysis corresponds to a traction test on a
double-notched nano-tablet (see Section 2.2.3.2 for more details). In particular, the CC is
governing by a relative minimum of σ̄(n) when σc = 5.5 GPa and Gc = 2.091 J m−2. Only 4
iterations are needed to find the solution. Notice that in this case, although smin is the point
that governs the failure, it does not correspond to the CC point, defined as the point where
s = δl, the newly created crack length. In this case, smin < δl ≈W − a.

Figure 5.6: Example of the application of the algorithm 1, in the scenario 1.B.1: the minimum
point in σ̄(4) is governing the failure. Case studied in Section 2.2.3.2, for σc = 5.5
GPa and Gc = 2.091 J m−2

Final remark: this algorithm is not optimized. First, notice that we only consider relative
minimum points in σ̄(n) and maximum points in Ḡ

(n)
inc . A better performance is expected if

machine learning techniques are introduced and several relative extreme points are studied.
Moreover, under simplifications made in this code, only one maximum point in Ḡ(n)

inc and one
minimum point in σ̄(n) are considered in the algorithm.

5.4.1.2 Algorithm 2: based on load steps

In algorithm 2 the parameter ∆ is evaluated in a certain range. We look for the minimum
value of ∆ for which the stress and the energy condition is verified, as described in the fol-
lowing pseudocode. Notice that this code is prepared for a thermomechanical problem. If a
pure mechanical problem is considered, the thermoelastic variables must be set to 0.
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As mentioned above, the main disadvantage of algorithm 1 is that there are some cases that it
can not solve, because the CC point does not correspond to a critical point of the curves rep-
resenting the stress and the energy condition, or other effects (for example, thermoelasticity)
are included. When algorithm 1 works, both procedures give the same results, as shown in
Fig. 5.7, where Kapp

IC /Kg
IC with respect to l is represented for α = 0◦, Vp = 0% and ∆θ = 0K

(case studied in Chapter 3).

The main disadvantage of algorithm 2 is the number of iterations, that depends on the value
of δ∆. If a high accuracy is required, the number of iterations can be much more than in
case of using algorithm 1. For example, in the situation represented in Fig. 5.6. With al-
gorithm 1 it was solved using 4 iterations, whereas with algorithm 2 a total of 439 iterations
were required. The high computational complexity of this code with respect to the other one
suggests us to combine the use of both codes when applying the CC.

Figure 5.7: Comparison between the algorithm 1 and the algorithm 2. Evolution of Kapp
IC /Kg

IC
with respect to l, for α = 0◦ and Vp = 0% (The two curves are superimposed).

Define ∆max, δ∆

Initiate variables ∆ = 0

While ∆ < ∆max

Update ∆ = ∆+ δ∆

Update σ̄ =
(
∆σcr + σte)⊘ σc and Ḡinc =

(
∆2Gcr

inc +Gte
inc

)
⊘Gc

If σ̄ > 1 and Ḡinc > 1, Then

∆max = ∆

EndIf

If There is a point (scc1) where Ḡinc = 1 Then
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If σ̄(s) > 1 for 0 ≥ s ≥ scc1 and
∂σ̄

∂s

∣∣∣∣
s[0]

<
∂σ̄

∂s

∣∣∣∣
s[1]

Update ∆max = ∆ and ∆c = ∆

EndIf

EndIf

EndWhile
Initiate variables ∆ = 0

While ∆ < ∆max

Update ∆ = ∆+ δ∆

Update σ̄ =
(
∆σcr + σte)⊘ σc and Ḡinc =

(
∆2Gcr

inc +Gte
inc

)
⊘Gc

If σ̄ > 1 and Ḡinc > 1, Then

∆max = ∆

EndIf

If There is a point (scc2) where σ̄ = 1 Then

If σ̄(s) > 1 for 0 ≥ s ≥ scc1 and
∂σ̄

∂s

∣∣∣∣
s[0]

<
∂σ̄

∂s

∣∣∣∣
s[1]

and Ḡinc
∣∣
scc2

≥ 1

Update ∆max = ∆ and ∆c = ∆

EndIf

EndIf

EndWhile

5.4.2 A code for the application of the PF model for brittle fracture

In this section we explain the PF code used in Section 2.3, which is summarized in Fig. 5.8.
It is important to highlight that the code developed in this PhD thesis is based on the online
tutorial1. We follow a staggered scheme of the problem, and therefore the displacement and
damage are separately calculated.

At each time step τ , an iterative process is initiated. The inputs of each iteration n are
un−1
τ , αn−1

τ , the solution of iteration n − 1. Notice that for the first iteration n = 1 the
inputs correspond to the solution of the previous time step uτ−1, ατ−1. Applying a specific
solver described in Section 5.4.2.2, the displacement vector at iteration n is obtained, keeping
constant the damage variable αn−1

τ , and then the damage variable at iteration n is calculated
keeping constant the displacement vector unτ . The outputs unτ , αn

τ are checked using a function
E(αn

τ ), based on the L2 norm,

E(αn
τ ) =

∫
Ω∥α

n
τ − αn−1

τ ∥dx
Vol

(5.21)

1https://newfrac.gitlab.io/newfrac-fenicsx-training/04-phase-field/phase-field.html

https://newfrac.gitlab.io/newfrac-fenicsx-training/04-phase-field/phase-field.html
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where Vol is the total volume of the specimen (area if we refer to 2D elasticity). The con-
vergence at time step τ is achieved when E(αn

τ ) < Tol, being Tol a certain tolerance that is
normally set as 10−4.

Figure 5.8: Flow chart for the Phase Field code used in this PhD thesis.

The irreversibility condition in this code is imposed by setting the lower bound of the dam-
age function ατ at time step τ , as ατ−1. The upper bound of this function is equal to 1,
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which means completely damage. The library Dolfinx 2 is used to apply this methodology.
Moreover, to enhance its performance, the code is prepared for parallel operation, using the
MPI library 3.

5.4.2.1 Description of the code

Since the phase field code is not updated in the website4, it is explained in this appendix.
First, we import the required libraries in this code.

import d o l f i n x
import numpy as np
from mpi4py import MPI
import u f l

Then, we define a function that receives several inputs: name_input, mesh, facets and
Parameters_data. In the input name_input we include a key name for the outputs of the
code. In the inputs (mesh and facets) we include the nodes generated in the mesh (in this
case it has been generated by the mesh tool Gmsh 5) of the domain and the boundaries,
respectively. Finally, in Parameters_data we include additional parameters of the problem
(mechanical and geometrical parameters). The parameter comm is used to define the com-
municator for parallel computation.

de f pha s e f i e l d_so l v e r ( name_input , mesh , f a c e t s , Parameters_data ) :
# Pa r a l l e l computation : mu l t i p r o c e s s o r s
comm = MPI.COMM_WORLD

In the following, all the lines described are locate inside the function described above. First,
the vector Parameters_data is decomposed. The parameters that will be included in the
formulation are scattered in the mesh: the Lamé constants (lmbda and mu), the residual
parameter (kres) for avoiding zero stiffness in the structure, the phase field length scale (named
as l0 in this code and defined using the AT1 model), the critical energy release rate (Gc), the
bulk modulus (Kn) and the imposed displacement (Uimp). Moreover, the function (w) and
the coefficient (cw) defined in the following lines will be used in the damaged energy density,
following the AT1 model.

# Parameters in the problem
E, nu = Parameters_data . get ( ’E’ ) , Parameters_data . get ( ’ nu ’ )
Umax = Parameters_data . get ( ’Umax’ )
Nincr = Parameters_data . get ( ’ Nincr ’ )
L = Parameters_data . get ( ’L ’ ) + Parameters_data . get ( ’ n ’ )
W, av = Parameters_data . get ( ’W’ ) , Parameters_data . get ( ’ a ’ )
Sc , Gc = Parameters_data . get ( ’ Sc ’ ) , Parameters_data . get ( ’Gc ’ )

2https://docs.fenicsproject.org/dolfinx/main/python/
3https://www.open-mpi.org/
4https://newfrac.gitlab.io/newfrac-fenicsx-training/04-phase-field/phase-field.html
5https://gmsh.info/

https://docs.fenicsproject.org/dolfinx/main/python/
https://www.open-mpi.org/
https://newfrac.gitlab.io/newfrac-fenicsx-training/04-phase-field/phase-field.html
https://gmsh.info/
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l 0 = 3/8 ∗ E ∗ Gc / ((1−nu∗∗2)∗ Sc ∗∗2)

# Parameters sparsed in the mesh
lmbda = do l f i n x . fem . Constant (mesh , E∗nu/(1+nu)/(1−2∗nu ) )
mu = do l f i n x . fem . Constant (mesh , E / 2 / (1 + nu ) )
kre s = do l f i n x . fem . Constant (mesh , 1e−6)
l 0 = do l f i n x . fem . Constant (mesh , l 0 )
Gc = do l f i n x . fem . Constant (mesh , Gc)
Kn = do l f i n x . fem . Constant (mesh , E∗nu/(1+nu)/(1−2∗nu)+E/2/(1+nu ) )
Uimp = do l f i n x . fem . Constant (mesh , 0 . )

cw = do l f i n x . fem . Constant (mesh , 8 / 3 . 0 )
w = lambda d : d

Then, the strain and stress tensor are defined, using a function. Noticed that the stress tensor
considering damage (sigma) is defined using the stress tensor with no damage, previously
calculated (sigma_undamaged). In each function, v represents the displacement vector and
d the damage variable.

# E l a s t i c v a r i a b l e : s t r e s s and s t r a i n s
de f eps ( v ) :

r e turn u f l . sym( u f l . grad (v ) )

de f sigma_undamaged (v ) :
r e turn lmbda ∗ u f l . t r ( eps ( v ) ) ∗ u f l . I d en t i t y (2 ) + 2∗mu∗ eps (v )

de f sigma (v , d ) :
r e turn ( (1 − d) ∗∗ 2 + kres ) ∗ sigma_undamaged (v )

In Dolfinx we need to define the function spaces of the variables that we want to calculate:
displacements, damage and stresses in our code. The following lines are used.

# Function spaces
# func t i on space f o r the disp lacement
V_u = do l f i n x . fem . VectorFunctionSpace (mesh , ("CG" , 1 ) )
# func t i on space f o r the damage
V_a = do l f i n x . fem . FunctionSpace (mesh , ("CG" , 1 ) )
# func t i on space f o r the s t r e s s
V_s = do l f i n x . fem . TensorFunctionSpace (mesh , ("CG" , 1 ) )

Dirichlet boundary conditions for displacements are defined in two different steps. First, we
define the degrees of freedom on which these conditions will be applied. Second, we define
the dirichlet boundary conditions, that are stored in a vector (bcs). These conditions depend
on the problem we want to solve. As an example, we apply our code to a bending test of
a 2D beam (see Section 2.3.4). The displacements of the beam are restricted by a fixed
boundary condition on the left face, while a vertical distributed displacement is imposed on
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the right face. That is why we define the degrees of freedom for both faces (Ldofs, Rdofs).
Since we are under 2D elasticity, there will be 2 degrees of freedom per node. On the left
face both are restricted, whereas on the right face only the degrees of freedom related to a
vertical displacement are changed by the Dirichlet boundary condition. The left and the right
boundaries where designated in the input facets (named at the beginning of the function). In
this problem there are not Neumann boundary conditions.

# D i r i c h l e t boundary cond i t i on s f o r d i sp lacements
dim = f a c e t s . dim
Lnods = f a c e t s . i n d i c e s [ f a c e t s . va lue s == 1 ]
Rnods = f a c e t s . i n d i c e s [ f a c e t s . va lue s == 2 ]
Ldofs = do l f i n x . fem . l o ca t e_do f s_topo log i ca l (V_u, dim , Lnods )
Rdofs = do l f i n x . fem . l o ca t e_do f s_topo log i ca l (V_u. sub (1 ) , dim , Rnods )
bc l = do l f i n x . fem . d i r i c h l e t b c (np . z e r o s ( ( 2 , ) ) , Ldofs , V_u)
bcr = do l f i n x . fem . d i r i c h l e t b c (Uimp , Rdofs , V_u. sub ( 1 ) )
bcs = [ bc l , bcr ]
# Neumann boundary cond i t i on s
q = do l f i n x . fem . Constant ( mesh , np . z e r o s ( ( 2 , ) ) )
f = do l f i n x . fem . Constant ( mesh , np . z e r o s ( ( 2 , ) ) )

Dirichlet boundary condition for the damage variable might also be imposed. In that case,
we need to repeat the process. For example, in this case we impose α = 0 (no damage) on the
left and the right faces to avoid damage nucleation in those sides of the beam. Notice that
the degrees of freedom must be redefined, since they refer in this case to the function space
of the damage variable.

Ldofs_a = do l f i n x . fem . l o ca t e_do f s_topo log i ca l (V_a, dim , Lnods )
Rdofs_a = do l f i n x . fem . l o ca t e_do f s_topo log i ca l (V_a, dim , Rnods )
bcl_a = do l f i n x . fem . d i r i c h l e t b c ( 0 . 0 , Ldofs_a , V_a)
bcr_a = do l f i n x . fem . d i r i c h l e t b c ( 0 . 0 , Rdofs_a , V_a)
bca = [ bcl_a , bcr_a ]

We define now the functions of the code. Additional functions are defined for the damage
variable: aold, that stores the damage state at the previous time step, aupp and alow, that
defines the upper and the lower limits of the damage variable. As mentioned above, the
lower limit is updated at each time step, so that the irreversibility condition is always directly
imposed. The upper limit is equal to 1.

u = do l f i n x . fem . Function (V_u, name = ’ Displacement ’ )
alpha = do l f i n x . fem . Function (V_a, name = ’Damage ’ )
s i g = do l f i n x . fem . Function (V_s, name = ’ St re s s ’ )

ao ld = do l f i n x . fem . Function (V_a, name=’Previous_damage ’ )
aupp = do l f i n x . fem . Function (V_a, name=’Upper_bound_damage ’ )
alow = do l f i n x . fem . Function (V_a, name=’Lower_bound_damage ’ )

# . . . . . . . . . . . De f in ing the maximum upper bound
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with aupp . vec to r . localForm ( ) as bc_local :
bc_loca l . s e t ( 1 . 0 )

d o l f i n x . fem . set_bc ( aupp . vector , bca )

Once the functions are defined, the energy densities are introduced. We need to include the
elastic and the fracture energy density (psi_el and psi_fr, respectively). In the elastic energy
density we apply a decomposition to separate compression and tension. In this example this is
important since crack nucleation is only affected by tension. The decomposition was already
explained in Section 1.2.3

de f ps i_e l (v , d ) :
t race , dev = u f l . t r ( eps ( v ) ) , u f l . dev ( eps (v ) )
cond = u f l . c ond i t i o na l ( t r a c e > 0 , trace , −t ra c e )
eps_po , eps_ng = 1/2∗( t r a c e + cond ) , 1/2∗( t r a c e − cond )
psi0_p = Kn/2∗eps_po∗∗2 + mu∗ u f l . i nne r ( dev , dev )
psi0_m = Kn/2∗eps_ng∗∗2
return (((1−d)∗∗2 + kre s ) ∗ psi0_p + psi0_m)

de f ps i_f r (d ) :
grad = u f l . grad (d ) )
re turn Gc/cw ∗ (w(d)/ l 0 + l0 ∗ u f l . dot ( grad , grad )

At this point, the solver must be created. To see how this solver is defined, have a look
at Section 5.4.2.2. After generating the solver, a vector is created to include the different
values of the load at each time step (using the maximum load and the number of increments).
They will be used to update the parameter Uimp defined at the beginning. Moreover, in the
processor 0 (if parallel computing) the results will be stored in a matrix. The output will be
also plot in a .xdmf file. Moreover, to calculate the function E(αn

τ ) the total volume (or area)
in the solid is obtained (vol_total). The command allreduce is used in parallel computing for
a correct integration.

# Load s t ep s vec to r
load_steps = np . l i n s p a c e (0 , Umax, Nincr + 1)
t = 0

# Resu l t s s to r ed in a matrix
i f comm. rank==0:

r e s u l t s = np . z e r o s ( Nincr + 1 , 4 ) )

# Output p l o t s in a xdmf f i l e
f f i l e = do l f i n x . i o . XDMFFile(comm, s t r ( name_input+".xdmf ") , "w")
f f i l e . write_mesh (mesh )

# Volume d e f i n i t i o n
vol_unit = do l f i n x . fem . Constant (mesh , 1 . 0 )
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vol_form = do l f i n x . fem . form ( vol_unit ∗ u f l . dx )
vol_rank = do l f i n x . fem . assemble_sca lar ( vol_form )
vo l_tota l = MPI.COMM_WORLD. a l l r e du c e ( vol_rank , op=MPI.SUM)

The iterative process described in Fig. 5.8 starts. For each time step the imposed load is
updated and the iterative process is initiated.

insertmode = PETSc . InsertMode . INSERT
scattermode = PETSc . ScatterMode .FORWARD
fo r ( i , t ) in enumerate ( load_steps [ 1 : ] ) :

i f comm. rank == 0 :
p r i n t (" Increment { :3 d }" . format ( i + 1) )
p r i n t ("Load { :3 f }" . format ( t ) )

# . . Update the load value
Uimp . va lue = −0.1

n i t e r = 0

f o r n i t e r in range ( Parameters_data . get ( ’ Nitermax ’ ) ) :

# Staggered model : d i sp lacement
solver_u_snes . s o l v e (None , u . vec to r )
solver_u_snes . destroy , b_u . des t roy ( ) , J_u . des t roy ( )

# Staggered model : damage SNES s o l v e r
solver_a_tao . s o l v e ( alpha . vec to r )
solver_a_tao . destroy , b_a . des t roy ( ) , J_a . des t roy ( )

# Expand the ve c t o r s in the mu l t i p r o c e s s o r s
alpha . x . scatter_forward ( )
u . x . scatter_forward ( )

# Check convergence cond i t i on
e_L2 = u f l . i nne r ( alpha−aold , alpha−aold )
E_L2 = do l f i n x . fem . form (e_L2∗ u f l . dx )
E_rank = do l f i n x . fem . assemble_sca lar ( e r r o r )
E_total = MPI.COMM_WORLD. a l l r e du c e ( error_rank , op=MPI.SUM)
ErrorL2 = np . sq r t ( E_total )/ vo l_tota l
# Update damage aold f o r the next i t e r a t i o n
alpha . vec to r . copy ( aold . vec to r )
aold . vec to r . ghostUpdate ( addv=insertmode , mode=scattermode )

i f comm. rank == 0 :
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pr in t (" I t e r { : 3 d } : | | Res | |={ : 5 e }" . format ( n i t e r , ErrorL2 ) )

i f ErrorL2 < Parameters_data . get ( ’ to l ’ ) :
break

e l s e :
warnings . warn ("Too many i t e r a t i o n s ")

# Check i r r e v e r s i b i l i t y : update the lower bound
alpha . vec to r . copy ( alow . vec to r )
alow . vec to r . ghostUpdate ( addv=insertmode , mode=scattermode )

# Compute en e r g i e s
en_el_form = do l f i n x . fem . form ( ps i_e l (u , alpha )
en_el_rank = do l f i n x . fem . assemble_sca lar ( en_el_form∗ u f l . dx ) )
en_el = comm. a l l r e du c e ( en_el_rank )
en_fr_form = do l f i n x . fem . form ( ps i_f r ( alpha )
en_fr_rank = do l f i n x . fem . assemble_sca lar ( en_fr_form∗ u f l . dx ) )
en_fr = comm. a l l r e du c e ( en_fr_rank )
f o r c e = en_el ∗2/ t

i f comm. rank==0:
r e s u l t s [ i + 1 , : ] = ( t , en_el , en_fr , f o r c e )

# Expand the ve c t o r s in the mu l t i p r o c e s s o r s
f f i l e . wr i te_funct ion (u , t )
f f i l e . wr i te_funct ion ( alpha , t )
f f i l e . wr i te_funct ion ( s ig , t )

r e turn r e s u l t s

5.4.2.2 Description of the solvers

In this section we explain the solver used in the code. We have used two different solvers that
use the Newton-Raphson methodology: SNES solver and TAO solver. The first one (SNES)
is a minimization solver, and it works better with parallel computing, but it fails when the
phase field length scale is too close to the dimensions of the specimen. The second one (TAO)
is an optimization solver. It is used because it compiles when the phase field length scale is
of the order of the dimensions of the specimen, but it is much more difficult to compute using
parallel computing. It has been verified that in cases where both solvers can be used they give
the same results. In the code, both have been defined and applied according to the situation
analysed. Two problems are defined, one for displacements and the other one for damage. As
an example, we show the code used to define the displacement problem using SNES an the
damage problem using TAO. For the first one,



Chapter 5. Appendices 154

func_psi = ps i_e l (u , ao ld ) + ps i_f r ( aold ) − u f l . dot ( f , u )
func_u = ( func_psi )∗ u f l . dx − u f l . dot (q , u)∗ u f l . ds
dfunc_u = u f l . d e r i v a t i v e ( funct ional_u , u , u f l . TestFunction (V_u) )
ddfunc_u = u f l . d e r i v a t i v e ( dfunctional_u , u , u f l . Tr ia lFunct ion (V_u) )

# De f i n i t i o n o f the problem
u_problem = SNES_problem( dfunc_u , ddfunc_u , u , bcs )

# b = xk ( degree s o f freedom )
dofs_domain_u , = V_u. dofmap . index_map
dofs_borders_u = V_u. dofmap . index_map_bs
b_u = do l f i n x . l a . create_petsc_vector ( dofs_domain_u , dofs_borders_u )
J_u = do l f i n x . fem . pet s c . create_matrix ( u_problem . a )

# Create Newton s o l v e r and so l v e
solver_u_snes = petsc4py .PETSc .SNES ( ) . c r e a t e ( )
solver_u_snes . setType (" v inewtonr s l s ")
solver_u_snes . setFunct ion ( u_problem .F , b_u)
solver_u_snes . s e tJacob ian ( u_problem . J , J_u)
solver_u_snes . s e tTo l e rance s ( r t o l =1.0e−9, max_it=50)
solver_u_snes . getKSP ( ) . setType (" preonly ")
solver_u_snes . getKSP ( ) . s e tTo l e rance s ( r t o l =1.0e−9)
solver_u_snes . getKSP ( ) . getPC ( ) . setType (" lu ")

whereas for the second one it is necessary to define the upper and the lower limits of the
variable. These lines work with a complementary function that has been omitted for the sake
of simplicity, where variables b_a, b_u and J_a, J_u are created. For a deeper information
the author invites the reader to ask for the codes by email or look at the NewFrac project
website, where similar methodologies will be uploaded.

# De f i n i t i o n o f the damage s o l v e r
func_a = ps i_e l (u , alpha ) ∗ u f l . dx + ps i_f r ( alpha ) ∗ u f l . dx
dfunc_a = u f l . d e r i v a t i v e ( func_a , alpha , u f l . TestFunction (V_a) )
ddfunc_a = u f l . d e r i v a t i v e ( dfunc_a , alpha , u f l . Tr ia lFunct ion (V_a) )

# De f i n i t i o n o f the problem (TAO so l v e r )
a_problem = TAOProblem( func_a , dfunc_a , ddfunctional_a , alpha , bca )

# b = xk ( degree s o f freedom )
dofs_domain_a = V_a. dofmap . index_map
dofs_borders_a = V_a. dofmap . index_map_bs
b_a = do l f i n x . l a . create_petsc_vector ( dofs_domain_a , dofs_borders_a )
J_a = do l f i n x . fem . pet s c . create_matrix ( a_problem . a )

# Create PETSc TAO
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solver_a_tao = petsc4py .PETSc .TAO( ) . c r e a t e (comm=comm)
solver_a_tao . setType (" tron ")
solver_a_tao . s e tOb j e c t i v e ( a_problem . f )
solver_a_tao . se tGrad ient ( a_problem .F , b_a)
solver_a_tao . s e tHes s i an ( a_problem . J , J_a)
solver_a_tao . s e tTo l e rance s ( g r t o l=1e−6, g t t o l=1e−6)
solver_a_tao . getKSP ( ) . setType (" preonly ")
solver_a_tao . getKSP ( ) . s e tTo l e rance s ( r t o l =1.0e−6)
solver_a_tao . getKSP ( ) . getPC ( ) . setType (" lu ")

# We se t the bound ( Note : they are passed as r e f e r e n c e )
solver_a_tao . setVar iableBounds ( alow . vector , aupp . vec to r )

5.4.2.3 Additional comments about the PF code

The mesh size in the PF model for brittle fracture is a critical decision in the problem,
and it is related to the phase field length scale. In this PhD thesis we follow the rule: 5
elements must define the phase field length scale. Therefore, the maximum mesh size al-
lowed in the damage region would be: lmesh = lPF/5 [70]. For example, for the bending
test of an unnotched beam (see Section 2.2.2.1) we have analysed the mesh sensitivity for
lPF = 1 µm. According to our rule, the mesh size chosen is lmesh = 0.2 µm. In Fig. 5.9 the
Force-Displacement curve is represented for several values of lmesh to study the verify that
the critical displacement (the parameter we are interested in) does not change when a lower
value than lmesh = lPF/5 = 0.2 µm is considered. Notice that the computational complexity is
highly reduced when lmesh = 0.2 µm, from 309 elements to 25000 elements for lmesh = 0.01 µm.

Figure 5.9: Influence of the mesh size used in the application of the phase field model for
lPF = 1 µm.
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The convergence of the solution is also analysed when applying the PF model. To that aim,
we reduce the load step until little variations are noticed in the critical displacement, as shown
in Fig. 5.10 for the bending test of a microcantilever beam, studied in Section 2.3.4. It is
important to highlight that a similar convergence analysis was done in the unnotched and v-
notched specimen. When 1/∆U ≈ 104 1/µm little variations are noticed and reliable results
can be obtained from the simulation.

Figure 5.10: Evolution of the critical displacement Ucrit with respect to the load step in the
numerical simulation.
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Latin symbols

A

a Notch depth

ah Notch width

al, at Dimensions of the heterogeneous structure in the actual domain

âl, ât Dimensions of the heterogeneous structure in the inner domain

A Scaling coefficient

A∗ Dimensionless scaling coefficient

A0 Stiffness tensor of the pristine material

A(α) Stiffness tensor

B

B Bulk modulus

C

C Elastic matrix

D

d Density

E

e, ê Thickness of the interphase in the actual and the inner domain, respectively

E Young’s modulus

Eapp Homogenized Young’s modulus
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F

f Shape factor

f Vector of volumetric forces

fτ Vector of volumetric forces at time τ

FDC Force under displacement control

FFC Force under force control

Fcrit Critical force

Fτ Vector of surface forces at time τ

F0/1(l) Terms in the inner expansion

F
cr/te
0/1 (l) Terms in the outer expansion in the mechanical (cr) or the thermoelastic (te) problem

G

Gc Critical energy release rate

Ginc Incremental energy release rate

Ḡinc Dimensionless incremental energy release rate

G Energy release rate

H

hl, ht Distances between fibers in the actual domain

ĥl, ĥt Distances between fibers in the inner domain

h Imposed distributed force

H History variable

H1(Ωl) First Sobolev space defined in the domain Ωl

I

I Identity matrix
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kcr/te GSIF of actual problem in the mechanical (cr) and thermoelastic (te) problem

kres Residual parameter

K Generalized stress intensity factor

Kc Fracture toughness

KI Stress intensity factor for a crack under Mode I

Kmin
I Minimum GSIF in the thermomechanical problem

Kapp
c Homogenized fracture toughness

L

l Length

lIrwin Irwin length

lmesh Maximum mesh size allowed in the nucleation damage region

lPF Phase Field length scale

l̂ Length in the inner domain

L Length of the specimen

Lc Critical length of the specimen

P

Pτ Total energy in the system at instant τ

Q

q Damage vector flux
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s Coordinate along the expected crack path

sd Damage variable

S Cross surface

T

t Thickness

t̂ Thickness in the inner domain

Tol Tolerance

U

ud Distributed displacement

udc Critical distributed displacement

uτ Displacement vector at instant τ

u(θ) Opening shape function in Williams’ expansion

U Load

UDC Displacement under displacement control

UFC Displacement under force control

U0 Leading term in the outer expansion

Ucrit Critical load

U Displacement vector

U cr/te Displacement vector in the mechanical (cr) / thermoelastic (te) problem

U l Actual displacement vector
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cr/te
0 Leading term in the outer expansion in the mechanical (cr) / thermoelastic (te) problem

U
cr/te
l Actual displacement vector in the mechanical (cr) / the thermoelastic (te) problem

V

Vr Volume fraction of the reinforcing element

Vp Volume fraction of platelets

Vf Volume fraction of fibers

V 0/1(y1, y2) Terms in the inner expansion

V
cr/te
0/1 (y1, y2) Terms in the outer expansion in the mechanical (cr) or the thermoelastic (te) problem

W

w1 Total energy dissipated in a damage process

w(α) Local term in the regularized energy density

W Width of the specimen

Y

Y Energy release rate density

Coordenates systems

r, θ Polar coordinates

x1, x2 Cartesian coordinates

y1, y2 Cartesian coordinates in the inner domain

Greek symbols

α Damage variable

αr Orientation of the reinforcing element
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αT Thermal expansion coefficient

ατ Damage variable at instant τ

αapp
T Homogenized thermal expansion coefficient

δl Newly created crack length

δlc Crack initiation length

δlin Newly created crack length in the inner domain

δS Newly created crack surface

κcr/te GSIF in the inner expansion in the mechanical (cr) and thermoelastic (te) problem

λ Singularity exponent in Williams’ expansion

ν Poisson’s ratio

νa/g Alumina/Glass Poisson’s ratio

νapp Homogenized Poisson’s ratio

ω Opening angle

ϕ Test function

ψ Energy density

ψel Elastic energy density

ψd Fracture energy density

ψlPF Regularized energy density

Ψel Elastic energy

Ψ̂el Elastic energy in the inner domain

ρ Notch blunting

σ̄ Dimensionless tensile stress

σc Tensile strength

σf Equivalent flexural stress
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σfcrit Equivalent flexural stress at failure

σfail Failure stress

σapp
c Homogenized tensile strength

σ Stress tensor

σl Actual stress tensor

σ0 Outer stress tensor

σ(s) Tensile stress along the expected crack path

σDC/FC(s) Tensile stress along the expected crack path under DC or FC

τ Time

θ0 Initial temperature

θf Final temperature

ε Strain tensor

εin Inelastic strain tensor

∆θ Cooling change in temperature

Γ Crack region

Γc Pre-existing crack region

Γl Actual perturbed boundary

ΓN Neumann boundary

ΓD Dirichlet boundary

ΓV V-notch outer boundaries

Ω Domain

Ω0 Outer domain

Ωin Inner domain

Ωl Actual perturbed domain

Πk Kinetic energy
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Πp Potential energy

Π
DC/FC
p Potential energy under displacement (DC) or force (FC) control

Ψf Total work of external forces at instant τ

Ψel Total elastic energy

Wcr/te Functional space for trial functions in the mechanical (cr) or thermoelastic (te) problem

Wcr
0 Functional space for test functions in the mechanical (cr) problem

Abbreviations

CC Coupled Criterion

CMC Ceramic Matrix Composites

DC Displacement control

ERR Energy Release Rate

FC Force control

FEM Finite Element Method

FFM Full Finite Element

FFM Finite Fracture Mechanics

FIB Focused Ion Beam

F-U Force-displacement

GSIF Generalized Stress Intensity Factor

IERR Incremental Energy Release Rate

K-U Stiffness-displacement
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MAE Matched Asymptotics Expansion

MEMS Micro-Electro-Mechanical System

PF Phase Field

SEM Scanning Electron Microscope

SENB Single-edge notched beam

SIF Stress Intensity Factor

SPM Scanning Probe Microscope

STM Scanning Tunneling Microscope
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